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Preface

Many of my friends complained that all the books on image analysis
were prepared for mathematicians rather than for laboratory workers.
It was an impulse to issue in 1994, in collaboration with Miroslaw
Majorek, a simple textbook on computer-aided image analysis, obvi-
ously written in Polish. Some of my foreign colleagues looked at this
book, appreciated its graphic form and... suggested, that it should be
published in English.

My first reaction was that it was not worthy enough. Surprisingly,
they answered with a very tempting argument: you started to write this
book because you did not find appropriate ones on the market. Maybe
yes... So, now you have my English version in your hands and I would
like to point out its three main properties, that can be important for
you, as a reader:

•

	

it is devoted really to applications. So, you will not find a system-
atic description of image processing operations. Instead, you can
look for a certain problem - for example, grain boundary detection
- and get immediately, possibly a full solution to this problem

•

	

it is written in a very simple manner and illustrated with numerous
pictures that will help you to understand it. Probably, many items
can be understood after studying only the illustrations. But do not
worry about the text - I avoid equations whether possible

•

	

all the examples were processed by myself and thoroughly ex-
plained. You will not find incomplete explanations, cited from
other works. It may happen that my solution is not the optimum
one, but it always works. You will know how to repeat it on your
own equipment and I hope, my book will inspire you to experiment
with your apparatus.
Probably nobody is able to face a challenge such as writing

a technical book without significant help from others. I am not an
exception, either. So, I would like to express my sincere thanks to all
those, who helped me, even if I am unable to cite their names - simply,
the list would be too long. But among these generous persons there are
a few I must list here.

First, I am really indebted to Brian Ralph, who generously agreed
to undertake the burden of improving my English. Second, I would
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like to thank Christopher Kurzydlowski, who encouraged me to start
the whole project, for his support. I have to point out that my under-
standing of image analysis would be much, much less without the
support from my French colleagues, Jean Serra and, especially, Jean-
Louis Chermant. I would like to acknowledge also all my friends who
gave me their images which were used to illustrate the algorithms.
And last but not least - many thanks to Bruno Lay and Gervais
Gauthier from ADCIS/AAI, who delivered free of charge, the newest
version of their image analysis software to use for processing all the
examples.

	

-

Cracow, August 1998
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Chapter one

Introduction

1.1 
Digital images and their analysis versus the

human vision system

During the last ten years we observed a tremendous expansion of
more and more powerful personal computers and development of
user-friendly, graphically oriented operating systems. The computing
power of commercial machines doubles in approximately one to two
years, and even more powerful computers are used on a laboratory
scale. Obviously, the most advanced computer is worth nothing with-
out appropriate software. The unprecedented market success of gen-
eral purpose software developers forced numerous smaller companies
to look for niche applications, very often connected with computer
graphics. The availability of frame grabbers, together with the wide
range of video cameras, allows the computer to see images and in-
duces the temptation to try simulation of the human vision system. As
a consequence, a good deal of image analysis software is currently at
hand. It allows many research workers to practice with tools previ-
ously available only for a limited group of specialists.

However, new tools also provide new problems, often caused by
some misunderstanding. High resolution graphics allows one to pro-
duce photo-realistic effects, leading to impressive virtual reality prod-
ucts. One can walk through non-existent buildings, observe crash tests
of newly designed but still non-existent cars, train surgeons on virtual
patients, etc. Similar effects can be obtained on small scale in almost
all personal computers and the appropriate software is commercially
marketed.

Computerized graphical presentations, often demonstrated in real-
time mode, are extremely impressive, especially for novices. They are
used very frequently, particularly for advertising purposes. Unfortu-
nately, such breathtaking spectacles in virtual reality may lead to
a false impression that computers can do almost everything. Moreo-
ver, many people are disappointed and frustrated when trying to do
anything on their own. Such a case is very common in image analysis
applications, which work perfectly, but only on the test images. Let us
try to find the reason for this situation.
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Fig. 1.1. The noisy image (up) contains some information which is totally
invisible for human eyes but can be easily developed after proper application
of very simple transformations (down). See text for more details.
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Let us analyze the upper image in Fig. 1.1. It looks as uniformly
noisy, perhaps with some brighter areas in the middle and lower right-
hand corner. However, it is enough to apply two simple steps:

•

	

minimum filter that converts any point in the image into its darkest
neighbor (see Section 2.3 for more details)

•

	

simple linear LUT transformation (see Section 2.2 for more de-
tails) in order to get optimum brightness and contrast.

After such a treatment we get the lower image shown in Fig. 1.1.
Thanks to the simplicity of the transformations applied the whole
process is very fast and impressive. We can add that for nearly every
image it is possible to find an appropriate procedure that can extract
features necessary for further analysis. The only problem is that usu-
ally we do not know

HOW TO DO IT?

In demonstration files this problem is already solved. Detailed analy-
sis of the demo can give us some guidelines for our own cases, but it
is never universal knowledge. So, the next and possibly the most im-
portant problem is

HOW MUCH TIME WILL WE SPEND TO FIND THE PROPER
SOLUTION?

It depends on our experience, type of image to be analyzed, etc. How-
ever, in general, to find the acceptable solution takes much more time
than we expect.

It seems a paradox that we have an extremely powerful image
analysis program working very fast during demonstration but we can
hardly do anything on our own. Simultaneously, we do not have simi-
lar difficulties with other packages devoted to word processing, data
analysis, charting, etc. After a little deeper analysis of the above ob-
servations we can put forward the following conclusions, decisive for
our further successes or failures in image analysis:

• computers perform very fast predefined sequences of operations
but are almost useless for development of new, original sequences
which are key for any development in image analysis

• 
we cannot directly use our own experience for development of
computerized algorithms for image analysis because we have no
detailed knowledge of the functionality of our brain. Moreover,
computers are not simplified brains and work in their own, entirely
different way
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• our visual system is a very efficient tool - we can read nearly un-
readable text, we can recognize a person seen only as a distant,
walking silhouette or find a proper way from a very simplified
plan. But it takes years of training to do it quickly and well. So, no
wonder that it is impossible to get, in every case, an immediate,
satisfactory solution using computerized image analysis

•

	

stiff, emotionless logic of computers is not good for subtle recog-
nition tasks requiring wide knowledge and intuition

•

	

on the other hand human visual system is sensitive to illusion and,
surprisingly, very conservative in its method of analysis. For ex-
ample, it is very difficult to read a mirrored text

•

	

computers are faster in simple, repeatable operations and therefore
offer an ideal platform for measurements.
It is evident from the above analysis that there are diverse, evident

and important differences between the human visual system and the
properties of computerized image analysis systems. The development
of efficient algorithms has to take a lot of time, therefore image analy-
sis should be applied mainly in the case of repeatable tasks, like qual-
ity control or scientific research. Recent, computerized technological
progress requires numbers - any quantity should be described as 10,
50 or 150 instead of bad, good or excellent. Image analysis systems
seem to be an ideal aid for such data treatment.

The variety of material structures being analyzed in industrial and
scientific laboratories means that nearly every user of image analysis
equipment has to develop from time to time his own, unique proce-
dure. There is only very limited opportunity to use specialists in com-
puter science or interdisciplinary teams for this purpose. Finding the
proper solution requires an extremely deep understanding of the proc-
esses under analysis and years of experience cannot be summarized
within minutes or even hours. Similarly, explanation and understand-
ing of isolated filters used in image analysis, available in numerous
textbooks, is insufficient for construction of effective algorithms. The
aim of this book is to fill the gap between the theory of image analysis
and the practice of material microstructure inspection.
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1.2 General concept of the book

The goal, described generally in the previous section, is very difficult
to obtain. This difficulty lies in the fact that we need to join two en-
tirely different intellectual spheres: a very strict and highly abstract
theory of numerical transformations and often unpredictable, highly
practical knowledge of material characteristics.

It seems that the proper solution can be found using some simple
rules, briefly described below. First, we will use the terminology
common for materials science. Thus we will use microstructure, grain
or particle instead of scene, set, figure or object. Second, we will
avoid mathematical formalism whenever possible. For practical rea-
sons it is less important if the transformation is idempotent, isotropic,
homotopic or additive. On the other hand, it is of highest priority to
know if the given filter can properly distinguish precipitates of various
phases. Third, we will concentrate on typical problems and the sim-
plest solutions, as it seems to be better to tell everything about some-
thing than to tell something about everything.

In order to adapt to the needs of various groups of potential read-
ers, the contents of this work are divided into smaller, possibly inde-
pendent parts. As a consequence, the book is organized into seven
chapters, including this one. Their contents are roughly presented
below:

•

	

Chapter one is devoted to general introduction and you are reading
it now

• Chapter two describes the main tools for image treatment and can
be recognized as the essence of the transformations most fre-
quently used in image analysis. In other words, this chapter gives
the bricks necessary to build an image analysis process. It contains
comprehensive descriptions of the nomenclature and basic proper-
ties of the transformations as well as some guidelines about where
the given family of operations can be successfully applied

• Chapter three deals with the problem of image acquisition and its
quality. Nearly all the transformations, even the simplest ones, of
the image are connected to some data loss. Therefore the quality of
initial images is of the highest importance. This chapter gives basic
rules for specimen preparation, image acquisition and removal of
the most frequently met distortions

• Chapter four is devoted to detection of basic features  in the mate-
rials microstructure like grains, fibers, pores, etc. These features
are essential for understanding of the material microstructure.
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However, they often are quite difficult to extract from the initial
image

• Chapter five covers treatment of complex structures, being much
more difficult to detect than the basic features described in the pre-
vious chapter. Fine and textures structures are analyzed here. The
algorithms discussed in this chapter are usually very complex and
require understanding of the items analyzed in Chapters two and
four

• Chapter six gives analysis and interpretation of pre-treated im-
ages. This chapter describes the technique of digital measurements
and their application in microstructural characterization. It dis-
cusses properties and specific errors met in digital measurements.
Chapter six is somewhat related, discussing basic rules of stereol-
ogy

•     Chapter seven summarizes the knowledge in previous chapters. Thus
it is devoted to applications and case histories analysis. The ex-
amples discussed in this chapter are selected to show how to solve
image analysis tasks, which should be of great value for the nov-
ices. Simultaneously, it allows experienced users to confront their
own practice with the other viewpoints.

Obviously, the algorithms presented in this book are not exclusive.
One can easily find other ways leading to identical or very similar
results - this is a very common situation in image analysis. It may also
happen that some methods supplied here can be significantly acceler-
ated or simplified. Moreover, the book covers only a small portion of
possible tasks and obviously a limited subset of existing procedures is
used. These limitations are introduced consciously, in order to keep
the volume of the whole work relatively small and to avoid very nar-
row applications. Once more, the goal of the whole work is twofold:

•

	

to give effective solutions to the most common problems met in the
analysis of images in materials science

•

	

to show the way to reach this effective solution in order to teach
the reader to solve his own, unique problems by him- or herself.
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Main tools for image treatment

2.1 About this chapter

This book is designed primarily for materials science professionals
interested in the application of image analysis tools in their research
work. It is assumed that they:

•

	

have a thorough knowledge of materials science as well as wanting
to apply image analysis tools quickly and efficiently in their work

•

	

have little experience (if any) with computer-aided image analysis
and have no time for in-depth studies of computer algorithms.

There is a subtle dilemma about how to present the image analysis
tools for this audience. There is a temptation to offer a general but
reader-friendly treatment of computer tools but it would be just an-
other general purpose book on image analysis, of which one can find
hundreds on book shelves. Another solution could be to skip all intro-
ductory information on image analysis and focus only on specialized
algorithms suitable for materials science. However, this also seems to
be the wrong approach; such a work would probably be understand-
able only by a narrow group of specialists, knowing all the tips prior
to reading this book. To make things more complex, the text should
not refer to any existing software. Thus, the lack of standardized no-
menclature should be also taken into account.

The solution chosen here is to give a general description of all the
main groups of transformations, without any reference to detailed
analysis of the algorithms, formal restrictions, etc. This information is
divided into two independent but complementary parts for all the
groups analyzed:
•

	

verbal description, giving the general properties of the transforma-
tion analyzed as well as the possible application directions

•

	

graphical illustration, showing the sample image before and after
the transformation.

Verbal description covers a general idea of the transformation
analyzed, together with its potential application area. Furthermore, to
enable it to work more easily with a great variety of software, the most
commonly used synonyms are cited. It is very significant that no for-
mal definition of the procedure body or parameters, nor analysis of the

Chapter two
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algorithms available, are submitted. The aim of this introductory part
is to provide the very basic knowledge necessary for individual work
with image analysis packages. The reader should learn what is possi-
ble from a given family of transformations. He should also possess at
least some rough knowledge concerning possible application areas.
Afterwards, detailed data on image analysis algorithms can be found
in specialized literature or software documentation.

Graphical illustration covers both initial and post-processing im-
ages, thus enabling one to get the feeling of what direction in image
alteration can be expected for a given family of transformations. To
allow one to compare various transformation families, the same sam-
ple image is used whether possible. Additionally, the line profile (plot
of pixel values along a line) at exactly the same location is added to
all the images. This allows a more quantitative way of exploring the
changes in image data.

2.2 Basic image enhancement

Any image discussed here is a mosaic of very small areas, called pix-
els, filled with a single gray level or digitally defined color. Thou-
sands of pixels, touching each other and placed within a (usually
square) grid, give us the illusion of a realistic, smooth picture. This
pixel nature of computerized images allows us to store them and trans-
form them as matrices of numbers. This is the very basis of computer-
aided image analysis.

Gray images are usually described by 256 gray levels. This corre-
sponds to 8 bits per pixel as 256 = 2 8 . In this representation 0 equals
black and 255 denotes white. 256 gray levels are quite sufficient for
most applications as humans can distinguish approximately only 30 to
40 gray levels. In some applications, however, other depths of image
data are used: 2 (binary images), 12, 16 or 32 bits per pixel.

Color images are most commonly stored as RGB (Red Green
Blue) images. In fact, each of the RGB channels is a single gray im-
age. Analysis of color images can be interpreted as the individual
analysis of the gray components put together at the end to produce the
final color image. Thus, understanding the principles of gray image
analysis gives sufficient background for color image treatment.

Due to the digital nature of the computer images described above
they can be modified using usual mathematical functions. The sim-
plest functions can be applied for basic image enhancement, usually
known as brightness and contrast control. Some selected functions of
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this type are schematically shown in Fig. 2.1. Illustrative examples, as
described in Section 2.1, are shown in Figs. 2.2 and 2.3.

In the case of 8 bit images, any transforming function has only
256 values corresponding to 256 argument values. So, instead of de-
fining the function and calculating its value for each pixel, it is much
simpler and quicker to define a table of 256 values, which can be very
quickly substituted in the computer memory. This method of compu-
tation is extremely useful in computers. The tables of pixel values are
usually called LUT (Look-Up Table). Thus, instead of defining the
transform function we quite often define the LUT.

Brightness and contrast control in image analysis are fully analo-
gous to the brightness and contrast adjustments in any TV set. In-
creased contrast can cause the loss of some data. Part of the dark gray
levels can be converted into black and part of the bright pixels can be
converted into white (see Figs. 2.1 and 2.2b). These negative effects
can be avoided or significantly reduced after using a suitable combi-
nation of both transformations; for example, brightness with lower
contrast.

Brightness and contrast are useful for visualization purposes but
in general, due to the possible loss of data, are rarely applied in image
analysis. There is, however, one exception usually called 

normaliza-
tion. This is a kind of brightness/contrast modification leading to the
image with the lowest pixel values equal to 0 (or black) and the high-
est pixel values equal to 255 (or white). Usually, if one analyzes
a series of images they vary in contrast and brightness. This effect can
be caused by numerous factors, like apparatus aging, voltage varia-
tion, dust, etc. Normalization allows us to alter these images as if they
were recorded in very similar or identical brightness and contrast con-
ditions. Therefore, normalization is quite often applied as the first
transformation in image analysis.

In a similar way, one can also produce the 
negative or inversion of

the image. It is one of the simplest LUT transformations. White be-
comes black and vice versa. If we add the initial image and its nega-
tive, we will get an ideally white surface. The negative can be used for
some special purposes, described later in this book.

Due to its non-linear characteristics, the human eye is more sensi-
tive to changes in the brighter part of the gray level spectrum than in
the darker one. This can be easily noted in Fig. 2.1, where one can
analyze two rectangles with blend fills from black to white. Try to
choose the region filled in 50% with black. Most probably you will
choose a point which is closer to the black side of the rectangle,
whereas 50% black is exactly in the middle. As a consequence of this
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non-linearity we can notice many more details in the brighter region
of the image than in its darker part.

Fig. 2.1. Selected functions for basic image enhancement.

So, to get an image with details easily seen in the whole image,
one should stretch the dark and squeeze the bright range of gray lev-
els. This can be done with the help of gamma modulation (see Fig.
2.1). An example of this transformation is shown in Fig. 2.2. Note that
at first glance the result of gamma modulation seen in Fig. 2.2c is very
similar to the image produced by increased brightness (Fig. 2.2b).
Closer analysis shows the difference in the brightest areas. A bright
particle in the lower right corner is entirely white after increased
brightness whereas after gamma modulation all the details are still
visible, as in the initial image.
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a) initial image

b) initial image with higher brightness

c) initial image after gamma modulation

Fig. 2.2. Brightness and contrast control.
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Another example of gamma modulation, applied to a fracture sur-
face, is shown in Fig. 2.3. It should be pointed out, however, that all
the details visible after gamma modulation obviously exist in the ini-
tial image. This transformation only makes them visible to the human
eye.

Fig. 2.3. Gamma modulation (right image) allows observation of details in
the darker part of the fracture surface (left image).

Another interesting non-linear LUT transformation is known as
histogram equalization. This has the following properties:

•    it preserves the natural sequence of grays, similarly to gamma
modulation. In other words, features darker in the initial image re-
main darker in the transformed image

• if we divide the whole gray scale into small classes of equal size,
the same number of pixels will be observed in each class and the
histogram of gray levels will be flat (equalized).

Histogram equalization can produce images with somewhat unnatural
appearance (see Fig. 2.4b), but simultaneously it produces an image
with the highest possible contrast, preserving approximately all the
details of the initial image. As will be shown later, histogram equali-
zation is useful for advanced and automatic thresholding (binari-
zation).

There exist many other LUT modifications and they are applied
for artistic or visualization purposes. They have much less meaning
for extracting features from images, as their results are often unpre-
dictable.
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a) initial image

b) initial image with equalized histogram

c) initial image after gamma modulation

Fig. 2.4. Effects of histogram equalization and gamma modulation.
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2.3 Filters

Filtering is one of the most common processes in nature and technol-
ogy. One meets filters in everyday life: sand and earth filter polluted
water and make it clean, paper filters produce tasty coffee or tea, vac-
uum cleaners filter dust particles out of the air, electronic filters
smooth radio signals which lead to perfect sound or video images, etc.
Filters of various types are also among the most frequently used tools
for image treatment.7, 13, 21, 70, 80, 84, 85, 87     The principle of filtering is sche-
matically and intuitively shown in Fig. 2.5.

Fig. 2.5. Filtering process (schematically).

The transformations described in Section 2.2 can be called point-
type operations. This means that the result of any transformation of
any image pixel depends only on the initial gray value of this pixel
and is independent of its neighbors. For example, the negative of any
white point is always black, whatever the gray levels are of the sur-
rounding pixels. By contrast, filters are neighbor-type operations. In
other words, the pixel value after filtering is a function of its own
value and the gray levels of its neighbors. Usually, filters return values
that are weighted means of neighboring pixels. The majority of soft-
ware packages offer numerous predefined filters as well as user-
defined ones. In this last case the user can define the matrix of coeffi-
cients used to compute the weighted mean returned by a filter.
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a) initial image

b) initial image after smoothing filtering

c) initial image after median filtering

Fig. 2.6. Simple filters for noise reduction - smoothing and median.
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Digital images are often polluted with noise produced, for exam-
ple, by video cameras in the case of insufficient illumination or by
SEM detectors. Obviously, noise should be removed from such im-
ages prior to any quantitative analysis. This can be done using suitable
filters.

In Fig. 2.6 one can analyze the effect of two simple filters suitable
for noise reduction. This effect is rather subtle, so it is more visible in
the profile plots than in the images. The first, smoothing filter (Fig.
2.6b), is probably the simplest possible filter - it returns just an arith-
metic mean of the pixels in a 5x5 size square. Matrices of sizes 3x3
and 7x7 are also very common. In more advanced packages, larger
matrices are available as well. They can be called a box filter, an av-
eraging filter, etc. The smoothing filter provides an image with re-
duced noise and a somewhat out-of-focus appearance. To reduce this
last phenomenon, other filters, for example, Gaussian, are introduced.
In these filters, diverse points have different weights in the computed
average; generally the weight is smaller for pixels more distant from
the central (just altered by a filter) pixel.

Smoothing filters work well if the image is not excessively noisy.
In other cases they produce unsuitable results. Let us analyze it with
an example. Assume we use a 3x3 kernel and the pixels have the fol-
lowing values put in ascending order:

6, 8, 12, 15, 15, 17, 19, 20, 95.
It is evident that the pixel values are in the range from 6 to 20 and the
pixel with value of 95 should be thrown away. If we compute the
arithmetic mean value, as a smoothing filter does, we will get the
value of 23. Simultaneously, the arithmetic mean from the first eight
values is equal to 14. This last value is both intuitively acceptable and
far from 23. So, in this case a smoothing filter does not work well.

Better results can be obtained if we use a median filter (see Fig.
2.6c). The median is the value situated exactly in the middle of the
series of numbers set in ascending order. In the example analyzed
above, it would be the fifth value, i.e., 15. So, a median filter can be
effectively applied for treating heavily noisy images and in most cases
is the best solution available. Moreover, this filter has two important
properties: it does not add new values to the image data (median is
one of the already existing values) and it keeps the image sharp.

Noise, especially of a periodic character, can also be efficiently
removed with the help of Fourier transformations. This transformation
is, however, much more difficult to perform. There are some restric-
tions to the images and only advanced packages offer efficient tools
for Fourier analysis. It will be described in Section 2.6.
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Noise (see plots in Figs. 2.6 and 2.7) is a local feature, generating
narrow peaks in gray level plots. If we want to process pixel data as
signals, noise is recognized as a high frequency part of the signal
spectrum. In order to remove noise, one should filter out the high fre-
quency part and pass only the low frequency component. Therefore,
smoothing filters are often called low pass filters.

Obviously, there exist filters with just the opposite properties,
called high pass filters. These filters strengthen the high frequency
component of the picture data. In principle, they are also weighted
means of pixel data, properly designed in order to increase the con-
trast locally (difference between neighboring pixels). A typical exam-
ple of such a filter of size 3x3 can be shown in the form of the fol-
lowing kernel:

This filter works in the following way: if all the pixels have the same
values, the new value remains unaltered as the sum of the weighting
coefficients equals 1. If the central point has a value two times greater
than its neighbors, its value after the transformation will be six times
greater (2*5-4*[-1]=6). Any image treated in this way looks sharper
(see Fig. 2.7b) and therefore such filters are also called sharpening
filters. Of course, one can design hundreds of sharpening filters and
everyone can experiment with them using user-defined filters. The
basic property of sharpening filters is that the sum of the weighting
coefficients equals 1. The image after applying such filtering is, how-
ever, noisier (see the plots situated to the right of the images). Gener-
ally, the increase in noise is proportional to the sharpening effect.
Thus, there is a need to develop sharpening filters which do not in-
crease the existing noise or increase it by a limited degree.

An advanced sharpening filter, introducing a small amount of
noise is presented in Fig. 2.7c. It is popular in photo-retouching pro-
grams under the name of unsharp mask filter. Its principles have their
roots in advanced retouching techniques used in photography. It is
assumed that the initial image is fairly sharp. In such conditions it is
possible to detect the edges as a difference between the original and
smoothed images. Edges extracted in this way are subsequently added
to the initial image, thus producing a sharpened picture without un-
necessary noise (to observe this effect consider the plots in Fig. 2.7).
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a) initial image

b) initial image after sharpening filtering

c) initial image after advanced sharpening filtering

Fig. 2.7. Examples of sharpen filters. Note that the side effect of sharpening is
an increase in noise level (see plots).
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Unfortunately, we have no tools for sharpening the image completely
without adding some noise or losing some pixel data.

Sharpening filters are widely used in typography. In practice, all
printed illustrations are electronically sharpened before sending them
to the printing press. This produces nice looking images and due to the
properties of human eyes, the existing noise is not disturbing. By con-
trast, the aim of image analysis is not to enhance images but to extract
some features or information from the image. In such circumstances
the noise accompanying the sharpening process is very annoying and
can even make further analysis impossible. Therefore, sharpening
filters are rarely used in image analysis. The only exception is an edge
detection process, described later in this chapter in more detail.

The number of possible filters is fairly unlimited and some guide-
lines on how to design them and an analysis of existing algorithms can
be found in the specialized literature. In this short description we will
present only the main properties of selected filters in order to give the
reader some feeling of these properties. There are, however, two im-
portant filters worth describing in more detail. The minimum and
maximum filters are widely used in practice and simultaneously are
equivalent to some morphological operations, which are sometimes
decisive for the final result of image analysis.

The maximum filter (Fig. 2.8b) returns the value which is equal to
the maximum of all the pixels surrounding the pixel being analyzed.
As a consequence, one obtains a new image which is brighter than the
original, with removed noise. The filtered image contains less details
than the initial one. In such a filtered image it is easier to detect large-
scale features, like, for example, grains.

The minimum filter (Fig. 2.8c) is just the opposite transformation.
It returns the value which is equal to the minimum of all the pixels
surrounding the pixel being analyzed. It can be also interpreted as
a maximum filter of the negative of the initial image. The result of
minimum filtering is darker than the original and contains less details.
A combination of these two filters (maximum and minimum) gives
a new filter, suitable for noise filtering.

Obviously, the proper use of filters requires some experience and
similar results often can be achieved after entirely different sequences
of operations. This short description should show you that the filtering
principles are not as difficult as they look at first glance and they help
you to navigate among various filters and experiment with their appli-
cation.
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a) initial image

b) initial image after maximum filtering

c) initial image after minimum filtering

Fig. 2.8. Examples of maximum and minimum filtering.
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2.4 Binarization

Fig. 2.9. Gray (top) and the corresponding binary (bottom) image.

Currently, gray images are the most frequently used aid for recording
image data in materials science. Images presented in Sections 2.2 and
2.3 are stored just in gray levels. However, if we go back for
a moment to history, the first automatic image analyzers worked only
on binary images,45 i.e., images made out of black and white points.
Even now, binary images (Fig. 2.9) are commonly used in image
analysis. There are at least three important reasons for application of
binary images:
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� binary images allow one to save a lot of memory, as the appropri-
ate files are approximately 8 times shorter than in the case of gray
images and 24 times shorter than in the case of full-color images

• only in binary images can one detect separate features, for exam-
ple, particles or grains (every connected set of pixels is recognized
as a single particle). Consequently, binary images are necessary for
counting objects and for such measurements as area, perimeter, di-
ameter, deviation moments, location of a center of gravity, etc.

•

	

some transformations, mainly from the family of morphological
operations, can be performed only on binary images. There are, for
example, procedures for separation of particles glued together, lost
grain boundary restoration and some simulations.
The process of transformation of gray-scale images into binary

ones is called binarization or thresholding. Its principles are illus-
trated in Figs. 2.10 and 2.11, respectively. In Fig. 2.10 one can ob-
serve a microstructure of a sintered steel. Three main structural con-
stituents can be easily recognized in this picture: black pores, gray and
convex grains of the sintered powder and white, concave precipitates
of the bonding phase. We will now try to detect these constituents and
to generate their binary images.

At the bottom of Fig. 2.10 a profile of gray levels along the white
line in the microstructural image is shown. One can note from this
profile that gray levels above 215 (threshold level A) correspond with
the bonding phase, and gray levels below 130 (threshold level B)
correspond to the pores. Consequently, gray levels between these two
threshold levels (indicated by the light gray belt in the plot) coincide
with the powder phase. The results of the binarization process de-
scribed above are shown in Fig. 2.11:

•

	

Fig. 2.1la illustrates the initial image

• Fig. 2.11b shows the geometry of pores. The pores are detected
from the initial image as all the pixels with gray levels 

below the
threshold level B (Fig. 2.10). Thus, this kind of thresholding is
sometimes called binarization with an upper threshold

• 
the bonding phase, shown in Fig. 2.11 c, is detected as all the pixels
with gray levels above the threshold level A (Fig. 2.10). Conse-
quently, this kind of thresholding is sometimes called binarization
with a lower threshold

•

	

the remaining powder grains are detected with the help from two,
upper (A) and lower (B) thresholds. Such a type of operation can
be called dual threshold binarization and is very often met in
practical applications.

© 1999 by CRC Press LLC



Fig. 2.10. Exemplary microstructure and threshold levels suitable for binari-
zation of structure constituents.

It is clear from the example demonstrated above that the proper
choice of threshold level is decisive for the results of analysis. If we
have two distinct phases with two different gray levels, the appropri-
ate threshold can be relatively safely chosen as an arithmetic mean of
these gray levels. In the case of an irregular gray-level distribution
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(see plot in Fig. 2.10), proper choice of the threshold level is much
more complicated and sometimes even impossible. In such cases ade-
quate treatment has to be done prior to binarization - a description of
such cases constitutes the core of this work.

Fig. 2.11. Initial gray-scale image (a) and corresponding binary images of
pores (b), bonding phase (c) and powder phase (d).

In practical applications it is usually advisable to use interactive
binarization. In other words, one should choose the threshold level,
judge the result and, if necessary, correct this level. Such a solution
works quite well but is sensitive to human error and, what is more
important, cannot be applied in the case of fully automatic analysis of
a huge number of images. In such cases one can try to use automatic
thresholding. The idea of automatic thresholding is demonstrated in
Fig. 2.13. Let us assume we have an image with two phases to sepa-
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rate and the total amount of the phase to be detected is relatively
small. In such circumstances one can watch a gray-level distribution
similar to the plot in Fig. 2.12. An appropriate threshold level can then
be determined automatically on the basis of the gray-level distribu-
tion. In the case of a bimodal distribution the threshold will corre-
spond to the local minimum, lying between two local maxima (Fig.
2.12). Such an automatically determined threshold can give identical
detection results, irrespective of the image contrast and brightness, as
shown in Fig. 2.13.

Fig. 2.12. Gray-level distribution function and the corresponding automatic
threshold level.

The appropriate threshold can also be determined in other ways.
In many cases (composite materials, hard sinters, cast iron, etc.), one
can compute precisely the volume fraction of the main structural con-
stituents. For example, in the case of gray ferritic cast iron the volume
fraction of graphite can be determined from the equation:106

VV = 0.034%C + 0.005

	

(2.1)

It is well known from basic stereological relations
100

that

VV = AA = LL = PP

	

(2.2)

Thus, knowing from the chemical composition that our cast iron has
4.3%C, one can easily compute the corresponding area fraction of
graphite as approximately 0.15 or 15%. On an as-polished specimen
one will see only dark graphite precipitates and a bright matrix. After
histogram equalization we can be sure that graphite will occupy the
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lowest 15% of the gray level spectrum. If 0 denotes gray and 255
white, respectively, the appropriate threshold level can be fixed at
a value of 38.

Fig. 2.13. Two gray-scale images (a and b) containing the same particles but
with entirely different contrast and brightness levels together with the result-
ing binary image (c), obtained with the help of an automatic threshold level.
The detected binary image is identical for both images (a) and (b).

Many researchers work on new, more flexible binarization proce-
dures. Automatic thresholding, as discussed above, is one of the
promising results. Another type of threshold processes is a conditional
procedure called a hysteresis threshold. It can be easily replaced by
a series of simple operations, but for higher clarity and computation
speed it is very convenient to have such a tool available. Its properties
are interesting for practical applications and, therefore, the hysteresis
threshold method will be discussed in some more detail.

Let us analyze an image shown schematically in Fig. 2.14. One
can see in this image two objects, A and B, having the same gray
level. The difference between them is that object B contains two very
bright spots. Consequently, on the gray-level distribution plot one can
fix two threshold values: the basic threshold will detect both objects,
including bright spots (Fig. 2.14b) and the marker threshold will de-
tect only the spots. In such circumstances the hysteresis threshold can
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be defined as a procedure for the detection of objects according to the
basic threshold level under conditions that any markers, detected by
the marker threshold, belong to the detected objects (Fig. 2.14c).

Fig. 2.14. Schematic illustration of the hysteresis threshold.
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Fig. 2.15. Initial image (a) and the same image after classical binarization (b)
or hysteresis threshold (c).

An example of the application of the hysteresis threshold method
is shown in Fig. 2.15. The particles visible in this picture are non-
metallic inclusions. In the original image, bright regions in the inclu-
sions are their darkest parts. In order to apply hysteresis threshold
a negative of the inclusions was used.
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2.5 Mathematical morphology

Mathematical morphology 

21,80,84,85,114 is a highly abstract theory of
image transformations, possessing its own rules and notation. Due to
their complexity, morphological operators are implemented only in
advanced packages. On the other hand, mathematical morphology
enables detection of various features in the image in a way somewhat
similar to human intuition. As a consequence, application of morpho-
logical operators enables detection of features not available with other
analysis methods. Therefore, without any description of the mathe-
matical formalism of morphological transformations, we will describe
the basic concepts and their application.

From the very long list of morphological transformations avail-
able, the following groups will be shown in more detail:
•

	

hit or miss transform
•

	

erosion, dilation, opening and closing
•

	

skeletonization and SKIZ
•

	

watershed detection.
The central point of mathematical morphology is the concept of

structuring element. It can be understood as a model of local pixel
configuration. Usually, structuring elements are defined using the
following notation:

1 - for pixels belonging to the set of points under analysis (for exam-
ple, black points in Fig. 2.15b, c)
0 - for pixels belonging to the matrix (for example, white points in
Fig. 2.15b, c)
X - for pixels not taken into account (i.e., this point can have any
value and has no effect in the transformation).

This definition is suitable for binary (black and white) images. For
gray images the meaning of the symbols defining a structuring ele-
ment changes slightly: '0' denotes pixels darker than the given pixel
while '1' denotes pixels lighter than the given pixel.

An exemplary structuring element is shown below:
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It is easy to guess that this element illustrates an isolated pixel -
a single pixel surrounded by the matrix. The example above refers to
the most common case of a square grid of pixels. However, there ex-
ists also another solution, based on a hexagonal grid of pixels. This
last solution has some advantages in the analysis of fine, highly
curved features, but more detailed analysis of the relation between
these two types of grids exceeds the goals of this book. Suitable in-
formation can be found in monographs devoted to mathematical mor-
phology and the theoretical background of image analysis.

21 ' 84 ' 85 Here
we will only show how the structuring element for isolated pixel looks
in the hexagonal grid:

It is quite difficult to feel the subtle differences between morpho-
logical operations and other tools used in image analysis. With accu-
racy sufficient for this work, we can define morphological transfor-
mations as advanced filters, applied not for all the pixels in the image,
but only for pixels that fit configurations defined by the structuring
element.

The Hit or miss transform (HMT) can be recognized as the most
general morphological operation. HMT removes all the pixels that do
not fit with a configuration defined by the structuring element. So,
applying HMT to the element shown on the previous page we will
detect isolated points. Using the following element:

HMT will preserve all the internal points (surrounded by '1') and
remove all the points touching the matrix (at least one '0' in the clos-
est neighborhood). Such a transformation is known as erosion and can
be defined in a completely different way, which will be shown later in
this chapter.

One can also introduce HMT with a rotating structuring element,
i.e., a sequence of HMTs with different structuring elements, obtained
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by rotation of the initial configuration. This concept allows for new
properties of the whole transformation. Let us take the following ele-
ment:

Rotation of the above configuration will produce a sequence of
eight structuring elements:

After this transformation, we will detect all the boundary points, i.e.,
points touching the matrix. This is done in the following way: at least
one of the surrounding points is equal to 0, which is equivalent to
belonging to the particle boundary. The rest can be '0' or '1', as in the
structuring element we have 'X'. This ensures a fit to any local
boundary configuration. Rotation enables fitting to all the possible
configurations.

The above examples explain the basic properties of HMT, obvi-
ously without exploring the whole problem. However, this knowledge
should be sufficient for individual work and experiments with this
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transformation if implemented in the package. If there is a possibility
of switching between square and hexagonal grids, try to explore both
of them and note the differences.

Now we will discuss a group of four transformations, known as
erosion, dilation, opening and closing. These transformations can be
successfully defined using the concept of HMT, but other definitions,
presented below, seem to be more instructive.

Fig. 2.16. The principle of erosion.

Let us take into consideration a figure as drawn in Fig. 2.16a and
take a circular structuring element B. Now, let us roll element B on
the internal side of the particle boundary (Fig. 2.16b). The subsequent
positions of the circle center will create the eroded object (darker fig-
ure in Fig. 2.16b.

The above definition is absolutely equal to the above-mentioned
erosion by HMT. There also exists a third variant: erosion that can be
recognized as a minimum filter. Indeed, if erosion removes all the
pixels touching the matrix (points with value of 0), changing the pixel
value to 0 (the minimum in the local neighborhood) produces exactly
the same effect.

The objects in Fig. 2.16 reveal all the basic properties of erosion:
•

	

eroded object is smaller than the initial one
•

	

some narrow peninsulas or small particles will disappear after ero-
sion

•

	

erosion can divide a coherent object into some smaller and isolated
objects whose shapes are totally different from the initial object

© 1999 by CRC Press LLC



• erosion is additive, i.e., two erosions with structuring element B
are equal to an erosion with the element 2B, two times larger.

Dilation is a transformation just the opposite to erosion. It can be
defined as a maximum filter or produced by a circle as in Fig. 2.16,
but rolled on the external side of the initial figure. Last, it can be in-
terpreted as erosion of the negative of the image. Also, the properties
of dilation are just the opposite of the properties of erosion.

Fig. 2.17. Illustration of the properties of transformations based on erosion
and dilation. Initial image (a), the same image after erosion (b), opening (c),
dilation (d), closing (e) and closing followed by opening (f).

The above-mentioned operations can produce a compound proce-
dure. Erosion followed by dilation produces opening, while dilation
followed by erosion gives closing. Both transformations preserve the
original size of the figures analyzed. Opening can open some holes
lying close to the boundary, while closing can close small holes within
the image. The basic properties of the whole family are shown graphi-
cally in Fig. 2.17.

Erosion, dilation, opening and closing are the simplest morpho-
logical transformations and are implemented in nearly all image
analysis packages. These transformations, in spite of their simplicity,
are important due to their two basic attributes:

•

	

this family of operations is very suitable for introductory cleaning
of the image from artifacts and some types of noise
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• 
good understanding of these simple transformations enables under-
standing of more complex morphological operations.
Applying the above transformations to gray images will give

similar effects and we will demonstrate them in practical applications.
Transformations from the erosion-dilation group can be easily

used for more complex operations. We will present one example,
called the top-hat transformation. It detects local minima ( black top-
hat) or local maxima (white top-hat). If we observe the results of this
operation on the profile line, the application of a top-hat transforma-
tion is similar to cutting off the peaks, producing a shape similar to
a Mexican hat. The top-hat is a sequence of three operations:

•

	

closing (black top-hat) or opening (white top-hat)

•

	

subtraction of the initial and transformed images
•

	

binarization.

Fig. 2.18. Application of a top-hat transformation for edge detection. Initial
image (a), difference between closed and initial images (b), edges detected by
top-hat (c), edges detected by binarization (d).
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An exemplary top-hat transformation is presented in Fig. 2.18. In this
example one can compare grain boundaries detected by a top-hat
transformation and simple thresholding. It is clearly visible that top-
hat gives relatively narrow and continuous edges, whereas binariza-
tion offers a set of isolated islands. In the case of highly non-
homogeneous illumination the advantage of a top-hat transformation
is even more evident.

Any computer software has very little ability to analyze the shape
of any figure. In fact, describing shape is difficult for humans as well.
Usually, many objects change shape simultaneously with changes in
size. For example, small city cars exhibit silhouettes entirely different
from large highway cruisers. Nevertheless, analyzing the shape of
a collection of pixels in a computer image is hopeless. It is much eas-
ier to describe a set of lines - one can compute and interpret such pa-
rameters as: number of branches, loops, end points or crossings, local
curvature, etc. Thus, to enable such an analysis we provide a kind of
simplified caricature of the figure called a skeleton.
One can intuitively understand the idea of skeleton from Fig. 2.19.
However, a more formal definition can be helpful for further analysis.
We can treat a skeleton as a set of central points of all the disks in-
scribed into the figure (i.e., disks totally included in the initial figure
touching its boundary at two or more points). There is also another
approach possible to define the skeleton, as a central line, i.e., a line
whose points are equally distant from two closest points of the figure
edges.

Skeletons are very convenient for shape analysis, as they preserve
a lot of properties of the initial figure:
•

	

skeleton is homotopic with the original figure. This means it pre-
serves the connectivity and number of holes

•

	

skeleton is related to the particle size. It is always fully included
within the initial figure and never exceeds this figure. Skeletons of
large particles occupy large areas and have long branches, skele-
tons of small particles occupy small areas and have short branches

•

	

the more complicated and curved the boundary line, the more
branches can be noted within the skeleton.

The definitions of skeleton presented above describe an ideal, mathe-
matical skeleton. In the digital case we can obtain only a more- or-less
exact approximation (see Fig. 2.20). In some cases (the triangle in Fig.
2.20) the digital skeleton is practically identical with the mathematical
model, but in other cases (the circle in Fig. 2.20) it is only a very
rough approximation - instead of a single point we get at least four
branches touching the circle edge.
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Fig. 2.19. Some examples of geometrical figures and their skeletons (thick
black lines). Different gray levels in the figures are applied for better visuali-
zation of the distance from the edges.

For the digital case we can build a skeleton as a series of HMTs
with a rotating, specially designed structuring element, for example:

In order to get correct results, the above element should be rotated 90�
after every step of the transformation. Obviously, other structuring
elements or their combinations are allowed. All the structuring ele-
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ments leading to thin (one pixel-thick) skeletons can be applied. The
transformation process is repeated until idempotence, which means to
the moment when the next step does not alter the image.

Fig. 2.20. Example figures (a) and their digital skeletons (b).

There exists another widely used tool, tightly coupled with skele-
tonization, called SKIZ (SKeleton by Influence Zones). Let us imag-
ine a set of points in the image. The influence zone of a given point is
a set of all the points lying closer to this point than to any other one.
SKIZ can be recognized as a skeleton of the negative of the initial
image with subsequent removal of all unnecessary branches.

SKIZ is applied in the analysis of grained structures and is a basic
tool for simulation of microstructures. Applying SKIZ to the set of
random points (Fig. 2.21a) leads to simulation of the microstructure
according to Voronoi partition (Fig. 2.21 b). This algorithm gives very
impressive results but the process is static - all the points are defined
at the very beginning. It leads to grain size distribution far from that
met in real materials.

During solidification we observe two simultaneous processes:
growth of the existing grains and creation of new seeds, leading to an
increase in the grain number and changes in the grain size distribution.
Proper tuning of the rates of both processes allows one to obtain size
distributions similar to real cases. This variant of simulation is known
as the Johnson-Mehl process. An example can be seen in Fig. 2.21d.
Continuous addition of new points during simulation is decisive for
the dynamic character of this process, making it suitable for research
in the field of solidification, diffusion, grain growth, recrystallization,
etc.
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Fig. 2.21. Application of SKIZ for simulation of the single phase structure.
Initial set of random points (a), the Voronoi partition simulated by SKIZ (b),
grain growth process locked before reaching idempotence and additional
random points playing the role of grain seeds (c) and the final simulated mi-
crostructure, closer to reality (d).

The last morphological transformation described here will be wa-
tershed detection. This transformation cannot be applied directly in
binary images; it requires an image with at least a few gray levels. The
gray-scale image can be interpreted as a map indicating local height as
an appropriate gray level. In such a map, the brighter pixel the higher
the point in the imaginary terrain. Watershed detection is just finding
on the map continuous lines connecting local maxima and is equal to
detection of physical watersheds. So, thanks to the map analogy, it is
very easy to understand intuitively the idea of watershed detection
(see Fig. 2.22).
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Fig. 2.22. The idea of watershed detection.

Fig. 2.23. Distance image built on the basis of binary image of a concave
particle. More precisely, it is a negative of the distance image, as the particle
center is its darkest point.

Binary images can be used for watershed detection after transfor-
mation into distance images. The distance image (sometimes called
distance function) is an image with gray levels of individual pixels
proportional to their distance from the particle boundary. It can be
easily obtained by summation of the subsequent erosions. In the case
of concave particles (see Fig. 2.23), we often apply the negative of the
distance image. In such circumstances watershed detection allows
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division of the concave object into two separate, convex particles (see
Fig. 2.24).

The above analysis explains two main fields of application of
watershed detection:
•

	

separation of particles glued together

•

	

restoration of lost or non-etched grain boundary lines.

In more advanced algorithms watershed detection can be applied
as an efficient tool for edge detection or extraction of isolated parti-
cles with blurred edges. Thus, watershed detection is a very strong
tool for image analysis, giving results impossible to obtain with other
methods.

2.6 Fourier transformation

It can be proven that any continuous function f(x) can be effectively
expressed as a summation of trigonometric functions of increased
frequency. The Fourier transform80 of the function f(x) defines the
amount of each frequency in the spectrum and is written as

where:

The so-called Euler formula enables interpretation of the Fourier
transformation as a sum of trigonometric functions:

(2.3)

(2.5)

(2.4)

It is very important for practical application of the Fourier transfor-
mation that it is reversible, which means that having the transforma-
tion we can perform the inverse operation and recover the initial im-
age:

The function f(x) can represent spatially varying gray levels in the
image and takes real values. The transform function F(u) is complex
and has two parts: real R and imaginary I.

F(u) = R(u) + I(u)

	

(2.6)
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Fig. 2.24. Application of watershed detection for separation of particles glued
together (left column) and lost grain boundary restoration (right column).
From top to bottom: initial image, distance image and final result.
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Fourier transformation consists of a series of trigonometric func-
tions (see Eqn. 2.4), having their own amplitudes and frequencies.
One can modify (in a direct way or using appropriate filters) the am-
plitude for a given frequency. Subsequent inverse transformation
builds the transformed image (see Fig. 2.25).

Usually the modified part (mainly cut off) is only a small part of
the Fourier spectrum, with low (long period) or high (shot period)
frequency. Appropriate filters are known as low pass (preserving low
frequencies) or high pass (preserving high frequencies) filters.

Obviously, in the case of digital images, Eqns. (2.3 to 2.6) are
modified into a discrete form. The main problem in the practical ap-
plication of the Fourier transformation is the huge number of neces-
sary computations that take a very long time to reach transformation.
Fortunately, there exists a relatively simple and sufficiently exact
approximation which can be efficiently computed. It is known as the
fast Fourier transform (FFT) and just this form of transformation is
used in image analysis packages. FFT, however, can be applied only
to images with a size of the power of 2. This means that for successful
FFT we have to use images of size 128x128, 256x256, 512x512,
1024x1024, etc. Images of other sizes can be processed if they are
pasted as a part of a blank image of a size suitable for FFT.

The nature of FFT means that it is especially sensitive to any fea-
tures that exhibit any form of periodicity. So, among the possible ap-
plications of FFT one should stress the following:

•

	

filtering out any noise of a periodical character, for example, traces
of the printing raster or lines produced in low quality video images

• texture analysis in fine structures, i.e., detection of areas that differ
only in orientation of extremely small components or constituents
with partially ordered and partially random sets of small features

• dividing the image into two, low and high frequency parts. Such
separation enables, for example, analysis of the micro- and macro-
relief of fracture surfaces or detection of striations in fatigue frac-
tures

•

	

advanced smoothing or sharpening of the image.

So, there are numerous and very interesting applications of FFT.
However, one should taken into account that the inverse FFT is ex-
tremely sensitive to any changes in the amplitudes within the Fourier
spectrum. Thus, the application of FFT can produce spectacular ef-
fects, not available with the help of other image analysis tools but, on
the other hand, it requires a lot of time-consuming work to prepare an
efficient application.
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Fig. 2.25. Example of the Fourier transformation. Initial noisy image (a),
Fourier spectrum (b), the same spectrum with peaks produced by the noise
suppressed (c) and filtered image after inverse FFT (d).

An example of a Fourier transformation, applied to remove some
noise of periodical character that was introduced by the printer raster,
is shown in Fig. 2.25. The initial, noisy image of some gravel particles
is shown in Fig. 2.25a, whereas its Fourier spectrum is presented in
Fig. 2.25b. The noise creates four groups of peaks in the Fourier
spectrum, visible as white points. These points can be effectively sup-
pressed without alteration of the remaining part of the spectrum (Fig.
2.25c). Inverse FFT (Fig. 2.25d) gives an image with the noise well-
filtered. Such an outcome cannot be effectively obtained with other
tools.
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2.7 Edge detection

Edge is a physical or imaginary line marking the outer limit or bound-
ary of a surface. The human vision system is especially sensitive to
recognition of edges. Thanks to this phenomenon, accompanied by the
ability to analyze visual data in 3-D, we can safely walk, drive, eat,
etc. Similarly, in computerized image analysis edge detection is one of
the basic tools for extracting features being detected from the original
image. However, in contrast to the human, computerized edge detec-
tion is not straightforward. 15,18,21,34,80,84,114

Fig. 2.26. A figure (a) and its edges drawn manually - it can be done by eve-
ryone of us (b).

Let us have a look at the figure drawn in Fig. 2.26a. Due to some
patterns in this surface, the edges of this figure are not very clear. In
spite of it, nearly everyone could immediately draw the sketch repre-
senting the edges, as shown in Fig. 2.26b. In a later part of this chapter
we will discuss some tools which can be helpful to perform similar
edge detection.

There exists, however, the next interesting property of the sketch
shown in Fig. 2.26. The system of lines in Fig. 2.26b suggests some
three-dimensional character of the figure, but simultaneously there is
something wrong in the perspective. Pictures drawn with this property
are called impossible figures. This graphical effect has been well
known for centuries. Unfortunately, it is practically impossible to
detect this property using contemporary image analysis tools.
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Fig. 2.27. Three simulated structures representing typical edges in images
(left) and detected edges (right): the boundaries between regions of different
gray levels (a), edges as local minima in gray levels (b) and boundaries as
lines separating regions of different textures (c).
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Fig. 2.27 presents three of the most frequent types of structures
met in practice, in which one should detect edges. Now, we will dis-
cuss these cases in more detail.

The simplest case is shown in Fig. 2.27a and represents edges
possible to detect using binarization (see Section 2.4). This case takes
place in the analysis of well-contrasted particles embedded in a matrix
or in the analysis of some multiphase materials.

The most common case for edges to be detected is illustrated in
Fig. 2.27b. In this case edges can be recognized as local minima or
maxima of gray level. This type of edge can be also defined as a place
with the highest value of gray level gradient. The main difficulty in
the detection of edges of this type lies in their inhomogeneity. For
example, the value of the local maximum can be significantly lower
than the value of a local minimum situated elsewhere within the same
image. Thus, there exists no universal tool for detection of such edges
and among the existing procedures everyone can be the best, depend-
ing on the case. We will briefly discuss the following functions for
edge detection:

•

	

top-hat filter

•

	

Prewitt operator

•

	

Roberts operator

•

	

Sobel operator

•

	

Laplacian filter

•

	

zero crossing operator

•

	

watershed detection.

The third type of edges, based on different textures in the neigh-
boring regions (shown in Fig. 2.27c) is described in Section 5.1.

The top-hat filter was described in Section 2.5 and an example of
its application in edge detection is shown in Fig. 2.18 (the same sam-
ple image, as in Fig. 2.18, will be used for presentation of other edge
detection tools). The Prewitt operator is a typical filter, or rather two
filters, with matrices especially designed to amplify local gradients in
the gray level in the Y and X directions, respectively:

and
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An example of Prewitt filtering is shown in Fig. 2.28b. It is notewor-
thy that in contrast to the top-hat filter, the Prewitt operator tends to
produce dual edges. This results from the fact that the boundary line
in the initial image (Fig. 2.28a) is relatively thick.

A similar, but somewhat different approach was proposed by
Roberts. The Roberts operator is, in fact, a series of four filters, de-
tecting very short (single pixel-long) edges with four angles of orien-
tation: 0, 90, 45 and 135 degrees.

The Roberts operator works in four directions, but it takes into ac-
count only a single point, whereas in the Prewitt's solution three
neighboring pixels were analyzed (in two perpendicular directions).
As a consequence, the Roberts operator produces edges similar to
Prewitt edges, but finer and more delicate (see Fig. 2.28c). Note that
the Roberts operator produces numerous, very short edge segments,
clearly visible in Fig. 2.28c.

Another edge detection operator, very similar to the Prewitt filter
was introduced by Sobel. The only difference between these two ap-
proaches is that Sobel replaces one pair (1, -1) by a pair (2, -2). It
results in a little coarser edge detection (see Fig. 2.28d):
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Fig. 2.28. Examples of edge detection operators: initial image (a), Prewitt
filter (b), Roberts filter (c), Sobel filter (d), Laplacian (e) and watershed-based
edge detection (f).
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The next approach is known as Laplacian. It is a filter similar to
sharpening filters, being an approximation of a Laplace operator. In
the simplest case it uses the following matrix:

Application of this filter gives zeros if there is no gray level gradient
and values different from zero for other cases. The absolute value
after operation is largest for pixels with the highest local gradient in
gray levels. An example of this filter is shown in Fig. 2.28e. This
gives a good starting point for further analysis - it is enough to convert
the regions with dense white spots into a continuous white surface.
Unfortunately, practical realization of this simple postulate is very
difficult and often impossible.

All the filters discussed above detect very well the edges of very
bright, well contrasted regions in Fig. 2.28a. Obviously, this could
also be easily obtained using the simplest threshold, as in this case we
have edges of the first type, shown in Fig. 2.27a.

It is also clear in Fig. 2.28b-e that edge detection filters produce
broken, non-continuous edges. This seems to be their largest disad-
vantage, as we usually need just continuous edges for further analysis.
In order to get such boundary lines, one can use a zero crossing filter.
This filter uses Laplacian as a starting point and puts an edge at every
point where Laplacian changes its sign (or crosses zero, which is ex-
actly the same). Such an approach produces high quality, continuous
edges, but under the condition that the Laplacian image also detects
the edges clearly. Unfortunately, this is rarely the case.

The last approach is based on watershed detection (see Section
2.5 and Fig. 2.24). Application of a watershed operation requires a lot
of supplementary transformations and long-lasting, laborious fine
tuning. It is especially difficult to obtain a universal procedure capable
of automatically and correctly detecting edges in a whole series of
images, not only in a single case. How to do this will be shown in
more detail in Section 4.1. Here, we can state that this approach, in
spite of its complexity, can give really satisfactory results (see Fig.
2.28f).
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2.8 Combining two images

In the procedures discussed so far in this chapter we have started with
a single image and the procedure transforms it into another image.
Now, we will show some simple but useful operations that produce
a new image, starting from two, not one, initial images. The operators
discussed here can be divided into two groups:

•

	

logical functions

•

	

arithmetic operations.

In both cases we have a basic restriction that the initial images have to
be of the same dimensions. In other words, they should have an iden-
tical number of pixels along the vertical and horizontal directions.

We will not analyze any properties of logical transformations. In-
stead, we will demonstrate them using simple examples. Let us take
two binary images, denoted in Fig. 2.29 as A and B, respectively. In
Fig. 2.29 one can note six different logical operations:

• negative of image A (NOT A); the only logical transformation that
has only a single argument (image). Other operations use both ini-
tial images - A and B

•

	

logical sum of images A and B (A OR B)

•

	

logical intersection of images A and B (A AND B)

•

	

exclusive or (A XOR B) - a function that returns differences be-
tween initial images

•

	

negative of the previous operation, i.e., not xor (A NXOR B). This
function returns identical parts of both initial images and

•

	

logical difference (A - B)

Logical functions are frequently used in image analysis when we need
to create a new image from those already existing. A typical example
is shown in Fig. 2.30. Our task is to separate three particles glued
together (Fig. 2.30A). After appropriate treatment of this image, for
example, with application of watershed detection, we get image B,
representing dividing lines (Fig. 2.30B). In order to produce the final
set of separated particles we should use logical functions. The solu-
tion chosen here is A AND (NOT B). From the sketches illustrating
basic operations in Fig. 2.29 it is quite easy to check the correctness of
this solution and try to find another, equivalent solution.

One should be aware of applying logical transformations to gray
level images. It is possible, but the whole operation is performed bit
by bit, so the results are strange and unpredictable. Thus, it is safer to
use logical operations only for the treatment of binary images.
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Fig. 2.29. Schematic illustration of various logical operations applied to two
initial binary images: A and B.
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Fig. 2.30. An example of the application of logical operations for dividing the
glued together particles.

Fig. 2.31. Simple but tricky application of arithmetic operations for noise
reduction. If we have a lot of poor quality images with random noise we can
try to add them and get a much better result (see the lower right-hand corner).
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Arithmetic operations are much easier to understand than logical
ones. If we add two pictures, the resulting image will have gray values
as simple arithmetic sums of appropriate pixels in the initial images.
Similarly, we can perform multiplying, subtraction or detection of
minima and maxima between two images. The only problem is caused
by division - the initial values are usually integer numbers, whereas
the final result is usually a floating point. This requires appropriate
formatting of data and more memory.

Arithmetic operations seem to be quite easy to understand. In
spite of their simplicity, arithmetic operations can be very useful. One
tricky example is shown in Fig. 2.31. In some cases we have such dark
images that the noise produced by CCD elements results in poor qual-
ity, noisy images. Fortunately, this noise has, in general, random char-
acter. Thanks to this last property we can try to take numerous snap-
shots of the same object and add the images. Noise should be well
compensated. Obviously, we have to normalize the final sum in order
to prevent getting enormous values of the resulting gray levels.

2.9 Mouse etching

If we are able to indicate manually the features to be detected, it can
be done automatically, as well. The only problem is the time neces-
sary for finding an appropriate solution. In very simple and rare cases
it can take some hours. Usually it takes days or weeks. In very com-
plex cases it can take years - an example is the continuous effort to
detect cancer cells in medicine.

In some cases it is worthy or necessary to devote a lot of work in
order to invent an automatic procedure for detection. Examples of
these events could be:

• routine control procedures - their automation can save a lot of time
and, consequently, money. Moreover, this can increase the accu-
racy and repeatability of the measurements

• high end research and optimization - automatic methods can pre-
vent gross errors as we often see subconsciously what we want, not
what really exists

•

	

features that are important but difficult or impossible for clear
detection or classification (it is typical in medical applications). A
good example would be restoration of lost grain boundaries.

If you have no time, no money and no idea how to solve your problem
and only a few images to be analyzed, try to detect the interesting
features manually. With today's hardware it can be relatively easy to
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do with help from a computer mouse. Therefore, this process is some-
times called humorously mouse etching. This technique, however,
preserves a lot of advantages of fully automated image analysis:
•

	

it enables the use of many tools for image enhancement
(sharpening, noise reduction, shade correction, etc.)

•

	

all the measurements can be done automatically even on manually
prepared samples.

Fig. 2.32. An example of a low quality image of nodular iron, which cannot
be used for automatic image analysis due to high contamination (left). Manu-
ally detected graphite nodules (right) can be used for automatic size distribu-
tion measurements.

This last point is probably the key one. People are always better at
interpretating images (or cars would be driven without any difficulty
by computers), whereas computers are unbeatable in making meas-
urements. Thus, mouse etching can sometimes lead to optimal use of
the tools offered by computerized image analysis (see Fig. 2.32).

With these remarks we will close this chapter, devoted to the main
tools for image treatment. Obviously, these tools were described only
in a rough form; for further details the reader can consult the special-
ized literature. On the other hand, this shortened and often intuitive
description should be sufficient for those who have no time or ability
to study the details of mathematical theories and algorithms. It should
support them in understanding what is really done within the com-
puter memory and encourage them to built their own algorithms.
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Chapter three

Image acquisition and its
quality

3.1 
Specimen preparation

In most cases analysis of materials structure is done with the help of
microscopes of various types. Consequently, careful preparation of
specimens is necessary as it is decisive for the quality of images ob-
tained. The quality of the initial image is decisive for the results of
analysis, affecting both the ability to detect features under analysis
and the precision of subsequent measurements. 

5, 45, 83, 90, 113 The value
of proper specimen preparation cannot be overestimated.

The majority of materials are opaque and can be observed in opti-
cal microscopes only in reflected light. Specimens for this type of
observation are usually prepared by mechanical grinding and me-
chanical or electrolytic polishing. The general rule is that hard materi-
als are relatively easy to polish whereas soft materials require special
techniques and care for acceptable results. Some very hard materials,
for example, ceramics, are also very difficult for correct specimen
preparation. Due to their hardness they are practically non-workable
and their high chemical resistance disables electrochemical polishing.

Obviously, there is no place here to discuss methods of specimen
preparation - suitable data can be easily found in numerous handbooks
on metallography. In this chapter we will discuss only some selected
aspects of specimen preparation that are interesting from the point-of-
view of image analysis. Thus, we will focus on possible errors that
should be avoided if the given specimen is to be used for automatic
processing.

Especially difficult for correct preparation are very soft materials,
sensitive to smearing or non-homogeneous materials, containing both
very soft and very hard constituents. A good example of this type of
material is ferritic gray cast iron (Fig. 3.1). Graphite is extremely soft,
ferrite also is very plastic and soft whereas phosphorous eutectic,
being hard and brittle, tends to produce some relief, even in the early
stages of grinding on papers (see white arrows in Fig. 3.1). Such er-
rors cannot be successfully removed during further polishing. Large
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scratches introduce high plastic deformation, which can affect the
results of etching, even if the geometry of the polished section exhib-
its perfect quality.

Fig. 3.1. Roughly prepared (grinding on papers) section of ferritic gray iron.
The structure is very soft except for the phosphorous eutectic which produces
some relief (white arrows).

Relief introduced by hard structural constituents is also visible in
Fig. 3.2, this time on a finely polished section. Additionally, black
arrows indicate some relief at the particle/matrix interface. This is
a very frequent inaccuracy, notably in the case of precipitates softer
than the matrix. In order to avoid this type of relief one can try to use
the following procedures: 3

•

	

avoid too delicate grinding
•

	

try to prepare the polished section quickly
•

	

avoid large specimen sections. Good results are easier to obtain on
smaller specimens

•

	

the mount for the specimen should be large and not too soft - it
helps to keep the polished section flat.
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In case of really strong difficulties the best solution is to contact an
experienced technician. There are many materials which are really
very difficult for correct specimen preparation and only after tens of
trials is it possible to find out a suitable polishing technique. Some-
times only the use of awkward and unusual grinding and polishing
materials leads to correct results.

Fig. 3.2. Another example of polished gray iron with relief visible around
both soft particles (black arrows) and hard eutectic (white arrows).

Small scale relief is practically always present on mechanically
polished specimens, but in the optical microscope, especially in the
bright field, it is practically invisible. Fine changes in the specimen
height, introduced by relief, can be used for some types of special
observation techniques, like interference contrast. Such contrast can
provide interesting results but should be always applied with great
care.

The next defect, very common for polished specimens, is the
presence of scratches (see Fig. 3.3). Scratches can be easily avoided in
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the case of hard materials, but are very common for soft or multiphase
materials with soft particles. Scratches are remains of the introductory
grinding or badly performed polishing (dirty polishing disk, abrasive
material with too large grains, incorrect pressure during polishing,
etc.). If scratches are introduced mainly during polishing, they can be
relatively easily avoided. Deep scratches, being the remains of the
introductory grinding are either very difficult or impossible to remove.
Any attempt to remove them by lengthening the final polishing proc-
ess leads to extensive relief formation, known also as over-polishing.
In some cases, for example, Cu alloys, one can almost completely
avoid scratches by applying electrolytic polishing. This does not
mean, however, that we can skip careful preparation of the surfaces to
be polished.

Fig. 3.3. Deep scratches from grinding, observed in the polished and etched
section of a soft Cu-12% Al alloy (as-cast condition).

Scratches and relief are not the only possible side effects of me-
chanical or electrochemical preparation of specimens for microscopic
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inspection. Freshly polished surfaces are sensitive to any type of
chemical reactions, especially oxidation. Corrosive blooms can be
formed even during polishing, when water or other solvents used are
not pure but contain some traces of aggressive reagents. In the major-
ity of cases, polished specimens are etched in order to reveal grain
boundaries or other structural constituents. The specimens have to be
thoroughly rinsed before drying to prevent unnecessary etching. Un-
fortunately, some traces of etching substances tend to be stored in the
micropores of the specimen and can produce some stains on the
specimen surface (Fig. 3.4).

Fig. 3.4. Ferritic nodular iron after polishing and etching. Black arrows indi-
cate evident traces of corrosion visible in the vicinity of non-metallic inclu-
sions. This image was taken only 10 minutes after etching.

Spots, smudges and other traces of corrosion deteriorate the qual-
ity of the initial image, often making it useless for further analysis as
these traces cannot be effectively removed using image analysis tools.
There is a very subtle difference between an optimally etched and
destroyed specimen surface. The same etching procedure can give
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different effects depending on polishing methodology. For example,
higher pressure during polishing can increase the velocity of etching,
leading to overetching.

Fig. 3.5. Glass fibers in a thermoplastic resin, un-etched. Note poor contrast
between fibers and matrix, making the specimen unsuitable for automatic
analysis.

One can also find some materials that are practically impossible to
correctly prepare from the point-of-view of automatic image analysis
(Fig. 3.5). This can be caused by high chemical resistance, disabling
any etching. This is the case in ceramic materials and some compos-
ites, as shown in Fig. 3.5. Specific chemical composition can prevent
getting proper contrast in optical microscopes as well as in SEM. In
such cases one can try to use manual methods for extraction of fea-
tures for further analysis. Fortunately, current microscopies have such
a wide spectrum of visualization methods that correct results can be

27,obtained for the majority of materials and their structures . 

 109
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To summarize these remarks on specimen preparation, one can put
forward the following conclusions:

•

	

image analysis can extract some information from the image but
cannot replace careful specimen preparation

• 
any image devoted to automatic image analysis should be of the
highest possible quality. Only high quality initial images enable
automatic analysis of long series of specimens with sufficient pre-
cision

• 
for good reproducibility of specimens (and, consequently, results
of the further analysis), automatic grinding and polishing are ad-
vised whenever possible

•

	

many errors that are easily interpreted and corrected by a human
observer cannot be successfully processed by a computer

•

	

special care is necessary during examination of both soft and mul-
tiphase materials.

3.2 Image acquisition

Any image, seen in the microscope or taken by any type of camera or
other device, has to be transferred into computer memory. This
process is called image acquisition and can be performed in several
ways: 

21, 114

• 
one of the oldest is data input from a digitizing tablet. This device
is relatively slow and inaccurate as the data input is done manually
and depends on the precision of the operator. On the other hand,
a digitizer can be a good solution in the case of images with very
poor contrast or high noise level and for the input of linear fea-
tures, like fracture profiles, etc.

• 
a scanner is a good and relatively cheap solution. It is the best
solution if the images for analysis are available in the form of
photographs or hard copies of some other type. Scanners work
relatively slowly, so they are not a good solution for massive data
input

• 
a CCD video camera is currently one of the most frequently used
sources of data for computer image analysis. It is a smart device,
offering good sensitivity and speed, being standard equipment on
many optical microscopes. Some problems arise if we want to
analyze color (an RGB camera is advised since the VHS system
gives poor resolution of colors) or high resolution images because
appropriate cameras and adapters (frame grabbers) 

are very expen-

sive. Moreover, every frame grabber requires special software to
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be coupled to the computer. So, one should be very careful when
choosing hardware and software. Special care should be focused
on the compatibility of the system components. Video recorders
(VCR) can be used interchangeably as an equivalent of any CCD
camera since the output data format of VCRs is identical to that of
CCD cameras

• contemporary electron microscopes are equipped with modules for
digital storage of images. Therefore, there is no problem with
transmission of the images from the electron microscope into the
image analysis programs. Moreover, many leading companies as-
sembling electron microscopes include image analysis packages as
standard in their products.

So, there are numerous ways of data input. However, the majority
of problems are common for all these methods and therefore can be
discussed independently from the source of data. For example, secon-
dary or backscattered electron modes in electron scanning microscopy
can be compared with different contrast methods in light microscopy.
The analogy of bright and dark field in optical and electron micros-
copy is even deeper.

An interesting problem of the proper choice of magnification is
illustrated in Fig. 3.6. We see in this picture the microstructure of
concrete and the image quality is acceptable for automatic processing.
In spite of this we cannot analyze the size distribution or shape of the
gravel particles, as only a small region of the gravel particles is visi-
ble. There are two solutions in such a situation: we can either decrease
the magnification to get a larger field of observation or take a series of
pictures touching each other and subsequently reconstruct the whole
structure. On the other hand, an even larger magnification could be
necessary for inspection of fine features on the inter-particle interface,
for example.

Proper choice of magnification is always an important problem
and requires careful analysis. There are no rigid rules in this matter,
however, some guidelines may be extracted: 21, 44, 45, 80

• be careful that the magnification used does not exceed the resolv-
ing power of the microscope. In such a case you can get so-called
empty magnification, giving an image with the smallest details
larger than a single pixel

• if you want to test inhomogeneity, keep in mind that at high magni-
fication every structure is inhomogeneous. The linear size of the
image for this purpose should be a few times larger than the ex-
pected radius of region defined as homogeneous. If you apply any
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tools of stereology for analysis of inhomogeneity, you should care-
fully follow the requirements of the method described

•

	

if you want to analyze some particles, the suitable magnification
should lie somewhere between the following two limits: the small-
est particles should contain at least approximately 10 pixels in or-
der to enable any reliable shape or size measurements (lower limit)
and the largest particles should be somewhat smaller than the lin-
ear size of the image (upper limit). Obviously, some particles will
always be cut by the image boundary, but this phenomenon can be
effectively corrected.

Fig. 3.6. Microstructure of concrete. Magnification applied is too high - only
a portion of the gravel particles is visible, making size distribution analysis
impossible. An example of a poor image in spite of acceptable preparation
quality.

The key problem in image acquisition is grabbing images that
contain just the necessary information. In the case of optical micro-
scopes, this is done mainly by proper etching or illumination; whereas
in scanning electron microscopy (SEM), it is by the proper choice of
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the signal used for image formation. There are two main signals used:
backscatterd electrons (BE) and secondary electrons (SE). Fine tuning
of these signals allows one to get the desired information. 

27, 35, 39, 65, 78, 94

The image taken in BE has some contrast based principally on lo-
cal changes in chemical composition, with some additional informa-
tion from the local surface topography. This mode gives relatively
little information on the local topography of the specimen.

The contrast in SE images is formed in a different way and is
similar to that observed in optical microscopy. The local gray levels
depend mainly on the local surface orientation, thus this mode is suit-
able for topographic examination, for example, in porous materials or
in fractography.

Comparison between the above described modes is illustrated in
Fig. 3.7, on an Al2O3-Ni3Al composite, observed in SE (top) and BE
(bottom). If there is a need to detect the individual phases, the SE
i mage is useless for this purpose, whereas the constituent phases can
be easily detected in the BE image using a simple binarization proce-
dure.

The SE image is very sensitive to changes in the acceleration volt-
age (see Fig. 3.8). Correction of the acceleration voltage can alter the
resulting image almost completely, including local inversion in the
contrast (see central part of the images in Fig. 3.8). Low voltage
makes the SE image (Fig. 3.8 bottom) similar to the BE image (Fig.
3.9). Thus, manipulation of the imaging modes, acceleration voltage
and specimen preparation (covering by evaporation of thin layers of
gold or other chemical treatment) produce countless variants of the
same image. Depending on the character of the structure under analy-
sis various types of images can be of the highest value. It is quite
common to use various modes at different stages of image treatment.
Therefore the technique of image acquisition should be carefully
planned prior to large scale experiments. This can prevent us from
unnecessary repetition of the experiments.

Electron microscopy also offers other signals, illustrating, for ex-
ample, surface density of various elements, specimen conductance or
some diffraction patterns. Every type of such images contains some
information on the material and its microstructure. Our knowledge,
experience and imagination or intuition should prompt us on how to
use this information for automatic quantification of the analyzed
specimens. Some examples will be presented in later chapters.
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Fig. 3.7. A composite Al 2 

O 3-Ni3 

Al, observed in secondary electrons (top) and

backscattered electrons (bottom). Note that only the latter image is suitable
for detection of the phases (dark Al2O3 

and light Ni3Al).
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Fig. 3.8. The same Al 20 3 
-Ni 3 

Al composite, as in Fig. 3.7, observed in secon-
dary electrons at different acceleration voltages: 15 kV(top) and 1 kV
(bottom). Note that the lower image is similar to the BE image (see Fig. 3.9).
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Fig. 3.9. Same region as in Fig. 3.8 but observed in backscattered electrons.

In electron microscopy, especially in the case of scanning micro-
scopes, we have an extremely large depth of focus. This allows ex-
amination of rough surfaces (fractures, arrangements of fibers, fabric,
etc.), including stereoscopic examination. Unfortunately, there is only
limited ability to restore the three-dimensional structure of rough sur-
faces, as the brightness of the given point tends to vary with the angle
of tilt. Thus, finding the adjacent points in the pair of images can be
extremely difficult. In the case of analyzing the three-dimensional
nature of some structures, much better results can be obtained when
using confocal microscopes. They give almost perfect information on
the local topography of the specimen.

3.3 Shade correction

Some images, primarily from optical microscopes, exhibit irregular
illumination, called shade. Some regions (see Fig. 3.10a ) are brighter
and some others are darker than the mean value for the whole image.
This phenomenon is a consequence of inaccuracy in the optical sys-
tem and, first of all, an inhomogeneous light source. Precise tuning of
high quality microscopes can minimize this effect, but in many cases
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it significantly disturbs the analysis. The main problem caused by the
presence of shade is that it can extensively affect the results of binari-
zation, especially of phases with gray levels close to the background
of the image. Thus, much effort is expended in order to correct this
distortion.45, 80, 95, 109

Fig. 3.10. Shade correction. Initial image (a), extracted shade (b) and cor-
rected image (c).
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If we compare the initial (Fig. 3.10a) and the final, corrected im-
age (Fig. 3.10c), we come to the conclusion that shade correction can
be effectively completed. This is true, but shade correction requires
some care to avoid typical errors leading to false results (unfortu-
nately, looking correct at the first glance). The simple and efficient
correction procedure is thoroughly explained and described below.

The first, most important and difficult step is extraction of the
shade, which can be defined as an image illustrating the inhomogene-
ity of the light source. In some image analysis systems it is possible to
calibrate the system - the shade is detected from the image of a per-
fectly flat mirror and appropriate hardware performs suitable correc-
tion. Images obtained from such an instrument are free from shade.
Unfortunately, we get images with more or less clear shade quite fre-
quently and we face the need to extract it from the image.

In most cases, at least in light microscopy, shade is recognized as
uneven brightness of the brightest part of the image. It is visible espe-
cially clearly in images with a low content of dark elements. Grain
boundaries of single-phase materials and pores or inclusions in
unetched polished sections are typical examples of structures whose
shade is easy to detect.

How to extract the shade? Assuming that the shadowed back-
ground should be white (we can always use the negative of the image
if its background is dark or use complementary transformations), we
can use one of the following solutions:

•

	

close the image; the size of the closing should be large enough to
remove all the dark parts - pores, grain boundaries, etc. This
method cannot be applied to images with large dark areas

•

	

perform an FFT transformation, apply a low pass filter to the
Fourier spectrum (shade consist of low frequencies) and afterward
inverse the FFT to get the image of the shade. This method should
be used with care, especially in the case of the presence of large
dark particles. The result of this form of shade extraction should
always be controlled by the operator in order to avoid abnormal re-
sults

• (difficult and sophisticated) you can mark the brightest points,
choosing, for example, local maxima, and build the image using
interpolation methods. Interpolation methods construct an artificial
image in such a way that any profile is a smooth line and the values
of pixels located at the positions of their prototypes - here local
maxima - have the same gray levels as these prototypes. In some
image analysis or computer graphics packages you can find appro-
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priate procedures. If there is lack of them, try to use other solutions
because building the effective interpolation tool on your own may
be very difficult and laborious

• in the case of unusual shades, try to invent your own solution. For
example, you may see an image in which the left side is much
brighter than the right side and there is a continuous change in the
background level between these sides. In such a case you can per-
form a linear erosion with a size equal to the image height, using a
vertical (90o) structuring element. As a result, you will get a col-
lection of vertical lines with gray levels equal to the darkest point
along the line. This will be a high quality shade extraction.

Fig. 3.11. Schematic illustration of the shade correction procedure, Initial
profile (a), profile of the shade (b), improper shade correction based on sub-
traction of the images (c) and proper shade correction based on division of the
images (d). Detailed description in the text.
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If we have already extracted the shade, it is possible to complete
the shade correction. The simplest procedure used is based on image
subtraction and addition. 

28 You take the following steps:

• create the temporary  image, subtracting the shade from the purely
white image. The result will be complementary to the shade; in
other words, adding shade and the temporary image will lead to an
image with all pixels white

•

	

create the corrected  image by summation of the initial and tempo-
rary images.

The procedure is very simple and leads to results that at first
glance seem to be correct. Unfortunately, closer analysis (Fig. 3.11 c)
shows that the results are not correct. Adding the temporary image
causes all the originally black pixels to be brighter, as they obtain the
values of the temporary image. This may lead to false results of bi-
narization, especially if one needs to detect some dark features (see
Fig. 3.12).

To avoid the systematic error described above, a new procedure is
recommended. In this procedure the same shade is used, but the pixel
values change proportionally to their values. This algorithm leads to
correct results and can be described in the following way:

• create the temporary  image, dividing the purely white image by the
shade image. The result will have floating point values (ensure be-
fore division that the result will have floating point values) show-
ing how many times white is brighter than the gray level of the
given pixel in the shade image

•

	

create the corrected  image by multiplication of the initial and tem-
porary images.

The above described procedure is very efficient; however, it re-
quires a rather more advanced image analysis package, enabling the
use of floating point values in the image. There are also some pro-
grams with built-in procedures for shade removal, usually based on
filtering out the lowest frequencies from the Fourier spectrum. In the
case of the presence of shade removing procedures you can use them,
but it is advised to check the result carefully, for example, by com-
parison of the profiles before and after the operation. If the result
seems to be wrong, it is always possible to use the procedures de-
scribed above.

Finally, it should be noted that in the case of weak shading the
procedure based on subtraction and summation of images also gives
acceptable results. However, it is always a good habit to check the
result using the profile (see Chapter 2).
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Fig. 3.12. Effect of the binarization threshold and shade correction on the
volume fraction of graphite precipitates in: malleable (a), gray (b) and nodular
(c) cast iron. The microstructures are shown without shade correction.

© 1999 by CRC Press LLC



Analysis of the results presented in Fig. 3.12 leads to the follow-
ing conclusions:

• the effect of the shade is particularly strong in the case of fine pre-
cipitates (Fig. 3.12a). In this case a relatively large area is occupied
by boundary pixels, with gray levels between the values typical for
graphite (dark) and matrix (bright), respectively. In such a case the
threshold level has to be chosen with special care - refer to Section
2.4 for possible remedies

• the effect of threshold level depends on the shape rather than on
the size of the particles (compare the plot in Fig. 3.12c with the
plots in Figs. 3.12a and 3.12b)

• the gray level after shade correction was close to 0 for graphite and
close to 255 for the matrix, respectively. So, the value of 128,
marked in the plots in Fig. 3.12 by a vertical line, is equal to the
arithmetic mean of these two gray levels and should be a safe (high
probability) choice for the correct threshold level. In all cases this
threshold level gives the same volume fraction of graphite: 9% and
this value is very close to the real graphite contents in the cast
irons under study.

3.4 Removing artifacts

Real images often contain some artifacts induced during specimen
preparation, like scratches, smearing, relief, pull-outs, comet tails or
lapping tracks. Removal of these features is usually very difficult, if
not impossible. Simultaneously, any correction of the initial image can
affect the features being analyzed and we risk losing control over the
whole analysis process. Therefore, every possible effort should be
made to get high quality initial images. 

5, 15, 24, 43, 56, 99

Unfortunately, improvement in the specimen preparation or image
acquisition steps is not always possible. For example, it may happen
that we get some archival, poor quality images for analysis and there
is no possibility of grabbing new ones. Some limitations in specimen
preparation are also possible, particularly in the case of smaller labo-
ratories. In such cases we have to improve the image quality before
final analysis.

The most common case is a specimen with scratches. A few small
scratches can usually be found even in very carefully prepared speci-
mens and these can be relatively easy to remove. For our analysis,
however, we will take the image with heavy scratches shown in Fig.
3.3, as in this example the effect of any attempt to remove the
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scratches is clearly visible. Obviously, images of such low quality
should not be used for image analysis.

Application of the Fourier transformation is frequently reported as
a successful tool for scratch removal, especially in the case of oriented
scratches, i.e., scratches parallel to a given direction. Nevertheless,
complete removal of such heavy scratches, as in Fig. 3.3, is not possi-
ble. A relatively good result obtained after high-pass filtering is shown
in Fig. 3.13 as the upper image. The result seems to be rather unsatis-
factory, but closer analysis below shows its real value.

Another method of scratch removal is based on simple morpho-
logical operations, 

which can be found in nearly all the image-
processing packages. Application of a simple closing procedure with
appropriate size (determined experimentally for a given case) yields
good results (lower image in Fig. 3.13). Please note that the image
with scratches removed by closing (Fig. 3.13 bottom) looks better than
that with scratches removed by FFT (Fig. 3.13 top).

One can also work with software that has built-in procedures for
the extraction of lines (for example, the Hough transform). These
procedures can be effectively used for removal of scratches, but then
force individual analysis as every case can require a slightly different
treatment.

Experts in image analysis say that all the problems, including arti-
facts removal, can be successfully solved, but sometimes will cost
enormous amounts of time and energy. Only in the case of possible
massive analysis elaboration of a suitable procedure is it worth these
efforts. On the contrary, if we have only a few unusual images, the
mouse etching method, mentioned in Chapter 2, will be the best
choice.

Coming back to our example of a structure with heavy scratches,
the final goal is to get a clear, binary image of the black phase. If we
threshold the initial image, the result will be as shown in the left im-
age in Fig. 3.14. It is evident that the scratches significantly affect the
binarization effect.

Removal of scratches from the binary image is possible, but usu-
ally connected with a significant modification of the remaining part of
the image. So, a better solution seems to be to threshold a gray level
image with partially removed scratches, as shown in Fig. 3.13. This
can lead to images with perfectly removed scratches as, for example,
the right image in Fig. 3.14.
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Fig. 3.13. The structure from Fig. 3.3 after partial removal of scratches. Two
methods: Fourier transformation (top) and closing (bottom) were used.
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Fig. 3.14. Binary images of the structure from Fig. 3.3: result of a simple
thresholding, containing many scratches (left) and clear image with scratches
removed, being the result of binarization of the image with scratches removed
by appropriate Fourier transformation (right).

It is noteworthy that binarization applied to the image after FFT
(Fig. 3.13 top) gives better results than binarization of the image after
closing (Fig. 3.13 bottom). So, an image which looks better can be in
some cases the worse solution. This seems to be a paradox, but in this
case it can be easily explained. In the image after FFT scratches are
still visible, but they have a significantly higher gray level than the
dark areas to be detected. Therefore, thresholding can effectively re-
move the scratches from the initial image. Simultaneously, FFT does
not affect the shape of these particles as their shape depends on fre-
quencies not filtered out in order to remove the scratches. Thanks to
this we get a perfect final binary result, as shown in Fig. 3.14. By
contrast, closing offers better removal of the scratches but we have to
pay for this result with a more disturbed shape of the particles which
we want to detect. Therefore, the quality of the final, binary image is
lower in comparison with the FFT method.

The above example illustrates well how difficult any judgment of
the choice and fine-tuning of image processing procedures can be. To
make things more complex, almost identical results can be obtained
using completely different algorithms. Objective evaluation of the
result can be very difficult, if not impossible. So, it is advisable to use
for the purpose of self-control the profile of gray levels along the
given line, as this yields fully quantitative data. Surprisingly, often the
best results are obtained after discussion with non-specialists, who are
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able to look at the solution with a so-called fresh eye. In the case of a
search for the solution by an individual, the tips listed below can be
helpful.

3.5 Basic tips

It is obviously impossible to cover all the possible cases of image
defects and their minimization. Some problems relate only to
a given family of images, depending on their origin, specimen prepa-
ration, etc. Sometimes finding the satisfactory solution can take years
of experience. Fortunately, the analysis of numerous examples allows
one to define some guidelines, which can be helpful in finding solu-
tions to individual problems:

• usually it is difficult to perform many tasks that are evident to
a human but unclear in a computer program. Therefore, try to de-
fine what should be removed or improved. Features for removal
can have their unique size, shape, gray level or any other charac-
teristics. Precise definition of these properties can considerably
speed-up reaching the final solution

• probably in the majority of cases you will have a lot of difficulties
with the removal of anything from the image without alteration of
its remaining part. Usually, it is much easier to detect and extract
these features than to remove them. Follow this solution and sub-
sequently try to get a suitable result by some arithmetic transfor-
mations, mainly subtraction, addition and multiplication

• one of the easiest ways of feature extraction is binarization. Check
if the features for removal or modification have their individual
range of gray levels. In such a case unwanted features can be easily
and safely extracted. In order to check the existence of this case
you can use profiles or, even better, several LUT. Many programs
offer color LUT, which displays various gray levels as different,
often adjustable, colors. This feature enables more precise visual
control over the gray levels at distant places within the image

• different sets in the image can possess different attributes. For
example, you can detect large and small, round and elongated or
bright and dark features. It may happen that features to be removed
or analyzed possess properties of various groups and, therefore, are
difficult to separate. In such a case you can try to build a few tem-
porary images and reach the final solution using logical transfor-
mations. For example, having an image with small particles and a
second image with round (of any size) particles, you can use the
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logical AND function to create a set of particles that are simulta-
neously small and round

Fig. 3.15. An image can be sharpened with simultaneous contrast
enhancement if we multiply the image by itself. The original image is shown
in Fig. 3.5.

• if the image has a very poor contrast, you can try to multiply the
image by itself. You will improve not only the contrast, but simul-
taneously the image will appear to be a little sharper. It is a rela-
tively safe operation, because in contrast to classical sharpening
algorithms no additional noise is added to the image by the algo-
rithm. An example of such a treated image with low contrast is
shown in Fig. 3.15. You can compare it with the original image
shown in Fig. 3.5

• in general, any filtering causes the loss of data. In the case of
scanned images (this is not applicable to images taken by a CCD
camera as they have insufficient size), we can scan them with a
resolution two times greater than is necessary for our analysis. For
example: if we need to have an image of size 512x512 pixels and
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the size of original image is 2x2 inches, we should scan with 256
dpi (dots per inch); doubling this resolution means scanning with
512 dpi and leads to an image of size 1024x1024 pixels. In the im-
age with high resolution we apply all the necessary filters or other
operations. Obviously, filters deteriorate the information in the im-
age, but we have an image overloaded with pixels. So, next we
should re-sample the image to the desired size (in our example it
will change in size from 1024x1024 pixels to 512 to 512 pixels or
change in resolution from 512 dpi to 256 dpi). This sub-sampling
procedure will compute the new pixel values as the average from
four pixels in the high-resolution picture. This trick is very useful
for removal of a moire effect, typical for images scanned from
printouts.
If none of these tips works, try to use the ultimate one: simply do

another task. Your brain will still work on this problem and switching
to another activity gives your brain the time necessary for processing
of the problem. A significant number of the problems cited as exam-
ples in this book were solved using this technique.

Every user of image processing tools discovers his/her own,
unique tips for solving everyday problems. There is no single, univer-
sal and absolutely best solution. The tempting beauty of image analy-
sis lies in its flexibility and the unlimited number of possible trans-
formations. Thus, there is always a place to discover tricky, fast and
elegant algorithms. In this book you can find some guidelines built
from the author's knowledge and experience. These guidelines should
help and inspire you, but should never prevent you from your own
experiments with image analysis.
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Chapter four

Detection of basic features
All the materials: metals, ceramics, plastics, composites or concrete
are highly inhomogeneous. In some of them, for example, monocrys-
tals or glass, this inhomogeneity can be observed mainly at the atomic
scale; whereas in other cases, with many materials of natural origin, it
is visible at a macro-scale as well. Nevertheless, this phenomenon of
inhomogeneity is responsible for the creation of the microstructure of
any material.

Surely the final user of the material is usually not interested in its
microstructure but rather in its properties and price. Unfortunately, the
development of clear relations between the material properties and
technological processes is too complex to be realized and in practice
impossible. However, it was discovered that it is relatively easy to
elaborate two complementary sets of relations: the first one between
the parameters of technological processes and microstructure and the
second one between the microstructure and properties. Consequently,
taking into consideration these two groups of relations, the most fun-
damental rule of materials science can be stated as follows:

two materials of identical microstructure have identical
properties irrespective of their history, which means the
way in which this microstructure was formed.

It explains why objective, quantitative analysis of the material mi-
crostructure is so important in materials science. In this chapter we
will focus on the detection of very fundamental features found in the
microstructure, whereas the next chapters will deal with different as-
pects of the more detailed analysis of them.

4.1 Grain boundaries

Grains seem to be the most characteristic feature in the microstructure
of a material. They can have different sizes, shapes and characters,
starting from clear grains in a clean, solid solution and finishing with
very complex grains which are rather inhomogeneous packages of
other, similarly oriented, features. To this wide spectrum of grain-type
structures one should add the variety of specimen preparation
(polishing, etching) and observation techniques (various types of mi-

© 1999 by CRC Press LLC



croscopes and observation modes). So, it is absolutely impossible to
develop a single, universal algorithm for grain detection and numerous
solutions are reported.3, 6, 11, 13, 15, 18, 23, 34, 35, 56, 58, 61, 65, 80, 105

 Some rules, how-
ever, can be established. They will be explained below and followed
by a few illustrative examples.

In order to define the grain, we will look for the boundaries sur-
rounding this grain. Therefore, grains and grain boundaries are treated
here, from the viewpoint of image analysis, as synonyms.

A general framework for grain boundary detection

The initial image can present various origins and qualities. Therefore,
some preliminary treatment may be necessary. There are many possi-
ble cases and solutions. Some of them are listed below:

•

	

first, check if the image background is uniform. If not, you can
apply any shade correction procedure

• if the image is very noisy, it will be difficult to extract the grain
boundaries and some filtering can help in further analysis. This
seems to be a good practice to avoid, in this case, sharpening fil-
ters. You should try to use filters preserving edges, for example,
a median filter. Any filtering should be applied with care, because
filters can destroy narrow grain boundaries. Fourier transformation
can be a good solution in the case of periodic noise

• thin, dark boundary lines can be effectively thickened by erosion
but the whole image cannot be very noisy. Sometimes, better re-
sults are achieved using a top-hat transformation

• in good quality images, with a limited amount of noise, the bound-
ary lines can be effectively enhanced using edge detection filters.
Unfortunately, this intuitively good solution only occasionally
gives correct results

• for some cases the best results can be obtained with the help of
user-defined filters. This is, however, an advanced concept which
requires some experience. An example illustrating it will be pre-
sented later in this section.

The steps listed above can be applied alone or in combination.
There exists no universal method of preliminary image processing.
Any precisely defined algorithm is valid only for a limited family of
images with similar quality, obtained from materials with similar mi-
crostructures and specimen preparation. The examples shown in this
section should help you to understand how to look for a proper choice
of the procedures suitable for a given case.
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The preliminary steps are usually followed by binarization, lead-
ing to intermediate, binary images. These images can be divided into
two groups of entirely different properties, labeled here as Type I and
Type II.

Type I. In this case the intermediate binary image represents the
continuous network of lines, being a more or less accurate representa-
tion of the grain boundaries to be detected. This network can be either
a result of single binarization or a logical sum of a family of different
images.

This last case requires some more comment: usually, different
transformations lead to different detection of the boundary lines (see
Fig. 2.18). It may happen that none of these images represents perfect
detection, but every one correctly detects a part of the grain bounda-
ries not detected by other images. In such a case summation of these
images gives the best possible detection. An example of an intermedi-
ate image with a continuous network is shown in Fig. 4.1 (left image).

Fig. 4.1. Examples of binary images obtained after preliminary treatment
leading to grain boundary detection. They represent both cases, described in
the text: case I - continuous network (left) and case II - separated segments of
grain boundary regions (right).

Type II. In this event we find the most frequent situation when
only discontinuous segments of regions belonging to grain boundaries
are detected (right image in Fig. 4.1). This discontinuity can be caused
by under-etching, local inhomogeneity of the grains and different sen-
sitivity to etching caused by crystallographic orientation. The other
reason can be also high chemical resistance of the material, when the
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grain boundaries are marked by pores or traces of the eutectic phase
only.

Both cases described above require different subsequent treatment
and the most typical steps are as follows:

• cleaning of small elements prevents large errors in final boundary
detection and can be applied for intermediate images of Types I
and II

• in the case of a continuous network (Type I), it is often sufficient
to make the network one pixel thin. This can be done using SKIZ

• 
for a segmented network (Type II), SKIZ will not form the grain
boundaries, as pruning (removal of skeleton end-points being the
second step of SKIZ) will simply remove the isolated segments.
Usually we use the watershed technique (see Section 2.5) for resto-
ration of the lost boundary lines.
Final steps in the analysis can vary from case to case, as will be

shown in the examples. Due to the diversity in grain boundary mor-
phology, almost all the possible transformations can be applied in
some detection algorithms. The examples presented below will show
various possible treatments. A detailed description of all these cases
will allow you to trace the detection sequence and find the process
route most suitable for your application.

Before switching to the first example, we will analyze an inter-
esting algorithm, 

53,76 called ultimate erosion 
(Fig. 4.2). After an ero-

sion of an appropriate size all the particles will disappear from the
image. In some cases it is necessary to keep the smallest possible part
of the image (this means the part which will disappear after the next
step of the erosion). This can be used for counting particles or mark-
ing particles glued together. Ultimate erosion is built into many image
analysis packages. If you do not find it, you can try to perform it on
your own - the idea is illustrated in Fig. 4.2.

A first step depends on erosion and subsequent reconstruction of
the initial image from the markers, formed during erosion. Recon-
struction is a sequence of dilations followed by logical AND with the
reconstructed image, repeated until convergence. Reconstruction re-
stores every particle from the initial (reconstructed) image having at
least a single point in the marker image. Next, we put the logical dif-
ference (XOR operation) between the initial and reconstructed im-
ages. This operation yields the set of points (small particles) totally
lost during erosion. 

We repeat the whole loop till the empty set is
produced by erosion. In Fig. 4.2 the ultimate eroded set is shown in
image m. We see from this image that the initial image (a) consists of
three particles; two of them are glued together.
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if a particle disappears after the next
step of erosion, it is not reconstructed
(there is no appropriate marker) and
appears in this column

erosion h (markers) reconstruction h j + difference (h - I)
step 4 is the last one if the next erosion leads to an empty set

Fig. 4.2. Illustration of the algorithm leading to the ultimate eroded set. See
text for details.
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Example 1. Grains in a model alloy used for machinability tests
We will start with a relatively easy example - detection of grains in
a model alloy, similar to a free machining steel with an elevated vol-
ume fraction of inclusions. The main steps of the detection algorithm
can be observed in Fig. 4.3. and below you will find its detailed de-
scription:

• the initial microstructure is shown in Fig. 4.3a. The background
has a uniform gray level, so no shade correction is necessary. As
expected, a large amount of inclusions is visible. The grain
boundaries seem to be well etched

• the first step in processing the image was the detection of inclu-
sions. Binarization with a suitable threshold level produced a good
image of the inclusions. Subsequent opening of size 1 (the smallest
possible opening) removed traces of grain boundaries and the
smallest inclusions (Fig. 4.3b)

•

	

the smallest inclusions (removed in the step described above) can
be preserved if we apply an ultimate erosion. Logical summation
(OR operation) of the ultimate eroded set and the structure in Fig.
4.3b will give all the inclusions. You can see the difference in the
final Fig. 4.3f, where all the detected inclusions are present. You
cannot avoid this step, because when detecting inclusions a part of
the grain boundaries is always detected and has to be removed.
Thanks to the connectivity with larger inclusions situated predomi-
nantly on grain boundaries, traces of unnecessarily detected
boundaries are not preserved in the ultimate eroded set

•

	

the next important step is detection of the grain boundaries.
A portion of the grain boundaries is relatively bright. So, in order
to get the continuous network, we have to apply a relatively high
threshold level. This leads to an image with very thick lines (Fig.
4.3c). Such a binarization has to be performed with great care as
we can easily lose small grains

• SKIZ applied to the previous image introduces two effects: it
closes the holes and thins the grain boundaries to a single pixel
width. The result (Fig. 4.3d) offers quite acceptable detection but,
due to binarization defects in Fig. 4.3c, we have some small extra
grains. These grains should be removed

• removal of extra grains is easily performed using simple erosion
(see Fig. 4.3e). The next SKIZ will give correct detection of grain
boundaries

• combining the final detected grain boundaries with the correctly
detected inclusions (using logical AND) leads to the final effect,
illustrated in Fig. 4.3f.
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Fig. 4.3. Detection of grain boundaries in a model alloy with high contents of
inclusions. Initial image (a), inclusions (b), binary image (c), SKIZ of image c
(d), erosion (e) and final detection (f). See text for details.
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Note that repeating erosions of growing size and SKIZ continu-
ously removes the smallest grains and produces grains of increasing
size. This can be used effectively in algorithms for simulation of grain
growth and recrystallization processes.

Example 2. Restoration of grain boundaries in the QE 22 alloy after
high-temperature homogenization

The previous example illustrated a typical case of type I grain bound-
ary detection, whereas in this example we will have a typical case of
type II detection, with segmented traces of grain boundaries. This
example is very important from the instructional point-of-view, as you
will see how fine-tuning of the algorithm can affect the final detec-
tion.

QE 22 is a very light alloy used for service at elevated tempera-
tures. Its basic components are the following elements: magnesium
Mg, silver Ag, zirconium Zr and neodymium Nd. Let us look at the
grain boundary detection algorithm:

• in the scanning electron micrograph in Fig. 4.4a you can see large
grains (a side effect of the homogenization process) of Mg-Zr solid
solution and very bright eutectic Mg-Ag-Nd. The solid solution is
inhomogeneous: dark regions are rich in Mg; bright regions, lo-
cated in the central part of the grains, contain more Zr

• the only possible grain boundary indicators seem to be white pre-
cipitates of the eutectic. Its binarization is extremely easy and leads
to the next image (Fig. 4.4b)

• the binary image of the eutectic will be used for creation of the
distance image (Fig. 4.4d). The darkest points in the distance im-
age are prototypes of the restored grain boundaries. Obviously, for
the watershed algorithm one should use the negative of the dis-
tance image, as the watershed segments the image along the bright-
est regions

• unfortunately, watershed segmentation would lead to over-
segmentation of the image; we would get too many grains (see how
many dark lines are visible in Fig. 4.4d and compare this with the
final detection shown in Fig. 4.4e). In order to get better segmen-
tation we will use a constrained or conditional watershed. This
tape of watershed procedure uses not only the distance image but
also the markers. This watershed will produce only as many grains
as we have markers. So, the choice of markers is, in this case, deci-
sive for the final result

© 1999 by CRC Press LLC



Fig. 4.4. Detection of grain boundaries in the QE 22 alloy. Initial image (a),
detected eutectic (b), grain markers (c), distance image (d), final detection (e)
and grains overlaid on the initial image (f).
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• 
markers for the constrained watershed can be produced by erosion
or, usually better, by ultimate erosion. This gives relatively good
results, but due to the discontinuity in the eutectic network we will
get too many markers. It could lead to over-segmentation. In order
to avoid this effect, we add some steps of dilation - this will glue
together markers placed very close to each other. You can observe
a few such markers indicated by arrows in Fig. 4.4c

• using the constrained watershed algorithm we can produce the
image of grains. Logical intersection (AND) with the image
showing the eutectic (Fig. 4.4b) gives the final result (Fig. 4.4e)

•

	

in order to control the quality of our detection we can draw the
detected grains as an overlay of the initial image (Fig. 4.4f).

Closer analysis of the above described detection leads to the con-
clusion that it is somewhat artificial - see unnatural grain boundary
lines in the lower right hand corner in Fig. 4.4e. Obviously, this un-
satisfactory shape of grains is caused mainly by the poor preliminary
detection offered by the eutectic (Fig. 4.4b). Fortunately, we can sig-
nificantly improve the quality of our detection, taking into considera-
tion the information concerning the e concentration of elements
(bright regions in the initial image - Fig. 4.4a). The improved detec-
tion algorithm would be as follows (see Fig. 4.5):

•

	

we calculate the distance function as the negative of the initial
image (Fig. 4.5a)

• this new distance function has one disadvantage: the regions occu-
pied by the eutectic should be bright, not black as in Fig. 4.5a.
Therefore we replace them by the detected eutectic, additionally
dilated in order to generalize the image and avoid halo effects at
the eutectic-solid solution interface. Combining these two images
(i.e., the negative of the initial one and the dilated eutectic) is eas-
ily obtained using the arithmetic function that returns the maxi-
mum value of the two images (see Fig. 4.5b)

• 
the final detection is possible using the constrained watershed, in
an analogous way to the initial version of the algorithm. Unfortu-
nately, the distance function created from the SEM image forces
formation of the watershed as a very curved line and the final de-
tection is not satisfactory (see Fig. 4.5c)

• the geometry of detected grains can be significantly improved after
applying erosion (Fig. 4.5d) followed by the SKIZ transformation
(Fig. 4.5e). Note that the detected grains are drawn in Figs. 4.5c
and 4.5e together with the black eutectic region, whereas for ero-
sion the image 4.5c is taken without the eutectic
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Fig. 4.5. Second variant of detection of grain boundaries in the QE 22 alloy.
Negative initial image (a), distance image (b), watershed (c), eroded water-
shed (d), final detection (e) and grains overlaid on the initial image (f).
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• the initial image is plotted in Fig. 4.5f together with the finally
detected grains. This allows you to discover the difference between
this second variant of the detection and the previous one, shown in
Fig. 4.4.
The second detection seems to be significantly better. However,

even in this case one can find some errors. For example, there exist
a part of the eutectic network (denoted by an arrow in Fig. 4.5c) that is
not taken into account during the grain boundary formation process.
The previous detection (Fig. 4.4) does not contain this error. This
observation illustrates a typical situation in image analysis: we usually
have no ideal detection; every algorithm has its advantages and draw-
backs. We simply should look for the best possible solution.

In practical applications this is not a critical problem. If we detect
correctly the majority of features in a whole series of images, there is
a great probability that our error of detection is systematic and has an
approximately stable value. In such conditions we can precisely and
objectively compare the materials, in spite of the inaccuracy of the
detection in the single image.

The last example also shows that any firm classification of algo-
rithms is impossible. We started with a watershed, a typical tool for
the detection of grain in structures of type II and the final tuning was
performed with the use of SKIZ - a classical tool for processing type I
structures. The next example will show even more clearly that the
number of possible algorithms is really unlimited.

Example 3. Grains in a polystyrene foam (a rather difficult case)

Polystyrene foam is widely used as a material for heat insulation. In
some cases it also has to carry some mechanical forces. Both strength
and insulation properties are controlled by the form and size of the
foam cells. The cells in polystyrene foam are clearly visible without
any microscope, as their largest chords are a few millimeters long (see
Fig. 4.6a). Simultaneously, the whole material is white and therefore
the contrast in its image is very poor. A good solution could be rotat-
ing the side light source and then taking a few images of the same
region, but illuminated in different ways. However, here we will try to
develop a suitable algorithm based on the analysis of a single image.

Any attempt to threshold the initial image of the polystyrene foam
gives poor results, similar to that shown in Fig. 4.6b. The human ob-
server can guess that there are some grains in the image, but it is too
difficult a task for a computer. Therefore, we will try to develop a new
algorithm that will be described below:
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Fig. 4.6. Detection of grain boundaries in a polystyrene foam. The initial
image (a), binarized a (b), Laplacian image (c), Laplacian smoothed by me-
dian filter (d), thresholded d (e) and e with removed small features (f).
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Fig. 4.7. Detection of grain boundaries in a polystyrene foam - continued.
Two thresholds of the Laplacian combined together (a), creation of a more
continuous network by closing image a (b), distance image computed on the
basis of b (c) and the final detection overlying the initial image (d).

• any attempt to binarize the initial image will give grain markers
suitable for further detection. Therefore we will have to look for
another tools for edge detection. We will choose the Laplacian, al-
ready described in Section 2.7. This is sensitive to subtle gray level
changes in all the directions. Applying a Laplacian transformation
will give an image with both positive and negative values, with the
overall average very close or equal to zero. In order to show this
image, we plot it in such a way that the zero value is represented
by an intermediate gray level, very low values (obviously, smaller
than zero) are black and very high values are shown in white (Fig.
4.6c)
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• due to the low contrast of the initial image, the Laplacian is too
noisy for further treatment. In order to improve this image we will
use the median filter, which limits the noise level and simultane-
ously preserves the edges (see Fig. 4.6d)

•

	

the filtered Laplacian can be used for preliminary extraction of the
grain boundaries, visible in Fig. 4.6d as very bright or very dark
areas. We will extract the bright component by an appropriate
threshold. This creates the binary image, shown in Fig. 4.6e

•

	

some remnants of the noise are still present in the Laplacian, even
after median filtering. Therefore, in the binary image of the bright
component (Fig. 4.6e), many small particles can be observed. They
can be removed on the basis of surface area analysis - we simple
remove the features with the smallest surface area (see Fig. 4.6f). If
there is no suitable procedure in your package, you can try to use
opening, but the result will be not as good (opening is not sensitive
to the surface area but to the breadth of the feature - it will remove
long, thin features even it they have a large surface area)

•

	

an analogous binary image can be obtained after thresholding of
the dark component in the filtered Laplacian. This intermediate
image is not shown in the illustrations

• the next step is combining both intermediate binary images, using
the logical OR (Fig. 4.7a). As a result, we get a series of approxi-
mately horizontal clusters. The lack of a vertical component is
caused by the directional illumination of the specimen (see Fig.
4.6a)

• the detected traces of regions close to the foam cell boundaries are
highly discontinuous. A simple closing produces a significantly
more continuous network (Fig. 4.7b), which can be used to form
the distance image

•

	

as usual, for the needs of restoration of grain boundaries we will
use the negative of the distance image (refer to Section 2.5). This
form of the distance image is presented in Fig. 4.7c

•

	

the distance image allows us to detect the boundary lines using the
watershed transformation. The binary image used as the starting
point for computing the distance function was smoothed using the
closing procedure (Fig. 4.7b) and, therefore, an ordinary watershed
can be applied (a constrained watershed is unnecessary in this
case). It simplifies the algorithm and leads to the final detection.
The detected grain boundaries are overlaid over the initial image
and shown in Fig. 4.7d.
Careful analysis of the final result (Fig. 4.7d) shows that ap-

proximately 5% of grains are over-segmented, this means additionally
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divided into two pieces. This does not change the overall rating of
good segmentation - one has to take into account the low contrast of
the initial image, making automatic image processing very difficult.

Example 4. Grains of a clean, single phase material

The next example illustrates the classical problem of grain boundary
detection in a single-phase material - in our case it is ferrite after re-
crystallization. The proposed algorithm for grain boundary detection
consists of the following steps:

• the initial image offers well-etched grain boundaries and at a first
glance it should not be particularly difficult to detect them (Fig.
4.8a)

• grain boundaries are easily visible to a human, but they are very
delicate and some shading makes the final detection difficult. A
very good detection can be obtained with the help of a black top-
hat transformation (Fig. 4.8b)

• the next steps in the algorithm are erosion, leading to a continuous
network and hole filling, removing small, isolated particles. The
result of these operations is shown in Fig. 4.8c. Hole filling is often
built into image analysis packages. Its principle is based on one of
the most common functions in computer graphics, namely flood
filling. This operation fills all the regions connected with the image
boundary. In our case it would be the continuous network formed
during erosion. XOR with the initial image returns all the holes and
a second XOR with the initial image restores the continuous net-
work, this time without holes

• first detection of the grain boundaries can be obtained after SKIZ
is applied to the image in Fig. 4.8c. Unfortunately, this detection
will not detect all of grain boundaries. Some of the missing
boundaries are indicated by arrows (Fig. 4.8d)

• some improvement of this detection can be obtained with the help
of a watershed detection. On the basis of roughly detected grain
boundaries (Fig. 4.8c), we build the distance image (its negative is
shown in Fig. 4.8e) and the final detection is a result of the water-
shed detection (Fig. 4.8f). This second detection is better, but we
have still some over-segmentation or lost boundary lines. Two ex-
amples of these errors are indicated by arrows in Fig. 4.8f.
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Fig. 4.8. Detection of grain boundaries in ferrite. Initial image (a), top-hat
transformation and detected features (b), removal of small parts and continu-
ous network (c), SKIZ (d), distance image (e) and final detection (f).
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In this example of grain boundary detection we face one of the
very common problems in image analysis. We observe quite clearly
some features that are extremely difficult for automatic detection -
these are the lost boundary lines. So, we would like to get better de-
tection.

For testing the appropriate algorithm we will take a part of the
initial image, containing some boundary lines lost during further de-
tection. This part is shown in Fig. 4.9a. Next, we apply the following
transformations:

• 
some of the boundary lines exhibit very low contrast with the ma-
trix and any attempt to threshold them fails to detect them because
of the noise. A simple opening transformation will reduce this
noise. The result is very difficult to discern by a human (Fig. 4.9b)
but is sufficient to improve the detection

• the next step is binarization (Fig. 4.9c). The threshold level should
be carefully chosen. A threshold level which is too high will add
much of the low-level noise to the image and further processing
will be impossible. On the other hand, a threshold level which is
too low will not detect all the boundary lines. The gap between the
too low and too high threshold levels is very narrow. For example,
in Fig. 4.9b a part of the detected lines is too thick, whereas in the
other part some discontinuities are observed

• in order to remove the above-mentioned discontinuities we apply
erosion (Fig. 4.9c), leading to a continuous network around all the
grains

• SKIZ following erosion will give us thin boundary lines (Fig.
4.9e), giving almost satisfactory detection. This image, however,
still contains a few small defects, like a single, additional, very
small grain or some unnecessary steps on the boundary lines

• the defects mentioned above can be successfully removed using
a few steps of erosion followed by a second SKIZ operation. This
produces the final, very good quality, detection (Fig. 4.9f).

So, we have an algorithm giving perfect results. Unfortunately, it
cannot be applied to the whole image. The next figure (Fig. 4.10) will
explain the reason for this.
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Fig. 4.9. Detection of poorly contrasted grain boundary lines. Initial image
(a), opening (b), binarization (c), erosion (d), SKIZ (e) and erosion followed
by the second SKIZ (f).
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Fig. 4.10. Sources of errors in the proper detection of grain boundaries. Initial
image (a), thresholded image distorted by shading (b), thresholded image after
carefully removing shade - some noise is still visible in the upper left-hand
corner of the image (c) and the optimally thresholded image, with some lost
boundary lines (d).

Any attempt to threshold the initial image will lead to biased de-
tection. It is a straightforward effect of the shading present in the im-
age (Fig. 4.10a and b). Careful correction of the shading will remove
this effect but shade correction is unable to correct the local noise
present in the upper left-hand corner of the image (Fig. 4.10c). Appli-
cation of the optimal threshold level will not detect the noise, but
some of the boundary lines will be lost. Some selected regions of the
lost boundary lines are indicated by arrows in Fig. 4.10d.
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So, perfect detection is possible in this case only in sub-regions of
the initial image. We can perform this procedure in every sub-region
and then build the final image from the partial ones. However, as will
be shown in Chapter six, devoted to measurements, it should be
stressed that small errors in automatic detection can have a negligible
effect on the final results of measurements.

Example 5. Grains in a CeO 2 

ceramic

This is the next example of grain boundaries that are clear to a human
and simultaneously extremely difficult for extraction using computer-
ized tools.

The initial image is shown in Fig. 4.11, together with the profile
plot, illustrating gray level values along the horizontal white line situ-
ated in the center of the initial image. It may be surprising that the plot
is so flat, but you should note that the brightness and contrast of the
initial image were improved for the needs of presentation. In the next
figures, starting from Fig. 4.12, the initial image will be shown with-
out any modification. It is worth noticing that any linear transforma-
tion (brightness and contrast control belong to this family - see Fig.
2.1) will not affect the difficulty of subsequent analysis as all the pixel
values within the image change proportionally.

Analysis of the plot in Fig. 4.11 shows that only the first (from the
left) crossing of a grain boundary gives a clear response in the curve.
This high peak, however, arises from the presence of a pore in the
vicinity of this grain boundary. The remaining grain boundaries give
peaks of a size that can be compared with the local noise level. So, it
will be really difficult to detect the grain boundaries and we will trace
i n detail the applied algorithm:

• Any attempt to get the traces of grain boundaries using the binari-
zation procedures will fail due to the low contrast in the initial im-
age (Fig. 4.12a)

• the effect of a grain boundary can be compared with the local noise
(see Fig. 4.11) but, fortunately, these boundary points are placed in
some order and therefore we can try to apply some edge detection
filters. 

We will apply the Prewitt filter (see Section 3.5). It takes
information from a 3x3 pixel area and therefore should minimize
the effect of local noise. Detection of grain boundaries using this
filter gives no continuous lines but seems to be quite satisfactory
(Fig. 4.12b)
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Fig. 4.11. Initial image together with the gray level plot along the white, hori-
zontal line in the middle of the structure. Note that, in general, grain bounda-
ries give no significant peaks suitable for grain boundary detection.

• 
the image produced by the Prewitt operator is very noisy. We
should remove this noise; and the median filter seems to be a good
solution (Fig. 4.12c)

• in order to produce the relatively continuous network we will apply
erosion to the image after median filtering. Too many steps of ero-
sion would likely destroy the subtle structure of grain boundaries,
so you should apply only a small amount of erosion (Fig. 4.12d)

© 1999 by CRC Press LLC



Fig. 4.12. Detection of grain boundaries in a CeO2 ceramic observed in SEM.
Initial image (a), Prewitt edges (b), edges median filtered (c) and eroded (d),
hole filling and watershed detection (e) and final detection overlaid over the
initial image (f). Arrows indicate faults in detection.
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• the eroded image presents a quasi-continuous network with some
holes. In the next step we will close the holes and detect the miss-
ing grain boundaries using the classical watershed approach. The
result of these transformations is shown in Fig. 4.12e

• the last step in our image processing will be a SKIZ that will pro-
duce the final, thin network of detected boundary lines (Fig. 4.12f).
The result of detection seems to be satisfactory - the detected grain
boundaries are located at the correct places, which can be verified
in their image overlaid over the initial image. In spite of a good
overall result, some boundary lines are not detected (arrows indi-
cate these places). Therefore, we will look for a more accurate de-
tection procedure.

In this new procedure we will try first of all to improve the intro-
ductory detection. It is rather difficult to find a single step procedure
offering ideal detection. Thus, we will combine three intermediate
images obtained using different detection procedures. The whole pro-
cedure will look as follows:

•

	

first, we will detect from the initial image (Fig. 4.13a) the Prewitt
gradient image (Fig. 4.13b), exactly, as in the previous algorithm

• next, we apply a white top-hat transformation in order to detect the
bright halo effect observed at the grain boundaries thanks to the lo-
cal curvature of the specimen (Fig. 4.13c)

•

	

in a fully similar way we compute the black top-hat (Fig. 4.13d)
that reveals the darkest regions in the initial image

• using the logical AND we build the image with significantly better
detected boundary regions (Fig. 4.13e), which are the basis for the
next transformations

• as in the previous algorithm, we will clean out the noise using the
median filter (Fig. 4.13f). We obtain a good quality, nearly con-
tinuous network

• further improvement is done by erosion, which improves network
continuity and fills holes, leading to improved quality of the pre-
liminary detected grains (Fig. 4.14a)

• the detected network is now relatively thick and the grains have
very irregular shapes. We can easily improve the shape of the
grains by simple dilation. This image now requires some fine-
tuning in order to restore the missing boundaries (Fig. 4.14b)
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Fig. 4.13. Second algorithm for the detection of grain boundaries in a CeO 2
ceramic. Initial image (a), Prewitt edges (b), white top-hat (c), black top-hat
(d), images b, c and d combined together (e) and the compound image after
noise removal by a median filter (f).
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Fig. 4.14. Second algorithm - continued. Median filtered image after hole
filling and erosion (a), dilated image (b), 4-connected watershed (c), 8-
connected watershed (d), SKIZ of image c (e) and SKIZ of image d (f). Ar-
rows indicate erroneous detection regions.
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• in order to restore the lost boundary lines we will apply, as usual,
watershed detection. We will do it in two ways: 8-connected (Fig.
4.14c) and 4-connected (Fig. 4.14d). You can easily see the differ-
ence: 8-connected watershed produces an extra line (indicated by
an arrow)

•

	

the final step will be a SKIZ (in both cases in the 8-connected
mode), which leads to the final detection, shown in Figs. 4.14e (8-
connected watershed) and 4.14f (4-connected watershed)
Some remarks concerning the difference between both of the used

4- and 8-connected modes are given later in this section. Here, we will
discuss only the quality of the final detection. In the case of the detec-
tion based on the 8-connected watershed (Fig. 4.14e) we have an extra
line and have totally lost one crossing of the boundary lines, visible in
the upper left-hand region of the image (indicated by an arrow). On
the other hand, detection based on the 4-connected watershed (Fig.
4.14f) lost two short segments, also indicated by arrows. In the overall
rating, the 4-connected watershed gave better detection here than the
8-connected watershed. However, the difference is really small and
both methods of detection offer significantly better results than the
first algorithm (see Fig. 4.12f).

From this last example we can draw some conclusions that are
important for practical applications:
•

	

there are numerous solutions, leading to similar results. It is almost
impossible to judge, what algorithm is the best one - it can depend
on many variables, like the hardware and software available, qual-
ity of initial images, features to be detected, etc.

•

	

minimizing the detection inadequacy usually requires the use of
more complex algorithms that are less flexible and difficult to
control in the case of massive data flow.
Now we will switch to the promised remarks on connectivity.

Connectivity 

53 is a property of the binary image components allowing
the computer to decide if the analyzed features are separate or form
a single, connected component. We will not analyze here the whole
theory; we will discuss just the properties which are most important
for practical applications. As was mentioned in Chapter 2, we can find
two basic matrices of pixels in image analysis: square and hexagonal.
In the case of the hexagonal grid, there is no problem: if two points
touch each other, they produce unity, i.e., are connected. Unfortu-
nately, only a limited number of image analysis devices use the hex-
agonal grid. Most of them, following the graphics adapters in comput-
ers, use a square grid of pixels. All the algorithms analyzed in this
book were processed with a square grid.
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Fig. 4.15. Illustration of the connectivity in square grid. See text for details.

In case of the square grid we can define the number of closest
neighbors of any pixel. If we assume that a pixel has 4 closest neigh-
bors (see four white pixels surrounding the black one in the upper left-
hand part of Fig. 4.15), we perform 4-connected analysis. If we decide
that any pixel (see the upper right-hand corner in Fig. 4.15) has 8
closest neighbors, we perform 8-connected analysis.

Changes in connectivity can seriously affect our analysis (one ex-
ample, showing minor changes is shown in Fig. 4.14). For example,
two squares visible in Fig. 4.15 form two objects if treated as
4-connected but they form a single figure if treated as 8-connected. An
even more dramatic effect will be for the curve plotted in the lower
right-hand corner in Fig. 4.15. This will be considered as a curve in
8-connected space, whereas in the case of 4-connected analysis it will
be considered as 10 separate particles.

So, in some cases an 8-connected analysis takes some isolated
features as one. This is especially important if we start measurements
in images after, for example, a SKIZ operation, as the particles are
separated in this case only by a one-pixel-width line. On the other
hand (note the example curve in Fig. 4.15), operations connected with
particle growth, hole filling, etc., usually return better results if per-
formed as 8-connected. Obviously, the decision about connectivity has
to be made individually in each case, but it is worth knowing how it
can affect the results of our analysis.
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Example 6. WC-Co cermet
The next example will deal with detection of hardly visible WC-WC
boundaries in a WC-Co cermet. None of the algorithms discussed
until now gives satisfactory detection in this case. So, we will apply
a completely new algorithm:
• The Co phase is very easily detected, as it is black (Fig. 4.16a) and

can be successfully detected using a simple threshold. The WC
grains exhibit approximately homogeneous gray levels and only at
their grain boundaries is a narrow layer of pixels with a more sig-
nificant difference in gray levels observed

• 
for detection of this layer we have developed a user-defined filter,
sensitive to the gradient in the gray levels. In order to cover all the
directions, the gradient is checked at four orientations: 0 °, 45°, 90°

and 135 

°, denoted as grad0, grad45, grad90 and grad135, respec-
tively. For detection of grad0 (Fig. 4.16b) and grad90 (Fig. 4.16c),
the following two filter matrices of size 2x3 are used:

and

•

	

for detection of the grad45 and grad135 gradients (not shown in
Fig. 4.16), another set of two new matrices of size 4x4 is applied:

and

• the gradient images give both positive and negative gradient val-
ues, depending on the local gradient orientation. As we are inter-
ested in detecting only the existence of any gradient, irrespective
of its orientation or magnitude, we compute the absolute value of
the partial gradient images, giving information about four different
orientations within the image. These temporary images are not
shown in Fig. 4.16
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Fig. 4.16. Detection of boundaries between the WC grains in a WC-Co cer-
met. Initial image (a), grad0 (b), grad90 (c), overall gradient after binarization
(d), median filter (e) and final detection after SKIZ (f).
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• the final gradient image is constructed as a maximum of all the
four intermediate gradient images, obtained after computing the
abstract values. In arithmetic functions we will find the appropriate
one, returning a maximum of two input images. Using it for crea-
tion of a maximum of four images should not be difficult. The final
gradient image can be binarized to produce an image with roughly
detected grain boundaries (Fig. 4.16d)

• as in previous examples, we can filter out the noise using the me-
dian filter. The filtered image (Fig. 4.16e) can be used for
a subsequent SKIZ in order to get the finally detected grains

• The final image is produced from two images: pores detected by
binarization (not shown here) and grains obtained using SKIZ. The
final image (Fig. 4.16f) can be produced by a logical AND
(assuming that pores are black in the binary image).

The final result is quite satisfactory, however some grain bounda-
ries are still not detected. It can be slightly improved after the use of
watershed segmentation to the image shown in Fig. 4.16e. This is
a solution similar to that applied in the previous example. Therefore, it
is not discussed in this example.

Example 7.  Grains in a high-speed steel

In this example we will use various solutions already described in the
previous examples, but for the first time we will use as a data source
two entirely different images, taken from the same area. As in previ-
ous examples, we will analyze step-by-step the algorithm that is illus-
trated in the figures showing intermediate steps of the algorithm:

• we will start from the initial image, taken by SEM (Fig. 4.17a).
This image has a very poor contrast and, therefore, any detection of
grain boundaries is very difficult

• we can try to improve the contrast using various filters, but we
should remember that the majority of filters simultaneously im-
prove contrast and amplify the noise present in the image. Here
(Fig. 4.17b) the contrast is improved thanks to the FFT transfor-
mation and filtering out the lowest frequencies

• the grain boundaries, in spite of the FFT filtering, cannot be de-
tected by binarization and, therefore, we will use the gradient pro-
cedure similar to that presented in the previous example. Here we
can observe two partial gradient images: grad45 (Fig. 4.17c) and
grad90 (Fig. 4.17d). The final gradient image, being a sum of par-
tial gradients, is shown in Fig. 4.17e
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Fig. 4.17. Preliminary steps in analysis of a high-speed steel: initial SEM
image (a), enhanced FFT filtered image (b), partial gradients (c, d), the final
gradient image (e) and binarized gradient image (f).
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Fig. 4.18. Detection of carbides: enhanced, small, bright carbides (a), addi-
tional image showing the surface distribution of Mo (b), detected small car-
bides (c) and all the carbides detected (d).

•

	

thresholding of the gradient image (Fig. 4.17f) give us the starting
point for further analysis

•

	

we will now switch for a moment to detection of the carbides. We
can easily enhance the small carbides by subtracting the eroded
initial image from just the initial image. It is, obviously, the first
step of a white top-hat transformation (Fig. 4.18a). The subsequent
binarization gives the small carbides, as shown in Fig. 4.18c

•

	

we will have a little difficulty during detection of the largest car-
bides. Fortunately, we have at our disposal the surface map of
molybdenum content (Fig. 4.18b). Thresholding and subsequent
closing (it causes hole filling) followed by opening (removal of
small particles) gives correctly detected large carbides
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• logical summation (OR) of the images of small and large carbides
allows us to get the final detection of all the carbides (Fig. 4.18d)

Fig. 4.19. Final detection of grains in high-speed steel: cleaned image of the
binarized gradient (a), SKIZ followed by erosion (b), final detection (c) and
the final detection overlaid over the initial image (d).

• the binarized gradient image (Fig. 4.17f) looks very noisy. Fortu-
nately, it contains a continuous network of roughly detected grain
boundaries and, therefore, we can clean up this image by simple
hole filling (Fig. 4.19a)

• the grains can be built now using the SKIZ transformation. There
are still some very small features in the region of the expected
grain boundaries. If we remove them by erosion, we will probably
affect the shape of the grains detected. If we do not remove these
small elements, we will get some very small extra grains. In order
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to remove them we will apply some erosion to the image after
a SKIZ (Fig. 4.19b) and repeat the SKIZ operation to get the final
image of grains

• 
combining the images of grains and carbides (Fig. 4.18d) by logi-
cal summation (OR) will produce the final detection of grains to-
gether with the carbides (Fig. 4.19c)

• the final detection seems to be a good response to the initial image.
In order to check the quality of the whole, quite long, algorithm the
detected features are overlaid over the initial image (Fig. 4.19d).

Example 8. A tricky solution to a nearly hopeless case

This last example will deal with grain boundary detection in
a compound ceramic ZrO2 with 20% of WC. Due to its mechanical
and chemical resistance, this material is extremely difficult for speci-
men preparation and the images obtained are not very clear (see Fig.
4.2a). Binarization can give us the correct detection of pores (Fig.
4.2b), but a subsequent watershed detection can give somewhat arti-
ficial effects.

If we have such a poor quality image, we face the temptation to
apply any sharpening procedure. It leads to results that look really
hopeless (see Fig. 4.20c). To make things worse, it is often the only
image at our disposal and our colleagues ask us (you are our last
chance, etc.) to do something with this problem. Quite probably you
will try to apply binarization to this case. It is natural to start with the
simplest operations and additionally this binary image gives us some
information on future difficulties in correct detection (see Fig. 4.20d).

The situation we have in the image in Fig. 4.20d is really frus-
trating. We see clearly the regions of grain boundaries but any attempt
to detect the continuous network of grains fails. If we apply erosion in
order to remove some points in the center of the image, we will get
results worse than those shown in Fig. 4.2b. Applying a hole filling
procedure to the negative of this     image will produce
a uniformly filled region, because we have no continuous network of
pixels. We can try to apply the median filtering as in some of the pre-
vious examples but, due to the high density of white pixels it also will
not bring us success. So, it is a really interesting case and we will
analyze a nice solution to this problem. We will take Fig. 4.20d as the
initial image for our analysis.

© 1999 by CRC Press LLC



Fig. 4.20. A difficult example of the microstructure of a ceramic (a), detected
pores (b), sharpened image (c), its binarized version used as initial image for
further analysis (d) and density maps: square (e) and octagonal (f).

© 1999 by CRC Press LLC



If you look for the solution to this problem, you probably will note
that your vision system recognizes the locations of possible grain
boundaries in Fig. 4.20d because at these regions we have
a higher density of white pixels. So, we will try to develop a suitable
filter that will be sensitive to the pixel density. The simplest solution
seems to be the mean number of white pixels in an area of large
enough size, for example, 7x7 pixels (a smaller test area will be much
too sensitive to any local irregularities). You can use for this purpose
the filter returning the arithmetic mean or some low-pass filters (but
check their matrices!). You can also apply a user-defined filter, filling
the whole 7x7 matrix with 1 (one). As a result, you will get an ap-
proximate pixel density map, as shown in Fig. 4.20e. Unfortunately,
this density map still exhibits too much noise.

We are mainly interested in detecting the regions of highest den-
sity, representing the network of grain boundaries. If we imagine
a circle surrounding any point on the grain boundary, this boundary
should cross this circle very close to the diameter. Therefore, the cor-
ner pixels in the 7x7 matrix used previously can be thrown away. So,
for our purposes we will use an octagonal filter, with a matrix defined
as shown below:

Application of this octagonal matrix gives a significantly smoother
pixel density map (see Figs. 4.20e and f), however, it is still too jag-
ged. In order to improve the map we can apply the same filter once
more or even twice. The pixel density map after three cycles of com-
putation with the octagonal matrix is shown in Fig. 4.22a. Three pro-
files, shown in Fig. 4.21, allow us to trace the density map develop-
ment in a more quantitative way.
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Fig. 4.21. Development of the pixel density map. Profiles computed along a
line shown in the top image. Profiles represent the following stages of com-
putation: first (top), second (middle) and third (bottom).
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Fig. 4.22. Detection of grains - continued from Fig. 4.20. Initial pixel density
map (a), detected grains (b), ultimate erosion (c), watershed segmentation (d),
final result (e) overlaid over initial image (f).
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The pixel density map after three cycles of convoluting with the
octagonal matrix is now smooth enough to enable the final detection
of grain boundaries:

• the best method of detection seems to be an application of the wa-
tershed. In order to avoid unnecessary over-segmentation we will
apply the constrained watershed and for this purpose we need ap-
propriate markers. The markers are prepared in two steps. The first
step is binarization with the threshold large enough to detect traces
of all the grains. It leads to grain prototypes glued together (Fig.
4.22b). Fortunately, the pixel density map is so smooth that the
detected grains are convex and easy to mark with help from an ul-
timate erosion (Fig. 4.22c)

• the next step in our analysis will be the construction of grains us-
ing a constrained watershed detection. We will use the pixel den-
sity map (Fig. 4.22a) as a distance image. The resulting image of
grains is shown in Fig. 4.22d. To produce the finally detected
grains we will use the image of pores (Fig. 4.2b) and the logical
AND function. The final detection is presented in Fig. 4.22e

• we can easily check the quality of the final detection by looking at
the detected image overlying the initial image. For better contrast,
the detected image is plotted in white (Fig. 4.22f). The final detec-
tion should be rated as very good, especially if we take into con-
sideration the extremely low quality of the initial image.

4.2 Other features detected like grains

The contents of Section 4.l show a large variety of possible algo-
rithms used for grain boundary detection. Exactly the same techniques
can be applied for detection of other features in a material micro-
structure, for example:

•

	

dimples on ductile fracture surfaces

•

	

facets on brittle fracture surfaces
•

	

isolated particles, fibers or pores

•

	

colonies of similarly oriented features

•

	

networks of precipitates or cracks

•

	

sub-grains or

•

	

layers in coated or highly inhomogeneous structures.

The above list can be extensively updated. Obviously, it is impos-
sible to cover all the existing structures, but we tried in this chapter to
show numerous and universal solutions.
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Fig. 4.23. Examples of various structures suitable for application of grain
boundary detection methods: ductile (a) and brittle (b) fracture surfaces,
gravel particles (c), eutectic (d), fracture profile (e) and lamellar structure (f).
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Seven examples presented in the previous section offer an ex-
tended range of detection algorithms that can be adapted to many
other structures. In these examples we have used, in various combina-
tions, a wide spectrum of image transformations. In fact, the list of
procedures applied covers all the main groups of operations met in
image analysis, in particular:

•

	

binarization

•

	

filters for sharpening, blurring, noise reduction or edge detection,
as well as user-defined filters

• 
arithmetic (add, subtract, maximum) and logical transformations
(OR, AND, XOR, NOT) that are extremely useful when building
new, compound images from a few already existing ones

• Fourier transformations together with specific filters used for
modifying the Fourier spectrum prior to the inverse Fourier trans-
formation

• morphological transformations: erosion and dilation, ultimate ero-
sion, top-hat, hole filling, reconstruction, skeletonization or water-
shed detection, that are often decisive for the final success of the
whole set of operations and

•

	

complex algorithms, for example, for shade correction.

Such a rich collection of different operations and their sequences
gives you good insight into the practical applications of image analy-
sis techniques. Probably you have noted from these cases that success-
ful application of image analysis tools requires a completely new way
of treating material structures. We cannot think any longer about
pores, fibers, grains or eutectics as these terms are not understandable
to a computer. Instead, we should think about gray values, textures,
densities and gradients which can be recognized by the machine. Our
success in image analysis depends mainly on the ability and skill of
translating the structural problems of materials into logical and geo-
metrical problems of the sets of pixels - computer images.

As was already mentioned, the solutions applied to grain bound-
ary detection can be successfully used for detection of other constitu-
ents of the material structures. However, some of these constituents
have very specific properties that may require special, individual
treatment. The next sections of this chapter will be devoted to the
analysis of just such cases.
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4.3 Pores and isolated particles

Detection of pores and isolated particles usually does not yield any
greater difficulties. In most cases, pores, due to the physical properties
of microscopes, are the darkest regions of the image and can be easily
detected by simple binarization (Fig. 4.24). The main problem in de-
tection of pores, arising during examination of the polished sections,
is their correct preparation prior to microscopic examination. In the
case of very soft materials the edges can be plastically deformed,
leading to visual compression or even closing of the pores. By con-
trast, in the case of very hard and brittle materials, the abrasive parti-
cles can crush and remove a part of the material located at the edge of
the pore, leading to visual enlargement of the pores (Fig. 4.25). Usu-
ally, image analysis methods do not allow one to decide if the pores
are correctly prepared from the viewpoint of metallography.

Fig. 4.24. An example of a polished surface after plastic deformation. Visible
black pores around the particles.

If we predict the necessity of analysis of isolated particles, the
best solution is to use specimens adequately prepared for this unique
analysis. In the most convenient case, a polished section without any
etching can be used for this purpose. The most common examples are
non-metallic inclusions in steels, graphite precipitates in cast iron
(Fig. 4.26, see Fig. 3.12 ), gravel in concrete or fiber sections in nu-
merous fiber-reinforced composites. In these fortunate cases the parti-
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cles can be detected after simple binarization. The only restriction is
the absolute obligation of the highest possible quality of the speci-
mens. Any errors in specimen preparation forces subsequent cleaning
of the binary image that can lead to errors in the analysis. The main
problem during binarization is the choice of the threshold level. Some
guidelines on this point were presented in Section 2.4.

Fig. 4.25. Effect of specimen preparation on the pores (schematically).
Smearing closes porosity in soft materials (a), specimen optimally prepared
for observation (b) and pores enlarged due to decohesion of a very brittle
material.
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Fig. 4.26. Graphite in gray cast iron (top) is an ideal example of particles
which are easy to detect by binarization (bottom).

Another frequent case is from specimens that require special
treatment prior to any analysis. In most cases, this will be selective
etching which enhances the contrast from the phases under considera-
tion. A good example is shown in Fig. 4.27. Ordinary etching of this
duplex cast steel will differentiate only the austenite and ferrite, leav-
ing carbides completely invisible. Application of the Beraha solvent
allows us a clear distinction between the phases. This example indi-
cates once more how important the proper specimen preparation is. In
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fact, the better prepared the specimen is, the less image treatment is
necessary and the more precise the results of the whole analysis.

Fig. 4.27. Selective etching enables easy detection of carbides in a austenitic-
ferritic duplex cast steel. Austenite (dark gray), ferrite (light gray) and car-
bides (white).

Similar effects can be observed in the case of electron micros-
copy. Especially useful is the scanning electron microscope, as we can
combine various signals or even various images, including the surface
maps illustrating the distribution of elements. Very often local fluc-
tuations in the contrast of the image produced by the specimen micro-
relief lead to local irregularities in the gray levels that disable detec-
tion by simple thresholding (Fig. 4.28). Fortunately, this problem can
usually be successfully solved by application of a top-hat transforma-
tion.

In transmission electron microscopy there are also available vari-
ous tools for image formation that can help visualization of the fea-
tures under investigation. However, in some cases, when subtle phe-
nomena are investigated, even the most advanced techniques produce
images of relatively poor contrast. An illustrative example is shown in
Fig. 4.29, in which we can observe a helium-implanted sample of Ni-
monic PE16 at high magnification. The size distribution of helium
bubbles needs to be investigated. Proper detection enables quantitative
analysis of the content and size distribution of the bubbles.
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Fig. 4.28. A ZrO
2
-

 
WC ceramic (top). Detection of the WC precipitates by

thresholding is not very satisfactory (bottom left) but the top-hat transforma-
tion leads to correct detection (bottom right).

Certainly, detection of isolated particles is not always as simple as
in the examples presented. For example, correct detection of the inclu-
sions shown in this section in Fig. 4.24 would require a treatment
similar to that presented for grain boundary detection. So, any rigid
classification of structures is impossible, because we often meet ones
that are a very complex mixture of simplified, model cases. The re-
marks presented in this section answer the most typical cases when the
main goal of our analysis is just particle recognition and the whole
specimen preparation process is oriented towards visualization of
these particles. Many people, having little knowledge of image analy-
sis think that contemporary tools can pull-out the desired information
from any image, even if it is not correctly prepared. This is, obviously,
not possible.
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Fig. 4.29. The structure of Nimonic PEI 6, implanted by helium (left) and the
helium bubbles detected by the top-hat transformation.

4.4. Chains and colonies

When analyzing the inhomogeneity of properties we often want to
check the existence of clusters or colonies of particles or other struc-
tural constituents. Simultaneously, when discussing the anisotropy of
plastically deformed materials we frequently want to detect any chains
of particles oriented along the direction of plastic deformation.

Any analysis of colonies or chains is extremely difficult, if not
impossible, in gray-scale images. The most natural way seems to be
the use of binary images with finally detected particles. Detection of
the features discussed in this section is in such circumstances much
easier. For a final success we need only to define precisely enough the
mathematical or geometrical criteria necessary to recognize a given
set of particles as a cluster or chain.

From the above remarks we can state that the final effect of the
analysis depends in this case on our knowledge of material engineer-
ing rather than on image analysis. However, some intuition can be
very helpful, because the decisive factors are not always directly visi-
ble. In this section we will show a few examples of the evaluation of
chains and colonies starting from the binary image. The procedures of
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particle detection leading to these binary images can be formed on the
basis of other parts of this chapter, as well as the previous ones.

Fig. 4.30. Non-metallic inclusions in low carbon steel. The microstructure (a),
binary image of inclusions (b), detected chains (c) and large chains (d).

Chains of particles are usually formed during plastic deformation
introduced, for example, by rolling. They significantly affect the
toughness and, even more, the anisotropy of the mechanical properties
of the material. An example of non-metallic inclusions in a low car-
bon steel arranged in chains is shown in Fig. 4.30. To show the possi-
ble interaction between the grains of ferrite and inclusions the pol-
ished section was etched (Fig. 4.30a) and the inclusions were detected
using a top-hat transformation (Fig. 4.3b). Usually, the contrast be-
tween inclusions and the polished matrix is very good. Therefore, in

© 1999 by CRC Press LLC



quality control tests only the un-etched specimens are used. This
minimizes the digitization errors, as etching always deteriorates the
matrix-inclusion interface.

Detection of chains is very simple. Application of the closing pro-
cedure will join any particles that are placed close to each other and
produce the image of chains (Fig. 4.30c). Further filtering can lead,
for example, to detection of the largest chains (Fig. 4.30d).

A similar approach is possible in the case of carbides in tool steel
(Fig. 4.31). Carbides are responsible for the cutting properties of the
tool. Unfortunately, they are simultaneously hard and very brittle.
Therefore, in order to ensure the optimum properties, carbides should
be uniformly distributed in the material volume and surrounded by
relatively soft and plastic matrices. This last property ensures suffi-
cient toughness of the whole material. If the carbide precipitates are
distributed in chains (usually called bands), the material tends to
fracture along them and the lifetime of any tools made of this material
dramatically decreases.

Due to the high volume fraction of carbides, analysis of all of the
visible precipitates will give no effect (Fig. 4.31b). Thus, we usually
analyze only the largest carbides. They can be easily distinguished by
opening or, if we want to preserve the original shape of precipitates,
by erosion followed by reconstruction (Fig. 4.31c).

Now we are in a position to try to detect the bands of carbides.
Application of the closing procedure was a good solution in the case
of elongated inclusions (see Fig. 4.30). In the case of carbides we do
not observe any elongation of the particles and closing leads to some-
what unnatural results (Fig. 4.31d).

Some improvement can be observed if we apply linear closing in
the direction parallel to the expected direction of carbide bands (Fig.
4.31e). Linear closing (also erosion, dilation and opening) is very
similar to the classical transformations described in Section 2.5. The
only difference is in the shape of the structuring element that is, in the
case of linear transformations, a line segment. If we compare the re-
sults of linear closing parallel (Fig. 4.31e) and perpendicular (Fig.
4.31f) to the direction of bands, we will note that these linear trans-
formations are useful for the detection of any linearly oriented fea-
tures. Nevertheless, the result of the detection procedure is still rather
poor.

An acceptable solution can be achieved, as usual, by combining
many different operations. This is presented (on another piece of ma-
terial similar to that shown in Fig. 4.31) in Fig. 4.32.
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Fig. 4.31. Microstructure of a tool steel (a) and detection of carbide bands:
detected carbides (b), the largest carbides (c), bands created from large car-
bides by closing (d) and horizontal (e) or vertical (f) linear closing.
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Fig. 4.32. Detected carbides (a) and the same carbides superimposed on the
detected bands, drawn in gray (b).

Now we will analyze in more detail, the detection of carbide
bands in Fig. 4.32. First, we will check the effect of closing on the
detected regions. 

We apply the following closings of different sizes:
5 (Fig. 4.33a), 10 - this means two times greater (Fig. 4.33b) and 20 -
this means four times greater (Fig. 4.33c). It is clearly visible that we
cannot get good results in this way. With the increasing closing size
we get more and more continuous bands but simultaneously we build
unnecessary bridges connecting parallel bands.

Linear closing (Fig. 4.33d) gives quite promising results, but the
bands obtained are still discontinuous and not suitable for further
analysis. By adding a small (here of size 10) closing we get a much
better result (Fig. 4.33e). However, the bands still appear a little
strange, with artificially looking narrow branches. We can easily re-
move these branches by a subsequent (here also of size 10) opening.
This set of simple morphological transformations - there are in fact
only erosions and dilations - gives the final image of the bands of
carbides (Fig. 4.33f). Some additional filtering, for example, a median
of a large size can lead to smoother edges of the bands. Significantly
smoother detection can also be obtained using a hexagonal grid.

Looking at the detected band overlying the carbides (Fig. 4.32b)
you will probably note that the result is quite good. Moreover, in con-
trary to the manual detection or drawing of the bands, it is objective
and reproducible.
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Fig. 4.33. Various stages of detection of the carbide bands. Closings of vari-
ous sizes (a, b, c) and linear closing (d) followed by closing (e) and opening
(f) of small size.
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Ordinary closing is still a very good tool for the detection of
clustered equiaxial particles like, for example, graphite nodules in a
ferritic ductile cast iron (Fig. 4.34a). Closing will form a set of clus-
ters, as shown in Fig. 4.34b. The clusters are very close to each other
and therefore plotted in different gray tones for easier recognition of
the separated sets. Worth noticing is the fact that the clusters shown in
this image are relatively small in comparison with the graphite. Any
attempt to produce larger clusters will lead to including almost all the
image pixels in the clusters. This can be interpreted as a uniform dis-
tribution of the graphite nodules.

Fig. 4.34. Two different approaches for cluster detection of graphite nodules.
Graphite phase (a), clusters, plotted in different gray levels, formed by a small
closing (b), influence zones of the graphite nodules (c) and another set of
clusters, formed from filtered zones of influence (d).
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There is also possible an entirely different approach for the detec-
tion of the graphite clusters. Using the SKIZ operation we can build
the zones of influence for all the graphite nodules (Fig. 4.34c). The
zone of influence for any graphite nodule can be interpreted as a set of
points that are closer to this nodule than to any other one. On the basis
of the influence zones we can create another set of clusters, shown in
Fig. 4.34d. These new clusters are created from the influence zones of
the surface areas greater than the mean value (gray in Fig. 4.34d) or
smaller than the mean value (white in Fig. 4.34d).

It is clear that this method of cluster detection leads to a radically
different set of clusters than the method based on closing. However,
the new approach, based on the size of influence zones can lead to
new, interesting conclusions. We can state from Fig. 4.34d that
smaller nodules tend to be closer to each other, whereas larger nodules
tend to keep further away from each other. Obviously, this is only
a very rough and qualitative analysis - a deeper insight can be ob-
tained after the application of tools typical for stereology. 

54,100

Another type of colony-type arrangement can be often observed in
high-speed steels (Fig. 4.35). In this material (and also in many others,
usually precipitation hardened) we see two groups of carbide precipi-
tates: those placed on the grain boundaries and those placed inside the
grains. From the viewpoint of cutting properties or the tool's lifetime
it can be interesting to answer the following questions:

•

	

what is the proportion between carbides situated on the grain
boundaries and these placed inside the grains?

•

	

is there any relation between the size of carbides and the place they
are observed?

•

	

is there any clear relation between the size or positional distribu-
tion of the carbides and grain size?

In order to get any answer it is necessary to detect both grain bounda-
ries and carbides. This is not easy, as the gray level of carbides and
grains is the same (see Fig. 4.35a). Therefore, in this example we will
devote more space to the description of the whole detection algorithm,
starting from the gray image. The algorithm used here was as follows:

•

	

the initial image (Fig. 4.35a) is not quite uniform. For example, we
can note significantly darker regions in its lower part. Therefore,
we start with a shade correction that leads to the corrected image
shown in Fig. 4.35b

• the shade-corrected image can be a basis for binarization. There
still exists some variation in the gray levels, therefore better re-
sults than after simple thresholding can be obtained after the use
of a top-hat transformation. The structure was well etched, so we
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get from the top-hat a well-defined binary image, with grains and,
first of all, carbides detected as closed loops (Fig. 4.35c)

Fig. 4.35. Initial steps of grain boundary and carbide detection in a high-speed
steel. Initial image (a), shade-corrected image (b), top-hat leading to
a binary image (c) and internal carbides detected using the border kill proce-
dure (removal of parts of the image cut by the image frame).

•

	

the grain boundaries form a continuous network, so we can remove
them, using the border kill procedure (removal of all the features
cut by the image frame). As a result, we will get the carbides situ-
ated inside the grains (Fig. 4.35d)

• by simple subtraction of images from Figs. 4.35c and d, we get the
image of grain boundaries and carbides intersecting these grains, as
shown in Fig. 4.36a
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Fig. 4.36. Detection of grains and carbides - continued. Grain boundaries and
carbides (a), internal carbides (b), single pixel-wide image of grains (c),
eroded grains (d), carbides at grain boundaries (e) and the final detection (f).
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• filling the closed loops in Fig. 4.35d will produce the final image
of internal carbides (Fig. 4.36b). Note that in this image we have
added the over-detected carbides indicated in Fig. 4.36a by an ar-
row. These carbides are detected by size-dependent filtering of
features and subsequent addition to the previously detected internal
carbides

• application of a SKIZ to the image in Fig. 4.36a allows us to create
the single pixel-width image of grains and particles (Fig. 4.36d).
Minimization of the width of the detected grains and carbides leads
both to minimization of the detection errors during the final steps
of analysis and to significant improvement in the accuracy of any
measurements

• the next step is division of the preliminary detected image into two
independent sets: grains and carbides. In general, carbides are
smaller, so we will apply the sequence of erosion and further re-
construction. Erosion (Fig. 4.36d) will remove small particles
(carbides) and subsequent reconstruction gives grains with black
areas, occupied by carbides (Fig. 4.36e)

• unfortunately, some carbides are large and the procedure described
above can lead to detection of some smaller grains like carbides.
An example of such a grain is indicated in Fig. 4.36e by an arrow.
In order to avoid this false detection, we should apply additional
filtering (not shown in this sequence), based on the assumption that
small grains can be significantly concave. This leads to transform-
ing the grain into two or more sets during ultimate erosion. Next, a
logical XOR step with the image from Fig. 4.36c will lead to grains
with two or more holes. The next steps, skeletonization and re-
moval of branches, produce loops glued together. Detection of
multiple points, lying at the intersections of the loops, gives mark-
ers for reconstruction of the concave grains

• now we can easily analyze both groups of carbides. In order to
visualize the detection effect, both groups of carbides are shown in
Fig. 4.36f - internal carbides as gray regions and boundary carbides
as black ones.
The last example discussed in this section will be colonies of la-

mellae, represented here by the well-known pearlite, typical of carbon
steels. Usually, detection of the lamellar regions will succeed after
simple closing (dilation can overestimate the amount and size of la-
mellae colonies). Moreover, if we apply a smaller magnification we
will see the colonies as uniformly gray regions and we will have no
need to use any special operation for detection of these colonies. By
contrast, it will be difficult to detect the individual lamellae.
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Lamellar regions (Fig. 4.37a, b) consist of a series of approxi-
mately parallel ribbons, being the traces of the intersection of the sec-
tion plane and families of plates in the microstructure. Naturally, the
ribbons are not endless and we always see some endpoints. These
endpoints can define the grain boundaries of grains that were later
transformed into lamellar regions. Sometimes the endpoints of the
ribbons do not create a network of grain boundaries but only reflect
some disorder or faults during formation of the lamellae. These re-
gions can be called faulty regions and we will demonstrate below how
they can be precisely detected:

• the computer program cannot detect precisely the endpoint of any
ribbon as it has some width. Therefore, we have to change any rib-
bon into a single pixel-wide feature, reflecting the shape and size
of the ribbon. The best transformation for this purpose is skeletoni-
zation. There are many algorithms for skeletonization. If your
software offers any choice, you should choose the skeleton assur-
ing homotopy. In most cases, it will be called L-skeleton. In rare
cases we can also find a similar one, called M-skeleton. 

21,
 

84, 114 The
local irregularities in the ribbons produce some unnecessary, short
branches. They can be easily removed using a few steps of a spe-
cial HMT transformation called pruning. The pruned skeletons
create a kind of symbolic representation of the lamellar structure
(Fig. 4.37c)

• now, using another HMT transformation, we can detect the end-
points of the skeletons. These points describe the faulty regions,
but if we want to visualize them, by dilation, for example, we will
get large errors. Therefore, we will apply some additional, special
treatment. For the pruned skeletons we will apply additional two
steps of pruning. The resulting image will be added to the detected
endpoints using a logical OR step. Consequently, we will get the
image consisting of the pruned skeletons with the endpoints iso-
lated by a single-pixel gap from the rest of the skeleton. If we now
apply to this image a SKIZ transform we will get the small areas
being places of faulty regions and larger areas being the influence
zones of the shortened skeletons (Fig. 4.37d)

• reconstruction of this image, with the endpoints as the markers,
will lead to detection of the faulty regions shown in Fig. 4.37e. We
can check the final result of our analysis in Fig. 4.37f, where we
have both the initial and detected images.
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Fig. 4.37. Detection of the faulty regions in pearlite. Initial (a) and binary (b)
images, pruned skeleton (c), SKIZ of specially prepared (see text for details)
skeleton (d), faulty regions alone (e) and overlying the initial image (f).
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4.5 Fibers

Fibers constitute the last group of basic features analyzed in this
chapter. A fiber can be defined as a feature with one dimension sig-
nificantly (usually at least one order of magnitude) larger than the
remaining two dimensions. The fibrous character of the internal
structure is found in various materials. The most typical examples,
used by us every day, can be fabrics and cloths as well as many fiber-
reinforced composites. Fibers are also present in materials of a natural
origin, and wood is the most characteristic example.

Fig. 4.38. A cross-section of a carbon fiber reinforced epoxy composite (a)
and the same region after detection and separation of fibers (b).

The properties of fibrous materials are clearly related to the geo-
metrical arrangement of the fibers. The best known property of these
materials is that, in the case of parallel fibers, the mechanical proper-
ties are much greater in the parallel direction than in the direction
perpendicular to the fiber orientation. However, in spite of a relatively
simple description of the fiber geometry, the relationships between
structure and properties of fibrous materials are very complex. Many
subtle and difficult analysis factors, for example, the fiber-matrix in-
terface, can affect the final properties. This does not alter the fact that
the fiber properties and spatial arrangement are decisive for the final
properties of fibrous materials.
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The most convenient case for analysis is a cross-section of the
material, oriented perpendicularly to the fiber direction as shown in
Fig. 4.38. In the case of a good quality specimen, further processing is
done without difficulty. For separation of fibers glued together, the
methods described in Section 2.5 can be successfully adopted.

It is really difficult to properly detect and segment fibers parallel
to the image plane, as in the linen fabric shown in Fig. 4.39. It is inter-
esting that these fibers are quite easy to detect by a human, whereas it
is enormously difficult for proper segmentation using computerized
methods. In some cases it is possible only after very sophisticated
treatment, 

65 lying well outside the scope of this book. Here we will
perform a relatively simple treatment, leading to detection of the basic
properties of the fibers. First, let us try to detect the horizontal fibers
in the linen fabric shown in Fig. 4.39:

• the initial image (Fig. 4.39a) is a little too noisy for segmentation
due to the presence of many details produced by the inhomo-
geneous structure of the threads

• 
much better for segmentation will be the blurred image. We can
use for this purpose any low-pass filter, even the simplest one, that
returns the value of the arithmetic mean of the neighboring pixels.
However, in this example a Fourier transformation and low-pass
filtering of the Fourier spectrum were used, as they better preserve
some characteristic properties of the image (Fig. 4.39b)

• 
any attempt to binarize the previous image leads to a very rough
image, useless for further analysis. Fortunately, thanks to the di-
rectional illumination, we can find the axis of any fiber. For exam-
ple, (see Fig. 4.39a, b), the central part of the horizontally oriented
fibers is bright. This allows us to extract the axial part of the fibers
with the help of gray-tone skeletonization (Fig. 4.39c). Gray-tone
skeletonization differs a little from the binary case. In binary im-
ages the pixel is modified if its local neighborhood fits the struc-
turing element. In the case of gray images, the transformation is
performed if all the pixels at locations denoted by 1 are brighter
than the central point and all the pixels at locations denoted by 0
are darker than the central point.114

• 
binarization of the skeleton from Fig. 4.39c gives the binary image
of the fiber axes. This image is a little distorted by unnecessary
branches. In order to remove them we can perform pruning. Obvi-
ously, pruning will not destroy the axial lines creating closed loops
(here of rectangular shape). The cleaned axes are shown in Fig.
4.39d
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Fig. 4.39. Analysis of a linen fabric: initial image (a), blurring done by a
Fourier transformation (b), skeltonization enhancing the fiber axes (c), binary
form of the skeleton (d), detected horizontal elements (e) and final detection
overlying the initial image (f).
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• in the next step one should separate the horizontal and vertical
fibers. Linear erosion allows us to detect the horizontal part (Fig.
4.39e) and subsequent linear dilation leads to restoration of the
continuous axial lines of horizontal fibers

• 
the final image (Fig. 4.39f) illustrates the detected axes overlying
the initial image. It allows visual control of the quality of detec-
tion, which seems to be satisfactory. The detected axes can be
used, for example, for analysis of periodicity and accuracy during
production of the fabric. A very similar analysis can be easily per-
formed for vertical fibers.
The next example is devoted to the analysis of fiber distribution in

a fiber-reinforced concrete. The initial situation is, in this case, com-
pletely different from that described in the previous example. The
fibers are placed inside the opaque concrete matrix and are invisible.
We can visualize them using X-rays that produce the initial image for
our analysis (Fig. 4.40a). Now, we can process this image and one of
the possible treatments is presented below:
• in the initial image (Fig. 4.4a) we see the traces of fibers visible

as bright, thin lines. Obviously, it is impossible to reveal the full
spatial arrangement of the fibers or even the number of fibers.
However, it is possible to test the orientation of the visible compo-
nents. Assuming a homogeneous distribution of fibers this will
give sufficient information for analysis of the relationship between
fibers and the properties of the concrete

•

	

the background gray level in Fig. 4.4a is very inhomogeneous,
mainly due to the concrete structure, which contains various gravel
particles. Therefore, relatively good detection can be obtained us-
ing a white top-hat transformation (Fig. 4.4b)

•

	

skeletonization and subsequent pruning leads to visualization of
the axes of the readily visible, relatively long and thick fibers (Fig.
4.40c)

• the initial image can be converted into a Fourier spectrum. Appro-
priate low-pass filters will preserve only an oriented component of
the image, which can be visualized after an inverse Fourier trans-
formation (Fig. 4.40d)

•

	

binarization of the previous image shows regions with high densi-
ties of bright features oriented in that direction (Fig. 4.40e)

•

	

the logical intersection (AND) of images from Figs. 4.40c and d
gives an oriented part of the detected fiber axes (Fig. 4.40f). Com-
parison with similar images, designed for other orientation angles,
allows a full analysis of the fiber orientation, but obviously only in
the image plane.
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Fig. 4.40. Analysis of the fiber distribution in the fiber-reinforced concrete:
initial X-ray image (a), fibers detected by top-hat (b), pruned skeletons (c),
oriented component of the initial image in gray (d) and binary (e) form and
final detection of oriented fibers (f).
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Another type of structural component that can be treated as fibers
are dislocation lines. Dislocations, being a local crystallographic de-
fect, can be observed in thin foils. They require very high magnifica-
tion, which is possible thanks to the achievements of transmission
electron microscopy. The dislocation lines are relatively easy to see
(Fig. 4.41a), but their detection is not easy. A suitable algorithm is
described below:

• a heavy shading is clearly visible in the initial image (Fig. 4.41a).
Its lower left-hand corner is much brighter than the remaining part
of the image and this will disable any simple binarization. An at-
tempt to apply a top-hat transform will significantly destroy the
subtle dislocation network. Therefore, we should remove the
shading prior to further analysis

•

	

shade correction with subsequent removal of the noise by median
filtering gives the expected homogeneous background (Fig.
4.41b). Unfortunately, the image still remains dark with poor con-
trast. An attempt to improve it by normalization gives no effect. A
very small, isolated island of white pixels (indicated by the arrow)
is responsible for this effect. The image contrast can be enhanced
successfully by histogram equalization (Fig. 4.41c)

•

	

although the dislocation lines are now clearly visible, they are still
difficult for binarization. Depending on the threshold level we
obtain either lines which are too thick with closed areas of smaller
loops or discontinuous lines

• additionally, in spite of the equalized background, the gray levels
of the dislocation lines exhibit large scatter. This can be improved
by subtracting the equalized image from the same image, but after
a dilation that removes the dislocation lines. As a result we get
bright, thin dislocation lines. They can be subsequently enhanced
by skeletonization (Fig. 4.41d), in a similar way to those in the
previous example

• the next step will be binarization, which produces a good quality
image of the dislocation lines (Fig. 4.41e). This requires some ad-
ditional processing, as it is polluted by some very fine, acciden-
tally detected features. The image can be successfully fine-tuned
by partial pruning, leading to removal of very short lines, unneces-
sary branches or isolated points

• the above sequence of transformations produces the final image of
the detected dislocation lines. This is shown in Fig. 4.41f, as an
overlay of the equalized image. It is clearly visible in this image
that the proposed procedure leads to a good quality extraction of
the dislocation lines.
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Fig. 4.41. A dislocation structure in Nimonic PEI 6: initial image (a), shade
corrected (b) and equalized (c) image, enhanced dislocation lines (d), binary
form of the skeletonized lines (e) and the final detection (f).
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Now we will come back to the fiber-reinforced carbon-epoxy
composite already mentioned at the beginning of this section. This
time, however, we will analyze the fibers visible on fractures' sur-
faces. The first example (Fig. 4.42) shows the case when adhesion
between the fibers and matrix is very good. This produces some traces
of the matrix on the fiber surface (Fig. 4.42a). As a consequence, the
fiber surface is very inhomogeneous, with many dark and bright spots,
similar to noise. Let us analyze how we can process such an image:

• 
any attempt to threshold the initial image (Fig. 4.42a) leads to very
poor results. 

We get a very noisy image, with fibers of various
widths, partially glued together (Fig. 4.42b)

• 
subsequent processing, for example, opening (Fig. 4.42c), slightly
improves the result of detection, but it is still not satisfactory. Es-
pecially in the upper part of the image we get discontinuous fibers
that cannot be accepted as a result of image processing

• 
it was mentioned in Section 2.3 that median filtering can signifi-
cantly reduce the noise level while simultaneously preserving rela-
tively sharp edges. If we try this technique, we will get the result
shown in Fig. 4.42d

• 
although the filtered image seems to be equally illuminated, it is
only the first impression. Closer analysis proves that the middle of
the image is significantly darker. Therefore, it is necessary to apply
a shade correction (Fig. 4.42e)

• the shade-corrected image is suitable for binarization. We will
have no difficulty in fixing the proper threshold level, as the back-
ground is homogeneous and almost purely black. A small opening
will remove the traces of noise and we get quite a good result from
detection (Fig. 4.42f). Its only drawback is some discontinuity in
two fibers in the upper part of the image. This can be repaired by
appropriate linear dilation.

The above analysis shows once more the difficulties in correct
detection of fibers, already shown in the case of the linen fabric. Si-
multaneously it was shown that proper treatment allows correct and
successful detection of the fibers. The process of solution discovery is
similar in its principles to those widely presented in the case of grain
boundaries. The main difference is in the characteristics of the objects
to be detected: grain boundaries are thin lines dividing large areas,
whereas fibers are relatively wide features occupying a large area of
the image. Unfortunately, regions between fibers cannot be treated as
boundary lines.
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Fig. 4.42. Detection of fibers in a fractured carbon-epoxy composite: initial
image (a) and attempts to detect the fibers by binarization (b) and subsequent
opening (c), median filtering (d), shade correction (e) and final detection (f).
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The last example presented in this section will also be devoted to
the detection of fibers in a fractured carbon-epoxy composite. This
case is even more difficult than the previous one due to a large scatter
in the gray levels and the presence of bright bridges in the remaining
matrix (see Fig. 4.43a). The presence of these bridges can effectively
render more difficult any detection process. Let us analyze how we
can deal with such a case:

• 
the initial image (Fig. 4.43a) is impossible for detection of any
features by simple thresholding. On the other hand, however, it re-
veals some order: the fibers are oriented in one direction. This ob-
servation leads to an attempt to use a Fourier transformation as a
tool for further analysis

• in the Fourier spectrum (Fig. 4.43b) we can observe a thin, bright
line, oriented perpendicularly to the fibers in the initial image. This
line is produced just by these fibers. So, we can try to remove the
fibers from the image by proper high frequency filtering. In prac-
tice this can be done by removal of the part of the Fourier spectrum
responsible for creation of the fibers (Fig. 4.43c)

• 
an inverse Fourier transformation produces an image of all the
matrix bridges and fibers removed (Fig. 4.43d). This image can be
used for analysis of the fracture process. For example, we can note
that the matrix bridges exhibit some periodicity in the fiber direc-
tion. This can be further analyzed and is an important factor for
modeling the fracture process

• 
if we perform filtering of the Fourier spectrum just the opposite to
that shown in Fig. 4.43d, we will get an image of fibers slightly out
of focus, but much easier to analyze than the initial image (see Fig.
4.43e)

• combining feature detection from the images shown in Figs. 4.43d
and 4.43e, we can get the fibers as shown in Fig. 4.43f. As in the
previous example, this still requires some additional treatment not
shown here. However, even these preliminary results seem to be
quite promising.

The above example closes this chapter, devoted to detection of the
basic features in materials structures. Obviously, we were unable to
discuss all of them. However, the algorithms presented can be easily
adapted to other cases. For example, detection of dimples in a ductile
fracture surfaces is almost identical to grain boundary detection.
Therefore, deeper analysis shows that the material discussed in this
chapter covers the majority of prevailing cases met in practice. Some
more specialized aspects will be discussed in the next chapter.
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Fig. 4.43. Analysis of the fracture surface of a carbon-epoxy composite: initial
image (a), its initial (b) and filtered (c) Fourier spectrum, inverse Fourier
transformation (d), Fourier filtered fibers (e) and detected fibers (f).
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Chapter five

Treatment of complex
structures

Grains, particles and their aggregates, fibers or pores constitute the
family of the most significant, basic and simple features, used to
quantitatively describe the structure of materials. Chapter four was
devoted to an analysis of these features. They can be treated as bricks
for building, or rather analyzing and characterizing, the structure of
the material. Clearly, the above list of structural components is highly
subjective and can be easily increased. It covers, however, all the
main components that seem to be responsible for the majority of me-
chanical, physical or chemical properties of materials.

Moreover, the features listed above are not rigidly defined and
their characteristics can be easily extended. For example, procedures
for grain boundary detection can be effectively used for the analysis
of eutectic networks or the porosity of pre-pressed sinters. Similarly,
procedures for fiber detection can be easily adapted to describe the
network of dislocations or crack lines.

This chapter contains a little more advanced analysis algorithms.
These are advanced in a sense, requiring either a more complex theo-
retical background or more powerful computational tools not available
in all image analysis packages.

5.1 Textured and oriented structures

Texture, which is very difficult to define precisely,80 is used here to
describe image detail rather than preferred orientation. An illustrative
example of this problem is shown in Fig. 2.27, which contains three
types of simulated images. Every image requires entirely different
segmentation methods:

•

	

various features can be almost homogeneous and simple binariza-
tion is sufficient for their segmentation (Fig. 2.27a) or

•

	

features can be separated using the more or less clearly visible and
detectable boundary lines (Fig. 2.27b) or
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• 
can be detected on the basis of different textures that are clearly
visible but simultaneously difficult to define (Fig. 2.27c).
Detection based on different gray levels is very natural for almost

all of us. For example, this text is detected by every reader thanks to
the difference in gray levels between the paper and the print. This is
obviously insufficient for recognition and understanding of the printed
characters, but this has no meaning from the viewpoint of detection.

Separation based on different gray levels can be easily imple-
mented using the threshold operation. In the case of textured struc-
tures binarization does not separate the objects (see Figs. 5.1 a and b).
This observation allows one to construct the descriptive definition of
texture as a local property of the region in the image, connected with
a variation in brightness or presence of any regular or irregular pat-
terns. If we interpret gray levels as an elevation in a representation of
the image as a surface, we will replace texture with roughness. The
well-known difficulties with a precise definition of surface roughness
explain the difficulties with defining the texture.

So, we can find in our images an endless number of different and
difficult to define textures. Consequently, it is impossible to develop
any universal tool suitable for texture-based segmentation. In practice,
it is necessary to look for specialized transformations, sensitive to
a given type of texture and to use them for segmentation. Fortunately,
as will be shown below, the same texture can often be detected using
various tools. Thanks to this we have a greater chance to find a satis-
factory (however, not necessarily the best) solution.

It should be taken into account that the image texture discussed in
this chapter is entirely different from crystallographic texture. The
texture of an image can change dramatically with a change in image
resolution. For example, a textured, macroscopically homogeneous
material can be revealed as a collection of particles embedded in
a matrix, if only observed at sufficiently high magnification.

The above remarks show how complex and difficult analysis of
textured images is - we have to detect features that are only approxi-
mately defined and tend to change with magnification or other obser-
vation parameters. Consequently, we rarely have a chance to fully and
objectively verify the quality of our detection. Therefore, in this
chapter detection of textured components is performed on simulated
images. The test square image (Fig. 5.la) consists of three vertical
bands of thickness equal to 0.25, 0.5 and 0.25 of the square side, re-
spectively. The outer, thinner bands have the same texture. The inner,
thicker band exhibits another texture. The textures are difficult to
distinguish by a human observer.
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Fig. 5.1. Simulated structure with different textures (a). Binarization does not
detect the features (b). Good results are obtained from the local variance (c)
with subsequent thresholding (d). Acceptable results are given also by sharp-
ening (e) with subsequent thresholding (f).
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A method for detecting the features in this simulated structure, as
well as the difficulties in this process, is illustrated in Fig. 5.1. It can
be noted from the initial image (Fig. 5.1a) that both textures give the
same average value and overall scatter of gray levels. Consequently,
they cannot be separated by thresholding. This leads only to a set of
black spots and isolated points that cannot be used for assessment of
the boundaries between regions with different textures (Fig. 5.1b).

However, the textures differ in the local arrangement of pixels.
The outer texture seems to be smoother, with lower local contrast,
than the internal texture. Therefore we can try to compute the local
variance of gray levels in neighborhood of any pixel. Indeed, the val-
ues of variance significantly differ for both textures (Fig. 5.1c). This
last image can be easily converted into a binary form, using
a simple thresholding procedure (Fig. 5.1d). The binary image re-
quires additional final processing in order to remove small, black or
white, features. This can be done using various methods. The simplest
solution seems to be the application of closing and subsequent open-
ing procedures, leading to removal of the small black and white fea-
tures, respectively.

It is expected that the qualitatively noted higher local contrast in
the inner texture should be emphasized during the sharpening process.
We can apply a sharpening filter, as described in Chapter two and
shown in Fig. 2.7b. The simulated, textured structure after sharpening
filtering is shown in Fig. 5.1e. The sharpened image still looks to be
an impossible segmentation by binarization, but thresholding returns
an acceptable result (Fig. 5.1f). After relatively simple fine-tuning
operations (for example, median filtering) we can produce from this
binary image a correct final result.

Now we will try to use another technique, based on correlation.80

From the initial image (Fig. 5.2a) we cut a small piece (marked in the
upper left-hand corner by a square frame) which will act as a template
for further analysis. Correlation is performed by sliding the template
kernel over the input image and computing the image response at each
position. The most popular methods of calculation of this response are
based on subtraction and multiplication, respectively.31

Subtraction-based correlation (Fig. 5.2) depends on subtracting
the corresponding pixel values of the analyzed image and template.
The image response is calculated as a sum of abstract values of all the
differences. So, in the case of perfect matching the response is equal
to zero, whereas for any mismatching we get values greater than zero;
the greater the bias of matching, the greater the response value. This
last property is clearly visible in Fig. 5.2c. The regions of good
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matching of the template are darker than the middle of the image,
occupied by another type of texture. Binarization of the correlation
image gives approximate division between two types of texture in the
initial image (Fig. 5.2a).

a

C

b

d

Fig. 5.2. Detection of textured components: initial image with the highlighted
template (a), enlarged template for correlation (b), correlation image obtained
using the subtraction technique (c) and separated textures in a thresholded
correlation image (d).

A considerable disadvantage of the correlation technique is the
fact that it gives erroneous values at the image edges. In the case of
Fig. 5.2 this effect is visible in the form of a bright frame in images
5.2c and 5.2d. In order to avoid or minimize this error, the image
should be padded with zeros. Slightly better mathematical precision
can be achieved by padding the image with the average values of the
original image brightness.80
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Correlation based on multiplication is fully analogous to the pre-
viously described variant based on subtraction. Additionally, the result
can be normalized, enabling more quantitative, automatic interpreta-
tion of the results of the transformation.

80 

In the case of application of
the normalized correlation, the output values lie in the range from -1
to 1, with 1 and -1 indicating perfect (anti)-correlation. The value of 0
indicates no correlation between the image data and the template pat-
tern.

An example of this type of detection is shown in Fig. 5.3. Obvi-
ously, as we cannot see the pixels with negative gray levels, the re-
sults of transformation have to be visualized using the appropriate
LUT transformation. Therefore, pixels with the value of 0 are dis-
played as 50% gray, whereas the pixel with the value of -1 or 1 is
displayed as black or white, respectively. Perfect matching (the value
of 1) gives the brightest point in the correlation image (indicated by an
arrow in Fig. 5.3a). Note that the location of this white point corre-
sponds well with the location of the template (see Fig. 5.2a). The sub-
sequent binarization (Fig. 5.3b) is done with two threshold values: the
lower threshold cuts off the darkest pixels and the upper threshold
cuts off the brightest pixels. The detected area is built of the pixels
with the local environment significantly different (according to the
correlation technique) from the template. The resulting binary image
seems far from correct detection, but can be easily improved by sim-
ple filtering. 

A small opening will remove all the narrow bridges,
leading to a large region in the middle of the image, surrounded with
some significantly smaller particles (Fig. 5.3c). The central part of the
image can be significantly improved by hole filling (Fig. 5.3d). The
final transformations, opening (Fig. 5.3e) and closing (Fig. 5.3e), lead
to a good quality separation of the textured components.

The above examples show that correlation techniques give only
approximate results. Error of detection (in sense of location of the
boundary line) is roughly proportional to the template size. On the
other hand, however, correlation seems to be a very efficient tool if
we have no indications how to differentiate the textures. Another ap-
plication of the correlation techniques is a search of small, precisely
defined components of the image.

Textured images can be also segmented using some techniques of
automatic thresholding. 

We will use for this purpose a binarization
method based on the local histogram.

4, 50 The principles of this tech-
nique are briefly described below, whereas an example of its applica-
tion is shown in Fig. 5.4.
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f
Fig. 5.3. Application of the correlation technique in texture detection. Corre-
lation image with the brightest point localized at the same place, as the tem-
plate (indicated by an arrow) (a), binarized image (b), opening (c), hole filling
(d), final opening (e) and closing (f).
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Fig. 5.4. Application of the local histogram threshold in texture analysis. Pre-
liminary detection (a) and binary image (b) applied to the texture image from
Fig. 5.1a. Same preliminary detection (c) and binary image (d) applied to the
correlation image from Fig. 5.3a.

A local histogram-based segmentation is performed in two phases.
In the first phase, the image is partitioned into a set of rectangular
local sub-images called sectors (in Fig. 5.4 we use 8x8 = 64 sectors).
Next, the histogram (frequency distribution) of pixel values from the
input image is computed for each of these sectors. Within the histo-
gram of each sector significant clusters are identified by means of the
peak-valley analysis. 

4, 50

The second phase of the process involves the peak addition in
which ambiguous peaks in the histogram can be verified according to
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their presence or absence in the adjacent sectors. The intensity value
of each of the selected peaks is then used as the output label for all
pixels in the input sector that map to the corresponding peak. The
domain of this mapping includes all intensity values lying between the
valleys on either side of the peak.

An attempt to apply this sophisticated algorithm to texture detec-
tion and analysis, shown in Fig. 5.4, proved its usefulness. Similarly,
as in the case of correlation, the results are usually only rough and
approximate.

The last technique applied in this chapter for texture analysis will
be the Fourier transformation. It is one of the most flexible and useful
methods in image analysis (examples of its application are also pre-
sented in previous chapters). One should, however, use the Fourier
analysis with great care as it can easily produce completely wrong
results. Moreover, it requires a lot of computing power to get results
in a reasonable time.

The same test textured image (Fig. 5.5a) as in the previously de-
scribed methods is used for analysis. The Fourier spectrum (Fig. 5.5b)
is filtered using a high-pass filter. The filtered spectrum is shown in
Fig. 5.5c and it is clearly visible from this image that all the low-
frequency information was thrown away. The inverse Fourier trans-
formation produces an image containing only very subtle relief pro-
duced by the highest frequencies of the initial image. This relief is so
delicate that it is hardly visible. In order to make it visible to the hu-
man eye, the intermediate image produced by the inverse Fourier
transformation was enhanced using the brightness/contrast control.
The enhanced image is shown in Fig. 5.5d. The subsequent top-hat
transformation (Fig. 5.5e) and closing of the binary image lead to
correct detection of differently textured areas (Fig. 5.5f). Closing of
the holes visible in Fig. 5.5f will produce an almost perfect detection.

To summarize the texture analysis presented in this chapter, we
can state the following practical remarks:

• texture analysis is difficult, and can easily lead to false results.
Perfect results are rarely achieved, much more likely is approxi-
mate detection (i.e., containing some errors)

•

	

correct texture detection requires high sensitivity to small changes
in local collections of pixels. The consequence of this fact is that
texture analysis is not very suitable for fully automatic analysis

•

	

probably the main problem with elaboration of suitable algorithms
lies in the difficulty of objective verification of the quality of the
detection fulfilled. This was the main reason for the use of
a simulated structure in the analysis presented in this section.
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Fig. 5.5. Application of the Fourier transformation in texture detection: initial
image (a), its Fourier spectrum (b), the same spectrum after high-pass filtering
(c) and subsequent inverse Fourier transformation (d). Top-hat-based detec-
tion (e) followed by binarization and closing gives the final result (f).
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5.2 Very fine structures

Some materials have extremely fine internal structures. Nano-
materials, metallic glass or precipitation hardened materials can be
listed as illustrative examples. Investigation of their microstructure
often requires the use of transmission electron microscopes (TEM)
which offer very high magnifications. Usually specimens for TEM are
prepared in the form of thin foils and this makes this technique diffi-
cult and laborious. Natural irregularity of the foil thickness signifi-
cantly affects both the image quality and a number of possibly over-
lapping features. Finally, the small size of structural constituents
means that even at the highest magnifications they are represented in
the image only by a few pixels.

All the factors described above make the analysis of very fine
structures especially difficult. The basic methods of image analysis,
based on such transformations as thresholding, edge detection or sim-
ple morphological transformations are usually useless. Much better
results can be obtained if we process the images as textured structures.
However, as was shown in the previous section, texture analysis gives
only approximate results in the majority of cases.

The absolute majority of materials reveals clear and evident crys-
tallographic structure. Traces of this can be found locally even in ma-
terials recognized as amorphous, like plastics or metallic glass. The
main properties or crystallographic structures are: order and periodic-
ity. Additionally, the smallest dimensions of the crystal network are
only two orders of magnitude greater than the electron wavelength in
TEM. As a consequence, HREM (high-resolution electron micros-
copy) images are very sensitive to any interference phenomena which
can locally affect the image contrast in an unexpected way, making
further analysis even more difficult. On the other hand, however, this
property opens new perspectives for image enhancement and analysis
techniques.

The most promising tool for treatment of the images described
above seems to be Fourier analysis. There are at least three major
areas of application of Fourier analysis:
• enhancement of the image, based on filtering of the lowest fre-

quencies in the Fourier spectrum. This can lead to restoration of
previously invisible details and overall improvement of the image
contrast (see Fig. 5.6)

• 
detection of various phases or structural constituents within the
image, as shown in the previous section, devoted to texture analy-
sis (see Fig. 5.5)
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• 
identification of structural components, based on the analysis of
diffraction patterns77 (Fig. 5.7).

Fig. 5.6. Application of Fourier filtering in enhancing an HREM image. The
initial image of Y4Al 2O9 oxide dispersoids in a ferrite matrix (top) after
Fourier transformation, filtering out the low-frequency component and inverse
Fourier transformations observation of the fine structure in the matrix
(bottom).

Diffraction patterns are widely used for identification purposes in
TEM. 27 Unfortunately, even this extremely efficient tool cannot be
applied for analysis of very small areas of a few nanometers size. In
this case we can effectively apply the Fourier transformation.
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Fig. 5.7. Application of a Fourier transformation in the identification of the
phases in Y4Al2 O 9 oxide dispersoids in a ferrite matrix. HREM image (top)
and the diffraction patterns obtained from extremely small areas of size 15x15
rim (bottom). The quality of the diffraction patterns is sufficient for identifi-
cation purposes.
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The HREM image shows clearly the crystallographic planes (see
Figs. 5.6 and 5.7). Therefore, using the Fourier transformation we can
effectively simulate creation of the diffraction patterns typically used
for identification in TEM. Additionally, we can apply any other image
processing tools in order to filter and enhance the image. Final com-
putations, leading to recognition of the composition of a given region,
require specialized software118 which is beyond the scope of our
analysis.

5.3 
Fracture surfaces

The fracture process is very difficult for any experimental research.
Obviously, we usually cannot predict and, consequently, observe un-
expected, catastrophic fracture events. But to make things worse, we
also cannot do it on a laboratory scale, either. The fracture process is
extremely sensitive to changes in the local stress and strain state. Un-
der laboratory conditions we can only observe the crack behavior at
the specimen surface, corresponding with the plane stress and three-
dimensional strain state and it is insufficient. It was proven both theo-
retically and experimentally that the decisive factor for the fracture
behavior of the material is the plane strain state (it means simultane-
ously the three-dimensional stress state). This stress state can be found
only in the vicinity of the crack tip inside a thick and rapidly deformed
specimen. The majority of materials are opaque and, therefore, we
have no chance for direct observation of this process.

As a consequence of the above described properties of the fracture
process, the only available solution is analysis of fracture surfaces.
There are numerous reasons for which analysis of fracture surfaces is
so important:

•

	

fracture process is highly localized - this reflects well the concept
of the weakest chain link, responsible for the strength of the whole
chain. Therefore, fracture surface is the only place we can find
structural phenomena responsible for a given fracture behavior of
the material. Thus, fractographic examination is always the first
(and often decisive for the final result of the whole analysis) step
in any analysis of damaged parts. In earlier metallurgical practice it
was even used as one of the most important quality tests

•

	

if we look for the reason of any failure caused by fracture, we try
to check experimentally the conditions of crack formation and
growth. If two separated fracture surfaces are geometrically very
similar, we can assume that the local conditions of fracture forma-
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tion were also very similar. In order to compare these fracture sur-
faces in an objective way, we need to define some measures - this
is one of the roots of so-called quantitative fractography. 

30, 93, 101, 107

It should be stressed that quantitative fractography has its own
weaknesses but is the best known tool for analysis of the crack
formation process

•

	

many structures are intentionally overloaded. The most typical
example can be the aircraft wing structure where we tend to keep
the construction as light as possible. In such constructions the
fracture process is predicted as a normal consequence of the ex-
ploitation process. Therefore, during design of the whole structure
various fracture resistance tests are performed in order to assure
safe operation of the final product. Careful, quantitative analysis of
fracture surfaces is in this case very helpful for evaluating the
crack growth rates, crack initiation conditions, etc. (Fig. 5.8).

•

	

during design of an entirely new material or optimization of an
already existing material, fracture properties are among the most
significant factors. This can be easily understood if we note that
usually, when increasing the strength of the material, we decrease
simultaneously its plastic properties as well as its fracture tough-
ness. Precise analysis of the fracture surfaces gives a lot of infor-
mation concerning the material's response to the failure load. The
importance of such analysis was established during World War II,
when welded structures were widely introduced into the ship-
building industry. Numerous solutions improving the fracture
toughness (inhomogeneous structures, multiphase, fine grain mate-
rials, etc.) were obtained with the help of fractography.
The above introductory remarks explain the importance of fracto-

graphic analysis. During the last few decades a lot of research work
has been done in order to evaluate objectively fracture surfaces in
a quantitative way.8,15, 25, 30, 41, 42, 49, 72, 78, 88, 92, 101, 106, 107, 112

 Only a small part
of this work is devoted to image analysis. The main reason lies in the
fact that fracture surfaces are extremely difficult for automatic analy-
sis, because many features are either impossible to clearly define and
detect or researchers preferred the use of cheaper tools for data input,
mainly tablet digitizers. However, currently computers have enough
computing power and the latest versions of image analysis packages
are relatively cheap. Therefore, image analysis should be much more
widely used in fractography. In the next sections some problems as
well as some possible solutions concerning the application of image
analysis tools in quantitative fractography will be presented.
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Fig. 5.8. Examples of fracture surfaces: ductile fracture surface of a low-
carbon steel with numerous non-metallic inclusions (a), typical ductile frac-
ture surface with dimples formed on precipitations (b), typical cleavage frac-
ture surface with a river basin pattern resulted from mis-matching of the
cleavage planes (c) and a fatigue fracture surface of a heavily overloaded
construction (d).
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The complexity of the fracture process mechanism significantly
increases with the complexity of the material. Thus, it is sometimes
almost impossible to quantitatively describe the fracture surface. This
happens, for example, in the case of fiber-reinforced composites (see
Fig. 5.9). One can discuss about this figure at least three entirely dif-
ferent types of surfaces :
•

	

fracture surface of the matrix,
•

	

fracture surface of the fibers,
•

	

side-walls of the fibers, being a result of the pull-out process.
Each of these surfaces should be described separately and final

analysis should take all of them into account. Even if we succeed in
this description, it will be extremely difficult to find a correct correla-
tion between the fracture surface phenomena and properties.

Fig. 5.9. An example of the extremely complex fracture surface of a fiber-
reinforced composite.

Fracture surfaces can be divided into three basic groups:
33, 107

•

	

brittle fracture surfaces, coming from fractures with low plastic
deformation and built using relatively low energy. These surfaces
usually contain almost perfectly flat elements, called facets, re-
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flecting cleavage planes in grains as well as the river-basin pattern
(Figs 5.8c and 5.10)

• ductile fracture surfaces, incorporating large plastic deformation
and dissipating ten times more energy than brittle surfaces. Exam-
ples are shown in Figs 5.8a, b and 5.11

• fatigue fracture surfaces, formed as a consequence of time-
dependent, usually periodical loads that are too low to form the
immediate fracture of brittle, ductile or mixed character. An exam-
ple is shown in Fig. 5.8d
This division has some practical impact, as the type of fracture

surface is closely bound with the amount of energy necessary to form
the fracture surface. Therefore, it would be interesting to have tools
for automatic recognition of the type of fracture surface being investi-
gated. The most natural way to achieve this goal seems to be an analy-
sis of the gray-level distribution. Unfortunately, even within
a single fracture surface we can get a series of completely different
distribution functions (Fig. 5.10) and very similar distributions for
both brittle and ductile surfaces (Fig. 5.11).

Fig. 5.10. A brittle fracture surface divided into four regions and the corre-
sponding gray-level distributions shown in white. These distributions are
clearly different.
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Fig. 5.11. Comparison of two, different fracture surfaces: brittle (top) and
ductile (bottom) together with the corresponding gray-level distribution func-
tions, which are very similar.

So, gray-level distribution is not a good tool for recognition of the
type of fracture surface. Closer analysis 

81, 110 indicates that the charac-
ter of the fracture surface can vary significantly with magnification.
Surfaces looking ductile at low magnification can have a dominating
brittle character, visible at higher magnification. Similarly, macro-
scopically brittle surfaces can, in fact, possess a ductile character
which can be revealed only at high magnification. This observation
explains why the division discussed above has less practical meaning
than it should have from the theoretical point of view.

At the early stages of quantitative fractographic analysis Broek 

8

showed that the toughness of a ductile steel is proportional to the dis-
tance between non-metallic inclusions. This observation was sup-
ported by much further research. An even more accurate correlation
can be obtained if the inclusions or other particles are investigated
directly on the fracture surface.106 Such an analysis does not require
specialized algorithms. It is sufficient to apply tools described in Sec-
tion 4.3.
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Fig. 5.12. Detection of facets in a brittle fracture surface. Initial image (a),
detected edges (b) and detected facets (c).

a

b

c
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Image analysis is a good tool for detection of the most character-
istic features in fracture surfaces: facets in brittle one and dimples in
ductile ones. An example of facet detection is shown in Fig. 5.12:
•

	

facets in the initial image (Fig. 5.12a) are separated by more or less
clearly visible edges. The first step in facet detection is to reveal
the edges. This can be done using any suitable algorithm for edge
detection. Numerous examples are presented in Chapter 4, the
choice depends on the morphology of the analyzed surface. The
detected edges are presented in Fig. 5.12b

• the final detection is now quite straightforward. Erosion produces
continuous network of edges, then the size-dependent filtering or
erosion with subsequent reconstruction (a series of dilations and
subsequent AND with the initial image repeated until convergence)
leads to detection of the main facets. The detected facets are shown
in Fig. 5.12c as black spots (for a better visualization effect the fi-
nal image was inverted).
A technique very similar to the algorithm discussed above can be

applied for detection of dimples in ductile fracture surfaces. An algo-
rithm developed for grain boundary detection, discussed in Section
4.1, example 8, can be successfully applied without any modification
for these purposes.

Another feature which can be successfully detected using image
analysis techniques is the stretch zone width (SZW) at the crack tip. It
has been shown that during the fracture process of metallic materials
a heavy plastic deformation occurs at the crack tip prior to crack
growth. This deformation causes blunting of the crack tip and one of
its possible measures is the crack opening displacement (COD), used
since the sixties as a measure of fracture toughness. If we measure the
same phenomenon in a perpendicular plane (it is just the fracture sur-
face) we get a new measure, the above-mentioned SZW. 

41, 107, 108 An
international round-robin program41 has shown that the scatter of re-
sults of manual SZW measurements can be compared with the meas-
ured value. Unfortunately, measurements using image analysis have
not been applied in this program. However, it is evident that every
algorithm will give the same results, irrespective of how many times it
is applied to the same image. By contrast, in manual measurements we
get more or less different results every time, even if the measurements
are done by the same person. Moreover, for a practical application we
do not need absolutely precise values. If there is a systematic, constant
error the results can be successfully applied in practice. An example
of SZW detection is shown in Fig. 5.13.
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b

c

Fig. 5.13. Detection of the stretch zone width (SZW). Initial image (a), initial
image subtracted from the closed image with the subsequent normalization (b)
and final detection performed by binarization and dilation (c ).

a
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The above analysis and examples clearly show that quantitative
fractography in general does not require any special algorithms for
detection of chosen features in the fracture surface. Algorithms devel-
oped for grain boundary or isolated particle detection can be applied.
The main difficulty lies in a proper choice of the features to be de-
tected and further interpretation of the results. This text, however, is
devoted only to image analysis techniques. Details concerning the
fractographic analysis can be found in the broad literature devoted to
this subject.8,21,25,41.49,59,62,66,72,78,101,106-108,115

Most of the quantitative fractographic analyses has been per-
formed on fracture profile lines, obtained from sections perpendicular
to the macroscopic fracture surface plane. The theoretical background
of profilometric analysis is well elaborated and supported by numer-
ous practical applications. 

30,101,107,108,112,115
 The use of profiles has a lot

of advantages:
•

	

in contrast to the fracture surface, its profile line is easy for any
mathematical analysis - we can compute length, curvature, angular
distribution, height distribution, fractal dimension, etc.

•

	

analysis of profiles can be performed simultaneously with analysis
of the underlying microstructure, thus enabling detection of any
structure-fracture interference

•

	

only profiles enable analysis of heavily curved fracture surfaces
with overlaps or secondary sub-cracks

•

	

profile lines can be relatively easily recorded using tablet digitiz-
ers. Obviously, having access to the image processing tools can be
very helpful and this point will be briefly discussed below.
Profiles suitable for quantitative analysis have to be prepared

without any deformation. Therefore the first step in specimen prepa-
ration should be covering the fracture surface with a protective layer,
usually made using electrolytic deposition of nickel. This layer is
visible in Fig. 5.14a as a bright ribbon. Depending on the material
being investigated, the profile line is already visible in a polished sec-
tion without any additional processing or etching. Good chemical
resistance of the nickel layer prevents it from etching which leads to a
better initial image, with a clearly separated protective layer and the
underlying specimen (Fig. 5.14a). Now we will see how to extract the
profile line from the initial image:
• the most natural way of line detection seems to be application of

any filter for edge detection (Prewitt filter in the case of Fig.
5.14b). The most clearly visible edge is detected at the interface
between the protective layer and mounting resin, visible as
a continuous thin bright line
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Fig. 5.14. Detection of the fracture profile. Initial image (a), edges produced
by the Prewitt filter (b), binarized edge image (c), erosion (in order to remove
small and thin objects) with subsequent reconstruction (d), hole filling and
negative (e) final detection (f).
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• binarization produces a clear image of the detected edges which is
suitable for further processing (Fig. 5.14c)

•

	

a small erosion will remove the unwanted pseudo-profile line at the
top of the protective layer as well as small, noisy features

•

	

reconstruction of the binarized image starting from the eroded set
will give a better defined image of the edge (Fig. 5.14d)

• subsequent hole filling assures that the profile is continuous. The
negative of the hole-filled image gives a huge white region at the
top of the image (Fig. 5.14e). This can be easily detected, for ex-
ample, using the labeling technique, which leads to the final image
(Fig. 5.14f).

The profile line can be obtained from Fig. 5.14f without any diffi-
culty, by erosion and a subsequent XOR operation with the image
before erosion.

If the contrast between the protective layer and the rest of the
specimen is high, detection of the profile line can be completed with-
out edge-detecting filtering. This is presented in Fig. 5.15, using for
better comparison the same initial image as in Fig. 5.14. If we thresh-
old the initial image we will get a binary image (Fig. 5.15b) which
differs significantly from the binary image obtained after edge-
detecting filtration (Fig. 5.14c) and therefore requires a rather differ-
ent treatment:

• we have a wide ribbon of the binarized protective layer which can
be identified using the labeling technique (Fig. 5.15c) and finally
detected by binarization of the labeled image (Fig. 5.15d)

• we have in Fig. 5.15d three objects: the black area of the bonding
resin (top), the white protective layer and the black area of the
specimen (bottom). After inverting the image we get two white re-
gions, separated by a black belt. Applying labeling and binarization
once more we get the final detection (Fig. 5.15e)

• multiplying images from Fig. 5.15a and e produces the mask image
which we can check to see how satisfactory our detection is (Fig.
5.15f).

Having the detected profile line we can analyze it applying all the
parameters used in quantitative fractography. This analysis can be
effectively coupled with detection of any structural constituents,
leading to such parameters as the fraction of a given phase in the for-
mation of the fracture surface. This can clarify numerous questions
connected with the fracture mechanism.
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Fig. 5.15. Another way of profile line detection. Initial (a), binarized (b) and
subsequently labeled (c) image, detected protective layer (d), final profile
detection (e) and illustration of the detection quality (f).
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Chapter six

Analysis and interpretation

In all the previous sections we discussed operations or functions
which take images as arguments and return other images as results of
transformations. If we try to describe these results in a formal way, we
will get only a qualitative characteristic. In this chapter we will ana-
lyze another family of procedures, giving as results various sets of
numbers, suitable for a quantitative description of the image.

6.1 Image processing and image analysis

Image processing and image analysis are often confused or used in-
terchangeably. In this text we understand these terms as two bound
together but clearly distinct processes. We will discuss this below in
more detail.

Image processing is a sequence of several operations on a single
image or a series of images, leading to a new set or single image. In
other words, we manipulate the image in order to suppress the waste
information, extract necessary elements, improve the quality or read-
ability of the image or simply achieve a spectacular artistic impres-
sion. Thus, image processing is widely applied in a wide variety of
human activities, from leisure time to military operations. Image proc-
essing can be done using light and chemical processes in
a darkroom, but in most cases is performed using computers and ap-
propriate software.

Image analysis is a process of image data transformation, leading
to some actions, decisions or conclusions. In this sense all of us, ex-
cept blind people, perform continuous image analysis. A chemist in
a pharmacy analyzes usually almost unreadable hand-written text and
gives us the correct drug. A driver analyzes the scene in front of the
windscreen and decides how to move the steering wheel.
A customer in a shop analyzes the shape and graphics of packaging
before making the decision of what to buy... etc.

Generally speaking, people possess an excellent ability to recog-
nize or rather interpret images - we can easily decide what the con-
tents of the image are. This corresponds with poor results to any
quantification of the image. We cannot judge quickly and precisely
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how many windows are in a sky-scraper, what element is lacking in
a complicated circuit, which seeds are too small or too big for auto-
matic processing, etc.

The need for quantification is nothing new. However, for centu-
ries it was enough to quantify in a qualitative (!) way: larger-smaller,
higher-lower, longer-shorter, etc. The need to supply precise numbers
is relatively new. It was born with the contemporary digital technique
that uses bar codes and computerized production processes.

Simultaneously, stereological methods (stereology was formally
born in the sixties) have undoubtedly proven that there exist precise,
fully quantitative relations between the materials microstructure and

properties. 

33,34,50,66
 Obviously, in order to establish such relations,

microstructure has to be described by numbers. Coming back once
more to the above-mentioned qualitative quantification, in the case of
materials it is enough to quantify the following categories:

•

	

amount of all the structural constituents and (separately for each
constituent),

•

	

size of the particles or their colonies,

•

	

shape of the particles or their colonies and

•

	

form of their distribution over the material volume.

The idea is very simple but we have no good measures suitable for
quantification of shape or distribution. Therefore, finding a way to
adequately quantify is still a real problem. Some solutions can be
found in the literature devoted to stereology.28, 54,79,82,100,104

Stereological methods constitute an efficient set of tools for mi-
crostructural quantification. However, in order to obtain results with
sufficient accuracy it is necessary to repeat simple measurements on
hundreds of particles or other features. This is a very tiring and time-
consuming process of repeated operations, thus an ideal goal for com-
puterization. In this way we come to the conclusion that computers
should be applied for any measurements and further statistical analy-
sis of the results. This analysis is sometimes called image under-
standing. The whole process (starting from the initial image) is called
computer-aided image analysis. 

Obviously, any images for such
treatment should be appropriately prepared, 

using image processing.
To summarize, we can state that image processing is a part of the im-
age analysis process (Fig. 6.1).

In Fig. 6.1 one can see three ellipses, symbolizing image analysis,
processing and understanding, respectively. These symbolic ellipses
are bound together in a quite complicated way. This illustrates well
the complexity of relations among the components discussed:
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•   image processing is a part of image analysis and that seems to be
clear. Another part of image processing is situated outside image
processing because some artistic filters (for example, converting
the initial image into an impressionistic style painting) are not used
in image analysis

•

	

image understanding is fully included in image analysis and has
a small commonality with image processing as some processing
tools are used for measurements (for example, logical operations)

•

	

some portion in the image analysis ellipse is not occupied by other
ellipses. This represents unique, advanced image analysis opera-
tions, like, for example, the use of expert systems, neural networks
etc.

Fig. 6.1. Illustration of the relationship among image analysis, image proc-
essing and image understanding.

6.2 Measurements of single particles

Prior to any measurements of any particle the program has to une-
quivocally decide where the edges of this particle are. For us this is a
quite straightforward operation. Unfortunately, for a computer, this is
not so simple. In practice we need to have a binary image for this pur-
pose. This explains why so many algorithms, presented in the previous
sections, lead to binary images as the final result of analysis.
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In this text we avoid theoretical considerations and focus on ap-
plications. Consequently, we will skip all the data concerning the na-
ture and methodology of digital measurements, describing only the
chosen measures and their possible application. We will start our dis-
cussion with an analysis of measurements of a single particle. The
basic quantities are schematically illustrated in Fig. 6.2:
•

	

in Fig. 6.2a we have the initial particle. This particle is inhomoge-
neous (this property will be discussed later) and for further analy-
sis should be converted into a binary form (Fig. 6.2b)

•

	

probably the most natural measure which can be evaluated using
computerized tools is the particle surface area. In a binary image
(Fig. 6.2b) area can be easily measured by simply counting the
pixels forming the particle

•

	

the next measure, frequently used in quantitative analysis is the
particle perimeter (Fig. 6.2c). The digital, discontinuous nature of
computer images means that the perimeter is usually computed
with large errors and this should be taken into account by the users.
Some solutions suitable for improvement of the accuracy of this
measure will be discussed later in this section

•

	

very popular, fast and accurate measures are the so-called Feret
diameters, characterizing the outer dimension of the particle. In
Fig. 6.2d we have two, horizontal and vertical Feret diameters

•

	

more advanced packages allow measurement of a user-oriented
Feret diameter (Fig. 6.2e). In this case we get two numbers, de-
scribing the length and orientation angle

• simple doubling of the maximum value of the distance function
gives an interesting measure, namely, the maximum particle width
(Fig. 6.2f)

•

	

among advanced measures a very important one is (Fig. 6.2g) the
maximum particle intercept (not necessarily equal to the maximum
Feret diameter!). This measure is also characterized by two num-
bers, describing the length and orientation angle

•

	

for some applications the coordinates of the center of gravity (Fig.
6.2h) are very important

• a similar value has the next measure, coordinates of the first point
(Fig.6.2i). First point is chosen as the most left-situated pixel from
the top row of particle pixels

•

	

in the case of concave particles interesting information can be ob-
tained from the convex hull (Fig. 6.2j). All the measures presented
can be applied to the convex hull as well as to the initial particle

•

	

rather similar to the convex hull is the bounding rectangle
(Fig.6.2k), suitable for shape characterization

© 1999 by CRC Press LLC



• 
the last quantity discussed here is the number of holes (Fig.6.2).

Fig. 6.2. Basic measures of a single particle: initial particle (a), area (b), pe-
rimeter (c), Feret diameters (d, e), maximum width (f) and intercept (g), coor-
dinates of the center of gravity (h) and the first point (i), convex hull (j),
bounding rectangle (k) and number of holes (l).
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Fig. 6.3. A particle (black line) together with its pixel (gray squares) and
vector (white line) representation.

Binary images devoted to measurements should be very carefully
prepared. The image analysis program will perform the measurements
on any image, without taking into account its quality. Therefore, the
user should keep in mind some general safety rules:
•

	

decide what rule of connectivity (see Section 4.1, Fig. 4.15) will be
applied. If we apply the wrong rule, some particles can be over-
segmented or others can be erroneously glued together

•

	

check the size of the smallest particles. Generally, if any particle is
made up of less than approximately 10 pixels, the results of the
measurements are extremely inaccurate

• 
check in the documentation how your software computes the pe-
rimeter. This is often the main source of errors, as perimeter is
used for evaluation of numerous stereological parameters, espe-
cially shape factors. Two different packages can give identical val-
ues for almost all the parameters while the difference in the pe-
rimeter can exceed 50%.
The remarks above suggest that one should pay special attention

to the results of perimeter evaluation. Let us analyze now the reason
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for these problems. A particle usually has a smooth edge (black line in
Fig. 6.3) which has to be approximated using the pixel grid, possess-
ing obviously limited resolution (see Fig. 6.3; small squares symbolize
single pixels). It is obvious that simply counting the pixels forming the
particle boundary is insufficient. It is always possible to compute the
perimeter as the weighted sum of these pixels with weights being a
function of a local pixel configuration. Unfortunately, this solution
also does not prevent possibly large errors.

114 

A much better solution
is to create the vector representation (also called the polygonal ap-
proximation) of a particle - an effect very often used in computer
graphics. This vector representation consists of a series of nodes and
lines connecting them (see the broken, white line in Fig. 6.3). The
length of this line can be exactly computed and provides a good ap-
proximation of the real perimeter. In the most advanced version the
nodes can be connected by curved sections, called splines, giving an
even more precise approximation.

The last, discussed here, method of rough but very quick ap-
proximation of the perimeter, is an application of the method known
as a Crofton formula

114
Here we will make an exception to the gen-

eral rule that we do not introduce theoretical considerations. The rea-
son is that in some cases the use of the Crofton formula can be really
helpful and appropriate computations can be easily performed using
the macros built-in into every more advanced image analysis package.

The Crofton formula is based on an analysis of the total projected
lengths. 

82, 100 The projected length at an angle α, D(α) (Fig. 6.4a) is
identical with the user-oriented Feret diameter (Fig. 6.2e). A new
measure, however, is the total projected length (Fig. 6.4b). For convex
particles both quantities, projected and total projected lengths, are
identical. In the case of concavity the total projected length is a sum
of partial projections, as shown in Fig. 6.4b:

D(α) = D1 
+ D2

This can be easily and exactly computed in digital space. The pixel
pattern in the digital image forms a series of lines, with the inter-line
spacing dx. In order to compute the total projected length it is enough
to count the number of pixels representing the line-entry-points
(denoted by small, black circles in Fig. 6.4c) and multiply this number
by the dx spacing. The line-entry-points can be successfully detected
for different orientations using the HMT transformation and the fol-
lowing structuring elements:

(6.1)
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Fig. 6.4. Projected lengths of a particle (a, b) and their digital evaluation (c).

for orientation angle 0°

for orientation angle 45°

for orientation angle 90°
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where: L is the perimeter, a is the orientation angle and D(a) is the
projected length.

Let us analyze eqn. (6.2) for a circle. Its total projected length is
identical for all orientations and equal to its diameter d. After integra-
tion we get the well-known formula for evaluation of the perimeter of
a circle: L=πd.

In the case of an hexagonal grid it is enough to make measure-
ments in three basic directions and we get the following final formula:

(6.4)

where: a is the distance between two neighboring pixels, and No, N45,
N 90 and N 135 are the numbers of line-entry points for 0, 60 and 120
degrees, respectively.

The method of perimeter quantification described above some-
times gives due measurements limited to three or four directions, con-

(6.2)

Cauchy has introduced the following rule, allowing evaluation of
the perimeter from total projected lengths:

for orientation angle 135 °

(6.3)

where: a is the distance between two neighboring pixels, and N0, N60
and N120 

are the numbers of line-entry points for 0, 60 and 120 de-
grees, respectively.

In an analogous operation for the square grid one has to take into
account the difference between the neighboring pixel distance for
angles 0 and 45 degrees. The appropriate formula for perimeter
evaluation will take the following form:
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siderable errors. However, the method has no systematic, methodo-
logical errors and constitutes a very fast, efficient computational tool.

6.3 
First measurements - numbers

The simplest and most natural type of measurement is simply counting
objects. In every day life this usually does not require any additional
tools, knowledge or skills except counting. If you need to buy some
fruit for a meeting, you usually order one pound but you can order six
pieces as well. If you want something to drink, you can order
a liter or a single glass, etc.

Counting also constitutes the basic group of measurements in
computer-aided image analysis. Counting objects has a lot of applica-
tions in further analysis. Some examples are listed below:

•

	

if we divide the image surface area by the number of grains in
a single-phase material we will get the mean section area, being
one of the most commonly used measures of a grain size

•

	

the number of particles per unit area is one of the important
stereological parameters, characterizing the particle density

•

	

the number of particles per unit area is used for estimating the
number of particles per unit volume or the surface curvature

•

	

counting the number of points having a defined neighborhood can
be used for computation of the projected lengths (see previous
section) or other parameters, not discussed in this text as we wish
to avoid theoretical considerations.
Counting objects is done on binary images, usually using the la-

beling technique. Labels are numbers coupled with all the pixels in a
binary image. The pixels in a matrix get the value of zero and the pix-
els in particles get ascending natural numbers in the following way:
all the pixels in the first particle get 1, all the pixels in the second
particle get 2, all the pixels in the third particle get 3, etc. The image
is scanned line by line from left to right. If we hit a point of
a particle not labeled yet, we give the next number to this pixel and
extend this number to all the pixels of the same particle. Obviously,
the rules of connectivity play an important role in this process. If we
want to count objects in an image we simply need to find a maximum
value in the labeled image and this maximum is directly equal to the
number of particles.

So, counting objects is really very simple. Unfortunately, there is
a risk of serious errors. Usually, some particles are crossed by the
edge of the image. If we analyze the next field, touching the currently
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analyzed image, the same particles crossed by the edge will be par-
tially visible in the next image and, consequently, counted twice. Now
we will show how to avoid this systematic error.

Most of the image analysis programs allow automatic removal of
the particles crossed by the edge of the image, often called border kill.
There is a temptation to use this transformation in order to solve our
problem, but closer analysis proves that this is a wrong solution. The
reasons are twofold:

a

C

b

d

Fig, 6.5. Effect of the border kill operation on the distribution of the detected
particles.

• first, instead of counting some particles twice we remove them and
these particles are not counted at all. This underestimates the num-
ber of particles

•

	

second, a border kill operation affects the distribution of particles.
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Now we will discuss in more detail the second item: affecting the
particle distribution. In some cases we are not interested in the exact
number of particles, but rather in the distribution of some attributes of
these particles, for example, size. The border kill operation is used in
order to remove the particles which are crossed by the image edge and
therefore cannot be correctly analyzed - if we have only a part of a
particle we cannot measure its size. Unfortunately, this can heavily
distort the examined distribution. To study this mechanism we will
analyze Fig. 6.5. In Fig. 6.5a we have a test image with 10 large (gray)
and 10 small particles (black), uniformly distributed over the image.
50% of particles are large. If we simulate taking a little bit smaller
image (a square with broken sides in Fig. 6.5b) and the border kill
operation, we will remove all the gray particles. Within the remaining
particles, marked by black color, 8 are small and only 5 are large. So,
in this new image only 38% of the particles are large. We can repeat
this simulation for even smaller images (see Fig. 6.5c and d), getting
29% and 25% of the large particles, respectively.

This example demonstrates well that the probability of removal of
a particle is approximately proportional to its size. Therefore, for cor-
rect counting of particles we have to use another technique, called a
guard frame.

Let us analyze a set of particles, as shown in Fig. 6.6a. We intro-
duce the guard frame, a rectangular area, shown in light gray in Fig.
6.6b. For an unbiased particle count we take into consideration all the
particles totally included in the guard frame and touching or crossing
its right and bottom edges. Simultaneously, all the particles touching
or crossing the left and upper frame edge, as well as the upper right-
hand or lower left-hand corners, are removed. If any particle fulfills
two opposing rules, the removal rule is decisive (see the particle lo-
cated at the upper right-hand corner of the guard frame). This concept
assures that in the case of a series of guard frames touching each
other:

•

	

every particle is counted

•

	

every particle is counted only once.

In Fig. 6.6c we can observe a result of the selection based on the
concept of the guard frame (only particles drawn in black will be
analyzed). This figure shows also that the rule described, although
working well in the absolute majority of cases, can also produce over-
detection. The particle indicated by an arrow in Fig. 6.6c will be
counted twice because it crosses the lower edge in one frame and the
right edge in another one. In order to prevent such (rare) cases we
have to improve the classification rule. This can be easily done by
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a

e

b

d

f
Fig. 6.6. The concept of the guard frame. Initial image (a), guard frame sche-
matically (b), selection based on crossing the edge of the frame by the parti-
cles (c), selection based on location of the characteristic points: first point (d),
last point (e) and center of gravity (f).
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coupling the particle with a unique pixel defined in such a way that
every particle should possess only a single pixel matching this defini-
tion. There are many possible definitions of such identification points.
Here we will analyze three of them:
• the first point (this is a first point of a particle hit during scanning

of the image line-by-line from left to right. The result of this classi-
fication rule is shown in Fig. 6.6d

• the last point (detected in a way analogous to the first point, de-
scribed above). The result of this classification rule is shown in
Fig. 6.6e

•

	

the center of gravity. The result of this classification rule is shown
in Fig. 6.6f.
Comparison of the results of classification shown in Figs. 6.6c, d,

e and f demonstrates that every rule produces different results. This is
true, but on the other hand, every particle is taken into consideration
(only within another frame) and is counted only once. Thus, the
method described above can assure unbiased counting.

Fig. 6.7. Example of a guard frame placed non-symmetrically within an im-
age.

Obviously, we have to keep the margin between the guard frame
and the image edge large enough to analyze all the pixels of the parti-
cles cut by the right and lower edges of the frame. So, the guard frame
should not necessarily be situated symmetrically within the image
(Fig. 6.7). The guard frame is drawn here as a white rectangle. This
frame should be kept far enough from the left and bottom edges of the
image in order to keep the white-drawn particles out of the frame.
These particles are cut by the image edges and therefore only a part of
them is placed within the image. Simultaneously, as all the particles
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cut by the upper and left side of the frame are thrown away, no margin
between the frame and image edges is necessary at this location. Try
to guess which of the rules illustrated in Fig. 6.6 was applied in Fig.
6.7. The correct answer is: the first point.

6.4 Shape

Shape is a very important factor in both qualitative and quantitative
analysis of the microstructure of materials. This property can affect
a lot of properties:

•

	

shape (and orientation) of the grains in a single-phase material
controls the anisotropy of mechanical properties

•

	

shape of cells in polystyrene foam is closely connected to its insu-
lation properties

•

	

shape of the aggregates used for sintering can heavily affect the
final density and microstructure of sinters

•

	

shape of the graphite precipitates in cast iron affects so clearly the
properties of this material that cast iron is classified on the basis of
the shape of graphite precipitates (gray, vermicular or nodular iron)

•

	

elongated non-metallic inclusions can cause embrittlement and
delamination of steel plates.
The above list is not exhaustive, it contains only some selected

examples illustrating the validity of shape in microstructural analysis.
Shape is simultaneously very important and extremely difficult to
evaluate. The primary reason for these difficulties is the lack of pre-
cise definition of the shape. In numerous books devoted to quantita-
tive analysis of structure we can read that the shape of the particles is
characterized by a set of shape factors, etc. No single word about the
essence of this problem - what is shape?

The problem of shape definition is illustrated in Fig. 6.8a. In this
figure we have three objects: a small circle, a square of medium size
and a large star. We can separate these objects using shape criteria
(still unknown to the reader) as well as the size criteria, for example,
area or Feret diameter. Our everyday experience confirms that shape
often changes simultaneously with size. For example, small and big
cars have different shapes, the same happens with buildings, animals,
plants, etc. Therefore, it is difficult to separate these two attributes.
Moreover, shape is independent of size. Unfortunately, in the case of
digital images, having limited resolution, this is not always the case.
For example, in Fig. 6.8b we have a series of three figures (square,
circle and star) grouped together. The difference in shape is evident
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for us if only the size (!) of the figure is large enough. The smallest
objects in Fig. 6.8b cannot be separated using the shape criteria. Due
to the approximation errors all these objects look similar. By the way,
this explains the remark made earlier in this chapter, that we should
avoid analysis of particles smaller than 10 pixels.

Fig. 6.8. Problems with shape definition. Quite often figures of different shape
also have different size (a) and small particles look similar in spite of-the
differences in shape (b).

So, we know something about the difficulties with shape charac-
terization but we still have no shape definition. However, we can try
to define the shape of a flat figure in an indirect way, described below.

Let us assume that we have a series of figures with exactly the
same surface area (Fig. 6.9a). These figures can be drawn in any way,
with only one restriction: no figure can be formed from another one
by translation, rotation and axial or central symmetry (Fig. 6.9b). We
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can now measure various attributes of these figures: surface area, pe-
rimeter, number of holes, curvature, etc. If the analyzed set is large
enough, we always will find two figures with identical attributes. It
can be, for example, identical perimeter or identical number of holes.
So, none of these attributes can be used for an unique classification.
The only attribute that differentiates all these figures is shape. In other
words, shape is the way in which the figure can be drawn. For exam-
ple, the following definition: take a single central point and draw all
the points equally distant from this central one describes the shape of
a circle.

a

Fig. 6.9. A series of figures with various (a) and the same (b) shape.

So, shape is a very complex attribute. If you take into account that
we can have an unlimited number of figures with different shapes, it
becomes clear that shape cannot be (even theoretically) defined by
a single number. The only thing we can introduce is definitions of
various shape-dependent parameters which help us in quantification of
the figures. A good example is the Cx coefficient which is used for
characterization of the shape of cars. Knowing only this coefficient
we cannot judge if the car is beautiful but this gives us quantitative
information about how optimal its shape is from the aerodynamics
point of view. A similar role in microstructural analysis is played by
the so-called shape coefficients or shape factors.

Shape factors constitute a group of measures of a single particle or
figure. They should be invariant to rotation, reflection or scaling. In
general, shape factors are dimensionless (this assures that they are not
sensitive to scaling) combinations of various measures. Below we will
show simple but impressive examples of shape changes and corre-
sponding shape factors. This will show the reader how these factors
can be built within the image analysis programs. A more advanced

b
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study of this problem can be found in the literature devoted to stereol-
ogy.

If we need to model any particle, the most simple and natural
model seems to be a sphere. In flat projections (as images are) we will
observe such ideal particles as circles. Therefore, one of the most
frequent application of shape factor is testing how much a given shape
differs from the circle. The analyzed shapes can be very far from the
circle (see the right column of particles in Fig. 6.10) but the transition
from the initial circle can be absolutely logical (analyze rows in Fig.
6.10).

Fig. 6.10. Three families of shapes originating from a circle: ellipses of vari-
ous elongation (a), shapes with various irregularity of the edge (b) and a com-
bination of the above tendencies (c).
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The three cases illustrated in Fig. 6.10 can be recognized for the
needs of better text clarity as:
•

	

elongation (Fig. 6.10a),
•

	

irregularity (Fig. 6.l0 b), and

•

	

composition (Fig. 6.10c).
Case I - elongation. This case is very common for nodular parti-

cles after plastic working; for example, rolling, pressing or axial ten-
sion. Elongation can be effectively measured using the following form
factor (see Fig. 6.11):

where: a and b are the length and breadth of the minimum bounding
rectangle.

The shape factor f1 can be also computed as the ratio of the maxi-
mum Feret diameter to the Feret diameter measured perpendicularly to
it. The above defined shape factor gets the minimum value of 1 for an
ideal circle or a square and greater values for other, elongated shapes.
The greater the value of the shape factor, the more elongated particle.

Case II - irregularity. This case is also often met in practice. Many
thermal processes, leading to equilibrium conditions, cause particles
to become more and more perfectly spherical. Unfortunately, the
shape factor f1, defined by eqn. (6.5) is useless for irregularity assess-
ment, as all the particles in Fig. 6.l0b will have values very close to l.
A good solution to this case is given by one of the most popular shape
factors:

(6.5)

(6.6)

where: L is the perimeter and A is the surface area of the analyzed
particle (see Fig. 6.11).

The shape factor f2 
is 

very sensitive to any irregularity of the
shape of circular objects. It has a minimum value of 1 for a circle and
greater values for all the other particles. This does not mean, however,
that the shape factor f2 

is better than f1 because f2 

is much less sensitive
to elongation.

Case III - composition. This case can be treated as a kind of mix-
ture of elongation and irregularity. This case is also met in real mate-
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rials. An example can be the change in form of the graphite precipi-
tates during transition from the nodular to flake cast iron. Any attempt
to characterize this transition by one of the above defined shape fac-
tors will fail.

A solution very often used for such a case is computation of the
weighted average of a few shape factors. Indeed, one can successfully
manipulate the weights and get satisfactory results, but the result can-
not be physically interpreted. If we have the elongation shape factor
equal to 10, we know that the particle is quite long. If we have the
irregularity shape factor equal to 3, we know that the particle is either
extremely long or its boundary line is irregular and heavily curved.
But we cannot interpret the following message: 30% of elongation +
50% of irregularity + 20% of number of holes gives the shape factor
with the value of 3.47. There are hundreds of particles with com-
pletely different shapes that fulfill the above conditions. So, it is better
if we can to construct an appropriate shape factor.

Fig. 6.11. Basic measurements used for the evaluation of the shape factors.

In the case of the shapes shown in Fig. 6.10c one can note the
following rule: all these particles have approximately the same surface
area, but as we move across the sequence to the right a smaller object
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can be drawn inside the particle. This observation leads to a definition
of the following new shape factor (see Fig. 6.11):

(6.7)

where: d1 and d2 
are the diameters of the maximum inscribed and cir-

cumscribed circles, respectively.
The newly defined shape factor works really well. This shape

factor can be applied to either elongated or irregular particles. How-
ever, as was mentioned earlier in this section shape cannot be pre-
cisely described by a single number. Therefore, the shape factor f 3 

can
be used for quantification of elongated or irregular particles, but can-
not be used for recognition or classification of the particles. In other
words, using this factor does not allow us to decide if the particle is
elongated or irregular.

For classification purposes we have to use more than one shape
factor. An example of a classification table is presented below. Note
that this is only a very rough idea of classification, so cannot be di-
rectly applied in any real analysis.

Table 6.1. Shape classification table.

Very interesting results can be obtained if we apply the rules of
fuzzy logic. In binary logic a particle can be regular or irregular. In
fuzzy logic the same particle can be regular, irregular, almost regular,
weakly regular, etc. Fuzzy logic allows us to measure how near
a particle is to regular.

This concept is well illustrated in Fig. 6.12. We assume that the
particles with elongation between 0.4 and 0.7 are thin. Particles with
elongation less than 0.2 or greater than 0.9 are not thin. The rest of
particles are partially thin and the percentage of thinness is illustrated

elongation irregularity analyzed shape

low low circular

low high compact, irregular

high low long and smooth

high high long and irregular
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by the plot in Fig. 6.12. Application of fuzzy logic has three main
advantages:
• fuzzy logic enables quantification of particles which do not fit the

assumed templates. In binary logic these particles are outside clas-
sification

• in fuzzy logic we can easily apply the above-mentioned method of
using a weighted average for evaluation of the shape factors. Even
more sophisticated rules can also be applied. The advantage of
fuzzy logic lies in the fact that the results are always in the
0-100% range, so there is no longer any difficulty in physical in-
terpretation of the results

•

	

the results offered by fuzzy logic are relatively close to our human
way of quantification.

0 %

Fig. 6.12. Schematic illustration of the idea of fuzzy logic.

An example of the application of the fuzzy logic to shape analysis
is shown in Fig. 6.13. This figure contains a collection of real graphite
shapes, detected from cast iron of various grades. Every particle is
described by two numbers: the value of f3 

(eqn. 6.7) and the circularity
rating, expressed by percentage. This last value was computed using
fuzzy logic. It is clearly visible that four particles at the left side of
Fig. 6.13 are recognized as fully circular. The particles in the middle
of the picture are partially circular whereas graphite flakes (right side
of Fig. 6.13) are judged as absolutely not circular.

0.0 0.2
ELONGATION

0.8 1.0

50%

100%

VETO
0.4 0.6
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Fig. 6.13. Application of fuzzy logic to classification of the graphite particles.
Upper numbers denote the value of shape factor and lower numbers (%) in-
form how well the particle fits as a circular shape.

6.5 Grain size

Grain size is probably the most important parameter for single-phase
ceramic or metallic materials. This is also one of the basic measures
for quantitative characterization of multiphase materials. A lot of re-
search work15,17,18, 21,24,53,54.57,65.91,100 has been done in order to evaluate
the grain size and has proven that this problem is very complex and no
universal solution can be found. Below you will find a brief overview
of grain size measurement methods as well as some comments on
computer-aided measurements devoted to grain size evaluation.

Grains (Fig. 6.5) are three-dimensional objects and theoretically
their size can be effectively described by one of the following pa-
rameters:
•

	

number of grains per unit volume Nv ,

•

	

mean volume of a single grain v or its distribution,

•

	

surface area of grain boundaries per unit volume Sv, or
•

	

any dimensions, but really measured in three dimensions.
In the case of real materials we have no possibility of evaluating

in a reasonable time or for an acceptable price the true distribution of
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grain volume. On the basis of measurements performed on flat sec-
tions we can estimate the Nv and Sv values. The appropriate equations
will be shown below. The number of grains per unit volume and the
mean volume of a single grain are bound together by the following
simple equation:

(6.8)
Volume
Surface area
Dimensions

Number of nodes

Fig. 6.14. Grains and their basic measures. We need to characterize the three-
dimensional grains (top) on the basis of analysis of flat sections (bottom).
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In the case of flat sections (usually this is just a material supplied
for image analysis) we can measure many parameters related to grain
size, for example (see Fig. 6.14):

•

	

number of grains per unit section area NA

•

	

distribution of the section area a (the mean area of a section is just
a reciprocal of the NA 

value)

• equivalent disk diameter - this is the diameter of a disk whose sur-
face area is equal to the surface area of a grain section. The mean
equivalent disk diameter is one of the oldest measures of grain
size. Currently this parameter is criticized because a circle is not
a good model of grains, which are observed in the section plane as
polygons filling the whole surface. We cannot cover the whole sur-
face by circles

•

	

number of triple points (nodes) per unit area PA

•

	

intercept lengths 1.

The number of grains per unit area NA 
can be evaluated using the

Jeffriess method, known from classical stereology: 

100

NA = Ni + 0.5Nb 
+ 1

	

(6.9)

where: Ni is the number of internal grains and N b 
is the number of side

grains. Here it is assumed that four corner grains together constitute
a single grain.

It should be stressed that in the case of computerized methods
a much better solution is to use one of the techniques for counting
objects, described in Section 6.3 (see Fig. 6.6). Another very clever
method is based on counting the number of triple points 

82 (see Fig.
6.14):

NA 
= 0.5P A

	

(6.10)

where: PA is the number of triple points (nodes) per unit area.
Triple points, assuming the width of the grain boundary lines is

only a single pixel, can be easily detected using the HMT transforma-
tion and all the structuring elements containing three "1" and five„X„ 84,114 Also, without any special difficulty, we can measure the
mean intercept length. This can be done by counting the line-entry
points for orientation angle 0 

° (see Section 6.2). Next, we should di-
vide this number by the number of lines in the image (vertical dimen-
sion of the image expressed in pixels) and multiply the result by the
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horizontal dimension of the image. Now, we can easily compute the Sv

parameter as

Fig. 6.15. Point-sampled intercept length method, schematically. See text for
detailed description.

Estimation of the number of particles per unit volume Nv on the
basis of flat sections is almost impossible without some assumptions
concerning the shape of objects analyzed. It is possible, however, to
adapt the point-sampled intercept length method, originating from
pathological research. 37 In this method we use a set of statistically
randomly distributed points, marking the position of intercept lines
which, in turn, can be randomly oriented. In the case of random
structures, the intercepts can be also parallel (see Fig. 6.15). For con-
vex particles we get a very simple, however unbiased and statistically
exact, equation for computation of the mean grain volume:

(6.11)

where: 1 is the mean intercept length.

where: l is the length of the point-sampled intercept.

(6.12)
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So, we have a few measures of grain size. Among them the most
important and frequently used are (symbols explained earlier in this

section: V, Nv, a, N A 

, Sv 
). 

Unfortunately, they cannot be used

interchangeably, as there is no exact relation between all of them.
Therefore, in order to choose an appropriate measure, one should take
into account a number of different factors:

• if there are ant archival results of measurements, the new meas-
urements should be comparable with the old ones. The value of a
large amount of archival material in many cases cannot be overes-
timated and it is often better to get results that are theoretically less
correct but possible for comparison with a large existing database

• the measures chosen for our research should be feasibly precise
and computed quickly by our analysis system. Some measures mat
be unavailable and some others can be done almost immediately
without ant difficulty

• mean values are east for further analysis but can be sensitive to
subtle changes under consideration. Therefore, it is a good practice
to use for advanced analysis parameters that can be measured in
terms of their distribution. A typical example is the measurement
of particle section areas. These measurements are very fast and
simple - a computer measures the surface area by a simple count of
the pixels belonging to a given object, so they can be easily done,
offering a large number of data suitable for advanced statistical
analysis

• in general, all the stereological equations require IUR
(independent, uniform and random) distribution of the structural
constituents and a large number of observations, assuring unbiased
estimation. These factors have to be taken into account prior to ant
measurements. 

28,37,82,100,104

A very interesting problem is connected to the method of inter-
preting distribution data. Let us assume that we need to analyze the
size distribution of grains, as shown in Fig. 6.16. The most simple and
natural seems to be application of the grain area as a measure and
number-weighted distribution (gray bars in the plot in Fig. 6.16).
Now, we should explain the term number-weighted. Number-weighted
means that the particles are counted proportionally to their amount,
measured by numbers. In other words, this distribution illustrates how
many particles of a given size we have. However, another concept is
possible and, moreover, this second concept is at least equally valu-
able.

_ _
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Fig. 6.16. A simulated single-phase microstructure (top) and two different size
distributions (bottom): number-weighted (gray bars) and area-weighted (black
bars). The latter seems to be more informative.
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If we analyze the probability of hitting a particle with a single,
randomly thrown point we will conclude that this probability is pro-
portional to the area of this particle. Similarly, many processes in the
material are related to the particle volume rather than to the number of
particles. Thus, a distribution in which the weighting parameter is area
instead of a number seems to be more adequate to relate to the physi-
cal properties of the material. Note (Fig. 6.16) that the area-weighted
distribution is shifted in comparison with the number-weighted distri-
bution towards larger particles. This phenomenon is even more pro-
nounced in the case of a bimodal grain size distribution. The two
maxima are usually hardly visible in the number-weighted distribution
but very clear in the area-weighted distribution. 91

6.6 Gray-scale measurements

All the measurements discussed in the previous sections refer to bi-
nary images. This allows one to count the number of features, measure
size and shape characteristics or collect data for analysis of spatial
arrangement of the structural constituents. On the other hand, binary
representation loses all the gray-scale information, characterizing
numerous important properties of the material, like, for example, mi-
crosegregation, inhomogeneity of phases, texture, etc. This can be
done using gray-scale measurements.

Fig. 6.17. Gray-scale measurements, schematically. The gray image (left) is
masked by a binary image (right). This operation produces separated gray-
scale regions which can be effectively analyzed.
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The main difficulty in any attempts to perform gray-scale meas-
urements is that a computer does not separate objects in a gray-scale
i 
mage as humans do. Therefore, for gray-scale measurements, the

binary image is used as a mask (Fig. 6.17). Masking can extract sepa-
rate gray-scale regions, which in turn can be numerically analyzed. In
this way we can get the minimum, mean and maximum gray level as
well as its variance for any particle. Appropriate filtering of the gray-
scale image can give additional information on the substructure of
these particles, not available in another way. This kind of measure-
ment can be easily done in object-oriented systems.

Application of gray-scale measurements offers some unique prop-
erties, leading to interesting applications:

•

	

maximum of the distance function built on the binary image, mul-
tiplied by two, gives maximum widths of particles

•

	

analysis of the gray-level distribution offered by gray-scale meas-
urements allows separation of subtly differentiated particles (for
example, twins or sub-grains) which cannot be effectively sepa-
rated using other methods.

6.7 Other measurements

Obviously, the contents of this chapter does not cover all the questions
related to digital measurements in image analysis. In particular, we
have not discussed inhomogeneity, orientation or periodicity. In-depth
analysis of these features requires thorough stereological knowledge
which lies outside the framework of this text. However, the methods
of stereology can be relatively easily adapted to the needs of image
analysis even if elaborated in the pre-computer era. Below you will
find some guidelines which should help in preparation of digital
measurements:

• 
always keep in mind the digital nature of computer images. If you
need to make measurements in various directions you can rotate
the initial image instead of rotating the measurement direction.
This solution should minimize the measurement errors. You can
also try to convert the image into vector graphics if your software
can perform measurements of vector graphics objects

•

	

the weakest point in digital measurements is evaluation of the
length of curved lines. Avoid such measurements if possible

• some advanced stereological methods (for example, the method of
vertical sections)2,54,115 use curved test lines. These methods can be
effectively adapted to the needs of digital measurements. The sim-
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plest solution is to perform measurements in many different direc-
tions and compute the final result as the weighted average of re-
sults for different orientation angles. In the case of a cycloid ap-
plied in the method of vertical sections, the sine function is used
as a weight.2, 107

Fig. 6.18. Three parallel sections can give satisfactory results if the material
exhibits banding or orientation. See text below for details.

• 
in general, stereology assumes that the microstructural features are
IUR, this means independently, uniformly randomly distributed.
This assumption is not fulfilled (or fulfilled only partially) by the
majority of real materials. This problem can be easily solved by
using IUR section planes and test lines. Unfortunately, this solu-
tion is simple only in theory. However, application of three section
planes, rotated by 1200, 

is a sufficient remedy in most cases (see
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Fig. 6.18). In the case of some stereological parameters evaluated
on the basis of test lines, this solution requires special analysis of
the results or nonlinear test lines, mentioned above. In order to
simulate IUR test lines, you should apply many test directions and
multiply the results obtained for any test line by 

sin(α). A more
detailed description of this method 

54,115 can explain its theoretical
principles but the above short description is sufficient for practical
applications

• many stereological methods use as an input parameter the number
of intersection points per unit chord length. You can build an in-
termediate image containing the test lines and find the points of
intersection with the analyzed particles using a logical AND trans-
formation. A more elegant solution is to use the HMT with an ap-
propriate structuring element (see Section 6.2, Fig. 6.4), as the sum
of projected lengths per unit area L A is equal to the number of in-
tersection points unit chord length PL.

82 The only condition is that
the intersection points should be counted in a direction perpen-
dicular to the projected lengths

•

	

coordinates of some unique points, for example, centers of gravity,
can be effectively applied in analysis of the spatial distribution of
particles, inhomogeneity, clustering or periodicity

•

	

if you have to quantify any more sophisticated property of the ma-
terial 

microstructure it is a good practice to check if this feature
can be emphasized with the help of some transformations. A good
example can be the autocorrelation function80 which can charac-
terize orientation (see Fig. 6.19). We can binarize the autocorrela-
tion image in such a way that binarization will give an object in the
center of the image. Its shape will give the overall orientation of
the initial image. For example, it will be elongated in the direction
parallel to the orientation direction.
The final conclusion from the above analysis is that we can easily

apply almost all of the methods elaborated within the framework of
classical stereology, without taking into account specific properties of
digital measurements. Some of these methods require modifications in
order to avoid. possible numerical errors or speed-up the process. Si-
multaneously, image analysis offers new opportunities not available
for classical stereology. These new possibilities are visible, first of all,
in the image processing stage. However, some of them, for example,
gray-scale measurements, can be noted also at the analysis and inter-
pretation stages. Last but not least, the ease of performing measure-
ments, leading to a great number of data allowing distribution analy-
sis, cannot be overestimated.
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Fig. 6.19, Application of the autocorrelation technique in analysis of the
overall orientation of the image. Bright areas in the autocorrelation images
(right column) can be extracted using binarization and their shape informs
about orientation.
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Chapter seven

Applications and case histories

In classical textbooks on image analysis we can find description of the
nature of various procedures or algorithms and their properties. This
solution is attractive for both specialists and newcomers interested in
thorough study of the discipline. However, this is unacceptable for
researchers looking for a quick, possibly simple and effective solution
to their individual problems. In order to meet their needs this book is
organized in another way:

•

	

we go through real problems and show how to solve them rather
than discuss the properties of algorithms and operations applied

•

	

we try to explain why the given sequence of operation is successful
and anticipate how this solution could be adapted to other, more or
less similar problems

• all the problems discussed originated from materials science. There
are no examples from biology and medicine, remote sensing,
criminology or military applications.
From the above characteristics it is clear that the whole text is en-

tirely devoted to applications in materials science. However, even in
this user-oriented style there are some drawbacks. For example, the
concept presented above is suitable for a person who already has
a problem to solve. Furthermore, this is absolutely insufficient for
anyone wanting to learn what potential problems can be solved using
image analysis. Therefore this last, short chapter is devoted to appli-
cations. We can list three groups of main application directions in
materials science, which will be discussed in the next sections:
•

	

quality and routine control
•

	

simulation
•

	

research and case histories.

7.1 Quality and routine control

There are some characteristics of the microstructure that control most
of the material properties. Among them we can list volume fraction,
grain size or orientation. Characterization of these quantities may be
required in exposed applications, for example, turbines, pipelines or
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automotive industry and appropriate tests should be done during rou-
tine quality control. The needs of this structure-oriented quality con-
trol are simultaneously simple and difficult:

• 
usually only relatively simple parameters, like inclusion contents
or grain size should be measured. Appropriate measures are well
defined within the framework of stereology and almost any image
analysis software is capable of returning appropriate results. So,
this looks to be simple

• the analysis should be quick, possibly automated, ensuring high
repeatability of the results and minimized bias introduced by the
operator. 

Many inter-laboratory tests have proven that completion
of all of the above criteria may be extremely difficult.

In order to achieve acceptable results, all the procedures used
have to be thoroughly tested and described in detail. Thanks to the
intensive work of standardization committees this work has been al-
ready done for some parameters and resulted in appropriate standard

procedures.
 

89-91 The existence of standard procedures does not mean
that their practical application is always smooth and painless. How-
ever, the main problems are connected with proper sampling and
specimen preparation rather than with the final image analysis.

As you have probably noted, image analysis tools are both very
flexible and sensitive to fine changes in their tuning. This flexibility
enables, for example, detection of grains in images of various type and
quality (see Section 4.1) but simultaneously requires intuitive selec-
tion of the transformations. Standard procedures should avoid the use
of intuition and appropriate sequences of transformations should be
predefined. Additionally, small variation in the threshold level (see
Section 2.4) can result in dramatic changes in the measured contents
of phases to be detected, especially in the case of any scratches in the
specimen image. This property can also considerably complicate
preparation of any standard practice.

In order to neutralize or at least minimize the above-mentioned
factors, standard procedures apply the following techniques in the
case of automatic inclusion assessment of steel:

90

• special 
attention is paid to specimen preparation. Specimens

should be cut with care in order to avoid unnecessary deformation.
Next, they should be polished using appropriate silicon carbide or
aluminum oxide papers under a plentiful stream of water. Ultra-
sonic cleaning is recommended after grinding. For final polishing,
diamond pastes are recommended as well as an absolute minimum
polishing action
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• the polished specimen should conform to very high quality stan-
dards. The specimen quality should be tested using microscopic
observation at magnifications 100x and 500x, using differential
interference contrast

• extremely high standards of specimen preparation enable further
automatic analysis. The contrast between inclusions and the pol-
ished matrix is high enough for automatic thresholding. Good
specimen preparation produces very thin boundary lines separating
the inclusions from the matrix. Therefore, a small alteration in the
threshold level does not introduce visible differences in the amount
of the detected phase. This is noteworthy, however, that even in
this extremely well-defined case a semi-automatic method, based
on alternating between the live video image and the thresholded
image, is recommended for optimization of the threshold level.

89

In the case of grain size analysis, the situation is even more diffi-
cult. The specimen has to be not only perfectly polished but also cor-
rectly etched. The number of etching mixtures is still growing, so one
should be very careful when deciding which reagent should be chosen.
There are specialized reagents suitable for a very narrow group of
materials, having the appropriate chemical composition and techno-
logical history. In general, such etching techniques are preferred that
ensure further detection with minimum possible difficulty.

In other words, the standardized procedures say: do not use exten-
sive image processing. Rather, try to prepare your specimens in such a
way that further detection can be done without any problems, even by
a simplified software. Such specimen preparation requires enormous
experience and extensive knowledge of laboratory techniques, as well
as the properties of the materials being tested. Clearly, such knowl-
edge is not the subject of this book. We do not analyze specimen
preparation techniques but focus on cases in which appropriate speci-
men preparation is difficult or even impossible. For example, in the
case of many ceramic materials we have no technical aids for clear
detection of the existing grain boundaries. Successful examination of
such difficult cases requires another type of knowledge, probably
more intuitive and often unpredictable and the aim of this book is help
you to acquire this skill.

Obviously, there are numerous cases when we should elaborate
the rules of routine quality control in spite of the lack of appropriate
standardized procedures. In such a case we should apply the guide-
lines presented in the next sections.
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7.2 Simulation

The next field of extensive use of image analysis is simulation. In
recent years simulation has been used very frequently: we can simu-
late car accidents, financial operations, weather changes, etc. Using
i mage analysis tools we can simulate various microstructures and
some processes leading to microstructure alteration. There are some
general problems which can be solved using image analysis-based
simulation:

• new stereological tools are often based on statistical analysis or
very complex theoretical analysis. Even if the procedure is free
from systematic bias, it is especially difficult to fix theoretically its
precision and necessary number of counts until convergence. By
contrast, this can be easily done using the simulated structures.
Their advantage lies in the fact that any simulated structure is well
defined and we can exactly evaluate all the necessary parameters.
The exact values can be used for comparison with the results re-
turned by procedures being verified, thus giving us the necessary
information concerning their precision and bias. If we use any real
structures for the same purpose, we never know what the real value
of the estimated parameters is

• simulation of materials structures is another field for extensive
application of image analysis. This is very effective in the case of
modeling grainy structures. Such simulation can be easily per-
formed using some predefined markers, playing the role of grain
seeds (these can be, for example, randomly generated points). The
final structure can be easily built using the SKIZ transformation. In
order to create simulation closer to reality we can interrupt the
process at any stage and add some new grain seeds. By the skillful
addition of new grain seeds, this modified procedure allows us to
simulate grains to look very close to reality. We can simulate the
balance between the rate of new grain seed formation and crystal
growth (see Fig. 2.21). Comparison between the simulated and real
structures helps in evaluation of the structure formation processes
(in this particular case, this is solidification). More advanced mod-
els can lead to creation of new technological processes, resulting,
for example, in intentionally oriented or more homogeneous
structures

• simulation of various processes is the third major application dis-
cussed in this section. Simple removal of the smallest grains with
subsequent SKIZ can roughly approximate the grain growth proc-
ess. Other, more complex models, can be effectively used for in-
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vestigation of diffusion, plastic deformation, corrosion or fracture
processes. An illustration of such a simulation will be presented
below.

In the example below we will analyze simulation of the fracture
path in a nodular cast iron. It is assumed that the fracture growth fol-
l ows a simple criterion of the minimum energy necessary to create
a fracture path. Due to very small cohesion forces between the metal-
lic matrix and graphite nodules we can treat them as pores. So, the
energy necessary to cut graphite nodules is assumed to be equal to
null. This leads to the following geometrical rule: the growing fracture
should minimize the length of the overall path through the matrix and
the length of the fracture path through graphite is insignificant. Now,
we will see how this simple rule can work in the image taken from a
real cast iron structure:

• the crack will be simulated within the microstructure shown in Fig.
7.1a. The starting point is situated at the top edge and indicated by
an arrow. The crack should propagate towards the bottom edge of
Fig. 7.1a

• the algorithm should ensure proper crack propagation direction.
So, in order to prevent erroneous crack growth we define appropri-
ate mask. This mask has a triangular shape with one vertex placed
at the starting point of the crack. The set of graphite nodules re-
duced to the area of the mask is shown in Fig. 7.1b

• now we go to the main body of the whole process - simulation of
the growing crack front. This is done by summation of dilations.
The first one is dilation of the starting point indicated by an arrow
in Fig. 7.1a. This forms the intermediate image to which every next
dilation is added. We can call this intermediate image distance im-
age because the gray level of any point within this image is pro-
portional to the distance from the crack front. Obviously, the
starting point of this simulation process is the most distant from the
simulated crack front (Fig. 7.1c)

• the postulated null energy necessary to go through the graphite
nodule is converted into a simple geometrical rule: if only the
simulated crack front touches any nodule, this nodule is added to
the crack front. Fig. 7.1d illustrates how the existing nodules influ-
ence the shape of the crack front

• the above described process of crack front growth is repeated until
the growing front reaches the edge of the image opposite to that
containing the starting point
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Fig. 7.1. Simulation of the crack in nodular cast iron. The initial image with
the starting point indicated by an arrow (a), masked nodules (b), intermediate
distance image (c), illustration of crack growth mechanism (d), the final
simulated (e) and real (f) fracture paths.
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• the final detection of the simulated crack path is done by watershed
detection within the distance image. The resulting path should next
be cleaned of unnecessary branches

•

	

the final simulated crack can overlay the microstructure (Fig. 7.1e).
If we see the simulated crack with the real one (Fig. 7.1 f), we see

that there are significant differences between them. This does not
mean that our simulation technique is totally wrong. This is rather an
effect of two-dimensional nature of our image. In reality, the crack
direction is affected by nodules located in 3-D space, so some of these
nodules are not visible - we can observe only some unexpected bends,
like those indicated by arrows in Fig. 7.1f. However, it is noteworthy
that a very similar algorithm, applied to a more brittle material - po-
rous graphite used in nuclear power plants - gave very satisfactory

results.48, 102 Simulation techniques allow also objective testing of
various methods of grain size inhomogeneity measurements. 17 , 18 ,57

Image analysis and simulation are tightly bonded together. For ex-
ample, it is impossible to decide if grain size restoration algorithms
contain elements of simulation, or not. The remarks put in this section
have mentioned some of the possible application directions of simula-
tion techniques. We will not go further into this area. You should use
your own imagination to formulate appropriate models of processes
observed in materials as discussion of the rules of proper modeling is
outside the scope of this book.

7.3 Research and case histories

Fortunately for research laboratories there are still numerous, practical
problems to be solved. Among the variety of questions suitable for
answering with the help of image analysis, we can find the following,
given here as examples:
•

	

we have two pieces of any material and need to judge if their mi-
crostructures are identical or not

• we have to develop a stable technological process leading to given
properties of the final product and we get a large scatter of results.
Therefore, we try to check what features in the microstructure are
unstable

•

	

we are looking for a subtle phenomenon difficult to detect (this can
be, for example, the beginning of formation of the precipitation
network) and need objective tools for microstructure examination

•

	

we need to quantitatively characterize the microstructure evolution,
for example, during long-term use of any power plant installation

© 1999 by CRC Press LLC



• we need to explain the reason for any failure and, if possible, ex-
clude material-dependent factors

•

	

we are looking for any structure-property relationship and need to
find the microstructure factors that controls the properties, etc.
So, it is clear from the above list that the number of possible ap-

plications is practically unlimited. There are so many materials, tech-
nological processes and their functions that this is impossible to deal
with all of them or even with a representative subset. Instead, we can
formulate some guidelines, which should be helpful in solving new
problems:

• try to judge if the problem is suitable for image analysis. It happens
quite frequently that we are asked for image analysis without prior
preliminary studies indicating that the problem should be examined
using image analysis tools

• 
check if you can give a manual way so these features can be auto-
matically detected. In the other case, you will most probably fail
when constructing the algorithm. It is possible that you will acci-
dentally find the proper solution; however, such a fortunate case
happens very rarely

•

	

decide what structure parameters can be helpful for solving the
particular problem. Keep in mind that simpler parameters usually
require less image processing and, consequently, the error of sub-
sequent measurements should be minimized in this way

•

	

ensure that your images are of the best possible quality. Many of
our colleagues think that computers are capable of processing im-
ages of worse quality than necessary for manual analysis and bring
really poor images. Avoid such cases and always check if another
visualization technique can offer better images

• if the problem is absolutely fresh to you, try to get as much practi-
cal knowledge concerning this case as possible. Maybe you will
note that there are some similarities with other problems, already
successfully solved by you

• 
if you have no idea what to do, check the demonstration algorithms
in your software. The demos are usually well optimized and you
can find many excellent ideas in this source of knowledge

• 
when you see that your work is going "nowhere" stop, and start
from the very beginning. Building anything from scratch is always
faster than modification of a poor idea

• 
if none of the above remarks works, skip to other work and do not
trouble with it any longer. The break should be at least one night
long. This advice really helps solve extremely difficult problems!
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Fig. 7.2. Analysis of the eutectic network in the sintered stainless steel: initial
image (a), image after shade correction (b), detected pores and eutectic (c),
closed loops detected by small (d) and larger (e) closings and the potential
eutectic network (gray) with missing parts indicated as black lines (f).
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An example of a case history is presented in Fig. 7.2. During in-
vestigation of agglomeration of a sintered stainless steel, some addi-
tion of boron was used to minimize the porosity by formation of the
eutectic phase. The goal of the investigation was to determine the ratio
of eutectic network formation. The following analysis was performed:

•

	

the first step was removal of the shade from the initial (Fig. 7.2a)
i mage. The corrected microstructure is shown in Fig. 7.2b

• there are many pores in the material (black spots in Figs. 7.2a and
7.2b). For our analysis, however, the pores can be treated as a part
of the eutectic network. Thus, we can get easily the image of the
eutectic (with pores) by simple binarization. In order to get hole-
free eutectic we can apply small closing (Fig. 7.2c)

• 
the progress in formation of the eutectic can be now easily meas-
ured by measuring the area occupied by this phase. Unfortunately,
it turned out that area measurements were not sensitive enough to
the progress in eutectic network formation. Therefore, another ap-
proach was introduced

• 
Closing applied to the image of the detected eutectic creates some
closed loops. These loops can be easily detected and the number of
loops or the area occupied by them can be used as measure of net-
work development (Fig. 7.2d). This measure, applied to a series of
various sinters, proved its usefulness. Its drawback lies in the fact
that the results depend on the size of closing (see Fig. 7.2e)

• the most advance and objective measure was obtained using the
algorithms for grain boundary restoration, based on watershed de-
tection (see Section 4.1). Segmentation of the binary image of the
microstructure (Fig. 7.2c) and subsequent SKIZ produce an ideal-
ized image of the potential eutectic network (gray lines in Fig.
7.2f). Simple logical AND with the initial binary image reveals the
lacking elements of the networks (black lines in Fig. 7.2f). Now, it
is very simple to compute the proportion between the length of the
existing and potential network lines - the straightforward measure
of the network closure.

To summarize, in this simple example we have three levels of the
solution to a given problem. The lowest level (measure of the eutectic
area) can be performed on any software, even the simplest one. The
second level (counting the closed loops) is more informative, but re-
quires much more knowledge and experience. The third level (based
on segmentation and the SKIZ transformation) is clearly the most
difficult one and simultaneously offers precise, quantitative descrip-
tion of the process being investigated. It should be pointed out that all
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of these solutions can be acceptable, depending on the required accu-
racy of analysis.

Now we will analyze a series of exemplary applications of image
analysis in materials science. These examples are taken from the lit-
erature and therefore reflect various levels of experience, laboratory
equipment and a large variety of materials and phenomena under con-
sideration. Thus, this short review should inspire the reader to ex-
periment with new, original applications:

• study of the abnormal grain growth in sintered alumina:60 the
measurements were carried out on digitized images of grain
boundaries. In order to avoid the extensive image processing nec-
essary to restore the lost boundary grains, the manually prepared
images were used as input data. The results indicated that the proc-
ess of sintering is accompanied by significant abnormal grain
growth. This phenomenon was related to the segregation of impu-
rities

• directional fiber analysis by mathematical morphology:64 quantifi-
cation of the fiber orientation is very important in various applica-
tions. A new algorithm, based on advanced mathematical morphol-
ogy operations, is presented. One of the key points in this work is
application of the directional erosion by a pair of points. The new
algorithm enables analysis of individual fibers as well as detection
of areas of similar orientation of the fibers

• verification of empirical structure property relationships in sin-
tered carbides :75 thorough testing of various WC cermets observed
in SEM and subsequently analyzed using image analysis tools, al-
lowed the formulation of guidelines concerning specimen prepara-
tion, observation mode, optimum magnification, etc. The analysis
performed allows recommendation of image analysis as a good tool
for automatic quality control of the WC cermets

• investigation of the drill wear mechanism: 

78 observation of the
cutting surface of drills after lifetime tests seems to be one of the
best sources of information on the wear mechanism. Unfortunately,
the changes observed are predominantly of a quantitative character,
without significant changes in the wear mechanism. The methods
of quantitative fractography and image analysis can serve as
a basis for creation of an expert test system

• quantitative evaluation of multiphase materials:94 during SEM
observation of non-asbestos friction materials with a complex
chemical and phase composition the main problem is a poor con-
trast between the phases to be detected. The use of both BSE and
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SE images allows correct detection and preparation of binary im-
ages for subsequent image analysis

• automatic detection of twins:95 twins are an important part of the
microstructure in many materials, for example, Cu alloys or stain-
less steels, and should be characterized in a quantitative way. Their
automatic detection, however, is very difficult. Starting from the
analysis of the distribution of angles between the grain boundary
and twin boundary, the authors have developed an efficient algo-
rithm, capable of correct detection of up to 90% of the twin
boundaries

•

	

analysis of a high chromium steel for advanced power stations:
117

this study has been performed on steels with high chromium con-
tents (X20, P91, P92) designed for advanced power station. The
material was examined using TEM; and image analysis tools en-
abled evaluation of such parameters as sub-grain width, dislocation
density or particle size distribution

• analysis of insulation mineral fibers:99 measurement of the diame-
ters and lengths of fibers is important to the glass and mineral wool
industry. The fibers are oriented in various directions and cross
themselves. Correct segmentation in such conditions is
a complex problem. Using advanced tools of mathematical mor-
phology and specialized algorithms, the authors obtained good cor-
relation between the manual and automated measurements

•    image analysis of austenite and carbides coarsening in a Fe-Mo-C
steel:11    image analysis, similar to the example shown in Fig. 7.2,
allowed the collection of quantitative metallographic data. The re-
sults were subsequently analyzed in terms of stereology and en-
abled verification of some microstructure evolution mechanisms

• morphological study during a ceramic process: 

23 in this study the
process of barium titanate ceramic formation was investigated.
Three main stages of the process are studied using different meth-
ods of image analysis. The tools of mathematical morphology are
extensively applied. The analysis enabled creation of numerous
structure-property relationships which can be applied at the indus-
trial level

• automatic grain size measurement in low carbon steel by image
analysis:56 this work describes a successful application of a fully
automated image analysis in routine quality control. This work
does not introduce sophisticated algorithms but proves that image
analysis can speed up quality control and significantly increase the
repeatability of measurements
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• modeling of the hydromechanical behavior of a fracture:36 this
work is devoted to the analysis of hydromechanical behavior of
fractures that is fundamental for understanding the effects of hu-
man engineering in fractured rock masses. Image analysis tools are
applied here for enhancement of the images and for analysis of the
fracture surfaces.

7.4 Concluding remarks

The previous section definitely closes the contents of this book. How-
ever, the problem of application of image analysis in materials science
remains open. The author hopes that the tools and methods presented
above will encourage you to apply image analysis in your everyday
work. Moreover, solutions presented here are universal enough to be
easily adapted to various materials not discussed here as well as to the
needs of biology, medicine and other sciences. It is enough to look at
Fig. 7.3 in which you can observe a surface of bread. This image is far
from materials science but looks very similar to ductile fracture sur-
faces of metallic materials.

Fig. 7.3. The surface of bread is very similar to ductile fracture surfaces.

The structure shown in Fig. 7.3 can be surprising to people
working with ceramics, metals or plastics. If you cooperate with spe-
cialists from other disciplines, this is a quite common situation and
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usually offers a lot of satisfaction. Obviously, new structures force
development of new algorithms, which is laborious and time con-
suming. Moreover, you never knows if your skill and experience are
sufficient to solve the problem.

When I started with the first draft of this text I also had a lot of
fear about if I would finish it successfully. I did it. So, you should do
the same.
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