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Series Editors’ Foreword 

The series Advances in Industrial Control aims to report and encourage technology 
transfer in control engineering. The rapid development of control technology has 
an impact on all areas of the control discipline. New theory, new controllers, 
actuators, sensors, new industrial processes, computer methods, new applications, 
new philosophies…, new challenges. Much of this development work resides in 
industrial reports, feasibility study papers and the reports of advanced collaborative 
projects. The series offers an opportunity for researchers to present an extended 
exposition of such new work in all aspects of industrial control for wider and rapid 
dissemination. 

The importance of system models in the current paradigm of advanced control 
design cannot be overestimated. Three recent volumes in the Advances in 
Industrial Control series: Model-based Process Supervision by Arun Samantaray 
and Belkacem Ould Bouamama, Wind Turbine Control Systems by Fernando 
Bianchi and colleagues and Soft Sensors for Monitoring and Control of Industrial 
Processes by Luigi Fortuna and colleagues testify to the pervasive use of system 
models in different aspects of control engineering and in different application 
areas. 

This growth in the use of models to accomplish different objectives in the 
design of industrial control systems has been accompanied by a similar growth in 
the science of system identification. Today, there is a thriving research community 
pursuing new developments in system identification that support the use of system 
models in control design, and for process comprehension. The IFAC Symposium 
on System Identification (SYSID) is a popular forum for the work of this research 
community. 

System identification is often classed as a white-box problem or a black-box 
problem, but when the designer is allowed to introduce a priori system knowledge 
into the process then more pragmatic grey-box methods emerge. For the interested 
reader, the Advances in Industrial Control monograph Practical Grey-box Process 
Identification by Torsten Bohlin describes the fundamentals of, some new software 
for and some applications of the grey-box identification approach. 

A mainstay of the control system modelling paradigm are continuous-time 
models because they arise naturally when describing the physical phenomena of 
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systems and processes. These models of physical systems usually involve 
differential equations that stem from the application of physical and chemical laws. 
However, the widespread use of digital computing technology and the concomitant 
sampled data led to an emphasis on the use of discrete system models, discrete 
control designs and sampled-data-based system identification algorithms from the 
1980s onward. In an attempt to address this imbalance in technical methods, 
Hugues Garnier and Liuping Wang initiated international conference sessions and 
research activities to re-establish interest in the techniques for the identification of 
continuous-time models. One outcome of their endeavours is this entry in the 
Advances in Industrial Control series. Hugues Garnier and Liuping Wang are not 
only the Editors of this fourteen-contributed-chapter book but have also, along with 
many other leading international researchers in the system identification field, 
contributed to several chapters as authors. 

Identification of Continuous-time Models from Sampled Data covers a wealth 
of material from this field. Usefully, the opening survey chapter defines the basic 
identification problem, reviews the issues arising from the continuous-time aspect 
of the problem and then provides a road map to the very substantial set of 
contributed chapters that follows. The range of topics covered includes: 
experimental design, model structure determination, closed-loop identification, and 
software aspects along with a generous number of practical examples. This list is 
by no means exhaustive of the breadth of the contents and subject matter of the 
book. 

The encyclopedic and highly focussed nature of the book means that it is likely 
to become a standard reference text for this particular aspect of the system 
identification subject. It is, after all, the first major book contribution to this field 
for nearly fifteen years and as such is a very welcome addition to the Advances in 
Industrial Control series. 

Industrial Control Centre M.J. Grimble 
Glasgow M.A. Johnson 
Scotland, UK 
2007 



Preface

It is often true that a book is developed through a long journey that consists of
many tiny steps and interactions with many people. This book started in July
2004 when we, Hugues Garnier and Liuping Wang, met for the first time dur-
ing the fifth Asian Control Conference in Melbourne. We decided to organise
an invited session on continuous-time system identification for the 16th World
IFAC Congress in Prague (2005). The invitation was first presented to Profes-
sor Graham Goodwin, and was accepted without any hesitation. Our invited
session in Prague was successful, with support and contributions from Pro-
fessors Lennart Ljung, Torsten Söderström, Graham Goodwin, Peter Young,
Peter Gawthrop, Tomas McKelvey, Johan Schoukens and Rik Pintelon. The
special session was well received. From the World Congress, we then decided
to organise another three invited sessions for the IFAC Symposium on Sys-
tem Identification (SYSID’2006) in Newcastle, with the same authors from
the World IFAC Congress, in which one was devoted to theoretical study and
algorithmic development and one was devoted to application of continuous-
time system identification. The majority of the authors in this monograph
were the contributors to the invited sessions.

Although a broad overview of the different techniques available for direct
continuous-time model identification has been given in the books by Unbe-
hauen and Rao (1987) [1] and Sinha and Rao (1991) [2], more than fifteen years
has passed since the publication of the last book on continuous-time system
identification. Interest in continuous-time approaches to system identification
has indeed been growing in the last ten years. Apart from the joint activities
in organising the more recent invited sessions, the first editor (Hugues Gar-
nier) has organised invited sessions for the 5th European Control Conference
(ECC’1999) in Karlsruhe, for the 15th World IFAC Congress in Barcelona
(2002) and for the SYSID’2003 Symposium in Rotterdam. The large number
of publications in recent years reflects the intensive effort devoted to the de-
velopment of theory, software, and applications of these techniques. We felt
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that it was time to reflect on the recent development of this area. Thereby
arose our intention of editing this book with the contributors who have been
working with us for the past many years.

It has been a privilege for us to have the opportunity to work with them. Our
thanks go to all the contributors of this book who have supported us over
the years. Indeed, both of us enjoyed the time we spent interacting with the
contributors and editing this book. Our special gratitude goes to our friends
Professor Graham Goodwin and Professor Peter Young who have guided us
in various aspects of our careers.

Finally, but not least, we give deepest gratitude to our families: Liuping’s
husband (Jianshe) and son (Robin); Hugues’s wife (Nathalie) and children
(Elliot, Victoria and Marie-Sarah) for their endless understanding, caring,
patience and support.

It is to them all that we dedicate this book.

Nancy, France and Melbourne, Australia Hugues Garnier
March 2007 Liuping Wang
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Direct Identification of Continuous-time
Models from Sampled Data: Issues, Basic
Solutions and Relevance

Hugues Garnier1, Liuping Wang2 and Peter C. Young3

1 Centre de Recherche en Automatique de Nancy, Nancy-Université, CNRS,
France

2 RMIT University, Melbourne, Australia
3 Lancaster University, UK & Australian National University

1.1 Introduction

Mathematical models of dynamic systems are required in most areas of
scientific enquiry and take various forms, such as differential equations,
difference equations, state-space equations and transfer functions. The most
widely used approach to mathematical modelling involves the construction
of mathematical equations based on physical laws that are known to govern
the behaviour of the system. Amongst the drawbacks to this approach
are that the resulting models are often complex and not easily estimated
directly from the available data because of identifiability problems caused by
over-parameterisation. This complexity also makes them difficult to use in
applications such as control system design.

If sufficient experimental or operational data are available, an alternative
to physically-based mathematical modelling is data-based ‘system identifi-
cation’, which can be applied to virtually any system and typically yields
relatively simple models that can well describe the system’s behaviour within
a defined operational regime. Such models can be either in a ‘black-box’ form,
which describes only the input–output behaviour, or in some other, internally
descriptive form, such as state-space equations, that can be interpreted in
physically meaningful terms. This book presents some recent developments
in system identification applied to the modelling of continuous-time systems.

Dynamic systems in the physical world are naturally described in continuous-
time (CT), differential equation terms because the physical laws, such as
conservation equations, have been evolved mainly in this form. Paradoxically,
however, the best known system identification schemes have been based
on discrete-time (DT) models (sometimes referred to as sampled-data
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models), without much concern for the merits of natural continuous-time
model descriptions and their associated identification methods. In fact, the
development of CT system identification techniques occurred in the the last
century, before the development of the DT techniques, but was overshadowed
by the more extensive DT developments. This was mainly due to the ‘go
completely discrete-time’ trend that was spurred by parallel developments in
digital computers.

Much less attention has been devoted to CT modelling from DT data and
many practitioners appear unaware that such alternative methods not only
exist but may be better suited to their modelling problems. The identification
of continuous-time models is indeed a problem of considerable importance
that has applications in virtually all disciplines of science and engineering.
This book presents an up-to-date view of this active area of research and
describes methods and software tools recently developed in this field.

This chapter is organised as follows. In the first section, the general procedure
for system identification is reviewed. Thereafter, the basic features for fitting
DT and CT models to sampled data are presented with the objective of high-
lighting issues in CT model identification. Basic solutions to the main issues
are then presented. The main motivations for identifying CT models directly
from sampled data are then discussed, before we present some specialised top-
ics in system identification that deserve special attention. At the same time,
this introductory chapter aims at tying together the different contributions
of the book. In this regard, the outline of the book is presented in the last
section.

1.2 System Identification Problem and Procedure

A linear time-invariant continuous-time system with input u and output y can
always be described by

y(t) = G(p)u(t) + ξ(t) (1.1)

where G is the transfer function, p the time-domain differential operator and
the additive term ξ(t) represents errors and disturbances of all natures. The
source of ξ(t) could be measurement errors, unmeasured process disturbances,
model inadequacy, or combinations of these. It is assumed that the input
signal {u(t), t1 < t < tN} is applied to the system, with u(t) and the
output y(t) both sampled at discrete times t1, · · · , tN . The sampled signals
are denoted by {u(tk); y(tk)}.

The identification problem can be stated as follows: determine a continuous-
time model for the original CT system from N sampled measurements of the
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input and output ZN = {u(tk); y(tk)}Nk=1.

There are three different kinds of parameterised models:

• grey-box models, where the model is constructed in continuous-time from
basic physical principles and the parameters represent unknown values of
the system coefficients that, at least in principle, have a direct physical
interpretation. Such models are also known as physically parameterised or
tailor-made models;

• black-box models, which are families of flexible models of general appli-
cability. The parameters in such models, which can be continuous time
or discrete time, have no direct physical interpretation (even though the
CT version is closer to the physically parameterised model than the DT
version), but are used as vehicles to describe the properties of the input–
output relationships of the system. Such models are also known as ready-
made models;

• data-based mechanistic (DBM) models, which are effectively models
identified initially in a black-box, generic model form but only considered
credible if they can be interpreted in physically meaningful terms.

In this book, we restrict our attention to black-box model identification. The
reader is referred, for instance, to [4] and the references therein, for grey-box
model identification; and [53] and the references therein, for DBM model
identification.

The basic ingredients for the system identification problem are as follows

• the data set;
• a model description class (the model structure);
• a criterion of fit between data and models;
• a way to evaluate the resulting models.

System identification deals with the problem of determining mathematical
models of dynamical, continuous-time systems using measured input–output
data. Basically this means that a set of candidate models is chosen and then
a criterion of fit between model and data is developed. Finally, the model
that best describes the data according to the criterion, within the model set,
is computed using some suitable algorithm.

There are two fundamentally different time-domain approaches to the problem
of obtaining a black-box CT model of a natural CT system from its sampled
input–output data:

• the indirect approach , which involves two steps. First, a DT model for
the original CT system is obtained by applying DT model estimation meth-
ods to the available sampled data; and then the DT model is transformed
into the required CT form. This indirect approach has the advantage that
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it uses well-established DT model identification methods [23, 39, 52]. Ex-
amples of such methods, which are known to give consistent and statisti-
cally efficient estimates under very general conditions, are prediction error
methods optimal instrumental variable techniques;

• the direct approach , where a CT model is obtained immediately using
CT model identification methods, such as those discussed in this book.
Without relying any longer on analogue computers, the present techniques
exploit the power of the digital tools. In this direct approach, the model
remains in its original CT form.

Independent of how the identification problem is approached, a model
parametrisation will lead to the definition of a predictor

ŷ(tk,θ) = g(θ, Zk−1) (1.2)

that depends on the unknown parameter vector θ, and past data Zk−1. The
general procedure for estimating a parameterised model from sampled data,
regardless of whether it is a CT or DT model, is as follows:

1. from observed data and the predictor ŷ(tk,θ), form the sequence of pre-
diction errors

ε(tk,θ) = y(tk) − ŷ(tk,θ) k = 1, . . . , N (1.3)

2. filter the prediction errors through a linear filter F (•) to enhance or at-
tenuate interesting or unimportant frequency bands in the signals

εf(tk,θ) = F (•)ε(tk,θ) (1.4)

where • can be the shift operator if the filter is in discrete time or the
differential operator when the filter is in continuous time;

3. choose a scalar-valued, positive function l(·) to measure the size or norm
of the filtered prediction error

l(εf(tk,θ)) (1.5)

4. minimise the sum of these norms

θ̂ = arg min
θ

VN (θ) (1.6)

where

VN (θ) =
1
N

N∑

k=1

l(εf(tk,θ)) (1.7)

This procedure is general and pragmatic, in the sense that it is indepen-
dent of the particular CT or DT model parametrisation used, although this
parametrisation will affect the minimisation procedure. Indeed, as we will see,
some peculiarities occur in CT model identification that do not occur in DT
model identification. We deal with these aspects of the estimation problem
in the following three sections. For simplicity of presentation, the formulation
and basic solution of both CT and DT model identification problems will be
restricted to the case of a linear, single-input, single-output system.
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1.3 Basic Discrete-time Model Identification

1.3.1 Difference Equation Models

Perhaps the simplest model of a linear, discrete-time system is the linear
difference equation

y(tk) + a1y(tk−1) + . . . + ana
y(tk−na

) = b1u(tk−1) + . . . + bnb
u(tk−nb

) + v(tk)
(1.8)

where the relationship between the input and output is expressed in terms of
the sampled sequences u(tk) and y(tk) for k = 1, 2, . . . , N .
Equation (1.8) can also be written as

A(q−1)y(tk) = B(q−1)u(tk) + v(tk) (1.9)

or

y(tk) =
B(q−1)
A(q−1)

u(tk) + ξ(tk); ξ(tk) =
1

A(q−1)
v(tk) (1.10)

with

B(q−1) =b1q
−1 + · · · + bnb

q−nb ,

A(q−1) =1 + a1q
−1 + · · · + ana

q−na

where q−1 is the backward shift operator, i.e., q−1x(tk) = x(tk−1). Equation
(1.8) can be expressed in a vector form that is linear in the model parameters

y(tk) = ϕT (tk)θ + v(tk) (1.11)

with

ϕT (tk) =
[
−y(tk−1) · · · − y(tk−na

)u(tk−1) · · ·u(tk−nb
)
]

(1.12)

θ = [a1 . . . ana
b1 . . . bnb

]T (1.13)

In this case, the predictor defined in (1.2) takes the form

ŷ(tk,θ) = ϕT (tk)θ (1.14)

1.3.2 The Traditional Least Squares Method

A traditional way of determining θ is to minimise the sum of the squares of
the prediction error ε(tk,θ) by defining the criterion function

VN (θ) =
1
N

N∑

k=1

(y(tk) − ŷ(tk,θ))
2 (1.15)
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then minimising with respect to θ. In the present case, ŷ(tk,θ) is linear in θ
and the criterion VN is quadratic, so that VN (θ) can be minimised analytically
to give the least squares (LS) estimate

θ̂LS =

[
1
N

N∑

k=1

ϕ(tk)ϕT (tk)

]−1

1
N

N∑

k=1

ϕ(tk)y(tk) (1.16)

Once the regression vector ϕ(tk) is constructed (from the measured sampled
input–output data), the solution can be computed easily. In the statistical lit-
erature, this approach is usually referred to as ‘linear regression analysis’ and
the linear, simultaneous equations that yield the solution (1.16) are termed
the ‘normal equations’. It is important to realise, however, that this is not
a classical regression problem because the elements of the regression vector
ϕ(tk) are not exactly known, as required in regression analysis, but are mea-
sured variables that can be contaminated by noise. This has deleterious effects
on the parameter estimates that are considered later in the book. It should
also be noted that this basic LS method is a special case of the more general
prediction error method discussed in Section 1.2, where the analytical solution
does not exist and recourse has to be made to other optimisation approaches,
such as gradient optimisation or iterative ‘relaxation’ estimation.

1.3.3 Example: First-order Difference Equation

The traditional LS method is outlined below for the case of a simple first-order
DT model

y(tk) + a1y(tk−1) = b1u(tk−1) + v(tk) (1.17)

which can be written in regression form as

y(tk) = [−y(tk−1)u(tk−1)]
[
a1

b1

]
+ v(tk) (1.18)

Now, according to (1.16), from N available samples of the input and output
signals observed at discrete times t1, . . . , tN , uniformly spaced, the linear LS
parameter estimates are given by

[
â1

b̂1

]
=

⎡

⎣
1
N

N∑
k=1

y2(tk−1) − 1
N

N∑
k=1

y(tk−1)u(tk−1)

− 1
N

N∑
k=1

y(tk−1)u(tk−1)
1
N

N∑
k=1

u2(tk−1)

⎤

⎦
−1 ⎡

⎣
− 1

N

N∑
k=1

y(tk)y(tk−1)

1
N

N∑
k=1

y(tk)u(tk−1)

⎤

⎦

It is well known that, except in the special case when v(tk) in (1.8) is a white
noise, simple LS estimation is unsatisfactory. Solutions to this problem led to
the development of various approaches, as documented in many books (see
e.g., [23, 39,52]).
The simple difference equation model (1.8) and the well-known LS estimator
(1.16) represent the simplest archetype of DT model identification.
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1.3.4 Models for the Measurement Noise

In the previous section, we parameterised the description of dynamical systems
in a particular form. There are many other possibilities that depend on the
method used to model the measurement noise. A common approach used
in DT model identification is to assume that the additive disturbance ξ(tk),
contaminating the output measurement has a rational spectral density and
can be represented as a DT white noise source e(tk) passed through a linear
filter H(q−1), i.e.,

ξ(tk) = H(q−1)e(tk) (1.19)

When the system and noise models are combined, the standard discrete-time
model of a linear dynamic system then takes the form

y(tk) = G(q−1)u(tk) + H(q−1)e(tk) (1.20)

In general, the estimation of the parameters in this model is a non-linear
statistical estimation problem that can be solved in several ways: e.g., gradient
optimisation procedures, such as the maximum likelihood and prediction error
methods; and iterative procedures, such as optimal instrumental variables.

1.4 Issues in Direct Continuous-time Model
Identification

1.4.1 Differential Equation Models

A continuous-time model of the system takes the form of a constant coefficient
differential equation

dny(t)
dtn

+ a1
dn−1y(t)
dtn−1

+ · · ·+ any(t) = b0
dmu(t)

dtm
+ · · ·+ bmu(t) + v(t) (1.21)

where dix(t)
dti denotes the ith time derivative of the continuous-time signal x(t).

Equation (1.21) can be written alternatively as

y(n)(t) + a1y
(n−1)(t) + · · · + any(t) = b0u

(m)(t) + · · · + bmu(t) + v(t) (1.22)

where x(i)(t) denotes the ith time derivative of the continuous-time signal
x(t). Equation (1.21) or (1.22) can be written in the alternative time-domain
differential operator form

A(p)y(t) = B(p)u(t) + v(t) (1.23)

or

y(t) =
B(p)
A(p)

u(t) + ξ(t); ξ(t) =
1

A(p)
v(t) (1.24)
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with

B(s) =b0p
m + b1p

m−1 + · · · + bm

A(s) =pn + a1p
n−1 + · · · + an, n ≥ m

and p denoting the differential operator, i.e., px(t) = dx(t)
dt .

At any time instant t = tk, (1.22) can be rewritten in regression-like form as

y(n)(tk) = ϕT (tk)θ + v(tk) (1.25)

where the regressor and parameter vectors are now defined by

ϕT (tk) =
[
−y(n−1)(tk) · · · − y(tk)u(m)(tk) · · ·u(tk)

]
(1.26)

θT = [a1 . . . an b0 . . . bm] (1.27)

However, unlike the difference equation model, where only sampled input
and output data appear, the differential equation model (1.25) contains input
and output time derivatives that are not available as measurement data in
most practical cases. When compared with DT model identification, direct
CT model identification raises several technical issues that are discussed in
the following sections.

1.4.2 Input–Output Time Derivatives

The first difficulty in handling CT models is due to the need for the (normally
unmeasured) time derivatives of the input–output signals. Various meth-
ods have been devised to deal with the reconstruction of the time deriva-
tives [8,37,40–42,45,56]. Each method is characterised by specific advantages,
such as mathematical convenience, simplicity in numerical implementation
and computation, handling of initial conditions, physical insight, accuracy
and others.
One traditional approach that dates from the days of analogue computers
[47] is known as the state-variable filter (SVF) method. This method will be
reviewed in Section 1.5.1, with the objective to highlight the differences from
DT model identification.

1.4.3 Models for the Measurement Noise

Another difficulty with CT model identification is due to continuous-time
stochastic processes. Although the noise model can be given in a CT form,
difficulties arise in the estimation because of the theoretical and practical
problems associated with the use of CT white noise and its derivatives. A noise
model in an equivalent discrete-time form is much more flexible and easier to
implement in the estimation problem. Thus, a hybrid model parametrisation
method has evolved that involves the identification of a CT model for the
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process and a DT model for the noise [16,29,58]. The continuous-time hybrid
model of a linear dynamic system then takes the following form,

x(t) = G(p)u(t) (1.28a)

ξ(tk) = H(q−1)e(tk) (1.28b)
y(tk) = x(tk) + ξ(tk) (1.28c)

or,
y(tk) = G(p)u(tk) + H(q−1)e(tk) (1.29)

where the operators have been mixed informally here in order to illustrate
the nature of the estimation model. This approach alleviates the practical
difficulties that may be encountered in the parameter estimation of the fully
stochastic CT model.

1.5 Basic Direct Continuous-time Model Identification

1.5.1 The Traditional State-variable Filter Method

Let us first consider the transfer function (TF) model (1.23) in the simple
noise-free case (the noise-free output is denoted as x(t)), i.e.,

A(p)x(t) = B(p)u(t) (1.30)

Assume now that a SVF filter with operator model F (p) is applied to both
sides of (1.30). Then, ignoring transient initial conditions

A(p)F (p)x(t) = B(p)F (p)u(t) (1.31)

The minimum-order SVF filter is typically chosen to have the following oper-
ator model form4

F (p) =
1

(p + λ)n
(1.32)

where λ is the parameter that can be used to define the bandwidth of the
filter.
Equation (1.31) can then be rewritten, in expanded form, as

(
pn

(p + λ)n
+ a1

pn−1

(p + λ)n
+ . . . + an

1
(p + λ)n

)
x(t)

=
(

b0
pm

(p + λ)n
+ . . . + bm

1
(p + λ)n

)
u(t) (1.33)

Let Fi(p) for i = 0, 1, . . . , n be a set of filters defined as

4 The filter dc gain can be made unity if this is thought desirable.
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Fi(p) =
pi

(p + λ)n
(1.34)

By using the filters defined in (1.34), Equation (1.33) can be rewritten, as

(Fn(p) + a1Fn−1(p) + . . . + anF0(p))x(t) = (b0Fm(p) + . . . + bmF0(p))u(t)
(1.35)

Equation (1.35) can also be written as

x
(n)
f (t) + a1x

(n−1)
f (t) + . . . + anx

(0)
f (t) = b0u

(m)
f (t) + . . . + bmu

(0)
f (t) (1.36)

with

x
(i)
f (t) = fi(t) ∗ x(t)

u
(i)
f (t) = fi(t) ∗ u(t)

where fi(t), for i = 0, . . . , n represent the impulse responses of the filters
defined in (1.34) and ∗ denotes the convolution operator. The filter outputs
x

(i)
f (t) and u

(i)
f (t) provide prefiltered time derivatives of the inputs and

outputs in the bandwidth of interest, which may then be exploited for model
parameter estimation.

Consider now the situation where there is an additive noise on the output
measurement. Then, at time instant t = tk, substituting xf(t) for yf(t), (1.36)
can be rewritten in standard linear regression-like form as

y
(n)
f (tk) = ϕTf (tk)θ + η(tk) (1.37)

where η(tk) is a filtered noise term arising from the output measurement noise
ξ(tk) and the filtering operations, while

ϕTf (tk) =
[
−y

(n−1)
f (tk) · · · − y

(0)
f (tk)u

(m)
f (tk) · · ·u(0)

f (tk)
]

(1.38)

θ = [a1 . . . an b0 . . . bm]T (1.39)

Now, from N available samples of the input and output signals observed at
discrete times t1, . . . , tN , not necessarily uniformly spaced, the linear least-
squares (LS)-based SVF parameter estimates are given by

θ̂LSSVF =

[
1
N

N∑

k=1

ϕf(tk)ϕ
T
f (tk)

]−1

1
N

N∑

k=1

ϕf(tk)y
(n)
f (tk) (1.40)

It is well known that, except in the special case where η(tk) in (1.37) is zero
mean and uncorrelated (white noise), LS-based SVF estimation although sim-
ple, is unsatisfactory. For example, even if the noise term ξ(tk) in (1.24) is
white, the resultant parameter estimates are asymptotically biased and incon-
sistent. Solutions to this problem are the subject of various chapters in this
book.
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1.5.2 Example: First-order Differential Equation

The LS-based SVF method is outlined below for the case of a simple first-order
differential model given by

y(1)(t) + a1y(t) = b0u(t) + v(t) (1.41)

Applying a first-order SVF filter to both sides yields
(

p

p + λ
+ a1

1
p + λ

)
y(t) = b0

1
p + λ

u(t) +
1

p + λ
v(t) (1.42)

which can be rewritten as

(F1(p) + a1F0(p)) y(t) = b0F0(p)u(t) + F0(p)v(t) (1.43)

Equation (1.43) can be expressed for t = tk as

y
(1)
f (tk) + a1yf(tk) = b0uf(tk) + η(tk) (1.44)

and written in regression-like form as

y
(1)
f (tk) = [−yf(tk)uf(tk]

[
a1

b0

]
+ η(tk) (1.45)

Now, according to (1.40), from N available samples of the input and output
signals observed at discrete times t1, . . . , tN , not necessarily uniformly spaced,
the linear LS-based SVF parameter estimates are given by

[
â1

b̂0

]
=

⎡

⎣
1
N

N∑
k=1

y2
f (tk) − 1

N

N∑
k=1

yf(tk)uf(tk)

− 1
N

N∑
k=1

yf(tk)uf(tk) 1
N

N∑
k=1

u2
f (tk)

⎤

⎦
−1 ⎡

⎣
− 1

N

N∑
k=1

y
(1)
f (tk)yf(tk)

1
N

N∑
k=1

y
(1)
f (tk)uf(tk)

⎤

⎦

The differential equation model (1.21) and the traditional LS-based SVF es-
timator (1.40) represent the simplest archetype of direct CT model identifi-
cation.

1.6 Motivations for Identifying Continuous-time Models
Directly from Sampled Data

There are many advantages in describing a physical system using CT models
and also in identifying the CT models directly from sampled data. Here, we
implicitly assume that the sampling rate is sufficiently fast to permit the
identification of a continuous-time model from sampled data. It is true that
DT models may be better suited to the design and simulation of control
systems in a digital environment. However, because a DT model is estimated
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from sampled data with a fixed sampling rate, it is only really valid for this
chosen sampling rate in its later applications. On the other hand, if a CT
model is obtained using data collected at a fast sampling rate, this CT model
may be discretised into a DT model with any sampling rate (not necessarily
related to the original sampling rate). This is particularly advantageous in
the situation where the issue is one of choosing the appropriate sampling rate
for discrete-time system modelling and control system design.

The following subsections provide a discussion of the various issues of
continuous-time versus discrete-time modelling.

1.6.1 Physical Insight into the System Properties

Most physical phenomena are more transparent in a CT setting, as the models
of a physical system obtained from the application of physical laws are nat-
urally in a CT form, such as differential equations. A continuous-time model
is preferred to its discrete-time counterpart in the situation where one seeks
a model that represents an underlying CT physical system, and wishes to
estimate parameter values that have a physical meaning, such as time con-
stants, natural frequencies, reaction times, elasticities, mass values, etc. While
these parameters are directly linked to the CT model, the parameters of DT
models are a function of the sampling interval and do not normally have
any direct physical interpretation. For example, consider a mechanical system
represented by the following second-order CT transfer function

1
ms2 + bs + k

(1.46)

where the parameters represent the mass, elasticity and friction that have a
direct physical meaning. Now, a DT model of the same process will take the
following form

b0z + b1

a0z2 + a1z + a2
(1.47)

where z denotes the Z-transform variable. The parameters of the correspond-
ing DT model do not have a direct physical meaning.

In many areas such as, for example, astrophysics, economics, mechanics, en-
vironmental science and biophysics, one is interested in the analysis of the
physical system [3, 18, 27, 56]. In these areas, the direct identification of CT
models has definite advantages.

1.6.2 Preservation of a priori Knowledge

The a priori knowledge of relative degree (the difference between the orders of
the denominator and numerator) is easy to accommodate in CT models and,
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therefore, allows for the identification of more parsimonious models than in
discrete time. This is obvious in the example of the second-order mechanical
system, where additional parameters are introduced in the numerator of the
DT transfer function by the sampling process.

1.6.3 Inherent Data Filtering

Explicit prefiltering strategies are recommended in the general approach to
system identification [23, 52], where it is shown that these strategies improve
the statistical efficiency of the parameter estimates. However, the prefiltering
strategy is not inherent in DT model identification and the user is, there-
fore, confronted with a choice of whether to add prefiltering. This scenario is
contrasted with the situation in CT identification, where the prefiltering is in-
herent and has two roles: in addition to its original use for reconstructing the
filtered time derivatives within the bandwidth of the system to be identified,
it became clear [58] that it can perform the same, statistically meaningful
prefiltering role as in DT identification.

1.6.4 Non-uniformly Sampled Data

In some situations, it is difficult to obtain equidistant sampled data. This
problem arises in medicine, environmental science, transport and traffic sys-
tems, astrophysics and other areas, where measurement is not under the con-
trol of the experimenter or where uniform sampling is practically impossible.
For these non-uniformly sampled data systems, the standard DT linear, time-
invariant models will not be applicable because the assumption of a uniformly
sampled environment, as required for the existence of such discrete-time mo-
dels, is violated. On the other hand, the coefficients of CT models are assumed
to be independent of the sampling period and so they have a built-in capa-
bility to cope with the non-uniformly sampled data situation. With a small
modification of the data handling procedure, the measurements are considered
as points on a continuous line, which do not need to be equidistantly spaced.

1.6.5 Transformation between CT and DT Models

The parameter transformation between DT and CT representations is well
studied [32]. The poles of a DT model are mapped according to the poles
in the continuous-time model via the relation: pd = epcTs , where pd is the
discrete-time pole, pc is the continuous-time pole and Ts is the sampling
interval. However, the zeros of the DT model are not as easily mapped
as the poles. Even if the continuous-time system is minimum phase (i.e.,
all zeros in the left half-plane), the corresponding discrete-time model can
be non-minimum phase (i.e., possesses zeros outside of the unit circle). In
addition, due to the discrete nature of the measurements, the discrete-time
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models do not capture all of the information about the CT signals.

Moreover, in order to describe the signals between the sampling instants, some
additional assumptions have to be made: for example, assuming that the ex-
citation signal is constant within the sampling intervals (the zero-order hold
assumption). However, violation of these assumptions may lead to estimation
errors [35].

1.6.6 Sensitivity Problems of DT Models at High Sampling Rates

It is well known that discrete-time models encounter difficulties when the
sampling frequency is too high in relation to the dominant frequencies of the
system under study [1]. In this situation, the DT poles lie too close to the
unit circle in the complex domain and the parameter estimates can become
statistically ill-defined.

1.6.7 Stiff Systems

Stiff systems are systems with eigenvalues that are of a different order of
magnitude, i.e., the system contains both slow and fast dynamics. Since a DT
model is related to a single sampling rate, it is often difficult in such situations
to select a sampling rate that captures the complete dynamics of the system
without any compromise. In order to illustrate this scenario, suppose that
there are two time constants in a stiff system, the fast time constant is 1 (s)
and the slow time constant is 100 (s). Typically, the sampling interval Ts is
selected approximately in the range of 0.1 to 0.25 of the time constant in
order to capture the dynamics associated with this time constant. Assume
that Ts = 0.25 of the fast time constant, the poles in the discrete-time model
are then e−0.01Ts = 0.9975 and e−Ts = 0.7788; and the slow pole is now very
close to the unit circle in the complex plane (see previous subsection). As a
result, a small estimation error could cause the estimated model to become
unstable. However, if we now reduce the sampling rate, in order to avoid this
difficulty, the dynamics associated with the fast time constant can become
poorly identified. For example, suppose that Ts = 10 (s), then poles in the
discrete model are e−0.1 = 0.9048 and e−10 = 4.54×10−5; so that, although the
slow pole moves away from the unit circle, the fast pole virtually disappears
from the model structure. Thus, we see that DT models find it difficult, at a
specified sampling interval, to deal with both the quick and slow dynamics.
In contrast to this, a stiff system can be better captured by a continuous-time
model estimated from rapidly sampled data and the coefficients of this model
are independent of the sampling rate.
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1.7 Specialised Topics in System Identification

The general framework of parameter estimation for linear, time-invariant CT
models has to include the consideration of additional factors, such as the iden-
tification of the model structure (the order of the transfer function polynomials
and the size of any pure time delay), the possible non-integral nature of any
pure time delay, identification from data collected during closed-loop experi-
ments, etc. The following subsections briefly introduce these other factors and
how they are discussed in the present book.

1.7.1 Identification of the Model Structure

Data-based modelling of a continuous-time model consists of model struc-
ture identification and the estimation of the parameters that characterise this
structure. A continuous-time model structure is prescribed by its model order:
i.e., the order of its denominator polynomial and a relative degree. Due to the
relative degree, there are many candidate model structures for a given model
order. The objective of model structure identification is to select the ‘best’
model structure among all candidates, based on performance indices, which
are often the sum of squares of prediction errors, the statistical properties
of the errors and numerous statistical identification criteria. Model structure
identification will be discussed in Chapter 6.

1.7.2 Identification of Pure Time (Transportation) Delay

An important additional part of the model structure is the existence of a pure
time delay parameter. Unlike the situation in DT identification, where the
time delay is assumed to be an integral number of sampling intervals and
is often absorbed into the definition of the numerator polynomial (as lead-
ing zero-valued parameters), the time-delay parameter for CT system models
is normally associated directly with the input signal and can have a non-
integral value. As a result, the estimation of the time-delay parameter in CT
identification deserves special attention. The interesting issues, in this regard,
include simultaneously identifying the continuous-time model parameters and
time-delays. Identification of systems with unknown time-delay is discussed
in Chapters 11 and 12.

1.7.3 Identification of Continuous-time Noise Models

Identification of the system characteristics from output observations only is
referred to as time-series analysis in econometrics, blind identification in signal
processing, noise modelling in system identification, and operational modal
analysis in mechanical engineering. A fundamental problem is how to model a
continuous-time stochastic process based on sampled measurements. Several
solutions are possible. One of the key issues is how to sample a continuous-time
stochastic system. These issues are discussed in Chapter 2.
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1.7.4 Identification of Multi-variable Systems

Systems with many input signals and/or many output signals are called multi-
variable. Such systems are often more challenging to model. In particular,
systems with several outputs can be difficult. A basic reason for the difficulties
is that the couplings between several inputs and outputs lead to more complex
models. The structures involved are richer and more parameters are required
to obtain a good fit. A class of multi-variable system identification schemes,
based on the subspace estimation and state-space realisations have emerged
since the late 1980s. The use of these subspace methods to identify CT state-
space models is discussed in Chapter 10.

1.7.5 Identification in Closed Loop

Many systems have feedback that cannot be interrupted for an identification
experiment, as for example when an existing controller cannot safely be dis-
connected from an industrial process. In this situation, special procedures are
necessary to avoid identifiability problems that can be induced by the feed-
back connection. Closed-loop identification schemes are described in Chapters
5 and 13.

1.7.6 Identification in the Frequency Domain

Linear dynamic systems have equivalent and complementary descriptions: in
the time domain and in the frequency domain. Although the two descriptions
are basically equivalent to each other, the formulation of the identification
problem leads to different methods in the two domains. In many practical
situations, parameter estimation in the frequency domain is of considerable
interest [30]. Practical aspects of frequency-domain parametric identification
methods are discussed in Chapter 8.

1.7.7 Software for Continuous-time Model Identification

System identification is typically an iterative procedure, where the insights
and judgements of the user are mingled with formal considerations, exten-
sive data handling and complex algorithms. To make the application of the
identification procedure successful, it is almost always necessary to have some
user-friendly software tools to facilitate the user’s modelling. These software
aspects are discussed in Chapters 8 and 9.

1.8 Historical Review

In contrast to the present day, the control world of the 1950s and 1960s was
dominated by CT models as most control system design was concerned with
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CT systems and most control system implementations employed analogue
techniques. Moreover, almost all CT identification methods were largely de-
terministic, in the sense that they did not explicitly model the additive noise
process nor attempt to quantify the statistical properties of the parameter
estimates. Nevertheless, it is fascinating to see that some of these early papers
introduced interesting concepts that foreshadowed later, important develop-
ments of a very similar nature. For instance, Valstar [43] and Young [47, 48]
suggested the use of prefilters to solve the derivative measurement problem
and this same ‘state-variable filter’ (SVF) approach5 was re-discovered, some
20 years afterwards [34], under the title of ‘Poisson-moment functionals’
(PMF). Most early research also used completely analogue implementation,
with both the prefilters and the estimation algorithm implemented in an
analogue manner (e.g., [14, 22, 48]); while some, adumbrating developments
to come, utilised hybrid implementations where analogue prefiltering was
combined with a digital identification algorithm [47, 49]. Indeed, two of
these references [14, 22] also consider non-linear system identification, using
a purely deterministic ‘state-dependent parameter’ approach that would
emerge, many years later, in a stochastic, purely digital form (e.g., [59]).

Also in the 1960s, it was realised that measurement noise could cause
asymptotic bias on the parameter estimates when linear least squares (re-
gression) methods were used to estimate the parameters in dynamic systems.
Within a largely deterministic setting, papers appeared (e.g., [20, 46, 49, 50])
that graphically demonstrated the value of the instrumental variable (IV)
modification to both the recursive and en-bloc least squares algorithms that
had been used for CT identification prior to this. Here, the instrumental
variables were generated as the output of a recursively updated ‘auxiliary
model’ of the system that, together with the prefilters, was implemented
directly in continuous time.

Perhaps because of the dominant interest in DT identification and estimation
since 1970, a stochastic formulation of the CT estimation problem did not
appear until 1980. Then, Young and Jakeman [58], following the optimal
prefiltering and recursive-iterative estimation procedures for DT systems
(first presented in [51]), suggested an optimal ‘hybrid’ refined instrumental
variable solution to the CT identification problem (RIVC). This involves a
CT model of the system and a discrete-time ARMA model for the noise.
However, at that time, it was only implemented in a simplified form (SRIVC)
that yields consistent and statistically efficient parameter estimates when the
additive noise ξ(t) in (1.24) is white.

Responding to the research on RIVC estimation, Huang et al. [15] imple-
mented an alternative hybrid solution that allowed for coloured noise and

5 Also called the ‘method of multiple filters’ [49].
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utilised a gradient optimisation algorithm, rather than the iterative solution
used in the SRIVC algorithm and proposed in the RIVC algorithm. However,
they chose to convert the problem into an entirely DT form and so did not
implement the prefilters and auxiliary model explicitly in continuous time.
Also, they did not present any stochastic simulation results and, as such, it
is not possible to reach any clear conclusions about the statistically efficiency
of the algorithm.

Despite these excursions into stochastic systems and full statistical estima-
tion, most publications on CT identification during the 1970s and 1980s were
deterministic in concept and suggested various methods of implementing pre-
filters (see [8] for a recent overview for example). Most of the deterministic
approaches are available in the continuous-time system identification (CON-
TSID) toolbox6 for MATLAB� (see Chapter 9 in this book). Since the deter-
ministic methods have been documented so fully, it will suffice here merely to
outline the main features of each approach.

Linear Filter Methods

These methods originated from the third author’s early research in this
area [47, 48, 50] where the method was referred to as the ‘method of multi-
ple filters’ (MMF). It involves passing the input and output signals through a
chain of (usually identical) first-order prefilters with user-specified bandwidth,
normally selected so that it spans the anticipated bandwidth of the system
being identified (see Section 1.5.2 for the simplest example of this method).
More recently this MMF approach has been re-named the generalised Poisson
moment functionals (GPMF) approach [34, 40]. Recent MMF/GPMF devel-
opments have been proposed by the first author and his co-workers [2,7,9–11].

Integration-based Methods

The main idea of these methods is to avoid the differentiation of the data
by performing an order n integration. These integral methods can be roughly
divided into two groups. The first group, using numerical integration and
orthogonal function methods, performs a basic integration of the data and
special attention has to be paid to the initial condition issue. The second
group includes the linear integral filter (LIF: [33]) and the re-initialised partial
moments (RPM: [6]) approaches. Here, advanced integration methods are used
to avoid the initial condition problem either by exploiting a moving integration
window (LIF) or a time-shifting window (RPM).

6 http://www.cran.uhp-nancy.fr/contsid: the CONTSID toolbox also contains the
SRIVC and RIVC algorithms.
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Modulating Function Methods

This approach was first suggested almost half a century ago by Shinbrot
in order to estimate the parameters of linear and non-linear systems [36].
Further developments have been based on different modulating functions.
These include the Fourier-based functions [26], in either trigonometric or
complex exponential form; spline-type functions; Hermite functions and,
more recently, Hartley-based functions [42]. A very important advantage of
using Fourier- and Hartley-based modulating functions is that the model
estimation can be formulated entirely in the frequency domain, making it
possible to use efficient DFT/FFT techniques.

Other Methods

Several other approaches have been suggested that cannot be classified
directly into any of the categories discussed in the previous subsections.
An interesting approach is reported in [16] where the idea is to replace the
differentiation as represented by the Laplace operator s by the operator w.
These operators are related via the bilinear relationship w = s−a

s+a . The new
w-domain model can be estimated directly from sampled data, using filtered
signals. Afterwards, the parameters of this model are translated back to the
parameters of the ordinary continuous-time model, using simple algebraic
relations. The w operator can be an all-pass filter. In this case, the filter
does not alter the frequency content of the signals and only affects the phase.
This setup is closely related to the SVF method (see also [5] for a related
scheme where the filters take the form of CT Laguerre functions). Two
other approaches that have attracted a lot of attention in the identification
community in the 1990s are subspace-based methods (see [2, 13, 17,21,24,25]
but also Chapter 10 in this book) and finite difference methods [19, 28, 38].
This latter approach, which is based on replacing the differentiation operator
with finite differences, will be considered in some depth in this book (see
Chapters 2 and 3).

Most recently, attention has re-focused on stochastic model identification and
statistically optimal CT estimation procedures. First, in discussing a paper on
optimal CT identification by Wang and Gawthrop [44], Young [54] drew at-
tention to the virtues of the existing SRIVC estimation algorithm and demon-
strated its superiority in a simulation example. This encouraged, at last, the
implementation of the full hybrid RIVC algorithm [57] that is presented and
evaluated in Chapter 4 of this book, as well as the development of an associ-
ated closed-loop version of the algorithm [12], which is described in Chapter
5. A useful by-product of this renewed interest in these optimal algorithms is
that optimal RIV algorithms are now available for Box–Jenkins-type stochas-
tic transfer function models of CT and DT systems, providing a unified ap-
proach to the identification and estimation of transfer function models [55].
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Table 1.1. Organisation of the book

Topics User’s choice
Experiment design Chapter 8
Model structure determination Chapter 6
Model parameter estimation Chapters 2, 3, 4, 7, 14
Model validation Chapter 6, 10
Closed-loop identification Chapters 5, 13
Subspace identification Chapter 10
Frequency-domain identification Chapter 8
Identification of noise models Chapter 2
Time-delay identification Chapters 11, 12
Identification from non-uniformly sampled data Chapters 2, 9, 11
Software aspects Chapters 8, 9
Practical examples Chapters 4, 7, 8, 9, 11, 13

1.9 Outline of the Book

The aim of this book is to bring together contributions from well-known
experts in the field of continuous-time system identification from sampled
data. The book is written as a research monograph with a survey focus. It
is meant to be interesting for a broad audience, including researchers and
graduate students in systems and control, as well as in signal processing. It
also comprehensively covers material suitable for specialised graduate courses
in these areas.

Table 1.1 illustrates the book’s structure in relation to the system identifica-
tion procedure and specialised topics of direct CT model identification from
sampled data.

The book begins with the work by Erik Larsson, Magnus Mossberg, and
Torsten Söderström. In Chapter 2, the authors describe identification of
continuous-time systems using discrete-time data via the approximation of
the derivatives in the continuous-time description. They focus on continuous-
time stochastic systems and study the effect of random noise in the data on
the estimated parameters. The chapter begins with the concepts of modelling
and sampling of continuous-time stochastic systems, followed by several
simple examples that illustrate how and why first-order approximations of
the derivatives may result in bias errors of the estimated continuous-time
system parameters. The authors proceed to generalise the approximations
of the derivatives by imposing conditions on the coefficients of the ap-
proximation equations, which create a bandpass effect for the differential
operators, instead of a high-pass one. The end result of this modification is
a class of more robust estimation algorithms, particularly in the presence of
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unmodelled wide-band noise. Interestingly, the authors extend the results
obtained for the case of uniformly sampled data systems to non-uniformly
sampled data systems by modifying the coefficients of the approximation
equations to include the variation of sampling interval. The authors have also
shown how to compute the Cramér–Rao bound for both uniformly sampled
and non-uniformly sampled data systems.

In Chapter 3, Juan Yuz and Graham Goodwin continue the discussion of
identification of continuous-time models using discrete-time data via the
approximation of continuous-time derivatives. More precisely, the sampled
data models expressed using the δ operator are used to estimate the pa-
rameters of the underlying continuous-time system. The authors analyse the
potential problems, information loss and the robustness issues associated with
this approach to continuous-time system identification using discrete-time
data. The authors argue that one always needs to define a bandwidth of
validity relative to the factors that include sampling rate, nature of input
between samples, nature of sampling process, the system relative degree and
high-frequency poles and zeros, ensuring the analysis is restricted to the
bandwidth defined. The authors then describe time and frequency-domain
methods for ensuring insensitivity to high-frequency folded artifacts in the
identification of continuous-time systems from sampled data.

In Chapter 4, Peter Young, Hugues Garnier and Marion Gilson depart
from the approaches using approximation of continuous-time derivatives.
Instead, they focus on the identification and estimation of continuous-time
hybrid Box–Jenkins transfer function models from discrete-time data. In this
chapter, the model of the dynamic system is estimated in continuous-time,
differential equation form, while the associated additive noise model is
estimated as a discrete-time, autoregressive-moving average process. The
differential operator in the continuous-time dynamic model is replaced by the
filtered differential operator, which effectively overcomes the high-pass nature
of the differential operator via the appropriate choice of the filters. Their
approach involves concurrent discrete-time noise model estimation and uses
this estimated noise model in the iterative-adaptive design of statistically
optimal prefilters that effectively attenuate noise outside the passband of
the system. As a result, the optimal prefilters prewhiten the noise remaining
within the bandwidth. Instrumental variable (IV) methods are used in
conjunction with the prefiltering and noise modelling to achieve optimal
estimation results. The evaluation of the developed algorithms is based on
comprehensive Monte Carlo simulation analysis, as well as on two practical
examples selected from environmental and electro-mechanical fields.

In Chapter 5, Marion Gilson, Hugues Garnier, Peter Young and Paul Van
den Hof continue the discussion on instrumental variable identification of
continuous-time systems. However, they focus their attention on closed-loop
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systems. The authors argue that closed-loop identification of continuous-time
models is still an issue that has not received adequate attention, which needs
to be addressed. In a general framework of instrumental variable identifi-
cation, the authors present several instrumental variable and instrumental
variable-related methods. Furthermore, a statistically efficient method of
closed-loop IV estimation is proposed together with several design variables
that are required for the estimation. In order to achieve minimum variance
in the estimation, a priori information about the noise model is required.
The authors propose several bootstrap methods for extracting this required
information approximately from the measurement data. A comparison
between the proposed methods is illustrated, with a simulation example
showing that the optimal estimator can be accurately approximated by an
appropriate choice of the design parameters.

In Chapter 6, Liuping Wang and Peter Young present new results in
instrumental variable identification to address the potential singularity issue,
the selection of the best model structure and the computation of prediction
errors in the spirit of cross-validation. By assuming a priori knowledge of
the relative degree and a maximum model order for the continuous-time
system structure, the authors propose an instrumental variable solution of
all candidate models within this frame. The instrumental variable solution is
based on UDV matrix factorisation, where the higher-order model parameter
estimates will not affect the lower-order parameter estimates, allowing the
natural truncation of model orders. Another important contribution of
this chapter is the derivation of the mathematically compact formulae for
the computation of prediction errors based on the instrumental variable
identification algorithm. The prediction errors that are in the spirit of
cross-validation, calculated for all candidate models in a systematic manner,
provides an effective tool for the selection of a continuous-time model
structure.

In Chapter 7, Liuping Wang and Peter Gawthrop propose a two-step
approach to continuous-time model identification. In the first step, the
authors use the frequency-sampling filters model to compress a given set
of experimental data for a dynamic system to a non-parametric model in
the form of a discrete-step response/frequency response with a link to their
continuous-time counter-part. The authors point out that in the context
of continuous-time system identification when the system is operating in
a fast sampling environment, the frequency sampling filters model has the
advantage over the traditional finite impulse response (FIR) model, and yet
maintains the same fundamental features of an FIR model. Because the
data compression is model based, discrete-time noise models are naturally
embedded to allow optimal estimation. The authors also show that the
nature of the frequency-sampling filters model permits the incorporation
of a priori knowledge such as gain, frequency response, and time delays,
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into the estimation algorithm through equality or inequality constraints.
The solution is in the form of quadratic programming with extension to
multiple-input and multiple-output systems. Having obtained the relatively
noise-free step-response data, the methods proposed from Chapters 2–5 in
this book could be applied to obtain a continuous-time transfer function
model as the second step of the integrated approach. However, as an
alternative, the authors choose to focus on the identification of a partially
known continuous-time system; this is essentially a non-linear optimisation
problem. This optimisation is simplified by the fact that the step response
is a relatively short and noise-free representation of the original data. As
an illustration, a partially known system consisting of an unknown unstable
system with a known stabilising controller in the feedback loop is identified
using the methods of this chapter.

In Chapter 8, Rik Pintelon, Johan Schoukens and Yves Rolain present some
practical aspects of frequency-domain approaches to continuous-time system
identification in a tutorial style. The chapter begins with the description
of inter-sample behaviour and the measurement setup, particularly in the
frequency domain. They specifically assume a band-limited continuous-time
white noise as the source of disturbances. Then, the authors move on to
discuss identification of both continuous-time and discrete-time parametric
models using frequency-response analysis. This is particularly useful in
continuous-time modelling as the Laplace variable becomes a simple complex
variable iω without the complication of using implementation filters or ap-
proximation of the derivatives. The leakage errors and residual alias errors are
quantified accordingly. The authors point out that with periodic excitation
signals, both errors will vanish. In the stochastic framework, the authors
extend the study scope to include identification in closed-loop systems.
Within this framework, the authors discuss the properties of frequency-
domain Gaussian maximum likelihood estimators, and their solutions when
using either a periodic excitation signal or an arbitrary excitation signal. To
demonstrate the practical aspects of the frequency-domain approaches, the
authors present two real-world applications: one is the modelling analysis
for an operational amplifier, while the other is a flight-flutter analysis. The
chapter is concluded with guidelines for continuous-time modelling, based on
the authors’ experience in the past two decades.

In Chapter 9, as a followup to Rik Pintelon, Johan Schoukens and Yves Ro-
lain’s practical aspects of the frequency-domain approach to continuous-time
system identification, Hugues Garnier, Marion Gilson, Thierry Bastogne
and Michel Mensler present software-development aspects of time-domain
continuous-time system identification. The authors have developed a
continuous-time system identification (CONTSID) toolbox that was intended
to fill the gap between theoretical and algorithmic development and to provide
handy tools that engineers can use in a day-to-day operation. The toolbox
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is a successful implementation of the time-domain methods developed over
the last three decades for estimating continuous-time linear transfer function
or state-space models directly from uniformly and non-uniformly sampled
input–output data. This chapter gives an overview of the toolbox, discusses
the advantages of direct continuous-time model identification methods from
sampled data and illustrates them on three practical examples selected from
robotic, biological and electro-mechanical fields.

In Chapter 10, Rolf Johansson presents the theory, algorithms and validation
results for system identification of continuous-time state-space models from
finite input–output sequences. The algorithms developed are methods of
subspace model identification and stochastic realisation adapted to the
continuous-time context. The resulting model can be decomposed into an
input–output model and a stochastic innovation model. Using the Riccati
equation, the author has designed a procedure to provide a reduced-order
stochastic model that is minimal with respect to system order as well as the
number of stochastic inputs thereby avoiding several problems appearing in
standard application of stochastic realisation to the model validation problem.

Identification of continuous-time systems with time delay is an important
issue. The book devotes the next two chapters to present new approaches in
this area. In Chapter 11, Salim Ahmed, Biao Huang and Sirish Shah discuss
how to estimate a continuous-time time-delay system from measurements
with an extension to non-uniformly sampled data. Unlike the majority of the
more traditional approaches in which time delay is estimated as part of a
non-linear optimisation scheme, their approach embeds this parameter into
the linear-in-the-parameter regression. Hence, it can be estimated directly as
part of the parameters in the continuous-time transfer function model. With
this modification, the existing continuous-time estimation techniques in the
framework of linear regression, such as the results presented in Chapters 3 to
8, can be naturally applied to estimate a continuous-time transfer function
model along with its time delay. The authors extend their estimation results
to include the case of non-uniformly sampled data, where continuous-time
basis-function models are used as part of the iterative scheme for predicting
and interpreting the missing data during the sampling period. The authors
also present two applications: one is the continuous-time model identification
of a dryer while the other is a mixing process.

In Chapter 12, Zi-Jiang Yang takes a different approach to identification of
continuous-time systems with multiple delays. The author formulates the
objective of estimating both the parameters of the transfer function model
along with time-delay parameters as a non-linear optimisation problem.
Along the lines of gradient methods, the author presents an unseparable
non-linear least squares (UNSEPNLS) method and a separable non-linear
least squares (SEPNLS) method. These approaches are modified to include
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instrumental variables in the optimisation procedure to eliminate bias errors
due to measurement noise. Simulation studies for SISO systems are provided.
It is shown that if the initial parameters are suitably chosen, the UNSEPNLS
and SEPNLS algorithms work quite well in the case of low measurement
noise, and their modified versions with instrumental variables yield consistent
estimates in the presence of high measurement noise. Strategies are also
incorporated to avoid the local convergence of the iterative algorithms.

The last two chapters of this book are devoted to two special approaches
in continuous-time system identification. In Chapter 13, Michel Fliess and
Hebertt Sira-Ramı́rez use algebraic tools stemming from module theory,
operational calculus and differential algebra to tackle the problems of
parametric identification of linear continuous-time systems. Their solutions
are robust in the presence of noise and can be implemented in real time. One
of the applicable areas is in identification of closed-loop systems. The authors
carefully explain the mathematical machinery used in the development, and
provide several case studies to illustrate the applicability of their work.

The book concludes with Chapter 14 where Rolf Johansson uses systems-
analysis tools in continuous-time system identification. There are three stages
involved in the estimation of a continuous-time model. The first stage provides
discrete-time spectral estimation with an unbiased estimate of the input–
output transfer function in the case of uncorrelated noise and control input.
The second stage provides an unbiased, overparameterised continuous-time li-
near model. Finally, the third stage of the algorithm provides a passivity pre-
serving model order reduction resulting in a reduced-order continuous-time
state-space model maintaining the same spectral properties and interpreta-
tions.

1.10 Main References

Early research on system identification focused on identification of CT mo-
dels from CT data (e.g., [47]). Subsequently, however as previously said, rapid
developments in digital data acquisition and computers have resulted in atten-
tion being shifted to the identification of discrete-time models from sampled
data, as documented in many books (see, e.g., [23, 39,52]).
The first significant survey to the subject of identification of CT models
written by Young [45] appeared in 1981. Subsequently, Unbehauen and Rao
tracked further developments in the field [40,41]. A book was also devoted to
the subject of identification of CT models [37]. Recent surveys can be found
in [8, 31,42,56].
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2.1 Background and Motivation

Identification of continuous-time (CT) systems is a fundamental problem that
has applications in virtually all disciplines of science. Examples of mathemat-
ical models of CT phenomena appear in such diverse areas as biology, eco-
nomics, physics, and signal processing. A small selection of references are cited
below. Models in the economics of renewable resources, e.g., in biology, is dis-
cussed in [9]. Sunspot data modelling by means of CT ARMA models is carried
out in [39]. Aspects of economic growth models is the topic of [59]. Models for
stock-price fluctuations are discussed in [48] and stochastic volatility models
of the short-term interest rate can be found in [2]. The use of Ito’s calculus
in modern financial theory with applications in financial decision making is
presented in [36]. Continuous-time models for the heat dynamics of a building
is described in [35]. Modelling of random fatigue crack growth in materials
can be found in [50], and models of human head movements appear in [20].
Identification of ship-steering dynamics by means of linear CT models and the
maximum likelihood (ML) method is considered in [6]. Numerous other exam-
ples of applications of stochastic differential equations (SDEs) can be found in
the literature. See, for example, [25, Chapter 7] where various modelling ex-
amples, including population dynamics, investment finance, radio-astronomy,
biological waste treatment, etc. can be found.

A major reason for using CT models is that most physical systems or phe-
nomena are CT in nature, for example in many control applications. Due to
the advent of digital computers, research for control and identification of these
CT systems and processes has concentrated on their discretised models with
samples from the underlying CT system inputs and outputs. Recently inter-
est in identification of CT systems and processes has arisen (see the above

† This work was performed during Erik Larsson’s PhD studies at Uppsala Univer-
sity.
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references). The parameters in CT models are strongly correlated with the
physical properties of the systems; something that is very appealing to an
engineer. One particularly interesting and practical scenario is identification
of CT systems using discrete-time (DT) data.

Most results on identification of CT models are developed in a deterministic
perspective, [43]. Sometimes features are included to make the estimates less
sensitive to measurement noise in general. The theme of this chapter is rather
to describe identification methods that are well suited to cope with random
disturbances. Hence, we focus on stochastic systems and study in particular
what effects random noise in the data has on the parameter estimates.

Lately, the problem of system identification from irregularly sampling time
instants has received some attention. Irregular sampling is common in such
diverse applications as time-series analysis [1,44], radar imaging [22], medical
imaging [24], and biomedicine [37]. One obvious special case when the mea-
surements are irregularly spaced is when the underlying sampling process is
uniform but some samples are occasionally missing, which can happen because
of sensor failures, or some other inability to observe the system. However, the
sampling process can also be of a more general form, i.e., not necessarily as-
sociated with a missing-data scenario. Furthermore, the sampling process can
be deterministic or random, and the random times of observations may be
dependent on or independent of the actual process.

A main concern when dealing with irregularly observed data is that the (com-
putational) complexity of conventional methods, such as the prediction error
method (PEM), increases substantially. Another intriguing question relevant
to irregular sampling is how a particular sampling scheme will affect the pro-
perties of the corresponding estimation problem. Inevitably, a missing-data
scenario will result in loss of information; the question is how this informa-
tion loss will impact the parameter estimation problem. Although the original
data process is ergodic and/or stationary, the subprocess, due to the missing
data, may not be ergodic and/or stationary. In general, if the sampling pro-
cess is nonuniform, a sampled representation of the system may be hard (or
impossible) to obtain. In this case, it may be better to work with a CT rep-
resentation of the dynamic system, and estimate its parameters directly from
the (unevenly sampled) measured data, without going via a sampled represen-
tation of the system. Even though some of the mathematics associated with
CT stochastic dynamic systems is more complicated than the corresponding
theory for DT systems, a CT description of a dynamic system is usually easy
to obtain since many physical systems are naturally modelled in continuous
time. Consequently, CT modelling has been shown to be a way forward in a
number of applications.
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The chapter is organised as follows. In the next section we describe basic mo-
dels of CT stochastic systems, where SDEs play an important role. Estimation
methods are typically based on DT measurements, so the transformation into
DT models is important, and Section 2.3 deals with sampling of stochastic
CT models. Section 2.4 describes two basic approaches for identifying CT
systems. One is the direct approach, where the CT model parameters are es-
timated directly. The second is the indirect approach, where first a DT model
is fit to data, and then transformed into CT. Some simple examples, showing
that there are many traps when using simple estimation techniques, and that
the presence of CT noise can produce large errors in the estimates are given
in Section 2.5. More systematic approaches for direct methods are given and
analysed in Section 2.6. The Cramér–Rao lower bound (CRB) gives a per-
formance limit in many estimation problems. How to compute such bounds
in the case of identifying stochastic CT systems is described in Section 2.7.
Section 2.8 is devoted to some numerical studies of direct methods, while
Section 2.9 contains conclusions of the chapter.

The notations used in the chapter follow basically the general conventions for
this book. A few exceptions are that the sampling interval is denoted by h, tk
denotes a general kth time point, particularly for irregularly sampled data, t
may denote either continuous or discrete time, and � denotes a definition.

2.2 Modelling of Continuous-time Stochastic Systems

We consider processes with rational spectra. Note that this condition on the
spectrum is natural and non-restrictive for many CT phenomena, see Sec-
tion 2.1. More exactly, the spectrum is described as

Φc(s) = σ2 D(s)D(−s)
A(s)A(−s)

(2.1)

where

A(s) =
n∏

i=1

(s − ρi) = sn + a1s
n−1 + · · · + an (2.2)

D(s) =
m∏

i=1

(s − ηi) = sm + d1s
m−1 + · · · + dm (2.3)

with m < n. By assumption, A(s) and D(s) are coprime, and the zeros of A(s)
and D(s), here denoted by ρi and ηi, respectively, are in the left half-plane.
Note that the roll-off rate of the spectrum, i.e., how fast the spectrum tends
to zero for high frequencies, is given by 2(n − m).

The process with the spectrum (2.1) is represented in the time domain as
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A(p)y(t) = D(p)ec(t) (2.4)

where p denotes the differentiation operator and where ec(t) is CT white noise
with intensity σ2. The process y(t), which is n−m−1 times differentiable, is a
CT ARMA, or CARMA, process, and the case D(s) = 1 is referred to as a CT
AR, or CAR, process. Continuous-time white noise, see, e.g., [4], is defined
as a stationary Gaussian process with zero mean and constant spectrum.
However, such a continuous-time white noise process does not exist in the
traditional sense because its variance is infinite. To define CT white noise
mathematically we have to rely on generalised functions. In other words, CT
white noise is a mathematical trick used when modelling a given spectrum,
and not a physically present signal of infinite variance.

Formally, the linear SDE

dx(t) = Ax(t) dt + dw(t)
y(t) = Cx(t)

(2.5)

is used instead of (2.4). Here, x(t) is an n-dimensional state vector, w(t) a
Wiener process with incremental covariance Σ dt, and the initial value x(t0)
is a Gaussian random variable with zero mean and covariance matrix P 0, and
independent of w(t). By including an input signal u(t) in (2.5), the resulting
SDE

dx(t) = Ax(t) dt +Bu(t) dt + dw(t)
y(t) = Cx(t)

(2.6)

can describe a CT ARMAX, or CARMAX, process

A(p)y(t) = B(p)u(t) + D(p)ec(t) (2.7)

where
B(s) = b1s

n−1 + · · · + bn (2.8)

The special case D(s) = 1 gives a CT ARX, or CARX, process. More material
on modelling of CT stochastic systems can be found in [4, 53].

2.3 Sampling of Continuous-time Stochastic Models

A main characteristic of CT models is that the signals are functions of a CT
variable. In practice, however, it is obviously impossible to observe a process
continuously over any given time period, due to, for example, limitations on
the precision of the measuring device or due to unavailability of observations
at every time point. Consequently, it is very important to know what happens
when a CT process is observed at DT instances. The process of converting a
CT system into a corresponding DT system is referred to as sampling. One
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should be aware that there exist different notions of sampling. For instance,
in the control literature deterministic (or zero-order hold) sampling is often
assumed, which is characterised by the input being kept constant between the
sampling instants. In the context of CT stochastic models sampling means
that the obtained DT stochastic process is a sequence of stochastic variables
with the same second-order statistical properties as the original CT system
at the sampling instants. Inevitably, when sampling a system we may lose
information about the system since we only observe the system at certain
DT points. In particular, a complete probabilistic description of the original
system conditioned on the observations can in general not be obtained; the
linear Gaussian case being an important exception.

Reconsider the linear SDE (2.6),

dx(t) = Ax(t) dt +Bu(t) dt + dw(t)
y(t) = Cx(t)

(2.9)

Let us assume that u(t) and y(t) are sampled (observed) at the DT instants
t1, t2, . . . , tN , and we want equations that relate the values of the state vector
x(t) and the measured signals u(t) and y(t) at the sampling instants. It holds
that the solution of the SDE (2.9) is given by (see, e.g. [4, 53])

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−s)Bu(s) ds

︸ ︷︷ ︸
I1

+
∫ t

t0

eA(t−s) dw(s)
︸ ︷︷ ︸

I2

(2.10)

Clearly, the explicit solution of (2.10) depends on the two integrals I1 and
I2. In particular, we notice two things:

• the solution of I1 depends on the properties of the input signal u(t). Con-
sequently, we cannot solve (2.10) without knowledge or assumptions about
u(t). We will come back to this issue in Section 2.3.2;

• the second integral, I2, is a so-called stochastic integral. This integral can-
not be attributed a rigourous meaning by using classical integration theory.
To fully understand its characteristics we need tools from the theory of
SDEs, see, e.g. [4]. The solution to I2 will be treated in more detail in
Section 2.3.1 below.

In order to simplify the presentation we will begin by considering the stochas-
tic part (I2) in more detail. Hence, for now we assume that u(t) ≡ 0 so the
contribution from (I1) is zero.

2.3.1 Sampling of CARMA Systems

Consider the CARMA process y(t) defined in Section 2.2. Let us represent
the process y(t) in state-space form (see (2.5)) as
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dx(t) = Ax(t) dt + dw(t)
y(t) = Cx(t)

(2.11)

wherew(t) is a Wiener process with incremental covariance matrixΣ dt. Then
it can be shown (see, e.g. [4, 53]) that the sampled version of (2.11) satisfies

x(tk+1) = F (hk)x(tk) + v(tk)
y(tk) = Cx(tk)

(2.12)

where hk � tk+1 − tk,

F (hk) = eAhk (2.13)

and where v(tk) is DT white noise with zero mean and covariance matrix

Rd(hk) =
∫ hk

0

eAsΣeAT s ds (2.14)

The DT system (2.12) is referred to as the sampled counterpart of the CT
system (2.11). This sampling procedure is commonly referred to as exact or
instantaneous sampling in the literature. The sampled system (2.12) will have
the same second-order statistical properties as the original system (2.11), but,
in general, it is time varying and non-stationary.

Let us now turn to the more specific situation with equidistant sampling, i.e.,
when hk = h is fixed. In this case (2.12) becomes a time-invariant system

x(kh + h) = Fx(kh) + v(kh)
y(kh) = Cx(kh)

(2.15)

where F = eAh, and where v(kh) is DT white noise with zero mean and
covariance matrix

Rd =
∫ h

0

eAsΣeAT s ds (2.16)

Also, we would like to point out that in order to generate DT data from a linear
CT stochastic system, the correct way is to go via the sampled counterpart.
In other words, determine the sampled version of the CT system (as outlined
above), and use the sampled system to generate data at the desired sampling
instants. Note that there is no approximation of the underlying SDE involved
in this approach.

Another common way of representing the system (2.15) is via the DT ARMA
model

Dd(q)y(kh) = Cd(q)e(kh) (2.17)
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where e(kh) is DT white noise with zero mean and variance λ2, and Cd(z) and
Dd(z) are stable polynomials. The variance λ2, and the polynomials Dd(z)
and Cd(z) can be found by means of spectral factorisation

λ2 Cf(z)Cd(z−1)
Dd(z)Dd(z−1)

= C(zI − F )−1Rd(z−1I − F T )−1CT (2.18)

It turns out that Cd(z) and Dd(z) have the following structure

Dd(z) =
n∏

i=1

(z − κi), Cd(z) =
n−1∏

i=1

(z − ζi) (2.19)

where
κi = eρih, i = 1, . . . , n (2.20)

and ρi (see (2.2)) is a CT pole and κi (see (2.19)) is the corresponding DT
pole. A similar relation between the CT and DT zeros can in general not be
described by a closed-form expression. However, for small sampling intervals,
some explicit but approximate results exist. It holds that

Cd(z) = C1(z)C2(z) (2.21)

where the n−m− 1 zeros of C1(z) are usually referred to as sampling zeros,
and where the m zeros of C2(z) are often called intrinsic zeros. Furthermore,
it can be shown that as the sampling interval tends to zero, the zeros of
C1(z) converge to the zeros of a constant polynomial that does not depend
on the CT parameters, and the zeros of C2(z) converge to z = 1, see [5,
61]. In particular, it follows that sampling of a CAR process yields a DT
ARMA process with Cd(z) = C1(z). This will have a profound impact when
estimating CAR models using DT data, see Section 2.5. Further results and
extensions can be found in [27,28].

2.3.2 Sampling of Systems with Inputs

Reconsider the linear SDE (2.6),

dx(t) = Ax(t) dt +Bu(t) dt + dw(t)
y(t) = Cx(t)

(2.22)

where x(t), y(t), and u(t) are the state vector, and the output and input
signals, respectively. As mentioned earlier, the solution of (2.22) depends on
the input signal u(t). Up to this point we have focused on the stochastic part
of (2.22) and assumed that the input is zero (u(t) ≡ 0). We will now show
how to deal with the input for two cases of particular interest.
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Example 2.1. The first example targets situations when we do not have full
knowledge about the input u(t). In such cases it is common to assume that
the input is a CT stochastic process with random realisations. This is, for
example, achieved by assuming that u(t) is described by a linear SDE

dx2(t) = A2x2(t) dt + dw2(t)
u(t) = C2x2(t)

(2.23)

where w2(t) is a Wiener process with incremental covariance matrix Σ2 dt.
In order to sample (2.22) where the input u(t) is described by (2.23), it is
convenient to write (2.22) and (2.23) jointly as

[
dx(t)
dx2(t)

]
=
[
A BC2

0 A2

][
x(t)
x2(t)

]
dt +

[
dw(t)
dw2(t)

]

[
y(t)
u(t)

]
=
[
C 0
0 C2

][
x(t)
x2(t)

] (2.24)

Then, we can simply apply the techniques discussed in Section 2.3.1 in order
to sample (2.24).

Example 2.2. Another common alternative is to assume that the input is kept
constant between consecutive samples. This assumption is natural in cases
when we have full knowledge of u(t) and its behaviour. For example, in a
computer-controlled system, the input to the process is kept constant until
a new value is calculated in the control algorithm. The procedure can be
described as that of using a sample-and-hold circuit between the control al-
gorithm in the computer and the CT process to be controlled. In this case it
can be shown that the sampled system (2.22) satisfies

x(tk+1) = F (hk)x(tk) + Γ (hk)u(tk) + v(tk)
y(tk) = Cx(tk)

(2.25)

where hk = tk+1 − tk, F (hk) is given in (2.13), v(tk) is DT white noise with
zero mean and covariance matrix Rd(hk) defined in (2.14), and

Γ (hk) =
∫ hk

0

eAs dsB (2.26)

2.4 A General Approach to Estimation of
Continuous-time Stochastic Models

There exist several different methods for estimating CT stochastic models
from DT measurements. We will begin by describing a general framework
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applicable to a large class of CT models, including the models treated in
Section 2.2. This framework is based on a prediction error methodology [3,33,
57] and results presented in Section 2.3.

For simplicity, let us consider the model (2.5),

dx(t) = Ax(t) dt + dw(t)
y(t) = Cx(t)

(2.27)

where w(t) is a Wiener process with incremental covariance Σ dt. The model
(2.27) is parameterised by θ, which may appear in the matrices A, C,
and Σ. The aim is to estimate θ from possibly irregular DT measurements
y(t1), . . . , y(tN ).

From Section 2.3 we know that sampling of the model (2.27) yields the time-
varying DT model (2.12). Needless to say, the model matrices F (hk), C, and
Rd(hk) in (2.12) may now depend on θ and hk in a rather intricate manner.
The basic prediction error estimate of θ is then obtained as

θ̂ = arg min
θ

VPEM(θ), VPEM(θ) =
1
N

N∑

k=1

ε2(tk;θ) (2.28)

where the prediction errors ε(tk;θ) are found from the DT model (2.12) by
means of the Kalman filter, see, e.g. [3, 53]. Some comments are in order

• the minimisation in (2.28) is performed using some standard numerical
minimisation scheme. This requires repeated evaluations of the cost func-
tion VPEM(θ), in which the sampling procedure and the Kalman filtering
step have to be carried out each time tk. Consequently, this approach can
become computationally very intense;

• by modifying the cost function VPEM(θ) according to

VML(θ) =
1
N

N∑

k=1

(ε2(tk;θ)
r(tk;θ)

+ log{r(tk;θ)}
)

(2.29)

where r(tk;θ) is the variance of ε(tk;θ), we obtain the ML estimate, which
is known to be consistent and statistically efficient under rather weak as-
sumptions (identifiability, etc.).

• It is straightforward to include an input component in the model (2.27).
However, in this case the sampling procedure will depend on the current
assumption regarding the input, cf. Section 2.3.2. Furthermore, DT mea-
surement noise can easily be introduced into this framework.

• For equidistant sampling, the computational load will be substantially
reduced since both the sampling process and the Kalman filter algorithm
are simplified.
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2.4.1 Direct and Indirect Methods

Traditionally, methods for estimating CT models are often classified into two
broad categories

• direct methods. These methods can work either with approximate or exact
DT models. The methods work in two steps. For approximate DT models
the first step consists of using DT approximations for signals and opera-
tors in the CT model. The result is, in general, an approximate DT model
where the original parameterisation is kept. The main role of the first
step is to handle the non-measurable input and output time derivatives.
In the second step, the CT parameters are estimated from the model ob-
tained in the first step using some identification scheme. The main point
with these direct methods is that the desired parameters are estimated
directly without any need of introducing additional auxiliary parameters.
Traditionally, the DT approximations in the first step are considered to
be linear operations, which can be interpreted as input and output signal
preprocessing.

In contrast to the previous point, the first step can also be made exact.
For example, the framework described previously in (2.27)and (2.28), can
be considered to be a direct approach. In that case, the first step would
correspond to the sampling procedure, which yields an exact DT model
(parameterised using the CT model parameters). Note, though, that the
sampling process is not a linear operation. It is important to realise this
distinction between approximate and exact direct methods, since they gen-
erally have different characteristics. In-depth studies of some approximate
direct methods for estimation of CARX models will be treated in Sec-
tions 2.5 and 2.6;

• indirect methods. In indirect methods the CT model is transformed into a
corresponding DT model that is identified. The desired CT system param-
eters are then obtained by transferring the DT model back into CT. As
an example, let us reconsider the model (2.27) and assume that observa-
tions are equidistant. Then, the corresponding sampled version of the CT
model is given by a DT ARMA model, see (2.17). The parameters of the
DT model (the parameters of Dd(q) and Cd(q)) are then estimated using
some standard technique and the original parameters are finally obtained
by reverse sampling of the estimated DT model. One thing to note is that
the DT parameters enter linearly (w.r.t. q) in the model (2.17), which
makes it fairly easy to calculate prediction errors, gradients, and Hessians.
This is important in order to improve the performance of the involved
minimisation algorithms and to decrease the computational load. On the
other hand, it is evident that indirect methods are not suited for irregular
sampling since the DT model becomes time varying. Finally, we would
like to point out that the transformation from CT into DT is generally
assumed to be exact for indirect methods. However, one can also envision
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indirect methods that use approximate transformations from CT into DT.
Consequently, just as for direct methods we can distinguish between exact
and approximate indirect methods.

Let us conclude this section by listing some advantages/disadvantages with
direct and indirect methods (mainly applicable to the CT models discussed
in Section 2.2). The discussion targets primarily approximate direct methods
and exact indirect methods. For a more comprehensive discussion we refer
to [30].

• Estimates from indirect methods are usually consistent, whereas estimates
from direct methods are often biased. Needless to say, this statement de-
pends on what estimation scheme is used. However, since the first step
in direct methods in general produces an approximate DT model this ap-
proach has an inherent bias source. Also, the bias in direct methods is
often proportional to the sampling interval.

• The choice of the sampling interval is generally crucial and difficult for
indirect methods, whereas direct methods are less sensitive to the choice
of the sampling interval. The main concern for indirect methods is the
variance, which can increase substantially if too low or too a high sampling
interval is chosen. Direct methods usually benefit from fast sampling since
the bias is proportional to the sampling interval. On the other hand, the
variance usually increases with decreasing values of the sampling interval
for direct methods.

• Many estimation schemes rely on some form of numerical minimisation.
It has been shown that the initialisation procedure of the optimisation
scheme can be a key factor to obtain satisfactory estimation results, see
[34, 42]. Indirect methods seem to be more sensitive than direct methods
in this respect.

• We have seen that sampling of CT models with an input requires knowl-
edge or assumptions regarding the nature of the input. Violation of these
assumptions may lead to severe estimation errors, see [41, 47]. In this re-
spect direct methods may be more robust compared to indirect methods.
Nevertheless, this statement is once again coupled with the hypothesis
that direct methods often rely on approximations of the involved opera-
tors, whereas indirect methods use exact sampling.

• It is well known [49] that indirect methods suffer from numerical problems
due to ill-conditioning when the sampling interval becomes small. The
main reason is that all DT poles (and some zeros) cluster around the
point z = 1 when the sampling interval tends to zero. Another way to
understand these numerical problems is to realise that the shift operators
(q or q−1) have very short memories (one sample), see [62]. A way to
partly cure this problem is to restructure the DT representation by using,
for instance, the delta operator.
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2.5 Introductory Examples

We consider here simple direct identification techniques with constant sam-
pling rate, using CARX models.

For illustration purposes, let us consider a first-order CT system

(p + a)y(t) = bu(t) + ec(t) (2.30)

where p is the differentiation operator, y(t) is the output signal, u(t) is a mea-
surable input signal, and ec(t) a (non-measurable) noise source with intensity
σ2. We notice that the output y(t) can be written as a sum of a deterministic
and a stochastic term

y(t) =
b

p + a
u(t) +

1
p + a

ec(t) � yu(t) + ye(t) (2.31)

see Section 2.2 for further discussions of such models.

We are interested in estimating the parameter vector

θo =
[
a b
]T (2.32)

from DT data {y(kh), u(kh)}Nk=1, where h denotes the sampling interval.

As a first step, we need to decide how to treat the non-measurable derivative
of y(t). A natural approach is to approximate the differentiation operator p
by a difference operator. Two simple examples are the delta forward operator
δf and the delta backward operator δb, defined as

δf � q − 1
h

, δb � 1 − q−1

h
, (2.33)

where q and q−1 are the forward and backward shift operators, respectively.
The delta operators are known to have an approximation error of order O(h)
(usually referred to as first-order approximations). By substituting the differ-
entiation operator p in (2.30) by the delta forward operator δf, we obtain a
DT model

δfy(kh) = ϕT (kh)θf + ε1(kh)

ϕT (kh) =
[
−y(kh) u(kh)

] (2.34)

where ε1(kh) is an equation error. It is of interest to examine whether a least
squares approach

θ̂f(N) =
( 1

N

N∑

k=1

ϕ(kh)ϕT (kh)
)−1( 1

N

N∑

k=1

ϕ(kh)δfy(kh)
)

(2.35)
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for estimating θf gives feasible results. Consider an asymptotic (N → ∞) anal-
ysis of the estimates. Due to ergodicity assumptions the asymptotic estimate
(2.35) equals

θ̂f � lim
N→∞

θ̂f(N) =
(
Eϕ(kh)ϕT (kh)

)−1(
Eϕ(kh)δfy(kh)

)
(2.36)

where E denotes the expectation operator. Similarly, by substituting the dif-
ferentiation operator in (2.30) by the delta backward operator δb, we obtain
the DT model

δby(kh) = ϕT (kh)θb + ε2(kh) (2.37)

where ε2(kh) is another equation error. The asymptotic least squares estimate
of θb then reads

θ̂b =
(
Eϕ(kh)ϕT (kh)

)−1(
Eϕ(kh)δby(kh)

)
(2.38)

At this point, it is important to realise that (2.34) and (2.37) are heuristic
models.

Example 2.3. Assume that the input u(t) to (2.30) is a sinusoid of angular
frequency ω = 0.5. The asymptotic parameter estimates of a and b were
computed for delta forward and delta backward approximations of the differ-
entiation operator (via (2.36) and (2.38)). The true values of the parameters
are a = b = 1. Two different values of the sampling interval h were considered.
The estimates were computed as functions of the signal-to-noise ratio

SNR � Ey2
u(t)/Ey2

e(t) (2.39)

In other words, the intensity σ2 was chosen so that a certain SNR was ob-
tained. The results are shown in Figure 2.1. It is evident from the figure that
the delta forward approximation gives estimates with a small bias. Further-
more, the bias decreases with decreasing h. When a delta backward approxi-
mation is used, the bias is still small for high enough SNRs, but becomes very
pronounced for moderate and small SNRs.

The results from this example clearly indicate that the estimation problem
is considerably more difficult to solve for low SNRs. Although, the delta
forward and the delta backward operators both have approximation errors
of order O(h), the least squares estimate is highly dependent on the chosen
operator for low SNRs. This is an intriguing observation. For high SNRs
the result is intuitively more appealing. Both operators provide estimates
with an error of the same magnitude, and the error depends on the sampling
interval, i.e., on how accurately the differentiation operator is approximated.
The pure stochastic case (SNR → 0) will be treated in the next example.
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Fig. 2.1. Asymptotic (N → ∞) parameter estimates as functions of the SNR. Upper
figures – delta forward approximation, lower figures – delta backward approxima-
tion. Left figures – estimate of a, right figures – estimate of b. Note that different
subfigures have different scales.

Example 2.4. This example treats the stochastic case (SNR → 0). Hence, the
system (2.30) reduces to

(p + a)y(t) = ec(t) (2.40)

Consider estimating the parameter a by using the methodology outlined
above.

As a first approach, we use the delta backward operator δby(t) as an ap-
proximation of the differentiation operator. By substituting py(t) by δby(t) in
(2.40) for t = kh, the following DT regression model can be formed

δby(kh) = −y(kh)ab + ε2(kh). (2.41)

Asymptotically (N → ∞) the least squares estimate of ab becomes (cf. (2.38))

âb = −
1
hE
(
y(kh) − y(kh − h)

)
y(kh)

Ey2(kh)
=

1
h

(
−1 +

r(h)
r(0)

)
(2.42)
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where the covariance function, r(τ) = Ey(t)y(t + τ), satisfies

r(τ) =
σ2

2a
e−a|τ | (2.43)

Hence, we get

âb =
1
h

(
− 1 + e−ah

)
= −a + O(ah) (2.44)

which is far from its true value even for the ideal case, N large and h small.

Next, we consider the delta forward operator δfy(t). By substituting (2.33)
into (2.40) we obtain the DT model

δfy(kh) = −y(kh)af + ε1(kh) (2.45)

The asymptotic least squares estimate of af then reads (cf. (2.36))

âf = −
1
hE
(
y(kh + h) − y(kh)

)
y(kh)

Ey2(kh)
=

1
h

(
1 − r(h)

r(0)

)

=
1
h

(
1 − e−ah

)
= a + O(ah)

(2.46)

which means that the estimate is accurate for sufficiently large N and suf-
ficiently small h. Actually, it is the product ah that needs to be small. The
quantity 1/a is the time-constant of the process y(t). Hence, for an accu-
rate estimate the sampling interval h should be small compared to the time
constant of the process.

Finally, one could try the central difference operator

δcy(kh) =
1
2h
(
y(kh + h) − y(kh − h)

)
(2.47)

which has the advantage that the approximation error is of order O(h2)
(for a smooth enough function). Remember that the delta backward and the
delta forward operators have approximation errors of order O(h). Substitut-
ing (2.47) into (2.40), forming a DT regression model similar to (2.41), and
estimating ac using the least squares method gives the asymptotic estimate

âc =
r(h) − r(h)

2hr(0)
= 0 (2.48)

which clearly is a completely erroneous estimate.

The above example shows that the estimate of a is crucially dependent on
the choice of the differentiation approximation scheme. One might believe
that a general recipe is to use the delta forward operator. Unfortunately, this
is not the case. It is sufficient to consider a second-order process to see that
the delta forward operator approach will give biased estimates.
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Example 2.5. For a second-order system using

p2y(kh) ≈ δ2
f y(kh) =

1
h2

(
y(kh + 2h) − 2y(kh + h) + y(kh)

)

py(kh) ≈ δfy(kh) =
1
h

(
y(kh + h) − y(kh)

)

one gets, see [54],

â1 =
2
3
a1 + O(h)

â2 = a2 + O(h)

Hence, good quality of the estimates is not guaranteed by using delta forward
approximations.

To understand why the result depends on the choice of the differentiation
approximation scheme, it is necessary to analyse this issue in more detail. We
will do so in the next section.

2.6 Derivative Approximations for Direct Methods

In this section we generalise the findings from the previous section to more
general linear regression models.

To this aim, consider CARX models to be estimated from DT data. Rewrite
the output y(t) as a sum of a deterministic and a stochastic term as

y(t) =
B(p)
A(p)

u(t) +
1

A(p)
ec(t) � yu(t) + ye(t) (2.49)

We assume the process operates in open loop, so the two terms in (2.49) are
independent. We write (2.49) as a linear regression model

pny(t) = ϕT (t)θ + ε(t) (2.50)

where

ϕ(t) =
[
−pn−1y(t) . . . −y(t) pn−1u(t) . . . u(t)

]T (2.51)

θ =
[
a1 . . . an b1 . . . bn

]T (2.52)

To discretise the model, we substitute the jth-order differentiation operator
pj by a discrete approximation Dj as

pj ≈ Dj =
1
hj

∑

μ

βj,μq
μ (2.53)
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For example, when the delta forward operator

D = δf � q − 1
h

(2.54)

is used as an approximation of the differentiation operator of order zero, one,
and two, the β-weights are those shown in Table 2.1.

Table 2.1. The β-weights when the delta forward operator δf is used as an approx-
imation for the differentiation operator of order zero, one, and two

μ 0 1 2

β0,μ 1

β1,μ –1 1

β2,μ 1 –2 1

In general, we have to impose some conditions on the β-weights in order to
make the approximation (2.53) meaningful. We introduce what we will refer
to as the natural conditions (m being an arbitrary integer)

Dkf(mh) = pkf(mh) + O(h), k = 0, . . . , n (2.55)

Assume that f(t) is (k + 1)-times differentiable and consider the case of a
short sampling period h. By series expansion, we then have

Dkf(mh) =
1
hk

∑

j

βk,jf(mh + jh)

=
1
hk

∑

j

βk,j

( k∑

ν=0

1
ν!

jνhνpνf(mh) + O(hk+1)
)

=
k∑

ν=0

1
ν!

pνf(mh)
(∑

j

βk,jj
ν
)
hν−k + O(h) (2.56)

The natural conditions (2.55) can now be expressed as

∑

j

βk,jj
ν =

{
0, ν = 0, . . . , k − 1,
k!, ν = k

(2.57)

The frequency function of the filter will be

Dk(eiωh) =
1
hk

∑

j

βk,je
ijωh =

1
hk

∑

j

βk,j

∞∑

ν=0

(iωh)ν

ν!
jν

= (iω)k + O(|ω|k+1) (2.58)
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The low-frequency asymptote of the filter frequency function is hence (iω)k.

The minimal number of terms in the sum (2.57) is apparently k +1. In such a
case Dk will be a high-pass filter. If the number of βk,j coefficients is increased,
the gained degrees of freedom can be used to decrease the high-frequency gain
of the filter Dk, for example by imposing

Dk(eiωh)|ω=π/h = 0 (2.59)

In addition to (2.59), it is possible to require some further high derivatives
Dk(eiωh) to vanish at ω = π/h. Such measures would make the filter bandpass
instead of high-pass and hence more robust to unmodelled wide-band noise.

In the literature on CT identification, a common approach is to rewrite the
differential equation (2.49) into an equivalent integral equation and to approx-
imate the integrals, see [46,60]. For the approximation, the use of block-pulse
functions is popular. As noted in [46] this would correspond to the substitution

p → 2
h

q − 1
q + 1

(2.60)

It will hence appear as a special case of the general framework given here. In
particular, for small h, it will behave as a delta forward method, cf. Exam-
ple 2.4.

The processes y(t), u(t) are observed at t = h, 2h, . . . , Nh. The model order n
is supposed to be known. It is of interest to estimate the parameter vector θ
from the available data.

After substituting the derivatives in (2.50) by approximations (2.53), we can
form the following linear regression model,

w(kh) = ϕT (kh)θ + ε(kh)
w(kh) = Dny(kh)

ϕT (kh) =
[
−Dn−1y(kh) . . . −D0y(kh) Dn−1u(kh) . . . D0u(kh)

]
(2.61)

It turns out that a standard least squares estimate of θ

θ̂N =
( 1

N

N∑

k=1

ϕ(kh)ϕT (kh)
)−1( 1

N

N∑

k=1

ϕ(kh)w(kh)
)

(2.62)

and an instrumental variable estimate of θ

θ̂N =
( 1

N

N∑

k=1

ζ(kh)ϕT (kh)
)−1( 1

N

N∑

k=1

ζ(kh)w(kh)
)

(2.63)
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where ζ(t) is the vector of instruments, will in general be heavily biased, also
for N large and h small. This was illustrated in Example 2.3. The reason is
that ε(t) in general is correlated with ϕ(t).

For an analysis, similarly to (2.49) we decompose the regressor vector ϕ(kh)
as

ϕ(kh) =
[
−Dn−1y(kh) . . . −D0y(kh) Dn−1u(kh) . . . D0u(kh)

]T

=
[
−Dn−1yu(kh) . . . −D0yu(kh) Dn−1u(kh) . . . D0u(kh)

]T

+
[
−Dn−1ye(kh) . . . −D0ye(kh) 0 . . . 0

]T

� ϕu(kh) +ϕe(kh) (2.64)

Assuming that u(t) is sufficiently differentiable, the regressor ϕu(t) has a limit
as h → 0,

lim
h→0

ϕu(t) =
[
−pn−1yu(t) . . . −yu(t) pn−1u(t) . . . u(t)

]T � ϕ̃u(t) (2.65)

Hence, for the deterministic part we have

lim
h→0

lim
N→∞

θ̂N = lim
h→0

(
Eϕu(t)ϕ

T
u (t)
)−1(

Eϕu(t)w(t)
)

(2.66)

=
(
Eϕ̃u(t)ϕ̃

T
u (t)
)−1(

Eϕ̃u(t)p
nyu(t)

)

=
(
Eϕ̃u(t)ϕ̃

T
u (t)
)−1(

Eϕ̃u(t)(ϕ̃
T
u (t)θ)

)

= θ (2.67)

This means that the least squares estimate is close to the true value of the
parameter vector for large data sets and small sampling periods.

The stochastic part is more intricate to analyse. The main reason is that the
derivative pnye(t) does not exist in a mean square sense (it will not have a
finite variance). As will be shown below, by a careful choice of the weights
{βk,j} it is though still possible to estimate θ without any significant bias.

In order to satisfy the desired condition (2.67), it is sufficient that this con-
dition applies to the stochastic part ye(t). In order to simplify the treatment
we therefore restrict the analysis to the stochastic part. Note that such a case
is of interest by itself in CAR models of time-series analysis.

Consider thus a CAR model, see Section 2.2. As shown in Section 2.5, a
straightforward application of the least squares method can lead to a very large
bias in the parameter estimates. There are, however, several simple means
to modify the least squares estimates (2.62) and the instrumental variable
estimates (2.63) to obtain consistent estimates. With consistent estimates we
here mean, cf. (2.67),
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lim
h→0

lim
N→∞

θ̂N = θ (2.68)

The approaches we consider all fit into the same general framework,

θ̂N =
( 1

N

N∑

t=1

ζ(kh)ϕT (kh)
)−1

F
( 1

N

N∑

t=1

ζ(kh)w(kh)
)

(2.69)

The methods are (the β-weights have to fulfil the natural conditions, (2.57))

1. A least squares scheme where

ζ(kh) = ϕ(kh), F = I (2.70)

and the β-weights fulfil (in addition to the natural conditions)
∑

j

∑

k

βn,jβn−1,k

(
|j − k|2n−1 − (j − k)2n−1

)
= 0 (2.71)

A simple mean to satisfy the condition (2.71) is to require j ≥ k. In
some sense, this is the same as imposing a shifted structure for estimating
the nth-order derivative of y(t), i.e., w(kh) = Dny(kh+jh). For example,
when the delta forward approximation is used, this means that j > (n−1),
see [54]. Consequently, this approach is often referred to as the shifted least
squares method (SLS). A way to avoid the shift is presented in [14].

Note that the standard choices of integral filters and block-pulse functions
will not satisfy the condition (2.71). These methods will hence suffer from
the same bias problem as methods based on the standard derivative ap-
proximation. However, by using the condition (2.71), the user choices in
these methods may be modified appropriately.

2. A least squares scheme, with a bias compensation feature, see [14,55]. In
this case we take

ζ(kh) = ϕ(kh), F = diag
[
1/ξn 1 . . . 1

]
(2.72)

where

ξn =
(−1)n−1

(2n − 1)!

∑

l

∑

m

βn,lβn−1,m|l − m|2n−1 (2.73)

This approach is commonly referred to as the bias-compensated least
squares method (BCLS).

3. An instrumental variable scheme, with delayed values of the output signal
as instruments, see [7]. Here

ζ(kh) =
[
y(kh − lh − h) . . . y(kh − lh − nh)

]T
, F = I (2.74)

where l is chosen appropriately. For example, for the delta forward oper-
ator we need to impose the constraint l ≥ −1.
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These three approaches all lead to an estimate θ̂ with a small bias of order
O(h),

θ̂ � lim
N→∞

θ̂N = θ + θ̃h + O(h2) (2.75)

where explicit expressions for the dominating bias θ̃ are available, see [38,56].
Furthermore, the statistical properties (in terms of the covariance matrix of
the asymptotic parameter estimates) have been clarified. Define

Rc � Cov

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
pn−1y(t)

...
y(t)

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
(2.76)

Then it has been shown, see [38,56], that the parameter estimates are asymp-
totically Gaussian distributed

√
N
(
θ̂N − θ̂

)
→ N (0,C) (2.77)

where the covariance matrix C satisfies

lim
h→0

hC = σ2R−1
c (2.78)

Consequently, for large values of N and small values of h, the covariance
matrix of the estimate θ̂N may be approximated as

Cov{θ̂N} ≈ σ2

Nh
R−1

c (2.79)

Some possible advantages of taking the described approach are given next:

• it is a numerically sound approach compared to, for instance, conventional
methods using the q-formalism, which suffers from ill-conditioning prob-
lems. Moreover, it is well known that the least squares method is robust
with respect to numerical problems;

• the approach is well suited for non-uniformly sampled data. The form
(2.53) of derivative approximation can be extended to also handle the case
of irregular sampling, where the sampling interval varies in an arbitrary
fashion, see Section 2.6.1;

• it is computationally very efficient, and does not suffer from the problem
of possible local minima.

The basic methods, described above, have been extended in various ways:

• by further restrictions on the derivative approximations, the bias can be
reduced from O(h) to O(h2), see [14,54];

• an order recursive algorithm with lattice structure has been developed,
see, for instance [12].

• the sensitivity to additional measurement noise has been treated in [15].
The measurement noise is modelled as CT white noise;
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• various performance measures for the aforementioned methods are re-
ported in [56]. In particular, formulas for quantifying the bias and formulas
for the estimation error variance are presented. Note also that it has been
shown in [52] that the estimation error variance reaches the CRB as the
sampling interval tends to zero. In other words, the methods are in this
sense asymptotically (statistically) efficient;

• the case of integrated sampling is treated in [13];
• a further problem concerns the possible estimation of σ2. If this can be

done a parametric estimate of the (CT) spectral density can be found, see
(2.1). For details of estimating σ2, see [54];

• it would be of interest to have an order estimation scheme, assuming that
the true value of n is not known. Needless to say, in practice n is seldom
a priori known. Some details of such an order estimation algorithm are
given in [54].

There exist several other related methods that are worth mentioning. The
approaches taken in [10,11,40] are closely related to the framework described
above. Identification of CAR systems when the observations contain DT mea-
surement noise using Bayesian inference is the topic of [16]. Parameter estima-
tion of CAR systems from randomly sampled observations using the so-called
pseudo-correlation vector concept is treated in [45]. Further analysis of the ef-
fects of fast sampling, also for output error models are given in [17,18], where
most of the analysis is carried out in the frequency domain.

2.6.1 Non-uniformly Sampled Data

Here, we will see how the form (2.53) of a derivative approximation can
be extended to alsohandle the case of irregular sampling. Assume that for
hk = tk+1 − tk, it holds that h � hk � h̄, ∀k, where h > 0 and h̄ are
two finite constants. This assumption is essential in order to prove ergodic-
ity of the process {y(tk)}, and to ensure that the estimate has a well-defined
limit as the number of data tends to infinity. Consider the following linear
approximation of the differentiation operator pj ,

pjf(tk) ≈ Dj
kf(tk) �

j∑

μ=0

βk(j, μ)f(tk+μ) (2.80)

where f(t) is a smooth enough function. In order to make the approximation
(2.80) meaningful, some conditions on the βk-weights must be imposed. A
natural request is then that, cf. (2.55),

pjf(tk) = Dj
kf(tk) + O(h̄), j = 0, . . . , n (2.81)

holds, which, by using (2.80) and a Taylor series expansion, can be reformu-
lated as
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j∑

μ=0

βk(j, μ)λνk(μ) =

{
0, ν = 0, . . . , j − 1,
j!, ν = j

(2.82)

where we have introduced λk(μ) as

λk(μ) = (tk+μ − tk) =

{
0, μ = 0,∑μ−1
s=0 hk+s, otherwise

(2.83)

Under the above assumption regarding the irregular sampling interval, the
solution to (2.82) exists and is unique. Furthermore, the solution is given by

βk(j, μ) =
j!

∏j
s=0
s �=μ

(
λk(μ) − λk(s)

) , μ = 0, . . . , j (2.84)

and the βk-weights that fulfil (2.81) are thereby found. A proof is given in
[32]. To prove (2.84) is basically the same as finding the solution of a system
of equations with a Vandermonde structure [8, 19]. Furthermore, there is a
connection between this setup and the method of undetermined coefficients
[21].

Due to the nice structure of the solution (2.84), it is fairly easy to develop
some recursion formulas for the β-weights. The result turns out to be

βk(j + 1, μ) =

⎧
⎪⎪⎨

⎪⎪⎩

(j + 1)βk(j, μ)
λk(μ) − λk(j + 1)

, μ = 0, . . . , j,

(j + 1)βk+1(j, j)
λk(j + 1)

, μ = j + 1,
(2.85)

βk+1(j, μ) =
λk(μ + 1)βk(j, μ + 1)
λk(μ + 1) − λk(j + 1)

, μ = 0, . . . , j − 1, (2.86)

βk(0, 0) = 1 (2.87)

The derivation of (2.85)–(2.87) follows by direct use of (2.84). The derivatives
that fulfil (2.81) can be generated by the recursion formula

Dj
kf(tk) =

j

λk(j)
(Dj−1

k+1f(tk+1) − Dj−1
k f(tk)

)
, j = 1, . . . , n (2.88)

which is given from (2.85)–(2.87), see [32] for a proof.

Next, we describe how to obtain an estimate θ̂ satisfying

θ̂ � lim
N→∞

θ̂N = θ + O(h̄) (2.89)

• A sufficient condition for (2.89) is that (2.81) and
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w(tk) = Dn
k+n−1y(tk+n−1) (2.90)

are fulfilled. This gives us the SLS method for irregularly sampled data,
see [32]. Note that (2.90) means that a shift is introduced in the data when
forming the nth-order derivative approximation.

• A sufficient condition for (2.89) is that (2.81) is fulfilled and that ξn in
(2.72) is taken as

ξn =
(−1)n−1

(2n − 1)!

n∑

l=0

n−1∑

m=0

Eh
{
βk(n, l)βk(n − 1,m)|λk(l) − λk(m)|2n−1

}

(2.91)
where Eh means expectation with respect to the sampling process, see [32].
This gives us the BCLS method for irregularly sampled data.

We conclude this section by pointing out that the computational complexity
of this approach for identifying CARX models is modest due to the recur-
sion (2.88). In contrast, use of an ‘exact’ method such as PEM, (2.28), or
ML, (2.29), will require a several magnitudes larger computational time. The
reason is that for such methods, the system needs to be sampled repeatedly
for each new measurement time tk. The difference in computational load is
illustrated in Section 2.8.

2.7 The Cramér–Rao Bound

In any parameter estimation problem a common way of assessing the perfor-
mance of the estimator is to derive the estimation error covariance matrix.
However, this accuracy measure may be of limited interest unless one can com-
pare it with the best possible accuracy. The by far most used bound on the
estimation error covariance matrix is the Cramér–Rao lower bound (CRB),
see, e.g. [23, 58]. The reason for its popularity is basically twofold. Firstly,
under a Gaussian noise assumption, the CRB is often relatively simple to
compute. Secondly, the bound is often tight, i.e., there exists an estimator
that asymptotically achieves the CRB.

Assume that θ̂ is an unbiased estimate of θ determined from the data vector
y, and let P denote the covariance matrix of θ̂. Then, the following relation
holds (see, e.g. [58])

P ≥ J−1 (2.92)

where the matrix inequalityA ≥ B means thatA−B is non-negative-definite,
and the matrix J is the Fisher information matrix. The relation (2.92) is the
celebrated CRB result, and J−1 stands for the CRB. In general, it holds that

J = E

(
∂ ln p(y;θ)

∂θ

)(
∂ ln p(y;θ)

∂θ

)T
= −E

(
∂2 ln p(y;θ)

∂θ ∂θT

)
(2.93)
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where p(y;θ) denotes the likelihood function of y. To obtain explicit expres-
sions for J is, in general, a tedious procedure. However, if the data is assumed
to be Gaussian distributed, the calculations are simplified. For Gaussian data,
and a finite sample size N , the result turns out to be given by the Slepian–
Bang formula, see, e.g. [58]. Furthermore, it is known that the normalised
Fisher information matrix of a zero-mean stationary Gaussian process tends,
with the sample size N , to Whittle’s formula, see, e.g. [57]. Another conve-
nient methodology for computing the CRB follows by noting that the ML
estimate is in general asymptotically efficient, i.e., the covariance matrix of
the ML estimate tends to the CRB as the number of data tends to infinity.

2.7.1 The Cramér–Rao Bound for Irregularly Sampled CARMA
Models

Let us consider a CARMA process y(t) (see Section 2.2) represented in state-
space form as

dx(t) = Ax(t) dt +w(t),
y(t) = Cx(t)

(2.94)

where x(t) and y(t) are the state vector and the output signal, respectively,
and where the disturbance w(t) is a Wiener process with incremental co-
variance matrix Σ dt. The model (2.94) is parameterised by θ, which may
appear in the matrices A ∈ R

n×n, C ∈ R
1×n, and Σ ∈ R

n×n. The matrix
A is asymptotically stable, i.e., all eigenvalues of A have a strictly negative
real part. Furthermore, for simplicity we will assume that A is diagonalis-
able. Also, we would like to point out that the framework presented below for
computing the CRB for CARMA models is also applicable for CARMAX mo-
dels. Essentially this can be seen from Example 2.1 in Section 2.3.2. However,
there are some technical details that need to be properly handled; for details,
see [31].

The CRB for estimating θ given the samples {y(t1), y(t2), . . . , y(tN )} is given
by CRB = J−1, where the (k, l)th element of J is given by the Slepian–Bang
formula [58]

[J ]k,l =
1
2

tr{R−1R′
kR

−1R′
l} (2.95)

where

R = E

⎡

⎢⎣
y(t1)

...
y(tN )

⎤

⎥⎦
[
y(t1) . . . y(tN )

]
(2.96)

is the covariance matrix of the sampled data, and where R′
k = ∂R/∂θk, with

θk denoting the kth element of θ. Next, compact closed-form expressions for
R and its derivatives R′

k are derived.
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To find an expression for R, it is first noted that the covariance function,
r(τ) = Ey(t)y(t − τ), of y(t) can be written as [4, 53]

r(τ) = CeAτPCT (2.97)

for τ ≥ 0. In (2.97), eAτ is the standard matrix exponential, which has the
spectral representation

eAτ =
n∑

k=1

ρkξ
H
k eλkτ (2.98)

where ρk and ξHk are the right and left eigenvectors of A, respectively (nor-
malised such that ρHk ξk = 1), and λk are the eigenvalues of A. Also, in (2.97),
P is the unique and non-negative-definite solution to the CT Lyapunov equa-
tion

AP + PAT +Σ = 0 (2.99)

Equation (2.99) can be written as a linear system of equations for the entries
of P , and can thereby be solved by standard methods. From (2.97), (2.98),
and the solution to (2.99), it follows that R can be computed as

R =
n∑

k=1

γkαkΓ (λk) (2.100)

where γk and αk are defined as

γk �Cρk, αk � ξHk PC
T

and Γ (s) is the matrix whose (k, l)th element equals

[Γ (s)]k,l = e|tk−tl|s

To obtain convenient formulas for R′
i, it is first noted that differentiation of

(2.99) with respect to θi yields

AP i + P iA
T +AiP + PAT

i +Σi = 0 (2.101)

where the derivatives P i = ∂P /∂θi, Ai = ∂A/∂θi, and Σi = ∂Σ/∂θi. The
Lyapunov equation (2.101) is straightforward to solve with respect to P i.
Next, by differentiation of r(τ) in (2.97) with respect to θi, it is readily shown
(for details, see [27,29]) that

R′
i =

n∑

k=1

(γk,iαk + γkαk,i)Γ (λk) +
n∑

k=1

n∑

l=1

(γkαlβ
(i)
k,l)Gk,l (2.102)

where
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γk,i � Ciρk, αk,i � ξHk P iC
T + ξHk PC

T
i , β

(i)
k,l � ξHk Aiρl,

Gk,l =

{
Ω � Γ (λk), λk = λl,

1
λl−λk

(
Γ (λl) − Γ (λk)

)
, otherwise

Here, � denotes element-wise multiplication and Ω is a matrix whose (k, l)th
element is equal to

[Ω]k,l = |tk − tl|

We summarise our algorithm for computing the CRB as follows:
Step 1. Compute P and P i by solving the Lyapunov equations (2.99) and
(2.101).
Step 2. Compute R by using (2.100).
Step 3. Compute R′

i via (2.102).
Step 4. Compute J via (2.95) and obtain CRB = J−1.

One important observation is that the evaluation of the CRB can become
impractical if the number of samples N is large. Let CRBN denote the CRB
given N samples of y(t). Then, Theorem 2 in [26] provides some remedy to
this problem by showing that under certain circumstances, the CRB becomes
inversely proportional to N , and hence it can be extrapolated as

CRBN
as.=

N0

N
CRBN0 (2.103)

where N0 < N . Let us conclude this section about the CRB by considering
an example.

Example 2.6. We consider a CAR process with poles at p̄1 ± ip̃1, for p̃1 = 1
and p̄1 = −0.01 and −0.05, respectively. We fix the number of samples to
N = 100 and vary the mean sample interval T = E {tk+1 − tk}. The following
two sampling strategies are considered

(a) (Deterministic) uniform: Here tn = nT , n = 1, . . . , N .
(b) Uniformly distributed : Here tn = nT +

∑n
k=1 δk, n = 1, . . . , N , where δk

is uniformly distributed between −δ0 and δ0; δk are independent of w(t)
(see (2.94)) for all t and k, and δk are independent of δj for all j �= k. We
choose δ0 = T/5 in our example.

Figure 2.2 shows the CRB for estimating p̃1 for different values of T . Note
that p̃1 can be interpreted as the location of a ‘spectral line’, so estimating p̃1

is of particular practical relevance. Note also that the sampling corresponds
to taking 2π/T samples per cycle of a sinusoid with angular frequency ω = 1
(which is the peak location of the spectrum). We observe a number of things
from Figure 2.2. First, in general, the CRB decreases for increasing T . To
understand why this is so, note that the length of the time interval during
which the process is observed grows linearly with T (since N is fixed) and
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that the estimation problem is related to that of identifying the frequency of
a single sinusoid in noise, where it is known that the CRB depends primarily
on the length of the observation interval.

Second, for most values of T , there is no big difference between the CRB for
different sampling schemes. Note that the length of the interval during which
the process is observed is approximately NT , which is independent of the
sampling scheme used. On the other hand, for values of T close to π and 2π,
the CRB associated with the sampling pattern (a) appears to grow without
bound. This is not hard to understand since the corresponding estimation
problem becomes ill-conditioned in this case. The CRB associated with sam-
pling scheme (b) has, on the other hand, a CRB that almost behaves as a
straight line in this plot (at least for p̄1 = −0.01).

Finally, as already mentioned the estimation of p̃1 can be interpreted as lo-
cating the corresponding spectral line. We can see from Figure 2.2 that the
CRB for this problem decreases with decreasing |p̄1|. This can be understood
intuitively since the accuracy for estimating p̃1 is related to the sharpness of
the corresponding spectral line, and this spectral line becomes sharper and
shaper as |p̄1| decreases.
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Fig. 2.2. The CRB for p̃1 as a function of the mean sample interval T for two
different sampling schemes and for two different values of p̄1. The process is described
in Example 2.6. The number of samples is N = 100.

2.8 Numerical Studies of Direct Methods

In this section, we investigate the properties of direct methods for identifica-
tion of CT stochastic systems in some simulation studies. Special attention is
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given to the accuracy and computational complexity of the methods. We con-
sider CAR processes in Example 2.7 and CARX processes in Example 2.8. For
CARMA processes, we refer to the methods and examples presented in [30].

Example 2.7. This example is about identification of irregularly observed CAR
processes. We consider unevenly sampled data, and the methods SLS and
BCLS described in Section 2.6.1 are compared with the PEM described in
Section 2.4.

The second-order system

(p2 + a1p + a2)y(t) = ec(t) (2.104)

where a1 = a2 = 2 and the noise intensity equal to one is considered. In
order to generate DT data, the system is sampled as described in Section 2.3,
with the sampling interval hk uniformly distributed as hk ∼ U(h, h̄), where
h = 0.01 and h̄ is varied. The time-varying DT system is then simulated to
generate N = 10, 000 samples. A Monte Carlo simulation with 100 realisations
is carried out and the mean values and empirical standard deviations of the
estimates are presented as functions of h̄ in Figure 2.3. The optimisation
routine used for the PEM is a simplex method with initial parameters equal
to one. The theoretical estimates are found from (2.62) for u(t) = 0 and
N → ∞. The estimates of a1 are comparable for all three methods, whereas
the PEM gives the best estimate of a2, followed by the BCLS method and
the SLS method. It is also clear that there is a good match between the
experimental and theoretical values for the least squares methods.

When comparing the methods for irregularly sampled data, it is important
to investigate some efficiency properties of the different methods. To be more
precise, we compare the computational time, as well as the computational
load requested for the different methods. The computational time is the time
needed to run the algorithm, while the computational load is given as the
number of flops required by the algorithm in order to produce the estimates.
The results for h̄ = 0.05 are found in Table 2.2. The main conclusion is that
there is a significant difference between the least squares methods and the
PEM concerning computational efficiency. The PEM requires a considerable
execution time to produce the estimates. Furthermore, the two least squares
methods require approximately the same amounts of time and flops to
produce the estimates. As a final remark we would like to emphasise that
the initialisation of the optimisation routine is crucial for the behaviour (e.g.,
convergence rate) of the PEM, see [34,42].

Example 2.8. In this example, CARX models are identified from unevenly
sampled data. Consider the CARX process

(p2 + a1p + a2)y(t) = (b1p + b2)u(t) + ec(t) (2.105)
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0 0.05 0.1
1.7

1.8

1.9

2

2.1

2.2

2.3
a 1

0 0.05 0.1

1.6

1.8

2

2.2

2.4

a 2

0 0.05 0.1
1.7

1.8

1.9

2

2.1

2.2

2.3

a 1

0 0.05 0.1

1.6

1.8

2

2.2

2.4

a 2

0 0.05 0.1
1.7

1.8

1.9

2

2.1

2.2

2.3

a 1

0 0.05 0.1

1.6

1.8

2

2.2

2.4

a 2

Fig. 2.3. The mean values (∗) and empirical standard deviations for the estimates
of a1 (left) and a2 (right) as functions of h̄ for the SLS method (upper), the BCLS
method (middle), and the PEM (lower). The theoretical estimates for the least
squares methods are given by the dotted lines, the true values are a1 = a2 = 2, and
the sampling scheme is uniformly distributed.

where ec(t) is CT white noise of intensity σ2
e and u(t) is given by the CAR

process
(p2 + ā1p + ā2)u(t) = v(t) (2.106)

where v(t) is CT white noise, independent of ec(t), with intensity σ2
v . We

consider the uniformly distributed sampling scheme described in Section 2.7.1
for different T and generate N data points from (2.105), with a1 = a2 = 2,
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Table 2.2. Evaluation time and number of flops used for the different methods.
Second-order system with a1 = a2 = 2

Method Time [s] Load [Megaflops]

SLS 0.118 0.29

BCLS 0.112 0.21

PEM 1120 740

b1 = 3, b2 = 1, and σ2
e = 1, and with ā1 = ā2 = 3 and σ2

v = 1 in (2.106).
The SLS method described in Section 2.6.1 is considered together with the
ML method described in Section 2.4. For the ML method, it is assumed that
the input signal is constant during the sampling instants. This gives an error
of order O(h̄2), where h̄ is the upper bound on the sampling interval, see [51].

A Monte Carlo study with 50 realisations is carried out in which the parame-
ters a1, a2, b1, and b2 are estimated from N data points (N is specified later).
Data are affected by three random mechanisms; the two noises e(t) and v(t),
and the stochastic sampling scheme. Therefore, it is of interest to investigate
what happens when they are varying at the same time. The expected CRB is
computed by using the results in Section 2.7, including the extrapolation de-
scribed in (2.103), for N0 = 100 data points and averaging over 50 realisations
by means of a Monte Carlo simulation.

The mean values and the empirical variances for the estimates of a1 as
functions of T , given by the SLS method and the ML method, are shown in
Figure 2.4, together with the CRB, for N = 10, 000 data. The mean values
and the empirical standard deviations for the estimates of a1, a2, b1, and
b2 as functions of T , given by the direct method and the ML method are
shown in Figure 2.5, respectively, for the case with N = 1000 data points.
The bias is in general larger for the direct approach than for the ML method,
especially for larger values of T , whereas the variance is slightly smaller for
the direct approach. The CRB is reached by both the SLS method and the
ML method. Note that a biased estimate may have variance lower than the
CRB. An important observation is that the average computational times are
considerably shorter for the direct approach, as seen in Table 2.8 for the case
with N = 10, 000. It is, however, more difficult to accurately estimate the b
parameters than the a parameters. In general, it is easier to get good esti-
mates of the a parameters since it can be said that they are excited by u(t) as
well as by e(t). The b parameters, on the other hand, are only excited by u(t).
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Fig. 2.4. The mean values (left) and the empirical variances for the estimates of a1

for the SLS method and the ML method together with the CRB (right) as functions
of T for N = 10 000

Table 2.3. The average computational times, in seconds, for the SLS method and
the ML method for different T , N = 10, 000

T SLS ML

0.03 0.11 255

0.05 0.11 255

0.10 0.10 274

0.15 0.10 298

2.9 Conclusions

The important problem of identifying CT stochastic systems from DT data
has been studied. Applications can be found in many different areas of science
and technology since most physical systems and phenomena are of CT nature.
We have described basic models of CT stochastic systems. More exactly, we
have considered processes with rational spectra and their corresponding time
domain representations that are formally given in terms of SDEs. As the
estimation methods are based on DT data, we have described how the CT
models are transformed into DT models. We have described two general ap-
proaches, the direct and indirect approaches, to estimation of CT stochastic
models. Thereafter, we introduced an estimation technique where the differen-
tiation operator is replaced by some approximation, a linear regression model
is formed, and the parameters are estimated. To get consistent estimates (as
the number of data tends to infinity and the sampling interval tends to zero),
it was shown that the approximation of the differentiation operator must be
chosen carefully. The method can also be applied to irregularly sampled data,
where the sampling interval varies in an arbitrary fashion. This is advanta-
geous, since the computational complexity of conventional methods, such as
the prediction error method, is very high for irregularly sampled data. It has
been described how to compute the CRB for estimation problems concern-
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Fig. 2.5. The mean values (left) and the empirical standard deviations (right) for
the estimates of a1 (◦), a2 (×), b1 (+), and b2 (∗) as functions of T , for the SLS
method (upper) and the ML method (lower) with N = 1000 data points. The true
parameter values (left) are indicated with horizontal lines. Note that some symbols
overlap.

ing CT stochastic systems. Finally, the properties of the proposed estimation
technique and alternative approaches have been studied numerically.
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30. E.K. Larsson, M. Mossberg, and T. Söderström. An overview of important prac-
tical aspects of continuous-time ARMA system identification. Circuits, Systems
& Signal Processing, 25:17–46, 2006.

31. E.K. Larsson, M. Mossberg, and T. Söderström. Identification of continuous-
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Whilst most physical systems occur naturally in continuous time, it is neces-
sary to deal with sampled data for identification purposes. In principle, one
can derive an exact sampled data model for any given linear system by inte-
gration. However, conversion to sampled data form implicitly involves folding
of high-frequency system characteristics back into the lower-frequency range.
This means that there is an inherent loss of information. The sampling process
is reversible provided one has detailed knowledge of the relationship between
the low-frequency and folded components so that they can be untangled from
the sampled model. However, it is clear from the above argument that one has
an inherent sensitivity to the assumptions that one makes about the folded
components. The factors that contribute to the folded components include

• the sampling rate,
• the nature of the input between samples (i.e., is it generated by a first-

order hold or not, or is it continuous-time white noise or not),
• the nature of the sampling process (i.e., has an anti-aliasing filter been

used and, if so, what are its frequency domain characteristics),
• the system relative degree (i.e., the high-frequency roll-off characteristics

of the system beyond the base band),
• high-frequency poles and or zeros that lie outside the base band interval.

In a recent paper [10], we have shown that the above issues lead to non-trivial
robustness issues. For example, we have shown that, in the identification of
continuous-time autoregressive (CAR) models from sampled data, the resul-
tant model depends critically on the assumptions one makes about the issues
outlined above. In this chapter, we will extend these ideas to general linear mo-
dels. In particular, we will argue that one always needs to define a bandwidth
of validity relative to the above assumptions and ensure that the analysis is
restricted to that bandwidth. We will describe time- and frequency-domain
methods for ensuring insensitivity to high-frequency folded artifacts in the
identification of continuous-time systems from sampled data. We call these
methods Robust continuous-time system identification using sampled data.
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3.1 Overview

In recent years, there has been an increasing interest in the problem of identi-
fying continuous-time models [7–9,11,12,14,16,22,25,27]. This kind of model
has several advantages compared to discrete-time models:

• the parameters obtained are physically meaningful, and they can be related
to properties of the real system;

• the continuous-time model obtained is independent of the sampling period;
and

• these models may be more suitable for fast sampling rate applications
since a continuous-time model is the (theoretical) limit when the sampling
period is infinitesimally small.

Even though it is theoretically possible to carry out system identification using
continuous-time data [26, 29], this will generally involve the use of analogue
operations to emulate time derivatives. Thus, in practice, one is inevitably
forced to work with sampled data [21,23].
In this chapter we explore the issues that are associated with the use of
sampled-data models in continuous-time system identification. Specifically,
we use sampled-data models expressed using the δ operator, to estimate the
parameters of the underlying continuous-time system. In this context, one
might hope that, if one samples quickly enough, the difference between dis-
crete and continuous processing would become vanishing small. Thus, say we
are given a set of data {uk = u(tk), yk = y(tk)}, where tk = k Ts and Ts is the
sampling period. We identify a sampled-data model

Md : yk = Gδ(δ, θ̂)uk + Hδ(δ, θ̂)vk (3.1)

where θ̂ is a vector with the parameters to be estimated, then, we might hope
that θ̂ will converge to the corresponding continuous-time parameters, as Ts

goes to zero, i.e.,
θ̂

Ts→0−−−−→ θ (3.2)

where θ represents the true parameter vector of the continuous-time model

M : y(t) = G(p,θ)u(t) + H(p,θ)v̇ (3.3)

where p denotes the differential operator.
Indeed, there are many cases that support this hypothesis. Moreover, the delta
operator has been a key tool to highlight the connections between the discrete
and the continuous-time domains [6, 20].
The above discussion can, however, lead to a false sense of security when
using sampled data. A sampled-data model asymptotically converges to the
continuous-time representation of a given system. However, there is an inher-
ent loss of information when using discrete-time model representations. In the
time domain, the use of sampled data implies that we do not know the inter-
sample behaviour of the system. In the frequency domain, this fact translates
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to the well-known aliasing effect: high-frequency components fold back to low
frequencies, in such a way that it is not possible to distinguish between them.
To fill the gap between systems evolving in continuous time and their sampled-
data representations, we need to make extra assumptions on the continuous-
time model and signals. This is a particularly sensitive point when trying
to perform system identification using sampled data. In Section 3.2, we pay
particular attention to the impact of high-frequency modelling errors. This
kind of errors may arise both in the discrete- and continuous-time domains.
For discrete-time models, the sampling zeros go to infinity (in the γ-domain
corresponding to the δ operator) as the sampling period is reduced, however,
their effect cannot, in all cases, be neglected especially at high frequencies. For
continuous-time systems, undermodelling errors may arise due to the presence
of high-frequency poles and/or zeros not included in the nominal model.
Based on the above remarks, we argue here that one should always define
a bandwidth of fidelity of a model and ensure that the model errors outside
that bandwidth do not have a major impact on the identification results.
In Section 3.2, we propose the use of a maximum likelihood identification
procedure in the frequency domain, using a restricted bandwidth. We show
that the proposed identification method is insensitive to both high-frequency
undermodelling errors (in the continuous-time model), and to sampling zeros
(in the sampled-data model).
A well-known instance where naive use of sampled data can lead to erroneous
results is in the identification of continuous-time stochastic systems where the
noise model has relative degree greater than zero. In this case, the sampled-
data model will always have sampling zeros [28]. These are the stochastic
equivalent of the well-known sampling zeros that occur in deterministic sys-
tems [2]. We will see in Section 3.3 that these sampling zeros play a crucial role
in obtaining unbiased parameter estimates in the identification of such sys-
tems from sampled data. We show that high-frequency modelling errors can
be equally as catastrophic as ignoring sampling zeros. These problems can be
overcome by using the proposed frequency-domain identification procedure,
restricting the estimation to a limited bandwidth.

3.2 Limited-bandwidth Estimation

In this section we discuss the issues that arise when using sampled-data models
to identify the underlying continuous-time system. The discrete-time descrip-
tion, when expressed using the δ operator, converges to the continuous-time
model as the sampling period goes to zero [20]. However, for any non-zero
sampling period, there will always be a difference between the discrete- and
continuous-time descriptions, due to the presence of sampling zeros. To over-
come this inherent difficulty, we propose the use of maximum likelihood esti-
mation in the frequency domain, using a restricted bandwidth.
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To illustrate the differences between discrete-time models and the underlying
continuous-time systems we present the following example.

Example 3.1. Consider a second-order deterministic system, described by

d2

dt2
y(t) + α1

d
dt

y(t) + αoy(t) = βou(t) (3.4)

If we naively replace the derivatives in this continuous-time model by divided
differences, we obtain the following approximate discrete-time model described
in terms of the δ operator

δ2yk + a1δyk + a0yk = b0uk (3.5)

We see that this simple derivative replacement model has no extra zeros.
However, the exact discrete-time model can be obtained, assuming a zero-
order hold (ZOH) input. This model can be expressed in terms of the delta
operator as follows

δ2yk + a1δyk + aoyk = b0uk + b1δuk (3.6)

This model generically has a sampling zero. Moreover, as the sampling period
Ts goes to zero, the continuous-time coefficients are recovered, and the sam-
pling zero can be readily characterised [2,6]. Thus, for Ts ≈ 0, the discrete-time
model can be considered to be

δ2yk + α1δyk + αoyk = β0(1 + Ts
2 δ)uk (3.7)

Figure 3.1 shows a comparison of the Bode magnitude diagrams correspond-
ing to a second-order system as (3.4) (on the left-hand side) and the exact
sampled-data model (3.6), obtained for different sampling frequencies (on the
right)

G(s) =
βo

s2 + α1s + αo
Gδ(γ) =

b1γ + bo
γ2 + a1γ + ao

(3.8)

The figure clearly illustrates the fact that, no matter how fast we sample, there
is always a difference (near the folding frequency) between the continuous-time
model and the discretised models.

The difference between discrete and continuous-time models highlighted by
the previous example, in fact, corresponds to an illustration of the aliasing
effect. If we assume that the continuous-time system frequency response G(iω)
goes to zero as |ω| → ∞, then the corresponding discrete-time model frequency
response converges as follows

lim
Ts→0

Gq(eiωTs) = lim
Ts→0

∞∑


=−∞

[
(1 − e−sTs)

sTs
G(s)

]

s=iω+i 2π
Ts



= G(iω) (3.9)
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Fig. 3.1. Frequency response for continuous and discrete-time models

Remark 3.1. Equation (3.9) establishes that the frequency response of a
sampled-data model converges to the continuous-time frequency response, as
the sampling period goes to zero. However, for any finite sampling frequency,
there is a difference between the continuous and discrete time cases, in par-
ticular, near the Nyquist frequency (ωN = ωs

2 = π
Ts

). Indeed, this is a direct
consequence of the presence of the asymptotic sampling zeros.

A different kind of problem may arise when the true system contains high-
frequency dynamics that are not included in the continuous-time model. We
illustrate this by the following example.

Example 3.2. Consider again the continuous-time system in Example 3.1. We
will consider (3.4) as the nominal model of the system. We are interested in
analysing the effect of an unmodelled fast pole. Thus, let the true system be
given by

Go(s) =
βo

(s2 + α1s + αo)
(

1
ωu

s + 1
) =

Gn(s)(
1
ωu

s + 1
) (3.10)

Figure 3.2 shows the comparison of nominal and true models, both for the
continuous-time system and the sampled-data models. The nominal poles of
the system are at s = −1 and s = −2, the sampling frequency is ωs = 250
[rad/s], and the unmodelled fast pole is at s = −50.
Note that the true system has relative degree 3, and, thus, the corresponding
discrete-time model will have 2 sampling zeros. As a consequence, while the
asymptotic sampled-data model for the nominal system is given by (3.8), the
true model will yield different asymptotic sampling zeros as Ts goes to zero.
Thus, the nominal model satisfies

Gn,δ(γ) →
bo
(
1 + 1

2Tsγ
)

γ2 + a1γ + ao
(3.11)

whereas the true model satisfies
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Gδ(γ) →
bo
(
1 + Tsγ + 1

6 (Tsγ)2
)

(γ2 + a1γ + ao)
(
γ
ωu

+ 1
) (3.12)

Fig. 3.2. Frequency response for nominal and true models

The previous example illustrates the problems that may arise when using fast
sampling rates. The sampling frequency was chosen well above the nominal
poles of the system, in fact, two decades. In theory, this allows one to use the
asymptotic characterisation of the sampled-data model. However, we can see
that, if there are any unmodelled dynamics not included in the continuous-
time model (in this case, one decade above the nominal fastest pole), then
there will also be undermodelling in the sampled-data description. Moreover,
even though the sampling zeros go to infinity for the nominal and true models,
their precise characterisation depends significantly on high-frequency aspects
of the model, as shown in (3.11) and (3.12).

Remark 3.2. The above discussion highlights the issues that have to be taken
into account when using sampled-data models to identify continuous-time
systems. Specifically:

• any method that relies on high-frequency system characteristics will be
inherently non-robust, and, as a consequence,

• models should be considered within a bandwidth of validity, to avoid high-
frequency modelling errors — see the shaded area in Figure 3.3.

In Section 3.3, we will see how frequency-domain maximum likelihood esti-
mation, over a restricted bandwidth, can be used to address these issues.

3.2.1 Frequency-domain Maximum Likelihood

In this section we describe a frequency-domain maximum likelihood (FDML)
estimation procedure. Specifically, if one converts the data to the frequency



3 Robust Identification of CT Systems from Sampled Data 73

Fig. 3.3. Representation of the bandwidth of validity

domain, then one can carry out the identification over a limited range of
frequencies. Note, however, that one needs to carefully define the likelihood
function in this case. We use the following result (for the scalar case, the result
has been derived in [17], while the multi-variable case is considered in [19]).

Lemma 3.1. Assume a given set of input–output data {uk = u(tk), yk =
y(tk)}, where tk = k Ts, k = 0 . . . N , is generated by the exact discrete-time
model

yk = Gq(q,θ)uk + Hq(q,θ)vk (3.13)

where vk is Gaussian discrete-time white noise (DTWN) sequence,
vk ∼ N (0, σ2

v).
The data is transformed to the frequency domain yielding the discrete Fourier
transforms U
 and Y
 of the input and output sequences, respectively.
Then, the maximum likelihood estimate of θ, when considering frequency com-
ponents up to ωmax ≤ ωs

2 , is given by:

θ̂ML = arg min
θ

L(θ) (3.14)

where L(θ) is the negative logarithm of the likelihood function of the data given
θ, i.e.,

L(θ) = − log p(Y0, . . . , Ynmax

∣∣θ)

=
nmax∑


=0

|Y
 − Gq(eiω�Ts ,θ)U
|2
λ2
v|Hq(eiω�Ts ,θ)|2 + log(πλ2

v|Hq(eiω�Ts ,θ)|2) (3.15)

where λ2
v = TsN σ2

v, and nmax is the index associated with ωmax.

Proof. Equation (3.13) can be expressed in the frequency domain as

Y
 = Gq(eiω�Ts ,θ)U
 + Hq(eiω�Ts ,θ)V
 (3.16)

where Y
, U
, and V
 are scaled discrete Fourier transforms (DFT) [6], e.g.,
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Y
 = Y (eiω�Ts) = Ts

N−1∑

k=0

yke
−iω�kTs , ω
 = 2π

Ts



N (3.17)

Assuming that the DTWN sequence vk ∼ N (0, σ2
v), then V
 are (asymptot-

ically) independent and have a circular complex Gaussian distribution [4, 5].
Thus, the frequency-domain noise sequence V
 has zero mean and variance
λ2
v = TsN σ2

v . We therefore see that Y
 is also complex Gaussian and satisfies

Y
 ∼ N (Gq(eiω�Ts ,θ)U
, λ2
v|Hq(eiω�Ts ,θ)|2) (3.18)

The corresponding probability density function is given by

p(Y
) =
1

πλ2
v|Hq(eiω�Ts ,θ)|2 exp

{
−|Y
 − Gq(eiω�Ts ,θ)U
|2

λ2
v|Hq(eiω�Ts ,θ)|2

}
(3.19)

If we consider the elements Y
 within a limited bandwidth, i.e., up to some
maximum frequency ωmax indexed by nmax with ωmax = ωs

nmax
N ≤ ωs

2 , the
appropriate log-likelihood function is given by

L(θ) = − log p(Y0, . . . , Ynmax) = − log
nmax∏


=0

p(Y
)

=
nmax∑


=0

|Y
 − Gq(eiω�Ts ,θ)U
|2
λ2
v|Hq(eiω�Ts ,θ)|2 + log(πλ2

v|Hq(eiω�Ts ,θ)|2) (3.20)

Remark 3.3. The logarithmic term in the log-likelihood function (3.15) plays
a key role in obtaining consistent estimates of the true system. This term can
be neglected if [17]:

• the noise model is assumed to be known. In this case, Hq does not depend
on θ and, thus, plays no role in the minimisation (3.14); or

• the frequencies ω
 are equidistantly distributed over the full frequency
range [0, 2π

Ts
). This is equivalent to considering the full-bandwidth case in

(3.15), i.e., nmax = N
2 (or N , because of periodicity). This yields

2π
N

N−1∑


=0

log |Hq(eiω�Ts ,θ)|2 N→∞−−−−−−−−→
∫ 2π

0

log |Hq(eiω,θ)|2dω (3.21)

The last integral is equal to zero for any monic, stable and inversely stable
transfer function Hq(eiω,θ) [17].

Remark 3.4. In the previous lemma the discrete-time model (3.13) has been
expressed in terms of the shift operator q. The results apply mutatis mutandis
when the model is reparameterised using the δ operator

Gq(eiω�Ts) = Gδ(γω) = Gδ

(
eiω�Ts − 1

Ts

)
(3.22)
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3.3 Robust Continuous-time Model Identification

In this section we illustrate the problems that may arise when sampled-data
models are used for continuous-time system identification. In particular, we
illustrate the consequences of both types of undermodelling errors discussed
earlier

• sampling zeros are not included in the sampled-data model, and
• the continuous-time system contains unmodelled high-frequency dynamics.

We show that these kinds of errors can have severe consequences in the es-
timation results for deterministic and stochastic systems. We show that the
frequency-domain maximum likelihood (FDML) procedure, using restricted
bandwidth, allows one to overcome these difficulties.

3.3.1 Effect of Sampling Zeros in Deterministic Systems

We first explore the consequences of neglecting the presence of sampling zeros
in deterministic models used for identification. Specifically, the following ex-
ample considers a deterministic second-order system with known input. The
parameters of the system are estimated using different sampled-data model
structures.

Example 3.3. Consider again the linear system in (3.4). Assume that the
continuous-time parameters are α1 = 3, α0 = 2, β0 = 2. We performed
system identification assuming three different model structures:

SDRM: simple derivative replacement model. This corresponds to the struc-
ture given in (3.5), where continuous-time derivatives have been replaced
by divided differences.

MIFZ: model including fixed zero. This model considers the presence of the
asymptotic zero, assuming a structure as in (3.7).

MIPZ: model including parameterised zero. This model also includes a sam-
pling zero, whose location has to be estimated, i.e., we use the structure
given by (3.6).

The three discrete-time models can be represented in terms of the δ operator
as

Gδ(γ) =
Bδ(γ)

γ2 + α̂1γ + α̂0
(3.23)

where

Bδ(γ) =

⎧
⎪⎨

⎪⎩

β̂0 (SDRM)
β̂0(1 + Ts

2 γ) (MIFZ)
β̂0 + β̂1γ (MIPZ)

(3.24)

We use a sampling period Ts = π/100 [s] and choose the input uk to be a
random Gaussian sequence of unit variance. Note that the output sequence
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yk = y(kTs) can be obtained by either simulating the continuous-time system
and sampling its output, or, alternatively, by simulating the exact sampled-
data model in discrete time. Also note that the data is free of any measurement
noise.
The parameters are estimated in such a way as to minimise the equation error
cost function

J(θ̂) =
1
N

N−1∑

k=0

ek(θ̂)2 =
1
N

N−1∑

k=0

(δ2yk −ϕTk θ)2 (3.25)

where

ϕk =

⎧
⎪⎨

⎪⎩

[−δyk, −yk, uk]T

[−δyk, −yk, (1 + Ts
2 δ)uk]T

[−δyk, −yk, δuk, uk]T
and θ̂ =

⎧
⎪⎨

⎪⎩

[α̂1, α̂0, β̂0]T (SDRM)
[α̂1, α̂0, β̂0]T (MIFZ)
[α̂1, α̂0, β̂1, β̂0]T (MIPZ)

(3.26)
Table 3.1 shows the estimation results. Note that the system considered is
linear, thus, the exact discrete-time parameters can be computed for the given
sampling period. These are also given in Table 3.1.
We can see that, while both models incorporating a sampling zero (MIFZ and
MIPZ) are able to recover the continuous-time parameters, when using SDRM
the estimate β̂0 is clearly biased.

Table 3.1. Parameter estimates for a linear system

Parameters Estimates

CT Exact DT SDRM MIFZ MIPZ

α1 3 2.923 2.8804 2.9471 2.9229
α0 2 1.908 1.9420 1.9090 1.9083

β1 – 0.0305 – β̂0Ts
2

= 0.03 0.0304
β0 2 1.908 0.9777 1.9090 1.9083

The result in the previous example may be surprising since, even though the
SDRM in (3.27) converges to the continuous-time system as the sampling
period goes to zero, the estimate β̂0 does not converge to the underlying
continuous-time parameter. This estimate is asymptotically biased. Specifi-
cally, we see that β0 is incorrectly estimated by a factor of 2 by the SDRM.
This illustrates the impact of not considering sampling effects on the sampled-
data models used for continuous-time system identification.
Indeed, the following result formally establishes the asymptotic bias that was
observed experimentally for the SDRM structure in the previous example. In
particular, we show that β0 is indeed underestimated by a factor of 2.
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Lemma 3.2. Consider the general second-order deterministic system given
in (3.4). Assume that sampled data is collected from the system using a
ZOH input generated from a DTWN sequence uk, and sampling the output
yk = y(kTs).
If an equation error identification procedure is utilised to estimate the param-
eters of the simple derivative replacement model

δ2y + α̂1δy + α̂0y = β̂0u (3.27)

then the parameter estimates asymptotically converge, as the sampling period
Ts goes to zero, to

α̂1 → α1, α̂0 → α0, and β̂0 → 1
2β0 (3.28)

Proof. The parameters of the approximate SDRM (3.27) model can be ob-
tained by simple least squares, minimising the equation error cost function

J(θ̂) = lim
N→∞

1
N

N−1∑

k=0

ek(θ̂)2 = E{ek(θ̂)2} (3.29)

where ek = δ2y + α̂1δy + α̂0y − β̂0u. The parameter estimates are given by

the solution of dJ(
ˆθ)

d
ˆθ

= 0. Thus, differentiating the cost function with respect
to each of the parameter estimates, we obtain

⎡

⎣
E{(δy)2} E{(δy)y} −E{(δy)u}
E{(δy)y} E{y2} −E{yu}
−E{y2} −E{yu} E{u2}

⎤

⎦

⎡

⎣
α̂1

α̂0

β̂0

⎤

⎦ =

⎡

⎣
−E{(δy)(δ2y)}

−E{yδ2y}
E{uδ2y}

⎤

⎦ (3.30)

This equation can be rewritten in terms of (discrete-time) correlations as
⎡

⎢⎣

2ry(0)−2ry(1)
T 2

s

ry(1)−ry(0)
Ts

ryu(0)−ryu(1)
Ts

ry(1)−ry(0)
Ts

ry(0) −ryu(0)
ryu(0)−ryu(1)

Ts
−ryu(0) ru(0)

⎤

⎥⎦

⎡

⎣
α̂1

α̂0

β̂0

⎤

⎦ =

⎡

⎢⎢⎣

3ry(0)−4ry(1)+ry(2)
T 3

s−ry(0)+2ry(1)−ry(2)
T 2

s
ryu(0)−2ryu(1)+ryu(2)

T 2
s

⎤

⎥⎥⎦

(3.31)
To continue with the proof we need to obtain expressions for the correlations
involved in the last equation. If we assume that the input sequence is a DTWN
process, with unit variance then we have that

ru(k) = δK [k] ⇐⇒ Φqu(e
iωTs) = 1 (3.32)

Then, the other correlation functions can be obtained from the relations

ryu(k) = F−1
d

{
Φqyu(e

iωTs)
}

= F−1
d

{
Gq(eiωTs)Φqu(e

iωTs)
}

= F−1
d

{
Gq(eiωTs)

}
(3.33)

ry(k) = F−1
d

{
Φqy(e

iωTs)
}

= F−1
d

{
Gq(e−iωTs)Φqyu(e

iωTs)
}

= F−1
d

{
|Gq(eiωTs)|2

}
(3.34)
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where Gq(eiωTs) is the exact sampled-data model corresponding to the
continuous-time system (3.4). Given a sampling period Ts, the exact discrete-
time model is given by

Gq(z) =
β0(c1z + c0)

(z − eλ1Ts)(z − eλ2Ts)
(3.35)

where

c1 = (eλ1Ts−1)λ2−(eλ2Ts−1)λ1
(λ1−λ2)λ1λ2

= T 2
s
2 + T 3

s
6 (λ1 + λ2) + . . . (3.36)

c0 = eλ1Ts (eλ2Ts−1)λ1−eλ2Ts (eλ1Ts−1)λ2
(λ1−λ2)λ1λ2

= T 2
s
2 + T 3

s
3 (λ1 + λ2) + . . . (3.37)

and λ1 and λ2 are the continuous-time system (stable) poles of system (3.4),
i.e., α1 = −(λ1 + λ2) and α0 = λ1λ2.
The exact discrete-time model (3.35) can be rewritten as

Gq(z) =
C1

z − eλ1Ts
+

C2

z − eλ2Ts
(3.38)

where C1 = β0(c1e
λ1Ts+c0)

(eλ1Ts−eλ2Ts )
and C2 = β0(c1e

λ2Ts+c0)
(eλ2Ts−eλ1Ts )

. Substituting in (3.34), we
obtain

ryu(k) = F−1
d

{
Gq(eiωTs)

}
=
(
C1e

λ1Ts(k−1) + C2e
λ2Ts(k−1)

)
μ[k − 1] (3.39)

where μ[k] is the discrete-time unitary step function. From (3.35), we have
that

Gq(z)Gq(z−1) = K1

(
eλ1Ts

z − eλ1Ts
+

e−λ1Ts

z − e−λ1Ts

)

+ K2

(
eλ2Ts

z − eλ2Ts
+

e−λ2Ts

z − e−λ2Ts

)
(3.40)

K1 =
β2

0(c2
1e
λ1Ts + c0c1 + c0c1e

2λ1Ts + c2
0e
λ1Ts)

(e2λ1Ts − 1)(eλ1Tseλ2Ts − 1)(eλ1Ts − eλ2Ts)
(3.41)

K2 =
β2

0(c2
1e
λ2Ts + c0c1 + c0c1e

2λ2Ts + c2
0e
λ2Ts)

(e2λ2Ts − 1)(eλ2Tseλ1Ts − 1)(eλ2Ts − eλ1Ts)
(3.42)

Substituting in (3.34), we obtain

ry(k) = F−1
d

{
|Gq(z = eiωTs)|2

}
= K1e

λ1Ts|k| + K2e
λ2Ts|k| , ∀k ∈ Z

(3.43)
The correlations (3.32), (3.39), and (3.43) can be used in the normal equation
(3.30) to obtain

⎡

⎢⎣

−β2
0

2(λ1+λ2)
Ts O(T 2

s ) −β0
2 Ts

O(T 2
s ) −β2

0
2(λ1+λ2)λ1λ2

Ts 0
−β0

2 Ts 0 1

⎤

⎥⎦

⎡

⎣
α̂1

α̂0

β̂0

⎤

⎦ =

⎡

⎢⎣
Ts

β2
0
4

Ts
−β2

0
2(λ1+λ2)

β0
2 + O(Ts)

⎤

⎥⎦ (3.44)
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If we consider only terms up to of order Ts we obtain

⎡

⎣
α̂1

α̂0

β̂0

⎤

⎦ =

⎡

⎢⎣

−2(λ1+λ2)
2+(λ1+λ2)Ts

λ1λ2
β0(2−(λ1+λ2)Ts)
2(2+(λ1+λ2)Ts)

⎤

⎥⎦ Ts→0−−−−−−−→

⎡

⎣
−(λ1 + λ2)

λ1λ2

β0/2

⎤

⎦ (3.45)

which corresponds to the result in (3.28).

The above results show that sampling zeros must be considered to obtain a
sampled-data model accurate enough for estimation. Even though the sam-
pling zero for the exact discrete-time model (3.7) goes asymptotically to in-
finity (in the γ-domain), if it is not considered, then the parameter estimates
will be generically biased (for equation error structures).

3.3.2 Effect of Sampling Zeros in Stochastic Systems

A particular case of the above problem for stochastic systems has been stud-
ied in detail in the following references [15, 16, 25]. These papers deal with
continuous-time autoregressive (CAR) system identification from sampled
data. Such systems have relative degree n, where n is the order of the au-
toregressive process. Thus, consider a system described by

E(p)y(t) = v̇(t) (3.46)

where v̇(t) represents a continuous-time white noise (CTWN) process, and
E(p) is a polynomial in the differential operator p = d

dt , i.e.,

E(p) = pn + an−1p
n−1 + . . . + a0 (3.47)

For these systems, it has been shown that one cannot ignore the presence
of stochastic sampling zeros. Specifically, if derivatives are naively replaced
by divided differences and the parameters are estimated using ordinary least
squares, then the results are asymptotically biased, even when using fast sam-
pling rates [25]. Note, however, that the exact discrete-time model that de-
scribes the continuous-time system (3.46) takes the following generic form

Eq(q−1)y(kTs) = Fq(q−1)wk (3.48)

where wk is a DTWN process, and Eq and Fq are polynomials in the backward
shift operator q−1.
The polynomial Eq(q−1) in (3.48) is well behaved in the sense that it converges
naturally to its continuous-time counterpart. This relationship is most readily
portrayed using the delta form

Eδ(δ) = δn + ān−1δ
n−1 + . . . + ā0 (3.49)

Using (3.49), it can be shown that, as the sampling period Ts goes to zero
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lim
Ts→0

āi = ai , i = n − 1, . . . , 0 (3.50)

However, the polynomial Fq(q−1) contains the stochastic sampling zeros, with
no continuous-time counterpart [28]. Thus, to obtain the correct estimates–
say via the prediction error method [18]—then one needs to minimise the cost
function

JPEM =
N∑

k=1

[
Eq(q−1)y(kTs)

Fq(q−1)

]2
(3.51)

Notice the key role played by the sampling zeros in the above expression. A
simplification can be applied, when using high sampling frequencies, by re-
placing the polynomial Fq(q−1) by its asymptotic expression. However, this
polynomial has to be taken into account when estimating over the full band-
width. Hence it is not surprising that the use of ordinary least squares, i.e., a
cost function of the form

JLS =
N∑

k=1

[
Eq(q−1)y(kTs)

]2
(3.52)

leads to (asymptotically) biased results, even when using (3.49). We illustrate
these ideas by the following example.

Example 3.4. Consider the continuous-time system defined by the nominal
model

E(p)y(t) = v̇(t) (3.53)

where v̇(t) is a CTWN process with (constant) spectral density equal to 1,
and

E(p) = p2 + 3p + 2 (3.54)

We know that the equivalent sampled-data model has the form

Y (z) =
Fq(z)
Eq(z)

W (z) =
K(z − z1)

(z − e−Ts)(z − e−2Ts)
W (z) (3.55)

Moreover, as the sampling rate increases, the sampled model converges to

Fq(z)
Eq(z)

Ts≈0−−−→ T 2
s

3!
(z − z∗1)

(z − e−Ts)(z − e−2Ts)
(3.56)

where z∗1 = −2 +
√

3 is the asymptotic stochastic sampling zero, which corre-
sponds to the stable root of the sampling zero polynomial B3(z) = z2 +4z +1
[28].
For simulation purposes we used a sampling frequency ωs = 250 [rad/s]. Note
that this frequency is two decades above the fastest system pole, located at
s = −2. We performed a Monte Carlo simulation of Nsim = 250 runs, using
N = 10, 000 data points in each run.
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Test 1: If one uses ordinary least squares as in (3.52), then one finds that
the parameters are (asymptotically) biased, as discussed in detail in [25].
The continuous-time parameters are extracted by converting to the delta
form and then using (3.50). We obtain the following (mean) parameter
estimates [

â1

â0

]
=
[
1.9834
1.9238

]
(3.57)

In particular, we observe that the estimate â1 is clearly biased with respect
to the continuous-time value a1 = 3.

Test 2: We next perform least squares estimation of the parameters, but with
prefiltering of the data by the asymptotic sampling zero polynomial, i.e.,
we use the sequence of filtered output samples given by

yF (kTs) =
1

1 + (2 −
√

3)q−1
y(kTs”) (3.58)

Note that this strategy is essentially as in [15,16].
Again, we extract the continuous-time parameters by converting to the
delta form and using (3.50). We obtain the following estimates for the
coefficients of the polynomial (3.54)

[
â1

â0

]
=
[
2.9297
1.9520

]
(3.59)

The residual small bias in this case can be explained by the use of the
asymptotic sampling zero in (3.56), which is not strictly correct whenever
the sampling period Ts is finite.

In the previous example we obtained an asymptotically biased estimation of
the parameter â1 when the sampling zeros are ignored. In fact, the estimates
obtained in (3.57) are predicted by the following lemma. This lemma is the
stochastic counterpart of Lemma 3.2, namely, the asymptotic parameter es-
timates obtained when using the simple derivative replacement approach for
second-order CAR systems.

Lemma 3.3. Consider the second-order continuous-time autoregressive sys-
tem

d2

dt2
y(t) + α1

d
dt

y(t) + αoy(t) = v̇(t) (3.60)

where v̇(t) is a CTWN process. Assume that a sequence {yk = y(kTs)} is
obtained by sampling instantaneously the system output. If an equation error
procedure is used to estimate the parameters of (3.60) using the model

δy2 + α̂1δy + α̂oy = e (3.61)

Then, as the sampling period Ts goes to zero, the parameters go to

α̂1 → 2
3α1 α̂0 → α0 (3.62)
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Proof. The proof follows similar lines to the proof of Lemma 3.2. The details
can be found in [24].

Up to this point, we have considered undermodelling errors that arise when
sampling zeros (stochastic or deterministic) are not considered in the discrete-
time model. In the next subsection, we show that high-frequency modelling
errors in continuous-time can have an equally catastrophic effect on parameter
estimation as does neglected sampling zero.

3.3.3 Continuous-time Undermodelling

In this section, we illustrate the consequences of unmodelled dynamics in the
continuous-time model, when using estimation procedures based on sampled
data. Our focus will be on the case of stochastic systems, however, similar
issues arise for deterministic system.
The input of a stochastic system is assumed to be a CTWN process. However,
such a process is only a mathematical abstraction and does not physically exist
[1, 13]. In practice, we will have wide-band noise processes as a disturbance.
This is equivalent to a form of high-frequency undermodelling.
The solution of the CAR identification problem for sampled data would seem
to be straightforward given the discussion in the previous subsection. Ap-
parently, one only needs to include the sampling zeros to get asymptotically
unbiased parameter estimates using least squares. However, this ignores the
issue of fidelity of the high-frequency components of the model. Indeed, the
system relative degree cannot be robustly defined for continuous-time models
due to the presence of (possibly time-varying and ill-defined) high-frequency
poles or zeros. If one accepts this claim, then one cannot rely upon the integrity
of the extra polynomial Fq(q−1). In particular, the error caused by ignoring
this polynomial (as suggested by the cost function (3.52)) might be as catas-
trophic as using a sampling zero polynomial arising from some hypothetical
assumption about the relative degree. Thus, this class of identification pro-
cedures are inherently non-robust. We illustrate this by continuing Example
3.4.

Example 3.5 (Example 3.4 continued). Let us assume that the true model for
the system (3.53) is given by the polynomial

E(p) = Eo(p)(0.02p + 1) (3.63)

where we have renamed the polynomial (3.54) in the original model as Eo(p).
The true system has an unmodelled pole at s = −50, which is more than one
decade above the fastest nominal pole in (3.53) and (3.54), but almost one
decade below the sampling frequency, ωs = 250 [rad/s].
We repeat the estimation procedure described in Test 2, in Example 3.4, using
the filtered least squares procedure. We obtain the following estimates



3 Robust Identification of CT Systems from Sampled Data 83

[
â1

â0

]
=
[
1.4238
1.8914

]
(3.64)

These are clearly biased, even though the nominal sampling zero has been
included in the model.
To analyse the effect of different types of undermodelling, we consider the true
denominator polynomial (3.63) to be

E(p) = Eo(p)
(

1
ωu

p + 1
)

(3.65)

We consider different values of the parameter ωu in (3.65), using the same
simulation conditions as in the previous examples (i.e., 250 Monte Carlo runs
using 10, 000 data points each). The results are presented in Figure 3.4. The
figure clearly shows the effect of the unmodelled dynamics on the parameter
estimates. We see that the undermodelling has an impact even beyond the
sampling frequency, which can be explained in terms of the inherent folding
effect of the sampling process.
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Fig. 3.4. Mean of the parameter estimates as a function of the unmodelled dynam-
ics, using filtered LS
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Fig. 3.5. Mean of the parameter estimates as a function of the unmodelled dynam-
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Figure 3.5 shows similar simulation results using a basic delayed instrumental
variable estimator, where the IV vector consists of observations of y(t) delayed
one sampling period [3].

The difficulties discussed above arise due to the fact that the true high-
frequency characteristics are not exactly as hypothesised in the algorithm.
Thus, the folding that occurs is not governed by the anticipated sampling
zero polynomial that is used to prefilter the data.

3.3.4 Restricted-bandwidth FDML Estimation

The examples presented in the previous subsections raise the question as to
how these problems might be avoided or, at least, reduced, by using an iden-
tification procedure more robust to high-frequency undermodelling. Our pro-
posal to deal with this problem is to designate a bandwidth of validity for the
model and, then, to develop an algorithm that is insensitive to errors outside
that range. This is most easily done in the frequency domain.
In the following example we will use the FDML procedure presented in Lemma
3.1 to estimate the parameters of CAR systems as (3.46).
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Remark 3.5. For a CAR system as in (3.46), let us consider the (approximate)
derivative replacement discrete-time model

Eq(q)yk = wk (3.66)

where yk is the sequence of instantaneous output samples of (3.46), and wk
is a discrete-time stationary Gaussian white noise sequence with variance σ2

w.
Given N data points of the output sequence y(kTs) sampled at ωs [rad/s], the
appropriate likelihood function, in the frequency domain, takes the form

L =
nmax∑


=0

|Eq(eiω�Ts)Y (eiω�Ts)|2
Nσ2

w

− log
|Eq(eiω�Ts)|2

σ2
w

(3.67)

where ω
 = ωs

N and nmax corresponds to the bandwidth to be considered,

i.e., ωmax = ωsnmax

N .

Example 3.6. We consider again the CAR system presented in Example 3.4.
If we use the result in Lemma 3.1, using the full bandwidth [0, π/Ts] (or,
equivalently, up to 125 [rad/s]) we obtain the following (mean) value for the
parameter estimates [

â1

â0

]
=
[
4.5584
1.9655

]
(3.68)

As expected, these parameters are clearly biased because we are not taking
into account the presence of the sampling zero polynomial in the true model.
Next, we consider an estimation procedure restricted to a certain bandwidth
of validity. For example, the usual rule of thumb is to consider up to one
decade above the fastest nominal system pole, in this case, 20 [rad/s]. The
resultant (mean of the) parameter estimates are then given by

[
â1

â0

]
=
[
3.0143
1.9701

]
(3.69)

Note that these estimates are essentially equal to the (continuous-time) true
values. Moreover, no prefiltering as in (3.51) or (3.58) has been used! Thus,
one has achieved robustness to the relative degree at high frequencies since it
plays no role in the suggested procedure. Moreover, the sampling zeros can
be ignored since their impact is felt only at high frequencies.
Finally, we show that the frequency-domain procedure is also robust to the
presence of unmodelled fast poles. We consider again the true system to be
as in (3.63). We restrict the estimation bandwidth up to 20 [rad/s]. In this
case, the mean of the parameter estimates is again very close to the nominal
system coefficients, i.e., we obtain

[
â1

â0

]
=
[
2.9285
1.9409

]
(3.70)
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A more general situation is shown in Figure 3.6. The figure shows the param-
eter estimates obtained using the proposed FDML procedure, with the same
restricted bandwidth used before ωmax = 20 [rad/s], for different locations of
the unmodelled fast pole ωu, as in (3.65).
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Fig. 3.6. Parameter estimates using FDML as a function of unmodelled pole

Remark 3.6. Note that the likelihood function (3.67) is not scalable by σ2
w

and hence one needs to also include this parameter in the set to be estimated.
This is an important departure from the simple least squares case.

3.4 Conclusions

In this chapter we have explored the robustness issues that arise in the iden-
tification of continuous-time systems from sampled data. A key observation is
that the fidelity of the models at high frequencies generally plays an important
role in obtaining models suitable for continuous-time system identification. In
particular, we have shown that
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• sampling zeros may have to be included in the discrete-time models to
obtain accurate sampled-data descriptions.

• unmodelled high-frequency dynamics in the continuous-time model can
have a critical impact on the quality of the estimation process when using
sampled data.

This implies that any result that implicitly or explicitly depends upon the fold-
ing of high-frequency components down to lower frequencies will be inherently
non-robust. As a consequence, we argue that models have to be considered
within a bandwidth of validity.
To address these issues, we have proposed the use of frequency-domain max-
imum likelihood estimation, using a restricted bandwidth. We have shown
that this approach is robust to both the presence of sampling zeros and to
high-frequency modelling errors in continuous time.
The problems discussed above have been illustrated for both, deterministic
and stochastic systems. Special attention was given to the identification of
continuous-time autoregressive stochastic models from sampled data. We have
argued that traditional approaches to this problem are inherently sensitive to
high-frequency modelling errors. We have also argued that these difficulties
can be mitigated by using the proposed FDML with restricted bandwidth.
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4.1 Introduction

This chapter describes and evaluates a statistically optimal method for the
identification and estimation3 of continuous-time (CT) hybrid Box–Jenkins
(BJ) transfer function models from discrete-time, sampled data. Here, the
model of the basic dynamic system is estimated in continuous-time, differential
equation form, while the associated additive noise model is estimated as a
discrete-time, autoregressive moving average (ARMA) process. This refined
instrumental variable method for continuous-time systems (RIVC) was first
developed in 1980 by Young and Jakeman [52] and its simplest embodiment,
the simplified RIVC (SRIVC) method, has been used successfully for many
years, demonstrating the advantages that this stochastic formulation of the
continuous-time estimation problem provides in practical applications (see,
e.g., some recent such examples in [16,34,40,45,48]).

However, the ‘simplification’ that characterises the name of the SRIVC
method is the assumption, for the purposes of simplicity and algorithmic de-
velopment, that the additive noise is purely white in form. Such an approach
is optimal under this assumption and the inherent instrumental variable
aspects of the resulting algorithm ensure that the parameter estimates
are consistent and asymptotically unbiased in statistical terms, even if the
noise happens to be coloured. However, the SRIVC estimates are not, in
general, statistically efficient (minimum variance) in this situation because
the prefilters are not designed to account for the colour in the noise process.

The hybrid RIVC estimation procedure, described and evaluated in this chap-
ter, follows logically from the refined instrumental variable (RIV) method for
3 The statistical meaning of these terms will be used here, where ‘identification’ is

taken to mean the specification of an identifiable model structure and ‘estimation’
relates to the estimation of the parameters that characterise this identified model
structure.
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discrete-time (DT) models, first developed within a maximum likelihood (ML)
context by Young in 1976 [27] and comprehensively evaluated by Young and
Jakeman [7,42,46]. Further developments of both the RIV and RIVC methods
have been reported recently [3,37,38,41], including the use of these algorithms
in a closed-loop context (see also [5] and Chapter 5 in the present book).

The RIV algorithm involves concurrent DT noise model estimation and uses
this estimated noise model in the iterative-adaptive design of statistically
optimal prefilters that effectively attenuate noise outside the passband of the
system and prewhiten the noise remaining within the bandpass. Similarly
motivated prefilters are utilised in the RIVC algorithm but they also provide
a very convenient way of generating the prefiltered derivatives of the input
and output variables, as required for CT model estimation.

If required, it is possible to design the RIVC algorithm entirely in CT terms
by using a CT formulation that involves a continuous-time RIVC estimation
algorithm with CT optimal prefilters (see [17], Equation (15)). An equivalent
RIV solution of the optimal delta operator estimation problem has also been
described and evaluated [39] and this provides an alternative to the RIVC
approach that could be advantageous in some control applications [14].

The alternative hybrid form of the continuous-time transfer function model is
considered here for two reasons. First, the approach is simple and straightfor-
ward: the theoretical and practical problems associated with the estimation
of purely stochastic, continuous-time CAR or CARMA models are avoided
by formulating the problem in this manner. Second, as pointed out above,
one of the main functions of the noise estimation is to improve the statistical
efficiency of the parameter estimation by introducing appropriately defined
prefilters into the estimation procedure. And, as we shall see in this chapter,
this can be achieved adequately on the basis of hybrid prefilters defined by
reference to discrete-time AR or ARMA noise models.

Following the problem formulation in Section 4.2, the theoretical motivation
for hybrid RIVC estimation is outlined in Section 4.3 and the RIVC/SRIVC
algorithms are described in Section 4.4. The theoretical justification for the
prefilters, which is discussed more formally in Section 4.5, is provided by both
‘extended instrumental variable’ and maximum likelihood analysis. The eval-
uation of the RIVC/SRIVC algorithms in Sections 4.7 and 4.8 of the chapter
is based on comprehensive Monte Carlo simulation (MCS) analysis, as well
as two practical examples. The first of these considers the use of RIVC in
the ‘dominant mode’ simplification of a giant dynamic simulation model used
in climate research; and the second is the re-investigation of a demonstra-
tion example [4] used in both the CAPTAIN and CONTSID Toolboxes for
MATLAB� (see conclusions Section 4.9), which involves the analysis of data
from a multiple-input winding process.
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4.2 Problem Formulation

For simplicity of presentation, the formulation and solution of the CT esti-
mation problem will be restricted to the case of a linear, single-input, single-
output system. It should be noted, however, that the analysis extends straight-
forwardly to multiple-input systems and, in a more complex manner, to full
multi-variable systems (e.g., [7]). Indeed, a practical multiple-input example
is considered in Section 4.8. In the single-input, single-output situation, it is
assumed that the input u(t) and the noise-free output x(t) are related by the
following constant coefficient, differential-delay equation,

dnx(t)
dtn

+ ao1
dn−1x(t)

dtn−1
+ · · · + aonx(t) = bo0

dmu(t − τ)
dtm

+ · · · + bomu(t − τ)

or,

x(n)(t) + ao1x
(n−1)(t) + · · · + aonx(t) = bo0u

(m)(t− τ) + · · · + bomu(t− τ) (4.1)

where x(i)(t) denotes the ith time derivative of the continuous-time signal x(t)
and τ is a pure time delay in time units. This is often assumed to be an integer
number related to the sampling time: i.e., τ = nkTs but this is not essential:
in this CT environment, ‘fractional’ time delays can be introduced if required
(e.g., see [35]). For simplicity, the time delay will not be considered in the
following analysis but it can be accommodated straightforwardly if identified
from the data. Equation (4.1) can also be written in the following compact
transfer function (TF) form,

x(t) = Go(p)u(t) =
Bo(p)
Ao(p)

u(t) (4.2)

with

Bo(p) =bo0p
m + bo1p

m−1 + · · · + bom, (4.2a)

Ao(p) =pn + ao1p
n−1 + · · · + aon, n ≥ m (4.2b)

where x(t) is the deterministic output of the system; p is the differential
operator, i.e., pix(t) = dix(t)

dti ; Bo(p) and Ao(p) are assumed to be coprime;
and the system is asymptotically stable. It is assumed that the input signal
{u(t), t1 < t < tN} is applied to the system and this gives rise to an output
signal {x(t), t1 < t < tN}.
In order to obtain high-quality statistical estimation results, it is vital to con-
sider the inevitable errors that will affect the measured output signal. It is
assumed here that x(t) is corrupted by an additive, coloured measurement
noise ξ(t), so that the complete equation for the data-generating system, de-
noted by S, can be written in the form,

S : y(t) = Go(p)u(t) + Ho(p)eo(t) (4.3)
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or, in the alternative decomposed form that is more appropriate in the present
context

S

⎧
⎪⎨

⎪⎩

x(t) = Go(p)u(t)
ξ(t) = Ho(p)eo(t)
y(t) = x(t) + ξ(t)

(4.4)

where Ho(p) is stable and invertible, while eo(t) is a zero-mean, continuous-
time white noise source, which is assumed to be uncorrelated with the input
u(t). Finally, if the additive coloured noise ξ(t) has rational spectral density,
then a suitable parametric representation is the following continuous-time,
autoregressive moving average (CARMA) model

ξ(t) = Ho(p)eo(t) =
Co(p)
Do(p)

eo(t) (4.5)

where Co(p) and Do(p) are suitably defined polynomials in the p operator.
Of course, in most practical situations, the input and output signals u(t) and
y(t) will be sampled in discrete time. In the case of uniform sampling, at a
constant sampling interval Ts, these sampled signals will be denoted by u(tk)
and y(tk) and the output observation equation then takes the form,

y(tk) = x(tk) + ξ(tk) k = 1, · · ·N (4.6)

where x(tk) is the sampled value of the unobserved, noise-free output x(t). The
objective is then to identify a suitable model structure for (4.4) and estimate
the parameters that characterise this structure, based on these sampled input
and output data ZN = {u(tk); y(tk)}Nk=1.

Given the discrete-time, sampled nature of the data, an obvious assumption
is that the discrete-time, coloured noise associated with the sampled output
measurement y(tk) has rational spectral density and so can be represented by
a discrete-time ARMA(p, q) model. The model set to be identified and esti-
mated, as denoted by M with system (G) and noise (H) models parameterised
independently, then takes the form,

M : {G(p,ρ),H(q−1,η)} (4.7)

where ρ and η are parameter vectors that characterise the system and
noise models, respectively. In particular, the system model is formulated in
continuous-time terms

G : G(p,ρ) =
B(p,ρ)
A(p,ρ)

=
b0p

m + b1p
m−1 + · · · + bm

pn + a1pn−1 · · · + an
(4.8)

and the associated model parameters are stacked columnwise in the parameter
vector,
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ρ =
[
a1 · · · an b0 · · · bm

]T ∈ R
n+m+1 (4.9)

while the noise model is in discrete-time form

H : H(q−1,η) =
C(q−1,η)
D(q−1,η)

=
1 + c1q

−1 + · · · + cqq
−q

1 + d1q−1 + · · · + dpq−p
(4.10)

where q−r is the backward shift operator, i.e., q−ry(tk) = y(tk−r) and the
associated model parameters are stacked columnwise in the parameter vector,

η =
[
c1 · · · cq d1 · · · dp

]T ∈ R
p+q (4.11)

Consequently, the noise TF takes the usual ARMA model form

ξ(tk) =
C(q−1,η)
D(q−1,η)

e(tk) e(tk) ∼ N (0, σ2) (4.12)

where, as shown, e(tk) is a zero-mean, normally distributed, discrete-time
white noise sequence.
The structure S does not specify any common factors in the plant (Go) and
noise (Ho) components, so that these models can be parameterised indepen-
dently. More formally, there exists the following decomposition of the param-
eter vector θ for the whole hybrid model,

θ =
(
ρ
η

)
(4.13)

such that the model equations can be written in the form

M

⎧
⎪⎨

⎪⎩

x(t) = G(p,ρ)u(t)
ξ(tk) = H(q−1,η)e(tk)
y(tk) = x(tk) + ξ(tk)

(4.14)

This model is considered as a hybrid Box–Jenkins model because of its close
relationship to the DT model considered in great detail by Box and Jenkins
in their seminal book on time-series analysis, forecasting and control [2] and
used as the basis for the development of the original RIVC algorithm [52].
Alternatively, the model can be written in the following vector terms

M

⎧
⎪⎨

⎪⎩

x(n)(t) = ϕT (t)ρ
ξ(tk) = ψT (tk)η + e(tk)
y(tk) = x(tk) + ξ(tk)

(4.15)

where,

ϕT (t) =
[
−x(n−1)(t) · · · − x(t) u(m)(t) · · · u(t)

]
(4.15a)

ψT (tk) = [−ξ(tk−1) · · · − ξ(tk−p) e(tk−1) · · · e(tk−q)] (4.15b)

For the purposes of identification, the order of this single-input model (with
the pure time delay τ now added for completeness) is denoted by [n m τ p q]
and the complete identification problem can now be stated as follows:
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Based on N uniformly sampled measurements of the input and out-
put, ZN = {u(tk); y(tk)}Nk=1, identify the orders n, m, p and q of the
polynomials in the system and noise TF models, as well as any pure
time delay τ , and estimate the parameter vector θ in (4.13) whose
parameters characterise these polynomials.

4.3 Optimal RIVC Estimation: Theoretical Motivation

The RIVC algorithm derives from the RIV algorithm for DT systems. This
was evolved by converting the maximum likelihood (ML) estimation equations
to a pseudo-linear form [20] involving optimal prefilters [27, 46, 52]. A similar
analysis can be utilised in the present situation because the problem is very
similar, in both algebraic and statistical terms. However, to conserve space,
the discussion here will be restricted to a simpler development of the RIVC
algorithm and we leave the interested reader to consult with these earlier
references for details of the ML analysis.

4.3.1 The Hybrid Box–Jenkins Estimation Model

Following the usual prediction error minimisation (PEM) approach in the
present hybrid situation (which is ML estimation because of the Gaussian
assumptions on e(tk)), a suitable error function ε(tk), at the kth sampling
instant, is given by,

ε(tk) =
D(q−1,η)
C(q−1,η)

{
y(tk) −

B(p,ρ)
A(p,ρ)

u(tk)
}

which can be written as,

ε(tk) =
D(q−1,η)
C(q−1,η)

{
1

A(p,ρ)
[A(p,ρ)y(tk) − B(p,ρ)u(tk)]

}
(4.16)

where the discrete-time prefilter D(q−1,η)/C(q−1,η) will be recognised as the
inverse of the ARMA(p,q) noise model. Note that in these equations, we are
mixing discrete and continuous-time operators somewhat informally in order
to indicate the hydrid computational nature of the estimation problem being
considered here. Thus, operations such as,

B(p,ρ)
A(p,ρ)

u(tk)

imply that the input variable u(tk) is interpolated in some manner. This is to
allow for the inter-sample behaviour that is not available from the sampled
data and so has to be inferred in order to allow for the continuous-time numer-
ical integration of the associated differential equations. For such integration,
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the discretisation interval will be varied, dependent on the numerical method
employed, but it will usually be much smaller than the sampling interval Ts.
Minimisation of a least squares criterion function in ε(tk), measured at the
sampling instants, provides the basis for stochastic estimation. However, since
the polynomial operators commute in this linear case, (4.16) can be considered
in the alternative form,

ε(tk) = A(p,ρ)yf(tk) − B(p,ρ)uf(tk) (4.17)

where yf (tk) and uf (tk) represent the sampled outputs of the complete hybrid
prefiltering operation involving the continuous-time filtering operations using
the filter

fc(p,ρ) =
1

A(p,ρ)
(4.18)

as shown in Figures 4.1 and 4.2, as well as discrete-time filtering operations,
using the inverse noise model filter

fd(q−1,η) =
D(q−1,η)
C(q−1,η)

(4.19)

as shown in Figure 4.2. The associated, linear-in-the-parameters estimation
model then takes the form

y
(n)
f (tk) = ϕTf (tk)ρ+ η(tk) (4.20)

where,

ϕTf (tk) =
[
−y

(n−1)
f (tk) − y

(n−2)
f (tk) · · · − yf(t) u(m)(tk) · · · u(tk)

]
(4.21)

and η(tk) is the continuous-time noise signal η(t) = A(p,ρ)ξ(t) sampled at
the kth sampling instant.

4.3.2 RIVC Estimation

Optimal methods of IV estimation (see, e.g., [19, 27]) normally involve an
iterative (or relaxation) algorithm in which, at each iteration, the ‘auxiliary
model’ used to generate the instrumental variables, as well as the associated
prefilters, are updated, based on the parameter estimates obtained at the
previous iteration. Let us consider, therefore, the jth iteration where we have
access to the estimate,

θ̂
j−1

=
(
ρ̂j−1

η̂j−1

)
(4.22)

obtained previously at iteration j − 1. The most important aspect of optimal
IV estimation is the definition of an optimal instrumental variable. In the
present context, this is generated from the output of the continuous-time
auxiliary model,
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Fig. 4.1. Generation of filtered derivatives for the output y(t) by the prefilter
fc(p) = 1/A(p,ρj), where âi, i = 1, 2, · · · , n are the iteratively updated parameters
of the model polynomial A(p,ρj) at the jth iteration. This is the inside of the block
marked A in Figure 4.2 (based on Figure 2(b) in [52]).

x̂(t, ρ̂j−1) = G(p, ρ̂j−1)u(t) (4.23)

which is prefiltered in the same hybrid manner as the other variables. The
associated optimal IV vector ϕ̂f (tk), is then an estimate of the noise-free
version of the vector ϕf(tk) in (4.21) and is defined as follows

ϕ̂f(tk) =
[
−x̂

(n−1)
f (tk) · · · − x̂f(tk) u

(m)
f (tk) · · · uf(tk)

]T
(4.24)

where it should be noted that

ϕ̂f(tk) = ϕ̂f(tk, ρ̂
j−1, η̂j) (4.25)

because the instrumental variables are now prefiltered and so are a function of
both the system parameter estimates at the previous iteration and the most
recent noise model parameter estimates (see later). For simplicity, however,
these additional arguments will be omitted in the subsequent analysis. Note
also that the noise-free version of the vector ϕf(tk) in (4.21), which we will
define as follows,

ϕ̊Tf (tk) =
[
−x

(n−1)
f (tk) · · · − xf(tk) u

(m)
f (tk) · · · uf(tk)

]
(4.26)

where x(t) = Go(p)u(t), is referred to in Section 4.5 when considering the
statistical properties of the optimal IV parameter estimates.
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with elements defined as the appropriate prefiltered derivatives of u(tk), y(tk) and
x̂(tk), while Â(p) = A(p, ρ̂j−1), Ĉ(q−1) = C(q−1, η̂j) and D̂(q−1) = D(q−1, η̂j)
are the iteratively updated model polynomials that define the prefilters (based on
Figure 2 in [52]). The detail of the block marked A is shown in Figure 4.1.

The IV optimisation problem can now be stated in the form

ρ̂j(N) = arg min
ρ

∥∥∥∥∥

[
1
N

N∑

k=1

ϕ̂f(tk)ϕf(tk)
T

]
ρ−

[
1
N

N∑

k=1

ϕ̂f(tk)y
(n)
f (tk)

]∥∥∥∥∥

2

Q

(4.27)
where ‖x‖2 = xTQx and Q = I. This results in the solution of the IV
estimation (IV normal) equations

ρ̂j(N) =

[
N∑

k=1

ϕ̂f(tk)ϕf(tk)
T

]−1 N∑

k=1

ϕ̂f(tk)y
(n)
f (tk) (4.28)

where the ρ̂j(N) is the IV estimate of the system model parameter vector
at the jth iteration based on the appropriately prefiltered input/output data
ZN = {u(tk); y(tk)}Nk=1.
As regards the hybrid prefiltering, it will be noted from (4.25) that this in-
volves the inverse noise model parameters η̂j obtained at the current jth
iteration. This is because, given ρ̂j−1, an estimate of the sampled noise signal
ξ(tk), at the jth iteration, is obtained by subtracting the sampled output of
the auxiliary model equation (4.23) from the measured output y(tk), i.e.,
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ξ̂(tk) = y(tk) − x̂(t, ρ̂j−1) (4.29)

This estimate provides the basis for the estimation of the noise model param-
eter vector ηj , using whatever ARMA model estimation algorithm is selected
for this task (see Section 4.4). This is then available to design and implement
the latest discrete-time, inverse noise model part of the hybrid prefiltering
operations shown in the right hand-side of Figure 4.2.

4.4 The RIVC and SRIVC Algorithms

The iterative RIVC and SRIVC algorithms follow directly from the RIV and
SRIV algorithms for DT systems (e.g., [46]). This section summarises both of
the new hybrid algorithms.

4.4.1 The RIVC Algorithm

Bearing the analysis of the previous subsection 4.3.2 in mind, the main steps
in the RIVC algorithm are as follows:

Step 1. Initialisation: generate an initial estimate of the TF model parameter
vector ρ̂o using the simplified RIVC (SRIVC) algorithm (see subsection
4.4.2) and use this to define the initial continuous-time prefilter fc(p, ρ̂

o).
Step 2. Iterative estimation.

for j = 1 : convergence
(i) Generate the instrumental variable series x̂(t, ρ̂j−1) using the auxiliary

model built up from the estimated polynomials A(p, ρ̂j−1) and B(p, ρ̂j−1)
based on ρ̂j−1 at the previous (j − 1)th iteration.

(ii) Prefilter the input u(tk), output y(tk) and instrumental variable x̂(t, ρ̂j−1)
by the continuous-time filter fc(p, ρ̂j−1) in order to generate the filtered
derivatives of these variables (see Figure 4.1).

(iii) Obtain an optimal estimate of the noise model parameter vector η̂j based
on the estimated noise sequence ξ̂(tk) from (4.29), using a selected ARMA
estimation algorithm.

(iv) Sample the filtered derivative signals at the discrete-time sampling interval
Ts and prefilter these by the discrete-time filter fd(q

−1, η̂j), in order to define
all the required elements in the data vector ϕf(tk), the IV vector ϕ̂f(tk) and

the nth-order filtered derivative y
(n)
f (tk) (see Figure 4.2).

(v) Based on these prefiltered data, generate the latest estimate ρ̂j of the system

model parameter vector using the en bloc IV solution (4.28), or its recursive

equivalent. Together with the estimate η̂j of the noise model parameter es-

timate from (iii), this provides the estimate θ̂
j

of the composite parameter

vector at the jth iteration.

end
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Step 3. After the convergence of the iterations is complete, compute the es-
timated parametric error covariance matrix P̂ρ, associated with the con-
verged estimate ρ̂ of the system model parameter vector, from the expres-
sion (see Section 4.5),

P̂ρ = σ̂2

[
N∑

k=1

ϕ̂f (tk)ϕ̂
T
f (tk)

]−1

(4.30)

where ϕ̂f(tk) is the IV vector obtained at convergence and σ̂2 is the esti-
mated residual variance.

Comments

1. The fact that the ARMA noise model estimation is carried out separately
on the basis of the estimated noise ξ̂(tk) signal obtained from the IV part
of estimation algorithm in (4.29), implies that the system and noise model
parameters are statistically independent in some sense. As we shall see in
Section 4.5, this is indeed the case: the parameters of the two models
are asymptotically independent and so the associated parametric error
covariance matrix is block diagonal.

2. As pointed out previously in Section 4.3.1, the generation of the instru-
mental variable x̂(t) in (4.23), as well as the CT part of the hybrid pre-
filtering operations, are solved by numerical integration at an appropriate
discretisation interval that is normally much smaller than the sampling
interval Ts of the data. This requires interpolation of the sampled input
signal u(tk) and is at the discretion of the user. For instance, the im-
plementations of the RIVC algorithm in the CAPTAIN and CONTSID
toolboxes utilise the lsim routine in MATLAB�. Although a simple ap-
proach, this yields good practical results (see comments in Section 4.7.2).
However, more sophisticated, or even optimal, interpolation could be used
if this was thought necessary.

3. The method of discrete-time ARMA model estimation is also at the dis-
cretion of the user. However, for the examples described in Section 4.7, the
IVARMA algorithm [37,38] is used because it is an iterative IV algorithm
that fits well within the present context and yields optimal estimates of
the ARMA model parameters. For the implementation of the RIVC al-
gorithm in the CAPTAIN Toolbox, however, IVARMA and PEM options
are both available to perform this function.

4.4.2 The SRIVC Algorithm

It will be noted that the above formulation of the RIVC estimation problem
is considerably simplified if it is assumed that the additive noise is white, i.e.,
C(q−1,η) = D(q−1,η) = 1. In this case, simplified RIVC (SRIVC) estimation
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involves only the parameters in the A(p,ρ) and B(p,ρ) polynomials and the
prefiltering only involves the continuous-time prefilter fc(p,ρ) = 1/A(p,ρ).
Consequently, the main steps in the SRIVC algorithm are the same as those
in the RIVC algorithm, except that the noise model estimation and subsequent
discrete-time prefiltering in steps (ii) and (iii) of the iterative procedure are
no longer required and are omitted.

Comments

1. The fact that the SRIVC algorithm yields consistent estimates of the sys-
tem model parameters, even in the coloured noise situation, means that
the SRIVC estimates can provide the information required for the initia-
tion of the full RIVC algorithm. In addition, although noise model identi-
fication and estimation is not essential in the SRIVC algorithm, separate
identification and estimation of an ARMA(p,q) model for the estimated
noise sequence ξ̂(tk) from (4.29) can be included for diagnostic purposes.
Moreover, if the estimated noise sequence is sufficiently coloured to require
full RIVC estimation, then the identified ARMA(p,q) model structure ob-
tained in this manner can be used to prime the RIVC algorithm in this
regard.

2. The initial selection of A(p, ρ̂o) does not have to be particularly accurate
provided the prefilter fc(p, ρ̂

o) based on it does not seriously attenuate
any signals within the passband of the system being modelled. It can be
based on various approaches

a) The selection of the single breakpoint parameter λ (breakpoint fre-
quency in radians/time unit) of the filter,

fc(p) =
1

E(p)
=

1
(p + λ)n

(4.31)

which is chosen so that it is equal to, or larger than, the bandwidth of
the system to be identified. This filter form was suggested long ago (e.g.,
[15, 26]) but has proven popular ever since.

b) The incorporation of an algorithm for discrete-time model estimation,
such as RIV or PEM, if necessary using a coarser sampling interval, from
which the CT model polynomial can be inferred using the d2cm tool in
MATLAB�.

c) The specification of an a priori polynomial based on prior studies.

Of these, a) is simple and, based on extensive practical experience, seems
very robust in practical terms; while b) is more automatic but not so
robust because of the problems that can arise in estimating a discrete-
time model from rapidly sampled data. For this reason, in the CAPTAIN
and CONTSID Toolbox implementations of the algorithm, the user can
specify a coarser sampling interval for the DT model estimation in order
to allow for better identifiability.
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3. The SRIVC algorithm performs optimally if the additive noise is white:
i.e., estimates are consistent and asymptotically efficient. If the noise is
coloured, with rational spectral density, then the estimates remain consis-
tent, because of the inherent instrumental variable mechanism, but they
are not minimum variance. However, experience has shown that they are
often relatively efficient (i.e., low but not minimum variance). If the noise
is ‘difficult’ (e.g., heteroscedastic) and does not conform to the usual sta-
tionary time-series assumptions, then the estimates remain consistent,
again because of the instrumental variable implementation (whereas al-
ternative approaches, such as PEM, may suffer problems in such circum-
stances: see e.g., [37, 38]).

4. As the SRIVC method is an iterative procedure, it is stopped either when
a specified number of iterations has elapsed or when the relative percent-
age error in the parameter estimate vector is sufficiently small. Normally,
this SRIVC algorithm is rapidly convergent and has been available for
many years in the CAPTAIN Toolbox, where it has proven to be very
robust in practical applications, converging in all cases where the model
is identifiable from the data. The convergence of the algorithm has not
been considered theoretically but the algorithm is quite similar to the it-
erative least squares algorithm, for discrete-time systems, of Steiglitz and
McBride [21], the convergence of which has been established by Stoica and
Söderström [22] in the case of white additive noise. Moreover, the inherent
optimal instrumental variable nature (see Section 4.5) of the SRIVC algo-
rithm removes the limitations of the Steiglitz and McBride algorithm [22]
in the coloured-noise situation.

4.4.3 Multiple-input Systems

It is clearly straightforward to extend the RIVC/SRIVC methods to the
multiple-input situation if the TF denominator is common to all input chan-
nels and a three-input practical example of this is considered in Section
4.8. The situation is not so straightforward in the case where there are dif-
ferent denominator polynomials for each input channel. However, following
the RIV approach for DT systems [6], the algorithms can be extended to
handle this situation [3]: indeed, the current version of RIVC in the CON-
TSID Toolbox provides this option and it is referred to in Section 4.8. In
multiple-input examples, the order of a general r-input model is denoted by
[n1 n2 · · · nr m1 m2 · · · mr τ1 τ2 · · · τr p q].

4.4.4 Non-uniformly Sampled Data

One advantage of the SRIVC approach to continuous-time modelling is that it
can be based on irregularly sampled data (see also Chapter 11) and can han-
dle ‘fractional’ pure time delays (see e.g., Chapters 11 and 12 in the present
book). The current implementation of the SRIVC algorithm in the CONTSID
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Toolbox can handle irregularly sampled data. However, the RIVC algorithm
has not yet been upgraded in this regard because it requires additional inter-
polation and re-sampling in order to generate a regularly sampled series for
the ARMA noise model estimation parts of the algorithm.

4.5 Theoretical Background and Statistical Properties of
the RIVC Estimates

The motivational arguments presented in Section 4.3 suggest that, upon con-
vergence, the RIVC parameter estimates will possess the optimal statistical
properties of consistency and asymptotic efficiency when the additive noise
has a Gaussian normal probability distribution and rational spectral density.
This section presents more formal analysis to verify further the optimality of
the estimates and confirm the asymptotic independence of the system and
noise model parameter estimates.

4.5.1 Optimality of RIVC Estimation

In the control and systems literature, optimal IV estimation is usually con-
sidered in relation to the so-called ‘extended IV’ approach to estimation, as
developed for the DT case [19]. A similar approach can be applied in the
present CT case by re-writing the IV optimisation equation (4.27) in the fol-
lowing alternative form that explicitly reveals a continuous-time prefilter f(p)

ρ̂(N) = arg min
ρ

∥∥∥∥∥

[
1

N

N∑

k=1

ζf(tk)f(p)ϕT (tk)

]
ρ̂ −

[
1

N

N∑

k=1

ζf(tk)f(p)y(n)(tk)

]∥∥∥∥∥

2

Q

(4.32)

where f(p) is the stable prefilter, ζf(tk) is the prefiltered instrumental vector
ζf(tk) = f(p)ζ(tk) and Q is a positive-definite matrix. By definition, when
Go ∈ G, the extended IV estimate provides a consistent estimate under the
following two conditions

{
Ē{ζf(tk)f(p)ϕT (tk)} is non-singular,
Ē{ζf(tk)f(p)ξ(tk)} = 0

(4.33)

Clearly, the selection of the instrumental variable vector ζf(tk), the weight-
ing matrix Q and the prefilter f(p) may have a considerable effect on the
covariance matrix Pθ produced by the IV estimation algorithm.
In the open-loop situation, the Cramér–Rao lower bound on Pθ for any unbi-
ased identification method (e.g., [19,24]) defines the optimal solution. In this
regard, it has been shown that the minimum value of the covariance matrix
Pθ, as a function of the design variables ζf(tk), f(p) and Q, exists and is given
by

Pθ ≥ Popt
θ
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with
Popt
θ = [Ē{̊ζf(tk )̊ζ

T

f (tk)}]−1 (4.34)

where ζ̊f(tk) is the optimally prefiltered IV vector, with the associated design
variables defined as

Q = I, (4.35a)

f(p) =
1

Ho(p)Ao(p)
=

Do(p)
Co(p)Ao(p)

, (4.35b)

ζ̊(tk) =
[
−x(n−1)(tk) − x(n−2)(tk) · · · − x(tk) u(m)(tk) · · · u(tk)

]T
(4.35c)

so that,

ζ̊f(tk) = f(p)
[
−x(n−1)(tk) − x(n−2)(tk) · · · − x(tk) u(m)(tk) · · · u(tk)

]T

(4.36)
which will be recognised as the noise-free, prefiltered vector ϕ̊Tf (tk) defined
earlier in (4.26).

Comments

1. Not surprisingly, the above analysis justifies the RIVC algorithmic design
that iteratively updates those aspects of the theoretical solution that are
not known a priori: in this case, the unknown model polynomials and
the noise-free output of the system that is, of course, the source of the
instrumental variables. If it is assumed that, in all identifiable situations,
the RIVC algorithm converges in the sense that ρ̂⇒ ρ and η̂ ⇒ η, then
the RIVC estimates will be consistent and asymptotically efficient.

2. The optimal filter f(p) in (4.35b) is formulated in CT terms. In the pro-
posed RIVC algorithm, this filter takes a hybrid form, as discussed in the
previous sections. As mentioned in the introductory Section 4.1, however,
it is possible to design the prefiltering operations entirely in CT terms, if
this is desired, in which case the optimal prefilters take this CT form.

4.5.2 The Asymptotic Independence of the System and Noise
Model Parameter Estimates

The maximum likelihood motivation of refined IV estimation [27, 46, 52] is
based on the decomposition of the estimation problem into two separate but
inter-linked subproblems: first the estimation of the system transfer function
model parameters under the assumption that the noise model parameters are
known; and second, the estimation of the ARMA noise model parameters
under the assumption that TF model parameters are known. This approach
is then carried over to the formulation of both the discrete-time RIV and
continuous-time RIVC algorithms, as described in previous sections of this
chapter. The justification for such a simplifying approach is given by the
following modified version of the theorem due originally to Pierce [15] and
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formulated in the present control theoretic form by Young and Jakeman [42,
46,52].

Theorem 4.1. If in the model (4.15)

(i) the e(tk) in the ARMA noise model equation (4.12) are independent and
identically distributed with zero mean, variance σ2, skewness κ1 and kur-
tosis κ2;

(ii) the model is stable and identifiable;
(iii) the u(tk) are persistently exciting;

then the ML estimates ρ̂, η̂ and σ̂2 obtained from a data set of N samples,
possess a limiting normal distribution, such that the following results hold

(a) the asymptotic covariance matrix of the estimation errors associated with
the estimate ρ̂ is of the form

Pρ =
σ2

N

[
plim

{
1
N

N∑

k=1

ϕ̊f(tk)ϕ̊
T
f (tk)

}]−1

(4.37)

(b) the estimate η̂ is asymptotically independent of ρ̂ and has an error co-
variance matrix of the form

Pη =
σ2

N
[Ē{ψfd1

(tk)ψTfd1
(tk)}]−1 (4.38)

and
(c) the estimate σ̂2 has asymptotic variance (2σ4/N)(1 + 0.5κ2) and, if κ = 0,

is independent of the above estimates.

Proof. This follows straightforwardly from Pierce [15] modified to the present
hybrid BJ setting. Moreover, the main results (covariance matrices and asymp-
totic independence of the system and noise model parameter estimates) are
obvious from the ML formulation of the RIV/RIVC algorithms [42,46,52].

Comments

1. The definition of Pρ in (4.37) clearly confirms the analysis in Section 4.3
and the result (4.34) in the extended IV analysis. Also, we can note that,
because the optimal IV vector is generated, via the auxiliary model (4.23)
and the prefilters, from the noise-free input u(t), which is independent of
the noise ξ(t) then,

plim

{
1
N

N∑

k=1

ϕ̂f(tk)ϕ
T
f (tk)

}
= plim

{
1
N

N∑

k=1

ϕ̂f(tk)ϕ̊
T
f (tk)

}
(4.39)

In (4.37) and (4.38), ϕf (tk) and ψfd1
(tk) are defined as the values of these

variables that would result if the auxiliary model, inverse noise model
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and prefilter parameters were all set at values based on the true model
parameter vectors ρ and η. The relevance of these results is obvious: if it is
assumed that, in all identifiable situations, the RIVC algorithm converges
in the sense that ρ̂⇒ ρ and η̂ ⇒ η, then

P̂ρ = σ̂2

[
N∑

k=1

ϕ̂f (tk)ϕ̂
T
f (tk)

]−1

(4.40)

will tend in probability to Pρ. In the implementation of the RIVC algo-
rithm, therefore, P̂ρ in (4.40) is provided as the estimate of the paramet-
ric error covariance matrix and will provide good empirical estimates of
the uncertainty in the parameter estimates in ρ̂. And, noting the Monte
Carlo results of both Pierce [15] and Young and Jakeman [42] in the DT
situation, we might also assume that they will provide a good indication
of the error covariance properties, even for small sample size N . This is
confirmed in the later simulation examples.

2. In this theorem, ψfd1
(tk) = fd1(q−1)ψ(tk) is the filtered noise vector

defined as

ψTfd1
(tk) = [−ξfd1(tk−1) · · · − ξfd1(tk−p) efd1(tk−1) · · · efd1(tk−q)] (4.41)

where ξfd1(tk) and efd1(tk) are obtained, respectively, by filtering the
coloured noise variable ξ(tk) and the white noise variable e(tk) by the
prefilter

fd1(q−1) =
1

Co(q−1)
(4.42)

If this is computed in the RIVC algorithm, the true ξ(tk) and e(tk) are
replaced by their estimates: i.e., the estimate ξ̂(tk) of ξ(tk) is generated
by (4.29) and the ê(tk) are the residuals of the ARMA noise model4.
The justification for this prefiltering comes from both the Pierce Theorem
and the related ML analysis of Young and Jakeman cited previously (see
also [37,38], where these results are used as the basis for the design of the
recently proposed IVARMA algorithm). In practice, of course, Pη would
be provided by the algorithm used to estimate the ARMA noise model
(IVARMA, PEM, etc.).

3. The asymptotic independence of the ML estimates ρ̂ and η̂ presented in
item (c) of this theorem provides the theoretical justification for the esti-
mation mechanism in the RIVC algorithm, where the ARMA noise model
parameter estimation is carried out separately, based on the coloured noise
variable estimate obtained from the system model parameter estimation
step. It also justifies the assumed block-diagonal structure of the para-
metric error covariance matrix.

4 Note that, in the case of an AR model, Co(q
−1) = 1, so that no prefiltering is

required, as would be expected in this case where simple linear least squares can
be used for AR model estimation.
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4. Note that this useful asymptotic independence arises from the selection
of the BJ model form and is not a property of other time series models,
such as the ARMAX model. Other advantages of the BJ model form, in
relation to the ARMAX model, are discussed at length by Jakeman and
Young [8, 9] in the case of discrete-time TF model estimation.

4.6 Model Order Identification

One very important aspect of TF modelling is the identification of the model
structure: i.e., the degrees n, m, p, and q of the model polynomials and any
associated pure time delay τ or τd. One statistical measure that is useful in
this regard is the simulation coefficient of determination R2

T , defined as follows

R2
T = 1 −

σ2
ξ̂

σ2
y

(4.43)

where σ2
ξ̂

is the variance of the estimated noise ξ̂(tk) and σ2
y is the variance

of the measured output y(tk). This should be differentiated from the stan-
dard coefficient of determination R2, where the σ2

ξ̂
in (4.43) is replaced by the

variance of the final ARMA model residuals σ̂2. R2
T is clearly a normalised

measure of how much of the output variance is explained by the deterministic
system part of the estimated model. However, it is well known that this mea-
sure, on its own, is not sufficient to avoid overparametrisation and identify
a parsimonious model, so that other model order identification statistics are
required. In this regard, because the SRIVC and RIVC methods exploit op-
timal instrumental variable methodology, they are able to utilise the special
properties of the instrumental product matrix (IPM) [45, 53]; in particular,
the YIC statistic [47], which is used in the numerical examples discussed in
subsequent sections of this chapter. The YIC is defined as follows

YIC = loge
σ̂2

σ2
y

+ loge{NEVN}; NEVN =
1
nθ

nθ∑

i=1

p̂ii

θ̂2
i

(4.44)

Here, nθ = n + m + p + q + 1 is the number of estimated parameters; p̂ii is
the ith diagonal element of the block-diagonal covariance matrix Pθ, where,

Pθ =
(
Pρ 0
0 Pη

)
(4.45)

and so is an estimate of the variance of the estimated uncertainty on the ith
parameter estimate. θ̂2

i is the square of the ith parameter estimate in the θ
vector, so that ratio p̂ii/θ̂

2
i is a normalised measure of the uncertainty on the

ith parameter estimate.
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From the definition of R2
T , we see that the first term in the YIC is simply

a relative measure of how well the model explains the data: the smaller the
model residuals the more negative the term becomes. The normalised error
variance norm (NEVN) term, on the other hand, provides a measure of the
conditioning of the IPM, which needs to be inverted when the IV normal
equations are solved (see, e.g., [46]): if the model is overparameterised, then
it can be shown that the IPM will tend to singularity and, because of its
ill-conditioning, the elements of its inverse (in the form here of the covariance
matrix Pθ) will increase in value, often by several orders of magnitude. When
this happens, the second term in the YIC tends to dominate the criterion
function, indicating overparameterisation.
It is important to note that, based on practical experience, the YIC is nor-
mally best considered during SRIVC identification, which is much less com-
putationally intensive than RIVC identification, so allowing for much faster
investigation of the model order range selected by the user. In this situation,
nθ is replaced by nρ = n + m + 1 the p̂ii are obtained by reference to the
covariance matrix Pρ.
Although heuristic, the YIC has proven very useful in practical identification
terms over the past ten years. It should not, however, be used as a sole arbiter
of model order: rather the combination of R2

T and YIC provides an indication
of the best parsimonious models that can be evaluated by other standard
statistical measures (e.g., the auto and partial autocorrelation of the model
residuals, the cross-correlation of the residuals with the input signal u(tk),
etc.). Also, within a data-based mechanistic model setting (see, e.g., [32]), the
physical interpretation of the model can often provide valuable information on
the model adequacy: for instance, a model with complex eigenvalues caused by
overparameterisation may prove incompatible with the non-oscillatory nature
of the physical system under study5.

4.7 Simulation Examples

This section considers Monte Carlo simulation examples that illustrate the
performance of the SRIVC algorithm in the noise-free case and the full hybrid
RIVC method in the case of coloured output noise. The simulation model used
in this analysis provides a very good test for CT and DT estimation methods:
it was first suggested by Rao and Garnier [18] (see also [4,17]); and has been
commented upon by Ljung [25].

4.7.1 The Rao–Garnier Test System

The test model is a linear [4 2 0], non-minimum phase system with complex
poles. Its operator model form is given by [18]
5 Of course, this could be due to the uncertainty in the parameters of an otherwise

parsimonious model, in which case constrained estimation needs to be used [36].
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Fig. 4.3. Step and frequency response of the fourth-order Rao–Garnier system

Go(p) =
−6400p + 1600

p4 + 5p3 + 408p2 + 416p + 1600
(4.46)

This is an interesting system from two points of view. First, it has one fast
oscillatory mode with relative damping 0.1 and one slow oscillatory mode with
relative damping 0.25. Secondly, the system is non-minimum phase, with a
zero in the right half-plane. The step response and Bode plots of the system
are shown in Figure 4.3. The settling time of the system is about 10 s.

4.7.2 Noise-free Case

The noise-free case is considered first in order to investigate the effect of
systematic interpolation errors that are introduced into the computation of
the prefiltered time derivatives (see Figure 4.2 and the earlier discussion on
this topic in Sections 4.3.1 and 4.4). This is due to the fact that, in general,
the inter-sample behaviour of the prefilter inputs is not known, so that time-
domain approaches to CT model identification often require a high sampling
frequency, compared with the bandwidth of the system to be identified, in
order to minimise these systematic interpolation errors. As we shall see, this
is no longer the case with the SRIVC method, which is not sensitive to the
sampling interval.
The observation time is fixed at Tf = 20s and the number of data points
available, N , is inversely proportional to the sampling interval Ts. The input
u(t) is chosen as a binary ±1 signal. Note that in the case of the chosen piece-
wise constant excitation signal, the system response can be calculated exactly
at the sampling instances via appropriate zero-order hold (ZOH) discretisation
of the CT system. The estimation methods considered here are the simple least
squares-based state variable filter (LSSVF) method (see, e.g., [4]); the iterative
SRIVC method; and, finally, an indirect method based on the estimation
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Fig. 4.4. Results in the noise-free case for the three estimation algorithms

of a DT ARX model converted to a CT model by using the appropriate
d2cm conversion tool in MATLAB� with the ZOH option. Note that the
SRIVC routine is initialised here with the estimates obtained from the LSSVF
method. The cut-off frequency of the SVF filter is set to 10 rad/s.
In order to compare the accuracy of the different approaches, the sum of the
normalised estimation error (NEE) of the parameters is considered

NEE(ρ) =
∥∥∥∥
ρo − ρ̂
ρo

∥∥∥∥
2

=

√√√√
nρ∑

i=1

(
ρoi − ρ̂i

ρoi

)2

(4.47)

where ρ̂i represents the ith element of ρ̂, while the superscript ‘o’ is used to
denote the true value.
The normalised estimation error versus the sampling period for the three
methods is plotted in Figure 4(a). The LSSVF method yields relatively poor
results. This is caused by the numerical errors introduced into the simulation
of the CT filtering operations required to generate the time derivatives of
the filtered output. The use of a more sophisticated interpolation technique
than the lsim routine used here would make it possible to obtain better
results. However, this is not necessary in the case of the SRIVC method be-
cause its iterative IV-based procedure is able to counteract the presence of
the simulation-induced errors, which are effectively treated as additive noise
on the filtered output time derivatives.
Although the SRIVC and the indirect ARX-based estimation approaches per-
form similarly overall in this noise-free situation, it is clear that, at small sam-
pling intervals, the SRIVC estimation results are better; while at the coarser
sampling intervals, the position is reversed. This is an expected result, since
it is well known that DT estimation schemes suffer from numerical issues at
small sampling intervals because the eigenvalues of the DT model migrate
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ever closer to the unit circle in the complex domain as the sampling frequency
increases. Figure 4(b) shows how the condition number of the normal equa-
tions for the three methods varies with the sampling interval. This reveals a
significant numerical advantage of the direct approach for all chosen sampling
periods. The indirect approach also suffers from additional numerical prob-
lems that are encountered in the conversion from the DT to the CT domain
as the sampling interval decreases.
The SRIVC algorithm needs between 2 to 9 iterations to converge from the
LSSVF parameter estimates. In the case of coarse sampling periods, an alter-
native to LSSVF initiation are the estimates obtained from the discrete-time
RIV algorithm: this is an option available in both the CAPTAIN and CON-
TSID Toolboxes6.

4.7.3 Noisy-output Case

Of course, model order selection and model parameter estimation are easy in
the case of noise-free data and it is necessary to consider the performance of
estimation algorithms in the presence of noise if we are to get some idea of
their practical utility. In this subsection, the MCS analysis is applied in the
case of additive noise at the output of the system, under the usual assump-
tion that the input signal is noise free. The case of observational errors on the
input signal is a problem of errors-in-variables [13, 23] or closed-loop control
(see Chapter 5 in the present book) and the parameter estimates from all
the algorithms considered here will be biased unless the algorithm is modified
to account for this. As in the previous section, the underlying deterministic
system is the model (4.46) and two noisy situations are considered, both with
additive ARMA(2,1) noise models. The denominator polynomial is the same
in each case but the numerator is changed in order to investigate the effect,
at different sampling intervals, of numerator zeros near the unit circle in the
complex z domain. Two estimation methods are considered, in addition to
the SRIVC and RIVC methods, both based on gradient optimisation: direct
CT estimation by the continuous-time output error (COE) algorithm in the
CONTSID Toolbox; and indirect estimation using the prediction error min-
imisation (PEM) algorithm in the MATLAB� system identification (SID)
Toolbox. The SRIVC and RIVC algorithms used in the analysis are those
available in the CAPTAIN and CONTSID Toolboxes mentioned previously.

Sampling Frequency

The usual rule of the thumb for data acquisition is that the sampling fre-
quency is to be about ten times the bandwidth of the system under study.
In the present example, the highest resonant frequency of the model (4.46) is
ωn,1 = 20 rad/s which suggests, therefore, that

6 See Section 4.9.
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ωs =
2π
Ts

≈ 10ωn,1 (4.48)

Ts ≈
2π

10ωn,1
= 0.0314 s (4.49)

It is well known that the DT model estimation techniques suffer from ill-
conditioned numerical problems at high sampling frequencies because the
poles lie close to the unit circle in the complex z domain. In the simula-
tion experiments, therefore, two sampling intervals were considered: Ts = 50
ms and Ts = 10 ms. As we shall see, indirect identification and estimation of
the model (4.46) is possible (although with undesirable features) at Ts = 50
ms but proves problematical at Ts = 10 ms.

Input Signals

In these experiments, a PRBS (pseudo-random binary signal) of maximum
length is used to excite the system over its whole bandwidth. The character-
istics of the signal, whose amplitude switches between ±1, are the following:
in the case of Ts = 50 ms, the number of stages of the shift register is set to 9,
the clock period is set to 3, which results in the number of samples N = 1533;
in the case of Ts = 10 ms, the number of stages of the shift register is set
to 10, the clock period is set to 7, which results in the number of samples
N = 7161. The duration of the experiment is about seven times the settling
time for both sampling periods.

Type of Measurement Noise

Based on the CT model (4.46), the following hybrid system is considered
{

x(t) = Go(p)u(t)
y(tk) = x(tk) + ξ(tk)

(4.50)

Here, ξ(tk) is coloured noise derived from an ARMA(2,1) process with a de-
nominator polynomial,

D(q−1) = 1 + 1.9628q−1 + 0.9851q−2 (4.51)

but with different MA polynomials at the two sampling intervals: in the case
of Ts = 50 ms,

C(q−1) = 1 + 0.98q−1 (4.52)

and with Ts = 10 ms,
C(q−1) = 1 − 0.99q−1 (4.53)

In both cases, the variance of ξ(tk) is adjusted to obtain a signal-to-noise ratio
of 10 dB (defined in terms of the variances).
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Note that this choice of MA polynomials is meant to test the algorithmic
performance because, in both cases, it means that the inverse noise model used
in the prefiltering has a pole very close to unity in the complex z plane, so that
the prefilter dynamics are close to either exponential (C(q−1) = 1 + 0.98q−1)
or oscillatory (C(q−1) = 1 − 0.99q−1) instability. As we shall see, the latter
case is particularly challenging in the case of indirect estimation, since both
the stability margin and the sampling interval are very small.

Monte Carlo Simulation Results

The MCS results obtained using different algorithms are presented in Tables
4.1 and 4.2. Here, the algorithms considered are: the COE, SRIVC, RIVC
based on an ARMA(2,1) noise model, and RIVC based on an AR(23) noise
model, where the AR(23) model is the AR model identified by the Akaike In-
formation Criterion (AIC) when applied to the noise signal. The latter results
allow us to compare the results obtained using the actual ARMA(2,1) model
structure with those obtained using this high-order AR(23) approximation.
In addition, indirect PEM estimation is evaluated, with the estimated DT
model converted to CT using the MATLAB� d2cm function with zero-order
hold. All the MCS results are based on Nexp = 100 random realisations, with
the Gaussian white noise input to the ARMA noise model being selected ran-
domly for each realisation. In order to compare the statistical performance of
the different approaches, the computed mean and standard deviation of the
estimated parameter ensemble are presented, as well as the results obtained
from typical single runs in the case of the RIVC algorithms, where the stan-
dard error (SE) estimates obtained from the RIVC algorithm can be compared
with the computed MCS standard deviations.

Direct Estimation

As expected, both tables show that the COE and SRIVC methods provide
similar, unbiased estimates of the model parameters with reasonable standard
deviations (although it should be noted that, on average, the COE requires
more iterations to converge). However, the estimates are clearly not statisti-
cally efficient if they are compared with the estimates produced by the RIVC
algorithm, where the standard deviations are always smaller and in some cases,
such as the estimate of b0 in Table 4.1, the standard deviation is some 50 times
less. It is clear from the two sets of results obtained using the RIVC algorithm,
with different assumed noise model structures, that the mean estimates and
standard deviations are quite similar although, of course, the AR(23) noise
model is much less parsimonious. On the other hand, this suggests that the
simpler implementation of the RIVC algorithm using an AR noise model (as
used for many years in the discrete-time RIV algorithm implemented in the
CAPTAIN Toolbox) is a reasonable alternative to the full RIVC algorithm
based on an ARMA noise model, even in cases where the root of the MA is
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Table 4.1. Monte Carlo simulation results with additive coloured noise numerator
C(q−1) = 1+0.98q−1 and Ts = 50 ms: SR denotes single-run results and MC denotes
results from MCS analysis based on 100 random realisations (note that no standard
errors on the single-run PEM estimates is given because the CT model parameters
have to be derived from the DT estimates)

METHOD Parameter b̂0 b̂1 â1 â2 â3 â4 d̂1 d̂2 ĉ1

True value –6400 1600 5 408 416 1600 –1.9628 0.9851 0.9800

COE Mean –6433.1 1555.2 5.023 408.26 416.96 1609.3

(MC) St. Dev. 267.0 366.3 0.2171 1.337 22.52 35.62

SRIVC Mean –6433.1 1555.2 5.023 408.26 416.97 1609.3

(MC) St. Dev. 267.0 366.3 0.2172 1.338 22.52 35.63

RIVC ARMA Mean –6400.0 1605.2 5.002 408.01 416.74 1602.1 –1.9613 0.9836 0.9768

(MC) St. Dev. 5.618 144.3 0.0229 0.146 8.589 23.25 0.006 0.006 0.008

RIVC ARMA Mean –6402.6 1650.8 5.016 408.0 422.6 1603.6 –1.9644 0.9863 0.9739

(SR) SE 4.887 116.9 0.0188 0.127 7.149 18.49 0.004 0.004 0.006

RIVC AR Mean –6399.9 1605.5 5.002 408.01 416.64 1602.1

(MC) St. Dev. 7.396 145.1 0.0230 0.146 8.503 23.22

RIVC AR Mean –6404.9 1664.8 5.022 407.97 424.03 1602.4

(SR) SE 5.802 110.4 0.0176 0.123 6.532 16.64

PEM ARMA Mean –6398.9 1600.1 5.002 408.0 416.78 1601.2 –1.9614 0.9836 0.9773

(MC) St. Dev. 10.556 191.6 0.0274 0.167 9.536 24.50 0.006 0.006 0.008

PEM ARMA(SR) Mean –6408.8 1777.8 5.024 408.1 425.1 1600.8 –1.9647 0.9868 0.9732

quite close to unity. In fact, the comparative performance remains reasonably
good even if the MA polynomial is set to C(q−1) = 1 − 0.99q−1, as shown in
Table 4.2.
The typical single-run results in Table 4.1 show that the RIVC algorithm,
using either the correct ARMA(2,1) or the approximate AR(23) models, pre-
dicts the mean and standard deviation obtained in the MCS results well, fully
justifying the algorithm in theoretical and practical terms. The associated pa-
rameter estimates produce models that are close to actual simulated system,
with coefficients of determination R2

T , based on the error between the simu-
lated output of the estimated model and the true deterministic output, very
close to unity. Not surprisingly, as shown in Figure 4.5, the Bode plots for the
RIVC (SR) estimated model (with correctly specified ARMA(2,1) order) and
the actual Bode plots are virtually identical.
The performance of the various algorithms shown in Table 4.2 is broadly simi-
lar to that in Table 4.1. In particular, despite the close proximity of the MA
zero to the unit circle in the complex z plane, the inverse noise prefiltering
operations are not adversely affected and so not sensitive under these con-
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Table 4.2. Monte Carlo simulation results with additive coloured noise numerator
C(q−1) = 1 − 0.99q−1 and Ts = 10 ms: SR denotes single-run results; MC denotes
results from MCS analysis based on 100 random realisations (except OE that had 17
failures); and IND denotes indirect estimation using DT algorithms OE and SRIV,
with conversion to CT. In these indirect estimation cases, the SR entries are those
used later for Figure 4.7

METHOD Parameter b̂0 b̂1 â1 â2 â3 â4 d̂1 d̂2 ĉ1

True value –6400 1600 5 408 416 1600 –1.9628 0.9851 0.9800

COE (MC) Mean –6403.1 1600.1 5.00 408.0 416.3 1599.8

St. Dev. 61.70 25.52 0.1565 2.589 3.976 10.00

SRIVC (MC) Mean –6403.1 1600.1 5.01 408.0 416.3 1599.8

St. Dev. 61.70 25.52 0.1565 2.590 3.976 10.00

RIVC ARMA Mean –6400 1599.9 4.996 408.1 416.0 1600.2 –1.9622 0.9846 0.9903

(MC) St. Dev. 32.22 12.22 0.0973 1.916 2.128 7.562 0.002 0.002 0.002

RIVC ARMA Mean –6360.3 1597.2 5.0819 406.49 414.51 1594.3 –1.9627 0.9847 0.9912

(SR) SE 34.51 11.79 0.1029 2.098 2.322 8.380 0.002 0.002 0.0015

RIVC AR Mean –6398.8 1599.7 4.991 408.1 415.9 1600.2

(MC) St. Dev. 33.44 15.97 0.1040 1.957 2.215 7.723

RIVC AR Mean –6357.0 1601.9 5.109 406.1 414.6 1592.3

(SR) SE 36.19 40.48 0.0913 1.732 2.716 7.735

IND:OE(MC) Mean –6404.1 1598.3 4.9747 408.32 416.65 1600.3

(only 83 runs) St. Dev. 129.8 89.153 0.2312 5.776 14.768 29.523

IND:OE(SR) Mean –7746.1 –1692.1 8.5269 435.63 1819.5 4333.3

IND:SRIV(MC) Mean –6417.3 1617.1 4.9769 407.95 415.51 1599.6

St. Dev. 105.58 80.063 0.2204 5.680 7.531 23.953

IND:SRIV(SR) Mean –6438.9 1612.1 4.692 410.14 415.12 1607.9

ditions, suggesting that the RIVC algorithm should be robust in practical
applications.

Indirect Estimation

Table 4.1 shows that, at the coarser sampling interval of Ts = 50 ms, the
PEM algorithm in the MATLAB� SID toolbox yields indirect estimates of
the CT model parameters that are reasonably comparable with those of the
RIVC algorithm. The discrete-time RIV algorithm in the CAPTAIN Toolbox
gives very similar results so these are not shown. However, in both cases, the
standard deviations are always higher than those of RIVC and, in the single-
run case, the standard errors are not available directly because of the need
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Fig. 4.5. Actual and RIVC estimated Bode plots for the case of Ts = 50 ms and
the noise MA polynomial C(q−1) = 1 + 0.98q−1: other model parameters are given
in Table 4.1 (RIVC ARMA (SR))

to convert the model to continuous time. So, although this indirect method
could be used at this coarser sampling interval, it is obviously better to use
RIVC. As shown in Figure 4.6, the Bode plots for the RIVC (SR) estimated
model (with correctly specified ARMA(2,1) order) and the actual Bode plots
are virtually identical.
At the finer sampling interval of Ts = 10 ms, the indirect approach using PEM
or RIV breaks down, with unreliable results: 86% of PEM estimation runs and
44% of the RIV estimation runs failing to provide satisfactory convergence
(the results are not shown in Table 4.2). Consequently, the main difference in
the results of Table 4.2 is that the PEM results have been replaced by output
error (OE) results, using the OE routine in the MATLAB� SID Toolbox,
where the performance is much better now that the noise model parameters
do not have to be estimated concurrently. Even here, however, 17 of the OE
ensemble fail to converge and the means/standard deviations are computed
from only the 83 successful outcomes. In contrast to this, the SRIV algorithm
in the CAPTAIN Toolbox (which is, effectively, the iterative IV equivalent
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Fig. 4.6. Actual and RIVC estimated Bode plots for the case of Ts = 10 ms and
the noise MA polynomial C(q−1) = 1 − 0.99q−1: the estimated model parameters
are given in Table 4.2. Note that, for clarity, the amplitude plots for the noise model
have been suitably scaled (10 times estimated model gain) to separate them from
the system plots.

of the OE gradient optimisation algorithm) converged in all 100 realisations
and so the MCS results obtained in this case are also given in Table 4.2 for
comparison.
For interest, two of the single runs obtained using the indirect OE and SRIV
approaches are reported in Table 4.2; and the associated Bode plots, based
on the estimated parameters, are shown in Figure 4.7. Here, the results re-
late to one of the MCS realisations where the OE algorithm fails to converge
satisfactorily and is only able to identify the higher-frequency spectral peak
characteristics. However, using the same data set, the SRIV algorithm pro-
vides good estimates and an almost perfect match to the actual Bode plots
(the SRIV lines mask the actual lines almost completely). Similar comparative
performance has been reported in another situation [37] where the model has
two oscillatory modes although, in this other case, the resonant frequencies
were close together. The problem with OE and PEM when applied to these
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Fig. 4.7. Actual system Bode plots compared with those of the models indirectly
estimated by the OE and SRIV algorithms for the case Ts = 10 ms and the noise
MA polynomial C(q−1) = 1 − 0.99q−1. The estimated model parameters are given
in Table 4.2 (IND: OE (SR) and IND: SRIV (SR)).

kind of multi-mode systems appears, at least in part, to be related to the spec-
ification of starting values for the estimates in the gradient optimisation [37].
The iterative IV optimisation used in the SRIV and RIV algorithms does not
appear to suffer from these problems.

4.8 Practical Examples

In this section, we consider two practical examples of very different types. The
first is concerned with the topical subject of ‘global warming’ and considers
the simple time-series model simplification of the giant dynamic simulation
models used in climate research. The second is a demonstration example [4]
used in both the CAPTAIN and CONTSID Toolboxes, which involves the
analysis of data from a multiple-input winding process.
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4.8.1 Hadley Centre Global Circulation Model (GCM) Data

In the study of global climatic change, the global circulation model (GCM)
is one of the principal tools used for evaluating possible future scenarios of
climate variation. These models are very large indeed: probably the largest
computer simulation models ever constructed. This example is concerned with
modelling the dynamic relationship, over a period of 1100 years, between the
variables shown in Figure 4.8. Here, the annual sampled input u(tk) is the
radiative forcing (W/m2) and the associated output y(tk) is the global mean
temperature (deg °C) obtained from an experimental simulation of the UK
Hadley Centre GCM. The TF modelling in this case can be seen as an exercise
in dominant-mode analysis [33] or model simplification (order reduction) [46].
The first 1000 annual samples of the data, up to the vertical dash-dot line
in Figure 4.8, are used for estimation and the last 100 years are set aside
for validation. When the SRIVC algorithm is used for initial model order
identification, it clearly identifies a second-order [n m τ p q] = [2 2 0 0 0] model,
with a high R2

T = 0.9953 and a low YIC= −9.3. Although, the third-order
[3 3 0 0 0] model is identified as best by the Akaike information criterion (AIC),
it has only a marginally better R2

T = 0.9955 and a significantly less negative
YIC= −3.6, suggesting that it is probably overparameterised. All higher-order
models greater than three are rejected as being poorly identifiable because of
overparameterisation. The SRIVC estimated parameters for the [2 2 0 0 0]
model are given below, with the estimated standard errors in parentheses
{

x̂(tk) = 0.3516(±0.0206)p+0.001625(±0.000128)
p2+0.1625(±0.0101)p+0.0004365(±0.0000355)u(tk)

ξ̂(tk) = 1
1−0.4793(±0.031)q−1+0.111(±0.035)q−2−0.128(±0.031)q−3 e(tk)

(4.54)

Also shown here are the estimates of the parameters in an AIC identified
AR(3) model of the additive noise, based on the estimated noise signal ξ̂(tk)
obtained from (4.29), suggesting that RIVC estimation should consider the
[2 2 0 3 0] model.
The equivalent estimates obtained by RIVC estimation for the [2 2 0 3 0]
model are as follows
{

x̂(tk) = 0.3514(±0.0361)p+0.001624(±0.000224)
p2+0.1624(±0.0177)p+0.0004361(±0.0000621)u(tk)

ξ̂(tk) = 1
1−0.4802(±0.031)q−1+0.111(±0.035)q−2−0.128(±0.031)q−3 e(tk)

(4.55)

It is clear that the estimated parameters are very similar to those in (4.54)
and that the main difference lies in the estimated standard errors, where the
RIVC estimates are significantly larger and indicative of greater uncertainty.
In other words, the SRIVC estimation provides excellent unbiased estimates
of the parameters but indicates more confidence in these estimates than is
justified. In the subsequent validation analysis, however, both models explain
the last 100 years of data (see Figure 4.8) very well, with identical coefficients
determination of R2

T = 0.9952, only marginally less than that obtained in



4 Refined IV Identification of CT Hybrid Box–Jenkins Models 121

0 100 200 300 400 500 600 700 800 900 1000 1100
0

1

2

3

4

5

6

7

8

9
G

lo
ba

l M
ea

n 
T

em
pe

ra
tu

re
 (

de
g 

C
) 

an
d 

R
ad

ia
tiv

e 
F

or
ci

ng
 (

W
/m

2 )

Time (yr)

 

 

99% Confidence Bounds
Global Mean Temperature
Radiative Forcing

Fig. 4.8. Estimation and validation results for an RIVC model of the Hadley
Global Circulation Model (GCM) experimental data: estimation/validation bound-
ary shown as dash-dot line. Also shown are the 99 percentile bounds obtained in
Monte Carlo simulation analysis of the RIVC model.

estimation, although the estimated confidence bounds in the SRIV case are,
of course, a little smaller because of its (incorrect) lower level of uncertainty.
One of the main reasons for requiring estimates of parametric uncertainty in
models is to evaluate how much confidence we can have in the model in any
application for which it is intended. In the present example, it is important
that the model can be interpreted in physically meaningful terms, as required
in DBM modelling (see earlier, Section 4.6). In this regard, it is instructive,
to decompose the deterministic system model by partial fraction expansion
into either the following parallel pathway form

x̂(tk) =
(

2.174
1 + 6.263p

+
1.549

1 + 366.2p

)
u(tk) (4.56)

or the alternative feedback form

x̂(tk) =
2.227

1 + 6.338p

(
u(tk) −

0.1804
1 + 216.5p

x̂(tk)
)

(4.57)
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These decompositions show that the model can be considered in either of
these forms, both of which have physical significance. The parallel pathway
form (4.56) suggests that the forcing signal affects two ‘compartments’ in
parallel, one with a short residence time (time constant) of 6.263 years and the
other with a long residence time of 366.2 years; while the feedback form (4.57)
suggests that there is a forward path characterised by a short residence time of
6.338 years and a negative-feedback path compartment with a long residence
time of 216.5 years. The physical interpretation of these compartments is
outside the scope of the present chapter but the interested reader can consult
related publications (e.g., [10, 40]).
Considering the parallel pathway form (4.56), Figure 4.9 shows the results
of MCS analysis in which the effects of model uncertainty, as defined by the
SRIVC and RIVC estimated parametric covariance matrices, is mapped into
its effect on the derived residence times in (4.56) and (4.57). Comparing the
top histograms (SRIVC) with the bottom ones (RIVC), we see that, although
the estimated residence times are identical, the SRIVC-derived distributions
incorrectly suggest more confidence than is justified when they are compared
with the RIVC-derived distributions. These latter distributions are wider and
more skewed towards larger values. In this MCS analysis, the effect of both
the parametric uncertainty and the uncertainty injected by the additive noise
is also used to derive 99% uncertainty bounds on the model output, as shown
by the grey band in Figure 4.8.
It is interesting to observe that if the AIC identified [3 3 0 0 0] model is
considered in the same way as that described above, the overparameterisation
becomes obvious. In the MCS analysis, 30% of the SRIVC realisations and
42% of the RIVC realisations are unstable because the additional, very long
residence time is so ill-defined and the MCS realisations often produce a model
with an eigenvalue in the right half of the s-plane. In the experience of the first
author, the AIC often indicates such overparameterised models when applied
in TF identification, rather than its originally intended application to fully
stochastic AR models.
Finally, it should be noted that the data used in this example are all that
could be obtained and provide some difficulties as regards statistical inference.
In particular, the input signal is not persistently exciting and the system
response has not reached a steady state by the end of the data set (Figure 4.8).
Consequently, the results obtained here should be treated as preliminary ones
that need to be confirmed by subsequent modelling based on a better planned
experiment and a larger data set. Nevertheless, it is an interesting example to
illustrate the wide application potential of the RIVC/SRIVC methodology.

4.8.2 A Multiple-input Winding Process

Model identification in this winding process is based on the experimental
data set plotted in Figure 4.10, where the measured output is shown in the
top panel and the r = 3 input signals in the panels below this. Since the data
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Fig. 4.9. Monte Carlo simulation of the models estimated from the Hadley Global
Circulation Model experimental data: normalised histograms of the two residence
times that characterise the parallel pathways, as estimated by the SRIVC (top pan-
els) and RIVC (bottom panels) algorithms.

are plentiful, the identification and estimation analysis is applied to the first
half of the data and validation analysis to the latter half.
When the SRIVC algorithm is used for model order identification over a
range of models from first to third order, it shows that many models have
similar explanatory ability, with R2

T values around 0.98 − 0.99. However, the
[n m1 m2 m3 τ1 τ2 τ3 p q] =[3 3 3 1 0 0 0 0 0] model, which looks well identified
with an R2

T = 0.990 and YIC=–7.1661 and is favoured by the AIC, performs
badly in validation, with R2

T = 0.954 for SRIVC and 0.917 for RIVC. The
best validation performance is obtained with the [2 1 1 1 0 0 0 0 0] model,
although the [1 1 1 1 0 0 0 0 0] model also does quite well. This SRIVC
estimated second-order model has an R2

T = 0.986 and a YIC=–7.6830. The
SRIVC model has the following form
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Fig. 4.10. Winding process data

⎧
⎪⎨

⎪⎩
x̂(tk) =

B̂1(p)
Â(p)

u1(tk) +
B̂2(p)
Â(p)

u2(tk) +
B̂3(p)
Â(p)

u3(tk)

y(tk) = x̂(tk) + e(tk)
(4.58)

with the following estimated polynomials

B̂1(p) =23.341(±1.996); B̂2(p) = 134.4(±10.632); B̂3(p) = 21.425(±1.808) (4.59)

Â(p) =p2 + 36.609(±2.911)p + 108.02(±8.280) (4.60)

In validation, it achieves an R2
T = 0.976. The AIC identifies an AR(14) noise

model from the SRIVC model residuals and the RIVC estimated model based
on this AR model order has an estimation R2

T = 0.983, a little less than
the SRIVC estimated model, and a YIC=–7.1234. The RIVC AR(14) model,
based on the estimation data set, has the following form

⎧
⎪⎨

⎪⎩
x̂(tk) =

B̂1(p)
Â(p)

u1(tk) +
B̂2(p)
Â(p)

u2(tk) +
B̂3(p)
Â(p)

u3(tk)

y(tk) = x̂(tk) + ξ̂(tk)
(4.61)
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Fig. 4.11. Validation of the SRIVC and RIVC models on the second half of the
data set

with the following estimated polynomials and AR noise model (for convenience
the estimated AR(14) parameters are not cited)
⎧
⎪⎪⎨

⎪⎪⎩

B̂1(p) = 14.587(±9.114); B̂2(p) = 157.03(±25.65); B̂3(p) = 30.843(±10.363)

Â(p) = p2 + 45.057(±7.531)p + 124.54(±19.556)

ξ̂(tk) = 1

1+
∑14

i=1 d̂iq−1 e(tk)

(4.62)

However, in validation, it achieves a somewhat higher R2
T = 0.982 than the

SRIVC estimated model and this is only marginally less that its estimation
performance. The comparative validation performance is shown graphically
in Figure 4.11, where the error series in the upper panel reveal the small
advantage of the RIVC estimated model.
The RIVC AR(14) estimated model of the form of (4.61), based on all of the
data, has the following estimated parameters
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estimated noise signal ξ̂(tk), as a light dotted line, and the estimated final residuals
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⎧
⎪⎪⎨

⎪⎪⎩

B̂1(p) = 7.923(±5.032); B̂2(p) = 144.61(±13.608); B̂3(p) = 33.131(±5.785)

Â(p) = p2 + 43.108(±4.167)p + 115.70(±10.446)

ξ̂(tk) = 1

1+
∑14

i=1 d̂iq−1 e(tk)

(4.63)

and has an R2
T = 0.980. The final residuals of the model pass all the diagnostic

tests, with no significant autocorrelation or cross-correlation with the three
input signals.
An alternative model can be obtained by identifying a more parsimonious
ARMA model for the noise. Identification analysis using the IVARMA algo-
rithm yields an ARMA(2,2) model which produces a quite similar model to
(4.63), with an R2

T = 0.979. The RIVC ARMA(2,2) model of the form of
(4.61), based on all of the data, has the following parameter ARMA noise
model estimates
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B̂1(p) = 7.672(±4.139); B̂2(p) = 148.54(±12.180); B̂3(p) = 33.116(±4.834)

Â(p) = p2 + 44.335(±3.711)p + 117.72(±9.169)

ξ̂(tk) =
1 − 0.1098(±0.063)q−1 − 0.0959(±0.041)q−2

1 − 0.4245(±0.058)q−1 + 0.5622(±0.058)q−2
e(tk)

(4.64)

The main advantage of this model is its parsimony, which reduces the standard
errors on the parameters with minimal loss in explanatory ability. Its main
disadvantage is that, although the final residuals are not significantly cross-
correlated with the input signals, there is some autocorrelation. However, the
variance is very small: σ̂2 = 0.00000965 compared with σ2

y = 0.0091 for the
measured output signal, giving a conventional coefficient of determination
based on these final residuals of R2 = 0.999. There is some heteroscedasticity
in the final residuals that can be seen in Figure 4.12, which compares the model
output and the measured output, with both the estimate of the noise ξ̂(tk)
(light dotted line) and these final residuals ê(tk) (black full line) plotted in
the upper panel. Some minor improvements in the model might be obtained
by taking the heteroscedasticity into account and also allowing for initial
condition effects. Nevertheless, it should be satisfactory for most practical
purposes, although this would normally involve additional experiments on
the winding process in order to further validate the model.
The model (4.64) makes reasonable physical sense. It is non-oscillatory, char-
acterised by eigenvalues at −41.449 and −2.8368 (i.e., time constants of 0.0241
and 0.3525 s). The output response is dominated by the effects of the second
input u2(t) whose output accounts for about 97% of the measured output
variance, with the u1(t) and u3(t) contributing very little (particularly u1(t)).
Finally, it is worth considering how the multiple-input TF model with dif-
ferent denominator polynomials in each input path [3] compares with the
common-denominator model evaluated above. Here, convergence problems are
encountered if only the estimation data set is used but reasonable SRIVC es-
timates are obtained with the full data set (R2

T = 0.979), although at the
cost of quite a large computation time (7 times that of the common denom-
inator model). When RIVC is applied to the full data set with AR(14) and
ARMA(2,2) noise models, the results are not so good, with R2

T = 0.972 and
R2
T = 0.973, respectively. Overall, there seems little advantage in moving to

this more complicated model that, with its four additional parameters, shows
some signs of overparameterisation.

4.9 Conclusions

This chapter has described how the full RIVC algorithm for identifying and
estimating hybrid Box–Jenkins transfer function models for linear, continuous-
time systems from discrete-time, sampled data has been developed from the
earlier SRIVC algorithm.
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Based on simulation results obtained in the noise-free case, it is clear that the
performance of the SRIVC method is not sensitive to the sampling frequency,
in contrast to earlier continuous-time estimation methods based on simple
state-variable filtering methods. Also, as expected, it performs better than al-
ternative indirect approaches, based on DT estimation followed by conversion
to CT, particularly at higher sampling frequencies. In the case of noisy data,
the results obtained in the Monte Carlo simulation studies, using a difficult
fourth-order model, demonstrate the improvement in statistical efficiency that
accrues from the explicit inclusion of noise model effects in the RIVC algo-
rithm. In particular, the empirical parametric error variance is reduced and
agrees with that obtained from the algorithm’s estimate of the parametric
error covariance matrix, as required. The MCS and practical example results
also suggest that, in many applications, the use of a higher-order AR noise
model, rather than an ARMA model in RIVC estimation, can provide simi-
lar results while, at the same time, providing a simpler algorithm that only
requires least squares estimation of the AR model parameters.
The results of the MCS simulation analysis also show that the estimates ob-
tained from the simple SRIVC algorithm are very good. Although not as
statistically efficient as the RIVC estimates in conditions where the noise is
highly coloured (i.e., eigenvalues near the unit circle), the SRIVC estimates
are always consistent and asymptotically unbiased. Moreover, they have rel-
atively good statistical efficiency, which is quite close to that of the RIVC
estimates when the noise is not highly coloured. These results are consistent
with previous practical experience of the SRIVC algorithm over many years
and demonstrate its utility as a simple, fast and robust, day-to-day tool in
continuous-time modelling.
It is felt that the results presented in this chapter, as well as other associated
papers that have appeared recently, show that continuous-time identification
and estimation, based on a stochastic formulation of the transfer function
estimation problem, provides a theoretically elegant and practically useful
approach to the modelling of stochastic linear systems from discrete-time
sampled data. It is an approach that has many advantages in scientific terms
since it provides a differential equation model that conforms with models used
in most scientific research, where conservation equations (mass, energy, etc.)
are normally formulated in terms of differential equations. It is also a model
defined by a unique set of parameter values that are not dependent on the
sampling interval, so eliminating the need for conversion from discrete to con-
tinuous time that is an essential element of indirect approaches to estimation
based on discrete-time estimation.
Finally, note that most of the continuous-time model analysis reported in this
chapter was carried out using both the CONTSID7 and CAPTAIN8 Toolboxes
for MATLAB�. The CONTSID toolbox contains the major identification

7 http://www.cran.uhp-nancy.fr/contsid/
8 http://www.es.lancs.ac.uk/cres/captain/
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and estimation tools for continuous-time systems, including SRIVC/RIVC
(see Chapter 9 in the present book); the CAPTAIN toolbox has the same
SRIVC/RIVC tools but also has additional optimal algorithms (SRIV/RIV)
for discrete-time systems (used in the present chapter for comparative, indirect
discrete-time modelling), as well as other time-series algorithms, including:
time-variable and state-dependent parameter (non-linear) model estimation;
non-stationary signal extraction; and adaptive forecasting.
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22. P. Stoica and T. Söderström. The Steiglitz-McBride identification algorithms
revisited. Convergence analysis and accuracy aspects. IEEE Transactions on
Automatic Control, AC-26:712–717, 1981.

23. S. Thil and H. Garnier and M. Gilson Third-order cumulants based methods
for continuous-time errors-in-variables model identification. Automatica, 44(3),
2008.

24. P.E. Wellstead. An instrumental product moment test for model order estima-
tion. Automatica, 14:89–91, 1978.

25. P.C. Young. In flight dynamic checkout - a discussion. IEEE Transactions on
Aerospace, AS2(3):1106–1111, 1964.

26. P.C. Young. The determination of the parameters of a dynamic process. Radio
and Electronic Engineering (Journal of IERE), 29:345–361, 1965.

27. P.C. Young. Some observations on instrumental variable methods of time-series
analysis. International Journal of Control, 23:593–612, 1976.

28. P.C. Young. Parameter estimation for continuous-time models - a survey.
Automatica, 17(1):23–39, 1981.

29. P.C. Young. Recursive Estimation and Time-Series Analysis. Springer-Verlag,
Berlin, 1984.

30. P.C. Young. Recursive estimation, forecasting and adaptive control. In
C.T. Leondes (ed), Control and Dynamic Systems, pages 119–166. Academic
Press: San Diego, USA, 1989.

31. P.C. Young. Data-based mechanistic modeling of engineering systems. Journal
of Vibration and Control, 4:5–28, 1998.

32. P.C. Young. Data-based mechanistic modeling of environmental, ecological,
economic and engineering systems. Journal of Environmental Modelling and
Software, 13:105–122, 1998.

33. P.C. Young. Data-based mechanistic modelling, generalised sensitivity and
dominant mode analysis. Computer Physics Communications, 117:113–129,
1999.

34. P.C. Young. Identification and estimation of continuous-time hydrological mo-
dels from discrete-time data. In B. Webb, N. Arnell, C. Onf, N. MacIntyre,
R. Gurney, and C. Kirby, (eds), Hydrology: Science and Practice for the 21st
Century, Vol. 1, pages 406–413. British Hydrological Society: London, 2004.



4 Refined IV Identification of CT Hybrid Box–Jenkins Models 131

35. P.C. Young. The data-based mechanistic approach to the modelling, forecasting
and control of environmental systems. Annual Reviews in Control, 30:169–182,
2006.

36. P.C. Young. Data-based mechanistic modelling and river flow forecasting. 14th
IFAC Symposium on System Identification, Newcastle, Australia, pages 756–
761, March 2006.

37. P.C. Young. An instrumental variable approach to ARMA model identification
and estimation. 14th IFAC Symposium on System Identification, Newcastle,
Australia, pages 410–415, March 2006.

38. P.C. Young. The refined instrumental variable method: unified estimation of
discrete and continuous-time transfer function models. Journal Européen des
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5.1 Introduction

For many industrial production processes, safety and production restrictions
are often strong reasons for not allowing identification experiments in open
loop. In such situations, experimental data can only be obtained under closed-
loop conditions. The main difficulty in closed-loop identification is due to the
correlation between the disturbances and the control signal, induced by the
loop. Several alternatives are available to cope with this problem, broadly
classified into three main approaches: direct, indirect and joint input–output
[9, 14]. Some particular versions of these methods have been developed more
recently in the area of control-relevant identification as, e.g., the two-stage,
the coprime factor and the dual-Youla methods. An overview of these recent
developments can be found in [2] and [19].
When considering methods that can be used to identify models of systems
operating in closed loop, instrumental variable (IV) techniques are rather at-
tractive because they are normally simple or iterative modifications of the
linear regression algorithm. For instance, when dealing with highly complex
processes that are high-dimensional in terms of inputs and outputs, it can be
attractive to rely on methods, such as these, that do not require non-convex
optimisation algorithms. In addition to this computationally attractive prop-
erty, IV methods also have the potential advantage that they can yield con-
sistent and asymptotically unbiased estimates of the plant model parameters
if the noise does not have rational spectral density or the noise model is mis-
specified; or even if the control system is non-linear and/or time varying.
For closed-loop identification, a basic IV estimator was first suggested assum-
ing knowledge of the controller [20]; and the topic was later discussed in more
detail in [15]. More recently, a so-called ‘tailor-made’ IV algorithm has been
suggested [6], where the closed-loop plant is parameterised using (open-loop)
plant parameters. The class of algorithms denoted by BELS (bias-eliminated
least squares), e.g., [27], is also directed towards the use of only simple linear
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regression-like algorithms. Recently, it has been shown that these algorithms
are, in fact, particular forms of IV estimation [6, 16].
When comparing the various available IV algorithms that all lead to consis-
tent plant estimates, it is important to ask how the algorithm can be made
statistically efficient: i.e., how is it possible to achieve the smallest variance
of the parameter estimates. Concerning extended IV methods, an optimal
variance result has been developed in the open-loop identification case, show-
ing consequences for the choice of weights, filters, and instruments [9, 14, 17].
Similar enhancements of the basic IV approach are also the basis of the op-
timal refined instrumental variable (RIV) method [8, 21, 26] that is designed
specifically for the Box-Jenkins transfer function model in discrete (RIV) or
continuous (RIVC) time. For the closed-loop case, a statistical analysis has
been provided [13, 15]; and this analysis has been used to compare several
closed-loop identification methods [1]. More recently, some attention has been
given to a characterisation of the properties of the several (extended) IV meth-
ods [7].
All of the above methods, except RIVC, focus on the identification of discrete-
time (DT) models. Recently, however, there has been renewed interest in the
relevance of continuous-time (CT) model identification methods: see, e.g., pa-
pers at the 15th IFAC World Congress in 2002, such as [23], which compares
RIVC with another optimal approach; and [11, 12], where the advantages of
direct CT approaches are illustrated by extensive simulation examples. Un-
fortunately, however, closed-loop model CT identification is still an issue that
has not so far received adequate attention. Indeed, there are only a few re-
cent publications that deal with closed-loop CT identification: amongst these,
a bias-eliminated least squares method [3], some basic instrumental variable
methods [5], and a two-step algorithm using the RIVC algorithm [24], appear
to be the most successful (see also Chapter 13 in the present book).
This chapter aims at filling this gap: it describes and evaluates statistically
more efficient IV methods for the closed-loop identification of ‘hybrid’ CT
transfer function models from discrete-time, sampled data (based, in part, on
the analysis of the optimal open-loop approach in Chapter 4 of this book).
Here, the model of the basic dynamic system is estimated in continuous-
time, differential equation form, while the associated additive-noise model
is estimated as a discrete-time process. Several IV and IV-related methods
are presented and they are unified in an extended IV framework. Then, the
minimum-variance closed-loop IV estimation approach is introduced, with the
consequences of this formulation on the several design variables. Since such
an optimal statistical approach requires the concurrent estimation of a model
for the noise process, several bootstrap methods are proposed for accomplish-
ing this. A comparison between these different proposed methods is made
with the help of simulation examples, showing that more statistically efficient
estimation can be achieved by an appropriate choice of the design parameters.
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5.2 Problem Formulation
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Fig. 5.1. Closed-loop configuration

Consider a stable, linear, SISO, closed-loop system of the form shown in Figure
5.1. The data-generating system is assumed to be given by the relations

S :

{
y(t) = Go(p)u(t) + Ho(p)eo(t)
u(t) = r(t) − Cc(p)y(t)

(5.1)

The process is denoted by Go(p) = Bo(p)/Ao(p) and the controller by
Cc(p) where p is the differential operator (p = d/dt). u(t) describes the
process input signal, y(t) the process output signal. For ease of notation we
introduce an external signal r(t) = r1(t) + Cc(p)r2(t). Moreover, it is also
assumed that the CT signals u(t) and y(t) are uniformly sampled at Ts. A
coloured disturbance is assumed to affect the closed loop: bearing in mind
the spectral factorisation theorem, this noise term, ξo(t) = Ho(p)eo(t), is
modelled as linearly filtered white noise. The external signal r(t) is assumed
to be uncorrelated with the noise disturbance ξo(t).

The CT model identification problem is to find estimates of Go(p) from finite
sequences {r(tk)}Nk=1, {u(tk)}Nk=1, {y(tk)}Nk=1 of, respectively, the external sig-
nal, the process input and output DT data. The model is then described by
the following hybrid equation,

M : y(tk) = G(p,θ)u(tk) + H(q−1,θ)e(tk) (5.2)

where q−i is the backward shift operator, i.e., q−iy(tk) = y(tk−i); e(tk) is a
discrete-time white noise, with zero mean and variance σ2

e . The conventional
notation w(tk) is used here to denote the sampled value of w(t) at time instant
tk.
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The hybrid form (5.2) of the continuous-time transfer function model is con-
sidered here for two reasons. First, the approach is simple and straightforward:
the theoretical and practical problems associated with the estimation of purely
stochastic, continuous-time noise models are avoided by formulating the prob-
lem in this manner. Second, one of the main functions of the noise estimation
is to improve the statistical efficiency of the parameter estimation by intro-
ducing appropriately defined prefilters into the estimation procedure. And, as
we shall see in this chapter, this can be achieved adequately by assuming that
the additive coloured noise ξ(tk) has rational spectral density, so that it can
be represented in the form of a discrete-time, autoregressive moving average
(ARMA) model (see below).
With the above assumptions, the parameterised CT hybrid process model
takes the form,

G : G(p,ρ) =
B(p,ρ)
A(p,ρ)

=
b0p

nb + b1p
nb−1 + · · · + bnb

pna + a1pna−1 + · · · + ana

(5.3)

where nb, na denote the degrees of the process numerator and denominator
polynomials, respectively, with the pair (A,B) assumed to be coprime. The
process model parameters are stacked columnwise in the parameter vector

ρ = [a1 · · · ana
b0 · · · bnb

]T ∈ R
na+nb+1 (5.4)

The numerator and denominator orders nb and na are to be identified from
the data and the parameterised DT noise model is assumed to be in the form
of the following discrete-time ARMA process,

ξ(tk) = H(q−1,η)e(tk) (5.5a)

H : H(q−1,η) =
C(q−1,η)
D(q−1,η)

=
1 + c1q

−1 + · · · + cnc
q−nc

1 + d1q−1 + · · · + dnd
q−nd

(5.5b)

e(tk) ∼ N (0, σ2
e) (5.5c)

where the associated noise model parameters are stacked columnwise in the
parameter vector,

η =
[
d1 · · · dnd

c1 · · · cnc

]T ∈ R
nc+nd (5.6)

where, as shown, e(tk) is a zero-mean, normally distributed, discrete-time
white noise sequence.
The model structure M (5.2) is chosen so that the process and noise models
do not have common factors; these models can therefore be parameterised
independently. More formally, there exists the following decomposition of the
parameter vector θ for the whole hybrid model,

θ =
(
ρ
η

)
(5.7)
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Additionally, the controller Cc(p) is given by

Cc(p) =
Q(p)
P (p)

=
q0p

nq + q1p
nq−1 + · · · + qnq

pnp + p1pnp−1 + · · · + pnp

(5.8)

with the pair (P,Q) assumed to be coprime. Of course, in this hybrid context,
the continuous-time controller could be replaced by a DT alternative if this
is required (see, e.g., [24] where the continuous-time process is estimated
within a DT, non-minimal state-space control loop [18]). In the following,
the closed-loop system is assumed to be asymptotically stable and r(t) is an
external signal that is persistently exciting of sufficient high order.

With these notations, the closed-loop system can be described as
⎧
⎪⎪⎨

⎪⎪⎩

y(tk) =
Go(p)

1 + Cc(p)Go(p)
r(tk) +

1
1 + Cc(p)Go(p)

ξo(tk)

u(tk) =
1

1 + Cc(p)Go(p)
r(tk) −

Cc(p)
1 + Cc(p)Go(p)

ξo(tk)
(5.9)

In the following instrumental variable algorithms, use is made of the noise-free
input–output signals deduced from (5.9) and denoted from hereon as

⎧
⎪⎨

⎪⎩

x(tk) =
Go(p)

1 + Cc(p)Go(p)
r(tk)

ν(tk) =
1

1 + Cc(p)Go(p)
r(tk)

(5.10)

Now consider the relationship between the process input and output signals
in (5.1),

y(t) = Go(p)u(t) + Ho(p)eo(t) (5.11)

This latter can also be written in the vector form at time instant t = tk

y(na)(tk) = ϕT (tk)ρo + vo(tk) (5.12)

where ρo denotes the true process parameter vector,

ϕT (tk)=[−y(na−1)(tk) · · · − y(tk) u(nb)(tk) · · ·u(tk)] (5.13)

w(i)(tk) denotes the ith time derivative of the CT signal w(t) at time instant
tk and

vo(tk) = Ao(p)Ho(p)eo(tk) (5.14)

Note that the noise-free signals x(tk) and ν(tk) in (5.10) are not available
from measurements, therefore the several closed-loop methods presented in
this chapter make use of this noisy regressor ϕ(tk).
There are two main time-domain approaches to estimate a CT model in this
form. The first, indirect approach, is to estimate an initial DT model from
the sampled data and then convert this into a CT model. The second, direct
approach, that we consider in the present chapter, is to identify a CT model
directly from the DT data.
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5.3 Basic Instrumental Variable Estimators

The process model parameters ρ can be estimated using a basic instrumental
variable (IV) estimator. By assuming that the time derivatives of the input,
output and external signals are available (see Section 5.5.2), the CT version
of the basic IV estimate of ρ is given by

ρ̂iv = sol

{
1
N

N∑

k=1

ζ(tk)[y(na)(tk) −ϕT (tk)ρ] = 0

}
(5.15)

where N denotes the number of data and ζ(tk) is a vector of instrumental
variables.

There is a considerable amount of freedom in the choice of the instruments. A
first solution is to adapt the closed-loop IV method developed for DT models
in [15] to the CT model identification case. This method is referred to as
CLIVC and was first presented in [5]. It involves using the external signal
time derivatives as instruments. The so-called basic IV estimate for closed-
loop CT models is then given by

ρ̂clivc =

[
N∑

k=1

ζ(tk)ϕT (tk)

]−1 N∑

k=1

ζ(tk)y(na)(tk) (5.16)

with ζT (tk) =
[
r(na+nb)(tk) · · · r(tk)

]
∈ R

na+nb+1 (5.17)

In contrast with the basic IV for DT model identification that uses a difference
equation model, the CT version makes use of an instrument built up from the
time-derivatives of the external signals.

5.3.1 Consistency Properties

By inserting (5.12) into (5.15), the following equation is obtained

ρ̂iv = ρo +

[
N∑

k=1

ζ(tk)ϕT (tk)

]−1 [ N∑

k=1

ζ(tk)vo(tk)

]
(5.18)

where ϕT (tk) and vo(tk) are given by (5.13) and (5.14), respectively. It can
be deduced from (5.18) that ρ̂iv is a consistent estimate of ρ if4

{
Ē[ζ(tk)ϕT (tk)] is non-singular
Ē[ζ(tk)vo(tk)] = 0

(5.19)

Several IV variants can be obtained by different choices of the instruments
ζ(tk) in (5.15), respecting the conditions given by (5.19).
4 The notation Ē[.] = limN→∞ 1

N

∑N
k=1 E[.] is adopted from the prediction error

framework of [9].
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5.3.2 Accuracy Analysis

The asymptotic distribution of the parameter estimate ρ̂iv in (5.15) has been
investigated extensively in the open-loop DT context (e.g., [9, 13, 14]). More
recently, this work also has been extended to the closed-loop DT model iden-
tification framework [7]. By considering (5.15), these previous results can be
applied to the case of the CT hybrid model given by (5.2). As a result, under
the assumptions formulated in Section 5.2 and Go ∈ G, ρ̂iv is asymptotically
Gaussian distributed

√
N(ρ̂iv − ρ∗)

dist→ N (0,Piv) (5.20)

where ρ∗ represents the limit of ρ̂iv when N → ∞ and where the covariance
matrix is given by

Piv = σ2
eo

[
Ēζ(tk)ϕT (tk)

]−1
[
Ēζ̃(tk)ζ̃

T
(tk)
] [(

Ēζ(tk)ϕT (tk)
)−1
]T

(5.21)

with ζ̃(tk) = Ho(p)Ao(p)ζ(tk) and σ2
eo

denotes the intensity of {eo(tk)}.

5.4 Extended Instrumental Variable Estimators

There are various ways of considering IV estimation from an optimal stand-
point. One such approach is to consider an extended IV solution (see intro-
duction section). In CT model identification, if the time-derivative signals are
assumed to be known, the extended IV estimate of ρ is obtained by prefilter-
ing the input–output data appearing in (5.15) and by generalising the basic IV
estimates ρ̂iv using an augmented instrument ζ(tk) ∈ R

nζ (nζ ≥ na + nb + 1)
so that an overdetermined system of equations is obtained in the form,

ρ̂xiv = arg min
ρ

∥∥∥∥∥

[
N∑

k=1

f(p)ζ(tk)f(p)ϕT (tk)

]
ρ

−
[
N∑

k=1

f(p)ζ(tk)f(p)y(na)(tk)

]∥∥∥∥∥

2

W

(5.22)

where f(p) is a stable prefilter, and ‖x‖2
W = xTWx, with W a positive-definite

weighting matrix. This extended IV gives a parameter estimator that requires
more computations than the basic IV. However, the enlargement of the IV
vector can be used for improving the accuracy of the parameter estimates [14].
Note that, when f(p) = 1 and nζ = na+nb+1 (W = I), the basic IV estimate
(5.15) is obtained.
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5.4.1 Consistency Properties

The consistency conditions are easily obtained by generalising (5.19) to the
estimator (5.22)

{
Ē[f(p)ζ(tk)f(p)ϕT (tk)] is full-column rank
Ē[f(p)ζ(tk)f(p)vo(tk)] = 0

(5.23)

5.4.2 Accuracy Analysis

The asymptotic distribution of parameter vector (5.22) is obtained by fol-
lowing the same reasoning as in Section 5.3.2. Therefore, by considering the
results given in Section 5.2, under the assumption that Go ∈ G, ρ̂xiv is asymp-
totically Gaussian distributed,

√
N(ρ̂xiv − ρ∗)

dist→ N (0,Pxiv) (5.24)

where the covariance matrix is given by

Pxiv = σ2
eof

[
RTWR

]−1
RTW

[
Ēζ̃(tk)ζ̃

T
(tk)
]
WR

[
RTWR

]−1

with

ζ̃(tk) = f(p)Ho(p)Ao(p)ζ(tk) and R = Ēf(p)ζ(tk)f(p)ϕ̊T (tk)

where ϕ̊(tk) is the noise-free part of the regressor ϕ(tk) (5.13), built up from
the noise-free input–output signals ν(tk) and x(tk) (5.10) as

ϕ̊T (tk)=[−x(na−1)(tk) · · · − x(tk) ν(nb)(tk) · · · ν(tk)] (5.25)

Note that the noise-free part of the regressor is partly defined by the noise-free
output variable x(tk) in (5.10) and its derivatives. It is well known in open-
loop estimation that an estimate of this variable, generated as the output
of an ‘auxiliary model’, is normally used as the prime source of the instru-
mental variable for the output variable. In the closed-loop context, however,
the measured regression vector also contains the filtered process input and
its derivatives, it is clear, therefore, that a suitable estimate of the noise-free
process input ν(tk) will also be required for accurate IV estimation.

5.5 Optimal Instrumental Variable Estimators

5.5.1 Main Results

The choice of the instruments ζ(t), the number of IV components nζ , the
weighting matrix W and the prefilter f(p) may have a considerable effect on



5 Optimal IV Methods for Closed-loop CT Model Identification 141

the covariance matrix Pxiv. In the open-loop DT situation, the lower bound
of Pxiv for any unbiased identification method is given by the Cramér–Rao
lower bound [9, 13]. Optimal choices of the above-mentioned design variables
exist so that Pxiv reaches the Cramér–Rao lower bound. These results cannot
be applied to the closed-loop IV case because of the correlation between the
process input signal u(tk) and the noise. In this regard, it has been shown
in [15] that, for a model given by (5.12), there exists a minimum value of the
covariance matrix Pxiv as a function of the design variables ζ(tk), f(p) and W ,
under the restriction that ζ(tk) is a function of the external signal r(tk) only.
Although these results have been obtained for the case of DT models, a similar
analysis applies in the CT case and the covariance matrix can be optimised
with respect to the design variables. The optimal covariance matrix (different
from the Cramér–Rao lower bound) for a data-generating closed-loop system
given by (5.2), where u(tk) and y(tk) are correlated by noise, is then

Pxiv ≥ Popt
xiv and

Popt
xiv = σ2

eofopt

{
Ē
[
[Ao(p)Ho(p)]

−1
ϕ̊T (tk)

]T [
[Ao(p)Ho(p)]

−1
ϕ̊T (tk)

]}−1

(5.26)

Popt
xiv is then obtained by taking,

ζ(tk) = fopt(p)ϕ̊(tk),

fopt(p) = [Ao(p)Ho(p)]−1,

nζ = na + nb + 1,
W = I

(5.27)

Therefore, the only difference between open-loop and closed-loop cases is that
in the latter, the input process signal is correlated with the noise, so that the
instruments must be correlated with the noise-free part of u(t) but uncorre-
lated with the noisy part of u(t) (due to the feedback loop).
Moreover, when defined in this manner, it would appear that the optimal IV
estimator can only be obtained if, first, the true noise (and process) model is
exactly known and secondly the noise-free part of the regressor is available.
However, this is a probabilistic estimation problem and therefore the statis-
tically optimal estimates can be obtained if these TF model polynomials are
replaced by their optimal estimates. Moreover, practically useful suboptimal
solutions can be obtained by utilising good, if not optimal, estimates. This is
discussed in the next subsections.

5.5.2 Implementation Issues

Handling of the Unmeasurable Time-derivative Signals

In comparison with the DT counterpart, direct CT model identification raises
several technical issues. The first is related to implementation. Unlike the
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difference equation model, the differential equation model is not a linear com-
bination of the sampled process input and output signals but contains time-
derivative signals. The theoretical study presented in the previous section
assumes that these time-derivative signals are available, and therefore, the
parameter estimation procedure can be directly applied on them. However,
these input, output and external time-derivative signals are not available as
measurement data in most practical cases. A standard approach used in CT
model identification is to introduce a low-pass stable filter fc(p), i.e., define

yfc(tk) = fc(p)y(tk), ufc(tk) = fc(p)u(tk) (5.28)

where the subscript fc is used to denote the prefiltered forms of the associated
variables. The filtered time derivatives can then be obtained by sending both
input–output signals to a bench of filters of the form fc(p)pi

y
(i)
fc

(tk) = fc(p)piy(tk), i ≤ na (5.29)

u
(i)
fc

(tk) = fc(p)piu(tk), i ≤ nb (5.30)

The motivation is that the filtered signals ufc(t) and yfc satisfy

yfc(tk) = Go(p)ufc(tk) + fc(p)Ho(p)eo(tk) (5.31)

i.e., the process transfer function is not changed but the noise transfer function
is modified by the introduction of the filter. Equation (5.31) can be rewritten
under the following linear regression form

y
(na)
fc

(tk) = ϕTfc(tk)ρo + vofc(tk) (5.32)

with

ϕTfc(tk) = [−y
(na−1)
fc

(tk) · · · − yfc(tk) u
(nb)
fc

(tk) · · · ufcfc(tk)] (5.33)

vofc(tk) = fc(p)vo(tk) (5.34)

Various types of CT filters have been devised to deal with the need to recon-
struct the time derivatives [4] and the continuous-time system identification
(CONTSID) toolbox has been developed on the basis of these methods (see
Chapter 9 in the present book). A usual filter that has been used in simple
IV methods is as follows

fc(p) =
(

β

p + λ

)na

(5.35)

which is the filter used in the case of the minimum-order multiple filter (also
referred to as state-variable filter) method. Note however that other filters
can be used [4]. Moreover, it is clearly possible to select the prefilter fc(p) in
order to achieve some form of optimal IV estimation and this is considered
later in Section 5.5.
For simplicity, it has been assumed above that the differential equation model
(5.2) is initially at rest. However, note that, in the general case, the initial
condition terms do not vanish in (5.32). Whether they require estimation or
they can be neglected depends upon the selected signal-prefiltering method.
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Noise Modelling and Hybrid Filtering

The choice of the instruments and prefilter in the IV method affects the
asymptotic variance, while consistency properties are generically secured
by the IV implementation. It has been found that minor deviations from
the optimal estimates of the polynomials required for the implementation
of the auxiliary model and prefilters will normally only cause second-order
effects in the resulting accuracy. Therefore, a reasonable IV estimator
can be obtained if consistent, but not necessarily efficient estimates of
the polynomials are utilised (see [9] for a discussion in the DT case). In
addition, the computational procedures can be kept simple and tractable if
linear regression estimates are used in the preliminary stages of the estimation.

Several bootstrap IV methods have been proposed, in an attempt to approx-
imate the optimal IV method (see e.g., [9, 13, 21] for the open-loop situation
and [7] for the closed-loop one). As explained in Section 5.5, the difference
between open-loop and closed-loop cases lies in the input process signal
that is correlated with the noise in the latter. Therefore, the instrumental
variable vector must include IVs associated with the input as well as the
output signal, and these must be correlated with the noise-free part of u(t)
but uncorrelated with the noise on u(t) arising from the feedback loop.

Following the discussion in Section 5.2, CT models are estimated to represent
the transfer between the external signal and the output, as well as for the
transfer between the external signal and the input. And according to the
hybrid model (5.2) we are using here, DT models are used to estimate the
noise contribution.
From (5.27) and Section 5.5.2, the IV filter involves a filter f(p) required
for handling the time derivatives along with the CT process TF denominator
polynomial and noise model contributions. As a result, the IV estimation will
require hybrid filtering operations involving:

• a CT filter f(p) = fc(p) needed to compute the time derivatives (see (5.28)
and also Chapter 4 in the present book);

• a DT filtering operation needed to approximate the inverse of the CT
process TF denominator polynomial and noise model contributions (see
(5.27)), denoted from hereafter as fd(q−1,η).

To realise the optimal choices for the instruments, two alternatives are devel-
oped in the following sections: the first relies on multi-step algorithms while
the second is based on iterative (adaptive) solutions. As we will see, the form
of the CT and DT filters will differ according to the assumed true CT system
model structures.
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5.5.3 Multi-step Approximate Implementations of the Optimal IV
Estimate

Two-step CLIVC2 algorithm

The two-step IV algorithm, denoted as CLIVC2, is based on the following CT
ARX model {

Ao(p)y(tk) = Bo(p)u(tk) + eo(tk)
with u(tk) = r(tk) − Cc(p)y(tk)

(5.36)

or its filtered version
{

yfc(tk) = Bo(p)
Ao(p)ufc(tk) + fc(p) 1

Ao(p)e(tk)

with ufc(tk) = rfc(tk) − Cc(p)yfc(tk)
(5.37)

where we see that the noise model is constrained to include the process TF
denominator polynomial Ao(p).
In this particular case, the approximate optimal filter fclivc2 is composed of:

• the CT filter fc(p) (see (5.35)). It could also be chosen amongst several
options [17];

• the DT filter fd(q−1) = 1 since the noise model of the assumed CT ARX
data-generating system is Ho(p) = 1/Ao(p).

Since the CT filter fc(p) can be chosen amongst several non-optimal filters,
the resulting CLIVC2 algorithm is an approximate implementation of the
optimal IV solution presented in Section 5.5.1.

The outline of the CLIVC2 algorithm is then the following

1. Choose a CT prefilter fc(p) to compute y
(i)
fc

(tk), u
(i)
fc

(tk) and r
(i)
fc

(tk), for
i ≤ na.
Write the filtered CT ARX model structure as a linear regression

y
(na)
fc

(tk) = ϕTfc(tk)ρ (5.38)

and obtain an estimate ρ̂1 of ρ by the least squares method.
2. Use this estimate ρ̂1 along with the process model, as defined by,

G(p, ρ̂1) =
B(p, ρ̂1)
A(p, ρ̂1)

to generate the instruments ζfc(tk, ρ̂1) using the following closed-loop aux-
iliary models
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x̂fc(tk, ρ̂1) =
G(p, ρ̂1)

1 + Cc(p)G(p, ρ̂1)
rfc(tk) (5.39)

ν̂fc(tk, ρ̂1) =
1

1 + Cc(p)G(p, ρ̂1)
rfc(tk) (5.40)

ζfc(tk, ρ̂1) = [−x̂
(na−1)
fc

(tk, ρ̂1) · · · − x̂fc(tk, ρ̂1)

ν̂
(nb)
fc

(tk, ρ̂1) · · · ν̂fc(tk, ρ̂1)]
T (5.41)

ζfc(tk, ρ̂1) represents an estimate of the noise-free part of the regressor
ϕfc(tk) and according to the notations used in Chapter 4, it will be de-
noted from hereafter as ζfc(tk, ρ̂1) = ϕ̂fc(tk, ρ̂1).
Using the instrument ϕ̂fc(tk, ρ̂1) and the prefilter fd(q−1,η) = 1, deter-
mine the IV estimate in (5.38) as

ρ̂clivc2 =

[
N∑

k=1

ϕ̂fclivc2
(tk, ρ̂1)ϕ

T
fclivc2

(tk)

]−1[ N∑

k=1

ϕ̂fclivc2
(tk, ρ̂1)y

(na)
fclivc2

(tk)

]

(5.42)
where fclivc2(p) = fc(p) here.

Remark 5.1. In contrast to the discrete-time case, a high-order least squares
estimator should not be used in the first step of the continuous-time system
identification procedure because of the numerical errors induced by the sim-
ulation method required for the generation of the filtered variables in (5.33)
and (5.41).

Four-step CLIVC4 algorithm

Although the process parameter estimates from the CLIVC2 algorithm are
consistent, it is worthwhile considering improved noise model estimation in
order to construct an estimator with a smaller variance (closer to the optimal
solution). One improvement is to assume the following CT ARARX model
structure {

Ao(p)y(tk) = Bo(p)u(tk) + 1
Do(p)eo(tk)

with u(tk) = r(tk) − Cc(p)y(tk)
(5.43)

or its filtered version
⎧
⎨

⎩
yfc(tk) =

Bo(p)
Ao(p)

ufc(tk) + fc(p)
1

Ao(p)Do(p)
eo(tk)

with ufc(tk) = rfc(tk) − Cc(p)yfc(tk)
(5.44)

where we see that the noise model is also constrained to include the TF
denominator polynomial Ao(p).
In this particular case, the approximate optimal filter fclivc4 is composed of:
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• the CT filter fc(p) (see (5.35)). It could also be chosen amongst several
options [17]; as, e.g., (5.35);

• the DT filter fd(q−1,η) = 1/D(q−1,η) (AR model of order to be chosen
or identified) since the noise model of the assumed CT ARARX data-
generating CT system is Ho(p) = 1/Ao(p)Do(p).

As a result, the proposed CLIVC4 algorithm is then based on the following
CT hybrid ARARX model structure [7]

⎧
⎨

⎩
A(p,ρ)y(tk) = B(p,ρ)u(tk) +

1
D(q−1,η)

e(tk)

with u(tk) = r(tk) − Cc(p)y(tk)
(5.45)

Note that in the above equation, we are mixing discrete and continuous-time
operators somewhat informally in order to indicate the hybrid computational
nature of the estimation problem being considered here. Thus, operations such
as,

B(p,ρ)
A(p,ρ)

u(tk)

imply that the input variable u(tk) is interpolated in some manner. This is to
allow for the inter-sample behaviour that is not available from the sampled
data and so has to be inferred in order to allow for the continuous-time
numerical integration of the associated differential equations. For such
integration, the discretisation interval will be varied, dependent on the
numerical method employed, but it will usually be much smaller than the
sampling interval Ts (see Chapter 4 in the present book).

This proposed solution may be seen as an extension of the four-step IV
technique for open-loop DT model identification (IV4) [9] to the CT hybrid
closed-loop framework. The difference between the two algorithms is that
in the CT version, a filter is needed to handle the time-derivatives problem.
As previously, since it is carried out by a CT filter fc(p) chosen amongst
several non-optimal filters, the resulting CLIVC4 algorithm is an approximate
implementation of the optimal IV solution presented in Section 5.5.1.

The outline of the CLIVC4 algorithm is as follows:

1. Choose a CT prefilter fc(p) to compute y
(i)
fc

(tk), u
(i)
fc

(tk) and r
(i)
fc

(tk), for
i ≤ na.
Write the filtered model structure as a linear regression

y
(na)
fc

(tk) = ϕTfc(tk)ρ (5.46)

Obtain an estimate ρ̂1 of ρ by the least squares method and use this to
define the corresponding CT transfer function G(p, ρ̂1).
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2. Generate the instruments ζfc(tk, ρ̂1) = ϕ̂fc(tk, ρ̂1) using the closed-loop
auxiliary models as in (5.41). ϕ̂fc(tk, ρ̂1) represents an estimate of the
noise-free part of the filtered regressor ϕfc(tk). Determine the IV estimate
of ρ in (5.46) as

ρ̂2 =

[
N∑

k=1

ϕ̂fc(tk, ρ̂1)ϕ
T
fc(tk)

]−1 [ N∑

k=1

ϕ̂fc(tk, ρ̂1)y
(na)
fc

(tk)

]
(5.47)

and use this to define the corresponding CT transfer function G(p, ρ̂2).
3. Let ŵ(tk) = y

(na)
fc

(tk) − ϕTfc(tk)ρ̂2. Now, an AR model5 of order 2na can
be postulated for ŵ(tk):

fd(q−1, η̂)ŵ(tk) = e(tk)

and then fd(q−1, η̂) can be estimated using the least squares method.
4. Generate the instruments ζfc(tk, ρ̂2) = ϕ̂fc(tk, ρ̂2) as

ϕ̂fc(tk, ρ̂2) = [−x̂
(na−1)
fc

(tk, ρ̂2) · · · − x̂fc(tk, ρ̂2)

ν̂
(nb)
fcfc

(tk, ρ̂2) · · · ν̂fc(tk, ρ̂2)]
T (5.48)

where x̂fc(tk, ρ̂2) and ν̂fc(tk, ρ̂2) are the estimated noise-free output of the
closed-loop auxiliary models computed as in (5.39) and (5.40) on the basis
of G(p, ρ̂2).
Using these instruments ϕ̂fc(tk, ρ̂2) and the prefilter fd(q−1, η̂), determine
the IV estimate of ρ in (5.46) as

ρ̂clivc4 =

[
N∑

k=1

ϕ̂fclivc4
(tk, ρ̂2)ϕ

T
fclivc4

(tk)

]−1[ N∑

k=1

ϕ̂fclivc4
(tk, ρ̂2)y

(na)
fclivc4

(tk)

]

(5.49)
where

ϕ̂fclivc4
(tk, ρ̂2) = fd(q−1, η̂)ϕ̂fc(tk, ρ̂2), (5.50)

ϕfclivc4
(tk) = fd(q−1, η̂)ϕfc(tk), (5.51)

and y
(na)
fclivc4

(tk) = fd(q−1, η̂)y(na)
fc

(tk) (5.52)

5.5.4 Iterative Implementations of the Optimal IV Estimate

In the previous algorithms, the filter fc(p) used to compute the time-derivative
signals, is fixed a priori by the user and is not included into the design vari-
ables of the method. Furthermore, the CLIVC2 and CLIVC4 approaches rely

5 Or the AR order can be identified using a model order identification method,
such as the Akaike information criterion (AIC).
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on a noise model that is constrained to include the process TF denominator
polynomial (see (5.43)).
An alternative approach is to consider instead, a CT Box–Jenkins (BJ) trans-
fer function (TF) model defined as follows

⎧
⎨

⎩
y(tk) =

Bo(p)
Ao(p)

u(tk) +
Co(p)
Do(p)

eo(tk)

with u(tk) = r(tk) − Cc(p)y(tk)
(5.53)

For most practical purposes, this model is the most natural one to use since
it does not constrain the process and the noise models to have common
denominator polynomials. It also has the advantage that the maximum
likelihood estimates of the process model parameters are asymptotically
independent of the noise model parameter estimates (see Chapter 4 in this
book and [10]). The problem introduced by considering (5.53), however, is
that the model is non-linear-in-the-parameters so that simple IV estimation
cannot be directly applied.

Fortunately, this problem of non-linear estimation can be overcome by de-
signing an iterative estimation algorithm on the basis of the procedures used
in the refined instrumental variable (RIV) algorithm [8,21,22,25] and its CT
equivalent, the refined instrumental variable for a continuous system (RIVC)
algorithm [26], as discussed fully in Chapter 4, suitably extended to handle
the closed-loop identification case.
Following the usual prediction error minimisation (PEM) approach in the
present hybrid situation (which is ML estimation because of the Gaussian
assumptions on e(tk)), a suitable error function ε(tk), at the kth sampling
instant, is given by

ε(tk) =
Do(p)
Co(p)

{
y(tk) −

Bo(p)
Ao(p)

u(tk)
}

which can be written as

ε(tk) =
Do(p)
Co(p)

{
1

Ao(p)
[Ao(p)y(tk) − Bo(p)u(tk)]

}
(5.54)

where the CT prefilter Do(p)/Co(p) will be recognised as the inverse of the
continuous-time autoregressive moving average (CARMA) noise model in
(5.53).
Minimisation of a least squares criterion function in ε(tk), measured at the
sampling instants, provides the basis for stochastic estimation. However, since
the polynomial operators commute in this linear case, (5.54) can be considered
in the alternative form,

ε(tk) = Ao(p)yf(tk) − Bo(p)uf(tk) (5.55)
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where yf (tk) and uf (tk) represent the sampled outputs of the complete CT
prefiltering operation

yf (tk) =
1

Ao(p)
Do(p)
Co(p)

y(tk), (5.56)

uf (tk) =
1

Ao(p)
Do(p)
Co(p)

u(tk) (5.57)

In this particular case, the optimal filter fclrivc is composed of:

• fc(p,ρ) = 1/A(p,ρ) that is used to generate the time derivatives;
• fd(q−1,η) = D(q−1,η)/C(q−1,η) since the noise model of the assumed

CT BJ data-generating system is Ho(p) = Co(p)/Do(p).

As a result, the proposed CLRIVC algorithm is then based on the following
CT hybrid Box–Jenkins model structure

⎧
⎨

⎩
y(tk) =

B(p,ρ)
A(p,ρ)

u(tk) +
C(q−1,η)
D(q−1,η)

e(tk)

with u(tk) = r(tk) − Cc(p)y(tk)
(5.58)

It involves an iterative (or relaxation) algorithm in which, at each iteration,
the auxiliary model (see Section 5.4.2) used to generate the instrumental vari-
ables, as well as the associated prefilters, are updated, based on the parameter
estimates obtained at the previous iteration.

Iterative CLRIVC Algorithm

The outline of the CLRIVC algorithm is as follows:

1. Set C(q−1, η̂0) = D(q−1, η̂0) = 1. Choose an initial CT prefilter fc(p) to
compute y

(i)
fc

(tk), u
(i)
fc

(tk) and r
(i)
fc

(tk), for i ≤ na.
From the linear model structure (5.55), generate an initial estimate ρ̂0 of ρ
using, e.g., the CLSRIVC algorithm (see next section): the corresponding
TF is denoted by G(p, ρ̂0). Use this initial estimate to define the CT
pre-filter fc(p, ρ̂

0) = 1/A(p, ρ̂0), and set j = 1.
2. Iterative estimation.

for j = 1 : convergence
a) Generate the filtered instrumental variables ζfc(tk, ρ̂

j−1) =
ϕ̂fc(tk, ρ̂

j−1) from the estimates of the noise-free input and output
variables using the following closed-loop auxiliary models
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x̂fc(tk, ρ̂
j−1) =

G(p, ρ̂j−1)
1 + Cc(p)G(p, ρ̂j−1)

rfc(tk) (5.59)

ν̂fc(tk, ρ̂
j−1) =

1
1 + Cc(p)G(p, ρ̂j−1)

rfc(tk) (5.60)

ϕ̂fc(tk, ρ̂
j−1) =[−x̂

(na−1)
fc

(tk, ρ̂
j−1) · · · − x̂fc(tk, ρ̂

j−1)

ν̂
(nb)
fc

(tk, ρ̂
j−1) · · · ν̂fc(tk, ρ̂

j−1)]T (5.61)

where the CT filter is given as

fc(p, ρ̂
j−1) =

1
A(p, ρ̂j−1)

.

Use this filter to compute y
(i)
fc

(tk, ρ̂
j−1) and u

(i)
fc

(tk, ρ̂
j−1), for i ≤ na

and update the filtered regression filter

ϕfc(tk, ρ̂
j−1) =[−y

(na−1)
fc

(tk, ρ̂
j−1) · · · − yfc(tk, ρ̂

j−1)

u
(nb)
fc

(tk, ρ̂
j−1) · · · ufc(tk, ρ̂

j−1)]T (5.62)

b) Obtain an optimal estimate of the noise model parameter vector ηj

based on the estimated noise sequence

ξ̂(tk) = y(tk) − x̂(tk, ρ̂
j−1) (5.63)

using a selected ARMA estimation algorithm and use this to define
the corresponding TF: H(q−1, η̂j).

c) Use the estimated noise model parameters in η̂j to define the DT filter
fd(q−1, η̂j), which takes the form

fd(q−1, η̂j) =
D(q−1, η̂j)
C(q−1, η̂j)

Then, sample the filtered derivative signals at the discrete-time
sampling interval Ts and prefilter these by the discrete-time filter
fd(q−1, η̂j).

d) Based on these prefiltered data, generate an updated estimate ρ̂j of
the process model parameter vector as

ρ̂j =

[
N∑

k=1

ϕ̂fclrivc
(tk, ρ̂

j−1)ϕTfclrivc(tk, ρ̂
j−1)

]−1

[
N∑

k=1

ϕ̂fclrivc
(tk, ρ̂

j−1)y(na)
fclrivc

(tk, ρ̂
j−1)

]
(5.64)

where
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ϕ̂fclrivc
(tk, ρ̂

j−1) = fd(q−1, η̂j)ϕ̂fc(tk, ρ̂
j−1), (5.65)

ϕfclrivc
(tk, ρ̂

j−1) = fd(q−1, η̂j)ϕfc(tk, ρ̂
j−1), (5.66)

y
(na)
fclrivc

(tk, ρ̂
j−1) = fd(q−1, η̂j)y(na)

fc
(tk, ρ̂

j−1) (5.67)

Together with the estimate η̂j of the noise model parameter estimate
from step (2b), this provides the estimate θ̂

j
of the composite param-

eter vector at the jth iteration.
3. After the convergence of the iterations is complete, compute the estimated

parametric error covariance matrix P̂ρ, associated with the converged es-
timate ρ̂ of the system model parameter vector, from the expression (see
Chapter 4 in this book),

P̂ρ = σ̂2
e

[
N∑

k=1

ϕ̂fclrivc
(tk, ρ̂)ϕ̂Tfclrivc(tk, ρ̂)

]−1

(5.68)

where ϕ̂fclrivc
(tk, ρ̂) is the IV vector obtained at convergence and σ̂2

e is the
estimated residual variance.

Simplified Iterative CLSRIVC Algorithm

It will be noted that the above formulation of the CLRIVC estimation problem
is considerably simplified if it is assumed in the CT BJ model structure that
the additive noise is white, i.e., Co(p) = Do(p) = 1. In this case, the assumed
model structure is a CT hybrid OE model given as

⎧
⎨

⎩
y(tk) =

B(p,ρ)
A(p,ρ)

u(tk) + e(tk)

with u(tk) = r(tk) − Cc(p)y(tk)
(5.69)

The simplified CLRIVC (denoted as CLSRIVC) algorithm may be used here;
the estimation only involves the parameters in the A(p,ρ) and B(p,ρ) poly-
nomials and the optimal filter fclsrivc involves:

• the CT filter fc(p,ρ) = 1/A(p,ρ);
• the DT filter fd(q−1,η) = 1 since the noise model of the associated CT

OE data-generating system is Ho(p) = 1.

Consequently, the main steps in the CLSRIVC algorithm are the same as
those in the CLRIVC algorithm, except that the noise model estimation and
subsequent discrete-time prefiltering in steps (2b) and (2c) of the iterative
procedure are no longer required and are omitted.
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Comments

1. Note that the IV vector used in (5.64) should be written as

ϕ̂fclrivc
(tk, ρ̂

j−1) = ϕ̂fclrivc
(tk, ρ̂

j−1, η̂j) (5.70)

because the instrumental variables are prefiltered and therefore are a func-
tion of both the system parameter estimates at the previous iteration and
the most recent noise model parameter estimates (see algorithm). For sim-
plicity, however, these additional arguments are omitted in the algorithm.

2. The fact that the ARMA noise model estimation is carried out separately
on the basis of the estimated noise signal ξ̂(tk) obtained from the IV
part of the estimation algorithm in (5.63), implies that the system and
noise model parameters are statistically independent (see Chapter 4 for a
thorough analysis).

3. The initial selection of A(p, ρ̂0) does not have to be particularly accurate
provided the prefilter fc(p, ρ̂

0) based on it does not seriously attenuate any
signals within the passband of the system being modelled (see Chapter
4).

4. These bootstrap algorithms (CLIVC2, CLIVC4, CLRIVC, CLSRIVC) re-
quire knowledge of the controller. However, when it is unknown, another
solution may be used to build up the instrumental vector that satisfies
the optimal conditions (5.27). Indeed, the noise-free estimation of this
instrumental vector can be achieved by using the two closed-loop trans-
fers between r(tk), u(tk) and between r(tk), y(tk) instead of the open-loop
one (between u(tk) and y(tk)). The second step consists then in identify-
ing the two closed-loop transfers Gyr(p,ρ) and Gur(p,ρ) to compute the
instruments as

x̂(tk, ρ̂) = Gyr(p, ρ̂)r(tk)
ν̂(tk, ρ̂) = Gur(p, ρ̂)r(tk) (5.71)

5. Another solution is to estimate the closed-loop TF Gur(p, ρ̂) by SRIVC
or RIVC and then this can be used to obtain an estimate of the noise-free
input for use as the input in the direct RIVC estimation of the process
TF. This solution is close to the two-step method [19]; it is not optimal
but yields good results with reasonable, albeit not minimum, variance
parameter estimates [24].

5.6 Summary

The theoretical optimal choices for the design variables of the two multi-step
and two iterative algorithms for complete CT modelling are summarised in
Table 5.1, while the CT and DT filter forms required, for implementation, in
each optimal IV version for CT hybrid modelling are given in Table 5.2.
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Table 5.1. Optimal choices for the design variables of the proposed IV methods for
complete CT modelling

Method
Assumed filtered data
generating CT system (5.72)

Model
structure

Shaping
noise model
f(p)Ho(p)

fopt(p) = fc(p)fd(p)
see (5.27)

fc(p) fd(p)

CLIVC2 yf(tk) =
Bo(p)
Ao(p)uf(tk) +

f(p)
Ao(p) eo(tk) CT ARX

f(p)
Ao(p) f(p) 1

CLIVC4 yf(tk)=
Bo(p)
Ao(p)uf(tk)+

f(p)
Ao(p)Do(p) eo(tk) CT

ARARX
f(p)

Ao(p)Do(p) f(p) Do(p)

CLSRIVC yf(tk) =
Bo(p)
Ao(p)uf(tk) + eo(tk) CT OE 1 1

Ao(p) 1

CLRIVC yf(tk) =
Bo(p)
Ao(p)uf(tk) +

Co(p)
Do(p) eo(tk) CT BJ

Co(p)
Do(p)

1
Ao(p)

Do(p)
Co(p)

It will be noticed that, in Table 5.1, the assumed filtered data-generating CT
system is given as

{
yf(tk) = Go(p)uf(tk) + f(p)Ho(p)eo(tk)
uf(tk) = rf(tk) − Cc(p)yf(tk)

(5.72)

Table 5.2. Implemented filter forms in the multi-step and iterative IV methods for
CT hybrid modelling

Method Model structure fc(p) fd(q−1)

CLIVC2 CT ARX
(

λ
p+λ

)na
1

CLIVC4 CT hybrid ARARX
(

λ
p+λ

)na
AR(2na)

CLSRIVC CT hybrid OE 1
A(p,ρ̂)

1

CLRIVC CT hybrid BJ 1
A(p,ρ̂)

ARMA(nd, nc)

5.7 Numerical Examples

The following numerical example is used to illustrate and compare the perfor-
mances of the proposed approaches. The process to be identified is described
by (5.1), where

Go(p) =
p + 1

p2 + 0.5p + 1
(5.73)

Cc(p) =
10p + 15

p
(5.74)



154 M. Gilson, H. Garnier, P.C. Young and, P. Van den Hof

An external signal is added to r1(tk) (see Figure 5.1) and chosen to be a
pseudo-random binary signal of maximum length generated from a shift reg-
ister with 4 stages and a clock period of 500 (N = 7500 data points). The
sampling period Ts is chosen equal to 5 ms.
From the comparative studies presented recently in [4], the state-variable fil-
ter (SVF) approach can be considered as one of the simplest methods to
handle the time-derivative problem. This latter approach has been used here
with the basic (CLIVC) and multi-step estimators (CLIVC2, CLIVC4). It is
not required in the case of CLRIVC because the continuous-time part of the
optimal hybrid prefilter is used to generate the filtered derivatives.

Table 5.3. Mean and standard deviations of the open-loop parameter estimates for
100 Monte Carlo runs – White noise

Method b̂0 ± σb̂0
b̂1 ± σb̂1

â1 ± σâ1 â2 ± σâ2 Norm

True value 1 1 0.5 1

CLIVC 0.995 ± 0.036 1.050 ± 0.047 0.536 ± 0.021 1.015 ± 0.030 0.936

CLIVC2 0.994 ± 0.005 1.018 ± 0.046 0.520 ± 0.021 1.012 ± 0.028 0.875

CLSRIVC 0.995 ± 0.003 0.990 ± 0.050 0.518 ± 0.020 1.013 ± 0.030 0.910

5.7.1 Example 1: White Noise

First, a Gaussian white noise disturbance (Ho(p) = 1) is considered in order to
illustrate the performance of the CLIVC, CLIVC2 and CLSRIVC algorithms.
The process model parameters are estimated on the basis of closed-loop data
sequences. A Monte Carlo simulation of 100 experiments is performed for a
signal-to-noise (SNR) ratio given as

SNR = 10 log
(

Px
Pe

)
= 15 dB (5.75)

where Pe represents the average power of the zero-mean additive noise on the
system output (e.g., the variance) while Px denotes the average power of the
noise-free output fluctuations.
The Monte Carlo simulation (MCS) results are presented in Table 5.3 where
the mean and standard deviation of the estimated parameters are displayed. It
can be seen that the three IV methods deliver similar unbiased estimates of the
model parameters with reasonable standard deviations. However, as expected,
note that the basic CLIVC estimates are not as statistically efficient as the
CLIVC2 and CLSRIVC estimates, where the standard deviations are smaller
and, in the case of b0, the standard deviation is some 7 times smaller.
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Fig. 5.2. Closed-loop data used in Example 2 – Coloured noise

Furthermore, the 2-norm of the difference between the true (G(eiω,ρo)) and
estimated (G(eiω, ρ̂j)) transfer functions is also computed for each method

Norm =
1

Nexp

Nexp∑

j=1

∫
|G(eiω,ρo) − G(eiω, ρ̂j))|2dω (5.76)

where Nexp is the number of Monte Carlo simulation runs. The results are
given in Table 5.3 and confirm the previous results: the three IV methods
lead to accurate results; moreover, the bootstrap methods provide slightly
better results than the basic IV technique.

5.7.2 Example 2: Coloured Noise

A second example is used to analyse the performance of the proposed methods
in the case of a coloured noise, with

H(q−1,ηo) =
1 − 0.98q−1

1 − 1.9747q−1 + 0.9753q−2

The process parameters are estimated on the basis of closed-loop data
sequences described previously. A Monte Carlo simulation of 100 experiments
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Fig. 5.3. Bode plots of the 100 identified SRIVC models – Coloured noise

is performed for a SNR = 15dB. The first 100 points of the external signal
are forced to zeros in order to be free of the prefiltering initial conditions.
The external signal, input and output data are plotted in Figure 5.2. The
process model parameters are estimated by using methods CLIVC, CLIVC4,
CLRIVC. Moreover, the direct closed-loop approach (see [19]) is also used in
this example, in order to illustrate the difficulties of identifying a closed-loop
model in a coloured noise situation and to see how much bias is introduced
into the parameter estimates in this direct approach, when the closed-loop
operation is not really taken into account. The open-loop SRIVC algorithm
(see Chapter 4) is used for this purpose.

The mean and standard deviation of the 100 sets of estimated model param-
eters from the MCS analysis are given in Table 5.4. The Bode diagrams of
the 100 identified models are displayed in Figures 5.3 to 5.6. As expected,
the direct closed-loop approach using the open-loop SRIVC method clearly
leads to biased results: however, it will be noticed that, although the SRIVC
estimates are biased, the inherent pre-filtering introduced by CT estimation
allows us to obtain better results than those obtained from indirect DT estima-
tion. Furthermore, the three closed-loop IV methods provide similar unbiased
estimates of the model parameters with reasonable standard deviations. How-
ever, again as expected, the CLIVC estimates are not as statistically efficient
as the estimates produced by the multi-step CLIVC4 and iterative CLRIVC
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Fig. 5.4. Bode plots of the 100 identified CLIVC models – Coloured noise

algorithms, where the standard deviation are always smaller, thanks to the
prefiltering and associated noise model estimation. Furthermore, thanks to its
iterative structure and its prefilter updating operation, the CLRIVC algorithm
leads to better results than the CLIVC4 method. Moreover, it is interesting
to note that, from our experience, the basic CLIVC method provides better
results than the DT version (using the sampled external signal), thanks to the
inherent CT prefiltering (see [7]).

Table 5.4. Mean and standard deviations of the open-loop parameter estimates for
100 Monte Carlo runs - Colored noise

Method b̂0 ± σb̂0
b̂1 ± σb̂1

â1 ± σâ1 â2 ± σâ2 Norm

True value 1 1 0.5 1

SRIVC 0.449 ± 0.050 1.254 ± 0.247 0.636 ± 0.140 1.354 ± 0.156 0.855

CLIVC 1.011 ± 0.278 0.812 ± 0.299 0.546 ± 0.099 0.963 ± 0.231 0.784

CLIVC4 0.960 ± 0.131 0.977 ± 0.240 0.563 ± 0.104 1.015 ± 0.119 0.767

CLRIVC 0.972 ± 0.112 0.973 ± 0.191 0.557 ± 0.083 1.007 ± 0.094 0.779
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Fig. 5.5. Bode plots of the 100 identified CLIVC4 models – Coloured noise

10
−2

10
−1

10
0

10
1

10
2

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

−200

−100

0

100

Frequency (rad/s)

P
ha

se
 (

de
g)

 

 

true
CLRIVC

Fig. 5.6. Bode plots of the 100 identified CLRIVC models – Coloured noise
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5.8 Conclusions

This chapter has addressed the problem of estimating the parameters of
continuous-time transfer functions models for linear dynamic systems operat-
ing in closed loop using instrumental variable techniques. Several closed-loop
IV estimators have been described, including the development of explicit ex-
pressions for the parametric error covariance matrix. In particular, the chapter
has shown that reduced values of this covariance matrix can be achieved for
a particular choice of instruments and prefilter; and both multi-step and iter-
ative solutions have been developed to determine the design parameters that
allow for such improved closed-loop IV estimation.
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6.1 Introduction

For the past four decades, the principle of instrumental variables (IV) has
been quite a popular approach to the identification and estimation3 of discrete-
time dynamic systems (e.g., [5–8,14,16,18,20]). Amongst these references, the
research monograph by Söderström and Stoica [6] in 1983 is devoted entirely to
IV methods; whilst the text by Young [18] in 1984 concentrates on standard
and optimal IV methods within a wider context. However, the IV method
has also been used very successfully in continuous-time model estimation.
For instance Young and Jakeman [52] proposed an optimal IV approach for
continuous-time model estimation over a quarter of a century ago and there
are many examples where IV estimation has been applied within a continuous-
time context since then.
One of the well-documented issues in instrumental variable identification is
the singularity, or near-singularity, of the instrumental product matrix (IPM)
when the model structure is overparameterised; a useful property that has
been exploited as the basis for model order estimation by Wellstead [12],
Young et al. [22], and Wellstead and Rojas [13]. This chapter presents new re-
sults on model structure identification in IV estimation using a rather different
approach. In particular, by assuming a priori knowledge of the relative de-
gree and the maximum model order for the continuous-time system structure,
an instrumental variable model order identification procedure is proposed,
based on UDV matrix factorisation. Here, the higher-order model parame-
ter estimates do not affect the lower order parameter estimates, so allowing
for the natural truncation of model orders. In addition, the predictive errors,
which are exploited in the context of cross-validation via the predicted resid-

3 In this chapter, the statistical meanings of ‘identification’ and ‘estimation’ are
utilised: namely, ‘identification’ refers to the identification of a uniquely identifi-
able model order and structure; while ‘estimation’ refers to the estimation of the
parameters that characterise this identified model form.
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ual sums of squares (PRESS) statistic, are calculated in a systematic manner
for all candidate models.
It should be noted that, although the results presented in this chapter are
derived for continuous-time systems, they can be extended to discrete-time
systems in a straightforward manner.

6.2 Instrumental Variable Identification

Assume that a plant has a continuous-time operator model form

G(p) =
B(p)
A(p)

(6.1)

where

A(p) =pn + a1p
n−1 + a2p

n−2 + . . . + an

B(p) =b0p
m + b1p

m−1 + b2p
m−2 + . . . + bm

are the polynomials in the differential p operator. Given the degrees of A(p)
and B(p) as n and m, the relative degree of a continuous-time model is defined
as γ = n − m. We assume that the plant input and output signals are u(t)
and y(t) with band-limited additive white noise ξ(t), so that

y(t) =
B(p)
A(p)

u(t) + ξ(t) (6.2)

or, in decomposed form
{

x(t) = B(p)
A(p)u(t)

y(t) = x(t) + ξ(t)
(6.3)

where x(t) is the ‘noise-free’ output of the system. The optimal refined IV
solution of the estimation problem (RIVC) for this continuous-time model,
based on the assumption that the sampled noise ξ(tk) can be described by
a discrete-time autoregressive moving average (ARMA) process (the ‘hybrid
Box–Jenkins’ model) is considered in Chapter 4 of this book. This optimal
solution involves hybrid prefilters that are updated iteratively to reflect the
estimated parameters of the model polynomials in both the system and ARMA
noise models. Here, however, we consider an alternative, non-iterative ‘state-
variable filter’ (SVF) solution [1,15,17] in which the fixed prefilter is an all-pole
process with a denominator C(p) = pn + c1p

n−1 + c2p
n−2 + . . . + cn.

By passing both the sampled input and output measurements u(tk) and y(tk)
(k = 0, 1, 2, . . . ) through this all-pole prefilter, we obtain the filtered input
and output signals. When applied to the model (6.2), this operation yields
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A(p)
C(p)

y(tk) =
B(p)
C(p)

u(tk) +
A(p)
C(p)

ξ(tk) (6.4)

where the continuous-time filtering operation includes interpolation of the
sampled input and output signals (see Chapter 4 of the present book). In the
case where the sampled noise ξ(tk) can be considered as a zero-mean, serially
uncorrelated and normally distributed white noise process, it can be shown
that the prefilter C(p) is optimal in statistical terms if C(p) = A(p). Indeed,
this is the basis for the simplified refined instrumental variable (SRIVC) ap-
proach to continuous-time model estimation that has been available for many
years in the CAPTAIN toolbox4 for MATLAB�. However, its principle use in
the present context is to facilitate the estimation of the prefiltered derivatives
used in the IV estimation procedure that forms part of the proposed model
order identification strategy (see later example in Section 6.5).
The derivatives of the filtered input and output signals are obtained as shown
in Figure 6.1. This can be considered in SVF terms by letting y

(n)
f (t), y(n−1)

f (t),
. . ., y

(0)
f (t) denote, respectively, pn

C(p)y(t), p
n−1

C(p) y(t), . . ., 1
C(p)y(t); and u

(n)
f (t),

u
(n−1)
f (t), . . ., u

(0)
f (t) denote, respectively, pn

C(p)u(t), pn−1

C(p) u(t), . . ., 1
C(p)u(t).

To obtain the derivatives of the filtered output signals, we simply define a
state-variable vector

Xy(t) = [y(n)
f (t) y

(n−1)
f (t) . . . y

(0)
f (t)]T

Then, by choosing the state space model in a control canonical form, we have
⎡

⎢⎢⎢⎢⎢⎣

dy
(n)
f (t)

dt
dy

(n−1)
f (t)

dt
...

dy
(0)
f (t)

dt

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎣

−c1 −c2 . . . −cn
1 0 . . . 0
· · ·
0 . . . 1 0

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

y
(n)
f (t)

y
(n−1)
f (t)

...
y
(0)
f (t)

⎤

⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎣

1
0
...
0

⎤

⎥⎥⎥⎦ y(t)

= Ω

⎡

⎢⎢⎢⎢⎣

y
(n)
f (t)

y
(n−1)
f (t)

...
y
(0)
f (t)

⎤

⎥⎥⎥⎥⎦
+ Γ y(t) (6.5)

The solution of the state space equation (6.5), assuming zero initial conditions,
generates the prefiltered derivatives of the output signal. Similarly,

Xu(t) =
[
u

(n)
f (t) u

(n−1)
f (t) . . . u

(0)
f (t)

]T

defines the prefiltered derivatives of the input signal; and

4 CAPTAIN can be downloaded from http://www.es.lancs.ac.uk/cres/captain/
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Fig. 6.1. Generation of prefiltered derivatives for the output y(t) by the prefilter
f(p) = 1/C(p) (based on Figure 2(b) in [52])

Xh(t) = [hn(t) hn−1(t) . . . h0(t)]T

is used to capture the initial conditions of the state variables (when necessary).
These state variables satisfy the following differential equations, respectively

Ẋu(t) = ΩXu(t) + Γu(t)
Xu(0) = 0n (6.6)

Ẋh(t) = ΩXh(t)
Xh(0) = In (6.7)

where 0n is a zero-column vector of length n and In is a column vector of
length n with the first element unity and the rest zero.
With the state variables defined by (6.5)–(6.7), (6.4) can be written as

y
(n)
f (t) + a1y

(n−1)
f (t) + . . . + any

(0)
f (t) =

b0u
(m)
f (t) + b1u

(m−1)
f (t) + . . . + bmu

(0)
f (t) (6.8)

+ g0hn(t) + g1hn−1(t) + . . . gnh0(t) + ξf(t)

where ξf(t) denotes the filtered noise variable and {gi}, i = 0, . . . , n, are
extra coefficients used to capture the transient response of the filter. In the
following analysis, we make the normal assumption that the zeros of C(p)
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lie strictly inside the left-half complex plane so that the state variables hi(t),
i = 0, 1, . . . n, decay exponentially to zero. For simplicity, their effect on the
solution is neglected here: however, they can be included easily if this is desired
(see, e.g., [1])
To estimate the parameters ai, i = 1, 2, . . . , n, bi, i = 0, 1, . . . ,m, (6.9), with
the terms in hi(t), i = 0, 1, . . . , n omitted, is reformulated into a standard
linear regression form as

y
(n)
f (t) = ϕT (t)ρ+ ξf(t) (6.9)

where
ϕT (t) = [−y

(n−1)
f (t) . . . − y

(0)
f (t) u

(m)
f (t) . . . u

(0)
f (t)]

and
ρT = [a1 . . . an b0 . . . bm]

We now define the instrumental variable as the output of the following ‘aux-
iliary model’

x̂(t) =
B̂(p)
Â(p)

u(t) (6.10)

which will be recognised from (6.3) as an estimate of the noise-free output
x(t) of the system if Â(p) and B̂(p) are statistically consistent estimates of
the system model parameters A(p) and B(p). In practice, these estimates are
generated using an iterative updating algorithm, such as that used for the
optimal RIVC and SRIVC algorithms described in Chapter 4 of this book.
The filtered nth derivative of the instrumental variable is defined as

x̂
(n)
f (t) =

pn

C(p)
x̂(t) (6.11)

and the prefiltered IV vector is then given by

ϕ̂(t)T = [−x̂
(n−1)
f (t) . . . − x̂

(0)
f (t) u

(m)
f (t) . . . u

(0)
f (t)]

Note that, for notational simplicity, we do not add the subscript f to both
regressor vectors ϕ(t) and ϕ̂(t) as they are understood to contain the filtered
plant input and output variables. Note also that the algorithm derived below
is applicable to the general case with or without prefilters.
If TN is the actual measurement time for the given set of data, then the
completely continuous-time, IV estimate of the parameter vector ρ is then
given by

ρ̂ =

(∫ TN

0

ϕ̂(t)ϕ(t)T dt

)−1 ∫ TN

0

ϕ̂(t)y(n)
f (t)dt (6.12)

However, we are concerned here with discrete-time, sampled input and output
data {u(tk)} and {y(tk)}, k = 1, 2, . . . , N , with a uniform sampling interval
Ts = tk+1 − tk. As a result, (6.12) can be written as,
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lim
Ts→0

[
N∑

k=1

ϕ̂(tk)ϕT (tk)Ts

]−1 N∑

k=1

ϕ̂(tk)y
(n)
f (tk)Ts (6.13)

which can be approximated either by using the finite-sum approximation given
by

ρ̂ ≈
[
N∑

k=1

ϕ̂(tk)ϕT (tk)

]−1 N∑

k=1

ϕ̂(tk)y
(n)
f (tk) (6.14)

or a numerical integration scheme with a higher accuracy. Normally, the solu-
tion (6.14) or its recursive equivalent is utilised because, as mentioned previ-
ously and discussed in Chapter 4 of this book, the interpolation inherent in the
continuous-time prefiltering operations is sufficient to ensure good estimation
performance.

6.3 Instrumental Variable Estimation using a
Multiple-model Structure

Note that, in the instrumental variable solution (6.14), we have assumed
known orders for the numerator and denominator polynomials. In practice,
these are not known and the model structure identification scheme, such as
that discussed below, will encounter situations where the model is overparam-
eterised. In such situations, as indicated previously, it is likely that the instru-
mental product matrix (IPM),

∑N
k=1 ϕ̂(tk)ϕT (tk), will be ill-conditioned. In

order to avoid this, a matrix decomposition algorithm is required to generate
the inverse of the IPM without actually performing the inversion. In addition,
it is an advantage for model structure identification if: (i) a threshhold can be
set to detect the situation when no more information can be extracted from
the given data set; and (ii) the model parameters are available from the es-
timation for all candidate model structures, so that the best model structure
can be determined for a given data set and a relative degree.
In this chapter, these algorithmic objectives are achieved using UDV matrix
factorisation with a specific configuration of the input and output data that is
termed a ‘multiple-model structure’. The idea of exploiting a multiple model
structure for IV estimation has been described previously for discrete-time
systems [3, 4, 11]. Here, we extend this basic idea to continuous-time sys-
tem identification using UDV factorisation, including the computation and
exploitation of prediction error statistics.

6.3.1 Augmented Data Regressor

The basic idea of a multiple-model structure is to augment the original re-
gression vector ϕ(tk) given by (6.9) with −y

(n)
f (tk) and re-arrange the new

regressor, which replaces this, in such a way that the variables corresponding
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to a lower index i of y
(i)
f (tk) and u

(i)
f (tk) enter the regressor first, with y

(i)
f (tk)

and u
(i)
f (tk) appearing in pairs. This new regressor will be denoted by φi(tk),

where the subscript i = 1, 2, · · · , n indicates the order of the model. How-
ever, unlike the discrete-time counterpart of this procedure, the fact that the
minimal order of a continuous-time model is no less than its relative degree
demands special consideration. Here, we propose that the effect of relative
degree is incorporated into the regressor. For example, if a continuous-time
transfer function has relative degree one, then a first-order structure for the
augmented regressor has the form,

φ1(tk) =
[
−y

(0)
f (tk) u

(0)
f (tk) −y

(1)
f (tk)

]T

and a second-order structure follows with,

φ2(tk) =
[
−y

(0)
f (tk) u

(0)
f (tk) −y

(1)
f (tk) u

(1)
f (tk) −y

(2)
f (tk)

]T
(6.15)

=
[
φT1 (tk) u

(1)
f (tk) −y

(2)
f (tk)

]T
(6.16)

and so on, to the nth-order structure,

φn(tk) =
[
φTn−1(tk) u

(n−1)
f (tk) −y

(n)
f (tk)

]T

For a relative degree of γ, the minimal order of the model is γ. The augmented
regressor for the γ-order model is defined as,

φTγ(tk) =
[
−y

(0)
f (tk) −y

(1)
f (tk) . . . −y

(γ−1)
f (tk) u

(0)
f (tk) −y

(γ)
f (tk)

]
(6.17)

and the augmented regressor for order γ + 1 follows with,

φTγ+1(tk) =
[
φTγ(tk) u

(1)
f (tk) −y

(γ+1)
f (tk)

]
(6.18)

For any model order n > γ, the augmented regressor is defined as,

φTn (tk) = [−y
(0)
f (tk) − y

(1)
f (tk) . . . − y

(γ−1)
f (tk)u

(0)
f (tk) − y

(γ)
f (tk)

u
(1)
f (tk) − y

(γ)
f (tk) . . . − y

(n−1)
f (tk)u

(m)
f (tk) − y

(n)
f (tk)] (6.19)

which is, equivalently,

φTn (tk) =
[
φTn−1(tk) u

(m)
f (tk) −y

(n)
f (tk)

]
(6.20)

With this special arrangement of the regressor, the linear regression equation
(6.9) takes the new form

φTn (tk)θaug = −ξf(tk) (6.21)
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where the new, re-ordered and augmented parameter vector θaug is defined
by

θTaug =
[
an an−1 . . . an−γ+1 bm an−γ bm−1 . . . a1 b0 1

]

while the associated, augmented IV vector is defined as follows

φ̂
T

n (tk) = [−x̂
(0)
f (tk) − x̂

(1)
f (tk) . . . − x̂

(γ−1)
f (tk)u

(0)
f (tk) − x̂

(γ)
f (tk)

u
(1)
f (tk) − x̂

(γ)
f (tk) . . . − x̂

(n−1)
f (tk)u

(m)
f (tk) − x̂

(n)
f (tk)] (6.22)

The subscript ‘aug’ indicates that the parameter vector θaug contains unity
in its last element.

Remark 6.1. The discrete version of the structure shown in (6.21) corresponds
to the ‘shift structure’ in [2], where recursive algorithms are proposed for fast
calculation of gain matrices.

Remark 6.2. The relative degree problem in a continuous-time system model
is addressed here by first entering the regressor with the extra terms in y

(i)
f (tk),

i = 0, 1, . . . , n−m, which is equivalent to forcing zero into the leading coeffi-
cients of the numerator of the continuous-time transfer function.

6.3.2 Instrumental Variable Solution Using UDV Factorisation

Note that, with the special multiple-model arrangement of the data regressor
explained above, the combinations of the elements in the augmented regressor,
for a given model order n and relative degree γ, provide the information about
the candidate models for all possible orders. The next step in the development
of the order identification procedure is, therefore, to extract the information
for the instrumental variable estimates of the candidate models for all possible
orders that are less than n. This is achieved through UDV factorisation of the
augmented IPM defined by

P =
N∑

k=1

φ̂n(tk)φ
T
n (tk)

This computation is performed such that the estimation of lower-order models
does not affect the estimation of the higher-order models in the structure. The
following theorem summarises the results for IV estimation of the multiple-
model structure.

Theorem 6.1. Suppose that the IPM is decomposed into

P = UDV (6.23)

where U is a lower triangular matrix with unit diagonal elements, D is a
diagonal matrix and V is an upper triangular matrix with unit diagonal ele-
ments. Then for the model order k (k = γ,γ + 1,γ + 2, . . . , n), the following
statements are true
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• the IV solution θ̂k of the parameter estimation problem is given by the jth
column (above the diagonal) in V−1, where j = γ + 2 ∗ k.

• the residual error e(tk) for the kth model order is located at the jth (j =
γ + 2 ∗ k ) row of the vector

−φTn (tk)V−1

The results are illustrated in the following example, which can be extended
to a general case without any difficulty.

Example 6.1. In order to understand how the decomposition algorithm works,
let us consider a second-order system with a relative degree of unity, where
the operator model form is

G(p) =
b0p + b1

p2 + a1p + a2
(6.24)

The filtered augmented regressor and augmented IV vector are

φ2(t) =
[
−y0

f (t) u
(0)
f (t) −y

(1)
f (t) u

(1)
f (t) −y

(2)
f (t)

]T

φ̂2(t) =
[
−x̂

(0)
f (t) u

(0)
f (t) −x̂

(1)
f (t) u

(1)
f (t) −x̂

(2)
f (t)

]T

The IPM defined below is arranged into block matrices

P =
N∑

k=1

φ̂2(tk)φ
T
2 (tk)

=
[
A44 B41

C14 A5s

]
(6.25)

where

A44 =
N∑

k=1

⎡

⎢⎢⎢⎣

−x̂
(0)
f (tk)

u
(0)
f (tk)

−x̂
(1)
f (tk)

u
(1)
f (tk)

⎤

⎥⎥⎥⎦

[
−y

(0)
f (tk) u

(0)
f (tk) −y

(1)
f (tk) u

(1)
f (tk)

]
;

B41 =
N∑

k=1

⎡

⎢⎢⎢⎣

−x̂
(0)
f (tk)

u
(0)
f (tk)

−x̂
(1)
f (tk)

u
(1)
f (tk)

⎤

⎥⎥⎥⎦ (−y
(2)
f (tk));

A5s =
N∑

k=1

x̂
(2)
f (tk)y

(2)
f (tk);

C14 =
N∑

k=1

[
−y

(0)
f (tk) u

(0)
f (tk) −y

(1)
f (tk) u

(1)
f (tk)

]
(−x̂

(2)
f (tk))



170 L. Wang and P.C. Young

Note that the matrix A44 is a square matrix with dimensions of 4× 4, which
is essentially the IPM for a second-order model (in the single-model structure
case). A5s is a scalar, B41 and C14 are column and row vectors with dimen-
sions of 4 × 1 and 1 × 4 , respectively. We also assume that A44 is invertible,
so that it is identifiable for a second-order model. With these assumptions,
the following matrix equality is true

P = U5D5V5 (6.26)

=
[

I44 041

C14A−1
44 1

] [
A44 041

014 A44 − C14A−1
44 B41

] [
I44 A−1

44 B41

014 1

]
(6.27)

where I44 is the identity matrix with the same dimension as A44, while 014

and 041 are zero matrices with dimensions of 1 × 4 and 4 × 1, respectively.
Note from the definitions of A44 and B41 that the parameter vector for the
second-order model with relative degree one is described by

θ̂2 = −A−1
44 B41 =

[
â2 b̂1 â1 b̂0

]T
(6.28)

which are the negative elements above the diagonal of the 5th column of
the V5 matrix. This estimated parameter vector corresponds to the transfer
function model given by (6.24). It is easy to see that

V−1
5 =

[
I44 −A−1

44 B41

014 1

]

Therefore the last column above the diagonal on V−1
5 provides the estimates

for the second-order continuous-time model. Let us now proceed to the second
step of the decomposition with

A44 =
[
A33 B31

C13 A4s

]
(6.29)

where

A33 =
N∑

k=1

⎡

⎢⎣
−x̂

(0)
f (tk)

u
(0)
f (tk)

−x̂
(1)
f (tk)

⎤

⎥⎦
[
−y

(0)
f (tk) u

(0)
f (tk) −y

(1)
f (tk)

]
;

B31 =
N∑

k=1

⎡

⎢⎣
−x̂

(0)
f (tk)

u
(0)
f (tk)

−x̂
(1)
f (tk)

⎤

⎥⎦u
(1)
f (tk);

A4s =
N∑

k=1

u
(1)
f (tk)u

(1)
f (tk);

C13 =
N∑

k=1

[
−y

(0)
f (tk) u

(0)
f (tk) −y

(1)
f (tk)

]
u

(1)
f (tk)
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Assuming that A33 is invertible, we obtain the decomposition for A44 as

A44 =
[

I33 031

C13A−1
33 1

] [
A33 031

013 A33 − C13A−1
33 B31

] [
I33 A−1

33 B31

013 1

]
(6.30)

This stage of the decomposition does not yield a meaningful model because the
cross-correlation B31 contains u

(1)
f (tk) instead of −y

(2)
f (tk) as in the previous

stage. So we now move to the next stage of decomposition by letting

A33 =
[
A22 B21

C12 A3s

]
(6.31)

where

A22 =
N∑

k=1

[
−x̂

(0)
f (tk)

u
(0)
f (tk)

] [
−y

(0)
f (tk) u

(0)
f (tk)

]
;

B21 =
N∑

k=1

[
−x̂

(0)
f (tk)

u
(0)
f (tk)

]
(−y

(1)
f (tk));

A3s =
N∑

k=1

x̂
(1)
f (tk)y

(1)
f (tk);

C12 =
N∑

k=1

[
−y

(0)
f (tk) u

(0)
f (tk) −y

(1)
f (tk)

]
(−x̂

(1)
f (tk))

So, assuming that A22 is invertible, we obtain the decomposition for A33 as

A33 =
[

I22 021

C12A−1
22 1

] [
A22 021

012 A22 − C12A−1
22 B21

] [
I22 A−1

22 B21

012 1

]
(6.32)

Note that, from the definitions of A22 and B21, the estimated parameter
vector for the first-order model is described by

θ̂1 = −A−1
22 B21 =

[
â1 b̂1

]T
(6.33)

which corresponds to the first-order model

G(p) =
b1

p + a1

We can proceed to decompose A22, completing the decomposition as the IPM

P = U5U4U3U2DV2V3V4V5 = UDV (6.34)

where we have carefully numbered the Vk matrix as the up-diagonal 5 × 5
matrix containing non-zero elements on the kth column, with the unit element
being on the diagonal and zero for the rest of the elements. Note that
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V−1 = (V2V3V4V5)−1 = V−1
5 V−1

4 V−1
3 V−1

2

It is easy to verify that, given the structure of each matrix, V−1
5 V−1

4 V−1
3 V−1

2

preserves the original elements on the kth column of V−1
k . By combining the

decomposition results stated previously, therefore, the parameter vector for
the second-order model sits at the 5th column of V −1 above the diagonal; and
the parameter vector for the first-order model sits at the 3rd column of V −1

above the diagonal.
Once we establish the estimated multiple model parameter vectors, by noting
that the diagonal elements for the V−1 matrix are unity, it is easy to see
that the residual error e1(tk) for the first-order model is located at the 3rd
(j = γ + 2 ∗ k = 1 + 2 ) row of the vector −φT (tk)V−1; while e2(tk) for the
second-order model is located at the 5th row of the vector −φT (tk)V−1.

6.3.3 Computational Procedure

In the derivation of the relationships in the previous section, the backward
decomposition approach was used, where the invertibility of the IPM for each
single-model structure was assumed. However, direct inversion can be avoided
by using the alternative forward decomposition approach, which involves only
a scalar division. This computation is nested, so that the division of later
elements does not affect the previous elements in the V matrix. In this manner,
the computation can be stopped at an arbitrary order. Also, in terms of the
multiple-model structure, the higher-order estimation does not affect the lower
order estimation. Consequently, a mechanism is introduced for detecting when
the diagonal elements of D become near singular, and this is used to stop
further decomposition of the data matrix.
The computation of UDV factorisation, which is straightforward and robust,
is illustrated by the following example.

Example 6.2. Consider the matrix

X =

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦ (6.35)

The forward UDV factorisation approach begins with the first element of the
matrix. Then moving top-down

Step 1. Taking A11 = a11,

A22 =
[
a22 a23

a32 a33

]
;C =

[
a21

a31

]
;B =

[
a12 a13

]

Applying the matrix decomposition equality, we have

X =

⎡

⎣
1 0 0

u21 1 0
u31 0 1

⎤

⎦

⎡

⎣
a11 0 0
0 d11 d12

0 d21 d22

⎤

⎦

⎡

⎣
1 v12 v13

0 1 0
0 0 1

⎤

⎦ (6.36)
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where we assume that a11 �= 0,
[
u21

u31

]
=
[ a21
a11
a31
a11

]
;
[
v12 v13

]
=
[ a12
a11

a13
a11

]

[
d11 d12

d21 d22

]
=A22 −

[
a21

a31

] [
a12 a13

]
/a11

Step 2. This concentrates on decomposing the matrix

X̄ =

⎡

⎣
a11 0 0
0 d11 d12

0 d21 d22

⎤

⎦ (6.37)

By letting

A11 =
[
a11 0
0 d11

]
;A22 = d22;B =

[
0

d12

]
;C =

[
0 d21

]

we produce

X =

⎡

⎣
1 0 0
0 1 0
0 d21
d11

1

⎤

⎦

⎡

⎣
a11 0 0
0 d11 0
0 d21 d22 − d21d12

d11

⎤

⎦

⎡

⎣
1 0 0
0 1 d12

d11
0 0 1

⎤

⎦

Note that ⎡

⎣
1 0 0

u21 1 0
u31

d21
d11

1

⎤

⎦ =

⎡

⎣
1 0 0

u21 1 0
u31 0 1

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 d21
d11

1

⎤

⎦

which is also true for the V matrix.
One key point should be noted here: the decomposition is constructed in such
a way that the decomposed elements in the earlier columns and rows are not
affected by the computation introduced in the later columns and rows. This
is, of course, important in the multiple-model structure approach, where the
model estimated from higher-order should not affect the estimated lower-order
models.
If X is symmetric and positive-definite, then U = VT , and the diagonal
elements in D are positive. However, in the case of IV estimation, the IPM
(here X) is not necessarily symmetric, and as a result, some diagonal elements
in D could become negative. As the procedure demonstrates, however, the
later decomposition involves only the division of a diagonal element from the
previous operation. Consequently, the inaccuracy caused by the singularity
or near singularity of the IPM at a higher order does not affect the lower-
order estimated model, and the model order can be safely truncated without
re-computing the whole set of of candidate models.
To facilitate the further application of this method, the script of the
MATLAB� m-file for the UDV factorisation, based on the above decomposi-
tion procedure, is shown below.
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function [U,D,V]=UDV_f(A)
%UDV factorisation of a matrix A
[n,m]=size(A);
D=zeros(n,n);
D(1,1)=A(1,1);
J=A;
[U,V,J]=UDV_de(J); %function is included in the following
D(2,2)=J(1,1);
U_mat(:,1)=U;
V_mat(:,1)=V;
for kk=2:n;

[U,V,J]=UDV_de(J);
U_mat=[U_mat [zeros(kk-1,1);U]];
V_mat=[V_mat [zeros(kk-1,1);V]];
if kk<n

D(kk+1,kk+1)=J(1,1);
end

end
U=U_mat;
V=V_mat’;

function [U,V,J]=UDV_de(J);
%J is the submatrix to be decomposed

[n,m]=size(J);
U=J(:,1)/J(1,1);
Jt=J’;
V=Jt(:,1)/J(1,1);
J=J(2:n,2:n)-U(2:n,1)*V(2:n,1)’*J(1,1);

6.4 Model Structure Selection Using PRESS

Cross-validation is one way of assessing the quality of an estimated model. In
the simplest situation, the N sample experimental data set is separated into
an estimation set of M samples and a validation set of N − M samples. The
estimation data set is used for estimating the parameters of the model; while
the remaining validation data set provides the basis for testing its predictive
capability. In the present context, the prediction error set is generated by
calculating, for k = M + 1,M + 2, . . . , N ,

ŷ(tk) = φT (tk)θ̂
ep(tk) = y(tk) − ŷ(tk) (6.38)

The error ep(tk) can be considered as the true prediction error because the
noise disturbances in the estimation set are independent of those in the valida-
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tion set. Consequently, the sum of squared prediction errors
∑N
k=M+1 e2

p(tk)
can be used for determining the quality of the estimated model.
More complex cross-validation procedures involve separation of the observa-
tional data into several sets. Then, each time, one set of data is left out for
model validation and the rest of the sets are used for parameter estimation,
with the prediction errors computed for the omitted set. This procedure is
repeated for all the validation sets in order to obtain the prediction errors.
The limit of this practice is the so-called ‘leave-one-out’ validation procedure,
where the prediction error is defined for the case of estimating a continuous-
time model with prefiltering as

e−tm(tm) = y
(n)
f (tm) −ϕT (tm)θ̂−tm (6.39)

in which ϕ(tm) is the data regressor and defined as

ϕT (tm) = [−y
(n−1)
f (tm) . . . − y

(0)
f (tm) u

(m)
f (tm) . . . u

(0)
f (tm)]

and, in the present context, θ̂−tm is the IV estimate of θ without the infor-
mation ϕ̂(tm), ϕ(tm) and y

(n)
f (tm). Mathematically, θ̂−tm is computed as

θ̂−tm = [
N∑

k=1

ϕ̂(tk)ϕT (tk)−ϕ̂(tm)ϕT (tm)]−1
N∑

k=1

ϕ̂(tk)y
(n)
f (tk)−ϕ̂(tm)y(n)

f (tm)

(6.40)
The sum of the squared prediction errors e−tm(.) is called the predicted resid-
ual sums of squares (PRESS) and is defined as follows

PRESS =
N∑

k=1

e2
−tk(tk) (6.41)

This is a computationally demanding task when the PRESS statistic is com-
puted from its original form. However, it was shown in [9] that, when a least
squares algorithm is used, PRESS can be computed using a rather simple
formula. Fortunately, this approach can be extended to the case where the
parameter vector θ̂ is estimated using the IV approach [9, 10] and it can be
used for both continuous and discrete-time model identification.
To avoid confusion, we will first discuss the computation of PRESS for a basic
IV algorithm, and then extend the results to the multiple-model structure with
UDV factorisation.

Theorem 6.2. The prediction error is computed via the following equation

e−tm(tm) =
y
(n)
f (tm) −ϕT (tm)θ̂

1 −ϕT (tm)(
∑N
k=1 ϕ̂(tk)ϕT (tk))−1ϕ̂(tm)

(6.42)

where,
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θ̂ =

[
N∑

k=1

ϕ̂(tk)ϕ(tk)T
]−1 N∑

k=1

ϕ̂(tk)y
(n)
f (tk)

is the IV estimated parameter vector.

Remark 6.3. The key point is that the leave-one-out prediction error is pro-
duced by the standard residual from the IV estimation, multiplied by a weight-
ing function defined as

1

1 −ϕT (tm)(
∑N

k=1 ϕ̂(tk)ϕT (tk))−1ϕ̂(tm)

This formulae makes the computation simple and straightforward.

Proof: Let A be a non-singular matrix. Let α and β be column matrices, and
assume that A+αβT is non-singular. Then, the well-known matrix inversion
lemma states that

(A +αβT )−1 = A−1 − A−1αβTA−1

1 + βTA−1α

From this, we have

[
N∑

k=1

ϕ̂(tk)ϕT (tk) − ϕ̂(tm)ϕ(tm)T
]−1

=
N∑

k=1

ϕ̂(tk)ϕT (tk)

+
(
∑N
k=1 ϕ̂(tk)ϕT (tk))−1ϕ̂(tm)ϕT (tm)(

∑N
k=1 ϕ̂(tk)ϕT (tk))−1

1 −ϕT (tm)(
∑N
k=1 ϕ̂(tk)ϕT (tk))−1ϕ̂(tm)

(6.43)

Then, from the definition of θ̂−tm by (6.40) in conjunction with (6.43), we
have

θ̂−tm = [
N∑

k=1

ϕ̂(tk)ϕ(tk)T

+
(
∑N
k=1 ϕ̂(tk)ϕT (tk))−1ϕ̂(tm)ϕT (tm)(

∑N
k=1 ϕ̂(tk)ϕT (tk))−1

1 −ϕT (tm)(
∑N
k=1 ϕ̂(tk)ϕT (tk))−1ϕ̂(tm)

]

× [
N∑

k=1

ϕ̂(tk)y
(n)
f (tk) − ϕ̂(tm)y(n)

f (tm)] (6.44)

Although, at first sight, (6.44) looks complicated, simple algebraic manipula-
tion produces two basic terms
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θ̂−tm = [θ̂ +
(
∑N
k=1 ϕ̂(tk)ϕT (tk))−1ϕ̂(tm)ϕT (tm)θ̂

1 −ϕT (tm)(
∑N
k=1 ϕ̂(tk)ϕT (tk))−1ϕ̂(tm)

]

− [I +
(
∑N
k=1 ϕ̂(tk)ϕT (tk))−1ϕ̂(tm)ϕT (tm)

1 −ϕT (tm)(
∑N

k=1 ϕ̂(tk)ϕT (tk))−1ϕ̂(tm)
]

[(
N∑

k=1

ϕ̂(tk)ϕT (tk))−1ϕ̂(tm)y(n)
f (tm)] (6.45)

where θ̂ = (
∑N
k=1 ϕ̂(tk)ϕT (tk))−1

∑N
k=1 ϕ̂(tk)y

(n)
f (tk) is the IV estimated pa-

rameter vector and I is the identity matrix of dimension equal to that of the
IPM.
On the basis of this estimated θ̂−tm , the predicted output of the model at
time tm is

y−tm(tm) = ϕT (tm)θ̂−tm (6.46)

Substituting (6.45) into (6.46) yields

y−tm(tm) =
ϕT (tm)θ̂ −ϕT (tm)(

∑N
k=1 ϕ̂(tk)ϕT (tk))−1ϕ̂(tm)ynf (tm)

1 −ϕT (tm)(
∑N

k=1 ϕ̂(tk)ϕT (tk))−1ϕ̂(tm)
(6.47)

Now, the prediction error at time tm is

e−tm(tm) = y
(n)
f (tm) − y−tm(tm) (6.48)

and the prediction error specified by (6.42) is obtained by substitution from
(6.47).
The results presented in Theorem 6.2 are derived for a general IV estimation
algorithm. In this general framework and given a specific model structure, we
estimate θ̂, and then evaluate the prediction error e−tm(tm) using (6.42) for
tm = 0, t1, t2, . . . , Tm. However, when the multiple-model structure is used in
conjunction with UDV matrix decomposition, it is possible to further simplify
the computation and obtain the weights for the computation of PRESS for
all candidate models.
In order to explain this approach, let us first examine the structure of the
augmented data regressor φn(tk) in (6.19) for a maximum model order of n.
This regressor contains all the elements required for a family of regressors up
to the maximum model order. For instance, by blocking out the augmented
−y

(n)
f (tk), then we have the regressor for model order n. Therefore, we can

construct the weight in the prediction error for all candidate models from the
augmented data regressors (e.g., φn(tk) and φ̂n(tk)).
Note that for a given maximum model order n, we can write

φTn (tm)(
N∑

k=1

φ̂n(tk)φ
T
n (tk))−1φ̂n(tm)

= φn(tm)TV−1D−1U−1φ̂n(tm) (6.49)
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where
∑N
k=1 φ̂n(tk)φn(tk)

T = UDV.
Now, if we define two transformed data vectors as

wφ(tm)T = φn(tm)TV−1;wψ(tm) = U−1φ̂n(tm)

then we have

φn(tm)TV−1D−1U−1φ̂n(tm) = wφ(tm)TD−1wψ(tm)

=
nm∑

k=1

wφ(tm)kwψ(tm)k

dk
(6.50)

where nm is the dimension of the augmented data vector, wφ(tm)k is the
kth element in the vector wφ(tm), wψ(tm)k is the kth element in the vector
wψ(tm) and dk is the kth diagonal element in the D matrix. Since U−1 and
V−1 matrices are lower and upper triangular matrices and the decomposition
is performed with the lower-order structure first, the elements in the trans-
formed data vectors are preserved with respect to the orders in the original
regressors. In other words, the truncations of wφ(tm) and wψ(tm) will lead
to the transformed vectors for a lower-order structure. Therefore, for a given
model order, the quantity for the weight of the error equation is a truncated
sum of (6.50). For instance, given a maximum model order n and a relative
model order 1, the weight for the prediction error is as follows

First order
wφ(tm)1wψ(tm)1

d1
+
wφ(tm)2wψ(tm)2

d2

Second order

wφ(tm)1wψ(tm)1

d1
+
wφ(tm)2wψ(tm)2

d2
+
wφ(tm)3wψ(tm)3

d3
+
wφ(tm)4wψ(tm)4

d4

It is quite easy to use MATLAB� to compute the PRESS statistic in conjunc-
tion with the UDV decomposition, as shown by the MATLAB� code below.

A=Z*Phi’; %generate the cross-correlation matrix
[U,D,V]=UDV_f(A); %UDV factorisation of A matrix;
%calculating PRESS for all possible model structures
%the residual errors are obtained Phi’*inv(V) as inv(V) is
%structured to contain estimated parameter vector with unit
%diagonal element via instrumental variable
Vinv=inv(V);
E=-Phi’*Vinv; %the error for all decomposition
W_left=Phi’*inv(V); %Phi is a flat matrix
W_right1=inv(U)*Z; %Z is a flat matrix
W_right=W_right1’; % W_right to be a tall matrix
[nr,nc]=size(W_left);
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h=zeros(nr,1);
one=ones(nr,1);
%calculation of PRESS begins here
for i=2:nc

% calculate prediction error
% h is the inflation matrix
% epress is the press error

h=h+W_left(:,i-1).*W_right(:,i-1)/D(i-1,i-1);
epress(:,i)=E(:,i)./(one-h);

end

loss=diag(epress’*epress); %this is the PRESS
%for all possible models

6.5 Simulation Studies

Consider the continuous-time system with Laplace transfer function

G(s) =
0.25(s + 1)

(s2 + 2 × 0.1 × 0.5s + 0.52)(s + 0.1)(s + 0.6)
(6.51)

where s denotes the Laplace variable. For the purposes of the simulation study,
the input is selected as a PRBS signal of unit amplitude with a switching
period of 15 samples. The input and noise free output signals are sampled at
a uniform sampling interval of 0.1 time units, over a period of 600 time units.
Additive measurement noise, in the form of a normally distributed, discrete-
time white noise sequence, with a standard deviation of 1.4, is added to the
sampled, noise-free output signal x(tk) to yield the noisy, measured output
signal y(tk).
In order to assist in the application of the multiple-model identification strat-
egy, let us first consider the results obtained with the standard identifica-
tion approach for optimal RIVC/SRIVC estimation, as described in Chapter
4 of this book. With the help of the RIVCID identification routine in the
CAPTAIN Toolbox, the SRIVC algorithm (which is optimal in the above
experimental situation) is used to estimate all models from first to sixth or-
der. However, models greater than 4th order are all rejected by RIVCID as
unidentifiable because of the ill-conditioning of the IPM (correctly rejected,
of course: this is one of the primary objectives of the RIVCID identification
routine). The identification results for the 4 best identified models are given
in Table 6.1.
In Table 6.1, R2

T is the simulation coefficient of determination defined by,

R2
T = 1 − σ̂2

σ2
y

(6.52)
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Table 6.1. SRIVC identification results

Model YIC R2
T

4 1 0 –12.5 0.986
4 2 0 –9.3 0.986
4 3 0 –5.9 0.986
3 4 0 –9.3 0.985

where σ̂2 is the variance of the error between the simulated model output
and the measured output; while σ2

y is the variance of the noisy output signal.
YIC is a model order information criterion, based on the inverse of the IPM
(see [47] and Chapter 4 of this book), where more negative values indicate
models with good conditioning of the IPM and the low average parametric
estimation uncertainty. On this basis, the [4 1 0] model appears best identified;
while the true [4 2 0] model is next best but it has a marginally larger R2

T .
Both of these models yield step response characteristics that are virtually
indistinguishable from the actual system step response. However, while the
Bode diagram for the [4 2 0] model is virtually the same as the actual system
Bode diagram, that for the [4 1 0] model diverges somewhat at the highest
frequencies. The SRIVC parameter estimates obtained for the [4 2 0] model
are given in Table 2, where SE denotes the estimated standard errors on the
parameter estimates.
In order to demonstrate the procedure of UDV factorisation and model struc-
ture selection using PRESS, we consider the case when the instrumental vari-
able is selected as the simulated, noise-free output of the SRIVC estimated
[4 2 0] model, above5; and the state-variable filter is the denominator of the
same estimated model, with 2 added roots at s+10 to increase it to 6th order,
as required if we wish to evaluate all models up to 6th order.
In order to demonstrate that the higher-order model estimates do not affect
the lower-order model estimates, the maximum model order is selected equal
to 5 and 6, respectively, assuming the correct relative degree of 3. The esti-
mation results are illustrated below for the corresponding columns of V−1.

5 Very similar results are obtained if the SRIVC estimated [4 1 0] model is used,
rather than the [4 2 0] model.
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Table 6.2. SRIVC estimation results

Model a1 a2 a3 a4 b0 b1

True 0.8000 0.3800 0.1810 0.0150 0.2500 1.0000
Estimated 0.7890 0.3775 0.1778 0.0148 0.2668 0.9854

SE 0.0142 0.0029 0.0036 0.0003 0.0184 0.0196

nmax = 5 (third-, fourth- and fifth-order model parameters)

0.0208 0.0156 -0.0153
0.2484 0.1886 -0.1524
0.1954 0.3876 0.0013
0.3601 0.2613 -0.2573
1.0000 0.8324 -0.2812

0 0.2565 0.2817
0 1.0000 0.5943
0 0 0.1349
0 0 1.0000

nmax = 6 (third-, fourth-, fifth- and sixth-order model parameters)

0.0208 0.0156 -0.0153 0.0062
0.2484 0.1886 -0.1524 0.1975
0.1954 0.3876 0.0013 1.5731
0.3601 0.2613 -0.2573 0.1013
1.0000 0.8324 -0.2812 2.1437

0 0.2565 0.2817 2.1826
0 1.0000 0.5943 6.4232
0 0 0.1349 0.2456
0 0 1.0000 3.1008
0 0 0 0.8283
0 0 0 1.0000

The elements on the diagonal of the D matrix are given below for nmax = 6.

1.3118e+4 631.2602 96.8180 26.3013 0.0481 0.4863
1.9957e-6 0.0081 -7.9386e-8 1.2535e-5 2.9247e-8

It can be seen that the 7th element on the diagonal of D (= 1.9957e − 6)
is small, corresponding to the correct, 4th-order model. If the estimation is
continued, the 5th-order model is obtained. However, this is unstable, as in-
dicated by the negative sign of some coefficients. In fact, further inspection
shows that this estimated model exhibits a near cancellation of an unstable
pole at 0.6162 with a zero at 0.6872. The good news is that the poor esti-
mation results for the 5th and 6th model orders did not affect the estimation
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Fig. 6.2. PRESS values for the 100 noise realisations with correct relative degree
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Fig. 6.4. The estimated step responses for the 100 noise realisations with correct
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Fig. 6.6. The estimated frequency responses for the 100 noise realisations with
incorrect relative degree

results for the 3rd- and 4th-order models. Thus, we can utilise the estimation
results from the lower-order estimated models.
In order to illustrate how PRESS can be used to detect the model order, a
Monte Carlo simulation is utilised, based on 100 independent realisations of
the measurement noise, under the assumption that the maximum model order
is 6, with a relative degree of 3. Figure 6.2 shows the PRESS values for all
the realisations and we see that the correct order is identified in all cases.
Figures 6.3 and 6.4 show the amplitude plots and step response plots for all
these PRESS-selected models.
In order to examine what happens if the relative degree is selected incorrectly,
we let γ = 1, which gives the model an extra degree of freedom in the numera-
tor. The same kind of Monte Carlo simulation experiment as that used above
yields Figure 6.5, which shows the resulting PRESS values. The identification
is not as clear cut as when the relative degree is correctly specified, but the
values differ very little between 3rd- and 4th-order models for the majority of
the cases.
It is clear that, because of the mismatch in the relative degree, the best model
order is selected according to the minimum PRESS, which measures the pre-
dictive capability of the model. Figures 6.6 and 6.7 show the frequency re-
sponse amplitude and temporal step response plots for all the PRESS-selected
models. These show that, in general, despite the mismatch of the relative de-
gree, the estimation results are good. There is only one case where an unstable
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Fig. 6.7. The estimated step responses for the 100 noise realisations with incorrect
relative degree

model is selected as seen from Figure 6.6. However, the estimated frequency
response is worse in the high-frequency region when compared with the results
obtained when the correct relative degree is selected.
It seems that, in this example, there is a compromise between relative degree
and model order in this mismatch situation. If the relative degree γ is too low,
which means that there are more degrees of freedom for the numerator, then
the identified model order is lower than the actual model order. However, if
the proposed UDV factorisation/PRESS approach is utilised in association
with the standard RIVC/SRIVC identification procedure, as we have done
in this example, this deficiency would normally be avoided. In the present
example, for instance, the SRIVC identification suggests strongly that the
relative degree is 3 or 4.

6.6 Conclusions

This chapter has described a new instrumental variable model structure iden-
tification procedure for continuous-time models based on the exploitation of a
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multiple-model structure, UDV matrix factorisation and the PRESS statistic.
By assuming a relative degree and maximum model order, a set of candidate
continuous-time transfer function models is estimated using UDV matrix de-
composition, where the models are estimated sequentially from lower order
to higher order. In this procedure, the computation of the prediction error is
simplified when using the UDV decomposition algorithm, so that the com-
putational requirements are reasonable. In addition, the leave-one-out cross-
validation procedure, as used previously in simple least squares estimation of
discrete-time models, is extended to the instrumental variable estimation of
continuous-time models.
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8. P. Stoica, T. Söderström, and B. Friedlander. Optimal instrumental estimates
of the AR-parameters of an ARMA process. IEEE Transactions on Automatic
Control, 30:1066–1074, 1985.

9. L. Wang and W.R. Cluett. Use of PRESS residuals in dynamic system identi-
fication. Automatica, 32:781–784, 1996.

10. L. Wang and W.R. Cluett. From Plant Data to Process Control: Ideas for
Process Identification and PID Design. Taylor and Francis, London, 2000.

11. L. Wang and P.J. Gawthrop. On the estimation of continuous time transfer
functions. International Journal of Control, 74:889–904, 2001.

12. P.E. Wellstead. An instrument product moment test for model order estimation.
Automatica, 14:89–91, 1978.

13. P.E. Wellstead and R.A. Rojas. Instrumental product model order testing:
extensions and applications. International Journal of Control, 35:1013–1027,
1982.

14. K.Y. Wong and E. Polak. Identification of linear discrete time system using
the instrumental variable approach. IEEE Transactions on Automatic Control,
12:707–718, 1967.

15. P.C. Young. In flight dynamic checkout - a discussion. IEEE Transactions on
Aerospace, AS-2(3):1106–1111, 1964.



6 Model Order Identification for Continuous-time Models 187

16. P.C. Young. Some observations on instrumental variable methods of time series
analysis. International Journal of Control, 23:593–612, 1976.

17. P.C. Young. Parameter estimation for continuous-time models - a survey. Au-
tomatica, 17(1):23–39, 1981.

18. P.C. Young. Recursive Estimation and Time Series Analysis. Springer-Verlag,
Berlin, 1984.

19. P.C. Young. Recursive estimation, forecasting and adaptive control. In
C.T. Leondes (ed), Control and Dynamic Systems, pages 119–166, Academic
Press: San Diego, 1989.

20. P.C. Young and A.J. Jakeman. Refined instrumental variable methods of recur-
sive time-series analysis: Part I: single input and single output systems. Inter-
national Journal of Control, 29:1–30, 1979.

21. P.C. Young and A.J. Jakeman. Refined instrumental variable methods of time-
series analysis: Part III, extensions. International Journal of Control, 31:741–
764, 1980.

22. P.C. Young, A.J. Jakeman, and R. McMurtrie. An instrumental variable method
for model order identification. Automatica, 16:281–296, 1980.



7

Estimation of the Parameters of
Continuous-time Systems Using Data
Compression

Liuping Wang1 and Peter J. Gawthrop2

1 RMIT University, Melbourne, Australia
2 University of Glasgow, Scotland

7.1 Introduction

This chapter provides a unified introductory account of the estimation of the
parameters of continuous-time systems using data compression based on a
number of previous publications [17,18,28,30–32].
The outline of the chapter is indicated in Figure 7.1. In particular, the core
of our approach is the frequency-sampling filter (FSF) of Wang and Cluett
[28,30] where time- or frequency-domain data – within a predefined bandwidth
– are represented as a set of (complex) filter coefficients; this can be viewed
as a form of identification-orientated data compression.
The FSF coefficients are used to derive a system step response that is used in
one of two ways:

1. to generate the parameters of a transfer function;
2. to optimise the parameters of a physical model represented by a bond

graph [16].

The methods will be described, analysed and also illustrated using data from
a real example.

7.2 Data Compression Using Frequency-sampling Filters

This section will describe the data-compression process using frequency-
sampling filters (FSF). The original work on system identification using FSF
was oriented for discrete-time system identification of step-response coeffi-
cients used for industrial process control in the 1990s [28, 30] at the Uni-
versity of Toronto where the first author worked during that period. Recent
years have seen the FSF model being used as an effective part of the vehicle
designed for continuous-time system identification [17,18,31,32]. The connec-
tion between continuous-time and discrete-time identification is the fact that
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ModelSystem

Data compression
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Physical parameter estimation
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Fig. 7.1. Identification overview. Stage 1 identifies FSF parameters from either
time or frequency data; stage two uses this compressed data to estimate either an
empirical transfer function or the parameters of a physical model.

the estimated step-response coefficients in the discrete case correspond to the
continuous-time step response at the sampling time instant, i.e., the scenario
of step-response invariance. In addition, the discrete frequency response can
also be used to approximate the continuous-time frequency response when the
sampling rate is chosen to be sufficiently fast. Based on these observations, we
can estimate the discrete-time step-response coefficients or frequency response
using the FSF model, which effectively compressed the original experimental
data set to a set of estimated step-response coefficients. The reasons why we
choose FSF model in the compression process are: (1) its simplicity and ro-
bustness in the estimation process; (2) relatively small number of parameters
required to be estimated in the environment of fast sampling; (3) a priori
knowledge can be incorporated in the compression process to improve the
accuracy of the compressed model.

7.2.1 FSF Model

Let us start with a single input and single output system, and extend the
model to multi-input and multi-output system. Assume a stable discrete-time
system with a sampling interval of Ts. This system can be described by the
finite impulse response (FIR) model

G(z) =
N−1∑

j=0

hjz
−j (7.1)

where N is the model order chosen such that the impulse response coefficients
hj ≈ 0 for all j ≥ N . Note that in the FIR model (7.1), the number of coeffi-
cients is determined by the settling time (let us call it Tm) of the underlying
continuous-time system as well as the sampling interval we use. The general
rule is to choose N ≈ Tm

Ts
. In the context of continuous-time system identifica-

tion, Ts is set to be sufficiently small so that the discrete-time process closely
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mimics the underlying continuous-time system. In other words, the model or-
der N linearly increases as the sampling interval Ts decreases. We typically
choose N in the range of 400− 800 for a near-continuous-time system. There
are two related issues. One is the computational load; and the other is the
quality of the model. Instead, the FSF model is introduced to preserve the
original advantages of an FIR model, yet overcome the difficulties encountered
by an FIR in the fast sampling environment, through a linear transformation.
The essence here is to capture the coefficients in the frequency domain, instead
of the time domain. Let us assume that N is an odd number, and the set of
the discrete-time frequency response is G(ei 2πj

N ) for j = 0,±1,±2, . . . ,±N−1
2 .

Odd number N is selected to ensure that we include the zero frequency and
the rest of the frequencies appear in complex-conjugate pairs. Then, from
the inverse discrete Fourier transform (IDFT) relationship, we have the jth
impulse response coefficient

hj =
1
N

N−1
2∑

l=−N−1
2

G(ei 2πl
N )ei 2πlj

N (7.2)

Substituting (7.2) into (7.1) gives

G(z) =
N−1∑

j=0

1
N

N−1
2∑

l=−N−1
2

G(ei 2πl
N )ei 2πlj

N z−j (7.3)

=

N−1
2∑

l=−N−1
2

G(ei 2πl
N )

1
N

1 − z−N

1 − ei 2πl
N z−1

(7.4)

where (7.4) is obtained by interchanging the summations in (7.3) and using
the result

N−1∑

j=0

ei 2πlj
N z−j =

1 − z−N

1 − ei 2πl
N z−1

(7.5)

The z-transfer function model defined by (7.4) is called the frequency-sampling
filter model. Through linear transformation from the FIR model, the coeffi-
cients of the FSF model are the set of discrete frequency responses in an
interval of 2π

N . Let us define Ω = 2π
N and

Hl(z) =
1
N

1 − z−N

1 − eilΩz−1
(7.6)

for l = 0,±1,±2, . . . ,±N−1
2 , as the frequency-sampling filters. At z = eilΩ ,

H l(z) = 1. The FSF filters are narrow-band limited, with their centre frequen-
cies located at 2πl

N radians. All the filters have identical frequency responses
except for the locations of their centre frequencies. As the parameter N in-
creases, the bandwidth of the filters reduces and tends to behave more like a
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δ function. Namely, at Ωl = 2πl
N , the filter magnitudes are equal to one and

are small or equal to zero at all other frequencies.

7.2.2 FSF Model in Data Compression

It is easy to understand that the parameters for a model that is based on time-
domain descriptions such as FIR will increase linearly as Ts reduces. With the
rational z-transfer function models, it was shown in [1] that a continuous-time
process with zeros in the left half-plane will often give rise to a discrete-time
model having zeros outside the unit circle as the sampling period tends to
zero. In addition, the poles of the discrete-time model will tend to the unit
circle. For these reasons, the main approach for identification of fast sampled
systemsss has been based on continuous-time transfer function models using
either state-variable filter or approximation of derivatives (see for example,
Chapters 1–3 in this book). It is worthwhile to point out that the estimation
of a transfer function model requires a priori knowledge about the underlying
system as well as an algorithm with a higher complexity.
In the first instance, it is beneficial for the experimental data to be treated
with filtering to remove the disturbance and compressed into a set of data
that contains the vital information about the dynamics of the system. This is
particularly useful if a non-linear optimisation is to be used in the derivation of
the final model, which is often the case where a physical model is desired. What
makes the FSF model a better candidate for its use in data compression is its
distinct property with respect to sampling rate and its parameter distribution
over the frequency range. This property is summarised below.

Theorem 7.1. Say that the underlying continuous-time system has a Laplace
transfer function Gc(s), and its continuous-time impulse response hc(t) has a
finite settling time Tm such that for t ≥ Tm, hc(t) ≈ 0. We set the parameter
N in the FSF model given by (7.4) as N = Tm

Ts
for a given sampling interval

Ts > 0. Then, as Ts → 0, the lth parameter of the FSF model, G(ei 2πl
N ),

converges to Gc(jwl) at wl = 2πl
Tm

radians/time.

The proof of this theorem is based on the relationship between continuous-
time and discrete-time Fourier transforms of a stable dynamic system (see [30]
for details). This result indicates that the parameters of the FSF model in
the low- and median-frequency range are relatively invariant with respect to
sampling interval Ts, when Ts is sufficiently small. The key here is to look
at the set of FSF model parameters corresponding to the continuous-time
system frequency response evaluated at w = 0, 2π

Tm
, . . . , πTs

for a fixed value
of Tm. As Tm is the settling time for the underlying continuous-time system
independent of the sampling interval Ts, as Ts reduces, N ≈ Tm

Ts
increases.

However, with this selection of N , the additional parameters to the FSF model
when reducing sampling interval Ts are all in the higher-frequency region.
What we try to do is to take advantage of the frequency distribution of the FSF
parameters in the data-compression process. Assuming that the underlying



7 Estimation Using Data Compression 193

continuous-time system has a relative degree greater than 1 (i.e., the order of
the denominator is greater than the order of the numerator), the magnitude
of the continuous-time frequency response |Gc(iw)| → 0 as ω → ∞. This
translates to the fact that for this class of systems, there is an odd number
n > 0, such that for all k > n, |Gc(i2πkTm

)| ≈ 0. In the environment of fast

sampling (or a sufficiently small Ts), the FSF model parameter |G(ei 2πk
N )| ≈ 0

for n−1
2 < k ≤ N−1

2 (counting on the complex conjugate pairs of frequency
response). n becomes independent of the choice of sampling interval Ts for
a sufficiently small Ts. Under the assumption of relative degree and stable
system, the original FSF model can be reduced to

G(z) =

n−1
2∑

l=−n−1
2

G(eilΩ)H l(z) (7.7)

where n is an odd number, and 1+ n−1
2 is the number of frequencies included

in the frequency-sampling filter model. Note that with the assumption of n
being an odd number, N can be either an odd or an even number.
Equation (7.7) can also be written in terms of real and imaginary parts of the
discrete frequency response G(eilΩ) [4] as

G(z) =
1
N

1 − z−N

1 − z−1
G(ei0)+

n−1
2∑

l=1

[Re(G(eilΩ))F l
R(z)+Im(G(eilΩ))F l

I(z)] (7.8)

where F l
R(z) and F l

I(z) are the lth second-order filters given by

F l
R(z) =

1
N

2(1 − cos(lΩ)z−1)(1 − z−N )
1 − 2cos(lΩ)z−1 + z−2

F l
I(z) =

1
N

2sin(lΩ)z−1(1 − z−N )
1 − 2cos(lΩ)z−1 + z−2

The parameters in the FSF model lead to other information about the un-
derlying system. In particular, the discrete step-response coefficient gm at the
sample instant m is in a linear relation to the discrete-frequency parameters

gm = Q(m)Tθ (7.9)

where

Q(m) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

m+1
N

2Re(S(1,m))
2Im(S(1,m))

...
2Re(S(n−1

2 ,m))
2Im(S(n−1

2 ,m))

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

;θ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

G(ei0)
Re(G(eiΩ))
Im(G(eiΩ))

...
Re(G(ei n−1

2 Ω))
Im(G(ei n−1

2 Ω))

⎤

⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 7.2. Frequency sampling filters: N = 50, n = 9, n−1
2

= 4, Tm = 5 s,
Fs = 0.2 Hz and fc = 0.8 Hz

and S(l,m) = 1
N

1−eilΩ(m+1)

1−eilΩ
, for l = 1, 2, . . . , n−1

2 .
To further understand the idea of FSF model, we also express the frequency
sample interval in Hz, which is Fs = 1

Tm
, and the cut-off frequency fc in Hz,

where
fc =

n − 1
2

Fs =
n − 1
2Tm

(7.10)

Figure 7.2 shows the graphic illustration of the frequency response, pole lo-
cation and time response of a set of FSF filters. Figure 7.2(a) shows the
superimposed frequency responses of |H̄k(z)| for 0 ≤ k ≤ 4 when Tm = 5
(implying Fs = 0.2) for a frequency range 0 ≤ ω ≤ 10. The symbol ‘×’ marks
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the frequency samples that coincide with the peaks of the FSFs. Figure 7.2(b)
shows N = 50 potential FSF poles (marked by ‘+’) equispaced around the
unit circle and the n = 9 actual FSF poles (marked by ‘×’) clustered around
z = 1 on the unit circle.

7.2.3 Estimation Using FSF Structure

With respect to the application in data compression, the central idea is to
estimate a reduced-order FSF model using discrete-time system identifica-
tion techniques in the environment of fast sampling. The reduced-order FSF
model provides compressed information about the underlying continuous-time
system, including continuous-time step response and frequency response.
Suppose that u(k) is the process input, y(k) is the process output and v(k) is
the disturbance signal. The output y(k) can be expressed in a linear regression
form by defining the parameter vector and the regressor vector as

θ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

G(ei0)
Re(G(eiΩ))
Im(G(eiΩ))

...
Re(G(eiΩ n−1

2 ))
Im(G(eiΩ n−1

2 ))

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

; ϕ(k) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(k)0

f(k)1R
f(k)1I

...

f(k)
n−1

2
R

f(k)
n−1

2
I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

f(k)0 =
1
N

1 − z−N

1 − z−1
u(k)

f(k)lR = F l
R(z)u(k); f(k)lI = F l

I(z)u(k)

for l = 1, 2, . . . , n−1
2 . This allows us to write the linear regression with corre-

lated residuals as

y(k) = ϕT (k)θ + v(k)

v(k) =
ε(k)
D(z)

(7.11)

where ε(k) is a white noise sequence with zero mean and standard deviation σ
and v(k) is not correlated with the input signal u(k). Given a set of sampled
finite amount of data

{y(1), y(2), y(3), . . . , y(M)}

{u(1), u(2), u(3), . . . , u(M)}
we can obtain an estimate of the frequency-sampling filter model and an
estimate of the noise model 1

D(z) using the generalised least squares method
[6, 27]. More specifically, in the core-estimation algorithm, we let
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yD(k) = D̂(z)y(k);ϕD(k) = D̂(z)ϕ(k)

The estimation of θ̂ is obtained by minimising the quadratic performance
index

J =
M∑

k=1

[yD(k) −ϕD(k)θ]2

= θT
M∑

k=1

[ϕD(k)ϕTD(k)]θ − 2θT
M∑

k=1

[ϕD(k)yD(k)] + cons (7.12)

D̂(z) is estimated from the error sequence e(k) = y(k) − ϕT (k)θ̂, k =
1, 2, 3, . . . ,M . The generalised least squares method is based on an iterative
procedure and the iteration stops after the estimated parameters converge.
The extension to a multi-input and single-output system is straightforward.
Suppose that the inputs available are numbered as u1(k), u2(k),. . .up(k), the
times to steady state for the individual subsystems are chosen as N1, N2,. . . ,
Np and the number of parameters for each FSF model is chosen as n1, n2,. . . ,
np. In the FSF model structure for the MISO system, the first input u1(k) is
passed through a set of n1 frequency-sampling filters based on N1 to form the
first n1 elements in the data regressor, followed by passing the second input
u2(k) through a set of n2 frequency-sampling filters based on N2 to form the
next n2 elements in the the regressor, and so on. With this data regressor,
the generalised least squares algorithm can be directly applied to estimate
the frequency-response parameters associated with the MISO system, also
allowing the individual selection of N1, N2, . . ., Np and n1, n2,. . . , np.
One might ask since the model parameters in the FSF model are the discrete-
frequency response, why we would not simply estimate the plant frequency
response using the discrete Fourier transform, which is a well-known approach
for data analysis and compression. The estimation using the discrete Fourier
transform, called empirical transfer function estimation (ETFE) is known to
have problems such as leakage and large variances in the estimated frequency
response. Although optimisation techniques existed to improve the variance
of the estimate (for example, see Chapter 8 of this book), the ETFE has esti-
mated the number of frequencies proportional to the actual data length, as a
consequence, there is a large information redundancy as well as poor quality
of information provided by ETFE. In contrast, the data compression by us-
ing a reduced-order FSF model captures the dynamics of the system with a
fixed settling time Tm of the impulse response of the continuous-time system,
regardless of the length of the experimental data. It captures the frequency
response to the Nyquist sampling frequency π

Ts
, using the frequency parame-

ters at 0, 2π
Tm

, 4π
Tm

, . . .. The rest of the frequency response is obtained through
interpolation based on the FSF model. Furthermore, the data compression
using FSF allows natural application of filtering, disturbance modelling and
many other existing techniques in dynamic system identification.
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7.3 Data Compression with Constraints

Although structural constraints such as model order and time delay have been
incorporated in the continuous-time system identification since its origin, the
constraints on the estimated model parameters were rarely enforced. This
section shows that by incorporating physical parameter information known a
priori as hard constraints, the traditional parameter estimation schemes are
modified to minimise a quadratic cost function with linear inequality con-
straints. More specifically, a priori knowledge in both time- and frequency-
domains is utilised simultaneously in the data-compression process as the
constraints for the optimal parameter solution. In addition, the optimal so-
lution for the constrained case is obtained using a quadratic programming
procedure.

7.3.1 Formulation of the Constraints

Constraints on Frequency Parameters
Suppose that the continuous-time system is known at frequency γ(< π

Ts
). By

converting it to the discrete frequency γTs, from (7.8) the frequency informa-
tion can be expressed as

G(eiγTs) = L(eiγTs)Tθ (7.13)

where

L(eiγTs) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

F (eiγTs)0

F (eiγTs)1R
F (eiγTs)1I

. . .

F (eiγTs)
n−1

2
R

F (eiγTs)
n−1

2
I

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

This equation is then split into real and imaginary parts

Re(G(eiγTs)) = Re(L(eiγTs))Tθ (7.14)
Im(G(eiγTs)) = Im(L(eiγTs))Tθ (7.15)

If the frequency information is known quite accurately, then equality con-
straints based on (7.14) and (7.15) can be imposed in the solutions. This is
particularly useful when the system has strong resonance, and the critical fre-
quency information is used in the constraints to ensure good fitting. If the
frequency information is known within certain bounds, then the inequality
constraints can be imposed as

Re(G(eiγTs))min ≤ real(L(eiγTs)θ ≤ Re(G(eiγTs))max

Im(G(eiγTs))min ≤ Im(L(eiγTs)θ ≤ Im(G(eiγTs))max (7.16)
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Constraints on Step-response Parameters
Constraints on step response parameters will be based on (7.9). Given the a
priori information about some step-response coefficients gm, 0 ≤ m ≤ N − 1,
the equality constraint is formulated as

gm = Q(m)Tθ (7.17)

where Q(m) is defined by (7.9). For inequality constraints, with specification
of minimum and maximum of step responses, say g

m
≤ gm ≤ gm, then the

inequality constraint on a step-response coefficient gm is formulated as

g
m

≤ Q(m)Tθ ≤ gm (7.18)

7.3.2 Solution of the Estimation Problem with Constraints

The estimation problem with constraints is essentially to minimise the
quadratic cost function

J = θT
M∑

k=1

[ϕD(k)ϕTD(k)]θ − 2θT
M∑

k=1

[ϕD(k)yD(k)] + constant (7.19)

subject to equality constraints

M1θ = β1

and inequality constraints
M2θ ≤ β2

By defining E =
∑M
k=1[ϕD(k)ϕTD(k)] and F = −2

∑M
k=1[ϕD(k)yD(k)], M =

[MT
1 MT

2 ]T , β = [βT1 βT2 ]T the necessary conditions for this optimisation
problem (Kuhn–Tucker condition) are [24]

Eθ + F + MTλ = 0
Mθ − β ≤ 0

λT (Mθ − β) = 0
λ ≥ 0 (7.20)

where the vector λ contains the Lagrange multipliers. These conditions can
be expressed in a simpler form in terms of the set of active constraints. Let
Sact denote the index set of active constraints. Then, the necessary conditions
become

Eθ + F +
∑

i⊂Sact

λiM
T
i = 0

Miθ − βi = 0 i ⊂ Sact

Miθ − βi < 0 i �⊂ Sact

λi ≥ 0 i ⊂ Sact

λi = 0 i �⊂ Sact
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where Mi is the ith row of the M matrix. It is clear that if the active set
were known, the original problem could be replaced by the corresponding
problem having equality constraints only. Alternatively, suppose an active set
is guessed and the corresponding equality constrained problem is solved. Then
if the other constraints are satisfied and the Lagrange multipliers turn out to
be non-negative, that solution would be correct. In the case that only equality
constraints are involved, the optimal solution has a closed form as

[
E MT

1

M1 0

] [
θ
λ1

]
=
[
−F
β1

]
(7.21)

Explicitly

λ1 = −(M1E
−1MT

1 )−1(β1 + M1E
−1F ) (7.22)

θ̂ = −E−1(F + MT
1 λ1) (7.23)

When inequality constraints are required, an iterative algorithm is needed to
solve the quadratic programming problem [24].

7.3.3 Monte Carlo Simulation Study

This section is to illustrate the data-compression process through a Monte
Carlo simulation study. The relay experiment proposed by Åström and Hag-
glund [2] is particularly suitable for continuous-time identification as the sam-
pling interval in the experiment can be chosen as small as desired. This exper-
iment [29,30] was extended to include identification of more general classes of
models other than simple frequency-response points. The same set of design
parameters as in [32] is used here to generate the input excitation signal. In
the Monte Carlo simulation study, a white noise sequence with standard devi-
ation of 0.8 is used to generate e(k) and the disturbance ξ(k) = 0.1

1−0.9z−1 e(k).
100 realisations of the white noise sequence are generated by changing the
seed of the generator from 1 to 100.
The system used for simulation is given by the transfer function

G(s) =
e−3s

(s2 + 0.4s + 1)(s + 1)3
(7.24)

The sampling interval for this system is Ts = 0.1 s. The settling time Tm is es-
timated as 40 s, hence the number of samples to steady state N = Tm

Ts
= 400.

By using frequency-sampling filters to parameterise this system, the number
of frequencies required is 63, yielding the number of parameters in the FSF
model as n = 125. Figures 7.3(a)–7.5(a) show the magnitude and phase of
the frequency responses when estimated without constraints. From the distri-
bution of the responses, it is seen that the estimation of the non-parametric
models is unbiased. However, the variances are large both for the frequency
response and step response.
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To introduce equality constraints on the estimation, a priori knowledge about
the system is required. The a priori knowledge for this system is assumed
as a time delay being approximately 1 s, the gain being 1, and the first pair
of frequency responses Gc( 2π

Ts
) = 0.5305 − j0.8317. The a priori knowledge

about the steady-state gain of the system is translated into the constraint on
the first parameter of the FSF model while, the a priori knowledge about
the frequency-response information is translated into two equality constraints
on the second and third parameters of the FSF model. Note that frequency
information at an arbitrary frequency can be translated into constraints in
a linear combination of the parameters of the FSF model. Similarly, the a
priori information about time delay is translated into a set of linear equality
constraints in terms of the parameters of the FSF model. Four constraints
have been put on the time delay at the sampling instant k = 0, 3, 6, 9. The
reason for not using every sampling instant is because the solution is ill-
conditioned when a constraint is imposed on every sampling instant. As is
seen from the Monte Carlo simulation study, this approach is adequate for this
purpose. With the equality constraints imposed on the estimated parameters,
the generalised least squares method is modified to have the constraints on
the system parameters, but not on the noise model parameters. Figure 7.3
compares the estimated frequency amplitudes with and without constraints.
Figure 7.4 shows the comparison results of the estimated phase with and
without constraints. Figure 7.5 compares the estimated step response with
and without constraints. All results confirm that the estimation results have
a smaller uncertainty bound when the constrained estimation is used with
correct a priori knowledge.
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Fig. 7.3. Monte Carlo simulation results: estimated amplitudes
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Fig. 7.4. Monte Carlo simulation results: estimated phases

7.4 Physical-model-based Estimation

Many engineering systems of interest to the control engineer are partially
known in the sense that the system structure, together with some system pa-
rameters are known, but some system parameters are unknown. This gives rise
to a problem of parameter estimation when values for the unknown parame-
ters are to be determined from experimental data comprising measurements
of system inputs and outputs. There is a considerable literature in the area
including [3, 5, 7, 11, 12]. Although in special cases such identification may be
linear -in-the-parameters [3] or polynomial -in-the parameters [11, 12] in gen-
eral the problem is non-linear -in-the-parameters. This means that, in general,
the resultant optimisation problem is not quadratic or polynomial, and may
even be non-convex. In such cases, the optimisation task is eased by knowing
(rather than deducing numerically) the first and second derivative of the error
function with respect to the unknown system parameters.
Symbolic methods for non linear systems modelling, analysis and optimisation
are currently strong research areas [25] driven by the ready availability of
symbolic computational tools. In particular, the bond-graph approach [13,16,
20] has been used to generate models applicable to control design [10].
For the purposes of this chapter, a physically plausible model of a physical
system is defined as a model that represents a different physical system that
shares key behaviours of the actual system. Typically, the physically plausible
model will be simpler than the model itself and will be represented by a bond
graph.
The advantages of having a simpler model are:

• it is easier to understand a simple model than a complex model;
• the computation and numerical aspects of identification and control are

eased.

The advantages of a physical model are that:
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Fig. 7.5. Monte Carlo simulation results: estimated step responses

• the parameters of a physical model have a clearer interpretation than those
of a purely empirical model and

• the behaviour of the model can be understood in physical terms.

The disadvantage of a physical model is that it is not usually linear in the
physical parameters, thus leading to a non-linear optimisation problem. The
time-domain parameter estimation problem posed in this chapter is to esti-
mate the unknown physical parameters Θ from the estimated system impulse
response h(ti) at a finite number of discrete time instants ti, 1 ≥ i ≥ Nopt.
The usual least squares estimation problem is posed; that is to minimise the
cost function J with respect to the vector of unknown parameters Θ where

J(Θ̂) =
1

2Nopt

Nopt∑

i=1

e2
i (7.25)

where the output error e(ti) is defined as

ei = ĥ(ti, Θ̂) − h(ti, Θ) (7.26)

In a similar fashion the frequency-domain parameter estimation estimates Θ
from the estimated frequency response G(iωi) at a finite number of discrete
frequencies ωi, 1 ≥ i ≥ Nopt with

ei = Ĝ(iωi, Θ̂) − G(iωi, Θ) (7.27)

These non-linear least squares problems do not admit an explicit solution in
general; instead, numerical techniques must be used. Each iteration of such
an algorithm requires evaluation of the function J for the current estimate Θ̂
and thus an evaluation of ĝ(ti, Θ̂) or Ĝ(iωi, Θ̂) for that value of Θ̂. Thus, each
iteration is computationally expensive and therefore an efficient algorithm is
desirable.
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A number of optimisation methods are available, the main division is be-
tween those that use gradient information and those that don’t. The former
have been discussed in this context previously [14, 15, 19] and include the
Levenberg–Marquardt [9] and the ‘projected BFGS-Armijo’ algorithm of Kel-
ley [21, Section 5.5.3]. The latter includes the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method [9].
As the gradient-based approaches have been considered previously, this chap-
ter uses the (non-gradient) BFGS method (as implemented as bfgsmin in
Octave [8]).

7.5 Example: Inverted Pendulum

mpkp

u = θ0 y = θp

(a) Inverted Pendulum

Gp(s)

Hp(s)

+

−

+

+

yu

d

0

(b) Closed-loop system

Fig. 7.6. Experimental system

This section provides an illustrative example where the parameters of an in-
verted pendulum are identified using the two stage process of:

• identifying the FSF parameters from the closed-loop experimental data
and

• identifying the physical parameters from the corresponding impulse or
frequency responses.

A simple model human standing is equivalent to controlling an inverted pen-
dulum (the body) via a spring (tendons and muscle) [23, Figure 1]. It is conve-
nient to represent such a model by Figure 7.6 where the input u is the effective
input angle θ0 and the output y is the pendulum angle θp and the length of
the pendulum is l. The system can be modelled with three parameters:

• the inertia about the pivot Jp

• the effective gravitational spring kg and
• the ratio α of the effective spring constant to the gravitational spring.

Using the usual small-angle approximation, the system has the transfer func-
tion
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Gp =
αkg

(1 −α)kg − Jps2
(7.28)

It is known [22] that α < 1 (that is, the spring is not stiff enough to hold up
the pendulum) so that the system of (7.28) is unstable and therefore requires
regulation.
The feedback structure is given in Figure 7.6(b) where Hp is the stabilising
controller and d a disturbance signal. The corresponding closed-loop transfer
function G(s) is given by

G(s) =
y

d
= − Gp(s)

1 + Gp(s)Hp(s)
(7.29)

As part of a programme to investigate the dynamics of human standing, an
initial experimental setup replaces both pendulum and controller by digital
equivalents within separate computers connected together, and to a third
data-collection computer, via analogue instrumentation3.
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(b) Output y: σ = 0.01
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(c) Output y: σ = 0.1

��

����

��

����

�

���

�

���

�

� � � � 	 ��

y

t
��



(d) Output y: σ = 1

Fig. 7.7. Data sampled with Ts = 0.01 s. The first 10 s of 100 s of data is shown.
Additional noise with standard deviation σ is artificially added to the system output
to give Figures (b)–(d).

3 The data used here was collected at the Department of Sports Science at the
University of Birmingham in June 2006. It is used with the kind permission of
Dr Martin Lakie and Dr Ian Loram.
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The data collected from this setup is used as an illustrative example in this
chapter; it has the advantage that the exact model is known. For the purposes
of this chapter, a data set of length 100 s is used that has been sampled with
interval Ts = 0.01 s giving about 10000 data points for each signal. The input
disturbance d is the multi-sine signal of Figure 7.7(a); it has the power spectral
density shown in Figure 7.8.
To illustrate the properties of the FSF approach as noise levels increase,
white noise with variance σ2 is added to the measured output data y; the
result is shown in Figures 7.7(b)–(d). Figures 7.8(b)–(d) show some standard
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(d) Welch frequency response

Fig. 7.8. Other non-parametric methods

non-parametric estimation results for the data without any added noise. The
empirical and Blackman–Tukey methods were computed using the ‘nonpar’
function of the UNIT toolbox [26].

7.5.1 FSF Estimation

This section illustrates the use and behaviour of FSF using the data set d as
input and data set y as output to identify the FSF parameters corresponding
to the transfer function G(s) (7.29). The results are displayed (Figures 7.9–
7.11) in two forms, the modulus of the frequency response (|G(iω)|) and the
corresponding impulse response g(t); the figures are organised so that the
frequency response is to the left and the time response to the right.
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(d) Impulse response: fc = 5 Hz
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(f) Impulse response: fc = 10 Hz

Fig. 7.9. FSF properties: effect of cut-off frequency fc (Tm = 10 s)

As discussed at the end of Section 7.2, the FSF is parameterised by the cut-off
frequency fc and the settling time Tm.

• fc is essentially a frequency-domain parameter and determines the largest
frequency of interest. It also has time domain implications. The effect of
fc is shown in Figure 7.9 for three values of fc. Figures 7.9(a), 7.9(c)
and 7.9(e) illustrate the fact that fc determines the upper bound of the
frequency for which the frequency response is matched by the FSFs.

• Tm is essentially a time-domain parameter and determines the largest time
of interest. It also has frequency domain implications insofar as it fixes the
frequency-domain sampling interval Ω = 2π

Tm
. Figures 7.10(b), 7.10(d) and

7.10(f) illustrate the fact that Tm determines the upper bound of the time
for which the time response is matched by the FSFs. These figures also
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(f) Impulse response: Tm = 10 s

Fig. 7.10. FSF properties: effect of settling time Tm (fc = 5 Hz)

show that if Tm is less than the actual settling time of the system, the
estimated response is not accurate.

As with any identification technique, the FSF method is affected by mea-
surement noise. The effect of measurement noise is illustrated by artificially
adding noise to the data (Figures 7.7(b)–7.7(d)) to give Figure 7.11. As would
be expected, the accuracy of both the time and frequency responses declines
with increased measurement noise.

7.5.2 PMB Estimation

The resulting estimated parameters are shown in Table 7.1. As discussed in
Section 7.4 the impulse and frequency responses estimated by the FSF can be
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(f) Impulse response: σ = 1

Fig. 7.11. FSF properties: effect of noise level σ (fc = 5Hz, Tm = 10 s)

Table 7.1. Estimated physical parameters (true values α = 0.85, Jp = 15)

Domain σ α̂ Ĵp

time 0.01 0.84 14.83
freq 0.01 0.84 15.05
time 0.10 0.84 14.78
freq 0.10 0.84 15.08
time 1.00 0.86 15.83
freq 1.00 0.87 16.71
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(d) Responses: time domain

Fig. 7.12. PMB estimation (low noise): σ = 0.01, Tm = 10 s and fc = 5 Hz

transformed into a set of physical parameters Θ using a non-linear optimisa-
tion approach such as that of Broyden–Fletcher–Goldfarb–Shanno (BFGS) [9]
(here, the Octave [8] implementation bfgsmin is used). This is illustrated in
this chapter by estimating two (α and Jp) of the three physical parameters
(α, Jp kg) of the experimental system of Figure 7.6 from each of the 6 FSF
responses of Figure 7.11.
The observations from the above results are summarised as below.

• Figure 7.12 is based on the low-noise FSF responses of Figures 7.11(a) and
(b). The left-hand figures correspond to frequency-domain optimisation
(7.27) and the right-hand figures to time-domain optimisation (7.26). The
top row shows how the parameters evolve during the BFGS optimisation
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(d) Responses: time domain

Fig. 7.13. PMB estimation (medium noise): σ = 0.1, Tm = 10 s and fc = 5 Hz

process; the bottom row shows responses corresponding to the first and
last iterations together with the correct response for comparison.

• Figure 7.13 is similar to Figure 7.12 except that it is based on the medium
noise responses of Figures 7.11(c) and (d).

• Figure 7.14 is similar to 7.12 except that it is based on the high noise
responses of Figures 7.11(e) and (f).

7.6 Conclusions

This chapter presented an approach to continuous-time system identification
using data compression, where in the first step of the method the raw exper-
imental data were compressed into a set of frequency-response coefficients of
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(d) Responses: time domain

Fig. 7.14. PMB estimation (high noise): σ = 1.0, Tm = 10 s and fc = 5 Hz

the FSF model, while the second step of the method used a non-linear opti-
misation scheme to find the parameters of a partially known physical model.
Furthermore, in the data compression procedure, the frequency-response coef-
ficients of the FSF model were estimated with respect to constraints in which
a priori knowledge is incorporated to improve the estimation results. A Monte
Carlo simulation study was used to demonstrate the improvement of the es-
timation in a noise environment. As an illustration, a partially known system
consisting of an unknown unstable system with a known stabilising controller
in the feedback loop was identified using the methods of this chapter.
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Frequency-domain Approach to
Continuous-time System Identification: Some
Practical Aspects

Rik Pintelon, Johan Schoukens, and Yves Rolain

Vrije Universiteit Brussel, Belgium

8.1 Introduction

Since the end of the 1950s – beginning of the 1960s – the control society de-
veloped for its control designs a technique to build discrete-time models of
continuous-time processes. Due to its overwhelming success a classical time-
domain school emerged, and its authority in the field of system identification
was soon widely recognised. The continuous-time identification methods de-
veloped in the early days of system identification [30, 67] got into a tight
corner, and were ‘forgotten’ for several decades. Nowadays many people se-
lect discrete-time models and classical time-domain identification methods
to solve their particular modelling problems. If the input is zero-order-hold,
then discrete-time models are the natural choice, however, in all other cases
continuous-time models might be preferred. Also, if the final goal is physical
interpretation, then continuous-time modelling is the prime choice.
Since physical interpretation is mostly the main motivation for continuous-
time modelling, special attention is paid in this chapter to some – often implic-
itly made – basic assumptions: the inter-sample behaviour of the excitation
(zero-order-hold or band-limited), the measurement setup (zero-order-hold or
band-limited, calibration of the systematic errors, open loop versus closed loop
. . . ), the noise model (discrete-time or continuous-time, parametric or non-
parametric), the stochastic framework (generalised output error or errors-in-
variables), the sampling scheme (uniform or non-uniform), and the linearity
(influence of non-linear distortions). Within this framework the advantages
and drawbacks of the existing continuous-time identification methods are dis-
cussed. Several practical aspects are illustrated on two real measurement ex-
amples. The chapter concludes with some guidelines for the user.
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8.2 The Inter-sample Behaviour and the Measurement
Setup

This section reveals the inter-relations between the signal input inter-sample
behaviour (zero-order-hold or band-limited), the model that relates the ob-
served input samples to the observed output samples (discrete time or contin-
uous time), the stochastic framework (generalised output error or errors-in-
variables), and the measurement setup (infinite bandwidth or band-limited).
We first handle the case where both the input and output of the continuous-
time process are available (= plant modelling), and next study the case where
only the output is observed (= noise modelling).

8.2.1 Plant Modelling

In both the zero-order-hold (see Figure 8.1) and band-limited (see Figure
8.2) measurement setup, the continuous-time plant is typically excited via an
actuator, which is driven by an arbitrary waveform generator or a digital con-
troller. The output of an arbitrary waveform generator or a digital controller
is mostly a piecewise-constant signal uZOH(t)

uZOH(t) =
+∞∑

n=−∞
ud(n)zoh(t − nTs) with zoh(t) =

{
1 0 ≤ t < Ts

0 elsewhere (8.1)

Ts the sampling period, and ud(n) the discrete-time signal stored in the mem-
ory. The dynamics of the input–output acquisition channels are represented by
Gu and Gy, respectively, and they include the signal conditioning (buffers, and
amplifiers/attenuators) and possibly the anti-alias filters. Each continuous-
time process produces some noise: the plant generates process noise np(t),
and the input–output acquisition channels are subject to measurement errors
mu(t) and my(t), respectively. The sequel of this section studies in detail the
differences between and the implications of the zero-order-hold (ZOH) and
band-limited (BL) setup.

The Zero-order-hold Setup

In the ZOH setup (see Figure 8.1) a model is built from the known discrete-
time sequence ud(n) (sampled piecewise-constant input of the actuator) to
the measured output samples of the plant

y(nTs) = y0(nTs) + ny(nTs) (8.2)

with y0(nTs) the noiseless output samples and ny(nTs) the output noise. The
latter depends on the process noise np(nTs) and measurement errors my(nTs).
This identification problem fits within a generalized output error stochastic
framework [32,77]. The model obtained includes the dynamics of the actuator
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Actuator Plant

Gy

uZOH(t)

np(t)

u1(t) y1(t)

y(nTs)

Ts

my(t)

Fig. 8.1. Zero-order-hold measurement setup

Actuator Plant

Gu Gy

uZOH(t)

ng(t)

ug(t)

np(t)

u(nTs)

Ts

u1(t) y1(t)

mu(t)

y(nTs)

Ts

my(t)

u(t) y(t)

Fig. 8.2. Band-limited measurement setup
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Gact(iω), the plant G(iω), and the acquisition channel Gy(iω). Since the input
of the actuator is piecewise-constant, the noiseless output samples y0(nTs) are
exactly related to ud(n) = uZOH(nTs) by the following discrete-time transfer
function

GZOH(z−1) =
Z {y0(nTs)}

Z {uZOH(nTs)}
=
(
1 − z−1

)
Z

{
L−1

{
Gact(s)G(s)Gy(s)

s

}}

(8.3)
with Z { } the Z-transform and L−1 { } the inverse Laplace transform [32,43].
In control applications the goal is to predict the output y1(nTs) (see Fi-
gure 8.1) given the past input and output samples ud(k) and y1(kTs),
k = n − 1, n − 2, . . .; while in physical modelling the goal is to study the
plant dynamics. In both cases the dynamics of the acquisition channel Gy(iω)
introduce a systematic error that should be eliminated. This is possible if the
transfer function Gc(s) = Gact(s)G(s)Gy(s) is lowpass with sufficiently small
amplitude at half the sampling frequency

|Gc(iωs/2)| � max
ω

|Gc(iω)| (8.4)

Indeed, under assumption (8.4) the frequency-response function GZOH(e−iωTs)
(8.3) becomes

GZOH(e−iωTs) =
+∞∑

k=−∞
Gact(iΩk)G(iΩk)Gy(iΩk)ZOH(Ωk/ωs)|Ωk=ω−kωs

(8.5)
where ZOH(x) = Tse−jπx sin (πx)/πx [53], can be approximated as

GZOH(e−iωTs) ≈ Gact(iω)G(iω)Gy(iω)ZOH(ω/ωs) for |ω| < ωs/2 (8.6)

From (8.6) it follows that dividing GZOH(e−iωTs) by Gy(iω) eliminates the
systematic errors introduced by the acquisition channel. Measuring Gy(iω)
requires a calibrated power meter, and a phase-calibrated broadband excita-
tion signal. Obtaining the latter is the difficult step (bottleneck) of the ab-
solute calibration procedure. Note that in physical modelling the same lines
can be followed to eliminate the actuator dynamics Gact(iω) in (8.6). If (8.4)
is not satisfied, then correction for the acquisition and actuator dynamics is,
in general, impossible.
One could think that the influence of the actuator characteristic is eliminated
by constructing a model from the sampled input of the plant u1(nTs) to the
sampled output y1(nTs). This is not true. Indeed, the noiseless output samples
y10(nTs) are exactly related to the input samples u1(nTs) by the following
discrete-time transfer function

G1(z−1) =
Z {y10(nTs)}
Z {u1(nTs)}

=
Z{y10(nTs)}
Z{uZOH(nTs)}
Z{u1(nTs)}

Z{uZOH(nTs)}
=

Z
{
L−1 {Gact(s)G(s)/s}

}

Z {L−1 {Gact(s)/s}}
(8.7)
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(apply formula (8.3) twice), which clearly depends on Gact(s). It also shows
that G1(z−1) depends on the inter-sample behaviour of the input u1(t) de-
scribed by the following impulse response [32,53]

L−1
{(

1 − e−sTs
)
Gact(s)/s

}
(8.8)

For an ideal ZOH setup (Gact = 1 and Gy = 1) the continuous-time plant
dynamics can be recovered from the identified discrete-time model via the
inverse of the step-invariant transformation (8.3), if the sampling frequency
is larger than twice the bandwidth of the plant, and if the plant contains no
delay [27]. While the transformation of the zeros is quite complicated [3] that
of the poles is given by the impulse invariant transformation s = log z/Ts.

Band-limited Setup

In the BL setup (see Figure 8.2) a model is built from the measured input
samples u(nTs) to the measured output samples y(nTs)

y(nTs) = y0(nTs) + ny(nTs)
u(nTs) = u0(nTs) + nu(nTs)

(8.9)

with u0(nTs), y0(nTs) the noiseless input–output samples and nu(nTs),
ny(nTs) the input–output noise sources, which depend on the process noise
np(nTs), the input–output measurement errors mu(nTs), my(nTs), and pos-
sibly the generator noise ng(nTs) (see Section 8.4 for a detailed discussion).
This identification problem fits within an errors-in-variables stochastic frame-
work [75]. The model obtained includes the dynamics of the plant G(iω) and
the input–output acquisition channels Gu(iω) and Gy(iω), and is indepen-
dent of the actuator characteristics. The latter may even be non-linear. The
noiseless input–output spectra u0(t), y0(t) are exactly related by the following
continuous-time transfer function

Gc(iω) =
F {y0(t)}
F {u0(t)}

=
Gy(iω)
Gu(iω)

G(iω) (8.10)

where F { } stands for the Fourier transform.
Since the goal of the BL setup is to study the plant physics, the systematic
error introduced by the dynamics of the input–output acquisition channels
should be eliminated. This is possible via a relative calibration of the data-
acquisition channels: a signal covering the frequency band of interest (ω <
ωs/2) is applied simultaneously to both acquisition channels (G = 1 in (8.10))
and the ratio of the measured spectra is exactly equal to Gy(iω)/Gu(iω).
Contrary to the absolute calibration, the relative calibration does not require
a calibrated power meter nor a phase-calibrated broadband excitation.
To avoid aliasing during the sampling process, the anti-alias filters Gu(iω) and
Gy(iω) in the data-acquisition channels should ideally be zero for |ω| > ωs/2.
In practice, attenuations of a hundred dB and more are realisable, possibly at
the price of increased passband ripple and phase distortion. The latter can,
however, easily be corrected for via a relative calibration.
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8.2.2 Noise Modelling

Identification of the system characteristics from output observations only (see
Figure 8.3), is referred to as time-series analysis in econometrics, blind iden-
tification in signal processing, noise modelling in system identification, and
operational modal analysis in mechanical engineering. Although it is typically
assumed that the excitation ec(t) is a random process, sometimes a mixture
of random and periodic components is allowed [44]. Here, we will limit our-
selves to random processes. Figure 8.3 shows a typical measurement setup
with H(iω) the process (noise) dynamics, Gv(iω) the characteristics of the
acquisition unit and mv(t) the measurement errors. In the rest of this section
three cases of continuous-time random processes ec(t) are handled: (i) Wiener
processes, (ii) piecewise-constant processes, and (iii) band-limited white noise
processes.

Process Gv

ec(t) v(nTs)
Ts

mv(t)

η(t) v0(t)

Fig. 8.3. Measurement of a continuous-time random process

It is important to realise that only the noise power spectrum can be iden-
tified from output measurements only (see Section 8.5.3). As a consequence
the phase of Gv(iω) does not affect the identified noise model, and only an
absolute amplitude calibration of the acquisition channel is needed. Another
consequence is that the sum of the power spectra of v0(nTs) and mv(nTs)
is modelled. To remove the bias introduced by the measurement errors, the
power spectrum of mv(nTs) is measured in the absence of excitation (η(t) = 0
in Figure 8.3), and subsequently subtracted from the initial measurements
(see [58] for the details).

Zero-order-hold Setup

A Wiener process (also called Brownian motion) is a stochastic process with
continuous-time white Gaussian noise increments. The variance of such a pro-
cess increases linearly in time. Assuming that the noise-generating mechanism
ec(t) is a Wiener process and that the signal η(t) in Figure 8.3 is sampled
without anti-alias protection (Gv = 1), it has been shown in [2] and [23] that
an rth-order continuous-time stochastic process can be described exactly at
the sampling instances by an rth-order discrete-time process. The poles of
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a discrete-time process are related to those of the original continuous-time
process by the impulse invariant transformation z = exp(sTs).
If the driving noise source ec(t) is a piecewise-constant stochastic process
(8.1), with ec(nTs) discrete-time white noise, then all the results of Section
8.2.1, subsection zero-order-hold setup, are valid. The continuous-time noise
dynamics should then be recovered from the identified discrete-time model
via the inverse of the step-invariant transformation (8.3).
One can wonder whether Wiener processes, which have asymptotically
(time → ∞) infinite variance, or piecewise-constant noise, which is a non-
stationary continuous-time process (see [58]), are realistic descriptions (ap-
proximations) of the true noise-generating mechanism. This question is espe-
cially relevant if the ultimate goal of the identification experiment is physical
interpretation. However, if the application is prediction or control, then, no
matter what the true inter-sample behaviour of the noise-generating mecha-
nism is, it suffices to have a good approximation of the observed noise power
spectrum.

Band-limited Setup

The concept of continuous-time (CT) band-limited (BL) white noise has been
introduced in [2]. By definition ec(t) is CT-BL white noise if its power spectral
density Φec

(ω) satisfies

Φec
(ω) =

{
Φec

(0) |ω| ≤ ωB
0 elsewhere (8.11)

Assuming that the acquisition channel is an ideal BL setup

|Gv(iω)| =
{

1 |ω| ≤ ωs/2
0 elsewhere (8.12)

and that ωB ≥ ωs/2, it can be seen from Figure 8.3 that

Φv0(ω) = |H(iω)|2 |Gv(iω)|2 Φec
(ω) ≡ |H(iω)|2 Φe(ω) (8.13)

with H(iω) the noise dynamics, and where Φe(ω) is the power spectral density
of CT-BL white noise e(t) with bandwidth ωs/2. Since e(t) has no power above
fs/2, it follows from (8.13) that a continuous-time noise model is the natural
choice in a BL measurement setup. Since condition (8.11) can be relaxed to

Φec
(ω) =

{
Φec

(0) |ω| ≤ ωB
O(ω−(1+δ)) elsewhere

with δ > 0 (8.14)

(see [58]), and since the non-idealities of the anti-alias filter can be easily
compensated for (see the discussion in the introduction of this section), the
concept of CT-BL white noise within a BL measurement setup is well suited
for physical modelling.
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In some applications such as, for example, sunspots data in astrophysics [46],
econometric data [5], and order tracking in rotating machinery [19], it is im-
possible to lowpass filter the signals before sampling. Hence, it makes sense to
consider continuous-time noise modelling without anti-alias protection. How-
ever, one should realise that at low sampling rates, the noise power spectral
density of the observed samples may then strongly depend on the true inter-
sample behaviour of the driving noise source.

8.2.3 Summary

The requirements for physical modelling are summarised in Table 8.1.

Table 8.1. Requirements for physical modelling

Band-limited setup Zero-order-hold setup

Measurement
device

• plant modelling: relative am-
plitude/phase calibration
• noise modelling: absolute am-
plitude calibration
• anti-alias filters required
• analogue bandwidth ≥ fs/2
• two-channel measurement

• plant modelling: absolute ampli-
tude/phase calibration
• noise modelling: absolute ampli-
tude calibration
• no anti-alias filters allowed
• analogue bandwidth many times
fs

• one-channel measurement

Actuactor • no calibration needed
• may be non-linear

• calibration needed
• should be linear

Stochastic
framework

• noisy input, noisy output
(= errors-in-variables)

• input known, noisy output
(= generalised output error)

Model • continuous-time • discrete-time

Exact reconstruction of the continuous-time (CT) plant characteristics using
a ZOH setup is possible only if Gy(iω) = 1 (infinite bandwidth acquisition
channel), Gact(iω) = 1 (the plant input is exactly ZOH), fs/2 is larger than
the bandwidth of the plant, and the plant contains no delay. The continuous-
time transfer function G(s) is then reconstructed from the discrete-time (DT)
model GZOH(z−1) via the inverse of the step-invariant transformation (8.3).
If the two conditions Gy = 1 and Gact = 1 are not fulfilled, then approximate
reconstruction of G(s) is possible if fs/2 is many times (typically ten) the
plant bandwidth (condition (8.4) is then satisfied). In addition, an absolute
calibration of the actuator and the acquisition channel is needed.
Exact reconstruction of the CT plant dynamics using a BL setup is possible
only if Gy(iω)/Gu(iω) = 1 for |ω| ≤ ωs/2, and Gy(iω) = Gu(iω) = 0 for |ω| >
ωs/2. If these two conditions are not fulfilled, then approximate reconstruction
is possible via a relative calibration of the data-acquisition channels in the
band |ω| ≤ ωs/2, and a sufficiently high attenuation of the anti-alias filters
for |ω| > ωs/2.
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The only drawback of the BL setup is that it leads to an errors-in-variables
problem that, for arbitrary excitations, is much more difficult to solve than
the generalised output error problem of the ZOH setup. Fortunately, this is
not the case for periodic excitations (see Section 8.5.2). The drawbacks of
the ZOH setup are that, compared with the BL case, the ideal setup is much
harder to realise, and the reconstruction of the CT dynamics is much more
involved.

8.3 Parametric Models

In Section 8.2 it has been shown that, depending on the measurement
setup (ZOH or BL), either a discrete-time model (difference equation), or
a continuous-time model (differential equation) should be used to describe
the relationship between the sampled input and output signals. In this sec-
tion a time- and frequency-domain description will be given. With some abuse
of notation the argument t will denote the continuous-time variable for CT
systems and the discrete-time variable . . . , t − 1, t, t + 1, . . . for DT systems.
The difference will be clear from the context.

8.3.1 Plant Models

Discrete-time

A finite-dimensional, linear time-invariant discrete-time system, is described
by a linear difference equation with constant coefficients, that can be written
as

y(t) = G(q−1)u(t) (8.15)

with q−1 the backward shift operator (q−1x(t) = x(t − 1)), and G(z−1) a
rational form in z−1

G(z−1) =
B(z−1)
A(z−1)

=
∑nb

r=0 brz
−r

∑na

r=0 arz−r
(8.16)

with z the Z-transform variable. Note that the time-domain representation
(8.15) contains implicitly the influence of the initial conditions.
Assume now that N samples of the input–output signal u(t), y(t), t =
0, 1, . . . , N − 1 are available. The relationship between the discrete Fourier
transform (DFT) spectra U(k), Y (k) of these samples

X(k) =
1√
N

N−1∑

t=0

x(t)e−2πikt/N (8.17)

with x = u, y and X = U, Y , is exactly given by
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Y (k) = G(z−1
k )U(k) + TG(z−1

k ) with zk = e2πik/N (8.18)

where G(z−1) is defined in (8.16), and where the transient term TG

TG(z−1) =
IG(z−1)
A(z−1)

=
∑nig
r=0 igr

z−r∑na

r=0 arz−r
with nig = max(na, nb) − 1 (8.19)

contains the influence of the initial and final conditions of the experiment
[53, 62]. The transient term TG(z−1

k ) decreases to zero as an O(N− 1
2 ) w.r.t.

the main term G(z−1
k )U(k). It is exactly zero for experiments where the initial

state equals the final state, for example, periodic input–output signals, or
time-limited input–output signals that are completely captured within the
measurement window.
From (8.19) it follows that the transient term TG in (8.18), which is responsible
for the leakage error in frequency-response function measurements

ĜN (e−iωk) =

⎧
⎨

⎩

Y (k)
U(k) = G(z−1

k ) + TG(z−1
k )

U(k)

Φ̂N
yu(ωk)

Φ̂N
u (ωk)

= G(z−1
k ) +

E{TG(z−1
k )U(k)}

E{|U(k)|2}
(8.20)

has a lot of structure. It is a rational form in z−1 with the same poles as
the plant transfer function G. Using the smooth behaviour of TG(e−iω), non-
parametric frequency-response function estimators can be constructed that
suppress the leakage error more effectively than the classical time-domain
windows [71].

Continuous-time

A finite dimensional, linear time-invariant continuous-time system, is de-
scribed by a linear differential equation with constant coefficients, that can
be written as

y(t) = G(p)u(t) (8.21)

with p the derivative operator (px(t) = dx(t)/dt), and G(s) a rational form
in s

G(s) =
B(s)
A(s)

=
∑nb

r=0 brs
r

∑na

r=0 arsr
(8.22)

with s the Laplace transform variable. Note that the time domain represen-
tation (8.21) contains implicitly the influence of the initial conditions.
Assuming that N samples of the input–output signal u(nTs), y(nTs), n =
0, 1, . . . , N − 1 are available, the relationship between the discrete Fourier
transform (DFT) spectra U(k), Y (k) (8.17) of these samples is exactly given
by

Y (k) = G(sk)U(k) + TG(sk) + Δ(sk) with sk = 2πik/N (8.23)

where G(s) is defined in (8.22), Δ(sk) is the residual alias error, and where
the transient term TG
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TG(s) =
IG(s)
A(s)

=
∑nig
r=0 igr

sr∑na

r=0 arsr
with nig = max(na, nb) − 1 (8.24)

contains the influence of the initial and final conditions of the experiment
[52, 53]. Both the transient term TG(sk) and the residual alias error Δ(sk)
decrease to zero as an O(N− 1

2 ) w.r.t. the main term G(sk)U(k). For periodic
input–output signals TG(sk) and Δ(sk) are exactly zero. Practice has shown
that the alias error Δ(sk) can be made arbitrarily small by increasing the
order of IG(s): nig ≥ max(na, nb) − 1 [52]. Hence, (8.23) can be written as

Y (k) = G(sk)U(k) + TG(sk) with sk = 2πik/N (8.25)

where, similarly to na and nb, nig ≥ max(na, nb) − 1 should be determined
via model order selection (see Section 8.5).
Similarly to the DT case, the transient term TG(sk) in (8.25) is responsible
for the leakage error in frequency response function measurements ĜN (iωk)
(replace z−1

k by sk in (8.20)). Since TG(iω) is also a smooth function of the
frequency, the same non-parametric frequency-response function estimators
as in [71] can be used to suppress the leakage errors in ĜN (iωk).

8.3.2 Noise Models

The time- and frequency-domain descriptions of the noise models are similar
to that of the plant models; the only difference being the stochastic properties
of the driving noise source.

Discrete-time

Equations (8.15) and (8.18) become

v(t) = H(q−1)e(t)
V (k) = H(z−1

k )E(k) + TH(z−1
k ) with zk = e2πik/N (8.26)

where H(z−1) and TH(z−1) are rational forms in z−1

H(z−1) =
C(z−1)
D(z−1)

=
∑nc

r=0 crz
−r

∑nd

r=0 drz−r
, and TH(z−1) =

IH(z−1)
D(z−1)

=
∑nih
r=0 ihr

z−r∑nd

r=0 drz−r
(8.27)

with nih = max(nc, nd) − 1. The discrete Fourier transform (DFT) E(k) of
the driving noise source e(t) has the following properties [6, 53]. If e(t) is
discrete-time white noise, then E(k) is uncorrelated, and circular complex
(E
{
E2(k)

}
= 0). If in addition e(t) is normally distributed, then E(k) is

independent, circular complex normally distributed. For non-Gaussian i.i.d.
noise e(t), E(k) is asymptotically (N → ∞) independent, circular complex
normally distributed.
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Continuous-time

Equations (8.21) and (8.25) become

v(t) = H(p)e(t)
V (k) = H(sk)E(k) + TH(sk) with sk = 2πik/N

(8.28)

where H(s) and TH(s) are rational forms in s

H(s) =
C(s)
D(s)

=
∑nc

r=0 crs
r

∑nd

r=0 drsr
, and TH(s) =

IH(s)
D(s)

=
∑nih
r=0 ihr

sr∑nd

r=0 drsr
(8.29)

with nih ≥ max(nc, nd)−1. The driving noise source e(t) is a continuous-time,
band-limited white noise process, with bandwidth equal to half the sampling
frequency (see Section 8.2.2). Since the autocorrelation of e(t)

Re(τ) = F−1 {Φe(ω)} =
1
2π

∫ +ωs/2

−ωs/2

σ2eiωτdω = σ2 sin (πfsτ)/ (πfsτ) (8.30)

with σ2 = var(e(t)), is zero at the sampling instances τ = nTs, n �= 0, the
discrete-time sequence e(nTs) is uncorrelated. Hence, E(k) is uncorrelated
and circular complex. If e(t) is normally distributed, then e(nTs) is a white
Gaussian sequence, and E(k) is independent, circular complex normally dis-
tributed. Note that E(k) has the same properties as in the discrete-time case.

8.3.3 Summary

In a generalised output error framework the plant and noise models are com-
bined as

y(t) = G(w)u(t) + H(w)e(t) with w = q−1 or p
Y (k) = G(Ωk)U(k) + H(Ωk)E(k) + TG(Ωk) + TH(Ωk) with Ω = z−1 or s

(8.31)
where u(t) is the known input, y(t) the measured output, and e(t) the un-
observed driving noise source; and with Y (k), U(k), E(k) the DFT spectra
of N samples of u(t), y(t), e(t) respectively. The plant G = B/A and noise
H = C/D transfer functions, and the plant TG = IG/A and noise TH = IH/D
transient terms, are rational functions in Ω. According to the parametrisation
of the plant and the noise model one distinguishes different model structures
such as OE, ARMAX, BJ, . . . (see Table 8.2). For the ARMAX model TG and
TH are indistinguishable. Therefore, TH is set to zero and the order of TG is
chosen as nig ≥ max(na, nb, nc) − 1.
One could also think to combine a continuous-time plant model with a
discrete-time noise model [24, 61, 81]. This is called hybrid modelling. The
disadvantage of this approach is that it leads to biased estimates for identifi-
cation in feedback [53].



8 Practical Aspects of Frequency-domain CT Modelling 227

Table 8.2. Model structures in a generalised output error framework (the OE,
ARMA, ARMAX, and BJ model structures have Ω as argument).

OE ARMA ARMAX BJ hybrid BJ

G B/A 0 B/A B/A B(s)/A(s)

TG IG/A 0 IG/A IG/A IG(s)/A(s)

H 1 C/D C/A C/D C(z−1)/D(z−1)

TH 0 IH/D 0 IH/D IH(z−1)/D(z−1)

Diffusion phenomena such as heat or mass transfer are often described by
non-even irrational transfer functions in

√
s. Such transfer functions can be

approximated very well by a rational function in
√

s [60]. Also, some noise
processes are better approximated by rational forms in

√
s rather than in s.

Think, for example, of 1/f noise whose power spectral density is proportional
to 1/f . The corresponding noise filter H must be proportional to 1/

√
s. To

conclude, the frequency domain description (8.31) can be extended to Ω =
√

s
for describing diffusion phenomena. The corresponding time-domain equation
with w = p

1
2 uses fractional derivatives of order n+1/2, n = 0, 1, . . . (see [45]).

8.4 The Stochastic Framework

Figure 8.4 shows a general stochastic framework for the identification of a
plant model. The plant is captured in a feedback loop with controller M , and
all kinds of disturbances are present: generator noise Ng, process noise NP,
controller noise NC, and input–output measurement noise MU and MY . The
measured input–output DFT spectra U , Y equal the noiseless values U0, Y0

plus some noise NU , NY

U(k) = U0(k) + NU (k)
Y (k) = Y0(k) + NY (k) (8.32)

According to the type of reference signal R – periodic or arbitrary – a par-
ticular noise source acts as a disturbance (part of NU , NY ) or contributes to
the excitation (part of U0, Y0). This is discussed in the rest of this section.
Without any loss of generality the transient terms are neglected in frequency
domain equations.

8.4.1 Periodic Excitations

If the reference signal r(t) is periodic, then any deviation from the periodic
behaviour is considered as noise. Hence, the true values U0, Y0 and the distur-
bances NU , NY in (8.32) are given by (for notational simplicity the arguments
are omitted)
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-

+

Ng(k) NP(k)

U1(k) Y1(k)

MU (k) MY (k)

U(k) Y (k)

G(Ω)
R(k)

M(Ω)

NC(k)

Fig. 8.4. Identification of a plant G captured in a feedback loop with controller M

{
U0 = 1

1+GMR

Y0 = G
1+GMR

and
{

NU = MU + 1
1+GM (Ng − NC) − M

1+GMNP

NY = MY + G
1+GM (Ng − NC) + 1

1+GMNP
(8.33)

By construction, the disturbances NU and NY are independent of the true
values U0 and Y0. Due to the generator noise Ng, the controller noise NC,
and the process noise NP, the input–output errors NU and NY are correlated.
Since these noise sources contribute to the true input U1 of the plant (see
Figure 8.4)

U1 =
1

1 + GM
(R + Ng − NC − MNP) (8.34)

a part of the information is lost, which is a drawback of the periodic framework
(see also Section 8.5.2). However, Ng and NC do not increase the variability of
the plant estimates (see Section 8.5.2). Another possible source for correlation
between the input–output errors is a common disturbance picked up by both
acquisition channels of the measurement device. In that case the measurement
errors MU and MY are no longer independent.

8.4.2 Arbitrary Excitations

If the reference signal r(t) is arbitrary, then U1 is the noiseless input of the
plant (see Figure 8.4), and only MU , MY , and NP act as disturbances. Hence,
the true values U0, Y0 and the disturbances NU , NY in (8.32) are given by
{

U0 = 1
1+GM (R + Ng − NC − MNP)

Y0 = G
1+GM (R + Ng − NC − MNP) and

{
NU = MU

NY = MY + 1
1+GMNP

(8.35)
Due to the feedback loop (M �= 0) and the process noise NP, the output
disturbance NY is correlated with the true values U0 and Y0. This is the major
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difficulty of identification in feedback with arbitrary excitations. Note that the
process noise NP does not introduce a correlation between the input–output
disturbances NU and NY . The latter are correlated only if the measurement
errors MU and MY are correlated.

8.5 Identification Methods

This section gives a brief overview of the time-domain methods and discusses
the frequency-domain maximum likelihood solutions in more detail. The dis-
tinction between time- and frequency-domain methods may – at first glance
– be artificial because most of the things that can be done in one domain are
also possible in the other domain. This is certainly true for (non-linear) least
squares based algorithms (apply Parseval’s theorem). However, the calcula-
tions may be much simpler in one domain than in the other. For example,
the covariance matrix of filtered white noise is asymptotically (N → ∞)
Toeplitz in the time domain, and asymptotically (N → ∞) diagonal in the
frequency domain [70]. Hence, performing calculations with a non-parametric
representation of the noise model is much easier in the frequency domain.
Other examples are non-uniform sampling [9] and recursive identification [34]
which can much more be handled easily in the time domain.
A class of methods that act totally differently in both domains are least
absolute-value algorithms, which intend to suppress outliers in the data. In-
deed, an outlier in the time-domain (extreme value) is smeared out in the fre-
quency domain; while an outlier in the frequency domain (large peak due to a
periodic disturbance), is smeared out in the time domain (sinewave). Hence, a
least squares time-domain algorithm robustified for outliers by adding a least
absolute-value part (see [32]) is not equivalent to the corresponding robustified
least squares frequency-domain algorithm.
An important issue in identification is the filtering of the measured input–
output signals. Often, one is only interested in the plant characteristics on a
part of the unit circle (or imaginary axis), or one would like to remove the effect
of trends (low-frequency range) or disturbances (mains, high-frequency noise,
. . . ), or one would like to reduce the complexity of the identification problem
by focusing separately on different frequency bands. The classical time-domain
approach consists in prefiltering the sampled input–output signals u(t) and
y(t) with F (z−1). The filtered signals uf (t) and yf (t) still satisfy the same
input–output relationship, if also all the noise terms are filtered by F (z−1).
For example, in a generalised output error framework (8.31), we get

yf (t) = G(q−1)uf (t) + F (q−1)H(q−1)e(t) (8.36)

To preserve the consistency and efficiency of the identified plant model, the
noise models should be flexible enough to follow the noise power spectrum,
λ
∣∣F (e−iω)H(e−iω)

∣∣2 with λ = var(e(t)), accurately. As such, it will try to
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cancel the effect of the prefilter. Hence, through the prefilter and the noise
model selection a compromise must be made between the suppression of the
undesired frequency bands, and the loss in efficiency and consistency of the
plant estimates [32]. These conflicting demands, which are inherent to all
time-domain methods, are avoided in the frequency domain where filtering
consists in removing the undesired DFT frequencies in (8.31). This exact fil-
ter operation does not increase the complexity of the noise model. On the
contrary, the noise (and plant) model should be identified in the frequency
band(s) of interest only. Note that exactly the same conclusions hold in an
errors-in-variables framework. In the rest of this chapter it will be assumed
that the frequency domain data U(k), Y (k) is available at DFT frequencies
fk = kfs/N , k ∈ K where K is a subset of the DFT line numbers

K ⊆ {0, 1, 2, . . . , N/2} (8.37)

and with N the number of time-domain points used to calculate the DFT
spectra.
Another issue is the identification of unstable plants. For example, the best (in
the mean-square sense) linear approximation of a non-linear system may be
unstable. Another example is the identification of an unstable system enclosed
in a stabilising feedback loop. In the frequency domain, irrespective of the
position of the poles (stable or unstable) of the transfer function G(Ω), the
response of G(Ω) to an input with DFT spectrum U(k) is calculated as

G(Ωk)U(k) + TG(Ωk) (8.38)

(see, for example, (8.31)). Hence, stable and unstable models are handled in
exactly the same way. This is not the case in the time domain. For example,
for Ω = z−1 the time-domain response corresponding to (8.38) is obtained by
splitting G(z−1) and TG(z−1) in a stable causal part (poles inside the unit
circle) and a stable anti-causal part (poles outside the unit circle), and next
adding the two convolution products with u(t).
A final issue is the scaling of the coefficients in continuous-time models. It is
well known that continuous-time modelling is numerically ill-conditioned if no
special precautions are taken – even for modest orders of the transfer func-
tion [48]. An easy way to improve the numerical conditioning significantly con-
sists in scaling the angular frequencies. Although the scaling that minimises
the condition number depends on the system, the model, the excitation sig-
nal, and the estimator used, the median of the angular frequencies is a good
compromise [48]. For example, the (r+1)th term in the denominator of (8.22)
becomes

ars
r = (arωrmed)

(
s

ωmed

)r
= anormrs

r
norm with ωmed = median{ ωk| k ∈ K}

(8.39)
and where K is defined in (8.37). If the scaling (8.39) is not sufficient to obtain
reliable estimates, then the powers of s/ωmed in (8.22) and (8.23) are replaced
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by (vector) orthogonal polynomials (see [64] and [10]). Note that the latter
can also be necessary for discrete-time models, especially when the frequency
band of interest covers only a small fraction of the unit circle.

8.5.1 Asymptotic Properties of the Frequency-domain Gaussian
Maximum Likelihood Estimators

We list here the basic asymptotic (F = ord(K) → ∞, with K defined in (8.37))
properties of the frequency-domain Gaussian maximum likelihood (ML) esti-
mators discussed in Sections 8.5.2 to 8.5.4. The reader is referred to [53,55,56]
for the detailed proofs. Beside estimates of the model parameters, the Gaus-
sian ML estimators also provide an estimate of the covariance matrix.
The ML estimators are all constructed under the assumption that the input–
output noise NU (k) and NY (k) on the measured input–output DFT spectra
U(k) and Y (k) (see (8.33)), has zero mean, and is independent (over k),
circular complex normally distributed. Under some standard assumptions it
can be shown that the Gaussian ML estimators have the following asymp-
totic properties: strongly consistent, asymptotically normally distributed, and
asymptotically efficient, except for the errors-in-variables problem with non-
parametric noise models where the covariance matrix is very close but not
equal to the Cramér–Rao lower bound. The Gaussian ML estimators are also
robust w.r.t. the basic assumptions made to construct them: the strong con-
sistency and asymptotic normality remain valid for non-Gaussian distributed
input–output errors NU (k) and NY (k), and correlation over the frequency is
even allowed as long as it tends sufficiently fast to zero (mixing condition).
The asymptotic properties of the estimates have also been studied when the
true model does not belong to the considered model set (e.g., unmodelled
dynamics, and non-linear distortions).

8.5.2 Periodic Excitations

General

Although any periodic signal can be handled, typically a sum of harmonically
related sinewaves is applied to the plant

u(t) =
1√
N

N/2−1∑

k=1

Aksin(2πfkt + φk) (8.40)

with fk = kfs/N , and Ak the user-defined amplitudes. According to the in-
tended goal of the experiment, the identification of the true underlying linear
system (if it exists) or the best (in the mean-square sense) linear approxi-
mation of the non-linear system, the phases φk are chosen to minimise the
peak value [21] or are chosen randomly such that E

{
eiφk
}

= 0 [54, 68]. Note
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that the amplitudes of the sinewaves in (8.40) are scaled by
√

N such that
the rms value of u(t) remains the same when increasing N . The number of
excited frequencies F in (8.40) equals the number of non-zero amplitudes and
increases with N : F = O(N).
The big advantage of periodic excitations w.r.t. arbitrary excitations is that
they allow us to distinguish between noise and signal by comparing consecutive
periods of the steady-state response. For example, this separation property al-
lows us to verify whether output energy at a non-excited frequency is due to
noise or to non-linear behaviour of the plant (see Section 8.6.1). Another ad-
vantage of this separation property is that errors-in-variables identification
(in feedback) with correlated input–output disturbances is as easy as identi-
fication within an open-loop, generalised output error framework (see Section
8.5.2). Assuming that M periods of the steady-state response are available the
sample mean and sample (co-)variances of the M input–output DFT spectra
can be calculated as

X̂(k) = 1
M

∑M
m=1 X [m](k)

σ̂2
X̂Ẑ

(k) = 1
M(M−1)

∑M
m=1

(
X [m](k) − X̂(k)

)(
Z [m](k) − Ẑ(k)

) (8.41)

with X,Z = U and/or Y , X [m](k) the DFT spectrum of the mth period of
x(t), and X the complex conjugate of X. Because an estimate of the variance
of the sample mean is needed, an extra factor M appears in the expression of
σ̂2
X̂Ẑ

(k). Using (8.41), the quality of the input–output measurements can be
verified via the input–output signal-to-noise ratios

SNRU (k) =
∣∣∣Û(k)

∣∣∣ /σ̂Û (k) and SNRY (k) =
∣∣∣Ŷ (k)

∣∣∣ /σ̂Ŷ (k) (8.42)

where σ̂X̂ = σ̂X̂X̂ with X = U, Y , and a non-parametric estimate of the
frequency-response function and its variance is obtained as

Ĝ(Ωk) = Ŷ (k)

Û(k)

σ̂2
Ĝ

(k) =
∣∣∣Ĝ(Ωk)

∣∣∣
2
(

σ̂2
Ŷ

(k)

|Ŷ (k)|2 +
σ̂2

Û
(k)

|Û(k)|2 − 2Re(
σ̂2

Ŷ Û
(k)

Ŷ (k)Û(k)
)
) (8.43)

with Ωk = iωk for CT and Ωk = e−iωkTs for DT [53]. For input signal-to-
noise ratios SNRU (k) of 40 dB and more, Ĝ(iωk) is approximately circular
complex normally distributed, and a p% confidence bound is given by a circle
with centre Ĝ and radius

√
−log(1 − p)σ̂Ĝ. If SNRU (k) is smaller than 40 dB,

then the precise calculation of the radius is somewhat more involved (see [49]).
The FRF and its uncertainty (8.43) reveals the complexity of the parametric
modelling, and is used to validate the identified model.
The two drawbacks of periodic excitations w.r.t. arbitrary excitations are the
loss in frequency resolution of a factor M , and the fact that the non-periodic
parts of the true excitation are discarded in (8.41).
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Overview

Since the early days of system identification [30,67] the advantages of periodic
excitation signals have almost exclusively been exploited in frequency-domain
algorithms. Only very recently have some time-domain algorithms been de-
veloped that use explicitly the periodic nature of the excitation [15, 22, 40].
A possible reason for this is that, in the time domain, non-parametric noise
models are more difficult to handle than the parametric ones.

The Frequency-domain Gaussian Maximum likelihood Solution

Since periodic excitations can be used for both ZOH and BL measurement
setups, both discrete-time and continuous-time modelling are considered here.
The Gaussian maximum likelihood estimates of the numerator and denomi-
nator coefficients θ of the plant model (8.22), are found by minimising

VML(θ, Z) =
∑

k∈K

|Y (k) − G(Ωk, θ)U(k)|2

σ2
Y (k) + σ2

U (k) |G(Ωk, θ)|2 − 2Re(σ2
Y U (k)G(Ωk, θ))

(8.44)

w.r.t. θ, where K is defined in (8.37), and where σ2
XZ(k), with X,Z = U

and/or Y , are the true noise (co-)variances [53]. For the ZOH setup we have
Ω = z−1, σU = 0, and σY U = 0; while for the BL setup Ω = s. Some starting-
value algorithms are available for the non-linear minimisation problem (8.44):
(weighted) linear least squares [30, 67], total least squares [78], subspace [41,
80], . . . (see [47] and [53] for an overview).
Besides the model parameters, the orders na and nb of the numerator and de-
nominator polynomials in (8.22) must also be estimated. This is done via com-
parison of the identified model with the non-parametric FRF estimate (8.43),
a whiteness test of the residuals, and an analysis of the ML cost function via
the AIC and MDL criteria [32, 53]. An automatic procedure for selecting the
model orders na and nb can be found in [65].
Although the generator, controller, and process noise sources are suppressed
by the averaging procedure (8.41), they are not considered as noise in the ML
cost function (8.44). Indeed, in frequency bands where the generator noise Ng

and/or the controller noise NC are dominant (see Figure 8.4), the denominator
of the cost function (8.44) can be approximated by

∣∣∣∣
G0(Ωk) − G(Ωk, θ)
1 + G0(Ωk)M0(Ωk)

∣∣∣∣
2 (

σ2
g(k) + σ2

C(k)
)

(8.45)

with G0 and M0 the true plant and controller transfer functions. In the neigh-
bourhood of θ = θ0, (8.45) becomes very small and, hence, the generator and
controller noise contribute to the knowledge of the plant model via a large
weighting in the cost function. In frequency bands where the process noise
NP is dominant the denominator of (8.44) can be approximated by
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σ2
P(k)

∣∣∣∣1 − G0(Ωk) − G(Ωk, θ)
1 + G0(Ωk)M0(Ωk)

∣∣∣∣
2

(8.46)

In the neighbourhood of θ = θ0, (8.46) equals σ2
P(k), which is exactly the

variance of noisy plant output Y1(k) given the value of the true input U1(k)
of the plant (see Figure 8.4). It shows that the process noise part of the
excitation disappears in the denominator of (8.44) and, hence, contributes to
the knowledge of the plant model.
In practice the true noise (co-)variances are unknown and are replaced by the
sample (co-)variances (8.41). The minimiser of the corresponding cost function
is called the sample maximum likelihood estimator (SML). For M ≥ 7 it
has exactly the same asymptotic properties as the ML estimator (see [53, 73]
for the details), except that its covariance matrix is (M − 2) / (M − 3) times
larger. The latter is due to the extra variability introduced by the sample
(co-)variances (8.41).
Extensions to multivariable systems are available in [20] and [37].

8.5.3 Arbitrary Excitations: Generalised Output Error

General

This section covers the case where the identification starts from an exactly
known input and noisy output observations. We explicitly assume that (see
Figure 8.4 and (8.35)) MU = 0, NC = 0, and Ng = 0 in open loop (M = 0),
while MU = 0, Ng = 0, NC = 0, and MY = 0 in closed loop (M �= 0).
The classical time-domain methods implicitly assume that the acquisition
bandwidth is infinitely large. Hence, they are suitable for physical modelling
only if the input of the plant is either piecewise-constant or band limited (see
Section 8.2).

Overview

If the plant input u(t) is zero-order-hold (piecewise-constant), then the
continuous-time equations (8.21) are transformed without systematic errors
to a difference equation (see Section 8.2). This difference equation can be
parametrised in the original continuous-time model parameters, and the iden-
tification can be done using standard time-domain prediction error methods
(see [32] and the references therein). These methods minimise

VPE(θ, Z) =
N−1∑

t=0

(
H−1(q−1, θ)

(
y(t) − G(q−1, θ)

))2
(8.47)

w.r.t. θ, and a parametric noise model is identified simultaneously with the
plant model [32,77].
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If the plant input u(t) is band limited, then differential equation (8.21) is
transformed to a discrete-time equation by explicit or implicit approximation
of the time derivatives using digital filters. According to the digital filters
used these methods are known as the Poisson moment functional approach,
the integrated sampling approach, the instantaneous sampling approach, the
Laguerre approach . . . (see [12,74] and the references therein). These modelling
approaches work reasonably well (small systematic errors) for frequencies be-
low fs/4, but in the neighbourhood of the Nyquist frequency (f > fs/4) they
either introduce large errors or require (very) high-order digital filters [79].
Weighted (non-)linear least squares [74], maximum likelihood [79], instru-
mental variable [74,81] and subspace identification [4,25] methods have been
developed. All these methods, except the ARMAX-modelling in [24] and the
Box–Jenkins modelling in [81] (see also Chapter 4 in this book), either do not
identify a noise model or assume that it is known.
The direct methods for identifying CT noise models [19, 29, 35] implicitly
assume that the signals are not lowpass filtered before sampling (= ZOH
measurement setup). Hence, at low sampling rates the identified model may
strongly depend on the true inter-sample behaviour of the driving noise source
(see Section 8.2.2). Therefore, alias-correcting methods have been proposed
in [19].
A non-parametric estimate of the frequency-response function and its variance
is obtained as

Ĝ(Ωk) = Φ̂N
yu(ωk)

Φ̂N
u (ωk)

σ̂2
Ĝ

(k) =
∣∣∣Ĝ(Ωk)

∣∣∣
2
(
Φ̂N

u (ωk)Φ̂N
y (ωk)

|Φ̂N
yu(ωk)|2 − 1

) (8.48)

where the leakage error is classically suppressed via time-domain windows.
Better results are obtained via the so-called Taylor window (see [69,71]).

The Frequency-domain Gaussian Maximum likelihood Solution

Since the ZOH and BL measurement setups can be used for identifying
continuous-time systems (see Section 8.2), both DT and CT modelling are
considered here. The Gaussian maximum likelihood estimates of the plant
and noise model parameters (8.31), are found by minimising

VML(θ, Z) =
∑

k∈K

|ε(Ωk, θ)gF (θ)|2 (8.49)

w.r.t. the model parameters θ, with K defined in (8.37), ε(Ωk, θ) the prediction
error

ε(Ωk, θ) = H−1(Ωk, θ) (Y (k) − G(Ωk, θ)U(k) − TG(Ωk, θ) − TH(Ωk, θ))
(8.50)

and gF (θ) a scalar function depending on the plant model G, the noise model
H, and the true controller transfer function M0
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gF (θ) = exp

(
1
F

∑

k∈K

log
H(Ωk, θ)

1 + G(Ωk, θ)M0(Ωk)

)
(8.51)

where F = ord(K) (see [31, 38, 39, 42, 50, 55]). For the ZOH setup we have
Ω = z−1, while for the BL setup Ω = s.
A first surprising consequence of (8.49) is that the knowledge of the controller
contributes to the knowledge of the plant and noise models (M �= M0 in (8.51)
leads to biased estimates), which is not the case for the time-domain prediction
error method (8.47) (see [32]). This was mentioned for the first time in [38].
The apparent contradiction can be explained by the fact that cutting out a
part of the unit circle corresponds to non-causal filtering in the time domain
(e.g., convolution with a sinc-function). The latter invalidates the classical
construction of the likelihood function based on time-domain data captured in
feedback [11]. For discrete-time models, a monic parametrisation of H(z−1, θ),
K covering the whole unit circle, and G(z−1, θ) and/or M0(z−1) having at
least one sample delay, gF (θ), (8.51) converges to one for N → ∞ and, hence,
the cost function (8.49) reduces to the classical time domain prediction error
method (8.47) (for the proof see [55]).
The following practical advice results. Besides the true input u(t) and noisy
output y(t) of the plant, it is strongly recommended to store also the true
reference signal r(t) in a feedback experiment. Indeed, assuming that NC = 0,
Ng = 0, MU = 0, and MY = 0 in Figure 8.4, the true controller transfer
function can easily be reconstructed from these three signals. It allows the
plant and process noise in the relevant frequency band(s) to be modelled via
minimisation of (8.49). If the controller is unknown, then consistent estimation
is only possible at the price of modelling simultaneously the plant, the process
noise, the controller, and the reference signal [55].
A second surprising consequence of (8.49) is that, in contrast to the time-
domain prediction error method (8.47), consistent estimation of the plant
model parameters in open loop (M0 = 0 in (8.51)) always requires the correct
noise model structure.
Extension of these results to multi-variable systems can be found in [42] and
[57].

8.5.4 Arbitrary Excitations: Errors-in-variables

In this section it is explicitly assumed that the system operates in open loop
(M = 0 and NC = 0 in Figure 8.4), that the input–output errors NU and
NY in (8.35) are independent, and that the true input u0(t) can be written
as filtered white noise

u0(t) = L(q−1)eL(t) or u0(t) = L(p)eL(t) (8.52)

with L(z−1) and L(s), respectively, the discrete-time (DT) and continuous-
time (CT) signal model. Even under these simplified conditions, the errors-in-
variables (EIV) problem with arbitrary excitation is the most difficult linear
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system identification problem to be solved. An exhaustive overview of the
different time- and frequency- domain methods can be found in [75].
In Section 8.2.1 it has been shown that the discrete-time model built from the
input samples u1(nTs) to the output samples y1(nTs) (see Figure 8.2) depends
on the actuator characteristics (see (8.7)). As such, discrete-time modelling in
an EIV framework is, in general, not suited for physical interpretation. Note
that only a few time-domain algorithms exist for direct continuous-time EIV
modelling: in [36,76] continuous-time models are identified in the presence of
white input–output errors.
Identifiability is an important issue in EIV modelling [75]. For example, in
the CT case, the plant G(s), signal L(s), input noise HU (s), and output noise
HY (s) models can be uniquely identified if the following conditions are satis-
fied: (i) the numerator and denominator polynomials of each transfer function
G, L, HU , and HY separately have no common poles and zeros; (ii) monic
parameterisation of L, HU , HY , and the denominator of G; (iii) G has no
quadrant symmetric poles nor zeros; (iv) no pole or zero of G(s) is respec-
tively a zero or pole of L(s)L(−s); and (v) one of the following conditions is
fulfilled [1]

lim
s→s0

HU (s)HU (−s)
L(s)L(−s)

= 0 for

{
s0 = ∞
or a pole of L(s)L(−s)

(8.53)

lim
s→s0

HY (s)HY (−s)
G(s)L(s)G(−s)L(−s)

= 0 for

{
s0 = ∞
or a pole of G(s)L(s)G(−s)L(−s)

(8.54)

A frequency-domain Gaussian maximum likelihood solution has been devel-
oped in [56] that can handle coloured input–output errors and DT as well as
CT models. Similarly to all time-domain methods the following open prob-
lems still need to be solved: the sensitivity to model errors, the generation
of sufficiently good starting values for the ML solution in the general case
of coloured input–output errors, and the validation of the identified models
(e.g., the non-parametric FRF estimate (8.48) is biased for EIV problems).

8.6 Real Measurement Examples

8.6.1 Operational Amplifier

To avoid saturation during the open-loop gain measurement, the output of the
operational amplifier (opamp) is fed back to its the negative input via a buffer
in series with a resistor (see Figure 8.5). The buffer in the feedback loop pre-
vents loading of the opamp, and the choice of the resistor values R1 = 300 Ω
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and R2 = 12 kΩ is a compromise between the risk of driving the opamp in
saturation and a sufficiently large input signal-to-noise ratio [51]. The expe-
riments are performed with an odd random phase multi-sine excitation ug(t)
(see (8.40) with A2k = 0) with logarithmic frequency distribution between
9.5 Hz and 95 kHz. Of each group of three consecutive odd harmonics, one
odd harmonic is randomly eliminated. The generator and acquisition units
are synchronised, and their sampling frequencies are derived from the same
mother clock. The acquisition inputs and the generator output are lowpass
filtered. Five consecutive periods of the steady-state response are measured,
and the results are shown in Figure 8.6.

1

y(t)
ug(t) u(t)

R1

R2

Fig. 8.5. Basic scheme for measuring the open-loop gain of an operational amplifier

From the top row of Figure 8.6 it can be seen that the input and output DFT
spectra contain energy at the non-excited harmonics (the ‘o’ and grey ‘*’ are
well above the noise standard deviation). Due to the feedback loop (see Figure
8.5), the distortion at the input can be due to the non-linear behaviour of the
generator and/or the operational amplifier. Hence, to interpret correctly the
level of the non-linear distortion at the output Y (k), it must be compensated
for the linear contribution of the energy at the non-excited frequencies in
U(k) (see [63] for the details). After correction (see Figure 8.6, bottom), it
can be seen that the opamp indeed behaves non-linearly, and that the non-
linear distortions are (i) dominantly odd (the ‘o’ are well above the grey
‘*’), (ii) very large below 1 kHz, and (iii) decrease with increasing frequency.
Using the input and corrected output DFT spectra one can calculate the
open-loop gain, its noise standard deviation, and the total standard deviation
due to the input–output noise and the non-linear distortions (see [63]). The
results are shown in Figure 8.7. Clearly, the ‘noisy’ behaviour of the open-
loop gain is almost completely due to the non-linear distortions. Note that
all this information is obtained from an initial non-parametric preprocessing
step. This is the power of the periodic excitation signals (8.40).
Since the non-linear distortions are dominant in the measurements, the grey
‘+’ level in Figure 8.7 is used as variance σ̂2

Ĝ
(k) in the ML cost function (8.44),
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Fig. 8.6. Measured input and output DFT spectra (u(t) = 12.3 mVrms). Excited
harmonics ‘+’; non-excited even harmonics grey ‘*’; non-excited odd harmonics ‘o’;
noise standard deviation excited harmonics ‘–’; and noise standard deviation non-
excited harmonics ‘–’ (coincides with ‘–’ for the top figures).
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total standard deviation (non-linear distortion + noise), black line: noise standard
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where

Y (k) = Ĝ(k), U(k) = 1, σ2
Y (k) = σ̂2

Ĝ
(k), σ2

U (k) = 0, and σ2
Y U (k) = 0 (8.55)

with Ĝ(k) defined in (8.43). It turns out that a continuous-time model (8.22)
of order na = 6 and nb = 4 explains all dynamics in the measurements (see
Figure 8.8). This model is to be interpreted as the best linear approximation
(in the mean-square sense) of the non-linear system, for the class of Gaus-
sian excitation signals with power spectrum defined by the excited lines in
Figure 8.6, top left [14, 68]. Note that a full EIV approach in the presence of
non-linear distortions requires experiments with different realisations of the
random phase multi-sine (8.40), see [59].
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Fig. 8.8. Comparison measured (grey ‘+’) and modelled (bold solid line) open-loop
gain. Bold gray line: 95% uncertainty bound of the measurement, ‘–’ magnitude of
the complex difference between model and measurement.

8.6.2 Flight-flutter Analysis

To excite an airplane during flight, a perturbation signal is injected in the
control loop of the flap mechanism at the tip side of the right wing. The angle
perturbation of the flap is used as a measure of the applied force, and the
acceleration is measured at two different positions on the left wing. Beside the
applied perturbation, the airplane is also excited during flight by the natural
turbulence. The resulting turbulent forces acting on the airplane cannot be
measured and are assumed to be white in the frequency band of interest. Since
the input–output signals are lowpass filtered before sampling, a continuous-
time plant and noise model is the natural choice. The signals are measured
during about 128 s at the sampling rate fs = 256 Hz, giving N = 32, 768
data points per channel. Figure 8.9 shows the 2 × 1 force to acceleration
frequency-response function (FRF) in the band [4.00 Hz, 7.99 Hz] (DTF lines
k = 513, 514, . . . , 1023 =⇒ F = 511). From Figure 8.9 it can be seen that a
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continuous-time CARMAX model (see (8.31) with Ω = s and Table 8.2) of
order na = 8, nb = 8, nig = 9, and nc = 8, selected by the MDL criterion [32],
explains the measurements very well. The non-parametric FRF and noise
power spectra shown in these figures (grey bullets) are calculated as

Ĝ(sk) = Y (k)−TG(sk,θ̂)−TH(sk,θ̂)
U(k)

V̂ (k)V̂ H(k) with V̂ (k) = Y (k) − G(sk, θ̂)U(k) − TG(sk, θ̂) − TH(sk, θ̂)
(8.56)

where q̂ is the ML estimate obtained by minimising the multi-variable version
of cost function (8.49).
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Fig. 8.9. Flight-flutter data. (a): plant frequency-response function, (b): noise
power spectrum. Grey bullet: non-parametric estimate, bold solid line: estimated
model, bold dashed line: standard deviation estimated model.

8.7 Guidelines for Continuous-time Modelling

The methods are listed in order of increasing difficulty.

8.7.1 Prime Choice: Uniform Sampling, Band-limited
Measurement Setup, Periodic Excitation

Using periodic excitation signals a non-parametric noise model is obtained
in a preprocessing step prior to the identification of the parametric plant
model (see Section 8.5.2). Errors-in-variables identification, and identification
in closed loop is as easy as identification in a generalised output error stochas-
tic framework. Other features are (i) simplified model validation via improved
non-parametric transfer function estimate, and (ii) detection, qualification and
quantification of non-linear distortions (see Section 8.6.1).
To fully exploit the power of periodic excitation signals, the generator and
acquisition units should be synchronised; otherwise spectral leakage errors
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will be introduced. If synchronisation is impossible, then an additional pre-
processing is needed to suppress the leakage errors [72]. It requires that more
than two periods are measured.
Software tools: FDIDENT for single-input, single-output, open- and closed-
loop errors-in-variables problems [26,28]; and FREQID for multi-variable gen-
eralised output error problems [13].

8.7.2 Second Choice: Uniform Sampling, Band-limited
Measurement Setup, Arbitrary Excitation

Open Loop – Generalised Output Error

A parametric noise model is identified simultaneously with a parametric noise
model. The prime choice is the combination of a continuous-time (CT) plant
model with a continuous-time noise model (see Section 8.5.3). The second
choice is hybrid modelling (a CT plant model combined with a DT noise
model), because it is inconsistent in feedback, and only allows for a Box–
Jenkins model structure (see Table 8.2). Contrary to the frequency-domain
approach, the time-domain algorithms require the design of digital filters.
Software tool: CONTSID for hybrid modelling of multiple-input, single-output
systems [16–18].

Closed Loop – Generalised Output Error

In addition to the open-loop case, the controller or the reference signal should
be known; otherwise the controller and signal models should also be identified
(see Section 8.5.3).

Open Loop – Errors-in-variables

This is the most difficult linear system identification problem and it should
be avoided whenever possible: simultaneous identification of the plant, signal,
input noise, and output noise models.

8.7.3 Third Choice: Uniform Sampling, Zero-order-hold
Measurement Setup

In addition to the band-limited case (see Section 8.7.2), the discrete-time
model should be transformed to the continuous-time domain. This is fairly
easy for the poles (impulse invariant transformation) but can be rather tricky
for the zeros [3,27]. The drawback of this approach is that it relies heavily on
the perfect realisation of the ZOH characteristic of the excitation, which may
be poor in practice.
Software tools: SID [33] and CONTSID [16] for discrete-time modelling pa-
rameterised in the original continuous-time parameters; and ARMARA for
time-series analysis [7, 8].
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8.7.4 Last Resort: Non-uniform Sampling

If the input–output signals are oversampled by a factor ten, then the non-
uniform grid can be transformed to a uniform grid by cubic interpolation [66],
and then the methods of the previous sections can be applied. In the case of a
smaller oversampling factor, dedicated time-domain methods should be used.
Software tools: ARMASA for time-series analysis [7]; and CONTSID for gen-
eralised output error problems [16].

8.7.5 To be Avoided

Mixing the measurement setup (ZOH or BL) and the model (DT or CT), such
as a BL setup with a DT model or a ZOH setup with a CT model, introduces
bias errors. These errors create additional mathematical poles and zeros that
complicates or even jeopardises the physical interpretation of the identified
model. The identified models can still be used for simulation/prediction pur-
poses as long as the true inter-sample behaviour of the simulation/prediction
setup is identical to that of the identification setup.

8.8 Conclusions

Accurate physical modelling requires a careful design and calibration of the
experimental setup and, if one has full control of the input, a careful choice
of the excitation signal. The band-limited framework is the least sensitive
to deviations of the true input and the real measurement setup w.r.t. the
assumptions implicitly made by the identification algorithms. It leads in a
natural way to continuous-time plant and noise modelling, and allows use of
the full bandwidth from DC to Nyquist without introducing systematic errors.
The latter is especially important in applications where the measurement
bandwidth is costly (e.g., in the GHz range). If the input can freely be chosen
then one should use periodic excitation signals.
Indeed, these signals allow us to estimate the disturbing noise power spectra
in a preprocessing step and, as a consequence, the errors-in-variables problem
(noisy input and output observations) – which is the natural framework for
continuous-time modelling – is as easy to solve as the generalised output error
problem (known input and noisy output observations).

References
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9.1 Introduction

This chapter describes the continuous-time system identification (CONTSID)
toolbox for MATLAB�, which supports continuous-time (CT) transfer func-
tion and state-space model identification directly from regularly or irregularly
time-domain sampled data, without requiring the determination of a discrete-
time (DT) model. The motivation for developing the CONTSID toolbox was
first to fill in a gap, since no software support was available to serve the cause
of direct time-domain identification of continuous-time linear models but also
to provide the potential user with a platform for testing and evaluating these
data-based modelling techniques. The CONTSID toolbox was first released
in 1999 [15]. It has gone through several updates, some of which have been
reported at recent symposia [11, 12, 16]. The key features of the CONTSID
toolbox can be summarised as follows:

• it supports most of the time-domain methods developed over the last thirty
years [17] for identifying linear dynamic continuous-time parametric mo-
dels from measured input/output sampled data;

• it provides transfer function and state-space model identification methods
for single-input single-output (SISO) and multiple-input multiple-output
(MIMO) systems, including both traditional and more recent approaches;

• it can handle irregularly sampled data in a straightforward way;
• it may be seen as an add-on to the system identification (SID) toolbox for

MATLAB� [26]. To facilitate its use, it has been given a similar setup to
the SID toolbox;

• it provides a flexible graphical user interface (GUI) that lets the user anal-
yse the experimental data, identify and evaluate models in an easy way.

The chapter is organised in the following way. Section 9.2 outlines the main
steps of the procedure for direct continuous-time model identification. An
overview of the identification tools available in the toolbox is given in Sec-
tion 9.3. An introductory example to the command mode along with a brief
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description of the GUI are then presented in Section 9.4. In Section 9.5, the ad-
vantages of CT model identification approaches are discussed and illustrated.
A few successful application results from real-life process data are described
in Section 9.6. Finally, Section 9.7 presents conclusions of the chapter and
highlights future developments for the toolbox.

9.2 General Procedure for Continuous-time Model
Identification

The procedure to directly determine a continuous-time model of a dynamical
system directly from observed time-domain input/output data is similar to
the general approach used for traditional DT model identification and involves
three basic ingredients:

• the time-domain sampled input/output data;
• a set of candidate models (the model structure);
• a criterion to select a particular model in the set, based on the information

in the data (the parametric model estimation method).

The identification procedure consists then in repeatedly selecting a model
structure, computing the best model in the chosen structure, and evaluat-
ing the identified model. More precisely, the iterative procedure involves the
following steps:

1. Design an experiment and collect time-domain input/output data from
the process to be identified.

2. Examine the data. Remove trends and outliers, and select useful portions
of the original data.

3. Select and define a model structure (a set of candidate system descrip-
tions) within which a model is to be estimated.

4. Estimate the parameters in the chosen model structure according to the
input/output data and a given criterion of fit.

5. Examine the finally estimated model properties.

If the model is good enough, then stop; otherwise go back to Step 3 and try
another model set. Possibly also try other estimation methods (Step 4) or
work further on the input/output data (Steps 1 and 2).
As described in the following section, the CONTSID toolbox includes tools
for applying the general data-based modelling procedure summarised above.

9.3 Overview of the CONTSID Toolbox

9.3.1 Parametric Model Estimation

The CONTSID toolbox offers a variety of parametric model estimation meth-
ods for the most common input/output and state-space model structures.
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CT ARX Models

The CT autoregressive with external input (ARX) model structure considered
here, takes the form

A(p)y(tk) = B(p)u(tk − τ) + e(tk) (9.1)

with

B(p) = b1p
nb−1 + b2p

nb−2 + · · · + bnb
, (9.2)

A(p) = pna + a1p
na−1 + · · · + ana

, na ≥ nb − 1 (9.3)

where p denotes the differential operator; u(tk) and y(tk) represent the deter-
ministic input and noisy output signals at time instant tk, respectively; e(tk)
is a zero-mean DT white Gaussian sequence3 with variance σ2

e ; τ is a pure
time delay in time units. The latter will be assumed in the following to be an
integer number related to the sampling time Ts, i.e., τ = tnk

= nkTs. Note
however that this is not essential in this CT environment, ‘fractional’ time
delays can be introduced if required (e.g., see Chapter 11 and [27,49]).
The CT ARX model structure, when the time delay is supposed to be an
integer multiple of the sampling period, is denoted in the SISO case by the
triad [na nb nk].
Here, the integers na and nb are the number of parameters to be estimated in
each polynomial while nk is the number of delays from input to output. Note
that (9.1) also applies in a straightforward manner to the multiple-input case,
with nu input channels

A(p)y(tk) = B1(p)u1(tk−nk1
) + . . . + Bnu

(p)unu
(tk−nknu

) + e(tk) (9.4)

The CT MISO ARX model structure is denoted by [na nb1 . . . nbnu nk1 . . . nknu ].

Equation (9.1) can also be explicitly written as

y(na)(tk) + a1y
(na−1)(tk) + · · · + ana

y(tk) =

b1u
(nb−1)(tk−nk

) + · · · + bnb
u(tk−nk

) + e(tk) (9.5)

where x(i)(tk) denotes the ith time derivative of the continuous-time signal
x(t) at time instant tk = kTs.

It may be noted that in contrast to the difference-equation model, the
differential-equation model (9.5) is not a linear combination of samples of
only the measurable process input and output signals. It also contains time-
derivative terms that are not available as measurement data in most practical
cases. The general scheme for CT ARX model estimation then requires two
stages [17]:
3 The disturbance term is modelled here as a zero-mean discrete-time Gaussian

noise sequence. This avoids mathematical difficulties associated with continuous-
time stochastic process modelling (see, e.g., [1] and Chapter 2).
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• the primary stage that consists in using a preprocessing method to generate
some measures of the process signals and their time derivatives. This stage
also includes finding an approximating or discretizing technique so that
the preprocessing operation can be performed in a purely digital way from
sampled input/output data;

• the secondary stage in which the CT parameters are estimated within the
framework of a LS or IV-based linear regression methods. Most of the well-
known LS or IV-based methods developed for DT parameter estimation
can be extended to the CT case with slight modifications.

Therefore, the main difference from conventional DT ARX model identifica-
tion lies in the primary stage. There is a range of choice for the preprocess-
ing required in the primary stage. Each method is characterised by specific
advantages such as mathematical convenience, simplicity in numerical imple-
mentation and computation, physical insight, accuracy and others. However,
all perform some prefiltering on the process signals. Process signal prefiltering
is indeed a very useful and important way to improve the statistical efficiency
in system identification and yields lower variance of the parameter estimates.
Preprocessing methods developed over the last thirty years are traditionally
grouped into three main classes of methods that are summarised below. The
main references that have been used as the basis for their implementation
along with their acronym used in the toolbox, are also given (see [17]):

• for the linear filters: the state-variable filter (SVF) [52] and the generalised
Poisson moment functionals (GPMF) [18,42];

• for the modulating functions: the Fourier [34] and Hartley modulating
functions (HMF) [43];

• for the integral methods:
– among the numerical integration methods: the block-pulse functions

(BPF) [9], the trapezoidal-pulse functions (TPF) [9] and the Simpson’s
rule of integration (SIMPS) [7];

– among the orthogonal functions: the Fourier trigonometric functions
(FOURIE) [33], the Walsh functions (WALSH) [8], for the orthogonal
polynomials: Hermite (HERMIT) [33], Laguerre (LAGUER) [33], Leg-
endre (LEGEND) [33], first and second kind of Chebychev polynomials
(CHEBY1 and CHEBY2) [32];

– among the others methods: the linear integral filter (LIF) [39] and the
re-initialised partial moments (RPM) [35].

Several parameter estimation algorithms associated with all implemented pre-
processing techniques are available for identifying CT ARX models of the form
of (9.1) or (9.5). First, conventional least squares (LS)-based methods have
been implemented. In order to overcome the bias problem associated with
simple LS-based estimation in the presence of noisy output data, a two-step
instrumental variable (IV) estimator where the instruments are built up from
an auxiliary model, has also been coupled with all available preprocessing
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Table 9.1. Available methods for CT ARX model identification

Preprocessing LS IV BCLS WLS

methods SISO MISO SISO MISO SISO SISO

linear
filters

SVF � � � �
GPMF � � � � �

modulating
functions

FMF � � � � � �
HMF � � � � �

integral
methods

specific
RPM � � � �
LIF � � � �

numerical
integration

BPF � �
TPF � �

SIMPS � �
orthogonal
functions

FOURIE � �
WALSH � �

orthogonal
polynomials

CHEBY1 � �
CHEBY2 � �
HERMIT � �
LAGUER � �
LEGEND � �

techniques [17]. A few specific bias-reduction algorithms are also included,
like a weighted least squares (WLS) associated with the modulating func-
tions or a bias-compensating least squares (BCLS) technique coupled with
the GPMF approach [19]. For details on the different parametric estimation
methods for the CT ARX model identification, the reader is referred to [17].
Table 9.1 lists the methods available in the CONTSID toolbox for SISO and
MISO CT ARX model identification. The performances of the sixteen pre-
filtering methods mentioned above have been thoroughly analysed by Monte
Carlo simulation. Simulation [17,30] and real-life [28] studies have shown that
integral methods (this does not include the RPM and LIF techniques) can
have quite poor performances in the presence of medium to high measure-
ment output noise. In particular, they require the estimation of additional
initial condition parameters and have a high sensitivity to their user param-
eters. However, six of the methods exhibit very good overall performance:
these are based on linear filters (GPMF and SVF), on modulating functions
(FMF and HMF), and on the two particular types of integral methods (LIF
and RPM). The final choice for a particular approach will probably depend
on the taste or experience of the user since their global performances are very
close. It is, therefore, not necessary to be able to tell which of the approaches
is ‘best’. Experience says that each may have its advantages. It is, however,
good practice to have them all in one’s toolbox. Furthermore, these methods
can be used to get an initial high-quality estimate for iterative parametric
estimation methods, presented in the next paragraphs.
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CT Hybrid OE Models

The so-called CT hybrid output-error (OE) model structure is given by

y(tk) =
B(p)
F (p)

u(tk−nk
) + e(tk) (9.6)

with
F (p) = pnf + f1p

nf−1 + · · · + fnf
, nf ≥ nb − 1 (9.7)

where the noise e(tk) is assumed to be a zero-mean DT white Gaussian se-
quence so that no explicit noise modelling is necessary, except in relation to
the estimation of the variance of the DT white noise process.
The CT hybrid OE model structure is denoted in the SISO case by the triad
[nb nf nk].
Here, the integers nb and nf are the number of parameters to be estimated
in each polynomial ; nk is the number of delays from input to output. For a
multiple-input systems, (9.6) becomes

y(tk) =
B1(p)
F1(p)

u1(tk−nk1
) + . . . +

Bnu
(p)

Fnu
(p)

unu
(tk−nku

) + e(tk) (9.8)

The CT hybrid MISO OE model structure is denoted by
[nb1 . . . nbnu nf1 . . . nfnu nk1 . . . nknu ].

Two methods for identifying MISO OE structure-based models with different
denominators are available in the toolbox.
The first is based on the iterative simplified refined instrumental variable
method for continuous-time model identification (SRIVC: see Chapter 4). This
approach involves a method of adaptive prefiltering based on an optimal sta-
tistical solution to the problem in this white noise case. This SRIVC method
has been recently extended to handle MISO systems described by multiple
CT transfer functions with different denominators [13] of the form of (9.8). It
is important to mention that for day-to-day usage, the SRIVC algorithm pro-
vides a quick and reliable approach to CT model identification and has been
used for many years as the algorithm of choice for this in the CAPTAIN tool-
box4 and, more recently, in the CONTSID toolbox. The application results
of the SRIVC method to different real-life processes are further presented in
this chapter.
The second method abbreviated by COE (continuous-time output error) im-
plements the Levenberg–Marquardt or Gauss–Newton algorithm via sensitiv-
ity functions [38]. In contrast to LS- and IV-based methods, these algorithms
rely on a numerical search procedure with a risk to get stuck in local minima
and also require a larger amount of computation.

4 See http://www.es.lancs.ac.uk/cres/captain/.
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Table 9.2. Available methods for CT hybrid OE and BJ model identification

Methods
OE BJ

SISO MISO SISO

COE � �
SRIVC � �
RIVC �

CT Hybrid BJ Models

The so-called CT hybrid Box–Jenkins (BJ) model structure in the SISO case
is given by

y(tk) =
B(p)
F (p)

u(tk−nk
) +

C(q−1)
D(q−1)

e(tk) (9.9)

with

C(q−1) = 1 + c1q
−1 + · · · + cqq

−q (9.10)

D(q−1) = 1 + d1q
−1 + · · · + dpq

−p (9.11)

where e(tk) is a zero-mean DT white Gaussian sequence. Here, the model of
the basic dynamic system is in continuous time, while the associated additive
noise model is a discrete-time, autoregressive moving-average (ARMA)
process (see Chapter 4). This CT hybrid BJ model structure is denoted by
the following model order structure [nb nc nd nf nk].

One of the main advantage of the CT hybrid BJ model is the asymptotic inde-
pendence of the process and noise estimates. An approach based on the refined
optimal IV, denoted by RIVC, has been derived to estimate the parameters
of such models (see Chapter 4).
Table 9.2 lists the methods available in the CONTSID toolbox for CT hybrid
OE and BJ model identification.

CT State-space Models

Continuous-time state-space models considered in the CONTSID toolbox take
the form

{
ẋ(tk) = Ax(tk) + Bu(tk)
y(tk) = Cx(tk) + Du(tk) + ξ(tk)

(9.12)

where u(tk) ∈ R
nu is the input vector and y(tk) ∈ R

ny the output vector and
x(tk) ∈ R

n is the state vector at time tk, ξ(tk) ∈ R
ny is the possibly coloured

output noise vector.
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Table 9.3. Available methods for CT state-space model identification

Canonical model Fully parameterised model

LS IV BCLS N4SID

GPMF � � � �
FMF �
HMF �
RPM �
LIF �

Two types of approaches for CT state-space model identification are avail-
able in the CONTSID toolbox. A first family of techniques relies on the a
priori knowledge of structural indices, and considers the estimation of CT
canonical state-space models. From the knowledge of the observability in-
dices, the canonical state-space model can, in a straightforward way, be first
transformed into an equivalent input–output polynomial description that is
linear-in-its-parameters and therefore more suitable for the parameter esti-
mation problem. A preprocessing method may then be used to convert the
differential equation into a set of linear algebraic equations in a similar way to
that for CT ARX type of models. The unknown model parameters can finally
be estimated by LS-, IV- or BCLS-based algorithms [18,20]. This scheme has
been implemented for the GPMF approach only.
A second class of state-space model identification schemes is based on the
subspace-estimation techniques. Most efficient data-based modelling methods,
discussed so far, rely on iterative, non-linear optimisation or IV-type methods
to fit parameters in a preselected model structure, so as to best fit the observed
data. Subspace methods are an alternative class of identification methods that
are ‘one-shot’ rather than iterative, and rely on linear algebra.
Moreover, these subspace methods are attractive since canonical forms are not
required, while fully parameterised state-space models are estimated directly
from sampled I/O data. Most commonly known subspace methods were de-
veloped for DT model identification [44]. The association of the more efficient
preprocessing methods with subspace methods of the 4SID family [44] has
been implemented in the toolbox [4, 29] (see also Chapter 10 in this book).
Table 9.3 summarises the methods available in the CONTSID toolbox for CT
state-space model identification.
The application results of the GPMF-based subspace algorithm to a multiple-
input multiple-output winding process are presented in Section 9.6.3.

9.3.2 Model Order Selection and Validation

The toolbox also includes tools for selecting the model orders as well as for
evaluating the estimated model properties.
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Model Order Selection

Model order selection is one of the difficult tasks in the system identification
procedure. A natural way to find the most appropriate model orders is to
compare the results obtained from model structures with different orders and
delays. A model order selection algorithm associated to the SRIVC model es-
timation method allows the user to automatically search over a whole range of
different model orders. Two statistical measures are then used for the analysis.
The first is the simulation coefficient of determination R2

T , defined as follows

R2
T = 1 − σ2

ê

σ2
y

(9.13)

where σ2
ê is the variance of the estimated noise ê(tk) and σ2

y is the variance
of the measured output y(tk). This should be differentiated from the stan-
dard coefficient of determination R2, where the σ2

ê in (9.13) is replaced by
the variance of the final noise model residuals σ̂2. R2

T is clearly a normalised
measure of how much of the output variance is explained by the deterministic
system part of the estimated model. However, it is well known that this mea-
sure, on its own, is not sufficient to avoid overparametrisation and identify a
parsimonious model, so that other order identification statistics are required.
In this regard, because the SRIVC method exploits optimal instrumental vari-
able methodology, it is able to utilise the special properties of the instrumental
product matrix (IPM) [45, 53]; in particular, the YIC statistic [47] is defined
as follows

YIC = loge
σ̂2

σ2
y

+ loge{NEVN}; NEVN =
1
nθ

nθ∑

i=1

p̂ii

θ̂2
i

(9.14)

Here, nθ is the number of estimated parameters; p̂ii is the ith diagonal element
of the block-diagonal SRIVC covariance matrix and so is an estimate of the
variance of the estimated uncertainty on the ith parameter estimate. θ̂2

i is
the square of the ith SRIVC parameter estimate, so that the ratio p̂ii/θ̂

2
i is a

normalised measure of the uncertainty on the ith parameter estimate.
From the definition of R2

T , we see that the first term in the YIC is simply
a relative measure of how well the model explains the data: the smaller the
model residuals, the more negative the term becomes. The normalised error
variance norm (NEVN) term, on the other hand, provides a measure of the
conditioning of the IPM, which needs to be inverted when the IV normal
equations are solved (see e.g., [46]): if the model is overparameterised, then
it can be shown that the IPM will tend to singularity and, because of its ill-
conditioning, the elements of its inverse will increase in value, often by several
orders of magnitude. When this happens, the second term in the YIC tends
to dominate the criterion function, indicating overparametrisation.
Although heuristic, the YIC has proven very useful in practical identification
terms. It should not, however, be used as a sole arbiter of model order: rather
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the combination of R2
T and YIC provides an indication of the best parsimo-

nious models that can be evaluated by other standard statistical measures
(e.g., the autocovariance of the model residuals, the cross-covariance of the
residuals with the input signal u(tk), etc.). Also, within a ‘data-based mech-
anistic’ (DBM) model setting (see, e.g., [48]), the physical interpretation of
the model can often provide valuable information on the model adequacy:
for instance, a model with complex eigenvalues caused by overparametrisa-
tion may prove incompatible with the non-oscillatory nature of the physical
system under study.
The CONTSID toolbox includes a srivcstruc routine that allows the user
to automatically search over a range of different orders by using the SRIVC
algorithm and computes the two loss functions YIC and R2

T . The in-line help
specifies the required input parameters for the srivcstruc function

data=iddata(y,u,Ts);
V=srivcstruc(data,[],modstruc);

The routine collects in a matrix modstruc all the CT hybrid OE
model to be investigated so that each row of modstruc is of the type
[nb1 . . . nbnu nf1 . . . nfnu nk1 . . . nknu ], where nbj and nfj are the number of param-
eters for the numerator and denominator, respectively, and nkj represents the
number of samples for the delay. Then, a continuous-time model is fitted to
the iddata set data for each of the structures in modstruc. For each of these
estimated models, the two loss functions YIC and R2

T are computed from this
estimation data set. The best model structures sorted according to the chosen
criterion (‘YIC’ or ‘RT2’) are displayed with

selcstruc(V,criterion,nu);

where nu indicates the number of inputs. The application results of this model
order selection procedure are illustrated further in this chapter.

Experiment Design, Model Validation and Simulation

In addition to the parameter estimation and model order determination rou-
tines, the toolbox provides several functions in order to generate excitation
signals, simulate and examine CT models (see Table 9.4).
A few functions are available to generate excitation signals: prbs allows the
design of a pseudo-random binary signal of maximum length, while sineresp
returns the exact steady-state response of a continuous-time model for a sum
of sine signals.
Simulated data can then be generated by using the function simc that allows
the simulation of a CT model under an idss or idpoly format from a given
iddata input object from regularly or irregularly sampled data.

Two functions are available for model validation purposes: comparec displays
the measured output with the identified model output, while residc plots
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the auto-covariance function of the model residuals and the cross-covariance
function of the residuals with the input signal.
Note that most of the functions included in the SID toolbox for the computa-
tion and presentation of frequency functions and zeros/poles (bode, zpplot)
can be used with the identified CONTSID models.
The main demonstration program called idcdemo provides several examples
illustrating the use and the relevance of the CONTSID toolbox approaches.
These demos also illustrate what might be typical sessions with the CONTSID
toolbox.

Table 9.4. CONTSID toolbox programs for experiment design, model simulation,
order selection and validation

Program Description

idcdemo is the main routine for the CONTSID toolbox demonstration programs

prbs generates a pseudo-random binary sequence of maximum length

sineresp generates the exact steady-state response of a CT model for a sum of
sine signals

sineresp1 generates the exact steady-state response of a CT first-order model for
a sine given arbitrary initial conditions

sineresp2 generates the exact steady-state response of a CT second-order model
for a sine given arbitrary initial conditions

simc simulates a system under its CT idpoly or idss form

comparec compares measured and model outputs

residc computes and plots the residuals of a CT model. Plots the autocovari-
ance function of the model residuals, the cross-covariance function of
the residuals with the input signal

srivcstruc computes the fit between simulated and measured outputs for a set
of model structure of CT hybrid OE type estimated using the srivc

method

selcstruc helps to choose a model structure from the information obtained as the
output from srivcstruc

Recursive Estimation

In many situations, there is a need to estimate the model at the same time as
the data is collected during the measurement. The model is then ‘updated’ at
each time instant some new data become available. The updating is performed
by a recursive algorithm. Recursive versions RLSSVF, RIVSVF and RSRIVC
of the LS, IV-based SVF methods and optimal IV technique for CT hybrid
OE models are available in the CONTSID toolbox.
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Identification from Non-uniformly Sampled Data

The problem of system identification from non-uniformly sampled data is of
importance as this case occurs in several applications (see, e.g., Chapter 11).
The case of irregularly sampled data is not easily handled by discrete-time
model identification techniques, but as illustrated further in this chapter (see
Sections 9.4.1 and 9.6.2), mild irregularity can be easily handled by some
of the CONTSID toolbox methods. This is because the differential-equation
model is valid whatever the time instants considered and, in particular, it does
not assume regularly sampled data, as required in the case of the standard
difference-equation model.
Table 9.5 lists the functions available for data-based modelling from irregularly
sampled data.

Table 9.5. Available functions for CT model identification from irregularly sampled
data

Program Description

LSSVF LS-based state-variable filter method for CT ARX models

IVSVF IV-based state-variable filter method for CT ARX models

COE non-linear optimisation method for CT hybrid OE models

SRIVC optimal instrumental variable method for CT hybrid OE models

SIDGPMF subspace-based generalised Poisson moment functionals method for CT
state-space models

9.4 Software Description

The CONTSID toolbox is compatible with MATLAB� versions 6.x and 7.x.
Two external commercial toolboxes are required: the Control toolbox and
the SID toolbox. The current version can be considered as an add-on to the
SID toolbox and makes use of the iddata, idpoly and idss objects used in
the SID toolbox. It is freely available for academic researchers and can be
downloaded from
http://www.cran.uhp-nancy.fr/contsid/

All available parametric model estimation functions share the same command
structure

m = function(data,modstruc)
m = function(data,modstruc,specific parameters)

The input argument data is an iddata object that contains the output-
and input-data sequences along with the sampling time and inter-sample be-
haviour for the input, while modstruc specifies the particular structure of the
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model to be estimated. The specific parameters depend on the preprocessing
method used. The resulting estimated model is contained in m, which is a
model object that stores the various usual information. The function name
is defined by the abbreviation for the estimation method and the abbrevia-
tion for the associated preprocessing technique, as for example, IVSVF for
the instrumental variable-based state-variable filter approach or SIDGPMF
for subspace-based state-space model identification GPMF approach.
Note that help on any CONTSID toolbox function may be obtained from the
command window by invoking classically help name function.

9.4.1 Introductory Example to the Command Mode

A part of the first demonstration program is presented in this section. This
demo is designed to get the new user started quickly with the CONTSID
toolbox: it is straightforward to run the demo by typing idcdemo1 in the
MATLAB� command window) and follow along. This example considers a
second-order SISO CT system without delay. The complete equation for the
data-generating system has the following form

y(tk) =
3

p2 + 4p + 3
u(tk) + e(tk) (9.15)

where e(tk) is a zero-mean DT white Gaussian noise sequence. Let us first cre-
ate an idpoly model structure object describing the model. The polynomials
are entered in descending powers of the differential operator

m0=idpoly(1,[3],1,1,[1 4 3],’Ts’,0);

‘Ts’ and 0 indicate here that the system is time continuous.
We take a PRBS of maximum length with 1016 points as input u. The sam-
pling period is chosen to be 0.05 s

u = prbs(7,8);
Ts = 0.05;

We then create an iddata object for the input signal with no output, the input
u and sampling interval Ts. The input inter-sample behaviour is specified by
setting the property ’Intersample’ to ’zoh’ since the input is piecewise-
constant here

datau = iddata([],u,Ts,’InterSample’,’zoh’);

The noise-free output is simulated with the simc CONTSID routine and stored
in ydet. We then create an iddata object with output ydet, input u and
sampling interval Ts

ydet = simc(m0,datau);
datadet = iddata(ydet,u,Ts,’InterSample’,’zoh’);
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We then identify a CT ARX model for this system from the determinis-
tic iddata object datadet with the conventional least squares-based state-
variable filter (lssvf) method. The extra pieces of information required are

• the number of denominator and numerator parameters and number of
samples for the delay of the model [na nb nk] =[2 1 0];

• the cut-off frequency (in rad/s) of the SVF filter, set to 2 here.

The lssvf routine can now be used as follows

mlssvf = lssvf(datadet,[2 1 0],2)

which leads to5

CT IDPOLY model: A(s)y(t) = B(s)u(t) + e(t)
A(s) = s2 + 3.999 s + 2.999
B(s) = 2.999
Estimated using LSSVF
Loss function 6.03708e-15 and FPE 6.07284e-15

It will be noted that, not surprisingly, the estimated model coefficients are very
close to the true parameters. This is, of course, because the measurements are
not noise corrupted. Note that even in the noise-free case, the true parameters
are not estimated exactly here. This is due to small simulation errors intro-
duced in the numerical implementation of the continuous-time state-variable
filtering for the output signal.
Let us now consider the case when a white Gaussian noise is added to the
output samples. The variance of e(tk) is adjusted to obtain a signal-to-noise
ratio (SNR) of 10 dB. The SNR is defined as

SNR = 10 log
Pydet

Pe
(9.16)

where Pe represents the average power of the zero-mean additive noise on the
system output (e.g., the variance) while Pydet

denotes the average power of
the noise-free output fluctuations.

snr=10;
y = simc(m0,datau,snr);
data = iddata(y,u,Ts);

The input/output data are displayed in Figure 9.1. The use of this noisy out-
put in the basic lssvf routine will inevitably lead to biased estimates. A
bias-reduction algorithm based on the two-step instrumental variable tech-
nique where the instruments are built up from an auxiliary model (ivsvf)
can be used instead
5 Note that in the Matlab� System Identification (SID) toolbox, the variable ’s’

instead of ’p’ is used to denote the differential operator. The CONTSID toolbox
makes use of the SID object models ; therefore the CONTSID estimated models
are displayed with the ’s’ variable.
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Fig. 9.1. Input–output data (noisy case) – SNR=10 dB

mivsvf=ivsvf(data,[2 1 0],2)

which leads to

CT IDPOLY model: A(s)y(t) = B(s)u(t) + e(t)
A(s) = s2 + 3.988 s + 3.076
B(s) = 3.008
Estimated using IVSVF
Loss function 0.217742 and FPE 0.219032

It will be noted now that the parameters are close to the true ones. However,
this basic IV-based SVF method suffers from two drawbacks, even if it is
asymptotically unbiased:

• it requires the a priori knowledge of a user parameter: the cut-off frequency
of the SVF filter here;

• it is suboptimal, in the sense that the variance of the estimates is not
minimal (it depends of the SVF filter mainly).

It is better, therefore, to use the optimal (in this white output measurement
noise context) iterative IV method (srivc) that overcomes the two latter
drawbacks. The searched model now takes the form of a CT hybrid OE model
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Fig. 9.2. Noisy and simulated SRIVC model outputs

(9.6). The model structure becomes [nb nf nk] =[1 2 0].
The srivc routine can now be used as follows

msrivc = srivc(data,[1 2 0]);

The estimated parameters together with the estimated standard deviations
can be displayed

present(msrivc);

which leads to

CT IDPOLY model: y(t) = [B(s)/F(s)]u(t) + e(t)
B(s) = 3.002 (+-0.1113)
F(s) = s2 + 3.992 (+-0.1619) s + 3.067 (+-0.1061)
Estimated using SRIVC
Loss function 0.0135763 and FPE 0.0136567

Let us now compare the model output for the input signal with the measured
output. This can be done easily by using the comparec CONTSID routine

comparec(data,msrivc,1:1000);

which plots the measured and the simulated model outputs. As can be seen
in Figure 9.2, they coincide very well. We can also check the residuals of this
model, and plot the autocovariance of the residuals and the cross-covariance
between the input and the residuals by using the CONTSID residc routine

residc(data,msrivc);
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Fig. 9.3. Correlation test for the SRIVC model

From Figure 9.3, it may be seen that the residuals are white and totally
uncorrelated with the input signal. We can thus be satisfied with the model.
Let us finally compare the Bode plots of the estimated model and the true
system

bode(msrivc,’sd’,3,’fill’,m0,’y--’)

The confidence regions corresponding to three standard deviations are also
displayed. From Figure 9.4, it may be observed that the Bode plots coincide
very well with narrow confidence regions.

As previously mentioned, non-uniformly sampled data can be handled easily
by some CONTSID toolbox methods [21]. This is now illustrated here. The
data-generating system has the following form

y(tk) =
5

p2 + 2.8p + 4
u(tk) + e(tk) (9.17)

The input signal is chosen as the sum of three sines,

u(t) = sin(0.714t) + sin(1.428t) + sin(2.142t)
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Fig. 9.4. Bode plot of the SRIVC model together with a 3 standard deviation
uncertainty region

A non-uniform sampling setup similar to the one used in [23] is chosen. The
distance between two sampling instants is denoted by hk = tk+1 − tk. We
assume that h ≤ hk ≤ h, where h > 0 and h are the finite lower and upper
bounds, respectively. A uniform probability density function U(h, h) is used
to describe the variations of the sampling interval, i.e., hk ∼ U(0.01s, 0.1s).
3000 data points are used for the identification. Analytic expressions are used
to compute the noise-free output in order to avoid errors due to numerical
simulations. A zero-mean white noise is then added to the system output in
order to get a signal-to-noise ratio of 10 dB. The simulated output is stored in
y. Figure 9.5 displays a short section of 3 s of the sampled records and reveals
the non-uniform sampling intervals.
We first create a iddata object with output y, input u, and the available time
instant stored in the vector t. The input inter-sample behaviour is specified by
setting the property ’Intersample’ to ’foh’ since the input is not piecewise-
constant here

data = iddata(y,u,[],’SamplingInstants’,t,’InterSample’,’foh’);

The optimal IV algorithm srivc can now be used for the appropriate model
structure
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Fig. 9.5. A section of the noisy output, input signal and sampling interval value in
the case of irregularly sampled data – SNR=10 dB

msrivc=srivc(data,[1 2 0]);

The estimated parameters and standard errors can then be displayed with

present(msrivc);

which leads to

Continuous-time IDPOLY model:
y(t) = [B(s)/F(s)]u(t)
B(s) = 4.958 (+-0.0909)
F(s) = s2 + 2.796 (+-0.05637) s + 3.994 (+-0.05056)
Loss function 0.1748 and FPE 0.1752
Estimated using SRIVC

The estimated parameters are very close to the true ones.
As previously, traditional model validation tests can be performed to further
examine the quality of the estimated model.

9.4.2 The Graphical User Interface

The graphical user interface (GUI) for the CONTSID toolbox provides a main
window, as shown in Figure 9.6, which is divided into three basic parts:
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Fig. 9.6. The main window of the CONTSID GUI

• a data panel on the left part where data-sets can be imported, plotted,
pretreated and selected;

• a model estimation panel in the middle where CT ARX and CT hybrid OE
transfer function model structures and associated parameter estimation
methods can be tested;

• a model validation panel in the right part where basic properties of the
identified model can be examined.

The CONTSID GUI can be started by typing contsidgui in the MATLAB�

command window.

The Data Panel

As shown in Figure 9.6, the GUI lets the user define two data-sets: one for iden-
tifying the model and one, if sufficient data are available, for cross-validation
purposes.

Importing Measured Data

By clicking on the Load data button, time-domain sampled data from a .mat
file can be imported for systems with single- or multiple- input and single-
output channels. From this window, the input and output variables can be
specified along with the type of sampling scheme (regular or irregular), the
sampling time (Ts) and the assumption on the input inter-sample behaviour
(piecewise-constant (zoh) or continuous).
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Fig. 9.7. Data plot and pretreatment GUI window

Preprocessing and Selecting Observed Data

After the data have been imported, basic operations for data analysis and
preprocessing can be applied. An example of the window obtained after a
click on the button Plot & select data is displayed in Figure 9.7. This window
also allows the preprocessing of data including offset, drift removal and the
display of the results after the operation.
It is often the case that the whole data record is not directly suitable for
identification. This is mainly for two reasons:

• the data-sets include erroneous values that it is essential to eliminate;
• if only one data-set is available, it is advisable to divide the data-set into

two parts, the first for model estimation purposes and the second reserved
for cross-validation purposes.

The Cursor selection button allows the insertion of two vertical axes on the
output plot that can be used to define the selected portion of measured data.
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Model Estimation Panel

While the CONTSID toolbox supports transfer function and state-space
model identification methods, the GUI lets the user estimate CT ARX and
hybrid OE models only. The user is thus invited to choose the type of model
structure in the unrolling menu at the top right of the model estimation panel,
as shown in Figure 9.6.
After selecting the model structure, the user has to specify the polynomial
orders and the time delay of the model to be estimated.
A first option is to deduce an estimate of the number of samples for the time
delay from an estimation of the impulse response by correlation analysis.
Then, if the TF model orders are not known a priori, the Order search button
allows the user to automatically search over a whole range of different model
orders. The user can choose several available criteria to sort and display the
estimation results in the MATLAB� workspace. From these results, the user
can select the best model orders and then set the order of the final model to
be estimated by clicking on the Order set button from the main window.
Once the number of samples for the time delay and the number of coefficients
for the polynomial model have been set, the model parameters can then be
estimated by using one of the available parametric estimation methods chosen
from an unrolling menu

• in the case of a CT hybrid OE model structure, the user can choose to use
the continuous-time output error (COE) method or the simplified refined
instrumental variable (SRIVC) method;

• in the case of a CT ARX model structure, the user can select one of
the six preprocessing-based methods that have proven successful. These
preprocessing methods are coupled with conventional least squares or basic
auxiliary model-based instrumental variable methods. These all require a
user parameter to be specified by the user [17] which should be chosen in
order to emphasise the frequency band of interest.

Once the parameter estimation method is chosen, the identified model is dis-
played in the command window after a click on the Parameter estimation
button.

Model Validation Panel

Once a model is estimated, it appears in the drop-down menu located at the
top part of the Model Validation panel (see Figure 9.6). Several basic model
properties can then be evaluated from an unrolling menu by using first the
data that were used for model identification

• model-output comparison: plots and compares the simulated model output
with the measured output. This indicates how well the system dynamics
are captured;
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• residual plot : displays the residuals;
• transient response: displays the model response to an impulse or step ex-

citation signal;
• frequency response: displays the Nyquist or Bode plots to show damping

levels and resonance frequencies;
• zeros and poles : plots the zeros and poles of the identified models and tests

for zero-pole cancelation indicating overparameterised modelling;
• correlation test : displays the autocovariance function of the residuals and

the cross-covariance function between the input signal and the residuals.

If a cross-validation data-set is available, then traditional cross-validation tests
consist of comparisons between the measured and simulated model outputs
and analysis of the residuals.

9.5 Advantages and Relevance of the CONTSID Toolbox
Methods

There are two fundamentally different time-domain approaches to the prob-
lem of obtaining a CT model of a naturally CT system from its sampled
input/output data:

• the indirect approach that involves two steps. First, a DT model for the
original CT system is obtained by applying the DT model estimation meth-
ods and the DT model is then transformed into CT form;

• the direct approach where a CT model is obtained straightaway using CT
model identification methods discussed in this chapter.

The indirect approach has the advantage that it uses well-established DT
model identification methods [24, 41]. Examples of such methods, which are
known to give consistent and statistically efficient estimates under very gen-
eral conditions, are gradient-optimisation procedures, such as the maximum
likelihood and prediction error methods in the SID toolbox; and iterative, re-
laxation procedures, such as the refined instrumental variable (RIV) method
in the CAPTAIN toolbox.
On the surface, the choice between the two approaches may seem trivial.
However, some recent studies have shown some serious shortcomings of the
indirect route through DT models. Indeed, an extensive analysis aimed at
comparing direct and indirect approaches has been discussed recently. The
simulation model used in this analysis provides a very good test for CT and
DT model estimation methods: it was first suggested by Rao and Garnier [36]
(see also [17,37,38]); further investigations by Ljung [25] confirmed the results.
This example illustrates some of the well-known difficulties that may appear
in DT modelling under less standard conditions such as rapidly sampled data
or relatively wide-band systems:



272 H. Garnier et al.

• relatively high sensitivity to the initialisation. DT model identification of-
ten requires computationally costly minimisation algorithms without even
guaranteeing convergence (to the global optimum). In fact, in many cases,
the initialisation procedure for the identification scheme is a key factor
to obtain satisfactory estimation results compared to direct methods (see,
e.g., [50] for a recent reference);

• numerical issues in the case of fast sampling because the eigenvalues lie
close to the unit circle in the complex domain, so that the model param-
eters are more poorly defined in statistical terms;

• a priori knowledge of the relative degree is not easy to accommodate;
• non-inherent data prefiltering in the gradient-based methods (adaptive

prefiltering is an inherent part of the DT RIV method in CAPTAIN).

Further, the question of parameter transformation between a DT description
and a CT representation is non-trivial. First, the zeros of the DT model are
not as easily translatable to CT equivalents as the poles [2]; second, due to the
discrete nature of the measurements they do not contain all the information
about the CT signals. To describe the signals between the sampling instants
some additional assumptions have to be made, for example, assuming that the
excitation signal is constant between the sampling intervals (zero-order hold
assumption). Violation of these assumptions may lead to severe estimation
errors [40].
The advantages of direct CT identification approaches over the alternative
DT identification methods can be summarised as follows:

• they directly provide differential-equation models whose parameters can
be interpreted immediately in physically meaningful terms. As a result,
they are of direct use to scientists and engineers who most often derive
models in differential-equation terms based on natural laws and who are
much less familiar with ‘black-box’ discrete-time models;

• they can estimate a fractional time-delay system;
• the estimated model is defined by a unique set of parameter values that

are not dependent on the sampling interval Ts;
• there is no need for conversion from discrete to continuous time, as required

in the indirect route based on initial DT model estimation;
• the direct continuous-time methods can easily handle the case of mild

irregularity in the sampled data;
• the a priori knowledge of the relative degree is easy to accommodate and

therefore allows the identification of more parsimonious models than in
discrete time;

• they also offer advantages when applied to systems with widely separated
modes;

• they include inherent data filtering;
• they are well suited in the case of very rapid sampling. This is particularly

interesting since modern data-acquisition equipment can provide nearly
continuous-time measurements and, therefore, make it possible to acquire
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data at very high sampling frequencies. Note that, as mentioned in [25], the
use of prefiltering and decimation strategies may lead to better results in
the case of DT modelling, but these may not be so obvious for practitioners.
The CONTSID toolbox methods are free of these difficulties.

All these advantages will facilitate for the user the application of the gen-
eral data-based modelling procedure. In the following, these advantages are
illustrated with the help of a simulated benchmark system.

The SYSID’2006 Benchmark System

Here, the performance of the CONTSID toolbox techniques is illustrated by
applying them to a benchmark example that was prepared for the 14th IFAC
Symposium on System Identification (SYSID’06) in Newcastle, Australia6.
The intent of the benchmark was to set up a format in which rigorous com-
parisons between competing techniques for the identification of CT models
from sampled data, including time- and frequency-domain approaches, could
be undertaken. The goal was also to collect and analyse quantitative results
in order to understand similarities and differences among the approaches and
to highlight the strengths and weaknesses of each approach.
Two benchmark data sets were generated. Both were simulated continuous-
time systems based closely on mechatronic systems. Data corresponding to
these two benchmarks were sent to participants to apply their preferred tech-
nique.
Unfortunately, the associated Benchmark Session at SYSID was cancelled
because referees felt that insufficient submitted papers were acceptable (only
one of the papers submitted to the proposed benchmark session got even
close to the correct model, demonstrating the difficulty of the benchmark
exercise). This section presents the CONTSID toolbox results obtained on the
benchmark data set 1, in which the additive measurement noise is a simple
white additive noise. The second benchmark data set is more difficult since the
white measurement noise is replaced by non-stationary noise (similar results
were obtained using the CAPTAIN toolbox routines [50], where a modified
example with coloured additive noise is considered).
The SYSID Benchmark data set 1 is obtained from

{
x(t) = Go(p)u(t), subject to zero initial conditions
y(tk) = x(tk) + e(tk)

(9.18)

where the measurement noise e(tk) is a zero-mean DT white Gaussian se-
quence.
The system is a linear, fourth-order, non-minimum phase system with complex
poles where the Laplace transfer function is given by
6 The data can be downloaded from
http://sysid2006benchmark.cran.uhp-nancy.fr/.
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Fig. 9.8. Step response and Bode plot for the SYSID’2006 benchmark system

Go(s) =
K(−T1s + 1)(T2s + 1)e−τs(

s2

ω2
n,1

+ 2ζ1s
ωn,1

+ 1
)(

s2

ω2
n,2

+ 2ζ2s
ωn,2

+ 1
) (9.19)

with τ = 0.035 s, K = 1, T1 = 1/2 s, , T2 = 1/15 s, ωn,1 = 1 rad/s, ζ1 = 0.1,
ωn,2 = 60 rad/s, ζ2 = 0.25.
The system has one fast oscillatory mode with relative damping 0.25 and one
slow oscillatory mode with relative damping 0.1 spread over one decade and a
half. The system has a small time delay of 35 ms and is non-minimum phase,
with a zero in the right half-plane.
The step response and the Bode plot of the system are shown in Figure 9.8.
The settling time of the system is about 40 s.
The variance of the additive noise is adjusted to obtain a signal-to-noise ratio
(see (9.16)) SNR= 8 dB.
The sampling period has been chosen as Ts = 5 ms (sampling frequency
ωs = 1256 rad/s) that corresponds to about 20 times the bandwidth and is
therefore higher than the usual rule of thumb given for discrete-time model
identification7.
The input signal is a pseudo-random binary sequence of maximum length
(±1.0) and the complete data set consists of 6138 input/output samples. A
section of the input/output data is plotted in Figure 9.9.
The model order selection procedure (see Section 9.3.2) was applied for
different model structures. The best models sorted according to YIC are
presented in Table 9.6. From this table, the correct model order structure
[nb nf nk]= [3 4 7] is quite clear cut. It has indeed the fourth most negative
YIC=–11.33 with the highest associated R2

T = 0.962. The subsequent single-
run SRIVC model estimation results are shown in Table 9.7, where it can

7 The usual rule of the thumb for discrete-time model identification is to choose
the sampling frequency about ten times the bandwidth.
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Table 9.6. Best SRIVC model orders for the SYSID’2006 benchmark system. Niter

denotes the number of iterations for the SRIVC algorithm to converge

nb nf nk YIC R2
T Niter

2 2 7 –12.65 0.937 2

2 2 8 –12.61 0.936 2

2 4 7 –12.24 0.936 4

3 4 7 –11.33 0.962** 4

3 4 8 –11.18 0.961 4

4 5 7 –10.89 0.962 4

2 4 8 –10.67 0.912 4

4 4 8 –9.95 0.962 4

be seen that the algorithm provides good parameter estimates with relatively
small standard error (SE) estimates. Figure 9.10 shows that the step and
frequency responses of the single run SRIVC estimated model are hardly dis-
tinguishable from those of the true model. It is interesting to mention here that
indirect estimation using the discrete-time ARX, IV4 and PEM algorithms,
followed by conversion to continuous time using the MATLAB� d2cm func-
tion, failed at this fast sampling rate because the algorithms did not converge
on acceptable discrete-time models.

9.6 Successful Application Examples

In this section, identification results for three real-life processes selected from
robotic, biological and electro-mechanical fields are summarised. They illus-
trate the use of the CONTSID toolbox methods to identify both continuous-
time transfer function and state-space models directly from regularly and
irregularly sampled data.
Additional successful experiences of the CONTSID toolbox methods with
other real-life data processes [10, 13, 14, 28, 31] have already been reported
including an industrial binary distillation column [10] but also in the case of
biomedical systems [14] and environmental process data [51].

9.6.1 Complex Flexible Robot Arm

Process Description and Modelling Purpose

The robot arm is installed on an electrical motor. The modelling aim is here to
design a control law based on a model between the measured reaction torque
of the structure on the ground to the acceleration of the flexible arm. The
robot arm is described in more detail in [22].
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Fig. 9.9. A section of the SYSID’2006 benchmark data set 1
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Table 9.7. SYSID’2006 benchmark system estimation results

Method Value b̂0 b̂1 b̂2 â1 â2 â3 â4

True –120 –1560 3600 30.2 3607 750 3600

SRIVC θ̂ –114.6 –1493 3543 29.32 3524 732.9 3509
SE 2.7 21.2 38.7 0.92 35.8 9.0 36.2

Experiment Design

The excitation signal is a multi-sine. The sampling period is set to 2 ms.
Measurements are made with anti-aliasing filters. K = 10 periods each of
length M = 4096 are exactly measured and a record of N = KM = 40, 960
data points is collected. The data set over the 3rd period is displayed in
Figure 9.11.

Model Order Determination

The empirical transfer function estimate (ETFE) obtained from the 3rd period
data set is displayed in Figure 9.12. From this figure, one can have a good
indication about the model orders of the system. Indeed, one can see from
the ETFE that the system has at least 3 resonant modes and 4 zeros in the
frequency band ω ∈ [0; 350] rad/s.
Different model structures in the range [nb nf nk] = [4 4 0] to [7 6 0] have
been computed for the 3rd period data set. The other data set periods were
kept for model validation purposes8.
The 7 best models sorted according to YIC are given in Table 9.8. From this
table, the first model with [nb nf nk]= [6 6 0] seems to be quite clear cut (it
has the most negative YIC=−9.19, with the highest associated R2

T = 0.977).

Identification Results

The process identification is performed with the SRIVC algorithm on the
third-period data set. The identification result is given as the [6 6 0] Laplace
transfer function model

Ĝ(s) =
20.87(s − 618.5)(s2 − 1.698s + 710.6)(s2 + 8.435s + 2.012e4)

(s2 + 1.033s + 2094)(s2 + 0.9808s + 9905)(s2 + 2.693s + 7.042e4)
(9.20)

This estimated model is characterised by three, lightly damped dynamic
modes, as defined in Table 9.9.
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Fig. 9.11. The data set over the 3rd-period robot arm data set

Model Validation

Figure 9.13(a) compares the simulated SRIVC model output with the mea-
sured output series, over a short section of 0.4 s in the 8th-period data set.
It can be noticed that the simulated output matches the measured data quite
well, with R2

T > 0.95. There is also a very good agreement between the ETFE
and the frequency response of the estimated SRIVC model, as shown in Figure
9.13(b).

9.6.2 Uptake Kinetics of a Photosensitising Agent into Cancer
Cells

Process Description and Modelling Purpose

Figure 9.14(a) depicts the basic material used in in vitro experiments for
studying the uptake kinetics of a photosensitising drug into living cancer cells.
Cells are seeded in culture wells and are exposed at time t0 = 0 to a photosen-
sitising drug D. The purpose of this study is the estimation of the uptake yield

8 Similar identification results have been obtained from all of the other 9 period
data sets.
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Fig. 9.12. Empirical transfer function estimate for the robot arm

(ρ) and the initial uptake rate (v0). These biological parameters allow the bi-
ologists to discriminate the uptake characteristics of different photosensitisers
and thus to choose the suitable photosensitising agent for the treatment of a
given cancer cell line [3].

Experiment Design

The input variable u(t) of this biological process is a step signal that corre-
sponds to the amount of drug injected into the well from time t0. The mag-
nitude of the step is given by u0 = 5 × 10−3μmol · L−1. x(t) and y(t) denote
the extracellular quantity of photosensitising drug and the amount of drug ab-
sorbed by the cells, respectively. The process output is ym(t), the measurement
of y(t), given by a spectrofluorimeter at times {tk} = {1, 2, 4, 6, 8, 14, 18, 24h}.
Therefore, we are confronted with a model identification problem from non-
uniformly sampled data. In this study, it is assumed that ym(tk) = y(tk)+e(tk)
where e(tk) ∼ N (0, σ2

e), is the measurement noise. Two experiments have been
carried out with two different protein concentrations [Se] = 0% et [Se] = 9%
in the culture medium.
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Table 9.8. Best SRIVC model orders for the robot arm data set

nb nf nk YIC R2
T

6 6 0 –9.19 0.977**

4 4 0 –8.56 0.940

7 6 0 –8.03 0.977

5 6 0 –7.41 0.976

5 4 0 –7.01 0.940

6 5 0 –5.56 0.966

4 5 0 –4.86 0.959

4 6 0 –3.49 0.950

Table 9.9. Eigenvalues and dynamic modes for the robot arm SRIVC model

Real Imag. Damping Nat. Freq. (rad/s)

–0.52 + 45.76i 0.0113 45.76

–0.52 – 45.76i 0.0113 45.76

–0.49 + 99.52i 0.0049 99.52

–0.49 – 99.52i 0.0049 99.52

–1.35 + 265.37i 0.0051 265.37

–1.35 – 265.37i 0.0051 265.37
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Fig. 9.13. Cross-validation results on a short section of the 8th-period data set and
comparison of ETFE (‘×’) and SRIVC model (solid line) frequency responses for
the flexible robot arm
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Model Structure Selection

The in vitro uptake of the photosensitising agent into cancer cells can be des-
cribed by a linear model with two compartments, as shown in Figure 9.14(b).
The two compartments are associated with the extracellular and intracellular
volumes, respectively. Parameters ku and kr are the uptake and release rates
respectively. Differential equations of this compartmental model are defined
as follows

dx(t)
dt

= kry(t) − kux(t) +
du(t)
dt

(9.21)

dy(t)
dt

= kux(t) − kry(t) (9.22)

with x(0) = y(0) = 0. Substitution of x(t) from (9.21) into (9.22), yields

1
ku + kr

dy(t)
dt

+ y(t) =
ku

ku + kr
u(t) (9.23)

Accordingly, the equivalent first-order model used in the parameter estimation
step is

G[Se](p) =
b0

p + f0
(9.24)

with b0 = ku and f0 = ku + kr. The uptake yield rate and the initial uptake
rate of the photosensitiser uptake process are given by ρ = b0/f0 and v0 = b0.
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Identification Results

The process identification is performed with the srivc algorithm on two in
vitro data sets. The estimated transfer function models for the two protein
concentrations take the form

Ĝ0%(p) =
162.7(±21.45)

p + 0.333(±0.056)
; Ĝ9%(p) =

41.1(±7.18)
p + 0.535(±0.12)

(9.25)
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Fig. 9.15. Measured (‘•’ and ‘◦’) and simulated uptake responses (solid lines)

Model Validation

Figure 9.15 shows the two estimation data sets and the simulated uptake re-
sponses obtained from Ĝ0% and Ĝ9%. In experimental biology, identical experi-
ments often produce different outcomes. This variability of the measurements
is mainly due to the high sensitivity of living cells to external disturbances.
Accordingly, cross-validation tests are usually not applicable in such a bio-
logical context. Here, however, the identified model has been validated by
biologists [6].
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9.6.3 Multi-variable Winding Process

Pilot description

The present section turns to a multiple-input, multiple-output system based
on a winding pilot plant [5]. Winding systems are, in general, continuous, non-
linear processes. They are encountered in a wide variety of industrial plants
such as rolling mills in the steel industry, plants involving web conveyance
including coating, papermaking and polymer film extrusion processes. The
main role of a winding process is to control the web conveyance in order to
avoid the effects of friction and sliding, as well as the problems of material
distortion that can also damage the quality of the final product.
As illustrated in Figure 9.16, the main part of this MIMO pilot plant is a
winding process composed of a plastic web and three reels. Each reel is coupled
with a direct-current motor via gear reduction. The angular speed of each
reel (S1, S2, S3) is measured by a tachometer, while the tensions between the
reels (T1, T3) are measured by tension meters. At a second level, each motor
is driven by a local controller. Two PI control loops adjust the motor currents
(I1) and (I3) and a double PI control loop drives the angular speed (S2).
The setpoints of the local controllers (I∗1 , S∗

2 , I∗3 ) constitute the manipulated
inputs of the winding system u(t) =

[
I∗1 (t) S∗

2 (t) I∗3 (t)
]T . Essentially, driving

a winding process comes down to controlling the web linear velocity and the
web tensions (T1) and (T3) around a given operating point. Consequently, the
output variables of the winding system are y(t) =

[
T1(t) T3(t) S2(t)

]T . The
process is described in more detail in [4]. The relevant MATLAB� files in the
CONTSID toolbox are idcdemo7.m and winding.mat.
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Experiment Design

Discrete-time internal binary sequences were used as excitation signals. The
sampling period is set to 10 ms. The mean and linear trend of the signals
were removed and the resulting input/output signals are shown in Figures
9.18 and 9.17.
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Fig. 9.17. Output signals for the winding process

Model Structure Selection

The system order n = 3 has been chosen by analysing the evolution of the
mean square error between the process and model outputs with respect to
n. No significant decrease has been observed for n > 3. Note, however, that
the algorithm makes it possible to estimate the system order along with the
model parameters if it is not known a priori.

Identification Results

The process identification is performed with the 4SID-based GPMF algorithm
sidgpmf. The identification result is given as a CT state-space model that
takes the form
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{
ẋ(tk) = Ax(tk) + Bu(tk)
y(tk) = Cx(tk) + Du(tk) + ξ(tk)

(9.26)

with

(
A B
C D

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−1.6414 −0.9874 −0.4773

−0.1261 −2.7725 −1.3205

0.4517 2.1746 −4.2674

4.4994 −3.1047 −4.0889

2.0652 −3.3796 −9.0513

11.7889 9.6855 −15.4186

−1.1073 0.4345 −0.0536

0.1442 −0.1717 −0.2537

−0.2047 −0.4425 0.1120

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(9.27)

Model Validation

Cross-validation results are plotted in Figure 9.19 where it may be observed
that there is a very good agreement with quite high values for the coefficient
of determination.

9.7 Conclusions

This chapter has outlined the main features of the MATLAB� CONTSID
toolbox and illustrated its potential in practical applications. The toolbox,
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Fig. 9.19. Cross-validation results for the winding process. Measured (solid line)
and model (dashdot line) outputs.

which provides access to most of the time-domain continuous-time model
identification techniques that allow for the identification of continuous-time
models from discrete-time data, is in continual development. Planned new
releases will incorporate routines to solve errors-in-variables and closed-loop
identification problems, as well as non-linear continuous-time model identifi-
cation techniques.

Acknowledgements

The authors wish to thank Eric Huselstein and Hamza Zbali for the develop-
ments of the CONTSID toolbox and the CONTSID graphical user interface,
respectively.
They are also grateful to Professor Istvan Kollar from the Budapest Univer-
sity of Technology and Economics, Hungary who kindly provided us with the
robot-arm data used in Section 9.6.1.
The authors are very grateful to Professor Peter Young for his help in reading
and commenting on this chapter during its preparation. Of course, the authors
remain responsible for any errors or omissions in this final version.



9 The CONTSID toolbox for MATLAB� 287

References
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Subspace-based Continuous-time Identification

Rolf Johansson

Lund University, Sweden

10.1 Introduction

The last few years have witnessed a strong interest in system identification
using realisation-based algorithms. The use of Markov parameters as sug-
gested by Ho and Kalman [18] Akaike [1], and Kung [28], of a system can
be effectively applied to the problem of state-space identification; see Verhae-
gen et al. [43, 44], van Overschee and de Moor [41], Juang and Pappa [26],
Moonen et al. [36], Bayard [3,4, 33,34]. Suitable background for the discrete-
time theory supporting stochastic subspace model identification is to be found
in [1,14,41]. As for model structures and realisation theory, see the important
contributions [12,31]. As these subspace-model identification algorithms deal
with the case of fitting a discrete-time model, it remains as an open prob-
lem how to extend these methods for continuous-time (CT) systems. A great
deal of modelling in natural sciences and technology is made by means of
continuous-time models and such models require suitable methods of system
identification [19]. To this end, a theoretical framework of continuous-time
identification and statistical model validation is needed. In particular, as ex-
perimental data are usually provided as time series, it is relevant to provide
continuous-time theory and algorithms that permit application to discrete-
time data.
This chapter1 treats the problem of continuous-time system identification
based on discrete-time data and provides a framework with algorithms pre-
sented in preliminary forms in [16, 21–23]. The approach adopted is that of
subspace-model identification [25, 41, 43, 44], though elements of continuous-
time identification are similar to those previously presented for the prediction-
error identification [19, 20]. Some relevant numerical aspects are treated in
references [5, 45,46].

1 This chapter is partly based on the paper [23] co-authored with M. Verhaegen
and C. T. Chou.
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10.2 Problem Formulation

Consider a continuous-time time-invariant system Σn(A,B,C,D) with the
state-space equations

ẋ(t) = Ax(t) + Bu(t) + v(t)
y(t) = Cx(t) + Du(t) + e(t) (10.1)

with input u ∈ R
m, output y ∈ R

p, state vector x ∈ R
n and zero-mean distur-

bance stochastic processes v ∈ R
n, e ∈ R

p acting on the state dynamics and
the output, respectively. The continuous-time system identification problem is
to find estimates of system matrices A, B, C, D from finite sequences {uk}Nk=0

and {yk}Nk=0 of input–output data.

10.2.1 Discrete-time Measurements

Assume periodic sampling to be made with period h at a time sequence
{tk}Nk=0, with tk = t0 +kh with the corresponding discrete-time input–output
data {yk}Nk=0 and {uk}Nk=0 sampled from the continuous-time dynamic system
of (10.1). Alternatively, data may be assumed generated by the time-invariant
discrete-time state-space system

xk+1 = Azxk + Bzuk + vk; Az = eAh, Bz =
∫ h

0

eAsBds (10.2)

yk = Cxk + Duk + ek (10.3)

with equivalent input–output behaviour to that of (10.1) at the sampling-time
sequence. The underlying discretised state sequence {xk}Nk=0 and discrete-time
stochastic processes {vk}Nk=0, {ek}Nk=0 correspond to disturbance processes v
and e that can be represented by the components

vk =
∫ tk

tk−1

eA(tk−s)v(s)ds, k = 1, 2, ..., N (10.4)

ek = e(tk) (10.5)

with the covariance

E{
[
vi
ei

] [
vj
ej

]T
} = Qδij =

[
Q11 Q12

QT
12 Q22

]
δij , Q ≥ 0, q = rank(Q) (10.6)

Consider a discrete-time time-invariant system Σn(A,B,C,D) with the state-
space equations with input uk ∈ R

m, output yk ∈ R
p, state vector xk ∈ R

n

and noise sequences vk ∈ R
n, ek ∈ R

p acting on the state dynamics and the
output, respectively.
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Remark: As computation and statistical tests deal with discrete-time data,
we assume the original sampled stochastic disturbance sequences to be uncor-
related with a uniform spectrum up to the Nyquist frequency. The underly-
ing continuous-time stochastic processes will have an autocorrelation function
according to Figure 10.1, thereby avoiding the mathematical problems asso-
ciated with the stochastic processes of Brownian motion.
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Fig. 10.1. Autocorrelation functions (upper diagram) and autospectra (diagram
below) of a continuous-time (solid line stochastic variable w(t) and a discrete-time
(‘o’ ) sample sequence {wk}. The CT process is bandwidth limited to the Nyquist
frequency ωN = π/2 [rad/s] of a sampling process with sampling frequency 1 Hz.
Properties of the sampled sequence {wk} confirm that the sampled sequence is an
uncorrelated stochastic process with a uniform autospectrum.

10.2.2 Continuous-time State-space Linear System

From the set of first-order linear differential equations of (10.1) one finds the
Laplace transform

sX = AX + BU + V + sx0; x0 = x(t0) (10.7)
Y = CX + DU + E (10.8)

Introduction of the complex-variable transform
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λ(s) =
1

1 + sτ
(10.9)

corresponding to a stable, causal operator permits an algebraic transformation
of the model

X = (I + τA)[λX] + τB[λU ] + τ [λV ] + (1 − λ)x0 (10.10)
Y = CX + DU + E (10.11)

Reformulation, while ignoring the initial conditions to linear system equations
gives

[
ξ
y

]
=
[
I + τA τB

C D

] [
x
u

]
+
[
τv
e

]
, x(t) = [λξ](t) (10.12)

=
[
Aλ Bλ

C D

] [
x
u

]
+
[
τv
e

]
,

{
Aλ = I + τA

Bλ = τB
(10.13)

the mapping between (A,B) and (Aλ, Bλ) being bijective. Provided that a
standard positive semi-definiteness condition of Q is fulfilled so that the Ric-
cati equation has a solution, it is possible to replace the linear model of (10.13)
by the innovations model

[
ξ
y

]
=
[
Aλ Bλ

C D

] [
x
u

]
+
[
Kλ

I

]
w, Kλ = τK (10.14)

By recursion, it is found that

y = Cx + Du + w (10.15)
= CAλ[λx] + CBλ[λu] + Du + CKλ[λw] + w (10.16)
...

= CAk
λ[λ

kx] +
k∑

j=1

CAk−jBλ[λk−ju] + Du

+
k∑

j=1

CAk−jKλ[λk−jw] + w (10.17)

For the purpose of subspace model identification, it is straightforward to for-
mulate extended linear models for the original models and its innovations
form

Y = ΓxX + ΓuU + ΓvV + E (10.18)
Y = ΓxX + ΓuU + ΓwW (10.19)

with input–output and state variables
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Y =

⎡

⎢⎢⎢⎢⎢⎣

[λi−1y]
[λi−2y]

...
[λ1y]
y(t)

⎤

⎥⎥⎥⎥⎥⎦
, U =

⎡

⎢⎢⎢⎢⎢⎣

[λi−1u]
[λi−2u]

...
[λ1u]
u(t)

⎤

⎥⎥⎥⎥⎥⎦
, X = [λi−1x] (10.20)

and stochastic processes of disturbance

V =

⎡

⎢⎢⎢⎢⎢⎣

[λi−1v]
[λi−2v]

...
[λ1v]
v(t)

⎤

⎥⎥⎥⎥⎥⎦
, E =

⎡

⎢⎢⎢⎢⎢⎣

[λi−1e]
[λi−2e]

...
[λ1e]
e(t)

⎤

⎥⎥⎥⎥⎥⎦
, W =

⎡

⎢⎢⎢⎢⎢⎣

[λi−1w]
[λi−2w]

...
[λ1w]
w(t)

⎤

⎥⎥⎥⎥⎥⎦
(10.21)

and parameter matrices of state variables and input–output behaviour

Γx =

⎡

⎢⎢⎢⎣

C
CAλ

...
CAi−1

λ

⎤

⎥⎥⎥⎦ ∈ R
ip×n (10.22)

Γu =

⎡

⎢⎢⎢⎢⎣

D 0 · · · 0

CBλ D
. . .

...
...

...
. . . 0

CAi−2
λ Bλ CAi−3

λ Bλ · · · D

⎤

⎥⎥⎥⎥⎦
∈ R

ip×im (10.23)

and for stochastic input–output behaviour

Γv =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
τC 0 0 0

τCAλ τC
. . .

...
...

...
...

. . . 0 0
τCAi−2

λ τCAi−3
λ · · · τC 0

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ R

ip×im (10.24)

and

Γw =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0 0

CKλ I
. . .

...
...

... CKλ
. . . 0 0

CAi−3
λ Kλ

...
. . . I 0

CAi−2
λ Kλ CAi−3

λ Kλ · · · CKλ I

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(10.25)

It is clear that Γx of (10.22) represents the extended observability matrix as
known from linear system theory and subspace model identification [41,43,44].
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10.3 System Identification Algorithms

The theory provided permits formulation of a variety of algorithms with the
same algebraic properties as the original discrete-time version, though with
application to continuous-time modeling and identification. Below is presented
one realisation-based algorithm (Alg. 1) and two subspace-based algorithms
(Alg. 2–3) with application to time-domain data and frequency-domain data,
respectively. Theoretical justification for each one of these algorithms follows
separate from the algorithms.

Algorithm 1 (System Realisation ad modum Ho–Kalman) [3, 18,
21,26]

1. Use least squares identification to find a multi-variable transfer function

G(λ(s)) = D−1
L (λ)NL(λ) =

∞∑

k=0

Gkλ
k (10.26)

where DL(λ), NL(λ)are polynomial matrices obtained by means of some
identification method such as linear regression with

ε(t, θ) = DL(λ)y(t) − NL(λ)u(t) (10.27)
G(λ) = D−1

L (λ)NL(λ) (10.28)
DL(λ) = I + D1λ + · · · + Dnλ

n (10.29)
NL(λ) = N0 + N1λ + · · ·Nnλ

n (10.30)

2. Solve for the transformed Markov parameters to give

Gk = Nk −
k∑

j=1

DjGk−j , k = 0, . . . , n (10.31)

Gk = −
n∑

j=1

DjGk−j , k = n + 1, . . . , N (10.32)

3. For suitable numbers q, r, s such that r + s ≤ N arrange the Markov
parameters in the Hankel matrix

G(q)
r,s =

⎡

⎢⎢⎢⎣

Gq+1 Gq+2 · · · Gq+s

Gq+2 Gq+3 · · · Gq+s+1

...
...

. . .
...

Gq+r Gq+r+1 · · · Gq+r+s−1

⎤

⎥⎥⎥⎦ (10.33)

4. Determine rank n and resultant system matrices
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G(0)
r,s = UΣV T (singular-value decomposition) (10.34)

ET
y = [Ip×p 0p×(r−1)p] (10.35)

ET
u = [Im×m 0m×(s−1)m] (10.36)

Σn = diag {σ1, σ2, . . . , σn} (10.37)
Un = matrix of first n columns of U (10.38)
Vn = matrix of first n columns of V (10.39)

An = Σ−1/2
n UT

n G(1)
r,sVnΣ

−1/2
n , Â =

1
τ

(An − I) (10.40)

Bn = Σ1/2
n V T

n Eu, B̂ =
1
τ
Bn (10.41)

Cn = ET
y UnΣ

1/2
n , Ĉ = Cn (10.42)

Dn = G0, D̂ = Dn (10.43)

which yields the nth-order state-space realisation

ẋ(t) = Âx(t) + B̂u(t)

y(t) = Ĉx(t) + D̂u(t) (10.44)

Algorithm 2 (Subspace Model Identification (MOESP)) [43,44]

1. Arrange data matrices UN , YN by using the following notation for sampled
filtered data

[λju]k = [λju](tk), [λjy]k = [λjy](tk), etc. (10.45)

where

YN =

⎡

⎢⎢⎢⎢⎢⎣

[λi−1y]1 [λi−1y]2 · · · [λi−1y]N
[λi−2y]1 [λi−2y]2 · · · [λi−2y]N

...
...

...
[λy]1 [λy]2 · · · [λy]N
y1 y2 · · · yN

⎤

⎥⎥⎥⎥⎥⎦
∈ R

ip×N (10.46)

and a similar construction for UN .
2. Make a QR-factorisation such that

[
UN
YN

]
=
[
R11 0
R21 R22

] [
Q1

Q2

]
(10.47)

3. Make a SVD of the matrix R22 ∈ R
ip×ip approximating the column space

of Γx

R22 =
[
Un U0

] [Sn 0
0 S0

] [
Vn V0

]T (10.48)
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4. Determine estimates Â, Ĉ of system matrices A, C from equations

U (1)
n = rows 1 through (s − 1)p of Un (10.49)

U (2)
n = rows p + 1 through sp of Un (10.50)

U (1)
n Âλ = U (2)

n , Â =
1
τ

(Âλ − I) (10.51)

Ĉ = rows 1 through p of Un (10.52)

5. Determine estimate B̂, D̂ of system matrices B, D from relationship

Γ̂u = R21R
−1
11 (10.53)

An algorithmic modification to accommodate frequency-domain data can be
made by replacing Step 1 of Algorithm 2 by the following:

1’ Arrange data matrices UN , YN using the filtered fequency-domain data

[ΛjU ]k = [ΛjU(s)]s=iωk
, [ΛjY ]k = [ΛjY (s)]s=iωk

, . . . (10.54)

evaluated for
ωk = k

2π
N

ωs (10.55)

and arrange a matrix equation of frequency-sampled data as

YN =

⎡

⎢⎢⎢⎢⎢⎣

[Λi−1Y ]1 [Λi−1Y ]2 · · · [Λi−1Y ]N
[Λi−2Y ]1 [Λi−2Y ]2 · · · [Λi−2Y ]N

...
...

...
[ΛY ]1 [ΛY ]2 · · · [ΛY ]N

Y1 Y2 · · · YN

⎤

⎥⎥⎥⎥⎥⎦
∈ R

ip×N (10.56)

and with similar construction for UN and proceed as from Step 2 of Algo-
rithm 2.

Algorithm 3 (Subspace Correlation Method) Along with the data ma-
trices UN , YN of Algorithm 2, introduce the correlation variable

ZN =
1
N

⎡

⎢⎢⎢⎢⎢⎣

[λj−1u]1 [λj−1u]2 · · · [λj−1u]N
[λj−2u]1 [λj−2u]2 · · · [λj−2u]N

...
...

...
[λu]1 [λu]2 · · · [λu]N
u1 u2 · · · uN

⎤

⎥⎥⎥⎥⎥⎦
∈ R

jm×N (10.57)

for j > m+p+n chosen sufficiently large. Proceed as from Step 2 of Algorithm
2 with application of QR-factorisation to the matrix

[
UNZT

N

YNZT
N

]
∈ R

(m+p)i×jm (10.58)
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10.3.1 Theoretical Remarks on the Algorithms

In this section, we provide some theoretical justification for the algorithms
suggested.

Remarks on Algorithm 1—Continuous-time State-space
Realisation

After operator reformulation, and a least squares transfer function estimate,
the algorithm follows the Ho–Kalman algorithm step by step.

1. The first step aims towards system identification. The (high-order) least
squares identification serves to find a non-minimal input–output model
with good prediction-error accuracy as the first priority;

2. Step 2 serves to provide transformed Markov parameter where the

Gk = CAk−1
λ Bλ, k ≥ 1 (10.59)

The recursion to obtain {Gk} may be replaced by a linear equation;
3. Organisation of the Markov parameter in the Hankel matrices G

(q)
r,s of block

row dimension r and block column dimension s, respectively, permits

G(q)
r,s = OrA

q
λ · Cs (10.60)

where

Or =

⎡

⎢⎢⎢⎣

C
CAλ

...
CAr−1

λ

⎤

⎥⎥⎥⎦ , Cs =
[
Bλ AλBλ . . . As−1

λ Bλ

]
(10.61)

Thus, for Aλ ∈ R
n×n the rank of Or, Aq

λ and Cs cannot exceed n, which
justifies the determination of model order from a rank test of G

(q)
r,s ;

4. The last algorithmic step involves a singular-value decomposition that ac-
complishes the factorisation into the extended observability matrix and ex-
tended controllability matrix, which permits rank evaluation of G

(q)
r,s and,

hence, estimation of system order n. From the full-rank matrix factors
Un, Σn, Vn, estimates of Aλ, Bλ, C and D, are found. The final trans-
formation to parameter matrices in the s–domain provides the state-space
realisation.

Remarks on Algorithm 2—Continuous-time Subspace Model
Identification

This algorithm is similar to the MOESP algorithm of discrete-time subspace
model identification
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1. The arrangement of input–output data matrices YN , UN of sampled data
serves to express data in the form of (10.19) so that

YN = ΓxXN + ΓuUN + ΓwWN (10.62)

where WN is the disturbance sample matrix (not available to measure-
ment) and

XN =
[
[λi−1x]1 [λi−1x]2 · · · [λi−1x]N

]
(10.63)

2. The QR-factorisation serves to retrieve the matrix product ΓxXN that is
found as the column space of R22 in the case of disturbance-free data;

3. The singular-value factorisation of the matrix R22 serves to find the left
factor Un of rank n corresponding to Γx (up to a similarity transformation).
The rank condition is evaluated by means of the non-zero singular values
of Σn;

4. As the estimate Γ̂x = Un contains products of the C−matrix and powers
of Aλ, it is straightforward to find an estimate of C from the p first rows.
Next, an estimate Â is found. Subsequent transformation of Aλ to the
s–domain is required;

5. Given Â, Ĉ, then B̂, D̂ can be found to fit the input–output relationship
provided by Γu.

Algorithm 2 and its frequency-domain modification are very closely related as
their data matrices with different interpretation obey the relationship

YN = ΓxXN + ΓuUN + ΓwWN (10.64)

By definition, the discrete-time Fourier transform is formulated as the linear
transformation

⎡

⎢⎢⎢⎣

Y T
1

Y T
2
...

Y T
N

⎤

⎥⎥⎥⎦ = T

⎡

⎢⎢⎢⎣

yT1
yT2
...

yTN

⎤

⎥⎥⎥⎦ , T =

⎡

⎢⎢⎢⎣

1 eiω0h . . . eiω0(N−1)h

1 eiω1h . . . eiω1(N−1)h

...
...

...
1 eiωN−1h . . . eiωN−1(N−1)h

⎤

⎥⎥⎥⎦ (10.65)

For the standard FFT set of frequency points ωk = k · (2π/Nh), k =
0, 1, 2, . . . , N − 1, we have T ∗T = N · IN so that YN , UN , . . . of Algorithm 2
and its frequency-domain version only differ by a right invertible factor T T

as found from
⎡

⎢⎢⎢⎢⎢⎣

[Λi−1Y ]1 · · · [Λi−1Y ]N
[Λi−2Y ]1 · · · [Λi−2Y ]N

...
...

[ΛY ]1 · · · [ΛY ]N
Y1 · · · YN

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

[λi−1y]1 · · · [λi−1y]N
[λi−2y]1 · · · [λi−2y]N

...
...

[λy]1 · · · [λy]N
y1 · · · yN

⎤

⎥⎥⎥⎥⎥⎦
T T (10.66)

The right factor T T does not affect the observability subspace that is always
extracted from a left matrix factor and that is the quantity of primary interest
in subspace model identification.
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Fig. 10.2. Input-output data (upper two graphs) and filter data used for identifi-
cation with sampling period h = 0.01, filter order i = 5 and operator time constant
τ = 0.05

Remarks on Algorithm 3—Subspace Correlation Method

The subspace correlation method is similar to Algorithm 2 but differs in the
linear dependencies

YNZT
N = ΓxXNZT

N + ΓuUNZT
N + ΓwWNZT

N , YNZT
N ∈ R

pi×mj (10.67)

The left matrix factor extracted in estimation of observability subspace is not
affected by the right multiplication of ZT

N . However, the algorithm output is
not identical to that of Algorithm 2 due to the change of relative magnitude of
the disturbance term as a result of the right multiplication. Another property
is the reduction of the matrix column dimension of the data matrix applied
QR-factorisation.

When input and disturbance are uncorrelated, this algorithm serves to re-
duce disturbance-related bias in parameter estimates. Statistical properties
are analysed in greater detail below.

10.3.2 Numerical Example

The algorithms were applied to N = 1000 samples of input–output data
generated by simulation of the linear system
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dx

dt
=

⎡

⎣
0 0 100.0
0 −0.10 −100.0

−1.00 1.00 0

⎤

⎦x(t) +

⎡

⎣
10.0
0
0

⎤

⎦u(t) (10.68)

y(t) =
[
1 0 0
0 1 0

]
x(t) + v(t) (10.69)

with input of variance σ2
u = 1 and a zero-mean stochastic disturbance v of

variance σ2
v ; see input–output data in Figure 10.2. A third-order model was

identified with very good accuracy for purely deterministic data (σ2
v = 0) and

with good accuracy for σ2
v = 0.01; see transfer-function properties (Figure

10.3) and prediction performance (Figure 10.4). The influence of the choices
of algorithmic parameters (number of block rows i or r and operator time
constant τ) on relative prediction error (‖ε‖2/‖y‖2) and parameter error as
measured by the gap metric are found in Figure 10.5. The identification was
considered to be failing for a relative prediction error norm of value larger than
one. Figure 10.5 has been drawn accordingly without representing a relative
error larger than one, thus showing the effective range of the choice of τ and
i. This figure also serves to illustrate sensitivity to stochastic disturbance
and sensitivity to the choice of the free algorithm parameters (operator time
constant τ and number of block rows i or r). The level surfaces indicate that τ
may be chosen in a suitable range over, perhaps, two orders of magnitude for
Alg. 2–3 and one order of magnitude for Alg. 1; see Figure 10.5 that includes
contours of level surfaces, the central part corresponding to 1% error with
degradation for inappropriate values of τ and i.

Another application of the realisation algorithm (Algorithm 1) to experimen-
tal impulse-response data obtained as ultrasonic echo data for object identi-
fication detection in robotic environments has proved successful; see [21].

10.4 Statistical Model Validation

Statistical model validation accompanies parameter estimation to provide con-
fidence in a model obtained. An important aspect of statistical model valida-
tion is evaluation of the mismatch between input–output properties of a model
and data. Statistical hypothesis tests applied to the autocorrelation of resid-
uals as well as cross correlation between residuals and input are instrumental
in such model validation, partially relying upon the algorithmic property of
U⊥
N that

YNU⊥
N = (ΓxXN + ΓuUN + ΓwWN )U⊥

N

= ΓxXNU⊥
N + ΓwWNU⊥

N (10.70)
E{YNU⊥

N} = ΓxXNU⊥
N + ΓwE{WNU⊥

N} (10.71)

where UNU⊥
N = 0 by construction (i.e., by the projection property of the QR-

factorisation of (10.47)) whereas statistical properties of E{WNU⊥
N} are more
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Fig. 10.3. Transfer function (solid) and estimate (dashed) using a third-order model
with sampling period h = 0.01, filter order i = 5 and operator time constant τ = 0.05
for N = 1000 samples of data with σ2

v = 0.01

difficult to evaluate also under assumptions of uncorrelated disturbances and
control inputs. In the case of uncorrelated disturbance and input, multiplica-
tion of the right factor ZT

N before the QR-factorisation in Algorithm 3 serves
to reduce the disturbance-related bias of parameter estimates as

(YNZT
N )(UNZT

N )⊥ = (ΓxXNZT
N + ΓuUNZT

N + ΓwWNZT
N )(UNZT

N )⊥

= Γx(XNZT
N )(UNZT

N )⊥ + Γw(WNZT
N )(UNZT

N )⊥

E{(YNZT
N )(UNZT

N )⊥} = Γx(XNZT
N )(UNZT

N )⊥

+ ΓwE{(WNZT
N )(UNZT

N )⊥} (10.72)

By the correlation properties of input and disturbance, the last term tends
to be small, similar to the spectrum analysis and the instrumental variable
method of identification. The consistency properties of this algorithm will be
analysed in detail in future work.

Model Misfit Evaluation

Identification according to Algorithms 1–3 gives the model

[
ξ̂
y

]
=

[
Âλ B̂λ

Ĉ D̂

] [
x̂
u

]
, x̂(t) = [λξ̂](t) (10.73)
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Fig. 10.4. Output data (solid) and estimate (dashed) using Alg. 2 and a third-order
model with sampling period h = 0.01, filter order i = 5 and operator time constant
τ = 0.05 for N = 1000 samples of data with σ2

v = 0.01

A reconstruction x̂ of the state x for some matrix K such that Â − KĈ is
stable (i.e., Re λ < 0) can be done as

[ ˙̂x
ŷ

]
=

[
Â − KĈ B̂ − KD̂

Ĉ D̂

] [
x̂
u

]
+
[
K
0

]
y (10.74)

Model-error dynamics of x̃ = x − x̂ and ε = y − ŷ

[ ˙̃x
ε

]
=
[
A − KC B − KD

C D

] [
x̃
0

]

+

[
Ã − KC̃ B̃ − KC̃

C̃ D̃

] [
x̂
u

]
+
[
I −K
0 I

] [
v
e

]
(10.75)

The stochastic realisation problem can be approached by Kalman filter the-
ory and covariance-matrix factorisation (“spectral factorisation”) [2, 8], and
provided that a continuous-time Riccati equation can be solved to find an
optimal K, one finds that the model mismatch can be expressed by either of
the spectral factors

ε(s) = C(sI − A)−1V (s) + E(s) (10.76)
ε(s) = (C(sI − A)−1K + I)W (s) = H(s)W (s) (10.77)
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where ε(s), V (s), E(s), W (s) are the Laplace transforms of the residuals,
disturbance and innovations processes, respectively. The discrete-time coun-
terpart is

ε(s) = C(zI − Az)−1V (z) + E(z) (10.78)
ε(z) = (C(zI − Az)−1Kz + I)W (z) = H(z)W (z) (10.79)

To solve for identification residuals it is suitable to use the transfer operator
inverses

H−1(s) = −C(sI − (A − KC))−1K + I (10.80)
= −C(I − (Aλ − KλC)λ)−1Kλλ + I (10.81)

H−1(z) = −C(zI − (Az − KzC))−1Kz + I (10.82)

For nominal system parameter matrices A,B,C,D and a solution K and
v = Ke = Kw from the Riccati equation of the Kalman filter, one would have

[ ˙̃x
ε

]
=
[
A − KC B − KD

−C −D

] [
x̃
0

]
+
[
0
I

]
w (10.83)

so that the output ε reproduce w of Σ except for a transient arising from the
initial condition of x̃(t0). However, as no covariance data are a priori known
and as the system identification including its validation procedure is assumed
to utilise discrete-time data, it is generally necessary to resort to the residual
realisation algorithm

[
x̂k+1

εk

]
=

[
Âz − KzĈ B̂z − KzD̂

Ĉ D̂

] [
x̂k
uk

]
+
[
Kz

I

]
y (10.84)

Reformulation of the Riccati equation, see [13], is

[
In K
0 Ip

] [
S 0
0 R

] [
In K
0 Ip

]T
=
[
A β
C δ

] [
S 0
0 Iq

] [
Az β
C δ

]T
(10.85)

where the full-rank matrices β, δ arise from the factorisation

Q =
[
β
δ

] [
β
δ

]T
, β ∈ R

n×q, δ ∈ R
p×q (10.86)

and where (10.85) represents factorisation of the covariance matrix of the
variables

[
In Kz

0 Ip

] [
x̃k
wk

]
, E{wkwTk } = R ∈ R

p×p, (10.87)
[
Az β
C δ

] [
x̃k
ωk

]
, E{ωkωTk } = Iq ∈ R

q×q (10.88)
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Then, use of the full-rank matrices β, δ of (10.85) suggests that the stochastic
state-space model be provided as

xk+1 = Azxk + Bzuk + βwk

yk = Cxk + Duk + δwk

zk = δ†yk = C1xk + D1uk + wk, zk, wk ∈ R
q (10.89)

with a matrix δ† chosen as the pseudo-inverse of δ and with

δ†δ = Iq, C1 = δ†C, D1 = δ†D (10.90)

An innovations-like model pseudoinverse is provided as
[
x̂k+1

εk

]
=
[
Az − βδ†C Bz − βδ†D

δ†C δ†D

] [
x̂k
uk

]
+
[
β
Iq

]
δ†yk (10.91)

where Az, Bz are discrete-time versions of A and B, respectively, and with
βδ† for rank-deficient covariance matrices Q replacing the Kz of the standard
Kalman filter. Then, the output {εk} reproduces the rank-deficient innovations
sequence.

10.5 Discussion

This chapter has treated the problem of continuous-time system identifica-
tion based on discrete-time data and provides a framework with algorithms
presented in preliminary forms in [16, 21] thereby extending subspace model
identification to continuous-time models. We have provided both subspace-
based algorithms and realisation-based algorithms with application both in
the time domain and in the frequency domain. Whereas the first time-domain
algorithms were presented in [16, 23], subspace-based frequency-domain al-
gorithms were previously presented [33, 35]. Several issues remain open and
we cannot claim to have any complete treatment. The accuracy of estimates,
effects of stochastic disturbance, performance comparison and robustness of
algorithms—i.e., algorithmic effects and behaviour when data cannot be gen-
erated by a model in the model class—need further attention; see [6,27,39–41]
for discussion on these issues for the discrete-time case. As for implementation
and application issues, see [5, 15,17]; [10, 11,32]; [37] and [30].

A relevant question is, of course, how general is the choice λ and if it can, for
instance, be replaced by some other bijective mapping

μ =
bs + a

s + a
, b ∈ R, a ∈ R

+, s =
aμ − a

b − μ
(10.92)

with the Laplace-transformed linear model
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Fig. 10.5. Relative prediction error norm ‖ε‖2/‖y‖2 and parameter error norm
as measured vs. choices of the number of block columns block and operator time
constant for Alg. 1 (left), Alg. 2 (middle), and Alg. 3 (right). Level surfaces (diagram
below) and magnitude plot (upper diagram) using a third-order model with sampling
period h = 0.01 for N = 1000 samples of data with σ2

v = 0.01 illustrate algorithm
robustness and degradation properties for inappropriate τ and i.

[
sX
Y

]
=
[
A B
C D

] [
X
U

]
(10.93)
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and by the operator transformation

[
μX
Y

]
=
[
(aI + A)−1(aI + Ab) (aI + A)−1Bb −(aI + A)−1B

C D 0

]⎡

⎣
X
U
μU

⎤

⎦

Obviously, such an operator transformation entails a non-linear parameter
transformation with an inverse

Â = a(I − Âλ)(Âλ − bI)−1 (10.94)

which, of course, may be error-prone or otherwise sensitive due to singularities
or poor numerical properties of the matrix inverse. By comparison, a model
transformation using λ is linear, simple and does not exhibit such parameter-
matrix singularities, a circumstance that motivates the attention given the
favourable properties of this transformation. Actually, further studies to cover
other linear fractional transformations are in progress [16] including advice on
the choice of the additional parameters involved.

We have considered the problem of finding appropriate stochastic realisa-
tion to accompany estimated input–output models in the case of multi-input,
multi-output subspace model identification. The case considered includes the
problem of rank-deficient residual covariance matrices, a case that is encoun-
tered in applications with mixed stochastic-deterministic input–output pro-
perties as well as for cases where outputs are linearly dependent [41]. The
inverse of the output covariance matrix is generally needed both for formu-
lation of an innovations model and for a Kalman filter [25, 38, 42]. Our ap-
proach has been the formulation of an innovations model for the rank-deficient
model output that generalises previously used methods of stochastic realisa-
tion [7, 9, 24,29,31].

The modified pseudo-inverse of (10.91) provides means to evaluate a residual
sequence from the mismatch between an identified continuous-time model and
discrete-time data in such a way that standard statistical validation tests can
be applied [19]. Such statistical tests include: autocorrelation test of residual
sequence {εk}; cross-correlation test of input {uk} and residual sequence {εk};
test of normal distribution (zero crossings, distribution, skewness, kurtosis,
etc.).

10.6 Conclusions

This chapter has treated the problem of continuous-time system identification
based on discrete-time data and provides a framework with algorithms pre-
sented in preliminary forms in [16,21]. The methodology involves a continuous-
time operator translation [19, 20], permitting an algebraic reformulation and
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the use of subspace and realisation algorithms. We have provided subspace-
based algorithms as well as realisation-based algorithms with application both
to time-domain and to frequency-domain data. Thus, the algorithms and the
theory presented here provide extensions both of the continuous-time identi-
fication and of subspace model identification.

A favourable property is the following. Whereas the model obtained is a con-
tinuous-time model, statistical tests can proceed in a manner that is standard
for discrete-time models [19]. Conversely, as validation data are generally avail-
able as discrete-time data, it is desirable to provide means for validation of
continuous-time models to available data.
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34. T. McKelvey and H. Akçay. An efficient frequency domain state-space identi-
fication algorithm: Robustness and stochastic analysis. 33rd IEEE Conference
on Decision and Control (CDC’1994), pages 3348–3353, 1994.
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11.1 Introduction

Time-delay estimation is an important part of system identification. In process
industries, it is even more important to consider the delay because of its com-
mon occurrence and significant impact on limiting the achievable performance
of control systems. However, both in continuous-time (CT) and discrete-
time (DT) model identification, the development of time delay-estimation
methods lags behind the advancement of the estimation techniques for other
model parameters. For example, linear filter methods are commonly used for
continuous-time identification and significant developments have taken place
in this field over the last few decades, see, e.g., [5,7,31,35,38,40]. In the linear
filter approach, the most commonly used algorithm to estimate the time delay
is based on a comprehensive search routine as used in [30,31,40] where process
parameters are estimated for a set of time delays within a certain range and
a predefined cost function is calculated for every set of estimated parameters
corresponding to each delay term. Finally, the delay that gives the optimum
value of the cost function is chosen. This procedure is computationally expen-
sive especially for rapidly sampled data. Another popular approach is approx-
imation of the delay by a polynomial or by a rational transfer function such as
the Padé approximation as in [1] or by the use of the Laguerre expansion. Such
an approach requires estimation of more parameters and an unacceptable ap-
proximation error may occur for systems having large delays [36]. Most of the
methods to directly estimate the delay along with other model parameters are
based on the step test [16, 22, 25, 36], the so-called piecewise step test [23] or
the pulse test [13].
An important issue in time-delay estimation is that in many methods the
delay is expressed in terms of the number of sampling intervals. The problem
arises when the sampling interval is not constant. For such a case, the time
delay becomes time varying and most of the methods fail to estimate such a
parameter.
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Uniform sampling has been a standard assumption in system identification.
Assumption of single-rate sampling of different variables has also been stan-
dard. These assumptions imply that the set of sensors under consideration are
delivering measurements synchronously and at the same constant rate. How-
ever this ideal situation often remains unpractised in real plants. In process
industries, the strategy of sampling may be different for different variables.
For example, from the time and cost considerations, concentrations are less
frequently measured than flow rates, temperatures and pressures. Also, some
variables may be measured at constant sampling intervals, while others may
be measured at different intervals. The latter is often the case when manual
sampling or laboratory analysis is required. These practices result in non-
uniformly sampled data matrices. Multi-rate data is one form of non-uniform
data where different variables are sampled at different intervals with the less
frequently sampled variables having sampling intervals as integer multiples of
that of the most frequently sampled one. Another form of non-uniformity is
data with missing elements where measurements of all variables are available
at some time instants, but at others, measurements of only a few variables are
available. In chemical processes, data can be missing for two basic reasons:
failure in the measurement devices and errors in data management. The most
common failures are sensor breakdown, measurement outside the range of the
sensor, malfunction of data-acquisition system, energy blackout, interruption
of transmission lines, etc. The common errors in data-management are wrong
format in logged data, crashes in data-management software, data-storage er-
rors, incorrect or missing time stamps particularly in manually sampled data
and so on [14,15]. In robust analysis of data, observed values that lie far from
the normal trend are considered as outliers and often discarded or treated as
missing. Also, highly compressed data or unequal length batch data, which
may not immediately appear as non-uniform data, can be treated as non-
uniform. An extreme form of irregular data may be asynchronised data for
which different variables are sampled at different time instants.
The problem of non-uniform data has been considered in discrete-time iden-
tification literature using the expectation maximisation (EM) algorithm, e.g.,
in [17] for ARX models and in [11, 28, 29] for state-space models. Use of the
lifting technique for identification from multi-rate data has been reported in a
number of articles, e.g., in [21,33]. In continuous-time identification literature,
methods have been proposed for unevenly sampled data in [12,19] where the
problem of non-uniform sampling is handled by adopting numerical algorithms
suitable for the data type. Methods for frequency-domain identification from
non-uniformly sampled data have been presented for continuous-time autore-
gressive (CAR) models in [8], for autoregressive moving average (CARMA)
models in [9] and for output error (COE) models in [10]. A frequency-domain
identification technique for continuous-time models from data with missing
elements in both of the input and the output signals has been presented
in [27]. In fact, continuous-time identification methods can handle the un-
even sampling problem by their nature, provided that appropriate numerical
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techniques are used. However, the inherent assumption of the numerical meth-
ods on the inter-sample behaviour of the variables, typically assumed to be
stepwise-constant, may introduce errors in the parameter estimates.
Generally, input variables of an identification exercise are the manipulated
variables of the process and are available regularly and at a faster rate. On
the other hand, some quality variables, such as product compositions that may
require laboratory analysis, may be sampled at slower rates or may be missing
at some time instants. More often, the quality variables are the outputs for
the models to be identified.
In this chapter we first introduce a linear filter method for simultaneous esti-
mation of parameters and delay. An algorithm for system identification from
non-uniformly sampled data is presented next followed by evaluation of the
proposed methods on simulated and experimental data.

11.2 Estimation of Parameters and Delay

The mathematical procedure of the linear filter method is detailed in this
section. The necessary mathematical formulation is presented first with an
example of a second-order plus time delay (SOPTD) model. The nth-order
generalisation of the method is subsequently outlined.

11.2.1 Second-order Modelling

Consider a SOPTD1 model of a single-input single-output (SISO) system de-
scribed by the following differential equation

a2y
(2)(t) + a1y

(1)(t) + a0y(t) = b0u(t − τ) + e(t) (11.1)

y(i) and u(i) are ith-order time derivatives of y and u. e(t) is the error term.
Without loss of generality it can be assumed that a0 = 1. So, the objective of
this exercise is to derive an estimate of the parameter vector, [a2 a1 b0 τ ]T ,
from a given set of measurements of input, u(t) and output, y(t). For the
sake of simplicity in presentation, we assume zero initial conditions, i.e., the
input and the output are initially at steady states. Parameter estimation in
the presence of non-zero initial conditions is discussed in the next section.
With this assumption applying Laplace transform on both sides of (11.1) we
get

a2s
2Y (s) + a1sY (s) + Y (s) = b0e

−τsU(s) + E(s) (11.2)

Y (s), U(s) and E(s) are the Laplace transforms of y(t), u(t) and e(t), respec-
tively. Now, consider a causal filter described in the Laplace domain as F (s).

1 A similar procedure can be followed for a first-order plus time delay (FOPTD)
model.
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If we apply the filtering operation on both sides of (11.2) we end up with the
formulation

a2s
2F (s)Y (s) + a1sF (s)Y (s) + F (s)Y (s) = b0e

−τsF (s)U(s) + F (s)E(s)
(11.3)

Parameter estimation using this filtering approach has been used in the lit-
erature for over four decades; however, to estimate only the parameters but
not the delay. The delay estimation is mathematically different from the es-
timation of other parameters because of the fact that the parameters appear
explicitly in the model equation (11.1) while the delay appears implicitly. To
be solvable using the idea of regression analysis, the time delay should ap-
pear as an explicit element in the parameter vector. To get the delay in the
parameter vector it is necessary that it appears explicitly in the estimation
equation.
To have an explicit appearance of the delay term in the estimation equation
and get it as an element in the parameter vector, we introduce a linear filter
method with a novel structure of the filter having a first-order integral dy-
namics along with a lag term. The order of the lag term is the same as that of
the process denominator. This structure of the filter was first proposed by the
authors in [4]. The filter transfer function F (s) may have different forms [2].
In the ensuing discussion we adopt the following

F (s) =
1

sA(s)
(11.4)

where, A(s) is the denominator of the process transfer function. So for the
process under consideration A(s) = a2s

2 +a1s+1. This filter has been used in
[3] for identification from step response. The reason to include an integrator in
the filter is to generate an integration term of delayed input in the estimation
equation. This integrated delayed input signal, which represents a certain area
under the input curve, can be expressed by subtracting two subareas from the
integrated input signal as shown in (11.15) and in Figure 11.1. By doing so,
the delay, τ , becomes an explicit parameter in the estimation equation.
For the filter (11.4), the parameter estimation equation becomes

a2s
Y (s)
A(s)

+ a1
Y (s)
A(s)

+
Y (s)
sA(s)

= b0e
−τs U(s)

sA(s)
+

E(s)
sA(s)

(11.5)

The filtered input can be expressed as

U(s)
sA(s)

=
[
C(s)
A(s)

+
1
s

]
U(s) (11.6)

where, C(s) = −(a2s + a1). Now using the notations

Y (s) =
Y (s)
A(s)

YI(s) =
Y (s)

s
(11.7)
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and adopting similar notations for U(s), (11.5) can be written as

a2sY (s) + a1Y (s) + Y I(s) = b0 [C(s)U(s) + UI(s)] e−τs + EI(s) (11.8)

This equation can be rearranged in standard least squares form

Y I(s) = −a2sY (s) − a1Y (s) + b0UC(s)e−τs + b0UI(s)e−τs + η(s) (11.9)

where, UC(s) = C(s)U(s) and η(s) = EI(s). Taking the inverse Laplace
transform, (11.9) can be written for any sampling instant t = tk

y
I
(tk) = −a2y

(1)(tk)− a1y(tk) + b0uC(tk − τ) + b0uI(tk − τ) + η(tk) (11.10)

with

y
I
(tk) = L−1

[
Y (s)

s

]
(11.11)

uC(tk − τ) = L−1
[
C(s)U(s)e−τs

]
(11.12)

uI(tk − τ) = L−1

[
1
s
U(s)e−τs

]
(11.13)

where, L−1 represents the inverse Laplace transform. The integrals of the
input and the delayed input for any time t = tk are given by

uI(tk) =
∫ tk

0

u(t)dt (11.14)

uI(tk − τ) = uI(tk) −
∫ tk

tk−τ
[u(t) − u(tk)]dt − u(tk)τ (11.15)

Equation (11.15) can be presented graphically as in Figure 11.1. From the
figure, it is seen that the integrated delayed input, uI(tk − τ), represents
the area under the input signal up to time (tk − τ), while the integrated
input signal, uI(tk), represents the area under the input curve up to time tk.
Also, the 2nd and 3rd terms on the right hand-side of (11.15) represent areas
as shown by the legends in Figure 11.1. From the figure, it is seen that by
subtracting these two areas from uI(tk), we get uI(tk − τ).
Applying (11.15) in (11.10) and rearranging it to give a standard least squares
form we get

y
I
(tk) = −a2y

(1)(tk) − a1y(tk)

+b0

[
uC(tk − τ) + uI(tk) −

∫ tk

tk−τ
[u(t) − u(tk)]dt

]

−b0τu(tk) + η(tk) (11.16)

Denoting
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tk-τ tk
t

u

Left side of =

2nd term on right

3rd term on right

Fig. 11.1. Graphical representation of (11.15)

u+(tk − τ) = uC(tk − τ) + uI(tk) −
∫ tk

tk−τ
[u(t) − u(tk)]dt (11.17)

(11.16) can be written as

y
I
(tk) =

[
−y(1)(tk) −y(tk) u+(tk − τ) −u(tk)

]

⎡

⎢⎢⎣

a2

a1

b0

b0τ

⎤

⎥⎥⎦+ η(tk) (11.18)

Or equivalently
γ(tk) = ϕT (tk)θ + η(tk) (11.19)

where,

γ(tk) = y
I
(tk), ϕ(tk) =

⎡

⎢⎢⎣

−y(1)(tk)
−y(tk)

u+(tk − τ)
−u(tk)

⎤

⎥⎥⎦ , θ =

⎡

⎢⎢⎣

a2

a1

b0

b0τ

⎤

⎥⎥⎦ (11.20)

11.2.2 Higher-order Modelling

To describe the method for a model with numerator order n and denominator
order m with n > m > 0, let us consider a linear single-input, single-output
(SISO) system with time delay described by

any(n)(t) = bmu(m)(t − τ) + e(t) (11.21)

where,
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an = [an an−1 · · · a0] ∈ R
1×(n+1)

bm = [bm bm−1 · · · b0] ∈ R
1×(m+1)

y(n)(t) =
[
y(n)(t) y(n−1)(t) · · · y(0)(t)

]T
∈ R

(n+1)×1

u(m)(t − τ) =
[
u(m)(t − τ) · · ·u(0)(t − τ)

]T
∈ R

(m+1)×1

Applying Laplace transformation on both sides of (11.21), considering that
both input and output are initially at rest, we can write

ansnY (s) = bmsmU(s)e−τs + E(s) (11.22)

where,
sn =

[
sn sn−1 · · · s0

]T ∈ R
(n+1)×1 (11.23)

If we apply the filtering operation on both sides of (11.22) we get

ansnF (s)Y (s) = bmsmF (s)U(s)e−τs + F (s)E(s) (11.24)

Using the notations in (11.7), we can express (11.24) in terms of the filtered
input and output as

ansn−1
+ Y (s) = bmsm−1

+ U(s)e−τs + η(s) (11.25)

where the subscript (•+) means that the sn−1 vector has been augmented by
1
s , i.e.,

sn−1
+ =

[
sn−1 sn−2 · · · s0 1

s

]
(11.26)

Next we use the expression in (11.6). For nth-order models C(s) = −(ansn−1+
an−1s

n−2+· · ·+a1). Restructuring (11.25) by applying (11.6) gives a standard
least squares form

Y I(s) = −ānsn−1Y (s) + b̄msm−1U(s)e−τs

+b0 [C(s)U(s) + UI(s)] e−τs + η(s) (11.27)

where,
ān : an with its last column removed, ān ∈ R

1×n

b̄m : bm with its last column removed, b̄m ∈ R
1×m

Taking the inverse Laplace transform, we get the equivalent time-domain ex-
pression for any sampling instant t = tk

y
I
(tk) = −āny(n−1)(tk) + b̄mu(m−1)(tk − τ)

+b0 [uC(tk − τ) + uI(tk − τ)] + η(tk) (11.28)

Applying (11.15) in (11.28) and re-arranging the equation we get
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y
I
(tk) = −āny(n−1)(tk) + bmu(m−1)

+ (tk − τ) − b0u(tk)τ + η(tk) (11.29)

where,

u(m−1)
+ (tk − τ) =

⎡

⎢⎢⎢⎣

u(m−1)(tk − τ)
...

u(tk − τ)
u+(tk − τ)

⎤

⎥⎥⎥⎦ (11.30)

u+(tk − τ) has been defined by (11.17). Equivalently, we can write

γ(tk) = ϕT (tk)θ + η(tk) (11.31)

where,

γ(tk) = y
I
(tk) (11.32)

ϕ(tk) =

⎡

⎢⎣

−y(n−1)(tk)

u(m−1)
+ (tk − τ)

−u(tk)

⎤

⎥⎦ (11.33)

θ = [ān bm b0τ ]T (11.34)

11.2.3 Treatment of Initial Conditions

So far we have assumed zero initial conditions of both the input and output
variables for the sake of simplicity in the presentation. However, the estima-
tion equation can be formulated considering non-zero initial conditions of the
output as shown in [4]. Initial conditions of both input and output have been
considered in [2, 3]. Here, we outline the procedure for parameter estimation
in the presence of non-zero initial conditions of the output.
When the output is not initially at a steady-state application of Laplace trans-
formation on both sides of (11.21) gives

ansnY (s) = bmsmU(s)e−τs + cn−1sn−1 + E(s) (11.35)

where the elements of cn−1 capture the initial conditions of the output and
are defined by

cn−1 = [cn−1 cn−2 · · · c0] ∈ R
1×n (11.36)

cn−i = hiyn−1(0), i = 1 · · ·n (11.37)

hi = [01×(n−i) an · · · an−(i−1)] ∈ R
1×n (11.38)

y(n−1)(0) =
[
y(n−1)(0) y(n−2)(0) · · · y(0)

]T
∈ R

n×1 (11.39)

If we apply the filtering operation on both sides of (11.35) we get

ansnF (s)Y (s) = bmsmF (s)U(s)e−τs + cn−1sn−1F (s) + F (s)E(s) (11.40)
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It is straightforward to follow that the inclusion of the initial conditions does
not change the mathematical derivations that follows (11.24) except that n
additional terms appear in the estimation equation. Now, following the above
derivation, for non-zero initial conditions we can write (11.29) as

y
I
(tk) = −āny(n−1)(tk) + bmu(m−1)

+ (tk − τ) − b0u(tk)τ

+cn−1f (n−1)(tk) + η(tk) (11.41)

where,

f (n−1)(tk) =
[
f (n−1)(tk) f (n−2)(tk) · · · f(tk)

]T
∈ R

n×1 (11.42)

f (i)(t) = L−1[siF (s)] (11.43)

So for this case we can write

γ(tk) = ϕT (tk)θ + η(tk) (11.44)

with

γ(tk) = y
I
(tk) (11.45)

ϕ(tk) =

⎡

⎢⎢⎢⎣

−y(n−1)(tk)

u(m−1)
+ (tk − τ)

−u(tk)
f (n−1)(tk)

⎤

⎥⎥⎥⎦ (11.46)

θ = [ān bm b0τ cn−1]T (11.47)

11.2.4 Parameter Estimation

To estimate the parameter (11.19), (11.31) or (11.44) can be written for tk =
td+1, td+2 · · · tN , where, td ≤ τ < td+1 and combined as

Γ =

⎡

⎢⎢⎢⎣

γ(td+1)
γ(td+2)

...
γ(tN )

⎤

⎥⎥⎥⎦ , Φ =

⎡

⎢⎢⎢⎣

ϕT (td+1)
ϕT (td+2)

...
ϕT (tN )

⎤

⎥⎥⎥⎦ (11.48)

to give
Γ = Φθ + η (11.49)

Solution of (11.49) gives the parameter vector θ. From θ one can directly get
ān and bm. τ is obtained as τ = θ(n+m+2)/θ(n+m+1). In the case where
initial conditions are considered, to retrieve y(n−1)(0) from cn−1, (11.37) can
be written for i = 1 · · ·n to give
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(cn−1)T = Hy(n−1)(0) (11.50)

where, H = [(h1)T (h2)T · · · (hn)T ]T ∈ R
n×n. Finally

y(n−1)(0) = (H)−1(cn−1)T (11.51)

However, in estimating θ by solving (11.49), there are two problems. First, we
need to know A(s) and τ , both of which are unknowns. This obvious problem
can be solved by applying an iterative procedure that adaptively adjusts initial
estimates of A(s) and τ until they converge. Secondly, the least squares (LS)
estimate of θ, obtained by minimising the sum of the squared errors and given
by

θ̂LS =
[
ΦTΦ

]−1
ΦTΓ (11.52)

is biased in the presence of general forms of measurement noise such as the
coloured noise. Even if the measurement noise is assumed to be white with
zero mean, the filtering operation makes it coloured. So, the LS solution is not
unbiased even for a white measurement noise. To remove this bias we need
another step. A popular bias-elimination procedure is to use the instrumental
variable (IV) method. A bootstrap estimation of IV type where the instru-
mental variable is built from an auxiliary model [39] is considered here. The
instrument vector in the case of steady initial conditions is given by

ζ(tk) =

⎡

⎣
ŷ(n−1)(tk)

u(m−1)
+ (tk − τ)

−u(tk)

⎤

⎦ (11.53)

where,

Ŷ (s) =
BLS(s)
ALS(s)

e−τLSsU(s) (11.54)

A(s) = ansn, B(s) = bmsm and ALS, BLS(s) being their least squares esti-
mates. ŷ(t) = L−1

[
Ŷ (s)

]
. The IV-based bias-eliminated parameters are given

by
θ̂IV =

[
ΨTΦ

]−1
ΨTΓ (11.55)

where,

Ψ =

⎡

⎢⎢⎢⎣

ζT (td+1)
ζT (td+2)

...
ζT (tN )

⎤

⎥⎥⎥⎦ (11.56)

The iterative identification algorithm for simultaneous estimation of the delay
and other parameters from a uniform data set is summarised in Algorithm 1.
Extensive simulation studies show that the iterative estimation converges
monotonically except for non-minimum phase (NMP) processes. However, for
NMP processes it always exhibits monotonic divergence. For such processes,
we suggest to use the following procedure as presented in [4].
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Algorithm 1 : Linear filter algorithm for simultaneous estimation of the delay and
model parameters from uniformly sampled data.

Step 1-Initialisation: Choose the initial estimates Â0(s) and τ̂0.
Step 2-LS step: Construct Γ and Φ by replacing A(s) and τ by Â0(s) and τ̂0 and

get the LS solution of θ
θ̂LS = (ΦT Φ)−1ΦT Γ (11.57)

Set i = 1. θ̂1 = θ̂LS. Get Â1(s), B̂1(s) and τ̂1 from θ̂1.
Step 3-IV step: i = i + 1. Construct Γ, Φ and Ψ by replacing A(s), B(s) and τ by

Âi−1(s), B̂i−1(s) and τ̂i−1 and get the IV solution of θ

θ̂i = (ΨT Φ)−1ΨT Γ (11.58)

Obtain Âi(s), B̂i(s) and τ̂i from θ̂i and repeat step 3 until Âi and τ̂i converge.
Step 4-Termination: When Âi and τ̂i converge, the corresponding θ̂i is the final

estimate of parameters.

11.2.5 Non-minimum Phase Processes

The iteration procedure described in the previous section is a fixed-point it-
eration scheme expressed as τ̂ = g(τ) = θ̂(n + m + 2)/θ̂(n + m + 1), where, θ̂
is given by (11.52) and (11.55) with Φ = Φ(τ) and Ψ = Ψ(τ). For minimum
phase processes, g(τ) maps τ within the region of monotonic convergence
while for NMP processes, it maps τ in the region of monotonic divergence. To
make the diverging scheme converging, the following result is used.
If a fixed-point iteration scheme x̂ = g(x) diverges monotonically, another
scheme x̂ = x + 1

r [x− g(x)] with r > 0, will converge monotonically if g(x) is
bounded by the region g(x) = x and g(x) = (r + 1)x + c where c is a constant
satisfying that g(x) passes through the fixed point.
Simulation results for a large number of process models show that for NMP
processes g(τ) maps τ within the region g(τ) = τ and g(τ) = (r+1)τ +c with
r = 1. Hence, expressing the estimation equation as τ̂ = τ + [τ − g(τ)] will
lead to convergence. So, if the diverging scheme gives

τ̂di+1 = g(τ̂i) (11.59)

To make the scheme converging, one needs to choose

τ̂ ci+1 = τ̂i + [τ̂i − g(τ̂i)] = τ̂i + [τ̂i − τ̂di+1] (11.60)

We define Δτ̂i = τ̂i − τ̂di+1 and for successive iteration for a value of τ̂i, τ̂i+1

is computed as
τ̂i+1 = τ̂i + Δτ̂i (11.61)

The iteration steps otherwise remain the same.
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11.2.6 Choice of Â0(s) and τ̂0

The initiation of the iteration procedure involves choice of Â0(s) and τ̂0. In
theory, there is no constraint on the choice of Â0(s) except that the filter
should not be unstable. Moreover, as the filter is updated in every step, the
final estimate of the parameters is found not to be very sensitive to the initial
choice. The proposed filter is the same as the filter used in the simplified
refined instrumental variable method for continuous-time (SRIVC) models [40]
except for the integral dynamics. Choice of Â0(s) for the SRIVC method with
reference to the CAPTAIN toolbox has been discussed in [40]. Following the
guidelines in [40], we suggest to choose Â0(s) = 1

(s+λ)n where λ is an estimate
of the process cut-off frequency. Similarly, for τ̂0 a choice based on process
information would save computation. In cases where process information is
unavailable we suggest choosing a small positive value for τ̂0.

11.3 Identification from Non-uniformly Sampled Data

The linear filter method described in the previous section can be applied to
non-uniformly sampled data provided that appropriate numerical techniques
are used. However, the inherent assumption of the numerical methods on the
inter-sample behaviour of the signals, typically step wise-constant, may intro-
duce significant error in the estimates. This is true especially if the sampling
intervals vary over a wide range or data are missing for long periods. This
section details an iterative algorithm for more accurate estimation of the pa-
rameters and delay from such data sets.
By non-uniform data we refer to data sets where inputs and outputs are
sampled at irregular intervals. However, we assume that the time instants
at which the variables are sampled are the same, i.e., the available data is
synchronous. We also consider that measurements may be missing at some
time instants. Regarding missing elements we assume that the inputs are
available at all sampling instants while the outputs are available at some
instants but missing at others. This is a more general form of synchronised
data. Multi-rate data can be considered as a special form of this non-uniform
structure.

11.3.1 The Iterative Prediction Algorithm

The idea of iterative prediction is used for identification from non-uniform
and missing data. In the initialisation step of the iterative procedure, a so-
called input-only model is used. Examples of this are the finite impulse re-
sponse (FIR) model and basis-function models. A distinguishing feature of
such models is that the current output is expressed in terms of only current
and previous inputs. So, the parameter estimation equation can be formu-
lated only at those time instants when the output is available. The estimated
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input-only model is then used to predict the missing values to get a complete
data set. Next, this complete data set is used to estimate the parameters of
the continuous-time transfer function model using the procedure described in
the previous section. In the next step the estimated transfer function model is
used to predict the missing outputs. This procedure is carried on iteratively by
replacing the prediction from a previous model by that from the current one
until some convergence criteria are met. The iteration algorithm is presented
graphically in Figure 11.2 and the necessary steps of the iteration procedure
are detailed below.

Input only 
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model
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Complete 
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Complete 
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Non-uniform/ 
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ra

tio
n

Ite
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Fig. 11.2. Graphical representation of the iterative prediction algorithm for iden-
tification from non-uniformly sampled data

11.3.2 Input-only Modelling Using Basis-function Model

For the purpose of initial prediction, we consider a model that expresses the
output in terms of only the past inputs. A number of such input-only ap-
proaches, both in discrete time and continuous time, are available in the liter-
ature. For reasons of parsimony, different basis-function methods can be used
to serve this purpose. In this work, we use one of the orthogonal basis-function
models, namely a Laguerre polynomial model in continuous time for the initial
prediction when the system response is non-oscillatory. For oscillating systems
a two-parameter Kautz model is used. The following section details both of
the model types.
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Basis-function Models

The use of Laguerre functions in identification goes back to [37]. In the Laplace
domain, the Laguerre functions are given by [20]

Lj(s, κ) =
√

2κ
(s + κ)

[
(s − κ)
(s + κ)

]j−1

, j = 1, 2 · · · κ > 0 (11.62)

where κ is the parameter of the Laguerre model to be specified by the user.
Kautz [18] introduced a set of orthonormal basis functions known as the Kautz
functions. We will use here a special form of the Kautz functions presented
in [32] and given by

K2j−1(s, β, ν) =
√

2βs

s2 + βs + ν

[
s2 − βs + ν

s2 + βs + ν

]j−1

(11.63)

K2j(s, β, ν) =
√

2βν

s2 + βs + ν

[
s2 − βs + ν

s2 + βs + ν

]j−1

(11.64)

β > 0, ν > 0, j = 1, 2, · · ·

Let zi(t) be the output of the ith orthogonal function, with u(t) as its input,
i.e., for the Laguerre model

Zi(s) = Li(s)U(s) (11.65)

and for the Kautz model

Zi(s) = Ki(s)U(s) (11.66)

where, Zi(s) and U(s) represent the Laplace transform of zi(t) and u(t), re-
spectively. The output of a stable plant with input u(t) can be approximated
by a truncated pth-order Laguerre or Kautz model

y(t) =
p∑

i=1

zi(t)αi (11.67)

where, α = [α1, α2 · · ·αp]T , is the parameter vector for the basis-function
model. Theories and proofs of the convergence of the Laguerre model can be
found in [24, 26, 34] and details of the properties of the two-parameter Kautz
model can be found in [32].
We denote the time instants when the output is available by tobs,k with k =
1, 2 · · ·M , where, M is the number of available output data. Also, the time
instants when the output is missing are denoted by tmis,k with k = 1, 2 · · ·N−
M , with N being the length of the input vector. So, we have

Yobs =

⎡

⎢⎢⎢⎣

y(tobs,1)
y(tobs,2)

...
y(tobs,M )

⎤

⎥⎥⎥⎦ Ymis =

⎡

⎢⎢⎢⎣

y(tmis,1)
y(tmis,2)

...
y(tmis,N−M )

⎤

⎥⎥⎥⎦ (11.68)
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In the initial prediction stage, to obtain the basis-function model, the estima-
tion equation (11.67) is formulated only at the time instants when the output
is available. This gives

y(tobs,k) =
p∑

i=1

zi(tobs,k)αi (11.69)

Next (11.69) can be formulated for tobs,k with k = 1, 2 · · ·M and combined to
give an equation in least squares form

Yobs = Zobsα (11.70)

where,

Zobs =

⎡

⎢⎢⎣

z0(tobs,1) z1(tobs,1) · · · zp(tobs,1)
z0(tobs,2) z1(tobs,2) · · · zp(tobs,2)

· · · · · · · · · · · ·
z0(tobs,M ) z1(tobs,M ) · · · zp(tobs,M )

⎤

⎥⎥⎦ (11.71)

Finally, the parameter vector can be obtained as

α̂ = (ZTobsZobs)−1ZTobsYobs (11.72)

The missing elements of the output can be predicted using

ŷ(tmis,k) =
p∑

i=0

zi(tmis,k)α̂i (11.73)

The estimated value of the missing elements can then be inserted into the
output vector to get a complete data set

Ycomplete = {Yobs Ŷmis} (11.74)

This complete data is then used for the identification of the transfer function
model of the process. The iterative prediction algorithm for identification from
non-uniformly sampled and missing data is summarised in Algorithm 2.

11.3.3 Choice of Basis-function Parameters

The initial prediction step of the iterative algorithm involves choice of the pa-
rameters of the basis-function model, namely κ and p for the Laguerre model
and β, ν and p for the Kautz model. The order of the polynomial, p, is chosen
as a few orders higher than the order of the transfer function model. Generally,
we choose κ on the basis of the knowledge of the process cut-off frequency.
A value slightly higher than the cut-off frequency is chosen. The use of two
parameters in the Kautz model facilitates its application for an oscillating
process. However, more process information is needed to choose the model
parameters. The parameters can be obtained from the knowledge of the nat-
ural period of oscillation of the process and its damping coefficient. However,
lack of process knowledge can be compensated by estimating a higher-order
model.
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Algorithm 2 : Iterative prediction algorithm for parameter estimation from
non-uniform and missing data.

Step 1-Initial prediction: Using only the observed output, estimate the parameters
of the input only model using (11.72). Predict the missing element of the output
using (11.73). Use these predicted values, Ŷ 0

mis, to replace Ŷmis in (11.74). i = 0.
Step 2-Iterative prediction: i = i + 1. Estimate the continuous-time model param-

eters using the complete data set Ycomplete = {Yobs Ŷ i−1
mis } and applying Algo-

rithm 1. Use the estimated model, θ̂i, to get the ith prediction of the missing
values, Ŷ i

mis. Replace Ŷ i−1
mis by Ŷ i

mis.
Step 3-Comparison: Compare MSEi

obs with MSEi−1
obs . If there is significant im-

provement, go back to step 2 and repeat the iteration.
Step 4-Termination: When MSEi

obs converges, the corresponding θ̂i is considered
as the final estimates.

11.3.4 Criterion of Convergence

The proposed iterative procedure is based on the idea of iterative prediction.
Consequently, a natural option for convergence criterion is the prediction er-
ror. As the output has missing elements, we can define the mean squared
error at the ith stage of the iteration based on the observed output and their
predicted values

MSEiobs =
1
M

M∑

k=1

[y(tobs,k) − ŷi(tobs,k)]
2 (11.75)

where, ŷi is the prediction of the model obtained in the ith stage of iteration.
Convergence of this MSE criterion is equivalent to the convergence of the
model prediction and the model parameters.

11.4 Simulation Results

To demonstrate the applicability of the proposed methods, different first- and
second-order processes are considered. For the simulation study, the inputs
are either random binary signals (RBS) or multi-sine signals generated using
the idinput command in MATLAB� with levels [−1 1]. Simulink� is used
to generate the data and numerically simulate the filtered input and output.
The process and filters are represented by continuous-time transfer function
blocks. The sampled noise-free outputs are corrupted by discrete-time white
noise sequences. The noise-to-signal ratio (NSR) is defined as the ratio of the
variance of the noise to that of the noise-free signal2.

2 NSR = variance of noise
variance of signal
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Fig. 11.3. Effect of noise on parameter estimates

11.4.1 Estimation from Uniformly Sampled Data

In this section results on the performance of the linear filter method for uni-
formly sampled data are presented.

Example 11.1. A first-order process having the following transfer function

G(s) =
1

20s + 1
e−6.8s (11.76)

is used to demonstrate the performance of the method in the presence of noise.
The sampling interval is 2 s. The input is a multi-sine signal with frequency
band [0 0.05]. The band contains the lower and upper limits of the passband,
expressed in fractions of the Nyquist frequency.
Figure 11.3 shows the quality of the parameter estimates with different levels
of noise. These results are from a Monte Carlo simulation (MCS) based on
100 random realisations. The mean values of 100 estimates are plotted and
bounded by the estimated ± values of the sample standard deviation. From
the figure it is seen that for noise as high as NSR= 15%, reasonably good
estimates are obtained.

Example 11.2. In this example a number of second-order processes are con-
sidered. The NSR for all cases are 10%. Table 11.1 shows the true and es-
timated models of the second-order processes ranging from slow to fast ones
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Table 11.1. True and estimated models for different second-order processes

True model Estimated model

1.25e−0.234s

0.25s2 + 0.7s + 1

1.25(±0.02)e−0.234(±0.039)s

0.25(±0.025)s2 + 0.7(±0.019)s + 1

2e−4.1s

100s2 + 25s + 1

2(±0.04)e−4.13(±0.742)s

99.4(±19.7)s2 + 25(±0.67)s + 1

(4s + 1)e−0.615s

9s2 + 2.4s + 1

(4(±0.5)s + 1(±0.04))e−0.62(±0.07)s

9(±0.66)s2 + 2.4(±0.18)s + 1

and from underdamped to overdamped. A model with a zero in the numerator
of the transfer function is also considered. A non-minimum phase process is
considered in the next example where the special procedure described in Sec-
tion 11.2.5 has been applied. The parameters shown here are the mean of the
100 parameter estimates. The numbers in the parentheses are the estimated
standard deviation of the 100 estimates.

11.4.2 Estimation from Non-uniformly Sampled Data

We consider a second-order process having the following transfer function to
demonstrate the performance of the iterative prediction algorithm

G(s) =
−4s + 1

9s2 + 2.4s + 1
e−0.615s (11.77)

A complete data set of 2000 samples with non-uniform sampling intervals over
the range 30−60 milliseconds (ms) is generated using a random binary signal
(RBS) as the input. The NSR is 10%. Table 11.2 summarises the parame-
ter estimation results from a Monte Carlo simulation based on 100 random
realisations when the entire data set is used for identification.
To test the performance of the algorithm proposed for non-uniform and miss-
ing data, we generate three sets of data that differ in terms of percentage of
missing elements. For case (i) every 3rd sample is taken out to generate a data
set with 33% missing elements; for (ii) every 2nd sample is removed to gener-
ate a data set with 50% missing elements and for case (iii) every 2nd and 3rd
samples are removed to generate a data set with 67% missing elements. The
model estimated using the iterative algorithm is compared with the model
estimated using only the available data, i.e., data at the time instants when
both input and output are available. To compare different models with a sin-
gle index we define a total-error criterion that is a combined measure of bias
and variance. We denote it by Etotal

Etotal =
1

Nθ

Nθ∑

i=1

(θ̂(i) − θ(i))2 + var(θ̂(i))
θ(i)2

(11.78)
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Table 11.2. Estimation results using the entire data set

â2(9.00) â1(2.40) b̂1(-4.00) b̂0(1.00) τ̂(0.615)

Mean 9.01 2.44 -4.04 1.03 0.63
Variance 0.040 0.049 0.063 0.005 0.020

where, θ(i) represents the true values of the ith parameter and θ̂(i) is its
estimated value. Nθ is the number of parameters. Figure 11.4 shows the total
error for the results from 100 MCS runs. The estimated values of the param-
eters are the means of 100 estimates. The error corresponding to 0% missing
data refers to the model estimated using the entire data set and can be taken
as the benchmark. When 33% of the data are missing, the model estimated
using only the available data has error comparable with the benchmark value
and the iterative algorithm has little room to improve. This suggests that the
available data are enough to give a good model. Consequently, the error level
of the model estimated using the iterative algorithm remains almost the same.
However, when more data are missing the error corresponding to the model
estimated using the available data is much higher than the benchmark value
and the iterative algorithm reduces the error to levels comparable with the
benchmark.

11.5 Experimental Evaluation

11.5.1 Identification of a Dryer

To show the performance of the linear filter method in real processes, iden-
tification results of a laboratory process are presented in this section. This
exercise is carried out using the data set from a dryer (dryer.mat) available
in the CONTSID toolbox. Details of the process and experiment are obtained
from [6] and described below. The SISO laboratory setup is a bench-scale
hot air-flow device. Air is pulled by a fan into a 30-cm tube through a valve
and heated by a mesh of resistor wires at the inlet. The output is the air
temperature at the outlet of the tube measured as voltage delivered by a
thermocouple. The input is the voltage over the heating device. The input
signal is a pseudo-random binary signal (PRBS) with maximum length. The
sampling period is 100 ms. There are two data sets, one for identification and
the other for validation, each containing 1905 measurements collected under
the same conditions. A first-order model with time delay is estimated for this
process. Figure 11.5 shows the validation data set and the output from the
estimated model. It can be seen that the simulated output matches the mea-
sured one quite well. Here, no a priori knowledge of the time delay is used
and an initial guess of 0.1 s converged to the final estimate of 0.53 s.
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Fig. 11.4. Improvement of model quality using the iterative algorithm for the sim-
ulation example

11.5.2 Identification of a Mixing Process

The performance of the iterative prediction algorithm is evaluated using an
experimental data set from a mixing process. The setup consists of a continu-
ous stirred tank used as a mixing chamber. Two input streams are fed to the
tank from two feed tanks. A salt solution and pure water run from the feed
tanks and are mixed together in the mixing chamber. The volume and tem-
perature of the solution in the mixing tank are maintained at constant values.
Also, the total inlet flow is kept constant. The input to the process is the flow
rate of the salt solution as a fraction of total inlet flow. The output is the
concentration of salt in the mixing tank. We assume a uniform concentration
of salt throughout the solution in the tank. The concentration is measured in
terms of the electrical conductivity of the solution. A photograph of the setup
is shown in Figure 11.6.
The input signal is a random binary signal. The sampling period is 20 s. A
total of 955 data points are used for this study. To study the effect of % data
missing and evaluate the performance of the iterative prediction algorithm,
missing data are chosen on a random basis and the algorithm is applied. The
study is carried out for 30%, 50% and 70% missing data sets. To generate a
particular data set, say with 30% of its elements missing, 30% of the available
output data are taken out on a random basis. The identification algorithm
is then applied with the remaining 70% data points. The same procedure
is applied 100 times with a different data set chosen each time containing
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Fig. 11.5. Validation data for dryer

only 70% of the total data. Finally, we get 100 estimates of the parameters.
The total error is then calculated from the estimated mean and variance of
the 100 estimates. To calculate the bias error, the model estimated using the
entire data set is taken as the nominal or true value. Figure 11.7 shows the
performance of the proposed iterative algorithm for the mixing process data.
While the error levels for models estimated only from the available data points
are high, the iterative algorithm gives final estimates of the parameters with
a much lower level of error.

11.6 Conclusions

Identification from non-uniformly sampled data has been considered in
discrete-time identification but mainly for multi-rate data. In continuous-
time identification, it is assumed that the methods are capable of dealing
with data non-uniformity provided that appropriate numerical techniques are
used. However, the inherent assumption of the numerical methods on the
inter-sample behaviour of the signals that results in certain arbitrary inter-
polation, may introduce errors in the estimation of the parameters. In this
work we have presented a simple algorithm to deal with non-uniformly sam-
pled output data. It has been demonstrated using simulated and experimental
data that the quality of the model estimated using the proposed model based
prediction algorithm is much better than the quality of the model estimated
using only the available output data. Also we introduce a novel linear fil-
ter method that simultaneously estimates the parameters and the delay of
continuous-time models following an iterative procedure.
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Fig. 11.6. Photograph of the mixing process

0

0.002

0.004

0.006

0 20 40 60 80

% Missing data

E
to
ta
l

Model from available data

Model from Iterative
Algorithm

Fig. 11.7. Improvement of model quality using the iterative algorithm for the mix-
ing process



11 Parameter and Delay Estimation from Non-uniformly Sampled Data 335

References

1. M. Agarwal and C. Canudas. On-line estimation of time-delay and continuous-
time process parameters. International Journal of Control, 46(1):295–311, 1987.

2. S. Ahmed. Parameter and delay estimation of continuous-time models from
uniformly and non-uniformly sampled data. PhD thesis, University of Alberta,
Edmonton, Canada, July 2006.

3. S. Ahmed, B. Huang, and S.L. Shah. Novel identification method from step
response. Control Engineering Practice, 15(5):545–556, May 2007.

4. S. Ahmed, B. Huang, and S.L. Shah. Parameter and delay estimation of
continuous-time models using a linear filter. Journal of Process Control,
16(4):323–331, 2006.

5. F.W. Fairman. Parameter estimation for a class of multivariate nonlinear pro-
cesses. International Journal of Control, 1(3):291–296, 1971.

6. H. Garnier. Continuous-time model identification of real-life processes with the
CONTSID toolbox. 15th IFAC World Congress, Barcelona, Spain, July 2002.

7. H. Garnier, M. Mensler, and A. Richard. Continuous-time model identification
from sampled data: Implementation and performance evaluation. International
Journal of Control, 76(13):1337–1357, 2003.

8. J. Gillberg and F. Gustafsson. Frequency-domain continuous-time AR modeling
using non-uniformly sampled measurements. IEEE Conference on Acoustics,
Speech and Signal Processing, Philadelphia, USA, volume 4, pages 105 – 108,
March 2005.

9. J. Gillberg and L. Ljung. Frequency domain identification of continuous-time
ARMA models: Interpolation and non-uniform sampling. Technical Report -
LiTH-ISY-R-2625, Department of Electrical Engineering, Linköping University,
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Iterative Methods for Identification of
Multiple-input Continuous-time Systems with
Unknown Time Delays

Zi-Jiang Yang

Kyushu University, Japan

12.1 Introduction

Many practical systems such as thermal processes, chemical processes and
biological systems, etc., have inherent time delay. If the time delay used in the
system model for controller design does not coincide with the actual process
time delay, a closed-loop system may be unstable or exhibit unacceptable
transient response characteristics. Therefore, the problem of identifying such
a system is of great importance for analysis, synthesis and prediction.
Numerous identification methods of time-delay systems based on discrete-time
models have been proposed [3,32]. However, since physical systems considered
in science and engineering are usually continuous in time, it is sometimes desir-
able to obtain a continuous-time model [12,24,29]. In [9], a general framework
of the technique of step-invariant transform from the z- to s-domain was pro-
posed, and it was pointed out that the technique may also be applicable to
a system with fractional delay that is not an integral multiple of sampling
period.
There have been some typical approaches to identification of continuous-time
models with unknown delay. One approach is based on the approximation of
the time delay in the frequency domain by a rational transfer function or the
Padé approximation [1,4]. This approach requires estimation of more param-
eters because the order of the approximated system model is increased. And
it is not easy to separate the parameters concerned with the time delay from
those concerned with the transfer function of the system. Another problem
in this method is that it may introduce an unacceptable approximation error
when the system has a large time delay.
Another approach is based on the non-linear optimisation method like the
non-linear least squares (LS) method that searches for the optimum by using
a gradient-following technique. In [5, 23], some variations of pure continuous-
time on-line non-linear LS methods were studied.
The off-line separable non-linear least squares (SEPNLS) method was studied
in [11], where the time delays were searched exhaustively with spline interpo-
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lation of the quadratic cost function, instead of the gradient-following-based
iterative search algorithms.
A major drawback of the iterative non-linear search algorithms is that the
solutions often converge to local optima. For the single-input, single-output,
(SISO) continuous-time systems, since there exists only one non-linear param-
eter (the time delay) in the estimation problem, the problem of initial setting
is considered to be relatively simple. Several trials are enough. For multiple-
input, single-output (MISO) systems with multiple unknown time delays that
may differ from each other, the problem is much more difficult. Although
the genetic algorithm is considered to be a powerful approach to this prob-
lem [25,26], the algorithm is usually computationally demanding and requires
a very long execution time.
It should be mentioned here that, on the other hand, both continuous-time
and discrete-time transfer function models with time delay can also be identi-
fied from frequency-domain data. By using the maximum likelihood method,
consistent estimates can be obtained in the presence of measurement noise
[7,17,18]. In this chapter, however, we confine our focus to time-domain iden-
tification.
We consider the identification problem of MISO continuous-time systems with
multiple unknown time delays from sampled input/output data. An approxi-
mated discrete-time estimation model is first derived, in which the system pa-
rameters remain in their original form and the time delays need not be an inte-
gral multiple of the sampling period. Then, an iterative SEPNLS method that
estimates the time delays and transfer function parameters separably is first
derived. Furthermore, we propose an iterative global SEPNLS (GSEPNLS)
method to address the problem of convergence to a local minimum of the
SEPNLS method, by using the stochastic global-optimisation techniques. In
particular, we apply the stochastic approximation with convolution smoothing
(SAS) technique [22] to the SEPNLS method. This results in the GSEPNLS
method.
In high measurement noise situations, the LS method will yield biased esti-
mates and hence some procedures for removing the bias errors will be required.
The bootstrap instrumental variable (IV) method that employs iteratively the
estimated noise-free output as IVs is one of the most useful techniques to yield
consistent estimates in the presence of high measurement noise [8, 21, 28–31].
Although the IV technique is usually applied to the linear parameter estima-
tion problems, we try to extend this technique to the non-linear LS problem.
By using the bootstrap IV technique, the GSEPNLS method is further mod-
ified to a novel global separable non-linear instrumental variable (GSEPNIV)
method to yield consistent estimates if the algorithm converges to the global
minimum.
Finally, simulation results are included to show the performance of the pro-
posed algorithms.
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12.2 Statement of the Problem

Consider a strictly stable MISO continuous-time system with unknown time
delays governed by the following differential equation

n∑

i=0

ais
n−ix(t) =

r∑

j=1

mj∑

i=1

bjis
mj−iuj(t − τj), a0 = 1, bj1 �= 0 (12.1)

where s is the differential operator, uj(t) is the jth input with time delay τj ,
x(t) is the deterministic output. n and mj are assumed to be known (n ≥
mj).
Consider the situation that the input signals are generated by digital comput-
ers. It is assumed that a zero-order hold is used such that

uj(t) = ūj(tk) (k − 1)Ts ≤ t < kTs (12.2)

where Ts is the sampling period.
Practically the discrete-time measurement of the output variable is corrupted
by a stochastic measurement noise

y(tk) = x(tk) + ξ(tk) (12.3)

where y(tk), x(tk), ξ(tk) denote y(kTs), x(kTs), ξ(kTs), respectively.
Our goal is to identify the unknown time delays τj(j = 1, · · · , r) and the trans-
fer function parameters ai(i = 1, · · · , n) and bji(j = 1, · · · , r, i = 1, · · · ,mj)
from sampled data of the inputs and the noisy output. To clarify the problem
setting, some assumptions are made here.

Assumption 12.1 The system under study is open loop strictly stable and
strictly proper.

Assumption 12.2 The system order n is known, and the relative degree n−
mj + 1 (n ≥ mj) with respect to each input signal is known and well defined,
that is, bj1 �= 0 (j = 1, · · · , r). Notice that this assumption is a necessary
condition of identifiability. See Proposition 12.1 in Section 12.4.

Assumption 12.3 Each zero-order hold input uj(tk) is a quasi-stationary
deterministic or random signal and the noise ξ(tk) is a quasi-stationary zero-
mean random signal uncorrelated with each input such that

lim
N→∞

1
N

N∑

k=1

ūj(tk)ξ(tk) = 0

.



342 Z.J. Yang

12.3 Approximate Discrete-time Model Estimation

The ordinary differential equation (12.1) in continuous time itself may not be
suitable for identification when the discrete-time sampled input–output data
are provided. Since differential operations may amplify the measurement noise
as well as the round-off noise, it is inappropriate to identify the parameters
using direct approximations of differentiations [12,24,29]. Our objective here
is to introduce a digital low-pass prefilter that would reduce the noise effects
sufficiently. Then, we can obtain an approximated discrete-time estimation
model in which the transfer function parameters remain in their original form
[25,26]. A straightforward candidate of the low-pass prefilter L(s) is

L(s) =
1

(αs + 1)n
(12.4)

where α is the time constant that determines the passband of L(s).
The prefilter was first suggested in [27]. Subsequently, the suitable choice of
prefilters for discrete- and continuous-time models was discussed in [28–31]
and it was suggested that if the prefilter is designed so that its passband
matches that of the system closely the noise effects can be significantly re-
duced. Also, it was suggested that if the denominator of the prefilter is given
by A(s), which is the denominator of the system transfer function, the esti-
mates can be made less vulnerable to higher measurement noise levels [28–31].
In this approach, since A(s) is not known in advance, the prefilter has to be
constructed iteratively by the estimate of A(s), that is,

L(s) =
1

Â(s)
, Â(s) =

n∑

i=0

âis
n−i (12.5)

Multiplying both sides of (12.1) by L(s) and using the bilinear transformation
based on the block-pulse functions [6], we obtain the following approximated
discrete-time estimation model [15,25,26]

ȳf0(tk) +
n∑

i=1

aiȳfi
(tk) =

r∑

j=1

mj∑

i=1

bjiūjfn−mj+i
(tk − τj) + r(tk) (12.6)

where

r(tk) =
n∑

i=0

aiξ̄fi
(tk)

ūjfi
(tk) = Ld(q−1)

(
Ts

2

)i
(1 + q−1)i(1 − q−1)n−iūj(tk)

ȳfi
(tk) = Ld(q−1)

(
Ts

2

)i
(1 + q−1)i(1 − q−1)n−iȳ(tk)

ξ̄fi
(tk) = Ld(q−1)

(
Ts

2

)i
(1 + q−1)i(1 − q−1)n−iξ̄(tk)

(12.7)
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where q−1 is the backward shift operator, ξ̄(tk) = (1 + q−1)ξ(tk)/2, ȳ(tk) =
(1 + q−1)y(tk)/2, and

Ld(q−1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
α(1 − q−1) +

Ts

2
(1 + q−1)

]−n

if L(s) = 1/(αs + 1)n

[
n∑

i=0

âi

(
Ts

2

)i

(1 + q−1)i(1 − q−1)n−i

]−1

if L(s) = 1/Â(s)

(12.8)
Notice that τj can be expressed as

τj = ljTs + Δj (12.9)

where 0 ≤ Δj < Ts and lj is a non-negative integer.

Remark 12.1. In the approximated discrete-time estimation model, the time
delays may be fractional, that is, Δj �= 0. In this case, we can get
ūjfn − mj + i

(tk − τj) by linear interpolation between ūjfn−mj + i
(tk − ljTs)

and ūjfn − mj+i
(tk − ljTs − 1).

Remark 12.2. In the case where the system is excited by a band-limited con-
tinuous input signal uj(t) [19] instead of the piecewise-constant signal given
in (12.2), we can define ūj(tk) = (1 + q−1)uj(tk)/2. In this case, the bilinear
transformation corresponds to the trapezoidal integration law [15].

Equation (12.6) can be written in vector form

ȳf0(tk) = ϕT (tk, τ)θ + r(tk)

ϕT (tk, τ ) = [−ϕTȳ (tk),ϕTū1
(tk − τ1), · · · ,ϕTūr

(tk − τr)]

ϕTȳ (tk) = [ȳf1(tk), · · · , ȳfn
(tk)]

ϕTūj
(tk − τj) = [ūjfn−mj+1(tk − τj), · · · , ūjfn

(tk − τj)]

θT = [aT ,bT1 , · · · ,bTr ]

τT = [τ1, · · · , τr]

aT = [a1, · · · , an]

bTj = [bj1, · · · , bjmj
]

(12.10)

12.4 SEPNLS Method

Given a set of filtered data {ȳf0(tk),ϕTȳ (tk),ϕTū1
(tk), · · · ,ϕTūr

(tk)}Nk=1, the
off-line parameter estimates are defined as the minimising arguments of the
following quadratic cost function

VN (θ, τ ) =
1

N − ks

N∑

k=ks+1

1
2
ε2(tk,θ, τ )

ε(tk,θ, τ ) = ȳf0(tk) −ϕT (tk, τ )θ

(12.11)
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such that [
θ̂
T

N , τ̂N

]T
= arg min

θ,τ
VN (θ, τ ) (12.12)

Notice that (N − ks) is the data length for identification, and ks should be
chosen such that tks ≥ max(τ1, · · · , τr), that is, the delayed signals should be
casual.
For detailed descriptions of the iterative search algorithms applied to system
identification, the readers are referred to [8, 10,20].
The unseparable non-linear least squares (UNSEPNLS) method estimates θ
and τ simultaneously by minimising the above quadratic cost function. Start-

ing at a set of initial estimates θ̂
(0)

N and τ̂ (0)
N , the minimising problem can be

described by the following iteration (Gauss-Newton method).

Θ̂
(j+1)

N = Θ̂
(j)

N − μ(j)
[
RN

(
Θ̂

(j)

N

)]−1

V ′
N

(
Θ̂

(j)

N

)
(12.13)

where Θ =
[
θT , τT

]T
, μ(j) is the step size that assures that VN (Θ) decreases

and that τ̂N stays in a preassigned interval [8, 10,20].
V ′
N (Θ) and RN (Θ) are, respectively, the gradient and the estimate of the

Hessian of the quadratic cost function [8, 10,20]

V ′
N (Θ) = − 1

N − ks

N∑

k=ks+1

γ(tk,Θ)ε(tk,Θ)

RN (Θ) =
1

N − ks

N∑

k=ks+1

γ(tk,Θ)γT (tk,Θ)

(12.14)

where

γ(tk,Θ) = −∂ε(tk,Θ)
∂Θ

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ϕTȳ (tk)
ϕTū1

(tk − τ1)
...

ϕTūr
(tk − τr)

−∂ε(tk,Θ)
∂τ1
...

−∂ε(tk,Θ)
∂τr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ϕTȳ (tk)
ϕTū1

(tk − τ1)
...

ϕTūr
(tk − τr)

−
m1∑

i=1

b1iūjfn−mj+i−1(tk − τj)

...

−
mr∑

i=1

briūjfn−mr+i−1(tk − τr)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12.15)

Notice that −∂ε(tk)/∂τ j(j = 1, · · · , r) is derived as the following by replacing
the differential operation with respect to time t by the bilinear transformation
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−∂ε(tk,Θ)
∂τj

=
mj∑

i=1

bji
∂

∂τj
ūjfn−mj+i

(t − τj)

∣∣∣∣∣
t=kTs

= −
mj∑

i=1

bji
d
dt

ūjfn−mj+i
(t − τj)

∣∣∣∣∣
t=kTs

= −
mj∑

i=1

bjiQd(q−1)
(

Ts

2

)n−mj+i−1

×(1 + q−1)n−mj+i−1(1 − q−1)mj−i+1ūj(tk − τj)

= −
mj∑

i=1

bjiūjfn−mj+i−1(tk − τj)

(12.16)

To avoid the ill-conditioned problem, RN

(
Θ̂

(j)

N

)
should not be singular or

near singular. This requires that bj1 �= 0 (j = 1, · · · , r), since if bj1 = 0 for any
j, −∂ε(tk,Θ)/∂τ j can be expressed by a linear combination of the elements

of ϕTūj
(tk− τj) such that RN

(
Θ̂

(j)

N

)
is rank deficient. To summarise, we have

the following proposition

Proposition 12.1. If the relative degree of system (12.1) is not well defined,
that is, bj1 ≈ 0 for any j = 1, · · · , r, then the LS minimising problem (12.12)

with respect to unknown Θ =
[
θT , τT

]T
becomes ill-conditioned.

This means that Assumption 12.2 is necessary to obtain a unique solution of
the LS minimising problem (12.12).
In contrast to the UNSEPNLS method, the SEPNLS method estimates the
time delay vector τ and the linear parameter vector θ in a separable manner.
When the time delays are known, the linear parameters can be estimated by
the linear LS method as

θ̂N (τ ) = R−1(N, τ )f(N, τ )

R(N, τ ) =
1

N − ks

N∑

k=ks+1

ϕ(tk, τ )ϕT (tk, τ )

f(N, τ ) =
1

N − ks

N∑

k=ks+1

ϕ(tk, τ )ȳf0(tk)

(12.17)

Then the quadratic cost function VN (θ, τ ) becomes the following so that the
time delays can be estimated separably

V̆N (τ ) =
1

N − ks

N∑

k=ks+1

1
2
ε̆2(tk, τ ) (12.18)



346 Z.J. Yang

where

ε̆(tk, τ ) = ȳf0(tk) −ϕT (tk, τ )R−1(N, τ )f(N, τ ) (12.19)

A non-linear LS problem is called separable if one set of parameters enter
linearly and another set nonlinearly in the model for parameter estimation
[10, 14]. The time delay vector τ and the linear parameter vector θ can be
estimated separably according to the following theorem. See [10,14] for proof
and more detailed explanations.

Theorem 12.4. Let θ = θ̂N (τ ) = R−1(N, τ )f(N, τ ) denote one solution of
the quadratic cost function (12.11). Then

[
θ̂
T

N , τ̂TN

]T
= argmin

θ,τ
VN (θ, τ ) = argmin

τ
V̆N (τ ) (12.20)

Since the separable iterative research algorithm for the time delays is not
found in the literature, the derivation of the algorithm will be described in
detail.
The estimate of time delays can be obtained as

τ̂N = argmin
τ

V̆N (τ ) (12.21)

through the following iterative search algorithm

τ̂
(j+1)
N = τ̂

(j)
N − μ(j)

[
R̆N

(
τ̂

(j)
N

)]−1

V̆
′
N

(
τ̂

(j)
N

)
(12.22)

where μ(j) is the step size that assures that V̆N (τ ) decreases and that each
element of τ̂N stays in a preassigned interval, that is,

τ̂
(j+1)
Ni ∈ Ωτi

=
{
τ̂

(j+1)
Ni

∣∣∣0 ≤ τ̂
(j+1)
Ni ≤ τ̄i

}
, i = 1, · · · , r

V̆
′
N (τ ) and R̆N (τ ) are respectively the gradient and the estimate of the

Hessian of the quadratic cost function (12.18)

V̆
′
N (τ ) = − 1

N − ks

N∑

k=ks+1

ψ(tk, τ )ε̆(tk, τ )

R̆N (τ ) =
1

N − ks

N∑

k=ks+1

ψ(tk, τ )ψT (tk, τ )

(12.23)

ψ(tk, τ ) = [ψ1(tk, τ ), · · · , ψr(tk, τ )]T can be obtained through tedious but
straightforward calculations as follows, for j = 1, · · · , r
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ψj(tk, τ ) = −∂ε̆(tk, τ )
∂τj

= ϕTτj
(tk, τ )R−1(N, τ )f(N, τ ) +ϕT (tk, τ )R−1(N, τ )f τj

(N, τ )

−ϕT (tk, τ )R−1(N, τ )
[
Rτj

(N, τ ) +RT
τj

(N, τ )
]
R−1(N, τ )f(N, τ )

(12.24)

where

Rτj
(N, τ ) =

1
N − ks

N∑

k=ks+1

ϕτj
(tk, τ )ϕT (tk, τ )

fτj
(N, τ ) =

1
N − ks

N∑

k=ks+1

ϕτj
(tk, τ )ȳf0(tk)

ϕτj
(tk, τ ) =

∂ϕ(tk, τ )
∂τj

=
[
01×n,01×m1 , · · · ,01×mj−1 ,

ϕTτj ,uj
(tk − τj),01×mj+1 , · · · ,01×mr

]T

ϕTτj ,uj
(tk − τj) = [−ūjfn−mj

(tk − τj),
−ūjfn−mj+1(tk − τj), · · · ,−ūjfn−1(tk − τj)]

(12.25)

Remark 12.3. Comparative discussions on separable and unseparable algo-
rithms can be found in the literature [10, 14, 20]. In [14], it was shown that
the computational burden per iteration is of the same order for the separable
and unseparable algorithms. In [10,20], it was pointed out through theoretical
analysis that R̆N in the separable algorithm is better-conditioned than RN in
the unseparable algorithm. Therefore, the separable algorithm is likely to con-
verge faster than the unseparable one, especially in the ill-conditioned cases,
and numerical examples confirmed this [10,20]. Therefore, we will confine our
attention to the separable algorithms only.

12.5 GSEPNLS Method

A major drawback of the iterative non-linear search algorithms is that the
solutions often converge to local optima. And hence the results may be sensi-
tive to the initial estimates. For MISO systems with multiple unknown time
delays that differ from each other, the problem of initial setting is non-trivial.
Although the genetic algorithm is considered to be a powerful approach to
achieve the global solution [25, 26], the algorithm is usually computationally
demanding and requires a very long execution time. In this section, we pro-
pose an iterative GSEPNLS method to address the problem of convergence
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to a local minimum of the SEPNLS method by using the stochastic global-
optimisation techniques. In particular, we apply the SAS technique [22] to the
SEPNLS method. This results in the GSEPNLS method.
The SAS is a global-optimisation algorithm for minimising a non-convex func-
tion

argmin
τ

V̆N (τ ) (12.26)

by smoothing operations on it. The smoothing process represents the convo-
lution of V̆N (τ ) with a smoothing function ȟ(η, β), where η ∈ R

r is a ran-
dom vector used to perturb τ , and β controls the degree of smoothing. This
smoothed functional, described in [13], is given by

ˇ̆
VN (τ , β) =

∫ ∞

−∞
ȟ(η, β)V̆N (τ − η)dη

=
∫ ∞

−∞
ȟ(τ − η, β)V̆N (η)dη (12.27)

which represents an averaged version of V̆N (τ ) weighted by ȟ(·, β). The objec-
tive of convolution smoothing is to smooth the non-convex objective function
by convolving it with a noise probability density function (PDF). To yield
a properly smoothed functional ˇ̆

VN (τ , β), the kernel functional ȟ(η, β) must
have the following properties [13]

1. ȟ(η, β) = (1/βr)h(η/β) is piecewise-differentiable with respect to β;
2. limβ→0 ȟ(η, β) = δ(η) ; (δ(η) is the Dirac delta function);

3. limβ→0
ˇ̆
VN (τ , β) = V̆N (τ );

4. ȟ(η, β) is a PDF.

One of the possible choices for h(η) is a Gaussian PDF [13], which leads to
the following expression for ȟ(η, β)

ȟ(η, β) =
1

(2π)(r/2)βr
exp

[
−1

2

r∑

i=1

(
ηi
β

)2
]

(12.28)

Under these conditions, we can rewrite (12.27) as the expectation with respect
to η

ˇ̆
VN (τ , β) = E{V̆N (τ − η)} (12.29)

In our case, ȟ(η, β) will be the sampled values of its PDF, which is convolved
with the original objective function for smoothing. Gaussian, uniform, and
Cauchy distributions satisfy the above properties. In this chapter, we will use
the Gaussian distribution.
The value of β plays a dominant role in the smoothing process by controlling
the variance of ȟ(η, β); see properties 2 and 3. To significantly reduce the
possibility of convergence to a local minimum, β has to be large at the start
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of the optimisation process and is then reduced to approximately zero as the
quadratic cost function becomes sufficiently small.
Our objective now is to solve the following SAS optimisation problem: min-
imise the smoothed functional ˇ̆

VN (τ , β) with β → 0 as τ → τ ∗, where τ ∗ is
considered to be the global minimiser of the original function V̆N (τ ) [22].
The application of this technique to the SEPNLS method requires a gradient
operation on the functional ˇ̆

VN (τ , β), that is, ˇ̆
V ′
N (τ , β). In the case where

only the gradient of V̆N (·) is known, the consistent gradient estimate of the
smoothed functional can be expressed as [13,22]

ˇ̆
V ′
N (τ , β) =

1
M

M∑

i=1

V̆
′
N (τ − βηi) (12.30)

In (12.30) M points ηi are sampled with the PDF h(η). Substituting M = 1
in (12.30) one obtains the one-sample gradient estimator usually used in the
stochastic approximation algorithms [22]

ˇ̆
V ′
N (τ , β) = V̆

′
N (τ − βη) (12.31)

In [22], using V̆
′
N (τ − βη) in (12.31), SAS was applied to the normalised

steepest-descent method.
A simplification that involves expressing the gradient V̆

′
N (τ −βη) as a Taylor

series around the operating point was proposed in [2]

V̆
′
N (τ − βη) = V̆

′
N (τ ) − βV̆

′′
N (τ )η + · · · (12.32)

Additionally, V̆
′′
N (τ ) in the above equation is approximated as an identity

matrix and only the first two terms of the Taylor series are kept such that

V̆
′
N (τ − βη) ≈ V̆ ′

N (τ ) − βη (12.33)

V̆
′
N (τ − βη) was then used to modify the least mean-squares algorithm for

the adaptive IIR filtering problem [2].
In this study, we extend the idea in [2] to our SEPNLS method. Replacing
V̆

′
N (τ ) in (12.22) by V̆

′
N (τ ) − βη, we obtain the following result.

τ̂
(j+1)
N = τ̂

(j)
N − μ(j)

[
R̆N

(
τ̂

(j)
N

)]−1 (
V̆

′
N

(
τ̂

(j)
N

)
− β(j)η

)
(12.34)

This is our GSEPNLS method that modifies the SEPNLS method with a
random perturbation term.

Remark 12.4. As suggested in [22], β has to be chosen large at the start of the
iterations and is then decreased to approximately zero as the cost function
is sufficiently small. And in [2], the sequence of β(j) was chosen as a discrete
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exponentially decaying function of iteration number j. However, in both stud-
ies β were chosen by trial and error. And we have not found in the literature
any reliable policy telling us how to determine reliable and efficient values of
β. In this chapter, however, based on empirical studies, we recommend the
following choice: β(j) = β0V̆N

(
τ̂

(j)
N

)
, where β0 is a sufficiently large positive

constant. And β0 is chosen as 105 in this study. It can be understood that
if V̆N

(
τ̂

(j)
N

)
is far from the global minimum, β(j) is large, and if it becomes

near the global minimum, β(j) becomes small. Also, it should be mentioned
here that the results are not sensitive to the constant β0.

The overall algorithm of the GSEPNLS method can be summarised as follows

1. Let j = 0. Set β0, the initial estimate τ̂ (0)
N and considerable upper bound

of time delays τ̄ .
2. Compute prefiltered signals

{
ȳf0(tk),ϕ

T
ȳ (tk),ϕTū1

(tk), · · · ,ϕTūr
(tk)
}N
k=1

.

3. Set β(j) = β0V̆N

(
τ̂

(j)
N

)
.

4. Perform the following
a) Compute

Δτ̂
(j+1)
N = −

[
R̆N

(
τ̂

(j)
N

)]−1 (
V̆

′
N

(
τ̂

(j)
N

)
− β(j)η

)

b) Compute
τ̂

(j+1)
N = τ̂

(j)
N + Δτ̂

(j+1)
N

c) Check if 0 ≤ τ̂
(j+1)
Ni ≤ τ i. If not, let Δτ̂

(j+1)
N = 0.5Δτ̂ (j+1)

N and go
back to b).

d) Check if V̆N

(
τ̂

(j+1)
N

)
≤ V̆N

(
τ̂

(j)
N

)
. If not, let Δτ̂

(j+1)
N = 0.5Δτ̂ (j+1)

N

and go back to b).
5. Terminate the algorithm if the stopping condition is satisfied. Otherwise,

let j = j + 1 and go back to step 3.

Finally, by substituting τ̂N into (12.17), the linear parameter vector θ can be
estimated by the linear LS method (12.17).

Remark 12.5. If β0 is chosen to be zero such that β(j) = 0 (j = 0, 1, 2, · · · ),
the GSEPNLS method is reduced to the local SPENLS method without the
random perturbation term.

Remark 12.6. Notice that μ(j) in (12.22) or (12.34) is chosen to guarantee
τ̂

(j+1)
Ni ∈ Ωτi

(i = 1, · · · , r) and V̆N

(
τ̂

(j+1)
N

)
≤ V̆N

(
τ̂

(j)
N

)
. Typically, one starts

with μ(j) = 1, and tests if these requirements are met. If not, let μ(j) =
0.5μ(j), and re-calculate τ̂ (j+1)

N . This process continues iteratively until the
requirements are satisfied [8, 10].

Remark 12.7. Owing to d) in step 4 of the GSEPNLS method, V̆N

(
τ̂

(j)
N

)
j =

0, 1, · · · is a decreasing sequence. Therefore, even if the global minimum of
V̆N

(
τ̂

(j)
N

)
and hence β(j) are not exactly zero, V̆N

(
τ̂

(j)
N

)
does converge.
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12.6 GSEPNIV Method

Although the GSEPNLS method is able to converge to the global minimum,
the estimates are acceptable only in the case of low measurement noise. In
the case of high measurement noise, the estimates are usually biased.
In the problem of linear parameter estimation, the IV method is a well-known
approach that eliminates the estimate bias due to measurement noise through
correlation techniques [8,21,28–31]. In this section, the IV method is extended
to the problem of non-linear parameter estimation. To achieve consistent es-
timates in the case of high measurement noise, we modify the GSEPNLS
method to the GSEPNIV method.
We first introduce the following IV vector ζ(tk, τ ) by using the input signals
ūj(tk) and sampled noise-free output x(tk)

ζT (tk, τ ) = [−ϕTx̄ (tk),ϕTū1
(tk − τ1), · · · ,ϕTūr

(tk − τr)]
ϕTx̄ (tk) = [x̄f1(tk), · · · , x̄fn

(tk)]
(12.35)

where, similar to those in (12.7), x̄fi
(tk) is given as

x̄fi
(tk) = Ld(q−1)

(
Ts

2

)i
(1 + q−1)i(1 − q−1)n−ix̄(tk) (12.36)

and x̄(tk) = (1 + q−1)x(tk)/2.

Remark 12.8. In practice, however, the noise-free output is never known.
Therefore, a bootstrap scheme is usually used to generate the instrumental
variables [8, 21, 28–31]. The estimated noise-free output ˆ̄x(tk) is obtained by
discretising the estimated system model by the bilinear transformation

ˆ̄zj(tk) =

mj∑

i=1

b̂ji

(T

2

)n−mj+i

(1 + q−1)n−mj+i(1 − q−1)mj−i

n∑

i=0

âi

(T

2

)i
(1 + q−1)i(1 − q−1)n−i

ūj(tk)

ˆ̄x(tk) =
r∑

j=1

ˆ̄z(tk − τ̂j)

(12.37)

The bootstrap approach is rather ad hoc, and strict analysis of convergence
is still not available in the literature. However, empirical studies indicate the
bootstrap algorithms converge quite well [8, 21,28–31].

By using the IV vector, we can estimate the linear transfer function parameters
by the linear IV method as
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θ̂IV N (τ ) = R−1
IV (N, τ )f IV (N, τ )

RIV (N, τ ) =
1

N − ks

N∑

k=ks+1

ζ(tk, τ )ϕT (tk, τ )

f IV (N, τ ) =
1

N − ks

N∑

k=ks+1

ζ(tk, τ )ȳf0(tk)

(12.38)

In this case, the residual is given as

ε̆IV (tk, τ ) = ȳf0(tk) −ϕT (tk, τ )R−1
IV (N, τ )f IV (N, τ ) (12.39)

Then the SEPNLS method (12.22) is modified to the following SEPNIV
method

τ̂
(j+1)
IV N = τ̂

(j)
IV N − μ(j)

[
R̆IV N

(
τ̂

(j)
IV N

)]−1

V̆
′
IV N

(
τ̂

(j)
IV N

)
(12.40)

where

V̆
′
IV N (τ ) = − 1

N − ks

N∑

k=ks+1

ψIV (tk, τ )ε̆IV (tk, τ )

R̆IV N (τ ) =
1

N − ks

N∑

k=ks+1

ψIV (tk, τ )ψTm(tk, τ )

(12.41)

ψm(tk, τ ) = [ψm1(tk, τ ), · · · , ψmr(tk, τ )]T is a slight modification of ψ(tk, τ )
given in (12.24)

ψmj(tk, τ ) = ϕTτj
(tk, τ )R−1

IV (N, τ )f IV (N, τ )

+ϕT (tk, τ )R−1
IV (N, τ )fτj

(N, τ )

−ϕT (tk, τ )R−1
IV (N, τ )

[
Rτj

(N, τ ) +RT
τj

(N, τ )
]
R−1
IV (N, τ )f IV (N, τ )

(12.42)
and ψIV (tk, τ ) = [ψIV 1(tk, τ ), · · · , ψIV r(tk, τ )]T is the IV vector to make
V̆ ′
IV N (τ ) and R̆IV N (τ ) consistent

ψIV j(tk, τ ) = ϕTτj
(tk, τ )R−1

IV (N, τ )f IV (N, τ )

+ζT (tk, τ )R−1
IV (N, τ )fτj

(N, τ )

−ζT (tk, τ )R−1
IV (N, τ )

[
Rτ j (N, τ ) +RT

τj
(N, τ )

]
R−1
IV (N, τ )f IV (N, τ )

(12.43)
It can be shown through correlation analysis that the solution by the SEPNIV
method is equivalent to the noise-free solution by the SEPNLS method, if the
data length is sufficiently large.
We first show the following results according to Assumption 12.3



12 Identification Methods for Multiple-input Systems with Time Delays 353

lim
N→∞

RIV (N, τ ) = lim
N→∞

1
N − ks

N∑

k=ks+1

ζ(tk, τ )ϕT (tk, τ )

=
1

N − ks

N∑

k=ks+1

ζ(tk, τ )ζT (tk, τ )

(12.44)

lim
N→∞

f IV (N, τ ) = lim
N→∞

1
N − ks

N∑

k=ks+1

ζ(tk, τ )ȳf0(tk)

=
1

N − ks

N∑

k=ks+1

ζ(tk, τ )x̄f0(tk)

(12.45)

Therefore θ̂IV N (τ ) is consistent if a consistent estimate of τ is used in (12.38).
Furthermore, we have

lim
N→∞

Rτj
(N, τ ) = lim

N→∞
1

N − ks

N∑

k=ks+1

ϕτj
(tk, τ )ϕT (tk, τ )

=
1

N − ks

N∑

k=ks+1

ϕτj
(tk, τ )ζT (tk, τ )

(12.46)

lim
N→∞

fτj
(N, τ ) = lim

N→∞
1

N − ks

N∑

k=ks+1

ϕτj
(tk, τ )ȳf0(tk)

=
1

N − ks

N∑

k=ks+1

ϕτj
(tk, τ )x̄f0(tk)

(12.47)

From (12.44)–(12.47), we can conclude that each element of ψIV (tk, τ ) ob-
tained by (12.43) also converges to its noise-free counterpart when the data
length is sufficiently large.
By using ψm(tk, τ ) and ψIV (tk, τ ) given in (12.42) and (12.43), and through
some correlation operations, we have the following results

lim
N→∞

R̆IV N (τ ) = lim
N→∞

1
N − ks

N∑

k=ks+1

ψIV (tk, τ )ψTIV (tk, τ ) (12.48)

lim
N→∞

V̆
′
IV N (τ )

= − lim
N→∞

1
N − ks

N∑

k=ks+1

ψIV (tk, τ )
(
ȳf0(tk) −ϕT (tk, τ )θ̂IV N (τ )

)

= − lim
N→∞

1
N − ks

N∑

k=ks+1

ψIV (tk, τ )
(
x̄f0(tk) − ζT (tk, τ ) θ̂IV N (τ )

)
(12.49)

The results of (12.48) and (12.49) imply that R̆IV N (τ ) and V̆
′
IV N (τ ) do not

include any bias term due to noise. Therefore, τ̂ IV N given in (12.40) is also
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expected to converge to the noise-free SEPNLS estimate, when the data length
is sufficiently large.
The GSEPNLS method (12.34) is therefore modified to the following GSEP-
NIV method

τ̂
(j+1)
IV N = τ̂

(j)
IV N − μ(j)

[
R̆IV N

(
τ̂

(j)
IV N

)]−1 (
V̆

′
IV N

(
τ̂

(j)
IV N

)
− β(j)η

)

(12.50)

Remark 12.9. We should notice that the SEPNIV estimate does not minimise
the quadratic cost function. However, if the estimate is consistent, it should
minimise the mean squares of the output error

VIV (θIV , τ IV ) =
1

N − ks

N∑

k=ks+1

(
ȳ(tk) − ˆ̄x(tk)

)2 (12.51)

Remark 12.10. As mentioned previously, in practice, however, the noise-free
output is never known. Therefore, a bootstrap scheme is usually used to gen-
erate the instrumental variables. Also, in order to improve statistical efficiency
of the estimates so that the estimates are less vulnerable to higher measure-
ment noise levels, the prefilter can be iteratively updated by the estimated
denominator of the transfer function as in (12.5) [27–31]. The price paid for
this effort is that the prefiltered signals have to be computed iteratively so
that the computational burden is increased.

The algorithm of the GSEPNIV method is summarised as follows

1. Let j = 0. Set β0, the initial estimates θ̂
(0)

IV N and τ̂ (0)
IV N , and the consid-

erable upper bound of time delays τ̄ . Generate the estimated noise-free

output
{
x̂(tk)

}N
k=1

by using θ̂
(0)

IV N and τ̂ (0)
IV N , and compute prefiltered

signals
{
ϕTˆ̄x (tk)

}N
k=1

.

2. Compute prefiltered signals
{
ȳf0(tk),ϕ

T
ȳ (tk),ϕTū1

(tk), · · · ,ϕTūr
(tk)
}N
k=1

.

3. Set β(j) = β0VIV

(
θ̂

(j)

IV N , τ̂
(j)
IV N

)

4. Perform the following.
a) Compute

Δτ̂
(j+1)
IV N = −R̆−1

IV N

(
τ̂

(j)
IV N

) (
V̆

′
IV N

(
τ̂

(j)
IV N

)
− β(j)η

)

b) Compute
τ̂

(j+1)
IV N = τ̂

(j)
IV N + Δτ̂

(j+1)
IV N

c) Check if 0 ≤ τ̂
(j+1)
IV Ni ≤ τ i. If not, let Δτ̂

(j+1)
IV N = 0.5Δτ̂ (j+1)

IV N and go
back to b).

d) Compute

θ̂
(j+1)

IV N = R−1
IV

(
N, τ̂

(j+1)
IV N

)
f IV

(
N, τ̂

(j+1)
IV N

)
.

e) Check if the estimated system model that generates the estimated

noise-free output is stable. If not, let θ̂
(j+1)

IV N = θ̂
(j)

IV N .
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Table 12.1. Estimates of the GSEPNLS method in the case of NSR= 5%

α â1(3.0) â2(2.0) b̂11(1.0) b̂12(2.0) b̂21(2.0) b̂22(2.0) τ̂1(8.83) τ̂2(2.32)

0.1
2.7012

±0.1148
1.6518

±0.1513
1.0016

±0.0178
1.6884

±0.1547
1.9687

±0.0229
1.5568

±0.1621
8.8289

±0.0056
2.3177

±0.0027

0.4
2.9439

±0.0607
1.9388

±0.0713
1.0012

±0.0110
1.9432

±0.0710
1.9882

±0.0180
1.9325

±0.0717
8.8293

±0.0029
2.3181

±0.0025

0.8
2.9673

±0.0420
1.9642

±0.0509
1.0019

±0.0110
1.9666

±0.0510
1.9908

±0.0155
1.9607

±0.0528
8.8292

±0.0023
2.3186

±0.0014

1.2
2.9585

±0.0470
1.9554

±0.0560
1.0030

±0.0117
1.9576

±0.0568
1.9856

±0.0174
1.9515

±0.0593
8.8292

±0.0025
2.3183

±0.0015

1.6
2.9405

±0.0527
1.9347

±0.0631
1.0059

±0.0135
1.9373

±0.0648
1.9781

±0.0197
1.9300

±0.0675
8.8295

±0.0031
2.3178

±0.0016

2.0
2.9187

±0.0596
1.9085

±0.0729
1.0099

±0.0169
1.9115

±0.0748
1.9693

±0.0231
1.9033

±0.0779
8.8300

±0.0041
2.3171

±0.0020

2.4
2.8954

±0.0684
1.8804

±0.0850
1.0142

±0.0213
1.8837

±0.0865
1.9595

±0.0275
1.8750

±0.0902
8.8306

±0.0054
2.3162

±0.0024

f) Generate the estimated noise-free output
{
x̂(tk)

}N
k=1

by using θ̂
(j+1)

IV N

and τ̂ (j+1)
IV N .

g) Check if

VIV

(
θ̂

(j+1)

IV N , τ̂
(j+1)
IV N

)
≤ VIV

(
θ̂

(j)

IV N , τ̂
(j)
IV N

)
.

If not, let Δτ̂
(j+1)
IV N = 0.5Δτ̂ (j+1)

IV N and go back to b).
h) Compute prefiltered signals

{
ϕTˆ̄x (tk)

}N
k=1

.
5. Terminate the algorithm if the stopping condition is satisfied. Otherwise,

let j = j + 1. Go back to step 3 if the prefilter is fixed; go back to step 2
if the prefilter is iteratively updated.

Remark 12.11. In some cases, the GSEPNIV algorithm using the bootstrap
technique may exhibit worse convergence behaviour than the GSEPNLS al-
gorithm. Therefore, it is recommended to initialise the GSEPNIV algorithm
by the GSEPNLS estimates.

Remark 12.12. There are two versions of the GSEPNIV algorithm described
above. One is the GSEPNIV method with a fixed prefilter (GSEPNIV-F),
and the other is the GSEPNIV method with an iteratively updated prefilter
(GSEPNIV-IU). The former requires less computational burden whereas the
latter yields better statistical performance of the estimates [27–31].

12.7 Numerical Results

Consider the following MISO continuous-time system
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Table 12.2. Estimates of the GSEPNIV-F method in the case of NSR= 30%

α â1(3.0) â2(2.0) b̂11(1.0) b̂12(2.0) b̂21(2.0) b̂22(2.0) τ̂1(8.83) τ̂2(2.32)

0.4
2.9814

±0.0934
1.9863

±0.1077
0.9941

±0.0308
1.9887

±0.1102
1.9956

±0.0456
1.9809

±0.1175
8.8260

±0.0083
2.3175

±0.0053

0.8
2.9825

±0.0931
1.9828

±0.1168
0.9965

±0.0310
1.9878

±0.1180
1.9992

±0.0414
1.9808

±0.1258
8.8262

±0.0081
2.3176

±0.0052

1.2
2.9806

±0.1101
1.9824

±0.1471
0.9970

±0.0350
1.9881

±0.1447
1.9990

±0.0416
1.9811

±0.1579
8.8260

±0.0082
2.3175

±0.0054

1.6
2.9749

±0.1298
1.9766

±0.1803
0.9984

±0.0414
1.9830

±0.1739
1.9976

±0.0446
1.9761

±0.1931
8.8257

±0.0086
2.3178

±0.0055

2.0
2.9630

±0.1536
1.9620

±0.2152
1.0017

±0.0488
1.9692

±0.2059
1.9947

±0.0503
1.9626

±0.2293
8.8255

±0.0091
2.3168

±0.0059

2.4
2.9435

±0.1826
1.9373

±0.2519
1.0072

±0.0559
1.9453

±0.2410
1.9896

±0.0589
1.9388

±0.2671
8.8255

±0.0097
2.3163

±0.0064

Table 12.3. Estimates of the GSEPNIV-IU method in the case of NSR= 30%

â1(3.0) â2(2.0) b̂11(1.0) b̂12(2.0) b̂21(2.0) b̂22(2.0) τ̂1(8.83) τ̂2(2.32)

2.9822
±0.0923

1.9822
±0.1138

0.9965
±0.0305

1.9872
±0.1153

1.9989
±0.0422

1.9795
±0.1226

8.8262
±0.0081

2.3177
±0.0053

ẍ(t) + a1ẋ(t) + a2x(t) = b11u̇1(t − τ1) + b12u1(t − τ1)
+b21u̇2(t − τ2) + b22u2(t − τ2)

(12.52)

where
a1 = 3.0, a2 = 2.0, b11 = 1.0, b12 = 2.0
b21 = 2.0, b22 = 2.0, τ1 = 8.83, τ2 = 2.32 (12.53)

The corresponding transfer function model is

X(s) =
e−8.83s

s + 1
U1(s) +

2e−2.32s

s + 2
U2(s)

=
e−8.83s(s + 2)U1(s) + e−2.32s(2s + 2)U2(s)

s2 + 3s + 2

(12.54)

Each input signal is output of a zero-order hold driven by a white signal
filtered by a Butterworth filter

1
(s/ωc)2 +

√
2(s/ωc) + 1

(ωc = 4.0) (12.55)

which is discretised by the bilinear transformation.
The input and output signals were sampled with the sampling period
Ts = 0.05 s. Since the system passband was not known prior to identifi-
cation, several different values of α in the fixed low-pass prefilter L(s) were
chosen. The effects of the values of α will be discussed later based on the
simulation results.
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Table 12.4. Hit ratio of the GSEPNLS method in the case of NSR= 5%

α 0.4 0.8 1.2 1.6 2.0 2.4

Hit ratio (%) 94 95 92 96 95 93

Table 12.5. Hit ratio of the GSEPNIV method in the case of NSR= 30%

α 0.4 0.8 1.2 1.6 2.0 2.4 IU

Hit ratio (%) 92 96 99 98 98 98 98

12.7.1 GSEPNLS Method in the Case of Low Measurement Noise

First, for one fixed realisation of the random perturbation vector η, and one
fixed realisation of the input signals, the GSEPNLS methods were imple-
mented for 20 realisations of the low measurement noise (NSR (noise-to-signal
ratio) was set as 5%) with data length of 1000. NSR was defined as the ratio of
σξ/σx, where σξ and σx are the standard deviations of the measurement noise
and of the noise-free output, respectively. The algorithm was terminated after
150 iterations. The time delays were searched in the range of τ1, τ2 ∈ [0, 10].
The initial estimates were set at τ̂ (0)

N = [1, 9]T . The results are shown in Table
12.1. The table includes the means and standard deviations of the estimates.
It can be seen that the GSEPNLS method gives satisfactory estimates when
α = 0.4, 0.8, 1.2, 1.6. Also, it is found that the results by α = 0.1 are not
acceptable. And when α = 2.0, 2.4, the results become worse. Notice that the
passband of the prefilter L(s) by α = 0.4, 0.8, 1.2, 1.6 is relatively close to
that of the system under study. On the other hand, the passband of the filter
L(s) by α = 0.1 is relatively too broad, and the passband by α = 2.0, 2.4 is
relatively too narrow, compared to that of the system. These results reflect
the suggestions in [16,28–31]. However, it can be found that the results are not
sensitive to the value of α. After several trials of the identification algorithm,
we can find the suitable range of α where the results are not sensitive and hence
are similar to each other. If necessary, we can reset the prefilter parameter
α based on the passband of the identified system model and then run the
algorithm again, to improve the statistical efficiency of the estimates. Also,
the prefilter can be iteratively updated by the estimated denominator of the
transfer function as in (12.5) [27–31]. The price is that the prefiltered signals
have to be computed iteratively so that the computational burden is increased.

It might be interesting to investigate the hit ratio of the algorithm, that is,
the percentage of the case that the algorithm converges to the neighbourhood
of the global minimum. For each value of α = 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, the
GSEPNLS method was implemented, respectively, for 100 different realisa-
tions of the input signals, measurement noise, random perturbation vector η,
initial values randomly chosen within the range of [0, 10]. The data length, the
maximum number of iterations and the noise level were chosen as the same
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Fig. 12.1. Convergence behaviour of the time-delay estimates by the GSEPNLS
method in the case of low measurement noise (α = 0.4)

as the previous ones. The results are shown in Table 12.4. It can be seen that
the GSEPNLS algorithm achieves a high hit ratio.
An example of the convergence behaviour of the estimates of the time delays
is shown in Figure 12.1. The surface graph of the corresponding quadratic cost
function (12.18) depending on τ1 and τ2 is shown in Figure 12.2, which implies
that by the local SEPNLS method the estimate τ̂ can be easily stuck at a local
minimum if the start point is not near the globally optimal solution. Figure
12.3 shows the locus of τ̂ on the contour of the quadratic cost function by the
GSEPNLS method. It can be found that τ̂ , which started at τ̂ (0)

N = [1, 9]T ,
reached the globally optimal solution very easily.

12.7.2 GSEPNIV Method

Through extensive simulation studies, we found that the GSEPNIV method
converges to the global minimum in most cases of various combinations of the
initial estimates, realisations of the inputs, random perturbation vector and
measurement noise.
For one fixed realisation of η, and one fixed realisation of the input signals, the
algorithms were implemented for 20 realisations of a high measurement noise
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Fig. 12.2. Surface graph of the quadratic cost function in the case of low measure-
ment noise (α = 0.4)

of NSR=30%. The data length was chosen as 4000. The initial estimates were
set at τ̂ (0)

N = [1, 9]T . The results by the GSEPNLS methods are not acceptable
and hence are not shown here.
For the GSEPNIV method, the first 50 iterations were performed by the
GSEPNLS method and the GSEPNLS estimates were provided as the initial
values for the left 100 iterations of the GSEPNIV method.
The results by the GSEPNIV method with a fixed prefilter (GSEPNIV-F)
are shown in Table 12.2, and the results by the GSEPNIV method with
an iteratively updated prefilter (GSEPNIV-IU) are shown in Table 12.3.
It can be seen that the GSEPNIV-F method yields satisfactory results for
α = 0.4, 0.8, 1.2, 1.6. When α = 2.0, 2.4, however, the results become worse.
The results by α = 0.1 are not satisfactory and hence are not shown here.
Also, it is found that the GSEPNIV-IU method yields satisfactory results
that are similar to those by the best choice of α. The results reflect the claim
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Fig. 12.3. Locus of the time-delay estimates on the contour of the quadratic cost
function in the case of low measurement noise (α = 0.4)

in Remark 12.10.

To investigate the hit ratio of the GSEPNIV algorithm, the GSEPNIV-F
method for each value of α = 0.4, 0.8, 1.2, 1.6, 2.0, 2.4 and the GSEPNIV-IU
method were implemented respectively for 100 different realisations of the in-
put signals, measurement noise, random perturbation vector η, initial values
randomly chosen within the range of [0, 10]. The data length, the maximum
number of iterations and the noise level were chosen as the same as the pre-
vious ones. The results are shown in Table 12.5, where IU means the case of
iterative updated filter. It can be seen that the GSEPNIV algorithm achieves
a high hit ratio in the case of high measurement noise.

12.8 Conclusions

In this chapter, we considered the identification problem of MISO continuous-
time systems with multiple unknown time delays from sampled input–output
data. The GSEPNLS method that estimates the time delays and transfer
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function parameters separably was proposed, by using the stochastic global-
optimisation techniques to reduce the possibility of convergence to a local
minimum. And then the GSEPNLS method was modified to a novel GSEP-
NIV method to yield consistent estimates in the presence of high measurement
noise if the algorithm converges to the global minimum. Through numerical
studies, we found that the estimates by the proposed identification algorithms
converge to the globally optimal solutions quite well. The GSEPNLS method
yields acceptable estimates in the case of low measurement noise, and the
GSEPNIV method yields consistent estimates in the presence of high mea-
surement noise. Also, we found that the results are not sensitive to the initial
estimates, although the estimation problem is strongly non-linear and multi-
modal.
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13.1 Introduction

A few years ago the present authors launched a new approach to parametric
identification of linear continuous-time systems [11]. Its main features may be
summarised as follows:

• closed-loop identification is permitted thanks to the real-time identification
scheme;

• the robustness with respect to noisy data is obtained without knowing the
statistical properties of the corrupting noises.

This chapter is devoted to a new exposition of those methods and to their
illustration via three examples and their computer simulations. Our mathe-
matical techniques are quite different from those in the huge literature on this
subject. We are mainly employing algebraic tools:

1. the module-theoretic approach to linear systems,
2. elementary non-commutative ring theory,
3. operational calculus.

The chapter is organised as follows. Section 13.2 gives a short summary of
the module-theoretic setting for continuous-time linear systems3. Section 13.3
defines linear identifiability, which is sufficient for most practical cases, by
introducing the notion of algebraic derivatives and the corresponding non-
commutative ring theory. Section 13.4 discusses two kinds of perturbations:

1. The structured perturbations, which satisfy time-varying linear differential
equations, are annihilated by suitable linear differential operators.

3 This module-theoretic presentation of linear systems started in [4]. See [2] for an
excellent introduction and related references. This standpoint provides a most
useful way for synthesising model-based predictive control, which employs con-
cepts stemming from flatness-based control [9, 28].



364 M. Fliess and H. Sira-Ramı́rez

2. The unstructured perturbations are considered as highly fluctuating, or
oscillating, phenomena. They are attenuated by suitable low-pass filters,
like iterated time integrals.

We thus arrive at estimators that are robust with respect to a large class of
noises. Our numerical simulations in Sections 13.5 and 13.6 deal, respectively,
with the open-loop dragging of an unknown mass and the feedback control
of a first-order system. They are compared to standard adaptive methods,
which seem to be less efficient. We note also in Section 13.5 that the rather
complex notion of persistently exciting signal becomes quite pointless in our
setting. For the double-bridge buck converter of Section 13.7, which is more
realistic (see [30]) than the previous examples, we are able to achieve a rather
successful closed-loop parametric identification. A short conclusion relates our
work to others.
Let us add that we tried to write the examples in such a way that they might
be grasped without the necessity of reading the sections on the algebraic
background. Our standpoint on parametric identification should therefore be
accessible to most engineers.

13.2 A Module-theoretic Approach to Linear Systems: a
Short Summary

13.2.1 Some Basic Facts about Modules over Principal Ideal Rings

Let k be a given field4. Write k[s] the ring of polynomials
∑

finite aνs
ν , aν ∈ k,

in the indeterminate s. It is well known that k[s] is a principal ideal ring, i.e.,
any ideal of k[s] may be generated by a single element. A k[s]-module M is
said to be finitely generated, or of finite type, if, and only if, M = spank[s](S),
where S is a finite set. Module M is said to be free5 if, and only if, there
exists S whose elements are k[s]-linearly independent; S is then called a basis.
The cardinalities, i.e., the numbers of elements, of two bases are equal. Any
submodule of a finitely generated (resp. free) k[s]-module is again finitely
generated (resp. free). Any quotient module of a finitely generated k[s]-module
is again finitely generated.
An element x ∈ M is said to be torsion if, and only if, there exists � ∈ k[s],
� �= 0, such that �x = 0. The set of all torsion elements of M is a submodule
M tor, {0} ⊆ M tor ⊆ M , which is called the torsion submodule. If M tor = M ,
M is said to be torsion. If M tor = {0}, M is said to be torsion free. Any free
module is of course torsion free. As is well known, the converse holds true for
finitely generated torsion-free k[s]-module M . The quotient module M/M tor

is free. The next property of a finitely generated k[s]-module M is crucial

4 See, e.g., [17] for a classic and well-written introduction to commutative algebra.
5 By convention, the trivial module {0}, generated by the empty set ∅, is free.
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M = M tor ⊕ F (13.1)

where the free module F = M/M tor is defined up to isomorphism.
A module that is generated by a single element g is finite-dimensional, when
viewed as a k-vector space, if, and only if, g is torsion. The extension to a
finitely generated module M is immediate: M is torsion if, and only if, the
dimension dimk(M) of M , viewed as a k-vector space, is finite.

Example 13.1. Consider the set of k[s]-linear equations

μ∑

κ=1

aικξκ = 0, aικ ∈ k[s], ι = 1, . . . , ν (13.2)

in the unknowns ξ1, . . . , ξμ. Let F be the free k[s]-module with basis (f1, . . . ,
fμ). Let E be the submodule generated by eι =

∑μ
κ=1 aικfκ, ι = 1, . . . , ν.

Then, the module corresponding to equations (13.2) is M = F/E. Equations
(13.2) may be written in the following matrix form

PM

⎛

⎜⎝
ξ1

...
ξμ

⎞

⎟⎠ = 0 (13.3)

PM ∈ k[s]ν×μ is a presentation matrix of Λ.

13.2.2 Formal Laplace Transform

Let k(s) be the quotient field of k[s], i.e., the field of rational functions over k in
the indeterminate s. Let M be a finitely generated k[s]-module. The elements
of the tensor product M̂ = k(s) ⊗k[s] M are finite sums of products q−1x,
x ∈ M , q ∈ k[s], q �= 0. It is a k(s)-vector space, called the transfer vector
space of M . The k[s]-linear mapping M → M̂ , m �→ m̂ = 1⊗m, is the formal
Laplace transform6. Its kernel is the torsion submodule M tor. The formal
Laplace transform is thus injective if, and only if, M is free. By definition, the
rank of M , which is written rk (M), is rk (M) = dimk(s)(M̂). It is clear that
M is torsion if, and only if, rk (M) = 0. Take two modules M1,M2, M1 ⊆ M2.
Then, rk (M2/M1) = rk (M2)− rk (M1). Thus, rk (M1) = rk (M2) if, and only
if, the quotient module M2/M1 is torsion. For any set x = (x1, . . . , xα) ⊂ M ,
the following equality is obvious

rk (spank[s](x)) = dim(spank(s)(x̂)) (13.4)

The next property is stating a useful matrix characterisation of torsion mod-
ules

6 See [5] for more details.
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Proposition 13.1. The module corresponding to (13.3) is torsion if, and only
if, rk (PM ) = μ. If (13.3) is square, i.e., μ = ν, this condition is equivalent to
det(PM ) �= 0.

Proof. The formal Laplace transform yields

PM

⎛

⎜⎝
ξ̂1

...
ξ̂μ

⎞

⎟⎠ = 0

The module is torsion if, and only if, ξ̂1 = . . . ξ̂n = 0. This latter condition is
equivalent to rk (PM ) = μ.

Example 13.2. Let T be a finitely generated torsion k[s]-module. Then,
dimk(T ) = n < ∞. Pick up a basis b = (b1, . . . , bn) of T viewed as a k-
vector space. To the k-linear mapping s : T → T , τ �→ sτ , corresponds the
matrix A ∈ kn×n with respect to b. This is equivalent to saying that T is
defined by the following matrix equation

s

⎛

⎜⎝
b1

...
bn

⎞

⎟⎠ = A

⎛

⎜⎝
b1

...
bn

⎞

⎟⎠ (13.5)

It is clear that det(s − A) �= 0.

13.2.3 Basic System-theoretic Definitions

A k-linear system is a finitely generated free k[s]-module Λ where we
have distinguished a finite subset of perturbation, or disturbance, variables
π = (π1, . . . , πr).

Remark 13.1. Set k = C. Consider the operational equation aχ = 0, a ∈
C[s], a �= 0, in the unknown χ. Its unique solution is χ = 0. This means
that any torsion element would be trivial. Note, moreover, that the linear
differential equation ẋ = 0, which corresponds to a torsion C[ d

dt ]-module,
yields the operational equation sx̂ − x(0) = 0, which corresponds to a free
C[s]-module with basis {x̂}. See [10] for a thorough discussion.

The nominal, or unperturbed, system Λnom is defined by the quotient module

Λnom = Λ/spank[s](π)

The canonical image of any λ ∈ Λ is written λnom ∈ Λnom. We might some-
times call Λ a perturbed system. Note, moreover, that Λnom is not necessarily
free.
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Example 13.3. The module corresponding to sx = π, where π ∈ spank[s](π),
π �= 0, is free7. The module corresponding to the nominal system sxnom = 0
is torsion.

A k-linear dynamics is a k-linear system Λ, which is equipped with a finite
set u = (u1, . . . , um) of control variables, such that

• the control variables do not interact with the perturbation variables

spank[s](u) ∩ spank[s](π) = {0} (13.6)

• the quotient module Λnom/spank[s](unom) is torsion.

If u = ∅, this last condition implies that Λnom is torsion. The control vari-
ables are said to be independent if, and only if, u1, . . . , um are k[s]-linearly
independent.
The set of output variables is a finite subset y = (y1, . . . , yp) ⊂ Λ. A dynamics
Λ with output variables is called a k-linear input/output system. A system is
said to be mono-variable if, and only if, m = p = 1. If not, it is said to be
multi-variable.

13.2.4 Transfer Matrices

Consider the nominal dynamics Λnom with control variables

unom = (unom
1 , . . . , unom

m )

The transfer k(s)-vector space (see Section 13.2.2) Λ̂nom is spanned by ûnom,
which is a basis if the control variables are independent. It yields, with nominal
output variables ynom = (ynom

1 , . . . , ynom
p ),

⎛

⎜⎝
ŷnom
1
...

ŷnom
p

⎞

⎟⎠ = T

⎛

⎜⎝
ûnom

1
...

ûnom
m

⎞

⎟⎠ (13.7)

where T ∈ k(s)p×m is the (nominal) transfer matrix, which is uniquely defined
if, and only if, the control variables are independent. If m = p = 1, T is called
a (nominal) transfer function. Matrix T is said to be proper (resp. strictly
proper) if, and only if, its entries are proper (resp. strictly proper) rational
functions.

7 The initial condition x(0) should be considered as a perturbation (see [10]).
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13.3 Identifiability

13.3.1 Uncertain Parameters

Let the field k be a finite algebraic extension8 of k0(Θ), where

• k0 is a given ground field;
• Θ = (θ1, . . . , θτ ) is a finite set of uncertain, or unknown, parameters.

13.3.2 The Algebraic Derivative and a New Module Structure

Call9 with [21,22,32] the derivation d
ds with respect to s the algebraic deriva-

tive10. Introduce a new commutative field K of constants, i.e., ∀ξ ∈ K, dξ
ds = 0.

The ring K[s, d
ds ] of linear differential operators

∑
finite aν

dν

dsν , aν ∈ K[s], with
polynomial coefficients, is called the Weyl algebra (see, e.g., [20]). It is non-
commutative, as shown by the commutator [ d

ds , s]

[
d
ds

, s] =
d
ds

s − s
d
ds

= 1

Introduce the over-ring K(s)[ d
ds ] of linear differential operators

∑
finite bν

dν

dsν ,
bν ∈ K(s), with rational coefficients. It is a non-commutative left and
right principal ideal ring (see, e.g., [20]), i.e., any left (resp. right) ideal
of K(s)[ d

ds ] may be generated by a single element. Take again system Λ,
i.e., a finitely generated free k[s]-module. Elements of the tensor product
Λk(s)[ d

ds ] = k0(s)[ d
ds ] ⊗k[s] Λ are (see, e.g., [20]) finite sums of products rλ,

r ∈ k0(s)[ d
ds ], λ ∈ Λ. This means that Λk(s)[ d

ds ] may be endowed with a
structure of left k(s)[ d

ds ]-module.

13.3.3 Linear Identifiability

The uncertain parameters Θ = (θ1, . . . , θτ ) are said to be linearly identifiable
if, and only if,

P

⎛

⎜⎝
θ1

...
θτ

⎞

⎟⎠ = Q + R (13.8)

where
8 A field extension L/K is given by two fields K and L such that K ⊆ L (see,

e.g., [17]). It is a finite algebraic extension if, and only if, the dimension of L
viewed as a vector space over K is finite. Then, any element of L is algebraic over
K, i.e., satisfies a polynomial equation with coefficients in K.

9 See [8, 10,11] for more details.
10 Remember (see, e.g., [3,21,22,25,32]) that d

ds
corresponds in the time domain to

the multiplication by −t.
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• the entries of the matrices P and Q, of respective sizes τ × τ and τ × 1,
belong to spank0(s)[ d

ds ](u,y),
• det(P ) �= 0;
• R is a τ × 1 matrix with entries in spank(s)[ d

ds ](π).

The uncertain parameters Θ are said to be projectively linearly identifiable if,
and only if,

• it is known that θι �= 0 for some ι, 1 ≤ ι ≤ τ ;
• the quantities { θ1θι

, . . . , θι−1
θι

, θι+1
θι

, . . . , θτ

θι
} are linearly identifiable11.

The uncertain parameters Θ are said to be weakly linearly identifiable if, and
only if, there exists a set Θ′ = {θ′1, . . . , θ′τ} of linearly identifiable quantities
such that the elements of Θ are algebraic over k0(Θ′).

13.3.4 An Elementary Example

Set k0 = Q and Θ = {a1, . . . , an, b0, . . . , bm}. Consider the SISO system
(

dn

dtn
+ a1

dn−1

dtn−1
+ · · · + an

)
y(t) =

(
b0

dm

dtm
+ · · · + bm

)
u(t) (13.9)

which reads with operational notations
(
sn + a1s

n−1 + · · · + an
)
Y = (b0s

m + · · · + bm)U + I(s) (13.10)

where I(s) is a polynomial over k in the indeterminate s, of degree
max(m,n) − 1, the coefficients of which depend on the initial conditions. By
applying dmax(m,n)

dsmax(m,n) to both sides of (13.10), we remove those conditions. The
linear identifiability follows at once from the linear equations

dα

dsα
(
sn + a1s

n−1 + · · · + an
)
Y =

dα

dsα
(b0s

m + · · · + bm)U

for max(m,n) ≤ α ≤ max(m,n) + m + n.

Remark 13.2. See [31] for most interesting calculations via moments that bear
some similarity with the ones above.

Remark 13.3. Replace (13.9) by
(

a0
dn

dtn
+ a1

dn−1

dtn−1
+ · · · + an

)
y(t) =

(
b0

dm

dtm
+ · · · + bm

)
u(t)

where we have introduced the coefficient a0. If we assume for instance that
a0 �= 0, the set {a0, a1, . . . , an, b0, . . . , bm} is obviously not linearly identifiable
but projectively linearly identifiable.

11 If ι = 1 (resp. ι = τ), { θ2
θ1

, . . . , θτ
θ1
} (resp. { θ1

θτ
, . . . ,

θτ−1
θτ

}) are linearly identifiable.
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13.4 Perturbations

13.4.1 Structured Perturbations

For dealing with specific perturbations, introduce the left k(s)[ d
ds ]-module

L = Λk(s)[ d
ds ]/M

where M is a submodule of spank(s)[ d
ds ](π). Call again perturbation, or dis-

turbance, variables the canonical image π = (π1, . . . , πq) ⊂ L of π. A subset
S ⊆ π is said to be structured if, and only if, the module spank(s)[ d

ds ](S) is
torsion. This means, in other words, that for any σ ∈ spank(s)[ d

ds ](S), there
exists � ∈ k(s)[ d

ds ], � �= 0, such that �σ = 0. We say that the linear differen-
tial operator � is annihilating the structured perturbation σ. The differential
operator � is also called an annihilator of σ.

Example 13.4. Set k = C. The perturbation κe−Ls

sn , L ≥ 0, κ ∈ C, n ≥ 0,
which is annihilated by ( d

ds + L)sn = sn( d
ds + L) + nsn−1, is structured. Note

that the annihilating differential operator contains L, but not κ.

Example 13.5. The perturbation a
b , a, b ∈ k[s], b �= 0, which is annihilated by

dν

dsν b, for ν large enough, is structured. In particular αs+β
s2+ω2 , α, β, ω ∈ k, is

annihilated by d2

ds2 (s2 + ω2) = 2 + 2s d
ds + (s2 + ω2) d2

ds2 , which contains the
‘frequency’ ω, but not α and β.

The set of annihilators of any σ ∈ spank(s)[ d
ds ](S) is a left ideal of k(s)[ d

ds ].
Any generator �0 of this principal ideal is said to be a minimal annihilator.
Take two minimal annihilators �0 and �1. Then, �1 = "�0, where " ∈ k(s),
" �= 0.

13.4.2 Unstructured Perturbations

Perturbations that are not structured are said to be unstructured. Such noises
are viewed as highly fluctuating, or oscillatory, signals, which may be attenu-
ated by low-pass filters, like iterated time integrals.

Remark 13.4. See [6] for a precise mathematical foundation, which is based
on non-standard analysis. A highly fluctuating function of zero mean is then
defined by saying that its integral over a finite time interval is infinitesimal,
i.e., ‘very small’. Let us emphasise once more that this approach, which has
been confirmed by numerous computer simulations and several laboratory
experiments, is independent of any probabilistic setting. No knowledge of the
statistical properties of the noises is required.
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13.4.3 Linear Identifier

Equation (13.8) may be rewritten as

P

⎛

⎜⎝
θ1

...
θτ

⎞

⎟⎠ = Q + Rstruc + Runstruc

where the components of the column matrix Rstruc (resp. Runstruc) are struc-
tured (resp. unstructured) perturbations. The set ann(Rstruc) of differential
polynomials ω ∈ k(s)[ d

ds ] annihilating Rstruc, i.e., such that ωRstruc = 0, is
a left ideal. Two generators Δ1, Δ2 of this ideal are related by Δ2 = ρΔ1,
ρ ∈ k(s), ρ �= 0. Pick up a generator Δ

ΔP

⎛

⎜⎝
θ1

...
θτ

⎞

⎟⎠ = ΔQ + ΔRunstruc (13.11)

If det(ΔP ) �= 0, then (13.11), where the structured perturbations have been
eliminated, is called a linear identifier of the unknown parameters.

13.4.4 Robustness

By multiplying both sides of (13.11) by a suitable strictly proper transfer
function in k(s), we may ensure that any entry of the matrices is a k-linear
combination of terms of the form r dα

dsα (a), where

• r ∈ k(s) is strictly proper;
• α = 0, 1, 2, . . . ;
• a is either a control, an output, or an unstructured perturbation variable.

Denoising, i.e., the attenuation of unstructured perturbations, is achieved by
choosing appropriate low-pass filters, like iterated time integrals, which give
rise to what we may call invariant filtering.

13.5 First Example: Dragging an Unknown Mass in
Open Loop

13.5.1 Description and First Results

Consider the problem of dragging an unknown mass along a frictionless hori-
zontal straight line. The model is given by

mẍ(t) = u(t)

where
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• x(t) is the mass displacement, perfectly measured from some reference
point, or origin, labeled by 0;

• u(t) is the applied force.

To make the problem simple, let us assume that u(t) is a known, non-zero,
open-loop control force at our disposal. The entire purpose of applying such a
force to the mass is to gather some input/output information so that we can
identify the unknown mass parameter m. The mass is initially, at time t = 0,
placed at a distance x0 of the origin and moves with unknown velocity ẋ0.
Operational calculus yields

m
[
s2X − sx0 − ẋ0

]
= U

The dependence of this expression upon the initial conditions is eliminated
by differentiating both sides twice with respect to s

m

[
2X + 4s

dX

ds
+ s2 d2X

ds2

]
=

d2U

ds2

Time differentiation is avoided by multiplying both sides by s−2

m

[
2s−2X + 4s−1 dX

ds
+

d2X

ds2

]
= s−2 d2U

ds2

This reads in the time domain12

m

[
2
∫ t

0

∫ σ1

0

x(σ2)dσ2dσ1 − 4
∫ t

0

σ1x(σ1)dσ1 + t2x(t)
]

=
∫ t

0

∫ σ1

0

u(σ2)dσ2dσ1

This expression has the advantage of being completely independent of the
initial conditions and it only requires the measurement of the input force u(t)
and of the displacement output x(t), in order to compute m. Set 1/m = n(t)

d(t) ,
where

n(t) = t2x(t) − 4
∫ t

0

σ1x(σ1)dσ1 + 2
∫ t

0

∫ σ1

0

x(σ2)dσ2dσ1

d(t) =
∫ t

0

∫ σ1

0

σ2
2u(σ2)dσ2dσ1

At time t = 0, both the numerator and the denominator are 0: the quotient is
undetermined. We must, therefore, begin to evaluate the formula not at time
0 but at a later time, say ε � 0, ε being small. Set for the estimate 1/me of
1/m
12 Remember (cf. Section 13.3.2) that the algebraic derivative d

ds
corresponds in the

time domain to multiplication by −t.
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1
me

=

⎧
⎪⎪⎨

⎪⎪⎩

arbitrary for t ∈ [0, ε)

n(t)
d(t)

for t > ε
(13.12)

The evaluation of the quotient is, of course, valid as long as the denominator
does not go through zero.
In order to easily implement the calculations on a digital computer, and given
that time integrations are needed to synthesise the numerator and the denom-
inator expressions, we would like to give to these two quantities the character
of outputs of certain dynamic systems involving differential equations. We
propose then the following linear time-varying ‘filters’

⎧
⎨

⎩

n(t) = t2x(t) + z1

ż1 = −4tx(t) + z2

ż2 = 2x(t)

⎧
⎨

⎩

d(t) = η1

η̇1 = η2

η̇2 = t2u(t)
(13.13)

with z1(0) = z2(0) = 0 and η1(0) = η2(0) = 0.
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e
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Fig. 13.1. Identification of the inverse-mass parameter

Figure 13.1 depicts the involved signals, i.e., the numerator n(t), the de-
nominator d(t), the input u(t), which is here a constant force, the output
y(t) = x(t), and the estimate 1/me of 1/m. The wrong, or arbitrary, guess
for the parameter value, during the time interval [0, ε), was taken to be
1/me = 0.5, as can be seen from the figure. We have set, in this case, ε = 0.01
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s, but still a smaller real value could have certainly been used. Also, we have
let: u(t) = 1 for all t. For the simulations, the actual value of the mass was
set to m = 1 kg.
Several distinctive features emerge from the simulations of this rather simple
example:

1. The estimation of the mass parameter can be reliably achieved in quite a
short amount of time that only depends on the arithmetic processor pre-
cision in being able to carry out the quotient of two very small quantities,
the numerator and denominator signals.

2. The test input signal u(t) being used does not necessarily exhibit the
classical ‘persistency of excitation’ requirement.

3. The estimator of the inverse mass parameter is comprised of unstable
signals in both the numerator and the denominator.

Regarding the first observation above, we should remark that the accurate
precision with which we have obtained the mass parameter is not at all sur-
prising, due to the fact that the used formula is as exact as the model and,
very importantly, because we have not included any measurement noise in
our simulations. This last feature may compromise not only the precision of
the computation but, also, the fast character of the identification. The second
feature of not needing a persistently exciting signal is certainly an unchal-
lenged advantage. The last negative feature regarding our internally unstable
scheme may be overcome in a simple manner by prescribing the need to, at
least temporarily, ‘switch off’ the estimator immediately after the precise pa-
rameter estimation is obtained. The noise-related aspects are quite essential.
We propose below a possible approach.

13.5.2 Denoising

The expression
1
m

=
n(t)
d(t)

becomes
1
m

=
G 
 n(t)
G 
 d(t)

where

• G is a low-pass filter with rational transfer function G(s);
• 
 denotes the convolution product.

According to Sections 13.4.2 and 13.4.4 such an invariant filtering permits to
attenuation of zero-mean highly fluctuating noises, such as the plant noise
ζ(t) and the measurement noise ξ(t) occurring in

mẍ(t) = u(t) + ζ(t), y(t) = x(t) + ξ(t)
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Corresponding to the inverse-mass parameter estimation we propose then the
following time-varying filters, with second-order integration low-pass filtered
outputs ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n(t) = z1

ż1 = z2

ż2 = (t)2y(t) + z3

ż3 = −4ty(t) + z4

ż4 = 2y(t)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d(t) = η1

η̇1 = η2

η̇2 = η3

η̇3 = η4

η̇4 = t2u(t)

(13.14)

with z1(0) = z2(0) = z3(0) = z4(0) = 0 and η1(0) = η2(0) = · · · = η4(0) = 0.
We set ξ(t) = 0.02(rect(t) − 0.5) and ζ(t) = (rect(t) − 0.5), where rect(t) is a
computer-generated random process consisting of piecewise-constant random
variables uniformly distributed in the interval [0, 1] of the real line.
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Fig. 13.2. Identification of the inverse mass parameter under noise measurements
and using invariant filtering

Figure 13.2 depicts the outcome of the invariant filtering modification of our
previously proposed parameter estimation scheme for the unknown dragged
mass. We note that a larger ε parameter was used in this instance (ε = 0.2) to
allow for a reliable quotient yielding the inverse mass, once the signal-to-noise
ratio becomes important in the numerator.
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13.5.3 A Comparison with an Adaptive-observer Approach

For the purposes of comparison, and given that the parameter estimation
problem has been cast, so far, into an open-loop problem, we choose now an
observer approach for the estimation of the unknown parameter (see, e.g.,
[24]).
Consider the state-variable representation of the mass-dragging problem with
a constant but unknown mass

ẋ1 = x2

ẋ2 = x3u

ẋ3 = 0
y = x1 (13.15)

where the state x3 represents the inverse value of the unknown mass m. Here,
u will be assumed to be, as before, a constant C. An adaptive observer is
represented by the following certainty equivalence observer

ẋ1e = x2e + λ3(y − x1e)
ẋ2e = x3eu + λ2(y − x1e)
ẋ3e = λ1(y − x1e) (13.16)

The estimation error dynamics is given by

ė1 = e2 − λ3e1

ė2 = e3u − λ2e1

ė3 = −λ1e1 (13.17)

with ej = xj − xje, j = 1, 2, 3. Thus,

ë1 + λ3ė1 + λ2e1 + λ1u

∫ t

0

e1(σ)dσ = 0 (13.18)

Clearly, for u = C, the characteristic polynomial of the estimation error dy-
namics is given by

p(s) = s3 + λ3s
2 + λ2s + λ1C = 0 (13.19)

Evidently the adaptive observer approach is limited, in this case, to those
dragging maneuvers for which the constant value of C is strictly positive.
Note that if C is to be negative, as in a ‘pushing task’, changing the sign of
λ1 to a negative value (so that the term λ1C in the characteristic polynomial
becomes strictly positive) simply destabilises e1. This fact severely limits the
applications in the context of trajectory-tracking problems, where u is not
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constant, and also in those situations in which the steady-state value of the
control input is to become strictly negative, regardless of how small. Another
limitation, as depicted in the simulation below, is the relatively slow conver-
gence to the actual value of the inverse mass on the part of the estimate of
x3.

Fig. 13.3. Identification of the inverse-mass parameter using an adaptive observer

13.6 Second Example: A Perturbed First-order System

13.6.1 Presentation

We now turn our attention to a case where more than one unknown parameter
is present in the system and, also, where the need arises for a closed-loop
identification. As before, regarding the control part, we resort to the certainty
equivalent control method. As for how to handle several parameters, we will
have to generate as many algebraic equations as unknown parameters there
may be.
Consider the linear parameter-uncertain, perturbed, first-order system

ẏ(t) = ay(t) + bu(t) + κ + ξ(t)

where

• a, b are uncertain parameters;
• κ is an unknown constant bias;
• ξ(t) is a zero-mean highly fluctuating noise13.

13 One might replace κ and ξ(t) by a highly fluctuating noise of constant but un-
known mean (see [6]).
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We would like to specify a feedback control law such that the following problem
finds a solution
Devise a feedback control law that forces the output signal y to follow a given
reference trajectory y∗(t), in spite of the lack of knowledge about the plant
parameters a, b, the uncertainty about the constant perturbation κ and the
presence of the zero mean, rapidly varying, plant perturbation noise.

13.6.2 A Certainty Equivalence Controller

If the parameters a and b were perfectly known, and if there existed no plant
perturbation noise, i.e., if ξ(t) ≡ 0, the following classical proportional integral
controller may be used given its known robustness with respect to a constant,
but unknown, perturbation

u =
1
b

[
ẏ∗(t) − ay − c1(y − y∗(t)) − c0

∫ t

0

(y(σ) − y∗(σ)) dσ

]
(13.20)

Set e = y − y∗(t). The characteristic polynomial of the closed-loop tracking
error dynamics is given by p(s) = s2 + c1s + c0. With a suitable choice of
the design parameters c0, c1, the roots of p(s) are all strictly located in the
left portion of the complex plane. The tracking task is asymptotically accom-
plished.
We must therefore concentrate our efforts on obtaining the right values of a
and b.

13.6.3 Parameter Identification

Assume again that ξ(t) ≡ 0. We try to generate a linear system of equations
for the unknown parameters a and b. This system should be independent of
the plant initial condition, and also, of course, independent of the constant
perturbation, κ and, moreover, it should rely only on knowledge of the input
u and the output y signals.
Operational calculus yields

sY − y0 = aY + bU +
κ

s

Multiply both sides by s

s2Y − sy0 = asY + bsU + κ

Differentiating twice with respect to s removes the presence of the initial
condition and, also, of the influence of the unknown parameter κ. We obtain,
after some algebraic manipulations

a

[
2
dY

ds
+ s

d2Y

ds2

]
+ b

[
2
dU

ds
+ s

d2U

ds2

]
= 2Y + 4s

dY

ds
+ s2 d2Y

ds2
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Multiplying by s−2 to avoid time differentiations in the time domain, we get

a

[
2s−2 dY

ds
+ s−1 d2Y

ds2

]
+ b

[
2s−2 dU

ds
+ s−1 d2U

ds2

]

= 2s−2Y + 4s−1 dY

ds
+

d2Y

ds2

This reads, in the time domain
[∫ t

0

σ2
1y(σ1)dσ1 − 2

∫ t

0

∫ σ1

0

σ2y(σ2)dσ2dσ1

]
a

+
[∫ t

0

σ2
1u(σ1)dσ1 − 2

∫ t

0

∫ σ1

0

σ2u(σ2)dσ2dσ1

]
b

= t2y(t) − 4
∫ t

0

σ1y(σ1)dσ1 + 2
∫ t

0

∫ σ1

0

y(σ2)dσ2dσ1

Integrating once more, we obtain a linear system for the constant parameters
a and b. We arrive at a linear time-varying equation

P (t)
[
a
b

]
= q(t)

The 2 × 2 matrix P (t) reads

P (t) =
[
p11(t) p12(t)
p21(t) p22(t)

]

where

p11(t) =
∫ t

0

σ2ydσ − 2
∫ t

0

∫ σ

0

λydλdσ

p12(t) =
∫ t

0

σ2udσ − 2
∫ t

0

∫ σ

0

λudλdσ

p21(t) =
∫ t

0

∫ σ

0

λ2ydλdσ − 2
∫ t

0

∫ σ

0

∫ λ

0

ρydρdλdσ

p22(t) =
∫ t

0

∫ σ

0

λ2udλdσ − 2
∫ t

0

∫ σ

0

∫ λ

0

ρudρdλdσ

The column vector q(t) is given by

q(t) =

[
t2y − 4

∫ t
0

σydσ + 2
∫ t
0

∫ σ
0

ydλdσ∫ t
0

σ2ydσ − 4
∫ t
0

∫ σ
0

λydλdσ + 2
∫ t
0

∫ σ
0

∫ λ
0

ydλdσdρ

]

The matrix P (t) and the vector q(t) are equal to 0 at time t = 0. Nevertheless,
it is easy to verify that the matrix P (t) is, indeed, invertible at a small time,
t = ε > 0.
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Under the noise-free circumstances, we may, then compute a and b exactly, at
time t = ε > 0, regardless of the constant perturbation input κ, and, moreover,
for any initial condition on the plant output y.
as an r × r diagonal
A certainty equivalence controller, of the form (13.20), is proposed as follows

u =
1
be

[
ẏ∗(t) − aey − k1(y − y∗(t)) − k0

∫ t

0

(y(σ) − y∗(σ)) dσ

]

with
[
ae
be

]
=

⎧
⎨

⎩

arbitrary,with be �= 0 for t ∈ [0, ε)

P−1(t)q(t) for t ∈ [ε,+∞)

13.6.4 Noise-free Simulation Results

Figure 13.4 depicts the fast adaptation system response in a rest-to-rest
trajectory-tracking task. As can be seen, the determination of the system
parameters happens quite fast, in approximately 4 × 10−3 s. The absence of
measurement and plant noises certainly makes the algebraic estimation task
quite precise and rather fast. The integral action on the proposed certainty
equivalence controller annihilates the effects of the unknown constant pertur-
bation input, while our estimation technique is shown to be totally indepen-
dent of the constant perturbation input amplitude.

Fig. 13.4. System response, parameter determination, control input
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13.6.5 Noisy Measurements and Plant Perturbations

To carry out our previously proposed algebraic parameter estimation approach
to fast adaptive control, we considered the following intimately related per-
turbed system

ẋ = ax + bu + k + η(t), y(t) = x(t) + ξ(t)

where η(t) and ξ(t) are zero-mean computer-generated noises consisting of a
sequence of piecewise-constant random variables uniformly distributed in the
interval [−0.5R, 0.5R].
For the case of measurement noises, the same computational algorithm was
used but now including an invariant filtering strategy. We low-pass filtered
both members of each one of the algebraic equations derived before for the
on-line calculation of the parameters. A second-order integration was used
in each case. In the simulation shown in the Figure 13.5, we have assumed
a zero-mean computer-generated measurement noise of significant amplitude.
The output signal, and the control input signal do exhibit the influence of the
measurement noise but the parameter estimates converge quite precisely and
fast enough to the actual value of the parameters. The computation time is
substantially increased in the noisy case. Nevertheless, the estimation of the
unknown parameters is still quite accurate.

13.6.6 Simulation Results with Noises

Figure 13.5 depicts the performance of the algebraic parameter identifier in-
cluding invariant filtering along with the systems response in a rest-to-rest
trajectory-tracking task and the evolution of the applied feedback control in-
put. For the measurement noise ξ(t) we have chosen R to be 0.01 and for the
plant system noise η, the corresponding R value was set to be 0.1.

13.6.7 Comparison with Adaptive Control

Adaptive control is usually approached from the viewpoint of Lyapunov sta-
bility theory via the synthesis of a suitable parameter update law derived on
the basis of the behaviour around a closed-loop trajectory of the time deriva-
tive of a Lyapunov function that includes a quadratic parameter estimation
error term. The feedback law is proposed as a certainty equivalent controller.
The adaptation mechanism is derived by enforcing asymptotic stability of the
closed-loop controlled system. The literature on the topic of adaptive control
using Lyapunov arguments is certainly overwhelming. For further details, we
refer the reader to popular references, like [1, 14,23,27].
We deal with the same system as in the previous section

ẏ = ay + bu + κ
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Fig. 13.5. System response, parameter determination and control input

A nominal desired trajectory for the system y∗(t) demands the existence of
a nominal control input u∗(t) that satisfies the dynamics of the unperturbed
system.

ẏ∗(t) = ay∗(t) + bu∗(t)

The tracking-error dynamics is then given by

ė = ae + beu + κ

where e = y − y∗(t) and eu = u∗(t). A certainty equivalence control, using
estimated values of the unknown parameters, is given by

eu = u − u∗(t) =
1
be

[
−aee − k1e − k0

∫ t

0

e(σ)dσ

]

where ae and be are the estimated values of a and b.
The closed-loop system, after some algebraic manipulations, results in

ė + k1e + k0ρ = (a − ae)e −
1
be

(b − be)
[
(k1 − ae)e + k0

∫ t

0

e(σ)dσ

]

ρ̇ = e(σ), ρ(0) = − κ

k0

Taking as a Lyapunov function candidate the following positive-definite func-
tion
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V (e, ρ, a − ae, b − be) =
1
2
e2 +

k0

2
ρ2 +

1
2γ

(a − ae)2 +
1
β

(b − be)2

we find that the choice of the estimated values of a and b according to the
following parameter update law

ȧe = γe2

d
dt

[be]2 = β

[
(k1 − ae)e2 + k0e

∫ t

0

e(σ)dσ

]

leads to the following expression for the time derivative of V (e) along the
trajectories of the controlled system

V̇ (e) = −k1e
2 ≤ 0

The non-positivity of V̇ (e) implies that V (e) is bounded. It is also clear that
V̇ (e) is absolutely continuous. It follows, according to Barabarat’s lemma, that
V̇ (e) asymptotically converges to zero. Hence e tends to zero. It is also clear
that the convergence of ae and be to their actual values cannot be guaranteed.
As a consequence of this, the value of k1 must be chosen sufficiently large so
that ae does not cause an instability in the dynamics of b2

e. But this in turn
depends on the transient of the tracking error e. The approach may suffer
severe limitations in trajectory-tracking tasks.

13.6.8 Simulations for the Adaptive Scheme

Figure 13.6 depicts the performance of the designed adaptive feedback control
law in the same trajectory-tracking task of the previous algebraic approach
example. Although the scheme manages to accomplish the trajectory-tracking
task with rather low quality, the scheme fails to produce an accurate estimate
of the unknown parameters. The values of the parameter update gains were
chosen to be γ = 100 and β = 1.25. The values of a and b used in the simu-
lations were the same as before a = 2 and b = 1. If the rest-to-rest maneuver
entitles a higher final equilibrium value, say of 1, the scheme completely fails.

13.7 Third Example: A Double-bridge Buck Converter

The several electronic switches in Figure 13.7 take position values according
to {

u = 1 , S1 = ON,S2 = ON,S3 = OFF, S4 = OFF
u = 0 , S1 = OFF, S2 = OFF, S3 = ON,S4 = ON

Consider the following (average) model of a double-bridge buck converter14

14 See [30] for further details on this and other power converters. For a closely related
on-line adaptive identification case on the same converter, see [29].
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Fig. 13.6. Performance of adaptive-control approach in a trajectory-tracking task
for the uncertain system

Lẋ1 = −x2 + μE

Cẋ2 = x1 −
x2

R
y = x2

where

• x1 is the inductor current;
• x2 represents the capacitor voltage.

The average control input μ is assumed to take values in the closed interval
[−1, 1]. This variable actually represents, in absolute value, the duty ratio
of the switch positions. The parameters L, C, R and E are assumed to be
unknown.

13.7.1 An Input–Output Model

Eliminating the state variable x1 yields

ÿ + γ1ẏ + γ0y = γμ

where the parameters γ1 = 1
RC , γ0 = 1

LC , γ = E
LC are linearly identifiable

according to Section 13.3.4. Estimating those parameters permits us to control
the system without knowing the values of L, C, R and E.

Remark 13.5. It is straightforward to check that L, C, R, E are not simulta-
neously identifiable.
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Fig. 13.7. The double-bridge buck converter

13.7.2 Problem Formulation

It is required to design an output feedback controller, possibly of dynamic
nature, which induces in the uncertain system, representing the double-bridge
buck converter average model, an exponentially asymptotic convergence of the
output signal y towards the desired reference signal y∗(t). In other words, we
want

y → y∗(t) exponentially

13.7.3 A Certainty Equivalence Controller

We proceed to design the controller as if these parameters were all perfectly
known. We propose the following certainty equivalence generalised GPI con-
troller15

μ = μ∗(t) − G 
 (y − y∗(t)) (13.21)

where

• 
 denotes the convolution product;
• the transfer function of G is

1
γ

{
[γ1(γ1 − c1) + c0 − γ0] s + γ0(γ1 − c1) + c−1

s + (c1 − γ1)

}

13.7.4 Closed-loop Behaviour

The closed-loop behaviour of the tracking error, were the parameters perfectly
known, is given by the following linear dynamics

15 GPI controllers were introduced in [10] for linear systems in terms of integral
reconstructors yielding states in terms of iterated integrals of inputs and outputs.
It can be shown, with some work, that such controllers are also equivalent to
classical compensation networks of which (13.21) is just an example.
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ëy + c1ėy + c0ey + c−1

∫ t

0

ey(σ)dσ = 0

where ey(t) = y(t) − y∗(t) is the trajectory-tracking error.
The appropriate choice of the coefficients {c1, c0, c−1}, in the characteristic
polynomial of the tracking error dynamics, turns it into a Hurwitz polynomial
with the associated asymptotically exponentially stable nature of the origin of
coordinates of the natural tracking error state space {ey = 0, ėy = 0, ëy = 0}.
Under the assumption of perfect parameter knowledge we obtain, modulo
control input saturations,

ey(t) → 0 exponentially

The problem now becomes one of accurate determination of the unknown
parameters of the system as required by the proposed GPI controller.

13.7.5 Algebraic Determination of the Unknown Parameters

Consider the average input–output model of the converter system

ÿ + γ1ẏ + γ0y = γμ

In the notation of operational calculus, we have

s2Y − sy0 − ẏ0 + γ1(sY − y0) + γ0Y = γU

Taking derivatives with respect to s, twice, we obtain

(s2 + γ1s + γ0)
d2Y

ds2
+ (4s + 2γ1)

dY

ds
+ 2Y = γ

d2U

ds2

This last expression may be rewritten as follows
[
s
d2Y

ds2
+ 2

dY

ds

]
γ1 +

[
d2Y

ds2

]
γ0 −

[
d2U

ds2

]
γ =

−s2 d2Y

ds2
− 4s

dY

ds
− 2Y

Multiplying out by a sufficient power of s−1, say by s−4, so that an invariant
filtering effect is obtained, we also eliminate possible derivations in the time
domain. We obtain

[
s−3 d2Y

ds2
+ 2s−4 dY

ds

]
γ1 +

[
s−4 d2Y

ds2

]
γ0 −

[
s−4 d2U

ds2

]
γ =

−
[
s−2 d2Y

ds2
+ 4s−3 dY

ds
+ 2s−4Y

]
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Reverting the previous expression to the time domain, we obtain a linear
equation, with time-varying coefficients, in three unknowns {γ1, γ0, γ}. We
write such an equation as

p11(t)γ1 + p12(t)γ0 + p13(t)γ = q1(t) (13.22)

We conform a system of three equations in three unknowns by simply adjoining
to the previous equation its first integral and its iterated integral, i.e.,

p11(t)γ1 + p12(t)γ0 + p13(t)γ = q1(t)(∫
p11(t)

)
γ1 +

(∫
p12(t)

)
γ0 +

(∫
p13(t)

)
γ =

(∫
q1(t)

)

(∫ (2)

p11(t)

)
γ1 +

(∫ (2)

p12(t)

)
γ0 +

(∫ (2)

p13(t)

)
γ =

(∫ (2)

q1(t)

)

This linear system of equation allows us to determine γ1, γ0 and γ for t ≥ ε
with ε being a very small positive real number.

13.7.6 Simulation Results

We considered the average model of a double-bridge buck converter with the
following (unknown) parameters

R = 39.52 Ω, L = 1 mH, C = 1 μF, E = 30 Volts

It is desired that the average output voltage signal tracks a rest-to-rest trajec-
tory starting at 21.0 V and landing at 9.0 V in approximately 0.474 ms. The
tracking maneuver is to start at tinit = 0.158 ms and it ends at tf = 0.632 ms.
It was assumed that the output voltage could be measured through an addi-
tive noise process simulated with a computer generated sequence of random
variables uniformly distributed in the interval A[−0.5, 0.5] with the factor A
taken to be A = 0.3.
Figure 13.8 depicts the simulated closed-loop performance of the GPI con-
trolled double-bridge buck converter along with the performance of the pro-
posed algebraic parameter estimator. The value of ε used to avoid the sin-
gularity of the formulae at time t = 0 was taken to be 22 μs. The three
parameters are identified, rather accurately, in approximately 30 μs. Once
identified, the value of the parameters is immediately substituted on the GPI
feedback control law.
We tested our fast adaptive estimation algorithm now using a switched control
signal for the control input whose average coincides with the previous control
input. This is achieved using a double-sided sigma-delta modulator described
by the following discontinuous dynamics

ż = μ − u, u =
1
2

[sign(μ) + sign (z)]
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Fig. 13.8. Closed-loop average converter response with on-line identification of all
linearly identifiable system parameters

The actual control input signal u being used in the identification algorithm
is now a high-frequency signal actively switching and taking values in the
discrete set {−1, 0,+1}. As can be inferred from Figure 13.9 the algebraic
identifier works perfectly well with this input. In this instance, the maneuver
entitled a trajectory-tracking task, with the same time-duration constraints
as before, taking the output voltage from an initial equilibrium of 21 Volts
towards a final equilibrium of –9 V.
Figure 13.9 shows the closed-loop response for the trajectory-tracking task of
the switched input model as well as the precision and rapidity of the unknown
parameter estimation process. The output voltage signal is also assumed to
be measured through an additive noisy means. A sample of the noise process
is also depicted in the figure. The actual bang-bang control input is shown
along with the nominal value of the average control input.

13.8 Conclusion

It is a delicate matter to compare our theoretical techniques and results
with today’s parametric identification of linear continuous-time systems (see,
e.g., [13, 15, 18, 19, 26, 33] and the references therein), which is perhaps less
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Fig. 13.9. Closed-loop switched converter response with on-line identification of all
linearly identifiable system parameters

developed than its discrete-time counterpart, but nevertheless also makes gen-
erally a heavy utilisation of statistical methods16. Let us stress that all those
approaches seem to rest on standpoints and therefore on mathematical tools
that are rather far from ours. It is our belief that the only fair way for achiev-
ing such a comparison is provided by examples. We do hope that the readers
will be convinced by the numerous case studies examined in this chapter and
in [11].
The above techniques and results may be generalised to linear state recon-
structors [12], to linear diagnosis [8], and to parametric identification of linear
discrete-time systems [7]. See, e.g., the references in [6] for their extensions to
non-linear systems as well as to signal processing.
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14.1 Introduction

This chapter deals with state-space model approximation of linear systems
derived from linear regression and spectrum analysis – a problem that can be
viewed as a problem of system identification. System identification deals with
the problem of fitting mathematical models to time series of input–output
data [16]. Important subproblems are the extraction both of a ‘deterministic’
subsystem—i.e., computation of an input–output model—and a ‘stochastic’
subsystem that is usually modeled as a linear time-invariant system with white
noise inputs and outputs that represent the misfit between model and data.
A pioneering effort in continuous-time model identification was Wiener’s for-
mulation of a Laguerre filter expansion [41]. As for the early literature on
continuous-time model identification involving approaches with pseudo-linear
regression, correlation and gradient search methods, there are algorithmic
contributions [7,15,32,41,43,44]; with surveys of Young [44], Unbehauen and
Rao [13, 34, 35]; stochastic model estimation aspects [17]; software and algo-
rithmic aspects [11,40].
As is well known, linear regression methods are sensitive to coloured noise
and need modification to provide unbiased parameter estimation. Such mod-
ifications may include restriction to finite impulse response (FIR) or moving
average (MA) models, prewhitening filters, weighted least squares estimation,
Markov estimates, approximate or iterative Markov estimates, or pseudo-
linear regression.
Alternative methods are maximum likelihood (ML) methods (relying on nu-
merical optimisation) and subspace-based methods (which may give poor
results for low signal-to-noise ratios). The optimality of maximum likeli-
hood estimates depends on the relevance and correctness of the assump-
tions on the underlying probability distribution functions—usually the nor-
mal distribution—and the numerical optimisation method that may perform
poorly in cases of non-unique model parametrisation or when a unique ML
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optimum fails to exist, e.g., continuous-time and discrete-time multi-input,
multi-output ARMAX models as well as overparameterised models.
State-space model identification has proved effective in determination of
input–output relationships in the form of state-space models with early con-
tributions reviewed in the comprehensive publications [29, 36–39]. As for
subspace-based identification, continuous-time model identification methods
were presented in [19]. Whereas subspace-based identification for high-to-
moderate signal-to-noise ratios often provides good transfer function models
and stochastic disturbance models, poor results may be obtained for high
noise levels.
Evaluation of model misfit is often determined as an innovations sequence of a
Kalman filter model that, in turn, also permits covariance matrix factorisation
[37]. The related problem of stochastic realisation was approached by Ho and
Kalman [14], Anderson and Moylan [4,5], Faurre [9,10], Akaike [2,3], Desai and
Pal [8], Larimore [24,25], Lindquist and Picci [26,27], Juang and Pappa [21].

An important observation pointed out in [36] is that state-space model identi-
fication algorithms based on stochastic realisation algorithms may fail to pro-
vide a positive-definite solution of the Riccati equation that, in turn, brings
attention to the problem of ‘positive real sequences’, their bias and vari-
ance [36, p. 85 ff.], one solution being provided when the innovations model
fails to exist [20]. An issue in spectrum estimation as well as system identifi-
cation is model-order determination and model-order reduction by means of
balanced model reduction [1, 6, 12, 28, 30]. Attempts towards model approxi-
mation by means of balanced model-order reduction, however, may give rise
to reduced-order state-space models that fail to satisfy the passivity condi-
tion. Such resulting state-space models will also fail in covariance analysis and
spectral interpretation. In an important recent paper, Sorensen showed that
passivity-preserving model approximation may be obtained as a by-product
of a certain eigenvalue problem involving the state-space realisation matri-
ces [33].

Here, we shall deal with model reduction applied to linear regression models
in continuous-time model identification. After preliminaries on continuous-
time model identification, positivity in spectrum-analysis model reduction,
the main results will be presented.

14.2 Preliminaries

14.2.1 Continuous-time Model Identification

Consider a multi-input, multi-output continuous-time system with input u ∈
R
m, output y ∈ R

p and disturbance v ∈ R
p related according to the linear

signal model expressed as the Laplace transform relationship

Y (s) = G(s)U(s) + V (s) (14.1)
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which, in turn, is described by the left matrix fraction description

S : AL(s)Y (s) = BL(s)U(s) + CL(s)W (s), detAL(s) �= 0 (14.2)
AL(s) ∈ R

p×p[s], BL(s) ∈ R
p×m[s], CL(s) ∈ R

p×p[s]
G(s) = A−1

L (s)BL(s), G(s) ∈ R
p×m(s) (14.3)

V (s) = H(s)W (s) H(s) = A−1
L (s)CL(s), H(s) ∈ R

p×p(s)

with p white noise inputs W (s) (w ∈ R
p), the transfer functions G(s) and

H(s) describing the input–output transfer function and the coloured noise
properties of V (s), respectively. The polynomial matrices of the left matrix
fraction description are

AL(s) = snIp×p + A1s
n−1 + · · · + An, A1, . . . , An ∈ R

p×p (14.4)
BL(s) = B1s

n−1 + · · · + Bn−1s + Bn, B1, . . . , Bn ∈ R
p×m (14.5)

CL(s) = snIp×p + C1s
n−1 + · · · + Cn, C1, . . . , Cn ∈ R

p×p (14.6)

The continuous-time system identification problem involves estima-
tion of G(s), H(s) (or the related generating polynomial matrices
AL(s), BL(s), CL(s)) from N samples of uniformly sampled input–output data
{uk}Nk=1, {yk}Nk=1 with sample period Ts. Following [17], the following operator
transformation is introduced

λ(s) =
1

1 + sτ
, s =

1 − λ

τλ
, τ > 0 (14.7)

which permits the formulation of linear regression models in the spectral do-
main or in the time domain

Aλ(λ)Y (s) = Bλ(λ)U(s) + Cλ(λ)W (s) (14.8)

with a one-to-one transformation from the polynomial matrices {AL, BL, CL}
to {Aλ, Bλ, Cλ} and with

Aλ(λ) = Ip×p + A(1)
τ λ + · · · + A(n)

τ λn, A(1)
τ , . . . , A(n)

τ ∈ R
p×p

Bλ(λ) = B(1)
τ λ + · · · + B(n−1)

τ λn−1 + B(n)
τ λn, B(1)

τ , . . . , B(n)
τ ∈ R

p×m

Cλ(λ) = Ip×p + C(1)
τ λ + · · · + C(n)

τ λn, C(1)
τ , . . . , C(n)

τ ∈ R
p×p (14.9)

using the following regressors for j = 1 . . . n

y(j)(t) = [λjy](t), u(j)(t) = [λju](t) j = 1 . . . n (14.10)

For discrete-time input–output data, uniformly sampled with the sampling
period Ts, linear regression applies to the discretised regressors

y
(j)
k = [[λjy](t)]t=kTs , u

(j)
k = [[λju](t)]t=kTs (14.11)

Two problems arise for estimation of the stochastic disturbance properties.
As the stochastic disturbance process (ν(·) or {νk}) is unknown, there is no
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immediate way to formulate regressors for estimation of the components of
the polynomials Cλ(λ).

For the purpose of least squares identification, then, it is suitable to organise
model, data and notation according to linear regression

yk = −A(1)
τ y

(1)
k − · · · − A(n)

τ y
(n)
k + B(1)

τ u
(1)
k + · · · + B(n)

τ u
(n)
k + νk (14.12)

yT (t) = ϕTτ (t)θτ + ν(t) (14.13)

θ =
[
A1 . . . An B1 . . . Bn

]T
, (14.14)

yk ∈ R
p, νk ∈ R

p, θ ∈ R
n(m+p)×p

with a continuous-time noise process ν(t) with a discrete-time representation
{νk} and regressor

ϕk =
[
−(y(1)

k )T · · · − (y(n)
k )T (u(1)

k )T · · · (u(n)
k )T

]T
, ϕk ∈ R

n(m+p)

which suggests the linear regression model

YN = ΦNθ, YN =

⎡

⎢⎢⎢⎣

yT1
yT2
...

yTN

⎤

⎥⎥⎥⎦ , ΦN =

⎡

⎢⎢⎢⎣

ϕT1
ϕT2
...
ϕTN

⎤

⎥⎥⎥⎦ (14.15)

Whereas least squares estimation based on noise-free data {uk}Nk=1, {yk}Nk=1

applied to the linear regression model (including some noise representation
VN )

YN = ΦNθ + VN (14.16)

effectively provides estimation of G(s) (or AL(s), BL(s)), more elaborate al-
gorithms are needed to estimate the noise spectrum H(s) (or AL(s), CL(s)).

14.2.2 Spectrum Analysis and Positivity

Consider the signal models

Y (s) = G(s)U(s) + V (s) (14.17)

with noise input V and measurable input U , output Y for the continuous-
time and discrete-time models, respectively. Assume that the inputs U, V are
uncorrelated. Then, the corresponding s-spectrum (continuous-time) are

Syy(s) = G(s)Suu(s)G∗(−s∗) + Svv(s) (14.18)

and the cross-spectrum fulfills [22]
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Syu(s) = G(s)Suu(s), Syu(s) = STuy(−s∗) (14.19)

Based on standard spectrum analysis justified by (14.19), the transfer function
and the noise spectrum may be estimated from the spectra as

Ĝ(s) = Syu(s)S−1
uu (s), (14.20)

Ŝvv(s) = Syy(s) − Syu(s)S−1
uu (s)S∗

uy(−s∗) (14.21)

from which a noise state-space model may be determined by means of a
stochastic realisation algorithm [8,22].

A condition for interpretation of a function S(s) as a spectral density is that
S(s) be positive real for s = iω with the same conditions appearing in passivity
analysis [18]. Spectrum analysis using state-space analysis is a time-honoured
problem referred to as the partial realisation problem [26,27] that starts with
properties of the spectrum

Syy(s) = S(s) = S+(s) + S∗
+(−s) (14.22)

S+(s) =
1
2
S0 + S1s + S2s

2 + · · · (14.23)

A condition for S(s) to be spectral density is that S+(s) be positive real on
the imaginary axis—i.e., for

S+(iω) + ST+(−iω) ≥ 0, ∀ω ∈ (−∞,∞) (14.24)

If this passivity condition is not fulfilled, the stochastic realisation algorithm
will fail [10, 27], [22, App. 8D], [20]. An example elaborating a system failing
to exhibit positivity is given in [20, Ex. 1, p. 989].

Lemma (Kalman–Yakubovich–Popov [23,31,42], [22, p.307])

Consider the state-space system

dx

dt
= Ax(t) + vx(t), x ∈ R

n (14.25)

y(t) = Cx(t) + vy(t), y ∈ R
p (14.26)

with stochastic inputs vx, vy with properties

E

([
vx(t)
vy(t)

])
= 0, E

([
vx(t1)
vy(t1)

] [
vx(t2)
vy(t2)

])
= Qδ(t1 − t2) (14.27)

where Q = QT ≥ 0.
Let A be stable, (A,C) be an observable pair and assume that A does not
have any eigenvalues on the imaginary axis with A ∈ R

n×n, C ∈ R
p×n.
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S(s) = F (s)FT (−s) = S+(s) + ST+(−s), F (s) =
[
C(sI − A)−1 I

]
Q1/2

Q = Q1/2(Q1/2)T =
[
Q11 Q12

QT
12 Q22

]
≥ 0 (14.28)

Then, the following statements are equivalent:

• See(iω) ≥ 0 for all ω ∈ (−∞,∞)
• there exists a Hermitian matrix P such that

[
Q11 + AP + PAT Q12 + PCT

QT
12 + CP Q22

]
≥ 0 (14.29)

• there exists a Hermitian matrix P such that

0 ≤
[
Q11 + AP + PAT Q12 + PCT

QT
12 + CP Q22

]
=
[
K
I

]
Q22

[
K
I

]T
(14.30)

The procedure to find a stable rational matrix function F (s) of S(s) is called
spectral factorisation and the si such that detF (si) = 0 are the spectral zeros
of S(s) [22].

A closely related result or corollary oriented towards rational function pro-
perties and known as the positive real lemma is the following

Positive Real Lemma
(Kalman–Yakubovich–Popov [23,31,42], [22, p. 308])

Let G(s) = C(sI − A)−1B + D be the transfer function of the state-space
realisation

dx

dt
= Ax + Bu, x ∈ R

n, u ∈ R
p (14.31)

y = Cx + Du, y ∈ R
p (14.32)

The following statements are equivalent:

1. G(s) is positive real;
2. There exists an n× n matrix P , a p× p matrix R, and an n× p matrix K

such that

0 ≤
[
−AP − PAT B − PCT

BT − CP D + DT

]
=
[
K
Ip

]
R

[
K
Ip

]T
(14.33)

The following two statements are equivalent:

i. G(s) is strictly positive real (SPR)—i.e., G(iω) + GT (−iω) > 0;
ii. There exists a unique non-negative-definite solution P of the continuous-

time Riccati equation

0 = AP + PAT + KRKT , R = D + DT ,

K = (B − PCT )R−1 (14.34)

such that A − KC is stable.
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14.2.3 Spectral Factorisation and Positivity

Based on the Kalman–Yakubovich–Popov Lemma, there is one spectral factor
of particular interest, namely the innovations model and its spectral factor
H(s)

⎧
⎨

⎩

dx

dt
= Ax(t) + Kw(t)

y(t) = Cx(t) + w(t)

{
H(s) = I + C(sI − A)−1K

H−1(s) = I − C(sI − A + KC)−1K
(14.35)

so that

S(s) = H(s)QHT (−s) (14.36)

The stable spectral factor inverse H−1(s) provides the basis for the Kalman
filter with the state-space realisation

dx̂

dt
= (A − KC)x̂(t) + Ky(t)

ŷ(t) = Cx̂(t)
ŵ(t) = y(t) − ŷ(t) = −Cx̂(t) + y(t) (14.37)

14.2.4 Balanced Model Reduction

Optimal Hankel-norm model approximation has important applications for a
wide variety of linear multi-variable systems [6, 12,28,30].

Consider application of model reduction to the state-space system

dx

dt
= Ax(t) + Bu(t), x ∈ R

n, u ∈ R
m (14.38)

y(t) = Cx(t), y ∈ R
p (14.39)

using Hankel singular values involves computation of the system Gramians

P =
∫ ∞

0

eAtBBT eA
T tdt, Q =

∫ ∞

0

eA
T tCTCeAtdt (14.40)

The Gramians may be computed by solving the Lyapunov equations

AP + PAT = −BBT , P > 0 (14.41)
ATQ + QA = −CTC, Q > 0 (14.42)

and the Hankel singular values are obtained from the eigenvalues {σk}

σk =
√

λk(PQ), k = 1, 2, . . . , n (14.43)

Under similarity transformation z = Tx of a state-space system
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Pz = TPTT , Qz = T−TQT−1, PzQz = T (PQ)T−1 (14.44)

the balancing transformation T is found as the matrix diagonalising PQ to
Σ2. Let Q have the Cholesky factorisation

Q = QT
1 Q1, Q1PQT

1 = UΣ2UT , with UTU = I, Σ = ΣT
1 Σ1 (14.45)

T = Σ−1
1 UTQ1 (14.46)

Model reduction of the balanced state-space system from model order n to
model order r can be made as the balanced truncation

S =
[
TAT−1 TB
CT−1 D

]
=

⎡

⎣
A11 A12 B1

A21 A22 B2

C1 C2 D

⎤

⎦ → Sr =
[
A11 B1

C1 D

]
(14.47)

or

Sr =
[
ETTAT−1E ETTB

CT−1E D

]
=
[
A11 B1

C1 D

]
, E =

[
Ir
0

]
(14.48)

Model reduction by means of balanced truncation preserves stability with the
existence of a global error bound

σr+1 = ‖Σ − Σr‖∞ ≤ 2(σr+1 + · · · + σn) (14.49)

14.3 Problem Formulation

As the stochastic disturbance model included in the estimated model may be
positive real but perhaps of high order, it is of interest to find a continuous-
time model of reduced model order, while preserving stability and passivity
properties for the continuous-time model.

A high-order model estimate with inputs u and w of the form of

So =
[
A B K
C D I

]
(14.50)

may be balanced with respect to the input–output map (u → y) as

S =
[
TAT−1 TB TK
CT−1 D I

]
=

⎡

⎣
A11 A12 B1 K1

A21 A22 B2 K2

C1 C2 D I

⎤

⎦ (14.51)

Balanced truncation suggests a reduced-order model of model order r on in-
novations form

Sr =
[
A11 B1 K1

C1 D I

]
(14.52)

where the reduced-order spectral factor is H(s) = C1(sIr − A11)−1K1 + I.

In the following, we will consider the problem of such structure-preserving
model reduction applied to least squares estimation in continuous-time model
identification.



14 Passivity Preserving CT Model Identification 401

14.4 Main Results

The linear regression suggests a state-space model on innovations form

y(t) = −A(1)
τ y(1) − · · · − A(n)

τ y(n) + B(1)
τ u(1) + · · · + B(n)

τ u(n) + w (14.53)

yk = −A(1)
τ y

(1)
k − · · · − A(n)

τ y
(n)
k + B(1)

τ u
(1)
k + · · · + B(n)

τ u
(n)
k + wk (14.54)

which lends itself to least squares estimation using discrete-time input–output
data [17]. Whereas an estimated regression model of (14.53) provides interpre-
tations as an ARX or ARMAX model with immediate conversion to a transfer
function model, we will now explore the benefit of an intermediate calculation
of state-space models that lend themselves to model reduction. For this pur-
pose, we introduce the non-minimal state-space description composed of the
regressor components of (14.10).

x =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(1)

...
y(n)

u(1)

...
u(n)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14.55)

with dynamics according to the estimated state-space model

dx

dt
=

1
τ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 0 0 0 0 · · · 0

I −I
. . .

... 0
...

0
. . . . . . 0

... 0
0 I −I 0 · · ·
0 · · · 0 −I 0 0 0

0 0 I −I
. . .

...
...

... 0
. . . . . . 0

0 · · · 0 0 · · · I −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
0
...
0
0
0
0
...
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

θ̂
T

τ x +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0

I
0
...
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
0
...
0
0
0
0
...
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

y = θ̂
T

τ x + w (14.56)

Obviously, this non-minimal model is an innovations form and provides
a spectral factor, and the non-minimality lends itself to model reduction.
Thus, it is desirable to accomplish model reduction with preservation of the
innovation form for the noise model. It follows that the model-reduction
procedure of Section 14.3 has immediate application to model reduction of
the system of (14.56).
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Fig. 14.1. True (solid) and estimated (dashed) impulse responses of G(s) (upper
left). True and estimated step responses of G(s) (lower left). True and estimated
Bode diagrams of G(s) (right).

Example—Simulation Study

Consider the system

S :
dx

dt
=
[
−2 −4
1 0

]
x(t) +

[
1
0

]
u(t) +

[
1
0

]
w(t) (14.57)

y(t) =
[
5 4
]
x(t) + w(t) (14.58)

with the transfer function description

Y (s) =
5s + 4

s2 + 2s + 4
U(s) +

s2 + 7s + 8
s2 + 2s + 4

W (s) (14.59)

The input was generated from uniformly distributed pseudo-random numbers
(see Figure 14.3). The input–output signals were sampled with a sampling
period Ts = 0.1 s for measurement duration of T = 100 s for a signal-to-noise
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Fig. 14.2. Nyquist diagram of the spectral factors for the non-minimal estimated
model (solid) and the reduced-order model (dashed)

ratio of ‖u‖/‖w‖ = 10. For τ = 1, least squares identification was made for
n = 2

M :
dx

dt
=

⎡

⎢⎢⎣

−0.6957 −2.9238 4.2864 −0.6657
1.00 −1.00 0 0
0 0 −1.00 0
0 0 1.00 −1.00

⎤

⎥⎥⎦x +

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦u +

⎡

⎢⎢⎣

1
0
0
0

⎤

⎥⎥⎦w

y =
[
0.3043 −2.924 4.286 −0.6657

]
x + w (14.60)

with good approximation properties as witnessed by Figure 14.1. A balancing
transformation was made by means of balanced truncation with a similarity
transformation matrix T and singular values Σ

T =

⎡

⎢⎢⎣

0.0227 1.4710 −2.1163 0.3349
−0.8027 −0.4312 0.4388 −0.0981
−0.0095 0.0086 0.0118 0.0001
0.0001 −0.0009 −0.0004 0.0016

⎤

⎥⎥⎦ , Σ =

⎡

⎢⎢⎣

1.4088
0.9089
0.0000
0.0000

⎤

⎥⎥⎦ (14.61)

Based on the singular-value pattern, model reduction was made with reduction
to a second-order model
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Mr :
dx

dt
=
[
−1.59 −1.858
1.858 −0.1061

]
x(t) +

[
−2.116
0.439

]
u(t) +

[
0.02275
−0.8028

]
w(t)

y(t) =
[
−2.116 −0.439

]
x(t) + w(t) (14.62)

The reduced-order model including a spectral factor (Figure 14.2) of
the reduced-order continuous-time stochastic disturbance model provides a
Kalman filter according to (14.37) as

M̂r :
dx̂

dt
=
[
−1.5919 −1.848
0.1593 −0.4585

]
x̂(t) +

[
−2.116
0.439

]
u(t) +

[
0.02275
−0.8028

]
y(t)

ŷ(t) =
[
−2.116 −0.439

]
x̂(t)

ŵ(t) = y(t) − ŷ(t) (14.63)

As witnessed by Figure 14.3, the continuous-time Kalman filter provides a
good predictor.

Spectral Factorisation and Positivity

In a compact format, the positive real lemma may be summarised in the
Lyapunov equation

AP + PAT = −Q, Q =
[

K
−I

]
R

[
K
−I

]T
,

P =
[
P 0
0 I

]
, A =

[
A B
−C −D

]
(14.64)

A necessary requirement for G(p) to be positive real is that A be stable [18].

Finally, the simultaneous spectrum properties of stability and positivity are
linked to the Lyapunov equation. Let

E =
[
In 0
0 0p

]
, G12(s) = CT + (−sIn − AT )P (sIn − A)−1B

L(s) =
[

In 0
C(sIn − A)−1 Ip

]
, R(s) =

[
In −(sIn − A)−1B
0 Ip

]
(14.65)

Then

sE −A = L(s)
[
sIn − A 0

0 G(s)

]
R(s) (14.66)

0 ≤ Q = −AP − PAT = (sE −A)P + P(−sE −AT )

= RT (s)
[
−(AP + PAT ) G12(s)

GT
12(s) G(s) + GT (−s)

]
R(s) (14.67)

where the diagonal matrix blocks represents the stability and positivity, re-
spectively, with non-negative semi-definite matrix properties. Rank deficit ap-
pears only at the transmission zeros—i.e., the spectral zeros.
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Fig. 14.3. Input-output data (solid) and predicted (dashed) by means of Kalman
filter estimated from the spectral factor of the reduced-order model. Lower graph
shows the sequence of true (solid) and estimated (dashed) innovations.

14.5 Discussion

This approach also lends itself to least squares identification without any
autoregressive part—i.e., the counterpart to moving average or finite impulse
response models with particular interest to preclude bias resulting from corre-
lation among stochastic disturbances and regressor components. As compared
to numerical approaches to ML optimisation, the method presented has no
specific problem with overparameterised models or multi-input, multi-output
models.

Separate model reduction applied to the input–output model and the stochas-
tic disturbance model will provide a reduced-order model of a form reminiscent
of the Box–Jenkins models [16, p. 109].

The model identification may also be applied to linear regression models other
than ARX-like or ARMAX-like structures of (14.12), one option being pro-



406 R. Johansson

vided by data from spectrum analysis. For a noise process v uncorrelated with
the input u, an unbiased estimate of G(s) can be found as

Ĝ(s) = Syu(s)S−1
uu (s) = A−1

L (s)BL(s) (14.68)
AL(s)Syu(s) = BL(s)Suu(s) (14.69)

which suggests a linear regression model using spectral estimates Ŝyu(s),
Ŝuu(s) as regressor components

AL(s)Ŝyu(s) = BL(s)Ŝuu(s) (14.70)

A least squares spectrum-based estimate of AL(s), BL(s) permits use of the
model-reduction algorithm to find the spectral factor of the stochastic distur-
bance model.

14.6 Conclusions

A two-stage continuous-time linear model identification problem is presented.
The first stage provides discrete-time spectral estimation with an unbiased es-
timate of the input–output transfer function in the case of uncorrelated noise
and control input. Note that the first stage provides an unbiased, overparam-
eterised continuous-time linear model. Finally, the second stage of the algo-
rithm provides passivity-preserving model reduction, resulting in a reduced-
order continuous-time state-space model maintaining spectral properties and
interpretations. The identification method combining linear regression and
model reduction also provides an effective and interesting approach to tuning
of continuous-time Kalman filters.
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