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Preface

A major research area of Ching-Zong Wei (1949-2004) was time series models and
their applications in econometrics and engineering, to which he made many impor-
tant contributions. A conference on time series and related topics in memory of him
was held on December 12-14, 2005, at Academia Sinica in Taipei, where he was
Director of the Institute of Statistical Science from 1993 to 1999. Of the forty-two
speakers at the conference, twenty contributed to this volume. These papers are
listed under the following three headings.

1. Estimation and prediction in time series models

Breidt, Davis, Hsu and Rosenblatt consider estimation of the unknown moving
average parameter 6 in an MA(1) model when # = 1, and derive the limiting
pile-up probabilities P(6 = 1) and 1/n-asymptotics for the Laplace likelihood es-
timator 4. Cantor and Findley introduce a recursive estimator for # in a possibly
misspecified MA(1) model and obtain convergence results by approximating the
recursive algorithm for the estimator by a Robbins—Monro-type stochastic approx-
imation scheme. Giurcaneanu and Rissanen consider estimation of the order of AR
and ARMA models by stochastic complexity, which is the negative logarithm of
a normalized maximum likelihood universal density function. Nielsen investigates
estimation of the order in general vector autoregressive models and shows that
likelihood-based information criteria, and likelihood ratio tests and residual-based
tests can be used, regardless of whether the characteristic roots are inside, or on,
or outside the unit disk, and also in the presence of deterministic terms. Instead
of model selection, Poétscher considers model averaging in linear regression models,
and derives the finite-sample and asymptotic distributions of model averaging esti-
mators. Robinson derives the asymptotic properties of conditional-sum-of squares
estimates in parametric models of stationary time series with long memory. Ing
and Sin consider the final prediction error and the accumulated prediction error
of the adaptive least squares predictor in stochastic regression models with non-
stationary regressors. The paper by Lin and Wei, which was in preparation when
Ching-Zong was still healthy, investigates the adaptive least squares predictor in
unit-root nonstationary processes.

2. Time series modeling in finance, macroeconomics and other
applications

Aston considers criteria for deciding when and where heavy-tailed models should be
used for macroeconomic time series, especially those in which outliers are present.
Hsiao reviews nonstationary time series analysis from the perspective of the Cowles
Commission structural equation approach, and shows that the same rank condi-
tion for identification holds for both stationary and nonstationary time series, that
certain instrumental variables are needed for consistent parameter estimation, and
that classical instrumental-variable estimators have to be modified for valid infer-
ence in the presence of unit roots. Chan and Ng investigate option pricing when
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viii

the volatility of the underlying asset follows a fractional version of the CEV (con-
stant elasticity of variance) model. Ho considers linear process models, with a latent
long-memory volatility component, for asset returns and provides asymptotically
normal estimates, with a slower convergence rate than 1/4/n, of the Sharpe ratios
in these investment models. Tsay reviews some commonly used models for the time-
varying multivariate volatility of k£ (> 2) assets and proposes a simple parsimonious
approach that satisfies positive definite constraints on the time-varying correlation
matrix. Lai and Wong propose a new approach to time series modeling that com-
bines subject-matter knowledge of the system dynamics with statistical techniques
in time series analysis and regression, and apply this approach to American option
pricing and the Canadian lynx data.

3. Related topics

Besides time series analysis, Ching-Zong also made important contributions to the
multi-armed bandit problem, estimation in branching processes with immigration,
stochastic approximation, adaptive control and limit theorems in probability, and
had an active interest in the closely related areas of experimental design, stochastic
control and estimation in non-regular and non-ergodic models. The paper by Chan,
Fu and Hu uses the multi-armed bandit problem with precedence relations to an-
alyze a multi-phase management problem and thereby establishes the asymptotic
optimality of certain strategies. Yao develops an approximation to Gittins index
in the discounted multi-armed bandit problem by using a continuity correction in
an associated optional stopping problem. Chen and Xia describe Stein’s method
for Poisson approximation and for Poisson process approximation from the points
of view of immigration-death processes and Palm distributions. Cheng, Wu and
Huwang propose a new approach, which is based on a response surface model, to
the analysis of experiments that use the technique of sliding levels to treat related
factors, and demonstrate the superiority of this approach over previous methods in
the literature. Chiang, Sheu and Shiu formulate the valuation problem of a finan-
cial derivative in markets with transaction costs as a stochastic control problem and
consider optimization of expected utility by using the price systems for these mar-
kets. Wong and Li propose to use the maximum product of spacings (MPS) method
for parameter estimation in the GEV (generalized extreme value) family and the
generalized Pareto family of distributions, and show that the MPS estimates are
asymptotically efficient and can outperform the maximum likelihood estimates.

We thank the Institute of Statistical Science of Academia Sinica for providing
financial support for the conference. Special thanks also go to the referees who
reviewed the manuscripts. A biographical sketch of Ching-Zong and a bibliography
of his publications appear after this Preface.

Hwai-Chung Ho
Ching-Kang Ing
Tze Leung Lai



Biographical sketch

Ching-Zong Wei was born in 1949 in south Taiwan. He studied mathematics at
National Tsing-Hua University, Taiwan, where he earned a BS degree in 1971 and
an MS degree in 1973. He went to the United States in 1976 to pursue advanced
studies in statistics at Columbia University, where he earned a PhD degree in 1980.
He then joined the Department of Mathematics at the University of Maryland,
College Park, as an Assistant Professor in 1980, and was promoted to Associate
Professor in 1984 and Full Professor in 1988. In 1990 he returned to Taiwan, his
beloved homeland, to join the Institute of Statistical Science at Academia Sinica,
where he stayed as Research Fellow for the rest of his life, serving between 1993
and 1999 as Director of the Institute. He also held a joint appointment with the
Department of Mathematics at National Taiwan University.

In addition to his research and administrative work at Academia Sinica, Ching-
Zong also made important contributions to statistical education in Taiwan. To
promote statistical thinking among the general public, he published in local news-
papers and magazines articles on various topics of general interest such as lottery
games and the Bible code. These articles, written in Chinese, introduced basic sta-
tistical and probabilistic concepts in a heuristic and reader-friendly manner via
entertaining stories, without formal statistical jargon.

Ching-Zong made fundamental contributions to stochastic regression, adaptive
control, nonstationary time series, model selection and sequential design. In par-
ticular, his pioneering works on (i) strong consistency of least squares estimates
in stochastic regression models, (ii) asymptotic behavior of least squares estimates
in unstable autoregressive models, and (iii) predictive least squares principles in
model selection, have been influential in control engineering, econometrics and time
series. A more detailed description of his work appears in the Bibliography. He was
elected Fellow of the Institute of Mathematical Statistics in 1989, and served as an
Associate Editor of the Annals of Statistics (1987-1993) and Statistic Sinica (1991
1999). In 1999, when Ching-Zong was at the prime of his career, he was diagnosed
with brain tumors. He recovered well after the first surgery and remained active in
research and education. In 2002, he underwent a second surgery after recurrence
of the tumors, which caused deterioration of his vision. He continued his work and
courageous fight with brain tumors and passed away on November 18, 2004, after
an unsuccessful third surgery. He was survived by his wife of close to 30 years,
Mei, and a daughter. In recognition of his path-breaking contributions, Vol. 16 of
Statistica Sinica contains a special memorial section dedicated to him.
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Pile-up probabilities for the Laplace

likelihood estimator of a non-invertible

first order moving average

F. Jay Breidt"*f, Richard A. Davis''’*, Nan-Jung Hsu 2
and Murray Rosenblatt 3

Colorado State University, National Tsing-Hua University and
University of California at San Diego

Abstract: The first-order moving average model or MA(1) is given by X; =
Zy — 00Z¢_1, with independent and identically distributed {Z:}. This is ar-
guably the simplest time series model that one can write down. The MA(1)
with unit root (g = 1) arises naturally in a variety of time series applications.
For example, if an underlying time series consists of a linear trend plus white
noise errors, then the differenced series is an MA(1) with unit root. In such
cases, testing for a unit root of the differenced series is equivalent to testing
the adequacy of the trend plus noise model. The unit root problem also arises
naturally in a signal plus noise model in which the signal is modeled as a ran-
dom walk. The differenced series follows a MA(1) model and has a unit root
if and only if the random walk signal is in fact a constant.

The asymptotic theory of various estimators based on Gaussian likeli-
hood has been developed for the unit root case and nearly unit root case
(60 = 148/n, B < 0). Unlike standard 1/+/n-asymptotics, these estimation pro-
cedures have 1/n-asymptotics and a so-called pile-up effect, in which P(é =1)
converges to a positive value. One explanation for this pile-up phenomenon
is the lack of identifiability of 6 in the Gaussian case. That is, the Gaussian
likelihood has the same value for the two sets of parameter values (0, 02) and
(1/0,0%52). 1t follows that & = 1 is always a critical point of the likelihood
function. In contrast, for non-Gaussian noise, 6 is identifiable for all real values.
Hence it is no longer clear whether or not the same pile-up phenomenon will
persist in the non-Gaussian case. In this paper, we focus on limiting pile-up
probabilities for estimates of 8y based on a Laplace likelihood. In some cases,
these estimates can be viewed as Least Absolute Deviation (LAD) estimates.
Simulation results illustrate the limit theory.

1. Introduction

The moving average model of order one (MA(1)) given by

(1.1)

Xt =2y — 0021,
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2 F. J. Breidt et al.

where {Z,;} is a sequence of independent and identically distributed random vari-
ables with mean 0 and variance o2, is one of the simplest models in time series.
The MA(1) model is invertible if and only if || < 1, since in this case Z; can be
represented explicitly in terms of past values of the Xy, i.e.,

Zt - Z «%Xt_]
§=0

Under this invertibility constraint, standard estimation procedures that produce
asymptotically normal estimates are readily available. For example, if 6 represents
the maximum likelihood estimator, found by maximizing the Gaussian likelihood
based on the data Xi,...,X,, then it is well known (see Brockwell and Davis [3]),
that

(1.2) Vil — 60) % N(0,1—62) .

From the form of the limiting variance in (1.2), the asymptotic behavior of é, let
alone the scaling, is not immediately clear in the unit root case corresponding to
0o = 1.

In the Gaussian case, the parameters 6, and o2 are not identifiable without the
constraint |fg| < 1. In particular, the profile Gaussian log-likelihood, obtained by
concentrating out the variance parameter, satisfies

L(6) = L(1/) .

It follows that # = 1 is a critical value of the profile likelihood and hence there is
a positive probability that # = 1 is indeed the maximum likelihood estimator. If
0o = 1, then it turns out that this probability does not vanish asymptotically (see
for example Anderson and Takemura [1], Tanaka [7], and Davis and Dunsmuir [6]).
This phenomenon is referred to as the pile-up effect. For the case that 6y =1 or is
near one in the sense that 0y = 1+ 7/n, it was shown in Davis and Dunsmuir [6]
that
n(é — o) . &y

where &, is random variable with a discrete component at 0, corresponding to the
asymptotic pile-up probability, and a continuous component on (—oo,0).

The MA(1) with unit root (fy = 1) arises naturally in a variety of time series
applications. For example, if an underlying time series consists of a linear trend plus
white noise errors, then the differenced series is an MA (1) with a unit root. In such
cases, testing for a unit root of the differenced series is equivalent to testing the
adequacy of the trend plus noise model. The unit root problem also arises naturally
in a signal plus noise model in which the signal is modeled as a random walk. The
differenced series follows a MA(1) model and has a unit root if and only if the
random walk signal is in fact a constant.

For Gaussian likelihood estimation, the pile-up effect is directly attributable
to the non-identifiability of 6y in the unconstrained parameter space. On the other
hand, if the data are non-Gaussian, then 6 is identifiable (see Breidt and Davis [2]).
In this paper, we focus on the pile-up probability for estimates based on a Laplace
likelihood. Assuming a Laplace distribution for the noise, we derive an expression
for the joint likelihood of € and z;,;;, where z;,;+ is an augmented variable that
is treated as a parameter and the scale parameter o is concentrated out of the
likelihood. If z;,;¢ is set equal to 0, then the resulting joint likelihood corresponds
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to the least absolute deviation (LAD) objective function and the estimator of 6
is referred to as the LAD estimator of 6y. The exact likelihood can be obtained
by integrating out z;,;. In this case the resulting estimator is referred to as the
quasi-maximum likelihood estimator of 6. It turns out that the estimator based on
maximizing the joint likelihood always has a positive pile-up probability in the limit
regardless of the true noise distribution. In contrast, the quasi-maximum likelihood
estimator has a limiting pile-up probability of zero.

In Section 2, we describe the main asymptotic results. We begin by deriving an
expression for computing the joint likelihood function based on the observed data
and the augmented variable Z;,;:, in terms of the density function of the noise.
The exact likelihood function can then be computed by integrating out Z;,,;;. After
a reparameterizion, we derive the limiting behavior of the joint likelihood for the
case when the noise is assumed to follow a Laplace distribution. In Section 3, we
focus on the problem of calculating asymptotic pile-up probabilities for estimators
which minimize the joint Laplace likelihood (as a function of 6 and z;,;;) and the
exact Laplace likelihood. Section 4 contains simulation results which illustrate the
asymptotic theory of Section 3.

2. Main result

Let {X;} be the MA(1) model given in (1.1) where 6y € R, {Z;} is a sequence of
iid random variables with FZ; = 0 and density function fz. In order to compute
the likelihood based on the observed data X, = (X1,...,X,)’, it is convenient to
define an augmented initial variable Z;,;; defined by

T Zn — Y1 Xy, otherwise.

A straightforward calculation shows that the joint density of the observed data
X, = (X1,Xo,...,X,,) and the initial variable Z;,;; satisfies

FX 70 @0 2imie) = [ [ £2(25) (Lgai<ay + 101" Lgops1y)

Jj=0

where the residuals {z:} are functions of X,, = @, 0, and Z;,;+ = 2ins+ Which can
be solved forward by z; = Xy +0z;,_1 for t =1,2,...,n with the initial zy = z;,;; if
6] <1 and backward by z;_1 = 0~ 1(z; — X;) for t =n,n—1,...,1 with the initial
Zn = Zinit T+ Z?:l X, if ’€9| > 1.

The Laplace log-likelihood is obtained by taking the density function for Z,
to be fz(z) = exp{—|z|/c}/(20). If we view z;,;; as a parameter, then the joint
log-likelihood is given by

1 n
(2.1) —(n+1)log20 — ;Zym —n(log|0]) 16151y -
t=0

Maximizing this function with respect to the scale parameter o, we obtain

G=> lul/(n+1).
t=0
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It follows that maximizing the joint Laplace log-likelihood is equivalent to minimiz-
ing the following objective function,

Zt 0 |Zt| if |9| S 17
(2.2) (n (0, Zinit) = {tho |2¢]|6], otherwise.

In order to study the asymptotic properties of the minimizer of ¢,, when the
model 6y = 1, we follow Davis and Dunsmuir [6] by building the sample size into
the parameterization of 6. Specifically, we use

1.8
(2.3) =1+,

where 3 is any real number. Additionally, since we are also treating z;,;; as a
parameter, this term is reparameterized as

(2.4) Zinit = Zo + —=

NS

Under the (8, a) parameterization, minimizing ¢, with respect to 6 and z;,; is
equivalent to minimizing the function,

Un(5,0) = — (a6, 2ini) — 01, Z0)]

with respect to f and «. The following theorem describes the limiting behavior
of U,.

Theorem 2.1. For the model (1.1) with 8y = 1, assume the noise sequence {Z;}
is IID with EZ; = 0, E[ sign(Z;)] = 0 (i.e., median of Z; is zero), EZ} < oo and
common probability density function fz(z) = oc~1f(z/0), where o > 0 is the scale
parameter. We further assume that the density function fz has been normalized so
that o = E|Z;|. Then

(2.5) Un(B,0) "' U(8, ),

idi S . . . .
where fig denotes convergence in distribution of finite dimensional distributions
and

U(B,a) = /0 1 {5 /O S eﬂ<st>d5(t)+a655] dW (s)

(2.6) +£(0) /O 1 [5 /O ) P S (t) +aeﬁsrds,

for B3 <0, and

U(ﬁ,a)z/ [ 5/ e PE=3)dS(t) + ae P ﬂ AW (s)

(2.7) +f(0/ [ 5/ Blt=s)qs(t )+oze_f3(1_s)] ds,

for B >0, in which S(t) and W (t) are the limits of the following partial sums

[nt]

Sp(t) = \/_ZZ/O' W, (t) = \/_Zszgn

respectively.
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Remark. The stochastic integrals in (2.6) and (2.7) refer to It6 integrals. The
double stochastic stochastic integral in the first term on the right side of (2.7) is
computed as

/01 /Si e PE=3)dS(t)dW (s) = / e Ptds( t)/ PV (5)

// —BU=)gS(£)dW (s) — /d5<t)dW(t>v

where (see (2.15) below)
/0 dS(t)dW (t) = E(Z;sign(Z;))/o = E|Z;|/o = 1.

Proof. We only prove the result (2.5) for a fixed (3, «); the extension to a finite
collection of (3, «)’s is relatively straightforward. First consider the case § < 0. For
calculating the Laplace likelihood /,, (6, z;nit) based on model (1.1), the residuals are
solved by z; = Xy + 0z,_1 for t = 1,2,...,n with the initial value zg = z;4¢. Since
Xy = Zy— Z;_1, all of the true innovations can be solved forward by Z; = X; + Z; 1
fort =1,2,...,n with the initial Zy. Therefore, the centered term ¢, (1, Zy) can be
written as

n n
ln(1, Zo) = | Zo| + Z X+ X+ + X0+ Zo| = Z | Zi|.
i=1 —
For 6 <0, ie., 6 <1,
2 =X +0Xi1 4+ 07X + 0z

=(Zi—Zi )+ O0(Zio1 — Zi )+ + 072y — Zo) + 0" 2inie
= Zz — (1 — Q)Zi_l — 9(1 — 9>Zi—2 — e — Gi_l(l — 9)20 — 91<Z0 — Zinit>7

which, under the true model # = 1, implies

1 1 (<
p [€0.(0, Zinit) — £n(1, Zo)] = Z |2i] — Z |Zz|>
(2.8) 1 = =0
== (|Zz'—yi|—|Zi|),
=0
where yo = Zy — 2init and
-1 A
pi= (=0 071254 0'(Zo — 2inir),
§=0

for : =1,2,...,n. Using the identity

(2-9) |Z - y| - |Z| =Y sign(Z) + 2(?4 - Z) (1{0<Z<y} - 1{y<Z<0})
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for Z # 0, the equation (2.8) is expressed as two summations, the first of which is

n n i—1
A . i—1—1 Z .
— E %51gn(Z¢) =(0-1) E E 6! 373 sign(Z;)
1=0 i=1 j=

(2.10) + % zn: (1 - g) sign(Z;)
)

dS,(t) (1 + —)m_l AW, ()

n
1 ns
+a/ <1+§) dW,,(s)
0

1 s 1
N B(s—t) Bs
5/0 /0 e dS(t)dW (s) + a/o e’ dW (s),

where the limit in (2.10) follows from a simple adaptation of Theorem 2.4 (ii) in
Chan and Wei [4].

To handle the second summation in computing U, (8, «), we approximate the
sum

7
22 Yi - . (1{0<Zi<yi} - 1{yi<Zi<0})
1=0

ZZE [y - (1{0<Zi<yi} — 1{yi<Zi<0}) il

where F; is the o-field generated by {Z; : j = 0,1, ...,4}. First we establish conver-
gence of the latter sum and then show that the variance of the difference in sums
converges to zero. Since

122, il = 0

y; € Fi_1, we have

i — Zi
2K [(y - )1{O<Zi<yi}

fi—l} = 2/%‘ <yi — Z) %f(;)dz
~s0 [72(%5)a()
=10 (%)
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for y; > 0, and

i — Zi 0
2E [(y ) 1{yi<Zi<0}|‘Fi—1:| = /

U {
]2 (457)40)
0)

0
Tl

)

yi—z\ 1 =z
);f(;)dz

g

2
~ [

for y; < 0. Combining these two cases, we have

QZE |:yz 1{0<Z <yi} — 1{yi<Zi<0}) |Fi—1:| ~ f(o)z (%)2

i=0
where

i—1

- y — - 1_ 91 1— ] ZO 20
_ 2
n _ﬂzfl ﬂ i_l_jZ' o /6 7
=2 Tj_1<1+ﬁ) ﬁ—ﬁ(”ﬁ)

(2.11)

(i—1)/n 3 i—1—sn 3 i12
_Z 5/0 (1+ﬁ) dSn(s)—Foz(l—i—E)

s 2
— / 5 / eﬁ<st>d5(t)+aef”8] ds
0

in distribution as n — oo.

It is left to show that

1
n

i — 7
22 p (1{0<Zi<y¢} - 1{yi<Zi<O})
(2.12) =0
Yi —
o QZE [ 1{0<Z <yi} — 1{yi<Zi<0}) | Fi1

converges to zero in probability. Define

Y = 2 (1{0<Zi<yi} - 1{yi<Zi<O}) .

The expectation of (2.12) is zero and therefore, it is enough to show that the
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variance of (2.12) also converges to zero. The variance of (2.12) is equal to

> var(y; — E(y;|Fio1)) +2 ) cov (yf — E(yf|Fin) 5} — E (1 F5-1))
1=0

i<j
= Ely — E|Fi)]’
i=0

o

o

as n — 0o, where

cov (y; — E (yi|Fiz1) .y} — E (y;1Fj-1))
= Ely; — E(y; |Fi-1)] ly; — E (v;1Fj-1)]

= EFE [(y;‘ — E(y;|Fi-1)) (y; — E (y;1Fj-1))

./T"j_1:|

)

_E [@: B E (y CE(y1F)

for ¢ < j, and

N ; (%)3 —/01 (ﬁ/os P dS (1) + aeﬁs>3ds,
n Zz: (%)4 — /01 (ﬁ/os P ds(t) +a655)4d5.

Based on (2.10), (2.11), and (2.13), the proof for # < 0 is complete.

The proof for § > 0 given in (2.7) is similar to that for 5 < 0. For 5 > 0,
i.e., & > 1, the residuals {z;} are solved backward by z;_; = 071(z — X;) for
t=n,n—1,...,1 with the initial z,, = z;pit + Z?Zl X;. Solving these equations,
we have

Znot1—i = =07 (Xni + 07 X+ + 07X, — 0772,
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fori=0,1,...,n— 1. Writing X; = Z; — Z;_1, we obtain

210 =Xy i+ 0 X+ 0TX, — 072,
=(Znoi—Zn—i1) +0 N Zpiv1 — Zp_i) +---
+ 0" Zp — Zn1) — 0 "2y
=—Zp i1+ 1 —-0HZ i+ +0 VA1 -0"H2Z,_,
+ 07 Zy — 2n)
= —Zp—i-1 1 Yn—i—1,

where

7

Yn1—i=(L=07")> (07 Zj+ 07 (Zy — 20)

j=1
=(1-67") Z(G_l)i_jznfj +67" (Z Xi + Zo) - (Z X + Zim’t)]
j=1 i—1 i—1

%

=(1-067") 2(0_1)"_]27#]‘ +07(Zo — Zinit),

j=1
fori=0,1,...,n—1and y, = Z,, — zn, = Zo — Zinit- Again, for 6 > 1, we have
1
- [€n(0, Zinit) — £n(1, Z0)] Z —vil = 1Zil),

=0

which has the same form as that for § < 1 but with different {y;}. Following a
similar derivation for 8 < 1, one can show that

_Z Y sign(Z;) _5/ / BE=9)q8(t)dW (s) +oc/01 e PU=2)aw (s),

y__)/ [ ﬁ/ A=) gS(t) + ae PO 5)] ds,
o?

in distribution as n — oo. Combining this with the analogous result (2.13) for
6 > 0, completes the proof. O

We close this section with some elementary results concerning the relationship
between the limiting Brownian motions S(¢) and W (t) that will be used in the
sequel. Since o = E|Z;], the process S(t) can be decomposed as

(2.14) S(t) = W(t) + cV(t),

where {W(t)} and {V (¢)} are independent standard Bronwnian motions on [0, 1]
and

c=+/Var(Z;)/o% — 1.



10 F. J. Breidt et al.

In addition, we have the following identities

/01 V(s)ds = V(1) — /01 sdV (s),
/ V)W (s) = VW (L) — / WV (s).
/01 AW (s)dW () = /01 ds = 1,
[ v =o

where the first two equations can be obtained easily by integration by parts. It
follows that

(2.15) /1 dS(s)dW(s) = /1 dW (s)dW (s) + c/1 dVv(s)dW(s) =1.

3. Pile-up probabilities
3.1. Joint likelthood

In this section, we will consider the local maximizer of the joint likelihood given
by —£,, in (2.2). This estimator was also studied by Davis and Dunsmuir [6] in the
() 5(J)

Gaussian case. Denote by (0r"’, Z;,,;; ,) the local minimizer of £, (0, zin;) in which

05" is closest to 1. Using the (8, o) parameterization given in (2.3) and (2.4), this
is equivalent to finding the local minimizer (ﬁAf{]),df{])) of U, (S, «) in which [97({7) is
closest to zero. Moreover, the respective local minimizers of ¢,, and U,, are connected
through the following relations:

A I N NUR
(3.1) 0 =14+ ) = 7y ="

n nat,n \/ﬁ :

If the convergence of U,, to U in Theorem 1 is strengthened to weak convergence
of processes on C'(IR?), then the argument given in Davis and Dunsmuir [6] suggests

the convergence in distribution of (A,({]),dg)) to (8D, al"), where (3, a7) is
the local minimizer of U(3, a) in which 5(/) is closest to 0. It follows that

(3.2) (n(6) = 1),V — Zo)[o) % (B, D).
The proofs of these results are the subject of on-going research and will appear in
a forthcoming manuscript.

Turning to the question of pile-up probabilities, we have that 1 is a local min-
imizer if the derivative of the criterion function from the left is negative and the
derivative from the right is positive; that is,

Py =1)=P(B =0)

.0 . .0 R
-p %%%Un (8,6, (B)) < 0 and lﬁlfrol %Un (B,4n(B)) > 0],
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where &, (8) = argmin,, U, (8, ) for given . Assuming convergence of the right-
and left-hand derivatives of the process U, (3, &, (3)), we obtain

R 0 0
3 (J) f— f— —_— 3 — A
(3.3) nhm P(Gn = 1) =P [lﬁlmm ﬁU (/3 (/3)) < 0 and 1ﬁlml0 ﬁU (8,(1(13)) > O} ,

where &() = argmin, U(8, o). We now proceed to simplify the limits of the two
derivatives in the brackets of (3.3) in terms of the processes S(t) and W(t). Ac-
cording to (2.6) in Theorem 2.1, we have

lim 20 U(p, )—lim{/ol eﬁSdW(s)Jrf(O)za/Ole?ﬁSds}

810 O 810

:/OldW(s)—i—Qaf(O)/Olds
= W(1) 4 2af(0),

and therefore

The derivative of U(f3, o) with respect to 5 at zero from the left-hand side satisfies

—U (3, / / P A8 (t)dW (s +B/ / B (s — )dS(t)dW (s)
+« P2 sdW (s
/0 (s)

0) {23 /01 (/0 eﬁ<8—t>ds<t)>2 ds
+ﬁ2/012</08 (=8 aS(t) )(/O Als=t)(s t)dS(t))
+ a? /01 62582sd5+2a </O Als=tgs( t)) ds
+2a5/0 ePs (/0 Pl (25 —t)dS(t)) ds}.

Taking the limit as 6 T 0, we have

g%% //dS(t )W (s) + &(0— )/ sdW (s
+f(0){d2(0—)/0 2sds + 2a(0 //dS t)ds}
(3.4) - / 15( AW (s) — W (1) / S(s)ds

2f(0 U Wis)ds - Wﬂ
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Similarly, according to (2.7) in Theorem 2.1, we have

1 1
1im33 (&a)—hm{ / e =W (s) + f(0)2ax /O e—2ﬁ<1—s>ds}

Bl0 Ja Blo

:/Oldw(s) 1 2a(0) /01 ds
— W (1) +2a£(0),

and therefore

wa)
- 2f(0)

which is same as &(0—). The derivative of U(f3, «) with respect to ( at zero from
righthand side satisfies

%U(ﬂ, // e Pt=dS (t)dW (s 5// A= (s — 1)dS(£)dW (s)
+q/eﬁ“s< 1w (s)
sl ([ )

1
(o
0 s
1
X (/ e Pl=9) (5 — t)dS(t)) ds
) S
-+ a2/ e 2P0=9)9(s — 1)ds
0
1 1
— 20 / e All=9) ( / eff(”)dS(t)) ds
0 s
1 1
- QaB/ / e AUF=25) (95 ¢ — 1)dS(t)ds} :
0 s

Taking the limit 8 | 0 and using the remark in Section 2, we have

a(0+) =

0
glfg =7U(8,a(0))

— _/ / dS(t)dW (s) + &(0+) /1(5 — 1)dW (s)

+f0){ 0+)/ s—l)ds—2a0+//d5 }

— —S(W() + /S( )dW(S)+1+a<0+>[<S‘1 /W }

0

+ £(0) {—d2(0+) 24(04) {5(1) - / 1 S(s)ds} }

:/Ols(s)dw(s)—W(l)/OIS )ds +—(1)U W(s)d W(l}

=Y +1.
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Therefore, the pile-up probability in (3.3) can be expressed in terms of Y as
lim P(A) =1)=P[Y <0and Y +1 > 0]
=P[-1<Y <0].
3.2. Exact likelihood estimation
In this section, we consider pile-up probabilities associated with the estimator that

maximizes the exact Laplace likelihood. For § < 1, the joint density of (x,, zinit)
satisfies

t=0
_ (L)n—kl exp {_ [£n<‘9> Zim't) — gn(l, Z())] + gn(l, Zo) }
20 o
n+1 n
_ (i) exp (_Zt:o |Zt’> o Un(Bia).
20 o

Integrating out the augmented variable z;,;;, we obtain

o0 1 n+1 n_ Z o 0o ~
/OO [ (@, Zinit)dZinit = <%> exp (—%) %/Ooe Un(6:9) dy,

since under the parameterization (2.4), dz;nit = (0/4/n)da. The Laplace log-likeli-
hood of (0, 0) given x,, then satisfies

52(97 U) = log/ f(iBn, Zinit>dzinit

Z?fo|Zt| o /oo U
= —(n+1)log(20) — == 4 jog (| — | +1 (B g
(n+1)log(20) , tlslg) tle ) e a,

where the last term does not depend on o as n — 0o. So maximizing ¢, with respect
to 8 < 1 is approximately the same as maximizing

o0

(3.5) U,(B) = log/ e Un(B2) qo

— 00

with respect to 3 <0,
Similarly, for 8 > 1, the Laplace log-likelihood of (6, 0) is

52(97 0) = log/ f(iBn, Zinit)dzim't

N/
= —nlog|f| — (n+ 1)log(20) — %

+ log (%) +log/ e_U"(B’O‘)w'_lda,

where again the last term does not depend on ¢ as n — oo. As above, maximizing
¢y with respect to 6 > 1 is equivalent to maximizing

(3.6) U*(8) = log / o~Un(Bra)n/(n+5) gy

— 00



14 F. J. Breidt et al.

for 6 > 0.
A heuristic argument based on the process convergence of U,, to U suggests that
(3.7) U(8) = U*(8) =log [ eV da

where U} is specified by (3.5) for § < 0 and by (3.6) for > 0. Now if AL
denotes the local maximum of the exact likelihood, or alternatively the maximizer
of U}(() that is closest to 0, then the convergence in (3.7) suggests convergence in
distribution for the local maximizer of the exact likelihood, i.e.,

(3.8) n(@® — 1) = ) & 3E)

where 3E) is the local maximizer of U*(3) that is closest to 0.

The limiting pile-up probabilities for é%E) are calculated from

lim P(0F) =1) = lim P =0)= P3P =0)

.0, .0,
:P<1611T[18%U (8) >0 and %%%U (ﬁ)<0>.

Fortunately, the right- and left-hand derivatives of U* can be computed explicitly.
These are found to be

W2(1) W(1)
4£(0) f(0)

lim —U* (B) =

i 5 / W (s)ds — W (1) / S(s)ds + /0 lS(s)dW(s)

2
1
—Y + =
+2,

0 WY W) !
lim —U <6)__4f(0) +2f(0)/ s)ds — W / S(s) ds+/ S(s)dW (s

2

1
—Y 4=
+2,

where Y is defined in (3.4). The limiting pile-up probability for L) is then

X 1
lim P(0®) =1)=P {—1 <Y < ——} = 0.

n—oo 2 2

3.3. Remarks

Here we collect several remarks concerning the results of Sections 3.1 and 3.2.

Remark 1. Under the assumptions of Theorem 2.1, the asymptotic pile-up prob-
ability for estimator éf{]) based on the joint likelihood is always positive. On the
other hand, the asymptotic pile-up probability for estimator (%LE) based on the exact
likelihood is zero.
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Remark 2. The two estimators of 6 considered in Sections 3.1 and 3.2 were defined
as the local optimizers of objective functions that were closest to 1. One could also
consider the global optimizers of these objective functions. For example, the exact
MLE in the Gaussian case was considered in Davis and Dunsmuir [6] and Davis,
Chen and Dunsmuir [5] and has a different limiting distribution than the local MLE.
In our case, there will be a positive asymptotic pile-up probability for the global
maximum of the joint likelihood and a zero asymptotic pile-up probability for the
global maximum of the exact likelihood.

Remark 3. Suppose Z; has a Laplace distribution with the density function

1
fa(2) = goe e,

Then Y defined in (3.4) satisfies

(3.9) y = /0 (W(1)s — W(s)|dV(s) — -

where W (s) and V(s) are independent standard Brownian motions. To prove (3.9),
note that the constant ¢ in (2.14) is equal to 1 so that

S(t) =W(t) + V(t).
In the following calculations, we use the well-known It6 formula

/O W (s)dW (s) = W2<1) - %

Since f(0) = 1/2, the random variable Y defined in (3.4) can be further simplified
in terms of W (t) and V(t) as

/Ss)dW W(l)/IS( ds +T(1);[/ W(s ()}

:/ V(s)dW (s) / W (s)dW (s) — W(1)/O V(s)ds — W / W (s)ds

1)/ W(s 2(1)

— V)W) - /0 W (s)dV (s) + WT(” - % —w() {V(l) —/O st(s)}
W2(1)
-

:/0 [W(1)s — W(s)]dV (s) —
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Therefore, the pile-up probability for Laplace innovations is
P(-1<Y <0)

_ (—% < /01 W (1)s — W (s)] dV(s) < %)
_ 5 {P (-% < /01 W (1)s — W(s)] dV(s) < %) 'W(t) on t € [0, 1]}

—1/2

P (—% {/Ol[W(l)s - W(s)]zds} <U
<3 {/Ol[W(l)s _ W(s)]zds}_l/Q)]

o (% {/Ol[W(l)s - W(s)]zds}_l/2)

_ (—% {/Ol[W(l)s - W(s)]2d5}1/2>]

~ 0.820,

=F

where U has the standard normal distribution and ®(-) is the corresponding cu-
mulative distribution function. This pile-up probability, which was computed via
simulation based on 100000 replications of W (t¢) on [0, 1], has a standard error of
0.0010.

Remark 4. From the limiting result (3.2), it follows that the random variable Z,
can be estimated consistently. It may seem odd to have a consistent estimate of a
noise term in a moving average process. On the other hand, an MA(1) process with
a unit root is both invertible and non-invertible. That is, Z; is an element of the
two Hilbert spaces generated by the linear span of {X;,¢ < 0} and {X;,t > 1},
respectively. It is the latter Hilbert space which allows for consistent estimation
of Zo.

4. Numerical simulation

In this section, we compute the asymptotic pile-up probabilities associated with
the estimator (/) which maximizes the joint Laplace likelihood for several dif-
ferent noise distributions. The empirical properties of estimators 0A7({]) (the local
maximizer of the joint Laplace likelihood) and oL (the local maximizer of the
exact Laplace likelihood) for finite samples are compared with each other and with
the corresponding asymptotic theory.

For approximating the asymptotic pile-up probabilities and limiting distribu-
tion of BAﬁLJ), we first simulate 100000 replications of independent standard Wiener
processes W (t) and V(¢) on [0, 1] in which W(t) and V(¢) are approximated by
the partial sums W(t) = 251:0(1)0075] W;/+/10000 and V(t) = 25;20?00751 V;; /+/10000,
where {IW;} and {V;} are independent standard normal random variables. From
the simulation of W (t) and V (¢), the distribution of the limit random variable 5(/)
can be tabulated and the pile-up probability P(—1 < Y < 0) estimated, where Y
is given in (3.4). The empirical pile-up probabilities and their asymptotic limits are
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displayed in Table 1 for different noise distributions: Laplace, Gaussian, uniform,
and t with 5 degrees of freedom. Notice that there is good agreement between the
asymptotic and empirical probabilities for sample sizes as small as 50.

For examining the empirical performance of the local maximizers é;{l) and éflE),
we only consider the process generated with Laplace noise with ¢ = 1 and sample
sizes n = 20,50, 100,200. For each setup, 1000 realizations of the MA(1) process

with 6y = 1 are generated and the estimates éf{]) and éﬁlE) and their corresponding
estimates of the scale parameter are obtained. The estimation results are sum-
marized in Table 2. For comparison, the standard deviation based on the limit
distributions of 97({]) and HA%E) are also reported (denoted by asymp in the table),
which are obtained numerically based on 100000 replicates of the limit process U.
Generally speaking, the empirical root mean square errors are very close to their
asymptotic values even for very small samples. Moreover, the estimation error of
05" is about 1 /2 the estimation error of éﬁlE), which indicates the superiority of
using the joint likelihood over exact likelihood when 6y = 1.

We also considered performance of the two estimators 97({]) and (%LE) in the case
when 6y # 1. A limit theory for these estimators can be derived in this case by
assuming that the true value 6 is near 1. That is, we can parameterize the MA(1)
parameter by 6y = 1 + v/n (e.g., Davis and Dunsmuir [6]). While we have not
pursued the theory in the near unit root case, the relative performance of these

TABLE 1
Empirical pile-up probabilities of the local maximizer éﬁ;” of the joint Laplace likelihood for an
MA(1) with g = 1 and sample sizes n = 20, 50, 100,200 (based on 1000 replicates) and their
asymptotic values under various noise distributions.

n Gau Lap Unif t(5)
20 0.827 0.796 0.831 0.796
50 0.859 0.806 0.864 0.823
100 0.873 0.819 0.864 0.817
200 0.844 0.819 0.843 0.831
500 0.855 0.809 0.841 0.846
0 0.873 0.820 0.862 0.836
TABLE 2

Bias, standard deviation and root mean square error of the local mazximizers éi{j) and éflE) of
the joint and exact Laplace likelihoods, respectively, for an MA(1) process generated by Laplace
noise with 6p = 1 and o =1 (1000 replications).

. % R
n =20 bias -0.003 -0.006
s.d. 0.066 0.144
rmse 0.066 0.144
asymp 0.053 0.121
n =50 bias -0.000 0.000
s.d. 0.021 0.057
rmse 0.021 0.057
asymp 0.021 0.048
n = 100 bias -0.000 0.001
s.d. 0.011 0.030
rmse 0.011 0.030
asymp 0.011 0.024
n = 200 bias 0.000 0.001
s.d. 0.006 0.014
rmse 0.006 0.014

asymp 0.005 0.012
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TABLE 3
Bias, standard deviation and root mean square error of the global mazximizers GA,({]) and é,SE) of
the joint and exact Laplace likelihoods, respectively, for an MA (1) process generated by Laplace
notise with 8p = 0.8,0.9,0.95,1/0.95,1/0.9,1/0.8, 0 = 1, and n = 50 based on 1000 replications.
First 2 columns record the number of times (out of 1000) that the estimates were less than 1
(invertible) and equal to 1 (unit root).

6o <1 =1 bias s.d. rmse
0.8 éég) 78 95 0.0734  0.1973  0.2105
o\ 813 19 0.0498 01753  0.1822
0.9 é§g> 557 322 0.0578  0.1398  0.1513
oy 16T 93 0.0327 00933  0.0989
0.95 éég) 404 503 00322  0.0708  0.0778
o) 632 168 00235 00821  0.0854
1/0.95 é%g) 90 540 -0.0315  0.0763  0.0825
6 286 114 -0.0207  0.0890  0.0914
1/0.9 éég) 89 209 -0.0389  0.1227  0.1287
S A 1 -0.0327 01218 0.1261
1/0.8 éég) 96 109 -0.0338 02645  0.2666
6% 149 19 -0.0492  0.2280  0.2333

estimators was compared in a limited simulation study. We considered 3 values of
0o = 0.8,0.9,0.95 and their reciprocals 1/0.8,1/0.9,1/0.95. The latter 3 cases cor-
respond to purely non-invertible models. The results reported in Table 3 are based
on the global optimization of the joint and exact likelihoods. The first two columns
contain the number of realizations out of 1000 in which the estimator was invertible
(< 1) and on the unit circle (= 1), respectively. For example, in the 6, = 0.8 and
éﬁ;” case, 78.9% of the realizations produced invertible models, and the empirical
pile-up probability is 0.095. On the other hand, for y = 1/0.8, 79.5% of the realiza-
tions produced a purely non-invertible model with an empirical pile-up probability
of 0.109. Both objective functions do a reasonably good job of discriminating be-
tween invertible and non-invertible models, with a performance edge going to the
exact likelihood. In terms of root mean square error, the performance of é,(lE) is
superior to éf{]) as 0y moves away from the unit circle.

Remark. The LAD estimate of 6 is obtained by minimizing the objective function
given in (2.2) with z;,;; = 0. Although we have not considered the asymptotic pile-
up in this case, the estimator does not perform as well as HA%‘]) and OA;E) For example,
in simulation results, not reported here, the rmse of the LAD estimator tended to
be twice as large as the rmse for the exact MLE.
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Abstract: We introduce a recursive algorithm of conveniently general form
for estimating the coefficient of a moving average model of order one and
obtain convergence results for both correct and misspecified MA(1) models.
The algorithm encompasses Pseudolinear Regression (PLR—also referred to
as AML and RML1) and Recursive Maximum Likelihood (RML2) without
monitoring. Stimulated by the approach of Hannan (1980), our convergence
results are obtained indirectly by showing that the recursive sequence can be
approximated by a sequence satisfying a recursion of simpler (Robbins-Monro)
form for which convergence results applicable to our situation have recently
been obtained.

1. Introduction and overview

Our focus is on estimating the coefficient 6 of an invertible scalar moving average
model of order 1 (MA(1)),

(1.1) yr = Oei_1 + ey

where e, is treated as an unobserved, constant-variance martingale-difference pro-
cess. We do not assume the series y;, —00 < t < oo from which the observations
come is correctly modeled by (1.1). They can come from any invertible autoregres-
sive moving average (ARMA) model or from more general models; see Section 2.
What we seek is a 6 that minimizes the loss function

(1.2) L(0) = El(ye — ys:-1(0))°] = Elef (0)]

where e4(6) = y; —v4¢—1(0) and yy;—1(0) is the one-step-ahead-prediction of y; from
Ys, —00 < s < t — 1 based on the model defined by 6 (see (2.7) below). We define
optimal estimation procedures to be those whose sequence of estimates 6; minimizes
(1.2) in the limit. This is a property of (nonrecursive) maximum likelihood-type
estimates of 6, see Potscher [23].

In this article, we analyze a continuously indexed family of recursive procedures
for estimating 6. Recursive procedures form an estimate 6; for time ¢ using the
observation y; at time t, the estimate 6, ; for t—1 and other recursively defined
quantities. Our family encompasses two standard algorithms, Recursive Maximum
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Likelihood (RML) which is referred to throughout as RMLy [12, 21], and the sim-
pler Pseudolinear Regression (PLR) [21]—also known as Approximate Maximum
Likelihood (AML) [24] and RML; [11, 20]. More specifically, our general recursive
algorithm generating #; depends on an index 3,0 < 3 < 1. The algorithm reduces
to PLR when # =0 and to RMLs when g = 1.

Our main convergence result, Theorem 4.1, is obtained by constructing an ap-
proximating sequence ét for which 6, —ét 2% 0 holds and which satisfies a Robbins-
Monro recursion,

(1.3) ét = ét—l - 5tf(ét—1, B) + 0yt

in which v <% 0 and 6; > 0, 6; =5 0, > peo 0k = 00 a.s., and

™ w 0

Here 2% denotes almost sure convergence (convergence with probability one) and
gy(w) denotes the spectral density of the time series y;. Note that when § = 0, then

1) 100 =~ [ e = ~Elaa@a@),

and when § =1, then

T e 40 1d 1-
10 0.0 =~ [ ) = 5L E0)] = 510
where L'(#) denotes the first derivative of L(6). We then apply a result of Fradkov
implicit in [8], as extended and corrected by Findley [9], to show that 6, converges
to {# € ©: f(0,5) = 0} where © is the open interval (-1,1) of real 6 with || < 1.
(A similar result is implicit in proofs of Theorems 2.2.2-2.2.3 of Chen [7].) Hence,
for 3 =0,0, ~% {0 € ©: E[e;—1(0)e,(A)] = 0} and for 3 =1, 6, &= {# € O :
L'(9) = 0}. Here and below, 6; convergence a.s. to a set means that except on a set
of £ € Z with probability zero, every cluster point of 6;(§) is an element of the set.
In the incorrect model situation, in which g, (w) is not proportional to |1+ 60e™ |2,
for examples we have analyzed [5], these zero sets will be disjoint, establishing that
PLR converges to different values than RMLy. Consequently, under the assumptions
of Theorem 4.1, we recover the results of Cantor [4] that were given in separate
theorems and proofs, establishing that, for certain families of AR(1) and MA(2)
processes, RMLy estimates of  in the model (1.1) converge to an optimal limit (a
minimizer of (1.2)) whereas PLR estimates converge to a suboptimal limit [4, 5].
When the data come from an invertible MA(1) model, it is known that PLR
and monitored versions of RMLs can provide strongly consistent estimates of 6
[4, 11, 17, 19]. More generally, in the correct model situation for ARMAX models,
i.e., ARMA models with an exogenous input, Lai and Ying [17] provided a rigorous
proof of strong consistency of PLR (under a positive real condition on the MA
polynomial) and also of a monitored version of RMLs whose monitoring scheme
involves non-linear projections and an intermittently used recursive estimator for
which consistency has already been established. In Section 4 of [19], Lai and Ying
consider a simpler modification of RMLy in which, for monitoring, only auxiliary
consistent recursive estimates are used. They present detailed outlines of proofs
of strong consistency and asymptotic normality of the estimates from this new
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monitored RMLy scheme. The construction of Section II of [18] can be used to
obtain auxiliary recursive estimates with the properties required.

There is a rather comprehensive theory of recursive estimation of autoregressive
(AR) models, encompassing certain incorrect model situations for algorithms like
PLR (see e.g., [6]). There are, however, no published convergence results with rig-
orous proofs for MA models in the incorrect model situation. Ljung’s seminal work
on the convergence of recursive algorithms [20, 21] mentions the incorrect model
situation but provides only suggestive results (further discussed in Section 5).

This article has five sections. In Section 2, the assumptions on the data and some
consequences for the MA(1) model are given. In Section 3, the general recursive
algorithm is presented. The Convergence Theorem is stated and proved in Section 4.
Required preliminary technical results are given in Section 4.1 and the proof of the
theorem is provided in Section 4.2. Finally, Section 5 concludes the article with a
brief discussion.

2. Assumptions

The observations y;,t > 1 are assumed to come from a mean zero, covariance
stationary scalar series, y;, —00 < t < 0o defined on the probability space (Z, F, P).
We use the following additional assumptions on the process y;:

(D1) y; is nonzero with probability one; i.e., P{y? > 0} = 1.
(D2) The series has a linear representation

(2.1) Y = Z/@Set,s such that kg =1 and Z |ks| < 00
s=0 s=0

in which k(z) = > .2, ks2® is nonzero for |z| < 1 and {e} is a martingale-
difference sequence (m.d.s.) with respect to the sequence of sigma fields F; =
o(ys, —00 < s < t). Thus Ele;|F;—1] = 0. By a result of Wiener [25, Theorem
VI 5.2], k(z)™' =Y 00, Bsz® with Yoo |Bs| < 0o, whence

(22) €t — Zﬁsyt—s (50 = 1) :
s=0

(D3) The conditional variance FE[e?|F;_1] is constant almost surely; i.e.,
E[e2|Fi_1] = 02 a.s. Equivalently, E[¢?] = 02 and €7 — 02 is a m.d.s. with

respect to the F;.
(D4) {e:} is bounded a.s.; sup, |e;| < K a.s. for some K < oo.

From (D2)-(D3), the spectral density g,(w) can be expressed as

2 00
(2.3 9y(w) = 2 |s(e)* where (c™) = > e,
and
(2.4) 0<m<gylw) < M<ooforall -mn<w<7

for positive constants m and M. The series y; is an invertible ARMA process if and
only if k(z) is a rational function.
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Assumption (D4) is used extensively in the proof of the convergence theorem,
Theorem 4.1, in Section 4.

Under (D2)—(D4), we can apply, for example, the First Moment Bound Theorem
of Findley and Wei [10] to show that ¢~! Zz:j+1(ysys—j —77) 2% 0. Hence, from
the particular case y; = € in (2.1) and j = 0,

t

(2.5) t! Z 2 &% 2

We consider models for y; of the invertible, stationary first-order moving-average
type (MA(1)) given by

(2.6) Yy =0le;_1+e, —00<t< .

For a given coefficient 6 such that || < 1, the difference equation (2.6) is satisfied
with e; = e4(6) given by the mean zero, covariance stationary one-step-ahead-
prediction-error series,

(2.7) e(f) = (1+6B) 'y, = Z(—G)jyt,j =Yt — Yee—1(0),
=0

from the MA(1) predictor y,;—1(0) = —Z;’;l(—e)jyt_j, see (5.1.21) of [3]. Here
B is the backshift operator; i.e., By; = y;—1. The coefficient 0 is referred to as the
MA coefficient. Thus,

(2.8) yr = er(0) + 0er—1(6) .

The infinite series in (2.7) converges in mean square and, from (D4) and the rep-
resentation (2.1), also almost surely. Thus, e;(#) represents the optimal one-step-
ahead-prediction-error process from the perspective of the model (2.6). The model
(2.6) is correct if e;(f) coincides (a.s.) with the m.d.s. ¢ in (2.2), in which case
Bs = (—0)°,k > 0. Whether or not the model is correct for any 6, forecast errors
e+ (0) appearing in loss functions such as (1.2) and elsewhere are calculated as in
(2.7). We emphasize that (2.1) allows data processes far more general than MA(1)
processes. In particular, the z-transform, Z;’io Kksz® is not required to be rational.
For example, time series conforming to the exponential models of Bloomfield [2]
have non-rational k(z) without zeroes in |z| < 1.

Let © = (—1,1). From (2.7), the spectral density of e;(0) is g.(0,w) = gy(w) -
114 0e|=2, so for L(6) defined by (1.2), we have

(2.9) L(6) :/W % o

By (2.4) and the continuity of g,(w), L(6) is positive, infinitely differentiable,
and nonconstant on the interior of [—1, 1], i.e., on ©, and infinite at the endpoints.
Therefore it has a minimum value over [—1, 1] and

(2.10) 0" = {06 [—1,1]: 6 = arg min L(Q)} ,
6€[—1,1]

is a subset of [~ K, K] for some 0 < K < 1. Also ©* C O = {# € ©: L'(#) = 0}. We
are interested in a.s bounded random recursive sequences 6; = 6;(£) that converge
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a.s. to ©* or at least to Of. If OF contains only one point, 6§, then 6; converges to
65 a.s. Our results will establish convergence of the sequence of estimates 6; defined
by the general algorithm presented below to the set of zeroes of f(6,3) defined by
(1.4).

3. The general recursive algorithm

For 0 < 8 <1, we define a general recursion for estimating the MA coefficient 6 of
(1.1):

(3.1a) 0, =0, 1+ Pt_1%¢t_1et; 0 =0,t>2,
= ) 1 ) )
(3.1b) P, = ¥Z¢§ :Pt_1+¥[¢§_1 —Py]; PL=0;t>2,
s—1
(3.1c) et =y —Op1e1-1; e1=y1, t > 2,
(3.1d) Gt =x4 —O1¢1-1; 1 =x1,12>2,
(3.1e) Ty =y — PBO_174-1; T1=Y1,t 2> 2.

From (3.1a), it follows for 0 < s <t —1,t > 2 that

s—1

(3.2) Or—s = 0 — Z(t — l)flpt__llﬁf)t—l—let—l )
1=0

where Zl_:lo() = 0. From (3.1e),

(3-3) Ty = X_:(—ﬁ)s <H 6t—i> Yt—s

s=0
where H?Zl(-) = 1. Next, let z; = ey and, for t > 2,
(34) 2t = e + et_1¢t_1 .

The value of the parameterization with § is that it enables us to simultaneously
obtain results for two important algorithms. When 8 = 0, then z; = y; from which
it follows that ¢ = e; and z; = y; and therefore (3.1a)—(3.1e) is PLR (AML,
RML;)[11, 20, 21, 24]. When 8 = 1, then x; = e; and ¢y = e; — 0;_1¢¢—1 and thus
(3.1a)—(3.1e) is RMLsy [12, 21] without monitoring to ensure that each estimate 6,
isin © = (—1,1).

For any (3, these 0; can be expressed in the form of a regression estimate:

t

t —1
(3.5) 0, = {Z¢§_1} D zape1, t>2.
s=2

s=2

An induction argument for (3.5) goes as follows. Set P, = tP, = Yt _, ¢2_,. Note
that from (D1), P; > 0 for all £ > 1 and therefore P; ! exists a.s. From (3.1a)—(3.1e)
and (3.4), 0y = (1/2¢%)_1 1/2(22¢1) , which is (3.5) for t = 2. Suppose then it is
true for some t > 2; i.e.,

t
(36) Ptﬁt = Zzsgbs_l .
s=2
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Then

Piy10ip1 = Prp1 (0 + Py drern) = (P + ¢7)0; + drevya
t
= Z 2sPs—1 + (Pl + ery1) (from the induction hypothesis (3.6))
s=2
t+1

t
= Z Zs¢s—1 + ¢tzt+1 = Z Zs¢s—1 .
s=2 s=2

Hence, (3.5) is true for ¢ + 1 and by induction therefore for all ¢.
For use below, we define the stationary analogues e;(0), z(0), ¢+(0) and z.(6) of
et, Ty, ¢r and zy:

(3.7) e(0) =(1+6B) "y,
(3.8) 2i(0) = (1+608B) 'ye = > (=80 v,
7=0
$1(0) = (1+0B) 'w(0) = > (—0) 2, ;(0)
(3.9) 7=0

=(1+6B)"'(1+608B) 1y,

50 ¢¢(0) = e4(0) when 8 = 0. From (3.7)—(3.9),

(3.10)  2(0) = e4(0) + 0dy—1(0) = [(1+6B) "t +0B(1+0B)"'(1+08B) 'y,
From (3.7)—(3.10),

.11 I eeiw)(ll .
1
Elor( / (1+06“") T+ foe=) (14 ey P (20
(3.12) o
‘/ a1+ g )
and

313)  Ea@oa0) = [ i e

From (1.4) and (3.12), E[¢i—1(0)er(0)] = —f(0,5). Let e;(8) = de.(6)/df. Then,
from (3.7),

|2gy(w)dw.

(3.14) —el(0) = = myt.

Since
1d ,
5 5Bl 0)] = Bl (0)e.(0)]

from (2.9) and (3.14), the derivative of L(#), L'(6), is obtained from

1

T10) — Bl (@) B 4 etw 1
310 = Ele0e0) = | e

T dv 4
N /_Tr mgy(w)dw,

Gy(w)dw
(3.15)
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which is (3.12) with § = 1, verifying (1.6).
As a consequence of (2.4), we note that since |z| < K* < 1 implies 0 < 1 — K* <
|1 — 2| <1+ K*, for (3.11) with |#] < K* < 1 we have

m " 1 M
010 ey = e e S G

4. The convergence theorem

The following result is a generalization of the PLR and RMLs results proved in [4]
for MA(1) models.

Theorem 4.1 (Convergence theorem). Consider a series y; for which (D1)-
(D4) hold. For each B such that 0 < 3 < 1, assume that the recursive sequence
defined by (3.1a)-(3.1¢e) is such that, for some random k* = k*(§) and K* =
K*(&)(§ € E) satisfying 0 < k* < 00 and 0 < K* < 1, it holds almost surely that
|0t 11| < K* for all t. Then for f(6,05) as in (1.4):

(a) The sequence 0, defined for t > 1 by

t
N 1 ™ 1
0, = |- ‘ | ]
t [t ; /_W ’(1 + es—i—k*ezw)(l + ﬂ95+k*elw)’29y(w) w

4.1
1) y li /7T cosw + (1 + 3)0s 4k~ (0)dw
1) L I

I+ Hs—i-k*eiw)(l + ﬁes+k* eiw)|2 Y

has the property that 0; — ét 2% 0. Hence, with probability one, there is a
to(€) > 1 such that |0, < (1 4+ K*)/2 < 1 holds for all t > to(&).
(b) For allt > ty(&), 04 satisfies a Robbins-Monro recursion,

(4.2) 0 =6, 1 — 5tf(ét—17 B) + 0yt

with v <50, 8 > 0 a.s., & =30, and Z:itoﬂ ds = oo a.s. where f(0, )
has the formula (1.4).

(c) From (a) and (b), it follows that, with © = (—1,1), the sequence 6, converges
a.s. to the compact set

(4.3) O ={hecO:f(0,8) =0}

in the sense that, on a probability one event =y that does not depend on 3, for
each £ € Ey, the cluster points of 04(§) are contained in @g. Further, when

y; 18 an invertible ARMA process, then @g is finite, and 0(&) = limy_, o, 0;(&)
exists for every £ € Ey.

Note from (3.5), (3.11) and (3.13) that the assertion 6; — 6; <% 0 in part (a) of
Theorem 4.1 can be formulated as the assertion that

1< R
{;zqﬁl} IS
s=1 s=1
t

_ E Z E[d>t2(03+k*)]] % Z E[2e(Ospr ) r—1(Osper)]

s=1 s=1
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tends to zero a.s. In the expression above, ¢9 = 0 and expectation is taken before
evaluation at 0, g«.

The proof of Theorem 4.1, given in Section 4.2. In [5], we provide complete
results concerning the existence of k* and K* with the required properties for
several incorrect model examples as well as for the correct model situation for
B = 0 (PLR) and provide more limited results for the case § = 1 (RMLy) with
a particular monitoring scheme. For the latter case, we also report on simulation
results which demonstrate the existence of the variates k*, K* as in Theorem 4.1
with the consequence that monitoring becomes unnecessary for sufficiently large t.
In the correct model case y; = 0e;—1 + €; with i.i.d. €, Lai and Ying [19] show for
their monitored RMLs that this happens a.s. and the conclusions of Theorem 4.1
concerning our approximating sequence (4.1) apply.

4.1. Preliminary results

Here we present some needed technical results. We first quote, without proof, a
powerful result from martingale theory [17, Lemma 1, part (i)]. Unless specified
otherwise, all limits (liminfs, limsups, etc.) are with respect to ¢ and for simplicity
the t — oo will be usually suppressed.

Proposition 4.1. Let {€} be a martingale difference sequence with respect to an
increasing sequence of o-fields {F;} such that sup, E[|&|*P|Fi_1] < oo holds a.s.
for some p > 1. Let Z; be an F;_1- measumble random variable for every t. Then
S| Z:€&s converges almost surely on {3 < 0o}, and for every n > 1/2,

sls

Mﬂo on {i?:oo}-
z

s
s=1

Since . .

1 _ S EE | 1

e i
s=1 S s=1

it is clear that a corollary of this Proposition is

Proposition 4.2. Under the assumptions of Proposition 4.1, if limsupt—!' x
S 2 <00 as., thent 130 5E X5 0.

s=1"%s

Recall from (2.1) that ys = e, + .o | ks€t—s since kg = 1. A second consequence
of Proposition 4.1 is

Proposition 4.3. Suppose that the m.d.s. ¢ in (D2) is such that sup, E[|e|??|
Fi—1] < oo holds a.s. for some p > 1. Then for any sequence Uy = yt — Y1 N
which §i—1 15 Fy_1-measurable, it holds that liminf¢~* ZS 1ys > a a.s., where

0¢ = Elef].

Proof. From (2.1), g+ = yt — Gr—1 = € + 2 where Z; = —J4_1 + 2.0y Ks€is 1S
Fi_1-measurable since Y- | ks€_s is Fr_1-measurable by (2.2) and g1 is Fy—1-
measurable by assumption. Then

Iy Inm sy 2 . I,
z;%:%Zes*;ZES%*?Zﬁ
t
Ze +{ i 1EZZS+1}%Z,§§.
s=1"7s

(4.4)
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Consider first the event that ! 32 “% | < co. Then t~13'_; 22 “% 0 and,
by the preceding Proposmon t1 Z =1 €575 =% 0. Hence, from (2.5) and the first

equation in (4.4), im¢t=' S0 52 =71 32! €2 = 62 s0 the assertion holds in this

s=1Ys s=1"s
event. In the complementary event, Z o 22 2% 0, from (4.4), it follows that

t ~ t
1 SS 1 ~
liminf¥§ ggzhminf< E € +{ i 1652 +1}¥§ z§>

22
(4.5) s=1

s=1"%s

2 Zt— €5%s 1 ¢ 2
:O'6 +11m1nf 2% —|—1 EZES a.s.

slS s=1

By Proposition 4.1, zs | €sZs/ ZS 125 2 2% (. Hence, the second expression in
(4.5) is nonnegative, and the proof is complete. O

Proposition 4.4. Under (2.4), for each 8 € [0,1], the function f(0,03) defined
by (1.4) is infinitely differentiable on © = (—1,1), and @g defined by (4.3) is a
nonempty compact subset of ©. In the case 3 =1, O} contains the (nonempty) set
of minimizers over © of L (0) defined by (2.9).

Proof. The differentiability assertion follows from (2.4) via the dominated conver-
gence theorem. Except for compactness of ©}, which will be discussed below, the
assertions concerning L (§) and f(6,1) were obtained subsequent to (2.10). The
remaining assertions follow from the continuity of f (6, 3) and the limit properties

(4.6) Jim £ (8,8) = —o0
and
(4.7) linn £ (6,) = o0

Indeed, from (4.6)—(4.7), for any K > 0 there exists an 0 < ¢(K,3) < 1 such that

f(0,8) < —Kforallf e (—1,—1+¢) and f(0,3) > K for all § € (1—¢,1). Therefore

f(0, 3) must change sign over [—1+¢,1—¢]. Hence f(6,3) is non-constant and has

a zero in this interval and, moreover, @g C [-1+¢,1 —¢]. Finally, since f(6,0) is

continuous on this interval, @Oﬁ is compact. An analogous argument applies to ©¢.
To verify (4.6), we note that g,(w) = gy(—w), —7 < w < 7 yields

" cosw + 36
716,8) = /_ﬂ (L 0e=) (1 + goery? ) 4

Because 0 < g < 1, for 0 < ¢ < 1 — [ there is a 6 = d(¢) € (0,7) such that
cosw + 0 > € whenever |w| < § and —1 < 6 < 0. For such ¢, §, we obtain

. T cosw + 30
lim —— gy (W) dw
o= 100 (o 30

(4.8) { } cosw + 0 gy (w) dw
s ) I
+

L= ew) (1= o)

im/ C98w+59 —— gy (w) dw
0——1 |(

(49) + Bei) (1 + foei)*!
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because (4.8) is finite, whereas for (4.9) we have

. 0 cosw + (36
lim , —— gy (w) dw
L) (U 6e) (1 + fe)
é
; oy |—2
> : w w — .
>em 1_1>nr_11 _6}(1—{—06 ) (1+ﬂ96 )| dw = 00
This yields (4.6), and (4.7) follows by an analogous argument. O

Proposition 4.5. Let y; be an invertible ARMA process, then for each 3 € [0,1],
the set ©F = {0 € (—=1,1) : £(0,3) = 0} is finite.

Proof. k(z) in (D2) has the form x(z) = n(z)/¢(2) where n(z) and ¢ (z) are
polynomials, of degrees d, and dy, respectively, having no common zeroes and
having all zeros in {|z| > 1}. Setting z = " and h(z) = (1 +0z) (1 + (50z), we
obtain from dz = izdw that

B ™ eiw_i_ﬁ‘g ) dio

_f(e’m_/ﬁ |(1+eeiw)(1+5eew>\29y< )d
_ ag/ (z+B0)n(z)n (=)

210 Jizj=1 2h (2) h (z71) 6 (2) ¢ (271)

S N s TG | Tl
276 J|2)=1 h(2){z2h (271} ¢ (2) {2% ¢ (27 1)}

dz

The function

1+dy—d, (2 +80)n(2) {z™n (7")}
h(2){z2h (27 1)} ¢ (2) {24 ¢ (271)}

is nonzero on {|z| = 1} and has poles interior to the unit circle at —6, — (36, at the
zeroes of z% ¢ (z‘l), and, if 1 +dy —d,) <0, also at 0. If z;,7 = 1,...,n are the
distinct poles in {z: |z| < 1}, then, by the Residue Theorem of complex analysis,
e.g., (4.7-10) of Henrici [13], it follows that

w(z2) =02z

f0,8)=— Z Res;=,w (2)
j=1

where, if z; is a pole of order J > 1,

1 ) del
Res.—.,w (z) = T= 1 Zlgr;j o1 {(z —z) w (z)} .

Thus each Res,—. w (z) is a rational function of #, and therefore the same is true
of f(0,3). Consequently, f (6,3) = 0 holds for only finitely many 6 in (—1,1). O

The final preliminary result addresses convergence of a Robbins-Monro type
recursion that will be applied to demonstrate convergence of the general recursive
algorithm. It is a special case of a correction and extension by Findley [9] of a result
that is implicit in the proof of a theorem of Fradkov presented in Derevitzkii and
Fradkov [8] for the case of monotonically decreasing d;. The result below is also
implicit in the proofs of Theorem 2.2.2 and Corollary 2.2.1 of Chen [7] which cover
the case of vector # more completely than Findley [9].
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Proposition 4.6. Let ét, t > tg be a non-stochastic, real-valued sequence satisfying
O =011 — 00 f(By—1) + 6ye, t > to

for some real-valued function f(0), with v, t > to satisfying v+ — 0 and with ¢,
t > to satisfying 6 > 0, 6 — 0, and Z?itoﬂ 0 = oo. Suppose there is a bounded
open set © on which f(0) is continuously differentiable and which is such that the
sequence 0, enters © infinitely often and has no cluster point on the boundary of ©.
Then 0, is bounded, and its cluster points belong to ©g = {0 € O f(0) =0}, ie.,
0, — ©y. The set of cluster points is compact. If O is finite, then 6, converges to
some 0 € Oy.

4.2. Proof of the convergence theorem

The proof of Theorem 4.1 follows from a set of technical lemmas and propositions
given below. Proposition 4.7 provides a set of technical results needed to prove
the Theorem’s two main assertions: (i) the asymptotic equivalence of ; and the
sequence 0, (Proposition 4.8) and (i) (Proposition 4.9) the fact that 6, satisfies a.s.
a Robbins-Monro recursion of the form considered in Proposition 4.6.

Hereafter, K or sometimes k (or these letters with decorations) will denote a
generic upper bound (not always the same one) that is finite, or when it is random,
finite a.s. A random K will be shown as K(§) with & € = on first appearance
whenever the randomness is not immediately clear from context. Again, unless
specified otherwise, all limits (liminfs, limsups, etc.) are with respect to ¢t and usually
the ¢ — oo will be omitted. The notation o, s (1) denotes convergence to zero with
probability one.

Proposition 4.7. Under the assumptions of Theorem 4.1, for the general recursive
algorithm, the assertions (a)—(c) below follow:

(a) 1iminft_1_Zi:1 ¢2 > o2 as. and 710 ¢2)7 < K(€) < 00, and thus,
from (3.1b), P is bounded a.s.

(b) Fort > 1, e, = zj 0 j(t)et ]a¢t = z;.io H}b(t>€tfj;xt = ZJ =0 ](t)et Js
and z; = Y72 w5 (t)er—; where for every j, r5(t), H?(t),/if-(t) and K (t) are Fy_1-
measurable. Moreover, there exist kj such that

max{ |5 (1)], EHOINEHOINHOI

o0~ .
and Zj k; < oo a.s. Hence, the sequences ey, ¢, xy and z; are uniformly bounded
a.s.

(C> et - etfl = Oa.s,(]-)-

Proof of (a). From (3.1d), ¢y = x4 — Or—1e4—1 = yt — 0r—1(Bxs—1 + €4—1) . Since
Or—1(Bxi—1 + €;—1) is Fy_1-measurable, by Proposition 4.3,

t
(4.10) liminf ¢! Z > 0% a.s.
s=1

Contmumg, from (4.10), for any 0 < L; < 02, there exists tq = to(Ll 5) such that
t=13 @2 > Ly as. for all t > ty. Let L2(§) = minj<jeqy t ' Y0 ; ¢2. Then
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0 < Ly < oo a.s. This follows since tg is finite and ¢; is a finite valued sequence
with probability one, hence Ly < oo. Moreover, since ¢1 = y1, under (D1) it follows
that Ly > 0 a.s. Hence, (t71 32!, ¢2)~' < max{L; ', L;'} < 0o a.s. and the proof
of part (a) is complete. O

Proof of (b). Set 8 = 0. From e; = y; and e; = y; — 0;_1€4_1,t > 2, it follows
that k$(1) = k; for all j, that x§(t) = ko for all £ > 1, and that £§(t) = k;(t) —
Or—1k5(t — 1) for all t > 2,7 > 1. It follows by induction that

min(j,t—1)

l
(4.11) K= > (—1)1@_[1"[9,5_,- where [[_,(-)=1.

=0

Since for some k* finite, |0, x+| < 1 for all ¢ > 1, we have that |6, < K(§) < oc.
First suppose that K < 1. Then from (4.11),

min(j,t—1) l ki
l
EEOI< Y gl []10e—il <> Kkl
=0 =1 =0

and since K < 1, 3777 k5 (8)] < 22720 D01, K'lrj] = 32, K > o lRp| < 00
where p = j — [. So the result holds for the case of 0 < K < 1.

Otherwise, suppose 1 < K < co. For all t > k*, we have that |0;] < K*(£) < 1, so
K(&) = A& K*(&) for A > 1. For simplicity of notation, replace K* by p. We next
show that Hi.:l 0,_i| < N pt for I < t. First suppose t < k*. Then Hizl |0:—i| <
Mpt < A" pl. Next suppose t > k* and | < t — k*. Then, H§:1 10:_i| < pt < p'AF
since [0;—;| < p for 1 < i <t — s*. Finally, suppose t > k* and | > t — s*. Then
since [ < t,

l

! t—s*
[T 16—l = T 10e=il T 16e—il < pt=s AT gl 8T
i=1 i=1

i=t—s*+1
— pl)\lf(tfs*) — )\k‘*)\lftpl < )\k*pl )

Hence, generally H§:1 10, ;| < \F"pl. Setting K$(§) = AE {:0 p'lr;—1], we have

J l J
S <Y kol [ [10e—il < N7 7 pllmj ol = &5,
1=0 1=0

=1

and since |p| < 1, Y777 k§ < 00 as.
Next, from (3.3)

min(j,t—1)

l
(4.12) ki) = Y (=B i [ 0
=1

=0

and since 0 < 8 < 1, an argument like that for e; can be applied and to obtain the

existence of a /-i;” such that

oo
(4.13) k7 (t)| < kj and an < ooa.s.

=0
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Continuing, since ¢ = x1 and ¢; = x; — 0, _1¢;_1 for t > 2, it follows similarly
that

min(j,t—1) l
(4.14) kS = > (D' [0
=0 =1

From (4.12) and (4.13), substituting 7 (t) for x;, the same kind of argument can
be applied to (4.14) to yield

(4.15) |/<o ()|</<o with 3572 Olij < 00a.Ss.

Finally, for t > 2, we have, from z; = e; +0;_1¢¢+_1 ,

Y oriteg =Y wiOe—j+ 01y K{t—1)e 1,
Jj=0 j=0

j=0
for t > 2 from which it follows that
(4.16) K3 (t) = K5(t) + 0 m [(t=1),

¢

where k”(t) = 0. Since sup, |0¢] < oo a.s.,

|3 ()] < K5+ sgp |9t|/<;f_1 a.s.,

¢, =0, so there is a K% such that [x3(t)| < £7 and Z;io k%] < oo a.s. for

where K
t > 2. Since 21 = ey, it thus follows that &; = max;{|x$], |l€?|, 551, [K5]} satisfies
> Rj <00 as.

From this, we see that e;, ¢¢, x; and z; are bounded a.s. For example,

—oo<t<oo

0 0o
|Pe] = Z/‘ff(t)ﬁt—j < sup e Z/'%j < 00 a.s.
=0 izo

From (4.11)—(4.12), (4.14) and (4.16), x5(t ),/if( ), 55 (t) and kZ(t) are each JFy_i-
measurable for every j. Hence, part (b) of the Proposmon is proved O

Proof of (c). By parts (a) and (b), |0; — ;1| <t~ P ey||de—1| <t~ K (€) where
K (&) < oo and thus part (c) follows and the proof of Proposition 4.7 is complete. [J

Lemma 4.1. Under the assumptions of Theorem 4.1, we have:

(a) If k;(t) are Fi_1-measurable such that |k;(t)| < &; for j >0, with Z;io kj <
o0 a.s., then for all p > 1 and each 0 < j < o0,

t min(j,s—1) 1
1 ~ a.s.
(4.17) €§ > nj_l(s)H(s_@) P Lo iresi| =50,
s=2 =1 i=1
and
p

t l
(4.18) %Z > kj_l(s)Z(s_Z> P Lo iiress | 50.
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In particular,

t min(j,s—1)

l
1 ~ o\ — e a.s.
(419) S Y A I Prlidemimiess | €, 25 0.

s=2 =1 =1

(b) For any 0 <j < oo andi < j,

(4.20) %Z WUy = 1 3 (55— )6, + o (1)

(¢) For0<jl<oo andj+#1, then

t

1 a.s.
(4.21) n Z f@?(s)es_jf@f(s)es_l 0.

s=max(j+2,l+2)

Proof of (a). By the boundedness of P; ' ¢;,e; (Proposition 4.7) and since
|Fm ()] < Ry for allm >0 and ¢t > 1,

1 t min(j,s—1) 1 -
n Z Rj—1(s) H(S — i) P s imres
s=2 =1 =1

min(j,s—1) P

l
L1 = D) P 6s—imalles—

1=

V)
I
N
Il
=)
Il
—
—

p

t_ [minGs—1) ! ?
1 .
EZ Z K']_l<8) Z(S_Z) 1P5 7,¢S 7 168 7
s=2 =1 =0
1 t min(j,s—1) | p
(122 KLY S50
§=2 =1 1=0
K t min(j,s—1) p
1
SK(£)7§ Z_; (s=9)7'| —0,

and (4.18) follows. O
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Proof of (b). From (4.12) and the recursion (3.1a) for 6;, we have, for s > j + 2,

J l
]i(s) = > (=B) st [ ] o
1=0 i=1
J l
= Z(—@l"ij—l H (Os—ic1 + (s — i) " PLipsi—1es—s)
(4.23) =0 =1 .
J l J l ~
= Z(—B)lmj_l H Os—i—1+ Z(—ﬁ)lﬂj—l H(S — i) P si1esi
1=0 i=1 1=0 i=1
= k(s — 1) +wj(s).
where
J l
(4.24) wi(s) = Z(—ﬁ)lﬁij—z H(S — i) P eiresi,
1=0 i=1

Continuing, from (4.14) and (4.23)—(4.24), for s > j + 2,

=0 =1
J l
= Z(_l)lﬁf—l(s) H (Gs—i—l + (S - i)_lps_—li¢s—i—les—i)
1=0 i=1
J l
= S0 (9) [[ i
=0 i=1
J l
(4.25) + Z(_Dl’%m—l(s) H(S - i)ilps_—ling—i—les—i
1=0 i=1
J l
=30 g (s = 1)+ (9) [ bemin
=0 i=1
J l
+Z(_1 l“gx 1(s) H(s - i)_lpsi—lz¢sfi—1€sfi
1=0 i=1
= 15— 1)+ wl(s),

=0 i=1
J l -
+ Z( 1)'k5_y(s) H(S — i) T P si1esi
=0 =1
(4.26) j il . ) l
= Z(_l)l Z (_ﬂyn’ij—l—m H(S - i>_lpsili¢s—i—1es—i H es—n—l
= m=0 =1 n=1
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By (4.19) and (4.25)—(4.26),

t

S e =1 S (50— 1) 28 (s — Duf(s) + (i (s)?) .
s=j+2 s=j+2

Applying an argument similar to that used for part (a), it follows by the bound-
edness of 3 and 6; and the Cauchy-Schwarz inequality that ¢! ZZ:J. +2(2,€;5( 5 —
1)w?(s) + (w?(5)>2)€2 = 04.5.(1). Hence,

53
1 < 1 <
7 (K5 (s))%€2; = 7 D> (55— 1)%€2; + 00 (1).
s=j+2 s=j+2

Finally, since j is finite, then for i < j, it follows by applying the recursion (4.25)

in /ﬁj-)(t) i — 1 additional times that (4.20) holds, because a finite sum of o, s (1)

terms is 04.5.(1). O
Proof of (c). By parts (a) and (b), for j # (,

1 t b b

LY e

s=max(j+2,l+2)

t min(j,s—1)
— % Z { </€?(8 -1)+ Z (=1)Pki_,(s)

s=max(j+2,l+2) p=0

l
X H(S - Q)_1P5:1q¢s—q—1es—q>

—~
L
[\
3

~—

Q
—_

X H (5 - m>_lps__lm¢s—m—les—m> €s—j€s—l}

m=1

1
=7 Z ﬁf(s - 1)/1?3(3 —1)es_jes—i + 0q4.5.(1).

s=max(j+2,l+2)

Without loss of generality, suppose j < | < oo. From parts (a)—(b) and applying
the argument that led to (4.27) j — 1 additional times, we have that

t
1 1 . .
DY RO (S)essesi =7 D KI5 — AP (s — densesi + 0us (1)
s=1 s=j+1

t—yg
1
= Z m?(s)/{f’(s)es_(l_j)es + 04.5.(1),
s=1
L o0
= Z K5 (8)K) (8)€s—(1—4)€s + 0as.(1)
s=1
since by (D4) and the fact that |2, ()] < K(¢) < oo for all m > 0,

til Z K?(Sw{?(s)es—(l—j)es = Oals.<1) .
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Since j < I, €5_(—j;) is Fs_1-measurable, as the o-fields are increasing. Set z; =

/id)(s)/ild)( )€s—(i—j) » which is F;_;-measurable by part (b) of Proposition 4.7. Then

j
from boundedness, limsup 1 S22 < (sup, |[K2(1)])*(sup; |e:])? < oo, and thus

from Proposition 4.2, 1 Zs:l Zees =% 0 and therefore (4.21) holds and the proof
of the Lemma is complete. Ol

Lemma 4.2. For each u > 0, under the assumptions of Theorem 4.1,

2

(4.28) % Z o % Z Z H?(S)Gs_j +71(t,u)

where lim,, limsup, |r1(¢,u)| = 0.

Proof.

t 1 t 00
DICEE> B DIt

t
s=1
t 2 t
1 U 9 u oo
S (ke | +25 (St 3 wtwe
s=1 \ j=0 s=1 \ j=0 l=u+1
1 t o 2
Y e

s=1 \ j=u+1

Let (t u) be the sum of the last two terms. Recall from Proposition 4.7 and (4.15)
that |/$ )] < Ii where $7°° k% < 00 a.s. From this and (D4), it follows that

J=0"]
2
hmhmsup|r1(t u)| < K(§) hm Zm Z /@l Z K? =0,
j=0 l=u+1 j=u+1
and consequently that (4.28) holds. O

Lemma 4.3. For each u > 0, under the assumptions of Theorem 4.1,

2
u

(4.29) %Z > h7(s)es— :%Z ( 8)) + 00.6.(1).

u

%Z ZK?(S)ES_J' :%Z it ZZK (s)es— jlil (8)€s—1 -

j=0 s=1 j#l

Since w is finite, by Lemma 4.1, part (c),

_ZZH Es JHZ )Es—l = Oa.s‘(l)a

s=1 j#l
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and so it remains to consider ¢~ 3" _, z; 0(K¢( ) %¢2_;. Consider the martingale
difference sequence ¢; = €2 — E[e?|F;_1] = €2 — o2 (recall that E[e?|F,_1] = 02).
From (D4), € is bounded a.s., hence sup_ . ;o E[|et|p|}"t_1] < 00 a.s., S0 wWe can
apply Proposition 4.2 to €.

For any j < s, consider t—1 37! _ 1( ?(s))2€,. Since limsup ¢~ Lyt 1( ¢(s))2 <

o0, by Proposition 4.2, t~1 Zszl(ﬁj( ))26S %0, hence, t=1 30 (K5 ?(5))2 (2

2

02) £% 0. By an argument like that used to prove part (b) of Lemma 4.1, it follows

that

s=1
ie., t71300 1(/{ (s)?(e2_; — 0?) 2% 0 for all j < wu. Finally, since u is finite,
15_1 St ijo(/i (s))%(e2_; —02) == 0, and (4.29) holds and the proof of the
Lemma is complete. O

Lemma 4.4. Under the assumptions of Theorem 4.1, for each u >0 and 0 < k* <
o0, we have

0_2 t u o 2 0_2 t u J l j—l 2
TN (7)) = 223D Do) D (B iy
(4 30) s=1 j5=0 s=175=0 \Il=0 p=0
+ 0q.5.(1)

Proof. First suppose k* = 0. Recalling from (4.12) and (4.14), for s > j + 1,

J

Z( 1)l _i(s) Hes i

J p l
(431 -3 (z<—ﬁ>pxj_l_pnes_r) 1.

p=0

From (3.2) and (4.31), it follows that for s > j + 1,

J

J l
> (-1 Hes i Z(—l)les_mg?_l(s)ﬂas_i
1=2
zj: _1P ¢s 165 H(gs i

=0

~
o

(4.32)

~
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J

l
= (~1)'0,k7_ (S)Hes_i

=0
J
Z l 71P 1¢s 1€sK Hes i
=

Next, taking the square of (4.32), we obtain

2

(K0(5))? = (Z( 16,5 l.s)Hes )

=0
- 2i:(—1)l
(4.33) o l "
x> {(—1)’”(985;0[(5) (H 98_Z.> s P pere )kt () [ ] 9S_p}

2

j l
(St o o)
1=2

and from the boundedness of §, and an argument like that used to prove (4.17), it
follows that

2 t 2 t 7 l 2
0-6 O-E X
(4.31) = > (k9(s))? = = > (Z(—Ulesnj_,(s) Hes_i) + 0q.5.(1).
s=j+1 s=j+1 \1=0 i=2
Consider next the r.h.s. of (4.34). From (3.2),
J l
Z(_l)l‘gs'“@;c—l(s) H Os—i
1=0 j

J
= (~1)'0.0,_2K7_(s) Hes ;
1=0
J 1 !

= Z < Z s — m) m¢s—m—1es—m> Hf_l(s) Hes—i
1=0 m=0 i=3
J l

= Z(_l)legﬁj‘j—l(s) H@S,l
=0 1=3

j 1 l
- Z<_1>l'95 (3 - ) 1P ¢s m—1€s— mﬁj l )H‘gs—i~
1=0 m=0 i=3

Therefore, again from boundedness of #; and an argument like that used to prove
(4.17),

2

t t 7 l
TNy (2<—1>le§m§l<s>nes_i) Founl).

=0
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Applying the argument [ — 2 additional times, it follows that

02 02 . ’
(4.35) - > (62(s)* = 7 (Z KY_ l(s)) + 04.5.(1).
s=j+1 1=0
Next working on the r.h.s. of (4.35), from (4.12):
J J Jj—1 P
S (0055 () = 3 (~6,) (Z(—ﬂ)%zp 11 esr)
=0 =0 p=0 r=1
J J—l - p
= Z(_95>l ( <_ﬂ)p(08 - S_lps_lgbsfles)'%jflfp H 0377"
=0 p=0 r=2
J J—l P
= Z( ‘95>l ( (_ﬂ)p‘gsﬁj—l—p H 98-?“)
=0 p=0 r=2
J Jj—l - P
- Z(_es)l ( (_ﬁ)ps_lps_lqbs—lesﬂj—l—p H 05—r> .
=0 p=0 r=2
Hence,
02 J ’
T (Z(—es %;“_z<s>)
s=j+1 \1=0
, : 2
0_2 t J J—
_75 Z <Z( 05)' Z( YPOskj—i— pHQS T) + 04.5.(1).
s=j+1 \i=0 p=0
Applying the argument p — 1 additional times, it follows that
0_2 t J 2 0_2 t j 7=l 2
Y (Seotsio) ~% 3 (Seor Sem)
s=j+1 \i=0 s=j+1 \1=0 p=0
+ 04.5.(1)
and, since j is finite,
t s2 j j—l 2
5 DETEIES S W P ERD S ETACY RPN
s=1 s=j+1 \I=0 p=0
Finally, since u is finite, (4.30) follows for k* = 0.
From (3.2), for any finite k£* > 0,
k*—1
es—l—k* - 0 + Z 3 + k* — T) S+k*,r¢s+k*—r—les+k*—7" .
r=0
Set
k*—1

)\(8, k*) = Z (5 + k- T) 1PS_—f—k*—r¢$+k*—'r—1e$+k*—7"
r=0

)
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For every integer [ > 0, the binomial formula yields

l * l — * *
esw—eu( )92+}€*>\( k>+~.+(l_1)es+ml s k) + AL(s k).

Substituting this result into the r.h.s. of
2

¢ o2 & J Ch,
Z (k9 (s))? te (Z(—95+k*>l Z(—ﬁes%*)p’ﬂ—l—p) +0a.s.(1),
p=0

s—1 s=j+1 \1=0

which follows from Lemma 4.1, and noting that each resulting term involving
A(s,k*) is 04.5.(1) by (4.18), the proof of (4.30) and of the Lemma is reduced
to the result just established for k£* = 0. O

Lemma 4.5. Under the assumptions of Theorem 4.1, for any finite u,

t

(4.36) ZZK, s)/i] (s —1)e J:%SZZFL S)KJ] 1(s =1) 4+ 04.5.(1).

s=2 j=1 s=2 j=1

Proof. Since u is finite and for any finite j < wu, limsupt~ 0?3 L_, KS(s) x

fij-)_l(s — 1)] < oo, then the result follows by an argument similar to that used
to prove part (c) of Lemma 4.1. O

Proposition 4.8. Under the assumptions of Theorem 4.1, the sequence {ét} defined
by (4.1) satisfies 0y — 0y = 04.5.(1).

Proof. For simplicity, first assume that £* = 0; i.e., |6;] < K* < 1 for all t. From
the results of Proposition 4.7 and Lemmas 4.2-4.4, for any u < oo:

2

. Z¢§ = EZ Z’%?(S>Esfj +r1(t,u) (Lemma 4.2)

= % Z <I€;-5(8)>2 + 04.5.(1) +r1(t,u) (Lemma 4.3)

s=1j=0

g2l [ I -1 2

:762 <Z(_1)1H93 P> (=B)rj_i- pHGS r) + 04.5.(1)

s=175=0 =0 1=1 p=0

+7ﬂ1 ta U)

” 2

s (z< ) z< 90,70y 1 ) +ona)
s=1j=

+r1(t,u) (Lemma 4.4)

where lim, lim sup, |r1(¢,u)| = 0. By (2.3), Parseval’s relation and convolution [22,
pp. 61-66], it follows that

2

2 t o J j—l
N> (Z(—GSY Z(—ﬁeg%ﬂp)
s=1j=0 \i=0 p=0

I [7 1
Tt Z /—71' |(1+ 0se™)(1 + ggseiw)|29y(w)dw
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and so
liqu_lzt:/” : (w)dw + a1, w)
t T ) U+ Oue) (T + fse) 27 2
where
s2 b j -1 2
ra(t,u) = ri(tu) + =¢ >y (Z(—es)l Z(—ﬁes)pmj_l_p>
s=1j=u+1 \I=0 p=0
Since |6;| < K* < 1, it follows that
2 t [e%¢) 2
Iy > (Seor Semrs)
s=1j=u+1
2
2 J
L5 (S )
j=u+1
- . " 2
because ).~ < o (K)! Z;:O(ﬁK*)pnj_l_p) < oo. Hence,
it 2
hmhmsup—z Z (Z (—0505)P Kj_l_p> =0,
s=1j=u+1 (=0 p=0
and consequently, lim,, lim sup, |ra2(¢, u)| = 0. It follows that
(4.37) Z/ ! gy (w)dw| 20
1+ 0e) (1 + Bhseiw) 27

Next, for s > 2 we use 75 (s) = £5(s) + 93_1/{?_1(5 — 1) from (4.16) to obtain that
for any u < oo,

t t [e%e]
PINEES I LI LTI
s=2
:% K3 (s ESJZK(S—1€SIZ+T3(tU)

1 z
=7 D> Ki(9)KT (s = 1)e2_j + 0as (1) +73(t,u)

= % Z {(/{j(s) + 93—1“&?_1(5 - U) ’{?—1(5 - 1)} €ey

(4.38) + % S 0ea (Kl - 1))2 €+ 045 (1) +73(t,u)
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02
- TE ZZ@( )& K5 1(s —1) (Lemma 4.5)

Os_1 ("?;ﬁ 1(s— 1)>2 + 04.5.(1) +73(t,u),

where

o S DILTC T DI r

s=2 \j=0 l=u+1

t e3¢} [e%¢)

1 z
+ n Z Ki(8)es—j Z /if(s— 1)es—1-1

s=2 \j=u+1 l=u+1

By an argument similar to that applied to r1(¢,u) in the proof of Lemma 4.2,
one obtains lim,, lim sup, |r3(t,u)| = 0. As shown above, the second term of (4.38),

2
tlo2 3, > =1 051 (H}b_l(s - 1)> , is equal to

1 7r 9
- o | ) t
! ; /” (1 +Oset) (1 + ﬁQSelw)IQQy(M) W+ ra(t u)
with t
- 2
ra(tu) =t7'ol Y N O (qu(s — 1)> + 0q.5.(1)
s=2 j=u+1

and lim,, lim sup, |r4(¢,u)| = 0. Hence, it remains to consider the first term of (4.38).
From (4.11) and (4.31),

%;;&j(s)/{f (s—1)
x ;:10< 1)m£[195 : p(ijl( B)"Kj 11— nﬂes - )}
=07Z {<i<_es> m) < (0™ S (<01 )}
o

)
and, since again by (2.3), Parseval’s relation and convolution,

o0 j j-1 j—i—1
ol { Z(—es)l/ﬁj—l) (Z(—Gs)m Z (—595)n/€j—5—1—n>}

j=1 1=0 m=0 n=0

B /Tf 1 eit Y
= 0t 0.e) (1 + 0,e) (1 + B ei) T



Recursive estimation of possibly misspecified MA (1) models 43

the first term of (4.38), t~102 32! _, > i1 ﬁj(s)m;{l(s — 1), is equal to
iw

1 zt: e
te= (1+ 9 e~ ) (14 05e™) (1 + BOse™)

Gy(w)dw + rs5(t,u)

with

-5 5 {($0r)

s=1j=u+1 =0
jl].

(Z( )™ D 595)nﬂj—1—1_n>}+0a,5-(1).

n=0

An argument like that applied to ro(t, u) yields lim, lim sup, |r5(t,u)| = 0. Further,
since

/7r ! e (w)dw
(T F O (1+ 0,6 (1 + BO.e) 7
™ 08
O e e
_/ e (14 B0se™™) + 0,
N 1+ 05et)(1 + B0sev)|? 9y

¢ + (14 )6,
/ T 620 (1 1 fosc) 200 ()

gy(w)dw

we obtain
t

1 e+ (1+p a.s.
(439) ';Zzs¢sl Z/_ﬂ- +9 6“" ((1 +6>9 6“"))|2gy( )dw — 0.

s=2

Combining (4.37) and (4.39), it follows from (3.5) and (3.16) that 6; — 0, = 04.5.(1)
where 6, is given by (4.1). Finally, since £* is finite, an argument similar to that
used for Lemma 4.4 can be applied to show that (4.1) holds for the general case
k* > 0, completing the proofs of the proposition and part (a) of Theorem 4.1. [

Proposition 4.9. Under the assumptions of Theorem 4.1 and with ty = to(§) as
in (a) of the Theorem, 0, defined by (4.1) satisfies the conditions of Proposition 4.6
for ® = © = (—1,1) for a Robbins-Monro recursion with f(0) = f(0,3) as in (1.4).

Proof. For t > 2, set

~ ™ 1
P = ‘ | .
t ;/” (L4 Ospp=er) (1 + 595+k*elw)|29y(w) n
Then from (4.1),

o Z / (1 + Osyrrer) (1 + 593+k*6i‘”>‘2gy ()

& ! A (14 B)0ss ke
—p1 / e | | ]
t {; -7 |(1+93+k*6“”)(1+ﬁ08+k*ezw)|2gy(w) w

" e + (14 5)0rn- }
4.40 +/ _ _ w)dw
(4.40) T B @) (1 T By =)o )
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p— D A " w + (1 + 6)0t+k* }
=P 1 P10, / (& ' | p

' { tmafer —n |1+ Opppre™) (1 +59t+k*e“’)|2gy(u}) «

~ - ™ 1 R
=r 7 _/ - . dw ) b;_

' { ( T O ) (1 4 B0y €72 9y (@) W) t—1

s eiw + (1+6)9t+k* }
+ ‘ . J
/_” (14 ) (1 +ﬂ9t+k*6“")’2gy(w> .

) P~ i A (14 8)0h
e { e [T+ Opppe™) (1 + 59t+k*€zw)|2gy(w) “

_ /7r . i ——— gy (w)dw
[+ Opype™) (1 + SOy - ™) |?

) p— " eiw+/60t+k*
Sl 1/ ' - d
T |<1+9t+k’*61w)(1+59t+k*elw)’2gy<w) .

~ ~ 4 1
+ t ( ttk t 1) /ﬂ_ ‘(1 -+ 9t+k*6“‘))(1 + 69t+k*elw
= ét—l - Pt_lf(et—kk*vﬁ)

~ A 4 1
P (O — 04— : :
+ 15 ( t+k t 1) /_ﬂ_ ‘(1 + 9t+k*€zw)(1 + 69t+k*ezw

=00 = B B, )+ P (£, 8) = (0. ))
- A 4 1
P (O gne — 01 . .
+ Py (Op g — 0, 1)/_7r |(1+ Op =€) (1 + B0y - €
=01 — 01f (B1—1,8) + 6y

where, for ¢t > 2,

)|2gy(w)dw

)|29y (w)dw

)|2gy (w)dw

—1
- 11 [T 1
_p-1_ |z
(441> Oy —Pt ~ [t ;/_W !(1+93+k*6i“’)(1+ﬂ95+k*€i‘”)!29y(w)dw] ’

and, for t > to+1 with t( as in (a) of Theorem 4.1 (which guarantees that f(ét_l, B)
below is finite),

= (1 0r-1.8) = O, ))

R 4 1
9 *® 0 — - -
+ ( t+k t 1) /_ﬂ, |(1 + 0t+k*€w))(1 + BQH—k*elw

(4.42)

>‘29y(u))dw.

For [0| < K* < 1, it follows from (3.16) and (4.41), there exist finite, positive
K1(€) < K3(&) such that 0 < Ky(§) < td; < Ko(&) < oo. From this, it follows
that 6; =% 0 and Zi:l ds > K 22:1 k~! — o0o. Next since k* is finite, it follows
from 6,_1 — 0,1 = 0a.s.(1) (Proposition 4.7) that 0y~ — 0, 1 = 0a.5.(1) and
f(Orape,B) — f(ét_l,ﬁ) = 04.5.(1). Hence, v; % 0. The definition of ¢y in (a) of
Theorem 4.1, guarantees that the remaining condition of Proposition 4.6 is satisfied,
so the proposition is proved. Ol

We can now complete the proof of Theorem 4.1. By Proposition 4.6, 6, L= @OB
and therefore also 6, % @g, which is compact by Proposition 4.4. Further, if y,
is an invertible ARMA process, then by Proposition 4.5, the set @g is finite and
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Proposition 4.6 shows 6; converges on almost every realization to one of the finitely
many 6 € @g . Consequently, on the probability one event on which 6, converges,
its limit is a random variable € with finitely many values. On the complementary
event, @ can be defined to have any fixed value. This completes the proof of part (b)
and with it the proof of the Theorem.

5. Discussion

The results obtained here provide a rigorous foundation for analyzing PLR and
RML; for MA(1) models. An important conclusion from our results is that under
misspecification, generally only RMLy (i.e., the general algorithm with 8 = 1), not
the simpler and more frequently considered PLR algorithm, can produce optimal
coefficient estimates in the limit. In [5], Theorem 4.1 is applied to address conver-
gence of PLR and convergence of RMLy with a specific monitoring and modification
scheme to ensure that iterates satisfy |0;] < K* < 1. In [5] we also provide a set of
examples that show that the limits of 8; from PLR and RML, can differ.

Ideas and techniques from the analysis of Hannan [12] of RMLy for ARMA mod-
els played a key role in our analysis, particularly the idea of approximating the
recursive algorithm’s sequence by a sequence made more analyzable, replacing cer-
tain terms by their expected values, and replacing terms in an expression by finitely
lagged values, as in our (4.20), so that martingale results like Propositions 4.1 and
4.2 can be applied. However we note that, because of a neglected o, s (1) term that
depends on ¢;, Hannan did not actually establish that his auxiliary sequence, which
we denote by 6; to distinguish it from our Gt, satisfies his (nonstandard) recursion
scheme. Also, the convergence analysis he indicates for 6;, if its details could be
verified, would only establish that the limit inferior of mingcer 0, — 6] is zero a.s.,
see p. 773 of Hannan [12]. The stronger result with the limit is needed to establish
convergence of the original recursive sequence to ©}. More information about prob-
lems we encountered with analyses in Hannan [12] can be found in [4, Appendix

The approximating sequence technique is similar to the Ordinary Differential
Equation (ODE) method independently developed by Ljung [20] and Kushner
[14, 15]. Specifically, the ODE method is a technique for providing asymptotic
analysis of a time series (discrete stochastic process) via a deterministic continuous
time stability analysis of a set of ODEs. For example, from the ODE method, Ljung
makes convergence assertions for both PLR and RMLs for ARMAX models includ-
ing in the incorrect model situation [21]. Like Hannan, however, the analysis is
incomplete. In the rigorous treatment of the ODE method presented by Benveniste
et al [1] only the correct model situation is considered. Their results, however, do
not apply to PLR or RML, [4, pp.65-67].

Clearly, the boundedness assumption (D4) is restrictive but it is typical in con-
vergence analyses like ours. For example, boundedness is an explicit assumption in
the deep correct model results obtained by Lai and Ying [17, equation (1.3)] as well
as Ljung’s ODE method assertions [21, condition S2, p.191] and is also required in
the treatment by Benveniste et al. in which 6, is assumed to be bounded to obtain
verifiable conditions to prove asymptotic results [1, Theorem 15 and Corollary 16,
p.238].

Finally, it is likely that Theorem 4.1 is generalizable to higher order moving
average models and quite possibly ARMA models. However, to obtain convergence
results, a multidimensional parameter vector # version of Proposition 4.6 is needed.
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The proof of Theorem 2.2.2 of [7] seems to provide the needed result if it can be
shown that an appropriate Liapounov function exists for the vector-valued f(6, (3)
associated with multidimensional 6 for 0 < 3 < 1. The generalization of the L(f)
with vector 6 provides the Liapounov function for the case § = 1.
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Abstract: In this paper the stochastic complexity criterion is applied to es-
timation of the order in AR and ARMA models. The power of the criterion
for short strings is illustrated by simulations. It requires an integral of the
square root of Fisher information, which is done by Monte Carlo technique.
The stochastic complexity, which is the negative logarithm of the Normalized
Maximum Likelihood universal density function, is given. Also, exact asymp-
totic formulas for the Fisher information matrix are derived.

1. Introduction

The negative logarithm of the NML (Normalized Maximum Likelihood) universal
model, called the stochastic complexity, provides a powerful criterion for estimation
of the model structure such as the optimal collection of the regressor variables in
the linear quadratic regression problem, [19], especially for small amounts of data.
It involves the integral of the square root of the Fisher information, which is easy
to calculate when the regressor matrix does not depend on the parameters. While
modeling gaussian time series with AR models are instances of linear quadratic
regression problems their order estimation poses trouble with the stochastic com-
plexity for the reason that the regressor matrix is determined by the parameters,
and the Fisher information is not constant. The same problem of course is also
with the ARMA models, which have the additional difficulty of calculation of the
maximum likelihood parameters.

In this paper we resort to Monte Carlo integration to overcome the problem
posed by the nonconstant Fisher information and study by simulations the efficiency
of the resulting order estimation criterion. Although exact formulas exist for the
Fisher information matrix they are quite cumbersome to evaluate, and we consider
asymptotic simplifications. This may run against the intent of getting a criterion
for small amounts of data, but the asymptotic estimates appear to be good enough,
and the resulting criterion for the short data sequences created is still superior
among the competing criteria such as the BIC [20], which is equivalent with a
crude asymptotic version of the MDL criterion [15], and a recently suggested one,
KICC [21], or bias corrected Kullback-Leibler criterion.
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We describe below the NML model for AR and ARMA class of models, and
discuss its optimality properties. We also derive in the Appendix the asymptotic
form of the Fisher information matrix for the general ARMA class of models.

2. Normalized maximum likelihood model

We consider the ARMA model:
(1) Yt + Z a;iYt—i = €t + Z bjer—_j,
i=1 j=1

where e; is zero-mean white Gaussian noise of variance o2. The integers m,n are

nonnegative, and all coefficients a; and b; are real-valued. We can equivalently write
B

Y = AEZ; er, where B(q) = 1 +b1g™" + -+ +bmqg™™, Alg) = 1+ a1g7" +--- +
anq~", and ¢~ is the unit delay operator. We will use the notation ARMA (n,m)
for the class of the normal density functions {f(y~;0)} defined by such processes,
where 0 = (ay,...,an,b1,...,bn,0?), the parameters ranging over a subset of R¥,
where k = n + m + 1. Let §(y") denote the maximum likelihood estimates of the
parameters 6.

In order to define the range of the parameters properly we need to consider

another equivalent parametrization in terms of the roots of the two polynomials

—1

n

(2) 110 - gia e = H(1 — hiq~Yes,

=1

together with the noise variance o?. We denote by g; the zeros of A(q) and by h;

the zeros of B(q). There are no repeated poles or zeros nor pole-zero cancellations.

We specify in the Appendix exactly the further restrictions on the type of the zeros

but for now let the same symbol € denote the new parameters ranging over © C R*.
Consider the NML density function, [3],[18],

N 0y™)

f(yN; n, m) = Ck,n )

where

Cin = / F(@N;0(zN))daN

aN:0(zN)eQ

— | stbsias
0e2

and ¢(0; 0) denotes the density function on the statistic 0 induced by f(y~:6). In the
equation above, we use the 1dent1ty f(aN ( N) 0) = f(xN]0(zN);0)g(0(zN); ),
that is integrated first over 2V at the pomt 0( Ny = 6 = 0 kept fixed, which gives
unity, and then over 0.

Under the main assumption that the convergence in distribution by the Cen-

tral Limit Theorem applies to the ML estimates, the stochastic complexity, L(y";

m) =1n1/f(y™;n,m), is given by

) LNmm) = = fM00™) + g g+ [ 30720+ o(1),
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where © denotes the parameter space, and J(#) is the Fisher information matrix
[18]. The rate of convergence o(1) is determined by the convergence of the ML
estimates to the normal density function.

To get a criterion for the structure in general we ought to add the code length
needed to encode the structure, but here we take the simple case where the structure
consists of a few first coefficients of the ARMA model, whose code length is much
shorter than the stochastic complexity and ignored. (If £ is not small, we can use
the estimate L(k) =Ink + 2Inlnk.)

The NML model has the following two optimality properties, which justify its
name:

(1) It is the unique solution f = ¢ = q to the following maxmin problem

. FWN; ™))
max min F, log ————=,
g e R TN

where g and ¢ range over any sets that include f . Notice that the logarithm of the
ratio is the difference between the ideal code length log1/q and the unattainable
lower bound for any code length in the ARMA class.

(2) If the data generating distribution g is restricted to the ARMA class, the
mean of the stochastic complexity with respect to the model # cannot be beaten
by any model what so ever, except for 6 in a set whose volume goes to zero as N
grows.

3. Linear regression with constant regressor matrix

Before discussing the AR models we illustrate the stochastic complexity criterion
for linear quadratic regression with constant Fisher information by comparing it
with the BIC and the KICC criteria in a simple polynomial fitting problem for
small amounts of data.

For linear regression with a constant regressor matrix X = {z;;} the stochastic
complexity criterion takes the form, [19],

min{(N —k)In7 +klnR+ (N —k—1)In —(k—1)Ink}.
yel n—=k
The index v = iy, ..., ik, consists of the indices of the rows X; of the k x n regressor

matrix included in the linear combination

yt:ZBijit_{'et? t:]-a"’va
1€y

# is the minimized squared error per symbol, and R = %BTXWXI B, where X, is
the k x n submatrix of X consisting of the retained rows.

Notice that there are no hyper parameters defining the range of the parameters
B; and 7. They have been renormalized away.

Example 1. We discuss an example of polynomial fitting considered in [21] to in-
vestigate the performances of a model selection criterion called KICC. It is obtained
by an application of a bias correction to KIC (Kullback Information Criterion), [6],
and it is recommended to be used in linear regression problems when the sample
size is small. The underlying signal is generated by a third-order polynomial model
g = x> — 0.52% — 5z — 1.5, where the points 1, ...,z are chosen to be uniformly
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TABLE 1
Order estimation of the polynomial model in Example 1. The true order is k = 3. For each
criterion, the probability of correct estimation of the order is computed from 105 runs. Also
shown is the probability of overestimation of the polynomial order (4 < k< 10). The probability
of underestimation (0 < k < 2) is almost zero for all analyzed criteria. The best result for each
sample size N is represented with bold font.

Order  Criterion Sample size(N)
25 30 40 50 60 70 80 90 100
k=k NML 0.94 0.95 0.96 0.97 0.97 0.97 0.98 0.98 0.98
BIC 0.79 0.84 0.89 0.91 0.93 0.94 0.95 0.95 0.95
Kicc 0.93 0.92 0.91 0.91 0.90 0.90 0.90 0.90 0.89
k>k NML 0.06 0.05 0.04 0.03 0.03 0.03 0.02 0.02 0.02
BIC 0.21 0.16 0.11 0.09 0.07 0.06 0.05 0.05 0.05
KICC 0.07 0.08 0.09 0.09 0.10 0.10 0.10 0.10 0.11
distributed in [—3, 3]. The measurements y;,...,yn are obtained by addition to g;

zero-mean white Gaussian noise, whose variance is selected such that the signal-to-
noise ratio is SNR=10 dB. For each number of data points N, between 25 and 100,
10° different realizations are produced, to which polynomials of degree 0,1, ...,10
are fitted with the least squares method.

The estimates of the order of the polynomial obtained with the NML, BIC and
KICC criteria are in Table 1. We have restricted our investigations only to these
three criteria, because in [21] KICC was shown to outperform other six estimation
criteria for N = 25 and N = 30. We see in the table that NML criterion performs
better than BIC and KICC in all the cases studied. Observe that the number of
correct estimations produced by KICC generally declines when more measurements
are available, while the BIC' and the NML results improve with increasing N. For
example, KICC compares favorable with BIC for N = 25, but the situation is
reversed for N = 100.

4. AR models

The likelihood density function for an AR model is given by

1 1 N 2
N. _ -3 (e taryi—1+Fanyi—n)
J"30) = G =2 S Ot ,
1
where we put y; = 0 for ¢+ < 1. The maximized likelihood is —————~, where 5>
(2me52)N/2

N
1
is the minimized sum per symbol 62 = i Z(yt + a1ys—1 + - + Gnyi—n)?. The
t=1

NML criterion (3) has now the expression

N 1 N
(4) L(yN;n) = Eln(27re&2)+ ”; ln%+ln/6 13(6)[*/2d0 + o(1).
The Fisher information matrix is given b R.. 0 her
e Fishe ormatio a s given by 0 1/(204),Wee
To ry o Tp-1
1 o " Th-2

Rzz - . . . . 5

'm—1Tn-2""" T0
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and r; = E[z12¢—;] denote the covariances of the process z; = y; /o [9, 10]. Applying
the formula in [12] for the parameters transformation and the well-known Vieta’s
formulae, it is easy to calculate the Fisher information matrix for the parameter
set given by the model poles g = (g1, 9o, - ., gn) and the noise variance o2.

Remark in (4) that the integral term makes the most important difference be-
tween the expression for the stochastic complexity and the BIC criterion. The inte-
gral has a lot of structural information which BIC lacks, and it generally increases
with n, because the determinant increases.

We note that the contribution of the o2 to the integral is decoupled by the
contribution of the other parameters. Consequently we ignore for all the AR models
the contribution of o2 because we do not have any “natural” finite limits for the
range of o2. The constrain to have a stable model restricts the domain of the
magnitudes of the poles to be a hypercube.

Apart from the AR(1) case for which the integral in (3) can be found in a closed

form, f_11 ﬁdg = 7, the evaluation of the integral will be done by the Monte
Carlo technique. To be more precise we use Sobol’ sequences [14] to perform the
Monte Carlo integration for AR(n) models with 1 < n < 6. For these values all
poles are complex if n is even, and exactly one pole is real-valued if n is odd, which
can be taken advantage of in calculating the form of the information matrix.

Our Matlab implementation is based on the algorithm described on p. 312 in
[14] and the code publicly available at [1]. We perform the Monte Carlo integration
for various AR models with M integration points. But first, to test the accuracy
we use the known result for the AR(1) model. Table 2 shows the fractional error
obtained when M = 10° and M = 10°. For models with larger order, we report
the value A = |I1g7 — I106| /1107, where Ip; denotes the Monte Carlo evaluation of
Jo 13(9)[*/?d0 calculated from M integration points. We show in Table 2 the results
on A since it is known for Monte Carlo integration with Sobol’ sequences that the
fractional error decreases with the number of samples as (In M )" /M [14].

Example 2. We evaluate the capabilities of NML, BIC and KICC criteria for es-
TABLE 2

Monte Carlo results for the integral term in the stochastic complexity formula (4) for
autoregressive models. For the AR(1) model the fractional error is reported.

M Iy Fractional error or A
AR(1)

105 3.131956 0.003067
106 3.138952 0.000840
AR(2) - pure complex poles

108 42.06 -
107 47.41 0.11
AR(3) - one real-valued pole

106 122.67 -
107 137.73 0.11
AR(4) - pure complex poles

106 1069.66 -
107 1358.84 0.21
AR(5) - one real-valued pole

108 3733.59 -
107 8307.55 0.55
AR(6) - pure complex poles

106 23164.39

107 35981.48 0.36
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timating the order of AR models. The NML criterion is calculated with formula
(4), where the value of the integral term for n > 1 is the one from Table 2 com-
puted with M = 107 integration points. We extend our experimental framework
by considering another information theoretic criterion, namely the predictive least
squares criterion PLS, [16].

Figure 1 outlines the simulation procedure used in Example 2, and the estimation
results are shown in Tables 3-4.

Note that the evaluation of the various criteria for order estimation requires the

For the model order n € {1, 2,3},
For each order estimation criterion C and for each sample size N,
N € {25,50,100,200}, initialize with zero two counters:
N ¢ for correct estimations and N&c for over-estimations.
Repeat the following steps 1000 times:
Generate independently the entries of P, as outcomes of ¢ [(0.8,1)],
and the entries of Py as outcomes of U [(0, 7)].
If n is odd, generate the unique entry of P,
according to U [(—1, —0.8) | J(0.8, 1)] .
Repeat the following steps 1000 times:
Simulate a time series with 300 entries for the AR(n) process
whose poles are given by Py, Py, Pp.
Use null initial conditions and o< = 1.
Discard the first 100 entries of the time series and
dub z the vector formed with the rest of 200 measurements.
For each sample size N € {25, 50,100, 200},
Choose yV = [z1,...,2n] . Apply each criterion C
to estimate the model order 7 ¢ from yN data,
under the hypothesis iy ¢ € {1,...,6}.
If iy, c = n, then increment NZ%,C’
If iy,c > n, then increment NK,’C.

End
End
End
Calculate the probability of correct estimation p%; , = Nf\, C/106,
and the probability of over-estimation 15(1)\7,6 = N&c/mﬁ for the model order.
End

Fic 1. The simulation procedure applied in Example 2. The notation U[-] is used for the uniform
distribution.

TABLE 3
Example 2 - the probability of correct estimation of the AR order. The best result for each
sample size N is represented with bold font.

AR model order  Criterion Sample size (N)

25 50 100 200

n=1 NML 0.99 0.99 1.00 1.00
BIC 0.93 0.95 0.97 0.98

Kicc 0.95 0.93 0.91 0.90

PLS 0.89 0.92 0.95 0.97

n=2 NML 0.72 0.85 0.87 0.88
BIC 0.79 0.85 0.87 0.87

Kicc 0.82 0.83 0.80 0.78

PLS 0.49 0.59 0.66 0.71

NML 0.49 0.74 0.83 0.84

n=3 BIC 0.52 0.71 0.78 0.79
Kicc 0.51 0.71 0.73 0.69

PLS 0.26 0.39 0.47 0.53
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TABLE 4
Example 2 - the probability to over-estimation of the order of AR models. The smallest
overestimation probability for each sample size N is represented with bold font.

AR model order  Criterion Sample size (N)

25 50 100 200

n=1 NML 0.01 0.01 0.00 0.00
BIC 0.07 0.05 0.03 0.02

KICcC 0.05 0.07 0.09 0.10

PLS 0.11 0.08 0.05 0.03

n=2 NML 0.07 0.09 0.11 0.12
BIC 0.10 0.11 0.12 0.13

KICC 0.06 0.14 0.20 0.22

PLS 0.20 0.19 0.17 0.15

n=23 NML 0.01 0.03 0.06 0.12
BIC 0.07 0.09 0.12 0.18

KICC 0.03 0.10 0.20 0.29

PLS 0.21 0.22 0.23 0.23

estimate of noise variance for each order between one and six. Moreover, for the
PLS criterion the computation of the prediction errors must be performed for each
order and for each sample point. To reduce the computational burden, we resort to
the fast implementation of the prewindowed estimation method based on predictive
lattice filters [8], [22].

Observe in Table 3 that the NML criterion compares favorably with all the
other criteria when the sample size is at least 50. For the smallest amount of data
the asymptotic calculation of the Fisher information does not seem to be accurate
enough. In most of the cases BIC'is ranked the second after the NML, and the results
of KICC do not improve when the sample size N is increased. For all criteria the
performances decline for the larger values of the model order, which is clear because
there is more to learn. Notice the moderate performances of the PLS criterion. We
mention that another comparative study [7] also reports the moderate capabilities
of PLS on estimating the order of AR models. This is to be expected since the
PLS criterion is based on the estimates of the parameters which are shaky for small
amounts of data.

5. ARMA models

The density function for ARMA models, (1), depends on how the initial values of
y are related to the inputs e. A simple formula results if we put y; = e; = 0 for
i < 0. Then the linear spaces spanned by y* and e’ are the same. Let Us41)¢ be the
orthogonal projection of ;1 on the space spanned by y*. We have the recursion

m n
(5) Y1)t = Z bi(Yt—it1 — Je—iv1)t—i) — Z AilYt—i+1,
i=1 i=1

where ¢;o = 0. With more general initial conditions the coefficients b; in (5) will
depend on t; see for instance [17]. The likelihood function of the model is then

1 _ 1 N A 2
(6) FWY:0.0") = Gemwme 2 o),
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TABLE 5
Results of model selection for the ARMA models in Example 8. The counts indicate for 1000
runs the number of times the structure of the model was correctly estimated by each criterion,
from the set {ARMA(n,m):n,m > 1,n+m < 6}. The best result for each sample size N is
represented with bold font.

ARMA model Criterion Sample size (N)

25 50 100 200 400
n=1m=1 NML 700 812 917 962 989
a1 = —0.5 BIC 638 776 894 957 983
b1 =0.8 KICcC 717 740 758 745 756
n=2m=1 NML 626 821 960 991 994
ay; = 0.64,a2 = 0.7 BIC 532 740 898 961 978
b1 =0.8 KIiCcC 586 727 810 846 849
n=1m=1 NML 851 887 918 931 961
a1 = 0.3 BIC 766 804 856 903 942
b1 =0.5 KIiCcC 860 764 654 614 577

1 1 Y
The maximized likelihood is ——————— where 62 = min — —
(2meq?)N/2’ A1y @b sesbm N Z(yt

Gtjt—1)°. The NML criterion (3) is then given by

n+m-+1
—1n_

N
(7)  L(y™;n,m) = 5 In(2med?) + 5

+1n/ 1J(0)]1/2d6 + o(1),

In Appendix we elaborate on the computation of the integral term for the NML
criterion, and the results are applied to the selection for ARMA models in the
following example.

Example 3. We calculate the structure of ARMA models for data generated by
three different processes, which also were used in [11]. For each model, the true
structure and the coefficients are given in Table 5, where we show the estimation
results for 1000 runs. In all experiments we have chosen the variance of the zero-
mean white Gaussian noise to be 02 = 1. We mention that, similarly with the
experiments on the autoregressive models each data set y" was obtained after
discarding the first 100 generated measurements. This is to eliminate the effect
of the initial conditions. There exist different methods for estimation of ARMA
models. We selected the one implemented in Matlab as armax function by Ljung,
which is well described in his book [13].

Appendix: The asymptotic Fisher information matrix

We focus on the computation of the integral term in equation (7). The model is
assumed to be stable and minimum phase, which means that in (2) the roots for
both B(gq) and A(q) are inside the open unit disc. Assume that ny zeros of A(q)
and my zeros of B(q) are real-valued. Then we have the inequalities 0 < n; < n
and 0 < my < m. Because all coefficients of A(q) and B(q) are real-valued, the
pure complex poles and zeros occur in complex conjugate pairs, and consequently
the differences n — ny and m — my are both even integers. For the pure complex
poles and zeros we apply the parametrization in [5]:

ge+1 = 925 = \gg]exp(—iqﬁge), ¢ge € (077T>7 le {nl + 17”1 +37 cee, N — 1}7
h€+1 - hz - ’hdexp(_ithg)? ¢he € (077T)> le {ml + 1am1 + 37 cees M — 1}7
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where the symbol * denotes the complex conjugate. The entries of the parameter
vector # are given by:

0=1(91:---:9n;
|Gny+11, ¢gn1+1’ s lgn—1ls Pgn s
hi,...hmy,
[Py 41l P a5 oo [Pm—1]s @y s s
a?).

For the sake of clarity we define the subsets of indices for the 6 parameters:

P,=1{1,2,...,n1}
P,={m+1,n+3,...,n—1}
Pp={n1+2,n1 +4,...n}
P=P,JP.JPs
Z,={n+1,n+2,...n+m}
Zy={n+mi+1n+mi+3,...,n+m—1}
Zy={n+mi+2,n+mi+4,....,n+m}

z=2,Jz.\J2

Based on (6) we use the following asymptotic expression for the log-likelihood func-
tion of the observations y1,...,yn, [2], [9]:

1 N
L= ~ 552 ;ef — —Ino? + constant.

2
For all u,v € {1,...,m + n + 1}, the (u,v) entry of the Fisher information matrix
1. 0°L
is given by the formula [18]: J,,, = — A}gnoo NE[aeuaev]. Applying the results in

[2] and [9], we obtain in a straightforward manner:

Jn+m+1,n+m+1 = 1/(204)7

Ju,n+m+1 = Jn+m+1,v =0 Yu,v € {1, co,n+ m}
For the following calculations we use the identity J, li E| oL 85] Co
r W11l u 1011S we u laenti = 1m — - . -
& Yol = I N 90, 00,
sider first the case u,v € P,. Simple calculations lead to
dey g ! =
98, = T = 2 e

p=1

and we obtain readily:

Juo = FE
N0'4 [(

®) -y

B 1
C1—-06,0,

Ve

o) N 00
e Z 95_1@_;,,) (Z €s Z 05_1€S_T)]

p:l s=1 r=1

Pﬁ

(0,0,)P~ 1E[etet p]

1



Estimation of AR and ARMA models by stochastic complexity 57

SuS

We conclude for u,v € P,|J Z, that J,,, = ﬁ, where
—1l,ueP
Su = { 1, ue Z

Formula (8) was deduced in [4] for the case when all the poles and the zeros of the
ARMA (n,m) model are real-valued. We evaluate next the entry (u,v) of the Fisher
information matrix for u € P,|J Z, and v € P, |UPy U Z,. U Z4. It is not difficult
to prove that

865

de«es »Vse{l,...,N},

where the coefficients d, , are real-valued, [5]. Therefore

S N oo N 0o
Juw = N—“4E (Z ey 95—1et_p) <Z es Y dv,res_r>]
o t=1 p=1 s=1 r=1
NO—4 229” Yy, B [efei )]
t=1 p=1

=S, i 0P1d, .
p=1

The following closed form expressions of d, , are given in [5] for v € P, |J Z,:

28, cosOyy1, =1
d P = 25, or sm(va_,_l)cong_H 0P~ sin((p— 1)9U+1)9 Z 9
sm0U+1

The equations above lead to

SuSy €08 1 > (048,) sin(ply41)

p=1

Ju v T .
’ 0.6, sinb,41

SuSy D " (0u6,)" sin(pfy11)

p=1

2
sin 011

cos by, — 0,0,
— 20,0, cosOyy1 + 0262

= QSuS

for w € P, and v € P, |J Z,,. Similarly for v € Py |J Z4 and p > 1, we have, [5],
dyp = —28,6"_ sin(pb,,),

and it is easy to prove that

0,—1sin6,
1 —20,60,_1cosb, + 0262

u’v—1

Jup = —28,S,

When u,v € P,|JZ,UPyUZ4, we can apply the formulas given in [5] for the
computation of J, , in case all the poles and the zeros are purely complex.
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Analyzing the sign of the product S,S,, we find that the matrix J(f) can be
G -C

re-written more compactly as J(0) = L cT H ], where the size of the block ma-

G C
c'H

Jo [3(6)[*/2d6 has the same value for the models ARMA (n,m), ARMA (n+m,0),
ARMA (0,n+m). A similar conclusion was drawn in [4] for the particular case when
all the poles and the zeros are real-valued.

trix C is n x m. The identity ’_gT _HC ‘ = | ‘ leads to the conclusion that
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Abstract: In this article asymptotic expressions for the final prediction er-
ror (FPE) and the accumulated prediction error (APE) of the least squares
predictor are obtained in regression models with nonstationary regressors. It
is shown that the term of order 1/n in FPE and the term of order logn in
APE share the same constant, where n is the sample size. Since the model
includes the random walk model as a special case, these asymptotic expres-
sions extend some of the results in Wei (1987) and Ing (2001). In addition,
we also show that while the FPE of the least squares predictor is not affected
by the contemporary correlation between the innovations in input and output
variables, the mean squared error of the least squares estimate does vary with
this correlation.

1. Introduction

Consider a simple regression model

(1.1) Yt = PBri—1 + €,

where (3 is an unknown constant, ¢;’s are (unobservable) independent random dis-
turbances with zero means and a common variance o2, and z; is an unit root process
satisfying

(1.2) Ty = Ty—1 + N,

with zg = 0, gy = Zz;}) cjwi—j, Z?io lcj| < oo, Z;}io ¢; # 0, and w; being in-
dependent random noises with zero means and a common variance o2. We also
assume that ¢, is independent of {w;,j <t —1}. Note that if 5=1,co =1,¢; =0
if j > 0, and £, = wy, then (1.1) becomes the well-known random walk model (see,
for instance, Chan and Wei [4]). Having observed (y;+1,%;),i=1,...,n—1, § can
be estimated by least squares

n—1

Z::f 7

If z, also becomes available, then it is natural to predict y,41 using the least
squares predictor,

(1-4) gn-i—l = ann-
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To assess the performances of the least squares predictor, we consider the final
prediction error (FPE, Akaike [1])

(1.5) E{ (i1 = gnnr )’ =0+ E{a2(B - 82},

and the accumulated prediction error (APE, Rissanen [14])

n

Z (yi —9:)° = i {51 — 21 (Bt — 5)}

=2 =2

(1.6) - ng + Zw?_l(@—l — B)%(1 + o(1)) ass.,

2

where the second equality of (1.6) is ensured by Chow [5]. It is straightforward to
see that the terms in (1.5) and (1.6),

(L7) Z‘x?—l(ﬁi—l —p)? = Z {xz <<2£z__11x;§;:1) } |

i=2 i=2
and
2
X (La,)(: Zn__l Ti€it1)
2 2 Vvn n ~~i=1

When {y:} is a random walk model mentioned above, Wei ([15], Theorem 4)
showed that the rhs of (1.7) equals 202 logn + o(logn) a.s. By imposing further
assumptions on the distribution of wy, Ing ([9], Corollary 1) subsequently obtained
the limiting value of the expectation on the rhs of (1.8), which is 20%. This article
extends these two results to models (1.1) and (1.2), which provides a deeper un-
derstanding of the least squares predictor (estimate) in situations where Fisher’s
information, Z;L;ll w?, grows at a rate much faster than n, and the innovations in
input and output variables come from different sources. The rest of the paper is
organized as follows. Section 2 derives the asymptotic expressions for the rhs of
(1.7). In Section 3, sufficient conditions are given to ensure that the expectation on
the rhs of (1.8) is bounded by some finite positive constant for all sufficiently large
n. We then apply this moment property and the results obtained in Section 2 to
show that

(1.9) lim E{nz? (6, — )%} = 202
n—oo

Some discussions related to (1.9) are given at the end of Section 3. In particular,
it is shown that while the FPE of the least squares predictor is not affected by the
contemporary correlation between e; and w;, the mean squared error of the least
squares estimate does vary with this correlation. In addition, we also show that
the squares of the normalized estimate, n(3, — ), and the normalized regressor,
xn /\/n, are not asymptotically uncorrelated.

2. An asymptotic expression for the APE

To prove the main result of this section, two auxiliary lemmas are required. They
are also of independent interests.
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Lemma 1. Assume the {w;} in Section 1 satisfy sup_ o 4co0 Elwi|® < 00 for some
a > 2. Let z = Z;féd wi—j, where |dj| < Cj~t for some C > 0 and all j > 1.

Then, with v = o2 z; éd?,

(2.1)

3I’—‘

n
Z — ) =o0(1) a.s.

Proof. Straightforward calculations yield that

t t la—1
(2.2) 22—y = Zd%ﬁl(wlz —02) 42 Z Z dp—p, di—1,wr Wi, .
l:1 l2:2l1:1

By (2.2) and changing the order of summations,

S (S 3 (30

t:n1 l:]_ t:’l’Ll l n1+1 t l
ni lzfl no
di—1,d—1,
—l-QZ g Zf Wiy Wi,
1o=2 \l1=1 \t=n1
na l2—1 )
di—1,di—1,
o 3 IS (S e L
lo=n1+1 \l1=1 \t=ls

=1+ @)+ B)+ M),

where 7} = w? — 02. In the following, we shall show that for some aj > 1, there

are Cp > 0,& > 1, and &, > 1 independent of n; and ng such that

[0 = 1
(2.3) B0 < Cu(Y ) s,

t:’l’Ll

where k = 1,...,4. (2.3) and Méricz (1976) imply that for some a > 1, there are
C* >0,& > 1, and & > 1 independent of n; and ng such that

na
22 ’yt 1
2.4 E a D<o —)%e,
( ) 'I’Llréllagxng | ;1 <t;1 tsl )

As a result, (2.1) follows from (2.4) and Kronecker’s lemma.
Let o; = min{a/2,2}. Then,

niy N2 d2_ e
E|()[* < CraBY (Y, —) 0 32

=1 t=n,
no no 1 ni
<o 35 3 kS
25 ti1=n1 ta=n1 t =1
( . ) no 1 ’I’L2—1 1 n2 1
HOETD I o e
t=n1 ti=ny Y1 to=t1+1

N N 52,1
1 1
can (S ) e ()

t=n1 t=n1
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where C;,t = 1,2,3 are some positive constant independent of n; and ng, 1 <
€11 < a1, &21 = a1/&11, first inequality follows from Burkholder’s inequality,
second one follows from the fact that 0 < «;/2 < 1 and changing the order of
summations, third one is ensured by sup, E|w;|* < oo and |d;] < Cj~!, which
implies for all ny < t1,te < no, Y 2y |de,—ide,—i|* < Chalty — to| 1, for some
Cy4 > 0. As a result, (2.3) holds for & = 1. The proof of (2.3) for the case of
k = 2 is similar. The details are thus omitted. To show (2.3) for the case k = 3, let
ag = «. Then, by Minkowski’s inequality and using Wei (1987, Lemma 2) twice,
one obtains

ni l2—1 na
de_g, dy—
E|(3)]* < C31E] Z{Z <Z %)wll}wlzla?’

l2=2 ;=1 \t=n1

ni lo—1 ng az/2
<o (33 Aty

lo=211=1 t=n1

(2.6)

where Cs ;,7 = 1,2 are some positive constants independent of n; and ny. Observe
that for n1 S 11 < to S U») and any 1 S M1 S M2 S ni, zl]\iQJ\/Il ‘dtl—ldtg—l| S
C33(logty —logty)/(t2 — t1), where C5 3 > 0 is independent of M; and Ms. Using
this fact and changing the order of summations, it follows that the rhs of (2.6) is
bounded by C3 4(> 12 b 2yes/2 where C3 4 is a positive constant independent of
ny and ng. Hence, (2.3) holds for k = 3. The proof of (2.3) for the case k = 4 is
similar to that of k = 3. Therefore, we skip the details. O

Remark 1. If in Lemma 1 z, = Z;io djw—; with |d;| < Cj71,j > 1, then the
same argument also yields (2.1) but with 4 replaced by v* = o2 Z;io d?. For a

related result, Brockwell and Davis (1987, Proposition 7.3.5), assuming that wj s are
ii.d. with finite second moment and d;’s satisfy Z "~ ld;| < oo and Z] 0d3j < o0,

obtained (n=t Y7 | z7) — v* = 0,(1). While the moment restriction of their result
is slightly weaker than that of Lemma 1, the identically distributed assumption
can be dropped in Lemma 1. In addition, the assumption on d; in Lemma 1 seems
less stringent. More importantly, Lemma 1 gives a strong law of large number for
n~t Y7 | 27 under rather mild assumptions, which is one of the key tools for our
asymptotic analysis of APE.

Lemma 2. Assume sup_ o ;o0 Elw|® < 00 for some a > 2 and

(2.7) S eyl = O,

i>k

Then,

n—1
log (Z x?) = 2logn + o(logn) a.s
7j=1

Proof. First note that x; = Z] 1 1j- Define N; = 92 _ywj, where § = 377 ¢;.
Then,
(28) Ty = Nt — St,

where S; = zz;(l) fijwi—j with f; = 3772, ¢ In view of (2.8),

n—1 n—1 n—1 n—1
(2.9) dat= > NZ-2> N;S;+ Y S
j=1 j=1 j=1 j=1
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Since |f;j| = O(j~!), Lemma 1 yields

(2.10) ’i 57 =0(n) as.

By the law of the iterated logarithm,

n—1
(2.11) Z Nj2 = O(n?loglogn) a.s.

j=1

By Lai and Wei ([12], (3.23)),

n—1
.. .loglogn 9
=1
Now, Lemma 2 follows directly from (2.9)-(2.12). O

Remark 2. By assuming

(2.13) > ileil < o,
=0

Proposition 17.3 of Hamilton (1994) gives the limiting distribution of n =2 Z;le a3,

which is A2 fol w(r)?dr, where X = 0,3 77 ¢; and w(r) denotes the standard
Brownian motion. This result immediately implies

n—1
(2.14) log<z x?) =2logn + O,(1).
j=1

Lemma 2 and (2.14) provide different estimates for the difference between 2logn
and log(zz.lz_ll x?), but neither is more informative than the other. On the other
hand, we have found that the assumption on the coefficients used in Lemma 2, (2.7),
seems to be weaker than the one imposed by Hamilton, (2.13). This can be seen by
observing that (2.7) is marginally satisfied by C1572 < |¢;| < Cqj2,Cy > C; > 0,
whereas (2.13) is not.

We are now ready to prove the main result of this section.

Theorem 1. Assume that models (1.1), (1.2), and the assumptions of Lemma 2
hold. Also assume that sup_ . ;o Elet|*® < 0o for some o > 2. Then,

(2.15) Zl‘z{l(éz’—l — B)* = 20%logn + o(logn) a.s.,
i=2
and

(2.16) (yi —9:)° = Z e? + 20 logn + o(logn) a.s.
=2

7 =2
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Proof. First note that (2.9)-(2.12) yield

n2

2.17 lim sup < 00 a.s.
(2.17) n—oo (loglogn)> % a3

By Wei ([15], Lemma 2) and (2.7),

n—1 @
< Cun=or? (z ff) < Cno
j=0

where C, and C} depend only on «. (2.18) and the Borel-Cantelli lemma give

[e%

Sn

(2.18) Bl

(2.19) S, = o(n'/?) a.s.
Since the law of the iterated logarithm implies

N, = O((nloglogn)*/?) as.,
this, (2.8), (2.17), and (2.19) yield

$2

~— =o(1) as.

Z?:l @?
In view of (2.20) and Wei ([15], Theorem 3), we have

n—1 n—1
(2.21) sz 1 = o%log (Z x?) + o0 | log (Z x?) a.s.,
j=1 j=1

As a result, (2.15) follows from Lemma 2 and (2.21); and (2.16) is an immediate
consequence of (2.15) and (1.6). O

(2.20)

3. An asymptotic expression for the FPE

Assume that models (1.1) and (1.2) hold, E(etw;) = 7 is a constant independent of
b, SUP_ oo creoo Elet]|* < 00,00 > 2, and sup_ o 4o Elw|* < 00, a0 > 2. Then, by
the functional central limit theorem, continuous mapping theorem, Ito’s formula,
and some algebraic manipulations, it can be shown that

w2() (o0 Jy wa(t)dwa(t) + v J} walt)dun(0)
(J wg(t)dt)z

where “=" denotes weak convergence, (w,(t),wp(t)) is a standard Brownian mo-
tion of dimension 2, p = 7/02, and 05 = 02 — p?02. If we can further show that
for some ¢q > 2,

)

n—1 q
(L) (d 05 i)
n2§:zl x

(3.2) E = 0(1),
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then, in view of (3.1), (3.2), and (1.8),
nE{xi(Bn - ﬂ )2}

w? T ! dw, o6 J, wq (t)dw
e mW>f<><uwf )y (1)) o)

( I wg(t)dt>

In the rest of this section, we provide sufficient conditions to ensure (3.2). In addi-
tion, the expectation on the rhs of (3.3) is investigated (Corollary 1). Let us start
with a useful lemma.

(3.3)

Lemma 3. Let Fipa,, () be the distribution function of Z;”:l ajwip1—j, where

a, = (a1,...,ay)". There are some positive numbers k, ¢, and M such that for all
m > 1,—00 <t < oo and [la,|* =37 af =1,
(34) | Ft7mvam (x) - Ft:m7am (y) ’S M | r—=y |’i7

as | x —y |< . Then, for any q >0,
—q

n—1
1 E 2
j=1

Proof. The proof is closely related to the one given in Ing ([9], Lemma 1), with the
assumption there being strengthened to (3.4). First note that

1n712 17171 ) 5 (5 — 12
(36) $;%2m2%25252;;7

i=nd j—

Iﬁw

where 0 < § < 1, and without loss of generality, nd is assumed to be a positive
integer. Rearranging the series on the rhs of (3.6), one obtains

(a-39)n 5)n

“lig-1 2? +(1 5)n.+j
o 2T F e

where | > max[2/k,1/q,(1/¢){(1/§) — 1)}] and for simplifying the discussion, lg
and { (1 —d)n }/(lq) are also assumed to be positive integers. By the convexity of
function =%,z > 0,

e R

(3.8) oy o, L
: g no+ 000 i
X Z Z 5o a=om,
=0 im0 MO+ttt

In view of (3.8), if one can show that for some positive number C' independent of
j, the following inequality,
lg-1 (175)71. , 1
YRR
(3.9) E Z = 5) - < C <o,
nd + ~—2Li+j
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holds for all j = 0,1,...,{(1 —d0)n/(lg) } — 1 as n is large enough, then (3.5)
follows. The rest of the proof only focuses on the case where j = 0, because the
same argument can be easily applied to other j’s.

For:=0,...,lqg — 1, define

/2
(1-0)n "
(3.10) Yn,i = { no + T’L xné—l—(l_lj)"i’
(1—5)71_1
1-9)n. -2 -

(3.11) Wh,i = {n5 + %l } Z fmwn5+—(1?;)nifm’

m=0
where f; = Z{:O 1, and
(3.12) Fri=Yni— W

(Note that x; = Z;;B fjwi—;.) Then,
lg—1 -4 0o lg—1 -4

E (ZY,%) :/ Pr (ZYf) >t o dt
i=0 0 ‘

V2, < t—l/Q) dt
(3.13)

n,

g

g/ r(—t*l/@q)<Yn,i<t*1/(2q), izO,...,lq—l)dt
0

0o lg—1
:/ E{E(HIA
0

=0

Fn,lq—hWn,i»Fn,iy i=0,...,lg— 2)} dt,

where A, ; = { —t71/C9 <V, , <t/ In view of (3.10)-(3.12), for 0 < p <
lg—1,0<i<p and 0 < j <p-—1, W,, is independent of (F,;, W, ;). In
addition, var(W, ;) > ¢ > 0, where i = 0,...,l¢g — 1 and ( is a positive number
independent of n and i. According to these facts, (3.4), and arguments similar
to those used in (3.10) and (3.11) of Ing [9], there exist some positive numbers
0<C"<00,0<s < o0,and a positive integer Ny such that for all n > Ny and all
t > s,

lg—1
(3.14) E <H IAM.> < 't~ "0/2,
=0

Since, by construction, [ > 2/k, (3.13) and (3.14) guarantee that for n > Nj,

lg—1 -4 0o
E (ZYRQZ) < s+ C’/ t=(:D/24t < oo,
i=0 s
which yields (3.9). O

Lemma 4 below shows that (3.4) is easily found in many time series applications.

Lemma 4. If w;’s are i.i.d. random variables satisfying E(w1) = 0, BE(w?) = 02 >
0, and E(|w1|*) < 0o for some o > 2. Assume also that for some positive constant
My < o0,

(3.15) | Ietwlar <,

— 00
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where ¢(t) = E(e'*“1) is the characteristic function of wi. Then, for all —co <t <

oo, m > 1 and ||la,,|| =1, there is a finite positive constant My such that
(3.16) sup  frm.a,, (x) < My,
—oo<z<oo

where ft m.a,, () is the density function of Y77" | ajwir1—j. As a result, (3.4) follows.

Proof. The proof is inspired by the ideas of Feller ([7], p. 516), which deal with the
special case, a; = m~1/2 for all j = 1,...,m. Without lqss of generality, assume
02 = 1. Denote Y = ™" | ajwii1—j. Then, oy (t) = E(e") = [}, ¢;(a;t). By
Chow and Teicher ([6], Theorem 8.4.1),

a’t?
plat) =1— jT + 0(a§t2),

as a5t> — 0. This gives for |a;t| < 0}, where 07 is some small positive constant,
242
(317) el <1- 25

On the other hand, since (3.15) yields |p(t)| — 0 as |t| — oo, by Chow and Teicher
([6], Corollary 8.4.2), |¢(t)| < 1 for all t # 0, and hence for all |t| > §7 (with 67
defined above),

(3.18) |o(8)] < 01,

where 6 is some positive constant < 1. Now, by (3.17),

| Tlietapla< [ PR - T ietastae

(3.19) Om =1
</ = dt+/ . H|<p(ajt)\dt,
—o0 [t|> Oin j=1

where O; is a permutation of |a;| satisfying O,, > Op—1 > --- > O;. For t >
87 /Om, (3.17), (3.18) and the fact that

(1 o 91> 26*2
55’ 402

fy=1—(1—6;)<1-—

imply
2.2 2 *2 2 g2

at aj
(3:20) p(a;t)| < max{l — ~—.6:} < max{l - 2 02 01} <1-— O;,

where 0 < ¢ < min{1,4(1—6)/6% }. In view of (3.20) and the fact that > i ! 0% =
1-02,

m— 1
/ st i < - / e 0% 2 % (o))t
|t| Om ] 1
55* 1 —551 oo
(3.21) —e i —e 407271/ lp(t)|dt
O, e
55;‘2 755{%2

<e % supxe 4 My < .
r>1
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By (3.21), (3.19), and the fact that

Sp Frman (@) < / H|w<ajt>rdt7
=1

—oo<r<oo

(3.16) follows. In addition, it is not difficult to see that (3.4) can be deduced
from (3.16). O

n—1

In the following lemma, some moment bounds for (1/v/n)x, and (1/n) > " ;X
€i+1, are obtained.

Lemma 5. Assume models (1.1) and (1.2), with sup, E(|e¢|?7) < oo and
sup, E( |w|?) < 00, for some q > 2. Then,
q
) < 00,

q
><oo.

Proof. The proof of Lemma 5 is similar to that of Ing ([9], Lemma 1). The details
are omitted. O

(3.22) (i) sup E

1
n>1 (' vn
1 n—1
(323) (11) SupE (‘ _ingi—l—l
n
=1

n>1

Armed with the previous results, (3.2) is proved in the following theorem.

Theorem 2. Assume that (1.1), (1.2), (3.4), sup, E(|e:|?7) < oo, and
sup, E(|wy |7) < oo are satisfied, where ¢ > 4. Then, (3.2) holds. If we further
assume that E(eywi) = 7 is a constant independent of t, then (3.83) follows.

Proof. By Lemmas 3 and 5, (3.1), and an argument similar to the one used in [9],
Theorem 1, the claimed results can be obtained. O

The FPE of the least squares predictor is obtained in Corollary 1 below.

Corollary 1. Assume that (2.7) and all assumptions of Theorem 2 hold. Then,
(1.9) follows.

Proof. By (2.15), (3.2), and Minkowski’s inequality,

3.24 i
( ) nl—{go log n

Z {xz 152 1_ﬁ>}:20—27

i=m*

where m* is some positive integer independent of n. Now, (1.9) is guaranteed by

(3.3) and (3.24). O

Corollary 1 and Theorem 1 together indicate an interesting result that the term
of order logn in the APE and the term of order n~! in the FPE share the same
constant, 202. For applications of this type of results to model selection problems,
see [11]. Corollary 1 also shows that the FPE of the least squares predictor is not
affected by the contemporary correlation between ¢; and w;. This is a somewhat
unexpected feature because the least squares estimate itself does not possess this
property. More specifically, by direct calculations, we have

. 190w fy wa(t)dwa(t) + op [, wa(t)dwy(t)
3.25 n
G2 e =y Jo wh(t)a

)
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and

O ! dwy(t) + o 0 wWe (t)dwy(t ’
(3.26) n2(B, —0)? = % <P Jo a0 1< o fz ! )>
(Jy wiwat)

where ) is defined in Remark 2. By (3.26), an argument similar to that used in the
proof of Theorem 2, and some algebraic manipulations,

9

w ! a t)d a —+ a d t 2
lim n*E(B, - p)* = E %(W h o wl( 70 Jy wa(Bidun (1)
(fo wﬁ(t)dt)

(3.27) 2
i (fowa dwat)> +;792E<1 1 )
L fo w2 L2og fo w2 (t)dt

where 12 = \202. Ing ([9], (4.3)) showed that

(3.28) (fo wa(t)dwa(t >> = 13.3.
oy w2(t)dt

By (3.6.4) and (3.6.5) of Araté and using a numerical integration method,

(3.29) E (%) = 5.6.
Jo w2(t)dt

Consequently, (3.27)-(3.29) imply

. 210 A 2. P o3
(3.30) nh_}rlgon E(6, —0B)° = L—213.3 + 202 5.6,

which obviously Varies with the strength of dependence between e; and w;. In
particular, if 02 = 02, then p = corr(es, w;) and (3.30) can be rewritten as

(3.31) lim n?E(3, — ) = le[p213.3 + (1 — p?)5.6].

As observed in (3.31), the larger the magnitude of the correlation between e; and
wy is, the larger the mean squared error of the least squares estimate is, a result
new to the literature. R

As a final remark, we note that the square of the normalized estimate, n?(3, —
)%, and the square of normalized regressor, o2 /n, are not asymptotically uncorre-
lated. To see this, observe that lim, ., E(z2/n) = A2, which together with (3.30)
and Corollary 1, gives

2
lim E <"’3 ) E {n2(ﬂn - 5)2} = 13.3p%02 + 5.602
=5.60% + 7. 7,0202 > 202

11mE{ "n2(B, — )}.

n—oo

Therefore, 2 /n and n2(5, — 3)? are (asymptotically) negatively correlated, which
suggests that larger variation of x,, can yield a better estimation result. It is worth
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mentioning that this special feature does not exist for the (asymptotically) sta-
tionary regressor. For example, when z; = ¢x;—1 + 1, with |¢| < 1, following an
argument used in Ing [10], it can be shown that

lim E(z2)E {[\/ﬁ(én . 5)12} — lim E {xin(ﬁn . ﬁ)?} — o2,

n—oo n—oo

Therefore, the square of the normalized estimate, n(ﬁn — )2, and the square of the

(normalized) regressor, 2, are asymptotically uncorrelated in this case.
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Abstract: Previous analysis on forecasting theory either assume knowing the
true parameters or assume the stationarity of the series. Not much are known
on the forecasting theory for nonstationary process with estimated parameters.
This paper investigates the recursive least square forecast for stationary and
nonstationary processes with unit roots. We first prove that the accumulated
forecast mean square error can be decomposed into two components, one of
which arises from estimation uncertainty and the other from the disturbance
term. The former, of the order of log(7T'), is of second order importance to
the latter term, of the order T. However, since the latter is common for all
predictors, it is the former that determines the property of each predictor.
Our theorem implies that the improvement of forecasting precision is of the
order of log(7T) when existence of unit root is properly detected and taken
into account. Also, our theorem leads to a new proof of strong consistency of
predictive least squares in model selection and a new test of unit root where
no regression is needed.

The simulation results confirm our theoretical findings. In addition, we find
that while mis-specification of AR order and under-specification of the number
of unit root have marginal impact on forecasting precision, over-specification
of the number of unit root strongly deteriorates the quality of long term fore-
cast. As for the empirical study using Taiwanese data, the results are mixed.
Adaptive forecast and imposing unit root improve forecast precision for some
cases but deteriorate forecasting precision for other cases.

1. Introduction

Forecasting future observations is one of the major purpose of building a time
series model. Even for the purpose of time series controlling, forecasting provide
the essential basis. For this purpose, autoregressive (AR) models are widely used
for their simplicity. For an AR(p) process,

(1) Yt = B1ryi—1 + BoYr—2 + -+ BplYr—p + €

where ¢(2) = 1 — 1z — --- — (B,2P the characteristic polynomial determines the
properties of the series. y; is called stationary or stable if all roots of ¢ are outside
the unit circle, unstable or nonstationary if some roots of ¢ are on the unit circle
and explosive if some roots of ¢ are inside the unit circle. Previous analysis on
forecasting theory either assume knowing true /3, or only consider the stationary
cases. For examples, Ing [8, 9] and Bhansali [1, 2] analyze the multistep prediction
of stationary AR processes while Ing [7] derives the mean squares prediction errors
of the least squares predictors in random walk model. Not much are known on
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the forecasting theory for unstable process with estimated parameters. This paper
investigates the recursive least square forecast for stable and unstable processes.

Let g; be the forecast of y; based upon information up to t—1. If one is interested
in one-period forecast, (y; —#:)? is the cost to be minimized. However, there are two
situations where the accumulated cost function, 22:1 (yx—1x )? is more appropriate.
First, in the sequential forecast case, (see Goodwin and Sin [6]) the forecaster are
updated sequentially over many periods and the accumulated cost function is the
target to be minimized. Second, for a single realization of time series, the averaged
accumulated cost function is often used as the yardstick to evaluate the out-of-
sample forecasting performance of alternative forecasters.

Ing [7] advocated adopting the accumulated cost function thzl E(ys —9¢)? over
the one-period expected loss function E(yr+1—97+1)%. For an AR(1) process, these
two quantities are respectively:

T
1 o o 20%log(T) log(T")

. 202 1
E(yri1—9r41)° =0+ = +o0 (‘)

T T

when true 5; = 1. In other words, the efficiency loss for not taking the unit root
into consideration is greater for the accumulated cost function than the one-period
cost function. See also Ing and Wei [11]. It is worth mentioning that Rissanen
[14] predictive least square (PLS) for model selection built upon accumulated cost
function minimization. See also Wei [18].

Under the assumption that F(e?|F;_1) = o2 a.s. for all t, where F;_; is the sigma
field generated by {zs,s < ¢t — 1}, then it can be shown that under appropriate

assumptions that Zle(yt —§;)? — 02 a.s. But by Chow [4], it is seen that

Z(yt t)? Z +Cr(140(1)) a.s. on the set {Cr — oo}

Z(yt — )% = Z e+ Crp(14+0(1)) a.s. on theset {Cr < oo}
t=1 t=1
where
T

Cr = Z(?/t — Ui — €t)2

t=1

While Zthl €2 is larger in order than Cr, it is common for all forecasters and
cannot be removed. Hence C'r becomes a more important quantity when evaluating
the performance of alternative forecasters.

Let (; be the least square estimate of

t -1y
Br = [Z Yi-1Y)_d] ZY;g_ﬂ/k
k=1 k=1

where Y; = {y1,...,y:}/, then g, = 32,15@—1 is the least square prediction of y; at
time ¢t — 1.
Let

p(2) = (2 — 1)z + 1)PIL_; (2% — 2cosOpz + 1)%m(2)
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where all roots of 7(z) are all outside the unit circle. Wei [17] proves that,

l
(2) Cr— (p+a*+b*+2 Z d2)o?log(T) in probability.
k=1

In other words, when ¢(z) has multiple unit roots the accumulated loss increase not
linearly with the number of unit roots but at the rate of the square of the number
of unit roots.

In this paper, we prove that when ¢(z) has no complex roots, the convergence
in (2) can be improved to be almost surely. This result could lead to a new proof
of strong consistency of PLS in AR model selection. It is also conjectured that the
result of almost surely convergence hold for the case of complex unit roots. We
conduct several simulation experiments to assess the convergence result for various
sample sizes. In addition, we also consider the impact of near unit root and model
mis-specification on multi-step forecasting. Finally, we apply our methods to six real
macroeconomic series in Taiwan. Forecasting performance of various forecasters and
adaptive forecaster are investigated.

The rest of the paper is organized as follows. The proof of the main theorem
is put in Section 2. Section 3 illustrates implications and applications of our main
theorem. Section 4 discusses multi-step and adaptive forecast. Monte Carlo results
are reported in Section 5 and Section 6 summarizes the empirical results. Section 7
concludes.

2. Main theorem

Assume that ¢; are i.i.d. random variables with E(e;) = 0 and 0 < E(e?) = 02 < oo.
Let -Xt = (SCt_l, . ,J?t_p)/,ST = Zle €¢ and TT = (—1)T zf:1<—1)t€t = €t +
(=1)Tp_;.

Lemma 1. Assume that X1 = AX; + &, , where ¢, = (€,0,...,0)" and the
eigenvalues of A are all inside the unit circle. Then

T
Thm M =0 a.s.
— 00 T
VT 21 SF
and
lim Zt 1 X =0 a.s.

7= /
OO T Zt:l Tt2

Proof. Tt is known from Lai and Wei [12] [pages 363 and 364] that
(3) lim —ZXX—Z a.s.

where Y is a positive definite matrix,

_ ST 82 802
4 1 =12t — 8.
) I;Ipn_,solip T?loglog(T) w2 -
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and
o ZtT—1 S? o?
5 1 f —=—=————"=—a.s.
(5) T T2 /loglog(T) g 7
Let ||u|| denote the Euclidean norm of a k-dimensional vector u = (uq,...,u)’,

2
ie., ||u||2 = Zle u?. By (3), ”)(TT” — 0 a.s. and in turn we have that

T 2 2
X X T
0< X3 X X)) Xy — 2l IXTT
t=1 )‘min(ztzl XtXt) )‘min(T Zt:l XtXt)
and
T
(6) X:) X X)"'Xr -0 as.
t=1
where Apin(A) denotes the minimal eigenvalue of matrix A.
Furthermore, by the law of iterative logarithm,
SQ
li — 1T —45% q.s.
lqrfl_,solip 2T loglogT o a8
Hence (5) implies that
S2, TloglogT
_°T _o| 55"
Zthl 52 T2 /loglogT
B (loglogT)?
) —o (e
=o(l) a.s
Now, let
T
ZT — Zt:l XtSt
12"
(T Y11 57)
Then
T-1 T—1
_ XS T-1 52
2r g = zr - ZGS g (1o (DR )
(T 2=1 S7) T3 1 St
XS T-1 T-1 S
_ TT T2 — Zpa 1 B TT 2)1/2
(T30, SP)V? T DD
XrS
(8) = L — Zr_10(1), by (7)

(T34, S3)1/2

T 1/2
. 1
=o(1) —o(1), since sup|/Zz]| g{fZHXtHZ} a.s.
T t=1

=0(1)
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But,
T T
Z XS = Z(AXt—l +&¢)St
t=1 t=1

T T T T
=A Z X181+ A Z X160+ Zé‘tst—l + Z €/
=1 =1 =1 =1

T T T
=AY XS+ o((Y 1K) (l0g 3 X e )F)
t=1 t=1

t=1 =
T

T
14+o
+o((D_St1) 2 (log Y S71)2 ) +0(T) as.
t=1 t=1

140

=)

T
= A(Z X, 18i-1) + o(T"*(log T)
t=1

+o((382)Y?(log T) %) + O(T)

t=1

This implies that

9) Zp=AZr_1(14+0(1))+0o(1) a.s.
Combining (8) and (9), we have that

(10) Zp_1—AZp_1=0(1) a.s.
Therefore, any limit point z of {zr} would satisfy

(11) Z-AZ =0

Since 1 is not an eigenvalue of A, Z = 0. Using the same method one can prove
that

Yy XiTh
(TS, T2

=0 a.s.

This proves Lemma 1. o

Lemma 2. If E|e}| < 0o for some o > 2, then

lim Zthl STt
T— T T
= \/Zt:l SE> i T7

=0 a.s.

Proof. Note that Ty = (—1)TTp = Zthl(—l)Tet. Using theorem 3.2 of Phillip in
page 234 of Eberlein and Taqqu [5], (4) and (5) hold if we replace S; by T;.
Therefore,
2 72
I7 = 17 — — 0 a.s.

T T
Zt:l Tt2 Zt:l Tt2
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7

Let
Zt 1 SeTy
\/Zt ) S7 Zt 1 T2
Then
SyT T lezst 2
U — Ur_q1 = T-T +ur_a( tfl ;& Z;A ; —1)
\/23—1 s2s o2 D=1 2o Ty
(12) - N
=o(1) a.s.
But
Z STy = Z (St—1+€)(—Ti—1 + &)
t=1
T T T
=— Z Si—1Tyi—1 + Z Si—1€t — Z Ti 16 + Z €
t=1 t=1 t=1 t=1
T—1 T T
==Y ST +o((D> St 1)) (og(d>  SE 1))
t=1 t=1 t=1
T T
+o((O_TH(og(d> T7))) +O(T) a.s.
t=1 t=1
Therefore,
wp = - et ST o8 S Jos(SI, TR
VL s2yr TN ST N>
T
+of \/ T T )
T2 S?

(13) Do TP Y iy S

=—Ur—1(1+0(1)) +o(1) a.s.
=—up_1+o(l) a.s.

Combining (12) and (13), since

ur =o(l) a.s. ur — 0 a.s. O
Now, we are ready to state our main result.
Let
(14) Yt = Bryi—1+ -+ Bpyi—p + €
be an AR(p) model with
(15) d(z)=1—[rz— - — [p2P
(16) =(1-2)(1+2)¥(z)
where U(z) =1—W¥;2—---— VU, 27 is a polynomial of order ¢ = p— 2 which has all

roots outside the unit circle.
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Theorem 1. Assume that the AR(p) model (14) satisfies (16). If {e;} is a se-
quence of i.i.d. random variables with Ele;|* < oo, where a > 2, and yo,...,Y1—p
is independent of {€;} then

1
(17) lim

T
/ JR—
T—oo logT log det(; YY) = (p+2) as.

where Yy = (Yts -, Yt—p+1)-

Proof. By Chan and Wei [3] there exists a non-singular p X p matrix @ such that
Qy; = (ug,vg, 1), where

Ty = ($t_1, c. ,l‘t_q)/,

Uy = Ug—1 T €,

vy = —V4_1 + € and

e =Wz g+ -+ Woxpyg.

Therefore, if we let z; = Qy,,

T / ) T o dot(ST ,
e wa) =l L) = SR

To show (17), it is sufficient to show

T
1
(18) Th—{I(l)o oaT log det(z z1zy) =(p+2) a.s.
t=1
Let
(Cu)™ 0 0
_ T _
Gr = o (XL o0 |,
0 0 T-12],
where I, is the ¢ x ¢ identity matrix.
Then
T 1 ar b/T
GT ZZ,:ZQGT = ar 1 Cé,w s
t=1 bT crI'r
where
T
ar = (Dopmg weve)
- T T )
(> i1 u%)(Zt:1 vp)|1/2
by — Zthl Uty
T )
(T3 24—y ui)'/?
T
cr = Zt;1 Uty ’
(T 324y vE)/?
and

L T
Ir= f;wtw;
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AT 2
A‘(o Iq_l)'

Then A has all eigenvalues inside the unit circle and x; = Ax;_1 + &;. Therefore,
there exist a non-singular matrix I" such that

Let

lim I'r =T a.s.

T—o0

Furthermore, by Lemma 1 and 2,

lim ar =0,

T—o0
lim e =0 a.s.
T—o0
Consequently,
T 100
Jim G Y zziGr=[010
t=1 oor
Since I' is nonsingular, (18) is proved if
T
log det(G7+ log(z u;) + log Z v?) +qlog T
t=1
(19) ~(p+ 2) logT a.s.

By (4) and (5) of Lemma 1,

T

T—>oo log Z

=1

Similar result holds for {v;}. Therefore,
logdet(G;?) ~ (44 q)logT = (p+2)logT a.s.

This completes our proof. O

Remark 1. Theorem 3 of Wei [17] shows that under similar assumptions as in our

analysis,
T
(20) Cr ~ o?log det(z Y, Y;) a.s.
t=1
Thus,

Cr ~ (p+2)o?log(T) a.s.

Remark 2. Theorem 1 and Remark 1 have an immediate implication for model
selection and can greatly simplify the proof of Theorem 3.5 of Wei [18]. Let p*
be known and pp = max{j : 3; # 0,1 < j < p*} as in (1). Denote PLSy(p) =
ZtT:tO (ys — 9¢)® where §; is the forecast of y; based upon information up to t-1
using the AR(p) model as in (1) and PLSy(pr) = inf{PLSy(j) : 0 < j < p*}. Wei
[18] showed that for both cases of underspecifying and overspecifying AR order (7),
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P(PLSr(j) > PLSr(po) eventually) = 1. Thus, P[pr = po eventually] = 1.
For the case of overspecification, Wei decomposed ¢,(z) into a sum of a unit root
component and a stable component, and worked out the differnece of Cr between
the true and the overspecified models. Our results can greatly simplify the proof.
Let €Y = ST (e — 9V — )2 where 99 is the forecast of y; at ¢ — 1 using
the AR(j) model. For the case of overspecification, 3; = 0,Vj > po. Applying
Theorem 1 and Remark 1, C(TJ) — (j+2)0?log(T) > (po+2)o?log(T) = C'(Tpo) a.s.
As for the case of underspecification, | < pg, the desired result, P[PLSy(l) >
PLSt(pg) eventually] = 1, is a direct consequence of Theorem 3.2 of Wei [18]
since Bp, # 0. Thus, P[pr =po  eventually] = 1.

3. Implications and applications of the main theorem

We have just proved that for an AR(p) process, Cr = po? log(T) if it is stationary
and Cr = (p + 1)o?log(T) if there is an root of 1. Our theorem implies that if
the existence of unit root is properly detected and unit root constraint is imposed
in forming the forecast, then Cr = (p — 1)o? log(T). That is, for model with unit
root, estimation is done for the differenced series rather than level of the series.
By so doing, we reduce Cr by 202 log(T) which could be substantial for large T
and o2. However, it should be noted that Zle (yr — gjt)2 is not severely affected
by existence of unit root since Cp, which is of the order of log(T'), is dominated
by Zz;l €2, which is of the order T'. This result is natural since it is the long term
forecast and not the short term forecast that unit root has strong impact. These
findings are further confirmed in our simulation study in Section 5.

In addition, our theorem implies that for AR(p) processes with root equal to or
less than 1 in magnitude, as T' — o0,

T
1
21 log det Y,Y,) — ¢ a.s.
( ) 10g(T)<tZ_; t t)

where ¢ = (p + 1) if there is a root of 1 and ¢ = p if all roots are less than one.
Equivalently,

. T 1/2
(22) dr = [T log det Z vy, —p] —d, a.s.
t=1

where d is 1 if there is a root of 1 and 0 if there is no unit root. Note that if p is
unknown but r > p is given, (22) is still true with r replacing p in (22) and in the
definition of y, in (17). In other words, our theorem proves that CZT can be used as a
test statistic for unit root. This issue will be further investigated in future research.

4. Multi-step and adaptive forecast

Our previous analysis focuses on 1-step forecast and there are cases when multiple-
step forecast is the main concern. It is conjectured that our results can be extended
to multi-step forecast but the issue will be pursued elsewhere. Instead, we shall
concentrate our discussion on the relationship between model misspecification and
adaptive forecast.
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By (1), we have

(23) Ytrh = BrlYish—1 + -+ Bplith—p + €ttn
and
(24) Jion = Bilisn_1+ -+ Bolitsh—p

where gryp—r = y for h < k. So, (24) can be recursively solved in the order of
Ut+15 Yt+2, - - - » Yt+h- This is the conventional Box-Jenkins multi-step forecaster.

Another way of generating the multi-step forecast is to solve the model that
minimizes the multi-step forecast error and then use it to form multi-step forecast
(see Ing [8], Bhansali [2], Weiss [19], and Tiao and Tsay [15]). More specifically, the
h-step forecast error e;(h) at time t is

er(h) = eon + Viepn—1+ -+ Vp_ 1641

where W, is defined by [1—3B—---—3,BP] "t = Ug+W¥;B+---. The cost function
to be minimized is

T—h
(25) C(h) =Y e;(h)

Note that for different h different models are used and this explains the name
"adaptive’ forecast. Solving (25) involves nonlinear optimization as ¥; is a nonlinear
function of (81, ..., Bp). In practice, approximate linear model is used. That is, the
following regression is performed

Yt = Q1Y¢—h + Q2Yt—n—1 + -+ ApYi—h—pr1 + bt

and

Ytah = Q1Y + Q2Yp—1 + - + apYt—pt1

The idea behind the adaptive forecast is that if the model is misspecified, that
is, p is mistakenly chosen, then this mistake will be amplified radically for the
long term forecast. Adaptive forecast could avoid this compounding impact. It is
reasonable to expect good performance of Box-Jenkins forecaster for the correctly
specified model and good performance of adaptive forecaster for misspecified model.

Ing, Lin and Yu [10] propose a predictor selection criterion to choose the best
combination of prediction models (AR lags) and prediction methods (adaptive or
plug-in). When there is only one unit root, the proposed method is proved to be
asymptotically efficient in the sense that the predictor converges with probability
one to the optimal predictor which has minimal loss function.

5. Monte Carlo experiments

To assess the theoretical results obtained in previous section and acquire experience
about empirical analysis in the sequel, we conduct two Monte Carol experiments.
The first is to investigate the finite sample properties of Cr in theorem 1 and the
second on forecast comparison between alternative forecasters. For both cases, we
generate data from the following four models:
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e Model 1: (1-0.5B)?2(1-B)y; = ¢ or y; = 2y;_1—1.25y;_2+0.25y;_3-+¢€;.
Roots are 0.5, 0.5 and 1.0 respectively.

e Model 2: (1 —05B)%(1 —.99B)y; = ¢ or y; = 1.99y; 1 — 1.24y; o +
0.2475yt_3 + €
Roots are 0.5, 0.5 and 0.99 respectively.

e Model 3: (1 — 0.5B)%(1 — .95B)y; = ¢ or y; = 1.95y; 1 — 1.2y, o +
0-2375%73 + €
Roots are 0.5, 0.5 and 0.95 respectively.

e Model 4: (1 —0.5B)3y; =¢; or y; = 1.5y;_1 — 0.75y;_o + 0.125y;_3 + ¢
All roots are 0.5.

o2 is set to be 1 for all models.

5.1. Monte Carlo experiment on Cr

The number of replications are 1000 for each experiment. For each, realization, 10
sets of samples are drawn from each model with sample size, T, varying from 100,
200 to 1000. For each sample, starting from ¢t = to(=10), the model parameters are
estimated and is then used to forecast t+1. Then we reestimate the model using
sample from 1 to ¢ 4+ 1 and forecast ¢ + 2. The process is repeated until when T — 1
sample is used to estimate the model and then used to forecast yr. The forecast
mean square error is then summed from to + 1 to T' to obtain C’T. Finally, we
compute the averaged Cr obtained from 1000 replications. In other words,

(26) éT _ Z}iﬂo ;[:ti (?)i,tﬂ - yi,t+1)2

(1000)(T — to)

In addition, for each model, we repeat the procedure above with the constraint
that one of the root is equal to one. The results are summarized in Table 1. As one
can easily see, over 40 millions regressions have to performed to obtain this table
and usage of updating formula can significantly reduce the computation burden.
In Table 1, the first column is sample size. Results for first model with 0 unit root
(d = 0) and 1 unit root (d = 1) are put in second and third columns. Results for
the other three models are put in columns 4 to 9. Our theory predicts that: (1)

TABLE 1
Cr for simulated data

Roots are
0.5,0.5,1.0 0.5,0.5,0.99 0.5,0.5,0.95 0.5,0.5,0.5

T d=0 d=1 d=0 d=1 d=0 d=1 d=0 d=1
100 23.47 12.33 23.47 12.33 23.80 15.36 21.07 23.22
200 27.55 14.71 27.55 14.71 27.71 20.19 24.28 37.60
300 29.90 16.06 29.90 16.06 29.83 23.90 26.09 50.86
400 31.49 17.00 31.49 17.00 31.21 27.17 27.32 63.57
500 32.75 17.73 32.75 17.73 32.26 30.27 28.29 75.96
600 33.76 18.30 33.76 18.30 33.09 33.12 29.04 88.12
700 34.62 18.79 34.62 18.79 33.80 36.01 29.69 100.41
800 35.38 19.22 35.38 19.22 34.40 38.89 30.26 112.72
900 35.99 19.60 35.99 19.60 34.94 41.65 30.76 124.80

1000 36.55 19.94 36.55 19.94 35.42 44.37 31.21 136.93

B 5.2849 2.8583 5.2849 2.8583 5.1947 5.2064 4.5635 13.8536
R?  0.9988 0.9902 0.9988 0.9902 0.9920 0.6315 0.9930 0.4471
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TABLE 2
MSE for simulated Data

Roots are
0.5,0.5,1.0 0.5,0.5,0.99 0.5,0.5,0.95 0.5,0.5,0.5

T d=0 d=1 d=0 d=1 d=0 d=1 d=20 d=1
100 117.81 106.92 117.81 106.92 118.33 110.06 115.59 118.17
200 227.10 214.61 227.10 214.61 227.36 220.24 224.11 237.66
300 334.88 321.53 334.88 321.53 334.97 329.57 331.53 356.59
400 441.30 427.33 441.30 427.33 441.27 437.73 437.66 474.10
500 547.43 533.00 547.43 533.00 547.19 545.69 543.55 591.33
600 653.42 638.61 653.42 638.61 653.01 653.67 649.36 708.93
700 759.51 744.24 759.51 744.24 758.92 761.63 755.18 826.46
800 865.20 849.45 865.20 849.45 864.35 869.13 860.55 943.18
900 970.92 954.95 970.92 954.95 970.01 976.96 966.16  1060.21

1000 1076.76 1060.56 1076.76 1060.56  1075.72 1084.89 1071.91 1177.63

Cr increases linearly with log(T — to) and (2) Cp without unit root constraint is 2
times C’T with unit root constraint.

We run a simple regression of Cr against log(T — to) without intercept for each
model and report the regression coefficients and R? in the last row of Table 1.
For column 2 and 3 of the table, the regression coefficients are 5.2849 and 2.8583
respectively while R? are greater than 0.99 for both cases. In summary, model 1
conforms the theoretical results.

As for model 2, one of the root is 0.99. Since it is the 1-step that is the main
concern here, the result is almost the same with model 1. This is consistent with
the findings of Lin and Tsay [13] that unit root or not does not matter much for
short term forecast.

For model 3, the largest root is 0.95 which is not close to 1 enough. Imposing
unit root constraint produces much larger Cr and the stable relationship between
Cr and log(T) deteriorates greatly as is seen from poor R2. This can be justified
by the fact that differencing a stationary process produce a unit root in the MA
component which can not be approximated by high order AR. The situation become
much worse for model 4 where all roots are equal to 0.5.

For the purpose of comparison, we also report the corresponding conventional
MSE (Z;‘F:l(yt —1¢)?) for the same 4 models above in Table 2. We observed from

the table that contrary to the case for Cr, the MSE for d = 0 is about the same
as for d = 1. This confirms our previous analysis that Cr, though an important
quantity for determining the quality of forecast, is of second order importance as
compared to Z?:to 41 2. For 1-step forecast the distinction between unit root and
near unit root does not matter much.

5.2. Monte Carlo experiment on short-term and long-term forecast
comparison

This simulation is designed to evaluate the short-term and long-term forecasting
performance of alternative forecasters. The number of replications are again 1000.
For each replication, 400 observations are generated from the four models above.
The first 300 observations are reserved for estimation and then used to produce 1 to
60 steps forecast. Next, the model are re-estimated using the first 301 observations
and then used to forecast 1 to 60 steps ahead. The procedure is repeated until
when the first 399 observations is used for estimation and the last 1-step ahead
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forecast is formed. So, we have 100 1-step forecasts, 99 2-step forecasts and 40
60-step forecasts. Then, we compute root mean square error (RMSE) for forecast
of each step. Finally, the resulting RMSE is averaged over 1000 replications. More
specifically, letting €; (k) be the k period ahead forecast error at time t of the i-th
replication. Then

it Y0 4 (6)
(27) RMSE(() = E(() = (1000)(100 — £+ 1)

The simulation results are put in Tables 3 to 6. In each table, column 1 is steps of
forecast, column 2 is the RMSE for model with p = 3 and d = 0, serving as the
benchmark for forecast comparison. Columns 3 to 7 are E(¢) ratios of model with
various p and d to column 2.

From these tables we observe the following. First, for stationary processes, the
E(¢) for the correctly model converges to a constant with the rate of convergence
depending upon the value of the root. For root of 0.5, the E(¢) approach a constant
as early as ¢ = 6 while for root of 0.95 ¢ does not stabilize until 30. As for root
of .99, it is so close to 1 and FE(¥) is still increasing after ¢ = 60. For process with
unit root E(¢) increases with ¢ for all the whole range of ¢. Second, the true model
outperforms other misspecified models in forecasting. Third, over-specification of
unit results in poor forecast. For the case of model 4 (Table 6) E({) for d =1 is 5%
higher than d = 0 and jumps to more than 50% for ¢ greater than 40. For model
3, one of the root is 0.95 and the forecaster for d = 1 is still 45% worse than d = 0
though a little better than model 4. As for model 2, one of the root is 0.99 and
for up to 20 steps, d = 1 fares as well as d = 0 and is only 10% worse than the
true model at 60-step forecast. Fourth, under-specification of unit root only results
in small increase of E(¢). From column 2 of Table 3, the inefficiency is less than
4% from 1-step to 60-step forecasts. Fifth, under- or over-specification of AR order

TABLE 3
Forecasting comparison for simulated data: true p = 3, roots are 0.5, 0.5, 1.0
Steps E(¢) E(¢) ratio of MSE to model with p=3,d =0

£ p=3 p=3 p=2 p=2 p=4 p=4
d=20 d=1 d=20 d=1 d=20 d=1

1 3.26 99.71 103.25 102.98 100.15 99.86
2 7.34 99.49 102.73 102.23 100.15 99.64
3 11.69 99.27 102.52 101.78 100.15 99.41
4 15.92 99.04 102.58 101.56 100.14 99.18
5 19.89 98.80 102.77 101.44 100.14 98.94
6 23.57 98.57 103.01 101.32 100.14 98.69
7 26.95 98.34 103.26 101.18 100.14 98.46
8 30.08 98.12 103.51 101.01 100.15 98.24
9 33.00 97.91 103.76 100.81 100.15 98.03
10 35.72 97.72 104.01 100.59 100.15 97.83
15 47.47 97.06 105.09 99.56 100.14 97.12
20 57.04 96.73 105.83 98.81 100.15 96.77
25 65.29 96.65 106.17 98.39 100.14 96.68
30 72.70 96.61 106.24 98.05 100.12 96.63
35 79.58 96.67 106.08 97.95 100.09 96.69
40 85.99 96.76 105.70 97.81 100.05 96.78
45 92.08 96.92 105.24 97.76 100.01 96.94
50 98.03 97.12 104.66 97.86 99.98 97.14
55 103.82 97.21 104.05 97.97 99.94 97.23

60 109.21 97.26 103.43 97.96 99.87 97.30
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TABLE 4
Forecasting comparison for simulate model: true p = 3, roots are 0.5, 0.5, 0.99
Steps E(¢) E(¢) ratio of MSE to model with p =3,d =0

£: p=3 p=3 p=2 p=2 p=4 p=4
d=0 d=1 d=0 d=1 d=20 d=1

1 3.26 99.91 103.18 103.27 100.15 100.06

2 7.32 99.85 102.70 102.74 100.15 99.99

3 11.61 99.79 102.53 102.51 100.15 99.93

4 15.76 99.74 102.61 102.54 100.14 99.87

5 19.62 99.70 102.81 102.67 100.14 99.82

6 23.14 99.66 103.06 102.82 100.15 99.77

7 26.36 99.63 103.31 102.95 100.15 99.75

8 29.30 99.62 103.57 103.04 100.17 99.73

9 32.00 99.63 103.82 103.10 100.18 99.72

10 34.50 99.65 104.06 103.14 100.18 99.74

15 44.87 100.10 105.10 103.38 100.22 100.13
20 52.75 100.98 105.62 103.95 100.26 100.98
25 59.01 102.16 105.59 104.90 100.27 102.14
30 64.21 103.31 105.24 105.83 100.25 103.28
35 68.72 104.51 104.66 106.92 100.21 104.47
40 72.71 105.65 103.95 107.84 100.15 105.60
45 76.32 106.85 103.14 108.83 100.11 106.80
50 79.68 108.11 102.32 110.03 100.07 108.06
55 82.76 109.27 101.56 111.27 100.03 109.22

60 85.54 110.20 100.83 112.15 99.98 110.15
TABLE 5
Forecasting comparison for simulated model: true p = 3, roots are 0.5, 0.5, 0.95
Steps E(¢) E(£) ratio of MSE to model with p =3,d =0

£: p=3 p=3 p=2 p=2 p=4 p=4
d=0 d=1 d=0 d=1 d=0 d=1

1 3.26 100.87 102.92 104.61 100.16 101.00
2 7.19 101.59 102.50 105.05 100.17 101.70
3 11.20 102.35 102.39 105.87 100.17 102.43
4 14.93 103.15 102.50 107.02 100.18 103.22
5 18.24 104.01 102.69 108.34 100.19 104.06
6 21.11 104.92 102.91 109.71 100.20 104.94
7 23.59 105.87 103.11 111.09 100.22 105.86
8 25.72 106.85 103.29 112.41 100.24 106.81
9 27.57 107.85 103.46 113.70 100.26 107.79
10 29.17 108.88 103.60 114.95 100.28 108.79
15 34.68 114.26 103.91 120.95 100.35 114.08
20 37.59 119.71 103.34 126.69 100.37 119.46
25 39.16 124.73 102.28 132.01 100.32 124.42
30 40.04 128.94 101.30 136.47 100.26 128.60
35 40.61 132.40 100.65 140.17 100.19 132.01
40 41.02 135.16 100.27 142.89 100.14 134.75
45 41.31 138.01 99.99 145.70 100.11 137.58
50 41.50 140.97 99.79 148.84 100.08 140.50
55 41.61 143.76 99.68 152.10 100.06 143.26
60 41.68 145.57 99.66 154.16 100.04 145.04
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TABLE 6

Forecasting comparison for simulated data: true p = 3, roots are all 0.5

Steps E(¢) E(£) ratio of MSE to model with p=3,d=0
£ p=3 p=3 p=2 p=2 p=4 p=4
d=20 d=1 d=20 d=1 d=0 d=1
1 3.26 105.23 100.68 108.65 100.13 104.82
2 5.90 110.01 100.58 114.55 100.13 109.11
3 7.70 115.20 100.65 121.43 100.13 113.78
4 8.74 120.67 100.72 128.63 100.13 118.68
5 9.28 126.00 100.77 135.33 100.14 123.50
6 9.53 130.73 100.78 140.98 100.14 127.93
7 9.64 134.52 100.74 145.38 100.14 131.62
8 9.68 137.31 100.64 148.61 100.13 134.39
9 9.69 139.30 100.49 150.91 100.12 136.32
10 9.69 140.71 100.32 152.55 100.10 137.64
15 9.68 144.26 99.98 156.66 100.04 140.87
20 9.68 145.69 99.98 158.33 100.02 142.22
25 9.66 147.22 99.98 160.24 100.00 143.62
30 9.66 148.04 99.98 161.31 100.00 144.37
35 9.67 148.70 99.98 162.52 100.00 144.86
40 9.68 148.98 99.99 162.92 100.00 145.11
45 9.68 150.37 99.99 164.35 100.00 146.48
50 9.69 153.41 99.98 167.67 99.99 149.35
55 9.68 155.18 99.99 169.99 99.99 150.98
60 9.66 155.33 99.99 170.78 99.99 150.92

only affects the forecast precision marginally. The E(¢) for all models are within
6% to the true model for all forecasts up to 60-step ahead.

To sum up, the simulation show that slight misspecification of AR order and
under specification of unit root are not serious in forecasting but over-specification
of unit root could result in poor forecast when the root of characteristic polynomial
is far from 1. Yet, improvement of forecasting precision in absolute term could be
substantial for large sample when the existence of unit root is appropriately taken
into consideration.

6. Empirical results
6.1. Data

For empirical analysis, we analyze 6 most frequently used data sets in Taiwan in-
cluding Gross Domestic Product (GDP), Consumer Price Indices (CPI), Wholesale
Price Indices (WPI), Interest Rates( IR), Exchange Rate of New Taiwan Dollar to
US Dollar(RX) and money supply(M1B). All series are quarterly data taken from
the AREMOS databank. The sample period is 1961:1 to 1995:4 except for M1B
which ranges between 1961:3 to 1995:4. So, sample size is 138 for M1B and 140 for
the rest series. All series are seasonally unadjusted.

6.2. Order selection

Selecting lag order p and forecasting method simultaneously is analyzed in Ing,
Lin and Yu [10]. Here, we follow the conventional wisdom by using AIC and chi-
square statistics to determine p. When the AIC has a clear minimal, we select the
order corresponding to the minimal AIC. When AIC is decreasing without a clear
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minimum, we use chi-square statistics to select the last significant lag. It turns out
that CPI, WPI and RX have order 2, interest rate has order 6, M1B has order 3
and GDP has order 8. The high order indicates the possible existence of seasonal
unit root which is not investigated here.

6.3. Forecasting procedure

For each series, the first 100 observations are reserved for estimation and 1- to
20-step forecasts are computed. Then the model are re-estimated using first 101
observations and another 1- to 20-step forecasts are computed. The procedure is
repeated until when the first 7" — 1 observations are used to estimate the model
and the last 1-step forecast is computed. Hence, we have 40 1-step forecasts, 39
2-step forecasts and 20 20-step forecasts except for M1B where there are 38 1-step
forecasts and 18 20-step forecasts. For each step, the average root mean square error
is computed.

6.4. Results

The results are reported in Tables 7 to 12. From the tables we observe the following.
First, E(¢) increases linearly with ¢ for all series except for Interest Rates. This
seems to suggest that except IR, all variables have a unit root. Second, regarding
the Box-Jenkins forecast, imposing unit root constraint result in poor forecast for
all steps ahead for WPI, CPI, GDP and IR. Especially for IR, the RMSE for d = 1
is 200% higher than that for d = 0. This seems to be consistent with the finding that
its F(¢) converges to a constant very quickly. However, for RX forecast with d = 1
fares much better than forecast with d = 0. The precision gain from imposing unit
root is about 5% for 1-step forecast and then up to over 30% for 20-step forecast.
This seems to indirectly support the efficient market hypothesis for the foreign

TABLE 7
Forecasting comparison for GDP

E(£) ratio to model BJ, d =0

¢ E(¢) BJ,d=1 Adap, d =0 Adap, d =1
1 12258.04 101.94 100.00 99.22
2 18024.46 104.69 101.47 179.52
3 21232.71 106.87 115.10 151.59
4 24719.28 108.70 106.82 83.76
5 31938.87 110.92 102.59 99.66
6 37316.81 112.05 116.19 125.65
7 40063.38 112.71 132.45 98.06
8 40505.82 109.83 147.52 45.57
9 46605.77 111.94 158.02 65.51
10 52066.58 116.89 159.53 103.16
11 57551.40 121.35 157.04 91.13
12 59480.32 120.18 169.46 66.06
13 66651.35 120.95 181.21 85.92
14 74760.98 123.52 184.47 109.41
15 79555.22 124.66 174.53 94.18
16 81162.26 120.64 173.44 74.78
17 91194.77 117.99 185.95 61.83
18 99975.45 122.09 181.84 99.95
19 105256.88 125.83 162.48 83.94

20 108809.60 122.63 162.14 55.65
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TABLE 8
Forecasting comparison for CPI

steps E(¢) ratio to model BJ, d =0
14 E(¢) BJ,d=1 Adap, d =0 Adap,d=1
1 1.12 99.39 100.00 101.46
2 1.71 98.81 83.53 77.07
3 1.82 99.20 100.10 69.33
4 1.83 99.75 123.42 79.90
5 2.09 98.49 128.11 84.27
6 2.51 99.73 124.42 81.85
7 2.54 101.83 148.32 89.80
8 2.65 102.66 165.72 95.17
9 2.97 102.13 163.20 95.48
10 3.19 101.81 171.06 95.60
11 3.06 106.53 209.48 98.15
12 3.12 108.45 237.77 96.83
13 3.55 106.61 236.77 86.76
14 3.71 107.33 257.23 89.74
15 3.76 111.25 289.99 98.66
16 3.83 113.36 326.41 99.02
17 4.32 110.28 336.41 91.27
18 4.50 111.09 372.91 89.71
19 4.44 113.86 431.77 86.81
20 4.79 111.22 455.83 80.87

TABLE 9
Forecasting comparison for WPI

E(¢) ratio to model BJ, d =0
£ E(¢) BJ,d=1 Adap,d =0 Adap,d=1
1 1.16 102.47 100.00 101.19
2 2.13 103.43 58.78 93.97
3 3.05 104.54 50.13 97.35
4 3.88 105.55 47.53 96.59
5 4.56 107.43 49.39 108.12
6 5.07 109.64 53.84 113.24
7 5.41 112.38 61.27 113.87
8 5.58 116.54 69.88 120.83
9 5.89 120.00 76.71 132.83
10 6.36 121.66 81.36 140.82
11 6.93 122.71 86.87 137.69
12 7.53 123.95 90.96 135.62
13 8.02 125.92 96.49 141.24
14 8.48 127.93 103.98 150.77
15 8.82 130.43 113.97 157.73
16 8.87 135.06 127.60 157.82
17 8.97 139.02 141.47 173.71
18 9.15 142.11 157.87 191.82
19 9.52 143.65 174.20 193.95
20 10.19 142.43 186.53 178.22
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TABLE 10
Forecasting comparison for RX

E(?) ratio to model BJ, d =10

14 E(¢) BJ,d=1 Adap, d=0 Adap,d=1
1 .66 95.38 100.00 99.40
2 1.32 92.38 53.40 90.39
3 2.01 89.53 40.91 81.93
4 2.77 88.16 37.25 75.67
5 3.41 87.09 38.60 73.91
6 3.99 86.26 42.45 72.13
7 4.42 85.01 47.25 72.20
8 4.71 83.30 54.59 70.22
9 5.03 82.30 61.77 68.81
10 5.29 81.93 68.35 72.37
11 5.58 81.90 74.77 75.55
12 5.94 81.98 79.20 77.42
13 6.31 81.57 81.79 76.30
14 6.67 80.44 83.67 74.67
15 6.93 78.33 85.17 74.42
16 7.11 75.67 86.40 70.66
17 7.34 72.78 86.34 62.28
18 7.56 70.48 86.23 58.96
19 7.87 69.58 85.50 59.46
20 8.24 69.51 83.95 51.02
TABLE 11
Forecasting comparison for M1B
E(¢) ratio to model BJ, d =0
14 E(¥) BJ,d=1 Adap, d=0 Adap,d=1
1 96297.39 92.81 100.00 102.13
2 152389.01 94.00 65.10 86.82
3 208305.92 94.22 52.25 78.01
4 266876.68 94.73 52.56 71.28
5 377584.71 92.59 55.08 61.12
6 481271.98 94.39 61.18 56.24
7 532886.35 99.13 59.46 55.99
8 595646.12 101.27 71.45 49.52
9 668073.88 108.19 84.69 50.29
10 774390.51 113.50 92.29 49.31
11 821482.40 123.40 89.06 50.77
12 886619.83 129.37 90.62 46.46
13 1052170.67 129.01 89.81 42.85
14 1158059.45 143.04 86.93 44.22
15 1335812.44 145.93 70.46 44.98
16 1378939.42 165.55 60.58 42.82
17 1649465.49 162.79 56.17 46.78
18 1748042.18 183.13 61.66 45.31
19 1893323.08 200.50 51.17 41.98
20 2079603.50 214.50 50.45 28.34
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TABLE 12
Forecasting comparison for IR

E(¢) ratio to model BJ, d =0

£ E(¢) BJ,d=1 Adap,d =0 Adap,d=1
1 0.72 104.58 100.00 106.60
2 1.16 108.68 67.94 79.35
3 1.24 114.84 64.70 108.65
4 1.38 120.28 58.85 127.00
5 1.63 124.48 48.70 125.50
6 1.82 130.14 46.05 120.60
7 1.83 138.25 50.44 124.52
8 1.82 146.64 55.74 139.96
9 1.83 154.97 58.67 170.56
10 1.83 164.17 59.64 191.38
11 1.76 175.17 60.49 208.55
12 1.70 185.17 63.08 211.01
13 1.67 194.23 65.27 208.26
14 1.61 204.93 75.07 213.25
15 1.52 216.39 91.16 219.55
16 1.36 237.94 94.70 238.53
17 1.27 254.73 108.89 239.50
18 1.10 289.28 101.44 237.00
19 0.84 370.74 131.31 269.90
20 0.59 521.61 199.32 349.14

exchange market in Taiwan. As for M1B, imposing unit root constraint improves
forecast precision from 1- to 7-step forecasts but deteriorates forecast precision from
8-step to 20-step forecasts. The inefficiency is more than 100% for 19 and 20-step
forecasts. Third, the performance of adaptive forecaster is mixed. For RX and M1B,
adaptive forecast with d = 0 and d = 1 consistently outperforms conventional Box-
Jenkins’ forecast by a large margin. The precision gain could go as high as 50%.
For CPI adaptive forecast performs poorly for d = 0 but very well for d = 1. For
IR and WPI adaptive forecast with d = 0 performs well in short and medium term
forecast but fares poorly in long term forecast. But adaptive forecast with d = 1
performs okay in the short term but very poorly in the long term. The case GDP
is quite interesting. While adaptive forecast with d = 0 fares poorly for short and
long term forecast, the performance of adaptive forecast with d = 1 jumps up and
down across steps. This seems to suggest that seasonality plays an important for the
differenced GDP which is supported by the corresponding autocorrelation function.
This issue will be investigated in future study.

To sum up, the empirical findings are mixed. Imposing unit root constraint
might improve forecast precision for some cases but deteriorate forecast precision in
others. Also, adaptive forecast differs from Box-Jenkins’ forecast by the big margin.
Most frequently, it could improve short to medium term forecast but result in poor
long term forecast. However, for some cases, it could produce either better or worse
forecast for forecast of all steps. Further study is needed to determine the influencing
factors.

7. Conclusions

We have analyzed the least square forecaster from various aspects. From the theo-
retical viewpoint, we prove that Cp, the most important quantity when evaluating
the performance of 1-step forecasters is equal to (p + d)o? log(T") where d is 1 or 0
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depending if there is a unit root. This result could be used to analyze the gain in
forecasting precision when unit root is detected and is taken into account. Further,
this theorem can lead to a simple proof of the strong consistency of PLS in AR
model selection and a new test of unit root.

Our simulation analysis confirms the theoretical results. In addition, we also
learn that while mis-specification of AR order has marginal impact on forecasting
precision over-specification of unit root strongly deteriorate the quality of long
term forecast. As for the empirical study using Taiwanese data, the result is mixed.
Adaptive forecast and imposing unit root improves forecast precision for some cases
but deteriorates forecasting precision for other cases.
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Abstract: In the application of autoregressive models the order of the model
is often estimated using either a sequence of likelihood ratio tests, a likeli-
hood based information criterion, or a residual based test. The properties of
such procedures has been discussed extensively under the assumption that the
characteristic roots of the autoregression are stationary. While non-stationary
situations have also been considered the results in the literature depend on
conditions to the characteristic roots. It is here shown that these methods for
lag length determination can be used regardless of the assumption to the char-
acteristic roots and also in the presence of deterministic terms. The proofs are
based on methods developed by C. Z. Wei in his joint work with T. L. Lai.

1. Introduction

Order determination for stationary autoregressive time series has been discussed
extensively in the literature. The three prevailing methods are either to test re-
dundance of the last lag using a likelihood based test, to estimate the lag length
consistently using an information criteria, or to investigate the residuals of a fitted
model with respect to autocorrelation. It is shown that these methods can be used
regardless of any assumptions to the characteristic roots. This is important in ap-
plications, as the question of lag length can be addressed without having to locate
the characteristic roots.

The statistical model is given by a p-dimensional time series X; of length K + T
satisfying a Kth order vector autoregressive equation

K
(11) Xt:ZAlXt,l—I—MDt—{—E’t, tzl,...,T,

=1
conditional on the initial values Xg,..., X;_g. The effective sample will remain
X1,...,Xr when discussing autoregressions with k < K to allow comparison of

likelihood values. The component D; is a vector of deterministic terms such as a
constant, a linear trend, or seasonal dummies. For the sake of defining a likeli-
hood function it is initially assumed that the innovations, (g¢), are independently,
identically normal, N, (0, ), distributed and independent of the initial values.

The aim is to determine the largest non-trivial order for the time series, kg say
with 0 < kg < K, so Ay, # 0 and A; = 0 for j > ky. Three approaches are available
of which the first is based on a likelihood ratio test for Ay, = 0 where 1 < k < K.
The log likelihood ratio test statistic is

LR (Aj, = 0) = T'log det Q1 — T log det Q,
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where Qk_ j is the conditional maximum likelihood estimator based on the observa-
tions X7, ..., X given the initial values, see (3.2) below. The statistic LR is proved
to be asymptotically x? under the hypothesis kg < k, generalising results for the
purely non-explosive case. Since the result does not depend on the characteristic
roots, it can be used for lag length determination before locating the characteristic
roots.

The second approach is to estimate kg by the argument k that maximises a
penalised likelihood, or equivalently, minimises an information criteria of the type

(1.2) ®; = logdet Q; +j@, j=0,...,K.

In the literature there are several candidates for the penalty function f. Akaike
has f(T) = 2p?, Schwarz [23] has f(T) = p*logT while Hannan and Quinn
[10] and Quinn [22] have f(T) = 2p*loglogT. For stationary processes with-
out deterministic components it has been shown that the estimator k is weakly
consistent if f(T) = o(T) and f(T) — oo as T increases, while Hannan and
Quinn show, for p = 1, that strong consistency is obtained if f(7") = o(T') and
liminfr_, o f(T)/loglogT > 2, while strong consistency cannot be obtained if
limsupy_, . f(T)/loglogT < 2. In other words the estimators of Hannan and
Quinn and of Schwarz are consistent while Akaike’s estimator is inconsistent. Some
generalisations to non-explosive processes have been given by for instance Paulsen
[20], Potscher [21] and Tsay [24]. Potscher also considered the purely explosive
case but did not obtain a common feasible rate for f(7') for the explosive and the
non-explosive case. In the following consistency is shown for a penalty function
f(T) not depending on the characteristic roots, showing that the penalised likeli-
hood approach also can be applied to lag length determination prior to locating the
characteristic roots.

A third approach is a residual based mis-specification test. This is implemented
in particular in econometric computer packages. In a first step the residuals, &;
say, are computed from the model (1.1) with £ — 1 lags, say. In a second step an
auxillary regression is considered where &, is regressed on lagged values as well as the
regressors in equation (1.1). It is argued that a test based on the squared multiple
correlation arising from the auxillary regression is asymptotically equivalent to the
above mentioned likelihood ratio test statistic also in the general case.

Like the work of P6tscher [21] the proofs in this paper are based on the joint work
of C. Z. Wei and T. L. Lai on the strong consistency of least squares estimators
in autoregressions, see for instance Lai and Wei [15]. As pointed out in Potscher’s
Remark 1 to his Theorem 3.3 these results are not quite strong enough to facilitate
common feasible rates for the penalty function. Two important ingredients in the
presented proofs are therefore an algebraic decomposition exploiting partitioned
inversion along with a generalisation of Lai and Wei’s work given by Nielsen [17].
Whereas the former paper is concerned with showing that the least squares estima-
tor for the autoregressive estimator is consistent, the latter paper provides a more
detailed discussion of the rate of consistency as well as it allows deterministic terms
in the autoregression.

The following notation is used throughout the paper: For a quadratic matrix « let
tr(a) denote the trace and A(«) the set of eigenvalues, so that |[A(«)| < 1 means that
all eigenvalues have absolute value less than one. When « is also symmetric then
Amin (@) and Apax(c) denote the smallest and the largest eigenvalue respectively.
The abbreviations a.s. and P are used for properties holding almost surely and in
probability, respectively.
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2. Results

Before presenting the results the assumptions and notation is set up. Then the
results follow for the three approaches.

2.1. Assumptions and notation

The asymptotic analysis is to a large extent based on results of Lai and Wei [15]
with appropriate modifications to the situation with deterministic terms in Nielsen
[17]. Following that analysis the assumption to the innovations of independence
and normality made above can be relaxed so that the sequence of innovations
(e¢) is a martingale difference sequence with respect to an increasing sequence of
o-fields (F;), that is: the innovations Xj_g,..., Xy are Fgp-measurable and ¢; is

Fi-measurable with E(g¢|F;_1) 2 0, which is assumed to satisfy
(2.1) sup E{(ghee)M?|F_1} C o for some A > 4.
t

To establish an asymptotic theory for the LR-statistic it is assumed that
(22) E (&":tf;’ftfl) =4 Q,

where € is positive definite. For the asymptotic theory for the information criteria
this can be relaxed to

(2.3) B inf A E (07 F11) 0.

t—

The deterministic term D, is a vector of terms such as a constant, a linear
trend, or periodic functions like seasonal dummies. Inspired by Johansen [13] the
deterministic terms are required to satisfy the difference equation

(24) Dt = DDt—l,

where D has characteristic roots on the complex unit circle. For example,

10 . 1
oo (1%) wi o ()

will generate a constant and a dummy for a biannual frequency. The deterministic
term Dy is assumed to have linearly independent coordinates. That is:

(2.5) A(D)| =1, rank(Di,..., Dgmp) = dimD.

In the analysis it is convenient to introduce the companion form

Xt B M Xt—l €
2.6 = ’
(2.6) (Dt> <0D> (Dt—1)+(0)
where X;_1 = (X[_4,. .. 7X£—k+1)/ and
B:{AI-HAk_QAIB—l}, L:{ Ip }7 N:LMD7 € = L&y,

Iy (k—2) O(k—2)pxp

The process X; can be decomposed using a similarity transformation. Following
Herstein ([11], p. 308) there exists a regular, real matrix M that block-diagonalises



96 B. Nielsen

B so that MBM~! = diag(U,V, W) is a real block diagonal matrix where the
eigenvalues of the diagonal blocks U, V, W satisfy [A(U)| < 1, |A(V)] = 1, and
IA(W)| > 1. Any of the blocks U, V, W can be empty matrices, so if for instance
IA(B)| < 1 then U = B and dim V = dim W = 0. The process X; can therefore be
decomposed as

U, U0 0 py g“ eut
(2.7) MX,=|Vi|l=l0VO0 u WH + | evye
Wy 00 W uw lt)_l ew,t

t

Finally, there exists a constant fi;7, see Nielsen ([17], Lemma 2.1), so

(28) Ut = th -+ ﬂUDt where Ut == Uﬁt_l + €Ut

2.2. Likelthood ratio test statistics

The likelihood ratio test statistic is known to be asymptotically x? in the stationary
case where |A\(B)| < 1 and D = 1, see Liitkepohl ([16], Section 4.2.2). Here the result
is shown to hold regardless of the assumptions to B and D. Thus, the likelihood
ratio test can be used before locating the charateristic roots.

Theorem 2.1. Suppose Assumptions (2.1), (2.2), (2.5) are satisfied and ko < k.
Then LR(Ay, = 0) is asymptotically x?(p?).

Since the likelihood ratio test statistic is based on partial correlations it follows
from Theorem 2.1 that partial correlograms that are computed from partial cor-
relograms can be used regardless of the location of the characteristic roots. Often
correlograms are, however, based on the Yule-Walker estimators, which assume sta-
tionarity. For non-stationary autoregressions that can lead to misleading inference.
Nielsen [18] provides a more detailed discussion.

Remark 2.2. The fourth order moment condition, A > 4, in Assumption (2.1) is
used twice in the proof. First, to ensure that the residuals from regressing ¢; on
the explosive term W;_; do not depend asymptotically on W;_;. As discussed in
Remark 3.7 it suffices that A > 2 if either of the following conditions hold:

(I,a) dimW = 0.
(Ib) dimW > 0 and ¢; independent, identically distributed.

Secondly, to ensure that ;641 has second moments when applying a Central Limit
Theorem. As discussed in Remark 3.12, it suffice that A > 2 if

(IT) the innovations e; are independent.

The test statistic considered above is for a hypothesis concerning a single lag.
This can be generalised to a hypothesis concerning several lags, m say, where k +
m—1<K.

Theorem 2.3. Suppose Assumptions (2.1), (2.2), (2.5) are satisfied and ko < k.
Then LR(Ap = -+ = Agrm—1 = 0) is asymptotically x*(p?*m).

2.3. Information criteria

The next two results concern consistency of a lag length estimator arising from use
of information criterions. The proof has two distinct parts. First, it is argued that
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the lag length estimator k is not under-estimating, and, secondly, that it is not
over-estimating. The first part is the easy one to establish. This result holds for all
of the penalty functions discussed in the introduction under weak conditions to the
innovations.

Theorem 2.4. Suppose Assumptions (2.1), (2.3), (2.5) are satisfied with A > 2
only and f(T) = o(T). Then liminfr_k > ko.

This result has previously been established in the univariate case without deter-
ministic terms so p = dim X = 1 and dimD = 0 by Pétscher (1989, Theorem 3.3).
For the purely explosive case |A(B)| > 1 his Theorem 3.2 shows the above result
under the weaker condition f(T") = o(T?). A version holding in probabilty has been
shown for the non-explosive case [A(B)| <1 and D = 1 by Paulsen [20] and Tsay
[24].

Results showing that the lag length is not overestimating are harder to estab-
lish. Various weak and strong results can be obtained depending on the number of
conditions that are imposed.

Theorem 2.5. Suppose Assumptions (2.1), (2.5) are satisfied. Then
(i) If f(T) — oo and Assumption (2.2) holds then P(k < ko) — 1.

~ Q.S.

(ii) If f(T)/logT — oo and Assumption (2.3) holds then limsupk < kq.

T—o0
(iii) If f(T)/{(loglog T)'/?(log T)'/?} — oo, Assumption (2.3) holds, and the pa-
rameters satisfy the condition (A) that V and D have no common eigenvalues

A Q.S.
then limsupk < kq.
T—o0

(iv) If f(T')/loglogT — oo, Assumption (2.3) holds and either (B)dimD = 0
with V.=1 or (C)dim'V = 0 then limsup k< k:o

T—o0

(v) Suppose Assumption (2.2) holds, and either (B) or (C) holds then

(a) If liminfr o (2loglog T) =1 f(T) S p? then limsupk ‘< ko.

T—o0
(b) If limsups,_, . (2loglogT) = f(T) C1 then k%5 k.

By combining Theorems 2.4, 2.5 consistency results can be obtained. For instance

Theorem 2.4 in combination with Theorem 2.5(i) shows that & P, ko if the penalty
function satisfies f(7T") — oo and f(7') = o(T"). This includes Hannan and Quinn’s
and Schwarz’s penalty functions, but excludes that of Akaike as usually found.
Likewise, Theorem 2.4 in combination with Theorem 2.5(ii) show that k 5 k¢ if
the penalty function satisfies f(7")/logT — oo and f(T) = o(T). These results
are the first to present conditions to the penalty function ensuring consistency that
are not depending on the parameter B and D. This implies that the information
criteria can be used before locating the charateristic roots.

It remains an open problem, however, to establish strong consistency of the
Schwarz and the Hannan-Quinn estimators for general values of V and D. Theorem
2.4 combined with Theorem 2.5(iii) shows that the Schwarz estimator is strongly
consistent when (A) holds so V and D have no common eigenvalues. Theorem 2.4
combined with Theorem 2.5(v) shows that the Hannan-Quinn estimator is strongly
consistent when either (B) dimD = 0 with V =1 or (C)dimV = 0 holds. This
is the first strong consistency result for the Hannan-Quinn estimator in the non-
stationary case.
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Remark 2.6. In Theorem 2.5 the fourth order moment condition A > 4 in As-
sumption (2.1) can be relaxed to A > 2 under certain condions to the parameters.
Recall the conditions stated in Remark 2.2 which are

(I,a) dimW = 0.
(Ib) dimW > 0 and ¢; independent, identically distributed.
(IT) the innovations &, are independent.

As discussed in Remark 3.13 it holds:

Result (i) can be relaxed if (II) holds along with either (I,a) or (I,b).
Results (ii), (iii), (iv) can be relaxed if (I,a) holds.

Result (v) cannot be relaxed with the present proof.

A number of related results are available in the literature.

The weak consistency results in (i) has been shown for the non-explosive case
IA(B)| <1 and D =1 by Paulsen [20] and Tsay [24].

The (loglog T)'/?(log T')'/? rate discussed in Theorem 2.5(iii) and Remark 2.6(iii)
is an improvement over the logT rates discussed by for instance P&tscher [21]
and Wei [25]. These authors discuss the univariate case without deterministic
terms so p = dimX = 1 and dimD = 0, in which case V and D trivially
have no common eigenvalues. First, Potscher ([21], Theorem 3.1) shows an under-
estimation result for rates satisfying f(7')/logT — oo in the non-explosive case
so |[A(B)] < 1, hence dimW = 0, but with Assumption (2.3) replaced by the
weaker condition that liminfy_ o 7! Zthl E(e?|F—1) “% 0. Pétcher’s Theorem
3.2 concerning under-estimation in the purely explosive case so |[A(B)| > 1 requires
liminfr o f(T)/T > 0 a.s. with just A > 2 in Assumption (2.1). The Remark 1 to
his Theorem 3.3 points out that his results do not provide a common feasibility rate
for autoregressions with both explosive and non-explosive roots in that f(7") = o(T")
is required for the over-estimation result, whereas liminfy_,o f(T)/T > 0 a.s. is
required for the under-estimation results. Secondly, Theorem 3.6 of Wei [25] goes a
step further in showing the over-estimation result for the rate f(7') = log T for the
non-explosive case so dim W = 0.

The optimal log log T rates in (v) were originally suggested by Hannan and Quinn
[10] and Quinn [22] for the case where |A(B)| < 1, dimD = 0. A full generalisa-
tion cannot be made at present as the proof hinges on proving that the smallest
eigenvalue of the average of the squared residual from regressing V;_; on Dy, that
is T—1=7 th:l(Vt,ﬂDt)(Vt,l\Dt)', has positive limit points for some 1 > 0. This
result can only be established in two special cases: first, if dimV = 0 the issue
is irrelevant, and secondly, if V = 1 and dim D = 0 this follows from the law of
iterated logarithms by Donsker and Varadhan [6]. A more detailed discussion is
given in Lemma 3.5(iv) in the Appendix.

The strong loglogT rate in Theorem 2.5(iv) and Remark 2.6(iv) has previ-
ously been established in the purely stable, univariate case without determin-
istic terms, so p = dimX = 1 and dimD = 0 and |[A(B)| < 1, and hence
dim W = 0, see Potscher ([21], Theorem 3.4). Once again, his result only requires
liminfy o, 771 Z;'le E(e?|F;—1) — 0 a.s. instead of Assumption 2.3.

2.4. Residual based mis-specification testing

The third approach is to fit the model (1.1) with k—1 lags and analyse the residuals
for autocorrelation of order up to m. The maximal lag length parameter K is here
required to be at least k — 1. This is done in two steps. First the residuals é; are
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found for the regression (1.1) with ¢t = 1,...,7 and k — 1 lags. In the second step
€; is analysed in an auxillary regression for t = m+1,...,T, where &; is regressed
on é_1,...,6t—m as well as the original regressors X; 1 = (X{_,...,X{_; 1)
and D;. The original regressors are included to mimic the above likelihood analysis
where X;_1, D; are partialled out from X; and X;_,. A test based on the squared
sample correlation of the variables in the auxillary regression is asymptotically
equivalent to the likelihood ratio tests, so the degrees of freedom do not include the
dimension of X;_1, D;. In the multivariate case, p > 1, the test can be implemented
in three ways, using either a simultaneous test, a marginal test or a conditional test.

The joint test, is based on the test statistic tr(T'R?), where R? is the squared
sample multiple correlation of &; and (&;_1,...,¢;_,,, X;_1, D;)".

The other two tests are based on a ¢-dimensional subset of the p components of
g¢. As the equations in the model equation (1.1) can be permuted there is no loss
of generality in focussing on the first ¢ components. Thus, partition

Et,1 _ [ Xt
=) -(R)
where €, 1 and X;; are g-dimensional.

The marginal model consists of the first ¢ equations of (1.1), that is X;; given
X¢_1, D;. The marginal test is then based on the squared sample multiple correla-
tion, R, .. say, of &1 and (¢} _, ,,...,&_,, 1, X} 1, D}).

The conditional model consists of the first ¢ equations of (1.1) given X; o, that
is Xy 1 given X 9,X;_1,D;. The conditional test is based on the squared sample
multiple correlation, RZ ;4 say, of &1 and (¢} _; 1,...,&;_,, 1, X[, X}, Dj).

The following asymptotic result can be established.

Theorem 2.7. Suppose Assumptions (2.1), (2.2), (2.5) are satisfied and ko < k.
Then tr(T'R?) is asymptotically x*(p*m), while tr(TR,,,,) and tr(TR2, ;) are as-
ymptotically x*(qg*m).

Sometimes these test are implemented so that the auxillary regression is carried
out fort =1,...,T rather thant = m+1,...,T with the convention that £y = --- =
€1_m = 0. Variants of the tests have been considered, in particular for the univariate
case, by Durbin [7], Godfrey [8], Breusch [3] and Pagan [19]. Those variants have
been argued to be score/Lagrange multiplier type tests and asymptotic theory has
been established for the stationary case |A(B)| < 1.

3. Proofs

The likelihood ratio test statistic for testing Ay = 0 is given by

LR (A = 0) = —Tlogdet(, ',
(3.1) = —Tlogdet{l, — Q" (U_1 — )},

where Qk and Qk,l represent the unrestricted and restricted maximum likelihood
estimators for the variance matrix defined below. In the following first some notation
is introduced. Then comes an asymptotic analysis of Q k—1 and Q k—1 —Qk and finally
proofs of the main theorems follow.
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3.1. Notation

It is convenient to introduce some notation to handle Qk,l as well as Qk,l — Qk
Thus, let the residuals from the partial regressions of X; and X; j on X; 1 =
(X{_1,..., X{_;;1) and the deterministic components D; be denoted

(Xt‘Xt—ert)? (Xt—k|Xt—17Dt)-
When the hypothesis, Ay = 0, is satisfied then (X¢|X;_1, D;) = (g¢|X¢—1, D) and

therefore the restricted variance estimator is given by

~

T
1
(32) Qk—l = T;(€t|xt_]_,Dt) <6t|Xt—17Dt)/-

Most of the analysis in the proof relates to Qz_1 — Q so it is helpful to define

T T
Q(Z) =) ez (Z th;> > Ziey,
t=1 t=1 t=1

for any time series Z;. It follows that T(Qk_l — Qk) = Q(X¢—k|X¢—1, D¢). Occa-
sionally the following notation will be used: For a matrix o let a®? = aa/.

3.2. Asymptotic analysis of _q

Asymptotic expressions for the restricted least squares variance estimator Qk_l are
given by Nielsen ([17], Corollary 2.6, Theorem 2.8):

Lemma 3.1. Suppose Ar = 0 and that the Assumptions (2.1),(2.3), (2.5) are
satisfied with A\ > 2. Then, for all £ <1 —2/X it holds

T

A a.s. 1 —

Q1 = TZ&}E;-FO(T %),
t=1

If in addition Assumption (2.2) is satisfied then for all { < min(&,1/2) it holds
Qk:—l =) + O(T_é).

3.3. Asymptotic analysis of Q1 — Qe

The analysis of the term Qk,l - Qk is specific to the order selection problem. For
the sake of finding the asymptotic distribution of the likelihood ratio test statistic
the aim is to express 21 — 0 in terms of a stationary process Y; as

(3.3) T(Q-1 — ) = Q (X4 X1, Dy) = Q(Yi1) + op(1),

which in turn can be proved to be asymptotically x? by a Central Limit Theorem.
The result (3.3) reduces trivially to an equality with Y;_; = e;_1 when testing
A; = 0, so only the case kK > 1 will need consideration in the remainder of this
subsection. On the way to prove the above result some related expressions holding
under weaker assumptions emerge which can be used for proving the consistency
results for the estimator of the lag length, k.

In the following Qk_l — Qk is first decomposed into seven terms. It is then shown
that the three leading term can be written as Q(Y;—1) as in (3.3) and that the
remaining four terms are asymptotically vanishing.
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3.3.1. Decomposition of Q_1 — S,

The first decomposition is a purely algebraic result based on the formula for parti-
tioned inversion.

Lemma 3.2. Suppose Ar = 0. Then it holds
Q (Xt—k|Xi—1, D) = Q(Xi—2|Dy) — Q (X¢—1]|Dy) + Q (€¢-1]X¢—2, Dy) -

Proof of Lemma 3.2. By the formula for partitioned inversion it holds

(3.4) Q (?Z:; Dt) = Q (X4—k|X¢—1, D) + Q (X¢—1|Dy) ,

of which T(Qk_l — Qk) = Q (X¢—k|X¢—_1, Dy) is the first term on the left. Noting
that (X}_,, X[ ) = (X;_1,X}_5)" a repeated use of the formula for partitioned
Xi-1

inversion shows

Xi—1
3.5 D, ) =
(3:5) Q(Xt_k t) Q(XH

Due to the model equation (1.1) with Ay = 0 and the property D; = DD;_; it
follows (X;—1|X¢—2,D¢) = (e4—1|X¢—2, D;). The desired expression then arise by
rearranging the above expressions. O

Dt) =@ (Xt71|Xt727 D) +Q (thQIDt) .

Asymptotic arguments are now needed. These arguments rely on Nielsen [17]
which in turn represents a generalisation of the arguments of Lai and Wei [15].
The second step is therefore an asymptotic decomposition of the first two terms in
Lemma 3.2 using that the processes Uy, Vi, W; are asymptotically uncorrelated.

Lemma 3.3. Suppose Ay = 0 and that the Assumptions (2.1), (2.3), (2.5) are
satisfied with X\ > 2. Then, for j = 1,2,

(3.6) Q (Xi—j|Dy) = Q (Ur—5|Dy) + Q (Ve—j|Dy) + Q (Wi—j|Dy) 4+ 0 (1).

Proof of Lemma 3.3. Since MX; = (U, Vi, Wy), see (2.7), it suffices to argue that
the processes Uy, V; and W, are asymptotically uncorrelated so that the off-diagonal
elements of Zthl (X¢—j|D¢)(X¢—j]D¢)" can be ignored in the asymptotic argument.
This follows from Nielsen ([17], Theorem 6.4, 9.1, 9.2, 9.4), see also the summary
in Table 2 of that paper. O

3.3.2. Eliminating explosive terms and regressors in stationary terms

In combination Lemmas 3.2, 3.3 show that

(o1 — Q) 2 Q (ee-1Xi—2, Dy) + Q (Up—2|Dy) — Q (Up—1|Dy)
+Q (Vi—2|Dy) — Q (Vi—1|Dt) + Q (Wi—2|Dy) — Q (Wi—1|Dy) +0 (1) .
Under mild conditions this can be reduced further so as to eliminate the terms

involving the explosive component W; as well as the regressors in the terms involving
the stationary component U,.
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Lemma 3.4. Suppose Ay = 0 and that the Assumptions (2.1), (2.3), (2.5) are
satisfied, with A > 2. Then,

(3.7)  T(u-1— %) Qer1) + QUi2) — Q(Ui-1) + R + Ry + 0 (1),
where

(3.8)  Re=Q(e4-1|X¢—2,D) = Q(er-1), Ry =QViea|Dy) = Q (Vie1|Dy) .
Proof of Lemma 3.4. It suffices to prove, for j =1, 2,

(3.9) Q (Ue—;|1De) = Q(Ue—j) + 0 (1),
(3.10) Q (Wi—2|D¢) — Q (Wi—1| Dy) = 0 (1).

First, consider (3.9). Because of (2.8) then (U;_;|D;) = (U;_;|D;). According to
Nielsen ([17], Theorem 6.4) it holds for any n > 0 that

—1/2

T —1/2 7 T
<ZDtD;> > DU <Zﬁtjﬁt’_j) o112,
t=1 t=1 t=1

while Theorem 6.2 of the above paper shows 7! Zt 1 U,_ JU - has positive defi-
nite limit points. This implies

T T

> (Ouny DO lD1) = 3200,y {10 (17
t=1 pa—r
Theorem 2.4 of the above paper shows 23:1 Eth(ZZ:l DyD})~1/2 = o(T") imply-
ing
T i T
> (Uil De) =) ely_; +o(T?).
t=1 t=1

That theorem also shows S/, .U/ ](Zt L Ui—;U{_;)71/? = o(T™). In combina-
tion these results show the desired result.

Secondly, consider (3.10). Note first that Wy—1 = WW;_o + pwDi—1 + ew,i—1
by (2.7) while D,y = D™'D;, implying (W;_1|D;) = (WW;_2 + ew;—1|D;). This
gives rise to the expansions

T T
> (Wi | D) =Y (WW, o D) (1+ fr),
t=1 t=1
T T
Z (Wi—1|Dy) e = Z (WW;_2|D¢) 1 + cr,
t=1 t=1
1/2 -1
where fr = O(d; "' “ar) + dy by and
T T .
ar = d"* > (WWi_a|Dy) ew—1, br =Y (ewu—1|D)®,
t=1 t=1
T T
Z ew,t—1|D¢) et, dr = Z(WWt—2|Dt)®2-

<*
Il
—
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Using Nielsen ([17], Theorems 2.4, 6.2, 6.4) it is seen that
by = O(T), ep = o(TY*M).
It follows from Nielsen ([17], Theorems 2.4, 9.1 and Corollary 7.2) that
Q(Wi—j|Dy) = 0(T), ar = o(TY?), di' = o(p7"),

for some p > 0. This implies that fr is exponentially decreasing. The desired result
follows by expanding Q(W;_1|D;) in terms of Q(W;_2|D;) as

[Q (Wi—a| D1) + dy'erO{Q (Wia| D)} /* + C'Td:FlCT} (L+ fr),

and using the established orders of magnitude. O

3.3.3. Eliminating unit root terms and regressors in innovation terms

The terms Ry and R. defined in (3.8) are now shown to vanish asymptotically. At
first, consider Ry defined in (3.8), which consists of the terms involving the unit
root components V;. Several results are given, of which the strongest result for Ry
can only be established for certain values of the parameters.

Lemma 3.5. Suppose A = 0 and that the Assumptions (2.1), (2.3), (2.5) are
satisfied with X\ > 2. Then

(i) Rv = O(logT),
(ii) Ry = op(1) if also Assumption (2.2) holds,
(ii) Ry = O{(loglogT)/?(log T)*/?} if (A) D and V have no common eigen-
values,
(iv) Ry 2 o(1) if (B) dimD =0 and V =1,
(v) Ry =04f (C) dimV =0.

Proof of Lemma 3.5. (i) This follows since Q(V;—;|D;¢) =" O(logT) according to
Nielsen ([17], Theorem 2.4).

(ii) The type of argument for (3.10) in the proof of Lemma 3.4 can be used.
Replacing W with V' throughout, the asymptotic properties of ar, by, cr, dr have
to be explored. For by, cp the argument is the same so, for all n > 0,

bT = O(T), Ccr s O(T1/2+n),

whereas using Nielsen ([17], Theorems 2.4) for ar and the techniques of Chan and
Wei [5] for dp shows, for all n > 0,

ar = o (T"), dpt = op(T1741),
so fr = op(T~*"). Since Q(V,_;|D;) = O(logT) as established in (i) the desired
result follows by expanding Q(V;—1|D;) in terms of Q(V;—2|Dy).
(iii) Define the vector S;—1 = (V/_,, D;)’. By partitioned inversion it holds
Q (Si—1) = Q (Vi—1|Dy) + Q (D) .

By an invariance argument D; can be replaced by D;_; and thus it follows

Ry = Q (Vi—2|Dt) — Q (Vi-1|Dy) = Q (Si—2) — Q (Si-1) -
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Due to (2.4) and (2.7) the process S;_1 satisfies S; = SS;_1 + eg,; for a matrix S
with eigenvalues of length one and es; = (ey;,0")". It then follows that

T T
257531/5—1 = th (Si—oS" + e/S,tfl) :
t=1 t=1

Inserting this expression into Q(S;—1) shows

T T -1 7
Q(Si—1) =Y &S, (Z s?%) D Si1g; =Qa+ Qs+ Qc + Qp,
t=1 t=1

t=1

where
Qa=Q1Q2Q,, Qp=QuQs%Q) Qc =QQy°Q4Qh,

are defined in terms of the statistics

T T -1
Q= Z 6756{5’,15713 Q2 = (Z S,?i%) ,
t=1 t=1
T 1/2 T —1/2 T T —1/2
Q3= <Z St®22> S (Z 55921) . Qu=) eSi, (Z 55922) ‘
t=1

t=1 t=1 t=1

The orders of magnitude of these follow from a series of results in Nielsen [17].
Theorem 6.1 and Lemma 6.3 imply Q1 “Z O{(T'loglog T')'/?}. Theorem 8.3 shows
Q2“2 O(T~') when D and V have no common eigenvalues. Lemma 8.7(ii) shows

92 12 O{T"?(logT)'/?}. Theorem 2.4 shows Q4 “= O{(log T)'/?}. Noting
that Q(Si—2) = Q4Q this in turn implies

Qa=O0(oglogT),  Qp=Q(Si—2)+O{T ' 2(logT)*?},
Qc = O{(loglog T)'/?(log T')*/?},

and the desired result follows.
(iv) Donsker and Varadhan’s [6] Law of the Iterated Logarithm for the integrated
squared Brownian motion states

loglogT [T 1
thiioréf%/o Bldu " .

Now use either the argument in (i) with d7.' ' O(T~2loglog T) or the argument
in (iii) with Q2 “©'O(T~21loglogT) so Q4,Qp, Q¢ are all o(1).
(v) This follows by construction. O

Now, consider R, defined in (3.8). By showing that this vanishes it follows that
the regressors can be excluded asymptotically in the term involving the lagged

innovations ;1. A fourth order moment condition is now needed in Assumption
(2.1).

Lemma 3.6. Suppose A, = 0 and that the Assumptions (2.1), (2.3), (2.5) are
satisfied, now with A > 4. Then

R. = Q (et-1|X¢—2,D¢) — Q (5¢-1) = 0(1).
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Proof of Lemma 3.6. Define the vector S, = (Xj_,, D;)’. According to Nielsen
([17], Theorem 2.4) it holds that, for any n > 0, the terms

T —-1/2 T T —-1/2 T
(3.11) <Z St5;> > S, (Z Stsg) > Siep
t=1 t=1 t=1 t=1

are o(T'/4=") when indeed A\ > 4. It then holds that
T T T -1 T
Z 51552_1 — Z EtS£ <Z StS,é) Z St{:‘;_l s Z 5t5;—1 + O(T1/2_77)’
t=1 t=1 t=1 t=1 t=1
T T T -7 T
Z Et_165_1 — Z £1-15] <Z StS£> Z Siel | = Z g 16,4 +o(TH™™),
t=1 t=1 t=1 t=1 t=1

where the requirement A > 4 is only needed in the first case. Theorems 2.5, 6.1 of
the above paper show 7! Zle e¢—1€,_1 has positive definite limit points while
23:1 ste;_l(zf;l gi_164_1)"Y/? = o(T"). Combine these results. O

Remark 3.7. In Lemma 3.6 a fourth moment condition comes in through the
requirement that A > 4 in Assumption (2.1). This can be relaxed to A > 2 under
one of two alternative assumptions.

(La) If dim'W = 0 then the terms in (3.11) are o(T"), see Nielsen ([17], Theo-
rem 2.4), and the main result holds.

(Ib) If dimW > 0 but the innovations ¢; are independently, identically distrib-
uted then terms of the type (Zle Wy A W/_)~1/? E;‘le W;_1€} converge in
distribution, see Anderson [1] and the result of the Theorem holds, albeit only
in probability.

3.3.4. The leading term of Qp_1 — Qi

First the order of magnitude the leading term in (3.7) is established in an almost
sure sense. This can be done under weak moment conditions. Subsequently the
distribution of the leading term is investigated.

Lemma 3.8. Suppose A = 0 and that the Assumptions (2.1), (2.3) are satisfied
with X > 2. Define Ep = T~' S e}, Then
limsupy_ (2loglog T) " tr[{Q(er—1) + Q(Ui-2) — Q(Ut—l)}Efl] = 0(1).

Proof of Lemma 3.8. This follows by noting that the sequence Q,;El is relatively
compact with positive definite limiting points due to Lemma 3.1 and Lai and Wei
([15], Theorem 2) and otherwise following the argument in the proof of Potscher
([21], Theorem 3.4). O

When it comes to analysing the distribution of the leading term in (3.7) it is
convenient to show that it can be written as a single quadratic form @Q(Y;—1) for
some process Y;_1. This argument requires two steps, of which the first is concerned
with the convergence properties of 77! Zthl U,_1U!_,. As the argument involves
a variance matrix, the Assumption (2.2) is now called upon.
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Lemma 3.9. Suppose A, = 0 and that the Assumptions (2.1),(2.2) are satisfied
with A > 2. Let My be the matriz defined by ey = Mye, in (2.7) and define

F =) U'M;QM;(U.
t=0

Then for all ¢ < min(1 —2/X,1/2) it holds

T
LS G0 o ().
t=1

Proof of Lemma 3.9. Following the proof of Lai and Wei ([15], Theorem 2), the
equation (2.8) shows

T T
S 00U (Z U,U, — UpUf + U0175> U’

t=1 t=1

T T

+ My Z eesM{; + O (Z Ut_ps;) )
t=1 t=1

Due to Nielsen ([17], Theorems 2.4, 5.1, Example 6.5) both S>7_, U, &} and UpUJ,

are o(T1~¢). Note that Assumption (2.5) is not needed as U; does not involve

deterministic terms. Denoting Fr = T~! Zthl UU! it follows from Lemma 3.1
that

Fr — UF U 2 MyQM], 4+ o(T~°).
This equation has a unique solution Fr = > ;2  U{MyEM{], + o(T~¢)}(U?Y,

see Anderson and Moore ([2], p. 336), which in turn equals F + o(T~¢) since the
maximal eigenvalue of UU’ is less than one. O

The leading term in (3.7) is now written as a single quadratic form Q(Y;_1).

Lemma 3.10. Suppose A =0 and that the Assumptions (2.1), (2.2) are satisfied
with X > 2. Then there exists an {(p+ dim U) x p}-matriz C with full column rank
50

Q(et-1) + QUi—2) = QUi1) = Q (Y1) +0(1),
where Yy is the process C' (e}, U/_1)’.

Proof of Lemma 3.10. The idea is to exploit that the asymptotic covariance for
Zy—1 = (U[_g,€,_1)" is diagonal with elements F, 2. By the above Lemmas 3.1, 3.9
then, for some n > 0,

Q(e4—1) + Q(Ut—Q)
(3.12) =

~ / T ~ ~ T ~
Ut—2) (Ut—2UtI_2 0 ) (Ut—Z) !
€ €
vl <5t—1 {;_:1 0 er-18_4 tz_:l g1 )t
T ~ / -1 T ~
a.s. 1 Ut_g FO Ut—2 / —
a th (5t—1 ) (0 Q) Z (5 5t{1 +O(T n>}

=1 t=1 Nt

—_

Nl

As discussed in Section 2 then (N]z_l = Uﬁt_g + Myes_1 for some matrix My with
full column rank. In particular U;_; = C' (U{_q,€}_1)" where the {(p + dimU) x
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dim U }-matrix C; = (U, My)’ has full column rank. Therefore a {(p+dim U) x p}-
matrix C' can be chosen with full column rank so the matrix (C,C) is regular and

c’(ﬁ%) L =0

The sequences T~! Zle U,_1U!_, and T~ Zthl U;_oU!_, will have the same
limit, F, while 71 Zle Y:—1Y/_; will converge to a positive definite matrix G.

It then holds
o FO _(FO
(&) (6a)e0=(Gs)

Pre- and post-multiplying the middle matrix in (3.12) with (C',C)(Cy,C)~! and
its transpose then implies

Q (1-1) + QUi-2) = { Q1) + Q (Yim1) | {1+ 0(T ")}

Theorem 2.4 of Nielsen (2005) implies Q(U;_1) and Q(Y;_1) are o(T"), which gives
the desired result. O

The asymptotic distribution of the leading term Q(Y;—1) now follows.

Lemma 3.11. Suppose A, = 0 and that the Assumptions (2.1), (2.2), (2.3) are
satisfied with X\ > 4. Then

(i) 1< limsupy_ . (2loglog )~ Hr{Q(Yi_ 1)1} < p* a.s.

(i) o {Q(Yim)27} 2 x2(0?).

Proof of Lemma 3.11. (i) This follows from the Law of Iterated Logarithms by
Heyde and Scott ([12], Corollary 2) and Hannan ([9], p. 1076-1077). See Quinn [22]
for details.

(ii) This follows from Brown and Eagleson’s [4] Central Limit Theorem. This
requires existence of second moments of ,Y;_1. O

Remark 3.12. The proof of Lemma 3.11 actually only requires the existence of
fourth moments, which is slightly weaker than the stated condition of A > 4 in
Assumption (2.1). In Lemma 3.11(ii) this can be relaxed to a second moment con-
dition if for instance:

(IT) the innovations e; are independent.

3.4. Proofs of results for likelihood ratio test statistics

Proof of Theorem 2.1. Consider the formula (3.1). The term Qj,_; was dealt with
in Lemma 3.1. As for the term T(Qk_l — Qk) consider two cases.

When k = 1 then T(Q_1 — Q) = Q(e4—1).

When k£ > 1 apply the expansion in Lemma 3.4. The term Ry vanishes due to
Lemma 3.5(ii) when Assumption (2.2) is satisfied. The term R, vanishes due to
Lemma 3.6 when A > 4 in Assumption (2.1). Due to Lemma 3.10 the leading term
is now Q(Y;_1), provided Assumption (2.2) holds.

For any k the desired y2-distribution now arises from Lemma 3.11(ii) provided
Assumptions (2.2), (2.1) are satisfied with A > 4. O
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Proof of Theorem 2.3. Note first that T(Qk_l — Qk+m_1) can be written as
Q(X!=F~™YX,_y, Dy) where X[~ = (X/_,,...,X/_,). Consider now the proof

of the decomposition in Lemma 3.2. Using first (3.4) and then (3.5) repeatedly it
is seen that

N A X
T (Qk—l - Qk+m—1> =Q (th—kt—rln—l—l
t—k

Dt) —Q(X, 4| D))

= Z Q (ev—jl Xf:j"ll, Xi—m-1,Dy)
=1

+ Q (Xi—m—1| D) — Q (Xy—1| Dy) .

As in the proof of Theorem 2.1 the Lemmas 3.4, 3.5(ii), 3.6 show that the leading
terms reduce to

T <Qk—1 — Qk+m—1> = i@ (e4—j) +Q (0t—m—1> -Q (Ut—1> +op (1),
=1

when kg < k. A slight generalisation of Lemma 3.10 is needed, using that the as-
ymptotic covariance for Z,_1 = (U!_, _1,€)_1,...,&,_,) is diagonal with elements
F,Q,...,Q A {(mp+dimU) x mp}-matrix C can then be found giving rise to a
process Y; 1 = C'Z;_1. The argument is completed using a Central Limit Theorem
as in the proof of Lemma 3.11(7). O

3.5. Proofs of results for information criteria

Proof of Theorem 2.4. Consider j < ko. The condition f(T") = o(T') implies
D; — By, = logdet{I + (Q; — Qko)fl,zol} +o(1).

Lemma 3.1 shows that Qko 3, so it suffices that lijgn inf )\maX(Qj —Qko) is positive.
— 00

Deﬁning Yt:(X£—17 oo 7X,£_J+1)/ and Zt - (Xé_.], o e 7Xt/7]€0), it hOldS

T T —1/2] 2
Q= = [T Xy (Zya[Yio1,Dy) {Z (zt_ert_l,Dt)@’Z}

t=1 t=1

Define Ay, = Ay,...,Aj and A, = Ajyq,..., Ay, noting that Ay, # 0. Then it
holds Xy = Ay Y, + A,Z; + puD; + ¢¢. Therefore Q; — (2, equals

. . —1/2
T-1/2 Z et (Ze—1|Y -1, Dt)/ {Z (Z¢—1[Y1-1, Dt)®2}

t=1 t=1

T 1/2
+A, {T‘lz(zt_ﬂYt_l,Dt)@Q} .
t=1
The first term is of order o(1) a.s. by Nielsen ([17], Theorem 2.4). As for the second
term it holds that liminfr o Apin {7 ! Zle(Xt,1|Dt)®2} > 0 a.s. according to
Nielsen ([17], Corollary 9.5). As a consequence the limit points of 71 Zle(zt,l\
Y, 1, D;)®? are positive definite. Since A, # 0 then lim infz_, o0 Amin (€2 — Qo) > 0
and therefore liminfr_, o k > kg a.s. ]
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Proof of Theorem 2.5. Consider now kg < j < K. It then holds
®; 41 — @ =logdet(Q 1 Q) + T f(T)
= log det{I, — (Q; — Qj41)Q; '} + T~ (T).

A Taylor expansion shows

~

Ojp1 — @5 = —tr{(Q — Q)+ T (T) + o[{(Q — Q541)5 12
Lemma 3.1 shows that Qj is consistent, while Lemma 3.4 gives the expansion

T(Qj—l - QJ) =Q (€t—1) + Q(Ut—2) — Q(Ut—1) +R.+ Ry +o(1).

To complete the proof it has to be shown that ®;,; —®; has a positive limiting value.

This holds if T(€;_1 — Q;) = o{g(T)} for some function ¢(T') so f(T)/g(T) — oo.

(i) The term Ry vanishes due to Lemma 3.5(ii) when Assumption (2.2) is
satisfied. The term R, vanishes due to Lemma 3.6 when A > 4 in Assumption (2.1).
Due to Lemma 3.10 the leading term is Q(Y;—_1), provided Assumption (2.2) holds.
This is Op(1) by Lemma 3.11(éi) provided Assumptions (2.1), (2.2) are satisfied
with A > 4.

(ii) The term Ry is O(logT) due to Lemma 3.5(i). The term R. vanishes
due to Lemma 3.6 when A > 4 in Assumption (2.1). Due to Lemma 3.8 the leading
term is O(loglogT).

(iii) Under (A) that V and D have no common eigenvalues then Ry is
0{(log T)*/?(loglog T')'/?} due to Lemma 3.5(iii). The argument of (ii) can then
be followed.

(iv) Under (B) that dimD = 0 with V = 1 then Ry is o(1) due to Lemma
3.5(iv), whereas under (C') that dim V = 0 then Ry = 0. while it is o(1) under (B)
dimD = 0 with V = 1 due to Lemma 3.5(iv). The argument of (i7) can then be
followed.

(v) The terms Ry and R. vanish as in (iv). As in (¢) the leading term is
Q(Y;—1) by Lemma 3.10 provided Assumption (2.2) holds. This is of the desired
order of magnitude by Lemma 3.11(7) provided Assumptions (2.2), (2.1) are satisfied
with A > 4. O

Remark 3.13. The condition A > 4 in Theorem 2.5 can be relaxed as follows.

(i) It is used first in Lemma 3.6 and can be relaxed under (I,a) or (I,b) as
this is a result holding in probability, see Remark 3.7. It is used secondly in Lemma
3.11(ii) and can be relaxed under (II), see Remark 3.12.

(ii), (iii), (iv) It is only used in Lemma 3.6 and can only be relaxed under
(I,a) as this is a result holding almost surely, see Remark 3.7.

(v) It is indeed required in Lemma 3.11(3).

3.6. Proof of results for residual based tests

Proof. Tt suffices to show how the residual based test statistics relate to the likeli-
hood ratio test statistics.

In the joint test the squared sample multiple correlation R? of &; and the vector
Zi1 = (&1, €1_, Xi_1,D;) is considered, recalling that X;_; is defined as
(X{_1,-.-,X{_ 1) The key to the result is that

Er—j=Xi—j —BXy_j_1 — aD 7' Dy,
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where B, /i are least squares estimators based on (1.1) for the full sample t =
1,...,T. Due to the inclusion of X;_; as regressor it follows that Z; | = NZt,l
where Z; 1 = (Xe—1,.. oy Xt—k—m+1, D¢) and the square matrix N is based on
B, it and is invertible with probability one. By the invariance of sample multiple
correlations to linear transformations then R? can be computed from &; and Zi 1.
By the same type of manipulation as in Lemma 3.2 it follows that

o T ) T -t
Q(Zt_l) > étzg_1< 3 Zfiﬁ) N Ziag

t=m-+1

can be written as
(3813)  Q(Zi1) = QKiksr s Xopomsr Xa1, D) + Q (Xy-1, D).

Since the first term in (3.13) includes the regressors X;_1, D; then &; can be
replaced by ;. Thus, apart from starting the regression at ¢t = m + 1 instead of
t = 1 this term is the same as Q(X¢—k, ..., Xt—k—m+1|X¢—1, D¢). It therefore has
the same asymptotic properties as T(Qk_l — Qk+m_1), which was studied in the
proof of Theorem 2.3.

The second term in (3.13) vanishes asymptotically. This is because the residuals
¢, are orthogonal to X;_1, D; when evaluated over t = 1,...,T. A tedious analysis
shows that this orthogonality holds asymptotically when evaluated over t = m +
1,...,T.

For the marginal test the argument is the same. The main difference is that the
residuals are now

A = ~ —i—1
€t—j,marg = Xt—j,l - BmargXt—j—l - ,umargD J Dt-

Once again the inclusion of X;_; as regressor implies that the vector Z;_1 marg
defined as (&;_4,...,&,_,,, X}i_1,D;)" can be replaced by the above Z;_;. So the

statistic Q(Zt_l) is replaced by a statistic based on &; arg, but the same Zt—l-
For the conditional test the residuals are of the type

A A ~ —i-1 ~
€t—j,cond = Xt—j,l - BcondXt—j—l - ,ucondD J Dt - th—j,Q-

The same argument applies as for the marginal test. O
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Abstract: The finite-sample as well as the asymptotic distribution of Leung
and Barron’s (2006) model averaging estimator are derived in the context of
a linear regression model. An impossibility result regarding the estimation of
the finite-sample distribution of the model averaging estimator is obtained.

1. Introduction

Model averaging or model mixing estimators have received increased interest in
recent years; see, e.g., Yang [18-20], Magnus [13], Leung and Barron [12], and the
references therein. [For a discussion of model averaging from a Bayesian perspec-
tive see Hoeting et al. [4].] The main idea behind this class of estimators is that
averaging estimators obtained from different models should have the potential to
achieve better overall risk performance when compared to a strategy that only uses
the estimator obtained from one model. As a consequence, the above mentioned
literature concentrates on studying the risk properties of model averaging estima-
tors and on associated oracle inequalities. In this paper we derive the finite-sample
as well as the asymptotic distribution (under fixed as well as under moving para-
meters) of the model averaging estimator studied in [12]; for the sake of simplicity
we concentrate on the special case when only two candidate models are considered.
Not too surprisingly, it turns out that the finite-sample distribution (after centering
and scaling) depends on unknown parameters, and thus cannot be directly used for
inferential purposes. As a consequence, one may be interested in estimators of this
distribution, e.g., for purposes of conducting inference. We establish an impossi-
bility result by showing that any estimator of the finite-sample distribution of the
model averaging estimator is necessarily “bad” in a sense made precise in Section 4.
While we concentrate on Leung and Barron’s [12] estimator (in the context of only
two candidate models) as a prototypical example of a model averaging estimator in
this paper, similar results will typically hold for other model averaging estimators
(and more than two candidate models) as well.

We note that results on distributional properties of post-model-selection esti-
mators that parallel the development in the present paper have been obtained in
[5-7, 9, 10, 14-17]. See also Leeb and Pdtscher [11] for impossibility results per-
taining to shrinkage-type estimators like the Lasso or Stein’s estimator. An easily
accessible exposition of the issues discussed in the just mentioned literature can be
found in Leeb and Potscher [8].
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The only other paper we are aware of that considers distributional properties
of model averaging estimators is Hjort and Claeskens [3]. Hjort and Claeskens [3]
provide a result (Theorem 4.1) that says that — under some regularity conditions —
the asymptotic distribution of a model averaging estimation scheme is the distrib-
ution of the same estimation scheme applied to the limiting experiment (which is a
multivariate normal estimation problem). This result is an immediate consequence
of the continuous mapping theorem, and furthermore becomes vacuous if the esti-
mation problem one starts with is already a Gaussian problem (as is the case in
the present paper).

2. The model averaging estimator and its finite-sample distribution

Consider the linear regression model
Y=X0+u

where Y is n x 1 and where the n x k non-stochastic design matrix X has full
column rank k, implying n > k. Furthermore, u is normally distributed N (0, 021,,),
0 < 02 < oo. Although not explicitly shown in the notation, the elements of Y,
X, and u may depend on sample size n. [In fact, the random variables Y and
u may be defined on a sample space that varies with n.] Let P, g, denote the
probability measure on R™ induced by Y, and let E,, 3 , denote the corresponding
expectation operator. As in [12], we also assume that o2 is known (and thus is
fixed). [Results for the case of unknown o2 that parallel the results in the present
paper can be obtained if 02 is replaced by the residual variance estimator derived
from the unrestricted model. The key to such results is the observation that this
variance estimator is independent of the least squares estimator for 5. The same
idea has been used in [7] to derive distributional properties of post-model-selection
estimators in the unknown variance case from the known variance case. For brevity
we do not give any details on the unknown variance case in this paper.] Suppose
further that k > 1, and that X and (8 are commensurably partitioned as

X = [Xl :XQ]

and 8 = [0}, 05" where X; has dimension k; > 1. Let the restricted model be
defined as Mp = {8 € R¥ : 3y = 0} and let My = R¥ denote the unrestricted

model. Let B (R) denote the restricted least squares estimator, i.e., the k x 1 vector
given by

= [P 0]

0k2><1

and let 3(U) = (X’X)"1X'Y denote the unrestricted least squares estimator. Le-
ung and Barron [12] consider model averaging estimators in a linear regression
framework allowing for more than two candidate models. Specializing their estima-
tor to the present situation gives

(1) 6=X3(R) + (1= NB(U)
where the weights are given by

A = [exp(—ai(R)/0?) + exp(—ai(U)/o?)] " exp(—ai(R) /0?).
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Here o > 0 is a tuning parameter (note that Leung and Barron’s tuning parameter
corresponds to 2«a) and

#HR)=Y'Y — B(RYX'XB(R) + 0*(2k1 — n)
and
HU)=Y'Y = B(UYX'XB(U) + 0*(2k — n).

For later use we note that

A= [1+ exp(—2aks) exp(—a(B(R) X' XB(R) — B(U)YX'XB(U))/o®)] "

(2) . NN
= [1 4 exp(—2aks) exp(« HXB(R) — XG( U)H Jo3)] 7t

where ||z| denotes the Euclidean norm of a vector z, i.e., ||z| = (2/z)'/2. Leung

and Barron [12] establish an oracle inequality for the risk E, s,(]|X(3 — 8)|?)
and show that the model averaging estimator performs favourably in terms of this
risk. As noted in the introduction, in the present paper we consider distributional
properties of this estimator. Before we now turn to the finite-sample distribution
of the model averaging estimator we introduce some notation: For a symmetric
positive definite matrix A the unique symmetric positive definite root is denoted
by A'/2. The largest (smallest) eigenvalue of a matrix A is denoted by Amax(A)
(Amin(A)). Furthermore, Pr and Py denote the projections on the column space of
X1 and of X, respectively.

Proposition 1. The finite-sample distribution of /n(3— ) is given by the distri-
bution of

Bpv/nB2 + Co/nZy +

(3) {1 + exp(2aks) exp (—a HZQ 4 (XL - PR)X2)1/252H2 /UQH .
{DnvnZs — Bpv/npa}

which can also be written as
Co/nZy + DpN/nZsy —

(4) [1 + exp(—2aks) exp (a HZ2 + (X5(I — pR)X2>1/2ﬁ2H2 /02>} - «
{Dnv/nZy — Byv/nBa}.

Here

B:PM&VWMﬂ Czrmxrm}
n _Ik2 bl n 0k2><k1 9
—(X1X1) T XX (X5(T - PR)Xz)‘l/T

D= | (X5(I = Pr)Xz) 2

and Zy and Zy are independent, Zy ~ N(0,0%1,), and Zy ~ N(0,0°I},).
Proof. Observe that

B =B(R) + (1= N(BU) = B(R) = B(R) + (1 = (X' X) "' X'(Py — Pp)Y
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with Pp = X1(X]X;)71X] and Py = X(X'X)"1X’. Diagonalize the projection
matrix Py — Pgr as
Py — Pr =UAU'

where the orthogonal n x n matrix U is given by
U = Uy, Us, Us] = | X1 (X]X1) Y2 1 (I — Pr)Xa(X(I — Pr)Xo)~Y/2 ug]

with U3 representing an n x (n — k) matrix whose columns form an orthonormal
basis of the orthogonal complement of the space spanned by the columns of X.
The n x n matrix A is diagonal with the first k; as well as the last n — k& diagonal
elements equal to zero, and the remaining ko diagonal elements being equal to 1.
Furthermore, set V = U'Y which is distributed N(U’Xf3,021,). Then

A 5 2 2 2 2
|x3(0) = xBw)|| = 1Py = Pe)YIP = AVIP = V2]

where V3 is taken from the partition of V' = (V{, V35, V4)" into subvectors of di-
mensions kj, kg, and n — k, respectively. Note that V5 is distributed N ((XQ(I -

Pr)X2)Y23,,02%1,). Hence, in view of (2) we have that (1 — M) (B(U) — B(R)) is
equal to

1
[1 + exp(2aky) exp (—a Va2 /02)} (X'X) X UAV
= [1 + exp(2aks) exp (—a HV2||2 /02>] (X'x)1 {Xékbll;l/g]

= [1 + exp(2aks) exp (—Oz HV2||2 /‘72>] - D, V>.

Furthermore,

/

= (X'X)"'X'PrY

= (X'X)"' X' PRUV

= (X'X)7 X' X (X1 X)W

_ {(Xin)_l/zvl
0k2><1

B(R)

:| = Cnvl

with V3 distributed N ((X{X1)"'/2X{X3,0°1,). Hence, the finite sample distrib-
ution of (3 is the distribution of

-1
(5) CuVi + [1 + exp(2aks ) exp <—a Val)? /02)} Do Vs

where V; and V5 are independent normally distributed with parameters given above.
Defining Z; as the centered versions of V;, subtracting 3, and scaling by /n then
delivers the result. U

Remark 2. (i) The first two terms in (3) represent the distribution of Vn (ﬁ (R)—P3),
whereas the third term represents the distribution of (1 — )\/_ (B(U) — B(R)). In
(4), the first two terms represent the distribution of \/_ (B(U) — 3), whereas the

third term represents the distribution of —Ay/n(3(U) — B(R)).
(ii) If B2 = 0 then (3) can be rewritten as

—1
Cov/nZy + 1 Za]| [1 + expRaks) exp (—a | ZaI) /02) | Duv/n(Za/ || Za))
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showing that this term has the same distribution as

Cou'nZ1 + v/ X2[1 + exp(2aks) exp (—aXZ/JQ)]_an\/ﬁU

where x? is distributed as a x? with ko degrees of freedom, U = Z5/ || Z5|| is uni-
formly distributed on the unit sphere in R*2, and Z;, x?, and U are mutually
independent.

Theorem 3. The finite-sample distribution of \/ﬁ(ﬁ—ﬂ) possesses a density fr, 3.5
given by

Frpo(t) = (2m0%) /2 [det(X' X /n)]'/?
2
X exp <—(202)—1 Hn‘l/Q(X{Xl)l/ztl + n_l/Z(Xin)_lﬂX{thQH )
2 k2
X [1 + exp (—aa2g (Hnil/ngg(tQ + nl/zﬁg)‘b + 20[]{72):|

(6) X {1+2aa‘2g <Hn_1/2D;21(t2 +n1/2ﬁg)H>2

" {1 e (“"29 (7205 (12 + 28 ) - 2ak2)] _1}_1

X exp <—(202)*1 Hg <Hn*1/2D;21(t2 + n1/2ﬁg)H>

where t is partitioned as (t},t5)" with t; being a ki x 1 vector. Furthermore, Dy2 =
(X5(I — Pr)X2)"Y2, and g is as defined in the Appendiz (with a = exp(20ks) and
b=a"10?).

Proof. By (5) we have that the finite-sample distribution of \/n(3 — ) is the dis-
tribution of

—1
< 2D a4 028 | 0  PD s + ) — D)

—V/nf + Vn[Cy : D][V{ = V3]
where .
Vs = [1 + exp(2aksy) exp (—a ||V2H2 /Uzﬂ Va.
By Lemmata 15 and 16 in the Appendix it follows that V3 possesses the density

(es) = (270" /2 [1-+ exp (—a0 g (Jus])* + 20ks) |

X {1 + 200 2g (||vs||)? [1 + exp (aa_Qg (los])? — 20(1{72)} _1}_1
e ( (227l all e/ Il = (00— PrXa) 250 ).

Since V; is independent of V5, and hence of V3, the joint density of [V{ : V3]’ exists
and is given by

(2m02)F1/2 exp{— (202) Hvl _ (X;X1>1/2X1X5H2}¢(v3).
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Since the matrix [C), : Dy,] is non-singular we obtain for the density of /n(5 — )
(2m02) R/ 207k 2 [det (X X)) det( X5 (I — Pr)X5)]/?
X exp (—(202)_1 Hn_l/Q(X{Xl)l/Q(tl +n'/23)

2
)X Xl 4 28) — () 2]
x 1 (™ VA(XG(T = Pr)Xa) 2t + n'/282) )
Note that det(X]X;)det(X5(I — Pr)X2) = det(X’'X). Using this, and inserting

the definition of 1, delivers the final result (6). O

Remark 4. From Proposition 1 one can immediately obtain the finite-sample dis-
tribution of v/nA,,(—03) by premultiplying (3) or (4) by A,,. Here A,, is an arbitrary
(nonstochastic) p,, x k matrix. If A,, has full row-rank equal to k (implying p,, = k),
this distribution has a density, which is given by det(A,) ! f, 5.0(A,ts), s € RE.

3. Asymptotic properties

For the asymptotic results we shall — besides the basic assumptions made in the
preceding section — also assume that

(7) lim X'X/n=Q

exists and is positive definite, i.e., Q > 0. We first establish “uniform ,/n-consisten-
cy” of the model averaging estimator, implying, in particular, uniform consistency
of this estimator.

Theorem 5. Suppose (7) holds.
1. Then (3 is uniformly V/n-consistent for 3, in the sense that

(8) lim sup sup P, 5, (\/EHB — ﬁ“ > M) =0.
M—00 >k geRrE

Consequently, for every e > 0

(9) lim sup P, 3+ (cn
n— oo BERk

Q—BHZ€>=O

holds for any sequence of real numbers ¢, > 0 satisfying c, = o(n/?); which
reduces to uniform consistency for ¢, = 1.

2. The results in Part 1 also hold for A, as an estimator of A,3, where A,, are
arbitrary (nonstochastic) matrices of dimension p, X k such that the largest
eigenvalues Amax (Al Ay) are bounded.

Proof. We prove (8) first. Rewrite the model averaging estimator as ( = B(U ) +
AB(R) — B(U)). Since

Y

- < )~ o] Joo o)

since

Py 5.0 (ﬁ Hﬁw) - 5” > M) < M~20 trace[(X' X /n) 1],



Model averaging estimators 119

and since trace[(X’X/n)~1] — trace[Q '] < oo, it suffices to establish

(10) lim sup sup P, g, (\/5‘5\‘ “ﬁ(R) - B(U)H > M) = 0.

M —o0 n>k BERk

Now, using (2) and the elementary inequality 22/[1 + cexp(2?2)]? < ¢2 we have

~

b — o)

< AR () [xer) - xA)|

5\2

(1) = A (XX) {1 T exp(—2aks) exp (a |xacr) - xpw)| /02)} -

R R 2
< |xaer) - xpo)|
<n AL (X'X/n)ato? exp(daky) < Kn~'o?

for a suitable finite constant K, since Apin (X' X/n) — Amin(Q) > 0. This proves
(10) and thus completes the proof of (8). The remaining claims in Part 1 follow
now immediately. Part 2 is an immediate consequence of Part 1, of the inequality

405 = 48] < Amanta 0|5 - 8]

and of the assumption on Apax (A} Ay). O

Remark 6. (i) The proof has in fact shown that the difference between § and
B(U) is bounded in norm by a deterministic sequence of the form const x on=1/2.

(i) Although of little statistical significance since o2 is here assumed to be known,
the proof also shows that the above proposition remains true if a supremum over

0<0?2<8, (0<8 < o0)is inserted in (8) and (9).

In the next two theorems we give the asymptotic distribution under general
“moving parameter” asymptotics. Note that the case of fixed parameter asymptotics
(ﬁ(”) = () as well as the case of the usual local alternative asymptotics (6(”) =
B+ §/4/n) is covered by the subsequent theorems. In both these cases, Part 1 of
the subsequent theorem applies if #o # 0, while Part 2 with v = 0 and v = ds,
respectively, applies if G2 = 0.

Theorem 7. Suppose (7) holds.

1. Let 3™ be a sequence of parameters such that H\/ﬁﬁén)ﬂ — 00 as N — 00.
Then the distribution of \/n(B — ™) under P, s » converges weakly to a
N(0,02Q~1Y)-distribution.

2. Let (") be a sequence of parameters such that \/ﬁﬁén) — v €RF gsn — 0.
Then the distribution of \/ﬁ(ﬁ~ — ™) under P, gy o converges weakly to the
distribution of

-1
(12)  + |1+ exp(2aks) exp (—Oé HZQ + (Q22 — Q21Q1_11Q12)1/2’YH2 /02)]
X {DocZ2 — Boov}
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where

B — { 1—11Q12] , C. = { 1—11/2} |

Okz X kl

—Q1'Q12(Qa2 — Q21Q1_11Q12)1/2}
(Q22 — Q21Q7,' Q12) /2 ’

and where Z; ~ N(0,02%1},) is independent of Zo ~ N(0,02%1,). The density
of the distribution of (12) is given by

foor (1) = (2m0%) 7 ?[det(Q)]1/?
2
X exp (—(202)_1 HQ}{%I + Q1_11/2Q12t2H )
ko
X [1 + exp (—aa_2g (|\Dgo12(t2 + ’y)H)2 + 2ak2>]
(13) x {1 420072 (| DY (t2 + 7))’
iy -1
X [1 + exp <aa_zg (HD;olZ(tg + ’y)H)2 — 2ak2>] }
x exp {~(20%) 7 ||g (| D2t + M) [ Dbt + )] "
X D b(ta +7) — Dgolz’VHQ} ,
where t is partitioned as (t),t5)" with t; being a k1 x 1 vector. Furthermore,

Docs = (Qa2 — Q@1 Q12)"Y2, and g is as defined in the Appendiz (with
a = exp(2aks) and b = a~1o?).

Proof. To prove Part 1 represent V(B — ﬂ(”)) as n(B(U) — ™) + A/n(B(R) —
B(U)). The first term is N (0, o2(X’ X/n) !)-distributed under P, 5t ,, which ob-
viously converges to a N(0,02Q~!)-distribution. It hence suffices to show that

M/n(B(R) — B(U)) converges to zero in P, st o-probability. Since A_i (X'X/n)
is bounded by assumption (7) and since

32| VaGar) = 5| < ik (X730 [ XBCR) - XA(0)||

x {1 +exp (aa_2 HXB(R) — XA( U)H2 - 2ak52)} -
as shown in (11), it furthermore suffices to show that
(14) HXB(R) —XB( U)H2 — 00 in P, sn) ,-probability.
Note that

|xcar) - x| = 1Pu - Pay?

- H(PU — Pp)u+ (Py — Pp)Xa05" i

2
> ||Pu = Pr) X288 = 1(Pu — Pr)ull|"-
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The second term satisfies E,, 5 , ||(Pv—Pr)ul* = 0%k2 and hence is stochastically
bounded in P, 5 ,-probability. The square of the first term, i.e.,

[Py~ Pr)xa||

equals

Vs (X4 Xa/n) — (X5X0 /n) (X1 X1 /n) (X X /)] VB,

Since the matrix in brackets converges to Q25 — (Q21Q11 @12, which is positive def-
inite, the above display diverges to infinity, establishing (14). This completes the
proof of Part 1.

We next turn to the proof of Part 2. The proof of (12) is immediate from (3)
upon observing that B, — Bu, /nC,, — Cx, and /nD,, — Ds,. To prove (13)
observe that (12) can be written as

Boo7 + Coozl

-1
+ |1+ exp(2aks) exp (—a HZ2 + (Q22 — Q21Q1_11Q12)1/27H2 /02>}
X {Doo(Za + (Qaz — Q21Q11'Q12)?7)}

-1
= Booy + CooZy + Dog [1 + exp(2aks) exp (—a W2 /02)} Wo

where Wy ~ N((Q22 — Q21Q11 Q12)"/%y, 0%I},) is independent of Z;. Again using
Lemmata 15 and 16 in the Appendix gives the density of

2, 9 -1
W3 = [1 + exp(2aks) exp (—a |Wal|” /o >] Wy
as
x(ws) = (2%02)_1”/2 [1 + exp (—aa_2g(]|w3\|)2 + 2ak2)] &

X {1 + 200 2g (||ws]])? [1+ exp (ao?g(|lws|)? — 2aky)] _1}_1

2
X exp (—(202)_1 Hg (lws|) w3/ |ws|| — (Qa2 — Q21Qf11Q12)1/2’Y‘) ) .

Since Z; is independent of Zs, and hence of W3, the joint density of [Z] : Wi]’
exists and is given by

(2m0®) /2 exp (~(20%) 7 |1 ) x(wa).

Since the matrix [Co : Do) is non-singular we obtain finally
(2mo?)~k1/2 [det(Qn) det(Q22 — Q21Q511Q12)} 1z

X exp (—(202>—1 |Qith - @1t @iem) + Q1 Qua(t + ) H2)

X X ((Q22 — Qn Q1 Qi) P (t2 + ’Y)) -

Inserting the expression for x derived above gives (13). O
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Since in both cases considered in the above theorem the limiting distribution is
continuous, the finite-sample cumulative distribution function (cdf)

Fopo alt) =P g o (Vi(B = B™) < t)

converges to the cdf of the corresponding limiting distribution even in the sup-norm
as a consequence of the multivariate version of Polya’s Theorem (cf. [1], Ex.6, [2]).
We next show that the convergence occurs in an even stronger sense. Let f,, denote
the density of the asymptotic distribution of \/ﬁ(ﬁ — B™) given in the previous
theorem. That is, fs is equal to fo  given in (13) if \/ﬁﬁén) — v € R*2, and is
equal to the density of an N(0,02Q~1)-distribution if H\/ﬁﬁén) || = oo. For obvious
reasons and for convenience we shall denote the N (0,02Q!)-density by foo.0o-

Theorem 8. Suppose the assumptions of Theorem 7 hold. Then the finite-sample
density f, s 5 of V/n(B — B™) converges to fs, the density of the correspond-
ing asymptotic distribution, in the L'-sense. Consequently, the finite-sample cdf
F,, s , converges to the corresponding asymptotic cdf in total variation distance.

Proof. In the case where \/ﬁﬁén) — v € R*2_ inspection of (6), and noting that
g as well as T~! given in Lemma 15 are continuous, shows that (6) converges to

(13) pointwise. In the case where ||\/ﬁﬁzn) | = oo, Lemma 17 in the Appendix and
inspection of (6) show that (6) converges pointwise to the density of a N (0,02Q~1)-
distribution. Observing that f, 3m) , as well as fo are probability densities, the
proof is then completed by an application of Scheffé’s lemma. O

Remark 9. We note for later use that inspection of (13) combined with Lemma 17
in the Appendix shows that for ||| — oo we have foo , — foo,00 (the N(0,02Q~1)-
density) pointwise on R¥, and hence also in the L'-sense. As a consequence, the
corresponding cdfs converge in the total variation sense to the cdf of a N (0, 02Q~1)-
distribution.

Remark 10. The results in this section imply that the convergence of the finite-
sample cdf to the asymptotic cdf does not occur uniformly w.r.t. the parameter .
[Cf. also the first step in the proof of Theorem 13 below.]

Remark 11. Theorems 7 and 8 in fact provide a characterization of all accumu-
lation points of the finite sample distribution F), 5tn) , (W.r.t. the total variation
topology) for arbitrary sequences (™. This follows from a simple subsequence ar-
gument applied to \/ﬁﬂén) and observing that (RU{—oc, co})*? is compact; cf. also
Remark 4.4 in [7].

Remark 12. Part 1 of Theorem 7 as well as the representation (12) immediately
generalize to /nA(fS — ) with A a non-stochastic p x k matrix. If A has full row-
rank equal to k, the resulting asymptotic distribution has a density, which is given
by det(A) "1 foo (A7 1s), s € RE,

4. Estimation of the finite-sample distribution: an impossibility result

As can be seen from Theorem 3, the finite-sample distribution depends on the
unknown parameter (3, even after centering at 3. Hence, it is obviously of interest
to estimate this distribution, e.g., for purposes of conducting inference. It is easy
to construct a consistent estimator of the cumulative distribution function F}, g,
of the scaled and centered model averaging estimator 3, i.e., of
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Fopat) =Pupa (VB -B) <t).

To this end, let M be an estimator that consistently decides between the restricted
model Mg and the unrestricted model My, i.e., lim,,_, IP’n757U(M = Mp) =1if
B2 = 0 and lim,,_, o Pn,g,a(M = My) = 1if 83 # 0. [Such a procedure is easily
constructed, e.g., from BIC or from a t-test for the hypothesis $2 = 0 with critical
value that diverges to infinity at a rate slower than n'/2] Define f, equal to fI, .,

the density of the N(O 0%(X'X/n)~1)-distribution, on the event M = My, and

define f, equal to f o otherwise, where fT follows the same formula as fo 0,
with the only exceptlon that @ is replaced by X’'X/n. Then — as is proved in the
Appendix —

(15) | N7 = Fupa(] dz =0

in P, g ,-probability as n — oo for every § € R*. Define F}, as the cdf corresponding
to f,. Then for every 6 > 0

Pn.g,0 (HF FnﬂvUHTV >0d) =0

as n — 0o, where |||, denotes the total variation norm. This shows that F}, is a
consistent estimator of F;, 5, in the total variation distance. A fortiori then also

o (00| (0) = Foo(0)] ) =0
t

holds.

The estimator F, just constructed has been obtained from the asymptotic cdf by
replacing unknown quantities with suitable estimators. As noted in Remark 10, the
convergence of the finite-sample cdf to their asymptotic counterpart does not occur
uniformly w.r.t. the parameter 3. Hence, it is to be expected that F, will inherit
this deficiency, i.e., F,, will not be uniformly consistent. Of course, this makes it
problematic to base inference on F},, as then there is no guarantee — at any sample
size — that F),, will be close to the true cdf. This naturally raises the question if
estimators other than F}, exist that are uniformly consistent. The answer turns out
to be negative as we show in the next theorem. In fact, uniform consistency fails
dramatically, cf. (17) below. This result further shows that uniform consistency
already fails over certain shrinking balls in the parameter space (and thus a fortiori
fails in general over compact subsets of the parameter space), and fails even if
one considers the easier estimation problem of estimating F), g, only at a given
value of the argument ¢ rather than estimating the entire function F, g, (and
measuring loss in a norm like the total variation norm or the sup-norm). Although
of little statistical significance, we note that a similar result can be obtained for the
problem of estimating the asymptotic cdf. Related impossibility results for post-
model-selection estimators as well as for certain shrinkage-type estimators are given
in [9-11].

In the result to follow we shall consider estimators of F,, g ,(t) at a fized value
of the argument ¢. An estimator of F,, g ,(¢) is now nothing else than a real-valued
random variable I',, = T';,(Y, X). For mnemonic reasons we shall, however, use the
symbol F},(t) instead of T',, to denote an arbitrary estimator of F}, g (). This no-
tation should not be taken as implying that the estimator is obtained by evaluating
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an estimated cdf at the argument ¢, or that it is constrained to lie between zero
and one. For simplicity, we give the impossibility result only in the simple situation
where ks = 1 and @ is block-diagonal, i.e., X; and X, are asymptotically orthog-
onal. There is no reason to believe that the non-uniformity problem will disappear
in more complicated situations.

Theorem 13. Suppose (7) holds. Suppose further that ke = 1 and that Q is block-
diagonal, i.e., the k1 X ko matrixz Q12 is equal to zero. Then the following holds for
every 8 € Mp and every t € RF: There exist 5o > 0 and pgy, 0 < pg < 0o, such that
any estimator Fn(t) of Fy, g, (t) satisfying

(16) Puso (

Fult) = Fugo(t)] > 8) =50
for every § > 0 (in particular, every estimator that is consistent) also satisfies

(17) sup P90 (

196]Rk

[[9—=BlI<po/vn

Fu(t) = Fupo(B)] > ) "= 1.

The constants dg and py may be chosen in such a way that they depend only on t,
Q, o, and the tuning parameter o. Moreover,

(18) liminf inf sup Pp.9.0 < Fn(t) — Fn,g’g(t)‘ > 50> >0
nTeC Fa(t) PeRrk
[19=BlI<po/vn

and

N |

(19) sup liminf inf sup Pr.o.o <
§>0 MO0 FL(t) 9erk
[[9—Bll1<po/v/n

Eo(t) — Fn,ﬂ,(,(t)‘ > 5) >

where the infima in (18) and (19) extend over all estimators Fy,(t) of Fy p.4(t).

Proof. Step 1: Let 3 € My and t € R¥ be given. Observe that by Theorems 7 and
8 the limit

Foo’fy<t) = lim Fn,ﬁJr(n,'y)’/\/ﬁ,cr(t)

exists for every n € R¥1, v € R = R, and does not depend on 1. We now show
that Fii ,(t) is non-constant in v € R. First, observe that by Remark 9 and the
block-diagonality assumption on )

lim Foo.(t) =P ( "2z < tl) P (Q;;/222 < tg)

l[7ll—o0

where Z; and Z; are as in Theorem 7, ¢ is partitioned as (¢}, t2)" with ¢5 a scalar,
and P is the probability measure governing (71, Z2)'. Second, we have from (12)
and the block-diagonality assumption on @) that Fi ,(t) is the product of

P Q)21 <))

with

b <[1 + exp(2a) exp (—a <22 + Qéfv)z /02)] -1

X ( 2_21/2Z2 +7) —v < t2) .
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Since IP’(Ql_ll/ °7Z1 < t1) is positive and independent of +, it suffices to show that

(20) differs from IP’(Q2_21/2Z2 < ty) for at least one v € R. Suppose first that ¢t > 0.
Then specializing to the case v = 0 in (20) it suffices to show that

1/2

(21) P ([1 + exp(2a) exp (—04222/02)] Zy < t2>

differs from IP’(Q2_21/2Z2 < t3). But this follows from

P([l—i—exp@a exp (—aZ3/o )] 1/2

Zy < t2)
Zy > 0,h(Zs) < QM*t )

) ex
(

—1/2+P(0< 2 < g (')
(0=

_ ( 2_21/222§t2)

since h as defined in the Appendix (with a = exp(2a) and b = 02/a) is strictly
monotonically increasing and satisfies h(x) < x for every x > 0, which entails
g(y) >y for every y > 0. For symmetry reasons a dual statement holds for ¢t < 0.
It remains to consider the case t2 = 0. In this case (20) equals

(e e )

X <Z2 + Qéfv) < Qéé%)

-1

(22)

Let v > 0 be arbitrary. Then (22) equals

P (2 + Qs <0) +P(Z+ QP> 0.0 (2 + Qi) < Qi)

Arguing as before, this can be written as

P(Z:+ QP <0) +P(0< 2+ Qif*y < g (Q3™))
>IP<Z2+Q1/2’Y<0) +IP’<0< Zy + QP < Qéé%)

:IP’(ZgSO)zIP’( 1/2ZQ<0>

which completes the proof of Step 1.

Step 2: We prove (17) and (18) first. For this purpose we make use of Lemma 3.1
in Leeb and Pétscher [11] with the notational identification o = 3 € Mg, B = R¥,
B, = {0 € R* : [0 — Bl < pon="2}, gn() = Fu.o(t), and ¢, = Fa(t), where
po will be chosen shortly. The contiguity assumption of this lemma is obviously
satisfied; cf. also Lemma A.1 in [11]. It hence remains to show that there exists a
value of pg, 0 < pp < 00, such that 6* defined in Lemma 3.1 of Leeb and Pétscher
[11], which represents the limit inferior of the oscillation of F, . ,(t) over B,, is
positive. Applying Lemma 3.5(a) of Leeb and Pétscher [11] with ¢, = pon~!/? and
the set Gy equal to G = {(1/,7)" € R* : ||(n',7)']| < 1}, it suffices to show that
Fy +(t) viewed as a function of (n/,v)" is non-constant on the set {(n',v) € R¥ :
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(", %)l < po}; in view of Lemma 3.1 of Leeb and Pétscher [11], the corresponding
do9 can then be chosen as any positive number less than one-half of the oscillation
of Fio ~(t) over this set. That such a py indeed exists now follows from Step 1.
Furthermore, observe that Fi, .(t) depends only on «, @), o, and ¢. Hence, d¢ and pg
may be chosen such that they also only depend on these quantities. This completes
the proof of (17) and (18).

To prove (19) we use Corollary 3.4 in [11] with the same identification of no-
tation as above, with ¢, = pon~'/2, and with V = R¥. The asymptotic uniform
equicontinuity condition in that corollary is then satisfied in view of

||]Pn,9,a - ]P)n,ﬂ,a

max

v <22 (10— I AA(X'X)/(20)) — 1.

cf. Lemma A.1 in [11]. Given that the positivity of 6* has already been established
in the previous paragraph, applying Corollary 3.4 in [11] then establishes (19). [

Remark 14. The impossibility result given in the above theorem also holds for
the class of randomized estimators (with PP, . , replaced by P the distribution

n, o’

of the randomized sample). This follows immediately from Lemma 3.6 in [11] and
the attending discussion.

Appendix A: Some technical results

Let the function h : [0, 00) — [0, 00) be given by h(§) = [1+aexp(—£2/b)] 1€ where
a and b are positive real numbers. It is easy to see that h is strictly monotonically
increasing on [0, 00), is continuous, satisfies A(0) = 0 and lim¢_,o h(§) = oo. The
inverse g : [0,00) — [0,00) of h clearly exists, is strictly monotonically increasing
on [0, 00), is continuous, satisfies g(0) = 0 and lim¢_. g(¢{) = oco. In the following
lemma we shall use the natural convention that g(||y||)y/|ly|| = 0 for y = 0, which
makes y — g(|ly|)y/||y|| & continuous function on all of R™.

Lemma 15. Let T : R™ — R™ be given by

T() = [+ aexp(— al® /5)] =

where a and b are positive real numbers. Then T is a bijection. Its inverse is given
by
T~ () = g(llylDy/ Iyl

where g has been defined above. Moreover, T~ is continuously partially differen-
tiable and [T~ (y)|| = g(||yl|) holds for all y.

Proof. If y = 0 it is obvious that T(T~!(y)) = 0 = y in view of the convention
made above. Now suppose that y # 0. Then

T(T(y)) = [1 +aexp (—g(llylD/0)]~ g(llyl)y/ Iyl
=h(glyl) v/ llyll = y-

Similarly, if z = 0 then T7}(T(z)) = 0. Now suppose x # 0. Then T'(x) # 0 and,
observing that ||T(z)|| = [1 + aexp(—||z|?/b)]||z||, we have

(T (@) = g (IT@) ) Ta)/ |17 @)]
=g ([1+acsp (= ol 8)] " el ) /e
— g () 2/ 1] = o
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That T~ is continuously partially differentiable follows from the corresponding
property of T and the fact that the determinant of the derivative of T" does never
vanish as shown in the next lemma. The final claim is obvious in case y # 0,
and follows from the convention made above and the fact that g(0) = 0 in case
y=0. Ol

Lemma 16. Let T be as in the preceding lemma. Then the determinant of the
deriative D, T 1is given by

1 aexp (~ ol 0)) " {1e 2t [+ a e (Jal? )] el

which is always positive.

Proof. Elementary calculations show that

DT = [1+aexp (— ||g;||2/b)}_1

—1
X {Im + 2ab~ ! exp (— ]2 /b) [1 + aexp (— [ER /b)] x:c’} :
Since the determinate of I,, + cxrxz’ equals 1 + cx’z, the result follows. O

Lemma 17. For g defined above we have
Jim g(¢)/¢ =1

and

Jim ((9(0)/6) = 1)¢ = 0.
Proof. Tt suffices to prove the second claim:

Jim ((9(6)/€) = 1)¢ = lim (9(¢) =) = Jim (9(h(¢)) = h(€))

§—o0

= lim (6= [+ aexp (~€2/5)] "¢)

= lim £[1 +a texp (Ez/b)}il = 0.

§—o0

O

Proof (Verification of (15) in Section 5). In view of Theorem 8 it suffices to show
that

/ 1Fa(2) = fool2)| dz — 0
RE

in P, 3 ,-probability as n — oo for every 3 € R* where we recall that f., is equal
t0 foo.00, the density of an N (0, 02Q~1)-distribution, if 32 # 0, and is equal to fu 0
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given in (13) if B = 0. Now,
Pn o Vn - Joo d
s ([ Vnlo) = 1] > )
= Pops (/ Fal2) = foo(2)] dz > &, 11 = MR)
RF

+Prs0 (/Rk ]fn(z) — foo(2)| dz > e, M = MU)

where we have made use of the definition of f,. If 3 € Mg, then clearly the
event M = My has probability approaching zero and hence the last probability
in the above display converges to zero. Furthermore, if 3 € Mg, the last but one
probability reduces to

o [ |70~ fma(e)| s > 2,07 = 1)

which converges to zero since
[ |#ente) = ()] dz =0
R

in view of pointwise convergence of f;fO70 to foo,0 and Scheffé’s lemma. [To be able

to apply Scheffé’s lemma we need to know that not only f o but also f;ro’o(z) is a
probability density. But this is obvious, as (13) defines a probability density for any
symmetric and positive definite matrix @).] The proof for the case where 8 € My
is completely analogous noting that then fo = foo 0o holds. O

Acknowledgments

I would like to thank Hannes Leeb, Richard Nickl, and two anonymous referees for
helpful comments on the paper.

References

[1] BILLINGSLEY, P. AND ToOPSOE, F. (1967). Uniformity in weak convergence.
Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete 7 1-16.

[2] CHANDRA, T. K. (1989). Multidimensional Polya’s theorem. Bulletin of the
Calcutta Mathematical Society 81 227-231.

[3] HyorT, N. L. AND CLAESKENS, G. (2003). Frequentist model average esti-
mators. Journal of the American Statistical Association 98 879-899.

[4] HOETING, J. A., MADIGAN, D., RAFTERY, A. E. AND VoOLINSKY, C. T.
(1999). Bayesian model averaging: a tutorial [with discussion|. Statistical Sci-
ence 19 382-417.

[5] LEEB, H. (2005). The distribution of a linear predictor after model selection:
conditional finite-sample distributions and asymptotic approximations. Jour-
nal of Statistical Planning and Inference 134 64-89.



[6]

[10]

[11]

[12]
[13]
[14]

[15]

Model averaging estimators 129

LEEB, H. (2006). The distribution of a linear predictor after model selection:
unconditional finite-sample distributions and asymptotic approximations. IMS
Lecture Notes—Momnograph Series 49 291-311.

LEEB, H. AND POTSCHER, B. M. (2003). The finite-sample distribution of
post-model-selection estimators and uniform versus nonuniform approxima-
tions. Econometric Theory 19 100-142.

LEEB, H. AND POTSCHER, B. M. (2005). Model selection and inference: facts
and fiction. Econometric Theory 21 21-59.

LEEB, H. AND POTSCHER, B. M. (2005). Can one estimate the conditional
distribution of post-model-selection estimators? Working Paper, Department
of Statistics, University of Vienna. Annals of Statistics 34, forthcoming.
LEEB, H. AND POTSCHER, B. M. (2005). Can one estimate the unconditional
distribution of post-model-selection estimators? Working Paper, Department
of Statistics, University of Vienna.

LEEB, H. AND POTSCHER, B. M. (2006). Performance limits for estimators of
the risk or distribution of shrinkage-type estimators, and some general lower
risk bound results. Econometric Theory 22 69-97.

LEUNG, G. AND BARRON, A. R. (2006). Information theory and mixing least-
squares regressions. IEEE Transactions on Information Theory 52, 3396-3410.
MacNus, J. R. (2002). Estimation of the mean of a univariate normal distri-
bution with known variance. The Econometrics Journal 5 225-236.
POTSCHER, B. M. (1991). Effects of model selection on inference. Econometric
Theory 7 163-185.

POTSCHER, B. M. AND Novak, A. J. (1998). The distribution of estimators
after model selection: large and small sample results. Journal of Statistical
Computation and Simulation 60 19-56.

SEN, P. K. (1979). Asymptotic properties of maximum likelihood estimators
based on conditional specification. Annals of Statistics 7 1019-1033.

SEN P. K. AND SALEH, A. K. M. E. (1987). On preliminary test and shrinkage
M-estimation in linear models. Annals of Statistics 15 1580-1592.

YANG, Y. (2000). Combining different regression procedures for adaptive re-
gression. Journal of Multivariate Analysis T4 135-161.

YANG, Y. (2003). Regression with multiple candidate models: selecting or
mixing? Statistica Sinica 13 783-809.

YANG, Y. (2004). Combining forecasting procedures: some theoretical results.
Econometric Theory 20 176-222.



IMS Lecture Notes—Monograph Series
Time Series and Related Topics

Vol. 52 (2006) 138—-148

© Institute of Mathematical Statistics, 2006
DOI: 10.1214/074921706000001003

Modeling macroeconomic time series via
heavy tailed distributions

J. A. D. Aston!

Academia Sinica

Abstract: It has been shown that some macroeconomic time series, especially
those where outliers could be present, can be well modelled using heavy tailed
distributions for the noise components. Methods for deciding when and where
heavy-tailed models should be preferred are investigated. These investigations
primarily focus on automatic methods for model identification and selection.
Current methods are extended to incorporate a non-Gaussian selection ele-
ment, and various different criteria for deciding on which overall model should
be used are examined.

1. Introduction

While time series analysis is a rich topic for theoretical research, the implications of
such work can impact many applied sciences, including physical, biological and so-
cial. An example of the application of statistical time series methods in economics
is the seasonal adjustment of macroeconomic data, one of the primary functions
carried out by many statistical agencies worldwide. These adjustments allow com-
parisons of economic indicators to be made in the presence of seasonal variations,
and allow economic decisions to be made without the confounding factors of sea-
sonal fluctuations. The seasonally adjusted data is an unobserved component in
the data, and must be estimated using a model, which can be either parametri-
cally or non-parametrically specified. However, the estimates from the model can
be seriously affected by changes in the data, especially outliers in the data.

Methods have been developed to account for outliers in commonly used time
series models for seasonal adjustment using heavier tailed distributions than the
Gaussian [3, 5, 10], such as the t-distribution or mixtures of normals. The aim
of this paper is to present findings regarding how to select whether a heavy tailed
model is required for a data set based on the performance of several model selection
criteria.

Currently, most statistical agencies use one of two packages for seasonal ad-
justment, X-12-ARIMA [6] from the US Census Bureau, or TRAMO/SEATS [7]
from the Bank of Spain. These two programs both seasonally adjust the data,
but in intrinsically different ways. X-12-ARIMA uses prespecified filters to re-
move the seasonal component from the data, in a non-parametric fashion, while
TRAMO/SEATS uses the ARIMA methodology of [4] to determine the model and
estimate the seasonal component. It will be this second approach that will be gen-
eralised to include non-Gaussian components. Recently, a new integrated version
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of the software has been released [11] and the methodology also applies to this
package.

Two common types of outliers are additive outliers (shocks) and level shift
(break) outliers. The first refers to a single data point that is out of character
for the data given the model, whereas the second refers to a discontinuous jump
either up or down in the level of the data at some point, and continuing on after
that point for the rest of the series. These outliers lead to errors in the determina-
tion of the underlying components, and thus need to be accounted for. However,
they are, by nature, not known prior to the modeling, and are functions of both
the data and the model. A data point may be an outlier for one model but not
another, and its status as an outlier may change when new data is added. This
second feature is especially relevant for this study, as seasonal macroeconomic data
is usually continuously updated month by month, or quarter by quarter.

Firstly, a very brief introduction to ARIMA models for seasonal adjustment will
be given, followed by characterisations of the usual methods of outlier detection
for both the Gaussian and non-Gaussian cases. While attempting to solve similar
problems, the two approaches are appreciably different. Section 4 introduces the
model selection criteria to be considered and also some justification for their usage.
Section 5 provides some examples of real series where adjustment using heavy tailed
models gives better performance than using Gaussian models and the final section
provides discussion.

2. Seasonal adjustment and ARIMA model based decomposition

A seasonal time series y; can be expressed as the sum of unobserved components,
(1) yr = St + Nt

where S; represents the seasonal component and N;, the remaining non-seasonal
component. Thus the seasonally adjusted series y¢% is

2) g =y, — 8,

and is also unobserved by the nature of being a function of S;. ARIMA model based
(AMB) decomposition specifies ARIMA models for the unobserved components and
estimates these from both the data and from the overall model for the data as a
whole.

Box and Jenkins [4] introduced a class of seasonal ARIMA models that model
macroeconomic data well. The simplest model of this form is the airline model,
which models differenced data as a product of moving average (MA) processes;

(3) (1-B)(1 - B*)y, = (1 - 0B)(1 — OB%)¢,

where By, = y;_1, s represents the seasonal periodicity, and 6§ and © are the MA
parameters associated with the non-seasonal and seasonal MA parts respectively.
€; is assumed to be an iid Gaussian white noise process with variance o2. This
model can be generalised by altering the degrees of the MA polynomials and adding
Autoregressive (AR) parts to the left hand side of the equation. It will be assumed
here that the differencing is not modified, and that it remains of an airline type.
This includes the restriction that the MA and AR parameters cannot be unit roots
as these would alter the overall differencing.
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For simplicity, the airline model is considered explicitly, although other general-
isations can be handled similarly. The AMB decomposition for the airline model,
can be expressed in the following way using the decomposition of [9]

U(B)St = QS(B)wt
(4) (1= B)*Ty = 0r(B)n,

I =&

where U(B) = (1 + B + -+ + B*7!) and wy, 7, € are independent white noise
processes and

(5) ye = Sy + Ty + 1.

In order to define a unique solution (which may or may not exist), the restriction
is taken that the pseudo-spectral densities of the seasonal and trend components
have a minimum of zero (in line with the admissible decompositions of [9]). When
this condition cannot be met without resulting in a negative variance for I;, the
decomposition is said to be inadmissible. Throughout the paper, only parameter
combinations resulting in admissible decompositions will be assumed, which is al-
most always the case for macroeconomic data.

The parameter functions 07 (), 0s() and the variances of wy, 7, €; are all functions
of the underlying parameters 6, © and 2. They can be calculated from the partial
fraction decomposition of the pseudo-spectral densities, and the minimisation of
each resulting component. This is usually done, for example in the SEATS software,
after maximum likelihood estimation of the parameters has taken place, to give a
final adjustment of the data.

2.1. Gaussian outlier adjustment

The TRAMO package [7] is the most widely used method for automatic model
identification of seasonal ARIMA models for macroeconomic series. The program is
used to estimate the order of differencing, the orders of the AR and MA components
and also any outliers and common regressor effects that might be present. Inherently
in this paper, it has been assumed that the order of differencing is the same as the
airline model, but this assumption can be easily relaxed without significant change
in the approaches outlined. All the other parts of the TRAMO procedure are used
in exactly the same way in this paper as given in [8] except for the part relating to
outlier detection.

The TRAMO software determines outliers as part of the automatic model iden-
tification portion of the program. Critical values for the thresholds at which data
points are assumed to be outliers are chosen either by the user or from the length
of the series. Outliers are found by determining whether the significance of the re-
gression coefficients determined by assuming an outlier, be it an additive outlier
or a level shift, has occurred at each point in the data. This is done iteratively, by
adding in the largest regressor above the threshold (if one exists) and then repeat-
ing the exercise. A final check is made at the end to ensure that all regressors are
still above the threshold for the final model.

This method effectively removes the data point when it is considered to be an
outlier. When new data points arrive every month/quarter, the stability of the
seasonal adjustment can heavily rely on the stability of the designated outliers to
this new data as an outlying data point can then be added back in to the estimation
if no longer classified as an outlier.
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3. Heavy-tailed models to account for outliers in ARIMA component
models

Aston and Koopman [3] proposed this alternate methodology to the Gaussian classi-
fication of outliers by using heavier tailed distributions to weight data points rather
than making binary decisions on outliers. A short summary of the methodology is
now given.

The decomposition model (4) can be modified to incorporate non-Gaussian com-
ponents. In order to retain a similar structure, it is assumed that the components
have the same variance as the decomposition would predict, but different densities
are used to incorporate heavier tails.

The irregular component can be modified to include the t distribution in order
to account for additive outliers as

(6) I} ~ t(0,0%,v), t=1,...,n,

where v > 2 is the number of degrees of freedom and o7 is the variance, which is
constant for any v. In the case of an irregular modelled by a mixture of normals,

(7) If ~ (1= p)N(0,07) + pN(0,07),  t=1,...,m,

where 0 < p < 1 determines the intensity of outliers in the series and A measures
the magnitude of the outliers.

The decomposition model with a t-distributed irregular term can be expressed
in its canonical form by

yt:St—l-Tt—f—I:, I:Nt(o,a'%,l/), tzl,...,n.

where t(0, 0%, v) refers to the t-density. This model has the same number of parame-
ters as the original model specification except that the t density has one additional
parameter (the degrees of freedom v) and the mixture of normals has two additional
parameters (the intensity and the variance scalar).

To robustify the decomposition model against breaks in trend we consider the
trend specification

(8) (1= BTy = 0r(B)ni,  m; ~ (0,05, vy),

where the t-distribution ¢(0, 0’%, vy) can be replaced by a mixture of normals dis-
tribution. The decomposition model with heavy tailed densities for both the trend
innovations and the irregular is given by y; = S; + T} + I} where the latter two
components are given by (8) and (6), respectively.

These models can be estimated through the use of importance sampling as was
described in [3]. For calculation, it is important to note that the decomposition must
now be incorporated into the maximum likelihood estimation, as the individual
components are modified, yet, they are still dependent on the overall ARIMA model
for the series. However, fast algorithms for the decomposition make the estimation
feasible.

4. Model selection

One of the most important issues is deciding which model to use and when. Here
three different approaches are investigated, one based on the moments of the data,
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another using an empirical evaluation of a model selection criteria and the last
based on the stability of the estimated components when the data is updated.

Although the model is complex and the estimation method of the maximum
likelihood an approximation, certain properties of the model can be usefully inves-
tigated by considering a simpler model. Take the simple case of choosing between
two noise models, one t-distributed and the other gaussian,

Yr = €1 GTNN(07¢N>

(9) Yr =€+ €1 Nt<07¢TaV)'

and all the y, are iid from one model or the other.

As can be seen, these are essentially nested models where the parameter of
interest is the v degrees of freedom parameter. Slightly different from the usual
nesting setup, the gaussian model is the limiting distribution of the t-model as
v — o00. A proof is given in the appendix to show by looking at a function of
the moments of the data (essentially the kurtosis), a test can be performed as to
whether the error term under investigation comes from a normal or t-distributed
model. The test simply considers whether \/n(Z, — 3) comes from N(0,24), as
should be the case asymptotically, if the data are normally distributed, while for
the t-distribution, the sequence will diverge. In the actual data case, the test will
be applied to the irregular component data fitted under the normal model for
parameter estimation.

As can be seen from the simulations in Figure 1, even for small samples of the size
of the real data under investigation, there is a marked difference in the distribution
of the statistic between the two models.

In addition to the model choice given above, two other methods are investigated.
AIC [2] seems to be well suited to this problem, as the models are essentially nested.

Howey - ’ likelihood
500 4000
400 3000
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2000
200
100 1000
0] 0] L
-20 0 20 40 -500 0 500 1000 1500
3000 1500
2500
2000 N 1000
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1000 N 500
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0] 0
-200 0 200 400 600 -50 0 50 100 150 200

Fic 1. Small sample kurtosis estimator distributions for four different models as generated from
10° simulated samples of n = 150. (top left) Gaussian, (top right) t dist (v = 5), (bottom left) t
dist (v =10), (bottom right) t dist (v =15)
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Fic 2. AIC distributions for 100 series. (a) No outliers are present in the data (b) Three Outliers
are present in the data. Black line corresponds to the value where AIC chooses Gaussian vs t-
distributed model (left and right sides respectively).

estimate of the parameters be an interior point within the parameter space, not
on the boundary. Here, as the t distribution becomes the normal distribution as
v — oo, this assumption is violated. However, in practice it can be seen that while
the use of AIC might not yet be theoretically justified, in the case of the type of
data under investigation, simulation results seem to be promising.

A small simulation study was carried out using the airline model (parameters
of § = 0.7, ©® = 0.7, 02 = 1) and two data sets generated, one where there were
no outliers in the data, and one where there were three additive outliers added to
the data (points shifted by 5 times the sd of the irregular component). Histograms
of the AIC differences have been plotted in Figure 2. Corresponding histograms
for AICc and BIC have also been generated (not shown) with similar results. AIC
chooses the larger (t-distributed) model when there are outliers present in the data,
and chooses the smaller model when outliers are not present, with an error rate of
the same order as traditional AIC would predict.

In addition to the model selection criteria, an empirical measure was assessed for
determining which model to use. This measure relies on using out-of-sample data
to examine the estimates of the in-sample seasonally adjusted data when future
data becomes available. A crude, yet seemingly promising, procedure is to withhold
the final year of data, and to plot the changes in the seasonal components from
the two samples, with and without the extra year of data. Given the problems of
revisions when releasing macroeconomic data, adjusted series that remain stable
when future data is added are to be preferred to adjusted series that change. By
examining the plots of the differences, or some overall average change, such as the
mean absolute difference between the two adjustments, the stability of the seasonal
component to additional data can be quantified. Whilst this statistic is hard to
justify theoretically given the complex nature of the model, it will be seen in the
examples that it does seem to capture differences between the two approaches.
Theoretical justification of this statistic will be the subject of future work.

5. Examples

Many macroeconomic series do not have large problems with outliers, and thus the
methods described here will not be applicable. However, there are a sizeable pro-
portion of series released by agencies such as the US Census Bureau where outliers
do occur. When several series from the Census Bureau were investigated, two series
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where additive outliers seemed to be present were the Automobile Retail Series and
the Material Handling Equipment Manufacturing Series (or u33mno as it is also
known). These two series were analysed with the two different approaches, and the
model selection criteria were used to determine which was the most appropriate
model. Both series contained 155 data points (Feb 1992 until Dec 2004). For the
seasonal stability plots, the data from 2004 was withheld in one analysis and used
in the other and the results compared.

As can be seen in Figure 3, the seasonal stability plots for the automobile retail
series indicate that the t-distribution provides a more stable adjustment than the
normal model. This is chiefly because when an extra year of data is added, the
number of outliers detected in the series changed. Thus this caused large changes
in the seasonal pattern for the normal model. However, as there is no discrete
detection process for the t-distributed model, there was a more continuous change in
the seasonal pattern when the extra year of data was added, and thus the stability
was greater. There was a low number of degrees of freedom (approximately 5-6)
estimated for this model. The difference between the two models is also well detected
by all the model selection criteria (Table 1). In addition, the moment estimator has
a large value, well outside the 95% confidence interval range of a N(0,24) and
therefore normality of the error terms are rejected for both the 143 and 155 length
series.

The same conclusion can be reached with Figure 4 for the u33mno series, al-
though the seasonal pattern was more erratic for both models and thus the sta-
bility of the seasonal was closer in both models. This was also shown in smaller
differences for the model selection criteria in Table 1, with all the criteria being
borderline as to which model to use, especially given the small sample nature of
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Seasonal Differences (Log Data). top row: Gaussian Data, bottom row: t-distributed model
data, left column: Seasonal Patterns, right column: RMS Differences in Patterns when extra
12 observations added

Fic 3. Automobile Retail Series from Feb 1992-Dec 2004 (US Census Bureau). This example
shows that the seasonal difference plot finds a large change in the seasonal pattern with an extra
year of data when a Gaussian model is used, but this change is reduced when using the model
containing the t-distribution
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F1c 4. u33mno Series from Feb 1992-Dec 2004 (US Census Bureau). Again, this example shows
that the seasonal difference plot finds a large change in the seasonal pattern with an extra year of
data when a Gaussian model is used, but this change is reduced (slightly less than the auto retail
series) when using the model containing the t-distribution.

TABLE 1
Model selection and comparison of the two example series. Bold face indicates the optimal value
for selecting the model

Data Model Length df Sample LogLik  AIC AICc BIC Seas Mean
Kurtosis Abs Diff

Auto G 143 - 35.8 217.18 -2.97 -1.95 -2.86 -

Auto T 143 5.63 - 223.00 -3.04 -2.02 -2.91 -

Auto G 155 - 47.5 236.75 -2.99 -1.97 -2.89 0.0629

Auto T 155 5.10 - 243.05 -3.06 -2.04 -2.94 0.0381

u33mno G 143 - 11.1 92.29 -1.22 -0.20 -1.12 -

u33mno T 143 9.17 - 93.59 -1.23 -0.21 -1.10 -

u33mno G 155 - 13.9 105.19 -1.40 -0.38 -1.30 0.0651

u33mno T 155 7.43 - 107.14 -1.41 -0.39 -1.29 0.0266

series. However, given the increase in the stability and the borderline nature, the
t-distribution model will probably be preferred in the case of u33mno as well.

It can be noted in both Figures 3 and 4 that, for both the t-distributed and
the Gaussian models, the instability within the estimates does increase towards the
end of the series. This is due to estimates being weighted functions of other data.
Data that is close to the point to be estimated (either directly or as a multiple
of the seasonal period) is more heavily weighted than data that is further away.
Thus when new data is added, the estimates towards the end of the series are more
heavily affected than the estimates nearer the beginning of the series.
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6. Discussion

In this paper, model selection criteria have been proposed to choose between Gauss-
ian and heavier tailed distributions. Particular emphasis has been placed on choos-
ing between the t-distribution and the Gaussian distribution for modeling the ir-
regular component where additive outliers occur. However, all the techniques are
generalisable to other distributions such as mixtures of normals and to the trend
component to account for level shifts.

The model selection criteria have primarily been evaluated empirically for the
data and models used in the paper. This is for two reasons. Firstly, the seasonal
models under investigation are complex models, where the likelihood evaluation in-
volves both approximations through importance sampling and also pseudo-spectral
decomposition. Thus, results for these types of models are difficult to obtain explic-
itly. However, even for simpler models, only theoretical results have been obtained
for the moment estimator selection procedure, given the nature of the model nest-
ing, and the boundary problem. However, the results obtained from simulation are
promising. This also suggests that theoretical justification of these and related re-
sults, which apply in many other modeling situations, may well be a worthwhile
future research area.
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Appendix A: Moment estimator

Theorem 1 (Sample kurtosis). Let y,, 1 <7 < n be a realisation from one of
the two models given in (9) with finite positive variance.
Let

_ L3 (i —)!
(£ 3w —9)?)

and if ~ represents convergence in distribution then

(10)

2

(11) Vn(Z, —3) ~ N(0,24)
when v — oo and diverges for v finite.

Proof. Both the denominator and numerator of Z,, are moment estimators. If y,
comes from the first model in (9) then following a similar method to [12, Example
3.5], let
d — 4ca — 6ba® — 3a*

(b —a?)?

¢(a,b,c,d) =

then S
Zn = &(V, Y2, V3,79
where Y7 = =2 5 o7 and /n(Y —ay, Y2 —ag, Y3 — a3, Y4 — ay) is asymptotically

n
mean zero normal by the CLT where «; is the jth moment of y; wlog.
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If X; = jj;, and using the fact that the odd moments of the standard normal

are zero and the even moments given by 227?;! (and thus the first eight moments are
also finite),
X 1030
X?2-1 02 012
Vil xs = N10 130150
X4-3 012 0 96

The function ¢ is differentiable at the point (a1, as, as, as) = (0,1,0,3), and equals
(0,-6,0,1). Hence, by use of the delta method

Vn(Z, — 3) ~ N(0,24)

If y, comes from the second model in (9) (and assuming v > 4) then

1 A 942 V2 a.s
ﬁZ(yi—y) 3¢T—(V_2)(V_4) (a.s.)

and

(% Z(yz' - y)2> —or i 5 (a.s.)

by explicit calculation of the moments of the t-distribution [1] and thus

(v =2)
=) (a.s.).

Ly — 3.

As y, comes from second model of (9), v is finite and as n — oo

\/E(Zn - 3)

will diverge. O
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Abstract: This paper develops a European option pricing formula for frac-
tional market models. Although there exist option pricing results for a frac-
tional Black-Scholes model, they are established without accounting for sto-
chastic volatility. In this paper, a fractional version of the Constant Elasticity
of Variance (CEV) model is developed. European option pricing formula simi-
lar to that of the classical CEV model is obtained and a volatility skew pattern
is revealed.

1. Introduction

Black [3, 4] developed the so-called Constant Elasticity of Variance model for stock
price processes that exhibit stochastic volatility. The CEV model is expressed in
terms of a stochastic diffusion process with respect to a standard Brownian motion

(1.1) dX, = pX, dt + o XP'* dB,,

where 0 < 8 < 2 is a constant. If § = 2, such a model degenerates to a geometric
Brownian motion. This model is characterized by the dependence of the volatility
rate, i.e., 0 X?/2 on the stock price. When the stock price increases, the instanta-
neous volatility rate decreases. This seems reasonable because the higher the stock
price, the higher the equity market value, and thus the lower the proportion of
liability, which results in a decrease in the risk of ruin. The volatility rate or the
risk measure is thus decreased. Making use of methods proposed in an earlier liter-
ature [6], Cox [5] studied the CEV models and gave an option pricing formula that
involves a noncentral x? distribution function.

The classical CEV model (1.1) does not account for long-memory behavior, how-
ever. There are some evidences showing that the financial market exhibits long-
memory structures (see [7, 23]). To encompass both long-memory and stochastic
volatility, a possible model is to replace the Brownian motion in the stochastic
diffusion equation by a fractional Brownian motion that exhibits a long-memory
dependence structure (see [2, 13, 30]).

Though fractional Brownian motion can be used to model long-memory, as
pointed out by Rogers in [29], the fractional Brownian motion is not a semi-
martingale and the stochastic integral with respect to it is not well-defined in the
classical It0’s sense. A theory different from the It6’s one should be used to handle
the fractional situation. One approach is white noise calculus (see [18, 22, 28]),

*Research supported in part by HKSAR RGC grants 4043/02P and 400305.
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which was used in [14, 19] to construct stochastic integral with respect to the
fractional Brownian motion. With the white noise approach, an extension to the
Black-Scholes’ stochastic differential equation is proposed to cope with long-memory
phenomena (see [26]).

In this paper, the white noise calculus approach is adopted to construct a frac-
tional CEV model and to derive the option pricing formula for European call option.
Basic concepts in white noise calculus are briefly introduced in Section 2. The frac-
tional It6’s lemma, which is fundamental to option pricing theory, is presented in
Section 3. Section 4 explains under what circumstances is the It6’s lemma applica-
ble. In Section 5, the fractional option pricing theory is introduced and the concept
of self-financing strategy, which is different from the traditional definition adopted
by, e.g., Delbaen [10, 11|, will further be discussed. Finally, the pricing formula for
fractional CEV model is given in Sections 6.

2. White noise calculus and stochastic integration

In this section, the concept of stochastic integration with respect to fractional
Brownian motion is introduced briefly. Important concepts are defined based on the
white noise theory originated from [17], who considered the sample path of a Brown-
ian motion as a functional. Throughout this paper, notations used in [1, 14, 18, 22]
are adopted.

Let S(R) be the Schwarz space. Take the dual 2 = S’(R), equipped with the
weak star topology, as the underlying sample space, i.e., w € §2 is a functional that
maps a rapidly decreasing function f(-) € S(R) to a real number. Also, let B((2)
be the o-algebra generated by the weak star topology. Then according to Bochner-
Minlos Theorem (see Appendix A of [18]), there exists a unique probability measure
w on B(Q), such that for any given f € S(R), the characteristic function of the
random variable w — w(f) is given by

/ () dyi(w) = e=3I7IE
Q

where

12 = /R £2(t) dt.

Let L? be the space of real-valued functions with finite square norm || - ||, we have
the triple S(R) C L? C S'(R). For any f € L?, we can always choose a sequence
of f, € S(R) so that f, — f in L?, and w(f) is defined as the lim, . w(f,) in
L*(p).

Consider the indicator function

1,if 0 < s < a,

1(0,a)(8) =< —1l,ifa < s <0,
0, otherwise.

It can be verified that for any two real numbers a and b, the random variables
w(1(0,0)(+)) and w(1(op(-)) are jointly normal, mean zeros, and with covariance
min(a, b). Define B(t) as w(1(o)(-)), we can always find a continuous version of
B (t), denoted by B, which is the standard Brownian motion. Roughly speaking,
the probability space (€2, B(2), ) can intuitively be considered as a space consisting
of all sample paths of a Brownian motion.
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Following the approach of [14], we give the definition of fractional Brownian
motion with Hurst parameter % < H < 1 in terms of white noise setting by using
the fundamental operator My, defined on the space L?, by

[, H=3
Mp f(z) = {CH [ f@)t —x[F3dt, H < ; <1,

where cp is a constant depending on the Hurst parameter H via

[V

e = (20(H — %) cos(g(H - %)))_1[1“(211 + 1) sin(rH)]=.

Then, w(Mp1,q)(-)) and w(Mply)(-)) are jointly normal with covariance
1
5 Ual + [ = Ja — b]*"}.

Again, we can find a continuous version of w(Mpg1( ) (-)) denoted by B (t), which
is the fractional Brownian motion.

We have the following Wiener-It6 Chaos Decomposition Theorem for a square
integrable random variable on S’(R) (see Theorem 2.2.4 of [18]).

Theorem 2.1. If F € L*(Q, B(Q), i), then F(w) has a unique representation

Flw) =) coHa(w),

where a is any finite integers sequence (o, aa, ..., Qy), Cq are real coefficients and
Hy(w) = ha, (w(er))ha, (w(e2)) - ha, (w(en)) hn(z) are Hermite polynomials and
en 1 an orthonormal set in S(R) which is defined as

ei(t) = (Va2i1(i — D)V 2k (t)e t /2,

Furthermore, the L? norm of the functional F(w) is given by
Z alc?,
[e%

with ol = aglas! -+ ay,!.

Remark 2.1. (see [18, 27]) The basis {H,(w) : a} is orthogonal with respect to
the inner product E(XY) in L2(Q, B(2), u). The variance of H,(w) is a!. Hy(w) is
taken as the constant 1. For a # 0, the expectation of H, (w) is

E(Hou(w)Hy(w)) = 0.

As a result, the term ¢ is the expectation of the functional F(w).

Consider the functional Bff = w(Mpg1j4/(.)), where t is a given constant. Using
the dual property (see [14]) of the My operator: for all rapidly decreasing functions
f and g, we have

(f. Mug) = /R F(6)Mig(t) dt = /R g(t) My f(t) dt = (My . 9).
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The function Mpg1j4(.) can be rewritten in the Fourier expansion form:

MHl[Ot Z MHl[Ot]() ei(+))ei(s)

8

=2 (o), Muer())es(s)

ZZ;{/ Mrpei(u }1()'

8”

Since w is linear, the functional can be written as

w(Mglp () = Z(l[o,t]('); ei())w(ei)
i=0
o0 t
= Z {/ MHeZ(u)du} w(e;)
=0 0
= anHa(w)
In this example, when a = ¢(i) = {0...,1,0,...}, i.e., one at position i, ¢, =

fot Mpye;(u)du, and ¢, = 0 otherwise. It is tempting to write

d
—BH ZMH& Hw(e;),

which is illegitimate in the traditional sense as the Brownian motion or the frac-
tional Brownian motion is nowhere differentiable. With the chaos expansion form,
differentiation and integration with respect to time ¢ can be defined, but they may
not always be square integrable. Such type of operation is called integration or
differentiation in (S)* (see [18]).

Definition 2.1. Let (S) be a subset of L*(£2, B(Q), 1) consisting of functionals
with Wiener-Ito Chaos decomposition such that

Z cia!H(Zj)kO‘j < 00

a JEN

for all k < oo and that (S)* consists of all expansions, not necessarily belonging to
L?(Q, B(2), u), such that

Z cia!H@j)_qo‘j < 00

« JEN

for some ¢ < oo, then, the spaces (S) and (S)* are called the Hida test function
space and the Hida distribution space respectively.

The derivative of the fractional Brownian motion, or the white noise is defined

by
Bty =>" Mpe;(t)w(e
=0
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It can be shown that the sum W (¢) € (S)* (see [14, 31]). The importance of Hida
test function space and distribution space is their closedness of Wick multiplication.
Wick product is an operator acting on two functionals F'(w) and G(w).

Definition 2.2. The Wick’s product for two functionals having Wiener-I1t6 Chaos
Decomposition

F(w) =) caHa(w)

and

G(w) =) bsHs(w)
E

is defined as
F(w)oG(w) = _ cabgHatp(w).
a8

Addition of indexes refers to pairwise addition.

The closeness of Wick’s product is shown in the following theorem (see Corollary
2.2 and Remark 2.8 of [31]).

Theorem 2.2. Wick multiplication is closed in (S) and (S)*.

It is reasonable to define the stochastic integration of a functional Z;(w) with
respect to the fractional Brownian motion as the integration with respect to time
t of the Wick’s product between Z;(w) and W (w). Under the Wiener Chaos de-
composition framework, if the decomposition exists, the functional Z;(w) o WH (w)

can be written as
D calt)Ho(w).

It is natural to think that the integration is

> {/Ot ca(s)ds} Ho(w),

«

by assuming that summation and integration are interchangeable. If the integration
with respect to time is a path-wise classical Riemann integral, it is not clear that
summation and integration are interchangeable. Such difficulties can be finessed
by introducing new definitions for integration with respect to time and integration
with respect to the fractional Brownian motion as follows (see Definitions 2.3 and
2.4 respectively).

Definition 2.3. (a) Elements in (5)* as an operator: Let F(w) =) caHa(w) €
(8)* and f(w) =), baHa(w) € (5), then F' can be regarded as an operation on f

(F, f) = Zbacaa!.

(b) Time integration: If Fy(w) = > ca(t)Hq(w) are elements in (S)* for all
positive real number ¢, and that (F}, f) are integrable with respect to t for all
f € (9), then the integral [, Fy(w)dt is defined as the unique element in (S)*, I(w)
such that

(I(w), f) = / (Fy(w), f) dt

R
for all f € ().
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Remark 2.2. It can be shown that the quantity (F, f) in part (a) exists and is finite
under the condition given in the definition. It can be regarded as the expectation of
the product between F(w) and f(w) when F(w) € L?(Q, B(Q),u) and f(w) € (.9).

Definition 2.4. Let Z(t) = ) ca(t)Ho(w) € (S)* for any given ¢, then, the
Wick’s integral of Z(t) is defined as

/ Z(t) o dBH (1) = / (Z(t) o WH (1)} dt,
R R

when Z(t) o WH (t) is integrable with respect to time ¢ in the sense as in Definition
2.3.

The following theorem asserts that integration and summation are interchange-
able, see Lemma 2.5.6 of [18].

Theorem 2.3. Let Z(t) : R — (S)*, with Wiener Chaos decomposition
Z ca(t)Ha(w)

such that

Zoz!{/R co(t)dt}? H (25)79Y9 < o0

JEN

for some q < oo, then Z(t) is time-integrable, also, integration and summation are
interchangeable, i.e.

/R Z(t)dt:%:{ /R Ca(t)dt} Hy(w).

3. Fractional Itd’s lemma

Several approaches of extending classical It6’s lemma to incorporate the fractional
Brownian motion were discussed in the literature, e.g., [8, 9, 12]. The settings in
these papers are different and various conditions are required to ensure that the
stochastic integrals appear in the fractional It6 lemma exist. Bender in [1] provided a
simpler version of fractional It6’s lemma based on the white noise setting introduced
in the preceding section. Here, we restate Bender’s theorem in Theorem 3.1 and
give a generalized result in Theorem 3.2.

Theorem 3.1. Consider the stochastic process

Y, :/0 h(t) dB{" = w[Mp (h(-)1j,())],

where h(t) is a continuous function in [0,T) and H > 3. Let g(t,y) be a two-

dimensional function differentiable with respect to t and is twice differentiable with
respect to y. Also, there exists constants C7 > 0 and

A1 < (2T supepo, ) h(s))~? so that

2
max{|g[, ’gt‘v ‘gy‘> ‘gyy”’ S Cle)\ly .
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Let k(t) = H(2H — 1)h(t) fOT h(s)|s — t|* =2 ds. Then, we have the following frac-
tional Ito’s lemma:

T 9 T 0
9(T,Yr) = 9(0,0) + / =gt Yy di + / h(t)=-g(t,Y) o dBY
o Ot 0 dy

T 82

Remark 3.1. The integrals above are well defined as the condition that the inte-
grands and integrals both belong to (L?) is ensured by the given assumption. Since
(L?) C (S)*, the integrals are defined as in Section 2.

This theorem gives the differential form of g(¢, Y;) when the underlying stochastic
process Y; is an integrals of a deterministic function h;. The following generalization
takes the underlying stochastic process to be X; = ¢(t, ;) and gives the differential
form for P(t, X;), where P(t,x) is a two-dimensional real-valued function. Before
introducing our results, let us illustrate some ideas through an example (see [19]).

Consider the two-dimensional function,

1
g(t,y) = exp(ut — 502t2H + oy),

where p and o are two positive constants and the underlying stochastic process is

t
Yt:/ dBH,
0

i.e., h(t) = 1. Clearly, for any given value of T', the functions g, g, g, and g,, are
all continuous in the closed interval [0, 7] and hence, the conditions in the theorem
are fulfilled. Applying the lemma, we have

t
k(t) = H(2H — 1)/ it — s =2 ds = Ht*H -1,
0

and

dXy = (p— o Ht* =V g(t,Y;) dt + og(t,Y;) o dB
+k(t)o?g(t, X,) dt
= pg(t,Y;) dt + og(t,Y;) o dBJ
= pX,dt +oX, odBE.
The next question is whether there exists an It6’s lemma that further expresses

P(t, X;) in terms of integrals involving uX and o X, but not Y and g explicitly. It
is reasonable to expect that

dP(t,X;) = P,(t, X}) dt + pYi P (t, X;) dt + oY, P, (t,Y;) o dBF +
o?Ht* 71 X2P, . (t, X;) dt.
This result can be verified by the following theorem.

Theorem 3.2. Using the same notations and assumptions in Theorem 3.1, further
assume that the differential of the stochastic process Xy = g(t,Y:) can be, according
to Theorem 3.1, written as

dX; = p(t, X;) dt +o(t, X;) o dB}.
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Also, there exists constants Cy > 0 and Ay < (2TH SUP¢o,7] h(s))~2 so that the
composite function Pog= P(t,g(t,y)) satisfies

max{|(P o g)|, |(Po )i, |(P o g)y|, |(P o g)yyl} < Coe*?¥".

Let C(t) = k(t)h=2(t). Then the fractional It6’s lemma is given by

T T
P(T,Xr) = POX0) + [ SP0X0de+ [ e, Yoo Pt X, d
0 8t 0 8x

T a = T ) 82

Proof. This theorem can be verified by applying Theorem 3.1 to f(t,g(¢,Y:)). O

To relate this result with previous works on fractional stochastic calculus and
option pricing theory, such as [12, 26], consider the last term in the right-hand side
of the It6’s formula. This second order correction term can be considered as the
product of three quantities: Py, (¢,X), o(t,X) and C(t)o(t, X). Comparing with
the result of [12], the quantity C'(t)o(t, X) corresponds to DY X,. This quantity
is known as the Malliavin derivative of X;. For details of Malliavin calculus, see
[20, 24, 27]. Under our assumptions that X; has the form of g(t,Y;), this quantity
depends only on the current time ¢ and the value of X at time t. But this needs
not be the situation for a general X; governed by a fractional stochastic differential
equation. In general this quantity may depend on the entire path of X;, not only
on the value at one point. This may introduce further complications when working
with the differential.

4. The fractional CEV model

Here we construct a fractional version of the Constant Elasticity of Variance model
by means of the fractional Itd’s lemma (Theorem 3.1). As discussed in the intro-

duction, constant elasticity is characterized by the the volatility term aXf /% in
a stochastic diffusion equation. In order to handle long-memory, we replace the
Wiener process by a fractional Brownian motion. The fractional diffusion equation
is then defined as

dX, = p(t, X,) dt + o X/? o dBH,

where 0 < 6 < 2. If H = % and pu(t, Xy) = pXy, this is the classical CEV model.
In this situation, the Wick integral is equivalent to the Itd’s integral (see [18])
and hence, the classical It6’s lemma can be applied to any stochastic process of
the form Y; = P(t,X;). When long-memory is considered, the It6’s lemma will
involve the Malliavin derivative, which is in general path dependent and difficult
to handle. When the integration is defined in the white noise sense (Section 2),
the integrand is assumed to belong to (S)* at every time ¢, and the integral is a
random variable in (S)*. The elements in (S)*, which are merely formal expansions,
may not correspond to real values for each w and the term P(¢, X;) may not be
well-defined in general. In order to overcome such difficulties, we need to choose a
suitable p(t, X).

Assume that X; can be written explicitly in terms of time ¢ and a stochastic
integral process Y; = f(f h(s)dBH, ie. X; = g(t,Y;). From Theorem 3.1, the dif-
ferential of X; can be decomposed into two parts, the drift term and the volatility
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term. In order to keep the elasticity constant, the function g(¢,y) must be chosen
as

ott.n) = ot Do)+ 10}

where f(t) is an arbitrarily chosen function of ¢. This g(t,y) is in fact the solution
to the differential equation

h(t)a%gu, y) = olg(t.y)}*2.

The next question is how to choose f(t). The answer is given by the following
theorem.

Theorem 4.1. Assume that h(t) is a strictly positive function and g(t,y) is the
solution to the differential equation

(4.1) h(t)a%g@, y) = ot g(t,y).

The general solution to this equation involves an arbitrary function f(t).
Let n(t) and ¢(t) be two functions determined by the integral equations,

h(t) =e" fot n(s)ds
and .
) = O oo+ [ W)t
where ag is a constant so that g(0,0) = X, then,
X =g(t,Ys)

yields the volatility o(t, Xy) in the fractional Ito’s lemma and the drift term is given
by a two dimensional function

pu(t,x) = o(t,x) |e(t) + C(t) % + /033 07(715(2) dx + /(:j % g—j dm] :

Proof. Let

then g(t,y) given by
alt, g(t,y)) = [A(H)] 'y + f(2)
satisfies Equation (4.1). After some manipulations, we have

0 0?2
gg(t, y) + k(t)a—ng(t, Y)

Oa

= o(t,9) | #lt) + S (1,) + n(D)alt ) — e |

which does not involve y explicitly. The proof is completed by comparing this with
fractional It6’s lemma (Theorem 3.1). O
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Remark 4.1. Note that the function C(¢) depends on the choice of 7(t) and by
definition (in Theorem 3.2) must be strictly positive.

In the CEV case, when the drift term has the form of

(4.2) wu(t,x) = li(—tﬁ)/Zx + op(t)z?/? + %xﬁ_lC(t),

the solution to the stochastic diffusion equation
dX, = p(t, X)) dt + o X'? o dBY

is well defined and is given by Theorem 4.1. Now choose suitable time dependent
functions 7(t) and ¢(t). Consider the three quantities of p(t, X;) in (4.2). The last
one is strictly positive and cannot be eliminated. When we choose 1(t) = (1 — g) 1
and ¢(t) = 0, the second term vanishes and the first term becomes pX;. The drift
term becomes

o?f3

p(t, Xo) = pXe + =~ 00X

The CEV stochastic differential equation is thus

t t 2 t
Xt:X0+/ quds+{/ UTBC’(S)XE_ld3+/ o—Xf’/%dBf}.
0 0 0

5. Fractional option pricing theory

By using the generalized 1t6’s lemma (Theorem 3.2), the differential of P(t, X;) can
be decomposed into two terms, the drift one and the volatility one and both terms
involve only current time ¢t and X4, i.e., they are path-independent. The foundation
of the Black-Scholes’ option pricing theory is constructing a self-financing strategy,
which makes use of stocks and bonds to hedge an option. The definition for self-
financing strategy in continuous-time model depends on how the stochastic integrals
are defined. As the fractional stochastic integrals are defined in a different manner,
a new definition for self-financing strategy is required. One approach is adopted
by [14, 19], which defines self-financing strategy under the geometric fractional
Brownian motion. Here, this approach is extended to a more general situation.

Let X; be the stock price process and II; be the bond value and they are governed
by

t t
Xt:/ u(s,X)der/ o(s,X)odBH,
0 0

t
(5.1) Ht:/ rIlds.
0

Definition 5.1. (see Section 5 of [14]) A trading strategy consists of a quantity
(ut,v¢) of bonds and stocks is called self-financing if the infinitesimal change in the
portfolio value at time t is given by

dZt = d(utﬂt + UtXt)
= rﬂtut dt + M(t, Xt>’Ut dt + [O’(t, Xt)'l)t] < dB? + dA,

where dA is an infinitesimal dividend payment term.
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Below, using the above definition, a fractional Black-Scholes equation is derived.

Theorem 5.1. Suppose that the market consists of two securities, a risk-free bond
and a stock. Here, the stock provides dividend continuously with rate 6. Assume that
the stock price process Xy = g(t,Y}:) is defined as in Section 3 which also satisfies
the equations (5.1). Then the price of a derivative on the stock price with a bounded
payoff f(X(T)) is given by P(t, X), where P(t, X) solves the PDE:

oP 0P

oP
2 — —_ —_— pung
(5.2) T + o (t, X)C(t) e + (r 6)X8X rP =0,

with boundary condition P(T,X) = f(X) given that P o g satisfies the conditions
in Theorem 3.2.

Proof. A proof parallel to the fractional Black-Scholes equation in [26] is given here.
Consider a solution P(t, X) to equation (5.2). Applying fractional It6’s Lemma
Theorem 3.2,

oP 0P 0*pP

oP
dP(t, X;) = [E + 8_X“(t’X) + Wcr?(t,X)O(t)] dt + 8—Xa(t,X) odBF.

Form a trading strategy by dynamically adjusting a portfolio consisting a varying
quantity v(t) of stocks and u(t) of bonds. By choosing

u(t) = g_)f;
53 u(t) = (P - X50),

then the portfolio value at time t is P; and

ru(t)IT; dt + v(t)u(t, X;) dt + [v(t)o(t, X;)] o dBI + dv(t) X, dt

B oP oP oP y  OP
=[rP— TXE] dt + Pox dt + (Ua_X) odB;" + ﬁ(SX dt

oP 0P o*p
= [E - 3% 6X dt + Waz(t, X)C(t)] dt

oP oP y  OP

oP 0P 9*pP oP
= [E + a—Xu(t,X) + 55 o?(t, X)C(t)] dt + a—Xo(t,X) odBH
= dP(t, X;)

=d (Uth + UtXt).

By Definition 5.1, (u(t),v(t)) is a self-financing strategy. It can be shown that such
strategy hedges the derivative. The portfolio value at time t is given by w(¢)II; +
v(t)X; and it is equal to P(t, X;). At time of maturity, the portfolio value is just
P(T, X7). By assumption, the function P(t, X) satisfies the boundary condition,
so P(T,Xr) = f(Xr). Therefore (u(t),v(t)) hedges the derivative and P(t, X) is
the option price. O

6. Pricing an European call option under CEV models

Putting 02(¢, X) = 02 X", the Black-Scholes PDE (Theorem 5.1) of the CEV model
is now given by

9*P P
2 6 — p— — — pu—
+ 02 CO)X S+ (= 0)X 5 — 1P =0,

or
ot
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Putting Y = X277 (see [5]) and P(t, X) = e"Q(t,Y), this equation becomes

0Q 0Q 0°Q
where a = 02(2 — 8)2, b= (r — 6)(2 — 8) and ¢ = 0%(2 — 3)(1 — ). The boundary
condition is

=0,

Q(T,Y) = e " max(Y 77,0).

The approach of Cox and Ross [6] that made use of Feller’s result ([15, 16]) can
be adopted. First the solution for this equation at (¢, Y:,) is the expectation of
Q(T,Yr) under the SDE

(6.1) dY = [bY + cC(t)] dt + \/2aC()Y dB,

with Y (t9) = Y;, (see [25]). To solve this SDE, we follow Feller’s arguments. First,
a useful result of Kolmogorov is stated below (see Equation (167) of [21]).

Theorem 6.1. The probability density function of a diffusion process X; driven by
standard Brownian motion

dXt = ,u(t, Xt> dt + O'(t, Xt)dBt

s giwen by the PDE

e = [502(t, X)ult, X)) — [ult, Xult, X)]x.

In our case, because of (6.1), the Kolmogorov’s equation becomes
ug = [aC(t)Yu(t,Y)]yy — [(bY + cC(t))u(t,Y)]y.

The European call option pricing formula can be obtained by solving the above
PDE.

Theorem 6.2. Under the fractional CEV model introduced in Section 4, the price
of an Furopean call option with strike price K, mature at T at current time tg s
given by

S(T—to) . N Lt (® L S
P(tg, Xg) =e V" 70X —e o (—)"'G 1+ ——, ——
(to, Xo) =€ Ogrle T(a’}’T) (r+ +2—57aebT’YT)
— Ke "(T—to) i 1 e~ (LT G 41, K ),
T(r+1- ﬁ) anr aedT ~p

where x = e~P0Y (tg),
t
— / e UTC(r)dr
to
and

G(a,v) = ﬁ/ e T ldr.

Proof. Assume that the Laplace Transform of u(¢,Y’) with respect to Y exists and
equals to w(t, s). Since the value of Y at time t( is given, Y}, is deterministic and
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thus u(to,Y) = §(Y —Y;,), the Dirac function. Also, w(tg, s) = e Y0 = 7r(s) and
the equation becomes the boundary value problem

(6.2) wt + s(aC(t)s — b)ws = —cC(t)sw + Y(t)

(6.3) w(ty,s) = e Y0,

In equation (6.2), 9(-) is called the flux of u at the origin (see [16]), which is to

be determined later. Now, we find the characteristic curve of the first order PDE
(6.2). The characteristic curve is given by

ds_
dt

The solution to this equation is

aC(t)s® — bs.

s =e Y0y —ay] ™t
On this curve, w(t, s(t)) satisfies

d

Zw(t,s(1) = $(t) — cCO)s(w(t, s(1)).

Solving, we have
t
w(t, s(t)) = [C1 — av ] [Ca+ | ¥(7)|CL — ar- |~ dr].
to

For any given point (¢, s1), the characteristic curve with

Cy = ay, + = C(t1,51)

siebt

passes through (¢1,s1). Also, this curve passes through the point (tO,C’l_le*th).
This yields the value of Cj,

CQ == [Cl(tl, S1)]7C/aw(t0, Gibtocl_l(tl, 81)).
The Laplace transform of u(¢,Y’) at point (¢1, s1) is thus given by

w(ty, s1) = (51€"1) 7/ [(Cy(t1, 1))~ “w(to, e "0 CT (t1, 51))
t1

vt =)+

=</ dr]
81 eb(tl *tO)

_ bt1 1—c/a
e T e 1

* / 1 [s1a€”™ (¢, — 7) + 1]~/ “(7) dr.

to

Following the argument of [16], when u(t,0) is finite and c < 0 or 0 < ¢ < a,
lim(sac’y + w(t, s) = 0,

then 1 (t) is given by the integral equation

e—bto /‘t f)/t
T + Y(r)(———— c/adr = 0.
( ayy ) o ( ><%—%)
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-

To solve this equation, applying the substitutions z = % and ¢ = %,

o0 B _c/ad . e~ to - ~e—to
- | a0 = mic=m( )=
= oo(-2),
where g(¢) = ~(r)C/* 4.
The solution of (6.5) is
1 T, —cta T
9(C>:H1—_§)(5) @ GXP(—MT),
U(r) = 9(Q)C /S
-1 1L @ —eta AN
= F(l—_g)(;)(a—%) exp( a%) dr

Substituting this result into (6.4), after simplification, we get

bt

—szxe 1 T

).

The next step is to perform an inverse Laplace transform with respect to s. To this
end, let

ye/ap(1 — <

w(t,s) =e
(t,s) xp( a’ ay(saebtyy + 1)

saebtyy + 17" saebtvy, + 1

- T
ant
z= saebt% + 1.
One can verify that equation (6.5) in [16] is still valid after these substitutions. The
quantity w(t, s) can now be rewritten as

1 —A 1—2/1 —c/a AT 1
— e A 1—7)"%% = 27 dr.
N o 177

Using the fact that Laplace Transform of Iy(z(A7Y)!/2) is e= 271, we have

1 re? —cia (Y + ze) 2 b
t.Y)=(——)(—) 2« AT I e —bt . y\1/2
s ¥) = () () 5 (- LIy (e,

where I (-) is the first type Bessel function with order A\, which is defined as

N (2
L) = kzzo KT (k+1+A)

This density function is then used to find the solution of P at (to, Xo) by means of
the identity,

1
P(ty, Xo) = " Q(ty, Xo) = efr(TftO)E[maX(YT?w - K,0)].

After direct calculations, we have

Plto, Xo) = e (T10) / (y™7 — K)u(T,y) dy
K268

o0
1 _ = T
— ,—1(T—to) (r—=6)T ﬁ_ avr (—\ @G 1 -
e rz_:oe x T!e T(G’YT) (r+ +2—ﬁ’aebT7T

oo
1 _ =z x 1 K258
—r(T—t - + 52
— Ke O)E F(r+1—215)€ T (—)""2 5G(T+1,aeT
r=0 -

anr
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Putting z = e‘thXg_B,

1 _ bto (r—
2T = TAXy=e "X,

So the option pricing formula is

_ r K2=P
P(tO,XO) (T —to) Xo Z —e a“/T (—T) G(T + 1+ 5 _ ﬁ, aebT")/T)
= 1 __=z x 1 K?=5
— Ke (Tt e o1 (— )T G(r + 1, ——).
; L(r+1-515) (a'yT) ( aebeyT)
O

This formula is similar to the classical one, which is obtained by replacing the
term yr by the term —b( —bto _ =T As these two terms do not depend on the
strike price, the implied volatility pattern is the same as the classical CEV model.
Consequently, the fractional CEV model also accounts for the volatility skewness
observed in practice.
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Abstract: The Sharpe ratio, which is defined as the ratio of the excess ex-
pected return of an investment to its standard deviation, has been widely cited
in the financial literature by researchers and practitioners. However, very little
attention has been paid to the statistical properties of the estimation of the
ratio. Lo (2002) derived the y/n-normality of the ratio’s estimation errors for
returns which are iid or stationary with serial correlations, and pointed out
that to make inference on the accuracy of the estimation, the serial correlation
among the returns needs to be taken into account. In the present paper a class
of time series models for returns is introduced to demonstrate that there exists
a factor other than the serial correlation of the returns that dominates the
asymptotic behavior of the Sharpe ratio statistics. The model under consider-
ation is a linear process whose innovation sequence has summable coefficients
and contains a latent volatility component which is long-memory. It is proved
that the estimation errors of the ratio are asymptotically normal with a conver-
gence rate slower than 1/n and that the estimation deviation of the expected
return makes no contribution to the limiting distribution.

1. Introduction

An interesting phenomenon observed in many financial time series is that strong
evidence of persistent correlation exists in some nonlinear transformation of returns,
such as square, logarithm of square, and absolute value, whereas the return series
itself behaves almost like white noise. This so-called clustering volatility property
has a profound implication. The traditional linear processes such as ARMA models
and the mixing conditions of various types that have been widely used to account
for the weak-dependence or short-memory properties of stationary processes (see,
e.g., [1]) are found inadequate to model the dependence structure of the return
process. A great deal of research works have been devoted to looking for proper
models that entail the stylized fact mentioned above. The ARCH model proposed
by Engle [6] and its various extensions are attempts that have been proved very
successful. Recently, models other than ARCH family have been seen to provide
better fitting for data with clustering volatility. For instance, Lobato and Savin [11]
examine the S&P 500 index series for the period of July 1962 to December 1994
and report that the squared daily returns exhibit the genuine long-memory effect
which ARCH process cannot produce (see also [5]). Based on Lobato and Savin’s
finding, Breidt, Crato and Lima [2] suggest the following long-memory stochastic
volatility model (LMSV):

(1.1) Ty = UiEr, U = 0 exp(zy),
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where ¢ > 0, and {z;} is a Gaussian process which exhibits long memory and is
independent of the iid sequence {e;} with mean zero and variance one. The short-
memory version of model (1.1) has been discussed, for example, by Taylor [14],
Melino and Turnbull [12] and Harvey et al. [8]. The precise definition of short- or
long-memory process is given as follows. A linaer process defined as

oo
(1.2) ve=) aizi,
1=0

where the z; are iid random variables (Gaussian or non-Gaussian) having mean 0
and variance one, is called short-memory if the coefficients a; are summable or long-
memory if a; ~ Ci™? with B in (1/2,1); “g, ~ hy,” signifies lim,, o0 gn/hn = 1. The
long-memory process just defined is sometimes also referred to as a fractional dif-
ferencing (or I(d)) process with the memory parameter d = 1 — 3 [3]. It can be seen
that the LMSV model described in (1.1) and (1.2) exhibits the desirable property
that {r;} is white noise and {r?} is long-memory. Because of this characteristic
property, one needs to be cautious in making statistical inference for the LMSV
model if the statistics of interest involve nonlinear transformations. The purpose
of this paper is to point out a circumstance under which the estimation statistics
based on the LMSV model behave distinctly different from traditional stationary
sequences of weak dependence such as the ARMA model with iid innovations.

We use the example of the Sharpe ratio to demonstrate that for the LMSV model
the estimation statistics have entirely different asymptotic properties from those of
the case where the volatilily is short-memory. Discussions of this and a more general
model are presented in Sections 2 and 3, respectively. The paper’s main result is
formulated in a theorem stated in Section 3 and its proof is given in Section 4.

2. LMSYV models: the simple case

The Sharpe raio, which is defined as the ratio of the excess expected return of an
investment to its standard deviation, is originally motivated by the mean-variance
analysis and the Sharpe-Lintner Captial Asset Pricing Model (Campbell, Lo and
MacKinlay [4]) and has become a popular index used to evaluate investment per-
formance and for risk management. Both the expected return and the standard
deviation are generally unknown and need to be estimated. Although the ratio is
one of the most commonly cited statistics in financial analysis by researchers and
practitioners as well, not much attention has been paid to its statistical properties
until the work of Lo [10]. Lo [10] points out that to gauge the accuracy of the
estimates of the ratio, it is important to take into account the dependence of the
returns for it may result significant difference of the limiting variance between iid
and non-iid (dependent) returns. For both of the two cases the standard y/n central
limit theorem is assumed to hold for the ratio’s estimates. The LMSV time series is
a stationary martingale difference sequence bearing strong dependence in the latent
component of volatility. The partial sums of the sequence itself and of the sequence
after a certain transformation is applied may have entirely different asymptotic
behaviors. Below we show that for the LMSV model, the Sharpe ratio statistic is
asymptotically normal but converges to the true ratio at a rate slower than /n.
Furthermore, while the ratio’s statistics involve the estimates of the expected re-
turn and the standard deviation, it turns out that only the estimation errors of the
latter contribute to the limit distribution as opposed to the case of short-memory
volatility where neither of the two estimates is asymptotically negligible.
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Let the returns {r;} be model as in (1.1) and (1.2) with long-memory x; =
Zﬁo a;z—i, where z; are iid random variables having mean 0 and variance 1 and
the coefficients a; are such that a; ~ C-i~% with 3 in (1/2,1). Denote by 02 = Er2.
For the observed returns {rq,...,7,}, we define

n n
=nt E re, 62=n""t g (re — 1
t=1

t=1

>

and the Sharpe ratio statistics

N —r
SrR=0"11
g
where 7 is a fixed risk-free interest rate assumed to be positive. Using the -method,
we have

- 2 2
. p o re(o°—o .
SR-SR="+ “—3) +0,((6% - 02)?).

Also write
n
62 —o*=n"" Zv?(ef —1)4nt Z(vf —0?) —
= t=1
2

To derive the asymptotic distribution, we first compute the variance of 42 — 2.
Note that

(2.1) var(n~ Ith =0 ') and var(p) =O0(n1),

since both {vZ(e? — 1)} and {v;&;} are sequences of martingale differences. For
Sor (v? — o?), we use the results obtained by Ho and Hsing [9]. Let F(-) be the
common distribution function of the z;. Denote by

Ko(y) = er/e%dF(x).

Then by Theorem 3.1 and Corollary 3.3 of Ho and Hsing [9],

(2.2) 3/2{2 v? — %)} = 82KV 0)n” 3/2{th}+op( )

2 9202 N(0,2)

with
_ 2 IS (@? + 2)Pda
2(1-8)3/2+5)

Combining (2.1) and (2.2) gives

&= {/O (v —u)*]Pdv}du.

(2.3) nP=1/2(SR — SR) = %nﬂ_l/Q(er — 02) + 0,(1)

i) rfa_l : N(0>§2)7
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If z; is short-memory in the sense as specified before that

o0 o
Ty = E a;z—; with E la;| < oo,
=0 i=1

then the usual \/n central limit theorem will hold for \/n(SR — SR). The proof
of this will be covered in the next subsection as a special case of a more general
model.

3. Linear processes of LMSV models

We now focus on the linear process with its innovations being a LMSV sequence.
Specifically, define

(3.1) ye= bir; with > |bj| < oo,
=0 J

where 7 is modeled in (1.1) and (1.2) with § = 1. Denote by o7 the variance of the
y¢. The Sharpe ratio now is SR = ry /o, and its corresponding estimator is

. W, —
(3.2) SR, = "1

A 9

Oy

where
n

Wy, = n_l Zyb 6-1/ = (n_l Z(yt - Wn)2)1/2-
t=1

t=1

From now on we assume that there is a positive constant K such that for any n > 0
(3.3) Bem™ < K7’

As can be seen later in the proof we only need a sufficiently large constant K. Using
a stronger condition here is merely for the ease of presentation.

Theorem. For the model defined in (3.1), assume condition (3.3) holds.

(1) Suppose x; is short-memory, that is, Y .o, |a;| < co. Assume Ee? = 0,
then

(3.4) Vi(SR — SR) % N (0, €2)

for some constant & .
(ii) If z¢ is long-memory with the coefficients satisfying that a; ~ Ci~? for
B e (1/2,1), then

(3.5) nB-3/2(SR — SR) % 2 / ¢2 dF ()N (0, £2)

for some constant &;.

The limiting variances, £7 and £2, given in (3.4) and (3.5) above will be derived in
the proof of the theorem. Both &7 and &5 depend on the linear filter {b;} and some
parameters of the laten process {x:}. It is a very challanging problem to estimate
the two quantities. For part (ii) of the Theorem, if the distribution function F(-)
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of z; is known, then one can use the sampling window method proposed in [7] and
[13] to consistently estimate £2 and £3. As for the short-memory case of part (i) of
the Theorem, no existing results in the literature cover this case unless a certain
kind of weak dependence is assumed. With only the summability condition on {a;}
one needs to develop some new theory to support the use of the resampling scheme
mentioned above.

Proof of Theorem. (i) Define
m—1 o] -1
=~ xr
Tim = E ai€t—iy, Tpm = E i€i—iy, Tim = € "M, Ypm = E biTi—jm,
i=0 i=m 7=0

n
-1
Wn,m =n E Yt,m-
t=1

Since ¥t ,,’s are 2m-dependent, as n — oo,
(3.6) VAW, <5 N(0,02,),

where

Afn = lim n_lvar(z Yt.m)

=PEe* (> b3 +2) 0> bibjik).
§=0 k=1 ;=0
Write
\/E(Wn - Wn,m) - n_1/2 Z(yt - yt,m)
t=1
n m-—1 m oo
—n_1/2z bj(ri—j — 1 m)+n_1/2z Z biri—j
t=1 j=0 t=1 j=m

Then
) n—1 |k5| m—1
EC?,, = §2Ee*™1m (ef1m — 1) k > 1(1 —~ 7)(-20 bibiik)-
=—n— 1=

By using the elementary inequality |e* — 1| < e|z|, |z| < 1, and the Chebyshev
inequality, we have

E(e"tm —1)2 = B(e™m — 1)2I{&1,m < 1} + BE(e™™ —1)2I{F ;m > 1}
<e(B#,,) + (BE(e"™m - )Y (BR )"
Because, by assumption (3.3), Ee?*tm is bounded in m, we have
(3.7) E(e™m™ —1)2 -0 as m — oo.
This and Z;’O |bj| < oo jointly imply

(3.8) lim lim EC. . =0.

m—00 N—00
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Similarly,

(3.9) lim lim ED.,, =0.

m—00 N—00

From (3.6), (3.8) and (3.9) it follows that
(3.10) VW, — N(0,)?),

where

2\ = lim = aQ(i b? + iibjbj+k).
j=0

k=1 j=0

We now derive the limiting distribution for \/n(é; — o2). Write

V(6 —o0) =8 n Y TN el — 1)+ 6702 DY (€ —op)

t=1 j=0 t=1 j=0

+ n_1/2 Z Z bibjrt—irt—j
t=1 i#£j
(3.11) =Voi1+ Voo + Vs

By the same m- truncation argument as used in proving (3.8) one can show that
Vi1, Va2 and V;, 3 are asymptotically normal and independent, that is, as n — oo,

(312) Vn,l + +Vn,2 + Vn,3 i) N(O792)7

where g? is the sum of the limiting variances of Vi1, V2 and V), 3. Because x; may
be non-Gaussian, the analytic form of the covariance function of {¢*** — o2} and
consequently of the limiting variance of V,, 5, which equals to

n

62 lim lim sup n_lvar(Z(ezmtvm —02)),

mTee n—eo t=1 !

is not available. However, the exact formulas of limiting variances for V,, jand V;, 3
can be found as follows.

lim var(V, 1) = 0*[Ee*™|[E(e? — 1)? Zb;l +2 Z Z b2bg+k

n—oo

Jj= k=1 5=0
nh—>Holo V&I‘(Vn 3) = 54 2:61 Z b2b2 + Z Z bibi+kbjbj+k].
1#£] k=1 1i#j

Note that the assumption Fej = 0 is used to prove that V,, o is asymptotically
independent with V,, ; and V, 3. The limit results of (3.10)and (3.12) imply

Vi(SR — SR) % N (0, €2)

with &7 = A 4 77 (407) ' g*. Hence (2.4) holds.
(ii) Because {r;} is a sequence of martingale differences, we have

(3.13) var(W,,) = O(1/n).
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Similarly, for V,, ; and V}, 3 defined in (3.11),
(3.14) var(Vy,1) = O(1), var(V,3) = O(1).

To compute the variance of V, 2, define y; = 3772 b;z;—;. Then y; can be rewritten
as

where

As j — oo, since a; ~ Cj=7,
Bj ~C1j77,

where Cy = C(3_;2 bi). Then, as k — oo,
oo
> BBk ~C} /x—ﬁ(l +2) Pdx - kT2,
j=0
implying that
oo
Eyiyier =) BiBjsx ~ Cf /x_ﬁ(l +a) e - k20
j=0

In other words, {y;} is also a linear long-memory process having the same memory
parameter as that of x;. Therefore, similar to (2.2),

(3.15) 7325y L N(0,€3)

with

s CF [ (x*+ )" ﬁdx‘ B p
2T 0-a6R /{/ (v = w7} dvydu.

As noted before in (2.2) that

3/2{2 (2 — 0?)} = 2 / 2 A (z) - 3/2{Zx})+op 1).

From this and (3.15), we have, as n — oo,

=323 N (2P0 — 02)) =2 / P dF (2)(n" ™2y ) + 0p(1)

t=1 j=0
(3.16) < 2/62xdF(x) . N(0,£2).
Summarizing (3.13), (3.14) and (3.16) gives

6-3/2(6p — SR) % 2/62“’dF(a:)N(O,§§).

The proof is completed. |
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Abstract: We review the advancement of nonstationary time series analy-
sis from the perspective of Cowles Commission structural equation approach.
We argue that despite the rich repertoire nonstationary time series analysis
provides to analyze how do variables respond dynamically to shocks through
the decomposition of a dynamic system into long-run and short-run relations,
nonstationarity does not invalid the classical concerns of structural equation
modeling — identification and simultaneity bias. The same rank condition
for identification holds for stationary and nonstationary data and some sort
of instrumental variable estimators will have to be employed to yield consis-
tency. However, nonstationarity does raise issues of inference if the rank of
cointegration or direction of nonstationarity is not known a priori. The usual
test statistics may not be chi-square distributed because of the presence of
unit roots distributions. Classical instrumental variable estimators have to be
modified to ensure valid inference.

1. Introduction

Let {w,} be a sequence of time series observations of random variables. Multi-
variate vector autoregressive model (VAR) has been suggested as a useful tool to
summarize the information contained in the data and to generate predictions (e.g.
Hsiao [21, 22|, Sims [50]). These models treat all variables as joint dependent and
treat w, as a function of its past values, w,_;. On the other hand, Cowles Com-
mission approach assumes each equation in the system describes a behavioral or
technological relations. An essential element of the Cowles Commission approach
is to decompose w, into G endogenous variables, Y, and K exogenous variables,
Ty Wy = (g;, z}), G + K = m. The value of endogenous variables y, are determined
by the simultaneous interaction of the behavioral, technological or institutional re-
lations in the model given the value of the exogenous variables, x,, and shock of the
system (say, €,). The value of z, is assumed to be determined by the forces outside
of the model (e.g. Koopmans and Hood [19]). The Cowles Commission structural
equation approach is also referred as a structural equations model (SEM). It has
wide applications in education, psychology and econometrics, etc. (e.g. Browne and
Arminger [6], Hood and Koopmans [19], Muthen [39, 40], Yuan and Bentler [59]).
In this paper we will only focus on the aspects related to the time series analysis
of a SEM.

Since the observed data can only provide information on conditional distribution
of y, given past values of y i and current and past values of z,_;, there is an issue of
if it is possible to infer from the data the true data generating process for the SEMs,
which is referred to as an identification issue. Another issue for the SEMs is because

IDepartment of Economics, University of Southern California, 3620 S. Vermont Ave. KAP300,
Los Angeles, CA 90089, e-mail: chsiao®@usc.edu
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of the joint dependency of y,, the regressors of an equation are correlated with the
error (shock) of an equation Wthh violates the condition for the regression method
to be consistent. This is referred to as simultaneity bias issue. The theory and
statistical properties of SEMs are well developed for stationary data (e.g. Amemiya
[2], Intriligator, Boskin and Hsiao [30]).

Nelson and Plosser [41] have shown that many economic and financial data con-
tain unit roots, namely, most are integrated of order 1 or 2, I(1) or I(2). Theories
for the time series analysis with unit roots have been derived by Anderson [4], Chan
and Wei [7], Johansen [31, 32], Phillips [45], Phillips and Durlauf [46], Sims, Stock
and Watson [51], Tiao and Tsay [57], etc. Among the major findings are that (i)
w, may be cointegrated in the sense that a linear combination of I(d) variables
may be of order I(d — ¢), where d and ¢ are positive numbers, say 1 (Granger and
Weiss [14], Engle and Granger [11], Tiao and Box [54]); (ii) “Since these models
(VAR) don’t dichotomize variables into “endogenous” and “exogenous,” the exclu-
sion restrictions used to identify traditional simultaneous equations models make
little sense” (Watson [58]); (iii) Time series regressions with integrated variables can
behave very differently from those with stationary variables. Some of the estimated
coefficients converge to their true values at the speed of /T and are asymptoti-
cally normally distributed. Some converge to the true values at the speed of T but
have non-normal asymptotic distribution, and are asymptotically biased. Hence the
Wald test statistics under the null may not be approximated by chi-square distrib-
utions (Chan and Wei [7], Sims, Stock and Watson [51], Tsay and Tiao [57]); (iv)
Even though the I(1) regressors may be correlated with the errors, the least squares
regression consistently estimates the cointegrating relation, hence the simultaneity
bias issues may be ignored (Phillips and Durlauf [46], Stock [52]).

In this paper we hope to review the recent advances in nonstationary time series
analysis from the perspective of Cowles Commission Structural equation approach.
In section 2 we discuss the relationships between a vector autoregressive model
(VAR), a structural vector autoregressive model (SVAR), and Cowles Commission
structural equations model (SEM). Section 3 discusses issues of estimating VAR
with integrated variables. Section 4 discusses the least squares and instrumental
variable estimators, in particular, the two stage least squares estimator (2SLS) for
a SVAR. Section 5 discusses the modified and lag order augmented 2SLS estimators
for SVAR. Conclusions are in Section 6.

2. Vector autoregression, structural vector autoregression and
structural equations model

For ease of exposition, we shall assume that all elements of w, are I(1) processes.
We assume that w, are generated by the following p-th order structural vector
autoregressive process without intercept terms:!

(2.1) A(L)w, = ¢,

where A(L) = Ag+ A1 L+ AsL? +-- -+ A,LP. We assume that initial observations
Wo, W_1,---,W_, are available and

A.1: Agisnonsingular and Ag # I,,,, where I,,, denotes an m rowed identity matrix.
A.2: The roots of |A(L)| = 0 are either 1 or outside the unit circle.

I The introduciton of intercept terms complicates algebraic manipulation without changing the
basic message. For detail, see [28].
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A.3: The mx1 error or innovation vector ¢, is independently, identically distributed
(i.i.d.) with mean zero, nonsingular covariance matrix .. and finite fourth
cumulants.

Premultiplying Ay ! to (2.1) yields the conventional VAR model of Johansen
[31, 32], Phillips [45], Sims [50], Sims, Stock and Watson [51], Tsay and Tiao [57],
etc.,

(2.2) wy =Ihw,  + -+ 1w, + vy,

where II; = —AalAj7j =1,...,p, and v, = Aalgt. The difference between (2.1)
and (2.2) is that each equation in the former is supposed to describe a behavioral
or technological relation while the latter is a reduced form relation. Eq. (2.2) is use-
ful for generating prediction, but cannot be used for structural or policy analysis.
For instance, wy¢, woy, w3s, way may denote the price and quantity of a product, per
capita income and raw material price, respectively. The first and second equations
describe a demand relation which has quantity inversely related to price and posi-
tively related to income, and a supply relation which has price positively related to
quantity and raw material price, respectively. Only (2.1) can provide information
on demand and supply price elasticities but not (2.2). Equation (2.2) can only yield
expected value of price and quantity given past w,_.

Let A =[Ap, A1,...,A,] and define a (p + 1)m-dimensional nonsingular matrix
M as
I 1. .. .1,
0 I ... 1
(2.3) M={00..1I,
0 . .0 I,

Postmultiplying A by M yields an error-correction representation of (2.1),

p—1

(2.4) ZA; VWwy_j+ A;wt—p = &

Jj=0

where 7 = (1-L),A* =3 _(Ap,j =0,1,...,p. Let A* = [4},..., A%] = [A}, A7),
then A* = AM. The coefficient matrices /Nl’{ and A} provide the implied short-run
dynamics and long-run relations of the system (2.1) as defined in [26].2

Similarly, we can post-multiply (2.2) by M to yield an error-correction represen-
tation of the reduced form (2.2)

(2.5) vw, =i Vw g+ I Vwe o FILwe, + vy,

where Hj = Zg:1 Hz — Im

In this paper we are concerned with statistical inference of (2.1). If the roots of
|A(L)| = 0 are all outside the unit circle, w, is stationary. It is well known that the
least squares estimator (LS) is inconsistent. The 2SLS and 3SLS using lagged w, as
instruments are consistent and asymptotically normally distributed (e.g. Amemiya
2], Malinvaud [38]). Therefore, we shall assume that at least one root of |A(L)| =0

2The long-run and short-run dichotomization defined here is derived from (2.1). They are
different from the those implied by Granger and Lin [13], Johansen [31, 32] or Pesaran, Shin and
Smith [43], etc.
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is equal to 1. More specifically,?

Ad:(a) Ay = af (or I} = a*p /) where o and 3 (or o and %) are m x r
rnatrlces of full column rank 7,0 <r <m—1

(b) &\ JB, or (gLJ*@L) is nonsingular, where J = Zp 1A"‘ (or J* =

> 5 II¥), @, and B, (or a7 and 3') are m x (m — r) matrices of full

column rank such that ¢/, @ =0 = @l@’ (or Qz“ig* =0= @i@) (If r =0,
then we take o) = I, =03 )

Under A1-A4, w, has r cointegrating vectors (the columns of (3) and m — r unit
roots. As shown by Johansen [31, 32] and Toda and Phillips [56] that A4 ensures
that the Granger representation theorem (Engle and Granger [11]) applies, so that
Vw, is stationary, @'wt is stationary, and w, is an I(1) process when r < m.

The cointegrating vectors (3 provide information on the “long-run” or “equilib-
rium” state in which a dynamic system tends to converge over time after any of the
variables in the system being perturbed by a shock, a transmits the deviation from
such long-run relations, e, = 8'w,, into each of w,, and fl’{ provides information
on how soon such “equilibrium” is restored. In economics, the existence of long-run
relationships and strength of attraction to such a state depends on the actions of a
market or on government intervention. In this sense, the concept of cointegration has
been applied in a variety of economic models including the relationships between
capital and output; real wages and labor productivity; nominal exchange rate and
relative prices, consumption and disposable income, long- and short-term interest
rates, money velocity and interest rates, price of shares and dividends, production
and sales, etc. (e.g. Banerjee, Dolado, Galbraith and Hendry [5], Hsiao, Shen and
Fujiki [29], King, Plosser, Stock and Watson [33]).

Since the data only provide information of the conditional density of w, given
past values of w,_;,j = 1, ..., there is an issue of if it is possible to derive (2.1) from
(2.2) (or (2.4) from (2.5)). Without prior restrictions, there can be infinitely many
different SVAR that yield identical (2.2). To see this we note that premultiplying
(2.1) by any nonsingular constant matrix F' yields

(2'6> flowt + Al@t—l +oee prt—p = €

where A; = FA; & = Fe,. Equations (2.1) and (2.5) yield identical (2.2) since
Ay 1A = AJ'FTIFA; = 1,v, = Ag'e, = A F'Fe, = Ay'e,. In other words,
(2 1) and (2 5) are obsem)atzonally equivalent.

An equation in (2.1) is identified if and only if the g-th row of admissible trans-
formation matrix F' = ( f;) takes the form that apart from the gth element being a
nonzero constant, the rest are all zeros, i.e., I; =(0,...,0, f44,0,...,0) (e.g. Hsiao
[23]). The transformation matrix F' is admissible if and only if (2.1) and (2.6) sat-
isfy the same prior restrictions. Suppose that the g-th equation of (2.1) satisfies the
prior restrictions a o, = (', where a denotes the g-th row of A and ®, denotes a
(p+1)m xR, matr1x w1th known elements Let @7 = M~ 19, the ex1stence of prior
restrictions g, ®, = 0’ is equivalent to the existence of prior restrictions g <I>Z =0,

where gzl is the g-th row of A*. It is shown by Hsiao [26] that

3Since Iy = Ao_lA;‘,, A4 implies that (a) IT} = g*@*,, where @* and 8* are m X r matrices of
p—1

full column rank r,0 < r <m — 1, and (b) sz_/ J*@j_ is nonsingular, where J* = =0
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Theorem 2.1. Suppose that the g-th equation of (2.1) is subject to the prior re-
strictions a,®, = 0'. A necessary and sufficient condition for the identification of
the g-th equation of (2.1) or (2.4) is that

(2.7) rank(A®,) =m — 1,
or
(2.8) rank(A*®7) =m — 1.
Let w;, = (y;,gft% where y; and z; are 1 x G and 1 x K, respectively, and

G+ K =m. Let

_ [ Au(L) Aio(L)
A(L) = [Agl(L) AQQ(L)] )

and €, = (€4, €5;) be the conformable partitions. Cowles Commission decomposi-
tion of w, into joint dependent variable variables y, and exogenous variables z, is
equivalent to imposing the prior restrictions (Zellner and Palm [60]),

(2.9) Ay (L)=0 and FEeyeh, = 0.

The prior restrictions (2.9) restrict the admissible transformation matriz F' to be
block diagonal (e.g. Hsiao [23]). Therefore,

Corollary 2.1. Under (2.9) and @lg(bg = (0, a necessary and sufficient condition
for the identification of the g-th equation for g < G is

(210) rank[(AH Alg)q)g] =G - ]_,

where A1 and Ao are conformable partitions of A.

The identification condition (2.7) or (2.8) does not require any prior knowledge
of the direction of nonstationarity or the rank of cointegration. As a matter of
fact many macroeconometric models are identified without any prior knowledge of
location of unit roots or rank of cointegration, (e.g. the Klein [34] interwar model
and the large scale Wharton quarterly model (Klein and Evans [35]). Of course, if
such information is available, it can improve the efficiency of system estimators and
simplify the issues of inference considerably (e.g. King, Plosser, Stock and Watson
33])-

3. Inference in VAR (or reduced form)

Consider the g-th equation of (2.2),
(3.1) w, = X1, + v,

where w, is the T x 1 vector of the g-th element of w,, wgs, X = (W_1,...,W_}), is
the T' x mp vector of w;_4,...,w,_,, 7, is the corresponding vector of coefficients,
and v, is the T x 1 vector of the g-th element of v;, vy:.

Rewrite (3.1) in terms of linearly independent I(0) and full rank /(1) regressors
X7 and X3, respectively, by postmultiplying a nonsingular transformation matrix
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M, to X,* we have

(3.2) =X"r+v

’

where 77 = Mx_lzrg = (7121,75;/2)’. The least squares estimator of (3.1) is equal to

M, times the least squares estimator of (3.2),
7= (X'X)" (X'w,)
(3.3) = M, (X* X*) ' X",
— Mx[ﬂ—; 4 (X*/X*)le*/yg].
The statistical properties of (3.3) can be derived by making use of the funda-

mental functional central limit theorems proved by Chan and Wei [7], Phillips and
Durlauf [46], etc.:

Theorem 3.1. Let n, be an m x 1 vector of random variables with E(qt | URR
) =0, Bl I n,_s---y) = Im, and bounded fourth moments. Let F|(L) =
Z?io F;L7 and G(L) = Z;io G;L7 with Z;’ioj | Fj |< oo and Z?’;Oj | G |< 0.
Let §, = S s, and let B(r) denote an m x 1 dimensional Brownian motion
process.

Then
(a) T2 50,y F(L)n, = N(0, F()F(1)),
(0) T 320y €, 0, = [ B(r)dB(r)’
(¢) TSy &, [F (L)) = F(1) + [ B(r)dB(r)' F(1)',
() T S [F(L)n )G, ) — 3520 G,
(e) T2 23;1 §t§; = [ B(r)B(r)'dr,
where to simplify notation fol is denoted by [ and — and = denote convergence

in probability and distribution of the associated probability measure, respectively.
Making use of theorem 3.1, it follows that

Theorem 3.2. Under Assumptions A.1 - A.4, as T — o0,

(3.4) V() — 1) = N(0,0%, M),

T1T1

T(xy — nly) = ( [ BB <r>’dr) B

(3.5)

(/ Bm; (T)dBUg (7“)) .
where M} . = plim 7 Zthl at,at,. Moreover, (3.4) and (3.5) are asymptotically
independent.

4Such a transformation always exist. However, it does not need to be known a priori. The use
of (3.2) is to facilitate the derivation of statistical properties of the estimators of (3.1) or (2.1).
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The least squares estimator (3.3) is a linear combination of 77, and 7. Its
limiting distribution is determined by the limiting distribution of the slower rate
of 7}; included. Since the limiting distribution of 7:722 is nonstandard and involves a
matrix unit distribution, the usual Wald test statistic under the null may not be ap-
proximated by the chi-square distribution if the null hypothesis involves coefficients
in the direction of nonstationarity (e.g. Dolado and Lutkepohl [9], Sims, Stock and
Watson [51], Tsay and Tiao [57]). On the other hand, if w, is cointegrated and the
rank of cointegration is known a priori, Ahn and Reinsel [1] and Johansen [31, 32]
using the reduced rank framework proposed by Anderson [3] have shown that the
coefficients of cointegration vectors are asymptotically mixed normal, hence there
will be no inference problem. The Wald test statistics constructed from the reduced
rank regression will again be asymptotically chi-square distributed. This is because
imposing the reduced rank condition is equivalent to avoid estimating the unit roots
in the system.

Unfortunately, as discussed in section 2, prior information on the rank of cointe-
gration or direction of nonstationarity is usually lacking. One way to deal with it is
to pretest the data for the presence of cointegration and the rank of cointegration,
then apply the reduced rank regression of Ahn and Reinsel [1] or Johansen [31, 32].
However, statistic tests for the rank of cointegration have very poor finite sample
performance (e.g. Stock [53]). The first stage unit root test and second stage coin-
tegration test can induce substantial size distortion. For instance, Elliott and Stock
[10] consider a bivariate problem in which there is uncertainty about whether the
regressor has a unit root. In their Monte Carlo simulation they find that unit root
pretests can induce substantial size distortions in the second-stage test. If the in-
novations of the regressors and the second-stage regression error are correlated, the
first-stage Dickey-Fuller [8] t-statistic and the second-stage t-statistic will be depen-
dent so the size of the second stage in this two-stage procedure cannot be controlled,
even asymptotically. Many other Monte Carlo studies also show that serious size
and power distortions arise and the number of linearly independent cointegrating
vectors tend to be overestimated as the dimension of the system increases relative
to the time dimension (e.g. Ho and Sorensen [18], Gonzalo and Pitarakis [12]).

Another way is to correct the miscentering and skewness of the limiting distri-
bution of the least squares estimator due to the “endogeneities” of the predeter-
mined integrated regressors (e.g. Park [42], Phillips [44], Phillips and Hansen [47],
Robinson and Hualde [49]). However, since the rank of cointegration and direction
of nonstationarity are unknown, Phillips [45] proposes to deal with potential endo-
geneities by making a correction of the least squares regression formula that adjusts
for whatever endogeneities there may be in the predetermined variables that is due
to their nonstationarity by transforming the dependent variables w, into

(36) w?— =Wy — viwgngw V Wy,

where Qgugw = Z?i_oo E(Vw, VW'_j), Qoguw = Zgo'i_oo E(y, v w'y_;) and
Q; ww denotes the Moore-Penrose generalized inverse.® Using w; in place of w,
in (2.2) is equivalent to modifying the error term from v, to v, — Qguwllo, V Wy,
which now becomes serially correlated because 7w, is serially correlated. To cor-
rect for this order (1/T) serial correlation bias term, Phillips [45] suggests fur-
ther adding (X'X )_1(Q,TA;LIVUJ) to the least squares regression estimator of w;

_|_ _ —
ON /Wi _q,-++y VWi pi1,Wy_p, Where A,va = viwﬂvwvavwvwa and Ay,

51f w, are cointegrated, 2o, w does not have full rank.
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denotes the one-sided long-run covariances of two sets of I(0) variables (ug,vy),
Ay = Z(;io Cuv(7) where Ty (j) = Eytyt_j.G Consistent estimates of 2, or Ay,
can be obtained by using Kernel method (e.g. Hannan [15], Priestley [48]).

(37) Q= 3 hG/E)Fwli),
j=—T+1
3.5) Buw= 3" WG /KTl

where Ty, (j) is a consistent sample covariance estimator of Ty, (j), and h(-) is a
kernel function and K is a lag truncation or bandwidth parameter. Assuming that

Assumption 3.1. The kernel function h(-) : R — [—1,1] is a twice continuously
differentiable even function with:

(a) h(0) = 1,h'(0) = 0,h”(0) # 0; and either
(b) h(z) =0,| z [> 1, with lim, % = constant, or
(b") hlz) = O((1 - 2)?), as | & |— 1.

Assumption 3.2. The bandwidth parameter K in the kernel estimates (3.7) and
(3.8) has an expansion rate K ~ c7T* for some k € (1/4,2/3) and for some slowly
varying function ¢y and thus K/T?/2+T/*/K — 0 and K47 — oo as T — oc.

Phillips [45] shows that the modified least squares estimates are either asymp-
totically normally distributed or mixed normal. However, because the direction of
nonstationarity is unknown, the conditional covariance matrix cannot be derived.
Therefore, if the test statistic involves some of the coefficients of nonstationary
variables, the limiting distribution becomes a mixture of chi-squares variates with
the weights between 0 and 1. In other words, if tests based on chi-square distrib-
ution rejects the null with significance level «, then the test rejects the null with
significance level less than «. In other words, tests based on chi-square distribution
provides a conservative test.

Toda and Yamamoto [55] have suggested a lag-order augmented approach to
circumscribe the issue of non-standard distributions associated with integrated re-
gressors by overfitting a VAR with additional dy.x lags where dy,.x denotes the
maximum order of integration suspected. In our case, dy.x = 1. In other words,
instead of estimating (2.2), we estimate

(3.9) wy =Thw, y +- + 1w, + 1w, g + vy,

Since we know a priori, II,;1 = 0, we are only interested in the estimates of
II;,7 = 1,...,p. The limiting distributions of the least squares estimates of (3.9)
can be derived from the limiting distributions of the least squares estimates of (the
error-correction form),

(3.10) w, =11 Vw,_q+-+ H;; V We_pt H;—I—lwt—p—l + Uy,

because IIT = Z{Zl I;,7 =1,...,p+1orIl; = II; — IT¥_, where IIj = 0. Since
II7, 7 =1,...,p are coefficients of stationary regressors, Theorem 3.2 shows that the

6Under A.3, Aygw = 0.
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least squares estimates of 1%, j =1,...,p converge to the true values at the speed of

VT and are asymptotically normally distributed. Only the least squares estimates
of IL} , ; may be T-convergent and have non-normal limiting distributions. However,
since we know a priori that 11,1 = 0, our interest is only in II;,j = 1,...,p. The
least squares regression of (3.9) yields flj = fI;‘ — f[;_l, j=1,...,p, therefore, they
are asymptotically normally distributed. Wald test statistics of the null hypothesis
constructed from regression estimates of (3.9) will again be asymptotically chi-
square distributed.

Phillips [45] modified estimator maintains the T-convergence part of the coeffi-
cients associated with full rank integrated regressors. The Toda-Yamamoto [55] lag
order augmented estimator is only v/T-convergent. So Phillips [45] modified esti-
mator is likely to be asymptotically more efficient. However, computationally, the
Phillips modified estimator is much more complicated than the lag order augmented
estimator. Moreover, test statistics constructed from the modified estimators can
only give the bounds of the size of the test because the conditional variance is un-
known, while test statistics constructed from the lag order augmented estimator
asymptotically yield the exact size.

4. Least squares and two stage least squares estimation of SVAR

For ease of exposition, we assume that prior information is in the form of excluding
certain variables, both current and lagged, from an equation. Let the g-th equation
of (2.1) be written as

(41) wsy = Zgég + §g7

where w, and ¢, denote the T' x 1 vectors of (wgy1,...,wyr)" and (eg1,. .., €1)’,
respectively, and Z, denotes the T x [(p + 1)ga — 1] dimensional matrix of ga
included current and lagged variables of w,.

The least squares estimator of (4.1) is given by
(4.2) )

Yg,ls = (Z;Zg)_lzgwg

Phillips and Durlauf [46] and Stock [52] have shown that the least squares es-
timator with integrated regressors is consistent even when the regressors and the
errors are correlated. However, the basic assumption underlying their result is that
the regressors are not cointegrated. In a dynamic framework even though w,_; are
I(1), the current and lagged variables are trivially cointegrated. It was shown in
[21] when contemporaneous joint dependent variables also appear as explanatory
variables in (4.1), applying least squares method to (4.1) does not yield consistent
estimator for §,. To see this, let M, be the nonsingular transformation matrix that
transforms 7, into Z; = Z,M, = (Z},, Z;5), where Z;; denotes the £,-dimensional
linearly independent I(0) variables and Zj, denotes the T" observations of b, full
rank I(1) variables,” then

_ —1
(4.3) Wy = ZgMgMy 0, + ¢
=238, + ¢

where §; = M0, = (~;/1, ~Z/2)’ with 7, and J,, denoting the £, x 1 and b, x 1

vector, respectively. Such transformation always exists. For instance, if no cointe-

grating relation exists among the included w,, say w;, then by equals the dimension

"By full rank I(1) variables we mean that there is no cointegrating relation among Z3o-
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of included joint dependent variables, ga, and Z7; consists of the first differenced
current and p — 1 lagged included variables, Z7, is simply the T' x by (or T' x gn)
included w,, lagged by p periods, w, ;_,,. On the other hand, if there exists ga — by
linearly independent cointegrating relations among the ga included variables, w,
then Z7; consists of the current and p — 1 lagged yw,, and Wg,_pdg cointegrating
relations, where W, _, is T x ga matrix of included Wy 1—prdy 18 ga X (ga — by) of
constants, and Z}, consists of the T" observed b, full rank (1) variables Wyo. >
The least squares estimator (4.2) can be written as 59 s = M, 59 s> Where 59 /s
denotes the least squares estimator of (4.3). Us1ng Theorem 3.1, one can show that
17 Zy — M; T_2/3Z*/Z* — 0 1Z* Zgy = M} 226 — 0,

T gl Z2g12g1°? ) T2 Zg22g2”? T2 =9
TZ; 16 — b, where b = [E(egtwgt) 07 = [(AO Zee,g)lg’~ ]/7266,9 is the g-th
column of 3. and (Ag"! > ccg)g 18 the (ga — 1) x 1 subvector of AgtS.. o that
corresponds to the ga — 1 included variables w, in the g-th equation, and M7 171
and M? . . are nonsingular. It follows that
(4.4) 0y0s = Ogres | [ﬂl} + [8} .

égz,és ~g2 <

Although the coefficients of Z, can be consistently estimated, the coefficients of Z},

A

cannot. Since § R

When the errors and regressors are correlated, a standard procedure is to use
instrumental variable method. Using lagged variables as instruments, the two stage
least squares estimator of ¢, is given by

is a linear combination of §, 04105 and 5 0420559405 1S Inconsistent.

(4.5) 80515 = [Z,X(X'X) X' 2,]  [Z)X(X'X) " Zlw,),

where X = (W_1,W_,,...,W_,) and W_; denotes the T'xm matrix representation
of w,_;. Transforming X into linearly independent 7(0) and full rank I(1) processes,
X7 and X3, respectively, by M,, X M, = [ X}, X5], the 2SLS estimator (4.5) is equal

Ak
to Myd, 2515, where

(46) (:5; 09LS = [Z*’X*(X*'X*)_lX*’Z*]_l[Z*’X*(X*’X*)_lX*’tyg]

1 1
Since T2 X2 — 0, T g2X1 == M} I TZZ* X7 —0, TXik/Xl — M;lxl,
1 */ Yok * 1 */ Yk 1 */ Yok * 1 */
LXIXy > Mi,, HXIXS — 0, BXyX — M;,., $Xi'¢, — 0, and

1 72X3'e, — 0, and M are nonsingular, it follows that (j g.25Ls converges to dy.
Hence the 2SLS estlmator of ¢, is consistent.

7%, 0 T3l 0 ) )
0 £ T 11 ] and H, 0 £ - IIb ], where /* and b* are
the column dimensions of X1 and X3 respectively. Under assumptions A.1 - A.4,

as T' — oo,

Let Hy, =

H;1(§Z,2SLS —d,) =
(4.7)

VT (3512515 - >]
92)

T<592 2SLS —
|:(M* M*— 1M* ) (M* M*— 1 T_1/2Xikl§g)

Zg1T1 LL‘1£D11 T1Zg1 Zg1q xll'll 1
* * * * * — */
(M, MZLME )Y (ME ML T=1Xg'e )

Zg2T2 22 T2zg2 2g2T2 ToXo

By theorem 3.1, we have
1

(4.8) X

X{'e, = N(0,02M; ,.).

121
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and

1 *
(4.9) = X5'e, = / B,:dB.,,

where B, denotes the Brownian motion of €4 with variance 05, Bm; denotes a b* x 1
vector Brownian motion of \yz3, with covariance matrix va;wg; where vaszé
is the long-run covariance matrix of 7z3,. The Brownian motion B} and B, are
not independent because €, and v, are contemporaneously correlated. Following
Phillips [44], we can decompose the right hand side of (4.9) into two terms as

—1
(4.10) / BuydBe,a; + / Bag ey w3 0G5 gy ABas.
_ _ —1 — 2 . 2 _ 2
where B ..: = B, Qenggﬂvx;vstI; = BM(UQ-VDEZ) with Ogva; = Og
1 .
Qegvx; va;vw; vaseg, and Qegvm; denotes the long-run covariance between €

and 7z5. The first term of (4.10) is a mixed normal. The second term involves a
matrix unit root distribution that arises from using lagged w as instruments when
w is I(1) and the contemporaneous correlation between ¢,, and w, is nonzero. The
“long-run endogeneity” of the nonstationary instruments X3 leads to a skewness
of the limiting distribution of (:5;2 s and its dependence on nuisance parameters
that are impossible to eliminate by the 2SLS. Therefore,

Theorem 4.1. Under A.1 - A.4 the 25LS estimator of(iz 15 consistent and

(4.11) VT (0g1050s = 0g1) = N(Qog (M7, My My )7,

zg1x1 1w T 291

Ak

-1
T(0g2,25L5 — 0g2) = {/Bz;QB;;dT(/ By Bedr)™! /ngB;;*er}
(412) {/Bz;2B/m;d7“(/ Bx;B;;dr)*l

-1
X |:/ Bm;dBegw; + /Bngengzgvx;vm;dBwé} }7

where Bz;2 denotes a by x 1 vector Brownian motion of \/z3o, which appears in

the g-th equation. The distributions of (4.11) and (4.12) are asymptotically inde-
pendent.

Theorem 4.1 suggests that inference about the null hypothesis P§, = ¢ can
be tricky, where P and ¢ are known matrix and vector of proper dimensions. If
VTP($ g.25Ls — 94) has a nonsingular covariance matrix, the limiting distribution

of P<:5 ;4 is determined by the limiting distribution of 5", hence the Wald test statistic

,.,g]_?

~

(4.13) (042515 — 4,)' P Cov (P(Eg,QSLS)ilp(égQSLS —4,)

under the null will be asymptotically chi-square distributed. On the other hand, if
VTP() g.25Ls — 9,) has a singular covariance matrix, it means that there exists a
nonsingular matrix L such that

* ok Pll PIQ *1
4.14 LPS = LP*6" = ~ g
(4.14) -9 Y [ 0 PZJ LA
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with nonzero Psy. Then

(Pég,QSLS - Q)/ Cov (PSQ,QSL,S')_I(P(:;g,ZSLS —¢)

~ ~ /
Py P12:| 3 -1
= ~ —Ley Cov (LP§,5515)
{[ 0 P2 | 0420515 ’

y {Pn 1?12} _Le
0 P §g2,2SLS

= T(P11§g1,2SLS + ]512§g2,251:s - Ql)l Cov (ﬁp11§g1,2SLS)_l

.
égl,QSLS

A~
égl,ZSLS

(4.15)

~ Ak ~ A%
X (P11841 0505 + P12d 40 2515 — €1)
Ak ~ Ak

+ T2 (Pa2d g9 0515 — C2) Cov (TPazd g9 0518) " (Po2dgnass — Ca)s

where Lc = (¢},¢5). The first term on the right hand side of (4.15) is asymp-
totically chi-square distributed. The second term, according to Theorem 3.1 has a
nonstandard distribution. Hence (4.15) is not asymptotically chi-square distributed.
If there exists prior information that satisfies (2.9) and w; and w, are cointe-
grated with x3 contained in w,, it was shown by Hsiao [22] that the 2SLS converges
to a mixed normal distribution. Then the Wald test statistic (4.13) can again be
approximated by a chi-square distribution. When variables cannot be dichotomized
into “endogenous” and “exogenous”, if we do not know the direction of nonstation-
arity, nor the rank of cointegration, we will not be able to know a priori if Pss is a
zero matrix, hence if (4.13) may be approximated by a chi-square distribution.

5. Modified and lag order augmented 2SLS estimators

We note that just like the least squares estimator for the VAR model, the application
of 2SLS does not provide asymptotically normal or mixed normal estimator because
of the long-run endogeneities between lagged I(1) instruments and the (current)
shocks of the system. But if we can condition on the innovations driving the common
trends it will allow us to establish the independence between Brownian motion of
the errors of the conditional system involving the cointegrating relations and the
innovations driving the common trends. The idea of the modified 2SLS estimator
is to apply the 2SLS method to the equation conditional on the innovations driving
the common trends. Unfortunately, the direction of nonstationarity is generally
unknown. Neither does the identification condition given by Theorem 2.1 requires
such knowledge. In the event that such knowledge is unavailable, Hsiao and Wang
[27] propose to generalize Phillips [45] fully modified VAR estimator to the 2SLS
estimator.
Rewrite (4.1) as

Wy = ZgMgMg_lég T &
(51> = ( gl 92) <§§§> +§g
- Z;*é;* T &

where Zg* = ZyMy = (Z31,2;3), Zgi = (YWg, WWym1, .. YWy, —pi1). 235 =

Wy p, 0, = Mg_l(jg, VW, —; denoting the T' x ga stacked first difference of the

included variable 7w, , ; and VW, denoting the T' x (ga — 1) first difference of
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the included variables yw,, excluding ywg:. The decomposition ( 91 %45 ) and

3" = (9 ;?‘[', 05 ) are identical to (Z};, Z},) if there is no cointegrating relations
among Wy, d, = 0. Unlike (77, 23,), (251, Z;5) are well defined and observable.

When Z7, # Z 1, there exists a nonsingular transformation matrix D, such that

(Z, Z**)D (Z;‘l, Z?,). Then
1 ok
(5.2) 5y =Dy '5,".
Let
(5'3) Cg = (W/—p Y% W—p - TAVwVw)ngvaVw?q’

where €., and A,, denote the long-run covariance and the one-sided long-run
covariance matrix of two sets of 1(0) variables, (u,,v;),

(54) qu: Z Fuv(j):

j=—00
and
§=0
where Ty, (j) = Eu, ', ;. Let

(5.6) Co=W T W_p = TAGugw) Q00w swe,

where Q,, and A,,, are the kernel estimates of ,,, and Ay, such as (3.7) and (3.8).
A modified 2SLS estimator following Phillips [45] fully modified VAR estimator can
be defined as

(:S:(’WQSLS = {Z;*/X**(X**/X**)—lX**lz**}71
*ok $ok sk ey — X**/ X
(5.7) x{Zg X (X X 1(X**/~g C)}

where X** = XM, = (X;*, X3*), X;* = (YW_1,...,YW_pt1), and X3* = W_,.

Just like (Z;7, Z53), (X5, X3*) are well defined and observable.

Theorem 5.2. Under assumptions A1-A4, 3.1 and 3.2, the modified 2SLS estima-

Ak
tor 0y masrs = Dy 04 masps 18 consistent. Furthermore

g
(58> ﬁ(&gl m2SLS — ) - N<O o (M,: 1w1M;1m11M;1z91>_1)

and is independent of

X

T(dy2,masrs — 0g2) :>(Mz* M;gxlg M;2z92 )7t

(5.9)

Zgo T2t " T2T2

ML M 1/3 <dBe, o,
which is a mized normal of the form
(5.10) N(0,02 My MIIME . )THdP(

g. V:L‘ ( Zg2T2 T2 T22g2 372-772)

2 = 2 -_ * * * *
where 0y.gzx = 05 — Le,gaz bgasvas Lyaze, -
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The modified 2SLS estimator of §, can be obtained as

~ AXX ~

(5.11) dgmasrs = Mgy mosrs = MgDgd, masrs

where M, ¢ is a known matrix but in general, not D,. However, although the modified
2SLS estimator of é; is either asymptotically normal or mixed normal, the Wald
type test statistic

1
)
g

(5.12) (Pdgmasrs — O {PIZyX (X' X) ' X' Z] P}y (Pdy masis — ©)

does not always have the asymptotic chi-square distribution under the null hypoth-
esis PJ, = ¢, where P is a known k X ga matrix of rank k. To see this, rewrite

(5.12) in terms of (:5;mQSLS
1 . / / ’ '
— (P"Hydy mosrs — €)' {P*HQ[Z; XX X)X Z5 | H P }
(5.13) ¢ oo 3
x (P*Hyd, mosrns =€)

=21, 0
0 T,

comes P*chj; = ¢. Notice that the asymptotic covariance matrix of Hgé;mQSLS
converges to

<U§(M;’qlx1 M;;I?llM;1zg1)_l 0
)7t

where P* = PMngHgl and H, = [ ] The null hypothesis be-

O M* M*—l M*

2
U Ug.vxg( zgomawazma t mazgo
while Hy[Z} X*(X* X*)"1X* Z¥|H/ in (5.13) converges to

(M;gl.TlMgl_a?ll M;lzgl )_1 Q
0 (M* M*fl M* )71 .

ZgoT2 Tz T T22g2

(5.14) o)

Wald statistic (5.12) (or equivalently (5.13)) is asymptotically chi-square distributed
with k£ degrees of freedom if and only if P‘:sg,mzsLS (or equivalently P*Hg(:S;mQSLS)
in the hypothesis does not involve the 7T-consistent component (:5;2’,712 srg- Other-
wise, H, [Z;‘/X* (X* X*)~1x* Z;/]H; would overestimate the asymptotic covari-

Ak
. 2 . .
ance matrix of Hyd, 0915 because o < o, for the submatrix corresponding

o-ve
to 23 and zj,. In general, the test statistic (5.12) is a conservative test, with its
asymptotic distribution a weighted sum of k independent x? variables with weights
between 0 and 1.

The construction of the modified 2SLS estimator requires nonparametric esti-
mation of the long-run covariance matrix and the one-sided long-run covariance
matrix. It is well known that kernel estimator and hence the finite sample per-
formance of the modified 2SLS estimator could be affected substantially by the
choice of the bandwidth parameter. In addition, since we can not approximate the
asymptotic covariance matrix of the modified 2SLS estimator properly, Wald test
statistics based on the modified 2SLS estimator using the formula of (5.12) may
not be chi-square distributed and critical values that are based on chi-square dis-
tributions can be used for conservative tests only. However, as noted by Toda and
Yamamoto [55], if we augment the order of a p-th order autoregressive process by
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the maximum order of integration then the miscentering and skewness of the limit-
ing distribution of the least squares estimator will be concentrated on the coefficient
matrices associated with the augmented lagged vectors which are known a priori to
be zero, therefore can be ignored. Standard inference procedure can still be applied
to the coefficients of the first p coefficient matrices. Hsiao and Wang [28] follow this
idea by proposing a lag augmented 2SLS.

The p-th order structural VAR (2.1) can be written as a (p+1)-th order structural
VAR,

(5.15) Aow, + Arwy g + -+ Apwy o + Aprawy 1 = €,
where A, 11 = 0. Transforming (5.15) into an error-correction form, we have
p
(5.16) Z A; V Wy + A;—}—lwt—p—l = €,
§=0

where A% = Ze 0Ae,j = 0,1,...,pand A5, = Aj. It follows that A = [Ay,
o Ap) :[ 0,...,A;]M L
Let the g-th equation of (5.15) be written as

(5.17) wy = 2,105 + ¢y,

where Z3' = (Zg, @ _(p+1)) = (¢ g, =g ps1) With Dy _ 11 de.noting the
T x ga vector of mcluded Wy lagged by (p + 1) periods and @y p+1 18 the g-th
row of A,41 excluding those elements subject to exclusion restrictions. Just like
(4.1), there exists a nonsingular transformation matrix M 4 that transforms ng

into Z;4 = Z2M;' = (Z;!, Z55"), and ot = (MA) 15A = (854", 85") where
Z: = (VZg, Wy, (p41)T,) is stationary and Z3s = ng,_(pﬂ) con51sts of T ob-

served b, linearly independent I(1) variables, wg2,t (p+1)- Rewrite (5.17) in terms
of the transformed variables,

618)  w, = ZMPO T e =20z | ] e
5*
2g2

Let X4 = (X, W_(,+1)). The 2SLS estimator of (5.17) is defined as

(5.19) 5 osps = [ZX XAXA XN TIXA ZA 2V XAXA XA T X A ).

The LA2SLS of (4.1) is defined as

. A
(5.20) 8y na251s = Q0050515

where Q’g“ = (I(p41)ga—1,0,4, ), where 0, denotes a [(p + 1)ga — 1] X ga matrix of

. ~A AA*A
zeros. Since 9, 5515 = M0, 0515, We have
~ ArrA * A
ég,LAQSLS = Qg M 5g,2SLS
* A
(5.21) = (M, 0, )59 2SLS
*A

(Mg7 0 )691 2S5LS»
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where Mg isa[(p+1)ga — 1] x [(p+ 1)ga — 1] matrix of the form,®
Ipomi 0 o 0
—Iy._
i ( o 1) Iy v
5.2 M, = ’ ,
(5.22) g . —Ign Iga .
...... I, 0
...... I, I,

with wg; being put as the last element of w,, Iy, denoting the identity matrix of the
dimension of included variables in the g-th equation, and 0, is a [(p+1)ga —1] x 14
matrix with 7, denoting the number of cointegrating relations among w, such that

wlym, is 1(0). Then &, = (Mg, 0,)851

grxg
Since
A * *— * -
where MA* = plim 72" X4, M2 = plim £ X34 X4, with X{4 = (VX,

w_ (p+1)c~i) being the T X (mp + 7“) linearly mdependent 1 (0) variables. It follows
that

Theorem 5.3. The LA2SLS of 4, is consistent and

A

VT (3, 1 azsrs — )
(M

(5.14) - N{

Ax At pAx 11 (M
g 0 )[MZ 1x1Mxlxl lezgl] ( Q/gg)}

The LA2SLS estimators of the coefficients of the original structural VAR model
(2.1) converge to the true value at the speed of T'/? and are asymptotically normally
distributed with nonsingular covariance matrix. Therefore, Wald type test statistics
based on LA2SLS estimates are asymptotically chi-square distributed. Compared
to the conventional 2SLS or modified 2SLS, the LA2SLS estimator loses the T-
convergence component and ignores the prior restrictions that the coefficients on
Wy ¢—(p+1) are zero, hence may lose some efficiency. However, since distribution of

) 9, is a linear combination of 5 4,1 and 5 d4o and the limiting distribution of ) 0y LA2SLS
is given by the components of the slower rate of convergence, the loss of efficiency
in estimating ¢, by LA2SLS may not be that significant, as reported in a Monte

Carlo Study by Hsiao and Wang [28].

6. Conclusions

As demonstrated by Nelson and Plosser [41] that many economic time series are
nonstationary. The advancement of nonstationary time series analysis provides a
rich reportoire of analytic tools for economists to analyze how do variables respond
dynamically to shocks through the decomposition a dynamic system into long-run
and short-run relations and allow economists to extract common stochastic trends
present in the system that provide information on the important sources of economic
fluctuation (e.g. Banerjee, Dolado, Galbraith and Hendry [5], King, Plosser, Stock
and Watson [33]). However nonstationarity does not invalid the main concerns of

8For ease of notation, we assume all the included variables appear with the same lag order.
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Cowles Commission structural approach — identification and simultaneity bias. As
shown by Hsiao [26], whether the data is stationary or nonstationary, the same
rank condition holds for the identification of an equation in a system. Ignoring
the correlations between the regressors and the errors of the equation that arise
from the joint dependency of economic variables can lead to severe bias in the least
squares estimator even though the regressors are I(1) (Hsiao [21], also see the Monte
Carlo study by Hsiao and Wang [28]). Instrumental variable methods have to be
applied to obtain consistency.

However, nonstationarity does raise the issue of statistical inference. Standard
instrumental variable method can lead to estimators that have non-normal asymp-
totic distributions and are asymptotically biased and skewed. If there exists prior
knowledge to dichotomize the set of variables into joint dependent and exogenous
variables and the nonstationarity in the dependent variables is driven by the nonsta-
tionarity in the exogenous variables through cointegration relations, standard 2SLS
developed for the stationary data can also be used for the analysis of nonstationary
data (Hsiao [21, 22]). Wald test statistics for the null are asymptotically chi-square
distributed. There is no inference issue. On the other hand, if all the variables are
treated as joint dependent as in the time series context, although 2SLS is consistent,
the limiting distribution is subject to miscentering and skewness associated with
the unit root distribution. Modified or lag order augmented 2SLS will have to be
used to ensure valid inference. The modified 2SLS is asymptotically more efficient.
However, it also suffers more size distortion in finite sample. On the other hand,
the lag order augmented 2SLS does not suffer much efficiency loss, at least in a
small scale SVAR model (e.g. Hsiao and Wang [28]), and chi-square distribution is
a good approximation for the test statistic.

All above discussions were based on the assumption that no knowledge of coin-
tegration or direction of nonstationarity is known a priori. If such information is
available, (e.g. King, Plosser, Stock and Watson [33]) estimators incorporating the
knowledge of the rank of cointegration presumably will not only lead to efficient
estimators of structural form parameters, but also avoid the inference issues arising
from the matrix unit roots distrubutions in the system. Unfortunately, structural
form estimation methods incorporating reduced rank restrictions appear to be fairly
complicated.

The focus of this review is to take a SVAR model as a maintained hypothesis,
search for better estimators and understand their properties. We have not looked
at the issues of modeling strategy. There is a vast literature on the interactions
between structural and non-structural time series analysis to uncover the data-
generation process, including testing, estimation, model-combining and prediction
(e.g. Hendry and Ericsson [16], Hendry and Krolzig [17], King, Plosser, Stock and
Watson [33], Zellner and Palm [61]).
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Abstract: This paper describes a new approach to time series modeling that
combines subject-matter knowledge of the system dynamics with statistical
techniques in time series analysis and regression. Applications to American
option pricing and the Canadian lynx data are given to illustrate this approach.

1. Introduction

In their Fisher Lectures at the Joint Statistical Meetings, Cox [11] and Lehmann
[31] mentioned two major types of stochastic models in statistical analysis, namely,
empirical and substantive (or mechanistic). Whereas substantive models are ex-
planatory and related to subject-matter theory on the mechanisms generating the
observed data, empirical models are interpolatory and aim to represent the observed
data as a realization of a statistical model chosen largely for its flexibility, tractabil-
ity and interpretability but not on the basis of subject-matter knowledge. Cox [11]
also mentioned a third type of stochastic models, called indirect models, that are
used to evaluate statistical procedures or to suggest methods for analyzing com-
plex data (such as hidden Markov models in image analysis). He noted, however,
that the distinctions between the different types of models are important mostly
when formulating and checking them but that these types are not rigidly defined,
since “quite often parts of the model, e.g., those representing systematic variation,
are based on substantive considerations with other parts more empirical.” In this
paper, we elaborate further the complementary roles of empirical and substantive
models in time series analysis and describe a basis function approach to combining
subject-matter (domain) knowledge with statistical modeling techniques.

This basis function approach was first developed in [29] for the valuation of
American options. In Sections 2 and 3 we review the statistical and subject-matter
models for option pricing in the literature as examples of empirical and substantive
models in time series analysis. Section 4 describes a combined substantive-empirical
approach via basis functions, in which the substantive component is associated with
basis functions of a certain form, and the empirical component uses flexible and
computationally convenient basis functions such as regression splines. The work
of Lai and Wong [29] on option pricing and recent related work in financial time
series are reviewed to illustrate this approach. Section 5 applies this approach to a
widely studied data set in the nonlinear time series literature, namely, the Canadian
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lynx data set that records the annual numbers of Canadian lynx trapped in the
Mackenzie River district from 1821 to 1934. We use substantive models from the
ecology literature together with multivariate adaptive regression splines to come up
with a new time series model for these data. Some concluding remarks are given in
Section 6.

2. Statistical (empirical) time series models

The development of statistical time series models in the past fifty years has wit-
nessed a remarkable confluence of basic ideas from various areas in statistics and
probability, coupled with the powerful influence from diverse fields of applications
ranging from economics and finance to signal processing and control systems. The
first phase of this development was concerned with stationary time series, leading to
MA (moving average), AR (autoregressive) and ARMA representations in the time
domain and transfer function representations in the frequency domain. This was
followed by extensions to nonstationary time series, either by fitting (not necessarily
stationary) ARMA models or by the Box-Jenkins approach involving the ARIMA
(autoregressive integrated moving average) models and their seasonal SARIMA
counterparts. More general fractional differencing then led to the ARFIMA mod-
els. The next phase of the development was concerned with nonlinear time series
models, beginning with bilinear models that add cross-product terms y;_;e;—; to
the usual ARMA model y; = B1y¢—1+ -+ BpYr—p + €t +Cr€—1 + - - + Cg€4—q, and
threshold autoregressive and regime switching models that introduce nonlineari-
ties into the usual autoregressive models via state-dependent changes or Markov
jumps in the autoregressive parameters. The monograph by Tong [44] summarized
these and other nonlinear time series models in the previous literature. The appro-
priateness of the parametric forms assumed in these nonlinear time series models,
however, may be difficult to justify in real applications, as pointed out by Chen and
Tsay [9].

Whereas the AR model ¥y = B1y¢—1+- - -+8pyt—p+e: is related to linear regression
since ,BTXt is the regression function F(y:|x:) of y¢ given x; := (y¢—1,... ,yt,p)T,
and likewise its nonlinear parametric extensions y; = f(x¢,3) + € are related to
nonlinear regression, Chen and Tsay [9, 10] proposed to use nonparametric re-
gression for F(y;|x;) instead. They started with functional-coefficient autoregres-
sive (FAR) models of the form y, = fi(x})ye—1 + -+ + fp(X})yt—p + €, where
fi,-.., fp are unspecified functions to be estimated by local linear regression and
XF = (Y—iyy- -+, Yt—i,) T withi; < -+ < igchosen from {1,...,p}. Because of sparse
data in high dimensions, local linear regression typically require d to be 1 or 2. To
deal with nonparametric regression in higher dimensions, they considered additive
autoregressive models of the form y; = f1(y4—i,) + - -+ fa(y1—i,) + €, in which the
fi can be estimated nonparametrically via the generalized additive model (GAM)
of Hastie and Tibshirani [19] . Making use of Friedman’s [15] multivariate adap-
tive splines (MARS), Lewis and Stevens [34] and Lewis and Ray [32, 33] developed
spline models for empirical modeling of time series data. Weigend, Rummelhart
and Huberman [48] and Weigend and Gershenfeld [47] proposed to use neural net-
works (NN) to model E(y:|x;), while Lai and Wong [28] considered a variant called
stochastic neural networks, for which they could use the EM algorithm to develop
efficient estimation procedures that have much lower computational complexity
than those for conventional neural networks.

The preceding time series models are autonomous, relating the dynamics of y; to
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the past states. In econometrics and engineering, the outputs y; are related not only
to the past outputs but also to the past inputs u;_g4, ..., u;_g. Therefore the AR
model has been extended to the ARX model (where X stands for exogenous inputs)
Y = ﬁTxt + e with x¢ = (Ye—1,- -+ Yt—p, Ut—d, - - - ,ui—1) L. Instead of assuming a
linear or nonlinear parametric regression model, one can use nonparametric regres-
sion to estimate F(y;|x;), as in the following financial application.

Example 1. As noted by Ross [40], option pricing theory is “the most successful
theory not only in finance, but in all of economics.” A call (put) option gives the
holder the right to buy (sell) the underlying asset (e.g. stock) by a certain date
T (known as the “expiration date” or “maturity”) at a certain price (known as
the “strike price” and denoted by K). European options can be exercised only on
the expiration date, whereas American options can be exercised at any time up to
the expiration date. The celebrated Black-Scholes theory, which will be reviewed in
Section 3, yields the following pricing formulas for the prices ¢; and p; of European
call and put options at time ¢ € [0,T):

(2.1) ¢; = Sie M TDD(dy(Sy, K, T —t)) — Ke "TY®(dy(Sy, K, T — 1)),
(2.2) py = Ke " T D®(—dy(S, K, T — t)) — Spe 4T =D®(—dy(S;, K, T — t)),

where ® is the cumulative distribution function of the standard normal random
variable, S; is the price of the underlying asset at time ¢, d is the dividend rate of the
underlying asset, di (z,y,v) = {log(z/y) + (r —d+0?/2)v}/o\/v and da(z,y,v) =
di(z,y,v) — oy/v. Hutchinson, Lo and Poggio [22] pointed out that the success of
the formulas (2.1) and (2.2) depends heavily on the specification of the dynamics
of S;. Instead of using any particular model of S}, they proposed a data-driven way
for pricing and hedging with a minimal assumption: independent increments of the
underlying asset price. Noting that y; (= ¢; or p;) is function of S;/K and T —t
with r and o being constant, they assume y, = K f(S;/K,T — t) and approximate
f by taking x; = (S;/K, T —t)T in the following models:

(i) radial basis function (RBF) networks f(x) = 3y + a’x + foﬂ Bihi(||A(x —
~v:)|]), where A is a positive definite matrix and h; is of the RBF type e =% /%
or (u? + o2)1/2;

(ii) neural networks f(x) = w(ﬂo—FZf:l Bih(v;,+alx)), where h(u) = 1/(1+e%)
is the logistic function and 1 is either the identity function or the logistic
function;

(iii) projection pursuit regression (PPR) networks f(x) = fy + Zf:l Bihi(alx),
where h; is an unspecified function that is estimated from the data by PPR.

The o, B; and ~, above are unknown parameters of the network that are to be
estimated from the data. As pointed out in [22], all three classes of networks have
some form of “universal approximation property” which means their approximation
bounds do not depend on the dimensionality of the predictor variable z; see [2]. It
should be noted that the above transformation of Sy to S;/K can be motivated not
only from the assumption on S; but also from the special feature of options data.
Although the strike price K could be any positive number theoretically, the options
exchange only sets strike prices at a multiple of a fundamental unit. For example,
Chicago Board Options Exchange (CBOE) sets strike prices at multiples of $5 for
stock prices in the $25 to $200 range. Also, only those options with strike prices
closet to the current stock price are traded and thus their prices are observed. Since
S; is non-stationary in general, the observed K is also non-stationary. Such features
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create sparsity of data in the space of (Sy, K,T — t). Training the options pricing
formula in the form of f(S;, K, T —t) can only interpolate the data and can hardly
produce any good prediction because (S;, K) in the future can be very different
from the data used in estimating f. The proposed transformation makes use of
the fact that all observed and future S;/K are close to 1. Therefore, the proposed
transformation captures the stationary structure of the data and enable the non-
parametric models to predict well. Another point that Hutchinson, Lo and Poggio
[22] highlighted is the measure of performance of the estimated pricing formula.
According to their simulation study, even a linear f(S;/K,T —t) can give R? ~ 90%
(Table I of Hutchinson, Lo and Poggio [22]). However, such a linear f implies a
constant delta hedging scheme which would provide poor hedging results. Since the
primary function of options is hedging the risk created by changes in the price of the
underlying asset, Hutchinson, Lo and Poggio [22] suggested using, instead of R?, the
hedging error measures £ = e "L E[|V(T)|] and = e"T[EV?(T)]'/?, where V(T
is the value of the hedged portfolio at time 7. In a perfect Black-Scholes world,
V(T) should be 0 if Black-Scholes formula is used. However, from the simulation
study, the Black-Scholes formulas still give € > 0 and n > 0 because time is discrete.
Hutchinson, Lo and Poggio [22] reported that RBF, NN and PPR all give hedging
measures comparable to those of the Black-Scholes in the simulation study. For
real data analysis of futures options, RBF, NN and PPR performed better than the
Black-Scholes formula in terms of hedging.

For American options, instead of using these learning networks to approximate
the option price, Broadie et al. [5] used kernel smoothers to estimate the option
pricing formula of an American option. Using a training sample of daily closing
prices of American calls on the S&P100 Index that were traded on the Chicago
Board Options Exchange from 3 January 1984 to 30 March 1990, they compared the
nonparametric estimates of American call option prices at a set of (S/K,t*) values
with corresponding parametric estimates obtained by using the approximations to
American option prices due to Broadie and Detemple [4], and found significant
differences between the parametric and nonparametric estimates.

3. Substantive (mechanistic) models

In control engineering, the dynamics of linear input-output systems are often given
by ordinary differential equations, whose discrete-time approximations in the pres-
ence of noise have led to the ARX models (for white noise), and ARMAX models
(for colored noise) in the preceding section. The problem of choosing the inputs
sequentially so that the outputs are as close as possible to some target values when
the model parameters are unknown and have to be estimated on-line has a large
literature under the rubric of stochastic adaptive control; see Goodwin, Ramadge
and Caines [16], Lai and Wei [27], Lai and Ying [30] and Guo and Chen [17]. More
general dynamics in the presence of additive noise have led to stochastic differen-
tial equations (SDEs), whose discrete-time approximations are related to nonlinear
time series models described in the preceding section. One such SDE is geometric
Brownian motion (GBM) for the asset price process in the Black-Scholes option
pricing theory. In view of Ito’s formula, the GBM dynamics for the asset price S;
translate into SDE dynamics for the option price f(t,S;). Such implied dynamics
from the mechanistic model can be combined with subject-matter theory to derive
the functional form or differential equation for f and other important corollaries of
the theory, as illustrated in the following.
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Example 2. In the Black-Scholes model, the asset price S; is assumed to be GBM
defined by the SDE

(31) dSt/St = Mdt + wat,

where wy,t > 0, is Brownian motion. Letting f(¢,.5) be the price of the option at
time ¢ when S; = 9, it follows from (3.1) and Ito’s formula that

df (t, St) = dt-i— dSt +1 % o2 S2dt
+MSt + 102ngsé>dt+05tg—£dwt.

For simplicity assume that the asset does not pay dividends, i.e., d = 0. Consider
an option writer’s portfolio at time ¢, consisting of —1 option and y; units of the
asset. The value of the portfolio m; is — f(t,S¢) + y:S; and therefore

2

88{ +M5t% + = 25152 %Sf uytSt)dt—FUSt (yt — %)dwt

Hence setting y; = 0f/0S yields a risk-free portfolio. This is the basis of delta
hedging in the options theory of Black and Scholes [3]|, who denote 0f/9S by A.
Besides GBM dynamics for the asset price, the Black-Scholes theory also assumes
that there are no transaction costs and no limits on short selling and that trading
can take place continuously so that delta hedging is feasible. Since economic theory
prescribes absence of arbitrage opportunities in equilibrium, 7; that consists of —1
option and A units of the asset should have the same return as rmdt = r(—f +
SiA)dt, yielding the Black-Scholes PDE for f:

of of 1 5 20 f
o trSas 7S g
with the boundary condition f(7,S) = ¢(S), where g(S) = (K — S)4 for a put
option, and ¢(S) = (S — K)4 for a call option, where x4 = max(z,0). This PDE
has the explicit solution (2.1) or (2.2) with d = 0. If the asset pays dividend at rate
d, then a modification of the preceding argument yields (3.2) in which rS(9f/95S)
is replaced by (r — d)S(9f/05).

dmy = — (

(3.2) —rf, 0<t<T,

Merton [37] extended the Black-Scholes theory for pricing European options to
American options that can be exercised at any time prior to the expiration date.
Optimal exercise of the option is shown to occur when the asset price exceeds (or
falls below) an exercise boundary 9C for a call (or put) option. The Black-Scholes
PDE still holds in the continuation region C of (¢,S;) before exercise, and IC is
determined by the free boundary condition df/9S =1 (or —1) for a call (or put)
option. Unlike the explicit formula (2.1) or (2.2) for European options, there is
no closed-form solution of the free-boundary PDE and numerical methods such as
finite differences are needed to compute American option prices under this theory.

By the Feynman-Kac formula, the PDE (3.2) has a probabilistic representation
f(t,8) = Ele " T=0g(S7)|S; = 5], and the expectation E is with respect to the
“equivalent martingale measure” under which dS;/S; = (r — d)dt + odw,. This
representation generalizes to American options as the value function of the optimal
stopping problem

(33) f(t,8) = sup Ele " T"g(S,)|S = 5]

€Ty, T
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where 7; 7 denotes the set of stopping times 7 taking values between ¢ and T
Cox, Ross and Rubinstein [12] proposed to approximate GBM by a binomial tree,
with root node Sy at time 0, so that (3.3) can be approximated by a discrete-
time and discrete-state optimal stopping problem that can be solved by backward
induction. Denote f(t,S) by C(t,S) for an American call option, and by P(t,S)
for an American put option. Jacka [23] and Carr, Jarrow and Myneni [7] derived
the decomposition formula

0

- P(t,S)=p(t,S) + erp“/u {e‘ps@(%>

B 96—(9ps+u/2)+zq)(5(3> —Z m) }ds,

sS—Uu

and a similar formula relating C(t,S) to ¢(t,S), where zZ(u) is the early exercise
boundary dC under the transformation

(3.5) p=r/c* 0=d/r; u=0*(t—T), z=1log(S/K)— (p—0p—1/2)u.

Ju [24] found that the early exercise premium can be computed in closed form if
dC is a piecewise exponential function which corresponds to a piecewise linear z(u).
By using such assumption, Ju [24] reported numerical studies showing his method
with 3 equally spaced pieces substantially improves previous approximations to
option prices in both accuracy and speed. AitSahlia and Lai [1] introduced the
transformation (3.5) to reduce GBM to Brownian motion and showed that z(u)
is indeed well approximated by a piecewise linear function with a few pieces. The
integral obtained by differentiating that in (3.4) with respect to S also has a closed-
form expression when Z(-) is piecewise linear, and approximating Z(-) by a linear
spline that uses a few unevenly spaced knots gives a fast and reasonably accurate
method for computing A = 9P/0S.

The Black-Scholes price involves the parameters r and o, which need to be
estimated. The yield of a short-maturity Treasury bill is usually used for r. Although
in the GBM model for asset prices which are observed at fixed intervals of time
(e.g. daily), one can estimate o by the standard deviation of historical (daily)
asset returns, which are i.i.d. normal under the GBM model for asset prices, there
are issues due to departures from this model (e.g., o can change over time and
asset returns are markedly non-normal) and due to violations of the Black-Scholes
assumptions in the financial market (e.g., there are actually transaction costs and
limits on short selling). Section 13.4 and Chapter 16 of Hull [21] discuss how the
parameter ¢ in the Black-Scholes option price is treated in current practice. In the
next section we describe an alternative approach that addresses the discrepancy
between the Black-Scholes-Merton theory and time series data on American options
and the underlying stock prices.

4. A combined substantive-empirical approach

In this section we describe an approach to time series modeling that contains both
substantiative and empirical components. We first came up with this approach when
we studied valuation of American options. Its basic idea is to use empirical modeling
to address the gap between the actual prices in the American options market and the
option prices given by the Black-Scholes-Merton theory in Example 2, as explained
below.
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Example 3. For European options, instead of using the basis function of Hutchin-
son, Lo and Poggio [22], an alternative approach is to express the option price as
c+ Ke " f*(S/K,t*), where c is the Black-Scholes price (2.1) because the Black-
Scholes formula has proved to be quite successful in explaining empirical data. This
is tantamount to including c¢(t,S) as one of the basis functions (with prescribed
weight 1) to come up with a more parsimonious approximation to the actual option
price.

The usefulness of this idea is even more apparent in the case of American options.
Focusing on puts for definiteness, the decomposition formula (3.4) expresses an
American put option price as the sum of a European put price p and the early
exercise premium which is typically small relative to p. This suggests that p should
be included as one of the basis functions (with prescribed weight 1). Lai and Wong
[29] propose to use additive regression splines after the change of variables u =
—0%(T—t) and z = log(S/K). Specifically, for small T'—¢ (say within 5 trading days
prior to expiration, i.e. T'—¢ < 5/253 under the assumption of 253 trading days per
year), we approximate P by p. For T'—t > 5/253 (or equivalently, u < —502/253),
we approximate P by

J

P=p+ Ke"{a+ aju+ Z aryj(u—u)
j=1
7. ‘
(41) +512’+5222+Zﬂz+j(2—2(j))3_+’71w+’}/2w2
j=1
Juw '
+ Z%ﬂ‘(w — w3},

j=1

where p = r/0? as in (3.5), a, a;, §; and 7; are regression parameters to be
estimated by least squares from the training sample and

(4.2) w= "2z~ (p—0p— 1/2u} (0= d/r)

is an “interaction” variable derived from z and u. The motivation behind the cen-
tering term (p — 0p — 1/2)u comes from (3.5) that transforms GBM into Brown-
ian motion, whereas that behind the normalization |u|~'/? comes from (3.4) and
the closely related dy(x,y,v) in (2.2). The knots u?) (respectively 2() or w())
of the linear (respectively quadratic) spline in (4.1) are the 1005/J, (respectively
1005/J. and 100j/J,)-th percentiles of {uq,...,u,} (respectively {z1,...,2,} or
{wi,...,wy,}). The choice of J,, J, and J,, is over all possible integers between 1
and 10 to minimize the generalized cross validation (GCV) criterion, which can be
expressed in the following form (cf. [19, 46]):

2
‘ . Ju+Js+ Ju +6
_ o X 2 - u z w
GOV (Ju, I Ju) = Y (P — B) /{n(l - > }

=1

where the P; are the observed American option prices in the past n periods, and
the P; are the corresponding fitted values given by (4.1) in which the regression
coefficients are estimated by least squares.

In the preceding we have assumed prescribed constants v and o as in the Black-
Scholes model; these parameters appear in (4.1) via the change of variables (3.5).
In practice o is unknown and may also vary with time. We can replace it in (4.1)
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by the standard deviation &; of the most recent asset returns say, during the past
60 trading days prior to t as in [22], p. 881. Moreover, the risk-free rate r may also
change with time, and can be replaced by the yield 7} of a short-maturity Treasury
bill on the close of the month before ¢. The same remark also applies to the dividend
rate.

The simulation study in Lai and Wong [29] shows the advantages of this combined
substantive-empirical approach. Not only is P well approximated by }3, especially
over intervals of S/K values that occur frequently in the sample, A — A also reveals
a pattern similar to that of P — P. Besides Ep = E{e™""|Vp(7)|}, where 7 is the
time of exercise and Vj(t) is the value of the replicating portfolio at time ¢ that

rebalances (according to the pricing formula ]5) between the risky and riskless assets
([22], p. 868-869), Lai and Wong [29] also consider the measure

(13) oo =B { [ SR a0 - Aoyar,

where A = 9P /0S. In practice, continuous rebalancing is not possible. If rebalanc-
ing is done only daily, then (S/K)?(A4 — A)? in (4.3) is replaced by a step function
that stays constant on intervals of width 1/253. Because of the adaptive nature of
the methodology, the proposed approach of Lai and Wong [29] is much more ro-
bust to the misspecification error than the Black-Scholes formula in terms of both
measures. Lai and Lim [26] carried out an empirical study of this approach and
made use of its semiparametric pricing formula and (4.3) to come up with a modi-
fied Black-Scholes theory and optimal delta hedging in the presence of transaction
costs.

5. Application to the 1821-1934 Canadian lynx data

The Canadian Lynx data set consists of the annual record of the numbers of the
Canadian lynx trapped in the Mackenzie River district of the North-west Canada
for the period 1821-1934 inclusively. Let X; be log;,(number recorded as trapped in
year 1820+1¢) (t =1,...,114). Figure 1 shows the time series plot of X;. According
to Tong [44], Moran [39] performed the first time series analysis on these data by
fitting an AR(2) model to X;; moreover, the log transformation is used because it
(i) makes the marginal distribution of X; more symmetric about its mean and (ii)
reduces the approximation error in assuming the number of lynx to be proportional
to the population. In view of the substantial non-linearity of F[X;|X;_3] found in
the scatterplot of X; versus X;_3, Tong([44], p.361) critiques Moran’s analysis and
its enhancements by Campbell and Walker [6], who added a harmonic component to
the AR(2) model, and by Tong [43], who used the AIC to select the order p = 11 for
AR(p) models, as “uncritical acceptance of linearity” in X;. He uses a self-excited
threshold autoregressive model (SETAR) of the form

0.6240.25X;_1 —0.43X;_o + &, if Xy 9 <3.25
(51) Xt - Xt—l = .

—(1.24X;_9 —2.25) +0.52X; 1 +¢; if X;—o>3.25
to fit these data, similar to Tong and Lim ([45], Section 9). The growth rate X; —
Xt—1 in the first regime (i.e., X;—o < 3.25) tends to be positive but small, which
corresponds to a slow population growth. In the second regime (i.e., X;_o > 3.25),
X: — X;_1 tends to be negative, corresponding to a decrease in population size.
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Fic 1. Time series plot of log,y of the Canadian lynx series.

Tong ([44], p. 377) interprets the fitted model as an “energy balance” between the
population expansion and the population contraction, yielding a stable limit cycle
with a 9-year period which is in good agreement with the observed asymmetric
cycles. Motivated by Van der Pol’s equation, Haggan and Ozaki [18] proposed to fit
another nonlinear time series model, namely, the exponential autoregressive model

11

(5.2) Xi—p=Y (¢ +me XY (X, — ) + e,
j=1

which gives a limit cycle of period 9.45 years. Lim [35] compares the prediction per-
formance of these and other parametric models and concludes that Tong’s SETAR
model ranks the best among them.

Taking a more nonparametric approach, Fan and Yao [14] use a functional —
coefficient autoregressive model to fit the observed X; series and compare its pre-
diction with that of threshold autoregression. Specifically, they fit the FAR(2,2)
model

(5.3) Xt =a1(Xi—2) X1 + a2(X—2) Xt o + 0ey

to the first 102 observations, reserving the last 12 observations to evaluate the
prediction. The a4 (-) and ag(+) in (5.3) are unknown functions which are estimated
by using locally linear smoothers. Fan and Yao ([14], p. 327) plot the estimates a1 (+)
and ao(+), which are approximately constant for X; o < 2.7 with a1 (X;—2) ~ 1.3
and dg(X;—2) =~ —0.2, and which are approximately linear for X;_o > 2.7. For
comparison, Fan and Yao [14] also fit the following SETAR(2) model to the same
set of data:

~ 0.424 +1.255X,_1 — 0.348X;_ X <2981
(5‘4) Xt:{ + t—1 t—2; t—2 S )

1.882 4+ 1.516X;_1 — 1.126 X;_o, X;_o > 2.981.
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Because of the close resemblance of the fitted SETAR(2) and FAR(2,2), they share
certain ecological interpretations. In particular, the difference of the fitted coeffi-
cients in each regime can be explained by using the phase dependence and the den-
sity dependence in the predator-prey structure. The phase dependence refers to the
difference in the behavior of preys (snowshoe hare) and predators (lynx) in hunting
and escaping at the decreasing and increasing phases of population dynamics, while
the density dependence is the relationship between the reproduction rates of the
animals and their abundance. More discussion on these ecological interpretations
can be found in [42].

To evaluate the predictions of FAR (2,2), Fan and Yao ([14], p. 324) use the

one-step ahead forecast (denoted by X;) and the iterative two-step-ahead forecast
(denoted by X}), which are defined by

~

X, = a1 (Xy_o) X1 + a0(Xy_0) Xy—g, X;:= dl(Xt—Z))?t—l + ao(Xi—2)Xi—a.

The predictions of SETAR(2) are similarly defined. The out-sample prediction ab-
solute errors (| X; — X;| and | X, — X;|) of the last 12 observations are reported
in Table 1. Based on the average of these 12 absolute prediction errors (AAPE),
FAR(2,2) performs slightly better than SETAR(2). Other nonparametric time se-
ries models for the Canadian lynx data include the projection pursuit regression
(PPR) model fitted by Lin and Pourahmadi [36] who found that SETAR outper-
forms PPR in terms of one-step-ahead forecasts, and neural network models which
Kajitani, Hipel and McLeod [25] found to be “just as good or better than SETAR
models for one-step out-of-sample forecasting of the lynx data.”

A substantive approach is adopted by Royama ([41], Chapter 5). Instead of
building the statistical model first and using ecology to interpret the fitted model
later, Royama starts with ecological mechanisms and population dynamics. Letting
R; = Xy11 — X denote the log reproductive rate from year ¢ to ¢ + 1, he consid-
ers nonlinear dynamics of the form R; = f(X¢,..., X¢—nt+1) + ug, where uy is a
zero-mean random disturbance, and emphasizes that “our ultimate goal is to deter-
mine the reproduction surface f and to find an appropriate model which reasonably
approximates to it,” with f satisfying the following two conditions in view of eco-
logical considerations: There exists X* such that f(X*,..., X*) = 0, and R; has
to be bounded above because “no animal can produce infinite number of offspring”

TABLE 1
Absolute prediction errors of one-step-ahead (1 yr) and iterative two-step-ahead (2 yr) forecasts
and their 12-year average (AAPE).

Model (5.3) Model (5.4) Model (5.6) Model (5.8a)
FAR(2,2) SETAR(2) Logistic Logistic-MARS

Year X 1yr 2 yr 1yr 2 yr 1yr 2 yr 1yr 2 yr
1923 3.064 0.157 0.156 0.187 0.090 0.178 0.075 0.188 0.082
1924 3.386 0.012 0.227 0.035 0.269 0.077 0.281 0.057 0.286
1925 3.553 0.021 0.035 0.014 0.038 0.057 0.153 0.073 0.120
1926 3.468 0.008 0.037 0.022 0.000 0.012 0.077 0.023 0.140
1927 3.187 0.085 0.101 0.059 0.092 0.020 0.018 0.122 0.168
1928 2.723 0.055 0.086 0.075 0.015 0.128 0.098 0.002 0.159
1929 2.686 0.135 0.061 0.273 0.160 0.179 0.004 0.009 0.012
1930 2.821 0.016 0.150 0.026 0.316 0.004 0.216 0.010 0.001
1931 3.000 0.017 0.037 0.030 0.062 0.005 0.010 0.013 0.025
1932 3.201 0.007 0.014 0.060 0.043 0.048 0.042 0.021 0.005
1933 3424 0.089 0.098 0.076 0.067 0.124 0.184 0.066 0.091
1934 3.531 0.063 0.175 0.072 0.187 0.083 0.245 0.011 0.087

AAPE 0.055 0.095 0.073 0.112 0.075 0.117 0.050 0.098
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(see [41], p. 50, 154, 178). In Chapter 4 of [42], Royama introduces the (first-order)
logistic model of f(X;) = 7, —exp{—ag —a1X;_1} to incorporate competition over
an available resource. Here r,, is the maximum biologically realizable reproduction
rate, i.e. Ry < r,, for all ¢; see [42], Section 4.2.5. An implicit assumption of the
model is that the resource being depleted during a time step will be recovered to
the same level by the onset of the next time step. This assumption can be relaxed
if a linear combination of X;_;(j =1,...,h) with h > 1 is used in the exponential
term of f, yielding a higher-order logistic model; see [41], p. 153.

Chapter 5 of Royama [41] examines the autocorrelation function and the partial
autocorrelation function of the Canadian lynx series and concludes that h should
be set to 2, which corresponds to the model

(5.5) X — Xi1 =1 —exp{—ap — a1 Xi—1 — a2 X¢—2} + w1,

where r,,, ag,a1 and as are unknown parameters that need to be estimated; see
[41], p. 190-191. From the scatterplot of R;_; = X; — X;_1 versus X;_o, Royama
guesses 1, ~ 0.6 and X* ~ 3. He uses this together with trial and error to obtain
the estimate (7, ag, a1, az) = (0.597,2.526,0.838, —1.508), but finds that the asym-
metric cycle of the fitted model does not match the observed cycle from the data
well. Moreover, the fitted autocorrelation function decays too fast in comparison
with the sample autocorrelation function.

Instead of his ad hoc estimates, we can use nonlinear least squares, initialized at
his estimates, to estimate the parameters of (5.5), yielding

(5.6) Xy — X,_1 = 0.460 — exp{—3.887 — 0.662X,_1 + 1.663X;_5} + w1,

O =T 95
L=

/

X(t-2)

T T T T T
1 2 3 4 5

x(t-1)
Fig 2. Contour plot of Rt,1 = X f)\(t,1 of the logistic model (5.6). The observations are

marked by x. The dotted line is Xi—2 = X¢—1. The intersection of this line and the contour
numbered 0 gives the equilibrium X™*.
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which implies that the maximum logarithmic reproduction rate is 0.460, i.e., the
population can grow at most 10°46 = 2.884 times per year. Figure 2, top left
corner, shows a negative contour of the response surface of the fitted model (5.6).
This implies that the population size can drop sharply in the region X; o > 3.5
and X;_ 1 < 2.5, leading to extinction in the upper left part of this region. Whereas
(5.6) does not rule out the possibility of X; diverging to —oo, extinction occurs as
soon as X; falls below 0 (or equivalently, the population size 10Xt falls below 1).

Note that one can also derive bounds on the logarithmic reproduction rates
from the empirical approach. Figure 3 is the plot of the limit cycle generated by the
skeleton of the fitted model (5.4). The limit cycle is of period 8 years. The maximum
and the minimum logarithmic reproduction rates, attained at years 1 and 5 in
Figure 3, are 0.212 and -0.269, respectively. That is, the population grows at most
109212 = 1.629 times per year and diminishes by at most a factor of 107°-269=0.538
per year. Moreover, the limit cycle of (5.4) implies an infinite loop of expansion and
contraction and rules out the possibility of extinction. These are consequences of
adopting an empirical approach because the data are distributed along the main
diagonal of Figure 2, but not its top left corner nor its lower right corner. In order to
deduce the behavior of the reproduction rates in these regions, mechanistic modeling
is essential. On the other hand, the empirical approach uses the observed data better
and gives more accurate forecasts. Table 1 compares the prediction performance of
FAR(2,2) and SETAR(2) with that of the logistic model (5.5). The fitted logistic
model provides the worst AAPE of one-step-ahead and iterative two-step-ahead
forecasts. Moreover, instead of characterizing the equilibrium with limit cycles,
the logistic model only gives two equilibrium points, with one corresponding to
extinction and the other equal to X* = {ag + log(r,)}/(a1 + a2) = 3.107 (the
intersection of the line X; 1 = X;_o and the contour of f =0 in Figure 2.)

We next apply the combined substantive-empirical approach of Section 4 to these
data, using the substantive model (5.5) to provide one of the basis functions in the

3.4
I

3.2
l

3.0
l

2.6

2.6 2.8 3.0 3.2 3.4

x(t-1)

Fia 3. Limit cycle of the skeleton of the SETAR(2) model (5.4). The dotted line is Xy = X¢_1.
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semiparametric model

Xt —Xi1 =rm —exp{—ap — a1 X1 —axX; o}

5.7
(5:7) +g(Xi 1, Xy ) [{(X11, Xy 2) € S} +us_1,

where ¢ is an unknown function and S is a region containing the observations that
will be specified later. Moreover, the difference equation (5.7) has the boundary con-
straint X;_1+ 1, —exp{—ap—a1 Xi—1 —aoXi_o} +9(Xe—1, X¢—2) [{(Xi—1, X¢—2) €
S} > 0. The lynx population becomes extinct as soon as this boundary condition
is violated. Model (5.7) can be fitted by using the backfitting algorithm. Specifi-
cally, model (5.5) is estimated first and then the residuals are used as the response
variable in nonparametric regression on the predictor variable (X;_1, X;_2). The
difference between the observed X; — X;_1 and the fitted ¢ is then used as the
response variable in (5.5), whose parameters can be estimated by nonlinear least
squares. The algorithm of multivariate adaptive regression splines (MARS) devel-
oped by Friedman (1991) is used for estimating g for the first step in each iteration
of the above backfitting procedure (the function “mars” in the package of “mda”
in R can be used). This kind of iteration sheme has been used in fitting partly lin-
ear models, where the parametric component is a linear regression model and the
nonparametric component is often fitted by using kernel regression; see [8, 13, 20].
The fitted response surface is

X, — Xi_1 = 1.319 — exp{—0.224 — 0.205X,_; + 0.343X,_»}
+ 9( X1, Xo—2) I{(Xi—1, Xy—2) € S} + uy—1,
G(Xi_1, Xy—2) = 2.204(X,_1 — 3.224) 1 (X,_o — 2.864)
C1572(Xe1 — 3.202)4 — 0.851(X;_o — 3.202) ..

(5.8a)
(5.8b)

We evaluate this fitted model by using the out-sample prediction criterion. Table 1
shows that (5.8a) gives the smallest AAPE for one-step-ahead forecasts among all
models considered, and that the AAPE for iterative two-step-ahead forecasts of
(5.8a) is comparable to the smallest one provided by FAR(2,2). The region S in
(5.8a) is chosen to be the oblique rectangle whose edges are defined by the sample
means +3 standard deviations of the principal components of the bivariate sample
of (X¢—1,X¢_2); see Figure 4 which shows that this region contains not only the
in-sample data but also the out-sample data. Figure 5 gives the contour plot of
the fitted model (5.8a). The logarithmic growth rate at its top left corner is about
—2, which shows a strong possibility of extinction even though the magnitude is
less drastic than that in Figure 2 for (5.6). The inclusion of tensor products of
univariate splines in (5.8a) would have produced positive probability limits of X
diverging to oo or to —oo if (X;_1,X;_2) had not been confined to a compact
region. On the other hand, with an absorbing barrier at 0 and with (5.8b) only
applicable inside the compact set S, Markov chains of the type (5.8a) not only have
stationary distributions but are also geometrically ergodic under mild assumptions
on the random disturbances u; (e.g., to ensure irreducibity); see [39].

6. Conclusion

In his concluding remarks, Cox [11] noted that for successful use of statistical models
in particular applications, “large elements of subject-matter judgment and technical
statistical expertise are usually essential. Indeed, it is precisely the need for this
combination that makes our subject such an interesting and demanding one.” We
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have followed up on his remarks here with a combined subject-matter and statistical
modeling approach to time series analysis, which we illustrate for the “particular
applications” of option pricing and population dynamics of the Canadian lynx. In
particular, for the Canadian lynx data, we have shown how statistical modeling for
data-rich regions of (X;_1, X;_2) can be combined effectively with “subject-matter
judgment” which is the only reliable guide for sparse-data regions.
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Abstract: Correlations between asset returns are important in many financial
applications. In recent years, multivariate volatility models have been used to
describe the time-varying feature of the correlations. However, the curse of
dimensionality quickly becomes an issue as the number of correlations is k(k —
1)/2 for k assets. In this paper, we review some of the commonly used models
for multivariate volatility and propose a simple approach that is parsimonious
and satisfies the positive definite constraints of the time-varying correlation
matrix. Real examples are used to demonstrate the proposed model.

1. Introduction

Let 7, = (r1¢,...,7kt)" be a vector of returns (or log returns) of k assets at time
index t. Let F;_1 be the sigma field generated by the past information at time index
t — 1. We partition the return r; as

(1) Ty = Wt + e,

where py = E(r¢|F;—1) is the conditional mean of the return given F;_; and e; is
the innovation (or noise term) satisfying e; = E; / ®¢; such that

(2) COV(et|Ft71) = COV(Tt‘thl) = Et,

where €; = (€14, ..., €xt) 18 a sequence of independently and identically distributed
random vectors with mean zero and identity covariance matrix, and E% /% is the
symmetric square-root matrix of a positive-definite covariance matrix ;, that is,
Ei / 22% /2 = %, In the literature, >; is often referred to as the volatility matrix.
Volatility modeling is concerned with studying the evolution of the volatility matrix
over time. For asset returns, behavior of the conditional mean p; is relatively simple.
In most cases, py is simply a constant. In some cases, it may assume a simple vector
autoregressive model. The volatility matrix >;, on the other hand, is much harder
to model, and most GARCH studies in the literature focus entirely on modeling
Et.
The conditional covariance matrix >; can be written as

(3) Et - DthDt

where Dy is a diagonal matrix consisting of the conditional standard deviations of

the returns, i.e., D, = diag{,/o114,...,/Okkt} With 0;;+ being the (7, j)th element
of ¥;, and R; is the correlation matrix.
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In recent years, many studies extend the univariate generalized autoregressive
conditional heteroscedastic (GARCH) model of Bollerslev [2] to the multivariate
case for modeling the volatility of multiple asset returns; see the recent article [1] for
a survey. Multivariate volatility models have many important applications in finance
and statistics. They can be used to study the correlations between asset returns.
These correlations play an important role in asset allocation, risk management,
and portfolio selection. There are two major difficulties facing the generalization,
however. First of all, the dimension of volatility matrix increases rapidly as the
number of asset increases. Indeed, there are k(k + 1)/2 variances and covariances
for k asset returns. Second, for asset returns the covariance matrix is time-varying
and positive definite. Many of the multivariate volatility models proposed in the
literature fail to satisfy the positive-definite constraints, e.g., the diagonal VEC
model [3], even though they are easy to understand and apply.

The goal of this paper is to propose a simple approach to modeling multivari-
ate volatility. The proposed model is kept parsimonious in parameterization to
overcome the difficulty of curse of dimensionality. In addition, a simple structure
equation is imposed to ensure that the resulting time-varying covariance matrices
are positive definite. On the other hand, the proposed model is not very flexible
and may encounter lack of fit when the dimension is high. To safe guard against
model inadequacy, we consider model checking using some bootstrap methods to
generate finite-sample critical values of the test statistics used.

The paper is organized as follows. In Section 2, we briefly review some of the
multivariate volatility models relevant to the proposed model. Section 3 considers
the proposed model whereas Section 4 contains applications to daily returns of
foreign exchange rates and U.S. stocks. Section 5 concludes.

2. A brief review of vector volatility models

Many multivariate volatility models are available in the literature. In this section,
we briefly review some of those models that are relevant to the proposed model.
We shall focus on the simple models of order (1,1) in our discussion because such
models are typically used in applications and the generalization to higher-order
models is straightforward. In what follows, let a;; denote the (i, j)th element of the
matrix A and u;; be the ith element of the vector u;.

VEC model.  For a symmetric n X n matrix A, let vech(A) be the half-stacking
vector of A, that is, vech(A) is a n(n+1)/2x 1 vector obtained by stacking the lower
triangular portion of the matrix A. Let hy = vech(X;) and 7 = vech(ese}). Using
the idea of exponential smoothing, Bollerslev et al. [3] propose the VEC model

(4) hy =c+ Anyg_1 + Bhy

where c is a k(k+ 1)/2-dimensional vector, and A and B are k(k+1)/2x k(k+1)/2
matrices. This model contains several weaknesses. First, the model contains k(k +
1)[k(k + 1) + 1]/2 parameters, which is large even for a small k. For instance, if
k = 3, then the model contains 78 parameters, making it hard to apply in practice.
To overcome this difficulty, Bollerslev et al. [3] further suggest that both A and
B matrices of Eq. (4) are constrained to be diagonal. The second weakness of the
model is that the resulting volatility matrix >; may not be positive definite.
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BEKK model. A simple BEKK model of Engle and Kroner [5] assumes the form
(5) Et = C/C+A/€t_1€2_1A+B/Zt_1B

where C, A, and B are k x k matrices but C' is upper triangular. An advantage of the
BEKK model is that ¥; is positive definite if the diagonal elements of C' is positive.
On the other hand, the model contains many parameters that do not represent
directly the impact of e;_1 or ¥;_; on the elements of ¥;. In other words, it is
hard to interpret the parameters of a BEKK model. Limited experience also shows
that many parameter estimates of the BEKK model in Eq. (5) are statistically
insignificant, implying that the model is overparameterized.

Using the standardization of Eq. (3), one can divide the multivariate volatility
modeling into two steps. The first step is to specify models for elements of the
D; matrix, and the second step is to model the correlation matrix R;. Two such
approaches have been proposed in the literature. In both cases, the elements o;; ¢
are assumed to follow a univariate GARCH model. In other words, o;; ;+ are based
entirely on the i-the return series.

Dynamic correlation model of Tse and Tsui. In [8], the authors propose that (a)
the individual volatility o;;; can assume any univariate GARCH models, and (b)
the correlation matrix R; of Eq. (3) follows the model

(6) Rt - (]. - )\1 - )\Q)R —|— )\1\1115_1 —|— )\QRt_l

where A1 and \; are non-negative parameters satisfying 0 < A1+ < 1, Risakxk
positive definite parameter matrix with R;; = 1 and ¥;_; is the k x k correlation
matrix of some recent asset returns. For instance, if the most recent m returns are
used to define W;_q, then the (7, j)th element of W,_; is given by

w' i = Z:)n:l ui,t—vuj,t—'u
1J7 - -

\/(Zﬂll U?,t_v)(ZZ”:1 ujz',t—'u) |

where u;; = et/ /Ot If m > k, then W,;_; is positive definite almost surely. This
in turn implies that R; is positive definite almost surely. We refer to this model as
a DCCr(m) model. In practice, one can use the sample correlation matrix of the
data to estimate R in order to simplify the calculation. Indeed, this is the approach
we shall take in this paper.

From the definition, the use of DCCr(m) model involves two steps. In the first
step, univariate GARCH models are built for each return series. At step 2, the
correlation matrix R; of Eq. (6) is estimated across all return series via the maxi-
mum likelihood method. An advantage of the DCCr(m) model is that the resulting
correlation matrices are positive definite almost surely. In addition, the model is
parsimonious in parameterization because the evolution of correlation matrices is
governed by two parameters. On the other hand, strong limitation is imposed on
the time evolution of the correlation matrices. In addition, it is hard to interpret
the results of the two-step estimation. For instance, it is not clear what is the joint
distribution of the innovation e; of the return series.

Dynamic correlation model of Engle. A similar correlation model is proposed by
Engle [4]. Here the correlation matrix R; follows the model

(7) Ry =W, QW
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where Q; = [gi;+] is a positive-definite matrix, W; = diag{,/qi1,¢,- -, /Tkk,c} I &
normalization matrix, and the elements of (); are given by

Qi=(1—-0a1 — Oéz)Q + g quy_q + Qi 1,

where u; is the standardized innovation vector with elements u;; = e;:/ Vit
@ is the sample covariance matrix of u;, and a; and as are non-negative scalar
parameters satisfying 0 < a; + as < 1. We refer to this model as the DCCg model.

Compared with the DCCr(m) model, the DCCg model only uses the most recent
standardized innovation to update the time-evolution of the correlation matrix.
Since u;—ju;_4 is singular for £ > 1 and is, in general, not a correlation matrix, and
the matrix Q¢ must be normalized in Eq. (7) to ensure that R; is indeed a correlation
matrix. Because a single innovation is more variable than the correlation matrix
of m standardized innovations, the correlations of a DCCg model tend to be more
variable than those of a DCCy(m) model.

To better understand the difference between DCCr(m) and DCCg models, con-
sider the correlation pis, of the first two returns in r,. For DCCp(m) model,

m
szl UL,t—oU2,t—v

VT (S W)

p12t = (1 = X1 — A2)p12 + Aap12—1 + M1

On the other hand, for the DCCg model,

.
Q12 + ULt 1U2t—1 + Q2Q12.1-1

P12t = )
~ 2 — 2
\/(04*6}11 +aoqui, g +aqii-1)(@*Gee + aruz,  + @agazi-1)

where a* = 1 — a; — . The difference is clearly seen.

3. Proposed models

We start with the simple case in which the effects of positive and negative past
returns on the volatility are symmetric. The case of asymmetric effects is given
later.

3.1. Multivariate GARCH models

In this paper, we propose the following model

p
(8) re=puben =0+ Y dirii, e =3¢
i=1

where p is a non-negative integer and {e¢;} is a sequence of independent and identi-
cally distributed multivariate Student-¢ distribution with v degrees of freedom. The
probability density function of ¢ is

L'((v+k)/2)

Jo= [m(v —2)]*/2T(v/2) [1+ (v —2)7 e CHD2,

The variance of each component of ¢; is 1. The volatility matrix is standardized as
Eq. (3) with elements of D; and the correlation matrix R, satisfying

(9) D? = Ao + A1 D? | + AyG? |,
(10) Ri=(1—-01 —0)R+ 0191+ 02 Ry_1,
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where G, = diag{eis,...,ep }, Ay = diag{l114, ...,k i} are diagonal matrices such
that €1 + 42 < 1land 0 < €5 fori =1,...,k and j = 1, 2, R is the sample
correlation matrix, 6; are non-negative real numbers satisfying 6, + 6> < 1, and
Y¢—1 is the sample correlation matrix of the last m innovations as defined in the
DCCyr(m) model of Eq. (6). We use m = k + 2 in empirical data analysis.

This model uses univariate GARCH(1,1) models for the conditional variance of
components of r; and a combination of the correlation matrix equations of the
DCCrp(m) and DCCg models for the correlation. The order of GARCH models
can be increased if necessary, but we use (1,1) for simplicity. In addition, A; and
A5 can be generalized to non-diagonal matrices. However, we shall keep the simple
structure in Eq. (9) and (10) for ease in application and interpretation.

The proposed model differs from the DCCp(m) model in several ways. First,
the proposed model uses a multivariate Student-t distribution for innovation so
that the degrees of freedom are the same for all asset returns. This simplifies the
model interpretation at the expense of decreased flexibility. Second, the proposed
model uses sample correlation matrix R to reduce the number of parameters. Third,
the proposed model uses joint estimation whereas the DCCp(m) model performs
separate estimations for variances and correlations.

3.2. Model with leverage effects

In financial applications, large positive and negative shocks to an asset have different
impacts on the subsequent price movement. In volatility modeling, it is expected
that a large negative shock would lead to increased volatility as a big drop in asset
price is typically associated with bad news which, in turn, means higher risk for
the investment. This phenomenon is referred to as the leverage effect in volatility
modeling. The symmetry of GARCH model in Eq. (9) keeps the model simple, but
fails to address the leverage effect. To overcome this shortcoming, we consider the
modified model

(11) Dt2 = AO + AlD?_l + AQG?_]_ + A3L?—17

where A; (i =0,1,2) are defined as before, A3 is a k x k diagonal matrix with non-
negative diagonal elements, and L;_ is also a k x k diagonal matrix with diagonal
elements

.. . dcit if e; 41 <0,
=1 0 otherwise.

In Eq. (11), we assume that 0 < 23:1 li;; <1fori=1,...,k. Thisis a sufficient
condition for the existence of volatility.

From the definition, a positive shock e; ;—; affects the volatility via Eii7ge?7t_1. A
negative shock, on the other hand, contributes (¢;; 2 + &-iyg)e?’tfl to the volatility.
Checking the significance of ¢;; 3 enables us to draw inference on the leverage effect.

4. Application

We illustrate the proposed model by considering some daily asset returns. First,
we consider a four-dimensional process consisting of two equity returns and two
exchange rate returns. Second, we consider a 10-dimensional equity returns. In
both examples, we use m = k + 2 to estimate the local correlation matrices ¥;_1
in Eq. (10).
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Example 1. In this example, we consider the daily exchange rates between U.S.
Dollar versus European Euro and Japanese Yen and the stock prices of IBM and
Dell from January 1999 to December 2004. The exchange rates are the noon spot
rate obtained from the Federal Reserve Bank of St. Louis and the stock returns are
from the Center for Research in Security Prices (CRSP). We compute the simple
returns of the exchange rates and remove returns for those days when one of the
markets was not open. This results in a four-dimensional return series with 1496
observations. The return vector is ry = (ry¢, 7o, T3¢, 74¢)’ with 71, and r9; being
the returns of Euro and Yen exchange rate, respectively, and r3; and ry; are the
returns of IBM and Dell stock, respectively. All returns are in percentages. Figure 1
shows the time plot of the return series. From the plot, equity returns have higher
variability than the exchange rate returns, and the variability of equity returns
appears to be decreasing in recent years. Table 1 provides some descriptive statistics
of the return series. As expected, the means of the return are essentially zero and
all four series have heavy tails with positive excess kurtosis.

The equity returns have some serial correlations, but the magnitude is small.
If multivariate Ljung-Box statistics are used, we have Q(3) = 59.12 with p-value
0.13 and Q(5) = 106.44 with p-value 0.03. For simplicity, we use the sample mean
as the mean equation and apply the proposed multivariate volatility model to the
mean-corrected data. In estimation, we start with a general model, but add some
equality constraints as some estimates appear to be close to each other. The results
are given in Table 2 along with the value of likelihood function evaluated at the
estimates.

For each estimated multivariate volatility model in Table 2, we compute the
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usJP
-3-2-10 1 23

1999 2000 2001 2002 2003 2004 2005

1BM
-15 50 510

1999 2000 2001 2002 2003 2004 2005
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1999 2000 2001 2002 2003 2004 2005
year

Dell
-20-10 0 10 20

Fic 1. Time plots of daily return series from January 1999 to December 2004: (a) Dollar-Euro
exchange rate, (b) Dollar-Yen exchange rate, (c¢) IBM stock, and (d) Dell stock.
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TABLE 1
Descriptive statistics of daily returns of Fxample 1. The returns are in percentages, and the
sample period is from January 1999 to December 2004 for 1496 observations

Asset USEU JPUS IBM DELL

Mean 0.0091 —0.0059 0.0066 0.0028

Standard error 0.6469 0.6626 5.4280 10.1954

Skewness 0.0342 —0.1674 —0.0530 —0.0383

Excess kurtosis 2.7090 2.0332 6.2164 3.3054

Box-Ljung Q(12) 12.5 6.4 24.1 24.1
TABLE 2

Estimation results of multivariate volatility models for Example 1 where Lmax denotes the value
of likelihood function evaluated at the estimates, v is the degrees of freedom of the multivariate
Student-t distribution, and the numbers in parentheses are asymptotic standard errors

Ao Ay Ao
(a) Full model estimation with Lmax = —9175.80
0.0041(0.0033)  0.9701(0.0114)  0.0214(0.0075)
0.0088(0.0038)  0.9515(0.0126)  0.0281(0.0084)
0.0071(0.0053)  0.9636(0.0092)  0.0326(0.0087)
0.0150(0.0136)  0.9531(0.0155)  0.0461(0.0164)

(v,01,62)

7.8729(0.4693)
0.9808(0.0029)
0.0137(0.0025)

(b) Restricted model with Lmax =

0.0066(0.0028)
0.0066(0.0023)
0.0080(0.0052)
0.0108(0.0086)

0.9606(0.0068)

—9176.62
0.0255(0.0068)
0.0240(0.0059)
0.0355(0.0068)
0.0385(0.0073)

(c) Final restricted model with Limax = —9177.44

0.0067(0.0021)
0.0067(0.0021)
0.0061(0.0044)
0.0148(0.0084)

(d) Model with leverage effects, Lmax = —9169.04

0.0064(0.0027)
0.0066(0.0023)
0.0128(0.0055)
0.0210(0.0099)

0.9603(0.0063)

0.9600(0.0065)

0.0248(0.0048)
0.0248(0.0048)
0.0372(0.0061)
0.0372(0.0061)

0.0254(0.0063)
0.0236(0.0054)
0.0241(0.0056)
0.0286(0.0062)

7.8772(0.7144)
0.9809(0.0042)
0.0137(0.0025)

7.9180(0.6952)
0.9809(0.0042)
0.0137(0.0028)

8.4527(0.7556)
0.9810(0.0044)
0.0132(0.0027)

standardized residuals as

L a-1)2

€ = Et €t,
where ii /% is the symmetric square-root matrix of the estimated volatility matrix
f]t. We apply the multivariate Ljung-Box statistics to the standardized residuals é;
and its squared process €2 of a fitted model to check model adequacy. For the full
model in Table 2(a), we have Q(10) = 167.79(0.32) and Q(10) = 110.19(1.00) for
é; and €2, respectively, where the number in parentheses denotes p-value. Clearly,
the model adequately describes the first two moments of the return series. For the
model in Table 2(b), we have Q(10) = 168.59(0.31) and Q(10) = 109.93(1.00). For
the final restricted model in Table 2(c), we obtain Q(10) = 168.50(0.31) and Q(10)
= 111.75(1.00). Again, the restricted models are capable of describing the mean
and volatility of the return series.

From Table 2, we make the following observations. First, using the likelihood
ratio test, we cannot reject the final restricted model compared with the full model.
This results in a very parsimonious model consisting of only 9 parameters for the
time-varying correlations of the four-dimensional return series. Second, for the two
stock return series, the constant terms in Ay are not significantly different from
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Fia 2. Time plots of estimated volatility series of four asset returns. The solid line is from the
proposed model and the dashed line is from a rolling estimation with window size 69: (a) Dollar-
Euro exchange rate, (b) Dollar-Yen exchange rate, (c) IBM stock, and (d) Dell stock.

zero and the sum of GARCH parameters is 0.0372 4 0.9603 = 0.9975, which is very
close to unity. Consequently, the volatility series of the two equity returns exhibit
IGARCH behavior. On the other hand, the volatility series of the two exchange rate
returns appear to have a non-zero constant term and high persistence in GARCH
parameters. Third, to better understand the efficacy of the proposed model, we
compare the results of the final restricted model with those of rolling estimates. The
rolling estimates of covariance matrix are obtained using a moving window of size
69, which is the approximate number of trading days in a quarter. Figure 2 shows
the time plot of estimated volatility. The solid line is the volatility obtained by the
proposed model and the dashed line is for volatility of the rolling estimation. The
overall pattern seems similar, but, as expected, the rolling estimates respond slower
than the proposed model to large innovations. This is shown by the faster rise and
decay of the volatility obtained by the proposed model. Figure 3 shows the time-
varying correlations of the four asset returns. The solid line denotes correlations
obtained by the final restricted model of Table 2 whereas the dashed line is for
rolling estimation. The correlations of the proposed model seem to be smoother.

Table 2(d) gives the results of a fitted integrated GARCH-type with leverage
effects. The leverage effects are statistically significant for equity returns only and
are in the form of an IGARCH model. Specifically, the A3 matrix of the correlation
equation in Eq. (11) is

A3 = diag{0,0, (1 —0.96 —0.0241), (1 — 0.96 — 0.0286) } = diag{0,0,0.0159,0.0114}.

Although the magnitudes of the leverage parameters are small, but they are statis-
tically significant. This is shown by the likelihood ratio test. Specifically, compared
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Fic 3. Time plots of time-varying correlations between the percentage simple returns of four
assets from January 1999 to December 2004. The solid line is from the proposed model whereas
the dashed line is from a rolling estimation with window size 69.
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the fitted models in Table 2(b) and (d), the likelihood ratio statistic is 15.16, which
has a p-value 0.0005 based on the chi-squared distribution with 2 degrees of free-
dom.

Example 2. In this example, we consider daily simple returns, in percentages,
of the S&P 500 index and nine individual stocks from January 1990 to December
2004 for 3784 observations. Thus, we have a 10-dimensional return series. The
ten assets are given in Table 3 along with some descriptive statistics. All asset
returns have positive excess kurtosis, indicating heavy tails. Except for the stock of
General Electrics, return minimums exceed the maximums in modulus, suggesting
asymmetry in price changes due to good and bad news.

Sincere there are some minor serial and cross correlations in the 10-dimensional
returns, we fit a vector autoregressive model of order 3, i.e. VAR(3), to the data
to remove the dynamic dependence and employ the resulting residual series in
volatility modeling. See Eq. (8).

We have applied the proposed volatility model in Egs. (9)- (10) to the residual se-
ries of the VAR(3) model. But our subsequently analysis shows that the model with
leverage effects in Eq. (11) is preferred based on the likelihood ratio test. Therefore,
for simplicity in presentation, we shall only report the results with leverage effects.

Employing the volatility model in Eq. (11) with the correlations in Eq. (10), we
found that for the returns of IBM, DELL, GE, and GM stocks the leverage effects
follow integrated GARCH models. Consequently, for these four stock returns the
leverage parameters are given by

Niiz=1—Nii1— N2,

where A;; ; is the ith diagonal element of the matrix A;, j = 1,2, 3. Table 4 shows
the parameter estimates of the 10-dimensional volatility model.

For model checking, we use a bootstrap method to generate the critical values of
multivariate Ljung-Box statistics for the standardized residuals and their squared
series. Specifically, we generate 10,000 realizations each with 3781 observations from
the standardized residuals of the fitted model. The bootstrap samples are drawn
with replacement. For each realization, we compute the Ljung-Box statistics Q(5),
Q(10), and Q(15) of the series and its squared series. Table 5 gives some critical
values of the Ljung-Box statistics. For the fitted model, we have Q(10) = 836.12
and Q(15) = 1368.71 for the standardized residuals and Q(10) = 1424.64 and
Q(15) = 1923.75 for the squared series of standardized residuals. Compared with
the critical values in Table 5, the Ljung-Box statistics are not significant at the
1% level. Thus, the fitted model is adequate in modeling the volatility of the 10-
dimensional return series. We also applied the AIC criterion to the squared series
of standardized residuals. The criterion selected a VAR(0) model, confirming that
the fitted multivariate volatility model is adequate.

From the fitted model, we make the following observations. First, except for
two marginal cases, all estimates of leverage parameters are statistically significant
at the 5% level based on their asymptotic standard errors. The two marginally
significant leverage parameters are for BA amd PFE stocks and their t-ratios are
1.65 and 1.92, respectively. Thus, as expected, the leverage effects are positive and
most of them are significant. Second, all parameters of the volatility equation are
significant. Thus, the model does not contain unnecessary parameters. Third, the
model contains 30 parameters. This is very parsimonious for a 10-dimensional return
series. Fourth, the correlations evolve slowly with high persistence parameter 0.9864.
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TABLE 3
Descriptive statistics of asset returns used in Example 2. Except for the SEP index, tick symbol
is used to denote the company. Returns are in percentages

Asset Mean  St.Error Skewness Ex.Kurt. Minimum Maximum

S&P 0.038 1.03 —0.018 3.58 —6.87 5.73
IBM 0.066 2.03 0.294 6.32 —15.54 13.16
INTC 0.122 2.82 —0.122 4.17 —22.02 20.12
DELL 0.236 3.49 —0.012 3.45 —25.44 20.76
GE 0.074 1.70 0.176 3.80 —10.67 12.46
BA 0.052 1.98 —0.282 6.08 —17.62 11.63
GM 0.039 2.01 0.111 1.98 —13.53 10.34
JNJ 0.076 1.59 —0.139 4.32 —15.85 8.21
MRK 0.051 1.80 —0.861 14.91 —26.78 9.60
PFE 0.084 1.91 —0.068 1.94 —11.15 9.71
TABLE 4

Parameter estimates of the proposed volatility model with leverage effects for the 10 asset
returns of Example 2. For leverage effects, those estimates without standard errors denote
IGARCH constraints

A1 Al
Estimate 0.9658
Std.Err 0.0024
Ao Diagonal matrix with elements

Estimate .0154 .0174 .0168 .0298 .0191 .0206 .0187 .0110 .0128 .0192
Std.Err .0031 .0026 .0038 .0030 .0029 .0041 .0037 .0038 .0028  .0037

Ao Diagonal matrix with elements
Estimate .0077 .0211 .0763 .0170 .0185 .0279 .0342 .0281 .0369  .0309
Std.Err .0010 .0042 .0121 .0067 .0031 .0054 .0074 .0048 .0061  .0058

As Diagonal matrix with elements
Estimate .0178 .0168 .0126  .0044 .0152 .0107 .0155 .0210 .0143 .0115
Std.Err .0049 .0059 .0065 .0064 .0059 .0060
Parameter v 02 01
Estimate 9.54 .9864 .0070
Std.Err 417 .0016  .0006
TABLE 5

Critical values of Ljung-Box statistics for 10-dimensional standardized residual series.
The values are obtained by a bootstrap method with 10,000 iterations. The sample size
of the series is 3781

Standardized residuals Squared standardized residuals
Statistics 1% 5% 10% 1% 5% 10%
Q(5) 576.92 553.68 541.33 915.89 696.82 617.74
Q(10) 1109.05 1075.25 1057.94 1150.31 1281.03 1170.12
Q(15) 1633.31 1591.61 1571.17 2125.65 1837.28 1713.50

Fifth, the estimate of the degrees of freedom for multivariate Student-¢ innovation
is 9.54, confirming that the returns have heavy tails.

Remark. In this paper, we use a MATLAB program to estimate the proposed
multivariate volatility models. The negative log likelihood function is minimized
with inequality parameter constraints using the function fmincon. Limited experi-
ence shows that the results are not sensitive to the initial values, but initial values
that are far away from the final estimates do require many more iterations. The
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estimation, however, can become difficult if some parameters are approching the
boundary of the parameter space. For instance, if there is no leverage effect, then
the hessian matrix can be unstable when the leverage parameter is included in the
estimation.

5. Extensions and some alternative approaches

In this paper, we consider a simple approach to model multivariate volatilities of
asset returns. Unlike other methods available in the literature, the proposed ap-
proach estimates the conditional variances and correlations jointly and the result-
ing volatility matrices are positive definite. The proposed model can handle the
leverage effects and is parsimonious. We demonstrated the efficacy of the proposed
model by analyzing a 4-dimensional and a 10-dimensional asset return series. The
results are encouraging. We also used a bootstrap method to obtain finite-sample
critical values for the multivariate Ljung-Box statistics for testing serial and cross
correlations of a vector series.

There are possible extensions of the proposed model. For example, Eq. (10) re-
quires that all correlations have the same persistence parameter 5. This restriction
can be relaxed by letting #; and 65 be diagonal matrices of positive real numbers.
The model would become

Ry=(I—07 —03)R+ 013101 + 02Ry_105.

Under this model, the ith asset return contributes 0;; » to the persistence of corre-
lations. In addition, one can have equality constraints among diagonal elements of
each ; matrix to keep the model parsimonious.

Some alternative approaches have been considered in the literature to overcome
the curse of dimensionality in multivariate volatility modeling. Palandri [7] uses
a sequential Cholesky decomposition to build a multivariate volatility of 69 stock
returns. The independent component models have also been used to simplify the
modeling procedure, e.g., see [6].
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Abstract: Consider a multi-phase project management problem where the
decision maker needs to deal with two issues: (a) how to allocate resources to
projects within each phase, and (b) when to enter the next phase, so that the
total expected reward is as large as possible. We formulate the problem as a
multi-armed bandit problem with precedence relations. In Chan, Fuh and Hu
(2005), a class of asymptotically optimal arm-pulling strategies is constructed
to minimize the shortfall from perfect information payoff. Here we further
explore optimality properties of the proposed strategies. First, we show that
the efficiency benchmark, which is given by the regret lower bound, reduces to
those in Lai and Robbins (1985), Hu and Wei (1989), and Fuh and Hu (2000).
This implies that the proposed strategy is also optimal under the settings of
aforementioned papers. Secondly, we establish the super-efficiency of proposed
strategies when the bad set is empty. Thirdly, we show that they are still
optimal with constant switching cost between arms. In addition, we prove that
the Wald’s equation holds for Markov chains under Harris recurrent condition,
which is an important tool in studying the efficiency of the proposed strategies.

1. Introduction

Suppose there are U = J; + --- 4+ J; statistical populations, 1I;1,11;9,..., 11, .
Pulling arm ¢j once corresponds to taking an observation from population II;;. The
observations from II;; form a Markov chain on a state space D with transition
probability density function p;;(z,y, #) with respect to a o-finite measure ), where
0 is an unknown parameter belonging to a parameter space ©. The stationary
probability distribution for the Markov chain exists and has probability density
function ;; (-, 0).

At each step, we are required to sample one of the statistical populations obeying
the partial order ij < i'j’ < i < ¢'. An adaptive policy is a sampling rule that
dictates, at each step, which population should be sampled based on observations
before that step. We can represent a policy as a sequence of random variables
¢ = {dt|pt—1 = ¢, t = 1,2,...} taking values in {ijli = 1,...,[;5 = 1,...,J;}
such that the event {¢; = ij} ‘take an observation from II;; at step ¢’ belongs to
the o-field generated by ¢1, X1,...,0:_1, X;_1, where X; denotes the state of the
population being sampled at ¢-th step.
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Let the initial state of II;; be distributed according to v;;(+;#). Throughout this
paper, we shall use the notation Ey (Py) to denote expectation (probability) with
respect to the initial distribution v;;(-;0); similarly, E. ) to denote expectation
with respect to the stationary distribution ;;(-;0). We shall assume that V;; =
{z € D :v;;(x;0) > 0} does not depend on 6 and v;; := inf,cy,, infg o co[vij(x;0)/

vij(x;60')] > 0 for all 4, 5. Suppose that [ _p [g(z)|mi;(x;0)Q(dx) < co. Let

pij(0) = /eD g(z)mij(z;0)Q(dx)

be the mean reward under stationary distribution m;; when II;; is sampled once.
Let N be the total sample size from all populations, and

N
(1.1) In(ij) = Z Ligi=ijy
t=1

be the sample size from II;; and 1 denotes the indicator function. It follows that
the total reward equals

Ji

(1.2) =Y > > Eo{Bo[Xilis,—ijy|Fial}.

t=1 i=1 j=1

In the case of independent rewards, that is, when p;;(x,y,;60) = p;;(y;0) for all
i,7,x,y and 6, Wy (0) = Zle Zj;l i (0)EgTn (7). We shall show in the Appen-
dix that for Markovian rewards, under regularity conditions A3-A4 (see Section
2.1), there exists a constant Cy < oo independent of § € ©, N > 0 and the strategy
¢ such that

(1.3) ‘WN ZZM” VEo TN zg)’ < Cp.

=1 j=1

In light of (1.3), maximizing Wy (0) is asymptotically equivalent [up to a O(1)
term| to minimizing the regret

(14) Ry(8) = N (0) = Wx(0) = S [0(6) — iy ()| EaT (ig),
ig:pig (0)<p*(6)
where 117(0) := max <i<; maxi<j<.; pi;(0)-
Because adaptive strategies ¢ that are optimal for all # € © and large N in
general do not exist, we consider the class of all (asymptotically) uniformly good
adaptive strategies under the partial order constraint =<, satisfying

(1.5) Ry(0) =0o(N®%), foralla>0and®fc0.

Such strategies have regret that does not increase too rapidly for any € ©. We
would like to find a strategy that minimizes the increasing rate of the regret within
the class of uniformly good adaptive strategies under the partial order constraint <.

The rest of the article is organized as follows. In Section 2, we present the assump-
tions and introduce the concept of bad sets. The regret lower bound is investigated
in Section 3. We also prove that the regret lower bound specializes to other lower
bounds obtained by previous authors under less general settings. Section 4 con-
tains the super efficiency result when the bad sets are empty. The optimality of the
proposed strategies under constant switching cost is investigated in Section 5. The
last section includes the proof of Wald’s equation for Markov random walks under
Harris recurrence condition.
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2. The assumption and bad sets

Denote the Kullback-Leibler information number by

pz z, y; 6)
21) I;0.0)= [ [ [P Py 5 6)ms () Qdy) Q).
(21) Iy o e [ (e 0ms a0) @) Qo)
Then, 0 < I;;(0,0") < oco. We shall assume that I;;(0,0") < oo for all ¢,j and
6,0" € ©. Let p1;(0) = maxi<j<y, pij(0) be the largest reward in the i-th group of
arms, and

(2.2) ©;,={0€0O:pu(0) > py(0) for all ' < i and p;(0) > py(0) for all & > i}
be the set of parameter values such that the first optimal job is in group i. Let

(2.3) O = {0 € ©; : pi; (0) = ns(0)}

be the parameter set such that arm 5 is one of the first optimal ones. Each 6§ € ©
belongs to exactly one ©; but may belong to more than one ©;;. Let

(2.4) O ={0 €0 :p(0) > uy(0) for all i’ # i}

be the parameter set in which all the optimal arms lie in group . Clearly, ©; C ©;
but the reverse relation is not necessarily true.

2.1. The assumptions

We now state a set of assumptions that will be used to prove the optimality results.
Let © be a compact subset of R% for some d > 1.

Al. p;;(-) are finite and continuous on © for all 4, j. Moreover, no arm group is
redundant in the sense that ©F # ) for alli =1,...,1.

A2. 30 1(0,0') > 0 for all 0 # 0 and infgce,, Ii;(0,0') > 0 for all 1 < i <
1,1 <7< J; and 6 € Ue>i@g.

A3. For each j = 1,...,J;,i = 1,...,1 and 0 € O, {X;j;,t > 0} is a Markov
chain on a state space D with o-algebra D, irreducible with respect to a
maximal irreducible measure on (D, D) and aperiodic. Furthermore, X, ;; is
Harris recurrent in the sense that there exists a set G;; € D, ay; > 0 and
probability measure ¢;; on G;; such that Pfj{Xijt € Gjj lolX0 =2} =1
for all x € D and

(2.5) PI{Xij1 € A|Xij0 = 2} > ayjpii(A) for all 2 € Gi; and A € D.

A4. There exist constants 0 < b < 1, b > 0 and drift functions V;; : D — [1,00)
such that for all j =1,...,J; andi=1,...,1,

(2.6) sup |g(x)|/Vij(x) < oo,
xeD

and for allz € D, 6 € O,

(2.7) PVij(z) < (1= b)Vyj(x) + blg,, (z),

©j
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where G;; satisfies (2.5) and Pijij(x) = /) Vij(y)Pfj(:c,dy). Moreover, we
require that

(2.8) /D Vij(@)vij(dz; 0)Q(dr) < oo and Vjj:= sup Vi;(x) < oo.

IEGU

Let 4;j(x,y;0,0") = log[pi;(x,y;8)/pi;j(x,y;8")] be the log likelihood ratio be-
tween P-ej and Pej/ and Ns(0) = {0 : ||0 — 0’| < 6} a ball of radius ¢ around

7 K]
0, where || - || denotes Euclidean norm.

A5. There exists § > 0 such that for all 6,6’ € ©,

Ey|sup; 02 Xi'07Xz"1;9,§ Xiio =z
(2.9) Ky g := sup | OEN;(0") W( J J )X ] < o0
7 zeD V;({II)

forall j=1,...,J;,i=1,...,I. Moreover,
(2.10) sup |l (z,y; 0, )] — 0as & — 0
§€N5/(9/)

for all z,y € D and ¢ € ©.

Assumption A1 is a mild regularity condition to exclude unrealistic models. A2
is a positive information criterion: the first inequality makes sure that information
is available in the first arm group to estimate 6; while the second inequality allows
us to collect information in the i-th arm group for moving to the next group when
0 € Oy for some ¢ > i. Assumption A3 is a recurrence condition and A4 is a drift
condition. These two conditions are used to guarantee the stability of the Markov
chain so that the strong law of large numbers and Wald’s equation hold. A5 is a
finite second moment condition that allows us to bound the probability that the
MLE of 6 lies outside a small neighborhood of §. This bound is important for us
to determine the level of unequal allocation of observations that can be permitted
in the testing stage of our procedure. The proof of the asymptotic lower bound in
Theorem 1 requires only A1-A3; while additional A4 and A5 are required for the
construction of efficient strategies attaining the lower bound.

2.2. Bad sets

The bad set is a useful concept for understanding the learning required within the
group containing optimal arms. It is associated with the asymptotic lower bound
described in Section 3 and is used explicitly in constructing the asymptotically
efficient strategy. For § € O, define J(8) = {j : p*(0) = pe;(0)} as the set of
optimal jobs in group ¢. Hence 0 € Oy, if and only if j € J(8). We also define
the bad set, the set of ‘bad’ parameter values associated with 6, as all §/ € O,
which cannot be distinguished from 6 by processing any of the optimal jobs /j.
Specifically,

(211)  Bu(6) = {9’ c0\( | ©y): 15;0,0) =0 forall j J(e)}.
JEJ(0)

The bad set By(6) is the intersection of two parameter sets. One set consists of
parameter values that have different optimal arms from those for 6. The other set
contains parameter values that cannot be distinguished from sampling the optimal
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arm for 0. When a parameter value is in the intersection, sampling from arms that
are non-optimal for 6 is required.

We note that if I,;(0,6’) = 0, then the transition probabilities of X,;; are identi-
cal under both 6 and ¢'. If 6 € B,(0), then by definition, 6’ & U;c j(9)O¢; and hence
J(@)NJ@O) =0. Let j € J(0) and j' € J(0"). Then i/ (0") > e (0") = 1105(0) >
e (9) Thus

(2.12) Ip;:(0,0") > 0 for all 8" € By(0) and j' € J(¢).

The interpretation of (2.12) is as follows. Although we cannot distinguish 6 from
0" € By(0) when sampling the optimal arm for #, we can distinguish them by
sampling the optimal job for #’. This fact explains the necessity of processing non-
optimal arms to collect information.

3. The regret lower bound

The following theorem gives an asymptotic lower bound for the regret (1.4) of
uniformly good adaptive strategies under the partial order constraint <. The proof
can be found in [1]. We will discuss the relation of the lower bound with those in
6, 7] and [3].

Theorem 1. Assume Al1-A3 and let 0 € ©y. For any uniformly good adaptive
strateqy ¢ under the partial order constraint =<,

(3.1) 1}5ninfRN(9)/logN > 2(0,0),

where z(0,0) is the minimum value of the following minimization problem.

Ji
(3.2)  Minimize Z Z[u*(@) — wij(0)]zi;(0) + Z () — 11e5(0)) 2 (0),

i<l j=1 igJ(0)
subject to z;;(8) >0, j=1,....J;, if i<t j&J(), if i=1{,

and
(infprco, {371, 11;(0,0)21;(0)} > 1,

infyreo, {3272 T1y(0,0)215(0) + 3072 Toj(0,0)255(6)} > 1,
(3.3) {:

infpreo, {3700 D17 (0.0)21;(0) + -+ + 375" Tom1);(0.0)20-1);(0)} > 1,
infore (o) {0 ice Sy Li(0,0))2i5(0) + 3 5 i) 10 (0,0)20;(0)} > 1.

Corollary 1. When there is only one group of arms, (3.1) reduces to the lower
bound (1.11) of Lai and Robbins [7].

Proof. When there is only group of arms, only the last inequality of (3.3) is needed
and it takes the form

. i (0,0)2;(0) > 1.
(3.4) elé%f(e) ‘Z 1;(0,0)z(0) > 1
J¢J(6)
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In [7], it is proved that

logN
1(6;,6%)

where 0" = maxj<;<j ;. Note that in [7], all jobs belong to the same family of
probability distributions with different parameter values, and thus the KL informa-
tion number does not depend on the job label but only the parameter value. Let
E¢Tn(j)/log N = z;(8), then (3.5) is the same as

(3.5) EgTn(j) > for all j ¢ J(6),

(3.6) z;j(0)I1(05,0") > 1 for all j ¢ J(0).

We first show that (3.4) = (3.5). Because (3.4) implies that for all 8’ € B(0)

(3.7) > 1005:05)2(0) > 1.
JEJ(0)

If 0" = (61,...,0;) € B(0), then 6* = 0;« = 0. and max;<;<y, 0; > 0*. Suppose we
choose a sequence of 6 € B(f) such that there is only one component ¢’ approaching
0* from above and other components ¢7,, j" ¢ J(0), all have the same values as the
corresponding components of §. Taking infimum over this sequence of 8’ € B(6) in
(3.7), we obtain (3.6). This complete the proof of (3.4) = (3.5).

To prove (3.5) = (3.4), we assume that (3.4) does not hold. That is, there exist
a 0 € B(0) such that

D I(60;,07)%(0) < 1.
J¢J(0)

Because 0" € B(0), there exists at least one component %, of ¢’ such that 07, > 6*.
Then the preceding inequality and the property of exponential families imply that

2+ (0)1(6;+,07) < 25-(0)1(0;-,0;-) <

and thus (3.6) does not hold. This establishes (3.5) = (3.4) and the proof is com-
plete. O

Corollary 2. When there is only one arm in each group, then (3.1) reduces to the
lower bound (1.17) of Hu and Wei [6].

Proof. In Hu and Wei [6], the set ©; are intervals of . Thus the infimum over ©;
is achieved at the end points of the intervals. Furthermore, because there is only
one arm in each group, the bad sets are all empty and therefore the last inequality
in (3.3) is not needed. In view of these facts, it is straightforward to show that
the systems of inequalities (3.3) reduces to (1.14) of Hu and Wei [6]. The proof is
complete. Ol

Corollary 3. When there is only one arm in each group, the lower bound (3.1)
reduces to (3.2) of Fuh and Hu [3].

Proof. The assumptions A3 and A4 of Fuh and Hu [3] correspond to the regularity
condition A1l and the positive information criterion A2 in Section 2, respectively.
The A1, A2 and A5 of Fuh and Hu are essentially the same as Harris recurrence
condition A3, the drift condition A4, and the finite second moment condition A5
of this paper, respectively.

Note that the definition of bad sets in [3] is different from that of this paper.
In [3], the bad set consists of all those parameter values having optimal arm not
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in the same group and cannot be distinguished when sampling from the optimal
arm. Here the bad set consists of parameter values that has different optimal arm
(but still in the same group), and cannot be distinguished when sampling from the
optimal arm(s). If we adopt the definition (2.11), then it is clear that the bad sets
are all empty under the setting of [3].

The infimums in Problem A of Fuh and Hu [3] is taken over the union of ©; and
the corresponding bad set. Because the bad sets in [3] are all empty as we point
out earlier, the infimums is actually taken over ©;. With this understanding, it is
straightforward to verify that the lower bound (3.1) reduces to (3.2) of Fuh and
Hu [3]. O

4. Super efficiency

The strategy in the allocation of the observations is as follows. For the rationale
of the proposed strategy and more detailed discussion, please see [1]. Let ng and
n1 be positive integers that increase to infinity with respect to N and satisfies
ng = o(log N) and ny; = o(ng).

1. Estimation. Select ng observations from each arm in group 1 and let 0 be the
maximum likelihood estimate (MLE) of 6 defined by

J no
(4.1) L(o) = Z Zlogplj(le(t_l),let; 0), 0= argrgleaé{L(H).
j=1 t=1

Let £ = min{i : Né/z(é\) NO; # 0}. Select an adjusted MLE estimate 6, € N5/2(§) N
©y, (where 6 — 0 as N — oo at a rate to be specified in Theorem 1 below), in the
following manner. Let | - | denote the number of elements in a finite set and

-~

(4.2) J = max{|J(8')] : 0" € Ns/2(6) N Oy}
We require that
(4.3) 6, € H:={6 € Ns(0)NO;:|J(0)] =T}

The motivation behind considering an adjusted MLE is to estimate J(¢) and the
set ©; that 6 belongs to consistently. This has implications in the experimentation

~

phase. We note that if |.J(6)| > 1, then J(6) need not be consistent for J(#) and if
©; lies on O; \ OF [see (2.2) and (2.4)], then 6 need not be consistently inside O;,.
Conversely, the probability that J(6,) = J(0) and 6, lying inside ©; tends to 1 as

N — oo.
Let
(4.4) By(0;0) = Ugren Be(8)

and let {Eij}lgigé,lgngi minimize

(4.5) Z Z[M*@) — 1035(0a)) 255 + Z (1" (0a) — 1165 (0a)) 22
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subject to the constraints

1Df0’e(91{2 11y (Ha,H )21 > 1,

lnfafeez{zg 1 113(9,1, 0')z15 + Z =1 121(9:17 0)z25} = 1,

(4.6)

mfg/e@e 1{2 11](9],9 )zlj . Z] T L 1)3(90”9 )2(e-1);} = 1,
fg/GB/ ) 5){Zz<£ Z] 1 Iw(‘ga,‘gl)zw +> i2J(0) Iéj(eaae )ze} > 1.

Let k£ = 1.

2. Experimentation. If k < £, select |Zj; log N | observations from arm kj, where
|-] denotes the greatest integer function. If k& > ¢, we skip the experimentation stage.

We note that if Bg(é\; 9) is empty, then the last inequality in (4.6) is automatically

satisfied and hence we can select zy; = - -+ = 2y, = 0. In other words, if Bg(@\; J) is
empty, then the experimentation stage is also skipped over for k = /.

3. Testing. Start with a full set {k1,...,kJi} of unrejected jobs. The rejection
of a job is based on the following test statistic. Let Fy, 1 < k < I, be a probability

distribution with positive probability on all open subsets of U/_, ©;. Define
(4.7)

k Ji g
fu{:k@i Hi:l Hj:l Vij(Xij0§ 9) Ht:jl pij( ij(t—1) Xijt; 9) dFk:( )
k J; ij .
[Tiz TS v (Xajos M) TTi2s piy (Xij(t—l)a Xije; N)

Uk(n; )\) =

for all A € ©y.

(a) If 0 € U;~O;: Add one observation from each unrejected job. Reject para-
meter A if Uy(n; A) > N. Reject a job kj if all A € Oy, have been rejected at some
point in the testing stage. If there is a job in group k left unrejected and the total
number of observations is less than N, repeat 3(a). Otherwise go to step 4.

(b) If 0 € ©): Add n; observations from each unrejected job kj, j € J («/9\) and
one observation from each unrejected job kj, j & J(@\) Reject a job kj if all A € Oy;
have been rejected at some point in the testing phase. If there is a job in group k
left unrejected and the total number of observations is less than N, repeat 3(b).
Otherwise, go to step 4.

(c) If 0 € U;<1©;: Adopt the procedure of 3(a).

4. Mowving to the next group and termination. The strategy terminates once N
observations have been collected. Otherwise, if k¥ < I, increment k£ by 1 and go to
step 2; if k = I, select all remaining observations from a job Ij satisfying pr;(0) =

maxi<p<.; fo1n(0).

In [1] Theorem 2, it was established that when By(f) is non-empty, then the
asymptotic lower bound of the regret is attained with the procedure above. We
shall show that the same procedure is not only asymptotically optimal but also
the regret from the optimal group will be o(log N) when By(6) = () as oppose to
O(log N) when By(f) # (. An important key step required in our proof is the
consistency result

(4.8) Pop{B(0,0) = 0} — 1 as N — oo

under the empty bad set assumption.
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Theorem 2. Let § € Oy. Assume A1-A5 and (1.5) . Let ng — oo with ng =
o(log N) and ny — oo such that ny = o(ng). There exists (= 0n) | 0 as N — oo
such that

(4.9) Pg{é\E O\ Ns(0)} = o(n;h) as ny — oo.

Moreover, if By(0) =0, then (4.8) holds and

Je

(4.10) > EyTn(lj) = o(log N).
j=1

Hence

(4.11) J\;im Rn(0)/log N = z(0,0).

Proof. The consistency of 0 in (4.9) follows from A2 and (4.5) of Chan, Fuh and
Hu [1]. We shall now prove (4.8). Since 6 | 0 and 6 is consistent for 6, it suffices
from the definition of By(#;0) in (4.4) to show that there exists o > 0 such that

(4.12) By(f) = 0 for all § € Ny, (0) N O, with |J(6)| = J.

We observe from the continuity of 1,; that there exists 6; > 0 such that J (0) c J(0)
for all 8 € Nj, (6) N ©,. Hence it follows that if [J(6)| = [J(6)], then it must be
true that J(g) = J(0). We see from the definition of bad sets in (2.11) that for each
0" € O\ (Ujcs9)Orj), 11;(0,0") > 0 for some j € J(#) and hence by the continuity
of the Kullback-Leibler information, there exists do > 0 such that Igj(g, 0') >0
whenever 0 € Ny, (6). Select 6y = min{dy,d>}. Then (4.12) holds.

We shall next show (4.10). By (4.8) and since the experimentation stage is
skipped over when k = £ and By ((9\, d) = (), it suffices to show that the expected total
number of observations taken from inferior arms in the testing stage is o(log N).
Define py = Py{J(6,) = J(6)}. Then by (4.3), (4.9) and as J(8) C J(6) for all
0 € Nj, (0) for some & > 0, 1 — py = o(ny'). By (2.16) and the assumption
B(0) = 0, at least one optimal arm will provide positive information against each
0" & Ujc(9)0;. By A3-A5 and (6.4), (6.5) of Chan, Fuh and Hu [1], (an expected)
O(log N) number of observations from arms with positive information is required
to reject each 6" € Oy \ (Uje.7(9)Or;). Hence O(ny 'log N) number of recursions is

-~

involved when J(0) = J(6,) because at least ny observations in each recursion has

positive information. Similarly, O(log N) recursions is needed when J(6) # J (ga)
because at least one observation in each recursion has positive information. The
number of observations from inferior arms in each recursion is O(1) if J(0,) = J ()
and O(ny) otherwise. Hence the expected number of observations from inferior arms

during the recursion steps in the testing phase is
(4.13) pnO(n;log N) + (1 — px)O(nylog N) = o(log N).

The asymptotic result (4.11) follows from (4.10) and the proof of Chan, Fuh and
Hu [1] Theorem 2. O

For the special case ¢ = 1, it follows from (4.11) that Ry (0) = o(log N) occurs. In
[2] and [10], a uniformly good procedure was proposed that satisfies Ry () = O(1)
when O is finite and I = 1.



232 H. P. Chan, C.-D. Fuh and I. Hu
5. The switching cost

Let a(f) > 0 be the switching cost between two arms and are not both optimal
when the underlying parameter is 6. It is assumed here that there is no switching
cost when both arms are optimal. Then

N-1

Ly(0) == a(9)Eo( > 1{¢t¢¢>t+1,minm¢t<a>,u¢t+1<e>}<u*<e>}>

t=1

is the average switching cost of a procedure. It is also desirable that this cost is
asymptotically negligible compared to the regret as N — oo.

Theorem 3. Under Assumptions A1 - A5, the strateqy ¢* has average switching
cost

(5.1) Ln(0) =o(logN) as N — oc.

Hence, the strategy is asymptotically optimal when there is switching cost.

Proof. In the estimation stage it is require to take ny observations from each arm
in group 1. We can take the ng observations in batches and switch only J; — 1
times. Therefore the switching cost from estimation stage is a(f)(J; — 1). In the
experimentation stage, we need to allocate at most zj,; log IV observations to arm k.
Again this can be done in batches and thus the switching cost from experimentation
stage is at most a(#)(Ji —1). In the testing stage, it is shown in (6.12) of Chan, Fuh
and Hu [1], that the expected total number of observations is o(log N) and thus
the switching cost is no more than o(log N). Adding the switching costs from the
estimation, experimentation, and testing stages together, shows that the total cost
due to switching is o(log N). However, the regret lower bound is O(log N), which
implies that the switching cost constitutes a negligible part of the total regret as
n — oo. This completes the proof that the proposed strategy is still asymptotically
optimal with constant cost per switch. O

6. Extension of Wald’s equation to Markovian rewards

As we will be focusing on a single arm ij and fixed parameters 6y, 6, such that
p = 1;;(6o,0,) > 0 we will drop some of the references to i, j, 0y, 6, and ¢ in
this section. This applies also to the notations in assumptions A3-A5. Moreover, we
shall use the notation E(-) as a short form of Ey,(-) and E,(:) as a short form of
Eg,(-|Xo = ). Let S, = & + - + &, where & = log[pij (Xk—1, Xx;00)/pij (Xk—1,
Xk;04)] has stationary mean p under Py, and let 7 be a stopping-time. We shall
show that

(6.1) ES: = p(E1) — E[y(X:)] + E[y(Xo)]

for some function ~ to be specified in Lemma 1. In Lemma 2, we show that the
conditions on V' in A4-A5 lead to bounds on vy(z) and by applying Lemma 3, we
obtain

(6.2) Ely(X7)| + El|y(Xo)| = o(E7).
Substituting (6.2) back into (6.1), Wald’s equation

(6.3) ES, = [+ o(1)| BT



Multi-armed bandit problem with precedence relations 233

is established for Markovian rewards. Under uniform recurrence condition, Fuh and
Lai [4] established Wald’s equation based on perturbation theory for the transition
operator. The Wald’s equation was proved under the assumption that the solution
for the Poisson equation exists in [5] based on Poisson equation for the transition
operator. In this section, we apply the idea of regeneration epoch to derive the
Wald’s equation for Markov random walks.

By (2.5), we can augment the Markov additive process and create a split chain
containing an atom, so that increments in S,, between visits to the atom are in-
dependent. More specifically, we construct stopping-times 0 < k(1) < k(2) < ---
using an auxiliary randomization procedure such that

P{Xnt1 € A k(i) =n+1|X, =2,k() >n> k(i —1)}
_ {ago(A) x €@,

(6.4) )
0 otherwise.

Then by Lemma 3.1 of Ney and Nummelin [9],

(i) {k(i+1)— k(i) :i=1,2,...} are i.i.d. random variables.
(ii) the random blocks { Xy, ..., Xx@t1)—1}, ¢ = 1,2,..., are independent and
(iii) P{Xyu) € A|Fx@)-1}) = ¢(A), where F,,=o-field generated by {Xo, ..., X, }.

By (ii)-(iii), E,(Sx — kp) = 0. Define k = x(1). We shall use the notation “n =
atom” to denote n = k(i) for some i.

Lemma 1. Let y(x) = E,(Sx —ku). Then Z,, = (S, —np)+v(X,) is a martingale
with respect to F,,. Hence (6.1) holds.

Proof. We can express
Zn = E(Su, — Upp|F,) where U, = inf{m > n : m = atom}.
If X,, =z, € G, then by (6.4), U, > n+ 1. Hence U,,41 = U,, and
(6.5) E(Zy1|Fn) = 2y
because Fp,+1 D Fp. If X,, =z, € G, then by (6.4) and (ii),

E(Zns1|Fn) — Zy = E|(Su

n+1

—Su,) + (Uns1 — Un)|Fn] = aEp(Sk — kp) =0

and hence (6.5) also holds. O
Lemma 2. Under A3-A5,

(@) < B7HV(@) + 0+ (VF+ )V (™" + DI(K + 1+ |ul),

where « satisfies (2.5), V* is defined in A4 and K is defined in (2.9).
Proof. By (2.9),

(6.6) V(z) > KT'E &8 > K™Y (Eyl&| - 1).

Let 0 < (1) < 0(2) < --- be the hitting times of the set G and let 0 = o(1). Let

(6.7) mn(A) = E, [ N V(Xa)1(x,ea

n=1
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for all measurable set A C D. By (2.7),
Ex[V<Xn>1{UZn}] < (1 - ﬁ)Ew[V(Xn—l)l{azn—l}]a n=>2

and
E.[V(X;y)] <V(x)+0b.

Hence by induction,
(68) B V(X)) V(@) +0] Y (1-8)"" = V(@) + /8

By (6.7)-(6.8), and as V > 1,

ma(D) = B, { iV(Xn) +> Z V(X0 | 1ot |
—F, {ZV(X +ZEXU(k> [ZV ]1{n>a<k>}}

< BTV (@) + 6] + Ez{ Zﬁ_l[V(Xa(k)) + b]l{n>o(k)}}
k=1
(6.9) <BHV(x) + 0]+ B7HVF +b)m,(G).

But by (6.4), m,(G) < V*(a~! +1). Since v(z) < (K + 1 + |u|)m, (D), Lemma 2
holds. O

Let Wi = |[v(Xk@))| + - + [7(Xu@+1)=1)|, for i > 1. Then by A3-A5, Lemma
4 and its proof, and (i)-(iii), W1, W, ... are i.i.d. with finite mean while by (2.8),
Wo := [v(Xo)| + -+ + [7(Xw@)-1)| also has finite mean.

Lemma 3. Let M,, = max;<i<, Wi. Then for any stopping-time T,
(6.10) E(M;)=o(ET).

Proof. Let § > 0 and let ¢(= ¢s) > 0 be large enough such that E[(W; —¢)™] < 4.
We shall show that

Zy = (M, Vc)—no

is a supermartingale. Indeed for any \ > 0,

EMuy1Ve|lM,Ve=c+ AN =c+A+E[(Wpi1—c—NT]<c+A+6

and the claim is shown. Hence EZ, < EZ; = ¢ and it follows that E(M,) <
E(M;Ve¢c) <6(ET)+ c. Lemma 3 then follows by letting ¢ | 0. O
7. Appendix

Proof. Proof of (1.3) Let X;;; denotes the tth observation taken from arm 4j. Then

J

(7.1) WW)ZZMMMW(ZZZ%MMWWN

=1 j=1 =1 j=1t=1

.
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For any signed measure A on (D, D), let

v,, = sup ’/h(m))\(dx)‘

hi|h| <V

(7.2) IA

It follows from Meyn and Tweedie ([8], p.367 and Theorem 16.0.1) that under A3
and the geometric drift condition (2.7),

7.3 wii == sup Pf- x,:) — (0
(7.3) J %@@ED;H je(@, ) — i (0)

vi; [ Viz (@) < o0,
where Pfjt(:c, -) denotes the distribution of X;;; conditioned on X;;o = x and m;;(6)
denotes the stationary distribution of X;;; under parameter 6. By (2.6), there exists
k > 0 such that x|g(z)| < V;;(x) for all z € D and hence it follows from (7.2) and
(7.3) that

(7.4) £ Y |Bowg(Xije) — 1 (0)] < wiVij (),
t=1

where Fy . denotes expectation with respect to Py and intial distribution X;;o = =.
In general, for any initial distribution v;;(-;6), it follows from (2.8) and (7.4)
that

Z |Eog(Xijt) — piz(0)] < /Z |Eo,29(Xijt) — pij(0)|vij(z;0)Q(dz) < oo

t=1 t=1
uniformly over # € © and hence (1.3) follows from (7.1). O
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Poisson process approximation:
From Palm theory to Stein’s method

Louis H. Y. Chen'* and Aihua Xia>f
National University of Singapore and University of Melbourne

Abstract: This exposition explains the basic ideas of Stein’s method for Pois-
son random variable approximation and Poisson process approximation from
the point of view of the immigration-death process and Palm theory. The latter
approach also enables us to define local dependence of point processes [Chen
and Xia (2004)] and use it to study Poisson process approximation for locally
dependent point processes and for dependent superposition of point processes.

1. Poisson approximation

Stein’s method for Poisson approximation was developed by Chen [13] which is
based on the following observation: a nonnegative integer valued random variable
W follows Poisson distribution with mean A, denoted as Po()), if and only if

E{M(W +1) - Wf(W)} =0

for all bounded f: Z; — R, where Z: = {0,1,2,...}. Heuristically, if E{\f(W +
1) = Wf(W)} ~ 0 for all bounded f: Z; — R, then L(W) ~ Po(A). On the
other hand, as our interest is often on the difference IP(W € A) — Po(\)(A) =
E[14(W)—Po(N)(A)], where A C Z; and 14 is the indicator function on A, it is
natural to relate the function A\f(w + 1) — wf(w) with 14(w) — Po(\)(A), leading
to the Stein equation:

(1) Af(w+1) —wf(w) =1a(w) — Po(A)(A).
If the equation permits a bounded solution f4, then

PW € A) — Po(A)(A) = E{Afa(W +1) — W fa(W)};
and

drv (L(W),Po(A)) = = sup [P(W e A) = Po(A)(A4)]

= sup [E{Afa(W +1) = W fa(W)}.
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As a special case in applications, we consider independent Bernoulli random vari-
ables Xy, -+, X, with P(X; = 1) =1-P(X; =0) =p;, 1 <i < n, and
W=3" X;, \=EW)=>" p. Since

W) =Y EXif(W)] = pEf(Wi+1),
i=1 i=1
where W; = W — X, we have

E{Afa(W +1) = Wfa(W)} = sz [fa(W +1) = fa(Wi +1)]

= szZ]EAfA(Wi +1),

=1

. X . . PN
where Afa(i) = fa(i+1) — fa(i). Further analysis shows that |Af4(w)| < 2=5—
(see [6] for an analytical proof and [26] for a probabilistic proof). Therefore

dry (L(W), Po(\)) < ( )sz

Barbour and Hall [7] proved that the lower bound of dpy (L(W), Po(\)) above is of
the same order as the upper bound. Thus this simple example of Poisson approx-
imation demonstrates how powerful and effective Stein’s method is. Furthermore,
it is straightforward to use Stein’s method to study the quality of Poisson approx-
imation to the sum of dependent random variables which has many applications
(see [18] or [8] for more information).

2. Poisson process approximation

Poisson process plays the central role in modeling the data on occurrence of rare
events at random positions in time or space and is a building block for many
other models such as Cox processes, marked Poisson processes (see [24]), compound
Poisson processes and Lévy processes. To adapt the above idea of Poisson random
variable approximation to Poisson process approximation, we need a probabilistic
interpretation of Stein’s method which was introduced by Barbour [4]. The idea is
to split f by defining f(w) = g(w) — g(w — 1) and rewrite the Stein equation (1) as

(2)  Ag(w): = Alg(w +1) — g(w)] + wlg(w — 1) — g(w)] = La(w) — Po(A)(A4),

where A is the generator of an immigration-death process Z,,(t) with immigration
rate A, unit per capita death rate, Z,,(0) = w, and stationary distribution Po(\).
The solution to the Stein equation (2) is

3) salw) = [ T B[LA(Z4 (1)) — Po(A)(A)dr.

This probabilistic approach to Stein’s method has made it possible to extend Stein’s
method to higher dimensions and process settings. To this end, let I' be a compact
metric space which is the carrier space of the point processes being approximated.
Suppose dj is a metric on I' which is bounded by 1 and pg is a pseudo-metric on I"
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which is also bounded by 1 but generates a weaker topology. We use J, to denote
the point mass at =, let X': = {Zle do; 0 Q1y...,0 € Ik > 1}, B(X) be the
Borel o—algebra generated by the weak topology ([23], pp. 168-170): a sequence
{&.} € X converges weakly to & € X if [ f(x)én(dx) — [o f(x)E(dx) as n — oo
for all bounded continuous functions f on I'. Such topology can also be generated
by the metric d; defined below (see [27], Proposition 4.2). A point process on I' is
defined as a measurable mapping from a probability space (2, F,P) to (X, B(X))
(see [23], p. 13). We use E to stand for a point process on I' with finite intensity
measure A which has total mass A\: = A(I"), where A(A) = IEZ(A), for all Borel set
A CT. Let Po(A) denote the distribution of a Poisson process on I' with intensity
measure .

Since a point process on I' is an X-valued random element, the key step of
extending Stein’s method from one dimensional Poisson approximation to higher
dimensions and process settings is, instead of considering Z-valued immigration-
death process, we now need an immigration-death process defined on X. More
precisely, by adapting (2), Barbour and Brown [5] define the Stein equation as

Aﬂ@z:1Aw@+@»—aouwm+34w@—@a—makum
— h(€) — Po(A)(h),

where Po(A)(h) = EA(¢) with ¢ ~ Po(A). The operator A is the generator of an
X-valued immigration-death process Z¢(t) with immigration intensity A, unit per
capita death rate, Z¢(0) = £ € X, and stationary distribution Po(X). Its solution is

(4)

5) €)== [ Elh(Ze(e) ~ Pon) B

(see [5]).

To measure the error of approximation, we use Wasserstein pseudo-metric which
has the advantage of allowing us to lift the carrier space to a bigger carrier space.
Of course, other metrics such as the total variation distance can also be considered
and the only difference is to change the set of test functions h. Let

m n 1 1fm7$n,
p1 Zémi,z&ﬁ D= minﬁizyilpo(:ci,yr(i)) ifm=n>1,
=1 J=1 0 ifn=m=0,

where the minimum is taken over all permutations 7 of {1,2,...,m}. Clearly, p; is
a metric (resp. pseudo-metric) if pg is a metric (resp. pseudo-metric) on X'. Set

H={hon X: |h(&1)—h(§2)| < p1(&1,&) for all §1,& € X},

For point processes =1 and =5, define

p2(L(E1), L(E2)): = sup [ER(E;) — EA(E,)],
heH

then ps is a metric (resp. pseudo-metric) on the distributions of point processes if
p1 is a metric (resp. pseudo-metric). In summary, we defined a Wasserstein pseudo-
metric on the distributions of point processes on I' through a pseudo-metric on I'
as shown in the following chart:
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Carrier space I' Configuration space X Space of the distributions
of point processes
Po - P1 - P2
(1) (<1) (<1)

As a simple example, we consider a Bernoulli process defined as

n
= Z
—
= i
n

where, as before, Xi,...,X, are independent Bernoulli random variables with
PX, =1 =1-P(X; =0) =p;, 1 <i < n. Then = is a point process on
carrier space I' = [0,1] with intensity measure A = > | p;0.. With the metric

po(z,y) = |z —y|: = do(z,y), we denote the induced metric ps by dy. Using the
Stein equation (4), we have

EA(E) — Po(A)(h)
—E { / 9n(2 +8,) — g (E)A(da) + / on(E — 8,) gh<z>]a<dx>}

—sz {l9n(E+0,) = 9 E) ~ [9n(Zi +5,) - 9n(Z)]

—

=Y DB {lon(Ei +20.) — gu(Ei +0.)] — [on(Ei + 6.) — 9u(E)]}
1=1

where Z; = Z — X;0.: . It was shown in [27], Proposition 5.21, that

a
n

3.5 2.5
6)  sup  |gn(§+ 00 +08) — gn(€ + 6a) — gn(§+08) + gn(&)| < — + ——,
heH, o, BET A gl +1

where, and in the sequel, €] is the total mass of £, A = A(I') = Y_."_; p;. Hence
(L), PolN)) = sup [ER(E) ~ Po(N) (1)
€

(7) gzp2<3;)\5+]E '2.5 | )

T A - maXici<n Pi 4=

since

1
1 :E/ Zzlga‘gn,#i de,z
Zl<j<n i X' +1 0

R
0 1<j<n,j#i
/0 1<j<n,j#i
(see [27], pp. 167-168). Since da2(L(ZE),Po(A)) > drv (L(|Z]),Po(N)) and the lower

bound of dry (L(|Z]), Po(\)) is of the same order as + .1 ; p? [7], the bound in (7)
is of the optimal order.

1
epjuz)dzz/ e Ap)(1-2) g, « L
0
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3. From Palm theory to Stein’s method

Barbour’s probabilistic approach to Stein’s method is based on the conversion of a
first order difference equation to a second order difference equation. In this section,
we take another approach to Stein’s method from the point of Palm theory. The
connection between Stein’s method and Palm theory has been known to many
others (e.g., T. C. Brown (personnel communication), [9]) and the exposition here
is mainly based on [14] and [27].

There are two properties which distinguish a Poisson process from other process-
es: independent increments and the number of points on any bounded set follows
Poisson distribution. Hence, a Poisson process can be thought as a process pieced
together by lots of independent “Poisson components” (if the location is an atom,
the “component” will be a Poisson random variable, but if the location is diffuse,
then the “component” is either 0 or 1) ([27], p. 121). Consequently, to specify a
Poisson process N, it is sufficient to check that “each component” N (d«) is Poisson
and independent of the others, that is IE{[IEN (da)]g(N + 64) — N(da)g(N)} = 0,
which is equivalent to

E[g(N)N(da)]
®) EN (da)

= EQ(N + 504)7

for all bounded function g on X and all @« € T' (see [27], p. 121). To make the
heuristic argument rigorous, one needs the tools of Campbell measures and Radon-
Nikodym derivatives ([23], p. 83).

In general, for each point process = with finite mean measure A, we may define
the Campbell measure C(B, M) = E[Z2(B)1zen] for all Borel B C I', M € B(X).
This measure is finite and admits the following disintegration:

(9) C(B, M) = /B Q.(M)A(ds),

or equivalently,

Qs(M) = ]E[E(;\Z(SC);)EEM], M e B(X), sel Xa.s.,

where {Qs, s € '} are probability measures on B(X) ([23], p. 83 and p. 164) and are
called Palm distributions. Moreover, (9) is equivalent to that, for any measurable
function f: I'x X — Ry,

(10) ]E( / f<a,z>a<da>) - [ [ fe.6@uxa

for all Borel set B C I'. A point process E, (resp. 2, — d,) on I' is called a Palm
process (resp. reduced Palm process) of = at location « if it has the Palm distribution
Q. and, when = is a simple point process (a point process taking values 0 or 1 at
each location), the Palm distribution £(Z,) can be interpreted as the conditional
distribution of = given that there is a point of Z at «. It follows from (10) that the
Palm process satisfies

]E/Ff(oz,E)E(da) :]E/Ff(oz,Ea))\(da)
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for all bounded measurable functions f on I' x X'. In particular, = is a Poisson
process if and only if

L(Zq) =L(E+6a), A a.s.
where the extra point d, is due to the “Poisson property” of Z{a}, and Z4|r\(a}
has the same distribution as Z|p\ (o} because of independent increments. Here §| 4

stands for the point measure restricted to A C I' ([23], p. 12). In other words,
= ~ Po(A) if and only if

{/f (0, 2+ 0q)A(da) /f :Eda}:O,

for a sufficiently rich class of functions f, so we define

Df(E): = /F F(,€ + 6,)A(dx) — /F f(x,€)€(dx).

If EDf(Z) ~ 0 for an appropriate class of test functions f, then £(Z,) is close to
L(Z + 64), which means that £(Z) is close to Po(\) under the metric or pseudo-
metric specified by the class of test functions f.

If f, is a solution of

Df(§) = g(&§) —Po(A)(9),
then a distance between £(Z) and Po(\) is measured by |IED f,(Z)| over the class
of functions g.

From above analysis, we can see that there are many possible solutions f, for a
given function g. The one which admits an immigration-death process interpretation
is by setting

f(x,8) = h(§) — h(€ — 0a),
so that Df takes the following form:

Df(E) = / (h(€ + 62) — hE)IA(dz) + / (h(€ — 6,) — h(©)E(dx) = AR(E),

where A is the same as the generator defined in section 2.

4. Locally dependent point processes

We say a point process Z is locally dependent with neighborhoods {4, C T': a € T'}
if ,C(E|Ag> = »C(Ea‘Ag)7 acl Xa.s.

The following theorem is virtually from Corollary 3.6 in [14] combined with the
new estimates of Stein’s factors in [27], Proposition 5.21.

Theorem 4.1. If = is a point process on I with finite intensity measure X which
has the total mass \ and locally dependent with neighborhoods {A, C T': «a € T'}.
Then

pa(L(Z), Po(N)) <IE/ ( %) (Z(Aa) — 1)=(da)

3.5 2.5
I ——— | A(da)A(d
" /aGF /BGA ( A |H,(8a)’+1) ( Oz) ( ﬁ)a

(@) _ =

where 2(®) = 2 Ac and Eﬁ :5|Ac .

Remark The error bound is a “correct” generalization of + O p? with the Stein
factor + 3 replaced by a nonuniform bound.
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5. Applications

5.1. Matérn hard core process on R
A Matérn hard core process = on compact I' C R? is a model for particles with
repulsive interaction. It assumes that points occur according to a Poisson process
with uniform intensity measure on I'. The configurations of = are then obtained
by deleting any point which is within distance r of another point, irrespective of
whether the latter point has itself already been deleted [see Cox & Isham [17],
p. 170].

The point process is locally dependent with neighborhoods {B(«,2r): « € T'},
where B(q, s) is the ball centered at o with radius s. Let A be the intensity measure
of 2, do(a, f) = min{|a — F|,1}, then

o r)
do(L(Z), Po(A)) = O (uv 1(1\3/2?&1};)(2 ) ) ’

where p is the mean of the total number of points of the original Poisson process
(see [14], Theorem 5.1).

5.2. Palindromes in a genome

Let {I;: 1 <14 < n} be locally dependent Bernoulli random variables, {U;: 1 <
i < n} be independent I'-valued random elements which are also independent of
{I;: 1<i<n},set Z=3" | Ldy,, then E is a point process on I'. For U; = i/n
this point process models palindromes in a genome where I; represents whether
a palindrome occurs at i/n. The point process can also be used to describe the
vertices in a random graph.

In general, the U;’s could take the same value and one cannot tell which U;
and therefore which I; contributes to the value. To overcome this difficulty we
lift the process up to a point process &' = > | I;0(; y,) on a larger space I =
{1,2,...,n} x I'. The metric dy becomes a pseudo-metric pg, that is, po((,s),
(7,t)) = do(s,t), and Z' a locally dependent process (see [14], section 4). It turns
out that the Poisson process approximation of £ = >""" | I;dy, is a special case of
the following section.

5.3. Locally dependent superposition of point processes

Since the publication of the Grigelionis Theorem [20] which states that the super-
position of independent sparse point processes on carrier space R, is close to a
Poisson process, there has been a lot of study on the weak convergence of point
processes to a Poisson process under various conditions (see, e.g., [16, 19, 21] and
[10]). Extensions to dependent superposition! of sparse point processes have been
carried out in [1-3, 11, 22]. Schuhmacher [25] considered the Wasserstein distance
between the weakly dependent superposition of sparse point processes and a Poisson
process.

Let ' be a compact metric space, {Z;: 7 € Z} be a collection of point processes

on I' with intensity measures A;, i € Z. Define = = } . _; =; with intensity measure

IWe use “(resp. locally, weakly) dependent superposition of point processes” to mean that the
point processes are (resp. locally, weakly) dependent among themselves.
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A= ;czAi. Assume {Z;: 7 € T} are locally dependent: that is, for each i € Z,
there exists a neighbourhood A; C Z such that i € A; and Z; is independent of

The locally dependent point process = = Y, I;dy, can be regarded as a locally
dependent superposition of point processes defined above.

Theorem 5.1 ([15]). With the above setup, A = X(I"), we have

— 3.9 2.5
da(L(2),Po(X)) <) <T + EO[+1
i€l -

3.9 2.5
— 4+ E——— |E [ d\(E;,Z; o) Ni(da),
P (Bt ) E [ S

i€l

) /Fd'l (Vi, Via)Ai(da)

where () = ZjeAi E;, Vi= ZjeAi\{i} Ej, Zia is the reduced Palm process of =;
at a,
E[Zi(da)lv,enm]

P(ViqgeM)= for all M € B(X)

and
n

! _ : . . —
di(&1,6) = permutadB ; do (i, Zr(i)) + (m — n)

for & =30 | 0y, and & = >0, 5., with m > n [Brown & Xia [12]].
Corollary 5.2 ([14]). ForE =}, ; I;0y, and A = ), _; p; defined in section 5.2,

e ro <Y S (S4B nn

i€l jeA;\{i} Vit+l
3.5 2.5
P23 (Fem o= )
ZEI]EAZ‘

where Vi =304, 1.

Corollary 5.3 ([15]). Suppose that {Z;: 1 < i < n} are independent renewal
processes on [0, T with the first arrival time of Z; having distribution G; and its
inter-arrival time having distribution F;, and let = = ), Z; and X be its intensity
measure, then

6> 1 [2F(T) + Gi(1)]Gi(T) /(1 — Fi(T)>2.

n Gj T
>zt Gi(T) — max; 1_F(j (:)F)

da(L(E),Po(A)) <
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Abstract: Design of experiment with related factors can be implemented
by using the technique of sliding levels. Taguchi (1987) proposed an analy-
sis strategy by re-centering and re-scaling the slid factors. Hamada and Wu
(1995) showed via counter examples that in many cases the interactions cannot
be completely eliminated by Taguchi’s strategy. They proposed an alternative
method in which the slid factors are modeled by nested effects. In this work
we show the inadequacy of both methods when the objective is response pre-
diction. We propose an analysis method based on a response surface model,
and demonstrate its superiority for prediction. We also study the relationships
between these three modeling strategies.

1. Introduction

In many investigations, the experimenters can choose an appropriate interval as
the experimental range for each factor. The overall experimental region is then the
cube formed by the tensor product of these intervals. Such an experimental region
is called regular. However, when some of the factors are related, an appropriate
experimental region becomes irregular and thus cannot be constructed in the usual
manner. Factors are called related when the desirable experimental region of some
factors depends on the level settings of other factors. Design of experiments with
related factors can be implemented by using the technique of sliding levels proposed
by Taguchi [7]. It has been used in practice for a long time but has received scant
attention in the statistical literature. Some examples can be found in [2, 6, 7].
Li et al. [4] proposed a two-stage strategy for the sliding-level experiments whose
desriable experimental region is unknown and needs to be explored during the
experiment. Here the use of sliding is more complicated due to its engineering
needs.

In this article we study the situations in which only one factor is chosen to be slid.
This article is organized as follows. In Section 2, we will review the existing work
on the sliding level technique and show the inadequacy of these methods when the
objective of the experiment is response prediction. In Section 3, we will propose an
analysis method based on a response surface model, and demonstrate its superiority
for prediction. In Section 4, an illustration with a welding experiment will be given.
In Section 5, some results are presented based on a comparison between the response
surface approach and Taguchi’s approach. A summary is given in the last section.
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2. Existing approaches

Taguchi [7] justified the use of sliding levels by the rationales of bad region avoidance
and interaction elimination. The analysis strategy in his approach for sliding levels
can be interpreted as a re-centering and re-scaling (RCRS) transformation, which
transforms an irregular experimental region into a regular one as shown in Fig 1. In
data analysis, this transformation is essentially to code the factor levels by regarding
the slid factor as a non-slid factor. For example, (41, —1) is used for the conditional
low and high levels respectively in a two-level slid factors, and (—1, 0, +1) for the
conditional low, median, and high levels respectively in a three-level slid factors
with equally spaced levels. Consider two factors A and B, in which there are several
sliding levels for B at each level of A. It is easy to show that an interaction in the
original factor space is eliminated after RCRS only if the relationship between the
mean response F(y) and factors A and B satisfies the relationship:

B — CB(%)]

(1) B) = (o) + 2 | 220

where g1 and ¢go are two arbitrary functions and the ¢’s and r’s represent the
centering and scaling constants with those for factor B depending on factor A.
Furthermore, to eliminate the interaction between A and B for mean response
satisfying (1), a proper choice of sliding levels based on ¢’s and r’s is required. As
pointed out via a counter example by Hamada and Wu [3], inadequately locating
the sliding levels will not remove the interaction. Similarly, an inadequate choice of
scale will not eliminate the interaction neither.

One can infer that the sliding levels must be chosen properly in order to elim-
inate a potentially removable interaction. To achieve this, one has to know the
exact relationship between the factors and the mean response F(y). Because this
relationship is not available, an experiment needs to be carried out. Therefore the
advantage of interaction elimination by using sliding levels is questionable. Even
though the related factors’ interactions can be removed by proper centering and
scaling, important information like robustness may be masked (see [3], for more
details).

Hamada and Wu [3] proposed a nested-effects modeling (NEM) approach by using
a regression model with nested effects. Because the actual settings of the slid factor
are different at each level combination of its related factors, sliding-levels designs

Fi1G 1. Re-centering and re-scaling transformation of experimental region.
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can be viewed as nested designs. Hence, one can model the effect of the nested (slid)
factor separately at each level combination of its related factors, i.e., the effects of
the slid factor are defined conditional on the level combinations of its related factor.
Consider the case of two related factors where factor B’s levels depend on A’s. The
factor A can be either qualitative or quantitative. For qualitative A, Hamada and
Wu [3] proposed analyzing the effect of B at each level of A. If B is quantitative
with more than two levels, the linear and quadratic effects of B at the ith level of
A (denoted by Bj|A; and B,|A;) should be analyzed. Furthermore, the effects of
factor A are analyzed as well. For instance, if A is qualitative with three levels, the
two contrasts A; 2 and A; 3 can be considered, where A; ; represents the contrast
between levels ¢ and j of A, i.e., it denotes the difference between the average
responses over the conditional levels of B at level 7 of A and those at level j of A.
Because the levels of B vary with the level of A, this is different from the usual
meaning of A; ; in factorial designs with regular experimental region, where the
same set of levels of B is used for ¢ and j. If A is quantitative, the linear and
quadratic effects of A (i.e., A; and A, in the linear-quadratic system defined in [8])
should be substituted for A; 2 and A; 3. The same reasoning will show that the
meanings of A4; and A, are again different from the usual ones.

The analysis using a regression model with nested effects resolves the problem
that the sliding-levels design may not eliminate the interaction between related
factors. It also provides more insight into the response-factor relationship and di-
rectly accounts for the relationship between related factors, which can be used to
choose optimum factor levels. However, as far as response prediction is concerned,
the nested effects analysis is incapable of accomplishing the task for quantitative A.

When A is a quantitative factor, we may need to predict the response at a setting
whose value of A, say %, is not included in the experimental plan. To achieve this,
we need to have a fitted model of B at A = z%. However, such a model is not
available in the NEM approach because an NEM offers fitted models of B only
for each levels of A and 2% is not one of the levels in the experiment. Therefore,
response prediction at x% cannot be achieved in an NEM approach. Because the
effects of B are defined and analyzed conditional on A in an NEM, A is treated like
a qualitative factor in the analysis about B. This results in the difficulty of response
prediction at % . Turning to the RCRS approach for performing prediction, we have
to know the centering and scaling constants of B at z%, i.e., cg(z?) and rp(z?),
so that B can be appropriately transformed at A = z% before substituting into
the fitted RCRS model. However, both cp(z% ) and rp(z%) may not be available to
the investigators. In the next section, we shall propose an analysis method based
on the response surface methodology and demonstrates its superiority for response
prediction over the two existing approaches.

3. An analysis strategy based on response surface modeling

Response surface modeling (RSM) is an effective tool for building empirical models
for the input and output variables in an experiment. In RSM, a true model is often
expressed as y = f(x1, o, ..., Tk)+€, where y is the observed response, f a function
of k quantitative factors x1, o, . .., , and € an error term. For simplicity, the lowest
level of a factor is coded as —1 and the highest level as +1. The function f represents
the response surface, which depicts the true relationship between the response and
factors. Because the form of f is often unknown, RSM replaces and approximates
f by a polynomial model of degree d in the z;’s. In practical applications, d is often
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chosen to be one or two, and three when the response surface is expected to be more
complicated and there are sufficient degrees of freedom. Fourth and higher degree
polynomials are rarely used because they are not as effective as semi-parametric
or nonparametric models. Further discussion on the response surface methodology
can be found in [1] and [5].

In a sliding-level experiment, the adequate experimental region, denoted by Rg,
usually has an irregular shape in contrast to the regular region in conventional
factorial experiments. In such circumstances, the RSM can still be applied by first
finding a cuboidal region that covers exactly the Rp as follows. For each factor, let
its lowest actual setting be coded as —1 and the highest actual setting as +1. Other
settings of the factor is then proportionally coded according to their distances from
the lowest one. In this coding, the cuboidal region [—1, +1]* is the smallest cube to
cover the Rp. We call [~1, +1]* the modeling region and denote it by Rj;. The RSM
can then be applied in the modeling region to develop an empirical model. Unlike
factorial designs with regular experimental region, the design points in a sliding-level
experiment do not spread uniformly on the whole modeling region. Because there
are no design points located in Ry;\ Rg, we have no information about the response
surface over Ry \ Rp. Therefore, the fitted model may fit well only in Rg, but not in
the whole Rj;. Another issue concerns the choice of appropriate polynomial models
for the approximation of the true response surface. For sliding-level experiments,
should we still use a dth-order polynomial model? This will be further explained
later. When a fitted model is obtained, prediction can be easily done in the RSM
approach. Its prediction is an interpolation in Rg but an extrapolation in R\ REg.
An illustration of the RSM strategy will be given in Section 4.

Consider a nine-run experiment with factors A and B, in which A has three
levels and conditional on each level of A, B has three sliding levels. The NEM for
the experiment can be written as:

(2) F(BlAy) = by + bi(Bil Ai) + by (Bgl Ai), i =-1,0,1,

where b, b and b}, are the conditional constant, linear, and quadratic main effects
of B given A = i. Because A has three levels, the NEM has nine effects and therefore
is saturated. On the other hand, a second-order RSM model for the experiment has
only six effects. Because the NEM is saturated, it is clear that the RSM model is
a submodel of the NEM. In other words, we can impose some constraints on the
parameters of the NEM to obtain the RSM model. To find these constraints, we
re-parameterize the NEM in (2) in terms of the coding based on the RSM as follows:

(3) f(xB|xA) = Qg y + ﬁxAxB + F)/CCAxQB> A= _1707 17

where xp is coded according to the RSM approach but nested on z 4, and o, Bz,
and 7, are the zero-order, first-order, and second-order effects of B conditional on
A = x 4, respectively. Note that for x4 =i, zp is a linear transformation of B;|A;,
and z% is a linear combination of 1, Bj|A4;, and By|A;. By equating the NEM in
(3) and the following second-order RSM model:

(4) f(za,xB) = Ao+ Mxa + Aoxp + A12%4 + Aoz + A2z AT 5,
we obtain the following relationships:

Qz, = Ao+ MzA + A122,
(5) Bea = A2+ A2z 4,
Vea = A22.
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The equations in (5) indicate that the three conditional second-order effects of B
(i.e., v;’s) must be identical in the second-order RSM model, which save two degrees
of freedom; the three conditional first-order effects of B (i.e., (5, ,’s) must satisfy a
linear constraint, which save one degree of freedom. The saving of three degrees of
freedom explains why the RSM model has three parameters fewer than the NEM.

If the restrictions on f,,’s and 7,,’s in (5) are considered to be too rigid, we
can add more parameters in the RSM model so that the corresponding (3, ,’s and
vz, 'S can be free of the constraints as shown by the following relationships:

Qzy = No + Mza + A1z,
(6) Bra = A2 4+ A12T4 + A11277%,
You = A2z + A122T4 + A112275.

The resulting RSM model will be:

f(za,28) = Ao+ Mza + A12%
+ (A2 + A2z + A1127%) 7B
+ (A22 + Aoz a + )\1122$?4)9023
=X+ MZa + Aoxp + AM2azp + A1125 + Ao2xh

2 2 2 2
+ A12232B + AM22T4TE + A12224TR-

By adding three higher-order effects x?qu, I‘AJ?QB, and mixQB in the model (4), the
RSM model has the same number of parameters and same capacity of estimation
as the saturated NEM.

From the previous explanation, it is observed that the conventional RSM ap-
proach of using a dth-order model can be inappropriate for data from sliding-level
experiments. For example, if a second-order model is adopted, some implicit con-
straints that can be impractical are placed on f,,’s and ~,,’s. However, if the
experimenter would like to use a more complicated model, such as a third-order
model, there are not enough degrees of freedom for estimating all parameters.

Another interesting observation about the relationship between NEM and RSM
model can be obtained from the equations in (6). Consider, for example, the three
conditional zero-order effects, a ,’s. They are individually estimated at each level
of A. From (6), ay,’s can be expressed as a quadratic polynomial of x4 with
coefficients from parameters in the RSM model. To estimate these parameters, we
can first estimate the «a,,’s, denoted by &, ,, by least squares and then solve the
equations &, = Ao + A\1xa + A12%, for z4 = —1, 0, 1, to obtain 5\0, 5\1, and
;\11. In other words, for z* which is not in {—1,0, 1}, we can predict Qg by using

Ao+ A1z% +A11 (2%)2. The same procedure can be applied to 3, ,’s and 7, ,’s in (6).

It is then clear why and how the RSM model can be used for prediction. Suppose
that we want to predict the value of E(y) at (2%, z7), where 2 is not included
in the experimental plan. From the argument given in Section 2, the NEM cannot
be used for prediction at =% because no data are collected at x% for estimating the
conditional effects Qg ﬁm*A, and Yo, - However, the RSM model treats a;,, Bz.,,
and 7., as continuous (second-order) polynomials over z 4. From this viewpoint
and (6), the predicted value of E(y) at (7, ¥3) is simply -, +ﬂrzx}"3+’ym2x*32,
where &, , Bﬂﬁfu and 9,+ are obtained by substituting z7 into the right hand side

expressions in (6) with \’s replaced by Ns. Note that in the prediction procedure
using RSM approach, the o, , 8z ,, and 7, are assumed to be continuous functions
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over x 4 and their changes over x4 are assumed to follow the quadratic polynomials
in (6). These assumptions explain why prediction is feasible in the RSM, but not
in the NEM. In other words, the RSM approach regards the three levels of A as
quantitative and utilizes some continuity assumptions on A for prediction. When
similar assumptions are imposed on an NEM, prediction using NEM can be feasible.
We will show in Sections 4 and 5 that the RSM model for sliding-level experiment
can suffer from severe collinearity between the effects of the slid factor and the
effects of its related factors. The RSM model is therefore not a good choice for the
purpose of identifying important effects, especially when it is required to perform
model selection, such as forward selection or C),. In these circumstances, we can
adopt the following hybrid strategy that combines NEM and RSM as follows.

(i) It starts from a NEM, which has better orthogonality between effects in the
models.

(ii) After important effects are identified, we can translate the fitted NEM into an
RSM model through equations that relate the parameters in the two mod-
els (such as (6)). The resulting RSM model can then be used for response
prediction.

4. TIllustration: a welding experiment

We illustrate the three modeling strategies and compare their results by using data
from a welding experiment reported in Chen, Ciscon, and Ratkus [2]. There are
eight factors in the experiment: pulse rate (A), weld time (B), cool time (C'), hold
time (D), squeeze time (F), air pressure (F'), current percentage (G), tip size (H).
Among them, the pulse rate and the weld time are related factors, i.e., for lower
pulse rate, the adequate weld time should be set longer in order to produce weld
points with acceptable quality. An 18-run orthogonal array, OA(18,2'37), with a
slight modification was adopted to study the eight factors. The planning matrix
of these factors are given in Table 1 (unfortunately, the units of these factors was
not reported). Factors A and H have two levels and other factors have three levels.
Note that the column H in Table 1 is obtained by collapsing a three-level factor

TABLE 1
Planning matriz of the welding experiment

B ¢ D E F G H

low 6 10 15 50 85 3/8
low 12 18 20 55 90 1/4
low 18 26 25 60 95 3/8
median 6 10 20 55 95 3/8
median 12 18 25 60 85 3/8
median 18 26 15 50 90 1/4
high 6 18 15 60 90 3/8
high 12 26 20 50 95 3/8
high 18 10 25 55 85 1/4
low 6 26 25 55 90 3/8
low 12 10 15 60 95 1/4
low 18 18 20 50 85 3/8
median 6 18 25 50 95 1/4
median 12 26 15 55 85 3/8
median 18 10 20 60 90 3/8
high 6 26 20 60 85 1/4
high 12 10 25 50 90 3/8
high 18 18 15 55 95 3/8
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TABLE 2
Actual settings of pulse rate and weld time
weld time
pulse rate low median high
2 32 36 40
4 18 22 26
e ]
<
o
(s2)
2
o
o
8 © 7
3
o
[aY]
<
[aV]
T T T T T
20 25 30 35 40
weld time

Fia 2. Adequate experimental region of pulse rate and weld time.

in the OA(18,2!37) to a two-level factor (see Wu and Hamada, [8], Section 7.8).
The actual settings of low, median, and high levels in the column B depend on the
levels of A as shown in Table 2. We regard the area enclosed by solid lines in Fig 2
as the adequate experimental region, i.e., Rg.

The main difference between the three modeling techniques is reflected in the
effect coding of the slid factor B. For the RCRS model, because the Rg is trans-
formed into a square after re-centering and re-scaling, the effect coding of B is the
same as in a non-slid factor. Therefore, by applying the linear-quadratic system in
[8], Section 5.6, the linear effect of B codes the low, median, and high levels as —1,
0, and 1, respectively, and the quadratic effect of B as 1, —2, 1, respectively. They
are shown in the columns labeled by B; and B, of Table 3. Note that, although
we still call B; and B, the main effects of B, they are no longer the main effects
of weld time. Instead, the B after RCRS represents a new factor which is a linear
combination of weld time and pulse rate. For example, from B; = —1 in Table 3,
we can see that the low level of the new factor is the left hand side boundary of Rg
in Fig 2 (i.e., the straight line that links the point (weld time, pulse rate)=(32, 2)
and the point (weld time, pulse rate)=(18, 4)) and from B; = 1 the high level is the
right hand side boundary. For the NEM approach, the effects of B are conditional
on the levels of A. For each level of A, the linear-quadratic system is applied to
generate the Bj|A1, By|A1, Bj|As, and By|As as shown in Table 3. For the RSM
approach, because the lowest actual setting of B is 18 and the highest actual setting
is 40, we code 18 as —1 and 40 as +1, and the other settings, 22, 26, 32, and 36,
are proportionally coded as —1—71, —%, %, and %, respectively. These are shown in
the column labeled as xp in Table 3. The :1:23 is the componentwise square of xp.

In the data analysis, we consider the models that contain all main effects of
factors C-H and five effects generated from factors A and B. For the RCRS, the
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TABLE 3
Effect coding of pulse rate and weld time for the three modeling techniques
factors RCRS NEM RSM
A B A B Bq A Bl|A1 Bq|A1 Bl|A2 Bq‘AQ T A B IEQB
2 low(32) -1 -1 1 -1 -1 1 0 0o -1 0.273 0.074
2 median(36) -1 0 -2 -1 0 —2 0 0o -1 0.636 0.405
2 high(40) -1 1 1 -1 1 1 0 0 -1 1 1
4 low(18) 1 -1 1 1 0 0 -1 1 1 -1 1
4 median(22) 1 0 -2 1 0 0 0 —2 1 —0.636 0.405
4 high(26) 1 1 1 1 0 0 1 1 1 —-0.273 0.074

five effects are A;, B;, B,, AiB;, and A;B,, where A;B; and A;B, are interactions
generated by the componentwise multiplication of A; and B, and A; and By, re-
spectively. For the NEM, the five effects are A;, B;|A1, Bq|A1, Bi|A2, and By|As.
For the RSM, the five effects are x4, xp, xQB, raxrp, and :I;AxQB, where x4xp and
raz% are interactions generated by the componentwise multiplication of z4 and
rp, and T4 and x%, respectively. Although the five effects are coded in different
ways for each modeling technique, the vector spaces spanned by any set of the five
effects are identical. Consequently, the effects of factors C-H will have the same
analysis results in the three models. Because of this reason, we only give the analy-
sis results of the five effects generated by A and B, which include their estimated
values, t-values, and p-values, under the RCRS, the NEM, and the RSM, in Ta-
bles 4, 5, and 6, respectively. From these tables, we have some interesting findings
presented in the following.

1. The B;|A; and Bj|As are the linear effects of B conditional on two different
levels of A. In Table 5, we find that the two conditional effects have different
magnitudes. When the pulse rate is 2, the weld time has a strong linear ef-
fect (significant B;|A;). When the pulse rate is changed to 4, the linear effect
of weld time (B;|As2) is insignificant. After re-centering and re-scaling, these
two effects are transformed into two parameters, B; and A;B;, in Table 4.
The B represents the average of the two conditional linear effects (78.96 =
((—23.75) 4+ 181.67)/2) and the interaction A;B; represents the difference be-
tween the two conditional linear effects (—102.71 = ((—23.75) —181.67)/2). It
is then clear why B; and A;B; are both significant. The same argument can
be applied to B,|A; and B,;|As in Table 5 and B, and A;B, in Table 4. Be-
cause By|A; and B;|As has rather similar magnitudes (—27.92 and —41.67),
it explains why their difference (i.e., A;B,) is insignificant.

2. By comparing x4 in Table 6 and A; in Tables 4 and 5, we find surprisingly
that A; is significant while x 4 is insignificant even though A; and x 4 have the
same coding in Table 3. By a further investigation of the correlations between
the estimated effects (given in Table 7), it is seen that the insignificance of x 4
is caused by the severe collinearity between x4 and xpg. It also results in the
other three high correlations in Table 7 because other effects are also defined
by x4 and zp. Note that in the planning matrix in Table 1, all effects in
the models based on the RCRS and the NEM are mutually orthogonal. The
appearance of severe collinearity will be further explained in Section 5.
Suppose that severe collinearity is a serious concern but analysis based on
RCRS or NEM is not an option to the investigators. A possible choice for
reducing the collinearity might be to transform the variables. For example,
after replacing weld time in Table 1 by a new variable, pulse rate times weld
time, the RSM model will exhibit less correlation between the parameter
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TABLE 4
Analysis based on RCRS

value t-value p-value

A —81.04 —6.20 0.00

By 78.96 4.93 0.00

By —34.79 —3.76 0.00

A;B; —102.71 —6.42 0.00

A By —6.88 —0.74 0.46
TABLE 5

Analysis based on NEM

value t-value p-value

A;  —81.04 —6.20 0.00
B;|Aq 181.67 8.03 0.00
B4lA1  —27.92 —2.14 0.04
Bj|A2  —23.75 —1.05 0.30
Bg|A>  —41.67 —-3.19 0.00

TABLE 6

Analysis based on RSM

value t-value p-value

Ta 7.72 0.11 0.92
rB 18.62 0.07 0.95
% —789.34  —3.76 0.00

zarp —1287.06  —4.76 0.00

rax%  —155.98  —0.74 0.46

TABLE 7

rB IQB TATRB acAa:QB
A 0.96 0.00 0.00 0.91
ep 0.00 0.00 0.99
a2, 0.99 0.00
TATE 0.00
3 ®
o
[se]
2
©
o
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weld time * pulse rate

FiG 3. Transformed experimental region.
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estimates because the transformed experimental region (given in Fig 3) is
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more similar to a rectangle than the original experimental region (as shown
in Fig 2).

3. From Table 3, we can understand that for the main effects of the slid factor
(which include B; and B, in RCRS, Bj|A; and B,|A; in NEM, and x5 and 2%
in RSM), the coding based on RCRS can best preserve orthogonality property
in a planning matrix, followed by the NEM, and RSM being the worst.

5. Relationship between RCRS and RSM models

To explain the relationship between the RCRS and RSM models, consider an RCRS
model for the nine-run experiment that contains all main effects and a linear-by-
linear interaction as follows:

T —mB(:cA)]

f(xa,xB) =Ny +nixa +niry + 02 [
lB(.’L’A)

(7)

x5 —mp(ra)]’

I5(2a) ]+771296A {W}

e { TRER

where mp(x4) and [p(z4) are the center and range, respectively, of the experimen-
tal region chosen for B when A is conditioned on x 4. For simplicity, assume that
mp is a linear function of x4, i.e., mp(xa) = s+t x4, and lp is a constant, i.e.,
Ig(z4) = r (same shape as Fig 2). By substituting them into (7) and expanding (7)
in a polynomial form, we obtain an RSM model, consisting of the factorial effects
Ta, %4, T, v%5, and xR, as follows:

f(xa,zB) ~ [no+ (s°/r*)maz — (s/r)n2]
+ [m = (t/7)n2 — (s/r)ma2 + (25t /1122 A
+ [m1 + (82 /r®) s — (t/r)mi2] 2% + [(1/r)n2 — (2s/1%)n22] 25
+ [(1/r®)n22] &% + [(1/r)ma — (2t/r?)na2] zazp.

(8)

Note that in (8), the parameters of factorial effects are functions of ’s and r, s,
and t. The n’s represent the relationship between factors and response in the RCRS
model, and r, s, and t characterize the shape of the irregular experimental region.
The shape has been eliminated in the RCRS model after applying the transforma-
tion %ﬂw on B. However, mp and [p still affect the polynomial terms of
the RSM model in (8). This example shows that an RSM model for sliding-level
experiments contains two components: a description of the relationship between
factors and response, and a description of the irregular shape of the experimental
region. The two components are intertwined and undistinguishable in the parame-
ters of an RSM model. On the other hand, a fitted model based on RCRS only
contains information on the first component because the irregularity of shape has
been eliminated after re-centering and re-scaling. This observation is supported by
the appearance of strong collinearity between x 4 and xp in Table 7. Note that after
RCRS, the main effects of A and B (in Table 4) are orthogonal. However, in the
RSM model such strong collinearity inevitably appears because: (i) the parameters
in the RSM model are influenced by the irregular shape of experimental region, and
(ii) the irregular shape (i.e., Rg in Fig 2) reflects the fact that B is smaller when
A is larger.

In general, the shape of the chosen experimental region can be arbitrary, and mpg
and [p can have more complicated forms than what was assumed above. However,
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similar remarks and conclusions are still applicable.

Suppose that the relationship between mean response and factors A and B satis-
fies (1). When the mp and [ in (7) are appropriately chosen so that the interaction
elimination after RCRS is achieved, the 712 in (7) becomes zero. In this case, the
RCRS model in (7) does not nominally contain an interaction effect, but an inter-
action (i.e., zgxp) is still present in the RSM model (8). The apparent discrepancy
lies in the different approaches they take to handle the irregular shape of the ex-
perimental region. This observation partially supports the interaction elimination
rationale in RCRS from a different perspective. Because the fitted model after
RCRS does not properly take into account the irregular shape of the experimental
region, it can, in most cases, utilize fewer effects than an RSM model to achieve a
comparable coefficient of determination (i.e., R?). Some interaction effects (such as
the x sz p in the case) are not required for the RCRS model.

6. Summary

For the purpose of response prediction for sliding-level experiments, we point out
the shortcomings of two existing approaches, RCRS and NEM, when the related
factors are quantitative. An alternative analysis strategy is proposed based on the
response surface modeling, in which the response prediction can be implemented
in a straightforward manner. Through the comparisons of the three strategies, we
present several interesting conclusions, which lead to better understanding of the
concepts, properties, limitations, and implicit assumptions behind each strategy.
None of the three methods dominates the others in every aspects. The best strategy
for the investigators depends on the information they have about the irregular
region and the objectives of the experiment. Although we do not discuss the design
issues in this article, the choice of the modeling strategy will influence the choice
of the best design. This and other issues in modeling deserve further study.
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Abstract: In a market with transaction costs, the price of a derivative can
be expressed in terms of (preconsistent) price systems (after Kusuoka (1995)).
In this paper, we consider a market with binomial model for stock price and
discuss how to generate the price systems. From this, the price formula of
a derivative can be reformulated as a stochastic control problem. Then the
dynamic programming approach can be used to calculate the price. We also
discuss optimization of expected utility using price systems.

1. Introduction

Duality approach is frequently used for financial problems in incomplete markets.
This approach can also be applied to markets with transaction costs. In [12], a
discrete market with transaction costs is considered. In the market studied there
is a stock and a bond that we can trade. Let A1, A\g > 0 be the proportional costs
for selling and buying the stock. Then the replication cost at time 0 for a portfolio
Y = (Y°, Y1) at time T is given by

(L1) T (¥) = sup{E[Y 0" + Y'p']}.

The supremum is taken over (p°, p!) ((preconsistent) price systems) which depend
on Ag, A1. This will be described in details below.

A similar result for diffusion models is given in [3].

Our interest is to use price systems to calculate the price of a derivative and
find optimal strategy for hedging problem. We will also discuss the use of price sys-
tems to study portfolio optimization problem. There is a similarity between these
problems that they can be reformualted as optimization problems. We shall con-
sider binomial model (it can also be extended to multinomial model) and find a
dynamics to generate the price systems (p°, p'). A price system becomes a con-
trolled process. The optimization problems become stochastic control problems.
Then dynamic programming approach can be used.

The paper is organized as follows. In Section 2, we give notations and give the
framework. In Section 3, we describe price systems and give a price formula for
derivatives in terms of price systems. In Section 4, we discuss the optimization of
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expected utility using price systems. In Sections 5, 6 and 7, we consider binomial
models. We present a dynamics to generate the price systems. We reformulate some
finance problems as stochastic control problems. Then we use dynamic program-
ming to calculate the value functions.

2. Finite market with one stock

The framework can be described as follows.
We consider (2, F, P) a finite probability space and {Fj} a filtration. Let

PY(k;w), P (k;w)
be the prices for bond and stock. Then P°, P! are adapted to {F}. Define
P(k;w) = P! (k,w)/P°(k;w),

the discounted price.
A trading strategy is given by {I(k;w)}!_,, a stochastic process adapted to
{Fi}. I(k;w) is the number of shares that the stock is bought or sold,

I(k;w) >0, buy stock at k,
I(k;w) <0, sell stock at k.

The portfolio values for {I(k;w)}}_, with z = (zg,z1) are given by,
k
XO(k;2,I) = 2° = Y h(I(0))P(0)
=0

k
X'k, I) = 2" + ) 1(0).
£=0

Here ( )
. 1+ X))z, 2>0
h(z) = {(1 — A1)z, 2 <0,

where A1, A\g > 0 are the proportional costs for selling and buying the stock, respec-
tively.
We are interested in the following finance problems.

Pricing derivative: Let Y = (Y",Y!) be Fr measurable. We define 7*(Y) the
minimum of zoP%(0) such that for some I,

YO < XUT; (2°,0),1), Y < X'(T;(2°,0),1).

We say 7*(Y) is the price of Y = (Y° Y!). The problem is to calculate 7*(Y).
Another important problem is to obtain a strategy I(-) such that for 2° = 7*(Y),

VO < X%T; (2°,0),1), Y' < X' (T;(2°,0),1).

For the later use, we also define 7*(Y; 1) the minimum of x¢P°(0) such that for

some I,
y? < XO(T5 (:L'O,xl),f), v! < Xl(T3 (x0>$1)71)'

Then 7*(Y;z,) = 7*(Y), where YO = Y0 Y1 = Y1 — g,
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Optimizing expected utility: Let U be a utility function. Let (z°, z') be given
such that
2" P°(0) — h(—z*)P(0) > 0.

V(2% z!) is the maximum of
BUX(T; (% 2'), DPYT) = M(=X'(T; (2°,2), 1)) P1(T))],
where I(-) is an admissible strategy: k =0,1,2,...,T,
XO(k; (2°,2"), 1) P° (k) — h(—= X' (k; (2, "), I)) P* (k) > 0.

We want to calculate V (2%, z!) and find a strategy I that attains the maximum.

3. Price systems and a price formula

Definition. We say that (p°, p!) is a price system if p°, p! are positive random
variables such that

(a) E[p%] = P°(0);

(b) Define
o Pkw) 1
D) = 5 hew) Plkr)
p’(k;w) = E[p°|F], p'(k;w) = Elp!|Fi].
Then

(1—-=X) <R(k;w) < (14 X)), k=0,1,2,...,T.
We denote P(\g, A1) the family of price systems.

Remark. Assume there is an equivalent martingale measure Q). Then P(\g, A1) #
(. In fact, define

aQ
0_ %% 50
p' = p’P(T).
Then 10
P w) = SE17,P(0)

p(k;w) = p°(k; w) P(k; w).

We can show that (p°, pl) is a price system.
On the other hand, in the case A\g = A\; = 0, (p°, p!) is a price system if and only

0 = @)/ P(0)

defines an equivalent martingale measure.

Theorem 1 ([12]). Assume P(Ao, A1) # 0. Then

if

(3.1) (YY) = sup E[Y°+Y'pl.
P(Ao,A 1)
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Remark. If \j = Ay = 0, then the above is

P°(0) ]

(Y) = Sl;p E[pH PO(T)

H=Y"P%T) +Y'PYT).

Here
aQ
dP

defines an equivalent martingale measure.

=p

A similar result for diffusion models is given in [3].

4. Price system and optimal expected utility

In the following, we assume P%(k) = 1 for all k.
Let U be a strictly increasing utility function. Define

U*(y) = sup{U(x) — zy; x > 0}.
Define
V(& x1) = inf{E[U* (£p°(T))] + 2:1£E[p" (T)]}
Theorem 2. We have

V(wo, 1) < ggg{V*(f,fﬂl) + woé}

This is the same as

@) Viow) < _inf LU (6" ()] + Bl (T)] + wos).

Assume there is £,0°, p' that attains the infimum. Then the above equality holds.
Moreover, there is an optimal strateqy I for the portfolio optimization problem sat-
isfying the following properties.

(a) XO(T; (w0, 1), I) = U (£p°(T)),
:XI(T (LL’O,CL’1> I) =0.

(b) R(I) =1+ Xo if I(1) >0,
R()=1—X\ if I(1) <0.

Here U* (&) denotes the derivative of U*(€).
Proof. Let I be a strategy.
UXO(Ts 1) = B(-X (T, 1) PA(T)

< U(Ep(T)) + Ep°(T)(XO(Ts 2, I) — h(=X (T2, 1)) PL(T))

(4.2) = U*(€00(T)) + E(XO(Ts 0, 1)pP(T) — h(~X(T:r, 1)) P{(T)p"(T))
< U(Ep%(T)) + E(XO(T52, 1)p(T) + R(T) X (T2, I) PHT)p"(T))
= U*(£p°(T)) + §(X°(T5.2, 1)p°(T) + pH(T) X (T 2, 1)).

XO(T;2, 1)p"(T) + X (T2, 1)p* (T)

= 20p”(T) +21p"(T) + (= Y_ h(I(1) P (1)p°(T)
(4.3) 1=0

+ Y 1()pN(T)).

=0
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T T

E[(= ) hI@)P')p°(T) + Y 11" (T))]

=0 1=0

B[=R(I0))P' (1)’ (1) + I(1)p* ()]

Il
E

(4.4)

=0

E[(—R(I(1)) + ROID)P* (D)p°(1)]

VAN
ON
I~

Then we can deduce

BlU(X(T; 2, 1) = h(=XY(T; 2, 1)) PY(T))]

(45) < E[U*(£p°(T))] + €21 E[pM(T)] + €xo.

This is true for all p°, pt. The first result follows.
Assume &, pY, p! attains infimum in (4.1). Then

(4.6) E[U* (Ep°(T)p°(T)] + w1 B[p" (T)] + wo = 0.

On the other hand, take any (p°, p') and 0 < a < 1, we have

E[U*(E(ap®(T) + (1 = a)p* ()] + @1€Elap! (T) + (1 — a)p' (T)] + woé

takes minimum at a = 0. We have
(4.7) E[U (£0°(T))(p°(T) — p°(T))]
' +21EE[p!(T) — p'(T)] > 0.

Take R o R
VO — —U* (€°(T)), V1 =0,

(4.7) implies

7 (Viay) = E[-U" (€0°(T)p"(T)] - 1[5 (T)] = o.

Here we use (4.6) and Theorem 1. )
By the definition of 7*(Y’; x1), there is a strategy I such that

T
zo — Y _h(I(1)P' (1) = V",
=0
T
zi+ Y I(0) =Y
=0

Therefore,

XOT; (w0, x1),1) > —U* (£6°(T)),

(4.8) XYT; (zg,21),1) > 0.

U(X(T;2,I) = h(=X*(T;2,1)) P(T))
(4.9) > U(=U" (p°(T))) o
= U*(£p°(T)) — £p°(TU* (€6°(T)).
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Then
BIU(XO(Ts 0, 1) — h(~X (T, 1)) P(T))
(w10) > B[U* (£0°(T))] — EE[P(T)U* (€0°(T)))
20D + Bl )]+ 0
> Vi(xg,x1).

Therefore, by the definition of V(xg, 1), the inequalities become equalities in the
above relation. We see (a) follows from the equalities in (4.8),(4.9) and (4.10). On
the other hand, (4.2),(4.3), (4.4) and (4.5) also become equalities for I = I, then
(b) follows. This completes the proof. O

5. Binomial model and price systems

We take P? =1 for all k. 0 < d <1< u, Ao, A1 > 0.
The sample space is given by

Q= {(a1,a2,...,ar);a; € {u,d}}.
For w = (ay,as9,...,ar) € Q, denote
Wk = (a1, as,...,a).

The price of stock is
Pl(w) = Plajay - - - ag.

We also write Pl(w) = PL(w¥).

Fi is the o-algebra generated by P!, t < k. A function defined on 2 measurable
w.r.t. F, is given by f(w").

For w = (ay,as,...,ar) € Q, the probability is given by

P{w})=pm(1—-p" ™,

where m is the number of k such that ar =u, 0 <p < 1.
p°(k), pt (k) are given by

(k) = E[p°|Fi], p' (k) = Elp'|Fi].
We have the characterization of p°(k), p*(k):
PO (kW) = pp(k + 1, (W, u)) + (1 = p)p°(k + 1, (*, d)),

(PS1)
p'(k,w*) = pp(k + 1, (W, u)) + (1 = p)p*(k + 1, (", d)).

1
(PS2) (1—M\)PE < pogg <(1+X)PHk=1,2,3,...,T.
P

It is convenient to consider

A(k):p—(k), k=0,1,...,T.

We can now describe the price systems in a binomial market. We omit the easy
proof.
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Theorem 3 (Binomial model). Letw = (a1, as,...,ar) € Q. Given Ay a positive
constant such that

(1—=X)P; <Ao< (14 Xo)Fy.
Denote p°(0) = 1, p1(0) = p°(0)Ag. Take positive constants A%, A4 such that

min{ A%, A%} < Ay < max{A", A%}

and
(1= X\)Pgu < A" < (14 \o)Piu,
(1= A\p)Pyd < A% < (14 A\o) Py d.
If a1 = u
o)=L
A = A"
If a1 =d
(1) = T
Ay = A
Define

p1(1) = PO(1)A;.
Assume we have defined Ag, A1, ..., A and
p°(1),0°(2), .., p°(k), p' (1), 01 (2), .., p' (R).
Take A", A% measurable w.r.t. F}, such that

min{ A%, A%} < Aj, < max{A¥, A%}

and
—A)Pyu < < (1+ U
(1= X)Pyu < A" < (14 o) Pyu,
(1—M\)PLd < A% < (1+ o) PLd.
Ifa’k?+1:u:
1A, — A
0 _ 0 L Lk
pl(k+1) = p"(k +1)AY;
ifak+1:d7
1 A*— A
0 o Kk

pt(k+1) = p°(k+1)A%
Then p®(k), pt(k) satisfy (PS1) and (PS2).
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6. Binomial model: control problems for pricing derivatives
Assume Y = (Y°, Y1) is given by

Y =Y%P}), Y =YY(P}).
Then the price 7*(Y) is given by

™(Y) = o E[p"(T)Y°(Pr) + p"(T)Y ' (Pyp)].

This can be rewritten as

PW)= sw B0 PH Ay (P)

with Ay, and p°(k) described in Theorem 3. This is viewed as a stochastic control
problem. The state variables are given by Pé,Ak, pY(k) and the control variables
are A}, Az.

The dynamical programming can be described as follows.

For S > 0 and A satisfying

(I=X)S <A< (14 XN)S,

define
PO(T) 0/ pl 1/ pl 1
Wi(S, A) = sup E[po(k:) (YV(Pp) + ArY (Pp))|P; = S, A, = 4]
Then
™ (Y) = sip Wl 4)

(1=A1)S<A<(14+20)S
forPol:‘S’.Andf0r0§k<l§T7
Po(l) 1 1
Wk(S, A) = SuPE[pO(k) Wl(Pl ,Al)|Pk = S, Ak = A]
It follows a recursive scheme backward in time.

(D1) Wir(S, A) = YO(S) + AY(S);
(D2) For (1—A\)S < A < (1+X)S,

A— Ad A — A
Wi (S, 4) = Sup{kaH(SU,Au) + kaH(Sd, AN},
the maximization is taken over

min{ A%, A%} < A < max{A*, A%}

(1—X1)Sd < A% < (14 \g)Sd.

(D3) For Py =S,

(V) = sup {Wo(S, A)}.
(1=X1)S<A<L(14+X)S

It can be restated as follows.
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Theorem 4. We have
Wi(S, 4) = sup{aWWis (Su, A%) + (1 — @)Wy (Sd, AD)},
the maximization is taken over
O<a<l,
aA" + (1 —a)A? = A,

and
(1 — )\1)Su S AY S (1 + )\Q)S’U,,

(1—X1)Sd < A% < (1 + \o)Sd.
Wi (S, A) is piecewise linear in A for all S >0 and k=0,1,...,T.

The main questions consist of the following. How to calculate Wy (S, A)? How to
obtain an optimal strategy to super hedge Y from Wy (S, A)? Some answers can be
found in [6].

7. Binomial model: optimizing expected utility and control problem

We take
U(x)=—-2",0<y <L
Then
U*(é) = - f/f«’
P
v—1

Then
(7.1) V(zo, 1) = gg{v*(g,xl) + xo&},

V& 21) = inf{—%i“E[(pO(T))“] + &1 Elp! (T)]}.

We shall consider )
—pﬁ“E[(pO(T))“] + &1 Ep'(T))]

conditioning on P1(0) = S, A(0) = A. This is equal to
1
L EB[(p(T) ] + € A

We consider

. P°(T) .,
The follwoing is an iterative scheme to calculate Vi (S, A),k =0,1,....
(PD1) Vp(S,A) =1,
(PD2) k=0,1,2,...,

o A—Ad
(7 2) Vk (S, A) = mf{p ”(m)“Vk+1<SU, Au)
’ A — A
+(1—=p) 7 )" Vg1 (9d, A7)}

Au_Ad
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The inf is taken over the A%, A% satisfying
min{A%, A%} < A < max{A"*, A%}

(1—A1)Su < A% < (14 \o)Su,

(7.3) (1 A\1)Sd < A% < (1 + \Sd.

(7.2) can be reformulated as follows.
(7.2)" Vi(S, A) = inf{p* "t Vi1 (Su, A") + (1 — p)' 71 — )" Viy1(Sd, A%}
where 0 < a <1 and (7.3) and (7.4) hold,
(7.4) aA® + (1 —a)Ad = A.

We consider Vp_1(S, A):

Ve 1(8, A) = inf{p! ok + (1 — p)I 4 (1 — )},
where (7.3), (7.4) hold. Denote Vp_1(A) = Vr_1(S, SA). For
(1—=X) <A< (1+X),
Vr_1(A) = inf{p' "#a# 4 (1 — p)' #(1 — a)*},

there are A%, A% such that
(1—=X1) <A* < (1+ No),

/
(7.3) (1- A1) < A% < (14 A).
(7.4) auA" + (1 — a)dA? = A,
In general, R
Vi(A) = Vi(S,SA4), (1-=X1) <A< (14 X).
Then

Vi(4) = inf{p' a0 Vg1 (A4") + (1= p) (1 — @) Vi (A7)},
0 < a <1 satisfies (7.3)’, (7.4)". From
Vi(4), (1—=M) <A< (14N,

we have

Vi(S, A) = Vk(g), (1-A1)S <A< (1+\)S.

Theorem 5. Assume xg — h(—z1)S > 0. Then for P1(0) = S,
1. ~ _
Vo, x1) = §Z”f{($o +215R)" (Vo(R))' 77}

the infimum is taken over (1 — A1) < R < (1 + \p).
In particular, if 1 < pu+ (1 — p)d and 1 <0, then

1 .
V(.To,xj) = ;({L‘O + xlS(l + )\0))7(‘/0(1 + )\0))1_7.
If 1 >pu+ (1 —p)d and 1 > 0, then

V(QZ(), 1‘1) = %(1‘0 + 1,'15(1 - )\1))7070(1 - )\1))1_7.



Control problems under transaction costs 267

Proof. By (7.1)
1 -
V(,I(), LL’l) = 1nf{—;§“VO(R) + 5.’1?1SR + Efl/’o},
the inf is taken over £ > 0, (1 — A1) < R < (14 Ao).
- 1 1
E=(= (xo + x1SR))#—1
Vo(R)

takes minimum. The rest follows from this and Theorem 6 below. O

Theorem 6. Assume 1 < pu+ (1 —p)d. Then for
(I=A)pu+ (1 —p)d)" " <A< (1+ o),

Vi(A) = 1. For other A, Vi(A) > 1 and is decreasing in A.
Assume pu+ (1 —p)d < 1. Then for

(1=A)S <A< A4 X)S(pu+ (1—p)d)T=*,

Vii(A) = 1. For other A, Vi,(A) > 1 and is increasing in A.

A~

Vi (A) is nonincreasing in k for fized A.
Proof. We only consider 1 < pu + (1 — p)d. Define

fla)=p" o +(1-p)' "1 —-a)", 0<a<l.

f takes minimum at o = p, f(p) = 1 and f is decreasing on (0,p] and increasing

on [p,1).
Given A,
(1=A1) <A< (14 A).

We consider
inf{f(a)}.
The infimum is taken over o such that there are A%, A% satisfying
auA" + (1 — a)dA? = A,
and
(I=X1) <A* < (1+ o),
(I1—X) < At < (1+ Xo).
We consider the cases,

1) 1=XM) <A (1T— M)y
(i) (I—=XA)u <AL (1+ No)d;
(iii) (T14+Xo)d <A< (14 Xp).
Assume (i),
A —dAd
uAv — dA?
For each (1 — A1) < A" < (1 + Ag), the range of v defined above taken over

o=

(1-X)d<dA?< A



268 T.-S. Chiang, S.-Y. Shiu and S.-J. Sheu

is [0, (A — (1 — A\1)d)/(uA™ — (1 — A\1)d). Take the union of these sets over all
(1—=X) < AY < (14 Np),

we have [0, (A—(1—X1)d)/(1—A1)(u—d)]. If p is in this interval, then Vp_;(A) = 1.
The condition p is in this interval is the same as

A= (1= M)(pu+ (1 -p)d).
Therefore,
Vro1i(A) =1,(1= M) (pu+ (1 —p)d) < A< (1= Xp)u.
On the other hand, if
(I=M) <A< (1 —=XM)(pu+ (1-p)d),
the infimum of f(a) on
[0, (A= (L= A1)d)/(1 = A1) (u—d)]

is

A—(1-X\)d
T a
Therefore, ( )
. A—(1-X)d
if

(1= M) <A< (- \)(put (1—p)d).

Assume (ii). We consider A < uA" < (1+ Ag)u. The range of « is given by [0, 1].
Therefore, Vp_1(A) = 1.
Assume (iii). For each A < uA" < (1 + X\g)u, the range of « of

(1—=X) <AY< (14 ))
i A—(+X)d A—(1=\)d
[uA“ — (1 + )\O)d’ uAY — (1 — Al)d]

Take the union of these sets over all A" gives

A—(1+ X)d
(1 + )\0)(’[1/ — d)7

[ 1].

We can check p is in this set. Then Vp_i(A) = 1.
We conclude

. B A—(1-X\)d
V() = (T s iy)
if
(1= ) A< (1= A)(pu+ (1 - p)d),
and
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if
(1—=X)(pu+ (1 —p)d) <A< (1+ \).
VT_l(A) is decreasing in A. ) )
We can continue this argument for other Vi (A) to prove that Vi (A) =1 if
(1=A)(pu+ (1 —p)d)TF <A< (1+N),

and for other A, Vi(A) > 1. To prove the nonincreasing of Vi(A) in A needs
additional argument. We have the following observation. Let g be nonincreasing.
Consider

9(A) = inf{p" " arg(A") + (1 — p)""*(1 — a)*g(AD)},

where the “inf” is taken over 0 < a < 1 and A%, A4 satisfying (7.3)" and (7.4)’. We
define
g(A) =g(A), 1—=X) <A< (14 ),

g(A) =00, A< (1-=X\),
g(A) = g((1+ o)), A> (1+ Xo).
We claim
(7.5) 9(A) = inf{p'atg(A") + (1 —p)' (1 — a)*g(A")},

where the “inf” is taken over 0 < o < 1 and A%, A¢ satisfying (7.4)". First, it is
easy to see that the quantity defined by the righthand side of (7.5) is not smaller
than g(A). To prove the opposite inequality, we observe that for a given 0 < @ < 1
and A%, A? satisfying (7.4)', if (7.3)" does not hold, says

A" > (14 Np).
We define A% = (14 )\g) and A9 by the relation,
au(l+ o) + (1 — a)dA? = A.
Then A? > A4, We see A", A? satisty (7.3)’ and (7.4) and

p'Hrarg(AY) + (1 —p) (1 —a)tg(At)
> plHratg(AY) + (1 —p) (1 — a)tg(A%)

by the property that g is nonincreasing. Using this observation, we can deduce that
the quantity defined by the righthand side of (7.5) is not smaller than g(A).

Now from (7.5) it is easy to see that ¢ is nonincreasing. In fact, let B = XA > 0
fora A > 1. Let 0 < o < 1 and A%, A% > 0 satisfying

auA® + (1 — a)dA? = A.
We take B* = A*)\, B* = A%)\. Then
auB" + (1 — a)dB* = B.
We have
p'Hatg(AY) + (1 —p)'H(1 - a)#g(A?)

> ptratg(B") + (1 —p)' (1 — a)g(B?)
> §(B).
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This is true for any a, A%, A?. Therefore, §(A) > §(B).
Finally, we denote g(A) = Hg(A). Then H has the property that g1(A) > g2(A)
for all A implies Hg1(A) > Hga(A) for all A. Take g = 1. Then

Hg= VT_l.
We have proved VT_l > 1. That is,
Hg>g.
We note R R
Vie=HVjy1.

From these, by induction, we can show Vi > Vk+1~ This completes the proof. [J

Corollary 7. Assume 1 < pu+ (1 — p)d and

(1= XA)(pu+ (1 —p)d)" < (14 Xo).

If 1 <0, then buy-and-hold is an optimal strategy.
Similarly, assume 1 > pu+ (1 —p)d and

(14 Xo)(pu+ (1 —p)d)T > (1 —Ay).

If 1 > 0, then sell-and-hold is an optimal strategy.

Proof. Assume 1 < pu+ (1 — p)d and x; < 0. From Theorem 5 and 6,

1
V(ZEo,iL‘l) = ;(I‘o + 11715(1 + )\0))7.

Buy-and-hold achives this value and hence is an optimal strategy. Other result can
be proved similarly. O
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Abstract: The maximum product of spacings (MPS) is employed in the es-
timation of the Generalized Extreme Value Distribution (GEV) and the Gen-
eralized Pareto Distribution (GPD). Efficient estimators are obtained by the
MPS for all . This outperforms the maximum likelihood method which is only
valid for v < 1. It is then shown that the MPS gives estimators closer to the
true parameters compared to the maximum likelihood estimates (MLE) in a
simulation study. In cases where sample sizes are small, the MPS performs sta-
bly while the MLE does not. The performance of MPS estimators is also more
stable than those of the probability-weighted moment (PWM) estimators. Fi-
nally, as a by-product of the MPS, a goodness of fit statistic, Moran’s statistic,
is available for the extreme value distributions. Empirical significance levels of
Moran’s statistic calculated are found to be satisfactory with the desired level.

1. Introduction

The GEV and the GPD (Pickands, [13]) distributions are widely-adopted in extreme
value analysis. As is well known the maximum likelihood estimates (MLE) may fail
to converge owing to the existence of an unbounded likelihood function. In some
cases, MLE can be obtained but converges at a slower rate when compared to that
of the classical MLE under regular conditions.

Recent studies (e.g. Juarez & Schucany, [9]) show that maximum likelihood esti-
mation and other common estimation techniques lack robustness. In addition, the
influence curve of the MLE is shown unstable when the sample size is small. Al-
though new methods (Juarez & Schucany, [9]; Peng and Welsh, [12]; Dupuis, [6])
were proposed, arbitrary parameters are sometimes involved, resulting in more in-
tensive computation which is in general undesirable. There have been studies in
overcoming the difficulties of the MLE in extreme value analysis but none has con-
sidered the MPS. Furthermore, a goodness-of-fit test on the fitted GEV or GPD is
rarely considered.

In this study, the MPS method will first be considered for the purpose of finding
estimators which may not be obtained by the maximum likelihood method. As a
by product, the Moran’s statistic, a function of product of spacings, can be treated
as a test statistics for model checking. This is one of the nice outcomes of MPS
which Cheng and Stephens [4] demonstrated but is overlooked by the extreme value
analysis literature.

In Section 2, we discuss some problems of the MLE. In Section 3, we formulate the
MLE, the MPS and the Moran statistics. In Section 4, results of simulation studies

IDepartment of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam
Road, Hong Kong, e-mail: h0127272@hkusua.hku.hk

Keywords and phrases: generalized extreme value distribution, generalized Pareto distribution,
maximum product of spacings, maximum likelihood, Moran’s statistic.
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are presented to evaluate the performance of the method proposed. In Section 5, we
provide some real examples in which the MPS is more convincing. A brief discussion
is presented in Section 6.

2. Problems of the MLE

The problems of the MLE in model fitting were discussed by Weiss and Wolfowitz
[15]. Related discussions in connection to the Weibull and the Gamma distributions
can be found in [2, 3, 5, 14]. Smith [14] found densities in the form

(2.1) F(2:0,0) = (x— 0)°'g(x — 6:6), < <o

where 6 and ¢ are unknown parameters and g converges to a constant as x | 6.
As is well-known for o > 2, the MLE is as efficient as in regular cases. For o = 2,
the estimated parameters are still asymptotically normal, but the convergence rate
is (nlog n)% which is larger than the classical rate of nz. For 1 < o < 2, the
MLE exists but the asymptotic efficiency problem is not solved. And the order of
convergence could be as high as O(n=). For a < 1, MLE does not exist. Both the
GEV and the GPD encounter the above difficulties as both can be reparameterised
into the form (2.1).

As an alternative to the MLE, the MPS was established by Cheng and Amin
[2]. With the MPS, not only can problems with non-regular condition be better
solved, but models originally estimable under the MLE framework can also be
better estimated by the MPS using a much simpler algorithm. Cheng & Amin [2]
showed that the MPS estimators are asymptotically normal even for 0 < a <
1. This overcomes to a certain extent the weakness existing in the MLE. Hence,
the MPS may be one of the most robust estimation techniques and yet the least
computational expensive in extreme value analysis. The present paper employs the
MPS in the estimation of the GEV and the GPD. On the other hand, many previous
studies (Hosking, [7]; Marohn, [10]) concentrated on testing the shape parameter.
Goodness-of-fit test on the model as a whole has been very few. In this study, the
Moran’s statistic (Cheng and Stephens, [4]; Moran, [11]) arising naturally as a by
product of the MPS estimator was utilized to check the adequacy of the overall
model.

3. Formulations of the MLE, the MPS and the Moran’s statistic
3.1. The MLE and the MPS

The c.d.f of the GEV and the GPD are respectively
1
(o)
o

G(x;’y,a)zl—(l—’y%) , 1—'y§>0.

H(z;7, p1,0) = exp

2
| I
—_
|
2
8
|
=
V
“O

and

=

where
vy#0, —oco<pu<oo, o>0
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Let h(x) and g(z) be the corresponding densities,

h(l’)zé(l—’fr;u)%_lexp [— (1—756;”)%] :

g(z) = L (1 —’YE)%_l :

g g

and
The log-likelihood functions per observation are respectively
] 1
x — x — g
Leev (v, p,0) = —logo + (——1) log <1—7—H> - <1—’7 “) ;
vy o o

1
Lgpp (7, pt,0) = —logo + (; — 1) log <1 — 7;) .

and

Applying the same argument stated in [14], as x | p+ 2, the information matrix of
Lgrv (7, 1, 0) is infinite for v > % The same difficulty arises in the GPD as x | %
In this case, the underlying distribution is J-shaped where maximum likelihood is
bound to fail. Worse still, MLEs (Denoted by Oggy = (a,g,&)T and Ogpp =

('Ay,&)T respectively for the GEV and the GPD) may not exist when v > 1. Let
x1 < 29 < --- < x, be an ordered sample of size n and define spacings D;(6) by

GEV : D;(0) = H(z,v,p,0) — H(xi—1;v,p,0) , (i=1,2,...,n+1);
GPD : D;(0) = G(zi,7v,0) — G(zi—1;7,0) , (1=1,2,....,n+1);
o) =

where H(x(h Y My U) (an v, 0 ) =0 and H(xn+1a Yo s 0 ) G(xn+1a Y, 0
MPS estimators (Denoted by Ocey = (7, ,6)T and Ogpp = (¥,5)7 respec-
tively for the GEV and the GPD) are found by minimizing

n+1

=— ZlogDi(O).

By taking the cumulative density in the estimation, the objective function M (0)
does not collapse for v < 1lasx | u+ % for the GEV or as x | % for the GPD. The
MLE, however, does not have such an advantage There is in probability a solution
© that is asymptotically normal only for v < 1. The strength of MPS over MLE
is demonstrated by the following two theorems

Theorem 3.1. Let Ogcev = (Y0, to,00)T and Ooapp = (Y0,00)T be the true
parameters of the GEV and the GPD respectively. Under reqularity conditions (See
for example: [14])

()Fom<%n2(® @O)—>N<0 E(822> )

00
1 1 1
() Fory = . (i+ 2) = (o + %) 2 0, [(nlogn) 4], and n}(® — @) 2
22 Y Y0
N(0,—E(Zs)™"), where © = (v,0)7;
1 .0 oo\ D . 1 D
(iii) For B <y <1, <,u+ §> — (po + %) — Op(n™7), and n (6 — 0y =

N(o E(S;

) ), where © is as in (ii).
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(iv) For~ > 1, the MLE does not exist.

Theorem 3.2. Under the same conditions as in Theorem 3.1

. 1 1 ~ D 82.[/ -1
F S O —0y) 2 N, —B(Z2H)Y;

() Fory < 5, nd (&= 00) 2 N(O0,~B(5)™);

+

(ii) For v = %) — (po + —) 2 Op[(nlogn)_%], and nz (O — Q) 5

i

(iii) For v > 3 (o +
0?L
00?

Proofs of Theorems 3.1 and 3.2 follow the arguments in [14] and [2] respectively
by checking the conditions therein.

It is obvious that efficient estimators can still be obtained by the MPS for v > %
but not the MLE. From (iii) above, it is clear that the MPS still works while the

MLE fails for v > 1. It seems that it is a fact overlooked by researchers working in
the extreme value literature.

) = (no + 22) B 0p(n), and n2(® — @) B N

(0, —E( )™ 1), where © is as in (ii).

3.2. Moran’s statistic

In the MPS estimation, M(0) is called the Moran’s statistic which can be used as
a test for a goodness-of-fit test. Cheng and Stephens [4] showed that under the null
hypothesis, M (0), being independent of the unknown parameters, has a normal
distribution and a chi-square approximation exists for small samples with mean
and variance approximated respectively by

pn =~ (n+1)log(n+1) — % - m :
and 2 . .
012\4%(71-1-1)(?—1)—5—@.
Define )
Ci1 = pun — (%n)iaM , Oy = (2n)_%ch .
The test statistic is 9
T(é) _ M(G)—l—%k—C’l

Cs

which follows approximately a chi-square distribution of n degrees of freedom under
the null hypothesis. Monte Carlo simulation of the Weibull, the Gamma and the
Normal distributions in [4] showed the accuracy of the test based on T/(6). In the
next section, we provide further evidence supporting the use of MPS for fitting the
extreme value distributions.

4. Simulation study

A set of simulations was performed to evaluate the advantage of the MPS over the
MLE of the GEV and the GPD based on selected parameters for different sample
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sizes n = (10,20, 50). Empirical significance levels of Moran’s statistic were then
considered using X%,a as the benchmark critical value. Finally, data were generated
from an exponential distribution and the cluster maxima of every 30 observations
were fitted to the GEV.

The subroutine DNCONF in the IMSL library was used to minimize a function.
The data analysed in the paper and the Fortran90 programs used in the computa-
tion are available upon request.

We have done extensive simulations to assess the performance of MPS estimators.
Only four simulation results in each combination of v and n are reported. The
location and scale parameter, p = 1 and ¢ = 1, were used throughout. On the
basis of the results from asymptotic normality of the MPS that were presented
in Section 3, we chose a combination of v = (—0.2,0.2,1,1.2) to compare the
estimation performance between the maximum likelihood method and the MPS
where the last two cases should break down for the MLE. 10000 simulations of
sample sizes n = (10,20, 50) were performed. Data were generated from the same
random seed and estimations were performed under the same algorithm. Define the
mean absolute error for the MLE and the MPS respectively by

%}C:)ZT—G)OIT}I and %|(:)ZT—®01T|1-

where ©; and ©; are [ x 1 vectors of the MLE and MPS estimators respectively,
|Y'| means the element-wise absolute value of Y, p is the number of estimated
parameters and [ = 10000 is the number of replications. The mean absolute error
measures the average deviation of estimators from the true parameters and hence
is a measure of robustness. A small mean absolute error is expected.

As suggested by a referee, the MPS was also compared to the method of
probability-weighted moment (PWM)(Hosking et al., [8]) for the GEV model. We
followed Hosking’s approach in his Table 3 and estimated the tail parameter by
Newton-Raphson’s Method. Tables 1 and 2 display the medians of the parameters
in 10000 estimations together with the mean absolute error in bracket. Both the
MPS estimates and the MLESs are in line with the true parameters but MPS tends
to give a closer result for the GEV. It can also be seen that the MPS gives much
more stable estimates than the MLE in general. For v = —0.2 and v = 0.2, the
PWM performed well with slightly smaller mean absolute errors than the MPS.
However, for v = 1 and v = 1.2, the bias of the PWM is rather severe. Note that
some of the mean absolute errors for the MLE are unacceptably large due to serious
outliers of estimated parameters. Non-regularity of the likelihood function caused
occasional non-convergence. The frequency of such problems is reported in Tables 3
and 4. Failures of convergence were detected when the magnitudes of any estimator
in an entry exceeds 100. The failure rates of MLE are relatively higher than those of
MPS. Some estimated parameters of the MLE went up to as high as 500000. This
explains the extremely large mean absolute errors of the MLE. Although there were
failures in MPS, the maximum values were less than 1000, comparably less severe
than the MLE. The PWM has zero failure rates but as mentioned above, it has a
severe bias when + > 1.1t is noticed that the MLEs have smaller mean absolute
error only in cases where sample size is large. However, the MPS estimators have
virtually no fall off in its performance across sample sizes. These are in agreement
with the theoretical results in Theorems 3.1 and 3.2. Overall, the MPS seems to be
the most stable in its performance.

The Moran’s statistic, M (@), has a chi-square distribution with n degrees of free-
dom. Monte Carlo simulations with 10000 observations per entry, each entry with
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TABLE 1
Simulation results of MPS estimates, MLEs and PWM estimates on the GEV. Shown are
medians of estimated parameters from 10000 simulations of sample sizes n = (10, 20, 50).

Numbers in the bracket are mean absolute errors of estimates

277

n True parameters MPS estimates MLEs PWM estimates

Yo Mo a0 8l 4 g 0 4 o v I o
10 —-0.2 1 1 —0.28 0.96 1.06 —0.22 1.09 0.98 —0.15 1.02 0.93
(0.38) (0.30) (0.30) (435) (175) (295) (0.18) (0.29) (0.25)
02 1 1 0.20 0.97 1.09 0.43 0.98 0.84 0.10 0.97 0.88
(0.33) (0.30) (0.27) (117) (69) (104) (0.18) (0.28) (0.20)
1 1 1 1.17 0.98 1.11 1.20 0.78 0.78 0.59 0.89 0.88
(0.53) (0.33) (0.45) (54) (90) (50) (0.42) (0.31) (0.27)
1.2 1 1 1.40 0.99 1.13 1.36 0.77 0.80 0.70 0.87 0.90
(0.90) (0.35) (0.49) (32) (50) (0.26) (0.50) (0.33) (0.31)
20 —0.2 1 1 —0.25 0.97 1.06 —0.26 1.06 1.02 —-0.17 1.01 0.96
(0.20) (0.21) (0.20) (0.69) (0.98) (0.47) (0.14) (0.21) (0.17)
02 1 1 0.20 0.98 1.07 0.25 1.09 1.00 0.14 0.98 0.94
(0.17) (0.20) (0.17) (46) (1.01) (50) (0.13) (0.20) (0.14)
1 1 1 1.10 0.99 1.09 1.18 0.80 0.80 0.77 0.94 0.95
(0.36) (0.24) (0.27) (85) (34) (95) (0.27) (0.21) (0.20)
1.2 1 1 1.33 0.99 1.10 1.35 0.79 0.81 0.92 0.93 0.96
(0.55) (0.26) (0.31) (13) (50) (0.33) (0.32) (0.22) (0.22)
50 —-0.2 1 1 —0.22 0.99 1.04 -0.25 1.02 1.0 —0.18 1.01 0.98
(0.11) (0.13) (0.11) (0.12) (0.13) (0.11) (0.10) (0.13) (0.11)
0.2 1 1 0.20 0.99 1.04 0.20 1.04 1.01 0.18 0.99 0.97
(0.09) (0.13) (0.10) (0.09) (0.13) (0.09) (0.08) (0.13) (0.09)
1 1 1 1.05 0.99 1.05 1.11 0.89 0.88 0.90 0.97 0.98
(0.29) (0.16) (0.16) (50) (50) (0.22) (0.16) (0.13) (0.12)
1.2 1 1 1.27 0.99 1.06 1.29 0.87 0.89 1.08 0.97 0.99
(0.14) (0.12) (0.17) (0.15) (0.15) (0.15) (0.19) (0.13) (0.14)

TABLE 2

Simulation results of MPS estimates and MLEs on the GPD. Shown are medians of estimated
parameters from 10000 simulations of sample sizes n = (10,20, 50). Numbers in the bracket are

mean absolute errors of estimates

n True parameters MPS estimates MLEs
Y0 Ko Y g y I
10 —0.2 1 —0.10(0.48) 0.97(0.44) —0.52(170) 0.80(247)
0.2 1 0.41(0.55) 0.92(0.48) —0.18(7547) 0.99(12347)
1 1 1.33(0.75) 0.86(0.57) 0.72(5304) 1.20(17860)
1.2 1 1.58(0.81) 0.83(0.59) 0.92(3890) 1.17(14582)
20 0.2 1 —0.13(0.26) 0.98(0.28) —0.45(0.27) 0.97(0.28)
0.2 1 0.33(0.31) 0.95(0.31) —0.03(506) 1.06(950)
1 1 1.21(0.46) 0.91(0.37) 0.87(70) 1.08(300)
1.2 1 1.43(0.50) 0.90(0.39) 1.06(10) 1.07(50)
50 0.2 1 —0.15(0.13) 0.98(0.16) —0.38(50) 0.99(24)
0.2 1 0.27(0.18) 0.96(0.21) 0.07(50) 1.02(50)
1 1 1.11(0.26) 0.95(0.23) 0.95(0.23) 1.02(0.24)
1.2 1 1.32(0.28) 0.94(0.24) 1.14(0.25) 1.03(0.25)

sample size n = (10,20,50) were conducted to compute the empirical significant
levels. Again the null distributions were the models under consideration in Tables 1
and 2. It can be seen from Tables 5 and 6 that the empirical sizes for both the GEV
and the GPD are very conservative at small sample sizes n = 10. Improvement was
seen at n = 20. Though slightly conservative, it is acceptable in some applications.

But the results at n = 50 are very good even with vy =1 and v = 1.2.

We have also evaluated the empirical significance level of models having different
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TABLE 3

Failure rate of MPS estimation, mazimum likelihood estimation and PWM estimation for the

GEV Distribution. Tabulated values are the number of outliers per 100 simulated samples

n MPS estimation maximum likelihood estimation PWM estimation
Y0 Y0
-0.2 0.2 1 1.2 -0.2 0.2 1 1.2 -0.2 0.2 1 1.2
10 0.00 0.00 0.03 0.05 2.00 0.77 0.11 0.02 0.00 0.00 0.00 0.00
20 0.00 0.00 0.06 0.11 0.06 0.03 0.04 0.03 0.00 0.00 0.00 0.00
50 0.00 0.00 0.05 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00
TABLE 4

Failure rate of MPS estimation and maximum likelihood estimation for the GPD distribution.
Tabulated values are the number of outliers per 100 simulated samples

n MPS estimation maximum likelihood estimation
Yo Y0
-0.2 0.2 1 1.2 -0.2 0.2 1 1.2
10 0.00 0.00 0.00 0.00 0.05 2.51 3.61 2.94
20 0.00 0.00 0.00 0.00 0.00 0.19 0.06 0.01
50 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00
TABLE 5
Empirical sizes of Moran test statistics on the GEV from 10000 simulations
of sample sizes n = (10,20, 50)
n GEV Models Empirical sizes
Yo MO ao a=0.10 a = 0.05 a=0.01
10 —0.2 1 1 0.0618 0.0270 0.0034
0.2 1 1 0.0580 0.0257 0.0037
1 1 1 0.0592 0.0264 0.0062
1.2 1 1 0.0619 0.0318 0.0115
20 —0.2 1 1 0.0759 0.0337 0.0053
0.2 1 1 0.0783 0.0373 0.0081
1 1 1 0.0785 0.0360 0.0086
1.2 1 1 0.0814 0.0377 0.0089
50 —0.2 1 1 0.0848 0.0408 0.0077
0.2 1 1 0.0906 0.0414 0.0074
1 1 1 0.0890 0.0419 0.0101
1.2 1 1 0.1000 0.0509 0.0143
TABLE 6
Empirical sizes of Moran test statistics on the GPD from 10000 simulations
of sample sizes n = (10,20, 50)
n GPD Models Empirical sizes
Y0 oo a=0.10 a = 0.05 a=0.01
10 -0.20 1 0.0745 0.0326 0.0044
0.20 1 0.0699 0.0326 0.0044
1.00 1 0.0718 0.0326 0.0044
1.20 1 0.0734 0.0326 0.0044
20 -0.20 1 0.0855 0.0394 0.0070
0.20 1 0.0827 0.0374 0.0066
1.00 1 0.0794 0.0375 0.0078
1.20 1 0.0806 0.0377 0.0071
50 -0.20 1 0.0972 0.0474 0.0093
0.20 1 0.0932 0.0452 0.0081
1.00 1 0.0960 0.0471 0.0091
1.20 1 0.0940 0.0477 0.0087
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TABLE 7
GEV parameter estimation by MPS in 10000 simulations of sample sizes n = 10,20, 50. Data
are generated from exponential distributions with X\ = 0.1,0.5,1.0,5.0. Figures shown are 25%,
50% and T75% quantiles of the estimated parameter.

Parameter quantile estimates of GEV

noA 5%y 50%y 7%y  25%ph  50%p 5% 25%5  50%G  75%¢

10 0.1 —0.33 —0.07 0.22 31.51 33.82 36.27 8.33 10.56 12.88
0.5 —0.33 —-0.07 0.21 6.3 6.76 7.25 1.67 2.11 2.58
1.0 —0.33 —-0.07 0.22 3.15 3.38 3.63 0.83 1.06 1.29
5.0 —0.32 —0.04 0.27 0.62 0.68 0.73 0.17 0.22 0.28
20 0.1 —0.18 —0.05 0.11 32.28 33.93 35.65 8.97 10.39 11.79
0.5 —0.19 —0.05 0.11 6.46 6.79 7.13 1.79 2.08 2.36
1.0 -0.19 —0.05 0.11 3.23 3.39 3.57 0.9 1.04 1.18
5.0 -0.19 —0.05 0.11 0.65 0.68 0.71 0.18 0.21 0.24
50 0.1 —0.11 —0.03 0.05 33.01 34.06 35.14 9.33 10.13 10.99
0.5 —0.11 —0.03 0.05 6.6 6.81 7.03 1.87 2.03 2.2
1.0 —0.11 —0.03 0.05 3.3 3.41 3.51 0.93 1.01 1.1
5.0 —-0.11 —0.03 0.05 0.66 0.68 0.70 0.19 0.2 0.22

scale and location parameters. The results did not differ significantly and thus were
not reported here. It seems that the performance of Moran’s statistic was affected
by the sample size rather than the underlying models.

In application, it is common to take cluster maxima in the model fitting of the
GEV. Having shown that the MPS gives stable estimations on data generated from
known models, in the following, fitting the maximum observations in clusters of
size 30 was performed. This experiment mimics the situation that the original data
are daily observations with GEV fitted to the monthly maxima. The aim of this
experiment is to evaluate the stability in the estimation of cluster maxima.

Data z,, ,, were simulated from the exponential distribution

Flz)=1—-e" >0

with A = 0.1,0.5,1.0, 5.0 where n was the sample size of maxima and m = 30 the
size of a cluster. From each cluster, the maximum, max(zy, 1,..., % 30), was taken
and the GEV distributions was fitted to the data by MPS method.

Table 7 shows the estimated parameter quantiles. In the GEV fitting, the tail
estimates fall in a narrow range in the four cases A\ = 0.1,0.5,1.0,5.0. Note that
the medians for & are proportional to the value of A~'. This feature remains stable
across all sample sizes. A similar pattern is also observed for the medians of ji. This
again shows that estimation using MPS is stable and reliable.

5. Real examples

Some real data sets were studied in the literature (Castillo et al., [1]) using the
maximum likelihood method. To illustrate the advantages of the MPS approach, in
this paper, four examples were studied, namely, the age data, the wave data, the
wind data and the flood data. The above four data sets are obtainable in Castillo
et al. [1]. The first example is the oldest age of men at death in Sweden. The
annual oldest ages at death in Sweden from 1905 to 1958 were recorded. The age
data may be used to predict oldest ages at death in the future. The wave data
set contains the yearly maximum heights, in feet. The data could be used in the
design of a breakwater. Then, in the wind data, the yearly maximum wind speed in
miles per hour is considered. A wind speed design for structural building purposes
could be determined from this data set. The last example is the flood data which
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TABLE 8
Estimated GPD parameters by MPS in four examples
Data Threshold 5 1 M(0)
Age 104.01 1.06 2.79 43.01
Wave 17.36 0.01 7.00 45.81
Flood 45.04 —0.03 9.62 60.53
Wind 36.82 —0.88 5.31 46.79
TABLE 9
Estimated GPD parameters by mazimum likelihood method in four examples
Data Threshold 0 1 Log-likelihood
Age 104.01 1.38 3.45 —9.23
Wave 17.36 0.27 7.98 —39.33
Flood 45.04 0.20 10.87 —57.34
Wind 36.82 —0.48 6.52 —47.01
Age Age
107 107
% 106 % 106
é 3
u% 105 - . § 105 1
L]
o
104 104
104 104.5 105 105.5 106 106.5 107 104 105 106 107
Observed Quantile Observed Quantile

(a) (b)

Fic 1. Quantile plots of the age data fitted with the GPD using the MPS (a) and the MLE (b).

consists of the yearly maximum flow discharge, in cubic meters. The data may help
in designing a flood protection device.

In this section, we focus on the GPD with the maximum likelihood method and
the MPS method. The GPD was fitted to the excess over a threshold. The thresholds
were taken from [1]. Fitted parameters are shown in Tables 8 and 9. Note that ¥
and 4 are greater than 1 for the age data. They are less than 1 for the wave, flood
and wind data sets.

5.1. The GPD model for age data

Recall from Theorem 3.1 that the MLE does not exist for v > 1. When the GPD is
fitted to the age data, maximization of the GPD log-likelihood leads to the estimate
(4,6) = (1.38, 3.45) for which the log-likelihood is —9.23. The corresponding values
using MPS are (¥,5) = (1.06,2.79) and M (6) = 43.01. Fig. 1 shows the quantile
plot of the two models fitted by the MPS and the maximum likelihood method
respectively. In each plot, the expected quantile is calculated by

GPD : Qapp = [1— (1- — e (i=1,2 )
cYagrD = nt1 ~ t1=1,4,...,N) .

where @gpp = (7,0)T are estimated parameters either by the MPS or by the
maximum likelihood method.
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The MPS seems to perform better than the MLE. Empirical upper quantiles in
the MPS are closer to that of a straight line. This suggests that the MPS is a better
method in this case.

5.2. GPD model for the wave data, flood data and wind data

The GPD was also considered for the wave data, the flood data and the wind data.
Thresholds for the GPDs were taken as in Castillo et al. [1]. The quantile pots
for the MPS are reported in Fig. 2(a), 2(c) and 2(e) and those for the MLE are

Wave Wave

40 40

35 1 35 4
30 A 20 4

25 4 25

Expected Quantile
(]
Expected Quantile

20 20

15 20 25 30 35 40 15 20 25 30 35 40
Observed Quantile Observed Quantile

(a) (b)

Flood Flood

80 80

Expected Quantile
Expected Quantile

45 50 55 60 65 70 75 80 45 50 55 60 65 70 75 80

Observed Quantile Observed Quantile
(0 ()
Wind Wind
95 A 95 A
© 85 A © 85 A
§ §
s 75 s 75 A °
(<] (<]
8 651 ° B 65
] 8 .
X 551 g 551 .
w ° w
45 4 45 4
35 T T T T T T 35 T T T T T T
35 45 55 65 75 85 95 35 45 55 65 75 85 95
Observed Quantile Observed Quantile
(e) ®

F1c 2. Quantile plots of the wave data ((a) and (b)), the flood data ((c) and (d)) and the wind
data ((e) and (f)) fitted with the GPD. The expected quantiles of (a), (c¢) and (e) were based on
the MPS. The expected quantiles of (b), (d) and (f) were based on the MLE.
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reported in Fig. 2(b), 2(d) and 2(f). With reference to Fig. 2(a), 2(c) and 2(e),
it can be seen that empirical quantiles based on the MPS keep close to the fitted
model’s. However, in Fig. 2(b), 2(d) and 2(f), plots of the upper quantiles based on
the MLE seem to deviate more from a straight line. This suggests that the MPS
gives a better fit to the data.

6. Conclusion and discussion

In extreme value analysis, one technical problem is the lack of data owing to the
fact that only extreme observations are used for model fitting. Subject to this
constraint, a method that is able to give stable estimates is highly desirable. Juarez
and Schucany [9] have demonstrated the instability of the influence curve of the
MLE at small sample sizes. This is in agreement with the presented simulation
results. In contrast, the MPS works satisfactorily. Not only does the MPS yield
closer estimates from data generated from a known parameter set, it also keeps
performing stably for data maxima taken from clusters. It also works well under
v > 1 whereas the MLE does not. In addition to MPS’s simple formulation and
execution, its by-product, the Moran’s statistic, is shown to perform well in checking
the goodness of fit. The MPS could potentially be one of the best methods in fitting
extreme value distributions. On the other hand, it has been shown in [2] that the
MPS is a function of sufficient statistics. Extension to multivariate problems using
MPS is also going to be explored.
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Abstract: We consider the Gittins index for a normal distribution with un-
known mean 6 and known variance where 6 has a normal prior. In addition
to presenting some monotonicity properties of the Gittins index, we derive an
approximation to the Gittins index by embedding the (discrete-time) normal
setting into the continuous-time Wiener process setting in which the Gittins
index is determined by the stopping boundary for an optimal stopping prob-
lem. By an application of Chernoff’s continuity correction in optimal stopping,
the approximation includes a correction term which accounts for the difference
between the discrete and continuous-time stopping boundaries. Numerical re-
sults are also given to assess the performance of this simple approximation.

1. Introduction

The classical multi-armed bandit problem is concerned with sequential design of
adaptive sampling from k statistical populations with distribution functions Fy,,
i=1,...,k (k> 2) where 6; denotes the unknown parameter of the ith population.
Specifically, the objective is to sample Y7, Y5, . .. sequentially from the k& populations
so as to maximize the expected total discounted reward

ErEy,....0, <Z%’Yj> = /Eal,...,ek (Z%’Yj)dﬂ(@b---,@k%
j=1 j=1

where 7 is the prior distribution of (61, ..., 6;) and {~;} is a (deterministic) discount
sequence. The two most important types of discount sequence are uniform discount-
ing with finite horizon N > 0 (i.e. v, =1 for j < N and 7; = 0 for j > N) and
geometric discounting with discount factor 0 < 8 < 1 (ie. v; = 371,57 =1,2,...).
While in general the optimal allocation rule can only be characterized via the
dynamic programming equations which admit no general closed-form solutions,
Gittins and Jones [13] showed that under geometric discounting, when the prior
distribution is a product measure dmw(61,...,0,) = dm(01) X -+ X dmi(0), the
optimal allocation rule is to sample at each stage from the population with the
greatest (current) Gittins index. See also [11] and [21].

For a population with distribution function Fp and (current) prior distribution
7(0) of the unknown parameter 0, the Gittins index is defined by

0 gl e )

§> n=1 n=1
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where the supremum is taken over all (integer-valued) stopping times & > 1 and

X1, X5, ... are (conditionally) iid with common distribution function Fy (given ).

Equivalently, \(m, 3) is the infimum of the set of solutions A of the equation

(2) A E.E iﬁ”‘lX + B¢ A
T 5 — Sup Lug L9 n PR
1-8 ¢>o0 1-p

In [12], computational methods for calculating Gittins indices are described and
applied to the normal, Bernoulli and negative exponential families with conjugate
priors, which involve using backward induction to approximate the right-hand side
of (2) with the supremum over £ > 0 replaced by the supremum over 0 < £ < N for
some large horizon N. For § close to 1, such computational methods become time
consuming as a very large horizon N is required to yield an accurate approximation.
Thus it will be useful to have accurate analytic approximations to Gittins indices
especially for 3 close to 1.

In this paper, we consider the normal case with unknown mean # and known vari-
ance where 6 has a normal (conjugate) prior. Section 2 presents some monotonicity
properties of the Gittins index. In particular, it is shown that the Gittins index is
a nondecreasing function of the prior variance. In Section 3, a corrected diffusion
approximation to the Gittins index is derived by embedding the (discrete-time)
normal setting into the continuous-time Wiener process setting in which the Git-
tins index is determined by the stopping boundary for an optimal stopping problem
(first introduced in [2]). By an application of Chernoff’s continuity correction, the
approximation includes a correction term which accounts for the difference between
the discrete and continuous-time stopping boundaries. Numerical results are also
given to assess the performance of this simple approximation. To prepare for the
derivations, Sections 3.1 and 3.2 briefly review, respectively, some properties of the
Gittins index for a Wiener process and Chernoff’s continuity correction in optimal
stopping.

The monograph of Gittins [12] provides a comprehensive theory of dynamic
allocation indices and explores the class of problems whose optimal solutions can be
characterized by dynamic allocation indices. On the other hand, Lai [17] and Chang
and Lai [6] have proposed simple index-type adaptive allocation rules that are
asymptotically optimal in both the Bayes and frequentist senses either as N — oo
(under uniform discounting) or as  — 1 (under geometric discounting). Brezzi
and Lai [5] have recently refined and modified these adaptive allocation rules in the
presence of switching costs, while Hu and Wei [15] have constructed asymptotically
optimal adaptive allocation rules subject to the irreversibility constraint. Various
applications of the theory of multi-armed bandits can be found in sequential clinical
trials, market pricing, labor markets and search problems; see e.g. [1, 8, 16, 19, 20].

n=1

2. Some monotonicity properties of the Gittins index for a normal
reward process

In this section, we consider the case that X1, X, ... are (conditionally) iid N (6, 02),
the unknown mean @ has a prior 7 = N (u,v) and the variance o2 is known. The Git-
tins index is denoted by A (u,v, 0% 3). By location and scale equivariance properties
(cf. [12], Section 6.4),

(3) A(u,v,aQ,ﬁ) =u+rA(0, v/rz, 02/7“2, B)

for r > 0.
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Lemma 1. The Gittins index \ (u,v, 02, 3) is nonincreasing in o>.

Proof. We prove the lemma by a simple randomization argument. Fix 0 < 0% < 3.
Let X1, Xo,... be (conditionally) iid N(6,0?) given 6, which is assumed to have
a prior m = N(u,v). Let €1, €a,... be iid N(0, 02 — 0?) (independent of the X;).
Then X{ = X1 + €1, X5 = Xo+€2,... are (conditionally) iid N(6,03) given . For
any stopping time £’ > 1 with respect to the filtration F’ generated by X1, X%,...,
we have

¢ g’ oo
ErEg )y ("X, =ExEp ) 0" 'Xu+ BBy ) " ' enligzn
n=1 n=1 n=1
5/
=E.Ey » "' X
n=1

Since every stopping time & with respect to F' may be viewed as a randomized
stopping time with respect to F (the filtration generated by X, Xs,...), it follows
that

¢ ¢
Moo, 6) = sup BB Y 00X ) [ B3 )
n=1 n=1

§>1
3 3
< swp B, B30 %, ) [ BB (3 )
£21 n=1 n=1
= A(/LL7 /U’ 0’%7/6) Y
completing the proof. O

Theorem 1. \ (0, v, 02, 3)/\/v is nondecreasing in v.
Proof. For fixed 0 < vy < v, it follows from (3) and Lemma 1 that

A0, va, 0%, B) = \/va/v1 M0, v1, 0% vy /v2, B)
< V /UQ/Ul )\<07 V1, 027 B)?

completing the proof. O
Corollary 1. \(u, v, 02, 8) = u + X0, v, 02, B) is nondecreasing in u and v.

Remark 1. For the Wiener process setting, Bather [2] proved a result analogous
to Theorem 1 (see (7) and (8) below).

Remark 2. For a normal two-armed bandit in which the means of arms 1 and
2 have independent normal priors N (uj,v1) and N(ug,v2) and their variances are
known and equal, it follows from Corollary 1 that under geometric discounting,
it is optimal to pull arm 1 initially if u; > us and vy > vs. It seems natural to
conjecture that the same also holds under uniform discounting. Note that Berry [3]
made a similar conjecture regarding a Bernoulli two-armed bandit, which has not
been resolved (cf. [4], Section 7.3).

Remark 3. Along the lines of the proof of Theorem 1, it can be readily shown

that
A0, vi, o1, B)/vo1 = A0, v, 03, B)/\/v2
if v1 > vo and v1/0? > ve/03. Note that for a normal distribution N(6,02) where

6 has a normal prior N(0,v), v/0? may be referred to as the signal-to-noise ratio
since v is the second moment of the “signal” 6.
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3. Corrected diffusion approximation to the Gittins index for a normal
reward process

In Section 3.3, we derive an approximation to the Gittins index for a normal distrib-
ution whose mean is assumed to have a normal prior. To prepare for the derivations,
we briefly review, in Sections 3.1 and 3.2, some properties of the Gittins index for
a Wiener process and Chernoff’s continuity correction in optimal stopping.

3.1. Properties of the Gittins index for a Wiener process

Bather [2] showed that for a Wiener process {W(t),t > 0} with drift coefficient
6 which has a normal prior N(ug,vo), the Gittins index \*(ug,vg,c) can be de-
termined by the solution to an optimal stopping problem (to be described below)
where ¢ > 0 denotes the discount rate in continuous time (see also [6] and Section
6.6 of [12]). Here A*(ug, v, c) is defined as the infimum of the set of solutions A of
the equation (cf. (2))

)\/ e “tdt = sup E, Fy [/ e_CtdW(t)—{—)\/ e_Ctdt]
0 720 0 T
= sup F, [/ He_Ctdt+)\/ e‘“dt}
>0 0 pa

= sup E, [/ u(t) e_CtdzH—/\/ e_Ctdt]
720 0 T

= sup E, {c_luo — ¢t (u(T) — )\)e_”] ,

7>0

where the supremum is taken over all (real-valued) stopping times 7 > 0, 7 =
N (ug,vp) is the prior distribution of 8, and w(t) is the posterior mean of 0, i.e.

vy tug + W(t)

(5) u(t)= B[] W(s), 0<s<t] = 00T

The last equality in (4) follows from integration by parts along with the fact that a
simple change of time transforms u into standard Brownian motion, cf. Y (v) below.
Define

v=u(t) = (vg " +1t)"! (the posterior variance), s =v/c,
Y (v) =up —u(t), and Z(s) =Y (cs)/\/c.

It can be readily shown that {Y'(v), 0 < v < vy} is standard Brownian motion
(Y(vg) = 0) in the —v scale and {Z(s), 0 < s < s} (so = vo/c) is standard
Brownian motion ( Z(sp) = 0) in the —s scale. Letting zo = (A —ug)/+/c, it follows
that (4) is equivalent to

(6) ze /%= sup E [{Z(S) + 20} 6_1/5]
0<S <sgp

in the sense that A is a solution of (4) if and only if zg = (A — ug)/+/c is a solution
of (6), where the supremum on the right-hand side of (6) is taken over all stopping
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times 0 < S < 50 (in the —s scale). It is more convenient to remove the restriction
of Z(sp) = 0 and rewrite (6) as

(6") e /0= sup E [Z(S) e Y9 Z(so) = zo} :
0<S <so

For the optimal stopping problem with payoff function g(z,s) = ze~ /% on the
right-hand side of (6'), it is easily shown that the continuation region is of the form
{(2,s) : z < b(s)} where b(s) > 0 is the optimal stopping boundary. Since zg is a
solution of (6') if and only if (zg, sg) is in the stopping region (i.e. zo > b(sg)), it
follows that A*(ug, vg, ¢), the infimum of the set of solutions A of the equation (4),
satisfies b(so) = (A*(uo, vo,¢) —uo) /¢, i.e.

(7) X*(ug, vg,¢) = ug + e b(so) = ug + v/eb(vg/c).
Bather [2] showed that

(8) b(s)/+/s is a nondecreasing function of s,

9) b(s) < s/v/2 forall s >0, and ;ii)i%b(s)/s:l/\/ﬁ,

while Chang and Lai [6] derived the asymptotic expansion as s — 0o

1 1 1/2
(10) b(s) = {23 [logs ~3 loglog s — 3 log 167 + 0(1)] } .

Based on (8)—(10) together with extensive numerical work (involving corrected
Bernoulli random walk approximations for Brownian motion), Brezzi and Lai [5]
have suggested the following closed-form approximation W(s) to b(s)/+/s

(

s/2 for s < 0.2,
0.49 — 0.11 s~ 1/2 for 0.2 <s<1,
a2 gy = 0630265717 for 1<s<5,
Vs 0.77 — 0.58 s—1/2 for 5 < s <15,
1/2
\ {210gs — loglog s — log 1671'} for s > 15.

3.2. Chernoff’s continuity correction in optimal stopping

In his pioneering work, Chernoff [7] studied the relationship between the solutions of
the discrete and continuous-time versions of the problem of testing sequentially the
sign of the mean of a normal distribution. His result may be stated more generally
as follows. Let {B(t)} be standard Brownian motion and let g(x,t) be a smooth
payoff function for t < T' (horizon) for which the continuation region is of the form
{(z,t) : = < b(t)}. Consider a constrained optimal stopping problem where stopping
is permitted only at nd, n = 1,2,... where J is a given (small) positive number.
Suppose that there exist stopping boundary points bs(nd), n = 1,2,... such that
starting from B(ngd) = xo for any given ng and zg, the optimal stopping rule is to
stop at the first n > ng at which B(nd) > bs(nd). So bs(nd) (or b(t), resp.) is the
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discrete-time (or continuous-time, resp.) stopping boundary for the constrained (or
unconstrained, resp.) optimal stopping problem. Then for fixed t < T', we have

(12) bs(t) = b(t) — pVo + o(V6) asd—0,

where bs(t) = bs([t/5]6), p = ES?, /2ES, =~ 0583, 7, = inf{n : S, > 0},
Sp=X1+ -+ X, and the X; are iidd N(0,1).

Chernoff [7] derived (12) by relating the original problem to an associated stop-
ping problem in which there is a horizon at t = 0 and the payoff function is g(x,t) =
—t+ x2 1{z<0,t=0}, t < 0. For the associated stopping problem, stopping is permit-
ted at 0,—1,—2,..., and there exist stopping boundary points b_1 > b_o > ---
such that starting from (xg,ng) with ng < 0, the optimal stopping rule is to stop
at the first ng < n < 0 at which

$0+X1+"'+Xn_n0 Z bn (bo = —OO).
Chernoff [7] and subsequently Chernoff and Petkau [9] and Hogan [14] showed that
lim b, = —ESE+ /2ES;,

n——0oo

for normal, Bernoulli and general X (with finite fourth moment), respectively. Re-
cently, under mild growth conditions on g, Lai, Yao and AitSahlia [18] have proved
(12) when the Brownian motion process is replaced by a general random walk in
the constrained problem.

3.3. Approximating the Gittins index for a normal reward process

In this subsection, we consider the case that X;,Xs,... are (conditionally) iid
N(6,0%) and the unknown mean 6 has a prior m = N (ug, vg). Without loss of gen-
erality, we assume o2 = 1. For notational simplicity, the Gittins index A(ug, vo, 1, 3)
will be abbreviated to A(ug, vg, 3). Recall that \(ug, vg, 3) is the infimum of the set
of solutions A of the equation (2). As in Section 3.1, let {WW(¢),t > 0} be a Wiener
process with drift coefficient # which has a normal prior N(ug,vp). Noting that
(X1,X2,...)and (W (1), W(2) =W (1),...) have the same joint distribution, we can
rewrite (2) as

AN EﬁEa[Zﬁn_l(W(”) —W(n- 1)) + ﬁﬁL]

1—5 £>0 ne1 1_ﬁ

= sup E, {iﬁ”lu(n—l)—l—ﬁfL}

exo  Li 1-5

g

B c et e A
_gsg%Eﬁ[l_ﬁ Ou(t)e dt—l—ﬂ—l_ﬂ]
— 1 —c§
— 1_ﬁ£5121p())E7T [uo—(u(g)—)\)e ],

where u(t) is given in (5), ¢ = —log § and the third equality follows since

E[l Cﬁ u(t) e Lyespy dt | W(s), Ogsgn—l}
- n—1
c

=71 1{£>n}/ u(n —1) e~ dt = " u(n —1)1{gzny -
1 ﬁ n—1
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With the notation introduced in Section 3.1, we can further rewrite (2) as

A—ug = sup ZE{(A——u0+¥Y(V))e_CVH””o{
Ve{vo/(14+von) ,n=0,1,...}

where the supremum is taken over all stopping times V' taking values in {vg/(1 +
von), n = 0,1,...}. In terms of Brownian motion Z(s) in the —s scale, (2) is
equivalent to

(13)  zpe /%0 = sup E{Z(S) e VS| Z(sy) = zo}
Se{ctvo/(14+von),n=0,1,...}

where zg = (A — ug)/+/c, so = vp/c and the supremum is taken over all stopping
times S taking values in {¢™1vg/(1 +von), n =0,1,...}.

For the constrained optimal stopping problem on the right-hand side of (13),
there exist optimal stopping boundary points b, (c_lvo / (1+von)), n=20,1,...such
that the optimal stopping rule is to stop at the first n at which Z (¢ vo/(1+von)) >
bue (¢ v/ (1 4 von)). So by, (vo/c) is the infimum of the set of solutions zo of the
equation (13). It then follows that

(14) AMug, vo, B) = ug + v/¢ by, (vo/c) .

Since in the constrained optimal stopping problem the permissible stopping time
points ¢!y /(1 + von), n = 0,1,2,... are not equally spaced, there is no rigorous
justification for applying (12) to relate the discrete and continuous-time stopping
boundaries b,,(t) and b(t) for the constrained and unconstrained problems. How-
ever, it can be argued heuristically that (12) applies when the spacing between
many successive permissible stopping time points is approximately constant ( cf.
bottom of page 47 in [10]). Thus we arrive at the following approximation

(15) by, (V0/¢) = bvg/c) — 0.583v/8
where
(16) 5 c_lvo c_lvo o c_lvg

T 1400 14wv-1 14w’

provided that vg/c is bounded away from 0 (the horizon of the optimal stopping
-1 -1

f+v§% - 1+fjo(:z)0+1

expect the approximation (15) to be reasonably good if vy is small and vy /c is not

too close to 0. It follows from (14), (15), (16) and (11) that

)\(uo,vo,ﬂ) ~ ug ++v/cb(vg/c) — 0.5831)0/\/1 + g
uo + /vo Y(vo/c) — 0.583110/\/1 + g .

problem) and ¢ ~ ) for many (small to moderate) n’s. That is, we

Q

(17)

Note that the continuation region for the constrained problem must be con-
tained in the continuation region for the unconstrained problem, so that b, (vg/c) <
b(vo/c). Thus the uncorrected diffusion approximation ug++/cb(vg/c) overestimates
A(ug, vo, B) = ug + /¢ by, (vo/c), which is recorded in the following theorem.

Theorem 2. \(ug,vo,3) < ug + /¢ b(vg/c) where ¢ =log 37 1.
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A related upper bound for A\(ug, vy, 3) is given in Theorem 6.28 of Gittins [12],
which states, in our notation, that

(18) AMug, vo, 8) < ug+ /1= blvg/(1—0)).

Since b(s)/+/s is nondecreasing in s by (8) and since ¢ = log 37! > 1 — 3, we have

Ve b(vo/e) < /1= B blvo/(1=B)),

so that the upper bound given in Theorem 2 is sharper than (18).
In the approximation (15), the correction term 0.583v/§ with & given in (16)

appears to be a little too large since the spacing between successive permissible
-1 -1

10—5—11321 o 1+(;0(511)
pensate for this overcorrection, we propose (in view of (9)) to replace b(vg/c) by

(vo/c)/v/2 in (15), resulting in the following simple approximation

stopping time points is strictly less than  for n > 1. To com-

(19) (o, vo, B) & ug + v0/V2¢ — 0.583 v /v/I + vg -

Note that (19) agrees with (17) for vg/c < 0.2 in view of (11).

In his Table 1, Gittins [12] tabulates n(1 — 8)/2X(0,n~', 3) for various values
of n and 3. Our Table 1 compares n(1 — 3)/2X\(0,n~1, 3) with the corrected and
uncorrected approximations (based on (17) and (19) )

L1 05837
(CA) n(1—5)2{%‘1’(ﬁ) m}
—(1- 9 |Vav(E) - ]

w(L)=(1-@2vau(l),
1 0.583 }

Remark 4. As explained earlier, the uncorrected approximations have positive bias
due to overestimation. The corrected approximations are reasonably accurate for
moderate to large n and for large 3. For moderate n, (CA) (or (CA’), resp.) tends
to underestimate (or overestimate, resp.) n(1 — 3)/2 X(0,n~', 3). This observation
naturally leads to approximating n(1 — 8)/2A(0,n~!, 3) by the average of (CA)
and (CA’), which is also included in Table 1. Overall, [(CA) + (CA’)]/2 has the
best performance, while (CA’) is better than (CA) except for small n and large (.

Remark 5. Table 1 of Gittins [12] suggests that n(1 — 8)/2X(0,n~1,3) is in-
creasing in n. For g = 0.5,0.6,0.7,0.8,0.9,0.95, Gittins has numerically estimated
lim,, o0 7(1 — B3)Y/2X(0,n~1, 3). These numbers are compared in Table 2 with the
limits (1 — B)Y/2[(2¢)~%/2 —0.583] (or (1 — 3)'/2/(2c)}/2, resp.) obtained from the
corrected approximations (CA) and (CA’) (or uncorrected approximations (UA)
and (UA’), resp.) as n — oo. It should be noted that the heuristic justification for
the corrected approximations requires vo/c = 1/(n c¢) not to be very close to 0.
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TABLE 1
Gittins indices and approxrimations

(8=0.5,0.7, 0.9, 0.95, 0.99, 0.995)

n

10 50 100 500 1000

£=0.5

n(l —B)1/2X0,n~1,6) 0211 0.224 0226 0227 0.227
[(CA) + (CA")]/2 0.208 0.192 0.190 0.189 0.189
(CA) 0.208 0.192 0.190 0.189 0.189
(CA") 0.208 0.192 0.190 0.189 0.189
(UA) 0.601 0.601 0.601 0.601 0.601
(UA") 0.601 0.601 0.601 0.601 0.601
B=0.7

n(l—B)1/2X0,n~1,8) 0.311 0.337 0.341 0.344 0.345
[(CA) + (CA)]/2 0.264 0.332 0.331 0.329 0.329
(CA) 0.184 0.332 0.331 0.329 0.329
(CA") 0.344 0.332 0.331 0.329 0.329
(UA) 0.489 0.648 0.648 0.648 0.648
(UA") 0.648 0.648 0.648 0.648 0.648
B=0.9

n(1—B)Y2X0,n"1,3) 0415 0480 0493 0.504 0.506
[(CA) + (CA)]/2 0.357 0.506 0.505 0.505 0.505
(CA) 0.201  0.506 0.505 0.505 0.505
(CA") 0.513 0.506 0.505 0.505 0.505
(UA) 0.377 0.689 0.689 0.689 0.689
(UA") 0.689 0.689 0.689 0.689 0.689
£6=0.95

n(l—B)Y2X0,n~1,8) 0425 0519 0.540 0.562 0.566
[(CA)+ (CA")]/2 0.382 0.468 0.568 0.568 0.568
(CA) 0.190 0.367 0.568 0.568 0.568
(CA") 0.574 0.569 0.568 0.568 0.568
(UA) 0.314 0.496 0.698 0.698 0.698
(UA") 0.698 0.698 0.698 0.698 0.698
B=0.99

n(l —B)1/2X0,n"1,3) 0.353 0.499 0.549 0.618 0.633
[(CA) + (CA")]/2 0.390 0.453 0.485 0.647  0.647
(CA) 0.130 0.257 0.322 0.647 0.647
(CA") 0.650 0.648 0.647 0.647  0.647
(UA) 0.185 0.315 0.380 0.705 0.705
(UA") 0.705 0.705 0.705 0.705 0.705
B=0.995

n(l —B)1/2X0,n=1,3) 0.304 0.457 0516 0.614 0.638
[(CA) + (CA)]/2 0.424 0.437 0.470 0.562 0.665
(CA) 0.181 0.209 0.274 0.458 0.665
(CA") 0.667 0.665 0.665 0.665 0.665
(UA) 0.221 0.250 0.315 0.499 0.706
(UA") 0.706  0.706 0.706 0.706 0.706

Remark 6. Brezzi and Lai [5] have proposed a simple approximation to Gittins
indices for general distributions which is justified by making use of the functional
central limit theorem as 8 — 1. For Bernoulli distributions (with beta conjugate
priors), their approximation provides fairly accurate results. When applied to nor-
mal distributions, their approximation reduces to the uncorrected approximation
(UA). It will be of great interest to see whether and how Chernoft’s continuity
correction can apply to approximate Gittins indices for nonnormal distributions.
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TABLE 2
The limits of Gittins indices and approrimations
8 limy,— o0 n(1 — B)/2X(0,n~1,8) (CA) and (CA’) (UA) and (UA')
0.5 0.227 0.189 0.601
0.6 0.283 0.257 0.626
0.7 0.345 0.329 0.648
0.8 0.417 0.409 0.669
0.9 0.509 0.505 0.689
0.95 0.583 0.568 0.698
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