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Preface

A major research area of Ching-Zong Wei (1949–2004) was time series models and

their applications in econometrics and engineering, to which he made many impor-

tant contributions. A conference on time series and related topics in memory of him

was held on December 12–14, 2005, at Academia Sinica in Taipei, where he was

Director of the Institute of Statistical Science from 1993 to 1999. Of the forty-two

speakers at the conference, twenty contributed to this volume. These papers are

listed under the following three headings.

1. Estimation and prediction in time series models

Breidt, Davis, Hsu and Rosenblatt consider estimation of the unknown moving

average parameter θ in an MA(1) model when θ = 1, and derive the limiting

pile-up probabilities P (θ̂ = 1) and 1/n-asymptotics for the Laplace likelihood es-

timator θ̂. Cantor and Findley introduce a recursive estimator for θ in a possibly

misspecified MA(1) model and obtain convergence results by approximating the

recursive algorithm for the estimator by a Robbins–Monro-type stochastic approx-

imation scheme. Giurcǎneanu and Rissanen consider estimation of the order of AR

and ARMA models by stochastic complexity, which is the negative logarithm of

a normalized maximum likelihood universal density function. Nielsen investigates

estimation of the order in general vector autoregressive models and shows that

likelihood-based information criteria, and likelihood ratio tests and residual-based

tests can be used, regardless of whether the characteristic roots are inside, or on,

or outside the unit disk, and also in the presence of deterministic terms. Instead

of model selection, Pötscher considers model averaging in linear regression models,

and derives the finite-sample and asymptotic distributions of model averaging esti-

mators. Robinson derives the asymptotic properties of conditional-sum-of squares

estimates in parametric models of stationary time series with long memory. Ing

and Sin consider the final prediction error and the accumulated prediction error

of the adaptive least squares predictor in stochastic regression models with non-

stationary regressors. The paper by Lin and Wei, which was in preparation when

Ching-Zong was still healthy, investigates the adaptive least squares predictor in

unit-root nonstationary processes.

2. Time series modeling in finance, macroeconomics and other

applications

Aston considers criteria for deciding when and where heavy-tailed models should be

used for macroeconomic time series, especially those in which outliers are present.

Hsiao reviews nonstationary time series analysis from the perspective of the Cowles

Commission structural equation approach, and shows that the same rank condi-

tion for identification holds for both stationary and nonstationary time series, that

certain instrumental variables are needed for consistent parameter estimation, and

that classical instrumental-variable estimators have to be modified for valid infer-

ence in the presence of unit roots. Chan and Ng investigate option pricing when

vii
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the volatility of the underlying asset follows a fractional version of the CEV (con-

stant elasticity of variance) model. Ho considers linear process models, with a latent

long-memory volatility component, for asset returns and provides asymptotically

normal estimates, with a slower convergence rate than 1/
√

n, of the Sharpe ratios

in these investment models. Tsay reviews some commonly used models for the time-

varying multivariate volatility of k (≥ 2) assets and proposes a simple parsimonious

approach that satisfies positive definite constraints on the time-varying correlation

matrix. Lai and Wong propose a new approach to time series modeling that com-

bines subject-matter knowledge of the system dynamics with statistical techniques

in time series analysis and regression, and apply this approach to American option

pricing and the Canadian lynx data.

3. Related topics

Besides time series analysis, Ching-Zong also made important contributions to the

multi-armed bandit problem, estimation in branching processes with immigration,

stochastic approximation, adaptive control and limit theorems in probability, and

had an active interest in the closely related areas of experimental design, stochastic

control and estimation in non-regular and non-ergodic models. The paper by Chan,

Fu and Hu uses the multi-armed bandit problem with precedence relations to an-

alyze a multi-phase management problem and thereby establishes the asymptotic

optimality of certain strategies. Yao develops an approximation to Gittins index

in the discounted multi-armed bandit problem by using a continuity correction in

an associated optional stopping problem. Chen and Xia describe Stein’s method

for Poisson approximation and for Poisson process approximation from the points

of view of immigration-death processes and Palm distributions. Cheng, Wu and

Huwang propose a new approach, which is based on a response surface model, to

the analysis of experiments that use the technique of sliding levels to treat related

factors, and demonstrate the superiority of this approach over previous methods in

the literature. Chiang, Sheu and Shiu formulate the valuation problem of a finan-

cial derivative in markets with transaction costs as a stochastic control problem and

consider optimization of expected utility by using the price systems for these mar-

kets. Wong and Li propose to use the maximum product of spacings (MPS) method

for parameter estimation in the GEV (generalized extreme value) family and the

generalized Pareto family of distributions, and show that the MPS estimates are

asymptotically efficient and can outperform the maximum likelihood estimates.

We thank the Institute of Statistical Science of Academia Sinica for providing

financial support for the conference. Special thanks also go to the referees who

reviewed the manuscripts. A biographical sketch of Ching-Zong and a bibliography

of his publications appear after this Preface.

Hwai-Chung Ho

Ching-Kang Ing

Tze Leung Lai



Biographical sketch

Ching-Zong Wei was born in 1949 in south Taiwan. He studied mathematics at

National Tsing-Hua University, Taiwan, where he earned a BS degree in 1971 and

an MS degree in 1973. He went to the United States in 1976 to pursue advanced

studies in statistics at Columbia University, where he earned a PhD degree in 1980.

He then joined the Department of Mathematics at the University of Maryland,

College Park, as an Assistant Professor in 1980, and was promoted to Associate

Professor in 1984 and Full Professor in 1988. In 1990 he returned to Taiwan, his

beloved homeland, to join the Institute of Statistical Science at Academia Sinica,

where he stayed as Research Fellow for the rest of his life, serving between 1993

and 1999 as Director of the Institute. He also held a joint appointment with the

Department of Mathematics at National Taiwan University.

In addition to his research and administrative work at Academia Sinica, Ching-

Zong also made important contributions to statistical education in Taiwan. To

promote statistical thinking among the general public, he published in local news-

papers and magazines articles on various topics of general interest such as lottery

games and the Bible code. These articles, written in Chinese, introduced basic sta-

tistical and probabilistic concepts in a heuristic and reader-friendly manner via

entertaining stories, without formal statistical jargon.

Ching-Zong made fundamental contributions to stochastic regression, adaptive

control, nonstationary time series, model selection and sequential design. In par-

ticular, his pioneering works on (i) strong consistency of least squares estimates

in stochastic regression models, (ii) asymptotic behavior of least squares estimates

in unstable autoregressive models, and (iii) predictive least squares principles in

model selection, have been influential in control engineering, econometrics and time

series. A more detailed description of his work appears in the Bibliography. He was

elected Fellow of the Institute of Mathematical Statistics in 1989, and served as an

Associate Editor of the Annals of Statistics (1987–1993) and Statistic Sinica (1991–

1999). In 1999, when Ching-Zong was at the prime of his career, he was diagnosed

with brain tumors. He recovered well after the first surgery and remained active in

research and education. In 2002, he underwent a second surgery after recurrence

of the tumors, which caused deterioration of his vision. He continued his work and

courageous fight with brain tumors and passed away on November 18, 2004, after

an unsuccessful third surgery. He was survived by his wife of close to 30 years,

Mei, and a daughter. In recognition of his path-breaking contributions, Vol. 16 of

Statistica Sinica contains a special memorial section dedicated to him.
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Pile-up probabilities for the Laplace

likelihood estimator of a non-invertible

first order moving average
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and Murray Rosenblatt 3

Colorado State University, National Tsing-Hua University and

University of California at San Diego

Abstract: The first-order moving average model or MA(1) is given by Xt =

Zt − θ0Zt−1, with independent and identically distributed {Zt}. This is ar-

guably the simplest time series model that one can write down. The MA(1)

with unit root (θ0 = 1) arises naturally in a variety of time series applications.

For example, if an underlying time series consists of a linear trend plus white

noise errors, then the differenced series is an MA(1) with unit root. In such

cases, testing for a unit root of the differenced series is equivalent to testing

the adequacy of the trend plus noise model. The unit root problem also arises

naturally in a signal plus noise model in which the signal is modeled as a ran-

dom walk. The differenced series follows a MA(1) model and has a unit root

if and only if the random walk signal is in fact a constant.

The asymptotic theory of various estimators based on Gaussian likeli-

hood has been developed for the unit root case and nearly unit root case

(θ = 1+β/n, β ≤ 0). Unlike standard 1/
√

n-asymptotics, these estimation pro-

cedures have 1/n-asymptotics and a so-called pile-up effect, in which P(θ̂ = 1)

converges to a positive value. One explanation for this pile-up phenomenon

is the lack of identifiability of θ in the Gaussian case. That is, the Gaussian

likelihood has the same value for the two sets of parameter values (θ, σ2
) and

(1/θ, θ2σ2
). It follows that θ = 1 is always a critical point of the likelihood

function. In contrast, for non-Gaussian noise, θ is identifiable for all real values.

Hence it is no longer clear whether or not the same pile-up phenomenon will

persist in the non-Gaussian case. In this paper, we focus on limiting pile-up

probabilities for estimates of θ0 based on a Laplace likelihood. In some cases,

these estimates can be viewed as Least Absolute Deviation (LAD) estimates.

Simulation results illustrate the limit theory.

1. Introduction

The moving average model of order one (MA(1)) given by

(1.1) Xt = Zt − θ0Zt−1,
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where {Zt} is a sequence of independent and identically distributed random vari-

ables with mean 0 and variance σ2
, is one of the simplest models in time series.

The MA(1) model is invertible if and only if |θ0| < 1, since in this case Zt can be

represented explicitly in terms of past values of the Xt, i.e.,

Zt =

∞
∑

j=0

θj
0Xt−j .

Under this invertibility constraint, standard estimation procedures that produce

asymptotically normal estimates are readily available. For example, if θ̂ represents

the maximum likelihood estimator, found by maximizing the Gaussian likelihood

based on the data X1, . . . , Xn, then it is well known (see Brockwell and Davis [3]),

that

(1.2)
√

n(θ̂ − θ0)
d
→ N(0, 1 − θ2

0) .

From the form of the limiting variance in (1.2), the asymptotic behavior of θ̂, let

alone the scaling, is not immediately clear in the unit root case corresponding to

θ0 = 1.

In the Gaussian case, the parameters θ0 and σ2
are not identifiable without the

constraint |θ0| ≤ 1. In particular, the profile Gaussian log-likelihood, obtained by

concentrating out the variance parameter, satisfies

L(θ) = L(1/θ) .

It follows that θ = 1 is a critical value of the profile likelihood and hence there is

a positive probability that θ = 1 is indeed the maximum likelihood estimator. If

θ0 = 1, then it turns out that this probability does not vanish asymptotically (see

for example Anderson and Takemura [1], Tanaka [7], and Davis and Dunsmuir [6]).

This phenomenon is referred to as the pile-up effect. For the case that θ0 = 1 or is

near one in the sense that θ0 = 1 + γ/n, it was shown in Davis and Dunsmuir [6]

that

n(θ̂ − θ0)
d
→ ξγ ,

where ξγ is random variable with a discrete component at 0, corresponding to the

asymptotic pile-up probability, and a continuous component on (−∞, 0).

The MA(1) with unit root (θ0 = 1) arises naturally in a variety of time series

applications. For example, if an underlying time series consists of a linear trend plus

white noise errors, then the differenced series is an MA(1) with a unit root. In such

cases, testing for a unit root of the differenced series is equivalent to testing the

adequacy of the trend plus noise model. The unit root problem also arises naturally

in a signal plus noise model in which the signal is modeled as a random walk. The

differenced series follows a MA(1) model and has a unit root if and only if the

random walk signal is in fact a constant.

For Gaussian likelihood estimation, the pile-up effect is directly attributable

to the non-identifiability of θ0 in the unconstrained parameter space. On the other

hand, if the data are non-Gaussian, then θ0 is identifiable (see Breidt and Davis [2]).

In this paper, we focus on the pile-up probability for estimates based on a Laplace

likelihood. Assuming a Laplace distribution for the noise, we derive an expression

for the joint likelihood of θ and zinit, where zinit is an augmented variable that

is treated as a parameter and the scale parameter σ is concentrated out of the

likelihood. If zinit is set equal to 0, then the resulting joint likelihood corresponds
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to the least absolute deviation (LAD) objective function and the estimator of θ
is referred to as the LAD estimator of θ0. The exact likelihood can be obtained

by integrating out zinit. In this case the resulting estimator is referred to as the

quasi-maximum likelihood estimator of θ0. It turns out that the estimator based on

maximizing the joint likelihood always has a positive pile-up probability in the limit

regardless of the true noise distribution. In contrast, the quasi-maximum likelihood

estimator has a limiting pile-up probability of zero.

In Section 2, we describe the main asymptotic results. We begin by deriving an

expression for computing the joint likelihood function based on the observed data

and the augmented variable Zinit, in terms of the density function of the noise.

The exact likelihood function can then be computed by integrating out Zinit. After

a reparameterizion, we derive the limiting behavior of the joint likelihood for the

case when the noise is assumed to follow a Laplace distribution. In Section 3, we

focus on the problem of calculating asymptotic pile-up probabilities for estimators

which minimize the joint Laplace likelihood (as a function of θ and zinit) and the

exact Laplace likelihood. Section 4 contains simulation results which illustrate the

asymptotic theory of Section 3.

2. Main result

Let {Xt} be the MA(1) model given in (1.1) where θ0 ∈ R, {Zt} is a sequence of

iid random variables with EZt = 0 and density function fZ . In order to compute

the likelihood based on the observed data Xn = (X1, . . . , Xn)
′
, it is convenient to

define an augmented initial variable Zinit defined by

Zinit =

{

Z0, if |θ| ≤ 1,
Zn −

∑n
t=1 Xt, otherwise.

A straightforward calculation shows that the joint density of the observed data

Xn = (X1, X2, . . . , Xn)
′
and the initial variable Zinit satisfies

fX ,Zinit

(xn, zinit) =

n
∏

j=0

fZ(zj)
(

1{|θ|≤1} + |θ|−n
1{|θ|>1}

)

,

where the residuals {zt} are functions of Xn = xn, θ, and Zinit = zinit which can

be solved forward by zt = Xt + θzt−1 for t = 1, 2, . . . , n with the initial z0 = zinit if

|θ| ≤ 1 and backward by zt−1 = θ−1
(zt −Xt) for t = n, n− 1, . . . , 1 with the initial

zn = zinit +
∑n

t=1 Xt, if |θ| > 1.

The Laplace log-likelihood is obtained by taking the density function for Zt

to be fZ(z) = exp{−|z|/σ}/(2σ). If we view zinit as a parameter, then the joint

log-likelihood is given by

−(n + 1) log 2σ −
1

σ

n
∑

t=0

|zt| − n(log |θ|)1{|θ|>1} .(2.1)

Maximizing this function with respect to the scale parameter σ, we obtain

σ̂ =

n
∑

t=0

|zt|/(n + 1).
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It follows that maximizing the joint Laplace log-likelihood is equivalent to minimiz-

ing the following objective function,

�n(θ, zinit) =

{
∑n

t=0 |zt|, if |θ| ≤ 1,
∑n

t=0 |zt||θ|, otherwise.
(2.2)

In order to study the asymptotic properties of the minimizer of �n when the

model θ0 = 1, we follow Davis and Dunsmuir [6] by building the sample size into

the parameterization of θ. Specifically, we use

θ = 1 +
β

n
,(2.3)

where β is any real number. Additionally, since we are also treating zinit as a

parameter, this term is reparameterized as

zinit = Z0 +
ασ
√

n
.(2.4)

Under the (β, α) parameterization, minimizing �n with respect to θ and zinit is

equivalent to minimizing the function,

Un(β, α) ≡
1

σ
[�n(θ, zinit) − �n(1, Z0)] ,

with respect to β and α. The following theorem describes the limiting behavior

of Un.

Theorem 2.1. For the model (1.1) with θ0 = 1, assume the noise sequence {Zt}

is IID with EZt = 0, E[ sign(Zt)] = 0 (i.e., median of Zt is zero), EZ4
t < ∞ and

common probability density function fZ(z) = σ−1f(z/σ), where σ > 0 is the scale

parameter. We further assume that the density function fZ has been normalized so

that σ = E|Zt|. Then

Un(β, α)
fidi
→ U(β, α),(2.5)

where
fidi
→ denotes convergence in distribution of finite dimensional distributions

and

U(β, α) =

∫ 1

0

[

β

∫ s

0

eβ(s−t)dS(t) + αeβs

]

dW (s)

+f(0)

∫ 1

0

[

β

∫ s

0

eβ(s−t)dS(t) + αeβs

]2

ds,(2.6)

for β ≤ 0, and

U(β, α) =

∫ 1

0

[

−β

∫ 1

s+

e−β(t−s)dS(t) + αe−β(1−s)

]

dW (s)

+f(0)

∫ 1

0

[

−β

∫ 1

s

e−β(t−s)dS(t) + αe−β(1−s)

]2

ds,(2.7)

for β > 0, in which S(t) and W (t) are the limits of the following partial sums

Sn(t) =
1
√

n

[nt]
∑

i=0

Zi/σ, Wn(t) =
1
√

n

[nt]
∑

i=0

sign(Zi),

respectively.
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Remark. The stochastic integrals in (2.6) and (2.7) refer to Itô integrals. The

double stochastic stochastic integral in the first term on the right side of (2.7) is

computed as

∫ 1

0

∫ 1

s+

e−β(t−s)dS(t)dW (s) =

∫ 1

0

e−βtdS(t)

∫ 1

0

eβsdW (s)

−

∫ 1

0

∫ s

0

e−β(t−s)dS(t)dW (s) −

∫ 1

0

dS(t)dW (t),

where (see (2.15) below)

∫ 1

0

dS(t)dW (t) = E(Zisign(Zi))/σ = E|Zi|/σ = 1 .

Proof. We only prove the result (2.5) for a fixed (β, α); the extension to a finite

collection of (β, α)’s is relatively straightforward. First consider the case β ≤ 0. For

calculating the Laplace likelihood �n(θ, zinit) based on model (1.1), the residuals are

solved by zt = Xt + θzt−1 for t = 1, 2, . . . , n with the initial value z0 = zinit. Since

Xt = Zt−Zt−1, all of the true innovations can be solved forward by Zt = Xt +Zt−1

for t = 1, 2, . . . , n with the initial Z0. Therefore, the centered term �n(1, Z0) can be

written as

�n(1, Z0) = |Z0| +

n
∑

i=1

|Xi + Xi−1 + · · · + X1 + Z0| =

n
∑

i=0

|Zi|.

For β ≤ 0, i.e., θ ≤ 1,

zi = Xi + θXi−1 + · · · + θi−1X1 + θizinit

= (Zi − Zi−1) + θ(Zi−1 − Zi−2) + · · · + θi−1
(Z1 − Z0) + θizinit

= Zi − (1 − θ)Zi−1 − θ(1 − θ)Zi−2 − · · · − θi−1
(1 − θ)Z0 − θi

(Z0 − zinit),

which, under the true model θ = 1, implies

1

σ
[�n(θ, zinit) − �n(1, Z0)] =

1

σ

(

n
∑

i=0

|zi| −

n
∑

i=0

|Zi|

)

(2.8)

=
1

σ

n
∑

i=0

(|Zi − yi| − |Zi|) ,

where y0 ≡ Z0 − zinit and

yi ≡ (1 − θ)

i−1
∑

j=0

θi−1−jZj + θi
(Z0 − zinit),

for i = 1, 2, . . . , n. Using the identity

|Z − y| − |Z| = −y sign(Z) + 2(y − Z)
(

1{0<Z<y} − 1{y<Z<0}

)

(2.9)
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for Z �= 0, the equation (2.8) is expressed as two summations, the first of which is

−

n
∑

i=0

yi

σ
sign(Zi) = (θ − 1)

n
∑

i=1





i−1
∑

j=0

θi−1−j Zj

σ



 sign(Zi)

+
zinit − Z0

σ

n
∑

i=0

θi
sign(Zi)

=
β

n

n
∑

i=1





i−1
∑

j=0

(

1 +
β

n

)i−j−1
Zj

σ



 sign(Zi)

+
α
√

n

n
∑

i=0

(

1 +
β

n

)i

sign(Zi)(2.10)

= β

∫ 1

0

∫ s−

0

(

1 +
β

n

)−nt

dSn(t)

(

1 +
β

n

)ns−1

dWn(s)

+ α

∫ 1

0

(

1 +
β

n

)ns

dWn(s)

→ β

∫ 1

0

∫ s

0

eβ(s−t)dS(t)dW (s) + α

∫ 1

0

eβsdW (s) ,

where the limit in (2.10) follows from a simple adaptation of Theorem 2.4 (ii) in

Chan and Wei [4].

To handle the second summation in computing Un(β, α), we approximate the

sum

n
∑

i=0

2
yi − Zi

σ

(

1{0<Zi<yi} − 1{yi<Zi<0}

)

by

n
∑

i=0

2E

[

yi − Zi

σ

(

1{0<Zi<yi} − 1{yi<Zi<0}

)

|Fi−1

]

,

where Fi is the σ-field generated by {Zj : j = 0, 1, . . . , i}. First we establish conver-

gence of the latter sum and then show that the variance of the difference in sums

converges to zero. Since

max
1≤i≤n

|yi| → 0,

yi ∈ Fi−1, we have

2E

[(

yi − Zi

σ

)

1{0<Zi<yi}|Fi−1

]

= 2

∫ yi

0

(

yi − Z

σ

)

1

σ
f(

z

σ
)dz

≈ f(0)

∫ yi

0

2

(

yi − z

σ

)

d
( z

σ

)

= f(0)

(yi

σ

)2

,
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for yi > 0, and

2E

[(

yi − Zi

σ

)

1{yi<Zi<0}|Fi−1

]

= 2

∫ 0

yi

(

yi − z

σ

)

1

σ
f(

z

σ
)dz

≈ f(0)

∫ 0

yi

2

(

yi − z

σ

)

d
( z

σ

)

= −f(0)

(yi

σ

)2

,

for yi < 0. Combining these two cases, we have

2

n
∑

i=0

E

[

yi − Zi

σ

(

1{0<Zi<yi} − 1{yi<Zi<0}

)

|Fi−1

]

≈ f(0)

n
∑

i=0

(yi

σ

)2

,

where

n
∑

i=0

(yi

σ

)2

=

n
∑

i=0







(1 − θ)

i−1
∑

j=1

θi−1−j Zj

σ
+ θi Z0 − z0

σ







2

=

n
∑

i=1





−β

n

i−1
∑

j=1

(

1 +
β

n

)i−1−j
Zj

σ
−

α
√

n

(

1 +
β

n

)i




2

(2.11)

=

n
∑

i=1

[

β

∫ (i−1)/n

0

(

1 +
β

n

)i−1−sn

dSn(s) + α

(

1 +
β

n

)i
]2

1

n

→

∫ 1

0

[

β

∫ s

0

eβ(s−t)dS(t) + αeβs

]2

ds

in distribution as n → ∞.

It is left to show that

2

n
∑

i=0

yi − Zi

σ

(

1{0<Zi<yi} − 1{yi<Zi<0}

)

(2.12)

− 2

n
∑

i=0

E

[

yi − Zi

σ

(

1{0<Zi<yi} − 1{yi<Zi<0}

)

|Fi−1

]

converges to zero in probability. Define

y∗
i ≡ 2

yi − Zi

σ

(

1{0<Zi<yi} − 1{yi<Zi<0}

)

.

The expectation of (2.12) is zero and therefore, it is enough to show that the
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variance of (2.12) also converges to zero. The variance of (2.12) is equal to

n
∑

i=0

var (y∗
i − E (y∗

i |Fi−1)) + 2

∑

i<j

cov
(

y∗
i − E (y∗

i |Fi−1) , y∗
j − E

(

y∗
j |Fj−1

))

=

n
∑

i=0

E [y∗
i − E (y∗

i |Fi−1)]
2

=

n
∑

i=0

EE
[

(y∗
i )

2 − (E (y∗
i |Fi−1))

2
|Fi−1

]

=

n
∑

i=0

E
[

E
(

(y∗
i )

2|Fi−1

)

− (E (y∗
i |Fi−1))

2
]

(2.13)

≈

n
∑

i=0

E

[

4

3
f(0)

(yi

σ

)3

− f(0)
2
(yi

σ

)4
]

≈
4

3
f(0)E

[

n
∑

i=0

(yi

σ

)3
]

− f(0)
2E

[

n
∑

i=0

(yi

σ

)4
]

→ 0,

as n → ∞, where

cov
(

y∗
i − E (y∗

i |Fi−1) , y∗
j − E

(

y∗
j |Fj−1

))

= E [y∗
i − E (y∗

i |Fi−1)]
[

y∗
j − E

(

y∗
j |Fj−1

)]

= EE

[

(y∗
i − E (y∗

i |Fi−1))
(

y∗
j − E

(

y∗
j |Fj−1

))

∣

∣

∣

∣

Fj−1

]

= E

[

(y∗
i − E (y∗

i |Fi−1)) E

(

y∗
j − E

(

y∗
j |Fj−1

)

∣

∣

∣

∣

Fj−1

)]

= 0,

for i < j, and

E (y∗
i |Fi−1) ≈ f(0)

(yi

σ

)2

,

E
(

(y∗
i )

2
|Fi−1

)

≈
4

3
f(0)

(yi

σ

)3

,

√
n

n
∑

i=0

(yi

σ

)3

→−

∫ 1

0

(

β

∫ s

0

eβ(s−t)dS(t) + αeβs

)3

ds,

n

n
∑

i=0

(yi

σ

)4

→

∫ 1

0

(

β

∫ s

0

eβ(s−t)dS(t) + αeβs

)4

ds.

Based on (2.10), (2.11), and (2.13), the proof for β ≤ 0 is complete.

The proof for β ≥ 0 given in (2.7) is similar to that for β ≤ 0. For β ≥ 0,

i.e., θ ≥ 1, the residuals {zt} are solved backward by zt−1 = θ−1
(zt − Xt) for

t = n, n − 1, . . . , 1 with the initial zn ≡ zinit +
∑n

t=1 Xt. Solving these equations,

we have

zn−1−i = −θ−1
(

Xn−i + θ−1Xn−i−1 + · · · + θ−iXn − θ−izn

)

,
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for i = 0, 1, . . . , n − 1. Writing Xt = Zt − Zt−1, we obtain

−zn−1−iθ = Xn−i + θ−1Xn−i−1 + · · · + θ−iXn − θ−izn

= (Zn−i − Zn−i−1) + θ−1
(Zn−i+1 − Zn−i) + · · ·

+ θ−i
(Zn − Zn−1) − θ−izn

= −Zn−i−1 + (1 − θ−1
)Zn−i + · · · + θ−(i−1)

(1 − θ−1
)Zn−1

+ θ−i
(Zn − zn)

= −Zn−i−1 + yn−i−1,

where

yn−1−i ≡
(

1 − θ−1
)

i
∑

j=1

(θ−1
)
i−jZn−j + θ−i

(Zn − zn)

=
(

1 − θ−1
)

i
∑

j=1

(θ−1
)
i−jZn−j + θ−i

[(

n
∑

i=1

Xi + Z0

)

−

(

n
∑

i=1

Xi + zinit

)]

=
(

1 − θ−1
)

i
∑

j=1

(θ−1
)
i−jZn−j + θ−i

(Z0 − zinit),

for i = 0, 1, . . . , n − 1 and yn ≡ Zn − zn = Z0 − zinit. Again, for θ ≥ 1, we have

1

σ
[�n(θ, zinit) − �n(1, Z0)] =

1

σ

n
∑

i=0

(|Zi − yi| − |Zi|) ,

which has the same form as that for θ ≤ 1 but with different {yi}. Following a

similar derivation for θ ≤ 1, one can show that

−

n
∑

i=1

yi

σ
sign(Zi) →−β

∫ 1

0

∫ 1

s+

e−β(t−s)dS(t)dW (s) + α

∫ 1

0

e−β(1−s)dW (s),

n
∑

i=0

y2
i

σ2
→

∫ 1

0

[

−β

∫ 1

s

e−β(t−s)dS(t) + αe−β(1−s)

]2

ds,

in distribution as n → ∞. Combining this with the analogous result (2.13) for

β ≥ 0, completes the proof.

We close this section with some elementary results concerning the relationship

between the limiting Brownian motions S(t) and W (t) that will be used in the

sequel. Since σ = E|Zt|, the process S(t) can be decomposed as

S(t) = W (t) + cV (t) ,(2.14)

where {W (t)} and {V (t)} are independent standard Bronwnian motions on [0, 1]

and

c =

√

Var(Zt)/σ2 − 1 .
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In addition, we have the following identities

∫ 1

0

V (s)ds = V (1) −

∫ 1

0

sdV (s),

∫ 1

0

V (s)dW (s) = V (1)W (1) −

∫ 1

0

W (s)dV (s),

∫ 1

0

dW (s)dW (s) =

∫ 1

0

ds = 1,

∫ 1

0

dV (s)dW (s) = 0,

where the first two equations can be obtained easily by integration by parts. It

follows that

(2.15)

∫ 1

0

dS(s)dW (s) =

∫ 1

0

dW (s)dW (s) + c

∫ 1

0

dV (s)dW (s) = 1 .

3. Pile-up probabilities

3.1. Joint likelihood

In this section, we will consider the local maximizer of the joint likelihood given

by −�n in (2.2). This estimator was also studied by Davis and Dunsmuir [6] in the

Gaussian case. Denote by (θ̂
(J)
n , ẑ

(J)
init,n) the local minimizer of �n(θ, zinit) in which

θ̂
(J)
n is closest to 1. Using the (β, α) parameterization given in (2.3) and (2.4), this

is equivalent to finding the local minimizer (β̂
(J)
n , α̂

(J)
n ) of Un(β, α) in which β̂

(J)
n is

closest to zero. Moreover, the respective local minimizers of �n and Un are connected

through the following relations:

θ̂(J)
n = 1 +

β̂
(J)
n

n
, ẑ

(J)
init,n = Z0 +

α̂
(J)
n σ
√

n
.(3.1)

If the convergence of Un to U in Theorem 1 is strengthened to weak convergence

of processes on C(R
2
), then the argument given in Davis and Dunsmuir [6] suggests

the convergence in distribution of (β̂
(J)
n , α̂

(J)
n ) to (β(J), α(J)

), where (β̂(J), α̂(J)
) is

the local minimizer of U(β, α) in which β̂(J)
is closest to 0. It follows that

(n(θ̂(J)
n − 1),

√
n(ẑ

(J)
init,n − Z0)/σ)

d
→ (β̂(J), α̂(J)

) .(3.2)

The proofs of these results are the subject of on-going research and will appear in

a forthcoming manuscript.

Turning to the question of pile-up probabilities, we have that 1 is a local min-

imizer if the derivative of the criterion function from the left is negative and the

derivative from the right is positive; that is,

P (θ̂(J)
n = 1) = P (β̂(J)

n = 0)

= P

[

lim
β↑0

∂

∂β
Un (β, α̂n(β)) < 0 and lim

β↓0

∂

∂β
Un (β, α̂n(β)) > 0

]

,
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where α̂n(β) = argminα Un(β, α) for given β. Assuming convergence of the right-

and left-hand derivatives of the process Un(β, α̂n(β)), we obtain

(3.3) lim
n→∞

P (θ̂(J)
n = 1) = P

[

lim
β↑0

∂

∂β
U (β, α̂(β)) < 0 and lim

β↓0

∂

∂β
U (β, α̂(β)) > 0

]

,

where α̂(β) = argminα U(β, α). We now proceed to simplify the limits of the two

derivatives in the brackets of (3.3) in terms of the processes S(t) and W (t). Ac-

cording to (2.6) in Theorem 2.1, we have

lim
β↑0

∂

∂α
U(β, α) = lim

β↑0

{∫ 1

0

eβsdW (s) + f(0)2α

∫ 1

0

e2βsds

}

=

∫ 1

0

dW (s) + 2αf(0)

∫ 1

0

ds

= W (1) + 2αf(0),

and therefore

α̂(0−) = −
W (1)

2f(0)
.

The derivative of U(β, α) with respect to β at zero from the left-hand side satisfies

∂

∂β
U(β, α) =

∫ 1

0

∫ s

0

eβ(s−t)dS(t)dW (s) + β

∫ 1

0

∫ s

0

eβ(s−t)
(s − t)dS(t)dW (s)

+ α

∫ 1

0

eβssdW (s)

+ f(0)

{

2β

∫ 1

0

(∫ s

0

eβ(s−t)dS(t)

)2

ds

+ β2

∫ 1

0

2

(∫ s

0

eβ(s−t)dS(t)

)(∫ s

0

eβ(s−t)
(s − t)dS(t)

)

ds

+ α2

∫ 1

0

e2βs
2sds + 2α

∫ 1

0

eβs

(∫ s

0

eβ(s−t)dS(t)

)

ds

+ 2αβ

∫ 1

0

eβs

(∫ s

0

eβ(s−t)
(2s − t)dS(t)

)

ds

}

.

Taking the limit as β ↑ 0, we have

lim
β↑0

∂

∂β
U(β, α̂(β)) =

∫ 1

0

∫ s

0

dS(t)dW (s) + α̂(0−)

∫ 1

0

sdW (s)

+ f(0)

{

α̂2
(0−)

∫ 1

0

2sds + 2α̂(0−)

∫ 1

0

∫ s

0

dS(t)ds

}

=

∫ 1

0

S(s)dW (s) − W (1)

∫ 1

0

S(s)ds(3.4)

+
W (1)

2f(0)

[∫ 1

0

W (s)ds −
W (1)

2

]

=: Y.



12 F. J. Breidt et al.

Similarly, according to (2.7) in Theorem 2.1, we have

lim
β↓0

∂

∂α
U(β, α) = lim

β↓0

{∫ 1

0

e−β(1−s)dW (s) + f(0)2α

∫ 1

0

e−2β(1−s)ds

}

=

∫ 1

0

dW (s) + 2αf(0)

∫ 1

0

ds

= W (1) + 2αf(0),

and therefore

α̂(0+) = −
W (1)

2f(0)
,

which is same as α̂(0−). The derivative of U(β, α) with respect to β at zero from

righthand side satisfies

∂

∂β
U(β, α) = −

∫ 1

0

∫ 1

s+

e−β(t−s)dS(t)dW (s) − β

∫ 1

0

∫ 1

s

e−β(t−s)
(s − t)dS(t)dW (s)

+ α

∫ 1

0

e−β(1−s)
(s − 1)dW (s)

+ f(0)

{

2β

∫ 1

0

(∫ 1

s

e−β(t−s)dS(t)

)2

ds

+ β2

∫ 1

0

2

(∫ 1

s

e−β(t−s)dS(t)

)

×

(∫ 1

s

e−β(t−s)
(s − t)dS(t)

)

ds

+ α2

∫ 1

0

e−2β(1−s)
2(s − 1)ds

− 2α

∫ 1

0

e−β(1−s)

(∫ 1

s

e−β(t−s)dS(t)

)

ds

− 2αβ

∫ 1

0

∫ 1

s

e−β(1+t−2s)
(2s − t − 1)dS(t)ds

}

.

Taking the limit β ↓ 0 and using the remark in Section 2, we have

lim
β↓0

∂

∂β
U(β, α̂(β))

→ −

∫ 1

0

∫ 1

s+

dS(t)dW (s) + α̂(0+)

∫ 1

0

(s − 1)dW (s)

+ f(0)

{

α̂2
(0+)

∫ 1

0

2(s − 1)ds − 2α̂(0+)

∫ 1

0

∫ 1

s

dS(t)ds

}

= −S(1)W (1) +

∫ 1

0

S(s)dW (s) + 1 + α̂(0+)

[

[(s − 1)W (s)]10 −

∫ 1

0

W (s)ds

]

+ f(0)

{

−α̂2
(0+) − 2α̂(0+)

[

S(1) −

∫ 1

0

S(s)ds

]}

=

∫ 1

0

S(s)dW (s) − W (1)

∫ 1

0

S(s)ds +
W (1)

2f(0)

[∫ 1

0

W (s)ds −
W (1)

2

]

+ 1

= Y + 1.
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Therefore, the pile-up probability in (3.3) can be expressed in terms of Y as

lim
n→∞

P (θ̂(J)
n = 1) = P [Y < 0 and Y + 1 > 0]

= P [−1 < Y < 0] .

3.2. Exact likelihood estimation

In this section, we consider pile-up probabilities associated with the estimator that

maximizes the exact Laplace likelihood. For θ ≤ 1, the joint density of (xn, zinit)

satisfies

f(xn, zinit) =

n
∏

t=0

f(zt) =

(

1

2σ

)n+1

exp

(

−

∑n
t=0 |zt|

σ

)

=

(

1

2σ

)n+1

exp

{

−
[�n(θ, zinit) − �n(1, Z0)] + �n(1, Z0)

σ

}

=

(

1

2σ

)n+1

exp

(

−

∑n
t=0 |Zt|

σ

)

e−Un(β,α).

Integrating out the augmented variable zinit, we obtain

∫ ∞

−∞

f(xn, zinit)dzinit =

(

1

2σ

)n+1

exp

(

−

∑n
t=0 |Zt|

σ

)

σ
√

n

∫ ∞

−∞

e−Un(β,α)dα,

since under the parameterization (2.4), dzinit = (σ/
√

n)dα. The Laplace log-likeli-

hood of (θ, σ) given xn then satisfies

�∗n(θ, σ) ≡ log

∫ ∞

−∞

f(xn, zinit)dzinit

= −(n + 1) log(2σ) −

∑n
t=0 |Zt|

σ
+ log

(

σ
√

n

)

+ log

∫ ∞

−∞

e−Un(β,α)dα,

where the last term does not depend on σ as n → ∞. So maximizing �∗n with respect

to θ ≤ 1 is approximately the same as maximizing

U∗
n(β) = log

∫ ∞

−∞

e−Un(β,α) dα(3.5)

with respect to β ≤ 0,

Similarly, for θ > 1, the Laplace log-likelihood of (θ, σ) is

�∗n(θ, σ) ≡ log

∫ ∞

−∞

f(xn, zinit)dzinit

= −n log |θ| − (n + 1) log(2σ) −

∑n
t=0 |Zt|

σ|θ|

+ log

(

σ
√

n

)

+ log

∫ ∞

−∞

e−Un(β,α)|θ|−1

dα,

where again the last term does not depend on σ as n → ∞. As above, maximizing

�∗n with respect to θ > 1 is equivalent to maximizing

U∗
n(β) = log

∫ ∞

−∞

e−Un(β,α)n/(n+β) dα(3.6)
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for β > 0.

A heuristic argument based on the process convergence of Un to U suggests that

U∗
n(β) → U∗

(β) = log

∫ ∞

−∞

e−U(β,α) dα ,(3.7)

where U∗
n is specified by (3.5) for β ≤ 0 and by (3.6) for β > 0. Now if β̂

(E)
n

denotes the local maximum of the exact likelihood, or alternatively the maximizer

of U∗
n(β) that is closest to 0, then the convergence in (3.7) suggests convergence in

distribution for the local maximizer of the exact likelihood, i.e.,

n(θ̂(E)
n − 1) = β̂(E)

n
d
→ β̂(E) ,(3.8)

where β̂(E)
is the local maximizer of U∗

(β) that is closest to 0.

The limiting pile-up probabilities for θ̂
(E)
n are calculated from

lim
n→∞

P (θ̂(E)
n = 1) = lim

n→∞
P (β̂(E)

n = 0) = P (β̂(E)
= 0)

= P

(

lim
β↑0

∂

∂β
U∗

(β) > 0 and lim
β↓0

∂

∂β
U∗

(β) < 0

)

.

Fortunately, the right- and left-hand derivatives of U∗
can be computed explicitly.

These are found to be

lim
β↑0

∂

∂β
U∗

(β) = −
W 2

(1)

4f(0)
+

W (1)

2f(0)

∫ 1

0

W (s)ds − W (1)

∫ 1

0

S(s)ds +

∫ 1

0

S(s)dW (s)

+
1

2

= Y +
1

2
,

lim
β↓0

∂

∂β
U∗

(β) = −
W 2

(1)

4f(0)
+

W (1)

2f(0)

∫ 1

0

W (s)ds − W (1)

∫ 1

0

S(s)ds +

∫ 1

0

S(s)dW (s)

+
1

2

= Y +
1

2
,

where Y is defined in (3.4). The limiting pile-up probability for θ̂
(E)
n is then

lim
n→∞

P (θ̂(E)
n = 1) = P

[

−
1

2
< Y < −

1

2

]

= 0.

3.3. Remarks

Here we collect several remarks concerning the results of Sections 3.1 and 3.2.

Remark 1. Under the assumptions of Theorem 2.1, the asymptotic pile-up prob-

ability for estimator θ̂
(J)
n based on the joint likelihood is always positive. On the

other hand, the asymptotic pile-up probability for estimator θ̂
(E)
n based on the exact

likelihood is zero.
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Remark 2. The two estimators of θ0 considered in Sections 3.1 and 3.2 were defined

as the local optimizers of objective functions that were closest to 1. One could also

consider the global optimizers of these objective functions. For example, the exact

MLE in the Gaussian case was considered in Davis and Dunsmuir [6] and Davis,

Chen and Dunsmuir [5] and has a different limiting distribution than the local MLE.

In our case, there will be a positive asymptotic pile-up probability for the global

maximum of the joint likelihood and a zero asymptotic pile-up probability for the

global maximum of the exact likelihood.

Remark 3. Suppose Zt has a Laplace distribution with the density function

fZ(z) =
1

2σ
e−|z|/σ.

Then Y defined in (3.4) satisfies

Y =

∫ 1

0

[W (1)s − W (s)] dV (s) −
1

2
,(3.9)

where W (s) and V (s) are independent standard Brownian motions. To prove (3.9),

note that the constant c in (2.14) is equal to 1 so that

S(t) = W (t) + V (t).

In the following calculations, we use the well-known Itô formula

∫ 1

0

W (s)dW (s) =
W 2

(1)

2
−

1

2
.

Since f(0) = 1/2, the random variable Y defined in (3.4) can be further simplified

in terms of W (t) and V (t) as

Y =

∫ 1

0

S(s)dW (s) − W (1)

∫ 1

0

S(s)ds +
W (1)

2f(0)

[∫ 1

0

W (s)ds −
W (1)

2

]

=

∫ 1

0

V (s)dW (s) +

∫ 1

0

W (s)dW (s) − W (1)

∫ 1

0

V (s)ds − W (1)

∫ 1

0

W (s)ds

+W (1)

∫ 1

0

W (s)ds −
W 2

(1)

2

= V (1)W (1) −

∫ 1

0

W (s)dV (s) +
W 2

(1)

2
−

1

2
− W (1)

[

V (1) −

∫ 1

0

sdV (s)

]

−
W 2

(1)

2

=

∫ 1

0

[W (1)s − W (s)] dV (s) −
1

2
.
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Therefore, the pile-up probability for Laplace innovations is

P (−1 < Y < 0)

= P

(

−
1

2
<

∫ 1

0

[W (1)s − W (s)] dV (s) <
1

2

)

= E

[

P

(

−
1

2
<

∫ 1

0

[W (1)s − W (s)] dV (s) <
1

2

) ∣

∣

∣

∣

W (t) on t ∈ [0, 1]

]

= E

[

P

(

−
1

2

{∫ 1

0

[W (1)s − W (s)]2ds

}−1/2

< U

<
1

2

{∫ 1

0

[W (1)s − W (s)]2ds

}−1/2
)]

= E

[

Φ

(

1

2

{∫ 1

0

[W (1)s − W (s)]2ds

}−1/2
)

− Φ

(

−
1

2

{∫ 1

0

[W (1)s − W (s)]2ds

}−1/2
)]

≈ 0.820,

where U has the standard normal distribution and Φ(·) is the corresponding cu-

mulative distribution function. This pile-up probability, which was computed via

simulation based on 100000 replications of W (t) on [0, 1], has a standard error of

0.0010.

Remark 4. From the limiting result (3.2), it follows that the random variable Z0

can be estimated consistently. It may seem odd to have a consistent estimate of a

noise term in a moving average process. On the other hand, an MA(1) process with

a unit root is both invertible and non-invertible. That is, Z0 is an element of the

two Hilbert spaces generated by the linear span of {Xt, t ≤ 0} and {Xt, t ≥ 1},

respectively. It is the latter Hilbert space which allows for consistent estimation

of Z0.

4. Numerical simulation

In this section, we compute the asymptotic pile-up probabilities associated with

the estimator θ̂(J)
which maximizes the joint Laplace likelihood for several dif-

ferent noise distributions. The empirical properties of estimators θ̂
(J)
n (the local

maximizer of the joint Laplace likelihood) and θ̂
(E)
n (the local maximizer of the

exact Laplace likelihood) for finite samples are compared with each other and with

the corresponding asymptotic theory.

For approximating the asymptotic pile-up probabilities and limiting distribu-

tion of β̂
(J)
n , we first simulate 100000 replications of independent standard Wiener

processes W (t) and V (t) on [0, 1] in which W (t) and V (t) are approximated by

the partial sums W (t) =
∑[10000t]

j=1 Wj/
√

10000 and V (t) =
∑[10000t]

j=1 Vj/
√

10000,

where {Wj} and {Vj} are independent standard normal random variables. From

the simulation of W (t) and V (t), the distribution of the limit random variable β̂(J)

can be tabulated and the pile-up probability P (−1 < Y < 0) estimated, where Y
is given in (3.4). The empirical pile-up probabilities and their asymptotic limits are
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displayed in Table 1 for different noise distributions: Laplace, Gaussian, uniform,

and t with 5 degrees of freedom. Notice that there is good agreement between the

asymptotic and empirical probabilities for sample sizes as small as 50.

For examining the empirical performance of the local maximizers θ̂
(J)
n and θ̂

(E)
n ,

we only consider the process generated with Laplace noise with σ = 1 and sample

sizes n = 20, 50, 100, 200. For each setup, 1000 realizations of the MA(1) process

with θ0 = 1 are generated and the estimates θ̂
(J)
n and θ̂

(E)
n and their corresponding

estimates of the scale parameter are obtained. The estimation results are sum-

marized in Table 2. For comparison, the standard deviation based on the limit

distributions of θ̂
(J)
n and θ̂

(E)
n are also reported (denoted by asymp in the table),

which are obtained numerically based on 100000 replicates of the limit process U .

Generally speaking, the empirical root mean square errors are very close to their

asymptotic values even for very small samples. Moreover, the estimation error of

θ̂
(J)
n is about 1/2 the estimation error of θ̂

(E)
n , which indicates the superiority of

using the joint likelihood over exact likelihood when θ0 = 1.

We also considered performance of the two estimators θ̂
(J)
n and θ̂

(E)
n in the case

when θ0 �= 1. A limit theory for these estimators can be derived in this case by

assuming that the true value θ0 is near 1. That is, we can parameterize the MA(1)

parameter by θ0 = 1 + γ/n (e.g., Davis and Dunsmuir [6]). While we have not

pursued the theory in the near unit root case, the relative performance of these

Table 1

Empirical pile-up probabilities of the local maximizer θ̂
(J)
n of the joint Laplace likelihood for an

MA(1) with θ0 = 1 and sample sizes n = 20, 50, 100, 200 (based on 1000 replicates) and their

asymptotic values under various noise distributions.

n Gau Lap Unif t(5)
20 0.827 0.796 0.831 0.796

50 0.859 0.806 0.864 0.823

100 0.873 0.819 0.864 0.817

200 0.844 0.819 0.843 0.831

500 0.855 0.809 0.841 0.846

∞ 0.873 0.820 0.862 0.836

Table 2

Bias, standard deviation and root mean square error of the local maximizers θ̂
(J)
n and θ̂

(E)
n of

the joint and exact Laplace likelihoods, respectively, for an MA(1) process generated by Laplace

noise with θ0 = 1 and σ = 1 ( 1000 replications).

n θ̂
(J)
n θ̂

(E)
n

n = 20 bias -0.003 -0.006

s.d. 0.066 0.144

rmse 0.066 0.144

asymp 0.053 0.121

n = 50 bias -0.000 0.000

s.d. 0.021 0.057

rmse 0.021 0.057

asymp 0.021 0.048

n = 100 bias -0.000 0.001

s.d. 0.011 0.030

rmse 0.011 0.030

asymp 0.011 0.024

n = 200 bias 0.000 0.001

s.d. 0.006 0.014

rmse 0.006 0.014

asymp 0.005 0.012
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Table 3

Bias, standard deviation and root mean square error of the global maximizers θ̂
(J)
n and θ̂

(E)
n of

the joint and exact Laplace likelihoods, respectively, for an MA(1) process generated by Laplace

noise with θ0 = 0.8, 0.9, 0.95, 1/0.95, 1/0.9, 1/0.8, σ = 1, and n = 50 based on 1000 replications.

First 2 columns record the number of times (out of 1000) that the estimates were less than 1

(invertible) and equal to 1 (unit root).

θ0 < 1 = 1 bias s.d. rmse

0.8 θ̂
(J)
50 789 95 0.0734 0.1973 0.2105

θ̂
(E)
50 873 19 0.0498 0.1753 0.1822

0.9 θ̂
(J)
50 557 322 0.0578 0.1398 0.1513

θ̂
(E)
50 767 93 0.0327 0.0933 0.0989

0.95 θ̂
(J)
50 404 503 0.0322 0.0708 0.0778

θ̂
(E)
50 632 168 0.0235 0.0821 0.0854

1/0.95 θ̂
(J)
50 90 540 -0.0315 0.0763 0.0825

θ̂
(E)
50 286 114 -0.0207 0.0890 0.0914

1/0.9 θ̂
(J)
50 89 299 -0.0389 0.1227 0.1287

θ̂
(E)
50 207 71 -0.0327 0.1218 0.1261

1/0.8 θ̂
(J)
50 96 109 -0.0338 0.2645 0.2666

θ̂
(E)
50 149 19 -0.0492 0.2280 0.2333

estimators was compared in a limited simulation study. We considered 3 values of

θ0 = 0.8, 0.9, 0.95 and their reciprocals 1/0.8, 1/0.9, 1/0.95. The latter 3 cases cor-

respond to purely non-invertible models. The results reported in Table 3 are based

on the global optimization of the joint and exact likelihoods. The first two columns

contain the number of realizations out of 1000 in which the estimator was invertible

(< 1) and on the unit circle (= 1), respectively. For example, in the θ0 = 0.8 and

θ̂
(J)
n case, 78.9% of the realizations produced invertible models, and the empirical

pile-up probability is 0.095. On the other hand, for θ0 = 1/0.8, 79.5% of the realiza-

tions produced a purely non-invertible model with an empirical pile-up probability

of 0.109. Both objective functions do a reasonably good job of discriminating be-

tween invertible and non-invertible models, with a performance edge going to the

exact likelihood. In terms of root mean square error, the performance of θ̂
(E)
n is

superior to θ̂
(J)
n as θ0 moves away from the unit circle.

Remark. The LAD estimate of θ0 is obtained by minimizing the objective function

given in (2.2) with zinit = 0. Although we have not considered the asymptotic pile-

up in this case, the estimator does not perform as well as θ̂
(J)
n and θ̂

(E)
n . For example,

in simulation results, not reported here, the rmse of the LAD estimator tended to

be twice as large as the rmse for the exact MLE.
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Abstract: We introduce a recursive algorithm of conveniently general form

for estimating the coefficient of a moving average model of order one and

obtain convergence results for both correct and misspecified MA(1) models.

The algorithm encompasses Pseudolinear Regression (PLR—also referred to

as AML and RML1) and Recursive Maximum Likelihood (RML2) without

monitoring. Stimulated by the approach of Hannan (1980), our convergence

results are obtained indirectly by showing that the recursive sequence can be

approximated by a sequence satisfying a recursion of simpler (Robbins-Monro)

form for which convergence results applicable to our situation have recently

been obtained.

1. Introduction and overview

Our focus is on estimating the coefficient θ of an invertible scalar moving average

model of order 1 (MA(1)),

(1.1) yt = θet−1 + et

where et is treated as an unobserved, constant-variance martingale-difference pro-

cess. We do not assume the series yt,−∞ < t < ∞ from which the observations

come is correctly modeled by (1.1). They can come from any invertible autoregres-

sive moving average (ARMA) model or from more general models; see Section 2.

What we seek is a θ that minimizes the loss function

(1.2) L̄(θ) = E[(yt − yt|t−1(θ))
2
] = E[e2

t (θ)]

where et(θ) = yt−yt|t−1(θ) and yt|t−1(θ) is the one-step-ahead-prediction of yt from

ys,−∞ < s ≤ t − 1 based on the model defined by θ (see (2.7) below). We define

optimal estimation procedures to be those whose sequence of estimates θt minimizes

(1.2) in the limit. This is a property of (nonrecursive) maximum likelihood-type

estimates of θ, see Pötscher [23].

In this article, we analyze a continuously indexed family of recursive procedures

for estimating θ. Recursive procedures form an estimate θt for time t using the

observation yt at time t, the estimate θt−1 for t−1 and other recursively defined

quantities. Our family encompasses two standard algorithms, Recursive Maximum
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Likelihood (RML) which is referred to throughout as RML2 [12, 21], and the sim-

pler Pseudolinear Regression (PLR) [21]—also known as Approximate Maximum

Likelihood (AML) [24] and RML1 [11, 20]. More specifically, our general recursive

algorithm generating θt depends on an index β, 0 ≤ β ≤ 1. The algorithm reduces

to PLR when β = 0 and to RML2 when β = 1.

Our main convergence result, Theorem 4.1, is obtained by constructing an ap-

proximating sequence θ̂t for which θt− θ̂t
a.s.
−→ 0 holds and which satisfies a Robbins-

Monro recursion,

(1.3) θ̂t = θ̂t−1 − δtf(θ̂t−1, β) + δtγt ,

in which γt
a.s.
−→ 0 and δt > 0, δt

a.s.
−→ 0,

∑∞
k=0 δk = ∞ a.s., and

(1.4) f(θ, β) = −

∫ π

−π

eiω
+ βθ

|(1 + θeiω)(1 + θβeiω)|2
gy(ω)dω.

Here
a.s.
−→ denotes almost sure convergence (convergence with probability one) and

gy(ω) denotes the spectral density of the time series yt. Note that when β = 0, then

(1.5) f(θ, 0) = −

∫ π

−π

eiω

|(1 + θeiω)|2
gy(ω)dω = −E[et−1(θ)et(θ)] ,

and when β = 1, then

(1.6) f(θ, 1) = −

∫ π

−π

eiω
+ θ

|(1 + θeiω)2|2
gy(ω)dω =

1

2

d

dθ
E[e2

t (θ)] =
1

2
L̄′

(θ)

where L̄′
(θ) denotes the first derivative of L̄(θ). We then apply a result of Fradkov

implicit in [8], as extended and corrected by Findley [9], to show that θ̂t converges

to {θ ∈ Θ: f(θ, β) = 0} where Θ is the open interval (-1,1) of real θ with |θ| < 1.

(A similar result is implicit in proofs of Theorems 2.2.2–2.2.3 of Chen [7].) Hence,

for β = 0, θt
a.s.
−→ {θ ∈ Θ : E[et−1(θ)et(θ)] = 0} and for β = 1, θt

a.s.
−→ {θ ∈ Θ :

L̄′
(θ) = 0}. Here and below, θt convergence a.s. to a set means that except on a set

of ξ ∈ Ξ with probability zero, every cluster point of θt(ξ) is an element of the set.

In the incorrect model situation, in which gy(ω) is not proportional to |1+θeiω|2,

for examples we have analyzed [5], these zero sets will be disjoint, establishing that

PLR converges to different values than RML2. Consequently, under the assumptions

of Theorem 4.1, we recover the results of Cantor [4] that were given in separate

theorems and proofs, establishing that, for certain families of AR(1) and MA(2)

processes, RML2 estimates of θ in the model (1.1) converge to an optimal limit (a

minimizer of (1.2)) whereas PLR estimates converge to a suboptimal limit [4, 5].

When the data come from an invertible MA(1) model, it is known that PLR

and monitored versions of RML2 can provide strongly consistent estimates of θ
[4, 11, 17, 19]. More generally, in the correct model situation for ARMAX models,

i.e., ARMA models with an exogenous input, Lai and Ying [17] provided a rigorous

proof of strong consistency of PLR (under a positive real condition on the MA

polynomial) and also of a monitored version of RML2 whose monitoring scheme

involves non-linear projections and an intermittently used recursive estimator for

which consistency has already been established. In Section 4 of [19], Lai and Ying

consider a simpler modification of RML2 in which, for monitoring, only auxiliary

consistent recursive estimates are used. They present detailed outlines of proofs

of strong consistency and asymptotic normality of the estimates from this new



22 J. L. Cantor and D. F. Findley

monitored RML2 scheme. The construction of Section II of [18] can be used to

obtain auxiliary recursive estimates with the properties required.

There is a rather comprehensive theory of recursive estimation of autoregressive

(AR) models, encompassing certain incorrect model situations for algorithms like

PLR (see e.g., [6]). There are, however, no published convergence results with rig-

orous proofs for MA models in the incorrect model situation. Ljung’s seminal work

on the convergence of recursive algorithms [20, 21] mentions the incorrect model

situation but provides only suggestive results (further discussed in Section 5).

This article has five sections. In Section 2, the assumptions on the data and some

consequences for the MA(1) model are given. In Section 3, the general recursive

algorithm is presented. The Convergence Theorem is stated and proved in Section 4.

Required preliminary technical results are given in Section 4.1 and the proof of the

theorem is provided in Section 4.2. Finally, Section 5 concludes the article with a

brief discussion.

2. Assumptions

The observations yt, t ≥ 1 are assumed to come from a mean zero, covariance

stationary scalar series, yt,−∞ < t < ∞ defined on the probability space (Ξ,F , P ).

We use the following additional assumptions on the process yt:

(D1) y1 is nonzero with probability one; i.e., P{y2
1 > 0} = 1.

(D2) The series has a linear representation

(2.1) yt =

∞
∑

s=0

κsεt−s such that κ0 = 1 and

∞
∑

s=0

|κs| < ∞

in which κ(z) =
∑∞

s=0 κsz
s

is nonzero for |z| ≤ 1 and {εt} is a martingale-

difference sequence (m.d.s.) with respect to the sequence of sigma fields Ft =

σ(ys,−∞ < s ≤ t). Thus E[εt|Ft−1] = 0. By a result of Wiener [25, Theorem

VI 5.2], κ(z)
−1

=
∑∞

s=0 βsz
s

with
∑∞

s=0 |βs| < ∞, whence

(2.2) εt =

∞
∑

s=0

βsyt−s (β0 = 1) .

(D3) The conditional variance E[ε2t |Ft−1] is constant almost surely; i.e.,

E[ε2t |Ft−1] = σ2
ε a.s. Equivalently, E[ε2t ] = σ2

ε and ε2t − σ2
ε is a m.d.s. with

respect to the Ft.

(D4) {εt} is bounded a.s.; supt |εt| ≤ K a.s. for some K < ∞.

From (D2)–(D3), the spectral density gy(ω) can be expressed as

(2.3) gy(ω) =
σ2

ε

2π

∣

∣κ(eiω
)

∣

∣

2
where κ(eiω

) =

∞
∑

j=0

κje
ijω ,

and

(2.4) 0 < m ≤ gy(ω) ≤ M < ∞ for all −π ≤ ω ≤ π

for positive constants m and M . The series yt is an invertible ARMA process if and

only if κ(z) is a rational function.
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Assumption (D4) is used extensively in the proof of the convergence theorem,

Theorem 4.1, in Section 4.

Under (D2)–(D4), we can apply, for example, the First Moment Bound Theorem

of Findley and Wei [10] to show that t−1
∑t

s=j+1(ysys−j − γy
j )

a.s.
−→ 0. Hence, from

the particular case yt = εt in (2.1) and j = 0,

(2.5) t−1
t
∑

s=1

ε2s
a.s.
−→ σ2

ε .

We consider models for yt of the invertible, stationary first-order moving-average

type (MA(1)) given by

(2.6) yt = θet−1 + et, −∞ < t < ∞ .

For a given coefficient θ such that |θ| < 1, the difference equation (2.6) is satisfied

with et = et(θ) given by the mean zero, covariance stationary one-step-ahead-

prediction-error series,

(2.7) et(θ) = (1 + θB)
−1yt =

∞
∑

j=0

(−θ)jyt−j = yt − yt|t−1(θ) ,

from the MA(1) predictor yt|t−1(θ) = −
∑∞

j=1(−θ)jyt−j , see (5.1.21) of [3]. Here

B is the backshift operator; i.e., Byt = yt−1. The coefficient θ is referred to as the

MA coefficient. Thus,

(2.8) yt = et(θ) + θet−1(θ) .

The infinite series in (2.7) converges in mean square and, from (D4) and the rep-

resentation (2.1), also almost surely. Thus, et(θ) represents the optimal one-step-

ahead-prediction-error process from the perspective of the model (2.6). The model

(2.6) is correct if et(θ) coincides (a.s.) with the m.d.s. εt in (2.2), in which case

βs = (−θ)s, k ≥ 0. Whether or not the model is correct for any θ, forecast errors

et(θ) appearing in loss functions such as (1.2) and elsewhere are calculated as in

(2.7). We emphasize that (2.1) allows data processes far more general than MA(1)

processes. In particular, the z-transform,
∑∞

s=0 κsz
s

is not required to be rational.

For example, time series conforming to the exponential models of Bloomfield [2]

have non-rational κ(z) without zeroes in |z| ≤ 1.

Let Θ = (−1, 1). From (2.7), the spectral density of et(θ) is ge(θ, ω) = gy(ω) ·

|1 + θeiω|−2
, so for L̄(θ) defined by (1.2), we have

(2.9) L̄(θ) =

∫ π

−π

gy(ω)

|1 + θeiω|2
dω .

By (2.4) and the continuity of gy(ω), L̄(θ) is positive, infinitely differentiable,

and nonconstant on the interior of [−1, 1], i.e., on Θ, and infinite at the endpoints.

Therefore it has a minimum value over [−1, 1] and

(2.10) Θ
∗ ≡

{

θ ∈ [−1, 1] : θ = arg min
θ∈[−1,1]

L̄(θ)

}

,

is a subset of [−K, K] for some 0 < K < 1. Also Θ
∗ ⊆ Θ

∗
0 = {θ ∈ Θ: L̄′

(θ) = 0}. We

are interested in a.s bounded random recursive sequences θt = θt(ξ) that converge



24 J. L. Cantor and D. F. Findley

a.s. to Θ
∗

or at least to Θ
∗
0. If Θ

∗
0 contains only one point, θ∗0 , then θt converges to

θ∗0 a.s. Our results will establish convergence of the sequence of estimates θt defined

by the general algorithm presented below to the set of zeroes of f(θ, β) defined by

(1.4).

3. The general recursive algorithm

For 0 ≤ β ≤ 1, we define a general recursion for estimating the MA coefficient θ of

(1.1):

θt = θt−1 + P̄−1
t

1

t
φt−1et; θ1 = 0, t ≥ 2 ,(3.1a)

P̄t =
1

t

t−1
∑

s=1

φ2
s = P̄t−1 +

1

t
[φ2

t−1 − P̄t−1]; P̄1 = 0; t ≥ 2 ,(3.1b)

et = yt − θt−1et−1; e1 = y1, t ≥ 2 ,(3.1c)

φt = xt − θt−1φt−1; φ1 = x1, t ≥ 2 ,(3.1d)

xt = yt − βθt−1xt−1; x1 = y1, t ≥ 2 .(3.1e)

From (3.1a), it follows for 0 ≤ s ≤ t − 1, t ≥ 2 that

(3.2) θt−s = θt −

s−1
∑

l=0

(t − l)−1P̄−1
t−lφt−l−1et−l ,

where
∑−1

l=0(·) ≡ 0. From (3.1e),

(3.3) xt =

t−1
∑

s=0

(−β)
s

(

s
∏

i=1

θt−i

)

yt−s

where
∏0

i=1(·) ≡ 1. Next, let z1 = e1 and, for t ≥ 2,

(3.4) zt = et + θt−1φt−1 .

The value of the parameterization with β is that it enables us to simultaneously

obtain results for two important algorithms. When β = 0, then xt = yt from which

it follows that φt = et and zt = yt and therefore (3.1a)–(3.1e) is PLR (AML,

RML1)[11, 20, 21, 24]. When β = 1, then xt = et and φt = et − θt−1φt−1 and thus

(3.1a)–(3.1e) is RML2 [12, 21] without monitoring to ensure that each estimate θt

is in Θ = (−1, 1).

For any β, these θt can be expressed in the form of a regression estimate:

(3.5) θt =

{

t
∑

s=2

φ2
s−1

}−1 t
∑

s=2

zsφs−1, t ≥ 2 .

An induction argument for (3.5) goes as follows. Set Pt = tP̄t =
∑t

s=2 φ2
s−1. Note

that from (D1), Pt > 0 for all t > 1 and therefore P−1
t exists a.s. From (3.1a)–(3.1e)

and (3.4), θ2 =
(

1/2φ2
1

)−1
1/2(z2φ1) , which is (3.5) for t = 2. Suppose then it is

true for some t ≥ 2; i.e.,

(3.6) Ptθt =

t
∑

s=2

zsφs−1 .
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Then

Pt+1θt+1 = Pt+1(θt + P−1
t+1φtet+1) = (Pt + φ2

t )θt + φtet+1

=

t
∑

s=2

zsφs−1 + φt(φtθt + et+1) (from the induction hypothesis (3.6))

=

t
∑

s=2

zsφs−1 + φtzt+1 =

t+1
∑

s=2

zsφs−1 .

Hence, (3.5) is true for t + 1 and by induction therefore for all t.
For use below, we define the stationary analogues et(θ), xt(θ), φt(θ) and zt(θ) of

et, xt, φt and zt:

et(θ) = (1 + θB)
−1yt ,(3.7)

xt(θ) = (1 + θβB)
−1yt =

∞
∑

j=0

(−βθ)jyt−j ,(3.8)

φt(θ) = (1 + θB)
−1xt(θ) =

∞
∑

j=0

(−θ)jxt−j(θ)

(3.9)
= (1 + θB)

−1
(1 + θβB)

−1yt ,

so φt(θ) = et(θ) when β = 0. From (3.7)–(3.9),

(3.10) zt(θ) = et(θ) + θφt−1(θ) = [(1 + θB)
−1

+ θB(1 + θB)
−1

(1 + θβB)
−1

]yt .

From (3.7)–(3.10),

E[φ2
t (θ)] =

∫ π

−π

1

|(1 + θeiω)(1 + βθeiω)|2
gy(ω)dω ,(3.11)

E[φt−1(θ)et(θ)] =

∫ π

−π

eiω

(1 + θeiω)(1 + βθeiω)

1

(1 + θe−iω)
gy(ω)dω

(3.12)

=

∫ π

−π

eiω
+ βθ

|(1 + θeiω)(1 + βθeiω)|2
gy(ω)dω ,

and

(3.13) E[zt(θ)φt−1(θ)] =

∫ π

−π

eiω
+ θ(1 + β)

|(1 + θeiω)(1 + βθeiω)|2
gy(ω)dω .

From (1.4) and (3.12), E[φt−1(θ)et(θ)] = −f(θ, β). Let e′t(θ) = det(θ)/dθ. Then,

from (3.7),

(3.14) −e′t(θ) =
B

1 + θB
et(θ) =

B

(1 + θB)2
yt .

Since
1

2

d

dθ
E[e2

t (θ)] = E[e′t(θ)et(θ)] ,

from (2.9) and (3.14), the derivative of L̄(θ), L̄′
(θ), is obtained from

−
1

2
L̄′

(θ) = E[−e′t(θ)et(θ)] =

∫ π

−π

eiω

(1 + θeiω)2

1

(1 + θe−iω)
gy(ω)dω

(3.15)

=

∫ π

−π

eiω
+ θ

|(1 + θeiω)2|2
gy(ω)dω ,
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which is (3.12) with β = 1, verifying (1.6).

As a consequence of (2.4), we note that since |z| ≤ K∗ < 1 implies 0 < 1−K∗ ≤

|1 − z| ≤ 1 + K∗
, for (3.11) with |θ| ≤ K∗ < 1 we have

(3.16)
m

(1 + K∗)
4 ≤

∫ π

−π

1

|(1 + θeiω)(1 + βθeiω)|2
gy(ω)dω ≤

M

(1 − K∗)
4 .

4. The convergence theorem

The following result is a generalization of the PLR and RML2 results proved in [4]

for MA(1) models.

Theorem 4.1 (Convergence theorem). Consider a series yt for which (D1)–

(D4) hold. For each β such that 0 ≤ β ≤ 1, assume that the recursive sequence

defined by (3.1a)–(3.1e) is such that, for some random k∗
= k∗

(ξ) and K∗
=

K∗
(ξ)(ξ ∈ Ξ) satisfying 0 ≤ k∗ < ∞ and 0 < K∗ < 1 , it holds almost surely that

|θt+k∗ | ≤ K∗ for all t. Then for f(θ, β) as in (1.4):

(a) The sequence θ̂t defined for t ≥ 1 by

θ̂t =

[

1

t

t
∑

s=1

∫ π

−π

1

|(1 + θs+k∗eiω)(1 + βθs+k∗eiω)|2
gy(ω)dω

]−1

(4.1)

×
1

t

t
∑

s=1

∫ π

−π

cos ω + (1 + β)θs+k∗

|(1 + θs+k∗eiω)(1 + βθs+k∗eiω)|2
gy(ω)dω

has the property that θt − θ̂t
a.s.
−→ 0. Hence, with probability one, there is a

t0(ξ) ≥ 1 such that |θ̂t| ≤ (1 + K∗
)/2 < 1 holds for all t ≥ t0(ξ).

(b) For all t > t0(ξ), θ̂t satisfies a Robbins-Monro recursion,

(4.2) θ̂t = θ̂t−1 − δtf(θ̂t−1, β) + δtγt ,

with γt
a.s.
−→ 0, δt > 0 a.s., δt

a.s.
−→ 0, and

∑∞
s=t0+1 δs = ∞ a.s. where f(θ, β)

has the formula (1.4).

(c) From (a) and (b), it follows that, with Θ = (−1, 1), the sequence θt converges

a.s. to the compact set

(4.3) Θ
β
0 = {θ ∈ Θ : f (θ, β) = 0}

in the sense that, on a probability one event Ξ0 that does not depend on β, for

each ξ ∈ Ξ0, the cluster points of θt(ξ) are contained in Θ
β
0 . Further, when

yt is an invertible ARMA process, then Θ
β
0 is finite, and θ(ξ) = limt→∞ θt(ξ)

exists for every ξ ∈ Ξ0.

Note from (3.5), (3.11) and (3.13) that the assertion θt − θ̂t
a.s.
−→ 0 in part (a) of

Theorem 4.1 can be formulated as the assertion that

{

1

t

t
∑

s=1

φ2
s−1

}−1
1

t

t
∑

s=1

zsφs−1

−

[

1

t

t
∑

s=1

E[φ2
t (θs+k∗)]

]−1
1

t

t
∑

s=1

E[zt(θs+k∗)φt−1(θs+k∗)]
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tends to zero a.s. In the expression above, φ0 = 0 and expectation is taken before

evaluation at θs+k∗ .

The proof of Theorem 4.1, given in Section 4.2. In [5], we provide complete

results concerning the existence of k∗
and K∗

with the required properties for

several incorrect model examples as well as for the correct model situation for

β = 0 (PLR) and provide more limited results for the case β = 1 (RML2) with

a particular monitoring scheme. For the latter case, we also report on simulation

results which demonstrate the existence of the variates k∗, K∗
as in Theorem 4.1

with the consequence that monitoring becomes unnecessary for sufficiently large t.
In the correct model case yt = θεt−1 + εt with i.i.d. εt, Lai and Ying [19] show for

their monitored RML2 that this happens a.s. and the conclusions of Theorem 4.1

concerning our approximating sequence (4.1) apply.

4.1. Preliminary results

Here we present some needed technical results. We first quote, without proof, a

powerful result from martingale theory [17, Lemma 1, part (i)]. Unless specified

otherwise, all limits (liminfs, limsups, etc.) are with respect to t and for simplicity

the t → ∞ will be usually suppressed.

Proposition 4.1. Let {ε̃t} be a martingale difference sequence with respect to an

increasing sequence of σ-fields {Ft} such that supt E[|ε̃t|
2p|Ft−1] < ∞ holds a.s.

for some p > 1. Let z̃t be an Ft−1-measurable random variable for every t. Then
∑t

s=1 z̃sε̃s converges almost surely on {
∑∞

s=1 z̃2
s < ∞}, and for every η > 1/2,

(

∑t
s=1 z̃sε̃s

)

(

∑t
s=1 z̃2

s

)η
a.s.
−→ 0 on

{

∞
∑

s=1

z̃2
s = ∞

}

.

Since

1

t

t
∑

s=1

z̃sε̃s =

{

∑t
s=1 z̃sε̃s
∑t

s=1 z̃2
s

}

1

t

t
∑

s=1

z̃2
s ,

it is clear that a corollary of this Proposition is

Proposition 4.2. Under the assumptions of Proposition 4.1, if lim sup t−1 ×
∑t

s=1 z̃2
s < ∞ a.s., then t−1

∑t
s=1 z̃sε̃s

a.s.
−→ 0.

Recall from (2.1) that yt = εt +
∑∞

s=1 κsεt−s since κ0 = 1. A second consequence

of Proposition 4.1 is

Proposition 4.3. Suppose that the m.d.s. εt in (D2) is such that supt E[|εt|
2p|

Ft−1] < ∞ holds a.s. for some p > 1. Then for any sequence ŷt = yt − ỹt−1 in

which ỹt−1 is Ft−1-measurable, it holds that lim inf t−1
∑t

s=1 ŷ2
s ≥ σ2

ε a.s., where

σ2
ε = E[ε2t ].

Proof. From (2.1), ŷt = yt − ỹt−1 = εt + z̃t where z̃t = −ỹt−1 +
∑∞

s=1 κsεt−s is

Ft−1-measurable since
∑∞

s=1 κsεt−s is Ft−1-measurable by (2.2) and ỹt−1 is Ft−1-

measurable by assumption. Then

1

t

t
∑

s=1

ŷ2
s =

1

t

t
∑

s=1

ε2s +
2

t

t
∑

s=1

εsz̃s +
1

t

t
∑

s=1

z̃2
s

(4.4)

=
1

t

t
∑

s=1

ε2s +

{

2

∑t
s=1 εsz̃s
∑t

s=1 z̃2
s

+ 1

}

1

t

t
∑

s=1

z̃2
s .
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Consider first the event that
∑t

s=1 z̃2
s

a.s.
−→ l < ∞. Then t−1

∑t
s=1 z̃2

s
a.s.
−→ 0 and,

by the preceding Proposition, t−1
∑t

s=1 εsz̃s
a.s.
−→ 0. Hence, from (2.5) and the first

equation in (4.4), lim t−1
∑t

s=1 ŷ2
s = t−1

∑t
s=1 ε2s = σ2

ε so the assertion holds in this

event. In the complementary event,
∑t

s=1 z̃2
s

a.s.
−→ ∞, from (4.4), it follows that

lim inf
1

t

t
∑

s=1

ŷ2
s = lim inf

(

1

t

t
∑

s=1

ε2s +

{

2

∑t
s=1 εsz̃s
∑t

s=1 z̃2
s

+ 1

}

1

t

t
∑

s=1

z̃2
s

)

(4.5)

= σ2
ε + lim inf

({

2

∑t
s=1 εsz̃s
∑t

s=1 z̃2
s

+ 1

}

1

t

t
∑

s=1

z̃2
s

)

a.s.

By Proposition 4.1,
∑t

s=1 εsz̃s/
∑t

s=1 z̃2
s

a.s.
−→ 0. Hence, the second expression in

(4.5) is nonnegative, and the proof is complete.

Proposition 4.4. Under (2.4), for each β ∈ [0, 1], the function f (θ, β) defined

by (1.4) is infinitely differentiable on Θ = (−1, 1), and Θ
β
0 defined by (4.3) is a

nonempty compact subset of Θ. In the case β = 1, Θ
1
0 contains the (nonempty) set

of minimizers over Θ of L̄ (θ) defined by (2.9).

Proof. The differentiability assertion follows from (2.4) via the dominated conver-

gence theorem. Except for compactness of Θ
1
0, which will be discussed below, the

assertions concerning L̄ (θ) and f (θ, 1) were obtained subsequent to (2.10). The

remaining assertions follow from the continuity of f (θ, β) and the limit properties

(4.6) lim
θ→−1

f (θ, β) = −∞

and

(4.7) lim
θ→1

f (θ, β) = ∞.

Indeed, from (4.6)–(4.7), for any K > 0 there exists an 0 < ε(K, β) < 1 such that

f(θ, β) ≤ −K for all θ ∈ (−1,−1+ε) and f(θ, β) ≥ K for all θ ∈ (1−ε, 1). Therefore

f(θ, β) must change sign over [−1+ ε, 1− ε]. Hence f(θ, β) is non-constant and has

a zero in this interval and, moreover, Θ
β
0 ⊆ [−1 + ε, 1 − ε]. Finally, since f(θ, β) is

continuous on this interval, Θ
β
0 is compact. An analogous argument applies to Θ

1
0.

To verify (4.6), we note that gy(ω) = gy(−ω),−π ≤ ω ≤ π yields

f (θ, β) = −

∫ π

−π

cos ω + βθ

|(1 + θeiω) (1 + βθeiω)|
2 gy (ω) dω.

Because 0 ≤ β < 1, for 0 < ε < 1 − β there is a δ = δ(ε) ∈ (0, π) such that

cos ω + βθ ≥ ε whenever |ω| ≤ δ and −1 ≤ θ ≤ 0. For such ε, δ, we obtain

lim
θ→−1

∫ π

−π

cos ω + βθ

|(1 + θeiω) (1 + βθeiω)|
2 gy (ω) dω

=

{

∫ −δ

−π

+

∫ π

δ

}

cos ω + βθ

|(1 − eiω) (1 − βeiω)|
2 gy (ω) dω(4.8)

+ lim
θ→−1

∫ δ

−δ

cos ω + βθ

|(1 + θeiω) (1 + βθeiω)|
2 gy (ω) dω(4.9)

= ∞,
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because (4.8) is finite, whereas for (4.9) we have

lim
θ→−1

∫ δ

−δ

cos ω + βθ

|(1 + θeiω) (1 + βθeiω)|
2 gy (ω) dω

≥ εm lim
θ→−1

∫ δ

−δ

∣

∣

(

1 + θeiω
) (

1 + βθeiω
)∣

∣

−2
dω = ∞.

This yields (4.6), and (4.7) follows by an analogous argument.

Proposition 4.5. Let yt be an invertible ARMA process, then for each β ∈ [0, 1],

the set Θ
β
0 = {θ ∈ (−1, 1) : f(θ, β) = 0} is finite.

Proof. κ (z) in (D2) has the form κ (z) = η (z) /φ (z) where η (z) and φ (z) are

polynomials, of degrees dη and dφ, respectively, having no common zeroes and

having all zeros in {|z| > 1}. Setting z = eiω
and h (z) = (1 + θz) (1 + βθz), we

obtain from dz = izdω that

−f(θ, β) =

∫ π

−π

eiω
+ βθ

|(1 + θeiω) (1 + βθeiω)|
2 gy (ω) dω

=
σ2

ε

2πi

∫

|z|=1

(z + βθ) η (z) η
(

z−1
)

zh (z) h (z−1)φ (z) φ (z−1)
dz

=
σ2

ε

2πi

∫

|z|=1

z1+dφ−dη

(z + βθ) η (z)
{

zdηη
(

z−1
)}

h (z) {z2h (z−1)}φ (z) {zdφφ (z−1)}
dz.

The function

w (z) = σ2
εz1+dφ−dη

(z + βθ) η (z)
{

zdηη
(

z−1
)}

h (z) {z2h (z−1)}φ (z) {zdφφ (z−1)}

is nonzero on {|z| = 1} and has poles interior to the unit circle at −θ, −βθ, at the

zeroes of zdηφ
(

z−1
)

, and, if 1 + dφ − dη < 0, also at 0. If zj , j = 1, . . . , n are the

distinct poles in {z : |z| < 1}, then, by the Residue Theorem of complex analysis,

e.g., (4.7-10) of Henrici [13], it follows that

f (θ, β) = −

n
∑

j=1

Resz=zj
w (z) ,

where, if zj is a pole of order J ≥ 1,

Resz=zj
w (z) =

1

(J − 1)!
lim

z→zj

dJ−1

dzJ−1

{

(z − zj)
J

w (z)

}

.

Thus each Resz=zj
w (z) is a rational function of θ, and therefore the same is true

of f (θ, β). Consequently, f (θ, β) = 0 holds for only finitely many θ in (−1, 1).

The final preliminary result addresses convergence of a Robbins-Monro type

recursion that will be applied to demonstrate convergence of the general recursive

algorithm. It is a special case of a correction and extension by Findley [9] of a result

that is implicit in the proof of a theorem of Fradkov presented in Derevitzkĭi and

Fradkov [8] for the case of monotonically decreasing δt. The result below is also

implicit in the proofs of Theorem 2.2.2 and Corollary 2.2.1 of Chen [7] which cover

the case of vector θ more completely than Findley [9].
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Proposition 4.6. Let θ̂t, t ≥ t0 be a non-stochastic, real-valued sequence satisfying

θ̂t = θ̂t−1 − δtf(θ̂t−1) + δtγt, t > t0

for some real-valued function f(θ), with γt, t > t0 satisfying γt → 0 and with δt,

t ≥ t0 satisfying δt ≥ 0, δt → 0, and
∑∞

t=t0+1 δt = ∞ . Suppose there is a bounded

open set Θ̃ on which f (θ) is continuously differentiable and which is such that the

sequence θ̂t enters Θ̃ infinitely often and has no cluster point on the boundary of Θ̃.

Then θ̂t is bounded, and its cluster points belong to Θ̃0 = {θ ∈ Θ̃ : f(θ) = 0}, i.e.,

θ̂t → Θ̃0. The set of cluster points is compact. If Θ̃0 is finite, then θ̂t converges to

some θ ∈ Θ̃0.

4.2. Proof of the convergence theorem

The proof of Theorem 4.1 follows from a set of technical lemmas and propositions

given below. Proposition 4.7 provides a set of technical results needed to prove

the Theorem’s two main assertions: (i) the asymptotic equivalence of θt and the

sequence θ̂t (Proposition 4.8) and (ii) (Proposition 4.9) the fact that θ̂t satisfies a.s.

a Robbins-Monro recursion of the form considered in Proposition 4.6.

Hereafter, K or sometimes k (or these letters with decorations) will denote a

generic upper bound (not always the same one) that is finite, or when it is random,

finite a.s. A random K will be shown as K(ξ) with ξ ∈ Ξ on first appearance

whenever the randomness is not immediately clear from context. Again, unless

specified otherwise, all limits (liminfs, limsups, etc.) are with respect to t and usually

the t → ∞ will be omitted. The notation oa.s.(1) denotes convergence to zero with

probability one.

Proposition 4.7. Under the assumptions of Theorem 4.1, for the general recursive

algorithm, the assertions (a)–(c) below follow:

(a) lim inf t−1
∑t

s=1 φ2
s ≥ σ2

ε a.s. and (t−1
∑t

s=1 φ2
s)

−1 ≤ K(ξ) < ∞ , and thus,

from (3.1b), P̄−1
t is bounded a.s.

(b) For t ≥ 1, et =
∑∞

j=0 κe
j(t)εt−j ; φt =

∑∞
j=0 κφ

j (t)εt−j ; xt =
∑∞

j=0 κx
j (t)εt−j;

and zt =
∑∞

j=0 κz
j (t)εt−j where for every j, κe

j(t), κ
φ
j (t), κx

j (t) and κz
j (t) are Ft−1-

measurable. Moreover, there exist κ̃j such that

max
j

{|κe
j(t)|, |κ

φ
j (t)|, |κx

j (t)|, |κz
j (t)|} ≤ κ̃j

and
∑∞

j κ̃j < ∞ a.s. Hence, the sequences et, φt, xt and zt are uniformly bounded

a.s.

(c) θt − θt−1 = oa.s.(1).

Proof of (a). From (3.1d), φt = xt − θt−1et−1 = yt − θt−1(βxt−1 + et−1) . Since

θt−1(βxt−1 + et−1) is Ft−1-measurable, by Proposition 4.3,

(4.10) lim inf t−1
t
∑

s=1

φ2
s ≥ σ2

ε a.s.

Continuing, from (4.10), for any 0 < L1 < σ2
ε , there exists t0 = t0(L1, ξ) such that

t−1
∑t

s=1 φ2
s > L1 a.s. for all t ≥ t0. Let L2(ξ) ≡ min1≤t<t0 t−1

∑t
s=1 φ2

s. Then
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0 < L2 < ∞ a.s. This follows since t0 is finite and φt is a finite valued sequence

with probability one, hence L2 < ∞. Moreover, since φ1 = y1, under (D1) it follows

that L2 > 0 a.s. Hence, (t−1
∑t

s=1 φ2
s)

−1 ≤ max{L−1
1 , L−1

2 } < ∞ a.s. and the proof

of part (a) is complete.

Proof of (b). Set θ0 = 0. From e1 = y1 and et = yt − θt−1et−1, t ≥ 2, it follows

that κe
j(1) = κj for all j, that κe

0(t) = κ0 for all t ≥ 1, and that κe
j(t) = κj(t) −

θt−1κ
e
j(t − 1) for all t ≥ 2, j ≥ 1. It follows by induction that

(4.11) κe
j(t) =

min(j,t−1)
∑

l=0

(−1)
lκj−l

l
∏

i=1

θt−i where
∏0

i=1(·) ≡ 1 .

Since for some k∗
finite, |θt+k∗ | < 1 for all t ≥ 1, we have that |θt| ≤ K(ξ) < ∞.

First suppose that K < 1. Then from (4.11),

|κe
j(t)| ≤

min(j,t−1)
∑

l=0

|κj−l|

l
∏

i=1

|θt−i| ≤

j
∑

l=0

Kl|κj−l|

and since K < 1,
∑∞

j=0 |κ
e
j(t)| ≤

∑∞
j=0

∑j
l=0 Kl|κj−l| =

∑∞
l=0 Kl

∑∞
p=0 |κp| < ∞

where p = j − l. So the result holds for the case of 0 < K < 1.

Otherwise, suppose 1 ≤ K < ∞. For all t ≥ k∗
, we have that |θt| ≤ K∗

(ξ) < 1, so

K(ξ) = λ(ξ)K∗
(ξ) for λ > 1. For simplicity of notation, replace K∗

by ρ. We next

show that
∏l

i=1 |θt−i| ≤ λk∗

ρl
for l ≤ t. First suppose t ≤ k∗

. Then
∏l

i=1 |θt−i| ≤

λlρl ≤ λk∗

ρl
. Next suppose t > k∗

and l ≤ t − k∗
. Then,

∏l
i=1 |θt−i| ≤ ρl < ρlλk∗

since |θt−i| ≤ ρ for 1 ≤ i ≤ t − s∗. Finally, suppose t > k∗
and l > t − s∗. Then

since l ≤ t,

l
∏

i=1

|θt−i| =

t−s∗

∏

i=1

|θt−i|

l
∏

i=t−s∗+1

|θt−i| ≤ ρt−s∗

λl−(t−s∗)ρl−(t−s∗)

= ρlλl−(t−s∗)
= λk∗

λl−tρl ≤ λk∗

ρl .

Hence, generally
∏l

i=1 |θt−i| ≤ λk∗

ρl
. Setting κe

j(ξ) = λk∗
∑j

l=0 ρl|κj−l|, we have

|κe
j(t)| ≤

j
∑

l=0

|κj−l|

l
∏

i=1

|θt−i| ≤ λk∗

j
∑

l=0

ρl|κj−l| = κe
j ,

and since |ρ| < 1,
∑∞

j=0 κe
j < ∞ a.s.

Next, from (3.3)

(4.12) κx
j (t) =

min(j,t−1)
∑

l=0

(−β)
lκj−l

l
∏

i=1

θt−i ,

and since 0 ≤ β ≤ 1, an argument like that for et can be applied and to obtain the

existence of a κx
j such that

(4.13) |κx
j (t)| ≤ κx

j and

∞
∑

j=0

κx
j < ∞ a.s.
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Continuing, since φ1 = x1 and φt = xt − θt−1φt−1 for t ≥ 2, it follows similarly

that

(4.14) κφ
j (t) =

min(j,t−1)
∑

l=0

(−1)
lκx

j−l(t)

l
∏

i=1

θt−i .

From (4.12) and (4.13), substituting κx
j (t) for κj , the same kind of argument can

be applied to (4.14) to yield

(4.15) |κφ
j (t)| ≤ κφ

j with
∑∞

j=0 κφ
j < ∞ a.s.

Finally, for t ≥ 2, we have, from zt = et + θt−1φt−1 ,

∞
∑

j=0

κz
j (t)εt−j =

∞
∑

j=0

κe
j(t)εt−j + θt−1

∞
∑

j=0

κφ
j (t − 1)εt−1−j ,

for t ≥ 2 from which it follows that

(4.16) κz
j (t) = κe

j(t) + θt−1κ
φ
j−1(t − 1) ,

where κφ
−1(t) ≡ 0. Since supt |θt| < ∞ a.s.,

|κz
j (t)| ≤ κe

j + sup
t

|θt|κ
φ
j−1 a.s.,

where κφ
−1 ≡ 0, so there is a κz

j such that |κz
j (t)| ≤ κz

j and
∑∞

j=0 |κ
z
j | < ∞ a.s. for

t ≥ 2. Since z1 = e1, it thus follows that κ̃j = maxj{|κ
e
j |, |κ

φ
j |, |κ

x
j |, |κ

z
j |} satisfies

∑∞
j κ̃j < ∞ a.s.

From this, we see that et, φt, xt and zt are bounded a.s. For example,

|φt| =

∣

∣

∣

∣

∣

∣

∞
∑

j=0

κφ
j (t)εt−j

∣

∣

∣

∣

∣

∣

≤ sup
−∞<t<∞

|εt|

∞
∑

j=0

κ̃j < ∞ a.s.

From (4.11)–(4.12), (4.14) and (4.16), κe
j(t), κ

φ
j (t), κx

j (t) and κz
j (t) are each Ft−1-

measurable for every j. Hence, part (b) of the Proposition is proved.

Proof of (c). By parts (a) and (b), |θt−θt−1| ≤ t−1P̄−1
t |et||φt−1| ≤ t−1K(ξ) where

K(ξ) < ∞ and thus part (c) follows and the proof of Proposition 4.7 is complete.

Lemma 4.1. Under the assumptions of Theorem 4.1, we have:

(a) If κ̃j(t) are Ft−1-measurable such that |κ̃j(t)| ≤ κ̃j for j ≥ 0, with
∑∞

j=0 κ̃j <
∞ a.s., then for all p ≥ 1 and each 0 ≤ j < ∞,

(4.17)
1

t

t
∑

s=2





min(j,s−1)
∑

l=1

κ̃j−l(s)

l
∏

i=1

(s − i)−1P̄−1
s−iφs−i−1es−i





p

a.s.
−→ 0 ,

and

(4.18)
1

t

t
∑

s=2





min(j,s−1)
∑

l=1

κ̃j−l(s)

l
∑

i=0

(s − i)−1P̄−1
s−iφs−i−1es−i





p

a.s.
−→ 0 .
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In particular,

(4.19)
1

t

t
∑

s=2





min(j,s−1)
∑

l=1

κ̃j−l(s)

l
∏

i=1

(s − i)−1P̄−1
s−iφs−i−1es−i





p

ε2s−j
a.s.
−→ 0 .

(b) For any 0 ≤ j < ∞ and i ≤ j,

(4.20)
1

t

t
∑

s=1

(κφ
j (s))2ε2s−j =

1

t

t
∑

s=i+1

(κφ
j (s − i))2ε2s−j + oa.s.(1) .

(c) For 0 ≤ j, l < ∞ and j �= l, then

(4.21)
1

t

t
∑

s=max(j+2,l+2)

κφ
j (s)εs−jκ

φ
l (s)εs−l

a.s.
−→ 0 .

Proof of (a). By the boundedness of P̄−1
t , φt, et (Proposition 4.7) and since

|κ̃m(t)| ≤ κ̃m for all m ≥ 0 and t ≥ 1,

1

t

t
∑

s=2





min(j,s−1)
∑

l=1

κ̃j−l(s)

l
∏

i=1

(s − i)−1P̄−1
s−iφs−i−1es−i





p

≤
1

t

t
∑

s=2





j
∑

m=0

κ̃j

min(j,s−1)
∑

l=1

l
∏

i=1

(s − i)−1|P̄−1
s−i||φs−i−1||es−i|





p

≤ K(ξ)
1

t

t
∑

s=2





min(j,s−1)
∑

l=1

l
∏

i=1

(s − i)−1





p

.

And since for all j ≥ 0, p ≥ 1,

1

t

t
∑

s=2





min(j,s−1)
∑

l=1

l
∏

i=1

(s − i)−1





p

≤
K

t

t
∑

s=2

(s − min(j, s − 1))
−p

−→ 0 ,

(4.17) follows, as does (4.19), by the boundedness of εt. Similarly,

1

t

t
∑

s=2





min(j,s−1)
∑

l=1

κ̃j−l(s)

l
∑

i=0

(s − i)−1P̄−1
s−iφs−i−1es−i





p

≤ K(ξ)
1

t

t
∑

s=2





min(j,s−1)
∑

l=1

l
∑

i=0

(s − i)−1





p

(4.22)

≤ K(ξ)
K

t

t
∑

s=2





min(j,s−1)
∑

i=0

(s − i)−1





p

−→ 0 ,

and (4.18) follows.
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Proof of (b). From (4.12) and the recursion (3.1a) for θt, we have, for s ≥ j + 2,

κx
j (s) =

j
∑

l=0

(−β)
lκj−l

l
∏

i=1

θs−i

=

j
∑

l=0

(−β)
lκj−l

l
∏

i=1

(

θs−i−1 + (s − i)−1P̄−1
s−iφs−i−1es−i

)

(4.23)

=

j
∑

l=0

(−β)
lκj−l

l
∏

i=1

θs−i−1 +

j
∑

l=0

(−β)
lκj−l

l
∏

i=1

(s − i)−1P̄−1
s−iφs−i−1es−i

= κx
j (s − 1) + wx

j (s) .

where

(4.24) wx
j (s) =

j
∑

l=0

(−β)
lκj−l

l
∏

i=1

(s − i)−1P̄−1
s−iφs−i−1es−i,

Continuing, from (4.14) and (4.23)–(4.24), for s ≥ j + 2,

κφ
j (s) =

j
∑

l=0

(−1)
lκx

j−l(s)
l
∏

i=1

θs−i

=

j
∑

l=0

(−1)
lκx

j−l(s)

l
∏

i=1

(

θs−i−1 + (s − i)−1P̄−1
s−iφs−i−1es−i

)

=

j
∑

l=0

(−1)
lκx

j−l(s)

l
∏

i=1

θs−i−1

+

j
∑

l=0

(−1)
lκx

j−l(s)

l
∏

i=1

(s − i)−1P̄−1
s−iφs−i−1es−i(4.25)

=

j
∑

l=0

(−1)
l
(κx

j−l(s − 1) + wx
j−l(s))

l
∏

i=1

θs−i−1

+

j
∑

l=0

(−1)
lκx

j−l(s)

l
∏

i=1

(s − i)−1P̄−1
s−iφs−i−1es−i

= κφ
j (s − 1) + wφ

j (s),

where from (4.24),

wφ
j (s) =

j
∑

l=0

(−1)
lwx

j−l(s)

l
∏

i=1

θs−i−1

+

j
∑

l=0

(−1)
lκx

j−l(s)

l
∏

i=1

(s − i)−1P̄−1
s−iφs−i−1es−i

(4.26)

=

j
∑

l=0

(−1)
l

j−l
∑

m=0

(−β)
mκj−l−m

m
∏

i=1

(s − i)−1P̄−1
s−iφs−i−1es−i

l
∏

n=1

θs−n−1

+

j
∑

l=0

(−1)
lκx

j−l(s)
l
∏

i=1

(s − i)−1P̄−1
s−iφs−i−1es−i.
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By (4.19) and (4.25)–(4.26),

1

t

t
∑

s=j+2

(κφ
j (s))2ε2s−j =

1

t

t
∑

s=j+2

(

(κφ
j (s − 1))

2
+ 2κφ

j (s − 1)wφ
j (s) + (wφ

j (s))2
)

ε2s−j .

Applying an argument similar to that used for part (a), it follows by the bound-

edness of β and θt and the Cauchy-Schwarz inequality that t−1
∑t

s=j+2(2κφ
j (s −

1)wφ
j (s) + (wφ

j (s))2)ε2s−j = oa.s.(1). Hence,

1

t

t
∑

s=j+2

(κφ
j (s))2ε2s−j =

1

t

t
∑

s=j+2

(κφ
j (s − 1))

2ε2s−j + oa.s.(1) .

Finally, since j is finite, then for i ≤ j, it follows by applying the recursion (4.25)

in κφ
j (t) i − 1 additional times that (4.20) holds, because a finite sum of oa.s.(1)

terms is oa.s.(1).

Proof of (c). By parts (a) and (b), for j �= l,

1

t

t
∑

s=max(j+2,l+2)

κφ
j (s)εs−jκ

φ
l (s)εs−l

=
1

t

t
∑

s=max(j+2,l+2)

{(

κφ
j (s − 1) +

min(j,s−1)
∑

p=0

(−1)
pκx

j−p(s)

×

l
∏

q=1

(s − q)−1P̄−1
s−qφs−q−1es−q

)

(4.27)

×

(

κφ
l (s − 1) +

min(j,s−1)
∑

r=0

(−1)
rκx

j−r(s)

×

r
∏

m=1

(s − m)
−1P̄−1

s−mφs−m−1es−m

)

εs−jεs−l

}

=
1

t

t
∑

s=max(j+2,l+2)

κφ
j (s − 1)κφ

l (s − 1)εs−jεs−l + oa.s.(1).

Without loss of generality, suppose j < l < ∞. From parts (a)–(b) and applying

the argument that led to (4.27) j − 1 additional times, we have that

1

t

t
∑

s=1

κφ
j (s)κφ

l (s)εs−jεs−l =
1

t

t
∑

s=j+1

κφ
j (s − j)κφ

l (s − j)εs−jεs−l + oa.s.(1)

=
1

t

t−j
∑

s=1

κφ
j (s)κφ

l (s)εs−(l−j)εs + oa.s.(1) ,

=
1

t

t
∑

s=1

κφ
j (s)κφ

l (s)εs−(l−j)εs + oa.s.(1) ,

since by (D4) and the fact that |κφ
m(t)| ≤ K(ξ) < ∞ for all m ≥ 0,

t−1
t
∑

s=t−j+1

κφ
j (s)κφ

l (s)εs−(l−j)εs = oa.s.(1) .
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Since j < l, εs−(l−j) is Fs−1-measurable, as the σ-fields are increasing. Set z̃s =

κφ
j (s)κφ

l (s)εs−(l−j) , which is Fs−1-measurable by part (b) of Proposition 4.7. Then

from boundedness, lim sup
1
t

∑t
s=1 z̃2

s ≤ (supt |κ
φ
(t)|)4(supt |εt|)

2 < ∞ , and thus

from Proposition 4.2, t−1
∑t

s=1 z̃sεs
a.s.
−→ 0 and therefore (4.21) holds and the proof

of the Lemma is complete.

Lemma 4.2. For each u ≥ 0, under the assumptions of Theorem 4.1,

(4.28)
1

t

t
∑

s=1

φ2
s =

1

t

t
∑

s=1





u
∑

j=0

κφ
j (s)εs−j





2

+ r1(t, u)

where limu lim supt |r1(t, u)| = 0.

Proof.

1

t

t
∑

s=1

φ2
s =

1

t

t
∑

s=1





∞
∑

j=0

κφ
j (s)εs−j





2

=
1

t

t
∑

s=1





u
∑

j=0

κφ
j (s)εs−j





2

+
2

t

t
∑

s=1





u
∑

j=0

κφ
j (s)εs−j

∞
∑

l=u+1

κφ
l (s)εs−l





+
1

t

t
∑

s=1





∞
∑

j=u+1

κφ
j (s)εs−j





2

.

Let r1(t, u) be the sum of the last two terms. Recall from Proposition 4.7 and (4.15)

that |κφ
j (t)| ≤ κφ

j where
∑∞

j=0 κφ
j < ∞ a.s. From this and (D4), it follows that

lim
u

lim sup
t

|r1(t, u)| ≤ K(ξ) lim
u











u
∑

j=0

κφ
j

∞
∑

l=u+1

κφ
l +





∞
∑

j=u+1

κφ
j





2










= 0 ,

and consequently that (4.28) holds.

Lemma 4.3. For each u ≥ 0, under the assumptions of Theorem 4.1,

(4.29)
1

t

t
∑

s=1





u
∑

j=0

κφ
j (s)εs−j





2

=
σ2

ε

t

t
∑

s=1

u
∑

j=0

(

κφ
j (s)
)2

+ oa.s.(1).

Proof.

1

t

t
∑

s=1





u
∑

j=0

κφ
j (s)εs−j





2

=
1

t

t
∑

s=1

u
∑

j=0

(κφ
j (s))2ε2s−j +

1

t

t
∑

s=1

u
∑

j �=l

κφ
j (s)εs−jκ

φ
l (s)εs−l .

Since u is finite, by Lemma 4.1, part (c),

1

t

t
∑

s=1

u
∑

j �=l

κφ
j (s)εs−jκ

φ
l (s)εs−l = oa.s.(1) ,
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and so it remains to consider t−1
∑t

s=1

∑u
j=0(κ

φ
j (s))2ε2s−j . Consider the martingale

difference sequence ε̃t = ε2t − E[ε2t |Ft−1] = ε2t − σ2
ε (recall that E[ε2t |Ft−1] = σ2

ε ).

From (D4), ε̃t is bounded a.s., hence sup−∞<t<∞ E[|ε̃t|
p|Fε

t−1] < ∞ a.s., so we can

apply Proposition 4.2 to ε̃t.

For any j ≤ s, consider t−1
∑t

s=1(κ
φ
j (s))2ε̃s. Since lim sup t−1

∑t
s=1(κ

φ
j (s))2 <

∞, by Proposition 4.2, t−1
∑t

s=1(κ
φ
j (s))2ε̃s

a.s.
−→ 0 , hence, t−1

∑t
s=1(κ

φ
j (s))2(ε2s −

σ2
ε )

a.s.
−→ 0. By an argument like that used to prove part (b) of Lemma 4.1, it follows

that

1

t

t
∑

s=1

(κφ
j (s))2ε̃s−j =

1

t

t
∑

s=j+1

(κφ
j (s − j))2ε̃s−j + oa.s.(1) ,

=
1

t

t−j
∑

s=1

(κφ
j (s))2ε̃s + oa.s.(1) ,

=
1

t

t
∑

s=1

(κφ
j (s))2ε̃s + oa.s.(1) (since j ≤ s),

=
1

t

t
∑

s=1

(κφ
j (s))2ε̃s + oa.s.(1) = oa.s.(1) ,

i.e., t−1
∑t

s=1(κ
φ
j (s))2(ε2s−j − σ2

ε )
a.s.
−→ 0 for all j ≤ u. Finally, since u is finite,

t−1
∑t

s=1

∑u
j=0(κ

φ
j (s))2(ε2s−j − σ2

ε )
a.s.
−→ 0 , and (4.29) holds and the proof of the

Lemma is complete.

Lemma 4.4. Under the assumptions of Theorem 4.1, for each u ≥ 0 and 0 ≤ k∗ <
∞, we have

σ2
ε

t

t
∑

s=1

u
∑

j=0

(

κφ
j (s)
)2

=
σ2

ε

t

t
∑

s=1

u
∑

j=0

(

j
∑

l=0

(−θs+k∗)
l

j−l
∑

p=0

(−βθs+k∗)
pκj−l−p

)2

(4.30)
+ oa.s.(1).

Proof. First suppose k∗
= 0. Recalling from (4.12) and (4.14), for s ≥ j + 1,

κφ
j (s) =

j
∑

l=0

(−1)
lκx

j−l(s)

l
∏

i=1

θs−i

=

j
∑

l=0

(−1)
l

(

j−l
∑

p=0

(−β)
pκj−l−p

p
∏

r=1

θs−r

)

l
∏

i=1

θs−i.(4.31)

From (3.2) and (4.31), it follows that for s ≥ j + 1,

κφ
j (s) =

j
∑

l=0

(−1)
lκx

j−l(s)

l
∏

i=1

θs−i =

j
∑

l=0

(−1)
lθs−1κ

x
j−l(s)

l
∏

i=2

θs−i

=

j
∑

l=0

(−1)
l
(θs − s−1P̄−1

s φs−1es)κ
x
j−l(s)

l
∏

i=2

θs−i(4.32)
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=

j
∑

l=0

(−1)
lθsκ

x
j−l(s)

l
∏

i=2

θs−i

−

j
∑

l=0

(−1)
ls−1P̄−1

s φs−1esκ
x
j−l(s)

l
∏

i=2

θs−i.

Next, taking the square of (4.32), we obtain

(κφ
j (s))2 =

(

j
∑

l=0

(−1)
lθsκ

x
j−l(s)

l
∏

i=2

θs−i

)2

− 2

j
∑

l=0

(−1)
l

(4.33)

×

j
∑

m=0

{

(−1)
m

(θsκ
x
j−l(s)

(

l
∏

i=2

θs−i

)

s−1P̄−1
s φs−1es)κ

x
j−m(s)

m
∏

p=2

θs−p

}

+

(

j
∑

l=0

(−1)
ls−1P̄−1

s φs−1esκ
x
j−l(s)

l
∏

i=2

θs−i

)2

,

and from the boundedness of θt and an argument like that used to prove (4.17), it

follows that

(4.34)
σ2

ε

t

t
∑

s=j+1

(κφ
j (s))2 =

σ2
ε

t

t
∑

s=j+1

(

j
∑

l=0

(−1)
lθsκ

x
j−l(s)

l
∏

i=2

θs−i

)2

+ oa.s.(1) .

Consider next the r.h.s. of (4.34). From (3.2),

j
∑

l=0

(−1)
lθsκ

x
j−l(s)

l
∏

i=2

θs−i

=

j
∑

l=0

(−1)
lθsθs−2κ

x
j−l(s)

l
∏

i=3

θs−i

=

j
∑

l=0

(−1)
lθs

(

θs −

1
∑

m=0

(s − m)
−1P̄−1

s−mφs−m−1es−m

)

κx
j−l(s)

l
∏

i=3

θs−i

=

j
∑

l=0

(−1)
lθ2

sκx
j−l(s)

l
∏

i=3

θs−i

−

j
∑

l=0

(−1)
lθs

1
∑

m=0

(s − m)
−1P̄−1

s−mφs−m−1es−mκx
j−l(s)

l
∏

i=3

θs−i.

Therefore, again from boundedness of θt and an argument like that used to prove

(4.17),

σ2
ε

t

t
∑

s=j+1

(κφ
j (s))2 =

σ2
ε

t

t
∑

s=j+1

(

j
∑

l=0

(−1)
lθ2

sκx
j−l(s)

l
∏

i=3

θs−i

)2

+ oa.s.(1) .
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Applying the argument l − 2 additional times, it follows that

(4.35)
σ2

ε

t

t
∑

s=j+1

(κφ
j (s))2 =

σ2
ε

t

t
∑

s=j+1

(

j
∑

l=0

(−θs)
lκx

j−l(s)

)2

+ oa.s.(1) .

Next working on the r.h.s. of (4.35), from (4.12):

j
∑

l=0

(−θs)
lκx

j−l(s) =

j
∑

l=0

(−θs)
l

(

j−l
∑

p=0

(−β)
pκj−l−p

p
∏

r=1

θs−r

)

=

j
∑

l=0

(−θs)
l

(

j−l
∑

p=0

(−β)
p
(θs − s−1P̄−1

s φs−1es)κj−l−p

p
∏

r=2

θs−r

)

=

j
∑

l=0

(−θs)
l

(

j−l
∑

p=0

(−β)
pθsκj−l−p

p
∏

r=2

θs−r

)

−

j
∑

l=0

(−θs)
l

(

j−l
∑

p=0

(−β)
ps−1P̄−1

s φs−1esκj−l−p

p
∏

r=2

θs−r

)

.

Hence,

σ2
ε

t

t
∑

s=j+1

(

j
∑

l=0

(−θs)
lκx

j−l(s)

)2

=
σ2

ε

t

t
∑

s=j+1

(

j
∑

l=0

(−θs)
l

j−l
∑

p=0

(−β)
pθsκj−l−p

p
∏

r=2

θs−r

)2

+ oa.s.(1).

Applying the argument p − 1 additional times, it follows that

σ2
ε

t

t
∑

s=j+1

(

j
∑

l=0

(−θs)
lκx

j−l(s)

)2

=
σ2

ε

t

t
∑

s=j+1

(

j
∑

l=0

(−θs)
l

j−l
∑

p=0

(−βθs)
pκj−l−p

)2

+ oa.s.(1) ,

and, since j is finite,

σ2
ε

t

t
∑

s=1

(κφ
j (s))2 =

σ2
ε

t

t
∑

s=j+1

(

j
∑

l=0

(−θs)
l

j−l
∑

p=0

(−βθs)
pκj−l−p

)2

+ oa.s.(1) .

Finally, since u is finite, (4.30) follows for k∗
= 0.

From (3.2), for any finite k∗ > 0,

θs+k∗ = θs +

k∗−1
∑

r=0

(s + k∗ − r)−1P̄−1
s+k∗−rφs+k∗−r−1es+k∗−r .

Set

λ(s, k∗
) =

k∗−1
∑

r=0

(s + k∗ − r)−1P̄−1
s+k∗−rφs+k∗−r−1es+k∗−r.
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For every integer l ≥ 0, the binomial formula yields

θl
s+k∗ = θl

s +

(

l
1

)

θl−1
s+k∗

λ(s, k∗
) + · · · +

(

l
l − 1

)

θs+k∗λl−1
(s, k∗

) + λl
(s, k∗

) .

Substituting this result into the r.h.s. of

σ2
ε

t

t
∑

s=1

(κφ
j (s))2 =

σ2
ε

t

t
∑

s=j+1

(

j
∑

l=0

(−θs+k∗)
l

j−l
∑

p=0

(−βθs+k∗)
pκj−l−p

)2

+ oa.s.(1) ,

which follows from Lemma 4.1, and noting that each resulting term involving

λ(s, k∗
) is oa.s.(1) by (4.18), the proof of (4.30) and of the Lemma is reduced

to the result just established for k∗
= 0.

Lemma 4.5. Under the assumptions of Theorem 4.1, for any finite u,

(4.36)
σ2

ε

t

t
∑

s=2

u
∑

j=1

κe
j(s)κ

φ
j−1(s − 1)ε2s−j =

σ2
ε

t

t
∑

s=2

u
∑

j=1

κe
j(s)κ

φ
j−1(s − 1) + oa.s.(1).

Proof. Since u is finite and for any finite j ≤ u, lim sup t−1σ2
ε |
∑t

s=2 κe
j(s) ×

κφ
j−1(s − 1)| < ∞, then the result follows by an argument similar to that used

to prove part (c) of Lemma 4.1.

Proposition 4.8. Under the assumptions of Theorem 4.1, the sequence {θ̂t} defined

by (4.1) satisfies θt − θ̂t = oa.s.(1).

Proof. For simplicity, first assume that k∗
= 0; i.e., |θt| ≤ K∗ < 1 for all t. From

the results of Proposition 4.7 and Lemmas 4.2–4.4, for any u < ∞:

1

t

t
∑

s=1

φ2
s =

1

t

t
∑

s=1





u
∑

j=0

κφ
j (s)εs−j





2

+ r1(t, u) (Lemma 4.2)

=
σ2

ε

t

t
∑

s=1

u
∑

j=0

(

κφ
j (s)
)2

+ oa.s.(1) + r1(t, u) (Lemma 4.3)

=
σ2

ε

t

t
∑

s=1

u
∑

j=0

(

j
∑

l=0

(−1)
l

l
∏

i=1

θs−i

j−l
∑

p=0

(−β)
pκj−l−p

p
∏

r=1

θs−r

)2

+ oa.s.(1)

+ r1(t, u)

=
σ2

ε

t

t
∑

s=1

u
∑

j=0

(

j
∑

l=0

(−θs)
l

j−l
∑

p=0

(−βθs)
pκj−l−p

)2

+ oa.s.(1)

+ r1(t, u) (Lemma 4.4)

where limu lim supt |r1(t, u)| = 0. By (2.3), Parseval’s relation and convolution [22,

pp. 61-66], it follows that

σ2
ε

t

t
∑

s=1

∞
∑

j=0

(

j
∑

l=0

(−θs)
l

j−l
∑

p=0

(−βθs)
pκj−l−p

)2

=
1

t

t
∑

s=1

∫ π

−π

1

|(1 + θseiω)(1 + βθseiω)|2
gy(ω)dω ,
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and so

1

t

t
∑

s=1

φ2
s =

1

t

t
∑

s=1

∫ π

−π

1

|(1 + θseiω)(1 + βθseiω)|2
gy(ω)dω + r2(t, u)

where

r2(t, u) = r1(t, u) +
σ2

ε

t

t
∑

s=1

∞
∑

j=u+1

(

j
∑

l=0

(−θs)
l

j−l
∑

p=0

(−βθs)
pκj−l−p

)2

.

Since |θt| ≤ K∗ < 1, it follows that

σ2
ε

t

t
∑

s=1

∞
∑

j=u+1

(

j
∑

l=0

(−θs)
l

j−l
∑

p=0

(−βθs)
pκj−l−p

)2

≤
σ2

ε

t

∞
∑

j=u+1

(

j
∑

l=0

(K∗
)
l

j−l
∑

p=0

(βK∗
)
pκj−l−p

)2

u→∞
−→ 0

because
∑∞

j=0

(

∑j
l=0(K

∗
)
l
∑j−l

p=0(βK∗
)
pκj−l−p

)2

< ∞. Hence,

lim
u

lim sup
t

σ2
ε

t

t
∑

s=1

∞
∑

j=u+1

(

j
∑

l=0

(−θs)
l

j−l
∑

p=0

(−βθs)
pκj−l−p

)2

= 0 ,

and consequently, limu lim supt |r2(t, u)| = 0. It follows that

(4.37)

∣

∣

∣

∣

∣

1

t

t
∑

s=1

φ2
s −

1

t

t
∑

s=1

∫ π

−π

1

|(1 + θseiω)(1 + βθseiω)|2
gy(ω)dω

∣

∣

∣

∣

∣

a.s.
−→ 0 .

Next, for s ≥ 2 we use κz
j (s) = κe

j(s) + θs−1κ
φ
j−1(s − 1) from (4.16) to obtain that

for any u < ∞,

1

t

t
∑

s=2

zsφs−1 =
1

t

t
∑
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∞
∑

j=0

κz
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u
∑
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=
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t

t
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u
∑
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κz
j (s)κ

φ
j−1(s − 1)ε2s−j + oa.s.(1) + r3(t, u)

=
1

t

t
∑
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u
∑

j=1

{(

κe
j(s) + θs−1κ

φ
j−1(s − 1)

)

κφ
j−1(s − 1)

}

ε2s−j

+ oa.s.(1) + r3(t, u)

=
1

t

t
∑

s=2

u
∑

j=1

κe
j(s)κ

φ
j−1(s − 1)ε2s−j

+
1

t

t
∑

s=2

u
∑

j=1

θs−1

(

κφ
j−1(s − 1)

)2

ε2s−j + oa.s.(1) + r3(t, u)(4.38)
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=
σ2

ε

t

t
∑

s=2

u
∑

j=1

κe
j(s)κ

φ
j−1(s − 1) (Lemma 4.5)

+
σ2

ε

t

t
∑

s=2

u
∑

j=1

θs−1

(

κφ
j−1(s − 1)

)2

+ oa.s.(1) + r3(t, u) ,

where

r3(t, u) =
1

t

t
∑

s=2





∞
∑

j=u+1

κz
j (s)εs−j

u
∑

l=0

κφ
l (s − 1)εs−1−l





+
1

t

t
∑

s=2





u
∑

j=0
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j (s)εs−j

∞
∑

l=u+1

κφ
l (s − 1)εs−1−l





+
1

t

t
∑

s=2





∞
∑

j=u+1

κz
j (s)εs−j

∞
∑

l=u+1

κφ
l (s − 1)εs−1−l



 .

By an argument similar to that applied to r1(t, u) in the proof of Lemma 4.2,

one obtains limu lim supt |r3(t, u)| = 0. As shown above, the second term of (4.38),

t−1σ2
ε

∑t
s=2

∑u
j=1 θs−1

(

κφ
j−1(s − 1)

)2

, is equal to

1

t

t
∑

s=1

∫ π

−π

θs

|(1 + θseiω)(1 + βθseiω)|2
gy(ω)dω + r4(t, u)

with

r4(t, u) = t−1σ2
ε

t
∑

s=2

∞
∑

j=u+1

θs−1

(

κφ
j−1(s − 1)

)2

+ oa.s.(1)

and limu lim supt |r4(t, u)| = 0. Hence, it remains to consider the first term of (4.38).

From (4.11) and (4.31),

σ2
ε

t

t
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s=2

u
∑

j=1
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j(s)κ

φ
j−1(s − 1)

=
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ε

t
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∑
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{
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∑
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m

m
∏
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(
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∑
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(−β)
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n
∏
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=
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ε

t

t
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u
∑
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j
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m
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(−βθs)
nκj−l−1−n

)}

+ oa.s.(1) ,

and, since again by (2.3), Parseval’s relation and convolution,

σ2
ε

∞
∑

j=1

{(

j
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(−θs)
lκj−l
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m=0

(−θs)
m
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(−βθs)
nκj−l−1−n

)}

=

∫ π

−π

1

(1 + θse−iω)

eiω

(1 + θseiω)(1 + βθseiω)
gy(ω)dω ,
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the first term of (4.38), t−1σ2
ε

∑t
s=2

∑u
j=1 κe

j(s)κ
φ
j−1(s − 1), is equal to

1

t

t
∑

s=1

1

(1 + θse−iω)

eiω

(1 + θseiω)(1 + βθseiω)
gy(ω)dω + r5(t, u)

with

r5(t, u) =
σ2

ε

t

t
∑

s=1

∞
∑

j=u+1

{(

j
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(−θs)
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(

j−1
∑
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(−θs)
m
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(−βθs)
nκj−l−1−n

)}

+ oa.s.(1) .

An argument like that applied to r2(t, u) yields limu lim supt |r5(t, u)| = 0. Further,

since
∫ π

−π

1

(1 + θse−iω)

eiω

(1 + θseiω)(1 + βθseiω)
gy(ω)dω

+

∫ π

−π

θs

|(1 + θseiω)(1 + βθseiω)|2
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=
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−iω
) + θs
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=
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eiω
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we obtain

(4.39)
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∣

∣
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t
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∣

∣

∣

∣

∣

a.s.
−→ 0 .

Combining (4.37) and (4.39), it follows from (3.5) and (3.16) that θt − θ̂t = oa.s.(1)

where θ̂t is given by (4.1). Finally, since k∗
is finite, an argument similar to that

used for Lemma 4.4 can be applied to show that (4.1) holds for the general case

k∗ > 0, completing the proofs of the proposition and part (a) of Theorem 4.1.

Proposition 4.9. Under the assumptions of Theorem 4.1 and with t0 = t0(ξ) as

in (a) of the Theorem, θ̂t defined by (4.1) satisfies the conditions of Proposition 4.6

for Θ̃ = Θ = (−1, 1) for a Robbins-Monro recursion with f(θ) = f(θ, β) as in (1.4).

Proof. For t ≥ 2, set

P̃t =

t
∑

s=1
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(4.40)



44 J. L. Cantor and D. F. Findley

= P̃−1
t
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P̃t−1θ̂t−1 +
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t
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}
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t
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eiω
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1
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gy(ω)dω

= θ̂t−1 − P̃−1
t f(θ̂t−1, β) + P̃−1

t

(

f(θ̂t−1, β) − f(θt+k∗ , β)

)

+ P̃−1
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1

|(1 + θt+k∗eiω)(1 + βθt+k∗eiω)|2
gy(ω)dω

= θ̂t−1 − δtf(θ̂t−1, β) + δtγt ,

where, for t ≥ 2,

(4.41) δt = P̃−1
t =

1

t

[

1

t

t
∑

s=1

∫ π

−π

1

|(1 + θs+k∗eiω)(1 + βθs+k∗eiω)|2
gy(ω)dω

]−1

,

and, for t ≥ t0+1 with t0 as in (a) of Theorem 4.1 (which guarantees that f(θ̂t−1, β)

below is finite),

γt =

(

f(θ̂t−1, β) − f(θt+k∗ , β)

)

(4.42)

+ (θt+k∗ − θ̂t−1)

∫ π

−π

1

|(1 + θt+k∗eiω)(1 + βθt+k∗eiω)|2
gy(ω)dω .

For |θ| ≤ K∗ < 1, it follows from (3.16) and (4.41), there exist finite, positive

K̃1(ξ) ≤ K̃2(ξ) such that 0 < K̃1(ξ) ≤ t δt ≤ K̃2(ξ) < ∞. From this, it follows

that δt
a.s.
−→ 0 and

∑t
s=1 δs ≥ K̃1

∑t
s=1 k−1 → ∞ . Next since k∗

is finite, it follows

from θt−1 − θ̂t−1 = oa.s.(1) (Proposition 4.7) that θt+k∗ − θ̂t−1 = oa.s.(1) and

f(θt+k∗ , β) − f(θ̂t−1, β) = oa.s.(1). Hence, γt
a.s.
−→ 0. The definition of t0 in (a) of

Theorem 4.1, guarantees that the remaining condition of Proposition 4.6 is satisfied,

so the proposition is proved.

We can now complete the proof of Theorem 4.1. By Proposition 4.6, θ̂t
a.s.
−→ Θ

β
0

and therefore also θt
a.s.
−→ Θ

β
0 , which is compact by Proposition 4.4. Further, if yt

is an invertible ARMA process, then by Proposition 4.5, the set Θ
β
0 is finite and
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Proposition 4.6 shows θt converges on almost every realization to one of the finitely

many θ ∈ Θ
β
0 . Consequently, on the probability one event on which θt converges,

its limit is a random variable θ with finitely many values. On the complementary

event, θ can be defined to have any fixed value. This completes the proof of part (b)

and with it the proof of the Theorem.

5. Discussion

The results obtained here provide a rigorous foundation for analyzing PLR and

RML2 for MA(1) models. An important conclusion from our results is that under

misspecification, generally only RML2 (i.e., the general algorithm with β = 1), not

the simpler and more frequently considered PLR algorithm, can produce optimal

coefficient estimates in the limit. In [5], Theorem 4.1 is applied to address conver-

gence of PLR and convergence of RML2 with a specific monitoring and modification

scheme to ensure that iterates satisfy |θt| ≤ K∗ < 1. In [5] we also provide a set of

examples that show that the limits of θt from PLR and RML2 can differ.

Ideas and techniques from the analysis of Hannan [12] of RML2 for ARMA mod-

els played a key role in our analysis, particularly the idea of approximating the

recursive algorithm’s sequence by a sequence made more analyzable, replacing cer-

tain terms by their expected values, and replacing terms in an expression by finitely

lagged values, as in our (4.20), so that martingale results like Propositions 4.1 and

4.2 can be applied. However we note that, because of a neglected oa.s.(1) term that

depends on θt, Hannan did not actually establish that his auxiliary sequence, which

we denote by θ̃t to distinguish it from our θ̂t, satisfies his (nonstandard) recursion

scheme. Also, the convergence analysis he indicates for θ̃t, if its details could be

verified, would only establish that the limit inferior of minθ∈Θ1

0

|θ̃t − θ| is zero a.s.,

see p. 773 of Hannan [12]. The stronger result with the limit is needed to establish

convergence of the original recursive sequence to Θ
1
0. More information about prob-

lems we encountered with analyses in Hannan [12] can be found in [4, Appendix

E].

The approximating sequence technique is similar to the Ordinary Differential

Equation (ODE) method independently developed by Ljung [20] and Kushner

[14, 15]. Specifically, the ODE method is a technique for providing asymptotic

analysis of a time series (discrete stochastic process) via a deterministic continuous

time stability analysis of a set of ODEs. For example, from the ODE method, Ljung

makes convergence assertions for both PLR and RML2 for ARMAX models includ-

ing in the incorrect model situation [21]. Like Hannan, however, the analysis is

incomplete. In the rigorous treatment of the ODE method presented by Benveniste

et al [1] only the correct model situation is considered. Their results, however, do

not apply to PLR or RML2 [4, pp.65-67].

Clearly, the boundedness assumption (D4) is restrictive but it is typical in con-

vergence analyses like ours. For example, boundedness is an explicit assumption in

the deep correct model results obtained by Lai and Ying [17, equation (1.3)] as well

as Ljung’s ODE method assertions [21, condition S2, p.191] and is also required in

the treatment by Benveniste et al. in which θt is assumed to be bounded to obtain

verifiable conditions to prove asymptotic results [1, Theorem 15 and Corollary 16,

p.238].

Finally, it is likely that Theorem 4.1 is generalizable to higher order moving

average models and quite possibly ARMA models. However, to obtain convergence

results, a multidimensional parameter vector θ version of Proposition 4.6 is needed.
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The proof of Theorem 2.2.2 of [7] seems to provide the needed result if it can be

shown that an appropriate Liapounov function exists for the vector-valued f(θ, β)

associated with multidimensional θ for 0 ≤ β < 1. The generalization of the L̄(θ)
with vector θ provides the Liapounov function for the case β = 1.
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Abstract: In this paper the stochastic complexity criterion is applied to es-

timation of the order in AR and ARMA models. The power of the criterion

for short strings is illustrated by simulations. It requires an integral of the

square root of Fisher information, which is done by Monte Carlo technique.

The stochastic complexity, which is the negative logarithm of the Normalized

Maximum Likelihood universal density function, is given. Also, exact asymp-

totic formulas for the Fisher information matrix are derived.

1. Introduction

The negative logarithm of the NML (Normalized Maximum Likelihood) universal

model, called the stochastic complexity, provides a powerful criterion for estimation

of the model structure such as the optimal collection of the regressor variables in

the linear quadratic regression problem, [19], especially for small amounts of data.

It involves the integral of the square root of the Fisher information, which is easy

to calculate when the regressor matrix does not depend on the parameters. While

modeling gaussian time series with AR models are instances of linear quadratic

regression problems their order estimation poses trouble with the stochastic com-

plexity for the reason that the regressor matrix is determined by the parameters,

and the Fisher information is not constant. The same problem of course is also

with the ARMA models, which have the additional difficulty of calculation of the

maximum likelihood parameters.

In this paper we resort to Monte Carlo integration to overcome the problem

posed by the nonconstant Fisher information and study by simulations the efficiency

of the resulting order estimation criterion. Although exact formulas exist for the

Fisher information matrix they are quite cumbersome to evaluate, and we consider

asymptotic simplifications. This may run against the intent of getting a criterion

for small amounts of data, but the asymptotic estimates appear to be good enough,

and the resulting criterion for the short data sequences created is still superior

among the competing criteria such as the BIC [20], which is equivalent with a

crude asymptotic version of the MDL criterion [15], and a recently suggested one,

KICC [21], or bias corrected Kullback-Leibler criterion.

1
Institute of Signal Processing, Tampere University of Technology, P.O. Box 553, FIN-33101

Tampere, Finland, e-mail: ciprian.giurcaneanu@tut.fi
2
140 Teresita Way, Los Gatos, CA 95032, USA, e-mail: jrrissanen@yahoo.com

∗
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We describe below the NML model for AR and ARMA class of models, and

discuss its optimality properties. We also derive in the Appendix the asymptotic

form of the Fisher information matrix for the general ARMA class of models.

2. Normalized maximum likelihood model

We consider the ARMA model:

yt +

n
∑

i=1

aiyt−i = et +

m
∑

j=1

bjet−j ,(1)

where et is zero-mean white Gaussian noise of variance σ2
. The integers m, n are

nonnegative, and all coefficients ai and bj are real-valued. We can equivalently write

yt =
B(q)

A(q)
et, where B(q) = 1 + b1q

−1
+ · · · + bmq−m

, A(q) = 1 + a1q
−1

+ · · · +

anq−n
, and q−1

is the unit delay operator. We will use the notation ARMA(n,m)

for the class of the normal density functions {f(yN
; θ)} defined by such processes,

where θ = (a1, . . . , an, b1, . . . , bm, σ2
), the parameters ranging over a subset of �k

,

where k = n + m + 1. Let θ̂(yN
) denote the maximum likelihood estimates of the

parameters θ.
In order to define the range of the parameters properly we need to consider

another equivalent parametrization in terms of the roots of the two polynomials

n
∏

i=1

(1 − giq
−1

)yt =

m
∏

j=1

(1 − hjq
−1

)et,(2)

together with the noise variance σ2
. We denote by gi the zeros of A(q) and by hj

the zeros of B(q). There are no repeated poles or zeros nor pole-zero cancellations.

We specify in the Appendix exactly the further restrictions on the type of the zeros

but for now let the same symbol θ denote the new parameters ranging over Θ ⊂ �k
.

Consider the NML density function, [3],[18],

f̂(yN
; n, m) =

f(yN
; θ̂(yN

))

Ck,n
,

where

Ck,n =

∫

xN :θ̂(xN )∈Ω

f(xN
; θ̂(xN

))dxN

=

∫

θ̂∈Ω

g(θ̂; θ̂)dθ̂,

and g(θ̂; θ) denotes the density function on the statistic θ̂ induced by f(yN
; θ). In the

equation above, we use the identity f(xN
; θ̂(xN

), θ) = f(xN |θ̂(xN
); θ)g(θ̂(xN

); θ),

that is integrated first over xN
at the point θ̂(xN

) = θ̂ = θ kept fixed, which gives

unity, and then over θ̂.
Under the main assumption that the convergence in distribution by the Cen-

tral Limit Theorem applies to the ML estimates, the stochastic complexity, L(yN
;

n, m) = ln 1/f̂(yN
; n, m), is given by

L(yN
; n, m) = − ln f(yN

; θ̂(yN
)) +

k

2
ln

N

2π
+ ln

∫

Θ

|J(θ)|1/2
dθ + o(1),(3)
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where Θ denotes the parameter space, and J(θ) is the Fisher information matrix

[18]. The rate of convergence o(1) is determined by the convergence of the ML

estimates to the normal density function.

To get a criterion for the structure in general we ought to add the code length

needed to encode the structure, but here we take the simple case where the structure

consists of a few first coefficients of the ARMA model, whose code length is much

shorter than the stochastic complexity and ignored. (If k is not small, we can use

the estimate L(k) = ln k + 2 ln ln k.)
The NML model has the following two optimality properties, which justify its

name:

(1) It is the unique solution f̂ = ĝ = q̂ to the following maxmin problem

max
g

min
q

Eg log
f(yN

; θ̂(yN
))

q(yN )
,

where g and q range over any sets that include f̂ . Notice that the logarithm of the

ratio is the difference between the ideal code length log 1/q and the unattainable

lower bound for any code length in the ARMA class.

(2) If the data generating distribution g is restricted to the ARMA class, the

mean of the stochastic complexity with respect to the model θ cannot be beaten

by any model what so ever, except for θ in a set whose volume goes to zero as N
grows.

3. Linear regression with constant regressor matrix

Before discussing the AR models we illustrate the stochastic complexity criterion

for linear quadratic regression with constant Fisher information by comparing it

with the BIC and the KICC criteria in a simple polynomial fitting problem for

small amounts of data.

For linear regression with a constant regressor matrix X = {xit} the stochastic

complexity criterion takes the form, [19],

min
γ∈Γ

{(N − k) ln τ̂ + k ln R̂ + (N − k − 1) ln
1

n − k
− (k − 1) ln k}.

The index γ = i1, . . . , ik, consists of the indices of the rows x̄i of the k×n regressor

matrix included in the linear combination

yt =

∑

i∈γ

βix̄it + et, t = 1, . . . , N,

τ̂ is the minimized squared error per symbol, and R̂ =
1
n β̂

�XγX
�
γ β̂, where Xγ is

the k × n submatrix of X consisting of the retained rows.

Notice that there are no hyper parameters defining the range of the parameters

βi and τ . They have been renormalized away.

Example 1. We discuss an example of polynomial fitting considered in [21] to in-

vestigate the performances of a model selection criterion called KICC. It is obtained

by an application of a bias correction to KIC (Kullback Information Criterion), [6],

and it is recommended to be used in linear regression problems when the sample

size is small. The underlying signal is generated by a third-order polynomial model

ỹ = x3 − 0.5x2 − 5x − 1.5, where the points x1, . . . , xN are chosen to be uniformly
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Table 1

Order estimation of the polynomial model in Example 1. The true order is k = 3. For each

criterion, the probability of correct estimation of the order is computed from 10
5 runs. Also

shown is the probability of overestimation of the polynomial order (4 ≤ k̂ ≤ 10). The probability

of underestimation (0 ≤ k̂ ≤ 2) is almost zero for all analyzed criteria. The best result for each

sample size N is represented with bold font.

Order Criterion Sample size(N)

25 30 40 50 60 70 80 90 100

k̂ = k NML 0.94 0.95 0.96 0.97 0.97 0.97 0.98 0.98 0.98
BIC 0.79 0.84 0.89 0.91 0.93 0.94 0.95 0.95 0.95

KICC 0.93 0.92 0.91 0.91 0.90 0.90 0.90 0.90 0.89

k̂ > k NML 0.06 0.05 0.04 0.03 0.03 0.03 0.02 0.02 0.02

BIC 0.21 0.16 0.11 0.09 0.07 0.06 0.05 0.05 0.05

KICC 0.07 0.08 0.09 0.09 0.10 0.10 0.10 0.10 0.11

distributed in [−3, 3]. The measurements y1, . . . , yN are obtained by addition to ỹi

zero-mean white Gaussian noise, whose variance is selected such that the signal-to-

noise ratio is SNR=10 dB. For each number of data points N , between 25 and 100,

10
5

different realizations are produced, to which polynomials of degree 0, 1, . . . , 10

are fitted with the least squares method.

The estimates of the order of the polynomial obtained with the NML, BIC and

KICC criteria are in Table 1. We have restricted our investigations only to these

three criteria, because in [21] KICC was shown to outperform other six estimation

criteria for N = 25 and N = 30. We see in the table that NML criterion performs

better than BIC and KICC in all the cases studied. Observe that the number of

correct estimations produced by KICC generally declines when more measurements

are available, while the BIC and the NML results improve with increasing N . For

example, KICC compares favorable with BIC for N = 25, but the situation is

reversed for N = 100.

4. AR models

The likelihood density function for an AR model is given by

f(yN
; θ) =

1

(2πσ2)N/2
e−

1

2σ2

∑

N

t=1
(yt+a1yt−1+···+anyt−n)2 ,

where we put yt = 0 for t < 1. The maximized likelihood is
1

(2πeσ̂2)N/2
, where σ̂2

is the minimized sum per symbol σ̂2
=

1

N

N
∑

t=1

(yt + â1yt−1 + · · · + ânyt−n)
2
. The

NML criterion (3) has now the expression

L(yN
; n) =

N

2
ln(2πeσ̂2

) +
n + 1

2
ln

N

2π
+ ln

∫

Θ

|J(θ)|1/2
dθ + o(1).(4)

The Fisher information matrix is given by

[

Rzz 0

0 1/(2σ4
)

]

, where

Rzz =











r0 r1 · · · rn−1

r1 r0 · · · rn−2

.

.

.
.
.
.

. . .
.
.
.

rn−1 rn−2 · · · r0











,
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and ri = E[ztzt−i] denote the covariances of the process zt = yt/σ [9, 10]. Applying

the formula in [12] for the parameters transformation and the well-known Vieta’s

formulae, it is easy to calculate the Fisher information matrix for the parameter

set given by the model poles g = (g1, g2, . . . , gn) and the noise variance σ2
.

Remark in (4) that the integral term makes the most important difference be-

tween the expression for the stochastic complexity and the BIC criterion. The inte-

gral has a lot of structural information which BIC lacks, and it generally increases

with n, because the determinant increases.

We note that the contribution of the σ2
to the integral is decoupled by the

contribution of the other parameters. Consequently we ignore for all the AR models

the contribution of σ2
because we do not have any “natural” finite limits for the

range of σ2
. The constrain to have a stable model restricts the domain of the

magnitudes of the poles to be a hypercube.

Apart from the AR(1) case for which the integral in (3) can be found in a closed

form,
∫ 1

−1
1√

1−g2
dg = π, the evaluation of the integral will be done by the Monte

Carlo technique. To be more precise we use Sobol’ sequences [14] to perform the

Monte Carlo integration for AR(n) models with 1 ≤ n ≤ 6. For these values all

poles are complex if n is even, and exactly one pole is real-valued if n is odd, which

can be taken advantage of in calculating the form of the information matrix.

Our Matlab implementation is based on the algorithm described on p. 312 in

[14] and the code publicly available at [1]. We perform the Monte Carlo integration

for various AR models with M integration points. But first, to test the accuracy

we use the known result for the AR(1) model. Table 2 shows the fractional error

obtained when M = 10
5

and M = 10
6
. For models with larger order, we report

the value ∆ = |Î107 − Î106 |/Î107 , where ÎM denotes the Monte Carlo evaluation of
∫

Θ
|J(g)|1/2

dθ calculated from M integration points. We show in Table 2 the results

on ∆ since it is known for Monte Carlo integration with Sobol’ sequences that the

fractional error decreases with the number of samples as (lnM)
n/M [14].

Example 2. We evaluate the capabilities of NML, BIC and KICC criteria for es-

Table 2

Monte Carlo results for the integral term in the stochastic complexity formula (4) for

autoregressive models. For the AR(1) model the fractional error is reported.

M ÎM Fractional error or ∆

AR(1)

10
5

3.131956 0.003067

10
6

3.138952 0.000840

AR(2) - pure complex poles

10
6

42.06 -

10
7

47.41 0.11

AR(3) - one real-valued pole

10
6

122.67 -

10
7

137.73 0.11

AR(4) - pure complex poles

10
6

1069.66 -

10
7

1358.84 0.21

AR(5) - one real-valued pole

10
6

3733.59 -

10
7

8307.55 0.55

AR(6) - pure complex poles

10
6

23164.39 -

10
7

35981.48 0.36
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timating the order of AR models. The NML criterion is calculated with formula

(4), where the value of the integral term for n > 1 is the one from Table 2 com-

puted with M = 10
7

integration points. We extend our experimental framework

by considering another information theoretic criterion, namely the predictive least

squares criterion PLS, [16].

Figure 1 outlines the simulation procedure used in Example 2, and the estimation

results are shown in Tables 3-4.

Note that the evaluation of the various criteria for order estimation requires the

For the model order n ∈ {1, 2, 3},
For each order estimation criterion C and for each sample size N ,

N ∈ {25, 50, 100, 200}, initialize with zero two counters:

N c

N,C
for correct estimations and N o

N,C
for over-estimations.

Repeat the following steps 1000 times:

Generate independently the entries of Pµ as outcomes of U [(0.8, 1)],

and the entries of Pφ as outcomes of U [(0, π)].

If n is odd, generate the unique entry of Pρ

according to U
[

(−1,−0.8)
⋃

(0.8, 1)
]

.

Repeat the following steps 1000 times:

Simulate a time series with 300 entries for the AR(n) process

whose poles are given by Pµ, Pφ, Pρ.

Use null initial conditions and σ2
= 1.

Discard the first 100 entries of the time series and

dub z the vector formed with the rest of 200 measurements.

For each sample size N ∈ {25, 50, 100, 200},
Choose yN

= [z1, . . . , zN ]
�

. Apply each criterion C
to estimate the model order n̂N,C from yN

data,

under the hypothesis n̂N,C ∈ {1, . . . , 6}.
If n̂N,C = n, then increment N c

N,C
.

If n̂N,C > n, then increment N o

N,C
.

End

End

End

Calculate the probability of correct estimation p̂c

N,C
= N c

N,C
/10

6
,

and the probability of over-estimation p̂o

N,C
= N o

N,C
/10

6
for the model order.

End

Fig 1. The simulation procedure applied in Example 2. The notation U [·] is used for the uniform

distribution.

Table 3

Example 2 - the probability of correct estimation of the AR order. The best result for each

sample size N is represented with bold font.

AR model order Criterion Sample size (N)

25 50 100 200

n = 1 NML 0.99 0.99 1.00 1.00
BIC 0.93 0.95 0.97 0.98

KICC 0.95 0.93 0.91 0.90

PLS 0.89 0.92 0.95 0.97

n = 2 NML 0.72 0.85 0.87 0.88
BIC 0.79 0.85 0.87 0.87

KICC 0.82 0.83 0.80 0.78

PLS 0.49 0.59 0.66 0.71

NML 0.49 0.74 0.83 0.84
n = 3 BIC 0.52 0.71 0.78 0.79

KICC 0.51 0.71 0.73 0.69

PLS 0.26 0.39 0.47 0.53
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Table 4

Example 2 - the probability to over-estimation of the order of AR models. The smallest

overestimation probability for each sample size N is represented with bold font.

AR model order Criterion Sample size (N)

25 50 100 200

n = 1 NML 0.01 0.01 0.00 0.00
BIC 0.07 0.05 0.03 0.02

KICC 0.05 0.07 0.09 0.10

PLS 0.11 0.08 0.05 0.03

n = 2 NML 0.07 0.09 0.11 0.12
BIC 0.10 0.11 0.12 0.13

KICC 0.06 0.14 0.20 0.22

PLS 0.20 0.19 0.17 0.15

n = 3 NML 0.01 0.03 0.06 0.12
BIC 0.07 0.09 0.12 0.18

KICC 0.03 0.10 0.20 0.29

PLS 0.21 0.22 0.23 0.23

estimate of noise variance for each order between one and six. Moreover, for the

PLS criterion the computation of the prediction errors must be performed for each

order and for each sample point. To reduce the computational burden, we resort to

the fast implementation of the prewindowed estimation method based on predictive

lattice filters [8], [22].

Observe in Table 3 that the NML criterion compares favorably with all the

other criteria when the sample size is at least 50. For the smallest amount of data

the asymptotic calculation of the Fisher information does not seem to be accurate

enough. In most of the cases BIC is ranked the second after the NML, and the results

of KICC do not improve when the sample size N is increased. For all criteria the

performances decline for the larger values of the model order, which is clear because

there is more to learn. Notice the moderate performances of the PLS criterion. We

mention that another comparative study [7] also reports the moderate capabilities

of PLS on estimating the order of AR models. This is to be expected since the

PLS criterion is based on the estimates of the parameters which are shaky for small

amounts of data.

5. ARMA models

The density function for ARMA models, (1), depends on how the initial values of

y are related to the inputs e. A simple formula results if we put yi = ei = 0 for

i ≤ 0. Then the linear spaces spanned by yt
and et

are the same. Let ŷt+1|t be the

orthogonal projection of yt+1 on the space spanned by yt
. We have the recursion

(5) ŷt+1|t =

m
∑

i=1

bi(yt−i+1 − ŷt−i+1|t−i) −

n
∑

i=1

aiyt−i+1,

where ŷ1|0 = 0. With more general initial conditions the coefficients bi in (5) will

depend on t; see for instance [17]. The likelihood function of the model is then

f(yN
; θ, σ2

) =
1

(2πσ2)N/2
e−

1

2σ2

∑

N

t=1
(yt−ŷt|t−1)

2

.(6)
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Table 5

Results of model selection for the ARMA models in Example 3. The counts indicate for 1000

runs the number of times the structure of the model was correctly estimated by each criterion,

from the set {ARMA(n, m) : n, m ≥ 1, n + m ≤ 6}. The best result for each sample size N is

represented with bold font.

ARMA model Criterion Sample size (N)

25 50 100 200 400

n = 1, m = 1 NML 700 812 917 962 989
a1 = −0.5 BIC 638 776 894 957 983

b1 = 0.8 KICC 717 740 758 745 756

n = 2, m = 1 NML 626 821 960 991 994
a1 = 0.64, a2 = 0.7 BIC 532 740 898 961 978

b1 = 0.8 KICC 586 727 810 846 849

n = 1, m = 1 NML 851 887 918 931 961
a1 = 0.3 BIC 766 804 856 903 942

b1 = 0.5 KICC 860 764 654 614 577

The maximized likelihood is
1

(2πeσ̂2)N/2
, where σ̂2

= min
a1,...,an,b1,...,bm

1

N

N
∑

t=1

(yt −

ŷt|t−1)
2
. The NML criterion (3) is then given by

(7) L(yN
; n, m) =

N

2
ln(2πeσ̂2

) +
n + m + 1

2
ln

N

2π
+ ln

∫

Θ

|J(θ)|1/2
dθ + o(1),

In Appendix we elaborate on the computation of the integral term for the NML

criterion, and the results are applied to the selection for ARMA models in the

following example.

Example 3. We calculate the structure of ARMA models for data generated by

three different processes, which also were used in [11]. For each model, the true

structure and the coefficients are given in Table 5, where we show the estimation

results for 1000 runs. In all experiments we have chosen the variance of the zero-

mean white Gaussian noise to be σ2
= 1. We mention that, similarly with the

experiments on the autoregressive models each data set yN
was obtained after

discarding the first 100 generated measurements. This is to eliminate the effect

of the initial conditions. There exist different methods for estimation of ARMA

models. We selected the one implemented in Matlab as armax function by Ljung,

which is well described in his book [13].

Appendix: The asymptotic Fisher information matrix

We focus on the computation of the integral term in equation (7). The model is

assumed to be stable and minimum phase, which means that in (2) the roots for

both B(q) and A(q) are inside the open unit disc. Assume that n1 zeros of A(q)
and m1 zeros of B(q) are real-valued. Then we have the inequalities 0 ≤ n1 ≤ n
and 0 ≤ m1 ≤ m. Because all coefficients of A(q) and B(q) are real-valued, the

pure complex poles and zeros occur in complex conjugate pairs, and consequently

the differences n − n1 and m − m1 are both even integers. For the pure complex

poles and zeros we apply the parametrization in [5]:

g�+1 = g∗� = |g�| exp(−iφg�
), φg�

∈ (0, π), � ∈ {n1 + 1, n1 + 3, . . . , n − 1},

h�+1 = h∗
� = |h�| exp(−iφh�

), φh�
∈ (0, π), � ∈ {m1 + 1, m1 + 3, . . . , m − 1},
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where the symbol
∗

denotes the complex conjugate. The entries of the parameter

vector θ are given by:

θ = (g1, . . . , gn1
,

|gn1+1|, φgn1+1
, . . . , |gn−1|, φgn−1

,

h1, . . . , hm1
,

|hm1+1|, φhm1+1
, . . . , |hm−1|, φhm−1

,

σ2
).

For the sake of clarity we define the subsets of indices for the θ parameters:

Pρ = {1, 2, . . . , n1}

Pµ = {n1 + 1, n1 + 3, . . . , n − 1}

Pφ = {n1 + 2, n1 + 4, . . . n}

P = Pρ

⋃

Pµ

⋃

Pφ

Zρ = {n + 1, n + 2, . . . n + m1}

Zµ = {n + m1 + 1, n + m1 + 3, . . . , n + m − 1}

Zφ = {n + m1 + 2, n + m1 + 4, . . . , n + m}

Z = Zρ

⋃

Zµ

⋃

Zφ

Based on (6) we use the following asymptotic expression for the log-likelihood func-

tion of the observations y1, . . . , yN , [2], [9]:

L = −
1

2σ2

N
∑

t=1

e2
t −

N

2
lnσ2

+ constant.

For all u, v ∈ {1, . . . , m + n + 1}, the (u, v) entry of the Fisher information matrix

is given by the formula [18]: Ju,v = − lim
N→∞

1

N
E[

∂2L

∂θu∂θv
]. Applying the results in

[2] and [9], we obtain in a straightforward manner:

Jn+m+1,n+m+1 = 1/(2σ4
),

Ju,n+m+1 = Jn+m+1,v = 0 ∀u, v ∈ {1, . . . , n + m}.

For the following calculations we use the identity Ju,v = lim
N→∞

1

N
E[

∂L

∂θu

∂L

∂θv
]. Con-

sider first the case u, v ∈ Pρ. Simple calculations lead to

∂et

∂θu
= −

q−1

1 − θuq−1
et = −

∞
∑

p=1

θp−1
u q−pet,

and we obtain readily:

Ju,v =
1

Nσ4
E

[(

N
∑

t=1

et

∞
∑

p=1

θp−1
u et−p

) (

N
∑

s=1

es

∞
∑

r=1

θr−1
v es−r

)]

=
1

Nσ4

N
∑

t=1

∞
∑

p=1

(θuθv)
p−1E

[

e2
t e

2
t−p

]

(8)

=
1

1 − θuθv
.
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We conclude for u, v ∈ Pρ

⋃

Zρ that Ju,v =
SuSv

1 − θuθv
, where

Su =

{

−1, u ∈ P

1, u ∈ Z

Formula (8) was deduced in [4] for the case when all the poles and the zeros of the

ARMA(n,m) model are real-valued. We evaluate next the entry (u, v) of the Fisher

information matrix for u ∈ Pρ

⋃

Zρ and v ∈ Pµ

⋃

Pφ

⋃

Zµ

⋃

Zφ. It is not difficult

to prove that

∂es

∂θv
=

∞
∑

r=1

dv,res−r ∀s ∈ {1, . . . , N},

where the coefficients dv,r are real-valued, [5]. Therefore

Ju,v =
Su

Nσ4
E

[(

N
∑

t=1

et

∞
∑

p=1

θp−1
u et−p

)(

N
∑

s=1

es

∞
∑

r=1

dv,res−r

)]

=
Su

Nσ4

N
∑

t=1

∞
∑

p=1

θp−1
u dv,pE

[

e2
t e

2
t−p

]

= Su

∞
∑

p=1

θp−1
u dv,p.

The following closed form expressions of dv,p are given in [5] for v ∈ Pµ

⋃

Zµ:

dv,p =

{

2Sv cos θv+1, p = 1

2Sv
θp

v
sin(pθv+1) cos θv+1−θp−1

v
sin((p−1)θv+1)θv

θv sin θv+1

, p ≥ 2

The equations above lead to

Ju,v = 2
SuSv

θuθv

cos θv+1

sin θv+1

∞
∑

p=1

(θuθv)
p
sin(pθv+1)

−2
SuSv

sin θv+1

∞
∑

p=1

(θuθv)
p
sin(pθv+1)

= 2SuSv
cos θv+1 − θuθv

1 − 2θuθv cos θv+1 + θ2
uθ2

v

,

for u ∈ Pρ and v ∈ Pµ

⋃

Zµ. Similarly for v ∈ Pφ

⋃

Zφ and p ≥ 1, we have, [5],

dv,p = −2Svθp
v−1 sin(pθv),

and it is easy to prove that

Ju,v = −2SuSv
θv−1 sin θv

1 − 2θuθv−1 cos θv + θ2
uθ2

v−1

.

When u, v ∈ Pµ

⋃

Zµ

⋃

Pφ

⋃

Zφ, we can apply the formulas given in [5] for the

computation of Ju,v in case all the poles and the zeros are purely complex.
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Analyzing the sign of the product SuSv, we find that the matrix J(θ) can be

re-written more compactly as J(θ) =

[

G −C

−C
�

H

]

, where the size of the block ma-

trix C is n × m. The identity

∣

∣

∣

G −C

−C
�

H

∣

∣

∣
=

∣

∣

G C

C
�

H

∣

∣ leads to the conclusion that
∫

Θ
|J(θ)|1/2

dθ has the same value for the models ARMA(n,m), ARMA(n+m,0),

ARMA(0,n+m). A similar conclusion was drawn in [4] for the particular case when

all the poles and the zeros are real-valued.
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Abstract: In this article asymptotic expressions for the final prediction er-

ror (FPE) and the accumulated prediction error (APE) of the least squares

predictor are obtained in regression models with nonstationary regressors. It

is shown that the term of order 1/n in FPE and the term of order log n in

APE share the same constant, where n is the sample size. Since the model

includes the random walk model as a special case, these asymptotic expres-

sions extend some of the results in Wei (1987) and Ing (2001). In addition,

we also show that while the FPE of the least squares predictor is not affected

by the contemporary correlation between the innovations in input and output

variables, the mean squared error of the least squares estimate does vary with

this correlation.

1. Introduction

Consider a simple regression model

(1.1) yt = βxt−1 + εt,

where β is an unknown constant, εt’s are (unobservable) independent random dis-

turbances with zero means and a common variance σ2
, and xt is an unit root process

satisfying

(1.2) xt = xt−1 + ηt,

with x0 = 0, ηt =
∑t−1

j=0 cjωt−j ,
∑∞

j=0 |cj | < ∞,
∑∞

j=0 cj �= 0, and ωt being in-

dependent random noises with zero means and a common variance σ2
ω. We also

assume that εt is independent of {ωj , j ≤ t− 1}. Note that if β = 1, c0 = 1, cj = 0

if j > 0, and εt = ωt, then (1.1) becomes the well-known random walk model (see,

for instance, Chan and Wei [4]). Having observed (yi+1, xi), i = 1, . . . , n− 1, β can

be estimated by least squares

(1.3) β̂n =

∑n−1
i=1 xiyi+1
∑n−1

i=1 x2
i

.

If xn also becomes available, then it is natural to predict yn+1 using the least

squares predictor,

ŷn+1 = xnβ̂n.(1.4)
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To assess the performances of the least squares predictor, we consider the final

prediction error (FPE, Akaike [1])

E
{

( yn+1 − ŷn+1 )
2
}

= σ2
+ E

{

x2
n( β̂n − β )

2
}

,(1.5)

and the accumulated prediction error (APE, Rissanen [14])

n
∑

i=2

(yi − ŷi)
2

=

n
∑

i=2

{

εi − xi−1(β̂i−1 − β)

}2

=

n
∑

i=2

ε2
i +

n
∑

i=2

x2
i−1(β̂i−1 − β)

2
(1 + o(1)) a.s.,(1.6)

where the second equality of (1.6) is ensured by Chow [5]. It is straightforward to

see that the terms in (1.5) and (1.6),

n
∑

i=2

x2
i−1(β̂i−1 − β)

2
=

n
∑

i=2

{

x2
i (

∑i−1
j=1 xjεj+1)

2

(
∑i−1

j=1 x2
j )

2

}

,(1.7)

and

nx2
n(β̂n − β )

2
=

{

(
1√
n
xn)(

1
n

∑n−1
i=1 xiεi+1)

1
n2

∑n−1
i=1 x2

i

}2

.(1.8)

When {yt} is a random walk model mentioned above, Wei ([15], Theorem 4)

showed that the rhs of (1.7) equals 2σ2
ω log n + o(log n) a.s. By imposing further

assumptions on the distribution of ωt, Ing ([9], Corollary 1) subsequently obtained

the limiting value of the expectation on the rhs of (1.8), which is 2σ2
ω. This article

extends these two results to models (1.1) and (1.2), which provides a deeper un-

derstanding of the least squares predictor (estimate) in situations where Fisher’s

information,
∑n−1

j=1 x2
j , grows at a rate much faster than n, and the innovations in

input and output variables come from different sources. The rest of the paper is

organized as follows. Section 2 derives the asymptotic expressions for the rhs of

(1.7). In Section 3, sufficient conditions are given to ensure that the expectation on

the rhs of (1.8) is bounded by some finite positive constant for all sufficiently large

n. We then apply this moment property and the results obtained in Section 2 to

show that

lim
n→∞

E{nx2
n(β̂n − β )

2} = 2σ2.(1.9)

Some discussions related to (1.9) are given at the end of Section 3. In particular,

it is shown that while the FPE of the least squares predictor is not affected by the

contemporary correlation between εt and ωt, the mean squared error of the least

squares estimate does vary with this correlation. In addition, we also show that

the squares of the normalized estimate, n(β̂n − β), and the normalized regressor,

xn/
√

n, are not asymptotically uncorrelated.

2. An asymptotic expression for the APE

To prove the main result of this section, two auxiliary lemmas are required. They

are also of independent interests.
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Lemma 1. Assume the {ωt} in Section 1 satisfy sup−∞<t<∞ E|ωt|
α < ∞ for some

α > 2. Let zt =
∑t−1

j=0 djωt−j, where |dj | ≤ Cj−1 for some C > 0 and all j ≥ 1.

Then, with γt = σ2
ω

∑t−1
j=0 d2

j ,

1

n

n
∑

t=1

(z2
t − γt) = o(1) a.s.(2.1)

Proof. Straightforward calculations yield that

z2
t − γt =

t
∑

l=1

d2
t−l(ω

2
l − σ2

ω) + 2

t
∑

l2=2

l2−1
∑

l1=1

dt−l1dt−l2ωl1ωl2 .(2.2)

By (2.2) and changing the order of summations,

n2
∑

t=n1

z2
t − γt

t
=

n1
∑

l=1

(

n2
∑

t=n1

d2
t−l

t

)

η∗
l +

n2
∑

l=n1+1

(

n2
∑

t=l

d2
t−l

t

)

η∗
l

+ 2

n1
∑

l2=2

{

l2−1
∑

l1=1

(

n2
∑

t=n1

dt−l1dt−l2

t

)

ωl1

}

ωl2

+ 2

n2
∑

l2=n1+1

{

l2−1
∑

l1=1

(

n2
∑

t=l2

dt−l1dt−l2

t

)

ωl1

}

ωl2

≡ (1) + (2) + (3) + (4),

where η∗
t = ω2

t − σ2
ω. In the following, we shall show that for some αk > 1, there

are Ck > 0, ξ1,k > 1, and ξ2,k > 1 independent of n1 and n2 such that

(2.3) E|(k)|αk ≤ Ck(

n2
∑

t=n1

1

tξ1,k

)
ξ2,k ,

where k = 1, . . . , 4. (2.3) and Móricz (1976) imply that for some α > 1, there are

C∗ > 0, ξ1 > 1, and ξ2 > 1 independent of n1 and n2 such that

(2.4) E max
n1≤l≤n2

|

l
∑

t=n1

z2
t − γt

t
|α ≤ C∗

(

n2
∑

t=n1

1

tξ1

)
ξ2 .

As a result, (2.1) follows from (2.4) and Kronecker’s lemma.

Let α1 = min{α/2, 2}. Then,

E|(1)|α1 ≤ C1,1E{

n1
∑

l=1

(

n2
∑

t=n1

d2
t−l

t
)
2η∗2

l }α1/2

≤ C1,1

n2
∑

t1=n1

n2
∑

t2=n1

1

t
α1/2
1 t

α1/2
2

n1
∑

l=1

|dt1−ldt2−l|
α1E|η∗

l |
α1

(2.5)

≤ C1,2

(

n2
∑

t=n1

1

tα1

+

n2−1
∑

t1=n1

1

t
α1/2
1

n2
∑

t2=t1+1

1

t
α1/2
2

(t2 − t1)
−α1

)

≤ C1,3

(

n2
∑

t=n1

1

tα1

)

≤ C1,3

(

n2
∑

t=n1

1

tξ1,1

)ξ2,1

,
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where C1,i, i = 1, 2, 3 are some positive constant independent of n1 and n2, 1 <
ξ1,1 < α1, ξ2,1 = α1/ξ1,1, first inequality follows from Burkholder’s inequality,

second one follows from the fact that 0 < α1/2 ≤ 1 and changing the order of

summations, third one is ensured by supt E|ωt|
α < ∞ and |dj | ≤ Cj−1

, which

implies for all n1 ≤ t1, t2 ≤ n2,
∑n1

l=1 |dt1−ldt2−l|
α1 ≤ C1,4|t1 − t2|

−α1 , for some

C1,4 > 0. As a result, (2.3) holds for k = 1. The proof of (2.3) for the case of

k = 2 is similar. The details are thus omitted. To show (2.3) for the case k = 3, let

α3 = α. Then, by Minkowski’s inequality and using Wei (1987, Lemma 2) twice,

one obtains

E|(3)|α3 ≤ C3,1E|

n1
∑

l2=2

{

l2−1
∑

l1=1

(

n2
∑

t=n1

dt−l1dt−l2

t

)

ωl1

}

ωl2 |
α3

(2.6)

≤ C3,2

(

n1
∑

l2=2

l2−1
∑

l1=1

(

n2
∑

t=n1

dt−l1dt−l2

t
)
2

)α3/2

,

where C3,i, i = 1, 2 are some positive constants independent of n1 and n2. Observe

that for n1 ≤ t1 < t2 ≤ n2 and any 1 ≤ M1 ≤ M2 ≤ n1,
∑M2

l=M1
|dt1−ldt2−l| ≤

C3,3(log t2 − log t1)/(t2 − t1), where C3,3 > 0 is independent of M1 and M2. Using

this fact and changing the order of summations, it follows that the rhs of (2.6) is

bounded by C3,4(
∑n2

t=n1
t−2

)
α3/2

, where C3,4 is a positive constant independent of

n1 and n2. Hence, (2.3) holds for k = 3. The proof of (2.3) for the case k = 4 is

similar to that of k = 3. Therefore, we skip the details.

Remark 1. If in Lemma 1 zt =
∑∞

j=0 djωt−j with |dj | ≤ Cj−1, j ≥ 1, then the

same argument also yields (2.1) but with γt replaced by γ∗
= σ2

ω

∑∞
j=0 d2

j . For a

related result, Brockwell and Davis (1987, Proposition 7.3.5), assuming that ωj ’s are

i.i.d. with finite second moment and dj ’s satisfy
∑∞

j=0 |dj | < ∞ and
∑∞

j=0 d2
jj < ∞,

obtained (n−1
∑n

t=1 z2
t ) − γ∗

= op(1). While the moment restriction of their result

is slightly weaker than that of Lemma 1, the identically distributed assumption

can be dropped in Lemma 1. In addition, the assumption on dj in Lemma 1 seems

less stringent. More importantly, Lemma 1 gives a strong law of large number for

n−1
∑n

t=1 z2
t under rather mild assumptions, which is one of the key tools for our

asymptotic analysis of APE.

Lemma 2. Assume sup−∞<t<∞ E|ωt|
α < ∞ for some α > 2 and

∑

j≥k

|cj | = O(k−1
).(2.7)

Then,

log

(

n−1
∑

j=1

x2
j

)

= 2 log n + o(log n) a.s.

Proof. First note that xt =
∑t

j=1 ηj . Define Nt = θ
∑t

j=1 ωj , where θ =
∑∞

j=0 cj .

Then,

xt = Nt − St,(2.8)

where St =
∑t−1

j=0 fjωt−j with fj =
∑∞

l=j+1 cl. In view of (2.8),

n−1
∑

j=1

x2
j =

n−1
∑

j=1

N2
j − 2

n−1
∑

j=1

NjSj +

n−1
∑

j=1

S2
j .(2.9)
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Since |fj | = O(j−1
), Lemma 1 yields

n−1
∑

j=1

S2
j = O(n) a.s.(2.10)

By the law of the iterated logarithm,

n−1
∑

j=1

N2
j = O(n2

log log n) a.s.(2.11)

By Lai and Wei ([12], (3.23)),

lim inf
n→∞

log log n

n2

n−1
∑

j=1

N2
j > 0 a.s.(2.12)

Now, Lemma 2 follows directly from (2.9)-(2.12).

Remark 2. By assuming

∞
∑

j=0

j|cj | < ∞,(2.13)

Proposition 17.3 of Hamilton (1994) gives the limiting distribution of n−2
∑n−1

j=1 x2
j ,

which is λ2
∫ 1

0
w(r)2dr, where λ = σω

∑∞
j=0 cj and w(r) denotes the standard

Brownian motion. This result immediately implies

log

(

n−1
∑

j=1

x2
j

)

= 2 log n + Op(1).(2.14)

Lemma 2 and (2.14) provide different estimates for the difference between 2 log n

and log(
∑n−1

j=1 x2
j ), but neither is more informative than the other. On the other

hand, we have found that the assumption on the coefficients used in Lemma 2, (2.7),

seems to be weaker than the one imposed by Hamilton, (2.13). This can be seen by

observing that (2.7) is marginally satisfied by C1j
−2 ≤ |cj | ≤ C2j

−2, C2 ≥ C1 > 0,

whereas (2.13) is not.

We are now ready to prove the main result of this section.

Theorem 1. Assume that models (1.1), (1.2), and the assumptions of Lemma 2

hold. Also assume that sup−∞<t<∞ E|εt|
α0 < ∞ for some α0 > 2. Then,

n
∑

i=2

x2
i−1(β̂i−1 − β)

2
= 2σ2

log n + o(log n) a.s.,(2.15)

and

n
∑

i=2

(yi − ŷi)
2

=

n
∑

i=2

ε2
i + 2σ2

log n + o(log n) a.s.(2.16)
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Proof. First note that (2.9)-(2.12) yield

lim sup
n→∞

n2

(log log n)
∑n

j=1 x2
j

< ∞ a.s.(2.17)

By Wei ([15], Lemma 2) and (2.7),

E

∣

∣

∣

∣

Sn

n1/2

∣

∣

∣

∣

α

≤ Cαn−α/2

(

n−1
∑

j=0

f2
j

)α

≤ C∗
αn−α/2,(2.18)

where Cα and C∗
α depend only on α. (2.18) and the Borel-Cantelli lemma give

Sn = o(n1/2
) a.s.(2.19)

Since the law of the iterated logarithm implies

Nn = O((n log log n)
1/2

) a.s.,

this, (2.8), (2.17), and (2.19) yield

x2
n

∑n
j=1 x2

j

= o(1) a.s.(2.20)

In view of (2.20) and Wei ([15], Theorem 3), we have

n
∑

i=2

x2
i−1(β̂i−1 − β)

2
= σ2

log

(

n−1
∑

j=1

x2
j

)

+ o



log

(

n−1
∑

j=1

x2
j

)



 a.s.,(2.21)

As a result, (2.15) follows from Lemma 2 and (2.21); and (2.16) is an immediate

consequence of (2.15) and (1.6).

3. An asymptotic expression for the FPE

Assume that models (1.1) and (1.2) hold, E(εtωt) = π is a constant independent of

t, sup−∞<t<∞ E|εt|
α0 < ∞, α0 > 2, and sup−∞<t<∞ E|ωt|

α < ∞, α > 2. Then, by

the functional central limit theorem, continuous mapping theorem, Ito’s formula,

and some algebraic manipulations, it can be shown that

{

(
1√
n
xn)(

1
n

∑n−1
i=1 xiεi+1)

1
n2

∑n−1
i=1 x2

i

}2

(3.1)

=⇒
w2

a(1)

(

ρσω

∫ 1

0
wa(t)dwa(t) + σθ

∫ 1

0
wa(t)dwb(t)

)2

(

∫ 1

0
w2

a(t)dt
)2 ,

where “=⇒” denotes weak convergence, (wa(t), wb(t)) is a standard Brownian mo-

tion of dimension 2, ρ = π/σ2
ω, and σ2

θ = σ2 − ρ2σ2
ω. If we can further show that

for some q > 2,

E

∣

∣

∣

∣

∣

(
1√
n
xn)(

1
n

∑n−1
i=1 xiεi+1)

1
n2

∑n−1
i=1 x2

i

∣

∣

∣

∣

∣

q

= O(1),(3.2)
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then, in view of (3.1), (3.2), and (1.8),

nE{x2
n(β̂n − β )

2}
(3.3)

= E











w2
a(1)

(

ρσω

∫ 1

0
wa(t)dwa(t) + σθ

∫ 1

0
wa(t)dwb(t)

)2

(

∫ 1

0
w2

a(t)dt
)2











+ o(1).

In the rest of this section, we provide sufficient conditions to ensure (3.2). In addi-

tion, the expectation on the rhs of (3.3) is investigated (Corollary 1). Let us start

with a useful lemma.

Lemma 3. Let Ft,m,am
(.) be the distribution function of

∑m
j=1 ajωt+1−j, where

am = (a1, . . . , am)
′. There are some positive numbers κ, ι, and M such that for all

m ≥ 1,−∞ < t < ∞ and ‖am‖2
=

∑m
j=1 a2

j = 1,

| Ft,m,am
(x) − Ft,m,am

(y) |≤ M | x − y |κ,(3.4)

as | x − y |≤ ι. Then, for any q > 0,

E











1

n2

n−1
∑

j=1

x2
j





−q





= O(1).(3.5)

Proof. The proof is closely related to the one given in Ing ([9], Lemma 1), with the

assumption there being strengthened to (3.4). First note that

1

n2

n−1
∑

i=1

x2
i ≥

1

n2

n−1
∑

i=nδ

x2
i =

δ

n

n−1
∑

i=nδ

x2
i

nδ
≥

δ

n

n−1
∑

i=nδ

x2
i

i
,(3.6)

where 0 < δ < 1, and without loss of generality, nδ is assumed to be a positive

integer. Rearranging the series on the rhs of (3.6), one obtains

δ

n

(1−δ)n

lq
−1

∑

j=0

lq−1
∑

i=0

x2

nδ+
(1−δ)n

lq
i+j

nδ +
(1−δ)n

lq i + j
,(3.7)

where l > max[ 2/κ, 1/q, (1/q){(1/δ) − 1)} ] and for simplifying the discussion, lq
and { (1 − δ)n }/(lq) are also assumed to be positive integers. By the convexity of

function x−q, x > 0,

(

1

n2

n−1
∑

i=1

x2
i

)−q

≤

{

(1 − δ) δ

lq

}−q
lq

(1 − δ)n
(3.8)

×

(1−δ)n

lq
−1

∑

j=0







lq−1
∑

i=0

x2

nδ+
(1−δ)n

lq
i+j

nδ +
(1−δ)n

lq i + j







−q

.

In view of (3.8), if one can show that for some positive number C independent of

j, the following inequality,

E







lq−1
∑

i=0

x2

nδ+
(1−δ)n

lq
i+j

nδ +
(1−δ)n

lq i + j







−q

≤ C < ∞,(3.9)



On prediction errors 67

holds for all j = 0, 1, . . . , { (1 − δ)n/(lq) } − 1 as n is large enough, then (3.5)

follows. The rest of the proof only focuses on the case where j = 0, because the

same argument can be easily applied to other j’s.
For i = 0, . . . , lq − 1, define

Yn,i =

{

nδ +
(1 − δ)n

lq
i

}−1/2

x
nδ+

(1−δ)n

lq
i
,(3.10)

Wn,i =

{

nδ +
(1 − δ)n

lq
i

}−1/2
(1−δ)n

lq
−1

∑

m=0

f̄mω
nδ+

(1−δ)n

lq
i−m

,(3.11)

where f̄j =
∑j

l=0 cl, and

Fn,i = Yn,i − Wn,i.(3.12)

(Note that xt =
∑t−1

j=0 f̄jωt−j .) Then,

E

(

lq−1
∑

i=0

Y 2
n,i

)−q

=

∫ ∞

0

Pr







(

lq−1
∑

i=0

Y 2
n,i

)−q

> t







dt

=

∫ ∞

0

Pr

(

lq−1
∑

i=0

Y 2
n,i < t−1/q

)

dt

(3.13)

≤

∫ ∞

0

Pr
(

−t−1/(2q) < Yn,i < t−1/(2q), i = 0, . . . , lq − 1

)

dt

=

∫ ∞

0

E

{

E

(

lq−1
∏

i=0

IAn,i

∣

∣

∣

∣

∣

Fn,lq−1, Wn,i, Fn,i, i = 0, . . . , lq − 2

)}

dt,

where An,i = {−t−1/(2q) < Yn,i < t−1/(2q) }. In view of (3.10)-(3.12), for 0 ≤ p ≤

lq − 1, 0 ≤ i ≤ p, and 0 ≤ j ≤ p − 1, Wn,p is independent of (Fn,i, Wn,j). In

addition, var(Wn,i) > ζ > 0, where i = 0, . . . , lq − 1 and ζ is a positive number

independent of n and i. According to these facts, (3.4), and arguments similar

to those used in (3.10) and (3.11) of Ing [9], there exist some positive numbers

0 < C ′ < ∞, 0 < s < ∞, and a positive integer N0 such that for all n ≥ N0 and all

t ≥ s,

E

(

lq−1
∏

i=0

IAn,i

)

≤ C ′t−(κl)/2.(3.14)

Since, by construction, l > 2/κ, (3.13) and (3.14) guarantee that for n > N0,

E

(

lq−1
∑

i=0

Y 2
n,i

)−q

≤ s + C ′

∫ ∞

s

t−(κl)/2dt < ∞,

which yields (3.9).

Lemma 4 below shows that (3.4) is easily found in many time series applications.

Lemma 4. If ωt’s are i.i.d. random variables satisfying E(ω1) = 0, E(ω2
1) = σ2

ω >
0, and E(|ω1|

α
) < ∞ for some α > 2. Assume also that for some positive constant

M0 < ∞,
∫ ∞

−∞

|ϕ(t)|dt ≤ M0,(3.15)
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where ϕ(t) = E(eitω1) is the characteristic function of ω1. Then, for all −∞ < t <
∞, m ≥ 1 and ‖am‖ = 1, there is a finite positive constant M1 such that

sup
−∞<x<∞

ft,m,am
(x) < M1,(3.16)

where ft,m,am
(·) is the density function of

∑m
j=1 ajωt+1−j. As a result, (3.4) follows.

Proof. The proof is inspired by the ideas of Feller ([7], p. 516), which deal with the

special case, aj = m−1/2
for all j = 1, . . . , m. Without loss of generality, assume

σ2
ω = 1. Denote Y =

∑m
j=1 ajωt+1−j . Then, ϕY (t) = E(eitY

) =
∏m

j=1 ϕj(ajt). By

Chow and Teicher ([6], Theorem 8.4.1),

ϕ(ajt) = 1 −
a2

j t
2

2
+ o(a2

j t
2
),

as a2
j t

2 → 0. This gives for |ajt| < δ∗1 , where δ∗1 is some small positive constant,

|ϕ(ajt)| ≤ 1 −
a2

j t
2

4
.(3.17)

On the other hand, since (3.15) yields |ϕ(t)| → 0 as |t| → ∞, by Chow and Teicher

([6], Corollary 8.4.2), |ϕ(t)| < 1 for all t �= 0, and hence for all |t| ≥ δ∗1 (with δ∗1
defined above),

|ϕ(t)| < θ1,(3.18)

where θ1 is some positive constant < 1. Now, by (3.17),

∫ ∞

−∞

m
∏

j=1

|ϕ(ajt)|dt ≤

∫

|t|<
δ
∗

1

Om

e
−t

2

4 dt +

∫

|t|≥
δ
∗

1

Om

m
∏

j=1

|ϕ(ajt)|dt

(3.19)

≤

∫ ∞

−∞

e
−t

2

4 dt +

∫

|t|≥
δ
∗

1

Om

m
∏

j=1

|ϕ(ajt)|dt,

where Oj is a permutation of |aj | satisfying Om ≥ Om−1 ≥ · · · ≥ O1. For t ≥

δ∗1/Om, (3.17), (3.18) and the fact that

θ1 = 1 − (1 − θ1) ≤ 1 −
4(1 − θ1)

δ∗
2

1

a2
jδ

∗2

1

4O2
m

imply

|ϕ(ajt)| ≤ max{1 −
a2

j t
2

4
, θ1} ≤ max{1 −

a2
jδ

∗2

1

4O2
m

, θ1} ≤ 1 − ξ
a2

jδ
∗2

1

4O2
m

,(3.20)

where 0 < ξ < min{1, 4(1−θ1)/δ∗
2

1 }. In view of (3.20) and the fact that
∑m−1

j=1 O2
j =

1 − O2
m,

∫

|t|≥
δ
∗

1

Om

m
∏

j=1

|ϕ(ajt)|dt ≤
1

Om

∫ ∞

−∞

e
−

ξδ
∗

2

1

4O
2
m

∑

m−1

j=1
O2

j

|ϕ(t)|dt

= e
ξδ

∗

2

1

4

1

Om
e

−ξδ
∗

2

1

4O
2
m

∫ ∞

−∞

|ϕ(t)|dt(3.21)

≤ e
ξδ

∗

2

1

4 sup

x≥1
xe

−ξδ
∗

2

1
x
2

4 M0 < ∞.
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By (3.21), (3.19), and the fact that

sup
−∞<x<∞

ft,m,am
(x) ≤

1

2π

∫ ∞

−∞

m
∏

j=1

|ϕ(ajt)|dt,

(3.16) follows. In addition, it is not difficult to see that (3.4) can be deduced

from (3.16).

In the following lemma, some moment bounds for (1/
√

n)xn and (1/n)
∑n−1

i=1 xi×

εi+1, are obtained.

Lemma 5. Assume models (1.1) and (1.2), with supt E( |εt|
q
) < ∞ and

supt E( |ωt|
q
) < ∞, for some q ≥ 2. Then,

(i) sup

n≥1
E

( ∣

∣

∣

∣

1
√

n
xn

∣

∣

∣

∣

q )

< ∞,(3.22)

(ii) sup

n≥1
E

(∣

∣

∣

∣

∣

1

n

n−1
∑

i=1

xiεi+1

∣

∣

∣

∣

∣

q )

< ∞.(3.23)

Proof. The proof of Lemma 5 is similar to that of Ing ([9], Lemma 1). The details

are omitted.

Armed with the previous results, (3.2) is proved in the following theorem.

Theorem 2. Assume that (1.1), (1.2), (3.4), supt E(| εt |
q
) < ∞, and

supt E(|ωt |
q
) < ∞ are satisfied, where q > 4. Then, (3.2) holds. If we further

assume that E(εtωt) = π is a constant independent of t, then (3.3) follows.

Proof. By Lemmas 3 and 5, (3.1), and an argument similar to the one used in [9],

Theorem 1, the claimed results can be obtained.

The FPE of the least squares predictor is obtained in Corollary 1 below.

Corollary 1. Assume that (2.7) and all assumptions of Theorem 2 hold. Then,

(1.9) follows.

Proof. By (2.15), (3.2), and Minkowski’s inequality,

lim
n→∞

1

log n

n
∑

i=m∗

E{x2
i−1(β̂i−1 − β)

2} = 2σ2,(3.24)

where m∗
is some positive integer independent of n. Now, (1.9) is guaranteed by

(3.3) and (3.24).

Corollary 1 and Theorem 1 together indicate an interesting result that the term

of order log n in the APE and the term of order n−1
in the FPE share the same

constant, 2σ2
. For applications of this type of results to model selection problems,

see [11]. Corollary 1 also shows that the FPE of the least squares predictor is not

affected by the contemporary correlation between εt and ωt. This is a somewhat

unexpected feature because the least squares estimate itself does not possess this

property. More specifically, by direct calculations, we have

n(β̂n − β) =⇒
1

λ

ρσω

∫ 1

0
wa(t)dwa(t) + σθ

∫ 1

0
wa(t)dwb(t)

∫ 1

0
w2

a(t)dt
,(3.25)
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and

n2
(β̂n − β)

2
=⇒

1

λ2

(

ρσω

∫ 1

0
wa(t)dwa(t) + σθ

∫ 1

0
wa(t)dwb(t)

)2

(

∫ 1

0
w2

a(t)dt
)2 ,(3.26)

where λ is defined in Remark 2. By (3.26), an argument similar to that used in the

proof of Theorem 2, and some algebraic manipulations,

lim
n→∞

n2E(β̂n − β)
2

= E











1

λ2

(

ρσω

∫ 1

0
wa(t)dwa(t) + σθ

∫ 1

0
wa(t)dwb(t)

)2

(

∫ 1

0
w2

a(t)dt
)2











(3.27)

=
ρ2

ι2
E

(

∫ 1

0
wa(t)dwa(t)
∫ 1

0
w2

a(t)dt

)2

+
σ2

θ

ι2σ2
ω

E

(

1
∫ 1

0
w2

a(t)dt

)

,

where ι2 = λ2σ−2
ω . Ing ([9], (4.3)) showed that

E

(

∫ 1

0
wa(t)dwa(t)
∫ 1

0
w2

a(t)dt

)2

.
= 13.3.(3.28)

By (3.6.4) and (3.6.5) of Arató and using a numerical integration method,

E

(

1
∫ 1

0
w2

a(t)dt

)

.
= 5.6.(3.29)

Consequently, (3.27)-(3.29) imply

lim
n→∞

n2E(β̂n − β)
2 .

=
ρ2

ι2
13.3 +

σ2
θ

ι2σ2
ω

5.6,(3.30)

which obviously varies with the strength of dependence between εt and ωt. In

particular, if σ2
= σ2

ω, then ρ = corr(εt, ωt) and (3.30) can be rewritten as

lim
n→∞

n2E(β̂n − β)
2 .

=
1

ι2
[ρ2

13.3 + (1 − ρ2
)5.6].(3.31)

As observed in (3.31), the larger the magnitude of the correlation between εt and

ωt is, the larger the mean squared error of the least squares estimate is, a result

new to the literature.

As a final remark, we note that the square of the normalized estimate, n2
(β̂n −

β)
2
, and the square of normalized regressor, x2

n/n, are not asymptotically uncorre-

lated. To see this, observe that limn→∞ E(x2
n/n) = λ2

, which together with (3.30)

and Corollary 1, gives

lim
n→∞

E

(

x2
n

n

)

E
{

n2
(β̂n − β)

2
}

.
= 13.3ρ2σ2

ω + 5.6σ2
θ

= 5.6σ2
+ 7.7ρ2σ2

ω > 2σ2

= lim
n→∞

E

{

x2
n

n
n2

(β̂n − β)
2

}

.

Therefore, x2
n/n and n2

(β̂n − β)
2

are (asymptotically) negatively correlated, which

suggests that larger variation of xn can yield a better estimation result. It is worth



On prediction errors 71

mentioning that this special feature does not exist for the (asymptotically) sta-

tionary regressor. For example, when xt = ςxt−1 + ηt, with |ς| < 1, following an

argument used in Ing [10], it can be shown that

lim
n→∞

E(x2
n)E

{

[
√

n(β̂n − β)]
2
}

= lim
n→∞

E
{

x2
nn(β̂n − β)

2
}

= σ2.

Therefore, the square of the normalized estimate, n(β̂n −β)
2
, and the square of the

(normalized) regressor, x2
n, are asymptotically uncorrelated in this case.

References

[1] Akaike, H. (1969). Fitting autoregressive models for prediction. Ann. Inst.

Statist. Math. 21 243–247.
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Abstract: Previous analysis on forecasting theory either assume knowing the

true parameters or assume the stationarity of the series. Not much are known

on the forecasting theory for nonstationary process with estimated parameters.

This paper investigates the recursive least square forecast for stationary and

nonstationary processes with unit roots. We first prove that the accumulated

forecast mean square error can be decomposed into two components, one of

which arises from estimation uncertainty and the other from the disturbance

term. The former, of the order of log(T ), is of second order importance to

the latter term, of the order T. However, since the latter is common for all

predictors, it is the former that determines the property of each predictor.

Our theorem implies that the improvement of forecasting precision is of the

order of log(T ) when existence of unit root is properly detected and taken

into account. Also, our theorem leads to a new proof of strong consistency of

predictive least squares in model selection and a new test of unit root where

no regression is needed.

The simulation results confirm our theoretical findings. In addition, we find

that while mis-specification of AR order and under-specification of the number

of unit root have marginal impact on forecasting precision, over-specification

of the number of unit root strongly deteriorates the quality of long term fore-

cast. As for the empirical study using Taiwanese data, the results are mixed.

Adaptive forecast and imposing unit root improve forecast precision for some

cases but deteriorate forecasting precision for other cases.

1. Introduction

Forecasting future observations is one of the major purpose of building a time

series model. Even for the purpose of time series controlling, forecasting provide

the essential basis. For this purpose, autoregressive (AR) models are widely used

for their simplicity. For an AR(p) process,

(1) yt = β1yt−1 + β2yt−2 + · · · + βpyt−p + εt

where φ(z) = 1 − β1z − · · · − βpz
p

the characteristic polynomial determines the

properties of the series. yt is called stationary or stable if all roots of φ are outside

the unit circle, unstable or nonstationary if some roots of φ are on the unit circle

and explosive if some roots of φ are inside the unit circle. Previous analysis on

forecasting theory either assume knowing true β′
s or only consider the stationary

cases. For examples, Ing [8, 9] and Bhansali [1, 2] analyze the multistep prediction

of stationary AR processes while Ing [7] derives the mean squares prediction errors

of the least squares predictors in random walk model. Not much are known on

1
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the forecasting theory for unstable process with estimated parameters. This paper

investigates the recursive least square forecast for stable and unstable processes.

Let ŷt be the forecast of yt based upon information up to t−1. If one is interested

in one-period forecast, (yt− ŷt)
2

is the cost to be minimized. However, there are two

situations where the accumulated cost function,
∑t

k=1(yk−ŷk)
2

is more appropriate.

First, in the sequential forecast case, (see Goodwin and Sin [6]) the forecaster are

updated sequentially over many periods and the accumulated cost function is the

target to be minimized. Second, for a single realization of time series, the averaged

accumulated cost function is often used as the yardstick to evaluate the out-of-

sample forecasting performance of alternative forecasters.

Ing [7] advocated adopting the accumulated cost function
∑T

t=1 E(yt − ŷt)
2

over

the one-period expected loss function E(yT+1−ŷT+1)
2
. For an AR(1) process, these

two quantities are respectively:

1

T − 2

T
∑

t=3

E(yt − ŷt)
2

= σ2
+

2σ2
log(T )

T
+ o

(

log(T )

T

)

E(yT+1 − ŷT+1)
2

= σ2
+

2σ2

T
+ o

(

1

T

)

when true β1 = 1. In other words, the efficiency loss for not taking the unit root

into consideration is greater for the accumulated cost function than the one-period

cost function. See also Ing and Wei [11]. It is worth mentioning that Rissanen

[14] predictive least square (PLS) for model selection built upon accumulated cost

function minimization. See also Wei [18].

Under the assumption that E(ε2t |Ft−1) = σ2
a.s. for all t, where Ft−1 is the sigma

field generated by {xs, s ≤ t − 1}, then it can be shown that under appropriate

assumptions that
1
T

∑T
t=1(yt − ŷt)

2 −→ σ2 a.s. But by Chow [4], it is seen that

T
∑

t=1

(yt − ŷt)
2

=

T
∑

t=1

ε2t + CT (1 + o(1)) a.s. on the set {CT → ∞}

T
∑

t=1

(yt − ŷt)
2

=

T
∑

t=1

ε2t + CT (1 + O(1)) a.s. on the set {CT < ∞}

where

CT =

T
∑

t=1

(yt − ŷt − εt)
2

While
∑T

t=1 ε2t is larger in order than CT , it is common for all forecasters and

cannot be removed. Hence CT becomes a more important quantity when evaluating

the performance of alternative forecasters.

Let β̂t be the least square estimate of β

β̂t = [

t
∑

k=1

Y k−1Y
′
k−1]

−1 t
∑

k=1

Y
′
k−1yk

where Yt = {y1, . . . , yt}
′
, then ŷt = β̂′

t−1Yt−1 is the least square prediction of yt at

time t − 1.

Let

φ(z) = (z − 1)
a
(z + 1)

b
Π

l
k=1(z

2 − 2 cos θkz + 1)
dkπ(z)
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where all roots of π(z) are all outside the unit circle. Wei [17] proves that,

CT → (p + a2
+ b2

+ 2

l
∑

k=1

d2
k)σ2

log(T ) in probability.(2)

In other words, when φ(z) has multiple unit roots the accumulated loss increase not

linearly with the number of unit roots but at the rate of the square of the number

of unit roots.

In this paper, we prove that when φ(z) has no complex roots, the convergence

in (2) can be improved to be almost surely. This result could lead to a new proof

of strong consistency of PLS in AR model selection. It is also conjectured that the

result of almost surely convergence hold for the case of complex unit roots. We

conduct several simulation experiments to assess the convergence result for various

sample sizes. In addition, we also consider the impact of near unit root and model

mis-specification on multi-step forecasting. Finally, we apply our methods to six real

macroeconomic series in Taiwan. Forecasting performance of various forecasters and

adaptive forecaster are investigated.

The rest of the paper is organized as follows. The proof of the main theorem

is put in Section 2. Section 3 illustrates implications and applications of our main

theorem. Section 4 discusses multi-step and adaptive forecast. Monte Carlo results

are reported in Section 5 and Section 6 summarizes the empirical results. Section 7

concludes.

2. Main theorem

Assume that εt are i.i.d. random variables with E(εt) = 0 and 0 < E(ε2t ) = σ2 < ∞.

Let Xt = (xt−1, . . . , xt−p)
′, ST =

∑T
t=1 εt and TT = (−1)

T
∑T

t=1(−1)
tεt = εt +

(−1)TT−1.

Lemma 1. Assume that Xt+1 = AXt + εt , where εt = (εt, 0, . . . , 0)
′ and the

eigenvalues of A are all inside the unit circle. Then

lim
T→∞

∑T
t=1 XtSt

√

T
∑T

t=1 S2
t

= 0 a.s.

and

lim
T→∞

∑T
t=1 XtTt

√

T
∑T

t=1 T 2
t

= 0 a.s.

Proof. It is known from Lai and Wei [12] [pages 363 and 364] that

lim
T→∞

1

T

T
∑

t=1

XtX
′
t = Σ a.s.(3)

where Σ is a positive definite matrix,

lim sup

T→∞

∑T
t=1 S2

t

T 2 log log(T )
=

8σ2

π2
a.s.(4)
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and

lim inf
T→∞

∑T
t=1 S2

t

T 2/ log log(T )
=

σ2

4
a.s.(5)

Let ‖u‖ denote the Euclidean norm of a k-dimensional vector u = (u1, . . . , uk)
′
,

i.e., ‖u‖
2

=
∑k

i=1 u2
i . By (3),

‖XT ‖
2

T → 0 a.s. and in turn we have that

0 ≤ X
′
T (

T
∑

t=1

XtX
′
t)

−1
XT ≤

‖XT ‖
2

λmin(
∑T

t=1 XtX
′
t)

=
‖XT ‖

2
/T

λmin(
1
T

∑T
t=1 XtX

′
t)

→ 0 a.s.

and

X
′
T (

T
∑

t=1

XtX
′
t)

−1
XT → 0 a.s.(6)

where λmin(A) denotes the minimal eigenvalue of matrix A.

Furthermore, by the law of iterative logarithm,

lim sup

T→∞

S2
T

2T log log T
= σ2 a.s.

Hence (5) implies that

S2
T

∑T
t=1 S2

t

= O

(

T log log T

T 2/ log log T

)

= O

(

(log log T )
2

T

)

(7)

= o(1) a.s.

Now, let

ZT =

∑T
t=1 XtSt

(T
∑T

t=1 S2
t )

1/2
.

Then

ZT − ZT−1 = ZT −

∑T−1
t=1 XtSt

(T
∑T

t=1 S2
t )1/2

− ZT−1

(

1 − (
(T − 1)

∑T−1
t=1 S2

t

T
∑T

t=1 S2
t

)
1/2

)

=
XT ST

(T
∑T

t=1 S2
t )1/2

− ZT−1

(

1 − (
T − 1

T
−

T − 1

T

S2
T

∑T
t=1 S2

t

)
1/2

)

=
XT ST

(T
∑T

t=1 S2
t )1/2

− ZT−1 o(1), by (7)(8)

= o(1) − o(1), since sup

T
‖ZT ‖ ≤ {

1

T

T
∑

t=1

‖Xt‖
2}

1/2

a.s.

= o(1)
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But,

T
∑

t=1

XtSt =

T
∑

t=1

(AXt−1 + εt)St

= A

T
∑

t=1

Xt−1St−1 + A

T
∑

t=1

Xt−1εt +

T
∑

t=1

εtSt−1 +

T
∑

t=1

ε2t

= A

T
∑

t=1

Xt−1St−1 + o((

T
∑

t=1

‖Xt−1‖
2
)
1/2

(log

T
∑

t=1

‖Xt−1‖
2
)

1+σ

2 )

+ o((

T
∑

t=1

S2
t−1)

1/2
(log

T
∑

t=1

S2
t−1)

1+σ

2 ) + O(T ) a.s.

= A(

T
∑

t=1

Xt−1St−1) + o(T 1/2
(log T )

1+σ

2 )

+ o((

T
∑

t=1

S2
t−1)

1/2
(log T )

1+σ

2 ) + O(T )

This implies that

ZT = AZT−1(1 + o(1)) + o(1) a.s.(9)

Combining (8) and (9), we have that

ZT−1 − AZT−1 = o(1) a.s.(10)

Therefore, any limit point z of {zT } would satisfy

Z − AZ = 0(11)

Since 1 is not an eigenvalue of A, Z = 0. Using the same method one can prove

that

∑T
t=1 XtTt

(T
∑T

t=1 T 2
t )1/2

= 0 a.s.

This proves Lemma 1.

Lemma 2. If E|εα
t | < ∞ for some α > 2, then

lim
T→∞

∑T
t=1 StTt

√

∑T
t=1 S2

t

∑T
t=1 T 2

t

= 0 a.s.

Proof. Note that T̃T = (−1)
T TT =

∑T
t=1(−1)

T εt. Using theorem 3.2 of Phillip in

page 234 of Eberlein and Taqqu [5], (4) and (5) hold if we replace St by Tt.

Therefore,

T 2
T

∑T
t=1 T 2

t

=
T̃ 2

T
∑T

t=1 T̃ 2
t

→ 0 a.s.



Forecasting unstable processes 77

Let

uT =

∑T
t=1 StTt

√

∑T
t=1 S2

t

∑T
t=1 T 2

t

.

Then

uT − uT−1 =
ST TT

√

∑T
t=1 S2

t

∑T
t=1 T 2

t

+ uT−1(

√

√

√

√

∑T−1
t=1 S2

t

∑T
t=1 T 2

t
∑T

t=1 S2
t

∑T
t=1 T 2

t

− 1)

(12)
= o(1) a.s.

But

T
∑

t=1

StTt =

T
∑

t=1

(St−1 + εt)(−Tt−1 + εt)

= −

T
∑

t=1

St−1Tt−1 +

T
∑

t=1

St−1εt −

T
∑

t=1

Tt−1εt +

T
∑

t=1

ε2t

= −

T−1
∑

t=1

StTt + o((

T
∑

t=1

S2
t−1)

1/2
)(log(

T
∑

t=1

S2
t−1))

+ o((

T
∑

t=1

T 2
t )

1/2
(log(

T
∑

t=1

T 2
t ))) + O(T ) a.s.

Therefore,

uT = −

∑T−1
t=1 StTt

√

∑T
t=1 S2

t

√

∑T
t=1 T 2

t

+ o(
log(

∑T
t=1 S2

t−1)
√

∑T
t=1 T 2

t

) + o(
log(

∑T
t=1 T 2

t )
√

∑T
t=1 S2

t

)

+o(
T

√

∑T
t=1 T 2

t

∑T
t=1 S2

t

)

(13)
= −UT−1(1 + o(1)) + o(1) a.s.

= −uT−1 + o(1) a.s.

Combining (12) and (13), since

uT = o(1) a.s. uT −→ 0 a.s.

Now, we are ready to state our main result.

Let

yt = β1yt−1 + · · · + βpyt−p + εt(14)

be an AR(p) model with

φ(z) = 1 − β1z − · · · − βpz
p

(15)

= (1 − z)(1 + z)Ψ(z)(16)

where Ψ(z) = 1−Ψ1z − · · · −Ψqz
q

is a polynomial of order q = p− 2 which has all

roots outside the unit circle.
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Theorem 1. Assume that the AR(p) model (14) satisfies (16). If {εt} is a se-

quence of i.i.d. random variables with E|εt|
α < ∞, where α > 2, and y0, . . . , y1−p

is independent of {εt} then

lim
T→∞

1

log T
log det(

T
∑

t=1

yty
′
t) = (p + 2) a.s.(17)

where y
′
t = (yt, . . . , yt−p+1).

Proof. By Chan and Wei [3] there exists a non-singular p × p matrix Q such that

Qyt = (ut, vt,x
′
t), where

xt = (xt−1, . . . , xt−q)
′,

ut = ut−1 + εt,

vt = −vt−1 + εt and

xt = Ψ1xt−1 + · · · + Ψqxt−q.

Therefore, if we let zt = Qyt,

det(

T
∑

t=1

yty
′
t) = det[Q−1

T
∑

t=1

ztz
′
tQ

−1
] =

det(
∑T

t=1 ztz
′
t)

(det(Q))2
.

To show (17), it is sufficient to show

lim
T→∞

1

log T
log det(

T
∑

t=1

ztz
′
t) = (p + 2) a.s.(18)

Let

GT =





(
∑T

t=1 u2
t )

−1/2
0 0

0 (
∑T

t=1 v2
t )

−1/2
0

0 0 T−1/2Iq



 ,

where Iq is the q × q identity matrix.

Then

GT

T
∑

t=1

ztz
′
tGT =





1 aT b
′
T

aT 1 c
′
T

bT cT ΓT



 ,

where

aT =
(
∑T

t=1 utvt)

[(
∑T

t=1 u2
t )(

∑T
t=1 v2

t )]1/2
,

bT =

∑T
t=1 utxt

(T
∑T

t=1 u2
t )

1/2
,

cT =

∑T
t=1 vtxt

(T
∑T

t=1 v2
t )1/2

,

and

ΓT =
1

T

T
∑

t=1

xtx
′
t.
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Let

A =

(

Ψ1 . . . Ψq

0 Iq−1

)

.

Then A has all eigenvalues inside the unit circle and xt = Axt−1 + εt. Therefore,

there exist a non-singular matrix Γ such that

lim
T→∞

ΓT = Γ a.s.

Furthermore, by Lemma 1 and 2,

lim
T→∞

aT = 0,

lim
T→∞

cT = 0 a.s.

Consequently,

lim
T→∞

GT

T
∑

t=1

ztz
′
tGT =





1 0 0′

0 1 0′

0 0 Γ





Since Γ is nonsingular, (18) is proved if

log det(G−2
T ) = log(

T
∑

t=1

u2
t ) + log(

T
∑

t=1

v2
t ) + q log T

∼ (p + 2) log T a.s.(19)

By (4) and (5) of Lemma 1,

lim
T→∞

1

log T

T
∑

t=1

u2
t = 2 a.s.

Similar result holds for {vt}. Therefore,

log det(G−2
T ) ∼ (4 + q) log T = (p + 2) log T a.s.

This completes our proof.

Remark 1. Theorem 3 of Wei [17] shows that under similar assumptions as in our

analysis,

CT ∼ σ2
log det(

T
∑

t=1

yty
′
t) a.s.(20)

Thus,

CT ∼ (p + 2)σ2
log(T ) a.s.

Remark 2. Theorem 1 and Remark 1 have an immediate implication for model

selection and can greatly simplify the proof of Theorem 3.5 of Wei [18]. Let p∗

be known and p0 = max{j : βj �= 0, 1 ≤ j ≤ p∗} as in (1). Denote PLST (p) =
∑T

t=t0
(yt − ŷt)

2
where ŷt is the forecast of yt based upon information up to t-1

using the AR(p) model as in (1) and PLST (p̂T ) = inf{PLST (j) : 0 ≤ j ≤ p∗}. Wei

[18] showed that for both cases of underspecifying and overspecifying AR order (j),
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P(PLST (j) > PLST (p0) eventually) = 1. Thus, P[p̂T = p0 eventually] = 1.

For the case of overspecification, Wei decomposed φp(z) into a sum of a unit root

component and a stable component, and worked out the differnece of CT between

the true and the overspecified models. Our results can greatly simplify the proof.

Let C
(j)
T =

∑T
t=1(yt − ŷ

(j)
t − εt)

2
where ŷ

(j)
t is the forecast of yt at t − 1 using

the AR(j) model. For the case of overspecification, βj = 0,∀j > p0. Applying

Theorem 1 and Remark 1, C
(j)
T → (j+2)σ2

log(T ) > (p0+2)σ2
log(T ) = C

(p0)
T a.s.

As for the case of underspecification, l < p0, the desired result, P[PLST (l) >
PLST (p0) eventually] = 1, is a direct consequence of Theorem 3.2 of Wei [18]

since βp0
�= 0. Thus, P[p̂T = p0 eventually] = 1.

3. Implications and applications of the main theorem

We have just proved that for an AR(p) process, CT = pσ2
log(T ) if it is stationary

and CT = (p + 1)σ2
log(T ) if there is an root of 1. Our theorem implies that if

the existence of unit root is properly detected and unit root constraint is imposed

in forming the forecast, then CT = (p − 1)σ2
log(T ). That is, for model with unit

root, estimation is done for the differenced series rather than level of the series.

By so doing, we reduce CT by 2σ2
log(T ) which could be substantial for large T

and σ2
. However, it should be noted that

∑T
t=1 (yt − ŷt)

2
is not severely affected

by existence of unit root since CT , which is of the order of log(T ), is dominated

by
∑T

t=1 ε2t , which is of the order T . This result is natural since it is the long term

forecast and not the short term forecast that unit root has strong impact. These

findings are further confirmed in our simulation study in Section 5.

In addition, our theorem implies that for AR(p) processes with root equal to or

less than 1 in magnitude, as T −→ ∞,

log det
1

log(T )
(

T
∑

t=1

yty
′
t) −→ c a.s.(21)

where c = (p + 1) if there is a root of 1 and c = p if all roots are less than one.

Equivalently,

d̂T = [
1

T
log det

T
∑

t=1

yty
′
t − p]

1/2

−→ d, a.s.(22)

where d is 1 if there is a root of 1 and 0 if there is no unit root. Note that if p is

unknown but r ≥ p is given, (22) is still true with r replacing p in (22) and in the

definition of yt in (17). In other words, our theorem proves that d̂T can be used as a

test statistic for unit root. This issue will be further investigated in future research.

4. Multi-step and adaptive forecast

Our previous analysis focuses on 1-step forecast and there are cases when multiple-

step forecast is the main concern. It is conjectured that our results can be extended

to multi-step forecast but the issue will be pursued elsewhere. Instead, we shall

concentrate our discussion on the relationship between model misspecification and

adaptive forecast.
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By (1), we have

yt+h = β1yt+h−1 + · · · + βpyt+h−p + εt+h(23)

and

ŷt+h = β̂1ŷt+h−1 + · · · + β̂pŷt+h−p(24)

where ŷt+h−k = yt for h ≤ k. So, (24) can be recursively solved in the order of

ŷt+1, ŷt+2, . . . , ŷt+h. This is the conventional Box-Jenkins multi-step forecaster.

Another way of generating the multi-step forecast is to solve the model that

minimizes the multi-step forecast error and then use it to form multi-step forecast

(see Ing [8], Bhansali [2], Weiss [19], and Tiao and Tsay [15]). More specifically, the

h-step forecast error et(h) at time t is

et(h) = εt+h + Ψ1εt+h−1 + · · · + Ψh−1εt+1

where Ψi is defined by [1−βB−· · ·−βpB
p
]
−1

= Ψ0 +Ψ1B+ · · · . The cost function

to be minimized is

C(h) =

T−h
∑

t=1

e2
t (h)(25)

Note that for different h different models are used and this explains the name

’adaptive’ forecast. Solving (25) involves nonlinear optimization as Ψi is a nonlinear

function of (β1, . . . , βp). In practice, approximate linear model is used. That is, the

following regression is performed

yt = a1yt−h + a2yt−h−1 + · · · + apyt−h−p+1 + bt

and

ŷt+h = a1yt + a2yt−1 + · · · + apyt−p+1

The idea behind the adaptive forecast is that if the model is misspecified, that

is, p is mistakenly chosen, then this mistake will be amplified radically for the

long term forecast. Adaptive forecast could avoid this compounding impact. It is

reasonable to expect good performance of Box-Jenkins forecaster for the correctly

specified model and good performance of adaptive forecaster for misspecified model.

Ing, Lin and Yu [10] propose a predictor selection criterion to choose the best

combination of prediction models (AR lags) and prediction methods (adaptive or

plug-in). When there is only one unit root, the proposed method is proved to be

asymptotically efficient in the sense that the predictor converges with probability

one to the optimal predictor which has minimal loss function.

5. Monte Carlo experiments

To assess the theoretical results obtained in previous section and acquire experience

about empirical analysis in the sequel, we conduct two Monte Carol experiments.

The first is to investigate the finite sample properties of CT in theorem 1 and the

second on forecast comparison between alternative forecasters. For both cases, we

generate data from the following four models:
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• Model 1: (1−0.5B)
2
(1−B)yt = εt or yt = 2yt−1−1.25yt−2+0.25yt−3+εt.

Roots are 0.5, 0.5 and 1.0 respectively.

• Model 2: (1 − 0.5B)
2
(1 − .99B)yt = εt or yt = 1.99yt−1 − 1.24yt−2 +

0.2475yt−3 + εt

Roots are 0.5, 0.5 and 0.99 respectively.

• Model 3: (1 − 0.5B)
2
(1 − .95B)yt = εt or yt = 1.95yt−1 − 1.2yt−2 +

0.2375yt−3 + εt

Roots are 0.5, 0.5 and 0.95 respectively.

• Model 4: (1 − 0.5B)
3yt = εt or yt = 1.5yt−1 − 0.75yt−2 + 0.125yt−3 + εt

All roots are 0.5.

σ2
is set to be 1 for all models.

5.1. Monte Carlo experiment on CT

The number of replications are 1000 for each experiment. For each, realization, 10

sets of samples are drawn from each model with sample size, T, varying from 100,

200 to 1000. For each sample, starting from t = t0(=10), the model parameters are

estimated and is then used to forecast t+1. Then we reestimate the model using

sample from 1 to t + 1 and forecast t + 2. The process is repeated until when T − 1

sample is used to estimate the model and then used to forecast yT . The forecast

mean square error is then summed from t0 + 1 to T to obtain ĈT . Finally, we

compute the averaged ĈT obtained from 1000 replications. In other words,

ĈT =

∑1000
i=1

∑T−1
t=t0

(ŷi,t+1 − yi,t+1)
2

(1000)(T − t0)
(26)

In addition, for each model, we repeat the procedure above with the constraint

that one of the root is equal to one. The results are summarized in Table 1. As one

can easily see, over 40 millions regressions have to performed to obtain this table

and usage of updating formula can significantly reduce the computation burden.

In Table 1, the first column is sample size. Results for first model with 0 unit root

(d = 0) and 1 unit root (d = 1) are put in second and third columns. Results for

the other three models are put in columns 4 to 9. Our theory predicts that: (1)

Table 1

CT for simulated data

Roots are

0.5,0.5,1.0 0.5,0.5,0.99 0.5,0.5,0.95 0.5,0.5,0.5

T d = 0 d = 1 d = 0 d = 1 d = 0 d = 1 d = 0 d = 1

100 23.47 12.33 23.47 12.33 23.80 15.36 21.07 23.22

200 27.55 14.71 27.55 14.71 27.71 20.19 24.28 37.60

300 29.90 16.06 29.90 16.06 29.83 23.90 26.09 50.86

400 31.49 17.00 31.49 17.00 31.21 27.17 27.32 63.57

500 32.75 17.73 32.75 17.73 32.26 30.27 28.29 75.96

600 33.76 18.30 33.76 18.30 33.09 33.12 29.04 88.12

700 34.62 18.79 34.62 18.79 33.80 36.01 29.69 100.41

800 35.38 19.22 35.38 19.22 34.40 38.89 30.26 112.72

900 35.99 19.60 35.99 19.60 34.94 41.65 30.76 124.80

1000 36.55 19.94 36.55 19.94 35.42 44.37 31.21 136.93

β 5.2849 2.8583 5.2849 2.8583 5.1947 5.2064 4.5635 13.8536

R2
0.9988 0.9902 0.9988 0.9902 0.9920 0.6315 0.9930 0.4471
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Table 2

MSE for simulated Data

Roots are

0.5,0.5,1.0 0.5,0.5,0.99 0.5,0.5,0.95 0.5,0.5,0.5

T d = 0 d = 1 d = 0 d = 1 d = 0 d = 1 d = 0 d = 1

100 117.81 106.92 117.81 106.92 118.33 110.06 115.59 118.17

200 227.10 214.61 227.10 214.61 227.36 220.24 224.11 237.66

300 334.88 321.53 334.88 321.53 334.97 329.57 331.53 356.59

400 441.30 427.33 441.30 427.33 441.27 437.73 437.66 474.10

500 547.43 533.00 547.43 533.00 547.19 545.69 543.55 591.33

600 653.42 638.61 653.42 638.61 653.01 653.67 649.36 708.93

700 759.51 744.24 759.51 744.24 758.92 761.63 755.18 826.46

800 865.20 849.45 865.20 849.45 864.35 869.13 860.55 943.18

900 970.92 954.95 970.92 954.95 970.01 976.96 966.16 1060.21

1000 1076.76 1060.56 1076.76 1060.56 1075.72 1084.89 1071.91 1177.63

ĈT increases linearly with log(T − t0) and (2) ĈT without unit root constraint is 2

times ĈT with unit root constraint.

We run a simple regression of ĈT against log(T − t0) without intercept for each

model and report the regression coefficients and R2
in the last row of Table 1.

For column 2 and 3 of the table, the regression coefficients are 5.2849 and 2.8583

respectively while R2
are greater than 0.99 for both cases. In summary, model 1

conforms the theoretical results.

As for model 2, one of the root is 0.99. Since it is the 1-step that is the main

concern here, the result is almost the same with model 1. This is consistent with

the findings of Lin and Tsay [13] that unit root or not does not matter much for

short term forecast.

For model 3, the largest root is 0.95 which is not close to 1 enough. Imposing

unit root constraint produces much larger ĈT and the stable relationship between

ĈT and log(T ) deteriorates greatly as is seen from poor R2
. This can be justified

by the fact that differencing a stationary process produce a unit root in the MA

component which can not be approximated by high order AR. The situation become

much worse for model 4 where all roots are equal to 0.5.

For the purpose of comparison, we also report the corresponding conventional

MSE (
∑T

t=1(yt − ŷt)
2
) for the same 4 models above in Table 2. We observed from

the table that contrary to the case for ĈT , the MSE for d = 0 is about the same

as for d = 1. This confirms our previous analysis that CT , though an important

quantity for determining the quality of forecast, is of second order importance as

compared to
∑T

t=t0+1 ε2t . For 1-step forecast the distinction between unit root and

near unit root does not matter much.

5.2. Monte Carlo experiment on short-term and long-term forecast

comparison

This simulation is designed to evaluate the short-term and long-term forecasting

performance of alternative forecasters. The number of replications are again 1000.

For each replication, 400 observations are generated from the four models above.

The first 300 observations are reserved for estimation and then used to produce 1 to

60 steps forecast. Next, the model are re-estimated using the first 301 observations

and then used to forecast 1 to 60 steps ahead. The procedure is repeated until

when the first 399 observations is used for estimation and the last 1-step ahead
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forecast is formed. So, we have 100 1-step forecasts, 99 2-step forecasts and 40

60-step forecasts. Then, we compute root mean square error (RMSE) for forecast

of each step. Finally, the resulting RMSE is averaged over 1000 replications. More

specifically, letting εi,t(k) be the k period ahead forecast error at time t of the i-th
replication. Then

RMSE(	) = E(	) =

√

∑1000
i=1

∑400−�
t=300 ε2i,t(	)

(1000)(100 − 	 + 1)
(27)

The simulation results are put in Tables 3 to 6. In each table, column 1 is steps of

forecast, column 2 is the RMSE for model with p = 3 and d = 0, serving as the

benchmark for forecast comparison. Columns 3 to 7 are E(	) ratios of model with

various p and d to column 2.

From these tables we observe the following. First, for stationary processes, the

E(	) for the correctly model converges to a constant with the rate of convergence

depending upon the value of the root. For root of 0.5, the E(	) approach a constant

as early as 	 = 6 while for root of 0.95 	 does not stabilize until 30. As for root

of .99, it is so close to 1 and E(	) is still increasing after 	 = 60. For process with

unit root E(	) increases with 	 for all the whole range of 	. Second, the true model

outperforms other misspecified models in forecasting. Third, over-specification of

unit results in poor forecast. For the case of model 4 (Table 6) E(	) for d = 1 is 5%

higher than d = 0 and jumps to more than 50% for 	 greater than 40. For model

3, one of the root is 0.95 and the forecaster for d = 1 is still 45% worse than d = 0

though a little better than model 4. As for model 2, one of the root is 0.99 and

for up to 20 steps, d = 1 fares as well as d = 0 and is only 10% worse than the

true model at 60-step forecast. Fourth, under-specification of unit root only results

in small increase of E(	). From column 2 of Table 3, the inefficiency is less than

4% from 1-step to 60-step forecasts. Fifth, under- or over-specification of AR order

Table 3

Forecasting comparison for simulated data: true p = 3, roots are 0.5, 0.5, 1.0

Steps E(�) E(�) ratio of MSE to model with p = 3, d = 0

�: p = 3 p = 3 p = 2 p = 2 p = 4 p = 4

d = 0 d = 1 d = 0 d = 1 d = 0 d = 1

1 3.26 99.71 103.25 102.98 100.15 99.86

2 7.34 99.49 102.73 102.23 100.15 99.64

3 11.69 99.27 102.52 101.78 100.15 99.41

4 15.92 99.04 102.58 101.56 100.14 99.18

5 19.89 98.80 102.77 101.44 100.14 98.94

6 23.57 98.57 103.01 101.32 100.14 98.69

7 26.95 98.34 103.26 101.18 100.14 98.46

8 30.08 98.12 103.51 101.01 100.15 98.24

9 33.00 97.91 103.76 100.81 100.15 98.03

10 35.72 97.72 104.01 100.59 100.15 97.83

15 47.47 97.06 105.09 99.56 100.14 97.12

20 57.04 96.73 105.83 98.81 100.15 96.77

25 65.29 96.65 106.17 98.39 100.14 96.68

30 72.70 96.61 106.24 98.05 100.12 96.63

35 79.58 96.67 106.08 97.95 100.09 96.69

40 85.99 96.76 105.70 97.81 100.05 96.78

45 92.08 96.92 105.24 97.76 100.01 96.94

50 98.03 97.12 104.66 97.86 99.98 97.14

55 103.82 97.21 104.05 97.97 99.94 97.23

60 109.21 97.26 103.43 97.96 99.87 97.30
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Table 4

Forecasting comparison for simulate model: true p = 3, roots are 0.5, 0.5, 0.99

Steps E(�) E(�) ratio of MSE to model with p = 3, d = 0

�: p = 3 p = 3 p = 2 p = 2 p = 4 p = 4

d = 0 d = 1 d = 0 d = 1 d = 0 d = 1

1 3.26 99.91 103.18 103.27 100.15 100.06

2 7.32 99.85 102.70 102.74 100.15 99.99

3 11.61 99.79 102.53 102.51 100.15 99.93

4 15.76 99.74 102.61 102.54 100.14 99.87

5 19.62 99.70 102.81 102.67 100.14 99.82

6 23.14 99.66 103.06 102.82 100.15 99.77

7 26.36 99.63 103.31 102.95 100.15 99.75

8 29.30 99.62 103.57 103.04 100.17 99.73

9 32.00 99.63 103.82 103.10 100.18 99.72

10 34.50 99.65 104.06 103.14 100.18 99.74

15 44.87 100.10 105.10 103.38 100.22 100.13

20 52.75 100.98 105.62 103.95 100.26 100.98

25 59.01 102.16 105.59 104.90 100.27 102.14

30 64.21 103.31 105.24 105.83 100.25 103.28

35 68.72 104.51 104.66 106.92 100.21 104.47

40 72.71 105.65 103.95 107.84 100.15 105.60

45 76.32 106.85 103.14 108.83 100.11 106.80

50 79.68 108.11 102.32 110.03 100.07 108.06

55 82.76 109.27 101.56 111.27 100.03 109.22

60 85.54 110.20 100.83 112.15 99.98 110.15

Table 5

Forecasting comparison for simulated model: true p = 3, roots are 0.5, 0.5, 0.95

Steps E(�) E(�) ratio of MSE to model with p = 3, d = 0

�: p = 3 p = 3 p = 2 p = 2 p = 4 p = 4

d = 0 d = 1 d = 0 d = 1 d = 0 d = 1

1 3.26 100.87 102.92 104.61 100.16 101.00

2 7.19 101.59 102.50 105.05 100.17 101.70

3 11.20 102.35 102.39 105.87 100.17 102.43

4 14.93 103.15 102.50 107.02 100.18 103.22

5 18.24 104.01 102.69 108.34 100.19 104.06

6 21.11 104.92 102.91 109.71 100.20 104.94

7 23.59 105.87 103.11 111.09 100.22 105.86

8 25.72 106.85 103.29 112.41 100.24 106.81

9 27.57 107.85 103.46 113.70 100.26 107.79

10 29.17 108.88 103.60 114.95 100.28 108.79

15 34.68 114.26 103.91 120.95 100.35 114.08

20 37.59 119.71 103.34 126.69 100.37 119.46

25 39.16 124.73 102.28 132.01 100.32 124.42

30 40.04 128.94 101.30 136.47 100.26 128.60

35 40.61 132.40 100.65 140.17 100.19 132.01

40 41.02 135.16 100.27 142.89 100.14 134.75

45 41.31 138.01 99.99 145.70 100.11 137.58

50 41.50 140.97 99.79 148.84 100.08 140.50

55 41.61 143.76 99.68 152.10 100.06 143.26

60 41.68 145.57 99.66 154.16 100.04 145.04
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Table 6

Forecasting comparison for simulated data: true p = 3, roots are all 0.5

Steps E(�) E(�) ratio of MSE to model with p = 3, d = 0

�: p = 3 p = 3 p = 2 p = 2 p = 4 p = 4

d = 0 d = 1 d = 0 d = 1 d = 0 d = 1

1 3.26 105.23 100.68 108.65 100.13 104.82

2 5.90 110.01 100.58 114.55 100.13 109.11

3 7.70 115.20 100.65 121.43 100.13 113.78

4 8.74 120.67 100.72 128.63 100.13 118.68

5 9.28 126.00 100.77 135.33 100.14 123.50

6 9.53 130.73 100.78 140.98 100.14 127.93

7 9.64 134.52 100.74 145.38 100.14 131.62

8 9.68 137.31 100.64 148.61 100.13 134.39

9 9.69 139.30 100.49 150.91 100.12 136.32

10 9.69 140.71 100.32 152.55 100.10 137.64

15 9.68 144.26 99.98 156.66 100.04 140.87

20 9.68 145.69 99.98 158.33 100.02 142.22

25 9.66 147.22 99.98 160.24 100.00 143.62

30 9.66 148.04 99.98 161.31 100.00 144.37

35 9.67 148.70 99.98 162.52 100.00 144.86

40 9.68 148.98 99.99 162.92 100.00 145.11

45 9.68 150.37 99.99 164.35 100.00 146.48

50 9.69 153.41 99.98 167.67 99.99 149.35

55 9.68 155.18 99.99 169.99 99.99 150.98

60 9.66 155.33 99.99 170.78 99.99 150.92

only affects the forecast precision marginally. The E(	) for all models are within

6% to the true model for all forecasts up to 60-step ahead.

To sum up, the simulation show that slight misspecification of AR order and

under specification of unit root are not serious in forecasting but over-specification

of unit root could result in poor forecast when the root of characteristic polynomial

is far from 1. Yet, improvement of forecasting precision in absolute term could be

substantial for large sample when the existence of unit root is appropriately taken

into consideration.

6. Empirical results

6.1. Data

For empirical analysis, we analyze 6 most frequently used data sets in Taiwan in-

cluding Gross Domestic Product (GDP), Consumer Price Indices (CPI), Wholesale

Price Indices (WPI), Interest Rates( IR), Exchange Rate of New Taiwan Dollar to

US Dollar(RX) and money supply(M1B). All series are quarterly data taken from

the AREMOS databank. The sample period is 1961:1 to 1995:4 except for M1B

which ranges between 1961:3 to 1995:4. So, sample size is 138 for M1B and 140 for

the rest series. All series are seasonally unadjusted.

6.2. Order selection

Selecting lag order p and forecasting method simultaneously is analyzed in Ing,

Lin and Yu [10]. Here, we follow the conventional wisdom by using AIC and chi-

square statistics to determine p. When the AIC has a clear minimal, we select the

order corresponding to the minimal AIC. When AIC is decreasing without a clear
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minimum, we use chi-square statistics to select the last significant lag. It turns out

that CPI, WPI and RX have order 2, interest rate has order 6, M1B has order 3

and GDP has order 8. The high order indicates the possible existence of seasonal

unit root which is not investigated here.

6.3. Forecasting procedure

For each series, the first 100 observations are reserved for estimation and 1- to

20-step forecasts are computed. Then the model are re-estimated using first 101

observations and another 1- to 20-step forecasts are computed. The procedure is

repeated until when the first T − 1 observations are used to estimate the model

and the last 1-step forecast is computed. Hence, we have 40 1-step forecasts, 39

2-step forecasts and 20 20-step forecasts except for M1B where there are 38 1-step

forecasts and 18 20-step forecasts. For each step, the average root mean square error

is computed.

6.4. Results

The results are reported in Tables 7 to 12. From the tables we observe the following.

First, E(	) increases linearly with 	 for all series except for Interest Rates. This

seems to suggest that except IR, all variables have a unit root. Second, regarding

the Box-Jenkins forecast, imposing unit root constraint result in poor forecast for

all steps ahead for WPI, CPI, GDP and IR. Especially for IR, the RMSE for d = 1

is 200% higher than that for d = 0. This seems to be consistent with the finding that

its E(	) converges to a constant very quickly. However, for RX forecast with d = 1

fares much better than forecast with d = 0. The precision gain from imposing unit

root is about 5% for 1-step forecast and then up to over 30% for 20-step forecast.

This seems to indirectly support the efficient market hypothesis for the foreign

Table 7

Forecasting comparison for GDP

E(�) ratio to model BJ, d = 0

� E(�) BJ, d = 1 Adap, d = 0 Adap, d = 1

1 12258.04 101.94 100.00 99.22

2 18024.46 104.69 101.47 179.52

3 21232.71 106.87 115.10 151.59

4 24719.28 108.70 106.82 83.76

5 31938.87 110.92 102.59 99.66

6 37316.81 112.05 116.19 125.65

7 40063.38 112.71 132.45 98.06

8 40505.82 109.83 147.52 45.57

9 46605.77 111.94 158.02 65.51

10 52966.58 116.89 159.53 103.16

11 57551.40 121.35 157.04 91.13

12 59480.32 120.18 169.46 66.06

13 66651.35 120.95 181.21 85.92

14 74760.98 123.52 184.47 109.41

15 79555.22 124.66 174.53 94.18

16 81162.26 120.64 173.44 74.78

17 91194.77 117.99 185.95 61.83

18 99975.45 122.09 181.84 99.95

19 105256.88 125.83 162.48 83.94

20 108809.60 122.63 162.14 55.65
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Table 8

Forecasting comparison for CPI

steps E(�) ratio to model BJ, d = 0

� E(�) BJ, d = 1 Adap, d = 0 Adap, d = 1

1 1.12 99.39 100.00 101.46

2 1.71 98.81 83.53 77.07

3 1.82 99.20 100.10 69.33

4 1.83 99.75 123.42 79.90

5 2.09 98.49 128.11 84.27

6 2.51 99.73 124.42 81.85

7 2.54 101.83 148.32 89.80

8 2.65 102.66 165.72 95.17

9 2.97 102.13 163.20 95.48

10 3.19 101.81 171.06 95.60

11 3.06 106.53 209.48 98.15

12 3.12 108.45 237.77 96.83

13 3.55 106.61 236.77 86.76

14 3.71 107.33 257.23 89.74

15 3.76 111.25 289.99 98.66

16 3.83 113.36 326.41 99.02

17 4.32 110.28 336.41 91.27

18 4.50 111.09 372.91 89.71

19 4.44 113.86 431.77 86.81

20 4.79 111.22 455.83 80.87

Table 9

Forecasting comparison for WPI

E(�) ratio to model BJ, d = 0

� E(�) BJ, d = 1 Adap, d = 0 Adap, d = 1

1 1.16 102.47 100.00 101.19

2 2.13 103.43 58.78 93.97

3 3.05 104.54 50.13 97.35

4 3.88 105.55 47.53 96.59

5 4.56 107.43 49.39 108.12

6 5.07 109.64 53.84 113.24

7 5.41 112.38 61.27 113.87

8 5.58 116.54 69.88 120.83

9 5.89 120.00 76.71 132.83

10 6.36 121.66 81.36 140.82

11 6.93 122.71 86.87 137.69

12 7.53 123.95 90.96 135.62

13 8.02 125.92 96.49 141.24

14 8.48 127.93 103.98 150.77

15 8.82 130.43 113.97 157.73

16 8.87 135.06 127.60 157.82

17 8.97 139.02 141.47 173.71

18 9.15 142.11 157.87 191.82

19 9.52 143.65 174.20 193.95

20 10.19 142.43 186.53 178.22
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Table 10

Forecasting comparison for RX

E(�) ratio to model BJ, d = 0

� E(�) BJ, d = 1 Adap, d = 0 Adap, d = 1

1 .66 95.38 100.00 99.40

2 1.32 92.38 53.40 90.39

3 2.01 89.53 40.91 81.93

4 2.77 88.16 37.25 75.67

5 3.41 87.09 38.60 73.91

6 3.99 86.26 42.45 72.13

7 4.42 85.01 47.25 72.20

8 4.71 83.30 54.59 70.22

9 5.03 82.30 61.77 68.81

10 5.29 81.93 68.35 72.37

11 5.58 81.90 74.77 75.55

12 5.94 81.98 79.20 77.42

13 6.31 81.57 81.79 76.30

14 6.67 80.44 83.67 74.67

15 6.93 78.33 85.17 74.42

16 7.11 75.67 86.40 70.66

17 7.34 72.78 86.34 62.28

18 7.56 70.48 86.23 58.96

19 7.87 69.58 85.50 59.46

20 8.24 69.51 83.95 51.02

Table 11

Forecasting comparison for M1B

E(�) ratio to model BJ, d = 0

� E(�) BJ, d = 1 Adap, d = 0 Adap, d = 1

1 96297.39 92.81 100.00 102.13

2 152389.01 94.00 65.10 86.82

3 208305.92 94.22 52.25 78.01

4 266876.68 94.73 52.56 71.28

5 377584.71 92.59 55.08 61.12

6 481271.98 94.39 61.18 56.24

7 532886.35 99.13 59.46 55.99

8 595646.12 101.27 71.45 49.52

9 668073.88 108.19 84.69 50.29

10 774390.51 113.50 92.29 49.31

11 821482.40 123.40 89.06 50.77

12 886619.83 129.37 90.62 46.46

13 1052170.67 129.01 89.81 42.85

14 1158059.45 143.04 86.93 44.22

15 1335812.44 145.93 70.46 44.98

16 1378939.42 165.55 60.58 42.82

17 1649465.49 162.79 56.17 46.78

18 1748042.18 183.13 61.66 45.31

19 1893323.08 200.50 51.17 41.98

20 2079603.50 214.50 50.45 28.34
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Table 12

Forecasting comparison for IR

E(�) ratio to model BJ, d = 0

� E(�) BJ, d = 1 Adap, d = 0 Adap, d = 1

1 0.72 104.58 100.00 106.60

2 1.16 108.68 67.94 79.35

3 1.24 114.84 64.70 108.65

4 1.38 120.28 58.85 127.00

5 1.63 124.48 48.70 125.50

6 1.82 130.14 46.05 120.60

7 1.83 138.25 50.44 124.52

8 1.82 146.64 55.74 139.96

9 1.83 154.97 58.67 170.56

10 1.83 164.17 59.64 191.38

11 1.76 175.17 60.49 208.55

12 1.70 185.17 63.08 211.01

13 1.67 194.23 65.27 208.26

14 1.61 204.93 75.07 213.25

15 1.52 216.39 91.16 219.55

16 1.36 237.94 94.70 238.53

17 1.27 254.73 108.89 239.50

18 1.10 289.28 101.44 237.00

19 0.84 370.74 131.31 269.90

20 0.59 521.61 199.32 349.14

exchange market in Taiwan. As for M1B, imposing unit root constraint improves

forecast precision from 1- to 7-step forecasts but deteriorates forecast precision from

8-step to 20-step forecasts. The inefficiency is more than 100% for 19 and 20-step

forecasts. Third, the performance of adaptive forecaster is mixed. For RX and M1B,

adaptive forecast with d = 0 and d = 1 consistently outperforms conventional Box-

Jenkins’ forecast by a large margin. The precision gain could go as high as 50%.

For CPI adaptive forecast performs poorly for d = 0 but very well for d = 1. For

IR and WPI adaptive forecast with d = 0 performs well in short and medium term

forecast but fares poorly in long term forecast. But adaptive forecast with d = 1

performs okay in the short term but very poorly in the long term. The case GDP

is quite interesting. While adaptive forecast with d = 0 fares poorly for short and

long term forecast, the performance of adaptive forecast with d = 1 jumps up and

down across steps. This seems to suggest that seasonality plays an important for the

differenced GDP which is supported by the corresponding autocorrelation function.

This issue will be investigated in future study.

To sum up, the empirical findings are mixed. Imposing unit root constraint

might improve forecast precision for some cases but deteriorate forecast precision in

others. Also, adaptive forecast differs from Box-Jenkins’ forecast by the big margin.

Most frequently, it could improve short to medium term forecast but result in poor

long term forecast. However, for some cases, it could produce either better or worse

forecast for forecast of all steps. Further study is needed to determine the influencing

factors.

7. Conclusions

We have analyzed the least square forecaster from various aspects. From the theo-

retical viewpoint, we prove that CT , the most important quantity when evaluating

the performance of 1-step forecasters is equal to (p + d)σ2
log(T ) where d is 1 or 0
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depending if there is a unit root. This result could be used to analyze the gain in

forecasting precision when unit root is detected and is taken into account. Further,

this theorem can lead to a simple proof of the strong consistency of PLS in AR

model selection and a new test of unit root.

Our simulation analysis confirms the theoretical results. In addition, we also

learn that while mis-specification of AR order has marginal impact on forecasting

precision over-specification of unit root strongly deteriorate the quality of long

term forecast. As for the empirical study using Taiwanese data, the result is mixed.

Adaptive forecast and imposing unit root improves forecast precision for some cases

but deteriorates forecasting precision for other cases.
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Abstract: In the application of autoregressive models the order of the model

is often estimated using either a sequence of likelihood ratio tests, a likeli-

hood based information criterion, or a residual based test. The properties of

such procedures has been discussed extensively under the assumption that the

characteristic roots of the autoregression are stationary. While non-stationary

situations have also been considered the results in the literature depend on

conditions to the characteristic roots. It is here shown that these methods for

lag length determination can be used regardless of the assumption to the char-

acteristic roots and also in the presence of deterministic terms. The proofs are

based on methods developed by C. Z. Wei in his joint work with T. L. Lai.

1. Introduction

Order determination for stationary autoregressive time series has been discussed

extensively in the literature. The three prevailing methods are either to test re-

dundance of the last lag using a likelihood based test, to estimate the lag length

consistently using an information criteria, or to investigate the residuals of a fitted

model with respect to autocorrelation. It is shown that these methods can be used

regardless of any assumptions to the characteristic roots. This is important in ap-

plications, as the question of lag length can be addressed without having to locate

the characteristic roots.

The statistical model is given by a p-dimensional time series Xt of length K +T
satisfying a Kth order vector autoregressive equation

(1.1) Xt =

K
∑

l=1

AlXt−l + µDt + εt, t = 1, . . . , T,

conditional on the initial values X0, . . . , X1−K . The effective sample will remain

X1, . . . , XT when discussing autoregressions with k < K to allow comparison of

likelihood values. The component Dt is a vector of deterministic terms such as a

constant, a linear trend, or seasonal dummies. For the sake of defining a likeli-

hood function it is initially assumed that the innovations, (εt), are independently,

identically normal, Np(0, Ω), distributed and independent of the initial values.

The aim is to determine the largest non-trivial order for the time series, k0 say

with 0 ≤ k0 ≤ K, so Ak0
�= 0 and Aj = 0 for j > k0. Three approaches are available

of which the first is based on a likelihood ratio test for Ak = 0 where 1 ≤ k ≤ K.

The log likelihood ratio test statistic is

LR (Ak = 0) = T log det Ω̂k−1 − T log det Ω̂k,

1
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where Ω̂k−j is the conditional maximum likelihood estimator based on the observa-

tions X1, . . . , XT given the initial values, see (3.2) below. The statistic LR is proved

to be asymptotically χ2
under the hypothesis k0 < k, generalising results for the

purely non-explosive case. Since the result does not depend on the characteristic

roots, it can be used for lag length determination before locating the characteristic

roots.

The second approach is to estimate k0 by the argument k̂ that maximises a

penalised likelihood, or equivalently, minimises an information criteria of the type

(1.2) Φj = log det Ω̂j + j
f (T )

T
, j = 0, . . . , K.

In the literature there are several candidates for the penalty function f . Akaike

has f(T ) = 2p2
, Schwarz [23] has f(T ) = p2

log T while Hannan and Quinn

[10] and Quinn [22] have f(T ) = 2p2
log log T . For stationary processes with-

out deterministic components it has been shown that the estimator k̂ is weakly

consistent if f(T ) = o(T ) and f(T ) → ∞ as T increases, while Hannan and

Quinn show, for p = 1, that strong consistency is obtained if f(T ) = o(T ) and

lim infT→∞ f(T )/ log log T > 2, while strong consistency cannot be obtained if

lim supT→∞ f(T )/ log log T < 2. In other words the estimators of Hannan and

Quinn and of Schwarz are consistent while Akaike’s estimator is inconsistent. Some

generalisations to non-explosive processes have been given by for instance Paulsen

[20], Pötscher [21] and Tsay [24]. Pötscher also considered the purely explosive

case but did not obtain a common feasible rate for f(T ) for the explosive and the

non-explosive case. In the following consistency is shown for a penalty function

f(T ) not depending on the characteristic roots, showing that the penalised likeli-

hood approach also can be applied to lag length determination prior to locating the

characteristic roots.

A third approach is a residual based mis-specification test. This is implemented

in particular in econometric computer packages. In a first step the residuals, ε̂t

say, are computed from the model (1.1) with k − 1 lags, say. In a second step an

auxillary regression is considered where ε̂t is regressed on lagged values as well as the

regressors in equation (1.1). It is argued that a test based on the squared multiple

correlation arising from the auxillary regression is asymptotically equivalent to the

above mentioned likelihood ratio test statistic also in the general case.

Like the work of Pötscher [21] the proofs in this paper are based on the joint work

of C. Z. Wei and T. L. Lai on the strong consistency of least squares estimators

in autoregressions, see for instance Lai and Wei [15]. As pointed out in Pötscher’s

Remark 1 to his Theorem 3.3 these results are not quite strong enough to facilitate

common feasible rates for the penalty function. Two important ingredients in the

presented proofs are therefore an algebraic decomposition exploiting partitioned

inversion along with a generalisation of Lai and Wei’s work given by Nielsen [17].

Whereas the former paper is concerned with showing that the least squares estima-

tor for the autoregressive estimator is consistent, the latter paper provides a more

detailed discussion of the rate of consistency as well as it allows deterministic terms

in the autoregression.

The following notation is used throughout the paper: For a quadratic matrix α let

tr(α) denote the trace and λ(α) the set of eigenvalues, so that |λ(α)| < 1 means that

all eigenvalues have absolute value less than one. When α is also symmetric then

λmin(α) and λmax(α) denote the smallest and the largest eigenvalue respectively.

The abbreviations a.s. and P are used for properties holding almost surely and in

probability, respectively.
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2. Results

Before presenting the results the assumptions and notation is set up. Then the

results follow for the three approaches.

2.1. Assumptions and notation

The asymptotic analysis is to a large extent based on results of Lai and Wei [15]

with appropriate modifications to the situation with deterministic terms in Nielsen

[17]. Following that analysis the assumption to the innovations of independence

and normality made above can be relaxed so that the sequence of innovations

(εt) is a martingale difference sequence with respect to an increasing sequence of

σ-fields (Ft), that is: the innovations X1−k, . . . , X0 are F0-measurable and εt is

Ft-measurable with E(εt|Ft−1)
a.s.
= 0, which is assumed to satisfy

(2.1) sup
t

E{(ε′tεt)
λ/2|Ft−1}

a.s.
< ∞ for some λ > 4.

To establish an asymptotic theory for the LR-statistic it is assumed that

(2.2) E (εtε
′
t|Ft−1)

a.s.
= Ω,

where Ω is positive definite. For the asymptotic theory for the information criteria

this can be relaxed to

(2.3) lim inf
t→∞

λminE (εtε
′
t|Ft−1)

a.s.
> 0.

The deterministic term Dt is a vector of terms such as a constant, a linear

trend, or periodic functions like seasonal dummies. Inspired by Johansen [13] the

deterministic terms are required to satisfy the difference equation

(2.4) Dt = DDt−1,

where D has characteristic roots on the complex unit circle. For example,

D =

(

1 0

1 −1

)

with D0 =

(

1

1

)

will generate a constant and a dummy for a biannual frequency. The deterministic

term Dt is assumed to have linearly independent coordinates. That is:

(2.5) |λ (D)| = 1, rank (D1, . . . , DdimD) = dimD.

In the analysis it is convenient to introduce the companion form

(2.6)

(

Xt

Dt

)

=

(

B µ

0 D

)(

Xt−1

Dt−1

)

+

(

et

0

)

,

where Xt−1 = (X ′
t−1, . . . , X

′
t−k+1)

′
and

B =

{

A1 · · ·Ak−2 Ak−1

Ip(k−2) 0

}

, ι =

{

Ip

0(k−2)p×p

}

, µ = ιµD, et = ιεt.

The process Xt can be decomposed using a similarity transformation. Following

Herstein ([11], p. 308) there exists a regular, real matrix M that block-diagonalises
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B so that MBM−1
= diag(U,V,W) is a real block diagonal matrix where the

eigenvalues of the diagonal blocks U,V,W satisfy |λ(U)| < 1, |λ(V)| = 1, and

|λ(W)| > 1. Any of the blocks U,V,W can be empty matrices, so if for instance

|λ(B)| < 1 then U = B and dimV = dimW = 0. The process Xt can therefore be

decomposed as

(2.7) MXt =





Ut

Vt

Wt



 =





U 0 0 µU

0 V 0 µV

0 0 W µW













Ut−1

Vt−1

Wt−1

Dt









+





eU,t

eV,t

eW,t



 .

Finally, there exists a constant µ̃U , see Nielsen ([17], Lemma 2.1), so

(2.8) Ut = Ũt + µ̃UDt where Ũt = UŨt−1 + eU,t.

2.2. Likelihood ratio test statistics

The likelihood ratio test statistic is known to be asymptotically χ2
in the stationary

case where |λ(B)| < 1 and D = 1, see Lütkepohl ([16], Section 4.2.2). Here the result

is shown to hold regardless of the assumptions to B and D. Thus, the likelihood

ratio test can be used before locating the charateristic roots.

Theorem 2.1. Suppose Assumptions (2.1), (2.2), (2.5) are satisfied and k0 < k.

Then LR(Ak = 0) is asymptotically χ2
(p2

).

Since the likelihood ratio test statistic is based on partial correlations it follows

from Theorem 2.1 that partial correlograms that are computed from partial cor-

relograms can be used regardless of the location of the characteristic roots. Often

correlograms are, however, based on the Yule-Walker estimators, which assume sta-

tionarity. For non-stationary autoregressions that can lead to misleading inference.

Nielsen [18] provides a more detailed discussion.

Remark 2.2. The fourth order moment condition, λ > 4, in Assumption (2.1) is

used twice in the proof. First, to ensure that the residuals from regressing εt on

the explosive term Wt−1 do not depend asymptotically on Wt−1. As discussed in

Remark 3.7 it suffices that λ > 2 if either of the following conditions hold:

(I,a) dimW = 0.
(I,b) dimW > 0 and εt independent, identically distributed.

Secondly, to ensure that εtεt−1 has second moments when applying a Central Limit

Theorem. As discussed in Remark 3.12, it suffice that λ > 2 if

(II) the innovations εt are independent.

The test statistic considered above is for a hypothesis concerning a single lag.

This can be generalised to a hypothesis concerning several lags, m say, where k +

m − 1 ≤ K.

Theorem 2.3. Suppose Assumptions (2.1), (2.2), (2.5) are satisfied and k0 < k.

Then LR(Ak = · · · = Ak+m−1 = 0) is asymptotically χ2
(p2m).

2.3. Information criteria

The next two results concern consistency of a lag length estimator arising from use

of information criterions. The proof has two distinct parts. First, it is argued that
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the lag length estimator k̂ is not under-estimating, and, secondly, that it is not

over-estimating. The first part is the easy one to establish. This result holds for all

of the penalty functions discussed in the introduction under weak conditions to the

innovations.

Theorem 2.4. Suppose Assumptions (2.1), (2.3), (2.5) are satisfied with λ > 2

only and f(T ) = o(T ). Then lim infT→∞ k̂
a.s.
≥ k0.

This result has previously been established in the univariate case without deter-

ministic terms so p = dimX = 1 and dimD = 0 by Pötscher (1989, Theorem 3.3).

For the purely explosive case |λ(B)| > 1 his Theorem 3.2 shows the above result

under the weaker condition f(T ) = o(T 2
). A version holding in probabilty has been

shown for the non-explosive case |λ(B)| ≤ 1 and D = 1 by Paulsen [20] and Tsay

[24].

Results showing that the lag length is not overestimating are harder to estab-

lish. Various weak and strong results can be obtained depending on the number of

conditions that are imposed.

Theorem 2.5. Suppose Assumptions (2.1), (2.5) are satisfied. Then

(i) If f(T ) → ∞ and Assumption (2.2) holds then P(k̂ ≤ k0) → 1.

(ii) If f(T )/ log T → ∞ and Assumption (2.3) holds then lim sup

T→∞
k̂

a.s.
≤ k0.

(iii) If f(T )/{(log log T )
1/2

(log T )
1/2} → ∞, Assumption (2.3) holds, and the pa-

rameters satisfy the condition (A) that V and D have no common eigenvalues

then lim sup

T→∞
k̂

a.s.
≤ k0.

(iv) If f(T )/ log log T → ∞, Assumption (2.3) holds, and either (B) dimD = 0

with V = 1 or (C) dimV = 0 then lim sup

T→∞
k̂

a.s.
≤ k0.

(v) Suppose Assumption (2.2) holds, and either (B) or (C) holds then

(a) If lim infT→∞(2 log log T )
−1f(T )

a.s.
> p2 then lim sup

T→∞
k̂

a.s.
≤ k0.

(b) If lim supT→∞(2 log log T )
−1f(T )

a.s.
< 1 then k̂

a.s.
� k0.

By combining Theorems 2.4, 2.5 consistency results can be obtained. For instance

Theorem 2.4 in combination with Theorem 2.5(i) shows that k̂
P
→ k0 if the penalty

function satisfies f(T ) → ∞ and f(T ) = o(T ). This includes Hannan and Quinn’s

and Schwarz’s penalty functions, but excludes that of Akaike as usually found.

Likewise, Theorem 2.4 in combination with Theorem 2.5(ii) show that k̂
a.s.
→ k0 if

the penalty function satisfies f(T )/ log T → ∞ and f(T ) = o(T ). These results

are the first to present conditions to the penalty function ensuring consistency that

are not depending on the parameter B and D. This implies that the information

criteria can be used before locating the charateristic roots.

It remains an open problem, however, to establish strong consistency of the

Schwarz and the Hannan-Quinn estimators for general values of V and D. Theorem

2.4 combined with Theorem 2.5(iii) shows that the Schwarz estimator is strongly

consistent when (A) holds so V and D have no common eigenvalues. Theorem 2.4

combined with Theorem 2.5(v) shows that the Hannan-Quinn estimator is strongly

consistent when either (B) dimD = 0 with V = 1 or (C) dimV = 0 holds. This

is the first strong consistency result for the Hannan-Quinn estimator in the non-

stationary case.
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Remark 2.6. In Theorem 2.5 the fourth order moment condition λ > 4 in As-

sumption (2.1) can be relaxed to λ > 2 under certain condions to the parameters.

Recall the conditions stated in Remark 2.2 which are

(I,a) dimW = 0.
(I,b) dimW > 0 and εt independent, identically distributed.

(II) the innovations εt are independent.

As discussed in Remark 3.13 it holds:

Result (i) can be relaxed if (II) holds along with either (I,a) or (I,b).

Results (ii), (iii), (iv) can be relaxed if (I,a) holds.

Result (v) cannot be relaxed with the present proof.

A number of related results are available in the literature.

The weak consistency results in (i) has been shown for the non-explosive case

|λ(B)| ≤ 1 and D = 1 by Paulsen [20] and Tsay [24].

The (log log T )
1/2

(log T )
1/2

rate discussed in Theorem 2.5(iii) and Remark 2.6(iii)

is an improvement over the log T rates discussed by for instance Pötscher [21]

and Wei [25]. These authors discuss the univariate case without deterministic

terms so p = dimX = 1 and dimD = 0, in which case V and D trivially

have no common eigenvalues. First, Pötscher ([21], Theorem 3.1) shows an under-

estimation result for rates satisfying f(T )/ log T → ∞ in the non-explosive case

so |λ(B)| ≤ 1, hence dimW = 0, but with Assumption (2.3) replaced by the

weaker condition that lim infT→∞ T−1
∑T

t=1 E(ε2
t |Ft−1)

a.s.
→ 0. Pötcher’s Theorem

3.2 concerning under-estimation in the purely explosive case so |λ(B)| > 1 requires

lim infT→∞ f(T )/T > 0 a.s. with just λ > 2 in Assumption (2.1). The Remark 1 to

his Theorem 3.3 points out that his results do not provide a common feasibility rate

for autoregressions with both explosive and non-explosive roots in that f(T ) = o(T )

is required for the over-estimation result, whereas lim infT→∞ f(T )/T > 0 a.s. is

required for the under-estimation results. Secondly, Theorem 3.6 of Wei [25] goes a

step further in showing the over-estimation result for the rate f(T ) = log T for the

non-explosive case so dimW = 0.
The optimal log log T rates in (v) were originally suggested by Hannan and Quinn

[10] and Quinn [22] for the case where |λ(B)| < 1, dimD = 0. A full generalisa-

tion cannot be made at present as the proof hinges on proving that the smallest

eigenvalue of the average of the squared residual from regressing Vt−1 on Dt, that

is T−1−η
∑T

t=1(Vt−1|Dt)(Vt−1|Dt)
′, has positive limit points for some η > 0. This

result can only be established in two special cases: first, if dimV = 0 the issue

is irrelevant, and secondly, if V = 1 and dimD = 0 this follows from the law of

iterated logarithms by Donsker and Varadhan [6]. A more detailed discussion is

given in Lemma 3.5(iv) in the Appendix.

The strong log log T rate in Theorem 2.5(iv) and Remark 2.6(iv) has previ-

ously been established in the purely stable, univariate case without determin-

istic terms, so p = dimX = 1 and dimD = 0 and |λ(B)| < 1, and hence

dimW = 0, see Pötscher ([21], Theorem 3.4). Once again, his result only requires

lim infT→∞ T−1
∑T

t=1 E(ε2
t |Ft−1) → 0 a.s. instead of Assumption 2.3.

2.4. Residual based mis-specification testing

The third approach is to fit the model (1.1) with k−1 lags and analyse the residuals

for autocorrelation of order up to m. The maximal lag length parameter K is here

required to be at least k − 1. This is done in two steps. First the residuals ε̂t are
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found for the regression (1.1) with t = 1, . . . , T and k − 1 lags. In the second step

ε̂t is analysed in an auxillary regression for t = m + 1, . . . , T, where ε̂t is regressed

on ε̂t−1, . . . , ε̂t−m as well as the original regressors Xt−1 = (X ′
t−1, . . . , X

′
t−k+1)

′

and Dt. The original regressors are included to mimic the above likelihood analysis

where Xt−1, Dt are partialled out from Xt and Xt−k. A test based on the squared

sample correlation of the variables in the auxillary regression is asymptotically

equivalent to the likelihood ratio tests, so the degrees of freedom do not include the

dimension of Xt−1, Dt. In the multivariate case, p > 1, the test can be implemented

in three ways, using either a simultaneous test, a marginal test or a conditional test.

The joint test, is based on the test statistic tr(TR2
), where R2

is the squared

sample multiple correlation of ε̂t and (ε̂′t−1, . . . , ε̂
′
t−m,X′

t−1, D
′
t)

′
.

The other two tests are based on a q-dimensional subset of the p components of

εt. As the equations in the model equation (1.1) can be permuted there is no loss

of generality in focussing on the first q components. Thus, partition

εt =

(

εt,1

εt,2

)

, Xt =

(

Xt,1

Xt,2

)

,

where εt,1 and Xt,1 are q-dimensional.

The marginal model consists of the first q equations of (1.1), that is Xt,1 given

Xt−1, Dt. The marginal test is then based on the squared sample multiple correla-

tion, R2
marg say, of ε̂t,1 and (ε̂′t−1,1, . . . , ε̂

′
t−m,1,X

′
t−1, D

′
t).

The conditional model consists of the first q equations of (1.1) given Xt,2, that

is Xt,1 given Xt,2,Xt−1, Dt. The conditional test is based on the squared sample

multiple correlation, R2
cond say, of ε̂t,1 and (ε̂′t−1,1, . . . , ε̂

′
t−m,1, X

′
t,2,X

′
t−1, D

′
t).

The following asymptotic result can be established.

Theorem 2.7. Suppose Assumptions (2.1), (2.2), (2.5) are satisfied and k0 < k.

Then tr(TR2
) is asymptotically χ2

(p2m), while tr(TR2
marg) and tr(TR2

cond) are as-

ymptotically χ2
(q2m).

Sometimes these test are implemented so that the auxillary regression is carried

out for t = 1, . . . , T rather than t = m+1, . . . , T with the convention that ε̂0 = · · · =

ε̂1−m = 0. Variants of the tests have been considered, in particular for the univariate

case, by Durbin [7], Godfrey [8], Breusch [3] and Pagan [19]. Those variants have

been argued to be score/Lagrange multiplier type tests and asymptotic theory has

been established for the stationary case |λ(B)| < 1.

3. Proofs

The likelihood ratio test statistic for testing Ak = 0 is given by

LR (Ak = 0) = −T log det(Ω̂
−1
k−1Ω̂k)

= −T log det{Ip − Ω̂
−1
k−1(Ω̂k−1 − Ω̂k)},(3.1)

where Ω̂k and Ω̂k−1 represent the unrestricted and restricted maximum likelihood

estimators for the variance matrix defined below. In the following first some notation

is introduced. Then comes an asymptotic analysis of Ω̂k−1 and Ω̂k−1−Ω̂k and finally

proofs of the main theorems follow.
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3.1. Notation

It is convenient to introduce some notation to handle Ω̂k−1 as well as Ω̂k−1 − Ω̂k.
Thus, let the residuals from the partial regressions of Xt and Xt−k on Xt−1 =

(X ′
t−1, . . . , X

′
t−k+1)

′
and the deterministic components Dt be denoted

(Xt|Xt−1, Dt) , (Xt−k|Xt−1, Dt) .

When the hypothesis, Ak = 0, is satisfied then (Xt|Xt−1, Dt) = (εt|Xt−1, Dt) and

therefore the restricted variance estimator is given by

(3.2) Ω̂k−1 =
1

T

T
∑

t=1

(εt|Xt−1, Dt) (εt|Xt−1, Dt)
′
.

Most of the analysis in the proof relates to Ω̂k−1 − Ω̂k so it is helpful to define

Q (Zt) =

T
∑

t=1

εtZ
′
t

(

T
∑

t=1

ZtZ
′
t

)−1 T
∑

t=1

Ztε
′
t,

for any time series Zt. It follows that T (Ω̂k−1 − Ω̂k) = Q(Xt−k|Xt−1, Dt). Occa-

sionally the following notation will be used: For a matrix α let α⊗2
= αα′.

3.2. Asymptotic analysis of Ω̂k−1

Asymptotic expressions for the restricted least squares variance estimator Ω̂k−1 are

given by Nielsen ([17], Corollary 2.6, Theorem 2.8):

Lemma 3.1. Suppose Ak = 0 and that the Assumptions (2.1), (2.3), (2.5) are

satisfied with λ > 2. Then, for all ξ < 1 − 2/λ it holds

Ω̂k−1
a.s.
=

1

T

T
∑

t=1

εtε
′
t + o(T−ξ

),

If in addition Assumption (2.2) is satisfied then for all ζ < min(ξ, 1/2) it holds

Ω̂k−1
a.s.
= Ω + o(T−ζ

).

3.3. Asymptotic analysis of Ω̂k−1 − Ω̂k

The analysis of the term Ω̂k−1 − Ω̂k is specific to the order selection problem. For

the sake of finding the asymptotic distribution of the likelihood ratio test statistic

the aim is to express Ω̂k−1 − Ω̂k in terms of a stationary process Yt as

(3.3) T (Ω̂k−1 − Ω̂k) = Q (Xt−k|Xt−1, Dt) = Q(Yt−1) + oP(1),

which in turn can be proved to be asymptotically χ2
by a Central Limit Theorem.

The result (3.3) reduces trivially to an equality with Yt−1 = εt−1 when testing

A1 = 0, so only the case k > 1 will need consideration in the remainder of this

subsection. On the way to prove the above result some related expressions holding

under weaker assumptions emerge which can be used for proving the consistency

results for the estimator of the lag length, k̂.
In the following Ω̂k−1− Ω̂k is first decomposed into seven terms. It is then shown

that the three leading term can be written as Q(Yt−1) as in (3.3) and that the

remaining four terms are asymptotically vanishing.
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3.3.1. Decomposition of Ω̂k−1 − Ω̂k

The first decomposition is a purely algebraic result based on the formula for parti-

tioned inversion.

Lemma 3.2. Suppose Ak = 0. Then it holds

Q (Xt−k|Xt−1, Dt) = Q (Xt−2|Dt) − Q (Xt−1|Dt) + Q (εt−1|Xt−2, Dt) .

Proof of Lemma 3.2. By the formula for partitioned inversion it holds

(3.4) Q

(

Xt−1

Xt−k

∣

∣

∣

∣

Dt

)

= Q (Xt−k|Xt−1, Dt) + Q (Xt−1|Dt) ,

of which T (Ω̂k−1 − Ω̂k) = Q (Xt−k|Xt−1, Dt) is the first term on the left. Noting

that (X′
t−1, X

′
t−k)

′
= (X ′

t−1,X
′
t−2)

′
a repeated use of the formula for partitioned

inversion shows

(3.5) Q

(

Xt−1

Xt−k

∣

∣

∣

∣

Dt

)

= Q

(

Xt−1

Xt−2

∣

∣

∣

∣

Dt

)

= Q (Xt−1|Xt−2, Dt) + Q (Xt−2|Dt) .

Due to the model equation (1.1) with Ak = 0 and the property Dt = DDt−1 it

follows (Xt−1|Xt−2, Dt) = (εt−1|Xt−2, Dt). The desired expression then arise by

rearranging the above expressions.

Asymptotic arguments are now needed. These arguments rely on Nielsen [17]

which in turn represents a generalisation of the arguments of Lai and Wei [15].

The second step is therefore an asymptotic decomposition of the first two terms in

Lemma 3.2 using that the processes Ut, Vt, Wt are asymptotically uncorrelated.

Lemma 3.3. Suppose Ak = 0 and that the Assumptions (2.1), (2.3), (2.5) are

satisfied with λ > 2. Then, for j = 1, 2,

(3.6) Q (Xt−j |Dt)
a.s.
= Q (Ut−j |Dt) + Q (Vt−j |Dt) + Q (Wt−j |Dt) + o (1) .

Proof of Lemma 3.3. Since MXt = (Ut, Vt, Wt), see (2.7), it suffices to argue that

the processes Ut, Vt and Wt are asymptotically uncorrelated so that the off-diagonal

elements of
∑T

t=1(Xt−j |Dt)(Xt−j |Dt)
′
can be ignored in the asymptotic argument.

This follows from Nielsen ([17], Theorem 6.4, 9.1, 9.2, 9.4), see also the summary

in Table 2 of that paper.

3.3.2. Eliminating explosive terms and regressors in stationary terms

In combination Lemmas 3.2, 3.3 show that

T (Ω̂k−1 − Ω̂k)
a.s.
= Q (εt−1|Xt−2, Dt) + Q (Ut−2|Dt) − Q (Ut−1|Dt)

+Q (Vt−2|Dt) − Q (Vt−1|Dt) + Q (Wt−2|Dt) − Q (Wt−1|Dt) + o (1) .

Under mild conditions this can be reduced further so as to eliminate the terms

involving the explosive component Wt as well as the regressors in the terms involving

the stationary component Ut.
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Lemma 3.4. Suppose Ak = 0 and that the Assumptions (2.1), (2.3), (2.5) are

satisfied, with λ > 2. Then,

(3.7) T (Ω̂k−1 − Ω̂k)
a.s.
= Q (εt−1) + Q(Ũt−2) − Q(Ũt−1) + Rε + RV + o (1) ,

where

(3.8) Rε = Q (εt−1|Xt−2, Dt) − Q (εt−1) , RV = Q (Vt−2|Dt) − Q (Vt−1|Dt) .

Proof of Lemma 3.4. It suffices to prove, for j = 1, 2,

Q (Ut−j |Dt)
a.s.
= Q(Ũt−j) + o (1) ,(3.9)

Q (Wt−2|Dt) − Q (Wt−1|Dt)
a.s.
= o (1) .(3.10)

First, consider (3.9). Because of (2.8) then (Ut−j |Dt) = (Ũt−j |Dt). According to

Nielsen ([17], Theorem 6.4) it holds for any η > 0 that

(

T
∑

t=1

DtD
′
t

)−1/2 T
∑

t=1

DtŨ
′
t−j

(

T
∑

t=1

Ũt−jŨ
′
t−j

)−1/2

a.s.
= o(T η−1/2

),

while Theorem 6.2 of the above paper shows T−1
∑T

t=1 Ũt−jŨ
′
t−j has positive defi-

nite limit points. This implies

T
∑

t=1

(Ũt−j |Dt)(Ũt−j |Dt)
′ a.s.

=

T
∑

t=1

Ũt−jŨ
′
t−j

{

1 + o
(

T 2η−1
)}

.

Theorem 2.4 of the above paper shows
∑T

t=1 εtD
′
t(
∑T

t=1 DtD
′
t)

−1/2
= o(T η

) imply-

ing

T
∑

t=1

εt(Ũt−j |Dt)
′ a.s.

=

T
∑

t=1

εtŨ
′
t−j + o(T 2η

).

That theorem also shows
∑T

t=1 εtŨ
′
t−j(

∑T
t=1 Ũt−jŨ

′
t−j)

−1/2
= o(T η

). In combina-

tion these results show the desired result.

Secondly, consider (3.10). Note first that Wt−1 = WWt−2 + µW Dt−1 + eW,t−1

by (2.7) while Dt−1 = D−1Dt, implying (Wt−1|Dt) = (WWt−2 + eW,t−1|Dt). This

gives rise to the expansions

T
∑

t=1

(Wt−1|Dt)
⊗2

=

T
∑

t=1

(WWt−2|Dt)
⊗2

(1 + fT ) ,

T
∑

t=1

(Wt−1|Dt) εt =

T
∑

t=1

(WWt−2|Dt) εt + cT ,

where fT = O(d
−1/2
T aT ) + d−1

T bT and

aT = d
−1/2
T

T
∑

t=1

(WWt−2|Dt) eW,t−1, bT =

T
∑

t=1

(eW,t−1|Dt)
⊗2

,

cT =

T
∑

t=1

(eW,t−1|Dt) εt, dT =

T
∑

t=1

(WWt−2|Dt)
⊗2

.
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Using Nielsen ([17], Theorems 2.4, 6.2, 6.4) it is seen that

bT
a.s.
= O(T ), cT

a.s.
= o(T 1/2+η

).

It follows from Nielsen ([17], Theorems 2.4, 9.1 and Corollary 7.2) that

Q (Wt−j |Dt)
a.s.
= o (T ) , aT

a.s.
= o(T 1/2

), d−1
T

a.s.
= o

(

ρ−T
)

,

for some ρ > 0. This implies that fT is exponentially decreasing. The desired result

follows by expanding Q(Wt−1|Dt) in terms of Q(Wt−2|Dt) as

[

Q (Wt−2|Dt) + d
−1/2
T cT O {Q (Wt−2|Dt)}

1/2
+ c′T d−1

T cT

]

(1 + fT ) ,

and using the established orders of magnitude.

3.3.3. Eliminating unit root terms and regressors in innovation terms

The terms RV and Rε defined in (3.8) are now shown to vanish asymptotically. At

first, consider RV defined in (3.8), which consists of the terms involving the unit

root components Vt. Several results are given, of which the strongest result for RV

can only be established for certain values of the parameters.

Lemma 3.5. Suppose Ak = 0 and that the Assumptions (2.1), (2.3), (2.5) are

satisfied with λ > 2. Then

(i) RV
a.s.
= O(log T ),

(ii) RV = oP(1) if also Assumption (2.2) holds,

(iii) RV
a.s.
= O{(log log T )

1/2
(log T )

1/2} if (A) D and V have no common eigen-

values,

(iv) RV
a.s.
= o(1) if (B) dimD = 0 and V = 1,

(v) RV = 0 if (C) dimV = 0.

Proof of Lemma 3.5. (i) This follows since Q(Vt−j |Dt)
a.s.
= O(log T ) according to

Nielsen ([17], Theorem 2.4).

(ii) The type of argument for (3.10) in the proof of Lemma 3.4 can be used.

Replacing W with V throughout, the asymptotic properties of aT , bT , cT , dT have

to be explored. For bT , cT the argument is the same so, for all η > 0,

bT
a.s.
= O(T ), cT

a.s.
= o(T 1/2+η

),

whereas using Nielsen ([17], Theorems 2.4) for aT and the techniques of Chan and

Wei [5] for dT shows, for all η > 0,

aT
a.s.
= o (T η

) , d−1
T = oP(T−1−4η

),

so fT = oP(T−4η
). Since Q(Vt−j |Dt)

a.s.
= O(log T ) as established in (i) the desired

result follows by expanding Q(Vt−1|Dt) in terms of Q(Vt−2|Dt).

(iii) Define the vector St−1 = (V ′
t−1, D

′
t)

′. By partitioned inversion it holds

Q (St−1) = Q (Vt−1|Dt) + Q (Dt) .

By an invariance argument Dt can be replaced by Dt−j and thus it follows

RV = Q (Vt−2|Dt) − Q (Vt−1|Dt) = Q (St−2) − Q (St−1) .
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Due to (2.4) and (2.7) the process St−1 satisfies St = SSt−1 + eS,t for a matrix S

with eigenvalues of length one and eS t = (e′V,t, 0
′
)
′. It then follows that

T
∑

t=1

εtS
′
t−1 =

T
∑

t=1

εt

(

S′
t−2S

′
+ e′S,t−1

)

.

Inserting this expression into Q(St−1) shows

Q (St−1) =

T
∑

t=1

εtS
′
t−1

(

T
∑

t=1

S⊗2
t−1

)−1 T
∑

t=1

St−1ε
′
t = QA + QB + QC + Q′

C ,

where

QA = Q1Q2Q
′
1, QB = Q4Q3Q

′
3Q

′
4, QC = Q1Q

1/2
2 Q′

3Q
′
4,

are defined in terms of the statistics

Q1 =

T
∑

t=1

εte
′
S,t−1, Q2 =

(

T
∑

t=1

S⊗2
t−1

)−1

,

Q3 =

(

T
∑

t=1

S⊗2
t−2

)1/2

S

(

T
∑

t=1

S⊗2
t−1

)−1/2

, Q4 =

T
∑

t=1

εtS
′
t−2

(

T
∑

t=1

S⊗2
t−2

)−1/2

.

The orders of magnitude of these follow from a series of results in Nielsen [17].

Theorem 6.1 and Lemma 6.3 imply Q1
a.s.
= O{(T log log T )

1/2}. Theorem 8.3 shows

Q2
a.s.
= O(T−1

) when D and V have no common eigenvalues. Lemma 8.7(ii) shows

Q⊗2
3 − I

a.s.
= O{T−1/2

(log T )
1/2}. Theorem 2.4 shows Q4

a.s.
= O{(log T )

1/2}. Noting

that Q(St−2) = Q4Q
′
4 this in turn implies

QA = O(log log T ), QB = Q(St−2) + O{T−1/2
(log T )

3/2},

QC = O{(log log T )
1/2

(log T )
1/2},

and the desired result follows.

(iv) Donsker and Varadhan’s [6] Law of the Iterated Logarithm for the integrated

squared Brownian motion states

lim inf
T→∞

log log T

T 2

∫ T

0

B2
udu

a.s.
=

1

4
.

Now use either the argument in (ii) with d−1
T

a.s.
= O(T−2

log log T ) or the argument

in (iii) with Q2
a.s.
= O(T−2

log log T ) so QA, QB , QC are all o(1).
(v) This follows by construction.

Now, consider Rε defined in (3.8). By showing that this vanishes it follows that

the regressors can be excluded asymptotically in the term involving the lagged

innovations εt−1. A fourth order moment condition is now needed in Assumption

(2.1).

Lemma 3.6. Suppose Ak = 0 and that the Assumptions (2.1), (2.3), (2.5) are

satisfied, now with λ > 4. Then

Rε = Q (εt−1|Xt−2, Dt) − Q (εt−1)
a.s.
= o (1) .
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Proof of Lemma 3.6. Define the vector St = (X′
t−2, D

′
t)

′. According to Nielsen

([17], Theorem 2.4) it holds that, for any η > 0, the terms

(3.11)

(

T
∑

t=1

StS
′
t

)−1/2 T
∑

t=1

Stε
′
t,

(

T
∑

t=1

StS
′
t

)−1/2 T
∑

t=1

Stε
′
t−1

are o(T 1/4−η
) when indeed λ > 4. It then holds that

T
∑

t=1

εtε
′
t−1 −

T
∑

t=1

εtS
′
t

(

T
∑

t=1

StS
′
t

)−1 T
∑

t=1

Stε
′
t−1

a.s.
=

T
∑

t=1

εtε
′
t−1 + o(T 1/2−η

),

T
∑

t=1

εt−1ε
′
t−1 −

T
∑

t=1

εt−1S
′
t

(

T
∑

t=1

StS
′
t

)−1 T
∑

t=1

Stε
′
t−1

a.s.
=

T
∑

t=1

εt−1ε
′
t−1 + o(T 1−η

),

where the requirement λ > 4 is only needed in the first case. Theorems 2.5, 6.1 of

the above paper show T−1
∑T

t=1 εt−1ε
′
t−1 has positive definite limit points while

∑T
t=1 εtε

′
t−1(

∑T
t=1 εt−1ε

′
t−1)

−1/2
= o(T η

). Combine these results.

Remark 3.7. In Lemma 3.6 a fourth moment condition comes in through the

requirement that λ > 4 in Assumption (2.1). This can be relaxed to λ > 2 under

one of two alternative assumptions.

(I,a) If dimW = 0 then the terms in (3.11) are o(T η
), see Nielsen ([17], Theo-

rem 2.4), and the main result holds.

(I,b) If dimW > 0 but the innovations εt are independently, identically distrib-

uted then terms of the type (
∑T

t=1 Wt−1W
′
t−1)

−1/2
∑T

t=1 Wt−1ε
′
t converge in

distribution, see Anderson [1] and the result of the Theorem holds, albeit only

in probability.

3.3.4. The leading term of Ω̂k−1 − Ω̂k

First the order of magnitude the leading term in (3.7) is established in an almost

sure sense. This can be done under weak moment conditions. Subsequently the

distribution of the leading term is investigated.

Lemma 3.8. Suppose Ak = 0 and that the Assumptions (2.1), (2.3) are satisfied

with λ > 2. Define ET = T−1
∑T

t=1 εtε
′
t. Then

lim supT→∞(2 log log T )
−1

tr[{Q(εt−1) + Q(Ũt−2) − Q(Ũt−1)}E
−1
T ]

a.s.
= O(1).

Proof of Lemma 3.8. This follows by noting that the sequence Ω̂
−1
k−1 is relatively

compact with positive definite limiting points due to Lemma 3.1 and Lai and Wei

([15], Theorem 2) and otherwise following the argument in the proof of Pötscher

([21], Theorem 3.4).

When it comes to analysing the distribution of the leading term in (3.7) it is

convenient to show that it can be written as a single quadratic form Q(Yt−1) for

some process Yt−1. This argument requires two steps, of which the first is concerned

with the convergence properties of T−1
∑T

t=1 Ũt−1Ũ
′
t−1. As the argument involves

a variance matrix, the Assumption (2.2) is now called upon.
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Lemma 3.9. Suppose Ak = 0 and that the Assumptions (2.1), (2.2) are satisfied

with λ > 2. Let MU be the matrix defined by eU,t = MUεt in (2.7) and define

F =

∞
∑

t=0

UtMUΩM ′
U (Ut

)
′.

Then for all ζ < min(1 − 2/λ, 1/2) it holds

1

T

T
∑

t=1

ŨtŨ
′
t

a.s.
= F + o

(

T−ζ
)

.

Proof of Lemma 3.9. Following the proof of Lai and Wei ([15], Theorem 2), the

equation (2.8) shows

T
∑

t=1

ŨtŨ
′
t

a.s.
= U

(

T
∑

t=1

ŨtŨ
′
t − ŨT Ũ ′

T + Ũ0Ũ
′
0

)

U′

+MU

T
∑

t=1

εtε
′
tM

′
U + O

(

T
∑

t=1

Ũt−1ε
′
t

)

.

Due to Nielsen ([17], Theorems 2.4, 5.1, Example 6.5) both
∑T

t=1 Ũt−1ε
′
t and ŨT Ũ ′

T

are o(T 1−ζ
). Note that Assumption (2.5) is not needed as Ũt does not involve

deterministic terms. Denoting FT = T−1
∑T

t=1 ŨtŨ
′
t it follows from Lemma 3.1

that

FT − UFT U′ a.s.
= MUΩM ′

U + o(T−ζ
).

This equation has a unique solution FT =
∑∞

t=0 Ut{MUEM ′
U + o(T−ζ

)}(Ut
)
′,

see Anderson and Moore ([2], p. 336), which in turn equals F + o(T−ζ
) since the

maximal eigenvalue of UU′
is less than one.

The leading term in (3.7) is now written as a single quadratic form Q(Yt−1).

Lemma 3.10. Suppose Ak = 0 and that the Assumptions (2.1), (2.2) are satisfied

with λ > 2. Then there exists an {(p + dim U)× p}-matrix C with full column rank

so

Q (εt−1) + Q(Ũt−2) − Q(Ũt−1)
a.s.
= Q (Yt−1) + o (1) ,

where Yt is the process C ′
(ε′t, U

′
t−1)

′.

Proof of Lemma 3.10. The idea is to exploit that the asymptotic covariance for

Zt−1 = (Ũ ′
t−2, ε

′
t−1)

′
is diagonal with elements F, Ω. By the above Lemmas 3.1, 3.9

then, for some η > 0,

Q (εt−1) + Q(Ũt−2)

=

T
∑

t=1

εt

(

Ũt−2

εt−1

)′
{

T
∑

t=1

(

Ũt−2Ũ
′
t−2 0

0 εt−1ε
′
t−1

)

}−1 T
∑

t=1

(

Ũt−2

εt−1

)

ε′t(3.12)

a.s.
=

1

T

T
∑

t=1

εt

(

Ũt−2

εt−1

)′(
F 0

0 Ω

)−1 T
∑

t=1

(

Ũt−2

εt−1

)

ε′t{1 + o(T−η
)}

As discussed in Section 2 then Ũt−1 = UŨt−2 + MUεt−1 for some matrix MU with

full column rank. In particular Ũt−1 = C ′
⊥(Ũ ′

t−2, ε
′
t−1)

′
where the {(p + dimU) ×
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dim U}-matrix C⊥ = (U, MU )
′
has full column rank. Therefore a {(p+dim U)×p}-

matrix C can be chosen with full column rank so the matrix (C, C⊥) is regular and

C ′

(

F 0

0 Ω

)

C⊥ = 0.

The sequences T−1
∑T

t=1 Ũt−1Ũ
′
t−1 and T−1

∑T
t=1 Ũt−2Ũ

′
t−2 will have the same

limit, F, while T−1
∑T

t=1 Yt−1Y
′
t−1 will converge to a positive definite matrix G.

It then holds
(

C ′
⊥

C ′

)(

F 0

0 Ω

)

(C⊥, C) =

(

F 0

0 G

)

.

Pre- and post-multiplying the middle matrix in (3.12) with (C⊥, C)(C⊥, C)
−1

and

its transpose then implies

Q (εt−1) + Q(Ũt−2)
a.s.
=

{

Q(Ũt−1) + Q (Yt−1)

}

{1 + o(T−η
)}.

Theorem 2.4 of Nielsen (2005) implies Q(Ũt−1) and Q(Yt−1) are o(T η
), which gives

the desired result.

The asymptotic distribution of the leading term Q(Yt−1) now follows.

Lemma 3.11. Suppose Ak = 0 and that the Assumptions (2.1), (2.2), (2.3) are

satisfied with λ > 4. Then

(i) 1 ≤ lim supT→∞(2 log log T )
−1

tr{Q(Yt−1)Ω
−1} ≤ p2 a.s.

(ii) tr{Q(Yt−1)Ω
−1}

D
→ χ2

(p2
).

Proof of Lemma 3.11. (i) This follows from the Law of Iterated Logarithms by

Heyde and Scott ([12], Corollary 2) and Hannan ([9], p. 1076-1077). See Quinn [22]

for details.

(ii) This follows from Brown and Eagleson’s [4] Central Limit Theorem. This

requires existence of second moments of εtYt−1.

Remark 3.12. The proof of Lemma 3.11 actually only requires the existence of

fourth moments, which is slightly weaker than the stated condition of λ > 4 in

Assumption (2.1). In Lemma 3.11(ii) this can be relaxed to a second moment con-

dition if for instance:

(II) the innovations εt are independent.

3.4. Proofs of results for likelihood ratio test statistics

Proof of Theorem 2.1. Consider the formula (3.1). The term Ω̂k−1 was dealt with

in Lemma 3.1. As for the term T (Ω̂k−1 − Ω̂k) consider two cases.

When k = 1 then T (Ω̂k−1 − Ω̂k) = Q(εt−1).
When k > 1 apply the expansion in Lemma 3.4. The term RV vanishes due to

Lemma 3.5(ii) when Assumption (2.2) is satisfied. The term Rε vanishes due to

Lemma 3.6 when λ > 4 in Assumption (2.1). Due to Lemma 3.10 the leading term

is now Q(Yt−1), provided Assumption (2.2) holds.

For any k the desired χ2
-distribution now arises from Lemma 3.11(ii) provided

Assumptions (2.2), (2.1) are satisfied with λ > 4.
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Proof of Theorem 2.3. Note first that T (Ω̂k−1 − Ω̂k+m−1) can be written as

Q(X̃t−k−m+1
t−k |Xt−1, Dt) where X̃t−b

t−a = (X ′
t−a, . . . , X ′

t−b)
′. Consider now the proof

of the decomposition in Lemma 3.2. Using first (3.4) and then (3.5) repeatedly it

is seen that

T
(

Ω̂k−1 − Ω̂k+m−1

)

= Q

(

Xt−1

X̃t−k−m+1
t−k

∣

∣

∣

∣

Dt

)

− Q (Xt−1|Dt)

=

m
∑

j=1

Q
(

εt−j |X
t−m
t−j−1,Xt−m−1, Dt

)

+ Q (Xt−m−1|Dt) − Q (Xt−1|Dt) .

As in the proof of Theorem 2.1 the Lemmas 3.4, 3.5(ii), 3.6 show that the leading

terms reduce to

T
(

Ω̂k−1 − Ω̂k+m−1

)

=

m
∑

j=1

Q (εt−j) + Q
(

Ũt−m−1

)

− Q
(

Ũt−1

)

+ oP (1) ,

when k0 < k. A slight generalisation of Lemma 3.10 is needed, using that the as-

ymptotic covariance for Zt−1 = (Ũ ′
t−m−1, ε

′
t−1, . . . , ε

′
t−m)

′
is diagonal with elements

F, Ω, . . . ,Ω. A {(mp + dimU) × mp}-matrix C can then be found giving rise to a

process Yt−1 = C ′Zt−1. The argument is completed using a Central Limit Theorem

as in the proof of Lemma 3.11(ii).

3.5. Proofs of results for information criteria

Proof of Theorem 2.4. Consider j < k0. The condition f(T ) = o(T ) implies

Φj − Φk0
= log det{I + (Ω̂j − Ω̂k0

)Ω̂
−1
k0

} + o (1) .

Lemma 3.1 shows that Ω̂k0

a.s.
→ Ω, so it suffices that lim inf

T→∞
λmax(Ω̂j−Ω̂k0

) is positive.

Defining Yt=(X ′
t−1, . . . , X

′
t−j+1)

′
and Zt = (X ′

t−j , . . . , X
′
t−k0

)
′
it holds

Ω̂j − Ω̂k0
=



T−1/2
T
∑

t=1

Xt (Zt−1|Yt−1, Dt)
′

{

T
∑

t=1

(Zt−1|Yt−1, Dt)
⊗2

}−1/2




⊗2

.

Define Ay = A1, . . . , Aj and Az = Aj+1, . . . , Ak0
noting that Ak0

�= 0. Then it

holds Xt = AyYt + AzZt + µDt + εt. Therefore Ω̂j − Ω̂k0
equals

T−1/2
T
∑

t=1

εt (Zt−1|Yt−1, Dt)
′

{

T
∑

t=1

(Zt−1|Yt−1, Dt)
⊗2

}−1/2

+Az

{

T−1
T
∑

t=1

(Zt−1|Yt−1, Dt)
⊗2

}1/2

.

The first term is of order o(1) a.s. by Nielsen ([17], Theorem 2.4). As for the second

term it holds that lim infT→∞ λmin{T
−1
∑T

t=1(Xt−1|Dt)
⊗2} > 0 a.s. according to

Nielsen ([17], Corollary 9.5). As a consequence the limit points of T−1
∑T

t=1(Zt−1|

Yt−1, Dt)
⊗2

are positive definite. Since Az �= 0 then lim infT→∞ λmin(Ω̂j−Ω̂k0
) > 0

and therefore lim infT→∞ k̂ ≥ k0 a.s.
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Proof of Theorem 2.5. Consider now k0 < j ≤ K. It then holds

Φj+1 − Φj = log det(Ω̂j+1Ω̂
−1
j ) + T−1f (T )

= log det{Ip − (Ω̂j − Ω̂j+1)Ω̂
−1
j } + T−1f (T ) .

A Taylor expansion shows

Φj+1 − Φj
a.s.
= −tr{(Ω̂j − Ω̂j+1)Ω̂

−1
j } + T−1f (T ) + o[{(Ω̂j − Ω̂j+1)Ω̂

−1
j }2

].

Lemma 3.1 shows that Ω̂j is consistent, while Lemma 3.4 gives the expansion

T (Ω̂j−1 − Ω̂j)
a.s.
= Q (εt−1) + Q(Ũt−2) − Q(Ũt−1) + Rε + RV + o (1) .

To complete the proof it has to be shown that Φj+1−Φj has a positive limiting value.

This holds if T (Ω̂j−1 − Ω̂j) = o{g(T )} for some function g(T ) so f(T )/g(T ) → ∞.

(i) The term RV vanishes due to Lemma 3.5(ii) when Assumption (2.2) is

satisfied. The term Rε vanishes due to Lemma 3.6 when λ > 4 in Assumption (2.1).

Due to Lemma 3.10 the leading term is Q(Yt−1), provided Assumption (2.2) holds.

This is OP(1) by Lemma 3.11(ii) provided Assumptions (2.1), (2.2) are satisfied

with λ > 4.
(ii) The term RV is O(log T ) due to Lemma 3.5(i). The term Rε vanishes

due to Lemma 3.6 when λ > 4 in Assumption (2.1). Due to Lemma 3.8 the leading

term is O(log log T ).

(iii) Under (A) that V and D have no common eigenvalues then RV is

O{(log T )
1/2

(log log T )
1/2} due to Lemma 3.5(iii). The argument of (ii) can then

be followed.

(iv) Under (B) that dimD = 0 with V = 1 then RV is o(1) due to Lemma

3.5(iv), whereas under (C) that dimV = 0 then RV = 0. while it is o(1) under (B)

dimD = 0 with V = 1 due to Lemma 3.5(iv). The argument of (ii) can then be

followed.

(v) The terms RV and Rε vanish as in (iv). As in (i) the leading term is

Q(Yt−1) by Lemma 3.10 provided Assumption (2.2) holds. This is of the desired

order of magnitude by Lemma 3.11(i) provided Assumptions (2.2), (2.1) are satisfied

with λ > 4.

Remark 3.13. The condition λ > 4 in Theorem 2.5 can be relaxed as follows.

(i) It is used first in Lemma 3.6 and can be relaxed under (I,a) or (I,b) as

this is a result holding in probability, see Remark 3.7. It is used secondly in Lemma

3.11(ii) and can be relaxed under (II), see Remark 3.12.

(ii), (iii), (iv) It is only used in Lemma 3.6 and can only be relaxed under

(I,a) as this is a result holding almost surely, see Remark 3.7.

(v) It is indeed required in Lemma 3.11(i).

3.6. Proof of results for residual based tests

Proof. It suffices to show how the residual based test statistics relate to the likeli-

hood ratio test statistics.

In the joint test the squared sample multiple correlation R2
of ε̂t and the vector

Zt−1 = (ε̂′t−1, . . . , ε̂
′
t−m,X′

t−1, D
′
t)

′
is considered, recalling that Xt−1 is defined as

(X ′
t−1, . . . , X

′
t−k+1)

′
. The key to the result is that

ε̂t−j = Xt−j − B̂Xt−j−1 − µ̂D−j−1Dt,
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where B̂, µ̂ are least squares estimators based on (1.1) for the full sample t =

1, . . . , T. Due to the inclusion of Xt−1 as regressor it follows that Zt−1 = NZ̃t−1

where Z̃t−1 = (Xt−1, . . . , Xt−k−m+1, Dt) and the square matrix N is based on

B̂, µ̂ and is invertible with probability one. By the invariance of sample multiple

correlations to linear transformations then R2
can be computed from ε̂t and Z̃t−1.

By the same type of manipulation as in Lemma 3.2 it follows that

Q̂
(

Z̃t−1

)

=

T
∑

t=m+1

ε̂tZ̃
′
t−1

(

T
∑

t=m+1

Z̃⊗2
t−1

)−1 T
∑

t=m+1

Z̃t−1ε̂
′
t

can be written as

(3.13) Q̂
(

Z̃t−1

)

= Q̂ (Xt−k, . . . , Xt−k−m+1|Xt−1, Dt) + Q̂ (Xt−1, Dt) .

Since the first term in (3.13) includes the regressors Xt−1, Dt then ε̂t can be

replaced by εt. Thus, apart from starting the regression at t = m + 1 instead of

t = 1 this term is the same as Q(Xt−k, . . . , Xt−k−m+1|Xt−1, Dt). It therefore has

the same asymptotic properties as T (Ω̂k−1 − Ω̂k+m−1), which was studied in the

proof of Theorem 2.3.

The second term in (3.13) vanishes asymptotically. This is because the residuals

ε̂t are orthogonal to Xt−1, Dt when evaluated over t = 1, . . . , T. A tedious analysis

shows that this orthogonality holds asymptotically when evaluated over t = m +

1, . . . , T.
For the marginal test the argument is the same. The main difference is that the

residuals are now

ε̂t−j,marg = Xt−j,1 − B̂margXt−j−1 − µ̂margD
−j−1Dt.

Once again the inclusion of Xt−1 as regressor implies that the vector Zt−1,marg

defined as (ε̂′t−1, . . . , ε̂
′
t−m,X′

t−1, D
′
t)

′
can be replaced by the above Z̃t−1. So the

statistic Q̂(Z̃t−1) is replaced by a statistic based on ε̂t,marg, but the same Z̃t−1.
For the conditional test the residuals are of the type

ε̂t−j,cond = Xt−j,1 − B̂condXt−j−1 − µ̂condD
−j−1Dt − ω̂Xt−j,2.

The same argument applies as for the marginal test.
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Abstract: The finite-sample as well as the asymptotic distribution of Leung

and Barron’s (2006) model averaging estimator are derived in the context of

a linear regression model. An impossibility result regarding the estimation of

the finite-sample distribution of the model averaging estimator is obtained.

1. Introduction

Model averaging or model mixing estimators have received increased interest in

recent years; see, e.g., Yang [18–20], Magnus [13], Leung and Barron [12], and the

references therein. [For a discussion of model averaging from a Bayesian perspec-

tive see Hoeting et al. [4].] The main idea behind this class of estimators is that

averaging estimators obtained from different models should have the potential to

achieve better overall risk performance when compared to a strategy that only uses

the estimator obtained from one model. As a consequence, the above mentioned

literature concentrates on studying the risk properties of model averaging estima-

tors and on associated oracle inequalities. In this paper we derive the finite-sample

as well as the asymptotic distribution (under fixed as well as under moving para-

meters) of the model averaging estimator studied in [12]; for the sake of simplicity

we concentrate on the special case when only two candidate models are considered.

Not too surprisingly, it turns out that the finite-sample distribution (after centering

and scaling) depends on unknown parameters, and thus cannot be directly used for

inferential purposes. As a consequence, one may be interested in estimators of this

distribution, e.g., for purposes of conducting inference. We establish an impossi-

bility result by showing that any estimator of the finite-sample distribution of the

model averaging estimator is necessarily “bad” in a sense made precise in Section 4.

While we concentrate on Leung and Barron’s [12] estimator (in the context of only

two candidate models) as a prototypical example of a model averaging estimator in

this paper, similar results will typically hold for other model averaging estimators

(and more than two candidate models) as well.

We note that results on distributional properties of post-model-selection esti-

mators that parallel the development in the present paper have been obtained in

[5–7, 9, 10, 14–17]. See also Leeb and Pötscher [11] for impossibility results per-

taining to shrinkage-type estimators like the Lasso or Stein’s estimator. An easily

accessible exposition of the issues discussed in the just mentioned literature can be

found in Leeb and Pötscher [8].
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The only other paper we are aware of that considers distributional properties

of model averaging estimators is Hjort and Claeskens [3]. Hjort and Claeskens [3]

provide a result (Theorem 4.1) that says that – under some regularity conditions –

the asymptotic distribution of a model averaging estimation scheme is the distrib-

ution of the same estimation scheme applied to the limiting experiment (which is a

multivariate normal estimation problem). This result is an immediate consequence

of the continuous mapping theorem, and furthermore becomes vacuous if the esti-

mation problem one starts with is already a Gaussian problem (as is the case in

the present paper).

2. The model averaging estimator and its finite-sample distribution

Consider the linear regression model

Y = Xβ + u

where Y is n × 1 and where the n × k non-stochastic design matrix X has full

column rank k, implying n ≥ k. Furthermore, u is normally distributed N(0, σ2In),

0 < σ2 < ∞. Although not explicitly shown in the notation, the elements of Y ,

X, and u may depend on sample size n. [In fact, the random variables Y and

u may be defined on a sample space that varies with n.] Let Pn,β,σ denote the

probability measure on R
n

induced by Y , and let En,β,σ denote the corresponding

expectation operator. As in [12], we also assume that σ2
is known (and thus is

fixed). [Results for the case of unknown σ2
that parallel the results in the present

paper can be obtained if σ2
is replaced by the residual variance estimator derived

from the unrestricted model. The key to such results is the observation that this

variance estimator is independent of the least squares estimator for β. The same

idea has been used in [7] to derive distributional properties of post-model-selection

estimators in the unknown variance case from the known variance case. For brevity

we do not give any details on the unknown variance case in this paper.] Suppose

further that k > 1, and that X and β are commensurably partitioned as

X = [X1 : X2]

and β = [β′
1, β

′
2]

′
where Xi has dimension ki ≥ 1. Let the restricted model be

defined as MR = {β ∈ R
k

: β2 = 0} and let MU = R
k

denote the unrestricted

model. Let β̂(R) denote the restricted least squares estimator, i.e., the k× 1 vector

given by

β̂(R) =

[

(X ′
1X1)

−1X ′
1Y

0k2×1

]

,

and let β̂(U ) = (X ′X)
−1X ′Y denote the unrestricted least squares estimator. Le-

ung and Barron [12] consider model averaging estimators in a linear regression

framework allowing for more than two candidate models. Specializing their estima-

tor to the present situation gives

(1) β̃ = λ̂β̂(R) + (1 − λ̂)β̂(U )

where the weights are given by

λ̂ = [exp(−αr̂(R)/σ2
) + exp(−αr̂(U )/σ2

)]
−1

exp(−αr̂(R)/σ2
).
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Here α > 0 is a tuning parameter (note that Leung and Barron’s tuning parameter

corresponds to 2α) and

r̂(R) = Y ′Y − β̂(R)
′X ′Xβ̂(R) + σ2

(2k1 − n)

and

r̂(U ) = Y ′Y − β̂(U )
′X ′Xβ̂(U ) + σ2

(2k − n).

For later use we note that

λ̂ = [1 + exp(−2αk2) exp(−α(β̂(R)
′X ′Xβ̂(R) − β̂(U )

′X ′Xβ̂(U ))/σ2
)]
−1

(2)

= [1 + exp(−2αk2) exp(α
∥

∥

∥Xβ̂(R) − Xβ̂(U )

∥

∥

∥

2

/σ2
)]
−1

where ‖x‖ denotes the Euclidean norm of a vector x, i.e., ‖x‖ = (x′x)
1/2

. Leung

and Barron [12] establish an oracle inequality for the risk En,β,σ(‖X(β̃ − β)‖2
)

and show that the model averaging estimator performs favourably in terms of this

risk. As noted in the introduction, in the present paper we consider distributional

properties of this estimator. Before we now turn to the finite-sample distribution

of the model averaging estimator we introduce some notation: For a symmetric

positive definite matrix A the unique symmetric positive definite root is denoted

by A1/2
. The largest (smallest) eigenvalue of a matrix A is denoted by λmax(A)

(λmin(A)). Furthermore, PR and PU denote the projections on the column space of

X1 and of X, respectively.

Proposition 1. The finite-sample distribution of
√

n(β̃ −β) is given by the distri-

bution of

Bn

√
nβ2 + Cn

√
nZ1 +

[

1 + exp(2αk2) exp

(

−α
∥

∥

∥Z2 + (X ′
2(I − PR)X2)

1/2β2

∥

∥

∥

2

/σ2

)]−1

×(3)

{Dn

√
nZ2 − Bn

√
nβ2}

which can also be written as

Cn

√
nZ1 + Dn

√
nZ2 −

[

1 + exp(−2αk2) exp

(

α
∥

∥

∥
Z2 + (X ′

2(I − PR)X2)
1/2β2

∥

∥

∥

2

/σ2

)]−1

×(4)

{Dn

√
nZ2 − Bn

√
nβ2}.

Here

Bn =

[

(X ′
1X1)

−1X ′
1X2

−Ik2

]

, Cn =

[

(X ′
1X1)

−1/2

0k2×k1

]

,

Dn =

[

−(X ′
1X1)

−1X ′
1X2(X

′
2(I − PR)X2)

−1/2

(X ′
2(I − PR)X2)

−1/2

]

,

and Z1 and Z2 are independent, Z1 ∼ N(0, σ2Ik1
), and Z2 ∼ N(0, σ2Ik2

).

Proof. Observe that

β̃ = β̂(R) + (1 − λ̂)(β̂(U ) − β̂(R)) = β̂(R) + (1 − λ̂)(X ′X)
−1X ′

(PU − PR)Y
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with PR = X1(X
′
1X1)

−1X ′
1 and PU = X(X ′X)

−1X ′
. Diagonalize the projection

matrix PU − PR as

PU − PR = U∆U ′

where the orthogonal n × n matrix U is given by

U = [U1,U2,U3] =

[

X1(X
′
1X1)

−1/2
: (I − PR)X2(X

′
2(I − PR)X2)

−1/2
: U3

]

with U3 representing an n × (n − k) matrix whose columns form an orthonormal

basis of the orthogonal complement of the space spanned by the columns of X.

The n × n matrix ∆ is diagonal with the first k1 as well as the last n − k diagonal

elements equal to zero, and the remaining k2 diagonal elements being equal to 1.

Furthermore, set V = U ′Y which is distributed N(U ′Xβ, σ2In). Then

∥

∥

∥
Xβ̂(U ) − Xβ̂(R)

∥

∥

∥

2

= ‖(PU − PR)Y ‖
2

= ‖∆V ‖
2

= ‖V2‖
2

where V2 is taken from the partition of V ′
= (V ′

1 , V ′
2 , V ′

3)
′

into subvectors of di-

mensions k1, k2, and n − k, respectively. Note that V2 is distributed N((X ′
2(I −

PR)X2)
1/2β2, σ

2Ik2
). Hence, in view of (2) we have that (1 − λ̂)(β̂(U ) − β̂(R)) is

equal to

[

1 + exp(2αk2) exp

(

−α ‖V2‖
2
/σ2

)]−1

(X ′X)
−1X ′U∆V

=

[

1 + exp(2αk2) exp

(

−α ‖V2‖
2
/σ2

)]−1

(X ′X)
−1

[

0k1×1

X ′
2U2V2

]

=

[

1 + exp(2αk2) exp

(

−α ‖V2‖
2
/σ2

)]−1

DnV2.

Furthermore,

β̂(R) = (X ′X)
−1X ′PRY

= (X ′X)
−1X ′PRUV

= (X ′X)
−1X ′X1(X

′
1X1)

−1/2V1

=

[

(X ′
1X1)

−1/2V1

0k2×1

]

= CnV1

with V1 distributed N((X ′
1X1)

−1/2X ′
1Xβ, σ2Ik1

). Hence, the finite sample distrib-

ution of β̃ is the distribution of

(5) CnV1 +

[

1 + exp(2αk2) exp

(

−α ‖V2‖
2
/σ2

)]−1

DnV2

where V1 and V2 are independent normally distributed with parameters given above.

Defining Zi as the centered versions of Vi, subtracting β, and scaling by
√

n then

delivers the result.

Remark 2. (i) The first two terms in (3) represent the distribution of
√

n(β̂(R)−β),

whereas the third term represents the distribution of (1 − λ̂)
√

n(β̂(U ) − β̂(R)). In

(4), the first two terms represent the distribution of
√

n(β̂(U ) − β), whereas the

third term represents the distribution of −λ̂
√

n(β̂(U ) − β̂(R)).

(ii) If β2 = 0 then (3) can be rewritten as

Cn

√
nZ1 + ‖Z2‖

[

1 + exp(2αk2) exp

(

−α ‖Z2‖
2
/σ2

)]−1

Dn

√
n(Z2/ ‖Z2‖)
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showing that this term has the same distribution as

Cn

√
nZ1 +

√

χ2[1 + exp(2αk2) exp
(

−αχ2/σ2
)

]
−1Dn

√
nU

where χ2
is distributed as a χ2

with k2 degrees of freedom, U = Z2/ ‖Z2‖ is uni-

formly distributed on the unit sphere in R
k2 , and Z1, χ2

, and U are mutually

independent.

Theorem 3. The finite-sample distribution of
√

n(β̃−β) possesses a density fn,β,σ

given by

fn,β,σ(t) = (2πσ2
)
−k/2

[det(X ′X/n)]
1/2

× exp

(

−(2σ2
)
−1

∥

∥

∥
n−1/2

(X ′
1X1)

1/2t1 + n−1/2
(X ′

1X1)
−1/2X ′

1X2t2

∥

∥

∥

2
)

×

[

1 + exp

(

−ασ−2g
(∥

∥

∥
n−1/2D−1

n2 (t2 + n1/2β2)

∥

∥

∥

)2

+ 2αk2

)]k2

×

{

1 + 2ασ−2g
(∥

∥

∥
n−1/2D−1

n2 (t2 + n1/2β2)

∥

∥

∥

)2

(6)

×

[

1 + exp

(

ασ−2g
(∥

∥

∥n−1/2D−1
n2 (t2 + n1/2β2)

∥

∥

∥

)2

− 2αk2

)]−1
}−1

× exp

(

−(2σ2
)
−1

∥

∥

∥
g

(∥

∥

∥
n−1/2D−1

n2 (t2 + n1/2β2)

∥

∥

∥

)

×
∥

∥

∥
n−1/2D−1

n2 (t2 + n1/2β2)

∥

∥

∥

−1

n−1/2D−1
n2 (t2 + n1/2β2) − D−1

n2 β2)

∥

∥

∥

∥

2
)

,

where t is partitioned as (t′1, t
′
2)

′ with t1 being a k1 × 1 vector. Furthermore, Dn2 =

(X ′
2(I −PR)X2)

−1/2, and g is as defined in the Appendix (with a = exp(2αk2) and

b = α−1σ2).

Proof. By (5) we have that the finite-sample distribution of
√

n(β̃ − β) is the dis-

tribution of

−
√

nβ +
√

n[Cn : Dn][V ′
1 : V ′

3 ]
′

where

V3 =

[

1 + exp(2αk2) exp

(

−α ‖V2‖
2
/σ2

)]−1

V2.

By Lemmata 15 and 16 in the Appendix it follows that V3 possesses the density

ψ(v3) = (2πσ2
)
−k2/2

[

1 + exp

(

−ασ−2g (‖v3‖)
2

+ 2αk2

)]k2

×

{

1 + 2ασ−2g (‖v3‖)
2
[

1 + exp

(

ασ−2g (‖v3‖)
2
− 2αk2

)]−1
}−1

× exp

(

−(2σ2
)
−1

∥

∥

∥g (‖v3‖) v3/ ‖v3‖ − (X ′
2(I − PR)X2)

1/2β2

∥

∥

∥

2
)

.

Since V1 is independent of V2, and hence of V3, the joint density of [V ′
1 : V ′

3 ]
′
exists

and is given by

(2πσ2
)
−k1/2

exp{−(2σ2
)
−1

∥

∥

∥v1 − (X ′
1X1)

−1/2X ′
1Xβ

∥

∥

∥

2

}ψ(v3).
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Since the matrix [Cn : Dn] is non-singular we obtain for the density of
√

n(β̃ − β)

(2πσ2
)
−k1/2n−k/2

[det(X ′
1X1) det(X ′

2(I − PR)X2)]
1/2

× exp

(

−(2σ2
)
−1

∥

∥

∥n−1/2
(X ′

1X1)
1/2

(t1 + n1/2β1)

+ n−1/2
(X ′

1X1)
−1/2X ′

1X2(t2 + n1/2β2) − (X ′
1X1)

−1/2X ′
1Xβ

∥

∥

∥

2
)

× ψ
(

n−1/2
(X ′

2(I − PR)X2)
1/2

(t2 + n1/2β2)

)

.

Note that det(X ′
1X1) det(X ′

2(I − PR)X2) = det(X ′X). Using this, and inserting

the definition of ψ, delivers the final result (6).

Remark 4. From Proposition 1 one can immediately obtain the finite-sample dis-

tribution of
√

nAn(β̃−β) by premultiplying (3) or (4) by An. Here An is an arbitrary

(nonstochastic) pn×k matrix. If An has full row-rank equal to k (implying pn = k),

this distribution has a density, which is given by det(An)
−1fn,β,σ(A−1

n s), s ∈ R
k
.

3. Asymptotic properties

For the asymptotic results we shall – besides the basic assumptions made in the

preceding section – also assume that

(7) lim
n→∞

X ′X/n = Q

exists and is positive definite, i.e., Q > 0. We first establish “uniform
√

n-consisten-

cy” of the model averaging estimator, implying, in particular, uniform consistency

of this estimator.

Theorem 5. Suppose (7) holds.

1. Then β̃ is uniformly
√

n-consistent for β, in the sense that

(8) lim
M→∞

sup

n≥k
sup

β∈Rk

Pn,β,σ

(√
n

∥

∥

∥
β̃ − β

∥

∥

∥
≥ M

)

= 0.

Consequently, for every ε > 0

(9) lim
n→∞

sup

β∈Rk

Pn,β,σ

(

cn

∥

∥

∥β̃ − β
∥

∥

∥ ≥ ε
)

= 0

holds for any sequence of real numbers cn ≥ 0 satisfying cn = o(n1/2
); which

reduces to uniform consistency for cn = 1.

2. The results in Part 1 also hold for Anβ̃ as an estimator of Anβ, where An are

arbitrary (nonstochastic) matrices of dimension pn × k such that the largest

eigenvalues λmax(A
′
nAn) are bounded.

Proof. We prove (8) first. Rewrite the model averaging estimator as β̃ = β̂(U ) +

λ̂(β̂(R) − β̂(U )). Since

∥

∥

∥
β̃ − β

∥

∥

∥
≤

∥

∥

∥
β̂(U ) − β

∥

∥

∥
+

∣

∣

∣
λ̂
∣

∣

∣

∥

∥

∥
β̂(R) − β̂(U )

∥

∥

∥
,

since

Pn,β,σ

(√
n

∥

∥

∥β̂(U ) − β
∥

∥

∥ ≥ M
)

≤ M−2σ2
trace[(X ′X/n)

−1
],
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and since trace[(X ′X/n)
−1

] → trace[Q−1
] < ∞, it suffices to establish

(10) lim
M→∞

sup

n≥k
sup

β∈Rk

Pn,β,σ

(√
n

∣

∣

∣
λ̂
∣

∣

∣

∥

∥

∥
β̂(R) − β̂(U )

∥

∥

∥
≥ M

)

= 0.

Now, using (2) and the elementary inequality z2/[1 + c exp(z2
)]

2 ≤ c−2
we have

λ̂2
∥

∥

∥
β̂(R) − β̂(U )

∥

∥

∥

2

≤ λ̂2λ−1
min(X ′X)

∥

∥

∥
Xβ̂(R) − Xβ̂(U )

∥

∥

∥

2

= λ−1
min(X ′X)

[

1 + exp(−2αk2) exp

(

α
∥

∥

∥
Xβ̂(R) − Xβ̂(U )

∥

∥

∥

2

/σ2

)]−2

(11)

×
∥

∥

∥
Xβ̂(R) − Xβ̂(U )

∥

∥

∥

2

≤ n−1λ−1
min(X ′X/n)α−1σ2

exp(4αk2) ≤ Kn−1σ2

for a suitable finite constant K, since λmin(X ′X/n) → λmin(Q) > 0. This proves

(10) and thus completes the proof of (8). The remaining claims in Part 1 follow

now immediately. Part 2 is an immediate consequence of Part 1, of the inequality

∥

∥

∥
Anβ̃ − Anβ

∥

∥

∥

2

≤ λmax(A
′
nAn)

∥

∥

∥
β̃ − β

∥

∥

∥

2

,

and of the assumption on λmax(A
′
nAn).

Remark 6. (i) The proof has in fact shown that the difference between β̃ and

β̂(U ) is bounded in norm by a deterministic sequence of the form const ∗ σn−1/2
.

(ii) Although of little statistical significance since σ2
is here assumed to be known,

the proof also shows that the above proposition remains true if a supremum over

0 < σ2 ≤ S, (0 < S < ∞) is inserted in (8) and (9).

In the next two theorems we give the asymptotic distribution under general

“moving parameter” asymptotics. Note that the case of fixed parameter asymptotics

(β(n) ≡ β) as well as the case of the usual local alternative asymptotics (β(n)
=

β + δ/
√

n) is covered by the subsequent theorems. In both these cases, Part 1 of

the subsequent theorem applies if β2 �= 0, while Part 2 with γ = 0 and γ = δ2,

respectively, applies if β2 = 0.

Theorem 7. Suppose (7) holds.

1. Let β(n) be a sequence of parameters such that ‖
√

nβ
(n)
2 ‖ → ∞ as n → ∞.

Then the distribution of
√

n(β̃ − β(n)
) under Pn,β(n),σ converges weakly to a

N(0, σ2Q−1
)-distribution.

2. Let β(n) be a sequence of parameters such that
√

nβ
(n)
2 → γ ∈ R

k2 as n → ∞.

Then the distribution of
√

n(β̃−β(n)
) under Pn,β(n),σ converges weakly to the

distribution of

B∞γ + C∞Z1

+

[

1 + exp(2αk2) exp

(

−α
∥

∥

∥
Z2 + (Q22 − Q21Q

−1
11 Q12)

1/2γ
∥

∥

∥

2

/σ2

)]−1

(12)

× {D∞Z2 − B∞γ}
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where

B∞ =

[

Q−1
11 Q12

−Ik2

]

, C∞ =

[

Q
−1/2
11

0k2×k1

]

,

D∞ =

[

−Q−1
11 Q12(Q22 − Q21Q

−1
11 Q12)

−1/2

(Q22 − Q21Q
−1
11 Q12)

−1/2

]

,

and where Z1 ∼ N(0, σ2Ik1
) is independent of Z2 ∼ N(0, σ2Ik2

). The density

of the distribution of (12) is given by

f∞,γ(t) = (2πσ2
)
−k/2

[det(Q)]
1/2

× exp

(

−(2σ2
)
−1

∥

∥

∥Q
1/2
11 t1 + Q

−1/2
11 Q12t2

∥

∥

∥

2
)

×
[

1 + exp

(

−ασ−2g
(∥

∥D−1
∞2(t2 + γ)

∥

∥

)2
+ 2αk2

)]k2

×
{

1 + 2ασ−2g
(∥

∥D−1
∞2(t2 + γ)

∥

∥

)2
(13)

×
[

1 + exp

(

ασ−2g
(∥

∥D−1
∞2(t2 + γ)

∥

∥

)2
− 2αk2

)]−1
}−1

× exp

{

−(2σ2
)
−1

∥

∥

∥
g

(∥

∥D−1
∞2(t2 + γ)

∥

∥

) ∥

∥D−1
∞2(t2 + γ)

∥

∥

−1

× D−1
∞2(t2 + γ) − D−1

∞2γ
∥

∥

2
}

,

where t is partitioned as (t′1, t
′
2)

′ with t1 being a k1 × 1 vector. Furthermore,

D∞2 = (Q22 − Q21Q
−1
11 Q12)

−1/2, and g is as defined in the Appendix (with

a = exp(2αk2) and b = α−1σ2).

Proof. To prove Part 1 represent
√

n(β̃ − β(n)
) as

√
n(β̂(U )− β(n)

) + λ̂
√

n(β̂(R)−

β̂(U )). The first term is N(0, σ2
(X ′X/n)

−1
)-distributed under Pn,β(n),σ, which ob-

viously converges to a N(0, σ2Q−1
)-distribution. It hence suffices to show that

λ̂
√

n(β̂(R) − β̂(U )) converges to zero in Pn,β(n),σ-probability. Since λ−1
min(X ′X/n)

is bounded by assumption (7) and since

λ̂2
∥

∥

∥

√
n(β̂(R) − β̂(U ))

∥

∥

∥

2

≤ nλ−1
min(X ′X)

∥

∥

∥Xβ̂(R) − Xβ̂(U )

∥

∥

∥

2

×

[

1 + exp

(

ασ−2
∥

∥

∥
Xβ̂(R) − Xβ̂(U )

∥

∥

∥

2

− 2αk2

)]−2

as shown in (11), it furthermore suffices to show that

(14)

∥

∥

∥
Xβ̂(R) − Xβ̂(U )

∥

∥

∥

2

→ ∞ in Pn,β(n),σ-probability.

Note that

∥

∥

∥Xβ̂(R) − Xβ̂(U )

∥

∥

∥

2

= ‖(PU − PR)Y ‖
2

=

∥

∥

∥
(PU − PR)u + (PU − PR)X2β

(n)
2

∥

∥

∥

2

≥
∣

∣

∣

∥

∥

∥(PU − PR)X2β
(n)
2

∥

∥

∥ − ‖(PU − PR)u‖
∣

∣

∣

2

.
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The second term satisfies En,β(n),σ‖(PU−PR)u‖2
= σ2k2 and hence is stochastically

bounded in Pn,β(n),σ-probability. The square of the first term, i.e.,

∥

∥

∥
(PU − PR)X2β

(n)
2

∥

∥

∥

2

equals

√
nβ

(n)′
2 [(X ′

2X2/n) − (X ′
2X1/n)(X ′

1X1/n)
−1

(X ′
1X2/n)]

√
nβ

(n)
2 .

Since the matrix in brackets converges to Q22 − Q21Q11Q12, which is positive def-

inite, the above display diverges to infinity, establishing (14). This completes the

proof of Part 1.

We next turn to the proof of Part 2. The proof of (12) is immediate from (3)

upon observing that Bn → B∞,
√

nCn → C∞, and
√

nDn → D∞. To prove (13)

observe that (12) can be written as

B∞γ + C∞Z1

+

[

1 + exp(2αk2) exp

(

−α
∥

∥

∥Z2 + (Q22 − Q21Q
−1
11 Q12)

1/2γ
∥

∥

∥

2

/σ2

)]−1

× {D∞(Z2 + (Q22 − Q21Q
−1
11 Q12)

1/2γ)}

= B∞γ + C∞Z1 + D∞

[

1 + exp(2αk2) exp

(

−α ‖W2‖
2
/σ2

)]−1

W2

where W2 ∼ N((Q22 − Q21Q
−1
11 Q12)

1/2γ, σ2Ik2
) is independent of Z1. Again using

Lemmata 15 and 16 in the Appendix gives the density of

W3 =

[

1 + exp(2αk2) exp

(

−α ‖W2‖
2
/σ2

)]−1

W2

as

χ(w3) = (2πσ2
)
−k2/2

[

1 + exp
(

−ασ−2g(‖w3‖)
2

+ 2αk2

)]k2

×
{

1 + 2ασ−2g (‖w3‖)
2 [

1 + exp
(

ασ−2g(‖w3‖)
2 − 2αk2

)]−1
}−1

× exp

(

−(2σ2
)
−1

∥

∥

∥
g (‖w3‖) w3/ ‖w3‖ − (Q22 − Q21Q

−1
11 Q12)

1/2γ
∥

∥

∥

2
)

.

Since Z1 is independent of Z2, and hence of W3, the joint density of [Z ′
1 : W ′

3]
′

exists and is given by

(2πσ2
)
−k1/2

exp

(

−(2σ2
)
−1 ‖z1‖

2
)

χ(w3).

Since the matrix [C∞ : D∞] is non-singular we obtain finally

(2πσ2
)
−k1/2

[

det(Q11) det(Q22 − Q21Q
−1
11 Q12)

]1/2

× exp

(

−(2σ2
)
−1

∥

∥

∥Q
1/2
11 (t1 − Q−1

11 Q12γ) + Q
−1/2
11 Q12(t2 + γ)

∥

∥

∥

2
)

× χ
(

(Q22 − Q21Q
−1
11 Q12)

1/2
(t2 + γ)

)

.

Inserting the expression for χ derived above gives (13).
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Since in both cases considered in the above theorem the limiting distribution is

continuous, the finite-sample cumulative distribution function (cdf)

Fn,β(n),σ(t) = Pn,β(n),σ

(√
n(β̃ − β(n)

) ≤ t
)

converges to the cdf of the corresponding limiting distribution even in the sup-norm

as a consequence of the multivariate version of Polya’s Theorem (cf. [1], Ex.6, [2]).

We next show that the convergence occurs in an even stronger sense. Let f∞ denote

the density of the asymptotic distribution of
√

n(β̃ − β(n)
) given in the previous

theorem. That is, f∞ is equal to f∞,γ given in (13) if
√

nβ
(n)
2 → γ ∈ R

k2 , and is

equal to the density of an N(0, σ2Q−1
)-distribution if ‖

√
nβ

(n)
2 ‖ → ∞. For obvious

reasons and for convenience we shall denote the N(0, σ2Q−1
)-density by f∞,∞.

Theorem 8. Suppose the assumptions of Theorem 7 hold. Then the finite-sample

density fn,β(n),σ of
√

n(β̃ − β(n)
) converges to f∞, the density of the correspond-

ing asymptotic distribution, in the L1-sense. Consequently, the finite-sample cdf

Fn,β(n),σ converges to the corresponding asymptotic cdf in total variation distance.

Proof. In the case where
√

nβ
(n)
2 → γ ∈ R

k2 , inspection of (6), and noting that

g as well as T−1
given in Lemma 15 are continuous, shows that (6) converges to

(13) pointwise. In the case where ‖
√

nβ
(n)
2 ‖ → ∞, Lemma 17 in the Appendix and

inspection of (6) show that (6) converges pointwise to the density of a N(0, σ2Q−1
)-

distribution. Observing that fn,β(n),σ as well as f∞ are probability densities, the

proof is then completed by an application of Scheffé’s lemma.

Remark 9. We note for later use that inspection of (13) combined with Lemma 17

in the Appendix shows that for ‖γ‖ → ∞ we have f∞,γ → f∞,∞ (the N(0, σ2Q−1
)-

density) pointwise on R
k
, and hence also in the L1

-sense. As a consequence, the

corresponding cdfs converge in the total variation sense to the cdf of a N(0, σ2Q−1
)-

distribution.

Remark 10. The results in this section imply that the convergence of the finite-

sample cdf to the asymptotic cdf does not occur uniformly w.r.t. the parameter β.

[Cf. also the first step in the proof of Theorem 13 below.]

Remark 11. Theorems 7 and 8 in fact provide a characterization of all accumu-

lation points of the finite sample distribution Fn,β(n),σ (w.r.t. the total variation

topology) for arbitrary sequences β(n)
. This follows from a simple subsequence ar-

gument applied to
√

nβ
(n)
2 and observing that (R∪{−∞,∞})k2 is compact; cf. also

Remark 4.4 in [7].

Remark 12. Part 1 of Theorem 7 as well as the representation (12) immediately

generalize to
√

nA(β̃ − β) with A a non-stochastic p × k matrix. If A has full row-

rank equal to k, the resulting asymptotic distribution has a density, which is given

by det(A)
−1f∞(A−1s), s ∈ R

k
.

4. Estimation of the finite-sample distribution: an impossibility result

As can be seen from Theorem 3, the finite-sample distribution depends on the

unknown parameter β, even after centering at β. Hence, it is obviously of interest

to estimate this distribution, e.g., for purposes of conducting inference. It is easy

to construct a consistent estimator of the cumulative distribution function Fn,β,σ

of the scaled and centered model averaging estimator β̃, i.e., of
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Fn,β,σ(t) = Pn,β,σ

(√
n(β̃ − β) ≤ t

)

.

To this end, let M̂ be an estimator that consistently decides between the restricted

model MR and the unrestricted model MU , i.e., limn→∞ Pn,β,σ(M̂ = MR) = 1 if

β2 = 0 and limn→∞ Pn,β,σ(M̂ = MU ) = 1 if β2 �= 0. [Such a procedure is easily

constructed, e.g., from BIC or from a t-test for the hypothesis β2 = 0 with critical

value that diverges to infinity at a rate slower than n1/2
.] Define f̌n equal to f†

∞,∞,

the density of the N(0, σ2
(X ′X/n)

−1
)-distribution, on the event M̂ = MU , and

define f̌n equal to f†
∞,0 otherwise, where f†

∞,0 follows the same formula as f∞,0,

with the only exception that Q is replaced by X ′X/n. Then – as is proved in the

Appendix –

(15)

∫

Rk

∣

∣f̌n(z) − fn,β,σ(z)

∣

∣ dz → 0

in Pn,β,σ-probability as n → ∞ for every β ∈ R
k
. Define F̌n as the cdf corresponding

to f̌n. Then for every δ > 0

Pn,β,σ

(∥

∥F̌n − Fn,β,σ

∥

∥

TV
> δ

)

→ 0

as n → ∞, where ‖·‖TV denotes the total variation norm. This shows that F̌n is a

consistent estimator of Fn,β,σ in the total variation distance. A fortiori then also

Pn,β,σ

(

sup
t

∣

∣F̌n(t) − Fn,β,σ(t)
∣

∣ > δ

)

→ 0

holds.

The estimator F̌n just constructed has been obtained from the asymptotic cdf by

replacing unknown quantities with suitable estimators. As noted in Remark 10, the

convergence of the finite-sample cdf to their asymptotic counterpart does not occur

uniformly w.r.t. the parameter β. Hence, it is to be expected that F̌n will inherit

this deficiency, i.e., F̌n will not be uniformly consistent. Of course, this makes it

problematic to base inference on F̌n, as then there is no guarantee – at any sample

size – that F̌n will be close to the true cdf. This naturally raises the question if

estimators other than F̌n exist that are uniformly consistent. The answer turns out

to be negative as we show in the next theorem. In fact, uniform consistency fails

dramatically, cf. (17) below. This result further shows that uniform consistency

already fails over certain shrinking balls in the parameter space (and thus a fortiori

fails in general over compact subsets of the parameter space), and fails even if

one considers the easier estimation problem of estimating Fn,β,σ only at a given

value of the argument t rather than estimating the entire function Fn,β,σ (and

measuring loss in a norm like the total variation norm or the sup-norm). Although

of little statistical significance, we note that a similar result can be obtained for the

problem of estimating the asymptotic cdf. Related impossibility results for post-

model-selection estimators as well as for certain shrinkage-type estimators are given

in [9–11].

In the result to follow we shall consider estimators of Fn,β,σ(t) at a fixed value

of the argument t. An estimator of Fn,β,σ(t) is now nothing else than a real-valued

random variable Γn = Γn(Y, X). For mnemonic reasons we shall, however, use the

symbol F̂n(t) instead of Γn to denote an arbitrary estimator of Fn,β,σ(t). This no-

tation should not be taken as implying that the estimator is obtained by evaluating
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an estimated cdf at the argument t, or that it is constrained to lie between zero

and one. For simplicity, we give the impossibility result only in the simple situation

where k2 = 1 and Q is block-diagonal, i.e., X1 and X2 are asymptotically orthog-

onal. There is no reason to believe that the non-uniformity problem will disappear

in more complicated situations.

Theorem 13. Suppose (7) holds. Suppose further that k2 = 1 and that Q is block-

diagonal, i.e., the k1 × k2 matrix Q12 is equal to zero. Then the following holds for

every β ∈ MR and every t ∈ R
k: There exist δ0 > 0 and ρ0, 0 < ρ0 < ∞, such that

any estimator F̂n(t) of Fn,β,σ(t) satisfying

(16) Pn,β,σ

(∣

∣

∣
F̂n(t) − Fn,β,σ(t)

∣

∣

∣
> δ

)

n→∞
−→ 0

for every δ > 0 (in particular, every estimator that is consistent) also satisfies

(17) sup

ϑ∈Rk

||ϑ−β||<ρ0/
√

n

Pn,ϑ,σ

(∣

∣

∣F̂n(t) − Fn,ϑ,σ(t)
∣

∣

∣ > δ0

)

n→∞
−→ 1.

The constants δ0 and ρ0 may be chosen in such a way that they depend only on t,
Q, σ, and the tuning parameter α. Moreover,

(18) lim inf
n→∞

inf
F̂n(t)

sup

ϑ∈Rk

||ϑ−β||<ρ0/
√

n

Pn,ϑ,σ

(∣

∣

∣
F̂n(t) − Fn,ϑ,σ(t)

∣

∣

∣
> δ0

)

> 0

and

(19) sup

δ>0
lim inf
n→∞

inf
F̂n(t)

sup

ϑ∈Rk

||ϑ−β||<ρ0/
√

n

Pn,ϑ,σ

(∣

∣

∣F̂n(t) − Fn,ϑ,σ(t)
∣

∣

∣ > δ
)

≥
1

2
,

where the infima in (18) and (19) extend over all estimators F̂n(t) of Fn,β,σ(t).

Proof. Step 1 : Let β ∈ MR and t ∈ R
k

be given. Observe that by Theorems 7 and

8 the limit

F∞,γ(t) := limFn,β+(η,γ)′/
√

n,σ(t)

exists for every η ∈ R
k1 , γ ∈ R

k2 = R, and does not depend on η. We now show

that F∞,γ(t) is non-constant in γ ∈ R. First, observe that by Remark 9 and the

block-diagonality assumption on Q

lim
‖γ‖→∞

F∞,γ(t) = P

(

Q
−1/2
11 Z1 ≤ t1

)

P

(

Q
−1/2
22 Z2 ≤ t2

)

where Z1 and Z2 are as in Theorem 7, t is partitioned as (t′1, t2)
′
with t2 a scalar,

and P is the probability measure governing (Z ′
1, Z2)

′
. Second, we have from (12)

and the block-diagonality assumption on Q that F∞,γ(t) is the product of

P

(

Q
−1/2
11 Z1 ≤ t1

)

with

P

(

[

1 + exp(2α) exp

(

−α
(

Z2 + Q
1/2
22 γ

)2

/σ2

)]−1

(20)

×
(

Q
−1/2
22 Z2 + γ

)

− γ ≤ t2

)

.
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Since P(Q
−1/2
11 Z1 ≤ t1) is positive and independent of γ, it suffices to show that

(20) differs from P(Q
−1/2
22 Z2 ≤ t2) for at least one γ ∈ R. Suppose first that t2 > 0.

Then specializing to the case γ = 0 in (20) it suffices to show that

(21) P

(

[

1 + exp(2α) exp
(

−αZ2
2/σ2

)]−1
Q

−1/2
22 Z2 ≤ t2

)

.

differs from P(Q
−1/2
22 Z2 ≤ t2). But this follows from

P

(

[

1 + exp(2α) exp
(

−αZ2
2/σ2

)]−1
Q

−1/2
22 Z2 ≤ t2

)

= 1/2 + P

(

Z2 ≥ 0, h(Z2) ≤ Q
1/2
22 t2

)

= 1/2 + P

(

0 ≤ Z2 ≤ g
(

Q
1/2
22 t2

))

> 1/2 + P

(

0 ≤ Z2 ≤ Q
1/2
22 t2

)

= P

(

Q
−1/2
22 Z2 ≤ t2

)

since h as defined in the Appendix (with a = exp(2α) and b = σ2/α) is strictly

monotonically increasing and satisfies h(x) < x for every x > 0, which entails

g(y) > y for every y > 0. For symmetry reasons a dual statement holds for t2 < 0.

It remains to consider the case t2 = 0. In this case (20) equals

P

(

[

1 + exp(2α) exp

(

−α
(

Z2 + Q
1/2
22 γ

)2

/σ2

)]−1

(22)

×
(

Z2 + Q
1/2
22 γ

)

≤ Q
1/2
22 γ

)

.

Let γ > 0 be arbitrary. Then (22) equals

P

(

Z2 + Q
1/2
22 γ < 0

)

+ P

(

Z2 + Q
1/2
22 γ ≥ 0, h

(

Z2 + Q
1/2
22 γ

)

≤ Q
1/2
22 γ

)

.

Arguing as before, this can be written as

P

(

Z2 + Q
1/2
22 γ < 0

)

+ P

(

0 ≤ Z2 + Q
1/2
22 γ ≤ g

(

Q
1/2
22 γ

))

> P

(

Z2 + Q
1/2
22 γ < 0

)

+ P

(

0 ≤ Z2 + Q
1/2
22 γ ≤ Q

1/2
22 γ

)

= P (Z2 ≤ 0) = P

(

Q
−1/2
22 Z2 ≤ 0

)

which completes the proof of Step 1.

Step 2 : We prove (17) and (18) first. For this purpose we make use of Lemma 3.1

in Leeb and Pötscher [11] with the notational identification α = β ∈ MR, B = R
k
,

Bn = {ϑ ∈ R
k

: ‖ϑ − β‖ < ρ0n
−1/2}, ϕn(·) = Fn,·,σ(t), and ϕ̂n = F̂n(t), where

ρ0 will be chosen shortly. The contiguity assumption of this lemma is obviously

satisfied; cf. also Lemma A.1 in [11]. It hence remains to show that there exists a

value of ρ0, 0 < ρ0 < ∞, such that δ∗ defined in Lemma 3.1 of Leeb and Pötscher

[11], which represents the limit inferior of the oscillation of Fn,·,σ(t) over Bn, is

positive. Applying Lemma 3.5(a) of Leeb and Pötscher [11] with ζn = ρ0n
−1/2

and

the set G0 equal to G = {(η′, γ)
′ ∈ R

k
: ‖(η′, γ)

′‖ < 1}, it suffices to show that

F∞,γ(t) viewed as a function of (η′, γ)
′
is non-constant on the set {(η′, γ)

′ ∈ R
k

:
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‖(η′, γ)
′‖ < ρ0}; in view of Lemma 3.1 of Leeb and Pötscher [11], the corresponding

δ0 can then be chosen as any positive number less than one-half of the oscillation

of F∞,γ(t) over this set. That such a ρ0 indeed exists now follows from Step 1.

Furthermore, observe that F∞,·(t) depends only on α, Q, σ, and t. Hence, δ0 and ρ0

may be chosen such that they also only depend on these quantities. This completes

the proof of (17) and (18).

To prove (19) we use Corollary 3.4 in [11] with the same identification of no-

tation as above, with ζn = ρ0n
−1/2

, and with V = R
k
. The asymptotic uniform

equicontinuity condition in that corollary is then satisfied in view of

‖Pn,θ,σ − Pn,ϑ,σ‖TV ≤ 2Φ

(

‖θ − ϑ‖λ1/2
max(X

′X)/(2σ)

)

− 1,

cf. Lemma A.1 in [11]. Given that the positivity of δ∗ has already been established

in the previous paragraph, applying Corollary 3.4 in [11] then establishes (19).

Remark 14. The impossibility result given in the above theorem also holds for

the class of randomized estimators (with Pn,·,σ replaced by P
∗
n,·,σ, the distribution

of the randomized sample). This follows immediately from Lemma 3.6 in [11] and

the attending discussion.

Appendix A: Some technical results

Let the function h : [0,∞) → [0,∞) be given by h(ξ) = [1+a exp(−ξ2/b)]−1ξ where

a and b are positive real numbers. It is easy to see that h is strictly monotonically

increasing on [0,∞), is continuous, satisfies h(0) = 0 and limξ→∞ h(ξ) = ∞. The

inverse g : [0,∞) → [0,∞) of h clearly exists, is strictly monotonically increasing

on [0,∞), is continuous, satisfies g(0) = 0 and limζ→∞ g(ζ) = ∞. In the following

lemma we shall use the natural convention that g(‖y‖)y/‖y‖ = 0 for y = 0, which

makes y → g(‖y‖)y/‖y‖ a continuous function on all of R
m

.

Lemma 15. Let T : R
m → R

m be given by

T (x) =

[

1 + a exp(−‖x‖
2
/b)

]−1

x

where a and b are positive real numbers. Then T is a bijection. Its inverse is given

by

T−1
(y) = g(‖y‖)y/ ‖y‖

where g has been defined above. Moreover, T−1 is continuously partially differen-

tiable and ‖T−1
(y)‖ = g(‖y‖) holds for all y.

Proof. If y = 0 it is obvious that T (T−1
(y)) = 0 = y in view of the convention

made above. Now suppose that y �= 0. Then

T (T−1
(y)) = [1 + a exp

(

−g(‖y‖)2/b
)

]
−1g(‖y‖)y/ ‖y‖

= h (g(‖y‖)) y/ ‖y‖ = y.

Similarly, if x = 0 then T−1
(T (x)) = 0. Now suppose x �= 0. Then T (x) �= 0 and,

observing that ‖T (x)‖ = [1 + a exp(−‖x‖2/b)]−1‖x‖, we have

T−1
(T (x)) = g (‖T (x)‖)T (x)/ ‖T (x)‖

= g

(

[

1 + a exp

(

−‖x‖
2
/b

)]−1

‖x‖

)

x/ ‖x‖

= g (h(‖x‖)) x/ ‖x‖ = x.
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That T−1
is continuously partially differentiable follows from the corresponding

property of T and the fact that the determinant of the derivative of T does never

vanish as shown in the next lemma. The final claim is obvious in case y �= 0,

and follows from the convention made above and the fact that g(0) = 0 in case

y = 0.

Lemma 16. Let T be as in the preceding lemma. Then the determinant of the

derivative DxT is given by

[

1 + a exp

(

−‖x‖
2
/b

)]−m
{

1 + 2b−1
[

1 + a−1
exp

(

‖x‖
2
/b

)]−1

‖x‖
2

}

which is always positive.

Proof. Elementary calculations show that

DxT =

[

1 + a exp

(

−‖x‖
2
/b

)]−1

×

{

Im + 2ab−1
exp

(

−‖x‖
2
/b

) [

1 + a exp

(

−‖x‖
2
/b

)]−1

xx′

}

.

Since the determinate of Im + cxx′
equals 1 + cx′x, the result follows.

Lemma 17. For g defined above we have

lim
ζ→∞

g(ζ)/ζ = 1

and

lim
ζ→∞

((g(ζ)/ζ) − 1) ζ = 0.

Proof. It suffices to prove the second claim:

lim
ζ→∞

((g(ζ)/ζ) − 1) ζ = lim
ζ→∞

(g(ζ) − ζ) = lim
ξ→∞

(g(h(ξ)) − h(ξ))

= lim
ξ→∞

(

ξ −
[

1 + a exp
(

−ξ2/b
)]−1

ξ
)

= lim
ξ→∞

ξ
[

1 + a−1
exp

(

ξ2/b
)]−1

= 0.

Proof (Verification of (15) in Section 5). In view of Theorem 8 it suffices to show

that
∫

Rk

∣

∣f̌n(z) − f∞(z)

∣

∣ dz → 0

in Pn,β,σ-probability as n → ∞ for every β ∈ R
k

where we recall that f∞ is equal

to f∞,∞, the density of an N(0, σ2Q−1
)-distribution, if β2 �= 0, and is equal to f∞,0
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given in (13) if β2 = 0. Now,

Pn,β,σ

(∫

Rk

∣

∣f̌n(z) − f∞(z)

∣

∣ dz > ε

)

= Pn,β,σ

(∫

Rk

∣

∣f̌n(z) − f∞(z)

∣

∣ dz > ε, M̂ = MR

)

+ Pn,β,σ

(∫

Rk

∣

∣f̌n(z) − f∞(z)

∣

∣ dz > ε, M̂ = MU

)

= Pn,β,σ

(∫

Rk

∣

∣

∣
f†
∞,0(z) − f∞(z)

∣

∣

∣
dz > ε, M̂ = MR

)

+ Pn,β,σ

(∫

Rk

∣

∣f†
∞,∞(z) − f∞(z)

∣

∣ dz > ε, M̂ = MU

)

where we have made use of the definition of f̌n. If β ∈ MR, then clearly the

event M̂ = MU has probability approaching zero and hence the last probability

in the above display converges to zero. Furthermore, if β ∈ MR, the last but one

probability reduces to

Pn,β,σ

(∫

Rk

∣

∣

∣
f†
∞,0(z) − f∞,0(z)

∣

∣

∣
dz > ε, M̂ = MR

)

which converges to zero since

∫

Rk

∣

∣

∣
f†
∞,0(z) − f∞,0(z)

∣

∣

∣
dz → 0

in view of pointwise convergence of f†
∞,0 to f∞,0 and Scheffé’s lemma. [To be able

to apply Scheffé’s lemma we need to know that not only f∞,0 but also f†
∞,0(z) is a

probability density. But this is obvious, as (13) defines a probability density for any

symmetric and positive definite matrix Q.] The proof for the case where β ∈ MU

is completely analogous noting that then f∞ = f∞,∞ holds.
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Abstract: It has been shown that some macroeconomic time series, especially

those where outliers could be present, can be well modelled using heavy tailed

distributions for the noise components. Methods for deciding when and where

heavy-tailed models should be preferred are investigated. These investigations

primarily focus on automatic methods for model identification and selection.

Current methods are extended to incorporate a non-Gaussian selection ele-

ment, and various different criteria for deciding on which overall model should

be used are examined.

1. Introduction

While time series analysis is a rich topic for theoretical research, the implications of

such work can impact many applied sciences, including physical, biological and so-

cial. An example of the application of statistical time series methods in economics

is the seasonal adjustment of macroeconomic data, one of the primary functions

carried out by many statistical agencies worldwide. These adjustments allow com-

parisons of economic indicators to be made in the presence of seasonal variations,

and allow economic decisions to be made without the confounding factors of sea-

sonal fluctuations. The seasonally adjusted data is an unobserved component in

the data, and must be estimated using a model, which can be either parametri-

cally or non-parametrically specified. However, the estimates from the model can

be seriously affected by changes in the data, especially outliers in the data.

Methods have been developed to account for outliers in commonly used time

series models for seasonal adjustment using heavier tailed distributions than the

Gaussian [3, 5, 10], such as the t-distribution or mixtures of normals. The aim

of this paper is to present findings regarding how to select whether a heavy tailed

model is required for a data set based on the performance of several model selection

criteria.

Currently, most statistical agencies use one of two packages for seasonal ad-

justment, X-12-ARIMA [6] from the US Census Bureau, or TRAMO/SEATS [7]

from the Bank of Spain. These two programs both seasonally adjust the data,

but in intrinsically different ways. X-12-ARIMA uses prespecified filters to re-

move the seasonal component from the data, in a non-parametric fashion, while

TRAMO/SEATS uses the ARIMA methodology of [4] to determine the model and

estimate the seasonal component. It will be this second approach that will be gen-

eralised to include non-Gaussian components. Recently, a new integrated version

1
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of the software has been released [11] and the methodology also applies to this

package.

Two common types of outliers are additive outliers (shocks) and level shift

(break) outliers. The first refers to a single data point that is out of character

for the data given the model, whereas the second refers to a discontinuous jump

either up or down in the level of the data at some point, and continuing on after

that point for the rest of the series. These outliers lead to errors in the determina-

tion of the underlying components, and thus need to be accounted for. However,

they are, by nature, not known prior to the modeling, and are functions of both

the data and the model. A data point may be an outlier for one model but not

another, and its status as an outlier may change when new data is added. This

second feature is especially relevant for this study, as seasonal macroeconomic data

is usually continuously updated month by month, or quarter by quarter.

Firstly, a very brief introduction to ARIMA models for seasonal adjustment will

be given, followed by characterisations of the usual methods of outlier detection

for both the Gaussian and non-Gaussian cases. While attempting to solve similar

problems, the two approaches are appreciably different. Section 4 introduces the

model selection criteria to be considered and also some justification for their usage.

Section 5 provides some examples of real series where adjustment using heavy tailed

models gives better performance than using Gaussian models and the final section

provides discussion.

2. Seasonal adjustment and ARIMA model based decomposition

A seasonal time series yt can be expressed as the sum of unobserved components,

(1) yt = St + Nt

where St represents the seasonal component and Nt, the remaining non-seasonal

component. Thus the seasonally adjusted series y(sa)
is

(2) y
(sa)
t = yt − St

and is also unobserved by the nature of being a function of St. ARIMA model based

(AMB) decomposition specifies ARIMA models for the unobserved components and

estimates these from both the data and from the overall model for the data as a

whole.

Box and Jenkins [4] introduced a class of seasonal ARIMA models that model

macroeconomic data well. The simplest model of this form is the airline model,

which models differenced data as a product of moving average (MA) processes;

(3) (1 − B)(1 − Bs
)yt = (1 − θB)(1 − ΘBs

)εt

where Byt = yt−1, s represents the seasonal periodicity, and θ and Θ are the MA

parameters associated with the non-seasonal and seasonal MA parts respectively.

εt is assumed to be an iid Gaussian white noise process with variance σ2
. This

model can be generalised by altering the degrees of the MA polynomials and adding

Autoregressive (AR) parts to the left hand side of the equation. It will be assumed

here that the differencing is not modified, and that it remains of an airline type.

This includes the restriction that the MA and AR parameters cannot be unit roots

as these would alter the overall differencing.
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For simplicity, the airline model is considered explicitly, although other general-

isations can be handled similarly. The AMB decomposition for the airline model,

can be expressed in the following way using the decomposition of [9]

U(B)St = θS(B)ωt

(1 − B)
2Tt = θT (B)ηt(4)

It = εt

where U(B) = (1 + B + · · · + Bs−1
) and ωt, ηt, εt are independent white noise

processes and

(5) yt = St + Tt + It.

In order to define a unique solution (which may or may not exist), the restriction

is taken that the pseudo-spectral densities of the seasonal and trend components

have a minimum of zero (in line with the admissible decompositions of [9]). When

this condition cannot be met without resulting in a negative variance for It, the

decomposition is said to be inadmissible. Throughout the paper, only parameter

combinations resulting in admissible decompositions will be assumed, which is al-

most always the case for macroeconomic data.

The parameter functions θT (), θS() and the variances of ωt, ηt, εt are all functions

of the underlying parameters θ, Θ and σ2
. They can be calculated from the partial

fraction decomposition of the pseudo-spectral densities, and the minimisation of

each resulting component. This is usually done, for example in the SEATS software,

after maximum likelihood estimation of the parameters has taken place, to give a

final adjustment of the data.

2.1. Gaussian outlier adjustment

The TRAMO package [7] is the most widely used method for automatic model

identification of seasonal ARIMA models for macroeconomic series. The program is

used to estimate the order of differencing, the orders of the AR and MA components

and also any outliers and common regressor effects that might be present. Inherently

in this paper, it has been assumed that the order of differencing is the same as the

airline model, but this assumption can be easily relaxed without significant change

in the approaches outlined. All the other parts of the TRAMO procedure are used

in exactly the same way in this paper as given in [8] except for the part relating to

outlier detection.

The TRAMO software determines outliers as part of the automatic model iden-

tification portion of the program. Critical values for the thresholds at which data

points are assumed to be outliers are chosen either by the user or from the length

of the series. Outliers are found by determining whether the significance of the re-

gression coefficients determined by assuming an outlier, be it an additive outlier

or a level shift, has occurred at each point in the data. This is done iteratively, by

adding in the largest regressor above the threshold (if one exists) and then repeat-

ing the exercise. A final check is made at the end to ensure that all regressors are

still above the threshold for the final model.

This method effectively removes the data point when it is considered to be an

outlier. When new data points arrive every month/quarter, the stability of the

seasonal adjustment can heavily rely on the stability of the designated outliers to

this new data as an outlying data point can then be added back in to the estimation

if no longer classified as an outlier.
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3. Heavy-tailed models to account for outliers in ARIMA component

models

Aston and Koopman [3] proposed this alternate methodology to the Gaussian classi-

fication of outliers by using heavier tailed distributions to weight data points rather

than making binary decisions on outliers. A short summary of the methodology is

now given.

The decomposition model (4) can be modified to incorporate non-Gaussian com-

ponents. In order to retain a similar structure, it is assumed that the components

have the same variance as the decomposition would predict, but different densities

are used to incorporate heavier tails.

The irregular component can be modified to include the t distribution in order

to account for additive outliers as

(6) I∗t ∼ t(0, σ2
I , ν), t = 1, . . . , n,

where ν > 2 is the number of degrees of freedom and σ2
I is the variance, which is

constant for any ν. In the case of an irregular modelled by a mixture of normals,

(7) I∗t ∼ (1 − ρ)N (0, σ2
I ) + ρN (0, σ2

Iλ), t = 1, . . . , n,

where 0 ≤ ρ ≤ 1 determines the intensity of outliers in the series and λ measures

the magnitude of the outliers.

The decomposition model with a t-distributed irregular term can be expressed

in its canonical form by

yt = St + Tt + I∗t , I∗t ∼ t(0, σ2
I , ν), t = 1, . . . , n.

where t(0, σ2
I , ν) refers to the t-density. This model has the same number of parame-

ters as the original model specification except that the t density has one additional

parameter (the degrees of freedom ν) and the mixture of normals has two additional

parameters (the intensity and the variance scalar).

To robustify the decomposition model against breaks in trend we consider the

trend specification

(8) (1 − B)
2T ∗

t = θT (B)η∗
t , η∗

t ∼ t(0, σ2
η, νη),

where the t-distribution t(0, σ2
η, νη) can be replaced by a mixture of normals dis-

tribution. The decomposition model with heavy tailed densities for both the trend

innovations and the irregular is given by yt = St + T ∗
t + I∗t where the latter two

components are given by (8) and (6), respectively.

These models can be estimated through the use of importance sampling as was

described in [3]. For calculation, it is important to note that the decomposition must

now be incorporated into the maximum likelihood estimation, as the individual

components are modified, yet, they are still dependent on the overall ARIMA model

for the series. However, fast algorithms for the decomposition make the estimation

feasible.

4. Model selection

One of the most important issues is deciding which model to use and when. Here

three different approaches are investigated, one based on the moments of the data,
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another using an empirical evaluation of a model selection criteria and the last

based on the stability of the estimated components when the data is updated.

Although the model is complex and the estimation method of the maximum

likelihood an approximation, certain properties of the model can be usefully inves-

tigated by considering a simpler model. Take the simple case of choosing between

two noise models, one t-distributed and the other gaussian,

(9)
yτ = ετ ετ ∼ N(0, φN )

yτ = ετ ετ ∼ t(0, φT , ν).

and all the yτ are iid from one model or the other.

As can be seen, these are essentially nested models where the parameter of

interest is the ν degrees of freedom parameter. Slightly different from the usual

nesting setup, the gaussian model is the limiting distribution of the t-model as

ν → ∞. A proof is given in the appendix to show by looking at a function of

the moments of the data (essentially the kurtosis), a test can be performed as to

whether the error term under investigation comes from a normal or t-distributed

model. The test simply considers whether
√

n(Zn − 3) comes from N(0, 24), as

should be the case asymptotically, if the data are normally distributed, while for

the t-distribution, the sequence will diverge. In the actual data case, the test will

be applied to the irregular component data fitted under the normal model for

parameter estimation.

As can be seen from the simulations in Figure 1, even for small samples of the size

of the real data under investigation, there is a marked difference in the distribution

of the statistic between the two models.

In addition to the model choice given above, two other methods are investigated.

AIC [2] seems to be well suited to this problem, as the models are essentially nested.

However, the theoretical justification for AIC requires that the maximum likelihood

Fig 1. Small sample kurtosis estimator distributions for four different models as generated from

10
5 simulated samples of n = 150. (top left) Gaussian, (top right) t dist (ν = 5), (bottom left) t

dist (ν = 10), (bottom right) t dist (ν = 15)
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(a) AIC: No Outliers (b) AIC: 3 Outliers

Fig 2. AIC distributions for 100 series. (a) No outliers are present in the data (b) Three Outliers

are present in the data. Black line corresponds to the value where AIC chooses Gaussian vs t-

distributed model (left and right sides respectively).

estimate of the parameters be an interior point within the parameter space, not

on the boundary. Here, as the t distribution becomes the normal distribution as

ν → ∞, this assumption is violated. However, in practice it can be seen that while

the use of AIC might not yet be theoretically justified, in the case of the type of

data under investigation, simulation results seem to be promising.

A small simulation study was carried out using the airline model (parameters

of θ = 0.7, Θ = 0.7, σ2
= 1) and two data sets generated, one where there were

no outliers in the data, and one where there were three additive outliers added to

the data (points shifted by 5 times the sd of the irregular component). Histograms

of the AIC differences have been plotted in Figure 2. Corresponding histograms

for AICc and BIC have also been generated (not shown) with similar results. AIC

chooses the larger (t-distributed) model when there are outliers present in the data,

and chooses the smaller model when outliers are not present, with an error rate of

the same order as traditional AIC would predict.

In addition to the model selection criteria, an empirical measure was assessed for

determining which model to use. This measure relies on using out-of-sample data

to examine the estimates of the in-sample seasonally adjusted data when future

data becomes available. A crude, yet seemingly promising, procedure is to withhold

the final year of data, and to plot the changes in the seasonal components from

the two samples, with and without the extra year of data. Given the problems of

revisions when releasing macroeconomic data, adjusted series that remain stable

when future data is added are to be preferred to adjusted series that change. By

examining the plots of the differences, or some overall average change, such as the

mean absolute difference between the two adjustments, the stability of the seasonal

component to additional data can be quantified. Whilst this statistic is hard to

justify theoretically given the complex nature of the model, it will be seen in the

examples that it does seem to capture differences between the two approaches.

Theoretical justification of this statistic will be the subject of future work.

5. Examples

Many macroeconomic series do not have large problems with outliers, and thus the

methods described here will not be applicable. However, there are a sizeable pro-

portion of series released by agencies such as the US Census Bureau where outliers

do occur. When several series from the Census Bureau were investigated, two series
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where additive outliers seemed to be present were the Automobile Retail Series and

the Material Handling Equipment Manufacturing Series (or u33mno as it is also

known). These two series were analysed with the two different approaches, and the

model selection criteria were used to determine which was the most appropriate

model. Both series contained 155 data points (Feb 1992 until Dec 2004). For the

seasonal stability plots, the data from 2004 was withheld in one analysis and used

in the other and the results compared.

As can be seen in Figure 3, the seasonal stability plots for the automobile retail

series indicate that the t-distribution provides a more stable adjustment than the

normal model. This is chiefly because when an extra year of data is added, the

number of outliers detected in the series changed. Thus this caused large changes

in the seasonal pattern for the normal model. However, as there is no discrete

detection process for the t-distributed model, there was a more continuous change in

the seasonal pattern when the extra year of data was added, and thus the stability

was greater. There was a low number of degrees of freedom (approximately 5-6)

estimated for this model. The difference between the two models is also well detected

by all the model selection criteria (Table 1). In addition, the moment estimator has

a large value, well outside the 95% confidence interval range of a N(0,24) and

therefore normality of the error terms are rejected for both the 143 and 155 length

series.

The same conclusion can be reached with Figure 4 for the u33mno series, al-

though the seasonal pattern was more erratic for both models and thus the sta-

bility of the seasonal was closer in both models. This was also shown in smaller

differences for the model selection criteria in Table 1, with all the criteria being

borderline as to which model to use, especially given the small sample nature of
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Seasonal Differences (Log Data). top row: Gaussian Data, bottom row: t-distributed model

data, left column: Seasonal Patterns, right column: RMS Differences in Patterns when extra

12 observations added

Fig 3. Automobile Retail Series from Feb 1992-Dec 2004 (US Census Bureau). This example

shows that the seasonal difference plot finds a large change in the seasonal pattern with an extra

year of data when a Gaussian model is used, but this change is reduced when using the model

containing the t-distribution
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Fig 4. u33mno Series from Feb 1992-Dec 2004 (US Census Bureau). Again, this example shows

that the seasonal difference plot finds a large change in the seasonal pattern with an extra year of

data when a Gaussian model is used, but this change is reduced (slightly less than the auto retail

series) when using the model containing the t-distribution.

Table 1

Model selection and comparison of the two example series. Bold face indicates the optimal value

for selecting the model

Data Model Length d̂f Sample

Kurtosis

LogLik AIC AICc BIC Seas Mean

Abs Diff

Auto G 143 - 35.8 217.18 -2.97 -1.95 -2.86 -

Auto T 143 5.63 - 223.00 -3.04 -2.02 -2.91 -

Auto G 155 - 47.5 236.75 -2.99 -1.97 -2.89 0.0629

Auto T 155 5.10 - 243.05 -3.06 -2.04 -2.94 0.0381

u33mno G 143 - 11.1 92.29 -1.22 -0.20 -1.12 -

u33mno T 143 9.17 - 93.59 -1.23 -0.21 -1.10 -

u33mno G 155 - 13.9 105.19 -1.40 -0.38 -1.30 0.0651

u33mno T 155 7.43 - 107.14 -1.41 -0.39 -1.29 0.0266

series. However, given the increase in the stability and the borderline nature, the

t-distribution model will probably be preferred in the case of u33mno as well.

It can be noted in both Figures 3 and 4 that, for both the t-distributed and

the Gaussian models, the instability within the estimates does increase towards the

end of the series. This is due to estimates being weighted functions of other data.

Data that is close to the point to be estimated (either directly or as a multiple

of the seasonal period) is more heavily weighted than data that is further away.

Thus when new data is added, the estimates towards the end of the series are more

heavily affected than the estimates nearer the beginning of the series.
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6. Discussion

In this paper, model selection criteria have been proposed to choose between Gauss-

ian and heavier tailed distributions. Particular emphasis has been placed on choos-

ing between the t-distribution and the Gaussian distribution for modeling the ir-

regular component where additive outliers occur. However, all the techniques are

generalisable to other distributions such as mixtures of normals and to the trend

component to account for level shifts.

The model selection criteria have primarily been evaluated empirically for the

data and models used in the paper. This is for two reasons. Firstly, the seasonal

models under investigation are complex models, where the likelihood evaluation in-

volves both approximations through importance sampling and also pseudo-spectral

decomposition. Thus, results for these types of models are difficult to obtain explic-

itly. However, even for simpler models, only theoretical results have been obtained

for the moment estimator selection procedure, given the nature of the model nest-

ing, and the boundary problem. However, the results obtained from simulation are

promising. This also suggests that theoretical justification of these and related re-

sults, which apply in many other modeling situations, may well be a worthwhile

future research area.
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Appendix A: Moment estimator

Theorem 1 (Sample kurtosis). Let yτ , 1 ≤ τ ≤ n be a realisation from one of

the two models given in (9) with finite positive variance.

Let

(10) Zn =

1
n

∑

(yi − ȳ)
4

(

1
n

∑

(yi − ȳ)2
)2

and if � represents convergence in distribution then

(11)
√

n(Zn − 3) � N(0, 24)

when ν → ∞ and diverges for ν finite.

Proof. Both the denominator and numerator of Zn are moment estimators. If yτ

comes from the first model in (9) then following a similar method to [12, Example

3.5], let

φ(a, b, c, d) =
d − 4ca − 6ba2 − 3a4

(b − a2)2

then

Zn = φ(Y , Y 2, Y 3, Y 4)

where Y j =
i=1
n

∑n
1 yj

i and
√

n(Y −α1, Y 2−α2, Y 3−α3, Y 4−α4) is asymptotically

mean zero normal by the CLT where αj is the jth moment of y1 wlog.
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If Xi =
yi

φN

, and using the fact that the odd moments of the standard normal

are zero and the even moments given by
2n!
2nn! (and thus the first eight moments are

also finite),

√
n









X

X2 − 1

X3

X4 − 3









� N









0,









1 0 3 0

0 2 0 12

3 0 15 0

0 12 0 96

















.

The function φ is differentiable at the point (α1, α2, α3, α4) = (0, 1, 0, 3), and equals

(0,-6,0,1). Hence, by use of the delta method

√
n(Zn − 3) � N(0, 24)

If yτ comes from the second model in (9) (and assuming ν > 4) then

1

n

∑

(yi − ȳ)
4 → 3φ2

T

ν2

(ν − 2)(ν − 4)
(a.s.)

and
(

1

n

∑

(yi − ȳ)
2

)

→ φT
ν

ν − 2
(a.s.)

by explicit calculation of the moments of the t-distribution [1] and thus

Zn → 3.
(ν − 2)

(ν − 4)
(a.s.).

As yτ comes from second model of (9), ν is finite and as n → ∞

√
n(Zn − 3)

will diverge.
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Abstract: This paper develops a European option pricing formula for frac-

tional market models. Although there exist option pricing results for a frac-

tional Black-Scholes model, they are established without accounting for sto-

chastic volatility. In this paper, a fractional version of the Constant Elasticity

of Variance (CEV) model is developed. European option pricing formula simi-

lar to that of the classical CEV model is obtained and a volatility skew pattern

is revealed.

1. Introduction

Black [3, 4] developed the so-called Constant Elasticity of Variance model for stock

price processes that exhibit stochastic volatility. The CEV model is expressed in

terms of a stochastic diffusion process with respect to a standard Brownian motion

dXt = µXt dt + σX
β/2
t dBt,(1.1)

where 0 ≤ β ≤ 2 is a constant. If β = 2, such a model degenerates to a geometric

Brownian motion. This model is characterized by the dependence of the volatility

rate, i.e., σXβ/2
on the stock price. When the stock price increases, the instanta-

neous volatility rate decreases. This seems reasonable because the higher the stock

price, the higher the equity market value, and thus the lower the proportion of

liability, which results in a decrease in the risk of ruin. The volatility rate or the

risk measure is thus decreased. Making use of methods proposed in an earlier liter-

ature [6], Cox [5] studied the CEV models and gave an option pricing formula that

involves a noncentral χ2
distribution function.

The classical CEV model (1.1) does not account for long-memory behavior, how-

ever. There are some evidences showing that the financial market exhibits long-

memory structures (see [7, 23]). To encompass both long-memory and stochastic

volatility, a possible model is to replace the Brownian motion in the stochastic

diffusion equation by a fractional Brownian motion that exhibits a long-memory

dependence structure (see [2, 13, 30]).

Though fractional Brownian motion can be used to model long-memory, as

pointed out by Rogers in [29], the fractional Brownian motion is not a semi-

martingale and the stochastic integral with respect to it is not well-defined in the

classical Itô’s sense. A theory different from the Itô’s one should be used to handle

the fractional situation. One approach is white noise calculus (see [18, 22, 28]),
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which was used in [14, 19] to construct stochastic integral with respect to the

fractional Brownian motion. With the white noise approach, an extension to the

Black-Scholes’ stochastic differential equation is proposed to cope with long-memory

phenomena (see [26]).

In this paper, the white noise calculus approach is adopted to construct a frac-

tional CEV model and to derive the option pricing formula for European call option.

Basic concepts in white noise calculus are briefly introduced in Section 2. The frac-

tional Itô’s lemma, which is fundamental to option pricing theory, is presented in

Section 3. Section 4 explains under what circumstances is the Itô’s lemma applica-

ble. In Section 5, the fractional option pricing theory is introduced and the concept

of self-financing strategy, which is different from the traditional definition adopted

by, e.g., Delbaen [10, 11], will further be discussed. Finally, the pricing formula for

fractional CEV model is given in Sections 6.

2. White noise calculus and stochastic integration

In this section, the concept of stochastic integration with respect to fractional

Brownian motion is introduced briefly. Important concepts are defined based on the

white noise theory originated from [17], who considered the sample path of a Brown-

ian motion as a functional. Throughout this paper, notations used in [1, 14, 18, 22]

are adopted.

Let S(R) be the Schwarz space. Take the dual Ω = S′
(R), equipped with the

weak star topology, as the underlying sample space, i.e., ω ∈ Ω is a functional that

maps a rapidly decreasing function f(·) ∈ S(R) to a real number. Also, let B(Ω)

be the σ-algebra generated by the weak star topology. Then according to Bochner-

Minlos Theorem (see Appendix A of [18]), there exists a unique probability measure

µ on B(Ω), such that for any given f ∈ S(R), the characteristic function of the

random variable ω → ω(f) is given by

∫

Ω

eiω(f) dµ(ω) = e−
1

2
||f ||2 ,

where

||f ||2 =

∫

R

f2
(t) dt.

Let L2
be the space of real-valued functions with finite square norm || · ||, we have

the triple S(R) ⊂ L2 ⊂ S′
(R). For any f ∈ L2

, we can always choose a sequence

of fn ∈ S(R) so that fn → f in L2
, and ω(f) is defined as the limn→∞ ω(fn) in

L2
(µ).

Consider the indicator function

1(0,a)(s) =







1, if 0 ≤ s < a,
−1, if a ≤ s < 0,

0, otherwise.

It can be verified that for any two real numbers a and b, the random variables

ω(1(0,a)(·)) and ω(1(0,b)(·)) are jointly normal, mean zeros, and with covariance

min(a, b). Define B̃(t) as ω(1(0,t)(·)), we can always find a continuous version of

B̃(t), denoted by B, which is the standard Brownian motion. Roughly speaking,

the probability space (Ω, B(Ω), µ) can intuitively be considered as a space consisting

of all sample paths of a Brownian motion.
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Following the approach of [14], we give the definition of fractional Brownian

motion with Hurst parameter
1
2 ≤ H < 1 in terms of white noise setting by using

the fundamental operator MH , defined on the space L2
, by

MHf(x) =

{

f(x), H =
1
2 ,

cH

∫

R
f(t)|t − x|H− 3

2 dt, H < 1
2 < 1,

where cH is a constant depending on the Hurst parameter H via

cH = (2Γ(H −
1

2
) cos(

π

2
(H −

1

2
)))

−1
[Γ(2H + 1) sin(πH)]

1

2 .

Then, ω(MH1(0,a)(·)) and ω(MH1(0,b)(·)) are jointly normal with covariance

1

2
{|a|2H

+ |b|2H − |a − b|2H}.

Again, we can find a continuous version of ω(MH1(0,t)(·)) denoted by BH
(t), which

is the fractional Brownian motion.

We have the following Wiener-Itô Chaos Decomposition Theorem for a square

integrable random variable on S′
(R) (see Theorem 2.2.4 of [18]).

Theorem 2.1. If F ∈ L2
(Ω, B(Ω), µ), then F (ω) has a unique representation

F (ω) =

∑

α

cαHα(ω),

where α is any finite integers sequence (α1, α2, . . . , αn), cα are real coefficients and

Hα(ω) = hα1
(ω(e1))hα2

(ω(e2)) · · ·hαn
(ω(en)) hn(x) are Hermite polynomials and

en is an orthonormal set in S(R) which is defined as

ei(t) = (
√

π2
i−1

(i − 1)!)
−1/2hi−1(t)e

−t2/2.

Furthermore, the L2 norm of the functional F (ω) is given by

∑

α

α!c2
α,

with α! = α1!α2! · · ·αn!.

Remark 2.1. (see [18, 27]) The basis {Hα(ω) : α} is orthogonal with respect to

the inner product E(XY ) in L2
(Ω, B(Ω), µ). The variance of Hα(ω) is α!. H0(ω) is

taken as the constant 1. For α �= 0, the expectation of Hα(ω) is

E(Hα(ω)H0(ω)) = 0.

As a result, the term c0 is the expectation of the functional F (ω).

Consider the functional BH
t = ω(MH1[0,t](.)), where t is a given constant. Using

the dual property (see [14]) of the MH operator: for all rapidly decreasing functions

f and g, we have

(f, MHg) ≡

∫

R

f(t)MHg(t) dt =

∫

R

g(t)MHf(t) dt ≡ (MHf, g).
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The function MH1[0,t](.) can be rewritten in the Fourier expansion form:

MH1[0,t](s) =

∞
∑

i=0

(MH1[0,t](·), ei(·))ei(s)

=

∞
∑

i=0

(1[0,t](·), MHei(·))ei(s)

=

∞
∑

i=0

{∫ t

0

MHei(u)du

}

ei(s).

Since ω is linear, the functional can be written as

ω(MH1[0,t](·)) =

∞
∑

i=0

(1[0,t](·), ei(·))ω(ei)

=

∞
∑

i=0

{∫ t

0

MHei(u)du

}

ω(ei).

=

∑

α

cαHα(ω).

In this example, when α = ε(i) = {0..., 1, 0, ...}, i.e., one at position i, cα =
∫ t

0
MHei(u)du, and cα = 0 otherwise. It is tempting to write

d

dt
BH

t =

∞
∑

i=0

MHei(t)ω(ei),

which is illegitimate in the traditional sense as the Brownian motion or the frac-

tional Brownian motion is nowhere differentiable. With the chaos expansion form,

differentiation and integration with respect to time t can be defined, but they may

not always be square integrable. Such type of operation is called integration or

differentiation in (S)
∗

(see [18]).

Definition 2.1. Let (S) be a subset of L2
(Ω, B(Ω), µ) consisting of functionals

with Wiener-Itô Chaos decomposition such that

∑

α







c2
αα!

∏

j∈N

(2j)kαj







< ∞

for all k < ∞ and that (S)
∗

consists of all expansions, not necessarily belonging to

L2
(Ω, B(Ω), µ), such that

∑

α







c2
αα!

∏

j∈N

(2j)−qαj







< ∞

for some q < ∞, then, the spaces (S) and (S)
∗

are called the Hida test function

space and the Hida distribution space respectively.

The derivative of the fractional Brownian motion, or the white noise is defined

by

WH
(t) =

∞
∑

i=0

MHei(t)ω(ei).
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It can be shown that the sum WH
(t) ∈ (S)

∗
(see [14, 31]). The importance of Hida

test function space and distribution space is their closedness of Wick multiplication.

Wick product is an operator acting on two functionals F (ω) and G(ω).

Definition 2.2. The Wick’s product for two functionals having Wiener-Itô Chaos

Decomposition

F (ω) =

∑

α

cαHα(ω)

and

G(ω) =

∑

β

bβHβ(ω)

is defined as

F (ω) 
 G(ω) =

∑

α,β

cαbβHα+β(ω).

Addition of indexes refers to pairwise addition.

The closeness of Wick’s product is shown in the following theorem (see Corollary

2.2 and Remark 2.8 of [31]).

Theorem 2.2. Wick multiplication is closed in (S) and (S)
∗.

It is reasonable to define the stochastic integration of a functional Zt(ω) with

respect to the fractional Brownian motion as the integration with respect to time

t of the Wick’s product between Zt(ω) and WH
t (ω). Under the Wiener Chaos de-

composition framework, if the decomposition exists, the functional Zt(ω) 
WH
t (ω)

can be written as
∑

α

cα(t)Hα(ω).

It is natural to think that the integration is

∑

α

{∫ t

0

cα(s)ds

}

Hα(ω),

by assuming that summation and integration are interchangeable. If the integration

with respect to time is a path-wise classical Riemann integral, it is not clear that

summation and integration are interchangeable. Such difficulties can be finessed

by introducing new definitions for integration with respect to time and integration

with respect to the fractional Brownian motion as follows (see Definitions 2.3 and

2.4 respectively).

Definition 2.3. (a) Elements in (S)
∗

as an operator: Let F (ω) =
∑

α cαHα(ω) ∈

(S)
∗

and f(ω) =
∑

α bαHα(ω) ∈ (S), then F can be regarded as an operation on f

〈F, f〉 =

∑

α

bαcαα!.

(b) Time integration: If Ft(ω) =
∑

α cα(t)Hα(ω) are elements in (S)
∗

for all

positive real number t, and that 〈Ft, f〉 are integrable with respect to t for all

f ∈ (S), then the integral
∫

R
Ft(ω)dt is defined as the unique element in (S)

∗
, I(ω)

such that

〈I(ω), f〉 =

∫

R

〈Ft(ω), f〉 dt

for all f ∈ (S).
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Remark 2.2. It can be shown that the quantity 〈F, f〉 in part (a) exists and is finite

under the condition given in the definition. It can be regarded as the expectation of

the product between F (ω) and f(ω) when F (ω) ∈ L2
(Ω, B(Ω), µ) and f(ω) ∈ (S).

Definition 2.4. Let Z(t) =
∑

α cα(t)Hα(ω) ∈ (S)
∗

for any given t, then, the

Wick’s integral of Z(t) is defined as

∫

R

Z(t) 
 dBH
(t) =

∫

R

{Z(t) 
 WH
(t)} dt,

when Z(t) 
WH
(t) is integrable with respect to time t in the sense as in Definition

2.3.

The following theorem asserts that integration and summation are interchange-

able, see Lemma 2.5.6 of [18].

Theorem 2.3. Let Z(t) : R → (S)
∗, with Wiener Chaos decomposition

∑

α

cα(t)Hα(ω)

such that
∑

α

α!{

∫

R

cα(t)dt}2
∏

j∈N

(2j)−qαj < ∞

for some q < ∞, then Z(t) is time-integrable, also, integration and summation are

interchangeable, i.e.

∫

R

Z(t)dt =

∑

α

{

∫

R

cα(t)dt}Hα(ω).

3. Fractional Itô’s lemma

Several approaches of extending classical Itô’s lemma to incorporate the fractional

Brownian motion were discussed in the literature, e.g., [8, 9, 12]. The settings in

these papers are different and various conditions are required to ensure that the

stochastic integrals appear in the fractional Itô lemma exist. Bender in [1] provided a

simpler version of fractional Itô’s lemma based on the white noise setting introduced

in the preceding section. Here, we restate Bender’s theorem in Theorem 3.1 and

give a generalized result in Theorem 3.2.

Theorem 3.1. Consider the stochastic process

Yt =

∫ t

0

h(t) dBH
t ≡ ω[MH(h(·)1[0,t)(·))],

where h(t) is a continuous function in [0, T ] and H > 1
2 . Let g(t, y) be a two-

dimensional function differentiable with respect to t and is twice differentiable with

respect to y. Also, there exists constants C1 ≥ 0 and

λ1 < (2TH
sups∈[0,T ] h(s))−2 so that

max{|g|, |gt|, |gy|, |gyy|} ≤ C1e
λ1y2

.
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Let k(t) = H(2H − 1)h(t)
∫ T

0
h(s)|s − t|2H−2 ds. Then, we have the following frac-

tional Itô’s lemma:

g(T, YT ) = g(0, 0) +

∫ T

0

∂

∂t
g(t, Yt) dt +

∫ T

0

h(t)
∂

∂y
g(t, Yt) 
 dBH

t

+

∫ T

0

k(t)
∂2

∂y2
g(t, Yt) dt.

Remark 3.1. The integrals above are well defined as the condition that the inte-

grands and integrals both belong to (L2
) is ensured by the given assumption. Since

(L2
) ⊂ (S)

∗
, the integrals are defined as in Section 2.

This theorem gives the differential form of g(t, Yt) when the underlying stochastic

process Yt is an integrals of a deterministic function ht. The following generalization

takes the underlying stochastic process to be Xt = g(t, Yt) and gives the differential

form for P (t, Xt), where P (t, x) is a two-dimensional real-valued function. Before

introducing our results, let us illustrate some ideas through an example (see [19]).

Consider the two-dimensional function,

g(t, y) = exp(µt −
1

2
σ2t2H

+ σy),

where µ and σ are two positive constants and the underlying stochastic process is

Yt =

∫ t

0

dBH
s ,

i.e., h(t) = 1. Clearly, for any given value of T , the functions g, gt, gy and gyy are

all continuous in the closed interval [0, T ] and hence, the conditions in the theorem

are fulfilled. Applying the lemma, we have

k(t) = H(2H − 1)

∫ t

0

|t − s|2H−2 ds = Ht2H−1,

and

dXt = (µ − σ2Ht2H−1
)g(t, Yt) dt + σg(t, Yt) 
 dBH

t

+k(t)σ2g(t, Xt) dt

= µg(t, Yt) dt + σg(t, Yt) 
 dBH
t

= µXt dt + σXt 
 dBH
t .

The next question is whether there exists an Itô’s lemma that further expresses

P (t, Xt) in terms of integrals involving µX and σX, but not Y and g explicitly. It

is reasonable to expect that

dP (t, Xt) = Pt(t, Xt) dt + µYtPx(t, Xt) dt + σYtPx(t, Yt) 
 dBH
t +

σ2Ht2H−1X2Pxx(t, Xt) dt.

This result can be verified by the following theorem.

Theorem 3.2. Using the same notations and assumptions in Theorem 3.1, further

assume that the differential of the stochastic process Xt = g(t, Yt) can be, according

to Theorem 3.1, written as

dXt = µ(t, Xt) dt + σ(t, Xt) 
 dBH
t .
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Also, there exists constants C2 ≥ 0 and λ2 < (2TH
sups∈[0,T ] h(s))−2 so that the

composite function P ◦ g ≡ P (t, g(t, y)) satisfies

max{|(P ◦ g)|, |(P ◦ g)t|, |(P ◦ g)y|, |(P ◦ g)yy|} ≤ C2e
λ2y2

.

Let C(t) = k(t)h−2
(t). Then the fractional Itô’s lemma is given by

P (T, XT ) = P (0, X0) +

∫ T

0

∂

∂t
P (t, Xt) dt +

∫ T

0

µ(t, Yt)
∂

∂x
P (t, Xt) dt

+

∫ T

0

σ(t, Yt)
∂

∂x
P (t, Xt) 
 dBH

t +

∫ T

0

C(t)σ2
(t, Yt)

∂2

∂x2
P (t, Xt) dt.

Proof. This theorem can be verified by applying Theorem 3.1 to f(t, g(t, Yt)).

To relate this result with previous works on fractional stochastic calculus and

option pricing theory, such as [12, 26], consider the last term in the right-hand side

of the Itô’s formula. This second order correction term can be considered as the

product of three quantities: Pxx(t, X), σ(t, X) and C(t)σ(t, X). Comparing with

the result of [12], the quantity C(t)σ(t, X) corresponds to Dφ
t Xt. This quantity

is known as the Malliavin derivative of Xt. For details of Malliavin calculus, see

[20, 24, 27]. Under our assumptions that Xt has the form of g(t, Yt), this quantity

depends only on the current time t and the value of X at time t. But this needs

not be the situation for a general Xt governed by a fractional stochastic differential

equation. In general this quantity may depend on the entire path of Xt, not only

on the value at one point. This may introduce further complications when working

with the differential.

4. The fractional CEV model

Here we construct a fractional version of the Constant Elasticity of Variance model

by means of the fractional Itô’s lemma (Theorem 3.1). As discussed in the intro-

duction, constant elasticity is characterized by the the volatility term σX
β/2
t in

a stochastic diffusion equation. In order to handle long-memory, we replace the

Wiener process by a fractional Brownian motion. The fractional diffusion equation

is then defined as

dXt = µ(t, Xt) dt + σX
β/2
t 
 dBH

t ,

where 0 ≤ β ≤ 2. If H =
1
2 and µ(t, Xt) ≡ µXt, this is the classical CEV model.

In this situation, the Wick integral is equivalent to the Itô’s integral (see [18])

and hence, the classical Itô’s lemma can be applied to any stochastic process of

the form Yt = P (t, Xt). When long-memory is considered, the Itô’s lemma will

involve the Malliavin derivative, which is in general path dependent and difficult

to handle. When the integration is defined in the white noise sense (Section 2),

the integrand is assumed to belong to (S)
∗

at every time t, and the integral is a

random variable in (S)
∗
. The elements in (S)

∗
, which are merely formal expansions,

may not correspond to real values for each ω and the term P (t, Xt) may not be

well-defined in general. In order to overcome such difficulties, we need to choose a

suitable µ(t, Xt).

Assume that Xt can be written explicitly in terms of time t and a stochastic

integral process Yt =
∫ t

0
h(s)dBH

s , i.e. Xt = g(t, Yt). From Theorem 3.1, the dif-

ferential of Xt can be decomposed into two parts, the drift term and the volatility
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term. In order to keep the elasticity constant, the function g(t, y) must be chosen

as

g(t, y) =

{

σ(1 −
β

2
)[h(t)]−1y + f(t)

}
2

2−β

,

where f(t) is an arbitrarily chosen function of t. This g(t, y) is in fact the solution

to the differential equation

h(t)
∂

∂y
g(t, y) = σ{g(t, y)}β/2.

The next question is how to choose f(t). The answer is given by the following

theorem.

Theorem 4.1. Assume that h(t) is a strictly positive function and g(t, y) is the

solution to the differential equation

h(t)
∂

∂y
g(t, y) = σ(t, g(t, y)).(4.1)

The general solution to this equation involves an arbitrary function f(t).
Let η(t) and ϕ(t) be two functions determined by the integral equations,

h(t) = e
−

∫

t

0

η(s)ds

and

f(t) = [h(t)]−1

[

a0 +

∫ t

0

h(s)ϕ(s) ds

]

,

where a0 is a constant so that g(0, 0) = X0, then,

Xt = g(t, Yt)

yields the volatility σ(t, Xt) in the fractional Itô’s lemma and the drift term is given

by a two dimensional function

µ(t, x) = σ(t, x)

[

ϕ(t) + C(t)
∂σ

∂x
+

∫ x

0

η(t)

σ(t, x)
dx +

∫ x

0

1

σ2(t, x)

∂σ

∂t
dx

]

.

Proof. Let

a(t, x) =

∫

dx

σ(t, x)
,

then g(t, y) given by

a(t, g(t, y)) = [h(t)]−1y + f(t)

satisfies Equation (4.1). After some manipulations, we have

∂

∂t
g(t, y) + k(t)

∂2

∂y2
g(t, y)

= σ(t, g)

[

ϕ(t) + C(t)
∂σ

∂x
(t, g) + η(t)a(t, g) −

∂a

∂t

]

,

which does not involve y explicitly. The proof is completed by comparing this with

fractional Itô’s lemma (Theorem 3.1).
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Remark 4.1. Note that the function C(t) depends on the choice of η(t) and by

definition (in Theorem 3.2) must be strictly positive.

In the CEV case, when the drift term has the form of

µ(t, x) =
η(t)

1 − β/2
x + σϕ(t)xβ/2

+
σ2β

2
xβ−1C(t),(4.2)

the solution to the stochastic diffusion equation

dXt = µ(t, Xt) dt + σX
β/2
t 
 dBH

t

is well defined and is given by Theorem 4.1. Now choose suitable time dependent

functions η(t) and ϕ(t). Consider the three quantities of µ(t, Xt) in (4.2). The last

one is strictly positive and cannot be eliminated. When we choose η(t) ≡ (1− β
2 )µ

and ϕ(t) ≡ 0, the second term vanishes and the first term becomes µXt. The drift

term becomes

µ(t, Xt) = µXt +
σ2β

2
C(t)Xβ−1

t .

The CEV stochastic differential equation is thus

Xt = X0 +

∫ t

0

µXs ds +

{∫ t

0

σ2β

2
C(s)Xβ−1

s ds +

∫ t

0

σXβ/2
s 
 dBH

s

}

.

5. Fractional option pricing theory

By using the generalized Itô’s lemma (Theorem 3.2), the differential of P (t, Xt) can

be decomposed into two terms, the drift one and the volatility one and both terms

involve only current time t and Xt, i.e., they are path-independent. The foundation

of the Black-Scholes’ option pricing theory is constructing a self-financing strategy,

which makes use of stocks and bonds to hedge an option. The definition for self-

financing strategy in continuous-time model depends on how the stochastic integrals

are defined. As the fractional stochastic integrals are defined in a different manner,

a new definition for self-financing strategy is required. One approach is adopted

by [14, 19], which defines self-financing strategy under the geometric fractional

Brownian motion. Here, this approach is extended to a more general situation.

Let Xt be the stock price process and Πt be the bond value and they are governed

by

Xt =

∫ t

0

µ(s, X) ds +

∫ t

0

σ(s, X) 
 dBH
s ,

Πt =

∫ t

0

rΠ ds.(5.1)

Definition 5.1. (see Section 5 of [14]) A trading strategy consists of a quantity

(ut, vt) of bonds and stocks is called self-financing if the infinitesimal change in the

portfolio value at time t is given by

dZt = d(utΠt + vtXt)

= rΠtut dt + µ(t, Xt)vt dt + [σ(t, Xt)vt] 
 dBH
t + d∆,

where d∆ is an infinitesimal dividend payment term.
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Below, using the above definition, a fractional Black-Scholes equation is derived.

Theorem 5.1. Suppose that the market consists of two securities, a risk-free bond

and a stock. Here, the stock provides dividend continuously with rate δ. Assume that

the stock price process Xt = g(t, Yt) is defined as in Section 3 which also satisfies

the equations (5.1). Then the price of a derivative on the stock price with a bounded

payoff f(X(T )) is given by P (t, X), where P (t, X) solves the PDE:

∂P

∂t
+ σ2

(t, X)C(t)
∂2P

∂X2
+ (r − δ)X

∂P

∂X
− rP = 0,(5.2)

with boundary condition P (T, X) = f(X) given that P ◦ g satisfies the conditions

in Theorem 3.2.

Proof. A proof parallel to the fractional Black-Scholes equation in [26] is given here.

Consider a solution P (t, X) to equation (5.2). Applying fractional Itô’s Lemma

Theorem 3.2,

dP (t, Xt) = [
∂P

∂t
+

∂P

∂X
µ(t, X) +

∂2P

∂X2
σ2

(t, X)C(t)] dt +
∂P

∂X
σ(t, X) 
 dBH

t .

Form a trading strategy by dynamically adjusting a portfolio consisting a varying

quantity v(t) of stocks and u(t) of bonds. By choosing

v(t) =
∂P

∂X

u(t) =
1

Πt
(P − X

∂P

∂X
),(5.3)

then the portfolio value at time t is Pt and

ru(t)Πt dt + v(t)µ(t, Xt) dt + [v(t)σ(t, Xt)] 
 dBH
t + δv(t)Xt dt

= [rP − rX
∂P

∂t
] dt + µ

∂P

∂X
dt + (σ

∂P

∂X
) 
 dBH

t +
∂P

∂X
δX dt

= [
∂P

∂t
−

∂P

∂X
δX dt +

∂2P

∂X2
σ2

(t, X)C(t)] dt

+ µ
∂P

∂X
dt + (σ

∂P

∂X
) 
 dBH

t +
∂P

∂X
δX dt

= [
∂P

∂t
+

∂P

∂X
µ(t, X) +

∂2P

∂X2
σ2

(t, X)C(t)] dt +
∂P

∂X
σ(t, X) 
 dBH

t

= dP (t, Xt)

= d (utΠt + vtXt).

By Definition 5.1, (u(t), v(t)) is a self-financing strategy. It can be shown that such

strategy hedges the derivative. The portfolio value at time t is given by u(t)Πt +

v(t)Xt and it is equal to P (t, Xt). At time of maturity, the portfolio value is just

P (T, XT ). By assumption, the function P (t, X) satisfies the boundary condition,

so P (T, XT ) = f(XT ). Therefore (u(t), v(t)) hedges the derivative and P (t, X) is

the option price.

6. Pricing an European call option under CEV models

Putting σ2
(t, X) ≡ σ2Xβ , the Black-Scholes PDE (Theorem 5.1) of the CEV model

is now given by

∂P

∂t
+ σ2C(t)Xβ ∂2P

∂X2
+ (r − δ)X

∂P

∂X
− rP = 0.
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Putting Y = X2−β
(see [5]) and P (t, X) = ertQ(t, Y ), this equation becomes

∂Q

∂t
+ [bY + cC(t)]

∂Q

∂Y
+ aC(t)Y

∂2Q

∂Y 2
= 0,

where a = σ2
(2 − β)

2
, b = (r − δ)(2 − β) and c = σ2

(2 − β)(1 − β). The boundary

condition is

Q(T, Y ) = e−rT
max(Y

1

2−β , 0).

The approach of Cox and Ross [6] that made use of Feller’s result ([15, 16]) can

be adopted. First the solution for this equation at (t0, Yt0) is the expectation of

Q(T, YT ) under the SDE

dY = [bY + cC(t)] dt +

√

2aC(t)Y dBt,(6.1)

with Y (t0) = Yt0 (see [25]). To solve this SDE, we follow Feller’s arguments. First,

a useful result of Kolmogorov is stated below (see Equation (167) of [21]).

Theorem 6.1. The probability density function of a diffusion process Xt driven by

standard Brownian motion

dXt = µ(t, Xt) dt + σ(t, Xt)dBt

is given by the PDE

ut = [
1

2
σ2

(t, X)u(t, X)]XX − [µ(t, X)u(t, X)]X .

In our case, because of (6.1), the Kolmogorov’s equation becomes

ut = [aC(t)Y u(t, Y )]Y Y − [(bY + cC(t))u(t, Y )]Y .

The European call option pricing formula can be obtained by solving the above

PDE.

Theorem 6.2. Under the fractional CEV model introduced in Section 4, the price

of an European call option with strike price K, mature at T at current time t0 is

given by

P (t0, X0) = e−δ(T−t0)X0

∞
∑

r=0

1

r!
e
− x

aγ
T (

x

aγT
)
rG(r + 1 +

1

2 − β
,

K2−β

aebT γT
)

− Ke−r(T−t0)
∞
∑

r=0

1

Γ(r + 1 − 1
2−β )

e
− x

aγ
T (

x

aγT
)
r+ 1

2−β G(r + 1,
K2−β

aebT γT
),

where x = e−bt0Y (t0),

γt ≡

∫ t

t0

e−bτC(τ) dτ

and

G(α, ν) ≡
1

Γ(α)

∫ ∞

ν

e−τ τα−1 dτ.

Proof. Assume that the Laplace Transform of u(t, Y ) with respect to Y exists and

equals to ω(t, s). Since the value of Y at time t0 is given, Yt0 is deterministic and
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thus u(t0, Y ) = δ(Y − Yt0), the Dirac function. Also, ω(t0, s) = e−sY0 = π(s) and

the equation becomes the boundary value problem

ωt + s(aC(t)s − b)ωs = −cC(t)sω + ψ(t)(6.2)

ω(t0, s) = e−sY0 .(6.3)

In equation (6.2), ψ(·) is called the flux of u at the origin (see [16]), which is to

be determined later. Now, we find the characteristic curve of the first order PDE

(6.2). The characteristic curve is given by

ds

dt
= aC(t)s2 − bs.

The solution to this equation is

s = e−bt
[C1 − aγt]

−1.

On this curve, ω(t, s(t)) satisfies

d

dt
ω(t, s(t)) = ψ(t) − c C(t)s(t)ω(t, s(t)).

Solving, we have

ω(t, s(t)) = [C1 − aγt]
c/a

[C2 +

∫ t

t0

ψ(τ)|C1 − aγτ |
−c/a dτ ].

For any given point (t1, s1), the characteristic curve with

C1 = aγt1 +
1

s1ebt1
= C(t1, s1)

passes through (t1, s1). Also, this curve passes through the point (t0, C
−1
1 e−bt0).

This yields the value of C2,

C2 = [C1(t1, s1)]
−c/aω(t0, e

−bt0C−1
1 (t1, s1)).

The Laplace transform of u(t, Y ) at point (t1, s1) is thus given by

ω(t1, s1) = (s1e
bt1)

−c/a
[(C1(t1, s1))

−c/aω(t0, e
−bt0C−1

1 (t1, s1))

+

∫ t1

t0

ψ(τ)|a(γt1 − γτ ) +
1

s1ebτ
|−c/a dτ ]

(6.4)

= [s1aebt1γt1 + 1]
−c/aπ(

s1e
b(t1−t0)

s1aebt1γt1 + 1
)

+

∫ t1

t0

[s1aebt1(γt1 − γτ ) + 1]
−c/aψ(τ) dτ.

Following the argument of [16], when u(t, 0) is finite and c ≤ 0 or 0 < c < a,

lim
s→

(saebtγt + 1)ω(t, s) = 0,

then ψ(t) is given by the integral equation

π(
e−bt0

aγt
) +

∫ t

t0

ψ(τ)(
γt

γt − γτ
)
c/a dτ = 0.
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To solve this equation, applying the substitutions z =
1
γt

and ζ =
1

γτ

,

∫ ∞

z

g(ζ)(ζ − z)
−c/a dζ = π(

e−t0

aγt
) = π(

ze−t0

a
)

(6.5)

= exp(−
xz

a
),

where g(ζ) = −ψ(τ)ζc/a dτ
dζ .

The solution of (6.5) is

g(ζ) =
1

Γ(1 − c
a )

(
x

a
)

−c+a

a exp(−
x

aγτ
),

ψ(τ) = g(ζ)ζ−c/a dζ

dτ

=
−1

Γ(1 − c
a )

(
1

γτ
)(

x

aγτ
)

−c+a

a exp(−
x

aγτ
)
dγτ

dτ
.

Substituting this result into (6.4), after simplification, we get

ω(t, s) = exp(
−sxebt

saebtγt + 1
)(

1

saebtγt + 1
)
c/a

Γ(1 −
c

a
;

x

aγt(saebtγt + 1)
).

The next step is to perform an inverse Laplace transform with respect to s. To this

end, let

A =
x

aγt
,

z = saebtγt + 1.

One can verify that equation (6.5) in [16] is still valid after these substitutions. The

quantity ω(t, s) can now be rewritten as

1

Γ(1 − c
a )

e−AA1− c

a

∫ 1

0

(1 − τ)
−c/ae

Aτ

z z−1 dτ.

Using the fact that Laplace Transform of I0(z(AτY )
1/2

) is e
Aτ

z z−1
, we have

u(t, Y ) = (
1

aebtγt
)(

xebt

Y
)

−c+a

2a exp{−
(Y + xebt

)

aebtγt
}I1− c

a
[

2

aγt
(e−btxY )

1/2
],

where Iλ(·) is the first type Bessel function with order λ, which is defined as

Iλ(·) =

∞
∑

k=0

(·/2)
2k+λ

k!Γ(k + 1 + λ)
.

This density function is then used to find the solution of P at (t0, X0) by means of

the identity,

P (t0, X0) = ert0Q(t0, X0) = e−r(T−t0)E[max(Y
1

2−β

T − K, 0)].

After direct calculations, we have

P (t0, X0) = e−r(T−t0)

∫ ∞

K2−β

(y
1

2−β − K)u(T, y) dy

= e−r(T−t0)
∞
∑

r=0

e(r−δ)T x
1

2−β

1

r!
e
− x

aγ
T (

x

aγT
)
rG(r + 1 +

1

2 − β
,

K2−β

aebT γT
)

− Ke−r(T−t0)
∞
∑

r=0

1

Γ(r + 1 − 1
2−β )

e
− x

aγ
T (

x

aγT
)
r+ 1

2−β G(r + 1,
K2−β

aebT γT
).
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Putting x = e−bt0X2−β
0 ,

x
1

2−β = e−
bt0

2−β X0 = e−(r−δ)t0X0.

So the option pricing formula is

P (t0, X0) = e−δ(T−t0)X0

∞
∑

r=0

1

r!
e
− x

aγ
T (

x

aγT
)
rG(r + 1 +

1

2 − β
,

K2−β

aebT γT
)

− Ke−r(T−t0)
∞
∑

r=0

1

Γ(r + 1 − 1
2−β )

e
− x

aγ
T (

x

aγT
)
r+ 1

2−β G(r + 1,
K2−β

aebT γT
).

This formula is similar to the classical one, which is obtained by replacing the

term γT by the term
1
2b (e

−bt0 − e−bT
). As these two terms do not depend on the

strike price, the implied volatility pattern is the same as the classical CEV model.

Consequently, the fractional CEV model also accounts for the volatility skewness

observed in practice.
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Abstract: The Sharpe ratio, which is defined as the ratio of the excess ex-

pected return of an investment to its standard deviation, has been widely cited

in the financial literature by researchers and practitioners. However, very little

attention has been paid to the statistical properties of the estimation of the

ratio. Lo (2002) derived the
√

n-normality of the ratio’s estimation errors for

returns which are iid or stationary with serial correlations, and pointed out

that to make inference on the accuracy of the estimation, the serial correlation

among the returns needs to be taken into account. In the present paper a class

of time series models for returns is introduced to demonstrate that there exists

a factor other than the serial correlation of the returns that dominates the

asymptotic behavior of the Sharpe ratio statistics. The model under consider-

ation is a linear process whose innovation sequence has summable coefficients

and contains a latent volatility component which is long-memory. It is proved

that the estimation errors of the ratio are asymptotically normal with a conver-

gence rate slower than
√

n and that the estimation deviation of the expected

return makes no contribution to the limiting distribution.

1. Introduction

An interesting phenomenon observed in many financial time series is that strong

evidence of persistent correlation exists in some nonlinear transformation of returns,

such as square, logarithm of square, and absolute value, whereas the return series

itself behaves almost like white noise. This so-called clustering volatility property

has a profound implication. The traditional linear processes such as ARMA models

and the mixing conditions of various types that have been widely used to account

for the weak-dependence or short-memory properties of stationary processes (see,

e.g., [1]) are found inadequate to model the dependence structure of the return

process. A great deal of research works have been devoted to looking for proper

models that entail the stylized fact mentioned above. The ARCH model proposed

by Engle [6] and its various extensions are attempts that have been proved very

successful. Recently, models other than ARCH family have been seen to provide

better fitting for data with clustering volatility. For instance, Lobato and Savin [11]

examine the S&P 500 index series for the period of July 1962 to December 1994

and report that the squared daily returns exhibit the genuine long-memory effect

which ARCH process cannot produce (see also [5]). Based on Lobato and Savin’s

finding, Breidt, Crato and Lima [2] suggest the following long-memory stochastic

volatility model (LMSV):

rt = vtεt, vt = δ exp(xt),(1.1)

1
Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan, e-mail:

hcho@stat.sinica.edu.tw

AMS 2000 subject classifications: primary 60G10, 62M10; secondary 60F05.

Keywords and phrases: long memory, stochastic volatility, Sharpe ratio.
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where δ > 0, and {xt} is a Gaussian process which exhibits long memory and is

independent of the iid sequence {εt} with mean zero and variance one. The short-

memory version of model (1.1) has been discussed, for example, by Taylor [14],

Melino and Turnbull [12] and Harvey et al. [8]. The precise definition of short- or

long-memory process is given as follows. A linaer process defined as

xt =

∞
∑

i=0

aizt−i,(1.2)

where the zi are iid random variables (Gaussian or non-Gaussian) having mean 0

and variance one, is called short-memory if the coefficients ai are summable or long-

memory if ai ∼ Ci−β
with β in (1/2, 1); “gn ∼ hn” signifies limn→∞ gn/hn = 1. The

long-memory process just defined is sometimes also referred to as a fractional dif-

ferencing (or I(d)) process with the memory parameter d = 1−β [3]. It can be seen

that the LMSV model described in (1.1) and (1.2) exhibits the desirable property

that {rt} is white noise and {r2
t } is long-memory. Because of this characteristic

property, one needs to be cautious in making statistical inference for the LMSV

model if the statistics of interest involve nonlinear transformations. The purpose

of this paper is to point out a circumstance under which the estimation statistics

based on the LMSV model behave distinctly different from traditional stationary

sequences of weak dependence such as the ARMA model with iid innovations.

We use the example of the Sharpe ratio to demonstrate that for the LMSV model

the estimation statistics have entirely different asymptotic properties from those of

the case where the volatilily is short-memory. Discussions of this and a more general

model are presented in Sections 2 and 3, respectively. The paper’s main result is

formulated in a theorem stated in Section 3 and its proof is given in Section 4.

2. LMSV models: the simple case

The Sharpe raio, which is defined as the ratio of the excess expected return of an

investment to its standard deviation, is originally motivated by the mean-variance

analysis and the Sharpe-Lintner Captial Asset Pricing Model (Campbell, Lo and

MacKinlay [4]) and has become a popular index used to evaluate investment per-

formance and for risk management. Both the expected return and the standard

deviation are generally unknown and need to be estimated. Although the ratio is

one of the most commonly cited statistics in financial analysis by researchers and

practitioners as well, not much attention has been paid to its statistical properties

until the work of Lo [10]. Lo [10] points out that to gauge the accuracy of the

estimates of the ratio, it is important to take into account the dependence of the

returns for it may result significant difference of the limiting variance between iid

and non-iid (dependent) returns. For both of the two cases the standard
√

n central

limit theorem is assumed to hold for the ratio’s estimates. The LMSV time series is

a stationary martingale difference sequence bearing strong dependence in the latent

component of volatility. The partial sums of the sequence itself and of the sequence

after a certain transformation is applied may have entirely different asymptotic

behaviors. Below we show that for the LMSV model, the Sharpe ratio statistic is

asymptotically normal but converges to the true ratio at a rate slower than
√

n.

Furthermore, while the ratio’s statistics involve the estimates of the expected re-

turn and the standard deviation, it turns out that only the estimation errors of the

latter contribute to the limit distribution as opposed to the case of short-memory

volatility where neither of the two estimates is asymptotically negligible.
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Let the returns {rt} be model as in (1.1) and (1.2) with long-memory xt =
∑∞

i=0 aizt−i, where zi are iid random variables having mean 0 and variance 1 and

the coefficients ai are such that ai ∼ C ·i−β
with β in (1/2, 1). Denote by σ2

= Er2
t .

For the observed returns {r1, . . . , rn}, we define

µ̂ = n−1
n

∑

t=1

rt, σ̂2
= n−1

n
∑

t=1

(rt − µ̂)
2,

and the Sharpe ratio statistics

ŜR =
µ̂ − rf

σ̂
,

where rf is a fixed risk-free interest rate assumed to be positive. Using the δ-method,

we have

ŜR − SR =
µ̂

σ
+

rf (σ̂2 − σ2
)

2σ3
+ Op((σ̂

2 − σ2
)
2
).

Also write

σ̂2 − σ2
= n−1

n
∑

t=1

v2
t (ε2

t − 1) + n−1
n

∑

t=1

(v2
t − σ2

) − µ̂2.

To derive the asymptotic distribution, we first compute the variance of σ̂2 − σ2
.

Note that

var(n−1
n

∑

t=1

v2
t (ε2

t − 1)) = O(n−1
) and var(µ̂) = O(n−1

),(2.1)

since both {v2
t (ε2

t − 1)} and {vtεt} are sequences of martingale differences. For
∑n

t=1(v
2
t − σ2

), we use the results obtained by Ho and Hsing [9]. Let F (·) be the

common distribution function of the xt. Denote by

K∞(y) = e2y

∫

e2xdF (x).

Then by Theorem 3.1 and Corollary 3.3 of Ho and Hsing [9],

nβ−3/2{

n
∑

t=1

(v2
t − σ2

)} = δ2K(1)
∞ (0)nβ−3/2{

n
∑

t=1

xt} + op(1)(2.2)

d
→ 2σ2 · N(0, ξ2

)

with

ξ2
= C2

∫ ∞

0
(x2

+ x)
−βdx

2(1 − β)(3/2 + β)
·

∫ 1

−∞

{

∫ 1

0

[(v − u)
+

]
−βdv}du.

Combining (2.1) and (2.2) gives

nβ−1/2
(ŜR − SR) =

rf

2σ3
nβ−1/2

(σ̂2 − σ2
) + op(1)(2.3)

d
→ rfσ−1 · N(0, ξ2

),



168 H.-C. Ho

If xt is short-memory in the sense as specified before that

xt =

∞
∑

i=0

aizt−i with

∞
∑

i=1

|ai| < ∞,

then the usual
√

n central limit theorem will hold for
√

n(ŜR − SR). The proof

of this will be covered in the next subsection as a special case of a more general

model.

3. Linear processes of LMSV models

We now focus on the linear process with its innovations being a LMSV sequence.

Specifically, define

yt =

∞
∑

j=0

bjrt−j with

∑

j

|bj | < ∞,(3.1)

where rt is modeled in (1.1) and (1.2) with δ = 1. Denote by σ2
y the variance of the

yt. The Sharpe ratio now is SR = rf/σy and its corresponding estimator is

ŜRy =
Wn − rf

σ̂y
,(3.2)

where

Wn = n−1
n

∑

t=1

yt, σ̂y = (n−1
n

∑

t=1

(yt − Wn)
2
)
1/2.

From now on we assume that there is a positive constant K such that for any η > 0

Eeηx1 ≤ eKη2

.(3.3)

As can be seen later in the proof we only need a sufficiently large constant K. Using

a stronger condition here is merely for the ease of presentation.

Theorem. For the model defined in (3.1), assume condition (3.3) holds.

(i) Suppose xt is short-memory, that is,
∑∞

i=0 |ai| < ∞. Assume Eε3
1 = 0,

then

√
n(ŜR − SR)

d
→ N(0, ξ2

1)(3.4)

for some constant ξ1.

(ii) If xt is long-memory with the coefficients satisfying that ai ∼ Ci−β for

β ∈ (1/2, 1), then

nβ−3/2
(ŜR − SR)

d
→ 2

∫

e2xdF (x)N(0, ξ2
2)(3.5)

for some constant ξ2.

The limiting variances, ξ2
1 and ξ2

2 , given in (3.4) and (3.5) above will be derived in

the proof of the theorem. Both ξ2
1 and ξ2

2 depend on the linear filter {bj} and some

parameters of the laten process {xt}. It is a very challanging problem to estimate

the two quantities. For part (ii) of the Theorem, if the distribution function F (·)
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of xt is known, then one can use the sampling window method proposed in [7] and

[13] to consistently estimate ξ2
1 and ξ2

2 . As for the short-memory case of part (i) of

the Theorem, no existing results in the literature cover this case unless a certain

kind of weak dependence is assumed. With only the summability condition on {aj}

one needs to develop some new theory to support the use of the resampling scheme

mentioned above.

Proof of Theorem. (i) Define

xt,m =

m−1
∑

i=0

aiεt−i, x̃t,m =

∞
∑

i=m

aiεt−i, rt,m = ext,mεt, yt,m =

m−1
∑

j=0

bjrt−j,m,

Wn,m = n−1
n

∑

t=1

yt,m.

Since yt,m’s are 2m-dependent, as n → ∞,

√
nWn,m

d
→ N(0, λ2

m),(3.6)

where

λ2
m = lim

n→∞
n−1

var(

n
∑

t=1

yt,m)

= δ2Ee2x1,m(

m
∑

j=0

b2
j + 2

∞
∑

k=1

m
∑

j=0

bjbj+k).

Write

√
n(Wn − Wn,m) = n−1/2

n
∑

t=1

(yt − yt,m)

= n−1/2
n

∑

t=1

m−1
∑

j=0

bj(rt−j − rt−j,m) + n−1/2
m

∑

t=1

∞
∑

j=m

bjrt−j

≡ Cn,m + Dn,m.

Then

EC2
n,m = δ2Ee2x1,m(ex̃1,m − 1)

n−1
∑

k=−n−1

(1 −
|k|

n
)(

m−1
∑

j=0

bjbj+k).

By using the elementary inequality |ex − 1| ≤ e|x|, |x| ≤ 1, and the Chebyshev

inequality, we have

E(ex̃1,m − 1)
2

= E(ex̃1,m − 1)
2I{x̃1,m ≤ 1} + E(ex̃1,m − 1)

2I{x̃1,m > 1}

≤ e(Ex̃2
1,m) + (E(ex̃1,m − 1)

4
)
1/2

(Ex̃2
1,m)

1/2.

Because, by assumption (3.3), Ee4x1,m is bounded in m, we have

E(ex̃1,m − 1)
2 → 0 as m → ∞.(3.7)

This and
∑∞

j |bj | < ∞ jointly imply

lim
m→∞

lim
n→∞

EC2
n,m = 0.(3.8)



170 H.-C. Ho

Similarly,

lim
m→∞

lim
n→∞

ED2
n,m = 0.(3.9)

From (3.6), (3.8) and (3.9) it follows that

√
nWn → N(0, λ2

),(3.10)

where

λ2
= lim

m→∞
λ2

m = σ2
(

∞
∑

j=0

b2
j +

∞
∑

k=1

∞
∑

j=0

bjbj+k).

We now derive the limiting distribution for
√

n(σ̂2
y − σ2

y). Write

√
n(σ̂2

y − σ2
y) = δ2n−1/2

n
∑

t=1

∞
∑

j=0

b2
je

2xt−j (ε2
t−j − 1) + δ2n−1/2

n
∑

t=1

∞
∑

j=0

(e2xt−j − σ2
y)

+ n−1/2
n

∑

t=1

∑

i �=j

bibjrt−irt−j

≡ Vn,1 + Vn,2 + Vn,3.(3.11)

By the same m- truncation argument as used in proving (3.8) one can show that

Vn,1, Vn,2 and Vn,3 are asymptotically normal and independent, that is, as n → ∞,

Vn,1 + +Vn,2 + Vn,3
d
→ N(0, g2

),(3.12)

where g2
is the sum of the limiting variances of Vn,1, Vn,2 and Vn,3. Because xt may

be non-Gaussian, the analytic form of the covariance function of {e2xt − σ2
y} and

consequently of the limiting variance of Vn,2, which equals to

δ2
lim

m→∞
lim sup

n→∞
n−1

var(

n
∑

t=1

(e2xt,m − σ2
y)),

is not available. However, the exact formulas of limiting variances for Vn,1and Vn,3

can be found as follows.

lim
n→∞

var(Vn,1) = δ4
[Ee4x1 ][E(ε2

1 − 1)
2
][

∞
∑

j=0

b4
j + 2

∞
∑

k=1

∞
∑

j=0

b2
jb

2
j+k],

lim
n→∞

var(Vn,3) = δ4
[Ee2x1 ]

2
[

∑

i �=j

b2
i b

2
j +

∞
∑

k=1

∑

i �=j

bibi+kbjbj+k].

Note that the assumption Eε3
1 = 0 is used to prove that Vn,2 is asymptotically

independent with Vn,1 and Vn,3. The limit results of (3.10)and (3.12) imply

√
n(ŜR − SR)

d
→ N(0, ξ2

1)

with ξ2
1 = λ2

+ r2
f (4σ6

y)
−1g2

. Hence (2.4) holds.

(ii) Because {rt} is a sequence of martingale differences, we have

var(Wn) = O(1/n).(3.13)
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Similarly, for Vn,1 and Vn,3 defined in (3.11),

var(Vn,1) = O(1), var(Vn,3) = O(1).(3.14)

To compute the variance of Vn,2, define y′
t =

∑∞
j=0 bjxt−j . Then y′

t can be rewritten

as

y′
t =

∞
∑

j=0

zt−jBj ,

where

Bj =

j
∑

i=0

biaj−i.

As j → ∞, since aj ∼ Cj−β
,

Bj ∼ C1j
−β ,

where C1 = C(
∑∞

i=0 bi). Then, as k → ∞,

∞
∑

j=0

BjBj+k ∼ C2
1

∫

x−β
(1 + x)

−βdx · k−2β+1,

implying that

Ey′
ty

′
t+k =

∞
∑

j=0

BjBj+k ∼ C2
1

∫

x−β
(1 + x)

−βdx · k−2β+1.

In other words, {y′
t} is also a linear long-memory process having the same memory

parameter as that of xt. Therefore, similar to (2.2),

nβ−3/2
n

∑

t=1

y′
t

d
→ N(0, ξ2

2)(3.15)

with

ξ2
2 =

C2
1

∫ ∞

0
(x2

+ x)
−βdx

2(1 − β)(3/2 + β)
·

∫ 1

−∞

{

∫ 1

0

[(v − u)
+
]
−βdv}du.

As noted before in (2.2) that

nβ−3/2{

n
∑

t=1

(e2xt − σ2
)} = 2

∫

e2xdF (x) · (nβ−3/2{

n
∑

t=1

xt}) + op(1).

From this and (3.15), we have, as n → ∞,

nβ−3/2{

n
∑

t=1

∞
∑

j=0

bj(e
2xt−j − σ2

y)} = 2

∫

e2xdF (x)(nβ−3/2
n

∑

t=1

y′
t) + op(1)

d
→ 2

∫

e2xdF (x) · N(0, ξ2
2).(3.16)

Summarizing (3.13), (3.14) and (3.16) gives

nβ−3/2
(ŜR − SR)

d
→ 2

∫

e2xdF (x)N(0, ξ2
2).

The proof is completed.
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Abstract: We review the advancement of nonstationary time series analy-

sis from the perspective of Cowles Commission structural equation approach.

We argue that despite the rich repertoire nonstationary time series analysis

provides to analyze how do variables respond dynamically to shocks through

the decomposition of a dynamic system into long-run and short-run relations,

nonstationarity does not invalid the classical concerns of structural equation

modeling — identification and simultaneity bias. The same rank condition

for identification holds for stationary and nonstationary data and some sort

of instrumental variable estimators will have to be employed to yield consis-

tency. However, nonstationarity does raise issues of inference if the rank of

cointegration or direction of nonstationarity is not known a priori. The usual

test statistics may not be chi-square distributed because of the presence of

unit roots distributions. Classical instrumental variable estimators have to be

modified to ensure valid inference.

1. Introduction

Let {w
˜

t} be a sequence of time series observations of random variables. Multi-

variate vector autoregressive model (VAR) has been suggested as a useful tool to

summarize the information contained in the data and to generate predictions (e.g.

Hsiao [21, 22], Sims [50]). These models treat all variables as joint dependent and

treat w
˜

t as a function of its past values, w
˜

t−j . On the other hand, Cowles Com-

mission approach assumes each equation in the system describes a behavioral or

technological relations. An essential element of the Cowles Commission approach

is to decompose w
˜

t into G endogenous variables, y
˜

t
, and K exogenous variables,

x
˜

t, w
˜

′
t = (y

˜

′
t
, x
˜

′
t), G + K = m. The value of endogenous variables y

˜
t

are determined

by the simultaneous interaction of the behavioral, technological or institutional re-

lations in the model given the value of the exogenous variables, x
˜

t, and shock of the

system (say, ε
˜
t). The value of x

˜
t is assumed to be determined by the forces outside

of the model (e.g. Koopmans and Hood [19]). The Cowles Commission structural

equation approach is also referred as a structural equations model (SEM). It has

wide applications in education, psychology and econometrics, etc. (e.g. Browne and

Arminger [6], Hood and Koopmans [19], Muthen [39, 40], Yuan and Bentler [59]).

In this paper we will only focus on the aspects related to the time series analysis

of a SEM.

Since the observed data can only provide information on conditional distribution

of y
˜

t
given past values of y

˜
t−j

and current and past values of x
˜

t−j , there is an issue of

if it is possible to infer from the data the true data generating process for the SEMs,

which is referred to as an identification issue. Another issue for the SEMs is because

1
Department of Economics, University of Southern California, 3620 S. Vermont Ave. KAP300,

Los Angeles, CA 90089, e-mail: chsiao@usc.edu
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of the joint dependency of y
˜

t
, the regressors of an equation are correlated with the

error (shock) of an equation which violates the condition for the regression method

to be consistent. This is referred to as simultaneity bias issue. The theory and

statistical properties of SEMs are well developed for stationary data (e.g. Amemiya

[2], Intriligator, Boskin and Hsiao [30]).

Nelson and Plosser [41] have shown that many economic and financial data con-

tain unit roots, namely, most are integrated of order 1 or 2, I(1) or I(2). Theories

for the time series analysis with unit roots have been derived by Anderson [4], Chan

and Wei [7], Johansen [31, 32], Phillips [45], Phillips and Durlauf [46], Sims, Stock

and Watson [51], Tiao and Tsay [57], etc. Among the major findings are that (i)

w
˜

t may be cointegrated in the sense that a linear combination of I(d) variables

may be of order I(d − c), where d and c are positive numbers, say 1 (Granger and

Weiss [14], Engle and Granger [11], Tiao and Box [54]); (ii) “Since these models

(VAR) don’t dichotomize variables into “endogenous” and “exogenous,” the exclu-

sion restrictions used to identify traditional simultaneous equations models make

little sense” (Watson [58]); (iii) Time series regressions with integrated variables can

behave very differently from those with stationary variables. Some of the estimated

coefficients converge to their true values at the speed of

√
T and are asymptoti-

cally normally distributed. Some converge to the true values at the speed of T but

have non-normal asymptotic distribution, and are asymptotically biased. Hence the

Wald test statistics under the null may not be approximated by chi-square distrib-

utions (Chan and Wei [7], Sims, Stock and Watson [51], Tsay and Tiao [57]); (iv)

Even though the I(1) regressors may be correlated with the errors, the least squares

regression consistently estimates the cointegrating relation, hence the simultaneity

bias issues may be ignored (Phillips and Durlauf [46], Stock [52]).

In this paper we hope to review the recent advances in nonstationary time series

analysis from the perspective of Cowles Commission Structural equation approach.

In section 2 we discuss the relationships between a vector autoregressive model

(VAR), a structural vector autoregressive model (SVAR), and Cowles Commission

structural equations model (SEM). Section 3 discusses issues of estimating VAR

with integrated variables. Section 4 discusses the least squares and instrumental

variable estimators, in particular, the two stage least squares estimator (2SLS) for

a SVAR. Section 5 discusses the modified and lag order augmented 2SLS estimators

for SVAR. Conclusions are in Section 6.

2. Vector autoregression, structural vector autoregression and

structural equations model

For ease of exposition, we shall assume that all elements of w
˜

t are I(1) processes.

We assume that w
˜

t are generated by the following p-th order structural vector

autoregressive process without intercept terms:
1

(2.1) A(L)w
˜

t = ε
˜
t

where A(L) = A0 + A1L + A2L
2
+ · · ·+ ApL

p
. We assume that initial observations

w
˜

0, w
˜
−1, . . . , w

˜
−p are available and

A.1: A0 is nonsingular and A0 �= Im, where Im denotes an m rowed identity matrix.

A.2: The roots of |A(L)| = 0 are either 1 or outside the unit circle.

1
The introduciton of intercept terms complicates algebraic manipulation without changing the

basic message. For detail, see [28].
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A.3: The m×1 error or innovation vector ε
˜
t is independently, identically distributed

(i.i.d.) with mean zero, nonsingular covariance matrix Σεε and finite fourth

cumulants.

Premultiplying A−1
0 to (2.1) yields the conventional VAR model of Johansen

[31, 32], Phillips [45], Sims [50], Sims, Stock and Watson [51], Tsay and Tiao [57],

etc.,

(2.2) w
˜

t = Π1w
˜

t−1 + · · · + Πpw
˜

t−p + v
˜

t,

where Πj = −A−1
0 Aj , j = 1, . . . , p, and v

˜
t = A−1

0 ε
˜
t. The difference between (2.1)

and (2.2) is that each equation in the former is supposed to describe a behavioral

or technological relation while the latter is a reduced form relation. Eq. (2.2) is use-

ful for generating prediction, but cannot be used for structural or policy analysis.

For instance, w1t, w2t, w3t, w4t may denote the price and quantity of a product, per

capita income and raw material price, respectively. The first and second equations

describe a demand relation which has quantity inversely related to price and posi-

tively related to income, and a supply relation which has price positively related to

quantity and raw material price, respectively. Only (2.1) can provide information

on demand and supply price elasticities but not (2.2). Equation (2.2) can only yield

expected value of price and quantity given past w
˜

t−j .

Let A = [A0, A1, . . . , Ap] and define a (p + 1)m-dimensional nonsingular matrix

M as

(2.3) M =













Im Im . . . Im

0
˜

Im . . . Im

0
˜

0
˜

. . . Im

. . . . .
0
˜

. .0
˜
. Im













.

Postmultiplying A by M yields an error-correction representation of (2.1),

(2.4)

p−1
∑

j=0

A∗
j � w

˜
t−j + A∗

pw
˜

t−p = ε
˜
t,

where � = (1−L), A∗
j =

∑j
�=0 A�, j = 0, 1, . . . , p. Let A∗

= [A∗
1, . . . , A

∗
p] = [Ã∗

1, A
∗
p],

then A∗
= AM . The coefficient matrices Ã∗

1 and A∗
p provide the implied short-run

dynamics and long-run relations of the system (2.1) as defined in [26].
2

Similarly, we can post-multiply (2.2) by M to yield an error-correction represen-

tation of the reduced form (2.2)

(2.5) �w
˜

t = Π
∗
1 � w

˜
t−1 + · · · + Π

∗
p−1 � w

˜
t−p+1 + Π

∗
pw
˜

t−p + v
˜

t,

where Πj =
∑j

i=1 Πi − Im.

In this paper we are concerned with statistical inference of (2.1). If the roots of

|A(L)| = 0 are all outside the unit circle, w
˜

t is stationary. It is well known that the

least squares estimator (LS) is inconsistent. The 2SLS and 3SLS using lagged w
˜

t as

instruments are consistent and asymptotically normally distributed (e.g. Amemiya

[2], Malinvaud [38]). Therefore, we shall assume that at least one root of |A(L)| = 0

2
The long-run and short-run dichotomization defined here is derived from (2.1). They are

different from the those implied by Granger and Lin [13], Johansen [31, 32] or Pesaran, Shin and

Smith [43], etc.
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is equal to 1. More specifically,
3

A4:(a) A∗
p = α

˜
β
˜

′
(or Π

∗
p = a

˜

∗β
˜

∗′

) where α
˜

and β
˜

(or α
˜

∗
and β

˜

∗
) are m × r

matrices of full column rank r, 0 ≤ r ≤ m − 1

(b) α
˜

′
⊥Jβ

˜
⊥

or (α
˜

∗′

⊥J∗β
˜

∗

⊥
) is nonsingular, where J =

∑p−1
j=0 A∗

j , (or J∗
=

∑p−1
j=0 Π

∗
j ), α

˜
⊥ and β

˜
⊥

(or α
˜

∗
⊥ and β

˜

∗

⊥
) are m × (m − r) matrices of full

column rank such that α
˜

′
⊥α

˜
= 0

˜
= β

˜

′

⊥
β
˜

, (or α
˜

∗′

⊥α
˜

∗
= 0

˜
= β

˜

∗′

⊥
β
˜

) (If r = 0,

then we take α
˜
⊥ = Im = β

˜
⊥

.)

Under A1-A4, w
˜

t has r cointegrating vectors (the columns of β
˜

) and m − r unit

roots. As shown by Johansen [31, 32] and Toda and Phillips [56] that A4 ensures

that the Granger representation theorem (Engle and Granger [11]) applies, so that

�w
˜

t is stationary, β
˜

′w
˜

t is stationary, and w
˜

t is an I(1) process when r < m.

The cointegrating vectors β
˜

provide information on the “long-run” or “equilib-

rium” state in which a dynamic system tends to converge over time after any of the

variables in the system being perturbed by a shock, α
˜

transmits the deviation from

such long-run relations, e
˜

t = β
˜

′w
˜

t, into each of w
˜

t, and Ã∗
1 provides information

on how soon such “equilibrium” is restored. In economics, the existence of long-run

relationships and strength of attraction to such a state depends on the actions of a

market or on government intervention. In this sense, the concept of cointegration has

been applied in a variety of economic models including the relationships between

capital and output; real wages and labor productivity; nominal exchange rate and

relative prices, consumption and disposable income, long- and short-term interest

rates, money velocity and interest rates, price of shares and dividends, production

and sales, etc. (e.g. Banerjee, Dolado, Galbraith and Hendry [5], Hsiao, Shen and

Fujiki [29], King, Plosser, Stock and Watson [33]).

Since the data only provide information of the conditional density of w
˜

t given

past values of w
˜

t−j , j = 1, . . . , there is an issue of if it is possible to derive (2.1) from

(2.2) (or (2.4) from (2.5)). Without prior restrictions, there can be infinitely many

different SVAR that yield identical (2.2). To see this we note that premultiplying

(2.1) by any nonsingular constant matrix F yields

(2.6) Ã0w
˜

t + Ã1w
˜

t−1 + · · · + Ãpw
˜

t−p = ε̃
˜
t,

where Ãj = FAj , ε̃
˜
t = Fε

˜
t. Equations (2.1) and (2.5) yield identical (2.2) since

Ã−1
0 Ãj = A−1

0 F−1FAj = Πj , v
˜

t = Ã−1
0 ε̃

˜
t = A−1

0 F−1Fε
˜
t = A−1

0 ε
˜
t. In other words,

(2.1) and (2.5) are observationally equivalent.

An equation in (2.1) is identified if and only if the g-th row of admissible trans-

formation matrix F = (f
˜

′

g
) takes the form that apart from the gth element being a

nonzero constant, the rest are all zeros, i.e., f
˜

′

g
= (0, . . . , 0, fgg, 0, . . . , 0) (e.g. Hsiao

[23]). The transformation matrix F is admissible if and only if (2.1) and (2.6) sat-

isfy the same prior restrictions. Suppose that the g-th equation of (2.1) satisfies the

prior restrictions a
˜

′
gΦg = 0

˜

′
, where a

˜

′
g denotes the g-th row of A and Φg denotes a

(p+1)m×Rg matrix with known elements. Let Φ
∗
g = M−1

Φg, the existence of prior

restrictions a
˜

′
gΦg = 0

˜

′
is equivalent to the existence of prior restrictions a

˜

∗′

g Φ
∗
g = 0

˜

′
,

where a
˜

∗′

g is the g-th row of A∗
. It is shown by Hsiao [26] that

3
Since Π

∗
p = A−1

0 A∗
p, A4 implies that (a) Π

∗
p = α

˜

∗β
˜

∗′
, where α

˜

∗
and β

˜

∗
are m× r matrices of

full column rank r, 0 ≤ r ≤ m − 1, and (b) α
˜

∗′

⊥
J∗β

˜

∗
⊥

is nonsingular, where J∗
=

∑

p−1

j=0
Π

∗
j
.
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Theorem 2.1. Suppose that the g-th equation of (2.1) is subject to the prior re-

strictions a
˜
′
gΦg = 0

˜

′. A necessary and sufficient condition for the identification of

the g-th equation of (2.1) or (2.4) is that

(2.7) rank(AΦg) = m − 1,

or

(2.8) rank(A∗
Φ

∗
g) = m − 1.

Let w
˜

′
t = (y

˜

′
t
, x
˜

′
t), where y

˜

′
t

and x
˜

′
t are 1 × G and 1 × K, respectively, and

G + K = m. Let

A(L) =

[

A11(L) A12(L)

A21(L) A22(L)

]

,

and ε
˜

′
t = (ε

˜

′
1t, ε

˜

′
2t) be the conformable partitions. Cowles Commission decomposi-

tion of w
˜

t into joint dependent variable variables y
˜

t
and exogenous variables x

˜
t is

equivalent to imposing the prior restrictions (Zellner and Palm [60]),

(2.9) A21(L) ≡ 0
˜

and Eε
˜
1tε

˜

′
2t = 0

˜
.

The prior restrictions (2.9) restrict the admissible transformation matrix F to be

block diagonal (e.g. Hsiao [23]). Therefore,

Corollary 2.1. Under (2.9) and a
˜
′
gΦg = 0

˜

′, a necessary and sufficient condition

for the identification of the g-th equation for g ≤ G is

(2.10) rank[(A11 A12)Φg] = G − 1,

where A11 and A12 are conformable partitions of A.

The identification condition (2.7) or (2.8) does not require any prior knowledge

of the direction of nonstationarity or the rank of cointegration. As a matter of

fact many macroeconometric models are identified without any prior knowledge of

location of unit roots or rank of cointegration, (e.g. the Klein [34] interwar model

and the large scale Wharton quarterly model (Klein and Evans [35]). Of course, if

such information is available, it can improve the efficiency of system estimators and

simplify the issues of inference considerably (e.g. King, Plosser, Stock and Watson

[33]).

3. Inference in VAR (or reduced form)

Consider the g-th equation of (2.2),

(3.1) w
˜

g = Xπ
˜

g + v
˜

g,

where w
˜

g is the T ×1 vector of the g-th element of w
˜

t, wgt, X = (W−1, . . . , W−p), is

the T ×mp vector of w
˜

t−1, . . . , w
˜

t−p, π
˜

g is the corresponding vector of coefficients,

and v
˜

g is the T × 1 vector of the g-th element of v
˜

t, vgt.

Rewrite (3.1) in terms of linearly independent I(0) and full rank I(1) regressors

X∗
1 and X∗

2 , respectively, by postmultiplying a nonsingular transformation matrix
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Mx to X,
4

we have

w
˜

g = XMxM−1
x π

˜
g + v

˜
g

= X∗π
˜

∗
g + v

˜
g(3.2)

= (X∗
1 , X∗

2 )

(

π
˜

∗
g1

π
˜

∗
g2

)

+ v
˜

g,

where π
˜

∗
g = M−1

x π
˜

g = (π
˜

∗′

g1, π
˜

∗′

g2)
′
. The least squares estimator of (3.1) is equal to

Mx times the least squares estimator of (3.2),

π̂
˜

= (X ′X)
−1

(X ′w
˜

g)

= Mx(X∗′

X∗
)
−1X∗′

w
˜

g(3.3)

= Mx[π
˜

∗
g + (X∗′

X∗
)
−1X∗′

v
˜

g].

The statistical properties of (3.3) can be derived by making use of the funda-

mental functional central limit theorems proved by Chan and Wei [7], Phillips and

Durlauf [46], etc.:

Theorem 3.1. Let η
˜

t
be an m × 1 vector of random variables with E(η

˜
t
| η
˜

t−1
,

. . . , ) = 0
˜
, E(η

˜
t
η
˜

′
t
| η
˜

t−1
, . . . , ) = Im, and bounded fourth moments. Let F (L) =

∑∞
j=0 FjL

j and G(L) =
∑∞

j=0 GjL
j with

∑∞
j=0 j | Fj |< ∞ and

∑∞
j=0 j | Gj |< ∞.

Let ξ
˜

t
=
∑t

s=1 ηs, and let B(r) denote an m × 1 dimensional Brownian motion

process.

Then

(a) T−1/2
∑T

t=1 F (L)η
˜

t
=⇒ N(0, F (1)F (1)

′
),

(b) T−1
∑T

t=1 ξ
˜

t−1
η
˜

t
=⇒

∫

B(r)dB(r)′,

(c) T−1
∑T

t=1 ξ
˜

t
[F (L)η

˜
t
]
′
=⇒ F (1)

′
+
∫

B(r)dB(r)′F (1)
′
,

(d) T−1
∑T

t=1[F (L)η
˜

t
][G(L)η

˜
t
]
′ −→

∑∞
j=0 FjG

′
j ,

(e) T−2
∑T

t=1 ξ
˜

t
ξ
˜

′

t
=⇒

∫

B(r)B(r)′dr,

where to simplify notation
∫ 1

0
is denoted by

∫

and −→ and =⇒ denote convergence

in probability and distribution of the associated probability measure, respectively.

Making use of theorem 3.1, it follows that

Theorem 3.2. Under Assumptions A.1 - A.4, as T −→ ∞,

(3.4)

√
T (π̂

˜

∗
g1 − π

˜

∗
g1) =⇒ N(0

˜
, σ2

vg
M∗

x1x1
),

T (π
˜

∗
g2 − π

˜

∗
g2) =⇒

(
∫

Bx∗

2
(r)Bx∗

2
(r)′dr

)−1

(3.5) (∫

Bx∗

2
(r)dBvg

(r)

)

.

where M∗
x1x1

= plim 1
T

∑T
t=1 x

˜
∗
1tx

˜
∗′

1t. Moreover, (3.4) and (3.5) are asymptotically

independent.

4
Such a transformation always exist. However, it does not need to be known a priori. The use

of (3.2) is to facilitate the derivation of statistical properties of the estimators of (3.1) or (2.1).
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The least squares estimator (3.3) is a linear combination of π̂
˜

∗
g1 and π̂

˜

∗
g2. Its

limiting distribution is determined by the limiting distribution of the slower rate

of π̂
˜

∗
g included. Since the limiting distribution of π̂

˜

∗
g2 is nonstandard and involves a

matrix unit distribution, the usual Wald test statistic under the null may not be ap-

proximated by the chi-square distribution if the null hypothesis involves coefficients

in the direction of nonstationarity (e.g. Dolado and Lutkepohl [9], Sims, Stock and

Watson [51], Tsay and Tiao [57]). On the other hand, if w
˜

t is cointegrated and the

rank of cointegration is known a priori, Ahn and Reinsel [1] and Johansen [31, 32]

using the reduced rank framework proposed by Anderson [3] have shown that the

coefficients of cointegration vectors are asymptotically mixed normal, hence there

will be no inference problem. The Wald test statistics constructed from the reduced

rank regression will again be asymptotically chi-square distributed. This is because

imposing the reduced rank condition is equivalent to avoid estimating the unit roots

in the system.

Unfortunately, as discussed in section 2, prior information on the rank of cointe-

gration or direction of nonstationarity is usually lacking. One way to deal with it is

to pretest the data for the presence of cointegration and the rank of cointegration,

then apply the reduced rank regression of Ahn and Reinsel [1] or Johansen [31, 32].

However, statistic tests for the rank of cointegration have very poor finite sample

performance (e.g. Stock [53]). The first stage unit root test and second stage coin-

tegration test can induce substantial size distortion. For instance, Elliott and Stock

[10] consider a bivariate problem in which there is uncertainty about whether the

regressor has a unit root. In their Monte Carlo simulation they find that unit root

pretests can induce substantial size distortions in the second-stage test. If the in-

novations of the regressors and the second-stage regression error are correlated, the

first-stage Dickey-Fuller [8] t-statistic and the second-stage t-statistic will be depen-

dent so the size of the second stage in this two-stage procedure cannot be controlled,

even asymptotically. Many other Monte Carlo studies also show that serious size

and power distortions arise and the number of linearly independent cointegrating

vectors tend to be overestimated as the dimension of the system increases relative

to the time dimension (e.g. Ho and Sorensen [18], Gonzalo and Pitarakis [12]).

Another way is to correct the miscentering and skewness of the limiting distri-

bution of the least squares estimator due to the “endogeneities” of the predeter-

mined integrated regressors (e.g. Park [42], Phillips [44], Phillips and Hansen [47],

Robinson and Hualde [49]). However, since the rank of cointegration and direction

of nonstationarity are unknown, Phillips [45] proposes to deal with potential endo-

geneities by making a correction of the least squares regression formula that adjusts

for whatever endogeneities there may be in the predetermined variables that is due

to their nonstationarity by transforming the dependent variables w
˜

t into

(3.6) w
˜

+
t = w

˜
t − Ωv�wΩ

−
�w�w � w

˜
t,

where Ω�w�w =
∑∞

j=−∞ E(�w
˜

t � w′

˜
t−j), Ωv�w =

∑∞
j=−∞ E(v

˜
t � w′

˜
t−j) and

Ω
−
�w�w denotes the Moore-Penrose generalized inverse.

5
Using w

˜

+
t in place of w

˜
t

in (2.2) is equivalent to modifying the error term from v
˜

t to v
˜

t − Ω�wΩ
−
�w � w

˜
t,

which now becomes serially correlated because �w
˜

t is serially correlated. To cor-

rect for this order (1/T) serial correlation bias term, Phillips [45] suggests fur-

ther adding (X ′X)
−1

(0
˜
, T∆

+′

v�w) to the least squares regression estimator of w
˜

+
t

on �w
˜

t−1, . . . ,�w
˜

t−p+1, w
˜

t−p, where ∆
+
v�w = Ωv�wΩ

−
�w�w∆�w�w, and ∆uv

5
If w

˜
t are cointegrated, Ω�w�w does not have full rank.
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denotes the one-sided long-run covariances of two sets of I(0) variables (ut, vt),

∆uv =
∑∞

j=0 Γuv(j) where Γuv(j) = Eu
˜

tv
˜

t−j .
6

Consistent estimates of Ωuv or ∆uv

can be obtained by using Kernel method (e.g. Hannan [15], Priestley [48]).

(3.7) Ω̂uv =

T−1
∑

j=−T+1

h(j/K)Γ̂uv(j),

(3.8) ∆̂uv =

T−1
∑

j=0

h(j/K)Γ̂uv(j),

where Γ̂uv(j) is a consistent sample covariance estimator of Γuv(j), and h(·) is a

kernel function and K is a lag truncation or bandwidth parameter. Assuming that

Assumption 3.1. The kernel function h(·) : R −→ [−1, 1] is a twice continuously

differentiable even function with:

(a) h(0) = 1, h′
(0) = 0, h′′

(0) �= 0; and either

(b) h(x) = 0, | x |≥ 1, with lim|x|−→1
h(x)

(1−|x|)2 = constant, or

(b’) h(x) = O((1 − x)
2
), as | x |−→ 1.

Assumption 3.2. The bandwidth parameter K in the kernel estimates (3.7) and

(3.8) has an expansion rate K ∼ cT T k
for some k ∈ (1/4, 2/3) and for some slowly

varying function cT and thus K/T 2/3
+T 1/4/K −→ 0 and K4/T −→ ∞ as T −→ ∞.

Phillips [45] shows that the modified least squares estimates are either asymp-

totically normally distributed or mixed normal. However, because the direction of

nonstationarity is unknown, the conditional covariance matrix cannot be derived.

Therefore, if the test statistic involves some of the coefficients of nonstationary

variables, the limiting distribution becomes a mixture of chi-squares variates with

the weights between 0 and 1. In other words, if tests based on chi-square distrib-

ution rejects the null with significance level α, then the test rejects the null with

significance level less than α. In other words, tests based on chi-square distribution

provides a conservative test.

Toda and Yamamoto [55] have suggested a lag-order augmented approach to

circumscribe the issue of non-standard distributions associated with integrated re-

gressors by overfitting a VAR with additional dmax lags where dmax denotes the

maximum order of integration suspected. In our case, dmax = 1. In other words,

instead of estimating (2.2), we estimate

(3.9) w
˜

t = Π1w
˜

t−1 + · · · + Πpw
˜

t−p + Πp+1w
˜

t−p−1 + v
˜

t,

Since we know a priori, Πp+1 ≡ 0, we are only interested in the estimates of

Πj , j = 1, . . . , p. The limiting distributions of the least squares estimates of (3.9)

can be derived from the limiting distributions of the least squares estimates of (the

error-correction form),

(3.10) w
˜

t = Π
∗
1 � w

˜
t−1 + · · · + Π

∗
p � w

˜
t−p + Π

∗
p+1w

˜
t−p−1 + v

˜
t,

because Π
∗
j =

∑j
i=1 Πi, j = 1, . . . , p + 1 or Πj = Π

∗
j − Π

∗
j−1 where Π

∗
0 ≡ 0

˜
. Since

Π
∗
j , j = 1, . . . , p are coefficients of stationary regressors, Theorem 3.2 shows that the

6
Under A.3, ∆v�w = 0

˜
.
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least squares estimates of Π
∗
j , j = 1, . . . , p converge to the true values at the speed of

√
T and are asymptotically normally distributed. Only the least squares estimates

of Π
∗
p+1 may be T -convergent and have non-normal limiting distributions. However,

since we know a priori that Πp+1 = 0
˜
, our interest is only in Πj , j = 1, . . . , p. The

least squares regression of (3.9) yields Π̂j = Π̂
∗
j − Π̂

∗
j−1, j = 1, . . . , p, therefore, they

are asymptotically normally distributed. Wald test statistics of the null hypothesis

constructed from regression estimates of (3.9) will again be asymptotically chi-

square distributed.

Phillips [45] modified estimator maintains the T -convergence part of the coeffi-

cients associated with full rank integrated regressors. The Toda-Yamamoto [55] lag

order augmented estimator is only

√
T -convergent. So Phillips [45] modified esti-

mator is likely to be asymptotically more efficient. However, computationally, the

Phillips modified estimator is much more complicated than the lag order augmented

estimator. Moreover, test statistics constructed from the modified estimators can

only give the bounds of the size of the test because the conditional variance is un-

known, while test statistics constructed from the lag order augmented estimator

asymptotically yield the exact size.

4. Least squares and two stage least squares estimation of SVAR

For ease of exposition, we assume that prior information is in the form of excluding

certain variables, both current and lagged, from an equation. Let the g-th equation

of (2.1) be written as

(4.1) w
˜

g = Zgδ
˜

g + ε
˜
g,

where w
˜

g and ε
˜
g denote the T × 1 vectors of (wg1, . . . , wgT )

′
and (εg1, . . . , εgT )

′
,

respectively, and Zg denotes the T × [(p + 1)g∆ − 1] dimensional matrix of g∆

included current and lagged variables of w
˜

t.

The least squares estimator of (4.1) is given by

(4.2) δ̂
˜

g,�s = (Z ′
gZg)

−1Z ′
gw
˜

g

Phillips and Durlauf [46] and Stock [52] have shown that the least squares es-

timator with integrated regressors is consistent even when the regressors and the

errors are correlated. However, the basic assumption underlying their result is that

the regressors are not cointegrated. In a dynamic framework even though w
˜

t−j are

I(1), the current and lagged variables are trivially cointegrated. It was shown in

[21] when contemporaneous joint dependent variables also appear as explanatory

variables in (4.1), applying least squares method to (4.1) does not yield consistent

estimator for δ
˜

g. To see this, let Mg be the nonsingular transformation matrix that

transforms Zg into Z∗
g = ZgMg = (Z∗

g1, Z
∗
g2), where Z∗

g1 denotes the 	g-dimensional

linearly independent I(0) variables and Z∗
g2 denotes the T observations of bg full

rank I(1) variables,
7

then

(4.3)
w
˜

g = ZgMgM
−1
g δ

˜
g + ε

˜
g

= Z∗
g δ
˜

∗
g + ε

˜
g

where δ
˜

∗
g = M−1

g δ
˜

g = (δ
˜

∗′

g1, δ
˜

∗′

g2)
′
with δ

˜

∗
g1 and δ

˜

∗
g2 denoting the 	g × 1 and bg × 1

vector, respectively. Such transformation always exists. For instance, if no cointe-

grating relation exists among the included w
˜

t, say w̃
˜

gt, then bg equals the dimension

7
By full rank I(1) variables we mean that there is no cointegrating relation among Z∗

g2.
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of included joint dependent variables, g∆, and Z∗
g1 consists of the first differenced

current and p − 1 lagged included variables, Z∗
g2 is simply the T × bg (or T × g∆)

included w̃
˜

gt lagged by p periods, w̃
˜

g,t−p. On the other hand, if there exists g∆ − bg

linearly independent cointegrating relations among the g∆ included variables, w̃
˜

gt,

then Z∗
g1 consists of the current and p− 1 lagged �w̃

˜
gt and W̃g,−pd

˜
g cointegrating

relations, where W̃g,−p is T × g∆ matrix of included w̃
˜

g,t−p, d
˜

g is g∆ × (g∆ − bg) of

constants, and Z∗
g2 consists of the T observed bg full rank I(1) variables W̃g2,−p.

The least squares estimator (4.2) can be written as δ̂
˜

g,�s = Mg δ̂
˜

∗

g,�s, where δ̂
˜

∗

g,�s

denotes the least squares estimator of (4.3). Using Theorem 3.1, one can show that
1
T Z∗′

g1Z
∗
g1 −→ M∗

zg1zg1
, T−2/3Z∗′

g1Z
∗
g2 −→ 0

˜
, 1

T 2 Z∗′

g2Z
∗
g2 =⇒ M∗

zg2zg2
, 1

T 2 Z∗′

g2ε
˜
g −→ 0

˜
,

1
T Z∗

g1ε
˜
g −→ b

˜
, where b

˜
= [E(ε

˜
gtw̃

˜

′
gt), 0

˜

′
]
′

= [(A−1
0

∑

εε,g)
′
g, 0

˜

′
]
′,
∑

εε,g is the g-th

column of
∑

εε and (A−1
0

∑

εε,g)g is the (g∆ − 1) × 1 subvector of A−1
0

∑

εε,g that

corresponds to the g∆ − 1 included variables w̃
˜

gt in the g-th equation, and M∗
zg1zg1

and M∗
zg2zg2

are nonsingular. It follows that

(4.4) δ̂
˜

∗

g,�s =

[

δ̂
˜

∗

g1,�s

δ̂
˜

∗

g2,�s

]

−→

[

δ
˜

∗
g1

δ
˜

∗
g2

]

+

[

b
˜
0
˜

]

.

Although the coefficients of Z∗
g2 can be consistently estimated, the coefficients of Z∗

g1

cannot. Since δ̂
˜

g,�s is a linear combination of δ̂
˜

∗

g1,�s and δ̂
˜

∗

g2,�s, δ̂
˜

g,�s is inconsistent.

When the errors and regressors are correlated, a standard procedure is to use

instrumental variable method. Using lagged variables as instruments, the two stage

least squares estimator of δ
˜

g is given by

(4.5) δ̂
˜

g,2SLS = [Z ′
gX(X ′X)

−1X ′Zg]
−1

[Z ′
gX(X ′X)

−1Z ′
gw
˜

g],

where X = (W−1, W−2, . . . , W−p) and W−j denotes the T×m matrix representation

of w
˜

t−j . Transforming X into linearly independent I(0) and full rank I(1) processes,

X∗
1 and X∗

2 , respectively, by Mx, XMx = [X∗
1 , X∗

2 ], the 2SLS estimator (4.5) is equal

to Mg δ̂
˜

∗

g,2SLS , where

(4.6) δ̂
˜

∗

g,2SLS = [Z∗′
g X∗

(X∗′X∗
)
−1X∗′Z∗

g ]
−1

[Z∗′
g X∗

(X∗′X∗
)
−1X∗′w

˜
g]

Since
1

T 2 Z∗′
g1X

∗
2 −→ 0

˜
,

1
T Z∗′

g2X
∗
1 =⇒ M∗

zg2x1
,

1
T 2 Z∗′

g2X
∗
1 −→ 0, 1

T X∗′
1 X∗

1 −→ M∗
x1x1

,
1
T X∗′

1 X∗
2 =⇒ M∗

x1x2

1
T 2 X∗′

1 X∗
2 −→ 0, 1

T 2 X∗′
2 X∗

2 =⇒ M∗
x2x2

1
T X∗′

1 ε
˜
g −→ 0

˜
, and

1
T 2 X∗′

2 ε
˜
g −→ 0

˜
, and M∗

x2x2
are nonsingular, it follows that δ̂

˜

∗

g,2SLS converges to δ
˜

∗
g.

Hence the 2SLS estimator of δ
˜

g is consistent.

Let Hg =

[

T− 1

2 I�g
0
˜

0
˜

T−1Ibg

]

and Hx =

[

T− 1

2 I�∗ 0
˜

0
˜

T−1Ib∗

]

, where 	∗ and b∗ are

the column dimensions of X∗
1 and X∗

2 respectively. Under assumptions A.1 - A.4,

as T −→ ∞,

H−1
g (δ̂

˜

∗

g,2SLS − δ
˜

∗
g) =

[√
T (δ̂

˜

∗

g1,2SLS − δ
˜

∗
g1)

T (δ̂
˜

∗

g2,2SLS − δ
˜

∗
g2)

]

(4.7)

=⇒

[

(M∗
zg1x1

M∗−1
x1x1

M∗
x1zg1

)
−1

(M∗
zg1x1

M∗−1
x1x1

· T−1/2X∗′
1 ε

˜
g)

(M∗
zg2x2

M∗−1
x2x2

M∗
x2zg2

)
−1

(M∗
zg2x2

M∗−1
x2x2

· T−1X∗′
2 ε

˜
g)

]

.

By theorem 3.1, we have

(4.8)
1

√
T

X∗′
1 ε

˜
g =⇒ N(0

˜
, σ2

gM∗
x1x1

).
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and

(4.9)
1

T
X∗′

2 ε
˜
g =⇒

∫

Bx∗

2
dBεg

,

where Bεg
denotes the Brownian motion of εgt with variance σ2

g , Bx∗

2
denotes a b∗×1

vector Brownian motion of �x
˜

∗
2t with covariance matrix Ω�x∗

2
�x∗

2
where Ω�x∗

2
�x∗

2

is the long-run covariance matrix of �x
˜

∗
2t. The Brownian motion B∗

x2
and Bεg

are

not independent because εgt and v
˜

t are contemporaneously correlated. Following

Phillips [44], we can decompose the right hand side of (4.9) into two terms as

(4.10)

∫

Bx∗

2
dBεg·x∗

2
+

∫

Bx∗

2
Ωεg�x∗

2
Ω

−1
�x∗

2
�x∗

2

dBx∗

2
,

where Bεg·x∗

2
= Bεg

− Ωεg�x∗

2
Ω

−1
�x∗

2
�x∗

2

Bx∗

2
≡ BM(σ2

g·�x∗

2

) with σ2
g.�x∗

2

= σ2
g −

Ωεg�x∗

2
Ω

−1
�x∗

2
�x∗

2

Ω�x∗

2
εg

, and Ωεg�x∗

2
denotes the long-run covariance between ε

˜
g

and �x
˜

∗
2. The first term of (4.10) is a mixed normal. The second term involves a

matrix unit root distribution that arises from using lagged w
˜

as instruments when

w
˜

is I(1) and the contemporaneous correlation between ε
˜
gt and w

˜
t is nonzero. The

“long-run endogeneity” of the nonstationary instruments X∗
2 leads to a skewness

of the limiting distribution of δ̂
˜

∗

g,2SLS and its dependence on nuisance parameters

that are impossible to eliminate by the 2SLS. Therefore,

Theorem 4.1. Under A.1 - A.4 the 2SLS estimator of δ
˜

∗
g is consistent and

(4.11)

√
T (δ̂

˜

∗

g1,2SLS − δ
˜

∗
g1) =⇒ N(0

˜
, σ2

g(M∗
zg1x1

M∗−1
x1x1

M∗
x1zg1

)
−1

),

T (δ̂
˜

∗

g2,2SLS − δ
˜

∗
g2) =⇒

{∫

Bz∗

g2
B′

x∗

2

dr(

∫

Bx∗

2
B′

x∗

2

dr)−1

∫

Bx∗

2
B′

z∗

g2

dr

}−1

{∫

Bz∗

g2
B′

x∗

2

dr(

∫

Bx∗

2
B′

x∗

2

dr)−1
(4.12)

×

[∫

Bx∗

2
dBεg·x∗

2
+

∫

Bx∗

2
Ωεg�x∗

2
Ω

−1
�x∗

2
�x∗

2

dBx∗

2

]}

,

where Bz∗

g2
denotes a bg × 1 vector Brownian motion of �z

˜
∗
g2,t which appears in

the g-th equation. The distributions of (4.11) and (4.12) are asymptotically inde-

pendent.

Theorem 4.1 suggests that inference about the null hypothesis Pδ
˜

g = c
˜

can

be tricky, where P and c
˜

are known matrix and vector of proper dimensions. If√
TP (δ̂

˜
g,2SLS − δ

˜
g) has a nonsingular covariance matrix, the limiting distribution

of P δ̂
˜

g is determined by the limiting distribution of δ̂
˜

∗

g1, hence the Wald test statistic

(4.13) (δ̂
˜

g,2SLS − δ
˜

g)
′P ′

Cov (P δ̂
˜

g,2SLS)
−1P (δ̂

˜
g,2SLS − δ

˜
g)

under the null will be asymptotically chi-square distributed. On the other hand, if√
TP (δ̂

˜
g,2SLS − δ

˜
g) has a singular covariance matrix, it means that there exists a

nonsingular matrix L such that

(4.14) LPδ
˜

g = LP ∗δ
˜

∗
g =

[

P̃11 P̃12

0
˜

P̃22

] [

δ
˜

∗
g1

δ
˜

∗
g2

]
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with nonzero P̃22. Then

(P δ̂
˜

g,2SLS − c
˜
)
′
Cov (P δ̂

˜
g,2SLS)

−1
(P δ̂

˜
g,2SLS − c

˜
)

=

{

[

P̃11 P̃12

0
˜

P̃22

]

[

δ̂
˜

∗

g1,2SLS

δ̂
˜

∗

g2,2SLS

]

− Lc
˜

}′

Cov (LP δ̂
˜

g,2SLS)
−1

×

{

[

P̃11 P̃12

0
˜

P̃22

]

[

δ̂
˜

∗

g1,2SLS

δ̂
˜

∗

g2,2SLS

]

− Lc
˜

}

(4.15)

=⇒ T (P̃11δ̂
˜

∗

g1,2SLS + P̃12δ̂
˜

∗

g2,2SLS − c̃
˜
1)

′
Cov (

√
T P̃11δ̂

˜

∗

g1,2SLS)
−1

× (P̃11δ̂
˜

∗

g1,2SLS + P̃12δ̂
˜

∗

g2,2SLS − c̃
˜
1)

+ T 2
(P̃22δ̂

˜

∗

g2,2SLS − c̃
˜
2)

′
Cov (T P̃22δ̂

˜

∗

g2,2SLS)
−1

(P̃22δ̂
˜

∗

g2,2SLS − c̃
˜
2),

where Lc
˜

= (c̃
˜

′
1, c̃

˜

′
2)

′
. The first term on the right hand side of (4.15) is asymp-

totically chi-square distributed. The second term, according to Theorem 3.1 has a

nonstandard distribution. Hence (4.15) is not asymptotically chi-square distributed.

If there exists prior information that satisfies (2.9) and w
˜

1 and w
˜

2 are cointe-

grated with x∗
2 contained in w

˜
2, it was shown by Hsiao [22] that the 2SLS converges

to a mixed normal distribution. Then the Wald test statistic (4.13) can again be

approximated by a chi-square distribution. When variables cannot be dichotomized

into “endogenous” and “exogenous”, if we do not know the direction of nonstation-

arity, nor the rank of cointegration, we will not be able to know a priori if P22 is a

zero matrix, hence if (4.13) may be approximated by a chi-square distribution.

5. Modified and lag order augmented 2SLS estimators

We note that just like the least squares estimator for the VAR model, the application

of 2SLS does not provide asymptotically normal or mixed normal estimator because

of the long-run endogeneities between lagged I(1) instruments and the (current)

shocks of the system. But if we can condition on the innovations driving the common

trends it will allow us to establish the independence between Brownian motion of

the errors of the conditional system involving the cointegrating relations and the

innovations driving the common trends. The idea of the modified 2SLS estimator

is to apply the 2SLS method to the equation conditional on the innovations driving

the common trends. Unfortunately, the direction of nonstationarity is generally

unknown. Neither does the identification condition given by Theorem 2.1 requires

such knowledge. In the event that such knowledge is unavailable, Hsiao and Wang

[27] propose to generalize Phillips [45] fully modified VAR estimator to the 2SLS

estimator.

Rewrite (4.1) as

w
˜

g = ZgM̃gM̃
−1
g δ

˜
g + ε

˜
g

= (Z∗∗
g1 Z∗∗

g2 )

(

δ
˜

∗∗
g1

δ
˜

∗∗
g2

)

+ ε
˜
g(5.1)

= Z∗∗
g δ

˜

∗∗
g + ε

˜
g

where Z∗∗
g = ZgM̃g = (Z∗∗

g1 , Z∗∗
g2 ), Z∗∗

g1 = (�Wg,�W̃g,−1, . . . ,�W̃g,−p+1), Z
∗∗
g2 =

W̃g,−p, δ
˜

∗∗
g = M̃−1

g δ
˜

g,�W̃g,−j denoting the T × g∆ stacked first difference of the

included variable �w̃
˜

g,t−j and �Wg denoting the T × (g∆ − 1) first difference of
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the included variables �w̃
˜

gt excluding �wgt. The decomposition (Z∗∗
g1 , Z∗∗

g2 ) and

δ
˜

∗∗
g = (δ

˜

∗∗′
g1 , δ

˜

∗∗′
g2 )

′
are identical to (Z∗

g1, Z
∗
g2) if there is no cointegrating relations

among w̃
˜

gt, d
˜

g = 0
˜
. Unlike (Z∗

g1, Z
∗
g2), (Z

∗∗
g1 , Z∗∗

g2 ) are well defined and observable.

When Z∗
g1 �= Z∗∗

g1 , there exists a nonsingular transformation matrix Dg such that

(Z∗∗
g1 , Z∗∗

g2 )Dg = (Z∗
g1, Z

∗
g2). Then

(5.2) δ
˜

∗
g = D−1

g δ
˜

∗∗
g .

Let

(5.3) Cg = (W ′
−p � W−p − T∆�w�w)Ω

−
�w�wΩ�wεg

,

where Ωuv and ∆uv denote the long-run covariance and the one-sided long-run

covariance matrix of two sets of I(0) variables, (u
˜

t, v
˜

t),

(5.4) Ωuv =

∞
∑

j=−∞

Γuv(j),

and

(5.5) ∆uv =

∞
∑

j=0

Γuv(j),

where Γuv(j) = Eu
˜

tv
′

˜
t−j . Let

(5.6) Ĉg = (W ′
−p � W−p − T ∆̂�w�w)Ω̂

−1
�w�wΩ̂�wεg

,

where Ω̂uv and ∆̂uv are the kernel estimates of Ωuv and ∆uv, such as (3.7) and (3.8).

A modified 2SLS estimator following Phillips [45] fully modified VAR estimator can

be defined as

δ̂
˜

∗∗

g,m2SLS =
{

Z∗∗′
g X∗∗

(X∗∗′X∗∗
)
−1X∗∗′Z∗∗

g

}−1

×

{

Z∗∗′
g X∗∗

(X∗∗′X∗∗
)
−1

(

X∗∗′
1 w

˜
g

X∗∗′
2 w

˜
g − Ĉg

)}

,(5.7)

where X∗∗
= XM̃x = (X∗∗

1 , X∗∗
2 ), X∗∗

1 = (�W−1, . . . ,�W−p+1), and X∗∗
2 = W−p.

Just like (Z∗∗
g1 , Z∗∗

g2 ), (X∗∗
1 , X∗∗

2 ) are well defined and observable.

Theorem 5.2. Under assumptions A1-A4, 3.1 and 3.2, the modified 2SLS estima-

tor δ̂
˜

∗

g,m2SLS = D−1
g δ̂

˜

∗∗

g,m2SLS is consistent. Furthermore

(5.8)

√
T (δ̂

˜

∗

g1,m2SLS − δ
˜

∗
g1) =⇒ N(0

˜
, σ2

g(M∗
zg1x1

M∗−1
x1x1

M∗
x1zg1

)
−1

)

and is independent of

T (δ̂
˜

∗

g2,m2SLS − δ
˜

∗
g2) =⇒(M∗

zg2
x2

M∗−1
x2x2

M∗
x2zg2

)
−1

(5.9)

· M∗
zg2

x2
M∗−1

x2x2

∫

Bx∗

2
dBεg.x∗

2
,

which is a mixed normal of the form

(5.10)

∫

M∗

x2x2
>0

N(0
˜
, σ2

g.�x∗

2

(M∗
zg2x2

M∗−1
x2x2

M∗
x2zg2

)
−1

)dP (M∗
x2x2

).

where σ2
g .�x∗

2
= σ2

g − �Lεg�x∗

2
�L�x∗

2
�x∗

2
�L�x∗

2
εg

.
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The modified 2SLS estimator of δ
˜

g can be obtained as

(5.11) δ̂
˜

g,m2SLS = M̃g δ̂
˜

∗∗

g,m2SLS = M̃gDg δ̂
˜

∗

g,m2SLS ,

where M̃g is a known matrix but in general, not Dg. However, although the modified

2SLS estimator of δ
˜

∗
g is either asymptotically normal or mixed normal, the Wald

type test statistic

(5.12)
1

σ2
g

(P δ̂
˜

g,m2SLS − c
˜
)
′{P [Z ′

gX(X ′X)
−1X ′Zg]P

′}−1
(P δ̂

˜
g,m2SLS − c

˜
)

does not always have the asymptotic chi-square distribution under the null hypoth-

esis Pδ
˜

g = c
˜
, where P is a known k × g∆ matrix of rank k. To see this, rewrite

(5.12) in terms of δ̂
˜

∗

g,m2SLS

1

σ2
g

(P ∗Hg δ̂
˜

∗

g,m2SLS − c
˜
)
′
{

P ∗Hg[Z
∗′

g X∗
(X∗′

X∗
)
−1X∗′

Z∗
g ]H ′

gP
∗′

}

(5.13)

× (P ∗Hg δ̂
˜

∗

g,m2SLS − c
˜
),

where P ∗
= PM̃gDgH

−1
g and Hg =

[

T−1/2Ilg 0

0 T−1Ibg

]

. The null hypothesis be-

comes P ∗Hgδ
˜

∗
g = c

˜
. Notice that the asymptotic covariance matrix of Hg δ̂

˜

∗

g,m2SLS

converges to

(

σ2
g(M∗

z′

g1
x1

M∗−1
x1x1

M∗
x1zg1

)
−1

0
˜

0
˜

σ2
g.�x∗

2

(M∗
zg2x2

M∗−1
x2x2

M∗
x2zg2

)
−1

)

,

while Hg[Z
∗
gX∗

(X∗′

X∗
)
−1X∗′

Z∗
g ]H ′

g in (5.13) converges to

(5.14) σ2
g

(

(M∗
zg1x1

M∗−1
x1x1

M∗
x1zg1

)
−1

0
˜

0
˜

(M∗
zg2x2

M∗−1
x2x2

M∗
x2zg2

)
−1

)

.

Wald statistic (5.12) (or equivalently (5.13)) is asymptotically chi-square distributed

with k degrees of freedom if and only if P δ̂
˜

g,m2SLS (or equivalently P ∗Hg δ̂
˜

∗

g,m2SLS)

in the hypothesis does not involve the T -consistent component δ̂
˜

∗

g2,m2SLS . Other-

wise, Hg[Z
∗′

g X∗
(X∗′

X∗
)
−1X∗′

Z∗′

g ]H ′
g would overestimate the asymptotic covari-

ance matrix of Hg δ̂
˜

∗

g,m2SLS because σ2
g·�x∗

2

≤ σ2
g for the submatrix corresponding

to x
˜

∗
2 and z

˜

∗
g2. In general, the test statistic (5.12) is a conservative test, with its

asymptotic distribution a weighted sum of k independent χ2
1 variables with weights

between 0 and 1.

The construction of the modified 2SLS estimator requires nonparametric esti-

mation of the long-run covariance matrix and the one-sided long-run covariance

matrix. It is well known that kernel estimator and hence the finite sample per-

formance of the modified 2SLS estimator could be affected substantially by the

choice of the bandwidth parameter. In addition, since we can not approximate the

asymptotic covariance matrix of the modified 2SLS estimator properly, Wald test

statistics based on the modified 2SLS estimator using the formula of (5.12) may

not be chi-square distributed and critical values that are based on chi-square dis-

tributions can be used for conservative tests only. However, as noted by Toda and

Yamamoto [55], if we augment the order of a p-th order autoregressive process by
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the maximum order of integration then the miscentering and skewness of the limit-

ing distribution of the least squares estimator will be concentrated on the coefficient

matrices associated with the augmented lagged vectors which are known a priori to

be zero, therefore can be ignored. Standard inference procedure can still be applied

to the coefficients of the first p coefficient matrices. Hsiao and Wang [28] follow this

idea by proposing a lag augmented 2SLS.

The p-th order structural VAR (2.1) can be written as a (p+1)-th order structural

VAR,

(5.15) A0w
˜

t + A1w
˜

t−1 + · · · + Apw
˜

t−p + Ap+1w
˜

t−p−1 = ε
˜
t,

where Ap+1 ≡ 0
˜
. Transforming (5.15) into an error-correction form, we have

(5.16)

p
∑

j=0

A∗
j � w

˜
t−j + A∗

p+1w
˜

t−p−1 = ε
˜
t,

where A∗
j =

∑j
�=0 A�, j = 0, 1, . . . , p and A∗

p+1 = A∗
p. It follows that A = [A0,

. . . , Ap] = [A∗
0, . . . , A

∗
p]M̃

−1
.

Let the g-th equation of (5.15) be written as

(5.17) w
˜

g = ZA
g δ

˜

A
g + ε

˜
g,

where ZA
g = (Zg, w̃

˜
g,−(p+1)), δ

˜

A
g = (δ′

˜
g,−a′

˜
g,p+1)

′
with w̃

˜
g,−(p+1) denoting the

T × g∆ vector of included w̃
˜

gt lagged by (p + 1) periods and a
˜

g,p+1 is the g-th

row of Ap+1 excluding those elements subject to exclusion restrictions. Just like

(4.1), there exists a nonsingular transformation matrix MA
g that transforms ZA

g

into Z∗A
g = ZA

g MA
g = (Z∗A

g1 , Z∗A
g2 ), and δ

˜

∗A
g = (MA

g )
−1δ

˜

A
g = (δ

˜

∗A′

g1 , δ
˜

∗A′

g2 )
′

where

Z∗A
g1 = (�Zg, W̃g,−(p+1)π

˜
g) is stationary and Z∗A

g2 = W̃g2,−(p+1) consists of T ob-

served bg linearly independent I(1) variables, w̃
˜

g2,t−(p+1). Rewrite (5.17) in terms

of the transformed variables,

(5.18) w
˜

g = ZA
g MA

g (MA
g )

−1δ
˜

A
g + ε

˜
g = (Z∗A

g1 Z∗A
g2 )





δ
˜

∗A
g1

δ
˜

∗A
g2



+ ε
˜
g

Let XA
= (X, W−(p+1)). The 2SLS estimator of (5.17) is defined as

(5.19) δ̂
˜

A

g,2SLS = [ZA′

g XA
(XA′

XA
)
−1XA′

ZA
g ]

−1
[ZA′

g XA
(XA′

XA
)
−1XA′

w
˜

g].

The LA2SLS of (4.1) is defined as

(5.20) δ̂
˜

g,LA2SLS = QA
g δ̂
˜

A

g,2SLS ,

where QA
g = (I(p+1)g∆−1, 0

˜
g∆

), where 0
˜

g∆
denotes a [(p + 1)g∆ − 1] × g∆ matrix of

zeros. Since δ̂
˜

A

g,2SLS = MA
g δ̂

˜

∗A

g,2SLS , we have

δ̂
˜

g,LA2SLS = QA
g MA

g δ̂
˜

∗A

g,2SLS

= (M̃g, 0
˜

g∆
)δ̂
˜

∗A

g,2SLS(5.21)

= (M̃g, 0
˜

g)δ̂
˜

∗A

g1,2SLS ,
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where M̃g is a [(p + 1)g∆ − 1] × [(p + 1)g∆ − 1] matrix of the form,
8

(5.22) M̃g =

















Ig∆−1 0
˜

. . . . . . . . . 0
˜

(

−Ig∆−1

0
′

˜

)

Ig∆
. . . . . . . . . . . .

. . . −Ig∆
Ig∆

. . . . . . . . .
. . . . . . . . . . . . Ig∆

0
˜. . . . . . . . . . . . −Ig∆

Ig∆

















,

with wgt being put as the last element of w̃
˜

gt, Ig∆
denoting the identity matrix of the

dimension of included variables in the g-th equation, and 0
˜

g is a [(p+1)g∆−1]×rg

matrix with rg denoting the number of cointegrating relations among w̃
˜

gt such that

w
˜

′
gtπ

˜
g is I(0). Then δ

˜
g = (M̃g, 0

˜
g)δ

˜

∗A
g1 .

Since

(5.23)

√
T (δ̂

˜

∗A

g1,2SLS − δ
˜

∗A
g1 ) −→ N [0

˜
, σ2

g(MA∗
zg1x1

MA∗−1
x1x1

MA∗
x1zg1

)
−1

],

where MA∗
zg1x1

= plim
1
T Z∗A′

g1 X∗A
1 , MA∗

x1x1
= plim

1
T X∗A′

1 X∗A
1 , with X∗A

1 = (�X,
W−(p+1)d

˜
) being the T × (mp + r) linearly independent I(0) variables. It follows

that

Theorem 5.3. The LA2SLS of δ
˜

g is consistent and

√
T (δ̂

˜
g,LA2SLS − δ

˜
g)

(5.14)

=⇒ N

{

0
˜
, σ2

g(M̃g 0
˜

g)[M
A∗
zg1x1

MA∗−1
x1x1

MA∗
x1zg1

]
−1

(

M̃ ′
g

0
˜

′
g

)}

.

The LA2SLS estimators of the coefficients of the original structural VAR model

(2.1) converge to the true value at the speed of T 1/2
and are asymptotically normally

distributed with nonsingular covariance matrix. Therefore, Wald type test statistics

based on LA2SLS estimates are asymptotically chi-square distributed. Compared

to the conventional 2SLS or modified 2SLS, the LA2SLS estimator loses the T-

convergence component and ignores the prior restrictions that the coefficients on

w̃
˜

g,t−(p+1) are zero, hence may lose some efficiency. However, since distribution of

δ̂
˜

g is a linear combination of δ̂
˜

∗

g1 and δ̂
˜

∗

g2 and the limiting distribution of δ̂
˜

g,LA2SLS

is given by the components of the slower rate of convergence, the loss of efficiency

in estimating δ̂
˜

g by LA2SLS may not be that significant, as reported in a Monte

Carlo Study by Hsiao and Wang [28].

6. Conclusions

As demonstrated by Nelson and Plosser [41] that many economic time series are

nonstationary. The advancement of nonstationary time series analysis provides a

rich reportoire of analytic tools for economists to analyze how do variables respond

dynamically to shocks through the decomposition a dynamic system into long-run

and short-run relations and allow economists to extract common stochastic trends

present in the system that provide information on the important sources of economic

fluctuation (e.g. Banerjee, Dolado, Galbraith and Hendry [5], King, Plosser, Stock

and Watson [33]). However nonstationarity does not invalid the main concerns of

8
For ease of notation, we assume all the included variables appear with the same lag order.
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Cowles Commission structural approach — identification and simultaneity bias. As

shown by Hsiao [26], whether the data is stationary or nonstationary, the same

rank condition holds for the identification of an equation in a system. Ignoring

the correlations between the regressors and the errors of the equation that arise

from the joint dependency of economic variables can lead to severe bias in the least

squares estimator even though the regressors are I(1) (Hsiao [21], also see the Monte

Carlo study by Hsiao and Wang [28]). Instrumental variable methods have to be

applied to obtain consistency.

However, nonstationarity does raise the issue of statistical inference. Standard

instrumental variable method can lead to estimators that have non-normal asymp-

totic distributions and are asymptotically biased and skewed. If there exists prior

knowledge to dichotomize the set of variables into joint dependent and exogenous

variables and the nonstationarity in the dependent variables is driven by the nonsta-

tionarity in the exogenous variables through cointegration relations, standard 2SLS

developed for the stationary data can also be used for the analysis of nonstationary

data (Hsiao [21, 22]). Wald test statistics for the null are asymptotically chi-square

distributed. There is no inference issue. On the other hand, if all the variables are

treated as joint dependent as in the time series context, although 2SLS is consistent,

the limiting distribution is subject to miscentering and skewness associated with

the unit root distribution. Modified or lag order augmented 2SLS will have to be

used to ensure valid inference. The modified 2SLS is asymptotically more efficient.

However, it also suffers more size distortion in finite sample. On the other hand,

the lag order augmented 2SLS does not suffer much efficiency loss, at least in a

small scale SVAR model (e.g. Hsiao and Wang [28]), and chi-square distribution is

a good approximation for the test statistic.

All above discussions were based on the assumption that no knowledge of coin-

tegration or direction of nonstationarity is known a priori. If such information is

available, (e.g. King, Plosser, Stock and Watson [33]) estimators incorporating the

knowledge of the rank of cointegration presumably will not only lead to efficient

estimators of structural form parameters, but also avoid the inference issues arising

from the matrix unit roots distrubutions in the system. Unfortunately, structural

form estimation methods incorporating reduced rank restrictions appear to be fairly

complicated.

The focus of this review is to take a SVAR model as a maintained hypothesis,

search for better estimators and understand their properties. We have not looked

at the issues of modeling strategy. There is a vast literature on the interactions

between structural and non-structural time series analysis to uncover the data-

generation process, including testing, estimation, model-combining and prediction

(e.g. Hendry and Ericsson [16], Hendry and Krolzig [17], King, Plosser, Stock and

Watson [33], Zellner and Palm [61]).
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Abstract: This paper describes a new approach to time series modeling that

combines subject-matter knowledge of the system dynamics with statistical

techniques in time series analysis and regression. Applications to American

option pricing and the Canadian lynx data are given to illustrate this approach.

1. Introduction

In their Fisher Lectures at the Joint Statistical Meetings, Cox [11] and Lehmann

[31] mentioned two major types of stochastic models in statistical analysis, namely,

empirical and substantive (or mechanistic). Whereas substantive models are ex-

planatory and related to subject-matter theory on the mechanisms generating the

observed data, empirical models are interpolatory and aim to represent the observed

data as a realization of a statistical model chosen largely for its flexibility, tractabil-

ity and interpretability but not on the basis of subject-matter knowledge. Cox [11]

also mentioned a third type of stochastic models, called indirect models, that are

used to evaluate statistical procedures or to suggest methods for analyzing com-

plex data (such as hidden Markov models in image analysis). He noted, however,

that the distinctions between the different types of models are important mostly

when formulating and checking them but that these types are not rigidly defined,

since “quite often parts of the model, e.g., those representing systematic variation,

are based on substantive considerations with other parts more empirical.” In this

paper, we elaborate further the complementary roles of empirical and substantive

models in time series analysis and describe a basis function approach to combining

subject-matter (domain) knowledge with statistical modeling techniques.

This basis function approach was first developed in [29] for the valuation of

American options. In Sections 2 and 3 we review the statistical and subject-matter

models for option pricing in the literature as examples of empirical and substantive

models in time series analysis. Section 4 describes a combined substantive-empirical

approach via basis functions, in which the substantive component is associated with

basis functions of a certain form, and the empirical component uses flexible and

computationally convenient basis functions such as regression splines. The work

of Lai and Wong [29] on option pricing and recent related work in financial time

series are reviewed to illustrate this approach. Section 5 applies this approach to a

widely studied data set in the nonlinear time series literature, namely, the Canadian
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lynx data set that records the annual numbers of Canadian lynx trapped in the

Mackenzie River district from 1821 to 1934. We use substantive models from the

ecology literature together with multivariate adaptive regression splines to come up

with a new time series model for these data. Some concluding remarks are given in

Section 6.

2. Statistical (empirical) time series models

The development of statistical time series models in the past fifty years has wit-

nessed a remarkable confluence of basic ideas from various areas in statistics and

probability, coupled with the powerful influence from diverse fields of applications

ranging from economics and finance to signal processing and control systems. The

first phase of this development was concerned with stationary time series, leading to

MA (moving average), AR (autoregressive) and ARMA representations in the time

domain and transfer function representations in the frequency domain. This was

followed by extensions to nonstationary time series, either by fitting (not necessarily

stationary) ARMA models or by the Box-Jenkins approach involving the ARIMA

(autoregressive integrated moving average) models and their seasonal SARIMA

counterparts. More general fractional differencing then led to the ARFIMA mod-

els. The next phase of the development was concerned with nonlinear time series

models, beginning with bilinear models that add cross-product terms yt−iεt−j to

the usual ARMA model yt = β1yt−1 + · · ·+ βpyt−p + εt + c1εt−1 + · · ·+ cqεt−q, and

threshold autoregressive and regime switching models that introduce nonlineari-

ties into the usual autoregressive models via state-dependent changes or Markov

jumps in the autoregressive parameters. The monograph by Tong [44] summarized

these and other nonlinear time series models in the previous literature. The appro-

priateness of the parametric forms assumed in these nonlinear time series models,

however, may be difficult to justify in real applications, as pointed out by Chen and

Tsay [9].

Whereas the AR model yt = β1yt−1+· · ·+βpyt−p+εt is related to linear regression

since β
T xt is the regression function E(yt|xt) of yt given xt := (yt−1, . . . , yt−p)

T
,

and likewise its nonlinear parametric extensions yt = f(xt,β) + εt are related to

nonlinear regression, Chen and Tsay [9, 10] proposed to use nonparametric re-

gression for E(yt|xt) instead. They started with functional-coefficient autoregres-

sive (FAR) models of the form yt = f1(x
∗
t )yt−1 + · · · + fp(x

∗
t )yt−p + εt, where

f1, . . . , fp are unspecified functions to be estimated by local linear regression and

x∗
t = (yt−i1 , . . . , yt−id

)
T

with i1 < · · · < id chosen from {1, . . . , p}. Because of sparse

data in high dimensions, local linear regression typically require d to be 1 or 2. To

deal with nonparametric regression in higher dimensions, they considered additive

autoregressive models of the form yt = f1(yt−i1)+ · · ·+ fd(yt−id
)+ εt, in which the

fi can be estimated nonparametrically via the generalized additive model (GAM)

of Hastie and Tibshirani [19] . Making use of Friedman’s [15] multivariate adap-

tive splines (MARS), Lewis and Stevens [34] and Lewis and Ray [32, 33] developed

spline models for empirical modeling of time series data. Weigend, Rummelhart

and Huberman [48] and Weigend and Gershenfeld [47] proposed to use neural net-

works (NN) to model E(yt|xt), while Lai and Wong [28] considered a variant called

stochastic neural networks, for which they could use the EM algorithm to develop

efficient estimation procedures that have much lower computational complexity

than those for conventional neural networks.

The preceding time series models are autonomous, relating the dynamics of yt to
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the past states. In econometrics and engineering, the outputs yt are related not only

to the past outputs but also to the past inputs ut−d, . . . , ut−k. Therefore the AR

model has been extended to the ARX model (where X stands for exogenous inputs)

yt = β
T xt + εt with xt = (yt−1, . . . , yt−p, ut−d, . . . , ut−k)

T
. Instead of assuming a

linear or nonlinear parametric regression model, one can use nonparametric regres-

sion to estimate E(yt|xt), as in the following financial application.

Example 1. As noted by Ross [40], option pricing theory is “the most successful

theory not only in finance, but in all of economics.” A call (put) option gives the

holder the right to buy (sell) the underlying asset (e.g. stock) by a certain date

T (known as the “expiration date” or “maturity”) at a certain price (known as

the “strike price” and denoted by K). European options can be exercised only on

the expiration date, whereas American options can be exercised at any time up to

the expiration date. The celebrated Black-Scholes theory, which will be reviewed in

Section 3, yields the following pricing formulas for the prices ct and pt of European

call and put options at time t ∈ [0, T ):

ct = Ste
−d(T−t)

Φ(d1(St, K, T − t)) − Ke−r(T−t)
Φ(d2(St, K, T − t)),(2.1)

pt = Ke−r(T−t)
Φ(−d2(St, K, T − t)) − Ste

−d(T−t)
Φ(−d1(St, K, T − t)),(2.2)

where Φ is the cumulative distribution function of the standard normal random

variable, St is the price of the underlying asset at time t, d is the dividend rate of the

underlying asset, d1(x, y, v) = {log(x/y) + (r − d + σ2/2)v}/σ
√

v and d2(x, y, v) =

d1(x, y, v) − σ
√

v. Hutchinson, Lo and Poggio [22] pointed out that the success of

the formulas (2.1) and (2.2) depends heavily on the specification of the dynamics

of St. Instead of using any particular model of St, they proposed a data-driven way

for pricing and hedging with a minimal assumption: independent increments of the

underlying asset price. Noting that yt (= ct or pt) is function of St/K and T − t
with r and σ being constant, they assume yt = Kf(St/K, T − t) and approximate

f by taking xt = (St/K, T − t)T
in the following models:

(i) radial basis function (RBF) networks f(x) = β0 + α
T x +

∑I
i=1 βihi(‖A(x −

γi)‖), where A is a positive definite matrix and hi is of the RBF type e−u2/σ2

i

or (u2
+ σ2

i )
1/2

;

(ii) neural networks f(x) = ψ(β0+
∑I

i=1 βih(γi+α
T
i x)), where h(u) = 1/(1+e−u

)

is the logistic function and ψ is either the identity function or the logistic

function;

(iii) projection pursuit regression (PPR) networks f(x) = β0 +
∑I

i=1 βihi(α
T
i x),

where hi is an unspecified function that is estimated from the data by PPR.

The αi, βi and γi above are unknown parameters of the network that are to be

estimated from the data. As pointed out in [22], all three classes of networks have

some form of “universal approximation property” which means their approximation

bounds do not depend on the dimensionality of the predictor variable x; see [2]. It

should be noted that the above transformation of St to St/K can be motivated not

only from the assumption on St but also from the special feature of options data.

Although the strike price K could be any positive number theoretically, the options

exchange only sets strike prices at a multiple of a fundamental unit. For example,

Chicago Board Options Exchange (CBOE) sets strike prices at multiples of $5 for

stock prices in the $25 to $200 range. Also, only those options with strike prices

closet to the current stock price are traded and thus their prices are observed. Since

St is non-stationary in general, the observed K is also non-stationary. Such features
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create sparsity of data in the space of (St, K, T − t). Training the options pricing

formula in the form of f(St, K, T − t) can only interpolate the data and can hardly

produce any good prediction because (St, K) in the future can be very different

from the data used in estimating f . The proposed transformation makes use of

the fact that all observed and future St/K are close to 1. Therefore, the proposed

transformation captures the stationary structure of the data and enable the non-

parametric models to predict well. Another point that Hutchinson, Lo and Poggio

[22] highlighted is the measure of performance of the estimated pricing formula.

According to their simulation study, even a linear f(St/K, T −t) can give R2 ≈ 90%

(Table I of Hutchinson, Lo and Poggio [22]). However, such a linear f implies a

constant delta hedging scheme which would provide poor hedging results. Since the

primary function of options is hedging the risk created by changes in the price of the

underlying asset, Hutchinson, Lo and Poggio [22] suggested using, instead of R2
, the

hedging error measures ξ = e−rT E[|V (T )|] and η = e−rT
[EV 2

(T )]
1/2

, where V (T )

is the value of the hedged portfolio at time T . In a perfect Black-Scholes world,

V (T ) should be 0 if Black-Scholes formula is used. However, from the simulation

study, the Black-Scholes formulas still give ξ > 0 and η > 0 because time is discrete.

Hutchinson, Lo and Poggio [22] reported that RBF, NN and PPR all give hedging

measures comparable to those of the Black-Scholes in the simulation study. For

real data analysis of futures options, RBF, NN and PPR performed better than the

Black-Scholes formula in terms of hedging.

For American options, instead of using these learning networks to approximate

the option price, Broadie et al. [5] used kernel smoothers to estimate the option

pricing formula of an American option. Using a training sample of daily closing

prices of American calls on the S&P100 Index that were traded on the Chicago

Board Options Exchange from 3 January 1984 to 30 March 1990, they compared the

nonparametric estimates of American call option prices at a set of (S/K, t∗) values

with corresponding parametric estimates obtained by using the approximations to

American option prices due to Broadie and Detemple [4], and found significant

differences between the parametric and nonparametric estimates.

3. Substantive (mechanistic) models

In control engineering, the dynamics of linear input-output systems are often given

by ordinary differential equations, whose discrete-time approximations in the pres-

ence of noise have led to the ARX models (for white noise), and ARMAX models

(for colored noise) in the preceding section. The problem of choosing the inputs

sequentially so that the outputs are as close as possible to some target values when

the model parameters are unknown and have to be estimated on-line has a large

literature under the rubric of stochastic adaptive control ; see Goodwin, Ramadge

and Caines [16], Lai and Wei [27], Lai and Ying [30] and Guo and Chen [17]. More

general dynamics in the presence of additive noise have led to stochastic differen-

tial equations (SDEs), whose discrete-time approximations are related to nonlinear

time series models described in the preceding section. One such SDE is geometric

Brownian motion (GBM) for the asset price process in the Black-Scholes option

pricing theory. In view of Ito’s formula, the GBM dynamics for the asset price St

translate into SDE dynamics for the option price f(t, St). Such implied dynamics

from the mechanistic model can be combined with subject-matter theory to derive

the functional form or differential equation for f and other important corollaries of

the theory, as illustrated in the following.
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Example 2. In the Black-Scholes model, the asset price St is assumed to be GBM

defined by the SDE

(3.1) dSt/St = µdt + σdwt,

where wt, t ≥ 0, is Brownian motion. Letting f(t, S) be the price of the option at

time t when St = S, it follows from (3.1) and Ito’s formula that

df(t, St) =
∂f
∂t dt +

∂f
∂S dSt +

1
2

∂2f
∂S2 σ2S2

t dt

=

(

∂f
∂t + µSt

∂f
∂S +

1
2σ2S2

t
∂2f
∂S2

)

dt + σSt
∂f
∂S dwt.

For simplicity assume that the asset does not pay dividends, i.e., d = 0. Consider

an option writer’s portfolio at time t, consisting of −1 option and yt units of the

asset. The value of the portfolio πt is −f(t, St) + ytSt and therefore

dπt = −
(∂f

∂t
+ µSt

∂f

∂S
+

1

2
σ2S2

t

∂2f

∂S
− µytSt

)

dt + σSt

(

yt −
∂f

∂S

)

dwt.

Hence setting yt = ∂f/∂S yields a risk-free portfolio. This is the basis of delta

hedging in the options theory of Black and Scholes [3], who denote ∂f/∂S by ∆.

Besides GBM dynamics for the asset price, the Black-Scholes theory also assumes

that there are no transaction costs and no limits on short selling and that trading

can take place continuously so that delta hedging is feasible. Since economic theory

prescribes absence of arbitrage opportunities in equilibrium, πt that consists of −1

option and ∆ units of the asset should have the same return as rπtdt = r(−f +

St∆)dt, yielding the Black-Scholes PDE for f :

(3.2)
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2
= rf, 0 ≤ t < T,

with the boundary condition f(T, S) = g(S), where g(S) = (K − S)+ for a put

option, and g(S) = (S − K)+ for a call option, where x+ = max(x, 0). This PDE

has the explicit solution (2.1) or (2.2) with d = 0. If the asset pays dividend at rate

d, then a modification of the preceding argument yields (3.2) in which rS(∂f/∂S)

is replaced by (r − d)S(∂f/∂S).

Merton [37] extended the Black-Scholes theory for pricing European options to

American options that can be exercised at any time prior to the expiration date.

Optimal exercise of the option is shown to occur when the asset price exceeds (or

falls below) an exercise boundary ∂C for a call (or put) option. The Black-Scholes

PDE still holds in the continuation region C of (t, St) before exercise, and ∂C is

determined by the free boundary condition ∂f/∂S = 1 (or −1) for a call (or put)

option. Unlike the explicit formula (2.1) or (2.2) for European options, there is

no closed-form solution of the free-boundary PDE and numerical methods such as

finite differences are needed to compute American option prices under this theory.

By the Feynman-Kac formula, the PDE (3.2) has a probabilistic representation

f(t, S) = E[e−r(T−t)g(ST )|St = S], and the expectation E is with respect to the

“equivalent martingale measure” under which dSt/St = (r − d)dt + σdwt. This

representation generalizes to American options as the value function of the optimal

stopping problem

(3.3) f(t, S) = sup

τ∈Tt,T

E[e−r(τ−t)g(Sτ )|St = S]
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where Tt,T denotes the set of stopping times τ taking values between t and T .

Cox, Ross and Rubinstein [12] proposed to approximate GBM by a binomial tree,

with root node S0 at time 0, so that (3.3) can be approximated by a discrete-

time and discrete-state optimal stopping problem that can be solved by backward

induction. Denote f(t, S) by C(t, S) for an American call option, and by P (t, S)

for an American put option. Jacka [23] and Carr, Jarrow and Myneni [7] derived

the decomposition formula

P (t, S) = p(t, S) + Kρeρu

∫ 0

u

{

e−ρs
Φ

( z̄(s) − z
√

s − u

)

(3.4)

− θe−(θρs+u/2)+z
Φ

( z̄(s) − z
√

s − u
−

√
s − u

)}

ds,

and a similar formula relating C(t, S) to c(t, S), where z̄(u) is the early exercise

boundary ∂C under the transformation

(3.5) ρ = r/σ2, θ = d/r; u = σ2
(t − T ), z = log(S/K) − (ρ − θρ − 1/2)u.

Ju [24] found that the early exercise premium can be computed in closed form if

∂C is a piecewise exponential function which corresponds to a piecewise linear z̄(u).

By using such assumption, Ju [24] reported numerical studies showing his method

with 3 equally spaced pieces substantially improves previous approximations to

option prices in both accuracy and speed. AitSahlia and Lai [1] introduced the

transformation (3.5) to reduce GBM to Brownian motion and showed that z̄(u)

is indeed well approximated by a piecewise linear function with a few pieces. The

integral obtained by differentiating that in (3.4) with respect to S also has a closed-

form expression when z̄(·) is piecewise linear, and approximating z̄(·) by a linear

spline that uses a few unevenly spaced knots gives a fast and reasonably accurate

method for computing ∆ = ∂P/∂S.

The Black-Scholes price involves the parameters r and σ, which need to be

estimated. The yield of a short-maturity Treasury bill is usually used for r. Although

in the GBM model for asset prices which are observed at fixed intervals of time

(e.g. daily), one can estimate σ by the standard deviation of historical (daily)

asset returns, which are i.i.d. normal under the GBM model for asset prices, there

are issues due to departures from this model (e.g., σ can change over time and

asset returns are markedly non-normal) and due to violations of the Black-Scholes

assumptions in the financial market (e.g., there are actually transaction costs and

limits on short selling). Section 13.4 and Chapter 16 of Hull [21] discuss how the

parameter σ in the Black-Scholes option price is treated in current practice. In the

next section we describe an alternative approach that addresses the discrepancy

between the Black-Scholes-Merton theory and time series data on American options

and the underlying stock prices.

4. A combined substantive-empirical approach

In this section we describe an approach to time series modeling that contains both

substantiative and empirical components. We first came up with this approach when

we studied valuation of American options. Its basic idea is to use empirical modeling

to address the gap between the actual prices in the American options market and the

option prices given by the Black-Scholes-Merton theory in Example 2, as explained

below.
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Example 3. For European options, instead of using the basis function of Hutchin-

son, Lo and Poggio [22], an alternative approach is to express the option price as

c + Ke−rt∗f∗
(S/K, t∗), where c is the Black-Scholes price (2.1) because the Black-

Scholes formula has proved to be quite successful in explaining empirical data. This

is tantamount to including c(t, S) as one of the basis functions (with prescribed

weight 1) to come up with a more parsimonious approximation to the actual option

price.

The usefulness of this idea is even more apparent in the case of American options.

Focusing on puts for definiteness, the decomposition formula (3.4) expresses an

American put option price as the sum of a European put price p and the early

exercise premium which is typically small relative to p. This suggests that p should

be included as one of the basis functions (with prescribed weight 1). Lai and Wong

[29] propose to use additive regression splines after the change of variables u =

−σ2
(T−t) and z = log(S/K). Specifically, for small T−t (say within 5 trading days

prior to expiration, i.e. T − t ≤ 5/253 under the assumption of 253 trading days per

year), we approximate P by p. For T − t > 5/253 (or equivalently, u < −5σ2/253),

we approximate P by

P = p + Keρu{α + α1u +

Ju
∑

j=1

α1+j(u − u(j)
)+

+ β1z + β2z
2

+

Jz
∑

j=1

β2+j(z − z(j)
)
2
+ + γ1w + γ2w

2
(4.1)

+

Jw
∑

j=1

γ2+j(w − w(j)
)
2
+},

where ρ = r/σ2
as in (3.5), α, αj , βj and γj are regression parameters to be

estimated by least squares from the training sample and

(4.2) w = |u|−1/2{z − (ρ − θρ − 1/2)u} (θ = d/r)

is an “interaction” variable derived from z and u. The motivation behind the cen-

tering term (ρ − θρ − 1/2)u comes from (3.5) that transforms GBM into Brown-

ian motion, whereas that behind the normalization |u|−1/2
comes from (3.4) and

the closely related d1(x, y, v) in (2.2). The knots u(j)
(respectively z(j)

or w(j)
)

of the linear (respectively quadratic) spline in (4.1) are the 100j/Ju (respectively

100j/Jz and 100j/Jw)-th percentiles of {u1, . . . , un} (respectively {z1, . . . , zn} or

{w1, . . . , wn}). The choice of Ju, Jz and Jw is over all possible integers between 1

and 10 to minimize the generalized cross validation (GCV) criterion, which can be

expressed in the following form (cf. [19, 46]):

GCV(Ju, Jz, Jw) =

n
∑

i=1

(Pi − P̂i)
2

/{

n

(

1 −
Ju + Jz + Jw + 6

n

)2}

,

where the Pi are the observed American option prices in the past n periods, and

the ̂Pi are the corresponding fitted values given by (4.1) in which the regression

coefficients are estimated by least squares.

In the preceding we have assumed prescribed constants γ and σ as in the Black-

Scholes model; these parameters appear in (4.1) via the change of variables (3.5).

In practice σ is unknown and may also vary with time. We can replace it in (4.1)
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by the standard deviation σ̂t of the most recent asset returns say, during the past

60 trading days prior to t as in [22], p. 881. Moreover, the risk-free rate r may also

change with time, and can be replaced by the yield r̂t of a short-maturity Treasury

bill on the close of the month before t. The same remark also applies to the dividend

rate.

The simulation study in Lai and Wong [29] shows the advantages of this combined

substantive-empirical approach. Not only is P well approximated by ̂P , especially

over intervals of S/K values that occur frequently in the sample, ̂∆−∆ also reveals

a pattern similar to that of ̂P − P . Besides ξP̂ = E{e−rτ |VP̂ (τ)|}, where τ is the

time of exercise and VP̂ (t) is the value of the replicating portfolio at time t that

rebalances (according to the pricing formula P̂ ) between the risky and riskless assets

([22], p. 868-869), Lai and Wong [29] also consider the measure

(4.3) κP̂ = E

{∫ τ

0

(St/K)
2
(∆(t) − ∆̂(t))2dt

}

,

where ∆̂ = ∂P̂/∂S. In practice, continuous rebalancing is not possible. If rebalanc-

ing is done only daily, then (S/K)
2
(∆A−∆̂)

2
in (4.3) is replaced by a step function

that stays constant on intervals of width 1/253. Because of the adaptive nature of

the methodology, the proposed approach of Lai and Wong [29] is much more ro-

bust to the misspecification error than the Black-Scholes formula in terms of both

measures. Lai and Lim [26] carried out an empirical study of this approach and

made use of its semiparametric pricing formula and (4.3) to come up with a modi-

fied Black-Scholes theory and optimal delta hedging in the presence of transaction

costs.

5. Application to the 1821-1934 Canadian lynx data

The Canadian Lynx data set consists of the annual record of the numbers of the

Canadian lynx trapped in the Mackenzie River district of the North-west Canada

for the period 1821-1934 inclusively. Let Xt be log10(number recorded as trapped in

year 1820+ t) (t = 1, . . . , 114). Figure 1 shows the time series plot of Xt. According

to Tong [44], Moran [39] performed the first time series analysis on these data by

fitting an AR(2) model to Xt; moreover, the log transformation is used because it

(i) makes the marginal distribution of Xt more symmetric about its mean and (ii)

reduces the approximation error in assuming the number of lynx to be proportional

to the population. In view of the substantial non-linearity of E[Xt|Xt−3] found in

the scatterplot of Xt versus Xt−3, Tong([44], p.361) critiques Moran’s analysis and

its enhancements by Campbell and Walker [6], who added a harmonic component to

the AR(2) model, and by Tong [43], who used the AIC to select the order p = 11 for

AR(p) models, as “uncritical acceptance of linearity” in Xt. He uses a self-excited

threshold autoregressive model (SETAR) of the form

(5.1) Xt − Xt−1 =

{

0.62 + 0.25Xt−1 − 0.43Xt−2 + εt if Xt−2 ≤ 3.25

−(1.24Xt−2 − 2.25) + 0.52Xt−1 + εt if Xt−2 > 3.25

to fit these data, similar to Tong and Lim ([45], Section 9). The growth rate Xt −

Xt−1 in the first regime (i.e., Xt−2 ≤ 3.25) tends to be positive but small, which

corresponds to a slow population growth. In the second regime (i.e., Xt−2 > 3.25),

Xt − Xt−1 tends to be negative, corresponding to a decrease in population size.
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Fig 1. Time series plot of log10 of the Canadian lynx series.

Tong ([44], p. 377) interprets the fitted model as an “energy balance” between the

population expansion and the population contraction, yielding a stable limit cycle

with a 9-year period which is in good agreement with the observed asymmetric

cycles. Motivated by Van der Pol’s equation, Haggan and Ozaki [18] proposed to fit

another nonlinear time series model, namely, the exponential autoregressive model

(5.2) Xt − µ =

11
∑

j=1

(φj + πje
−γ(Xt−j−µ)2

)(Xt−j − µ) + εt,

which gives a limit cycle of period 9.45 years. Lim [35] compares the prediction per-

formance of these and other parametric models and concludes that Tong’s SETAR

model ranks the best among them.

Taking a more nonparametric approach, Fan and Yao [14] use a functional −

coefficient autoregressive model to fit the observed Xt series and compare its pre-

diction with that of threshold autoregression. Specifically, they fit the FAR(2,2)

model

(5.3) Xt = a1(Xt−2)Xt−1 + a2(Xt−2)Xt−2 + σεt

to the first 102 observations, reserving the last 12 observations to evaluate the

prediction. The a1(·) and a2(·) in (5.3) are unknown functions which are estimated

by using locally linear smoothers. Fan and Yao ([14], p. 327) plot the estimates â1(·)

and â2(·), which are approximately constant for Xt−2 < 2.7 with â1(Xt−2) ≈ 1.3
and â2(Xt−2) ≈ −0.2, and which are approximately linear for Xt−2 ≥ 2.7. For

comparison, Fan and Yao [14] also fit the following SETAR(2) model to the same

set of data:

(5.4) ̂Xt =

{

0.424 + 1.255Xt−1 − 0.348Xt−2, Xt−2 ≤ 2.981,

1.882 + 1.516Xt−1 − 1.126Xt−2, Xt−2 > 2.981.



202 T. L. Lai and S. P.-S. Wong

Because of the close resemblance of the fitted SETAR(2) and FAR(2,2), they share

certain ecological interpretations. In particular, the difference of the fitted coeffi-

cients in each regime can be explained by using the phase dependence and the den-

sity dependence in the predator-prey structure. The phase dependence refers to the

difference in the behavior of preys (snowshoe hare) and predators (lynx) in hunting

and escaping at the decreasing and increasing phases of population dynamics, while

the density dependence is the relationship between the reproduction rates of the

animals and their abundance. More discussion on these ecological interpretations

can be found in [42].

To evaluate the predictions of FAR (2,2), Fan and Yao ([14], p. 324) use the

one-step ahead forecast (denoted by ̂Xt) and the iterative two-step-ahead forecast

(denoted by X̃t), which are defined by

̂Xt := â1(Xt−2)Xt−1 + â2(Xt−2)Xt−2, X̃t := â1(Xt−2)
̂Xt−1 + â2(Xt−2)Xt−2.

The predictions of SETAR(2) are similarly defined. The out-sample prediction ab-

solute errors (|X̂t − Xt| and |X̃t − Xt|) of the last 12 observations are reported

in Table 1. Based on the average of these 12 absolute prediction errors (AAPE),

FAR(2,2) performs slightly better than SETAR(2). Other nonparametric time se-

ries models for the Canadian lynx data include the projection pursuit regression

(PPR) model fitted by Lin and Pourahmadi [36] who found that SETAR outper-

forms PPR in terms of one-step-ahead forecasts, and neural network models which

Kajitani, Hipel and McLeod [25] found to be “just as good or better than SETAR

models for one-step out-of-sample forecasting of the lynx data.”

A substantive approach is adopted by Royama ([41], Chapter 5). Instead of

building the statistical model first and using ecology to interpret the fitted model

later, Royama starts with ecological mechanisms and population dynamics. Letting

Rt = Xt+1 − Xt denote the log reproductive rate from year t to t + 1, he consid-

ers nonlinear dynamics of the form Rt = f(Xt, . . . , Xt−h+1) + ut, where ut is a

zero-mean random disturbance, and emphasizes that “our ultimate goal is to deter-

mine the reproduction surface f and to find an appropriate model which reasonably

approximates to it,” with f satisfying the following two conditions in view of eco-

logical considerations: There exists X∗
such that f(X∗, . . . , X∗

) = 0, and Rt has

to be bounded above because “no animal can produce infinite number of offspring”

Table 1

Absolute prediction errors of one-step-ahead (1 yr) and iterative two-step-ahead (2 yr) forecasts

and their 12-year average (AAPE).

Model (5.3) Model (5.4) Model (5.6) Model (5.8a)

FAR(2,2) SETAR(2) Logistic Logistic-MARS

Year Xt 1 yr 2 yr 1 yr 2 yr 1 yr 2 yr 1 yr 2 yr

1923 3.054 0.157 0.156 0.187 0.090 0.178 0.075 0.188 0.082

1924 3.386 0.012 0.227 0.035 0.269 0.077 0.281 0.057 0.286

1925 3.553 0.021 0.035 0.014 0.038 0.057 0.153 0.073 0.120

1926 3.468 0.008 0.037 0.022 0.000 0.012 0.077 0.023 0.140

1927 3.187 0.085 0.101 0.059 0.092 0.020 0.018 0.122 0.168

1928 2.723 0.055 0.086 0.075 0.015 0.128 0.098 0.002 0.159

1929 2.686 0.135 0.061 0.273 0.160 0.179 0.004 0.009 0.012

1930 2.821 0.016 0.150 0.026 0.316 0.004 0.216 0.010 0.001

1931 3.000 0.017 0.037 0.030 0.062 0.005 0.010 0.013 0.025

1932 3.201 0.007 0.014 0.060 0.043 0.048 0.042 0.021 0.005

1933 3.424 0.089 0.098 0.076 0.067 0.124 0.184 0.066 0.091

1934 3.531 0.053 0.175 0.072 0.187 0.083 0.245 0.011 0.087

AAPE 0.055 0.095 0.073 0.112 0.075 0.117 0.050 0.098
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(see [41], p. 50, 154, 178). In Chapter 4 of [42], Royama introduces the (first-order)

logistic model of f(Xt) = rm−exp{−a0−a1Xt−1} to incorporate competition over

an available resource. Here rm is the maximum biologically realizable reproduction

rate, i.e. Rt ≤ rm for all t; see [42], Section 4.2.5. An implicit assumption of the

model is that the resource being depleted during a time step will be recovered to

the same level by the onset of the next time step. This assumption can be relaxed

if a linear combination of Xt−j(j = 1, . . . , h) with h > 1 is used in the exponential

term of f , yielding a higher-order logistic model; see [41], p. 153.

Chapter 5 of Royama [41] examines the autocorrelation function and the partial

autocorrelation function of the Canadian lynx series and concludes that h should

be set to 2, which corresponds to the model

(5.5) Xt − Xt−1 = rm − exp{−a0 − a1Xt−1 − a2Xt−2} + ut−1,

where rm, a0, a1 and a2 are unknown parameters that need to be estimated; see

[41], p. 190-191. From the scatterplot of Rt−1 = Xt − Xt−1 versus Xt−2, Royama

guesses rm ≈ 0.6 and X∗ ≈ 3. He uses this together with trial and error to obtain

the estimate (r̂m, â0, â1, â2) = (0.597, 2.526, 0.838,−1.508), but finds that the asym-

metric cycle of the fitted model does not match the observed cycle from the data

well. Moreover, the fitted autocorrelation function decays too fast in comparison

with the sample autocorrelation function.

Instead of his ad hoc estimates, we can use nonlinear least squares, initialized at

his estimates, to estimate the parameters of (5.5), yielding

(5.6) Xt − Xt−1 = 0.460 − exp{−3.887 − 0.662Xt−1 + 1.663Xt−2} + ut−1,
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Fig 2. Contour plot of R̂t−1 = ̂Xt − Xt−1 of the logistic model (5.6). The observations are

marked by ∗. The dotted line is Xt−2 = Xt−1. The intersection of this line and the contour

numbered 0 gives the equilibrium X∗.
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which implies that the maximum logarithmic reproduction rate is 0.460, i.e., the

population can grow at most 10
0.46

= 2.884 times per year. Figure 2, top left

corner, shows a negative contour of the response surface of the fitted model (5.6).

This implies that the population size can drop sharply in the region Xt−2 > 3.5
and Xt−1 < 2.5, leading to extinction in the upper left part of this region. Whereas

(5.6) does not rule out the possibility of Xt diverging to −∞, extinction occurs as

soon as Xt falls below 0 (or equivalently, the population size 10
Xt falls below 1).

Note that one can also derive bounds on the logarithmic reproduction rates

from the empirical approach. Figure 3 is the plot of the limit cycle generated by the

skeleton of the fitted model (5.4). The limit cycle is of period 8 years. The maximum

and the minimum logarithmic reproduction rates, attained at years 1 and 5 in

Figure 3, are 0.212 and -0.269, respectively. That is, the population grows at most

10
0.212

= 1.629 times per year and diminishes by at most a factor of 10
−0.269

=0.538

per year. Moreover, the limit cycle of (5.4) implies an infinite loop of expansion and

contraction and rules out the possibility of extinction. These are consequences of

adopting an empirical approach because the data are distributed along the main

diagonal of Figure 2, but not its top left corner nor its lower right corner. In order to

deduce the behavior of the reproduction rates in these regions, mechanistic modeling

is essential. On the other hand, the empirical approach uses the observed data better

and gives more accurate forecasts. Table 1 compares the prediction performance of

FAR(2,2) and SETAR(2) with that of the logistic model (5.5). The fitted logistic

model provides the worst AAPE of one-step-ahead and iterative two-step-ahead

forecasts. Moreover, instead of characterizing the equilibrium with limit cycles,

the logistic model only gives two equilibrium points, with one corresponding to

extinction and the other equal to X∗
= {a0 + log(rm)}/(a1 + a2) = 3.107 (the

intersection of the line Xt−1 = Xt−2 and the contour of f = 0 in Figure 2.)

We next apply the combined substantive-empirical approach of Section 4 to these

data, using the substantive model (5.5) to provide one of the basis functions in the
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Fig 3. Limit cycle of the skeleton of the SETAR(2) model (5.4). The dotted line is Xt = Xt−1.
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semiparametric model

(5.7)
Xt − Xt−1 = rm − exp{−a0 − a1Xt−1 − a2Xt−2}

+g(Xt−1, Xt−2)I{(Xt−1, Xt−2) ∈ S} + ut−1,

where g is an unknown function and S is a region containing the observations that

will be specified later. Moreover, the difference equation (5.7) has the boundary con-

straint Xt−1+ rm−exp{−a0−a1Xt−1−a2Xt−2}+g(Xt−1, Xt−2)I{(Xt−1, Xt−2) ∈

S} ≥ 0. The lynx population becomes extinct as soon as this boundary condition

is violated. Model (5.7) can be fitted by using the backfitting algorithm. Specifi-

cally, model (5.5) is estimated first and then the residuals are used as the response

variable in nonparametric regression on the predictor variable (Xt−1, Xt−2). The

difference between the observed Xt − Xt−1 and the fitted g is then used as the

response variable in (5.5), whose parameters can be estimated by nonlinear least

squares. The algorithm of multivariate adaptive regression splines (MARS) devel-

oped by Friedman (1991) is used for estimating g for the first step in each iteration

of the above backfitting procedure (the function “mars” in the package of “mda”

in R can be used). This kind of iteration sheme has been used in fitting partly lin-

ear models, where the parametric component is a linear regression model and the

nonparametric component is often fitted by using kernel regression; see [8, 13, 20].

The fitted response surface is

Xt − Xt−1 = 1.319 − exp{−0.224 − 0.205Xt−1 + 0.343Xt−2}
(5.8a)

+ ĝ(Xt−1, Xt−2)I{(Xt−1, Xt−2) ∈ S} + ut−1,

ĝ(Xt−1, Xt−2) = 2.294(Xt−1 − 3.224)+(Xt−2 − 2.864)+
(5.8b)

− 1.572(Xt−1 − 3.202)+ − 0.851(Xt−2 − 3.202)+.

We evaluate this fitted model by using the out-sample prediction criterion. Table 1

shows that (5.8a) gives the smallest AAPE for one-step-ahead forecasts among all

models considered, and that the AAPE for iterative two-step-ahead forecasts of

(5.8a) is comparable to the smallest one provided by FAR(2,2). The region S in

(5.8a) is chosen to be the oblique rectangle whose edges are defined by the sample

means ±3 standard deviations of the principal components of the bivariate sample

of (Xt−1, Xt−2); see Figure 4 which shows that this region contains not only the

in-sample data but also the out-sample data. Figure 5 gives the contour plot of

the fitted model (5.8a). The logarithmic growth rate at its top left corner is about

−2, which shows a strong possibility of extinction even though the magnitude is

less drastic than that in Figure 2 for (5.6). The inclusion of tensor products of

univariate splines in (5.8a) would have produced positive probability limits of Xt

diverging to ∞ or to −∞ if (Xt−1, Xt−2) had not been confined to a compact

region. On the other hand, with an absorbing barrier at 0 and with (5.8b) only

applicable inside the compact set S, Markov chains of the type (5.8a) not only have

stationary distributions but are also geometrically ergodic under mild assumptions

on the random disturbances ut (e.g., to ensure irreducibity); see [39].

6. Conclusion

In his concluding remarks, Cox [11] noted that for successful use of statistical models

in particular applications, “large elements of subject-matter judgment and technical

statistical expertise are usually essential. Indeed, it is precisely the need for this

combination that makes our subject such an interesting and demanding one.” We
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Fig 5. Contour plot of R̂t−1 = ̂Xt − Xt−1 of the logistic-MARS model (5.7). The observations

are marked by ∗. The shaded region corresponds to extinction.
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have followed up on his remarks here with a combined subject-matter and statistical

modeling approach to time series analysis, which we illustrate for the “particular

applications” of option pricing and population dynamics of the Canadian lynx. In

particular, for the Canadian lynx data, we have shown how statistical modeling for

data-rich regions of (Xt−1, Xt−2) can be combined effectively with “subject-matter

judgment” which is the only reliable guide for sparse-data regions.
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Multivariate volatility models
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Abstract: Correlations between asset returns are important in many financial

applications. In recent years, multivariate volatility models have been used to

describe the time-varying feature of the correlations. However, the curse of

dimensionality quickly becomes an issue as the number of correlations is k(k−
1)/2 for k assets. In this paper, we review some of the commonly used models

for multivariate volatility and propose a simple approach that is parsimonious

and satisfies the positive definite constraints of the time-varying correlation

matrix. Real examples are used to demonstrate the proposed model.

1. Introduction

Let rt = (r1t, . . . , rkt)
′

be a vector of returns (or log returns) of k assets at time

index t. Let Ft−1 be the sigma field generated by the past information at time index

t − 1. We partition the return rt as

(1) rt = µt + et,

where µt = E(rt|Ft−1) is the conditional mean of the return given Ft−1 and et is

the innovation (or noise term) satisfying et = Σ
1/2
t εt such that

(2) Cov(et|Ft−1) = Cov(rt|Ft−1) = Σt,

where εt = (ε1t, . . . , εkt)
′
is a sequence of independently and identically distributed

random vectors with mean zero and identity covariance matrix, and Σ
1/2
t is the

symmetric square-root matrix of a positive-definite covariance matrix Σt, that is,

Σ
1/2
t Σ

1/2
t = Σt. In the literature, Σt is often referred to as the volatility matrix.

Volatility modeling is concerned with studying the evolution of the volatility matrix

over time. For asset returns, behavior of the conditional mean µt is relatively simple.

In most cases, µt is simply a constant. In some cases, it may assume a simple vector

autoregressive model. The volatility matrix Σt, on the other hand, is much harder

to model, and most GARCH studies in the literature focus entirely on modeling

Σt.

The conditional covariance matrix Σt can be written as

(3) Σt = DtRtDt

where Dt is a diagonal matrix consisting of the conditional standard deviations of

the returns, i.e., Dt = diag{
√

σ11,t, . . . ,
√

σkk,t} with σij,t being the (i, j)th element

of Σt, and Rt is the correlation matrix.

1
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In recent years, many studies extend the univariate generalized autoregressive

conditional heteroscedastic (GARCH) model of Bollerslev [2] to the multivariate

case for modeling the volatility of multiple asset returns; see the recent article [1] for

a survey. Multivariate volatility models have many important applications in finance

and statistics. They can be used to study the correlations between asset returns.

These correlations play an important role in asset allocation, risk management,

and portfolio selection. There are two major difficulties facing the generalization,

however. First of all, the dimension of volatility matrix increases rapidly as the

number of asset increases. Indeed, there are k(k + 1)/2 variances and covariances

for k asset returns. Second, for asset returns the covariance matrix is time-varying

and positive definite. Many of the multivariate volatility models proposed in the

literature fail to satisfy the positive-definite constraints, e.g., the diagonal VEC

model [3], even though they are easy to understand and apply.

The goal of this paper is to propose a simple approach to modeling multivari-

ate volatility. The proposed model is kept parsimonious in parameterization to

overcome the difficulty of curse of dimensionality. In addition, a simple structure

equation is imposed to ensure that the resulting time-varying covariance matrices

are positive definite. On the other hand, the proposed model is not very flexible

and may encounter lack of fit when the dimension is high. To safe guard against

model inadequacy, we consider model checking using some bootstrap methods to

generate finite-sample critical values of the test statistics used.

The paper is organized as follows. In Section 2, we briefly review some of the

multivariate volatility models relevant to the proposed model. Section 3 considers

the proposed model whereas Section 4 contains applications to daily returns of

foreign exchange rates and U.S. stocks. Section 5 concludes.

2. A brief review of vector volatility models

Many multivariate volatility models are available in the literature. In this section,

we briefly review some of those models that are relevant to the proposed model.

We shall focus on the simple models of order (1, 1) in our discussion because such

models are typically used in applications and the generalization to higher-order

models is straightforward. In what follows, let aij denote the (i, j)th element of the

matrix A and uit be the ith element of the vector ut.

VEC model. For a symmetric n × n matrix A, let vech(A) be the half-stacking

vector of A, that is, vech(A) is a n(n+1)/2×1 vector obtained by stacking the lower

triangular portion of the matrix A. Let ht = vech(Σt) and ηt = vech(ete
′
t). Using

the idea of exponential smoothing, Bollerslev et al. [3] propose the VEC model

(4) ht = c + Aηt−1 + Bht−1

where c is a k(k+1)/2-dimensional vector, and A and B are k(k+1)/2×k(k+1)/2

matrices. This model contains several weaknesses. First, the model contains k(k +

1)[k(k + 1) + 1]/2 parameters, which is large even for a small k. For instance, if

k = 3, then the model contains 78 parameters, making it hard to apply in practice.

To overcome this difficulty, Bollerslev et al. [3] further suggest that both A and

B matrices of Eq. (4) are constrained to be diagonal. The second weakness of the

model is that the resulting volatility matrix Σt may not be positive definite.
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BEKK model. A simple BEKK model of Engle and Kroner [5] assumes the form

(5) Σt = C ′C + A′et−1e
′
t−1A + B′

Σt−1B

where C, A, and B are k×k matrices but C is upper triangular. An advantage of the

BEKK model is that Σt is positive definite if the diagonal elements of C is positive.

On the other hand, the model contains many parameters that do not represent

directly the impact of et−1 or Σt−1 on the elements of Σt. In other words, it is

hard to interpret the parameters of a BEKK model. Limited experience also shows

that many parameter estimates of the BEKK model in Eq. (5) are statistically

insignificant, implying that the model is overparameterized.

Using the standardization of Eq. (3), one can divide the multivariate volatility

modeling into two steps. The first step is to specify models for elements of the

Dt matrix, and the second step is to model the correlation matrix Rt. Two such

approaches have been proposed in the literature. In both cases, the elements σii,t

are assumed to follow a univariate GARCH model. In other words, σii,t are based

entirely on the i-the return series.

Dynamic correlation model of Tse and Tsui. In [8], the authors propose that (a)

the individual volatility σii,t can assume any univariate GARCH models, and (b)

the correlation matrix Rt of Eq. (3) follows the model

(6) Rt = (1 − λ1 − λ2)R + λ1Ψt−1 + λ2Rt−1

where λ1 and λ2 are non-negative parameters satisfying 0 ≤ λ1+λ2 < 1, R is a k×k
positive definite parameter matrix with Rii = 1 and Ψt−1 is the k × k correlation

matrix of some recent asset returns. For instance, if the most recent m returns are

used to define Ψt−1, then the (i, j)th element of Ψt−1 is given by

ψij,t−1 =

∑m
v=1 ui,t−vuj,t−v

√

(
∑m

v=1 u2
i,t−v)(

∑m
v=1 u2

j,t−v)

,

where uit = eit/
√

σii,t. If m > k, then Ψt−1 is positive definite almost surely. This

in turn implies that Rt is positive definite almost surely. We refer to this model as

a DCCT (m) model. In practice, one can use the sample correlation matrix of the

data to estimate R in order to simplify the calculation. Indeed, this is the approach

we shall take in this paper.

From the definition, the use of DCCT (m) model involves two steps. In the first

step, univariate GARCH models are built for each return series. At step 2, the

correlation matrix Rt of Eq. (6) is estimated across all return series via the maxi-

mum likelihood method. An advantage of the DCCT (m) model is that the resulting

correlation matrices are positive definite almost surely. In addition, the model is

parsimonious in parameterization because the evolution of correlation matrices is

governed by two parameters. On the other hand, strong limitation is imposed on

the time evolution of the correlation matrices. In addition, it is hard to interpret

the results of the two-step estimation. For instance, it is not clear what is the joint

distribution of the innovation et of the return series.

Dynamic correlation model of Engle. A similar correlation model is proposed by

Engle [4]. Here the correlation matrix Rt follows the model

(7) Rt = W−1
t QtW

−1
t
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where Qt = [qij,t] is a positive-definite matrix, Wt = diag{
√

q11,t, . . . ,
√

qkk,t} is a

normalization matrix, and the elements of Qt are given by

Qt = (1 − α1 − α2)Q̄ + α1ut−1u
′
t−1 + α2Qt−1,

where ut is the standardized innovation vector with elements uit = eit/
√

σii,t,

Q̄ is the sample covariance matrix of ut, and α1 and α2 are non-negative scalar

parameters satisfying 0 < α1 +α2 < 1. We refer to this model as the DCCE model.

Compared with the DCCT (m) model, the DCCE model only uses the most recent

standardized innovation to update the time-evolution of the correlation matrix.

Since ut−1u
′
t−1 is singular for k > 1 and is, in general, not a correlation matrix, and

the matrix Qt must be normalized in Eq. (7) to ensure that Rt is indeed a correlation

matrix. Because a single innovation is more variable than the correlation matrix

of m standardized innovations, the correlations of a DCCE model tend to be more

variable than those of a DCCT (m) model.

To better understand the difference between DCCT (m) and DCCE models, con-

sider the correlation ρ12,t of the first two returns in rt. For DCCT (m) model,

ρ12,t = (1 − λ1 − λ2)ρ12 + λ2ρ12,t−1 + λ1

∑m
v=1 u1,t−vu2,t−v

√

(
∑m

v=1 u2
1,t−v)(

∑m
v=1 u2

2,t−v)

.

On the other hand, for the DCCE model,

ρ12,t =
α∗q̄12 + α1u1,t−1u2,t−1 + α2q12,t−1

√

(α∗q̄11 + α1u2
1,t−1 + α2q11,t−1)(α∗q̄22 + α1u2

2,t−1 + α2q22,t−1)

,

where α∗
= 1 − α1 − α2. The difference is clearly seen.

3. Proposed models

We start with the simple case in which the effects of positive and negative past

returns on the volatility are symmetric. The case of asymmetric effects is given

later.

3.1. Multivariate GARCH models

In this paper, we propose the following model

(8) rt = µt + et, µt = φ0 +

p
∑

i=1

φirt−i, et = Σ
1/2εt

where p is a non-negative integer and {εt} is a sequence of independent and identi-

cally distributed multivariate Student-t distribution with v degrees of freedom. The

probability density function of εt is

f(ε) =
Γ((v + k)/2)

[π(v − 2)]k/2Γ(v/2)
[1 + (v − 2)

−1ε′ε]−(v+k)/2.

The variance of each component of εt is 1. The volatility matrix is standardized as

Eq. (3) with elements of Dt and the correlation matrix Rt satisfying

D2
t = Λ0 + Λ1D

2
t−1 + Λ2G

2
t−1,(9)

Rt = (1 − θ1 − θ2)R̄ + θ1ψt−1 + θ2Rt−1,(10)
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where Gt = diag{e1t, . . . , ekt}, Λi = diag{�11,i, . . . , �kk,i} are diagonal matrices such

that �ii,1 + �ii,2 < 1 and 0 ≤ �ii,j for i = 1, . . . , k and j = 1, 2, R̄ is the sample

correlation matrix, θi are non-negative real numbers satisfying θ1 + θ2 < 1, and

ψt−1 is the sample correlation matrix of the last m innovations as defined in the

DCCT (m) model of Eq. (6). We use m = k + 2 in empirical data analysis.

This model uses univariate GARCH(1,1) models for the conditional variance of

components of rt and a combination of the correlation matrix equations of the

DCCT (m) and DCCE models for the correlation. The order of GARCH models

can be increased if necessary, but we use (1,1) for simplicity. In addition, Λ1 and

Λ2 can be generalized to non-diagonal matrices. However, we shall keep the simple

structure in Eq. (9) and (10) for ease in application and interpretation.

The proposed model differs from the DCCT (m) model in several ways. First,

the proposed model uses a multivariate Student-t distribution for innovation so

that the degrees of freedom are the same for all asset returns. This simplifies the

model interpretation at the expense of decreased flexibility. Second, the proposed

model uses sample correlation matrix R̄ to reduce the number of parameters. Third,

the proposed model uses joint estimation whereas the DCCT (m) model performs

separate estimations for variances and correlations.

3.2. Model with leverage effects

In financial applications, large positive and negative shocks to an asset have different

impacts on the subsequent price movement. In volatility modeling, it is expected

that a large negative shock would lead to increased volatility as a big drop in asset

price is typically associated with bad news which, in turn, means higher risk for

the investment. This phenomenon is referred to as the leverage effect in volatility

modeling. The symmetry of GARCH model in Eq. (9) keeps the model simple, but

fails to address the leverage effect. To overcome this shortcoming, we consider the

modified model

(11) D2
t = Λ0 + Λ1D

2
t−1 + Λ2G

2
t−1 + Λ3L

2
t−1,

where Λi (i = 0, 1, 2) are defined as before, Λ3 is a k× k diagonal matrix with non-

negative diagonal elements, and Lt−1 is also a k × k diagonal matrix with diagonal

elements

Lii,t−1 =

{

ei,t−1 if ei,t−1 < 0,

0 otherwise.

In Eq. (11), we assume that 0 <
∑3

j=1 �ii,j ≤ 1 for i = 1, . . . , k. This is a sufficient

condition for the existence of volatility.

From the definition, a positive shock ei,t−1 affects the volatility via �ii,2e
2
i,t−1. A

negative shock, on the other hand, contributes (�ii,2 + �ii,3)e
2
i,t−1 to the volatility.

Checking the significance of �ii,3 enables us to draw inference on the leverage effect.

4. Application

We illustrate the proposed model by considering some daily asset returns. First,

we consider a four-dimensional process consisting of two equity returns and two

exchange rate returns. Second, we consider a 10-dimensional equity returns. In

both examples, we use m = k + 2 to estimate the local correlation matrices ψt−1

in Eq. (10).
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Example 1. In this example, we consider the daily exchange rates between U.S.

Dollar versus European Euro and Japanese Yen and the stock prices of IBM and

Dell from January 1999 to December 2004. The exchange rates are the noon spot

rate obtained from the Federal Reserve Bank of St. Louis and the stock returns are

from the Center for Research in Security Prices (CRSP). We compute the simple

returns of the exchange rates and remove returns for those days when one of the

markets was not open. This results in a four-dimensional return series with 1496

observations. The return vector is rt = (r1t, r2t, r3t, r4t)
′

with r1t and r2t being

the returns of Euro and Yen exchange rate, respectively, and r3t and r4t are the

returns of IBM and Dell stock, respectively. All returns are in percentages. Figure 1

shows the time plot of the return series. From the plot, equity returns have higher

variability than the exchange rate returns, and the variability of equity returns

appears to be decreasing in recent years. Table 1 provides some descriptive statistics

of the return series. As expected, the means of the return are essentially zero and

all four series have heavy tails with positive excess kurtosis.

The equity returns have some serial correlations, but the magnitude is small.

If multivariate Ljung-Box statistics are used, we have Q(3) = 59.12 with p-value

0.13 and Q(5) = 106.44 with p-value 0.03. For simplicity, we use the sample mean

as the mean equation and apply the proposed multivariate volatility model to the

mean-corrected data. In estimation, we start with a general model, but add some

equality constraints as some estimates appear to be close to each other. The results

are given in Table 2 along with the value of likelihood function evaluated at the

estimates.

For each estimated multivariate volatility model in Table 2, we compute the
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Fig 1. Time plots of daily return series from January 1999 to December 2004: (a) Dollar-Euro

exchange rate, (b) Dollar-Yen exchange rate, (c) IBM stock, and (d) Dell stock.
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Table 1

Descriptive statistics of daily returns of Example 1. The returns are in percentages, and the

sample period is from January 1999 to December 2004 for 1496 observations

Asset USEU JPUS IBM DELL

Mean 0.0091 −0.0059 0.0066 0.0028

Standard error 0.6469 0.6626 5.4280 10.1954

Skewness 0.0342 −0.1674 −0.0530 −0.0383
Excess kurtosis 2.7090 2.0332 6.2164 3.3054

Box-Ljung Q(12) 12.5 6.4 24.1 24.1

Table 2

Estimation results of multivariate volatility models for Example 1 where Lmax denotes the value

of likelihood function evaluated at the estimates, v is the degrees of freedom of the multivariate

Student-t distribution, and the numbers in parentheses are asymptotic standard errors

Λ0 Λ1 Λ2 (v, θ1, θ2)
′

(a) Full model estimation with Lmax = −9175.80
0.0041(0.0033) 0.9701(0.0114) 0.0214(0.0075) 7.8729(0.4693)

0.0088(0.0038) 0.9515(0.0126) 0.0281(0.0084) 0.9808(0.0029)

0.0071(0.0053) 0.9636(0.0092) 0.0326(0.0087) 0.0137(0.0025)

0.0150(0.0136) 0.9531(0.0155) 0.0461(0.0164)

(b) Restricted model with Lmax = −9176.62
0.0066(0.0028) 0.9606(0.0068) 0.0255(0.0068) 7.8772(0.7144)

0.0066(0.0023) 0.0240(0.0059) 0.9809(0.0042)

0.0080(0.0052) 0.0355(0.0068) 0.0137(0.0025)

0.0108(0.0086) 0.0385(0.0073)

(c) Final restricted model with Lmax = −9177.44
0.0067(0.0021) 0.9603(0.0063) 0.0248(0.0048) 7.9180(0.6952)

0.0067(0.0021) 0.0248(0.0048) 0.9809(0.0042)

0.0061(0.0044) 0.0372(0.0061) 0.0137(0.0028)

0.0148(0.0084) 0.0372(0.0061)

(d) Model with leverage effects, Lmax = −9169.04
0.0064(0.0027) 0.9600(0.0065) 0.0254(0.0063) 8.4527(0.7556)

0.0066(0.0023) 0.0236(0.0054) 0.9810(0.0044)

0.0128(0.0055) 0.0241(0.0056) 0.0132(0.0027)

0.0210(0.0099) 0.0286(0.0062)

standardized residuals as

ε̂t = ̂Σ
−1/2
t et,

where ̂Σ
1/2
t is the symmetric square-root matrix of the estimated volatility matrix

̂Σt. We apply the multivariate Ljung-Box statistics to the standardized residuals ε̂t

and its squared process ε̂2t of a fitted model to check model adequacy. For the full

model in Table 2(a), we have Q(10) = 167.79(0.32) and Q(10) = 110.19(1.00) for

ε̂t and ε̂2t , respectively, where the number in parentheses denotes p-value. Clearly,

the model adequately describes the first two moments of the return series. For the

model in Table 2(b), we have Q(10) = 168.59(0.31) and Q(10) = 109.93(1.00). For

the final restricted model in Table 2(c), we obtain Q(10) = 168.50(0.31) and Q(10)

= 111.75(1.00). Again, the restricted models are capable of describing the mean

and volatility of the return series.

From Table 2, we make the following observations. First, using the likelihood

ratio test, we cannot reject the final restricted model compared with the full model.

This results in a very parsimonious model consisting of only 9 parameters for the

time-varying correlations of the four-dimensional return series. Second, for the two

stock return series, the constant terms in Λ0 are not significantly different from
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Fig 2. Time plots of estimated volatility series of four asset returns. The solid line is from the

proposed model and the dashed line is from a rolling estimation with window size 69: (a) Dollar-

Euro exchange rate, (b) Dollar-Yen exchange rate, (c) IBM stock, and (d) Dell stock.

zero and the sum of GARCH parameters is 0.0372+0.9603 = 0.9975, which is very

close to unity. Consequently, the volatility series of the two equity returns exhibit

IGARCH behavior. On the other hand, the volatility series of the two exchange rate

returns appear to have a non-zero constant term and high persistence in GARCH

parameters. Third, to better understand the efficacy of the proposed model, we

compare the results of the final restricted model with those of rolling estimates. The

rolling estimates of covariance matrix are obtained using a moving window of size

69, which is the approximate number of trading days in a quarter. Figure 2 shows

the time plot of estimated volatility. The solid line is the volatility obtained by the

proposed model and the dashed line is for volatility of the rolling estimation. The

overall pattern seems similar, but, as expected, the rolling estimates respond slower

than the proposed model to large innovations. This is shown by the faster rise and

decay of the volatility obtained by the proposed model. Figure 3 shows the time-

varying correlations of the four asset returns. The solid line denotes correlations

obtained by the final restricted model of Table 2 whereas the dashed line is for

rolling estimation. The correlations of the proposed model seem to be smoother.

Table 2(d) gives the results of a fitted integrated GARCH-type with leverage

effects. The leverage effects are statistically significant for equity returns only and

are in the form of an IGARCH model. Specifically, the Λ3 matrix of the correlation

equation in Eq. (11) is

Λ3 = diag{0, 0, (1− 0.96− 0.0241), (1− 0.96− 0.0286)} = diag{0, 0, 0.0159, 0.0114}.

Although the magnitudes of the leverage parameters are small, but they are statis-

tically significant. This is shown by the likelihood ratio test. Specifically, compared
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Fig 3. Time plots of time-varying correlations between the percentage simple returns of four

assets from January 1999 to December 2004. The solid line is from the proposed model whereas

the dashed line is from a rolling estimation with window size 69.
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the fitted models in Table 2(b) and (d), the likelihood ratio statistic is 15.16, which

has a p-value 0.0005 based on the chi-squared distribution with 2 degrees of free-

dom.

Example 2. In this example, we consider daily simple returns, in percentages,

of the S&P 500 index and nine individual stocks from January 1990 to December

2004 for 3784 observations. Thus, we have a 10-dimensional return series. The

ten assets are given in Table 3 along with some descriptive statistics. All asset

returns have positive excess kurtosis, indicating heavy tails. Except for the stock of

General Electrics, return minimums exceed the maximums in modulus, suggesting

asymmetry in price changes due to good and bad news.

Sincere there are some minor serial and cross correlations in the 10-dimensional

returns, we fit a vector autoregressive model of order 3, i.e. VAR(3), to the data

to remove the dynamic dependence and employ the resulting residual series in

volatility modeling. See Eq. (8).

We have applied the proposed volatility model in Eqs. (9)- (10) to the residual se-

ries of the VAR(3) model. But our subsequently analysis shows that the model with

leverage effects in Eq. (11) is preferred based on the likelihood ratio test. Therefore,

for simplicity in presentation, we shall only report the results with leverage effects.

Employing the volatility model in Eq. (11) with the correlations in Eq. (10), we

found that for the returns of IBM, DELL, GE, and GM stocks the leverage effects

follow integrated GARCH models. Consequently, for these four stock returns the

leverage parameters are given by

Λii,3 = 1 − Λii,1 − Λii,2,

where Λii,j is the ith diagonal element of the matrix Λj , j = 1, 2, 3. Table 4 shows

the parameter estimates of the 10-dimensional volatility model.

For model checking, we use a bootstrap method to generate the critical values of

multivariate Ljung-Box statistics for the standardized residuals and their squared

series. Specifically, we generate 10,000 realizations each with 3781 observations from

the standardized residuals of the fitted model. The bootstrap samples are drawn

with replacement. For each realization, we compute the Ljung-Box statistics Q(5),

Q(10), and Q(15) of the series and its squared series. Table 5 gives some critical

values of the Ljung-Box statistics. For the fitted model, we have Q(10) = 836.12

and Q(15) = 1368.71 for the standardized residuals and Q(10) = 1424.64 and

Q(15) = 1923.75 for the squared series of standardized residuals. Compared with

the critical values in Table 5, the Ljung-Box statistics are not significant at the

1% level. Thus, the fitted model is adequate in modeling the volatility of the 10-

dimensional return series. We also applied the AIC criterion to the squared series

of standardized residuals. The criterion selected a VAR(0) model, confirming that

the fitted multivariate volatility model is adequate.

From the fitted model, we make the following observations. First, except for

two marginal cases, all estimates of leverage parameters are statistically significant

at the 5% level based on their asymptotic standard errors. The two marginally

significant leverage parameters are for BA amd PFE stocks and their t-ratios are

1.65 and 1.92, respectively. Thus, as expected, the leverage effects are positive and

most of them are significant. Second, all parameters of the volatility equation are

significant. Thus, the model does not contain unnecessary parameters. Third, the

model contains 30 parameters. This is very parsimonious for a 10-dimensional return

series. Fourth, the correlations evolve slowly with high persistence parameter 0.9864.
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Table 3

Descriptive statistics of asset returns used in Example 2. Except for the S&P index, tick symbol

is used to denote the company. Returns are in percentages

Asset Mean St.Error Skewness Ex.Kurt. Minimum Maximum

S&P 0.038 1.03 −0.018 3.58 −6.87 5.73

IBM 0.066 2.03 0.294 6.32 −15.54 13.16

INTC 0.122 2.82 −0.122 4.17 −22.02 20.12

DELL 0.236 3.49 −0.012 3.45 −25.44 20.76

GE 0.074 1.70 0.176 3.80 −10.67 12.46

BA 0.052 1.98 −0.282 6.08 −17.62 11.63

GM 0.039 2.01 0.111 1.98 −13.53 10.34

JNJ 0.076 1.59 −0.139 4.32 −15.85 8.21

MRK 0.051 1.80 −0.861 14.91 −26.78 9.60

PFE 0.084 1.91 −0.068 1.94 −11.15 9.71

Table 4

Parameter estimates of the proposed volatility model with leverage effects for the 10 asset

returns of Example 2. For leverage effects, those estimates without standard errors denote

IGARCH constraints

Λ1 λI
Estimate 0.9658

Std.Err 0.0024

Λ2 Diagonal matrix with elements

Estimate .0154 .0174 .0168 .0298 .0191 .0206 .0187 .0110 .0128 .0192

Std.Err .0031 .0026 .0038 .0030 .0029 .0041 .0037 .0038 .0028 .0037

Λ0 Diagonal matrix with elements

Estimate .0077 .0211 .0763 .0170 .0185 .0279 .0342 .0281 .0369 .0309

Std.Err .0010 .0042 .0121 .0067 .0031 .0054 .0074 .0048 .0061 .0058

Λ3 Diagonal matrix with elements

Estimate .0178 .0168 .0126 .0044 .0152 .0107 .0155 .0210 .0143 .0115

Std.Err .0049 .0059 .0065 .0064 .0059 .0060

Parameter v θ2 θ1

Estimate 9.54 .9864 .0070

Std.Err .417 .0016 .0006

Table 5

Critical values of Ljung-Box statistics for 10-dimensional standardized residual series.

The values are obtained by a bootstrap method with 10,000 iterations. The sample size

of the series is 3781

Standardized residuals Squared standardized residuals

Statistics 1% 5% 10% 1% 5% 10%

Q(5) 576.92 553.68 541.33 915.89 696.82 617.74

Q(10) 1109.05 1075.25 1057.94 1150.31 1281.03 1170.12

Q(15) 1633.31 1591.61 1571.17 2125.65 1837.28 1713.50

Fifth, the estimate of the degrees of freedom for multivariate Student-t innovation

is 9.54, confirming that the returns have heavy tails.

Remark. In this paper, we use a MATLAB program to estimate the proposed

multivariate volatility models. The negative log likelihood function is minimized

with inequality parameter constraints using the function fmincon. Limited experi-

ence shows that the results are not sensitive to the initial values, but initial values

that are far away from the final estimates do require many more iterations. The
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estimation, however, can become difficult if some parameters are approching the

boundary of the parameter space. For instance, if there is no leverage effect, then

the hessian matrix can be unstable when the leverage parameter is included in the

estimation.

5. Extensions and some alternative approaches

In this paper, we consider a simple approach to model multivariate volatilities of

asset returns. Unlike other methods available in the literature, the proposed ap-

proach estimates the conditional variances and correlations jointly and the result-

ing volatility matrices are positive definite. The proposed model can handle the

leverage effects and is parsimonious. We demonstrated the efficacy of the proposed

model by analyzing a 4-dimensional and a 10-dimensional asset return series. The

results are encouraging. We also used a bootstrap method to obtain finite-sample

critical values for the multivariate Ljung-Box statistics for testing serial and cross

correlations of a vector series.

There are possible extensions of the proposed model. For example, Eq. (10) re-

quires that all correlations have the same persistence parameter θ2. This restriction

can be relaxed by letting θ1 and θ2 be diagonal matrices of positive real numbers.

The model would become

Rt = (I − θ2
1 − θ2

2)R̄ + θ1ψt−1θ1 + θ2Rt−1θ2.

Under this model, the ith asset return contributes θii,2 to the persistence of corre-

lations. In addition, one can have equality constraints among diagonal elements of

each θi matrix to keep the model parsimonious.

Some alternative approaches have been considered in the literature to overcome

the curse of dimensionality in multivariate volatility modeling. Palandri [7] uses

a sequential Cholesky decomposition to build a multivariate volatility of 69 stock

returns. The independent component models have also been used to simplify the

modeling procedure, e.g., see [6].
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Abstract: Consider a multi-phase project management problem where the

decision maker needs to deal with two issues: (a) how to allocate resources to

projects within each phase, and (b) when to enter the next phase, so that the

total expected reward is as large as possible. We formulate the problem as a

multi-armed bandit problem with precedence relations. In Chan, Fuh and Hu

(2005), a class of asymptotically optimal arm-pulling strategies is constructed

to minimize the shortfall from perfect information payoff. Here we further

explore optimality properties of the proposed strategies. First, we show that

the efficiency benchmark, which is given by the regret lower bound, reduces to

those in Lai and Robbins (1985), Hu and Wei (1989), and Fuh and Hu (2000).

This implies that the proposed strategy is also optimal under the settings of

aforementioned papers. Secondly, we establish the super-efficiency of proposed

strategies when the bad set is empty. Thirdly, we show that they are still

optimal with constant switching cost between arms. In addition, we prove that

the Wald’s equation holds for Markov chains under Harris recurrent condition,

which is an important tool in studying the efficiency of the proposed strategies.

1. Introduction

Suppose there are U = J1 + · · · + JI statistical populations, Π11, Π12, . . . ,ΠIJI
.

Pulling arm ij once corresponds to taking an observation from population Πij . The

observations from Πij form a Markov chain on a state space D with transition

probability density function pij(x, y, θ) with respect to a σ-finite measure Q, where

θ is an unknown parameter belonging to a parameter space Θ. The stationary

probability distribution for the Markov chain exists and has probability density

function πij(·, θ).

At each step, we are required to sample one of the statistical populations obeying

the partial order ij � i′j′ ⇔ i ≤ i′. An adaptive policy is a sampling rule that

dictates, at each step, which population should be sampled based on observations

before that step. We can represent a policy as a sequence of random variables

φ = {φt|φt−1 � φt, t = 1, 2, . . .} taking values in {ij|i = 1, . . . , I; j = 1, . . . , Ji}

such that the event {φt = ij} ‘take an observation from Πij at step t’ belongs to

the σ-field generated by φ1, X1, . . . , φt−1, Xt−1, where Xt denotes the state of the

population being sampled at t-th step.
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Let the initial state of Πij be distributed according to νij(·; θ). Throughout this

paper, we shall use the notation Eθ (Pθ) to denote expectation (probability) with

respect to the initial distribution νij(·; θ); similarly, Eπ(θ) to denote expectation

with respect to the stationary distribution πij(·; θ). We shall assume that Vij =

{x ∈ D : νij(x; θ) > 0} does not depend on θ and vij := infx∈Vij
infθ,θ′∈Θ[νij(x; θ)/

νij(x; θ′)] > 0 for all i, j. Suppose that
∫

x∈D
|g(x)|πij(x; θ)Q(dx) < ∞. Let

µij(θ) =

∫

x∈D

g(x)πij(x; θ)Q(dx)

be the mean reward under stationary distribution πij when Πij is sampled once.

Let N be the total sample size from all populations, and

TN (ij) =

N
∑

t=1

1{φt=ij}(1.1)

be the sample size from Πij and 1 denotes the indicator function. It follows that

the total reward equals

WN (θ) :=

N
∑

t=1

I
∑

i=1

Ji
∑

j=1

Eθ{Eθ[Xt1{φt=ij}|Ft−1]}.(1.2)

In the case of independent rewards, that is, when pij(x, y, ; θ) = pij(y; θ) for all

i, j, x, y and θ, WN (θ) =
∑I

i=1

∑Ji

j=1 µij(θ)EθTN (ij). We shall show in the Appen-

dix that for Markovian rewards, under regularity conditions A3-A4 (see Section

2.1), there exists a constant C0 < ∞ independent of θ ∈ Θ, N > 0 and the strategy

φ such that

(1.3)

∣

∣

∣
WN (θ) −

I
∑

i=1

Ji
∑

j=1

µij(θ)EθTN (ij)
∣

∣

∣
≤ C0.

In light of (1.3), maximizing WN (θ) is asymptotically equivalent [up to a O(1)

term] to minimizing the regret

RN (θ) := Nµ∗
(θ) − WN (θ) =

∑

ij:µij(θ)<µ∗(θ)

[µ∗
(θ) − µij(θ)]EθTN (ij),(1.4)

where µ∗
(θ) := max1≤i≤I max1≤j≤Ji

µij(θ).
Because adaptive strategies φ that are optimal for all θ ∈ Θ and large N in

general do not exist, we consider the class of all (asymptotically) uniformly good

adaptive strategies under the partial order constraint �, satisfying

RN (θ) = o(Nα
), for all α > 0 and θ ∈ Θ.(1.5)

Such strategies have regret that does not increase too rapidly for any θ ∈ Θ. We

would like to find a strategy that minimizes the increasing rate of the regret within

the class of uniformly good adaptive strategies under the partial order constraint �.

The rest of the article is organized as follows. In Section 2, we present the assump-

tions and introduce the concept of bad sets. The regret lower bound is investigated

in Section 3. We also prove that the regret lower bound specializes to other lower

bounds obtained by previous authors under less general settings. Section 4 con-

tains the super efficiency result when the bad sets are empty. The optimality of the

proposed strategies under constant switching cost is investigated in Section 5. The

last section includes the proof of Wald’s equation for Markov random walks under

Harris recurrence condition.
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2. The assumption and bad sets

Denote the Kullback-Leibler information number by

Iij(θ, θ
′
) =

∫

x∈D

∫

y∈D

log

[ pij(x, y; θ)

pij(x, y; θ′)

]

pij(x, y; θ)πij(x; θ)Q(dy)Q(dx).(2.1)

Then, 0 ≤ Iij(θ, θ
′
) ≤ ∞. We shall assume that Iij(θ, θ

′
) < ∞ for all i, j and

θ, θ′ ∈ Θ. Let µi(θ) = max1≤j≤Ji
µij(θ) be the largest reward in the i-th group of

arms, and

(2.2) Θi = {θ ∈ Θ : µi(θ) > µi′(θ) for all i′ < i and µi(θ) ≥ µi′(θ) for all i′ ≥ i}

be the set of parameter values such that the first optimal job is in group i. Let

(2.3) Θij = {θ ∈ Θi : µij(θ) = µi(θ)}

be the parameter set such that arm ij is one of the first optimal ones. Each θ ∈ Θ

belongs to exactly one Θi but may belong to more than one Θij . Let

(2.4) Θ
∗
i = {θ ∈ Θ : µi(θ) > µi′(θ) for all i′ �= i}

be the parameter set in which all the optimal arms lie in group i. Clearly, Θ
∗
i ⊂ Θi

but the reverse relation is not necessarily true.

2.1. The assumptions

We now state a set of assumptions that will be used to prove the optimality results.

Let Θ be a compact subset of Rd
for some d ≥ 1.

A1. µij(·) are finite and continuous on Θ for all i, j. Moreover, no arm group is

redundant in the sense that Θ
∗
i �= ∅ for all i = 1, . . . , I.

A2.
∑J1

j=1 I1j(θ, θ
′
) > 0 for all θ′ �= θ and infθ′∈Θij

Iij(θ, θ
′
) > 0 for all 1 ≤ i <

I, 1 ≤ j ≤ Ji and θ ∈ ∪�>iΘ�.

A3. For each j = 1, . . . , Ji, i = 1, . . . , I and θ ∈ Θ, {Xijt, t ≥ 0} is a Markov

chain on a state space D with σ-algebra D, irreducible with respect to a

maximal irreducible measure on (D,D) and aperiodic. Furthermore, Xijt is

Harris recurrent in the sense that there exists a set Gij ∈ D, αij > 0 and

probability measure ϕij on Gij such that P θ
ij{Xijt ∈ Gij i.o.|Xij0 = x} = 1

for all x ∈ D and

P θ
ij{Xij1 ∈ A|Xij0 = x} ≥ αijϕij(A) for all x ∈ Gij and A ∈ D.(2.5)

A4. There exist constants 0 < b̄ < 1, b > 0 and drift functions Vij : D → [1,∞)

such that for all j = 1, . . . , Ji and i = 1, . . . , I,

(2.6) sup

x∈D
|g(x)|/Vij(x) < ∞,

and for all x ∈ D, θ ∈ Θ,

P θ
ijVij(x) ≤ (1 − b̄)Vij(x) + b1Gij

(x),(2.7)
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where Gij satisfies (2.5) and P θ
ijVij(x) =

∫

D
Vij(y)P θ

ij(x, dy). Moreover, we

require that

(2.8)

∫

D

Vij(x)νij(dx; θ)Q(dx) < ∞ and V ∗
ij := sup

x∈Gij

Vij(x) < ∞.

Let �ij(x, y; θ, θ′) = log[pij(x, y; θ)/pij(x, y; θ′)] be the log likelihood ratio be-

tween P θ
ij and P θ′

ij and Nδ(θ) = {θ′ : ‖θ − θ′‖ < δ} a ball of radius δ around

θ, where ‖ · ‖ denotes Euclidean norm.

A5. There exists δ > 0 such that for all θ, θ′ ∈ Θ,

(2.9) Kθ,θ′ := sup

x∈D

Eθ[supθ̃∈Nδ(θ′) �2ij(Xij0, Xij1; θ, ˜θ)|Xij0 = x]

Vij(x)
< ∞

for all j = 1, . . . , Ji, i = 1, . . . , I. Moreover,

(2.10) sup

θ̃∈N
δ′

(θ′)

|�ij(x, y; θ′, ˜θ)| → 0 as δ′ → 0

for all x, y ∈ D and θ′ ∈ Θ.

Assumption A1 is a mild regularity condition to exclude unrealistic models. A2

is a positive information criterion: the first inequality makes sure that information

is available in the first arm group to estimate θ; while the second inequality allows

us to collect information in the i-th arm group for moving to the next group when

θ ∈ Θ� for some � > i. Assumption A3 is a recurrence condition and A4 is a drift

condition. These two conditions are used to guarantee the stability of the Markov

chain so that the strong law of large numbers and Wald’s equation hold. A5 is a

finite second moment condition that allows us to bound the probability that the

MLE of θ lies outside a small neighborhood of θ. This bound is important for us

to determine the level of unequal allocation of observations that can be permitted

in the testing stage of our procedure. The proof of the asymptotic lower bound in

Theorem 1 requires only A1-A3; while additional A4 and A5 are required for the

construction of efficient strategies attaining the lower bound.

2.2. Bad sets

The bad set is a useful concept for understanding the learning required within the

group containing optimal arms. It is associated with the asymptotic lower bound

described in Section 3 and is used explicitly in constructing the asymptotically

efficient strategy. For θ ∈ Θ�, define J(θ) = {j : µ∗
(θ) = µ�j(θ)} as the set of

optimal jobs in group �. Hence θ ∈ Θ�j if and only if j ∈ J(θ). We also define

the bad set, the set of ‘bad’ parameter values associated with θ, as all θ′ ∈ Θ�

which cannot be distinguished from θ by processing any of the optimal jobs �j.
Specifically,

(2.11) B�(θ) =

{

θ′ ∈ Θ� \
(

⋃

j∈J(θ)

Θ�j

)

: I�j(θ, θ
′
) = 0 for all j ∈ J(θ)

}

.

The bad set B�(θ) is the intersection of two parameter sets. One set consists of

parameter values that have different optimal arms from those for θ. The other set

contains parameter values that cannot be distinguished from sampling the optimal
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arm for θ. When a parameter value is in the intersection, sampling from arms that

are non-optimal for θ is required.

We note that if I�j(θ, θ
′
) = 0, then the transition probabilities of X�jt are identi-

cal under both θ and θ′. If θ′ ∈ B�(θ), then by definition, θ′ �∈ ∪j∈J(θ)Θ�j and hence

J(θ′) ∩ J(θ) = ∅. Let j ∈ J(θ) and j′ ∈ J(θ′). Then µ�j′(θ′) > µ�j(θ
′
) = µ�j(θ) >

µ�j′(θ). Thus

(2.12) I�j′(θ, θ
′
) > 0 for all θ′ ∈ B�(θ) and j′ ∈ J(θ′).

The interpretation of (2.12) is as follows. Although we cannot distinguish θ from

θ′ ∈ B�(θ) when sampling the optimal arm for θ, we can distinguish them by

sampling the optimal job for θ′. This fact explains the necessity of processing non-

optimal arms to collect information.

3. The regret lower bound

The following theorem gives an asymptotic lower bound for the regret (1.4) of

uniformly good adaptive strategies under the partial order constraint �. The proof

can be found in [1]. We will discuss the relation of the lower bound with those in

[6, 7] and [3].

Theorem 1. Assume A1-A3 and let θ ∈ Θ�. For any uniformly good adaptive

strategy φ under the partial order constraint �,

lim inf
N→∞

RN (θ)/log N ≥ z(θ, �),(3.1)

where z(θ, �) is the minimum value of the following minimization problem.

Minimize
∑

i<�

Ji
∑

j=1

[µ∗
(θ) − µij(θ)]zij(θ) +

∑

j /∈J(θ)

[µ∗
(θ) − µ�j(θ)]z�j(θ),(3.2)

subject to zij(θ) ≥ 0, j = 1, . . . , Ji, if i < �, j /∈ J(θ), if i = �,

and

(3.3)



































infθ′∈Θ1
{
∑J1

j=1 I1j(θ, θ
′
)z1j(θ)} ≥ 1,

infθ′∈Θ2
{
∑J1

j=1 I1j(θ, θ
′
)z1j(θ) +

∑J2

j=1 I2j(θ, θ
′
)z2j(θ)} ≥ 1,

...

infθ′∈Θ�−1
{
∑J1

j=1 I1j(θ, θ
′
)z1j(θ) + · · · +

∑J�−1

j=1 I(�−1)j(θ, θ
′
)z(�−1)j(θ)} ≥ 1,

infθ′∈B�(θ){
∑

i<�

∑Ji

j=1 Iij(θ, θ
′
)zij(θ) +

∑

j /∈J(θ) I�j(θ, θ
′
)z�j(θ)} ≥ 1.

Corollary 1. When there is only one group of arms, (3.1) reduces to the lower

bound (1.11) of Lai and Robbins [7].

Proof. When there is only group of arms, only the last inequality of (3.3) is needed

and it takes the form

(3.4) inf
θ′∈B(θ)

∑

j /∈J(θ)

Ij(θ, θ
′
)zj(θ) ≥ 1.
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In [7], it is proved that

(3.5) EθTN (j) ≥
log N

I(θj , θ∗)
for all j /∈ J(θ),

where θ∗ = max1≤i≤k θi. Note that in [7], all jobs belong to the same family of

probability distributions with different parameter values, and thus the KL informa-

tion number does not depend on the job label but only the parameter value. Let

EθTN (j)/ log N = zj(θ), then (3.5) is the same as

(3.6) zj(θ)I(θj , θ
∗
) ≥ 1 for all j /∈ J(θ).

We first show that (3.4) ⇒ (3.5). Because (3.4) implies that for all θ′ ∈ B(θ)

(3.7)

∑

j /∈J(θ)

I(θj , θ
′
j)zj(θ) ≥ 1.

If θ′ = (θ′1, . . . , θ
′
k) ∈ B(θ), then θ∗ = θj∗ = θ′j∗ and max1≤i≤k θ′i > θ∗. Suppose we

choose a sequence of θ′ ∈ B(θ) such that there is only one component θ′j approaching

θ∗ from above and other components θ′j′ , j′ /∈ J(θ), all have the same values as the

corresponding components of θ. Taking infimum over this sequence of θ′ ∈ B(θ) in

(3.7), we obtain (3.6). This complete the proof of (3.4) ⇒ (3.5).

To prove (3.5) ⇒ (3.4), we assume that (3.4) does not hold. That is, there exist

a θ′ ∈ B(θ) such that
∑

j /∈J(θ)

I(θj , θ
′
j)zj(θ) < 1.

Because θ′ ∈ B(θ), there exists at least one component θ′j∗ of θ′ such that θ′j∗ > θ∗.
Then the preceding inequality and the property of exponential families imply that

zj∗(θ)I(θj∗ , θ
∗
) < zj∗(θ)I(θj∗ , θ

′
j∗) < 1,

and thus (3.6) does not hold. This establishes (3.5) ⇒ (3.4) and the proof is com-

plete.

Corollary 2. When there is only one arm in each group, then (3.1) reduces to the

lower bound (1.17) of Hu and Wei [6].

Proof. In Hu and Wei [6], the set Θi are intervals of �. Thus the infimum over Θi

is achieved at the end points of the intervals. Furthermore, because there is only

one arm in each group, the bad sets are all empty and therefore the last inequality

in (3.3) is not needed. In view of these facts, it is straightforward to show that

the systems of inequalities (3.3) reduces to (1.14) of Hu and Wei [6]. The proof is

complete.

Corollary 3. When there is only one arm in each group, the lower bound (3.1)

reduces to (3.2) of Fuh and Hu [3].

Proof. The assumptions A3 and A4 of Fuh and Hu [3] correspond to the regularity

condition A1 and the positive information criterion A2 in Section 2, respectively.

The A1, A2 and A5 of Fuh and Hu are essentially the same as Harris recurrence

condition A3, the drift condition A4, and the finite second moment condition A5

of this paper, respectively.

Note that the definition of bad sets in [3] is different from that of this paper.

In [3], the bad set consists of all those parameter values having optimal arm not
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in the same group and cannot be distinguished when sampling from the optimal

arm. Here the bad set consists of parameter values that has different optimal arm

(but still in the same group), and cannot be distinguished when sampling from the

optimal arm(s). If we adopt the definition (2.11), then it is clear that the bad sets

are all empty under the setting of [3].

The infimums in Problem A of Fuh and Hu [3] is taken over the union of Θi and

the corresponding bad set. Because the bad sets in [3] are all empty as we point

out earlier, the infimums is actually taken over Θi. With this understanding, it is

straightforward to verify that the lower bound (3.1) reduces to (3.2) of Fuh and

Hu [3].

4. Super efficiency

The strategy in the allocation of the observations is as follows. For the rationale

of the proposed strategy and more detailed discussion, please see [1]. Let n0 and

n1 be positive integers that increase to infinity with respect to N and satisfies

n0 = o(log N) and n1 = o(n0).

1. Estimation. Select n0 observations from each arm in group 1 and let ̂θ be the

maximum likelihood estimate (MLE) of θ defined by

(4.1) L(θ) =

J
∑

j=1

n0
∑

t=1

log p1j(X1j(t−1), X1jt; θ), ̂θ = arg max
θ∈Θ

L(θ).

Let � = min{i : Nδ/2(
̂θ)∩Θi �= ∅}. Select an adjusted MLE estimate ̂θa ∈ Nδ/2(

̂θ)∩

Θ�, (where δ → 0 as N → ∞ at a rate to be specified in Theorem 1 below), in the

following manner. Let | · | denote the number of elements in a finite set and

(4.2) J = max{|J(θ′)| : θ′ ∈ Nδ/2(
̂θ) ∩ Θ�}.

We require that

(4.3) ̂θa ∈ H := {θ ∈ Nδ/2(
̂θ) ∩ Θ� : |J(θ)| = J}.

The motivation behind considering an adjusted MLE is to estimate J(θ) and the

set Θi that θ belongs to consistently. This has implications in the experimentation

phase. We note that if |J(θ)| > 1, then J(̂θ) need not be consistent for J(θ) and if

Θi lies on Θi \ Θ
∗
i [see (2.2) and (2.4)], then ̂θ need not be consistently inside Θi.

Conversely, the probability that J(̂θa) = J(θ) and ̂θa lying inside Θi tends to 1 as

N → ∞.

Let

(4.4) B�(θ; δ) = ∪θ′∈HB�(θ
′
)

and let {ẑij}1≤i≤�,1≤j≤Ji
minimize

(4.5)

∑

i<�

Ji
∑

j=1

[µ∗
(̂θa) − µij(

̂θa)]zij +

∑

j �∈J(̂θa)

[µ∗
(̂θa) − µ�j(

̂θa)]z�j
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subject to the constraints

(4.6)



































infθ′∈Θ1
{
∑J1

j=1 I1j(
̂θa, θ′)z1j} ≥ 1,

infθ′∈Θ2
{
∑J1

j=1 I1j(
̂θa, θ′)z1j +

∑J2

j=1 I2j(
̂θa, θ′)z2j} ≥ 1,

.

.

.

infθ′∈Θ�−1
{
∑J1

j=1 I1j(
̂θa, θ′)z1j + · · · +

∑J�−1

j=1 I(�−1)j(
̂θa, θ′)z(�−1)j} ≥ 1,

inf
θ′∈B�(̂θ;δ)

{
∑

i<�

∑Ji

j=1 Iij(
̂θa, θ′)zij +

∑

j /∈J(̂θa)
I�j(

̂θa, θ′)z�j} ≥ 1.

Let k = 1.

2. Experimentation. If k ≤ �, select �ẑkj log N� observations from arm kj, where

�·� denotes the greatest integer function. If k > �, we skip the experimentation stage.

We note that if B�(
̂θ; δ) is empty, then the last inequality in (4.6) is automatically

satisfied and hence we can select ẑ�1 = · · · = ẑ�J�
= 0. In other words, if B�(

̂θ; δ) is

empty, then the experimentation stage is also skipped over for k = �.

3. Testing. Start with a full set {k1, . . . , kJk} of unrejected jobs. The rejection

of a job is based on the following test statistic. Let Fk, 1 ≤ k ≤ I, be a probability

distribution with positive probability on all open subsets of ∪I
i=kΘi. Define

(4.7)

Uk(n; λ) =

∫

∪I

i=k
Θi

∏k
i=1

∏Ji

j=1 νij(Xij0; θ)
∏nij

t=1 pij(Xij(t−1), Xijt; θ) dFk(θ)
∏k

i=1

∏Ji

j=1 νij(Xij0; λ)
∏nij

t=1 pij(Xij(t−1), Xijt; λ)

for all λ ∈ Θk.

(a) If ̂θ ∈ ∪i>kΘi: Add one observation from each unrejected job. Reject para-

meter λ if Uk(n; λ) ≥ N . Reject a job kj if all λ ∈ Θkj have been rejected at some

point in the testing stage. If there is a job in group k left unrejected and the total

number of observations is less than N , repeat 3(a). Otherwise go to step 4.

(b) If ̂θ ∈ Θk: Add n1 observations from each unrejected job kj, j ∈ J(̂θ) and

one observation from each unrejected job kj, j �∈ J(̂θ). Reject a job kj if all λ ∈ Θkj

have been rejected at some point in the testing phase. If there is a job in group k
left unrejected and the total number of observations is less than N , repeat 3(b).

Otherwise, go to step 4.

(c) If ̂θ ∈ ∪i<kΘi: Adopt the procedure of 3(a).

4. Moving to the next group and termination. The strategy terminates once N
observations have been collected. Otherwise, if k < I, increment k by 1 and go to

step 2; if k = I, select all remaining observations from a job Ij satisfying µIj(
̂θ) =

max1≤h≤JI
µIh(̂θ).

In [1] Theorem 2, it was established that when B�(θ) is non-empty, then the

asymptotic lower bound of the regret is attained with the procedure above. We

shall show that the same procedure is not only asymptotically optimal but also

the regret from the optimal group will be o(log N) when B�(θ) = ∅ as oppose to

O(log N) when B�(θ) �= ∅. An important key step required in our proof is the

consistency result

(4.8) Pθ{B�(
̂θ, δ) = ∅} → 1 as N → ∞

under the empty bad set assumption.
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Theorem 2. Let θ ∈ Θ�. Assume A1-A5 and (1.5) . Let n0 → ∞ with n0 =

o(log N) and n1 → ∞ such that n1 = o(n0). There exists δ(= δN ) ↓ 0 as N → ∞

such that

(4.9) Pθ{̂θ ∈ Θ \ Nδ(θ)} = o(n−1
1 ) as n1 → ∞.

Moreover, if B�(θ) = ∅, then (4.8) holds and

(4.10)

J�
∑

j=1

EθTN (�j) = o(log N).

Hence

(4.11) lim
N→∞

RN (θ)/ log N = z(θ, �).

Proof. The consistency of ̂θ in (4.9) follows from A2 and (4.5) of Chan, Fuh and

Hu [1]. We shall now prove (4.8). Since δ ↓ 0 and ̂θ is consistent for θ, it suffices

from the definition of B�(θ; δ) in (4.4) to show that there exists δ0 > 0 such that

(4.12) B�(
˜θ) = ∅ for all ˜θ ∈ Nδ0

(θ) ∩ Θ� with |J(˜θ)| = J.

We observe from the continuity of µ�j that there exists δ1 > 0 such that J(˜θ) ⊂ J(θ)

for all ˜θ ∈ Nδ1
(θ) ∩ Θ�. Hence it follows that if |J(˜θ)| = |J(θ)|, then it must be

true that J(˜θ) = J(θ). We see from the definition of bad sets in (2.11) that for each

θ′ ∈ Θ� \ (∪j∈J(θ)Θ�j), I�j(θ, θ
′
) > 0 for some j ∈ J(θ) and hence by the continuity

of the Kullback-Leibler information, there exists δ2 > 0 such that I�j(
˜θ, θ′) > 0

whenever ˜θ ∈ Nδ2
(θ). Select δ0 = min{δ1, δ2}. Then (4.12) holds.

We shall next show (4.10). By (4.8) and since the experimentation stage is

skipped over when k = � and B�(
̂θ, δ) = ∅, it suffices to show that the expected total

number of observations taken from inferior arms in the testing stage is o(log N).

Define pN = Pθ{J(̂θa) = J(θ)}. Then by (4.3), (4.9) and as J(˜θ) ⊂ J(θ) for all

˜θ ∈ Nδ1
(θ) for some δ1 > 0, 1 − pN = o(n−1

1 ). By (2.16) and the assumption

B�(θ) = ∅, at least one optimal arm will provide positive information against each

θ′ �∈ ∪j∈J(θ)Θj . By A3-A5 and (6.4), (6.5) of Chan, Fuh and Hu [1], (an expected)

O(log N) number of observations from arms with positive information is required

to reject each θ′ ∈ Θ� \ (∪j∈J(θ)Θ�j). Hence O(n−1
1 log N) number of recursions is

involved when J(θ) = J(̂θa) because at least n1 observations in each recursion has

positive information. Similarly, O(log N) recursions is needed when J(θ) �= J(̂θa)

because at least one observation in each recursion has positive information. The

number of observations from inferior arms in each recursion is O(1) if J(̂θa) = J(θ)
and O(n1) otherwise. Hence the expected number of observations from inferior arms

during the recursion steps in the testing phase is

(4.13) pNO(n−1
1 log N) + (1 − pN )O(n1 log N) = o(log N).

The asymptotic result (4.11) follows from (4.10) and the proof of Chan, Fuh and

Hu [1] Theorem 2.

For the special case � = 1, it follows from (4.11) that RN (θ) = o(log N) occurs. In

[2] and [10], a uniformly good procedure was proposed that satisfies RN (θ) = O(1)

when Θ is finite and I = 1.
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5. The switching cost

Let a(θ) > 0 be the switching cost between two arms and are not both optimal

when the underlying parameter is θ. It is assumed here that there is no switching

cost when both arms are optimal. Then

LN (θ) := a(θ)Eθ

(

N−1
∑

t=1

1{φt �=φt+1,min[µφt
(θ),µφt+1

(θ)]<µ∗(θ)}

)

is the average switching cost of a procedure. It is also desirable that this cost is

asymptotically negligible compared to the regret as N → ∞.

Theorem 3. Under Assumptions A1 - A5, the strategy φ∗ has average switching

cost

(5.1) LN (θ) = o(log N) as N → ∞.

Hence, the strategy is asymptotically optimal when there is switching cost.

Proof. In the estimation stage it is require to take n0 observations from each arm

in group 1. We can take the n0 observations in batches and switch only J1 − 1

times. Therefore the switching cost from estimation stage is a(θ)(J1 − 1). In the

experimentation stage, we need to allocate at most ẑkj log N observations to arm kj.
Again this can be done in batches and thus the switching cost from experimentation

stage is at most a(θ)(Jk−1). In the testing stage, it is shown in (6.12) of Chan, Fuh

and Hu [1], that the expected total number of observations is o(log N) and thus

the switching cost is no more than o(log N). Adding the switching costs from the

estimation, experimentation, and testing stages together, shows that the total cost

due to switching is o(log N). However, the regret lower bound is O(log N), which

implies that the switching cost constitutes a negligible part of the total regret as

n → ∞. This completes the proof that the proposed strategy is still asymptotically

optimal with constant cost per switch.

6. Extension of Wald’s equation to Markovian rewards

As we will be focusing on a single arm ij and fixed parameters θ0, θq such that

µ := Iij(θ0, θq) > 0 we will drop some of the references to i, j, θ0, θq and q in

this section. This applies also to the notations in assumptions A3-A5. Moreover, we

shall use the notation E(·) as a short form of Eθ0
(·) and Ex(·) as a short form of

Eθ0
(·|X0 = x). Let Sn = ξ1 + · · · + ξn, where ξk = log[pij(Xk−1, Xk; θ0)/pij(Xk−1,

Xk; θq)] has stationary mean µ under Pθ0
and let τ be a stopping-time. We shall

show that

(6.1) ESτ = µ(Eτ) − E[γ(Xτ )] + E[γ(X0)]

for some function γ to be specified in Lemma 1. In Lemma 2, we show that the

conditions on V in A4-A5 lead to bounds on γ(x) and by applying Lemma 3, we

obtain

(6.2) E|γ(Xτ )| + E|γ(X0)| = o(Eτ).

Substituting (6.2) back into (6.1), Wald’s equation

(6.3) ESτ = [µ + o(1)]Eτ
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is established for Markovian rewards. Under uniform recurrence condition, Fuh and

Lai [4] established Wald’s equation based on perturbation theory for the transition

operator. The Wald’s equation was proved under the assumption that the solution

for the Poisson equation exists in [5] based on Poisson equation for the transition

operator. In this section, we apply the idea of regeneration epoch to derive the

Wald’s equation for Markov random walks.

By (2.5), we can augment the Markov additive process and create a split chain

containing an atom, so that increments in Sn between visits to the atom are in-

dependent. More specifically, we construct stopping-times 0 < κ(1) < κ(2) < · · ·

using an auxiliary randomization procedure such that

P{Xn+1 ∈ A, κ(i) = n + 1|Xn = x, κ(i) > n ≥ κ(i − 1)}

=

{

αϕ(A) x ∈ G,

0 otherwise.
(6.4)

Then by Lemma 3.1 of Ney and Nummelin [9],

(i) {κ(i + 1) − κ(i) : i = 1, 2, . . .} are i.i.d. random variables.

(ii) the random blocks {Xκ(i), . . . , Xκ(i+1)−1}, i = 1, 2, . . . , are independent and

(iii) P{Xκ(i) ∈ A|Fκ(i)−1} = ϕ(A), where Fn=σ-field generated by {X0, . . . , Xn}.

By (ii)-(iii), Eϕ(Sκ − κµ) = 0. Define κ = κ(1). We shall use the notation “n =

atom” to denote n = κ(i) for some i.

Lemma 1. Let γ(x) = Ex(Sκ−κµ). Then Zn = (Sn−nµ)+γ(Xn) is a martingale

with respect to Fn. Hence (6.1) holds.

Proof. We can express

Zn = E(SUn
− Unµ|Fn) where Un = inf{m > n : m = atom}.

If Xn = xn �∈ G, then by (6.4), Un > n + 1. Hence Un+1 = Un and

(6.5) E(Zn+1|Fn) = Zn

because Fn+1 ⊃ Fn. If Xn = xn ∈ G, then by (6.4) and (ii),

E(Zn+1|Fn) − Zn = E[(SUn+1
− SUn

) + (Un+1 − Un)|Fn] = αEϕ(Sκ − κµ) = 0

and hence (6.5) also holds.

Lemma 2. Under A3-A5,

|γ(x)| ≤ β−1
[V (x) + b + (V ∗

+ b)V ∗
(α−1

+ 1)](K + 1 + |µ|),

where α satisfies (2.5), V ∗ is defined in A4 and K is defined in (2.9).

Proof. By (2.9),

(6.6) V (x) ≥ K−1Exξ2
1 ≥ K−1

(Ex|ξ1| − 1).

Let 0 < σ(1) < σ(2) < · · · be the hitting times of the set G and let σ = σ(1). Let

(6.7) mn(A) = Ex

[

κ
∑

n=1

V (Xn)1{Xn∈A}

]
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for all measurable set A ⊂ D. By (2.7),

Ex[V (Xn)1{σ≥n}] ≤ (1 − β)Ex[V (Xn−1)1{σ≥n−1}], n ≥ 2

and

Ex[V (X1)] ≤ V (x) + b.

Hence by induction,

(6.8) Ex

[

σ
∑

n=1

V (Xn)

]

≤ [V (x) + b]

∞
∑

n=1

(1 − β)
n−1

= [V (x) + b]/β.

By (6.7)-(6.8), and as V ≥ 1,

mn(D) = Ex

{

σ
∑

n=1

V (Xn) +

∞
∑

k=1

[

σ(k+1)
∑

n=σ(k)+1

V (Xn)

]

1{κ>σ(k)}

}

= Ex

{

σ
∑

n=1

V (Xn) +

∞
∑

k=1

EXσ(k)

[

σ
∑

n=1

V (Xn)

]

1{κ>σ(k)}

}

≤ β−1
[V (x) + b] + Ex

{

∞
∑

k=1

β−1
[V (Xσ(k)) + b]1{κ>σ(k)}

}

≤ β−1
[V (x) + b] + β−1

(V ∗
+ b)mn(G).(6.9)

But by (6.4), mn(G) ≤ V ∗
(α−1

+ 1). Since γ(x) ≤ (K + 1 + |µ|)mn(D), Lemma 2

holds.

Let Wi = |γ(Xκ(i))| + · · · + |γ(Xκ(i+1)−1)|, for i ≥ 1. Then by A3-A5, Lemma

4 and its proof, and (i)-(iii), W1, W2, . . . are i.i.d. with finite mean while by (2.8),

W0 := |γ(X0)| + · · · + |γ(Xκ(1)−1)| also has finite mean.

Lemma 3. Let Mn = max1≤k≤n Wk. Then for any stopping-time τ ,

(6.10) E(Mτ ) = o(Eτ).

Proof. Let δ > 0 and let c(= cδ) > 0 be large enough such that E[(W1 − c)+] ≤ δ.
We shall show that

Zn = (Mn ∨ c) − nδ

is a supermartingale. Indeed for any λ ≥ 0,

E[Mn+1 ∨ c|Mn ∨ c = c + λ] = c + λ + E[(Wn+1 − c − λ)
+
] ≤ c + λ + δ

and the claim is shown. Hence EZτ ≤ EZ0 = c and it follows that E(Mτ ) ≤

E(Mτ ∨ c) ≤ δ(Eτ) + c. Lemma 3 then follows by letting δ ↓ 0.

7. Appendix

Proof. Proof of (1.3) Let Xijt denotes the tth observation taken from arm ij. Then

(7.1)

∣

∣

∣WN (θ) −

I
∑

i=1

Ji
∑

j=1

µij(θ)EθTN (ij)
∣

∣

∣ ≤

I
∑

i=1

Ji
∑

j=1

∞
∑

t=1

|Eθg(Xijt) − µij(θ)|.
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For any signed measure λ on (D,D), let

(7.2) ‖λ‖Vij
= sup

h:|h|≤Vij

∣

∣

∣

∫

h(x)λ(dx)

∣

∣

∣
.

It follows from Meyn and Tweedie ([8], p.367 and Theorem 16.0.1) that under A3

and the geometric drift condition (2.7),

(7.3) ωij := sup

θ∈Θ,x∈D

∞
∑

t=1

‖P θ
ijt(x, ·) − πij(θ)‖Vij

/Vij(x) < ∞,

where P θ
ijt(x, ·) denotes the distribution of Xijt conditioned on Xij0 = x and πij(θ)

denotes the stationary distribution of Xijt under parameter θ. By (2.6), there exists

κ > 0 such that κ|g(x)| ≤ Vij(x) for all x ∈ D and hence it follows from (7.2) and

(7.3) that

(7.4) κ
∞
∑

t=1

|Eθ,xg(Xijt) − µij(θ)| ≤ ωijVij(x),

where Eθ,x denotes expectation with respect to Pθ and intial distribution Xij0 = x.

In general, for any initial distribution νij(·; θ), it follows from (2.8) and (7.4)

that

∞
∑

t=1

|Eθg(Xijt) − µij(θ)| ≤

∫ ∞
∑

t=1

|Eθ,xg(Xijt) − µij(θ)|νij(x; θ)Q(dx) < ∞

uniformly over θ ∈ Θ and hence (1.3) follows from (7.1).
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Abstract: This exposition explains the basic ideas of Stein’s method for Pois-

son random variable approximation and Poisson process approximation from

the point of view of the immigration-death process and Palm theory. The latter

approach also enables us to define local dependence of point processes [Chen

and Xia (2004)] and use it to study Poisson process approximation for locally

dependent point processes and for dependent superposition of point processes.

1. Poisson approximation

Stein’s method for Poisson approximation was developed by Chen [13] which is

based on the following observation: a nonnegative integer valued random variable

W follows Poisson distribution with mean λ, denoted as Po(λ), if and only if

IE{λf(W + 1) − Wf(W )} = 0

for all bounded f : Z+ → R, where Z+ : = {0, 1, 2, . . .}. Heuristically, if IE{λf(W +

1) − Wf(W )} ≈ 0 for all bounded f : Z+ → R, then L(W ) ≈ Po(λ). On the

other hand, as our interest is often on the difference IP(W ∈ A) − Po(λ)(A) =

IE[1A(W ) − Po(λ)(A)], where A ⊂ Z+ and 1A is the indicator function on A, it is

natural to relate the function λf(w + 1) − wf(w) with 1A(w) − Po(λ)(A), leading

to the Stein equation:

(1) λf(w + 1) − wf(w) = 1A(w) − Po(λ)(A).

If the equation permits a bounded solution fA, then

IP(W ∈ A) − Po(λ)(A) = IE{λfA(W + 1) − WfA(W )};

and

dTV (L(W ), Po(λ)) : = sup

A⊂Z+

|IP(W ∈ A) − Po(λ)(A)|

= sup

A⊂Z+

|IE{λfA(W + 1) − WfA(W )}|.
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As a special case in applications, we consider independent Bernoulli random vari-

ables X1, · · · , Xn with IP(Xi = 1) = 1 − IP(Xi = 0) = pi, 1 ≤ i ≤ n, and

W =
∑n

i=1 Xi, λ = IE(W ) =
∑n

i=1 pi. Since

IE[Wf(W )] =

n
∑

i=1

IE[Xif(W )] =

n
∑

i=1

piIEf(Wi + 1),

where Wi = W − Xi, we have

IE{λfA(W + 1) − WfA(W )} =

n
∑

i=1

piIE [fA(W + 1) − fA(Wi + 1)]

=

n
∑

i=1

p2
i IE∆fA(Wi + 1),

where ∆fA(i) = fA(i + 1) − fA(i). Further analysis shows that |∆fA(w)| ≤ 1−e−λ

λ
(see [6] for an analytical proof and [26] for a probabilistic proof). Therefore

dTV (L(W ), Po(λ)) ≤

(

1 ∧
1

λ

) n
∑

i=1

p2
i .

Barbour and Hall [7] proved that the lower bound of dTV (L(W ), Po(λ)) above is of

the same order as the upper bound. Thus this simple example of Poisson approx-

imation demonstrates how powerful and effective Stein’s method is. Furthermore,

it is straightforward to use Stein’s method to study the quality of Poisson approx-

imation to the sum of dependent random variables which has many applications

(see [18] or [8] for more information).

2. Poisson process approximation

Poisson process plays the central role in modeling the data on occurrence of rare

events at random positions in time or space and is a building block for many

other models such as Cox processes, marked Poisson processes (see [24]), compound

Poisson processes and Lévy processes. To adapt the above idea of Poisson random

variable approximation to Poisson process approximation, we need a probabilistic

interpretation of Stein’s method which was introduced by Barbour [4]. The idea is

to split f by defining f(w) = g(w)− g(w− 1) and rewrite the Stein equation (1) as

(2) Ag(w) : = λ[g(w + 1) − g(w)] + w[g(w − 1) − g(w)] = 1A(w) − Po(λ)(A),

where A is the generator of an immigration-death process Zw(t) with immigration

rate λ, unit per capita death rate, Zw(0) = w, and stationary distribution Po(λ).

The solution to the Stein equation (2) is

(3) gA(w) = −

∫ ∞

0

IE[1A(Zw(t)) − Po(λ)(A)]dt.

This probabilistic approach to Stein’s method has made it possible to extend Stein’s

method to higher dimensions and process settings. To this end, let Γ be a compact

metric space which is the carrier space of the point processes being approximated.

Suppose d0 is a metric on Γ which is bounded by 1 and ρ0 is a pseudo-metric on Γ
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which is also bounded by 1 but generates a weaker topology. We use δx to denote

the point mass at x, let X : = {
∑k

i=1 δαi
: α1, . . . , αk ∈ Γ, k ≥ 1}, B(X ) be the

Borel σ–algebra generated by the weak topology ([23], pp. 168–170): a sequence

{ξn} ⊂ X converges weakly to ξ ∈ X if
∫

Γ
f(x)ξn(dx) →

∫

Γ
f(x)ξ(dx) as n → ∞

for all bounded continuous functions f on Γ. Such topology can also be generated

by the metric d1 defined below (see [27], Proposition 4.2). A point process on Γ is

defined as a measurable mapping from a probability space (Ω,F , IP) to (X ,B(X ))

(see [23], p. 13). We use Ξ to stand for a point process on Γ with finite intensity

measure λ which has total mass λ : = λ(Γ), where λ(A) = IEΞ(A), for all Borel set

A ⊂ Γ. Let Po(λ) denote the distribution of a Poisson process on Γ with intensity

measure λ.

Since a point process on Γ is an X -valued random element, the key step of

extending Stein’s method from one dimensional Poisson approximation to higher

dimensions and process settings is, instead of considering Z+-valued immigration-

death process, we now need an immigration-death process defined on X . More

precisely, by adapting (2), Barbour and Brown [5] define the Stein equation as

Ag(ξ) : =

∫

Γ

[g(ξ + δx) − g(ξ)]λ(dx) +

∫

Γ

[g(ξ − δx) − g(ξ)]ξ(dx)

(4)
= h(ξ) − Po(λ)(h),

where Po(λ)(h) = IEh(ζ) with ζ ∼ Po(λ). The operator A is the generator of an

X -valued immigration-death process Zξ(t) with immigration intensity λ, unit per

capita death rate, Zξ(0) = ξ ∈ X , and stationary distribution Po(λ). Its solution is

(5) gh(ξ) = −

∫ ∞

0

IE[h(Zξ(t)) − Po(λ)(h)]dt,

(see [5]).

To measure the error of approximation, we use Wasserstein pseudo-metric which

has the advantage of allowing us to lift the carrier space to a bigger carrier space.

Of course, other metrics such as the total variation distance can also be considered

and the only difference is to change the set of test functions h. Let

ρ1





m
∑

i=1

δxi
,

n
∑

j=1

δyj



 : =







1 if m 
= n,
minπ

1
m

∑m
i=1 ρ0(xi, yπ(i)) if m = n ≥ 1,

0 if n = m = 0,

where the minimum is taken over all permutations π of {1, 2, . . . , m}. Clearly, ρ1 is

a metric (resp. pseudo-metric) if ρ0 is a metric (resp. pseudo-metric) on X . Set

H = {h on X : |h(ξ1) − h(ξ2)| ≤ ρ1(ξ1, ξ2) for all ξ1, ξ2 ∈ X} .

For point processes Ξ1 and Ξ2, define

ρ2(L(Ξ1),L(Ξ2)) : = sup

h∈H
|IEh(Ξ1) − IEh(Ξ2)|,

then ρ2 is a metric (resp. pseudo-metric) on the distributions of point processes if

ρ1 is a metric (resp. pseudo-metric). In summary, we defined a Wasserstein pseudo-

metric on the distributions of point processes on Γ through a pseudo-metric on Γ

as shown in the following chart:
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Carrier space Γ Configuration space X Space of the distributions

of point processes

ρ0 −→ ρ1 −→ ρ2

(≤ 1) (≤ 1) (≤ 1)

As a simple example, we consider a Bernoulli process defined as

Ξ =

n
∑

i=1

Xiδ i

n

,

where, as before, X1, . . . , Xn are independent Bernoulli random variables with

IP(Xi = 1) = 1 − IP(Xi = 0) = pi, 1 ≤ i ≤ n. Then Ξ is a point process on

carrier space Γ = [0, 1] with intensity measure λ =
∑n

i=1 piδ i

n

. With the metric

ρ0(x, y) = |x − y| : = d0(x, y), we denote the induced metric ρ2 by d2. Using the

Stein equation (4), we have

IEh(Ξ) − Po(λ)(h)

= IE

{∫

Γ

[gh(Ξ + δx) − gh(Ξ)]λ(dx) +

∫

Γ

[gh(Ξ − δx) − gh(Ξ)]Ξ(dx)

}

=

n
∑

i=1

piIE

{

[gh(Ξ + δ i

n

) − gh(Ξ)] − [gh(Ξi + δ i

n

) − gh(Ξi)]

}

=

n
∑

i=1

p2
i IE

{

[gh(Ξi + 2δ i

n

) − gh(Ξi + δ i

n

)] − [gh(Ξi + δ i

n

) − gh(Ξi)]

}

,

where Ξi = Ξ − Xiδ i

n

. It was shown in [27], Proposition 5.21, that

(6) sup

h∈H,α,β∈Γ
|gh(ξ + δα + δβ) − gh(ξ + δα) − gh(ξ + δβ) + gh(ξ)| ≤

3.5

λ
+

2.5

|ξ| + 1
,

where, and in the sequel, |ξ| is the total mass of ξ, λ = λ(Γ) =
∑n

i=1 pi. Hence

d2(L(Ξ), Po(λ)) = sup

h∈H
|IEh(Ξ) − Po(λ)(h)|

≤

n
∑

i=1

p2
i

(

3.5

λ
+ IE

2.5
∑

1≤j≤n,j �=i Xj + 1

)

(7)

≤
6

λ − max1≤i≤n pi

n
∑

i=1

p2
i

since

IE
1

∑

1≤j≤n,j �=i Xj + 1
= IE

∫ 1

0

z

∑

1≤j≤n,j �=i
Xj dz

=

∫ 1

0

∏

1≤j≤n,j �=i

[zpj + (1 − pj)]dz

≤

∫ 1

0

∏

1≤j≤n,j �=i

e−pj(1−z)dz =

∫ 1

0

e−(λ−pj)(1−z)dz ≤
1

λ − pj
,

(see [27], pp. 167–168). Since d2(L(Ξ), Po(λ)) ≥ dTV (L(|Ξ|), Po(λ)) and the lower

bound of dTV (L(|Ξ|), Po(λ)) is of the same order as
1
λ

∑n
i=1 p2

i [7], the bound in (7)

is of the optimal order.
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3. From Palm theory to Stein’s method

Barbour’s probabilistic approach to Stein’s method is based on the conversion of a

first order difference equation to a second order difference equation. In this section,

we take another approach to Stein’s method from the point of Palm theory. The

connection between Stein’s method and Palm theory has been known to many

others (e.g., T. C. Brown (personnel communication), [9]) and the exposition here

is mainly based on [14] and [27].

There are two properties which distinguish a Poisson process from other process-

es: independent increments and the number of points on any bounded set follows

Poisson distribution. Hence, a Poisson process can be thought as a process pieced

together by lots of independent “Poisson components” (if the location is an atom,

the “component” will be a Poisson random variable, but if the location is diffuse,

then the “component” is either 0 or 1) ([27], p. 121). Consequently, to specify a

Poisson process N , it is sufficient to check that “each component” N(dα) is Poisson

and independent of the others, that is IE{[IEN(dα)]g(N + δα) − N(dα)g(N)} = 0,

which is equivalent to

(8)
IE[g(N)N(dα)]

IEN(dα)
= IEg(N + δα),

for all bounded function g on X and all α ∈ Γ (see [27], p. 121). To make the

heuristic argument rigorous, one needs the tools of Campbell measures and Radon-

Nikodym derivatives ([23], p. 83).

In general, for each point process Ξ with finite mean measure λ, we may define

the Campbell measure C(B, M) = IE[Ξ(B)1Ξ∈M ] for all Borel B ⊂ Γ, M ∈ B(X ).

This measure is finite and admits the following disintegration:

(9) C(B, M) =

∫

B

Qs(M)λ(ds),

or equivalently,

Qs(M) =
IE[Ξ(ds)1Ξ∈M ]

λ(ds)
, M ∈ B(X ), s ∈ Γ λ a.s.,

where {Qs, s ∈ Γ} are probability measures on B(X ) ([23], p. 83 and p. 164) and are

called Palm distributions. Moreover, (9) is equivalent to that, for any measurable

function f : Γ ×X → R+,

(10) IE

(
∫

B

f(α,Ξ)Ξ(dα)

)

=

∫

B

∫

X

f(α, ξ)Qα(dξ)λ(dα)

for all Borel set B ⊂ Γ. A point process Ξα (resp. Ξα − δα) on Γ is called a Palm

process (resp. reduced Palm process) of Ξ at location α if it has the Palm distribution

Qα and, when Ξ is a simple point process (a point process taking values 0 or 1 at

each location), the Palm distribution L(Ξα) can be interpreted as the conditional

distribution of Ξ given that there is a point of Ξ at α. It follows from (10) that the

Palm process satisfies

IE

∫

Γ

f(α,Ξ)Ξ(dα) = IE

∫

Γ

f(α,Ξα)λ(dα)
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for all bounded measurable functions f on Γ × X . In particular, Ξ is a Poisson

process if and only if

L(Ξα) = L(Ξ + δα), λ a.s.

where the extra point δα is due to the “Poisson property” of Ξ{α}, and Ξα|Γ\{α}

has the same distribution as Ξ|Γ\{α} because of independent increments. Here ξ|A
stands for the point measure restricted to A ⊂ Γ ([23], p. 12). In other words,

Ξ ∼ Po(λ) if and only if

IE

{∫

Γ

f(α,Ξ + δα)λ(dα) −

∫

Γ

f(α,Ξ)Ξ(dα)

}

= 0,

for a sufficiently rich class of functions f , so we define

Df(ξ) : =

∫

Γ

f(x, ξ + δx)λ(dx) −

∫

Γ

f(x, ξ)ξ(dx).

If IEDf(Ξ) ≈ 0 for an appropriate class of test functions f , then L(Ξα) is close to

L(Ξ + δα), which means that L(Ξ) is close to Po(λ) under the metric or pseudo-

metric specified by the class of test functions f .

If fg is a solution of

Df(ξ) = g(ξ) − Po(λ)(g),

then a distance between L(Ξ) and Po(λ) is measured by |IEDfg(Ξ)| over the class

of functions g.

From above analysis, we can see that there are many possible solutions fg for a

given function g. The one which admits an immigration-death process interpretation

is by setting

f(x, ξ) = h(ξ) − h(ξ − δx),

so that Df takes the following form:

Df(ξ) =

∫

Γ

[h(ξ + δx) − h(ξ)]λ(dx) +

∫

Γ

[h(ξ − δx) − h(ξ)]ξ(dx) = Ah(ξ),

where A is the same as the generator defined in section 2.

4. Locally dependent point processes

We say a point process Ξ is locally dependent with neighborhoods {Aα ⊂ Γ: α ∈ Γ}

if L(Ξ|Ac
α
) = L(Ξα|Ac

α
), α ∈ Γ λ a.s.

The following theorem is virtually from Corollary 3.6 in [14] combined with the

new estimates of Stein’s factors in [27], Proposition 5.21.

Theorem 4.1. If Ξ is a point process on Γ with finite intensity measure λ which

has the total mass λ and locally dependent with neighborhoods {Aα ⊂ Γ: α ∈ Γ}.

Then

ρ2(L(Ξ), Po(λ)) ≤ IE

∫

α∈Γ

(

3.5

λ
+

2.5

|Ξ(α)| + 1

)

(Ξ(Aα) − 1)Ξ(dα)

+IE

∫

α∈Γ

∫

β∈Aα

(

3.5

λ
+

2.5

|Ξ
(α)
β | + 1

)

λ(dα)λ(dβ),

where Ξ
(α)

= Ξ|Ac
α

and Ξ
(α)
β = Ξβ |Ac

α
.

Remark. The error bound is a “correct” generalization of
1
λ

∑n
i=1 p2

i with the Stein

factor
1
λ replaced by a nonuniform bound.
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5. Applications

5.1. Matérn hard core process on IRd

A Matérn hard core process Ξ on compact Γ ⊂ IR
d

is a model for particles with

repulsive interaction. It assumes that points occur according to a Poisson process

with uniform intensity measure on Γ. The configurations of Ξ are then obtained

by deleting any point which is within distance r of another point, irrespective of

whether the latter point has itself already been deleted [see Cox & Isham [17],

p. 170].

The point process is locally dependent with neighborhoods {B(α, 2r) : α ∈ Γ},

where B(α, s) is the ball centered at α with radius s. Let λ be the intensity measure

of Ξ, d0(α, β) = min{|α − β|, 1}, then

d2(L(Ξ), Po(λ)) = O

(

µVol(B(0, 1))(2r)d

Vol(Γ)

)

,

where µ is the mean of the total number of points of the original Poisson process

(see [14], Theorem 5.1).

5.2. Palindromes in a genome

Let {Ii : 1 ≤ i ≤ n} be locally dependent Bernoulli random variables, {Ui : 1 ≤

i ≤ n} be independent Γ-valued random elements which are also independent of

{Ii : 1 ≤ i ≤ n}, set Ξ =
∑n

i=1 IiδUi
, then Ξ is a point process on Γ. For Ui = i/n

this point process models palindromes in a genome where Ii represents whether

a palindrome occurs at i/n. The point process can also be used to describe the

vertices in a random graph.

In general, the Ui’s could take the same value and one cannot tell which Ui

and therefore which Ii contributes to the value. To overcome this difficulty we

lift the process up to a point process Ξ
′

=
∑n

i=1 Iiδ(i,Ui) on a larger space Γ
′

=

{1, 2, . . . , n} × Γ. The metric d0 becomes a pseudo-metric ρ0, that is, ρ0((i, s),
(j, t)) = d0(s, t), and Ξ

′
a locally dependent process (see [14], section 4). It turns

out that the Poisson process approximation of Ξ =
∑n

i=1 IiδUi
is a special case of

the following section.

5.3. Locally dependent superposition of point processes

Since the publication of the Grigelionis Theorem [20] which states that the super-

position of independent sparse point processes on carrier space R+ is close to a

Poisson process, there has been a lot of study on the weak convergence of point

processes to a Poisson process under various conditions (see, e.g., [16, 19, 21] and

[10]). Extensions to dependent superposition
1

of sparse point processes have been

carried out in [1–3, 11, 22]. Schuhmacher [25] considered the Wasserstein distance

between the weakly dependent superposition of sparse point processes and a Poisson

process.

Let Γ be a compact metric space, {Ξi : i ∈ I} be a collection of point processes

on Γ with intensity measures λi, i ∈ I. Define Ξ =
∑

i∈I Ξi with intensity measure

1
We use “(resp. locally, weakly) dependent superposition of point processes” to mean that the

point processes are (resp. locally, weakly) dependent among themselves.
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λ =
∑

i∈I λi. Assume {Ξi : i ∈ I} are locally dependent: that is, for each i ∈ I,

there exists a neighbourhood Ai ⊂ I such that i ∈ Ai and Ξi is independent of

{Ξj : j 
∈ Ai}.

The locally dependent point process Ξ =
∑n

i=1 IiδUi
can be regarded as a locally

dependent superposition of point processes defined above.

Theorem 5.1 ([15]). With the above setup, λ = λ(Γ), we have

d2(L(Ξ), Po(λ)) ≤ IE

∑

i∈I

(

3.5

λ
+

2.5

|Ξ(i)| + 1

) ∫

Γ

d′1(Vi,Vi,α)λi(dα)

+

∑

i∈I

(

3.5

λ
+ IE

2.5

|Ξ(i)| + 1

)

IE

∫

Γ

d′1(Ξi, Ξi,α)λi(dα),

where Ξ
(i)

=
∑

j �∈Ai
Ξj, Vi =

∑

j∈Ai\{i} Ξj, Ξi,α is the reduced Palm process of Ξi

at α,

IP(Vi,α ∈ M) =
IE[Ξi(dα)1Vi∈M ]

IEΞi(dα)
for all M ∈ B(X )

and

d′1(ξ1, ξ2) = min
π : permutations of {1,...,m}

n
∑

i=1

d0(yi, zπ(i)) + (m − n)

for ξ1 =
∑n

i=1 δyi
and ξ2 =

∑m
i=1 δzi

with m ≥ n [Brown & Xia [12]].

Corollary 5.2 ([14]). For Ξ =
∑

i∈I IiδUi
and λ =

∑

i∈I pi defined in section 5.2,

d2(L(Ξ), Po(λ)) ≤ IE

∑

i∈I

∑

j∈Ai\{i}

(

3.5

λ
+

2.5

Vi + 1

)

IiIj

+

∑

i∈I

∑

j∈Ai

(

3.5

λ
+ IE

[

2.5

Vi + 1

∣

∣

∣

∣

Ij = 1

])

pipj ,

where Vi =
∑

j �∈Ai
Ij.

Corollary 5.3 ([15]). Suppose that {Ξi : 1 ≤ i ≤ n} are independent renewal

processes on [0, T ] with the first arrival time of Ξi having distribution Gi and its

inter-arrival time having distribution Fi, and let Ξ =
∑

i∈I Ξi and λ be its intensity

measure, then

d2(L(Ξ), Po(λ)) ≤
6

∑n
i=1[2Fi(T ) + Gi(T )]Gi(T )/(1 − Fi(T ))

2

∑n
i=1 Gi(T ) − maxj

Gj(T )
1−Fj(T )

.
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Abstract: Design of experiment with related factors can be implemented

by using the technique of sliding levels. Taguchi (1987) proposed an analy-

sis strategy by re-centering and re-scaling the slid factors. Hamada and Wu

(1995) showed via counter examples that in many cases the interactions cannot

be completely eliminated by Taguchi’s strategy. They proposed an alternative

method in which the slid factors are modeled by nested effects. In this work

we show the inadequacy of both methods when the objective is response pre-

diction. We propose an analysis method based on a response surface model,

and demonstrate its superiority for prediction. We also study the relationships

between these three modeling strategies.

1. Introduction

In many investigations, the experimenters can choose an appropriate interval as

the experimental range for each factor. The overall experimental region is then the

cube formed by the tensor product of these intervals. Such an experimental region

is called regular. However, when some of the factors are related, an appropriate

experimental region becomes irregular and thus cannot be constructed in the usual

manner. Factors are called related when the desirable experimental region of some

factors depends on the level settings of other factors. Design of experiments with

related factors can be implemented by using the technique of sliding levels proposed

by Taguchi [7]. It has been used in practice for a long time but has received scant

attention in the statistical literature. Some examples can be found in [2, 6, 7].

Li et al. [4] proposed a two-stage strategy for the sliding-level experiments whose

desriable experimental region is unknown and needs to be explored during the

experiment. Here the use of sliding is more complicated due to its engineering

needs.

In this article we study the situations in which only one factor is chosen to be slid.

This article is organized as follows. In Section 2, we will review the existing work

on the sliding level technique and show the inadequacy of these methods when the

objective of the experiment is response prediction. In Section 3, we will propose an

analysis method based on a response surface model, and demonstrate its superiority

for prediction. In Section 4, an illustration with a welding experiment will be given.

In Section 5, some results are presented based on a comparison between the response

surface approach and Taguchi’s approach. A summary is given in the last section.
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2. Existing approaches

Taguchi [7] justified the use of sliding levels by the rationales of bad region avoidance

and interaction elimination. The analysis strategy in his approach for sliding levels

can be interpreted as a re-centering and re-scaling (RCRS) transformation, which

transforms an irregular experimental region into a regular one as shown in Fig 1. In

data analysis, this transformation is essentially to code the factor levels by regarding

the slid factor as a non-slid factor. For example, (+1, −1) is used for the conditional

low and high levels respectively in a two-level slid factors, and (−1, 0, +1) for the

conditional low, median, and high levels respectively in a three-level slid factors

with equally spaced levels. Consider two factors A and B, in which there are several

sliding levels for B at each level of A. It is easy to show that an interaction in the

original factor space is eliminated after RCRS only if the relationship between the

mean response E(y) and factors A and B satisfies the relationship:

(1) E(y) = g1(xA) + g2

[

xB − cB(xA)

rB(xA)

]

,

where g1 and g2 are two arbitrary functions and the c’s and r’s represent the

centering and scaling constants with those for factor B depending on factor A.

Furthermore, to eliminate the interaction between A and B for mean response

satisfying (1), a proper choice of sliding levels based on c’s and r’s is required. As

pointed out via a counter example by Hamada and Wu [3], inadequately locating

the sliding levels will not remove the interaction. Similarly, an inadequate choice of

scale will not eliminate the interaction neither.

One can infer that the sliding levels must be chosen properly in order to elim-

inate a potentially removable interaction. To achieve this, one has to know the

exact relationship between the factors and the mean response E(y). Because this

relationship is not available, an experiment needs to be carried out. Therefore the

advantage of interaction elimination by using sliding levels is questionable. Even

though the related factors’ interactions can be removed by proper centering and

scaling, important information like robustness may be masked (see [3], for more

details).

Hamada and Wu [3] proposed a nested-effects modeling (NEM) approach by using

a regression model with nested effects. Because the actual settings of the slid factor

are different at each level combination of its related factors, sliding-levels designs

Fig 1. Re-centering and re-scaling transformation of experimental region.
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can be viewed as nested designs. Hence, one can model the effect of the nested (slid)

factor separately at each level combination of its related factors, i.e., the effects of

the slid factor are defined conditional on the level combinations of its related factor.

Consider the case of two related factors where factor B’s levels depend on A’s. The

factor A can be either qualitative or quantitative. For qualitative A, Hamada and

Wu [3] proposed analyzing the effect of B at each level of A. If B is quantitative

with more than two levels, the linear and quadratic effects of B at the ith level of

A (denoted by Bl|Ai and Bq|Ai) should be analyzed. Furthermore, the effects of

factor A are analyzed as well. For instance, if A is qualitative with three levels, the

two contrasts A1,2 and A1,3 can be considered, where Ai,j represents the contrast

between levels i and j of A, i.e., it denotes the difference between the average

responses over the conditional levels of B at level i of A and those at level j of A.

Because the levels of B vary with the level of A, this is different from the usual

meaning of Ai,j in factorial designs with regular experimental region, where the

same set of levels of B is used for i and j. If A is quantitative, the linear and

quadratic effects of A (i.e., Al and Aq in the linear-quadratic system defined in [8])

should be substituted for A1,2 and A1,3. The same reasoning will show that the

meanings of Al and Aq are again different from the usual ones.

The analysis using a regression model with nested effects resolves the problem

that the sliding-levels design may not eliminate the interaction between related

factors. It also provides more insight into the response-factor relationship and di-

rectly accounts for the relationship between related factors, which can be used to

choose optimum factor levels. However, as far as response prediction is concerned,

the nested effects analysis is incapable of accomplishing the task for quantitative A.

When A is a quantitative factor, we may need to predict the response at a setting

whose value of A, say x∗
A, is not included in the experimental plan. To achieve this,

we need to have a fitted model of B at A = x∗
A. However, such a model is not

available in the NEM approach because an NEM offers fitted models of B only

for each levels of A and x∗
A is not one of the levels in the experiment. Therefore,

response prediction at x∗
A cannot be achieved in an NEM approach. Because the

effects of B are defined and analyzed conditional on A in an NEM, A is treated like

a qualitative factor in the analysis about B. This results in the difficulty of response

prediction at x∗
A. Turning to the RCRS approach for performing prediction, we have

to know the centering and scaling constants of B at x∗
A, i.e., cB(x∗

A) and rB(x∗
A),

so that B can be appropriately transformed at A = x∗
A before substituting into

the fitted RCRS model. However, both cB(x∗
A) and rB(x∗

A) may not be available to

the investigators. In the next section, we shall propose an analysis method based

on the response surface methodology and demonstrates its superiority for response

prediction over the two existing approaches.

3. An analysis strategy based on response surface modeling

Response surface modeling (RSM) is an effective tool for building empirical models

for the input and output variables in an experiment. In RSM, a true model is often

expressed as y = f(x1, x2, . . . , xk)+ε, where y is the observed response, f a function

of k quantitative factors x1, x2, . . ., xk, and ε an error term. For simplicity, the lowest

level of a factor is coded as −1 and the highest level as +1. The function f represents

the response surface, which depicts the true relationship between the response and

factors. Because the form of f is often unknown, RSM replaces and approximates

f by a polynomial model of degree d in the xi’s. In practical applications, d is often
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chosen to be one or two, and three when the response surface is expected to be more

complicated and there are sufficient degrees of freedom. Fourth and higher degree

polynomials are rarely used because they are not as effective as semi-parametric

or nonparametric models. Further discussion on the response surface methodology

can be found in [1] and [5].

In a sliding-level experiment, the adequate experimental region, denoted by RE ,

usually has an irregular shape in contrast to the regular region in conventional

factorial experiments. In such circumstances, the RSM can still be applied by first

finding a cuboidal region that covers exactly the RE as follows. For each factor, let

its lowest actual setting be coded as −1 and the highest actual setting as +1. Other

settings of the factor is then proportionally coded according to their distances from

the lowest one. In this coding, the cuboidal region [−1, +1]
k

is the smallest cube to

cover the RE . We call [−1, +1]
k

the modeling region and denote it by RM . The RSM

can then be applied in the modeling region to develop an empirical model. Unlike

factorial designs with regular experimental region, the design points in a sliding-level

experiment do not spread uniformly on the whole modeling region. Because there

are no design points located in RM\RE , we have no information about the response

surface over RM\RE . Therefore, the fitted model may fit well only in RE , but not in

the whole RM . Another issue concerns the choice of appropriate polynomial models

for the approximation of the true response surface. For sliding-level experiments,

should we still use a dth-order polynomial model? This will be further explained

later. When a fitted model is obtained, prediction can be easily done in the RSM

approach. Its prediction is an interpolation in RE but an extrapolation in RM\RE .

An illustration of the RSM strategy will be given in Section 4.

Consider a nine-run experiment with factors A and B, in which A has three

levels and conditional on each level of A, B has three sliding levels. The NEM for

the experiment can be written as:

(2) f(B|Ai) = bi
0 + bi

l(Bl|Ai) + bi
q(Bq|Ai), i = −1, 0, 1,

where bi
0, bi

l and bi
q are the conditional constant, linear, and quadratic main effects

of B given A = i. Because A has three levels, the NEM has nine effects and therefore

is saturated. On the other hand, a second-order RSM model for the experiment has

only six effects. Because the NEM is saturated, it is clear that the RSM model is

a submodel of the NEM. In other words, we can impose some constraints on the

parameters of the NEM to obtain the RSM model. To find these constraints, we

re-parameterize the NEM in (2) in terms of the coding based on the RSM as follows:

(3) f(xB |xA) = αxA
+ βxA

xB + γxA
x2

B , xA = −1, 0, 1,

where xB is coded according to the RSM approach but nested on xA, and αxA
, βxA

,

and γxA
are the zero-order, first-order, and second-order effects of B conditional on

A = xA, respectively. Note that for xA = i, xB is a linear transformation of Bl|Ai,

and x2
B is a linear combination of 1, Bl|Ai, and Bq|Ai. By equating the NEM in

(3) and the following second-order RSM model:

(4) f(xA, xB) ≈ λ0 + λ1xA + λ2xB + λ11x
2
A + λ22x

2
B + λ12xAxB ,

we obtain the following relationships:

αxA
= λ0 + λ1xA + λ11x

2
A,

βxA
= λ2 + λ12xA,(5)

γxA
= λ22.



Modeling sliding-level experiments 249

The equations in (5) indicate that the three conditional second-order effects of B
(i.e., γi’s) must be identical in the second-order RSM model, which save two degrees

of freedom; the three conditional first-order effects of B (i.e., βxA
’s) must satisfy a

linear constraint, which save one degree of freedom. The saving of three degrees of

freedom explains why the RSM model has three parameters fewer than the NEM.

If the restrictions on βxA
’s and γxA

’s in (5) are considered to be too rigid, we

can add more parameters in the RSM model so that the corresponding βxA
’s and

γxA
’s can be free of the constraints as shown by the following relationships:

αxA
= λ0 + λ1xA + λ11x

2
A,

βxA
= λ2 + λ12xA + λ112x

2
A,(6)

γxA
= λ22 + λ122xA + λ1122x

2
A.

The resulting RSM model will be:

f(xA, xB) ≈ λ0 + λ1xA + λ11x
2
A

+ (λ2 + λ12xA + λ112x
2
A)xB

+ (λ22 + λ122xA + λ1122x
2
A)x2

B

= λ0 + λ1xA + λ2xB + λ12xAxB + λ11x
2
A + λ22x

2
B

+ λ112x
2
AxB + λ122xAx2

B + λ1122x
2
Ax2

B .

By adding three higher-order effects x2
AxB , xAx2

B , and x2
Ax2

B in the model (4), the

RSM model has the same number of parameters and same capacity of estimation

as the saturated NEM.

From the previous explanation, it is observed that the conventional RSM ap-

proach of using a dth-order model can be inappropriate for data from sliding-level

experiments. For example, if a second-order model is adopted, some implicit con-

straints that can be impractical are placed on βxA
’s and γxA

’s. However, if the

experimenter would like to use a more complicated model, such as a third-order

model, there are not enough degrees of freedom for estimating all parameters.

Another interesting observation about the relationship between NEM and RSM

model can be obtained from the equations in (6). Consider, for example, the three

conditional zero-order effects, αxA
’s. They are individually estimated at each level

of A. From (6), αxA
’s can be expressed as a quadratic polynomial of xA with

coefficients from parameters in the RSM model. To estimate these parameters, we

can first estimate the αxA
’s, denoted by α̂xA

, by least squares and then solve the

equations α̂xA
= λ0 + λ1xA + λ11x

2
A, for xA = −1, 0, 1, to obtain λ̂0, λ̂1, and

λ̂11. In other words, for x∗
A which is not in {−1, 0, 1}, we can predict αx∗

A
by using

λ̂0+ λ̂1x
∗
A + λ̂11(x

∗
A)

2
. The same procedure can be applied to βxA

’s and γxA
’s in (6).

It is then clear why and how the RSM model can be used for prediction. Suppose

that we want to predict the value of E(y) at (x∗
A, x∗

B), where x∗
A is not included

in the experimental plan. From the argument given in Section 2, the NEM cannot

be used for prediction at x∗
A because no data are collected at x∗

A for estimating the

conditional effects αx∗

A
, βx∗

A
, and γx∗

A
. However, the RSM model treats αxA

, βxA
,

and γxA
as continuous (second-order) polynomials over xA. From this viewpoint

and (6), the predicted value of E(y) at (x∗
A, x∗

B) is simply α̂x∗

A
+β̂x∗

A
x∗

B+γ̂x∗

A
x∗

B
2
,

where α̂x∗

A
, β̂x∗

A
, and γ̂x∗

A
are obtained by substituting x∗

A into the right hand side

expressions in (6) with λ’s replaced by λ̂’s. Note that in the prediction procedure

using RSM approach, the αxA
, βxA

, and γxA
are assumed to be continuous functions
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over xA and their changes over xA are assumed to follow the quadratic polynomials

in (6). These assumptions explain why prediction is feasible in the RSM, but not

in the NEM. In other words, the RSM approach regards the three levels of A as

quantitative and utilizes some continuity assumptions on A for prediction. When

similar assumptions are imposed on an NEM, prediction using NEM can be feasible.

We will show in Sections 4 and 5 that the RSM model for sliding-level experiment

can suffer from severe collinearity between the effects of the slid factor and the

effects of its related factors. The RSM model is therefore not a good choice for the

purpose of identifying important effects, especially when it is required to perform

model selection, such as forward selection or Cp. In these circumstances, we can

adopt the following hybrid strategy that combines NEM and RSM as follows.

(i) It starts from a NEM, which has better orthogonality between effects in the

models.

(ii) After important effects are identified, we can translate the fitted NEM into an

RSM model through equations that relate the parameters in the two mod-

els (such as (6)). The resulting RSM model can then be used for response

prediction.

4. Illustration: a welding experiment

We illustrate the three modeling strategies and compare their results by using data

from a welding experiment reported in Chen, Ciscon, and Ratkus [2]. There are

eight factors in the experiment: pulse rate (A), weld time (B), cool time (C), hold

time (D), squeeze time (E), air pressure (F ), current percentage (G), tip size (H).

Among them, the pulse rate and the weld time are related factors, i.e., for lower

pulse rate, the adequate weld time should be set longer in order to produce weld

points with acceptable quality. An 18-run orthogonal array, OA(18, 21
3
7
), with a

slight modification was adopted to study the eight factors. The planning matrix

of these factors are given in Table 1 (unfortunately, the units of these factors was

not reported). Factors A and H have two levels and other factors have three levels.

Note that the column H in Table 1 is obtained by collapsing a three-level factor

Table 1

Planning matrix of the welding experiment

A B C D E F G H
2 low 6 10 15 50 85 3/8

2 low 12 18 20 55 90 1/4

2 low 18 26 25 60 95 3/8

2 median 6 10 20 55 95 3/8

2 median 12 18 25 60 85 3/8

2 median 18 26 15 50 90 1/4

2 high 6 18 15 60 90 3/8

2 high 12 26 20 50 95 3/8

2 high 18 10 25 55 85 1/4

4 low 6 26 25 55 90 3/8

4 low 12 10 15 60 95 1/4

4 low 18 18 20 50 85 3/8

4 median 6 18 25 50 95 1/4

4 median 12 26 15 55 85 3/8

4 median 18 10 20 60 90 3/8

4 high 6 26 20 60 85 1/4

4 high 12 10 25 50 90 3/8

4 high 18 18 15 55 95 3/8
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Table 2

Actual settings of pulse rate and weld time

weld time

pulse rate low median high

2 32 36 40

4 18 22 26

20 25 30 35 40

2
.0

2
.5

3
.0

3
.5

4
.0

weld time

p
u

ls
e

 r
a

te

Fig 2. Adequate experimental region of pulse rate and weld time.

in the OA(18, 21
3
7
) to a two-level factor (see Wu and Hamada, [8], Section 7.8).

The actual settings of low, median, and high levels in the column B depend on the

levels of A as shown in Table 2. We regard the area enclosed by solid lines in Fig 2

as the adequate experimental region, i.e., RE .

The main difference between the three modeling techniques is reflected in the

effect coding of the slid factor B. For the RCRS model, because the RE is trans-

formed into a square after re-centering and re-scaling, the effect coding of B is the

same as in a non-slid factor. Therefore, by applying the linear-quadratic system in

[8], Section 5.6, the linear effect of B codes the low, median, and high levels as −1,

0, and 1, respectively, and the quadratic effect of B as 1, −2, 1, respectively. They

are shown in the columns labeled by Bl and Bq of Table 3. Note that, although

we still call Bl and Bq the main effects of B, they are no longer the main effects

of weld time. Instead, the B after RCRS represents a new factor which is a linear

combination of weld time and pulse rate. For example, from Bl = −1 in Table 3,

we can see that the low level of the new factor is the left hand side boundary of RE

in Fig 2 (i.e., the straight line that links the point (weld time, pulse rate)=(32, 2)

and the point (weld time, pulse rate)=(18, 4)) and from Bl = 1 the high level is the

right hand side boundary. For the NEM approach, the effects of B are conditional

on the levels of A. For each level of A, the linear-quadratic system is applied to

generate the Bl|A1, Bq|A1, Bl|A2, and Bq|A2 as shown in Table 3. For the RSM

approach, because the lowest actual setting of B is 18 and the highest actual setting

is 40, we code 18 as −1 and 40 as +1, and the other settings, 22, 26, 32, and 36,

are proportionally coded as − 7
11 , − 3

11 ,
3
11 , and

7
11 , respectively. These are shown in

the column labeled as xB in Table 3. The x2
B is the componentwise square of xB .

In the data analysis, we consider the models that contain all main effects of

factors C-H and five effects generated from factors A and B. For the RCRS, the
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Table 3

Effect coding of pulse rate and weld time for the three modeling techniques

factors RCRS NEM RSM

A B Al Bl Bq Al Bl|A1 Bq |A1 Bl|A2 Bq |A2 xA xB x2
B

2 low(32) −1 −1 1 −1 −1 1 0 0 −1 0.273 0.074

2 median(36) −1 0 −2 −1 0 −2 0 0 −1 0.636 0.405

2 high(40) −1 1 1 −1 1 1 0 0 −1 1 1

4 low(18) 1 −1 1 1 0 0 −1 1 1 −1 1

4 median(22) 1 0 −2 1 0 0 0 −2 1 −0.636 0.405

4 high(26) 1 1 1 1 0 0 1 1 1 −0.273 0.074

five effects are Al, Bl, Bq, AlBl, and AlBq, where AlBl and AlBq are interactions

generated by the componentwise multiplication of Al and Bl, and Al and Bq, re-

spectively. For the NEM, the five effects are Al, Bl|A1, Bq|A1, Bl|A2, and Bq|A2.

For the RSM, the five effects are xA, xB , x2
B , xAxB , and xAx2

B , where xAxB and

xAx2
B are interactions generated by the componentwise multiplication of xA and

xB , and xA and x2
B , respectively. Although the five effects are coded in different

ways for each modeling technique, the vector spaces spanned by any set of the five

effects are identical. Consequently, the effects of factors C-H will have the same

analysis results in the three models. Because of this reason, we only give the analy-

sis results of the five effects generated by A and B, which include their estimated

values, t-values, and p-values, under the RCRS, the NEM, and the RSM, in Ta-

bles 4, 5, and 6, respectively. From these tables, we have some interesting findings

presented in the following.

1. The Bl|A1 and Bl|A2 are the linear effects of B conditional on two different

levels of A. In Table 5, we find that the two conditional effects have different

magnitudes. When the pulse rate is 2, the weld time has a strong linear ef-

fect (significant Bl|A1). When the pulse rate is changed to 4, the linear effect

of weld time (Bl|A2) is insignificant. After re-centering and re-scaling, these

two effects are transformed into two parameters, Bl and AlBl, in Table 4.

The Bl represents the average of the two conditional linear effects (78.96 =

((−23.75) + 181.67)/2) and the interaction AlBl represents the difference be-

tween the two conditional linear effects (−102.71 = ((−23.75)−181.67)/2). It

is then clear why Bl and AlBl are both significant. The same argument can

be applied to Bq|A1 and Bq|A2 in Table 5 and Bq and AlBq in Table 4. Be-

cause Bq|A1 and Bq|A2 has rather similar magnitudes (−27.92 and −41.67),

it explains why their difference (i.e., AlBq) is insignificant.

2. By comparing xA in Table 6 and Al in Tables 4 and 5, we find surprisingly

that Al is significant while xA is insignificant even though Al and xA have the

same coding in Table 3. By a further investigation of the correlations between

the estimated effects (given in Table 7), it is seen that the insignificance of xA

is caused by the severe collinearity between xA and xB . It also results in the

other three high correlations in Table 7 because other effects are also defined

by xA and xB . Note that in the planning matrix in Table 1, all effects in

the models based on the RCRS and the NEM are mutually orthogonal. The

appearance of severe collinearity will be further explained in Section 5.

Suppose that severe collinearity is a serious concern but analysis based on

RCRS or NEM is not an option to the investigators. A possible choice for

reducing the collinearity might be to transform the variables. For example,

after replacing weld time in Table 1 by a new variable, pulse rate times weld

time, the RSM model will exhibit less correlation between the parameter
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Table 4

Analysis based on RCRS

value t-value p-value

Al −81.04 −6.20 0.00

Bl 78.96 4.93 0.00

Bq −34.79 −3.76 0.00

AlBl −102.71 −6.42 0.00

AlBq −6.88 −0.74 0.46

Table 5

Analysis based on NEM

value t-value p-value

Al −81.04 −6.20 0.00

Bl|A1 181.67 8.03 0.00

Bq |A1 −27.92 −2.14 0.04

Bl|A2 −23.75 −1.05 0.30

Bq |A2 −41.67 −3.19 0.00

Table 6

Analysis based on RSM

value t-value p-value

xA 7.72 0.11 0.92

xB 18.62 0.07 0.95

x2
B

−789.34 −3.76 0.00

xAxB −1287.06 −4.76 0.00

xAx2
B

−155.98 −0.74 0.46

Table 7

Correlation matrix of the estimated effects under the RSM model

xB x2
B

xAxB xAx2
B

xA 0.96 0.00 0.00 0.91

xB 0.00 0.00 0.99

x2
B

0.99 0.00

xAxB 0.00
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Fig 3. Transformed experimental region.

estimates because the transformed experimental region (given in Fig 3) is
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more similar to a rectangle than the original experimental region (as shown

in Fig 2).

3. From Table 3, we can understand that for the main effects of the slid factor

(which include Bl and Bq in RCRS, Bl|Ai and Bq|Ai in NEM, and xB and x2
B

in RSM), the coding based on RCRS can best preserve orthogonality property

in a planning matrix, followed by the NEM, and RSM being the worst.

5. Relationship between RCRS and RSM models

To explain the relationship between the RCRS and RSM models, consider an RCRS

model for the nine-run experiment that contains all main effects and a linear-by-

linear interaction as follows:

f(xA, xB) ≈ η0 + η1xA + η11x
2
A + η2

[

xB − mB(xA)

lB(xA)

]

(7)

+ η22

[

xB − mB(xA)

lB(xA)

]2

+ η12xA

[

xB − mB(xA)

lB(xA)

]

,

where mB(xA) and lB(xA) are the center and range, respectively, of the experimen-

tal region chosen for B when A is conditioned on xA. For simplicity, assume that

mB is a linear function of xA, i.e., mB(xA) = s + t xA, and lB is a constant, i.e.,

lB(xA) = r (same shape as Fig 2). By substituting them into (7) and expanding (7)

in a polynomial form, we obtain an RSM model, consisting of the factorial effects

xA, x2
A, xB , x2

B , and xAxB , as follows:

f(xA, xB) ≈
[

η0 + (s2/r2
)η22 − (s/r)η2

]

+
[

η1 − (t/r)η2 − (s/r)η12 + (2st/r2
)η22

]

xA
(8)

+
[

η11 + (t2/r2
)η22 − (t/r)η12

]

x2
A +

[

(1/r)η2 − (2s/r2
)η22

]

xB

+
[

(1/r2
)η22

]

x2
B +

[

(1/r)η12 − (2t/r2
)η22

]

xAxB .

Note that in (8), the parameters of factorial effects are functions of η’s and r, s,
and t. The η’s represent the relationship between factors and response in the RCRS

model, and r, s, and t characterize the shape of the irregular experimental region.

The shape has been eliminated in the RCRS model after applying the transforma-

tion
xB−mB(xA)

lB(xA) on B. However, mB and lB still affect the polynomial terms of

the RSM model in (8). This example shows that an RSM model for sliding-level

experiments contains two components: a description of the relationship between

factors and response, and a description of the irregular shape of the experimental

region. The two components are intertwined and undistinguishable in the parame-

ters of an RSM model. On the other hand, a fitted model based on RCRS only

contains information on the first component because the irregularity of shape has

been eliminated after re-centering and re-scaling. This observation is supported by

the appearance of strong collinearity between xA and xB in Table 7. Note that after

RCRS, the main effects of A and B (in Table 4) are orthogonal. However, in the

RSM model such strong collinearity inevitably appears because: (i) the parameters

in the RSM model are influenced by the irregular shape of experimental region, and

(ii) the irregular shape (i.e., RE in Fig 2) reflects the fact that B is smaller when

A is larger.

In general, the shape of the chosen experimental region can be arbitrary, and mB

and lB can have more complicated forms than what was assumed above. However,
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similar remarks and conclusions are still applicable.

Suppose that the relationship between mean response and factors A and B satis-

fies (1). When the mB and lB in (7) are appropriately chosen so that the interaction

elimination after RCRS is achieved, the η12 in (7) becomes zero. In this case, the

RCRS model in (7) does not nominally contain an interaction effect, but an inter-

action (i.e., xAxB) is still present in the RSM model (8). The apparent discrepancy

lies in the different approaches they take to handle the irregular shape of the ex-

perimental region. This observation partially supports the interaction elimination

rationale in RCRS from a different perspective. Because the fitted model after

RCRS does not properly take into account the irregular shape of the experimental

region, it can, in most cases, utilize fewer effects than an RSM model to achieve a

comparable coefficient of determination (i.e., R2
). Some interaction effects (such as

the xAxB in the case) are not required for the RCRS model.

6. Summary

For the purpose of response prediction for sliding-level experiments, we point out

the shortcomings of two existing approaches, RCRS and NEM, when the related

factors are quantitative. An alternative analysis strategy is proposed based on the

response surface modeling, in which the response prediction can be implemented

in a straightforward manner. Through the comparisons of the three strategies, we

present several interesting conclusions, which lead to better understanding of the

concepts, properties, limitations, and implicit assumptions behind each strategy.

None of the three methods dominates the others in every aspects. The best strategy

for the investigators depends on the information they have about the irregular

region and the objectives of the experiment. Although we do not discuss the design

issues in this article, the choice of the modeling strategy will influence the choice

of the best design. This and other issues in modeling deserve further study.
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Abstract: In a market with transaction costs, the price of a derivative can

be expressed in terms of (preconsistent) price systems (after Kusuoka (1995)).

In this paper, we consider a market with binomial model for stock price and

discuss how to generate the price systems. From this, the price formula of

a derivative can be reformulated as a stochastic control problem. Then the

dynamic programming approach can be used to calculate the price. We also

discuss optimization of expected utility using price systems.

1. Introduction

Duality approach is frequently used for financial problems in incomplete markets.

This approach can also be applied to markets with transaction costs. In [12], a

discrete market with transaction costs is considered. In the market studied there

is a stock and a bond that we can trade. Let λ1, λ0 > 0 be the proportional costs

for selling and buying the stock. Then the replication cost at time 0 for a portfolio

Y = (Y 0, Y 1
) at time T is given by

(1.1) π∗
(Y ) = sup{E[Y 0ρ0

+ Y 1ρ1
]}.

The supremum is taken over (ρ0, ρ1
) ((preconsistent) price systems) which depend

on λ0, λ1. This will be described in details below.

A similar result for diffusion models is given in [3].

Our interest is to use price systems to calculate the price of a derivative and

find optimal strategy for hedging problem. We will also discuss the use of price sys-

tems to study portfolio optimization problem. There is a similarity between these

problems that they can be reformualted as optimization problems. We shall con-

sider binomial model (it can also be extended to multinomial model) and find a

dynamics to generate the price systems (ρ0, ρ1
). A price system becomes a con-

trolled process. The optimization problems become stochastic control problems.

Then dynamic programming approach can be used.

The paper is organized as follows. In Section 2, we give notations and give the

framework. In Section 3, we describe price systems and give a price formula for

derivatives in terms of price systems. In Section 4, we discuss the optimization of
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expected utility using price systems. In Sections 5, 6 and 7, we consider binomial

models. We present a dynamics to generate the price systems. We reformulate some

finance problems as stochastic control problems. Then we use dynamic program-

ming to calculate the value functions.

2. Finite market with one stock

The framework can be described as follows.

We consider (Ω,F , P ) a finite probability space and {Fk} a filtration. Let

P 0
(k; ω), P 1

(k; ω)

be the prices for bond and stock. Then P 0, P 1
are adapted to {Fk}. Define

P̂ (k; ω) = P 1
(k, ω)/P 0

(k; ω),

the discounted price.

A trading strategy is given by {I(k; ω)}T
k=0, a stochastic process adapted to

{Fk}. I(k; ω) is the number of shares that the stock is bought or sold,

I(k; ω) ≥ 0, buy stock at k,

I(k; ω) < 0, sell stock at k.

The portfolio values for {I(k; ω)}T
k=0 with x = (x0, x1) are given by,

X0
(k; x, I) = x0 −

k
∑

�=0

h(I(�))P̂ (�)

X1
(k; x, I) = x1

+

k
∑

�=0

I(�).

Here

h(z) =

{

(1 + λ0)z, z > 0

(1 − λ1)z, z ≤ 0,

where λ1, λ0 > 0 are the proportional costs for selling and buying the stock, respec-

tively.

We are interested in the following finance problems.

Pricing derivative: Let Y = (Y 0, Y 1
) be FT measurable. We define π∗

(Y ) the

minimum of x0P
0
(0) such that for some I,

Y 0 ≤ X0
(T ; (x0, 0), I), Y 1 ≤ X1

(T ; (x0, 0), I).

We say π∗
(Y ) is the price of Y = (Y 0, Y 1

). The problem is to calculate π∗
(Y ).

Another important problem is to obtain a strategy I(·) such that for x0
= π∗

(Y ),

Y 0 ≤ X0
(T ; (x0, 0), I), Y 1 ≤ X1

(T ; (x0, 0), I).

For the later use, we also define π∗
(Y ; x1) the minimum of x0P

0
(0) such that for

some I,

Y 0 ≤ X0
(T ; (x0, x1), I), Y 1 ≤ X1

(T ; (x0, x1), I).

Then π∗
(Y ; x1) = π∗

(Ỹ ), where Ỹ 0
= Y 0, Ỹ 1

= Y 1 − x1.
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Optimizing expected utility: Let U be a utility function. Let (x0, x1
) be given

such that

x0P 0
(0) − h(−x1

)P 1
(0) > 0.

V (x0, x1
) is the maximum of

E[U(X0
(T ; (x0, x1

), I)P 0
(T ) − h(−X1

(T ; (x0, x1
), I))P 1

(T ))],

where I(·) is an admissible strategy: k = 0, 1, 2, . . . , T ,

X0
(k; (x0, x1

), I)P 0
(k) − h(−X1

(k; (x0, x1
), I))P 1

(k) ≥ 0.

We want to calculate V (x0, x1
) and find a strategy I that attains the maximum.

3. Price systems and a price formula

Definition. We say that (ρ0, ρ1
) is a price system if ρ0, ρ1

are positive random

variables such that

(a) E[ρ0
] = P 0

(0);

(b) Define

R(k; ω) =
ρ1

(k; ω)

ρ0(k; ω)

1

P̂ (k; ω)

,

ρ0
(k; ω) = E[ρ0|Fk], ρ1

(k; ω) = E[ρ1|Fk].

Then

(1 − λ1) ≤ R(k; ω) ≤ (1 + λ0), k = 0, 1, 2, . . . , T.

We denote P(λ0, λ1) the family of price systems.

Remark. Assume there is an equivalent martingale measure Q. Then P(λ0, λ1) �=

∅. In fact, define

ρ0
=

dQ

dP
P 0

(0)

ρ1
= ρ0P̂ (T ).

Then

ρ0
(k; ω) =

dQ

dP
|Fk

P 0
(0)

ρ1
(k; ω) = ρ0

(k; ω)P̂ (k; ω).

We can show that (ρ0, ρ1
) is a price system.

On the other hand, in the case λ0 = λ1 = 0, (ρ0, ρ1
) is a price system if and only

if

dQ

dP
= ρ0

(T )/P 0
(0)

defines an equivalent martingale measure.

Theorem 1 ([12]). Assume P(λ0, λ1) �= ∅. Then

(3.1) π∗
(Y ) = sup

P(λ0,λ1)

E[Y 0ρ0
+ Y 1ρ1

].
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Remark. If λ0 = λ1 = 0, then the above is

π∗
(Y ) = sup

ρ
E[ρH

P 0
(0)

P 0(T )
]

H = Y 0P 0
(T ) + Y 1P 1

(T ).

Here
dQ

dP
= ρ

defines an equivalent martingale measure.

A similar result for diffusion models is given in [3].

4. Price system and optimal expected utility

In the following, we assume P 0
(k) = 1 for all k.

Let U be a strictly increasing utility function. Define

U∗
(y) = sup{U(x) − xy; x ≥ 0}.

Define

V ∗
(ξ, x1) = inf{E[U∗

(ξρ0
(T ))] + x1ξE[ρ1

(T )]}

Theorem 2. We have

V (x0, x1) ≤ inf
ξ>0

{V ∗
(ξ, x1) + x0ξ}

This is the same as

(4.1) V (x0, x1) ≤ inf
ξ>0,ρ0,ρ1

{E[U∗
(ξρ0

(T ))] + x1ξE[ρ1
(T )] + x0ξ}.

Assume there is ξ̂, ρ̂0, ρ̂1 that attains the infimum. Then the above equality holds.

Moreover, there is an optimal strategy Î for the portfolio optimization problem sat-

isfying the following properties.

(a) X0
(T ; (x0, x1), Î) = −U∗′

(ξ̂ρ̂0
(T )),

X1
(T ; (x0, x1), Î) = 0.

(b) R̂(l) = 1 + λ0 if Î(l) > 0,

R̂(l) = 1 − λ1 if Î(l) < 0.

Here U∗′

(ξ) denotes the derivative of U∗
(ξ).

Proof. Let I be a strategy.

(4.2)

U(X0
(T ; x, I) − h(−X1

(T ; x, I))P 1
(T ))

≤ U∗
(ξρ0

(T )) + ξρ0
(T )(X0

(T ; x, I) − h(−X1
(T ; x, I))P 1

(T ))

= U∗
(ξρ0

(T )) + ξ(X0
(T ; x, I)ρ0

(T ) − h(−X1
(T ; x, I))P 1

(T )ρ0
(T ))

≤ U∗
(ξρ0

(T )) + ξ(X0
(T ; x, I)ρ0

(T ) + R(T )X1
(T ; x, I)P 1

(T )ρ0
(T ))

= U∗
(ξρ0

(T )) + ξ(X0
(T ; x, I)ρ0

(T ) + ρ1
(T )X1

(T ; x, I)).

(4.3)

X0
(T ; x, I)ρ0

(T ) + X1
(T ; x, I)ρ1

(T )

= x0ρ
0
(T ) + x1ρ

1
(T ) + (−

T
∑

l=0

h(I(l))P 1
(l)ρ0

(T )

+

T
∑

l=0

I(l)ρ1
(T )).
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(4.4)

E[(−

T
∑

l=0

h(I(l))P 1
(l)ρ0

(T ) +

T
∑

l=0

I(l)ρ1
(T ))]

=

T
∑

l=0

E[−h(I(l))P 1
(l)ρ0

(l) + I(l)ρ1
(l)]

=

T
∑

l=0

E[(−h(I(l)) + R(l)I(l))P 1
(l)ρ0

(l)]

≤ 0.

Then we can deduce

(4.5)
E[U(X0

(T ; x, I) − h(−X1
(T ; x, I))P 1

(T ))]

≤ E[U∗
(ξρ0

(T ))] + ξx1E[ρ1
(T )] + ξx0.

This is true for all ρ0, ρ1
. The first result follows.

Assume ξ̂, ρ̂0, ρ̂1
attains infimum in (4.1). Then

(4.6) E[U∗′

(ξ̂ρ̂0
(T ))ρ̂0

(T )] + x1E[ρ̂1
(T )] + x0 = 0.

On the other hand, take any (ρ0, ρ1
) and 0 < α < 1, we have

E[U∗
(ξ̂(αρ0

(T ) + (1 − α)ρ̂0
(T )))] + x1ξ̂E[αρ1

(T ) + (1 − α)ρ̂1
(T )] + x0ξ̂

takes minimum at α = 0. We have

(4.7)
E[U∗′

(ξ̂ρ̂0
(T ))(ρ0

(T ) − ρ̂0
(T ))]

+x1ξ̂E[ρ1
(T ) − ρ̂1

(T )] ≥ 0.

Take

Ŷ 0
= −U∗′

(ξ̂ρ̂0
(T )), Ŷ 1

= 0.

(4.7) implies

π∗
(Ŷ ; x1) = E[−U∗′

(ξ̂ρ̂0
(T ))ρ̂0

(T )] − x1ξ̂E[ρ̂1
(T )] = x0.

Here we use (4.6) and Theorem 1.

By the definition of π∗
(Ŷ ; x1), there is a strategy Î such that

x0 −

T
∑

l=0

h(Î(l))P 1
(l) ≥ Ŷ 0,

x1 +

T
∑

l=0

Î(l) ≥ Ŷ 1.

Therefore,

(4.8)
X0

(T ; (x0, x1), Î) ≥ −U∗′

(ξ̂ρ̂0
(T )),

X1
(T ; (x0, x1), Î) ≥ 0.

(4.9)

U(X0
(T ; x, Î) − h(−X1

(T ; x, Î))P 1
(T ))

≥ U(−U∗′

(ξ̂ρ̂0
(T )))

= U∗
(ξ̂ρ̂0

(T )) − ξ̂ρ̂0
(T )U∗′

(ξ̂ρ̂0
(T )).
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Then

(4.10)

E[U(X0
(T ; x, Î) − h(−X1

(T ; x, Î))P 1
(T ))]

≥ E[U∗
(ξ̂ρ̂0

(T ))] − ξ̂E[ρ̂0
(T )U∗′

(ξ̂ρ̂0
(T )))]

= E[U∗
(ξ̂ρ̂0

(T ))] + ξ̂(x1E[ρ̂1
(T )] + x0)

≥ V (x0, x1).

Therefore, by the definition of V (x0, x1), the inequalities become equalities in the

above relation. We see (a) follows from the equalities in (4.8),(4.9) and (4.10). On

the other hand, (4.2),(4.3), (4.4) and (4.5) also become equalities for I = Î, then

(b) follows. This completes the proof.

5. Binomial model and price systems

We take P 0
k = 1 for all k. 0 < d < 1 < u, λ0, λ1 > 0.

The sample space is given by

Ω = {(a1, a2, . . . , aT ); ai ∈ {u, d}}.

For ω = (a1, a2, . . . , aT ) ∈ Ω, denote

ωk
= (a1, a2, . . . , ak).

The price of stock is

P 1
k (ω) = P 1

0 a1a2 · · · ak.

We also write P 1
k (ω) = P 1

k (ωk
).

Fk is the σ-algebra generated by P 1
t , t ≤ k. A function defined on Ω measurable

w.r.t. Fk is given by f(ωk
).

For ω = (a1, a2, . . . , aT ) ∈ Ω, the probability is given by

P ({ω}) = pm
(1 − p)

T−m,

where m is the number of k such that ak = u, 0 < p < 1.

ρ0
(k), ρ1

(k) are given by

ρ0
(k) = E[ρ0|Fk], ρ1

(k) = E[ρ1|Fk].

We have the characterization of ρ0
(k), ρ1

(k):

(PS1)

ρ0
(k, ωk

) = pρ0
(k + 1, (ωk, u)) + (1 − p)ρ0

(k + 1, (ωk, d)),

ρ1
(k, ωk

) = pρ1
(k + 1, (ωk, u)) + (1 − p)ρ1

(k + 1, (ωk, d)).

(PS2) (1 − λ1)P
1
k ≤

ρ1
(k)

ρ0(k)
≤ (1 + λ0)P

1
k , k = 1, 2, 3, . . . , T.

It is convenient to consider

A(k) =
ρ1

(k)

ρ0(k)
, k = 0, 1, . . . , T.

We can now describe the price systems in a binomial market. We omit the easy

proof.
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Theorem 3 (Binomial model). Let ω = (a1, a2, . . . , aT ) ∈ Ω. Given A0 a positive

constant such that

(1 − λ1)P
1
0 ≤ A0 ≤ (1 + λ0)P

1
0 .

Denote ρ0
(0) = 1, ρ1

(0) = ρ0
(0)A0. Take positive constants Au, Ad such that

min{Au, Ad} < A0 < max{Au, Ad}

and

(1 − λ1)P
1
0 u ≤ Au ≤ (1 + λ0)P

1
0 u,

(1 − λ1)P
1
0 d ≤ Ad ≤ (1 + λ0)P

1
0 d.

If a1 = u

ρ0
(1) =

1

p

A0 − Ad

Au − Ad
,

A1 = Au.

If a1 = d

ρ0
(1) =

1

1 − p

Au − A0

Au − Ad
,

A1 = Ad.

Define

ρ1
(1) = ρ0

(1)A1.

Assume we have defined A0, A1, . . . , Ak and

ρ0
(1), ρ0

(2), . . . , ρ0
(k), ρ1

(1), ρ1
(2), . . . , ρ1

(k).

Take Au, Ad measurable w.r.t. Fk such that

min{Au, Ad} < Ak < max{Au, Ad}

and

(1 − λ1)P
1
k u ≤ Au ≤ (1 + λ0)P

1
k u,

(1 − λ1)P
1
k d ≤ Ad ≤ (1 + λ0)P

1
k d.

If ak+1 = u,

ρ0
(k + 1) = ρ0

(k)
1

p

Ak − Ad

Au − Ad
,

ρ1
(k + 1) = ρ0

(k + 1)Au
;

if ak+1 = d,

ρ0
(k + 1) =

1

1 − p

Au − Ak

Au − Ad
,

ρ1
(k + 1) = ρ0

(k + 1)Ad.

Then ρ0
(k), ρ1

(k) satisfy (PS1) and (PS2).
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6. Binomial model: control problems for pricing derivatives

Assume Y = (Y 0, Y 1
) is given by

Y 0
= Y 0

(P 1
T ), Y 1

= Y 1
(P 1

T ).

Then the price π∗
(Y ) is given by

π∗
(Y ) = sup

ρ0(T ),ρ1(T )

E[ρ0
(T )Y 0

(P 1
T ) + ρ1

(T )Y 1
(P 1

T )].

This can be rewritten as

π∗
(Y ) = sup

ρ0(T ),ρ1(T )

E[ρ0
(T )(Y 0

(P 1
T ) + AT Y 1

(P 1
T ))].

with Ak and ρ0
(k) described in Theorem 3. This is viewed as a stochastic control

problem. The state variables are given by P 1
k , Ak, ρ0

(k) and the control variables

are Au
k , Ad

k.

The dynamical programming can be described as follows.

For S > 0 and A satisfying

(1 − λ1)S ≤ A ≤ (1 + λ0)S,

define

Wk(S, A) = sup E[
ρ0

(T )

ρ0(k)
(Y 0

(P 1
T ) + AT Y 1

(P 1
T ))|P 1

k = S, Ak = A]

Then

π∗
(Y ) = sup

(1−λ1)S≤A≤(1+λ0)S

W0(S, A)

for P 1
0 = S. And for 0 ≤ k < l ≤ T ,

Wk(S, A) = supE[
ρ0

(l)

ρ0(k)
Wl(P

1
l , Al)|P

1
k = S, Ak = A]

It follows a recursive scheme backward in time.

(D1) WT (S, A) = Y 0
(S) + AY 1

(S);

(D2) For (1 − λ1)S ≤ A ≤ (1 + λ0)S,

Wk(S, A) = sup{
A − Ad

Au − Ad
Wk+1(Su, Au

) +
Au − A

Au − Ad
Wk+1(Sd, Ad

)},

the maximization is taken over

min{Au, Ad} < A < max{Au, Ad}

(1 − λ1)Su ≤ Au ≤ (1 + λ0)Su,

(1 − λ1)Sd ≤ Ad ≤ (1 + λ0)Sd.

(D3) For P 1
0 = S,

π∗
(Y ) = sup

(1−λ1)S≤A≤(1+λ0)S

{W0(S, A)}.

It can be restated as follows.
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Theorem 4. We have

Wk(S, A) = sup{αWk+1(Su, Au
) + (1 − α)Wk+1(Sd, Ad

)},

the maximization is taken over

0 < α < 1,

αAu
+ (1 − α)Ad

= A,

and

(1 − λ1)Su ≤ Au ≤ (1 + λ0)Su,

(1 − λ1)Sd ≤ Ad ≤ (1 + λ0)Sd.

Wk(S, A) is piecewise linear in A for all S > 0 and k = 0, 1, . . . , T .

The main questions consist of the following. How to calculate Wk(S, A)? How to

obtain an optimal strategy to super hedge Y from Wk(S, A)? Some answers can be

found in [6].

7. Binomial model: optimizing expected utility and control problem

We take

U(x) =
1

γ
xγ , 0 < γ < 1.

Then

U∗
(ξ) = −

1

µ
ξµ,

µ =
γ

γ − 1
.

Then

(7.1) V (x0, x1) = inf
ξ>0

{V ∗
(ξ, x1) + x0ξ},

V ∗
(ξ, x1) = inf{−

1

µ
ξµE[(ρ0

(T ))
µ
] + ξx1E[ρ1

(T )]}.

We shall consider

−
1

µ
ξµE[(ρ0

(T ))
µ
] + ξx1E[ρ1

(T )]

conditioning on P 1
(0) = S, A(0) = A. This is equal to

−
1

µ
ξµE[(ρ0

(T ))
µ
] + ξx1A.

We consider

Vk(S, A) = inf E[(
ρ0

(T )

ρ0(k)
)
µ|Fk].

The follwoing is an iterative scheme to calculate Vk(S, A), k = 0, 1, . . . .
(PD1) VT (S, A) = 1,

(PD2) k = 0, 1, 2, . . . ,

(7.2)

Vk(S, A) = inf{p1−µ
(

A − Ad

Au − Ad
)
µVk+1(Su, Au

)

+(1 − p)
1−µ

(
Au − A

Au − Ad
)
µVk+1(Sd, Ad

)}
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The inf is taken over the Ad, Au
satisfying

min{Au, Ad} < A < max{Au, Ad}

(7.3)
(1 − λ1)Su ≤ Au ≤ (1 + λ0)Su,
(1 − λ1)Sd ≤ Ad ≤ (1 + λ)Sd.

(7.2) can be reformulated as follows.

(7.2)
′

Vk(S, A) = inf{p1−µαµVk+1(Su, Au
) + (1 − p)

1−µ
(1 − α)

µVk+1(Sd, Ad
)}

where 0 ≤ α ≤ 1 and (7.3) and (7.4) hold,

(7.4) αAu
+ (1 − α)Ad

= A.

We consider VT−1(S, A):

VT−1(S, A) = inf{p1−µαµ
+ (1 − p)

1−µ
(1 − α)

µ},

where (7.3), (7.4) hold. Denote V̂T−1(A) = VT−1(S, SA). For

(1 − λ1) ≤ A ≤ (1 + λ0),

V̂T−1(A) = inf{p1−µαµ
+ (1 − p)

1−µ
(1 − α)

µ},

there are Au, Ad
such that

(7.3)
′ (1 − λ1) ≤ Au ≤ (1 + λ0),

(1 − λ1) ≤ Ad ≤ (1 + λ0).

(7.4)
′ αuAu

+ (1 − α)dAd
= A,

In general,

V̂k(A) = Vk(S, SA), (1 − λ1) ≤ A ≤ (1 + λ0).

Then

V̂k(A) = inf{p1−µαµV̂k+1(A
u
) + (1 − p)

1−µ
(1 − α)

µV̂k+1(A
d
)},

0 ≤ α ≤ 1 satisfies (7.3)
′
, (7.4)

′
. From

V̂k(A), (1 − λ1) ≤ A ≤ (1 + λ0),

we have

Vk(S, A) = V̂k(
A

S
), (1 − λ1)S ≤ A ≤ (1 + λ0)S.

Theorem 5. Assume x0 − h(−x1)S > 0. Then for P 1
(0) = S,

V (x0, x1) =
1

γ
inf{(x0 + x1SR)

γ
(V̂0(R))

1−γ}

the infimum is taken over (1 − λ1) ≤ R ≤ (1 + λ0).

In particular, if 1 < pu + (1 − p)d and x1 ≤ 0, then

V (x0, x1) =
1

γ
(x0 + x1S(1 + λ0))

γ
(V̂0(1 + λ0))

1−γ .

If 1 > pu + (1 − p)d and x1 ≥ 0, then

V (x0, x1) =
1

γ
(x0 + x1S(1 − λ1))

γ
(V̂0(1 − λ1))

1−γ .
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Proof. By (7.1)

V (x0, x1) = inf{−
1

µ
ξµV̂0(R) + ξx1SR + ξx0},

the inf is taken over ξ > 0, (1 − λ1) ≤ R ≤ (1 + λ0).

ξ̂ = (
1

V̂0(R)

(x0 + x1SR))
1

µ−1

takes minimum. The rest follows from this and Theorem 6 below.

Theorem 6. Assume 1 < pu + (1 − p)d. Then for

(1 − λ1)(pu + (1 − p)d)
T−k ≤ A ≤ (1 + λ0),

V̂k(A) = 1. For other A, V̂k(A) > 1 and is decreasing in A.

Assume pu + (1 − p)d < 1. Then for

(1 − λ1)S ≤ A ≤ (1 + λ0)S(pu + (1 − p)d)
T−k,

V̂k(A) = 1. For other A, V̂k(A) > 1 and is increasing in A.

V̂k(A) is nonincreasing in k for fixed A.

Proof. We only consider 1 < pu + (1 − p)d. Define

f(α) = p1−µαµ
+ (1 − p)

1−µ
(1 − α)

µ, 0 < α < 1.

f takes minimum at α = p, f(p) = 1 and f is decreasing on (0, p] and increasing

on [p, 1).

Given A,

(1 − λ1) ≤ A ≤ (1 + λ0).

We consider

inf{f(α)}.

The infimum is taken over α such that there are Au, Ad
satisfying

αuAu
+ (1 − α)dAd

= A,

and

(1 − λ1) ≤ Au ≤ (1 + λ0),

(1 − λ1) ≤ Ad ≤ (1 + λ0).

We consider the cases,

(i) (1 − λ1) ≤ A ≤ (1 − λ1)u;

(ii) (1 − λ1)u ≤ A ≤ (1 + λ0)d;

(iii) (1 + λ0)d ≤ A ≤ (1 + λ0).

Assume (i),

α =
A − dAd

uAu − dAd
.

For each (1 − λ1) ≤ Au ≤ (1 + λ0), the range of α defined above taken over

(1 − λ1)d ≤ dAd ≤ A
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is [0, (A − (1 − λ1)d)/(uAu − (1 − λ1)d). Take the union of these sets over all

(1 − λ1) ≤ Au ≤ (1 + λ0),

we have [0, (A−(1−λ1)d)/(1−λ1)(u−d)]. If p is in this interval, then V̂T−1(A) = 1.

The condition p is in this interval is the same as

A ≥ (1 − λ1)(pu + (1 − p)d).

Therefore,

V̂T−1(A) = 1, (1 − λ1)(pu + (1 − p)d) ≤ A ≤ (1 − λ1)u.

On the other hand, if

(1 − λ1) ≤ A ≤ (1 − λ1)(pu + (1 − p)d),

the infimum of f(α) on

[0, (A − (1 − λ1)d)/(1 − λ1)(u − d)]

is

f(
A − (1 − λ1)d

(1 − λ1)(u − d)
).

Therefore,

V̂T−1(A) = f(
A − (1 − λ1)d

(1 − λ1)(u − d)
)

if

(1 − λ1) ≤ A ≤ (1 − λ1)(pu + (1 − p)d).

Assume (ii). We consider A ≤ uAu ≤ (1+λ0)u. The range of α is given by [0, 1].

Therefore, V̂T−1(A) = 1.

Assume (iii). For each A ≤ uAu ≤ (1 + λ0)u, the range of α of

(1 − λ1) ≤ Ad ≤ (1 + λ0)

is

[
A − (1 + λ0)d

uAu − (1 + λ0)d
,

A − (1 − λ1)d

uAu − (1 − λ1)d
].

Take the union of these sets over all Au
gives

[
A − (1 + λ0)d

(1 + λ0)(u − d)
, 1].

We can check p is in this set. Then V̂T−1(A) = 1.

We conclude

V̂T−1(A) = f(
A − (1 − λ1)d

(1 − λ1)(u − d)
)

if

(1 − λ1) ≤ A ≤ (1 − λ1)(pu + (1 − p)d),

and

V̂T−1(A) = 1
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if

(1 − λ1)(pu + (1 − p)d) ≤ A ≤ (1 + λ0).

V̂T−1(A) is decreasing in A.

We can continue this argument for other V̂k(A) to prove that V̂k(A) = 1 if

(1 − λ1)(pu + (1 − p)d)
T−k ≤ A ≤ (1 + λ0),

and for other A, V̂k(A) > 1. To prove the nonincreasing of V̂k(A) in A needs

additional argument. We have the following observation. Let g be nonincreasing.

Consider

ĝ(A) = inf{p1−µαµg(Au
) + (1 − p)

1−µ
(1 − α)

µg(Ad
)},

where the “inf” is taken over 0 < α < 1 and Au, Ad
satisfying (7.3)

′
and (7.4)

′
. We

define

ḡ(A) = g(A), (1 − λ1) ≤ A ≤ (1 + λ0),

ḡ(A) = ∞, A < (1 − λ1),

ḡ(A) = g((1 + λ0)), A > (1 + λ0).

We claim

(7.5) ĝ(A) = inf{p1−µαµḡ(Au
) + (1 − p)

1−µ
(1 − α)

µḡ(Ad
)},

where the “inf” is taken over 0 < α < 1 and Au, Ad
satisfying (7.4)

′
. First, it is

easy to see that the quantity defined by the righthand side of (7.5) is not smaller

than ĝ(A). To prove the opposite inequality, we observe that for a given 0 < α < 1

and Au, Ad
satisfying (7.4)

′
, if (7.3)

′
does not hold, says

Au > (1 + λ0).

We define Āu
= (1 + λ0) and Ād

by the relation,

αu(1 + λ0) + (1 − α)dĀd
= A.

Then Ād > Ad
. We see Āu, Ād

satisty (7.3)
′
and (7.4)

′
and

p1−µαµḡ(Au
) + (1 − p)

1−µ
(1 − α)

µḡ(Ad
)

≥ p1−µαµg(Āu
) + (1 − p)

1−µ
(1 − α)

µg(Ād
)

by the property that g is nonincreasing. Using this observation, we can deduce that

the quantity defined by the righthand side of (7.5) is not smaller than ĝ(A).

Now from (7.5) it is easy to see that ĝ is nonincreasing. In fact, let B = λA > 0

for a λ > 1. Let 0 < α < 1 and Au, Ad > 0 satisfying

αuAu
+ (1 − α)dAd

= A.

We take Bu
= Auλ, Bd

= Adλ. Then

αuBu
+ (1 − α)dBd

= B.

We have

p1−µαµḡ(Au
) + (1 − p)

1−µ
(1 − α)

µḡ(Ad
)

≥ p1−µαµg(Bu
) + (1 − p)

1−µ
(1 − α)

µg(Bd
)

≥ ĝ(B).
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This is true for any α, Au, Ad
. Therefore, ĝ(A) ≥ ĝ(B).

Finally, we denote ĝ(A) = Hg(A). Then H has the property that g1(A) ≥ g2(A)

for all A implies Hg1(A) ≥ Hg2(A) for all A. Take g = 1. Then

Hg = V̂T−1.

We have proved V̂T−1 ≥ 1. That is,

Hg ≥ g.

We note

V̂k = HV̂k+1.

From these, by induction, we can show V̂k ≥ V̂k+1. This completes the proof.

Corollary 7. Assume 1 < pu + (1 − p)d and

(1 − λ1)(pu + (1 − p)d)
T ≤ (1 + λ0).

If x1 ≤ 0, then buy-and-hold is an optimal strategy.

Similarly, assume 1 > pu + (1 − p)d and

(1 + λ0)(pu + (1 − p)d)
T ≥ (1 − λ1).

If x1 ≥ 0, then sell-and-hold is an optimal strategy.

Proof. Assume 1 < pu + (1 − p)d and x1 ≤ 0. From Theorem 5 and 6,

V (x0, x1) =
1

γ
(x0 + x1S(1 + λ0))

γ .

Buy-and-hold achives this value and hence is an optimal strategy. Other result can

be proved similarly.
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Abstract: The maximum product of spacings (MPS) is employed in the es-

timation of the Generalized Extreme Value Distribution (GEV) and the Gen-

eralized Pareto Distribution (GPD). Efficient estimators are obtained by the

MPS for all γ. This outperforms the maximum likelihood method which is only

valid for γ < 1. It is then shown that the MPS gives estimators closer to the

true parameters compared to the maximum likelihood estimates (MLE) in a

simulation study. In cases where sample sizes are small, the MPS performs sta-

bly while the MLE does not. The performance of MPS estimators is also more

stable than those of the probability-weighted moment (PWM) estimators. Fi-

nally, as a by-product of the MPS, a goodness of fit statistic, Moran’s statistic,

is available for the extreme value distributions. Empirical significance levels of

Moran’s statistic calculated are found to be satisfactory with the desired level.

1. Introduction

The GEV and the GPD (Pickands, [13]) distributions are widely-adopted in extreme

value analysis. As is well known the maximum likelihood estimates (MLE) may fail

to converge owing to the existence of an unbounded likelihood function. In some

cases, MLE can be obtained but converges at a slower rate when compared to that

of the classical MLE under regular conditions.

Recent studies (e.g. Juarez & Schucany, [9]) show that maximum likelihood esti-

mation and other common estimation techniques lack robustness. In addition, the

influence curve of the MLE is shown unstable when the sample size is small. Al-

though new methods (Juarez & Schucany, [9]; Peng and Welsh, [12]; Dupuis, [6])

were proposed, arbitrary parameters are sometimes involved, resulting in more in-

tensive computation which is in general undesirable. There have been studies in

overcoming the difficulties of the MLE in extreme value analysis but none has con-

sidered the MPS. Furthermore, a goodness-of-fit test on the fitted GEV or GPD is

rarely considered.

In this study, the MPS method will first be considered for the purpose of finding

estimators which may not be obtained by the maximum likelihood method. As a

by product, the Moran’s statistic, a function of product of spacings, can be treated

as a test statistics for model checking. This is one of the nice outcomes of MPS

which Cheng and Stephens [4] demonstrated but is overlooked by the extreme value

analysis literature.

In Section 2, we discuss some problems of the MLE. In Section 3, we formulate the

MLE, the MPS and the Moran statistics. In Section 4, results of simulation studies

1
Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam

Road, Hong Kong, e-mail: h0127272@hkusua.hku.hk

Keywords and phrases: generalized extreme value distribution, generalized Pareto distribution,

maximum product of spacings, maximum likelihood, Moran’s statistic.
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are presented to evaluate the performance of the method proposed. In Section 5, we

provide some real examples in which the MPS is more convincing. A brief discussion

is presented in Section 6.

2. Problems of the MLE

The problems of the MLE in model fitting were discussed by Weiss and Wolfowitz

[15]. Related discussions in connection to the Weibull and the Gamma distributions

can be found in [2, 3, 5, 14]. Smith [14] found densities in the form

(2.1) f(x; θ, φ) = (x − θ)α−1g(x − θ; φ), θ < x < ∞

where θ and φ are unknown parameters and g converges to a constant as x ↓ θ.
As is well-known for α > 2, the MLE is as efficient as in regular cases. For α = 2,

the estimated parameters are still asymptotically normal, but the convergence rate

is (n log n)
1

2 which is larger than the classical rate of n
1

2 . For 1 < α < 2, the

MLE exists but the asymptotic efficiency problem is not solved. And the order of

convergence could be as high as O(n
1

α ). For α < 1, MLE does not exist. Both the

GEV and the GPD encounter the above difficulties as both can be reparameterised

into the form (2.1).

As an alternative to the MLE, the MPS was established by Cheng and Amin

[2]. With the MPS, not only can problems with non-regular condition be better

solved, but models originally estimable under the MLE framework can also be

better estimated by the MPS using a much simpler algorithm. Cheng & Amin [2]

showed that the MPS estimators are asymptotically normal even for 0 < α <
1. This overcomes to a certain extent the weakness existing in the MLE. Hence,

the MPS may be one of the most robust estimation techniques and yet the least

computational expensive in extreme value analysis. The present paper employs the

MPS in the estimation of the GEV and the GPD. On the other hand, many previous

studies (Hosking, [7]; Marohn, [10]) concentrated on testing the shape parameter.

Goodness-of-fit test on the model as a whole has been very few. In this study, the

Moran’s statistic (Cheng and Stephens, [4]; Moran, [11]) arising naturally as a by

product of the MPS estimator was utilized to check the adequacy of the overall

model.

3. Formulations of the MLE, the MPS and the Moran’s statistic

3.1. The MLE and the MPS

The c.d.f of the GEV and the GPD are respectively

H(x; γ, µ, σ) = exp

[

−

(

1 − γ
x − µ

σ

)
1

γ

]

, 1 − γ
x − µ

σ
> 0;

and

G(x; γ, σ) = 1 −
(

1 − γ
x

σ

)
1

γ

, 1 − γ
x

σ
> 0.

where

γ �= 0, −∞ < µ < ∞, σ > 0



274 T. S. T. Wong and W. K. Li

Let h(x) and g(x) be the corresponding densities,

h(x) =
1

σ

(

1 − γ
x − µ

σ

)
1

γ
−1

exp

[

−

(

1 − γ
x − µ

σ

)
1

γ

]

;

and

g(x) =
1

σ

(

1 − γ
x

σ

)
1

γ
−1

.

The log-likelihood functions per observation are respectively

LGEV(γ, µ, σ) = − log σ +

(

1

γ
− 1

)

log

(

1 − γ
x − µ

σ

)

−

(

1 − γ
x − µ

σ

)
1

γ

;

and

LGPD(γ, µ, σ) = − log σ +

(

1

γ
− 1

)

log

(

1 − γ
x

σ

)

.

Applying the same argument stated in [14], as x ↓ µ+
σ
γ , the information matrix of

LGEV(γ, µ, σ) is infinite for γ > 1
2 . The same difficulty arises in the GPD as x ↓ σ

γ .

In this case, the underlying distribution is J-shaped where maximum likelihood is

bound to fail. Worse still, MLEs (Denoted by Θ̂GEV =
(

γ̂, µ̂, σ̂
)T

and Θ̂GPD =
(

γ̂, σ̂
)T

respectively for the GEV and the GPD) may not exist when γ > 1. Let

x1 < x2 < · · · < xn be an ordered sample of size n and define spacings Di(θ) by

GEV : Di(θ) = H(xi, γ, µ, σ) − H(xi−1; γ, µ, σ) , (i = 1, 2, . . . , n + 1) ;

GPD : Di(θ) = G(xi, γ, σ) − G(xi−1; γ, σ) , (i = 1, 2, . . . , n + 1) ;

where H(x0; γ, µ, σ) ≡ G(x0; γ, σ) ≡ 0 and H(xn+1; γ, µ, σ) ≡ G(xn+1; γ, σ) ≡ 1.

MPS estimators (Denoted by Θ̆GEV = (γ̆, µ̆, σ̆)
T

and Θ̆GPD = (γ̆, σ̆)
T

respec-

tively for the GEV and the GPD) are found by minimizing

M(θ) = −

n+1
∑

i=1

log Di(θ).

By taking the cumulative density in the estimation, the objective function M(θ)

does not collapse for γ < 1 as x ↓ µ +
σ
γ for the GEV or as x ↓ σ

γ for the GPD. The

MLE, however, does not have such an advantage. There is in probability a solution

Θ̂ that is asymptotically normal only for γ < 1
2 . The strength of MPS over MLE

is demonstrated by the following two theorems.

Theorem 3.1. Let Θ0GEV = (γ0, µ0, σ0)
T and Θ0GPD = (γ0, σ0)

T be the true

parameters of the GEV and the GPD respectively. Under regularity conditions (See

for example: [14])

(i) For γ <
1

2
, n

1

2 (Θ̂ − Θ0)
D
→ N

(

0,−E
( ∂2L

∂Θ2

)−1)

;

(ii) For γ =
1

2
,
(

µ̂ +
σ̂

γ̂

)

− (µ0 +
σ0

γ0
)

D
→ Op[(n log n)

− 1

2 ], and n
1

2 (Θ̂ − Θ0)
D
→

N(0,−E(
∂2L

∂Θ2 )
−1

), where Θ = (γ, σ)
T ;

(iii) For
1

2
< γ < 1,

(

µ̂ +
σ̂

γ̂

)

−
(

µ0 +
σ0

γ0

)

D
→ Op(n

−γ
), and n

1

2 (Θ̂ − Θ0)
D
→

N
(

0,−E
( ∂2L

∂Θ2

)−1)

, where Θ is as in (ii).
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(iv) For γ ≥ 1, the MLE does not exist.

Theorem 3.2. Under the same conditions as in Theorem 3.1

(i) For γ <
1

2
, n

1

2 (Θ̆ − Θ0)
D
→ N(0,−E(

∂2L

∂Θ2 )
−1

);

(ii) For γ =
1

2
, (µ̆ +

σ̆

γ̆
) − (µ0 +

σ0

γ0
)

D
→ Op[(n log n)

− 1

2 ], and n
1

2 (Θ̆ − Θ0)
D
→

N(0,−E(
∂2L

∂Θ2 )
−1

), where Θ = (γ, σ)
T ;

(iii) For γ >
1

2
, (µ̆ +

σ̆

γ̆
) − (µ0 +

σ0

γ0
)

D
→ Op(n

−γ
), and n

1

2 (Θ̆ − Θ0)
D
→ N

(0,−E(
∂2L

∂Θ2 )
−1

), where Θ is as in (ii).

Proofs of Theorems 3.1 and 3.2 follow the arguments in [14] and [2] respectively

by checking the conditions therein.

It is obvious that efficient estimators can still be obtained by the MPS for γ > 1
2

but not the MLE. From (iii) above, it is clear that the MPS still works while the

MLE fails for γ ≥ 1. It seems that it is a fact overlooked by researchers working in

the extreme value literature.

3.2. Moran’s statistic

In the MPS estimation, M(θ) is called the Moran’s statistic which can be used as

a test for a goodness-of-fit test. Cheng and Stephens [4] showed that under the null

hypothesis, M(θ), being independent of the unknown parameters, has a normal

distribution and a chi-square approximation exists for small samples with mean

and variance approximated respectively by

µM ≈ (n + 1) log(n + 1) −
1

2
−

1

12(n + 1)
,

and

σ2
M ≈ (n + 1)

(

π2

6
− 1

)

−
1

2
−

1

6(n + 1)
.

Define

C1 = µM −
(

1

2
n
)

1

2

σM , C2 = (2n)
− 1

2 σM .

The test statistic is

T (θ̆) =
M(θ̆) +

1
2k − C1

C2

which follows approximately a chi-square distribution of n degrees of freedom under

the null hypothesis. Monte Carlo simulation of the Weibull, the Gamma and the

Normal distributions in [4] showed the accuracy of the test based on T (θ̆). In the

next section, we provide further evidence supporting the use of MPS for fitting the

extreme value distributions.

4. Simulation study

A set of simulations was performed to evaluate the advantage of the MPS over the

MLE of the GEV and the GPD based on selected parameters for different sample
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sizes n = (10, 20, 50). Empirical significance levels of Moran’s statistic were then

considered using χ2
n,α as the benchmark critical value. Finally, data were generated

from an exponential distribution and the cluster maxima of every 30 observations

were fitted to the GEV.

The subroutine DNCONF in the IMSL library was used to minimize a function.

The data analysed in the paper and the Fortran90 programs used in the computa-

tion are available upon request.

We have done extensive simulations to assess the performance of MPS estimators.

Only four simulation results in each combination of γ and n are reported. The

location and scale parameter, µ = 1 and σ = 1, were used throughout. On the

basis of the results from asymptotic normality of the MPS that were presented

in Section 3, we chose a combination of γ = (−0.2, 0.2, 1, 1.2) to compare the

estimation performance between the maximum likelihood method and the MPS

where the last two cases should break down for the MLE. 10000 simulations of

sample sizes n = (10, 20, 50) were performed. Data were generated from the same

random seed and estimations were performed under the same algorithm. Define the

mean absolute error for the MLE and the MPS respectively by

1

l

∣

∣Θ̂
T

l − Θ01
T
∣

∣1 and
1

l

∣

∣Θ̆
T

l − Θ01
T
∣

∣1 .

where Θ̂l and Θ̆l are l × 1 vectors of the MLE and MPS estimators respectively,

|Y | means the element-wise absolute value of Y , p is the number of estimated

parameters and l = 10000 is the number of replications. The mean absolute error

measures the average deviation of estimators from the true parameters and hence

is a measure of robustness. A small mean absolute error is expected.

As suggested by a referee, the MPS was also compared to the method of

probability-weighted moment (PWM)(Hosking et al., [8]) for the GEV model. We

followed Hosking’s approach in his Table 3 and estimated the tail parameter by

Newton-Raphson’s Method. Tables 1 and 2 display the medians of the parameters

in 10000 estimations together with the mean absolute error in bracket. Both the

MPS estimates and the MLEs are in line with the true parameters but MPS tends

to give a closer result for the GEV. It can also be seen that the MPS gives much

more stable estimates than the MLE in general. For γ = −0.2 and γ = 0.2, the

PWM performed well with slightly smaller mean absolute errors than the MPS.

However, for γ = 1 and γ = 1.2, the bias of the PWM is rather severe. Note that

some of the mean absolute errors for the MLE are unacceptably large due to serious

outliers of estimated parameters. Non-regularity of the likelihood function caused

occasional non-convergence. The frequency of such problems is reported in Tables 3

and 4. Failures of convergence were detected when the magnitudes of any estimator

in an entry exceeds 100. The failure rates of MLE are relatively higher than those of

MPS. Some estimated parameters of the MLE went up to as high as 500000. This

explains the extremely large mean absolute errors of the MLE. Although there were

failures in MPS, the maximum values were less than 1000, comparably less severe

than the MLE. The PWM has zero failure rates but as mentioned above, it has a

severe bias when γ ≥ 1.It is noticed that the MLEs have smaller mean absolute

error only in cases where sample size is large. However, the MPS estimators have

virtually no fall off in its performance across sample sizes. These are in agreement

with the theoretical results in Theorems 3.1 and 3.2. Overall, the MPS seems to be

the most stable in its performance.

The Moran’s statistic, M(θ), has a chi-square distribution with n degrees of free-

dom. Monte Carlo simulations with 10000 observations per entry, each entry with
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Table 1

Simulation results of MPS estimates, MLEs and PWM estimates on the GEV. Shown are

medians of estimated parameters from 10000 simulations of sample sizes n = (10, 20, 50).
Numbers in the bracket are mean absolute errors of estimates

n True parameters MPS estimates MLEs PWM estimates

γ0 µ0 σ0 γ̆ µ̆ σ̆ γ̂ µ̂ σ̂ γ µ σ
10 −0.2 1 1 −0.28 0.96 1.06 −0.22 1.09 0.98 −0.15 1.02 0.93

(0.38) (0.30) (0.30) (435) (175) (295) (0.18) (0.29) (0.25)
0.2 1 1 0.20 0.97 1.09 0.43 0.98 0.84 0.10 0.97 0.88

(0.33) (0.30) (0.27) (117) (69) (104) (0.18) (0.28) (0.20)
1 1 1 1.17 0.98 1.11 1.20 0.78 0.78 0.59 0.89 0.88

(0.53) (0.33) (0.45) (54) (90) (50) (0.42) (0.31) (0.27)
1.2 1 1 1.40 0.99 1.13 1.36 0.77 0.80 0.70 0.87 0.90

(0.90) (0.35) (0.49) (32) (50) (0.26) (0.50) (0.33) (0.31)

20 −0.2 1 1 −0.25 0.97 1.06 −0.26 1.06 1.02 −0.17 1.01 0.96
(0.20) (0.21) (0.20) (0.69) (0.98) (0.47) (0.14) (0.21) (0.17)

0.2 1 1 0.20 0.98 1.07 0.25 1.09 1.00 0.14 0.98 0.94
(0.17) (0.20) (0.17) (46) (1.01) (50) (0.13) (0.20) (0.14)

1 1 1 1.10 0.99 1.09 1.18 0.80 0.80 0.77 0.94 0.95
(0.36) (0.24) (0.27) (85) (34) (95) (0.27) (0.21) (0.20)

1.2 1 1 1.33 0.99 1.10 1.35 0.79 0.81 0.92 0.93 0.96
(0.55) (0.26) (0.31) (13) (50) (0.33) (0.32) (0.22) (0.22)

50 −0.2 1 1 −0.22 0.99 1.04 −0.25 1.02 1.0 −0.18 1.01 0.98
(0.11) (0.13) (0.11) (0.12) (0.13) (0.11) (0.10) (0.13) (0.11)

0.2 1 1 0.20 0.99 1.04 0.20 1.04 1.01 0.18 0.99 0.97
(0.09) (0.13) (0.10) (0.09) (0.13) (0.09) (0.08) (0.13) (0.09)

1 1 1 1.05 0.99 1.05 1.11 0.89 0.88 0.90 0.97 0.98
(0.29) (0.16) (0.16) (50) (50) (0.22) (0.16) (0.13) (0.12)

1.2 1 1 1.27 0.99 1.06 1.29 0.87 0.89 1.08 0.97 0.99
(0.14) (0.12) (0.17) (0.15) (0.15) (0.15) (0.19) (0.13) (0.14)

Table 2

Simulation results of MPS estimates and MLEs on the GPD. Shown are medians of estimated

parameters from 10000 simulations of sample sizes n = (10, 20, 50). Numbers in the bracket are

mean absolute errors of estimates

n True parameters MPS estimates MLEs

γ0 µ0 γ̆ µ̆ γ̂ µ̂
10 −0.2 1 −0.10(0.48) 0.97(0.44) −0.52(170) 0.80(247)

0.2 1 0.41(0.55) 0.92(0.48) −0.18(7547) 0.99(12347)
1 1 1.33(0.75) 0.86(0.57) 0.72(5304) 1.20(17860)

1.2 1 1.58(0.81) 0.83(0.59) 0.92(3890) 1.17(14582)

20 −0.2 1 −0.13(0.26) 0.98(0.28) −0.45(0.27) 0.97(0.28)
0.2 1 0.33(0.31) 0.95(0.31) −0.03(506) 1.06(950)
1 1 1.21(0.46) 0.91(0.37) 0.87(70) 1.08(300)

1.2 1 1.43(0.50) 0.90(0.39) 1.06(10) 1.07(50)

50 −0.2 1 −0.15(0.13) 0.98(0.16) −0.38(50) 0.99(24)
0.2 1 0.27(0.18) 0.96(0.21) 0.07(50) 1.02(50)
1 1 1.11(0.26) 0.95(0.23) 0.95(0.23) 1.02(0.24)

1.2 1 1.32(0.28) 0.94(0.24) 1.14(0.25) 1.03(0.25)

sample size n = (10, 20, 50) were conducted to compute the empirical significant

levels. Again the null distributions were the models under consideration in Tables 1

and 2. It can be seen from Tables 5 and 6 that the empirical sizes for both the GEV

and the GPD are very conservative at small sample sizes n = 10. Improvement was

seen at n = 20. Though slightly conservative, it is acceptable in some applications.

But the results at n = 50 are very good even with γ = 1 and γ = 1.2.

We have also evaluated the empirical significance level of models having different
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Table 3

Failure rate of MPS estimation, maximum likelihood estimation and PWM estimation for the

GEV Distribution. Tabulated values are the number of outliers per 100 simulated samples

n MPS estimation maximum likelihood estimation PWM estimation

γ0 γ0 γ0

-0.2 0.2 1 1.2 -0.2 0.2 1 1.2 -0.2 0.2 1 1.2

10 0.00 0.00 0.03 0.05 2.00 0.77 0.11 0.02 0.00 0.00 0.00 0.00

20 0.00 0.00 0.06 0.11 0.06 0.03 0.04 0.03 0.00 0.00 0.00 0.00

50 0.00 0.00 0.05 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00

Table 4

Failure rate of MPS estimation and maximum likelihood estimation for the GPD distribution.

Tabulated values are the number of outliers per 100 simulated samples

n MPS estimation maximum likelihood estimation

γ0 γ0

-0.2 0.2 1 1.2 -0.2 0.2 1 1.2

10 0.00 0.00 0.00 0.00 0.05 2.51 3.61 2.94

20 0.00 0.00 0.00 0.00 0.00 0.19 0.06 0.01

50 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00

Table 5

Empirical sizes of Moran test statistics on the GEV from 10000 simulations

of sample sizes n = (10, 20, 50)

n GEV Models Empirical sizes

γ0 µ0 σ0 α = 0.10 α = 0.05 α = 0.01
10 −0.2 1 1 0.0618 0.0270 0.0034

0.2 1 1 0.0580 0.0257 0.0037
1 1 1 0.0592 0.0264 0.0062

1.2 1 1 0.0619 0.0318 0.0115

20 −0.2 1 1 0.0759 0.0337 0.0053
0.2 1 1 0.0783 0.0373 0.0081
1 1 1 0.0785 0.0360 0.0086

1.2 1 1 0.0814 0.0377 0.0089

50 −0.2 1 1 0.0848 0.0408 0.0077
0.2 1 1 0.0906 0.0414 0.0074
1 1 1 0.0890 0.0419 0.0101

1.2 1 1 0.1000 0.0509 0.0143

Table 6

Empirical sizes of Moran test statistics on the GPD from 10000 simulations

of sample sizes n = (10, 20, 50)

n GPD Models Empirical sizes

γ0 σ0 α = 0.10 α = 0.05 α = 0.01
10 -0.20 1 0.0745 0.0326 0.0044

0.20 1 0.0699 0.0326 0.0044
1.00 1 0.0718 0.0326 0.0044
1.20 1 0.0734 0.0326 0.0044

20 -0.20 1 0.0855 0.0394 0.0070
0.20 1 0.0827 0.0374 0.0066
1.00 1 0.0794 0.0375 0.0078
1.20 1 0.0806 0.0377 0.0071

50 -0.20 1 0.0972 0.0474 0.0093
0.20 1 0.0932 0.0452 0.0081
1.00 1 0.0960 0.0471 0.0091
1.20 1 0.0940 0.0477 0.0087
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Table 7

GEV parameter estimation by MPS in 10000 simulations of sample sizes n = 10, 20, 50. Data

are generated from exponential distributions with λ = 0.1, 0.5, 1.0, 5.0. Figures shown are 25%,

50% and 75% quantiles of the estimated parameter.

Parameter quantile estimates of GEV

n λ 25%γ̆ 50%γ̆ 75%γ̆ 25%µ̆ 50%µ̆ 75%µ̆ 25%σ̆ 50%σ̆ 75%σ̆
10 0.1 −0.33 −0.07 0.22 31.51 33.82 36.27 8.33 10.56 12.88

0.5 −0.33 −0.07 0.21 6.3 6.76 7.25 1.67 2.11 2.58
1.0 −0.33 −0.07 0.22 3.15 3.38 3.63 0.83 1.06 1.29
5.0 −0.32 −0.04 0.27 0.62 0.68 0.73 0.17 0.22 0.28

20 0.1 −0.18 −0.05 0.11 32.28 33.93 35.65 8.97 10.39 11.79
0.5 −0.19 −0.05 0.11 6.46 6.79 7.13 1.79 2.08 2.36
1.0 −0.19 −0.05 0.11 3.23 3.39 3.57 0.9 1.04 1.18
5.0 −0.19 −0.05 0.11 0.65 0.68 0.71 0.18 0.21 0.24

50 0.1 −0.11 −0.03 0.05 33.01 34.06 35.14 9.33 10.13 10.99
0.5 −0.11 −0.03 0.05 6.6 6.81 7.03 1.87 2.03 2.2
1.0 −0.11 −0.03 0.05 3.3 3.41 3.51 0.93 1.01 1.1
5.0 −0.11 −0.03 0.05 0.66 0.68 0.70 0.19 0.2 0.22

scale and location parameters. The results did not differ significantly and thus were

not reported here. It seems that the performance of Moran’s statistic was affected

by the sample size rather than the underlying models.

In application, it is common to take cluster maxima in the model fitting of the

GEV. Having shown that the MPS gives stable estimations on data generated from

known models, in the following, fitting the maximum observations in clusters of

size 30 was performed. This experiment mimics the situation that the original data

are daily observations with GEV fitted to the monthly maxima. The aim of this

experiment is to evaluate the stability in the estimation of cluster maxima.

Data xn,m were simulated from the exponential distribution

F (x) = 1 − e−λx x > 0

with λ = 0.1, 0.5, 1.0, 5.0 where n was the sample size of maxima and m = 30 the

size of a cluster. From each cluster, the maximum, max(xn,1, . . . , xn,30), was taken

and the GEV distributions was fitted to the data by MPS method.

Table 7 shows the estimated parameter quantiles. In the GEV fitting, the tail

estimates fall in a narrow range in the four cases λ = 0.1, 0.5, 1.0, 5.0. Note that

the medians for σ̆ are proportional to the value of λ−1
. This feature remains stable

across all sample sizes. A similar pattern is also observed for the medians of µ̆. This

again shows that estimation using MPS is stable and reliable.

5. Real examples

Some real data sets were studied in the literature (Castillo et al., [1]) using the

maximum likelihood method. To illustrate the advantages of the MPS approach, in

this paper, four examples were studied, namely, the age data, the wave data, the

wind data and the flood data. The above four data sets are obtainable in Castillo

et al. [1]. The first example is the oldest age of men at death in Sweden. The

annual oldest ages at death in Sweden from 1905 to 1958 were recorded. The age

data may be used to predict oldest ages at death in the future. The wave data

set contains the yearly maximum heights, in feet. The data could be used in the

design of a breakwater. Then, in the wind data, the yearly maximum wind speed in

miles per hour is considered. A wind speed design for structural building purposes

could be determined from this data set. The last example is the flood data which
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Table 8

Estimated GPD parameters by MPS in four examples

Data Threshold γ̆ σ̆ M(θ̆)

Age 104.01 1.06 2.79 43.01
Wave 17.36 0.01 7.00 45.81
Flood 45.04 −0.03 9.62 60.53
Wind 36.82 −0.88 5.31 46.79

Table 9

Estimated GPD parameters by maximum likelihood method in four examples

Data Threshold γ̂ σ̂ Log-likelihood

Age 104.01 1.38 3.45 −9.23
Wave 17.36 0.27 7.98 −39.33
Flood 45.04 0.20 10.87 −57.34
Wind 36.82 −0.48 6.52 −47.01

Fig 1. Quantile plots of the age data fitted with the GPD using the MPS (a) and the MLE (b).

consists of the yearly maximum flow discharge, in cubic meters. The data may help

in designing a flood protection device.

In this section, we focus on the GPD with the maximum likelihood method and

the MPS method. The GPD was fitted to the excess over a threshold. The thresholds

were taken from [1]. Fitted parameters are shown in Tables 8 and 9. Note that γ̆
and γ̂ are greater than 1 for the age data. They are less than 1 for the wave, flood

and wind data sets.

5.1. The GPD model for age data

Recall from Theorem 3.1 that the MLE does not exist for γ > 1. When the GPD is

fitted to the age data, maximization of the GPD log-likelihood leads to the estimate

(γ̂, σ̂) = (1.38, 3.45) for which the log-likelihood is −9.23. The corresponding values

using MPS are (γ̆, σ̆) = (1.06, 2.79) and M(θ̆) = 43.01. Fig. 1 shows the quantile

plot of the two models fitted by the MPS and the maximum likelihood method

respectively. In each plot, the expected quantile is calculated by

GPD : QGPD =

[

1 −

(

1 −
i

n + 1

)γ]

σ

γ
(i = 1, 2, . . . , n) .

where ΘGPD = (γ, σ)
T

are estimated parameters either by the MPS or by the

maximum likelihood method.
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The MPS seems to perform better than the MLE. Empirical upper quantiles in

the MPS are closer to that of a straight line. This suggests that the MPS is a better

method in this case.

5.2. GPD model for the wave data, flood data and wind data

The GPD was also considered for the wave data, the flood data and the wind data.

Thresholds for the GPDs were taken as in Castillo et al. [1]. The quantile pots

for the MPS are reported in Fig. 2(a), 2(c) and 2(e) and those for the MLE are

Fig 2. Quantile plots of the wave data ( (a) and (b)), the flood data ( (c) and (d)) and the wind

data ( (e) and (f)) fitted with the GPD. The expected quantiles of (a), (c) and (e) were based on

the MPS. The expected quantiles of (b), (d) and (f) were based on the MLE.
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reported in Fig. 2(b), 2(d) and 2(f). With reference to Fig. 2(a), 2(c) and 2(e),

it can be seen that empirical quantiles based on the MPS keep close to the fitted

model’s. However, in Fig. 2(b), 2(d) and 2(f), plots of the upper quantiles based on

the MLE seem to deviate more from a straight line. This suggests that the MPS

gives a better fit to the data.

6. Conclusion and discussion

In extreme value analysis, one technical problem is the lack of data owing to the

fact that only extreme observations are used for model fitting. Subject to this

constraint, a method that is able to give stable estimates is highly desirable. Juarez

and Schucany [9] have demonstrated the instability of the influence curve of the

MLE at small sample sizes. This is in agreement with the presented simulation

results. In contrast, the MPS works satisfactorily. Not only does the MPS yield

closer estimates from data generated from a known parameter set, it also keeps

performing stably for data maxima taken from clusters. It also works well under

γ ≥ 1 whereas the MLE does not. In addition to MPS’s simple formulation and

execution, its by-product, the Moran’s statistic, is shown to perform well in checking

the goodness of fit. The MPS could potentially be one of the best methods in fitting

extreme value distributions. On the other hand, it has been shown in [2] that the

MPS is a function of sufficient statistics. Extension to multivariate problems using

MPS is also going to be explored.
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Abstract: We consider the Gittins index for a normal distribution with un-

known mean θ and known variance where θ has a normal prior. In addition

to presenting some monotonicity properties of the Gittins index, we derive an

approximation to the Gittins index by embedding the (discrete-time) normal

setting into the continuous-time Wiener process setting in which the Gittins

index is determined by the stopping boundary for an optimal stopping prob-

lem. By an application of Chernoff’s continuity correction in optimal stopping,

the approximation includes a correction term which accounts for the difference

between the discrete and continuous-time stopping boundaries. Numerical re-

sults are also given to assess the performance of this simple approximation.

1. Introduction

The classical multi-armed bandit problem is concerned with sequential design of

adaptive sampling from k statistical populations with distribution functions Fθi
,

i = 1, . . . , k (k ≥ 2) where θi denotes the unknown parameter of the ith population.

Specifically, the objective is to sample Y1, Y2, . . . sequentially from the k populations

so as to maximize the expected total discounted reward

EπEθ1,...,θk

( ∞
∑

j=1

γjYj

)

=

∫

Eθ1,...,θk

( ∞
∑

j=1

γjYj

)

dπ(θ1, . . . , θk),

where π is the prior distribution of (θ1, . . . , θk) and {γj} is a (deterministic) discount

sequence. The two most important types of discount sequence are uniform discount-

ing with finite horizon N > 0 (i.e. γj = 1 for j ≤ N and γj = 0 for j > N) and

geometric discounting with discount factor 0 < β < 1 (i.e. γj = βj−1, j = 1, 2, . . .).
While in general the optimal allocation rule can only be characterized via the

dynamic programming equations which admit no general closed-form solutions,

Gittins and Jones [13] showed that under geometric discounting, when the prior

distribution is a product measure dπ(θ1, . . . , θk) = dπ1(θ1) × · · · × dπk(θk), the

optimal allocation rule is to sample at each stage from the population with the

greatest (current) Gittins index. See also [11] and [21].

For a population with distribution function Fθ and (current) prior distribution

π(θ) of the unknown parameter θ, the Gittins index is defined by

(1) λ(π, β) = sup

ξ≥1

[

EπEθ

( ξ
∑

n=1

βn−1Xn

)/

EπEθ

( ξ
∑

n=1

βn−1

)]

1
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where the supremum is taken over all (integer-valued) stopping times ξ ≥ 1 and

X1, X2, . . . are (conditionally) iid with common distribution function Fθ (given θ).
Equivalently, λ(π, β) is the infimum of the set of solutions λ of the equation

(2)
λ

1 − β
= sup

ξ ≥ 0
Eπ Eθ

[

ξ
∑

n=1

βn−1Xn + βξ λ

1 − β

]

.

In [12], computational methods for calculating Gittins indices are described and

applied to the normal, Bernoulli and negative exponential families with conjugate

priors, which involve using backward induction to approximate the right-hand side

of (2) with the supremum over ξ ≥ 0 replaced by the supremum over 0 ≤ ξ ≤ N for

some large horizon N . For β close to 1, such computational methods become time

consuming as a very large horizon N is required to yield an accurate approximation.

Thus it will be useful to have accurate analytic approximations to Gittins indices

especially for β close to 1.

In this paper, we consider the normal case with unknown mean θ and known vari-

ance where θ has a normal (conjugate) prior. Section 2 presents some monotonicity

properties of the Gittins index. In particular, it is shown that the Gittins index is

a nondecreasing function of the prior variance. In Section 3, a corrected diffusion

approximation to the Gittins index is derived by embedding the (discrete-time)

normal setting into the continuous-time Wiener process setting in which the Git-

tins index is determined by the stopping boundary for an optimal stopping problem

(first introduced in [2]). By an application of Chernoff’s continuity correction, the

approximation includes a correction term which accounts for the difference between

the discrete and continuous-time stopping boundaries. Numerical results are also

given to assess the performance of this simple approximation. To prepare for the

derivations, Sections 3.1 and 3.2 briefly review, respectively, some properties of the

Gittins index for a Wiener process and Chernoff’s continuity correction in optimal

stopping.

The monograph of Gittins [12] provides a comprehensive theory of dynamic

allocation indices and explores the class of problems whose optimal solutions can be

characterized by dynamic allocation indices. On the other hand, Lai [17] and Chang

and Lai [6] have proposed simple index-type adaptive allocation rules that are

asymptotically optimal in both the Bayes and frequentist senses either as N → ∞

(under uniform discounting) or as β → 1 (under geometric discounting). Brezzi

and Lai [5] have recently refined and modified these adaptive allocation rules in the

presence of switching costs, while Hu and Wei [15] have constructed asymptotically

optimal adaptive allocation rules subject to the irreversibility constraint. Various

applications of the theory of multi-armed bandits can be found in sequential clinical

trials, market pricing, labor markets and search problems; see e.g. [1, 8, 16, 19, 20].

2. Some monotonicity properties of the Gittins index for a normal

reward process

In this section, we consider the case that X1, X2, . . . are (conditionally) iid N(θ, σ2
),

the unknown mean θ has a prior π = N(u, v) and the variance σ2
is known. The Git-

tins index is denoted by λ (u, v, σ2, β). By location and scale equivariance properties

(cf. [12], Section 6.4),

(3) λ (u, v, σ2, β) = u + r λ (0, v/r2, σ2/r2, β)

for r > 0.
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Lemma 1. The Gittins index λ (u, v, σ2, β) is nonincreasing in σ2.

Proof. We prove the lemma by a simple randomization argument. Fix 0 < σ2
1 < σ2

2 .

Let X1, X2, . . . be (conditionally) iid N(θ, σ2
1) given θ, which is assumed to have

a prior π = N(u, v). Let ε1, ε2, . . . be iid N(0, σ2
2 − σ2

1) (independent of the Xi).

Then X ′
1 = X1 + ε1, X ′

2 = X2 + ε2, . . . are (conditionally) iid N(θ, σ2
2) given θ. For

any stopping time ξ′ ≥ 1 with respect to the filtration F ′
generated by X ′

1, X
′
2, . . . ,

we have

Eπ Eθ

ξ′

∑

n=1

βn−1X ′
n = Eπ Eθ

ξ′

∑

n=1

βn−1Xn + Eπ Eθ

∞
∑

n=1

βn−1 εn 1{ξ′≥n}

= Eπ Eθ

ξ′

∑

n=1

βn−1Xn .

Since every stopping time ξ′ with respect to F ′
may be viewed as a randomized

stopping time with respect to F (the filtration generated by X1, X2, . . . ), it follows

that

λ(u, v, σ2
2 , β) = sup

ξ′≥1
Eπ Eθ

( ξ′

∑

n=1

βn−1X ′
n

)/

Eπ Eθ

( ξ′

∑

n=1

βn−1

)

≤ sup

ξ≥1
Eπ Eθ

( ξ
∑

n=1

βn−1Xn

)/

Eπ Eθ

( ξ
∑

n=1

βn−1

)

= λ(u, v, σ2
1 , β) ,

completing the proof.

Theorem 1. λ (0, v, σ2, β)/
√

v is nondecreasing in v.

Proof. For fixed 0 < v2 < v1, it follows from (3) and Lemma 1 that

λ(0, v2, σ2, β) =

√

v2/v1 λ(0, v1, σ2 v1/v2, β)

≤
√

v2/v1 λ(0, v1, σ2, β) ,

completing the proof.

Corollary 1. λ(u, v, σ2, β) = u + λ(0, v, σ2, β) is nondecreasing in u and v.

Remark 1. For the Wiener process setting, Bather [2] proved a result analogous

to Theorem 1 (see (7) and (8) below).

Remark 2. For a normal two-armed bandit in which the means of arms 1 and

2 have independent normal priors N(u1, v1) and N(u2, v2) and their variances are

known and equal, it follows from Corollary 1 that under geometric discounting,

it is optimal to pull arm 1 initially if u1 ≥ u2 and v1 ≥ v2. It seems natural to

conjecture that the same also holds under uniform discounting. Note that Berry [3]

made a similar conjecture regarding a Bernoulli two-armed bandit, which has not

been resolved (cf. [4], Section 7.3).

Remark 3. Along the lines of the proof of Theorem 1, it can be readily shown

that

λ(0, v1, σ2
1 , β)/

√
v1 ≥ λ(0, v2, σ2

2 , β)/
√

v2

if v1 ≥ v2 and v1/σ2
1 ≥ v2/σ2

2 . Note that for a normal distribution N(θ, σ2
) where

θ has a normal prior N(0, v), v/σ2
may be referred to as the signal-to-noise ratio

since v is the second moment of the “signal” θ.



Some results on the Gittins index for a normal reward process 287

3. Corrected diffusion approximation to the Gittins index for a normal

reward process

In Section 3.3, we derive an approximation to the Gittins index for a normal distrib-

ution whose mean is assumed to have a normal prior. To prepare for the derivations,

we briefly review, in Sections 3.1 and 3.2, some properties of the Gittins index for

a Wiener process and Chernoff’s continuity correction in optimal stopping.

3.1. Properties of the Gittins index for a Wiener process

Bather [2] showed that for a Wiener process {W (t), t ≥ 0} with drift coefficient

θ which has a normal prior N(u0, v0), the Gittins index λ∗
(u0, v0, c) can be de-

termined by the solution to an optimal stopping problem (to be described below)

where c > 0 denotes the discount rate in continuous time (see also [6] and Section

6.6 of [12]). Here λ∗
(u0, v0, c) is defined as the infimum of the set of solutions λ of

the equation (cf. (2) )

λ

∫ ∞

0

e−c tdt = sup

τ≥0
Eπ Eθ

[ ∫ τ

0

e−ctdW (t) + λ

∫ ∞

τ

e−ctdt

]

= sup

τ≥0
Eπ

[ ∫ τ

0

θe−ctdt + λ

∫ ∞

τ

e−ctdt

]

(4)

= sup

τ≥0
Eπ

[ ∫ τ

0

u(t) e−ctdt + λ

∫ ∞

τ

e−ctdt

]

= sup

τ≥0
Eπ

[

c−1u0 − c−1
(

u(τ) − λ
)

e−cτ

]

,

where the supremum is taken over all (real-valued) stopping times τ ≥ 0, π =

N(u0, v0) is the prior distribution of θ, and u(t) is the posterior mean of θ, i.e.

(5) u (t) = Eπ

[

θ | W (s), 0 ≤ s ≤ t
]

=
v−1
0 u0 + W (t)

v−1
0 + t

.

The last equality in (4) follows from integration by parts along with the fact that a

simple change of time transforms u into standard Brownian motion, cf. Y (v) below.

Define

v = v(t) = (v−1
0 + t)−1

(the posterior variance), s = v/c ,

Y (v) = u0 − u(t), and Z(s) = Y (cs)/
√

c .

It can be readily shown that {Y (v), 0 < v ≤ v0} is standard Brownian motion

(Y (v0) = 0 ) in the −v scale and {Z(s), 0 < s ≤ s0} (s0 = v0/c) is standard

Brownian motion (Z(s0) = 0 ) in the −s scale. Letting z0 = (λ−u0)/
√

c, it follows

that (4) is equivalent to

(6) z0 e−1/s0 = sup

0<S ≤s0

E
[

{Z(S) + z0} e−1/S
]

in the sense that λ is a solution of (4) if and only if z0 = (λ− u0)/
√

c is a solution

of (6), where the supremum on the right-hand side of (6) is taken over all stopping
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times 0 < S ≤ s0 (in the −s scale). It is more convenient to remove the restriction

of Z(s0) = 0 and rewrite (6) as

(6
′
) z0 e−1/s0 = sup

0<S ≤s0

E
[

Z(S) e−1/S | Z(s0) = z0

]

.

For the optimal stopping problem with payoff function g(z, s) = ze−1/s
on the

right-hand side of (6
′
), it is easily shown that the continuation region is of the form

{(z, s) : z < b(s)} where b(s) > 0 is the optimal stopping boundary. Since z0 is a

solution of (6
′
) if and only if (z0, s0) is in the stopping region (i.e. z0 ≥ b(s0)), it

follows that λ∗
(u0, v0, c), the infimum of the set of solutions λ of the equation (4),

satisfies b(s0) =
(

λ∗
(u0, v0, c) − u0

)

/
√

c , i.e.

(7) λ∗
(u0, v0, c) = u0 +

√
c b(s0) = u0 +

√
c b(v0/c) .

Bather [2] showed that

(8) b(s)/
√

s is a nondecreasing function of s ,

(9) b(s) ≤ s/
√

2 for all s > 0 , and lim
s→0

b(s)/s = 1/
√

2 ,

while Chang and Lai [6] derived the asymptotic expansion as s → ∞

(10) b(s) =

{

2s
[

log s −
1

2
log log s −

1

2
log 16π + o(1)

]

}1/2

.

Based on (8)–(10) together with extensive numerical work (involving corrected

Bernoulli random walk approximations for Brownian motion), Brezzi and Lai [5]

have suggested the following closed-form approximation Ψ(s) to b(s)/
√

s

(11)
b(s)
√

s
≈ Ψ(s) =



































√

s/2 for s ≤ 0.2 ,

0.49 − 0.11 s−1/2
for 0.2 < s ≤ 1 ,

0.63 − 0.26 s−1/2
for 1 < s ≤ 5 ,

0.77 − 0.58 s−1/2
for 5 < s ≤ 15 ,

{

2 log s − log log s − log 16π
}1/2

for s > 15 .

3.2. Chernoff’s continuity correction in optimal stopping

In his pioneering work, Chernoff [7] studied the relationship between the solutions of

the discrete and continuous-time versions of the problem of testing sequentially the

sign of the mean of a normal distribution. His result may be stated more generally

as follows. Let {B(t)} be standard Brownian motion and let g(x, t) be a smooth

payoff function for t ≤ T (horizon) for which the continuation region is of the form

{(x, t) : x < b(t)}. Consider a constrained optimal stopping problem where stopping

is permitted only at nδ, n = 1, 2, . . . where δ is a given (small) positive number.

Suppose that there exist stopping boundary points bδ(nδ), n = 1, 2, . . . such that

starting from B(n0δ) = x0 for any given n0 and x0, the optimal stopping rule is to

stop at the first n ≥ n0 at which B(nδ) ≥ bδ(nδ). So bδ(nδ) (or b(t), resp.) is the
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discrete-time (or continuous-time, resp.) stopping boundary for the constrained (or

unconstrained, resp.) optimal stopping problem. Then for fixed t < T , we have

(12) bδ(t) = b(t) − ρ
√

δ + o(
√

δ) as δ → 0 ,

where bδ(t) = bδ( [ t/δ ] δ ), ρ = ES2
τ+

/

2ESτ+
≈ 0.583, τ+ = inf{n : Sn > 0},

Sn = X1 + · · · + Xn, and the Xi are iid N(0, 1).

Chernoff [7] derived (12) by relating the original problem to an associated stop-

ping problem in which there is a horizon at t = 0 and the payoff function is g(x, t) =

−t + x2
1{x<0, t=0}, t ≤ 0. For the associated stopping problem, stopping is permit-

ted at 0,−1,−2, . . . , and there exist stopping boundary points b−1 > b−2 > · · ·

such that starting from (x0, n0) with n0 < 0, the optimal stopping rule is to stop

at the first n0 ≤ n ≤ 0 at which

x0 + X1 + · · · + Xn−n0
≥ bn (b0 = −∞).

Chernoff [7] and subsequently Chernoff and Petkau [9] and Hogan [14] showed that

lim
n→−∞

bn = −ES2
τ+

/

2 ESτ+

for normal, Bernoulli and general X (with finite fourth moment), respectively. Re-

cently, under mild growth conditions on g, Lai, Yao and AitSahlia [18] have proved

(12) when the Brownian motion process is replaced by a general random walk in

the constrained problem.

3.3. Approximating the Gittins index for a normal reward process

In this subsection, we consider the case that X1, X2, . . . are (conditionally) iid

N(θ, σ2
) and the unknown mean θ has a prior π = N(u0, v0). Without loss of gen-

erality, we assume σ2
= 1. For notational simplicity, the Gittins index λ(u0, v0, 1, β)

will be abbreviated to λ(u0, v0, β). Recall that λ(u0, v0, β) is the infimum of the set

of solutions λ of the equation (2). As in Section 3.1, let {W (t), t ≥ 0} be a Wiener

process with drift coefficient θ which has a normal prior N(u0, v0). Noting that

(X1, X2, . . .) and (W (1), W (2)−W (1), . . .) have the same joint distribution, we can

rewrite (2) as

λ

1 − β
= sup

ξ ≥ 0
Eπ Eθ

[ ξ
∑

n=1

βn−1

(

W
(

n
)

− W
(

n − 1
)

)

+ βξ λ

1 − β

]

= sup

ξ ≥ 0
Eπ

[ ξ
∑

n=1

βn−1 u
(

n − 1
)

+ βξ λ

1 − β

]

= sup

ξ ≥ 0
Eπ

[

c

1 − β

∫ ξ

0

u
(

t
)

e−ctdt + βξ λ

1 − β

]

=
1

1 − β
sup

ξ ≥ 0
Eπ

[

u0 −
(

u(ξ) − λ
)

e−cξ

]

,

where u(t) is given in (5), c = − log β and the third equality follows since

E

[

c

1 − β

∫ n

n−1

u(t) e−ct
1{ξ≥n} dt | W (s), 0 ≤ s ≤ n − 1

]

=
c

1 − β
1{ξ≥n}

∫ n

n−1

u(n − 1) e−ct dt = βn−1 u(n − 1)1{ξ≥n} .
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With the notation introduced in Section 3.1, we can further rewrite (2) as

λ − u0 = sup

V ∈{v0/(1+v0n) , n=0,1,...}

E

[

(

λ − u0 + Y (V )

)

e−cV −1+c v−1

0

]

where the supremum is taken over all stopping times V taking values in { v0/(1 +

v0n), n = 0, 1, . . . }. In terms of Brownian motion Z(s) in the −s scale, (2) is

equivalent to

(13) z0e
−1/s0 = sup

S ∈{c−1v0/(1+v0n) , n=0,1,...}

E

[

Z(S) e−1/S | Z(s0) = z0

]

where z0 = (λ − u0)/
√

c , s0 = v0/c and the supremum is taken over all stopping

times S taking values in {c−1v0/(1 + v0n) , n = 0, 1, . . .}.

For the constrained optimal stopping problem on the right-hand side of (13),

there exist optimal stopping boundary points bv0

(

c−1v0/(1+v0n)
)

, n = 0, 1, . . . such

that the optimal stopping rule is to stop at the first n at which Z
(

c−1v0/(1+v0n)
)

≥

bv0

(

c−1v0/(1 + v0n)
)

. So bv0
(v0/c) is the infimum of the set of solutions z0 of the

equation (13). It then follows that

(14) λ
(

u0, v0, β
)

= u0 +
√

c bv0
(v0/c) .

Since in the constrained optimal stopping problem the permissible stopping time

points c−1v0/(1 + v0n), n = 0, 1, 2, . . . are not equally spaced, there is no rigorous

justification for applying (12) to relate the discrete and continuous-time stopping

boundaries bv0
(t) and b(t) for the constrained and unconstrained problems. How-

ever, it can be argued heuristically that (12) applies when the spacing between

many successive permissible stopping time points is approximately constant ( cf.

bottom of page 47 in [10]). Thus we arrive at the following approximation

(15) bv0
(v0/c) ≈ b(v0/c) − 0.583

√
δ

where

(16) δ =
c−1v0

1 + v0 · 0
−

c−1v0

1 + v0 · 1
=

c−1v2
0

1 + v0
,

provided that v0/c is bounded away from 0 (the horizon of the optimal stopping

problem) and δ ≈ c−1v0

1+v0n − c−1v0

1+v0(n+1) for many (small to moderate) n’s. That is, we

expect the approximation (15) to be reasonably good if v0 is small and v0/c is not

too close to 0. It follows from (14), (15), (16) and (11) that

λ
(

u0, v0, β
)

≈ u0 +
√

c b(v0/c) − 0.583 v0

/√
1 + v0

≈ u0 +
√

v0 Ψ(v0/c) − 0.583 v0

/√
1 + v0 .(17)

Note that the continuation region for the constrained problem must be con-

tained in the continuation region for the unconstrained problem, so that bv0
(v0/c) <

b(v0/c). Thus the uncorrected diffusion approximation u0+
√

cb(v0/c) overestimates

λ(u0, v0, β) = u0 +
√

c bv0
(v0/c), which is recorded in the following theorem.

Theorem 2. λ(u0, v0, β) < u0 +
√

c b(v0/c) where c = log β−1.
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A related upper bound for λ(u0, v0, β) is given in Theorem 6.28 of Gittins [12],

which states, in our notation, that

(18) λ(u0, v0, β) < u0 +

√

1 − β b
(

v0/(1 − β)
)

.

Since b(s)/
√

s is nondecreasing in s by (8) and since c = log β−1 > 1 − β, we have

√
c b(v0/c) ≤

√

1 − β b
(

v0/(1 − β)
)

,

so that the upper bound given in Theorem 2 is sharper than (18).

In the approximation (15), the correction term 0.583

√
δ with δ given in (16)

appears to be a little too large since the spacing between successive permissible

stopping time points
c−1v0

1+v0n − c−1v0

1+v0(n+1) is strictly less than δ for n ≥ 1. To com-

pensate for this overcorrection, we propose ( in view of (9) ) to replace b(v0/c) by

(v0/c)/
√

2 in (15), resulting in the following simple approximation

(19) λ
(

u0, v0, β
)

≈ u0 + v0/
√

2c − 0.583 v0

/√
1 + v0 .

Note that (19) agrees with (17) for v0/c ≤ 0.2 in view of (11).

In his Table 1, Gittins [12] tabulates n(1 − β)
1/2 λ( 0, n−1, β ) for various values

of n and β. Our Table 1 compares n(1 − β)
1/2 λ( 0, n−1, β ) with the corrected and

uncorrected approximations ( based on (17) and (19) )

(CA) n(1 − β)

1
2

[

1
√

n
Ψ

(

1
nc

)

−
0.583 n−1

√
1 + n−1

]

= (1 − β)

1
2

[

√
n Ψ

(

1
nc

)

−
0.583

√
1 + n−1

]

,

(UA) n(1 − β)

1
2

1
√

n
Ψ

(

1
nc

)

= (1 − β)

1
2
√

nΨ
(

1
nc

)

,

(CA
′
) (1 − β)

1
2

[

1
√

2c
−

0.583
√

1 + n−1

]

,

(UA
′
)

√

(1 − β)/(2c) .

Remark 4. As explained earlier, the uncorrected approximations have positive bias

due to overestimation. The corrected approximations are reasonably accurate for

moderate to large n and for large β. For moderate n, (CA) (or (CA
′
), resp.) tends

to underestimate (or overestimate, resp.) n(1− β)
1/2 λ(0, n−1, β). This observation

naturally leads to approximating n(1 − β)
1/2 λ(0, n−1, β) by the average of (CA)

and (CA
′
), which is also included in Table 1. Overall, [ (CA) + (CA

′
) ]/2 has the

best performance, while (CA
′
) is better than (CA) except for small n and large β.

Remark 5. Table 1 of Gittins [12] suggests that n(1 − β)
1/2 λ(0, n−1, β) is in-

creasing in n. For β = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, Gittins has numerically estimated

limn→∞ n(1 − β)
1/2λ(0, n−1, β). These numbers are compared in Table 2 with the

limits (1− β)
1/2

[ (2c)−1/2 − 0.583 ] (or (1− β)
1/2/(2c)1/2

, resp.) obtained from the

corrected approximations (CA) and (CA
′
) (or uncorrected approximations (UA)

and (UA
′
), resp.) as n → ∞. It should be noted that the heuristic justification for

the corrected approximations requires v0/c = 1/(n c) not to be very close to 0.
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Table 1

Gittins indices and approximations

(β = 0.5, 0.7, 0.9, 0.95, 0.99, 0.995)

n

10 50 100 500 1000

β= 0.5

n(1 − β)
1/2 λ(0, n−1, β) 0.211 0.224 0.226 0.227 0.227

[ (CA) + (CA
′
) ]/2 0.208 0.192 0.190 0.189 0.189

(CA) 0.208 0.192 0.190 0.189 0.189

(CA
′
) 0.208 0.192 0.190 0.189 0.189

(UA) 0.601 0.601 0.601 0.601 0.601

(UA
′
) 0.601 0.601 0.601 0.601 0.601

β= 0.7

n(1 − β)
1/2 λ(0, n−1, β) 0.311 0.337 0.341 0.344 0.345

[ (CA) + (CA
′
) ]/2 0.264 0.332 0.331 0.329 0.329

(CA) 0.184 0.332 0.331 0.329 0.329

(CA
′
) 0.344 0.332 0.331 0.329 0.329

(UA) 0.489 0.648 0.648 0.648 0.648

(UA
′
) 0.648 0.648 0.648 0.648 0.648

β= 0.9

n(1 − β)
1/2 λ(0, n−1, β) 0.415 0.480 0.493 0.504 0.506

[ (CA) + (CA
′
) ]/2 0.357 0.506 0.505 0.505 0.505

(CA) 0.201 0.506 0.505 0.505 0.505

(CA
′
) 0.513 0.506 0.505 0.505 0.505

(UA) 0.377 0.689 0.689 0.689 0.689

(UA
′
) 0.689 0.689 0.689 0.689 0.689

β= 0.95

n(1 − β)
1/2λ(0, n−1, β) 0.425 0.519 0.540 0.562 0.566

[ (CA) + (CA
′
) ]/2 0.382 0.468 0.568 0.568 0.568

(CA) 0.190 0.367 0.568 0.568 0.568

(CA
′
) 0.574 0.569 0.568 0.568 0.568

(UA) 0.314 0.496 0.698 0.698 0.698

(UA
′
) 0.698 0.698 0.698 0.698 0.698

β= 0.99

n(1 − β)
1/2λ(0, n−1, β) 0.353 0.499 0.549 0.618 0.633

[ (CA) + (CA
′
) ]/2 0.390 0.453 0.485 0.647 0.647

(CA) 0.130 0.257 0.322 0.647 0.647

(CA
′
) 0.650 0.648 0.647 0.647 0.647

(UA) 0.185 0.315 0.380 0.705 0.705

(UA
′
) 0.705 0.705 0.705 0.705 0.705

β= 0.995

n(1 − β)
1/2λ(0, n−1, β) 0.304 0.457 0.516 0.614 0.638

[ (CA) + (CA
′
) ]/2 0.424 0.437 0.470 0.562 0.665

(CA) 0.181 0.209 0.274 0.458 0.665

(CA
′
) 0.667 0.665 0.665 0.665 0.665

(UA) 0.221 0.250 0.315 0.499 0.706

(UA
′
) 0.706 0.706 0.706 0.706 0.706

Remark 6. Brezzi and Lai [5] have proposed a simple approximation to Gittins

indices for general distributions which is justified by making use of the functional

central limit theorem as β → 1. For Bernoulli distributions (with beta conjugate

priors), their approximation provides fairly accurate results. When applied to nor-

mal distributions, their approximation reduces to the uncorrected approximation

(UA). It will be of great interest to see whether and how Chernoff’s continuity

correction can apply to approximate Gittins indices for nonnormal distributions.
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Table 2

The limits of Gittins indices and approximations

β limn→∞ n(1 − β)
1/2 λ(0, n−1, β) (CA) and (CA

′
) (UA) and (UA

′
)

0.5 0.227 0.189 0.601

0.6 0.283 0.257 0.626

0.7 0.345 0.329 0.648

0.8 0.417 0.409 0.669

0.9 0.509 0.505 0.689

0.95 0.583 0.568 0.698
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