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FOREWORD

This volume through its diversity reflects Lin’s journal-editing side. In

addition to the mathematics he did he always read widely and with good

taste in and around all the lovely terrain which neighbors on topology.

Topology, in this way is a good subject for an eclectic. There is almost no

domain from condensed matter physics to p-adic analysis that one cannot

find a topological excuse to study. Lin, the journal editor, did this. I hope

he would find this volume interesting and thoughtful enough that he might

have put it together himself.

Lin was, with Fred Hickling, one of my first two graduate students. So

he and I figured out the thesis advising process together. I needed a lot of

help. I had had an unusual education and had missed some of the steps.

To my great relief Lin seemed to know how it would go. He would talk

to me about what I was working on, focus in on something that I was

not understanding properly and then dig in. As with most great students

the advisor has little to do with the thesis. Lin had a great idea, which

he developed with Habegger, and is further expanded in this volume. The

idea was very reductionist, he thought the subject of knots and links had

begun in the wrong place, as if physicists had tried to solve for H+
2 without

doing the hydrogen atom first. His idea was to study “string links” : arcs

in a ball with fixed boundary conditions, rather than ordinary links in S3.

First thing first. Do the local problem before going global. It was a very

sensible idea and amazing that knot theory had existed 100 years without

this idea popping up. I think, 20 years later in 2008, this idea would be

considered obvious. But this is a sign that Lin and a few like him exerted

a systematic influence: localizing and systematizing geometric topology. If

you like making topology more like quantum field theory.

Quantum field theory is another area where Lin was in the vanguard.

The idea that some (but not all) classical link invariants are naturally de-

scribed as coefficients of a perturbative expansion was sorted out between

Bar-Natan and Lin in the early 1990s leading quickly to the theory of finite

type invariants. It was a thrill for me to see how Lin took to the then new



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

x

subject of quantum topology. At first I did not expect to learn this subject

myself. However in the mid 90s I was thinking about building a computer

based on the Chern-Simons Lagrangian and Lin became my tutor, explain-

ing the Jones representations, and all the related algebras. He made the

subject very friendly. For over a decade he would stay in touch what he was

doing and thinking in the “Jones” world. His work in this area is among

the finest and this volume serves, also, as a tribute to these contributions.

Finally, it is not well known but Lin made a serious effort to under-

stand Perelman’s proof of Thurston’s geometrization conjecture and the

many ancillary expositions. The article herein on generalized Ricci flow

commemorates his efforts both as a researcher and journal editor here.

Lin was a great and generous spirit, well loved by our community. He

was our dear friend. We miss him and dedicate our work to him.

Michael H. Freedman
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PREFACE

On January 14, 2007, our beloved friend Xiao-Song Lin left us. On his

50th birthday—July 27, 2007, his friends, colleagues and family members

gathered in the Chern Institute of Mathematics to celebrate his wonderful

life. These proceedings resulted from this conference, and is a permanent

tribute to a humble person, an excellent mathematician, a great friend, and

a devoted family man.

Topology and physics are central themes in Xiao-Song’s professional ca-

reer. A central player in quantum topology is knot theory. Knot invariants

such as the celebrated Jones polynomial and finite type invariants were con-

stantly on Xiao-Song’s mind. As one of the leading quantum knot theorists

in the world, Xiao-Song made fundamental contributions to the develop-

ment and popularization of knot theory. With his untimely death, the knot

world lost a leader.

During the international conference from July 27 to July 31, 2007 at the

Chern Institute of Mathematics, Xiao-Song’s friends and colleagues covered

a variety of topics in topology and physics. We are sure that Xiao-Song will

smile in heaven when the topics dear to his heart continue to flourish.

We thank all the participants and speakers for making the conference

a memorable one. Staff in the Chern Institute won the hearts of the par-

ticipants for staying on top of everything. We thank all of them, especially

Mrs. Hongqin Li.

Zhenghan Wang

Weiping Zhang
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Short Biography of Lin

Xiao-Song Lin, a Professor of Mathematics at the University of Cali-

fornia at Riverside, died on January 14, 2007 in Riverside, California, six

months after being diagnosed with advanced stage liver cancer. He was 49.

Xiao-Song Lin was born in Songjiang, Shanghai, on July 27, 1957, and

grew up in Suzhou, Jiangsu. In 1984, he received his M.S. in Mathematics

from Beijing University under the direction of Professor Boju Jiang. That

same year, he arrived in the United States to study at the University of

California, San Diego under Professor Michael H. Freedman. After obtain-

ing his Ph.D. in 1988, he began his career at Columbia University. In 1995,

he joined the faculty at the University of California, Riverside, where he

remained until the time of his death.

Xiao-Song Lin was a mathematician of exceptional ability and creativity.

His areas of specialization were in low-dimensional topology and quantum

topology. He was best known for his numerous contributions to knot theory.

Throughout his entire career, Xiao-Song Lin maintained a passionate com-

mitment to mathematical research and the mathematics community. He

was co-founder and co-Editor-in-Chief of the research journal Communica-

tions in Contemporary Mathematics, and served on the editorial boards of

several others. He advised five Ph.D. students, and he served as a mentor

to many other graduate and post-doctoral students in topology. He will

always be remembered by his students and his colleagues for his patience,

his generosity, and his willingness to share mathematical ideas.

Xiao-Song Lin received many honors and awards, including the pres-

tigious Sloan Fellowship (1992-1994); he was a member of the Institute

for Advanced Study (Spring 1988 and 1993-1994); he was a Professor of

Special Mathematics Lectures at Beijing University (1998-2000); and he

was named Beijing University’s Chang Jiang Scholar (2006-2008) by the

Chinese Ministry of Education.

Despite his employment in the USA, Xiao-Song Lin was actively in-

volved in the advancement of Chinese mathematics and kept in close con-

tact with the topology research group at Beijing University. Beginning in
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the early 1990s, he spent most of his summers in China, primarily giv-

ing lectures and teaching classes at his alma mater Beijing University. To-

gether with Professor Boju Jiang and Professor Shicheng Wang, he helped

to plan and organize the annual Chinese Low-Dimensional Topology Sum-

mer School, the 2002 ICM Satellite Conference in Geometric Topology, as

well as many other mathematical meetings and conferences in China.

His untimely death is a great loss to the international topology commu-

nity, and to all who knew him. In his honor and in his memory, the Xiao-

Song Lin Award was established by Xiao-Song Lin’s family: Each year, a

cash prize of at least 1000 USD will be awarded to a senior undergraduate

at Beijing University who has demonstrated truly exceptional scholarship

in mathematics.
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Mathematics of Lin

Xiao-Song’s first major work was a joint paper with Prof. M. Freed-

man on the A-B slice problem. In 1981, Freedman solved the 4-dimensional

topological Poincaré conjecture. Actually, he achieved a complete classifica-

tion of all closed simply-connected topological 4-manifolds. Later, Freedman

proved that his method, in principle, works for a large class of fundamental

groups including all finitely generated abelian groups. But he conjectured

that his method will not cover the cases of non-abelian free groups. The

A-B slice problem is a program to prove Freedman’s conjecture. This diffi-

cult problem is still open. Prof. V. Krushkal’s paper in this book gives an

up-to-date account of this problem. The experience that Xiao-Song gained

from this project strongly influenced his career and future research. In this

paper, link homotopy was introduced into the study of 4-dimensional topol-

ogy. Freedman recently wrote on this work: “Sometimes when I think of our

work on that problem, I feel like an old time mountaineer stormed off a high

peak just short of the summit.”

After the A-B slice problem, it was natural for Xiao-Song to study link

homotopy. In a joint work with Prof. N. Habegger, he solved a problem of

Prof. J. Milnor from 1950s on the classification of links up to homotopy,

where the notion “string link” was invented.

These two beautiful papers were essentially written during his graduate

school years. After obtaining his Ph.D, he went to work at Columbia Uni-

versity. There in a joint paper with Prof. J. Birman, he axiomatized Prof.

V. Vassiliev’s knot invariants combinatorically, then expanded the Jones

polynomial of knots into Vassiliev or finite type invariants. The Birman-

Lin condition, which characterized finite type invariants, was discovered in

this work. Soon afterwards, a second revolution in quantum knot theory

after Prof. V. Jones’ first one started.

Xiao-Song’s personal favorite work was his paper A knot invariant via

representation spaces. Following an idea of Prof. A. Casson, Xiao-Song de-

fined a knot invariant, which turned out to be the knot signature. Recently,

this work was generalized using symplectic Floer homology by Prof. W. Li.
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The paper Representations of knot groups and twisted Alexander polyno-

mials shows something that we are familiar with and grateful: Xiao-Song’s

generosity in mathematics. He introduced the twisted Alexander polyno-

mials in this paper, but never rushed to publish the paper for the sake of

credit. Actually this paper would never have been published if not solicited

by an editor.

His unfinished work Zeros of Jones polynomials had captured his atten-

tion for a long time. Since the beginning of quantum knot invariants, Jones

realized that his knot polynomial is related to statistical mechanics. In

physics, the zeros of partition functions encode deep information about the

corresponding physical systems. In his unfinished manuscript, Xiao-Song

asked: how can one tell whether or not a Laurent polynomial with integer

coefficients is the Jones polynomial of a knot? Then he wrote: maybe this

was the wrong question. If so, what would be the right question? He be-

lieved that the right question would lead to some beautiful mathematics.

At the end of the manuscript, he suggested to look for statistical laws for

the norms and phases of the zeros of the Jones polynomials.

There are 38 publications by Xiao-Song listed in Mathematical Reviews

so far, and 8 more papers are posted on the arXiv. Another 5 unpublished

papers are collected in this volume. In addition, there are 4 more unfinished

works on: the zeros of Jones polynomials, an L2-approach to the volume

conjecture, wood puzzle games, and finger loop braids, respectively, that

can be found on Xiao-Song’s webpage http: //math.ucr.edu/~xl/.

We cannot do justice to Xiao-Song’s mathematics in a few pages. As

Prof. D. Bar-Natan’s talk title in Nankai said: following Lin. Then we are

bound to discover beautiful gems in mathematics.

Quoting Freedman again: “There will ever after be string links and finite

type invariants.” We add: there will ever after be the name of Xiao-Song

Lin in mathematics.
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Link symbol in Xiao-Song’s office
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Welcome Speech of Weiping Zhang

First of all, on behalf of the Chern Institute of Mathematics, I would like

to welcome all of you to attend this International Conference on Topology

and Physics, which is dedicated to the memory of our beloved friend Xiao-

Song Lin.

As many of us might have already known, today is actually Xiao-Song’s

50th birthday. Xiao-Song could not be with us. However, I am sure that his

smile and friendship, along with his love of mathematics, will stay with us

during the whole conference, as well as in the future to come.

Let me also say a few words about our Institute. As you may know,

this Institute was founded in 1985 by Professor Shiing-shen Chern, and

was called the Nankai Institute of Mathematics at that time. Since then,

Professor Chern devoted almost all of his energy to the development of the

Institute. Moreover, he established the unique style of the Institute among

the mathematical centers in China. It was renamed as the Chern Institute of

Mathematics in December of 2005, at the 20th Anniversary of the Institute.

All our faculty and staff are now working hard to maintain the spirit of the

Institute established by Professor Chern, and seeking various ways to make

contributions to the development of mathematics in China.

I would like to thank all of you, in particular Xiao-Song’s family mem-

bers, for coming to the Chern Institute. My special thanks go to Zhenghan

for all his endless effort to make this conference possible. It’s really an honor

for the Chern Institute to be able to host such a conference for Xiao-Song!

I wish all of you a pleasant stay, and I wish our conference success.

Thank you very much!
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Speech of Boju Jiang

Our friend Xiao-Song Lin has left us, but he will always be remem-

bered for many reasons. I’ll speak from the perspective of a mathematician

working in China. Xiao-Song knew the Chinese mathematical community

very well. He kept in close contact with us, especially the topology group

in Beijing University.

Around the year 1990, during a period of rapid social changes in China,

Chinese mathematics was experiencing a kind of crisis. Funding was very

low, but this was not new to us. What was special to that time was a sharp

decline in mathematics enrollment. It never happened before and has never

happened again so far. The recovery took almost a decade. In topology, the

turning point was the decision by the Chinese National Science Foundation

to support an annual low-dimensional topology summer school.

The idea came about in close discussion with Xiao-Song: the summer

school would bring together faculty and students from different universities,

along with some overseas scholars, to learn about recent advances and to

discuss their own ideas. Xiao-Song played a key role in the planning of the

summer schools, especially in inviting speakers and in shaping the themes.

During almost every summer since 1994, Xiao-Song was busy working in

China giving lecture series and organizing discussions. His lectures were

always very popular, not only to graduate students, but undergraduate

students also liked his lectures very much. Several collaborations between

Xiao-Song and faculty and even graduate students grew out of these sum-

mer contacts. We have continued the annual school now for more than ten

years.

Xiao-Song also played a significant role in China’s international ex-

change. A remarkable example is the 2002 ICM Satellite Conference on

Geometric Topology, held in Xi’an. During the two years of preparation,

Xiao-Song dedicated a lot of his energy, and acted almost as the communi-

cation center for the conference because we had so many – more than 100

– foreign participants.

He cared deeply about the future of Chinese mathematics. Together with
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Professor Gang Tian, Xiao-Song proposed to the Chinese National Science

Foundation to pay more attention to gifted high school students, following

the example of Russia and other countries. In the past, we all know that the

Chinese International Mathematical Olympiad team has done quite well.

But Xiao-Song thought that mathematical competitions are not the only

way, nor the best way, to attract young students into mathematics. So Xiao-

Song and Tian helped to start a summer camp for high school students,

which started in 2000 and has continued every year since.

Xiao-Song was able to play a key role in the development of Chinese

mathematics because he knew very clearly what Chinese mathematicians

really need, not only in theory but also in practice. Xiao-Song was an ex-

cellent example of how an overseas Chinese mathematician can actively

and effectively contribute to the mathematical community in China. Deep

inside, he was a cultivated and thoughtful Chinese scholar.

It is only appropriate to have this conference in his memory in China.

I want to express my thanks to Zhenghan Wang for proposing and orga-

nizing this conference, and to Weiping Zhang and the Chern Institute of

Mathematics for hosting it.

Thank you.

Boju Jiang
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The Modified Calabi-Yau Problems for CR-manifolds∗

Jianguo Cao

Mathematics Department, University of Notre Dame,
Notre Dame, IN 46556, USA;

Department of Mathematics, Nanjing University,
Nanjing 210093, China.
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Shu-Cheng Chang

Department of Mathematics, National Tsing Hua University,
Hsinchu 30013, Taiwan, R. O. C.
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Dedicated to the memory of Xiao-Song Lin.

In this paper, we derive a partial result related to a question of Yau: “Does a
simply-connected complete Kähler manifold M with negative sectional curva-

ture admit a bounded non-constant holomorphic function?”

Main Theorem. Let M2n be a simply-connected complete Kähler manifold
M with negative sectional curvature ≤ −1 and S∞(M) be the sphere at infinity
of M . Then there is an explicit bounded contact form β defined on the entire
manifold M2n.

Consequently, if M2n is a simply-connected Kähler manifold with negative
sectional curvature −a2 ≤ secM ≤ −1, then the sphere S∞(M) at infinity of
M admits a bounded contact structure and a bounded pseudo-Hermitian metric
in the sense of Tanaka-Webster.

We also discuss several open modified problems of Calabi and Yau for
Alexandrov spaces and CR-manifolds.

∗2000 Mathematics Subject Classification. Primary 53C20; Secondary 53C23

Key words and phrases. Negative sectional curvature, bounded holomorphic func-
tions, bounded cohomology, contact structures, Calabi problems, Yau’s conjectures, CR-
manifolds.
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0. Introduction

In this paper, we will provide a detailed construction of bounded contact

structures on a simply-connected complete Kähler manifold M with neg-

ative sectional curvature ≤ −1. Afterwards, we will discuss related open

problems inspired by Calabi and Yau.

In 1979, Professor S. T. Yau [Y1] asked the following question.

Problem 0.1. (Yau [Y1]) Let M 2n be a simply-connected complete Kähler

manifold M with negative sectional curvature ≤ −1. Does M 2n admit a

bounded non-constant holomorphic function?

In fact, an even more attractive problem in complex analytic differential

geometry is to characterize bounded domains in Cn within noncompact

manifolds.

Problem 0.2. (Yau [Y1]) Let M 2n be a simply-connected complete Kähler

manifold M with negative sectional curvature ≤ −1. Is M bi-homeomorphic

to a bounded domain in Cn?

Some partial progress has been made by Bland [Bl] and Nakano-Ohsawa

[NO]. Under extra assumptions, they proved the existence of CR functions

on the ideal boundary S∞(M). In [Bl], two sufficient conditions were given

for a complete Kähler manifold M of non-positive sectional curvature to

admit nonconstant bounded holomorphic functions, which seems also to

guarantee that M is a relatively compact domain with smooth boundary.

The precise definition of ideal boundary S∞(M) can be found in [BGS].

Theorem 0.3. Let M2n be a simply-connected complete Kähler manifold

M with negative sectional curvature ≤ −1 and S∞(M) be the sphere at

infinity of M . Then there is an explicit bounded contact form β defined on

the entire manifold M2n.

Consequently, if M2n is a simply-connected Kähler manifold with neg-

ative sectional curvature −a2 ≤ secM ≤ −1, then the sphere S∞(M) at

infinity of M admits a bounded contact structure and a bounded pseudo-

Hermitian metric in the sense of Tanaka-Webster.

Our proof of Theorem 0.3 was inspired by Gromov’s bounded cohomol-

ogy [Gro1-2] and calculations in [CaX].

Let ω be the Kähler metric on M 2n. It is clear that dω = 0. When M 2n

is a simply-connected complete Kähler manifold with negative sectional
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curvature ≤ −1, Gromov observed that there must be a bounded 1-form β

with

dβ = ω. (0.1)

The proof of Gromov’s assertion was outlined in [Pa] and [JZ]. In this

paper, we provide a detailed proof of Gromov’s assertion in §1. A simi-

lar sub-linear estimate for equation (0.1) on manifolds with non-positive

curvature was given by the first author and Xavier in [CaX].

1. Bounded solutions to dβ = α on manifolds with negative

curvature

In this section, we prove Theorem 0.3. In addition, we present a new direct

proof of Gromov’s bounded cohomology theorem of negative curvature, see

Theorem 1.4 and its proof below. Gromov’s original approach to Theorem

1.4 below was based a volume estimate of k-dimensional cone over a (k−1)-

dimensional chain, and then use a dual space argument to complete the

proof. Our new method is to work on k-chains directly with a controlled

Poincaré lemma for negative curvature. Our approach might have some

potential independent applications.

Throughout this section (Mm, g) will be a complete simply-connected

manifold of negative sectional curvature ≤ −1. Let also α be a bounded

smooth closed k-form on M with k ≥ 1. Since Mm is diffeomorphic to Rm

there exists a form β such that dβ = α. The purpose of this section is to

show that β can be chosen to be bounded. The proof will follow from the

Poincaré lemma by a comparison argument.

Fix p ∈M and denote by expp : TpM →M the exponential map based

at p.

Lemma 1.1. Consider the maps τt : M → M , given by x 7−→
expp(t exp

−1
p (x)), where 0 ≤ t ≤ 1. Then

|(τt)∗ξ| ≤
sinh tr

sinh r
|ξ| (1.1)

for every tangent vector ξ, where r = d(x, p).

Proof. Let σ : [0, 1] → Mn be the geodesic segment joining p to x, ξ ∈
TxM

n and y = (expp)
−1(x) ∈ TpM

n. By a straightforward computation

one has

(τt)∗ξ = (d expp)t(expp)−1(x)[td(exp
−1
p )(x)ξ]

= (d expp)ty{t[d(expp)y]−1ξ}.
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Recall that σ(t) = expp(ty). It is now manifest from the above formula

that

J(tr) := (τt)∗ξ (1.2)

is the Jacobi field along σ satisfying J(0) = 0, J(r) = ξ. On the other

hand, since the sectional curvatures are ≤ −1, we estimate the function

f(s) := |J(s)| by a method inspired by Gromov. It is sufficient to verify

|J(s)|
sinh s

≤ |J(r)|
sinh r

, (1.3)

for all 0 ≤ s ≤ r.

We may assume that r > 0, otherwise the inequality (1.1) holds trivially.

To do this, we consider the function

η(s) =
f(s)

sinh s
.

It is sufficient to verify

f(s)

sinh s
≤ f(r)

sinh r
or η′(s) ≥ 0. (1.4)

Since we have

η′(s) =
f ′(s) sinh s− f(s) cosh s

[sinh s]2
,

it remains to verify that

[f ′(s) sinh s− f(s) cosh s]′ = f ′′(s) sinh s− f(s) sinh s ≥ 0. (1.5)

Recall that the curvature tensor R is given by R(X,Y )Z = −∇X∇Y Z+

∇Y ∇XZ +∇[X,Y ]Z where [X,Y ] = XY −Y X is the Lie bracket of X and

Y .

Following a calculation in [BGS], by our assumption of secM ≤ −1 we

have

f ′′(s) = |J(s)|′′

= [
〈J, J ′〉
|J | ]′

=
〈J, J ′′〉|J |2 + 〈J ′, J ′〉|J |2 − 〈J, J ′〉2

|J |3

≥ −〈R(σ′, J)σ′, J〉|J |2
|J |3

≥ f(s),

(1.6)



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

Calabi-Yau Problems for CR-manifolds 7

where we used the assumption that 〈J ′′, J〉 = −〈R(σ′, J)σ′, J〉 ≥ |J |2. It

follows from (1.5)-(1.6) that (1.4) holds. This completes the proof of (1.3)

as well as Lemma 1.1.

Recall that if α is a k-form and Z is a vector field, then (αbZ) is the

(k − 1)-form given by

(αbZ)(ξ1, · · · , ξk−1) = α(Z, ξ1, · · · , ξk−1).

For the sake of completeness we give a proof of the following elementary

result.

Lemma 1.2. Let Ψ be a closed k-form in Rm. Then the (k − 1)-form Φ

defined by

Φ(x) = r

∫ 1

0

[(τt)
∗(Ψb ∂

∂r
)](x)dt

satisfies dΦ = Ψ; here ∂
∂r =

∑m
i=1

xi

r
∂

∂xi
, r = (

∑m
i=1 x

2
i )

1/2 and τt(x) = tx.

Proof. By the standard proof of the Poincaré lemma ([SiT], p.130), Φ can

be taken to be Φ(x) =

∑

i1<···<ik

k∑

j=1

(−1)j−1xij

(∫ 1

0

tk−1Ψi1···ik
(tx)dt

)
dxi1 ∧ · · · ∧ d̂xij ∧ · · · ∧ dxik

,

where Ψ =
∑

i1<···<ik
Ψi1···ik

dxi1 ∧ · · · ∧ dxik
.

In particular, one has

Φ(x) =
∑

i1<···<ik

k∑

j=1

xij

(∫ 1

0

tk−1Ψi1···ik
(tx)dt

)
(dxi1 ∧ · · · ∧ dxik

)b ∂
∂xij

= r
∑

i1<···<ik

(∫ 1

0

tk−1Ψi1···ik
(tx)dt

)
(dxi1 ∧ · · · ∧ dxik

)b ∂
∂r

= r

∫ 1

0

tk−1(Ψb ∂
∂r

)(tx)dt

= r

∫ 1

0

[(τt)
∗(Ψb ∂

∂r
)](x)dt,

as desired.

We would also like to borrow another elementary but useful observation

of Gromov, in order to prove our main theorem
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Lemma 1.3. (Gromov, [Cha, page 124]) Suppose that f and h are positive

integrable functions, of real variable r, for which

f

g

is an increasing with respect to r. Then the function

∫ r

0
f∫ r

0
g

is also increasing with respect to r ≥ 0.

Let us now provide a new detailed proof of a theorem of Gromov.

Theorem 1.4. (Gromov) Let Mm be a simply-connected complete Rie-

mannian manifold with negative sectional curvature ≤ −1. Suppose that α

is bounded closed k-form with k ≥ 2. There is a bounded (k − 1)-form β

with dβ = α satisfying

‖β‖L∞ ≤ 1

k − 1
‖α‖L∞ . (1.7)

Proof. Let (x1, ..., xn) be Euclidean coordinates on TpM and consider the

pull-back metric h of the metric g under expp : TpM → M . Observe

that there are now two ways to interpret the map τt. The first interpre-

tation comes from Lemma 1.1 with (M, g) being replaced by (TpM,h);

alternatively, one can think of τt as the self-map of TpM , (x1, ..., xn) 7−→
t(x1, ..., xn), that appears in the Poincaré lemma (Lemma 1.2). It is an easy

and yet basic observation that these two ways of thinking about τt give rise

to the same map.

We may also replace the form α that appears in the statement of Lemma

1.2 by a closed form Ψ on TpM which is bounded in the induced metric h.

Let Φ be given by Lemma 1.2 and observe that, by Lemma 1.1,

|(τt)∗ϕ(x)|h ≤
( sinh tr

sinh r

)k−1|ϕ(τt(x))|h, k ≥ 2, (1.8)

holds for any (k− 1)-form ϕ on TpM ; here | · |h is any one of the equivalent

norms induced by h. Since | ∂
∂r | = 1, it follows from (1.3) and Lemma 1.2



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

Calabi-Yau Problems for CR-manifolds 9

that

|Φ(x)|h ≤ r

∫ 1

0

|[(τt)∗(Ψb ∂
∂r

)](x)|hdt

≤ r

∫ 1

0

( sinh tr

sinh r

)k−1|Ψ(tx)b ∂
∂r
|hdt

=

∫ r

0

( sinh s

sinh r

)k−1|Ψ(
s

r
x)b ∂

∂r
|hds

≤
∫ r

0
(sinh s)k−1ds

(sinh r)k−1
sup

0≤s≤r
|Ψ(

s

r
x)|h

(1.9)

Choosing f(r) = (sinh r)k−1 and ĝ(r) = (k − 1)(sinh r)k−2 cosh r in

Lemma 1.3, we see that [ f
ĝ ]′ = 1

(k−1)(sinh r)2 > 0 and

∫ r

0 (sinh s)k−1ds

(sinh r)k−1
≤ 1

k − 1
. (1.10)

It follows from (1.9)-(1.10) that

|Φ(x)|h ≤ 1

k − 1
sup |Ψ|h. (1.11)

Hence Φ is a bounded solution of dΦ = Ψ and the proof of Theorem 1.4 is

completed.

Proof of Main Theorem:

Our main theorem Theorem 0.3 can be derived as follows. We fix a base

point p as above. There is a differential structure Ξp imposed on S∞(M)

given by the map

Fp :B1(0) →M ∪ S∞(M)

~v → Expp[
~v

1 − |~v| ].

For p 6= q, the transitive map F−1
q ◦Fp : B1(0) → B1(0) is not necessarily

smooth. However, we fix one differential structure Ξp on S∞(M) via the

map Fp.

Let J be the complex structure of our Kähler manifold M . Let r(x) =

d(x, p) and β = J ◦ dr, i.e., β(~w) = dr(J ~w) for all ~w ∈ Tx(M). When

−a2 ≤ secM − 1, it is known that

|X |2 ≤ |(∇Xdr)(X)| = |Hess(r)(X,X)| ≤ a|X |2

for all X ∈ Tx(∂Br(p)) with r >> 1.
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Since M is Kähler, we have ∇XJ = 0. It follows that |∇Xβ| ≤ a|X | for

X ∈ Tx(∂Br(p)) with r >> 1.

Thus, {β|∂Br(p)} defines an equi-continuous family of contact forms

on S∞(M). By Ascoli lemma, there is a subsequence that converges to

a bounded contact form β∞ on S∞(M). Since secM ≤ −1, it is known

that dβ(X̃, ¯̃X) = Hess(r)(X,X) + Hess(r)(JX, JX) ≥ 2|X |2 for all

X ∈ Tx(∂Br(p)) and X ⊥ ∇r, where X̃ = 1√
2
[X−

√
−1JX ]. Therefore, β∞

defines a non-trivial contact form on S∞(M). Moreover, ω∞ = dβ∞ gives

rise to a pseudo-hermitian metric on S∞(M).

Similarly, one can also choose β∗ satisfying dβ∗ = ω, where ω is the

Kähler form of M and β∗ in the proof of Theorem 1.4. With some extra

effort, one can show that |∇β∗| ≤ c1 for some constant c1. Thus, {β∗|∂Br(p)}
defines an equi-continuous family of contact forms on S∞(M) as well.

This completes the proof of our main theorem.

2. The modified Calabi-Yau problems for singular spaces

and CR-manifolds

In this section, we will discuss the generalized Calabi problems on Kähler

manifolds with boundaries. In addition, we will comment on the existence of

positive sup-harmonic functions on (possibly singular) Alexandrov spaces

with non-negative sectional curvature.

§A. Sup-harmonic functions on Alexandrov spaces with non-

negative sectional curvature

Professor S. T. Yau also had earlier results on bounded harmonic func-

tions on smooth complete Riemannian manifolds with non-negative Ricci

curvature. We would like to extend this theorem of Yau to singular spaces.

In an important paper [Per1], Perelman provided an affirmative solution

to the Cheeger-Gromoll soul conjecture. More precisely, he showed that “if

a smooth complete non-compact Riemannian manifold Mn of non-negative

curvature has a point p0 with strictly positive curvature K|p0 > 0, then

Mn must be diffeomorphic to Rn. In [Per1], Perelman also asked to what

extent the conclusions of his paper [Per1] would hold for (possibly singular)

Alexandrov spaces with non-negative curvature.

Recently, the first author, together with Dai and Mei, showed the fol-

lowing.

Theorem A.1. (Cao-Dai-Mei, 2007, [CaMD1]) Let Mn be a n-

dimensional complete, non-compact Alexandrov space with non-negative
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sectional curvature. Suppose that Mn has no boundary and Mn has positive

sectional curvature on an non-empty open set. Then Mn is contractible.

In 1976, Professor S. T. Yau proved the following Liouville type theorem.

Theorem A.2. (Yau, 1976 [Y3]) Let Mn be a n-dimensional complete,

non-compact smooth Riemannian space with non-negative Ricci curvature.

Then any positive harmonic functions on Mn must be a constant function.

On an (possibly singular) Alexandrov space, we introduce the following

notion of sup-harmonic function.

Definition 0.1. Definition A.3 Let Mn be a n-dimensional complete, non-

compact Alexandrov space with non-negative sectional curvature. Suppose

that Mn has no boundary, f : Mn → R is a Lipschitz continuous function

and

f(x) ≥ 1

Area(∂Bε(x))

∫

∂Bε(x)

fdA (A.1)

for any sufficiently small ε > 0. Then we say that f is a sup-harmonic

function on M .

For example, f(x) = −[d(x, x0)]
2 is a sup-harmonic function on M ,

whenever M has non-negative sectional curvature in generalized sense.

Problem A.4. (Liouville-Yau type problem) Let Mn be a n-dimensional

complete, non-compact Alexandrov space with non-negative sectional cur-

vature. Suppose that Mn has no boundary. Is it true that any positive sup-

harmonic functions on Mn must be a constant function?

In [CaB], the first author and Benjamini studied a different Liouville-

type problem of Schoen-Yau. One hopes to continue to work on Liouville-

Yau type problem mentioned above.

§B. The generalized Calabi problems for Kähler domains with

boundaries

The classical Calabi problems for Ricci curvatures on compact Kähler

manifolds without boundary have been successfully solved by Professor S.

T. Yau.

Theorem B.1. (Yau [Y4]) Let M 2n be a compact smooth Kähler mani-

fold without boundary. Then the following is true: (1) For any Kähler form

ω0 ∈ H(1,1)(M2n) and any (1, 1)-form β representing the first Chern class
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c1(M
2n), there is a Kähler metric ω̃ = ω0 + i∂∂̄f such that its Ricci cur-

vature tensor satisfies

Ricω̃ = β;

(2) If the first Chern class c1(M) ≤ 0, then M2n admits a Kähler-Einstein

metric.

For a Kähler manifold Ω with boundary M 2n−1 = bΩ, we consider a

similar problem. This problem is closely related to the existence problem

of CR-Einstein metrics, or partially Einstein metrics.

Definition B.2. (CR-Einstein metrics or partially Einstein metrics,

[Lee2]) Let Σ2n−1 be a CR-hypersurface with CR-distribution HΣ2n−1 =

ker θ for some contact 1-form θ and let gθ(X, JY ) = dθ(X, JY ) be a pseudo-

hermitian metric as above. If the Ricci tensor of gθ satisfies

Ricgθ
(X,Y ) = cgθ(X,Y )

for all X,Y ∈ HΣ2n−1 = ker θ where c is a constant, then gθ is called a

CR-Einstein (partially Einstein) metric.

Inspired by Yau’s result, Lee proposed to study the CR-version of the

Calabi problem.

Problem B.3. (CR-Calabi Problems, [Lee2]) Let M 2n−1 be a CR-

manifold, Φ be a closed form representing the first Chern class for the bundle

T (1,0)(M2n−1) and Φb(X,Y ) = Φ(X,Y ) for X,Y ∈ HΣ2n−1 = ker θ.

(1) Can we find a pseudo-metric gθ such that its Ricci tensor satisfies

Ricgθ
(X,Y ) = Φb(X,Y ) (B.1)

for all X,Y ∈ HΣ2n−1 = ker θ?

(2) Given a (1, 1)-form βb ∈ [c1(M
2n−2]b, can we find a pseudo-metric

gθ such that its Ricci tensor satisfies

Ricgθ
(X,Y ) = β(X,Y ) (B.2)

for all X,Y ∈ HΣ2n−1 = ker θ?

The pseudo-Hermitian metric for general CR-manifolds was also dis-

cussed in [Ta1-2] and [Web]. Authors derived the following partial answer

to Problem 3:

Problem B.4. ([CaCh]) Let M 2n−1 be the smooth boundary of a bounded

strongly pseudo-convex domain Ω in a complete Stein manifold V 2n. Then
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for n ≥ 3, M2n−1 admits a CR-Einstein metric (or partially Einstein met-

ric).

One might be able to continue working on Problem B.3, using Kohn-

Rossi’s ∂̄b-theory described below.

§C. The Calabi-Escobar type problem for Kähler domains with

boundaries

The first author and Mei-Chi Shaw studied the CR-version of the

Poincaré-Lelong equation i∂b∂̄bu = Ψb in [CaS3]. The linearization equation

for (B.2) is related to the CR-version of Poincaré-Lelong equation.

In fact, to solve the linear function

∂̄bu = βb on bΩ, (C.1)

Kohn and Rossi [KoRo] used the solutions to the ∂̄-Cauchy problem to solve

∂̄bu = βb extrinsically as follows. Let us first choose an arbitrary smooth

extension β̂ on Ω. If we can solve
{
∂̄v = ∂̄β̂ on Ω

vxX= 0, for X ∈ T (0,1)
z (bΩ)

(C.2)

Clearly β̃ = β̂ − v is a ∂̄-closed extension on Ω of β. If we solve

∂̄ũ = β̂ − v on (Ω ∪ bΩ), (C.3)

then the restriction u = ũxbΩ satisfies

∂̄b[(ũ)bbΩ] = βb on bΩ.

The details for solving the ∂̄-Cauchy problem (C.2) was given in Chapter

9 of [ChSh].

In 1992, Escobar [Esc] was able to solve the non-linear curvature equa-

tion on manifolds with boundary.

Theorem C.1. (Escobar [Esc]) Let Ω ⊂ Rn be a compact domain with

smooth boundary ∂Ω and n > 6. Then there is a conformally flat metric

g on Ω such that the scalar curvature Scalg of g is zero and the mean

curvature Hg of (∂Ω, g) is constant:
{
Scalg = 0 on Ω

Hg = c on ∂Ω,
(C.4)

for some constant c.
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Inspired by Theorem C.1 and the Kohn-Rossi’s solution to ∂̄-Cauchy

problem, we are interested in the following type.

Problem C.2. (Calabi-Escobar type problem) Let Ω be a compact domain

in Stein manifold M with smooth strongly pseudo convex boundary bΩ, and

let HCR
g be the partial sum of second fundamental form of (bΩ, g) over the

CR-distribution kerθ of bΩ. Is there is a Kähler-Einstein metric g on Ω

with constant CR-mean curvature on the boundary bΩ? In another words,

we would like to find the existence of solution to the following non-linear

boundary problem:
{
Ricg = c1g on Ω

HCR
g = c2 on bΩ

(C.5)

for some constant numbers c1 and c2.

The linearalization of non-linear equation is the Poincare-Lelong equa-

tion with boundary conditions. The first author and Mei-Chi Shaw [CaS]

were able to solve

i∂b∂̄bu = Θb on bΩ (C.6)

even for weakly pseudo-convex domains Ω in CP n.

One hopes to continue to work in direction, in order to investigate Prob-

lem C.2.
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BahM. Bahuaud, E. and Marsh, T. Hölder Compactification for some man-
ifolds with pinched negative curvature near infinity. Preprint 2006,
posted as arXiv:math/0601503

BGS. Ballmann, W, Gromov, M., and Schroeder, V. Manifolds of non-
positive curvature. 1985 Birkhäuser, Boston
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1. Introduction

Topological quantum field theories (TQFTs) emerged into physics and

mathematics in the 1980s from the study of three distinct enigmas: the

infrared limit of 1 + 1 dimensional conformal field theories, the fractional

quantum Hall effect (FQHE), and the relation of the Jones polynomial

to 3−manifold topology. Now 25 years on, about half the literature in

3−dimensional topology employs some “quantum” view point, yet it is still

difficult for people to learn what a TQFT is and to manipulate the simplest

examples. Roughly (axioms will follow later), a (2+1)−dimensional TQFT

is a functor which associates a vector space V (Y ) called “modular functor”

to a closed oriented surface Y (perhaps with some extra structures); sends

disjoint union to tensor product, orientation reversal to dual, and is natural

with respect to transformations (diffeomorphisms up to isotopy or perhaps

a central extension of these) of Y . The empty set ∅ is considered to be a

manifold of each dimension: {0, 1, · · · }. As a closed surface, the associated

vector space is C, i.e., V (∅) = C. Also if Y = ∂X ,X an oriented 3−manifold

(also perhaps with some extra structure), then a vector Z(X) ∈ V (Y ) is

determined (surfaces Y with boundary also play a role but we pass over this

for now.) A closed 3−manifold X determines a vector Z(X) ∈ V (∅) = C,

that is a number. In the case X is the 3−sphere with “extra structure”

∗partially supported by NSF FRG grant DMS-034772.
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a link L, then Witten’s “SU(2)−family” of TQFTs yields a Jones poly-

nomial evaluation Z(S3, L) = JL(e2πi/r), r = 3, 4, 5, . . . , as the “closed

3−manifold” invariants, which mathematically are the Reshetikhin-Turaev

invariants based on quantum groupsJo1Witt.RT This is the best known ex-

ample. Note that physicists tend to index the same family by the levels

k = r − 2. The shift 2 is the dual Coxeter number of SU(2). We will use

both indices. Most of the “quantum” literature in topology focuses on such

closed 3−manifold invariants but there has been a growing awareness that

a deeper understanding is locked up in the representation spaces V (Y ) and

the “higher algebras” associated to boundary (Y ) (circles) and pointsFQ.Fd

Let us explain this last statement. While invariants of 3−manifolds may be

fascinating in their interrelations there is something of a shortage of work

for them within topology. Reidemeister was probably the last topologist

to be seriously puzzled as to whether a certain pair of 3−manifolds were

the same or different and, famously, solved his problem by the invention of

“torsion”. (In four dimensions the situation is quite the opposite, and the

closed manifold information from (3+1) dimensional TQFTs would be most

welcome. But in this dimension, we do not yet know interesting examples

of TQFTs.) So while the subject in dimension 3 seems to be maturing away

from the closed case it is running into a pedological difficulty. It is hard to

develop a solid understanding of the vector spaces V (Y ) even for simple

examples. Our goal in these notes is, in a few simple examples to provide

an intuition and understanding on the same level of “admissible pictures”

modulo relations, just as we understand homology as cycles modulo bound-

aries. This is the meaning of “picture” in the title. A picture TQFT is one

where V (Y ) is the space of formal C−linear combinations of “admissible”

pictures drawn on Y modulo some local (i.e. on a disk) linear relations. We

will use the terms formal links, or formal tangles, or formal pictures , etc. to

mean C-linear combinations of links, tangles, pictures, etc. Formal tangles

in 3-manifolds are also commonly referred to as “skein”s. Equivalently, we

can adopt a dual point of view: take the space of linear functionals on mul-

ticurves and impose linear constraints for functionals. This point of view

is closer to the physical idea of “amplitude of an eigenstate”: think of a

functional f as a wavefunction and its value f(γ) on a multicurve γ as as

the amplitude of the eigenstate γ. Then quotient spaces of pictures become

subspaces of wavefunctions.

Experts may note that central charge c 6= 0 is an obstruction to this

“picture formulation”: the mapping class group M(Y ) acts directly on pic-

tures and so induces an action on any V (Y ) defined by pictures. As c
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determines a central extension M̃c(Y ) which acts in place of M(Y ), the

feeling that all interesting theories must have c 6= 0 may have discouraged

a pictorial approach. However this is not true: for any V (Y ) its endomor-

phism algebra End V ∼= V ∗⊗V has central charge c = 0 (c(V ∗) = −c(V ))

and remembers the original projective representation faithfully. In fact, all

our examples are either of this form or slightly more subtle quantum dou-

bles or Drinfeld centers in which the original theory V violates some axiom

(the nonsingularity of the S−matrix) but this deficiency is “cured” by dou-

blingK.Mu Although those notes focus on picture TQFTs based on varia-

tions of the Jones-Wenzl projectors, the approach can be generalized to an

arbitrary spherical tensor category. The Temperley-Lieb categories are gen-

erated by a single “fundamental” representation, and all fusion spaces are

of dimension 0 or 1, so pictures are just 1-manifolds. In general, 1-manifolds

need to be replaced by tri-valent graphs whose edges carry labels. But c = 0

is not sufficient for a TQFT to have a picture description. Given any two

TQFTs with opposite central charges, their product has c = 0, e.g. TQFTs

with Zn fusion rules have c = 1, so the product of any theory with the

mirror of a different one has c = 0, but such a product theory does not

have a picture description in our sense.

While these notes describe the mathematical side of the story, we have

avoided jargon which might throw off readers from physics. When different

terminologies prevail within mathematics and physics we will try to note

both. Within physics, TQFTs are referred to as “anyonic systems”Wil.DFNSS

These are 2-dimensional quantum mechanical systems with point like ex-

citations (variously called “quas-particle” or just “particle”, anyon, or per-

haps “nonabelion”) which under exchange exhibit exotic statistics: a non-

trival representation of the braid groups acting on a finite dimensional

Hilbert space V consisting of “internal degrees of freedom”. Since these

“internal degrees of freedom” sound mysterious, we note that this informa-

tion is accessed by fusion: fuse pairs of anyons along a well defined trajectory

and observe the outcome. Anyons are a feature of the fractional quantum

Hall effect; Laughlin’s 1998 Nobel prize was for the prediction of an anyon

carrying change e/3 and with braiding statistics e2πi/3. In the FQHE cen-

tral charge c 6= 0 is enforced by a symmetry breaking magnetic field B. It

is argued inFn that solid state realizations of doubled or “picture” TQFTs

may - if found - be more stable (larger spectral gap above the degenerate

ground state manifold) because no symmetry breaking is required. The im-

portant electron - electron interactions would be at a lattice spacing scale

∼ 4Å rather than at a “magnetic length” typically around 150Å. So it is
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hoped that the examples which are the subject of these notes will be the

low energy limits of certain microscopic solid state models. Picture TQFTs

have a Hamiltonian formulation, and describe string-net condensation in

physics, which serve as a classification of non-chiral topological phases of

matter. An interesting mathematical application is the proof of the asymp-

totic faithfulness of the representations of the mapping class groups.

As mentioned above, these notes are primarily about examples either

of the form V ∗⊗V or with a related but more general doubled structure

D(V ). In choosing a path through this material there seemed a basic choice:

(1) present the picture (doubled) theories in a self contained way in two

dimensions with no reference to their twisted (c 6= 0) and less tractable

parent theories V or (2) weave the stories of D(V ) and V together from

the start and exploit the action of D(V ) on V in analyzing the structure of

D(V ). In the end, the choice was made for us: we did not succeed in finding

purely combinatorial “picture-proofs” for all the necessary lemmas — the

action on V is indeed very useful so we follow course (2). We do recommend

to some interested brave reader that she produce her own article hewing to

course (1).

In the literatureBHMV comes closest to the goals of the notes, andWal2

exploits deeply the picture theories in many directions. Actually, a large

part of the notes will follow from a finished.Wal2 If one applies the set up of

[BHMV] to skeins in surface cross interval, Y ×I , and then resolves crossings

to get a formal linear combination of 1−submanifolds of Y = Y × 1
2 ⊂ Y ×I

one arrives at (an example of) the “pictures” we study. In this doubled

context there is no need for the p1−structure (or “two-framing”) intrinsic

to the other approaches. To readers familiar withBHMV one should think of

skeins in a handle body H , ∂H = Y , when an undoubled theory V (Y ) is

being discussed, and skeins in Y × I when DV (Y ) is under consideration.

By varying pictures and relations we produce many examples, and in

the Temperley-Lieb-Jones context give a complete analysis of the possible

local relations. Experts have long been troubled by certain sign discrepan-

cies between the S−matrix arising from representations (or loop groups or

quantum groups)MSWittKM on the one hand and from the Kauffman bracket

on the otherLiTu.KL The source of the discrepancy is that the fundamen-

tal representation of SU(2) is anti-symmetrically self dual whereas there is

no room in Kauffman’s spin-network notation to record the antisymmetry.

We rectify this by amplifying the pictures slightly, which yields exactly the

modular functor V coming from representation theory of SU(2)q.

The content of each section is as follows. In Sections 2, 3, we treat dia-
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gram TQFTs for closed manifolds. In Sections 4, 5, 7.1, we handle bound-

aries. In Sections 7, 9, 8, we cover the related Jones-Kauffman TQFTs, and

the Witten-Reshetikhin-Turaev SU(2)-TQFTs which have anomaly, and

non-trivial Frobenius-Schur indicators, respectively. In Section 10, we first

prove the uniqueness of TQFTs based on Jones-Wenzl projectors, and then

classify them according to the Kauffman variable A. A theory V or D(V )

is unitary if the vector spaces V have natural positive definite Hermitian

structures. Only unitary theories will have physical relevance so we decide

for each theory if it is unitary.

2. Jones representations

2.1. Braid statistics

Statistics of elementary particles in 3-dimensional space is related to rep-

resentations of the permutation groups Sn. Since the discovery of the frac-

tional quantum Hall effect, the existence of anyons in 2-dimensional space

becomes a real possibility. Statistics of anyons is described by unitary rep-

resentations of the braid groups Bn. Therefore, it is important to under-

stand unitary representations of the braid groups Bn. Statistics of n anyons

is given by unitary representation of the n-strand braid group Bn. Since

statistics of anyons of different numbers n is governed by the same local

physics, unitary representations of Bn have to be compatible for different

n’s in order to become possible statistics of anyons. One such condition is

that all representations of Bn come from the same unitary braided tensor

category.

There is an exact sequence of groups: 1 −→ PBn −→ Bn −→ Sn −→ 1,

where PBn is the n-strand pure braid group. It follows that every rep-

resentation of the permutation group Sn gives rise to a representation of

the braid group Bn. An obvious fact for such representations of the braid

groups is that the images are always finite. More interesting representations

of Bn are those that do not factorize through Sn, in particular those with

infinite images.

To construct representations of the braid groups Bn, we recall the con-

struction of all finitely dimensional irreducible representations (irreps) of

the permutation groups Sn: the group algebra C[Sn], as a representation of

Sn, decomposes into irreps as C[Sn] ∼=
⊕

i CdimVi⊗Vi, where the sum is over

all irreps Vi of Sn. This construction cannot be generalized to Bn because

Bn is an infinite group for n ≥ 2. But by passing to various different finitely

dimensional quotients of C[Bn], we obtain many interesting representations
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of the braid groups. This class of representations of Bn is Schur-Weyl dual

to the the class of braid group representations from the quantum group ap-

proach and has the advantage of being manifestly unitary. This approach,

pioneered by V. Jones,Jo1 provides the best understood examples of unitary

braid group representations besides the Burau representation, and leads to

the discovery of the celebrated Jones polynomial of knots.Jo2 The theories

in this paper are related to the quantum SU(2)q theories.

2.2. Generic Jones representation of the braid groups

The n-strand braid group Bn has a standard presentation with generators

{σi, i = 1, 2, · · · , n− 1} and relations:

σiσj = σjσi, if |i− j| ≥ 2, (2.1)

σiσi+1σi = σi+1σiσi+1. (2.2)

If we add the relations σ2
i = 1 for each i, we recover the standard presen-

tation for Sn. In the group algebra k[Bn], where k is a field (in this paper k

will be either C or some rational functional field C(A) or C(q) over variables

A or q), we may deform the relations σ2
i = 1 to linear combinations (super-

positions in physical parlance) σ2
i = aσi + b for some a, b ∈ k. By rescaling

the relations, it is easy to show that there is only 1-parameter family of such

deformations. The first interesting quotient algebras are the Hecke algebras

of type A, denoted by Hn(q), with generators 1, g1, g2, · · · , gn−1 over Q(q)

and relations:

gigj = gjgi, if |i− j| ≥ 2, (2.3)

gigi+1gi = gi+1gigi+1. (2.4)

and

g2
i = (q − 1)gi + q. (2.5)

The Hecke relation 2.5 is normalized to have roots {−1, q} when the

corresponding quadratic equation is solved. The Hecke algebras Hn(q) at

q = 1 become C[Sn], hence they are deformations of C[Sn]. When q is

a variable, the irreps of Hn(q) are in one-to-one correspondence with the

irreps of C[Sn].

To obtain the Hecke algebras as quotients of C[Bn], we set q = A4, and

gi = A3σi, where A is a new variable, called the Kauffman variable since

it is the conventional variable for the Kauffman bracket below. Note that
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q = A2 in.KL The prefactor A3 is introduced to match the Hecke relation

2.5 exactly to a relation in the Temperley-Lieb algebras using the Kauffman

bracket. In terms of the new variable A, and new generators σi’s, the Hecke

relation 2.5 becomes

σ2
i = (A−A−3)σi +A−2. (2.6)

The Kauffman bracket <> is defined by the resolution of a crossing in

Figure 2.1

= A + A
-1

Fig. 2.1. Kauffman bracket

As a formula, σi = A · id + A−1Ui, where Ui is a new generator. The

Hecke algebra Hn(q) in variable A and generators 1, U1, U2, · · · , Un−1 is

given by relations:

UiUj = UjUi, if |i− j| ≥ 2, (2.7)

UiUi+1Ui − Ui = Ui+1UiUi+1 − Ui+1, (2.8)

and

U2
i = dUi, (2.9)

where d = −A2 −A−2.

The relation 2.9 is the same as relation 2.6, which is the Hecke relation

2.5. The relation 2.8 is the braid relation 2.4.

The Temperley-Lieb (TL) algebras, denoted as TLn(A), are further quo-

tients of the Heck algebras. In the TL algebras, we replace the relations 2.8

by

UiUi±1Ui = Ui, (2.10)

i.e., both sides of relation 2.8 are set to 0.

Prop 2.1.

The Kauffman bracket <>: k[Bn] −→ TLn(A) is a surjective algebra

homomorphism, where k = C(A).
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The proof is a straightforward computation.

When A is generic, the TL algebras TLn(A) are semi-simple, hence

TLn(A) ∼= ⊕iMatni(C(A)), where Matni are ni×ni matrices over C(A) for

some ni’s.

The generic Jones representation of the braid groups Bn is defined as

follows:

Definition 2.1. By the decomposition TLn(A) ∼= ⊕iMatni(C(A)), each

braid σ ∈ Bn is mapped to a direct sum of matrices under the Kauffman

bracket. It follows from Prop. 2.1 that the image matrix of any braid is

invertible and the map is a group homomorphism when restricted to Bn.

It is an open question whether or not the generic Jones representation is

faithful, i.e., are there non-trivial braids which are mapped to the identity

matrix?

2.3. Unitary Jones representations

The TL algebras TLn(A) have a beautiful picture description by L. Kauff-

man, inspired by R. Penrose’s spin-networks, as follows: fix a rectangle R

in the complex plane with n points at both the top and the bottom of R

(see Fig.2.2), TLn(A) is spanned formally as a vector space over C(A) by

embedded curves in the interior of R consisting of n disjoint arcs connect-

ing the 2n boundary points of R and any number of simple closed loops.

Such an embedding will be called a diagram or a multi-curve in physical

language, and a linear combination of diagrams will be called a formal dia-

gram. Two diagrams that are isotopic relative to boundary points represent

the same vector in TLn(A). To define the algebra structure, we introduce

a multiplication: vertical stacking from bottom to top of diagrams and ex-

tending bilinearly to formal diagrams; furthermore, deleting a closed loop

must be compensated for by multiplication by d = −A2−A−2. Isotopy and

the deletion rule of a closed trivial loop together will be called “d-isotopy”.

... ......... ...

, , ,

Fig. 2.2. Generators of TL

For our application, the variable A will be evaluated at a non-zero com-
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plex number. We will see later that when d = −A2 − A−2 is not a root

of a Chebyshev polynomial ∆i, TLn(A) is semi-simple over C, therefore,

isomorphic to a matrix algebra. But when d is a root of some Chebyshev

polynomial, TLn(A) is in general not semi-simple. Jones discovered a semi-

simple quotient by introducing local relations, called the Jones-Wenzl pro-

jectorsJo4We.KL Jones-Wenzl projectors have certain rigidity. Represented

by formal diagrams in TL algebras, Jones-Wenzl projectors make it possible

to describe two families of TQFTs labelled by integers. Conventionally the

integer is either r ≥ 3 or k = r−2 ≥ 1. The integer r is related to the order of

A, and k is the level related to the SU(2)-Witten-Chern-Simons theory. One

family is related to the SU(2)k-Witten-Reshetikhin-Turaev (WRT) TQFTs,

and will be called the Jones-Kauffman TQFTs. Although Jones-Kauffman

TQFTs are commonly stated as the same as WRT TQFTs, they are really

not. The other family is related to the quantum double of Jones-Kauffman

TQFTs, which are of the Turaev-Viro type. Those doubled TQFTs, la-

belled by a level k ≥ 1, are among the easiest in a sense, and will be called

diagram TQFTs. The level k = 1 diagram TQFT for closed surfaces is the

group algebras of Z2-homology of surfaces. Therefore, higher level diagram

TQFTs can be thought as quantum generalizations of the Z2-homology,

and the Jones-Wenzl projectors as the generalizations of the homologous

relation of curves in Figure 2.3.

=

Fig. 2.3. Z2 homology

The loop values d = −A2 −A−2 play fundamental roles in the study of

Temperley-Lieb-Jones theories, in particular the picture version of TLn(A)

can be defined over C(d), so we will also use the notation TLn(d). In the

following, we focus the discussion on d, though for full TQFTs or the dis-

cussion of braids in TLn(A), we need A’s. Essential to the proof and to the

understanding of the exceptional values of d is the trace tr: TLn(d) −→ C
defined by Fig.2.4. This Markov trace is defined on diagrams by (and then

extended linearly) connecting the endpoints at the top to the endpoints at

the bottom of the rectangle by n non crossing arcs in the complement of the

rectangle, counting the number # of closed loops (deleting the rectangle),

and then forming d#.

The Markov trace (x, y) � tr(xy) extends to a sesquilinear pairing on
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U

I
d=

2x = tr x( ) =

Fig. 2.4. Markov Trace

TLn(d), where bar (diagram) is reflection in a horizontal middle-line and

bar(coefficient) is complex conjugation.

Define the nth Chebyshev polynomial 4n(x) inductively by 40 =

1,41 = x, and 4n+1(x) = x4n(x) − 4n−1(x). Let cn be the Catalan

number cn = 1
n+1

(
2n
n

)
. There are cn different diagrams {Di} consisting of

n disjoint arcs up to isotopy in the rectangle R to connect the 2n bound-

ary points of R. These cn diagrams generate TLn(d) as a vector space. Let

Mcn×cn = (mij) be the matrix of the Markov trace Hermitian pairing in a

certain order of {Di}, i.e. mij = tr(DiDj), then we have:

Det(Mcn×cn) =
n∏

i=1

∆i(d)
an,i , (2.11)

where an,i =
(

2n
n−i−2

)
+
(

2n
n−i

)
− 2
(

2n
n−i−1

)
.

This is derived in.DGG

As a quick consequence of this formula, we have:

Lemma 2.1. The dimension of TLn(d) as a vector space over C(d) is

cn if d is not a root of the Chebyshev polynomials ∆i, 1 ≤ i ≤ n, where

cn = 1
n+1

(
2n
n

)
.

Proof. By the formula 2.11, if d is not a root of ∆i, 1 ≤ i ≤ n, then {Di}
are linearly independent. As a remark, since each Di is a monomial of Ui’s,

it follows that {Ui} generate TLn(d) as an algebra.

Next we show the existence and uniqueness of the Jones-Wenzl projec-

tors.

Theorem 2.1. For d ∈ C that is not a root of 4k for all k < n, then

TLn(d) contains a unique element pn characterized by: p2
n = pn 6= 0 and

Uipn = pnUi = 0 for all 1 ≤ i ≤ n − 1. Furthermore pn can be written as

pn = 1 + U where U =
∑
cjhj , hj a product of U

′

i s, 1 ≤ i ≤ n − 1 and

cj ∈ C.
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Proof. Suppose pn exists and can be expanded as pn = a1 + U , then

p2
n = pn(a1 + U) = pn(a1) = apn = a21 + aU , so a = 1. Now check

uniqueness by supposing pn = 1+U and p
′

n = 1+V both have the properties

above and expand pnp
′

n from both sides:

p
′

n = 1 · p′

n = (1 + U)p
′

n = pnp
′

n = pn(1 + V ) = pn · 1 = pn.

The proof is completed by H. Wenzl’sWe inductive construction of pn+1

from pn which also reveals the exact nature of the “generic” restriction on

d. The induction is given in Figure 2.5, where µn = ∆n−1(d)
∆n(d) .

n

n

n

...

...
...

...

p
1 = 1

p

p

p

p
2

=

d

1

p
n+1

= µn

Fig. 2.5. Jones Wenzl projectors

Tracing the inductive definition of pn+1 yields tr(pn+1) = d tr(pn) −
4n−1

4n
tr(pn) showing tr(pn) satisfies the Chebyshev recursion (and the initial

data). Thus tr(pn) = 4n.

It is not difficult to check that Uipn = pnUi = 0, i < n. (The most

interesting case is Un−1.) ConsultKL orTu for details.

The idempotent pn is called the Jones-Wenzl idempotent, or the Jones-

Wenzl projector, and plays an indispensable role in the pictorial approach

to TQFTs.

Theorem 2.2. (1): If d ∈ C is not a root of Chebyshev polynomials ∆i, 1 ≤
i ≤ n, then the TL algebra TLn(d) is semisimple.

(2): Fixing an integer r ≥ 3, a non-zero number d is a root of 4i, i < r

if and only if d = −A2 − A−2 for some A such that A4l = 1, l ≤ r. If

d = −A2 − A−2 for a primitive 4r-th root of unity A for some r ≥ 3 or a

primitive 2rth or rth for r odd, then the TL algebras {TLn(d)} modulo the

Jones-Wenzl idempotent pr−1 are semi-simple.
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Proof.

(1): TLn(d) is a ∗-algebra. By formula 2.11, the determinant of the

Markov trace pairing is
∏n

i=1 ∆i(d)
an,i , hence the ∗-structure is non-

degenerate. By Lemma B.2, TLn(d) is semi-simple.

(2): The first part follows from ∆n(d) = (−1)n A2n+2−A−2n−2

A2−A−2 . In Section

5, we will show that the kernel of the Markov trace Hermitian pairing is

generated by pr−1, and the second part follows.

The semi-simple quotients of TLn(d) in the above theorem will be called

the Temperley-Lieb-Jones (TLJ) algebras or just Jones algebras, denoted

by TLJn(d). The TLJ algebras are semi-simple algebras over C, therefore

it is isomorphic to a direct sum of matrix algebras, i.e.,

TLJn(d) ∼= ⊕iMatni(C). (2.12)

As in the generic Jones representation case, the Kauffman bracket followed

by the decomposition yields a representation of the braid groups.

Prop 2.2.

(1): When the Markov trace Hermitian paring is ±-definite, then Jones

representations are unitary, but reducible. When A = ±ie±2πi
4r , the Markov

trace Hermitian pairing is +-definite for all n’s.

(2): Given a braid σ ∈ Bn, the Markov trace is a weighted trace on the

matrix decomposition 2.12, and when multiplied by (−A)−3σ results in the

Jones polynomial of the braid closure of σ evaluated at q = A4.

Unitary will be established in Section 10, and reducibility follows from

the decomposition 2.12. That the Markov trace, normalized by the framing-

dependence factor, is the Jones polynomial follows from direct verification

of invariance under Reidermeister moves or Markov’s theorem (see e.g.KL).

2.4. Uniqueness of Jones-Wenzl projectors

Fix an r ≥ 3 and a primitive 4rth root of unity or a primitive 2rth or

rth root of unity for r odd, and d = −A2 − A−2. In this section, we prove

that TLd has a unique ideal generated by pr−1. When A is a primitive 4rth

root of unity, this is proved in the Appendix ofFn by F. Goodman and

H. Wenzl. Our elementary argument works for all A as above.

Notice that TLd admits the structure of a (strict) monoidal category,

with the tensor product given by horizontal “stacking”, e.g., juxtaposition

of diagrams. This tensor product (denoted ⊗) is clearly associative, and 10,

the identity on 0 vertices or the empty object, serves as a unit. The tensor

product and the original algebra product on TLd satisfy the interchange
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law, (f ⊗ g) · (f ′ ⊗ g′) = (f · f ′) ⊗ (g · g′), whenever the required vertical

composites are defined.

We may use this notation to recursively define the projectors pk: pk+1 =

pk ⊗ 11 − µk(pk ⊗ 11)U
k+1
k (pk ⊗ 11). We define p0 = 10, p1 = 11 and

µk = ∆k−1

∆k
. Using this we can prove a sort of “decomposition theorem” for

projectors:

Prop 2.3. pk =
(⊗b k

r c
i=1 pr

)
⊗ p(k mod r).

Proof. We proceed by induction, using the recursive definition of the

Jones-Wenzl projectors. For p1 the statement is trivial. Assuming the as-

sertion holds for pk, we then have (let m = k mod r):

pk+1 = pk ⊗ 11 − µk(pk ⊗ 11)U
k+1
k (pk ⊗ 11)

= (

b k
r c⊗

i=1

pr) ⊗ pm ⊗ 11 − µk((

b k
r c⊗

i=1

pr) ⊗ pm ⊗ 11)U
k+1
k ((

b k
r c⊗

i=1

pr) ⊗ pm ⊗ 11)

Then, if m 6= 0,

= (

b k
r c⊗

i=1

pr) ⊗ pm ⊗ 11 −

µk((

b k
r c⊗

i=1

pr) ⊗ pm ⊗ 11)(1k−m ⊗ Um+1
m )((

b k
r c⊗

i=1

pr) ⊗ pm ⊗ 11)

= (

b k
r c⊗

i=1

pr) ⊗
(
pm ⊗ 11 − µm(pm ⊗ 11)U

m+1
m (pm ⊗ 11)

)

(The bk
r
c copies of pr can be factored out of the second term by prpr = pr.)

= (

b k
r c⊗

i=1

pr) ⊗ pm+1

If m < r − 1, then m + 1 = (k + 1) mod r; if m = r − 1, then we get one

more copy of pr, as needed. So it remains to consider the case above where

k mod r = 0. But then µk = µk mod r = µ0 = 0, so that

pk+1 = (

k
r⊗

i=1

pr) ⊗ 11 = (

b k+1
r c⊗

i=1

pr) ⊗ p1

as desired.
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In analogy with the standard notion from ring theory, an ideal in TL is

defined to be a class of morphisms which is internally closed under addition,

and externally closed under both the vertical product (composition) · and

the horizontal product ⊗. Given such an ideal I , we may form the quotient

category TL/I , which has the same objects as TL, and hom-sets formed

by taking the usual quotient of Hom(m,n) by those morphisms in I ∩
Hom(m,n).

We can prove that <pr−1> is an ideal.

Lemma 2.2. The ideal Rd =<pr−1> is a proper ideal.

Proof. It suffices to show that the ⊗-identity 10 is not in the ideal. In

order for 10 to be in the ideal, it would have to be obtained from some

closed network (e.g., element of Hom(0,0)) which contains at least one

copy of pr−1. Fixing such a projector, we expand all other terms in the

network (this includes getting rid of closed loops), so that we are left with

a linear combination of closed networks, each having exactly one r−1 strand

projector. Now, considering each term seperately, if there are any strands

that leave and re-enter the projector on the same side, then the network

is null (since pr−1U
r−1
i = 0). So the only remaining terms will be strand

closures of pr−1; but by the above, these are null as well, so that every term

in the expansion vanishes.

Since every closed network with pr−1 is null, it follows that 10 6∈ Rd,

and therefore Rd is a proper ideal of TL.

In fact, this same ideal is generated by any pk for k ≥ r − 1; this is

established via a sequence of lemmas.

Lemma 2.3. <pr>=<pr−1>

Proof. It is clearly sufficient to show pr−1 ∈<pr>. Set x = pr ⊗ 11, and

expand pr in terms of pr−1 according to the recursive definition. Then con-

nect the rightmost two strands in a loop: e.g., by pre- and post-multiplying

by the appropriate elements of Hom(r − 1, r + 1) and Hom(r + 1, r − 1),

respectively. Using the fact that pr−1pr−1 = pr−1, the resulting diagram

simplifies to (d − µr−1)pr−1; and since µr−1 6= d, the coefficient is invert-

ible, so that pr−1 ∈<pr>.

Lemma 2.4. For any integer k ≥ 1, <pkr>=<pr−1>.
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Proof. By induction; the base case is established in the previous Lemma.

For k ≥ 2, we can write pkr = p(k−2)r ⊗ pr ⊗ pr, and then consider the

tangle pkr ⊗1r. By again pre- and post-multiplying by appropriate tangles,

and using prpr = pr, we see that p(k−1)r ∈<pkr>.

Lemma 2.5. For any k ≥ r − 1, <pk>=<pr−1>.

Proof. This basically uses the same technique as the previous lemma, com-

bined with the fact that pr(pl ⊗ 1r−l) = pr (seeKL).

Let m = k mod r; if m = 0, then this falls under the case of the previous

lemma, so 0 < m < r. Now consider x = pk ⊗ 12r−m; we can use the

technique of the previous lemma to merge the last three groups of r strands

into one, so that the resulting element x′ = pb k
r cr ⊗ (pr(pl ⊗ 1r−l)1r). But

pr(pl ⊗ 1r−l) = pr, so that x′ = p(b k
r c+1)r, whence, by the previous lemma,

<pr−1>=<pk>.

Thus, in the quotient category TL/Rd, all k-projectors, for k ≥ r − 1,

are null.

We have shown that Rd is an ideal; our strategy in showing that Rd is

unique will be to show that it has no proper ideals, and that the quotient

TL/Rd has no nontrivial ideals. To show the latter fact, we will show that

the ideal (in the quotient) generated by any element is in fact all of TL/Rd.

We note also that TL/Rd may be described succinctly as the subcate-

gory of TL whose tangles have less than r − 1 “through-passing” strands.

This subcategory does not close under ⊗ as described above, but can be

shown to be well-defined under the reduction 1r−1 ; (1r−1 − pr−1). This

view is not necessary in what follows, so we do not pursue it further; but

it may be useful in thinking about the quotient category.

A preliminary observation is that TL/Rd has no zero divisors:

Lemma 2.6. Let x, y ∈ TL/Rd. If x⊗ y = 0, then x = 0 or y = 0.

Proof. The statement clearly holds in TL; so the only way it could fail in

the quotient is if pr−1 had a tensor decomposition.

So, suppose, x ⊗ y = pr−1, where x is a tangle on k > 0 strands and

y is a tangle on l > 0 strands, both nontrivial (that dom(x) = cod(x) and

dom(y) = cod(y) follows from the fact that pr−1pr−1 = pr−1). Then the

properties of projectors and the interchange law give:

x⊗ y = (x⊗ y)(x⊗ y) = xx ⊗ yy =⇒ xx = x, yy = y
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Further (x ⊗ y)Uk+l
i = 0 for all i, so that xUk

i ⊗ y = 0 =⇒ xUk
i = 0, and

likewise yU l
i = 0. Thus both x and y are projectors. But the strand closure

of pk ⊗ pl is ∆k∆l, which are both nonzero, and the strand closure of pr−1

is zero, so we have reached a contradiction.

The next lemma introduces an algorithm that is the key to the rest of

the proof:

Lemma 2.7. Any nonzero ideal I ⊂ TL/Rd contains at least one element

of Hom(r−3, r−3).

Proof. Let x 6= 0 ∈ I , say x ∈ Hom(m,n). First, if m 6= n, then we

can tensor with the unique basis element in either Hom(0,2) or Hom(2,0)

the appropriate number of times so that we get an x′ ∈ Hom(k,k) ∈ I,

where k = max{m,n}. (By the previous lemma, x′ 6= 0.) If k ≤ r− 3, then

x′ ⊗ 1r−3−k ∈ Hom(r − 3, r− 3) is an element of the ideal; so it remains to

show the case where k > r − 3.

First, assume k and r−3 have the same parity; if not, use x′⊗11 instead

of x′. Then let k0 = k, x′0 = x′, and use the following algorithm (starting

with i = 0):

(1) If ki = r − 3, then stop: x′i ∈ Hom(r − 3, r− 3) is in the ideal.

(2) Since ki ≥ r − 1, and x′i 6= 0, it follows that x′i 6= αpki , since all

r − 1 and above projectors are null in TL/Rd. Recall that pki is the

unique element in Hom(ki,ki) such that (i) Uki

j pki = pkiU
ki

j = 0 for

1 ≤ j < ki; and (ii) pkipki = pki . From this it follows that the only

elements which satisfy (i) are αpki , for some α ∈ C. Therefore, since

x′i 6= αpki , there exists some Ui = Uki

ji
such that Uix

′ 6= 0.

(3) Using an argument similar to the above, there exists some U ′
i = Uki

j′i
such that (Uix

′)U ′
i 6= 0.

(4) Set Vi to be the unique basis element in Hom(ki − 2,ki) which connects

the ji and ji + 1 vertices on the top (codomain) objects, and connects

the remaining k − 2 vertices on top and bottom to each other. Then

ViUix
′U ′

i can be described as being exactly like Uix
′U ′

i , except that the

top half-loop of the Ui has been factored out as d, thus reducing the

domain object by two vertices. It is thus clear that ViUix
′U ′

i 6= 0.

(5) Similarly, choose V ′
i to be the unique element in Hom(ki,ki−2) con-

necting the j′i and j′i +1 vertices of the domain object, thus closing the

half loop of U ′
i . Then ViUix

′U ′
iV

′
i 6= 0.

(6) Set x′i+1 = ViUix
′U ′

iV
′
i , ki+1 = ki − 2, and return to step (1).
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After j = 1
2 (k0 − (r − 3)) passes through the algorithm, the desired

element x′j ∈ I is produced.

The proof of the previous Lemma is useful in establishing that Rd has

no proper sub-ideals.

Lemma 2.8. For any x ∈ Rd, x 6= 0, then <x>= Rd.

Proof. Use the techniques previous Lemma to get an element x′ ∈<x>
such that x′ ∈ Hom(k,k), and k ≡ r−1 mod 2. Then follow the algorithm,

except for on steps (2) and (3): for, since x′i ∈ Rd, it is possible that

x′i = αpki . If this is not the case, proceed with the algorithm as it is stated.

However, if x′i = αpki , then it follows that <x>= Rd, by Lemma 2.5. So

it only remains to show that this does happen at some point before the

algorithm terminates: e.g., that for some i, x′i = αpki .

But, suppose this didn’t happen; then, the algorithm goes through to

completion, yielding an element y ∈<x> such that y ∈ Hom(r − 3, r − 3),

y 6= 0. But then y 6∈ Rd, since every nonzero element of Rd must have at

least r − 1 strands. This contradicts the fact that y ∈<x>⊂ Rd; therefore,

there must be some i such that x′i = αpki , and so the lemma follows.

Now we can put all of this together to obtain our desired result:

Theorem 2.3. TLd has a unique proper nonzero ideal when A is as in

Lemma 3.1.

Proof. By Lemma 2.2, Rd =<pr−1> is a proper ideal, which, by Lemma

2.8, has no proper sub-ideals. To prove the theorem, therefore, it suffices to

show that the quotient category TL/Rd has no proper nonzero ideals.

Consider <x>, for any x ∈ TL/Rd. By Lemma 2.7, there exists some

y ∈<x> such that x ∈ Hom(r − 3, r − 3). But now, instead of stopping at

this point in the algorithm, we continue the loop, with the possibility that

x′i might actually be a projector. So we again modify steps (2) and (3), as

below:

(1’) If ki = 0, stop; set x′ = x′i.
(2’) If x′i = αpki for some constant α, then stop, with x′ = x′i. Otherwise,

proceed with step (2) of the original algorithm.

(3’) If Uix
′
i = αpki for some constant α, then stop, with x′ = x′i. Otherwise,

proceed with step (3) of the original algorithm.
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So now, when the algorithm terminates, we are left with some x′ ∈<x>,

with either: (a) x′ = α10, α 6= 0; or (b) x′ = αpk for some 1 ≤ k < r − 1,

α 6= 0. In case (a), we have that 10 ∈<x>, so that <x>= TL/Rd. In case

(b), consider the element y = 1
αx

′ ⊗ 1k = pk ⊗ 1k ∈<x>. We can then

pre- and post-multiply by the elements of Hom(0,2k) and Hom(2k,0),

respectively, which join the left group of k strands to the right group of

k strands. In other words, the resulting element is simply ∆k, the strand

closure of pk, times 10. Since ∆k 6= 0 for 1 ≤ k ≤ r − 2, it follows that

10 ∈<x>, so that we still have <x>= TL/Rd.

So we have shown that TL/Rd has no proper nonzero ideals, and there-

fore, that TL has the unique ideal Rd.

As a corollary, we have the following:

Theorem 2.4. 1):If d is not a root of any Chebyshev polynomial ∆k, k ≥ 1,

then the Temperley-Lieb category TLd is semisimple.

2): Fixing an integer r ≥ 3, a non-zero number d is a root of 4k,

k < r if and only if d = −A2 − A−2 for some A such that A4l = 1, l ≤
r. If d = −A2 − A−2 for a primitive 4r-th root of unity A or 2r-th r

odd or r-th r odd for some r ≥ 3, then the tensor category TLJd has a

unique nontrivial ideal generated by the Jones-Wenzl idempotent pr−1. The

quotient categories TLJd are semi-simple.

3. Diagram TQFTs for closed manifolds

3.1. “d-isotopy”, local relation, and skein relation

Let Y be an oriented compact surface, and γ ⊂ Y be an imbedded un-

oriented 1-dimensional submanifold. If ∂Y 6= φ then fix a finite set F of

points on ∂Y and require ∂γ = F transversely. That is, γ a disjoint union

of non-crossing loops and arcs, a “multi-curve”. Let S be the set of such

γ’s. To “linearize” we consider the complex span C[S] of S, and then impose

linear relations. We always impose the “isotopy” constraint γ ′ = γ, if γ′ is

isotopic to γ. We also always impose a constraint of the form γ ∪O = d · γ
for some d ∈ C\{0}, independent of γ (see an example below that we do

not impose this relation). The notation γ ∪ O means a multi curve made

from γ by adding a disjoint loop O to γ where O is “trivial” in the sense

that it is the boundary of a disk B2 in the interior of Y . Taken together

these two constraints are “d−isotopy” relation: γ ′ − 1
d · (γ ∪O) = 0 if γ′ is

isotopic to γ.

A diagram local relation or just a local relation is a linear relation on
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multicurves γ1, . . . , γm which are identical outside some disk B2 in the

interior of Y , and intersect ∂B2 transversely. By a disk here, we mean a

topological disk, i.e., any diffeomorphic image of the standard 2-disk in the

plane. Local relations are usually drawn by illustrating how the γi differ on

B2. So the “isotopy” constraint has the form:

=

Fig. 3.1. Isotopy

and the “d−constraint” has the form:

d =

Fig. 3.2. d constraint

Local relations have been explored to a great generality inWal2 and en-

code information of topologically invariant partition functions of a ball. We

may filter a local relation according to the number of points of γi ∩ ∂B2

which may be 0, 2, 4, 6, . . . since we assume γ transverse to ∂B2. “Isotopy”

has degree = 2 and “d-constraint” degree = 0.

Formally, we define a local relation and a skein relation as follows:

Definition 3.1.

(1) Let {Di} be all the diagrams on a disk B2 up to diffeomorphisms of

the disk and without any loops. The diagrams {Di} are filtered into

degrees = 2n according to how many points of Di ∩ ∂B2, and there

are Catalan number cn many diagrams of degree 2n (c0 = 1 which is

the empty diagram). A degree = 2n diagram local relation is a formal

linear equation of diagrams
∑

i ciDi = 0, where ci ∈ C, and ci = 0 if

Di is not of degree = 2n.

(2) A skein relation is a resolution of over-/under-crossings into formal

pictures on B2. If the resolutions of crossings for a skein relation are all

formal diagrams, then the skein relation induces a set map from C[Bn]

to TLn(d).
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The most interesting diagram local relations are the Jones-Wenzl pro-

jectors (the rectangle R is identified with a disk B2 in an arbitrary way).

When we impose a local relation on C[S], we get a quotient vector space

of C[S] as follows: for any multi-curve γ and a disk B2 in the interior of

Σ, if γ intersects B2 transversely and the part γ ∩ B2 of γ in B2 matches

one of the diagram Dj topologically in the local relation
∑

i ciDi = 0, and

cj 6= 0, then we set γ = −∑i6=j
ci

cj
γ′i in C[S] where γ′i is obtained from γ

by replacing the part γ ∩ B2 of γ in B2 by the diagram Di.

Kauffman bracket is the most interesting skein relation in this paper.

More general skein relations can be obtained from minimal polynomials

of R-matrices from a quantum group. Kauffman bracket is an unoriented

version of the SU(2)q case.

As a digression we describe an unusual example where we impose

“isotopy” but not the “d-constraint”. It is motivated by the theory of fi-

nite type invariants. A singular crossing (outside S) suggests the “type 1”

relation in Figure 2.3.

This relation is closely related to Z2−homology and is compatible with

the choice d = 1. We will revisit it again under the name Z2−gauge theory.

Now consider the “type 2” relation Figure 3.4 which comes by resolving

the arc in Figure 3.3 using either arrow along the arc. (Reversing the arrow

leaves the relation Figure 3.4 on unoriented diagrams unchanged.)

Fig. 3.3. Singular arc

− − +

Fig. 3.4. Resolution relation

Formally we may write the resolution relation Figure 3.4 as the square

of the 2 term relation drawn in Figure 3.5.

Interpreting “times” as “vertical stacking” makes the claim immediate

as shown in Figure 3.6.

Since the two term relation Figure 3.5 does not appear to be a conse-
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−

Fig. 3.5. Two term relation

− − +=( (
2

−

Fig. 3.6. Two term squared

quence of the resolution relation Figure 3.4, dividing by the resolution rela-

tion induces nilpotence in the algebra (of degree = 2 diagrams under vertical

stacking). By imposing the “d” relation we find that only semi-simple al-

gebras are encountered. This is closer to the physics (the simple pieces are

symmetries of a fixed particle type or “super-selection sector”) and easier

mathematically so henceforth we always assume a “d−constraint” for some

d ∈ C\{0}.

3.2. Picture classes

Fix a local relation R = 0. Given an oriented closed surface Y . The vector

space C[S] is infinitely dimensional. We define a finitely dimensional quo-

tient of C[S] by imposing the local relation R as in last section: C[S] modulo

the local relation. The resulting quotient vector space will be called the pic-

ture space, denoted as PicR(Y ). Elements of PicR(Y ) will be called picture

classes. We will denote PicR(Y ) as Pic(Y ) when R is clear or irrelevant for

the discussion.

Prop 3.1.

(1) Pic(Y ) is independent of the orientation of Y .

(2) Pic(S2) = C∅, so it is either 0 or C.

(3) Pic(Y1 q Y2) ∼= Pic(Y1) ⊗ Pic(Y2).

(4) Pic(Y ) is a representation of the mapping class group M(Y ). Further-

more, the action of M(Y ) is compatible with property (3).

Proof.

Properties (1) (3) and (4) are obvious from the definition. For (2), since

every simple closed curve on S2 bounds a disk, a multicurve with m loops
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is dm∅ by “d-isotopy”. Therefore, if ∅ is not 0, it can be chosen as the

canonical basis.

For any choice of A 6= 0, we may impose the Jones-Wenzl projector

as a local relation. The resulting finitely dimensional vector spaces Pic(Y )

might be trivial. For example, if we choose a d 6= ±1 and impose the

Jones-Wenzl projector p2 = 0 as the local relation. To see that the resulted

picture spaces = 0, we reconnect two adjacent loops in a disk into one

using p2 = 0; this gives the identity (d2 − 1)∅ = 0. If d 6= ±1, then ∅ = 0,

hence Pic(S2) = 0. Even if Pic(Y )’s are not 0, they do not necessarily form

a TQFT in general. We do not know any examples. If exist, such non-

trivial vector spaces might have interesting applications because they are

representations of the mapping class groups. In the cases of Jones-Wenzl

projectors, only certain special choices of A’s lead to TQFTs.

3.3. Skein classes

Fix a d ∈ C\{0}, a skein relation K = 0 and a local relation R = 0. Given

an oriented 3-manifold X (possibly with boundaries). Let F be all the non-

crossing loops in X , i.e., all links l’s in the interior of X , and C[F] be their

linear span. We impose the “d-isotopy” relation on C[F], where a knot is

trivial if it bounds a disk in X . For any 3-ball B3 inside X and a link l,

the part l∩B3 of l can be projected onto a proper rectangle R of B3 using

the orientation of X (isotopy l if necessary). Resolving all crossings with

the given skein relation K = 0, we obtain a formal diagram in R, where

the local relation R = 0 can be applied. Such operations introduce linear

relations onto C[F]. The resulting quotient vector space will be called the

skein space, denoted by Sd,K,R(X) or just S(X), and elements of S(X) will

be called skein classes.

As mentioned in the introduction, the empty set ∅ has been regarded

as a manifold of each dimension. It is also regarded as a multicurve in

any manifold Y or a link in any X , and many other things. In the case of

skein spaces, the empty multicurve represents an element of the skein space

S(X). For a closed manifold X , this would be the canonical basis if the

skein space S(X) ∼= C. But the empty skein is the 0 vector for some closed

3-manifolds. In these cases, we do not have a canonical basis for the skein

space S(X) even if S(X) ∼= C.

Skein spaces behave naturally with respect to disjoint union, inclusion

of spaces, orientation reversal, and self-diffeomorphisms: the skein space of

a disjoint union is isomorphic to the tensor product; an orientation pre-
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serving embedding from X1 → X2 induces a linear map from S(X1) to

S(X2), orientation reversal induces a conjugate-linear map on S(X), and

diffeomorphisms of X act on S(X) by moving pictures around, therefore

S(X) is a representation of the orientation preserving diffeomorphisms of

X up to isotopy.

Prop 3.2.

(1) If Y is oriented, then Pic(Y ) is an algebra.

(2) If ∂X = Y , then Pic(Y ) acts on S(X). If Y is oriented, then S(X) is a

representation of Pic(Y ).

Proof.

(1): Given two multicurves x, y in Y , and consider Y × [−1, 1], draw x

in Y × 1 and y in Y ×−1. Push x into the interior of Y × [0, 1] and y into

Y × [−1, 0]. Isotope x, y so that their projections onto Y × 0 are in general

position. Resolutions of the crossings using the given skein relation result in

a formal multicurve in Y , which is denoted by xy. We define [x][y] = [xy],

where [·] denotes the picture class. Suppose the local relation is R = 0, and

let R̂ be a multicurve obtained from the closure of R arbitrarily outside a

rectangle R where the local relation resides. To show that this multiplication

is well-defined, it suffices to show that R̂y = 0. By general position, we may

assume that y miss the rectangle R. Then by definition, R̂y = 0 no matter

how we resolve the crossings away from the local relation R. It is easy to

check that this multiplication yields an algebra structure on Pic(Y ).

(2): The action is defined by gluing a collar of the boundary and then

re-parameterizing the manifold to absorb the collar. Let Yε be Y × [0, ε],

which can be identified with a small collar neighborhood of Y in X . Given

a multicurve x in X and γ in Y , draw γ on Y ×0 and push it into Yε. Then

the union γ ∪ x is a multicurve in X+ = Yε ∪Y X . Absorbing Yε of X+ into

X yields a multicurve γ ∪ x in X , which is defined to be γ.x.

3.4. Recoupling theory

In this section, we recall some results of the recoupling theory in,KL and

deduce some needed results for later sections.

Fix a A ∈ C\{0}, two families of numbers are important for us: the

Chebyshev polynomials ∆n(d) and the quantum integers [n]A = A2n−A−2n

A2−A−2 .

When A is clear from the context, we will drop the A from [n]A. The

Chebyshev polynomials and quantum integers are related by the formula

∆n(d) = (−1)n[n+ 1]A.



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

42 M. Freedman, C. Nayak, K. Walker and Z. Wang

Note that [−n]A = −[n]A, [n]−A = [n]Ā = [n]A, [n]iA = (−1)n+1[n]A.

Some other relations of quantum integers depend on the order of A.

Lemma 3.1. Fix r ≥ 3.

(1) If A is a primitive 4rth root of unity, then [n+ r] = −[n] and [r−n] =

[n]. The Jones-Wenzl projectors {pi} exist for 0 ≤ i ≤ r − 1, and

Tr(pr−1) = ∆r = 0.

(2) If r odd and A is a primitive 2rth root of unity, then [n+ r] = [n] and

[r−n] = −[n]. The Jones-Wenzl projectors {pi} exist for 0 ≤ i ≤ r−1,

and Tr(pr−1) = ∆r = 0.

(3) If r odd and A is a primitive rth root of unity, then [n + r] = [n] and

[r−n] = −[n]. The Jones-Wenzl projectors {pi} exist for 0 ≤ i ≤ r−1,

and Tr(pr−1) = ∆r = 0.

The proof is obvious using the induction formula for pn in Lemma 2.1,

and [n] 6= 0 for 0 ≤ n ≤ r − 1 for such A’s.

Fix an r and A as in Lemma 3.1, and let I be the range that pi exists

and Tr(pi) 6= 0. Let LA = {pi}i∈I , then I = {0, 1, · · · , r− 2}. Both LA and

I will be called the label set. Note that if A is a primitive 2rth root of unity

and r is even, then {pi} exist for 0 ≤ i ≤ r−2
2 , and Tr(p r−2

2
) = 0.

Given a ribbon link l in S3, i.e. each component is a thin annulus, also

called a framed link, then the Kauffman bracket of l, i.e. the Kauffman

bracket and “d-isotopy” skein class of l, is a framed version of the Jones

polynomial of l, denoted by < l >A. The Kauffman bracket can be gen-

eralized to colored ribbon links: ribbon links that each component carries

a label from LA; the Kauffman bracket of a colored ribbon link l is the

Kauffman bracket of the formal ribbon link obtained by replacing each

component a of l with its label pi inside the ribbon a and thickening each

component of pi inside a into small ribbons. Since S3 is simply-connected,

the Kauffman bracket of any colored ribbon link is a Laurent polynomial

in A, hence a complex number.

Let Hij be the colored ribbon Hopf link in the plane labelled by Jones-

Wenzl projectors pi and pj , then the Kauffman bracket of Hij is

s̃ij = (−1)i+j [(i+ 1)(j + 1)]A. (3.1)

The matrix s̃ = (s̃ij)i,j∈I is called the modular s̃-matrix. Let s̃even be the

restriction of s̃ to even labels. Define ī = k − i = r − 2 − i.
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Lemma 3.2.

(1) If A is a primitive 4rth root of unity, then the modular s̃ matrix is

non-singular.

(2) If r is odd and A is a primitive 2rth or rth root of unity, then s̃īj = s̃ij .

(3) If r odd, and A is a primitive 2rth root of unity or rth root of unity,

then the modular s̃ has rank = r−1
2 . Moreover, s̃ = s̃even ⊗

(
1 1

1 1

)
.

Proof.

Since s̃ is a symmetric real matrix, so the rank of s̃ is the same as s̃2.

By the formula 3.2, we have (s̃2)ij

=
(−1)i+j

(A2 −A−2)2

r−2∑

l=0

[A2(i+1)(l+1)−A−2(i+1)(l+1)][A2(l+1)(j+1)−A−2(l+1)(j+1)]

=
(−1)i+j

(A2 −A−2)2

r−2∑

l=0

[A2(i+1)(l+1)+2(l+1)(j+1) +A−2(i+1)(l+1)−2(l+1)(j+1)

−A2(i+1)(l+1)−2(l+1)(j+1) −A−2(i+1)(l+1)+2(l+1)(j+1) ].

The first sum
∑r−2

l=0 A
2(i+1)(l+1)+2(l+1)(j+1) is a geometric se-

ries = A2(i+j+2)−(A2(i+j+2))r

1−A2(i+j+2) if A2(i+j+2) 6= 1. The second sum∑r−2
l=0 A

−2(i+1)(l+1)−2(l+1)(j+1) is the complex conjugate of the first sum.

The third sum −∑r−2
l=0 A

2(i+1)(l+1)−2(l+1)(j+1) is also a geomet-

ric series = −A2(i−j)−(A2(i−j))r

1−A2(i−j) if A2(i−j) 6= 1. The 4th sum

−∑r−2
l=0 A

−2(i+1)(l+1)+2(l+1)(j+1) is the complex conjugate of the third sum.

If A is a 4rth primitive, since 0 ≤ i, j ≤ r − 2, we have 4 ≤ 2(i +

j + 2) ≤ 4r − 4 and −(r − 2) ≤ i − j ≤ r − 2. Hence, A2(i+j+2) 6= 1

and A2(i−j) 6= 1 unless i = j. The first sum and the second sum add

to A2(i+j+2)−(−1)i+j−1+(−1)i+jA2(i+j+2)

1−A2(i+j+2) . So if i + j is even, then = −2; if

i + j is odd, then = 0. If A2(i−j) 6= 1, then the third and 4th add to

−A2(i−j)−(−1)i−j−1+(−1)i−jA2(i−j)

1−A2(i−j) . It is = 2 if i− j is even and = 0 if i− j

odd. Therefore, if i 6= j, the four sums add to 0 and if i = j, then they

add to −2 − 2(r − 1) = −2r. It follows that s̃2 is a diagonal matrix with

diagonal entries = −2r
(A2−A−2)2 .

If A is a 2rth or rth primitive, if A2(i+j+2) 6= 1, then the first sum −1.

The second sum is also −1 since it is the complex conjugate. If A2(i−j) 6= 1,

then the third sum is = 1 and so is the 4th sum. It follows that if neither

A2(i+j+2) = 1 nor A2(i−j) = 1, then the (i, j)th entry of s̃2 is 0.
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If A2(i+j+2) = 1, then 2(i + j + 2) = r, 2r, 3r as 0 ≤ i, j ≤ r − 2 and

4 ≤ 2(i+j+2) ≤ 4r−4. When r is odd, 2(i+j+2) = 2r, so i = j̄. Therefore,

if i + j + 2 6= r, the first and second sum is −1. If i+ j + 2 = r, then the

first and second sum both are r − 1. If A2(i−j) = 1, then 2(i− j) = −r, 0, r
as −2(r− 2) ≤ 2(i− j) ≤ 2(r− 2). It follows that i = j as r is odd. If i = j,

the third and 4th sum both are = −(r − 1). Put everything together, we

have if i 6= j or i + j 6= r − 2, then (s̃2)ij = 0. If i = j, then i+ j 6= r − 2

because r − 2 is odd, and (s̃2)ij = −2r
(A2−A−2)2 . If i+ j = r − 2, then i 6= j,

and (s̃2)ij = −2r
(A2−A−2)2 . Hence s̃2 = −2r

(A2−A−2)2 (mij), where mij = 0 unless

i = j or i+ j = k = r − 2.

We define a colored tangle category ∆A based on a label set LA. Con-

sider C × I , the product of the plane C with an interval I , the objects of

∆A are finitely many labelled points on the real axis of C identified with

C×{0} or C×{1}. A morphism between two objects are formal tangles in

C × I whose arc components connect the objects in C × {0} and C × {1}
transversely with same labels, modulo Kauffman bracket and Jones-Wenzl

projector pr−1. Horizontal juxtaposition as a tensor product makes ∆A into

a strict monoidal category.

The quantum dimension di of a label i is defined to the Kauffman

bracket of the 0-framed unknot colored by the label i. So di = ∆i(d).

The total quantum order of ∆A is D =
√∑

i d
2
i , so D =

√
−2r

(A2−A−2)2 .

The Kauffman bracket of the 1-framed unknot is of the form θidi, where

θi = A−i(i+2) is called the twist of the label i. Define p± =
∑

i∈I θ
±1
i d2

i ,

then D2 = p+p−.

A triple (i, j, k) of labels is admissible if Hom(pi ⊗ pj , pk) is not 0. The

theta symbol θ(i, j, k) is the Kauffman bracket of the theta network, see.KL

Lemma 3.3.

(1) Hom(pi ⊗ pj , pk) is not 0 if and only if the theta symbol θ(i, j, k) is

non-zero, then Hom(pi ⊗ pj , pk) ∼= C.

(2) θ(i, j, k) 6= 0 if and only if i + j + k ≤ 2(r − 2), i+ j + k is even and

i+ j ≥ k, j + k ≥ i, k + i ≥ j.

3.5. Handles and S-matrix

There are various ways to present an n-manifold X : triangulation, surgery,

handle decomposition, etc. The convenient ways for us are the surgery de-

scription and handle decompositions.
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Handle decomposition of a manifold X comes from from a Morse func-

tion of X . Fix a dimension= n, a k-handle is a product structure Ik × In−k

on the n-ball Bn, where the part of boundary ∂Ik × In−k ∼= Sk−1 × In−k is

specified as the attaching region. The basic operations in handlebody the-

ory are handle attachment, handle slide, stabilization, and surgery. They

correspond to how Morse functions pass through singularities in the space

of smooth functions on X . Let us discuss handle attachment and surgery

here. Given an n-manifold X with a sub-manifold Sk−1 × In−k specified in

its boundary, and an attach map φ : ∂Ik × In−k → Sk−1 × In−k, we can

attach a k-handle to X via φ to form a new manifold X ′ = X ∪φ I
k × In−k.

The new manifold X ′ depends on φ, but only on its isotopy class. It follows

from Morse theory or triangulation that every smooth manifold X can be

obtained from 0-handles by attaching handles successively, i.e., has a handle

decomposition. Moreover, the handles can be arranged to be attached in

the order of their indices, i.e., from 0-handles, first all 1-handles attached,

then all 2-handles, etc.

Given an n-manifoldX , a sub-manifold Sk×In−k and a map φ : ∂Ik+1×
Sn−k−1 → Sk × Sn−k−1, we can change X to a new manifold X ′ by doing

index k surgery on Sk × In−k as follows: delete the interior of Sk × In−k,

and glue in Ik+1×Sn−k−1 via φ along the common boundary Sk×Sn−k−1.

Of course the resulting manifold X ′ depends on the map φ, but only on

its isotopy class. Handle decompositions of n + 1-manifolds are related to

surgery of n-manifolds as their boundaries.

It is fundamental theorem that every orientable closed 3-manifold can be

obtained from surgery on a framed link in S3; moreover, if two framed links

give rise to the same 3-manifold, they are related by Kirby moves, which

consist of stabilization and handle slides. This is extremely convenient for

constructing 3-manifold invariants from link invariants: it suffices to write

down a magic linear combination of invariants of the surgery link so that

the combination is invariant under Kirby moves. The Reshetikhin-Turaev

invariants were discovered in this way.

The magic combination is provided by the projector ω0 from the first row

of the S matrix: given a surgery link L of a 3-manifold, if every component

of L is colored by ω0, then the resulting link invariant is invariant under

handle slides. Moreover, a certain normalization using the signature of the

surgery link produces a 3-manifold invariant as in Theorem 3.1 below.

The projector ω0 is a ribbon tensor category analogue of the regular

representation of a finite group, and is related to surgery as below. In gen-

eral, all projectors ωi are related to surgery in a sense, which is responsible
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for the gluing formula for the partition function Z of a TQFT.

Lemma 3.4.

(1) Given a 3 manifold X with a knot K inside, if K is colored by ω0, then

the invariant of the pair (X,K) is the same as the invariant of X ′,
which is obtained from X by 0-surgery on K.

(2) Let S2 ⊂ X be an embeded 2-sphere, then any labeled multicurve γ

interests S2 transversely must carry the trivial label. In other words,

non-trivial particle type cannot cross an embeded S2.

The colored tangle category ∆A has natural braidings, and duality,

hence is a ribbon tensor category. An object a is simple if Hom(a, a) = C. A

point marked by a Jones-Wenzl projector pi is a simple object of ∆A. There-

fore, the label set LA can be identified with a complete set of simple object

representatives of ∆A. A ribbon category is premodular if the number of

simple object classes is finite, and is called modular if furthermore, the mod-

ular S-matrix S = 1
D s̃ is non-singular. A non-singular S-matrix S = (sij)

can be used to define projectors ωi = 1
D

∑
j∈I sijpj , which projects out the

ith label.

Given a ribbon link l, < ω0 ∗ l > denotes the Kauffman bracket of the

colored ribbon link l that each component is colored by ω0.

Theorem 3.1.

(1) The tangle category ∆A is a premodular category, and is modular if

and only if A is a primitive 4rth root of unity.

(2) Given a premodular category Λ, and X an oriented closed 3-manifold

with an m-component surgery link l, then ZJK(X) = 1
Dm+1 (p−

D )σ(l) <

ω0 ∗ l > is a 3-manifold invariant, where σ(l) is the signature of the

framing matrix of l.

3.6. Diagram TQFTs for closed manifolds

In this section, fix an integer r ≥ 3, A as in Lemma 3.1. For these special

values, the picture spaces PicA(Y ) form a modular functor which is part of

a TQFT. These TQFTs will be called diagram TQFTs. In the following,

we verify all the applicable axioms for diagram TQFTs for closed manifolds

after defining the partition function Z.

The full axioms of TQFTs are given in Section 6.3. The applicable

axioms for closed manifolds are:

(1) Empty surface axiom: V (∅) = C
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(2) Sphere axiom: V (S2) = C. This is a consequence of the disk axiom and

gluing formula.

(3) Disjoint union axiom for both V and Z:

(4) Duality axiom for V :

(5) Composition axiom for Z: This is a consequence of the gluing axiom.

These axioms together forms exactly a tensor functor as follows: the

category X2,cld of oriented closed surfaces Y as objects and oriented bor-

disms up to diffeomorphisms between surfaces as morphisms is a strict rigid

tensor category if we define disjoint union as the tensor product; −Y as the

dual object of Y ; for birth/death, given an oriented closed surface Y , let

Y ×S1
− : ∅ −→ −Y ∐Y be the birth operator, and Y ×S1

+ : −Y ∐Y −→ ∅
the death operator, here S1

∓ are the lower/up semi-circles.

Definition 3.2. A (2 + 1)-anomaly free TQFT for closed manifolds is a

nontrivial tensor functor V : X2,cld −→ V, where V is the tensor category

of finite dimensional vector spaces.

Non-triviality implies V (∅) = C by the disjoint union axiom. Since

∅∐ ∅ = ∅, V (∅) = V (∅) ⊗ V (∅). Hence V (∅) ∼= C because otherwise

V (∅) = 0 the theory is trivial. The empty set picture ∅ is the canonical

basis, therefore, V (∅) = C.

The disjoint union axiom and the trace formula for Z in Prop. 6.1 fixes

the normalization of 3-manifold invariants. Given an invariant of closed 3-

manifolds, then multiplication of all invariants by scalars leads to another

invariant. Hence Z on closed 3-manifolds can be changed by multiplying

any scalar k. But this freedom is eliminated from TQFTs by the disjoint

union axiom which implies k = k2, hence k = 1 since otherwise the theory

is trivial. The trace formula implies Z(S2 × S1) = 1. We set Z(S3) = 1
D ,

and D is the total quantum order of the theory.

Recall that the picture space PicA(Y ) is defined even for unorientable

surfaces. When Y is oriented, Pic(Y ) is isomorphic to KA(Y × I). Given a

bordism X from Y1 to Y2, we need to define ZD(X) ∈ PicA(−Y1

∐
Y2). It

follows from the disjoint union axiom and the duality axiom, ZD(X) can

be regarded as a linear map PicA(Y1) −→ PicA(Y2).

Given a closed surface Y , let VD(Y ) = PicA(Y ). For a diffeomorphism

f : Y → Y , the action of f on pictures is given by moving them in Y .

This action on pictures descends to an action of mapping classes on V (Y ).

To define ZD(X) for a bordism X from Y1 to Y2, fix a relative handle

decomposition of X from Y1 to Y2.
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Suppose that Y2 is obtained from Y1 by attaching a single handle of

indices = 0, 1, 2, 3. For indices = 0, 3, the linear map is just a multiplication

by 1
DJK

, where DJK =
√

−2r
(A2−A−2)2 . Since S3 is a 0-handled followed by a

3-handle, ZD(S3) = 1
D2

JK
. This is not a coincidence, but a special case of a

theorem of K. Walker and V. Turaev that ZD(X) = |ZJK(X)|2 for any

oriented closed 3-manifold.

Given a multicurve γ in Y1,

1): If a 1-handle I ×B2 is attached to Y1, isotopy γ so that it is disjoint

from the attaching regions ∂I×B2 of the 1-handle. Label the co-core circle
1
2 ×∂B2 of the 1-handle by ω0 to get a formal multicurve in Y2. This defines

a map from PicA(Y1) to PicA(Y1) by linearly extending to pictures classes.

2): If a 2-handle B2 × I is attached to Y1, isotopy γ so that it intersects

the attaching circle ∂B2 × 1
2 of the 2-handle transversely. Expand this at-

taching circle slightly to become a circle s just outside the 2 handle and

parallel to the attaching circle ∂B2× 1
2 . Label s by ω0. Fuse all strands of γ

so that a single labeled curve intersects the attaching circle ∂B2 × 1
2 ; only

the 0-labeled curves survive the projector ω0 on s. By drawing all remaining

curves on the Y1 outside the attaching region plus the two disks B2 × {0}
and B2 × {1}, we get a formal diagram in Y2.

We need to prove that this definition is independent of handle-slides

and cancellation pairs, which is left to the interested readers.

Now we are ready to verify all the axioms one by one:

The empty surface axiom: this is true as we have a non-trivial theory.

The sphere axiom: by the “d-isotopy” constraint, every multicurve with

m loops = dm∅. If ∅ picture on S2 is = 0 in PicA(S2), then ZD(B3) = 0

which leads to ZD(S3) = 0. But ZD(S3) 6= 0, it follows that PicA(S2) = C.

The disjoint union axioms for both V and Z are obvious since both are

defined by pictures in each connected component.

Pic(−Y ) = Pic(Y ) is the identification for the duality axiom. To define a

functorial identification of PicA(−Y ) with PicA(Y )∗, we define a Hermitian

paring: PicA(Y ) × PicA(Y ) −→ C. Since PicA(Y ) is an algebra, and semi-

simple, it is a matrix algebra. For any x, y ∈ PicA(Y ), we identify them

as matrices, and define < x, y >= Tr(x†y). This is a non-generate inner

product. The conjugate linear map x →< x, · > is the identification of

PicA(−Y ) with PicA(Y )∗.
Summarizing, we have;

Theorem 3.2.

The pair (VD , ZD) is a (2+1)-anomaly free TQFT for closed manifolds.
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3.7. Boundary conditions for picture TQFTs

In Section 3.1, we consider C[S] for surfaces Y even with boundaries. Given a

surface Y with m boundary circles with ni fixed points on the ith boundary

circle, by imposing Jones-Wenzl projector pr−1 away from the boundaries,

we obtain some pictures spaces, denoted as PicA(Y ;n1, · · · , nm). To un-

derstand the deeper properties of the picture space PicA(Y ), we need to

consider the splitting and gluing of surfaces along circles. Given a simple

closed curve (scc) s in the interior of Y , and a multicurve γ in Y , isotope

s and γ to general position. If Y is cut along s, the resulted surface Ycut

has two more boundary circles with n points on each new boundary circle,

where n is the number of intersection points of s∩γ, and n ∈ {0, 1, 2, · · · , }.
In the gluing formula, we like to have an identification of ⊕PicA(Ycut) with

all possible boundary conditions with PicA(Y ), but this sum consists of

infinitely many non-trivial vector space,which contradicts that PicA(Y ) is

finitely dimensional. Therefore, we need more refined boundary conditions.

One problem about the crude boundary conditions of finitely many points

is due to bigons resulted from the “d-isotopy” freedom: we may introduce

a trivial scc intersecting s at many points, or isotope γ to have more inter-

section points with s. The most satisfactory solution is to define a picture

category, then the picture spaces become modules over these categories.

Picture category serves as crude boundary conditions. To refine the crude

boundary conditions, we consider the representation category of the pic-

ture category as new boundary conditions. The representation category of

a picture category is naturally Morita equivalent to the original picture cat-

egory. The gluing formula can be then formulated as the Morita reduction

of picture modules over the representation category of the picture category.

The labels for the gluing formula are given by the irreps of the picture

categories. This approach will be treated in the next two sections. In this

section, we content ourselves with the description of the labels for the di-

agram TQFTs, and define the diagram modular functor for all surfaces.

In Section 6.3, we will give the definition of a TQFT, and later verify all

axioms for diagram TQFTs.

The irreps of the non-semi-simple TL annular categories at roots of unity

were contained in,GL but we need the irreps of the semi-simple quotients of

TL annular categories, i.e., the TLJ annular categories.

The irreps of the TLJ annular will be analyzed in Sections 5.5 5.6. In

the following, we just state the result. By Theorem B.1 in Appendix B, each

irrep can be represented by an idempotent in a morphism space of some

object. Fix h (0 ≤ h ≤ k) many points on S1, and let ωi,j;h be the following



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

50 M. Freedman, C. Nayak, K. Walker and Z. Wang

diagram in the annulus A: the two circles in the annulus are labeled by

ωi, ωj , and h = 3 in the diagram.

ω

ω

i

j

Fig. 3.7. Annular projector

The labels for diagram TQFTs are the idempotents ωi,j;h above. Given a

surface Y with boundary circles γi, i = 1, ..,m. In the annular neighborhood

Ai of γi, fix an idempotent ωi,j;h inside Ai. Let PicA
D(Y ;ωi,j;h) be the span

of all multicurves that within Ai agree with ωi,j;h modulo pr−1 .

Theorem 3.3.

If A is as in Lemma 3.1, then the pair (PicA(Y ), ZD) is an anomaly-free

TQFT.

3.8. Jones-Kauffman skein spaces

In this section, fix an integer r ≥ 3, A as in Lemma 3.1, and d = −A2−A−2.

Definition 3.3. Given any closed surface Y , let PicA(Y ) be the picture

space of pictures modulo pr−1. Given an oriented 3-manifold X , the skein

space of pr−1 and the Kauffman bracket is called the Jones-Kauffman skein

space, denoted by KA(X).

The following theorem collects the most important properties of the

Jones-Kauffman skein spaces. The proof of the theorem relies heavily on

handlebody theory of manifolds.

Theorem 3.4.

a): Let A be a primitive 4rth root of unity. Then

(1) KA(S3) = C.

(2) There is a canonical isomorphism of KA(X1qX2) ∼= KA(X1)#K(X2).

(3) If ∂X1 = ∂X2, then KA(X1) ∼= KA(X2), but not canonically.
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(4) If the ∅ link is not 0 in KA(X) for a closed manifold X, then KA(X) ∼=
C canonically. The ∅ link in KA(#m

r=1S
1 ×S2) and KA(Y ×S1) is not

0 for oriented closed surface Y .

(5) KA(−X)×KA(X) −→ KA(DX) is non-degenerate. Therefore, KA(X)

is isomorphic to KA(X)∗, but not canonically.

(6) KA(Y × I) −→ End(KA(X)) is an isomorphism if ∂X = Y .

(7) PicA(Y ) is canonically isomorphic to KA(Y × I) if Y is orientable,

hence also isomorphic to End(KA(X)).

b): If A is a primitive 2rth root of unity or rth root of unity, then (2) does

not hold, and it follows that the rest fail for disconnected manifolds.

Proof.

(1) Obvious.

(2) The idea here in physical terms is that non-trivial particles cannot

cross an S2.

The skein space KA(X1 q X2) is a subspace of KA(X1)#K(X2) by

inclusion. So it suffices to show this is onto. Given any skein class x in

KA(X1)#K(X2), by isotopy we may assume x intersects the connecting S2

transversely. Put the projector ω0 on S2 disjoint from x, then ω0 encircle x

from outside. Apply ω0 to x to project out the 0-label, we split x into two

skein classes in KA(X1 qX2), therefore the inclusion is onto.

(3) This is an important fact. For example, combining with (1), we see

that the Jones-Kauffman skein space of any oriented 3-manifold is ∼= C.

We will show below that any bordism W 4 from X1 to X2 induces an

isomorphism. Moreover, the isomorphism depends only on the signature of

the 4-manifold W 4.

Pick a 4-manifold W such that ∂W = −X1 ∪Y (Y × I)∪Y X2 (W exists

since every orientable 3 manifold bounds a 4 manifold), and fix a handle-

decomposition of W . 0-handles, and dually 4-handles, induce a scalar multi-

plication. 1-handles, or dually 3-handles, also induce a scalar multiplication

by (2). By (2), we may assume that Xi, i = 1, 2 are connected. Therefore,

we will fix a relative handle decompositions of W with only 2-handles, and

let LXi , i = 1, 2 be the attaching links for the 2-handles in Xi, respectively.

Then X1\LX1
∼= X2\LX2 . The links LXi , i = 1, 2 are dual to each other in

a sense: let Ldual
Xi

be the link consists of cocores of the 2-handles on Xi, then

surgery on LX1 in X1 results X2, while surgery on LX1

dual in X1 results

X1, and vice versa.

Define a map h1 : KA(X1) → KA(X2) as follows: for any skein class

representative γ1, isotope γ1 so that it misses LX1 . Note that in the skein
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spaces, labeling a component L1 of a link L by ω0, denoted as ω0 ∗ L1, is

equivalent to surgering the component; then h(γ1) = γ1

∐
ω0 ∗LX2 , where

γ1 is now considered as a link in X2. Formally, we write this map as:

(X1; γ1) → (X1;LX1

∐
LX1

dual
∐

γ1) → (X2;LX2

∐
γ2),

where γ2 is γ1 regarded as a skein class inX2. In this map, LX1 is mapped to

the empty skein as it has been surged out, while LX1

dual is mapped to LX2 .

Then define h2 similarly. The composition of h1 and h2 is the link invariant

of the colored link LXi union a small linking circle for each component plus

a parallel copy of LXi

dual union its small linking circles as in the Fig. 3.8,

which is clearly a scalar, hence an isomorphism.

γ
1

γ
2

L
L

L

L

L

L

1

1

1

2

2

2
L

1

Fig. 3.8. Skein space maps

Now we see that a pair, (W , a handle decomposition), induces an iso-

morphism. Using Cerf theory, we can show that the isomorphism is first

independent of the handle decomposition; secondly it is a bordism invari-

ant: if there is a 5-manifold N which is a relative bordism from W to W ′,
then W and W ′ induces the same map. Hence the isomorphism depends

only on the signature of the 4-manifoldW . The detail is a highly non-trivial

exercise in Cerf theory.

(4) follows from (1)–(3) easily.

(5) The inner product is given by doubling. By (3) KA(X) is isomorphic

to KA(H), where H is a handlebody with the same boundary. By (4),

the same inner product is non-singular for KA(H). Chasing through the

isomorphism in (3) shows that the inner product on KA(X) is also non-

singular. Since KA(DX) ∼= C, hence KA(X) is isomorphic to KA(X)∗.
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(6) KA(Y × I) is isomorphic to KA(−X∐X) by (3). It follows that the

action of KA(Y × I) on KA(X): KA(X)⊗KA(Y × I) → KA(X ∪Y (Y × I)

becomes an action of KA(−X∐X) on KA(X): KA(X)⊗KA(−X∐X) →
KA(DX

∐
X). By the paring in (5), we identify the action as the action of

End(X) = KA(−X) ⊗KA(X) on KA(X).

(7) follows from (6) easily.

The pairing KA(−X) × KA(X) −→ KA(DX) allows us to define a

Hermitian product on KA(X) as follows:

Definition 3.4.

Given an oriented closed 3-manifoldX , and choose a basis e ofKA(DX).

Then KA(DX) = Ce. For any multicurves x, y in X , consider x as a mul-

ticurve in −X , denoted as x̄. Then define x̄ ∪ y =< x, y > e, i.e. the ratio

of the skien x̄ ∪ y with e. If ∅ is not 0 in KA(DX), then Hermitian pairing

is canonical by choosing e = ∅.

Almost all notations are set up to define the Jones-Kauffman TQFTs.

We see in Theorem 3.4 that if two 3-manifolds Xi, i = 1, 2 have the same

boundary, then KA(X1) and KA(X2) are isomorphic, but not canonically.

We like to define the modular functor space V (Y ) to be a Jones-Kauffman

skein space. The dependence on Xi is due to a framing-anomaly, which

also appears in Witten-Restikhin-Turaev SU(2) TQFTs. To resolve this

anomaly, we introduce an extension of surfaces. Recall by Poincare dual-

ity, the kernel λX of H1(∂X ; R) → H1(X ; R) is a Lagrangian subspace

λ ⊂ H1(Y ; R). This Lagrangian subspace contains sufficient information to

resolve the framing dependence. Therefore, we define an extended surface

as a pair (Y ;λ), where λ is a Lagrangian subspace of H1(Y ; R). The ori-

entation, homology and many other topological property of an extended

surface (Y ;λ) mean that of the underlying surface Y .

The labels for the Jones-Kauffman TQFTs are the Jones-Wenzl pro-

jectors {pi}. Given an extended surface (Y ;λ) with boundary circles

γi, i = 1, ..,m. Glue m disks B2 to the boundaries to get a closed surface

Ŷ and choose a handlebody H such that ∂H = Ŷ , and the kernel λH of

H1(Y ; R) → H1(H ; R) is λ. In a small solid cylinder neighborhood B2
i ×[0, ε]

of each boundary circle γi, fix a Jones-Wenzl projector pij inside some

arc×[0, ε], where the arc is any fixed diagonal of B2
i . Let V A

JK(Y ;λ, {pij})
be the Jones-Kauffman skein space of H of all pictures within the solid

cylinders B2
i × [0, ε] agree with {pij}.
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Lemma 3.5.

Let B2 be a 2-disk, A an annulus and P a pair of pants, and (Y, λ) an

extended surface with m punctures labelled by pij , j = 1, 2, · · · ,m, then

(1) V A
JK(B2; pi) = 0 unless i = 0, and V A

JK(B2; p0) = C.

(2) V A
JK(A; pi, pj) = 0 unless i = j, and V A

JK(A; pi, pi) = C
(3) V A

JK(P ; pi, pj , pk) = 0 unless i, j, k is admissible, and V A
JK(P ; pi,

pj , pk) ∼= C if i, j, k is admissible.

(4) Given an extended surface (Y ;λ), and let H be a genus=g handlebody

such that ∂H = (Ŷ ;λ) as extended manifolds. Then admissible labelings

of any framed trivalent spine dual to a pants decomposition of Y with

all external edges labelled by the corresponding boundary label pij is a

basis of V A
JK(Y ;λ, {pij )}.

(5) V A
JK(Y ) is generated by bordisms {X |∂X = Y } if Y is closed and

oriented.

Given an extended surface (Y ;λ), to define the partition function

ZJK(X) for any X such that ∂X = Y , let us first assume that ∂X = (Y ;λ)

as an extended surface. Find a handlebody H such that λH = λ, and a

link L in H such that surgery on L yields X . Then we define ZX as the

skein in VD(H) given by the L labeled by ω0 on each component of L. If

λX is not λ, then choose a 4-manifold W such that ∂W = −X∐X and

the Lagrange space λ and λX extended through W . W defines an isomor-

phism between KA(X) and itself. The image of the empty skein in KA(X)

is Z(X). Given f : (Y1;λ1) → (Y2;λ2), the mapping cylinder If defines an

element in V (Y1

∐
Y2) ∼= V (Y1) ⊗ V (Y2) by the disjoint union axiom. This

defines a representation of the mapping class group M(Y ), which might be

a projective representation.

Theorem 3.5.

If A is a primitive 4rth root of unity for r ≥ 3, then the pair (VJK , ZJK)

is a TQFT.

This theorem will be proved in Section 7.

There is a second way to define the projective representation of M(Y ).

Given an oriented surface Y , the mapping class group M(Y ) acts on Pic(Y )

by moving pictures in Y . This action preserves the algebra structure of

Pic(Y ) in Prop. 3.2. The algebra Pic(Y ) ∼= End(KA(Y )) is a simple matrix

algebra, therefore any automorphism ρ is given by a conjugation of an

invertible matrix Mρ, where Mρ is only defined up to a non-zero scalar. It

follows that for each f ∈ M(Y ), we have an invertible matrix Vf = Mf ,
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which forms a projective representation of the mapping class group M(Y ).

4. Morita equivalence and cut-paste topology

Temperley-Lieb-Jones algebras can be generalized naturally to categories by

allowing different numbers of boundary points at the top and bottom of the

rectangle R. Another interesting generalization is to replace the rectangle by

an annulus A. Those categories provide crude boundary conditions for V (Y )

when Y has boundary, and serve as “scalars” for a “higher” tensor product

structure which provides the formal framework to discuss relations among

V (Y )’s under cut-paste of surfaces. The vector spaces V (Y ) of a modular

functor V can be formulated as bimodules over those picture categories. An

important axiom of a modular functor is the gluing formula which encodes

locality of a TQFT, and describes how a modular functor V (Y ) behaves

under splitting and gluing of surfaces along boundaries. The gluing formula

is best understood as a Morita reduction of the crude picture categories to

their representation categories, which provides refined boundary conditions

for surfaces with boundaries. Therefore, the Morita reduction of a picture

category amounts to the computation of all its irreps. The use of bimodules

and their tensor products over linear categories to realize gluing formulas

appeared in [BHMV]. In this section, we will set up the formalism. The

irreducible representations of our examples will be computed in the next

section.

We work with the complex numbers C as the ground ring. Let Λ de-

note a linear category over C meaning that the morphisms set of Λ are

vector spaces over C and composition is bilinear. We consider two kinds

of examples: “rectangular” and “annular” Λ’s. (The adjectives refer to

methods for building examples rather than additional axioms.) We think

of rectangles(R) as oriented vertically with a “top” and “bottom” and

annuli(A) has an “inside” and an “outside”. Sometimes, we draw an an-

nulus as a rectangle, and interpret the rectangles as having their left and

right sides glued. The objects in our examples are finite collections of points,

or perhaps points marked by signs, arrows, colors, etc., on “top” or “bot-

tom” in the rectangular case, and on “inside” or “outside” in the annular

case. The morphisms are formal linear combinations of “pictures” in R or

A satisfying some linear relations. The most important examples are the

Jones-Wenzl projectors. Pictures will variously be unoriented submanifolds

(i.e. multicurves), 1-submanifolds with various decorations such as orient-

ing arrows, reversal points, transverse flags, etc., and trivalent graphs. Even

though the pictures are drawn in two dimensions they may in some the-
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ories be allowed to indicate over-crossings in a formal way. A morphism

is sometimes called an “element” as if Λ had a single object and were an

algebra.

Our R’s and A’s are parameterized, i.e. not treated merely up to dif-

feomorphism. One crucial part of the parameterization is that a base point

arc ∗ × I ⊂ S1 × I = A be marked. The ∗ marks the base point on S1 and

brings us to a technical point. Are the objects of Λ the continuously many

collections of finitely many points in I (or S1) or are they to be simply

one representative example for each non-negative integer m. The second

approach makes the category feel bit more like an algebra (which has only

one object) and the linear representations have a simpler object grading.

One problem with this approach is that if an annulus A factored as a com-

position of two by drawing a degree=1 scc γ ⊂ A (and parameterizing both

halves), even if γ is transverse to an element x in A γ ∩ x may not be

the representative set of its cardinality. This problem can be overcome by

picking a base point preserving re-parameterization of γ. This amounts to

“skeletonizing” the larger category and replacing some “strict” associations

by “weak” ones. Apparently a theorem of S. MacLane guarantees that no

harm follows, so either viewpoint can be adopted.Ma We will work with the

continuously many objects version.

Recall the following definition from Appendix B:

Definition 4.1. A representation of a linear category Λ is a functor ρ : Λ →
V, where V is the category of finite dimensional vector spaces. The action

is written on the right: ρ(a) = Va and given m ∈ Mor(a, b), ρ(m) : Va → Vb.

We write on the left to denote a representation of Λop.

Let us track the definitions with the simplest pair of examples, tem-

porarily denote ΛR and ΛA the R and A-categories with objects finite

collections of points and morphisms transversely embedded un-oriented 1-

submanifolds with the marked points as boundary data. Let us say that 1)

we may vary multicurves by “d-isotopy” for d = 1, and 2) to place ourselves

in the simplest case let us enforce the skein relation: p2 = 0 for d = 1. This

means that we allow arbitrary recoupling of curves. This is the Kauffman

bracket relation associated to A = e
2πi
6 , d = −A2 − A−2 = 1. The admis-

sible pictures may be extended to over-crosssings by the local Kauffman

bracket rule in Figure 2.1 in Section 2.2.

In these theories, which we call the rectangular and annular Temperley-

Lieb-Jones categories TLJ at level = 1, d = 1, over-crossings are quite

trivial, but at higher roots of unity they are more interesting. In schematic
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Figures 4.1, 4.2 give examples of ΛR and ΛA representations.

bottom
top

Fig. 4.1. ΛR acts (represents) on vector space of pictures in twice punctured disk (or
genus=2 handlebody)

It is actually the morphism between objects index by 4 to 2 points, resp.

4Λ
R
2 , which is acting in Figure 4.1, Figure 4.2.

in
out

Fig. 4.2. ΛA acts on vector space of pictures in punctured genus=2 surface

The actions above are by regluing and then re-parameterizing to absorb

the collar. For each object a in TLJd=1, the functor assigns the vector space

of pictures lying in a given fixed space with boundary data equal the object

a. Given a fixed picture in R and A, i.e. an element e of Λ, gluing and

absorbing the collar defines a restriction map: f(e) : V4 → V2 (in the case

illustrated) between the vector spaces with the bottom (in) and the top

(out) boundary conditions. To summarize the annular categories act on

vector spaces which are pictures on a surface by gluing on an annulus. The

rectangular categories, in practice, act on handlebodies or other 3-manifolds

with boundary by gluing on a solid cylinder; Figure 4.1 is intentionally

ambiguous and may be seen as a diagram or 3−manifolds. Because we can

use framing and overcrossing notations in the rectangle we are free to think

of R either as 2-dimensional, I × I , or 3−dimensional I ×B2.

4.1. Bimodules over picture category

Because a rectangle or annulus can be glued along two sides, we need to

consider Λop × Λ actions: Λop × Λ
ρ→ V. The composition Λ

4→
m 7−→(mop,m)

Λop ×Λ
ρ→ V describes the action of gluing an R or A on two sides (Figure

4.3, Figure 4.4).
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R

Fig. 4.3. ΛR acts on both sides

A

Fig. 4.4. ΛA acts on both sides

We refer to the action of Λop as “left” and the action of Λ as “right”.

Definition 4.2.

1) Let M be a right Λ-representation (or “module”) and N a left Λ-

module. Denote by M
⊗

ΛN the C-module quotient of
⊕
a
Ma

⊗
C aN by

all relations of the form uα
⊗
v = u

⊗
αv, where “a” and “b” are general

objects of Λ, u ∈Ma, v ∈ bN and α ∈ aΛb = Mor(a, b).

2) A C × D bimodule is a functor ρ : Cop × D −→ V. Note that C is

naturally a C×C bimodule, which will be called the regular representation

of C.

Suppose now that Λ is semi-simple. This means that there is a set I

of isomorphism classes of (finite dimensional) irreducible representations

ρi, i ∈ I of Λ and every (finite dimensional) representation of ρ may be

decomposed ρ ∼=
⊕
Vi

⊗
ρi, where Vi is a C-vector space with no Λ action;

dim(Vi) is the multiplicity of ρi. (If ρ1(a) = M1
a and ρ2(a) = M2

a , then

ρ1

⊕
ρ2 = M1

a

⊕
M2

a , and similarly for morphisms.)

The following example is contained in the section in the general discus-

sion, but it is instructive to see how things work in TLJR

d=1 and TLJA

d=1,

the TLJ rectangular and picture categories for d = 1. These simple ex-

amples include the celebrated toric codes TQFT inKi1 or Z2 gauge theory,

and illustrate the general techniques. Since it is almost no extra work, we

will include the corresponding calculation for TLJR

d=−1 and TLJA

d=−1 where

A = e
2πi
12 , d = −1 and p2 = 0 for d = −1.

A general element x ∈ aΛR
±1b is determined by its coefficients of

“squeezed” diagrams where only 0 and 1 arcs cross the midlevel of the

rectangle such diagrams look like:

Similarly x ∈ aΛA
±1,b are determined by the coefficients of the diagrams
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. . .

. . .. .

. . . .

. . .

or

Fig. 4.5. Squeezed morphisms

in an annulus made by gluing the left and right sides of FIGS??. To each

a ∈ Λ0,Λ = ΛR or A
±1 , let Va be the vector space spanned by diagrams,

with a end points on the top (outside) and zero (a even) or one (a odd)

end point on the bottom (inside), thus Va = 0 or 1Λa. The gluing map

0 or 1Λ
R
a

⊗
aΛR

b

ρR

→ 0 or 1Λ
R
b provides the two representations ρR

0 and ρR
1 of

ΛR
±1 (ρ0 (or 1) sends a odd (or even) to the 0-dimensional vector space.)

Lemma 4.1. The representation ρR
0 and ρR

1 are irreducible.

Proof. Consider ρR
0 , the morphism vector space 2kΛ2k has dimension=1

(spanned by the empty diagram in a rectangle) so that in “grade”, 2k, ρR
0

is automatically irreducible. There is a morphism m ∈ 2kΛ2n, m† ∈ 2nΛ2k:

. . .

. . .

. . .

. . .

k

n k

nm d
n

=
-

2 m d
n

+
-

= 2

Fig. 4.6. Factored morphisms

and m†m = id ∈ 2kΛ2k. Thus any representation {V } on the even

grades of the categories must have equal dimension in all (even) grades

since ρR
0 (m) and ρR

0 (m†) are inverse to each other. It follows that any proper

subrepresentation of ρR
0 must be zero dimensional in all grades. Thus ρR

0 is

irreducible.

The argument for ρR
1 is similar, simply add a vertical line near the right

margin of the rectangles in Fig. 4.6 to obtain the corresponding m,m† in

the odd grades.

Lemma 4.2. Any irreducible representation of ΛR
±1 is isomorphic to ρR

0 or

ρR
1 .

Proof. The proof is based on “resolutions of the identity”. In this case
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that means:

. . . . . .. . . . . .

2k

id

and

id

= ±( )1
k

2 1k +

= ±( )1
k

2 0 0 2k k
M M 

+

2 0 0 2k k
M M 

+

Fig. 4.7. Resolution of identity

Acting by ρ on {V } may be factored schematically as shown in Figure

4.8.

action here

action here

} action trivial here
(even case, illustrated for k = 2)

={l

V
4 V

4

Fig. 4.8. Picture action

By Theorem B.1, for every a ∈ Λ0, Va is a subspace of aΛb for sone b ∈
Λ0. In formulas, let l ∈ 2nΛ2k (for the even case) ρ(l) = ρ

(
l · 2km

†
0 · 0m2k

)
,

so the action factors through 0Λ2k. On the even (odd) grades the action is

isomorphic to ρR
0

(
ρR
1

)
tensor the subspace of 2nΛ0 generated by elements

of the form l · 2km
†
0 with trivial action. So the general representation is

isomorphic to a direct sum of irreducibles. In this simple case it was not

necessary (as it will be in other cases) to construct the Hermitian structure

on Λ to derive semi-simplicity.

Now consider representations of ΛA
±1. Again x ∈ aΛR

±1,b is determined

by diagrams with a “weight” of 0 or 1.

In the special (“principle graph”) cases: 0Λ0 and 1Λ1 there are four

diagrams (Figure 4.9) up to isotopy in the presence of relations p2 = 0 for

d = ±1.

The reader should observe that if pictures are glued to be outside of

∅, ring R, straight arc I , or twist T they may be transformed to another
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 "empty" R  "ring" I  "identity" T  "twist"

Fig. 4.9. Idempotents for annular d = ±1

picture:

∅
⊗

R = R, R
⊗

R = ±∅, I
⊗

T = T, and T
⊗

T = ±T.

(The signs are for d = ±1). Let us call the object (i.e. number of end points)

a “crude label”. We have two crude labels “0” and “1” in this example.

For each crude label the symmetric
(

∅+R
2 , and I+T

2

)
and anti-symmetric

(∅−R
2 , and I−T

2 ) averages are in fact (+1,−1) eigenvectors under gluing on

a ring R in 0Λ1,0 and gluing on T in 1Λ1,1. The combinations (∅− iR) and

(∅ + iR) are ±1-eigenvectors for the action of R in 0Λ−1,0 and (T − iT )

and (T + iT ) are ±1-eigenvectors for the action of T in 0Λ−1,0. In all

cases these vectors span a 1-dimensional representation of four algebras

0Λ1,0, 1Λ−1,0, 1Λ1,1, 1Λ−1,1 in which they lie. That is, 0Λ0 and 1Λ1 have the

structure of commutative rings under gluing (·) and formal sum (+). They

satisfy 0Λ±1,0
∼= C[R]/(R2 = ±∅) and 1Λ±1,1 = C(T )/(T 2 = ±I) with ∅

and I serving as respective identities.

What is more important than the representations of these algebras is

the representations of the entire category aΛ±1,b in which they lie. Similar

to the rectangular case, these four representatives together form the “prin-

ciple graph” from which the rest of the “Bratteli diagram” for full category

representations follows formally.

Lemma 4.3. These 4 representations of ΛA
±1 are a complete set of irre-

ducibles.

The Bratteli diagram in Figure 4.10 explains how to extend the algebra

representations to the linear category (“algebroid”) in the rectangle R case.

All vector spaces above are 1-dimensional and spanned by the indicated

picture in R and the ↗ is “add line on right”, the ↘ “bend right”. The

annular case is similar and is shown in Figures 4.11, 4.12.

Note that we interpret the rectangles as having their left and right sides

glued.

In the case of annular categories there is no tensor structure (horizontal

stacking) so in general the arrows present in the R-case seems more difficult
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0 1 2 3 4 5

0

1

Fig. 4.10. Bratteli diagram

0 2 3

0

0

+

−

1

1

1

+

−

+

−

+

−

crude 

label

re
p

s

Fig. 4.11. ΛA
+1

0 2 3

0

0 +

−

1

1

1

crude 

label

re
p
s

i

i

+

−

i

i

+

−

i

i

+

−

i

i

Fig. 4.12. ΛA
−1
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to define in generality, but should be clear in these examples. In the annu-

lar diagrams above all vector spaces of morphisms aΛb have dimension=2

if a = b mod 2 and zero otherwise. As in the rectangular case, resolutions

of the identity morphisms of ΛA
±1 into morphism which factor through 0

or 1-strand show that all representations are sums of the four. One dimen-

sionality and the existence of invertible morphisms between grades (exactly

those shown in Fig. 4.6, but now with the convention that the vertical sides

of rectangles are glued to form an annulus) again show that the four are

irreducible.

By the corollary B.1 to Schur’s lemma, the above decompositions into

irreducibles are all unique. There are direct generalizations of the categories

so far considered to Temperley-Lieb-Jones categories in the next section.

4.2. Cutting and paste as Morita equivalence

Crude labels for picture categories are given as finitely many points of the

boundary. In the gluing formulas for TQFTs, labels are irreps of the picture

categories. The passage from the crude labels of points to the refined labels

of irreps is Morita equivalence.

Definition 4.3. Two linear categories C and D are Morita equivalent if

there are C×D bimodule M and D×C bimodule N such that M ⊗N ∼= C

and N ⊗M ∼= D as bimodules.

Let Λ be a linear category, {ai}i∈I a family of objects of Λ. For each

i ∈ I , let ei be an idempotent in the algebra aiΛai . Define a new linear

category ∆ as follows: the objects of ∆ is the index set I , and the morphism

set i∆j = eiaiΛaj .

Given an object a in Λ, define the ∆×Λ bimodule M as iMa = eiaiΛa,

and the Λ × ∆ bimodule N as aNi = aΛaiei.

A key lemma is the following theorem in Appendix A of:BHMV

Theorem 4.1.

Suppose the idempotents ei generate Λ as a two-sided ideal. Then the

bimodule M ⊗Λ N ∼= ∆ and N ⊗∆ M ∼= Λ, i.e., Λ and ∆ are Morita

equivalence.

Consequently, tensoring (on the left or right), by the modules N and M ,

gives rise to the Morita equivalence of Λ and ∆. Moreover, these equiva-

lences preserves tensor product of bimodules.

Given two surfaces Y1, Y2 such that ∂Y1 = γ̄1

∏
γ, ∂Y2 = γ̄

∏
γ2, and

the picture spaces Pic(Y1),Pic(Y2) are bimodules over the picture category
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Λ, then the picture space Pic(Y1∪γ Y2) is the tensor product of Pic(Y1) and

Pic(Y2) over Λ. Morita equivalence, applied to the picture category Λ, sends

the bimodule −Pic(Y1 ∪γ Y2)− to the bimodule −Pic(Y1) ⊗ Pic(Y2)− (over

the representation category ∆ of the picture category Λ) because tensor

products are preserved under Morita equivalence. Now the general gluing

formula can be stated as a consequence of Morita equivalence:

Theorem 4.2.

Let Y1, Y2 are two oriented surfaces such that ∂Y1 = γ̄1

∏
γ and

∂Y2 = γ̄
∏
γ2. Then the picture bimodule −V (Y1 ∪γ Y2)− is isomorphic

to −V (Y1) ⊗∆ V (Y2)− as bimodules.

As explained in Appendix B, the idempotents ei label a complete set

of irreps of the linear category Λ. Therefore, gluing formulas for picture

TQFTs need the representation categories of the picture categories. In the

axioms of TQFTs the label set was a mysterious feature, now we will see

its origins in picture TQFTs.

Now let us write the Morita equivalence more explicitly. Let Λ be some

ΛR (or ΛA) and suppose Λ is semi-simple with index set I . The pictures in

a fixed 3-manifold (surface) with a “left” and “right” gluing region provide

a bimodule aBb on for Λ. If the gluing region is not connected within the

3-manifold (surface) then B ∼= Bleft
⊗

Λ B
right. We treat this case first.

Lemma 4.4. Bl
⊗

ΛB
r ∼=i∈I (Vi

⊗
Wi), where aB

right ∼=
⊕
i

Vi ⊗ ρi and

aB
left ∼=

⊕
Wj ⊗ ρop

j ,
(
ρop

j (m) = (ρj(m))†
)
.

Proof. Note that ρop
i

⊗
ρj

∼= HomΛ(ρi, ρj) ∼=
{

C if i=j
0 if i6=j . As usual

⊕
Λ dis-

tributes over
⊗

Λ, the unusual feature is that the coefficients are vector

spaces Vi and Wj , not complex numbers. They are “multiplied” by (ordi-

nary) tensor product
⊗

.

The manipulations above are standard in the context of 2-vector

spacesFd,Wal2 and in fact a representation is a 2-vector in the 2-vector space

of all formal representations.

Now suppose the regions to be glued to the opposite ends of R (A)

are part of a connected component of a 3-manifold (surface), then write

the bi-module aBb
∼=

⊕
(i,j)∈Iop×I

Wij ⊗ (ρop
i

⊗
Λ ρj) as a bimodule. Define a

2-trace,
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trB =
⊕

a∈obj(Λ)

aBa/uα ∼= αopu,

where α ∈ aΛb, u ∈ bBa are arbitrary. Again, “linear algebra” yields:

Lemma 4.5. tr(B) ∼=
⊕
i∈I

Wii.

Proof. Schur’s lemma implies ρopp
i

⊗
C
ρj

∼= C iff i = j.

Note that disjoint union of the spaces carries over to tensor product,⊗
C
, of the modules of pictures on the space. This makes lemma 4.4 a

special case of lemma 4.5. And further observe that both lemmas match

the form of the “gluing formula” as expected, with I = L, the label set,

and adjoint (†) is the involution̂: L → L.

4.3. Annualization and quantum double

Annular categories are closely related to the corresponding rectangle cate-

gories. In particular, there is an interesting general principle:

Conjecture: If ΛR and ΛA are rectangular and annular versions of

locally defined picture/relation categories, then (D(Rep(ΛR)) ∼= Rep(ΛA),

the Drinfeld center or quantum double of the representation category of the

rectangular picture category is isomorphic to the representation category of

the corresponding annular category.

The conjecture and its higher category generalizations are proved in.Wal2

5. Temperley-Lieb-Jones categories

To obtain the full strucure of the picture TQFTs, we need to consider

surfaces with boundaries, and boundary conditions for the corresponding

vector spaces V (Y ). The crude boundary conditions using objects in TLJ

categories are not suitable for the gluing formulas. As shown in Section 3.7,

Section 4, we need to find the irrpes of the TLJ categories. Two important

properties of boundary condition categories needed for TQFTs are semi-

simplicity and the finiteness of irreps. For TLJ categories, both properties

follow from a resolution of the identity in the Jones-Wenzl projectors.

Let X be a compact parameterized n-manifold. The interesting cases in

this paper are the unit interval I = [0, 1] or the unit circle S1. Define a cat-

egory C(X) as follows: an object a of C(X) consists of finitely many points
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in the interior of X , and given two objects a, b, a morphism in Mor(a, b) is

an (n+ 1)-manifold, not necessarily connected, in the interior of X × [0, 1]

whose boundaries are a× 0, b× 1, and intersects the boundary of X × [0, 1]

transversely. Given two morphisms f ∈ aCb, g ∈ bCc, the composition of

f, g will be just the vertical stacking from bottom to top followed by the

rescaling of the height to unit length 1. When X is a circle, we will also

draw the vertical stacking of two cylinders as the gluing of two annuli in

the plane from inside to outside. More often, we will draw the stacking of

cylinders as vertical stacking of rectangles one on top of the other with

periodic boundary conditions horizontally. Note the two boundary circles

of a cylinder are parameterized, so they have base points and are oriented.

The gluing respects both the base-point and orientation.

=

Fig. 5.1. Composition of annular morphisms

Given a non-zero number d ∈ C, the Temperley-Lieb category TLd is the

linear category obtained from C([0, 1]) by first imposing d-isotopy in each

morphism set, and then taking formal finite sums of morphisms as follows:

the objects of TLd are the same as that of C([0, 1]), and for any two objects

a, b, the vector space MorTL(a, b) is spanned by the set Mor(a, b) modulo

d-isotopy.

The structure of the Temperley-Lieb categories TLd depends strongly

on the values of d as we have seen in the Temperley-Lieb algebras TLn(d) =

Mor(a, a) for any object a ∈ TL0
d consisting of n points. When A is as

in Lemma 3.1, the semi-simple quotient of the Temperley-Lieb category

TLd by the Jones-Wenzl idempotent pr−1 is a semi-simple category. The

associated semi-simple algebras TLn(d) were first discovered by Jones in.Jo4

Therefore the semi-simple quotient categories of TLd for a particular d

will be called the rectangular Temperley-Lieb-Jones category TLJR

d , where

d = −A2−A−2. Note that there will be several different A’s which result in

the same TLJ category as the coefficients of the Jones-Wenzl idempotents

are rational functions of d. If we replace the interval [0, 1] in the definition

of the Temperley-Lieb categories by the unit circle S1, we get the annular
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Temperley-Lieb categories TLA

d , and their semi-simple quotients the annular

Temperley-Lieb-Jones categories TLJA

d .

5.1. Annular Markov trace

In the analysis of the structure of the TL algebras, the Markov trace defined

by Figure 2.4 in Section 2 plays an important rule. In order to analyze the

annular TLJ categories, we introduce an annular version of the Markov

trace and 2-category generalizations.

Recall that ∆n(x) is the Chebyshev polynomial. Let Cn(x) be the alge-

bra C[x]/(∆n(x)). Inductively, we can check that the constant term of ∆n

is not 0 if n is odd, and is 0 if n is even. For n even, the coefficient of x is

(−1)
n
2 n. Let n = 2m and q2m(x) be the element of Cn(x) represented by

∆2m(x)
x .

Define the annular Markov trace TrA as follows: TrA : TLn,d → Cn(x)

is defined exactly the same as in Figure 2.4 in Section 2 except instead

of counting the number of simple loops in the plane, the image becom-

ing elements in the annular algebra, where x is represented by the center

circle(=called a ring sometimes).

Prop 5.1. TrA(pn) = ∆n(x).

It follows that the algebra Cn(x) can be identified as the annular algebra

when d is a simple root of ∆n(x).

If the inside and outside of the annulus A are identified, we have a torus

T 2. The annular Markov trace followed by this identification leads to a

2-trace from TLn,d to the vector space of pictures in T 2.

5.2. Representation of Temperley-Lieb-Jones categories

Our goal is to find the representations of a TLJ category TLJR

d or TLJA

d .

The objects consisting of the same number of points in such categories are

isomorphic, therefore the set of natural numbers {0, 1, 2, · · · } can be identi-

fied with a skeleton of the category (a complete set of representatives of the

isomorphism classes of objects). Each morphism set Mor(i, j) is spanned by

pictures in a rectangle or an annulus.

To find all the irreps of a TLJ category, we use Theorem B.1 in Ap-

pendix B to introduce a table notation as follows: we list a skeleton

{0, 1, · · · , } in the bottom row. Each isomorphism class ρj of irreps of

the category is represented by a row of vector spaces {Vj,i} = {ρj(i)}.
Each column of vector spaces {Vi,j} determines an isomorphism class of
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objects of the category. The graded morphism linear maps of any two

columns will be iTLJj , in particular the graded linear maps of any column

to itself give rise to the decomposition of iTLJi into matrix algebras, i.e.,

iTLJi = ⊕j Hom(Vj,i, Vj,i). To find all irreps of TLJ, we look for minimal

idempotents of iTLJi starting from i = 0. Suppose there exists an m0 such

that the irreps {eji} of jTLJj , j ≤ m0 are sufficient to decompose every

mTLJm as ⊕jiHom(Vji ,m, Vji ,m) for all m ≥ m0, then it follows that all ir-

reps of TLJ are found; otherwise, a non-zero new representation space Vk,a

from some new irrep ρk and a ∈ TLJ0 implying Hom(Vk,a, Vk,a) ⊂ aTLJa

will contradict the fact that aTLJa
∼= ⊕j 6=kHom(Vj,a, Vj,a).

Remark: For the annulus categories, we can identify one irrep as the

trivial label using the disk axiom of a TQFT. Given a particular formal

picture x in an annulus, we define the disk consequences of x as all the

formal pictures obtained by gluing x to a collar of the disk: given a picture y

on the disk, composition x and y is a new picture in the disk. By convention,

pictures with mismatched boundary conditions are 0. Then the trivial label

is the one whose disk consequences form the vector space C, while all others

would result in 0.

For an object m ∈ TLJ0 if idm = ⊕j<m(⊕lf
l
m,j · gl

j,m) for f l
m,j ∈

mTLJj , g
l
j,m ∈ jTLJm, where l is a finite number depending on j, then

we have a resolution of the identity of m into lower orders.

Lemma 5.1. If for some object m of a TLJ category, we have a resolution

of its identity idm into lower orders, then every irrep of the category TLJ

is given by a minimal idempotent in jTLJj for some j < m.

Given a TLJ category and two objects a, c ∈ TLJ0, there is a subalgebra,

denoted by Aa
cc, of the algebra Acc = cTLJc consisting all morphisms gen-

erated by those factoring through the object a: f · g, f ∈ cTLJa, g ∈ aTLJc.

If ea is an idempotent of aTLJa, then Aea
cc denotes the subalgebra of Aa

cc

consisting all morphisms generated by those factoring through ea, i.e., those

of the form f · ea · g.

Lemma 5.2. Given two objects a, b of a TLJ category, and two minimal

idempotents ea ∈ aTLJa, eb ∈ bTLJb, then

1): Aea
cc is the simple matrix algebra over the vector space cTLJaea.

2): If the two representations eaTLJ, ebTLJ are isomorphic, then for

any c ∈ TLJ0, which is neither a nor b, the subalgebras Aea
cc , A

eb
cc of Acc are

equal.

We will use these lemmas to analyze representations of TLJ categories,
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but first we consider only the low levels.

5.3. Rectangular Tempeley-Lieb-Jones categories for low

levels

Denote Aij = iΛj . Note that Aii is an algebra, and Aij = 0 if i 6= j mod

2. The Markov trace induces an inner product <,>: Aij × Aij → C on all

Aij given by < x, y >= Tr(x̄y).

5.3.1. Level=1, d2 = 1

Using p2 = 0, we can “squeeze” a general element x ∈ Aij so that there

are only 0 or 1 arcs cross the mid-level of the rectangle. Such diagrams in

Figure 4.5) in Section 4.1.

The algebra A00 = C, and the empty diagram is the generator. The first

irrep ρ0 of TLJR

d=±1 is given the idempotent p0, which is just the identity id∅
on the empty diagram: if j is odd, ρ0(j) = 0; if j is even, ρ0(j) = A0j

∼= C.

The algebra A11 = C, generated by a single vertical line. The identity

does not factor through the 0-object, so we have a new idempotent p1

(=idenity on the vertical line). The resulting irrep ρ1 sends even j to 0, and

odd j to A1j
∼= C.

Continuing to A22, we see that the identity on two strands does factor

through p0 given by the Jones-Wenzl idempotent p2. By Lemma 5.1, we

have found all the irreps of TLJR

±1, which are summarized into Table 1.

ρ1 0 1

ρ0 1 0

0 1

TLJR

d=1 does not lead to a TQFT since the resulting S-matrix

(
1
2

1
2

1
2

1
2

)

is singular. Although TLJR

d=−1 does give rise to a TQFT, the resulting

theory with S-matrix =

(
1
2 − 1

2

− 1
2 − 1

2

)
is not unitary. The semion theory with

S-matrix =

(
1
2

1
2

1
2 − 1

2

)
can be realized only by the representation category

of the quantum group SU(2) at level=1. This subtlety comes from the

Frobenius-Schur indicator of the non-trivial label, which is 1 for TLJ and

-1 for quantum group.



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

70 M. Freedman, C. Nayak, K. Walker and Z. Wang

5.3.2. Level=2, d2 = 2

Since p3 is a resolution of the identity of id3 into lower orders, it suffices to

analyze Aii for i ≤ 2. The cases of A00, A11 are the same as level=1. Since

dimA20=1, dimA21=0 and dimA22=2, id2 does not factor through lower

orders, so there is a new idempotent in A22. The 1-dimensional subalgebra

A0
22 is generated by e2, which is the following diagram:

1
d

It is easy to check e2 is the identity of A0
22. Since the identity of A22 is the

sum of the two central idempotents (the two identities of each 1-dimensional

subalgebra), the new idempotent p2 is id2 − e2. The irrep corresponding to

p2 sends each odd j to 0, and each even j to p2A2j .

Therefore, the irreps of the level=2 TLJR are given by p0TLJ, p1TLJ,

p2TLJ, which are summarized into Table 2.

ρ2 0 0 1

ρ1 0 1 0

ρ0 1 0 1

0 1 2

5.3.3. Level=3, d2 = 1 + d or d2 = 1 − d

The same analysis for objects 0, 1, 2 yields three idempotents p0, p1, p2.

Direct computation shows Hom(3, 3) ∼= C5, Hom(3, 0) = Hom(3, 2) = 0 and

Hom(3, 1) ∼= C2. By Lemma 5.2, Ap1

33 = A1
33 is the 4-dimensional algebra

of 2 × 2 matrices over the vector space A13. Let v1, v2 be the two vectors

of A31 represented by diagrams such that < v1, v2 >=< v2, v1 >= d2, and

< v1, v1 >=< v2, v2 >= d. Using Gram-Schmidt on the vectors v1, v2, we

get an orthonormal basis e1 = v1

d , e2 = v2−e1

d2−1 of A31. Hence the identity

of the algebra A1
33 is |e1 >< e1| + |e2 >< e2|. Therefore, the remaining

idempotent of A33 is id3 − |e1 >< e1| − |e2 >< e2|, which is just p3. It

follows that the irreps of TLJ are given by p0TLJ, p1TLJ, p2TLJ, p3TLJ.
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5.4. Annular Temperley-Lieb-Jones theories for low levels

First we have the following notations for the pictures in the annular mor-

phism sets A00, A11, A02, A22, where 10, R,B,11, T1,12, T2 are annular di-

agrams: 10,11,12 are identities with 0, 1, 2 strands, R is the ring, B is

the birth, and T1 is the Dehn twisted curve, and T2 is the fractional Dehn

twisted curve. We also use B′ to denote the diagram of RB after Z2 ho-

mology surgery. A diagram with a ¯ is the one obtained from a reflection

through a horizontal line.

5.4.1. Level=1, d2 = 1

The Jones-Wenzl idempotent p2 is a resolution of id2 into the lower or-

ders, so we need only to find the minimal idempotents of Hom(0, 0) and

Hom(1, 1). Since any two parallel lines can be replaced by a turn-back, the

algebraA00 is generated by the empty picture ∅ and the ring circle R. Stack-

ing two rings R together and resolving the two parallel lines give R2 = 1,

hence A00 is the algebra C[R]/(R2 − 1). By Lemma 2.1, the two minimal

idempotents of A00 are e1 = ∅+R
2 , e2 = ∅−R

2 . To test which idempotent is

of the trivial type, we apply e1, e2 to the empty diagram on the disk and

obtain e1∅ = (d+1
2 )∅, e2∅ = ( 1−d

2 )∅. Hence if d = 1, then e1 is of the trivial

type, and if d = −1, then e2 is of the trivial type.

The algebra A11 is generated by the straight arc I and the tiwst T .

By stacking two rings R together and resolving the two parallel lines, we

see that A11 is the algebra C[T ]/(T 2 − dI). By Lemma 2.1, for d = 1,

we have two minimal idempotents e3,1 = I+T
2 , e4,1 = I−T

2 . For d = −1,

we have two minimal idempotents e3,−1 = 1−iT
2 , e4,−1 = 1+iT

2 . Note that

Hom(0, 1) = Hom(1, 0) = 0. Therefore, the annular TLJ categories for

d = ±1 have 4 irreps ei, i = 1, 2, 3, 4.

5.4.2. Level=2, d2 = 2

For the TLJ categories at level=2, d2 = 2, p3 is a resolution of the identity of

id3 into lower orders, so we need to analyze the algebras A00, A11, A22. The

algebra A00 is generated by the empty picture ∅ and the ring R. Since R3 =

2R, A00 = C[R]/(R3−2R). By Lemma 2.1, the three minimal idempotents

are e1 = ∅ − R2

2 , e2 = R2+dR
4 , e3 = R2−dR

4 . Testing on the disk, we know

that e2 is of the trivial type.

For A11, we apply the Jones-Wenzl idempotent p3 to the stacking of two

twists T 2. After simplifying, we get T 4 − dT 2 + 1 = 0. Again by Lemma

2.1, we have 4 minimal idempotents: 1
2d(α2I + αT − α4T 2 − α3T 3), where
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α4 − dα2 + 1 = 0.

A new phenomenon arises in the algebra A22, which is generated by 8

diagrams: 12, B̄B, T2, B̄′B, B̄B′, B̄′B′, B̄RB, B̄′RB. Computing their inner

products shows that A22
∼= C8. A02 is spanned by B,B′, RB,RB′. Using

the three minimal idempotents in A00, we see that e0A02 is spanned by

RB+RB′ = f0, e1A02 is spanned by B− d
2RB

′ = f1, B
′ − d

2RB = f ′
1, and

e1A02 is spanned by RB−RB′ = f2. Hence A0
22

∼= C6 as the direct sum of

2 1 × 1 matrix algebras generated by f0, f2 and a 2 × 2 algebra generated

by f1, f
′
1. Therefore there are two more idempotents in A22. Applying p3

to the action of the 1/2-Dehn twist F on A22, we get F 2 = 1 modulo lower

order terms, hence the last two idempotents are of the form 1
2 (I2 ± iF ) plus

lower order terms in A0
22. Since A0

22 = BA02 +B′A20, we need to find an x

such that e = − 1
212 ± i

2T2 + x is a projector and eB = eB′ = 0. Solve the

equations, we find

e± =
1

2
12±

i

2
T∓ i

2d
B̄′B− 1

2d
B̄B∓ i

2d
BB′− 1

2d
B̄′B′± i

2d2
B̄RB+

1

2d2
B̄′RB.

5.4.3. Level=3, d2 = 1 + d or d2 = 1 − d

The algebra A00 is the algebra C[R]/(R4 − 3R2 + 1), so we have 4 minimal

idempotents.

The algebra A11 is generated by the twist T , so A11 is the algebra

C[T ]/(T 6 − dT 4 − dT 2 + 1), so we have 6 minimal idempotents.

Let F be the fractional Dehn twist on A22, then p4 results in a depen-

dence among F−2, F−1, I2, F, F
2: F 4 − dF 2 + 1 modulo lower order terms.

So we have 4 minimal idempotents.

Let F be the fractional Dehn twist on A33, then p4 results in a relation

between F−1, I3, F . So we have 2 minimal idempotents.

We leave the exact formula for the idempotents to interested readers.

Note that the number of irreps of the annular TLJ categories is the square

of the corresponding TLJ rectangular categories.

5.5. Temperley-Lieb-Jones categories for primitive 4rth

roots of unity

Let A be a primitive 4r-th root of unity, and d = −A2 − A−2. TLJR,k,A

is just the TLd modulo its annihilator pr−1. We found that it has minimal

idempotents p0, p1, p2, · · · , pk, k = r − 2 and with image (pk+1) being the

annihilator of the Hermitian paring 〈 , 〉.
The case A a primitive 2r-th or rth root of unity, r odd, e.g. A =
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e2πi/6, k = 1, d = 1; is identical as far as the rectangle categories go, but

for the annular categories is more complicated; it is analyzed in the next

section.

Theorem 5.1. Rectangle diagrams with pi, 0 ≤ i ≤ k, near the bottom

and object t at top span spaces {W t
A,i} := WA,i on which Λ := ΛR,k,A acts

from above. The families {WA,i} (as i varies ) are the k + 1 (isomorphism

classes of) irreducible representations of Λ. The involutionˆis the identity.

Proof. Most of the argument is by now familiar. Resolving the identity

shows that any representation is a direct sum of {WA,i}, 0 ≤ i ≤ k.

For the first time dim(W t
A,i) may be > 1 and there will not be invertible

morphism t → t′ but irreducibility can still be proved as follows: for all

m = pi ·m0 and m′ = pi ·m′
0 one may construct morphism x and y so that

m′ = mx and m = m′y, where pi ∈ iΛi,m,m0 ∈ iΛa,m
′,m′

0 ∈ iΛb, x ∈
aΛb, y ∈ aΛb.

It is a bit harder to find the irreps of ΛA,k,A := Λ, but we will do this

now. Similar irreps for TLA categories were previously found by Graham-

Lehner,GL in a different context.

We do not know how to proceed in a purely combinatorial fashion

but must invoke the action of the doubled theory on the undoubled.

Topologically this amounts to the action on pictures in the solid cylin-

der (B2 × I, B2 × ∂I) under the addition of additional strands in a shell

(B2
2\B2

1 ×I ;B2
2\B2

1 ×∂I). Logically our calculation should be done until we

have established† the undoubled TQFT based on ΛR,k,A where the hypoth-

esis A a primitive 4rth root is used. This can be done in Section 3 already

or from here by going directly to Section 7 which does not depend on this

section. Therefore, we will freely invoke this material.

In the low level cases we found that #irrepsΛA = (#irrepsΛR)2. This

is not an accident but comes from identifying ΛA with End(ΛR). ΛA,k,A

is too complicated to ”guess” the irreps so we compute them from the

endomorphism view point.

Recall from Section 3.4 the projectors ωa =
k∑

c=0

∆(a+1)(c+1)[c]

D onto the

†It has been shown in Lemma 3.2 that the Temperley-Lieb-Jones theories ΛR,k,A violate

an important TQFT-axiom when A2r = 1. The S-matrix is singular, half the expected
rank, so the action of the mapping class group is not completely defined. In this case
irreps of ΛA,k,A have a more complicated structure.
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a-label, and D2 =
k∑

c=0
∆2

c+1.

Also recall from Section 7 if Y = ∂X and γ ⊂ interiorX is a fam-

ily of sccs labelled by ω̃a and γ cobounds a family of imbedded annuli

A ⊂ X with γ′ ⊂ Y,, i.e. ∂A = γ ∪ γ′, then Z(X, γωa) ∈ V (Y \γ; a, â) ⊂⊕
admissible V (Y \γ; l, l̂) = V (Y ).

Consider the 4−component formal tangle in annulus cross interval, −A×
I , where h = |i− j|:

h

Fig. 5.2. 4-component formal tangle

LetX be the 3-manifold made by removing small tubular neighborhoods

of the h-labeled arc, and writeX ∼= Y ×I , where Y is the annulus with a new

puncture, and ∂X = DY the double of Y . Let (Y, l0) be Y with ∂Y labeled

as follows: outer boundary → j, inner boundary → i, new boundary → h.

From Lemma 3.5 we know V (Y, l0) ∼= Vi,j,h
∼= C.

Another useful decomposition of ∂X results from expanding the inner

and outer boundary components of Y to annuli, Ai and A0: ∂X = −Y ∪
+Y ∪ −Ai ∪ +A0 ∪ Ah. Applying V we have: V (∂X) =

⊕

admissible labels

V ∗(Y, l)
⊗

V (Y, l)
⊗

V ∗(Ai, l)
⊗

V (A0, l)
⊗

V (Ah, l).(∗)

Let us restrict to label: l0. By lemma, dimV (Y, l0) = 1 and let x be the

unit normalized vector κ ∈ V (Y, l0),

The Jones-Wenzl projectors pi, pj and ph are inserted as shown.

The arc diagram should be pushed into a ball B+ bounding the 2-

sphere S2 made by capping ∂Y , to define an element of V (Y, l0). The root

θ−symbol normalizes ||x′||2 to the invariant of D(B3) = S3 and the s
1
2
00

kills this factor so as defined ||x′||2 = 1.

Let Vl0(∂X) denote the l0 summand of the rhs (*). Fixing

x′, and therefore its dual x̂′, give an isomorphism ε′ij : Vl0 →
Hom(V (Ai; i, î), V (A0; j, ĵ) =: Hom(Vi, Vj).



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

On Picture (2+1)-TQFTs 75

j

i

f i

f j h
+
f h

Fig. 5.3. Insert Jones-Wenzl

Consider the partition function Z(X,L) of (X,L), where L is the 3-

component link in X labelled by ωi, ωj and ωh in FIG??, and Z(X,L) ⊂
Vl0(X).

We now check that ε′i,j(Z(X,L)) is a non-zero vector in Hom(Vi, Vj)

whose definition is independent of phase(X).

The pairing axiom can be used to analyze the result of gluing X to the

genus two handlebody (H, θi,j,h) which is a thickening of the i, j, h labelled

θ-graph (with the graph inside), we get:

S00θijh = S2
0iS

2
0jS0h〈x, x̂〉〈β∗

ii, βii〉〈βjj , β
∗
jj〉. (∗∗)

The two factors of S0i and S0j come from gluing along the seems sep-

arating off the inner and outer annuli (respectively); the factor S0h de-

rives from gluing across the “new component” of ∂Y , S00 is the 3-sphere

normalization constant, making the lhs (**) a “spherical θ-symbol”. Pre-

viously we arranged 〈x′, x̂′〉 = 1 and 〈β∗
aa, βa0〉 = S−1

0,a so if we define

x =
√

S0i

√
S0j

√
S0h√

S00

√
θijk

·x′ =
√

S0i

√
S0j

√
S0h

S00
κ, and redefine ε′ij to εij by replacing

x′ with x in its definition, we obtain:

εij(Z(X,L)) = β∗
iiβjj ,

i.e. the canonical element of Hom(Vi, Vj).

Now attach a 2-handle toX along the “new” component of ∂Y to reverse

our original construction: X∪2-handle = A×I . The co-core of the 2-handle

should now be labeled by h and the ωh-labeled component can be dispensed

with (it is now irrelevant ). Call this new idempotent 3−component formal

tangle L̄ij . Fix x, as above, a map εij closely related to εij is now defined:

ε̄ij : V (A× I, L̄) → Hom(Vi, Vj) and as before we have

Lemma 5.3. ε̄ij(Z(A× I, L̄)) = β∗
iiβjj .
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Using the geometric interpretation of links in a product as operators,

and using the product structure from the middle factor in A×I = S1×I×I ,
we see β∗

i,iβjj realized by a formal knot projection (L) ⊂ S1 × 1
2 × I. This

projection can be Kauffman-resolved to a formal 1−submanifold =: Lij ⊂
S1× I (ignoring the constant 1

2 ). This is the minimal, in fact 1-dimensional

idempotent of ΛA,k,A. In fact by counting we see that we have achieved

a complete resolution of the identity, and in the annular algebras iΛ
A
i a

complete list of isomorphisms classes of irreducible representations of the

full annular category ΛA,k,A.

Our assumption in Section 7 is that A is a primitive 4r-th root of unity,

r = k + 2. Section 7 constructs a TQFT with {labels} = {irrepsΛR,k,A}.
Using the s-matrix of this TQFT, we have just constructed a basis {β∗

iiβjj}

of (k + 1)2 operators for Hom

(
k⊕

i=0

Vi,
k⊕

j=0

Vj

)
which are geometrically rep-

resented as formal submanifolds {Lij ⊂ A}, also an idempotent in hΛA,k,A
h .

The counting argument below holds for A a primitive 4rth or 2rth root

of unity r odd or rth root of unity r odd, and so applies in the next section

as well.

By a direct count of classical (not formal) pictures up to the projector

relation pk+1 = pr−1 we find:

dim
(

hΛA,k,A
h

)
≤
{

k, for i = 0

2k + 2 − 2h, for 1 ≤ h ≤ k
(∗ ∗ ∗).

Summing over h, dim

(
k⊕

h=0
hΛA,k,A

h

)
≤ (k + 1)2.

Since {Lij , 0 ≤ i, j ≤ k} represent as (k + 1)2 linearly independent

operators, the above inequalities must, in fact, be equalities.

0Λ
A,k,A
0 is spanned by the empty picture ∅, the ring circle R, and its

powers up to Rk. The projector decomposes Rk+1 into a linear combination

of lower terms.

For h = 1, let I denote the straight arc picture and T the counter

clockwise Dehn twist. The pictures: T̄ (k−1), T̄ k−2), · · · , I, T, · · ·T k−1 appear

(and are) independent but there is an obvious dependency if the list is

expanded to T−k · · · , T k. This dependency leads quickly to the claimed

bound for h = 1.

For h > 1, the argument is similar to the above, except a fractional

Dehn twist F replaces T .

Lemma 5.4. {Lij , 0 ≤ i, j ≤ k} is a complete set of minimal idempotents
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for {hΛA,k,A
h }, 0 ≤ h ≤ k.

Proof: From Fig. 5.2, each L̄ is a minimal idempotent and Lij represents

the same operator.

Fixing h > 0 now consider the action of “fractional Dehn twist”, F on

Lij .

Lemma 5.5. For i < j, F (Lij) = −Ai+j+2Lij , and for i > j, F (Lij) =

−Ai+j+2Lij .

Proof: Use the Kauffman relation to resolve the diagram below, noting

the left kink is equal to a factor of −A3 and that only the resolution indi-

cated by arrows gives a term not killed by the projectors; its coefficient is

Ai+j−1.

i

p
i

p
j

p
n

p
i

p
i

p
j

p
j

p
j

p
h

p
j

p
h p

i

.  .  . .  .  .

.  .  ..  .  . .  .  ..  .  .

.  .  ..  .  .

= -
+ +
a

j1 2

for i j<

j

Fig. 5.4. Annular idempotent

For i > j one considers the mirror image of the above, interchanging A

and A−1.

If h = 0, i = j, then Lij = ω̃i and we may consider the action R of

ring addition to ωi. Since ωi is the projector to the i-th label, we have

R(ω̃i) = −(A2i+2 +A−2i−2)ω̃i,.

This establishes:

Lemma 5.6. R(Lii) = −(A2i+2 +A−2i−2)Lii.

Let Vij be the vector space spanned by formal 1-submanifolds in the

annulus which near the inner boundary agree with Lij .

Essentially the same argument employed for the rectangle categories:

resolution of the identities but now for id ∈ iΛ
A,k,A
i , 0 ≤ i ≤ k shows:

Theorem 5.2. The spaces {Vij} form a complete set of irreps for

Rep(ΛA,k,A). Direct sum decompositions into these irreducibles are unique.
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The irreps Vij have another “diagonal” indexing by (h = |i −
j|, eigenvalue(i, j)). We think of h as the “crude label” it specifies the

boundary condition (object); it is refined into a true label by the additional

information of eigenvalue under fractional Dehn twist.

Note that for ring addition: eigenvalue(i,j) = −Ai+j+2 for i 6= j.

5.6. Temperley-Lieb-Jones categories for primitive 2rth

root or rth root of unity, r odd

In Lemma 3.2 we compute the S matrix associated to the rectangle category

ΛR,k,A, A a primitive 2rth root or rth root of unity, r odd and find it is

singular (Note that the last theorem of Ch XITu holds only for even r

because the S matrix is singular for odd r). We find there is an involution

on the label set ¯ : {0, · · · , k} → {0, · · · , k} defined by ā = k − a so that

S = Seven

⊗(
1 1
1 1

)
.) We use the notation ieven or just ie, 0 ≤ i ≤ k, to

denote the even number i or ī. (Note that ¯ is not the usual duality ˆ

on labels which is trivial in the TLJ theory. Also note that since k is odd

exactly one of i and ī is even,) The k+1
2 by k+1

2 matrix Seven is nonsingular

and defines an SU(2)evenk -TQFT‡ on the even labels at level k, explicitly:

Sieje =

√
2

r
(−1)i+j

(
[i+ 1][j + 1]

)
. (5c.1)

The formal 1−submanifolds Lieje , 0 ≤ i, j ≤ k can be defined just as

in last section. As operators on the SU(2)evenk TQFT they are β∗
ieie

βjeje .

Also each Li,j has an interpretation as a formal 1-manifold in the category

ΛA,k,e2πi/6

. (This is the “d = 1” category (“Z2”-gauge theory) that we have

been developing as a simple example.)

Letting i0 denote the odd index, i or ī, the tensor decomposition of the

S-matrix implies ωie = ωi0 . It follows that Lie,je = Li0,j0 and Lie,j0 = Li0,je

so we have found only half of the expected number of minimal idempo-

tents. Let Rie,je be “reverse”(Lie,je), Lie,je with certain (−1) phase fac-

tors. That is, if Lie,je =
∑

n anαn where αi is a classical tangle then

Rie,je =
∑

(−1)knanαn, where kn
def
= k(αn)) is the transverse intersec-

‡These TQFTs are called SO(3)-TQFTs by many authors. As noted in,RSW there is some
mystery about those TQFTs as SO(3)-Witten-Chern-Simons TQFTs. Since they are the
same TQFTs as SU(2)-Witten-Reshetikhin-Turaev TQFTs restricted to integral spins,
therefore we adopt this notation. Their corresponding MTCs are denoted by (A1, k) 1

2

in.RSW
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tion number with a radial segment, s × I ⊂ S1 × I = A in the annulus.

Similarly define Rie,j0 .

Recall the four irreps of Z2-gauge theory, 0 = ∅+R, e = ∅−R,m = I+T,

and em = I − T , and consider the following bijection:

{Lie,je , Rie,je , Lie,j0 , Rie,j0}
β→

{β∗
ieie

⊗
βjeje

⊗
0, β∗

ieie

⊗
βjeje

⊗
e, β∗

ieie

⊗
βjeje

⊗
m,β∗

ieie⊗
βjeje

⊗
em} (5c.2)

Theorem 5.3. β is a bijection between the minimal idempotents of two

graded algebras:

hΛA,k,A
h

β→ hΛA,k,e2πi/6

h

⊗
End


 ⊕

j=even

jΛ
R,k,A
j


 ,

where A is a primitive 2rth root or rth root of unity, r odd. The bijection β

induces a bijection between the isomorphism classes of irreps of categories:

irreps.
(
ΛA,k,A

) β̄→ irreps.
(
ΛA,k,e2πi/6 ⊗

End
(
ΛR,k,A

even

))
.

Proof: The second statement is by now the familiar consequence of the

first and a “resolution of the identity.”

The dimension count (upper bound) of last section applies equally for

primitive 2rth roots or rth roots, so it suffices to check that Rie,je and Rie,jo

are idempotents. Writing either as reverse(L) =
∑

n(−1)knanαn we square:

(reverse(L))
2

= (
∑

n

(−1)knanαn)2 =
∑

n,m

(−1)kn+kmanamαnαm =

reverse

(∑

n,m

anamαnαm

)
= reverse(L2) = reverse(L). (5c.3)

In the third equality holds since intersection number with a product ray

in A is additive under stacking annuli:

kn + km = k(αn) + k(αm) = k(αnαm) = kn,m.

6. The definition of a TQFT

There are two subtle ingredients in the definition of a TQFT: the framing

anomaly and the Frobenius-Schur (FS) indicator. For the TQFTs in this
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paper, the diagram and black-white TQFTs have neither anomaly nor non-

trivial FS indicators, therefore, they are the easiest in this sense. The Jones-

Kauffman TQFTs have anomaly, but no non-trivial FS indicators. Our

version of the Turaev-Viro SU(2)-TQFTs have non-trivial FS indicators,

but no anomaly; while the WRT TQFTs have both anomaly, and non-trivial

FS indicators.

Our treatment essentially followsWal1 with two variations: first the ax-

ioms inWal1 apply only to TQFTs with trivial FS indicators, so we extend

the label set to cover the non-trivial FS indicators; secondly we choose to

resolve the anomaly for 3-manifolds only half way in the sense that we en-

dow every 3-manifold with its canonical extension, so the modular functors

lead to only projective representations of the mapping class groups. One

reason for our choices is to minimize the topological prerequisite, and the

other is that for application to quantum physics projective representations

are adequate.

6.1. Refined labels for TQFTs

A TQFT assigns a vector space V (Y ) to a surface Y . If Y has boundaries,

then certain conditions for ∂Y have to be specified for the vector space

V (Y ) to satisfy desired properties for a TQFT. In Section 4, we see that

crude boundary conditions need to be refined to the irreps of the picture

categories, which are the labels. But for more complicated theories such as

Witten-Reshetikhin-Turaev TQFTs, labels are not sufficient to encode the

FS indicators. Therefore, we will introduce a boundary condition category

to formalize boundary conditions. More precisely, boundary conditions are

for small annular neighborhoods of the boundary circles. Our boundary

condition category will be a strict weak fusion category C, which enables

us to encode the FS indicator for a label by marking boundaries with ±U ,

where U ∈ C0. In our examples, the strict weak fusion categories are the

representation categories of the TLJ categories. Then the labels are irreps of

TLJ categories. In anyonic theory, labels are called superselection sectors,

topological charges, or anyon types, etc. Boundary conditions which are

labels are preferred because anyonic systems with such boundary conditions

are more stable, while general boundary conditions such as superpositions

of labels are difficult to maintain.

A fusion category is a finitely dominated semi-simple rigid linear

monoidal category with finite dimensional morphism spaces and simple

unit. A weak fusion category is like a fusion category except that rigidity is

relaxed to weak rigidity as follows. A monoidal category C is weakly rigid if



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

On Picture (2+1)-TQFTs 81

every object U has a weak dual: an object U ∗ such that Hom(1, U ⊗W ) ∼=
Hom(U∗,W ) for any object W of C.

A refined label set for a TQFT with a boundary condition category C

is a finite set Le = {±Vi}i∈I , where the label set L = {Vi}i∈I is a set

of representatives of isomorphism classes of simple objects of C, and I a

finite index set with a distinguished element 0 and V0 = 1. An involution

ˆ: Le −→ Le is defined on refined labels l = ±Vi by l̂ = −l formally. There

is also an involution on the index set I of the label set: î = j if Vj
∼= V ∗

i .

A label Vi ∈ L is self-dual if î = i, and a refined label is self dual if the

corresponding label is self dual. A (refined) label set is self-dual if every

(refined) label is self-dual. Each label Vi has an FS indicator νl: 0 if not

self-dual, and ±1 if self-dual. A self-dual label Vi is symmetrically self-dual

or real in conformal field theory language if V ∗
i = Vi in C, then we say

νi = 1, and anti-symmetrically self-dual or pseudo-real if otherwise, then

we say νi = −1, i.e., V ∗
i is not the same object Vi in C, though they are

isomorphic. Secretly −Vi is V ∗
i , and we will identify the label −Vi with Vi

if the label is symmetrically self-dual; but we cannot do so if the label is

anti-symmetrically self-dual, e.g., in the Witten-Reshetikhin-Turaev SU(2)

TQFTs. Frobenius-Schur indicators are determined by the modular S and

T matrices.RSW Note that the trivial label 1 is always symmetrically self-

dual.

6.2. Anomaly of TQFTs and extended manifolds

In diagram TQFTs in Section 3, we see that Z(X1∪Y2X2) = Z(X1) ·Z(X2)

as composition of linear maps. For general TQFTs, this identity only holds

up to a phase factor depending on X1, X2 and the gluing map. Moreover,

for general TQFTs, the vector spaces V (Y ) for oriented surface Y are not

defined canonically, but depend on extra structures under the names of 2-

framing, Lagrange subspace, or p1 structure, etc. A Lagrangian subspace

of a surface Y is a maximal isotropic subspace of H1(Y ; R) with respect

to the intersection pairing of H1(Y ; R). We choose to work with Lagrange

subspaces to resolve the anomaly of a TQFT.

An extended surface Y is a pair (Y, λ), where λ is a Lagrangian subspace

of H1(Y ; R). Note that if ∂X = Y , then Y has a canonical Lagrange sub-

space λX = ker(H1(Y ; R) −→ H1(X ; R)). In the following, the boundary Y

of a 3-manifold X is always extended by the canonical Lagrangian subspace

λX unless stated otherwise. For any planar surface Y , H1(Y ; R) = 0, so the

extension is unique. Therefore, extended planar surfaces are just regular

surfaces.



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

82 M. Freedman, C. Nayak, K. Walker and Z. Wang

To resolve the anomaly for surfaces, we define a category of labeled

extended surfaces. Given a boundary condition category C, and a surface

Y , a labeled extended surface is a triple (Y ;λ, l), where λ is a Lagrnagian

subspace of H1(Y ; R), and l is an assignment of a signed object ±U ∈ C0

to each boundary circle. Moreover each boundary circle is oriented by the

induced orientation from Y , and parameterized by an orientation preserving

map from the standard circle S1 in the plane.

Given two labeled extended surfaces (Yi;λi, li), i = 1, 2, their disjoint

union is the labeled extended surface (Y1

∐
Y2;λ1 ⊕ λ2, l1 ∪ l2). Gluing of

surfaces has to be carefully defined to be compatible with the boundary

structures and Lagrangian subspaces. Given two components γ1 and γ2 of

∂Y parameterized by φi and labeled by signed objects ±U , and let gl be a

diffeomorphism φ2 · r · φ−1
1 , where r is the standard involution of the circle

S1. Then the glued surface Ygl is the quotient space of q : Y → Ygl given

by x ∼ x′ if gl(x) = gl(x′). If Y is extended by λ, then Ygl is extended

by q∗(λ). The boundary surface ∂Mf of the mapping cylinder Mf of a

diffeomorphism f : Y → Y of an extended surface (Y ;λ) has a canonical

extension by the inclusions of λ.

Labeled diffeomorphisms between two labeled extended surfaces are ori-

entation, boundary parameterization, and label preserving diffeomorphisms

between the underlying surfaces. Note that we do not require the diffeo-

morphisms to preserve the Lagrangian subspaces.

6.3. Axioms for TQFTs

The category X2,e,l of labeled extended surfaces is the category whose ob-

jects are labeled extended surfaces, and the morphism set of two labeled

extended surfaces (Y1, λ1, l1) and (Y2, λ2, l2) are labeled diffeomorphisms.

The anomaly of a TQFT is a root of unity κ, and to match physical

convention, we write κ = eπic/4, and c ∈ Q is well-defined mod 8, and called

the central charge of a TQFT. Therefore, a TQFT is anomaly free if and

only if the central charge c is 0 mod 8.

Definition 6.1.

A (2 + 1)-TQFT with a boundary condition category C, a refined label

set Le, and anomaly κ consists of a pair (V, Z), where V is a functor from

the category X2,e,l of oriented labeled extended surfaces to the category

V of finitely dimensional vector spaces and linear isomorphisms composed

up to powers of κ, and Z is an assignment for each oriented 3-manifold X

with extended boundary, Z(X,λ) ∈ V (∂X ;λ), where ∂X is extended by
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a Lagrangian subspace λ. We will use the notation Z(X), V (∂X) if ∂X is

extended by the canonical Lagrangian subspace λX . V is called a modular

functor. Z is the partition function if X is closed in physical language, and

we will call Z the partition function even when X is not closed.

Furthermore, V and Z satisfy the following axioms.

Axioms for V :

(1) Empty surface axiom:

V (∅) = C

(2) Disk axiom:

V (B2; l) ∼=
{

C if l is the trivial label

0 otherwise
, where B2 is a 2-disk.

(3) Annular axiom:

V (A; a, b) ∼=
{

C if a = b̂

0 otherwise
, where A is an annulus, and a, b ∈ Le are

refined labels.

(4) Disjoint union axiom:

V (Y1 q Y2;λ1 ⊕ λ2, l1
∐
l2) ∼= V (Y1;λ1, l1) ⊗ V (Y2;λ2, l2). The isomor-

phisms are associative, and compatible with the mapping class group

actions.

(5) Duality axiom:

V (−Y ; l) ∼= V (Y ; l̂)∗.

The isomorphisms are compatible with mapping class group actions,

with orientation reversal and disjoint union axiom as follows:

a) The isomorphisms V (Y ) → V (−Y )∗ and V (−Y ) → V (Y )∗ are mu-

tually adjoint.

b) Given f : (Y1; l1) → (Y2; l2) and let f̄ : (−Y1; l̂1) → (−Y2; l̂2), then

< x, y >=< V (f)x, V (f̄)y >, where x ∈ V (Y1; l1), y ∈ V (−Y1; l̂1).

c) Let α1 ⊗ α2 ∈ V (Y1

∐
Y2) = V (Y1) ⊗ V (Y2), and β1 ⊗ β2 ∈

V (−Y1

∐−Y2) = V (−Y1) ⊗ V (−Y2), then

< α1 ⊗ α2, β1 ⊗ β2 >=< α1, β1 >< α2, β2 > .
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(6) Gluing Axiom:

Let Ygl be the surface obtained from gluing two boundary components

of Y , then V (Ygl) ∼= ⊕l∈LV (Y ; (l, l̂)), where l, l̂ label the two glued

boundary components. The isomorphism is associative and compatible

with mapping class group actions.

Moreover, the isomorphism is compatible with duality as follows: let

⊕i∈Lαi ∈ V (Ygl; l) = ⊕i∈LV (Y ; l, (i, î)) and ⊕iβi ∈ V (−Ygl; l̂) =

⊕i∈LV (−Y ; l̂, (i, î)), then there are non-zero real numbers si for each

label Vi such that

< ⊕iαi,⊕iβi >=
∑

i

si < αi, βi > .

Axioms for Z:

(1) Disjoint axiom:

If X = X1 qX2, then Z(X) = Z(X1) ⊗ Z(X2).

(2) Naturality axiom:

If f : (X1, (∂X1, λ1)) −→ (X2, (∂X2, λ2)) is a diffeomorphism, then

V (f) : V (∂X1) −→ V (∂X2) sends Z(X1, λ1) to Z(X2, λ2).

(3) Gluing axiom:

If ∂X1 = −Y1 q Y2, ∂X2 = −Y2 q Y3, then Z(X1 ∪Y2 X2) =

κnZ(X1)Z(X2), where n = µ((λ−X1), λ2, (λ+X2)) is the Maslov in-

dex (see Appendix C).

More generally, if X is an oriented 3-manifold and let Yi, i = 1, 2 be

disjoint surfaces in ∂X , extended by λi ⊂ λX , i = 1, 2, and f : Y1 → Y2

be an orientation reversing dffeomorphism sending λ1 to λ2.

Then V (∂X) is isomorphic to
∑

l1,l2
V (Y1; l1)⊗V (Y2; l2)⊗V (∂X\(Y1∪

Y2); (l̂1, l̂2)) by multiplying κm, where li runs through all labelings

of Yi, and m = µ(K,λ1 ⊕ λ2,∆) (see Appendix C). Hence Z(X) =

⊕l1,l2κ
m
∑

j α
j
l1
⊗ βj

l2
⊗ γj

l̂1,l̂2
.

If gluing Y1 to Y2 by f results in the manifold Xf , then

Z(Xf ) = κm
∑

j,l

< V (f)αj
l , β

j
l > γj

l̂,l
.
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(4) Mapping cylinder axiom:

If Y is closed and extended by λ, and Y × I is extended canonically by

λ⊕ (−λ). Then Z(Y × I, λ⊕ (−λ)) = idV (Y ).

More generally, let Iid be the mapping cylinder of id : Y → Y , and idl

be the identity in V (Y ; l) ⊗ V (Y ; l)∗, then

Z(Iid, λ⊕ (−λ)) = ⊕l∈L(Y )idl.

�

First we derive some easy consequences of the axioms:

Prop 6.1.

(1) V (S2) ∼= C
(2) Z(X1]X2) = Z(X1)⊗Z(X2)

Z(S3) .

(3) Trace formula: Let X be a bordism from closed surfaces Y , extended

by λ, to itself, and Xf be the closed 3-manifold obtained by gluing Y

to itself with a diffeomorphism f .

Then Z(Xf ) = κmTrV (Y )(V (f)), where m = µ(λ(f), λY ⊕ f∗(λ),∆Y )

and λ(f) is the graph of f∗, ∆Y is the diagonal of H1(−Y ; R) ⊕
H1(Y ; R). In particular, Z(Y × S1) = dim(V (Y )).

(4) The dimension of V (T 2) is the number of particle types.

For a TQFT with anomaly, the representations of the mapping class

groups are projective in a very special way. From the axioms, we deduce:

Prop 6.2.

The representations of the mapping class groups are given by the map-

ping cylinder construction: given a diffeomorphsim f : Y −→ Y and Y

extended by λ, the mapping cylinder Yf induces a map V (f) = Z(Yf ) :

V (Y ) −→ V (Y ). We have V (fg) = κµ(g∗(λ),λ,f−1
∗ (λ))V (f)V (g).

It follows from this proposition that the anomaly can be incorporated by

an extension of the bordisms X , in particular, modular functors yield linear

representations of certain central extensions of the mapping class groups.

6.4. More consequences of the axioms

For refined labels a, b, c, we have vector spaces Va = V (B2; a), Va,b =

V (Aab), Va,b,c = V (Pabc), where P is a pair of pants or three-punctured
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sphere. Denote the standard orientation reversing maps on B2,Aab, Pabc by

ψ. Then ψ2 = id, therefore ψ induces identifications Vabc = V ∗
âb̂ĉ

, Vaâ = V ∗
aâ,

and V1 = V ∗
1 . Choose basis β1 ∈ V1, βaâ ∈ Vaâ such that < βa, βa >= 1

da
.

Prop 6.3.

(1) Z(B2 × I) = β1 ⊗ β1

(2) Z(S1 ×B2) = β11

(3) Z(X\B3) = 1
DZ(X) ⊗ β1 ⊗ β1.

Proof.

Let B3 be a 3-ball regarded as the mapping cylinder as the identity map

id : B2 −→ B2. By the mapping cylinder axiom, Z(B3) = β1 ⊗ β1. Gluing

two copies of B3 together yields S3. By the gluing axiom Z(S3) = s00 = 1
D .

It follows that Z(X\B3) = 1
DZ(X) ⊗ β1 ⊗ β1.

Prop 6.4.

The action of the left-handed Dehn twist along a boundary component

labeled by a of B2,Aab, Pabc on V1, Va,â or Vabc is a multiplication by a

scalar θa. Furthermore, θ1 = 1, θa = θâ, and θa is a root of unity for each

refined label a.

6.5. Framed link invariants and modular representation

Let K be a framed link in a 3-manifold X . The framing of K determines a

decomposition of the boundary tori of the link compliment X\nbd(K) into

annuli. With respect to this decomposition,

Z(X\nbd(K)) = ⊕lJ(K; l)βa1â1 ⊗ · · · ⊗ βanân ,

where J(k; l) ∈ C and l = (a1, · · · , an) ranges over all labelings of the

components of K. J(K; l) is an invariant of the framed, labeled link (K; l).

When (V, Z) is a Jones-Kauffman or WRT TQFT, and X = S3, the result-

ing link invariant is a version of the celebrated colored Jones polynomial

evaluated at a root of unity. This invariant can be extended to an invariant

of labeled, framed graphs.

A framed link K represents a 3-manifold χ(K) via surgery. Using the

gluing formula for Z, we can express Z(χ(K)) as a linear combination of

J(K; l):

Z(χ(K)) =
∑

l

clJ(K; l).
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Consider the Hopf link Hij labeled by i, j ∈ L. Let s̃ij be the link

invariant of Hij . Note that when a component is labeled by the trivial

label, then we may drop the component from the link when we compute

link invariant. Therefore, the first row of s̃ consists of invariants of the

unknot labeled by i ∈ L. Denote s̃i0 as di, and di is called the quantum

dimension of label i. In Prop. 6.4, each label is associated with a root of

unity θi, which will be called the twist of label i. Define D =
√∑

i∈L d
2
i ,

and S = 1
D s̃, T = (δijθi), then S, T give rise to a representation of SL(2,Z),

the mapping class group of T 2.

6.6. Verlinde algebras and Verlinde formulas

Let T 2 = S1 × S1 = ∂D2 × S1 be the standard torus. Define the meridian

to be the curve µ = S1 × 1 and the longitude to be the curve λ = 1 × S1.

Let (V, Z) be a TQFT, then the Verlinde algebra of (V, Z) is the vec-

tor space V (T 2) with a multiplication defined as follows: consider the

two decompositions of T 2 into annuli by splitting along µ and λ, respec-

tively. These two decompositions determine two bases of V (T 2) denoted

as ma = βaâ, and la = βâa. These two bases are related by the modular

S-matrix as follows:

la =
∑

b

sabmb,ma =
∑

b

sâblb. (6.1)

Define Nabc = dimV (Pabc), then we have

mbmc =
∑

a

Nab̂ĉma. (6.2)

The multiplication makes V (T 2) into an algebra, which is called the

Verlinde algebra of (V, Z).

In the longitude bases la, the multiplication becomes

lalb = δabs
−1
0a la. (6.3)

This multiplication also has an intrinsic topological definition: Z(P×S1)

gives rise to a linear map from V (T 2)×V (T 2) → V (T 2) by regarding P×S1

as a bordism from T 2
∐
T 2 to T 2.

The fusion coefficient Nabc can be expressed in terms of sab, we have

Nabc =
∑

x∈L

saxsbxscx

s0x
. (6.4)
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More generally, for a genus=g surface Y with m boundaries labeled by

l = (a1 · · ·am),

dimV (Y ) =
∑

x∈L

s2−2g−n
0x (

∏
saix). (6.5)

7. Diagram and Jones-Kauffman TQFTs

For the remaining part of the paper, we will construct picture TQFTs and

verify the axioms for those TQFTs. Our approach is as follows: start with

a local relation and a skein relation, we first define a picture category Λ

whose objects are points with decorations in a 1-manifold X which is either

an interval I or a circle S1, and morphisms are unoriented sub-1-manifolds

in X× I with certain structures connecting objects (=points in X×{0} or

X × {1}). More generally, the morphisms can be labeled trivalent graphs

with coupons. Those picture categories serve as crude boundary conditions

for defining picture spaces for surfaces with boundaries. Secondly, we find

the representation category C of Λ, which is a spherical tensor category.

The irreps will be the labels. In the cases that we are interested, the result-

ing spherical categories are all ribbon tensor categories. Thirdly, we define

colored framed link invariants with the resulting ribbon tensor category in

the second step. Invariants of the colored Hopf links with labels form the

so-called modular S-matrix. Each row of the S-matrix can be used to de-

fine a projector ωi which projects out the i-th label if a labeled strand goes

through a trivial circle labeled by ωi.

b b

δ
ab

b

= =

Fig. 7.1. Projectors

The projector ω0 is used to construct the resulting 3-manifold invariant.

Finally, we define the partition function Z for a bordism X using a handle

decomposition. This construction will yield a TQFT if the S-matrix is non-

singular, which is always true for the annular TLJ cases. If the S-matrix

is singular, we still have a 3-manifold invariant, but we cannot define the

representations of the mapping class groups for high genus surfaces, though

representations of the braid groups are still well defined.
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7.1. Diagram TQFTs

In this section, we outline the proof that for some r ≥ 3, A a primitive 4rth

root of unity, or a primitive 2rth root of unity and r odd, or a primitive

rth root of unity and r odd, the diagram theories PicA(Y ), ZD defined in

Section 3 indeed satisfy the axioms of TQFTs.

The diagram TQFTs are constructed based on the TLJ annular cat-

egories. The boundary condition categories C are the representation cat-

egories of the TLJ annular categories Λ. A nice feature of those TQFTs

is that we can identify the objects of the TLJ annular categories Λ as

boundary conditions using Theorem B.1: each object in TLJ gives rise to a

representation of Λ and therefore becomes an object of C, which is in gen-

eral not simple, i.e., not a label. Hence picture vector spaces are naturally

vector spaces for the diagram TQFTs.

For the diagram TQFTs, all labels are self-dual with trivial FS indica-

tors. Therefore, it suffices to use only the label set. The label sets of the dia-

gram TQFTs are given by the idempotents L = {ωi,j,h} in Fig. 3.7. Given a

surface Y with ∂Y = γ1, · · · , γm, and each boundary circle γi labeled by an

idempotent ei ∈ L. Then the picture space PicA
D(Y ; e1, · · · , em) consists of

all formal pictures that agree with ei inside a small annular neighborhood

Ai of the boundary γi modulo the Jones-Wenzl projector pr−1 outside all

Ai’s in Y . Given a bordism X from Y1 to Y2, the partition function ZD(X)

is defined in Section 3.6. Now we verify that (PicA, ZD) is indeed a TQFT.

For the axioms for modular functor V :

(1) is obvious.

(2) Since Jones-Wenzl projectors kill any turn-backs, then

PicA(B2;ωi,j,h) = 0 unless h = 0. For h = 0, all pictures are multiples

of the empty diagram.

(3) Since Hom(pi, pj) = 0 unless i = j, so PicA(A;ωi′,j′,h′ , ωi,j,h) = 0

unless h = h′. If h = h′, then we have ωi · ωi′ and ωj · ωj′ , respectively in

the annulus. Recall that ωaωb = δabωa, it follows that unless i = i′, j = j′,
PicA(A;ωi′,j′,h′ , ωi,j,h) = 0.

(4) Obvious

(5) PicA(−Y ) = PicA(Y ), hence duality is obvious.

(6) Gluing follows from Morita equivalence.

The axioms of partition function Z follow from handle-body theory and

properties of the S matrix.

The action of the mapping class groups is easy to see: a diffeomorphism

maps one multicurve to another. Since a diffeomorphism preserves the local

relation and skein relation, this action sends skein classes to skein classes.
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The compatibility of the action with the axioms for vectors spaces is easy

to check.

7.2. Jones-Kauffman TQFTs

In this section, we outline the proof that for r ≥ 3, A a primitive 4rth

root of unity, the Jones-Kauffman skein theories V A
JK(Y ), ZJK defined in

Section 3 indeed satisfy the axioms of TQFTs.

The boundary condition category for a Jones-Kauffman TQFT is the

representation category of a TLJ rectangular category. The label set is

L = {pi}i∈I , and I = {0, 1, · · · , r − 2}. Same reason as for the diagram

TQFTs, we need only the label set.

The new feature of the Jones-Kauffman TQFTs is the framing anomaly.

If A and r as in Lemma 3.1, then the central charge is 3(r−2)
r .

Given an extended surface (Y ;λ), the modular functor V (Y ;λ) is de-

fined in Section 3.4. If ∂X = Y , then we define Z(X) as the skein class

in KA(∂X) represented by the empty skein. TQFT axioms for V and Z

follow from theorems in Section 3.4. The non-trivial part is the mapping

class group action. This is explained at the end of Section 3.4.

8. WRT and Turaev-Viro SU(2)-TQFTs

The pictorial approach to the Witten-Reshetikhin-Turaev SU(2) TQFTs

was based on.KM The paperKM finished with 3-manifold invariants, just

asKL for the Jones-Kauffman theories. The paperBHMV took the picture ap-

proach inKL one step further to TQFTs, but the same for WRT TQFTs has

not been done using a pictorial approach. The reasons might be either peo-

ple believe that this has been done byBHMV or realize that the Frobennius-

Scur indicators make a picture approach more involved. It is also widely

believed that the two approaches resulted in the same theories. But they

are different. The spin 1/2 representation of quantum group SU(2)q for

q = e±2πi/r has a Frobenius-Schur indicator=−1, whereas the correspond-

ing label 1 in Temperley-Lieb-Jones theories has Frobenius-Schur indicator

= 1. The Frobenus-Schur indicators −1 in the Witten-Reshetikhin-Turaev

theories introduce some −1’s into the S-matrix, hence for the odd levels k,

these −1’s change the S-matrix from singular in the Jones-Kauffman the-

ories when A = ±ie±2πi
4r to non-singular. For even levels k, the S-matrices

are the same as those of the Jones-Kauffman TQFTs, even though the

TQFTs are different theories (seeRSW for the level=2 case).

In the pictorial TLJ approach to TQFTs, there is no room to encode
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the Frobenius-Schur indicators −1. In this section, we introduce “flag” dec-

orations on each component of a framed multicurve which can point to

either side of the component. These flags allow us to encode the FS indi-

cator −1, hence reproduce the Witten-Reshetikhin-Turaev SU(2) TQFTs

exactly. The doubled theories of WRT TQFTs are not the diagram TQFTs,

and will be called the Turaev-Viro SU(2)-TQFTs. They are direct products

of WRT theories with their mirror theories.

8.1. Flagged TLJ categories

In flagged TLJ categories, the local relation is still the Jones-Wenzl pro-

jectors, but the skein relation is not the Kauffman bracket exactly, but a

slight variation discovered by R. Kirby and P. Melvin in.KM

The skein relation for resolving a crossing p is given inKM is as follows:

if the two strands of the crossing belongs to two different components of

the link, then the resolution is the Kauffman bracket in Figure 2.1; but if

the two strands of the crossing p are from the same component, then a sign

ε(p) = ±1 is well-defined, and the skein relation is:

  A A
-1

= ε

Fig. 8.1. Kirby-Melvin skein relation

The flagged TLJ categories have objects signed points in the interval

and morphism flagged multicurves as follows: given an oriented surface Y ,

and a multicurve γ in the interior of Y , and no critical points of γ are within

small neighborhoods of ∂Y . Let γ× [−ε, ε] be a small annulus neighborhood

of γ. A flag of γ at p ∈ γ is an arc p× [0, ε] or p× [−ε, 0]. A flag is admissible

if p is not a critical point of γ. A multicurve γ is flagged if all flags on γ

are admissible and the number of flags has the same parity as the number

of critical points of γ. An admissible flag on γ can be parallel transported

on γ so that when the flag passes through a critical point, it flips to the

other side. In the plane, this is the same as parallel transport by keeping

the flag parallel at all times in the plane. A multicurve is flagged if all its

components are flagged.
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Given a surface Y with signed points on the boundary. Each signed

point is flagged so that if the sign is +, the flag agrees with the induced

orientation of the boundary; if the sign is −, the flag is opposite to the

induced orientation. Let C[S] be the space of all formal flagged multicurves

in R with signed points at the bottom and top, then the morphism set

between the bottom signed point and the top signed point of TLflag is the

quotient space of C[S] such that

(1) Flags can be parallel transported

(2) Flipping a flag to the other side results in a minus sign

(3) Two neighboring flags can be cancelled if there are no critical points

between them and they are on the opposite sides.

(4) Apply Jones-Wenzl projector to any part of an multicurve with no flags.

Then all discussions for TL apply to TLflag. The representation cate-

gory is similarly given by the same Jones-Wenzl projectors. The biggest

difference from TL is the resulting framed link invariant.

Lemma 8.1.

Given a framed link diagram D, then the WRT invariant < D >KM

of D using Kirby-Melvin skein relation and the Jones-Kauffman invariant

< D >K using Kauffman bracket is related by:

< D >KM (A) = (−i)D·D < D >K (iA). (8.1)

8.2. Turaev-Viro Unitary TQFTs

Fix A = ±e± 2πi
4r for some r ≥ 3.

The label set is the same as that of the corresponding diagram TQFT,

but for the first time we need to work with the refined label set.

Given a surface Y with boundaries labeled by refined labels εiVi. If εi =

1, we flag the point to the orientation of ∂Y ; if εi = −1, we flag the points

opposite to the orientation of ∂Y . Then define the modular functor space

analogous to the skein space replacing multicurves with flagged multicurves.

The theories are similar enough so we will leave the details to interested

readers. The difference is that when the level=k is odd, our version of the

Turaev-Viro theory is a direct product-a trivial quantum double, while the

corresponding diagram TQFT is a non-trivial quantum double.

8.3. WRT Unitary TQFTs

Fix A = ±e± 2πi
4r for some r ≥ 3.
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The label set of a WRT TQFT is the same as that of the corresponding

Jones-Kauffman TQFT, but it needs to be extended to the refined label

set. The central charge of a level=k theory is 3k
k+2 . The discussion together

with the Turaev-Viro theories is completely parallel to the Jones-Kauffman

TQFTs with diagram TQFTs.

9. Black-White TQFTs

Interesting variations of the TLJ categories can also be obtained by 2-

colorings: the black-white annular categories TLJBW
d . The objects of the

category are the objects of the corresponding annular TLJ category en-

hanced by two colorings of the complements of the points. In particular

there are two circles: black and white. Morphisms between two objects are

enhanced by colorings of the regions. A priori there are two enhancements

of each Jones-Wenzl idempotent, but it has been proved inFn that the two

versions are equivalent.

9.1. Black-white TLJ categories

Fix some r ≥ 3 and A, where A is a primitve 4rth root of unity, or a

primitive 2rth root of unity and r odd, or a primitive rth root of unity and

r odd

The objects of black-white TLJ categories are points in the interval

or S1 with a particular 2-coloring of the complementary intervals so that

adjacent intervals having different colors. Given two objects, morphisms are

multicurves from the bottom to top whose complement regions have black-

white colors that are compatible with the objects, and any two neighboring

regions receive different colors. The local relation is the 2-color enhanced

Jones-Wenzl projector and the skein relation is the 2-color enhancement

of the Kauffman bracket. The representation theories of the black-white

categories are considerably harder to analyze.

The object with no points in the circle has two versions 0B, 0W , which

might be isomorphic. Indeed sometimes they are isomorphic and sometimes

not. Therefore a skeleton of a black-white TLJ category can be identified

with {0B, 0W , 2, 4, · · · } with the possibility that 0B = 0W . We will draw

the black object 0b as a bold solid circle, and the white object as a dotted

circle. Interface circles between black and white regions will be drawn as

regular solid circles. Morphisms will be drawn inside annuli, directed and

composed from inside-out. There are two color changing morphisms rbw ∈
Hom(0b, 0w), rwb ∈ Hom(0w, 0b).



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

94 M. Freedman, C. Nayak, K. Walker and Z. Wang

Let us denote the two compositions rbw · rwb = xb ∈ Hom(0b, 0b), rwb ·
rwb = xw ∈ Hom(0w, 0w), which are just rings in the annulus.

Given an oriented closed surface Y , a 2-colored multicurve in Y is a pair

(γ, c), where γ is a multicurve, and c is an assignment of black or white to all

regions of Y \γ so that any two neighboring regions have opposite colors. Let

C[S] be the vector space of formal 2-colored multicurves, and PicBW(Y ) be

the quotient space of C[S] modulo the BW-enhancement of JW projectors.

9.2. Labels for black-white theories

Recall in Section 5.1, we define the element q2m ∈ C2m(x).

Lemma 9.1.

The element q2m is a minimal idempotent of C2m(x).

Prop 9.1.

(1): If r is even, then xb, xw are not invertible, hence 0b is not isomorphic

to 0w.

(2): If r is odd, then xb, xw are invertible, hence 0b and 0w are isomor-

phic.

(3): The color swap involution is the identity on the TQFT vector spaces.

9.2.1. Level=2, d2 = 2

The algebra A0b0b
∼= C2, and so is the algebra A0w0w . Both are generated

by x, so ∼= C[x]/(x2 = 2x).

Hom(0b, 0w) ∼= C is generated by rbw . Similarly, Hom(0w, 0b) ∼= C is

generated by rwb.

A2,2
∼= C4. Following the same analysis as in Section 5, we get the irreps

denoted by the following:

ρ3 0 0 1

ρ2 1 0 1

ρ1 0 1 1

ρ0 1 1 1

0b 0w 2

9.2.2. Level=3

The algebra A0B ,0B
∼= C2 is generated by x so ∼= C[x]/(x2 − 3x+ 1).
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The algebra A22
∼= C7. Similar analysis as above leads to:

ρ3 0 0 1

ρ2 0 0 1

ρ1 1 1 2

ρ0 1 1 1

0b 0w 2

9.3. BW TQFTs

Theorem 9.1.

(1): If r ≥ 3, and A a primitive 4rth root of unity, or a primitive 2rth

root of unity and r odd, or a primitive rth root of unity and r odd, then

(V A
BW , ZA

BW ) is a TQFT.

(2): If r odd, then (V A
BW , ZA

BW ) is isomorphic to the doubled even TLJ

sub-category TQFT, i.e., the TQFT from the quantum double of the even

TLJ subcategory at the corresponding A.

The proof of this theorem and the irreps for all r are left to a future

publication.

We have not be able to identify the BW TQFTs with known ones when

r is even, and A is a primitive 4rth root of unity. If r = 4, then (V A
BW , ZA

BW )

is isomorphic to the toric code TQFT. We conjecture Theorem 9.1 (2) still

holds for these cases. Furthermore, each (V A
BW , ZA

BW ) decomposes into a

direct product of the toric code TQFT with another TQFT.

10. Classification and Unitarity

In this section, we classify all TQFTs based on Jones-Wenzl projectors and

Kauffman brackets. Then we decide when the resulting TQFT is unitary.

In literature A has been chosen to be either as a primitive 4r-th root of

unity or as a primitive 2rth root of unity. We notice that for r odd, when

A is a primitive rth root of unity, the resulting TLJ rectangular categories

give rise to ribbon tensor categories with singular S-matrices, but their

annular versions lead to TQFTs which are potentially new. Also when A is

a primitive 4rth root of unity and r even, the BW TQFTs seem to contain

new theories.
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10.1. Classification of diagram local relations

By d generic we mean that d is not a root of some Chebyshev polynomial

4i. Equivalently d 6= B + B̄ for some B such that B` = 1.

Let us consider d-isotopy classes of multicurves on a closed surface Y .

Call this vector space TLd(Y ). This vector space has the subtle structure

of gluing formula associated to cutting into subsurfaces (and then reglu-

ing); there is a product analogous to both times and tensor products in

TLJd. Also for special values of d TLd(Y ) has a natural singular Hermitian

structure.

Theorem 10.1. If d has the form: d = −A2−A−2, A a root of unity. Then

there is a (single) local relation R(d) so that TLd(Y ) modulo R(d), denoted

by Vd(Y ), have finite nonzero dimension. If d is not of the above form then

Vd(Y ) = 0 or = TLd(Y ) for any given R(d). Furthermore the quotient space

Vd(Y ) of TLd(Y ) when it is neither {0} nor TLd(Y ) is uniquely determined,

and when A is a primitive 4rth root of unity, then Vd(Y ) is the “Drinfeld

double” of a Jones-Kauffman TQFT at level k = r − 2.

Proof. Consider a local relation R0(d) of smallest degree, say 2n, which

holds in TLd (i.e. is a consequence of R(d)). Arbitrarily draw R0(d) in a

rectangle with n endpoints assigned to the top and n endpoints assigned

to the bottom, to place R0(d) in the algebra TLn(d). Adding any cup or

cap to R0 gives a consequent relation of degree = 2n − 2; this relation,

by minimality, must be zero. This implies that eiR0(d) = R0(d)ei = 0 for

1 ≤ i ≤ n− 1. So by Proposition 2.1, R0(d) = cpn,d, c a nonzero scalar.

The trace, tr(pn,d) ∈ C is a degree = 0 consequence of pn,d so unless d

is a root of 4n, tr(pn,d) 6= 0 and so generates all relations: pn,d(Y ) = 0.

Now suppose d is the root of two Chebyshev polynomials 4m

and 4`, m < `. This happens exactly when (m + 1) di-

vides (` + 1). In fact to understand the roots of 4n(d) intro-

duces a change of variables d = B + B−1, then: 4n(d) =

(Bn+1 −B−n−1)/(B −B−1). The r.h.s. vanishes (simply) when (and only

when) B is a 2n+2− root of unity 6= ±1. In particular if d is a root of 4m

and 4` then pm,d is a consequence of pm,` by “partial trace” as shown in

Figure 10.1.

Trace both sides to verify the coefficient f = 4m

4`
and note that since

both numerator and denominator have simple roots at d the coefficient at

d is well defined and nonzero.

Thus for a diagram local relation (or set thereof) to yield a nontrivial

set of quotient space 6= 0, d must be a root of lowest degree 4n and the
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n l=
p pf

Fig. 10.1. Partial trace

relation(s) are equivalent to the single relation pn,d.

Geometrically, 0 = pn = 1 + U implies 1 = −U means that the multic-

urves whose multiplicity is less than n along the 1− cells, SK1(Y ), (“bonds”

in physical language) of any fixed triangulation of Y determine pn(Y ). Here

multiplicity ≤ n for a multicurve γ means that γ runs near SK1(Y ) and

with fewer than n parallel copies of a 1− cell (bond) of SK1(Y ). Finite

dimensionality of pn(Y ) is an immediate consequence. (SK1 stands for

“1−skeleton.”)

The quotient space 6= 0, for Y = S2 this follows from the nonvanishing

of certain θ-symbols; for Y of higher genus the Verlinde formulas.

10.2. Unitary TQFTs

A unitary modular functor is a modular functor such that each V (Y ) is

endowed with a non-degenerate Hermitian pairing:

<,>: V (Y ) × V (Y ) −→ C,

and each morphism is unitary. The Hermitian structures are required to

satisfy compatibility conditions as in the naturality axiom of a modular

functor. In particular,

< ⊕ivi,⊕jwj >=
∑

i

si0 < vi, wj > .

Note that this implies that all quantum dimensions of particles are positive

reals. It might be true that any theory with all quantum dimensions positive

is actually unitary. Moreover, the following diagram commutes for all Y :

V (Y )
∼=−−−−→ V (−Y )∗

∼=
y

y∼=

V (Y )∗
∼=−−−−→ V (−Y )

A unitary TQFT is a TQFT whose modular functor is unitary and whose

partition function satisfies Z(−M) = Z(M).
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10.3. Classification and unitarity

There are two kinds of TQFTs that we studied in this paper: undoubled

and doubled, which are indexed by the Kauffman variable A.

When A is a primitive 4rth root of unity for r ≥ 3, we have the Jones-

Kauffman TQFTs. The even sub-categories of TLJs yield TQFTs for r odd,

but have singular S-matrix if r even. If r is even, and A = ±ie± 2πi
4r , then

the Jones-Kauffman TQFTs are unitary.

We also have the WRT SU(2)-TQFTs for q = e±
2πi

r , which are unitary.

WRT TQFTs were believed to be the same as the Jones-Kauffman TQFTs

with q = A±4, but they are actually different. Jones-Kauffman TQFTs and

WRT TQFTs are related by a version of Schur-Weyl duality as alluded in

Section 2 for the braid group representations.

All above theories can be doubled to get picture TQFTs: the doubled

Jones-Kauffman TQFTs are the diagram TQFTs, while the doubled WRT

TQFTs are the Turaev-Viro TQFTs.TV The doubles of even sub-categories

for r odd form part of the Black-White TQFTs in Theorem 9.1, while for

r even this is still a conjecture.

When A is a primitive 2rth or rth root of unity and r odd, the TLJ

categories do not yield TQFTs. But the restrictions to the even labels lead

to TQFTs. When A = ±ie± 2πi
4r , the resulting TQFTs are unitary. Those

unitary TQFTs are the same as those obtained from the restrictions of

WRT TQFTs to integral spins. All can be doubled to picture TQFTs. Note

that for these cases when A is a primitive rth root of unity, then −A is a

primitive 2rth root of unity. For the even sub-categories, they lead to the

same TQFTs, which form part of the Black-White TQFTs in Theorem 9.1.

�
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Appendix A. Topological phases of matter

Fractional quantum Hall liquids are new phases of matter exhibiting topo-

logical orders, and Chern-Simons theories are proposed as effective theo-

ries to describe the universal properties of such quantum liquids. Quantum

Chern-Simons theories are (2+1)-dimensional topological quantum field

theories (TQFTs), so we define a topological phase of matter as a quantum

system with a TQFT effective theory.

Ground states manifolds as modular functors

While in real experiments, we will prefer to work with quantum systems

in the plane, it is useful in theory to consider quantum systems on 2-

dimensional surfaces such as the torus. Given a quantum system on a

2-dimensional oriented closed surface Σ, there associates a Hilbert space

H consisting of all states of the system. The lowest energy states form the

ground states manifold V (Σ), which is a subspace of H. For a given theory,

the local physics of the quantum systems on different surfaces are the same,

so there are relations among the ground states manifolds V (Σ) for different

Σ’s dictated by the local physics. In a topological quantum system, the

ground states manifolds form a modular functor—the 2-dimensional part

of a TQFT. In particular, V (Σ) depends only on the topological type of Σ.

Elementary excitations as particles

A topological quantum system has many salient features including an en-

ergy gap in the thermodynamic limit, ground states degeneracy and the lack

of continuous evolutions for the ground states manifolds. The energy gap

implies that elementary excitations are particle-like and particle statistics

is well-defined. These quasi-particles are anyons, whose statistics are de-

scribed by representations of the braid groups rather than representations

of the permutation groups.

The mathematical model for an anyonic system is a ribbon category.

In this model an anyon is pictured as a framed point in the plane: a small

interval. Given a collection of n anyons in the plane, we will arbitrarily

order them and place them onto the real axis, so we can represent them by

intervals [i− ε, i+ ε], i = 1, 2, · · · , n on the real axis for some small ε. The

worldlines of any n anyons from time t = 0 to the same set of n anyons

at time t = 1 form a framed braid in R2 × [0, 1]. We will represent world-

lines of anyons by diagrams of ribbons in the plane which are projections

from R2 × [0, 1] to the real axis ×[0, 1] with crossings. (Technically we need



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

100 M. Freedman, C. Nayak, K. Walker and Z. Wang

to perturb the worldlines in order to avoid more singular projections.) A

further convention is the so-called blackboard framing: we will draw only

single lines to represent ribbons with the understanding the ribbon is the

parallel thickening of the lines in the plane.

Suppose n elementary excitations of a topological quantum system on

a surface Σ are localized at points p1, p2, · · · , pn, by excising the particles

from Σ, we have a topological quantum system on a punctured surface Σ′

obtained from Σ by deleting a small disk around each point pi. Then the

ground states manifold of the quantum system on Σ′ form a Hilbert space

V (Σ′). The resulting Hilbert space should depend only on the topological

properties of the particles—particle types that will be referred to also as

labels. In this way we assign Hilbert spaces V (Σ, a1, a2, · · · , an) to surfaces

with boundary components {1, 2, · · · , n} labelled by {a1, a2, · · · , an}.

Braid statistics

The energy gap protects the ground states manifold, and when two particles

are exchanged adiabatically within the ground states manifolds, the wave-

functions are changed by a unitary transformation. Hence particle statistics

can be defined as the resulting unitary representations of the braid groups.

Appendix B. Representation of linear category

Category theory is one of the most abstract branch of mathematics. It is ex-

tremely convenient to use category language to describe topological phases

of matters. It remains to be seen whether or not this attempt will lead to

useful physics. But tensor category theory might prove to be the right gen-

eralization of group theory for physics. On a superficial level, the two layers

of structures in a category fit well with physics: objects in a category rep-

resent states, and morphisms between objects possible “physical processes”

from one state to another. For quantum physics, the category will be linear

so each morphism set is a vector space. Functors might be useful for the

description of topological phase transitions and condensations of particles

or string-nets. For more detailed introduction, consult the book.Ma

A category C consists of a collection of objects, denoted by a, b, c, · · · ,
and a morphism set aCb (also denoted by Mor(a, b)) for each ordered pair

(a, b) of objects which satisfy the following axioms:

Given f ∈ aCb and g ∈ bCc, then there is a morphism f · g ∈ aCc such

that

1)(Associativity):
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If f ∈ aCb, g ∈ bCc, h ∈ cCd, then (f · g) · h = f · (g · h).
2)(Identity):

For each object a, there is a morphism ida ∈ aCa such that for any

f ∈ aCb and g ∈ cCa, ida · f = f and g · ida = g.

We denote the objects of C by C0 and write a ∈ C0 for an object of C.

We use C1 to denote the disjoint union of all the sets aCb . The morphism

f · g ∈ aCc is usually called the composition of f ∈ aCb and g ∈ bCc,

but our notation f · g is different from the usual convention g · f as we

imagine the composition as the join of two consecutive arrows rather than

the composition of two functions. This convention is convenient when the

composition in aCa of a linear category is regarded as a multiplication to

turn aCa into an algebra.

A category C is a linear category if each morphism set aCb is a finitely di-

mensional vector space, and the composition of morphisms is a bilinear map

of vector spaces. It follows that for each object a, aCa is a finitely dimen-

sional unital algebra. It follows that a finitely dimensional unital algebra

can be regarded as a linear category with a single object. Another impor-

tant linear category is the category of finitely dimensional vectors spaces V.

An object of V is a finitely dimensional vector space V . The morphism set

Mor(V,W ) between two objects V,W is Hom(V,W ). More generally, given

any finite set I , consider the linear category V[I ] of I-graded vector spaces,

which is a categorification of the group algebra C[G] if I is a finite group G.

An object of V[I ] is a collect of finitely dimensional vector spaces {Vi}i∈I

labelled by elements of I , and the morphism set Mor({Vi}i∈I , {Wj}j∈I) is

the (graded) vector space of linear maps ⊕i∈IHom(Vi,Wi). In the following

all categories will be linear categories, and we will see that any semisimple

linear category with finitely many irreducible representations is isomorphic

to a category of a finite set graded vector spaces.

General representation theory

Definition B.1. A (right) representation of a linear category C is a functor

ρ : C → V, where V is the category of finitely dimensional vector spaces.

The action is written on the right: ρ(a) = Va and given an f ∈ aCb, v.ρ(f) =

v.f = v · ρ(f) : Va → Vb for any v ∈ Va.

The 0-representation of a category is the representation which sends

every object to the 0-vector space. Fix an object a ∈ C0, we have a repre-

sentation of the category C, denoted by aC: the representation sends a to

the vector space aCa, and any other b ∈ C0 to aCb. An important construct
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which gives rise to all the representations of a semi-simple linear category

is as follows: fix an object a ∈ C0 and a right ideal Ja of the algebra aCa,

then the map which sends each object b ∈ C0 to Ja · aCb ⊆ aCb affords

C a representation, where Ja · aCb is the subspace of aCb generated by all

elements f · g, f ∈ Ja ⊆ aCa, g ∈ aCb. If the right ideal Ja is generated by

an element pa ∈ aCa, then the resulting representation of C will be denoted

by paC. In particular if Ja = aCa, we will have the regular representation

aC.

The technical part of the paper will be the analysis of the representa-

tions of certain picture categories. In order to do this, we first recall the

representation theory for an algebra—a linear category with a single object.

Definition B.2. Let A be an algebra, an element e ∈ A is an idempotent

if e2 = e 6= 0. Two idempotents e1, e2 are orthogonal if e1e2 = e2e1 = 0. An

idempotent is minimal if it is not the sum of two orthogonal idempotents.

Given an idempotent e of a finitely dimensional semi-simple algebra A,

the right ideal eA is an irreducible representation of A if and only if the

idempotent e is minimal. Since every irreducible right representation of A is

isomorphic to a right ideal eA for some idempotent of A, the representations

of A are completely known once we find a collection of pairwise orthogonal

minimal idempotents ei of A such that 1 = ⊕iei. It follows that A =

⊕n
i=1eiA.

Let p(x) be a polynomial of degree=nwith n distinct roots a1, a2, · · · , an

and A be the quotient algebra C[x]/(p(x)) of the polynomial algebra C[x].

Let uj =
∏n

i=1,i6=j(x − aj), λj =
∏n

i=1,i6=j(λj − λi) and ej =
uj

λj
. Then we

have the following lemma.

Lemma B.1. The idempotents {ej}n
j=1 of A are pair-wise orthogonal and

⊕n
j=1ej = 1. It follows that A is semi-simple and a direct sums of C’s. Note

that ej is an eigenvector of the element x ∈ A associated with the eigenvalue

aj .

Proof. Since uj(x − aj) = p(x) = 0, so uj · x = uj · aj = ajuj . It follows

that u2
j = uj

∏n
i=1,i6=j(x− ai) = λjuj , therefore e2j = ej 6= 0. Now consider

ui · uj , in uj there is the factor (x− ai) if i 6= j, but ui(x− ai) = p(x) = 0,

hence uiuj = 0.

The polynomial g(x) = (
∑n

j=1 ej) − 1 is a polynomial of degree n − 1,

but it has n distinct roots a1, a2, · · · , an, so g(x) is identically 0.

A representation ρ of C is reducible if ρ is the direct sum of two non-
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zero representations of C. Otherwise ρ is irreducible. A linear category C is

semi-simple if every representation {ρ,V} of C is a direct sum of irreducible

representations.

Definition B.3. Λ has a positive definite Hermitian inner product (pdhi)

iff each morphism set aΛb has a finite dimensional pdhi and composition

aΛb

⊗
bΛc

P→ aΛc satisfies the compatibility < P (amb

⊗
bmc), cmd >=<

amb, P (bmc

⊗
cmd) >, imj ∈ iΛj , and for all i, j ∈ Λ0, iΛj is identified

with jΛi.

Lemma B.2. Suppose Λ has positive definite Hermitian inner product,

then A is semi-simple.

Proof. If Λ has a pdhi, then any (finite dimensional) representation {ρ, V }
of Λ may also be given a pdhi structure. This means that the Vi are indi-

vidually pdhi-spaces and that for all morphisms m, (ρ(m))† = ρ(m̄). One

may check that any collections of pdhi-structures on {V } which are aver-

aged under the invertible morphisms (and therefore invariant) satisfies this

condition.

Most of the usual machinery of linear algebra, including Schur’s lemma,

holds for C-linear categories.

Lemma B.3. (Schur’s Lemma for C-linear categories) Suppose

{ρm, Vi} and {χm,Wi}, i ∈ obj(Λ),m ∈ Morph(i, j), are irreducible rep-

resentations of a C-linear category Λ (called an algebroid by some authors

e.g. [BHMV]). Irreducibility means no ρm invariant class of proper sub-

spaces V ′
i ⊂ Vi exists. Suppose that φ : {V } → {W} is a Λ-map com-

muting with the action Λ. That is for m ∈ Morph(i, j) and vi ∈ Vi we

have χm(φi(vi)) = φj · ρm(vi). Then either φ is identically zero for all

i, φi : Vi →Wi, or φ is an isomorphism. If {V } = {W} then φ = λ · id for

some λ ∈ C.

Proof. As in the algebra case ker(φ) (and image(φ)) are both invariant

families of subspaces (indexed by i ∈ obj(Λ).) So if either is a nontrivial

proper subspace for any i irreducibility of {V } (or {W}) fails. For the

second assertion, since C is algebraically closed for any i ∈ obj(Λ), the

characteristic equation det(φi − xI) = 0, has roots, call one λi. The Λ-map

φ−λ(I) has non-zero kernel (at least at object i) so by part one, φ−λI = 0

identically or φ = λI .
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Corollary B.1. Suppose the representation {ρ, V } of Λ has decomposi-

tion {V } = Va1

⊗{V1}
⊕ · · ·⊕Vak

⊗{Vk}, where the Vl are distinct (up

to isomorphism) irreducible representations, l is finite index, 1 ≤ l ≤ k,

and the Val
are ordinary C-vector spaces with no Λ-action, ( Dimension

(Val
) =: d(al) is the multiplicity of Vl.) The decomposition is unique up to

permutation and of course isomorphism of Val
and scalars acting on {Vl}.

Proof. Suppose {V } =
⊕

mWam

⊗{Wj}. Apply Schur’s lemma to com-

positions:

val

⊗
{Vl} → {V } → wam

⊗
{Wm}.

for all val
∈ Val

and wal
∈ Wal

to conclude that given l, Vl
∼= Wm for some

m and d(al) = d(am). This established uniqueness.

Now we state a structure theorem fromWal2 for the representation the-

ory of semisimple linear categories. Both the statement and the proof are

analogous to those for the semi-simple algebras. A right ideal of C is a sub-

set J of C1 such that for each object a ∈ C0, J ∩ aCa is a right ideal of aCa.

Note that each right ideal of C affords C a representation.

Theorem B.1.

1): Let C be a semi-simple linear category, and {Xi}i∈I be a complete

set of representatives for the simple right ideals of C. Then C is naturally

isomorphic to the category of the finite set I-graded vector spaces with each

object a ∈ C0 corresponding to the graded vector space Xia, where Xia is

Xi ∩ aCa.

2): Each irreducible representation ρ of C is given by a right ideal of

the form eaC for some object a ∈ C0, where ea is a minimal idempotent of

aCa. If for some b ∈ C0, which may be a, and eb is a minimal idempotent of

bCb, then the irrep ebC of C is isomorphic to eaC if and only if there exist

f ∈ aCb and g ∈ bCa such that f · g = ea, g · f = eb.

Appendix C. Gluing and Maslov index

Gluing

Gluing of 3-manifolds needs to be addressed carefully due to anomaly. The

basic problem is when X is a bordism, the canonical Lagrangian subspace

λX ∈ H1(∂X ; R) is in general not a direct sum. λX is determined by

the intrinsic topology as it is the kernel of the inclusion homomorphism:
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H1(∂X ; R) → H1(X ; R). But the anomaly is related to the parameteriza-

tions of the bordisms, which are extrinsic.

Suppose Xi, i = 1, 2 are bordisms from −Yi to Yi+1 extended by

λj , j = 1, 2, 3. The canonical Lagrangian subspace λXi defines a Lagrangian

subspace of H1(Y2; R) as follows: let λ−X1 = {b ∈ H1(Y2; R)|for some a ∈
λ1, (a, b) ∈ λX1}, and λ+X2 = {c ∈ H1(Y2; R)|for some d ∈ λ3, (c, d) ∈
λX2}. Then we have three Lagrangian subspaces in H1(Y2; R) together with

λ2.

More generally, let (Yi, λi) be extended sub-surfaces of (∂X ;λX), and

f : (Y1;λ1) → (−Y2;λ2) be a gluing map. Then we have three Lagrangian

subspaces inH1(Y1; R)⊕H1(Y2; R): the direct sum λ1⊕λ2, the anti-diagonal

∆ = {(x⊕−f∗(x)}, and K—the complement of λi in λX mapped here.

Maslov index

Given three isotropic subspaces λi, i = 1, 2, 3 of a symplectic vector space

(H,ω), we can define a symmetric bilinear form <,> on (λ1 + λ2) ∩ λ3 as

follows: for any v, w ∈ (λ1 + λ2) ∩ λ3, write v = v1 + v2, vi ∈ λi, then set

< v,w >= ω(v2, w). The Maslov index µ(λ1, λ2, λ3) is the signature of the

symmetric bilinear form <,> on (λ1 + λ2) ∩ λ3.
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Some entangled states can be generated based on Temperley-Lieb algebra. The
dynamics in the entangling degree (θ in this paper) space is set up through the
Yang-Baxterization and the Berry phase is found in the Yang-Baxter approach.
The Yang-Baxterization has been presented for A(u) and B(u), i.e. the 2-

dimensional braid matrices related to 2-state anyon model. We also show the
equivalence between the usual 4×4 R̆(u)-matrix and the set of A(u) and B(u).

1. Introduction

The Yang-Baxter equation (YBE) originates in solving δ-function inter-

action model1 by C.N. Yang and statistical models2 by R. Baxter and

introduced to solve many quantum integrable models3 by Faddeev and

Leningrad Scholar. Through RTT relation4 the new algebraic (quantum

groups) structure was established5 by V. Drinfeld. The usual YBE takes

the form

Ř12(u)Ř23(u+ v)Ř12(v) = Ř23(v)Ř12(u+ v)Ř23(u) (1.1)
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that is valid for three types of Ř-matrices, i.e. rational, trigonometric and

elliptic solutions of YBE. The spectral parameter u plays important role

that is 1-dimensional momentum (rapidity) in some typical models. The

asymptotic behavior of Ř12(u) is u-independent.

lim Ři i+1(u) = bi (1.2)

which satisfy braid relation

bibi+1bi = bi+1bibi+1

bibj = bjbi, |i− j| > 2
(1.3)

where

bi = 1 × 1 × 1 · · · bi i+1 × · · · × 1

For a statistical model all the elements of Ř(u)-matrix should be pos-

itive because they are related to the Boltzmann weights. The relationship

between Ř(u) and b was set up by M.Jimbo,6 V.Jones7 and others.8 We call

the process obtaining Ř(u) for a given braid matrix b “Yang-Baxterization”

that depends on the number of independent eigenvalues in matrix b.

If B has two independent eigenvalues we have simply

Ř(u) = ρ(xB − x−1B−1) (1.4)

where x = eu(or eiu) and ρ is a normalization factor.

As was pointed out by Kauffman and Lomonaco9,10 the braid matrix

B
1
2

1
2 transforms the “natural basis” (|↑↑〉, |↑↓〉 |↓↑〉, |↓↓〉) to the Bell state

( 1√
2

(|↓↓〉 ± |↑↑〉), 1√
2

(|↓↑〉 ± |↑↓〉)) . It is emphased that here the elements

of B
1
2

1
2 is no longer positive. However, a braid matrix b is nothing with

dynamics. We should Yang-Baxterize b to be Ř(x)-matrix and look for the

physical consequence of the extension.

Generally a solution of R̆(u) depends on two parameters, say, φ (the

q-deformation parameter with q = eiφ, or it may be originated from other

parameter such as η = eiφ, see below Eq(1)) and θ (the spectral parameter

or the one dimensional momentum). In physics the parameter φ is flux that

can be dependent on time t. If we define a quantum state

|Φ(θ, φ(t))〉 = R̆(θ, φ(t))|Φ(0)〉, (1.5)
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where |Φ(0)〉 is the initial state independent of t. The normalization con-

dition of the quantum states 〈Φ(θ, φ(t))|Φ(θ, φ(t))〉 = 〈Φ(0)|Φ(0)〉 = 1 re-

quires the unitary condition R̆†(θ, φ(t)) = R̆−1(θ, φ(t)). It follows from

Eq(5) that

i~∂|Φ(θ,φ(t)〉
∂t

= i~
[

∂R̆(θ,φ(t))
∂t R̆†(θ, φ(t))

]
R̆(θ, φ(t))|Φ(0)〉

= H(t)|Φ(θ, φ(t))〉,
(1.6)

where the Hamiltonian reads

H(t) = i~
∂R̆(θ, φ(t))

∂t
R̆†(θ, φ(t)). (1.7)

The R̆(θ, φ)-matrix is related to the braiding matrix through Eq(3.4).

Suppose |Φ(0)〉 represents a direct-product state without entangling, and

B(φ)|Φ(0)〉 yields an entangled state (in general, a maximally entangled

state). For the case with two distinct eigenvalues, through the Yang-

Baxterization B(φ) → R̆(θ, φ), Eq(1.7) defines the Hamiltonian for a Yang-

Baxter systems. It is interesting to note that as was shown in11 the meaning

of |2 cos θ| is the entangling degree for the Bell state.

The purpose of this paper is to investigate the Berry phase (BP)12 in

Yang-Baxter systems, quantum criticality (QC) phenomenon13–17 is also

discussed. Special attention will be paid to set up the connection between

the Yang-Baxter approach and topologic quantum field theory through 4×4

in YB and 2-dimensional in TQF model.18

2. Berry phase in Yang-Baxter approach

The braiding operators satisfy the following braid relations:

bibi+1bi = bi+1bibi+1, 1 ≤ i ≤ n− 1,

bibj = bjbi, |i− j| ≥ 2, (2.1)

where the notation bi ≡ bi,i+1 has been used. Let us consider the following

type of braiding matrix for two spin-1/2 particle911

B
1
2

1
2 =

1√
2
(I +M

1
2

1
2 ), (2.2)
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where I is the 4 × 4 identity matrix and

M
1
2

1
2 =




eiφ

ε

−ε
−e−iφ


 , (2.3)

with ε = ±1, and φ = φ(t) represents the arbitrary flux. The matrix M
1
2

1
2

satisfies the algebraic relations of the extra-special two-group10.18

The trigonometric Yang-Baxterization approach6–8 gives R̆(x) =

ρ(xB − x−1B−1) (here ρ is a normalization factor) gives

R̆(x) = [2(x2 + x−2)]−1/2[(x+ x−1)I
1
2

1
2

+(x− x−1)M
1
2

1
2 ],

[R̆(x)]−1 = [2(x2 + x−2)]−1/2[(x+ x−1)I
1
2

1
2

−(x− x−1)M
1
2

1
2 ]. (2.4)

The unitary condition [R̆(x)]−1 = R̆(x−1) leads to φ(t) being real.

Equation (3.11) can be rewritten as

M
1
2

1
2 = eiφ(t)S+

1 S
+
2 − e−iφS−

1 S
−
2 + ε(S+

1 S
−
2 − S−

1 S
+
2 ), (2.5)

where S±
i = S1

i ± iS2
i are raising and lowering operators of spin-1/2 angular

momentum for the i-th lattice. We then have from Eq(1.7) that

H1(x, φ(t)) = −~φ̇[2(x2 + x−2)]−1(x− x−1) ×
{(x− x−1)(S3

1 + S3
2) +

(x+ x−1)(eiφS+
1 S

+
2 + e−iφS−

1 S
−
2 )}. (2.6)

By using

x = [− cos 2θ]−1/2(cos θ + sin θ)

x−1 = [− cos 2θ]−1/2(sin θ − cos θ), (2.7)

Eq(5) can be recast to

H1(θ, φ(t)) = −~φ̇ cos θ[cos θ(S3
1 + S3

2) + sin θ(eiφS+
1 S

+
2

+e−iφS−
1 S

−
2 )]. (2.8)

The eigen-problem of Eq(10) under adiabatic approximation is

H1(θ, φ(t))|Φ±(θ, φ(t))〉1 = E1
±(t)|Φ±(θ, φ(t))〉1, (2.9)
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where the two non-zero eigenvalues are

E1
± = ∓~φ̇ cos θ

= ∓~ω cos θ (for φ = ωt), (2.10)

and the corresponding eigenstates are

|Φ+(θ, φ)〉 = cos θ
2 | ↑↑〉+ sin θ

2e
−iφ| ↓↓〉,

|Φ−(θ, φ)〉 = − sin θ
2e

iφ| ↑↑〉 + cos θ
2 | ↓↓〉.

(2.11)

The physical consequence of Berry phase for the above Yang–Baxter Hamil-

tonian system, i.e., for H1(θ, φ(t)), has been discussed in.19 Namely, from

the definition of Berry phase

γ(c) = i

∫ T

0

dt〈n(~R)| ∂
∂t

|n(~R)〉 = i

∫ T

0

dtA(t)

= i

∫ 2π

0

dtφ̇−1〈n(~R)| ∂
∂φ

|n(~R)〉, (2.12)

here ~R = (sin θ cosφ, sin θ sinφ, cos θ) and |n( ~R)〉 = |Φ±(θ, φ)〉, one then

obtains the Berry phases for the Yang–Baxter system as

γ1
± = (±

∫ 2π

0

dφ) sin2 θ

2
= ±π(1 − cos θ) = ±Ω

2
, (2.13)

where Ω = 2π(1 − cos θ) is the familiar solid angle enclosed by the loop on

the Bloch sphere in θ-space.

In terms of S+
i = f+

i , S
−
i = fi and ni = f+

i fi the Hamiltonian (10) can

be recast to the form

H1(θ, φ(t)) = −~ω cos θ[cos θ · (n̂1 + n̂2 − 1)

+ sin θ(eiφ(t)S+ + e−iφ(t)S−)], (2.14)

or

H1(θ, φ(t)) = −~ωη(θ)H0(θ, φ(t)) (2.15)

where

H0(θ, φ(t)) = 2η(θ)S3 + ∆(t)S+ + ∆(t)∗S− (2.16)

η(θ) = cos θ, ∆(t) = sin θeiφ(t) (2.17)

The standard procedure making H0(θ, φ(t)) diagonal is

W †H0W = 2ES3, E =
√

(η(θ))2 + |∆(t)|2 = 1 (2.18)
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and the eigenstate is

|ξ(θ)〉 = W |vacuum〉 = exp(ξS+ − ξ∗S−)|vacuum〉,
S−|vacuum〉 = 0,

(2.19)

with

ξ = reiφ(t), cot(2r) = − η(θ)

|∆(t)| (2.20)

Substituting Eq(2.17) into Eq(17) and Eq(19) we obtain

E = 1, r = −θ
2
,

in other words, we have

W †HW |ξ(θ)〉 = −~ω · 2 cos θS3|ξ(θ)〉
= −~ω cos θ(n̂1 + n̂2 − 1)|ξ(θ)〉. (2.21)

It is nothing but an oscillator Hamiltonian formed by two fermions with the

frequency ω cos θ. When θ = 0 Eq (16) reduces to the standard oscillator

for ∆(t) = 0. However, When θ 6= 0, ∆(t) plays a role of the “energy gap”

and the wave function takes the form of spin coherent state.20

3. Berry phase for hamiltonian H2(θ, φ(t))

In this section, we come to study the Berry phase for a kind of Yang–

Baxter Hamiltonian related to the well-known six-vertex model3 and the

Temperley-Lieb algebra.

For the well-known six-vertex model, the braiding matrix reads

B = S
1
2

1
2 =




q 0 0 0

0 0 −η 0

0 −η q − q−1 0

0 0 0 q




= q(I − q−1U
1
2

1
2 ),

(3.1)

where

U
1
2

1
2 =




0 0 0 0

0 q η 0

0 η−1 q−1 0

0 0 0 0


 . (3.2)
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The matrix U
1
2

1
2 satisfies the Temperley-Lieb algebra, i.e., UiUi±1Ui =

Ui, U
2
i = d Ui (for the above matrix U

1
2

1
2 , d = q + q−1). Similarly, the

trigonometric Yang-Baxterization approach gives

R̆(x) = [q2 + q−2 − (x2 + x−2)]−1/2[(qx− q−1x−1)I

−(x− x−1)U
1
2

1
2 ], (3.3)

[R̆(x)]−1 = [q2 + q−2 − (x2 + x−2)]−1/2[(qx−1 − q−1x)I

+(x− x−1)U
1
2

1
2 ]. (3.4)

It is easy to check that [R̆(x)]†=[R̆(x)]−1=R̆(−x) for x = eiϑ, η = eiϕ(t),

and θ, ϕ(t), q ∈ real.

One may symmetrize the matrix R̆(x) given by Eq(3.3) (i.e., to make the

matrix elements
[
R̆(x)

]1/2,−1/2

1/2,−1/2
=
[
R̆(x)

]−1/2,1/2

−1/2,1/2
) through the following

unitary transformation

R̆i i+1(V (x)) = V (x)R̆i i+1(x)V (x)†, (3.5)

where V (x) = Vi(x) ⊗ [Vi+1(x)]
−1 and

Vi(x) =

(
0 x−

1
4

x
1
4 0

)
. (3.6)

The resultant R̆i i+1(V (x)) is still a solution of YBE. Let only the param-

eter η = eiϕ(t) be time-dependent, it yields from Eq(1.7) and Eq(3.5) that

H2(x, ϕ(t)) = ~ϕ̇
[
q2 + q−2 − (x2 + x−2)

]−1
(x− x−1)

×[(x− x−1)(S3
1 − S3

2)+

(q − q−1)(eiϕS+
1 S

−
2 − e−iϕS−

1 S
+
2 )].

(3.7)

Putting x = eiϑ, ϑ = π/2 − θ and ϕ(t) = φ(t) − π/2 = ωt, we have

H2(θ, φ(t)) = −4~ω
[
q2 + q−2 + 2 cos2θ

]−1
cos θ

×[cos θ(S3
1 − S3

2)+
1
2 (q − q−1)(eiφS+

1 S
−
2 + e−iφS−

1 S
+
2 )],

(3.8)

whose two nonzero eigenvalues are

E2
± = −4~φ̇(q2 + q−2 + 2 cos 2θ)−1 cos θλ±

= −4~φ̇ cos θ

λ±
, (3.9)

with

λ± = ±
√

cos2 θ + (q − q−1)2/4. (3.10)
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Under the adiabatic approximation the corresponding eigenstates are

|Φ+(θ, φ)〉 = 1√
2λ+

[(λ+ − cos θ)−1/2
(

q−q−1

2

)
|↑↓〉

+i(λ+ − cos θ)1/2e−iφ |↓↑〉],
|Φ−(θ, φ)〉 = 1√

2λ−

[i(λ− − cos θ)−1/2
(

q−q−1

2

)
eiφ |↑↓〉

−(λ− − cos θ)1/2e−iφ |↓↑〉].

(3.11)

The corresponding Berry phases for the Yang–Baxter system are

γ2
± = ±π

(
1 − 1

λ+
cos θ

)

= ±π
[
1 − cos θ

[cos2 θ + (q − q−1)2/4]1/2

]
. (3.12)

The above Berry phases have been “q-deformed”, when λ+ = 1, or

q =
√

1 + sin2 θ ± sin θ, Eq(3.12) reduces to Eq(15). Remarkably the

Berry phases in Eq(3.12) can still be expressed in terms of the concur-

rence of the states |Φ±(θ, ϕ)〉 in Eq(3.11) as γ2
± = ∓π(1−

√
1 − C2), where

C = (q − q−1)/(2λ+).

Similarly, the Hamiltonian H2(θ, φ(t)) can be rewritten in terms of

SU(2) generators J+ = S+
1 S

−
2 = f̂ †

1 f̂2, J
− = S−

1 S
+
2 = f̂1f̂

†
2 , J3 =

(S3
1 − S3

2) = (n̂1 − n̂2)/2 as

H2(θ, φ(t)) = −4~ω
cos θ

q2 + q−2 + 2 cos2θ
H ′

0(θ, φ(t)), (3.13)

where

H ′
0(θ, φ(t)) = 2ε(θ)J3 + ∆(t)J+ + ∆(t)∗J−,

ε(θ) = cos θ, ∆(t) = eiφ(t)(q − q−1)/2. (3.14)

When q − q−1 = 0, or q = ±1, the Hamiltonian H ′
0(θ, φ(t)) contracts to

H ′
0(θ, φ(t)) = ε(θ)(n̂1 − n̂2), thus the quantum criticality occurs. Corre-

spondingly, one may easily see that the Berry phases in Eq(3.12) vanish.

4. Yang-Baxterization of a simple model in 2-dimensional

braid relation.

We have seen that the Yang-Baxterization procedure in the section I is used

to yield the Berry phase. However, in connection with the FQHE there are

two-dimensional braid matrices as was shown by Z. Wang in his lectures at

Nankai Institute based on the works of M. Freedman, Z. Wang and others.21

For the model with two types of particles the basis is taken as |e1〉 and |e2〉
that in terms of Kauffman’s graphic method22 are shown by
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= 1
√

2

0

|e1〉 = 1
√

2

0 1 0 1

11 1 1

,

=
0

|e2〉 =

0 1 2 1

11 1 1

− 1
√

2

, (4.1)

while the corresponding operators behave as

= i|e1〉− 1
√

2

= |e1〉A|e1〉 = 1
√

2

A|e2〉 =

=
(

1−i

2

)

|e1〉 +
(

1+i

2

)

|e2〉− 1
√

2

=
(

1+i

2

)

|e1〉 +
(

1−i

2

)

|e2〉B|e1〉 = 1
√

2

B|e2〉 =
, (4.2)

where the operator A makes crossing in the spaces 1 and 2, whereas B for

2 and 3. Thus their matrix representations in the basis |Φ〉 =

( |e1〉
|e2〉

)
are

given by

A = ρ

[
1 0

0 i

]
, B =

ρ

2

[
1 + i 1 − i

1 − i 1 + i

]
, ρ = e−iπ/8, (4.3)

and they satisfy braid relation

ABA = BAB. (4.4)

We emphasize that Eq(4.4) should act on the combined basis |Φ〉. It is

worthy noting that the “crossing” in Eq(4) means the usual 4 × 4 braid

matrix.

In the following we shall show the Yang-Baxterization of Eq(4.4) is given

by

R̆12(u)R̆23(
u+ v

1 + β2uv
)R̆12(v) = R̆23(v)R̆12(

u+ v

1 + β2uv
)R̆23(u), (4.5)

where R̆12(u) = R̆(u) ⊗ 12, R̆23(v) = 12 ⊗ R̆(v) and the YBE Eq(7)

admits the celebrated Temperley-Lieb algebra (TLA) for

R̆12(u) = a1(u)14 + b1(u)U12,

R̆23(u) = a2(u)14 + b2(u)U23,
(4.6)
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with U satisfying TLA

U2 = dU, U12U23U12 = U12, U23U12U23 = U23. (4.7)

Actually substituting Eq(8) and Eq(9) into Eq(1) we obtain the following

independent relations

a1(u)a2(u+ v)a1(v) = a2(v)a1(u+ v)a2(u)

a1(u)b2(u+ v)b1(v) = b2(v)b1(u+ v)a2(u)

a1(u)b1(v) + b1(u)a1(v) + d b1(u)b1(v)a2(u+ v) + b1(u)b2(u+ v)b1(v)

= a2(v)b1(u+ v)a2(u)

a1(u)b2(u+ v)a2(v) = [a2(v)b2(u) + b2(v)a2(u) + d b2(v)b2(u)]a1(u+ v)

+b2(v)b1(u+ v)b2(u)
(4.8)

where Eq(9) has been used.

On the other hand by directly acting the 4-dimensional R̆(u)-matrix on

the base |e1〉 and |e2〉 one obtains

R̆12(u) |e1〉 = [a1(u) + d b1(u)] |e1〉 ,
R̆12(u) |e2〉 = a1(u) |e2〉 ,

R̆23(u) |e1〉 = [a2(u) +
b2(u)

d
] |e1〉 +

√
d2 − 1

d
b2(u) |e2〉 ,

R̆23(u) |e2〉 =

√
d2 − 1

d
b2(u) |e1〉 + [a2(u) +

d2 − 1

d
b2(u)] |e2〉 .

(4.9)

Introducing matrix elements A(u)ij = 〈ei|R̆12(u)|ej〉 and B(u)ij =

〈ei|R̆23(u)|ej〉 (i, j = 1, 2) we have

A(u) =

[
a1(u) + d b1(u) 0

0 a1(u)

]
,B(u) =

[
a2(u) + b2(u)

d

√
d2−1
d b2(u)√

d2−1
d b2(u) a2(u) + d2−1

d b2(u)

]

(4.10)

that in terms of Pauli matrices can be recast to

A(u) = f1(u)I + g1(u)σ3, B(u) = f2(u)I + g2(u)σ1 + h2(u)σ3 (4.11)

where

f1(u) = a1(u) +
d

2
b1(u), g1(u) = d

2 b1(u);

f2(u) = a2(u) +
d

2
b2(u), g2(u) =

√
d2 − 1

2
b2(u),

h2(u) =
2 − d2

2d
b2(u). (4.12)

We first discuss a system other than Eq(4.3). It has d = 2 in which case we

should let A(u) and B(u) satisfy the spectral parameter dependent braid
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relation

A(u)B(u+ υ)A(u) = B(v)A(u+ υ)B(u) (4.13)

We substitute Eq(13) into Eq(15) and find the independent relations

[f1(u)f1(υ) + g1(u)g1(υ)]f2(u+ υ) + α[f1(u)g1(υ) + g1(u)f1(υ)]g2(u+ υ)

= [f2(υ)f2(u) + (α2 + 1)g2(υ)g2(u)]f1(u+ υ)

+ α[f2(υ)g2(u) + g2(υ)f2(u)]g1(u+ υ) (4.14)

[f1(u)g1(υ) + g1(u)f1(υ)]f2(u+ υ) + 2αg1(u)g1(υ)g2(u+ υ)

= [f2(υ)f2(u) − (α2 + 1)g2(υ)g2(u)]g1(u+ υ) (4.15)

[f1(u)g1(υ) − g1(u)f1(υ)]g2(u+ υ)

= [g2(υ)f2(u) − f2(υ)g2(u)]g1(u+ υ) (4.16)

For the particular case

a1(u) = a2(u) = a(u)

b1(u) = b2(u) = b(u)
(4.17)

We then have

R̆i,i+1(u) = a(u)Ii,i+1 + b(u)Ui,i+1 (4.18)

and the corresponding A(u) and B(u) read

A(u) = f(u) I + g(u)σ3

B(u) = f(u) I + 2
√

d2−1
d2 g(u)σ1 + 2−d2

d2 g(u)σ3

(4.19)

where f(u) = a(u) + d
2b(u), g(u) = d

2 b(u) and satisfy

[f(u)g(v) +g(u)f(v)]f(u+ v) = [f(v)f(u) +

(1 − 4

d2
)g(v)g(u)]g(u+ v) (4.20)

or equivalently

[a(u)b(v) + b(u)a(v) + d b(u)b(v)]a(u+ v) =

[a(v)a(u) − b(v)b(u)]b(u+ v) (4.21)

When a(u) and b(u) are independent of u we put a = ρ, b = ρξ, then

A = ρ

[
1 + ξd 0

0 1

]
, B = ρ

[
1 + ξ

d

√
d2−1
d ξ√

d2−1
d ξ 1 + d2−1

d ξ

]
(4.22)

and Eq(23) leads to

ξ2 + ξd+ 1 = 0 (4.23)
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i.e.

ξ =
1

2
(−d±

√
d2 − 4) (4.24)

Eq(24) satisfies the braid relation

ABA = BAB (4.25)

For R̆(u) Eq(23) and Eq(20) it follows

a(u) = ρ(u), b(u) = ρ(u)G(u)

G(u) =
u

γ − u
(d = 2) (γ arbitrary)

(4.26)

The corresponding U -matrix takes the form

U =




0 0

1 eiφ

e−iφ 1

0 0


 (4.27)

that had been given by Eq(2).

However this type of solution does not compatible with Eq(4.3). In

order to make the equivalence between the 4-dimensional R̆(x) -matrix and

Yang-Baxterized braid relation of Eq(4.3) we should go in another way.

5. Yang-Baxterization of Eq(4.3)

We shall show that the consistent Yang-Baxterization for both R̆(u) and

A(u), B(u) is given by

R̆12(u)R̆23(
u+ v

1 + β2uv
)R̆12(v) = R̆23(v)R̆12(

u+ v

1 + β2uv
)R̆23(u), (5.1)

A(u)B(
u+ v

1 + β2uv
)A(v) = B(v)A(

u+ v

1 + β2uv
)B(u), (5.2)

where β is an arbitrary constant. It looks like Lorentz transformation for

β = iv and the constraint equation for a(u) and b(u) are

[a(u)b(v) + b(u)a(v) + db(u)b(v)]a(
u+ v

1 + β2uv
) =

[a(v)b(u) + b(v)a(u)]b(
u+ v

1 + β2uv
) (5.3)

In fact the R̆(α)-matrix can be understood to be dependent on a new spec-

tral parameter u through α = iβ−1 tanu.



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

Berry Phase and Yang-Baxterization of Braid Relation 119

Putting a(u) = ρ(u) and b(u) = ρ(u)G(u) again, the relation satisfied

by G(u) is given by

G(u) +G(v) + dG(u)G(v) = [1 −G(u)G(v)]G

(
u+ v

1 + β2uv

)
(5.4)

whose solution can be found

G(u) =
i 4εβu

d [1 + β2u2 − i 2εβu]
for d =

√
2 (5.5)

where ε = ±1 and β is arbitrary. It is emphasized that Eq(5.5) is the

solution of YBE for d =
√

2 only.

Substituting Eq(5.5) into Eq(12) with a1(u) = a2(u) = a(u), b1(u) =

b2(u) = b(u), we obtain

A(u) = ρ(u)




1 + β2u2 + i 2εβu

1 + β2u2 − i 2εβu
0

0 1




B(u) = a(u)
1+β2u2−i 2εβu

[
1 + β2u2 i 2εβu

i 2εβu 1 + β2u2

] (5.6)

or for real β by letting
1 + β2u2 + i 2εβu

1 + β2u2 − i 2εβu
= e−2iθ and ρ(u) = eiθ

A(u) =

[
e−iθ 0

0 eiθ

]
, B(u) =

[
cos θ −i sin θ

−i sin θ cos θ

]
(5.7)

On the other hand we have had the U -matrix with d =
√

2

U =
1√
2




1 0 0 eiφ

0 1 iε 0

0 −iε 1 0

−e−iφ 0 0 1


 ε = ±1 (5.8)

It follows from Eq(26) for d =
√

2 ξ = − exp(±iπ/4) the corresponding

matrices A and B read

A = ∓iρ
[
1 0

0 ±i

]
, B =

e∓iπ/4

√
2

ρ

[
1 ∓i
∓i 1

]
(5.9)

The relation Eq(5.1) tells when Ř(u) reduces to braid matrix we have to

set u = v =
u+ v

1 + β2uv
. There are only two possibilities: u = v = 0 and

u = v = β−1. When u = v = 0, A(0) = B(0) = ρ(0)I whereas for the later

case it leads to the familiar braid matrices
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A(β−1) = iερ

[
1 0

0 −iε

]
, B(β−1) =

eiεπ/4

√
2

[
1 iε

iε 1

]
(ε = ±1) (5.10)

Hence, the A and B given by Eq(5.9) is nothing but the light velocity limit

of Eq(5.6).

In conclusion we have bridged the 4-dimensional Ř(u)-matrix satisfying

TLA with d =
√

2 and the 2-dimensional braid matrices related to the

anyon model with two states.

We are grateful to Prof. Z. Wang for enlighten discussions. This work is

in part supported by NSFC (Grant No.10575053).
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We establish the second part of Milnor’s conjecture on the volume of simplexes
in hyperbolic and spherical spaces. A characterization of the closure of the

space of the angle Gram matrices of simplexes is also obtained.

1. Introduction

Milnor’s conjecture

In,5 John Milnor conjectured that the volume of a hyperbolic or spherical

n−simplex, considered as a function of the dihedral angles, can be extended

continuously to the degenerated simplexes. Furthermore, he conjectured

that the extended volume function is non-zero except in the closure of

the space of Euclidean simplexes. The first part of the conjecture on the

continuous extension was established in4 (7 has a new proof of it which
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generalizes to many polytopes). The purpose of the paper is to establish

the second part of Milnor’s conjecture.

To state the result, let us begin with some notations and definitions.

Given an n−simplex in a spherical, hyperbolic or Euclidean space with

vertices u1, ..., un+1, the i-th codimension-1 face is defined to be the (n−1)-

simplex with vertices u1, ..., ui−1, ui+1, ..., un+1. The dihedral angle between

the i-th and j-th codimension-1 faces is denoted by θij . As a convention, we

define θii = π and call the symmetric matrix A = [− cos(θij)](n+1)×(n+1)

the angle Gram matrix of the simplex. It is well known that the angle Gram

matrix determines a hyperbolic or spherical n-simplex up to isometry and

Euclidean n-simplex up to similarity. Let Xn+1,Yn+1,Zn+1 in R(n+1)×(n+1)

be the subsets of (n+1)× (n+1) symmetric matrices corresponding to the

angle Gram matrices of spherical, hyperbolic, or Euclidean n−simplexes

respectively.

The volume of an n-simplex can be expressed in terms of the angle

Gram matrix by the work of Aomoto,1 Kneser2 and Vinberg.8 Namely,

for a spherical or hyperbolic n-simplex σn with angle Gram matrix A, the

volume V is

V (A) = µ−1
n

√
| det(ad(A))|

∫

R
n+1
≥0

e−xtad(A)xdx, (1)

where Rn+1
≥0 = {(x1, ..., xn+1)| xi ≥ 0}, the constant µk =

∫∞
0 xke−x2

dx

and ad(A) is the adjoint matrix of A. In,4 it is proved that the volume

function V : Xn+1∪Yn+1 → R can be extended continuously to the closure

Xn+1 ∪ Yn+1 in R(n+1)×(n+1). The main result of this paper, which verifies

the second part of Milnor’s conjecture, is the following theorem.

Theorem 1.1. The extended volume function V on the closure Xn+1∪Yn+1

in R(n+1)×(n+1) vanishes at a point A if and only if A is in the closure Zn+1.

A characterization of angle Gram matrices

We will use the following conventions. Given a real matrix A = [aij ], we

use A ≥ 0 to denote aij ≥ 0 for all i, j and A > 0 to denote aij > 0

for all i, j. At is the transpose of A. We use ad(A) to denote the adjoint

matrix of A. The diagonal k × k matrix with diagonal entries (x1, ...xk) is

denoted by diag(x1, ...xk). A characterization of the angle Gram matrices

in Xn+1,Yn+1 or Zn+1 is known by the work of3 and.5
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Proposition 1.1 (,35). Given an (n+1)× (n+1) symmetric matrix A =

[aij ] with aii = 1 for all i, then

(a) A ∈ Zn+1 if and only if det(A) = 0, ad(A) > 0 and all principal n× n

submatrices of A are positive definite,

(b) A ∈ Xn+1 if and only if A is positive definite,

(c) A ∈ Yn+1 if and only if det(A) < 0, ad(A) > 0 and all principal n× n

submatrices of A are positive definite.

In particular, all off-diagonal entries aij have absolute values less than 1,

i.e.,|aij | < 1 for i 6= j.

The following gives a characterization of matrices in Xn+1,Yn+1 and

Zn+1 in R(n+1)×(n+1).

Theorem 1.2. Given an (n+1)× (n+1) symmetric matrix A = [aij ] with

aii = 1 for all i, then

(a) A ∈ Zn+1 if and only if det(A) = 0, A is positive semi-definite, and

there exists a principal (k + 1) × (k + 1) submatrix B of A so that

det(B) = 0, ad(B) ≥ 0 and ad(B) 6= 0,

(b) A ∈ Xn+1 if and only if either A is in Xn+1 or there exists a diagonal

matrix D = diag(ε1, ..., εn+1) where εi = 1 or −1 for each i = 1, ..., n+

1, such that DAD ∈ Zn+1,

(c) A ∈ Yn+1 if and only if either A ∈ Zn+1 or det(A) < 0, ad(A) ≥ 0 and

all principal n× n submatrices of A are positive semi-definite.

The paper is organized as follows. In section 2, we characterize normal

vectors of degenerated Euclidean simplexes. In section 3, we characterize

angle Gram matrices of degenerated hyperbolic simplexes. Theorem 1 is

proved in section 4 and Theorem 3 is proved in section 5.

Acknowledgment

We would like to thank the referee for a very careful reading of the

manuscript and for his/her nice suggestions on improving the exposition.

2. Normal vectors of Euclidean simplexes

As a convention, all vectors in Rm are column vectors and the stan-

dard inner product in Rm is denoted by u · v. In the sequel, for a non-

zero vector w ∈ Rn, we call the set {x ∈ Rn|w · x ≥ 0} a closed

half space, and the set {x ∈ Rn|w · x > 0} an open half space. Define
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En+1 = {(v1, ..., vn+1) ∈ (Rn)n+1|v1, ..., vn+1 form unit outward normal

vectors to the codimension-1 faces of a Euclidean n-simplex }. Following

Milnor,5 a matrix is called unidiagonal if its diagonal entries are 1. An

(n+ 1)× (n+ 1) symmetric unidiagonal matrix A is in Zn+1 if and only if

A = [vi · vj ] for some point (v1, ..., vn+1) ∈ En+1 (this is proved in,35). We

claim that an (n+ 1)× (n+ 1) symmetric unidiagonal matrix A is in Zn+1

if and only if A = [vi ·vj ] for some point (v1, ..., vn+1) in the closure En+1 in

(Rn)n+1. Indeed, if A = [vi · vj ] for some point (v1, ..., vn+1) ∈ En+1, then

there is a sequence (v
(m)
1 , ..., v

(m)
n+1) ∈ En+1 converging to (v1, ..., vn+1). We

have a sequence of matrices A(m) = [v
(m)
i · v(m)

j ] ∈ Zn+1 converging to A.

Conversely if A ∈ Zn+1, then there is a sequence of matrices A(m) ∈ Zn+1

converging to A. Write A(m) = [v
(m)
i · v(m)

j ], where (v
(m)
1 , ..., v

(m)
n+1) ∈ En+1.

Since v
(m)
i has norm 1 for all i,m, by taking subsequence, we may assume

limm→∞(v
(m)
1 , ..., v

(m)
n+1) = (v1, ..., vn+1) ∈ En+1 so that A = [vi · vj ].

A geometric characterization of elements in En+1 was obtained in.3 For

completeness, we include a proof here.

Lemma 2.1. A collection of unit vectors (v1, ..., vn+1) ∈ (Rn)n+1 is in

En+1 if and only if one of the following conditions is satisfied.

(4.1) The vectors v1, ..., vn+1 are not in any closed half-space.

(4.2) Any n vectors of v1, ..., vn+1 are linear independent and the linear sys-

tem
∑n+1

i=1 aivi = 0 has a solution (a1, ..., an) so that ai > 0 for all

i = 1, ..., n+ 1.

Proof. (4.2) ⇒ (4.1). Suppose otherwise, v1, ..., vn+1 are in a closed half-

space, i.e., there is a non-zero vector w ∈ Rn so that w · vi ≥ 0, i =

1, ..., n+ 1. Let a1, ..., an+1 be the positive numbers given by (4.2) so that∑n+1
i=1 aivi = 0. Then

0 = w · (
n+1∑

i=1

aivi) =
n+1∑

i=1

ai(w · vi).

But by the assumption ai > 0, w · vi ≥ 0 for all i. Thus w · vi = 0 for

all i. This means that v1, ..., vn+1 lie in the (n − 1)-dimensional subspace

perpendicular to w. It contradicts the assumption in (4.2) that any n vectors

of v1, ..., vn+1 are linear independent.

(4.1) ⇒ (4.2). To see that any n vectors of v1, ..., vn+1 are linear indepen-

dent, suppose otherwise, some n vectors of v1, ..., vn+1 are linear dependent.

Therefore there is an (n−1)-dimensional hyperplane containing these n vec-
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tors. Then v1, ..., vn+1 are contained in one of the two closed half spaces

bounded by the hyperplane. It contradicts to the assumption of (4.1).

Since v1, ..., vn+1 are linear dependent, and any n of them are linear

independent, we can find real numbers ai 6= 0 for all i such that
∑n+1

i=1 aivi =

0. For any i 6= j, let Hij be the (n − 1)-dimensional hyperplane spanned

by the n− 1 vectors {v1, ..., vn+1} \ {vi, vj} and u ∈ Rn − {0} be a vector

perpendicular to Hij . We have

0 = u · (
n+1∑

i=1

aivi) = ai(u · vi) + aj(u · vj).

By the assumption of (4.1), vi and vj must lie in the different sides of Hij .

Thus u · vi and u · vj have different sign. This implies that ai and aj have

the same sign. Hence we can make ai > 0 for all i.

En+1 ⇔ (4.1). We will show (v1, ..., vn+1) ∈ En+1 if and only if the

condition (4.1) holds. In fact, given an n−dimensional Euclidean simplex

σ, let Sn−1 be the sphere inscribed to σ. We may assume after a translation

and a scaling that Sn−1 is the unit sphere centered at the origin. Then the

unit vectors v1, ..., vn+1 are the tangent points of Sn−1 to the codimension-1

faces of σ. The tangent planes to Sn−1 at v′is bound a compact region (the

Euclidean simplex σ) containing the origin if and only if the tangent points

v1, ..., vn+1 are not in any closed hemisphere of Sn−1.

Lemma 2.2. A collection of unit vectors (v1, ..., vn+1) ∈ (Rn)n+1 is in

En+1 if and only if one of the following conditions is satisfied:

(5.1) The vectors v1, ..., vn+1 are not in any open half-space.

(5.2) The linear system
∑n+1

i=1 aivi = 0 has a nonzero solution (a1, ..., an+1)

so that ai ≥ 0 for all i = 1, ..., n+ 1.

Proof. En+1 ⇒(5.1). To see that elements in En+1 satisfy (5.1), if

(v1, ..., vn+1) ∈ En+1, there is a family of (v
(m)
1 , ..., v

(m)
n+1) ∈ En+1 converging

to (v1, ..., vn+1). Since vectors v
(m)
1 , ..., v

(m)
n+1 are not in any closed half-space

for any m, by continuity, vectors v1, ..., vn+1 are not in any open half-space.

(5.1)⇒(5.2). Consider the linear map

f : Rn −→ Rn+1

w 7−→ f(w) = [v1, v2, ..., vn+1]
tw =




v1 · w
v2 · w

...

vn+1 · w


 .
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Statement (5.1) says that

∅ = {w ∈ Rn|vi · w > 0, i = 1, ..., n+ 1}
= {w ∈ Rn|f(w) > 0}
= f(Rn) ∩Rn+1

>0 .

Since f(Rn) and Rn+1
>0 are convex and disjoint, by the separation theorem

for convex sets, there is a vector a = (a1, ..., an+1)
t satisfying the conditions

(i) and (ii) below.

(i) For all u ∈ Rn+1
>0 ,

a · u > 0.

and

(ii) For all w ∈ Rn,

0 ≥ a · f(w) =




a1

a2

...

an+1


 ·




v1 · w
v2 · w

...

vn+1 · w


 = (

n+1∑

i=1

aivi) · w.

Condition (i) implies that ai ≥ 0, for i = 1, ..., n+1 and a 6= 0. Condition

(ii) implies
∑n+1

i=1 aivi = 0. Thus (5.2) holds.

(5.2)⇒ En+1. To see that a point (v1, ..., vn+1) satisfying (5.2) is in En+1,

we show that in any ε-neighborhood of (v1, ..., vn+1) in (Rn)n+1, there is a

point (vε
1, ..., v

ε
n+1) ∈ En+1.

Let Nk be the set of (v1, ..., vk) such that vi ∈ Rk−1, |vi| = 1 for all i

and
∑k

i=1 aivi = 0 has a nonzero solution (a1, ..., ak) with ai ≥ 0 for all i.

The goal is to prove Nn+1 ⊂ En+1. We achieve this by induction on n. It is

obvious that N2 ⊂ E2. Assume that Nn ⊂ En holds.

For a point (v1, ..., vn+1) ∈ Nn+1, if any n vectors of v1, ..., vn+1 are

linear independent, then each entry ai of the non-zero solution of the linear

system
∑n+1

i=1 aivi = 0, ai ≥ 0, i = 1, ..., n+ 1 must be nonzero. Thus ai > 0

for all i and (v1, ..., vn+1) satisfies (4.2), therefore it is in En+1.

In the remain case, without loss of generality, we assume that v1, ..., vn

are linear dependent. We may assume after a change of coordinates

that vi ∈ Rn−1 = Rn−1 × {0} ⊂ Rn, for i = 1, ..., n, and vn+1 =

(un+1 cos(θ), sin(θ))t, where 0 ≤ θ ≤ π
2 and |un+1| = 1.

We claim that there exists some 1 ≤ i ≤ n + 1 such that (v1, ..., v̂i,

..., vn+1) ∈ Nn, where x̂ means deleting the element x.

Case 1. If θ > 0 i.e., vn+1 is not in Rn−1, consider the nonzero solution of

the linear system
∑n+1

i=1 aivi = 0, ai ≥ 0, i = 1, ..., n+1. The last coordinate
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gives a10+ ...+ an0+ an+1 sin(θ) = 0, which implies an+1 = 0. This means

(a1, ..., an) 6= 0, i.e., (v1, ..., vn) ∈ Nn.

Case 2. If θ = 0 i.e., vn+1 ∈ Rn−1, then the dimension of the solu-

tion space W = {(a1, ..., an+1)
t ∈ Rn+1|∑n+1

i=1 aivi = 0} is at least 2.

Since (v1, ..., vn+1) ∈ Nn+1, the intersection W ∩ Rn+1
≥0 − {(0, ..., 0)} is

nonempty. The vector space W must intersect the boundary of the cone

Rn+1
≥0 −{(0, ..., 0)}. Let (a1, ..., an+1) be a point in both W and the bound-

ary of the cone Rn+1
≥0 − {(0, ..., 0)}. Then there is some ai = 0. Then

{v1(t), ..., v̂i(t), ..., vn+1(t)} ∈ Nn.

By the above discussion, without lose of generality, we may assume that

(v1, ..., vn) ∈ Nn. By the induction assumption Nn ⊂ En, i.e., in any ε
2 -

neighborhood of (v1, ..., vn), we can find a point (u1, ..., un) ∈ En, where

ui ∈ Rn−1 for all i. Recall we write vn+1 = (un+1 cos(θ), sin(θ))t. Let us

define a continuous family of n+ 1 unit vectors v1(t), ..., vn+1(t) by setting

vi(t) = (ui cos(t2),− sin(t2))t, 1 ≤ i ≤ n,

vn+1(t) = (un+1 cos(θ + t), sin(θ + t))t.

We claim that there is a point (v1(t), ..., vn+1(t)) ∈ En+1 for small t > 0

within ε
2 -neighborhood of ((u1, 0)t, ..., (un, 0)t, vn+1). By triangle inequality,

this point is within ε-neighborhood of (v1, ..., vn+1). We only need to check

that (v1(t), ..., vn+1(t)) ∈ En+1 for sufficiently small t > 0 by verifying the

condition (4.2).

To show any n vectors of v1(t), ..., vn+1(t) are linear independent, it is

equivalent to show that

det[v1(t), ..., v̂i(t), ..., vn+1(t)] 6= 0

for each i = 1, ..., n+ 1.

First,

det[v1(t), ..., vn(t)] = det

[
u1 cos(t2) u2 cos(t2) ... un cos(t2)

− sin(t2) − sin(t2) ... − sin(t2)

]

n×n

= − sin(t2) cos(t2)n−1 det

[
u1 u2 ... un

1 1 ... 1

]
.

To see the determinant is nonzero, suppose there are real numbers

a1, ..., an such that
∑n

i=1 ai(u1, 1)t = 0. Then we have
∑n

i=1 aiui = 0 and∑n
i=1 ai = 0. By assumption (u1, ..., un) ∈ En, we know either ai = 0 for

all i or ai 6= 0 and have the same sign for all i. Hence
∑n

i=1 ai = 0 implies

ai = 0 for all i. Thus the vectors (u1, 1)t, ..., (un, 1)t are linear independent.

Hence det[v1(t), ..., vn(t)] 6= 0 for t ∈ (0,
√

π
2 ].
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Second, we calculate the determinant of the matrix whose columns are

vn+1(t) and some n−1 vectors of v1(t), ..., vn(t). Without loss of generality,

consider

f(t) = det[v2(t), ..., vn(t), vn+1(t)]

= det

[
u2 cos(t2) ... un cos(t2) un+1 cos(θ + t)

− sin(t2) ... − sin(t2) sin(θ + t)

]

If θ > 0, by the assumption (u1, ..., un) ∈ En, then

f(0) = det

[
u2 ... un un+1 cos(θ)

0 ... 0 sin(θ)

]
= sin(θ) det[u2, ..., un] 6= 0.

It implies f(t) 6= 0 holds for sufficiently small t > 0.

If θ = 0, then f(0) = 0. By expanding the determinant,

f(t) = − sin(t2)g(t) + sin(t) det[u2 cos(t2), ..., un cos(t2)],

for some function g(t), therefore f ′(0) = det(u2, ..., un) 6= 0. Hence f(t) 6= 0

holds for sufficiently small t > 0.

Next, let

ai(t) = (−1)i−1 det[v1(t), ..., v̂i(t), ..., vn+1(t)], 1 ≤ i ≤ n+ 1,

then
∑n+1

i=1 ai(t)vi(t) = 0. Since det[v1(0), ..., vn(0)] = 0, we have an+1(0) =

0. This shows that
∑n

i=1 ai(0)vi(0) = 0, therefore
∑n

i=1 ai(0)ui = 0. By the

assumption (u1, ..., un) ∈ En, we obtain ai(0) · aj(0) > 0 for 0 ≤ i, j ≤ n.

By the continuity we obtain ai(t) · aj(t) > 0 for 0 ≤ i, j ≤ n, for sufficient

small t > 0. Consider the last coordinate of
∑n+1

i=1 ai(t)vi(t) = 0 we obtain

− sin(t2)

n∑

i=1

ai(t) + sin(θ + t)an+1(t) = 0.

Thus an+1(t) has the same sign as that of ai(t). Thus (a1(t), ..., an+1(t)) or

(−a1(t), ...,−an+1(t)) is a solution required in condition (4.2).

3. Degenerate hyperbolic simplexes

Let Rn,1 be the Minkowski space which is Rn+1 with an inner product 〈, 〉
where

〈(x1, ..., xn, xn+1)
t, (y1, ..., yn, yn+1)

t〉 = x1y1 + ...+ xnyn − xn+1yn+1.

Let Hn = {x = (x1, ..., xn+1)
t ∈ Rn,1|〈x, x〉 = −1, xn+1 > 0} be

the hyperboloid model of the hyperbolic space. The de Sitter space is
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{x ∈ Rn,1|〈x, x〉 = 1}. For a hyperbolic simplex σ in Hn, the center and

the radius of the simplex σ are defined to be the center and radius of its

inscribed ball.

Lemma 3.1. For an n-dimensional hyperbolic simplex σ ∈ Hn with center

en+1 = (0, ..., 0, 1)t, its unit outward normal vectors in the de Sitter space

are in a compact set independent of σ.

Proof. Let v1, ..., vn+1 be the unit outward normal vectors of σ, i.e.,

σ = {x ∈ Hn|〈x, vi〉 ≤ 0 and 〈vi, vi〉 = 1 for all i}.

Let v⊥i be the totally geodesic hyperplane in Hn containing the (n −
1)−dimensional face of σ perpendicular to vi for each i = 1, ..., n+ 1. The

radius of σ is the distance from the center en+1 to v⊥i for any i = 1, ..., n+1

which is equal to sinh−1(|〈en+1, vi〉|) (see for instance9 p26). It is well known

that the volume of an n−dimensional hyperbolic simplex is bounded by the

volume of the n−dimensional regular ideal hyperbolic simplex which is fi-

nite (see for instance6 p539). It implies that the radius of a hyperbolic

simplex σ is bounded from above by a constant independent of σ. Hence

〈en+1, vi〉2 is bounded from above by a constant cn independent of σ for

any i = 1, ..., n+ 1. It follows that v1, ..., vn+1 are in the compact set

Xn = {x = (x1, ..., xn+1)
t|〈x, x〉 = 1, 〈en+1, x〉2 ≤ cn}

= {x = (x1, ..., xn+1)
t|x2

1 + ...+ x2
n = x2

n+1 + 1, x2
n+1 ≤ cn}

independent of σ.

Lemma 3.2. If A ∈ Yn+1 and det(A) = 0, then A ∈ Zn+1.

Proof. Let A(m) be a sequence of angle Gram matrixes in Yn+1 converging

to A. By Proposition 2 (c), for anym, all principal n×n submatrices of A(m)

are positive definite. Thus all principal n× n submatrices of A are positive

semi-definite. Since det(A) = 0, we see that A is positive semi-definite.

Let σ(m) be the n−dimensional hyperbolic simplex in the hyperboloid

model Hn whose angle Gram matrix is A(m) and whose center is en+1 =

(0, ..., 0, 1)t. By Lemma 6, its unit outward normal vector v
(m)
i is in a com-

pact set. Thus by taking a subsequence, we may assume (v
(m)
1 , ..., v

(m)
n+1)

converges to (v1, ..., vn+1) with 〈vi, vi〉 = 1. Since A(m) = [〈v(m)
i , v

(m)
j 〉] and

A(m) converges to A, we obtain

A = [〈vi, vj〉] = [v1, ..., vn+1]
tS[v1, ..., vn+1],
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where S is the diagonal matrix diag(1, ..., 1,−1).

Since det(A) = 0, the vectors v1, ..., vn+1 are linear dependent. Assume

that the vectors v1, ..., vn+1 span a k−dimensional subspace W of Rn,1,

where k ≤ n.

For any vector x ∈W, write x =
∑n+1

i=1 xivi. Then

〈x, x〉 = (x1, ..., xn+1)[v1, ..., vn+1]
tS[v1, ..., vn+1](x1, ..., xn+1)

t

= (x1, ..., xn+1)A(x1, ..., xn+1)
t

≥ 0

due to the fact that A is positive semi-definite.

Now for any x, y ∈ W, the inequality 〈x+ ty, x+ ty〉 ≥ 0 for any t ∈ R

implies the Schwartz inequality

〈x, y〉2 ≤ 〈x, x〉〈y, y〉.
To prove that A ∈ Zn+1, we consider the following two possibilities.

Case 1. If 〈x, x〉 > 0 holds for any non-zero x ∈W, then the Minkowski

inner product restricted on W is positive definite. Since the Minkowski

inner product restricted on Rk = Rk × 0 ⊂ Rn,1 is positive definite, by

Witt’s theorem, there is an isometry γ of Rn,1 sending W to Rk (see9 p14-

p15). By replacing v
(m)
i by γ(v

(m)
i ) for each i and m, we may assume that

v1, ..., vn+1 are contained in Rk. Thus 〈vi, vi〉 = vi · vj for all i, j. Therefore

A = [v1, ..., vn+1]
tS[v1, ..., vn+1] = [v1, ..., vn+1]

t[v1, ..., vn+1].

To show A ∈ Zn+1, by Lemma 5, we only need to show that v1, ..., vn+1

are not contained in any open half space of Rk. This is the same as that

v1, ..., vn+1 are not contained in any open half space of Rn.

Suppose otherwise, there exists a vector w ∈ Rk such that vi · w > 0

for all i. Thus 〈vi, w〉 = vi · w > 0. By taking m large enough, we obtain

〈v(m)
i , w〉 > 0 for all i.

It is well known that for the unit normal vectors v
(m)
i of a compact

hyperbolic simplex in Hn, the conditions 〈v(m)
i , w〉 > 0 for all i implies

〈w,w〉 < 0. But this contradicts the assumption that w ∈ Rk which implies

〈w,w〉 ≥ 0.

Case 2. If there exists some non-zero vector x0 ∈W such that 〈x0, x0〉 =

0, then by the Schwartz inequality we have

〈x0, y〉2 ≤ 〈x0, x0〉〈y, y〉 = 0

for any y ∈ W. Thus 〈x0, y〉 = 0 for any y ∈ W. This implies that the

subspace W is contained in x⊥0 , the orthogonal complement of x0.
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Since the vector u = (0, ..., 0, 1, 1)t ∈ Rn,1 satisfies 〈u, u〉 = 0, there is an

isometry γ of Rn,1 sending x0 to u. Thus γ sends x⊥0 to u⊥. By replacing

v
(m)
i by γ(v

(m)
i ) for each i and m, we may assume that v1, ..., vn+1 are

contained in u⊥.
For any i, since 〈vi, u〉 = 〈vi, (0, ..., 0, 1, 1)t〉 = 0, we can write vi as

vi = wi + aiu

for some wi ∈ Rn−1 and ai ∈ R. Since 〈wi, u〉 = 0, thus 〈vi, vj〉 = wi · wj

for all i, j. Therefore

A = [v1, ..., vn+1]
tS[v1, ..., vn+1]

= [w1, ..., wn+1]
t[w1, ..., wn+1].

To show A ∈ Zn+1, by Lemma 5, we only need to show that w1, ..., wn+1

are not contained in any open half space of Rn−1 which is equivalent to

that w1, ..., wn+1 are not contained in any open half space of Rn.

Suppose otherwise, there exists a vector w ∈ Rn−1 such that wi ·w > 0

for all i. Then

〈vi, w〉 = 〈wi, w〉 + 〈(0, ..., 0, ai, ai)
t, w〉 = wi · w + 0 > 0

for all i. By taking m large enough, we obtain 〈v(m)
i , w〉 > 0 for all i. By

the same argument above, it is a contradiction.

4. Proof of theorem 1

Spherical case

We begin with a brief review of the relevant result in.4 For any positive semi-

definite symmetric matrix A, there exists a unique positive semi-definite

symmetric matrix
√
A so that (

√
A)2 = A. It is well know that the map

A 7−→
√
A is continuous on the space of all positive semi-definite symmetric

matrices.

Suppose A ∈ Xn+1 = {A = [aij ] ∈ R(n+1)×(n+1)| At = A, all aii = 1,

A is positive definite}, the space of the angle Gram matrices of spherical

simplexes (by the Proposition 2). By making a change of variables, the

Aomoto-Kneser-Vinberg formula (1.1) is equivalent to

V (A) = µ−1
n

∫

Rn+1

χ(
√
Ax)e−xtxdx, (1)

where χ is the characteristic function of the set Rn+1
≥0 in Rn+1. It is proved

in4 that volume formula (2) still holds for any matrix in Xn+1={A = [aij ] ∈
R(n+1)×(n+1)| At = A, all aii = 1, A is positive semi-definite}.
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Suppose V (A) = 0, by formula (2), we see the function χ◦h : Rn+1 → R

is zero almost everywhere, where h : Rn+1 → Rn+1 is the linear map

sending x to
√
Ax. Equivalently, the (n + 1)-dimensional Lebesque mea-

sure of h−1(Rn+1
≥0 ) is zero. We claim h(Rn+1) ∩ Rn+1

>0 = ∅. For other-

wise, h−1(Rn+1
>0 ) is a nonempty open subset in Rn+1 with positive (n+ 1)-

dimensional Lebesque measure. This is a contradiction.

Now let
√
A = [v1, ..., vn+1]

t
(n+1)×(n+1), where vi ∈ Rn+1 is a column

vector for each i. First h(Rn+1)∩Rn+1
>0 = ∅ implies that det

√
A = 0. There-

fore {v1, ..., vn+1} are linear dependent. We may assume, after a rotation

r ∈ O(n+ 1), the vectors v1, ..., vn+1 lie in Rn × {0}. Now

∅ = h(Rn+1) ∩ Rn+1
>0

= {
√
Aw|w ∈ Rn+1} ∩ Rn+1

>0

= {(v1 · w, ..., vn+1 · w)t|w ∈ Rn+1} ∩ Rn+1
>0

This shows that there is no w ∈ Rn+1 such that vi ·w > 0 for i = 1, ..., n+1,

i.e., the vectors v1, ..., vn+1 are not in any open half space. By lemma 5, we

have (v1, ..., vn+1) ∈ En+1, therefore A = [vi · vj ] ∈ Zn+1.

Hyperbolic case

Let A ∈ Yn+1. If det(A) 6= 0, it is proved in4 that the volume formula

(1.1) still holds for A. In formula (1.1), since −xtad(A)x is finite, the inte-

grant e−xtad(A)x > 0. Therefore the integral
∫
R

n+1
≥0

e−xtad(A)xdx > 0. Hence

V (A) > 0.

It follows that if the extended volume function vanishes at A, then

detA = 0. By Lemma 7 , we have A ∈ Zn+1.

5. Proof of theorem 3

Proof of (a)

If A ∈ Zn+1, then A = [vi · vj ] for some point (v1, ..., vn+1) ∈ En+1. By

Lemma 5, the linear system
∑n+1

i=1 aivi = 0, ai ≥ 0, i = 1, ..., n + 1 has

a nonzero solution. Let (a1, ..., an+1) be a solution with the least num-

ber of nonzero entries among all solutions. By rearrange the index, we

may assume a1 > 0, ..., ak+1 > 0, ak+2 = ... = an+1 = 0. We claim

rank[v1, ..., vk+1] = k. Otherwise rank[v1, ..., vk+1] ≤ k−1, then the dimen-

sion of the solution space W = {(x1, ..., xk+1)
t ∈ Rk+1|∑k+1

i=1 xivi = 0}
is at least 2. Thus Ω = W ∩ Rk+1

>0 is a nonempty open convex set in

W whose dimension is at least 2. Hence Ω contains a boundary point
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(b1, ..., bk+1) ∈ Ω−{(0, ..., 0)} with some bj = 0, due to dimW ≥ 2. Now we

obtain a solution (b1, ...bj−1, 0, bj+1, ..., bk+1, 0, ..., 0) which has lesser num-

ber of nonzero entries than (a1, ..., an+1). This is a contradiction.

Let B = [vi · vj ](k+1)×(k+1). Since rank[v1, ..., vk+1] = k, we have

det(B) = 0. We claim that ad(B) ≥ 0 and ad(B) 6= 0. This will verify the

condition (a) in Theorem 3 for A. Let ad(B) = [bij ](k+1)×(k+1). Evidently,

due to rank(B) = k, ad(B) 6= 0. It remains to prove that ad(B) ≥ 0. By

the construction of B, we see bjj ≥ 0, for all j. Since rank[v1, ..., vk+1] = k,

it follows the dimension of the solution space of
∑k+1

i=1 aivi = 0 is 1. Since∑k+1
i=1 bijvj = 0, (bi1, ..., bik+1) is proportional to (a1, ..., ak+1), where ai > 0

for 1 ≤ i ≤ k+1. This shows that if bjj > 0, then bij > 0 for all i, if bjj = 0,

then bij = 0 for all i. This shows ad(B) ≥ 0.

Conversely, if A is positive semi-definite so that det(A) = 0 and there

exists a principal (k+1)×(k+1) submatrix B so that det(B) = 0, ad(B) ≥ 0

and ad(B) 6= 0, we will show that A ∈ Zn+1. Since A is positive semi-

definite and unidiagonal, there exist unit vectors v1, ..., vn+1 in Rn such that

A = [vi · vj ]. We may assume B = [vi · vj ](k+1)×(k+1), 1 ≤ i, j ≤ k + 1 and

ad(B) = [bij ]. Due to det(B) = 0, ad(B) 6= 0, we have rank(v1, ..., vk+1) =

k. We may assume v2, ..., vk+1 are independent. Thus the cofactor b11 > 0.

By the assumption ad(B) ≥ 0, we have b1s ≥ 0 for s = 1, ...k + 1. Since∑k+1
s=1 b1s(vs ·vj) = 0 for all j = 2, ..., k+1 and v2, ..., vk+1 are independent,

we get
∑k+1

s=1 b1svs = 0. Thus we get a nonzero solution for the linear system∑n+1
i=1 aivi = 0, ai ≥ 0, i = 1, ..., n+ 1.

Proof of (b)

If A ∈ Xn+1 − Xn+1, then A = [vi · vj ] where v1, ..., vn+1 are linear depen-

dent. We can assume v1, ..., vn+1 lie in Rn × {0}. By change subindex, we

may assume
∑n+1

i=1 aivi = 0 has a non-zero solution with ai ≥ 0 if i = 1, ..., k

while ai < 0 if i = k + 1, ..., n+ 1. Thus vectors v1, ..., vk ,−vk+1, ...,−vn+1

satisfy the condition (5.2) in Lemma 5. Let D be the diagonal matrix

diag(1, ..., 1,−1, ...,−1) with k diagonal entries being 1 and n− k+ 1 diag-

onal entries being −1. Thus by Lemma 5, DAD ∈ Zn+1.

On the other hand, if for some diagonal matrix D in Theorem 3 (b),

we have DAD ∈ Zn+1, then by Theorem 3 (a), DAD is positive semi-

definite. Therefore A is positive semi-definite. Take B ∈ Xn+1 and consider

the family A(t) = (1 − t)A + tB for t ∈ [0, 1]. Then limt→0 A(t) = A and

A(t) ∈ Xn+1 for t > 0. Thus A ∈ Xn+1.
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Proof of (c)

First we show that the conditions are sufficient. Suppose A =

[aij ](n+1)×(n+1) is a symmetric unidiagonal matrix with all principal n× n

submatrices positive semi-definite so that either A ∈ Zn+1 or det(A) < 0

and ad(A) ≥ 0. We will show A ∈ Yn+1. If A ∈ Zn+1, it is sufficient to

show that Zn+1 ⊂ Yn+1, i.e., we may assume A ∈ Zn+1. In this case, let

J = [cij ](n+1)×(n+1) so that cii = 1 and cij = −1 for i 6= j. Consider the

family A(t) = (1 − t)A+ tJ, for 0 ≤ t ≤ 1. Evidently limt→0A(t) = A. We

claim that A(t) ∈ Yn+1 for small t > 0. Since all principal n×n submatrices

of A are positive definite, by continuity, all principal n× n submatrices of

A(t) are positive definite for small t > 0. It remains to check det(A(t)) < 0

for small t > 0. To this end, let us consider d
dt |t=0 det(A(t)). We have

d

dt
|t=0 det(A(t)) =

∑

i6=j

(−aij − 1)cof(A)ij < 0,

due to ad(A) = [cof(A)ij ] > 0 and −aij − 1 < 0 for all i 6= j. Since

det(A) = 0 it follows that det(A(t)) < 0 for small t > 0.

In the second case that det(A) < 0 and ad(A) ≥ 0 and all principal

n × n submatrices of A are positive semi-definite. Then A has a unique

negative eigenvalue −λ, where λ > 0. Consider the family A(t) = A+ tλI,

for 0 ≤ t ≤ 1, where I is the identity matrix, so that

lim
t→0

1

1 + λt
A(t) = A.

We claim there is a diagonal matrix D whose diagonal entries are ±1 so

that

(1) DAD = A,

(2) 1
1+λtDA(t)D ∈ Yn+1 for 0 < t < 1.

As a consequence, it follows

A = DAD

= lim
t→0

1

1 + λt
DA(t)D ∈ Yn+1.

To find this diagonal matrix D, by the continuity, det(A(t)) < 0 for 0 < t <

1 and det(A(1)) = 0. Furthermore, all principal n×n submatrices of A are

positive definite for t > 0 due to positive definiteness of tλI. Let us recall

the Lemma 3.4 in4 which says that if B is a symmetric (n + 1) × (n + 1)

matrix so that all n×n principal submatrices in B are positive definite and



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

136 R. Guo and F. Luo

det(B) ≤ 0, then no entry in the adjacent matrix ad(B) is zero. It follows

that every entry of ad(A(t)) is nonzero for 0 < t ≤ 1.

Let ad(A(1)) = [bij ](n+1)×(n+1) and D to be the diagonal matrix with

diagonal entries being

b1i

|b1i|
= ±1

for i = 1, ..., n+ 1. Then the entries of the first row and the first column of

Dad(A(1))D are positive. Since det(A(1)) = 0 and ad(A(1)) 6= 0, we see the

rank of ad(A(1)) is 1. Thus any other column is propositional to the first

column. But bii > 0 for all i, hence ad(A(1)) > 0. Now since every entry

of Dad(A(t))D is nonzero for t > 0, by continuity Dad(A(t))D > 0 for

t > 0 and Dad(A)D = Dad(A(0))D ≥ 0. By the assumption ad(A) ≥ 0, it

follows Dad(A)D = ad(A). On the other hand Dad(A)D = ad(D−1AD−1),

and det(A) 6= 0. Thus D−1AD−1 = A or the same A = DAD. This shows

A = DAD

= lim
t→0

DA(t)D

= lim
t→0

1

1 + λt
DA(t)D.

By the construction above 1
1+λtDA(t)D ∈ Yn+1 for 0 < t < 1, this shows

A ∈ Yn+1.

Finally, we show the condition in (c) is necessary. Suppose A =

limm→∞ A(m) where A(m) ∈ Yn+1. By Proposition 2, det(A(m)) < 0,

ad(A(m)) > 0 and all principal n × n submatrices of A(m) are positive

definite. We want to show that A satisfies the conditions stated in (c).

Evidently, all principal n × n submatrices of A are positive semi-definite,

ad(A) ≥ 0 and det(A) ≤ 0. If det(A) < 0, then we are done. If det(A) = 0,

by Lemma 7, we see that A ∈ Zn+1.
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We use an action, of 2l-component string links on l-component string links,
defined by Habegger and Lin, to lift the indeterminacy of finite type link in-
variants. The set of links up to this new indeterminacy is in bijection with the
orbit space of the restriction of this action to the stabilizer of the identity.
Structure theorems for the sets of links up to Cn-equivalence and Self-Cn-
equivalence are also given.

(In fond rememberance of Xiao-Song Lin, 1957-2007)

1. Introduction

In,M1,M2 Milnor defined invariants of links, known as the Milnor µ invari-

ants. In fact, these invariants are not universally defined, i.e., if the lower

order invariants do not vanish, they are either not defined, or at best, they

have indeterminacies.

In,HL1 the notion of string link was introduced, together with the phi-

losophy that Milnor’s invariants are actually invariants of string links. Inde-

terminacies are determined precisely by the indeterminacy of representing a

link as the closure of a string link. This philosophy led to the classification of

links up to homotopy, and to an algorithm constructed by Xiao-Song. (Here

and throughout, we will often refer to Xiao-Song Lin by his first name.)

More precisely, Xiao-Song and the first author constructed an orbit space
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structure for the set of links up to homotopy. The group action was ‘unipo-

tent’, meaning it acted trivially on the successive layers of the nilpotent

homotopy string link group. This was the determining structural feature

which underlay the successful construction of Xiao-Song’s algorithm.

In,HL2 an analogous orbit space structure for link concordance was ob-

tained and a study of the algebraic part of link concordance, corresponding

to the Milnor concordance invariants, was made. The theory also applies

to more general ‘concordance-type’ equivalence relations, in particular to

those studied by Kent OrrO and developed in Xiao-Song’s thesis.

With the advent of the physical interpretation of the Jones Polyno-

mial,J predicted by AtiyahA and established by Witten,W a whole new

area, known as Quantum Topology, emerged. Its perturbative aspects are

succinctly summarized in the Universal Finite Type Invariant known as the

Kontsevich Integral.K

Recall that, in the seminal paper,L Xiao-Song had shown that Milnor

Invariants are finite type invariants of string links. We refer the reader to

the paper of the first author and Gregor Masbaum,HM where a formula is

given which computes the Milnor Invariants directly from the Kontsevich

Integral.

No successful attempt has been made at applying the methods ofHL1,HL2

to the Vassiliev invariants.V (The Vassiliev invariants were shown by Xiao-

Song and Joan BirmanBL to be those invariants which satisfy the properties

of finite type invariants. Subsequently, Bar-NatanB adopted those proper-

ties as axioms for finite type invariants.) This is so, because, as we show,

the classification scheme does not hold. Thus, in the philosophy of,HL1,HL2

the finite type invariants of links ought to be refined.

In this paper, we make such a refinement and show that after refinement,

the classification scheme applies. We also show it applies to Cn-equivalence

and to Self-Cn-equivalence.
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2. Preliminaries

Let D2 be the standard two-dimensional disk, and let I denote the unit

interval. Recall fromHL1 the notion of string link.

Definition 2.1. Let l ≥ 1. An l-component string link is a proper embed-

ding,

σ :

l⊔

i=1

Ii → D2 × I,

of the disjoint union
∐l

i=1 Ii of l copies of I in D2×I , such that the j = 0, 1

levels are preserved and ∂jσ ⊂ D2×{j} is the standard inclusion of l points

in D2. By an abuse of notation, we will also denote by σ ⊂ D2 × I , the

image of the map σ.

Note that we do not require that the t levels, for t ∈ I , be preserved. A

string link is a pure braid precisely when it preserves the t levels for all

t ∈ I . Note also that each string of an l-component string link is equipped

with an (upward) orientation induced by the natural orientation of I .

The set SL(l) of isotopy classes of l-component string links (fixing the

boundary) has a monoidal structure, with composition given by the stacking

product and with the trivial l-component string link 1l as unit element. See

Figure 1.

. =

Fig. 1. Multiplying two 2-component string links.

Remark 2.1. In the above, one may replace the disk D2 with any surface

S to get the notion of a string link in S × I . The l-component string links

in S, up to isotopy, again has a monoidal structure.



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

On the Classification of Links up to Finite Type 141

We denote by L(l) the set of isotopy classes of l-component links. By

a link, we mean an embedding
∐l

i=1 S1
i → R3. Thus the components are

ordered and oriented. There is an obvious surjective closure map

ˆ : SL(l) −→ L(l)

which closes an l-component string link σ into an l-component link σ̂.

In,HL1 Xiao-Song and the first author introduced a certain left (resp.

right) action of the monoid of isotopy classes of 2l-component string links

on l-component string links. See Figure 2 for an illustration of these actions.

Thus given two l-component string links σ, σ′, and a 2l-component string

link Σ, one has l-component string links Σσ, σΣ, and a closed link σΣσ′.

Σ

σ
Σ

σ

σ ’Σ

σ
; ;

Fig. 2. Schematical representations of the left and right actions of Σ on σ, Σσ and σΣ,
and of the closed link σΣσ′ .

One may represent the closure σ̂ of a string link σ as 1l12lσ, as well as

σ12l1l, and also as 1l(1l ⊗ σ)1l, where σ1 ⊗ σ2 denotes the 2l-component

string link obtained by horizontal juxtaposition. (One orients all strands

appropriately in the above, e.g., in Σ, one must reverse the parametrization

of the first l strands.)

The following result on basing links was proven in.HL2

Prop 2.1. Let σ1, σ2 be two l-component string links whose closures are

isotopic. Then there is a 2l-component string link Σ, with 1lΣ isotopic to

σ1, and Σ1l isotopic to σ2.

3. The Habegger-Lin Classification Scheme

InHL2 a structure theorem was proven for certain ‘concordance-type’ equiv-

alence relations on the set of links. Given here for the convenience of the
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reader, though stated slightly differently, the result is in fact implicit in the

proof in.HL2

Consider an equivalence relation E on string links and on links (for all

l), which is implied by isotopy. We will denote by E(x), the E equivalence

class of x. We denote by ESL(l), resp. EL(l), the set of E equivalence

classes of l-component string links, resp. links. We will also denote by E

the map which sends a link or string link to its equivalence class.

Consider the following set of Axioms for an equivalence relation E:

For i = 1, 2, let σi be l-component string links with E(σ1) = E(σ2), and

let Σi be 2l-component string links with E(Σ1) = E(Σ2).

(1) E(σ̂1) = E(σ̂2)

(2) E(1l ⊗ σ1) = E(1l ⊗ σ2)

(3) E(σ1Σ1) = E(σ2Σ2)

(4) E(Σ1σ1) = E(Σ2σ2).

(5) For all string links σ, there is a string link σ1, such that E(σσ1) = E(1l).

(6) If E(L) = E(L′), then there is an m and a sequence of string links σi,

for i = 1, . . . ,m, such that L is isotopic to σ̂1, and L′ is isotopic to

σ̂m, and for all i, 1 ≤ i < m, either E(σi) = E(σi+1), or σ̂i is isotopic

to σ̂i+1 (i.e., the equivalence relation E on links is generated by the

equivalence relation of isotopy on links and the equivalence relation E

on string links).

(5′) For all string links σ, E(σσ) = E(1l). Here the string link σ is defined

by, σ = Rt ◦ σ ◦ Rs, where Rs and Rt are the reflection mappings at

the source and target.

Definition 3.1. An equivalence relation satisfying Axioms (1) − (4) is

called local.

We have the following result.

Prop 3.1. Let E be a local equivalence relation. For i = 1, 2, let σi and σ′
i

be l-component string links with E(σ1) = E(σ2) and E(σ′
1) = E(σ′

2), and

let Σi be 2l-component string links with E(Σ1) = E(Σ2). Then E(σ1σ
′
1) =

E(σ2σ
′
2) and E(σ1Σ1σ

′
1) = E(σ2Σ2σ

′
2).

The monoidal structures, the left (resp. right) action and the closure

mapping all pass to maps of equivalence classes. Let ESR(l) (resp. ESL(l)),

denote the right (resp. left) stabilizer of the unit element of ESL(l). Then

ESR(l) (resp. ESL(l)) is a submonoid of ESL(2l). Furthermore, the closure

mapping of ESL(l) to EL(l), passes to the set of orbits of the ESR(l) (resp.

ESL(l)) action, i.e., we have a map
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ESL(l)

SR(l)
−→ EL(l).

If in addition, Axiom (5) holds, then the monoid ESL(l) is a group, and

ESR(l) (resp. ESL(l)) is a subgroup of ESL(2l). If Axiom (5′) holds, then

ESR(l) = ESL(l).

Proof. By Axiom (2), E(1l ⊗σ′
1) = E(1l ⊗ σ′

2). Using Axiom (3), we have

that E(σ1σ
′
1) = E(σ1(1l ⊗ σ′

1)) = E(σ2(1l ⊗ σ′
2)) = E(σ2σ

′
2).

One defines E(σ1)E(σ2) = E(σ1σ2). This is well defined by the above,

and the element E(1l) is a unit. One also defines E(σ)E(Σ) = E(σΣ) and

E(Σ)E(σ) = E(Σσ). These are well defined, by Axioms (3) and (4), and

are monoidal actions (of sets).

Suppose σ and σ′ define the same element of ESL(l)
SR(l)

, i.e., there is

E(Σ) ∈ SR(l) such that E(Σ)E(σ) = E(σ′). One has E(σ̂′) = E(1lΣσ) =

E(1l12lσ) = E(σ̂).

If Axiom (5) holds, each element E(σ) has a right inverse. Hence ESL(l)

is a group, for all l.

If E(Σ) belongs to ESR(l), then E(Σ) belongs to ESL(l). But if Axiom

(5′) holds, then E(Σ) is the inverse of E(Σ), so also belongs to ESL(l).

This proves one inclusion and the other is proven similarly.

Theorem 3.1 (Structure Theorem for E-equivalence).

(1) Let E be a local equivalence relation satisfying Axiom (5). Then the

quotient map

SL(l) −→ ESL(l)

ESR(l)

factors through the closure mapping, i.e., we have a link invariant

Ẽ : L(l) −→ ESL(l)

ESR(l)
.

such that the composite map to EL(l) is E.

(2) Furthermore, if Axiom (6) also holds, then we have a bijection

ESL(l)

SR(l)
= EL(l).

Proof.

Suppose σ̂ is isotopic to σ̂′. By Proposition 3.9, one has that, for some

Σ0, σ
′ is isotopic to Σ01l and σ is isotopic to 1lΣ0. Set Σ = Σ0(1l ⊗ σ1),
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where E(σ1) satisfies E(σσ1) = E(1l) (and hence also E(σ1σ) = E(1l)).

One has that E(1l)E(Σ) = E(1lΣ) = E(σσ1) = E(1l), so E(Σ) ∈ SR(l).

See Figure 1.

σ

1σ1σ

Σ 0

=
Σ

= =
E

Fig. 1. Proof that Σ lies in SR(l).

Finally, one has that E(Σ)E(σ) = E(Σσ) = E(Σ0)E(σ1σ) = E(Σ0)E(1l) =

E(Σ01l) = E(σ′). See Figure 2. This completes the proof of (1).

Σ 0

σ 1

σ

Σ

σ
=

Σ 0

σ ’==
E

Fig. 2. Proof that Σσ is equivalent to σ′.

To see (2), note that we have already shown that if the closures of two

string links are isotopic, then they define the same element of ESL(l)
SR(l)

. Thus

we have that for all i in Axiom (6), E(σi) and E(σi+1) both agree in ESL(l)
SR(l)

.

Thus the surjective map from ESL(l)
SR(l) to EL(l) is injective.

4. Structure Theorems for Cn-equivalence and for

Self-Cn-equivalence.

We will denote by FTn, the equivalence relation on tangles determined by

finite type equivalence up to degree n, i.e., FTn-equivalent tangles differ by
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an element in the n + 1st term of the Vassiliev filtration. In,H K. Habiro

showed that, for knots, FTn-equivalence agrees with another equivalence

relation, called Cn+1-equivalence. Habiro conjectured inH that for string

links, FTn equivalence is equivalent to Cn+1-equivalence.

Habiro also showed that for links, the result does not hold. Note that,

since the structure theorem holds for Cn+1-equivalence, if the equivalence

relations were the same both for string links and for links, it would also hold

for FTn equivalence. However, for FTn equivalence, the structure theorem

does not hold (see Theorem 5.1 and the Borromean ring example of Section

5).

By definition, two tangles are said to be Cn-equivalent, if there is a

finite sequence of tree clasper surgeries, of degree greater than or equal to

n, taking one tangle to the other, up to isotopy. SeeH for the definition.

(Note that in,H a tree clasper is called an admissible, strict tree clasper.)

Here the leaves of the tree can be assumed to be trivial and intersect the

tangle in a single point. It is known that Cn+1-equivalent tangles are FTn-

equivalent (see [H, Σ6]).

By definition, two tangles are said to be Self-Cn-equivalent, if there is

a finite sequence of tree clasper surgeries, of degree greater than or equal

to n, taking one tangle to the other, up to isotopy, such that the leaves of

each tree are restricted to all intersect the same tangle component.

Remark 4.1. Self-Cn-Equivalence, for n = 1, is link-homotopy. For n = 2

it is also known as Self-Delta equivalence.

Cn-equivalence and Self-Cn-equivalence are obviously local, i.e., they

satisfy Axioms (1) − (4) of Section 3. Axiom 5 was shown in [H, Theorem

5.4] for Cn-equivalence.

Prop 4.1. Self-Cn-equivalence satisfies Axiom (5) of Section 3.

Prop 4.2. Cn-equivalence and Self-Cn-equivalence satisfy Axiom (6) of

Section 3.

Applying Theorem 3.2, one has the following result.

Theorem 4.1 (Structure Theorem and Self-Cn-equivalence).

CnSL(l)

CnSR(l)
= CnL(l).

Self-CnSL(l)

Self-CnS
R(l)

= Self-CnL(l).



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

146 N. Habegger and J.B. Meilhan

Proof of Proposition 5.2. Suppose that L′ is obtained from L by surgery

on a disjoint union F of tree claspers of degree ≥ n. Let L be the closure

of σ. Since the disk base for L retracts onto a 1-complex, we may assume

it is disjoint from F . Thus L′ is the closure of a string link σ′, obtained

from σ by surgery on a union of tree claspers of degree ≥ n. This shows

that Cn-equivalence (resp. Self-Cn-equivalence) for links is implied by Cn-

equivalence (resp. Self-Cn-equivalence) for string links and isotopy.

Proposition 5.1 is a special case of the following result.

Prop 4.3. Let S be any surface. Self-Cn-equivalence (and consequently

Cn-equivalence) classes of string links in S × I form a group.

Proof of Proposition 5.3. The proof is by induction on the number l of

components. For l = 1, Self-Cn-equivalence is Cn-equivalence, so we may

invoke [H, Theorem 5.4].

Suppose the result is true for l− 1. Removing the first component from

σ, we have an l− 1-component string link σ0. By the induction hypothesis,

σ0 has an inverse σ1, up to Self-Cn-equivalence. Let σ′ = σ(11 ⊗ σ1). It

suffices to find a right inverse for σ′, up to Self-Cn-equivalence. Note that

the string link σ′
0, obtained from σ′ by removing the first component, is

Self-Cn-equivalent to the trivial string link 1l−1. Thus 1l−1 is obtainable

from σ′
0 by surgery on a disjoint union F of trees of degree n such that the

leaves of each tree are restricted to intersect a single component.

We may assume that F is disjoint from the first component of σ′. Per-

form surgery on F to obtain from σ′ a string link σ′′. As σ′ is Self-Cn-

equivalent to σ′′, it remains to find a right inverse for σ′′. Note that after

removing the first component of σ′′, we obtain the trivial l− 1-component

string link. Thus if we remove from σ′′ the last l − 1 components, we have

a one-component string link σ′′
0 in S′ × I , where S′ is the surface obtained

from S by removing l − 1 points. Since, by the result for l = 1, the string

link σ′′
0 has a right inverse, up to Self-Cn-equivalence, so does σ′′.

5. The Indeterminacy of Finite Type Invariants.

In this section we assume the reader is familiar with the notion of finite type

invariant as well as the Kontsevich Integral, which is the Universal Finite

Type Invariant. Recall from the last section that we have denoted by FTn,

the equivalence relation on tangles determined by finite type equivalence up

to degree n, i.e., FTn-equivalent tangles differ by an element in the n+ 1st

term of the Vassiliev filtration.
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Let us begin with a disturbing fact about finite type invariants of links.

The Borromean Rings are distinguished from the unlink by the triple Mil-

nor Invariant. Unfortunately, this invariant, which is really only defined

as an integer when the linking numbers of the 2-component sublinks van-

ish, dies in the space of trivalent Feynman diagrams (also known as Jacobi

diagrams) on 3 circles. This is because, when passing from 3 intervals to

3 circles, invariants of linear combinations of string links, which die upon

closure, must also die upon closure for other linear combinations which are

equivalent.

This can be seen using the Kontsevich Integral. Specifically, in the space

of Jacobi diagrams on 3 intervals we have

= −

where the right-hand side is obviously mapped to zero when closing. (Recall

that the coefficient of the Y -shaped diagram on the left-hand side corre-

sponds to the triple Milnor Invariant.)

To see how this comes about more geometrically, consider the free group

on 2 generators as a subgroup of the 3 component pure braid group. The

word xyx−1y−1 represents the Borromean rings, after closure. Since xyx−1

and y are conjugate, and thus agree after closure, we see that the quantity

xyx−1y−1−1, which (say after applying the Magnus expansion) is in degree

2 before closure, lies in degree 3 after closure, since it agrees after closure

with the quantity (xyx−1y−1 − 1)(y− 1), which is in degree 3. (The degree

considerations here are valid in the Vassiliev filtration as well). Thus we see

that we can no longer distinguish the Borromean rings from the unlink!

In summary, the indeterminacies of higher order invariants due to the

non-vanishing of lower order ones, propagate to destroy what should be

invariants of links whose lower order invariants vanish. We are thus led to

a problem of refining the indeterminacies in a less algebraic way. We are

guided by the structure theorem of the last section.

Rationally, it is known, see,HM that the set rational finite type equiva-

lence classes of l-component string links is a finitely generated torsion free

nilpotent group. Over the integers, it follows from the last section, since

Cn+1SL(l) is a group and surjects to FTnSL(l), that FTnSL(l) is also a

group.

The set FTnSL(2l) acts on FTnSL(l) on the left and right. Let

FTnS
R(l) denote the stabilizer of FTn(1l) under the right action. FTnL(l)

denotes the set of FTn equivalence classes of l-component links.
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The main result of this paper is the following.

Theorem 5.1 (Structure Theorem for Finite Type Equivalence).

(1) The projection mapping, of SL(l) to the set FTnSL(l)
FTnSR(l) of left FTnS

R(l)

orbits, factors through L(l) and thus gives a well defined invariant of

links

F̃ Tn : L(l) −→ FTnSL(l)

FTnSR(l)
.

(2) The above link invariant lifts the indeterminacies given by finite type

invariants of links, i.e., if two links determine the same element of
FTnSL(l)
FTnSR(l)

, then they have the same finite type invariants up to degree

n. That is, the above map, F̃ Tn, factors through a (surjective, but not

generally injective) map,

FTnSL(l)

FTnSR(l)
−→ FTnL(l),

and the composite mapping is

FTn : L(l) −→ FTnL(l).

Proof. Axioms (1) − (4) follow from the local definition of the Vassiliev

filtration. Axiom (5) follows from the remark above that FTnSL(l) is a

group.

Remark 5.1. The analogous theorem also holds if one restricts to the

equivalence relation FTQ
n , given by rational invariants of finite type of de-

gree up to n. One can use the local property of the Kontsevich Integral (and

the result cited above fromHM) to give an alternative proof of the Axioms

(1) − (5) in this case.

Let A≤n(l) denote the algebra of Jacobi diagrams on l strands of degree

up to n. The action of FTQ
n SL(2l) on the set FTQ

n SL(l) is induced, via

the Kontsevich Integral, by an analogously defined action of A≤n(2l) on

A≤n(l), given purely diagrammatically. (In the definition of the action of

string links, just replace the string links with diagrams.) Let A≤n(2l)1 be

the stabilizer of the unit element in A≤n(l). The stabilizerA≤n(2l)1 contains

FTQ
n S

R(l). It is easily seen that there are surjective maps of the space of

covariants A≤n(l)/FTQ
n S

R(l) to the space of covariants A≤n(l)/A≤n(2l)1,

and from A≤n(l)/A≤n(2l)1 to the space A≤n(
∐l

i=1 S1
i ) of diagrams on l

circles, up to degree n. Using the link invariance of our theorem, and the
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universal property of the Kontsevich Integral, one can check that these

maps are both isomorphisms. (We do not have a diagrammatical proof of

this fact.) It follows that one should not pass to covariants to try to refine

finite type invariants of links!

We conclude this section with several problems.

Problem 5.1:

Use the ‘unipotent’ action to write an algorithm, analogous to Xiao-

Song’s link-homotopy algorithm, ‘calculating’ whether or not two (string)

links determine the same element in the orbit space.

Problem 5.2:

Does the full Kontsevich Integral for links (or integrally, modulo the

intersection of the Vassiliev filtration) ‘recapture’ the information lost at

each finite level? (For example, the triple Milnor Invariant dies, but its

cube does not. But of course the degree is now 6 and not 2.)
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Generalized Ricci Flow I: Local Existence and Uniqueness

Chun-Lei He∗ , Sen Hu† , De-Xing Kong‡ and Kefeng Liu§

In this paper we investigate a kind of generalized Ricci flow which possesses
a gradient form. We study the monotonicity of the given function under the
generalized Ricci flow and prove that the related system of partial differential
equations are strictly and uniformly parabolic. Based on this, we show that
the generalized Ricci flow defined on an n-dimensional compact Riemannian
manifold admits a unique short-time smooth solution. Moreover, we also derive
the evolution equations for the curvatures, which play an important role in our
future study.

Keywords: Generalized Ricci flow, uniformly parabolic system, short-time ex-
istence, Thurston’s eight geometries.

1. Introduction

In the early eighties R. Hamilton introduced the Ricci flow to construct

canonical metrics for some manifolds. Since then many mathematicians,

including Hamilton, Yau, Perelman and others, developed many tools and

techniques to study the Ricci flow. The latest developments confirmed that

the Ricci flow approach is very powerful in the study of three-manifolds. In

fact, a complete proof of Poincare’s conjecture and Thurston’s geometriza-

tion conjecture has been offered in Cao-Zhu’s paper3 and others after Perel-

man’s breakthrough.

It is useful to observe that, in Perelman’s work,10 a key step is to intro-

duce a functional for a metric g and a function f on a manifold M

W (g, f) =

∫

M3

d3x
√
ge−f (R + |∇f |2).

The variation of this functional generates a gradient flow which is a system

∗Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China;
†Department of Mathematics, University of Science and Technology of China, Hefei
230026, China;
‡Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China;
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of partial differential equations

ġij = −2(Rij + ∇i∇jf),

ḟ = −(R+ 4f).

If we fix a measure for the conformal class of metrics efds2 of a metric,

i.e., let dm = e−fdV be fixed, then we get back to the original Ricci flow

after we apply a transformation of diffeomorphism generated by the vector

field ∇if to the metric. In this way, we express the Ricci flow as a gradient

flow. Dynamics of a gradient flow is much easier to handle. The functional

generating the flow gives a monotone functional along the orbit of the flow

automatically. If the flow exists for all time, then it shall flow to a critical

point which leads to the existence of a canonical metric. Even for a flow

which does not exist for all time, the generating functional helps very much

in the analysis of singularities.

Perelman’s above idea came from physics. Ricci flow arises as the first

order approximation of the renormalization flow of a sigma model. Since

there are many kinds of sigma models, it would be interesting to try some

other models. Indeed such a generalization was made by physicists in.11

For a three-manifold M3, they proposed to add a U(1) gauge field with

potential 1-form A and field strength F which are coupled as a Maxwell-

Chern-Simons theory. The corresponding action given by6 or5 reads

S =

∫

M

d3x
√
ge−f (−χ+R+ |∇f |2) − 1

2
e−fH ∧ ∗H − e−fF ∧ ∗F.

The U(1) gauge field A is a one-form potential whose field strength F =

dA. The Wess-Zumino field B is a two-form potential whose field strength

H = dB, f is a dilaton. In their paper, they find that Thurston’s eight

geometries appear as critical points of the above functional. Furthermore

they show that there are no other critical points. So basically critical points

of the above functional are eight geometries of Thurston. They also propose

to study the gradient flow of the functional S as a generalization of the Ricci

flow. Unfortunately, they modify the gradient flow in a way to change sign

for the variable of gauge fields. Although the modified flow shares the same

set of critical points they lost the important monotone property (along an

orbit).

In addition, we are also able to consider a flow for a similar functional

for a four-dimension manifold

S1 =

∫

M

d4x
√
ge−f (χ+R+ |∇f |2)− 1

2
e−fH ∧ ∗H − e−fF ∧ ∗F +

e

2
F ∧F
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where e is the Euler number e(η) of the bundle η. The corresponding flow

is given by




∂gij

∂t
= −2[Rij + ∇i∇jf − 1

4
HiklH

kl
j − F k

i Fjk ],

∂Bij

∂t
= ef∇k(e−fHk

ij),

∂Ai

∂t
= −ef∇k(e−fF k

i ),

∂f

∂t
= χ− 2R− 34f + |∇f |2 +

1

3
H2 +

3

2
F 2.

The generalization to four-manifolds is probably more interesting. It

may offer a systematic way to study four-manifolds.

The success of studying three-manifolds relies on a program proposed

by Thurston, i.e., his geometrization conjecture. He conjectures and proves

for several large classes of three-manifolds, that every three-manifold can be

decomposed into pieces of three-manifolds of canonical metrics, i.e., those

manifolds carrying one of the eight geometries of Thurston.

For four-dimension manifolds the critical points of S1 might play a sim-

ilar role as building blocks of smooth four-dimension manifolds. It would be

interesting to study those critical points and to study what other four man-

ifolds one can get by performing surgeries and gluing on those manifolds.

We shall address this problem in the future.

As a first step, we shall show that the flow does exist. We shall also

prove that the modified system of partial differential equations are strictly

and uniformly parabolic.

The paper is organized as follows. Section 2 is devoted to the proof of

local existences and uniqueness. In section 3 we study the monotonicity of

S under the modified flow. In Section 4 we investigate the equations for the

critical points of S and point out that fields F and H do not provide any

help for the case of compact manifold but maybe play an important role

for the noncompact case. In Section 5, we derive the evolution equations

for the curvatures, which play an important role in our future study.

2. Local Existences and Uniqueness

In this section, we mainly establish the short-time existence and unique-

ness result for the gradient flow (1), (2) and (3) on a compact 3-dimensional

manifold M . It is known that the gradient flow (1), (2) and (3) is a system

of second order nonlinear weakly parabolic partial differential equations.
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By the proof of the local existence and uniqueness of the Ricci flow (for

example see3,4 ), we can obtain a modified evolution equations by the dif-

feomorphism ϕ of M , which is a strictly parabolic system. Then, by the

standard theory of parabolic equations, the modified evolution equations

has a uniqueness solution.

Let us choose a normal coordinate {xi} around a fixed point x ∈ M

such that
∂gij

∂xk
= 0 and gij(p) = δij .

Theorem 2.1. (Local existences and uniqueness) Let (M, gij(x)) be a

three-dimensional compact Riemannian manifold. Then there exists a con-

stant T > 0 such that the evolution equations




∂gij

∂t
= −2[Rij −

1

4
HiklH

kl
j − F k

i Fjk ],

∂Ai

∂t
= −∇kF

k
i ,

∂Bij

∂t
= ∇kH

k
ij ,

(1)

has a unique smooth solution on M × [0, T ) for every initial fields.

Lemma 2.1. For each gauge equivalent class of a gauge field A, there exists

an A
′

such that d(∗A′

) = 0.

The lemma can be proved by the Hodge decomposition.

Proof. For each one-form A, by the Hodge decomposition, there exists an

one-form A0, a function α and a two-form β such that

A = A0 + dα+ d∗β,

dA0 = 0, d∗A0 = 0.

Let A′ = A − dα. A′ is in the same gauge equivalent class of A. Since

d(∗A0) = 0, d(∗d∗β) = 0, then we have d(∗A′) = 0. 2

Lemma 2.2. The differential operator of the right hand of (2) with respect

to the gauge equivalent class of a gauge field A is uniformly elliptic.

Proof. Let A = Aidx
i be a gauge field. By Lemma 4.1 we can choose an

A
′

in the gauge equivalent class of A such that d(∗A′

) = 0. We still denote

A′ as A . Since d(∗A) = 0, we have dd∗A = 0, then
3∑

k=1

∂2Ak

∂xk∂xi
= 0, ∀ i =
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1, · · · , 3. Noting that F = dA and Fij =
∂Aj

∂xi
− ∂Ai

∂xj
, We have

∂Ai

∂t
= −∇kF

k
i = −∇k(gklFil) = −gkl(

∂2Al

∂xk∂xi
− ∂2Ai

∂xk∂xl
) = gkl ∂2Ai

∂xk∂xl
.

The right hand side of above equation is clearly elliptic at point x. If we

apply a diffeomorphism to the metric it won’t change the positivity property

of the second order operator of the right hand side. 2

Now let us consider the equation for Bij .

Lemma 2.3. For each gauge equivalent class of a B-field B, i.e., a two-

form B on M , there exists a B
′

such that d(∗B′

) = 0.

Proof. Again we use the Hodge decomposition. For a two-form B, there

exist a one-form α, a two-form B0 and a three-form β such that

B = B0 + dα+ d∗β,

dB0 = 0, d∗B0 = 0.

Let B
′

= B − dα. Since B
′

is in the same gauge equivalent class of B,

we have d(∗B′

) = 0. 2

Lemma 2.4. The differential operator of the right hand side of (3) with

respect to the gauge equivalent class of a B-field B is uniformly elliptic.

Proof. Let us consider the equation for B-field. Without loss of generality,

we assume d(∗B) = 0. Thus dd∗B = 0. Then
3∑

k=1

(
∂2Bki

∂xk∂xj
+

∂2Bjk

∂xk∂xi
) =

0, ∀ i, j = 1, · · · , 3. We have

∂Bij

∂t
= ∇kH

k
ij = gkl(

∂2Bij

∂xk∂xl
+

∂2Bjl

∂xk∂xi
+

∂2Bli

∂xk∂xj
) = gkl ∂

2Bij

∂xk∂xl
.

The right hand side is clearly elliptic at the point x. If we apply a diffeo-

morphism to the metric it does not change the positivity property of the

second order operator of the right hand side. 2

Suppose ĝij(x, t) is a solution of the equations (1), and ϕt : M →M is

a family of diffeomorphisms of M . Let

gij(x, t) = ϕ∗
t ĝij(x, t),

where ϕ∗
t is the pull-back operator of ϕt. We now want to find the evolution

equations for the metric gij(x, t).

Denote

y(x, t) = ϕt(x) = {y1(x, t), y2(x, t), · · · , yn(x, t)}
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in local coordinates. Then

gij(x, t) =
∂yα

∂xi

∂yβ

∂xj
ĝαβ(y, t)

and

∂

∂t
gij(x, t) =

∂

∂t

[
ĝαβ(y, t) · ∂y

α

∂xi
· ∂y

β

∂xj

]

=
∂yα

∂xi

∂yβ

∂xj

∂

∂t
ĝαβ(y, t) +

∂yα

∂xi

∂yβ

∂xj

∂yγ

∂t

∂

∂yγ
ĝαβ(y, t)

+ĝαβ(y, t)
∂

∂xi
(
∂yα

∂t
)
∂yβ

∂xj
+ ĝαβ(y, t)

∂yα

∂xi

∂

∂xj
(
∂yβ

∂t
) .

Since

∂yα

∂xi

∂yβ

∂xj

∂yγ

∂t

∂

∂yγ
ĝαβ =

∂yα

∂xi

∂yβ

∂xj

∂yγ

∂t
gkl

∂

∂yγ
(
∂xk

∂yα

∂xl

∂yβ
)

=
∂yβ

∂t

∂2xk

∂yα∂yβ

∂yα

∂xi
gjk +

∂yα

∂t

∂2xk

∂yα∂yβ

∂yβ

∂xj
gik ,

Γk
jl =

∂yα

∂xj

∂yβ

∂xl

∂xk

∂yγ
Γ̂γ

αβ +
∂xk

∂yα

∂2yα

∂xj∂xl
,

then

∂yα

∂xi

∂yβ

∂xj
ĤαρδĤ

ρδ
β = HiklH

kl
j ,

∂yα

∂xi

∂yβ

∂xj
F̂ ρ

α F̂βρ = F k
i Fjk .

Therefore, in the normal coordinate, we have

∂

∂t
gij(x, t) =

∂

∂xi
(
∂yα

∂t
)
∂yβ

∂xj
gkl

∂xk

∂yα

∂xl

∂yβ
+
∂yα

∂xi

∂

∂xj
(
∂yβ

∂t
)gkl

∂xk

∂yα

∂xl

∂yβ

+
∂yα

∂t

∂

∂xi
(
∂xk

∂yα
)gjk +

∂yβ

∂t

∂

∂xj
(
∂xk

∂yβ
)gik

+
∂yα

∂xi

∂yβ

∂xj

[
−2(R̂αβ − 1

4
ĤαρδĤ

ρδ
β − F̂ ρ

α F̂βρ)

]

=
∂

∂xi
(
∂yα

∂t

∂xk

∂yα
)gjk +

∂

∂xj
(
∂yβ

∂t

∂xk

∂yβ
)gik − 2Rij

+
1

2
HiklH

kl
j + 2F k

i Fjk

= −2Rij + ∇i(
∂yα

∂t

∂xk

∂yα
gjk) + ∇j(

∂yβ

∂t

∂xk

∂yβ
gik)

+
1

2
HiklH

kl
j + 2F k

i Fjk .
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If we define y(x, t) = ϕt(x) by the equations




∂yα

∂t
=
∂yα

∂xk
(gjl(Γk

jl − Γ̃k
jl)),

yα(x, 0) = xα
(2)

and Vi = gikg
jl(Γk

jl − Γ̃k
jl), we get the following evolution equations for the

pull-back metric




∂

∂t
gij(x, t) = −2Rij + ∇iVj + ∇jVi +

1

2
HiklH

kl
j + 2F k

i Fjk ,

gij(x, 0) = g̃ij(x),
(3)

where g̃ij(x) is the initial metric and Γ̃k
jl is the connection of the initial

metric. The initial value problem (2) can be rewritten as



∂yα

∂t
= gjl(

∂2yα

∂xj∂xl
+
∂yβ

∂xj

∂yγ

∂xl
Γ̂α

βγ − ∂yα

∂xk
Γ̃k

jl) ,

yα(x, 0) = xα.
(4)

Equation (4) is clearly a strictly parabolic system. Then, we have

∂

∂t
gij(x, t) =

∂

∂xi

{
gkl ∂gkl

∂xj

}
− ∂

∂xk

{
gkl(

∂gjl

∂xi
+
∂gil

∂xj
− ∂gij

∂xl
)

}

+
∂

∂xi

{
gjkg

pq 1
2g

km(
∂gmq

∂xp
+
∂gmp

∂xq
− ∂gpq

∂xm
)

}

+
∂

∂xj

{
(gikg

pq 1
2g

km(
∂gmq

∂xp
+
∂gmp

∂xq
− ∂gpq

∂xm
)

}

+
1

2
HiklH

kl
j + 2F k

i Fjk

= gkl ∂2gij

∂xk∂xl
+

1

2
HiklH

kl
j + 2F k

i Fjk .

As a result, from the original equations, we can obtain




∂gij(x, t)

∂t
= gkl ∂2gij

∂xk∂xl
+

1

2
HiklH

kl
j + 2F k

i Fjk ,

∂Ai

∂t
= gkl ∂2Ai

∂xk∂xl
,

∂Bij

∂t
= gkl ∂

2Bij

∂xk∂xl
.

(5)

Let

u1 = g11, u2 = g12, u3 = g13, u4 = g22, u5 = g23, u6 = g33,

u7 = A1, u8 = A2, u9 = A3, u10 = B12, u11 = B13, u12 = B23 .
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The above equations can be rewritten as the following form

∂ui

∂t
=
∑

j k l

aikjl
∂2uj

∂xk∂xl
+ (lower order terms)

(k, l = 1, 2, 3; i, j = 1, 2, · · · , 12), in which

aikjl = gkl (j = i), aikjl = 0 (j 6= i) (i = 1, · · · , 12),

For arbitrary ξ ∈ R4×11 \ {0}, we have

∑

ijkl

aikjlξ
i
kξ

j
l =

∑

kl

∑

i

gklξi
kξ

i
l > 0.

Summarize the above discussions, we have the following lemma.

Lemma 2.5. The differential operator of the right hand side of (5) with

respect to the metric g is uniformly elliptic.

Proof of Theorem 4.1. Noting Lemmas 4.2, 4.4, 4.5 and the compactness

property of M, and using the standard theorem of partial differential equa-

tions (see,1,27), we can immediately obtain the local existence of smooth

solution of the modified system (5) with the initial value

gij(x, 0) = g̃ij(x), Ai(x, 0) = Ãi(x), Bij(x, 0) = B̃ij(x).

In turn the solution of the gradient flow (1) can be obtained from (4) (or

(2)). The proof of the existence of smooth solution is completed.

Now we argue the uniqueness of the solution of the gradient flow (1).

By Lemmas 4.2, 4.4 and the standard theorem of partial differential

equations, we can obtain the uniqueness of A and B . For any two solutions

ĝ
(1)
ij and ĝ

(2)
ij of the gradient flow (1) with the same initial data, we can

solve the initial value problem (4) (or (2)) to get two families ϕ(1) and ϕ(2)

of diffeomorphisms of M . Thus we get two solutions

g
(1)
ij (·, t) = (ϕ

(1)
t )∗ĝ(1)

ij (·, t), g
(2)
ij (·, t) = (ϕ

(2)
t )∗ĝ(2)

ij (·, t),

to the modified evolution (5) equations with the same initial value

gij(x, 0) = g̃ij(x). The uniqueness result for the strictly parabolic equa-

tion implies that g
(1)
ij = g

(2)
ij . Since the initial value problem (4) is clearly a

strictly parabolic system, the corresponding solutions ϕ(1) and ϕ(2) of (4)

must agree. Consequently, the metrics ĝ
(1)
ij and ĝ

(2)
ij must agree also. Thus,

we have proved Theorem. 2
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Remark 2.1. we are also able to consider a flow for a similar functional

for a four-dimension manifold

S1 =

∫

M

d4x
√
ge−f (χ+R+4|∇φ|2)− εH

2
e−fH∧∗H−εF e−fF∧∗F+

e

2
F∧F

where e is the Euler number e(η) of the bundle η. The corresponding flow

is given by




∂gij

∂t
= −2[Rij + ∇i∇jf − 1

4
HiklH

kl
j − F k

i Fjk ],

∂Bij

∂t
= ef∇k(e−fHk

ij),

∂Ai

∂t
= −ef∇k(e−fF k

i ),

∂f

∂t
= χ− 2R− 34f + |∇f |2 +

1

3
H2 +

3

2
F 2.

By the same argument, we can obtain the same results in sections 3-4.

3. The Monotonicity Formula

Let M be a n-dimensional compact Riemannian manifold with metric gij ,

the Levi-Civita connection is given by the Christoffel symbols

Γk
ij =

1

2
gkl

{
∂gjl

∂xi
+
∂gil

∂xj
− ∂gij

∂xl

}
,

where (gij) is the inverse of (gij). The Riemannian curvature tensors read

Rk
ijl =

∂Γk
jl

∂xi
− ∂Γk

il

∂xj
+ Γk

ipΓ
p
jl − Γk

jpΓ
p
il, Rijkl = gkpR

p
ijl.

The Ricci tensor is the contraction

Rik = gjlRijkl

and the scalar curvature is

R = gijRij .

For each field we shall consider the gauge equivalent classes of fields.

Two metrics g1, g2 are in the same equivalent class if and only if they are

differ by a diffeomorphism, i.e., there exists a diffeomorphism f : M → M

such that g2 = f∗g1. Two gauge fields A1 and A2 are equivalent if and only

if there exists a function α on M such that A2 = A1 + dα. Two B-fields B1

and B2 are equivalent if and only if there exists an one-form β on M such

that B2 = B1 + dβ.
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From the first variation of S, we can obtain the flow equations




∂gij

∂t
= −2[Rij + ∇i∇jf − 1

4
HiklH

kl
j − F k

i Fjk ],

∂Bij

∂t
= ef∇k(e−fHk

ij),

∂Ai

∂t
= −ef∇k(e−fF k

i ),

∂φ

∂t
= χ− 2R− 34f + |∇f |2 +

1

3
H2 +

3

2
F 2.

If ϕt is a one-parameter group of diffeomorphisms generated by a vector

field ∇f , we have

∂gij

∂t
= −2(Rij −

1

4
HiklH

kl
j − FikF

k
j ),

∂Ai

∂t
= −∇kF

k
i +

∂

∂xi
(∇kfAk),

∂Bij

∂t
= ∇kH

k
ij +

∂

∂xi
(∇kfBkj) +

∂

∂xj
(∇kfBik).

Let Ã = A− dβ where
∂β

∂t
= ∇kfAk, then F̃ = F and

∂Ãi

∂t
= −∇kF̃

k
i .

Similarly, let B̃ = B + dω where
∂ωi

∂t
= ∇kfBik, then

∂B̃ij

∂t
= ∇k(H̃k

ij).

Because A and Ã (B and B̃) are in the same gauge equivalent class, we

still denote Ã (B̃) as A (B). Now we consider the flow equation

∂gij

∂t
= −2(Rij −

1

4
HiklH

kl
j − FikF

k
j ), (1)

∂Ai

∂t
= −∇kF

k
i , (2)

∂Bij

∂t
= ∇k(Hk

ij). (3)

Theorem 3.1. Let gij , Ai, Bij and f evolve according to the coupled flow
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



∂gij

∂t
= −2[Rij −

1

4
HiklH

kl
j − F k

i Fjk ],

∂Bij

∂t
= ∇kH

k
ij ,

∂Ai

∂t
= −∇kF

k
i ,

∂f

∂t
= χ− 2R− 34f + 2|∇f |2 +

1

3
H2 +

3

2
F 2.

Then

dS

dt
=

∫ [
(−χ+R− |∇f |2 + 24f − 1

12
H2 − 1

2
F 2)2

+ 2(Rij + ∇i∇jf − 1

4
HiklH

kl
j − F k

i Fjk)2

+ 2(∇kF
k

i − F k
i ∇kf)2 +

1

2
(∇kH

ij
k −H ij

k ∇kf)2
]
e−fdV.

In particular S is nondecreasing in time and the monotonicity is strict

unless we are on the critical points.

Proof.

dS

dt
=

∫
d3x

√
ge−f (

1

2
gij ∂gij

∂t
− ∂f

∂t
)(−χ+R+ 24f − |∇f |2 − 1

12
H2 − 1

2
F 2)

+

∫
d3x

√
ge−f ∂gij

∂t
(−Rij −∇i∇jf +

1

4
HiklH

kl
j + F k

i Fjk)

+

∫
d3x

√
ge−f ∂Ai

∂t
(−2∇k(F k

i e−f )ef ) +
∂Bij

∂t
(
1

2
∇k(Hk

ije
−f )ef )

=

∫
(4f − |∇f |2)(−χ+R− |∇f |2 + 24f − 1

12
H2 − 1

2
F 2)e−fdV

+

∫
[−χ+R− |∇f |2 + 24f − 1

12
H2 − 1

2
F 2]2e−fdV

+

∫
2(Rij + ∇i∇jf − 1

4
HiklH

kl
j − FikF

k
j )2e−fdV

+

∫
−2∇i∇jf(Rij + ∇i∇jf − 1

4
HiklH

kl
j − FikF

k
j )e−fdV

+

∫
2(∇kF

k
i − F k

i ∇kf)2e−fdV +

∫
1

2
(∇kH

k
ij −Hk

ij∇kf)2e−fdV

+

∫
2F k

i ∇kf(∇kF
k

i − F k
i ∇kf)e−fdV

+

∫
1

2
Hk

ij∇kf(∇kH
k
ij −Hk

ij∇kf)e−fdV.
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By the similar argument of Ricci flow, we have
∫
(4f − |∇f |2)(R − |∇f |2 + 24f)e−fdV = 2

∫
∇i∇jf(∇i∇jf +

Rij)e
−fdV.

And noting the following properties ∇mFij + ∇jFmi + ∇iFjm = 0,

∇mHijk = ∇iHmjk + ∇jHimk + ∇kHijm, we have
∫

(4f − |∇f |2)(−χ− 1

12
H2 − 1

2
F 2)e−fdV

=

∫
gij(∇i∇jf −∇if∇jf)(−χ− 1

12
H2 − 1

2
F 2)e−fdV

=

∫
gij∇if∇j(χ+

1

12
H2 +

1

2
F 2)e−fdV

=

∫
gij∇if(

1

6
∇jHpklH

pkl + ∇jFklF
kl)e−fdV

=

∫
gij∇if(

1

6
(∇pHjkl + ∇kHpjl + ∇lHpkj)H

pkl

+ (−∇kFlj −∇lFjk)F kl)e−fdV

=

∫
gij∇if(

1

2
∇pHjklH

pkl + 2∇kFjlF
kl)e−fdV

=

∫
(−1

2
gij∇p∇ifHjklH

pkl − 2gij∇k∇ifFjlF
kl)e−fdV

+

∫
1

2
gijHjkl∇if(−∇pH

pkl + ∇pfH
pkl)e−fdV

+

∫
2gij∇ifFjl(∇kfF

kl −∇kF
kl)e−fdV

=

∫
2∇i∇jf(−1

4
HiklH

kl
j − FikF

k
j )e−fdV

+

∫
1

2
∇kfH

k
ij(H

p
ij∇pf −∇pH

p
ij)e

−fdV

+

∫
2∇kfF

k
i (F k

i ∇kf −∇kF
k

i )e−fdV.

Combining with the above argument, we finish the proof.

Let u = e−f be the lowest eigenfunction of the Schrodinger operator,

i.e.

(R − 1

12
H2 − 1

2
F 2 − 4∆)u = λu,

or,
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R− 1

12
H2 − 1

2
F 2 + 2∆f − |∇f |2 = λ.

It minimizes the functional

S(g,A,B, f) =

∫

M

dV e−f/2(R− 1

12
H2 − 1

2
F 2 − 4∆)e−f/2/

∫

M

e−fdV.

We have a new functional

λ(g,A,B) = inf{f |
∫

M
e−f dV =1}S(g,A,B, f).

Let λ(t) = λ(g(t), A(t), B(t)), we have

dλ

dt
=

∫

M

(|Rij + ∇i∇jf − 1

4
HikjH

kl
j − FikF

k
j |2 +

1

4
|∇kHkij −Hkij∇kf |2

+ |∇kF
k
i − F k

i ∇kf |2)e−fdV.

We have then (see also9):

1) λ(t) is monotone, i.e. dλ(t)
dt ≥ 0.

2) Critical points of (*) are the same as critical points of λ.

4. Critical points

Consider the functional

S =

∫

M

d3x
√
ge−f (−χ+R + |∇f |2) − 1

2
e−fH ∧ ∗H − e−fF ∧ ∗F

=

∫
d3x

√
ge−f (−χ+R+ |∇f |2 − 1

12
H2 − 1

2
F 2).

(1)

Its first variation can be expressed as follows

δS =

∫
d3x

√
ge−f (

1

2
gijδgij − δf)(−χ+ R+ 24f − |∇f |2 − 1

12
H2 − 1

2
F 2)

+

∫
d3x

√
ge−fδgij(−Rij −∇i∇jf +

1

4
HiklH

kl
j + F k

i Fjk)

+

∫
d3x

√
ge−fδAi(−2∇k(F k

i e−f )ef ) + δBij(
1

2
∇k(Hk

ije
−f )ef ).

(2)

The U(1) gauge field A is a one-form potential whose field strength F = dA.

The Wess-Zumino field B is a two-form potential whose field strength H =

dB, η is the volume form, f is a dilaton. And in 3-dimension manifold, the
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field strength is proportional to the Levi-Civita tensor Hµνρ = H(x)ηµνρ,

whereH(x) is a scalar field and ηµνρ = εµνρ/
√
g is the completely skewsym-

metric Levi-Civita tensor. Therefore, the critical points satisfy the following

equations

Rij + ∇i∇jf − 1

4
HiklH

kl
j − F k

i Fjk = 0, (3)

∇k(F k
i e−f ) = 0, (4)

∇k(Hk
ije

−f ) = 0, (5)

−χ+R + 24f − |∇f |2 − 1

12
H2 − 1

2
F 2 = 0. (6)

Suppose M is a compact Riemannian manifold. From (4) and (1.3), we

can obtain F = H = 0 at the critical points of the general Ricci flow on

M . In fact,
∫

M

F 2e−fdV =

∫

M

F ijFije
−fdV =

∫

M

F ij(∇iAj −∇jAi)e
−fdV

= 2

∫

M

F ij∇iAje
−fdV = −2

∫

M

∇i(F
ije−f )AjdV = 0,

∫

M

H2e−fdV =

∫

M

H ijkHijke
−fdV

=

∫

M

H ijk(∇kBij + ∇iBjk + ∇jBki)e
−fdV

= 3

∫

M

H ijk∇iBjke
−fdV = −3

∫

M

∇i(H
ijke−f )BjkdV = 0.

Remark: Although the fields F and H do not provide any help in

the study of critical points of general Ricci flow for compact Riemannian

manifold, they maybe play an important role for the noncompact case.

5. Evolution of Curvatures

By virtue of the curvature tensor evolution equations of the Ricci flow, we

can obtain the curvature tensor evolution equations under the gradient flow

(1). Let us choose a normal coordinate system {xi} around a fixed point

x ∈M such that
∂gij

∂xk
= 0 and gij(p) = δij .
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Theorem 5.1. Under the gradient flow (1), the curvature tensor satisfies

the evolution equation

∂

∂t
Rijkl = 4Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl)

− gpq(RpjklRqi +RipklRqj +RijplRqk +RijkpRql)

+
1

4
[∇i∇l(HkpqH

pq
j ) −∇i∇k(HjpqH

pq
l )

−∇j∇l(HkpqH
pq

i ) + ∇j∇k(HipqH
pq

l )]

+
1

4
gmn(HkpqH

pq
m Rijnl +HmpqH

pq
l Rijkn)

+ ∇i∇l(F
p

k Fjp) −∇i∇k(F p
j Flp) −∇j∇l(F

p
k Fip) + ∇j∇k(F p

i Flp)

+ gmn(F p
k FmpRijnl + F p

m FlpRijkn),

where Bijkl = gprgqsRpiqjRrksl and 4 is the Laplacian with respect to the

evolving metric.

Proof. At the point x ∈ M , which we has chosen a normal coordinate

system such that
∂gij

∂xk
= 0, we compute

∂

∂t
Γh

jl =
1

2

∂

∂t
ghm

(
∂gml

∂xj
+
∂gmj

∂xl
− ∂gjl

∂xm

)

+
1

2
ghm

[
∂

∂xj
(
∂gml

∂t
) +

∂

∂xl
(
∂gmj

∂t
) − ∂

∂xm
(
∂gjl

∂t
)

]
,

∂

∂t
Rh

ijl =
∂

∂xi

(
∂

∂t
Γh

jl

)
− ∂

∂xj

(
∂

∂t
Γh

il

)

= −1

2
ghpgqm ∂gpq

∂t

(
∂2gml

∂xi∂xj
+
∂2gmj

∂xi∂xl
− ∂2gjl

∂xi∂xm

)

+
1

2
ghpgqm ∂gpq

∂t

(
∂2gml

∂xj∂xi
+

∂2gmi

∂xj∂xl
− ∂2gil

∂xj∂xm

)

+
1

2
ghm[

∂2

∂xi∂xl

(
∂gmj

∂t

)
− ∂2

∂xi∂xm

(
∂gjl

∂t

)

− ∂2

∂xj∂xl

(
∂gmi

∂t

)
+

∂2

∂xj∂xm

(
∂gil

∂t

)
]
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=
1

2
ghm[

∂2

∂xi∂xl

(
∂gmj

∂t

)
− ∂2

∂xi∂xm

(
∂gjl

∂t

)

− ∂2

∂xj∂xl

(
∂gmi

∂t

)
+

∂2

∂xj∂xm

(
∂gil

∂t

)
] − ghp ∂gpq

∂t
Rq

ijl ,

∂

∂t
Rijkl =

∂

∂t
Rh

ijlgkh +Rh
ijl

∂

∂t
gkh

=
1

2
[

∂2

∂xi∂xl

(
∂gkj

∂t

)

− ∂2

∂xi∂xk

(
∂gjl

∂t

)
− ∂2

∂xj∂xl

(
∂gki

∂t

)
+

∂2

∂xj∂xk

(
∂gil

∂t

)
] ,

then we have

∂

∂t
Rijkl =

∂2

∂xi∂xk
Rjl −

∂2

∂xi∂xl
Rkj +

∂2

∂xj∂xl
Rki −

∂2

∂xj∂xk
Ril

+
1

4
[

∂2

∂xi∂xl
(HkpqH

pq
j ) − ∂2

∂xi∂xk
(HjpqH

pq
l )

− ∂2

∂xj∂xl
(HkpqH

pq
i ) +

∂2

∂xj∂xk
(HipqH

pq
l )]

+
∂2

∂xi∂xl
(F p

k Fjp) −
∂2

∂xi∂xk
(F p

j Flp)

− ∂2

∂xj∂xl
(F p

k Fip) +
∂2

∂xj∂xk
(F p

i Flp)

, I1 +
1

4
I2 + I3.

By the identity (see3)

∇i∇kRjl −∇i∇lRjk −∇j∇kRil + ∇j∇lRik

= 4Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl) − gpq(RpjklRqi +RipklRqj)

and

∇i∇kRjl =
∂2Rjl

∂xi∂xk
−Rml

∂

∂xi
Γm

kj −Rjm
∂

∂xi
Γm

kl ,
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we have

I1 = ∇i∇kRjl +Rml
∂

∂xi
Γm

kj +Rjm
∂

∂xi
Γm

kl −∇i∇lRkj

−Rkm
∂

∂xi
Γm

lj −Rmj
∂

∂xi
Γm

lk

−∇j∇kRil −Rml
∂

∂xj
Γm

ki −Rim
∂

∂xj
Γm

kl + ∇j∇lRki

+Rkm
∂

∂xj
Γm

li +Rmi
∂

∂xj
Γm

lk

= ∇i∇kRjl −∇i∇lRjk −∇j∇kRil + ∇j∇lRik −RkmR
m
ijl +RmlR

m
ijk

= 4Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl)

− gpq(RpjklRqi +RipklRqj +RijplRqk +RijkpRql),

where Bijkl = gprgqsRpiqjRrksl.

Now we compute I2.

It is easily verified that

∇i∇k(HjpqH
pq

l ) =
∂2

∂xi∂xk
(HjpqH

pq
l )−HmpqH

pq
l

∂

∂xi
Γm

kj−HjpqH
pq

m

∂

∂xi
Γm

kl .

As a result, we obtain

I2 = ∇i∇l(HkpqH
pq

j ) +HmpqH
pq

j

∂

∂xi
Γm

lk

+HkpqH
pq

m

∂

∂xi
Γm

lj −∇i∇k(HjpqH
pq

l )

−HmpqH
pq

l

∂

∂xi
Γm

kj −HjpqH
pq

m

∂

∂xi
Γm

kl

−∇j∇l(HkpqH
pq

i ) −HmpqH
pq

i

∂

∂xj
Γm

lk

−HkpqH
pq

m

∂

∂xj
Γm

li + ∇j∇k(HipqH
pq

l )

+HmpqH
pq

l

∂

∂xj
Γm

ki +HipqH
pq

m

∂

∂xj
Γm

kl

= ∇i∇l(HkpqH
pq

j ) −∇i∇k(HjpqH
pq

l )

−∇j∇l(HkpqH
pq

i ) + ∇j∇k(HipqH
pq

l )

+HkpqH
pq

m Rm
ijl +HmpqH

pq
l Rm

jik

= ∇i∇l(HkpqH
pq

j ) −∇i∇k(HjpqH
pq

l )

−∇j∇l(HkpqH
pq

i ) + ∇j∇k(HipqH
pq

l )

+ gmn(HkpqH
pq

m Rijnl +HmpqH
pq

l Rijkn) .



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

168 C.-L. He, S. Hu, D.-X. Kong and K. Liu

Now it remains to compute the last term. The following identity

∇i∇k(F p
j Flp) =

∂2

∂xi∂xk
(F p

j Flp) − F p
m Flp

∂

∂xi
Γm

kj − F p
j Fmp

∂

∂xi
Γm

kl

yields

I3 = ∇i∇l(F
p

k Fjp) + F p
m Fjp

∂

∂xi
Γm

lk + F p
k Fmp

∂

∂xi
Γm

lj −∇i∇k(F p
j Flp)

− F p
m Flp

∂

∂xi
Γm

kj − F p
j Fmp

∂

∂xi
Γm

kl −∇j∇l(F
p

k Fip) − F p
m Fip

∂

∂xj
Γm

lk

− F p
k Fmp

∂

∂xj
Γm

li + ∇j∇k(F p
i Flp) + F p

m Flp
∂

∂xj
Γm

ki + F p
i Fmp

∂

∂xj
Γm

kl

= ∇i∇l(F
p

k Fjp) −∇i∇k(F p
j Flp) −∇j∇l(F

p
k Fip) + ∇j∇k(F p

i Flp)

+ gmn(F p
k FmpRijnl + F p

m FlpRijkn) .

Combining the above discussions, we complete the proof of the

theorem. 2

Theorem 5.2. The Ricci curvature satisfies the following evolution

equation

∂

∂t
Rik = 4Rik + 2gprgqsRpiqkRrs − 2gpqRpiRqk

+
1

4
gjl[∇i∇l(HkpqH

pq
j )

−∇i∇k(HjpqH
pq

l ) −∇j∇l(HkpqH
pq

i ) + ∇j∇k(HipqH
pq

l )]

+
1

4
gmn(HkpqH

pq
m Rin − gjlHmpqH

pq
l Rijkn)

+ gjl[∇i∇l(F
p

k Fjp) −∇i∇k(F p
j Flp)

−∇j∇l(F
p

k Fip) + ∇j∇k(F p
i Flp)]

+ gmn(F p
k FmpRin − gjlF p

m FlpRijkn).
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Proof. By Theorem 5.1, we can compute

∂

∂t
Rik =

∂

∂t
Rijklg

jl +Rijkl
∂

∂t
gjl =

∂

∂t
Rijklg

jl − gjpglqRijkl
∂

∂t
gpq

= gjl[4Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl)

− gpq(RpjklRqi +RipklRqj +RijplRqk

+RijkpRql)] + 2gjpglqRijklRpq

+
1

4
gjl[∇i∇l(HkpqH

pq
j ) −∇i∇k(HjpqH

pq
l )

−∇j∇l(HkpqH
pq

i ) + ∇j∇k(HipqH
pq

l )]

+
1

4
gjlgmn(HkpqH

pq
m Rijnl +HmpqH

pq
l Rijkn)

− εH
2
Rijklg

jpglqHpmnH
mn

q + gjl[∇i∇l(F
p

k Fjp)

−∇i∇k(F p
j Flp) −∇j∇l(F

p
k Fip) + ∇j∇k(F p

i Flp)]

+ gmn(F p
k FmpRin + gjlF p

m FlpRijkn) − 2εFRijklg
jpglqF m

p Fqm

= 4Rik + 2gprgqsRpiqkRrs − 2gpqRpiRqk

+
1

4
gjl[∇i∇l(HkpqH

pq
j ) −∇i∇k(HjpqH

pq
l )

−∇j∇l(HkpqH
pq

i ) + ∇j∇k(HipqH
pq

l )]

+
1

4
gmn(HkpqH

pq
m Rin − gjlHmpqH

pq
l Rijkn)

+ gjl[∇i∇l(F
p

k Fjp) −∇i∇k(F p
j Flp)

−∇j∇l(F
p

k Fip) + ∇j∇k(F p
i Flp)]

+ gmn(F p
k FmpRin − gjlF p

m FlpRijkn). 2

Theorem 5.3. The scalar curvature satisfies the following evolution equa-

tion

∂

∂t
R = 4R+ 2|Ric|2 +

1

2
gjlgik[∇i∇l(HkpqH

pq
j ) −∇i∇k(HjpqH

pq
l )]

+ 2gjlgik[∇i∇l(F
p

k Fjp) −∇i∇k(F p
j Flp)]

− gipRik

(
1

2
HpmnH

kmn + 2FpmF
km

)
.
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Proof. By a direct calculation, we have

∂

∂t
R =

∂

∂t
Rikg

ik +Rik
∂

∂t
gik =

∂

∂t
Rikg

ik −Rikg
ipgkq ∂

∂t
gpq

= gik(4Rik + 2gprgqsRpiqkRrs − 2gpqRpiRqk) + 2gipgkqRikRpq

+
1

4
gjlgik[∇i∇l(HkpqH

pq
j ) −∇i∇k(HjpqH

pq
l )

−∇j∇l(HkpqH
pq

i ) + ∇j∇k(HipqH
pq

l )]

+
1

4
gikgmn(HkpqH

pq
m Rin − gjlHmpqH

pq
l Rijkn)

− 1

2
gipgkqRikHpmnH

mn
q

+ gikgjl[∇i∇l(F
p

k Fjp) −∇i∇k(F p
j Flp)

−∇j∇l(F
p

k Fip) + ∇j∇k(F p
i Flp)]

+ gikgmn(F p
k FmpRin − gjlF p

m FlpRijkn) − 2gipgkqRikF
m

p Fqm

= 4R+ 2|Ric|2 +
1

2
gjlgik[∇i∇l(HkpqH

pq
j ) −∇i∇k(HjpqH

pq
l )]

+ 2gjlgik[∇i∇l(F
p

k Fjp) −∇i∇k(F p
j Flp)]

− gipRik

(
1

2
HpmnH

kmn + 2FpmF
km

)
. 2

Acknowledgements: The work of S. Hu was supported in part by the

NNSF of China (Grant No. 10771203) and a renovation grant from the

Chinese Academy of Sciences; the work of D. Kong was supported in part

by the NNSF of China (Grant No. 10671124) and the NCET of China

(Grant No. NCET-05-0390); the work of K. Liu was supported by the NSF

and NSF of China.

References

1. H. Amann, Quasilinear evolution equations and parabolic systems, Tran. of
AMS, 293 (1986), 191-227.

2. H. Amann, Quasilinear parabolic systems under nonlinear boundary condi-
tions, Arch. Rat. Mech. Anal., Vol. 92 No. 2 (1986), 153-192.

3. H.-D. Cao and X.-P. Zhu, A complete proof of the Poincaré and geometriza-
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We review the q-deformed spin network approach to Topological Quantum
Field Theory and apply these methods to produce unitary representations of
the braid groups that are dense in the unitary groups. The simplest case of
these models is the Fibonacci model, itself universal for quantum computation.
We here formulate these braid group representations in a form suitable for
computation and algebraic work. In particular, we give quantum algorithms
for computing colored Jones polynomials and the Witten-Reshetikhin-Turaev
invariant of three-manifolds.

Keywords: knots, links, braids, quantum computing, unitary transforma-
tion, spin networks, Jones polynomial, colored Jones polynonmials, Witten-
Reshetikhin-Turaev invariant

1. INTRODUCTION

This paper describes the background for topological quantum computing

in terms of Temperely – Lieb Recoupling Theory and gives an explicit

description of the resulting unitary representations of the Artin braid group,

including the Fibonacci model as the simplest case. This paper is a modified

version of our papesr.14,15 In particular, we give quantum algorithms for

computing colored Jones polynomials and the Witten-Reshetikhin-Turaev

invariant of three-manifolds.

We use a recoupling theory that generalizes standard angular momen-
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tum recoupling theory, generalizes the Penrose theory of spin networks and

is inherently topological. Temperely – Lieb Recoupling Theory is based on

the bracket polynomial model for the Jones polynomial. It is built in terms

of diagrammatic combinatorial topology. The same structure can be ex-

plained in terms of the SU(2)q quantum group, and has relationships with

functional integration and Witten’s approach to topological quantum field

theory. Nevertheless, the approach given here will be unrelentingly elemen-

tary. Elementary, does not necessarily mean simple. In this case an architec-

ture is built from simple beginnings and this archictecture and its recoupling

language can be applied to many things including: colored Jones polynomi-

als, Witten–Reshetikhin–Turaev invariants of three manifolds, topological

quantum field theory and quantum computing.

The contents of this paper are based upon the work in13,15 and we shall

refer to results from those papers.

In quantum computing, the application is most interesting because the

recoupling theory yields representations of the Artin Braid group into uni-

tary groups U(n). These represententations are dense in the unitary group,

and can be used to model quantum computation universally in terms of

representations of the braid group. Hence the term: topological quantum

computation.

In this paper, we outline the basics of the Temperely – Lieb Recoupling

Theory, and show explicitly how unitary representations of the braid group

arise from it. We will return to this subject in more detail in subsequent

papers. In particular, we do not describe the context of anyonic models for

quantum computation in this paper. Rather, we concentrate here on show-

ing how naturally unitary representations of the braid group arise in the

context of the Temperely – Lieb Theory. For the reader interested in the

relevant background in anyonic topological quantum computing we recom-

mend the following references {2–6,16,17,19,20 }.

In the last section of this paper (Section 4) we show how these methods

lead naturally to quantum algorithms for the computation of the colored

Jones polynomials and the Witten-Reshetikhin-Turaev invariants of three-

manifolds.

Here is a very condensed presentation of how unitary representations

of the braid group are constructed via topological quantum field theoretic
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methods. For simplicity assmue that one has a single (mathematical) parti-

cle with label P that can interact with itself to produce either itself labeled

P, or itself with the null label ∗. When ∗ interacts with P the result is

always P. When ∗ interacts with ∗ the result is always ∗. One considers

process spaces where a row of particles labeled P can successively interact,

subject to the restriction that the end result is P. For example the space

V [(ab)c] denotes the space of interactions of three particles labeled P. The

particles are placed in the positions a, b, c. Thus we begin with (PP )P. In

a typical sequence of interactions, the first two P ’s interact to produce a ∗,
and the ∗ interacts with P to produce P.

(PP )P −→ (∗)P −→ P.

In another possibility, the first two P ’s interact to produce a P, and the P

interacts with P to produce P.

(PP )P −→ (P )P −→ P.

It follows from this analysis that the space of linear combinations of pro-

cesses V [(ab)c] is two dimensional. The two processes we have just described

can be taken to be the the qubit basis for this space. One obtains a rep-

resentation of the three strand Artin braid group on V [(ab)c] by assigning

appropriate phase changes to each of the generating processes. One can

think of these phases as corresponding to the interchange of the particles

labeled a and b in the association (ab)c. The other operator for this rep-

resentation corresponds to the interchange of b and c. This interchange is

accomplished by a unitary change of basis mapping

F : V [(ab)c] −→ V [a(bc)].

If

A : V [(ab)c] −→ V [(ba)c : d]

is the first braiding operator (corresponding to an interchange of the first

two particles in the association) then the second operator

B : V [(ab)c] −→ V [(ac)b]

is accomplished via the formula B = F−1AF where the A in this formula

acts in the second vector space V [a(bc)] to apply the phases for the inter-

change of b and c.
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In this scheme, vector spaces corresponding to associated strings of par-

ticle interactions are interrelated by recoupling transformations that gen-

eralize the mapping F indicated above. A full representation of the Artin

braid group on each space is defined in terms of the local intechange phase

gates and the recoupling transfomations. These gates and transformations

have to satisfy a number of identities in order to produce a well-defined rep-

resentation of the braid group. These identities were discovered originally

in relation to topological quantum field theory. In our approach the struc-

ture of phase gates and recoupling transformations arise naturally from the

structure of the bracket model for the Jones polynomial.8 Thus we obtain

a knot-theoretic basis for topological quantum computing.

2. Spin Networks and Temperley – Lieb Recoupling Theory

In this section we discuss a combinatorial construction for spin networks

that generalizes the original construction of Roger Penrose.18 The result of

this generalization is a structure that satisfies all the properties of a graph-

ical TQFT as described in our paper on braiding and universal quantum

gates,12 and specializes to classical angular momentum recoupling theory

in the limit of its basic variable. The construction is based on the properties

of the bracket polynomial.9 A complete description of this theory can be

found in the book “Temperley – Lieb Recoupling Theory and Invariants of

Three-Manifolds” by Kauffman and Lins.11

The “q-deformed” spin networks that we construct here are based on

the bracket polynomial relation. View 2.1 and 2.2.

In Figure 2.1 we indicate how the basic projector (symmetrizer, Jones-

Wenzl projector) is constructed on the basis of the bracket polynomial ex-

pansion.9 In this technology, a symmetrizer is a sum of tangles on n strands

(for a chosen integer n). The tangles are made by summing over braid lifts

of permutations in the symmetric group on n letters, as indicated in Figure

2.1. Each elementary braid is then expanded by the bracket polynomial

relation, as indicated in Figure 2.1, so that the resulting sum consists of

flat tangles without any crossings (these can be viewed as elements in the

Temperley – Lieb algebra). The projectors have the property that the con-

catenation of a projector with itself is just that projector, and if you tie two
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...

...

n strands

=
n

n
= (A    )-3 t(   )σ ~σ(1/{n}!) Σ

σ ε Sn

~
=

A A-1

= -A
2 -2- A

= +

{n}! = Σ
σ ε Sn

(A    )
t(   )σ-4

=
n

n

= 0

= d

Fig. 2.1. Basic Projectors

= −1/δ

= −∆    /∆n n+1

n 1 1 n 1 1

n
1

=
2

δ ∆

1∆ =-1 = 0 ∆ 0

∆ n+1 = ∆ n - n-1

Fig. 2.2. Two Strand Projector

lines on the top or the bottom of a projector together, then the evaluation

is zero. This general definition of projectors is very useful for this theory.
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a b

c

i
j

k

a b

c

i + j = a
j + k = b
i + k = c

Fig. 2.3. Trivalent Vertex

The two-strand projector is shown in Figure 2.2. Here the formula for that

projector is particularly simple. It is the sum of two parallel arcs and two

turn-around arcs (with coefficient −1/d, with d = −A2 − A−2 is the loop

value for the bracket polynomial. Figure 2.2 also shows the recursion for-

mula for the general projector. This recursion formula is due to Jones and

Wenzl and the projector in this form, developed as a sum in the Temper-

ley – Lieb algebra (see Section 5 of this paper), is usually known as the

Jones–Wenzl projector.

The projectors are combinatorial analogs of irreducible representations

of a group (the original spin nets were based on SU(2) and these deformed

nets are based on the quantum group corresponding to SU(2)). As such the

reader can think of them as “particles”. The interactions of these particles

are governed by how they can be tied together into three-vertices. See Figure

2.3. In Figure 2.3 we show how to tie three projectors, of a, b, c strands

respectively, together to form a three-vertex. In order to accomplish this

interaction, we must share lines between them as shown in that Figure so

that there are non-negative integers i, j, k so that a = i+ j, b = j + k, c =

i+ k. This is equivalent to the condition that a+ b+ c is even and that the

sum of any two of a, b, c is greater than or equal to the third. For example

a + b ≥ c. One can think of the vertex as a possible particle interaction

where [a] and [b] interact to produce [c]. That is, any two of the legs of the

vertex can be regarded as interacting to produce the third leg.

There is a basic orthogonality of three vertices as shown in Figure 2.4.

Here if we tie two three-vertices together so that they form a “bubble”

in the middle, then the resulting network with labels a and b on its free

ends is a multiple of an a-line (meaning a line with an a-projector on it) or
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zero (if a is not equal to b). The multiple is compatible with the results of

closing the diagram in the equation of Figure 2.4 so the the two free ends

are identified with one another. On closure, as shown in the Figure, the left

hand side of the equation becomes a Theta graph and the right hand side

becomes a multiple of a “delta” where ∆a denotes the bracket polynomial

evaluation of the a-strand loop with a projector on it. The Θ(a, b, c) denotes

the bracket evaluation of a theta graph made from three trivalent vertices

and labeled with a, b, c on its edges.

= Θ(   ,   ,   )
∆

a

b

a c

a

c d d

a
δ

a
b

ac d

a
=

a

= Θ(   ,   ,   )a c d

a a= = ∆ a

Fig. 2.4. Orthogonality of Trivalent Vertices

There is a recoupling formula in this theory in the form shown in Figure

2.5. Here there are “6-j symbols”, recoupling coefficients that can be ex-

pressed, as shown in Figure 2.7, in terms of tetrahedral graph evaluations

and theta graph evaluations. The tetrahedral graph is shown in Figure 2.6.

One derives the formulas for these coefficients directly from the orthogo-

nality relations for the trivalent vertices by closing the left hand side of the

recoupling formula and using orthogonality to evaluate the right hand side.

This is illustrated in Figure 2.7.
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Fig. 2.7. Tetrahedron Formula for Recoupling Coefficients
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a b
cλ

a ab b

c c

(a+b-c)/2 (a'+b'-c')/2

x' = x(x+2)

a b
cλ

=

= (-1) A

Fig. 2.8. LocalBraidingFormula

Finally, there is the braiding relation, as illustrated in Figure 2.8.

With the braiding relation in place, this q-deformed spin network theory

satisfies the pentagon, hexagon and braiding naturality identities needed for

a topological quantum field theory. All these identities follow naturally from

the basic underlying topological construction of the bracket polynomial.

One can apply the theory to many different situations.

2.1. Evaluations

In this section we discuss the structure of the evaluations for ∆n and the

theta and tetrahedral networks. We refer to11 for the details behind these

formulas. Recall that ∆n is the bracket evaluation of the closure of the

n-strand projector, as illustrated in Figure 2.4. For the bracket variable A,

one finds that

∆n = (−1)nA
2n+2 −A−2n−2

A2 −A−2
.

One sometimes writes the quantum integer

[n] = (−1)n−1∆n−1 =
A2n −A−2n

A2 −A−2
.

If

A = eiπ/2r

where r is a positive integer, then

∆n = (−1)n sin((n+ 1)π/r)

sin(π/r)
.
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Here the corresponding quantum integer is

[n] =
sin(nπ/r)

sin(π/r)
.

Note that [n+ 1] is a positive real number for n = 0, 1, 2, ...r − 2 and that

[r − 1] = 0.

The evaluation of the theta net is expressed in terms of quantum integers

by the formula

Θ(a, b, c) = (−1)m+n+p [m+ n+ p+ 1]![n]![m]![p]!

[m+ n]![n+ p]![p+m]!

where

a = m+ p, b = m+ n, c = n+ p.

Note that

(a+ b+ c)/2 = m+ n+ p.

When A = eiπ/2r, the recoupling theory becomes finite with the re-

striction that only three-vertices (labeled with a, b, c) are admissible when

a + b + c ≤ 2r − 4. All the summations in the formulas for recoupling are

restricted to admissible triples of this form.

2.2. Symmetry and Unitarity

The formula for the recoupling coefficients given in Figure 2.7 has less

symmetry than is actually inherent in the structure of the situation. By

multiplying all the vertices by an appropriate factor, we can reconfigure

the formulas in this theory so that the revised recoupling transformation is

orthogonal, in the sense that its transpose is equal to its inverse (compare

with7). This is a very useful fact. It means that when the resulting matrices

are real, then the recoupling transformations are unitary.

Figure 2.9 illustrates this modification of the three-vertex. Let

V ert[a, b, c] denote the original 3-vertex of the Temperley – Lieb recoupling

theory. Let ModV ert[a, b, c] denote the modified vertex. Then we have the

formula

ModV ert[a, b, c] =

√√
∆a∆b∆c√

Θ(a, b, c)
V ert[a, b, c].
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Lemma. For the bracket evaluation at the root of unity A = eiπ/2r the

factor

f(a, b, c) =

√√
∆a∆b∆c√

Θ(a, b, c)

is real, and can be taken to be a positive real number for (a, b, c) admissible

(i.e. with a+ b+ c ≤ 2r − 4).

Proof. See our basic reference.13

In13 we show how this modification of the vertex affects the non-zero

term of the orthogonality of trivalent vertices (compare with Figure 2.4).

We refer to this as the “modified bubble identity.” The coefficient in the

modified bubble identity is

√
∆b∆c

∆a
= (−1)(b+c−a)/2

√
[b+ 1][c+ 1]

[a+ 1]

where (a, b, c) form an admissible triple. In particular b+ c− a is even and

hence this factor can be taken to be positive real.

We rewrite the recoupling formula in this new basis and emphasize that

the recoupling coefficients can be seen (for fixed external labels a, b, c, d)

as a matrix transforming the horizontal “double-Y ” basis to a vertically

disposed double-Y basis. In Figure 2.10 and Figure 3.1 we have shown the

form of this transformation,using the matrix notation

M [a, b, c, d]ij

for the modified recoupling coefficients. In Figure 3.1 we show an explicit

formula for these matrix elements. The proof of this formula follows directly

from trivalent–vertex orthogonality (See Figure 2.4 and Figure 2.7.), and is

given in.13 The result shown in Figure 3.1 is the following formula for the

recoupling matrix elements.

M [a, b, c, d]ij = ModTet

(
a b i

c d j

)
/
√

∆a∆b∆c∆d

where
√

∆a∆b∆c∆d is short-hand for the product
√

∆a∆b

∆j

√
∆c∆d

∆j
∆j
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= (−1)(a+b−j)/2(−1)(c+d−j)/2(−1)j

√
[a+ 1][b+ 1]

[j + 1]

√
[c+ 1][d+ 1]

[j + 1]
[j + 1]

= (−1)(a+b+c+d)/2
√

[a+ 1][b+ 1][c+ 1][d+ 1]

In this form, since (a, b, j) and (c, d, j) are admissible triples, we see that

this coefficient can be taken to be positive real, and its value is independent

of the choice of i and j. The matrix M [a, b, c, d] is real-valued.

It follows from Figure 2.10 (turn the diagrams by ninety degrees) that

M [a, b, c, d]−1 = M [b, d, a, c].

Figure 10 implies the formula

M [a, b, c, d]T = M [b, d, a, c].

It follows from this formula that

M [a, b, c, d]T = M [a, b, c, d]−1.

Hence M [a, b, c, d] is an orthogonal, real-valued matrix.

a b

c

a b

c

=
∆    ∆    ∆    

Θ(     ,     ,     )

a b c

ca b

Fig. 2.9. Modified Three Vertex

a b
c d i jΣ=

j

a
a

b
b

c
c d

d

i
j

Fig. 2.10. Modified Recoupling Formula

Theorem. In the Temperley – Lieb theory we obtain unitary (in fact real

orthogonal) recoupling transformations when the bracket variable A has

the form A = eiπ/2r. Thus we obtain families of unitary representations of

the Artin braid group from the recoupling theory at these roots of unity.
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a b
c d i j

=
b

c d

a
i j

∆    ∆    ∆    ∆   a b c d

M[a,b,c,d]
i j

=
a b
c d i j

Fig. 2.11. Modified Recoupling Matrix

Proof. The proof is given by the discussion above and in.13

3. Explicit Form of the Braid Group Representations

In order to have an explicit form for the representations of the braid group

that we have constructed we return to the description of the vector spaces in

the introduction to this paper. Here we make this description of the vector

spaces more precise as follows. We describe a vector space V [(a1a2)a3 : a4]

depending upon a choice of three input and output spins where (ab) denotes

the possible outcome of two spin labels interacting at a trivalent vertex as

in Figure 2.3. In that figure we see that (ab) can represent c (the remaining

leg of the vertex) and that there is a range of values possible for c given

by the constraints on i j and k as shown in that figure. Here we insist that

the composite interaction (a1a2)a3 shall equal a4 so that the vector space

V [(a1a2)a3 : a4] corresponds to the left-hand tree shown in Figure 3.2. In

that figure we indicate the recoupling mapping F : V [(a1a2)a3 : a4] −→
V [a1(a2a3) : a4]. The matrix form of F is composed from the recoupling

matrix of Figure 3.1. In Figure 3.2 we have labeled x = (a1a2) corresponding

to one of the basis vectors in V [(a1a2)a3 : a4]. Similarly, we have y = (a2a3)

corresponding to one of the basis vectors in V [(a1a2)a3 : a4]. We let the

corresponding vectors be denoted by |x〉 and |y〉 respectively. Then we can

write

F |i〉 = ΣjFji|j〉

where j ranges over the admissible labels for the interaction of a2 and a3.
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a1 a2 a3

a4

a1 a2 a3

a4
x

y
F

Fig. 3.1. Recoupling Map F : V [(a1a2)a3 : a4] −→ V [a1(a2a3) : a4]

To see how the three strand braid group acts on V [(a1a2)a3 : a4], view

Figure 13. If we let s1 denote the generator of the three-stand braid group

B3 that twists the first two strands and s2 denote the generator that twists

the second two strands, then we see that s1 acts directly at a trivalent

vertex, giving the formula

s1|x〉 = λ(a1, a2, x)|x〉

where λ(a1, a2, x) = λa1,a2
x is the braiding factor of Figure 2.8. On the other

hand, we need to perform a recoupling in order to compute the action of

s2. As shown in Figure 3.3, we have

s2|i〉 = ΣkjF
−1
kj λ(a3, a4, j)Fji|k〉.

This gives a complete description of the representation of the three-strand

braid group on the vector space V [(a1a2)a3 : a4]. Our next task is to gen-

eralize this to an abitrary “left-associated” tree.

We wish to consider larger left associated trees such as

V [((((a1a2)a3)a4)a5) : a6].

To this purpose it is useful to declare that a fully left-associated product

may be written without parentheses. Thus we have

a1a2a3a4a5 = ((((a1a2)a3)a4)a5)

and

a1(a2a3)a4a5 = (((a1(a2a3))a4)a5).

Thus we have the recoupling transformation

F 2 : V [a1a2a3a4a5 : a6] −→ V [a1(a2a3)a4a5 : a6]

that will be used for the action of s2 on the space V [a1a2a3a4a5 : a6].
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a1 a2 a3

a4

a1 a2 a3

a4

F

a1 a2 a3

a4
x

=    (a1,a2,x)

a1 a2 a3

a4
x

λ

a1 a2 a3

a4

λ (a2,a3,_)

F
-1

a1 a2 a3

a4

Fig. 3.2. Action of the Braid Group

In the general case we have the spaces V [a1a2 · · ·an : an+1] with basis

elements |x2x3 · · ·xn−1〉 where (a1a2) has x2 as an outcome, (x2a3) has

x3 as an outcome, and so on until (xn−1an) has an+1 as an outcome. For

articulating the braiding we need mappings

F i : V [a1a2 · · · an : an+1] −→ V [a1a2 · · · ai−1(aiai+1)ai+2 · · ·an : an+1].

The target space has the strands labeled i and i+ 1 combined at a vertex

so that the braiding for si in the target space is local. We also need a

basis for V [a1a2 · · · ai−1(aiai+1)ai+2 · · · an : an+1]. This is given by the kets

|y2y3 · · · yn−1〉 where

(a1a2) = y2

· · ·

(yi−2ai−1) = yi+1

(aiai+1) = yi

(yi+1ai+2) = yi+2

· · ·

(yn−2an−1) = yn−1
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We then have

si|x2x3 · · ·xn−1〉 = (F i)−1λ(ai, ai+1)F
i|x2x3 · · ·xn−1〉.

Here it is understood that

λ(ai, ai+1)|y2y3 · · · yn−1〉 = λ(ai, ai+1, yi)|y2y3 · · · yn−1〉,
where λ(a, b, c) is defined as explained above. Finally, using the recoupling

matrix formalism of Figure 2.10, we have

F i|x2x3 · · ·xn−1〉 = ΣyM [ai, ai+1, xi−1, xi+1]yxi |x2x3 · · ·xi−1yxi+1 · · ·xn−1〉.
This completes our description of the action of the braid group on these

vector spaces.

3.1. The Fibonacci Model

In the Fibonacci model,15 there is a single non-trivial recoupling matrix F.

F =

(
1/∆ 1/

√
∆

1/
√

∆ −1/∆

)
=

(
τ

√
τ√

τ −τ

)

where ∆ = 1+
√

5
2 is the golden ratio and τ = 1/∆. The local braiding

matrix is given by the formula below with A = e3πi/5.

R =

(
A8 0

0 −A4

)
=

(
e4πi/5 0

0 −e2πi/5

)
.

The simplest example of a braid group representation arising from this

theory is the representation of the three strand braid group generated by

s1 = R and s2 = FRF (Remember that F = F T = F−1.). The matrices s1
and s2 are both unitary, and they generate a dense subset of U(2), supplying

the local unitary transformations needed for quantum computing.

In the Fibonacci model there are two labels, as we described in the

introduction (see Figure 4.2): P and ∗. P can interact with itself to produce

either P or ∗, while ∗ acts as an identity element. That is, ∗ interacts with

P to produce only P, and ∗ interacts with ∗ to produce ∗. Let

V [n] = V [a1a2 · · · an : an+1] = V (PPP · · ·P : P ).

The space V [n] has basis vectors |x2x3 · · ·xn−1〉 where {x2, x3, · · ·xn−1}
runs over all sequences of P ’s and ∗’s without consecutive ∗’s. The dimen-

sion of V [n] is fn, the n-th Fibonacci number: f1 = 1, f2 = 1, f3 = 2, f4 =

3, f5 = 5, f6 = 8, · · · and fn+1 = fn + fn−1.
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=

Forbidden
Process

*

P P

P

P P

Fig. 3.3. Fibonacci Vertices

In terms of the matrix R, we have and λ(∗) = A8 and λ(P ) = −A4. The

representation of the the braid group Bn on V [n] is given by the formulas

below (with x0 = xn = P and i = 1, 2, · · ·n− 1 and the matrix indices for

F are ∗ and P corresponding to 0 and 1 respectively). We use the matrix

N = FRF below.

s1|x2x3 · · ·xn−1〉 = λ(x2)|x2x3 · · ·xn−1〉,

and for i ≥ 2 :

si|x2x3 · · ·xn−1〉 = λ(xi)|x2x3 · · ·xn−1〉

if xi−1 6= P or xi+1 6= P.

si|x2x3 · · ·xn−1〉 = Σα=∗,PNα,xi |x2x3 · · ·xi−1 α xi+1 · · ·xn−1〉

if xi−1 = xi+1 = P.

These formulas make it possible to do full-scale computer experiments with

the Fibonacci model and the generalizations of it that we have discussed.

We will pursue this course in a subsequent paper. This model is universal

for quantum computation.

4. Quantum Computation of Colored Jones Polynomials

and the Witten-Reshetikhin-Turaev Invariant

In this section we make some brief comments on the quantum computation

of colored Jones polynomials. This material will be expanded in a subse-

quent publication.
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0 0
0
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x

y
,

x
y 0

B(x,y)

0 0
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=
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a a a a

a a
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Σ=
x

y
,

x
y 0

B(x,y)
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=
0
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B(0,0) 0 0

= B(0,0) ∆ a(     ) 2

B
P(B)

Fig. 4.1. Evaluation of the Plat Closure of a Braid

First, consider Figure 4.1. In that figure we illustrate the calculation of

the evalutation of the (a) - colored bracket polynomial for the plat closure

P (B) of a braid B. The reader can infer the definition of the plat closure

from Figure 15. One takes a braid on an even number of strands and closes

the top strands with each other in a row of maxima. Similarly, the bottom

strands are closed with a row of minima. It is not hard to see that any knot

or link can be represented as the plat closure of some braid.

The (a) - colored bracket polynonmial of a link L, denoted < L >a, is

the evaluation of that link where each single strand has been replaced by a

parallel strands and the insertion of Jones-Wenzl projector (as discussed in

Section 2). We then see that we can use our discussion of the Temperley-Lieb

recoupling theory to compute the value of the colored bracket polynomial

for the plat closure PB. As shown in Figure 4.1, we regard the braid as

acting on a process space V a,a,··· ,a
0 and take the case of the action on the

vector v whose process space coordinates are all zero. Then the action of

the braid takes the form

Bv(0, · · · , 0) = Σx1,··· ,xnB(x1, · · · , xn)v(x1, · · · , xn)
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δA4 -4
= A + +

δA 4-4= A+ +

- = 4A A
-4-( ) -( )

- = 4A A
-4-( ) -( )

= A
8

Fig. 4.2. Dubrovnik Polynomial Specialization at Two Strands

where B(x1, · · · , xn) denotes the matrix entries for this recoupling transfor-

mation and v(x1, · · · , xn) runs over a basis for the space V a,a,··· ,a
0 . Here n

is even and equal to the number of braid strands. In the figure we illustrate

with n = 4. Then, as the figure shows, when we close the top of the braid

action to form PB, we cut the sum down to the evaluation of just one term.

In the general case we will get

< PB >a= B(0, · · · , 0)∆n/2
a .

The calculation simplifies to this degree because of the vanishing of loops

in the recoupling graphs. The vanishing result is stated in Figure 15.

The colored Jones polynomials are normalized versions of the colored

bracket polymomials, differing just by a normalization factor.

In order to consider quantum computation of the colored bracket or col-

ored Jones polynomials, we therefore can consider quantum computation of

the matrix entries B(0, · · · , 0). These matrix entries in the case of the roots

of unity A = eiπ/2r and for the a = 2 Fibonacci model with A = e3iπ/5

are parts of the diagonal entries of the unitary transformation that repre-

sents the braid group on the process space V a,a,··· ,a
0 . We can obtain these

matrix entries by using the Hadamard test as described in the subsection

that concludes this section of the paper. As a result we get relatively effi-

cient quantum algoritms for the colored Jones polynomials at these roots
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of unity, in essentially the same framework as we described in section 3. We

reserve discussion computational complexity of these algorithms, discussion

of the factorization of the algorithm into elementary gates and comparison

with the results of1 to a subsequent publication. We point out here that in

order to apply the algorithm for a colored Jones polynomial we only require

the Hadamard test for a single entry of the unitary matrix that represents

the braiding. This is a savings for the algorithm. The methods of Section 3

supply the necessary information for factoring the braiding representation

into elementary gates.

These algorithms give not only quantum algorithms for computing the

colored bracket and Jones polynomials, but also for computing the Witten-

Reshetikhin-Turaev (WRT ) invariants at the above roots of unity. The

reason for this is that the WRT invariant, in unnormalized form is given

as a finite sum of colored bracket polynomials:

WRT (L) = Σr−2
a=0∆a < L >a,

and so the same computation as shown in Figure 4.1 applies to the WRT.

This means that we have, in principle, a quantum algorithm for the com-

putation of the Witten functional integral21 via this knot-theoretic combi-

natorial topology. It would be very interesting to understand a more direct

approach to such a computation via quantum field theory and functional

integration.

Finally, we note that in the case of the Fibonacci model, the (2)-colored

bracket polynomial is a special case of the Dubrovnik version of the Kauff-

man polynomial.10 See Figure 16 for diagammatics that resolve this fact.

The skein relation for the Dubrovnik polynomial is boxed in this figure.

Above the box, we show how the double strands with projectors reproduce

this relation. This observation means that in the Fibonacci model, the nat-

ural underlying knot polynomial is a special evaluation of the Dubrovnik

polynomial, and the Fibonacci model can be used to perform quantum

computation for the values of this invariant.

4.1. The Hadamard Test

In order to (quantum) compute the trace of a unitary matrix U , one can

use the Hadamard test to obtain the diagonal matrix elements 〈ψ|U |ψ〉 of

U. The trace is then the sum of these matrix elements as |ψ〉 runs over an
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orthonormal basis for the vector space. We first obtain

1

2
+

1

2
Re〈ψ|U |ψ〉

as an expectation by applying the Hadamard gate H

H |0〉 =
1√
2
(|0〉 + |1〉)

H |1〉 =
1√
2
(|0〉 − |1〉)

to the first qubit of

CU ◦ (H ⊗ 1)|0〉|ψ〉 =
1√
2
(|0〉 ⊗ |ψ〉 + |1〉 ⊗ U |ψ〉.

Here CU denotes controlledU, acting as U when the control bit is |1〉 and the

identity mapping when the control bit is |0〉. We measure the expectation

for the first qubit |0〉 of the resulting state

1

2
(H |0〉 ⊗ |ψ〉 +H |1〉 ⊗ U |ψ〉) =

1

2
((|0〉 + |1〉) ⊗ |ψ〉 + (|0〉 − |1〉) ⊗ U |ψ〉)

=
1

2
(|0〉 ⊗ (|ψ〉 + U |ψ〉) + |1〉 ⊗ (|ψ〉 − U |ψ〉)).

This expectation is

1

2
(〈ψ| + 〈ψ|U †)(|ψ〉 + U |ψ〉) =

1

2
+

1

2
Re〈ψ|U |ψ〉.

The imaginary part is obtained by applying the same procedure to

1√
2
(|0〉 ⊗ |ψ〉 − i|1〉 ⊗ U |ψ〉

Note that the Hadamard test enables this quantum computation to estimate

the trace of any unitary matrix U by repeated trials that estimate individual

matrix entries 〈ψ|U |ψ〉. We shall return to quantum algorithms for the

Jones polynomial and other knot polynomials in a subsequent paper.
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In this article, we obtain a universal method to compute the Gromov-Witten
type invariants using the localization technique. This method can be applied
to any natural cohomology class on the moduli space of curves Mg,n. As ap-
plications, we illustrate a new proof of the Witten’s conjecture as well as the
proof of Mariño-Vafa formula.

1. Introduction

The localization technique has been proved to be a useful tool in studying

the Gromov-Witten invariants as was shown in the proof of the Mariño-

Vafa formula and a new proof of the Witten conjecture/Kontsevich theo-

rem. Especially when applied to the relative stable moduli, it allows us to

express the Gromov-Witten invariants in terms of other invariants such as

double Hurwitz numbers or another type of Gromov-Witten invariants. In

this paper, we present a universal method to obtain recursion relations on

the Gromov-Witten type invariants: let ω ∈ H∗(X) be any natural coho-

mology class on the target space X , we can determine the Gromov-Witten

invariants ∫

Mg,n

ψk1
1 · · ·ψkn

n ω

through the recursion relation obtained by localization technique. It is nat-

ural to expect that these invariants should depend only on the degeneration

of the domain curves and how the cohomology class ω behaves under the
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degeneration. The method we present here strongly suggests that this is

actually the case, as was suggested by the generalized Witten conjecture

and the general Virasoro conjecture.

The rest of this paper is consisted as follows: In section 2, we briefly

review the Gromov-Witten invariants, the moduli space of relative stable

morphisms, and the virtual localization technique. In section 3, we present

the universal approach to the Gromov-Witten invariants using localization

technique. In sections 4 and 5, we present, as applications, a new proof of

Witten conjecture and the proof of Mariño-Vafa formula. In section 6, we

list several open problems to which we can apply this general approach.

2. Preliminaries

2.1. The Gromov-Witten invariants

Let X be a smooth projective variety and Mg,n(X, β) be the moduli stack

of n-pointed stable maps of genus g and degree β, i.e. it consists of maps

f : (C;x1, · · · , xn) −→ X

such that

• C is a Riemann surface of arithmetic genus g = h1(C,OC) and n

marked points x1, · · · , xn with only nodal singularities.

• An algebraic map f : C −→ X such that f∗[C] = β ∈ H2(X,C).

• It admits no infinitesimal automorphisms fixing the marked points.

For each marked point xi, consider the line bundle Li over Mg,n(X, β)

whose fiber over [C;x1, · · · , xn] ∈ Mg,n(X, β) is the cotangent line T ∗
xi
C

at the i-th marked point xi. Then define the ψ-class as its first Chern-

class, i.e. ψi = c1(Li). For each i, let evi : Mg,n(X, β) −→ X be the

evaluation map which sends xi to its image f(xi) ∈ X . The construction

of virtual fundamental class, denoted by [Mg,n(X, β)]vir , allows us to do

the intersection theory on Mg,n(X, β). The Gromov-Witten invariants are

defined as the intersection numbers

〈τk1(x1) · · · τkn(xn)〉Xg,d =

∫

[Mg,n(X,β)]vir

ψk1
1 · · ·ψkn

n ev∗1(Z1) · · · ev∗
n(Zn)

where Z1, · · · , Zn are cohomology classes of X .
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2.2. Localization technique

In this section, we will briefly summarize various versions of localization

formulas.1,15,16 We start with the equivariant cohomology.

2.2.1. Equivariant Cohomology

Let G be a compact Lie group acting on M . The equivariant cohomology

of M is defined as the ordinary cohomology of the space MG obtained from

a fixed universal G-bundle EG, by the mixing construction

MG = EG×G M

Here, G acts on the right of EG and on the left of M , and the notation

means that we identify (pg, q) ∼ (p, gq) for p ∈ EG, q ∈ M , g ∈ G. Hence

MG is the bundle with fibre M over the classifying space BG associated

to the universal bundle EG −→ BG. We have natural projection map

π : MG −→ BG and σ : MG −→ M/G, which fits into the mixing diagram

of Cartan and Borel:

EG

��

EG×M //

��

oo M

��

BG E ×G M
πoo σ // M/G

If G acts smoothly on M , then we have MG
∼= M/G. This is not true in

general but it turns out that MG is a better functorial construction and the

proper homotopy theoretic quotient of M by G. In any case, the equivariant

cohomology, denoted by H∗
G(M), is defined by

H∗
G(M) = H∗(MG)

and constitutes a contravariant functor from G-spaces to modules over the

base ring H∗
G := H∗

G(pt) = H∗(BG). The map σ defines a natural map

σ∗ : H∗(M/G) −→ H∗
G(M) which is an isomorphism if G acts freely. The

inclusion i : M −→MG induces a natural map i∗ : H∗
G(M) −→ H∗(M).

2.2.2. Atiyah-Bott Localization Formula

Let i : V ↪→M be a map of compact manifolds. The tubular neighborhood

of V inside M can be identified with the normal bundle of V . On the total

space of the normal bundle, there is the Thom form ΦV which has compact

support in the fibres and integrates to one in each fiber. Extending this

form by zero gives a form in M , and multiplying by ΦV provides a map
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H∗(V ) ∼= H∗+k(M,M\V ) −→ H∗(M). In particular, the cohomology class

1 ∈ H0(V ) is sent to the Thom class and this class restricts to the Euler

class of the normal bundle NV/M of V in M . Hence, we see that

i∗i∗1 = e(NV/M ).

This also holds in equivariant cohomology by the same argument applied

to MG. The theorem of Atiyah and Bott says that an inverse of the Euler

class of the normal bundle always exists along the fixed locus of a group

action. Precisely, i∗/e(NV/M ) is the inverse of i∗ in equivariant cohomology,

i.e. for any equivariant class φ, we have a decomposition

φ =
∑

F

i∗i∗φ

e(NF/M )

where F runs over the fixed locus of G-action. In the integrated form, we

have ∫

M

φ =
∑

F

∫

F

i∗φ

e(NF/M )

2.2.3. Functorial Localization Formula

Let X and Y be T -manifolds. Assume that f : X −→ Y is a T -equivariant

map, jE : E ↪→ Y is a fixed component in Y , and iF : F ↪→ f−1(E) is a

fixed component in X . For any equivariant class ω ∈ H∗
T (X), we have the

commutative diagrams;

F
iF //

g=f |F

��

X

f

��

E
jE

// Y

i∗F (ω)
eT (F/X)

g!

��

ω
i∗Foo

f!

��

g!

[
i∗F (ω)

eT (F/X)

]
f!(ω)

j∗Eoo

Applying the Atiyah-Bott localization formula with the naturality relation

f!(ω · f∗α) = f!ω · α, we obtain the functorial localization formula:

g!

[ i∗F (ω)

eT (F/X)

]
=

j∗Ef!(ω)

eT (E/Y )

2.2.4. Virtual Functorial Localization Formula

The above functorial localization formula is also valid in the case where X

and F are virtual fundamental classes. In this paper, we will use
[
Mg(X ×
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P1;X ×{∞} |β;µ)
]vir

for X , and
[
FΓ

]vir
for F . Hence for any equivariant

class ω, we have:
∫
[
Mg(X×P1;X×{∞} |β;µ)

]vir
ω =

∑

FΓ

∫
[
FΓ

]vir

i∗Γ(ω)

eT (NFΓ )
(1)

where NFΓ denotes the normal bundle of the fixed locus given by FΓ in the

relative stable moduli space Mg(X × P1;X × {∞} |β;µ).

2.3. The moduli space of relative stable morphisms

In this section, we briefly summarize the definitions and results from24–26,30

with minor modifications. Let X be a smooth projective variety and

D1, · · · , Dk be disjoint smooth divisors. For α = 1, · · · , k, define

∆(Dα)(m) = ∆(Dα)1 ∪ · · · ∪ ∆(Dα)m

where ∆(Dα)i
∼= P(ODα ⊕ NDα/X) → Dα for each i, α, and NDα/X de-

notes the normal sheaf of a subvariety Dα in X . The projective line bundle

∆(Dα) → Dα has two distinct sections

Dα
0 = P(ODα ⊕ 0), Dα

∞ = P(0 ⊕ NDα/X ).

We have NDα
0 /∆(Dα)

∼= N
−1
Dα/X and NDα

∞/∆(Dα)
∼= NDα/X . Then

∆(Dα)(m) is constructed by gluing along the two distinct sections of

∆(Dα)i’s that correspond to two distinct sections Dα
0 and Dα

∞. The C∗-
action on ODα induces a C∗-action on ∆(Dα) such that ∆(Dα) → Dα is

C∗-equivariant, where C∗ acts on Dα trivially. The two distinct sections Dα
0 ,

Dα
∞ are fixed under this C∗-action. So there is a (C∗)m-action on ∆(Dα)(m)

fixing Dα
0 , · · · ,Dα

m, such that ∆(Dα)(m) → Dα is (C∗)m-equivariant, where

(C∗)m acts on Dα trivially. The variety

X [m1, · · · ,mk] = X ∪
k⋃

α=1

∆(Dα)(mα)

with normal crossing singularities is obtained by identifying Dα ⊂ X with

Dα
0 ⊂ ∆(Dα) under the canonical isomorphism. There is a morphism

π[m1, · · · ,mk] : X [m1, · · · ,mk] −→ X

which contracts ∆(Dα)(mα) to Dα. The (C∗)⊕mα

-actions on ∆(Dα)(mα)

give a (C∗)⊕
∑

mα

action on X [m1, · · · ,mk] such that π[m1, · · · ,mk] is

(C∗)⊕
∑

mα

-equivariant with respect to the trivial action on X . Let β ∈
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H2(X,Z) be a nonzero homology class and µα be a partition of dα, for

α = 1, · · · , k, where dα’s are defined to be

dα =

∫

β

c1(O(Dα)) ≥ 0.

Define the relative stable moduli

Mg(X ;D1, · · · , Dk | β;µ1, · · · , µk)

to be the moduli space of relative stable morphisms

f : (C; {x1
i }l(µ1)

i=1 , · · · , {xk
i }l(µk)

i=1 ) −→ X [m1, · · · ,mk]

such that

(1) (C; {x1
i }

l(µ1)
i=1 , · · · , {xk

i }
l(µk)
i=1 ) is a connected prestable curve of arith-

metic genus g with
∑k

α=1 l(µ
α) marked points.

(2) (π[m1, · · · ,mk] ◦ f)∗[C] = β ∈ H2(X,Z).

(3) As Cartier divisors, we have f−1(Dα
(mα)) =

∑l(µα)
i=1 µα

i x
α
i . In particular,

if dα = 0, then f−1(Dα
(mα)) is empty.

(4) The preimage of Dα
l consists of nodes of C for l = 0, · · · ,mα − 1.

If f(y) ∈ Dα
l and C1,C2 are two irreducible components of C which

intersect at y, then f |C1 and f |C2 have the same contact order to Dα
(l)

at y.

(5) The automorphism group of f is finite.

The arguments in J.Li’s papers24–26 show that Mg(X ;Dα | β;µα) is a sep-

arated, proper Deligne-Mumford stack which admits a perfect obstruction

theory of virtual dimension

∫

β

c1(TX) + (1 − g)(dimX − 3) +

k∑

α=1

(
l(µα) − |µα|

)

In order to perform the virtual localization computation on the relative

stable moduli Mg(X ;D1, · · · , Dk | β;µ1, · · · , µk), we need to compute the

Euler class of the tangent space T 1 and the obstruction space T 2 of

Mg(X ;D1, · · · , Dk | β;µ1, · · · , µk) at the moduli point

f : (C; {x1
i }l(µ1)

i=1 , · · · , {xk
i }l(µk)

i=1 ) −→ X [m1, · · · ,mk].

This can be done by the following two exact sequences:

0 −→Ext0(ΩC(R),OC) −→ H0(D•) −→ T 1

−→Ext1(ΩC(R),OC) −→ H1(D•) −→ T 2 −→ 0
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0 → H0
(
C, f∗(ΩX[m1,··· ,mk](

k∑

α=1

logDα
mα)

)∨)

→ H0(D•) →
k⊕

α=1

mα−1⊕

l=0

H0
et(R

α•
l )

→ H1
(
C, f∗(ΩX[m1,··· ,mk](

k∑

α=1

logDα
mα)

)∨)

→ H1(D•) →
k⊕

α=1

mα−1⊕

l=0

H1
et(R

α•
l ) → 0

where

R =

k∑

α=1

l(µα)∑

i=1

xα
i , H1

et(R
α•
l ) ∼= H0(Dα

l , L
α
l )⊕nα

l �H0(Dα
l , L

α
l ),

H0
et(R

α•
l ) ∼=

⊕

q∈f−1(Dα
l )

Tq

(
f−1(∆(Dα)l)

)
⊗ T ∗

q

(
f−1(∆(Dα)l)

) ∼= C⊕nα
l ,

and nα
l is the number of nodes over Dα

l . Please refer to the paper by C.-C.

Liu, K.Liu, and J.Zhou30 for detailed notations.

3. A new approach to the Gromov-Witten theory

In this section, we will illustrate a new approach to derive a recursion

relation for any natural cohomology class on Mg,n(X, β). Precisely, let ω

be a cohomology class on Mg,n(X, β) that can be lifted to a equivariant

class ωT on Mg(X × P1;X × {∞} | β;µ). We obtain a recursion relation

for the Gromov-Witten invariants involving ω by the following two steps:

1) Localization on the relative stable moduli: We have a natural

projection map

p : Mg(X × P1;X × {∞} | β;µ) −→ Mg(P
1; {∞} | |µ|;µ)

along with the branching morphism,9

Br :Mg(P
1; {∞} | |µ|;µ) −→ Symr (P1) ∼= Pr
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Combining these morphisms, we obtain information for the Gromov-

Witten invariants involving ωT through:

F (u) =

∫

[Mg(X×P1;X×{∞} | β;µ)]vir

ωT

(
Br ◦ p

)∗( ∏

k∈B

(H − k)
)

Here, B is any subset of {0, 1, 2, · · · , r} and H is the hyperplane class of

H∗(Pr) such that H |pk
= k for each fixed point pk of Pr under the nat-

ural S1-action. F (u) is, in general, a polynomial of the equivariant pa-

rameter u. On the other hand, the virual functorial localization formula

(1) applied on the relative stable moduli Mg(X × P1;X × {∞} | β;µ)

expresses F (u) as the sum over all fixed locus of S1-action. Precisely,

we have the following expression:

F (u) =
∑

l∈Bc

( ∏

k∈B

(l − k)
)
· Γl(u) (1)

where Γl(u) is the contribution from the fixed locus that are mapped to

the fixed point pl under Br ◦ p. These contributions have the following

form:

Γl(u) =
∑[∫

Mg,m(X,β̃)

i∗(ω) ψk1
1 · · ·ψkm

m

]
·
[
known data C(Γk

l )
]

(2)

where i∗(ω) is the restriction of ω to the components of fixed locus.

The coefficients C(Γk
l ) depends on the partition µ and the splitting-

type of the fixed locus which is governed by the following Cut-and-Join

operation:44

• Cut-operation : Geometrically this coreesponds to the pinching

of the domain curve along a non-trivial cycle. In terms of localiza-

tion computation, this corresponds to the Cut-operation on the

partition µ:

µ = (· · · , µi, · · · ) −→ ν = (· · · , p, q, · · · ) , p+ q = µi

• Join-operation : Geometrically this corresponds to the bubbling

of the domain curve by pinching a cycle enscribing two marked

points. In terms of localization computation, this corresponds to

the Join-operation on the partition µ:

µ = (· · · , µi, µj , · · · ) −→ η = (· · · , µi + µj , · · · )

Moreover the fixed locus that are mapped to a fixed point pl is precisely

those curves that are obtained by performing the Cut-and-Join oper-

ation on the fixed locus that are mapped to the fixed point pl+1. For
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example, there is a unique curve Cr of genus g and n-marked points

that is mapped to pr. And the fixed locus that are mapped to the

branching point pr−1 are precisely

† (Cut-of-type-I) A curve that is obtained by pinching a meridian

of Cr. This curve will have arithmetic genus g − 1 and one more

special point coming from the pinching.

† (Cut-of-type-II) A curve that is obtained by pinching a longitude

of Cr. This curve will consist of two smooth components with

genus g1,g2 such that g1 + g2 = g.

† (Join) A curve that is obtained by pinching a cycle that enscribes

two marked points. This curve will consist of two smooth compo-

nents, one of which has genus g with one less marked points.

As the result, RHS of the relation (1) can be explicitly computed and

consists of the Gromov-Witten invariants involving ω. This relation

contains enough information to compute all Gromov-Witten invariants.

However, we can extract more precise relations from (1) by using the

asymptotic analysis as described below.

2) Asymptotic Analysis: The relation (1) holds for any given partition

µ of any size. Hence it is natural to expect that, if we choose arbitraty µ,

we should be able to extract relations on the Gromov-Witten invariants

that are independent of the partition µ, i.e. relations between absolute

Gromov-Witten invariants. This idea is realized by letting the size of

µ to be arbitrarily large |µ| → ∞. Precisely we consider the following

scaling limit of the partition µ:

Write µi = N · xi where N ∈ Z, xi ∈ Q and let N → ∞

In the localization computation, we encounter the following type of

combinatorial numbers that depend on the partition µ:

l(µ)∏

i=1

µµi+ki

i

µi!

Under the Cut-operation, this number will be replaced by the cor-

responding combinatorial number for ν. Especially the effect of the
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Cut-operation is reflected through

µµi+ki

i

µi!
−→

∑

p+q=µi

pp+aqq+b

p!q!
(3)

where a and b depend on ki and the splitting-type of fixed locus. The

asymptotic behaviour of this combinatorial number is given by the

following asymptotic formulas.22

• Asymptotic Formula : Let a, b ∈ N and k ≥ 0. As N → ∞, we

have the following asymptotic behaviours

e−N
∑

p+q=N

pp+aqq+b

p!q!
−→ 1

2

[ (2a− 1)!!(2b− 1)!!

2a+b(a+ b)!

]
Na+b + o(Na+b)

e−N
∑

p+q=N

pp+k+1qq−1

p!q!
−→ nk+ 1

2√
2π

−
[ (2k + 1)!!

2k+1k!

]
Nk + o(Nk)

(4)

These asymptotic formulas are obtained through an application of the

integration by parts and the Stirling’s formula

N ! ∼
√

2πe−NNN+ 1
2 (1 +

1

12N
+ · · · ).

This allows us to derive the limiting equation of the recursion relation

under the scaling limit N −→ ∞. Moreover, the asymptotic behaviour

does not depend on the specific partition-type of µ. Hence this allows

us to extract relations between absolute Gromov-Witten invariants.

Precisely, under the scaling limit N → ∞, we obtain a stratification of

the relation (1) with respect to the degree ofN . This stratification gives

us a system of recursion relations between absolute Gromov-Witten

invariants.

4. Localization proof of the Witten conjecture

As an application of the new approach described in the previous section, we

summarize the new proof of Witten’s conjecture using localization method.

Please refer to the paper by Y.-S. Kim and K. Liu22 for details. The famous

Witten conjecture40 claims that stable intersection theory on moduli space

is equivalent to the ”hermitian matrix model” of two-dimensional gravity.
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Precisely, E. Witten considered the generating function of the stable inter-

section theory on moduli space

F (t0, t1, · · · ) =
∑

{ni}

∞∏

i=0

tni

i

ni!
〈τn0

0 τn1
1 τn2

2 · · · 〉.

and formulated the Witten’s conjecture as follows: The generating function

F (t0, t1, · · · ) is determined by the following two constraints

(1) The object U = ∂2F/∂t20 obeys the KdV equations.

∂U

∂tn
=

∂

∂t0
Rn+1(U, U̇, Ü , · · · ),

where U̇ = ∂U/∂t0, Ü = ∂2U/∂t20, etc., are the derivatives of U with

respect to t0, and Rn+1(U, U̇ , Ü , · · · ) are certain polynomials in U and

its t0 derivatives that are well-known in the theory of the KdV equations

(and can be determined by recursion relations that are explicitly given).

(2) In addition, F obeys the “string equation,”

∂F

∂t0
=
t20
2

+

∞∑

i=0

ti+1
∂F

∂ti
.

Now there exist several different approaches to this conjecture:

1. M. Kontsevich23 gave the first proof by constructing the main iden-

tity which relates the stable intersection theory on Mg,n to its proper

combinatorial model. The string partition function τ(t):

τ(t) = exp

∞∑

g=0

〈exp
∑

n

tnOn〉g

admits an integral representation which involves the following integral

over N ×N Hermitian matrix Y of the form2

τ(Z) = ρ(Z)−1

∫
dY · expTr

[
− 1

2
ZY 2 +

i

6
Y 3
]

where Z is a second N ×N Hermitian matrix, and ρ(Z) is the one-loop

integral

ρ(Z) =

∫
dY · exp

[
− 1

2
TrZY 2

]

2. A. Okounkov-R. Pandharipande35 gave another approach through the

enumeration of branched covering of P1 using the ELSV-formula:6

Hg,µ · |Aut µ|
(2g − 2 + |µ| + l(µ))!

=

l(µ)∏

i=1

µµi

i

µi!

∫

Mg,l(µ)

Λ∨
g (1)∏

(1 − µiψi)
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3. M. Mirzhakani34 derived the Virasoro constraints by connecting the

stable intersection theory on Mg,n to the Weil-Petersen volume and by

using the McShane identity on the Weil-Petersen volume.

4. M. Kazarian-S. Lando20 obtained an algebro-geometric proof by using

the ELSV-formula and the PDEs which govern the generating series of

Hurwitz numbers to derive the KdV-equation.

There are a couple of equivalent formulations for the Witten conjec-

ture, namely the Virasoro constraints and the recursion relation for the

correlation functions of topological gravity.

• The Virasoro constraints: The KdV-hierarchy can be expressed as

linear homogeneous differential equations for the τ -function2

Ln · τ = 0, (n ≥ −1)

where Ln denote the differential operators

L−1 = −1

2

∂

∂t̃0
+

∞∑

k=1

(k +
1

2
)t̃k

∂

∂t̃k−1

+
1

4
t̃20

L0 = −1

2

∂

∂t̃1
+

∞∑

k=0

(k +
1

2
)t̃k

∂

∂t̃k
+

1

16

Ln = −1

2

∂

∂t̃n−1

+

∞∑

k=0

(k +
1

2
)t̃k

∂

∂t̃k+n

+
1

4

n∑

i=1

∂2

∂t̃i−1∂t̃n−i

• The recursion relation for the correlation functions of topolog-

ical gravity: R. Dijkgraaf, E. Verlinde, and H. Verlinde derived,2,3,39

through physical arguments, the following recursion relation for the cor-

relation functions of topological gravity and showed that it is equivalent

to the Virasoro constraints.

〈σ̃n

∏

k∈S

σ̃k〉g =
∑

k∈S

(2k + 1)〈σ̃n+k−1

∏

l6=k

σ̃l〉g +
1

2

∑

a+b=n−2

〈σ̃aσ̃b

∏

l∈S

σ̃l〉g−1

+
1

2

∑

S=X∪Y,a+b=n−2,g1+g2=g

〈σ̃a

∏

k∈X

σ̃k〉g1 〈σ̃b

∏

l∈Y

σ̃l〉g2

(1)

where σ̃n = [(2n+ 1)!!]σn = [(2n+ 1)!!]ψn and

〈σ̃k1 · · · σ̃kl
〉g =

[ l∏

i=1

(2ki + 1)!!
] ∫

Mg,l

ψk1
1 · · ·ψkl

l
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The above recursion relation (1) has the same degeneration type as that of

the Cut-and-Join relation. It is proved22 to be the limiting equation of the

Cut-and-Join relation obtained by applying localization technique on the

relative stable moduli Mg(P1, µ). We summarize the proof below:

Let ω be the trivial class and B = {0, 1, 2, · · · , r − 2}. Then the class

ω · Br∗
∏

k∈B

(
H − k

)
has strictly less degree than the virtual dimension

of the relative stable moduli Mg(P1; {∞} | |µ|, µ). Hence the relation (1)

becomes

0 = r!Γr + (r − 1)!Γr−1

As was explained in the previous section, the fixed curves that are mapped

to pr−1 are precisely the curves obtained by performing the Cut-and-Join

operation to the unique curve Cr. This gives the following Cut-and-Join

relation:21,29

rΓr =

n∑

i=1

[∑

j 6=i

µi + µj

1 + δµi
µj

Γij
J +

µi−1∑

p=1

p(µi − p)

1 + δp
µi−p

(
Γi,p

C1 +
∑

g1+g2=g,ν1∪ν2=ν

Γi,p
C2

)]

(2)

where ΓJ ,ΓC1,ΓC2 denote the contributions from Join-curve, Cut-of-type-

I, and Cut-of-type-II, respectively. Precisely they are defined as follows:

• The unique fixed curve that is mapped to the branching point pr

Γr =
1

|Autµ|
n∏

i=1

µµi

i

µi!

∫

Mg,n

Λ∨
g (1)∏

(1 − µiψi)

• Join curve that is obtained by joining i-th and j-th marked points:

Γij
J =

1

|Autη|

n−1∏

k=1

ηηk

k

ηk!

∫

Mg,n−1

Λ∨
g (1)∏

(1 − ηkψk)
, η ∈ Jij(µ)

• Cut curve that is obtained by pinching around the i-th marked point:

Γi
C1 =

1

|Autν|

n+1∏

k=1

ννk

k

νk!

∫

Mg−1,n+1

Λ∨
g−1(1)∏

(1 − νkψk)
, ν ∈ Ci(µ)

• Cut curve that is obtained by splitting around the i-th marked point:

Γi
C2 =

[ n+1∏

k=1

ννk

k

νk!

] ∏

s=1,2

1

|Aut νs|

∫

Mgs,ns

Λ∨
gs

(1)∏
(1 − νs,kψk)

, ν ∈ Ci(µ)
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where Λ∨
g (u) = ug − λ1u

g−1 + · · ·+ (−1)gλg is the total Chern-class of the

dual Hodge bundle. Applying the scaling limit N → ∞ gives a stratification

for Γr,ΓJ ,ΓC1, and ΓC2 with respect to N , i.e. we have expansions of the

form

[ n∏

i=1

µµi

i

µi!

] ∫

Mg,n

Λ∨
g (1)∏

(1 − µiψi)
=
∑

(ki)

[ n∏

i=1

µµi+ki

i

µi!

] ∫

Mg,n

∏
ψki

i + o(Nd)

where d is the highest N -degree in the expression and (ki) = (k1, · · · , kn)

runs over the sequences of non-negative integers such that
∑n

i=1 ki = 3g −
3+n = dimCMg,n. Note that the top-degree terms consist of Hodge integrals

of only ψ-classes since the total Chern-class of dual Hodge-bundle Λ∨
g (1) =

1− λ1 + · · · ± λg do not involve the scaling parameter N . By applying the

asymptotic formulas (4), we obtain a system of relations between linear

Hodge integrals on Mg,n from (2). The highest N -degree relation turns out

to be a trivial one:

(
n∑

i=1

xi)
∏ x

ki−1/2
i√

2π

∫

Mg,n

∏
ψki

i − (
n∑

i=1

xi)
∏ x

ki−1/2
i√

2π

∫

Mg,n

∏
ψki

i = 0

The second-highest N -degree relation is the following:

0 =

n∑

i=1

[ (2ki + 1)!!

2ki+1ki!
xki

i

∏

j 6=i

x
kj−1/2
j√

2π

∫

Mg,n

∏
ψ

kj

j −

∑

k+l=ki−2

(2k + 1)!!(2l + 1)!!

2ki+1ki!
xki

i

∏

j 6=i

x
kj−1/2
j√

2π

(∫

Mg−1,n+1

ψk
1ψ

l
2

∏
ψ

kj

j

+
∑

g1+g2=g,I∪J={2,··· ,n}

∫

Mg1,|I|+1

ψk
1

∏

j∈I

ψ
kj

j

∫

Mg2,|J|+1

ψl
1

∏

j∈J

ψ
kj

j

)

−
∑

j 6=i

(xi + xj)
ki+kj−1/2

√
2π

∏

l6=i,j

x
kl−1/2
l√

2π

∫

Mg,n−1

ψki+kj−1
∏

ψkl

l

]

(3)

This relation is identical to the recursion relation for the correlation func-

tions of topological gravity (1) which can be seen as follows: Introduce

formal variables si ∈ R>0 and recall the Laplace Transformation:

∫ ∞

0

xk−1/2

√
2π

e−x/2sdx = (2k−1)!! sk+1/2,

∫ ∞

0

xke−x/2sdx = k! (2s)k+1
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After taking the Laplace transformation of (3), we recover the recursion

relation for the correlation functions of topological gravity (1)

〈σ̃n

∏

k∈S

σ̃k〉g =
∑

k∈S

(2k + 1)〈σ̃n+k−1

∏

l6=k

σ̃l〉g +
1

2

∑

a+b=n−2

〈σ̃aσ̃b

∏

l∈S

σ̃l〉g−1

+
1

2

∑

S=X∪Y,a+b=n−2,g1+g2=g

〈σ̃a

∏

k∈X

σ̃k〉g1 〈σ̃b

∏

l∈Y

σ̃l〉g2

Since this recursion relation is equivalent to the Virasoro constraints and the

Witten’s conjecture, this finishes the proof of Witten’s conjecture through

localization technique. As a remark, the system of relations given by the

stratification of (2) may give more identities between linear Hodge-integrals.

For example, the third-highest N -degree relation verifies the following ex-

pression of λ1-class in terms of κ1-class and ψ-classes

12λ1 = κ1 + δ −
∑

ψi.

5. Proof of Mariño-Vafa formula

In this section, we summarize the survey note of the second author31 about

the recent proof of Mariño-Vafa formula.29 Based on the string duality be-

tween open topological string theory on the deformed conifold T ∗S3 and

the closed topological string theory on the resolved conifold, M. Mariño and

C. Vafa33 conjectured a closed formula about the generating series of the

triple Hodge integrals for all genera and any number of marked points in

terms of the Chern-Simons invariants, or equivalently in terms of the repre-

sentations and combinatorics of symmetric groups. The precise statement

is as follows:

The Mariño-Vafa conjecture is an identity between the geometry of the

moduli spaces of stable curves and Chern-Simons knot invariants, or the

combinatorics of the representation theory of symmetric groups. Let us first

introduce the geometric side. For every partition µ = (µ1 ≥ · · ·µl(µ) ≥ 1),

we define the triple Hodge integral to be,

Gg,µ(τ) = A(τ) ·
∫

Mg,l(µ)

Λ∨
g (1)Λ∨

g (−τ − 1)Λ∨
g (τ)

∏l(µ)
i=1 (1 − µiψi)

,
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where the coefficient is given by

A(τ) = −
√
−1

|µ|+l(µ)

|Aut(µ)| [τ(τ + 1)]l(µ)−1

l(µ)∏

i=1

∏µi−1
a=1 (µiτ + a)

(µi − 1)!
.

These expressions arise naturally from localization computations on the

moduli spaces of relative stable maps into P1 with prescribed ramification

type µ at ∞. We now introduce the generating series

Gµ(λ; τ) =
∑

g≥0

λ2g−2+l(µ)Gg,µ(τ).

Introduce formal variables p = (p1, p2, . . . , pn, . . .), and define

pµ = pµ1 · · · pµl(µ)

for any partition µ. These pµj correspond to TrV µj in the notations of string

theorists. The generating series for all genera and all possible marked points

are defined to be

G(λ; τ ; p)• = exp
( ∑

|µ|≥1

Gµ(λ; τ)pµ

)
,

which encode the complete information of the triple Hodge integrals.

Next we introduce the representation theoretical side. Let χµ denote

the character of the irreducible representation of the symmetric group S|µ|,
indexed by µ where |µ| =

∑
j µj . Let C(µ) denote the conjugacy class of

S|µ| indexed by µ. Introduce

Wµ(λ) =
∏

1≤a<b≤l(µ)

sin [(µa − µb + b− a)λ/2]

sin [(b− a)λ/2]
∏l(ν)

i=1

∏µi

v=1 2 sin [(v − i+ l(µ))λ/2]
.

This has an interpretation in terms of quantum dimension in Chern-Simons

knot theory. We define the following generating series

R(λ; τ ; p)• =
∑

|µ|≥0


 ∑

|ν|=|µ|

χν(C(µ))

zµ
e
√
−1(τ+ 1

2 )κνλ/2Vν(λ)


 pµ

where µi are sub-partitions of µ, zµ =
∏

j µj !j
µj , and

κµ = |µ| +
∑

i

(µ2
i − 2iµi)
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for a partition µ which is also standard for representation theory of sym-

metric groups. There is the relation zµ = |Aut(µ)|µ1 · · ·µl(µ). Finally we

can give the precise statement of the Mariño-Vafa conjecture:

Mariño-Vafa conjecture: G(λ; τ ; p)• = R(λ; τ ; p)•

This conjecture was first proved by C.C. Liu, K. Liu, and J. Zhou29 by

showing that both sides have the same initial data, i.e.;

G(λ, 0, p)• = exp
( ∞∑

d=1

pd

2d sin(λd
2 )

)
= R(λ, 0, p)•

and satisfy the following Cut-and-Join relation: for Ω = G•, R•, we have

∂Ω

∂τ
=

√
−1λ

2

∑

i,j≥1

(
ijpi+j

∂2Ω

∂pi∂pj
+ (i+ j)pipj

∂Ω

∂pi+j

)
.

Since this Cut-and-Join relation completely determines Ω for any given ini-

tial condition, we conclude the identity of G• and R• which is the Mariño-

Vafa conjecture.

Now let us explain how the new approach we illustrated in this paper

applies to this case. Let π : Ug,µ → Mg,0(P1, µ) and P : Tg,µ → Mg,0(P1, µ)

be the universal domain curve and the universal target, respectively. There

is an evaluation map F : Ug,µ → Tg,µ and a contraction map π̃ : Tg,µ → P1.

Let Dg,µ ⊂ Ug,µ be the divisor corresponding to the l(µ) marked points.

Define

VD = R1π∗(OUg,µ(−Dg,µ)) and VDd
= R1π∗F̃

∗OP1(−1),

where F̃ = π̃ ◦ F : Ug,µ → P1. The fibers of VD and VDd
at

[
f : (C, x1, . . . , xl(µ)) → P1[m]

]
∈ Mg,0(P

1, µ)

are H1(C,OC(−D)) and H1(C, f̃∗OP1(−1)), respectively, where D =

x1 + . . . + xl(µ), and f̃ = π[m] ◦ f . Note that H0(C,OC(−D)) =

H0(C, f̃∗OP1(−1)) = 0, so VD and VDd
are vector bundles of rank l(µ)+g−1

and d+ g − 1, respectively. The obstruction bundle

V = VD ⊕ VDd

is a vector bundle of rank r = 2g − 2 + d + l(µ) = vdim Mg(P1, µ). We

integrate the equivariant Euler class of V over the relative stable moduli

Mg(P1, µ) to obtain

K•
µ(λ) =

∫

[Mg(P1,µ)]vir

eT (V )
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where K•
µ(λ) is of zero u-degree which depends on µ and λ. On the other

hand, the localization computation gives a relation of the form (2). In this

case, the ’known data’ in (2) turns out to be the double Hurwitz numbers.

Precisely, we reach the following convolution formula between triple Hodge

integrals and double Hurwitz numbers

K•
µ(λ) =

∑

|ν|=|µ|
G•

ν(λ, τ, p)zνΦ•
ν,µ(−iτλ)

where Φ•(λ) is a generating series of double Hurwitz numbers. This convo-

lution formula can be inverted to give the convolution expression of Hodge

integrals28

G•(λ, τ, p) =
∑

|µ|≥0

zµK
•
µ(λ)Φ•

µ(iτλ, p, 1)

It is a direct consequence, from this expression, that G• satisfies the Cut-

and-Join relation since the generating series of double Hurwitz numbers Φ•

also satisfies it, hence finishing the proof of the Mariño-Vafa formula. Let

us end this section with several consequences44 of the Mariño-Vafa formula

obtained by comparing the coefficients of τ in the Taylor expansions of the

two expressions G• and R•: It gives a simple proof of the λg-conjecture
∫

Mg,n

ψk1
1 · · ·ψkn

n λg =

(
2g + n− 3

k1, · · · , kn

)
22g−1 − 1

22g−1
· |B2g|

(2g)!
,

and the following identities for Hodge integrals
∫

Mg

λ3
g−1 =

∫

Mg

λg−2λg−1λg =
1

2(2g − 2)!

|B2g−2|
2g − 2

|B2g |
2g

,

∫

Mg,1

λg−1

1 − ψ1
= bg

2g−1∑

i=1

1

i
− 1

2

∑

g1+g2=g
g1,g2>0

(2g1 − 1)!(2g2 − 1)!

(2g − 1)!
bg1bg2 ,

where B2g are Bernoulli numbers, b0 = 1 and bg = 22g−1−1
22g−1

|B2g|
(2g)! for g > 0.

6. Future Research problems

In this section, we list several open problems to which our new approach

can be applied. Each of them has an equivalent formulation in the form of

recursion relations which has the same structure as that of the Cut-and-Join

relation.
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6.1. Generalized Witten conjecture

Consider a series of integrable hierarchies KdVr, where r = 2, 3, · · · , called

the generalized KdV, or Gelfand-Dickey hierarchies. E.Witten generalized

his original conjecture,42,43 suggesting that for each r there should exist

moduli space and cohomology classes on them whose intersection numbers

assemble into the formal τ -function of the KdVr-hierarchy. Recently its first

proof appeared in the paper by C.Faber, S.Shadrin, and D.Zvonkine8 which

relies on the equivalence of the formal and the geometric Gromov-Witten

potentials under certain conditions. The corresponding moduli spaces of

higher spin curves are constructed and the zero-genus case of the conjec-

ture has been proved.17,18 A brief idea of the construction is as follows:38

Let a1, · · · , an ∈ {0, · · · , r − 1} be integers assigned to the marked points

x1, · · · , xn such that 2g− 2−∑ai is divisible by r. On a smooth curve C,

there are r2g different line bundles T with an identification

T⊗r ' K(−
∑

aixi).

The space of smooth curves endowed with such a line bundle T is de-

noted by M
1/r
g;a1,··· ,an . The compactified space, denoted by M

1/r

g;a1,··· ,an
, is

constructed17 and is called the moduli space of stable r-spin curves. The

construction uses the Jarvis-Vistoli twisted curves, i.e. curves that are them-

selves endowed with an orbifold structure. It is a smooth stack with a finite

projection mapping

p : M
1/r

g;a1,··· ,an
−→ Mg,n.

Its analogue of the Gromov-Witten classes is also constructed17 and is called

a virtual class c
1/r
g,n(a) in H•(M

1/r

g;a1,··· ,an
). In the physics notation, we write

〈σm1,a1 · · ·σmn,an〉g =

∫

M
1/r
g;a1,··· ,an

c1/r
g,n(a)ψm1

1 · · ·ψmn
n .

There is a conjectural recursion relation27 for these intersection numbers:

h+ 1

h
〈σm,1

s∏

l=1

σnl,αl
〉g =

∑

l

(
nl +

αl

h

)
〈σm+nl−1,αl

∏

j 6=l

σnj ,αj 〉g

+
1

2

m∑

n=2

∑

α∈I

[
〈σn−2,ασm−n,h−α

s∏

l=1

σnl,αl
〉g−1

+
∑

S=X∪Y
g=g1+g2

〈σn−2,α

∏

l∈X

σnl,αl
〉g1 〈σm−n,h−α

∏

l∈Y

σnl,αl
〉g2

]
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where h is the dual Coxeter number such that α ∈ I if and only if h−α ∈ I .

The above recursion formula implies the generalized Witten conjecture,

i.e. the generating series of these integrals with the Witten virtual class

c
1/r
g,n(a) satisfies the KdVr-hierarchy where we denote a = (a1, · · · , an).

Note that the above recursion formula has the same structure as that of

the Dijkgraaf-Verlinde-Verlinde recursion relation which implies the original

Witten conjecture. Our approach can be applied to this problem as follows:

We first use the functorial localization formula on the moduli space of stable

r-spin curves M
1/r

g,a (µ,P1) into P1. Combining the natural projection to the

moduli space of relative stable maps Mg(µ,P1) and the branch morphism,

we obtain an equivariant morphism

M
1/r

g,a (µ,P1) −→ Mg(µ,P
1) −→ Pr

The asymptotic analysis technique applied to the resulting cut-and-join

equation will yield a recursion formula generalizing the cut-and-join equa-

tion for Hodge integrals involving the Witten virtual class c
1/r
g,n(a) and the

ψ-classes, which, in turn, should agree with the above conjectural recursion

formula for higher spin intersection numbers.

6.2. Faber’s conjecture on Hodge integrals

C. Faber7 obtained a set of conjectures concerning the tautological Chow

ring R•(Mg). The following identity on Hodge integrals is one of them:

(2g − 3 + n)!

22g−1(2g − 1)!
· 1
∏k

j=1(2ej − 1)!!
= 〈τe1 · · · τek

τ2g〉

−
k∑

j=1

〈τe1 · · · τej−1τej+2g−1τej+1 · · · τek
〉

+
1

2

2g−2∑

j=0

(−1)j〈τ2g−2−jτjτe1 · · · τek
〉

+
1

2

∑

k=IqJ

2g−2∑

j=0

(−1)j〈τj
∏

i∈I

τei〉〈τ2g−2−j

∏

i∈J

τei〉

As a remark, this conjectural identity implies,11 through an application of

the degree 0 Virasoro conjecture for P2, the following λgλg−1-conjecture

[ n∏

i=1

(2ki − 1)!!
] ∫

Mg,n

λgλg−1ψ
k1
1 · · ·ψkn

n = (2g − 3 + n)!
|B2g |

22g−1(2g)!
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where B2g denotes the Bernoulli number. A recent result of K.Liu and

H.Xu32 revealed that the constant term on the LHS is the third summation

term on the RHS. This puts the above conjectural identity into a simpler

equivalent recursion form

〈τe1 · · · τek
τ2g〉 =

k∑

j=1

〈τe1 · · · τej−1τej+2g−1τej+1 · · · τek
〉

− 1

2

∑

k=IqJ

2g−2∑

j=0

(−1)j〈τj
∏

i∈I

τei〉〈τ2g−2−j

∏

i∈J

τei 〉

This recursion formula, in particular, is in the form of the Cut-and-Join

equation where we perform the operation on the distinguished gravitational

descendant term τ2g . The fourth-highest N -degree relation given by the re-

cursion relation obtained in the proof of Witten’s conjecture strongly sug-

gests this conjectural identity. The combinatorial techniques developed in a

recent paper14 may be used to simplify the technical difficulties arising from

this approach. On the other hand, the two-partition Mariño-Vafa formula

was proved through a cut-and-join equation for the involved two partitions,

which has the same type of recursion formula. We can apply the asymptotic

analysis to this two-partition equation to derive more generalized recursion

formulas. Two-partition Mariño-Vafa formula was also proved by applying

localization formula on moduli spaces of relative stable maps into a toric

surface, which in principle indicates that the resulting formula should con-

tain the same information as the Virasoro conjecture for surface. This is

another approach to the above conjectural recursion formula.

6.3. General Virasoro conjecture

Let V be a non-singular projective variety. The general Virasoro conjecture

for V asserts vanishing relations on the total Gromov-Witten potential

Z(V ) = exp
(∑

g≥0

~g−1
∞∑

n=0

1

n!

∑

k1···kna1···an

tan

kn
· · · ta1

k1
〈τk1 (γa1) · · · τkn(γan)〉Vg

)
.

Precisely, there are differential operators Lk
4,5 which annihilates Z(V ), i.e.

LkZ(V ) = 0 for all k ≥ −1. (1)
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It is known that (1) is equivalent to the following recursion relation:10

0 =

k+1∑

i=0

(1

2

−1∑

m=i−k

(−1)m
[
µa +m+

1

2

]k
i
(Ri)ab

(
〈〈τ−m−1,aτm+k−i,b〉〉Vg−1

+
∑

g1+g2=g

〈〈τ−m−1,a〉〉Vg1
〈〈τm+k−i,b〉〉Vg2

)
−
[3 − r

2

]k
i
(Ri)b

0〈〈τk−i+1,b〉〉Vg

+

∞∑

m=0

[
µa +m+

1

2

]k
i
(Ri)b

at
a
m〈〈τm+k−i,b〉〉Vg

)
+
δg,0

2
(Rk+1)abt

a
0t

b
0

+ δk,0δg,1ρ(V )

where Rb
a is the matrix associated to multiplication on the affine superspace

H(V ) by the first Chern class c1(V ) of V , defined by

Rb
aγb = c1(V ) ∪ γa

and ρ(V ) is the characteristic number of V . This conjectural relation has

the same structure as that of the Cut-and-Join relation except that the

first Chern class of V is involved in it. The approach illustrated in this

paper can be applied to this conjecture by considering a general relative

stable moduli Mg((d, µ), V × P1) relative to the divisor V × {∞} and its

natural projection map Mg((d, µ), V ×P1) −→ Mg(µ,P1). Combining with

the branch morphism, we get a equivariant morphism

Mg((d, µ), V × P1;V ×∞) −→ Mg(µ,P
1) −→ Pr

from which we get a general Cut-and-Join type formula involving the Chern

classes of V . The asymptotic analysis method used in the proof of the Wit-

ten conjecture can be applied on this general cut-and-join formula. The

resulting identity will be a quadratic recursion relation involving the first

Chern class of V in agreement with the above conjectural identity. The

main difficulty will be to understand the one-dimensional moduli space of

relative stable maps to V with prescribed contact type at two divisors. Note

that the special genus 0 case of the Virasoro conjecture has been previously

proved. Givental and others12 have announced the proof of the Virasoro

conjecture for projective spaces and the Grassmannian manifolds. Our pro-

posed method is quite different from the previous approaches, and it should

prove the Virasoro conjecture for all genera and for general projective man-

ifolds without any restriction.
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The A − B slice problem is a reformulation of the topological 4−dimensional
surgery conjecture in terms of decompositions of the 4−ball and link homo-
topy. We show that link groups, a recently developed invariant of 4−manifolds,
provide an obstruction for the class of model decompositions, introduced by M.
Freedman and X.-S. Lin. This unifies and extends the previously known partial
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1. Introduction

The surgery conjecture, a core ingredient in the geometric classification

theory of topological 4−manifolds, remains an open problem for a large

class of fundamental groups. The results to date in the subject: the disk

embedding conjecture, and its corollaries – surgery and s-cobordism theo-

rems for good groups1,5,6,11 – show similarities of classification of topological

4−manifolds with the theory in higher dimensions. On the other hand, it

has been conjectured2 that surgery fails for (non-abelian) free fundamental

groups.

The A − B slice problem3 is a reformulation of the surgery conjecture

for free groups which seems most promising in terms of the search for an

obstruction. In this approach one considers smooth codimension zero de-

compositions D4 = Ai ∪ Bi of the 4−ball, extending the standard genus
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one Heegaard decomposition of the 3-sphere. (A precise definition is given

in section 2, also see figure 2.1.) Then the problem is formulated in terms of

the existence of disjoint embeddings of the submanifolds Ai, Bi in D4 with

a prescribed homotopically essential link in S3 = ∂D4 as the boundary

condition. The central case corresponds to the link equal to the Borromean

rings. The problem may be phrased in terms of the existence of a suitably

formulated non-abelian Alexander duality in dimension 4. Recently this ap-

proach has been sharpened and now there is a precise, axiomatic description

of what properties an obstruction, which in this context is an invariant of

decompositions of D4, should satisfy.

The A − B slice formulation of surgery was introduced by Freedman3

and further extensively studied by Freedman-Lin.4 In particular, the latter

paper introduced a family of model decompositions which appear to approx-

imate, in a certain algebraic sense, an arbitrary decomposition D4 = A∪B.

This family of decompositions is defined in section 4. In this paper we use

link groups of 4−manifolds, recently introduced by the author,8 to formu-

late an obstruction for the family of model decompositions:

Theorem 1.1. Let L be the Borromean rings, or more generally any ho-

motopically essential link in S3. Then L is not A − B slice where each

decomposition D4 = Ai ∪ Bi is a model decomposition.

The invariant using link groups formulated in the proof unifies and

generalizes the previously known partial obstructions4,9 in the A−B slice

program. The definitions of link groups and the underlying geometric notion

of Bing cells are given in section 3.

To place this result in the geometric context of link homotopy, it is con-

venient to introduce the notion of a robust 4−manifold. Recall that a link

L in S3 is homotopically trivial12 if its components bound disjoint maps of

disks in D4. L is called homotopically essential otherwise. (The Borromean

rings is a homotopically essential link with trivial linking numbers.) Let

(M,γ) be a pair (4−manifold, embedded curve in ∂M). The pair (M,γ)

is robust if whenever several copies (Mi, γi) are properly disjointly embed-

ded in (D4, S3), the link formed by the curves {γi} in S3 is homotopically

trivial. The following statement is a consequence of the proof of theorem

1.1:

Corollary 1.1. Let D4 = A∪B be a model decomposition. Then precisely

one of the two parts A, B is robust.

It is interesting to note that there exist decompositions where neither
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of the two sides is robust.10 The following question relates this notion to

the A−B slice problem: given a decomposition D4 = A ∪ B, is one of the

given embeddings A ↪→ D4, B ↪→ D4 necessarily robust? (The definition

of a robust embedding e : (M,γ) ↪→ (D4, S3) is analogous to the definition

of a robust pair above, with the additional requirement that each of the

embeddings (Mi, γi) ⊂ (D4, S3) is equivalent to e.)

In a certain sense, one is looking in the A − B slice problem for an

invariant of 4−manifolds which is more flexible than homotopy (so it sat-

isfies a suitable version of Alexander duality), yet it should be more robust

than homology – this is made precise using Milnor’s theory of link homo-

topy. The subtlety of the problem is precisely in the interplay of these two

requirements. Following this imprecise analogy, we show that link groups

provide a step in construction of such a theory.

2. Surgery and the A − B slice problem

The 4−dimensional topological surgery exact sequence (cf [FQ], Chapter

11), as well as the 5−dimensional topological s-cobordism theorem, are

known to hold for a class of good fundamental groups. In the simply-

connected case, this followed from Freedman’s disk embedding theorem1

allowing one to represent hyperbolic pairs in π2(M
4) by embedded spheres.

Currently the class of good groups is known to include the groups of subex-

ponential growth6,11 and it is closed under extensions and direct limits.

There is a specific conjecture for the failure of surgery for free groups:2

Conjecture 2.1. There does not exist a topological 4−manifold M , ho-

motopy equivalent to ∨3S1 and with ∂M homeomorphic to S0(Wh(Bor)),

the zero-framed surgery on the Whitehead double of the Borromean rings.

In fact, this is one of a collection of canonical surgery problems with

free fundamental groups, and solving them is equivalent to the unrestricted

surgery theorem. The A−B slice problem, introduced in ref. 3, is a refor-

mulation of the surgery conjecture, and it may be roughly summarized as

follows. Assuming on the contrary that the manifold M in the conjecture

above exists, consider the compactification of the universal cover M̃ , which

is homeomorphic to the 4−ball.3 The group of covering transformations

(the free group on three generators) acts on D4 with a prescribed action

on the boundary, and roughly speaking the A − B slice problem is a pro-

gram for finding an obstruction to the existence of such actions. Recall the

definition of an A−B slice link.3,4
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Definition 2.1. A decomposition of D4 is a pair of smooth compact codi-

mension 0 submanifolds with boundary A,B ⊂ D4, satisfying conditions

(1) − (3) below. (Figure 2.1 gives a 2−dimensional example of a decompo-

sition.) Denote

∂+A = ∂A∩∂D4, ∂+B = ∂B∩∂D4, ∂A = ∂+A∪∂−A, ∂B = ∂+B∪∂−B.

(1) A ∪ B = D4,

(2) A ∩ B = ∂−A = ∂−B,
(3) S3 = ∂+A ∪ ∂+B is the standard genus 1 Heegaard decomposition of

S3.

α

α

A

β βB

Fig. 2.1. A 2−dimensional analogue of a decomposition (A, α), (B, β): D2 = A ∪ B, A

is shaded; (α, β) are linked 0−spheres in ∂D2.

Definition 2.2. Given an n−component link L = (l1, . . . , ln) ⊂ S3,

let D(L) = (l1, l
′
1, . . . , ln, l

′
n) denote the 2n−component link obtained

by adding an untwisted parallel copy L′ to L. The link L is A − B

slice if there exist decompositions (Ai, Bi), i = 1, . . . , n of D4 and self-

homeomorphisms αi, βi of D4, i = 1, . . . , n such that all sets in the collec-

tion α1A1, . . . , αnAn, β1B1, . . . , βnBn are disjoint and satisfy the boundary

data: αi(∂
+Ai) is a tubular neighborhood of li and βi(∂

+Bi) is a tubular

neighborhood of l′i, for each i.

The surgery conjecture holds for all groups if and only if the Borromean

Rings (and the rest of the links in the canonical family of links) are A−B

slice.3 Conjecture 2.1 above can therefore be reformulated as saying that

the Borromean Rings are not A−B slice.



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

224 V.-S. Krushkal

As an elementary example, note that if a link L is A−B slice where for

each i the decomposition D4 = Ai∪Bi consists of Ai = 2−handle D2×D2,

and Bi = the collar on ∂+Bi, then L is actually slice.

Of course the Borromean Rings is not a slice (or homotopically trivial)

link. However to show that a link is not A−B slice, one needs to eliminate

all choices for decompositions (Ai, Bi).

3. Link groups and Bing cells

In this section we recall the definition of Bing cells and link groups of

4−manifolds, denoted λ(M4), introduced in Ref. 8, in order to formulate

the invariant Iλ used in the proof of theorem 1.1. The definition is inductive.

Definition 3.1. A model Bing cell of height 1 is a smooth 4-manifold

C with boundary and with a specified attaching curve γ ⊂ ∂C, defined

as follows. Consider a planar surface P with k + 1 boundary components

γ, α1, . . . , αk (k ≥ 0), and set P = P ×D2. Let L1, . . . , Lk be a collection of

links, Li ⊂ αi×D2, i = 1, . . . , k. Here for each i, Li is the (possibly iterated)

Bing double of the core αi. Then C is obtained from P by attaching zero-

framed 2-handles along the components of L1 ∪ . . . ∪ Lk.

The surface S (and its thickening S) will be referred to at the body of

C, and the 2-handles are the handles of C.

A model Bing cell C of height h is obtained from a model Bing cell of

height h − 1 by replacing its handles with Bing cells of height one. The

body of C consists of all (thickenings of) its surface stages, except for the

handles.

Figures 3.1, 3.2 give an example of a Bing cell of height 1: a schematic

picture and a precise description in terms of a Kirby diagram. Here P is a

pair of pants, and each link Li is the Bing double of the core of the solid

torus αi ×D2, i = 1, 2.

Remark 3.1. To avoid a technical discussion, the definition presented here

involves only the links L which are Bing doubles. To reflect this difference,

we reserve for these objects the term Bing cells rather than the more general

flexible cells discussed in Ref. 8. The definition in Ref. 8 involves more

general homotopically essential links, however just the Bing doubles suffice

for the applications in this paper.

Bing cells in a 4−manifold M are defined as maps of model Bing cells in

M , subject to certain crucial disjointness requirements. (In particular, this
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γ

h1

C

h2
h3

h4

Fig. 3.1. Example of a model Bing cell of height 1: a schematic picture

γ

0

0 0

0

r r

Fig. 3.2. A Kirby diagram of the model Bing cell in Figure 2.1

will be important for the discussion of model decompositions in section 4.)

Roughly speaking, objects attached to different components of any given

link Li in the definition are required to be disjoint in M . To formulate this

condition rigorously, recall the definition of the tree associated to a given

Bing cell.

3.1. The associated tree

Given a Bing cell C, define the tree TC inductively: suppose C has height 1.

Then assign to the body surface P (say with k + 1 boundary components)

of C the cone TP on k+1 points. Consider the vertex corresponding to the

attaching circle γ of C as the root of TP , and the other k vertices as the

leaves of TP . For each handle of C attach an edge to the corresponding leaf
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TC

Fig. 3.3. The tree TC associated to the Bing cell C in figures 3.1, 3.2.

of TP . The leaves of the resulting tree TC are in 1− 1 correspondence with

the handles of C.

Suppose C has height h > 1, then it is obtained from a Bing cell C ′ of

height h− 1 by replacing the handles of C ′ with Bing cells {Ci} of height

1. Assuming inductively that TC′ is defined, one gets TC by replacing the

edges of TC′ associated to the handles of C ′ with the trees corresponding

to {Ci}. Figure 3.3 shows the tree associated to the Bing cell in figure 3.1.

Divide the vertices of TC into two types: the vertices (“cone points”)

corresponding to body (planar) surfaces are unmarked; the rest of the ver-

tices are marked. Therefore the valence of an unmarked vertex equals the

number of boundary components of the corresponding planar surface. The

marked vertices are in 1 − 1 correspondence with the links L defining C,

and the valence of a marked vertex is the number of components of L plus

1. It is convenient to consider the 1−valent vertices of TC : its root and

leaves (corresponding to the handles of C) as unmarked. This terminology

is useful in defining the maps of Bing cells below. The height of a Bing cell

C may be read off from TC as the maximal number of marked vertices along

a geodesic joining a leaf of TC to its root, where the maximum is taken over

the leaves of TC .

Definition 3.2. A Bing cell is a model Bing cell with a finite number of

self-plumbings and plumbings among the handles and body surfaces of C,

subject to the following disjointness requirement:

• Consider two surfaces A,B (they could be handles or body stages) of

C. Let a, b be the corresponding vertices in TC . (For body surfaces this is

the corresponding unmarked cone point, for handles this is the associated

leaf.) Consider the geodesic joining a, b in TC , and look at its vertex c closest

to the root of TC – in other words, c is the first common ancestor of a, b. If

c is a marked vertex then A,B are required to be disjoint.
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In particular, self-plumbings of any handle and body surface are allowed.

In the example shown in figures 3.1, 3.2 above, the handle h1 is required

to be disjoint from h2, h3 is disjoint from h4; all other intersections are

allowed.

A Bing cell in a 4-manifold M is an embedding of a Bing cell into M .

We say that its image is a realization of C in M , and abusing the notation

we denote its image in M also by C.

The main technical result of Ref. 8 shows how Bing cells fit in the context

of Milnor’s theory of link homotopy. This theorem is used in the analysis

of the invariant Iλ below.

Theorem 3.1. If the components of a link L ⊂ S3 = ∂D4 bound disjoint

Bing cells in D4 then L is homotopically trivial.

Recall12 that a link L in S3 is homotopically trivial if L is homotopic to

the unlink, so that different components stay disjoint during the homotopy.

The theorem above builds on a classical result that if the components of

L bound disjoint maps of disks in D4 then L is homotopically trivial. The

proof of theorem 3.1 is substantially more involved than the argument in

the classical case. This is due to the topology of Bing cells which forces

additional relations in the fundamental group of the complement. The main

new technical ingredients in the proof are the generalized Milnor group

and an obstruction which is well-defined in the presence of this additional

indeterminacy.8

The link groups λn(M) are defined as {based loops in a 4−manifold

M} modulo loops bounding Bing cells of height n. These groups fit in a

sequence of surjections

π1(M) −→ λ1(M) −→ λ2(M) −→ . . .

The groups λn(M) are topological but not in general homotopy invari-

ants of M . In particular, they are not correlated with the first homology

H1(M), or more generally with the quotients of π1(M) by the terms of its

lower central or derived series. Define λ(M) to be the direct limit of λn(M).

Given a pair (M,γ) where M is a 4−manifold and γ is a specified curve in

∂M , consider the invariant Iλ(M,γ) ∈ {0, 1}:

Iλ(M,γ) = 1 if γ = 1 ∈ λ(M),

set Iλ(M,γ) = 0 otherwise. When the choice of the attaching circle γ of M

is clear, we will abbreviate the notation to Iλ(M).
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Remark 3.2. For the interested reader we point out the “geometric du-

ality” between Bing cells and gropes. Recall the definition:5 A grope is

a special pair (2-complex, circle). A grope has a class k = 1, 2, . . . ,∞.

For k = 2 a grope is a compact oriented surface Σ with a single bound-

ary component. For k > 2 a k-grope is defined inductively as follow: Let

{αi, βi, i = 1, . . . , genus} be a standard symplectic basis of circles for Σ. For

any positive integers pi, qi with pi +qi ≥ k and pi0 +qi0 = k for at least one

index i0, a k-grope is formed by gluing pi-gropes to each αi and qi-gropes

to each βi. A grope has a standard, “untwisted” 4−dimensional thickening,

obtained by embedding it into R3, times I .

Consider a more general collection of 2-complexes, where at each stage

one is allowed to attach several parallel copies of surfaces. Then one checks

using Kirby calculus that model Bing cells are precisely complements in

D4 of standard embeddings of such generalized gropes. This observation is

helpful in the analysis of the A − B slice problem, where gropes play an

important role, see section 4.

4. An obstruction for model decompositions.

In this section we show that the invariant Iλ defined above provides an

obstruction for the family of model decompositions. We start the proof

of theorem 1.1 by constructing the relevant decompositions of D4. The

simplest decomposition D4 = A∪B where A is the 2−handle D2 ×D2 and

B is just the collar on its attaching curve, was discussed in the introduction.

Now consider the genus one surface S with a single boundary component α,

and set A1 = S ×D2. Moreover, one has to specify its embedding into D4

to determine the complementary side, B. Consider the standard embedding

(take an embedding of the surface in S3, push it into the 4−ball and take a

regular neighborhood.) Note that given any decomposition, by Alexander

duality the attaching curve of exactly one of the two sides vanishes in

it homologically, at least rationally. Therefore the decomposition D4 =

A1 ∪ B1 may be viewed as the first level of an “algebraic approximation”

to an arbitrary decomposition. The general model decomposition of height

1 is analogous to the decomposition D4 = A1 ∪B1, except that the surface

S may have a higher genus.

Prop 4.1. Let A1 = S × D2, where S is the genus one surface with a

single boundary component α. Consider the standard embedding (A1, α ×
{0}) ⊂ (D4, S3). Then the complement B1 is obtained from the collar on its

attaching curve, S1×D2 × I , by attaching a pair of zero-framed 2−handles
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to the Bing double of the core of the solid torus S1 ×D2 ×{1}, figures 4.1,

4.2.

A1

α1
α2

α β

H1
H2

B1

Fig. 4.1. A model decomposition D4 = A1 ∪B1 of height 1: a schematic (spine) picture
(figure 5) and a precise description in terms of Kirby diagrams, figure 4.6.

A1 B1

0

α 0
0

β

Fig. 4.2.

The proof is a standard exercise in Kirby calculus, see for example

Ref. 4. A precise description of these 4−manifolds is given in terms of

Kirby diagrams in figure 4.2. Rather than considering handle diagrams

in the 3−sphere, it is convenient to draw them in the solid torus, so the

4−manifolds are obtained from S1 × D2 × I by attaching the 1− and

2−handles as shown in the diagrams. To make sense of the “zero fram-

ing” of curves which are not null-homologous in the solid torus, recall that

the solid torus is embedded into S3 = ∂D4 as the attaching region of a

4−manifold, and the 2−handle framings are defined using this embedding.

This example illustrates the general principle that (in all examples con-

sidered in this paper) the 1−handles of each side are in one-to-one corre-

spondence with the 2−handles of the complement. This is true since the
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embeddings in D4 considered here are all standard, and in particular each

2−handle is unknotted in D4. The statement follows from the fact that

1−handles may be viewed as standard 2−handles removed from a collar, a

standard technique in Kirby calculus (see Chapter 1 in Ref. 7.) Moreover, in

each of our examples the attaching curve α on the A−side bounds a surface

in A, so it has a zero framed 2−handle attached to the core of the solid

torus. On the 3−manifold level, the zero surgery on this core transforms the

solid torus corresponding to A into the solid torus corresponding to B. The

Kirby diagram for B is obtained by taking the diagram for A, performing

the surgery as above, and replacing all zeroes with dots, and conversely all

dots with zeroes. (Note that the 2−handles in all our examples are zero-

framed.)

Note that a distinguished pair of curves α1, α2, forming a symplectic

basis in the surface S, is determined as the meridians (linking circles) to

the cores of the 2−handles H1, H2 of B1 in D4. In other words, α1, α2 are

fibers of the circle normal bundles over the cores of H1, H2 in D4.

A2 B2

Fig. 4.3. A model decomposition D4 = A2 ∪ B2 of height 2.

An important observation4 is that this construction may be iterated:

consider the 2−handle H1 in place of the original 4−ball. The pair of curves

(α1, the attaching circle β1 of H1) form the Hopf link in the boundary of

H1. As discussed in the beginning of this section, it is natural to consider

two possibilities: either α1 or β1 bounds a surface in H1. For simplicity of

exposition, we again assume at this point that this is a surface of genus

one. The first possibility (α1 bounds) is shown in figure 4.3: note that in

this decomposition one side, A2, is a grope of height 3 (discussed in remark

3.2) and its complement B2 is an example of a Bing cell.

Consider the second possibility: β1 bounds a surface in H1. As dis-

cussed above, its complement in H1 is given by two zero-framed 2−handles
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attached to the Bing double of α1. Assembling this data, consider the new

decomposition D4 = A′
2 ∪ B′

2, figures 4.4, 4.5. As above, the diagrams are

drawn in solid tori (complements in S3 of unknotted circles drawn dashed in

the figures.) The decompositions D4 = A2∪B2, D
4 = A′

2∪B′
2 are examples

of model decompositions of height 2. To get a general decomposition of this

type, one also considers the alternative as above for the pair of curves α2,

β2 in the 4−ball H2. For simplicity of illustration, in the examples shown

in figures 4.3 - 4.5 the curve β2 bounds a surface of genus zero. One gets

models of an arbitrary height by an iterated application of the construction

above, and in general one considers (orientable) surfaces of an arbitrary

genus at each stage. See figure 4.6 for examples of model decompositions of

height 3.

A′
2

α

α

0

0 0

Fig. 4.4.

B′
2

β

β

0 0

Fig. 4.5. Another example of a model decomposition D4 = A′
2 ∪ B′

2 of height 2.

It follows from theorem 3.1 that the following lemma implies our main

result, theorem 1.1:
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Lemma 4.1. Let D4 = A ∪ B be a model decomposition. Then

Iλ(A,α) + Iλ(B, β) = 1.

A3 B3

A′
3 B′

3

Fig. 4.6. Examples of model decompositions D4 = A3 ∪B3, D4 = A′
3 ∪B′

3 of height 3.

Indeed, suppose a link L = (l1, . . . , ln) is A−B slice where each decom-

position D4 = Ai ∪ Bi, i = 1, . . . , n is a model decomposition. According

to lemma 4.1, the invariant Iλ of precisely one part of the decomposition

equals 1. For each i, denote Ci = Ai if Iλ(Ai) = 1 and Ci = Bi otherwise.

Let γi denote the attaching curve of Ci. It follows from the definition of Iλ
that γi bounds a Bing cell in Ci. Since the collections {αi}, {βi} form the

link L and its parallel copy, the collection of curves (γ1, . . . , γn) is isotopic

to L. This contradicts theorem 3.1 since L is homotopically essential. This

concludes the proof of theorem 1.1, assuming lemma 4.1.

Proof of lemma 4.1. It suffices to prove that given a model decomposition

D4 = A∪B, either α = 1 ∈ λ(A) or β = 1 ∈ λ(B). Then theorem 3.1 implies

that precisely one of these two possibilities holds. The proof of the statement

above is inductive. Given a model decomposition of height 1 (figure 4.1),

observe that one of the two parts of the decomposition - the handlebody B1

in the example in figure 4.1 - is a model Bing cell of height 1. (In this case the

planar surface C in definition 3.1 is the annulus.) Therefore β = 1 ∈ λ(B1).
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In the case that A1 is a surface of genus g > 1, the handlebody description

of B1 consists of first taking g parallel copies of the core curve of the solid

torus, Bing doubling them and then attaching zero-framed 2−handles to

the resulting link. One observes that the attaching curve β still bounds a

model Bing cell of height 1 in this handlebody, indeed there are g choices

of Bing cells bounded by β.

Suppose lemma is proved for model decompositions of height ≤ n, and

let D4 = A ∪ B be a model decomposition of height n + 1. The attaching

curve of either A or B is trivial in its first homology group. To be specific,

assume α = 0 ∈ H1(A; Z). First assume the surface Σ bounded by α has

genus 1. Then A is obtained by attaching models A′, A′′ of height ≤ n

to a symplectic basis of curves α1, α2 of Σ, figure 4.7. Similarly, using the

notation of figure 4.1, B is obtained from the model B1 of height 1 by

replacing its 2−handles H1, H2 by two models B′, B′′ of height ≤ n. Here

D4 = A′ ∪ B′, D4 = A′′ ∪ B′′ are two decompositions for which lemma

holds according to the inductive assumption. Therefore Iλ(A′) + Iλ(B′) =

Iλ(A′′) + Iλ(B′′) = 1. Consider two cases:

Case 1: Iλ(B′) = Iλ(B′′) = 1

Case 2: At least one of Iλ(A′), Iλ(A′′) equals 1.

A α1

α2

α

A′
A′′

Σ

β

B′ B′′

B

Fig. 4.7. Proof of lemma 4.1: the inductive step.

We claim that in the first case Iλ(B) = 1 and in the second case Iλ(A) =

1. Consider case 1. By assumption, the attaching curve β ′ of B′ bounds a

Bing cell C ′ in B′, and similarly the attaching curve β′′ bounds a Bing

cell C ′′ in B′′. Consider the handlebody C obtained from S1 ×D2 × I by

attaching C ′, C ′′ to the Bing double of the core of the solid torus. The

associated tree TC is illustrated on the left in figure 4.8. (Note that the

trees TC′ , TC′′ join in a marked vertex.) Since B′ and B′′ are disjoint, there

are no C ′ −C ′′ intersections. (Note that such intersections are not allowed
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in the definition 3.2 of a Bing cell.) Therefore the attaching curve β bounds

a Bing cell in B, and Iλ(B, β) = 1.

TC

TC′ TC′′

TC

TC′ T
C

′

Fig. 4.8.

Consider the second case. Without loss of generality assume Iλ(A′) = 1,

so α1 bounds a Bing cell C ′ in A′. Surger the first stage surface Σ along α1,

the result is a pair of pants whose boundary consists of α and two copies

of α1. Consider two copies of C ′ (denote them by C ′ and C
′
) and perturb

them so there are only finitely many intersections between surfaces in C ′

and surfaces in C
′
. Consider the handlebody C assembled from the (pair

of pants)×D2 with C ′, C
′

attached to it. The tree TC associated to C is

shown on the right in figure 4.8; observe that the trees TC′ , TC
′ join in an

unmarked vertex. Note that all C ′−C ′
intersections are of the type allowed

in definition 3.2, therefore α bounds a Bing cell in A, and Iλ(A,α) = 1.

In the case when the surface Σ has genus g > 1 the proof is analogous to

the genus one case discussed above. Specifically, A is obtained by attaching

models A′
i, A

′′
i , i = 1, . . . , g to a symplectic basis of curves in Σ. The

complements are denoted B′
i, B

′′
i . One observes that if there exists 1 ≤ i ≤ g

such that Iλ(B′
i) = Iλ(B′′

i ) = 1, then Iλ(B) = 1. On the other hand, if for

each i either Iλ(A′
i) or Iλ(A′′

i ) equals 1, then Iλ(A) = 1. This concludes the

proof of lemma 4.1 and of theorem 1.1. 2

Remark 4.1. In the example of the decomposition D4 = A′
2∪B′

2 in figures

4.4, 4.5 the proof above shows that Iλ(A′
2, α) = 1. One may find an explicit

construction of a Bing cell bounded by α in A′
2 in the proof of [9, Lemma

7.3].
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Dedicated to the memory of Professor Xiao-Song Lin

In this paper, we construct a knot invariant with SL(2, C) representations by
using the fundamental L2–representation of the fundamental group of a knot
complement, which may be thought of as an twisted L2-Alexander(–Conway)
invariant of the knot in S3. Both L2–Alexander and L2-Alexander-Conway
invariants define functions from the representation space of the knot group to
nonnegative real numbers, and descend to functions from the SL(2, C) char-
acter variety of the knot group. We also show that the twisted L2-Alexander
invariant is a L2-Reidemeister torsion twisted by the SL(2, C) representation.
The L2-Alexander (and L2-Alexander-Conway) invariant twisted by GL(n, C)
representations of the knot group is given.

1. Introduction

This is a sequel that continues the study of the L2-Alexander(-Conway)

invariant defined by the authors in,LZ,LZ2 where we gave a C∗-parameterized

L2-invariant of knots from abelian representation tensoring with infinite

dimensional representations of the knot group. As we mentioned earlier,

such L2-invariants with parameters and their twisted versions would play a

role in the study of knots. It is natural to develop the L2-Alexander-Conway

invariant of knots with parameters through finite dimensional (non-abelian)

∗Partially supported by MOEC and the 973 project.
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representation tensoring with infinite dimensional representations of the

knot group, especially through SL(2,C)-representations of hyperbolic knot

groups.

In,LZ,LZ2 we mainly concentrated on the most natural one which is as-

sociated with the universal covering of the knot complement and the C∗

representations of the first homology group of the knot complement. It ex-

tends the one constructed by LückLu2 who considers the case where the

above C∗ representation is the trivial representation of the first homology

group of the knot complement. We call such an invariant the L2-Alexander(-

Conway) invariant.

GukovGu proposed a complex SL(2,C) version of Witten’s SU(2) topo-

logical quantum field theory, and generalized the volume conjecture to C∗-
parameterized version with parameter lying on the zero locus of the A-

polynomial from the SL(2,C) character variety of the knot in S3. In,GuMu

Gukov and Murakami showed that the difference of their conjectures (inGu

andMu respectively) comes from the different choices of polarization (differ-

ent choices of the SL(2,C) representations of the knot group). The work of

the first author and WangLWa shows that by focusing only on the regulator

we can have a different generalized volume conjecture from that of Gukov

(Gu) from the motivic point of view. In both cases, the character variety

of the hyperbolic knot plays an essential role. In this paper, we construct

the twisted L2-invariant with parameter through a tensor of an infinite

dimensional representation with a SL(2,C) representations (a character).

This extension fits naturally into the study of volume conjecture from the

character variety point of view. In particular, we show that our twisted

L2-Alexander invariant is a twisted L2-Reidemeister torsion of the knot

complement. The essential ingredient for twisted SL(2,C) L2-invariants is

the invertibility problem we solved in section 3. Hence it is natural to give

the complete L2-invariant twisted by GL(n,C) representations.

This paper is organized as follows. In Section 2, recall the basic proper-

ties of the Fuglede-Kadison determinant for morphisms between free Hilbert

modules over a group von Neumann algebra. In Section 3, for simplicity

we construct the twisted L2-Alexander(-Conway) invariant, with SL(2,C)-

parameters, through the Wirtinger presentations of a knot. In Section 4,

we interpret the L2-Alexander(-Conway) invariant constructed in Section 3

through the L2-Reidemeister torsion of the knot complement with a twisted

SL(2,C) flat bundle. In Section 5, we extend the L2-Alexander invariant

from the SL(2,C) representation to its character. In Section 6, we show

how to define the twisted L2-Alexander(-Conway) invariant with any gen-
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eral GL(n,C)-representation parameters.

Acknowledgments Part of the work was done while the first author was

visiting Chern Institute of Mathematics, Nankai Univeristy, he would like

to thank Chern Institute for hospitality. The authors would like to thank

Xiao-Song Lin for his interest in the earlier stage of this research. And his

untimely death left us with a profound loss.

2. Group von Neumann algebra and Fuglede-Kadison

determinant

In this section, we recall the definition and basic properties of the Fuglede-

Kadison determinant, which will be used in the next section in our definition

of the L2-Alexander invariant. The basic reference is the comprehensive

book of Lück.Lu1

Let Γ be a finitely generated discrete group. We assume that Γ is an

infinite group.

Let l2(Γ) be the standard Hilbert space of squared summable formal

sums over Γ with complex coefficients. Then every element in l2(Γ) can be

written as

a =
∑

γ∈Γ

aγγ, aγ ∈ C, with
∑

γ∈Γ

|aγ |2 < +∞.

If a =
∑

γ∈Γ aγγ, b =
∑

γ∈Γ bγγ are two elements in l2(Γ), their inner

product is given by

〈a, b〉 =
∑

γ∈Γ

aγbγ . (1)

The left multiplication defines a natural unitary action of Γ on l2(Γ).

The group von Neumann algebra N(Γ) is the algebra of Γ-equivariant

bounded linear operators from l2(Γ) to l2(Γ). The von Neumann trace on

N(Γ) is defined by

Trτ : N(Γ) → C, f 7→ 〈f(e), e〉, (2)

where e ∈ Γ ⊂ l2(Γ) is the unit element.

The right multiplication of Γ induces a natural isometric Γ–action of

l2(Γ) on l2(Γ). Hence for any γ ∈ Γ, one can consider Γ ⊂ N(Γ). Moreover,

for any γ ∈ Γ ⊂ N(Γ),

Trτ [γ] = 1 if γ = e; Trτ [γ] = 0 if γ 6= e. (3)
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For any positive integer n, set

l2(Γ)[n] = l2(Γ) ⊕ · · · ⊕ l2(Γ)︸ ︷︷ ︸
n

.

We call it a free N(Γ)-Hilbert module of rank n. The action of Γ on l2(Γ)

(through left multiplications) induces a canonical action of Γ on l2(Γ)[n].

A morphism between two free N(Γ)-Hilbert modules is a Γ-equivariant

bounded linear map between them.

Let f : l2(Γ)[n] → l2(Γ)[n] be such a morphism. Let ei, i = 1, · · · , n, be

the unit element in the i-th copy of l2(Γ) in l2(Γ)[n]. Then we can extend

the von Neumann trace in (2) to define

Trτ [f ] =
n∑

i=1

〈f(ei), ei〉. (4)

The Fuglede-Kadison determinant Detτ (f) of f can be defined as fol-

lows:

(i) If f is invertible and f∗ is the adjoint of f , then define (cf. [Lu1,

Lemma 3.15 (2)])

Detτ (f) = exp

(
1

2
Trτ [log (f∗f)]

)
; (5)

(ii) If f is injective, then define (cf. [Lu1, Lemma 3.15 (4), (5)])

Detτ (f) = lim
ε→0+

√
Detτ (f∗f + ε) =

√
Detτ (f∗f). (6)

If f is injective and Detτ (f) 6= 0, then we say that f is of determinant

class.

(iii) If both f, g : l2(Γ)[n] → l2(Γ)[n] are injective, then g ◦ f is also

injective. Moreover (cf. [Lu1, Theorem 3.14 (1)]),a

Detτ (g ◦ f) = Detτ (f) · Detτ (g). (7)

(iv) If f1 : l2(Γ)[n] → l2(Γ)[n], f2 : l2(Γ)[m] → l2(Γ)[m] and f3 :

l2(Γ)[m] → l2(Γ)[n] be three morphisms such that f1 and f2 are injec-

tive. Then

(
f1 0

f3 f2

)
: l2(Γ)[n+m] → l2(Γ)[n+m] is also injective. Moreover

aIndeed, in [Lu1, Theorem 3.14 (1)], it requires that f has dense image. Note that in
finite von Neumann algebras the properties of an bounded operator to be injective and
to have dense image are equivalent (seeDIX).
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(cf. [Lu1, Theorem 3.14 (2)]),b

Detτ

(
f1 0

f3 f2

)
= Detτ (f1) · Detτ (f2). (8)

(v) Let f : l2(Γ)[n] → l2(Γ)[n] be an invertible morphism. Then there

exists a C1 path fu, u ∈ [0, 1], of invertible morphisms such that f0 = f ,

f1 = Id. One then has (cf. [CFM, Theorem 1.10])

log (Detτ (f)) = −Re

(∫ 1

0

Trτ

[
f−1

u

dfu

du

]
du

)
. (9)

3. Twisted SL(2, C) L2-Alexander invariant of a knot

Let K ⊂ S3 be a knot. Let Γ = π1(S
3 \K) denote the knot group. Let

P (Γ) = 〈x1, · · · , xk|r1, · · · , rk−1〉 (1)

be a Wirtinger presentation of Γ.

Let Fk = 〈x1, · · · , xk〉 denote the free group of rank k.

Let φ : Fk → Γ denote the canonical surjective homomorphism associ-

ated to (3.9). Then it induces a ring homomorphism

φ̃ : Z[Fk ] → Z[Γ]. (2)

Let β be a SL(2,C) representation of the knot group Γ

β : Γ → SL(2,C). (3)

Then β(x1), β(x2), · · · , β(xk) ∈ SL(2,C) satisfy

β(r1(x1, · · · , xk)) = Id2×2, · · · , β(rk−1(x1, · · · , xk)) = Id2×2. (4)

Let GL(l2(Γ)) denote the set of invertible elements in N(Γ). Let

ρΓ : Γ → GL(l2(Γ)) (5)

denote the fundamental representation of Γ, which is given by the right

multiplication of the elements in Γ. We denote the associated ring homo-

morphism of the integral ring Z(Γ) to N(Γ) by

ρ̃Γ : Z[Γ] → N(Γ). (6)

Let ρΓ ⊗ β be the tensor product representation of ρΓ and β. Hence for

any γ ∈ Γ we have ρΓ(γ)⊗β(γ) : l2(Γ)⊗C2 → l2(Γ)⊗C2. Let β(γ) : C2 →

bWe here replace the condition that f1 has dense image to that f1 is injective, which is
possible as (7) now holds for f injective. Compare with the proof in [Lu1, page 135].
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C2 be a SL(2,C) matrix and C2 be the vector space with an ordered basis

{e1, e2}. Hence β(γ)(e1) = a(γ)e1 + b(γ)e2, β(γ) = c(γ)e1 + d(γ)e2 has its

matrix form β(γ) =

(
a(γ) c(γ)

b(γ) d(γ)

)
∈ SL(2,C) with a(γ)d(γ)−b(γ)c(γ) = 1.

Let us identify

l2(Γ) ⊗ C2 ∼= l2(Γ)⊗2 ∼= l2(Γ) ⊗ e1 ⊕ l2(Γ) ⊗ e2. (7)

Now the tensor product representation has the following

ρΓ⊗β(γ)(a⊗e1) = ρΓ(γ)(a)⊗β(γ)(e1) = a(γ)ρΓ(γ)(a)⊗e1+b(γ)ρΓ(γ)(a)⊗e2;

ρΓ⊗β(γ)(a⊗e2) = ρΓ(γ)(a)⊗β(γ)(e2) = c(γ)ρΓ(γ)(a)⊗e1+d(γ)ρΓ(γ)(a)⊗e2.
Hence the tensor product representation can be identified with the mor-

phism from l2(Γ)⊗2 = l2(Γ) ⊗ e1 ⊕ l2(Γ) ⊗ e2 to l2(Γ) ⊗ e1 ⊕ l2(Γ) ⊗ e2 as

the following.

ρΓ ⊗ β(γ) =

(
a(γ)ρΓ(γ) c(γ)ρΓ(γ)

b(γ)ρΓ(γ) d(γ)ρΓ(γ)

)

=

(
ρΓ(γ) 0

0 ρΓ(γ)

)
·
(
a(γ) c(γ)

b(γ) d(γ)

)

= (ρΓ(γ)Id2×2) · β(γ). (8)

Let β̃ : Z[Γ] → M2×2(C) be the induced ring homomorphism from the

SL(2,C) representation, where M2×2(C) is the 2×2 matrices. The induced

ring homomorphism of the integral group rings for the tensor product rep-

resentation is given by

ρ̃Γ ⊗ β : Z[Γ] → N(Γ) ⊗M2×2(C). (9)

Let the composition of the ring homomorphism in (3.10) with the tensor

product of ρΓ and the homomorphism in (9) be denoted by

Ψ = (ρ̃Γ ⊗ β̃) ◦ φ̃ : Z[Fk ] → N(Γ) ⊗M2×2(C). (10)

Consider the morphism

AρΓ⊗β : l2(Γ)⊗2 ⊕ · · · ⊕ l2(Γ)⊗2

︸ ︷︷ ︸
k−1

→ l2(Γ)⊗2 ⊕ · · · ⊕ l2(Γ)⊗2

︸ ︷︷ ︸
k

(11)

which when written as a (k − 1) × k-matrix, the (i, j)-component is given

by

AρΓ⊗β,(i,j) = Ψ

(
∂ri
∂xj

)
∈ N(Γ) ⊗M2×2(C), (12)
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where ∂ri

∂xj
is the standard Fox derivative and l2(Γ)⊗2 is identified in (7).

We call AρΓ⊗β the SL(2,C) twisted L2-Alexander matrix of the pre-

sentation P (Γ) associated to the fundamental representation ρΓ and the

SL(2,C) representation β.

For any 1 ≤ j ≤ k, let

Aj
ρΓ⊗β : l2(Γ)⊗2 ⊕ · · · ⊕ l2(Γ)⊗2

︸ ︷︷ ︸
k−1

→ l2(Γ)⊗2 ⊕ · · · ⊕ l2(Γ)⊗2

︸ ︷︷ ︸
k−1

(13)

denote the morphism obtained from AρΓ⊗β by removing the j-th column

from its (k − 1) × k matrix form.

The following result can be thought of as an L2-analogue of [W, Lemma

2 and Lemma 3] or an extension of [LZ, Lemma 3.1].

Lemma 3.1. (i) For any 1 ≤ j ≤ k, Ψ(xj − 1) ∈ N(Γ) is injective and has

dense image. (ii) If one of the Aj
ρΓ⊗β’s, 1 ≤ j ≤ k, is injective, then every

Aj
ρΓ⊗β, 1 ≤ j ≤ k, is injective. Moreover, in this case, for any 1 ≤ j < j ′ ≤

k, one has

Detτ

(
Aj

ρΓ⊗β

)
Detτ (Ψ(xj′ − 1)) = Detτ

(
Aj′

ρΓ⊗β

)
Detτ (Ψ(xj − 1)) . (14)

Proof. (i) From (3.10), (4), (8) and (10), one sees that

Ψ(xj − 1) = (ρΓ(φ(xj))Id2×2) · β(φ(xj )) − Id. (15)

Clearly, γj = φ(xj ) ∈ Γ is of infinite order and β(γj) ∈ SL(2,C).

Assume a ∈ l2(Γ) and z1, z2 ∈ C satisfies ((ρΓ(φ(xj))Id2×2) ·β(φ(xj ))−
Id)(a ⊗ (z1e1 + z2e2)) = 0. Then a direct verification shows that

(ρΓ(γj)Id2×2 −β(γj)
−1)β(γj)(a⊗ (z1e1 + z2e2)) = 0. Now we have identify

β(γj) as a morphism in l2(Γ)⊗2 with trivial action on l2(Γ) factor. For any

B ∈ SL(2,C) with B(a⊗ (z1e1 + z2e2) = a⊗ (B(z1e1 + z2e2)) = 0, we have

z1 = z2 = 0, thus a⊗ (z1e1 + z2e2) = 0.

For β(γj), let A be a SL(2,C) matrix such that Aβ(xj)
−1A−1 =(

yj bj
0 y−1

j

)
. Then we have A(ρΓ(γj)Id2×2−β(γj)

−1)A−1 = (ρΓ(γj)Id2×2−

Aβ(γj)
−1A−1) and ker(ρΓ(γj)Id2×2 − β(γj)

−1) = ker(ρΓ(γj)Id2×2 −
Aβ(γj)

−1A−1) by the above. Now let a⊗ (z1e1 +z2e2) ∈ ker(ρΓ(γj)Id2×2 −
Aβ(γj)

−1A−1). Thus we have

(ρΓ(γj)(a) − yja) ⊗ z1e1 − bja⊗ z2e2 = 0

(ρΓ(γj)(a) − y−1
j a) ⊗ z2e2 = 0.

Hence we have either z2 = 0 or ρΓ(γj)(a)−y−1
j (a) = 0 from the last equality,

and z1 = 0 or ρΓ(γj)(a) − yja = 0. If z1 = z2 = 0, then we are done; if
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ρΓ(γj)(a) − y−1
j (a) = 0 and yj ∈ U(1), then a = 0 follows from Lemma 3.1

(i) of;LZ if yj /∈ U(1),

a = yjρΓ(γj)(a) = y2
j ρΓ(γ2

j )(a) = · · · = yn
j ρΓ(γn

j )(a) = · · ·

hence a = 0 for ρΓ(γ) unitary representation; if z2 = 0 and ρΓ(γj)(a) −
yja = 0, we have a = 0 by the same method. Hence ker(ρΓ(γj)Id2×2 −
Aβ(γj)

−1A−1) = {0}. Thus, we obtain

ker((ρΓ(φ(xj ))Id2×2) · β(φ(xj )) − Id) = {0}. (16)

Hence Ψ(xj − 1) ∈ N(Γ) is injective and has dense image (seeDIX). The

dense image property follows from (16) as we have

Im((ρΓ(φ(xj))Id2×2) · β(φ(xj )) − Id)⊥

= ker((ρΓ(φ(x−1
j ))Id2×2) · β∗(φ(x−1

j )) − Id) = {0},

where β∗(φ(x−1
j )) is the complex conjugate of β(φ(x−1

j )).

(ii) Without loss of generality, we may assume j = 1 and j ′ = 2. Since

ri = 1 in Z[Fk], it is easy to see that

k∑

l=1

∂ri
∂xl

(xl − 1) = 0 in Z[Fk], (17)

from which we get

k∑

l=1

Ψ

(
∂ri
∂xl

)
Ψ(xl − 1) = 0. (18)

Let A1, A2 : l2(Γ)⊗2 ⊕ · · · ⊕ l2(Γ)⊗2

︸ ︷︷ ︸
k−1

→ l2(Γ)⊗2 ⊕ · · · ⊕ l2(Γ)⊗2

︸ ︷︷ ︸
k−1

be the

endomorphisms such that

A1 = Ψ(x1 − 1)|l2(Γ)⊗2 ⊕ Id|l2(Γ)⊗2 ⊕ · · · ⊕ Id|l2(Γ)⊗2 , (19)

while A2, when represented in the (k−1)×(k−1) matrix form, is determined

by

A2,(l,1) = Ψ(xl+1 − 1), A2,(i,j) = δij ·
(
Id : l2(Γ)⊗2 → l2(Γ)⊗2

)
for j ≥ 2.

(20)

From (18)-(20), and from the definition of Aj
ρΓ⊗β, one deduces that

A1
ρΓ⊗β ·A2 = −A2

ρΓ⊗β · A1. (21)
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By (i), it is easy to see that both A1 and A2 are injective. Thus A1
ρΓ⊗β

is injective if and only if A2
ρΓ⊗β is injective.

By (8), one finds for j = 1, 2,

Detτ (Aj) = Detτ (Ψ(xj − 1)) . (22)

From (7), (21) and (22), one gets (7). Q.E.D.

Now recall that the spectral radius of a matrix A is defined to be the

maximal of eigenvalues of the matrix A. For β(xj) ∈ SL(2,C), its spec-

tral radius of β(xj) equals to max{yj , y
−1
j } for its eigenvalues yj , y

−1
j . The

absolute spectral radius of the β(xj) is max{|yj |, |y−1
j |}.

Prop 3.1. For any 1 ≤ j ≤ k, the following identity holds,

Detτ (Ψ(xj − 1)) = Detτ (ρΓ(γj)−yj)·Detτ (ρΓ(γj)−y−1
j ) = max{|yj |, |y−1

j |},
(23)

where β(γj) = A−1

(
yj bj
0 y−1

j

)
A for some A ∈ SL(2,C). I.e.,

Detτ (Ψ(xj − 1)) equals to the absolute spectral radius of β(φ(xj )) = β(γj).

Proof. By (8) and the proof of Lemma 3.1 (i), we have

A(Ψ(xj−1)A−1 = ρΓ(γj)Id2×2−Aβ(γj)A
−1 =

(
ρΓ(γj) − yj bj

0 ρΓ(γj) − y−1
j

)

(24)

Hence Detτ (Ψ(xj − 1)) = Detτ (ρΓ(γj) − yj) · Detτ (ρΓ(γj) − y−1
j ) by the

Fuglede-Kadison determinant properties (iii) and (iv) in section 2.

If yj ∈ U(1), we know Detτ (ρΓ(γj) − yj) = Detτ (ρΓ(γj) − y−1
j ) = 1 by

Proposition 3.2 of.LZ If |yj | > 1, then we can compute

Detτ (ρΓ(γj) − yj) = Detτ (yj(y
−1
j )ρΓ(γj) − Id)

= |yj | · Detτ (y−1
j ρΓ(γj) − Id) = |yj |,

where the last identity follows from the proof of Proposition 3.2 of.LZ

Detτ (Ψ(xj − 1)) = Detτ (ρΓ(γj) − yj) · Detτ (ρΓ(γj) − y−1
j )

= max{1, |yj |} · max{1, |y−1
j |}

= max{1, |yj |, |y−1
j } = max{|yj |, |y−1

j |}.
Hence our result follows. Q.E.D.

Recall the following types of transformations for group presentations:

(Ia) To replace one of the relators ri by its inverse r−1
i ; (Ib) To replace
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one of the relators ri by its conjugate wriw
−1 (w ∈ Fk); (Ic) To replace

one of the relators ri by rirj (i 6= j); (II) To add a new generator x and

a new relator xw−1 for any word w in terms of previous generators. Two

presentations are strongly Tietze equivalent if there is a finite sequence of

operations of transformation types (Ia), (Ib), (Ic) and (II) and their inverse

such that one presentation can be transformed to another one.

The following result may be thought of as an twisted L2-analogue of [LZ,

Proposition 3.4] and [W, Theorem 2].

Theorem 3.1. (1) The quantity

∆
(2)
K (β) =

Detτ

(
Aj

ρΓ⊗β

)

max{|yj |, |y−1
j |} (25)

does not depend on the choice of the Wirtinger presentation P (Γ) in (3.9)

and j = 1, 2, · · · , k.
(2) The quantity

∆
(2)
K (β, β−1) =

√
Detτ

(
Aj

ρΓ⊗β

)
· Detτ

(
Aj

ρΓ⊗β−1

)

max{|yj |, |y−1
j |} (26)

does not depend on the choice of the Wirtinger presentation P (Γ) in (3.9)

and j = 1, 2, · · · , k.

Proof. (1) By Lemma 3.1 and Proposition 3.1, we have
Detτ

(
Aj

ρΓ⊗β

)

max{|yj |,|y−1
j |}

is independent of j for 1 ≤ j ≤ k. Without loss of generality, we assume

that j = 1. Since by [W, Lemma 6], all Wirtinger presentations of Γ are

strongly Tietze equivalent in the sense of,W we need only to show that
Detτ (A1

ρΓ⊗β)

max{|y1|,|y−1
1 |} is invariant under the transformations defining the strong

Tietze equivalence. This can be carried out in the same way as in [LZ,

Proposition 3.4] and [W, Proof of Theorem 2]. We present the proof for

completeness.

Type Ia). To replace one of the relators ri by its inverse r−1
i .

This amounts to change the homomorphism AρΓ⊗β to −AρΓ⊗β, which

clearly does not change Detτ (A1
ρΓ⊗β).

Type Ib). Note that

Ψ

(
∂

∂xj

(
wriw

−1
))

= Ψ(w)Ψ

(
∂ri
∂xj

)
, 1 ≤ j ≤ k. (27)
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By proceeding as in the proof of Lemma 2.1(ii), one finds that Detτ (A1
ρΓ⊗β)

changes by a factor Detτ (Ψ(w)). Now by (4) and (10) one sees that Ψ(w) ∈
GL(l2(Γ)⊗2) is a unitary operator ρΓ(w)Id2×2 tensor with β(w) ∈ SL(2,C),

which implies

Detτ (Ψ(w)) = Detτ

(
ρΓ(φ(w))y(φ(w)) b(φ(w))

0 ρΓ(φ(w))y(φ(w))−1

)

= Detτ (ρΓ(φ(w))y(φ(w))) · Detτ (ρΓ(φ(w))y(φ(w))−1)

= |y(φ(w)|Detτ (ρΓ(φ(w))) · |y(φ(w))−1 |Detτ (ρΓ(φ(w)))

= 1,

where we use the diagonal form of β(w) since the determinant is unchanged.

Thus the Type Ib) transformation does not change Detτ (A1
ρΓ⊗β).

Type Ic). For this transformation we have

Ψ

(
∂

∂xj
(rirm)

)
= Ψ

(
∂ri
∂xj

)
+ Ψ

(
∂rm
∂xj

)
, 1 ≤ j ≤ k. (28)

Let B : l2(Γ)⊗2 ⊕ · · · ⊕ l2(Γ)⊗2

︸ ︷︷ ︸
k−1

→ l2(Γ)⊗2 ⊕ · · · ⊕ l2(Γ)⊗2

︸ ︷︷ ︸
k−1

be the endomor-

phism which, when expressed through (k − 1) × (k − 1) matrix, takes the

form Bi,m = Id, while otherwise Bs,t = δst · (Id : l2(Γ)⊗2 → l2(Γ)⊗2). Then

one finds that A1
ρΓ⊗β changes to BA1

ρΓ⊗β . Note that Detτ (B) = 1. Thus

the type (Ic) transformation does not change Detτ (A1
ρΓ⊗β).

Type II). In this case, the corresponding endomorphism

A′1
ρΓ⊗β : l2(Γ)⊗2 ⊕ · · · ⊕ l2(Γ)⊗2

︸ ︷︷ ︸
k−1

⊕l2(Γ)⊗2 → l2(Γ)⊗2 ⊕ · · · ⊕ l2(Γ)⊗2

︸ ︷︷ ︸
k−1

⊕l2(Γ)⊗2

(29)

can be written as A1
ρΓ⊗β ⊕ Idl2(Γ)⊗2 plus a mapping from

l2(Γ)⊗2 ⊕ · · · ⊕ l2(Γ)⊗2

︸ ︷︷ ︸
k−1

to l2(Γ)⊗2. Thus, by (8),

Detτ

(
A′1

ρΓ⊗β

)
= Detτ

(
A1

ρΓ⊗β

)
. (30)

The type (II) transformation does not change

Detτ (A1
ρΓ⊗β)/max{|y1|, |y−1

1 |}.

Similarly, the inverse of transformation (Ia), (Ib), (Ic) or (II) does not

change Detτ (A1
ρΓ⊗β)/max{|y1|, |y−1

1 |}.
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Therefore Detτ (A1
ρΓ⊗β)/max{|y1|, |y−1

1 |} = ∆
(2)
K (β) is invariant under

the strong Tietze equivalent transformations. By [W, Lemma 6], it does not

depend on the Wirtinger presentations of Γ.

(2) From β(γj) = A−1

(
yj bj
0 y−1

j

)
A, we have

β(γj)
−1 = A−1

(
y−1

j −bj
0 yj

)
A.

Hence Detτ (A1
ρΓ⊗β−1)/max{|y−1

1 |, |y1|} = ∆
(2)
K (β−1) is invariant under the

strong Tietze equivalent transformations. Therefore

∆
(2)
K (β, β−1) =

√
∆

(2)
K (β) · ∆(2)

K (β−1)

is independent of the choice of the Wirtinger presentation. Q.E.D.

By Lemma 3.1, Proposition 3.1 and Theorem 3.1, we see that ∆
(2)
K (β)

depends only on the knot K and the representation β. Since its construc-

tion is closely related to the usual construction of the (twisted) Alexander

polynomial of a knot, we make the following definition.

Definition 3.1. (i) We define ∆
(2)
K (β) to be the twisted L2–Alexander

invariant of the knot K in S3 with β : Γ → SL(2,C), and ∆
(2)
K :

Hom(Γ, SL(2,C)) → R+.

(ii) We define ∆
(2)
K (β, β−1) to be the twisted L2-Alexander-Conway in-

variant of the knot K in S3 with β, β−1 ∈ Hom(Γ, SL(2,C)).

Remark 3.1. It is clear that ∆
(2)
K (β) and ∆

(2)
K (β, β−1) can be defined by

using any presentation of Γ which is strongly Tietze equivalent to some

Wirtinger presentation of Γ. We conjecture that any presentation of a knot

group with deficiency one is strongly Tietze equivalent to a Wirtinger pre-

sentation of the knot group.

Remark 3.2. When β = diag(t, t−1) is a U(1) representation of SL(2,C),

∆
(2)
K (β) = ∆

(2)
K (t) has been studied in our previous work [LZ, Definition

3.5], and that ∆
(2)
K (1) is equivalent to the L2–Reidemeister torsion of S3\K.

For t ∈ C∗, ∆
(2)
K (β) is proportional to the definition [LZ, (7.2)] for the

L2-invariant associated to C∗ representations, and ∆
(2)
K (β, β−1) is the L2-

Alexander-Conway invariant studied in [LZ2, Theorem 3.2].

Note that for any representation β : Γ → SL(2,C), there is a (pseudo)

developing map for β which is a smooth equivariant map f̃β : S̃3 \K → H̃3
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which sends ∂S̃3 \K into S2
∞ and intS̃3 \K into H3, where the bound-

ary has an equivariant cone structure on the neighborhood of ∂S̃3 \K
in S̃3 \K and some extra conditions (seeCCGLS,Dun,FR for more details).

Let f̃β(V olH3) be the pullback of the volume form on H3. Hence the de-

scending 3-form π∗(f̃β(V olH3)) is well-defined since the (pseudo) devel-

oping map is equivariant, where π : S̃3 \K → S3 \K. Then the vol-

ume of β is defined to be the integral of the descending 3-form over

S3 \ K. In [Dun, Lemma 2.5.2], the volume of β is well-defined for the

β whose character lies in an irreducible component of the character va-

riety of S3 \ K which contains the character of a discrete faithful repre-

sentation. Our twisted L2-Alexander(-Conway) invariant is an extension of

volume by the work of.LuS It is natural to ask that if there is any link be-

tween these two functions V ol : Hom(Γ, SL(2,C)) → R+ (seeDun,FR) and

∆
(2)
K : Hom(Γ, SL(2,C)) → R+.

Remark 3.3. In view of [W, Section 5], the above construction can also

be applied to links.

4. Twisted L2-Reidemeister torsion

We first recall the definition of the L2-Reidemeister torsion (CFM,Lu1).

Let (C∗, ∂) be a finite length N(Γ)-chain complex

(C∗, ∂) : 0 → Cn
∂n→ Cn−1

∂n−1→ · · · ∂1→ C0 → 0, (1)

where each Ci, 0 ≤ i ≤ n, is a (finite rank) N(Γ) free Hilbert module. We

make the assumption that (C∗, ∂) is weakly acyclic, i.e., for any 0 ≤ i ≤ n,

ker(∂i) = Im(∂i−1) (usually one uses the terminology “L2-acyclic”).

For any 0 ≤ i ≤ n, let ∂∗i : Ci−1 → Ci be the adjoint of ∂i : Ci → Ci−1.

Then ∂i∂
∗
i : Im(∂i) → Im(∂i) is injective.

We say that (C∗, ∂) is of determinant class if for any 0 ≤ i ≤ n, ∂i∂
∗
i :

Im(∂i) → Im(∂i) is of determinant class. In this case, we define the L2-

Reidemeister torsion of (C∗, ∂) to be a real number T (2)(C∗, ∂) given by

logT (2)(C∗, ∂) = −1

2

n∑

i=0

(−1)i log Detτ

(
∂i∂

∗
i |Im(∂i)

)
(2)

(cf. [Lu1, Definition 3.29]).

Let X be a finite cell complex and let ρ : π1(X) → GL(H) be an N(Γ)-

linear representation of Γ = π1(X) on a (finite rank) free N(Γ) Hilbert

module. Let X̃ be the universal covering of X . Then the chain complex
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(C∗(X̃)⊗H, ∂̃) induces canonically a chain complex (C∗(X,Hρ), ∂ρ) in the

sense of (1), where C∗(X,Hρ) = (C∗(X̃) ⊗π1(X),ρ H).

If (C∗(X,Hρ), ∂ρ) is weakly acyclic and of determinant class, one can

then define its L2-Reidemeister torsion T (2)(C∗(X,Hρ), ∂ρ) as in (2).

Remark 4.1. If ρ : π1(X) → GL(H) is unitary, then T (2)(C∗(X,Hρ), ∂ρ)

is a well-defined piecewise linear invariant. SeeLu1,MA for more information.

Let P (Γ) be a Wirtinger representation of the knot group of a knot K

as in (3.9), where ri is the cross relation for each i.

Let W be a 2-dimensional cell complex constructed from one 0-cell p, k

1-cells x1, · · · , xk and (k − 1) 2-cells D1, · · · , Dk−1 with attaching maps

given by r1, · · · , rk−1. It is well-known that the knot complement S3 \K
collapses to the 2-dimensional complex W .

Let

ρβ = ρ⊗ β : Γ → GL
(
l2(Γ)

)
⊗ SL(2,C) = GL

(
l2(Γ)⊗2

)
(3)

denote the representation of Γ obtained from the tensor product of the

representations in (3.11), (4) and (5).

Then the N(Γ)-chain complex (C∗(S3\K, l2(Γ)⊗2
ρβ

), ∂ρβ
) is weakly acyclic

if and only if (C∗(W, l2(Γ)⊗2
ρβ

), ∂ρβ
) is weakly acyclic. Moreover, by the sim-

ple homotopy invariance of the L2-Reidemeister torsion (cf. [LuR, Corol-

lary 3.12]), (C∗(S3 \K, l2(Γ)⊗2
ρβ

), ∂ρβ
) is of determinant class if and only if

(C∗(W, l2(Γ)⊗2
ρβ

), ∂ρβ
) is of determinant class, and in this case,

T (2)
(
C∗
(
S3 \K, l2(Γ)⊗2

ρβ

)
, ∂ρβ

)
= T (2)

(
C∗
(
W, l2(Γ)⊗2

ρβ

)
, ∂ρβ

)
. (4)

Prop 4.1. The complex (C∗(S3 \K, l2(Γ)⊗2
ρβ

), ∂ρβ
) is weakly acyclic if and

only if A1
ρΓ⊗β defined in (6) is injective. Moreover, A1

ρΓ⊗β is of determinant

class if and only if (C∗(S3 \ K, l2(Γ)⊗2
ρβ

), ∂ρβ
) is of determinant class and

one has

T (2)
(
C∗
(
S3 \K, l2(Γ)⊗2

ρβ

)
, ∂ρβ

)
=

1

∆
(2)
K (β)

(5)

Proof. By (4), we need only to compute the L2-Reidemeister torsion of

(C∗(W, l2(Γ)⊗2
ρβ

), ∂ρβ
). For any m ∈ N, let (l2(Γ)⊗2)

[m]
ρβ denote the N(Γ)-

Hilbert module of rank m,

(l2(Γ)⊗2)[m]
ρβ

= l2(Γ)⊗2
ρβ

⊕ · · · ⊕ l2(Γ)⊗2
ρβ︸ ︷︷ ︸

m

. (6)
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Then the chain complex (C∗(W, l2(Γ)⊗2
ρβ

), ∂ρβ
) is given as follows,

0 −→ (l2(Γ)⊗2)[k−1]
ρβ

∂2−→ (l2(Γ)⊗2)[k]
ρβ

∂1−→ (l2(Γ)⊗2)ρβ
−→ 0, (7)

where ∂2, when expressed through a (k−1)×k matrix (with respect to the

right matrix multiplications), is given by

∂2 = Aρ⊗β =

(
Ψ

(
∂ri
∂xj

))

(k−1)×k

with 1 ≤ i ≤ k − 1, 1 ≤ j ≤ k, (8)

while

∂1 = (Ψ(x1 − 1), · · · ,Ψ(xk − 1))
t
. (9)

By Lemma 3.1, Ψ(x1 − 1) has dense image, by (9) one sees that the L2-

homology is given by

H
(2)
0 (C∗(W, l

2(Γ)⊗2
ρβ

), ∂ρβ
) = l2(Γ)⊗2

ρβ
/Im(∂1) = 0.

On the other hand, it is clear that

rk(2)
(
H

(2)
0 (C∗(W, l

2(Γ)⊗2
ρβ

), ∂ρβ
)
)
− rk(2)

(
H

(2)
1 (C∗(W, l

2(Γ)⊗2
ρβ

), ∂ρβ
)
)

+ rk(2)
(
H

(2)
2 (C∗(W, l

2(Γ)⊗2
ρβ

), ∂ρβ
)
)

= 2 − 2k + 2(k − 1) = 0, (10)

where rk(2) is the notation of von Neumann rank (dimension). By (9) and

(10), one sees that (C∗(W, l2(Γ)⊗2
ρβ

), ∂ρβ
) is weakly acyclic if and only if ∂2

is injective if and only if rk(2)(H
(2)
2 (C∗(W, l2(Γ)⊗2

ρβ
), ∂ρβ

)) = 0.

Let A′ : l2(Γ)⊗2
ρβ

⊕ · · · ⊕ l2(Γ)⊗2
ρβ︸ ︷︷ ︸

k

→ l2(Γ)⊗2
ρβ

⊕ · · · ⊕ l2(Γ)⊗2
ρβ︸ ︷︷ ︸

k

be such that

when expressed through the k × k-matrix, one has

A′
i,1 = Ψ(xi − 1), A′

i,j = δij

{
Id : l2(Γ)⊗2

ρβ
→ l2(Γ)⊗2

ρβ

}
for 2 ≤ j ≤ k.

(11)

From (18) and (11), one finds that the composition A′∂2, when expressed

through the (k − 1) × k matrix, takes the form

A′∂2 =
(
0, A1

ρΓ⊗β

)
: l2(Γ)⊗2

ρβ
⊕ · · · ⊕ l2(Γ)⊗2

ρβ︸ ︷︷ ︸
k−1

→ l2(Γ)⊗2
ρβ

⊕ · · · ⊕ l2(Γ)⊗2
ρβ︸ ︷︷ ︸

k

.

(12)

Note that Ψ(x1−1) is injective and has dense image. One sees easily that

A′ is also injective and has dense image by (11). By (12), we have ∂2 is injec-

tive if and only if A1
ρΓ⊗β is injective. This proves that (C∗(W, l2(Γ)⊗2

ρβ
), ∂ρβ

)
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(and thus (C∗(S3 \K, l2(Γ)⊗2
ρβ

), ∂ρβ
)) is weakly acyclic if and only if A1

ρΓ⊗β

is injective.

In order to compute the L2-Reidemeister torsion, one first observes that

since here Ψ(x1 − 1) may not be invertible, the method in [Ki, Section 3]

does not work directly. Here we follow what we did in [LZ, Proposition 5.1].

For any ε > 0, let A′(ε) : l2(Γ)⊗2
ρβ

⊕ · · · ⊕ l2(Γ)⊗2
ρβ︸ ︷︷ ︸

k

→

l2(Γ)⊗2
ρβ

⊕ · · · ⊕ l2(Γ)⊗2
ρβ︸ ︷︷ ︸

k

be such that when expressed through the k × k-

matrix, one has

A′
1,1(ε) = Ψ(x1) − (1 + ε)

{
Id : l2(Γρβ

)⊗2 → l2(Γρβ
)⊗2
}
, (13)

A′
i,1(ε) = Ψ(xi) −

{
Id : l2(Γ)⊗2

ρβ
→ l2(Γ)⊗2

ρβ

}
, 2 ≤ i ≤ k,

A′
i,j(ε) = δij

{
Id : l2(Γρβ

)⊗2 → l2(Γρβ
)⊗2
}

for 2 ≤ j ≤ k.

Clearly, for any ε > 0, A′(ε) is invertible.

Let (C∗,ε(W, l
2(Γ)⊗2

ρβ
), ∂ρβ

) be the chain complex

0 −→ (l2(Γ)⊗2)[k−1]
ρβ

∂2−→ (l2(Γ)⊗2)[k]
ρβ ,ε

∂1−→ l2(Γ)⊗2
ρβ

−→ 0, (14)

where (l2(Γ)⊗2)
[k]
ρβ ,ε admits the new inner product 〈·, ·〉ε in l2(Γ)⊗2 given by

〈x, y〉ε = 〈A′(ε)∗A′(ε)x, y〉. (15)

By (13), we have, for any ε > 0,

Detτ (A′(ε)) = max{1, (1 + ε)|y1|} · max{1, (1 + ε)|y−1
1 |}. (16)

By (14)-(16) and [CFM, Proposition 3.11],

max{1, (1 + ε)|y1|} · max{1, (1 + ε)|y−1
1 |}T (2)

(
C∗,ε(W, l

2(Γ)⊗2
ρβ

), ∂ρβ

)

(17)

= T (2)
(
C∗(W, l

2(Γ)ρβ
), ∂ρβ

)
.

(18)

We now examine T (2)(C∗,ε(W, l
2(Γ)ρα), ∂ρα) and its limit as ε → 0.

Let ∂∗1,ε denote the adjoint of ∂1 with respect to the new inner product in

(C∗,ε(W, l
2(Γ)⊗2

ρβ
), ∂ρβ

). Thus we get, by (15),

〈∂1x, y〉 = 〈x, ∂∗1y〉 =
〈
(A′(ε)∗A′(ε))

−1
x, ∂∗1y

〉
ε

=
〈
x, (A′(ε)∗A′(ε))

−1
∂∗1y
〉

ε
,

(19)
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and ∂∗1,ε = (A′(ε)∗A′(ε))−1 ∂∗1 = A′(ε)−1 (A′(ε)∗)−1 ∂∗1 . Therefore,

∂1∂
∗
1,ε = ∂1A

′(ε)−1 (A′(ε)∗)
−1
∂∗1 . (20)

By (13), one deduces directly that A′(ε)−1 can be written as

A′(ε)−1
1,1 = A′

1,1(ε)
−1, (21)

A′(ε)−1
i,1 = −A′

i,1(ε)A
′(ε)−1

1,1, 2 ≤ i ≤ k,

A′
i,j(ε)

−1 = δij
{
Id : l2(Γρβ

)⊗2 → l2(Γρβ
)⊗2
}

for 2 ≤ j ≤ k.

By (9), (13) and (21), we have

∂1A
′(ε)−1 = (Id + 2ε, 0 · · · , 0︸ ︷︷ ︸

k

)t − ε
(
A′(ε)−1

1,1, · · · , A′(ε)−1
k,1

)t

. (22)

By (13), and (20)–(22), ∂1∂
∗
1,ε =

(
Id + εA′(ε)−1

1,1

)∗ (
Id + εA′(ε)−1

1,1

)
+ ε2

k∑

j=2

(
A′(ε)−1

j,1

)∗
A′(ε)−1

j,1 =

(
A′(ε)−1

1,1

)∗

Ψ(x1 − 1)∗Ψ(x1 − 1) + ε2

k∑

j=2

Ψ(xj − 1)∗Ψ(xj − 1)




(
A′(ε)−1

1,1

)
. (23)

By (13) and (21), one has that for any ε > 0,

Detτ

(
A′(ε)−1

1,1

)
=

1

(1 + ε) max{|y1|, |y−1
1 |} . (24)

From (6), (7), Lemma 3.1, Proposition 3.1, (23) and (24), one finds

lim
ε→0+

Detτ

(
∂1∂

∗
1,ε

)
= lim

ε→0+

1

(1 + ε) max{|y1|, |y−1
1 |}2

· max{|y1|, |y1−1|}2 = 1.

(25)

Similarly, by (15),

〈∂2x, y〉ε = 〈A′(ε)∗A′(ε)∂2x, y〉 = 〈x, ∂∗2A′(ε)∗A′(ε)y〉 , (26)

and the adjoint of ∂2 with respect to the new inner product in

(C∗,ε(W, l
2(Γ)⊗2

ρβ
), ∂ρβ

) is given by

∂∗2,ε = ∂∗2A
′(ε)∗A′(ε). (27)
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By (11), (12) and (27), we have

∂∗2,ε∂2 = ∂∗2A
′(ε)∗A′(ε)∂2 = A1

ρΓ⊗β

(
A1

ρΓ⊗β

)∗

+ ε2
(

Ψ

(
∂r1
∂x1

)
, · · · ,Ψ

(
∂rk−1

∂x1

))t(
Ψ

(
∂r1
∂x1

)∗
, · · · ,Ψ

(
∂rk−1

∂x1

)∗)
.

(28)

By (6) and (28),

lim
ε→0+

Detτ

((
∂2∂

∗
2,ε

)∣∣
Im(∂2)

)
= lim

ε→0+
Detτ

(
∂∗2,ε∂2

)
= Detτ

(
A1

ρΓ⊗β

)2
. (29)

By (2), (17), (25) and (29), one finds

T (2)
(
C∗(W, l

2(Γ)⊗2
ρβ

), ∂ρβ

)
= (30)

lim
ε→0+

max{1, (1 + ε)|y1|} · max{1, (1 + ε)|y−1
1 |}T (2)

(
C∗,ε(W, l

2(Γ)⊗2
ρβ

), ∂ρβ

)

= lim
ε→0+

max{1, (1 + ε)|y1|} · max{1, (1 + ε)|y−1
1 |}

Detτ

(
A1

ρΓ⊗β

)

=
max{|y1|, |y−1

1 |}
Detτ

(
A1

ρΓ⊗β

)

=
1

∆
(2)
K (β)

.

and the result follows. Q.E.D.

Remark 4.2. We now have extended our previous result [LZ, Proposition

5.1] for the flat line bundle via α : Γ → C∗ to the twisted flat SL(2,C)

vector bundle via β : Γ → SL(2,C). Note that this flat SL(2,C) bundle

over S3 \K plays an important role in understanding the volume conjec-

ture beyond the leading order as pointed in.GuMu In,GuMu they claimed

that the Ray-Singer torsion of the knot complement twisted by the flat

connection associated to the representation β : Γ → SL(2,C) appears in

the parameterized volume conjecture. Our L2-Reidemeister torsion twisted

by the representation β : Γ → SL(2,C) shows certainly close and possible

role in the polarized volume conjecture.
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5. Twisted L2–Alexander(-Conway) invariant with

parameters in character variety

We first recall the character variety and show that our twisted L2–

Alexander invariant is depending upon the character of the representation

β : Γ → SL(2,C).

Let K be a knot in S3 and MK its complement. That is, MK = S3−NK

where NK is the open tubular neighborhood of K in S3. MK is a compact

3-manifold with boundary ∂MK = T 2 a torus. Denote by

R(MK) = Hom(π1(MK), SL2(C)) = Hom(Γ, SL(2,C)

R(∂MK) = Hom(π1(∂MK), SL2(C)) = Hom(π1(T
2), SL(2,C)).

It is known that they are affine algebraic sets over the complex numbers

C and so are the corresponding character varieties X(MK) and X(∂MK)

(SeeCS). We also have the canonical surjective morphisms t : R(MK) −→
X(MK) and t : R(∂MK) −→ X(∂MK) which map a representation to

its character. The natural homomorphism i : π1(∂MK) −→ π1(MK) in-

duces the restriction maps r : X(MK) −→ X(∂MK) and r : R(MK) −→
R(∂MK).

Note that π1(∂MK) = Z⊕Z is generated by two classes, the meridian µ

and the longitude λ as its generators. Let RD be the subvariety of R(∂MK)

consisting of the diagonal representations. Then RD is isomorphic to C∗ ×
C∗. Indeed, for ρ ∈ RD , we obtain

ρ(λ) =

[
l 0

0 l−1

]
and ρ(µ) =

[
m 0

0 m−1

]
,

then we assign the pair (l,m) to ρ. Clearly this is an isomorphism. We shall

denote by tD the restriction of the morphism t : R(∂MK) −→ X(∂MK) on

RD.

Next we recall the definition of the A-polynomial of K which was intro-

duced in.CCGLS Denote byX ′(MK) the union of the irreducible components

Y ′ of X(MK) such that the closure r(Y ′) in X(∂MK) is 1-dimensional. For

each component Z ′ of X ′(MK), denote by Z the curve t−1
D (r(Y ′)) ⊂ RD.

We define DK to be the union of the curves Z as Z ′ varies over all compo-

nents of X ′(MK). Via the above identification of RD with C∗ × C∗, DK is

a curve in C∗×C∗. Now by definition the A-polynomial A(l,m) of K is the

defining polynomial of the closure of DK in C × C.

From now on, we assume that K is a hyperbolic knot. Denote by β0 :

π1(MK) −→ PSL2(C) the discrete, faithful representation corresponding
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to the hyperbolic structure on MK . Note that β0 can be lifted to a SL2(C)

representation. Moreover, there are exactly |H1(MK ; Z2) = Z2| = 2 such

lifts.

Prop 5.1. If one of the Aj
ρΓ⊗β (1 ≤ j ≤ k) is injective and of determinant

class for β ∈ Hom(Γ, SL(2,C)), then, for irreducible representations with

[β] = [β
′

] ∈ X(MK) ,

∆
(2)
K (β) = ∆

(2)
K (β

′

), ∆
(2)
K (β, β−1) = ∆

(2)
K (β

′

, (β
′

)−1).

Proof. Without loss of generality, we assume j = 1 and simply compare

Detτ (A1
ρΓ⊗β) with Detτ (A1

ρΓ⊗β′ ) since the absolute spectral radius is un-

changed under the character map.

Let Aβ be the morphism A1
ρΓ⊗β, and A∗

β be the adjoint operator of Aβ .

Note that two SL(2,C) representations with the same character must be

either equivalent or they are reducible. If β is irreducible and [β] = [β ′] ∈
X(MK), then we have β and β′ are equivalent by [CS, Proposition 1.5.2].

Therefore

Detτ (A1
ρΓ⊗β) = Detτ (A1

ρΓ⊗β′),

by the property of Fuglede-Kadison determinant in section 2. Hence the

L2-Alexander and L2-Alexander-Conway invariants are unchanged under

the character map. Q.E.D.

Remark 5.1. If β is reducible and [β] = [β′], then β′ is also reducible

by [CS, Corollary 1.2.2]. If both β and β′ are non-abelian reducible, then

trβ(c) = trβ′(c) = 2 for each element of the commutator subgroup of Γ

by [CS, Lemma 1.2.1]. Since β[Γ,Γ] is normal in β(Γ) and there is a unique

1-dimensional invariant subspace L ⊂ C2 of β[Γ,Γ], we have the subspace

L is fixed by β(Γ). By [CS, Corollary 1.2.2], the same holds for β ′ since

β′ is reducible too. Then they both fix the same 1-dimensional subspace

by changing the basis of C2. We have β and β′ are equivalent under the

conjugacy. If both β and β′ are abelian reducible, then they are equivalent

under the conjugacy. Hence the L2-Alexander and L2-Alexander-Conway

invariants are unchanged under the character map.

Remark 5.2. Proposition 5.1 shows that the twisted L2–Alexander in-

variant or the twisted L2–Reidemeister torsion of the knot complement,

can be reduced into the function of the character variety X(MK). Note

that the volume function over the irreducible characters factor through a

map to a zero-locus of A-polynomial by [Dun, Theorem 2.6]. Initially we

are trying to push this further into the A-polynomial, but the difficulty
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relies on the understanding of the restriction map r : X(MK) → X(∂MK)

with the changing of Von Neuman group algebra and the Fuglede-Kadison

determinant with respect to different von Neumann algebra.

Remark 5.3. If K is a hyperbolic knot, then the L2-Reidemeister tor-

sion of the knot complement determines the hyperbolic volume of the knot

complement [LuS, Theorem 0.6] (cf. [Lu1, Theorem 4.3]). For our twisted

L2-Reidemeister torsion of the knot complement, is there any relation with

the volume function parameterized by the zero locus of A-polynomial after

identifying elements in the character variety ?

6. Twisted L2-Alexander invariant with GL(n, C)

representations

In this section, we first replace the representation β considered in (3.11)

and (4) by the representation

β′ : Γ → GL(n,C) (1)

with β′(x1), · · · , β′(xk) ∈ GL(n,C). Then by proceeding as in Section 1.6,

we have identified

l2(Γ) ⊗ Cn ∼= l2(Γ)⊗n ∼= l2(Γ) ⊗ e1 ⊕ · · · ⊕ l2(Γ) ⊗ en. (2)

By identifying the tensor representation of ρΓ and β′, we have

ρΓ ⊗ β′(γ) = (ρΓ(γ)Idn×n) · β′(γ). (3)

Consider the morphism

AρΓ⊗β′ : l2(Γ)⊗n ⊕ · · · ⊕ l2(Γ)⊗n

︸ ︷︷ ︸
k−1

→ l2(Γ)⊗n ⊕ · · · ⊕ l2(Γ)⊗n

︸ ︷︷ ︸
k

(4)

which, when written as a (k − 1) × k-matrix, the (i, j)-component is given

by

AρΓ⊗β′,(i,j) = Ψ

(
∂ri
∂xj

)
∈ N(Γ), (5)

where ∂ri

∂xj
is the standard Fox derivative and l2(Γ)⊗n is identified in (2).

We call AρΓ⊗β′ the GL(n,C) twisted L2-Alexander matrix of the pre-

sentation P (Γ) associated to the fundamental representation ρΓ and the

GL(n,C) representation β′.
For any 1 ≤ j ≤ k, let

Aj
ρΓ⊗β′ : l2(Γ)⊗n ⊕ · · · ⊕ l2(Γ)⊗n

︸ ︷︷ ︸
k−1

→ l2(Γ)⊗n ⊕ · · · ⊕ l2(Γ)⊗n

︸ ︷︷ ︸
k−1

(6)



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

Twisted L2–Alexander–Conway Invariants for Knots 257

denote the morphism obtained from AρΓ⊗β′ by removing the j-th column

from its matrix form.

Lemma 6.1. (i) For any 1 ≤ j ≤ k, Ψ(xj − 1) ∈ N(Γ) is injective and

has dense image. (ii) If one of the Aj
ρΓ⊗β′ ’s, 1 ≤ j ≤ k, is injective, then

every Aj
ρΓ⊗β′ , 1 ≤ j ≤ k, is injective. Moreover, in this case, for any

1 ≤ j < j′ ≤ k, one has

Detτ

(
Aj

ρΓ⊗β′

)
Detτ (Ψ(xj′ − 1)) = Detτ

(
Aj′

ρΓ⊗β′

)
Detτ (Ψ(xj − 1)) . (7)

Proof. Note that there exist an A ∈ GL(n,C) such that Aβ ′(xj)A
−1 =

diag(y1
j , y

2
j , · · · , yn

j ). Then the rest follows from the same argument in the

proof of Lemma 3.1. Q. E. D.

Theorem 6.1. (i) For any 1 ≤ j ≤ k, the following identity holds,

Detτ (Ψ(xj − 1)) = Detτ (ρΓ(γj) − y1
j ) · · ·Detτ (ρΓ(γj) − yn

j )

= max{|yi
j | : 1 ≤ i ≤ n},

where Aβ′(xj)A
−1 = diag(y1

j , y
2
j , · · · , yn

j ) for some A ∈ GL(n,C).

(ii) The quantity

∆
(2)
K (β′) =

Detτ

(
Aj

ρΓ⊗β′

)

max{|yi
j |, 1 ≤ i ≤ n} (8)

does not depend on the choice of the Wirtinger presentation P (Γ) in (3.9)

and j = 1, 2, · · · , k.
(iii) The quantity

∆
(2)
K (β′, (β′)−1) =

√√√√ Detτ

(
Aj

ρΓ⊗β′

)

max{|yi
j |, 1 ≤ i ≤ n} ·

Detτ

(
Aj

ρΓ⊗(β′)−1

)

max{|yi
j |−1, 1 ≤ i ≤ n}

does not depend on the choice of the Wirtinger presentation P (Γ) in (3.9)

and j = 1, 2, · · · , k.

Proof. The proof is same as the proof of Proposition 3.1 and Theo-

rem 3.1. Q.E.D.
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Remark 6.1. If ρΓ is a trivial representation of Γ into GL(l2(Γ)), then we

have

∆
(2)
K (β′) =

|Det
(
Aj

Id⊗β′

)
|

max{|yi
j |, 1 ≤ i ≤ n} ,

where Det
(
Aj

Id⊗β′

)
is the usual determinant and the absolute value is

arised from the Fuglede-Kadison determinant. This relates our twisted L2-

Alexander invariant with the finite dimensional twisted Alexander invariant

defined in.L,W

Remark 6.2. It would be interesting to know what our twisted L2-

Alexander(-Conway) invariant really measures when the the infinite dimen-

sional representation ρΓ is not the fundamental representation of Γ.
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The Faddeev knots are the energy minimizers topologically stratified by the
Hopf invariant in the Faddeev quantum field theory model governing the inter-
action of baryons and mesons. Recent progress made on the existence theory
indicates that two growth laws expressed in terms of the Faddeev energy and
the Hopf invariant are essential. The first one, called the Substantial Inequal-
ity, describes the energy splitting pattern in a minimization process and gives
valuable information on compactness or convergence of a minimizing sequence.
The second one, which will be shown to be universally valid for a broad range of
energy functionals, ensures that knotted structures are preferred over multiple-
soliton structures in high Hopf numbers.

1. Introduction

Prelude. During August 20 – 26, 2005, the 23rd International Conference

on Differential Geometry Methods in Theoretical Physics was held at the

Chern Institute of Mathematics. At the conference, we reported our work

in a talk entitled “Faddeev Knots and Skyrme Solitons.” Xiao-Song was in

the audience and showed a lot of interest in our work. Since that time until

May 2006, we had many conversations and email exchanges with Xiao-Song

on this subject. Below, we first describe what were reported to Xiao-Song

in 2005 and we then present some new development, which would please

Xiao-Song if he were here with us today.
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The concept of knots has important applications in science. In the past

100 years, mathematicians have made great progress in topological and

combinatorial classifications of knots. In turn, the development of knot

theory has also facilitated the advancement of mathematics in several of its

frontiers, especially low-dimensional topology. In knot theory, an interesting

problem concerns the existence of “ideal knots,” which promises to provide

a natural link between the geometric and topological contents of knotted

structures. This problem has its origin in theoretical physics in which one

wants to prove the existence and predict the properties of knots “based on

a first principle approach”.59 In other words, one is interested in determin-

ing the detailed physical characteristics of a knot such as its energy (mass),

geometric conformation, and topological identification, via conditions ex-

pressed in terms of temperature, viscosity, electromagnetic, nuclear, and

possibly gravitational, interactions, which is also known as an Hamiltonian

approach to knots as field-theoretical stable solitons. The Faddeev knots

are such structures based on a first-principle approach and arise as knotted

solitons in the Faddeev quantum field theory model.9,10,27–30,59

In normalized form, the action density of the Faddeev model over the

standard (3+1)-dimensional Minkowski space of signature (+−−−) reads

L = ∂µn · ∂µn − 1

2
Fµν(n)F µν (n), (1.1)

where the field n = (n1, n2, n3) assumes its values in the unit 2-sphere

in R3 and Fµν(n) = n · (∂µn ∧ ∂νn). Since n is parallel to ∂µn ∧ ∂νn,

it is seen that Fµν(n)F µν(n) = (∂µn ∧ ∂νn) · (∂µn ∧ ∂νn),which may be

identified with the well-known Skyrme term35,55,68–71,83 when one embeds

S2 into S3 ≈ SU(2). Hence, the Faddeev model may be viewed as a refined

Skyrme model and the solution configurations of the former are the solution

configurations of the latter with a restrained range.23 In what follows, we

shall only be interested in static fields which make the Faddeev energy

E(n) =

∫

R3

{ 3∑

j=1

|∂jn|2 +
1

2

3∑

j,k=1

|Fjk(n)|2
}

d3x (1.2)

finite. The finite-energy condition implies that n approaches a constant

vector n∞ at spatial infinity (of R3). Hence we may compactify R3 into S3

and view the fields as maps from S3 to S2. As a consequence, we see that

each finite-energy field configuration n is associated with an integer, Q(n),

in π3(S
2) = Z (the set of all integers). In fact, such an integerQ(n) is known

as the Hopf invariant which has the following integral characterization: The

differential form F = Fjk(n)dxj ∧ dxk (j, k = 1, 2, 3) is closed in R3. Thus,
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there is a one form, A = Ajdx
j so that F = dA. Then the Hopf charge

Q(n) of the map n may be evaluated by the integral

Q(n) =
1

16π2

∫

R3

A ∧ F, (1.3)

due to J. H. C. Whitehead,81 which is a special form of the Chern–Simons

invariant.21,22

The existence of the Faddeev knotted solitons are realized as the solu-

tions to the problem

EN ≡ inf{E(n) |E(n) <∞, Q(n) = N}, N ∈ Z, (1.4)

referred to as the Faddeev Knot Problem.

Thus we encounter a direct minimization problem over the full space R3.

In such a situation, a typical difficulty is that the minimizing sequence may

fail to “concentrate” in a local region, which reminds us to look at what the

concentration-compactness principle of P. L. Lions53,54 can offer. A careful

examination of the Faddeev Knots Problem indicates that we cannot make

direct use of this method due to the lack of several key ingredients in the

Faddeev energy (4) and in the Hopf–Whitehead topological integral (1.3).

A key tool we used was called later by us as “the Substantial Inequality”

which may well be explained by what happens in a nuclear fission process:

When a nucleus fissions, it splits into several smaller fragments. The sum of

the masses of these fragments is less than the original mass. The “missing”

mass has been converted into energy according to Einstein’s equation.

On the other hand, in our general framework of minimization of a phys-

ical energy functional E subject to a topological constraint given by an

integer invariant class Q = N , we may similarly expect an energy splitting

of the configuration sequence into finitely many substantial constituents of

topological charges Q = Ns (s = 1, 2, · · · , k). We expect that the charge is

conserved and the energy of the “particle” of charge N splits into the sum

of energies ENs (s = 1, 2, · · · , k) of the “substantial particles” of respective

charges Ns (s = 1, 2, · · · , k). Therefore, we expect to have

N = N1 +N2 + · · · +Nk (charge conservation equality), (1.5)

EN ≥ EN1 +EN2 + · · · +ENk
(energy conservation inequality).(1.6)

Note that (1.6) is read as an energy conservation relation since possible

extra energy may be needed for the substances or constituents of energies

EN1 , EN2 , · · · , ENk
to form a bound state or composite particle, of energy

EN , and, as a result, the composite particle may carry more energy than the

sum of the energies of its substances or constituents. Hence we collectively
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call the above two relations “the Substantial Inequality” which spells out a

first kind of topological growth law describing how energy and topology split

in a general minimization process. The importance of this inequality is that

it characterizes the situation when concentration occurs for a minimizing

sequence. In other words, the charge-energy splitting above is nontrivial

(k ≥ 2) for a certain charge N if and only if concentration fails there.

To see how (1.5) and (1.6) can be used to quickly deduce an existence

theorem for the Faddeev minimization problem (1.4) in 3 dimensions, we

recall the topological lower bound

E(n) ≥ C|Q(n)|3/4 (1.7)

established by Vakulenko and Kapitanski77 where C > 0 is a universal

constant. Hence EN > 0 for any N 6= 0.

Define

S = {N ∈ Z\{0} | the Faddeev Problem (1.4) has a solution at N}. (1.8)

The Faddeev Knot Problem asks whether or not there holds S = Z. As a

first step toward this question, we have

Theorem 1.1. The set S is not empty.

The proof48 amounts to establishing the Substantial Inequality for the

Faddeev energy (1.2) and noting that if S is empty, then the splitting ex-

pressed in (1.5) and (1.6) will continue forever, which contradicts the finite-

ness and positiveness of EN for any N .

With (1.5), we can learn more about the soluble set S. For example,

choose N0 ∈ Z \ {0} so that

EN0 = min{EN |N ∈ Z \ {0}}. (1.9)

Then we must have N0 ∈ S because a nontrivial splitting given in the

Substantial Inequality will be impossible by the definition of N0. Thus we

can state48

Theorem 1.2. The least energy point in the Faddeev energy spectrum

{EN |N ∈ Z \ {0}} is attainable, or N0 ∈ S.

More knowledge about the set S can be deduced from the Substantial

Inequality after we realize that the fractional exponent 3/4 in the lower

bound (1.7) is in fact sharp by establishing48 the sublinear energy upper

bound

EN ≤ C1|N |3/4, (1.10)
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where C1 is a universal positive constant (cf.39 for some estimates for the

value of C1), which enables us48 to obtain

Theorem 1.3. The set S is an infinite subset of Z.

Here is a quick proof of the theorem. Otherwise assume that S is finite.

Set N0 = max{N ∈ S} and let N0 ∈ S be such that EN0 = min{EN |N ∈
S}, as defined earlier. Taking repeated decompositions if necessary, we may

assume that all the integers N1, N2, · · · , Nk in (1.5) and (1.6) are in S
already. Hence |N1|, |N2|, · · · , |Nk| ≤ N0. Thus, in view of (1.5), we have

N ≤ kN0; in view of (1.6), we have EN ≥ kEN0 . Consequently, EN ≥
(EN0/N

0)N , which contradicts (1.10) when N is sufficiently large. Hence,

the assumption that S is finite is false.

In the subsequent sections, we describe some new development on the

existence of the Faddeev knots. In the next section, we show the existence

of the Faddeev energy minimizers at the unit Hopf charge Q = ±1 and

illustrate how to use the Substantial Inequality (1.5)–(1.6) and a suitable

estimate on the upper bound on E1 to arrive at a proof. In Section 3,

we emphasize that relations given by (1.7) and (1.10) spell out a second

kind of topological growth law which is seen to be fractionally-powered

and universal in 3 dimensions and we discuss it in the context of other,

well-known, topological and geometric growth laws in field theory. We also

recall some recent studies on knot energies and knot invariants in knot

theory community. In Section 4, we extend the Faddeev knot energy into

general Hopf dimensions so that the configuration maps are from R4n−1 into

S2n. We are motivated from two considerations: First, in general dimen-

sions, we will be able to achieve a deeper understanding on the fractional

power in such topological growth law and single out its universal structures.

Secondly, theoretical physics not only thrives in but also needs spaces of

higher dimensions,34,63,84 and a study of the knot energy of the Faddeev

type in higher dimensions will be of interest. In Section 5, we present the

fractionally-powered universal topological growth law in its most general

form. In Section 6, we conclude by commenting on some future issues.

2. Faddeev Knots at Unit Charge

For the Faddeev Knot Problem, it has long been anticipated that the Fad-

deev energy (1.2) should attain its infimum at the unit charge N = ±1.

Indeed, the numerical solutions of Battye and Sutcliffe9,10 indicate that E1

is the least positive energy point for the evaluated Faddeev energy for the
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Hopf number from one to eight (more recent numerical work by Sutcliffe on

the Faddeev knots of higher Hopf numbers is reported in76). Then, using

the Substantial Inequality, we see that E1 would be the least energy point

among the entire Faddeev energy spectrum. Consequently, by Theorem 1.2,

E1 is attainable. However, a rigorous proof of this fact along such a line has

been elusive because it is difficult to establish that E1 is indeed the least

positive energy point.

Using the classical Hopf map, Ward first estimated78 that for the Fad-

deev energy (1.2) the energy E1 has the upper estimate

E1 ≤ 32
√

2π2. (2.1)

For more details, see.52

Next, it can be shown52 that the Vakulenko–Kapitanski lower bound

(1.7) has the explicit form

E(n) ≥ 33/88
√

2π2|Q(n)|3/4. (2.2)

See also.47,67 Combining (2.1), (2.2), and the Substantial Inequality (1.5)–

(1.6), we have52

Theorem 2.1. For the Faddeev energy (1.2), the energy E±1 is attainable.

Here is a quick proof. Suppose that E1 is not attainable. Then in the

minimization process for E1 concentration does not occur and there holds

the nontrivial energy splitting in view of the substantial inequality: E1 ≥
EN1 + · · · + ENk

, 1 = N1 + · · · + Nk, Ns ∈ Z \ {0}, s = 1, · · · , k with

k ≥ 2. Since each ENs > 0, we see from the fact E1 = E−1 that Ns 6= ±1

for s = 1, · · · , k. Hence, one of the integers, N1, · · · , Nk, must be an odd

number. Assume that N1 is odd. Then |N1| ≥ 3. Of course, |N2| ≥ 2.

Therefore we are led to

32
√

2π2 ≥ E1 ≥ EN1 +EN2 ≥ 33/88
√

2π2(33/4 + 23/4), (2.3)

which is a contradiction and the proof of the theorem follows.

3. Growth Law Perspectives

We have seen that the fractionally-powered energy-topology growth law of

the Faddeev model gives rise to a series of important consequences to the

formation of knots and deserves refreshed close attention and study. In,50

we showed that the growth law

EN ∼ |N |3/4 (3.1)
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for the Faddeev knot energy is universal in the sense that the topological

growth factor |N |3/4 may be proven to stay unaffected by the fine struc-

ture change of the energy. For example, when the L2-gradient term in the

Faddeev energy (1.2) is replaced by an Lp-gradient term so that the total

energy is of the form

E(n) =

∫

R3

{ 3∑

j=1

|∂jn|p +
1

2

3∑

j,k=1

|Fjk(n)|2
}

dx, (3.2)

the asymptotic growth law (3.1) still holds provided that the power p sat-

isfies 1 < p < 12/5.

Note that the fractional-exponent topological growth law of the type

(3.1) is uncommon in quantum field theory models. Indeed, most growth

laws seen so far are linear, instead of being sublinear. As a comparison, it

may be instructive to recall some well known problems.

Instantons. Consider an SU(2)-bundle over the standard 4-sphere

(S4, g) (g is the metric of S4). The energy (action) functional governing

an su(2)-valued gauge connection A is defined by

E(A) = −
∫

S4

Tr(FA ∧ ∗FA), (3.3)

where ∗ is the Hodge dual induced from g and FA = dA + A ∧ A is the

curvature. One is interested in the global minimizers of (3.3) among the

topological class that the associated second Chern or first Pontryagin in-

variant of the curvature is an integer,

c2(FA) = p1(FA) = − 1

8π2

∫

S4

Tr(FA ∧ FA) = N, (3.4)

where N ∈ Z. It is well known that for (3.3) subject to (3.4) there holds

the following linear topological energy lower bound1,8,65,82

E(A) ≥ 8π2|N |. (3.5)

Monopoles. Use the above notation and consider an SU(2)-bundle over

R3. Let φ be a scalar field which lies in the adjoint representation of SU(2).

The connection A induces the gauge-covariant derivativeDAφ = dφ+[A, φ].

The Yang–Mills–Higgs monopole energy may be written as

E(A, φ) =

∫

R3

{
− 1

2
Tr(FA ∧ ∗FA) − 1

2
Tr(DAφ ∧ ∗DAφ) + ∗λ

8
(|φ|2 − 1)2

}

(3.6)

where λ ≥ 0 is a constant and φ obeys the boundary condition |φ(x)| → 1

as |x| → ∞. Therefore, near infinity of R3, we may view φ as a map from S2
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into SU(2) modulo U(1). Since SU(2)/U(1) ≈ S2, φ may be represented

by an element in the homotopy group π2(S
2) = Z, which is an integer. This

integer, say N , is called the monopole number and can be represented by

the integral

N =
1

4π

∫

R3

Tr(DAφ ∧ FA). (3.7)

When the monopole energy (3.6) is subject to the topological constraint

(3.7), there holds the lower bound43,65

E(A, φ) ≥ 4π|N |, (3.8)

which is again linear.

Vortices. The formulation is similar to that of monopoles. Let ξ be a

complex line bundle over the Riemann surface S. Use u to denote a section

ξ → S. If A is a real-valued (Abelian) connection 1-form, then DAu =

du − iAu defines an induced connection and FA = dA is the curvature 2-

form. The Hamiltonian density H of the Abelian Higgs theory is written

as

H(u,A) =
1

2
∗ (FA ∧ ∗FA) +

1

2
∗ (DAu ∧ ∗DAu) +

λ

8
(1 − |u|2)2, (3.9)

where λ > 0. We are to find the global minimizers of the energy

E(u,A) =

∫

S

H(u,A) dV, (3.10)

subject to the topological constraint

c1(ξ) =
1

2π

∫

S

FA = N, (3.11)

where c1(ξ) is the first Chern class of the line bundle and N is a given

integer. In view of the procedure of Bogomol’nyi,12 it can be shown that

there holds the topological energy lower bound43

E(u,A) ≥ min{1, λ}π|N |. (3.12)

Blackholes. Consider an isolated blackhole of mass mBH > 0 whose

spacetime metric is known to be given by the Schwarzschild line element in

terms of the spherical coordinates (θ, φ, ρ) as

ds2 =

(
1 − 2GmBH

ρ

)
dt2 −

(
1 − 2GmBH

ρ

)−1

dρ2 − ρ2(dθ2 + sin2 θ dφ2),

(3.13)

where G is the Newton constant. It can be checked that the spatial slice at

any fixed t has the property that its second fundamental form vanishes and
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that its ADM mass7 is the same as the blackhole mass mBH. In this case,

the singular surface or the event horizon, Σ, of the blackhole is a sphere of

radius ρs = 2GmBH whose surface area has the value

Area(Σ) = 4πρ2
s = 16πG2m2

BH. (3.14)

The Penrose Conjecture62 states that the total energy E of the spacetime,

which is a more general concept than the ADM mass, is bounded from

below by the total surface area of its apparent horizon Σ, which coincides

with the event horizon in the case of a Schwarzschild blackhole, by

16πG2E2 ≥ Area(Σ). (3.15)

In the special case when the second fundamental form of the spatial slice

vanishes, hence the total momentum is zero and the total gravitational

energy reduces to the ADM mass, the relation (3.15) becomes

16πG2m2
ADM ≥ Area(Σ), (3.16)

which is referred to as the Riemannian Penrose Inequality, for which the

lower bound may be saturated only in the Schwarzschild limit.14–16,40,41

These growth laws are geometrical rather than topological.

Ideal Knots. It has been an interesting question whether the energy

infimum of a suitably defined knot energy evaluated over a given knot type

may be used as a knot invariant. Indeed, Moffat56 articulated to use the

minimum knot energy as a new type of invariant for knots and links, fur-

ther emphasized that any knot or link may be characterized by an “energy

spectrum” – a set of positive real numbers determined solely by its topol-

ogy, and proposed that the lowest energy provides a possible measure of

knot or link complexity. Katritch et al45 approached knot identification

by considering the properties of specific geometric forms of knots which

are defined as ideal so that for a knot with a given topology and assem-

bled from a tube of uniform diameter, the ideal form is the geometrical

configuration having the highest ratio of volume to surface area. Equiva-

lently, this amounts to determining the shortest piece of tube that can be

closed to form the knot. They reported their results of computer simula-

tions showing a linear relationship between the length-to-diameter ratio,

or the ropelength energy, and the (averaged) crossing number, of the knot

and indicating the practicality of using ropelength energy to detect knot

type. Buck18 used the minimum ropelength energy of a knot to measure the

complexity of the knot conformation and investigated the reported linear

relationship between ropelength energy and the average crossing number

of knots. He showed that a linear relationship cannot hold in general and
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the rope length required to tie an N -crossing knot or link varies at least

between N3/4 and N . Canterella et al19 further showed that for any power

3/4 ≤ p ≤ 1, there are infinite families of N -crossing knots and links which

realize the minimum ropelength energy asymptotic relationship E ∼ N p –

that is, for each p, there are families of N -crossing knots and links whose

minimum ropelength energy and p-powered crossing number ratio, E/N p,

remains bounded from below and above as N → ∞. The common feature

of these studies on the ideal or canonical conformations and complexity of

knots and links is that they all originate from diagrammatic considerations

of knotted space curves. Besides, it is often hard to obtain growth laws

relating the knot energy and knot invariant in a sharp form. For example,

for a link type with minimum crossing number N (topology) and minimum

ropelength LN (energy), the estimate

(4πN/11)3/4 ≤ LN ≤ 24N2 (3.17)

was obtained in,20 in which the left-hand side and right-hand side are quite

far apart for large values of N . See17,31,33,37,38,44,46,57,60,61,74 for other stud-

ies on various energetic and topological characteristics of diagrammatic

knots.

4. Knot Energy in General Hopf Dimensions

Recall that the integral representation of the Hopf invariant by J. H. C.

Whitehead81 of the classical fibration S3 → S2 can be extended to the

general case of the fibration S4n−1 → S2n. More precisely, let u : S4n−1 →
S2n (n ≥ 1) be a differentiable map. Then there is an integer representation

of u in the homotopy group π4n−1(S
2n), say Q(u), called the generalized

Hopf index of u, which has a similar integral representation as follows. Let

Ω be a volume element of S2n so that

|S2n| ≡
∫

S2n

Ω (4.1)

is the total volume of S2n and u∗ the pullback map Λ(S2n) → Λ(S4n−1)

(a homorphism between the rings of differential forms). Since u∗ com-

mutes with d, we see that du∗(Ω) = 0; since the de-Rham cohomology

H2n(S4n−1,R) is trivial, there is a (2n − 1)-form v on S4n−1 so that

dv = u∗(Ω). Of course, the normalized volume form Ω̃ = |S2n|−1Ω gives

the unit volume and ṽ = |S2n|−1v satisfies dṽ = u∗(Ω̃). Since Ω̃ can be

viewed also as an orientation class, Q(u) may be represented as36,42

Q(u) =

∫

S4n−1

ṽ ∧ u∗(Ω̃) =
1

|S2n|2
∫

S4n−1

v ∧ u∗(Ω). (4.2)



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

270 F. Lin and Y. Yang

The conformal invariance of (4.2) enables us to come up with the Hopf

invariant, Q(u), for maps, u, from R4n−1 to S2n which approach fixed di-

rections at infinity, as

Q(u) =
1

|S2n|2
∫

R4n−1

v ∧ u∗(Ω), dv = u∗(Ω). (4.3)

With the above preparation, we introduce the generalized Faddeev knot

energy over R4n−1 as

E(u) =

∫

R4n−1

{
|du|2 +

1

2
|u∗(Ω)|2

}
dx, (4.4)

and extend the Faddeev Knot Problem (1.4) into the form

EN ≡ inf{E(u) |E(u) <∞, Q(u) = N}, N ∈ Z. (4.5)

Theorem 4.1. The generalized Faddeev energy (4.4) of a finite-energy map

u and its Hopf invariant (4.3) are related by the inequality

E(u) ≥ C(n)|Q(u)| 4n−1
4n , (4.6)

where the constant C(n) in (4.6) has the explicit value

C(n) = 2(2n− 1)(2[4n− 3])−
(4n−3)
2(2n−1) (2n)

1
2(2n−1) (c0|S2n|2) 4n−1

4n . (4.7)

Here the constant c0 in (4.7) is the best constant in the Sobolev inequality

c0‖f‖q ≤ ‖∇f‖2 over R4n−1 with q satisfying 1/q = 1/2 − 1/(4n− 1) =

(4n− 3)/2(4n− 1), given by the expression

c0 = ([4n− 1][4n− 3])
1
2

(
ω4n−1

Γ(2n− 1
2 )Γ(2n+ 1

2 )

Γ(4n− 1)

) 1
(4n−1)

, (4.8)

with ωm being the volume of the unit ball in Rm.

Note that, when n = 1, we recover (2.2).

5. The Universal Growth Law

The importance of the growth laws relating knot energy and knot invariant

prompts us to carry out a more thorough investigation. As a starting point,

we consider the energy

Ep(u) =

∫

R4n−1

{
|du|p +

1

2
|u∗(Ω)|2

}
dx, (5.1)

which generalizes (4.4). Our first goal is to see how the exponent p affects

the lower bound (4.6)–(4.7). We have
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Theorem 5.1. Suppose the exponent p in the knot energy (5.1) lies in the

range

1 < p <
4n(4n− 1)

4n+ 1
. (5.2)

Then there holds the universal fractionally-powered topological lower bound

Ep(u) ≥ C(n, p)|Q(u)| 4n−1
4n , (5.3)

where the positive constant C(n, p) may be explicitly expressed as

(c0|S2n|2) 4n−1
4n (2n)

p
2(4n−p) (4n− p) · f(n, p), (5.4)

where f(n, p) =

(
4n

(4n−1)(8n−p)−p(4n+1)

) (4n−1)(8n−p)−p(4n+1)
8n(4n−p)

.

Note. (i) In the special case when p = 2, (5.4) reduces to (4.7), namely,

C(n, 2) = C(n), as expected. (ii) The most restrictive range of p, as stated

in (5.2), occurs at the bottom dimension n = 1. In this situation, we have

1 < p < 12/5 as mentioned earlier. When n is larger, the range of p becomes

bigger quickly. (iii) At the bottom dimension n = 1, an important choice

for the Lp-gradient term is p = 3 which is based on a conformal invariance

consideration. known to arise in the so-called Nicole type models in particle

physics.2,3,58,66,80 In,6 the conformal invariance is designated directly on the

Skyrme term. These cases are not covered in our range and deserve further

investigation in 3 and higher dimensions.

See below.

Another, more surprising, property is that we can derive a topological

upper bound of the form (1.10) in which the constant C1 is independent

of N but depends only on the details of the energy density when the knot

energy is taken to be the most general form

E(u) =

∫

R4n−1

H(∇u) dx. (5.5)

Here the energy density function H is only assumed to be continuous with

respect to its arguments and satisfies the natural condition H(0) = 0. We

have

Theorem 5.2. Let E be defined by (5.5). Then for any given integer N

which may be realized as the value of the Hopf invariant, i.e., Q(u) = N

for some differentiable map u : R4n−1 → S2n, and EN defined as EN =

inf{E(u)|E(u) < ∞, Q(u) = N}, we have the universal topological upper

bound

EN ≤ C|N | 4n−1
4n , (5.6)
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where C > 0 is a constant independent of N .

A proof of the above theorem can be found in50 under the oversimpli-

fied assumption that the Hopf invariant may assume any integer values. In

particular, our proof relied on using that the smallest positive Hopf num-

ber is 1. On the other hand, it is well known that the Hopf invariant13,42

behaves rather differently in higher dimensions: (i) For n = 1, 2, 4, there

are maps S4n−1 → S2n of the Hopf invariant 1. In fact, there are maps

with the Hopf invariant equal to any integer. (ii) Conversely, if there is a

map S4n−1 → S2n of the Hopf invariant 1, then n = 1, 2, 4. This statement

is known as Theorem of Adams and Atiyah.4,5,42 (iii) For any n, there is

always a map S4n−1 → S2n with the Hopf invariant equal to any even

number. A modified complete proof of this theorem will appear elsewhere.

In summary, we have seen that for maps from R4n−1 into S2n governed

by the Faddeev type energy and stratified by the Hopf invariant assuming

an integer value N , there holds the sharp universal growth law

EN ∼ N
4n−1
4n , (5.7)

which has profound implication for knotted structures as energy minimiz-

ers to exist and is independent of the detailed properties of the energy

functional.

6. Overlook

Of course, the ultimate goal of our study is to develop an existence theory

for the Faddeev type knot problems.

Among these problems, an important and useful setting is when we

consider the existence problem for maps from S4n−1 into S2n (the compact-

space setting). We can show that for any possible value N of the Hopf

invariant Q there exists an energy minimizer among the constraint class

Q = N .

The reason for the above rather strong statement to be true is quite

simple: Since we are in a compact setting, the difficulty with failure of

concentration disappears. The form of the integral representation of the

Hopf invariant and the elliptic estimates enable us to show that the Hopf

invariant is a preserved quantity in the limit of a minimizing sequence.

Although simple, this situation may be compared with the classical

study on harmonic maps, especially the result known as the Theorem of

Smith:24,72,73 Every degree N class of the homotopy group πn(Sn) = Z has

a harmonic representative for n ≤ 7. More precisely, for n = 2, the solu-

tions are known explicitly and carry minimum Dirichlet (harmonic map)
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energy;11 for 3 ≤ n ≤ 7, the energy has infimum 0 which can easily be seen

by a rescaling argument, and hence does not achieve its absolute minimum

in any class of degree N 6= 0; for n ≥ 8, the situation is not very well under-

stood. See.24 Generally speaking, minimization among a homotopy class is

a difficult issue when there is a lack of a suitable integral representation for

the class.

As described earlier, a crucial step in the proof that E1 is attainable

in the classical 3 dimensions amounts to show that the energy splitting

does not occur at the unit charge Q = 1 by using the explicit energy lower

bound obtained and a sufficiently good estimate for the energy E1. Unlike

in the Skyrme model case,25,26,48,49 such an estimate requires some careful

effort. In order to generalize this type of estimate to the higher dimensions

over R4n−1 when n = 2 and n = 4 (say), recall that the classical Hopf

map (n = 1) is defined via the fibration for which S3 is viewed as lying

in C2 and being “factored” out by unit complex multiplication to obtain

CP1 = S2, resulting in the fiber bundle S1 → S3 → S2. For n = 2, we

may view S7 as lying in H2 (quaternionic 2-space) and factor it out by unit

quaternion multiplication to get HP1 = S4, resulting in the fiber bundle

S3 → S7 → S4. For n = 4, we may use octonions instead and obtain

the fibration S7 → S15 → S8. These analogies indicate similar possible

methods for estimating E1 (when n = 2 and 4). Thus it may be hopeful to

generalize Theorem 2.1 for dimension 3 to dimensions 7 and 15 and prove

that the knot energy (4.4) for n = 2 and n = 4 attains its infimum at the

unit Hopf charge Q = ±1. In the case when n 6= 1, 2, 4, the lowest positive

Hopf charge is Q = 2 (the theorem of Adams and Atiyah4,5) and it is not

known whether E±2 is attainable.

Theorem 5.2 suggests that the lower bound expressed in (5.3)–(5.4)

may be valid for more general energy functionals than that given in (5.1).

In particular, the exponent p may be allowed to assume other values than

the confined range specified in (5.2). In this regard, an interesting model

is the Nicole model already mentioned earlier governed by the conformally

invariant energy

ENicole(u) =

∫

R4n−1

|du|4n−1 dx, u : R4n−1 → S2n. (6.1)

See2,3,58 for some study when n = 1. It is clear that p = 4n − 1 does not

satisfy (5.2) but it is not hard to establish the lower bound

ENicole(u) ≥ C(n)|Q(u)| 4n−1
4n (6.2)

for some constant C(n) > 0.
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It will be interesting to know whether the energy (5.5) may be extended

to contain a potential term which depends on the map u itself, rather than

its derivatives, so that the model may be used for the situation with a

broken vacuum symmetry. For this purpose, we consider the energy

E(u) =

∫

R4n−1

{H(∇u) + V (u)} dx. (6.3)

In applications, the potential energy density V scales differently from some

terms in the kinetic energy density H in the integrand of (6.3) so that a

critical point of (6.3) “partitions” the total energy in a form like

c1

∫

R4n−1

V (u) dx+ c2

∫

R4n−1

{some suitable terms in H(∇u)} dx

= c3

∫

R4n−1

{some other suitable terms in H(∇u)} dx, (6.4)

where the nonnegative constants c1, c2, c3 depends on n only so that c1, c3 >

0, the terms in H(∇u) on the left-hand side of (6.4) scale themselves as V ,

and the terms on the right-hand side of (6.4) scale themselves oppositely

as V . In view of (6.4) and Theorem 5.2, we see that (5.6) is still valid for

the more general energy (6.3).

It is seen that our progress made on the understanding of the topological

growth laws described here has, to some extent, paved the road to the

development of an existence theory for knotted structures governed by the

Faddeev energy in general (Hopf) dimensions.

To end this talk, we would like to highlight and dramatize the univer-

sal relation (5.7) relating the knot energy and knot topology through the

Faddeev quantum field theory as

Physics = Topology,

which supplements the Einstein equation, Geometry = Physics, in General

Relativity, and reiterates the theme of this conference.
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We establish an isomorphism between the ring of translation invariant symmet-
ric polynomials in n variables and the full polynomial ring in n − 1 variables,
over any field of characteristic 0. In addition, we give a counterexample to a
conjecture of Haldane3 regarding the structure of translation invariant symmet-
ric polynomials. Our motivation is the fractional quantum Hall effect, where
translation invariant (anti)symmetric complex polynomials in n variables char-
acterize n-electron wavefunctions.

1. Introduction

A polynomial p(z1, . . . , zn) is translation invariant iff for all c we have

p(z1 + c, . . . , zn + c) = p(z1, . . . , zn)

Working over C, such a polynomial might yield a quantum mechanical

description of n particles in the plane. This is the nature of fractional

quantum Hall states,3 where in addition our polynomials must be sym-

metric or antisymmetric. Thus we are led to the study of translation invari-

ant (anti)symmetric polynomials. Antisymmetric polynomials fortunately

do not need special treatment, as they are merely symmetric polynomials

multiplied by the Vandermonde determinant
∏

i<j(zi − zj).

In this elementary note we present two results regarding the structure

of translation invariant symmetric polynomials. Our first result is a sim-

ple description of the ring of all such polynomials. Our second result is a

counterexample to Haldane’s conjecture that every homogeneous transla-

tion invariant symmetric polynomial satisfies a certain physically convenient

property. More precisely, to each symmetric polynomial p one associates a

certain finite poset B(p); Haldane conjectures that if p is homogeneous
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and translation invariant, then B(p) has a maximum. We prove the con-

jecture for polynomials in fewer than four variables, indicate how to obtain

counterexamples, and discuss whether a weakened version of the conjecture

holds.

2. The ring of translation invariant symmetric polynomials

Let R ⊂ F [z1, . . . , zn] be the algebra of translation invariant symmet-

ric polynomials over a field F of characteristic 0, and let XSn ⊂ X =

F [x1, . . . , xn] be the algebra of symmetric polynomials in x1, . . . , xn. Our

theorem says that R written in center of mass coordinates becomes XSn

modulo one degree of freedom.

Theorem 2.1. The homomorphism σ : XSn → R given by σ(xi) = zi−zavg
is a surjection with kernel (x1 + · · · + xn), where zavg = 1

n

∑n
j=1 zj .

An elementary proof of this theorem occupies section 4.

Since charF = 0, any symmetric polynomial in X can be writ-

ten uniquely as a polynomial in the power sum symmetric polynomials

xk
1 + · · · + xk

n, where 1 ≤ k ≤ n. In other words, the map

θ : F [w1, . . . , wn] → XSn , θ(wk) = xk
1 + · · · + xk

n

is an isomorphism of algebras. Note that we could define a different iso-

morphism θ using elementary symmetric polynomials or complete homo-

geneous symmetric polynomials. In any case, Theorem 2.1 implies that

σθ : F [w1, . . . , wn] → R is a surjection with kernel (w1).

Corollary 2.1. The map φ : F [w2, . . . , wn] → R given by

φ(wk) = (z1 − zavg)
k + · · · + (zn − zavg)

k

is an isomorphism of algebras.

Now let Rd be the vector space of all polynomials in R which are homo-

geneous of degree d. Since φ(wk) is homogeneous of degree k, the isomor-

phism φ yields a basis for Rd, namely all

wλ =
n∏

k=2

φ(wk)λk (1)

where λ is any partition of d in which the integer k appears λk times, with

λ1 = 0. Simon et al.2 prove directly that the wλ form a basis of Rd, whereas

we have deduced this fact from the ring structure ofR. Although2 defines wλ
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using elementary symmetric polynomials rather than power sum symmetric

polynomials, this difference is purely cosmetic. Since the dimension md of

Rd equals the number of partitions of d into integers between 2 and n, it is

easy to see that a generating function for md is given by

∞∑

d=0

mdt
d =

n∏

s=2

1

1 − ts

where m0 is defined to be 1.

Finally, we describe the vector space A ⊂ Z of translation invariant

antisymmetric polynomials. It is well known that any antisymmetric poly-

nomial p can be written uniquely as ∆q, where q is a symmetric polynomial

and ∆ is the Vandermonde determinant
∏

i<j(zi − zj). Since ∆ is transla-

tion invariant, we have A = ∆R, which defines a vector space isomorphism

from R to A. Note that ∆ is homogeneous of degree n(n− 1)/2.

3. Haldane’s conjecture

Every symmetric polynomial is a unique linear combination of symmetrized

monomials, which physicists like to call boson occupation states. We identify

symmetrized monomials with multisets of natural numbers:

[l1, . . . , ln] =
∑

σ∈Sym(n)

zl1
σ(1) · · · z

ln
σ(n)

For instance, the multiset [51, 02] = [5, 0, 0] corresponds to the symmetrized

monomial 2(z5
1 + z5

2 + z5
3). Squeezing a symmetrized monomial [l1, . . . , ln]

means decrementing li and incrementing lj , for any pair of indices i, j such

that li > lj + 1. The set of symmetrized monomials becomes a poset under

the squeezing order: for a, b ∈ B(p), put a ≤ b iff a can be obtained from b by

repeated squeezing. For a symmetric polynomial p, let B(p) consist of every

symmetrized monomial whose coefficient in p is nonzero. We view B(p) as

a poset under the squeezing order and refer to it as the squeezing poset of

p.

Definition 3.1. A symmetric polynomial p is Haldane if B(p) has a max-

imum.

Conjecture 3.1 (Haldane). Every translation invariant homogeneous

symmetric polynomial is Haldane.

Remark 3.1. Since squeezing moves preserve homogeneous degree, every

Haldane polynomial is homogeneous. Many homogeneous symmetric poly-
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nomials are not Haldane, such as [3, 3, 0] + [4, 1, 1], but these might not be

translation invariant.

Prop 3.1. Haldane’s conjecture holds for polynomials of three or fewer

variables.

Proof. Since Rd
1 is empty for d > 0, Haldane’s conjecture holds trivially

for n = 1. For n = 2, every symmetrized monomial is of the form [a, b] with

a + b = d. Such symmetrized monomials are comparable with respect to

the squeezing order, so Haldane’s conjecture is automatic for n = 2.

The case n = 3 requires a bit more work. Define an algebra homomor-

phism τ : F [z1, . . . , zn] → F [z1, . . . , zn, t] by

τ(p)(z1, . . . , zn, t) = p(z1 + t, . . . , zn + t)

so that p is translation invariant iff τ(p) = p. Define a family of linear maps

τi : F [z1, . . . , zn] → F [z1, . . . , zn] by

τ(p) = τ0(p) + τ1(p)t+ . . .+ τd(p)t
d

so that p is translation invariant iff τi(p) = 0 for all i > 0. It is easily

checked that

τ1([a, b, c]) = a[a− 1, b, c] + b[a, b− 1, c] + c[a, b, c− 1]

for all a, b, c > 0. Now suppose [a, b, c] is a maximal element of the squeezing

poset of some p ∈ Rd
3 , with a ≥ b ≥ c > 0. Then [a + 1, b, c − 1] and

[a, b + 1, c − 1] are not in B(p). The above equation then implies that the

coefficient of [a, b, c] in p equals c times the coefficient of [a, b, c − 1] in

τ1(p). Thus the coefficient of [a, b, c − 1] in τ1(p) is nonzero, contradicting

our assumption that p is translation invariant. We conclude that every

maximal element of B(p) is of the form [a, b, 0], where a+ b = d. Since any

two such elements are comparable, it follows that B(p) has a maximum.

Thus Haldane’s conjecture holds in the case n = 3.

Any two symmetrized monomials written as weakly decreasing se-

quences of natural numbers can be compared lexicographically. The lex-

icographic order on symmetrized monomials linearizes the squeezing order.

Let R = Rd
n be the vector space of translation invariant symmetric homo-

geneous degree d polynomials in n variables, and let L = Ld
n be the set of

lexicographic maxima of squeezing posets of polynomials in R. Note that

|Ld
n| ≤ dimRd

n.
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Lemma 3.1. If Ld
n is not linearly ordered with respect to squeezing, then

some polynomial in Rd
n is not Haldane.

Proof. By the definition of Ld
n there exist pi ∈ Rd

n such that mi is the

lexicographic maximum of B(pi), where i = 1, 2. W.l.o.g. assume m1 is

lexicographically bigger than m2, and let ci be the coefficient of m2 in pi.

Then for any scalar c, the polynomial q = p1 + cp2 ∈ Rd
n has m2 coefficient

equal to c1 + cc2. Provided that c 6= −c1/c2, the squeezing poset of q

contains both m1 and m2. Since m1 is the lexicographic maximum of B(q),

and the lexicographic order refines the squeezing order, m1 is a maximal

element of B(q) with respect to the squeezing order. Since m1 and m2

are incomparable, we conclude that B(q) does not have a maximum with

respect to the squeezing order, i.e. q is not Haldane.

It is a straightforward programming exercise to compute Ld
n using the

basis for Rd
n given by formula 1. We find that Ld

4 is linearly ordered with

respect to squeezing for d ≤ 13. Alas,

L14
4 = {[14, 0, 0, 0], [12, 2, 0, 0], [11, 3, 0, 0], [10, 4, 0, 0],

[9, 5, 0, 0], [8, 6, 0, 0], [8, 4, 2, 0], [7, 7, 0, 0]}
is not linearly ordered because [8, 4, 2, 0] and [7, 7, 0, 0] are incomparable.

Therefore by Lemma 3.1 some q ∈ R14
4 is not Haldane. It is a straightfor-

ward programming exercise to construct such a q by following the proof of

Lemma 3.1: one computes the basis of Rd
n given by equation 1 and solves

two systems of linear equations. We get

q =3[8, 4, 2, 0] − 3[8, 4, 1, 1] − 3[8, 3, 3, 0] + 6[8, 3, 2, 1] − 3[8, 2, 2, 2]

+ 3[7, 7, 0, 0] − 42[7, 6, 1, 0] + 46[7, 5, 2, 0] + 80[7, 5, 1, 1] − 22[7, 4, 3, 0]

− 188[7, 4, 2, 1] + 112[7, 3, 3, 1] + 8[7, 3, 2, 2] + 77[6, 6, 2, 0] + 70[6, 6, 1, 1]

− 182[6, 5, 3, 0] − 700[6, 5, 2, 1] + 112[6, 4, 4, 0] + 168[6, 4, 3, 1] + 1078[6, 4, 2, 2]

− 728[6, 3, 3, 2] + 5[5, 5, 4, 0] + 1072[5, 5, 3, 1] + 246[5, 5, 2, 2] − 722[5, 4, 4, 1]

− 2976[5, 4, 3, 2] + 1808[5, 3, 3, 3] + 1805[4, 4, 4, 2] − 1130[4, 4, 3, 3]

Prop 3.2. The polynomial q is a counterexample to Haldane’s conjecture.

Proof. Observe that [8, 4, 2, 0] and [7, 7, 0, 0] are the maximal elements of

B(q), which is depicted in figure 3 (with arrows pointing from smaller to

bigger elements). One checks by computer that q is translation invariant.

Therefore, being symmetric and homogeneous, q is a counterexample to

Haldane’s conjecture.
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[7,7,0,0]

[8,4,2,0]

[8,4,1,1] [8,3,3,0]

[7,6,1,0]

[7,5,2,0]

[8,3,2,1]

[8,2,2,2]

[7,5,1,1] [7,4,3,0] [6,6,2,0]

[6,5,3,0][6,6,1,1][7,4,2,1]

[7,3,3,1] [6,5,2,1] [6,4,4,0]

[5,5,4,0][6,4,3,1][7,3,2,2]

[6,4,2,2] [5,5,3,1]

[5,4,4,1][5,5,2,2][6,3,3,2]

[5,4,3,2]

[4,4,4,2] [5,3,3,3]

[4,4,3,3]

Fig. 3.1. Hasse diagram of B(q)

Remark 3.2. We hope that Rd
n nevertheless has a basis of Haldane

polynomials. Computer evidence suggests that |Ld
n| = dimRd

n. Letting

Ld
n = {l1, . . . , lk}, we could then obtain a special basis {p1, . . . , pk} of Rd

n

satisfying B(pi)∩Ld
n = {li}. Perhaps {p1, . . . , pk} would be a Haldane basis

or could be used to construct one.

4. Proof of Theorem 2.1

Let ZSn ⊂ Z = F [z1, . . . , zn] be the algebra of symmetric polynomials, and

let ZF ⊂ Z be the algebra of translation invariant polynomials, so that we

are studying R = ZSn ∩ ZF . Let X = F [x1, . . . , xn], and let

σ : X → ZF , σ(xi) = zi − zavg

be the map from the main theorem. Our mission is to show that σ(XSn) =

R and kerσ = (xavg). Clearly σ is Sn-equivariant, implying σ(XSn) ⊆ R.

For the reverse inclusion, given any p(z1, . . . , zn) ∈ R, translation invariance

yields

p(z1, . . . , zn) = p(z1 − zavg, . . . , zn − zavg) = σ(p(x1, . . . , xn))
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Thus σ(XSn) = R.

It remains only to show that kerσ = (xavg). We factor σ into two maps

which are easier to study.

X τ
//

σ

##

Y π
// ZF

Let Y = F [y1, . . . , yn], and define τ : X → Y , π : Y → ZF by

τ(xi) =
1

n

n−1∑

j=0

(n− 1 − j)yi+j

π(yi) = zi − zi+1

It is easy to check that the diagram commutes:

πτ(xi) =
1

n

n−1∑

j=0

(n− 1 − j)(zi+j − zi+j+1)

=
1

n


(n− 1)zi −

∑

j 6=i

zj




= zi − zavg

Thus σ = πτ , so that we need only show τ−1(kerπ) = (xavg).

First we check that τ is an isomorphism. Let τ̂ : Fx1 + · · · + Fxn →
Fy1 + · · ·+Fyn be the linear map which extends to τ : X → Y , and let M

be the matrix of τ̂ with respect to the evident bases. From the definition of

τ we see that M is the n × n circulant matrix whose first column is given

by the vector

v =
1

n
(n− 1, n− 2, . . . , 0)

Then M> is the circulant matrix whose first row is v. Since charF = 0,

the entries of v form a strictly decreasing sequence of nonnegative reals.

Therefore by Theorem 3 of,1 the matrix M> is nonsingular. Hence M is

nonsingular, showing that τ is an isomorphism via the following observation.

Observation 4.1. Suppose f : F [a1, . . . , an] → F [b1, . . . , bn] is a homo-

morphism of polynomial rings which restricts to a linear map

f̂ : Fa1 + · · · + Fan → Fb1 + · · · + Fbn

Then f is an isomorphism of algebras iff f̂ is an isomorphism of vector

spaces.
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Proof. Exercise in applying the universal property of polynomial rings.

Now we complete the final step of the proof of Theorem 2.1, which is to

show that τ−1(kerπ) = (xavg). By the lemma below, kerπ = (yavg). Since

τ(xavg) = (n−1)n
2 yavg, and τ is an isomorphism, we have τ−1((yavg)) =

(xavg). Thus we are done, but for a final lemma.

Lemma 4.1. kerπ = (yavg), where π : Y → ZF is defined by π(yi) =

zi − zi+1.

Proof. Since π(yavg) = 0, we have (yavg) ⊆ kerπ. For the reverse inclusion,

let α = (α1, α2, α3) be the chain map depicted below

0 // (yavg) // Y
π // ZF // 0

0 // (y1)

α1

OO

// Y

α2

OO

π′
// Y ′

α3

OO

// 0

where Y ′ = Y/(y1) = F [y2, . . . , yn], π′ is the quotient projection, α1 is

the restriction of α2 to (y1), α2 sends y1 to yavg while fixing the remaining

variables, α3(yi) = zi − zi+1, and the unlabelled nonzero maps are inclu-

sions. We wish to show that the upper chain is exact. Since the lower chain

is obviously exact, it suffices to check that α is a chain isomorphism.

Since the diagram commutes, it suffices to show that each component

of α is an isomorphism. By Observation 4.1, α2 is an isomorphism. Then

so is α1. For α3, define β : Y ′ → Y ′ by β(yi) = yi + · · · + yn , 2 ≤ i ≤ n.

Again by Observation 4.1, β is an isomorphism. Thus it suffices to show

that γ = α3β is an isomorphism. Note that γ : Y ′ → ZF sends yi to zi−z1.
For any p(z1, . . . , zn) ∈ ZF , translation invariance yields

p(z1, . . . , zn) = p(0, z2 − z1, . . . , zn − z1)

= p(0, γ(y2), . . . , γ(yn))

= γ(p(0, y2, . . . , yn))

Thus γ is surjective. Now suppose that

0 = γ(q(y2, . . . , yn)) = q(z2 − z1, . . . , zn − z1)

Then in particular q(z2−z1, . . . , zn−z1) is zero modulo (z1), implying that

q(z2, . . . , zn) = 0, showing that γ is injective. Thus γ is an isomorphism,

proving the lemma.
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The main goal of the present paper is to construct new invariants of knots with
additional structure by adding new gradings to the Khovanov complex. The
ideas given below work in the case of virtual knots, closed braids and some other
cases of knots with additional structure. The source of our additional grading
may be topological or combinatorial; it is axiomatised for many partial cases.
As a byproduct, this leads to a complex which in some cases coincides (up to
grading renormalisation) with the usual Khovanov complex and in some other
cases with the Lee-Rasmussen complex.

The grading we are going to construct behaves well with respect to some
generalisations of the Khovanov homology, e.g., Frobenius extensions. These
new homology theories give sharper estimates for some knot characteristics,
such as minimal crossing number, atom genus, slice genus, etc.

Our gradings generate a natural filtration on the usual Khovanov complex.
There exists a spectral sequence starting with our homology and converging to
the (graded version associated with) usual Khovanov homology.

1. Introduction

In the last few years, the invention of link homology (Khovanov homol-

ogy, Ozsváth-Szabó invariants, and also papers by Rasmussen, Khovanov-

Rozansky, Manolescu-Ozsváth-Sarkar-Thurston and others) brought many

constructions from algebraic topology to knot theory and low-dimensional

topology.

Such theories take a representative of a low-dimensional diagram (say,

knot diagram or Heegaard diagram of a 3-manifold) and associate a cer-

tain complex with this. The homology of this complex is independent of

the choice of representative, thus the homology defines an invariant of knot

(resp., 3-manifold, knot in a manifold). Such algebraic complexes have dif-

ferent gradings, and this allows one to construct filtrations and spectral
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sequences. The behaviour of such spectral sequences is often closely con-

nected to some topological property of knots/3-manifolds. A nice example is

the work of RasmussenRas estimating the Seifert genus from Khovanov ho-

mology and giving a simple proof of Milnor’s conjecture. Another example is

the work by K.Kawamura,Kaw who sharpened the Morton-Franks-Williams

estimate for the braiding index.

There is also an approach to estimate the minimal crossing number,

see.Ma8

We shall mainly concentrate on Khovanov homology. In a sequence of

recent papers, the author generalized Khovanov’s theory from knots in R3

to knots in arbitrary thickened 2-surfaces (up to stabilisation, giving virtual

knots (by Kauffman,KaV) or twisted knots (by Bourgoin,Bou)).

Virtual knots, besides their “knottedness” also carry some information

about the topology of the underlying surface.

Thus, it would be quite natural to take into account some topological

data to introduce into Khovanov homology to make the latter stronger.

This idea was also used in the paper by Asaeda, Przytycki, Sikora.APS We

shall discuss the interaction between the present work and the workAPS

later.

The main idea goes as follows: Assume we have a well-defined complex

made out of some knot diagram. Consider the chain spaces C(K) and the

differential ∂. It turns out that in some cases it is possible to introduce a

new grading gr that splits the differential ∂ into two parts ∂ = ∂ ′ + ∂′′ in

such a way that:

(1) ∂′ preserves the new grading, whence ∂ ′′ increases the new grading;

(2) (C, ∂′) is a well-defined complex;

(3) the homology of (C, ∂ ′) is invariant (under Reidemeister moves);

(4) there is a spectral sequence with E1 = H(C, ∂) converging to the

(graded group associated with) usual Khovanov homology (the latter

differential is taken with respect to ∂).

The new gradings have a topological nature: they correspond to coho-

mology classes.

This will guarantee that the complex is well defined. However, the grad-

ings may be of any other (say, combinatorial) nature; the only thing we

need is that for the Kauffman bracket states, there are two sorts of circles

which behave nicely with respect to the Reidemeister moves.

The latter condition guarantees not only that the complex is well de-

fined (that is, ∂′ is indeed a differential) but also the invariance under
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Reidemeister moves.

Varying this construction, one can construct further complexes with dif-

ferentials of type ∂′ + λ∂′′, where λ can be a coefficient or some operator.

The outline of the present paper is the following. In the next section, we

define the Kauffman bracket, virtual knots, and Khovanov homology (with

arbitrary coefficients) for virtual links and classical links (which actually

constitute a proper part of virtual links).

Section 3 will be devoted to our main example: categorifying the Bour-

goin invariant with the only one new grading corresponding to the first

Stiefel-Whitney class for oriented thickenings of non-orientable surfaces.

The proof of the invariance theorem is given in section 4; it indeed

contains all ingredients for the proof of the main theorem to follow in sec-

tion 5, where we have multiple gradings of various types and present more

examples.

Section 5 also contains the axiomatics for these new gradings and ex-

amples what they can be applied to: braids, cables, tangles, long knots

etc.

Section 6 devoted is to a generalisation of Khovanov’s Frobenius struc-

ture. From this point of view, one can think of Lee’s homology as a partial

case of Khovanov’s Frobenius theory as well as our new theory. As a byprod-

uct, we present yet another definition of the Khovanov theory where the

usual gradings are treated from our “dotted grading viewpoint”.

In section 7, we focus on gradings and filtrations. We discuss the Frobe-

nius construction due to Khovanov, which is then followed by spectral se-

quences, and Lee-Rasmussen invariants.

Section 8 is devoted to applications of the theory constructed and gene-

ralisations of some classical constructions in this context

Section 9 is devoted to the discussion and open questions.
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2. Preliminaries: Virtual knots, Kauffman bracket, atoms,

and Khovanov homology

We think of knot diagramsa as a collection of (classical) crossings on the

plane somehow connected by arcs, see Fig. 2.1.

Fig. 2.1. A knot diagram

Knots are such diagrams modulo Reidemeister moves, but sometimes it

happens that for a given setup of crossings we are unable to connect them

by arcs in an appropriate way; this will lead to a diagram called virtual

with “additional crossings” encircled, see Fig. 2.4.

2.1. Atoms and Knots

A four-valent planar graph Γ generates a natural checkerboard colouring of

the plane by two colours (adjacent components of the complement R2\Γ
have different colours).

This construction perfectly describes the role played by alternating di-

agrams of classical knots. Recall that a link diagram is alternating if while

walking along any component we alternate over= and underpasses. Another

definition of an alternating link diagram sounds as follows: fix a checker-

board colouring of the plane (one of the two possible colourings). Then, for

every vertex the colour of the region corresponding to the angle swept by

going from the overpass to the underpass in the counterclockwise direction

is the same.

Thus, planar graphs with natural colourings somehow correspond to

alternating diagrams of knots and links on the plane: starting with a graph

and a colouring, we may fix the rule for making crossings: if two edges share

a black angle, then the we decree the left one (with respect to the clockwise

aWe refer both to knots and links by using a generic term “knot”.
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direction) to form an overcrossing, and the right one to be an undercrossing,

see Fig. 2.2. Thus, colouring a couple of two opposite angles corresponds to

a choice of a pair of opposite edges to form an overcrossing and vice versa.

BlackBlack

Fig. 2.2. A crossing corresponding to a vertex of an atom

Now, if we take an arbitrary link diagram and try to establish the colour-

ing of angles according to the rule described above, we see that generally

it is impossible unless the initial diagram is alternating: we can just get a

region on the plane where colourings at two adjacent angles disagree. So,

alternating diagrams perfectly match colourings of the 2-sphere (think of

S2 as a one-point compactification of R2). For an arbitrary link, we may

try to take colours and attach cells to them in a way that the colours would



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

Additional Gradings in Khovanov Homology 293

agree, namely, the circuits for attaching two-cells are chosen to be those

rotating circuits, where we always turn inside the angle of one colour.

This leads to the notion of atom. An atom is a pair (M,Γ) of a 2-

manifold M and a graph Γ embedded M together with a colouring of M\Γ
in a checkerboard manner. Here Γ is called the frame of the atom, whence

by genus (resp., Euler characteristic) of the atom we mean that of M .

Note that the atom genus is also called the Turaev genus,Tu

Certainly, such a colouring exists if and only if Γ represents the trivial

Z2 homology class in M .

Thus, gluing cells to some turning circuits on the diagram, we get an

atom, where the shadow of the knot plays the role of the frame. Note that

the structure of opposite half-edges on the plane coincides with that on the

surface of the atom.

Now, we see that atoms on the sphere are precisely those corresponding

to alternating link diagrams, whence non-alternating link diagrams lead to

atoms on surfaces of a higher genus.

In some sense, the genus of the atom is a measure of how far a link

diagram is from an alternating one, which leads to generalisations of the

celebrated Kauffman-Murasugi theorem, seeIa and to some estimates con-

cerning the Khovanov homology.Ma8

Having an atom, we may try to embed its frame in R2 in such a way

that the structure of opposite half-edges at vertices is preserved. Then we

can take the “black angle” structure of the atom to restore the crossings

on the plane.

InMa0 it is proved that the link isotopy type does not depend on the

particular choice of embedding of the frame into R2 with the structure of

opposite edges preserved. The reason is that such embeddings are quite

rigid.

The atoms whose frame is embeddable in the plane with opposite half-

edge structure preserved are called height or vertical.

However, not all atoms can be obtained from some classical knots. Some

abstract atoms may be quite complicated for its frame to be embeddable

into R2 with the opposite half-edges structure preserved. However, if it is

impossible to immerse a graph in R2, we may embed it by marking artifacts

of the embedding (we assume the embedding to be generic) by small circles.

A virtual diagram is a four-valent graph on the plane with two types of

crossings: classical or (for which we mark which pair of opposite

edges form an overpass) and virtual (which are just marked by a circled

crossing).
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A virtual link is an equivalence class of virtual diagrams modulo gener-

alised Reidemeister moves. The later consist of usual Reidemeister moves

and the detour move. The detour move removes an arc virtually connecting

some points A and B (that is, having no classical crossings inside) restores

another connection between A and B with several virtual intersections and

self-intersections, see Fig. 2.3.

A

B

A

B

Fig. 2.3. The detour move

This move just means that it is inessential to indicate which curves

connect classical crossings, it is important only to know how these crossings

are paired.

Considering these diagrams modulo usual Reidemeister moves and the

detour moves (see ahead), we get what are called virtual knots. The detour

move is the move removing an arc (possibly, with self-intersections) con-

taining only virtual crossing, and adding another arc connecting the same

points elsewhere.

Virtual knots, being defined diagrammatically, have a topological inter-

pretation. They correspond to knots in thickened surfaces Sg × I with fixed

I-bundle structure (later we will also talk about oriented thickenings of

non-orientable surfaces) up to stabilisations/destabilisations. Projecting Sg
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Fig. 2.4. A virtual diagram

to R2 (with the condition, however, that all neighbourhoods of crossings

are projected with respect to the orientation, we get from a generic dia-

gram on Sg a diagram on R2: besides the usual crossings arising naturally

as projections of classical crossings, we get virtual crossings, which arise as

artefacts of the projection: two strands lie in different places on Sg but they

intersect on the plane because they are forced to do so.

Having a (virtual) knot diagram, we can smooth all classical crossings

of it in the following two ways: A : → and B : → .

Thus, for a diagram L with n classical crossings we have 2n states. Every

state is a way of smoothing all (classical) crossings. Enumerate all classical

crossings by 1, . . . , n. Then the states can be regarded as vertices of the

discrete cube {0, 1}n, where 0 and 1 correspond to the A-smoothing and

the B-smoothing, respectively. In each state we have a collection of circles

representing an unlink. We call this cube the state cube of the diagram L.

Then any for any state s we have its height β(s) being the number

of crossings smoothed negatively, α(s) = n − β(s) being the number of

crossings smoothed positively, and the number γ of closed circles.

Then the Kauffman bracket is defined as

∑

s

aα(s)−β(s)(−a2 − a−2)γ(s)−1 (2.1)

This bracket is invariant under all Reidemeister moves except for the

first one.

The normalisationX(K) = (−a)−3w(K)〈K〉, where w is the writhe num-

ber, leads to the definition of the Jones polynomial.

The Kauffman bracket satisfies the usual relation
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〈 〉 = a〈 〉 + a−1〈 〉 (2.2)

After a little variable change and renormalisation, the Kauffman bracket

can be rewritten in the following form:

〈 〉 = 〈 〉 − q〈 〉 (2.3)

with 〈©〉 = (q + q−1).

Here we consider bigraded complexes Cij with height (homological grad-

ing) i and quantum grading j; the differential preserves the quantum grading

and increases the height by 1. The height and grading shift operations are

defined as (C[k]{l})ij = C[i− k]{j − l}.
This form is used as the starting point for the Khovanov homology.

Namely, we regard the factors (q+q−1) as graded dimensions of the module

V = {1, X}, deg 1 = 1, deg X = −1 over some ring R, and the height β(s)

plays the role of homological dimension. Then, if we define the chain space

[[K]]k of homological dimension k to be the direct sum over all vertices

of β = k of V γ(s){k} (here {·} is the quantum grading shift), then the

alternating sum of graded dimensions of [[K]]k, is precisely equal to the

(modified) Kauffman bracket.

Thus, if we define a differential on [[K]] preserving the grading

and increasing the homological dimension by 1, the Euler charac-

teristic of that complex would be precisely the Kauffman bracket.

Remark 2.1. Later on, we shall not care about the normalisation of the

complexes by degree and height shifts to make their homology invariant

under the Reidemeister moves. It is done exactly as in.Kh

We have defined the state cube consisting of circles and carrying no

information how these circles interact. Turning to Khovanov homology, we

shall deal with the same cube remembering the information about the circle

bifurcation. Later on, we refer to it as a bifurcation cube.

The chain spaces of the complex are well defined. However, the problem

of finding a differential ∂ in the general case of virtual knots, is not very easy.

To define the differential, we have to pay attention to different isomorphism

classes of the chain space identified by using some local bases.

The differential acts on the chain space as follows: it takes a chain

corresponding to a certain vertex of the bifurcation cube to some chains

corresponding to all adjacent vertices with greater homological degree. That

is, the differential is a sum of partial differentials, each partial differential
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acts along an edge of the cube. Every partial differential corresponds to

some direction and is associated with some classical crossing of the diagram.

With each circle of each state, we associate the tensor power of the space

V of graded dimension q + q−1, however, with no prefixed basis. With a

collection of circles, we shall associate the exterior power of this space, as

follows. With each state s of height b, we associate a basis consisting of 2γ(s)

chains. Now, we order the circles in the state s arbitrarily, fix an arbitrary

orientation on them and associate with each such circle either 1 or X . With

any such choice, consisting of a state, an ordering of oriented circles and a

set of elements 1 and X , we associate a chain of the complex. We can also

associate elements ±1 or ±X with any circle, which also defines a chain

of our complex; this chain differs from the corresponding chain with 1 and

X by a corresponding sign. Furthermore, we identify the chains according

to the following rule: the orientation change for one circle leads to a sign

change of a chain if this circle is marked by ±X and does not change sign

if the circle is marked by ±1; the permutation of circles multiplies the

chain by the sign of corresponding permutation. This would correspond to

taking exterior product of vector spaces (graded modules) instead of their

symmetric product.

Then for a state with l circles, we get a vector space (module) of dimen-

sion 2l. All these chains have homological dimension b. We set the grading

of these chains equals b plus the number of circles marked by ±1 minus the

number of circles marked by ±X .

Let us now define the partial differentials of our complex. First, we think

of each classical crossing so that its edges are oriented upwards, as in Fig.

2.5, upper right picture.

Choose a certain state of a virtual link diagram L ⊂ M. Choose a clas-

sical crossing U of L. We say that in a state s a state circle γ is incident

to a classical crossing X if at least one of the two local parts of smoothed

crossing X belongs to γ. Consider all circles γ incident to U . Fix some ori-

entation of these circles according to the orientation of the edge emanating

in the upward-right direction and opposite to the orientation of the edge

coming from the bottom left, see Fig. 2.5. Such an orientation is well de-

fined except for the case when one edge corresponding to a vertex of the

cube, takes one circle to one circle. In such situation, we shall not define

the local basis {1, X}; we set the partial differential corresponding to the

edge, to be zero.

In the other situations, the edge of the cube corresponding to the partial

differential either increases or decreases the number of circles. This means
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X

X

X

X

X-

X-

X-

X-

Fig. 2.5. Setting the local basis for a crossing

that at the corresponding crossing the local bifurcation either takes two

circles into one or takes one circle into two. If we deal with two circles

incident to a crossing from opposite signs, we order them in such a way

that the upper (resp., left) one is the first one; the lower (resp., right)

one is the second; here the notions “left, right, upper, lower” are chosen

according to the rule for identifying the crossing neighbourhood with Fig.

2.5. Furthermore, for defining the partial differentials of types m and ∆

(which correspond to decreasing/increasing the number of circles by one)

we assume that the circles we deal with are in the very initial poisitions in

our ordered tensor product; this can always be achieved by a preliminary

permutation, which, possibly leads to a sign change. Now, let us define the

partial differential locally according to the prescribed choice of generators

at crossings and the prescribed ordering.

Now, we describe the partial differentials ∂ ′ fromMa6 without new

gradings. If we set ∆(1) = 11 ∧ X2 + X1 ∧ 12; ∆(X) = X1 ∧ X2 and

m(11 ∧ 12) = 1;m(X1 ∧ 12) = m(11 ∧ X2) = X ;m(X1 ∧ X2) = 0, de-

fine the partial differential ∂ ′ according to the rule ∂ ′(α∧β) = m(α)∧β (in

the case we deal with a 2 → 1-buifurcation, where α denotes the first two

circles α) or ∂′(α∧ β) = ∆(α)∧ β (when one circle marked by α bifurcates

to two ones); here by β we mean an ordered set of oriented circles, not

incident to the given crossings; the marks on these circles ±1 and ±X are
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given.

Theorem 2.1.Ma6 [[K]] is a well-defined complex with respect to ∂; after

a small grading shift and a height shift, the homology is invariant under

generalised Reidemeister moves.

Later, when we have new gradings, the differential will be defined just

by projecting this differential to the grading-preserving subspace, namely,

∂̃′α = prdeg=degα∂
′α, where prdeg=degα is the projection to the subspace

having all additional gradings the same as α. After all, we shall define ∂

as the sum of partial differentials ∂̃′. We will get a set of graded groups

Kh′H with differential ∂. This differential increases the height (homolog-

ical grading), preserves the grading, and does not change the additional

gradings.

Remark 2.2. The homology theory described above is initially constructed

out of planar diagrams; thus, it represents a homology theory for links in

thickened surfaces modulo stabilisation; that is, this homology theory “does

not feel” removable handles. However, when we impose new gradings, we

will have to fix the thickened surface, since we will deal with its homol-

ogy groups. The homology of the new complex to be constructed for such

thickened surfaces, frankly speaking, would not be a virtual link invariant.

It would rather be an obstruction for links in thickened surfaces to decrease

the underlying genus of the corresponding surface.

2.2. Usual Khovanov homology

For the case of classical knot theory (and also some parts of virtual knot

theory) the above setup is actually not needed for constructing Khovanov

homology. One can get the chain spaces generated by tensor powers of V

with appropriate grading and degree shifts, as it was done in the original

Khovanov paper.Kh Namely, one takes just the symmetric tensor power

V ⊗k for a vertex of a cube with k circles in the corresponding state. One

also need not care about signs: the type-X generators are chosen once

forever. Then it allows to construct partial differentials just by using some

concrete formulae for ∆ and m. The main difficulty we had to overcome was

the case of 1 → 1-type partial differentials. If no such 1 → 1-bifurcations

occur then the original construction works straightforwardly. Namely, after

splicing some minus signs, these formulae lead to a well defined complex

whose homology is the usual Khovanov homology.
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3. Bourgoin’s twisted knots. Additional gradings

Assume for some category (knots, virtual knots, braids, tangles) we have a

well-defined Kauffman bracket. That is, we have a set of (classical) cross-

ings, which can be smoothed so that the formula (2.3) can be applied.

Consider the following generalisation of virtual knots (proposed by

Mario Bourgoin, seeBou).

We consider knots in oriented thickenings of 2-surfaces, the latter not

necessarily orientable. Namely, we take a 2-surface M and fix the I-bundle

M over M which is oriented as a total fibration space, and keep both the

orientation and the I-bundle structure fixed.

We consider knots and links in such surfaces up to isotopy and sta-

bilisation/destabilisation and refer to them as twisted links. Virtual links

constitute a proper part of twisted links.Bou

Note that this theory encloses as a partial case the theory of knots in

RP 3, since RP 3\{∗} is nothing but the oriented thickening of RP 2.

Any link in M has a projection to the base space, the latter being a

four-valent graph.

Since the space M is orientable (and even oriented), there is a canonical

way for defining the A-smoothing and the B-smoothing with respect to the

orientation. Thus, the formula (2.3) gives a well-defined Kauffman bracket

for such objects, which turns out to be invariant; the proof is standard, see,

e.g.Ma3

Moreover, the approach described in the previous section gives

a well-defined Khovanov homology theory. To this end, we have to

establish the chain space and the differentials.

Fix a cell decomposition of M with exactly one 2-cell C and choose a

canonical “upward” direction for C. Then we can treat every crossing as

a classical one, that is, identify its neighbourhood with the local picture

shown in Fig. 2.5.

This allows to define [[K]] literally as above, and we get the following

Theorem 3.1. For twisted knots the complex [[K]] is a well-defined com-

plex with respect to ∂ ′; after a small grading shift and a height shift, the

homology is invariant under isotopy (the orientation of the ambient space

remains fixed together with the I-bundle structure); the differential ∂ ′ in-

creases the homological grading by 1 and preserves the quantum grading.

As shown in,Ma6 the homology of this complex does not depend on the

choice of C and the upward orientation.

We should mention, that there have been a lot of generalisations of the
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Kauffman bracket, see e.g. Kauffman-Dye,DK2 Manturov,Ma9 Miyazawa.Miy

Each of these generalisations introduces something new to the formula

for the Kauffman bracket of either topological or combinatorial nature.

Bourgoin proposed the following generalization of the Kauffman bracket

for such surfaces.

∑

s

aα(s)−β(s)Mγ′′(s)(−a2 − a−2)γ′(s) (3.1)

where γ′ and γ′′ correspond to the number of orienting/non-orienting circles

in the state s, respectively.

The goal of the present section is to describe how to categorify this

invariant and then see which further examples will fit into the construction.

In the Khovanov setup, we had (q+ q−1) instead of (−a2 − a−2). What

should we have instead of M?

What should be the vector space categorifying this variable. As can be

seen from Khovanov’s algebraic reasonings, see,Kh2 the space corresponding

to one circle should be two-dimensional.

To preserve the similarity with the initial picture, it is convenient to

make one generator (1) of this space having quantum grading +1 and the

other one (which might be X or −X) having quantum grading to −1.

This is the point where new gradings come into play: with every non-

orienting circle in a Kauffman state, we associate the space of graded di-

mension qg−1 + q−1g, where g corresponds to the new grading. At the

uncategorified level, this just means M = qg−1 + q−1g, and thus we lose no

information.

At the categorified level, this means that we introduce a new grading

for the chain spaces: for every non-orienting loop we associate a Z-grading

equal to 1 if this loop is marked by X and −1 if this loop is marked by 1.

For orienting loops, we have no new gradings.

Now, let us define the new grading (g-grading) for the complex [[K]] as

the sum of all new gradings over all non-orienting circles.

Denote the obtained chain space by [[K]]g; this is actually nothing but

[[K]] with new grading imposed.

Notation. Further on, we shall mark all labels belonging to non-

orienting circles by a point, that is, we write 1̇ and Ẋ for labels 1 and

X on non-orienting circles.

Here we give an example how one smoothing with dots gets recon-

structed into another smoothing; we put dots over some circles which cor-

respond to “non-orienting” curves, see Fig. 3.1.
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Fig. 3.1. Dotted circles

Let us look how the differentials in [[K]] behave with respect to the new

grading g. It is easy to see that

Lemma 3.1. The differential ∂ can be uniquely represented as ∂ ′ + ∂′′,
where ∂′ preserves the new grading, and ∂ ′′ increases the new grading by 2.

Indeed, one can check all m-type and ∆-type partial differentials, and

see that 1̇ ∧ 1̇ → 1, 1̇ ∧X → Ẋ , X → Ẋ ∧ Ẋ are all increasing the grading

by 2, whence the partial differential 1̇ → X∧ 1̇+1∧Ẋ splits into two parts,

where the first one preserves the new grading, and the second one increases

that by 2.

From Lemma 3.1 we get

Lemma 3.2. [[K]]g is a well defined triply graded complex with respect to

the differential ∂ ′.

Proof. Indeed, (∂′2) is just the projection of ∂2 = 0 to the grading-
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preserving subspace.

Luckily, it turns out that the homology of [[K]]g is invariant after the

same grading and degree shift (for old gradings) as in the usual case of

classical knots (Kh) or virtual knots with oriented atoms.Ma3 We shall show

this more generally in the next section.

4. Additional grading: the general case

The goal of our section is the following. Assume we have a space of knots

(braids, tangles, etc.) with a well-defined Kauffman bracket and Khovanov

homology. We wish to mark some circles in Kauffman’s states by dots (anal-

ogously to non-orienting cirlces in Bourgoin’s case) thus defining the new

“dotted gradings”: the dotted grading for a chain in a given state is defined

as the number of all Ẋ minus the number of all 1̇. Then we split the usual

Khovanov differential ∂ into two parts: the one ∂ ′ preserving the dotted

grading and the one ∂′′ changing the dotted grading.

What are the properties this dotting should satisfy if we want the grad-

ing to satisfy the following:

(1) The complex [[K]]g is well defined;

(2) Its homology (after some height and degree shift) is invariant under

isotopy (combinatorial equivalence, Reidemeister moves).

The answer to the first question is easy: we just need that ∂ ′′ either

always increase the new grading or always decrease the new grading. Then

it will guarantee ∂′2 = 0.

But if we want the dots on circles to behave just as in the case of

Bourgoin so that the rules for multiplication and comultiplication (with

respect to the new grading) are:

m(1 ∧ 1) = 1;m(1 ∧X) = X ;m(X ∧ 1) = X ;m(X ∧X) = 0

m(1̇ ∧ 1) = 1̇;m(1̇ ∧X) = 0;m(Ẋ ∧ 1) = Ẋ;m(Ẋ ∧X) = 0

m(1 ∧ 1̇) = 1̇;m(1 ∧ Ẋ) = Ẋ;m(X ∧ 1̇) = 0;m(X ∧ Ẋ) = 0

m(1̇ ∧ 1̇) = 0;m(1̇ ∧ Ẋ) = X ;m(Ẋ ∧ 1̇) = X ;m(Ẋ ∧ Ẋ) = 0
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and

∆(1) = 1 ∧X +X ∧ 1

or

∆(1) = 1̇ ∧ Ẋ + dX ∧ 1

(depending on whether the output circles are dotted)

∆(X) = X ∧X
or (when both output circles are dotted)

∆(X) = 0.

∆(1̇) = 1̇ ∧X
or

∆(1̇) = Ẋ ∧ 1̇

(depending on which of the two output circles is dotted)

∆(Ẋ) = X ∧ Ẋ
or

∆(X) = Ẋ ∧X
(depending on which of the two output circles is dotted).

The operators m and ∆ above are just as before (in the categorifica-

tion of Bourgoin’s invariant), however, with the reasons for putting dots

completely forgotten.

Nevertheless, to have precisely this dotting, we need that the dotting

of circles is additive modulo Z2, that is, if we have a 2 → 1 bifurcation,

then the number of dots for the two circles is congruent modulo 2 to the

number of dots for the one circle (analogously for 1 → 2-bifurcations). We

also require that this dotting is preserved under 1 → 1-bifurcations, that is
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analogous to the fact that if a surgery transforms one circle to one circle

then this circle should necessarily be unorienting both before and after the

surgery.

The conditions above is enough for the complex [[K]]g to be well defined.

Now, in order to have the invariance under the Reidemeister moves, we

have to restore the proof picture of Khovanov (or ofMa6).

The invariance under the first Reidemeister move is based on the fol-

lowing two which should held when adding a small curl:

(1) the mapping ∆ is injective

(2) the mapping m is surjective.

In fact, the last two conditions hold when the small circle is not dotted.

Indeed, consider the complex

[[ ]] =
(
[[ ]]

∆→ [[ ]]{1}
)
. (4.1)

The usual argument goes as follows: the complex in the right hand

side contains an m-type partial differential, which is surjective. Thus, the

complex [ ]] is killed, and what remains from [ ]] is precisely (after a

suitable normalisation) the homology of [[ ]].

But ∆ is injective because for any l ∈ 1, X we have ∆(l) = l ∧ X +

〈somemess〉, where the second term X in l ∧ X corresponds to the small

circle.

But in our situation with dotted circles, this happens only if the small

circle is not dotted. But if the small circle is dotted, it would lead, say, to

∆ : X → 0, because Ẋ ∧ Ẋ has another dotted grading (greater by 2 than

the grading of X).

An analogous situation happens with

[[ ]] =
(
[[ ]]

m→ [[ ]]{1}
)
. (4.2)

Here we need that the mappingm be surjective; actually, it would suffice

that the multiplication by 1 on the small circle is the identity. But this

happens if and only if the small circle is not dotted, that is, we have 1, not

1̇.

Quite similar things happen for the second and for the third Reidemeis-

ter moves. The necessary conditions can be summarised as follows:

The small circles which appear for the second and the third Reidemeister

move should not be dotted.
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The explanation comes a bit later. Now, we see that this condition is

obviously satisfied when the dotting comes from a cohomology class, and not

necessarily the Stiefel-Whitney cohomology class for non-orientable surface.

Any homology class should do.

Thus (modulo some explanations given below) we have proved the fol-

lowing

Theorem 4.1. Let M → M be a fibration with I-fibre so that M is ori-

entable and M is a 2-surface. Let h be a Z2-cohomology class and let g

be the corresponding dotting. Consider the corresponding grading on [[K]].

Then for a link K ⊂ M the homology of [[K]]g is invariant under isotopy of

K in M (with both the orientation of M and the I-bundle structure fixed)

up to some shifts of the usual (quantum) grading and height (homological

grading).

4.1. Explanation for the second and the third moves

We have the following picture for the Reidemeister move for [[ ]]:

[[ ]]{1} m−→ [[ ]]{2}
∆ ↑ ↑

[[ ]] −→ [[ ]]{1}
. (4.3)

Here we use the notation {·} for the degree shifts, see page 296.

[[ ]]{1} m−→ [[ ]]{2}
∆ ↑ ↑

[[ ]] −→ [[ ]]{1}
. (4.4)

This complex contains the subcomlex C′:

C′ =
[[ ]]1{1}

m−→ [[ ]]{2}
↑ ↑
0 −→ 0

(4.5)

if the small circle is not dotted.

Here and further 1 denotes the mark on the small circle.

Then the acyclicity of C′ is evident.

Factoring C by C′, we get:
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[[ ]]{1}/1=0 −→ 0

∆ ↑ ↑
[[ ]] −→ [[ ]]{1}

. (4.6)

In the last complex, the mapping ∆ directed upwards, is an isomorphism

(when our small circle is not dotted). Thus the initial complex has the same

homology group as [[ ]]. This proves the invariance under Ω2.

The argument for Ω3 is standard as well; it relies on the invariance under

Ω2 and thus we should also require that the small circle is not dotted.

5. More gradings; more examples

We have listed the necessary conditions for the dotting to give such a grad-

ing that the homology of [[K]]g is invariant (up to some shifts); the condi-

tions are quite natural: additivity of dots modulo Z2 and triviality of small

circles for all types of Reidemeister moves. We have actually missed one con-

dition we assumed without saying. Namely, in the pictures corresponding

to the Reidemeister moves, the similar arcs are dotted similarly.

This means, for example, that for the second Reidemeister move the

smoothing gives two branches which should have the same dotting as

the two branches of . The same follows for all the three moves.

Thus, we introduce the dotting axiomatics. Namely, assume we have

some class of objects with Reidemeister moves, Kauffman bracket and the

Khovanov homology (in the usual setup or in the setup ofMa6). Assume its

circles can be dotted in such a way that the following conditions hold:

(1) The dotting of circles is additive with respect to 2 → 1 and 1 → 2-

bifurcations, and it is preserved under 1 → 1-bifurcations.

(2) Similar curves for similar smoothings of the RHS and the LHS of any

Reidemeister move have the same dotting

and

(3) Small circles appearing for the first, the second, and the third Reide-

meister moves are not dotted.

Let us call the conditions above the dotting conditions.

Theorem 5.1. Assume there is a theory with Khovanov complex ([[K]], ∂)

such that the Kauffman states can be dotted so that the dotting conditions

hold. Define [[K]]g as before (see page 301).
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1) Then the homology of [[K]]g is invariant (up to a degree shift and a

height shift).

2) For any operator λ on the ground ring, the complex [[K]]g is well

defined with respect to the differential ∂ ′ + λ∂′′, and the corresponding ho-

mology is invariant (up to well-known shifts).

3) Moreover, if we have several dottings g1, g2, . . . , gk so that for each of

them the dotting condition holds, then the homology of the complex Kg1,...,gk

with differential ∂g1,...,gk
defined to be the projection of ∂ to the subspace

preserving all the gradings, is invariant.

Proof. The first part of the theorem follows from the reasonings above.

Now, for the differential ∂̃ = ∂′ + λ∂′′ we have (∂̃)2 = ∂′2 + λ(∂′∂′′ +

∂′′∂′)+λ2∂′′2; the expression in the right hand side gives the projections of

(∂)2 = (∂′ + ∂′′)2 to three subspaces of corresponding gradings taken with

some coefficients (here 1, λ, λ2). Since (∂)2 = 0, all projections are zeroes.

The invariance of the homology is proved as above. The main thing is that

the mapping m is surjective and ∆ is injective.

The proof of the last statement is analogous to the proof with only one

grading. Again, it is enough to mention that m remains surjective and ∆

remains injective.

5.1. Examples

One example (already published in the noteMa7) deals with the following

situation. Consider a fixed oriented thickened surface M which is the total

space of an I-fibre bundle over some 2-manifold M , not necessarily ori-

entable. We assume the orientation of M and the I-bundle structure fixed.

Consider all Z2-cohomology classes H1(M) (there are finitely many of

them). For knots in M, each of these classes generates a dotting for circles

(see page 301) in the Kauffman states, thus, it defines gradings for [[K]].

Call these gradings additional (with respect to the two usual Khovanov

gradings). Denote the obtained complex by [[K]]gg and the projection of

the differential ∂ by ∂gg .

Theorem 5.2. The homology of [[K]]gg with respect to ∂gg is an invariant

of K.

Consider the category T of (classical or virtual) tangles with 2k open

ends. Then the construction above allows to make the following dotting on

the states of the Kauffman bracket.
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Fix some number l and mark some of the tangle ends by some of l

colours 1, 2 . . . , l.

Couple the endpoints of the tangle in an arbitrary way (so that any

tangle closes into a classical or virtual knot).

Having done this, for any tangle t ∈ T , we can consider its closure Cl(t).

It acquires a dotting from l colours, thus we get l additional gradings for the

Khovanov complex; denote the obtained complex by [[Cl(t)]]dd, and denote

the corresponding differential by ∂dd.

From the above, we get the following

Theorem 5.3. For any fixed endpoint coupling, the homology of [[Cl(t)]]dd

is an invariant of t.

A particular case of this refers to long classical (and virtual) knots.

Namely, if we deal with long virtual knots, this grading will lead to a new

invariants. Note that long virtual knots do not coincide with compact virtual

knots, see e.g.,Ia4 There are non-trivial long virtual knots (and tangles)

having only trivial classical closures. Say, it is easy to construct two classical

2 − 2-tangle with the same classical closures and different virtual closures.

As for classical knots, thinking of them from the “long” point of view

seems to be very prospective. In our case, if we take long classical knots

and put one dot on one end, thus defining a new grading. This will split

the usual Khovanov differential ∂ into ∂ ′ + ∂′′. The only circle which can

support the new grading is the one obtained by closing the only long arc.

It exists in every state, and it can be marked either by Ẋ or by 1̇. If we just

take ∂′, then it would split the initial Khovanov complex into two parts:

the one with Ẋ and the one with 1̇ with no differential acting from one part

to another.

This is nothing but the usual reduced Khovanov homology.

However, if we take not just ∂ ′, but ∂′ + λ∂′′ for some ring R where λ

is a zero divisor (say, 2 in the ring Z4).

This defines new invariants of ordinary knots (or links with one marked

component).

However, it seems to be much more interesting when we pass from usual

long knots to cables. Namely, having a long classical knot (assume it to be

framed), we can take its n-cabling. Then for any dotting and for any closure

the new homology groups will be invariants of the initial (long) classical

knot.

One more example refers to rigid virtual knots. We consider virtual

knot diagrams up to all Reidemeister moves and all detours preserving the
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Whitney index of the curve. Namely, we prohibit the following first virtual

Reidemeister moves: → . Rigid virtual knots are of interest because

all quantum invariants of classical knots (which can not be generalised for

generic virtual knots) can be generalised in full totality for rigid virtual

knots.

For such knots, since the first virtual Reidemeister move is forbidden, in

any Kauffman state for any circle the number of self-intersections modulo

2 for such circles is invariant. It defines well a dotting, thus giving one new

grading for rigid virtual knots.

5.2. Braids

It is a very intriguing question to get new gradings for classical knots (with-

out going to long knots).

We are not going to consider braids just as a partial case of tangles and

put various dots on the ends of the braid. We think of a braid as a source

of constructing knot invariants via Markov moves.

Thus, a closed braid can be viewed of as a special kind of link in a

thickened annulus S1 × I × I . This annulus has non-trivial cohomology

group H1(S1 × I × I,Z2) = Z2. From this we get an additional grading,

thus having a complex [[Cl(B)]]g with differential ∂′; here Cl(B) is the

closure of a braid B. It is obvious that the homology of this complex is well

defined not only under braid isotopies, but also under braid conjugations,

since they preserve the closure.

Thus, in order to get a knot invariant, we have to overcome the second

Markov move (adding a new loop). Unfortunately, if K ′ is obtained from K

by a second Markov move then the homology of Cl(K ′) should not coincide

with the homology of Cl(K). The reason is that the move we perform is

the first Reidemeister move, and the small circle that appears is dotted.

However, this allows to extract the difficulty for proving the invariance

of the the new dotted (grading) homology for knots in its pure form: the

only obstacle we get is the first Reidemeister move.

Hopefully, the homology of this space with extra gradings behaves in a

predictable manner under the Markov move, maybe, after some stabilisa-

tions.

We shall return to this question while speaking about filtrations and

spectral sequences.
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5.3. Further gradings

The construction above takes into account only Z2-homology classes (un-

linke the construction ofAPS) where the homotopy information of Kauffman

state circles was taken into account to construct a grading.

More homology information can be taken into account in the following

manner.

Assume we have only one non-trivial cohomology class (say, we live on

the thickened annulus or deal with long knots with one dot on one end).

Then such an object has H1 = Z. Previously, we were using only the

Z2 information for constructing our differentials.

We shall now use the Z-cohomology information to introduce the sec-

ondary gradings as follows.

If the usual grading coming from the Z2-cohomology class is non-trivial,

then we decree the secondary grading to be zero. If the first grading is

trivial, then we look at the value of the cohomology class not over Z2, but

over Z4 and then we set the secondary grading to be 0 if the cohomology

class is trivial modulo Z4 and 1 if it is equal to 2 modulo Z4. Analogously,

in the case when the primary and the secondary gradings are both zero,

we define the ternary grading to be 1 or 0 depending on the value of the

Z8-cohomology (of course, if one of them was not zero, we set all further

gradings to be zero).

This defines a family of further gradings on circles which answers the

question what is the maximal power of 2, the corresponding value of the

cohomology is equal to. For instance, such gradings can be all zeroes (say,

if the circle is trivial) or (1, 0, 0, . . . ) or (0, 1, 0, 0, . . . ) or (0, 0, 1, 0, 0, . . . ),

etc.

These gradings define corresponding dottings and gradings for all ele-

ments 1 and X (as before, we count the gradings for X with plus, and the

gradings for 1 with minus).

This defines a multigrading on the complex (chain set) [[K]]. Denote

the obtained chain set by [[K]]mg . The usual differential ∂ for [[K]] splits

into two parts: the one ∂ ′ preserving the new multigrading and the one ∂ ′′

not preserving the grading.

Lemma 5.1. For any of the new gradings, the differential ∂ ′′ either pre-

serves it or increases it.

Proof. Indeed, assume we have a bifurcation 2 → 1 or 1 → 2. Such a

bifurcation may behave in two ways with respect to the new gradings on

circles: either it preserves the total set (sum) of gradings (each considered
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modulo Z2) as in the case (1, 0, . . . )∧ (1, 0, . . . , ) → (0, 0 . . . ), or it changes

it, as in the case (1, 0, . . . , )∧ (1, 0, . . . ) → (0, 1, . . . ). In the second case the

parity in one grading (in our case, the second) is violated, thus, ∂ ′ equals

zero.

In the first case we may think that our differential behaves in the same

way with all the gradings separately, which returns us to the case of different

gradings coming from different cohomology classes.

The above reasonings lead us to the following

Theorem 5.4. The homology of [[K]]mg with respect to ∂ ′ is an invariant

in the corresponding category.

Analogously, one may consider the case when we haveH1 of rank greater

than one.

6. Khovanov’s Frobenius theory

The Khovanov theory for classical knots has some natural generalisations,

some of them were first discovered by Khovanov. Here we briefly discuss

the generalisation of them for the case of knots in thickened surfaces and

additional gradings. The corresponding results without additional gradings

were published in.Ma3,Ma6

Let R,A be commutative rings, and let ι : R → A be an embedding, such

that ι(1) = 1. The restriction functor mapping A-modules to R-modules

has a right conjugate and a left conjugate: the induction functor Ind(M) =

A ⊗R M and the coinduction functor CoInd(M) = HomR(A,M). One

says that ι is a Frobenius embedding if these two functors are isomorphic.

Equivalently: the embedding ι is Frobenius, if the restriction function has

a two-sided dual functor. In this case one says also that the ring A is a

Frobenius extension of R by means of ι.

In,Kh2 Khovanov asked the question: to find a couple of linear spaces

(A,R) such that, taking R as the basic coefficient ring and a Frobenius

extension A over R as the homology ring of the unknot, we would be able to

construct a link homology theory “in the same way” as the usual homology

theory.

Here “in the same manner” means that we consider the state cube,

where at each vertex we put a tensor power of A (over R), corresponding to

the number of circles in the given state, and define the partial differentials

by means of m and ∆ (multiplication and comultiplication), and then put

signs on the edges of the cube and normalise the whole construction by
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height and grading shifts (he did not use wedge product or involution in

the Frobenius algebra).

Khovanov showed that the invariance under the first Reidemeister move

requires that A is a two-dimensional module over R and gave necessary an

sufficeint conditions for the existence of such an invariant link homology

theory.

Note that in the present section we shall mainly work with the classical

setup and notation of Khovanov, that is, we use symmetric tensor powers

and then add minus signs to the cube, thus restricting ourselves for the

case when no 1 → 1-bifurcations in the state cube occur. We have partially

generalised Khovanov Frobenius theory for the case of arbitrary virtual

knots, and we shall return to that case in the end of the present section.

In,Kh2 it is also shown that any link homology theory of such sort can be

obtained by means of some operations (basis change, twisting and duality)

from the following solution called universal:

(1) R = Z[h, t].

(2) A = R[X ]/(X2 − hX − t),

(3) degX = 2, degh = 2, deg t = 4;

(4) ∆(1) = 1 ⊗X +X ⊗ 1 − h1 ⊗ 1

(5) ∆(X) = X ⊗X + t1 ⊗ 1.

As we see, the multiplication in the algebra A preserves the grading,

and the comultiplication increases this by 2.

We omit the normalisation regulating the corresponding gradings.

First note that this Frobenius theory contains (as an important partial

case) the Lee-Rasmussen theory, see,Lee,Ras when we specify t = h = 1. The

Lee-Rasmussen theory, has one grading less: indeed, the differentials here

do not respect the quantum grading.

We call the theory constucted above the universal (R,A)-construction.

The corresponding homology of a (classical) link L is be denoted by

KhU (L).

The main question we address in the following section is: how to split

the differentials above into ∂ ′ and ∂′′?
Note that if we introduce the new grading just by dotting and then

counting the number of Ẋ minus the number of 1̇, the partial differential

corresponding to ∂ [we call it ∂ as well; abusing notation] which is some

tensor product (or wedge product) of one ∆ or one µ with the identity

operator, would not behave so nicely with respect to the new grading.

Namely, the mapping ∆ may take X to the sum Ẋ ∧ Ẋ+1̇∧ 1̇, see Fig. 6.1.
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Fig. 6.1. The mapping ∆

The mapping to the first term increases the grading whence the mapping

to the second term decreases it.

Thus, we have to repair the dotted grading. The correct answer is: define

the dotted grading gr as the difference between #Ẋ−#1̇ plus half the total

degree of monomials in t and h.

There is a trick with λ, which goes as follows. Denote the usual Kho-

vanov differential by ∂, and denote the “Frobenius addition” containing h

and t by ∂F so that we totally have ∂+ ∂F . According to our rules, if some

circles are dotted, and the Khovanov (Frobenius) theory is well established

then we can introduce the new “dotted grading” gr as before, which splits

the differential into two parts ∂ = ∂ ′ + ∂′′.

Theorem 6.1. Consider the basic ring Z[h, t, λ|λh = λt = 0]. Then the

homology of the Khovanov Frobenius complex with respect to the differential

∂F + λ∂′′ is invariant.

The proof goes as follows. We only need to mention that is that the

square of this differential equals zero, because in the expression (∂F +λ∂′′)2

the interaction between the “Frobenius part” of ∂F and λ∂′′ gets cancelled.

This proves that the complex is well defined with respect to the differential

∂′′. However, one of our goals is to approach the Lee-Rasmussen theory,

which is defined over Q with t = 1, h = 0. For these purposes, the approach

above is not satisfactory.

Then, the terms in the differential corresponding to the “usual” mul-
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tiplication and comultiplication (without new t and h) behave as before.

Also, we know the behaviour of the grading when we have no dotted circles;

it is correlated by degrees of h and t.

Consider the remaining cases.

m : Ẋ ⊗ Ẋ → t · 1,m : Ẋ ⊗X → t · 1̇∆ : Ẋ → t · 1 ⊗ 1,∆ : Ẋ → 1̇ ∧ 1̇.

Let us look at our dotted grading more carefully. Denote the former

dotted grading by gr′, and let us construct the true dotted grading gr by

varying gr′.
We count the usual quantum grading. It is equal to tot(1)− tot(X) +h,

where tot(1) is the total number of circles marked by 1 or by 1̇, tot(X) is

the total number of circles marked by X or by Ẋ, and h is the height. Then

we set

gr = gr′ +
tot(1) − tot(X) + h

2
=

#Ẋ + #1 − #1̇ − #X + h

2
.

Lemma 6.1. The differential ∂ defined above can be split into summands

each of which either preserves gr or increases it by 2.

The proof follows from a direct calculation.

Then it is possible to split ∂ into ∂ ′ (preserving the grading) and ∂ ′′ in-

creasing that by 2, and consider the dotted homology of [[K]]g with respect

to ∂′. This homology will be invariant.

If we look at the differential ∂ ′ more carefully, we will see that the new

“Frobenius” mappings vanish when they are applied to sets of usual (not

dotted) circles.

Namely, for the mapping X ⊗X → t · 1 we have: gr′ does not change,

whence the usual grading [coming from counting tot(1) − tot(X) + h] in-

creases.

This means, that if we have no dots at all, the differential ∂ ′ coincides

with the usual Khovanov differential (without h and t).

Considering the Lee-Rasmussen theory for t = 1, h = 0, we get a com-

plex [[K]]LR with a differential ∂LR which coincides with the usual Kho-

vanov differential in the case of classical knots. Note that the complex

[[K]]LR has two gradings: the height and the grading gr (the quantum

grading was lost).

However, in the dotted picture, this differential has some other interest-

ing terms, like Ẋ ⊗ Ẋ → 1.
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6.1. Yet another definition of the Khovanov homology

If we look at the complex constructed above from in the case we have no

additional (dotted) gradings at all, we see that the new grading prohibits

exactly those parts of the differential ∂Φ which deal with t: e.g.,X×X → t·1
does not change the dotted grading, but it does change the usual quantum

grading if we forget about t.

Thus, the definition above with t = 1 leads to the usual Khovanov ho-

mology if no circle is dotted.

On the other hand, if many circles are dotted, this is a sort of Lee-

Rasmussen homology theory.

It is interesting that we can use a mixture to get another definition of

the Khovanov homology theory. Namely, take a knot diagram K and put

dots on circles in an arbitrary way. Then for every dotted circle change

the notation: replace 1̇ by Ẋ and vice versa. The resulting complex would

be precisely the Khovanov complex up to some renormalisation in the new

grading which becomes coincident with the usual quantum grading.

This effect is interesting because it allows one to handle the situation

with braids: whenever we perform the second Markov move, we replace 1̇ by

Ẋ, which leads to the injectivity of ∆ and surjectivity of m. Unfortunately,

this gives us no new homology theory, but it allows one to look at the usual

Khovanov homology from another point of view.

6.2. Khovanov Frobenius theory modulo Z2 in the general

case

The aim of the present section is to define the differential ∂F generalizing

the theory described above for the case of arbitrary virtual knots in the

Z2 case. We shall describe the difficulties that occur in the general case of

arbitrary virtual knots.

The main difficulty here is to define the differential corresponding to

the 1 → 1-bifurcation.

We start up with the chain structure of the complex. First, we assume

for simplicity h = 0, the case of generic h will be considered afterwards.

We deal with the ring R = Z[t], where t has grading 4.

With every circle in every Kauffman state we associate the graded mod-

ule V over R freely generated by 1 of grading 0 and X of grading 2 (t has

grading 4, as above). The generator 1 is assumed to be fixed for any circle;

the generator X depends on the orientation of the circle as before.

With each Kauffman state with n corresponding circles, we associate
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the n-th exterior power of V , and we define the following operations “muli-

plication and comultiplication” just as before, however, corrected by terms

containing h:

m(11 ∧ 12) = 1,m(X1 ∧ 12) = m(11 ∧X2) = X,

m(X1 ∧X2) = 0

∆(1) = 11 ∧X2 +X1 ∧ 12

∆(X) = X1⊗X2+t11⊗12, where in the definition of partial differentials

it is assumed (as before) that we deal with the first two circles in the tensor

product, and the first one is left (resp., upper), whence the second one is

left (resp., lower).

For all 1 → 1-bifurcations, we set the partial differential to be equal to

zero.

For all other bifurcations (2 → 1 or 1 → 2), we define the partial

differential ∂ just as in section 3.

Denote the resulting set of chain spaces for a given virtual knot diagram

K by [[K]]t.

Theorem 6.2. The differential ∂ defines a complex on [[K]]t, so that the

homology of [[K]]t with respect to ∂ is an invariant of the link K.

The well-definiteness proof actually repeats the main points ofKh2 to-

gether with those in:Ma6 one should consider all 2-faces of the corresponding

cube and prove that they anticommute. The proof of the invariance under

Reidemeister moves follows from the surjectivity of m and injectivity of ∆.

However, here we do not touch on the variable h. The reason why the

construction proposed inMa6 behaves nicely when we add the variable t is

the following: both in the usual Khovanov homology theory and in the

Frobenius theory with some t and h = 0, the involution on the space

V = {1, X} defined by 1 7→ 1, X 7→ −X behaves well with respect to

the operations ∆ and m: it changes signs of ∆ and preserves the sign of m.

However, when we add a new variable h, we will not see this effect any

more: the mapping ∆ takes 1 ∧ 1 → 1 ∧ X + X ∧ 1 − h · 1 ∧ 1. Here the

involution X → −X changes the sign of one part (1 ∧ X + X ∧ 1) and

preserves the other part (h · 1 ∧ 1).

Also, the routine check of the well-definiteness (as inMa6) of the complex,

that is, anti-commutativity of the 2-faces of the cube, leads to an example

shown below (we are citing,Ma6 see Fig. 6.2) for the case t = 0.

First, consider the case t = 0. For the lower composition, we have the

identical zero map by definition. SubstitutingX into the upper composition,

we get ±X ∧X at the first step and 0 at the second step. Substituting 1,
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Fig. 6.2. A face of the cube

we first get 11 ∧X2 +X1 ∧ 12 here the index refers to the number of circle

(the first circle is the big one), and the second index refers to the crossing

number. While passing to the second crossing V2 the circles change their

roles: the first circle becomes the lower one, and the second circle becomes

the upper one. Moreover, for the first circle we get a basis change:X maps to

−X . Thus we get −X∧1+1∧X , which is taken to zero by the multiplication

m. Now, we have to check what happens for general t. Subsituting 1 to the

upper composition, we will get no terms with t at all. Substituting X , we

shall first get (besides X1∧X2) also t·11∧11. Passing to the second crossing

and multiplying, these terms will give t · 1 ∧ 1 and −t · 1 ∧ 1, which cancel

each other.

The example above is in fact the key example of;Ma6 it works without

any changes when h = 0 (because t does not appear in the comultiplication

of 1 or in the multiplication of 1 ∧X).

But in the case h 6= 0 it does appear, and this would lead to the fact

that the 1 → 1-bifurcation should not be zero any more. We will in fact

need to introduce a new variable being the square root of h.
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On the other hand, h itself should be treated in a special way so that

the multiplication m and comultiplication ∆ behave nicely with respect to

1 7→ 1, X 7→ −X .

We shall consider this problem in a separate publication.

6.2.1. The Z2-case

We first consider the Z2-case solution given in.Ma3 First note that there is

no difference between ∧ and ⊗, and we shall use the notation ⊗.

This time we do not set the 1 → 1-type partial differentials to be zero;

we define this partial differential by some mapping I : V → V , the matrix

I will be defined later.

Here will show how the square root of h appears. Of course, in this

case we shall not need exterior products and control the signs. Consider

the basic ring of coefficients Z2[t, c] with deg t = 4, deg c = 1 (we assume

c2 = h). Now, consider Fig. 6.2. We have the following situation: in the

lower composition we have two maps corresponding to 1 → 1 bifurcations,

thus the corresponding matrix should look like I · I . Return to Fig. 6.2 in

the upper part we have the composition of two mappings ∆ and then m.

Starting with 1, we get ∆(1) = 1 ⊗X +X ⊗ 1 + h1 × 1. Multiplying, we

see that X ⊗ 1 and 1 ⊗X cancel each other, and the only remaining term

is h · 1. Now, if we start with X , we get X → X ⊗X + t · 1 ⊗ 1. After the

multiplication, we get hX+ t+ t = h ·X (we are dealing with the Z2 case).

Now we see that the corresponding transformation matrix looks like
(

1

X

)
7→
(
h 0

0 h

)
·
(

1

X

)
(6.1)

For this scalar matrix h · Id we set the matrix corresponding to the

1 → 1-mapping to be c · Id, and then any face of the bifurcation cube

corresponding to Fig. 6.2 will (anti)commute. Then it is not difficult to

see (seeMa3) that with this scalar 1 → 1-bifurcation matrix, all other faces

(anti)commute as well.

Now, the dotted gradings gr appear straigthforwardly by counting

monomials in t and c and correcting gr′ by using this monomials. Denote

the obtained homology by Kh(K)tc.

Note that the degree of c is 1, so we will have half-integer gradings. This

immeadiately leads to the following

Theorem 6.3. If Kh(K)tc has a non trivial homology of half-integer addi-

tional grading then K has no diagram with orientable corresponding atom.

In particular, the knot K is not classical.
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7. Gradings or filtrations? The spectral sequence

Since the works of LeeLee and Rasmussen,Ras spectral sequences play a

significant role in knot homology. Sometimes it turns out that studying

convergence of a spectral sequence leads to some interesting and deep in-

variants such as Rasmussen’s invariant, which is applicable to estimating

the Seifert genus and the 4-ball genus of classical links.

The Lee-Rasmussen spectral sequence starts with the Khovanov homol-

ogy and ends up with some two-term homology which carries a nice piece

of information.

Recently (seeBN3), it was discovered that the spectral sequence of Lee-

Rasmussen does not converge after E3-term, and that there are some nice

torsions in Khovanov homology which survive after the E3-term of the

spectral sequence.

Our goal here is to construct a spectral sequence from the “complicated”

theory with new dotted gradings to the “simple” (Khovanov) theory. Thus,

in some sense our spectral sequence will behave with respect to the usual

Khovanov homology as Khovanov homology itself behaves with respect to

the Rasmussen homology.

It would also be very interesting to inspect two spectral sequences con-

verging from the “complicated” theory to the Rasmussen theory.

The argument of the present section is standard. In all cases described

above when we deal with one new (dotted) grading, the old differential

∂ = ∂′ + ∂′′ in the complex [[K]]g does not decrease the new grading.

Thus, let us introduce the (dotted) filtration on the chain spaces as

follows: we set [[K]]ng = {c ∈ [[K]]g |gr(c) ≥ n}. Then we have [[K]]∞g ⊂
. . . [[K]]2g ⊂ [[K]]1g ⊂ [[K]]0g ⊂ [[K]]−1

g ⊂ · · · ⊂ [[K]]−∞
g .

The usual differential ∂ respects this filtration. This leads to the follow-

ing

Theorem 7.1. For any field of coefficients, there is a spectral sequence

whose E1-term is isomorphic to [[K]] with the first differential ∂ ′, the E2-

term isomorphic to the homology of [[K]]g, so that this spectral sequence

converges to the usual Khovanov homology (with respect to ∂).

The argument proving this theorem is standard. We also conjecture that

all terms of this spectral sequence are invariants (of knots, braids, tangles)

in the corresponding category.

It would be very interesting to know whether some terms of the spectral

sequence described above survive after the braid stabilsations. In this case

we would be able to hope to construct gradings for usual knots without
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going into the long category.

Returning to the Lee-Rasmussen theory, we see that in the dotted case,

we have two complexes: the usual Khovanov complex and the complex

([[K]]LR, ∂LR) with homology H(K)LR. They coincide in the case when we

have no dotting, but they differ in the case when we have dotting.

Quite in the usual manner one proves

Theorem 7.2. For the field Q, there is a spectral sequence whose E1-term

is isomorphic to [[K]]LR with the first differential ∂LR, the E2-term iso-

morphic to the homology H(K)LR, so that this spectral sequence converges

to the Lee-Rasmussen homology.

Thus, two bigraded homology theories (the usual Khovanov theory with

height and quantum grading) and the one described above (with height and

dotted grading) both converge to the Lee-Rasmussen theory.

It is known that the Lee-Rasmussen theory give nice invariants (quan-

tum gradings of the two surviving elements). It would be interesting to

compare the convergence of the spectral sequence describing above: what

is the meaning of the dotted grading of surviving elements?

8. Applications

The theory above has some obvious applications coming from the defini-

tions. Thus, if we work for knots in thickened surfaces, there is a natural

question whether such a knot can be destablised, i.e., some handles of the

surface are nugatory, or, in other words, the representative of the knot given

by this surface is minimal. The surface M has Z2-homology group of rank

k, and if they are all used as gradings of some homology groups of a knot

in M×̃I , then the knot can not be destabilised.

Corollary 8.1. If a set of additional gradings of non-trivial groups of

Khgg(K) forms a subset in Rk not belonging to any hyperplane passing

through zero, then the link K does not admit destabilisation, i.e., there is

no surface M ′ of smaller genus obtained from M by a destabilisation so

that the link K lies in the natural fibration over M ′ generated by M →M .

Analogously, the dotted grading can be used for estimating the number

of virtual crossings of a rigid virtual knot diagram.

Also, we mention (without any details, however) the facts which gener-

alise straightforwardly for the case of new gradings:
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(1) The homological length of the complex does not exceed the number of

classical crossings.

(2) The spanning tree of WehrliWeh and Champanerkar-KofmanChK saying

that the Khovanov homology can be obtained from a complex with a

smaller chain group. This leads to the estimation for the thickness:

Th(Kh(K)) ≤ 2 + g, where g is the genus of the atom corresponding

to the diagram K.

Here the thickness estimates the number of diagonals with slope 2 on

the plane with height and quantum gradings serving as coordinates.

The same estimates can be obtained for our complex with new gradings

when looking at the diagonals with respect to the former gradings. This

leads to

Theorem 8.1. For any knot K, the thickness of the dotted Khovanov

homology Th(Khg(K)) ≤ 2 + g, where g is the genus of the atom cor-

responding to any diagram of K.

Together with the lemma saying that span〈K〉 ≤ 4n, where n is the

number of classical crossings, we get sharper estimates for the number

of crossings.

(3) The Bar-Natan topological pictureBN2 for tangles and cobordisms, see

also.TuTu We need to generalize Bar-Natan’s topological category and

construct a functor from it to our category. We shall discuss this in a

separate publication.

(4) Rasmussen’s estimates for the genus of a spanning surface; here we

must, indicate the category of cobordisms, say, for knots in M × I we

should consider spanning surfaces in M × I × I .

9. The relation to other papers

This paper generalises many constructions. First of all, we would like to

mention the work,APS the workKh2 and the work.Ma6

In fact, the idea of taking new gradings counting X and 1 on non-trivial

circles with opposite sides was originally used in.APS However, we used

this approach for a more general situation. For instance, the grading there

was necessary to construct the Khovanov homology itself; without it, the

Khovanov theory for knots in thickened surfaces does not exist; even with

it, it does not exist for knots in thickened RP 2. We have taken the approach

fromMa6 with twisted coefficient as the basement for our homology theory

(that allows us to give a fair generalisation of Khovanov’s theory for virtual
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and twisted knots without any new gradings), and then introduced new

gradings similar to those ones by M.Asaeda, J.Przytycki and A.Sikora.

They used integral homology or even homotopy classes to define the

gradings. This was quite difficult for making it more algebraic.

We have axiomatized this approach taking the Z2-cohomology (or just

dotting) making it applicable to many other situations.

On the other hand, classical knot diagrams considered up to braid-like

moves also admit “dotting”. This leads to a class of “knot-like” objects

where not all equivalences are allowed; they were studied in,AuFied and

their generalisation of the Khovanov homology turned out to be a partial

case of ours.

Finally, we would like to mention a very recent paper by Ozsvath, Ras-

mussen, and SzaboORS where “odd Khovanov homology” was introduced.

Like us they also used exterior vector product instead of symmetric

products (the idea first appeared inMa6) but with a different goal: they

constructed another (odd) Khovanov homology with the same chain space,

whence we rearranged the usual Khovanov homology making it working for

virtual knots. Certainly, their construction enjoys many properties of the

usual Khovanov complex (like thickness estimate in terms of atoms). We

shall discuss the “odd Khovanov homology for virtual knots” and additional

gradings for odd Khovanov homology in separate papers.
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We survey some recent developments in the large N duality between the Chern-
Simons gauge theory and the topological string theory. Some related problems
and its applications to different areas of mathematics are also discussed. We
dedicate this paper to the memory of Professor X.-S. Lin.

1. Introduction

The Gromov-Witten theory has been extensively studied in the past two

decades. Computing Gromov-Witten invariants, especially at high genera,

is always a challenging problem in the Gromov-Witten theory. In the case

of lower genera, localization method or mirror symmetry might be applied

to the computation. However, if the genus goes higher and higher, these

two methods will involve more and more terms in the computation and

thus become essentially impractical.

A complete answer can be given by the large N duality between the

Chern-Simons gauge theory and the open Gromov-Witten theory. For ex-

ample, in the case of toric Calabi-Yau threefolds, the topological vertex

theory1,17 expresses Gromov-Witten invariants as the combinatorial data

of Chern-Simons invariants of certain torus link.

The first important bridge connecting gauge theory and string theory

went back to t’ Hooft’s work in 1974, where he proposed that gauge the-

ory can be identified as an 1/N expansion in string theory. It was in 1990,

Witten made a very important step relating the Chern-Simons gauge the-

ory on a three dimensional manifold as a topological string theory on its

cotangent bundle. The final picture was merged by R. Gopakumar and C.
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Vafa in 1998, in which they conjectured that at large N , topological string

A-model of T ∗S3 with N D-branes is equivalent to the topological string

theory on the resolved conifold O(−1) ⊕ O(−1) → P1. In 2000, H. Ooguri

and C. Vafa described the topological string theory on the resolved conifold

in terms of Chern-Simons invariants of knots.

To study this duality conjecture, an important observation is that, in

both the Chern-Simons gauge theory and the topological string theory, a

system of ODEs called cut-and-join equation is satisfied. In the Chern-

Simons gauge theory, the cut-and-join equation reflects the deformation of

the choice of framing, while, in the topological string theory, it naturally cor-

responds to the deformation of holomorphic curves mapped into the target

space. Therefore, the duality can be approached by proving the uniqueness

of the solution of the cut-and-join equation under certain condition.

Based on the large N Chern-Simons/topologial string (CS/TS) dual-

ity, in a series of papers, J.M.F. Labastida, M. Marino, H. Ooguri and

C. Vafa conjectured the existence of a series of certain integer invariants

which reveals the deep structure of quantum group invariants of links and

integrality structure of the topological string theory. The highly nontrivial

check of this integrality phenomenon gives a strong evidence of the large N

Chern-Simons/topological string duality.

Motivated by the large N Chern-Simons/topological string duality,

there are a lot of related problems should have their mathematical con-

sequences and the corresponding mathematical foundation should be built.

All these relations stimulate the development of geometry and topology in

a very profound way. It’s not surprising to see more connections between

quite different areas of mathematics can be motivated from this duality

picture.

This paper is organized as follows. In section 2, we define quantum group

invariants of links. The largeN Chern-Simons/topological string conjecture

is stated in section 3. In section 4, some related results have been discussed.

In the last section, we discuss some related problems and applications.

2. Quantum Group Invariants

2.1. Partition and symmetric function

A partition λ is a finite sequence of positive integers (λ1, λ2, · · · ) such that

λ1 ≥ λ2 ≥ · · · .
The total number of parts in λ is called the length of λ and denoted by

`(λ). We use mi(λ) to denote the number of times that i occurs in λ. The
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degree of λ is defined to be

|λ| =
∑

i

λi .

If |λ| = d, we say λ is a partition of d. We also use notation λ ` d. The

automorphism group of λ, Autλ, contains all the permutations that permute

parts of λ while still keeping it as a partition. Obviously, the order of Autλ

is given by

|Autλ| =
∏

i

mi(λ)! .

There is another way to rewrite a partition λ in the following format

(1m1(λ)2m2(λ) · · · ) .
A traditional way to visualize a partition is to identify a partition as

a Young diagram. The Young diagram of λ is a 2-dimensional graph with

λj boxes on the j-th row, j = 1, 2, ..., `(λ). All the boxes are put to fit the

left-top corner of a rectangle. For example

(5, 4, 2, 2, 1) = (12245) = 54221.

For a given partition λ, denote by λt the conjugate partition of λ. The

Young diagram of λt is transpose to the Young diagram of λ: the number

of boxes on j-th column of λt equals to the number of boxes on j-th row of

λ, where 1 ≤ j ≤ `(λ).

By convention, we regard a Young diagram with no box as the partition

of 0 and use notation (0). Denote by P the set of all partitions. We can

define an operation “ ∪ ” on P. Given two partitions λ and µ, λ ∪ µ is

the partition by putting all the parts of λ and µ together to form a new

partition. For example

(1223) ∪ (15) = (122235).

Using Young diagram, it looks like

3221 ∪ 51 = 532211 .

The following number associated with a partition λ is used throughout

this paper,

zλ =
∏

j

jmj(λ)mj(λ)! , κλ =
∑

j

λj(λj − 2j + 1) .

It’s easy to see that

κλ = −κλt . (2.1)
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A power symmetric function of a sequence of variables x = (x1, x2, ...)

is defined as follows

pn(x) =
∑

i

xn
i .

For a partition λ,

pλ(x) =

`(λ)∏

j=1

pλj (x).

It is well-known that every irreducible representation of symmetric

group can be labeled by a partition. Let χλ be the character of the irre-

ducible representation corresponding to λ. Each conjugate class of symmet-

ric group can also be represented by a partition µ such that the permutation

in the conjugate class has cycles of length µ1, . . . , µ`(µ). Schur function sλ

is determined by

sλ(x) =
∑

|µ|=|λ|

χλ(Cµ)

zµ
pµ(x) (2.2)

where Cµ is the conjugate class of symmetric group corresponding to par-

tition µ.

2.2. Quantum group invariants of links

Let L be a link with L components Kα, α = 1, . . . , L, represented by

the closure of an element of braid group Bm. We associate to each Kα

an irreducible representation Rα of quantized universal enveloping algebra

Uq(sl(N,C)), labeled by its highest weight Λα. Denote the corresponding

module by VΛα . The j-th strand in the braid will be associated with the

irreducible module Vj = VΛα , if this strand belongs to the component Kα.

The braiding is defined through the following universal R-matrix of Uq(slN )

R = q
1
2

∑
i,j C−1

ij Hi⊗Hj
∏

positive root β

expq [(1 − q−1)Eβ ⊗ Fβ ] .

Here {Hi, Ei, Fi} are the generators of Uq(slN ), (Cij) is the Cartan matrix

and

expq(x) =

∞∑

k=0

q
1
4 k(k+1) xk

{k}q!
,
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where

{k}q =
q−k/2 − qk/2

q−1/2 − q1/2
, {k}q! =

k∏

j=1

{j}q .

Define braiding by Ř = P12R, where P12(v ⊗ w) = w ⊗ v.

Now for a given link L of L components, one chooses a closed braid

representative in braid group Bm whose closure is L. In the case of no

confusion, we also use L to refer its braid representative in Bm. We will

assign each crossing by the braiding as follows. Let U , V be two Uq(slN )-

modules labeling two outgoing strands of the crossing, the braiding ŘU,V

(resp. Ř−1
V,U ) is assigned as

PSfrag replacements

U V
ŘU,V

PSfrag replacements

U V
Ř−1

V,U

The above assignment will give a representation of Bm on Uq(g)-module

V1 ⊗ · · · ⊗ Vm. Namely, for any generator, σi ∈ Bm,

define∗

h(σi) = id
V1

⊗ · · · ⊗ ŘVi,Vi+1 ⊗ · · · ⊗ idVN .

Therefore, any link L will provide an isomorphism

h(L) ∈ EndUq(slN )(V1 ⊗ · · · ⊗ Vm) .

Let K2ρ be the enhancement of Ř in the sense of,31 where ρ is the half-

sum of all positive roots of slN . The irreducible representation Rα is labeled

by the corresponding partition Aα.

∗In the case of σ−1
i , use Ř

−1
Vi+1,Vi

instead.
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Definition 2.1. Given L labeling partitions A1, . . . , AL, the quantum

group invariant of L is defined as follows:

W(A1,...,AL)(L) = qd(L)TrV1⊗···⊗Vm(K2ρ ◦ h(L)) ,

where

d(L) = −1

2

L∑

α=1

ω(Kα)(Λα,Λα + 2ρ) +
1

N

∑

α<β

lk(Kα,Kβ)|Aα| · |Aβ | ,

and lk(Kα,Kβ) is the linking number of components Kα and Kβ . A sub-

stitution of t = qN is used to give a two-variable framing independent link

invariant.

3. Large N CS/TS duality

The Chern-Simons partition function associated to a link L is defined to

be the following generating function:

ZCS(L; q, t;x) = 1 +
∑

A1,··· ,AL

W(A1,··· ,AL)(q, t)

L∏

α=1

sAα(xα)

where sA is the Schur function. Free energy is defined to be

F = logZCS .

Quantum group invariants of links can be expressed as vacuum expec-

tation value of Wilson loops which admit a large N expansion in physics. It

can also be interpreted as a string theory expansion (also see12 for more de-

tails). The geometric picture of f(A1,...,AL) is proposed in.14 One can rewrite

the free energy as

F =
∑

µ1,...,µL

√
−1

∑
α `(µα)

∞∑

g=0

λ2g−2+
∑

α `(µα)Fg,(µ1,...,µL)(t)
∏

α

pµα .

The quantities Fg,(µ1 ,...,µL)(t) can be interpreted in terms of the Gromov-

Witten invariants of Riemann surface with boundaries. It was conjectured

in27 that for every link L in S3, one can canonically associate a lagrangian

submanifold CL in the resolved conifold X

O(−1) ⊕ O(−1) → P1 ,

with b1(CL) = L, the number of components of L. The construction of such

lagrangian submanifolds by C. H. Taubes2 can be served as a candidate.
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Let γα, α = 1, . . . , L, be one-cycles representing a basis for H1(CL, Z)

and β ∈ H2(X,CL; Z). Consider the holomorphic map f : Σg,h → X from

genus g Riemann surface with h =
∑

α `(µ
α) holes to the resolved conifold

X such that f∗[Σg,h] = β and the boundary mapped to the cycle γα with the

prescribed winding number. The “number” of such maps will be denoted

by Kβ
g,(µ1,...,µL)

. These numbers are the open-string analogue of Gromov-

Witten invariants†. Fg, (µ1,...,µL)(t, τ) can thus be expressed as the following

generating function of open Gromov-Witten invariants:

Fg, (µ1,...,µL)(t, τ) =
∑

β

Kβ
g, (µ1,...,µL)

e
∫

β
ω

where ω is the Kähler class of the Calabi-Yau threefold X , and

t = e
∫

P1
ω .

One can write tQ =
∫

β ω, where Q is in general a half-integer.

4. Known results

4.1. Mariño-Vafa formula

The first important example is of course the case of the unknot. In,24 based

on the large N Chern-Simons/topological string duality, M. Mariño and

C. Vafa proposed a formula relating the Chern-Simons invariants of the

unknot (in this case, it is the quantum dimension), to certain generating

series of Hodge integrals. For a mathematical proof, please refer to.20

Let Mg,n denote the Deligne-Mumford moduli stack of stable curves of

genus g with n marked points. Let π : M g,n+1 → Mg,n be the universal

curve, and let ωπ be the relative dualizing sheaf. The Hodge bundle E =

π∗ωπ is a rank g vector bundle over M g,n. Let si : Mg,n →Mg,n+1 denote

the section of π which corresponds to the i-th marked point, and let Li =

s∗iωπ. A Hodge integral is an integral of the form
∫

Mg,n

ψj1
1 · · ·ψjn

n λk1
1 · · ·λkg

g

where ψi = c1(Li) is the first Chern class of Li, and λj = cj(E) is the j-th

Chern class of the Hodge bundle. Let

Λ∨
g (u) = ug − λ1u+ · · · + (−1)gλg

be the Chern polynomial of E∨, the dual of the Hodge bundle.

†The definition of open Gromov-Witten invariants is still at large in general.
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Define

Cg,µ(τ) = −
√
−1

`(µ)

|Aut(µ)| [τ(τ + 1)]`(µ)−1

`(µ)∏

i=1

∏µi−1
a=1 (µiτ + a)

(µi − 1)!

·
∫

Mg,`(µ)

Λ∨
g (1)Λ∨

g (−τ − 1)Λ∨
g (τ)

∏`(µ)
i=1 (1 − µiψi)

.

The Mariño-Vafa formula gives the following identity:

Theorem 4.1 (20).
∑

µ

pµ(x)
∑

g≥0

u2g−2+`(µ)Cg,µ(τ) = log
(
1 +

∑

A

sA(qρ)sA(x)
)

(4.1)

where qρ = (q−1/2, q−3/2, · · · , q−n+1/2, · · · ).

As a remark to the Mariño-Vafa formula, one may see that it provides

a very strong tool to study the intersection theory of the moduli space of

curves.

4.2. Topological vertex theory

Topological vertex theory was proposed in1 to give a complete solution to

the topological string theory on toric Calabi-Yau threefolds. A mathemati-

cal version of the topological vertex theory is given in,17 which is approached

by the relative Gromov-Witten theory.15,16 We will adapt this version to

give a rough picture of topological vertex theory (for more details, please

refer to17).

A Calabi-Yau threefold X is toric if it contains an algebraic torus (C∗)3

as an open dense subset and the (C∗)3 action can be extended to X . Let

X1 be the union of all one-dimensional (C∗)3orbit closures in X , X0 the

union of (C∗)3 fixed points. Naturally assume that X1 is connected and X0

is not empty. Given p ∈ X0, (C∗)3 acts on TpX and ∧3TpX , where TpX

is the tangent space of X at p. The action of (C∗)3 on ∧3TpX gives an

irreducible character α : (C∗)3 → C∗. α is independent of choice of p due to

Calabi-Yau condition and connectedness of X1. Define T = Kerα ∼= (C∗)2.
Let TR

∼= U(1)2 be the maximal compact subgroup of T and µ : X −→ t∨
R

be the moment map of the TR-action on X , where t∨
R

is the dual of the Lie

algebra of TR.

The image of X1 gives a planar trivalent graph Γ. Each vertex of Γ

corresponds to a fix points of T , and each edge of Γ corresponds to an

irreducible component Ce of X1.



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

334 P. Peng

Let M•
χ(X, β) be the moduli space of stable maps from possibly dis-

connected domains to X within the class β ∈ H2(X,Z) satisfying the

constraint 2χ(OX) = χ. Define the generating function of disconnected

Gromov-Witten invariants of degree β summing for all genera:

Zβ(u) =
∑

χ

uχ

∫

[M•
χ(X,β)]vir

1 . (4.2)

Topological partition function of X is defined as follows:

Ztop str = 1 +
∑

β 6=0

Zβ(u)Qβ.

To compute Gromov-Witten invariants of toric Calabi-Yau threefold X ,

one can degenerate X into two relative Calabi-Yau threefold (Y1, D) and

(Y2, D) with normal crossing singularity along divisor D. The Gromov-

Witten invariants of X can be obtained as a combination of the relative

Gromov-Witten invariants of (Y1, D) and (Y2, D).15,16 This procedure can

keep going on until all the pieces are indecomposable ones. All these in-

decomposable pieces are precisely the topological vertex as proposed in

physics which amplitudes are certain weighted Chern-Simons invariants.

This gives the following formula:

Zβ(q) =
∑∏

e

we

∏

v

wv . (4.3)

Here we is some combinatorial formula associated with the inner edge e of

the toric diagram Γ, and wv is the three-partition Hodge integral associated

with the vertex v except for a possible negative sign determined by its

profile. Three-partition Hodge integral is related to the topological vertex

amplitudes by a convolution formula proved in.17 Given three partitions A,

B, C, the topological vertex amplitude is give by

WA,B,C(q) = q−(κA−2κB− 1
2 κC)/2

∑
cν

+

(ν1)tBc
A
(η)tν1cCη3(ν3)t

×q(−2κν+−κ
ν3
2 )/2Wν+,C(q)

1

zµ
χη1(µ)χη3(2µ) .

(4.4)

Therefore, this closed form of topological string partition gives a complete

solution to the topological string theory on any given toric Calabi-Yau

threefolds.
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4.3. Labastida-Mariño-Ooguri-Vafa Conjecture

The Chern-Simons partition function of L is a generating function of quan-

tum group invariants of links given by

ZCS(L; q, t) =
∑

A1,...,AL

W(A1,...,AL)(L; q, t)

L∏

α=1

sAα(xα) (4.5)

for any arbitrarily chosen sequence of variables

xα = (xα
1 , x

α
2 , . . . , ) ,

where sAα(xα) is the Schur function.

Free energy is defined to be:

F = logZCS .

Use plethystic exponential, one can obtain‡

F =

∞∑

d=1

∑

A1,...,AL

1

d
f(A1,...,AL)(q

d, td)

L∏

α=1

sAα

(
(xα)d

)
, (4.6)

where

(xα)d =
(
(xα

1 )d, (xα
2 )d, . . .

)
.

Based on the duality between Chern-Simons gauge theory and topo-

logical string theory, J.M.F. Labastida, M. Mariño, H. Ooguri, C. Vafa

conjectured that f ~A have the following highly nontrivial structures.

For any A, B ∈ P, define the following function

MAB(q) =
∑

µ

χA(Cµ)χB(Cµ)

zµ

`(µ)∏

j=1

(q−µj/2 − qµj/2) . (4.7)

Conjecture 4.1 (LMOV). For any (A1, . . . , AL) ∈ PL,

(i). there exist P(B1,...,BL)(q, t) for (B1, . . . , BL) ∈ PL, such that

f(A1,...,AL)(q, t) =
∑

|Bα|=|Aα|
P(B1,...,BL)(q, t)

L∏

α=1

MAαBα(q). (4.8)

Furthermore, P(B1,...,BL)(q, t) has the following expansion:

P(B1,...,BL)(q, t) =

∞∑

g=0

∑

Q∈Z/2

N(B1,...,BL); g,Q(q−1/2 − q1/2)2g−2tQ .

(4.9)

‡It also gives a definition of f(A1,...,AL).
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(ii). N(B1,...,BL); g,Q are integers.

In a joint work with K. Liu, we proved the following theorem:

Theorem 4.2 (22). Notations as above, we have:

(q
1
2 − q−

1
2 )2P(B1,...,BL)(q, t) ∈ Z[(q1/2 − q−1/2)2, t±1/2] .

The above theorem not only implies the integrality in the LMOV con-

jecture, but also shows these integer invariants vanish at large g and Q.

It also gives a very strong evidence of the duality between Chern-Simons

theory and topological string theory. The existence of algebraic structure

of P(B1,...,BL)(q, t) implies a deep structure of quantum group invariants of

links. The pole order of f(A1,...,AL)(q, t) at q = 1 a priori tends to go to

infinity as the degree of the labeling irreducible representation goes higher

and higher. However, the LMOV conjecture claims that the pole at q = 1

is at most of order 2, which implies many miracle cancelations happened.

As a direct corollary, we consider the case that all the labeling irre-

ducible representations are fundamental ones. The quantum group invariant

reduces to HOMFLY polynomial. Simply apply the cancelation at the low-

est order, we obtain the following theorem by Lickorish and Millett which

was originally proved through rather complicated Skein analysis:

Theorem 4.3 (18). Let L be a link with L components. Its HOMFLY poly-

nomial,

PL(q, t) =
∑

g≥0

pL

2g+1−L(t)
(
q−

1
2 − q

1
2

)2g+1−L

,

satisfies:

pL

1−L(t) = t− lk
(
t−

1
2 − t

1
2

)L−1 L∏

α=1

pKα
0 (t) .

Here pKα
0 (t) is HOMFLY polynomial of the α-th component of the link L

with q = 1.

4.4. U(N) Chern-Simons gauge theory

It is in fact more nature to consider U(N) Chern-Simons gauge theory.

Chern-Simons vevs change under a change of framing, which will give a

change on the invariants similarly defined in the LMOV conjecture related

to the BPS degeneracies of domain walls in a geometry with different IR
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behavior. In the LMOV conjecture, the integrality of N(B1,...,BL); g,Q is al-

ready highly nontrivial, and it provides one of the major evidences for the

duality proposed in.4 The integrality predictions for any framing are even

more surprising.24 In a joint work with K. Liu, we prove the integrality

holds for any framing change23 in the setting of U(N) Chern-Simons gauge

theory.

4.5. Uniqueness of the cut-and-join system

A very important feature in both Chern-Simons gauge theory and topolog-

ical string theory is that they both satisfy a system of non-linear ODEs,

which is called cut-and-join equations. In the Chern-Simons gauge theory,

the cut-and-join equation corresponds to the deformation of the framing,

while in the topological string theory, it reflects deformations of Riemann

surface mapped into the given Calabi-Yau threefold. Therefore, the large N

Chern-Simons/topological string duality should be reduced to the unique-

ness of this cut-and-join system in the end of the day.

In,30 we study this system and pride an interesting condition to the

uniqueness of the cut-and-join system.

Theorem 4.4 (30). Associated to any link L of L components, Z1(L) and

Z2(L) can be expressed as the following:

Z1(L) = 1 +
∑

µ1,...,µL

R(µ1,...,µL)(q, t; τ1, . . . , τL)

L∏

α=1

pµα(xα),

Z2(L) = 1 +
∑

µ1,...,µL

G(µ1,...,µL)(q, t; τ1, . . . , τL)
L∏

α=1

pµα(xα)

satisfy the following cut-and-join equation:

∂Zk

∂τα
=
∑

i,j≥1

(
(i+ j)pα

i p
α
j

∂

∂pα
i+j

+ ijpα
i+j

∂2

∂pα
i ∂p

α
j

)
Zk

where k = 1, 2, 1 ≤ α ≤ L, and pα
i = pi(x

α). If R(1,...,1) = G(1,...,1) for any

link L, then Z1 = Z2 for any link L.

If we specify all the labeling irreducible representation of a given link L

to be the fundamental representation, the quantum group invariants of links

reduces to the famous HOMFLY polynomial of L. However, we known that

HOMFLY polynomial can be recursively determined by the skein relation.

Therefore, the above theorem will imply that if one could prove that in the
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topological string theory, such skein relation is satisfied by the generating

function of the open Gromov-Witten invariants, one could conclude the

duality between Chern-Simons gauge theory and topological string theory

at large N .

5. Concluding remarks

It is of course very important to construct open Gromov-Witten theory.

D. Joyce’s work10 will put this foundation a solid ground. We expect a

general method to prove that the partition function satisfies the cut-and-

join equation on the geometry side.

There are also many interesting applications to knot theory from the

large N Chern-Simons/topological string duality conjecture. As one may

find the geometry of the moduli space of stable maps from Riemann sur-

faces to Calabi-Yau threefolds reveals further structure of three-dimensional

topology. For example, volume conjecture was proposed by Kashaev in11

and reformulated by.25 It relates the volume of hyperbolic 3-manifolds to

the limits of quantum invariants. This conjecture was later generalized to

complex case26 and to incomplete hyperbolic structures.8 The study of the

volume conjecture is still staying at a rather primitive stage. We expect

that certain vanishing phenomenon in the open Gromov-Witten theory will

give a deep characterization of these limits of quantum invariants.

As mentioned above, quantum group invariants satisfy skein relation

which must have some implications on topological string side as mentioned

in.12 One could also rephrase a lot of unanswered questions in the knot

theory in terms of the open Gromov-Witten theory and vice versa. We hope

that the relation between knot theory and open Gromov-Witten theory will

be explored much more in detail in the future.
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Abstract. Let M be a compact orientable 3-manifold which contains a

non-separating closed incompressible surface F . Let M
′

= M −η(F ) where

η(F ) is an open regular neighborhood of F in M . In the paper we show

that if M
′

has a Heegaard splitting V
′ ∪S′ W

′

with d(S
′

) > 2g(M
′

), then

g(M) ≥ g(M
′

)−g(F ). Furthermore, if F is a torus, then g(M) ≥ g(M
′

)+1.

1. Introducion

Let M be a compact orientable 3-manifold. If there is a closed surface S

which cutsM into two compression bodies V andW with S = ∂+W = ∂+V ,

then we say M has a Heegaard splitting, denoted by M = V ∪SW ; and S is

called a Heegaard surface of M . Moreover, if the genus g(S) of S is minimal

among all Heegaard splittings of M , then g(S) is called the genus of M ,

denoted by g(M). If there are essential disks B ⊂ V and D ⊂W such that

∂B ∩ ∂D = ∅, then V ∪S W is said to be weakly reducible. Otherwise, it is

said to be strongly irreducible.

Let M = V ∪S W be a Heegaard splitting. The distance between two

essential simple closed curves α and β on S, denoted by d(α, β), is the

smallest integer n ≥ 0 so that there is a sequence of essential simple closed

curves α0 = α, . . . , αn = β on S such that αi−1 is disjoint from αi for

∗Supported by a grant of NSFC (No. 10625102)
†Supported by a grant of NSFC (No. 10571034)
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1 ≤ i ≤ n. The distance of the Heegaard splitting W ∪S V is d(S) =

Min
{
d(α, β)

}
, where α bounds a disk in V and β bounds a disk in W .

This was first introduced by Hempel. See [4]. It is clear that V ∪S W is

reducible if and only if d(S) = 0, and V ∪S W is weakly reducible if and

only if d(S) ≤ 1.

Let F be either a properly embedded surface in a 3-manifold M or a

sub-surface of ∂M . If there is an essential curve on F which bounds a disk

in M with its interior disjoint from F or F is a 2-sphere which bounds

a 3-ball in M , then we say F is compressible; otherwise, F is said to be

incompressible. If F is an incompressible surface not parallel to ∂M , then

F is said to be essential. A 3-manifold is said to be reducible if it contains

an incompressible 2-sphere; otherwise, it is said to be irreducible.

Let F be an essential closed surface in a 3-manifold M . Assume that

F is separating in M . Then F cuts M into two manifolds M1 and M2.

Now if Mi = Vi ∪Si Wi is a Heegaard splitting, i = 1, 2, then M has a

natural Heegaard splitting V ∪S W called the amalgamation of V1 ∪S1 W1

and V2 ∪S2 W2 with g(S) ≤ g(S1) + g(S2)− g(F ). From this point of view,

g(M) ≤ g(M1)+ g(M2)− g(F ). There are some examples to show that it is

possible that g(M) = g(M1) + g(M2) − g(F ) − n for any integer n. See [7]

and.16 J. Johnson [5] proved that g(M) ≥ 1/5(g(M1)+g(M2)−g(F )) when

M1 and M2 are anannular. In general, J. Schultens[15] proved that g(M) ≥
1/5(g(M1)+g(M2)−g(F )−N(M1)−N(M2)) where N(Mi) is the number

of pairwise disjoint non-parallel essential annuli in Mi. Furthermore, some

sufficient conditions for g(M) = g(M1) + g(M2) − g(F ) have been given.

See [1], [6] and [9].

Assume now that F is non-separating inM . Let η(F ) (N(F )) be an open

(closed) regular neighborhood of F in M . We denote by F1 and F2 the two

boundary components of N(F ). Let M
′

= M − η(F ) and M
′

= V
′ ∪S′ W

′

be a Heegaard splitting such that F1, F2 ⊂ ∂−V
′

. Then M has a natural

Heegaard splitting V ∪S W called the self-amalgamation of V
′ ∪S′ W

′

with

g(S) = g(S
′

) + 1. In this case, g(M) ≤ g(M
′

, F1 ∪ F2) + 1. Furthermore, if

M is homeomorphic to F × S1, then g(M) = g(M
′

, F1 ∪ F2) + 1. See [13].

In this paper, we shall give a lower bound of g(M) when M
′

has a high

distance Heegaard splitting. The main result is the following:

Theorem 1. Let M be a compact orientable 3-manifold, and F a

non-separating incompressible closed surface in M . Let M
′

= M − η(F ).

If M
′

has a Heegaard splitting V
′ ∪S′ W

′

with d(S
′

) ≥ 2g(M
′

), then

g(M) ≥ g(M
′

) − g(F ).

Corollary 2. Under the assumptions of Theorem 1, if F is a torus,
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then g(M) ≥ g(M
′

) + 1.

2. An extension of Schultens’s Lemma

Let M = V ∪S W be a strongly irreducible Heegaard splitting, and F be a

collection of essential surfaces in M . F is called a good separating system if

M − F contains two components M1 and M2; furthermore, for any subset

F
′

, M −F
′

contains only one component. By Schultens’s lemma, S can be

isotoped to intersect F in essential simple closed curves on both F and S.

In this section, we will give an extension of Schultens’s lemma. The main

argument is due to [6].

Lemma 2.1. Let M = V ∪S W be a strongly irreducible Heegaard

splitting, and F a good separating system in M which cuts M into two

manifolds M1 and M2. Then S can be isotoped so that

(1) each of S ∩M1 and S ∩M2 is incompressible or

(2) one of S ∩M1 and S ∩M2, say S ∩M1, is incompressible while

all components of S
′ ∩ M2 are incompressible except one bicompressible

component.

(3) one of S∩M1 and S∩M2, say S∩M1, is incompressible while S∩M2

is compressible. Furthermore, there is a Heegaard surface S
′

isotopic to S

such that

(i) S
′ ∩M1 is compressible while S

′ ∩M2 is incompressible, and

(ii) S
′

is obtained by ∂-compressing S in M2 only one time.

Remark on Lemma 2.1. Bachman, Schleimer and Sedgwick [1] gave

an extension of Schultens’s lemma similar to Lemma 2.1 when F is con-

nected and closed.

Proof. Let
{
H1, H2

}
=
{
W,V

}
. If each of S ∩ M1 and S ∩ M2 is

incompressible, then Lemma 2.1(1) holds. If one of S ∩M1 and S ∩M2 is

bicompressible, then, since V ∪S W is strongly irreducible, Lemma 2.1(2)

holds. We may assume that

(1) one of S ∩M1 and S ∩M2 is compressible in M1 ∩H1 or M2 ∩H1.

(2) S ∩Mi is incompressible in Mi ∩H2 for i = 1, 2.

Since F is a collection of essential surfaces in M , H1 and H2 are non-

trivial compression bodies. Let D is an essential disk ofH2 such that |D∩F |
is minimal among all essential disks in H2. By Assumption (2), |D∩F | > 0.

Furthermore, we may assume that

(3) S is a strongly irreducible Heegaard surface such that |D∩F | is min-

imal among all Heegaard surfaces isotopic to S and satisfying Assumptions

(1) and (2).

Let a be an outermost component of D ∩ F on D. This means that a,
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together with an arc b on ∂D(⊂ S), bounds a disk B in D which lies in

either M1 ∩ H2 or M2 ∩ H2 such that B ∩ F = a. By the minimality of

|D ∩ F |, B is a ∂-compressing disk of S ∩M1 or S ∩M2.

Now there are two cases:

Case 1. D ⊂M2 ∩H2 and S ∩M1 is compressible in M1 ∩H1.

By Assumption (2), S ∩M2 is incompressible in M2 ∩H2.

Now let S
′

be the Heegaard surface of M obtained by ∂-compressing S

along D. We denote by H
′

1 and H
′

2 the two components of M−S ′

. We may

assume that M1 ∩H1 ⊂M1 ∩H
′

1. Since S∩M1 is compressible in M1∩H1,

S
′ ∩M1 is compressible in M1∩H

′

1, and S
′ ∩M2 is incompressible M2∩H

′

2.

Now if S
′ ∩M1 is compressible in M1 ∩H

′

2, then Lemma 2.1(2) holds.

Suppose that S
′ ∩M1 is incompressible in M1 ∩ H

′

2. Then S
′ ∩Mi is

either incompressible or compressible in Mi ∩ H
′

1 but not bicompressible.

Now D ∩ H ′

2 is an essential disk in H
′

2. But |D ∩ H ′

2 ∩ F | = |D ∩ F | − 1.

This contradicts Assumptions (1), (2) and (3).

Case 2. D ⊂M2 ∩H2, S ∩M2 is compressible in M2 ∩H1, and S ∩M1

is incompressible in M1 ∩H1.

By Assumption (2), S∩M1 is incompressible in M1∩H2. Hence S∩M1

is incompressible in M1. Similarly, let S
′

be the Heegaard surface of M

obtained by ∂-compressing S along D. We denote by H
′

1 and H
′

2 the two

components of M − S
′

. We may assume that M1 ∩ H1 ⊂ M1 ∩ H
′

1. By

Assumption (2), S ∩M2 is incompressible in M2 ∩ H2. Hence S
′ ∩M2 is

incompressible in M2 ∩H
′

2. If S
′ ∩M2 is incompressible in M2 ∩H

′

1, then

Lemma 2.1(3) holds.

Suppose that S
′ ∩ M2 is compressible in M2 ∩ H

′

1. Since S
′

is also a

strongly irreducible Heegaard surface, S
′∩M1 is incompressible in M1∩H

′

2.

But |D∩H ′

2 ∩F | = |D∩F | − 1. This contradicts Assumptions (1), (2) and

(3). Q.E.D.

3. The proof of Theorem 1

Lemma 3.1. (1).3 Let M = V ∪SW be a Heegaard splitting, and F be an

incompressible surface in M . Then either F can be isotoped to be disjoint

from S or d(S) ≤ 2 − χ(F ).

(2).12 Let V ∪SW and V ∗∪S∗W ∗ be two Heegaard splittings for M . Then

either d(S) ≤ 2g(S∗) or V ∗ ∪S∗ W ∗ is a stabilization or ∂-stabilization of

V ∪S W .

The proofs of Theorem 1 and Corollary 2. Assume that F is a

non-separating incompressible closed surface of genus at least one in M .

We denote by η(F ) and N(F ) the open and closed regular neighborhoods
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of F in M , F1 and F2 the two boundary components of N(F ). Let M
′

=

M − η(F ). We assume that M
′

has a Heegaard splitting V
′ ∪S′ W

′

with

d(S
′

) > 2g(M
′

). By Lemma 3.1, g(M
′

) = g(S
′

). By Haken’s lemma, M
′

and M are irreducible.

Now let M = V ∪S W be a minimal Heegaard splitting of M . Then

V ∪S W is irreducible.

Claim 1. If V ∪S W is weakly reducible, then g(S) ≥ g(M
′

) + 1.

Proof. Now V ∪S W has a thin position as

V ∪S W = (V
′

1 ∪S
′
1
W

′

1) ∪H1 . . . ∪Hn−1 (V
′

n ∪S′
n
W

′

n) (∗)

where n ≥ 2, each component of H1, . . . , Hn−1 is an incompressible closed

surface in M , and Vi ∪Si Wi is a strongly irreducible non-trivial Heegaard

splitting for 1 ≤ i ≤ n. See [11].

Suppose that g(S) < g(M
′

) + 1. By Lemma 3.1(2), g(M
′

, F1 ∪ F2) ≤
g(M

′

) + g(F ). Note that g(Hi) ≤ g(S). By Lemma 3.1(1), Hi is disjoint

joint from M
′

. Hence each component of H1, . . . , Hn−1 is parallel to F .

Hence one of the manifolds M1,M2, . . . ,Mn is homeomorphic to M
′

, say

M1, and each of M2, . . . ,Mn is homeomorphic to F × I . This means that

g(S) = g(M
′

, F1 ∪ F2) + 1. See [8]. Q.E.D. (Claim 1)

Now suppose that V ∪S W is strongly irreducible, and g(S) < g(M
′

)−
g(F ).

Claim 2. S can be isotoped so that S ∩ M
′

is bicompressible while

S ∩N(F ) is incompressible.

Proof. Let F = F1 ∪F2. Then F is a good separating system of M . By

Lemma 2.1, there are three cases:

Case 1. S ∩M ′

and S ∩N(F ) are incompressible.

Since g(S) < g(M
′

) − g(F ) and d(S
′

) > 2g(M
′

), by Lemma 3.1(1), S

can be isotoped to be disjoint from M
′

. This means that a compression

body contains an essential closed surface, a contradiction.

Case 2. one of S ∩M ′

and S ∩N(F ) is bicompressible while the other

is incompressible.

By the argument in Case 1, S ∩M ′

in bicompressible and S ∩N(F ) is

incompressible.

Case 3. S ∩M ′

is compressible while S ∩N(F ) is incompressible. Fur-

thermore, there is a Heegaard surface S∗ isotopic to S such that S∗ ∩M ′

is incompressible while S∗ ∩N(F ) is compressible.

Again by the argument in Case 1, this is impossible. Hence Claim 2

holds. Q.E.D. (Claim 2)

By Claim 2, we may assume that S∩M ′

is bicompressible while S∩N(F )
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is incompressible. Furthermore, we assume that |S ∩ F| is minimal among

all Heegaard surfaces isotopic to S and satisfying the above condition.

Claim 3. S ∩M ′

contains only one component.

Proof. Since V ∪SW is strongly irreducible, there is one component of

S ∩M ′

, say C, which is bicompressible, and S ∩M ′ −C is incompressible.

Suppose that S ∩M ′ − X contains at least one component C
′

. Then, by

Lemma 3.1(1), C
′

is parallel to a surface in F. Hence C
′

can be disjoint

from M
′

. This contradicts the assumption on |S ∩ F|. Q.E.D. (Claim 3)

The following argument is essentially due to [10].

By Claim 3, S ∩M
′

is connected and bicompressible. Let SV be the

surface obtained by maximally compressing S ∩M ′

into M
′ ∩ V , and SW

be the surface obtained by maximally compressing S ∩M ′

into M
′ ∩W .

By the nested lemma, SV and SW are incompressible in M
′

. This means

that there are n essential disks D1, . . . , Dn in V such that SV = (S ∩M ′ −
∪n

i=1Di × [0, 1])∪n
i=1 Di ×

{
0, 1
}
. By Lemma 3.1(1), each component of SV

and SW , say C, is parallel to one component of F−∂C, say C∗, in M
′

. We

denote by WC the handlebody bounded by C and C∗.
Claim 4. If C1 and C2 are two components of SV (SW ), then WC1 ∩

WC2 = ∅.
Proof. Suppose that there are two components of SV , say C1 and C2,

such that WC1 ∩WC2 6= ∅. Then C2 ⊂ WC1 . Since C2 is incompressible in

WC1 , C2 is parallel to a surface C
′ ⊂ C∗

1 in WC1 . Let C1 × I be a regular

neighborhood of C1 in WC1 such that C1 ×
{
0
}

= C1. Now there are two

cases:

Case 1. C1 × (0, 1] ⊂ intV .

Now Di × [0, 1] is disjoint from C1 ×
{
1
}

for each 1 ≤ i ≤ n. Since

C2 ⊂WC1 , S ∩M ′

is not connected, contradicting to Claim 3.

Case 2. C1 × I ⊂W ∪n
i=1 Di × [0, 1].

Now let C1 × [−1, 0] be a regular neighborhood of C1 in V such that

C1 × [−1, 0) ⊂ intV . Then Di × [0, 1] is disjoint from C1 ×
{
−1
}
. Hence

either all the components of SV lie in WC1 or S ∩ M
′

is not connected.

Suppose now that all the components of SV lie in WC1 . Then S can be

isotoped to be disjoint from F, a contradiction. Q.E.D. (Claim 4)

By Claim 4, each component of SV is parallel to a component of F−S∩F,

say C∗, which lies in V . Similarly, each component of SW is parallel to a

component of F−S∩F which lies in W .

Let S
′

1 = (S∩M ′

)∪(F∩V ), and S
′

2 = (S∩M ′

)∪(F∩W ). Then S
′

1 and S
′

2

are two Heegaard surfaces of M
′

. By Lemma 3.1(2), g(S
′

1), g(S
′

2) ≥ g(S
′

).

Note that χ(F)= χ(F1) +χ(F2) = 2χ(F ), χ(F)= χ(F∩V ) +χ(F∩W ). Now
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we may assume that χ(F∩V ) ≥ 1/2χ(F) = χ(F ). Hence χ(S) = χ(S∩M ′

)+

χ(S ∩N(F )) ≤ χ(S
′

2)−χ(F ) +χ(S ∩N(F )). Hence g(S) ≥ g(M
′

)− g(F ).

Thus Theorem 1 holds.

Now suppose that F is a torus. Then each component of F∩V and

F∩W is an annulus. In this case, d(S
′

1), d(S
′

2) ≤ 2. For details, see [10].

Hence g(S
′

1), g(S
′

2) ≥ g(S
′

) + 1. Thus Corollary 2 holds. Q.E.D.
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1. Introduction

The term categorification was invented by Crane.5,6 It refers to the process

of finding category-theoretic analogues of set-theoretic concepts, so that

one recovers the set-theoretic structures from the Grothendieck group of

the categories involved.

Listed below are some typical examples of abelian categorification. See

Ref. 15 for a recent review.

set category

Z vector spaces

Z[t, t−1] graded vector spaces

abelian group abelian category

module abelian category & exact endofunctors

More precisely, categorification of a module M over an algebra A means

lifting the module M to an additive or abelian category C and, accordingly,

lifting the algebra A to a collection of endofunctors of C as well as functor

isomorphisms among them, in such a way that the Grothendieck group of C

recovers the module M and the endofunctors and the isomorphisms among

them recover the module structure of M .

The possibility of categorifying representations of quantum envelop-
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ing algebras was first observed from their canonical bases introduced by

Lusztig16 and Kashiwara:12 canonical bases have many pretty nice proper-

ties necessary for categorification, such as integrality and positivity.

However, the categorification task turned out to be a rather difficult

one. For treatments of tensor products of the fundamental Uq(sl2)-module,

see Bernstein-Frenkel-Khovanov2 and Chuang-Rouquier.4

Very recently, Frenkel-Khovanov-Stroppel8 succeeded in categorifying

tensor products of general finite-dimensional Uq(sl2)-modules, by using at

full length many deep results in representation theory of Lie algebras.

Later, in Ref. 18 the author fulfilled two tasks in a purely geometric

way. One is the same as Frenkel-Khovanov-Stroppel’s work; the other is

the categorification of R-matrices among the tensor products of Uq(sl2)-

modules. In this note we will give an elementary description of the first

part of this work.

2. Quantum sl2

The quantum enveloping algebra13 Uq(sl2) is the Q(q)-algebra defined by

the generators

K,K−1, E, F

and the relations

KK−1 = K−1K = 1,

KE = q2EK,

KF = q−2FK,

EF − FE =
K −K−1

q − q−1
.

We can rewrite the last relation in an equivalent form

qEF + q−1FE +K−1 = q−1EF + qFE +K.

The simple Uq(sl2)-modules are parameterized by their dimensions.

More precisely, for a nonnegative integer d, let Λd be the Q(q)-linear space

spanned by

{v0, v1, . . . , vd}.

Then the followings endow Λd with a Uq(sl2)-module structure (we define
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v−1 = vd+1 = 0).

Kvr = qd−2rvr,

Evr = [d− r + 1]qvr−1,

F vr = [r + 1]qvr+1,

where

[n]q =
qn − q−n

q − q−1
.

For a composition d = (d1, d2, . . . , dl) of d (i.e. a sequence of nonnegative

integers summing up to d), we have a tensor product of UA-modules

Λd = Λd1 ⊗ Λd1 ⊗ · · ·Λdl
.

It has a standard basis

{vr1 ⊗ vr2 ⊗ · · · ⊗ vrl
| 0 ≤ ri ≤ di}.

3. A toy model: simple Uq(sl2)-modules

As a warm-up, we illustrate by a simple example how to categorify Uq(sl2)-

modules through geometric approaches.

The geometric settings is as follows. Recall that Λd is the Q(q)-linear

space spaned by

{v0, v1, . . . , vd}.

Correspondingly, we have Grassmannian varieties,

Xr
d = {V ⊂ Cd | dimV = r}, 0 ≤ r ≤ d.

Consider the partial flag varieties

Xr,r+1
d = {V1 ⊂ V2 ⊂ Cd | dimV = r, dimV2 = r + 1}.

The obvious projections

Xr
d Xr,r+1

d

p
oo

p′

//Xr+1
d

endow Xr,r+1
d with a Pd−r−1-bundle structure over Xr

d and a Pr-bundle

structure over Xr+1
d . In this way, both cohomology rings H•(Xr

d ,C) and

H•(Xr+1
d ,C) act on the cohomology groups H•(Xr,r+1

d ,C).

To categorify the simple Uq(sl2)-module Λd, we need to construct an

abelian category as well as a collection of exact endofunctors.



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

A Geometric Categorification of Representations of Uq(sl2) 351

First, we define a finite-dimensional graded C-algebra

A• = ⊕rH
•(Xr

d ,C).

The abelian category involved is the category A•-mof of finite-dimensional

graded A•-modules. By the Grothendieck group of A•-mof, we mean the

Q(q)-linear space G(A•-mof) which is defined by the generators each for

an isomorphism class of graded A•-modules and the relations

• [M•] = [M ′•] + [M ′′•], for a short exact sequence M ′• ↪→M• � M ′′•;
• [M•+1] = q−1[M•], for M• ∈ A•-mof.

Notice the isomorphism

Λd
∼−→ G(A•-mof)

vr 7→ [H•(Xr
d ,C)].

Next, we describe the exact endofunctors. Recall that each flat A•-
bimodule defines an exact functor of A•-mof by tensoring on the left. We

have following flat (indeed projective) A•-bimodules

K• = ⊕rH
•−d+2r(Xr

d ,C),

K−1• = ⊕rH
•+d−2r(Xr

d ,C),

E• = ⊕rH
•+d−r−1(Xr,r+1

d ,C),

F• = ⊕rH
•+r(Xr,r+1

d ,C),

in which H•(Xr,r+1
d ,C) is regraded as an H•(Xr

d ,C)-H•(Xr+1
d ,C)-

bimodule for E• and as an H•(Xr+1
d ,C)-H•(Xr

d ,C)-bimodule for F•. These

are the exact endofunctors we need.

A straightforward computation shows the following isomorphisms of A•-
bimodules (hence isomorphisms of endofunctors of A•-mof)

K• ⊗ K−1• ∼= K−1• ⊗ K• ∼= A•,

K• ⊗ E• ∼= A•−2 ⊗ E• ⊗ K•,

K• ⊗ F• ∼= A•+2 ⊗ F• ⊗ K•,

and

A•−1 ⊗ E• ⊗ F• ⊕ A•+1 ⊗ F• ⊗ E• ⊕ K•

∼= A•+1 ⊗ E• ⊗ F• ⊕ A•−1 ⊗ F• ⊗ E• ⊕ K−1•
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Comparing them with the defining relations of Uq(sl2)

KK−1 = K−1K = 1,

KE = q2EK,

KF = q−2FK,

qEF + q−1FE +K−1 = q−1EF + qFE +K,

we conclude that the abelian category A•-mof and the exact functors

K• ⊗−, K−1• ⊗−, E• ⊗−, F• ⊗−

categorify the Uq(sl2)-module Λd.

Before proceeding to categorify tensor products of Uq(sl2)-modules, we

give a sheaf-theoretic interpretation of the above constructions.

Notice the algebra isomorphism

H•(Xr
d ,C) = Ext•Sh(Xr

d)

(
CXr

d
,CXr

d

)
.

where Sh(·) denotes the category of C-sheaves, CXr
d

denotes the constant

sheaf on Xr
d . The multiplication in the right hand side is given by the

Yoneda product.

Besides, we have a linear isomorphism

H•(Xr,r+1
d ,C) = Ext•

Sh(Xr,r+1
d )

(
CXr,r+1

d
,CXr,r+1

d

)

= Ext•
Sh(Xr,r+1

d )

(
p∗CXr

d
, p′∗CXr+1

d

)

such that the canonical actions of the algebras H•(Xr
d ,C), H•(Xr+1

d ,C)

on the left hand side and the canonical actions of the algebras

Ext•Sh(Xr
d)(CXr

d
,CXr

d
), Ext•

Sh(Xr+1
d )

(CXr+1
d

,CXr+1
d

) on the right hand side

are compatible with the above algebra isomorphisms.

To summarize, we can rewrite as follows.

A• = ⊕rExt•Sh(Xr
d )

(
CXr

d
,CXr

d

)
,

K• = ⊕rExt•−d+2r
Sh(Xr

d )

(
CXr

d
,CXr

d

)
,

E• = ⊕rExt•+d−r−1

Sh(Xr,r+1
d )

(
p∗CXr

d
, p′∗CXr+1

d

)
,

F• = ⊕rExt•+r

Sh(Xr,r+1
d )

(
p′∗CXr+1

d
, p∗CXr

d

)
,

With slight modifications to the expressions above, we will use them in

Section 5 to categorify tensor products of Uq(sl2)-modules.
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4. Intersection complex

The notion of intersection complex backdated to Goresky-MacPherson10,11

trying to seek a new homology theory for singular spaces such that impor-

tant properties of usual homology theory for smooth manifolds, such as the

Poincaré duality, still hold.

Intersection complexes of certain singular varieties (Shurbert varieties)

will provide us key ingredients for our geometric categorification.

For simplicity, we assume X is a projective complex variety of pure

dimension n. Choose a stratification

X = S0 t S1 t · · · t Sn

in which each stratum Si is a smooth subvariety of dimension n − i. One

obvious choice is that S0 is the regular part of X and, inductively, Si is the

regular part of X \ Si−1.

Let C•(X) be the chain complex for computing the usual cohomology

H•(X,C) (either the simplicial chain complex or the singular chain com-

plex). We say a cochain ξ ∈ C i(X) is allowable if the following transversality

condition is satisfied.

dimR(|ξ| ∩ Sk) ≤ i− k − 1, for k = 1, 2, . . . , n.

The intersection chain complex is the subcomplex of C•(X) formed by

ICi(X) = {ξ ∈ Ci(X) | both ξ, ∂ξ are allowable}.
Its homology defines the intersection cohomology IH•(X) of X .

For example, the usual cohomology groups and the intersection coho-

mology groups of P1 ∨ P1 are computed as follows.

i H i(P1 ∨ P1,C) IH i(P1 ∨ P1)

0 C C ⊕ C
1 0 0

2 C ⊕ C C ⊕ C

Note that the Poincaré duality is violated in the usual cohomology but

persists in the intersetion cohomology.

This phenomenon is indeed a general fact.

Theorem 4.1 (Goresky-MacPherson10,11). (1) IH i(X) is indepen-

dent of the stratification {Si}0≤i≤n, hence is a topological invariant of X.

(2) Poincaré duality holds

IH i(X) ∼= IH2n−i(X).
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Corollary 4.1. IH i(X) = H i(X,C) if X is smooth.

The intersection cohomology can be better understood and treated in

the sheaf-theoretic setting. Recall that the usual cohomology H•(X,C) is

the hyper-cohomology of the constant sheaf CX ∈ Sh(X). It turns out that

the intersection cohomology IH•(X) is the hyper-cohomology of a perverse

sheaf IC(X) ∈ Perv(X), the intersection complex of X . More generally, for

every closed subvariety S of X , there is a perverse sheaf IC(S) ∈ Perv(X)

(supported on S), whose hyper-cohomology computes IH•(S).

The subject of perverse sheaf has been too far from the scope of this

note. We refer the readers to Refs. 7,9 for accessible introductions and

to Refs. 1,3 for further details. We only mention here that the category

of perverse sheaves Perv(X) has many resemblance with Sh(X), so it is

helpful to keep in mind that Perv(X), IC(X) are analogues of Sh(X),CX

just as IH•(X) is an analogue of H•(X,C).

5. Tensor products of Uq(sl2)-modules

Let the varieties Xr
d , Xr,r+1

d and the morphisms p, p′ be the same as Section

3. We fix a composition d = (d1, d2, . . . , dl) of d =
∑
di. Recall that the

tensor product

Λd = Λd1 ⊗ Λd2 ⊗ · · · ⊗ Λdl

has a standard basis

{vr1 ⊗ vr2 ⊗ · · · ⊗ vrl
| 0 ≤ ri ≤ di}.

The general linear group GL(Cd) acts on the Grassmannians Xr
d , 0 ≤

r ≤ d and so does its parabolic subgroup

Pd = {




P1 ∗
P2

. . .

0 Pl


 | Pi ∈ GL(Cdi)}.

A key observation is the obvious one-one correspondence
{
Pd-orbits of trX

r
d

}
↔ the standard basis of Λd.

The closures of the Pd-orbits are specific examples of Schubert varieties;

they are singular varieties, in general.

Let Lr denote the direct sum of the intersection complexes of the Pd-

orbits of Xr
d

Lr = ⊕SIC(S) ∈ Perv(Xr
d).



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

A Geometric Categorification of Representations of Uq(sl2) 355

Define a finite-dimensional graded (non-commutative in general!) C-algebra

A• = ⊕rExt•Perv(Xr
d )

(
Lr, Lr

)
,

as well as A•-bimodules

K• = ⊕rExt•−d+2r
Perv(Xr

d )

(
Lr, Lr

)
,

E• = ⊕rExt•+d−r−1

Perv(Xr,r+1
d )

(
p∗Lr, p′∗Lr+1

)
,

F• = ⊕rExt•+r

Perv(Xr,r+1
d )

(
p′∗Lr+1, p∗Lr

)
.

The main result of [18, Section 3] can be stated as follows.

Theorem 5.1. There is a canonical linear isomorphism

Λd
∼= G(A•-mof) (∗)

and isomorphisms of projective A•-bimodules

K• ⊗ K−1• ∼= K−1• ⊗ K• ∼= A•,

K• ⊗ E• ∼= A•−2 ⊗ E• ⊗ K•,

K• ⊗ F• ∼= A•+2 ⊗ F• ⊗ K•,

and

A•−1 ⊗ E• ⊗ F• ⊕ A•+1 ⊗ F• ⊗ E• ⊕ K•

∼= A•+1 ⊗ E• ⊗ F• ⊕ A•−1 ⊗ F• ⊗ E• ⊕ K−1•.

Therefore, the abelian category A•-mof and the exact functors

K• ⊗−, K−1• ⊗−, E• ⊗−, F• ⊗−
categorify the Uq(sl2)-module Λd.

We conclude this note by several remarks. The linear isomorphism (∗)
from the above theorem is non-trivial. It can be expressed in terms of

parabolic Kazhdan-Lusztig polynomials. The elements
[
Ext•Perv(Xr

d)(L
r, IC(S))

]
, 0 ≤ r ≤ d, S ∈ {Pd-orbits of Xr

d}
form a basis of Λd, which coincides with the canonical basis introduced by

Lusztig.17

The bimodule isomorphisms from the above theorem were proved by

reduction to sheaf isomorphisms. The main technique involved is the usage

of the Decomposition Theorem of Beilinson-Bernstein-Deligne-Gabber.1

The work Ref. 18 was partly motivated by a desire to understand

Khovanov homology14 of knots and links. The treatment was inspired by

Lusztig’s geometric construction of canonical basis of quantum enveloping

algebras.16
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18. H. Zheng, A geometric categorification of tensor products of Uq(sl2)-modules,

arXiv:math/0705.2630.



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

PART B

Xiao-Song Lin’s Unpublished Papers



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

This page intentionally left blankThis page intentionally left blank



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

359

Editors’ Notes

In this part, we included 5 unpublished papers of Xiao-Song Lin. The

recent paper on the motion group of the unlink and its representations starts

an interesting generalization of the braid groups to higher dimensions. It has

been used by other mathematicians to study statistics of extended objects in

dimension 4. Some papers dated back to 1991. We did not correct mistakes

or update the papers. Readers may continue to find ideas in these papers

interesting and discover new theorems following his ideas, which will be the

best way to remember Xiao-Song.
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Markov Theorems for Links in 3-Manifolds

We describe here a Markov theorem for links in S2×S1 using the braid groups
corresponding to the Coxeter groups of type B`. See the theorem in section
3. We will work on a more general setting. The only reason here to single out
S2 ×S1 is its simplicity. It is possible that all the other Artin groups will turn
out to be useful in the study of links in 3-manifolds.

1. Coxeter groups and their corresponding braid groups

Let W be a Coxeter group. It has presentation

W = 〈r ∈ R; r2 =, (rs)mrs = 1〉

where mrs = msr ≥ 3 for r, s ∈ R and r 6= s. Then, BW , the braid group

corresponding to W , is given by

BW = 〈σr ; r ∈ R, σrσs · · · = σsσr · · · 〉.

These groups have been studied extensively (see,BrD). They are called Artin

groups by some authors.

The classical braid group with n strands, Bn, is the braid group corre-

sponding to the Coxeter group whose Dynkin diagram is of the type An−1.

We will study the braid group corresponding to the Coxeter group with the

type Bn Dynkin diagram (or the braid group of type Bn for simplicity).

Denote the generators of the braid group of type Bn by σ0, σ1, . . . , σn−1.

Then the generating relations are

(1) σiσj = σjσi if |i− j| ≥ 2;

(2) σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2; and

(3) σ0σ1σ0σ1 = σ1σ0σ1σ0.

We will denote by Cn the braid group of type Bn. Then it is easy to see

that we have natural inclusions

C2 ⊂ C3 ⊂ · · · ⊂ Cn ⊂ Cn+1 ⊂ · · · .
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We define a homomorphism φ : Cn → Cn+1 which will be useful later.

We define

φ(σ0) = σ1σ0σ1,

φ(σ1) = σ2

...

φ(σn−1) = σn.

Lemma 1.1. φ extends to a homomorphism Cn → Cn+1.

Proof. It is easy to check that the relations (1) and (2) are preserved under

the map φ. Let us check the relation (3). We have

φ(σ0σ1σ0σ1) = σ1σ0σ1σ2σ1σ0σ1σ2

= σ1σ0σ2σ1σ2σ0σ1σ2

= σ1σ2σ0σ1σ0σ2σ1σ2

= σ1σ2σ0σ1σ0σ1σ2σ1,

and

φ(σ1σ0σ1σ0) = σ2σ1σ0σ1σ2σ1σ0σ1

= σ2σ1σ0σ2σ1σ2σ0σ1

= σ2σ1σ2σ0σ1σ0σ2σ1

= σ1σ2σ1σ0σ1σ0σ2σ1

= σ1σ2σ0σ1σ0σ1σ2σ1.

So φ extends to a homomorphism Cn → Cn+1

We will see that this homomorphism φ : Cn → Cn+1 is quite natural

when the following geometrical interpretation of the group Cn is established.

And it turns out that φ is a homomorphism.

Let Bn+1 be the classical braid generated by α0, α1, . . . , αn−1. The gen-

erator αi is represented by a braid.

It is easy to see that the two braids are isotopic where the left braid

represents α2
0α1α

2
0α1 and the right braid represents α1α

2
0α1α

2
0. Thus, we

can define a homomorphism Cn → Bn+1 by sending σ0 to α2
0 and sending

σi to αi for i = 1, 2, . . . , n− 1.

Proposition 1.1. The homomorphism Cn → Bn+1 defined above is a

monomorphism, i.e. the subgroup of Bn+1 generated by α2
0, α1, . . . , αn−1

is the braid group of type Bn
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Proof. For any finite Coxeter group W of rank `, let A be the set of

complexified reflecting hyperplanes of W of C`. Write

MW = C` \
⋃

H∈A

H

for the corresponding hyperplane complement on whichW acts freely. Then,

we have BW = π1(MW /W ). SeeBr or.D

Let W be the Coxeter group of type Bn generated by r0, r1, . . . , rn−1.

The action of W of Cn is generated by

r0 : (z1, z2, . . . , zn) 7→ (−z1, z2, . . . , zn)

and permutations of the coordinates given by

ri : (. . . , zi, zi+1, . . . ) 7→ (. . . , zi+1, zi, . . . )

for i = 1, . . . , n− 1. So

MW = {(z1, . . . , zn) ∈ (C∗)n; zi 6= ±zj if i 6= j}
where C∗ = C \ {0}.

The normal subgroup N of W generated by (z1, z2, . . . , zn) 7→
(−z1, z2, . . . , zn) is abelian and W/N is isomorphic to the symmetric group

Sn. Thus, Sn acts freely on MW /N . Let C∗/ ∼ be the quotient of C∗ by

the reflection z 7→ −z. Then the space MW /N is the product of n copies of

C∗/ ∼ and Sn acts on it by permuting the factors.

Let

X = {(z1, . . . , zn) ∈ (C∗)n; zi 6= zj if i 6= j}.
Then the symmetric group Sn also acts freely on X . The diffeomorphism

C∗/ ∼→ C∗ extends to an Sn-equivalent diffeomorphism MW /N → X .

Thus, we get an isomorphism

π1(MW /W ) → π1(X/Sn).

If we interpret a classical braid in Bn+1 as an ambient isotopy of n+ 1

distinct points in the complex plain C, and element in π1(X/Sn) can be

thought of as a braid in Bn+1 with the point 0 ∈ C keeping fixed. Thus

π1(X/Sn) is the subgroup of Bn+1 generated by α2
0, α1, . . . , αn−1. It is also

quite clear that α2
0, α1, . . . , αn−1 are the standard generators of the braid

group of type Bn. This proves our theorem

It seems that X/Sn is a more natural configuration space for Cn. And it

is not hard to write down directly a presentation of π1(X/Sn). To illustrate

this, let us work out the case n = 2 explicitly.
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In the case n = 2, X is the complement of the complex curves z1 = 0,

z2 = 0 and z1 = z2 in C2 = {(z1, z2)}. The symmetric group S2 is generated

by the reflection τ : (z1, z2) 7→ (z2, z1).

Let B4 = {(z1, z2); |z1|2 + |z2|2 ≤ 1} be the unit ball and ∂B4 = S3 =

{(z1, z2); |z1|2 + |z2|2 = 1} be the unit sphere. Let

Y = Σ3 \ (S3 ∩ ({z1 = 0} ∪ {z2 = 0} ∪ {z1 = z2})).

Then X and Y are equivariantly homotopy equivalent. So we have

π1(X/τ) ∼= π1(Y/τ).

Notice that Y is the complement of the link in the left part of Figure 1.3

in S3. Moreover, τ restricted on S3 is the standard rotation of 180 degrees

with S3 ∩ {z1 = z2} as the axis. Thus Y/τ is the complement of the link in

the right part of Figure 1.3 in S3.

Let us write down the Wirtinger presentation for π1(Y/τ). In this pre-

sentation, we have generators a, b, c, d, e and relations

(1) bca−1c−1 = 1,

(2) eb−1e−1a = 1,

(3) c−1a−1da = 1,

(4) cd−1c−1e = 1,

(5) ae−1a−1c = 1.

From the relations (1), (3) and (4), we get

b = cac−1,

d = aca−1,

e = cdc−1 = caca−1c−1.

So (2) becomes

1 = eb−1e−1a

= caca−1c−1ca−1c−1cac−1a−1c−1a

= caca−1c−1a−1c−1a,

or

caca = acac.

Similarly, (5) is equivalent to

caca = acac.
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Back to π1(X/τ), we have α2
0 = c and α1 = a. So π1(X/τ) has a

presentation

〈α2
0, α1 : α2

0α1α
2
0α1 = α1α

2
0α1α

2
0〉.

Now the homomorphism φ : Cn → Cn+1 can be obtained from the fol-

lowing geometrical operation: First split the 0-th strand into two strands

without twisting, and name the resulting two endpoints by 0 and 1. Then

rename the original i-th endpoint by i + 1 for i = 1, 2, . . . , n − 1. This

operation changes an n-braid into an (n + 1)-braid and gives rise to the

homomorphism φ : Cn → Cn+1. It is easy to see now that φ is a monomor-

phism.

2. Study links via open book decompositions

Let M be a closed, connected 3-manifold. An open book decomposition

of M consists of a collection A of disjoint circles, called the binding, and

a fibration p : M \ A → S1. The fibres are called the pages. We also

assume that the fibration is well-behaved near A, i.e. that A has a tubular

neighborhood A × D2 so that p restricted to A × (D2 \ {0}) is the map

(x, y) → y/|y|. Thus, a fibred link in M is a special case of an open book

decomposition. The difference here is that for an open book decomposition,

more than one component of the boundary of a page (fibre) may meet a

single component of the binding (link).

On S3, there is a standard open book decomposition with disk pages.

The binding of this open book decomposition is an unknot in S3.

In,S R. Skora developed a theory of braids in an arbitrary 3-manifold

with respect to a fibred link in that 3-manifold. There is no essential diffi-

culty in adapting Skora’s theory for the general case.

Let M be a closed, connected 3-manifold with an open book decompo-

sition. Denote by A1, . . . , Ak the circles in the binding of this open book

decomposition.

Definition 2.1. A piecewise transverse link in M is an oriented link L ⊂
M\⋃i Ai together with a decomposition of L into closed segments s1, . . . , sn

such that

(1) L =
⋃

i si;

(2) Int(si) ∩ Int(sj) = ∅ for i 6= j; and

(3) each si is transverse to the pages.
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Each segment si inherits an orientation from L. A segment is called

increasing if its orientation is consistent with that of S1 under the projection

p, and is called decreasing otherwise.

The height of a piecewise transverse link is the number of decreasing

segments.

Let us reconstruct M as follows: There is a compact surface F and an

automorphism ψ : F → F such that

M \
⋃

i

(Ai ×D2)

is the mapping torus of F , i.e.

M \
⋃

i

(Ai ×D2) =
F × [0, 1]

∼

where (x, 0) ∼ (ψ(x), 1) for all x ∈ F .

Let b1, . . . , b` be the boundary components of F . Let Di be a meridian

disk of Ai ×D2. Then it is clear that ∂Di intersects some bj × 0 at least

once. From this observation, the following lemma is obvious.

Lemma 2.1. With an appropriate orientation, we can decompose ∂Di to

get a piecewise transverse link with zero height.

We have some special isotopies between two piecewise transverse links.

Definition 2.2. Let L,L′ be two piecewise transverse links. Let s be an

increasing segment of L and s′1, s
′
2 increasing segments of L′, such that

L′ = (L \ s)∪ (s′1 ∪ s′2). Assume further that there is a disk D in M \⋃i Ai

such that D∩L = s and D∩L′ = s′1 ∪ s′2. Then we say that L′ results from

L by an isotopy of type H

Definition 2.3. Let L,L′ be two piecewise transverse links. Let s be an

increasing segment of L and s′ an increasing segment of L′, such that L′ =

(L \ s) ∪ s′. Assume further that there is a disk D as shown in Figure 2.2

which intersects the binding transversally at a single point on Ai. Then we

say that L′ results from L by an isotopy of type Wi.

With these definitions, we have the following propositions.

Proposition 2.1. Let L be an oriented link in M , then L is isotopic to a

link which can be decomposed into a piecewise transverse link of zero height.
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Proposition 2.2. Let L,L′ be two piecewise transverse links of zero height.

Suppose they are isotopic in M . Then there is a sequence of piecewise trans-

verse links

L = L1, . . . , Lj , . . . , Lm = L′

such that for each j = 1, . . . ,m− 1, Lj+1 results from Lj by an isotopy of

type H± or W±
i , i = 1, . . . , n.

The proof of these two propositions is basically the same as in.S So we

will omit it and only point out the following key observation.

Let L and L′ be two piecewise transverse links. Suppose there are in-

creasing segments s and s′ of L and L′ separately such that L \ s = L′ \ s′
and there is a disk D with D ∩ L = s and D ∩ L′ = s′. Moreover, D inter-

sects the binding transversally at two points, one is on Ai and the other on

Aj . Then L′ results from L by two isotopies, one is of type W−1
i and the

other of type Wj . Actually, D can be decomposed into two disks D1 and

D2. The disk D1 gives us an isotopy of type Wi whereas the disk D2 gives

us an isotopy of type Wj .

The advantage here of using open book decompositions rather than

fibred knots is that for any closed, orientable 3-manifold, there is an open

book decomposition whose pages are planar surfaces. This makes it quite

easy to formulate Markov theorems for links in such manifolds using various

braid groups, at least in some special cases such as S2 ×S1. Let us discuss

the general case first.

Let M be a closed, connected and orientable 3-manifold. Then, M can

be obtained by performing Dehn surgery on a link K in S3. We can assume

that the surgery coefficients are all integers. Denote by K∗ the link in M

dual to K.

Consider the standard open book decomposition of S3 wth an unknot

J as the binding. We can assume K s a closed braid with respect to the

braid axis J . Then

S3 \ ((K ×D2) ∪ (J ×D2))

is a fibration on S1 whose fibre is a compact, connected planar surface.

The boundary of a fibre consists of meridians of K ×D2 and J × {z} with

z ∈ ∂D2. Notice that the surgery on K with the resulting manifold M is

done by gluing a disk to each component of ∂(K ×D2 along longitudes of

K × D2 (i.e. a simple closed curve on a component of ∂(K × D2) which

intersects a corresponding meridian transversally at a single point) and then
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fill up the sphere boundary components with balls. Thus, the fibration on

S3 \ ((K ×D2) ∪ (J ×D2)) can be extended to

M \ (K∗ ∪ J)

which satisfies the requirement for an open book decomposition nearK∗∪J .

So we get an open book decomposition of M with the binding K∗ ∪J . The

pages are connected planar surfaces. We now have the following theorem.

Theorem 2.1. Each link in M is isotopic to a transverse link in

S3 \ (K ∪ J), i.e. it intersects each fibre transversally. Two transverse links

are isotopic in M if and only if one results from the other by a sequence of

the following two operations or their inverses:

(1) An isotopy in S3 \ (K ∪ J) preserving the fibration;

(2) An operation on transverse links described in Figure 2.4.

The operation on transverse links described in Figure 2.4 is analogous to

the classical Markov move in the way that the usual braid axis is replaced

by any circle in the binding K ∪ J of the open book decomposition. Notice

that when K is empty, M = S3. In this case, our theorem is the classical

Markov theorem (seeB).

3. The case of S2 × S1

S2 × S1 can be obtained by performing a 0-framing surgery on an unknot

in S3. Call this unknot K. Let J be another unknot in S3 such that K ∪ J
is the Hopf link. Then S3 \ (K ∪ J) is the product of an open annulus

with S1. Let L be a transverse link in S3 \ (K ∪ J). Let n be the number of

intersection points of L with a fibre. Then we can think of L as representing

an element in Cn where K corresponding to the 0-th strand. The theorem

in section 2 leads to the following definition.

Definition 3.1. A Markov move on

∞⋃

n=2

Cn

is one of the following operations or its inverse:

(1) change β ∈ Cn to one of its conjugates in Cn;

(2) change β ∈ Cn to βσ±1
n ∈ Cn+1; and

(3) change β ∈ Cn to σ±1
1 φ(β) ∈ Cn+1.
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Definition 3.2. Let

β, β′ ∈
∞⋃

n=2

Cn,

then β and β′ are Markov equivalent if there is a sequence of elements in⋃
Cn:

β = β1, . . . , βj , . . . , βm = β′

such that βj+1 results from βj by a Markov move for each j = 1, . . . ,m−1.

Now we have

Theorem 3.1. Isotopy classes of oriented links in S2 × S1 are in one-to-

one correspondence with Markov equivalent classes of
⋃

Cn.

We end up with some remarks.

For links in the lens space L(p, 1), we can also get a Markov theorem

using
⋃

Cn just by replacing the third type Markov move with the following

operation:

(3)p change β ∈ Cn to σp
0σ

±1
1 φ(β) ∈ Cn+1.

In particular, L(1,±1) = S3. So we can get a Markov theorem for links

in S3 using
⋃

Cn instead of
⋃

Bn.

Let us call the equivalence relation on
⋃

Cn generated by (1), (2) and

(3)p the p-Markov equivalence relation. Using link polynomials for links

in S3, we can get a class function for (±1)-Markov classes of
⋃

Cn. With

some modifications, it is possible that this class function will give rise to a

class function for p-Markov classes of
⋃

Cn. This wil give us polynomials

invariants for links in L(p, 1).

On the other hand, C. SquierSq has generalized the classical Burau rep-

resentations fo the braid groups Bn to all other Artin groups. In particu-

lar, we have concrete matrix representations for the groups Cn. With some

modifications, it is also possible that the characteristic polynomials of these

matrix representations will give rise to polynomials invariants for links in

L(p, 1).

One more posisble further approach is to construct “Ocneanu trace”

for the other Hecke algebras, in particular, for the Hecke algebras of type

B`. Also, a detailed study of representations f the braid groups of type B`

which arise from the Hecke algebra of type B` is desirable. See.J

We understand that E. Witten has already constructed polynomial in-

variants for links in 3-manifolds using the machinery of quantum field the-

ory.W Our purpose here is to point out that it is possible to find some more
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accessible ways of constructing such invariants, at least for some simple

3-manifolds.

References

B. J. Birman, Braids, links and mapping class groups, Ann. of Math. Studies,
vol. 82, Princeton Univ. Press, Princeton, New Jersey, 1974.

Br. E. Brieskon, Sur les groupes de tresses (d’aprés V. I. Arnold), Sém. Bourbaki,
401(1971), Lecture Notes in Math., vol. 317, 1973.

D. P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math.
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Vertex Models, Quantum Groups, and Vassiliev’s Knot

Invariants

1. Introduction

In,2 a deep connection between the seminal work of V. F. R. Jones4 and

that of V. A. Vassiliev12 has been established. We will try to explore the

full extent of this connection in the present paper.

It was soon realized after Jones’ revolutionary discovery of his famous

knot polynomial in 1985 that behind it there stands a fast developing alge-

braic theory, namely, the theory of quantum groups. Via the machinery of

quantum groups, not only can the original Jones, HOMFLY, and Kauffman

polynomials be derived, there actually is a way of systematically producing

families of knot polynomials (see, for example,,11,6 and7). It is unfortunate,

though, that in this approach, knots, rather than being viewed as imbed-

ded circles in the 3-space in the most natural perspective, are taken to be

equivalence classes of certain combinatorial objects, namely knot diagrams.

Vassiliev in12 introduced a new way to look at knots as topological objects

which led to a scheme of producing (finite, in a certain sense) numerical

knot invariants relying on firm topological foundations. In,2 it was shown

that the HOMFLY polynomial and Kauffman polynomial (thought of as

families of knot polynomials, with the original Jones polynomial as a mem-

ber of the HOMFLY family) can be put into Vassiliev’s picture in a very

natural way. However, the proof there relies heavily on the recursive formu-

lae of the HOMFLY and Kauffman polynomials. It reveals no connection

between the algebraic structure behind the HOMFLY and Kauffman poly-

nomials and Vassiliev’s theory. Such a connection is what we want to study

in this paper.

Recall the notion of (circular) [i]-configurations in.2 They are patterns

of pairing 2i points on an oriented circle. Let Vi be the vector space (over

C, say) spanned by all [i]-configurations and V =
⊕

Vi. A VBL-funtional is

a linear functional on V satisfying two conditions. The first condition says

that if an [i]-configuration contains a pair consisting of two adjacent points
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on the circle, then the value of a VBL-functional on this [i]-configuration

should be zero. The second condition is more substantial. It plays a role

just like the one played by the Yang-Baxter equation in Jones’ theory. See

Definition 3.1 for details. In Vassiliev’s theory, if f is a VBL-functional,

then f |Vi determines an element of the term Ei,i
1 in a spectral sequence

constructed for the cohomology of the so-called knot space. We have the

following theorem.

Theorem 1.1. There is a VBL-functional associated to every irreducible

representation of a simple Lie algebra.

One approach to this theorem already appeared in the thesis of Dror

Bar-Natan,1 which studied the perturbative theory of Witten’s Chern-

Simons path integrals.13 This seems to tell the other aspect of a whole

story. Notice that in Witten’s theory of Chern-Simons path integrals, knots

are also treated as topological (geometric) objects.

Our approach to this theorem is based on the representation theory of

quantum universal enveloping algebras of simple Lie algebras. The similar-

ity between Bar-Natan’s approach and ours will be transparent. Whereas

Bar-Natan deals with the first-order approximations of Chern-Simons path

integrals, we will deal with the first-order approximations of quantum uni-

versal enveloping algebra of simple Lie algebras. On the other hand, our

approach seems to be more direct and simpler. It will also suggest a states

model for VBL-functionals.

The states model for VBL-functionals seems to provide a nice way of

understanding the underlying algebraic structure of Vassiliev’s theory. With

this states model, we can produce VBL-functionals directly from finite di-

mensional irreducible representations of quantum universal enveloping al-

gebras of simple Lie algebras without going through the formalism of con-

structing the generalized Jones polynomials. In spite of that, the proof of

Theorem 0.1 is best understood in terms of the relation between generalized

Jones polynomials and VBL-functionals established in this paper.

There are two minor problems which will not be discussed in detail

in this paper. In the terminology of,2 if f is a VBL-functional, then f |Vi

corresponds to the top row of an actuality table of order i. An actuality

table of order i determines a Vassiliev knot invariant of order i. Our first

problem is for a VBL-functional f given by Theorem 0.1, whether f |Vi can

always be extended to a Vassiliev knot invariant of order i, or whether we

can complete an actuality table if its top row is given as f |Vi. In Bar-Natan’s

approach, the answer to this problem is yes in a lot of concrete cases. In
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general, an affirmative answer requires the related R-matrix to satisfy an

additional equation. See the discussion after Theorem 2.11. Another minor

problem is whether the VBL-functionals provided by Bar-Natan’s approach

and our approach are essentially the same. Direct calculation is possible but

tedious. Yet it seems to be hard to believe that these two approaches would

not produce essentially the same VBL-functionals.

The major problem here is whether the set of all VBL-functionals is

spanned by those produced via the theory of quantum groups or the theory

of Chern-Simons path integrals. This problem seems to be very difficult and

a new insight is certainly needed if one wants to make a breakthrough. One

anticipation is that our states model for VBL-functionals would probably

play an important role in the solution of this problem. After all, we tend

to believe that Vasiliev’s theory is the topological counterpart of the quan-

tum group formalism (algebraic) and Witten’s formalism (geometric and

analytic) of constructing knot invariants.

This paper is organized as follows. In section 1, we will review some

basic facts about quantum groups and their finite dimensional irreducible

representations. We will make an observation (Lemma 1.3) about the uni-

versal R-matrix which turns out to be quite important in the following

discussion. In section 2, we will discuss Jones’ vertex models and establish

some facts about vertex models derived from irreducible representations of

simple Lie algebras. These facts will be useful in section 3. Finally, in sec-

tion 3, a states model for VBL-functionals will be introduced and we will

show how to get VBL-functionals from the knot invariants derived via the

machinery of quantum groups.

2. The quantum group Uhg and its finite dimensional

representations

For every simply complex Lie algebra g, there is a natural deformation of

its universal enveloping algebra Ug as a Hopf algebra over the formal power

series over C. We denote this deformation by Uhg, which is called a quantum

universal enveloping algebra or quantum group. Following,3 we define Uhg

in terms of generators and relations.

Let g be a simple Lie algebra of rank l, (aij) its Cartan matrix, and di

the length of the ith root.

As a C[[h]]-algebra, Uhg is generated by dl elements Hi, X
±
i , 1 ≤ i ≤ l
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subject to the following relations:

[Hi, Hj ] = 0,

[Hi, X
±
j ] = ±aijX

±
j ,

[X+
i , X

−
j ] = δij

sinh((h/2)Hi)

sinh(h/2)
,

and, for i 6= j, let qi = exp(hdi/2):

1−aij∑

k=0

(−1)k

(
1 − aij

k

)

qi

q
−k(1−aij−k)/2
i (X±

i )kX±
j (X±

i )1−aij−k = 0

where
(
n

k

)

q

=
(qn − 1) · · · (qn−k+1 − 1)

(qk − 1) · · · (q − 1)
.

The comultiplication ∆ is defined by

∆(Hi) = Hi ⊗ 1 + 1 ⊗Hi,

∆(X±
i ) = X±

i ⊗ exp((h/4)Hi) + exp((h/4)Hi) ⊗X±
i .

This comultiplication gives rise to a Hopf algebra structure on Uhg. This

Hopf algebra is certainly non-commutative and non-cocommutative. Notice

that Uhg ≡ Ug mod h (by which we mean Uhg/hUhg ∼= Ug) whereas

the reduced Hopf algebra structure on Ug is still non-commutative but

cocommutatative. Nevertheless, Uhg is quasitriangle (quasitriangular?) in

the sense that there is an invertible element R ∈ Uhg ⊗ Uhg such that

R∆(g)R−1 = P∆(g), ∀g ∈ Uhg, (1)

where P ∈ End(Uhg ⊗ Uhg) is the permutation; and

(∆ ⊗ id)(R) = R13R23, (id⊗∆)(R) = R13R12, (2)

where R12 =
∑
g1 ⊗ g2 ⊗ 1 ∈ (Uhg)⊗3 if R =

∑
g1 ⊗ g2 and so forth.

Here the property (1.2) implies the Yang-Baxter equation

R12R13R23 = R23R13R12.

Lemma 2.1. R ≡ 1 ⊗ 1 mod h.

Proof. We have an explicit formula for R ∈ Uhg ⊗ Uhg given by

Kirillov-Reshetikhin and Levendorskii-Soibelman (see10). From that for-

mula, Lemma 1.3 is quite easy to see.
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Notice that Lemma 1.3 is consistent with the cocommutativity of the

Hopf algebra Ug.

Finite dimensional representations of Uhg have been studied by several

authors. See the references in.10 Here we think of h as a generic complex

variable so that Uhg is an algebra over C. Rosso8 showed that every finite

dimensional representation of Uhg is completely reducible. Moreover, we can

deform every finite dimensional irreducible representation of Ug to a finite

dimensional irreducible representation of Uhg and all finite dimensional

irreducible representations of Uhg are essentially obtained by deforming

finite dimensional irreducible representations of Ug (after possibly tensoring

by a 1-dimensional representation).

Let (ρ, V ) be a finite dimensional irreducible representation of Uhg. As

indicated by Rosso,9 there is a basis e of V such that

Mat(ρ(Tg), e) =
t

Mat(ρ(g), e), ∀g ∈ Uhg,

where T : Uhg → Uhg is the antiautomorphism defined by

THi = Hi,

TX+
i =

sinh(h/2)

sinh(hdi/2)
X−

i .

TX−
i =

sinh(hdi/2)

sinh(h/2)
X+

i .

Such a basis is unique up to a scalar. We call it a privileged basis with

respect to ρ.

3. Vertex models and quantum groups

In,5 Jones introduced the notion of vertex models and indicated how to

derive regular isotopy invariants of knots from vertex models. See also.11

A vertex model consists of a vector space V together with a privileged

basis e, two families of linear operations R±(λ) = R±(λ, h) ∈ End(V ⊗
V ) where λ ∈ (0, π) is called the spectral parameter and L(λ) ∈ End(V )

which is diagonal over the basis e. The triple ν = {e, R±(λ), L(λ)} has the

following properties:

(3.1) R±(λ + δ) = (L(−δ) ⊗ id)R±(λ)(L(−δ) ⊗ id)−1 =

(id⊗L(δ))R±(λ)(id⊗L(δ))−1.

(3.2) Ř−(0)Ř+(0) = id, where Ř±(λ) = PR±(λ) and P ∈ End(V ⊗ V )

is the permutation.
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(3.3) Let e = {. . . , a, b, . . . , x, y, . . . }. We write A ∈ End(V ⊗ V ) as

A(a⊗ x) =
∑

b,y

A(a, b|x, y)b⊗ y.

The linear operators At1 and At2 are then defined to be

At1(a⊗ x) =
∑

b,y

A(b, a|x, y)b⊗ y,

At2(a⊗ x) =
∑

b,y

A(a, b)|y, x)b⊗ y.

We should have

PRt1
+ (π)PRt2

− (π) = id .

(3.4) For A ∈ End(V ⊗V ) as in (2.3), we write A12, A13, A23 ∈ End(V ⊗
V ⊗ V ) as

A12(a⊗ x⊗ c) =
∑

b,y

A(a, b|x, y)b⊗ y ⊗ c

and so forth. Then we should have

R12(λ)R13(λ + δ)R23(δ) = R23(δ)R13(λ+ δ)R12(λ).

From (3.1) and (3.2), we see that R±(λ) is determined by R± = R±(0)

and R− is determined by R+.

Proposition 3.1 (Rosso). Let (ρ, V ) be a finite dimensional irreducible

representation of Uhg. Let e be the privileged basis of V with respect to ρ.

Let

(1) R+ = ρ⊗ ρ(R); and

(2) L(λ) = ρ(exp(−(h/2π)λHα)), where α is a half of the sum of all posi-

tive roots.

Then ν = {e, R±, L(λ)} is a vertex model.

See.9

We write

R±(a⊗ x) =
∑

b,y

R±(a, b|x, y)(λ)b ⊗ y,

L(λ)(a) = exp(−(h/2π)λξa)a.

Let

R±(a, b|x, y)(λ, h) = R0
±(a, b|x, y)(λ) +R1

±(a, b|x, y)(λ)(h) +O(h2).
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Lemma 3.1. We have

R0
±(a, b|x, y)(λ) = δ(a, b|x, y) =

{
1 if a = b and x = y,

0 otherwise.

Proof. This is just a corollary of Lemma 1.1 that R ≡ 1⊗ 1 mod h.

Let

Γ(a, b|x, y)(λ) = lim
h→0

R+(a, b|x, y)(λ) −R−(a, b|x, y)(λ)
h

.

Lemma 3.2. Γ(a, b|x, y)(λ) = Γ(a, b|x, y)(0)

Proof. By (2.1) we have

R±(a, b|x, y)(λ) = R±(a, b|x, y)(0) exp(−(h/2π)(ξa − ξb)λ).

So

lim
h→0

R+(a, b|x, y)(λ) −R−(a, b|x, y)(λ)
h

= lim
h→0

R+(a, b|x, y)(0) −R−(a, b|x, y)(0)

h
exp(−(h/2π)(ξa − ξb)λ)

= lim
h→0

R+(a, b|x, y)(0) −R−(a, b|x, y)(0)

h
.

We will denote R±(a, b|x, y) = R±(a, b|x, y)(0) and R1
±(a, b|x, y) =

R1
±(a, b|x, y)(0). We also denote Γ(a, b|x, y) = Γ(a, b|x, y)(0). Then

Γ(a, b|x, y)(0) = R1
+(a, b|x, y) −R1

−(a, b|x, y).

Lemma 3.3. R1
+(a, b|x, y) −R1

−(a, b|x, y) = 0.

Proof. From (2.2), we have
∑

b,y

R+(a, b|x, y)R−(y, z|b, c) = δ(a, c|x, z).

Since

R±(a, b|x, y) = δ(a, b|x, y) +R1
±(a, b|x, y)h+O(h),

we get
∑

b,y

[
R1

+(a, b|x, y)δ(y, z|b, c) + δ(a, b|x, y)R1
−(y, z|b, c)

]
= 0



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

Vertex Models, Quantum Groups, and Vassiliev’s Knot Invariants 377

or

R1
+(a, b|x, y) +R1

−(x, y|a, b) = 0.

Corollary 3.1. We have

Γ(a, b|x, y) = R1
+(a, b|x, y) +R1

+(x, y|a, b).
In particular,

Γ(a, b|x, y) = Γ(x, y|a, b).

Proposition 3.2. If the vertex model is derived from an irreducible repre-

sentation of Uhg which is the deformation of an irreducible representation

of Ug, then the contraction of Γ(a, b|x, y) is a scalar matrix, i.e.
∑

b

Γ(a, b|b, y) = µδ(a, y)

for a certain constant µ.

Proof. Let ρ be an irreducible representation of Uhg which is the defor-

mation of an irreducible representation ρ′ of Ug. If we write

ρ⊗ ρ(R)(a⊗ x) =
∑

b,y

R+(a, b|x, y)b⊗,

then

ρ⊗ ρ(P (R))(a⊗ x) =
∑

b,y

R+(x, y|a, b)b⊗ y.

Thus,

Q(a⊗ x) = ρ⊗ ρ(P (R)R)(a⊗ x)

=
∑

b,c,y,z

R+(y, z|b, c)R+(a, b|x, y)c⊗ z

and

Q(a, c|x, z) =
∑

b,y

R+(y, z|b, c)R+(a, b|x, y)

=
∑

b,y

δ(y, z|b, c)δ(a, b|x, y)

+ h
∑

b,y

[
δ(y, z|b, c)R1

+(a, b|x, y) +R1
+(y, z|b, c)δ(a, b|x, y)

]
+O(h2)

= δ(a, c|x, z) + h
[
R1

+(a, c|x, z) +R1
+(x, z|a, c)

]
+O(h2).
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Therefore,

Q = id +Γh+O(h2).

The condition

R∆(g)R−1 = P∆(g), ∀g ∈ Uhg

implies

P (R)R∆(g) = ∆(g)P (R)R, ∀g ∈ Uhg.

We have

ρ⊗ ρ(∆(g)) = G⊗ id + id⊗G+O(h)

where G = ρ′(g) and g ∈ Ug. Thus

Γ(G⊗ id + id⊗G) = (G⊗ id + id⊗G)Γ.

Let the matrix of G be G(a, x). Then the identity
∑

b,x

G(a, b)Γ(b, x|x, z) =
∑

b,x

Γ(a, b|b, x)G(x, z)

can be easily verified using the previous identity. Since ρ′ is irreducible, we

see that
∑

b Γ(a, b|b, x) is a scalar matrix by Schur’s lemma.

Given a vertex model ν = {e, R±, L(λ)}, Jones defined in5 a partition

function associated with a knot diagram K which turns out to be a regular

isotopy invariant of K.

A state of the knot diagram K is an assignment of an element of e to

each edge of K. At each crossing of K, denote the “ingoing” angle measured

in radians by λ ∈ (0, π). We then can define the partition function

Zν
K =

∑

states


 ∏

crossings

R±(a, b|x, y)(λ)


 exp

(
h

2π

∫
ξadθ

)
. (1)

Here ξa defines a locally constant function on K for each state, and dθ is

the pull-back to K of the angle form on S1 via the Gauss mapping K → S1.

Theorem 3.1 (Jones). Zν
K is independent of λ and defines a regular iso-

topy invariant of K.

As pointed out by Jones, if the vertex model satisfies the following

additional condition that
∑

a

R+(a, b|x, a)ehξa =
∑

a

R+(x, a|a, b)e−hξa = δ(b, x),
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then Zν
K is an isotopy invariant of K. It is reasonable to conjecture that if

the vertex model is derived from an irreducible representation of Ug, then

the above equation should always be true provided that δ(b, x) is replaced

by a constant multiple of it. This occurs quite often, and Proposition 2.10

provides evidence for this conjecture. If this conjecture is true, we would

always be able to change the vertex model multiplying R+(a, b|x, y) by a

constant factor so that the resulting partition function is an isotopy invari-

ant.

4. VBL-functionals and their states models

Let us first recall the definition of (circular) [i]-configurations and 〈i〉-
configurations in.2 A [i]-configuration is a pairing of 2i points on the ori-

ented circle, and a 〈i〉-configuration consists of a [i − 2]-configuration and

a triple of points on the circle distinct from the underlying 2i− 4 points of

that [i−2]-configuration. Two [i]- or 〈i〉-configurations are the same if they

match up to an orientation-preserving homeomorphism of the circle.

The diagram of a [i]-configuration α consists of an oriented circle with

2i points on it representing the underlying point set of α and, for each pair

of α, a line segment connecting the two points in that pair. The diagram

of a 〈i〉-configuration β is similar with the exception that the points in the

triple of β have nothing to be attached to.

Denote by Vi the vector space (over C) spanned by all [i]-configurations,

and let V =
⊕

Vi. We will consider linear functionals on V.

Suppose β is a 〈i〉-configuration. One can obtain six [i]-configurations

from β by first splitting a point in the triple of β into two adjacent points

and then pairing the resulting points with the remaining two points in

that triple, where we use βrs to denote the resulting [i]-configuration. It is

understood that there is a common underlying [i− 2]-configuration in each

picture and all the circles are oriented counterclockwise.

Definition 4.1. A VBL-functional f is a linear functional on V with the

following properties:

(4.1) For each [i]-configuration α with a pair consisting of two adjacent

points on the circle, f(α) = 0; and

(4.2) For each 〈i〉-configuration β, we have

f(β10) − f(β11) = f(β20) − f(β21) = f(β30) − f(β31).

The condition (4.2) was derived by Birman-Lin2 from the work of Vas-

siliev12 on the topology of the discriminant of the space of maps S1 → R3. If
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f is a VBL-functional, then f |Vi determines a stabilized relative homology

class in th discriminant. See2 for details.

Let e = {. . . , a, b, . . . , x, y, . . . } be a finite set, and α an [i]-configuration.

We will call the pairs in α vertices and the arcs between points in the

underlying point set on the circle edges. A state of α is an assignment of

elements in e to edges of α.

Definition 4.2. The pair ν = {e,Ω} is called a vertex model for configura-

tions, or simply vertex model, where Ω is a matrix with entries Ω(a, b|x, y),
if it satisfies the following conditions:

(4.4) Ω(a, b|x, y) = Ω(x, y|a, b);
(4.5)

∑
b Ω(a, b|b, x) = 0;

(4.6)
∑

b[Ω(a, b|x, z)Ω(b, c|r, t) − Ω(a, b|r, t)Ω(b, c|x, z)] =∑
b[Ω(a, c|r, b)Ω(b, t|x, z) − Ω(a, c|b, t)Ω(r, b|x, z)].

Remark 4.1. Let V be the vector space spanned by e and Ω ∈ End(V ⊗V ).

Then we can write the conditions (4.4), (4.5), and (4.6) in an invariant form.

In particular, (4.6) can be written as

Ω12Ω13− Ω13Ω12 = Ω13Ω23 − Ω23Ω13.

Suppose we have a matrix Γ with entries Γ(a, b|x, y) satisfying (4.4) and

(4.6). Instead of (4.5), it satisfies the following condition:

(4.5’)
∑

b Γ(a, b|b, x) = µδ(a, x)

with µ a certain constant. Then we can let

Ω(a, b|c, d) = Γ(a, b|x, y) − µδ(a, b|x, y),
and it should be easy to verify that Ω(a, b|x, y) satisfy (4.4), (4.5) and (4.6).

Let ν = {e,Ω} be a vertex model. Let α be an [i]-configuration. We

may define a partition function on α in the following way. For a state of α,

the weight of a vertex shown in Figure 3.3 is Ω(a, b|x, y). Then define

Zν
α =

∑

states

∏

vertices

Ω(a, b|x, y).

Notice that this partition function is well-defined because of (4.4).

Remark 4.2. If a vertex model for configurations is given in the invariant

form ν = {V,Ω}, it should be easy to see that Zν
α is independent of the

choice of basis of V .

Proposition 4.1. The linear functional f on V defined by

f(α) = Zν
α
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is a VBL-functional.

Proof. The equation (4.5) is used for verifying the first condition in the

definition of VBL-functionals and (4.6) for the second.

Now suppose ν = {e, R±, L(λ)} is a vertex model for knot diagrams

derived from an irreducible representation of Ug. Let

Γ(a, b|x, y) = R+(a, b|x, y) −R−(a, b|x, y).
Then Γ(a, b|x, y) satisfy (4.4), (4.5’) and (4.6). The first two equations fol-

low from Corollary 2.9 and Proposition 2.10. The last equation, as it can

be verified directly, is just a consequence of the Yang-Baxter equation. This

shows that we can get a VBL-functional from each irreducible representa-

tion of Ug as we stated in Theorem 0.1.

We will not present the direct verification of (4.6) for Γ(a, b|x, y) since

it is quite tedious. The proof of Theorem 0.1 seems to be best under-

stood in terms of the relation, which we are going to establish, between

the VBL-functional and the knot invariant both obtained from the vertex

ν = {e, R±, L(λ)}.
Let K be a knot diagram. We can collapse i crossings of K into dou-

ble points to get a diagram of an immersed S1. Denote the resulting dia-

gram by K. This diagram of immersed S1 determines an [i]-configuration

as follows. Consider the preimage of the double points of that immersion.

It consists of 2i points on S1. There is a natural pairing among these 2i

points: Two points are paired if they are mapped to a common double

point. This gives rise to an [i]-configuration α. We say that K respects α.

For any [i]-configuration α, there is a diagram of immersed S1 respecting

α. For details, see.2

For each double point of K, there are two ways to resolve it to crossings.

Depending on whether the resulting crossing is positive or negative, we will

call such a resolution positive or negative, respectively. Thus, we can resolve

K into 2i knot diagrams. Denote them by Kp, p = 1, . . . , 2i. Let

εp = (−1)number of negative resolutions in Kp

and we will call εpKp a signed resolution of K.

Proposition 4.2. Let f̃(α) =
∑

states

∏
vertices Γ(a, b|x, y), where the sum

is over all states of α. Then, we have

2i∑

p=1

εpZ
ν
Kp

= f̃(α)hi +O(hi+1).



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

382 X.-S. Lin

As a consequence, the linear functional f̃ on V satisfies (4.2).

Proof. We can express the left hand side of (3.11) in another form:

∑

p

εpZ
ν
Kp

=
∑

states


 ∏

double points

(R+(a, b|x, y)(λ) −R−(a, b|x, y)(λ))

·
∏

crossings

R±(a, b|x, y)(λ)


 exp((h/2π)

∫

K

ξadθ).

It is understood that the sum is over all states of K and a state of K is as

usual an assignment of elements of e to edges of K. We say that a state of

K induces a state of the [i]-configuration α if it respects it at every crossing

of K, the two edges on the over-crossing strand have the same assignment

and so do the edges on the under-crossing strand. Since

R+(a, b|x, y)(λ) −R−(a, b|x, y)(λ) = hΓ(a, b|x, y) +O(h2)

and

R±(a, b|x, y)(λ) = δ(a, b|x, y) +O(h),

we see that a state of K may contribute to the right hand side of (3.12)

mod hi+1 only when it induces a state of α. Moreover, the contribution of

such a state made to the coefficient of hi in the right hand side of (3.12)

is the same as the contribution the induced state of α made to f̃(α). Also,

the set of all states of α is the same as the set of these induced by states of

K. Thus, (3.11) is true.

Now it becomes quite easy to verify (4.2) for f̃ . We only need to com-

pare the eight signed resolutions of the diagrams in Figure 3.4(a) and (b)

respectively. These two sets of signed resolutions are the same module Rei-

demeister moves of type III. This verifies (3.3) for f̃ .

We notice that (3.11) was derived in2 for the special cases of the HOM-

FLY and Kauffman polynomials using recursive formulae.

Now since Γ(a, b|x, y) satisfy (4.5’), we may change R± to

R′
± = e∓µh/2R±.

Then ν′ = {e, R′
±, L(λ)} is still a vertex model with

Γ′(a, b|x, y) = Γ(a, b|x, y) − µδ(a, b|x, y).



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

Vertex Models, Quantum Groups, and Vassiliev’s Knot Invariants 383

Thus,

f(α) =
∑

states

∏

vertices

Γ′(a, b|x, y)

is the desired VBL functional.
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Knot Invariants and Iterated Integrals

We give precise formulae for the coefficients of Drinfeld’s KZ associator in
terms of iterated integrals over the unit interval. These formulae are used to
calculate Kontsevich’s universal knot invariant for (2, p)-torus knots up to the
4th order.

There are already several combinatorial descriptions of Kontsevich’s

universal knot invariantKo in terms of Drinfeld’s work on quasi-triangular

quasi-Hopf algebras. See,B2,C,LM3 and.P Drinfeld’s work was presented

in,D1D2 We only mention here that the category of representations of a

quasi-triangular quasi-Hopf algebra is a tensorial category, from which one

can construct framed link invariants (see e.g.,AC andRT). The essential

structure of a quasi-triangular quasi-Hopf algebra A is determined by two

objects. One is an element R ∈ A⊗A, called the R-matrix, which measures

the non-commutativity of A and the other is an element Φ ∈ A ⊗ A ⊗ A,

called the associator, which measures the non-associativity of A. For the

purpose of constructing link invariants, one can always choose R to be

very simple; all of the difficulties lie in constructing Φ. In,D2 Drinfeld con-

structed an associator ΦKZ using the monodromy of the formal Knizhnik-

Zamolochikov connection. He also suggested a combinatorial construction

which would yield an associator with rational coefficients. A detailed dis-

cussion of a combinatorial construction of such a pair (R,Φ) appeared in.B2

Also, it was proved inLM2 that the coefficients of ΦKZ are determined by

multiple ζ-numbers.

In Section 1 of this note, we give precise formulae expressing the coef-

ficients of ΦKZ as iterated integrals on the unit interval. Our calculation of

the first few coefficients of ΦKZ using these formulae suggests that log ΦKZ

might admit a very beautiful expression. In Section 2, we review briefly

the combinatorial formalism of Kontsevich’s universal knot invariant, es-

sentially following the approach via non-associative tangles (seeB2 andLM3).

Finally, in Section 3, we exhibit some calulations in simple cases. Hopefully,

these calculations will stimulate further interest in this subject.

We would like to thank Dror Bar-Natan for his comments.
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1. The associator ΦKZ

In,D1,D2 Drinfeld considered the following differential equation

G′(t) =

(
A

t
+

B

t− 1

)
G(t) (1)

where A,B are commuting symbols, G(t) is a formal power series in A,B

with coefficients that are analytic functions of t, 0 < t < 1. Geometrically, a

solution to (1) is the monodromy of a flat formal connection (the so-called

Knizhnik-Zamolochikov connection) on the configuration space of 3 distinct

points in C along the path (0, t, 1), 0 < t < 1. Or it is the monodromy of

the connection

A
dz

z
+B

dz

z − 1

on C \ {0, 1} with values in C[[A,B]] along the path z = t, 0 < t < 1.

Let G1(t) and G2(t) be solutions to (1) with the following fixed asymp-

totic behaviors when t→ 0 and t→ 1 respectively:

G1(t) ∼ tA = eA log t as t→ 0,

G2(t) ∼ (1 − t)B = eB log(1−t) as t→ 1.

Then Drinfeld’s KZ associator is defined to be

ΦKZ = ΦKZ(A,B) = G−1
2 (t)G1(t)

as formal power series in A,B independent of t.

We use another expression for ΦKZ, which appeared in.LM2 For a ∈
(0, 1), there is a unique solution to (1) with G(a) = 1. We denote the value

of this solution at b ∈ (0, 1) by Zb
a. Then

ΦKZ = lim
ε→0

e−B log εZ1−ε
ε eA log ε. (2)

Suppose ξ1, ξ2, . . . , ξk are 1-forms on [a, b] with values in C[[A,B]]. As

the usual iterated integrals (seeCh), we denote

∫ b

a

ξk · · · ξ2ξ1 =

∫

a≤t1≤t2≤···≤tk≤b

ξk(tk) ∧ · · · ∧ ξ2(t2) ∧ ξ1(t1)

=

∫ b

a

ξk(tk)

∫ tk−1

a

ξk−1(tk−1) · · ·
∫ t3

a

ξ2(t2)

∫ t2

a

ξ1(t1) ∈ C[[A,B]].

Notice that our order of integrands is reversed compared with that in.Ch
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Let

ω0 =
Adt

t
,

ω0 =
e−B log(1−t)Adt

t
,

ω1 =
B dt

t− 1
,

ω1 =
BeA log t dt

t− 1
.

For W = ApnBqn · · ·Ap1Bq1 , we denote

IW (a, b) =

∫ b

a

ωpn

0 ωqn

1 · · ·ωp1

0 ωq1

1 .

Then

Zb
a = 1 +

∑

W

IW (a, b),

where W runs over all monomials in A,B.

Lemma 1.1. We have

Zb
a = eA log be−A log a +

∑

q1 6=0

(∫ b

a

ωpn

0 ωqn

1 · · ·ωp1

0 ω
q1−1
1 ω1

)
e−A log a

= eB log(1−b)eB log(1−a) +
∑

pn 6=0

eB log(1−b)

(∫ b

a

ω0ω
pn−1
0 ωqn

1 · · ·ωp1

0 ω
q1

1

)
.

Proof. These expressions for Zb
a are derived from the formulae

∫ b

a

ωk
0 =

1

k!
(A log b−A log a)k

∫ b

a

ωk
1 =

1

k!
(B log(1 − b) −B log(1 − a))k

and integration by parts.

Lemma 1.2. We have Zb
a = Zb

cZ
c
a.

Proof. This is the usual property of iterated integrals.

We now use these two lemmas to calculate (2).
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First, we choose an arbitrary w ∈ (0, 1). Then,

Z1−ε
ε = Z1−ε

w Zw
ε

=


eB log εe−B log(1−w) +

∑

pn 6=0

eB log ε

(∫ 1−ε

w

ω0ω
pn−1
0 ωqn

1 · · ·ωp1

0 ω
q1

1

)


·


eA log we−A log ε +

∑

q1 6=0

(∫ w

ε

ωpn

0 ωqn

1 · · ·ωp1

0 ωq1−1
1 ω1

)
e−A log ε


 .

Therefore,

ΦKZ = lim
ε→0

eB log εZ1−ε
ε eA log ε

=


eB log(1−w) +

∑

pn 6=0

(∫ 1

w

ω0ω
pn−1
0 ωqn

1 · · ·ωp1

0 ωq1

1

)


·


eA log w +

∑

q1 6=0

(∫ w

0

ωpn

0 ωqn

1 · · ·ωp1

0 ωq1−1
1 ω1

)


= [e−B log(1−w) +
∑

pn 6=0,q1 6=0

(∫ 1

w

ω0ω
pn−1
0 ωqn

1 · · ·ωp1

0 ωq1−1
1 ω1

)
e−A log w

+

(∫ 1

w

ω0e
A log t

)
e−A log w] ·


eA log w +

∑

q1 6=0

∫ w

0

ωpn

0 ωqn

1 · · ·ωp1

0 ωq1−1
1 ω1




= [e−B log(1−w)eA log w +
∑

pn 6=0,q1 6=0

(∫ 1

w

ω0ω
pn−1
0 ωqn

1 · · ·ωp1

0 ωq1−1
1 ω1

)

+

∫ 1

w

ω0e
A log t] ·


1 + e−A log w

∑

q1 6=0

∫ w

0

ωpn

0 ωqn

1 · · ·ωp1

0 ω
q1−1
1 ω1


 .

Notice that

e−B log(1−w)eA log w +

∫ 1

w

ω0e
A log t

= (e−B log(1−w) − 1)(eA log w − 1) + e−B log(1−w) + eA log w − 1

+

∫ 1

w

e−B log(1−t) − 1

t
AeA log t dt+

∫ 1

w

A

t
eA log t dt

= (e−B log(1−w) − 1)(eA log w − 1) + e−B log(1−w)

+

∫ 1

w

e−B log(1−t) − 1

t
AeA log t dt



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

388 X.-S. Lin

and that the limit of the last expression above when w → 0 is

1 +

∫ 1

0

e−B log(1−t) − 1

t
AeA log t dt.

Moreover,

lim
w→0

e−A log w

∫ w

0

ωpn

0 ωqn

1 · · ·ωp1

0 ω
q1−1
1 ω0 = 0.

Combining all of these calculations, we obtain the following theorem.

Theorem 1.1. We have

ΦKZ = 1 +

∫ 1

0

e−B log(1−t) − 1

t
AeA log t dt (3)

+
∑

pn 6=0,q1 6=0

∫ 1

0

ω0ω
pn−1
0 ωqn

1 · · ·ωp1

0 ω
q1−1
1 ω1.

Before we present our calculation of the first few coefficients of ΦKZ

using (3), we recall the so-called multiple ζ-numbers. They are defined as

ζ(i1, . . . , ik) =
∑

0<m1<···<mk

1

mi1
1 · · ·mik

k

.

If we write
∫ 1

0

ωpn

0 ωqn

1 · · ·ωp1

0 ω
q1

1 = (−1)q1+···+qnτ(pn, qn, . . . , p1, q1)A
pnBqn · · ·Ap1Bq1 ,

then

τ(pn, qn, . . . , p1, q1) = ζ(1, . . . , 1︸ ︷︷ ︸
pn−1

, qn+1, 1, . . . , 1︸ ︷︷ ︸
pn−1−1

, qn−1+1, . . . , 1, . . . , 1︸ ︷︷ ︸
p1−1

, q1+1).

See.LM1 The following result is obtained by a straightforward calculation

using (3).

Theorem 1.2. We have

ΦKZ = 1 − ζ(2)[A,B] − ζ(3)[A, [A,B]] − ζ(3)[B, [A,B]] (4)

− ζ(4)[A, [A, [A,B]]] − ζ(4)[B, [B, [A,B]]]

− ζ(1, 3)[A, [B, [A,B]]] +
1

2
ζ(2)2[A,B]2

+ higher order terms.



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

Knot Invariants and Iterated Integrals 389

It is known that log ΦKZ is a Lie element in A,B. Theorem 1.4 implies

that

log ΦKZ = − ζ(2)[A,B] − ζ(3)[A, [A,B]] − ζ(3)[B, [A,B]] (5)

− ζ(4)[A, [A, [A,B]]] − ζ(4)[B, [B, [A,B]]]

− ζ(1, 3)[A, [B, [A,B]]] + higher order Lie elements.

It will be interesting to see how far this pattern can be sustained. In fact,

it is proved inLM2 that all coefficients of log ΦKZ are Q-linear combinations

of multiple ζ-numbers. R. Hain also has a direct proof of this fact.H

2. Non-associative tangles

We set up the combinatorial formalism for calculating Kontsevich’s uni-

versal knot invariant in this section. Although we essentially follow the

approach using non-associative tangles,B2,LM3 we would like to empha-

size here the distinction between concordance and cobordism. A tangle

is a concordance between two 0-dimensional compact submanifolds of R2.

The underlying 1-dimensional compact manifold of this concordance is a

cobordism between those two 0-dimensional manifolds. Certainly, a cobor-

dism can be realized by many different concordances. Nevertheless, we may

think of the underlying cobordism as the “0th order approximation” of the

concordance in question. We may also have “higher order approximations”

using the functor between the category of tangles and the category of chord

diagrams originated in Kontsevich’s construction of his universal knot in-

variant. Our account here will be very brief and the reader is referred toB2

andLM3 for more details.

The objects in the category of non-associative tangles NAT are finite

ordered sets of oriented points v1, . . . , vn in the plane together with a paren-

thesization on the word w = v1 . . . vn. There is only one parenthesization

on the empty word or words of length 1. Inductively, if w1 and w2 are

parenthesized words of length k and l respectively, then (w1w2) is a paren-

thesization of the word w1w2 (forgetting the parenthesizations) of length

k+ l. For example, there are exactly two different parenthesizations on the

word v1v2v3, namely ((v1v2)v3) and (v1(v2v3)).

The morphisms in NAT are generated by elementary tangles ∩, ∪, N ,

N , X+, and X−. Their domains and targets are specified below:

∩: domain w = (· · · (vivi+1) · · · ), target w′ is obtained from w by deleting

(vivi+1) with the inherited parenthesization;

∪: the reverse of ∩;
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N : domain w = (· · · ((w1w2)w3) · · · ) where w1, w2, and w3 are parenthe-

sized words, target w′ = (· · · (w1(w2w3)) · · · );
N : the reverse of N ;

X+: domain w = (· · · (vivi+1) · · · ), target w′ = w with the orientations of

vi and vi+1 switched;

X−: the reverse of X+.

Moreover, the strands in an elementary tangle are oriented consistently

with the orientations of points in its domain and target.

In general, morphisms of NAT are products of elementary tangles mod-

ulo isotopies of tangles. Forgetting the parenthesizations, morphisms in

NAT are simply concordances of compact, oriented 0-dimensional sub-

manifolds of the plane with ordered points. It is easy to see that NAT

is equivalent to the usual category of tangles.

We have another category, CD, the category of chord diagrams. The

objects in CD are compact, oriented 0-dimensional manifolds with ordered

points. A chord diagram is a cobordism by a compact, oriented 1-manifold

between two objects of CD together with an ambient isotopy class of finitely

many pairs of distinct points in the interior of this cobordism. A pair of

points in a chord diagram is indicated by a dashed chord connecting these

points. Morphisms of CD will then be elements of the completed, graded

(with grading coming from the number of chords) C-vector spaces generated

by chord diagrams subject to the so-called 4-term relations and framing-

independence relations (seeB1 andBL).

Let D1 ⊂ Mor(∅, ∅) be the completed subspace generated by chord

diagrams on a single oriented circle. Suppose δ is a chord diagram with a

marked component of the underlying cobordism. Then, for every φ ∈ D1, we

may join φ to the marked component of δ to get a well-defined connected

sum δ#φ thought of as a morphism of CD. In particular, D1 itself is a

completed, graded C-algebra.

There is a functor from NAT to CD. It sends objects in NAT to objects

in CD by forgetting the parenthesization. For morphisms, we only need to

define a functor

Ẑ : Mor(NAT) → Mor(CD)

for elementary tangles. Some more notation is needed in order to de-

scribe the images of elementary tangles under the functor Ẑ.

For a tangle T , we denote by |T | the underlying cobordism of T . We

have |X+| = X−| and |N | = |N |. A trivial cobordism is simply a product
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cobordism. We will denote by βij the signed chord diagram on a trivial

cobordism β with exactly one chord connecting its ith and jth components,

i 6= j. To determine the sign, think of βij as a morphism from {v1, . . . , vn}
to itself. If the orientations of vi and vj are the same, the sign of βij will

be +. Otherwise, it is −.

We now define:

(1) Z(∩) = | ∩ |, Z(∪) = | ∪ |;
(2) let β = |N | = |N |, then

Z(N) = Φ


 1

2π
√
−1

∑

i∈I,j∈J

βij ,
1

2π
√
−1

∑

j∈J,k∈K

βjk


 ,

Z(N) = Φ


 1

2π
√
−1

∑

j∈J,k∈K

βjk ,
1

2π
√
−1

∑

i∈I,j∈J

βij


 ,

where Φ = ΦKZ and I, J,K are sets of indices of w1, w2, w3 respectively.

(3) let σ = |X+| = |X−| ∈ Mor({v1, . . . , vn}dom, {v1, . . . , vn}tar), where

the target is obtained from the domain by switching the orientations of

vi and vi+1, and let τ be the trivial cobordism of {v1, . . . , vn}dom, then

Z(X±) = σe±
1
2 τ i(i+1)

.

For a tangle T = E1 · · ·Ek represented as a product of elementary

tangles E1, . . . , Ek, we define

Z(T ) = Z(E1) · · ·Z(Ek).

It turns out that Z is invariant under isotopy of tangles preserving the

number of maximal points. To get invariants under isotopy, we have to

normalize Z in the following way.

Let ∞ be the tangle and

φ0 = Z(∞) ∈ D1.

Now for an arbitrary tangle T , we first mark its components by 1, 2, . . . , r.

Let si be the number of maximal points on the ith component. Then

Ẑ(T ) = Z(T )#φ−si
0 # · · ·#φ−sr

0

where #φ−si
0 is the connected sum onto the ith component of T .

Theorem 2.1. Ẑ : Mor(NAT) → Mor(CD) is well-defined.
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A fundamental problem in this field is the question of whether the func-

tor Ẑ is faithful.

Notice that the functor Ẑ will send the morphism in Mor(∅, ∅) repre-

sented by a round circle to φ−1
0 ∈ D1. This does not agree with the usual

normalization. If one is only interested in knot invariants, it is better to use

the following normalization:

H̃(K) = Z(K)#φ−s+1
0

where s is the number of maximal points on the knot K thought of as a

morphism in Mor(∅, ∅). This is Kontsevich’s universal knot invariant (seeKo

andB1).

3. Some calculations

Let D
(n)
1 be the subspace of D1 spanned by chord diagrams on an oriented

circle with n chords. We list bases for D
(n)
1 , n ≤ 4. We will denote by D(i,j)

the chord diagram encoded by (i, j). See,BL Figures 9, 10, 11 for how to

reduce every chord diagram with ≤ 4 chords to a linear combination of

these base chord diagrams. For example,

D(2,1)#D(2,1) = D(4,1) + 2D(4,2) − 3D(4,3).

Consider the knot K2,p, where p is an odd integer. We calculate Z(K2,p)

using (4):

Z(K2,p) = | ∩14 | · | ∩23 | · Φ
(

1

2π
√
−1

β12,
1

2π
√
−1

β23

)
· σ · e p

2 τ12

· Φ
(

1

2π
√
−1

γ23,
1

2π
√
−1

γ12

)
· | ∪23 | · | ∪14 |

= D(0,1) +

(
p2

8
− ζ(2)

2π2
D(2,1)

)
+

(
p3

24
− pζ(2)

4π2

)
D(3,1) + · · · .

Notice that K2,1 and K2,−1 are isotopic via a level-preserving isotopy.

Thus, the coefficient of D(3,1) in Z(K2,p) must be zero when p = ±1. As a

consequence, we get the value of ζ(2):

ζ(2) =
π2

6
.

See,LM1LM2 for more about the relationship between values of multiple ζ-

numbers and the HOMFLY and Kauffman polynomials.
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Since the tangle ∞ is isotopic to K2,1 via a level-preserving isotopy, we

get

φ0 = Z(∞) ≡ D(0,1) +
1

24
D(2,1) mod

⊕

n≥4

D
(n)
1 .

Thus we have

Ẑ(K2,p) = D(0,1) +
p2 − 1

8
D(2,1) +

p(p2 − 1)

24
D(3,1) + · · · .

To calculate the order 4 term in Ẑ(K2,p), let us make the following

observation. If

φ0 = D(0,1) +
1

24
D(2,1) + α+ · · · ,

where α ∈ D
(4)
1 , then

φ−1
0 = D(0,1) − 1

24
D(2,1) − α+

(
1

24

)2

D(2,1)#D(2,1) + · · ·

= D(0,1) − 1

24
D(2,1) − α+

(
1

24

)2

(D(4,1) + 2D(4,2) − 3D(4,3)) + · · · .

Thus, when calculating the order 4 term in Ẑ(K2,p), we don’t need to

take care of terms having nothing to do with τ 12 since they appear in

both Z(K2,p) and φ−1
0 with opposite signs. Also, the “imaginary” part of

the order 4 term, i.e. the part consisting of those chord diagrams whose

coefficients are imaginary numbers, is zero. So, the order 4 term in Ẑ(K2,p)

is

| ∩14 || ∩23 |[−ζ(2)

24

p2 − 1

2!22

(
[β12, β23]σ(τ12)2 + σ(τ12)2[γ23, γ12]

)

+
p4 − 1

4!24
σ(τ12)4]| ∪23 || ∪14 |

+

((
1

24

)2

−
(

1

24

)(
p2

8
− 1

12

))(
D(4,1) + 2D(4,2) − 3D(4,3)

)

=
1

24

p2 − 1

2!22
(2D(4,1) − 2D(4,3)) +

p4 − 1

4!24
D(4,1)

+
1 − p2

24 · 8 (D(4,1) + 2D(4,2) − 3D(4,3))

=
p4 − 1 + 2(p2 − 1)

384
D(4,1) − p2 − 1

96
D(4,2) +

p2 − 1

192
D(4,3).
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Therefore we have

Ẑ(K2,p) = D(0,1) +
p2 − 1

8
D(2,1) +

p(p2 − 1)

24
D(3,1)

+
p4 + 2p2 − 3

384
D(4,1) − p2 − 1

96
D(4,2) +

p2 − 1

192
D(4,3) + · · · .

When p = 3, K2,3 is the right trefoil knot. When p = −3, K2,p is the

left trefoil knot. We have

Ẑ(K2,3) = D(0,1) + D(2,1) + D(3,1) +
1

4
D(4,1) − 1

12
D(4,2) +

1

24
D(4,3) + · · ·

and

Ẑ(K2,−3) = D(0,1) + D(2,1) −D(3,1) +
1

4
D(4,1) − 1

12
D(4,2) +

1

24
D(4,3) + · · · .
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Invariants of Legendrian Knots

1. Introduction

Legendrian knots are imbeddings of a circle in a contact 3-manifold which

is tangent to the contact plane at every point. For certain standard com-

pact 3-manifolds, invariants of Legendrian knots other than the ordinary

knot type are available. Usually, one my have “index-type” invariants which

characterize the homotopy types of Legendrian curves. One may also have

a “self-linking number” coming from the fact that a Legendrian knot ad-

mits a natural framing. So the key question in the study of Legendrian

knots seems to be whether two Legendrian knots with the same ordinary

framed knot type and the same “indices” are necessarily Legendrian iso-

topic. See.E This question is still open and the purpose of this article is

to offer a new approach to this question. This new approach leads to a

combinatorial question (Question 7.1) of the same natural as the geometric

question about Legendrian knots. It is very likely that these two questions,

the geometric one and the combinatorial one, are in fact equivalent. We pro-

vide also some evidence supporting a negative answer to the combinatorial

question.

We will only deal with Legendrian knots in the space of cooriented con-

tact elements in the plane here. In this case, as index-type invariants, we

have the winding number of the normal angel and the so-called Maslov

index. The self-linking number was defined only recently by Arnold, who

denoted it by J+. See.A Our approach is based on the construction of a

Legendrian isotopy invariant generalizing the Kontsevich integral.Kon The

invariant takes values in the completion of a graded vector space spanned by

“dotted chord diagram”. One may recover the Maslov index and Arnold’s

J+ from our invariant. Although we don’t have a Vassiliev-type theory

for Legendrian knots yet, the relations among dotted chord diagrams may

be visualized through some local moves on fronts (projections) of Legen-

drian knots. Moreover, these relations imply magically the flatness of a

formal connection generalizing the formal Knizhnik-Zamolodchikov con-
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nection. We therefore believe that these relations must have some deep

topological origin. (Our relations include the so-called 4-term relations in

the theory of Vassiliev knot invariants whose topological meaning is quite

clear by now.)

The generalization of the formal Knizhnik-Zamolodchikov connetion

takes into account cusp points on a general front (projection) of a Leg-

endrian knot by using the delta function. A discussion about the so-called

Mathai-Quillen formalism with S. Wu was of great help for us to perceive

such a generalization of the formal Knizhnik-Zamolodchikov connection.

We are also grateful to O. Viro for some helpful discussions in the early

stage of this work and to J. Birman and Y. Eliashberg for their interest in

this work.

This article presents only a sketch of our construction. A detailed expo-

sition will appear elsewhere.

2. Legendrian knots and Legendrian braids

We start with some definitions. According to Arnold,A a contact element

on the plane is a line in a tangent plane. The coorientation of a contact

element is the choice of one of two half-planes into which it divides the

tangent plane. Thus, the manifold M of all cooriented contact elements of

the plane can be identified with R2×S1, where (x, y, φ (mod 2π)) ∈ R2×S1

is identified with the tangent line of R2 at (x, y) ∈ R2 perpendicular to its

normal vector n = (cosφ, sinφ).

The manifold M of all coordinated contact elements of the plane is

naturally a contact manifold. Under the identification M = R2 × S1, the

contact form on M can be written as

ω = (cosφ)dx + (sinφ)dy.

A Legendrian curve in M is an immersion l : S1 → M such that the

tangent vector of l is annihilated by ω everywhere. We will also sometimes

call a segment of such an immersion a Legendrian curve. Two Legendrian

curves are Legendrian homotopic if they can be connected by a (smooth)

path of Legendrian curves.

If a Legendrian curve is an imbedding, it is called a Legendrian knot.

Two Legendrian knots are Legendrian homotopic if they can be connected

by a (smooth) path of Legendrian knots. A Legendrian isotopic class of a

Legendtrian knot is called a Legendrian knot type.

The notion of Legendrian curves and Legendrian knots can certainly be

applied to any contact 3-manifold.
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There are two basic integer invariants of Legendrian curves in the man-

ifold M of all cooriented contact elements of the plane. One is called the

index and the other the Maslov index. They are defined as follows.

Let l : S1 →M = R2 ×S1 be an immersion. Composing the map l with

the projection of R2 ×S1 onto the S1 factor, we get a map S1 → S1. Then

the index of l, ind(l), is simply the degree of this map S1 → S1.

To define the Maslov index µ(l) of a Legendrian curve l, we consider

the completely non-integrable plane field ker(ω) on M . It is oriented by

the orientation of M and coorientations of contact elements (their normal

vectors). The union of projective spaces of each plane in ker(ω) is a (trivial)

S1-bundle over M . The tangent field along the Legendrian curve l deter-

mines a section of this S1-bundle over l and µ(l) is the Euler number of

this section.

Theorem 2.1 (Gromov). Two Legendrian curves are Legendrian homo-

topic if and only if they have the same index and Maslov index.

Let l : S1 →M = R2 × S1 be a Legendrian knot. The composition of a

map l and the projection of R2 × S1 onto the R2 factor is called the front,

f = f(l), of l. The front f of a Legendrian knot is generic if

(1) the only singular points (where f fails to be an immersion) are of cusp

form, i.e. f(t) = (t2, t3) near t = 0 up to local diffeomorphism;

(We will then call f(0) a cusp point and f will have only finitely many cusp

points. An open curve between neighboring cusp points is called a branch.)

(2) cusp points are all different;

(3) branches are transverse to each other;

(4) no triple intersections among branches;

(5) no cusp points lie on branches.

In the case of the standard contact structure on R3, the following basic

theorems were formulated by Eliashberg and their proofs were given by

Swiatkowski.S Here, we use their parallel versions in the case of the space

of all cooriented contact elements in the plane. We refer the reader toS for

more detailed statements of these theorems.

Theorem 2.2. The space of Legendrian knots with generic fronts is open

and dense in the space of all Legendrian knots with topology induced from

C∞(S1,M).
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Theorem 2.3. Two generic fronts represent the same Legendrian knot type

iff we can pass from one to the other by a finite sequence of moves of the

following four types:

(0) composition with an orientation preserving diffeomorphism of the plane

or reparametrization;

(1) creation or elimination of a “swallow tail”;

(2) passage of a cusp point through a branch;

(3) passage of double points through a branch.

Along a generic front f = f(l), we have a smooth normal field given by

n(t) = (cosφ(t), sinφ(t)) if l(t) = (x(t), y(t), φ(t)). This is called a coorien-

tation of the front. It can be lifted to a normal field along the Legendrian

knot l. Thus a Legendrian knot type determines a ordinary framed knot

type. The following seems to be the major question in the study of Legen-

drian knots.

Is it true that two Legendrian knots are Legendrian isotopic if

and only if they are isotopic as ordinary framed knots and have

the same index and Maslov index?

It is known that Question 2.1 has a positive answer when the ordinary

knot type is trivial. SeeE and.F

The winding number of the normal field n(t) of a cooriented front f =

f(l) is the index of the Legendrian knot l. Certainly, a front f also has an

orientation coming form the orientation of its domain S1. A branch of a

front is positive (or negative) if

−x′ sinφ+ y′ cosφ > 0 (or < 0)

on that branch.

Walking along a front in the direction of its orientation, the sign of

branches will change when we pass through a cusp point. Also, the normal

angle φ(t) may increase or decrease when we pass through a cusp point.

The sign of a cusp point is determined by the following rules:
sign change of branches normal angle sign of cusp point

− → + increase +

− → + decrease −
+ → − increase −
+ → − decrease +

Let µ+ (or µ−) be the number of positive (or negative) cusp points on

a front f = f(l). Then

µ(l) = µ+ − µ−.
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Recently, Arnold defined a “self-linking number” J+ for Legendrian

knots in the contact manifold of all cooriented contact elements in the

plane. See.A Up to a certain normalization, the invariant J+ is character-

ized by the local property that J+ changes by a constant ±2 only under

a “dangerous self-tangency perestrokia”. Here a self-tangency is a point

where two branches of a front are tangent to each other with distinct cur-

vatures. It is dangerous if the coorientations of these two branches agree

at that point. And a “perestrokia” here means the process of changing one

generic cooriented front to another by passing through the hyperplane of a

certain kind of non-generic cooriented front once transversely. A combina-

torial description of the Legendrian knot invariant J+ has been given by

Polyak.Po

We now identify R2 with the complex plane C. Suppose z = z(t) ∈ C is

a smooth curve which is an immersion everywhere except at finitely many

places where it has cusp points. We assume further that z′′ is never zero in

the interior of the curve, i.e. there is no inflection point in the interior of

this curve. Then we can reparametrize this curve by its normal angle and

we will have

u(φ) = −ieiφ dz

dφ
∈ R (1)

where i =
√
−1. Write z(φ) = x(φ) + iy(φ). Then

dx

dφ
= −u(φ) sinφ,

dy

dφ
= u(φ) cosφ. (2)

So the curve z = z(φ) is determined by the real valued function u(φ) up

to the initial position. Moreover, the condition that z′ = 0 only at finitely

many places and z′′ is never zero is equivalent to the condition that u = 0

only at finitely many places and u′ 6= 0 when u = 0. We will call such a

curve regular if in addition z′ = 0 only in the interior of the curve.

Let φ0, φ1 ∈ S1. Denote by S1
[φ0,φ1]

the arc on S1 corresponding to angles

between φ0 and φ1 in the direction of S1. We denote

M[φ0,φ1] = C × S1
[φ0,φ1]

under the identification M = C × S1.

Definition 2.1. A Legendrian braid in M[φ0,φ1] is a collection b =

{b1, . . . , bn} of n strands

bα = {(zα(φ), φ) : φ0 ≤ φ ≤ φ1} ⊂M[φ0,φ1],

α = 1, . . . , n, such that
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(1) zα(phi) 6= zβ(φ) for all φ ∈ S1
[φ0,φ1]

if α 6= β;

(2) zα(φ) ∈ C is a regular curve for each α.

Notice that each strand in a Legendrian braid is a Legendrian curve.

In the following definition, zrev refers to the curve obtained form going

backward along the curve z.

Definition 2.2. A generalized Legendrian braid in M[φ0,φ1] is a collection

b = {b1, . . . , bn} of n strands

bα = {(zα(φ), φ) : φ0 ≤ φ ≤ φ1} ⊂M[φ0,φ1],

α = 1, . . . , n, such that

(1) these strands are all disjoint except for some distinct pairs bα and bβ,

we may have zα(φ0) = zβ(φ0) or zα(φ1) = zβ(φ1);

(2) if zα(φ1) = zβ(φ1) (or zα(φ0) = zβ(φ0)), then the curve zα ∗ zrev
β (or

zrev
α ∗ zβ) is a smooth curve with an inflection point zα(φ1) (or zβ(φ0));

(3) zα(φ) ∈ C is a regular curve for each i.

Two (generalized) Legendrian braids are Legendrian isotopic if they

can be connected by a path of (generalized) Legendrian braids, such that

throughout the isotopy, the zα(φ0,1)’s remain fixed.

We will call a real valued function u(φ) defined on [φ0, φ1] regular if it

passes u = 0 transversely in (φ0, φ1). A deformation of a regular function

u(φ, t) is admissible if u(φ, t) is regular for each fixed t and u(φ0,1, t) =

u(φ0,1, 0) for all t.

A regular front z(φ) determines a regular function u(φ). Moreover, a

Legendrian isotopy z(φ, t) of the Legendrian braid (z(φ), φ) except a cre-

ation or elimination of a swallow tail determines an admissible deformation

u(φ, t).

Let l be a Legendrian knot with a generic front f . We may perturb f

a little so that it remains generic and f ′′ = 0 (or φ′ = 0) only at finitely

many places. There are inflection points on f and they must lie in branches.

Then we have

Lemma 2.1. We may decompose M into

M = M[φ0,φ1] ∪M[φ1,φ2] ∪ · · · ∪M[φk,φ0]

such that l ∩M[φi,φi+1] is a (generalized) Legendrian braid for each i mod

k.
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We will call the decomposition of a Legendrian knot described in the

above lemma a braid decomposition of l. Such a braid decomposition of a

generic front is basically determined by the position of inflection points on

the front.

Let f be a generic front with finitely many inflection points. An inflec-

tion point on f is called a local maximum point if φ′′ < 0 at this point.

Otherwise, it is a local minimum point.

Theorem 2.4. We may change one braid decomposition of a Legendrian

knot type to another by a finite sequence of moves of the following types:

(1) Legendrian isotopy of a (generalized) Legendrian braid;

(2) combine two (generalized) Legendrian braids into one or vice versa;

(3) change the normal angle or the position of an inflection point on a

branch slightly;

(4) creation or elimination of a pair of inflection points on the same branch

which are close enough to each other.

3. Extended configuration spaces and a flat formal

connection

Let u ∈ R be a real variable. Let

H(u) =

{
1
2 if u ≥ 0

− 1
2 if u < 0

be (a shifted version of) the unit step function. Let δ(u) be the delta func-

tion. Then H ′(u) = δ(u) in the sense of distributions.

Consider the distribution-valued 1-form δ(u)du on R. It can be thought

of as a representative of the Thom class of (R,R \ 0).

Let u = u(φ) be a regular function on [φ0, φ1]. Let

εφ =

{
1 if u(φ) = 0 and u′(φ) > 0

−1 if u(φ) = 0 and u′(φ) < 0.

Then we have
∫ φ1

φ0

δ(u)du =
∑

u(φ)=0

εφ

where the left side is a Lebesgue integral.

Let

Cn = {(z1, . . . , zα, . . . , zn) ∈ Cn : zα 6= zβ, 1 ≤ α < β ≤ n}
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be the configuration space of n distinct ordered points in the complex plane

C. The extended configuration space is simply

Cn × Rn.

Let Xαβ = Xβα and Yα be formal non-commutative variables and con-

sider the following formal 1-form on Cn × Rn with values in the algebra

C[[Xαβ , Yα]] of formal power series:

Ω =
∑

1≤α<β≤n

1

2πi
Xαβ

dzα − dzβ

zα − zβ
+

∑

1≤α≤n

Yαδ(uα)duα

+
∑

1≤α<β≤n

1

2πi
([Yα, Xαβ ]H(uα)

dzα − dzβ

zα − zβ

+ [Yβ , Xαβ]H(uβ)
dzα − dzβ

zα − zβ
).

We may calculate the holonomy of Ω on paths in Cn × Rn whose Rn com-

ponents are regular functions using the Lebesgue integral. The following

theorem shows that when the holonomy takes values in an appropriate

quotient algebra of C[[Xαβ, Yα]], it is invariant under a deformation which

induces an admissible deformation of the Rn components.

Theorem 3.1. Assume that the formal non-commutative variables Xαβ

and Yα satisfy the following relations:
{

[Xαβ , Xρτ ] = 0] if α, β, ρ, τ are distinct

[Xαβ , Xαρ +Xρβ ] = 0 if α, β, ρ are distinct
(1)





[Yα, Yβ ] = 0 if α, β are distinct

[Xαβ , Yρ] = 0 if α, β, ρ are distinct

[[Yρ, Xαβ], Yτ ] = 0 if {ρ, τ} = {α, β}
(2)

Then Ω is flat.

The relation (3.1) is Kohno’s infinitesimal pure braid relation.Koh It

is closely related with the 4-term relation in the theory of Vassiliev invari-

antsB-L.V Both the infinitesimal pure braid relation and the 4-term relation

reflect local structures of discriminants of some function spaces. We don’t

know the topological meaning of the relation (3.2).

Let b be a Legendrian braid. It determines a path in Cn:

b = {(z1(φ), . . . , zn(φ)) : φ0 ≤ φ ≤ φ1}.
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Let

uα(φ) = ieiφ dzα

dφ
,

then

B = {(z1(φ), . . . , zn(φ), u1(φ), . . . , un(φ)) : φ0 ≤ φ ≤ φ1}
is a path in Cn × Rn whose Rn components are regular functions. Let

Z(b) = 1+

∞∑

m=1

∫

φ0≤ϕ1≤···≤ϕm≤φ1

(B∗Ω)(ϕm)∧· · ·∧(B∗Ω)(ϕ1) ∈ C[[Xαβ , Yα]]

(3)

be the holonomy of Ω along B. Since Ω is flat, Z(b) is invariant under

an admissible deformation of the uα’s. One may also show that Z(b) is

invariant under a creation or elimination of a swallow tail on b. So Z(b) is

invariant under Legendrian isotopy of Legendrian braids.

We may use “dotted chord diagrams” to depict monomials in Xαβ and

Yα. Take a collection L of n ordered line segments, say, of the same length

1. We may think of them as a collection of vertical line segments from

height φ0 to height φ1. A dotted chord diagram on L is a decoration on

L by finitely many horizontal chords running from one line segment in L

to another and finitely many dots on line segments in L. Assume, for the

moment, that different objects in this decoration have different heights. We

will denote by a dot on the αth segment by Yα and a chord from the αth

segment to the βth one by Xαβ , for α 6= β. Then, we may record such a

decoration by a monomial in Xαβ and Yα. To have a 1-1 correspondence

between decorations and monomials, we should be allowed to shift dots

and chords up and down as long as there is no such time when two objets

have the same height. Furthermore, for being able to view a dotted chord

diagram as an element in the algebra generated by Xαβ and Yα subject to

the relations (3.1) and (3.2), we should be able to

(1) shift dots and chords up and down as long as dots and end points of

chords do not touch each other (corresponding to the first equation in

(3.1) and the first and second equations of (3.2)); and

(2) have linear relations in the vector space spanned by decorated diagrams

(corresponding to the second equation in (3.1) and the third equation

in (3.2)).

Notice that if b is a Legendrian braid in a braid decomposition of a

Legendrian knot, each strand of b has an orientation coming from the ori-

entation of the Legendrian knot. On the other hand, each strand has a
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natural orientation along which φ is increasing. Let sign(α) be 1 or −1

according to whether these two orientations on the αth strand agree or

not.

Taking the matter of different orientations on strands of b into consid-

eration, we may modify Ω by a change of the formal variables:

Xαβ → sign(α) sign(β)Xαβ

We will always use this modified Ω from now on, except in Section 6 where

we will sketch a proof of Theorem 3.1.

When b is a generalized Legendrian braid, some integrals in (3.3) will

diverge. One way to deal with those divergent terms is to identify them

first and then simply drop them off.

Let us look at the degree m term in (3.3):
∫

phi0≤ϕ1≤···≤ϕm≤φ1

(B∗Ω)(ϕm) ∧ · · · ∧ (B∗Ω)(ϕ1)

This quantity is a homogeneous polynomial in Xαβ , Yα, [Yα, Xαβ ] and

[Yβ , Xαβ ] of degree m with iterated integrals as coefficient. Let b be a gen-

eralized Legendrian braid. If

zα(φ0) = zβ(φ0) (or zα(φ1) = zβ(φ1)),

then the iterated integral corresponding to a monomial is divergent if and

only if the right-most (or left-most) variable in this monomial is either Xαβ

or [Yα, Xαβ ] or [Yβ , Xαβ ]. So we will drop off these terms and still denote

the resulting formal power series in C[[Xαβ, Yα]] by Z(b) for a generalized

Legendrian braid b. We summarize the discussion here into the following

theorem.

Theorem 3.2. Z(b) ∈ C[[Xαβ, Yα]] is a Legendrian isotopy invariant of

(generalized) Legendrian braids.

4. An invariant of Legendrian knots

Assume now that l is a Legendrian knot with a braid decomposition. We

apply the invariant Z to each (generalized) Legendrian knot in this decom-

position. In a way similar to the construction of Kontsevich’s integral, we

may form the “cyclic product” of these Z(b)’s, keeping the cyclic order of

(generalized) Legendrian braids b’s in the braid decomposition of l. The

result of this cyclic product, denoted by Z(l), is a formal series in dotted

chord diagrams on an oriented circle.
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By a dotted chord diagram on an oriented circle, we mean a decoration

of the circle by finitely many dots and chords running from one point on the

circle to the other. The dots and end points of chords are all distinct. We

are allowed to move these dots and the end points of chords on the circle

as long as they remain distinct. We define the degree of a dotted chord

diagram to be the sum of the number of dots and the number of chords

on the circle. Let D be the completion of the graded vector space spanned

by these decorated circles subject to some relations, where we should think

of these line segments now as disjoint arcs on the circle. Then, if l is a

Legendrian knot with a braid decomposition, Z(l) ∈ D.

The last thing we need to do in constructing an invariant of Legendrian

knots is the stabilization corresponding to the last move in Theorem 2.4:

creation or elimination of a pair of inflection points on the same branch

which are close enough to each other. We have to distinguish the cases on

positive and negative branches.

Let l be a Legendrian knot with a braid decomposition. We may as-

sume that different cusp points lie in different Legendrian braids in the

braid decomposition. Moreover, we may assume that if a Legendrian braid

b contains a cusp point, then

Z(b) = e±•a . (1)

The notation •a stands for a doted chord diagram on the collection of line

segments in Z(b) where the only decoratino is a dot on the line segment

corresponding to the stand bα having a cusp point on it. The sign is the

sign of that cusp point.

Assume that Z(l) is in such kind of a particular form where cusp points

are concentrated as in (4.1). Let ∞± be generalized Legendrian braids where

the sign is the sign of the front (there is no cusp point on it). We may assume

that ∞± is very thin such that Z(∞±) can be thought of as concentrated

at a point. Consider a branch of l and let s be the number of local maxi-

mum points on that branch. Then in the stabilization of Z(l), we will stick

Z(∞±)−s to that branch for every dotted chord diagram in Z(l), where

the sign in ∞± should agree with the sign of the branch it is stuck to.

More precisely, for every dotted chord diagram in Z(l) where cusp points

are concentrated as in (4.1), we cut a branch open at a point away form

dots and end points of chords on that branch and glue in Z(∞±)−s to get

the circle back. It turns out that the stabilization is independent of where

we stick Z(∞±)−s to on a branch. Stabilize all other branches in the same
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way and we eventually get an element

Ẑ(l) ∈ D.

Theorem 4.1. Ẑ(l) ∈ D is a Legendrian isotopy invariant of Legendrian

knots.

It is easy to see that the Maslov index of a Legendrian knot l, µ(l), is

the coefficient of the dotted chord diagram on a circle with a single dot.

Moreover, the coefficient in Ẑ(l) of the dotted chord diagram changes by a

constant under a “dangerous self-tangency perestrokia”, it is proportional

to J+ up to a constant summand. We expect that the non-commutativity

of Xαβ and Yα (see relation (3.2)) indicates that Ẑ(l) may contain more

information than the Maslov index and the ordinary framed knot type of

l. See the discussion in the last section.

5. Relation with Kontsevich integral

It is clear that if a (generalized) Legendrian braid b has no cusp point on

it, Z(b) is just the usual Kontsevich integral with each chord Xαβ replaced

by

Xαβ + sign(bα)
1

2
[Yα, Xαβ ] + sign(bβ)

1

2
[Yβ , Xαβ ]

where sign(bα) is the sign of bα as a branch. In particular, Z(∞±) is com-

pletely determined by Drinfeld’s associator.

Compare with Kontsevich integral, e.g., see,BN1,BN2,C,P,L-M1,L-M2,Kas

it will be desirable to have answers to the following questions.

Is there a combinatorial construction of the Legendrian knot

invariant Ẑ?

Is there a theory of weight systems on dotted chord diagrams?

We hope that positive answers to these two questions will make the com-

putation of our invariant Z(l) easy and eventually lead to an (presumably

negative) answer to Question 2.1.

To complete the whole picture, we hope to have a positive answer to

the following question (compare withVB-L):

Is there a theory of finite type invariants for Legendrian knots?

6. A sketch of the proof of Theorem 3.1

We will sketch a proof of the flatness of the formal connection Ω here,

assuming the relations (3.1) and (3.2).
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To get dΩ−Ω∧Ω = 0, it suffices to check that each part of dΩ−Ω∧Ω in

the following three cases vanishes. For simplicity, we will use 1, 2, 3 instead

of general α, βρ for indices. Also we will denote

ω12 =
1

2πi

dz1 − dz2
z1 − z2

, etc.

in the following calculation.

Case I.

[[Y1, X12], X23]H(u1)ω12 ∧ ω23+ (1)

[X23, [Y1, X13]]H(u1)ω23 ∧ ω13+

[[Y1, X13], X12]H(u1)ω13 ∧ ω12+

[X13, [Y1, X12]]H(u1)ω13 ∧ ω12 = 0.

First we have

[[Y1, X12], X23] = Y1X12X23 −X12Y1X23 −X23Y1X12 +X23X12Y1

= Y1X12X23 −X12X23Y1 − Y1X23X12 −X23X12Y1

= Y1[X12, X23] − [X12, X23]Y1

= [Y1, [X12, X23]]

Similarly we have

[X23, [Y1, X13]] = [Y1, [X23, X13]].

Thus,

[X23, [Y1, X13]] = [[Y1, X12], X23]. (2)

Next, we have

[[Y1, X13], X12] + [X13, [Y1, X12]]

= Y1X13X12 −X13Y1X12 −X12Y1X13 +X12X13Y1

+X13Y1X12 −X13X12Y1 − Y1X12X13 +X12Y1X13

= Y1X13X12 −X13X12Y1 − Y1X12X13 +X12X13Y1

= [Y1, [X13, X12]]

Thus

[[Y1, X13], X12] + [X13, [Y1, X12]] = [[Y1, X12], X23]. (3)

Combining (6.2), (6.3) and Arnold’s identity

ω12 ∧ ω23 + ω23 ∧ ω13 + ω13 ∧ ω12 = 0,
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we get (6.1).

Case II.

[[Y1, X12], [Y2, X23]]H(u1)H(u2)ω12 ∧ ω23+ (4)

[[Y2, X23], [Y1, X13]]H(u1)H(u2)ω23 ∧ ω13+

[[Y1, X13], [Y1, X12]]H(u1)H(u2)ω13 ∧ ω12 = 0.

We have

[[Y1, X12], [Y2, X23]]

= [Y1, X12]Y2X23 − [Y1, X12]X23Y2 − Y2X23[Y1, X12] +X23Y2[Y1, X12]

= Y2[Y1, X12]X23 − [Y1, X12]X23Y2 − Y2X23[Y1, X12] +X23[Y1, X23]Y2

= Y2[[Y1, X12], X23] − [[Y1, X12], X23]Y2

and

[[Y2, X23], [Y1, X13]]

= Y2X23[Y1, X13] −X23Y2[Y1, X13] − [Y1, X13]Y2X23 + [Y1, X13]X23Y2

= Y2X23[Y1, X13] −X23[Y1, X13]Y2 − Y2[Y1, X13]X23 + [Y1, X13]X23Y2

= Y2[X23, [Y1, X13]] − [X23, [Y1, X13]]Y2.

Therefore

[[Y1, X12], [Y2, X23]] = [[Y2, X23], [Y1, X13]]. (5)

Similarly

[[Y1, X12], [Y2, X23]] = [[Y1, X13], [Y2, X12]]. (6)

We see that (6.5) and (6.6) together with Arnold’s identity imply (6.4).

Case III.

[[Y2, X12], [Y2, X23]]H(u2)H(u2)ω12 ∧ ω23 = 0. (7)

We have

[[Y2, X12], [Y2, X23]] + [[Y2, X12], [Y2, X23]]

= [Y2, X12]Y2X23 − [Y2, X12]X23Y2 − Y2X23[Y2, X12] +X23Y2[Y2, X23]

+ Y2X12[Y2, X23] −X12Y2[Y2, X23] − [Y2, X23]Y2X12

+ [Y2, X23]X23Y2

= Y2[[Y2, X12], X23] − [[Y2, X12], X23]Y2

+ Y2[X12, [Y2, X23]] − [X12, [Y2, X23]]Y2

= Y2[X13, [Y2, X12]] − [X13, [Y2, X12]]Y2 = 0.
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So (6.7) holds.

7. An irreducible weight system on dotted chord diagrams

By a weight system, we mean a linear functional on (the completion of)

the graded vector space D of dotted chord diagrams on the circle. In the

following definition, if C is a dotted chord diagram, then C̃ will be the

chord diagram obtained from C by deleting all dots. We will call C̃ the

underlying chord diagram of C.

Definition 7.1. A weight system w is called reducible if for any two dotted

chord diagrams C1 and C2 with the same number of dots, w(C̃1) = w(C̃2)

implies w(C1) = w(C2). Otherwise, w is called irreducible.

Thus, a reducible weight system is completely determined by its restric-

tion on chord diagrams without dots and the number of dots. The existence

of irreducible weight systems is related with the question of whether the

graded vector space D is “decomposable” in the following sense.

There are two graded subspaces in D: one is spanned by chord diagrams

without dots and the other is spanned by dotted chord diagrams without

chords. We denote the former by Dc and the latter by Dd.

Is it true that D ∼= Dc ⊗ Dd as graded vector spaces?

We are unable to answer this question. On the other hand, it is quite

easy to come up with a Z2-valued irreducible weight system on the graded

abelian group DZ, where DZ is the abelian group generated by dotted chord

diagrams on the circle subject to some relations. This weight system is

analogous to the weight system of the Alexander polynomial for ordinary

knots.

Let C be a dotted chord diagram on the circle. Think of the circle as

one of the boundary components of an oriented annulus with consistent

orientation. Then replace each chord by a very thin riboon such that

(1) there is no dot in the region where these ribbons are stuck to the circle;

(2) these ribbons are all disjoint; and

(3) the resulting compact surface is orientable.

The circle now splits into a collection s(C) of circles decorated with dots.

Let A be an abelian group. Pick an element dp ∈ A for each p = 0, 1, 2, . . . .

We define

w(C) =
∑

dp ∈ A,
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where in the summation there is a dp for each circle decorated with p dots

in s(C).

Theorem 7.1. If dp+2 − 2dp+1 + dp ∈ A is a 2-torsion independent of p,

then the linear extension w : DZ → A is well-defined.

For example, we may take A = Z2 and dp+2 + dp = 1 ∈ Z2. It is quite

easy to find two dotted chord diagrams C1 and C2 with the same underlying

chord diagram and w(C1) = d2 + d0 = 1 but w(C2) = d1 + d1 = 0. In other

words, the weight system w is irreducible.
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The Motion Group of the Unlink and its Representations

A loop braid is formed by an isotopy of a finite collection of disjoint “small
loops” in the 3-space. We show that loop braids form a finitely presented group,
called the loop braid group. This extends the phenomenon of braiding from 2+1
dimension to 3 + 1 dimension.

1. Introduction

The braid group was introduced by E. Artin in the 1926.1 In the last 30

or more years, the notion of braiding has become indispensable for many

fields of mathematics and mathematical physics including number theory,

representation theory, algebraic geometry, and conformal and quantum field

theory. The classical book2 presents a thorough treatment of the braid

group and its applications in knot theory. See3 for a survey of the current

state of the art in the study of the braid group and its role in knot theory,

as well as an extensive list of references to the literature. In recent years,

the braid group has also played a prominent role in the study of quantum

Hall effect and quantum computing.

Recall that the braid group describes the topology of the motion of

distinct points in the 2-dimensional plane. A basic fact is that there are in-

finitely many ways, non-homotopic to each other, to exchange the positions

of two particles in the plane. In the presence of n particles in the plane,

the totality of topologically different ways to exchange the position of these

particles is given by the braid group Bn. The braid group Bn is an infinite

extension of the symmetric group Sn. When we have at least three particles

in the plane, some different combinations of various ways to exchange the

position of particles turn out to be topologically equivalent, which gives rise

to braiding relations. Figure 1 describes the most important basic braiding

relation. In the picture, the vertical direction is the direction of the time of

the motion. So what we see are world lines in 2+1 dimensional space-time

traveled by particles as they move in the plane to exchange their positions.

Contrary to the plane, the topology of the motion of distinct points in

the 3-space is trivial, in the sense that up to homotopy, there is only one
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way to exchange the positions of two particles in the 3-space. The basic

and simple idea of this paper is that in dimension 3, one should replace

distinct points by disjoint small loops in order to have non-trivial topology.

To be more specific, we consider a collection of disjoint loops in the 3-space

such that they bound disjoint disks. These disks will allow us to shrink

the loops to be arbitrarily small without touching each other. It is in this

sense that we call them small loops. In the motion of such a collection of

disjoint small loops, we allow a small loop to pass through the interior of the

disks bounded by other small loops. We introduce the loop braid group to

describe precisely topologically different ways to exchange the positions of

these small loop under admissible motion. The loop braid group LBn for n

disjoint small loops is determined by a finite set of elementary loop braids as

generators and a finite set of relations among these elementary loop braids.

In order words, the loop braid group LBn has a finite presentation. This

is the main result of this paper. Figure 2 illustrates the most basic loop

braid relation in the loop braid group. See Theorem 3.1 and Remark 3.1.

Once again, the vertical direction is the direction of the time of the motion,

and what we see are world lines in 3+1 dimensional space-time traveled by

small loops in the 3-space.

Fig. 1.1. Braid relation.

2. Configuration space of disjoint small loops

We denote by S1 and D2 the unit circle and unit disk, respectively, such

that ∂D2 = S1.

Let δ : D2 −→ R3 be a smooth embedding. We call l = δ|S1 : S1 −→ R3

a small loop in R3. Note that by definition, a small loop l : S1 −→ R3 has

an embedding δ : D2 −→ R3 as its extension. But such an extension is far

from unique. Let (l1, l2, . . . , ln) be a collection of small loops in R3. We say
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Fig. 1.2. Loop braid relation.

that this is a collection of disjoint small loops if each li : S1 −→ R3 has an

extension δi : D2 −→ R3 and δi(D
2) ∩ δj(D2) = ∅ for i 6= j.

Denote by Cn the space of all collections of disjoint small loops in R3

with n components equipped with the usual compact-open topology. A

continuous path in this space Cn corresponds to an isotopy of a collection

of disjoint small loops (l1, l2, . . . , ln) in R3. Let δi be the defining extension

of li. Then this isotopy can be thought of as to move the disks δi(D
2) in

R3 with the condition δi(∂D
2) ∩ δj(∂D2) = ∅ for i 6= j kept preserved all

the time. A path in Cn or an isotopy of (l1, l2 . . . , ln) will be denoted by

(l1, l2, . . . , ln)t.

Let (x, y, z) be a Cartesian coordinate system of R3. A collection of

disjoint small loops (l1, l2, . . . , ln) is called horizontal if each δi(D
2) lies in

a horizontal plane z = constant. Furthermore, we require that the positive

normal direction of δi(D
2) agrees with the positive z-direction form every i.

A path (l1, l2, . . . , ln)t is horizontal if (l1, l2, . . . , ln)t is horizontal for every

t.

Lemma 2.1. Suppose that (l1, l2, . . . , ln)t, t ∈ [0, 1], is a path in Cn such

that both (l1, l2, . . . , ln)0 and (l1, l2, . . . , ln)1 are horizontal. Then the path

is path-homotopic to an horizontal path in Cn.

Let (l1, l2, . . . , ln)t be a path in Cn corresponding to an isotopy of

(l1, l2, . . . , ln) = (l1, l2, . . . , ln)0. Let δi be the defining extension of li. We

assume that during the entire isotopy, we have δi(D
2)∩δj (D2) = ∅ for i 6= j.

If at the end of the isotopy, li is moved to lτ(i), i = 1, 2, . . . , n, for some

τ ∈ Sn, then we call this path (l1, l2 . . . , ln)t a permutation path associated

with τ .
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Lemma 2.2. Two permutation paths in Cn associated with the same per-

mutation τ are path-homotopic.

Lemma 2.3. Consider an isotopy that moves (l1, l2, . . . , ln) to

(lτ(1), lτ(2), . . . , lτ(n)), τ ∈ Sn, as a path in Cn. Then, this path is path-

homotopic to the joint of a closed path and a permutation path, and such a

decomposition is unique up to path-homotopy.

Lemma 2.4. Up to path-homotopy in Cn, the joint of a closed path from

(l1, l2, . . . , ln) to itself and a permutation path associated with τ ∈ Sn

can change order after renaming that closed path as a closed path from

(lτ(1), lτ(2), . . . , lτ(n)) to itself.

A loop braid is an isotopy from (l1, l2, . . . , ln) to (lτ(1), lτ(2), . . . , lτ(n)),

for τ ∈ Sn, of collections of disjoint small loops. Loop braids are in one-one

correspondence with path in Cn from (l1, l2, . . . , ln) to (lτ(1), lτ(2), . . . , lτ(n)).

Two loop braids from (l1, l2, . . . , ln) to (lτ(1), lτ(2), . . . , lτ(n)) are isotopic if

the corresponding paths in Cn are path-homotopic. By the previous lemmas,

it suffices to consider only loop braids from (l1, l2, . . . , ln) to itself, and we

may further assume that (l1, l2, . . . , ln)t is horizontal for all t. The set of

isotopy classes of such loop braids is the same as the fundamental group of

Cn with the base point (l1, l2, . . . , ln). We will call this group the loop braid

group and denote it by LBn.

3. Elementary loop braids and relations among them

We will also use (l1, l2, . . . , ln) to denote the subset l1(S
1) ∪ l2(S1) ∪ · · · ∪

ln(S1) of R3, and (l1 l2, . . . , l̂i, . . . , ln) means to drop the i-th component of

this collection of disjoint small loops. Note that π1(R3\(l1 l2, . . . , l̂i, . . . , ln))

is a free group of rank n− 1. Denote by xij , j ∈ {1, 2 . . . , î, . . . , n}, the set

of standard generators of this free group. An elementary loop braid σij is

an isotopy of (l1, l2, . . . , ln) to itself specified by (1) it moves li to itself such

that the trajectory of δi(0) represents xij , and (2) it does not move all other

components of (l1, l2, . . . , ln).

Theorem 3.1. Elementary loop braids σij , i 6= j, i, j ∈ {1, 2, . . . , n}, sat-

isfy the following relations:

(1) σijσkm = σkmσij , if i, j, k,m are all distinct;

(2) σikσjk = σjkσik, if i, j, k are all distinct;

and

(3) σijσkjσik = σikσkjσij , if i, j, k are all distinct.
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Proof. The first two sets of relations (1) and (2) are easy to see. We

check the third set of relations. Without loss of generality, we consider

only (l1, l2, l3).

Denote by x, y the generators of π1(R3 \ (l2, l3)), where x is represented

by a path going through l2 and y a path going through l3. The elementary

loop braid σ32 is the isotopy from (l2, l3) to itself where l3 goes through

l2. This isotopy induces an automorphism φ of π1(R3 \ (l2, l3)). We have

φ(x) = x and φ(y) = xyx−1.

The joint of elementary loop braids σ12σ32σ13 can be written intuitively

as x ∗ φ ∗ y. We calculate as follows:

x ∗ φ ∗ y = x ∗ φ ∗ y ∗ φ−1 ∗ φ = x ∗ (x−1yx) ∗ φ = y ∗ x ∗ φ = y ∗ φ ∗ x.

In the above line of calculation, t he first equality is to insert a trivial loop

braid φ−1 ∗ φ, the second equality is to comb y through φ on its left side

and delete φ∗φ−1, the third equality is to delete xx−1, and the last equality

comes from the relation (2): σ12σ32 = σ32σ12. Thus we have

σ12σ32σ13 = σ13σ32σ12.

Remark 3.1. Since closed paths and permutation paths in Cn commute

with each other up to path-homotopy and renaming of closed paths by

permutation paths involved, it is easy to see that relation (3) in Theorem

3.1 depicted in Figure 3 and the loop braid relation depicted in Figure 2

are equivalent.

Fig. 3.1. Relation (3) in Theorem 3.1.
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Remark 3.2. Let Fn be the free group generated by x1, x2, . . . , xn. Each

elementary loop braid σij induces an automorphism φij of Fn given by

φij(xk) = xk , k 6= i, j

φij(xi) = xjxix
−1
j ,

φij(xj) = xj .

One can check directly that these automorphisms of Fn satisfy the relations

(1), (2), and (3) in Theorem 3.1.

4. Presentation of loop braid group

We may follow the classical approach to show that the loop braid group

LBn admits a finite presentation where the generators are elementary loop

braids σij , i 6= j, and relations are these given in Theorem 3.1.

If we drop the first small loop l1 in (l1, l2, . . . , ln), we get a epimorphism

LBn −→ LBn−1.

Let G be the kernel of this epimorphism. Note first that σ1i, i = 2, . . . , n,

generate a free group G′ of rank n− 1. Second, σi1, i = 2, . . . , n generate a

free abelian group G′′ of rank n− 1.

Lemma 4.1. G is isomorphic to the free product of G′ and G′′.

We illustrate the situation by consider the loop braids of (l2, l3) used in

the proof of Theorem 3.1. The loop braid σ32 induces an automorphism φ

of the free group generated by x, y:

φ(x) = x and φ(y) = xyx−1.

Similarly, the loop braid σ23 induces an automorphism ψ:

ψ(x) = yxy−1 and ψ(y) = y.

Let φn1ψm1 · · ·φnrψmr be a reduced word in φ and ψ. Then

φn1ψm1 · · ·φnrψmr (x)

= xn1ym1 · · ·xnrymrxy−mrx−nr · · · y−m1x−n1 .

Thus, if mr 6= 0, then φn1ψm1 · · ·φnrψmr 6= 1. Similarly, let

ψm1φn1 · · ·ψmrφnr be a reduced word in φ and ψ such that nr 6= 0, then

ψm1φn1 · · ·ψmrφnr 6= 1. This means that φ and ψ generate a free group.

This proves the case of Lemma 4.1 when n = 2.
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Theorem 4.1. The loop braid group LBn admits a presentation with gen-

erators σij , i 6= j, i, j = 1, 2 . . . , n and relations (1), (2), and (3) in Theo-

rem 3.1.

Proof. Consider the exact sequence

1 −→ G −→ LBn −→ LBn−1 −→ 1.

We can think of LBn−1 naturally as a subgroup of LBn. The conjugation

action of LBn−1 on G is by combing. Since a presentation of G is known by

Lemma 4.1, and inductively, LBn−1 admits the presentation given by this

theorem, the loop group LBn is generated by σij , i 6= j and i, j = 1, 2 . . . , n,

and subject to relations in G, relations in LBn−1, and the relations describ-

ing the conjugation action of LBn−1 on G. By the calculation in the proof

of Theorem 3.1, the relations describing the conjugation action of LBn−1

on σ1i and σi1 are equivalent to the relations (1), (2), and (3) that involve

σ1i and σi1, respectively. Thus, LBn has the given presentation.

References

1. E. Artin, Theory of braids. Ann. Math. 48(1947), 101–126.
2. J. Birman, Braids, Links, and Mapping Class Groups. Ann. Math. Studies

82, Princeton University Press, 1976.
3. J. Birman and T. Brendle, Braids: a survey. to appear in the Handbook of

Knot Theory, edited by W. Menasco and M. Thistlethwaite.
4. A. Brownstein and R. Lee, Cohomology of the group of motions of n strings

in 3-space. Mapping class groups and moduli spaces of Riemann surfaces
(Gttingen, 1991/Seattle, WA, 1991), 51–61, Contemp. Math., 150.

5. D.M. Dahm, A generalisation of braid theory. Princeton Thesis, 1962.
6. D.L. Goldsmith, The theory of motion groups. Michigan Math. J. 28(1981),

no. 1, 3–17.
7. D.L. Goldsmith, Motion of links in the 3-sphere. Math. Scand. 50 (1982),

no. 2, 167–205.
8. L. McCool, On basis-conjugating automorphisms of free groups. Canad. J.

Math. 38 (1986), no. 6, 1525–1529.
9. T. Fiedler, Isotopy invariants for smooth tori in 4-manifolds. Topology 40

(2001), no. 6, 1415–1435.
10. R. L. Rubinsztein, On the group of motions of oriented, unlinked and un-

knotted circles in R3, I. Preprint, Uppsala University, 2002.
11. S. Surya, Cyclic statistics in three dimensions. J. Math. Phys. 45 (2004),

no. 6, 2515–2525.
12. R.J. Szabo, Topological field theory and quantum holonomy representations

of motion groups. Annals Phys. 280(2000), 163–208
13. F. Wattenberg, Differentiable motions of unknotted, unlinked circles in 3-

space. Math. Scand. 30(1972), 107–135.



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

This page intentionally left blankThis page intentionally left blank



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

PART C

Lin Award, Speeches and Writings



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

This page intentionally left blankThis page intentionally left blank



July 2, 2008 14:55 WSPC - Proceedings Trim Size: 9in x 6in ws-proc9x6master

421

Lin Award at Beijing University

The Xiao-Song Lin Award at Beijing University was established by the

family of Xiao-Song Lin in 2007. A cash prize is awarded each year to a

graduating undergraduate student at Beijing University who has demon-

strated exceptional scholarship in mathematics. The first recipient of the

Xiao-Song Lin Award was Hongbin Sun.

1. Goal

Xiao-Song Lin was an alumnus of Beijing University. For many years,

he played an active role in the growth and development of the mathemat-

ics community at Beijing University and in China. During the 1990s, he

returned in China to deliver lectures every year. In remembrance of Xiao-

Song Lin, his accomplishments, and his contributions to mathematics, es-

pecially in low-dimensional topology and knot theory, his family established

the Xiao-Song Lin award in the College of Mathematics, Beijing Univer-

sity. The goal of the Xiao-Song Lin Award is to encourage undergraduate

students to work hard, to pursue mathematics passionately, and to make

their own contributions to the development of mathematics in China, like

Xiao-Song Lin did.

2. Eligibility

Every year, two or three graduates will be recommended by the profes-

sors of the College of Mathematics at Beijing University. The recipient of

the award will be chosen by the selection committee. Upon the approval

of the Xiao-Song Lin fund members, a certificate and financial award from

the Xiao-Song Lin fund will be presented by the provost of the College of

Mathematics at Beijing University.

3. Xiao-Song Lin fund members

Jian-Pin He — Wife of Xiao-Song Lin

Kevin Lin — Son of Xiao-Song Lin

Zhiwen Li — Former Ph.D student of Xiao-Song Lin
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4. Timeline and cash prize

The award will be presented for 51 years, from 2007 to 2057. The year

2057 will be the 100th anniversary of Xiao-Song Lin’s birth. The financial

award for the nth year will be 1000 + 50(n− 1) US dollars.
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Selected Speeches at the Funeral

A farewell/funeral service held by Xiao-Song’s family, friends, and col-

leagues took place on Friday, Jan. 19 from 2:00pm to 3:30pm at Bobbitt

Memorial Chapel, 1299 E. Highland Ave. Michael Freedman, Gang Tian,

and Zhenghan Wang spoke at the funeral, and their speeches were included

below.

Michael Freedman’s Speech:

Thank you...thank you for letting me be here. We knew Lin as a man

of really wonderful and great courage, a very gentle man, firm on principle,

but extraordinarily kind and careful to detail. Very easy going. But when

things mattered, he was firm.

I apologize for my speaking voice it’s hard to follow “Amazing Grace”

(a song).

You know, I’ll call Xiao-Song, Lin, and I’ll tell you why at the end, but

Lin would tell me about his past in China when he was a graduate student.

And for me it was incredible, I couldn’t visualize this, his teen years. He was

apparently, in the Cultural Revolution, he was working in a steel factory,

and he would manipulate these huge ladles of molten metal above his head.

He would have metal bars sliding along a track and poured them, you know

. . . it sounded like Dickens through the 19th century. And I sometimes

thought that some of the steel got into him and became the strength of

him.

I felt with Lin, he was one of my first PhD students, but I felt toward

him more like my mountaineering colleagues, because we kind of ignored

his thesis and we went off on an expedition; an intellectual one. We were

trying to do something that in the end we couldn’t do; which is very risky

business for young mathematicians. If you try as hard as you can to do

something, this was called the A-B slice problem. If you try very hard and

you fail, there was a risk. I mean, you know just as in mountaineering,

you can fall off a cliff. In mathematics you can as good as fall off a cliff. If

you try something very difficult and you fail, that can be the end. So we
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started to crawl down from this mountain alive. We started going through

the snowstorms. But it was an adventure. It’s still an open problem for

students in the audience who maybe want to think about. It was a real

bonding experience with Lin.

And I used to call him up, sometimes late at night, because I had an idea

that I wanted to bounce off him. He was very good at certain calculations

I didn’t really know how to do and he could know something and I would

feel like it and I could write them up.

Now I will tell you why I call him Lin: because if I called, and somebody

answered his house and I said to them “can I speak to Xiao-Song?” They

wouldn’t know who I was talking about because my intonation wouldn’t

be correct. Even Lin wouldn’t work too well. I tell you, “Can I speak to

Lin?”; “Who?” “Lin,” (in different pronunciation), “who?” “Lin, Lin, Lin,

Lin, Lin.” Eventually, I get it. And they would get it. That’s probably Tian.

was it? (Someone in the audience said something).

So I have to apologize for this actually, when I was a small child I had

a high fever, a pneumatic fever. Well the fever would improve my ability to

do math and damage my hearing a little bit. Not very much, but enough

that the subtleties. So you know I was never able to penetrate Chinese as

slight as the first two names. Lin was as close as I could come. Lin very

graciously allowed me to use his surname and I think he thought we were

always close for it.

I just wanted to say a couple more words about those early days. So in

the math department in UCSD where we were; of course Yau was there,

Professor Yau. And you know I was an observing young man; I looked

around and I realized that Yau was onto something. That if you had these

incredibly smart students, well that was good. It leveraged what you could

do quite a bit. Heck you didn’t need to think quite so much. So Lin was sort

of my Rick Schoen, my Tian. You know I could turn over the worse of it to

him and expect by morning that something would have happened. There

would be real progress as well. I don’t want to give the impression that’s all

the work that we did, but what sticks in my mind is that expedition that

we completed.

So I just want to say that I love Lin, and thank you for letting me be

here.
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Gang Tian’s Speech:

Like all of you, I feel very sad to lose a special friend: Xiao-Song Lin.

I met Xiao-Song in early 1982 when we both went to Beijing University

for our graduate studies. I was lucky to have shared a dormitory room with

Xiao-Song in Building 29. It was a small room, so there were only three of

us in the room, rather than the usual four. In fact, Xiao-Song and I shared

a bunk bed. To my surprise, we all came from Nanjing, although we have

never previously met. Xiao-Song and Ying-Qing Wu (the other person in

the room) studied topology. I was doing calculus of variations. As we all

know, Xiao-Song is a very pleasant person to be with. At that time, we did

not know much and were all eager to gain new mathematical knowledge.

We talked a lot. Of course, Xiao-Song became fond of knots. I remember

that he often lay in bed and thought about mathematics. I guess that he

was trying to visualize various knots.

In the Fall of 1983, the mathematics department of Beijing University

recommended four people to study for their PhDs abroad. Xiao-Song and

I were selected. I chose to study geometry with Prof. Yau, while Xiao-Song

chose to study topology with Prof. Freedman. They were both then in UC

San Diego. On September 10, 1984, we took the same flight to San Diego.

I had the luck to go studying with Xiao-Song in San Diego for three more

years. There were so many memorable moments and events.

When we just arrived in San Diego, the university arranged for us to

stay in a host family house for one week. The host was a very kind, old lady.

Her house sat on the top of a hill close to downtown La Jolla. It had an

incredible view of Pacific Ocean. We often stood in the yard and watched

the beautiful sunset. We talked. It was a completely new continent. There

were many unknowns ahead of us. We missed our families. China was not

fully open at that time. We did not know when we could go back to our

home country and see our families again. A few months later, Xiao-Song

told me that his wife, Jian-Pin, had been pregnant before he came to the

States. I thought that Xiao-Song must have also wondered when he would

see his son, Hai-Jian. But we both agreed that the future would be bright

and felt hopeful.

During the day, we took the bus to school. One day after dinner at

school, we decided to walk back to the host house. Quickly, we discovered

that it was not so trivial. It was not because of the distance. Since we did

not have a map and were in a totally new place, we found that many paths

were topologically equivalent. Of course, we did not have any cell phones

then. Even though we tried to use our memory to find a geodesic back
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home, it was only theoretically easy and very difficult in practice. Many

small roads we tried ended up in someone else’s home or back to where we

started. After many failures, we eventually got home. It was already 2AM.

We felt so ashamed to wake up the lady to let us in.

During the first year in San Diego, we shared an apartment in UCSD’s

student housing. Our lives then were simple, but pleasant and full of won-

derful things. We made many friends. We learned a lot of mathematics.

We adapted to a new life in America. Xiao-Song often told me his new

findings in topology, knots, the A-B slice problem, and so on. I tried to tell

him about some geometric analysis. Apparently, I did not do a good job

because Xiao-Song never really got involved in doing much analysis in his

research.

Each weekend we spent half a day to write a long letter to our wives.

Of course, I never knew what Xiao-Song wrote to his wife, but we did often

share with each other the good news we received from our families back at

home. Xiao-Song had his first son in that year. I remember that he was so

excited and offered to cook a few dishes for dinner. In fact, for two and half

a years as graduate students at Beijing University, even though we shared

a dormitory room, we did not talk much else other than mathematics. In

the August of 1984, Xiao-Song invited me to visit his family in Suzhou.

There I met his wife Jian-Pin. One month later, when Jian-Pin came to see

Xiao-Song off at the airport, our families met. Since then, we all became

friends. After one year, China opened its door fully and my wife was able

to join me in San Diego. So I had to move to a bigger apartment. It was the

end of our primitive social lives. My classmate Fangyang Zheng joked that

the disappearance of the primitive societies was due to the appearance of

families.

Xiao-Song always did things in his own way. It took him five tries to

pass his driving license’s road test. In fact, his driving skill was very good.

Maybe he was thinking about knots during the tests. He bought a Fort

Pinto as his first car. It was an interesting car with a funny shape. It was

very unpopular among Chinese students, but Xiao-Song didn’t seem to

mind. In fact, I did not remember anyone else who bought the same car

among graduate students at UCSD.

Xiao-Song was a very responsible person and a trustable friend. Last

June, I forwarded to him a paper submitted to the journal Communication

in Contemporary Mathematics. Shortly after, I heard that he was diagnosed

with cancer. I wondered what I should do with the paper. To my surprise,

in a few days, he processed the paper. I was moved. He did it after taking so
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many exhausting medical tests, not to mention the stress of learning that

he had a life-threatening disease. Later, when he realized that he would no

longer have the energy to continue as a chief editor, he thought carefully

who could replace him and wrote us a long email about it. He made an

excellent arrangement for continuing the journal which he had founded.

We all know that Xiao-Song was a very pleasant friend. Every time we

met, after a brief standard conversation, he always said “I found something

interesting”, usually in mathematics. For many years, I learned many new

things from him this way. Last November, when I came to see him, lying

in the bed and suffering great pain caused by the spreading of cancer,

he again told me that he found something interesting in mathematics. He

had a few math books next to him. He talked about quantum computing.

He suggested a few names to give lecture series. I admired his incredible

courage and love for mathematics. I thought that Xiao-Song would win in

his fighting against the terrible disease. He is a hero in my mind.

Xiao-Song did outstanding research in topology. He also did an excellent

job in spreading mathematical knowledge. For many years, he went back to

China to give lecture series. He was involved in organizing many summer

schools in mathematics. He was also involved in organizing summer camps

for talented high school students in China and taught classes. Many young

people there benefited from his efforts. He made very significant contribu-

tions in the development of Chinese mathematics. His contributions will be

remembered.

Xiao-Song, we miss you, your smile, your friendship and the interesting

mathematics that you shared with us. Your mathematics and achievements

will be with us forever.

May Xiao-Song rest in peace.
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Zhenghan Wang’s Speech:

We are here to celebrate Xiao-Song’s life. He brings us together today,

just as he brought so many people together during his life. I speak for Feng

Luo, Zhengxu He, Wenxiang Wang, and Yiping Wang, who are very close

friends of Xiao-Song.

Xiao-Song was much more than a friend, he was like a big brother to

us. When we came to America decades ago, we left behind our parents and

friends. In Xiao-Song’s home—a home of mathematics and love, we found

a new home with a big brother to lean on. Xiao-Song is a man of few words

with a famous smile, a smile that warmed your heart instantly and melted

away your worries. His few words could brighten an entire room.

His passion for mathematics did not diminish even during the most

difficult time of his life. When I came back from China last summer, I went

to visit him in September. At that time, he already had trouble walking. It

took him 30 minutes to walk from the bedside to the bathroom. While Jian-

Pin was preparing lunch, we were talking about mathematics. He showed

me a letter from an amateur mathematician which explained a wood knot

puzzle. Then he gave me a wood knot puzzle to solve that he bought during

a trip. I failed the challenge. He took the puzzle, and quickly unknotted the

arcs. His signature hand movements painted the world’s most beautiful

knots.

Xiao-Song dedicated his life to the discovery of new mathematics. In

the dictionary of Xiao-Song Lin, life is the same as mathematics. During

the last week of his life, he only woke up intermittently. During a moment

of consciousness, he mumbled, “I had solved the problem”.

Words are not enough to describe Xiao-Song’s humbleness and kindness.

In November Xiao-Song was bed-bound at this critical juncture of his life,

and I went to visit him again. I would drive back from Riverside to Santa

Barbara during the night. About 9:00pm, he reminded me to leave as he

worried that it might be too late. As I left, and before I closed the hallway

door, I turned around. There again, he was looking at me smiling. But his

right hand was clutching hard onto the bed sidebar, and his face was red.

Both were indications of acute pain. He told Jian-Pin not to keep me long.

This was my last sight of Xiao-Song.

Xiao-Song drew people to him like a magnet. In December we solicited

writings from friends to encourage him. We were privileged to read so many

letters written to him. The number of lives that have been touched by Xiao-

Song is just astounding. The book, when finished, will show you the love

that all kinds of friends poured out for him.
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In September Xiao-Song wrote a letter to a friend.

“When I first came to America from a closed society, I experienced many

culture shocks. But it was the spirit of freedom that shocked me the most.

Over the years, I became convinced that in order to pursue something of

eternal value, you have to free yourself from other irrelevant thoughts. Only

then can you be creative and original. I think it is reasonable to call such

a spirit the American spirit, because it could be seen in all aspects of life

throughout American history.”

Xiao-Song was the finest combination of this American spirit and the

ancient Chinese culture. He came from a paradise on earth-Suzhou, and he

would go to heaven for a rest.

Nothing said more about the bravest woman I know, a proud mathe-

matician’s wife, Jian-Pin, than Xiao-Song’s own words: I have no regrets in

life.

Xiao-Song, you live in our hearts forever!

Thank you all.
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Freedman’s Writings on Lin

Xiao-Song studied under Michael Freedman from 1984-1988 at UCSD.

In September 2006, Freedman wrote Xiao-Song on the inside cover of the

Soviet book, How the Steel was Tempered, to encourage him. Then in

December 2006, he wrote Xiao-Song again during the critical juncture of

Xiao-Song’s life. Below are the letters.

1. On the inside cover of: How the Steel was Tempered

Dear Lin,

This seems to be one of the many great stories of struggle and passion.

I’ve read dozens in the mountaineering genera—the pacifist’s field of battle.

But I think all this Human struggle—scurrying to and fro—on what at the

time seem critical missions, is cut from a single cloth. Very little of what is

won survives, but maybe the stone of our world is eventually polished down

a fraction by Millennia of our discordant efforts. You and I can take pleasure

in having carved into a more durable medium—mathematics. There will

ever after be string links and finite type invariants. As I learn physics I

become increasingly religious in the sense of feeling connected to all other

things. It feels as if we are ripples on a lake rather than separate entities.

Even time-as Einstein wrote-is “only a stubbornly persistent illusion.”

Best Wishes,

Mike

2. For the LinBook

Dear Lin,

Permit me to write you, your friends, and Family all at the same time

a kind of “open letter”. If I count correctly you were the second student

that I took on for a Ph.D. (Fred Hickling being my first), but I recall

that you and he may have graduated in the same year so you are also

my “first student”. Well, I probably gave you a lot of useless advice being

inexperienced. This was a problem I had my whole life: since I didn’t have

a normal education, I never quite felt comfortable dispensing education - I

had no idea, particularly in the beginning, what was normal, expected or
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proper. So we just winged it, you and I, and it did turn out fine. You wrote

a great thesis, invented string links, collaborated with Nathan Habbeger,

and did as much as anyone else has in the last 25 years to unravel the

A-B slice problem. Sometimes when I think of our work on that problem

I feel like an old time mountaineer stormed off a high peak just short of

the summit. Intense efforts have a cost, I don’t know how the experience

affected you, but the effort, like a marathon run too hard, left me unable

to concentrate fully on topology. I felt beaten. Happily we both recovered

and found good things to think about. I’m glad we both ended up in the

quantum world. I appreciated your coming up to Redmond - was that 1998?

- and reversing the roles. Then you were my teacher as I was trying to catch

up in quantum topology in order to think about computing. Some people

generate a mythology. You have some unintended talent in this area. I

think my stories about you have some foundation in truth but perhaps

I have exaggerated the imagery, or perhaps not. Often in explaining to

students that they should not be discouraged, how that can catch and

exceed their child prodigy peers (if the mood blows hard into their sails)

I like to mention Kevin Walker growing up in South Carolina where, in

his assessment, “no one knew calculus within a fifty mile radius of my

high school.” But my favorite image in young Lin weathering the cultural

revolution: As my story goes you are this tiny human figure in a chthonian

steel foundry manipulating with tongs and pikes giant buckets of molten

metal gimbaled precariously over your head. I think this is true.

When I think of what you have accomplished I am awed: getting to

America, adapting to America, raising your beautiful family, instilling in-

quiry and insight into your sons, developing your university and your jour-

nal, your beautiful work in mathematics, and all the while staying close

and available to your many friends. All these things reflect your courage

and imagination. These are the values in which I continue to trust. With

all my respect and love and the best wishes of my family,

Mike
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Jian-Pin He’s Speech on July 27, 2007

We are here today to commemorate Xiao-Song’s 50th birthday. I feel

very honored that all of you are here to remember Xiao-Song and to cel-

ebrate his birthday with me and my family. Since 1993, Xiao-Song spent

almost every summer in China, and so I was unable to be with him on his

birthday for many years.

I still have difficulty believing that Xiao-Song has actually left us. Some-

times I feel like it is just a dream that he is gone. I feel like Xiao-Song is

just on a trip, giving a lecture at a far away university, and that he will be

home soon.

I vividly remember the day that Xiao-Song first received his diagnosis.

We were shocked, but at the same time, he was so brave and calm. In the

months that followed, he showed us an amazing amount of strength and

courage. He was able to enjoy life and to maintain a positive outlook, even

as he accepted that the end of his life was near. I admired Xiao-Song so

much! Everyone agreed that Xiao-Song deserved a miracle and deserved to

live. All of your support helped to keep Xiao-Song going during the final

period of his life, and has helped me to get through this most difficult time

of my life.

Xiao-Song was a wonderful husband, the best husband I could have

possibly asked for. While we were dating, he told me that his dream was

to become a successful mathematician, and that he believed that we were

the perfect match and that our marriage would be one that everyone would

look up to.

Xiao-Song and I both grew up in Suzhou, China. Due to the Cultural

Revolution, we did not get the chance to enter college after graduating

from high school. Instead, we were both assigned to work at the same

factory on the same day. That was the day we first met. We worked in

that same factory for three years. After the Cultural Revolution ended,

and after taking many difficult college entrance exams, we were assigned

by the government to the same college. The funny thing about this was that

neither of us even applied to that college. But it was a fortunate coincidence.
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We were married on January 18, 1984. During our 23 years of marriage,

we loved, respected, understood, supported, and relied on each other un-

conditionally. We talked about everything, and the level of trust between

us was incredible. We were meant for each other; we were truly soul mates.

Xiao-Song was a dedicated mathematician. He told me that when he was

writing papers and doing research, his goal was to make his work accessi-

ble and to help others enjoy the beauty of math. He also told me that the

greatest reward for him was that his work could create new research paths

for students and other mathematicians. Xiao-Song also loved teaching. He

was a patient teacher who always made sure to spend extra time explaining

subtle and difficult concepts. He was known by his students to draw beau-

tiful geometric pictures and diagrams during his lectures. I believe that

anyone who attended his lectures could see his passion for teaching.

During the last period of his life, he was still thinking about math. While

he was unconscious, his hands would sometimes move about in the air, as

if he was writing on a chalkboard. On January 1, 2007, he awoke for a few

seconds and murmured, “I solved that problem.” We can only now wonder

what problem he managed to solve.

I would like to thank the Chern Institute of Mathematics for organizing

and hosting this conference in memory of my beloved husband. Special

thanks go to Professor Mo-Lin Ge and Professor Weiping Zhang for their

efforts and their hospitality. I would also like to thank Professor Zhenghan

Wang and the organizing committee for making this meeting so memorable.

This meeting is truly a wonderful tribute to Xiao-Song and I appreciate it

very much.

Xiao-Song left us prematurely, and there are no words that can express

my deep sadness and sorrow from this tragic loss. All good memories of

Xiao-Song will carry me and keep me going. I am so proud of Xiao-Song’s

accomplishments and proud of being his wife, a mathematician’s wife.

Xiao-Song will live in our hearts forever!

Jian-Pin He
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