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Preface

In this book, we synthesize a rich and vast literature on econometric challenges
associated with accounting choices and their causal effects. Identification and esti-
mation of endogenous causal effects is particularly challenging as observable data
are rarely directly linked to the causal effect of interest. A common strategy is to
employ logically consistent probability assessment via Bayes’ theorem to connect
observable data to the causal effect of interest. For example, the implications of
earnings management as equilibrium reporting behavior is a centerpiece of our
explorations. Rather than offering recipes or algorithms, the book surveys our ex-
periences with accounting and econometrics. That is, we focus on why rather than
how.

The book can be utilized in a variety of venues. On the surface it is geared to-
ward graduate studies and surely this is where its roots lie. If we’re serious about
our studies, that is, if we tackle interesting and challenging problems, then there
is a natural progression. Our research addresses problems that are not well un-
derstood then incorporates them throughout our curricula as our understanding
improves and to improve our understanding (in other words, learning and cur-
riculum development are endogenous). For accounting to be a vibrant academic
discipline, we believe it is essential these issues be confronted in the undergrad-
uate classroom as well as graduate studies. We hope we’ve made some progress
with examples which will encourage these developments. For us, the Tuebingen-
style treatment effect examples, initiated by and shared with us by Joel Demski,
introduced (to the reader) in chapter 8 and pursued further in chapters 9 and 10
are a natural starting point.

The layout of the book is as follows. The first two chapters introduce the philo-
sophic style of the book — we iterate between theory development and numerical
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examples. Chapters three through seven survey standard econometric background
along with some scattered examples. An appendix surveys standard asymptotic
theory. Causal effects, our primary focus, are explored mostly in the latter chap-
ters — chapters 8 through 13. The synthesis draws heavily and unabashedly from
labor econometrics or microeconometrics, as it has come to be known. We claim
no originality regarding the econometric theory synthesized in these pages and
attempt to give credit to the appropriate source. Rather, our modest contribution
primarily derives from connecting econometric theory to causal effects in various
accounting contexts.

I am indebted to numerous individuals. Thought-provoking discussions with
colloquium speakers and colleagues including Anil Arya, Anne Beatty, Steve
Coslett, Jon Glover, Chris Hogan, Pierre Liang, Haijin Lin, John Lyon, Brian Mit-
tendorf, Anup-menon Nandialath, Pervin Shroff, Eric Spires, Dave Williams, and
Rick Young helped to formulate and refine ideas conveyed in these pages. In a very
real sense, two events, along with a perceived void in the literature, prompted my
attempts to put these ideas to paper. First, Mark Bagnoli and Susan Watts invited
me to discuss these issues in a two day workshop at Purdue University during
Fall 2007. I am grateful to them for providing this important opportunity, their
hospitality and intellectual curiosity, and their continuing encouragement of this
project. Second, the opportunity arose for me to participate in Joel Demski and
John Fellingham’s seminar at the University of Florida where many of these is-
sues were discussed. I am deeply indebted to Joel and John for their steadfast
support and encouragement of this endeavor as well as their intellectual guidance.
I borrow liberally from their work for not only the examples discussed within
these pages but in all facets of scholarly endeavors. I hope that these pages are
some small repayment toward this debt but recognize that my intellectual debt to
Joel and John continues to dwarf the national debt. Finally, and most importantly,
this project would not have been undertaken without the love, encouragement, and
support of Bonnie.

Doug Schroeder
Columbus, Ohio
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1
Introduction

We believe progress in the study of accounting (perhaps any scientific endeavor) is
characterized by attention to theory, data, and model specification. Understanding
the role of accounting in the world typically revolves around questions of causal
effects. That is, holding other things equal what is the impact on outcome (wel-
fare) of some accounting choice. The ceteris paribus conditions are often awkward
because of simultaneity or endogeneity. In these pages we attempt to survey some
strategies for addressing these challenging questions and share our experiences.
These shared experiences typically take the form of identifying the theory through
stylized accounting examples, and exploring the implications of varieties of avail-
able data (to the analyst or social scientist). Theory development is crucial for
careful identification of the focal problem. Progress can be seriously compromised
when the problem is not carefully defined. Once the problem is carefully defined,
identifying the appropriate data is more straightforward but, of course, data col-
lection often remains elusive.1 Recognizing information available to the economic
agents as well as limitations of data available to the analyst is of paramount impor-
tance. While our econometric tool kit continues to grow richer, frequently there
is no substitute for finding data better suited to the problem at hand. The com-
bination of theory (problem identification) and data leads to model specification.
Model specification and testing frequently lead us to revisit theory development
and data collection. This three-legged, iterative strategy for "creating order from
chaos" proceeds without end.

1We define empiricists. as individuals who have special talents in identification and collection of
task-appropriate data. A skill we regard as frequently undervalued and, alas, one which we do not
possess (or at least, have not developed).

1D. A. Schroeder, Accounting and Causal Effects, DOI 10.1007/978-1-4419-7225-5_1,
© Springer Science+Business Media, LLC 2010



2 1. Introduction

1.1 Problematic illustration

The following composite illustration discusses some of our concerns when we fail
to faithfully apply these principles.2 It is common for analysts (social scientists)
to deal with two (or more) alternative first order considerations (theories or fram-
ings) of the setting at hand. One theory is seemingly more readily manageable as
it proceeds with a more partial equilibrium view and accordingly suppresses con-
siderations that may otherwise enter as first order influences. The second view is
more sweeping, more of a general equilibrium perspective of the setting at hand.

Different perspectives may call for different data (regressands and/or regressors
in a conditional analysis). Yet, frequently in the extant literature some of the data
employed reflect one perspective, some a second perspective, some both perspec-
tives, and perhaps, some data reflect an alternate, unspoken theory. Is this cause
for concern?

Consider asset valuation in public information versus private information set-
tings. A CAPM (public information) equilibrium (Sharpe [1964], Lintner [1965],
and Mossin [1966]; also see Lambert, Leuz, and Verrecchia [2007]) calls for the
aggregation of risky assets into an efficient market portfolio and the market port-
folio is a fundamental right-hand side variable. However, in a world where private
information is a first order consideration, there exists no such simple aggregation
of assets to form an efficient (market) portfolio (Admati [1985]). Hence, while di-
versification remains a concern for the agents in the economy it is less clear what
role any market index plays in the analysis.3

Empirical model building (specification and diagnostic checking) seems vastly
different in the two worlds. In the simpler CAPM world it is perhaps sensible to
consider the market index as exogenous. However, its measurement is of critical
importance (Roll [1977]).4 Measures of the market index are almost surely in-
adequate and produce an errors-in-variables (in other words, correlated omitted

2The example is a composite critique of the current literature. Some will take offense at these
criticisms even though no individual studies are referenced. The intent is not to place blame or dwell
on the negative but rather to move forward (hopefully, by inventing new mistakes rather than repeating
the old ones). Our work (research) is forever incomplete.

3Another simple example involving care in data selection comes from cost of capital analysis
where, say, the focus is on cost of debt capital. Many economic analyses involve the influence of
various (often endogenous) factors on the marginal cost of debt capital. Nevertheless, the analysts em-
ploy a historical weighted average of a firm’s debt cost (some variant of reported interest scaled by
reported outstanding debt). What does this tell us about influences on the firm’s cost of raising debt
capital?

4Arbitrage pricing (Ross [1976]) is a promising complete information alternative that potentially
avoids this trap. However, identification of risk factors remains elusive.
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variable) problem.5 When experimental variables are added,6 care is required as
they may pick up measurement error in the market index rather than the effect
being studied. In addition, it may be unwise to treat the factors of interest exoge-
nously. Whether endogeneity arises as a first order consideration or not in this
seemingly simpler setting has become much more challenging than perhaps was
initially suspected.

In our alternate private information world, inclusion of a market index may
serve as a (weak) proxy for some other fundamental factor or factors. Further,
these missing fundamental variables may be inherently endogenous. Of course,
the diagnostic checks we choose to employ depend on our perception of the setting
(theory or framing) and appropriate data.

Our point is econometric analysis associated with either perspective calls for
a careful matching of theory, data, and model specification. Diagnostic check-
ing follows first order considerations outlined by our theoretical perspective and
data choices. We hope evidence from such analyses provides a foundation for dis-
criminating between theories or perspectives as a better first order approximation.
In any case, we cannot investigate every possible source of misspecification but
rather we must focus our attention on problematic issues to which our perspective
(theory) guides us. While challenging, the iterative, three-legged model building
strategy is a cornerstone of scientific inquiry.

In writing these pages (including the above discussion), we found ourselves to
be significantly influenced by Jaynes’ [2003] discussion of probability theory as
the logic of science. Next, we briefly outline some of the principles he describes.

5Is the lack of a significant relation between individual stocks, or even portfolios of stocks, with
the market index a result of greater information asymmetry (has there been a marked jump in the
exploitation of privately informed-opportunism? – Enron, Worldcom, etc.), or the exclusion of more
assets in the index (think of the financial engineering explosion) over the past twenty years?

6The quality of accounting information and how it affects some response variable (say, firm value)
is often the subject of inquiry. Data is an enormous challenge here. We know from Blackwell [1953]
(see also Blackwell and Girshick [1954], Marschak and Miyasawa [1968], and Demski [1973]), in-
formation systems, in general, are not comparable as fineness is the only generally consistent ranking
metric and it is incomplete. This means that we have to pay attention to the context and are only able to
make contextual comparisons of information systems. As accounting is not a myopic supplier of infor-
mation, informational complementarities abound. What is meant by accounting quality surely cannot
be effectively captured by vague proxies for relevance, reliability, precision, etc. that ignore other in-
formation and belie Blackwell comparability. Further, suppose we are able to surmount these issues,
what is learned in say the valuation context may be of no consequence in a stewardship context (surely
a concern in accounting). Demski [1994,2008] and Christensen and Demski [2003] provide numerous
examples illustrating this point. Are we forgetting the idea of statistical sufficiency? A statistic is not
designed to be sufficient for the data in the address of all questions but for a specific question (often
a particular moment). Moving these discussions forward demands more creativity in identifying and
measuring the data.
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1.2 Jaynes’ desiderata for scientific reasoning

Jaynes’ discussion of probability as logic (the logic of science) suggests the fol-
lowing desiderata regarding the assessment of plausible propositions:

1. Degrees of plausibility are represented by real numbers;
2. Reasoning conveys a qualitative correspondence with common sense;
3. Reasoning is logically consistent.

Jaynes’ [2003, p. 86] goes on to argue the fundamental principle of probabilistic
inference is

To form a judgment about the likely truth or falsity of any proposition
A, the correct procedure is to calculate the probability that A is true

Pr (A | E1, E2, . . .)
conditional on all the evidence at hand.

Again, care in problem or proposition definition is fundamental to scientific in-
quiry.

In our survey of econometric challenges associated with analysis of accounting
choice, we attempt to follow these guiding principles. However, the preponderance
of extant econometric work on endogeneity is classical, our synthesis reflects this,
and, as Jaynes points out, classical methods sometimes fail to consider all evi-
dence. Therefore, where classical approaches may be problematic, we revisit the
issue with a "more complete" Bayesian analysis. The final chapter synthesizes (al-
beit incompletely) Jaynes’ thesis on probability as logic and especially informed,
maximum entropy priors. Meanwhile, we offer a simple but provocative example
of probability as logic.

1.2.1 Probability as logic illustration7

Suppose we only know a variable, call it X1, has support from (−1, 1) and a
second variable, X2, has support from (−2, 2). Then, we receive an aggregate
report — their sum, Y = X1 + X2, equals 1

2 . What do we know about X1 and
X2? Jayne’s maximum entropy principle (MEP) suggests we assign probabilities
based on what we know but only what we know. Consider X1 alone. Since we
only know support, consistent probability assignment leads to the uniform density

f (X1 : {−1 < X1 < 1}) = 1

2

Similarly, for X2 we have

f (X2 : −2 < X2 < 2) = 1

4

7This example was developed from conversations with Anil Arya and Brian Mittendorf.
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Now, considered jointly we have8

f (X1, X2 : {−1 < X1 < 1,−2 < X2 < 2}) = 1

8

What is learned from the aggregate report y = 1
2? Bayesian updating based on the

evidence suggests

f



X1 | y = 1

2

�
=
f
�
X1, y =

1
2

�
f
�
y = 1

2

�
and

f



X2 | y = 1

2

�
=
f
�
X2, y =

1
2

�
f
�
y = 1

2

�
Hence, updating follows from probability assignment of f (X1, Y ), f (X2, Y ),
and f (Y ). Since we have f (X1, X2) and Y = X1 +X2 plus knowledge of any
two of (Y,X1, X2) supplies the third, we know

f

�
X1, Y :

� {−3 < Y < −1,−1 < X1 < Y + 2}
{−1 < Y < 1,−1 < X1 < 1}
{1 < Y < 3, Y − 2 < X1 < 1}

��
=
1

8

and

f

�
X2, Y :

� {−3 < Y < −1,−2 < X2 < Y + 1}
{−1 < Y < 1,−1 < X2 < 1}
{1 < Y < 3, Y − 1 < X2 < 2}

��
=
1

8

Further,

f (Y ) =

1
f (X1, Y ) dX1

=

1
f (X2, Y ) dX2

Hence, integrating out X1 or X2 yields. Y+2
−1 f (X1, Y ) dX1 =

. Y+1
−1 f (X2, Y ) dX2 for − 3 < Y < −1

. 1
−1 f (X1, Y ) dX1 =

. 1
−1 f (X2, Y ) dX2 for − 1 < Y < 1

and . 1
Y−2 f (X1, Y ) dX1 =

. 1
Y−1 f (X2, Y ) dX2 for 1 < Y < 3

8MEP treatsX1 andX2 as independent random variables as we have no knowledge regarding their
relationship.
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Collectively, we have9

f (Y : {−3 < Y < −1}) =
3 + Y

8

f (Y : {−1 < Y < 1}) =
1

4

f (Y : {1 < Y < 3}) =
3− Y
8

Now, conditional probability assignment given y = 1
2 is

f



X1 : {−1 < X1 < 1} | y = 1

2

�
=

1
8
1
4

=
1

2

and

f



X2 : {Y − 1 < X2 < Y + 1} | y = 1

2

�
=

1
8
1
4

or

f



X2 :

�
−1
2
< X2 <

3

2

�
| y
�
=
1

2

Hence, the aggregate report tells us nothing about X1 (our unconditional beliefs
are unaltered) but a good deal about X2 (support is cut in half). For instance,
updated beliefs conditional on the aggregate report imply E

�
X1 | y = 1

2

�
= 0

and E
�
X2 | y = 1

2

�
= 1

2 . This is logically consistent as E
�
X1 +X2 | y = 1

2

�
=

E
�
Y | y = 1

2

�
must be equal to 1

2 .
On the other hand, if the aggregate report is y = 2, then revised beliefs are

f (X1 : {Y − 2 < X1 < 1} | y = 2) =
1
8

3−Y
8

=
1

3− 2
or

f (X1 : {0 < X1 < 1} | y = 2) = 1

9Likewise, the marginal densities forX1 andX2 are identified by integrating out the other variable
from their joint density. That is ! 2

−2
f (X1, X2) dX2

= f (X1 : {−1 < X1 < 1}) = 1

2

and ! 1
−1
f (X1, X2) dX1

= f (X2 : {−2 < X2 < 2}) = 1

4

This consistency check brings us back to our starting point.
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and

f (X2 : {Y − 1 < X2 < Y + 1} | y = 2) = 1

3− 2
or

f (X2 : {1 < X2 < 2} | y = 2) = 1
The aggregate report is informative for both variables, X1 and X2. For example,
updated beliefs imply

E [X1 | y = 2] = 1

2

and

E [X2 | y = 2] = 3

2

and
E [X1 +X2 | y = 2] = 2

Following a brief overview of chapter organization, we explore probability as
logic in other accounting settings.

1.3 Overview

The second chapter introduces several recurring accounting examples and their
underlying theory including any equilibrium strategies. We make repeated refer-
ence to these examples throughout later chapters as well as develop other sparser
examples. Chapter three reviews linear models including double residual regres-
sion (FWL) and linear instrumental variable estimation. Prominent examples sur-
vey some econometric issues which arise in the study of earnings management as
equilibrium reporting behavior and econometric challenges associated with docu-
menting information content in the presence of multiple sources of information.

Chapter four continues where we left off with linear models by surveying loss
functions and estimation. The discussion includes maximum likelihood estima-
tion, nonlinear regression, and James-Stein shrinkage estimators. Chapter five uti-
lizes estimation results surveyed in chapter four to discuss discrete choice models
— our point of entry for limited dependent variable models. Discrete choice mod-
els and other limited dependent variable models play a key role in many identifi-
cation and estimation strategies associated with causal effects.

Distributional and structural conditions can sometimes be relaxed via nonpara-
metric and semiparametric approaches. A brief survey is presented in chapter six.
Nonparametric regression is referenced in the treatment effect discussions in chap-
ters 8 through 12. In addition, nonparametric regression can be utilized to eval-
uate information content in the presence of multiple sources of information as
introduced in chapter three. Chapter seven surveys repeated-sampling inference
methods with special attention to bootstrapping and Bayesian simulation. Ana-
lytic demands of Bayesian inference are substantially reduced via Markov chain



8 1. Introduction

Monte Carlo (McMC) methods which are briefly discussed in chapter seven and
applied to the treatment effect problem in chapter 12.

Causal effects are emphasized in the latter chapters — chapters 8 through 13. A
survey of econometric challenges associated with endogeneity is included in chap-
ter eight. This is not intended to be comprehensive but a wide range of issues are
reviewed to emphasize the breadth of extant work on endogeneity including simul-
taneous probit, strategic choice models, duration models, and selection analysis.
Again, the Tuebingen-style treatment effect examples are introduced at the end of
chapter eight.

Chapter nine surveys identification of treatment effects via ignorable treatment
conditions, or selection on observables, including the popular and intuitively ap-
pealing propensity score matching. Tuebingen-style examples are extended to in-
corporate potential regressors and ask whether, conditional on these regressors,
average treatment effects are identified. In addition, treatment effects associated
with the asset revaluation regulation example introduced in chapter two are exten-
sively analyzed.

Chapter ten reviews some instrumental variable (IV) approaches. IV approaches
are a natural response when available data do not satisfy ignorable treatment con-
ditions. Again, Tuebingen-style examples incorporating instruments are explored.
Further, treatment effects associated with the report precision regulation setting
introduced in chapter two are analyzed.

Chapter 11 surveys marginal treatment effects and their connection to other (av-
erage) treatment effects. The chapter also briefly mentions newer developments
such as dynamics and distributions of treatment effects as well as general equi-
librium considerations though in-depth exploration of these issues are beyond the
scope of this book. Bayesian (McMC) analysis of treatment effects are surveyed
in chapter 12. Analyses of marginal and average treatment effects in prototypical
selection setting are illustrated and the regulated report precision setting is revis-
ited.

Chapter 13 brings the discussion full circle. Informed priors are fundamental to
probability as logic. Jayne’s [2003] widget problem is a clever illustration of the
principles of consistent reasoning in an uncertain setting. Earnings management as
equilibrium reporting behavior is revisited with informed priors explicitly recog-
nized. We only scratch the surface of potential issues to be addressed but hope that
others are inspired to continue the quest for a richer and deeper understanding of
causal effects associated with accounting choices.

1.4 Additional reading

Jaynes [2003] describes a deep and lucid account of probability theory as the logic
of science. Probabilities are assigned based on the maximum entropy principle
(MEP).



2
Accounting choice

Accounting is an information system design problem. An objective in the study of
accounting is to understand its nature and its utility for helping organizations man-
age uncertainty and private information. As one of many information sources, ac-
counting has many peculiar properties: it’s relatively late, it’s relatively coarse, it’s
typically aggregated, it selectively recognizes and reports information (or, equiv-
alently, selectively omits information), however accounting is also highly struc-
tured and well disciplined against random errors, and frequently audited. Like
other information sources accounting competes for resources. The initial features
cited above may suggest that accounting is at a competitive disadvantage. How-
ever, the latter features (integrity) are often argued to provide accounting its com-
parative strength and its integrity is reinforced by the initial features (see Demski
[1994, 2008] and Christensen and Demski [2003]).

Demski [2004] stresses endogenous expectations, that is, emphasis on micro-
foundations or choices (economic and social psychology) and equilibrium to tie
the picture together. His remarks sweep out a remarkably broad path of account-
ing institutions and their implications beginning with a fair game iid dividend
machine coupled with some report mechanism and equilibrium pricing. This is
then extended to include earnings management, analysts’ forecasts, regulation
assessment studies, value-relevance studies, audit judgement studies, compensa-
tion studies, cost measurement studies, and governance studies. We continue this
theme by focusing on a modest subset of accounting choices.

In this chapter we begin discussion of four prototypical accounting choice set-
tings. We return to these examples repeatedly in subsequent chapters to illustrate
and explore their implications for econometric analysis and especially endogenous
causal effects. The first accounting choice setting evaluates equilibrium earnings

9D. A. Schroeder, Accounting and Causal Effects, DOI 10.1007/978-1-4419-7225-5_2,
© Springer Science+Business Media, LLC 2010
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management. The second accounting choice setting involves the ex ante impact
of accounting asset revaluation regulation on an owner’s investment decision and
welfare. The third accounting choice setting involves the impact of the choice
(discretionary or regulated) of costly accounting report precision on an owner’s
welfare for assets in place (this example speaks to the vast literature on "account-
ing quality").1 A fourth accounting choice setting explores recovery of recognized
transactions from reported financial statements.

2.1 Equilibrium earnings management

Suppose the objective is to track the relation between a firm’s value Pt and its
accruals zt.2 To keep things simple, firm value equals the present value of expected
future dividends, the market interest rate is zero, current period cash flows are fully
paid out in dividends, and dividends 5d are Normal iid with mean zero and variance
σ2. Firm managers have private information 5ypt about next period’s dividend 5ypt =5dt+1 + 5εt where 5ε are Normal iid with mean zero and variance σ2.3 If the private
information is revealed, ex dividend firm value at time t is

Pt ≡ E
65dt+1 | 5ypt = ypt 7

=
1

2
ypt

Suppose management reveals its private information through income It (cash
flows plus change in accruals) where fair value accruals

zt = E
65dt+1 | 5ypt = ypt 7 = 1

2
ypt

are reported. Then, income is

It = dt + (zt − zt−1)
= dt +

1

2

�
ypt − ypt−1

�
and

Pt ≡ E

�5dt+1 | 5dt = dt, It = dt + 1
2

�
ypt − ypt−1

��
= E

�5dt+1 | 5zt = 1

2
ypt

�
= zt

1An additional setting could combine precision choice and investment (such as in Dye and Sridar
[2004, 2007]). Another could perhaps add accounting asset valuation back into the mix. But we leave
these settings for later study.

2This example draws from Demski [2004].
3For simplicity, there is no other information.
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There is a linear relation between price and fair value accruals.
Suppose the firm is owned and managed by an entrepreneur who, for inter-

generational reasons, liquidates his holdings at the end of the period. The entre-
preneur is able to misrepresent the fair value estimate by reporting, zt = 1

2y
p
t + θ,

where θ ≥ 0. Auditors are unable to detect any accrual overstatements below a
threshold equal to 1

2Δ. Traders anticipate the entrepreneur reports zt = 1
2y
p
t +

1
2Δ

and the market price is

Pt = zt − E [θ] = zt − 1
2

Δ

Given this anticipated behavior, the entrepreneur’s equilibrium behavior is to re-
port as conjectured. Again, there is a linear relationship between firm value and
reported fair value accruals.

Now, consider the case where the entrepreneur can misreport but with probabil-
ity α; the probability of misreporting is common knowledge. Investors process the
entrepreneur’s report with misreporting in mind. The probability of misreporting
given an accrual report of zt is

Pr (D | 5zt = zt) = αφ
�
zt−0.5Δ√

0.5σ

�
αφ

�
zt−0.5Δ√

0.5σ

�
+ (1− α)φ

�
zt√
0.5σ

�
where φ (·) is the standard normal density function and D = 1 if there is misre-
porting (θ = 1

2Δ) andD = 0 otherwise. In turn, the equilibrium price for the firm
following the report is

Pt = E
65dt+1 | 5zt = zt7 = α (zt − 0.5Δ)φ

�
zt−0.5Δ√

0.5σ

�
+ (1− α) ztφ

�
zt√
0.5σ

�
αφ

�
zt−0.5Δ√

0.5σ

�
+ (1− α)φ

�
zt√
0.5σ

�
Again, the entrepreneur’s equilibrium reporting strategy is to misreport the maxi-
mum whenever possible and the accruals balance is α

�
1
2Δ

�
, on average. Price is

no longer a linear function of reported fair value.
The example could be extended to address a more dynamic, multiperiod setting.

A setting in which managers report discretion is limited by audited "cookie jar"
accounting reserves. We leave this to future work.

2.1.1 Implications for econometric analysis
Econometric analysis must carefully attend to the connections between theory
and data. For instance, in this setting the equilibrium behavior is based on in-
vestors’ perceptions of earnings management which may differ from potentially
observed (by the analyst) levels of earnings management. This creates a central
role in our econometric analysis for the propensity score (discussed later along
with discrete choice models). The evidence or data helps us distinguish between
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various earnings management propositions. In the stochastic or selective manipu-
lation settings, manipulation likelihood is the focus.

Econometric analysis of equilibrium earnings management is pursed in chapters
3 and 13. Chapter 3 focuses on the relation between firm value and reported ac-
cruals. The discussion in chapter 13 first explores accruals smoothing in both val-
uation and evaluation contexts then focuses on separation of signal from noise in
stochastically and selectively manipulated accruals. Informed priors and Bayesian
analysis are central to these discussions in chapter 13.

2.2 Asset revaluation regulation

Our second example explores the ex ante impact of accounting asset revaluation
policies on owners’ investment decisions (and welfare) in an economy of, on aver-
age, price protected buyers.4 Prior to investment, an owner evaluates both invest-
ment prospects and the market for resale in the event the owner becomes liquidity
stressed. The payoff from investment I is distributed uniformly and centered at
x̂ = β

αI
α where α,β > 0 and α < 1. Hence, support for investment payoff is

x = x̂± f = [x, x]. A potential problem with the resale market is the owner will
have private information — knowledge of the asset value. However, since there
is some positive probability the owner becomes distressed, π, the market will not
collapse (as in Dye [1985]). The equilibrium price is based on distressed sellers
being forced to pool potentially healthy assets with non-distressed sellers’ im-
paired assets. Regulators may choose to prop-up the price to aid distressed sellers
by requiring certification of assets at cost k with values below some cutoff xc.5,6

The owner’s ex ante expected payoff from investment I and certification cutoff xc
is

E [V | I, xc] = π
1

2f

�
1

2

�
x2c − x2

�− k (xc − x) + P (x− xc)�
+(1− π) 1

2f

�
1

2

�
x2c − x2

�
+ P (P − xc) + 1

2

�
x2 − P 2��

−I
The equilibrium uncertified asset price is

P =
xc +

√
πx

1 +
√
π

4This example draws heavily from Demski, Lin, and Sappington [2008].
5This cost is incremental to normal audit cost. As such, even if audit fee data is available, k may

be difficult for the analyst to observe.
6Owners never find it ex ante beneficial to voluntarily certify asset revaluation because of the

certification cost. We restrict attention to targeted certification but certification could be proportional
rather than targeted (see Demski, et al [2008] for details). For simplicity, we explore only targeted
certification.
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This follows from the equilibrium condition

P =
1

4fq

�
π
�
x2 − x2c

�
+ (1− π) �P 2 − x2c��

where

q =
1

2f
[π (x− xc) + (1− π) (P − xc)]

is the probability that an uncertified asset is marketed. Further, the regulator may
differentially weight the welfare W (I, xc) of distressed sellers compared with
non-distressed sellers. Specifically, the regulator may value distressed seller’s net
gains dollar-for-dollar but value non-distressed seller’s gains at a fraction, w, on
the dollar.

W (I, xc) = π
1

2f

�
1

2

�
x2c − x2

�− k (xc − x) + P (x− xc)�
+w (1− π) 1

2f

�
1

2

�
x2c − x2

�
+ P (P − xc) + 1

2

�
x2 − P 2��

−I [π + (1− π)w]

2.2.1 Numerical example
As indicated above, owners will choose to never certify assets if it’s left to their
discretion. Consider the following parameters�

α =
1

2
,β = 10,π = 0.7, k = 20, f = 150

�
Then never certify (xc = x) results in investment I = 100, owner’s expected
payoff E [V | I, xc] = 100, and equilibrium uncertified asset price P ≈ 186.66.

However, regulators may favor distressed sellers and require selective certifi-
cation. Continuing with the same parameters, if regulators give zero considera-
tion (w = 0) to the expected payoffs of non-distressed sellers, then the welfare

maximizing certification cutoff xc = x − (1+
√
π)k

(1−√π)(1−w) ≈ 134.4.7 This induces

investment I =
6
β(2f+πk)

2f

7 1
1−α ≈ 109.6, owner’s expected payoff approximately

equal to 96.3, and equilibrium uncertified asset price P ≈ 236.9 (an uncertified
price more favorable to distressed sellers).

7This is optimal for k small; that is, k < Z (w) where

Z (w) =
2f
�
1−√π� (1− w)�
1 +

√
π
�
π

�
π −
'

π
�
1 +

√
π
�
c

f
�
1−√π� (1− w)

�
and

c = [π + w (1− π)]
�
1− α
α

−
�

2f

α (2f + πk)
− 1
	�

1 +
πk

2f

	 1
1−α
�
β

1
1−α



14 2. Accounting choice

2.2.2 Implications for econometric analysis
For econometric analysis of this setting, we refer to the investment choice as the
treatment level and any revaluation regulation (certification requirement) as policy
intervention. Outcomes Y are reflected in exchange values8 (perhaps less initial
investment and certification cost if these data are accessible) and accordingly (as
is typical) reflect only a portion of the owner’s expected utility.

Y = P (I, xc) =
xc +

√
πx

1 +
√
π

Some net benefits may be hidden from the analysts’ view; these may include initial
investment and certification cost, and gains from owner retention (not selling the
assets) where exchange prices represent lower bounds on the owner’s outcome.
Further, outcomes (prices) reflect realized draws whereas the owner’s expected
utility is based on expectations. The causal effect of treatment choice on outcomes
is frequently the subject under study and almost surely is endogenous.

This selection problem is pursued in later chapters (chapters 8 through 12).
Here, the data help us distinguish between various selection-based propositions.
For instance, is investment selection inherently endogenous, is price response to
investment selection homogeneous, or is price response to investment selection
inherently heterogeneous? Econometric analysis of asset revaluation regulation is
explored in chapter 9.

2.3 Regulated report precision

Our third example explores the impact of costly report precision on owner’s wel-
fare in an economy of price protected buyers.9 Suppose a risk averse asset owner
sees strict gains to trade from selling her asset to risk neutral buyers. However, the
price the buyer is willing to pay is tempered by his perceived ability to manage
the asset.10 This perception is influenced by the reliability of the owner’s report
on the asset s = V + ε2 where ε2 ∼ N

�
0,σ22

�
. The gross value of the asset is

denoted V = μ+ε1 where ε1 ∼ N
�
0,σ21

�
and ε1 and ε2 are independent. Hence,

the price is

P = E [V | s]− βV ar [V | s]
= μ+

σ21
σ21 + σ

2
2

(s− μ)− β σ21σ
2
2

σ21 + σ
2
2

8This may include a combination of securities along the debt-equity continuum.
9This example draws heavily from Chistensen and Demski [2007].

10An alternative interpretation is that everyone is risk averse but gains to trade arise due to differen-
tial risk tolerances and/or diversification benefits.
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The owner chooses σ22 (inverse precision) at a cost equal to α
�
b− σ22

�2
(where

σ22 ∈ [a, b]) and has mean-variance preferences11

E
�
U | σ22

�
= E

�
P | σ22

�− γV ar �P | σ22�
where

E
�
P | σ22

�
= μ− β σ21σ

2
2

σ21 + σ
2
2

and

V ar
�
P | σ22

�
=

σ41
σ21 + σ

2
2

Hence, the owner’s expected utility from issuing the accounting report and selling
the asset is

μ− β σ21σ
2
2

σ21 + σ
2
2

− γ σ41
σ21 + σ

2
2

− α �b− σ22�2
2.3.1 Public precision choice
Public knowledge of report precision is the benchmark (symmetric information)
case. Precision or inverse precision σ22 is chosen to maximize the owner’s expected
utility. For instance, the following parameters�

μ = 1, 000,σ21 = 100,β = 7, γ = 2.5,α = 0.02, b = 150
�

result in optimal inverse-precision σ2∗2 ≈ 128.4. and expected utility approx-
imately equal to 487.7. Holding everything else constant, α = 0.04 produces
σ2∗2 ≈ 140.3. and expected utility approximately equal to 483.5. Not surprisingly,
higher cost reduces report precision and lowers owner satisfaction.

2.3.2 Private precision choice
Private choice of report precision introduces asymmetric information. The owner
chooses the Nash equilibrium precision level; that is, when buyers’ conjectures
σ̄22 match the owner’s choice of inverse-precision σ22. Now, the owner’s expected
utility is

μ− β σ21σ̄
2
2

σ21 + σ̄
2
2

− γ σ
4
1

�
σ21 + σ

2
2

�
(σ21 + σ̄

2
2)
2 − α �b− σ22�2

For the same parameters as above�
μ = 1, 000,σ21 = 100,β = 7, γ = 2.5,α = 0.02, b = 150

�
11Think of a LEN model. If the owner has negative exponential utility (CARA; contstant absolute

risk aversion), the outcome is linear in a normally distributed random variable(s), then we can write
the certainty equivalent as E[P (s)]− ρ

2
V ar[P (s)] as suggested.
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the optimal inverse-precision choice is σ2∗∗2 ≈ 139.1. and expected utility is ap-
proximately equal to 485.8. Again, holding everything else constant, α = 0.04
produces σ2∗∗2 ≈ 144.8. and expected utility is approximately equal to 483.3.
Asymmetric information reduces report precision and lowers the owner’s satis-
faction.

2.3.3 Regulated precision choice and transaction design
Asymmetric information produces a demand or opportunity for regulation. As-
suming the regulator can identify the report precision preferred by the owner σ2∗2 ,
full compliance with regulated inverse-precision b̂ restores the benchmark solu-
tion. However, the owner may still exploit her private information even if it is
costly to design transactions which appear to meet the regulatory standard when
in fact they do not.

Suppose the cost of transaction design takes a similar form to the cost of report

precision αd
�
b̂− σ22

�2
; that is, the owner bears a cost of deviating from the regu-

latory standard. The owner’s expected utility is the same as the private information
case with transaction design cost added.

μ− β σ21σ̄
2
2

σ21 + σ̄
2
2

− γ σ
4
1

�
σ21 + σ

2
2

�
(σ21 + σ̄

2
2)
2 − α �b− σ22�2 − αd �b̂− σ22�2

For the same parameters as above�
μ = 1, 000,σ21 = 100,β = 7, γ = 2.5,α = 0.02,αd = 0.02, b = 150

�
the Nash equilibrium inverse-precision choice, for regulated inverse-precision b̂ =
128.4, is σ2∗∗∗2 ≈ 133.5. and owner’s expected utility is approximately equal to
486.8. Again, holding everything else constant, αd = 0.04 produces σ2∗∗∗2 ≈
131.7. and owner’s expected utility is approximately equal to 487.1. While reg-
ulation increases report precision and improves the owner’s welfare relative to
private precision choice, it also invites transaction design (commonly referred to
as earnings management) which produces deviations from regulatory targets.

2.3.4 Implications for econometric analysis
For econometric analysis of this setting, we refer to the report precision choice
as the treatment level and any regulation as policy intervention. Outcomes Y are
reflected in exchange values12 and accordingly (as is typical) reflect only a portion
of the owner’s expected utility.

Y = P
�
σ̄22
�
= μ+

σ21
σ21 + σ̄

2
2

(s− μ)− β σ21σ̄
2
2

σ21 + σ̄
2
2

12This may include a combination of securities along the debt-equity continuum.
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In particular, cost is hidden from the analysts’ view; cost includes the explicit cost
of report precision, cost of any transaction design, and the owner’s risk premia.
Further, outcomes (prices) reflect realized draws from the accounting system s
whereas the owner’s expected utility is based on expectations and her knowledge
of the distribution for (s, V ). The causal effect of treatment choice on outcomes
is frequently the subject under study and almost surely is endogenous. This selec-
tion problem is pursued in later chapters (chapters 8 through 12). Again, the data
help us distinguish between various selection-based propositions. For instance, is
report precision selection inherently endogenous, is price response to report pre-
cision selection homogeneous, or is price response to report precision selection
inherently heterogeneous? Econometric analysis of regulated report precision is
explored in chapters 10 and 12. Chapter 10 employs classical identification and
estimation strategies while chapter 12 employs Bayesian analysis.

2.4 Inferring transactions from financial statements

Our fourth example asks to what extent can recognized transactions be recov-
ered from financial statements.13 Similar to the above examples but with perhaps
wider scope, potential transactions involve strategic interaction of various eco-
nomic agents as well as the reporting firm’s and auditor’s restriction of accounting
recognition choices.

We denote accounting recognition choices by the matrix A, where journal en-
tries make up the columns and the rows effectively summarize entries that change
account balances (as with ledgers or T accounts). The changes in account bal-
ances are denoted by the vector x and the transactions of interest are denoted by
the vector y. Then, the linear system describing the problem is

Ay = x

2.4.1 Implications for econometric analysis
Solving for y is problematic as A is not invertible — A is typically not a square
matrix and in any case doesn’t have linearly independent rows due to the balancing
property of accounting. Further, y typically has more elements than x. Classical
methods are stymied. Here we expressly lean on a Bayesian approach includ-
ing a discussion of the merits of informed, maximum entropy priors. Financial
statement data help us address propositions regarding potential equilibrium play.
That is, the evidence may strongly support, weakly support, or refute anticipated
equilibrium responses and/or their encoding in the financial statements. Evidence
supporting either of the latter two may resurrect propositions that are initially
considered unlikely. Econometric analysis of financial statements is explored in
chapter 13.

13This example draws primarily from Arya et al [2000].
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2.5 Additional reading

Extensive reviews and illuminating discussions are found in Demski [1994, 2008]
and Christensen and Demski [2003]. Demski’s American Accounting Association
Presidential Address [2004] is particularly insightful.



3
Linear models

Though modeling endogeneity may involve a variety of nonlinear or general-
ized linear, nonparametric or semiparametric models, and maximum likelihood or
Bayesian estimation, much of the intuition is grounded in the basic linear model.
This chapter provides a condensed overview of linear models and establishes con-
nections with later discussions.

3.1 Standard linear model (OLS)

Consider the data generating process (DGP):

Y = Xβ + ε

where ε ∼ �
0,σ2I

�
, X is n × p (with rank p), and E

�
XT ε

�
= 0, or more

generally E [ε | X] = 0.
The Gauss-Markov theorem states that b =

�
XTX

�−1
XTY is the minimum

variance estimator of β amongst linear unbiased estimators. Gauss’ insight follows
from a simple idea. Construct b (or equivalently, the residuals or estimated errors,
e) such that the residuals are orthogonal to every column ofX (recall the objective
is to extract all information in X useful for explaining Y — whatever is left over
from Y should be unrelated to X).

XT e = 0

where e = Y −Xb. Rewriting the orthogonality condition yields

XT (Y −Xb) = 0

19D. A. Schroeder, Accounting and Causal Effects, DOI 10.1007/978-1-4419-7225-5_3,
© Springer Science+Business Media, LLC 2010
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or the normal equations
XTXb = XTY

Provided X is full column rank, this yields the usual OLS estimator

b =
�
XTX

�−1
XTY

It is straightforward to show that b is unbiased (conditional on the data X).

E [b | X] = E
6�
XTX

�−1
XTY | X

7
= E

6�
XTX

�−1
X
�
TXβ + ε

� | X7
= β +

�
XTX

�−1
XTE [ε | X] = β + 0 = β

Iterated expectations yields E [b] = EX [E [b | X]] = EX [β] = β. Hence, unbi-
asedness applies unconditionally as well.

V ar [b | X] = V ar
6�
XTX

�−1
XTY | X

7
= V ar

6�
XTX

�−1
XT (Xβ + ε) | X

7
= E

�8
β +

�
XTX

�−1
XT ε− β

98�
XTX

�−1
XT ε

9T
| X

�
=

�
XTX

�−1
XTE

�
εεT

�
X
�
XTX

�−1
= σ

�
2XTX

�−1
XT IX

�
XTX

�−1
= σ2

�
XTX

�−1
Now, consider the stochastic regressors case,

V ar [b] = V arX [E [b | X]] + EX [V ar [b | X]]
The first term is zero since E [b | X] = β for all X . Hence,

V ar [b] = EX [V ar [b | X]] = σ2E
6�
XTX

�−17
the unconditional variance of b can only be described in terms of the average
behavior of X .

To show that OLS yields the minimum variance linear unbiased estimator con-
sider another linear unbiased estimator b0 = LY (L replaces

�
XTX

�−1
XT ).

Since E [LY ] = E [LXβ + Lε] = β, LX = I .

Let D = L− �XTX
�−1

XT so that DY = b0 − b.

V ar [b0 | X] = σ2
6
D +

�
XTX

�−1
XT

7 6
D +

�
XTX

�−1
XT

7T
= σ2

�
DDT +

�
XTX

�−1
XTDT +DX

�
XTX

�−1
+
�
XTX

�−1
XTX

�
XTX

�−1
�
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Since
LX = I = DX +

�
XTX

�−1
XTX,DX = 0

and
V ar [b0 | X] = σ2

�
DDT +

�
XTX

�−1�
As DDT is positive semidefinite, V ar [b] (and V ar [b | X]) is at least as small as
any other V ar [b0] (V ar [b0 | X]). Hence, the Gauss-Markov theorem applies to
both nonstochastic and stochastic regressors.

Theorem 3.1 Rao-Blackwell theorem. If ε ∼ N
�
0,σ2I

�
for the above DGP, b

has minimum variance of all unbiased estimators.

Finite sample inferences typically derive from normally distributed errors and
t (individual parameters) and F (joint parameters) statistics. Some asymptotic re-
sults related to the Rao-Blackwell theorem are as follows. For the Rao-Blackwell
DGP, OLS is consistent and asymptotic normally (CAN) distributed. Since MLE
yields b for the above DGP with normally distributed errors, OLS is asymptotically
efficient amongst all CAN estimators. Asymptotic inferences allow relaxation of
the error distribution and rely on variations of the laws of large numbers and cen-
tral limit theorems.

3.2 Generalized least squares (GLS)

Suppose the DGP is Y = Xβ + ε where ε ∼ (0,Σ) and E
�
XT ε

�
= 0, or more

generally, E [ε | X] = 0, X is n× p (with rank p). The BLU estimator is

bGLS =
�
XTΣ−1X

�−1
XTΣ−1Y

E [bGLS ] = β

V ar [bGLS | X] =
�
XTΣ−1X

�−1
and

V ar [bGLS ] = E
6�
XTΣ−1X

�−1
]
7
= σ2E

6�
XTΩ−1X

�−17
where scale is extracted to construct Ω−1 = 1

σ2 Σ−1.
A straightforward estimation approach involves Cholesky decomposition of Σ.

Σ = ΓΓT = LD1/2D1/2LT

where D is a matrix with pivots on the diagonal.

Γ−1Y = Γ−1 (Xβ + ε)

and
Γ−1ε ∼ (0, I)
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since Γ−10 = 0 and Γ−1Σ
�
ΓT
�−1

= Γ−1ΓΓT
�
ΓT
�−1

= I . Now, OLS applied
to the regression of Γ−1Y (in place of Y ) onto Γ−1X (in place of X) yields

bGLS =
��

Γ−1X
�T

Γ−1X
�−1 �

Γ−1X
�T

Γ−1Y

=
�
XT

�
Γ−1

�T
Γ−1X

�−1
XT

�
Γ−1

�T
Γ−1Y

bGLS =
�
XTΣ−1X

�−1
XTΣ−1Y (Aitken estimator)

Hence, OLS regression of suitably transformed variables is equivalent to GLS re-
gression, the minimum variance linear unbiased estimator for the above DGP.

OLS is unbiased for the above DGP (but inefficient),

E [b] = β + EX

6�
XTX

�−1
XTE [ε | X]

7
= β

However, V ar [b | X] is not the standard one described above. Rather,

V ar [b | X] = �
XTX

�−1
XTΣ−1X

�
XTX

�−1
which is typically estimated by Eicker-Huber-White asymptotic heteroskedastic-
ity consistent estimator

Est.Asy.V ar [b] = n
�
XTX

�−1
S0
�
XTX

�−1
= n−1

�
n−1XTX

�−1�
n−1

n/
i=1

e2ixix
T
i

��
n−1XTX

�−1
where xi is the ith row from X and S0 = 1/n

,n
i=1 e

2
ixix

T
i , or the Newey-

West autocorrelation consistent covariance estimator where S0 is replaced by
S0 + n

−1,L
l=1

,n
t=l+1 wleiet−l

�
xlx

T
t−l + xt−lx

T
l

�
, wl = 1− l

L+1 , and the
maximum lag L is set in advance.

3.3 Tests of restrictions and FWL
(Frisch-Waugh-Lovell)

Causal effects are often the focus of accounting and economic analysis. That is,
the question often boils down to what is the response to a change in one variable
holding the others constant. FWL (partitioned regression or double residual re-
gression) and tests of restrictions can help highlight causal effects in the context
of linear models (and perhaps more broadly).

Consider the DGP for OLS where the matrix of regressors is partitioned X =�
X1 X2

�
and X1 represents the variables of prime interest and X2 perhaps
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represents control variables.1

Y = Xβ + ε = X1β1 +X2β2 + ε

Of course, β can be estimated via OLS as b and b1 (the estimate for β1) can be
extracted from b. However, it is instructive to remember that each βk represents
the response (of Y ) to changes inXk conditional on all other regressorsX−k. The
FWL theorem indicates that b1 can also be estimated in two steps. First, regress
X1 and Y onto X2. Retain their residuals, e1 and eY . Second, regress eY onto e1
to estimate b1 =

�
eT1 e1

�−1
eT1 eY (a no intercept regression) and V ar [b1 | X] =

σ2
�
XTX

�−1
11

, where
�
XTX

�−1
11

refers to the upper left block of
�
XTX

�−1
.

FWL produces the following three results:
1.

b1 =
�
XT
1 (I − P2)X1

�−1
XT
1 (I − P2)Y

=
�
XT
1 M2X1

�−1
XT
1 M2Y

is the same as b1 from the upper right partition of

b =
�
XTX

�−1
XTY

where P2 = X2
�
XT
2 X2

�−1
XT
2 .

2.

V ar [b1] = σ2
�
XT
1 (I − P2)X1

�−1
= σ2

�
XT
1 M2X1

�−1
is the same as from the upper left partition of

V ar [b] = σ2
�
XTX

�−1
3. The regression or predicted values are2Y = PXY = X

�
XTX

�−1
XTY = Xb

= X1b1 +X2b2 = P2Y + (I − P2)X1b1
= P2Y +M2X1b1

First, we demonstrate result 1. Since e1 = (I − P2)X1 = M2X1 and eY =
(I − P2)Y =M2Y ,

b1 =
�
XT
1 (I − P2)X1

�−1
XT
1 (I − P2)Y

=
�
XT
1 M2X1

�−1
XT
1 M2Y

1When a linear specification of the control variables is questionable, we might employ partial linear
or partial index regressions. For details see the discussion of these semi-parametric regression models
in chapter 6. Also, a model specification test against a general nonparametric regression model is
discussed in chapter 6.
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To see that this is the same as from standard (one-step) multiple regression derive
the normal equations from

XT
1 X1b1 = X

T
1 Y −XT

1 X2b2

and
P2X2b2 = X2b2 = P2 (Y −X1b1)

Substitute to yield

XT
1 X1b1 = X

T
1 Y −XT

1 P2 (Y −X1b1)

Combine like terms in the normal equations.

XT
1 (I − P2)X1b1 = XT

1 (I − P2)Y
= XT

1 M2Y

Rewriting yields

b1 =
�
XT
1 M2X1

�−1
XT
1 M2Y

This demonstrates 1.2

2A more constructive demonstration of FWL result 1 is described below. From Gauss,

b =

�

XT
2

XT
1

� �
X2 X1

�	−1 
 XT
2

XT
1

�
Y

(for convenienceX is reordered as
�
X2 X1

�
).�


XT
2

XT
1

� �
X2 X1

�	−1
=



XT
2 X2 XT

2 X1
XT
1 X2 XT

1 X1

�−1
(by LDLT block"rank-one" factorization)

=

⎛⎜⎜⎜⎜⎝
�

I 0

XT
1 X2
�
XT
2 X2
�−1

I

�

XT
2 X2 0
0 XT

1 (I − P2)X1
�

×
�
I
�
XT
2 X2
�−1

XT
2 X1

0 I

�
⎞⎟⎟⎟⎟⎠
−1

=

�
I − �XT

2 X2
�−1

XT
2 X1

0 I

�� �
XT
2 X2
�−1

0

0
�
XT
1 M2X1

�−1
�

×
�

I 0

−XT
1 X2
�
XT
2 X2
�−1

I

�

Multiply the first two terms and apply the latter inverse to
�
X2 X1

�T
Y



b2
b1

�
=

� �
XT
2 X2
�−1 − �XT

2 X2
�−1

XT
2 X1
�
XT
1 M2X1

�−1
0

�
XT
1 M2X1

�−1
�


XT
2 Y

XT
1 (I − P2)Y

�
b1 = (xTM2x)−1xTM2Y . This demonstrates FWL result 1.
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FWL result 2 is as follows.

V ar [b] = σ2
�
XTX

�−1
= σ2

�
XT
1 X1 XT

1 X2
XT
2 X1 XT

2 X2

�−1
= σ2

�
A11 − �XT

1 X1
�−1

XT
1 X2A22

− �XT
2 X2

�−1
XT
2 X1A11 A22

�

where

A11 =
�
XT
1 X1 −XT

1 X2
�
XT
2 X2

�−1
XT
2 X1

�−1
and

A22 =
�
XT
2 X2 −XT

2 X1
�
XT
1 X1

�−1
XT
1 X2

�−1
Rewriting A11, the upper left partition, and combining with σ2 produces

σ2
�
XT
1 (I − P2)X1

�−1
This demonstrates FWL result 2.

To demonstrate FWL result 3

X1b1 +X2b2 = P2Y + (I − P2)X1b1
refer to the estimated model

Y = X1b1 +X2b2 + e

where the residuals e, by construction, are orthogonal to X . Multiply both sides
by P2 and simplify

P2Y = P2X1b1 + P2X2b2 + P2e

= P2X1b1 +X2b2

Rearranging yields
X2b2 = P2 (Y −X1b1)

Now, add X1b1 to both sides

X1b1 +X2b2 = X1b1 + P2 (Y −X1b1)

Simplification yields

X1b1 +X2b2 = P2Y + (I − P2)X1b1
= P2Y +M2X1b1

This demonstrates FWL result 3.
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3.4 Fixed and random effects

Often our data come in a combination of cross-sectional and time-series data, or
panel data which can substantially increase sample size. A panel data regression
then is

Ytj = Xtjβ + utj

where t refers to time and j refers to individuals (or firms). With panel data, one
approach is multivariate regression (multiple dependent variables and hence mul-
tiple regressions as in, for example, seemingly unrelated regressions). Another
common approach, and the focus here, is an error-components model. The idea
is to model utj as consisting of three individual shocks, each independent of the
others

utj = et + νj + εtj

For simplicity, suppose the time error component et is independent across time
t = 1, . . . , T , the individual error component νj is independent across units
j = 1, . . . , n, and the error component εtj is independent across all time t and
individuals j.

There are two standard regression strategies for addressing error components:
(1) a fixed effects regression, and (2) a random effects regression. Fixed effects re-
gressions model time effects et and/or individual effects νj conditionally. On the
other hand, the random effects regressions are modeled unconditionally. That is,
random effects regressions model time effects et and individual effects νj as part
of the regression error. The trade-offs between the two involve the usual regres-
sion considerations. Since fixed effects regressions condition on et and νj , fixed
effects strategies do not rely on independence between the regressors and the error
components et and νj . On the other hand, when appropriate (when independence
between the regressors and the error components et and νj is satisfied), the ran-
dom effects model more efficiently utilizes the data. A Hausman test (Hausman
[1978]) can be employed to test the consistency of the random effects model by
reference to the fixed effects model.

For purposes of illustration, assume that there are no time-specific shocks, that
is et = 0 for all t. Now the error components regression is

Ytj = Xtjβ + νj + εtj

In matrix notation, the fixed effects version of the above regression is

Y = Xβ +Dν + ε

where D represents n dummy variables corresponding to the n cross-sectional
units in the sample. Provided εtj is iid, the model can be estimated via OLS. Or
using FWL, the fixed effects estimator for β is

2βWG
=
�
XTMDX

�−1
XTMDY



3.4 Fixed and random effects 27

where PD = D
�
DTD

�−1
DT , projection into the columns of D, and MD =

I − PD, the projection matrix that produces the deviations from cross-sectional
group means. That is,

(MDX)tj = Xtj −X ·j

and

MDYtj = Ytj − Y ·j

where X ·j and Y ·j are the group (individual) j means for the regressors and re-
gressand, respectively. Since this estimator only exploits the variation between the
deviations of the regressand and the regressors from their respective group means,
it is frequently referred to as a within-groups (WG) estimator.

Use of only the variation between deviations can be an advantage or a disad-
vantage. If the cross-sectional effects are correlated with the regressors, then the
OLS estimator (without fixed effects) is inconsistent but the within-groups estima-
tor is consistent. However, if the cross-sectional effects (i.e., the group means) are
uncorrelated with the regressors then the within-groups (fixed effects) estimator
is inefficient. In the extreme case in which there is an independent variable that
has no variation between the deviations and only varies between group means,
then the coefficient for this variable is not even identified by the within-groups
estimator.

To see that OLS is inconsistent when the cross-sectional effects are correlated
with the errors consider the complementary between-groups estimator. A between-
groups estimator only utilizes the variation among group means.

2βBG = �
XTPDX

�−1
XTPDY

The between-groups estimator is inconsistent if the (cross-sectional) group means
are correlated with the regressors. Further, since the OLS estimator can be written
as a matrix-weighted average of the within-groups and between-groups estima-
tors, if the between-groups estimator is inconsistent, OLS (without fixed effects)
is inconsistent as demonstrated below.

2βOLS = �
XTX

�−1
XTY

SinceMD + PD = I ,

2βOLS = �
XTX

�−1 �
XTMDY +X

TPDY
�

Utilizing
�
XTX

�−1
XTX =

�
XTX

�−1
XT (MD + PD)X = I , we rewrite the

OLS estimator as a matrix-weighted average of the within-groups and between-



28 3. Linear models

groups estimators

2βOLS =
�
XTX

�−1
XTMDX2βWG

+
�
XTX

�−1
XTPDX2βBG

=
�
XTX

�−1
XTMD

�
XTMDX

�−1
XTMDY

+
�
XTX

�−1
XTPDX

�
XTPDX

�−1
XTPDY

=
�
XTX

�−1
XTMD

�
XTMDX

�−1
XTMD (Xβ + u)

+
�
XTX

�−1
XTPDX

�
XTPDX

�−1
XTPD (Xβ + u)

Now, if the group means are correlated with the regressors then

p lim 2βBG = p lim
�
XTPDX

�−1
XTPD (Xβ + u)

= β + p lim
�
XTPDX

�−1
XTPDu

= β + α α �= 0

and

p lim 2βOLS =
�
XTX

�−1
XTXβ +

�
XTX

�−1
XTPDXα

= β +
�
XTX

�−1
XTPDXα

�= β if α �= 0

Hence, OLS is inconsistent if the between-groups estimator is inconsistent, in
other words, if the cross-sectional effects are correlated with the errors.

Random effects regressions are typically estimated via GLS or maximum like-
lihood (here we focus on GLS estimation of random effects models). If the indi-
vidual error components are uncorrelated with the group means of the regressors,
then OLS with fixed effects is consistent but inefficient. We may prefer to employ
a random effects regression which is consistent and more efficient. OLS treats all
observations equally but this is not an optimal usage of the data. On the other
hand, a random effects regression treats νj as a component of the error rather than
fixed. The variance of ujt is σ2ν + σ2ε. The covariance of uti with utj is zero for
i �= j, under the conditions described above. But the covariance of utj with usj is
σ2ν for s �= t. Thus, the T × T variance-covariance matrix is

Σ = σ2εI + σ
2
νιι

T

where ι is a T -length vector of ones and the data are ordered first by individual
unit and then by time. And the covariance matrix for the utj is

V ar [u] =

⎡⎢⎢⎢⎣
Σ 0 · · · 0
0 Σ · · · 0
...

...
. . .

...
0 0 · · · Σ

⎤⎥⎥⎥⎦
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GLS estimates can be computed directly or the data can be transformed and
OLS applied. We’ll briefly explore a transformation strategy. One transformation,
derived via singular value decomposition (SVD), is

Σ−1/2 = σ−1ε (I − αPι)

where Pι = ι
�
ιT ι

�−1
ιT = 1

T ιι
T and α, between zero and one, is

α = 1− σε
�
Tσ2ν + σ

2
ε

�− 1
2

The transformation is developed as follows. Since Σ is symmetric, SVD combined
with the spectral theorem implies we can write

Σ = QΛQT

where Q is an orthogonal matrix (QQT = QTQ = I) with eigenvectors in its
columns and Λ is a diagonal matrix with eigenvalues along its diagonal; T − 1
eigenvalues are equal to σ2ε and one eigenvalue equals Tσ2ν + σ

2
ε. To fix ideas,

consider the T = 2 case,

Σ =

�
σ2ν + σ

2
ε σ2ν

σ2ν σ2ν + σ
2
ε

�
= QΛQT

where

Λ =

�
σ2ε 0
0 2σ2ν + σ

2
ε

�
and

Q =
1√
2

�
1 1
−1 1

�
Since

Σ = Q

�
σ2ε 0
0 2σ2ν + σ

2
ε

�
QT

and

Σ−1 = Q

�
1
σ2ε

0

0 1
2σ2ν+σ

2
ε

�
QT

= Q


� 1
σ2ε

0

0 0

�
+

�
0 0
0 1

2σ2ν+σ
2
ε

��
QT

= Q

� 1
σ2ε

0

0 0

�
QT +Q

�
0 0
0 1

2σ2ν+σ
2
ε

�
QT

=
1

σ2ε
Q

�
1 0
0 0

�
QT +

1

2σ2ν + σ
2
ε

Q

�
0 0
0 1

�
QT

=
1

σ2ε
(I − Pι) + 1

2σ2ν + σ
2
ε

Pι
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Note, the key to the general case is to construct Q such that

Q

⎡⎢⎣ 0 · · · 0
...

. . .
...

0 · · · 1

⎤⎥⎦QT = Pι
Since I − Pι and Pι are orthogonal projection matrices, we can write

Σ−1 = Σ−
1
2 Σ−

1
2

=

�
1

σε
(I − Pι) +



1

Tσ2ν + σ
2
ε

� 1
2

Pι

�

×
�
1

σε
(I − Pι) +



1

Tσ2ν + σ
2
ε

� 1
2

Pι

�
and the above claim

Σ−1/2 = σ−1ε (I − αPι)
= σ−1ε

�
I −

6
1− σε

�
Tσ2ν + σ

2
ε

�− 1
2

7
Pι

�
=

1

σε
(I − Pι) +



1

Tσ2ν + σ
2
ε

� 1
2

Pι

is demonstrated.
A typical element of

Σ−1/2Y·j = σ−1ε
�
Ytj − αY ·j

�
and for

Σ−1/2X·j = σ−1ε
�
Xtj − αX ·j

�
GLS estimates then can be derived from the following OLS regression�

Ytj − αY ·j
�
=
�
Xtj − αX ·j

�
+ residuals

Written in matrix terms this is

(I − αPι)Y = (I − αPι)X + (I − αPι)u
It is instructive to connect the GLS estimator to the OLS (without fixed effects)

estimator and to the within-groups (fixed effects) estimator. When α = 0, the GLS
estimator is the same as the OLS (without fixed effects) estimator. Note α = 0
when σν = 0 (i.e., the error term has only one component ε). When α = 1, the
GLS estimator equals the within-groups estimator. This is because α = 1 when
σε = 0, or the between groups variation is zero. Hence, in this case the within-
groups (fixed effects) estimator is fully efficient. In all other cases, α is between
zero and one and the GLS estimator exploits both within-groups and between-
groups variation. Finally, recall consistency of random effects estimators relies on
there being no correlation between the error components and the regressors.
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3.5 Random coefficients

Random effects can be generalized by random slopes as well as random inter-
cepts in a random coefficients model. Then, individual-specific or heterogeneous
response is more fully accommodated. Hence, for individual i, we have

Yi = Xiβi + εi

3.5.1 Nonstochastic regressors
Wald [1947], Hildreth and Houck [1968], and Swamy [1970] proposed standard
identification conditions and (OLS and GLS) estimators for random coefficients.
To fix ideas, we summarize Swamy’s conditions. Suppose there are T observa-
tions on each of n individuals with observable outcomes Yi and regressorsXi and
unobservables βi and εi.

Yi
(T×1)

= Xi
(T×K)

βi
(K×1)

+ εi
(T×1)

(i = 1, . . . , n)

Condition 3.1 E [εi] = 0 E
�
εiε

T
j

�
=
σiiI i = j
0 i �= j

Condition 3.2 E [βi] = β

Condition 3.3 E
6
(βi − β) (βi − β)T

7
=

Δ i = j
0 i �= j

Condition 3.4 βi and εi are independent

Condition 3.5 βi and βj are independent for i �= j
Condition 3.6 Xi (i = 1, . . . , n) is a matrix of K nonstochastic regressors, xitk
(t = 1, . . . , T ; k = 1, . . . ,K)

It’s convenient to define βi = β + δi (i = 1, . . . , n) where E [δi] = 0 and

E
6
δiδ

T
i

7
=

Δ i = j
0 i �= j

Now, we can write a stacked regression in error form⎡⎢⎢⎢⎣
Y1
Y2
...
Yn

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
X1
X2

...
Xn

⎤⎥⎥⎥⎦β +
⎡⎢⎢⎢⎣
X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
δ1
δ2
...
δn

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣
ε1
ε2
...
εn

⎤⎥⎥⎥⎦
or in compact error form

Y = Xβ +Hδ + ε
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where H is the nT × nT block matrix of regressors and the nT × 1 disturbance
vector, Hδ + ε, has variance

V ≡ V ar [Hδ + ε]

=

⎡⎢⎢⎢⎣
X1ΔX

T
1 + σ11I 0 · · · 0
0 X2ΔX

T
2 + σ22I · · · 0

...
...

. . .
...

0 0 · · · XnΔXT
n + σnnI

⎤⎥⎥⎥⎦
Therefore, while the parameters, β or β + δ, can be consistently estimated via
OLS, GLS is more efficient. Swamy [1970] demonstrates that β can be estimated
directly via

bGLS =
�
XTV −1X

�−1
XTV −1Y

=

⎡⎣ n/
j=1

XT
j

�
XjΔX

T
j + σjjI

�−1
Xj

⎤⎦−1

×
n/
i=1

XT
i

�
XiΔX

T
i + σiiI

�−1
Yi

or equivalently by a weighted average of the estimates for β + δ

bGLS =

n/
i=1

Wibi

where, applying the matrix inverse result in Rao [1973, (2.9)],3

Wi =

⎡⎣ n/
j=1

�
Δ+ σjj

�
XT
j Xj

�−1�−1⎤⎦−1 �Δ+ σii
�
XT
i Xi

�−1�−1
and bi =

�
XT
i Xi

�−1
XT
i Yi is an OLS estimate for β + δi.

3.5.2 Correlated random coefficients
As with random effects, a key weakness of random coefficients is the condi-
tion that the effects (coefficients) are independent of the regressors. When this

3Rao’s inverse result follows. Let A and D be nonsingular matrices of orders m and n and B be
anm× n matrix. Then�

A+BDBT
�−1

= A−1 −A−1B
�
BTA−1B +D−1

�−1
BTA−1

= A−1 −A−1BEBTA−1 +A−1BE (E +D)−1 EBTA−1

where E =
�
BTA−1B

�−1.
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condition fails, OLS parameter estimation of β is likely inconsistent. However,
Wooldridge [2002, ch. 18] suggests ignorability identification conditions. We briefly
summarize a simple version of these conditions.4 For a set of covariatesW the fol-
lowing redundancy conditions apply:

Condition 3.7 E [Yi | Xi,βi,Wi] = E [Yi | Xi,βi]
Condition 3.8 E [Xi | βi,Wi] = E [Xi |Wi]

Condition 3.9 V ar [Xi | βi,Wi] = V ar [Xi |Wi]

and

Condition 3.10 V ar [Xi |Wi] > 0 for allWi

Then, β is identified as β = E
6
Cov(X,Y |W )
V ar(X|W )

7
. Alternative ignorability conditions

lead to a standard linear model.

Condition 3.11 E [βi | Xi,Wi] = E [βi |Wi]

Condition 3.12 the regression of Y onto covariates W (as well as potentially
correlated regressors, X) is linear

Now, we can consistently estimate β via a linear panel data regression. For exam-
ple, ignorable treatment allows identification of the average treatment effect5 via
the panel data regression

E [Y | D,W ] = Dβ +Hδ +Wγ0 +D (W − E [W ]) γ1
where D is (a vector of) treatments.

3.6 Ubiquity of the Gaussian distribution

Why is the Gaussian or normal distribution so ubiquitous? Jaynes [2003, ch. 7] ar-
gues probabilities are "states of knowledge" rather than long run frequencies. Fur-
ther, probabilities as logic naturally draws attention to the Gaussian distribution.
Before stating some general properties of this "central" distribution, we review it’s
development in Gauss [1809] as related by Jaynes [2003], p. 202. The Gaussian
distribution is uniquely determined if we equate the error cancelling property of a
maximum likelihood estimator (MLE; discussed in ch. 4) with the sample average.
The argument proceeds as follows.

4Wooldridge [2002, ch. 18] discusses more general ignorable treatment (or conditional mean in-
dependence) conditions and also instrumental variables (IV) strategies. We defer IV approaches to
chapter 10 when we consider average treatment effect identification strategies associated with contin-
uous treatment.

5Average treatment effects for a continuum of treatments and their instrumental variable identifi-
cation strategies are discussed in chapter 10.
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Suppose we have a sample of n+ 1 observations, x0, x1, . . . , xn, and the den-
sity function factors f (x0, x1, . . . , xn | θ) = f (x0 | θ) · · · f (xn | θ). The log-
likelihood is

n/
i=0

log f (xi | θ) =
n/
i=0

g (xi − θ)

so the MLE 2θ satisfies

n/
i=0

∂g
�2θ − xi�
∂2θ =

n/
i=0

g
� �2θ − xi� = 0

Equating the MLE with the sample average we have

2θ = x = 1

n+ 1

n/
i=0

xi

In general, MLE and x are incompatible. However, consider a sample in which
only x0 is nonzero, that is, x1 = · · · = xn = 0. Now, if we let x0 = (n+ 1)u

and 2θ = u then 2θ − x0 = u− (n+ 1)u = −nu
and

n/
i=0

g
� �2θ − xi� = 0

becomes
n/
i=0

g
�
(−nu) = 0

or since u = 2θ − 0
g
�
(−nu) + ng� (u) = 0

The case n = 1 implies g
�
(u) must be anti-symmetric, g

�
(−u) = −g� (u). With

this in mind, g
�
(−nu) + ng� (u) = 0 reduces to

g
�
(nu) = ng

�
(u)

Apparently, (and naturally if we consider the close connection between the Gaussian
distribution and linearity)

g
�
(u) = au

that is, g
�
(u) is a linear function and

g (u) =
1

2
au2 + b

For this to be a normalizable function, a must be negative and b determines the
normalization. Hence, we have

f (x | θ) =:
α
2π exp

6
− 1
2α (x− θ)2

7
0 < α <∞
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and the "natural" way to think of error cancellation is the Gaussian distribution
with only the scale parameter α unspecified. Since the maximum of the Gaussian
likelihood function always equals the sample average and in the special case above
this is true only for the Gaussian likelihood, the Gaussian distribution is necessary
and sufficient.

Then, the ubiquity of the Gaussian distribution follows from its error cancella-
tion properties described above, the central limit theorem (discussed in the appen-
dix), and the following general properties (Jaynes [2003], pp. 220-221).

A. When any smooth function with a single mode is raised to higher and higher
powers, it approaches a Gaussian function.

B. The product of two Gaussian functions is another Gaussian function.
C. The convolution of two Gaussian functions is another Gaussian function (see

discussion below).
D. The Fourier transform of a Gaussian function is another Gaussian function.
E. A Gaussian probability distribution has higher entropy than any other distri-

bution with equal variance.
Properties A and E suggest why various operations result in convergence toward

the Gaussian distribution. Properties B, C, and D suggest why, once attained, a
Gaussian distribution is preserved.

3.6.1 Convolution of Gaussians
Property C is pivotal as repeated convolutions lead to the central limit theorem.
First, we discuss discrete convolutions (see Strang [1986],pp. 294-5). The con-
volution of f and g is written f ∗ g. It is the sum (integral) of two functions
after one has been reversed and shifted. Let f = (f0, f1, . . . , fn−1) and g =
(g0, g1, . . . , gn−1) then

f ∗ g =


f0g0 + f1gn−1 + f2gn−2 + · · ·+ fn−1g1, f0g1 + f1g0 + f2gn−1
+ · · ·+ fn−1g1, . . . , f0gn−1 + f1gn−2 + f2gn−3 + · · ·+ fn−1g0

�
For example, the convolution of (1, 2, 3) and (4, 5, 6) is (1, 2, 3) ∗ (4, 5, 6) =
(1 · 4 + 2 · 6 + 3 · 5, 1 · 5 + 2 · 4 + 3 · 6, 1 · 6 + 2 · 5 + 3 · 4) = (31, 31, 28).

Now, we discuss property C. The convolution property applied to Gaussians is

∞1
−∞

ϕ (x− μ1 | σ1)ϕ (y − x− μ2 | σ2) dx = ϕ (y − μ | σ)

where ϕ (·) is a Gaussian density function, μ = μ1 + μ2 and σ2 = σ21 + σ
2
2. That

is, two Gaussians convolve to make another Gaussian distribution with additive
means and variances. For convenience let wi = 1

σ2i
and write


x− μ1
σ1

�2
+



y − x− μ2

σ2

�2
= (w1 + w2) (x− 2x)2+ w1w2

w1 + w2
(y − μ1 − μ2)2

where 2x ≡ w1μ1+w2y−w2μ2
w1+w2

. Integrating out x produces the above result.
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3.7 Interval estimation

Finite sampling distribution theory for the linear model Y = Xβ+ε follows from
assigning the errors independent, normal probability distributions with mean zero
and constant variance σ2.6 Interval estimates for individual model parameters βj
are Student t distributed with n−p degrees of freedom when σ2 is unknown. This
follows from

bj − βj
Est.V ar [bj ]

∼ t (n− p)

whereEst.V ar [bj ] = s2
�
XT
j M−jXj

�−1
,Xj is column j ofX ,M−j = I−P−j

and P−j is the projection matrix onto all columns of X except j, s2 = eT e
n−p , and

e is a vector of residuals. By FWL, the numerator is�
XT
j M−jXj

�−1
XT
j M−jY

Rewriting yields

bj =
�
XT
j M−jXj

�−1
XT
j M−j (Xβ + ε)

AsM−j annihilates all columns of X except Xj , we have

bj =
�
XT
j M−jXj

�−1
XT
j M−j

�
Xjβj + ε

�
= βj +

�
XT
j M−jXj

�−1
XT
j M−jε

Now,

bj − βj =
�
XT
j M−jXj

�−1
XT
j M−jε

As this is a linear combination of independent, normal random variates, the trans-
formed random variable also has a normal distribution with mean zero and vari-
ance σ2

�
XT
j M−jXj

�−1
. The estimated variance of bj is s2

�
XT
j M−jXj

�−1
and

the t ratio is

bj − βj
Est.V ar [bj ]

=
bj − βj;

s2
�
XT
j M−jXj

�−1
=

bj − βj<
eT e(XT

j M−jXj)
−1

n−p

6It’s instructive to recall the discussion of the ubiquity of the Gaussian distribution adapted from
Jaynes [2003].
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This can be rewritten as the ratio of a standard normal random variable to the
square root of a chi-square random variable divided by its degrees of freedom.

bj − βj
Est.V ar [bj ]

=

�
XT
j M−jXj

�−1
XT
j M−jε<

εTMXε(XT
j M−jXj)

−1

n−p

=

�
XT
j M−jXj

�−1
XT
j M−j (ε/σ)<

(ε/σ)TMX(ε/σ)(XT
j M−jXj)

−1

n−p

In other words, a Student t distributed random variable with n − p degrees of
freedom which completes the demonstration.

Normal sampling distribution theory applied to joint parameter regions follow
an F distribution. For example, the null hypothesis H0 : β1 = ... = βp−1 = 0 is
tested via the F statistic = MSR

MSE ∼ F (p− 1, n− p). As we observed above, the
denominator is

MSE =
eT e

n− p
=

εTMXε

n− p ∼ χ2 (n− p)
n− p

The numerator is
(Xb−Y )T (Xb−Y )

p−1 . FWL indicates Xb = PιY + MιX−ιb−ι
where ι refers to a vector of ones (for the intercept) and the subscript −ι refers
to everything but the intercept (i.e., everything except the vector of ones in X).
Therefore, Xb− Y = PιY +MιX−ιb−ι − PιY =MιX−ιb−ι. Now,

MSR =
bT−ιX

T
−ιMιX−ιb−ι
p− 1

=
Y TPMιX−ιY

p− 1

=
(Xβ + ε)

T
PMιX−ι (Xβ + ε)

p− 1
under the null β−ι = 0 and β0 is negated by Mι. Hence,

MSR =
εTPMιX−ιε

p− 1 ∼ χ2 (p− 1)
p− 1

which completes the demonstration.
When the our understanding of the errors is weak, we frequently appeal to as-

ymptotic or approximate sampling distributions. Asymptotic tests of restrictions
are discussed next (also see the appendix).
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3.8 Asymptotic tests of restrictions: Wald, LM, LR
statistics

Tests of restrictions based on Wald, LM (Lagrange multiplier), and LR (likelihood
ratio) statistics have a similar heritage. Asymptotically they are the same; only in
finite samples do differences emerge. A brief sketch of each follows.

Intuition for these tests come from the finite sample F statistic (see Davidson
and MacKinnon [1993], p. 82-83 and 452-6). The F statistic is valid if the errors
have a normal probability assignment.

For the restrictionH0: Rβ − r = 0

F =

�
eT∗ e∗ − eT e

�
/J

eT e/ (n− p)

=
(Rb− r)T

�
Rs2

�
XTX

�−1
RT

�−1
(Rb− r)

J
∼ F (J, n− p)

where R is J × p, e∗ = (I − PX∗)Y = MX∗Y and e = (I − PX)Y = MXY
are the residuals from the restricted and unrestricted models, respectively, Px =
X
�
XTX

�−1
XT , PX∗ = X∗

�
XT
∗ X∗

�−1
XT
∗ are the projection matrices, X∗

is the restricted matrix of regressors, and s2 = eT e/ (n− p) is the sample vari-
ance. Recall the numerator and denominator of F are divided by σ2 to yield the
ratio of two chi-squared random variables. Since s2 converges to σ2 we have

p lim
�
s2

σ2

�
= 1 in the denominator. Hence, we have J squared standard nor-

mal random variables summed in the numerator orW converges in distribution to
χ2 (J).

FWL provides another way to see the connection between the F statistic and
the Wald statisticW ,

F =

�
eT∗ e∗ − eT e

�
/J

eT e/ (n− p)

=
(Rb− r)T

�
Rs2

�
XTX

�−1
RT

�−1
(Rb− r)

J

=
W

J

Consider the (partitioned) DGP:

Y = Xβ + ε = X1β1 +X2β2 + ε
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and restriction H0 : β2 = 0. By FWL,7

eT e = Y TMXY = Y
TM1Y − Y TM1X2

�
XT
2 M1X2

�−1
XT
2 M1Y

and eT∗ e∗ = Y
TM1Y . Hence, the numerator of F is�

eT∗ e∗ − eT e
�
/J = Y TM1X2

�
XT
2 M1X2

�−1
XT
2 M1Y/J

and the denominator is s2. Since R =
�
1 0

�
, rearrangement yields

W =
bT2

��
XTX

�−1�−1
22
b2/J

s2

where ��
XTX

�−1�
22
=
�
XT
2 X2 −XT

2 X1
�
XT
1 X1

�−1
XT
1 X2

�−1
is the lower right hand block of

�
XTX

�−1
. Both F and W are divided by J in

the numerator and have s2 in the numerator. Now, we show that

Y TM1X2
�
XT
2 M1X2

�−1
XT
2 M1Y = b

T
2

��
XTX

�−1�−1
22
b2

by rewriting the right hand side

bT2

��
XTX

�−1�−1
22
b2 = bT2

�
XT
2 X2 −XT

2 X1
�
XT
1 X1

�−1
XT
1 X2

�
b2

= bT2
�
XT
2 M1X2

�
b2

by FWL for b2

bT2
�
XT
2 M1X2

�
b2

= Y TM1X2
�
XT
2 M1X2

�−1 �
XT
2 M1X2

� �
XT
2 M1X2

�−1
XT
2 M1Y

= Y TM1X2
�
XT
2 M1X2

�−1
XT
2 M1Y

7From FWL,

Xb = P1Y +M1X2b2

= P1Y +M1X2
�
XT
2 M1X2

�−1
XT
2 M1Y

= P1Y +M1X2
�
XT
2 M1X2

�−1
XT
2 M1Y

= P1Y + PM1X2
Y

Since P1PM1
= 0 (by orthogonality),

eT e = Y T
�
I − P1Y − PM1X2

�
Y

= Y TM1Y − Y TPM1X2
Y

= Y TM1Y − Y TM1X2
�
XT
2 M1X2

�−1
XT
2 M1Y
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This completes the demonstration as the right hand side from W is the same as
the left hand side from F .

If the errors do not have a normal probability assignment, the F statistic is
invalid (even asymptotically) but the Wald statistic may be asymptotically valid

W = (Rb− r)T
�
Rs2

�
XTX

�−1
RT

�−1
(Rb− r) d−→ χ2 (J)

To see this apply the multivariate Lindberg-Feller version of the central limit
theorem (see appendix on asymptotic theory) and recall if x ∼ N (μ,Σ), then
(x− μ)T Σ−1 (x− μ) ∼ χ2 (n). W is the quadratic form as under the null Rb

has mean r and Est.V ar [Rb] = Rs2
�
XTX

�−1
RT .

The LR statistic is based on the log of the ratio of the restricted to unrestricted
likelihoods

LR = −2 [LnL∗ − LnL]
= nLn

�
eT∗ e∗/e

T e
� d−→ χ2 (J)

Asymptotically LR converges toW .
The Lagrange Multiplier (LM) test is based on the gradient of the log-likelihood.

If the restrictions are valid then the derivatives of the log-likelihood evaluated at
the restricted estimates should be close to zero.

Following manipulation of first order conditions we find

λ∗ =
�
Rs2∗

�
XTX

�−1
RT

�−1
(Rb− r)

A Wald test of λ∗ = 0 yields the statistic LM = λT∗ {Est.V ar [λ∗]}−1 λ∗ which
simplifies to

LM = (Rb− r)T
�
Rs2∗

�
XTX

�−1
RT

�−1
(Rb− r)

It is noteworthy that, unlike the Wald statistic above, the variance estimate is based
on the restrictions.

In the classical regression model, the LM statistic can be simplified to an nR2

test. Under the restrictions,E
6
∂Ln L
∂β

7
= E

�
1
σ2X

T ε
�
= 0 andAsy.V ar

6
∂Ln L
∂β

7
=
6
∂2Ln L
∂β∂βT

7−1
= σ2

�
XTX

�−1
. The LM statistic is

eT∗X
�
XTX

�−1
XT e∗

eT∗ e∗/n
= nR2∗

d−→ χ2 (p− J)

LM is n times R2 from a regression of the (restricted) residuals e∗ on the full set
of regressors.

From the above, we haveW > LR > LM in finite samples.
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3.8.1 Nonlinear restrictions
More generally, suppose the restriction is nonlinear in β

H0 : f (β) = 0

The corresponding Wald statistic is

W = f (b)
T
6
G (b) s2

�
XTX

�−1
G (b)

T
7−1

f (b)
d−→ χ2 (J)

where G (b) =
6
∂f(b)
∂bT

7
. This is an application of the Delta method (see the ap-

pendix on asymptotic theory). If f (b) involves continuous functions of b such that

Γ =
6
∂f(β)

∂βT

7
, by the central limit theorem

f (b)
d−→ N



f (β) ,Γ



σ2

n
Q−1

�
ΓT
�

where p lim
�
XTX
n

�−1
= Q−1.

3.9 Misspecification and IV estimation

Misspecification arises from violation of E
�
XT ε

�
= 0, or E [ε | X] = 0, or

asymptotically, p lim
�
1
nX

T ε
�
= 0. Omitted correlated regressors, measurement

error in regressors, and endogeneity (including simultaneity and self-selection)
produce such misspecification when not addressed.

Consider the DGP:
Y = X1β +X2γ + ε

where
ε ∼ �

0,σ2I
�
, E

6�
X1 X2

�T
ε
7
= 0

and

p lim



1

n

�
X1 X2

�T
ε

�
= 0

IfX2 is omitted then it effectively becomes part of the error term, say η = X2γ+ε.
OLS yields

b =
�
XT
1 X1

�−1
XT
1 (X1β +X2γ + ε) = β +

�
XT
1 X1

�−1
XT
1 (X2γ + ε)

which is unbiased only if X1 and X2 are orthogonal (so the Gauss-Markov theo-
rem likely doesn’t apply). And, the estimator is asymptotically consistent only if
p lim

�
1
n

�
XT
1 X2

��
= 0.

Instrumental variables (IV) estimation is a standard approach for addressing
lack of independence between the regressors and the errors. A “good” set of in-
struments Z has two properties: (1) they are highly correlated with the (endoge-
nous) regressors and (2) they are orthogonal to the errors (or p lim

�
1
nZ

T ε
�
= 0).
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Consider the DGP:
Y = Xβ + ε

where ε ∼ �
0,σ2I

�
, but E

�
XT ε

� �= 0, and p lim
�
1
nX

T ε
� �= 0.

IV estimation proceeds as follows. Regress X onto Z to yield 2X = PZX =

Z
�
ZTZ

�−1
ZTX . Estimate β via bIV by regressing Y onto 2X .

bIV =
�
XTPZPZX

�−1
XTPZY

=
�
XTPZX

�−1
XTPZY

Asymptotic consistency8 follows as

p lim (bIV ) = p lim
��
XTPZX

�−1
XTPZY

�
= p lim

��
XTPZX

�−1
XTPZ (Xβ + ε)

�
= β + p lim

��
XTPZX

�−1
XTPZε

�
= β + p lim

�

1

n
XTPZX

�−1
1/nXTZ



1

n
ZTZ

�−1
1

n
ZT ε

�
= β

Note in the special case Dim (Z) = Dim (X) (where Dim refers to the dimen-
sion or rank of the matrix), each regressor has one instrument associated with
it, the instrumental variables estimator simplifies considerably as

�
XTZ

�−1
and�

ZTX
�−1

exist. Hence,

bIV =
�
XTPZX

�−1
XTPzY

=
�
XTZ

�
ZTZ

�−1
ZTX

�−1
XTZ

�
ZTZ

�−1
ZTY

=
�
ZTX

�−1
ZTY

and
Asy.V ar [bIV ] = σ

2
�
ZTX

�−1
ZTZ

�
XTZ

�−1
There is a finite sample trade-off in choosing the number of instruments to

employ. Asymptotic efficiency (inverse of variance) increases in the number of
instruments but so does the finite-sample bias. Relatedly, if OLS is consistent the
use of instruments inflates the variance of the estimates since XTPZX is smaller
by a positive semidefinite matrix than XTX (I = PZ + (I − Pz), IV annihilates
the left nullspace of Z).

8Slutsky’s theorem is applied repeatedly below (see the appendix on asymptotic theory). The theo-
rem indicates plim (g(X)) = g(plim (X)) and implies plim (XY ) = plim (X) plim (Y ).
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Importantly, if Dim (Z) > Dim (X) then over-identifying restrictions can be
used to test the instruments (Godfrey and Hutton, 1994). The procedure is regress
the residuals from the second stage onto Z (all exogenous regressors). Provided
there exists at least one exogenous regressor, then nR2 ∼ χ2 (K − L) where K
is the number of exogenous regressors in the first stage and L is the number of
endogenous regressors. Of course, under the null of exogenous instruments R2 is
near zero.

A Hausman test (based on a Wald statistic) can be applied to check the con-
sistency of OLS (and is applied after the above exogeneity test and elimination of
any offending instruments from the IV estimation).

W = (b− bIV )T [V1 − V0]−1 (b− bIV ) ∼ χ2 (p)

where V1 is the estimated asymptotic covariance for the IV estimator and V0 =
s2
�
XTX

�−1
where s2 is from the IV estimator (to ensure that V1 > V0).

3.10 Proxy variables

Frequently in accounting and business research we employ proxy variables as
direct measures of constructs are not readily observable. Proxy variables can help
to address potentially omitted, correlated variables. An important question is when
do proxy variables aid the analysis and when is the cure worse than the disease.

Consider the DGP: Y = β0+Xβ+Zγ+ ε. LetW be a set of proxy variables
for Z (the omitted variables). Typically, there are two conditions to satisfy:
(1)E [Y | X,Z,W ] = E [Y | X,Z] This form of mean conditional independence
is usually satisfied.
For example, suppose W = Z + ν and the variables are jointly normally distrib-
uted with ν independent of other variables. Then, the above condition is satisfied
as follows. (For simplicity, we work with one-dimensional variables but the result
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can be generalized to higher dimensions.9)

E [Y | X,Z,W ] = μY +
�
σY X σY Z σY Z

�
×
⎡⎣ σXX σXZ σXZ
σZX σZZ σZZ
σZX σZZ σZZ + σνν

⎤⎦−1 ⎡⎣ x− μX
z − μZ
w − μW

⎤⎦
= μY +

σY XσZZ − σXZσY Z
σXXσZZ − σ2XZ

(x− μX)

+
σY ZσXX − σXZσY X
σXXσZZ − σ2XZ

(z − μZ) + 0 (w − μW )

(2) Cov [Xj , Z |W ] = 0 for all j. This condition is more difficult to satisfy.
Again, consider proxy variables likeW = Z+ν whereE [ν] = 0 andCov [Z, ν] =

0, then Cov [X,Z |W ] = σXZσ
2
ν

σZZ+σ2ν
. Hence, the smaller is σ2ν , the noise in the

proxy variable, the better service provided by the proxy variable.
What is the impact of imperfect proxy variables on estimation? Consider proxy

variables like Z = θ0 + θ1W + ν where E [ν] = 0 and Cov [Z, ν] = 0. Let
Cov [X, ν] = ρ �= 0, Q = �

ι X W
�
, and

ωT =
�
(β0 + γθ0) β γθ1

�
The estimable equation is

Y = Qω + � = (β0 + γθ0) + βX + γθ1W + (γν + �)

9A quick glimpse of the multivariate case can be found if we consider the simple case where
the DGP omits X . If W doesn’t contribute to E[Y | Z,W ], then it surely doesn’t contribute to
E[Y | X,Z,W ]. It’s readily apparent how the results generalize for the E[Y | X,Z,W ] case,
though cumbersome. In block matrix form E[Y | Z,W ] =

μY +
�

ΣY Z ΣY Z
� 
 ΣZZ ΣZZ

ΣZZ ΣZZ + Σνν

�−1 

z − μZ
w − μW

�
= μY +

�
ΣY Z ΣY Z

� 
 Σ−1ZZ + Σ−1νν −Σ−1νν
−Σ−1νν Σ−1νν

� 

z − μZ
w − μW

�
= μY + ΣY ZΣ−1ZZ (z − μZ) + 0 (w − μW )

The key is recognizing that the partitioned inverse (following some rewriting of the off-diagonal
blocks) for


ΣZZ ΣZZ
ΣZZ ΣZZ + Σνν

�−1
=


 �
ΣZZ − ΣZZ

�
ΣZZ + Σνν

�−1 ΣZZ �−1 −Σ−1
ZZ

ΣZZΣ
−1
νν

− �
ΣZZ + Σνν

�−1 ΣZZΣ−1ZZ �
ΣZZ + Σνν

�
Σ−1νν

�
ΣZZ + Σνν − ΣZZΣ

−1
ZZ

ΣZZ

�−1
�

=


 �
ΣZZ − ΣZZ

�
ΣZZ + Σνν

�−1 ΣZZ �−1 −Σ−1
ZZ

ΣZZΣ
−1
νν

− �
ΣZZ + Σνν

�−1 ΣZZΣ−1ZZ �
ΣZZ + Σνν

�
Σ−1νν

�
ΣZZ + Σνν − ΣZZΣ

−1
ZZ

ΣZZ

�−1
�

=



Σ−1ZZ + Σ−1νν −Σ−1νν
−Σ−1νν Σ−1νν

�
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The OLS estimator of ω is b =
�
QTQ

�−1
QTY . Let p lim

�
1/nQTQ

�−1
= Ω.

p lim b = ω + Ω p lim 1/n
�
ι X W

�T
(γν + �)

= ω + γρ

⎡⎣ Ω12
Ω22
Ω32

⎤⎦ =
⎡⎣ β0 + γθ0 + Ω12γρ

β + Ω22γρ
γθ1 + Ω32γρ

⎤⎦
Hence, b is asymptotically consistent when ρ = 0 and inconsistency ("bias") is
increasing in the absolute value of ρ = Cov [X, ν].

3.10.1 Accounting and other information sources
Use of proxy variables in the study of information is even more delicate. Fre-
quently we’re interested in the information content of accounting in the midst of
other information sources. As complementarity is the norm for information, we
not only have the difficulty of identifying proxy variables for other information
but also a functional form issue. Functional form is important as complementar-
ity arises through joint information partitions. Failure to recognize these subtle
interactions among information sources can yield spurious inferences regarding
accounting information content.

A simple example (adapted from Antle, Demski, and Ryan[1994]) illustrates
the idea. Suppose a nonaccounting information signal (x1) precedes an accounting
information signal (x2). Both are informative of firm value (and possibly employ
the language and algebra of valuation). The accounting signal however employs
restricted recognition such that the nonaccounting signal is ignored by the ac-
counting system. Table 3.1 identifies the joint probabilities associated with the
information partitions and the firm’s liquidating dividend (to be received at a fu-
ture date and expressed in present value terms). Prior to any information reports,

Table 3.1: Multiple information sources case 1 setup

probabilities; payoffs x1
1 2 3

x2 1 0.10;0 0.08;45 0.32;99
2 0.32;1 0.08;55 0.10;100

firm value (expected present value of the liquidating dividend) is 50. The change
in firm value at the time of the accounting report (following the second signal) as
well as the valuation-scaled signals (recall accounting, the second signal, ignores
the first signal) are reported in table 3.2. Due to the strong complementarity in
the information and restricted recognition employed by accounting, response to
earnings is negative. That is, the change in value moves in the opposite direction
of the accounting earnings report x2.

As it is difficult to identify other information sources (and their information
partitions), often a proxy variable for x1 is employed. Suppose our proxy variable
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Table 3.2: Multiple information sources case 1 valuation implications

change in firm value x1
-49.238 0 49.238

x2 20.56 -0.762 -5 -0.238
-20.56 0.238 5 0.762

is added as a control variable and a linear model of the change in firm value as a
function of the information sources is estimated. Even if we stack things in favor
of the linear model by choosing w = x1 we find

case 1: linear model with proxy variable
E [Y | w, x2] = 0.+ 0.0153w − 0.070x2

R2 = 0.618

While a saturated design matrix (an ANOVA with indicator variables associated
with information partitions and interactions to capture potential complementarities
between the signals) fully captures change in value

case 1: saturated ANOVA
E [Y | D12, D13, D22, D12D22, D13D22] = −0.762− 4.238D12

+0.524D13 + 1.0D22 + 0.524D13 + 1.0D22
+9.0D12D22 + 0.0D13D22

R2 = 1.0

whereDij refers to information signal i and partition j, the linear model explains
only slightly more than 60% of the variation in the response variable. Further,
the linear model exaggerates responsiveness of firm value to earnings. This is a
simple comparison of the estimated coefficient for γ (−0.070) compared with the
mean effect scaled by reported earnings for the ANOVA design ( 1.0

−20.56 = −0.05).
Even if w effectively partitions x1, without accommodating potential informa-
tional complementarity (via interactions), the linear model is prone to misspecifi-
cation.

case 1: unsaturated ANOVA
E [Y | D12, D13, D22] = −2.188 + 0.752D12 + 1.504D13 + 2.871D22

R2 = 0.618

The estimated earnings response for the discretized linear proxy model is 2.871
−20.56 =−0.14. In this case (call it case 1), it is even more overstated.

Of course, the linear model doesn’t always overstate earnings response, it can
also understate (case 2, tables 3.3 and 3.4) or produce opposite earnings response
to the DGP (case 3, tables 3.5 and 3.6). Also, utilizing the discretized or parti-
tioned proxy may yield earnings response that is closer or departs more from the
DGP than the valuation-scaled proxy for x1. The estimated results for case 2 are

case 2: linear model with proxy variable
E [Y | w, x2] = 0.+ 0.453w + 3.837x2

R2 = 0.941
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Table 3.3: Multiple information sources case 2 setup

probabilities; payoffs x1
1 2 3

x2 1 0.10;0 0.08;45 0.32;40
2 0.32;60 0.08;55 0.10;100

Table 3.4: Multiple information sources case 2 valuation implications

change in firm value x1
-19.524 0.0 19.524

x2 -4.400 -46.523 86.062 54.391
4.400 61.000 -140.139 -94.107

case 2: saturated ANOVA
E [Y | D12, D13, D22, D12D22, D13D22] = −30.476 + 25.476D12

+20.952D13 + 40.0D22 − 30.0D12D22 + 0.0D13D22
R2 = 1.0

case 2: unsaturated ANOVA
E [Y | D12, D13, D22] = −25.724 + 8.842D12 + 17.685D13 + 33.762D22

R2 = 0.941

Earnings response for the continuous proxy model is 3.837, for the partitioned
proxy is 33.762

4.4 = 7.673, and for the ANOVA is 40.0
4.4 = 9.091. Hence, for case 2

the proxy variable models understate earnings response and the partitioned proxy
is closer to the DGP earnings response than is the continuous proxy (unlike case
1).

For case 3,we have The estimated results for case 3 are

Table 3.5: Multiple information sources case 3 setup

probabilities; payoffs x1
1 2 3

x2 1 0.10;4.802 0.08;105.927 0.32;50.299
2 0.32;65.864 0.08;26.85 0.10;17.254

case 3: linear model with proxy variable
E [Y | w, x2] = 0.+ 0.063w + 1.766x2

R2 = 0.007

case 3: saturated ANOVA
E [Y | D12, D13, D22, D12D22, D13D22] = −46.523 + 86.062D12
+54.391D13 + 61.062D22 − 140.139D12D22 − 94.107D13D22

R2 = 1.0



48 3. Linear models

Table 3.6: Multiple information sources case 3 valuation implications

change in firm value x1
1.326 16.389 -7.569

x2 0.100 -46.523 86.062 54.391
-0.100 61.000 -140.139 -94.107

case 3: unsaturated ANOVA
E [Y | D12, D13, D22] = 4.073− 1.400D12 − 2.800D13 − 5.346D22

R2 = 0.009

Earnings response for the continuous proxy model is 1.766, for the partitioned
proxy is −5.346

−0.100 = 53.373, and for the ANOVA is 61.062
−0.100 = −609.645. Hence, for

case 3 the proxy variable models yield earnings response opposite the DGP.
The above variety of misspecifications suggests that econometric analysis of

information calls for nonlinear models. Various options may provide adequate
summaries of complementary information sources. These choices include at least
saturated ANOVA designs (when partitions are identifiable), polynomial regres-
sions, and nonparametric and semiparametric regressions. Of course, the proxy
variable problem still lurks. Next, we return to the equilibrium earnings manage-
ment example discussed in chapter 2 and explore the (perhaps linear) relation
between firm value and accounting accruals.

3.11 Equilibrium earnings management

The earnings management example in Demski [2004] provides a straightforward
illustration of the econometric challenges faced when management’s reporting be-
havior is endogenous and also the utility of the propensity score as an instrument.
Suppose the objective is to track the relation between a firm’s value Pt and its
accruals zt. To keep things simple, firm value equals the present value of expected
future dividends, the market interest rate is zero, current period cash flows are
fully paid out in dividends, and dividends 5d are normal iid with mean zero and
variance σ2. Firm managers have private information 5ypt about next period’s divi-
dend 5ypt = 5dt+1 +5εt where 5ε are normal iid with mean zero and variance σ2.10 If
the private information is revealed, ex dividend firm value at time t is

Pt ≡ E
65dt+1 | 5ypt = ypt 7

=
1

2
ypt

Suppose management reveals its private information through income It (cash

flows plus change in accruals) where fair value accruals zt = E
65dt+1 | 5ypt = ypt 7

10For simplicity, there is no other information.
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= 1
2y
p
t are reported. Then, income is

It = dt + (zt − zt−1)
= dt +

1

2

�
ypt − ypt−1

�
and

Pt ≡ E

�5dt+1 | 5dt = dt, It = dt + 1
2

�
ypt − ypt−1

��
= E

�5dt+1 | 5zt = 1

2
ypt

�
= zt

There is a linear relation between price and fair value accruals.
Suppose the firm is owned and managed by an entrepreneur who, for intergen-

erational reasons, liquidates his holdings at the end of the period. The entrepreneur
is able to misrepresent the fair value estimate by reporting, zt = 1

2y
p
t + θ, where

θ ≥ 0. Auditors are unable to detect any accrual overstatements below a threshold
equal to 1

2Δ. Traders anticipate the firm reports zt = 1
2y
p
t +

1
2Δ and the market

price is

Pt = zt − E [θ] = zt − 1
2

Δ

Given this anticipated behavior, the entrepreneur’s equilibrium behavior is to re-
port as conjectured. Again, there is a linear relationship between firm value and
reported "fair value" accruals.

Now, consider the case where the entrepreneur can misreport but with probabil-
ity α. Investors process the entrepreneur’s report with misreporting in mind. The
probability of misreporting D, given an accrual report of zt, is

Pr (D | 5zt = zt) = αφ
�
zt−0.5Δ√

0.5σ

�
αφ

�
zt−0.5Δ√

0.5σ

�
+ (1− α)φ

�
zt√
0.5σ

�
where φ (·) is the standard normal density function. In turn, the equilibrium price
for the firm following the report is

Pt = E
65dt+1 | 5zt = zt7

=
α (zt − 0.5Δ)φ

�
zt−0.5Δ√

0.5σ

�
+ (1− α) ztφ

�
zt√
0.5σ

�
αφ

�
zt−0.5Δ√

0.5σ

�
+ (1− α)φ

�
zt√
0.5σ

�
Again, the entrepreneur’s equilibrium reporting strategy is to misreport the maxi-
mum whenever possible and the accruals balance is α

�
1
2Δ

�
, on average. Price is

no longer a linear function of reported "fair value".
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Consider the following simulation to illustrate. Let σ2 = 2, Δ = 4, and α = 1
4 .

For sample size n = 5, 000 and 1, 000 simulated samples, the regression is

Pt = β0 + β1xt

where

xt = Dt



zpt +

1

2
Δ

�
+ (1−Dt) zpt

Dt ∼ Bernoulli (α)

Pt =
α (xt − 0.5Δ)φ

�
xt−0.5Δ√

0.5σ

�
+ (1− α)xtφ

�
xt√
0.5σ

�
αφ

�
xt−0.5Δ√

0.5σ

�
+ (1− α)φ

�
xt√
0.5σ

�
and zpt =

1
2y
p
t . A typical plot of the sampled data, price versus reported accruals

is depicted in figure 3.1. There is a distinctly nonlinear pattern in the data.11

Figure 3.1: Price versus reported accruals

Sample statistics for the regression estimates are reported in table 3.7. The es-
timates of the slope are substantially biased downward. Recall the slope is one if
there is no misreporting or if there is known misreporting. Suppose the analyst

11For larger (smaller) values of Δ, the nonlinearity is more (less) pronounced.
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Table 3.7: Results for price on reported accruals regression

statistic β0 β1
mean −0.285 0.571

median −0.285 0.571
standard deviation 0.00405 0.00379

minimum −0.299 0.557
maximum −0.269 0.584

E [Pt | xt] = β0 + β1xt

can ex post determine whether the firm misreported. LetDt = 1 if the firm misre-
ported in period t and 0 otherwise. Is price a linear function of reported accruals
xt conditional on Dt? Simulation results for the saturated regression

Pt = β0 + β1xt + β2Dt + β3xt ×Dt

are reported in table 3.8. Perhaps surprisingly, the slope coefficient continues to

Table 3.8: Results for price on reported accruals saturated regression

statistic β0 β1 β2 β3
mean −0.244 0.701 0.117 −0.271

median −0.244 0.701 0.117 −0.271
standard deviation 0.0032 0.0062 0.017 0.011

minimum −0.255 0.680 0.061 −0.306
maximum −0.233 0.720 0.170 −0.239
E [Pt | xt, Dt] = β0 + β1xt + β2Dt + β3xt ×Dt

be biased toward zero.
Before we abandon hope for our econometric experiment, it is important to

remember investors do not observeDt but rather are left to infer any manipulation
from reported accruals xt. So what then is the omitted, correlated variable in this
earnings management setting? Rather thanDt it’s the propensity for misreporting
inferred from the accruals report, in other words Pr (Dt | 5xt = xt) ≡ p (xt). If
the analyst knows what traders know, that is α, Δ, and σ, along with the observed
report, then the regression for estimating the relation between price and fair value
is

Pt = β0 + β1xt + β2p (xt)

Simulation results are reported in table 3.9. Of course, this regression perfectly
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Table 3.9: Results for price on reported accruals and propensity score regression

statistic β0 β1 β2
mean 0.000 1.000 -2.000

median 0.000 1.000 -2.000
standard deviation 0.000 0.000 0.000

minimum 0.000 1.000 -2.000
maximum 0.000 1.000 -2.000

E [Pt | xt, p (xt)] = β0 + β1xt + β2p (xt)

fits the data as a little manipulation confirms.

Pt =
α (xt − 0.5Δ)φ

�
xt−0.5Δ√

0.5σ

�
+ (1− α)xtφ

�
xt√
0.5σ

�
αφ

�
xt−0.5Δ√

0.5σ

�
+ (1− α)φ

�
xt√
0.5σ

�
= β0 + β1xt + β2p (xt)

= β0 + β1xt + β2

αφ
�
xt−0.5Δ√

0.5σ

�
αφ

�
xt−0.5Δ√

0.5σ

�
+ (1− α)φ

�
xt√
0.5σ

�
=

(β0 + β1xt)
6
αφ

�
xt−0.5Δ√

0.5σ

�
+ (1− α)φ

�
xt√
0.5σ

�7
+ β2αφ

�
xt−0.5Δ√

0.5σ

�
αφ

�
xt−0.5Δ√

0.5σ

�
+ (1− α)φ

�
xt√
0.5σ

�
For β1 = 1,Pt =

β1xt
�
αφ
�
xt−0.5Δ√

0.5σ

�
+(1−α)φ

�
xt√
0.5σ

��
−β1α0.5Δφ

�
xt−0.5Δ√

0.5σ

�
αφ
�
xt−0.5Δ√

0.5σ

�
+(1−α)φ

�
xt√
0.5σ

� . Hence,

β0 = 0 and the above expression simplifies

(β0 + β1xt)
6
αφ

�
xt−0.5Δ√

0.5σ

�
+ (1− α)φ

�
xt√
0.5σ

�7
+ β2αφ

�
xt−0.5Δ√

0.5σ

�
αφ

�
xt−0.5Δ√

0.5σ

�
+ (1− α)φ

�
xt√
0.5σ

�
=

β1

6
α (xt − 0.5Δ)φ

�
xt−0.5Δ√

0.5σ

�
+ (1− α)xtφ

�
xt√
0.5σ

�7
αφ

�
xt−0.5Δ√

0.5σ

�
+ (1− α)φ

�
xt√
0.5σ

�
+

(β10.5Δ+ β2)αφ
�
xt−0.5Δ√

0.5σ

�
αφ

�
xt−0.5Δ√

0.5σ

�
+ (1− α)φ

�
xt√
0.5σ

�
Since the last term in the numerator must be zero and β1 = 1, β2 = −β10.5Δ =
−0.5Δ. In other words, reported accruals conditional on trader’s perceptions of
the propensity for misreporting map perfectly into price. The regression estimates
the relation between price and fair value via β1 and the magnitude of misreporting
when the opportunity arises via β2.

Of course, frequently the analyst (social scientist) suffers an informational dis-
advantage. Suppose the analyst ex post observes Dt (an information advantage
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relative to traders) but doesn’t know α, Δ, and σ (an information disadvantage
relative to traders). These parameters must be estimated from the data. An esti-
mate of α is

D = n−1
n/
t=1

Dt

An estimate of θ = 1
2Δ is

2θ = n−1
n/
t=1

xtDt

D
−
n−1

n/
t=1

xt (1−Dt)�
1−D�

An estimate of ν2 = 1
2σ

2 is

2ν2 = (n− 1)−1 n/
t=1

(xt − x)2 − 2θ2D �
1−D�

Combining the above estimates12 produces an estimate of p (xt)

2p (xt) = Dφ
�
xt−�θ�ν

�
Dφ

�
xt−�θ�ν

�
+
�
1−D�φ �xt�ν �

And the regression now is

Pt = β0 + β1xt + β22p (xt)
Simulation results reported in table 3.10 support the estimated propensity score2p (xt).
Table 3.10: Results for price on reported accruals and estimated propensity score

regression

statistic β0 β1 β2
mean 0.0001 0.9999 -2.0006

median -0.0000 0.9998 -2.0002
standard deviation 0.0083 0.0057 0.0314

minimum -0.025 0.981 -2.104
maximum 0.030 1.019 -1.906
E [Pt | xt, 2p (xt)] = β0 + β1xt + β22p (xt)

12IfDt is unobservable to the analyst then some other means of estimating p(xt) is needed (perhaps
initial guesses for α and Δ followed by nonlinear refinement).
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Rather than 2p (xt), the propensity score can be estimated via logit, 5p (xt), (dis-
cussed in chapter 5) whereDt is regressed on xt.13 As expected, simulation results
reported in table 3.11 are nearly identical to those reported above (the correlation
between the two propensity score metrics is 0.999).

Table 3.11: Results for price on reported accruals and logit-estimated propensity
score regression

statistic β0 β1 β2
mean −0.000 1.000 −1.999

median −0.000 1.000 −1.997
standard deviation 0.012 0.008 0.049

minimum −0.035 0.974 −2.154
maximum 0.040 1.028 −1.863
E [Pt | xt, 5p (xt)] = β0 + β1xt + β25p (xt)

This stylized equilibrium earnings management example illustrates two points.
First, it provides a setting in which the intuition behind the propensity score, a
common econometric instrument, is clear. Second, it reinforces our theme con-
cerning the importance of the union of theory, data, and model specification. Con-
sistent analysis requires all three be carefully attended and the manner in which
each is considered depends on the others.

3.12 Additional reading

Linear models have been extensively studied and accordingly there are many
nice econometrics references. Some favorites include Davidson and MacKinnon
[1993, 2003], Wooldridge [2002], Cameron and Trivedi [2005], Greene [1997],
Amemiya [1985], Theil [1971], Rao [1973], and Graybill [1976]. Angrist and
Pischke [2009] provide a provocative justification for the linear conditional ex-
pectation function (see the end of chapter appendix). Davidson and MacKinnon
in particular offer excellent discussions of FWL. Bound, Brown, and Mathiowetz
[2001] and Hausman [2001] provide extensive review of classical and nonclas-
sical measurement error and their implications for proxy variables. Christensen
and Demski [2003, ch. 9-10] provide a wealth of examples of accounting as an
information source and the subtleties of multiple information sources. Their dis-
cussion of the correspondence (or lack thereof) between accounting metrics and
firm value suggests that association studies are no less prone to challenging spec-
ification issues than are information content studies. Discussions in this chapter

13The posterior probability of manipulation given a normally distributed signal has a logistic dis-
tribution (see Kiefer [1980]). Probit results are very similar although the logit intervals are somewhat
narrower. Of course, if Dt is unobservable (by the analyst) then discrete choice methods like logit or
probit are not directly accessible.
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refer specifically to information content. Finally, we reiterate Jayne’s [2003] dis-
cussion regarding the ubiquity of the Gaussian distribution is provocative.

3.13 Appendix

Angrist and Pischke [2009, ch. 3] layout a foundation justifying regression analy-
sis of economic data and building linkages to causal effects. The arguments begin
with the population-level conditional expectation function (CEF)

E [Yi | Xi = x] =
1
tfy (t | Xi = x) dt

where fy (t | Xi = x) is the conditional density function evaluated at Yi = t and
the law of iterated expectations

E [Yi] = EX [E [Yi | Xi]]

The law of iterated expectations allows us to separate the response variable into
two components: the CEF and a residual.

Theorem 3.2 CEF decomposition theorem.

Yi = E [Yi | Xi] + εi
where (i) εi is mean independent ofXi,E [εi | Xi] = 0, and (ii) εi is uncorrelated
with any function ofXi.

Proof. (i)

E [εi | Xi] = E [Yi − E [Yi | Xi] | Xi]
= E [Yi | Xi]− E [Yi | Xi] = 0

(ii) let h (Xi) be some function of Xi. By the law of iterated expectations,

E [h (Xi) εi] = EX [h (Xi)E [εi | Xi]]

and by mean independence E [εi | Xi] = 0. Hence, E [h (Xi) εi] = 0.
The CEF optimally summarizes the relation between the response, Yi, and ex-

planatory variables, Xi, in a minimum mean square error (MMSE) sense.

Theorem 3.3 CEF prediction theorem. Let m (Xi) be any function of Xi. The
CEF is the MMSE of Yi given Xi in that it solves

E [Yi | Xi] = argmin
m(Xi)

E
6
{Yi −m (Xi)}2

7
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Proof. Write

{Yi −m (Xi)}2 = {(Yi − E [Yi | Xi]) + (E [Yi | Xi]−m (Xi))}2
= (Yi − E [Yi | Xi])2 + 2 (Yi − E [Yi | Xi])

× (E [Yi | Xi]−m (Xi)) + (E [Yi | Xi]−m (Xi))2

The first term can be ignored as it does not involve m (Xi). By the CEF de-
composition property, the second term is zero since we can think of h (Xi) ≡
2 (Yi − E [Yi | Xi]). Finally, the third term is minimized whenm (Xi) is the CEF.

A closely related property involves decomposition of the variance. This prop-
erty leads to the ANOVA table associated with many standard statistical analyses.

Theorem 3.4 ANOVA theorem.

V ar [Yi] = V ar [E [Yi | Xi]] + EX [V ar [Yi | Xi]]

where V ar [·] is the variance operator.

Proof. The CEF decomposition property implies the variance of Yi equals the
variance of the CEF plus the variance of the residual as the terms are uncorrelated.

V ar [Yi] = V ar [E [Yi | Xi]] + V ar [εi | Xi]

Since εi ≡ Yi − E [Yi | Xi] and V ar [εi | Xi] = V ar [Yi | Xi] = E
�
ε2i
�
, by

iterated expectations

E
�
ε2i
�
= EX

�
E
�
ε2i | Xi

��
= EX [V ar [Yi | Xi]]

This background sets the stage for three linear regression justifications. Regres-
sion justification I is the linear CEF theorem which applies, for instance, when
the data are jointly normally distributed (Galton [1886]).

Theorem 3.5 Linear CEF theorem (regression justification I). Suppose the CEF
is linear.

E [Yi | Xi] = XT
i β

where

β = argmin
b

E
6�
Yi −XT

i b
�27

= E
6�
XiX

T
i

�−17
E [XiYi]

Then the population regression function is linear.
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Proof. Suppose E [Yi | Xi] = XT
i β

∗ for some parameter vector β∗. By the CEF
decomposition theorem,

E [Xi (Yi − E [Yi | Xi]) | Xi] = 0

Substitution yields

E
�
Xi
�
Yi −XT

i β
∗� | Xi� = 0

Iterated expectations implies

E
�
Xi
�
Yi −XT

i β
∗�� = 0

Rearrangement gives

β∗ = E
6�
XiX

T
i

�−17
E [XiYi] = β

Now, we explore approximate results associated with linear regression. First,
we state the best linear predictor theorem (regression justification II). Then, we
describe a linear approximation predictor result (regression justification III).

Theorem 3.6 Best linear predictor theorem (regression justification II). The func-
tion XT

i β is the best linear predictor of Yi given Xi in a MMSE sense.

Proof. β = E
6�
XiX

T
i

�−17
E [XiYi] is the solution to the population least squares

problem as demonstrated in the proof to the linear CEF theorem.

Theorem 3.7 Regression CEF theorem (regression justification III). The function
XT
i β provides the MMSE linear approximation to E [Yi | Xi]. That is,

β = argmin
b

E
6�
E [Yi | Xi]−XT

i b
�27

Proof. Recall β solves argmin
b

E
6�
Yi −XT

i b
�27

. Write

�
Yi −XT

i b
�2

=
�
(Yi − E [Yi | Xi]) +

�
E [Yi | Xi]−XT

i b
��2

= (Yi − E [Yi | Xi])2 +
�
E [Yi | Xi]−XT

i b
�2

+2 (Yi − E [Yi | Xi])
�
E [Yi | Xi]−XT

i b
�

The first term does not involve b and the last term has expected value equal to zero
by the CEF decomposition theorem. Hence, the CEF approximation problem is
the same as the population least squares problem (regression justification II).





4
Loss functions and estimation

In the previous chapter we reviewed some results of linear (least squares) mod-
els without making the loss function explicit. In this chapter we remedy this and
extend the discussion to various other (sometimes referred to as "robust") ap-
proaches. That the loss function determines the properties of estimators is com-
mon to classical and Bayesian statistics (whether made explicit or not). We’ll re-
view a few loss functions and the associated expected loss minimizing estimators.
Then we briefly review maximum likelihood estimation (MLE) and nonlinear re-
gression.

4.1 Loss functions

Let the loss function associated with the estimator θ̂ for θ be C
�
θ̂, θ

�
and the

posterior distribution function be f (θ | y),1 then minimum expected loss is

min
θ̂
E
6
C
�
θ̂, θ

�7
=

1
C
�
θ̂, θ

�
f (θ | y) dθ

Briefly, a symmetric quadratic loss function results in an estimator equal to the
posterior mean, a linear loss function results in an estimator equal to a quantile of
the posterior distribution f (θ | y), and an all or nothing loss function results in an
estimator for θ equal to the posterior mode.

1A source of controversy is whether the focus is the posterior distribution f (θ | y) or the likelihood
function f (y | θ); see Poirier [1995]. We initially focus on the posterior distribution then review MLE.

59D. A. Schroeder, Accounting and Causal Effects, DOI 10.1007/978-1-4419-7225-5_4,
© Springer Science+Business Media, LLC 2010
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4.1.1 Quadratic loss
The quadratic loss function is

C
�
θ̂, θ

�
=

c1

�
θ̂ − θ

�2
θ̂ ≤ θ

c2

�
θ̂ − θ

�2
θ̂ > θ

First order conditions are

d

dθ̂

⎧⎪⎨⎪⎩
.∞
θ̂
c1

�
θ̂ − θ

�2
f (θ | y) dθ

+
. θ̂
−∞ c2

�
θ̂ − θ

�2
f (θ | y) dθ

⎫⎪⎬⎪⎭ = 0

Rearrangement produces

d

dθ̂

⎧⎪⎪⎨⎪⎪⎩
c1

�
1− F

�
θ̂
��
θ̂
2 − 2c1θ̂

.∞
θ̂
θf (θ | y) dθ

+c1
.∞
θ̂
θ2f (θ | y) dθ + c2F

�
θ̂
�
θ̂
2

−2c2
. θ̂
−∞ θf (θ | y) dθ + c2

. θ̂
−∞ θ

2f (θ | y) dθ

⎫⎪⎪⎬⎪⎪⎭ = 0

where F
�
θ̂
�

is the cumulative posterior distribution function for θ given the data

y evaluated at θ̂. Differentiation reveals⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
c1

⎡⎣ 2θ̂
�
1− F

�
θ̂
��
− θ̂2f

�
θ̂
�

−2 .∞
θ̂
θf (θ | y) dθ + 2θ̂2f

�
θ̂
�
− θ̂2f

�
θ̂
� ⎤⎦

+c2

⎡⎣ 2θ̂F
�
θ̂
�
+ θ̂

2
f
�
θ̂
�

−2 . θ̂−∞ θf (θ | y) dθ − 2θ̂2f �θ̂�+ θ̂2f �θ̂�
⎤⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= 0

Simplification yields

θ̂
6
c1

�
1− F

�
θ̂
��
+ c2F

�
θ̂
�7

= c1

�
1− F

�
θ̂
��
E
6
θ | y, θ̂ ≤ θ

7
+ c22F

�
θ̂
�
E
6
θ | y, θ̂ > θ

7
Or,

θ̂ =
c1

�
1− F

�
θ̂
��
E
6
θ | y, θ ≥ θ̂

7
+ c2F

�
θ̂
�
E
6
θ | y, θ < θ̂

7
c1

�
1− F

�
θ̂
��
+ c2F

�
θ̂
�

In other words, the quadratic expected loss minimizing estimator for θ is a cost-
weighted average of truncated means of the posterior distribution. If c1 = c2
(symmetric loss), then θ̂ = E [θ | y], the mean of the posterior distribution.
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4.1.2 Linear loss
The linear loss function is

C
�
θ̂, θ

�
=

c1




θ̂ − θ


 θ̂ ≤ θ
c2




θ̂ − θ


 θ̂ > θ

First order conditions are

d

dθ̂

⎧⎨⎩ − .∞
θ̂
c1

�
θ̂ − θ

�
f (θ | y) dθ

+
. θ̂
−∞ c2

�
θ̂ − θ

�
f (θ | y) dθ

⎫⎬⎭ = 0

Rearranging yields

d

dθ̂

⎧⎨⎩ −c1θ̂
�
1− F

�
θ̂
��
+ c1

.∞
θ̂
θf (θ | y) dθ

+c2θ̂F
�
θ̂
�
− c2

. θ̂
−∞ θf (θ | y) dθ

⎫⎬⎭ = 0

Differentiation produces

0 = c1

6
−
�
1− F

�
θ̂
��
+ θ̂f

�
θ̂
�
− θ̂f

�
θ̂
�7

+c2

6
F
�
θ̂
�
+ θ̂f

�
θ̂
�
− θ̂f

�
θ̂
�7

Simplification reveals

c1

�
1− F

�
θ̂
��
= c2F

�
θ̂
�

Or
F
�
θ̂
�
=

c1
c1 + c2

The expected loss minimizing estimator is the quantile that corresponds to the
relative cost c1

c1+c2
. If c1 = c2, then the estimator is the median of the posterior

distribution.

4.1.3 All or nothing loss
The all or nothing loss function is

C
�
θ̂, θ

�
=

c1 θ̂ < θ

0 θ̂ = θ

c2 θ̂ > θ

If c1 > c2, then we want to choose θ̂ > θ, so θ̂ is the upper limit of support for
f (θ | y). If c1 < c2, then we want to choose θ̂ < θ, so θ̂ is the lower limit of
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support for f (θ | y). If c1 = c2, then we want to choose θ̂ to maximize f (θ | y),
so θ̂ is the mode of the posterior distribution.2

4.2 Nonlinear Regression

Many accounting and business settings call for analysis of data involving limited
dependent variables (such as discrete choice models discussed in the next chap-
ter).3 Nonlinear regression frequently complements our understanding of standard
maximum likelihood procedures employed for estimating such models as well as
providing a means for addressing alternative functional forms. Here we review
some basics of nonlinear least squares including Newton’s method of optimiza-
tion, Gauss-Newton regression (GNR), and artificial regressions.

Our discussion revolves around minimizing a smooth, twice continuously dif-
ferentiable function, Q (β). It’s convenient to think Q (β) equals SSR (β), the
residual sum of squares, but −Q (β) might also refer to maximization of the log-
likelihood.

4.2.1 Newton’s method
A second order Taylor series approximation of Q (β) around some initial values
for β, say β(0) yields

Q∗ (β) = Q
�
β(0)

�
+ gT(0)

�
β − β(0)

�
+
1

2

�
β − β(0)

�T
H(0)

�
β − β(0)

�
where g (β) is the k×1 gradient ofQ (β)with typical element ∂Q(β)∂βj

,H (β) is the

k×k Hessian ofQ (β) with typical element ∂
2Q(β)
∂βj∂βi

, and for notational simplicity,

g(0) ≡ g
�
β(0)

�
and H(0) ≡ H

�
β(0)

�
. The first order conditions for a minimum

of Q∗ (β) with respect to β are

g(0) +H(0)

�
β − β(0)

�
= 0

Solving for β yields a new value

β(1) = β(0) −H−1
(0)g(0)

This is the core of Newton’s method. Successive values β(1),β(2), . . . lead to an

approximation of the global minimum of Q (β) at β̂. If Q (β) is approximately

2For a discrete probability mass distribution, the optimal estimator may be either the limit of sup-
port or the mode depending on the difference in cost. Clearly, large cost differentials are aligned with
the limits and small cost differences are aligned with the mode.

3This section draws heavily from Davidson and MacKinnon [1993].
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quadratic, as applies to sums of squares when sufficiently close to their minima,
Newton’s method usually converges quickly.4

4.2.2 Gauss-Newton regression
When minimizing a sum of squares function it is convenient to write the criterion
as

Q (β) =
1

n
SSR (β) =

1

n

n/
t=1

(yt − xt (β))2

Now, explicit expressions for the gradient and Hessian can be found. The gradient
for the ith element is

gi (β) = − 2
n

n/
t=1

Xti (β) (yt − xt (β))

where Xti (β) is the partial derivative of xt (β) with respect to βi. The more
compact matrix notation is

g (β)= − 2
n
XT (β) (y − x (β))

The Hessian H (β) has typical element

Hij (β) = − 2
n

n/
t=1

(yt − xt (β)) ∂Xti (β)
∂βj

−Xti (β)Xtj (β)

Evaluated at β0, this expression is asymptotically equivalent to5

2

n

n/
t=1

Xti (β)Xtj (β)

In matrix notation this is

D (β) =
2

n
XT (β)X (β)

and D (β) is positive definite when X (β) is full rank. Now, writing Newton’s
method as

β(j+1) = β(j) −D−1
(j)g(j)

4If Q∗ (β) is strictly convex, as it is if and only if the Hessian is positive definite, then β(1) is the
global minimum of Q∗ (β). Please consult other sources, such as Davidson and MacKinnon [2003,
ch. 6] and references therein, for additional discussion of Newton’s method including search direction,
step size, and stopping rules.

5Since yt = xt (β0) + ut, the first term becomes − 2
n

n 
t=1

∂Xti(β)
∂βj

ut. By the law of large num-

bers this term tends to 0 as n→∞.
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and substituting the above results we have the classic Gauss-Newton result

β(j+1) = β(j) −


2

n
XT
(j)X(j)

�−1

− 2
n
XT
(j)

�
y − x(j)

��

= β(j) +
�
XT
(j)X(j)

�−1
XT
(j)

�
y − x(j)

�
Artificial regression

The second term can be readily estimated by an artificial regression. It’s called an
artificial regression because functions of the variables and model parameters are
employed. This artificial regression is referred to as a Gauss-Newton regression
(GNR)

y − x (β) = X (β) b+ residuals

To be clear, Gaussian projection (OLS) produces the following estimate

b̂ =
�
XT (β)X (β)

�−1
XT (β) (y − x (β))

To appreciate the GNR, consider a linear regression where X is the matrix of
regressors. Then X (β) is simply replaced by X , the GNR is

y −Xβ(0) = Xb+ residuals

and the artificial parameter estimates are

b̂ =
�
XTX

�−1
XT

�
y −Xβ(0)

�
= β̂ − β(0)

where β̂ is the OLS estimate. Rearranging we see that the Gauss-Newton estimate
replicates OLS, β(1) = β(0) + b̂ = β(0) + β̂ − β(0) = β̂, as expected.

Covariance matrices

Return to the GNR above and substitute the nonlinear parameter estimates

y − x
�
β̂
�
= X

�
β̂
�
b+ residuals

The artificial regression estimate is

b̂ =
�
XT

�
β̂
�
X
�
β̂
��−1

XT
�
β̂
��
y − x

�
β̂
��

Since the first order or moment conditions require

XT
�
β̂
��
y − x

�
β̂
��
= 0

this regression cannot have any explanatory power, b̂ = 0. Though this may not
seem very interesting, it serves two useful functions. First, it provides a check on
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the consistency of the nonlinear optimization routine. Second, as it is the GNR
variance estimate, it provides a quick estimator of the covariance matrix for the
parameter estimates

4V ar 6b̂7 = s2 �XT
�
β̂
�
X
�
β̂
��−1

and it is readily available from the artificial regression.
Further, this same GNR readily supplies a heteroskedastic-consistent covariance

matrix estimator. If E
�
uuT

�
= Ω, then a heteroskedastic-consistent covariance

matrix estimator is

4V ar 6b̂7 = �
XT

�
β̂
�
X
�
β̂
��−1

XT
�
β̂
�

Ω̂X
�
β̂
��
XT

�
β̂
�
X
�
β̂
��−1

where Ω̂ is a diagonal matrix with tth element equal to the squared residual u2t .
Next, we turn to maximum likelihood estimation and exploit some insights gained
from nonlinear regression as they relate to typical MLE settings.

4.3 Maximum likelihood estimation (MLE )

Maximum likelihood estimation (MLE) applies to a wide variety of problems.6

Since it is the most common method for estimating discrete choice models and
discrete choice models are central to the discussion of accounting choice, we focus
the discussion of MLE around discrete choice models.

4.3.1 Parameter estimation
The most common method for estimating the parameters of discrete choice mod-
els is maximum likelihood. Recall the likelihood is defined as the joint density for
the parameters of interest β conditional on the data Xt. For binary choice models
and Yt = 1 the contribution to the likelihood is F (Xtβ) , and for Yt = 0 the con-
tribution to the likelihood is 1 − F (Xtβ) where these are combined as binomial
draws. Hence,

L (β|X) =
n0
t=1

F (Xtβ)
Yt [1− F (Xtβ)]1−Yt

The log-likelihood is

< (β|X) ≡ logL (β|X) =
n/
t=1

Ytlog (F (Xtβ)) + (1− Yt) log (1− F (Xtβ))

6This section draws heavily from Davidson and MacKinnon [1993], chapter 8.
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Since this function for binary response models like probit and logit is globally
concave, numerical maximization is straightforward. The first order conditions
for a maximum are

n,
t=1

Ytf(Xtβ)Xit

F (Xtβ)
− (1−Yt)f(Xtβ)Xti

1−F (Xtβ)
= 0 i = 1, . . . , k

where f (·) is the density function. Simplifying yields

n,
t=1

[Yt−F (Xtβ)]f(Xtβ)Xti

F (Xtβ)[1−F (Xtβ)]
= 0 i = 1, . . . , k

For the logit model the first order conditions simplify to

n,
t=1
[Yt − Λ (Xti)]Xti = 0 i = 1, . . . , k

since the logit density is λ (Xti) = Λ (Xti) [1− Λ (Xti)] where Λ (·) is the logit
(cumulative) distribution function.

Notice the above first order conditions look like the first order conditions for
weighted nonlinear least squares with weights given by [F (1− F )]−1/2. This is
sensible because the error term in the nonlinear regression

Yt = F (Xtβ) + εt

has mean zero and variance

E
�
ε2t
�
= E

6
{Yt − F (Xtβ)}2

7
= Pr (Yt = 1) [1− F (Xtβ)]2 + Pr (Yt = 0) [0− F (Xtβ)]2
= F (Xtβ) [1− F (Xtβ)]2 + [1− F (Xtβ)]F (Xtβ)2
= F (Xtβ) [1− F (Xtβ)]

As ML is equivalent to weighted nonlinear least squares for binary response mod-

els, the asymptotic covariance matrix for n1/2
�
β̂ − β

�
is
�
n−1XTΨX

�−1
where

Ψ is a diagonal matrix with elements f(Xtβ)
2

F (Xtβ)[1−F (Xtβ)]
. In the logit case, Ψ sim-

plifies to λ (see Davidson and MacKinnon, p. 517-518).

4.3.2 Estimated asymptotic covariance for MLE of θ̂
There are (at least) three common estimators for the variance of θ̂MLE :7

(i)
6
−H

�
θ̂
�7−1

the negative inverse of Hessian evaluated at θ̂MLE ,

(ii)

�
g
�
θ̂
�
g
�
θ̂
�T�−1

the outer product of gradient (OPG) or Berndt, Hall, Hall,

and Hausman (BHHH) estimator,

7This section draws heavily from Davidson and MacKinnon [1993], pp. 260-267.
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(iii)
6
�
�
θ̂
�7−1

inverse of information matrix or negative expected value of Hessian,

where the following definitions apply:

• MLE is defined as the solution to the first order conditions (FOC): g
�
Y, θ̂

�
=

0 where gradient or score vector g is defined by gT (Y, θ) = Dθ< (Y, θ)
(since Dθ< is row vector, g is column vector of partial derivatives of with
respect to θ).

• Define G (g, θ) as the matrix of contributions to the gradient (CG matrix)
with typical element Gti (g, θ) ≡ ∂5t(Y,θ)

∂θi
.

• H (Y, θ) is the Hessian matrix for the log-likelihood with typical element

Hij (Y, θ) ≡ ∂25t(Y,θ)
∂θi∂θj

.

• Define the expected average Hessian for sample of size n as Hn (θ) ≡
Eθ

�
n−1H (Y, θ)

�
.

• The limiting Hessian or asymptotic Hessian (if it exists) isH (θ) ≡ lim
n→∞Hn (θ)

(the matrix is negative semidefinite).

• Define the information in observation t as �t (θ) a k × k matrix with typ-
ical element (�t (θ))ij ≡ Eθ [Gti (θ)Gtj (θ)] (the information matrix is
positive semidefinite).

• The average information matrix is �n (θ) ≡ n−1
n/
t=1

�t (θ) = n−1�n
and the limiting information matrix or asymptotic information matrix (if it
exists) is � (θ) ≡ lim

n→∞�n (θ).

The short explanation for these variance estimators is that ML estimators (under
suitable regularity conditions) achieve the Cramer-Rao lower bound for consistent
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estimators.8 That is,

Asy.V ar
6
θ̂
7
=

�
−E

�
∂2< (Y, θ)

∂θ∂θT

��−1
=

�
E

�

∂< (Y, θ)

∂θ

�

∂< (Y, θ)

∂θT

���−1
The expected outer product of the gradient (OPG) is an estimator of the inverse of
the variance matrix for the gradient. Roughly speaking, the inverse of the gradi-
ent function yields MLE (type 2) parameter estimates and the inverse of expected
OPG estimates the parameter variance matrix (see Berndt, Hall, Hall, and Haus-
man [1974]). Also, the expected value of the Hessian equals the negative of the
information matrix.9 In turn, the inverse of the information matrix is an estimator
for the estimated parameter variance matrix.

Example: Consider the MLE of a standard linear regression model with DGP:
Y = Xβ + ε where ε ∼ N �

0,σ2I
�

and E
�
XT ε

�
= 0. Of course, the MLE for

β is b =
�
XTX

�−1
XTY as

g (β) ≡ ∂< (Y,β)

∂β
= − 1

σ2

⎡⎢⎣ XT
1 (Y −Xβ)

...
XT
p (Y −Xβ)

⎤⎥⎦
8See Theil [1971], pp. 384-385 and Amemiya [1985], pp. 14-17.

E



∂21

∂θ∂θT

�
= E



∂

∂θ

�
1

L

∂L

∂θT

	�
by the chain rule

= E



− 1

L2
∂L

∂θ

∂L

∂θT
+
1

L

∂2L

∂θ∂θT

�
= E



−
�
1

L

∂L

∂θ

	�
∂L

∂θT
1

L

	�
+

!
1

L

∂2L

∂θ∂θT
Ldx

= E



−
�
1

L

∂L

∂θ

	�
∂L

∂θT
1

L

	�
+

!
∂2L

∂θ∂θT
dx

= −E


∂1

∂θ

∂1

∂θT

�
+

!
∂2L

∂θ∂θT
dx

since the regulatory conditions essentially make the order of integration and differentiation inter-
changeable the last term can be rewritten!

∂2L

∂θ∂θT
dx =

∂

∂θ

!
∂L

∂θT
dx =

∂

∂θ

∂

∂θT

!
Ldx = 0

Now we have

E



∂21

∂θ∂θT

�
= −E


∂1

∂θ

∂1

∂θT

�
9This is motivated by the fact that plim 1

n

n�
i=1

g(yi) = E[g(y)] for a random sample provided the

first two moments of g(y) are finite (see Greene [1997], ch. 4).
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where Xj refers to column j of X . Substituting Xβ + ε for Y produces



∂< (Y,β)

∂β

�

∂< (Y,β)

∂βT

�
=



1

σ2

�2 ⎡⎢⎣ XT
1 εε

TX1 · · · XT
1 εε

TXp
...

. . .
...

XT
p εε

TX1 · · · XT
p εε

TXp

⎤⎥⎦
Now,

E

�

∂< (Y,β)

∂β

�

∂< (Y,β)

∂βT

��
=



1

σ2

�⎡⎢⎣ XT
1 X1 · · · XT

1 Xp
...

. . .
...

XT
p X1 · · · XT

p Xp

⎤⎥⎦
Since

H (β) ≡ ∂2< (Y,β)

∂β∂βT
= −



1

σ2

�⎡⎢⎣ XT
1 X1 · · · XT

1 Xp
...

. . .
...

XT
p X1 · · · XT

p Xp

⎤⎥⎦
we have

E

�

∂< (Y,β)

∂β

�

∂< (Y,β)

∂βT

��
= −E

�
∂2< (Y,β)

∂β∂βT

�
and the demonstration is complete as

Asy.V ar [b] =

�
E

�

∂< (Y,β)

∂β

�

∂< (Y,β)

∂βT

���−1
= −

�
E

�
∂2< (Y,β)

∂β∂βT

��−1
= σ2

�
XTX

�−1
A more complete explanation (utilizing results and notation developed in the

appendix) starts with the MLE first order condition (FOC) g
�
θ̂
�
= 0. Now, a

Taylor series expansion of the likelihood FOC around θ yields 0 = g
�
θ̂
�
≈

g (θ)+H
�
θ̄
� �
θ̂ − θ

�
where θ̄ is convex combination (perhaps different for each

row) of θ and θ̂. Solve for
�
θ̂ − θ

�
and rewrite so every term is O (1)

n1/2
�
θ̂ − θ

�
= − �n−1H �

θ̄
��−1 6

n−1/2g (θ)
7

By WULLN (weak uniform law of large numbers), the first term is asymptotically
nonstochastic, by CLT (the central limit theorem) the second term is asymptot-

ically normal, so n1/2
�
θ̂ − θ

�
is asymptotically normal. Hence, the asymptotic

variance of n1/2
�
θ̂ − θ

�
is the asymptotic expectation of n

�
θ̂ − θ

��
θ̂ − θ

�T
.
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Since n1/2
�
θ̂ − θ

�
a
= − �n−1H (θ)�−1 �n−1/2g (θ)�, the asymptotic variance is�−H−1 (θ)

� �
n−1Eθ

�
g (θ) gT (θ)

�� �−H−1 (θ)
�
. Simplifying yields

Asym.V ar
6
n1/2

�
θ̂ − θ

�7
= H−1 (θ)� (θ)H−1 (θ)

This can be simplified sinceH (θ) = −� (θ) by LLN. Hence,

Asy.V ar
6
n1/2

�
θ̂ − θ

�7
= −H−1 (θ) = �−1 (θ)

And the statistic relies on estimation ofH−1 (θ) or �−1 (θ).

• A common estimator of the empirical Hessian is

Ĥ ≡ Hn
�
Y, θ̂

�
= n−1D2

θθ<t

�
Y, θ̂

�
(LLN and consistency of θ̂ guarantee consistency of Ĥ for H (θ)).

• The OPG or BHHH estimator is

�OPG ≡ n−1
n/
t=1

DT
θ <t

�
Y, θ̂

�
Dθ<t

�
Y, θ̂

�
= n−1GT

�
θ̂
�
G
�
θ̂
�

(consistency is guaranteed by CLT and LLN for the sum).

• The third estimator evaluates the expected values of the second derivatives
of the log-likelihood at θ̂. Since this form is not always known, this estima-
tor may not be available. However, as this estimator does not depend on the
realization of Y it is less noisy than the other estimators.

We round out this discussion of MLE by reviewing a surprising case where
MLE is not the most efficient estimator. Next, we discuss James-Stein shrinkage
estimators.

4.4 James-Stein shrinkage estimators

Stein [1955] showed that when estimatingK parameters from independent normal
observations with (for simplicity) unit variance, we can uniformly improve on the
conventional maximum likelihood estimator in terms of expected squared error
loss for K > 2. James and Stein [1961] determined such a shrinkage estimator
can be written as a function of the maximum likelihood estimator 2θ

θ∗ = 2θ�1− a2θT2θ
�
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where 0 ≤ a ≤ 2(K − 2). The expected squared error loss of the James-Stein
estimator θ∗ is

ρ (θ, θ∗) = E
6
(θ − θ∗)T (θ − θ∗)

7
= E

⎡⎣��2θ − θ�− a2θ2θT2θ
�T ��2θ − θ�− a2θ2θT2θ

�⎤⎦
= E

��2θ − θ�T �2θ − θ��− 2aE ��2θ − θ�T 2θ2θT2θ
�

+a2E

⎡⎢⎣ 2θT2θ�2θT2θ�2
⎤⎥⎦

= E

��2θ − θ�T �2θ − θ��− 2aE �2θT2θ2θT2θ
�
+ 2aθTE

� 2θ2θT2θ
�

+a2E

⎡⎢⎣ 2θT2θ�2θT2θ�2
⎤⎥⎦

= E

��2θ − θ�T �2θ − θ��− 2a+ 2aθTE � 2θ2θT2θ
�
+ a2E

�
12θT2θ
�

This can be further simplified by exploiting the following theorems; we conclude
this section with Judge and Bock’s [1978, p. 322-3] proof following discussion of
the James-Stein shrinkage estimator.

Theorem 4.1 E
6 �θ�θT�θ

7
= θE

�
1

χ2
(K+2,λ)

�
where 2θT2θ ∼ χ2(K,λ) and λ = θT θ is a

noncentrality parameter.10

Using

E

��2θ − θ�T �2θ − θ�� = E
62θT2θ7− 2θTE 62θ7+ θT θ

= K + λ− 2λ+ λ = K
for the first term, a convenient substitution for one in the second term, and the
above theorem for the third term, we rewrite the squared error loss (from above)

ρ (θ, θ∗) = E
��2θ − θ�T �2θ − θ��− 2a+ 2aθTE � 2θ2θT2θ

�
+ a2E

�
12θT2θ
�

10We adopt the convention the noncentrality parameter is the sum of squared means θT θ; others,

including Judge and Bock [1978], employ θT θ
2

.



72 4. Loss functions and estimation

as

ρ (θ, θ∗) = K − 2aE
�
χ2(K−2,λ)
χ2(K−2,λ)

�
+ 2aθT θE

�
1

χ2(K+2,λ)

�
+ a2E

�
1

χ2(K,λ)

�

Theorem 4.2 For any real-valued function f and positive definite matrix A,

E
6
f
�2θT2θ��2θTA2θ�7 = E

6
f
�
χ2(K+2,λ)

�
tr (A)

7
+E

6
f
�
χ2(K+4,λ)

�7�
θTAθ

�
where tr (A) is trace of A.

Letting f
�2θT2θ� = 1

χ2
(K−2,λ)

and A = I with rankK − 2,

−2aE
�
χ2(K−2,λ)
χ2(K−2,λ)

�
= −2aE

�
K − 2
χ2(K,λ)

�
− 2aθT θE

�
1

χ2(K+2,λ)

�

and

ρ (θ, θ∗) = K − a [2 (K − 2)− a]E
�

1

χ2(K,λ)

�

Hence, ρ (θ, θ∗) = K − a [2 (K − 2)− a]E
�

1
χ2
(K,λ)

�
≤ ρ

�
θ,2θ� = K for all θ

if 0 < a < 2 (K − 2) with strict inequality for some θT θ.
Now, we can find the optimal James-Stein shrinkage estimator. Solving the first

order condition

∂ρ (θ, θ∗)
∂a

= 0

(−2 (K − 2)− a+ 2a)E
�

1

χ2(K,λ)

�
= 0

leads to a∗ = K − 2; hence, θ∗ = 2θ �1− K−2�θT�θ
�

. As E

�
1

χ2
(K,λ)

�
= 1

K−2 , the

James-Stein estimator has minimum expected squared error loss when θ = 0,

ρ (θ, θ∗) = K − (K − 2)2E
�

1

χ2(K,λ)

�
= K − (K − 2) = 2

and its MSE approaches that for the MLE as λ = θT θ approaches infinity. Next,
we sketch proofs of the theorems.

Stein [1966] identified a key idea used in the proofs. Suppose a J × 1 random
vector w is distributed as N (θ, I), then its quadratic form wTw has a noncentral
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χ2(J,λ) where λ = θT θ. This quadratic form can be regarded as having a central

χ2(J+2H) where H is a Poisson random variable with parameter λ
2 . Hence,

E
6
f
�
χ2(J,λ)

�7
= EH

6
HE

6
f
�
χ2(J+2H)

�77
=

∞/
t=0



λ

2

�t exp �−λ
2

�
t!

E
6
f
�
χ2(J+2t)

�7
Now, we proceed with proofs to the above theorems.

Theorem 4.3 E
6 �θ�θT�θ

7
= θE

�
1

χ2
(K+2,λ)

�
.

Proof. Write

E
�
f
�
w2
�
w
�
=

1√
2π

1 ∞

−∞
f
�
w2
�
w exp
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− (w − θ)

2

2

�
dw

= exp
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2
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2π

1 ∞

−∞
f
�
w2
�
w exp
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Rewrite as

exp
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2

2
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2π
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exp
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−w
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+ θw
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complete the square and write

exp
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�
E
�
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��
exp

�
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2

��
Since w ∼ N (θ, 1), w2 ∼ χ2

(1,θ2)
. Now, apply Stein’s observation
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Taking the partial derivative yields
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or
E
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f
�
w2
�
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= θE

6
f
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�7
For the multivariate case at hand, this implies
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Proof. Let z ∼ χ2
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combining terms involving powers of s and rewriting

Γ (t) =

1 ∞

0
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Again, apply Stein’s observation to produce
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Theorem 4.4
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Proof. Let P be an orthogonal matrix such that PAPT = D, a diagonal matrix
with eigenvalues of A, dj > 0, along the diagonal. Define vector ω = Pw ∼
N (Pθ, I). Since

ωTω = wTPTPw = wTw

and
ωTDω = ωTPTAPω = wTAw
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Using the lemma, this can be expressed as
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where pTi is the ith row of P . Since
,J
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�
pTi θ

�2
= θTAθ and

,J
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tr (A),
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4.5 Summary

This chapter has briefly reviewed loss functions, nonlinear regression, maximum
likelihood estimation, and some alternative estimation methods (including James-
Stein shrinkage estimators). It is instructive to revisit nonlinear regression (espe-
cially, GNR) in the next chapter when we address specification and estimation of
discrete choice models.
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4.6 Additional reading

Poirier [1995] provides a nice discussion of loss functions. Conditional linear loss
functions lead to quantile regression (see Koenker and Bassett [1978], Koenker
[2005], and Koenker [2009] for an R computational package). Shugan and Mi-
tra [2008] offer an intriguing discussion of when and why non-averaging statis-
tics (e.g., maximum and variance) explain more variance than averaging metrics.
Maximum likelihood estimation is discussed by a broad range of authors including
Davidson and MacKinnon [1993], Greene [1997], Amemiya [1985], Rao [1973],
and Theil [1971]. Stigler [2007] provides a fascinating account of the history of
maximum likelihood estimation including the pioneering contributions of Gauss
and Fisher as well as their detractors. The nonlinear regression section draws heav-
ily from a favorite reference, Davidson and MacKinnon [2003]. Their chapter 6
and references therein provide a wealth of ideas related to estimation and specifi-
cation of nonlinear models.



5
Discrete choice models

Choice models attempt to analyze decision marker’s preferences amongst alterna-
tives. We’ll primarily address the binary case to simplify the illustrations though
in principle any number of discrete choices can be analyzed. A key is choices are
mutually exclusive and exhaustive. This framing exercise impacts the interpreta-
tion of the data.

5.1 Latent utility index models

Maximization of expected utility representation implies that two choices a and
b involve comparison of expected utilities such that Ua > Ub (the reverse, or
the decision maker is indifferent). However, the analyst typically cannot observe
all attributes that affect preferences. The functional representation of observable
attributes affecting preferences, Zi, is often called representative utility. Typically
Ui �= Zi and Zi is linear in the parameters Xiβ,1

Ua = Za + εa = Xaβ + εa

Ub = Zb + εb = Xbβ + εb

1Discrete response models are of the form

Pi ≡ E[Yi|Ωi] = F (h(Xi,β))
This is a general specification. F (Xiβ) is more common. The key is to employ a transformation (link)
function F (X) that has the properties

F (−∞) = 0, F (∞) = 1, and f(X) ≡ ∂F (X)
∂X

> 0.

77D. A. Schroeder, Accounting and Causal Effects, DOI 10.1007/978-1-4419-7225-5_5,
© Springer Science+Business Media, LLC 2010
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where X is observable attributes, characteristics of decision maker, etc. and ε
represents unobservable (to the analyst) features. Since utility is ordinal, addition
of a constant to all Z or scaling by λ > 0 has no substantive impact and is not
identified for probability models.

Consequently, β0 for either a or b is fixed (at zero) and the scale is chosen (σ =
1, for probit). Hence, the estimated parameters are effectively β/σ and reflect the
differences in contribution to preference Xa − Xb. Even the error distribution
is based on differences ε = εa − εb (the difference in preferences related to the
unobservable attributes). Of course, this is why this is a probability model as some
attributes are not observed by the analyst. Hence, only probabilistic statements of
choice can be offered.

Pr (Ua > Ub)

= Pr (Za + εa > Zb + εb)

= Pr (Xaβ + εa > Xbβ + εb)

= Pr (εb − εa < Za − Zb)
= Fε (Xβ)

where ε = εb − εa and X = Xa −Xb. This reinforces why sometimes the latent
utility index model is written Y ∗ = Ua − Ub = Xβ − V , where V = εa − εb.

We’re often interested in the effect of a regressor on choice. Since the model is
a probability model this translates into the marginal probability effect. The mar-
ginal probability effect is ∂F (Xβ)

∂x = f (Xβ)β where x is a row ofX . Hence, the
marginal effect is proportional (not equal) to the parameter with changing propor-
tionality over the sample. This is often summarized for the population by reference
to the sample mean or some other population level reference (see Greene [1997],
ch. 21 for more details).

5.2 Linear probability models

Linear probability models
Y = Xβ + ε

where Y ∈ {0, 1} (in the binary case), are not really probability models as the pre-
dicted values are not bounded between 0 and 1. But they are sometimes employed
for exploratory analysis or to identify relative starting values for MLE.

5.3 Logit (logistic regression) models

As the first demonstrated random utility model (RUM) — consistent with expected
utility maximizing behavior (Marschak [1960]) — logit is the most popular dis-
crete choice model. Standard logit models assume independence of irrelevant al-
ternatives (IIA) (Luce [1959]) which can simplify experimentation but can also be
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unduly restrictive and produce perverse interpretations.2 We’ll explore the emer-
gence of this property when we discuss multinomial and conditional logit.

A variety of closely related logit models are employed in practice. Interpretation
of these models can be subtle and holds the key to their distinctions. A few popular
variations are discussed below.

5.3.1 Binary logit
The logit model employs the latent utility index model where ε is extreme value
distributed.

Y ∗ = Ua − Ub = Xβ + ε
whereX = Xa−Xb, ε = εb−εa. The logit model can be derived by assum-

ing the log of the odds ratio equals an index function Xtβ. That is, log Pt
1−Pt =

Xtβ where Pt = E [Yt|Ωt] = F (Xtβ) and Ωt is the information set available at
t.

First, the logistic (cumulative distribution) function is

Λ (X) ≡ �
1 + e−X

�−1
=

eX

1 + eX

It has first derivative or density function

λ (X) ≡ eX

(1 + eX)
2

= Λ (X)Λ (−X)
Solving the log-odds ratio for Pt yields

Pt
1− Pt = exp (Xtβ)

Pt =
exp (Xtβ)

1 + exp (Xtβ)

= [1 + exp (−Xtβ)]−1
= Λ (Xtβ)

Notice if the regressors are all binary the log-odds ratio provides a particularly
straightforward and simple method for estimating the parameters. This also points
out a difficulty with estimation that sometimes occurs if we encounter a perfect
classifier. For a perfect classifier, there is some range of the regressor(s) for which
Yt is always 1 or 0 (a separating hyperplane exists). Since β is not identifiable
(over a compact parameter space), we cannot obtain sensible estimates for β as
any sensible optimization approach will try to choose β arbitrarily large or small.

2The connection between discrete choice models and RUM is reviewed in McFadden [1981,2001].
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5.3.2 Multinomial logit
Multinomial logit is a natural extension of binary logit designed to handle J+1 al-
ternatives (J = 1 produces binary logit).3 The probability of observing alternative
k is

Pr (Yt = k) = Pkt =
exp

�
Xtβ

k
�

J/
j=0

exp
�
Xtβ

j
�

with parameter vector β0 = 0.4 Notice the vector of regressors remains constant
but additional parameter vectors are added for each additional alternative. It may
be useful to think of the regressors as individual-specific characteristics rather than
attributes of specific-alternatives. This is a key difference between multinomial
and conditional logit (see the discussion below). For multinomial logit, we have

Pkt
Plt

=
exp

�
Xtβ

k
�

exp
�
Xtβ

l
� = exp�Xt �βk − βl��

That is, the odds of two alternatives depend on the regressors and the difference
in their parameter vectors. Notice the odds ratio does not depend on other alterna-
tives; hence IIA applies.

5.3.3 Conditional logit
The conditional logit model deals with J alternatives where utility for alternative
k is

Y ∗k = Xkβ + εk
where εk is iid Gumbel distributed. The Gumbel distribution has density function
f (ε) = exp (−ε) exp (−e−ε) and distribution function exp (−e−ε). The proba-
bility that alternative k is chosen is the Pr (Uk > Uj) for j �= k which is5

Pr (Yt = k) = Pkt =
exp (Xktβ)
J/
j=1

exp (Xjtβ)

3Multinomial choice models can represent unordered or ordered choices. For simplicity, we focus
on the unordered variety.

4Hence, P0t = 1

1+

J 
j=1

exp(xtβj)

.

5See Train [2003, section 3.10] for a derivation. The key is to rewrite Pr (Uk > Uj) as
Pr (εj < εk + Vk − Vj). Then recall that

Pr (εj < εk + Vk − Vj) =
!
Pr (εj < εk + Vk − Vj | εk) f (εk) d (εk)
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Notice a vector of regressors is associated with each alternative (J vectors of
regressors) and one parameter vector for the model. It may be useful to think of
the conditional logit regressors as attributes associated with specific-alternatives.
The odds ratio for conditional logit

Pkt
Plt

=
exp (Xktβ)

exp (Xltβ)
= exp (Xkt −Xlt)β

is again independent of other alternatives; hence IIA. IIA arises as a result of prob-
ability assignment to the unobservable component of utility. Next, we explore a
variety of models that relax these restrictions in some manner.

5.3.4 GEV (generalized extreme value) models
GEV models are extreme valued choice models that seek to relax the IIA assump-
tion of conditional logit. McFadden [1978] developed a process to generate GEV
models.6 This process allows researchers to develop new GEV models that best fit
the choice situation at hand.

Let Yj ≡ exp (Zj), where Zj is the observable part of utility associated with
choice j. G = G (Yj , . . . , YJ) is a function that depends on Yj for all j. If G
satisfies the properties below, then

Pi =
YiGi
G

=
exp (Zj)

∂G
∂Yi

G

where Gi = ∂G
∂Yi

.

Condition 5.1 G ≥ 0 for all positive values of Yj .

Condition 5.2 G is homogeneous of degree one.7

Condition 5.3 G→∞ as Yj →∞ for any j.

Condition 5.4 The cross partial derivatives alternate in signs as follows: Gi =
∂G
∂Yi

≥ 0, Gij = ∂2G
∂Yi∂Yj

≤ 0, Gijk = ∂3G
∂Yi∂Yj∂Yk

≥ 0 for i, j, and k distinct, and
so on.

These conditions are not economically intuitive but it’s straightforward to connect
the ideas to some standard logit and GEV models as depicted in table 5.1 (person
n is suppressed in the probability descriptions).

5.3.5 Nested logit models
Nested logit models relax IIA in a particular way. Suppose a decision maker faces
a set of alternatives that can be partitioned into subsets or nests such that

6See Train [2003] section 4.6.
7G (ρY1, . . . ρYJ ) = ρG (Y1, . . . YJ ). Ben-Akiva and Francois [1983] show this condition can

be relaxed. For simplicity, it’s maintained for purposes of the present discussion.
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Table 5.1: Variations of multinomial logits

model G Pi

ML
J 
j=0

Yj , Y0 = 1
exp(Zi)
J 
j=0

exp(Zj)

CL
J 
j=1

Yj
exp(Zi)
J 
j=1

exp(Zj)

NL
K 
k=1

⎛⎝  
j∈Bk

Y
1/λk
j

⎞⎠λk
where 0≤λk≤1

exp(Zi/λk)

⎛⎜⎝ 
j∈Bk

exp[Zj/λk]

⎞⎟⎠
λk−1

K 
�=1

⎛⎜⎝ 
j∈B�

exp[Zj/λ�]

⎞⎟⎠
λ�

GNL
K 
k=1

⎛⎝  
j∈Bk

�
αjkYj
�1/λk⎞⎠λk

αjk≥0 and
 
k

αjk=1∀j

 
k

(αikeZi )
1/λk

⎛⎜⎝ 
j∈Bk

�
αjke

Zj
�1/λk⎞⎟⎠

λk−1

K 
�=1

⎛⎜⎝ 
j∈B�

(αj� exp[Zj ])
1/λ�

⎞⎟⎠
λ�

Zj = Xβj for multinomial logit ML
but Zj = Xjβ for conditional logit CL

NL refers to nested logit with J alternatives
inK nests B1, . . . , BK

GNL refers to generalized nested logit

Condition 5.5 IIA holds within each nest. That is, the ratio of probabilities for
any two alternatives in the same nest is independent of other alternatives.

Condition 5.6 IIA does not hold for alternatives in different nests. That is, the
ratio of probabilities for any two alternatives in different nests can depend on
attributes of other alternatives.

The nested logit probability can be decomposed into a marginal and conditional
probability

Pi = Pi|Bk
PBk

where the conditional probability of choosing alternative i given that an alternative
in nest Bk is chosen is

Pi|Bk
=

exp
�
Zi
λk

�
/
j∈Bk

exp
�
Zj
λk

�
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and the marginal probability of choosing an alternative in nest Bk is

PBk
=

⎛⎝/
j∈Bk

exp
6
Zj
λk

7⎞⎠λk

K/
5=1

⎛⎝/
j∈B�

exp
6
Zj
λ�

7⎞⎠λ�

which can be rewritten (see Train [2003, ch. 4, p. 90])

=
eWk

�,
j∈Bk

exp
6
Zj
λk

7�λk
K/
5=1

eW�

�,
j∈B� exp

6
Zj
λ�

7�λ�
where observable utility is decomposed as Vnj = Wnk + Znj , Wnk depends
only on variables that describe nest k (variation over nests but not over alterna-
tives within each nest) and Znj depends on variables that describe alternative j
(variation over alternatives within nests) for individual n.

The parameter λk indicates the degree of independence in unobserved utility
among alternatives in nest Bk. The level of independence or correlation can vary
across nests. If λk = 1 for all nests, there is independence among all alternatives
in all nests and the nested logit reduces to a standard logit model. An example
seems appropriate.

Example 5.1 For simplicity we consider two nests k ∈ {A,B} and two alterna-
tives within each nest j ∈ {a, b} and a single variable to differentiate each of the
various choices.8 The latent utility index is

Ukj =Wkβ1 +Xkjβ2 + ε

where ε = √
ρkηk +

√
1− ρkηj , k �= j, and η has a Gumbel (type I extreme

value) distribution. This implies the lead term captures dependence within a nest.
Samples of 1, 000 observations are drawn with parameters β1 = 1, β2 = −1, and
ρA = ρB = 0.5 for 1, 000 simulations withWk andXkj drawn from independent
uniform(0, 1) distributions. Observables are defined as Yka = 1 if Uka > Ukb
and 0 otherwise, and YA = 1 if max {UAa, UAb} > max {UBa, UBb} and 0
otherwise. Now, the log-likelihood can be written as

L =
/

YAYAa log (PAa) + YA (1− YAa) log (PAb)
+YBYBa log (PBa) + YBYBa log (PBb)

where Pkj is as defined the table above. Results are reported in tables 5.2 and 5.3.

8There is no intercept in this model as the intercept is unidentified.
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The parameters are effectively recovered with nested logit. However, for condi-
tional logit recovery is poorer. Suppose we vary the correlation in the within nest
errors (unobserved components). Tables 5.4 and 5.5 report comparative results
with low correlation (ρA = ρB = 0.01) within the unobservable portions of the
nests. As expected, conditional logit performs well in this setting.
Suppose we try high correlation (ρA = ρB = 0.99) within the unobservable por-
tions of the nests. Table 5.6 reports nested logit results. As indicated in table
5.7 conditional logit performs poorly in this setting as the proportional relation
between the parameters is substantially distorted.

5.3.6 Generalizations
Generalized nested logit models involve nests of alternatives where each alterna-
tive can be a member of more than one nest. Their membership is determined by
an allocation parameter αjk which is non-negative and sums to one over the nests
for any alternative. The degree of independence among alternatives is determined,
as in nested logit, by parameter λk. Higher λk means greater independence and
less correlation. Interpretation of GNL models is facilitated by decomposition of
the probability.

Pi = Pi|Bk
Pk

where Pk is the marginal probability of nest k/
j∈Bk

(αjk exp [Zj ])
1
λk

K/
5=1

⎛⎝/
j∈B�

(αj5 exp [Zj ])
1
λ�

⎞⎠λ�

and Pi|Bk
is the conditional probability of alternative i given nest k

(αjk exp [Zj ])
1
λk/

j∈B�
(αjk exp [Zj ])

1
λk

Table 5.2: Nested logit with moderate correlation

β̂1 β̂2 λ̂A λ̂B
mean 0.952 −0.949 0.683 0.677

std. dev. 0.166 0.220 0.182 0.185
(.01, .99)
quantiles

(0.58, 1.33) (−1.47,−0.46) (0.29, 1.13) (0.30, 1.17)

β1 = 1,β2 = −1, ρA = ρB = 0.5
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Table 5.3: Conditional logit with moderate correlation

β̂1 β̂2
mean 0.964 −1.253

std. dev. 0.168 0.131
(.01, .99)
quantiles

(0.58, 1.36) (−1.57,−0.94)
β1 = 1,β2 = −1, ρA = ρB = 0.5

Table 5.4: Nested logit with low correlation

β̂1 β̂2 λ̂A λ̂B
mean 0.994 −0.995 1.015 1.014

std. dev. 0.167 0.236 0.193 0.195
(.01, .99)
quantiles

(0.56, 1.33) (−1.52,−0.40) (0.27, 1.16) (0.27, 1.13)

β1 = 1,β2 = −1, ρA = ρB = 0.01

Table 5.5: Conditional logit with low correlation

β̂1 β̂2
mean 0.993 −1.004

std. dev. 0.168 0.132
(.01, .99)
quantiles

(0.58, 1.40) (−1.30,−0.72)
β1 = 1,β2 = −1, ρA = ρB = 0.01

Table 5.6: Nested logit with high correlation

β̂1 β̂2 λ̂A λ̂B
mean 0.998 −1.006 0.100 0.101

std. dev. 0.167 0.206 0.023 0.023
(.01, .99)
quantiles

(0.62, 1.40) (−1.51,−0.54) (0.05, 0.16) (0.05, 0.16)

β1 = 1,β2 = −1, ρA = ρB = 0.99

Table 5.7: Conditional logit with high correlation

β̂1 β̂2
mean 1.210 −3.582

std. dev. 0.212 0.172
(.01, .99)
quantiles

(0.73, 1.71) (−4.00,−3.21)
β1 = 1,β2 = −1, ρA = ρB = 0.99
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5.4 Probit models

Probit models involve weaker restrictions from a utility interpretation perspective
(no IIA conditions) than logit. Probit models assume the same sort of latent utility
index form except that V is assigned a normal or Gaussian probability distribu-
tion. Some circumstances might argue that normality is an unduly restrictive or
logically inconsistent mapping of unobservables into preferences.

A derivation of the latent utility probability model is as follows.

Pr (Yt = 1) = Pr (Y ∗t > 0)
= Pr (Xtβ + Vt > 0)

= 1− Pr (Vt ≤ −Xtβ)

For symmetric distributions, like the normal (and logistic), F (−X) = 1−F (X)
where F (·) refers to the cumulative distribution function. Hence,

Pr (Yt = 1) = 1− Pr (Vt ≤ −Xtβ)
= 1− F (−Xtβ) = F (Xtβ)

Briefly, first order conditions associated with maximization of the log-likelihood
(L) for the binary case are

∂L

∂βj
=

n/
t=1

Yt
φ (Xtβ)

Φ (Xtβ)
Xjt + (1− Yt) −φ (Xtβ)

1− Φ (Xtβ)
Xjt

where φ (·) and Φ (·) refer to the standard normal density and cumulative distrib-
ution functions, respectively, and scale is normalized to unity.9 Also, the marginal
probability effects associated with the regressors are

∂pt
∂Xjt

= φ (Xtβ)βj

5.4.1 Conditionally-heteroskedastic probit
Discrete choice model specification may be sensitive to changes in variance of
the unobservable component of expected utility (see Horowitz [1991] and Greene
[1997]). Even though choice models are normalized as scale cannot be identified,
parameter estimates (and marginal probability effects) can be sensitive to changes
in the variability of the stochastic component as a function of the level of re-
gressors. In other words, parameter estimates (and marginal probability effects)
can be sensitive to conditional-heteroskedasticity. Hence, it may be useful to con-
sider a model specification check for conditional-heteroskedasticity. Davidson and

9See chapter 4 for a more detailed discussion of maximum likelihood estimation.
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MacKinnon [1993] suggest a standard (restricted vs. unrestricted) likelihood ra-
tio test where the restricted model assumes homoskedasticity and the unrestricted
assumes conditional-heteroskedasticity.

Suppose we relax the latent utility specification of a standard probit model by
allowing conditional heteroskedasticity.

Y ∗ = Z + ε

where ε ∼ N (0, exp (2Wγ)). In a probit frame, the model involves rescaling the
index function by the conditional standard deviation

pt = Pr (Yt = 1) = Φ



Xtβ

exp [Wtγ]

�
where the conditional standard deviation is given by exp [Wtγ] and W refers to
some rank q subset of the regressorsX (for notational convenience, subscripts are
matched so that Xj = Wj) and of course, cannot include an intercept (recall the
scale or variance is not identifiable in discrete choice models).10

Estimation and identification of marginal probability effects of regressors pro-
ceed as usual but the expressions are more complex and convergence of the like-
lihood function is more delicate. Briefly, first order conditions associated with
maximization of the log-likelihood (L) for the binary case are

∂L

∂βj
=

n/
t=1

Yt
φ
�

Xtβ
exp[Wtγ]

�
Φ
�

Xtβ
exp[Wtγ]

� Xjt
exp [Wtγ]

+ (1− Yt)
−φ

�
Xtβ

exp[Wtγ]

�
1− Φ

�
Xtβ

exp[Wtγ]

� Xjt
exp [Wtγ]

where φ (·) and Φ (·) refer to the standard normal density and cumulative distrib-
ution functions, respectively. Also, the marginal probability effects are11

∂pt
∂Wjt

= φ



Xtβ

exp [Wtγ]

�

βj −Xtβγj
exp [Wtγ]

�

5.4.2 Artificial regression specification test
Davidson and MacKinnon [2003] suggest a simple specification test for conditional-
heteroskedasticity. As this is not restricted to a probit model, we’ll explore a gen-
eral link function F (·). In particular, a test of γ = 0, implying homoskedasticity

10Discrete choice models are inherently conditionally-heteroskedastic as a function of the regressors
(MacKinnon and Davidson [1993]). Consider the binary case, the binomial setup produces variance
equal to pj(1 − pj) where pj is a function of the regressors X . Hence, the heteroskedastic probit
model enriches the error (unobserved utility component).

11Because of the second term, the marginal effects are not proportional to the parameter estimates
as in the standard discrete choice model. Rather, the sign of the marginal effect may be opposite that
of the parameter estimate. Of course, if heteroskedasticity is a function of some variable not included
as a regressor the marginal effects are simpler

∂pt

∂Wjt
= φ

�
Xtβ

exp [Wtγ]

	�
βj

exp [Wtγ]
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with exp [Wtγ] = 1, in the following artificial regression (see chapter 4 to review
artificial regression)

Ṽ
− 1
2

t

�
Yt − F̃t

�
= Ṽ

− 1
2

t f̃tXtb− Ṽ −
1
2

t f̃tXtβ̃Wtc+ residual

where Ṽt = F̃t

�
1− F̃t

�
, F̃t = F

�
Xtβ̃

�
, f̃t = f

�
Xtβ̃

�
, and β̃ is the ML es-

timate under the hypothesis that γ = 0. The test for heteroskedasticity is based
on the explained sum of squares (ESS) for the above BRMR which is asymptot-
ically distributed χ2 (q) under γ = 0. That is, under the null, neither term offers
any explanatory power.

Let’s explore the foundations of this test. The nonlinear regression for a discrete
choice model is

Yt = F (Xtβ) + υt

where υt have zero mean, by construction, and variance

E
�
υ2t
�
= E

6
(Yt − F (Xtβ))2

7
= F (Xtβ) (1− F (Xtβ))2 + (1− F (Xtβ)) (0− F (Xtβ))2

= F (Xtβ) (1− F (Xtβ))
The simplicity, of course, is due to the binary nature of Yt. Hence, even though the
latent utility index representation here is homoskedastic, the nonlinear regression
is heteroskedastic.12

The Gauss-Newton regression (GNR) that corresponds to the above nonlinear
regression is

Yt − F (Xtβ) = f (Xtβ)Xtb+ residual
as the estimate corresponds to the updating term, −H(j−1)g(j−1), in Newton’s
method (see chapter 4)

b̂ =
�
XT f2 (Xβ)X

�−1
XT f (Xβ) (y − F (Xβ))

where f (Xβ) is a diagonal matrix. The artificial regression for binary response
models (BRMR) is the above GNR after accounting for heteroskedasticity noted
above. That is,

V
− 1
2

t (Yt − F (Xtβ)) = V −
1
2

t f (Xtβ)Xtb+ residual

where Vt = F (Xtβ) (1− F (Xtβ)). The artificial regression used for specifica-
tion testing reduces to this BRMR when γ = 0 and therefore c = 0.

12The nonlinear regression for the binary choice problem could be estimated via iteratively
reweighted nonlinear least squares using Newton’s method (see chapter 4). Below we explore an alter-
native approach that is usually simpler and computationally faster.
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The artificial regression used for specification testing follows simply from using
the development in chapter 4 which says asymptotically the change in estimate via
Newton’s method is

−H(j)g(j) a
=
�
XT
(j)X(j)

�−1
XT
(j)

�
y − x(j)

�
Now, for the binary response model recall x(j) = F

�
Xβ(j)

exp(Wγ)

�
and, after conve-

niently partitioning, the matrix of partial derivatives

XT
(j) =

�
∂F

�
Xβ(j)

exp(Wγ)

�
∂β(j)

F

�
Xβ(j)

exp(Wγ)

�
∂γ

�
Under the hypothesis γ = 0,

XT
(j) =

6
f
�
Xβ(j)

�
X −f

�
Xβ(j)

�
Xβ(j)Z

7
Replace β(j) by the ML estimate for β and recognize a simple way to compute�

XT
(j)X(j)

�−1
XT
(j)

�
Y − x(j)

�
is via artificial regression. After rescaling for heteroskedasticity, we have the arti-
ficial regression used for specification testing

Ṽ
− 1
2

t

�
Yt − F̃t

�
= Ṽ

− 1
2

t f̃tXtb− Ṽ −
1
2

t f̃tXtβ̃Wtc+ residual

See Davidson and MacKinnon [2003, ch. 11] for additional discrete choice model
specification tests. It’s time to explore an example.

Example 5.2 Suppose the DGP is heteroskedastic

Y ∗ = X1 −X2 + ε, ε ∼ N
�
0, (exp (X1))

2
�

13

Y ∗ is unobservable but Y = 1 if Y ∗ > 0 and Y = 0 otherwise is observed.
Further, x1 and x2 are both uniformly distributed between (0, 1) and the sample
size n = 1, 000. First, we report standard (assumed homoskedastic) binary probit
results based on 1, 000 simulations in table 5.8. Though the parameter estimates
remain proportional, they are biased towards zero.
Let’s explore some variations of the above BRMR specification test. Hence, as re-
ported in table 5.9, the appropriately specified heteroskedastic test has reasonable
power. Better than 50% of the simulations produce evidence of misspecification at
the 80% confidence level.14

Now, leave the DGP unaltered but suppose we suspect the variance changes due
to another variable, say X2. Misidentification of the source of heteroskedasticity

13To be clear, the second parameter is the variance so that the standard deviation is exp (X1).
14As this is a specification test, a conservative approach is to consider a lower level (say, 80% vs.

95%) for our confidence intervals.
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Table 5.8: Homoskedastic probit results with heteroskedastic DGP

β0 β1 β̂2
mean −0.055 0.647 −0.634

std. dev. 0.103 0.139 0.140
(0.01, 0.99)

quantiles
(−0.29, 0.19) (0.33, 0.98) (−0.95,−0.31)

Table 5.9: BRMR specification test 1 with heteroskedastic DGP

b0 b1 b2
mean 0.045 0.261 −0.300

std. dev. 0.050 0.165 0.179
(0.01, 0.99)

quantiles
(−0.05, 0.18) (−0.08, 0.69) (−0.75, 0.08)

c1 ESS
(χ2(1)prob)

mean 0.972 3.721
(0.946)

std. dev. 0.592 3.467
(0.01, 0.99)

quantiles
(−0.35, 2.53) (0.0, 14.8)

Ṽ
− 1
2

t

�
Yt − F̃t

�
= Ṽ

− 1
2

t f̃tXtb− Ṽ −
1
2

t f̃tXtβ̃X1tc1 + residual

substantially reduces the power of the test as depicted in table 5.10. Only between
25% and 50% of the simulations produce evidence of misspecification at the 80%
confidence level.
Next, we explore changing variance as a function of both regressors. As demon-
strated in table 5.11, the power is comprised relative to the proper specification.
Although better than 50% of the simulations produce evidence of misspecification
at the 80% confidence level. However, one might be inclined to drop X2c2 and
re-estimate.
Assuming the evidence is against homoskedasticity, we next report simulations
for the heteroskedastic probit with standard deviation exp (X1γ). As reported in
table 5.12, on average, ML recovers the parameters of a properly-specified het-
eroskedastic probit quite effectively. Of course, we may incorrectly conclude the
data are homoskedastic.
Now, we explore the extent to which the specification test is inclined to indicate
heteroskedasticity when the model is homoskedastic. Everything remains the same
except the DGP is homoskedastic

Y ∗ = X1 −X2 + ε, ε ∼ N (0, 1)

As before, we first report standard (assumed homoskedastic) binary probit results
based on 1, 000 simulations in table 5.13. On average, the parameter estimates
are recovered effectively.
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Table 5.10: BRMR specification test 2 with heteroskedastic DGP

b0 b1 b2
mean 0.029 −0.161 0.177

std. dev. 0.044 0.186 0.212
(0.01, 0.99)

quantiles
(−0.05, 0.16) (−0.65, 0.23) (−0.32, 0.73)

c2 ESS
(χ2(1)prob)

mean −0.502 1.757
(0.815)

std. dev. 0.587 2.334
(0.01, 0.99)

quantiles
(−1.86, 0.85) (0.0, 10.8)

Ṽ
− 1
2

t

�
yt − F̃t

�
= Ṽ

− 1
2

t f̃tXtb− Ṽ −
1
2

t f̃tXtβ̃X2tc2 + residual

Table 5.11: BRMR specification test 3 with heteroskedastic DGP

b0 b1 b2
mean 0.050 0.255 −0.306

std. dev. 0.064 0.347 0.416
(0.01, 0.99)

quantiles
(−0.11, 0.23) (−0.56, 1.04) (−1.33, 0.71)

c1 c2 ESS
(χ2(2)prob)

mean 0.973 0.001 4.754
(0.907)

std. dev. 0.703 0.696 3.780
(0.01, 0.99)

quantiles
(−0.55, 2.87) (−1.69, 1.59) (0.06, 15.6)

Ṽ
− 1
2

t

�
yt − F̃t

�
= Ṽ

− 1
2

t f̃tXtb− Ṽ − 1
2

t f̃tXtβ̃
�
X1t X2t

� 
 c1
c2

�
+ residual

Next, we explore some variations of the BRMR specification test. Based on table
5.14, the appropriately specified heteroskedastic test seems, on average, resistant
to rejecting the null (when it should not reject). Fewer than 25% of the simulations
produce evidence of misspecification at the 80% confidence level.
Now, leave the DGP unaltered but suppose we suspect the variance changes due to
another variable, sayX2. Even though the source of heteroskedasticity is misiden-
tified, the test reported in table 5.15 produces similar results, on average. Again,
fewer than 25% of the simulations produce evidence of misspecification at the
80% confidence level.
Next, we explore changing variance as a function of both regressors. Again, we
find similar specification results, on average, as reported in table 5.16. That is,
fewer than 25% of the simulations produce evidence of misspecification at the
80% confidence level. Finally, assuming the evidence is against homoskedastic-
ity, we next report simulations for the heteroskedastic probit with standard devia-
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Table 5.12: Heteroskedastic probit results with heteroskedastic DGP

β0 β1 β̂2 γ̂
mean 0.012 1.048 −1.048 1.0756

std. dev. 0.161 0.394 0.358 0.922
(0.01, 0.99)

quantiles
(−0.33, 0.41) (0.44, 2.14) (−2.0,−0.40) (−0.30, 2.82)

Table 5.13: Homoskedastic probit results with homoskedastic DGP

β0 β1 β̂2
mean −0.002 1.005 −0.999

std. dev. 0.110 0.147 0.148
(0.01, 0.99)

quantiles
(−0.24, 0.25) (0.67, 1.32) (−1.35,−0.67)

tion exp (X1γ). On average, table 5.17 results support the homoskedastic choice
model as γ̂ is near zero. Of course, the risk remains that we may incorrectly con-
clude that the data are heteroskedastic.

5.5 Robust choice models

A few robust (relaxed distribution or link function) discrete choice models are
briefly discussed next.

5.5.1 Mixed logit models
Mixed logit is a highly flexible model that can approximate any random utility.
Unlike logit, it allows random taste variation, unrestricted substitution patterns,
and correlation in unobserved factors (over time). Unlike probit, it is not restricted
to normal distributions.

Mixed logit probabilities are integrals of standard logit probabilities over a den-
sity of parameters. P =

.
L (β) f (β) dβ where L (β) is the logit probability

evaluated at β and f (β) is a density function. In other words, the mixed logit is
a weighted average of the logit formula evaluated at different values of β with
weights given by the density f (β). The mixing distribution f (β) can be discrete
or continuous.

5.5.2 Semiparametric single index discrete choice models
Another "robust" choice model draws on kernel density-based regression (see
chapter 6 for more details). In particular, the density-weighted average deriva-
tive estimator from an index function yields E [Yt|Xt] = G (Xtb) where G (·) is
some general nonparametric function. As Stoker [1991] suggests the bandwidth
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Table 5.14: BRMR specification test 1 with homoskedastic DGP

b0 b1 b2
mean −0.001 −0.007 0.007

std. dev. 0.032 0.193 0.190
(0.01, 0.99)

quantiles
(−0.09, 0.08) (−0.46, 0.45) (−0.44, 0.45)

c1 ESS
(χ2(1)prob)

mean −0.013 0.983
(0.679)

std. dev. 0.382 1.338
(0.01, 0.99)

quantiles
(−0.87, 0.86) (0.0, 6.4)

Ṽ
− 1
2

t

�
Yt − F̃t

�
= Ṽ

− 1
2

t f̃tXtb− Ṽ −
1
2

t f̃tXtβ̃X1tc1 + residual

Table 5.15: BRMR specification test 2 with homoskedastic DGP

b0 b1 b2
mean −0.001 0.009 −0.010

std. dev. 0.032 0.187 0.187
(0.01, 0.99)

quantiles
(−0.08, 0.09) (−0.42, 0.44) (−0.46, 0.40)

c2 ESS
(χ2(1)prob)

mean 0.018 0.947
(0.669)

std. dev. 0.377 1.362
(0.01, 0.99)

quantiles
(−0.85, 0.91) (0.0, 6.6)

Ṽ
− 1
2

t

�
yt − F̃t

�
= Ṽ

− 1
2

t f̃tXtb− Ṽ −
1
2

t f̃tXtβ̃X2tc2 + residual

is chosen based on "critical smoothing." Critical smoothing refers to selecting the
bandwidth as near the "optimal" bandwidth as possible such that monotonicity of
probability in the index function is satisfied. Otherwise, the estimated "density"
function involves negative values.

5.5.3 Nonparametric discrete choice models
The nonparametric kernel density regression model can be employed to estimate
very general (without index restrictions) probability models (see chapter 6 for
more details).

E [Yt|Xt] = m (Xt)
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Table 5.16: BRMR specification test 3 with homoskedastic DGP

b0 b1 b2
mean −0.000 0.004 −0.006

std. dev. 0.045 0.391 0.382
(0.01, 0.99)

quantiles
(−0.11, 0.12) (−0.91, 0.93) (−0.91, 0.86)

c1 c2 ESS
(χ2(2)prob)

mean -0.006 0.015 1.943
(0.621)

std. dev. 0.450 0.696 3.443
(0.01, 0.99)

quantiles
(−1.10, 1.10) (−0.98, 1.06) (0.03, 8.2)

Ṽ
− 1
2

t

�
yt − F̃t

�
= Ṽ

− 1
2

t f̃tXtb− Ṽ − 1
2

t f̃tXtβ̃
�
X1t X2t

� 
 c1
c2

�
+ residual

Table 5.17: Heteroskedastic probit results with homoskedastic DGP

β0 β1 β̂2 γ̂
mean 0.001 1.008 −1.009 −0.003

std. dev. 0.124 0.454 0.259 0.521
(0.01, 0.99)

quantiles
(−0.24, 0.29) (0.55, 1.67) (−1.69,−0.50) (−0.97, 0.90)

5.6 Tobit (censored regression) models

Sometimes the dependent variable is censored at a value (we assume zero for
simplicity).

Y ∗t = Xtβ + εt

where ε ∼ N
�
0,σ2I

�
and Yt = Y ∗t if Y ∗t > 0 and Yt = 0 otherwise. Then we

have a mixture of discrete and continuous outcomes. Tobin [1958] proposed writ-
ing the likelihood function as a combination of a discrete choice model (binomial
likelihood) and standard regression (normal likelihood), then estimating β and σ
via maximum likelihood. The log-likelihood is/

yt=0

logΦ



−Xtβ
σ

�
+
/
yt>0

log

�
1

σ
φ



Yt −Xtβ

σ

��
where, as usual, φ (·) ,Φ (·) are the unit normal density and distribution functions,
respectively.

5.7 Bayesian data augmentation

Albert and Chib’s [1993] idea is to treat the latent variable Y ∗ as missing data and
use Bayesian analysis to estimate the missing data. Typically, Bayesian analysis
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draws inferences by sampling from the posterior distribution p (θ|Y ). However,
the marginal posterior distribution in the discrete choice setting is often not recog-
nizable though the conditional posterior distributions may be. In this case, Markov
chain Monte Carlo (McMC) methods, in particular a Gibbs sampler, can be em-
ployed (see chapter 7 for more details on McMC and the Gibbs sampler).

Albert and Chib use a Gibbs sampler to estimate a Bayesian probit.

p (β|Y,X, Y ∗) ∼ N
�
b1,
�
Q−1 +XTX

�−1�
where

b1 =
�
Q−1 +XTX

� �−1Q−1b0 +XTXb
�

b =
�
XTX

�−1
XTY

b0 = prior means for β and Q =
�
XT
0 X0

�−1
is the prior on the covariance.15 The

conditional posterior distributions for the latent utility index are

p (Y ∗|Y = 1, X,β) ∼ N
�
XTβ, I|Y ∗ > 0�

p (Y ∗|Y = 0, X,β) ∼ N
�
XTβ, I|Y ∗ ≤ 0�

For the latter two, random draws from a truncated normal (truncated from below
for the first and truncated from above for the second) are employed.

5.8 Additional reading

There is an extensive literature addressing discrete choice models. Some favorite
references are Train [2003], and McFadden’s [2001] Nobel lecture. Connections
between discrete choice models, nonlinear regression, and related specification
tests are developed by Davidson and MacKinnon [1993, 2003]. Coslett [1981]
discusses efficient estimation of discrete choice models with emphasis on choice-
based sampling. Mullahy [1997] discusses instrumental variable estimation of
count data models.

15Bayesian inference works as if we have data from the prior period {Y0, X0} as well as from the

sample period {Y,X} from which β is estimated (b0 =
�
XT
0 X0
�−1

XT
0 Y0 as if taken from prior

sample {X0, Y0}; see Poirier [1995], p. 527) . Applying OLS yields

b1 = (XT
0 X0 +X

TX)−1(XT
0 Y0 +X

TY )

= (Q−1 +XTX)−1(Q−1b0 +XTXb)

sinceQ−1 = (XT
0 X0), X

T
0 Y0 = Q

−1b0, and XTY = XTXb.





6
Nonparametric regression

Frequently in econometric analysis of accounting data, one is concerned with de-
partures from standard parametric model probability assignments. Semi- and non-
parametric methods provide an alternative means to characterize data and assess
parametric model robustness or logical consistency. Here, we focus on regression.
That is, we examine the conditional relation between Y and X . The most flexible
fit of this conditional relation is nonparametric regression where flexible fit refers
to the degree of distributional or structural form restrictions imposed on the data
in estimating the relationship.

6.1 Nonparametric (kernel) regression

Nonparametric regression is motivated by at least the following four objectives:
(1) it provides a versatile method for exploring a general relation between vari-
ables, (2) it give predictions without reference to a fixed parametric model, (3) it
provides a tool for identifying spurious observations, and (4) it provides a method
for ‘fixing’ missing values or interpolating between regressor values (see Hardle
[1990, p 6-7]).

A nonparametric (kernel) regression can be represented as follows (Hardle [1990]).

E [Y |X] = m (X)

wherem (X) =
n−1h−d

n�
i=1

K(X−xi
h )yi

n−1h−d
n�
i=1

K(X−xi
h )

, yi (xi) is the ith observation for Y (X),

n is the number of observations, d is the dimension (number of regressors) of X ,

97D. A. Schroeder, Accounting and Causal Effects, DOI 10.1007/978-1-4419-7225-5_6,
© Springer Science+Business Media, LLC 2010



98 6. Nonparametric regression

K (·) is any well-defined (multivariate) kernel, and h is the smoothing parameter
or bandwidth (see GCV below for bandwidth estimation). Notice as is the case
with linear regression each predictor is constructed by regressor-based weights of
each observed value of the response variableM (h)Y where

M (h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K(X1−x1h )
n/
i=1

K(Xi−x1h )

K(X2−x1h )
n/
i=1

K(Xi−x1h )

· · · K(Xn−x1h )
n/
i=1

K(Xi−x1h )

K(X1−x2h )
n/
i=1

K(Xi−x2h )

K(X2−x2h )
n/
i=1

K(Xi−x2h )

· · · K(Xn−x2h )
n/
i=1

K(Xi−x2h )

...
...

. . .
...

K(X1−xnh )
n/
i=1

K(Xi−xnh )

K(X2−xnh )
n/
i=1

K(Xi−xnh )

· · · K(Xn−xnh )
n/
i=1

K(Xi−xnh )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
To fix ideas, compare this with liner regression. For linear regression, the predic-
tions are 2Y = PXY , where

PX = X
�
XTX

�−1
XT

the projection matrix (into the columns of X), again a linear combination (based
on the regressors) of the response variable.

A multivariate kernel is constructed, row by row, by computing the product
of marginal densities for each variable in the matrix of regressors X .1 That is,

h−dK
�
X−xi
h

�
=

d-
j=1

h−1K
�
xj−xji
h

�
, where xj is the jth column vector in the

regressors matrix. Typically, we employ leave-one-out kernels. That is, the cur-
rent observation is excluded in the kernel construction to avoid overfitting — the
principal diagonal in M (h) is zeroes. Since nonparametric regression simply ex-
ploits the explanatory variables to devise a weighting scheme for Y , assigning
no weight to the current observation of Y is an intuitively appealing means of
avoiding overfitting.

Nonparametric (kernel) regression is the most flexible model that we employ
and forms the basis for many other kernel density estimators. While nonparametric
regression models provide a very flexible fit of the relation between Y andX , this
does not come at zero cost. In particular, it is more difficult to succinctly describe
this relation, especially when X is a high dimension matrix. Also, nonparametric
regressions typically do not achieve parametric rates of convergence (i.e., they
converge more slowly than square root n).2 Next, we turn to models that retain

1As we typically estimate one bandwidth for all regressors, the variables are first scaled by their
estimated standard deviation.

2It can be shown that optimal rates of convergence for nonparametric models are n− r, 0 < r <
1/2. More specifically, r = (ρ+β−k)/(2[ρ+β]−d), where ρ is the number of times the smoothing
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some of the flexibility of nonparametric regression but enhance interpretability
(i.e., semiparametric models).

6.2 Semiparametric regression models

6.2.1 Partial linear regression
Frequently, we are concerned about the relation between Y and X but troubled
that the analysis is plagued by omitted, correlated variables. One difficulty is that
we do not know the functional form of the relation between our variables of inter-
est and these other control variables. That is, we envision a DGP where

E [Y | X,Z] = Xβ + θ (Z)
Provided that we can observe these control variables, Robinson [1988] suggests
a two-stage approach analogous to FWL (see chapter 3) which is called partial
linear regression. Partial linear regression models nonparametrically fit the rela-
tion between the dependent variable, Y , and the control variables, Z, and also
the experimental regressors of interest,X , and the control variables Z. The resid-
uals from each nonparametric regression are retained, eY = Y − E [Y |Z] and
eX = X − E [X|Z], in standard double residual regression fashion.

Next, we simply employ no-intercept OLS regression of the dependent vari-
able residuals on the regressor residuals, eY = eXβ. The parameter estimator
for β fully captures the influence of the otherwise omitted, control variables and
is accordingly, asymptotically consistent. Of course, we now have parameters to
succinctly describe the relation between Y and X conditional on Z. Robinson
demonstrates that this estimator converges at the parametric (square-root n) rate.

6.2.2 Single-index regression
The partial linear model discussed above imposes distributional restrictions on the
relation between Y andX in the second stage. One (semiparametric) approach for
relaxing this restriction and retaining ease of interpretability is single-index re-
gression. Single-index regression follows from the idea that the average derivative
of a general function with respect to the regressor is proportional to the parameters
of the index. Suppose the DGP is

E [Y |X] = G (Xβ)
then define δ = ∂E [Y |X] /∂X = dG/d (Xβ)β = γβ. Thus, the derivative with
respect to X is proportional to β for all X , and likewise the average derivative
E [dG/d (Xβ)]β = γβ, for γ �= 0, is proportional to β.

function is differentiable, k is the order of the derivative of the particular estimate of interest (k ≤ ρ),
β is the characteristic or exponent for the smoothness class, and d is the order of the regressors (Hardle
[1990, p. 93]).
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Our applications employ the density-weighted average derivative single-index
model of Powell, Stock, and Stoker [1989].3 That is,

δ̂ = −2n−1
n/
i=1

∂f̂i (Xi)

∂X
Yi

exploiting the U statistic structure (see Hoeffding [1948])

= −2 [n (n− 1)]−1
n−1/
i=1

n/
j=i+1

h−(d+1)K �


Xi −Xj

h

�
(Yi − Yj)

For a Gaussian kernel,K, notice thatK� (u) = −uK (u). Thus,

δ̂ = 2 [n (n− 1)]−1
n−1/
i=1

n/
j=i+1

h−(d+1)K


Xi −Xj

h

�

Xi −Xj

h

�
(Yi − Yj)

where K (u) = (2π)−1/2 exp
8
−u2

2

9
. The asymptotic covariance matrix for the

parameters Σδ̂is estimated as

2Σδ̂ = 4n
−1

n/
i=1

r̂ (Zi) r̂ (Zi)
T − 42δ2δT

where

r̂ (Zi) = (−n− 1)−1
n/
j=1
i�=j

h−(d+1)K


Xi −Xj

h

�

Xi −Xj

h

�
(Yi − Yj)

The above estimator is proportional to the index parameters. Powell, et al also
proposed a properly-scaled instrumental variable version of the density-weighted

average derivative. We refer to this estimator as d̂ = δ̂
−1
X δ̂, where

δ̂X = −2n−1
n/
i=1

∂f̂i (Xi)

∂X
XT
i

=

2
n−1,
i=1

n,
j=i+1

h−(d+1)K
�
Xi−Xj

h

��
Xi−Xj

h

�
(Xi −Xj)T

n (n− 1)

3Powell et al’s description of the asymptotic properties of their average derivative estimator ex-
ploits a ‘leave-one-out’ approach, as discussed for nonparametric regression above. This estimator
also achieves the parametric (square-root n) rate of convergence.
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rescales δ̂. The asymptotic covariance estimator for the parameters Σd̂ is estimated

as Σ̂d̂ = 4n
−1 n,

i=1

r̂d (Zi) r̂d (Zi)
T , where

r̂d (Zi) = δ̂
−1
x

n,
j=1
i�=j

h−(d+1)K
�
Xi−Xj

h

��
Xi−Xj

h

��2Ui − 2Uj�
−n− 1

2Ui = Yi −Xid̂
The optimal bandwidth is estimated similarly to that described for nonpara-

metric regression. First, d̂ (and its covariance matrix) is estimated (for various
bandwidths). Then, the bandwidth that produces minimum mean squared error is
identified from the leave-one out nonparametric regression of Y on the index X 2d
(the analog to regressing Y on X in fully nonparametric regression). This yields
a readily interpretable, flexibly fit set of index parameters, the counterpart to the
slope parameter in OLS (linear) regression.

6.2.3 Partial index regression models
Now, we put together the last two sets of ideas. That is, nonparametric estimates
for potentially omitted, correlated (control) variables as in the partial linear model
are combined with single index model parameter estimates for the experimental
regressors. That is, we envision a DGP where

E [Y | X,Z] = G (Xβ) + θ (Z)

Following Stoker [1991], these are called partial index models. As with partial
linear models, the relation between Y and Z (the control variables) and the re-
lation between X and Z are estimated via nonparametric regression. As before,
separate bandwidths are employed for the regression of Y on Z and X on Z.
Again, residuals are computed, eY and eX . Now, single index regression of eY on
eX completes the partial index regression. Notice, that a third round of bandwidth
selection is involved in the second stage.

6.3 Specification testing against a general
nonparametric benchmark

Specification or logical consistency testing lies at the heart of econometric analy-
sis. Borrowing from conditional moment tests (Ruud [1984], Newey [1985], Pa-
gan and Vella [1989]) and the U statistic structure employed by Powell et al,
Zheng [1996] proposed a specification test of any parametric model f (X, θ)
against a general nonparametric benchmark g (X).
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Let εi ≡ Yi − f (Xi, θ) and p (•) denote the density function of Xi. The null
hypothesis is that the parametric model is correct (adequate for summarizing the
data)

H0 : PrE [Yi|Xi] = f (Xi, θ0) = 1 for some θ0 ∈ Θ

where θ0 = argminθ∈ΘE [Yi − f (Xi, θ0)]2. The alternative is the null is false,
but there is no specific alternative model

H0 : PrE [Yi|Xi] = f (Xi, θ) < 1 for all θ ∈ Θ

The idea is under the null, E [εi|Xi] = 0. Therefore, we have

E [εiE [εi|Xi] p (Xi)] = 0
while under the alternative we have

E [εiE [εi|Xi] p (Xi)] = E
6
{E [εi|Xi]}2 p (Xi)

7
since E [εi|Xi] = g (Xi)− f (Xi, θ)

E [εiE [εi|Xi] p (Xi)] = E
6
{g (Xi)− f (Xi, θ)}2 p (Xi)

7
> 0

The sample analog of E [εiE [εi|Xi] p (Xi)] is used to form a test statistic. In
particular, kernel estimators of the components are employed. A kernel estimator
of the density function p is

p̂ (xi) = (−n− 1)−1
n/
j=1
i�=j

h−dK


Xi −Xj

h

�

and a kernel estimator of the regression function E [εi|Xi] is

E [εi|Xi] = (−n− 1)−1
n/
j=1
i�=j

h−d
K
�
Xi−Xj

h

�
εi

p̂ (Xi)

The sample analog to E [εiE [εi|Xi] p (Xi)] is completed by replacing εi with

ei ≡ Yi − f
�
Xi, θ̂

�
and we have

Vn ≡ (−n− 1)−1
n/
i=1

n/
j=1
i�=j

h−dK


Xi −Xj

h

�
eiej

Under the null, Zheng shows that the statistic nhd/2Vn is consistent asymptotic
normal (CAN; see appendix) with mean zero and variance Σ. Also, the variance
can be consistently estimated by

Σ̂ = 2 (n (−n− 1))−1
n/
i=1

n/
j=1
i�=j

h−dK2



Xi −Xj

h

�
e2i e

2
j
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Consequently, a standardized test statistic is

Tn ≡
<
n− 1
n

nhd/2Vn:
Σ̂

=

n/
i=1

n,
j=1
i�=j

h−dK
�
Xi−Xj

h

�
eiej

⎧⎪⎨⎪⎩2
n/
i=1

n,
j=1
i�=j

h−dK2
�
Xi−Xj

h

�
e2i e

2
j

⎫⎪⎬⎪⎭
1/2

Since Vn is CAN under the null, the standardized test statistic converges in distri-

bution to a standard normal, Tn
d−→ N (0, 1) (see the appendix for discussion of

convergence in distribution).

6.4 Locally linear regression

Another local method, locally linear regression, produces smaller bias (especially
at the boundaries of X) and no greater variance than regular kernel regression.4

Hence, it produces smaller MSE.
Regular kernel regression solves

min
g

n/
i=1

(yi − g)2 h−dK


X − xi
h

�
while locally linear regression solves

min
g,β

n/
i=1

�
yi − g − (X − xi)T β

�2
h−dK



X − xi
h

�
Effectively, kernel regression is a constrained version of locally linear regression
with β = 0. Both are regressor-based weighted averages of Y .

Newey [2007] shows the asymptotic MSE for locally linear regression is

MSELLR =
1

nh
ν0
σ2 (X)

f0 (X)
+
h4

4
g
��
0 (X)μ

2
2

while for kernel regression we have

MSEKR =
1

nh
ν0
σ2 (X)

f0 (X)
+
h4

4

�
g
��
0 (X) + 2g

�
0 (X)

f
�
0 (X)

f0 (X)

�
μ22

4This section draws heavily from Newey [2007].



104 6. Nonparametric regression

where f0 (X) is the density function forX = [x1, . . . , xn]
T with variance σ2 (X),

g0 (X) = E [Y |X] ,

u =
X −Xi
h

μ2 =

1
K (u)u2du, ν0 =

1
K (u)

2
du

and kernel regression bias is

biasKR =

�
1

2
g
��
0 (X) + g

�
0 (X)

f
�
0 (X)

f0 (X)

�
μ2h

2

Hence, locally linear regression has smaller bias and smaller MSE everywhere.

6.5 Generalized cross-validation (GCV)

The bandwidth h is frequently chosen via generalized cross validation (GCV)
(Craven and Wahba [1979]). GCV utilizes principles developed in ridge regres-
sion for addressing computational instability problems in a regression context.

GCV (h) =
n−1 ||y − m̂ (h)||2
[1− n−1tr (M (h))]

2

where m̂ (h) = M (h)Y is the nonparametric regression of Y on X given band-
width h, ||·||2 is the squared norm or vector inner product, and tr (·) is the trace
of the matrix.

Since the properties of this statistic are data specific and convergence at a uni-
form rate cannot be assured, we evaluate a dense grid of values for h to numer-
ically find the minimum MSE. Optimal bandwidths are determined by trading
off a ‘good approximation’ to the regression function (reduction in bias) and a
‘good reduction’ of observational noise (reduction in noise). The former (latter) is
increasing (decreasing) in the bandwidth (Hardle [1990, p. 29-30, 149]).

For leave-one-out nonparametric regression estimator, GCV chooses the band-
width h that minimizes the mean squared errors

min
h
n−1 ||Y − m̂−t (h)||2

That is, the penalty function in GCV is avoided (as tr (M−t (h)) = 0, the denom-
inator is 1) and GCV effectively chooses the bandwidth to minimize the model
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mean square error.

M−t (h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
n/
i=2

K( xi−x1h )

K( x2−x1h )
n/
i=2

K( xi−x1h )

· · · K( xn−x1h )
n/
i=2

K( xi−x1h )

K( x1−x2h )
n/

i=1,3

K( xi−x2h )

0
n/

i=1,3

K( xi−x2h )

· · · K( xn−x2h )
n/

i=1,3

K( xi−x2h )

...
...

. . .
...

K( x1−xnh )
n−1/
i=1

K( xi−xnh )

K( x2−xnh )
n−1/
i=1

K( xi−xnh )

· · · 0
n−1/
i=1

K( xi−xnh )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

As usual, the mean squared error is composed of squared bias and variance.

MSE
�
θ̂
�

= E

��
θ̂ − θ

�2�
= E

6
θ̂
2
7
− 2E

6
θ̂
7
θ + θ2

=

�
E
6
θ̂
2
7
− E

6
θ̂
72�

+

�
E
6
θ̂
72
− 2E

6
θ̂
7
θ + θ2

�

The leading term is the variance of θ̂ and the trailing term is the squared bias.

6.6 Additional reading

There is a burgeoning literature on nonparametric regression and its semiparamet-
ric cousins. Hardle [1990] and Stoker [1991] offer eloquent overviews. Newey and
Powell [2003] discuss instrumental variable estimation of nonparametric models.
Powell et al’s average derivative estimator assumes the regressors are continuous.
Horowitz and Hardle [1996] proposed a semiparametric model that accommodates
some discrete as well as continuous regressors.

When estimating causal effects in a selection setting, the above semiparametric
methods are lacking as the intercept is suppressed by nonparametric regression.
Andrews and Schafgans [1998] suggested a semiparametric selection model to
remedy this deficiency. Variations on these ideas are discussed in later chapters.





7
Repeated-sampling inference

Much of the discussion regarding econometric analysis of endogenous relations
centers around identification issues. In this chapter we review the complementary
matter of inference. Exchangeability or symmetric dependence and de Finetti’s
theorem lie at the heart of most (perhaps all) statistical inference. A simple bino-
mial example illustrates. Exchangeability says that a sequence of coin flips has the
property

Pr (X1 = 1, X2 = 0, X3 = 1, X4 = 1)

= Pr (X3 = 1, X4 = 0, X2 = 1, X1 = 1)

and so on for all permutations of the random variable index. de Finetti’s theo-
rem [1937, reprinted in 1964] provides justification for typical statistical sampling
from a population with unknown distribution based on a large number of iid draws
from the unknown distribution. That is, if ex ante the analyst assesses that samples
are exchangeable (and from a large population), then the samples can be viewed
as independent and identically distributed from an unknown distribution function.
Perhaps it is instructive to consider whether (most) specification issues can be
thought of as questions of the validity of some exchangeability conditions. While
we ponder this, we review repeated-sampling based inference with particular at-
tention to bootstrapping and Bayesian simulation.1

1MacKinnon [2002] suggests three fruitful avenues for exploiting abundant computing capacity:
(1) structural models at the individual level that frequently draw on simulation, (2) Markov chain
Monte Carlo (McMC) analysis, and (3) bootstrap inference.
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7.1 Monte Carlo simulation

Monte Carlo simulation can be applied when the statistic of interest is pivotal.

Definition 7.1 A pivotal statistic is one that depends only on the data and no
unknown parameters.

Monte Carlo simulation of pivotal statistics produces exact tests.

Definition 7.2 Exact tests are tests for which a true null hypothesis is rejected
with probability precisely equal to α, the nominal size of the test.

However, if the test statistic is not pivotal (for instance, the distribution is un-
known), a Monte Carlo test doesn’t apply.

7.2 Bootstrap

Inference based on bootstrapping is simply an application of the fundamental the-
orem of statistics. That is, when randomly sampled with replacement the empirical
distribution function is consistent for the population distribution function (see ap-
pendix).

To bootstrap a single parameter such as the correlation between two random
variables. say x and y, we simply sample randomly with replacement from the
pair (x, y). Then, utilize the empirical distribution of the statistic (say, sample
correlation) to draw inferences, for instance, about the mean, etc. (see Efron [1979,
2000]).

7.2.1 Bootstrap regression
For a regression that satisfies standard OLS (spherical) conditions, bootstrapping
involves first estimating the regression via OLS Xiβ̂ and calculating the residu-
als.2 The second step involves randomly sampling with replacement a residual for
each estimated regression observation Xiβ̂. Pseudo responses 2Y are constructed
by adding the sampled residual to the estimated regression Xiβ̂ for each draw
desired (often this is simply n, the original sample size). Next, bk is estimated
via OLS regression of 2Y on the matrix of regressors. Steps two and three are re-
peated B times to produce an empirical sample of bk, k = 1, . . . .B. Davidson
and MacKinnon [2003] recommend choosing B such that α (B + 1) is an integer
where α is the proposed size of the test. Inferences (such as interval estimates) are
then based on this empirical sample.

2The current and next section draw heavily from Freedman [1981] and Freedman and Peters [1984].
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7.2.2 Bootstrap panel data regression
If the errors are heteroskedastic and/or correlated, then the bootstrapping proce-
dure above is modified to accommodate these features. The key is we bootstrap
exchangeable partitions of the data. Suppose we have panel data stacked by time
series of length T by J cross-sectional individuals in the sample (the sample size
is n = T ∗ J).

Heteroskedasticity

If we suppose the errors are independent but the variance depends on the cross-
sectional unit,

Σ =

⎡⎢⎢⎢⎣
σ21IT 0 · · · 0
0 σ22IT · · · 0
...

...
. . .

...
0 0 · · · σ2JIT

⎤⎥⎥⎥⎦
then random draws with replacement of the first step residuals (whether estimated
by OLS or WLS, weighted least squares) are taken from the size T sample of resid-
uals for each cross-sectional unit or group of cross-sectional individuals with the
same variance. As these partitions are exchangeable, this preserves the differences
in variances across cross-sectional units. The remainder of the process remains as
described above for bootstrapping regression.

When the nature of the heteroskedasticity is unknown, Freedman [1981] sug-
gests a paired bootstrap where [Yi, Xi] are sampled simultaneously. MacKinnon
[2002, p. 629-631] also discusses a wild bootstrap to deal with unknown het-
eroskedasticity.

Correlated errors

If the errors are serially correlated but the variance is constant across cross-sectional
units,

Σ =

⎡⎢⎢⎢⎣
V 0 · · · 0
0 V · · · 0
...

...
. . .

...
0 0 · · · V

⎤⎥⎥⎥⎦
where

V = σ2

⎡⎢⎢⎢⎣
1 ρ1 · · · ρT
ρ1 1 · · · ρT−1
...

...
. . .

...
ρT ρt−1 · · · 1

⎤⎥⎥⎥⎦
then random vector (of length T ) draws with replacement of the first step residuals
(whether estimated by OLS or GLS, generalized least squares) are taken from
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the cross-sectional units.3 As these partitions are exchangeable, this preserves the
serial correlation inherent in the data. The remainder of the process is as described
above for bootstrapping regression.4

Heteroskedasticity and serial correlation

If the errors are serially correlated and the variance is nonconstant across cross-
sectional units,

Σ =

⎡⎢⎢⎢⎣
V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · VJ

⎤⎥⎥⎥⎦
where

Vj = σ
2
j

⎡⎢⎢⎢⎣
1 ρ1 · · · ρT
ρ1 1 · · · ρT−1
...

...
. . .

...
ρT ρt−1 · · · 1

⎤⎥⎥⎥⎦
then a combination of the above two sampling procedures is employed.5 That
is, groups of cross-section units with the same variance-covariance structure are
identified and random vector (of length T ) draws with replacement of the first
step residuals (whether estimated by OLS or GLS) are taken from the groups of
cross-sectional units. As these partitions are exchangeable, this preserves the het-
eroskedasticity and serial correlation inherent in the data. The remainder of the
process is as described above for bootstrapping regression.

3For cross-sectional correlation (but independent errors through time)

Σ = σ2

⎡⎢⎢⎢⎣
IT ρ12IT · · · ρ1JIT
ρ12IT IT · · · ρ2JIT

...
...

. . .
...

ρ1JIT ρ2JIT · · · IT

⎤⎥⎥⎥⎦
simply apply the same ideas to the length J vector of residuals over cross-sectional units in place of
the length T vector of residuals through time.

4When the nature of the serial correlation is unknown, as expected the challenge is greater. MacK-
innon [2002] discusses two approaches: sieve bootstrap and block bootstrap. Not surprisingly, when
the nature of the correlation or heteroskedasticity is unknown the bootstrap performs more poorly than
otherwise.

5Cross-sectional correlation and heteroskedasticity

Σ =

⎡⎢⎢⎢⎣
σ21IT ρ12σ1σ2IT · · · ρ1Jσ1σJIT

ρ12σ1σ2IT σ22IT · · · ρ2Jσ2σJIT
...

...
. . .

...
ρ1Jσ1σJIT ρ2Jσ2σJIT · · · σ2JIT

⎤⎥⎥⎥⎦
again calls for sampling from like variance-covariance groups.
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7.2.3 Bootstrap summary
Horowitz [2001] relates the bootstrap to asymptotically pivotal statistics in dis-
cussing effective usage of the bootstrap.

Definition 7.3 An asymptotically pivotal statistic is a statistic whose asymptotic
distribution does not depend on unknown population parameters.

Horowitz concludes

• If an asymptotically pivotal statistic is available, use the bootstrap to esti-
mate the probability distribution of the asymptotically pivotal statistic or a
critical test value based on the asymptotically pivotal statistic.

• Use an asymptotically pivotal statistic if available rather than bootstrapping
a non-asymptotically pivotal statistic such as a regression slope coefficient
or standard error to estimate the probability distribution of the statistic.

• Recenter the residuals of an overidentified model before applying the boot-
strap.

• Extra care is called for when bootstrapping models for dependent data,
semi- or non-parametric estimators, or non-smooth estimators.

7.3 Bayesian simulation

Like bootstrapping, Bayesian simulation employs repeated sampling with replace-
ment to draw inferences. Bayesian sampling in its simplest form utilizes Bayes’
theorem to identify the posterior distribution of interest p (θ | Y ) from the likeli-
hood function p (Y | θ) and prior distribution for the parameters of interest p (θ).

p (θ | Y ) = p (Y | θ) p (θ)
p (Y )

The marginal distribution of the data p (Y ) is a normalizing adjustment. Since
it does not affect the kernel of the distribution it is typically suppressed and the
posterior is written

p (θ | Y ) ∝ p (Y | θ) p (θ)

7.3.1 Conjugate families
It is straightforward to sample from the posterior distribution when its kernel (the
portion of the density function or probability mass function that depends on the pa-
rameters of interest) is readily recognized. For a number of prior distributions (and
likelihood functions), the posterior distribution is readily recognized as a standard
distribution. This is referred to as conjugacy and the matching prior distribution is
called the conjugate prior. A formal definition follows.
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Definition 7.4 If F is a class of sampling distributions p (Y | θ) and ℘ is a class
of prior distributions for θ, then class ℘ is conjugate to F class if p (θ | Y ) ∈ ℘
for all p (· | θ) ∈ F and p (·) ∈ ℘.

For example, a binomial likelihood

< (θ | s;n) =


n
s

�
θs (1− θ)n−s

s =
,n

i=1 yi, yi = {0, 1}
combines with a beta(θ;α,β) prior

p (θ) =
Γ (α+ β)

Γ (α)Γ (β)
θα−1 (1− θ)β−1

to yield

p (θ | y) ∝ θs (1− θ)n−s θα−1 (1− θ)β−1
= θs+α−1 (1− θ)n−s+β−1

which is the kernel of a beta(θ | y;α+ s,β + n− s) distribution.
Also, a single draw from a Gaussian likelihood with known standard deviation,

σ

< (θ | y,σ) ∝ exp
�
−1
2

(y − θ)2
σ2

�
combines with a Gaussian or normal prior

p (θ | μ0, τ0) ∝ exp
�
−1
2

(θ − μ0)2
τ20

�

to yield6

p (θ | y,σ,μ0, τ0) ∝ exp
�
−1
2

(θ − μ1)2
τ21

�

where μ1 =
1

τ20
μ0+

1
σ2
y

1

τ20
+ 1
σ2

and τ21 =
1

1

τ20
+ 1
σ2

. The posterior distribution of the mean

given the data and priors is Gaussian. And, for a sample of n exchangeable draws,
the likelihood is

< (θ | y,σ) ∝
n0
i=1

exp

�
−1
2

(yi − θ)2
σ2

�

6The product gives

exp

�
−1
2

�
(y − θ)2
σ2

+
(θ − μ0)2
τ20


�
Then, expand the exponent and complete the square. Any constants are ignored in the identification of
the kernel as they’re absorbed through normalization of the posterior kernel.
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combined with the above prior yields

p (θ | y,σ,μ0, τ0) ∝ exp
�
−1
2

(θ − μn)2
τ2n

�

where μ1 =
1

τ20
μ0+

n
σ2
y

1

τ20
+ n
σ2

, y is the sample mean, and τ21 =
1

1

τ20
+ n
σ2

. The posterior

distribution of the mean given the data and priors is again Gaussian.
These and some other well-known and widely used conjugate family distrib-

utions are summarized in tables 7.1, 7.2, 7.3, and 7.4 (see Bernardo and Smith
[1994] and Gelman et al [2003]).

Table 7.1: Conjugate families for univariate discrete distributions

likelihood p (Y | θ) conjugate prior p (θ) posterior p (θ | Y )

Binomial (s | n, θ)
where

s =
n�
i=1

yi, yi ∈ {0, 1}

Beta (θ;α,β)
∝ θα−1 (1− θ)β−1

Beta
(θ | α+ s,β + n− s)

Poisson (s | nλ)
where

s =
n�
i=1

yi, yi = 0, 1, 2, . . .

Gamma (θ;α,β)
∝ θα−1e−βθ

Gamma
(θ | α+ s,β + n)

Exponential (t | n, θ)
where

t =
n�
i=1

yi, yi = 0, 1, 2, . . .

Gamma (θ;α,β)
∝ θα−1e−βθ

Gamma
(θ | α+ n,β + t)

Negative-binomial (s | θ, nr)
where

s =
n�
i=1

yi, yi = 0, 1, 2, . . .

Beta (θ;α,β)
∝ θα−1 (1− θ)β−1

Beta
(θ | α+ nr,β + s)

Beta and gamma are continuous distributions

A few words regarding the multi-parameter Gaussian case with unknown mean
and variance seem appropriate. The joint prior combines a Gaussian prior for the
mean conditional on the variance and an inverse-gamma or inverse-chi square
prior for the variance.7 The joint posterior distribution is the same form as the prior

7The inverse-gamma(α,β) distribution

p
�
σ2;α,β

� ∝ �σ2�−(α+1) exp 
− β
σ2

�
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Table 7.2: Conjugate families for univariate continuous distributions

likelihood
p (Y | θ)

conjugate prior
p (θ)

marginal posterior
p (θ | Y )

Uniform (Yi | 0, θ)
where 0 < Yi < θ,
t = max {Y1, . . . , Yn}

Pareto (θ;α,β)
∝ θ−(α+1)

Pareto
(θ;α+ n,max {β, t})

Normal
�
Y | θ,σ2�

variance known

Normal
�
θ | σ2; θ0, τ20

�
∝ τ−10 e

− (y−θ0)2
2τ20

Normal⎛⎜⎝μ | σ2;
θ0
τ20

+nY
σ2

1
τ20

+ n
σ2
,

1
τ20
+ n

σ2

⎞⎟⎠
Normal (Y | μ, θ)

mean known, σ2 = θ

Inverse-
gamma (θ;α,β)
∝ θ−(α+1)e−β/θ

Inverse-gamma�
θ; n+2α

2
,β + 1

2
t
�

where

t =

n�
i=1

(Yi − μ)2

Normal
�
Y | θ,σ2� Normal

�
θ | σ2; θ0, n0

� Student t
(θ; θn, γ, 2α+ n) ;

both unknown
∗Inverse−

gamma
�
σ2;α,β

� Inverse-gamma�
σ2;α+ 1

2
n,βn

�
For the normal-inverse gamma posterior the parameters are

θn = (n0 + n)
−1 �n0θ0 + nY �

γ = (n+ n0)
�
α+ 1

2
n
�
β−1n

βn = β + 1
2
(n− 1) s2 + 1

2
(n0 + n)

−1 n0n
�
θ0 − Y

�2
s2 = (n− 1)−1�n

i=1

�
Yi − Y

�2
— Gaussian

�
θ | σ2; θn,σ2n

�×inverse-gamma
�
σ2 | α+ 1

2n,βn
�
. Hence, the con-

ditional distribution for the mean given the variance is Gaussian
�
θ | σ2; θn,σ2n

�
where σ2n =

σ2

n0+n
. On integrating out the variance from the joint posterior the

marginal posterior for the mean is noncentral, scaled Student t(θ | θn, γ, ν) dis-
tributed.

A scaled Student t
�
X | μ,λ = 1

σ2 , ν
�

is symmetric with mean μ, variance 1
λ

ν
ν−2

= σ2 ν
ν−2 , ν degrees of freedom, and the density function kernel is

6
1 + ν−1λ (X − μ)2

7−(ν+1)/2
=

�
1 + ν−1



X − μ
σ

�2�−(ν+1)/2

can be reparameterized as an inverse-χ2 distribution
�
ν,σ20
�

p
�
σ2; ν,σ20

� ∝ �σ2�−(ν/2+1) exp 
−νσ20
2σ2

�

(see Gelman et al [2003], p. 50). Hence, α = ν
2

or ν = 2α and β =
νσ20
2

or νσ20 = 2β.
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Hence, the standard t distribution is Student t(Z | 0, 1, ν) where Z = X−μ
σ . Mar-

ginalization of the mean follows Gelman et al [2003] p. 76. For uninformative
priors, p

�
θ,σ2

� ∝ σ−2
p (θ | y) =

1 ∞

0

p
�
θ,σ2 | y� dσ2

=

1 ∞

0

σ−n−2 exp
�
− A

2σ2

�
dσ2

whereA = (n− 1) s2+n (θ − y)2. Let z = A
2σ2 , then transformation of variables

yields

p (θ | y) ∝ A−n/2
1 ∞

0

z(n−2)/2 exp [−z] dz

Since the integral involves the kernel for a gamma, it integrates to a constant and
can be ignored for identifying the marginal posterior kernel. Hence, we recognize

p (θ | y) ∝ A−n/2 =
6
(n− 1) s2 + n (θ − y)2

7−n
2

∝
�
1 +

n (θ − y)2
(n− 1) s2

�−n
2

is the kernel for a noncentral, scaled Student t
�
θ; y, s

2

n , n− 1
�

. Marginalization

with informed conjugate priors works in analogous fashion.

Table 7.3: Conjugate families for multivariate discrete distributions

likelihood p (Y | θ) conjugate prior p (θ) posterior p (θ | Y )

Multinomialk
(r; θ, n)

where
ri = 0, 1, 2, . . .

Dirichletk
(θ;α)

where
α = {α1, . . . ,αk+1}

Dirichletk

θ;
α1 + r1, . . . ,
αk+1 + rk+1

�

The Dirichlet distribution is a multivariate analog to the beta distribution and

has continuous support where rk+1 = n −
k/
5=1

r5. Ferguson [1973] proposed the

Dirichlet process as a Bayesian nonparametric approach. Some properties of the
Dirichlet distribution include

E [θi | α] = αi
α0

V ar [θi | α] = αi (α0 − αi)
α20 (α0 + 1)
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Cov [θi, θj | α] = −αiαj
α20 (α0 + 1)

where α0 =
k+1/
i=1

αi

Table 7.4: Conjugate families for multivariate continuous distributions

likelihood p (Y | θ) conjugate prior p (θ) marginal posterior p (θ | Y )
Normal (Y | θ,Σ) Normal(θ | Σ; θ0, n0) Student tk (θ; θn,Γ, 2αn);

parameters
unknown

∗Inverse-
Wishart (Σ;α,β)

Inverse-
Wishart

�
Σ;α+ 1

2
n,βn

�
Linear regression

Normal
�
Y | Xθ,σ2

�
Normal

�
θ | σ2; θ0, n−10 σ2

�
Student tk (θ; θn,Γ, 2α+ n);

parameters
unknown

∗Inverse-
gamma

�
σ2;α,β

� Inverse-
gamma

�
σ2;α+ 1

2
n,βn

�
The multivariate Student tk (X | μ,Γ, ν) is analogous to the univariate Student

t(X | μ, γ, ν) as it is symmetric with mean vector (length k) μ, k × k symmetric,
positive definite variance matrix Γ−1 ν

ν−2 , and ν degrees of freedom. For the Stu-
dent t and inverse-Wishart marginal posteriors associated with multivariate normal
likelihood function, the parameters are

θn = (n0 + n)
−1 �

n0θ0 + nY
�

Γ = (n+ n0)αnβ
−1
n

βn = β +
1

2
S +

1

2
(n0 + n)

−1
n0n

�
θ0 − Y

� �
θ0 − Y

�T
S =

n/
i=1

�
Yi − Y

� �
Yi − Y

�T
αn = α+

1

2
n− 1

2
(k − 1)

For the Student t and inverse-gamma marginal posteriors associated with linear
regression, the parameters are8

θn =
�
n0 +X

TX
�−1 �

n0θ0 +X
TY

�
n0 = X

T
0 X0

Γ =
�
n0 +X

TX
�

α+

1

2
n

�
β−1n

8Notice, linear regression subsumes the univariate, multi-parameter Gaussian case. If we letX = ι
(a vector of ones), then linear regression becomes the univariate Gaussian case.
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βn = β +
1

2
(Y −Xθn)T Y + 1

2
(θ0 − θn)T n0θ0

Bayesian regression with conjugate priors works as if we have data from a prior
period {Y0, X0} and the current period {Y,X} from which to estimate θn. Ap-

plying OLS to the stack of equations

�
Y0
Y

�
=

�
X0
X

�
θn +

�
ε0
ε

�
yields9

θn =
�
XT
0 X0 +X

TX
�−1 �

XT
0 Y0 +X

TY
�

=
�
n0 +X

TX
�−1 �

n0θ0 +X
TY

�
The inverse-Wishart and multivariate Student t distributions are multivariate analogs
to the inverse-gamma and (noncentral, scaled) univariate Student t distributions,
respectively.

7.3.2 McMC simulations
Markov chain Monte Carlo (McMC) simulations are employed when the marginal
posterior distributions cannot be derived or are extremely cumbersome to derive.
McMC approaches draw from the set of conditional posterior distributions instead
of the marginal posterior distributions. The Hammersley-Clifford theorem (Ham-
mersley and Clifford [1971] and Besag [1974]) provides regulatory conditions

9This perspective of Bayesian regression is consistent with recursive least squares where the pre-
vious estimate θt−1 based on data {Yt−1, Xt−1} is updated for data {Yt, Xt} as θt = θt−1 +
�−1t XT

t (Yt −Xtθt−1), where θt−1 =
�
XT
t−1Xt−1

�−1
XT
t−1Yt−1 and the information matrix

is updated as �t = �t−1 +XT
t Xt. To see this, note

θt = �−1t XT
t Yt +

�
I −�−1t XT

t Xt
�
θt−1

but �
I −�−1t XT

t Xt
�
θt−1 = �−1t

�
�−1t −XT

t Xt
�
θt−1

�−1t
�
XT
t−1Xt−1 +X

T
t Xt −XT

t Xt
�
θt−1

= �−1t XT
t−1Xt−1θt−1

= �−1t XT
t−1Yt−1

since θt−1 =
�
XT
t−1Xt−1

�−1
XT
t−1Yt−1. Hence,

θt = �−1t XT
t Yt + �−1t XT

t−1Yt−1

= �−1t
�
XT
t Yt +X

T
t−1Yt−1

�
=
�
XT
t−1Xt−1 +X

T
t Xt
�−1 �

XT
t−1Yt−1 +X

T
t Yt
�

or, in the notation above

θ =
�
XT
0 X0 +X

TX
�−1 �

XT
0 Y0 +X

TY
�

as indicated above.
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for when a set of conditional distributions characterizes a unique joint distribu-
tion. The regulatory conditions are essentially that every point in the marginal and
conditional distributions have positive mass. Common McMC approaches (Gibbs
sampler and Metropolis-Hastings algorithm) are supported by the Hammersley-
Clifford theorem. The utility of McMC simulation has evolved along with the R
Foundation for Statistical Computing.

Gibbs sampler

Suppose we cannot derive p (θ | Y ) in closed form (it does not have a standard
probability distribution) but we can identify the conditional posterior distributions.
We can utilize the full conditional posterior distributions to draw dependent sam-
ples for parameters of interest via McMC simulation.

For full conditional posterior distributions

p (θ1 | θ−1, Y )
...

p (θk | θ−k, Y )
draws are made for θ1 conditional on starting values for parameters other than θ1,
that is θ−1. Then, θ2 is drawn conditional on the θ1 draw and the starting value
for the remaining θ. Next, θ3 is drawn conditional on the draws for θ1 and θ2 and
the remaining θ. This continues until all θ have been sampled. Then the sampling
is repeated for a large number of draws with parameters updated each iteration by
the most recent draw.

The samples are dependent. Not all samples will be from the posterior; only af-
ter a finite (but unknown) number of iterations are draws from the marginal poste-
rior distribution (see Gelfand and Smith [1990]). (Note, in general, p (θ1, θ2 | Y ) �=
p (θ1 | θ2, Y ) p (θ1 | θ2, Y ).) Convergence is usually checked using trace plots,
burn-in iterations, and other convergence diagnostics. Model specification includes
convergence checks, sensitivity to starting values and possibly prior distribution
and likelihood assignments, comparison of draws from the posterior predictive
distribution with the observed sample, and various goodness of fit statistics.

Albert and Chib’s Gibbs sampler Bayes’ probit

The challenge with discrete choice models (like probit) is that latent utility is
unobservable, rather the analyst observes only discrete (usually binary) choices
(see chapter 5). Albert & Chib [1993] employ Bayesian data augmentation to
“supply” the latent variable. Hence, parameters of a probit model are estimated
via normal Bayesian regression (see earlier discussion in this chapter). Consider
the latent utility model

UD =Wθ − V
The conditional posterior distribution for θ is

p (θ|D,W,UD) ∼ N
�
b1,
�
Q−1 +WTW

�−1�
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where
b1 =

�
Q−1 +WTW

�−1 �
Q−1b0 +WTWb

�
b =

�
WTW

�−1
WTUD

b0 = prior means for θ and Q =
�
WT
0 W0

�−1
is the prior for the covariance. The

conditional posterior distribution for the latent variables are

p (UD|D = 1,W, θ) ∼ N (Wθ, I|UD > 0) or TN(0,∞) (Wθ, I)

p (UD|D = 0,W, θ) ∼ N (Wθ, I|UD ≤ 0) or TN(−∞,0) (Wθ, I)

where TN (·) refers to random draws from a truncated normal (truncated below
for the first and truncated above for the second). Iterative draws for (UD|D,W, θ)
and (θ|D,W,UD) form the Gibbs sampler. Interval estimates of θ are supplied
by post-convergence draws of (θ|D,W,UD). For simulated normal draws of the
unobservable portion of utility, V , this Bayes’ augmented data probit produces
remarkably similar inferences to MLE.10

Metropolis-Hastings algorithm

If neither some conditional posterior, p (θj | Y, θ−j), or the marginal posterior,
p (θ | Y ), is recognizable, then we can employ the Metropolis-Hastings (MH) al-
gorithm. The Gibbs sampler is a special case of the MH algorithm. The random
walk Metropolis algorithm is most common and outlined next.

The random walk Metropolis algorithm is as follows. We wish to draw from
p (θ | ·) but we only know p (θ | ·) up to constant of proportionality, p (θ | ·) =
cf (θ | ·) where c is unknown.

• Let θ(k−1) be a draw from p (θ | ·).11

• Draw θ∗ from N
�
θ(k−1), s2

�
where s2 is fixed.

10An efficient algorithm for this Gibbs sampler probit, rbprobitGibbs, is available in the bayesm
package of R (http://www.r-project.org/), the open source statistical computing project. Bayesm is a
package written to complement Rossi, Allenby, and McCulloch [2005].

11The procedure describes the algorithm for a single parameter. A general K parameter algorithm
works similarly (see Train [2002], p. 305):

(a) Start with a value β0n.
(b) Draw K independent values from a standard normal density, and stack the draws into a vector

labeled η1.
(c) Create a trial value of β1n = β

0
n + σΓη1 where σ is the researcher-chosen jump size parameter,

Γ is the Cholesky factor of W such that ΓΓT = W . Note the proposal distribution is specified to be
normal with zero mean and variance σ2W .

(d) Draw a standard uniform variable μ1.

(e) Calculate the ratio F =
L(yn|β1n)φ(β1n|b,W)
L(yn|β0n)φ(β0n|b,W)

where L
�
yn | β1n

�
is a product of logits, and

φ
�
β1n | b,W

�
is the normal density.

(f ) If μ1 ≤ F , accept β1n; if μ1 > F , reject β1n and let β1n = β
0
n.

(g) Repeat the process many times. For sufficiently large t, βtn is a draw from the marginal posterior.
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• Let α = min

�
1, p(θ∗|·)

p(θ(k−1)|·) =
cf(θ∗|·)

cf(θ(k−1)|·)

�
.

• Draw z∗ from U (0, 1).

• If z∗ < α then θ(k) = θ∗, otherwise θ(k) = θ(k−1). In other words, with
probability α set θ(k) = θ∗, and otherwise set θ(k) = θ(k−1).12

These draws converge to random draws from the marginal posterior distribution
after a burn-in interval if properly tuned.

Tuning the Metropolis algorithm involves selecting s2 (jump size) so that the
parameter space is explored appropriately (see Halton sequences discussion be-
low). Usually, smaller jump size results in more accepts and larger jump size
results in fewer accepts. If s2 is too small, the Markov chain will not converge
quickly, has more serial correlation in the draws, and may get stuck at a local
mode (multi-modality can be a problem). If s2 is too large, the Markov chain will
move around too much and not be able to thoroughly explore areas of high pos-
terior probability. Of course, we desire concentrated samples from the posterior
distribution. A commonly-employed rule of thumb is to target an acceptance rate
for θ∗ around 30% (20− 80% is usually considered “reasonable”).13

Some other McMC methods

Other acceptance sampling procedures such as WinBUGs (see Spiegelhalter, et
al. [2003]) are self-tuned. That is, the algorithm adaptively tunes the jump size
in generating random post convergence joint posterior draws. A difficulty with
WinBUGs is that it can mysteriously crash with little diagnostic aid.

Halton sequences

Random sampling can be slow to provide good coverage and hence prove to be
a costly way to simulate data. An alternative that provides better coverage with
fewer draws involves Halton sequences (see Train [2002], ch. 9, p. 224-238). Un-
like other methods discussed above, Halton draws tend to be negatively correlated.
Importantly, Bhat [2001] finds that 100 Halton draws provided lower simulation
error for his mixed logit than 1, 000 random draws, for discrete choice models.
Further, the error rate with 125 Halton draws was half as large as with 1, 000
random draws and somewhat smaller than with 2, 000 random draws.

A Halton sequence builds around a pre-determined number k (usually a prime
number). The Halton sequence is

st+1 =

�
st, st +

1

kt
, st +

2

kt
, . . . , st +

k − 1
kt

�

12A modification of the RW Metropolis algorithm sets θ(k) = θ∗ with log(α) probability where
α = min{0, log[f(θ∗|·)]− log[f(θ(k−1)|·)]}.

13Gelman, et al [2004] report the optimal acceptance rate is 0.44 when the number of parameters
K = 1 and drops toward 0.23 asK increases.
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starting with s0 = 0 (even though zero is ignored). An example helps to fix ideas.

Example 7.1 Consider the prime k = 3. The sequence through two iterations is⎧⎨⎩ 0 + 1/3 = 1/3, 0 + 2/3 = 2/3,
0 + 1/9 = 1/9, 1/3 + 1/9 = 4/9, 2/3 + 1/9 = 7/9,
0 + 2/9 = 2/9, 1/3 + 2/9 = 5/9, 2/3 + 2/9 = 8/9, . . .

⎫⎬⎭
This procedure describes uniform Halton draws. Other distributions are accom-
modated in the usual way — by inverse distribution functions.

Example 7.2 For example, normal draws are found by Φ−1 (st). Continuing with
the above Halton sequence, standard normal draws are⎧⎨⎩ Φ−1 (1/3) ≈ −0.43,Φ−1 (2/3) ≈ 0.43,

Φ−1 (1/9) ≈ −1.22,Φ−1 (4/9) ≈ −0.14,Φ−1 (7/9) ≈ 0.76,
Φ−1 (2/9) ≈ −0.76,Φ−1 (5/9) ≈ 0.14,Φ−1 (8/9) ≈ 1.22, . . .

⎫⎬⎭
Example 7.3 For two independent standard normal unobservables we create Hal-
ton sequences for each from different primes and transform. Suppose we use k = 2
and k = 3. The first few draws are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 =
�
Φ−1

�
1
2

�
= 0,Φ−1

�
1
3

�
= −0.43	 ,

ε2 =
�
Φ−1

�
1
4

�
= −.67,Φ−1 � 23� = 0.43	 ,

ε3 =
�
Φ−1

�
3
4

�
= 0.67,Φ−1

�
1
9

�
= −1.22	 ,

ε4 =
�
Φ−1

�
1
8

�
= −1.15,Φ−1 � 49� = −0.14	 ,

ε5 =
�
Φ−1

�
5
8

�
= 0.32,Φ−1

�
7
9

�
= 0.76

	
,

ε6 =
�
Φ−1

�
3
8

�
= −0.32,Φ−1 � 29� = −0.76	 ,

ε7 =
�
Φ−1

�
7
8

�
= 1.15,Φ−1

�
5
9

�
= 0.14

	
, . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
As the initial cycle of elements (from near zero to near one) for multiple dimension
sequences are highly correlated, the initial elements are usually discarded (treated
as burn-in). The number of elements discarded is at least as large as the largest
prime used in creating the sequences. Since primes cycle at different rates after
the first cycle, primes are more effective bases (they have smaller correlation) for
Halton sequences.

Randomized Halton draws

Halton sequences are systematic, not random, while asymptotic properties of esti-
mators assume random (or at least pseudo-random) draws of unobservables. Hal-
ton sequences can be transformed in a way that makes draws pseudo-random (as
is the case for all computer-based randomizations). Bhat [2003] suggests the fol-
lowing procedure:
1. Take a draw μ from a standard uniform distribution.
2. Add μ to each element of the Halton sequence. If the resulting element exceeds
one, subtract 1 from it. That is, sn = mod (s0 + μ) where s0 (sn) is the original
(transformed) element of the Halton sequence and mod(·) returns the fractional
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part of the argument.
Suppose μ = 0.4 for the above Halton sequence (again through two iterations),
the pseudo-random sequence is

{0.4, 0.733, 0.067, 0.511, 0.844, 0.178, 0.622, 0.956, 0.289, . . .}

The spacing remains the same so we achieve the same coverage but draws are ran-
dom. In a sense, this "blocking" approach is similar to bootstrapping regressions
with heteroskedastic and/or correlated errors. A different draw for μ is taken for
each unobservable.

Bhat [2003] also proposes scrambled Halton draws to deal with high dimen-
sion issues. Halton sequences for high dimension problems utilize larger prime
numbers. For large prime numbers, correlation in the sequences may persist for
much longer than the first cycle as discussed above. Bhat proposes scrambling the
sequence so that if we think of the above sequence as BC then the sequence is re-
versed to be CB where B = 1

3 and C = 2
3 . Different permutations are employed

for different primes. Continuing with the above Halton sequence for k = 3, the
original and scrambled sequences are tabulated below.

Original Scrambled
1/3 2/3
2/3 1/3
1/9 2/9
4/9 8/9
7/9 5/9
2/9 1/9
5/9 7/9
8/9 4/9

7.4 Additional reading

Kreps [1988, ch. 11] and McCall [1991] discuss exchangeability and de Finetti’s
theorem as well as implications for economics. Davidson and MacKinnon [2003],
MacKinnon [2002], and Cameron and Trivedi [2005] discuss bootstrapping, piv-
otal statistics, etc., and Horowitz [2001] provides an extensive discussion of boot-
strapping. Casella and George [1992] and Chib and Hamilton [1995] offer ba-
sic introductions to the Gibbs sampler and Metropolis-Hastings algorithm, re-
spectively. Tanner and Wong [1987] discuss calculating posterior distributions
by data augmentation. Train [2002, ch. 9] discusses various Halton sequence ap-
proaches and other remaining open questions associated with this relatively new,
but promising technique.



8
Overview of endogeneity

"A government study today revealed that 83% of statistics are misleading."
- Ziggy by Tom Wilson

As discussed in chapter 2, managers actively make production-investment, fi-
nancing, and accounting choices. These choices are intertwined and far from in-
nocuous. Design of accounting (like other information systems) is highly depen-
dent on the implications and responses to accounting information in combination
with other information. As these decisions are interrelated, their analysis is inher-
ently endogenous (Demski [2004]). Endogeneity presents substantial challenges
for econometric analysis. The behavior of unobservable (to the analyst) compo-
nents and omitted, correlated variables are continuing themes.

In this chapter, we briefly overview econometric analysis of endogeneity, ex-
plore some highly stylized examples that motivate its importance, and lay some
ground work for exploring treatment effects in the following chapters. A theme
for this discussion is that econometric analysis of endogeneity is a three-legged
problem: theory, data, and model specification (or logically consistent discovery
of the DGP). Failure to support any leg and the entire inquiry is likely to collapse.
Progress is impeded when authors fail to explicitly define the causal effects of in-
terest or state what conditions are perceived for identification of the estimand of
interest. As Heckman and Vytlacil [2007] argue in regards to the economics litera-
ture, this makes it difficult to build upon past literature and amass a coherent body
of evidence. We explore various identifying conditions in the ensuing discussions
of endogenous causal effects.

123D. A. Schroeder, Accounting and Causal Effects, DOI 10.1007/978-1-4419-7225-5_8,
© Springer Science+Business Media, LLC 2010
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8.1 Overview

Many, perhaps all, endogeneity concerns can be expressed in the form of an omit-
ted, correlated variable problem. We remind the reader (see chapter 3) that stan-
dard parameter estimators (such as OLS) are not asymptotically consistent in the
face of omitted, correlated variables.

8.1.1 Simultaneous equations
When many of us think of endogeneity, simultaneous equations is one of the first
settings that comes to mind. That is, when we have multiple variables whose be-
havior are interrelated such that they are effectively simultaneously determined,
endogeneity is a first-order consideration. For instance, consider a simple exam-
ple where the DGP is expressed as the following structural equations1

Y1 = β1X1 + β2Y2 + ε1

Y2 = γ1X2 + γ2Y1 + ε2

Clearly, little can be said about either Y1 or Y2 without including the other (a form
of omitted variable). It is not possible to speak of manipulation of only Y1 or Y2.
Perhaps, this is most readily apparent if we rewrite the equations in reduced form:�

1 −β2
−γ2 1

� �
Y1
Y2

�
=

�
β1 0
0 γ1

� �
X1
X2

�
+

�
ε1
ε2

�
assuming β2γ2 �= 1�

Y1
Y2

�
=

�
1 −β2
−γ2 1

�−1��
β1 0
0 γ1

� �
X1
X2

�
+

�
ε1
ε2

��

Y1 =
β1

1− β2γ2
X1 +

β2γ1
1− β2γ2

X2 +
1

1− β2γ2
ε1 +

β2
1− β2γ2

ε2

Y2 =
β1γ2

1− β2γ2
X1 +

γ1
1− β2γ2

X2 +
γ2

1− β2γ2
ε1 +

1

1− β2γ2
ε2

which can be rewritten as

Y1 = ω11X1 + ω12X2 + η1

Y2 = ω21X1 + ω22X2 + η2

where V ar

�
η1
η2

�
=

�
v11 v12
v12 v22

�
. Since rank and order conditions are satisfied

(assuming β2γ2 �= 1), the structural parameters can be recovered from the reduced

1Goldberger [1972, p. 979] defines structural equations as an approach that employs “stochastic
models in which each equation represents a causal link, rather than a mere empirical association.”
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form parameters as follows.

β1 = ω11 − ω12ω21
ω22

β2 =
ω12
ω22

γ1 = ω22 − ω12ω21
ω11

γ2 =
ω21
ω11

V ar [ε1] = v11 +
ω12 (v22ω12 − 2v12ω22)

ω222

V ar [ε2] = v22 +
ω21 (v11ω21 − 2v12ω11)

ω211

Cov [ε1, ε2] =
v12 (ω12ω21 + ω11ω22)− v11ω21ω22 − v22ω11ω12

ω11ω22

Suppose the causal effects of interest are β1 and γ1. Examination of the reduced
form equations reveals that ignoring simultaneity produces inconsistent estimates
of β1 and γ1 even if X1 and X2 are uncorrelated (unless β2 or γ2 = 0).

More naively, suppose we attempt to estimate the structural equations directly
(say, via OLS). Since the response variables are each a function of the other re-
sponse variable, the regressors are correlated with the errors and the fundamental
condition of regression E

�
XT ε

�
= 0 is violated and OLS parameter estimates

are inconsistent. A couple of recursive substitutions highlight the point. For illus-
trative purposes, we work with Y1 but the same ideas obviously apply to Y2.

Y1 = β1X1 + β2Y2 + ε1

= β1X1 + β2 (γ1X2 + γ2Y1 + ε2) + ε1

Of course, if E
�
εT2 ε1

� �= 0 then we’ve demonstrated the point; notice this is
a standard endogenous regressor problem. Simultaneity bias (inconsistency) is
illustrated with one more substitution.

Y1 = β1X1 + β2 (γ1X2 + γ2 (β1X1 + β2Y2 + ε1) + ε2) + ε1

Since Y2 is a function of Y1, inclusion of Y2 as a regressor produces a clear viola-
tion of E

�
XT ε

�
= 0 as we have E

�
εT1 ε1

� �= 0.
Notice, we can think of simultaneity problems as arising from omitted, cor-

related unobservable variables. Hence, this simple example effectively identifies
the basis — omitted, correlated unobservable variables — for most (perhaps all)
endogeneity concerns. Further, this simple structural example readily connects to
estimation of causal effects.

Definition 8.1 Causal effects are the ceteris paribus response to a change in vari-
able or parameter (Marshall [1961] and Heckman [2000]).

As the simultaneity setting illustrates, endogeneity often makes it infeasible to
“turn one dial at a time.”
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8.1.2 Endogenous regressors
Linear models with endogenous regressors are commonplace (see Larcker and
Rusticus [2004] for an extensive review of the accounting literature). Suppose the
DGP is

Y1 = X1β1 + Y2β2 + ε1

Y2 = γ1X2 + ε2

where E
�
XT ε1

�
= 0 and E

�
XT
2 ε2

�
= 0 but E

�
εT2 ε1

� �= 0. In other words,
Y1 = β1X1 + β2 (γ1X2 + ε2) + ε1. Of course, OLS produces inconsistent es-
timates. Instrumental variables (IV) are a standard remedy. Suppose we observe
variables X2. Variables X2 are clearly instruments as they are unrelated to ε1 but
highly correlated with the endogenous regressors Y2 (assuming γ1 �= 0).

Two-stage least squares instrumental variable (2SLS-IV) estimation is a stan-
dard approach for dealing with endogenous regressors. In the first stage, project
all of the regressors (endogenous plus exogenous) onto the instruments plus all
other exogenous regressors (see chapter 3 on overidentifying restrictions and IV).
Let X =

�
X1 Y2

�
and Z =

�
X1 X2

�
X̂ = Z

�
ZTZ

�−1
ZTX = PZX =

�
PZX1 PZY2

�
In the second stage, replace the regressors with the predicted values from the first
stage regression.

Y1 = PZX1β1 + PZY2β2 + ε
�
1

The IV estimator for β (for convenience, we have reversed the order of the vari-
ables) is 
�

Y T2 PZ
XT
1 PZ

� �
PZY2 PZX1

��−1 � Y T2 PZ
XT
1 PZ

�
Y1

The probability limit of the estimator is

p lim

�
Y T2 PZY2 Y T2 PZX1
XT
1 PZY2 XT

1 PZX1

�−1 �
Y T2 PZ
XT
1 PZ

�
(X1β1 + Y2β2 + ε1)

=

�
β2
β1

�
To see this, recall the inverse of the partitioned matrix�

Y T2 PZY2 Y T2 PZX1
XT
1 PZY2 XT

1 PZX1

�−1
via block "rank-one" LDLT representation (see FWL in chapter 3) is
�

I 0
A I

� �
Y T2 PZY2 0

0 XT
1 PZMPZY2PZX1

� �
I AT

0 I

��−1
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where A = XT
1 PZY2

�
Y T2 PZY2

�−1
. Simplification gives�

I −AT
0 I

� � �
Y T2 PZY2

�−1
0

0 B

� �
I 0
−A I

�
=

� �
Y T2 PZY2

�−1
+ATBA −ATB

−BA B

�
where

B =
�
XT
1 PZMPZY2PZX1

�−1
and

MPZY2 = I − PZY2
�
Y T2 PZY2

�−1
Y T2 PZ

Now, focus on the second equation.�−BAY T2 PZ +BXT
1 PZ

�
Y1

=

�
− �XT

1 PZMPZY2PZX1
�−1

XT
1 PZY2

�
Y T2 PZY2

�−1
Y T2 PZ

+
�
XT
1 PZMPZY2PZX1

�−1
XT
1 PZ

�
Y1

=
�
XT
1 PZMPZY2PZX1

�−1
XT
1 PZ

�
I − PZY2

�
Y T2 PZY2

�−1
Y T2 PZ

�
(X1β1 + Y2β2 + ε1)

=
�
XT
1 PZMPZY2PZX1

�−1
XT
1 PZMPZY2 (X1β1 + Y2β2 + ε1)

Since PZMPZY2 = PZMPZY2PZ , the second equation can be rewritten as�
XT
1 PZMPZY2PZX1

�−1
XT
1 PZMPZY2PZ (X1β1 + Y2β2 + ε1)

= β1 +
�
XT
1 PZMPZY2PZX1

�−1
XT
1 PZMPZY2PZ (Y2β2 + ε1)

Since MPZY2PZY2 = 0 (by orthogonality) and p lim 1
nPZε1 = 0, the estimator

for β1 is consistent. The derivation is completed by reversing the order of the
variables in the equations again to show that β2 is consistent.2

8.1.3 Fixed effects
Fixed effects models allow for time and/or individual differences in panel data.
That is, separate regressions, say for m firms in the sample, are estimated with
differences in intercepts but pooled slopes as illustrated in figure 8.1.

Y = Xβ + Zγ +
m/
j=1

αjDj + ε

2Of course, we could simplify the first equation but it seems very messy so why not exploit the
effort we’ve already undertaken.



128 8. Overview of endogeneity

Figure 8.1: Fixed effects regression curves

where Dj is a firm indicator variable, X represents the experimental regressors
and Z the control variables.3 Geometrically, it’s instructive to think of FWL (see
chapter 3) where we condition on all control variables, then the experimental ex-
planatory variables of interest are evaluated conditional on the control variables.4

MZY =MZXβ +

m/
j=1

αjMZDj + �

Of course, we can also consider semi- and non-parametric fixed effects regres-
sions as well if we think of the nonparametric analog to FWL initiated by Robin-
son [1988] in the form of partial linear models and Stoker’s [1991] partial index
models (see chapter 6).

Causal effects are identified via a fixed effects model when there are constant,
unobserved (otherwise they could be included as covariates) individual character-
istics that because they are related to both outcomes and causing variables would
be omitted, correlated variables if ignored. Differencing approaches such as fixed
effects are simple and effective so long as individual fixed effects do not vary
across periods and any correlation between treatment and unobserved outcome
potential is described by an additive time-invariant covariate. Since this condition

3Clearly, time fixed effects can be accommodated in analogous fashion with time subscripts and
indicator variables replacing the firm or individual variables.

4Of course, if an intercept is included in the fixed effects regression then the summation index is
over m− 1 firms or individuals instead of m.
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doesn’t usually follow from economic theory or institutionally-relevant informa-
tion, the utility of the fixed effects approach for identifying causal effects is lim-
ited.5

Nikolaev and Van Lent [2005] study variation through time in a firm’s dis-
closure quality and its impact on the marginal cost of debt. In their setting, un-
observable cross-firm heterogeneity, presumed largely constant through time, is
accommodated via firm fixed effects. That is, firm-by-firm regressions that vary in
intercept but have the same slope are estimated. Nikolaev and Van Lent argue that
omitted variables and endogeneity plague evaluation of the impact of disclosure
quality on cost of debt capital and the problem is mitigated by fixed effects.

Robinson [1989] concludes that fixed effects analysis more effectively copes
with endogeneity than longitudinal, control function, or IV approaches in the
analysis of the differential effects of union wages. In his setting, endogeneity is
primarily related to worker behavior and measurement error. Robinson suggests
that while there is wide agreement that union status is not exogenous, there is little
consistency in teasing out the effect of union status on wages. While longitudi-
nal analysis typically reports smaller effects than OLS, cross-sectional approaches
such as IV or control function approaches (inverse Mills ratio) typically report
larger effects than OLS. Robinson concludes that a simple fixed effects analysis of
union status is a good compromise. (Also, see Wooldridge [2002], p. 581-590.)

On the other hand, Lalonde [1986] finds that regression approaches (including
fixed effects) perform poorly compared with "experimental" methods in the analy-
sis of the National Supported Work (NSW) training program. Dehejia and Wahba
[1995] reanalyze the NSW data via propensity score matching and find similar re-
sults to Lalonde’s experimental evidence. Once again we find no single approach
works in all settings and the appropriate method depends on the context.

8.1.4 Differences-in-differences
Differences-in-differences (DID) is a close cousin to fixed effects. DID is a panel
data approach that identifies causal effects when certain groups are treated and
other groups are not. The treated are exposed to sharp changes in the causing
variable due to shifts in the economic environment or changes in (government)
policy. Typically, potential outcomes, in the absence of the change, are composed
of the sum of a time effect that is common to all groups and a time invariant
individual fixed effect, say,

E [Y0 | t, i] = βt + γi
Then, the causal effect δ is simply the difference between expected outcomes with
treatment and expected outcomes without treatment

E [Y1 | t, i] = E [Y0 | t, i] + δ

5It is well-known that fixed effects yield inconsistent parameter estimates when the model involves
lagged dependent variables (see Chamberlain [1984] and Angrist and Krueger [1998]).
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The key identifying condition for DID is the parameters associated with (treatment
time and treatment group) interaction terms are zero in the absence of intervention.

Sometimes apparent interventions are themselves terminated and provide op-
portunities to explore the absence of intervention. Relatedly, R. A. Fisher (quoted
in Cochran [1965]) suggested the case for causality is stronger when the model has
many implications supported by the evidence. This emerges in terms of robustness
checks, exploration of sub-populations in which treatment effects should not be
observed (because the subpopulation is insensitive or immune to treatment or did
not receive treatment), and comparison of experimental and non-experimental re-
search methods (Lalonde [1986]). However, general equilibrium forces may con-
found direct evidence from such absence of intervention analyses. As Angrist and
Krueger [1998, p. 56] point out, "Tests of refutability may have flaws. It is possi-
ble, for example, that a subpopulation that is believed unaffected by the interven-
tion is indirectly affected by it."

8.1.5 Bivariate probit
A variation on a standard self-selection theme is when both selection and outcome
equations are observed as discrete responses. If the unobservables are jointly nor-
mally distributed a bivariate probit accommodates endogeneity in the same way
that a standard Heckman (inverse Mills ratio) control function approach works
with continuous outcome response. Endogeneity is reflected in nonzero correla-
tion among the unobservables. Dubin and Rivers [1989] provide a straightforward
overview of this approach.

UD = Zθ + V , D =
1 if UD > 0
0 otherwise

Y ∗ = Xβ + ε, Y =
1 if Y ∗ > 0
0 otherwise

E

�
V
ε

�
= 0, V ar

�
V
ε

�
= Σ =

�
1 ρ
ρ 1

�
Following the shorthand of Greene [1997], let qi1 = 2UiD−1 and qi2 = 2Yi−1,

so that qij = 1 or −1. The bivariate normal cumulative distribution function is

Pr (X1 < x1, X2 < x2) = Φ2 (z1, z2, ρ) =

1 x2

−∞

1 x1

−∞
φ2 (z1, z2, ρ) dz1dz2

where

φ2 (z1, z2, ρ) =
1

2π (1− ρ2) 12
exp

�
−x

2
1 + x

2
2 − 2ρx1x2

2 (1− ρ2)
�

denotes the bivariate normal (unit variance) density. Now let

zi1 = θ
TZi wi1 = qi1zi1

zi2 = β
TXi wi2 = qi2zi2



8.1 Overview 131

ρi∗ = qi1qi2ρ

With this setup, the log-likelihood function can be written in a simple form where
all the sign changes associated with D and Y equal to 0 and 1 are accounted for

lnL =
n/
i=1

Φ2 (wi1, wi2, ρi∗)

and maximization proceeds in the usual manner (see, for example, Greene [1997]
for details).6

8.1.6 Simultaneous probit
Suppose we’re investigating a discrete choice setting where an experimental vari-
able (regressor) is endogenously determined. An example is Bagnoli, Liu, and
Watts [2006] (BLW). BLW are interested in the effect of family ownership on
the inclusion of covenants in debt contracts. Terms of debt contracts, such as
covenants, are likely influenced by interest rates and interest rates are likely de-
termined simultaneously with terms such as covenants. A variety of limited in-
formation approaches7 have been proposed for estimating these models - broadly
referred to as simultaneous probit models (see Rivers and Vuong [1988]). BLW
adopted two stage conditional maximum likelihood estimation (2SCML; discussed
below).

The base model involves a structural equation

y∗ = Y γ +X1β + u

where discrete D is observed

Di = 1 if y∗i > 0
0 if y∗i ≤ 0

The endogenous explanatory variables have reduced form

Y = ΠX + V

where exogenous variableX and X1 are related via matrix J , X1 = JX , Y is an
n×mmatrix of endogenous variables,X1 is n×k, andX is n×p. The following
conditions are applied to all variations:

Condition 8.1 (Xi, ui, Vi) is iid with Xi having finite positive definite variance
matrix ΣXX , and (ui, Vi | Xi) are jointly normally distributed with mean zero

and finite positive definite variance matrix Ω =

�
σuu ΣuV
ΣV u ΣV V

�
.

6Evans and Schwab [1995] employ bivariate probit to empirically estimate causal effects of school-
ing.

7They are called limited information approaches in that they typically focus on one equation at a
time and hence ignore information in other equations.
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Condition 8.2 rank(Π, J) = m+ k.

Condition 8.3 (γ,β,Π,Ω) lie in the interior of a compact parameter space Θ.

Identification of the parameters in the structural equation involves normaliza-
tion. A convenient normalization is

V ar [y∗i | Xi, Yi] = σuu − λTΣV V λ = 1,

where λ = Σ−1V V ΣV u, the structural equation is rewritten as

y∗ = Y γ +X1β + V λ+ η

and ηi = ui − V Ti λ ∼ N
�
0,σuu − λTΣV V λ = 1

�
.

Limited information maximum likelihood (LIML)

A limited information maximum likelihood (LIML) approach was adopted by
Godfrey and Wickens [1982]. The likelihood function is

n0
i=1

(2π)
− (m+1)

2 |Ω|− 1
2

�1 ∞

ci

exp

�
−1
2

�
u, V Ti

�
Ω−1

�
u, V Ti

�T�
du

�Di

×
�1 ci

−∞
exp

�
−1
2

�
u, V Ti

�
Ω−1

�
u, V Ti

�T�
du

�1−Di

where ci = −
�
Y Ti γ −XT

1iβ
�
. Following some manipulation, estimation involves

maximizing the log-likelihood with respect to (γ,β,λ,Π,ΣV V ). As LIML is com-
putationally difficult in large models, it has received little attention except as a
benchmark case.

Instrumental variables probit (IVP)

Lee [1981] proposed an instrumental variables probit (IVP). Lee rewrites the struc-
tural equation in reduced form

y∗i =
�
ΠTXi

�
γ +X1iβ + Viλ+ ηi

The log-likelihood for D given X is

n/
i=1

Di logΦ
��

ΠTXi
�
γ∗ +X

T
1iβ∗

�
+(1−Di) log

�
1− Φ

��
ΠTXi

�
γ∗ +X

T
1iβ∗

��
where Φ (·) denotes a standard normal cdf and

γ∗ =
γ
ω β∗ =

β
ω
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ω2 = V ar
�
ui + V

T
i γ

�
= σ2uu + γ

TΣV V γ + γ
TΣV V λ+ λ

TΣV V γ

= 1 + λTΣV V λ+ γ
TΣV V γ + γ

TΣV V λ+ λ
TΣV V γ

= 1 + (γ + λ)
T

ΣV V (γ + λ)

Consistent estimates for Π, Π̂, are obtained via OLS. Then, utilizing Π̂ in place of
Π, maximization of the log-likelihood with respect to γ∗ and β∗ is computed via
m regressions followed by a probit estimation.

Generalized two-stage simultaneous probit (G2SP)

Amemiya [1978] suggested a general method for obtaining structural parameter
estimates from reduced form estimates (G2SP). Heckman’s [1978] two-stage en-
dogenous dummy variable model is a special case of G2SP. Amemiya’s proposal
is a variation on IVP where the unconstrained log-likelihood is maximized with
respect to τ∗

n/
i=1

Di logΦ
�
XT
i τ∗

�
+ (1−Di) log

�
1− Φ

�
XT
i τ∗

��
τ∗ = Πγ∗ + Jβ∗

In terms of the sample estimates we have the regression problem

τ̂∗ =
�

Π̂ J
� � γ∗

β∗

�
+ (τ̂∗ − τ∗)−

�
Π̂−Π

�
γ∗

= Ĥ

�
γ∗
β∗

�
+ e

where e = (τ̂∗ − τ∗)−
�

Π̂−Π
�
γ∗. OLS provides consistent estimates of γ∗ and

β∗ but GLS is more efficient. Let V̂ denote an asymptotic consistent estimator for
the variance e. Then Amemiya’s G2SP estimator is�

γ̂∗
β̂∗

�
=
�
ĤT V̂ −1Ĥ

�−1
ĤT V̂ −1τ̂∗

This last step constitutes one more computational step (in addition to the m re-
duced form regressions and one probit) than required for IVP (and 2SCML de-
scribed below).

Two-stage conditional maximum likelihood (2SCML)

Rivers and Vuong [1988] proposed two-stage conditional maximum likelihood
(2SCML). Vuong [1984] notes when the joint density for a set of endogenous
variables can be factored into a conditional distribution for one variable and a
marginal distribution for the remaining variables, estimation can often be sim-
plified by using conditional maximum likelihood methods. In the simultaneous
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probit setting, the joint density forDi and Yi factors into a probit likelihood and a
normal density.

h (Di, Yi | Xi; γ,β,λ,Π,ΣV V )
= f (Di | Yi, Xi; γ,β,λ,Π) g (Yi | Xi;Π,ΣV V )

where

f (Di | Yi, Xi; γ,β,λ,Π)
= Φ

�
Y Ti γ +X

T
1iβ + V

T
i λ

�Di
�
1− Φ

�
Y Ti γ +X

T
1iβ + V

T
i λ

��(1−Di)

g (Yi | Xi;Π,ΣV V )
= (2π)

−m
2 |ΣV V |−

1
2 exp

�
−1
2

�
Yi −ΠTXi

�T
Σ−1V V

�
Yi −ΠTXi

��
Two steps are utilized to compute the 2SCML estimator. First, the marginal log-
likelihood for Yi is maximized with respect to Π̂ and Σ̂V V . This is computed
by m reduced form regressions of Y on X to obtain Π̂. Let the residuals be

V̂i = Yi − Π̂Xi, then the standard variance estimator is Σ̂V V = n−1
n/
i=1

V̂iV̂
T
i .

Second, replacing Π with Π̂, the conditional log-likelihood for Di is maximized

with respect to
�
γ̂, β̂, λ̂

�
. This is computed via a probit analysis of Di with re-

gressors Yi, X1i, and V̂i.
2SCML provides several convenient tests of endogeneity. When Yi and ui are

correlated, standard probit produces inconsistent estimators for γ and β. However,
if ΣV u = 0, or equivalently, λ = 0, the Yis are effectively exogenous. A modified
Wald statistic is

MW = n λ̂
T
V̂0

�
λ̂
�−1

λ̂

where V̂0
�
λ̂
�

is a consistent estimator for the lower right-hand block (correspond-

ing to λ) of V0 (θ) =
�
H̃T Σ̃H̃

�−1
where

H̃ =

�
Π J 0
Im 0 Im

�
and

Σ̃ =

�
Σ̃XX Σ̃XV
Σ̃V X Σ̃V V

�
= E

�
φ
�
ZTi δ + V

T
i λ

�2
Φ
�
ZTi δ + V

T
i λ

� �
1− Φ

�
ZTi δ + V

T
i λ

�� � Xi
Vi

� �
Xi
Vi

�T�
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with Zi =

�
Yi
X1i

�
, δ =

�
γ
β

�
, and φ (·) is the standard normal density. Notice

the modified Wald statistic draws from the variance estimator under the null. The
conditional score statistic is

CS =
1

n

∂L
�
γ̃, β̃, 0, Π̂

�
∂λT

V̂0

�
λ̂
� ∂L�γ̃, β̃, 0, Π̂�

∂λ

where
�
γ̃, β̃

�
are the standard probit maximum likelihood estimators. The condi-

tional likelihood ratio statistic is

CLR = 2
6
L
�
γ̂, β̂, λ̂, Π̂

�
− L

�
γ̂, β̂, 0, Π̂

�7
As is typical (see chapter 3), the modified Wald, conditional score, and conditional
likelihood ratio statistics have the same asymptotic properties.8

8.1.7 Strategic choice model
Amemiya [1974] and Heckman [1978] suggest resolving identification problems
in simultaneous probit models by making the model recursive. Bresnahan and
Reiss [1990] show that this approach rules out interesting interactions in strate-
gic choice models. Alternatively, they propose modifying the error structure to
identify unique equilibria in strategic, multi-person choice models.

Statistical analysis of strategic choice extends random utility analysis by adding
game structure and Nash equilibrium strategies (Bresnahan and Reiss [1990, 1991]
and Berry [1992]). McKelvey and Palfrey [1995] proposed quantal response equi-
librium analysis by assigning extreme value (logistic) distributed random errors to
players’ strategies. Strategic error by the players makes the model amenable to sta-
tistical analysis as the likelihood function does not degenerate. Signorino [2003]
extends the idea to political science by replacing extreme value errors with as-
signment of normally distributed errors associated with analyst uncertainty and/or
private information regarding the players’ utility for outcomes. Since analyst er-
ror due to unobservable components is ubiquitous in business and economic data
and private information problems are typical in settings where accounting plays
an important role, we focus on the game setting with analyst error and private
information.

A simple two player, sequential game with analyst error and private information
(combined as π) is depicted in figure 8.2. Player A moves first by playing either
left (l) or right (r). Player B moves next but player A’s choice depends on the
anticipated response of player B to player A’s move. For simplicity, assume πi ∼
N
�
0,σ2I

�
where

πTi =
�
πAlLi πBlLi πAlRi πBlRi πArLi πBrLi πArRi πBrRi

�
8Rivers and Vuong also identify three Hausman-type test statistics for endogeneity but their simu-

lations suggest the modified Wald, conditional score, and conditional likelihood ratio statistics perform
at least as well and in most cases better.
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Figure 8.2: Strategic choice game tree

Since choice is scale-free (see chapter 5) maximum likelihood estimation proceeds
with σ2 normalized to 1.

The log-likelihood is
n/
i=1

YlLi log (PlLi) + YlRi log (PlRi) + YrLi log (PrLi) + YrRi log (PrRi)

where Yjki = 1 if strategy j is played by A and k is played by B for sam-
ple i, and Pjki is the probability that strategy j is played by A and k is played
by B for sample i. The latter requires some elaboration. Sequential play yields
Pjk = P(k|j)Pj . Now, only the conditional and marginal probabilities remain to
be identified. Player B’s strategy depends on player A’s observed move. Hence,

P(L|l) = Φ



UlL − UlR√

2σ2

�
P(R|l) = 1− P(L|l)
P(R|r) = 1− P(L|r)
P(L|r) = Φ



UrL − UrR√

2σ2

�
Player A’s strategy however depends on B’s response to A’s move. Therefore,

Pl = Φ

⎛⎜⎜⎝P(L|l)UlL − P(L|r)UrL + P(R|l)UlR − P(R|r)UrR<�
P 2(L|l) + P

2
(L|r) + P

2
(R|l) + P

2
(R|r)

�
σ2

⎞⎟⎟⎠
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and
Pr = 1− Pl

Usually, the observable portion of expected utility is modeled as an index func-
tion; for Player B we have

Ujk − Ujk� = UBj =
�
Xjk −Xjk�

�
βBjk = X

B
j β

B
j

Since Player B moves following Player A, stochastic analysis of Player B’s utility
is analogous to the simple binary discrete choice problem. That is,

P(L|l) = Φ



UlL − UlR√

2σ2

�
= Φ

�
XB
l β

B
l√
2

�
and

P(L|r) = Φ

�
XB
r β

B
r√
2

�
However, stochastic analysis of Player A’s utility is a little more subtle. Player

A’s expected utility depends on Player B’s response to Player A’s move. Hence,
Player A’s utilities are weighted by the conditional probabilities associated with
Player B’s strategies. That is, from an estimation perspective the regressors X
interact with the conditional probabilities to determine the coefficients in Player
A’s index function.

Ujk − Uj�k = XjkβAjk −Xj�kβAj�k
Consequently, Player A’s contribution to the likelihood function is a bit more com-
plex than that representing Player B’s utilities.9 Stochastic analysis of Player A’s
strategy is

Pl = Φ

⎛⎜⎜⎝P(L|l)UlL − P(L|r)UrL + P(R|l)UlR − P(R|r)UrR<�
P 2(L|l) + P

2
(L|r) + P

2
(R|l) + P

2
(R|r)

�
σ2

⎞⎟⎟⎠

= Φ

⎛⎜⎜⎜⎝
P(L|l)XlLβ

A
lL − P(L|r)XrLβArL

+P(R|l)XlRβ
A
lR − P(R|r)XrRβArR<�

P 2(L|l) + P
2
(L|r) + P

2
(R|l) + P

2
(R|r)

�
⎞⎟⎟⎟⎠

9Recall the analysis is stochastic because the analyst doesn’t observe part of the agents’ utilities.
Likewise, private information produces agent uncertainty regarding the other player’s utility. Hence,
private information produces a similar stochastic analysis. This probabilistic nature ensures that the
likelihood doesn’t degenerate even in a game of pure strategies.
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Example 8.1 Consider a simple experiment comparing a sequential strategic choice
model with standard binary choice models for each player. We generated 200 sim-
ulated samples of size n = 2, 000 with uniformly distributed regressors and stan-
dard normal errors. In particular,

XB
l ∼ U (−2, 2)

XB
r ∼ U (−5, 5)

XA
lL, X

A
lR, X

A
rL, X

A
rR ∼ U (−3, 3)

and

βBl =
� −0.5 1

�T
βBr =

�
0.5 −1 �T

βA =
�
0.5 1 1 −1 −1 �T

where the leading element of each vector is an intercept β0.10 Results (means,
standard deviations, and the 0.01 and 0.99 quantiles) are reported in tables 8.1
and 8.2. The standard discrete choice (DC) estimates seem to be more systemati-

Table 8.1: Strategic choice analysis for player B

βBl0 βBl βBr0 βBr
parameter −0.5 1 0.5 −1
SC mean −0.482 0.932 0.460 −0.953
DC mean −0.357 0.711 0.354 −0.713
SC std dev 0.061 0.057 0.101 0.059
DC std dev 0.035 0.033 0.050 0.030

SC

�
0.01,
0.99

	
quantiles

� −0.62,
−0.34

	 �
0.80,
1.10

	 �
0.22,
0.69

	 � −1.10,
0.82

	

DC

�
0.01,
0.99

	
quantiles

� −0.43,
−0.29

	 �
0.65,
0.80

	 �
0.23,
0.47

	 � −0.79,
−0.64

	

cally biased towards zero. Tables 8.3 and 8.4 expressly compare the parameter es-
timate differences between the strategic choice model (SC) and the discrete choice
models (DC). Hence, not only are the standard discrete choice parameter esti-
mates biased toward zero but also there is almost no overlap with the (0.01, 0.99)
interval estimates for the strategic choice model.

As in the case of conditionally-heteroskedastic probit (see chapter 5), marginal
probability effects of regressors are likely to be nonmonotonic due to cross agent

10The elements of βA correspond to
�
intercept βAlL βAlR βArL βArR

�
where the inter-

cept is the mean difference in observed utility (conditional on the regressors) between strategies l and
r.
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Table 8.2: Strategic choice analysis for player A

βA0 βAlL βAlR
parameter 0.5 1 1
SC mean 0.462 0.921 0.891
DC mean 0.304 0.265 0.360
SC std dev 0.044 0.067 0.053
DC std dev 0.032 0.022 0.021

SC



0.01,
0.99

�
quantiles



0.34,
0.56

� 

0.78,
1.08

� 

0.78,
1.01

�

DC



0.01,
0.99

�
quantiles



0.23,
0.38

� 

0.23,
0.32

� 

0.31,
0.41

�
βArL βArR

parameter −1 −1
SC mean −0.911 −0.897
DC mean −0.352 −0.297
SC std dev 0.053 0.058
DC std dev 0.022 0.023

SC



0.01,
0.99

�
quantiles


 −1.04,
−0.79

� 
 −1.05,
−0.78

�

DC



0.01,
0.99

�
quantiles


 −0.40,
−0.30

� 
 −0.34,
−0.25

�

probability interactions. Indeed, comparison of marginal effects for strategic pro-
bit with those of standard binary probit helps illustrate the contrast between statis-
tical analysis of strategic and single person decisions. For the sequential strategic
game above, the marginal probabilities for player A’s regressors include
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where signj is the sign of the Xikj term in Pmnj , fij and f(k|i)j is the standard
normal density function evaluated at the same arguments as Pij and P(k|i)j ,

Den =
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P 2(L|l)j + P

2
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2
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Table 8.3: Parameter differences in strategic choice analysis for player B

SC-DC βBl0 βBl βBr0 βBr
parameter −0.5 1 0.5 −1

mean −0.125 0.221 0.106 −0.241
std dev 0.039 0.041 0.079 0.049�
0.01,
0.99

	
quantiles

� −0.22,
−0.03

	 �
0.13,
0.33

	 � −0.06,
0.29

	 � −0.36,
−0.14

	

Table 8.4: Parameter differences in strategic choice analysis for player A

SC-DC βA0 βAlL βAlR
parameter 0.5 1 1

mean 0.158 0.656 0.531
std dev 0.027 0.056 0.044

(0.01, 0.99)
quantiles

(0.10, 0.22) (0.54, 0.80) (0.43, 0.62)

SC-DC βArL βArR
parameter −1 −1

mean −0.559 −0.600
std dev 0.045 0.050

(0.01, 0.99)
quantiles

(−0.67,−0.46) (−0.73,−0.49)
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Similarly, the marginal probabilities with respect to player B’s regressors include
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Clearly, analyzing responses to anticipated moves by other agents who themselves
are anticipating responses changes the game. In other words, endogeneity is fun-
damental to the analysis of strategic play.

Multi-person strategic choice models can be extended in a variety of ways in-
cluding simultaneous move games, games with learning, games with private infor-
mation, games with multiple equilibria, etc. (Bresnahan and Reiss [1990], Tamer
[2003]). The key point is that strategic interaction is endogenous and standard
(single-person) discrete choice models (as well as simultaneous probit models)
ignore this source of endogeneity.
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8.1.8 Sample selection
A common problem involves estimation of β for the model

Y ∗ = Xβ + ε

however sample selection results in Y being observed only for individuals receiv-
ing treatment (when D = 1). The data are censored but not at a fixed value (as
in a Tobit problem; see chapter 5). Treating sample selection D as an exogenous
variable is inappropriate if the unobservable portion of the selection equation, say
VD, is correlated with unobservables in the outcome equation ε.

Heckman [1974, 1976, 1979] addressed this problem and proposed the classic
two stage approach. In the first stage, estimate the selection equation via probit.
Identification in this model does not depend on an exclusion restriction (Z need
not include variables appropriately excluded fromX) but if instruments are avail-
able they’re likely to reduce collinearity issues.

To fix ideas, identification conditions include

Condition 8.4 (X,D) are always observed, Y1 is observed when D = 1 (D∗ >
1),

Condition 8.5 (ε, VD) are independent of X with mean zero,

Condition 8.6 VD ∼ N (0, 1),

Condition 8.7 E [ε | VD] = γ1VD.11

The two-stage procedure estimates θ from a first stage probit.

D∗ = Zθ − VD

These estimates 2θ are used to construct the inverse Mills ratio λi =
φ(Zi�θ)
Φ(Zi�θ) which

is utilized as a covariate in the second stage regression.

Y1 = Xβ + γλ+ η

where E [η | X,λ] = 0. Given proper specification of the selection equation (in-
cluding normality of VD), Heckman shows that the two-step estimator is asymp-
totically consistent (if not efficient) for β, the focal parameter of the analysis.12

11Bivariate normality of (ε, VD) is often posed, but strictly speaking is not required for identifica-
tion.

12It should be noted that even though Heckman’s two stage approach is commonly employed to
estimate treatment effects (discussed later), treatment effects are not the object of the sample selection
model. In fact, since treatment effects involve counterfactuals and we have no data from which to
identify population parameters for the counterfactuals, treatment effects in this setting are unassailable.
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A semi-nonparametric alternative

Concern over reliance on normal probability assignment to unobservables in the
selection equation as well as the functional form of the outcome equation, has
resulted in numerous proposals to relax these conditions. Ahn and Powell [1993]
provide an alternative via their semi-nonparametric two stage approach. However,
nonparametric identification involves an exclusion restriction or, in other words, at
least one instrument. That is, (at least) one variable included in the selection equa-
tion is properly omitted from the outcome equation. Intuitively, this is because the
selection equation could be linear and the second stage would then involve colin-
ear regressors. Ahn and Powell propose a nonparametric selection model coupled
with a partial index outcome (second stage) model. The first stage selection index
is estimated via nonparametric regression

2gi =
n/
j=1

K
�
wi−wj
h1

�
Dj

n/
j=1

K
�
wi−wj
h1

�
The second stage uses instruments Z, which are functions ofW , and the estimated
selection index. 2β = 62SXX7−1 2SXY
where

2SXX =



n

2

�−1 n−1/
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n/
j=i+1

2ωij (zi − zj) (xi − xj)T
2SXY =



n

2

�−1 n−1/
i=1

n/
j=i+1

2ωij (zi − zj) (yi − yj)
and 2ωij = 1

h2
K


2gi − 2gj
h2

�
DiDj

Ahn and Powell show the instrumental variable density-weighted average deriva-
tive estimator for β achieves root-n convergence (see the discussion of nonpara-
metric regression and Powell, Stock, and Stoker’s [1989] instrumental variable
density-weighted average derivative estimator in chapter 6).

8.1.9 Duration models
Sometimes the question involves how long to complete a task. For instance, how
long to complete an audit (internal or external), how long to turn around a dis-
tressed business unit or firm, how long to complete custom projects, how long will
a recession last, and so on. Such questions can be addressed via duration models.
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The most popular duration models are proportional hazard models. Analysis of
such questions can be plagued by the same challenges of endogeneity and unob-
servable heterogeneity as other regression models.

We’ll explore a standard version of the model and a couple of relaxations.
Namely, we’ll look at Horowitz’s [1999] semiparametric proportional hazard (clas-
sical) model with unobserved heterogeneity and Campolieti’s [2001] Bayesian
semiparametric duration model with unobserved heterogeneity.

Unconditional hazard rate

The probability that an individual leaves a state during a specified interval given
the individual was previously in the particular state is

Pr (t < T < t+ h | T > t)

The hazard function, then is λ (t) = lim
h→0

Pr(t<T<t+h|T>t)
h , the instantaneous rate

of leaving per unit of time. To relate this to the hazard function write

Pr (t < T < t+ h | T > t) =
Pr (t < T < t+ h)

Pr (T > t)

=
F (t+ h)− F (t)

1− F (t)
where F is the probability distribution function and f is the density function for
T . When F is differentiable, the hazard rate is seen as the limit of the right hand
side divided by h as h approaches 0 (from above)

λ (t) = lim
h→0

F (t+ h)− F (t)
h

1

1− F (t)
=

f (t)

1− F (t)
To move this closer to a version of the model that is frequently employed define

the integrated hazard function as13

Λ (t) ≡
t1
0

λ (s) ds

Now,

d

t1
0

λ (s) ds

dt
= λ (t)

13The lower limit of integration is due to F (0) = 0.
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and

λ (t) =
f (t)

1− F (t) =
f (t)

S (t)
= −d lnS (t)

dt

Hence, − lnS (t) =
t1
0

λ (s) ds and the survivor function is

S (t) = exp

⎡⎣− t1
0

λ (s) ds

⎤⎦
Since S (t) = 1− F (t), the distribution function can be written

F (t) = 1− exp
⎡⎣− t1

0

λ (s) ds

⎤⎦
and the density function (following differentiation) can be written

f (t) = λ (t) exp

⎡⎣− t1
0

λ (s) ds

⎤⎦
And all probabilities can conveniently be expressed in terms of the hazard func-
tion. For instance,

Pr (T ≥ t2 | T ≥ t1) =
1− F (t2)
1− F (t1)

= exp

⎡⎣− t21
t1

λ (s) ds

⎤⎦
for t2 > t1. The above discussion focuses on unconditional hazard rates but fre-
quently we’re interested in conditional hazard rates.

Regression (conditional hazard rate) models

Conditional hazard rate models may be parametric or essentially nonparametric
(Cox [1972]). Parametric models focus on λ (t | x) where the conditional distrib-
ution is known (typically, Weibull, exponential, or lognormal). Much conditional
duration analysis is based on the proportional hazard model. The proportional haz-
ard model relates the hazard rate for an individual with characteristics x to some
(perhaps unspecified) baseline hazard rate by some positive function of x. Since,
as seen above, the probability of change is an exponential function it is convenient
to also express this positive function as an exponential function. The proportional
hazard model then is

λ (t | x, u) = λ0 (t) exp [− (xβ + u)]
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where λ is the hazard that T = t conditional on observablesX = x and unobserv-
ables U = u, λ0 is the baseline hazard function, and β is a vector of (constant)
parameters.

A common parameterization follows from a Weibull (α, γ) distribution. Then,
the baseline hazard rate is

λ0 (t) =
α

γ



t

γ

�α−1
and the hazard rate is

λ (t | x1) = α

γ



t

γ

�α−1
exp [−x1β1]

The latter is frequently rewritten by adding a vector of ones to x1 (denote this x)
and absorbing γ (denote the augmented parameter vector β) so that

λ (t | x) = αtα−1 exp [−xβ]
This model can be estimated in standard fashion via maximization of the log-
likelihood.

Since Cox’s [1972] method doesn’t require the baseline hazard function to be
estimated, the method is essentially nonparametric in nature. Heterogeneity stems
from observable and unobservable components of

exp [− (xβ + u)]
Cox’s method accommodates observed heterogeneity but assumes unobserved ho-
mogeneity. As usual, unobservable heterogeneity can be problematic as condi-
tional exchangeability is difficult to satisfy. Therefore, we look to alternative ap-
proaches to address unobservable heterogeneity.

Horowitz [1999] describes an approach for nonparametrically estimating the
baseline hazard rate λ0 and the integrated hazard rate Λ. In addition, the distri-
bution function F and density function f for U , the unobserved source of het-
erogeneity with time-invariant covariates x, are nonparametrically estimated. The
approach employs kernel density estimation methods similar to those discussed in
chapter 6. As the estimators for F and f are slow to converge, the approach calls
for large samples.

Campolieti [2001] addresses unobservable heterogeneity and the unknown error
distribution via an alternative tack - Bayesian data augmentation (similar to that
discussed in chapter 7). Discrete duration is modeled as a sequence of multi-period
probits where duration dependence is accounted for via nonparametric estimation
of the baseline hazard. A Dirichlet process prior supplies the nonparametric nature
to the baseline hazard estimation.

8.1.10 Latent IV
Sometimes (perhaps frequently) it is difficult to identify instruments. Of course,
this makes instrumental variable (IV) estimation unattractive. However, latent IV
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methods may help to overcome this deficiency. If the endogenous data are nonnor-
mal (exhibit skewness and/or multi-modality) then it may be possible to decom-
pose the data into parts that are unrelated to the regressor error and the part that is
related. This is referred to as latent IV. Ebbes [2004] reviews the history of latent
IV related primarily to measurement error and extends latent IV via analysis and
simulation to various endogeneity concerns, including self selection.

8.2 Selectivity and treatment effects

This chapter is already much too long so next we only briefly introduce our main
thesis - analysis of treatment effects in the face of potential endogeneity. Treatment
effects are a special case of causal effects which we can under suitable conditions
address without a fully structural model. As such treatment effects are both simple
and challenging at the same time. Discussion of treatment effects occupies much
of our focus in chapters 9 through 12.

First, we describe a prototypical setting. Then, we identify some typical treat-
ment effects followed by a brief review of various identification conditions.

Suppose the DGP is
outcome equations:

Yj = μj (X) + Vj , j = 0, 1

selection equation:14

D∗ = μD (Z)− VD
observable response:

Y = DY1 + (1−D)Y0
where

D =
1 D∗ > 0
0 otherwise

In the binary case, the treatment effect is the effect on outcome of treatment
compared with no treatment, Δ = Y1 − Y0. Typical average treatment effects
include ATE, ATT, and ATUT.15 ATE refers to the average treatment effect,

ATE = E [Δ] = E [Y1 − Y0]

In other words, the average effect on outcome of treatment for a random draw
from the population. ATT refers to the average treatment effect on the treated,

ATT = E [Δ | D = 1] = E [Y1 − Y0 | D = 1]

14We’ll stick with binary choice for simplicity, though this can be readily generalized to the multino-
mial case.

15Additional treatment effects are discussed in subsequent chapters.
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In other words, the average effect on outcome of treatment for a random draw from
the subpopulation selecting (or assigned) treatment. ATUT refers to the average
treatment effect on the untreated,

ATUT = E [Δ | D = 0] = E [Y1 − Y0 | D = 0]

In other words, the average effect on outcome of treatment for a random draw
from the subpopulation selecting (or assigned) no treatment.

The simplest approaches (strongest data conditions) involve ignorable treatment
(sometimes referred to as selection on observables). These approaches include ex-
ogenous dummy variable regression, nonparametric regression, propensity score,
propensity score matching, and control function methods. Various conditions and
relaxations are discussed in the next chapter.

Instrumental variables (IV) are a common treatment effect identification strat-
egy when ignorability is ill-suited to the data at hand. IV strategies accommo-
date homogeneous response at their simplest (strongest conditions) or unobserv-
able heterogeneity at their most challenging (weakest conditions). Various IV ap-
proaches including standard IV, propensity score IV, control function IV, local IV,
and Bayesian data augmentation are discussed in subsequent chapters. Heckman
and Vytlacil [2005] argue that each of these strategies potentially estimate differ-
ent treatment effects under varying conditions including continuous treatment and
general equilibrium treatment effects.

8.3 Why bother with endogeneity?

Despite great effort by analysts, experiments frequently fail to identify substan-
tive endogenous effects (Heckman [2000, 2001]). Why then do we bother? In this
section we present a couple of stylized examples that depict some of our con-
cerns regarding ignoring endogeneity. A theme of these examples is that failing to
adequately attend to the DGP may produce a Simpson’s paradox result.

8.3.1 Sample selection example
Suppose a firm has two production facilities, A and B. Facility A is perceived to
be more efficient (produces a higher proportion of non-defectives). Consequently,
production has historically been skewed in favor of facility A. The firm is in-
terested in improving production efficiency, and particularly, improving facility
B. Management has identified new production technology and is interested in
whether the new technology improves production efficiency. Production using the
new technology is skewed toward facility B. This “experiment” generates the data
depicted in table 8.5.

Is the new technology more effective than the old technology? What is the tech-
nology treatment effect? As management knows, the choice of facility is impor-
tant. The facility is a sufficiently important variable that its inclusion illuminates
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Table 8.5: Production data: Simpson’s paradox

Facility A Facility B Total
Technology New Old New Old New Old
Successes 10 120 133 25 143 145

Trials 10 150 190 50 200 200
% successes 100 80 70 50 71.5 72.5

the production technology treatment effect but its exclusion obfuscates the ef-
fect.16 Aggregate results reported under the "Total" columns are misleading. For
facility A, on average, there is a 20% improvement from the new technology. Like-
wise, for facility B, there is an average 20% improvement from the new technol-
ogy.

Now, suppose an analyst collects the data but is unaware that there are two
different facilities (the analyst only has the last two columns of data). What con-
clusion regarding the technology treatment effect is likely to be reached? This
level of aggregation results in a serious omitted variable problem that leads to in-
ferences opposite what the data suggest. This, of course, is a classic Simpson’s
paradox result produced via a sample selection problem. The data are not gen-
erated randomly but rather reflect management’s selective “experimentation” on
production technology.

8.3.2 Tuebingen-style treatment effect examples
Treatment effects are the focus of much economic self-selection analyses. When
we ask what is the potential outcome response (Y ) to treatment? — we pose a
treatment effect question. A variety of treatment effects may be of interest. To
setup the next example we define a few of the more standard treatment effects that
may be of interest.

Suppose treatment is binary (D = 1 for treatment, D = 0 for untreated), for
simplicity. As each individual is only observed either with treatment or without
treatment, the observed outcome is

Y = DY1 + (1−D)Y0
where

Y1 = μ1 + V1

is outcome response with treatment,

Y0 = μ0 + V0

is outcome response without treatment, μj is observed outcome for treatment j =
0 or 1, and Vj is unobserved (by the analyst) outcome for treatment j. Now, the

16This is an example of ignorable treatment (see ch. 9 for additional details).
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treatment effect is

Δ = Y1 − Y0
= μ1 + V1 − μ0 − V0
= (μ1 − μ0) + (V1 − V0)

an individual’s (potential) outcome response to a change in treatment from regime
0 to regime 1. Note (μ1 − μ0) is the population level effect (based on observables)
and (V1 − V0) is the individual-specific gain. That is, while treatment effects focus
on potential gains for an individual, the unobservable nature of counterfactuals
often lead analysts to focus on population level parameters.

The average treatment effect

ATE = E [Δ] = E [Y1 − Y0]
is the average response to treatment for a random sample from the population.
Even though seemingly cumbersome, we can rewrite ATE in a manner that illu-
minates connections with other treatment effects,

E [Y1 − Y0] = E [Y1 − Y0|D = 1]Pr (D = 1)

+E [Y1 − Y0|D = 0]Pr (D = 0)

The average treatment effect on the treated

ATT = E [Δ|D = 1] = E [Y1 − Y0|D = 1]

is the average response to treatment for a sample of individuals that choose (or
are assigned) treatment. Selection (or treatment) is assumed to follow some RUM
(random utility model; see chapter 5), D∗ = Z − VD where D∗ is latent utility
index associated with treatment, Z is the observed portion, VD is the part unob-
served by the analyst, and D = 1 if D∗ > 0 or D = 0 otherwise.

The average treatment effect on the untreated

ATUT = E [Δ|D = 0] = E [Y1 − Y0|D = 0]

is the average response to treatment for a sample of individuals that choose (or are
assigned) no treatment. Again, selection (or treatment) is assumed to follow some
RUM, D∗ = Z − VD.

To focus attention on endogeneity, it’s helpful to identify what is estimated by
OLS (exogenous treatment). Exogenous dummy variable regression estimates

OLS = E [Y1|D = 1]− E [Y0|D = 0]

An important question is when and to what extent isOLS a biased measure of the
treatment effect.

Bias in the OLS estimate for ATT is

OLS = ATT + biasATT

= E [Y1|D = 1]− E [Y0|D = 0]

= E [Y1|D = 1]− E [Y0|D = 1] + {E [Y0|D = 1]− E [Y0|D = 0]}
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Hence,
biasATT = {E [Y0|D = 1]]− E [Y0|D = 0]}

Bias in the OLS estimate for ATUT is

OLS = ATUT + biasATUT

= E [Y1|D = 1]− E [Y0|D = 0]

= E [Y1|D = 0]− E [Y0|D = 0] + {E [Y1|D = 1]− E [Y1|D = 0]}
Hence,

biasATUT = {E [Y1|D = 1]− E [Y1|D = 0]}
Since

ATE = Pr (D = 1)E [Y1 − Y0|D = 1] + Pr (D = 0)E [Y1 − Y0|D = 0]

= Pr (D = 1)ATT + Pr (D = 0)ATUT

bias in theOLS estimate forATE can be written as a function of the bias in other
treatment effects

biasATE = Pr (D = 1) biasATT + Pr (D = 0) biasATUT

Now we explore some examples.

Case 1

The setup involves simple (no regressors), discrete probability and outcome struc-
ture. It is important for identification of counterfactuals that outcome distributions
are not affected by treatment selection. Hence, outcomes Y0 and Y1 vary only be-
tween states (and not by D within a state) as described, for instance, in table 8.6.
Key components, the treatment effects, and any bias for case 1 are reported in
table 8.7. Case 1 exhibits no endogeneity bias. This, in part, can be attributed to
the idea that Y1 is constant. However, even with Y1 constant, this is a knife-edge
result as the next cases illustrate.

Case 2

Case 2, depicted in table 8.8, perturbs the state two conditional probabilities only.
Key components, the treatment effects, and any bias for case 2 are reported in table
8.9. Hence, a modest perturbation of the probability structure produces endogene-
ity bias in both ATT and ATE (but of course not ATUT as Y1 is constant).

Table 8.6: Tuebingen example case 1: ignorable treatment

State (s) one two three
Pr (Y,D, s) 0.0272 0.0128 0.32 0.0 0.5888 0.0512

D 0 1 0 1 0 1
Y 0 1 1 1 2 1
Y0 0 0 1 1 2 2
Y1 1 1 1 1 1 1
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Table 8.7: Tuebingen example case 1 results: ignorable treatment

Results Key components
ATE = E [Y1 − Y0]

= −0.6 p = Pr (D = 1) = 0.064

ATT = E [Y1 − Y0 | D = 1]
= −0.6 E [Y1 | D = 1] = 1.0

ATUT = E [Y1 − Y0 | D = 0]
= −0.6 E [Y1 | D = 0] = 1.0

OLS = E [Y1 | D = 1]
−E [Y0 | D = 0] = −0.6 E [Y1] = 1.0

biasATT = E [Y0 | D = 1]
−E [Y0 | D = 0] = 0.0

E [Y0 | D = 1] = 1.6

biasATUT = E [Y1 | D = 1]
−E [Y1 | D = 0] = 0.0

E [Y0 | D = 0] = 1.6

biasATE = pbiasATT
+(1− p) biasATUT = 0.0 E [Y0] = 1.6

Table 8.8: Tuebingen example case 2: heterogeneous response

State (s) one two three
Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512

D 0 1 0 1 0 1
Y 0 1 1 1 2 1
Y0 0 0 1 1 2 2
Y1 1 1 1 1 1 1

Table 8.9: Tuebingen example case 2 results: heterogeneous response

Results Key components
ATE = E [Y1 − Y0]

= −0.6 p = Pr (D = 1) = 0.16

ATT = E [Y1 − Y0 | D = 1]
= −0.24 E [Y1 | D = 1] = 1.0

ATUT = E [Y1 − Y0 | D = 0]
= −0.669 E [Y1 | D = 0] = 1.0

OLS = E [Y1 | D = 1]
−E [Y0 | D = 0] = −0.669 E [Y1] = 1.0

biasATT = E [Y0 | D = 1]
−E [Y0 | D = 0] = −0.429 E [Y0 | D = 1] = 1.24

biasATUT = E [Y1 | D = 1]
−E [Y1 | D = 0] = 0.0

E [Y0 | D = 0] = 1.669

biasATE = pbiasATT
+(1− p) biasATUT = −0.069 E [Y0] = 1.6



8.3 Why bother with endogeneity? 153

Table 8.10: Tuebingen example case 3: more heterogeneity

State (s) one two three
Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512

D 0 1 0 1 0 1
Y 0 1 1 1 2 0
Y0 0 0 1 1 2 2
Y1 1 1 1 1 0 0

Table 8.11: Tuebingen example case 3 results: more heterogeneity

Results Key components
ATE = E [Y1 − Y0]

= −1.24 p = Pr (D = 1) = 0.16

ATT = E [Y1 − Y0 | D = 1]
= −0.56 E [Y1 | D = 1] = 0.68

ATUT = E [Y1 − Y0 | D = 0]
= −1.370 E [Y1 | D = 0] = 0.299

OLS = E [Y1 | D = 1]
−E [Y0 | D = 0] = −0.989 E [Y1] = 0.36

biasATT = E [Y0 | D = 1]
−E [Y0 | D = 0] = −0.429 E [Y0 | D = 1] = 1.24

biasATUT = E [Y1 | D = 1]
−E [Y1 | D = 0] = 0.381

E [Y0 | D = 0] = 1.669

biasATE = pbiasATT
+(1− p) biasATUT = 0.251 E [Y0] = 1.6

Case 3

Case 3, described in table 8.10, maintains the probability structure of case 2 but
alters the outcomes with treatment Y1. Key components, the treatment effects, and
any bias for case 3 are reported in table 8.11. A modest change in the outcomes
with treatment produces endogeneity bias in all three average treatment effects
(ATT , ATE, and ATUT ).

Case 4

Case 4 maintains the probability structure of case 3 but alters the outcomes with
treatment Y1 as described in table 8.12. Key components, the treatment effects,
and any bias for case 4 are reported in table 8.13. Case 4 is particularly noteworthy
as OLS indicates a negative treatment effect, while all standard treatment effects,
ATE, ATT ,and ATUT are positive. The endogeneity bias is so severe that it
produces a Simpson’s paradox result. Failure to accommodate endogeneity results
in inferences opposite the DGP. Could this DGP represent earnings management?
While these examples may not be as rich and deep as Lucas’ [1976] critique of
econometric policy evaluation, the message is similar — endogeneity matters!
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Table 8.12: Tuebingen example case 4: Simpson’s paradox

State (s) one two three
Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512

D 0 1 0 1 0 1
Y 0 1 1 1 2 2.3
Y0 0 0 1 1 2 2
Y1 1 1 1 1 2.3 2.3

Table 8.13: Tuebingen example case 4 results: Simpson’s paradox

Results Key components
ATE = E [Y1 − Y0]

= 0.232
p = Pr (D = 1) = 0.16

ATT = E [Y1 − Y0 | D = 1]
= 0.176

E [Y1 | D = 1] = 1.416

ATUT = E [Y1 − Y0 | D = 0]
= 0.243

E [Y1 | D = 0] = 1.911

OLS = E [Y1 | D = 1]
−E [Y0 | D = 0] = −0.253 E [Y1] = 1.832

biasATT = E [Y0 | D = 1]
−E [Y0 | D = 0] = −0.429 E [Y0 | D = 1] = 1.24

biasATUT = E [Y1 | D = 1]
−E [Y1 | D = 0] = −0.495 E [Y0 | D = 0] = 1.669

biasATE = pbiasATT
+(1− p) biasATUT = −0.485 E [Y0] = 1.6
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8.4 Discussion and concluding remarks

"All models are wrong but some are useful."
- G. E. P. Box

It’s time to return to our theme. Identifying causal effects suggests close atten-
tion to the interplay between theory, data, and model specification. Theory frames
the problem so that economically meaningful effects can be deduced. Data sup-
plies the evidence from which inference is drawn. Model specification attempts
to consistently identify properties of the DGP. These elements are interdependent
and iteratively divined.

Heckman [2000,2001] criticizes the selection literature for periods of preoccu-
pation with devising estimators with nice statistical properties (e.g., consistency)
but little economic import. Heckman’s work juxtaposes policy evaluation impli-
cations of the treatment effects literature with the more ambitious structural mod-
eling of the Cowles commission. It is clear for policy evaluation that theory or
framing is of paramount importance.

"Every econometric study is incomplete."
- Zvi Griliches

In his discussion of economic data issues, Griliches [1986] reminds us that the
quality of the data depends on both its source and its use. This suggests that cre-
ativity is needed to embrace the data issue. Presently, it seems that creativity in the
address of omitted correlated variables, unobservable heterogeneity, and identifi-
cation of instruments is in short supply in the accounting and business literature.

Model specification receives more attention in these pages but there is little to
offer if theory and data are not carefully and creatively attended. With our current
understanding of econometrics it seems we can’t say much about a potential spec-
ification issue (including endogeneity) unless we accommodate it in the analysis.
Even so, it is typically quite challenging to assess the nature and extent of the
problem. If there is a mismatch with the theory or data, then discovery of (prop-
erties of) the DGP is likely hopelessly confounded. Logical consistency has been
compromised.

8.5 Additional reading

The accounting literature gives increasing attention to endogeneity issues. Larcker
and Rusticus [2004] review much of this work. Thought-provoking discussions of
accounting and endogeneity are reported in an issue of The European Account-
ing Review including Chenhall and Moers. [2007a,2007b], Larcker and Rusticus
[2007], and Van Lent [2007].
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Amemiya [1985], Wooldridge [2002], Cameron and Trivedi [2005], Angrist
and Krueger [1998], and the volumes of Handbook of Econometrics (especially
volumes 5 and 6b) offer extensive reviews of econometric analysis of endogeneity.
Latent IV traces back to Madansky [1959] and is resurrected by Lewbel [1997].
Heckman and Singer [1985,1986] discuss endogeneity challenges in longitudinal
studies or duration models. The treatment effect examples are adapted from Joel
Demski’s seminars at the University of Florida and Eberhard Karls University of
Tuebingen, Germany.



9
Treatment effects: ignorability

First, we describe a prototypical selection setting. Then, we identify some typical
average treatment effects followed by a review of various identification conditions
assuming ignorable treatment (sometimes called selection on observables). Ignor-
able treatment approaches are the simplest to implement but pose the strongest
conditions for the data. That is, when the data don’t satisfy the conditions it makes
it more likely that inferences regarding properties of the DGP are erroneous.

9.1 A prototypical selection setting

Suppose the DGP is
outcome equations:1

Yj = μj (X) + Vj , j = 0, 1

selection equation:2

D∗ = μD (Z)− VD
observable response:

Y = DY1 + (1−D)Y0

1Sometimes we’ll find it convenient to write the outcome equations as a linear response

Yj = μj +Xβj + Vj

2We’ll stick with binary choice for simplicity, though this can be readily generalized to the multino-
mial case (as discussed in the marginal treatment effects chapter).
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where

D =
1 D∗ > 0
0 otherwise

and Y1 is (potential) outcome with treatment and Y0 is outcome without treatment.
In the binary case, the treatment effect is the effect on outcome of treatment

compared with no treatment, Δ = Y1 − Y0. Some typical treatment effects in-
clude: ATE, ATT, and ATUT. ATE refers to the average treatment effect, by iterated
expectations

ATE = EX [ATE (X)]

= EX [E [Δ | X = x]] = E [Y1 − Y0]
In other words, the average effect on outcome of treatment for a random draw
from the population. ATT refers to the average treatment effect on the treated,

ATT = EX [ATT (X)]

= EX [E [Δ | X = x,D = 1]] = E [Y1 − Y0 | D = 1]

In other words, the average effect on outcome of treatment for a random draw from
the subpopulation selecting (or assigned) treatment. ATUT refers to the average
treatment effect on the untreated,

ATUT = EX [ATUT (X)]

= EX [E [Δ | X = x,D = 0]] = E [Y1 − Y0 | D = 0]

In other words, the average effect on outcome of treatment for a random draw
from the subpopulation selecting (or assigned) no treatment.

The remainder of this chapter is devoted to simple identification and estimation
strategies. These simple strategies pose strong conditions for the data that may
lead to logically inconsistent inferences.

9.2 Exogenous dummy variable regression

The simplest strategy (strongest data conditions) is exogenous dummy variable
regression. Suppose D is independent of (Y1, Y0) conditional on X , response is
linear, and errors are normally distributed, then ATE is identified via exogenous
dummy variable (OLS) regression.3 For instance, suppose the DGP is

Y = δ + ςD +Xβ0 +DX (β1 − β0) + ε
Since Y1 and Y0 are conditionally mean independent of D given X

E [Y1 | X,D = 1] = E [Y1 | X]
= δ + ς +Xβ0 +X (β1 − β0)

3These conditions are stronger than necessary as we can get by with conditional mean indepen-
dence in place of conditional stochastic independence.



9.3 Tuebingen-style examples 159

and

E [Y0 | X,D = 0] = E [Y0 | X]
= δ +Xβ0

then

ATE (X) = E [Y1 | X]− E [Y0 | X]
= ς +X (β1 − β0)

Then, by iterated expectations,ATE = ς+E [X] (β1 − β0). ATE can be directly
estimated via α if we rewrite the response equation as

Y = δ + αD +Xβ0 +D (X − E [X]) (β1 − β0) + ε
which follows from rewriting the DGP as

Y = δ + (ς + E [X] (β1 − β0))D +Xβ0
+D [X (β1 − β0)− E [X] (β1 − β0)] + ε

9.3 Tuebingen-style examples

To illustrate ignorable treatment, we return to the Tuebingen-style examples of
chapter 8 and add regressors to the mix. For each case, we compare treatment ef-
fect analyses when the analyst observes the states with when the analyst observes
only the regressor,X . The setup involves simple discrete probability and outcome
structure. Identification of counterfactuals is feasible if outcome distributions are
not affected by treatment selection. Hence, outcomes Y0 and Y1 vary only between
states (and not by D within a state).

Case 1

The first case depicted in table 9.1 involves extreme homogeneity (no variation
in Y0 and Y1). Suppose the states are observable to the analyst. Then, we have

Table 9.1: Tuebingen example case 1: extreme homogeneity

State (s) one two three
Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512

D 0 1 0 1 0 1
Y 0 1 0 1 0 1
Y0 0 0 0 0 0 0
Y1 1 1 1 1 1 1
X 1 1 1 1 0 0

a case of perfect regressors and no residual uncertainty. Consequently, we can
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identify treatments effects by states. The treatment effect for all three states is
homogeneously one.

Now, suppose the states are unobservable but the analyst observes X . Then,
conditional average treatment effects are

E [Y1 − Y0 | X = 1] = E [Y1 − Y0 | X = 0] = 1

Key components, unconditional average (integrating outX) treatment effects, and
any bias for case 1 are reported in table 9.2. Case 1 exhibits no endogeneity bias.

Table 9.2: Tuebingen example case 1 results: extreme homogeneity

Results Key components
ATE = E [Y1 − Y0]

= 1.0
p = Pr (D = 1) = 0.16

ATT = E [Y1 − Y0 | D = 1]
= 1.0

E [Y1 | D = 1] = 1.0

ATUT = E [Y1 − Y0 | D = 0]
= 1.0

E [Y1 | D = 0] = 1.0

OLS = E [Y1 | D = 1]
−E [Y0 | D = 0] = 1.0

E [Y1] = 1.0

biasATT = E [Y0 | D = 1]
−E [Y0 | D = 0] = 0.0

E [Y0 | D = 1] = 0.0

biasATUT = E [Y1 | D = 1]
−E [Y1 | D = 0] = 0.0

E [Y0 | D = 0] = 0.0

biasATE = pbiasATT
+(1− p) biasATUT = 0.0 E [Y0] = 0.0

Extreme homogeneity implies stochastic independence of (Y0, Y1) and D condi-
tional on X .

Case 2

Case 2 adds variation in outcomes but maintains treatment effect homogeneity as
displayed in table 9.3. Suppose the states are observable to the analyst. Then, we

Table 9.3: Tuebingen example case 2: homogeneity

State (s) one two three
Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512

D 0 1 0 1 0 1
Y 0 1 1 2 2 3
Y0 0 0 1 1 2 2
Y1 1 1 2 2 3 3
X 1 1 1 1 0 0

can identify treatments effects by states. The treatment effect for all three states is
homogeneously one.
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Now, suppose the states are unobservable but the analyst observes X . Then,
conditional average treatment effects are

E [Y1 − Y0 | X = 1] = E [Y1 − Y0 | X = 0] = 1

which follows from

EX [E [Y1 | X]] = 0.36 (1.889) + 0.64 (3) = 2.6
EX [E [Y0 | X]] = 0.36 (0.889) + 0.64 (2) = 1.6

but OLS (or, for that matter, nonparametric regression) estimates

EX [E [Y1 | X,D = 1]] = 0.68 (1.882) + 0.32 (3) = 2.24

and
EX [E [Y0 | X,D = 0]] = 0.299 (0.892) + 0.701 (2) = 1.669

Clearly, outcomes are not conditionally mean independent of treatment given X
(2.6 �= 2.24 for Y1 and 1.6 �= 1.669 for Y0). Key components, unconditional aver-
age (integrating out X) treatment effects, and any bias for case 2 are summarized
in table 9.4. Hence, homogeneity does not ensure exogenous dummy variable (or

Table 9.4: Tuebingen example case 2 results: homogeneity

Results Key components
ATE = E [Y1 − Y0]

= 1.0
p = Pr (D = 1) = 0.16

ATT = E [Y1 − Y0 | D = 1]
= 1.0

E [Y1 | D = 1] = 2.24

ATUT = E [Y1 − Y0 | D = 0]
= 1.0

E [Y1 | D = 0] = 2.669

OLS = E [Y1 | D = 1]
−E [Y0 | D = 0] = 0.571

E [Y1] = 2.6

biasATT = E [Y0 | D = 1]
−E [Y0 | D = 0] = −0.429 E [Y0 | D = 1] = 1.24

biasATUT = E [Y1 | D = 1]
−E [Y1 | D = 0] = −0.429 E [Y0 | D = 0] = 1.669

biasATE = pbiasATT
+(1− p) biasATUT = −0.429 E [Y0] = 1.6

nonparametric) identification of average treatment effects.

Case 3

Case 3 slightly perturbs outcomes with treatment, Y1, to create heterogeneous
response as depicted in table 9.5. Suppose the states are observable to the analyst.
Then, we can identify treatments effects by states. The treatment effect for all
three states is homogeneously one.
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Table 9.5: Tuebingen example case 3: heterogeneity

State (s) one two three
Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512

D 0 1 0 1 0 1
Y 0 1 1 1 2 0
Y0 0 0 1 1 2 2
Y1 1 1 2 2 2 2
X 1 1 1 1 0 0

But, suppose the states are unobservable and the analyst observes X . Then,
conditional average treatment effects are heterogeneous

E [Y1 − Y0 | X = 1] = 1

E [Y1 − Y0 | X = 0] = 0

This follows from

EX [E [Y1 | X]] = 0.36 (1.889) + 0.64 (2) = 1.96

EX [E [Y0 | X]] = 0.36 (0.889) + 0.64 (2) = 1.6
but OLS (or nonparametric regression) estimates

EX [E [Y1 | X,D = 1]] = 0.68 (1.882) + 0.32 (2) = 1.92

and
EX [E [Y0 | X,D = 0]] = 0.299 (0.892) + 0.701 (2) = 1.669

Clearly, outcomes are not conditionally mean independent of treatment given X
(1.96 �= 1.92 for Y1 and 1.6 �= 1.669 for Y0). Key components, unconditional av-
erage (integrating outX) treatment effects, and any bias for case 3 are summarized
in table 9.6. A modest change in outcomes with treatment produces endogeneity
bias in all three average treatment effects (ATT , ATE, and ATUT ). Average
treatment effects are not identified by dummy variable regression (or nonparamet-
ric regression) in case 3.

Case 4

Case 4, described in table 9.7, maintains the probability structure of case 3 but al-
ters outcomes with treatment, Y1, to produce a Simpson’s paradox result. Suppose
the states are observable to the analyst. Then, we can identify treatments effects
by states. The treatment effect for all three states is homogeneously one. But, sup-
pose the states are unobservable and the analyst observes X . Then, conditional
average treatment effects are heterogeneous

E [Y1 − Y0 | X = 1] = 0.111

E [Y1 − Y0 | X = 0] = 0.3
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Table 9.6: Tuebingen example case 3 results: heterogeneity

Results Key components
ATE = E [Y1 − Y0]

= 0.36
p = Pr (D = 1) = 0.16

ATT = E [Y1 − Y0 | D = 1]
= 0.68

E [Y1 | D = 1] = 1.92

ATUT = E [Y1 − Y0 | D = 0]
= 0.299

E [Y1 | D = 0] = 1.968

OLS = E [Y1 | D = 1]
−E [Y0 | D = 0] = 0.251

E [Y1] = 1.96

biasATT = E [Y0 | D = 1]
−E [Y0 | D = 0] = −0.429 E [Y0 | D = 1] = 1.24

biasATUT = E [Y1 | D = 1]
−E [Y1 | D = 0] = −0.048 E [Y0 | D = 0] = 1.669

biasATE = pbiasATT
+(1− p) biasATUT = −0.109 E [Y0] = 1.6

Table 9.7: Tuebingen example case 4: Simpson’s paradox

State (s) one two three
Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512

D 0 1 0 1 0 1
Y 0 1 1 1 2 2.3
Y0 0 0 1 1 2 2
Y1 1 1 1 1 2.3 2.3
X 1 1 1 1 0 0

This follows from

EX [E [Y1 | X]] = 0.36 (1.0) + 0.64 (2.3) = 1.832

EX [E [Y0 | X]] = 0.36 (0.889) + 0.64 (2) = 1.6
but OLS (or nonparametric regression) estimates

EX [E [Y1 | X,D = 1]] = 0.68 (1.0) + 0.32 (2.3) = 1.416

and
EX [E [Y0 | X,D = 0]] = 0.299 (0.892) + 0.701 (2) = 1.669

Clearly, outcomes are not conditionally mean independent of treatment given X
(1.932 �= 1.416 for Y1 and 1.6 �= 1.669 for Y0). Key components, unconditional
average (integrating out X) treatment effects, and any bias for case 4 are summa-
rized in table 9.8. Case 4 is particularly noteworthy as dummy variable regression
(or nonparametric regression) indicates a negative treatment effect, while all three
standard average treatment effects, ATE, ATT ,and ATUT , are positive. Hence,
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Table 9.8: Tuebingen example case 4 results: Simpson’s paradox

Results Key components
ATE = E [Y1 − Y0]

= 0.232
p = Pr (D = 1) = 0.16

ATT = E [Y1 − Y0 | D = 1]
= 0.176

E [Y1 | D = 1] = 1.416

ATUT = E [Y1 − Y0 | D = 0]
= 0.243

E [Y1 | D = 0] = 1.911

OLS = E [Y1 | D = 1]
−E [Y0 | D = 0] = −0.253 E [Y1] = 1.832

biasATT = E [Y0 | D = 1]
−E [Y0 | D = 0] = −0.429 E [Y0 | D = 1] = 1.24

biasATUT = E [Y1 | D = 1]
−E [Y1 | D = 0] = −0.495 E [Y0 | D = 0] = 1.669

biasATE = pbiasATT
+(1− p) biasATUT = −0.485 E [Y0] = 1.6

average treatment effects are not identified by exogenous dummy variable regres-
sion (or nonparametric regression) for case 4.

How do we proceed when ignorable treatment (conditional mean independence)
fails? A common response is to look for instruments and apply IV approaches to
identify average treatment effects. Chapter 10 explores instrumental variable ap-
proaches. The remainder of this chapter surveys some other ignorable treatment
approaches and applies them to the asset revaluation regulation problem intro-
duced in chapter 2.

9.4 Nonparametric identification

Suppose treatment is ignorable or, in other words, treatment is conditionally mean
independent of outcome,

E [Y1 | X,D] = E [Y1 | X]

and
E [Y0 | X,D] = E [Y0 | X]

This is also called "selection on observables" as the regressors are so powerful that
we can ignore choice D. For binary treatment, this implies

E [Y1 | X,D = 1] = E [Y1 | X,D = 0]

and
E [Y0 | X,D = 1] = E [Y0 | X,D = 0]
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The condition is difficult to test directly as it involves E [Y1 | X,D = 0] and
E [Y0 | X,D = 1], the counterfactuals. Let p (X) = Pr (D = 1 | X). Ignorable
treatment implies the average treatment effect is nonparametrically identified.

ATE (X) = E [Δ | X] = E [Y1 − Y0 | X]
= E [Y1 | X]− E [Y0 | X]

By Bayes’ theorem we can rewrite the expression as

p (X)E [Y1 | X,D = 1] + (1− p (X))E [Y1 | X,D = 0]

−p (X)E [Y0 | X,D = 1]− (1− p (X))E [Y0 | X,D = 0]

conditional mean independence allows simplification to

E [Y1 | X]− E [Y0 | X] = ATE (X)

Consider a couple of ignorable treatment examples which distinguish between
exogenous dummy variable and nonparametric identification.

Example 9.1 The first example posits a simple case of stochastic independence
between treatment D and response (Y1, Y0) conditional on X . The DGP is de-
picted in table 9.9 (values of D, Y1, and Y0 vary randomly at each level of X).4
Clearly, if the response variables are stochastically independent ofD conditional

Table 9.9: Exogenous dummy variable regression example

probability 1
6

1
6

1
6

1
6

1
6

1
6 E [·]

(Y1 | X,D = 1) 0 1 0 2 0 3 1
(Y1 | X,D = 0) 0 1 0 2 0 3 1
(Y0 | X,D = 1) −1 0 −2 0 −3 0 −1
(Y0 | X,D = 0) −1 0 −2 0 −3 0 −1

X 1 1 2 2 3 3 2
(D | X) 0 1 0 1 0 1 0.5

on X

Pr (Y1 = y1 | X = x,D = 1) = Pr (Y1 = y1 | X = x,D = 0)

and

Pr (Y0 = y0 | X = x,D = 1) = Pr (Y0 = y0 | X = x,D = 0)

4The columns in the table are not states of nature but merely indicate the values the response Yj
and treatmentD variables are allowed to take and their likelihoods. Conditional onX , the likelihoods
for Yj andD and independent.
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then they are also conditionally mean independent

E [Y1 | X = 1, D = 1] = E [Y1 | X = 1, D = 0] = 0.5

E [Y1 | X = 2, D = 1] = E [Y1 | X = 2, D = 0] = 1

E [Y1 | X = 3, D = 1] = E [Y1 | X = 3, D = 0] = 1.5

and

E [Y0 | X = 1, D = 1] = E [Y0 | X = 1, D = 0] = −0.5
E [Y0 | X = 2, D = 1] = E [Y0 | X = 2, D = 0] = −1
E [Y0 | X = 3, D = 1] = E [Y0 | X = 3, D = 0] = −1.5

Conditional average treatment effects are

ATE (X = 1) = 0.5− (−0.5) = 1
ATE (X = 2) = 1− (−1) = 2

ATE (X = 3) = 1.5− (−1.5) = 3
and unconditional average treatment effects are

ATE = E [Y1 − Y0] = 1− (−1) = 2
ATT = E [Y1 − Y0 | D = 1] = 1− (−1) = 2
ATUT = E [Y1 − Y0 | D = 0] = 1− (−1) = 2

Exogenous dummy variable regression

Y = δ + αD +Xβ0 +D (X − E [X]) (β1 − β0) + ε
consistently estimates ATE via α. Based on a saturated "sample" of size 384 re-
flecting the DGP, dummy variable regression results are reported in table 9.10.

Table 9.10: Exogenous dummy variable regression results

parameter coefficient se t-statistic
δ 0.000 0.207 0.000
α 2.000 0.110 18.119
β0 −0.500 0.096 −5.230

β1 − β0 1.000 0.135 7.397

The conditional regression estimates of average treatment effects

ATE (X = 1) = 2 + 1 (1− 2) = 1
ATE (X = 2) = 2 + 1 (2− 2) = 2
ATE (X = 3) = 2 + 1 (3− 2) = 3

correspond well with the DGP. In this case, exogenous dummy variable regression
identifies the average treatment effects.
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Example 9.2 The second example relaxes the DGP such that responses are con-
ditionally mean independent but not stochastically independent and, importantly,
the relations between outcomes and X are nonlinear. The DGP is depicted in ta-
ble 9.11 (values of D, Y1, and Y0 vary randomly at each level of X).5 Again,

Table 9.11: Nonparametric treatment effect regression

probability 1
6

1
6

1
6

1
6

1
6

1
6 E [·]

(Y1 | X,D = 1) 0 1 0 2 0 3 1
(Y1 | X,D = 0) 0.5 0.5 1 1 1.5 1.5 1
(Y0 | X,D = 1) −1 0 −2 0 −3 0 −1
(Y0 | X,D = 0) −0.5 −0.5 −1 −1 −1.5 −1.5 −1

X −1 −1 −2 −2 3 3 0
(D | X) 0 1 0 1 0 1 0.5

population average treatment effects are

ATE = E [Y1 − Y0] = 1− (−1) = 2

ATT = E [Y1 − Y0 | D = 1] = 1− (−1) = 2
ATUT = E [Y1 − Y0 | D = 0] = 1− (−1) = 2

Further, the average treatment effects conditional onX are

ATE (X = −1) = 0.5− (−0.5) = 1

ATE (X = −2) = 1− (−1) = 2
ATE (X = 3) = 1.5− (−1.5) = 3

Average treatment effects are estimated in two ways. First, exogenous dummy vari-
able regression

Y = δ + αD +Xβ0 +D (X − E [X]) (β1 − β0) + ε

consistently estimates ATE via α. A saturated "sample" of 48 observations reflect-
ing the DGP produces the results reported in table 9.12. However, the regression-
estimated average treatment effects conditional onX are

ATE (X = −1) = 1.714

ATE (X = −2) = 1.429
ATE (X = 3) = 2.857

5Again, the columns of the table are not states of nature but merely indicate the values the variables
can take conditional on X .
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Table 9.12: Nonparametrically identified treatment effect: exogenous dummy
variable regression results

parameter coefficient se t-statistic
δ −1.000 0.167 −5.991
α 2.000 0.236 8.472
β0 −0.143 0.077 −1.849

β1 − β0 0.286 0.109 2.615

Hence, the conditional average treatment effects are not identified by exogenous
dummy variable regression for this case. Second, let �x be an indicator variable
for X = x. ANOVA is equivalent to nonparametric regression since X is sparse.

Y = αD + γ1�−1 + γ2�−2 + γ3�3 + γ4D�−1 + γ5D�−2 + ε
ANOVA results are reported in table 9.13. The ANOVA-estimated conditional av-

Table 9.13: Nonparametric treatment effect regression results

parameter coefficient se t-statistic
α 3.000 0.386 7.774
γ1 −0.500 0.273 −1.832
γ2 −1.000 0.273 −3.665
γ3 −1.500 0.273 −5.497
γ4 −2.000 0.546 −3.665
γ5 −1.000 0.546 −1.832

erage treatment effects are

ATE (X = −1) = 3− 2 = 1
ATE (X = −2) = 3− 1 = 2

ATE (X = 3) = 3

and the unconditional average treatment effect is

ATE =
1

3
(1 + 2 + 3) = 2

Therefore, even though the estimated average treatment effects for exogenous
dummy variable regression are consistent with the DGP, the average treatment
effects conditional onX do not correspond well with the DGP. Further, the treat-
ment effects are not even monotonic in X . However, the ANOVA results prop-
erly account for the nonlinearity in the data and correspond nicely with the DGP
for both unconditional and conditional average treatment effects. Hence, average
treatment effects are nonparametrically identified for this case but not identified
by exogenous dummy variable regression.
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9.5 Propensity score approaches

Suppose the data are conditionally mean independent

E [Y1 | X,D] = E [Y1 | X]
E [Y0 | X,D] = E [Y0 | X]

so treatment is ignorable,and common X support leads to nondegenerate propen-
sity scores

0 < p (X) = Pr (D = 1 | X) < 1 for all X

then average treatment effect estimands are

ATE = E

�
(D − p (X))Y
p (X) (1− p (X))

�
ATT = E

�
(D − p (X))Y
(1− p (X))

�
/Pr (D = 1)

ATUT = E

�
(D − p (X))Y

p (X)

�
/Pr (D = 0)

The econometric procedure is to first estimate the propensity for treatment or
propensity score, p (X), via some flexible model (e.g., nonparametric regression;
see chapter 6), then ATE, ATT, and ATUT are consistently estimated via sample
analogs to the above.

9.5.1 ATE and propensity score

ATE = E
6
(D−p(X))Y
p(X)(1−p(X))

7
is identified as follows. Observed outcome is

Y = DY1 + (1−D)Y0
Substitution for Y and evaluation of the conditional expectation produces

E [(D − p (X))Y | X]
= E [DDY1 +D (1−D)Y0 − p (X)DY1 − p (X) (1−D)Y0 | X]
= E [DY1 + 0− p (X)DY1 − p (X) (1−D)Y0 | X]

Lettingmj (X) ≡ E [Yj | X] and recognizing

p (X) ≡ Pr (D = 1 | X)
= E [D = 1 | X]

gives

E [DY1 − p (X)DY1 − p (X) (1−D)Y0 | X]
= p (X)m1 (X)− p2 (X)m1 (X)− p (X) (1− p (X))m0 (X)

= p (X) (1− p (X)) (m1 (X)−m0 (X))
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This leads to the conditional average treatment effect

E

�
p (X) (1− p (X)) (m1 (X)−m0 (X))

p (X) (1− p (X)) | X
�

= m1 (X)−m0 (X)

= E [Y1 − Y0 | X]

The final connection to the estimand is made by iterated expectations,

ATE = E [Y1 − Y0]
= EX [Y1 − Y0 | X]

9.5.2 ATT, ATUT, and propensity score
Similar logic identifies the estimand for the average treatment effect on the treated

ATT = E

�
(D − p (X))Y
(1− p (X))

�
/Pr (D = 1)

Utilize

E [(D − p (X))Y | X] = p (X) (1− p (X)) (m1 (X)−m0 (X))

from the propensity score identification of ATE. Eliminating (1− p (X)) and
rewriting gives

p (X) (1− p (X)) (m1 (X)−m0 (X))

(1− p (X))
= p (X) (m1 (X)−m0 (X))

= Pr (D = 1 | X) (E [Y1 | X]− E [Y0 | X])

Conditional mean independence implies

Pr (D = 1 | X) (E [Y1 | X]− E [Y0 | X])
= Pr (D = 1 | X) (E [Y1 | D = 1, X]− E [Y0 | D = 1, X])

= Pr (D = 1 | X)E [Y1 − Y0 | D = 1, X]

Then, by iterated expectations, we have

EX [Pr (D = 1 | X)E [Y1 − Y0 | D = 1, X]]

= Pr (D = 1)E [Y1 − Y0 | D = 1]

Putting it all together produces the estimand

ATT = EX

�
(D − p (X))Y
(1− p (X))

�
/Pr (D = 1)

= E [Y1 − Y0 | D = 1]
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For the average treatment effect on the untreated estimand

ATUT = E

�
(D − p (X))Y

p (X)

�
/Pr (D = 0)

identification is analogous to that for ATT. Eliminating p (X) from

E [(D − p (X))Y | X] = p (X) (1− p (X)) (m1 (X)−m0 (X))

and rewriting gives

p (X) (1− p (X)) (m1 (X)−m0 (X))

p (X)

= (1− p (X)) (m1 (X)−m0 (X))

= Pr (D = 0 | X) (E [Y1 | X]− E [Y0 | X])
Conditional mean independence implies

Pr (D = 0 | X) (E [Y1 | X]− E [Y0 | X])
= Pr (D = 0 | X) (E [Y1 | D = 0, X]− E [Y0 | D = 0, X])

= Pr (D = 0 | X)E [Y1 − Y0 | D = 0, X]

Iterated expectations yields

EX [Pr (D = 0 | X)E [Y1 − Y0 | D = 0, X]]

= Pr (D = 0)E [Y1 − Y0 | D = 0]

Putting everything together produces the estimand

ATUT = E

�
(D − p (X))Y

p (X)

�
/Pr (D = 0)

= E [Y1 − Y0 | D = 0]

Finally, the average treatment effects are connected as follows.

ATE = Pr (D = 1)ATT + Pr (D = 0)ATUT

= Pr (D = 1)E

�
(D − p (X))Y
(1− p (X))

�
/Pr (D = 1)

+Pr (D = 0)E

�
(D − p (X))Y

p (X)

�
/Pr (D = 0)

= E

�
(D − p (X))Y
(1− p (X))

�
+ E

�
(D − p (X))Y

p (X)

�
= EX [Pr (D = 1 | X) (E [Y1 | X]− E [Y0 | X])]

+EX [Pr (D = 0 | X) (E [Y1 | X]− E [Y0 | X])]
= Pr (D = 1)E [Y1 − Y0] + Pr (D = 0)E [Y1 − Y0]
= E [Y1 − Y0]
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9.5.3 Linearity and propensity score
If we add the condition E [Y0 | p (X)] and E [Y1 | p (X)] are linear in p (X) then
α in the expression below consistently estimates ATE

E [Y | X,D] = ς0 + αD + ς1p̂+ ς2D
�
p̂− μ̂p

�
where μ̂p is the sample average of the estimated propensity score p̂.

9.6 Propensity score matching

Rosenbaum and Rubin’s [1983] propensity score matching is a popular propen-
sity score approach. Rosenbaum and Rubin suggest selecting a propensity score
at random from the sample, then matching two individuals with this propen-
sity score — one treated and one untreated. The expected outcome difference
E [Y1 − Y0 | p (X)] is ATE conditional on p (X). Hence, by iterated expecta-
tions

ATE = Ep(X) [E [Y1 − Y0 | p (X)]]
ATE identification by propensity score matching poses strong ignorability. That
is, outcome (Y1, Y0) independence of treatment D given X (a stronger condition
than conditional mean independence) and, as before, commonX support leads to
nondegenerate propensity scores p (X) ≡ Pr (D = 1 | X)

0 < Pr (D = 1 | X) < 1 for all X

As demonstrated by Rosenbaum and Rubin, strong ignorability implies index suf-
ficiency. In other words, outcome (Y1, Y0) independence of treatment D given
p (X) and

0 < Pr (D = 1 | p (X)) < 1 for all p (X)

The latter (inequality) condition is straightforward. SinceX is finer than p(X),
the first inequality (for X) implies the second (for p(X)). The key is conditional
stochastic independence given the propensity score

Pr (D = 1 | Y1, Y0, p (X)) = Pr (D = 1 | p (X))

This follows from

Pr (D = 1 | Y1, Y0, p (X)) = E [Pr (D = 1 | Y1, Y0, X) | Y1, Y0, p (X)]
= E [p (X) | Y1, Y0, p (X)] = p (X)
= E [D | p (X)]
= Pr (D = 1 | p (X))

For a general matching strategy on X , Heckman, Ichimura, and Todd [1998]
point out that for ATT, strong ignorability can be relaxed to conditional mean
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independence for outcomes without treatment and full support S for the treated
subsample. This allows counterfactuals to be related to observables

E [Y0 | D = 1, X] = E [Y0 | D = 0, X] for X ∈ S
so that ATT(X) can be expressed in terms of observables only

ATT (X) = E [Y1 | D = 1, X]− E [Y0 | D = 1, X]

= E [Y1 | D = 1, X]− E [Y0 | D = 0, X]

Iterated expectations gives the unconditional estimand

ATT = EX∈S [E [Y1 | D = 1, X]− E [Y0 | D = 1, X]]

= E [Y1 − Y0 | D = 1]

For ATUT the analogous condition applies to outcomes with treatment

E [Y1 | D = 0, X] = E [Y1 | D = 1, X] for X ∈ S�

so that the counterfactual mean can be identified from observables.

ATUT (X) = E [Y1 | D = 0, X]− E [Y0 | D = 0, X]

= E [Y1 | D = 1, X]− E [Y0 | D = 0, X]

Again, iterated expectations gives

ATUT = EX∈S� [E [Y1 | D = 0, X]− E [Y0 | D = 0, X]]

= E [Y1 − Y0 | D = 0]

Heckman, et al relate this general matching strategy to propensity score match-
ing by the following arguments.6 Partition X into two (not necessarily mutually
exclusive) sets of variables, (T, Z), where the T variables determine outcomes
and outcomes are additively separable

Y0 = g0 (T ) + U0

Y1 = g1 (T ) + U1

and the Z variables determine selection.

P (X) ≡ Pr (D = 1 | X) = Pr (D = 1 | Z) ≡ P (Z)
ATT is identified via propensity score matching if the following conditional mean
independence condition for outcomes without treatment is satisfied

E [U0 | D = 1, P (Z)] = E [U0 | D = 0, P (Z)]

6Heckman, Ichimura, and Todd [1998] also discuss trade-offs between general matching onX and
propensity score matching.
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Then, the counterfactual E [Y0 | D = 1, P (Z)] can be replaced with the mean of
the observable

ATT (P (Z)) = E [Y1 − Y0 | D = 1, P (Z)]

= g1 (T ) + E [U1 | D = 1, P (Z)]

− {g0 (T ) + E [U0 | D = 1, P (Z)]}
= g1 (T ) + E [U1 | D = 1, P (Z)]

− {g0 (T ) + E [U0 | D = 0, P (Z)]}
Iterated expectations over P (Z) produces the unconditional estimand

ATT = EP (Z) [ATT (P (Z))]

Also, ATUT is identified if

E [U1 | D = 1, P (Z)] = E [U1 | D = 0, P (Z)]

is satisfied for outcomes with treatment. Analogous to ATT, the counterfactual
E [Y1 | D = 0, P (Z)] can be replaced with the mean of the observable

ATUT (P (Z)) = E [Y1 − Y0 | D = 0, P (Z)]

= g1 (T ) + E [U1 | D = 0, P (Z)]

− {g0 (T ) + E [U0 | D = 0, P (Z)]}
= g1 (T ) + E [U1 | D = 1, P (Z)]

− {g0 (T ) + E [U0 | D = 0, P (Z)]}
Iterated expectations over P (Z) produces the unconditional estimand

ATUT = EP (Z) [ATUT (P (Z))]

Interestingly, the original strategy of Rosenbaum and Rubin implies homoge-
neous response while the relaxed approach of Heckman, et al allows for heteroge-
neous response. To see this, notice the above conditions say nothing about

E [U0 | D,P (Z)] = E [U0 | P (Z)] = 0
or

E [U1 | D,P (Z)] = E [U1 | P (Z)] = 0
so individual effects (heterogeneity) are identified by conditional mean indepen-
dence along with additive separability.

A strength of propensity score matching is that it makes the importance of over-
laps clear. However, finding matches can be difficult. Heckman, Ichimura, and
Todd [1997] discuss trimming strategies in a nonparametric context and derive
asymptotically-valid standard errors. Next, we revisit our second example from
chapter 2 to explore ignorable treatment implications in a richer accounting set-
ting.
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9.7 Asset revaluation regulation example

Our second example from chapter 2 explores the ex ante impact of accounting
asset revaluation policies on owners’ welfare through their investment decisions
(a treatment effect) in an economy of, on average, price protected buyers.7 Prior
to investment, an owner evaluates both investment prospects from asset retention
and the market for resale in the event the owner becomes liquidity stressed. The
payoff from investment I is distributed uniformly and centered at x̂ = β

αI
α where

α,β > 0 and α < 1. That is, support for investment payoff is x : x̂±f = [x, x]. A
potential problem with the resale market is the owner will have private information
— knowledge of the asset value. However, since there is some positive probability
the owner becomes distressed π (as in Dye [1985]) the market will not collapse.
The equilibrium price is based on distressed sellers marketing potentially healthy
assets combined with non-distressed sellers opportunistically marketing impaired
assets. Regulators may choose to prop-up the price to support distressed sellers by
requiring certification of assets at cost k 8 with values below some cutoff xc.9 The
owner’s ex ante expected payoff from investment I and certification cutoff xc is

E [V | I, xc] = π
1

2f

�
1

2

�
x2c − x2

�− k (xc − x) + P (x− xc)�
+(1− π) 1

2f

�
1

2

�
x2c − x2

�
+ P (P − xc) + 1

2

�
x2 − P 2��

−I
The equilibrium uncertified asset price is

P =
xc +

√
πx

1 +
√
π

This follows from the equilibrium condition

P =
1

4fq

�
π
�
x2 − x2c

�
+ (1− π) �P 2 − x2c��

where

q =
1

2f
[π (x− xc) + (1− π) (P − xc)]

is the probability that an uncertified asset is marketed. When evaluating the wel-
fare effects of their policies, regulators may differentially weight the welfare,

7This example draws heavily from Demski, Lin, and Sappington [2008].
8This cost is incremental to normal audit cost. As such, even if audit fee data is available, k may

be difficult for the analyst to observe.
9Owners never find it ex ante beneficial to commit to any certified revaluation because of the

certification cost. We restrict attention to targeted certification but certification could be proportional
rather than targeted (see Demski, et al [2008] for details). For simplicity, we explore only targeted
certification.
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W (I, xc), of distressed sellers and non-distressed sellers. Specifically, regulators
may value distressed seller’s net gains dollar-for-dollar but value non-distressed
seller’s gains at a fraction w on the dollar.

W (I, xc) = π
1

2f

�
1

2

�
x2c − x2

�− k (xc − x) + P (x− xc)�
+w (1− π) 1

2f

�
1

2

�
x2c − x2

�
+ P (P − xc) + 1

2

�
x2 − P 2��

−I [π + (1− π)w]

9.7.1 Numerical example
Consider the following parameters�

α =
1

2
,β = 10,π = 0.7, k = 2, f = 100

�
Owners will choose to never certify asset values. No certification (xc = x) re-
sults in investment I = 100, owner’s expected payoff E [V | I, xc] = 100, and
equilibrium uncertified asset price P ≈ 191.1. However, regulators may favor
distressed sellers and require selective certification. Continuing with the same
parameters, if regulators give zero consideration (w = 0) to the expected pay-
offs of non-distressed sellers, then the welfare maximizing certification cutoff

xc = x− (1+
√
π)k

(1−√π)(1−w) ≈ 278.9. This induces investment I =
6
β(2f+πk)

2f

7 1
1−α ≈

101.4, owner’s expected payoff approximately equal to 98.8, and equilibrium
uncertified asset price P ≈ 289.2 (an uncertified price more favorable to dis-
tressed sellers). To get a sense of the impact of certification, we tabulate invest-
ment choices and expected payoffs for no and selective certification regulations
and varied certification costs in table 9.14 and for full certification regulation and
varied certification costs and stress likelihood in table 9.15.

Table 9.14: Investment choice and payoffs for no certification and selective
certification

xc = x,
k = 2

xc = x,
k = 20

xc = 200,
k = 2

xc = 200,
k = 20

π 0.7 0.7 0.7 0.7
I 100 100 101.4 114.5
P 191.1 191.1 246.2 251.9

E [x− k] 200 200 200.7 208
E [V ] 100 100 99.3 93.5
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Table 9.15: Investment choice and payoffs for full certification

xc = x,
k = 2

xc = x,
k = 20

xc = x,
k = 2

xc = x,
k = 20

π 0.7 0.7 1.0 1.0
I 100 100 100 100
P NA NA NA NA

E [x− k] 198.6 186 198 180
E [V ] 98.6 86 98 80

9.7.2 Full certification
The base case involves full certification xc = x and all owners market their as-
sets, π = 1. This setting ensures outcome data availability (excluding investment
cost) which may be an issue when we relax these conditions. There are two firm
types: one with low mean certification costs 2kL = 2 and the other with high mean
certification costs 2kH = 20.

Full certification doesn’t present an interesting experiment if owners anticipate
full certification10 but suppose owners choose their investment levels anticipating
selective certification with xc = 200 and forced sale is less than certain π = 0.7.
Then, ex ante optimal investment levels for a selective certification environment
are IL = 101.4 (for low certification cost type) and IH = 114.5 (for high cer-
tification cost type), and expected asset values including certification costs are
E
�
xL − kL� = 199.4 and E

�
xH − kH� = 194. Treatment (investment level)

is chosen based on ex ante beliefs of selective certification. As a result of two
certification cost types, treatment is binary and the analyst observes low or high
investment but not the investment level.11 Treatment is denoted D = 1 when
IL = 101.4 while non-treatment is denoted D = 0 when IH = 114.5. For this
base case, outcome is ex post value in an always certify, always trade environment
Yj = x

j − kj .
To summarize, the treatment effect of interest is the difference in outcome with

treatment and outcome without treatment. For the base case, outcome with treat-
ment is defined as realized value associated with the (ex ante) equilibrium invest-
ment choice when certification cost type is low (IL). And, outcome with no treat-
ment is defined as realized value associated with (ex ante) equilibrium investment
choice when certification cost type is high (IH ). Variations from the base case
retain the definition for treatment (low versus high investment) but alter outcomes
based on data availability given the setting (e.g., assets are not always traded so
values may not be directly observed).

10As seen in the table, for full certification there is no variation in equilibrium investment level.
11If the analyst observes the investment level, then outcome includes investment cost and we work

with a more complete measure of the owner’s welfare.
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Since the equilibrium investment choice for low certification cost type is treat-
ment (IL), the average treatment effect on the treated is

ATT = E [Y1 − Y0 | D = 1]

= E
�
xL − kL | D = 1

�− E �xH − kL | D = 1
�

= E
�
xL − xH | D = 1

�
= 201.4− 214 = −12.6

Similarly, the equilibrium investment choice for high certification cost type is no
treatment (IH ). Therefore, the average treatment effect on the untreated is

ATUT = E [Y1 − Y0 | D = 0]

= E
�
xL − kH | D = 0

�− E �xH − kH | D = 0
�

= E
�
xL − xH | D = 0

�
= 201.4− 214 = −12.6

The above implies outcome is homogeneous,12 ATE = ATT = ATUT =
−12.6. With no covariates and outcome not mean independent of treatment, the
OLS estimand is13

OLS = E [Y1 | D = 1]− E [Y0 | D = 0]

= E
�
xL − kL | D = 1

�− E �xH − kH | D = 0
�

= 5.4

The regression is
E [Y | D] = β0 + β1D

where Y = D
�
xL − kL�+ (1−D) �xH − kH� (ex post payoff), β1 is the esti-

mand of interest, and
D = 1 IL = 101.4

0 IH = 114.5

A simple experiment supports the analysis above. We simulate 200 samples of
2, 000 draws where traded market values are

xj ∼ uniform �2xj − 100, 2xj + 100�
certification costs are

kj ∼ uniform
�2kj − 1,2kj + 1�

12If k is unobservable, then outcome Y may be measured by x only (discussed later) and treatment
effects represent gross rather than gains net of certification cost. In any case, we must exercise care in
interpreting the treatment effects because of limitations in our outcome measure — more to come on
the importance of outcome observability.

13Notice the difference in the treatment effects and what is estimated via OLS is kL − kH =
2− 20 = −18 = −12.6− 5.4.
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and assignment of certification cost type is

L− type ∼ Bernoulli (0.5)
Simulation results for the above OLS model including the estimated average treat-
ment effect are reported in table 9.16. As simulation allows us to observe both
the factual data and counterfactual data in the experiment, the sample statistics
described in table 9.17 are "observed" average treatment effects.

Table 9.16: OLS results for full certification setting

statistics β0 β1 (estATE)
mean 193.8 5.797
median 193.7 5.805
stand.dev. 1.831 2.684
minimum 188.2 −1.778
maximum 198.9 13.32

E [Y | D] = β0 + β1D

Table 9.17: Average treatment effect sample statistics for full certification setting

statistics ATE ATT ATUT
mean −12.54 −12.49 −12.59
median −12.55 −12.44 −12.68
stand.dev. 1.947 2.579 2.794
minimum −17.62 −19.53 −21.53
maximum −7.718 −6.014 −6.083

OLS clearly produces biased estimates of the treatment effect in this simple
base case. This can be explained as low or high certification cost type is a perfect
predictor of treatment. That is, Pr

�
D = 1 | kL� = 1 and Pr

�
D = 1 | kH� = 0.

Therefore, the common support condition for identifying counterfactuals fails and
standard approaches (ignorable treatment or even instrumental variables) don’t
identify treatment effects.14

14An alternative analysis tests the common support condition. Suppose everything remains as above
except kH ∼ uniform (1, 19) and sometimes the owners perceive certification cost to be low when
it is high, hence Pr (D = 1 | type = H) = 0.1. This setup implies observed outcome is

Y = D [(Y1 | type = L) + (Y1 | type = H)] + (1−D) (Y0 | type = H)

such that

E [Y ] = 0.5E
#
xL − kL

$
+ 0.5
%
0.1E
#
xL − kH

$
+ 0.9E

#
xH − kH

$&
Suppose the analyst ex post observes the actual certification cost type and let T = 1 if type = L. The
common support condition is satisfied and the outcome mean is conditionally independent of treatment
given T implies treatment is ignorable. OLS simulation results are tabulated below.
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Adjusted outcomes

However, from the above we can manipulate the outcome variable to identify the
treatment effects via OLS. Observed outcome is

Y = D
�
xL − kL�+ (1−D) �xH − kH�

=
�
xH − kH�+D �

xL − xH�−D �
kL − kH�

Applying expectations, the first term is captured via the regression intercept and
the second term is the average treatment effect. Therefore, if we add the last term
DE

�
kL − kH� to Y we can identify the treatment effect from the coefficient on

D. If the analyst observes k = DkL+(1−D) kH , then we can utilize a two-stage
regression approach. The first stage is

E [k | D] = α0 + α1D
where α0 = E

�
kH
�

and α1 = E
�
kL − kH�. Now, the second stage regression

employs the sample statistic for α1, 2α1 = kL − kH .

Y � = Y +D2α1
= Y +D

�
k
L − kH

�
and estimate the treatment effect via the analogous regression to the above15

E [Y � | D] = β0 + β1D

OLS parameter estimates with common support for full certification setting

statistics β0 β1 β2 (estATE)

mean 196.9 7.667 −5.141
median 196.9 7.896 −5.223
stand.dev. 1.812 6.516 6.630
minimum 191.5 −10.62 −23.54
maximum 201.6 25.56 14.25

E [Y | T,D] = β0 + β1T + β2D
Average treatment effects sample statistics with common support for full certification setting

statistics ATE ATT ATUT

mean −5.637 −5.522 −5.782
median −5.792 −5.469 −5.832
stand.dev. 1.947 2.361 2.770

minimum −9.930 −12.05 −12.12
maximum 0.118 0.182 0.983

The estimated average treatment effect is slightly attenuated and has high variability that may compro-
mise its finite sample utility. Nevertheless, the results are a dramatic departure and improvement from
the results above where the common support condition fails.

15This is similar to a regression discontinuity design (for example, see Angrist and Lavy [1999]
and Angrist and Pischke [2009]). However, the jump in cost of certification kj violates the regression
continuity inX condition (assuming k = DkL+(1−D) kH is observed and included inX). If the
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Simulation results for the adjusted outcome OLS model are reported in table
9.18. With adjusted outcomes, OLS estimates correspond quite well with the treat-

Table 9.18: Adjusted outcomes OLS results for full certification setting

statistics β0 β1 (estATE)
mean 193.8 −12.21
median 193.7 −12.21
stand.dev. 1.831 2.687
minimum 188.2 −19.74
maximum 198.9 −64.691

E [Y � | D] = β0 + β1D

ment effects. Next, we explore propensity score approaches.

Propensity score

Based on adjusted outcomes, the data are conditionally mean independent (i.e.,
satisfy ignorability of treatment). Therefore average treatment effects can be es-
timated via the propensity score as discussed earlier in chapter 9. Propensity
score is the estimated probability of treatment conditional on the regressorsmj =
Pr (Dj = 1 | Zj). For simulation purposes, we employ an imperfect predictor in
the probit regression

Zj = z1jDj + z0j (1−Dj) + εj

support of kL and kH is adjacent, then the regression discontinuity design

E [Y | X,D] = β0 + β1k + β2D
effectively identifies the treatment effects but fails with the current DGP. Typical results for the current
DGP (where ATE is the average treatment effect sample statistic for the simulation) are tabulated
below.

OLS parameter estimates with jump in support for full certification setting

statistics β0 β1 β2 (estATE) ATE
mean 218.4 −1.210 −16.59 −12.54
median 213.2 −0.952 −12.88 −12.55
stand.dev. 42.35 2.119 38.26 1.947
minimum 122.9 −6.603 −115.4 −17.62
maximum 325.9 3.573 71.56 −7.718

E [Y | k,D] = β0 + β1k + β2D

The coefficient on D represents a biased and erratic estimate of the average treatment effect. Given
the variability of the estimates, a regression discontinuity design has limited small sample utility for
this DGP. However, we later return to regression discontinuity designs when modified DGPs are con-
sidered. For the current DGP, we employ the approach discussed above, which is essentially restricted
least squares.
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where

z1j ∼ Bernoulli (0.99)

z0j ∼ Bernoulli (0.01)

εj ∼ N (0, 1)

Some average treatment effects estimated via propensity score are

estATE = n−1
n/
j=1

(Dj −mj)Y
�
j

mj (1−mj)

estATT =

n−1
n,
j=1

(Dj−mj)Y
�
j

(1−mj)

n−1
n,
j=1

Dj

estATUT =

n−1
n,
j=1

(Dj−mj)Y
�
j

mj

n−1
n,
j=1

(1−Dj)

Propensity score estimates of average treatment effects are reported in table
9.19. The estimates are somewhat more variable than we would like but they are

Table 9.19: Propensity score treatment effect estimates for full certification
setting

statistics estATE estATT estATUT
mean −12.42 −13.96 −10.87
median −12.50 −13.60 −11.40
stand.dev. 5.287 6.399 5.832
minimum −31.83 −45.83 −25.61
maximum −1.721 0.209 10.56

consistent with the sample statistics on average. Further, we cannot reject homo-
geneity even though the treatment effect means are not as similar as we might
expect.

Propensity score matching

Propensity score matching is a simple and intuitively appealing approach where
we match treated and untreated on propensity score then compute the average
treatment effect based on the matched-pair outcome differences. We follow Sekhon
[2008] by employing the "Matching" library for R.16 We find optimal matches of

16We don’t go into details regarding matching since we employ only one regressor in the propen-
sity score model. Matching is a rich study in itself. For instance, Sekhon [2008] discusses a genetic
matching algorithm. Heckman, Ichimura, and Todd [1998] discuss nonparametric kernel matching.
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treated with untreated (within 0.01) using replacement sampling. Simulation re-
sults for propensity score matching average treatment effects are reported in table
9.20.17 The matched propensity score results correspond well with the sample sta-

Table 9.20: Propensity score matching average treatment effect estimates for full
certification setting

statistics estATE estATT estATUT
mean −12.46 −12.36 −12.56
median −12.54 −12.34 −12.36
stand.dev. 3.530 4.256 4.138
minimum −23.49 −24.18 −22.81
maximum −3.409 −2.552 −0.659

tistics. In this setting, the matched propensity score estimates of causal effects are
less variable than the previous propensity score results. Further, they are more uni-
form across treatment effects (consistent with homogeneity). Next, we turn to the
more interesting, but potentially more challenging, selective certification setting.

9.7.3 Selective certification
Suppose the owners’ ex ante perceptions of the certification threshold, xc = 200,
and likelihood of stress, π = 0.7, are consistent with ex post outcomes. Then,
if outcomes x, kj , and P j for j = L or H are fully observable to the analyst,
expected outcome conditional on asset revaluation experience is18

E [Y | X] = 251.93Pr
�
PH

�− 5.740Pr �PL�D − 94.93Pr ��Hc ��Hc
−95.49Pr ��Lc ��Lc − 20Pr ��Hck��Hck
−2Pr ��Lck��Lck + 31.03Pr ��Hu ��Hu + 27.60Pr ��Lu��Lu

E [Y | X] = 251.93 (0.477)− 5.740 (0.424)D − 94.93 (0.129)�Hc
−95.49 (0.148)�Lc − 20 (0.301)�Hck − 2 (0.345)�Lck
+31.03 (0.093)�Hu + 27.60 (0.083)�Lu

17ATE, ATT, and ATUT may be different because their regions of common support may differ. For
example, ATT draws on common support only in the D = 1 region and ATUT draws on common
support only in the D = 0 region.

18The probabilities reflect likelihood of the asset condition rather than incremental likelihood and
hence sum to one for each investment level (treatment choice).
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where the equilibrium price of traded, uncertified, high investment assets, PH , is
the reference outcome level, and X denotes the matrix of regressors

D =
1 low investment, IL

0 high investment, IH

�jc =
1 certified range, x < xc
0 otherwise

�jck =
1 certified traded
0 otherwise

�ju =
1 untraded asset, x > P j ∈ {L,H}
0 otherwise

This implies the average treatment effect estimands are

ATT ≡ E
�
Y L − Y H | D = 1

�
= −12.7

ATUT ≡ E
�
Y L − Y H | D = 0

�
= −13.5

and

ATE ≡ E
�
Y L − Y H�

= Pr (D = 1)ATT + Pr (D = 0)ATUT = −13.1

Hence, in the selective certification setting we encounter modest heterogeneity.
Why don’t we observe self-selection through the treatment effects? Remember,
we have a limited outcome measure. In particular, outcome excludes investment
cost. If we include investment cost, then self-selection is supported by the average
treatment effect estimands. That is, low investment outcome is greater than high
investment outcome for low certification cost firms

ATT = −12.7− (101.4− 114.5) = 0.4 > 0

and high investment outcome is greater than low investment outcome for high
certification cost firms

ATUT = −13.5− (101.4− 114.5) = −0.4 < 0

With this background for the selective certification setting, it’s time to revisit
identification. Average treatment effect identification is somewhat more challeng-
ing than the base case. For instance, the average treatment effect on the treated,
ATT, is the difference between the mean of outcome with low investment and the
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mean of outcome with high investment for low certification cost firms.

ATT = π
1

2f

�
1

2

�
x2c −

�
xL
�2�− kL �xc − xL�+ PL �xL − xc��

+(1− π) 1
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�
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�2�
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�
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�
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2

��
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�2 − �PL�2�
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−π 1
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x2c −
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�2�− kL �xc − xH�+ PH �xH − xc��
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2f
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2

�
x2c −

�
xH
�2�

+ PH
�
PH − xc

�
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2

��
xH
�2 − �PH�2�

⎤⎦
The average treatment effect on the untreated, ATUT, is the difference between
the mean of outcome with low investment and the mean of outcome with high
investment for high certification cost firms.

ATUT = π
1

2f

�
1

2

�
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xL
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⎤⎦
But the OLS estimand is the difference between the mean of outcome with low
investment for firms with low certification cost and the mean of outcome with
high investment for firms with high certification cost.

OLS = π
1

2f
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As in the full certification setting, the key differences revolve around the costly
certification terms. The costly certification term for the ATT estimand simplifies
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as

−π 1
2f

�
kL
�
xc − xL

�− kL �xc − xH��
= −π

�
xH − xL�
2f

kL

and the costly certification term for the ATUT estimand simplifies as

−π 1
2f

�
kH

�
xc − xL

�− kH �xc − xH��
= −π

�
xH − xL�
2f

kH

While the costly certification term in the estimand for OLS is

−π 1
2f

�
kL
�
xc − xL

�− kH �xc − xH��
Adjusted outcomes

Similar to our approach in the full certification setting, we eliminate the costly
certification term for OLS by adding this OLS bias to observed outcomes

Y � = Y +Dπ
1

2f

�
kL
�
xc − xL

�− kH �xc − xH��
However, now we add back the terms to recover the average treatment effects

ATT = E
6
Y

�
1 − Y

�
0 | D = 1

7
− π

�
xH − xL�
2f

E
�
kL
�

ATUT = E
6
Y

�
1 − Y

�
0 | D = 0

7
− π

�
xH − xL�
2f

E
�
kH
�

ATE = Pr (D = 1)ATT + Pr (D = 1)ATUT

= E
6
Y

�
1 − Y

�
0

7
− Pr (D = 1)π

�
xH − xL�
2f

E
�
kL
�

−Pr (D = 0)π

�
xH − xL�
2f

E
�
kH
�

These terms account for heterogeneity in this asset revaluation setting but are
likely to be much smaller than the OLS selection bias.19

19In our running numerical example, the certification cost term for ATT is −0.0882 and for ATUT
is −0.882, while the OLS selection bias is 5.3298.



9.7 Asset revaluation regulation example 187

Conditional as well as unconditional average treatment effects can be identified
from the following regression.

E [Y � | X] = β0 + β1D + β2�Hc + β3�Lc
+β4�Hck + β5�Lck + β6�Hu + β7�Lu

where
Y � = Y +Dπ

6
�LckkL −�

H

ckk
H
7

�Hck and k
H

are sample averages taken from theD = 0 regime.20 The incremental
impact on mean value of assets in the certification region is reflected in β2 for high
investment and β3 for low investment firms, while the mean incremental impact
of costly certification of assets, kj , is conveyed via β4 and β5 for high and low
investment firms, respectively. Finally, the mean incremental impact of untraded
assets with values greater than the equilibrium price are conveyed via β6 and β7
for high and low investment firms, respectively.

Simulation results for the OLS model are reported in table 9.21 and sample
treatment effect statistics are reported in table 9.22. OLS effectively estimates
the average treatment effects (ATE, ATT, ATUT) in this (modestly heterogeneous)
case. However, we’re unlikely to be able to detect heterogeneity when the various
treatment effect differences are this small. Note in this setting, while outcome is
the ex post value net of certification cost, a random sample allows us to assess the
owner’s ex ante welfare excluding the cost of investment.21

Model-estimated treatment effects are derived in a non-standard manner as the
regressors are treatment-type specific and we rely on sample evidence from each
regime to estimate the probabilities associated with different ranges of support22

estATT = β1 − β2�
H

c + β3�
L

c − β4�
H
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L
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−πkL
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estATE = β1 − β2�
H

c + β3�
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c − β4�
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ck + β5�
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u + β7�
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−DπkL
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�Lck −�
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�
− �1−D�πkH ��Lck −�Hck�

20Sample averages of certification cost, k
H

, and likelihood that an asset is certified and traded,�Hck ,
forD = 0 (high investment) are employed as these are counterfactuals in theD = 1 (low investment)
regime.

21Investment cost may also be observed or estimable by the analyst.
22Expected value of indicator variables equals the event probability and probabilities vary by treat-

ment. Since there is no common support (across regimes) for the regressors, we effectively assume the
analyst can extrapolate to identify counterfactuals (that is, from observed treated to unobserved treated
and from observed untreated to unobserved untreated).
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Table 9.21: OLS parameter estimates for selective certification setting

statistics β0 β1 β2 β3
mean 251.9 −11.78 −94.78 −93.81
median 251.9 −11.78 −94.70 −93.85
stand.dev. 0.000 0.157 2.251 2.414
minimum 251.9 −12.15 −102.7 −100.9
maximum 251.9 −11.41 −88.98 −86.90
statistics β4 β5 β6 β7
mean −20.12 −2.087 31.20 27.66
median −20.15 −2.160 31.23 27.72
stand.dev. 2.697 2.849 1.723 1.896
minimum −28.67 −9.747 26.91 22.44
maximum −12.69 8.217 37.14 32.81
statistics estATE estATT estATUT
mean −12.67 −12.29 −13.06
median −12.73 −12.33 −13.10
stand.dev. 2.825 2.686 2.965
minimum −21.25 −20.45 −22.03
maximum −3.972 −3.960 −3.984

E [Y � | X] = β0 + β1D + β2�Hc + β3�Lc
+β4�Hck + β5�Lck + β6�Hu + β7�Lu

where

�Lj =
,
Di�Lji,
Di

and

�Hj =
,
(1−Di)�Hji,
(1−Di)

for indicator j.
We can say a bit more about conditional average treatment effects from the

above analysis. On average, owners who select high investment and trade the as-
sets at their equilibrium price sell the assets for 11.78more than owners who select
low investment. Owners who select high investment and retain their assets earn
31.20 − 27.66 = 3.54 higher proceeds, on average, than owners who select low
investment. On the other hand, owners who select high investment and are forced
to certify and sell their assets receive lower net proceeds by 20.12−2.09 = 18.03,
on average, than owners who select low investment. Recall all outcomes exclude
investment cost which, of course, is an important component of owner’s welfare.

As we can effectively randomize over the indicator variables, for simplicity, we
focus on identification and estimation of unconditional average treatment effects
and the remaining analyses are explored without covariates. Next, we demonstrate
the above randomization claim via a reduced (no covariates except treatment) OLS
model, then we explore propensity score approaches applied to selective certifica-
tion.
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Table 9.22: Average treatment effect sample statistics for selective certification
setting

statistics ATE ATT ATUT OLS
mean −13.01 −12.57 −13.45 −6.861
median −13.08 −12.53 −13.46 −6.933
stand.dev. 1.962 2.444 2.947 2.744
minimum −17.90 −19.52 −22.46 −15.15
maximum −8.695 −5.786 −6.247 1.466

Reduced OLS model

We estimate unconditional average treatment effects via a reduced OLS model.

E [Y � | D] = β0 + β1D
Results from the simulation, reported in table 9.23, indicate that reduced OLS,
with the adjustments discussed above to recover the treatment effect, effectively
recovers unconditional average treatment effects in the selective certification set-
ting.

Table 9.23: Reduced OLS parameter estimates for selective certification setting

statistics β0 β1
mean 207.7 −12.21
median 207.50 −12.24
stand.dev. 1.991 2.655
minimum 202.8 −20.28
maximum 212.8 −3.957
statistics estATE estATT estATUT
mean −12.67 −12.29 −13.06
median −12.73 −12.33 −13.10
stand.dev. 2.825 2.686 2.965
minimum −21.25 −20.45 −22.03
maximum −3.972 −3.960 −3.984

E [Y � | D] = β0 + β1D

Propensity score

As in the full certification setting, propensity score, Pr (D = 1 | Z), is estimated
via probit with predictor Z. Propensity score estimates, based on adjusted out-
comes and treatment effect adjustments as discussed for OLS, of average treat-
ment effects in the selective certification setting are reported in table 9.24. As in
the full certification setting, the estimates are more variable than we prefer but,
on average, correspond with the sample statistics. Again, homogeneity cannot be
rejected but estimated differences in treatment effects do not correspond well with
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Table 9.24: Propensity score average treatment effect estimates for selective
certification setting

statistics estATE estATT estATUT
mean −12.84 −14.18 −11.47
median −13.09 −13.71 −11.87
stand.dev. 5.680 6.862 6.262
minimum −33.93 −49.88 −25.06
maximum −0.213 1.378 13.80

the sample statistics (e.g., estimated ATT is the largest in absolute value but ATT
is the smallest sample statistic as well as estimand).

Propensity score matching

Simulation results, based on outcome and treatment effect adjustments, for propen-
sity score matching estimates of average treatment effects in the selective certifi-
cation setting are reported in table 9.25. Again, propensity score matching results

Table 9.25: Propensity score matching average treatment effect estimates for
selective certification setting

statistics estATE estATT estATUT
mean −12.90 −12.54 −13.27
median −13.20 −12.89 −13.09
stand.dev. 3.702 4.478 4.335
minimum −25.87 −25.54 −26.20
maximum −4.622 −2.431 −2.532

correspond well with the sample statistics and are less variable than the propensity
score approach above but cannot reject outcome homogeneity.

9.7.4 Outcomes measured by value x only
Now, we revisit selective certification when the analyst cannot observe the incre-
mental cost of certification, k, but only asset value, x. Consequently, outcomes
and therefore treatment effects reflect only Y = x. For instance, the DGP now
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yields

ATT = E
�
Y L − Y H | D = 1

�
= E

�
xL − xH | D = 1

�
= 201.4− 214 = −12.6

ATUT = E
�
Y L − Y H | D = 0

�
= E

�
xL − xH | D = 0

�
= 201.4− 214 = −12.6

ATE = E
�
Y L − Y H�

= E
�
xL − xH�

= Pr (D = 1)ATT + Pr (D = 0)ATUT

= 201.4− 214 = −12.6
OLS = E

�
Y L | D = 1

�− E �Y H | D = 0
�

= E
�
xL | D = 1

�− E �xH | D = 0
�

= 201.4− 214 = −12.6
The apparent advantage to high investment is even more distorted because not only
are investment costs excluded but now also the incremental certification costs are
excluded. In other words, we have a more limited outcome measure. We briefly
summarize treatment effect analyses similar to those reported above but for the
alternative, data limited, outcome measure Y = x. Notice, no outcome adjustment
is applied.

OLS results

Simulation results for the OLS model are reported in table 9.26 and sample average
treatment effect statistics are reported in table 9.27.

Table 9.26: OLS parameter estimates for Y=x in selective certification setting

statistics β0 β1 (estATE)
mean 214.0 −12.70
median 214.1 −12.70
stand.dev. 1.594 2.355
minimum 209.3 −18.5
maximum 218.11 −5.430

E [Y | D] = β0 + β1D

OLS effectively estimates the treatment effects and outcome homogeneity is
supported.

Propensity score

Propensity score estimates for average treatment effects are reported in table 9.28.
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Table 9.27: Average treatment effect sample statistics for Y = x in selective
certification setting

statistics ATE ATT ATUT
mean −12.73 −12.72 −12.75
median −12.86 −12.78 −12.62
stand.dev. 1.735 2.418 2.384
minimum −17.26 −19.02 −18.96
maximum −7.924 −5.563 −6.636

Table 9.28: Propensity score average treatment effect for Y = x in selective
certification setting

statistics estATE estATT estATUT
mean −13.02 −14.18 −11.86
median −13.49 −13.96 −11.20
stand.dev. 5.058 5.764 5.680
minimum −27.00 −34.39 −24.25
maximum 2.451 0.263 7.621

Similar to previous propensity score analyses, the limited outcome propensity
score results are more variable than we’d like but generally correspond with aver-
age treatment effect sample statistics.

Propensity score matching

Propensity score matching simulation results are reported in table 9.29. Propen-

Table 9.29: Propensity score matching average treatment effect for Y = x in
selective certification setting

statistics estATE estATT estATUT
mean −12.61 −12.43 −12.76
median −12.83 −12.40 −13.10
stand.dev. 3.239 3.727 4.090
minimum −20.57 −21.79 −24.24
maximum −4.025 0.558 −1.800

sity score matching results are generally consistent with other results. For Y = x,
matching effectively identifies average treatment effects, supports homogeneous
outcome, and is less variable than the (immediately) above propensity score re-
sults.

Since outcome based on x only is more limited than Y = x−k, for the remain-
ing discussion of this asset revaluation regulation example we refer to the broader
outcome measure Y = x− k.
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9.7.5 Selective certification with missing "factual" data
It is likely the analyst will not have access to ex post values when the assets are
not traded. Then, the only outcome data observed is when assets are certified or
when traded at the equilibrium price. In addition to not observing counterfactuals,
we now face missing factual data. Missing outcome data produces a challenging
treatment effect identification problem. The treatment effects are the same as the
above observed data case but require some creative data augmentation to recover.
We begin our exploration by examining model-based estimates if we ignore the
missing data problem.

If we ignore missing data but adjust outcomes and treatment effects (as dis-
cussed earlier) and estimate the model via OLS we find the simulation results
reported in table 9.30. The average model-estimated treatment effects are biased

Table 9.30: OLS parameter estimates ignoring missing data for selective
certification setting

statistics β0 β1
mean 207.2 −9.992
median 207.2 −9.811
stand.dev. 2.459 3.255
minimum 200.9 −18.30
maximum 213.2 −2.627
statistics estATE estATT estATUT
mean −10.45 −10.07 −10.81
median −9.871 −5.270 −14.92
stand.dev. 3.423 3.285 3.561
minimum −19.11 −18.44 −19.75
maximum −2.700 −2.640 −2.762

E [Y � | D] = β0 + β1D

toward zero due to the missing outcome data.

Data augmentation

The above results suggest attending to the missing data. The observed data may
not, in general, be representative of the missing factual data. We might attempt to
model the missing data process and augment the observed data. Though, data aug-
mentation might introduce more error than do the missing data and consequently
generate poorer estimates of the average treatment effects. The observed data are

Y o1 = �Lck
�
xL − kL�+ �LpPL

and

Y o0 = �Hck
�
xH − kH�+ �Hp PH
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where

�jp = 1 asset traded at uncertified, equilibrium price for choice j
0 otherwise

and �jck refers to assets certified and traded for choice j, as before.
For the region x < xc, we have outcome data for firms forced to sell, xj − kj ,

but we are missing untraded asset values, xj . Based on the DGP for our contin-
uing example, the contribution to treatment effects from this missing quantity is
22.289−20.253 = 2.036. If we know kj or can estimate it, we can model the miss-
ing data for this region. Since IH > IL, E

�
xH | xH < xc

�
> E

�
xL | xL < xc

�
and Pr

�
xL < xc

�
> Pr

�
xH < xc

�
. That is, the adjustment to recover xj is iden-

tified as

(1− π)
π

�,�Lck,i
�
xLi − kLi

�,
Di

−
,�Hck,i

�
xHi − kHi

�,
(1−Di)

�

+
(1− π)
π

�,�Lck,ikLi,
Di

−
,�Hck,ikHi,
(1−Di)

�

The other untraded assets region, xj > P j , is more delicate as we have no direct
evidence, the conditional expectation over this region differs by investment choice,
and PH > PL, it is likely E

�
xH | xH > PH� > E �xL | xL > PL�. Based on

the DGP for our continuing example, the contribution to treatment effects from
this missing quantity is 22.674− 26.345 = −3.671.

How do we model missing data in this region? This is not a typical censoring
problem as we don’t observe the sample size for either missing data region. Miss-
ing samples make estimating the probability of each mean level more problematic
— recall this is important for estimating average treatment effects in the data ob-
served, selective certification case.23 Conditional expectations and probabilities of
mean levels are almost surely related which implies any augmentation errors will
be amplified in the treatment effect estimate.

We cannot infer the probability distribution for x by nonparametric methods
since x is unobserved. To see this, recall the equilibrium pricing of uncertified
assets satisfies

P =
πPr (xc < x < x)E [x | xc < x < x]

πPr (xc < x < x) + (1− π) Pr (xc < x < P )
+
(1− π) Pr (xc < x < P )E [x | xc < x < P ]
πPr (xc < x < x) + (1− π) Pr (xc < x < P )

For instance, if all the probability mass in these intervals for x is associated with
P , then the equilibrium condition is satisfied. But the equilibrium condition is

23As is typical, identification and estimation of average treatment effects is more delicate than iden-
tification and estimation of model parameters in this selective certification setting.
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satisfied for other varieties of distributions for x as well. Hence, the distribu-
tion for x cannot be inferred when x is unobserved. If π is known we can es-
timate Pr (xc < x < x) from certification frequency scaled by π. However, this
still leaves much of the missing factual data process unidentified when x is unob-
served or the distribution for x is unknown.

On the other hand, consistent probability assignment for x allows π to be in-
ferred from observable data, P and xc as well as the support for x: x < x < x.
Further, consistent probability assignment for x enables us to model the DGP
for the missing factual data. In particular, based on consistent probability as-
signment for x we can infer π and identify Pr (x < x < xc), E [x | x < x < xc],
Pr (P < x < x), and E [x | P < x < x].

To model missing factual data, suppose π is known and kj is observed, consis-
tent probability assignment suggests

Pr (P < x < x) = Pr (xc < x < P )

and

E [x | P < x < x] = P + P − xc
2

=
3P − xc
2

are reasonable approximations. Then, our model for missing factual data suggests
the following adjustments to estimate average treatment effects (TE).

estTE = TE estimated based on missing factual data

+
(1− π)
π

�,�Lck,i
�
xLi − kLi

�,
Di

−
,�Hck,i

�
xHi − kHi

�,
(1−Di)

�

+
(1− π)
π

�,�Lck,ikLi,
Di

−
,�Hck,ikHi,
(1−Di)

�

+
(1− π)
1 + π

�
3PL − xc

2

,�LP,i,
Di

− 3P
H − xc
2

,�HP,i,
(1−Di)

�

Results adjusted by the augmented factual missing data based on the previous
OLS parameter estimates are reported in table 9.31. These augmented-OLS results

Table 9.31: Treatment effect OLS model estimates based on augmentation of
missing data for selective certification setting

statistics estATE estATT estATUT
mean −11.80 −11.43 −12.18
median −11.76 −11.36 −12.06
stand.dev. 3.165 3.041 3.290
minimum −20.37 −19.58 −21.15
maximum −2.375 −2.467 −2.280

E [Y � | D] = β0 + β1D
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are less biased, on average, than results that ignore missing factual data. Thus, it
appears data augmentation has modestly aided our analysis of this asset revalua-
tion with selective certification setting.

9.7.6 Sharp regression discontinuity design
Suppose the DGP is altered only in that

kL ∼ uniform (1, 3)
and

kH ∼ uniform (3, 37)
The means for k remain 2 and 20 but we have adjacent support. There is a crisp
break at k = 3 but the regression function excluding the treatment effect (the
regression as a function of k) is continuous. That is, the treatment effect fully
accounts for the discontinuity in the regression function. This is a classic "sharp"
regression discontinuity design (Trochim [1984] and Angrist and Pischke [2009])
where β2 estimates the average treatment effect via OLS.

E [Y | k,D] = β0 + β1k + β2D
With the previous DGP, there was discontinuity as a function of both the regressor
k and treatment D. This creates a problem for the regression as least squares is
unable to distinguish the treatment effect from the jump in the outcome regression
and leads to poor estimation results. In this revised setting, we anticipate substan-
tially improved (finite sample) results.

Full certification setting

Simulation results for the revised DGP in the full certification setting are reported
in table 9.32 and average treatment effect sample statistics are reported in table

Table 9.32: Sharp RD OLS parameter estimates for full certification setting

statistics β0 β1 β2 (estATE)
mean 214.2 −1.007 −12.93
median 214.5 −1.019 −13.04
stand.dev. 4.198 0.190 4.519
minimum 203.4 −1.503 −26.18
maximum 226.3 −0.539 −1.959

E [Y | k,D] = β0 + β1k + β2D

9.33.
Unlike the previous DGP, sharp regression discontinuity (RD) design effec-

tively identifies the average treatment effect and OLS produces reliable estimates
for the (simple) full certification setting. Next, we re-evaluate RD with the same
adjacent support DGP but in the more challenging selective certification setting.
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Table 9.33: Average treatment effect sample statistics for full certification setting

statistics ATE ATT ATUT
mean −12.54 −12.49 −12.59
median −12.55 −12.44 −12.68
stand.dev. 1.947 2.579 2.794
minimum −17.62 −19.53 −21.53
maximum −7.718 −6.014 −6.083

Selective certification setting

To satisfy the continuity condition for the regression, suppose cost of certifica-
tion k = DkL + (1−D) kH is always observed whether assets are certified or
not in the regression discontinuity analysis of selective certification. Simulation
results for the revised DGP in the selective certification setting are reported in
table 9.34.24 In the selective certification setting, RD again identifies the average

Table 9.34: Sharp RD OLS parameter estimates for selective certification setting

statistics β0 β1 β2 (estATE)
mean 214.2 −0.299 −13.00
median 214.5 −0.324 −12.89
stand.dev. 4.273 0.197 4.546
minimum 202.0 −0.788 −25.81
maximum 225.5 0.226 −1.886

E [Y | k,D] = β0 + β1k + β2D

treatment effect and OLS provides effective estimates. Next, we employ RD in the
missing factual data setting.

Missing factual data

If some outcome data are unobserved by the analyst, it may be imprudent to ig-
nore the issue. We employ the same missing data model as before and estimate
the average treatment effect ignoring missing outcome data (β2) and the average
treatment effect adjusted for missing outcome data (β

�
2). Simulation results for

the revised DGP (with adjacent support) analyzed via a sharp RD design in the
selective certification setting with missing outcome data are reported in table 9.35.

24We report results only for the reduced model. If the analyst knows where support changes (i.e.,
can identify the indicator variables) for the full model, the results are similar and the estimates have
greater precision.
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Table 9.35: Sharp RD OLS parameter estimates with missing data for selective
certification setting

statistics β0 β1 β2 β
�
2 (estATE)

mean 214.4 −0.342 −11.35 −12.22
median 214.5 −0.336 −11.50 −12.47
stand.dev. 4.800 0.232 5.408 5.237
minimum 201.3 −0.928 −25.92 −26.50
maximum 227.9 0.325 2.542 1.383

E [Y | k,D] = β0 + β1k + β2D

9.7.7 Fuzzy regression discontinuity design
Now, suppose the DGP is altered only in that support is overlapping as follows:

kL ∼ uniform (1, 3)
and

kH ∼ uniform (1, 39)
The means for k remain 2 and 20 but we have overlapping support. There is a crisp
break in E [D | k] at k = 3 but the regression function excluding the treatment
effect (the regression as a function of k) is continuous. This leads to a fuzzy dis-
continuity regression design (van der Klaauw [2002]). Angrist and Lavy [1999]
argue that 2SLS-IV consistently estimates a local average treatment effect in such
cases where

T =
1 k ≤ 3
0 k > 3

serves as an instrument for treatment. In the first stage, we estimate the propensity
score25 2D ≡ E [D | k, T ] = γ0 + γ1k + γ2T
The second stage is then

E [Y | k,D] = γ0 + γ1k + γ2 2D
Full certification setting

First, we estimate RD via OLS then we employ 2SLS-IV. Simulation results for
the overlapping support DGP in the full certification setting are reported in table
9.36.

Perhaps surprisingly, OLS effectively estimates the average treatment effect in
this fuzzy RD setting. Recall the selection bias is entirely due to the expected dif-
ference in certification cost, E

�
kH − kL�. RD models outcome as a (regression)

25In this asset revaluation setting, the relations are linear. More generally, high order polynomial
or nonparametric regressions are employed to accommodate nonlinearities (see Angrist and Pischke
[2009]).
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Table 9.36: Fuzzy RD OLS parameter estimates for full certification setting

statistics β0 β1 β2 (estATE)
mean 214.3 −1.012 −12.79
median 214.2 −1.011 −12.56
stand.dev. 3.634 0.163 3.769
minimum 204.9 −1.415 −23.51
maximum 222.5 −0.625 −3.001

E [Y | k,D] = β0 + β1k + β2D

function of k, E [Y | k]; hence, the selection bias is eliminated from the treatment
effect. Next, we use 2SLS-IV to estimate LATE.26

Binary instrument

Now, we utilize T as a binary instrument. Simulation results for the overlapping
support DGP in the full certification setting are reported in table 9.37. As ex-

Table 9.37: Fuzzy RD 2SLS-IV parameter estimates for full certification setting

statistics β0 β1 β2 (estLATE)
mean 214.5 −1.020 −13.07
median 214.6 −1.021 −13.27
stand.dev. 4.139 0.181 4.456
minimum 202.7 −1.461 −27.60
maximum 226.0 −0.630 −1.669

E [Y | k,D] = β0 + β1k + β2 2D
pected, 2SLS-IV effectively identifies LATE in this fuzzy RD, full certification
setting. Next, we revisit selective certification with this overlapping support DGP.

9.7.8 Selective certification setting
First, we estimate RD via OLS then we employ 2SLS-IV. Simulation results for
the overlapping support DGP in the selective certification setting are reported in
table 9.38. Since RD effectively controls the selection bias (as discussed above),
OLS effectively estimates the average treatment effect.

Binary instrument

Using T as a binary instrument, 2SLS-IV simulation results for the overlapping
support DGP in the selective certification setting are reported in table 9.39. In the
selective certification setting, 2SLS-IV effectively estimates LATE, as anticipated.

26LATE is developed more fully in chapter 10.
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Table 9.38: Fuzzy RD OLS parameter estimates for selective certification setting

statistics β0 β1 β2 (estATE)
mean 214.3 −0.315 −12.93
median 214.1 −0.311 −12.73
stand.dev. 3.896 0.179 3.950
minimum 202.5 −0.758 −24.54
maximum 223.3 0.078 −3.201

E [Y | k,D] = β0 + β1k + β2D

Table 9.39: Fuzzy RD 2SLS-IV parameter estimates for selective certification
setting

statistics β0 β1 β2 (estLATE)
mean 214.4 −0.321 −13.09
median 214.5 −0.317 −13.03
stand.dev. 4.438 0.200 4.631
minimum 201.1 −0.805 −27.23
maximum 225.6 −0.131 1.742

E [Y | k,D] = β0 + β1k + β2 2D
Missing factual data

Continue with the overlapping support DGP and employ the same missing data
model as before to address unobserved outcomes (by the analyst) when the assets
are untraded. First, we report OLS simulation results in table 9.40 then we tab-
ulate 2SLS-IV simulation results where β2 is the estimated for the local average
treatment effect ignoring missing outcome data and β

�
2 is the local average treat-

ment effect adjusted for missing outcome data. This OLS RD model for missing

Table 9.40: Fuzzy RD OLS parameter estimates with missing data for selective
certification setting

statistics β0 β1 β2 β
�
2 (estATE)

mean 215.9 −0.426 −12.74 −13.60
median 216.2 −0.424 −12.63 −13.52
stand.dev. 4.765 0.223 4.792 4.612
minimum 201.9 −1.132 −24.20 −23.85
maximum 226.3 0.117 0.119 −0.817

E [Y | k,D] = β0 + β1k + β2D

outcome data does not offer any clear advantages. Rather, the results seem to be
slightly better without the missing data adjustments.

2SLS-IV with T as a binary instrument and missing outcome data adjustments
are considered next. Simulation results for the overlapping support DGP in the
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selective certification, missing outcome data setting are reported in table 9.41.

Table 9.41: Fuzzy RD 2SLS-IV parameter estimates with missing data for
selective certification setting

statistics β0 β1 β2 β
�
2 (estLATE)

mean 217.7 −0.428 −12.80 −13.67
median 214.8 −0.425 −13.12 −14.30
stand.dev. 25.50 0.256 5.919 5.773
minimum 139.2 −1.147 −25.24 −25.97
maximum 293.9 0.212 6.808 6.010

E [Y | k,D] = β0 + β1k + β2 2D
Again, modeling the missing outcome data offers no apparent advantage in this
fuzzy RD, 2SLS-IV setting. In summary, when we have adjacent or overlapping
support, sharp or fuzzy regression discontinuity designs appear to be very effective
for controlling selection bias and identifying average treatment effects in this asset
revaluation setting.

9.7.9 Common support
Standard identification conditions associated with ignorable treatment (and IV ap-
proaches as well) except for regression discontinuity designs include common
support 0 < Pr (D = 1 | X) < 1. As indicated earlier, this condition fails in the
asset revaluation setting as certification cost type is a perfect predictor of treat-
ment Pr (D = 1 | T = 1) = 1 and Pr (D = 1 | T = 0) = 0 where T = 1 if type
is L and zero otherwise. The foregoing discussion has addressed this issue in two
ways. First, we employed an ad hoc adjustment of outcome to eliminate selection
bias. This may be difficult or impractical to implement. Second, we employed a
regression discontinuity design. The second approach may be unsatisfactory as the
analyst needs full support access to adjacent or overlapping regressor k whether
assets are certified or not.

However, if there is some noise in the relation between certification cost type
and treatment (perhaps, due to nonpecuniary cost or benefit), then a third option
may be available. We briefly illustrate this third possibility for the full certification
setting.

Suppose everything remains as in the original full certification setting except
kH ∼ uniform (1, 19) and some owners select treatment (lower investment)
when certification cost is high, hence Pr (D = 1 | type = H) = 0.1. This setup
implies observed outcome is

Y = D [(Y1 | T = 1) + (Y1 | T = 0)] + (1−D) (Y0 | T = 0)
such that

E [Y ] = 0.5E
�
xL − kL�+ 0.5�0.1E �xL − kH�+ 0.9E �xH − kH��
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Suppose the analyst ex post observes the actual certification cost type. The com-
mon support condition is satisfied as 0 < Pr (D = 1 | T = 0) < 1 and if out-
comes are conditionally mean independent of treatment given T then treatment
is ignorable. The intuition is the type variable, T , controls the selection bias and
allowsD to capture the treatment effect. This involves a delicate balance as T and
D must be closely but imperfectly related.

OLS common support results are reported in table 9.42 and simulation results
for average treatment effect sample statistics are reported in table 9.43. The esti-

Table 9.42: Fuzzy RD OLS parameter estimates for full certification setting

statistics β0 β1 β2 (estATE)
mean 196.9 7.667 −5.141
median 196.9 7.896 −5.223
stand.dev. 1.812 6.516 6.630
minimum 191.5 −10.62 −23.54
maximum 201.6 25.56 14.25

E [Y | T,D] = β0 + β1T + β2D

Table 9.43: Average treatment effect sample statistics for full certification setting

statistics ATE ATT ATUT
mean −5.637 −5.522 −5.782
median −5.792 −5.469 −5.832
stand.dev. 1.947 2.361 2.770
minimum −9.930 −12.05 −12.12
maximum 0.118 0.182 0.983

mated average treatment effect is slightly attenuated and has high variability that
may compromise its finite sample utility. Nevertheless, the results are a dramatic
departure and improvement from the results above where the common support
condition fails and is ignored.

9.7.10 Summary
Outcomes at our disposal in this asset revaluation setting limit our ability to as-
sess welfare implications for the owners. Nonetheless, the example effectively
points to the importance of recognizing differences in data available to the ana-
lyst compared with information in the hands of the economic agents whose ac-
tions and welfare is the subject of study. To wit, treatment effects in this setting
are uniformly negative. This is a product of comparing net gains associated with
equilibrium investment levels, but net gains exclude investment cost. The benefits
of higher investment when certification costs are low are not sufficient to over-
come the cost of investment but this latter feature is not reflected in our outcome
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measure. Hence, if care is not exercised in interpreting the results we might draw
erroneous conclusions from the data.

9.8 Control function approaches

Our final stop in the world of ignorable treatment involves the use of control
functions. Control functions are functions that capture or control selection so ef-
fectively as to overcome the otherwise omitted, correlated variable concern cre-
ated by endogenous selection. Various approaches can be employed. The simplest
(strongest for the data) conditions employ conditional mean independence

E [Y1 | X,D] = E [Y1 | X]

and

E [Y0 | X,D] = E [Y0 | X]
and no expected individual-specific gain, E [V1 | X] = E [V0 | X]. Then,

E [Y | X,D] = μ0 + αD + g0 (X)

where g0 (X) = E [V0 | X] is a control function and α = ATE = ATT =
ATUT .

9.8.1 Linear control functions
If we add the condition E [V0 | X] = g0 (X) = η0 + h0 (X)β0 for some vector
control function h0 (X), then

E [Y | X,D] = μ0 + η0 + αD + h0 (X)β0
That is, when the predicted individual-specific gain given X , E [V1 − V0 | X],
is zero and the control function is linear in its parameters, we can consistently
estimate ATE via standard (linear) regression.

9.8.2 Control functions with expected individual-specific gain
Suppose we relax the restriction to allow expected individual specific-gain, that is
allow E [V1 | X] �= E [V0 | X], then

E [Y | X,D] = μ0 + αD + g0 (X) +D [g1 (X)− g0 (X)]

where g0 (X) = E [V0 | X] and g1 (X) = E [V1 | X] and ATE = α (but not
necessarily equal to ATT ).
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9.8.3 Linear control functions with expected individual-specific
gain

Continue with the idea that we allow expected individual specific-gain,E [V1 | X]
�= E [V0 | X] and add the condition that the control functions are linear in para-
meters E [V0 | X] = g0 (X) = η0 + h0 (X)β0 and E [V1 | X] = g1 (X) =
η1 + h1 (X)β1 for some vector control functions h0 (X) and h1 (X). Hence,

E [Y | X,D] = φ+ αD +Xβ0 +D (X − E [X]) δ

Now, conditional onX the average treatment effect,ATE (X), is a function ofX

α+ (X − E [X]) δ

When we average over all X , the second term is integrated out and ATE = α.
By similar reasoning, the average treatment effect on the treated can be estimated
by integrating over the D = 1 subsample

ATT = α+

�
n/
i=1

Di

�−1 � n/
i=1

Di
�
Xi −X

�
δ

�

and the average treatment effect on the untreated can be estimated by integrating
over the D = 0 subsample

ATUT = α−
�

n/
i=1

(1−Di)
�−1 � n/

i=1

Di
�
Xi −X

�
δ

�

9.9 Summary

The key element for ignorable treatment identification of treatment effects is out-
comes are conditionally mean independent of treatment given the regressors. How
do we proceed when ignorable treatment (conditional mean independence) fails?
A common response is to look for instruments and apply IV strategies to iden-
tify average treatment effects. Chapter 10 surveys some instrumental variable ap-
proaches and applies a subset of IV identification strategies in an accounting set-
ting — report precision regulation.

9.10 Additional reading

Amemiya [1985] and Wooldridge [2002] provide extensive reviews of the econo-
metrics of selection. Wooldridge [2002] discusses estimating average treatment
effects in his chapter 18 (and sample selection earlier). Amemiya [1985] discusses
qualitative response models in his chapter 9. Recent volumes of the Handbook of
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Econometrics are filled with economic policy evaluation and treatment effects.
Dawid [2000] offers an alternative view on causal inference.

Heckman, Ichimura, Smith, and Todd [1998] utilize experimental (as well as
non-experimental) data to evaluate non-experimental methods (matching, differ-
ences - in - differences, and inverse-Mills selection models) for program eval-
uation. Their results indicate selection bias is mitigated, but not eliminated, by
non-experimental methods that invoke common support and common weighting.
In fact, they decompose conventional bias into (a) differences in the support of
the regressors between treated and untreated, (b) differences in the shape of the
distributions of regressors for the two groups in the region of common support,
and (c) selection bias at common values of the regressors for both groups. Further,
they find that matching cannot eliminate selection bias27 but their data support
the index sufficiency condition underlying standard control function models and a
conditional version of differences-in-differences. Heckman and Navarro-Lozano
[2004] succinctly review differences amongst matching, control function, and in-
strumental variable (the latter two are discussed in chapter 10 and the various
strategies are compared in chapter 12) approaches to identification and estima-
tion of treatment effects. In addition, they identify the bias produced by matching
when the analyst’s data fail to meet in the minimally sufficient information for
ignorable treatment and when and how other approaches may be more robust to
data omissions than matching. They also demonstrate that commonly-employed
ad hoc "fixes" such as adding information to increase the goodness of fit of the
propensity score model (when minimal information conditions are not satisfied)
do not, in general, produce lower bias but rather may increase bias associated with
matching.

27Heckman, Ichimura, and Todd [1997] find that matching sometimes increases selection bias, at
least for some conditioning variables.
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Treatment effects: IV

In this chapter we continue the discussion of treatment effects but replace ignor-
able treatment strategies in favor of instrumental variables and exclusion restric-
tions. Intuitively, instrumental variables are a standard econometric response to
omitted, correlated variables so why not employ them to identify and estimate
treatment effects. That is, we look for instruments that are highly related to the
selection or treatment choice but unrelated to outcome. This is a bit more subtle
than standard linear IV because of the counterfactual issue. The key is that ex-
clusion restrictions allow identification of the counterfactuals as an individual’s
probability of receiving treatment can be manipulated without affecting potential
outcomes.

We emphasize we’re looking for good instruments. Recall that dropping vari-
ables from the outcome equations that should properly be included creates an
omitted, correlated variable problem. There doesn’t seem much advantage of swap-
ping one malignant inference problem for another — the selection problem can
also be thought of as an omitted, correlated variable problem.

10.1 Setup

The setup is the same as the previous chapter. We repeat it for convenience then
relate it to common average treatment effects and the Roy model to facilitate in-
terpretation. Suppose the DGP is

207D. A. Schroeder, Accounting and Causal Effects, DOI 10.1007/978-1-4419-7225-5_10,
© Springer Science+Business Media, LLC 2010
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outcomes:1

Yj = μj (X) + Vj , j = 0, 1

selection mechanism:2

D∗ = μD (Z)− VD
and observable response:

Y = DY1 + (1−D)Y0
= μ0 (X) + (μ1 (X)− μ0 (X))D + V0 + (V1 − V0)D

where

D =
1 D∗ > 0
0 otherwise

and Y1 is (potential) outcome with treatment and Y0 is (potential) outcome without
treatment. The outcomes model is the Neyman-Fisher-Cox-Rubin model of poten-
tial outcomes (Neyman [1923], Fisher [1966], Cox ]1958], and Rubin [1974]). It
is also Quandt’s [1972] switching regression model or Roy’s income distribution
model (Roy [1951] or Heckman and Honore [1990]).

10.2 Treatment effects

We address the same treatment effects but add a couple of additional effects
to highlight issues related to unobservable heterogeneity. Heckman and Vytlacil
[2005] describe the recent focus of the treatment effect literature as the heteroge-
neous response to treatment amongst otherwise observationally equivalent indi-
viduals. Unobservable heterogeneity is a serious concern whose analysis is chal-
lenging if not down right elusive.

In the binary case, the treatment effect is the effect on outcome of treatment
compared with no treatment, Δ = Y1−Y0. Some typical treatment effects include:
ATE, ATT, ATUT, LATE, and MTE. ATE refers to the average treatment effect, by
iterated expectations, we can recover the unconditional average treatment effect
from the conditional average treatment effect

ATE = EX [ATE (X)]

= EX [E [Δ | X = x]] = E [Y1 − Y0]

1Separating outcome into a constant and stochastic parts, yields

Yj = μj + Uj

Sometimes it will be instructive to write the stochastic part as a linear function of X

Uj = Xβj + Vj

2To facilitate discussion, we stick with binary choice for most of the discussion. We extend the
discussion to multilevel discrete and continuous treatment later in chapter 11.
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In other words, the average effect of treatment on outcome compared with no
treatment for a random draw from the population.

ATT refers to the average treatment effect on the treated,

ATT = EX [ATT (X)]

= EX [E [Δ | X = x,D = 1]] = E [Y1 − Y0 | D = 1]

In other words, the average effect of treatment on outcome compared with no
treatment for a random draw from the subpopulation selecting (or assigned) treat-
ment.

ATUT refers to the average treatment effect on the untreated,

ATUT = EX [ATUT (X)]

= EX [E [Δ | X = x,D = 0]] = E [Y1 − Y0 | D = 0]

In other words, the average effect of treatment on outcome compared with no
treatment for a random draw from the subpopulation selecting (or assigned) no
treatment.

For a binary instrument (to keep things simple), the local average treatment
effect or LATE is

LATE = EX [LATE (X)]

= EX [E [Δ | X = x,D1 −D0 = 1]] = E [Y1 − Y0 | D1 −D0 = 1]

whereDj refers to the observed treatment conditional on the value j of the binary
instrument. LATE refers to the local average or marginal effect of treatment on
outcome compared with no treatment for a random draw from the subpopulation
of "compliers" (Imbens and Angrist [1994]). That is, LATE is the (discrete) mar-
ginal effect on outcome for those individuals who would not choose treatment if
the instrument takes a value of zero but would choose treatment if the instrument
takes a value of one.

MTE (the marginal treatment effect) is a generalization of LATE as it represents
the treatment effect for those individuals who are indifferent between treatment
and no treatment.

MTE = E [Y1 − Y0 | X = x, VD = vD]

or following transformation UD = FV |X (V ), where FV |X (V ) is the (cumula-
tive) distribution function, we can work with UD ∼ Uniform [0, 1]

MTE = E [Y1 − Y0 | X = x, UD = uD]

Treatment effect implications can be illustrated in terms of the generalized Roy
model. The Roy model interpretation is discussed next.
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10.3 Generalized Roy model

Roy [1951] introduced an equilibrium labor model where workers select between
hunting and fishing. An individual’s selection into hunting or fishing depends on
his aptitude as well as supply of and demand for labor.3 A modest generalization
of the Roy model is a common framing of selection that frequently forms the basis
for assessing treatment effects (Heckman and Robb [1986]).

Based on the DGP above, we identify the constituent pieces of the selection
model.
Net benefit (or utility) from treatment is

D∗ = μD (Z)− VD
= Y1 − Y0 − c (W )− Vc
= μ1 (X)− μ0 (X)− c (W ) + V1 − V0 − Vc

Gross benefit of treatment is4

μ1 (X)− μ0 (X)

Cost associated with treatment is

c (W ) + Vc

Observable cost associated with treatment is

c (W )

Observable net benefit of treatment is

μ1 (X)− μ0 (X)− c (W )

Unobservable net benefit of treatment is

−VD = V1 − V0 − Vc
where the observables are

�
X Z W

�
, typically Z contains variables not in

X or W , and W is the subset of observables that speaks to cost of treatment.
Given a rich data generating process like above, the challenge is to develop

identification strategies for the treatment effects of interest. The simplest IV ap-
proaches follow from the strongest conditions for the data and typically imply ho-
mogeneous response. Accommodating heterogeneous response holds economic
appeal but also constitutes a considerable hurdle.

3Roy argues that self-selection leads to lesser earnings inequality than does random assignment.
See Heckman and Honore [1990] for an extended discussion of the original Roy model including
identification under various probability distribution assignments on worker skill (log skill).

4For linear outcomes, we have μ1 (X)− μ0 (X) = (μ1 +Xβ1)− (μ0 +Xβ0).
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10.4 Homogeneous response

Homogeneous response is attractive when pooling restrictions across individu-
als (or firms) are plausible. Homogeneous response implies the stochastic por-
tion, Uj , is the same for individuals receiving treatment and not receiving treat-
ment, U1 = U0. This negates the interaction term, (U1 − U0)D, in observed out-
come and consequently rules out individual-specific gains. Accordingly, ATE =
ATT = ATUT = MTE. Next, we review treatment effect identification condi-
tions for a variety of homogeneous response models with endogenous treatment.

10.4.1 Endogenous dummy variable IV model
Endogenous dummy variable IV regression is a standard approach but not as ro-
bust in the treatment effect setting as we’re accustomed in other settings. Let L
be a linear projection of the leading argument into the column space of the condi-
tioning variables where X includes the unity vector ι, that is,

L (Y | X) = X
�
XTX

�−1
XTY

= PXY

and Zi be a vector of instruments. Identification conditions are

Condition 10.1 U1 = U0 where Uj = Xβj + Vj , j = 0, 1,

Condition 10.2 L (U0 | X,Z) = L (U0 | X), and

Condition 10.3 L (D | X,Z) �= L (D | X).
Condition 10.1 is homogeneous response while conditions 10.2 and 10.3 are

exclusion restrictions. Conditions 10.1 and 10.2 imply observed outcome is

Y = μ0 + (μ1 − μ0)D +Xβ0 + V0
which can be written

Y = δ + αD +Xβ0 + V0

where α = ATE and V0 = U0 − L (U0 | X,Z). As D and V0 are typically
correlated (think of the Roy model interpretation), we effectively have an omitted,
correlated variable problem and OLS is inconsistent.

However, condition 10.2 means that Z is properly excluded from the outcome
equation. Unfortunately, this cannot be directly tested.5 Under the above condi-
tions, standard two stage least squares instrumental variable (2SLS-IV) estimation
(see chapter 3) with {ι, X, Z} as instruments provides a consistent and asymptot-
ically normal estimate for ATE. That is, the first stage discrete choice (say, logit

5Though we might be able to employ over-identifying tests of restrictions if we have multiple
instruments. Of course, these tests assume that at least one is a legitimate instrument.
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or probit) regression is

D = γ0 +Xγ1 + Zγ2 − VD
and the second stage regression is

Y = δ + α 2D +Xβ0 + V0
where 2D = γ̂0+X γ̂1+Zγ̂2, predicted values from the first stage discrete choice
regression.

10.4.2 Propensity score IV
Stronger conditions allow for a more efficient IV estimator. For instance, suppose
the data satisfies the following conditions.

Condition 10.4 U1 = U0,

Condition 10.5 E [U0 | X,Z] = E (U0 | X),
Condition 10.6 Pr (D = 1 | X,Z) �= Pr (D = 1 | X) plus
Pr (D = 1 | X,Z) = G (X,Z, γ) is a known parametric form (usually probit or
logit), and

Condition 10.7 V ar [U0 | X,Z] = σ20.

The outcome equation is

Y = δ + αD +Xβ0 + V0

If we utilize {ι, G (X,Z, γ) , X} as instruments, 2SLS-IV is consistent asymptot-
ically normal (CAN). Not only is this propensity score approach more efficient
given the assumptions, but it is also more robust. Specifically, the link function
doesn’t have to be equal to G for 2SLS-IV consistency but it does for OLS (see
Wooldridge [2002], ch. 18).

10.5 Heterogeneous response and treatment effects

Frequently, homogeneity is implausible, U1 �= U0. Idiosyncrasies emerge in both
what is observed, say Xβ0 �= Xβ1, (relatively straightforward to address) and
what the analyst cannot observe, V0 �= V1, (more challenging to address). Then
observed outcome contains an individual-specific gain (U1 − U0)D and, usually,
ATE �= ATT �= ATUT �= MTE. In general, the linear IV estimator (using Z
or G as instruments) does not consistently estimate ATE (or ATT) when response
is heterogeneous, U1 �= U0. Next, we explore some IV estimators which may
consistently estimate ATE even though response is heterogeneous.
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10.5.1 Propensity score IV and heterogeneous response
First, we return to the propensity score and relax the conditions to accommodate
heterogeneity. Let Uj = Xβj + Vj where E [Vj | X,Z] = 0. Identification con-
ditions are

Condition 10.8 conditional mean redundancy, E [U0 | X,Z] = E [U0 | X] and
E [U1 | X,Z] = E [U1 | X],
Condition 10.9 Xβ1 −Xβ0 = (X − E [X]) γ,

Condition 10.10 V1 = V0, and

Condition 10.11 Pr (D = 1 | X,Z) �= Pr (D = 1 | X) and
Pr (D = 1 | X,Z) = G (X,Z, γ) where again G is a known parametric form
(usually probit or logit).

If we utilize
�
ι, G (X,Z, γ) , X −X� as instruments in the regression

Y = μ0 +Xβ0 + αD +
�
X −X�Dγ + V0

2SLS-IV is consistent asymptotically normal (CAN).
We can relax the above a bit if we replace condition 10.10, V1 = V0, by condi-

tional mean independence

E [D (V1 − V0) | X,Z] = E [D (V1 − V0)]

While probably not efficient,α consistently identifies ATE for this two-stage propen-
sity score IV strategy utilizing {ι, G,X,G (X − E [X])} as instruments.

10.5.2 Ordinate control function IV and heterogeneous response
Employing control functions to address the omitted, correlated variable problem
created by endogenous selection is popular. We’ll review two identification strate-
gies: ordinate and inverse Mills IV control functions. The second one pioneered by
Heckman [1979] is much more frequently employed. Although the first approach
may be more robust.

Identification conditions are

Condition 10.12 conditional mean redundancy, E [U0 | X,Z]
= E [U0 | X] and E [U1 | X,Z] = E [U1 | X],
Condition 10.13 g1 (X)− g0 (X) = Xβ1 −Xβ0 = (X − E [X]) γ,

Condition 10.14 V1 − V0 is independent of {X,Z} and
E [D | X,Z, V1 − V0] = h (X,Z) + k (V1 − V0) for some functions h and k,

Condition 10.15 Pr (D = 1 | X,Z, V1 − V0)
= Φ (θ0 +Xθ1 + Zθ2 + � (V1 − V0)), θ2 �= 0, and
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Condition 10.16 V1 − V0 ∼ N
�
0, τ2

�
.

The model of observed outcome

Y = μ0 + αD +Xβ0 +D (X − E [X]) γ + ξφ+ error
can be estimated by two-stage IV using instruments

{ι,Φ, X,Φ (X − E [X]) ,φ}
where Φ is the cumulative standard normal distribution function and φ is the or-
dinate from a standard normal each evaluated at [Xi, Zi]2θ from probit. With full
commonX support, ATE is consistently estimated by α since φ is a control func-
tion obtained via IV assumptions (hence the label ordinate control function).

10.5.3 Inverse Mills control function IV and heterogeneous
response

Heckman’s inverse Mills control function is closely related to the ordinate control
function. Identification conditions are

Condition 10.17 conditional mean redundancy, E [U0 | X,Z]
= E [U0 | X] and E [U1 | X,Z] = E [U1 | X],
Condition 10.18 g1 (X)− g0 (X) = (X − E [X]) δ,
Condition 10.19 (VD, V1, V0) is independent of {X,Z} with joint normal distri-
bution, especially V ∼ N (0, 1), and

Condition 10.20 D = I [θ0 +Xθ1 + Zθ2 − VD > 0] where I is an indicator
function equal to one when true and zero otherwise.

While this can be estimated via MLE, Heckman’s two-stage procedure is more
common. First, estimate θ via a probit regression of D on W = {ι, X, Z} and
identify observations with common support (that is, observations for which the
regressors, X , for the treated overlap with regressors for the untreated). Second,
regress Y onto�

ι, D,X,D (X − E [X]) , D


φ

Φ

�
, (1−D) −φ

1− Φ

�
for the overlapping subsample. With full support, the coefficient on D is a con-
sistent estimator of ATE; with less than full common support, we have a local
average treatment effect.6

6We should point out here that this second stage OLS does not provide valid estimates of standard
errors. As Heckman [1979] points out there are two additional concerns: the errors are heteroskedastic
(so an adjustment such as White suggested is needed) and θ has to be estimated (so we must account
for this added variation). Heckman [1979] identifies a valid variance estimator for this two-stage pro-
cedure.
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The key ideas behind treatment effect identification via control functions can
be illustrated by reference to this case.

E [Yj | X,D = j] = μj +Xβj + E [Vj | D = j]

Given the conditions, E [Vj | D = j] �= 0 unless Corr (Vj , VD) = ρjVD = 0. For
ρjVD �= 0,

E [V1 | D = 1] = ρ1VDσ1E [VD | VD > −Wθ]
E [V0 | D = 1] = ρ0VDσ0E [VD | VD > −Wθ]
E [V1 | D = 0] = ρ1VDσ1E [VD | VD ≤ −Wθ]

and
E [V0 | D = 0] = ρ0VDσ0E [VD | VD ≤ −Wθ]

The final term in each expression is the expected value of a truncated standard
normal random variate where

E [VD | VD > −Wθ] = φ (−Wθ)
1− Φ (−Wθ) =

φ (Wθ)

Φ (Wθ)

and

E [VD | VD ≤ −Wθ] = − φ (−Wθ)
Φ (−Wθ) = −

φ (Wθ)

1− Φ (Wθ)

Putting this together, we have

E [Y1 | X,D = 1] = μ1 +Xβ1 + ρ1VDσ1
φ (Wθ)

Φ (Wθ)

E [Y0 | X,D = 0] = μ0 +Xβ0 − ρ0VDσ0
φ (Wθ)

1− Φ (Wθ)

and counterfactuals

E [Y0 | X,D = 1] = μ0 +Xβ0 + ρ0VDσ0
φ (Wθ)

Φ (Wθ)

and

E [Y1 | X,D = 0] = μ1 +Xβ1 − ρ1VDσ1
φ (Wθ)

1− Φ (Wθ)

The affinity for Heckman’s inverse Mills ratio approach can be seen in its esti-
mation simplicity and the ease with which treatment effects are then identified. Of
course, this doesn’t justify the identification conditions — only our understanding
of the data can do that.

ATT (X,Z) = μ1 − μ0 +X (β1 − β0) +
�
ρ1VDσ1 − ρ0VDσ0

� φ (Wθ)
Φ (Wθ)
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by iterated expectations (with full support), we have

ATT = μ1 − μ0 + E [X] (β1 − β0) +
�
ρ1VDσ1 − ρ0VDσ0

�
E

�
φ (Wθ)

Φ (Wθ)

�
Also,

ATUT (X,Z) = μ1 − μ0 +X (β1 − β0)−
�
ρ1VDσ1 − ρ0VDσ0

� φ (Wθ)

1− Φ (Wθ)

by iterated expectations, we have

ATUT = μ1 − μ0 +E [X] (β1 − β0)−
�
ρ1VDσ1 − ρ0VDσ0

�
E

�
φ (Wθ)

1− Φ (Wθ)

�
Since

ATE (X,Z) = Pr (D = 1 | X,Z)ATT (X,Z)
+Pr (D = 0 | X,Z)ATUT (X,Z)

= Φ (Wθ)ATT (X,Z) + (1− Φ (Wθ))ATUT (X,Z)

we have

ATE (X,Z) = μ1 − μ0 +X (β1 − β0)
+
�
ρ1V σ1 − ρ0VDσ0

�
φ (Wθ)− �ρ1V σ1 − ρ0VDσ0�φ (Wθ)

= μ1 − μ0 +X (β1 − β0)
by iterated expectations (with full common support), we have

ATE = μ1 − μ0 + E [X] (β1 − β0)
Wooldridge [2002, p. 631] suggests identification of

ATE = μ1 − μ0 + E [X] (β1 − β0)
via α in the following regression

E [Y | X,Z] = μ0 + αD +Xβ0 +D (X − E [X]) (β1 − β0)
+Dρ1VDσ1

φ (Wθ)

Φ (Wθ)
− (1−D) ρ0VDσ0

φ (Wθ)

1− Φ (Wθ)

This follows from the observable response

Y = D (Y1 | D = 1) + (1−D) (Y0 | D = 0)

= (Y0 | D = 0) +D [(Y1 | D = 1)− (Y0 | D = 0)]

and applying conditional expectations

E [Y1 | X,D = 1] = μ1 +Xβ1 + ρ1VDσ1
φ (Wθ)

Φ (Wθ)

E [Y0 | X,D = 0] = μ0 +Xβ0 − ρ0VDσ0
φ (Wθ)

1− Φ (Wθ)

Simplification produces Wooldridge’s result.
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10.5.4 Heterogeneity and estimating ATT by IV
Now we discuss a general approach for estimating ATT by IV in the face of unob-
servable heterogeneity.

ATT (X) = E [Y1 − Y0 | X,D = 1]

= μ1 − μ0 + E [U1 − U0 | X,D = 1]

Identification (data) conditions are

Condition 10.21 E [U0 | X,Z] = E [U0 | X],
Condition 10.22 E [U1 − U0 | X,Z,D = 1] = E [U1 − U0 | X,D = 1], and

Condition 10.23 Pr (D = 1 | X,Z) �= Pr (D = 1 | X) and
Pr (D = 1 | X,Z) = G (X,Z; γ) is a known parametric form (usually probit or
logit).

Let

Yj = μj + Uj

= μj + gj (X) + Vj

and write

Y = μ0 + g0 (X) +D {(μ1 − μ0) + E [U1 − U0 | X,D = 1]}
+D {(U1 − U0)− E [U1 − U0 | X,D = 1]}+ V0

= μ0 + g0 (X) +ATT (X)D + a+ V0

where a = D {(U1 − U0)− E [U1 − U0 | X,D = 1]}. Let r = a + V0, the data
conditions imply E [r | X,Z] = 0. Now, suppose μ0 (X) = η0 + h (X)β0 and
ATT (X) = τ+f (X) δ for some functions h (X) and f (X). Then, we can write

Y = γ0 + h (X)β0 + τD +Df (X) δ + r

where γ0 = μ0 + η0. The above equation can be estimated by IV using any
functions of {X,Z} as instruments. Averaging τ + f (X) δ over observations
with D = 1 yields a consistent estimate for ATT ,

�
Di(τ i+f(Xi)δ)�

Di
. By similar

reasoning, ATUT can be estimated by averaging over the D = 0 observations,
−
�
Di(τ i+f(Xi)δ)�

(1−Di)
.

10.5.5 LATE and linear IV
Concerns regarding lack of robustness (logical inconsistency) of ignorable treat-
ment, or, for instance, the sometimes logical inconsistency of normal probability
assignment to unobservable expected utility (say, with Heckman’s inverse Mills
IV control function strategy) have generated interest in alternative IV approaches.
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One that has received considerable attention is linear IV estimation of local aver-
age treatment effects (LATE; Imbens and Angrist [1994]). We will focus on the
binary instrument case to highlight identification issues and aid intuition. First, we
provide a brief description then follow with a more extensive treatment. As this
is a discrete version of the marginal treatment effect, it helps provide intuition for
how instruments, more generally, can help identify treatment effects.

For binary instrument Z,

LATE = E [Y1 − Y0 | D1 −D0 = 1]

where D1 = (D | Z = 1) and D0 = (D | Z = 0). That is, LATE is the ex-
pected gain from treatment of those individuals who switch from no treatment
to treatment when the instrument Z changes from 0 to 1. Angrist, Imbens, and
Rubin [1996] refer to this subpopulation as the "compliers". This treatment effect
is only identified for this subpopulation and because it involves counterfactuals
the subpopulation cannot be identified from the data. Nonetheless, the approach
has considerable appeal as it is reasonably robust even in the face of unobservable
heterogeneity.

Setup

The usual exclusion restriction (existence of instrument) applies. Identification
conditions are

Condition 10.24 {Y1, Y0} independent of Z,

Condition 10.25 D1 ≥ D0 for each individual, and

Condition 10.26 Pr (D = 1 | Z = 1) �= Pr (D = 1 | Z = 0).
Conditions 10.24 and 10.26 are usual instrumental variables conditions. Con-

ditional 10.25 is a uniformity condition. For the subpopulation of "compliers" the
instrument induces a change to treatment when Z takes a value of 1 but not when
Z = 0.

Identification

LATE provides a straightforward opportunity to explore IV identification of treat-
ment effects. Identification is a thought experiment regarding whether an esti-
mand, the population parameter associated with an estimator, can be uniquely
identified from the data. IV approaches rely on exclusion restrictions to identify
population characteristics of counterfactuals. Because of the counterfactual prob-
lem, it is crucial to our IV identification thought experiment that we be able to
manipulate treatment choice without impacting outcomes. Hence, the exclusion
restriction or existence of an instrument (or instruments) is fundamental. Once
identification is secured we can focus on matters of estimation (such as consis-
tency and efficiency). Next, we discuss IV identification of LATE. This is followed
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by discussion of the implication of exclusion restriction failure for treatment effect
identification.

For simplicity there are no covariates and two points of support Zi = 1 and
Zi = 0 where

Pr (Di = 1 | Zi = 1) > Pr (Di = 1 | Zi = 0)

Compare the outcome expectations

E [Yi | Zi = 1]− E [Yi | Zi = 0]
= E [DiY1i + (1−Di)Y0i | Zi = 1]

−E [DiY1i + (1−Di)Y0i | Zi = 0]

{Y1, Y0} independent of Z implies

E [Yi | Zi = 1]− E [Yi | Zi = 0]
= E [D1iY1i + (1−D1i)Y0i]− E [D0iY1i + (1−D0i)Y0i]

rearranging yields

E [(D1i −D0i)Y1i − (D1i −D0i)Y0i]

combining terms produces

E [(D1i −D0i) (Y1i − Y0i)]

utilizing the sum and product rules of Bayes’ theorem gives

Pr (D1i −D0i = 1)E [Y1i − Y0i | D1i −D0i = 1]
−Pr (D1i −D0i = −1)E [Y1i − Y0i | D1i −D0i = −1]

How do we interpret this last expression? Even for a strictly positive causal ef-
fect of D on Y for all individuals, the average treatment effect is ambiguous as it
can be positive, zero, or negative. That is, the treatment effect of those who switch
from nonparticipation to participation when Z changes from 0 to 1 can be off-
set by those who switch from participation to nonparticipation. Therefore, iden-
tification of average treatment effects requires additional data conditions. LATE
invokes uniformity in response to the instrument for all individuals. Uniformity
eliminates the second term above as Pr (D1i −D0i = −1) = 0. Then, we can
replace Pr (D1i −D0i = 1) with E [Di | Zi = 1]− E [Di | Zi = 0] and

Pr (D1i −D0i = 1)E [Y1i − Y0i | D1i −D0i = 1]
= (E [Di | Zi = 1]− E [Di | Zi = 0])E [Y1i − Y0i | D1i −D0i = 1]
= (E [Di | Zi = 1]− E [Di | Zi = 0]) (E [Yi | Zi = 1]− E [Yi | Zi = 0])
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From the above we can write

E [Yi | Zi = 1]− E [Yi | Zi = 0]
E [Di | Zi = 1]− E [Di | Zi = 0]

=
Pr (D1i −D0i = 1)E [Y1i − Y0i | D1i −D0i = 1]

E [Di | Zi = 1]− E [Di | Zi = 0]
=

(E [Di | Zi = 1]− E [Di | Zi = 0])E [Y1i − Y0i | D1i −D0i = 1]
E [Di | Zi = 1]− E [Di | Zi = 0]

= E [Y1i − Y0i | D1i −D0i = 1]
and since

LATE = E [Y1i − Y0i | D1i −D0i = 1]
we can identify LATE by extracting

E [Yi | Zi = 1]− E [Yi | Zi = 0]
E [Di | Zi = 1]− E [Di | Zi = 0]

from observables. This is precisely what standard 2SLS-IV estimates with a binary
instrument (developed more fully below).

As IV identification of treatment effects differs from standard applications of
linear IV,7 this seems an appropriate juncture to explore IV identification. The
foregoing discussion of LATE identification provides an attractive vehicle to il-
lustrate the nuance of identification with an exclusion restriction. Return to the
above approach, now suppose condition 10.24 fails, {Y1, Y0} not independent of
Z. Then,

E [Yi | Zi = 1]− E [Yi | Zi = 0]
= E [D1iY1i + (1−D1i)Y0i | Zi = 1]

−E [D0iY1i + (1−D0i)Y0i | Zi = 0]
but {Y1, Y0} not independent of Z implies

E [Yi | Zi = 1]− E [Yi | Zi = 0]
= E [D1iY1i + (1−D1i)Y0i | Zi = 1]

−E [D0iY1i + (1−D0i)Y0i | Zi = 0]
= {E [D1iY1i | Zi = 1]− E [D0iY1i | Zi = 0]}

− {E [D1iY0i | Zi = 1]− E [D0iY0i | Zi = 0]}
+ {E [Y0i | Zi = 1]− E [Y0i | Zi = 0]}

Apparently, the first two terms cannot be rearranged and simplified to identify
any treatment effect and the last term does not vanish (recall from above when
{Y1, Y0} independent of Z, this term equals zero). Hence, when the exclusion

7Heckman and Vytlacil [2005, 2007a, 2007b] emphasize this point.



10.5 Heterogeneous response and treatment effects 221

restriction fails we apparently cannot identify any treatment effects without ap-
pealing to other strong conditions.

Sometimes LATE can be directly connected to other treatment effects. For ex-
ample, if Pr (D0 = 1) = 0, then LATE = ATT . Intuitively, the only variation in
participation and therefore the only source of overlaps from which to extrapolate
from factuals to counterfactuals occurs when Zi = 1.When treatment is accepted,
we’re dealing with compliers and the group of compliers participate when Zi = 1.
Hence, LATE = ATT .

Also, if Pr (D1 = 1) = 1, then LATE = ATUT . Similarly, the only variation
in participation and therefore the only source of overlaps from which to extrap-
olate from factuals to counterfactuals occurs when Zi = 0. When treatment is
declined, we’re dealing with compliers and the group of compliers don’t partici-
pate when Zi = 0. Hence, LATE = ATUT .

Linear IV estimation

As indicated above, LATE can be estimated via standard 2SLS-IV. Here, we de-
velop the idea more completely. For Z binary, the estimand for the regression of
Y on Z is

E [Y | Z = 1]− E [Y | Z = 0]
1− 0 = E [Y | Z = 1]− E [Y | Z = 0]

and the estimand for the regression of D on Z is

E [D | Z = 1]− E [D | Z = 0]
1− 0 = E [D | Z = 1]− E [D | Z = 0]

Since Z is a scalar the estimand for IV estimation is their ratio

E [Y | Z = 1]− E [Y | Z = 0]
E [D | Z = 1]− E [D | Z = 0]

which is the result utilized above to identify LATE, the marginal treatment effect
for the subpopulation of compliers. Next, we explore some examples illustrating
IV estimation of LATE with a binary instrument.

Tuebingen-style examples

We return to the Tuebingen-style examples introduced in chapter 8 by supple-
menting them with a binary instrument Z. Likelihood assignment to treatment
choice maintains the state-by-state probability structure. Uniformity dictates that
we assign zero likelihood that an individual is a defier,8

pD ≡ Pr (s,D0 = 1, D1 = 0) = 0.0

8This assumption preserves the identification link between LATE and IV estimation. Uniformity is
a natural consequence of an index-structured propensity score, say Pr (Di |Wi) = G

�
WT
i γ
�
. Case

1b below illustrates how the presence of defiers in the sample confounds IV identification of LATE.
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Then, we assign the likelihoods that an individual is a complier,

pC ≡ Pr (s,D0 = 0, D1 = 1)
an individual never selects treatment,

pN ≡ Pr (s,D0 = 0, D1 = 0)
and an individual always selects treatment,

pA ≡ Pr (s,D0 = 1, D1 = 1)
such that state-by-state

p1 ≡ Pr (s,D1 = 1) = pC + pA
p0 ≡ Pr (s,D0 = 1) = pD + pA
q1 ≡ Pr (s,D1 = 0) = pD + pN
q0 ≡ Pr (s,D0 = 0) = pC + pN

Since (Yj | D = 1, s) = (Yj | D = 0, s) for j = 0 or 1, the exclusion restriction
is satisfied if

Pr (s | Z = 1) = Pr (s | Z = 0)
and

Pr (s | Z = 1) = p1 + q1

= pC + pA + pD + pN

equals

Pr (s | Z = 0) = p0 + q0

= pD + pA + pC + pN

probability assignment for compliance determines the remaining likelihood struc-
ture given Pr (s,D), Pr (Z), and pD = 0. For instance,

Pr (s,D = 0, Z = 0) = (pC + pN ) Pr (Z = 0)

and
Pr (s,D = 0, Z = 1) = (pD + pN ) Pr (Z = 1)

since

Pr (s,D = 0) = (pC + pN ) Pr (Z = 0) + (pD + pN ) Pr (Z = 1)

implies
pN = Pr (s,D = 0)− pC Pr (Z = 0)− pD Pr (Z = 1)

By similar reasoning,

pA = Pr (s,D = 1)− pC Pr (Z = 1)− pD Pr (Z = 0)
Now we’re prepared to explore some specific examples.
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Table 10.1: Tuebingen IV example treatment likelihoods for case 1: ignorable
treatment

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.0 0.08
compliers: Pr (s,D0 = 0, D1 = 1) 0.0128 0.0 0.0512

never treated: Pr (s,D0 = 0, D1 = 0) 0.01824 0.32 0.55296
always treated: Pr (s,D0 = 1, D1 = 1) 0.00896 0.0 0.03584

defiers: Pr (s,D0 = 1, D1 = 0) 0.0 0.0 0.0
Pr (Z = 1) = 0.3

Table 10.2: Tuebingen IV example outcome likelihoods for case 1: ignorable
treatment

state (s) one two three

Pr

�
Y,D, s,
Z = 0

	
0.021728 0.006272 0.224 0.0 0.422912 0.025088

Pr

�
Y,D, s,
Z = 1

	
0.005472 0.006528 0.096 0.0 0.165888 0.026112

D 0 1 0 1 0 1
Y 0 1 1 1 2 1
Y0 0 0 1 1 2 2
Y1 1 1 1 1 1 1

Case 1

Given Pr (Z = 1) = 0.3, treatment likelihood assignments for case 1 are de-
scribed in table 10.1. Then, from

Pr (s,D = 1) = (pC + pA) Pr (Z = 1) + (pD + pA) Pr (Z = 0)

= Pr (D = 1, Z = 1) + Pr (D = 1, Z = 0)

and

Pr (s,D = 0) = (pD + pN ) Pr (Z = 1) + (pC + pN ) Pr (Z = 0)

= Pr (D = 0, Z = 1) + Pr (D = 0, Z = 0)

the DGP for case 1, ignorable treatment, is identified in table 10.2. Various treat-
ment effects including LATE and the IV-estimand for case 1 are reported in table
10.3. Case 1 illustrates homogeneous response — all treatment effects, includ-
ing LATE, are the same. Further, endogeneity of treatment is ignorable as Y1 and
Y0 are conditionally mean independent of D; hence, OLS identifies the treatment
effects.

Case 1b

Suppose everything remains the same as above except treatment likelihood in-
cludes a nonzero defier likelihood as defined in table 10.4. This case highlights
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Table 10.3: Tuebingen IV example results for case 1: ignorable treatment

Results Key components
LATE = E [Y1 − Y0 | D1 −D0 = 1]

= −0.6 p = Pr (D = 1) = 0.064

IV − estimand = E[Y |Z=1]−E[Y |Z=0]
E[D|Z=1]−E[D|Z=0]

= −0.6 Pr (D = 1 | Z = 1) = 0.1088
Pr (D = 1 | Z = 0) = 0.0448

E [Y1 | D = 1] = 1.0
E [Y1 | D = 0] = 1.0

OLS =
E [Y1 | D = 1]
−E [Y0 | D = 0]

= −0.6 E [Y1] = 1.0

ATT = E [Y1 − Y0 | D = 1] = −0.6 E [Y0 | D = 1] = 1.6
ATUT = E [Y1 − Y0 | D = 0] = −0.6 E [Y0 | D = 0] = 1.6

ATE = E [Y1 − Y0] = −0.6 E [Y0] = 1.6

Table 10.4: Tuebingen IV example treatment likelihoods for case 1b: uniformity
fails

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.0 0.08
compliers: Pr (s,D0 = 0, D1 = 1) 0.0064 0.0 0.0256

never treated: Pr (s,D0 = 0, D1 = 0) 0.02083 0.32 0.56323
always treated: Pr (s,D0 = 1, D1 = 1) 0.00647 0.0 0.02567

defiers: Pr (s,D0 = 1, D1 = 0) 0.0063 0.0 0.0255
Pr (Z = 1) = 0.3
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Table 10.5: Tuebingen IV example treatment likelihoods for case 2:
heterogeneous response

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.3 0.08
compliers: Pr (D0 = 0, D1 = 1) 0.01 0.096 0.0512

never treated: Pr (D0 = 0, D1 = 0) 0.0202 0.1568 0.55296
always treated: Pr (D0 = 1, D1 = 1) 0.0098 0.0672 0.03584

defiers: Pr (D0 = 1, D1 = 0) 0.0 0.0 0.0
Pr (Z = 1) = 0.3

the difficulty of identifying treatment effects when uniformity of selection with
respect to the instrument fails even though in this ignorable treatment setting all
treatment effects are equal. Uniformity failure means some individuals who were
untreated when Z = 0 opt for treatment when Z = 1 but other individuals who
were treated when Z = 0 opt for no treatment when Z = 1.

From the identification discussion, the difference in expected observed outcome
when the instrument changes is

E [Yi | Zi = 1]− E [Yi | Zi = 0]
= Pr (D1i −D0i = 1)E [Y1i − Y0i | D1i −D0i = 1]

+Pr (D1i −D0i = −1)E [− (Y1i − Y0i) | D1i −D0i = −1]
= 0.032 (−0.6) + 0.0318 (0.6038) = 0.0

The effects
E [Y1i − Y0i | D1i −D0i = 1] = −0.6

and
E [− (Y1i − Y0i) | D1i −D0i = −1] = 0.6038

are offsetting and seemingly hopelessly confounded. 2SLS-IV estimates

E [Yi | Zi = 1]− E [Yi | Zi = 0]
E [Di | Zi = 1]− E [Di | Zi = 0] =

0.0

0.0002
= 0.0

which differs fromLATE = E [Y1i − Y0i | Di (1)−Di (0) = 1] = −0.6. There-
fore, we may be unable to identify LATE, the marginal treatment effect for com-
pliers, via 2SLS-IV when defiers are present in the sample.

Case 2

Case 2 perturbs the probabilities resulting in non-ignorable, inherently endoge-
nous treatment and heterogeneous treatment effects. Treatment adoption likeli-
hoods, assuming the likelihood an individual is a defier equals zero andPr (Z = 1) =
0.3, are assigned in table 10.5. These treatment likelihoods imply the data struc-
ture in table 10.6. Various treatment effects including LATE and the IV-estimand
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Table 10.6: Tuebingen IV example outcome likelihoods for case 2:
heterogeneous response

state (s) one two three

Pr

�
Y,D, s,
Z = 0

	
0.021728 0.006272 0.224 0.0 0.422912 0.025088

Pr

�
Y,D, s,
Z = 1

	
0.005472 0.006528 0.096 0.0 0.165888 0.026112

D 0 1 0 1 0 1
Y 0 1 1 1 2 1
Y0 0 0 1 1 2 2
Y1 1 1 1 1 1 1

Table 10.7: Tuebingen IV example results for case 2: heterogeneous response

Results Key components
LATE = E [Y1 − Y0 | D1 −D0 = 1]

= −0.2621 p = Pr (D = 1) = 0.16

IV − estimand = E[Y |Z=1]−E[Y |Z=0]
E[D|Z=1]−E[D|Z=0]

= −0.2621 Pr (D = 1 | Z = 1) = 0.270
Pr (D = 1 | Z = 0) = 0.113

E [Y1 | D = 1] = 1.0
E [Y1 | D = 0] = 1.0

OLS =
E [Y1 | D = 1]
−E [Y0 | D = 0]

= −0.669 E [Y1] = 1.0

ATT = E [Y1 − Y0 | D = 1] = −0.24 E [Y0 | D = 1] = 1.24
ATUT = E [Y1 − Y0 | D = 0] = −0.669 E [Y0 | D = 0] = 1.669

ATE = E [Y1 − Y0] = −0.6 E [Y0] = 1.6
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Table 10.8: Tuebingen IV example treatment likelihoods for case 2b: LATE =
ATT

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.3 0.3 0.08
compliers: Pr (s,D0 = 0, D1 = 1) 0.04 0.32 0.17067

never treated: Pr (s,D0 = 0, D1 = 0) 0.0 0.0 0.46933
always treated: Pr (s,D0 = 1, D1 = 1) 0.0 0.0 0.0

defiers: Pr (s,D0 = 1, D1 = 0) 0.0 0.0 0.0
Pr (Z = 1) = 0.3

Table 10.9: Tuebingen IV example outcome likelihoods for case 2b: LATE = ATT

state (s) one two three
Pr (Y,D, s, Z = 0) 0.028 0.0 0.224 0.0 0.448 0.0
Pr (Y,D, s, Z = 1) 0.0 0.012 0.0 0.096 0.1408 0.0512

D 0 1 0 1 0 1
Y 0 1 1 1 2 1
Y0 0 0 1 1 2 2
Y1 1 1 1 1 1 1

for case 2 are reported in table 10.7. In contrast to case 1, for case 2 all treatment
effects (ATE, ATT, ATUT, and LATE) differ which, of course, means OLS can-
not identify all treatment effects (though it does identify ATUT in this setting).
Importantly, the IV-estimand identifies LATE for the subpopulation of compliers.

Case 2b

If we perturb the probability structure such that

Pr (D = 1 | Z = 0) = 0
then LATE = ATT .9 For Pr (Z = 1) = 0.3, treatment adoption likelihoods
are assigned in table 10.8. Then, the data structure is as indicated in table 10.9.
Various treatment effects including LATE and the IV-estimand for case 2b are
reported in table 10.10. With this perturbation of likelihoods but maintenance of
independence between Z and (Y1, Y0), LATE=ATT and LATE is identified via the
IV-estimand but is not identified via OLS. Notice the evidence on counterfactuals
draws from Z = 1 as no one adopts treatment when Z = 0.

Case 3

Case 3 maintains the probability structure of case 2 but adds some variation to out-
comes with treatment Y1. For Pr (Z = 1) = 0.3, treatment adoption likelihoods

9We also perturbed Pr (D = 1 | s = one) = 0.3 rather than 0.32 to maintain the exclusion re-
striction and a proper (non-negative) probability distribution.
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Table 10.10: Tuebingen IV example results for case 2b: LATE = ATT

Results Key components
LATE = E [Y1 − Y0 | D1 −D0 = 1]

= −0.246 p = Pr (D = 1) = 0.1592

IV − estimand = E[Y |Z=1]−E[Y |Z=0]
E[D|Z=1]−E[D|Z=0]

= −0.246 Pr (D = 1 | Z = 1) = 0.5307
Pr (D = 1 | Z = 0) = 0.0
E [Y1 | D = 1] = 1.0
E [Y1 | D = 0] = 1.0

OLS =
E [Y1 | D = 1]
−E [Y0 | D = 0]

= −0.667 E [Y1] = 1.0

ATT = E [Y1 − Y0 | D = 1] = −0.246 E [Y0 | D = 1] = 1.246
ATUT = E [Y1 − Y0 | D = 0] = −0.667 E [Y0 | D = 0] = 1.667

ATE = E [Y1 − Y0] = −0.6 E [Y0] = 1.6

Table 10.11: Tuebingen IV example treatment likelihoods for case 3: more
heterogeneity

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.3 0.08
compliers: Pr (s,D0 = 0, D1 = 1) 0.01 0.096 0.0512

never treated: Pr (s,D0 = 0, D1 = 0) 0.0202 0.1568 0.55296
always treated: Pr (s,D0 = 1, D1 = 1) 0.0098 0.0672 0.03584

defiers: Pr (s,D0 = 1, D1 = 0) 0.0 0.0 0.0
Pr (Z = 1) = 0.3

are assigned in table 10.11. Then, the data structure is defined in table 10.12 where
Z0 refers to Z = 0 and Z1 refers to Z = 1. Various treatment effects including
LATE and the IV-estimand for case 3 are reported in table 10.13. OLS doesn’t
identify any treatment effect but the IV-estimand identifies the discrete marginal
treatment effect, LATE, for case 3.

Case 3b

Suppose the probability structure of case 3 is perturbed such that

Pr (D = 1 | Z = 1) = 1

then LATE=ATUT.10 ForPr (Z = 1) = 0.3, treatment adoption likelihoods are as-
signed in table 10.14. Then, the data structure is as defined in table 10.15. Various
treatment effects including LATE and the IV-estimand for case 3b are reported in
table 10.16. The IV-estimand identifies LATE and LATE = ATUT since treat-

10We assign Pr (D = 1 | s = three) = 0.6 rather than 0.08 to preserve the exclusion restriction.
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Table 10.12: Tuebingen IV example outcome likelihoods for case 3: more
heterogeneity

state (s) one two three

Pr

⎛⎜⎜⎝
Y
D
s
Z0

⎞⎟⎟⎠ 0.02114 0.00686 0.17696 0.04704 0.422912 0.025088

Pr

⎛⎜⎜⎝
Y
D
s
Z1

⎞⎟⎟⎠ 0.00606 0.00594 0.04704 0.04896 0.165888 0.026112

D 0 1 0 1 0 1
Y 0 1 1 1 2 0
Y0 0 0 1 1 2 2
Y1 1 1 1 1 0 0

Table 10.13: Tuebingen IV example results for case 3: more heterogeneity

Results Key components
LATE = E [Y1 − Y0 | D1 −D0 = 1]

= −0.588 p = Pr (D = 1) = 0.16

IV − estimand = E[Y |Z=1]−E[Y |Z=0]
E[D|Z=1]−E[D|Z=0]

= −0.588 Pr (D = 1 | Z = 1) = 0.270
Pr (D = 1 | Z = 0) = 0.113
E [Y1 | D = 1] = 0.68
E [Y1 | D = 0] = 0.299

OLS =
E [Y1 | D = 1]
−E [Y0 | D = 0]

= −0.989 E [Y1] = 0.36

ATT = E [Y1 − Y0 | D = 1] = −0.56 E [Y0 | D = 1] = 1.24
ATUT = E [Y1 − Y0 | D = 0] = −1.369 E [Y0 | D = 0] = 1.669

ATE = E [Y1 − Y0] = −1.24 E [Y0] = 1.6

ment is always selected when Z = 1. Also, notice OLS is close to ATE even
though this is a case of inherent endogeneity. This suggests comparing ATE with
OLS provide an inadequate test for the existence of endogeneity.

Case 4

Case 4 employs a richer set of outcomes but the probability structure for (D,Y, s)
employed in case 1 and yields the Simpson’s paradox result noted in chapter 8. For
Pr (Z = 1) = 0.3, assignment of treatment adoption likelihoods are described in
table 10.17. Then, the data structure is identified in table 10.18. Various treatment
effects including LATE and the IV-estimand for case 4 are reported in table 10.19.
OLS estimates a negative effect while all the standard average treatment effects
are positive. Identification conditions are satisfied and the IV-estimand identifies
LATE.



230 10. Treatment effects: IV

Table 10.14: Tuebingen IV example treatment likelihoods for case 3b: LATE =
ATUT

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.3 0.6
compliers: Pr (s,D0 = 0, D1 = 1) 0.038857 0.32 0.365714

never treated: Pr (s,D0 = 0, D1 = 0) 0.0 0.0 0.0
always treated: Pr (s,D0 = 1, D1 = 1) 0.001143 0.0 0.274286

defiers: Pr (s,D0 = 1, D1 = 0) 0.0 0.0 0.0
Pr (Z = 1) = 0.3

Table 10.15: Tuebingen IV example outcome likelihoods for case 3b: LATE =
ATUT

state (s) one two three
Pr (Y,D, s, Z = 0) 0.0272 0.0008 0.224 0.0 0.256 0.192
Pr (Y,D, s, Z = 1) 0.0 0.0012 0.0 0.096 0.0 0.192

D 0 1 0 1 0 1
Y 0 1 1 1 2 0
Y0 0 0 1 1 2 2
Y1 1 1 1 1 0 0

Case 4b

For Z = D and Pr (Z = 1) = Pr (D = 1) = 0.16, case 4b explores viola-
tion of the exclusion restriction. Assignment of treatment adoption likelihoods are
described in table 10.20. However, as indicated earlier the exclusion restriction
apparently can only be violated in this binary instrument setting if treatment al-
ters the outcome distributions. To explore the implications of this variation, we
perturb outcomes with treatment slightly as defined in table 10.21. Various treat-
ment effects including LATE and the IV-estimand for case 4b are reported in table
10.22. Since the exclusion restriction is not satisfied the IV-estimand fails to iden-
tify LATE. In fact, OLS and 2SLS-IV estimates are both negative while ATE and
LATE are positive. As Z = D, the entire population consists of compliers, and it
is difficult to assess the counterfactuals as there is no variation in treatment when
either Z = 0 or Z = 1. Hence, it is critical to treatment effect identification that
treatment not induce a shift in the outcome distributions but rather variation in the
instruments produces a change in treatment status only.

Case 5

Case 5 involves Pr (z = 1) = 0.3, and non-overlapping support:

Pr (s = one,D = 0) = 0.04

Pr (s = two,D = 1) = 0.32



10.5 Heterogeneous response and treatment effects 231

Table 10.16: Tuebingen IV example results for case 3b: LATE = ATUT

Results Key components
LATE = E [Y1 − Y0 | D1 −D0] = 1]

= −0.9558 p = Pr (D = 1) = 0.4928

IV − estimand = E[Y |Z=1]−E[Y |Z=0]
E[D|Z=1]−E[D|Z=0]

= −0.9558 Pr (D = 1 | Z = 1) = 1.0
Pr (D = 1 | Z = 0) = 0.2754
E [Y1 | D = 1] = 0.2208
E [Y1 | D = 0] = 0.4953

OLS =
E [Y1 | D = 1]
−E [Y0 | D = 0]

= −1.230 E [Y1] = 0.36

ATT = E [Y1 − Y0 | D = 1] = −1.5325 E [Y0 | D = 1] = 1.7532
ATUT = E [Y1 − Y0 | D = 0] = −0.9558 E [Y0 | D = 0] = 1.4511

ATE = E [Y1 − Y0] = −1.24 E [Y0] = 1.6

Table 10.17: Tuebingen IV example treatment likelihoods for case 4: Simpson’s
paradox

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.3 0.08
compliers: Pr (s,D0 = 0, D1 = 1) 0.01 0.096 0.0512

never treated: Pr (s,D0 = 0, D1 = 0) 0.0202 0.1568 0.55296
always treated: Pr (s,D0 = 1, D1 = 1) 0.0098 0.0672 0.03584

defiers: Pr (s,D0 = 1, D1 = 0) 0.0 0.0 0.0

Pr (Z = 1) = 0.3

and

Pr (s = three,D = 0) = 0.64

as assigned in table 10.23.
There is no positive complier likelihood for this setting. The intuition for this

is as follows. Compliers elect no treatment when the instrument takes a value of
zero but select treatment when the instrument is unity. With the above likelihood
structure there is no possibility for compliance as each state is singularly treatment
or no treatment irrespective of the instrument as described in table 10.24.

Various treatment effects including LATE and the IV-estimand for case 5 are
reported in table 10.25. Case 5 illustrates the danger of lack of common support.
Common support concerns extend to other standard ignorable treatment and IV
identification approaches beyond LATE. Case 5b perturbs the likelihoods slightly
to recover IV identification of LATE.
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Table 10.18: Tuebingen IV example outcome likelihoods for case 4: Simpson’s
paradox

state (s) one two three

Pr

⎛⎜⎜⎝
Y
D
s
Z0

⎞⎟⎟⎠ 0.02114 0.00686 0.17696 0.04704 0.422912 0.025088

Pr

⎛⎜⎜⎝
Y
D
s
Z1

⎞⎟⎟⎠ 0.00606 0.00594 0.04704 0.04896 0.165888 0.026112

D 0 1 0 1 0 1
Y 0.0 1.0 1.0 1.0 2.0 2.3
Y0 0.0 0.0 1.0 1.0 2.0 2.0
Y1 1.0 1.0 1.0 1.0 2.3 2.3

Table 10.19: Tuebingen IV example results for case 4: Simpson’s paradox

Results Key components
LATE = E [Y1 − Y0 | D1 −D0 = 1]

= 0.161
p = Pr (D = 1) = 0.16

IV − estimand = E[Y |Z=1]−E[Y |Z=0]
E[D|Z=1]−E[D|Z=0]

= 0.161
Pr (D = 1 | Z = 1) = 0.27004
Pr (D = 1 | Z = 0) = 0.11284

E [Y1 | D = 1] = 1.416
E [Y1 | D = 0] = 1.911

OLS =
E [Y1 | D = 1]
−E [Y0 | D = 0]

= −0.253 E [Y1] = 1.832

ATT = E [Y1 − Y0 | D = 1] = 0.176 E [Y0 | D = 1] = 1.24
ATUT = E [Y1 − Y0 | D = 0] = 0.243 E [Y0 | D = 0] = 1.669

ATE = E [Y1 − Y0] = 0.232 E [Y0] = 1.6

Case 5b

Case 5b perturbs the probabilities slightly such that

Pr (s = two,D = 1) = 0.3104

and
Pr (s = two,D = 0) = 0.0096

as depicted in table 10.26; everything else remains as in case 5. This slight per-
turbation accommodates treatment adoption likelihood assignments as defined in
table 10.27. Various treatment effects including LATE and the IV-estimand for
case 5b are reported in table 10.28. Even though there is a very small subpopula-
tion of compliers, IV identifies LATE. The common support issue was discussed in
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Table 10.20: Tuebingen IV example treatment likelihoods for case 4b: exclusion
restriction violated

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.3 0.08
compliers: Pr (s,D0 = 0, D1 = 1) 0.04 0.32 0.64

never treated: Pr (s,D0 = 0, D1 = 0) 0.0 0.0 0.0
always treated: Pr (s,D0 = 1, D1 = 1) 0.0 0.0 0.0

defiers: Pr (s,D0 = 1, D1 = 0) 0.0 0.0 0.0
Pr (Z = 1) = 0.16

Table 10.21: Tuebingen IV example outcome likelihoods for case 4b: exclusion
restriction violated

state (s) one two three

Pr



Y,D, s,
Z = 0

�
0.0336 0.0 0.2688 0.0 0.5376 0.0

Pr



Y,D, s,
Z = 1

�
0.0 0.0064 0.0 0.0512 0.0 0.1024

D 0 1 0 1 0 1
Y 0.0 3.0 1.0 1.0 2.0 1.6
Y0 0.0 0.0 1.0 1.0 2.0 2.0
Y1 1.0 1.0 1.0 1.0 2.3 1.6

the context of the asset revaluation regulation example in chapter 9 and comes up
again in the discussion of regulated report precision example later in this chapter.

Discussion of LATE

Linear IV estimation of LATE has considerable appeal. Given the existence of in-
struments, it is simple to implement (2SLS-IV) and robust; it doesn’t rely on strong
distributional conditions and can accommodate unobservable heterogeneity. How-
ever, it also has drawbacks. We cannot identify the subpopulation of compliers due
to unobservable counterfactuals. If the instruments change, it’s likely that the treat-
ment effect (LATE) and the subpopulation of compliers will change. This implies
that different analysts are likely to identify different treatment effects — an issue
of concern to Heckman and Vytlacil [2005]. Continuous or multi-level discrete in-
struments and/or regressors produce a complicated weighted average of marginal
treatment effects that are again dependent on the particular instrument chosen as
discussed in the next chapter. Finally, the treatment effect literature is asymmet-
ric. Outcome heterogeneity can be accommodated but uniformity (or homogene-
ity) of treatment is fundamental. This latter limitation applies to all IV approaches
including local IV (LIV) estimation of MTE which is discussed in chapter 11.
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Table 10.22: Tuebingen IV example results for case 4b: exclusion restriction
violated

Results Key components
LATE = E [Y1 − Y0 | D1 −D0 = 1]

= 0.160
p = Pr (D = 1) = 0.16

IV − estimand = E[Y |Z=1]−E[Y |Z=0]
E[D|Z=1]−E[D|Z=0]

= −0.216 Pr (D = 1 | Z = 1) = 1.0
Pr (D = 1 | Z = 0) = 0.0
E [Y1 | D = 1] = 1.192
E [Y1 | D = 0] = 1.911

OLS =
E [Y1 | D = 1]
−E [Y0 | D = 0]

= −0.477 E [Y1] = 1.796

ATT = E [Y1 − Y0 | D = 1] = −0.048 E [Y0 | D = 1] = 1.24
ATUT = E [Y1 − Y0 | D = 0] = 0.243 E [Y0 | D = 0] = 1.669

ATE = E [Y1 − Y0] = 0.196 E [Y0] = 1.6

Table 10.23: Tuebingen IV example outcome likelihoods for case 5: lack of
common support

state (s) one two three
Pr (Y,D, s, Z = 0) 0.028 0.0 0.0 0.224 0.448 0.0
Pr (Y,D, s, Z = 1) 0.012 0.0 0.0 0.096 0.192 0.0

D 0 1 0 1 0 1
Y 0 1 1 2 2 0
Y0 0 0 1 1 2 2
Y1 1 1 2 2 0 0

Censored regression and LATE

Angrist [2001] discusses identification of LATE in the context of censored re-
gression.11 He proposes a non-negative transformation exp (Xβ) combined with
linear IV to identify a treatment effect. Like the discussion of LATE above, the ap-
proach is simplest and most easily interpreted when the instrument is binary and
there are no covariates. Angrist extends the discussion to cover quantile treatment
effects based on censored quantile regression combined with Abadie’s [2000]
causal IV.

11This is not to be confused with sample selection. Here, we refer to cases in which the observed
outcome follows a switching regression that permits identification of counterfactuals.
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Table 10.24: Tuebingen IV example treatment likelihoods for case 5: lack of
common support

state one two three
compliers: Pr (D0 = 0, D1 = 1) 0.0 0.0 0.0

never treated: Pr (D0 = 0, D1 = 0) 0.04 0.0 0.64
always treated: Pr (D0 = 1, D1 = 1) 0.0 0.32 0.0

defiers: Pr (D0 = 1, D1 = 0) 0.0 0.0 0.0
Pr (Z = 1) = 0.3

Table 10.25: Tuebingen IV example results for case 5: lack of common support

Results Key components
LATE = E [Y1 − Y0 | D1 −D0 = 1]

= NA
p = Pr (D = 1) = 0.32

IV − estimand = E[Y |Z=1]−E[Y |Z=0]
E[D|Z=1]−E[D|Z=0]

= 0
0

Pr (D = 1 | Z = 1) = 0.32
Pr (D = 1 | Z = 0) = 0.32
E [Y1 | D = 1] = 2.0
E [Y1 | D = 0] = 0.0588

OLS =
E [Y1 | D = 1]
−E [Y0 | D = 0]

= 0.118 E [Y1] = 0.68

ATT = E [Y1 − Y0 | D = 1] = 1.0 E [Y0 | D = 1] = 1.0
ATUT = E [Y1 − Y0 | D = 0] = −1.824 E [Y0 | D = 0] = 1.882

ATE = E [Y1 − Y0] = −0.92 E [Y0] = 1.6

For (Y0i, Y1i) independent of (Di | Xi, D1i > D0i) Abadie defines the causal
IV effect, LATE.

LATE = E [Yi | Xi, Di = 1, D1i > D0i]
−E [Yi | Xi, Di = 0, D1i > D0i]

= E [Y1i − Y0i | Xi, D1i > D0i]

Then, for binary instrument Z, Abadie shows

E
6�
E [Yi | Xi, Di, D1i > D0i]−XT

i b− aDi
�2 | D1i > D0i7

=
E
6
κi
�
E [Yi | Xi, Di, D1i > D0i]−XT

i b− aDi
�27

Pr (D1i > D0i)

where

κi = 1− Di (1− Zi)
Pr (Zi = 0 | Xi) −

(1−Di)Zi
Pr (Zi = 1 | Xi)
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Table 10.26: Tuebingen IV example outcome likelihoods for case 5b: minimal
common support

state (s) one two three
Pr (Y,D, s, Z = 0) 0.028 0.0 0.0082 0.21518 0.448 0.0
Pr (Y,D, s, Z = 1) 0.012 0.0 0.00078 0.09522 0.192 0.0

D 0 1 0 1 0 1
Y 0 1 1 2 2 0
Y0 0 0 1 1 2 2
Y1 1 1 2 2 0 0

Table 10.27: Tuebingen IV example outcome likelihoods for case 5b: minimal
common support

state one two three
compliers: Pr (D0 = 0, D1 = 1) 0.0 0.01 0.0

never treated: Pr (D0 = 0, D1 = 0) 0.04 0.0026 0.64
always treated: Pr (D0 = 1, D1 = 1) 0.0 0.3074 0.0

defiers: Pr (D0 = 1, D1 = 0) 0.0 0.0 0.0
Pr (Z = 1) = 0.30

Since κi can be estimated from the observable data, one can employ minimum
“weighted” least squares to estimate a and b. That is,

min
a,b
E
6
κi
�
Yi −XT

i b− aDi
�27

Notice for compliers Zi = Di (for noncompliers, Zi �= Di) and κi always equals
one for compliers and is unequal to one (in fact, negative) for noncompliers. In-
tuitively, Abadie’s causal IV estimator weights the data such that the residuals are
small for compliers but large (in absolute value) for noncompliers. The coeffi-
cient onD, a, is the treatment effect. We leave remaining details for the interested
reader to explore. In chapter 11, we discuss a unified strategy, proposed by Heck-
man and Vytlacil [2005, 2007a, 2007b] and Heckman and Abbring [2007], built
around marginal treatment effects for addressing means as well as distributions of
treatment effects.

10.6 Continuous treatment

Suppressing covariates, the average treatment effect for continuous treatment can
be defined as

ATE = E

�
∂

∂d
Y

�



10.6 Continuous treatment 237

Table 10.28: Tuebingen IV example results for case 5b: minimal common support

Results Key components
LATE = E [Y1 − Y0 | D1 −D0 = 1]

= 1.0
p = Pr (D = 1) = 0.3104

IV − estimand = E[Y |Z=1]−E[Y |Z=0]
E[D|Z=1]−E[D|Z=0]

= 1.0
Pr (D = 1 | Z = 1) = 0.3174
Pr (D = 1 | Z = 0) = 0.3074

E [Y1 | D = 1] = 2.0
E [Y1 | D = 0] = 0.086

OLS =
E [Y1 | D = 1]
−E [Y0 | D = 0]

= 0.13 E [Y1] = 0.68

ATT = E [Y1 − Y0 | D = 1] = 1.0 E [Y0 | D = 1] = 1.0
ATUT = E [Y1 − Y0 | D = 0] = −1.784 E [Y0 | D = 0] = 1.870

ATE = E [Y1 − Y0] = −0.92 E [Y0] = 1.6

Often, the more economically-meaningful effect, the average treatment effect on
treated for continuous treatment is

ATT = E

�
∂

∂d
Y | D = d

�
Wooldridge [1997, 2003] provides conditions for identifying continuous treat-

ment effects via 2SLS-IV. This is a classic correlated random coefficients set-
ting (see chapter 3) also pursued by Heckman [1997] and Heckman and Vyt-
lacil [1998] (denoted HV in this subsection). As the parameters or coefficients are
random, the model accommodates individual heterogeneity. Further, correlation
between the treatment variable and the treatment effect parameter accommodates
unobservable heterogeneity.

Let y be the outcome variable and D be a vector of G treatment variables.12

The structural model13 written in expectation form is

E [y | a, b,D] = a+ bD
or in error form, the model is

y = a+ bD+ e

where E [e | a, b,D] = 0. It’s instructive to rewrite the model in error form for
random draw i

yi = ai +Dibi + ei

The model suggests that the intercept, ai, and slopes, bij , j = 1, . . . , G, can be
individual-specific and depend on observed covariates or unobserved heterogene-
ity. Typically, we focus on the average treatment effect, β ≡ E [b] = E [bi], as b

12For simplicity as well as clarity, we’ll stick with Wooldridge’s [2003] setting and notation.
13The model is structural in the sense that the partial effects ofDj on the mean response are identi-

fied after controlling for the factor determining the intercept and slope parameters.
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is likely a function of unobserved heterogeneity and we cannot identify the vector
of slopes, bi, for any individual i.

Suppose we haveK covariates x and L instrumental variables z. As is common
with IV strategies, identification utilizes an exclusion restriction. Specifically, the
identification conditions are

Condition 10.27 The covariates x and instruments z are redundant for the out-
come y.

E [y | a,b,D,x, z] = E [y | a,b,D]

Condition 10.28 The instruments z are redundant for a and b conditional on x.

E [a | x, z] = E [a | x] = γ0 + xγ
E [bj | x, z] = E [bj | x] = β0j + (x− E [x]) δj , j = 1, . . . , G

Let the error form of a and b be

a = γ0 + xγ + c, E [c | x, z] = 0
bj = β0j + (x− E [x]) δj + υj , E [υj | x, z] = 0, j = 1, . . . , G

When plugged into the outcome equation this yields

y = γ0+xγ+Dβ0+D1 (x− E [x]) δ1+ . . .+DG (x− E [x]) δG+c+Dv+e
where v = (υ1, . . . , υG)

T . The composite error Dv is problematic as, generally,
E [Dv | x, z] �= 0 but as discussed by Wooldridge [1997] and HV [1998], it is
possible that the conditional covariances do not depend on (x, z). This is the third
identification condition.

Condition 10.29 The conditional covariances between D and v do not depend
on (x, z).

E [Djυj | x, z] = αj ≡ Cov (Dj , υj) = E [Djυj ] , j = 1, . . . , G

Let α0 = α1 + · · · + αG and r = Dv − E [Dv | x, z] and write the outcome
equation as

y = (γ0 + α0)+xγ+Dβ0+D1 (x− E [x]) δ1+. . .+DG (x− E [x]) δG+c+r+e
Since the composite error u ≡ c+ r + e has zero mean conditional on (x, z), we
can use any function of (x, z) as instruments in the outcome equation

y = θ0 + xγ +Dβ0 +D1 (x− E [x]) δ1 + . . .+DG (x− E [x]) δG + u
Wooldridge [2003, p. 189] argues 2SLS-IV is more robust than HV’s plug-in

estimator and the standard errors are simpler to obtain. Next, we revisit the third
accounting setting from chapter 2, regulated report precision, and explore various
treatment effect strategies within this richer accounting context.
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10.7 Regulated report precision

Now, consider the report precision example introduced in chapter 2. Recall reg-
ulators set a target report precision as regulation increases report precision and
improves the owner’s welfare relative to private precision choice. However, regu-
lation also invites transaction design (commonly referred to as earnings manage-
ment) which produces deviations from regulatory targets. The owner’s expected

utility including the cost of transaction design, αd
�
b̂− σ22

�2
, is

EU (σ2) = μ− β σ21σ̄
2
2

σ21 + σ̄
2
2

− γ σ
4
1

�
σ21 + σ

2
2

�
(σ21 + σ̄

2
2)
2 − α �b− σ22�2 − αd �b̂− σ22�2

Outcomes Y are reflected in exchange values or prices and accordingly reflect
only a portion of the owner’s expected utility.

Y = P (σ̄2) = μ+
σ21

σ21 + σ̄
2
2

(s− μ)− β σ21σ̄
2
2

σ21 + σ̄
2
2

In particular, cost may be hidden from the analysts’ view; cost includes the ex-
plicit cost of report precision, α

�
b− σ22

�2
, cost of any transaction design, αd�

b̂− σ22
�2

, and the owner’s risk premia, γ
σ41(σ

2
1+σ

2
2)

(σ21+σ̄22)
2 . Further, outcomes (prices)

reflect realized draws from the accounting system, s, whereas the owner’s ex-
pected utility is based on anticipated reports and her knowledge of the distribution
for (s,EU). The causal effect of treatment (report precision choice) on outcomes
is the subject under study and is almost surely endogenous. Our analysis enter-
tains variations of treatment data including binary choice that is observed (by the
analyst) binary, a continuum of choices that is observed binary, and continuous
treatment that is observed from a continuum of choices.

10.7.1 Binary report precision choice
Suppose there are two types of owners, those with low report precision cost pa-
rameter αLd , and those with high report precision cost parameter αHd . An owner
chooses report precision based on maximizing her expected utility, a portion of
which is unobservable (to the analyst). For simplicity, we initially assume report
precision is binary and observable to the analyst.

Base case

Focus attention on the treatment effect of report precision. To facilitate this exer-
cise, we simulate data by drawing 200 samples of 2, 000 observations for normally
distributed reports with mean μ and variance σ21 + σ

2
2. Parameter values are tab-
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ulated below

.

Base case parameter values
μ = 1, 000
σ21 = 100

βL = βH = β = 7
b = 1502b = 128.4
γ = 2.5
α = 0.02

αLd ∼ N
�
0.02, 0.0052

�
αHd ∼ N

�
0.04, 0.012

�
The random αjd draws are not observed by firm owners until after their report
precision choices are made.14 On the other hand, the analyst observes αjd draws
ex post but their mean is unknown.15 The owner chooses inverse report precision

(report variance)
8�
σL2
�2
= 133.5,

�
σH2

�2
= 131.7

9
to maximize her expected

utility given her type, E
�
αLd
�
, or E

�
αHd

�
.

The report variance choices described above are the Nash equilibrium strate-
gies for the owner and investors. That is, for αLd , investors’ conjecture

�
σL2
�2
=

133.5 and the owner’s best response is
�
σL2
�2
= 133.5. While for αHd , investors’

conjecture
�
σH2

�2
= 131.7 and the owner’s best response is

�
σH2

�2
= 131.7.

Hence, the owner’s expected utility associated with low variance reports given
αLd is (EU1 | D = 1) = 486.8 while the owner’s expected utility associated
with high variance reports given αLd is lower, (EU0 | D = 1) = 486.6. Also,
the owner’s expected utility associated with high variance reports given αHd is
(EU0 | D = 0) = 487.1 while the owner’s expected utility associated with low
variance reports given αHd is lower, (EU1 | D = 0) = 486.9.

Even though treatment choice is driven by cost of transaction design, αd, ob-
servable outcomes are traded values, P , and don’t reflect cost of transaction de-
sign. To wit, the observed treatment effect on the treated is

TT =
�
PL | D = 1

�− �PH | D = 1
�
= (Y1 | D = 1)− (Y0 | D = 1)

=

�
μ+

σ21

σ21 +
�
σ̄L2
�2 �sL − μ�− β σ21

�
σ̄L2
�2

σ21 +
�
σ̄L2
�2
�

−
�
μ+

σ21

σ21 +
�
σ̄L2
�2 �sH − μ�− β σ21

�
σ̄L2
�2

σ21 +
�
σ̄L2
�2
�

Since E
�
sL − μ� = E �sH − μ� = 0,

E [TT ] = ATT = 0

14For the simulation, type is drawn from a Bernoulli distribution with probability 0.5.
15Consequently, even if other parameters are observed by the analyst, there is uncertainty associated

with selection due to αjd.
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Also, the observed treatment effect on the untreated is

TUT =
�
PL | D = 0

�− �PH | D = 0
�
= (Y1 | D = 0)− (Y0 | D = 0)

=

�
μ+

σ21

σ21 +
�
σ̄H2

�2 �sL − μ�− β σ21
�
σ̄H2

�2
σ21 +

�
σ̄H2

�2
�

−
�
μ+

σ21

σ21 +
�
σ̄H2

�2 �sH − μ�− β σ21
�
σ̄H2

�2
σ21 +

�
σ̄H2

�2
�

and
E [TUT ] = ATUT = 0

Therefore, the average treatment effect is

ATE = 0

However, the OLS estimand is

OLS = E
��
PL | D = 1

�− �PH | D = 0
��

= E [(Y1 | D = 1)− (Y0 | D = 0)]

=

�
μ+

σ21

σ21 +
�
σ̄L2
�2E �sL − μ�− β σ21

�
σ̄L2
�2

σ21 +
�
σ̄L2
�2
�

−
�
μ+

σ21

σ21 +
�
σ̄H2

�2E �sH − μ�− β σ21
�
σ̄H2

�2
σ21 +

�
σ̄H2

�2
�

= β
σ21
�
σ̄H2

�2
σ21 +

�
σ̄H2

�2 − β σ21
�
σ̄L2
�2

σ21 +
�
σ̄L2
�2

For the present example, the OLS bias is nonstochastic

β

�
σ21
�
σ̄H2

�2
σ21 +

�
σ̄H2

�2 − σ21
�
σ̄L2
�2

σ21 +
�
σ̄L2
�2
�
= −2.33

Suppose we employ a naive (unsaturated) regression model, ignoring the OLS
bias,

E [Y | s,D] = β0 + β1s+ β2D
or even a saturated regression model that ignores the OLS bias

E [Y | s,D] = β0 + β1s+ β2Ds+ β3D

where
D = 1 if EUL > EUH

0 if EUL < EUH
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Table 10.29: Report precision OLS parameter estimates for binary base case

statistic β0 β1 β2 (estATE)
mean 172.2 0.430 −2.260
median 172.2 0.430 −2.260
std.dev. 0.069 0.0001 0.001
minimum 172.0 0.430 −2.264
maximum 172.4 0.430 −2.257

E [Y | D, s] = β0 + β1s+ β2D

Table 10.30: Report precision average treatment effect sample statistics for
binary base case

statistic ATT ATUT ATE
mean 0.024 −0.011 0.006
median 0.036 0.002 0.008
std.dev. 0.267 0.283 0.191
minimum −0.610 −0.685 −0.402
maximum 0.634 0.649 0.516

EU j = μ− βj
σ21

�
σ̄j2

�2
σ21 +

�
σ̄j2

�2 − γ σ
4
1



σ21 +

�
σj2

�2�


σ21 +

�
σ̄j2

�2�2
−α



b−

�
σj2

�2�2
− E

6
αjd

7

b̂−

�
σj2

�2�2
Y = DY L + (1−D)Y H

Y j = μ+
σ21

σ21 +
�
σ̄j2

�2 �sj − μ�− βj σ21
�
σ̄j2

�2
σ21 +

�
σ̄j2

�2
and

s = DsL + (1−D) sH

sj ∼ N



μ,σ21 +

�
σj2

�2�
for j ∈ {L,H}. Estimation results for the above naive regression are reported in
table 10.29. Since this is simulation, we have access to the "missing" data and can
provide sample statistics for average treatment effects. Sample statistics for stan-
dard average treatment effects, ATE, ATT, and ATUT, are reported in table 10.30.
Estimation results for the above saturated regression are reported in table 10.31.
As expected, the results indicate substantial OLS selection bias in both regres-
sions. Clearly, to effectively estimate any treatment effect, we need to eliminate
this OLS selection bias from outcome.
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Table 10.31: Report precision saturated OLS parameter estimates for binary base
case

statistic β0 β1 β2
mean 602.1 0.432 −0.003
median 602.1 0.432 0.003
std.dev. 0.148 0.000 0.000
minimum 601.7 0.432 −0.003
maximum 602.6 0.432 −0.003
statistic estATT estATUT β3 (estATE)
mean −2.260 −2.260 −2.260
median −2.260 −2.260 −2.260
std.dev. 0.001 0.001 0.001
minimum −2.264 −2.265 −2.264
maximum −2.255 −2.256 −2.257

E [Y | D, s] = β0 + β1s+ β2Ds+ β3D

Adjusted outcomes

It’s unusual to encounter nonstochastic selection bias.16 Normally, nonstochastic
bias is easily eliminated as it’s captured in the intercept but here the selection bias
is perfectly aligned with the treatment effect of interest. Consequently, we must
decompose the two effects — we separate the selection bias from the treatment
effect. Since the components of selection bias are proportional to the coefficients
on the reports and these coefficients are consistently estimated when selection
bias is nonstochastic, we can utilize the estimates from the coefficients on sL

and sH . For example, the coefficient on sL is ωsL =
σ21

σ21+(σ̄L2 )
2 . Then,

�
σ̄L2
�2
=

σ21(1−ωsL)
ωsL

and
σ21(σ̄

L
2 )

2

σ21+(σ̄L2 )
2 = ωsL

σ21(1−ωsL)
ωsL

= σ21 (1− ωsL). Hence, the OLS

selection bias

bias = β

�
σ21
�
σ̄H2

�2
σ21 +

�
σ̄H2

�2 − σ21
�
σ̄L2
�2

σ21 +
�
σ̄L2
�2
�

can be written
bias = βσ21 (ωsL − ωsH )

This decomposition suggests we work with adjusted outcome

Y � = Y − βσ21 (DωsL − (1−D)ωsH )

16Like the asset revaluation setting (chapter 9), the explanation lies in the lack of common support
for identifying counterfactuals. In this base case, cost of transaction design type (L or H) is a perfect
predictor of treatment. That is, Pr (D = 1 | type = L) = 1 and Pr (D = 1 | type = H) = 0. In
subsequent settings, parameter variation leads to common support and selection bias is resolved via
more standard IV approaches.
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The adjustment can be estimated as follows. Estimate ωsL and ωsH from the
regression

E
�
Y | D, sL, sH� = ω0 + ω1D + ωsLDsL + ωsH (1−D) sH

Then, since

Y j = μ+
σ21

σ21 +
�
σ̄j2

�2 �sj − μ�− βj σ21
�
σ̄j2

�2
σ21 +

�
σ̄j2

�2
= μ+ ωsj

�
sj − μ�− βjσ21 (1− ωsj )

we can recover the weight, ω = −βσ21, on (1− ωsj ) utilizing the "restricted"
regression

E

�
Y − ω0 − ωsLD

�
sL − μ�

−ωsH (1−D)
�
sH − μ� | D, sL, sH ,ωsL ,ωsH

�
= ω [D (1− ωsL) + (1−D) (1− ωsH )]

Finally, adjusted outcome is determined by plugging the estimates for ω, ωsL , and
ωsH into

Y � = Y + ω (DωsL − (1−D)ωsH )
Now, we revisit the saturated regression employing the adjusted outcome Y �.

E [Y � | D, s] = β0 + β1 (s− μ) + β2D (s− μ) + β3D
The coefficient onD, β2,estimates the average treatment effect. Estimation results
for the saturated regression with adjusted outcome are reported in table 10.32.

As there is no residual uncertainty, response is homogeneous and the sample
statistics for standard treatment effects, ATE, ATT, and ATUT, are of very simi-
lar magnitude — certainly within sampling variation. No residual uncertainty (in
adjusted outcome) implies treatment is ignorable.

Heterogeneous response

Now, we explore a more interesting setting. Everything remains as in the base case
except there is unobserved (by the analyst) variation in β the parameter controlling
the discount associated with uncertainty in the buyer’s ability to manage the assets.
In particular, βL,βH are independent normally distributed with mean 7 and unit
variance.17 These βL,βH draws are observed by the owner in conjunction with
the known mean for αLd ,α

L
d when selecting report precision. In this setting, it is

as if the owners choose equilibrium inverse-report precision, σL2 or σH2 , based on
the combination of βL and αLd or βH and αHd with greatest expected utility.18

17Independent identically distributed draws of β for L-type and H-type firms ensure the variance-
covariance matrix for the unobservables/errors is nonsingular.

18Notice the value of β does not impact the value of the welfare maximizing report variance. There-

fore, the optimal inverse report precision choices correspond to
�
α, γ, E

#
αjd

$�
as in the base case

but the binary choice σL2 or σH2 does depend on βj .
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Table 10.32: Report precision adjusted outcome OLS parameter estimates for
binary base case

statistic β0 β1 β2
mean 1000 0.432 −0.000
median 1000 0.432 0.000
std.dev. 0.148 0.000 0.001
minimum 999.6 0.432 −0.004
maximum 1001 0.432 0.003
statistic estATT estATUT β3 (estATE)
mean −0.000 −0.000 −0.000
median 0.000 −0.000 0.000
std.dev. 0.001 0.002 0.001
minimum −0.004 −0.005 −0.004
maximum 0.005 0.004 0.003
E [Y � | D, s] = β0 + β1 (s− s) + β2D (s− s) + β3D

Therefore, unlike the base case, common support is satisfied, i.e., there are no

perfect predictors of treatment, 0 < Pr
�
D = 1 | βj ,αjd

�
< 1. Plus, the choice

equation and price regressions have correlated, stochastic unobservables.19 In fact,
this correlation in the errors20 creates a classic endogeneity concern addressed by
Heckman [1974, 1975, 1978, 1979].

First, we define average treatment effect estimands for this heterogeneity set-
ting, then we simulate results for various treatment effect identification strategies.
The average treatment effect on the treated is

ATT = E
6
Y1 − Y0 | D = 1,βH ,βL

7

= E

⎡⎢⎢⎣ μ+
σ21

σ21+(σ̄L2 )
2

�
sL − μ�− βL σ21(σ̄

L
2 )

2

σ21+(σ̄L2 )
2

−


μ+

σ21
σ21+(σ̄L2 )

2

�
sH − μ�− βH σ21(σ̄

L
2 )

2

σ21+(σ̄L2 )
2

�
⎤⎥⎥⎦

=
�
βH − βL

� σ21
�
σ̄L2
�2

σ21 +
�
σ̄L2
�2

19The binary nature of treatment may seem a bit forced with response heterogeneity. This could be
remedied by recognizing that owners’ treatment choice is continuous but observed by the analyst to be
binary. In later discussions, we explore such a setting with a richer DGP.

20The two regression equations and the choice equation have trivariate normal error structure.
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The average treatment effect on the untreated is

ATUT = E
6
Y1 − Y0 | D = 0,βH ,βL

7

= E

⎡⎢⎢⎣ μ+
σ21

σ21+(σ̄H2 )
2

�
sL − μ�− βL σ21(σ̄

H
2 )

2

σ21+(σ̄H2 )
2

−


μ+

σ21
σ21+(σ̄H2 )

2

�
sH − μ�− βH σ21(σ̄

H
2 )

2

σ21+(σ̄H2 )
2

�
⎤⎥⎥⎦

=
�
βH − βL

� σ21
�
σ̄H2

�2
σ21 +

�
σ̄H2

�2
OLS

Our first simulation for this heterogeneous setting attempts to estimate average
treatment effects via OLS

E [Y | s,D] = β0 + β1 (s− s) + β2 (s− s)D + β3D
Following Wooldridge, the coefficient onD, β3, is the model-based average treat-
ment effect (under strong identification conditions). Throughout the remaining
discussion (s− s) is the regressor of interest (based on our structural model). The
model-based average treatment effect on the treated is

estATT = β3 +

,
i

Di (si − s)β2,
i

Di

and the model-based average treatment effect on the untreated is

estATUT = β3 −
,
i

Di (si − s)β2,
i

(1−Di)

Simulation results, including model-based estimates and sample statistics for
standard treatment effects, are reported in table 10.33. Average treatment effect
sample statistics from the simulation for this binary heterogenous case are re-
ported in table 10.34. Not surprisingly, OLS performs poorly. The key OLS identi-
fication condition is ignorable treatment but this is not sustained by the DGP. OLS
model-based estimates of ATE are not within sampling variation of the average
treatment effect. Further, the data are clearly heterogeneous and OLS (ignorable
treatment) implies homogeneity.

IV approaches

Poor instruments

Now, we consider various IV approaches for addressing endogeneity. First, we
explore various linear IV approaches. The analyst observes D and αLd if D = 1
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Table 10.33: Report precision adjusted outcome OLS parameter estimates for
binary heterogeneous case

statistic β0 β1 β2
mean 634.2 0.430 −0.003
median 634.2 0.429 −0.007
std.dev. 1.534 0.098 0.137
minimum 629.3 0.197 −0.458
maximum 637.7 0.744 0.377
statistic β3 (estATE) estATT estATUT
mean −2.227 −2.228 −2.225
median −2.236 −2.257 −2.207
std.dev. 2.208 2.210 2.207
minimum −6.672 −6.613 −6.729
maximum 3.968 3.971 3.966
E [Y | s,D] = β0 + β1 (s− s) + β2 (s− s)D + β3D

Table 10.34: Report precision average treatment effect sample statistics for
binary heterogeneous case

statistic ATE ATT ATUT
mean 0.189 64.30 −64.11
median 0.298 64.19 −64.10
std.dev. 1.810 1.548 1.462
minimum −4.589 60.47 −67.80
maximum 4.847 68.38 −60.90



248 10. Treatment effects: IV

Table 10.35: Report precision poor 2SLS-IV estimates for binary heterogeneous
case

statistic β0 β1 β2
mean 634.2 0.433 −0.010
median 634.4 0.439 −0.003
std.dev. 1.694 0.114 0.180
minimum 629.3 0.145 −0.455
maximum 638.2 0.773 0.507
statistic β3 (estATE) estATT estATUT
mean −2.123 −2.125 −2.121
median −2.212 −2.217 −2.206
std.dev. 2.653 2.650 2.657
minimum −7.938 −7.935 −7.941
maximum 6.425 6.428 6.423
E [Y | s,D] = β0 + β1 (s− s) + β2 (s− s)D + β3D

or αHd if D = 0. Suppose the analyst employs αd = DαLd + (1−D)αHd as an
"instrument." As desired, αd is related to report precision selection, unfortunately
αd is not conditionally mean independent, E

�
yj | s,αd

� �= E
�
yj | s�. To see

this, recognize the outcome errors are a function of βj and while αjd and βj are
independent, only αd and not αjd is observed. Since αd and βj are related through
selection D, αd is a poor instrument. Two stage least squares instrumental vari-
able estimation (2SLS-IV) produces the results reported in table 10.35 where β3
is the model estimate for ATE. These results differ little from the OLS results ex-
cept the IV model-based interval estimates of the treatment effects are wider as
is expected even of a well-specified IV model. The results serve as a reminder
of how little consolation comes from deriving similar results from two or more
poorly-specified models.

Weak instruments

Suppose we have a "proper" instrument zα in the sense that zα is conditional mean
independent. For purposes of the simulation, we construct the instrument zα as the
residuals from a regression of αd onto

UL = −
�
βL − E [β]

��
D
σ21
�
σL2
�2

σ21 +
�
σL2
�2 + (1−D) σ21

�
σH2

�2
σ21 +

�
σH2

�2
�

and

UH = −
�
βH − E [β]

��
D
σ21
�
σL2
�2

σ21 +
�
σL2
�2 + (1−D) σ21

�
σH2

�2
σ21 +

�
σH2

�2
�

But, we wish to explore the implications for treatment effect estimation if the
instrument is only weakly related to treatment. Therefore, we create a noisy in-
strument by adding an independent normal random variable ε with mean zero and
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Table 10.36: Report precision weak 2SLS-IV estimates for binary heterogeneous
case

statistic β0 β1 β2
mean 628.5 −0.605 2.060
median 637.3 0.329 0.259
std.dev. 141.7 7.678 15.52
minimum −856.9 −73.00 −49.60
maximum 915.5 24.37 153.0
statistic β3 (estATE) estATT estATUT
mean 8.770 8.139 9.420
median −6.237 −6.532 −6.673
std.dev. 276.8 273.2 280.7
minimum −573.3 −589.4 −557.7
maximum 2769 2727 2818
E [Y | s,D] = β0 + β1 (s− s) + β2 (s− s)D + β3D

standard deviation 0.1. This latter perturbation ensures the instrument is weak.
This instrument zα + ε is employed to generate model-based estimates of some
standard treatment effects via 2SLS-IV. Results are provided in table 10.36 where
β3 is the model estimate for ATE. The weak IV model-estimates are extremely
noisy. Weak instruments frequently are suspected to plague empirical work. In a
treatment effects setting, this can be a serious nuisance as evidenced here.

A stronger instrument

Suppose zα is available and employed as an instrument. Model-based treatment
effect estimates are reported in table 10.37 where β3 is the model estimate for
ATE. These results are far less noisy but nonetheless appear rather unsatisfactory.
The results, on average, diverge from sample statistics for standard treatment ef-
fects and provide little or no evidence of heterogeneity. Why? As Heckman and
Vytlacil [2005, 2007] discuss, it is very difficult to identify what treatment effect
linear IV estimates and different instruments produce different treatment effects.
Perhaps then, it is not surprising that we are unable to connect the IV treatment
effect to ATE, ATT, or ATUT.

Propensity score as an instrument

A popular ignorable treatment approach implies homogeneous response21 and
uses the propensity score as an instrument. We estimate the propensity score via a
probit regression ofD onto instruments zα and zσ , where zα is (as defined above)
the residuals of αd = DαLd + (1−D)αHd onto UL and UH and zσ is the resid-
uals from a regression of σ2 = DσL2 + (1−D)σH2 onto UL and UH . Now, use

21An exception, propensity score with heterogeneous response, is discussed in section 10.5.1. How-
ever, this IV-identification strategy doesn’t accommodate the kind of unobservable heterogeneity
present in this report precision setting.
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Table 10.37: Report precision stronger 2SLS-IV estimates for binary
heterogeneous case

statistic β0 β1 β2
mean 634.3 0.427 0.005
median 634.2 0.428 0.001
std.dev. 2.065 0.204 0.376
minimum 629.2 −0.087 −0.925
maximum 639.8 1.001 1.005
statistic β3 (estATE) estATT estATUT
mean −2.377 −2.402 −2.351
median −2.203 −2.118 −2.096
std.dev. 3.261 3.281 3.248
minimum −10.15 −10.15 −10.15
maximum 6.878 6.951 6.809
E [Y | s,D] = β0 + β1 (s− s) + β2 (s− s)D + β3D

the estimated probabilitiesm = Pr (D = 1 | zα, zσ) in place ofD to estimate the
treatment effects.

E [Y | s,D] = β0 + β1 (s− s) + β2 (s− s)m+ β3m
Model-based estimates of the treatment effects are reported in table 10.38 with
β3 corresponding to ATE. These results also are very unsatisfactory and highly
erratic. Poor performance of the propensity score IV for estimating average treat-
ment effects is not surprising as the data are inherently heterogeneous and the key
propensity score IV identification condition is ignorability of treatment.22 Next,
we explore propensity score matching followed by two IV control function ap-
proaches.

Propensity score matching

Propensity score matching estimates of average treatment effects are reported in
table 10.39.23 While not as erratic as the previous results, these results are also
unsatisfactory. Estimated ATT and ATUT are the opposite sign of one another
as expected but reversed of the underlying sample statistics (based on simulated
counterfactuals). This is not surprising as ignorability of treatment is the key iden-
tifying condition for propensity score matching.

Ordinate IV control function

Next, we consider an ordinate control function IV approach. The regression is

E [Y | s,D,φ] = β0 + β1 (s− s) + β2D (s− s) + β3φ (Zθ) + β4D

22Ignorable treatment implies homogeneous response, ATE = ATT = ATUT , except for com-
mon support variations.

23Propensity scores within 0.02 are matched using Sekhon’s [2008] matching R package.
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Table 10.38: Report precision propensity score estimates for binary
heterogeneous case

statistic β0 β1 β2 β3
mean 634.4 0.417 0.024 −2.610
median 634.3 0.401 0.039 −2.526
std.dev. 1.599 0.151 0.256 2.075
minimum 630.9 −0.002 −0.617 −7.711
maximum 638.9 0.853 0.671 2.721
statistic estATE estATT estATUT
mean −74.64 −949.4 −799.8
median 7.743 −386.1 412.8
std.dev. 1422 2400 1503
minimum −9827 −20650 57.75
maximum 7879 −9.815 17090
E [Y | s,m] = β0 + β1 (s− s) + β2 (s− s)m+ β3m

Table 10.39: Report precision propensity score matching estimates for binary
heterogeneous case

statistic estATE estATT estATUT
mean −2.227 −39.88 35.55
median −2.243 −39.68 35.40
std.dev. 4.247 5.368 4.869
minimum −14.00 −52.00 23.87
maximum 12.43 −25.01 46.79
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Table 10.40: Report precision ordinate control IV estimates for binary
heterogeneous case

statistic β0 β1 β2 β3
mean 598.6 0.410 0.030 127.6
median 598.5 0.394 0.049 127.1
std.dev. 3.503 0.139 0.237 12.08
minimum 590.0 0.032 −0.595 91.36
maximum 609.5 0.794 0.637 164.7
statistic β4 (estATE) estATT estATUT
mean −2.184 33.41 −37.91
median −2.130 33.21 −37.83
std.dev. 1.790 3.831 3.644
minimum −6.590 22.27 −48.56
maximum 2.851 43.63 −26.01
E [Y | s,D,φ] = β0 + β1 (s− s) + β2D (s− s) + β3φ (Zθ) + β4D

and is estimated via IV where instruments {ι, (s− s) ,m (s− s) ,φ (Zθ) ,m} are
employed and m = Pr

�
D = 1 | Z = �

ι zα zσ
��

is estimated via probit.
ATE is estimated via β4, the coefficient on D. Following the general IV identifi-
cation of ATT, ATT is estimated as

estATT = β4 +

,
Diβ3φ (Ziθ),

Di

and ATUT is estimated as

estATUT = β4 −
,
Diβ3φ (Ziθ),
(1−Di)

Simulation results are reported in table 10.40. The ordinate control function re-
sults are clearly the most promising so far but still underestimate the extent of
heterogeneity. Further, an important insight is emerging. If we only compare OLS
and ATE estimates, we might conclude endogeneity is a minor concern. However,
estimates of ATT and ATUT and their support of self-selection clearly demonstrate
the false nature of such a conclusion.

Inverse-Mills IV

Heckman’s control function approach, utilizing inverse-Mills ratios as the control
function for conditional expectations, employs the regression

E [Y | s,D,λ] = β0 + β1 (1−D) (s− s) + β2D (s− s)
+β3 (1−D)λH + β4DλL + β5D

where s is the sample average of s, λH = − φ(Zθ)
1−Φ(Zθ) , λ

L = φ(Zθ)
Φ(Zθ) , and θ is the

estimated parameter vector from a probit regression of report precision choice D
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Table 10.41: Report precision inverse Mills IV estimates for binary
heterogeneous case

statistic β0 β1 β2 β3 β4
mean 603.2 0.423 0.433 −56.42 56.46
median 603.1 0.416 0.435 −56.72 56.63
std.dev. 1.694 0.085 0.089 2.895 2.939
minimum 598.7 0.241 0.188 −65.40 48.42
maximum 607.8 0.698 0.652 −47.53 65.59
statistic β5 (estATE) estATT estATUT
mean −2.155 59.65 −64.14
median −2.037 59.59 −64.09
std.dev. 1.451 2.950 3.039
minimum −6.861 51.36 −71.19
maximum 1.380 67.19 −56.10

E [Y | s,D,λ] = β0 + β1 (1−D) (s− s) + β2D (s− s)
+β3 (1−D)λH + β4DλL + β5D

on Z =
�
ι zα zσ

�
(ι is a vector of ones). The coefficient on D, β5, is the

model-based estimate of the average treatment effect, ATE. The average treatment
effect on the treated is estimated as

ATT = β5 + (β2 − β1)E [s− s] + (β4 − β3)E
6
λL
7

While the average treatment effect on the untreated is estimated as

ATUT = β5 + (β2 − β1)E [s− s] + (β4 − β3)E
6
λH

7
Simulation results including model-estimated average treatment effects on treated
(estATT) and untreated (estATUT) are reported in table 10.41. The inverse-Mills
treatment effect estimates correspond nicely with their sample statistics. Next, we
explore a variation on treatment.

10.7.2 Continuous report precision but observed binary
Heterogeneous response

Now, suppose the analyst only observes high or low report precision but there is
considerable variation across firms. In other words, wide variation in parameters
across firms is reflected in a continuum of report precision choices.24 Specifically,
variation in the cost of report precision parameter α, the discount parameter asso-
ciated with the buyer’s uncertainty in his ability to manage the asset, β, and the

24It is not uncommon for analysts to observe discrete choices even though there is a richer under-
lying choice set. Any discrete choice serves our purpose here, for simplicity we work with the binary
case.
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owner’s risk premium parameter γ produces variation in owners’ optimal report
precision 1

σ2
.

Variation in αd is again not observed by the owners prior to selecting report
precision. However, αd is observed ex post by the analyst where αLd is normally
distributed with mean 0.02 and standard deviation 0.005, while αHd is normally
distributed with mean 0.04 and standard deviation 0.01. There is unobserved (by
the analyst) variation in β the parameter controlling the discount associated with
uncertainty in the buyer’s ability to manage the assets such that β is indepen-
dent normally distributed with mean 7 and variance 0.2. Independent identically
distributed draws of β are taken for L-type and H-type firms so that the variance-
covariance matrix for the unobservables/errors is nonsingular. On the contrary,
draws for "instruments" α (normally distributed with mean 0.03 and standard
deviation 0.005) and γ (normally distributed with mean 5 and standard devia-
tion 1) are not distinguished by type to satisfy IV assumptions. Otherwise, condi-
tional mean independence of the outcome errors and instruments is violated.25 For
greater unobservable variation (that is, variation through the β term), the weaker
are the instruments, and the more variable is estimation of the treatment effects.
Again, endogeneity is a first-order consideration as the choice equation and price
(outcome) regression have correlated, stochastic unobservables.

OLS

First, we explore treatment effect estimation via the following OLS regression

E [Y | s,D] = β0 + β1 (s− s) + β2D (s− s) + β3D

Simulation results are reported in table 10.42. Average treatment effect sample
statistics from the simulation are reported in table 10.43. In this setting, OLS ef-
fectively estimates the average treatment effect, ATE, for a firm/owner drawn at
random. This is readily explained by noting the sample statistic estimated by OLS
is within sampling variation of the sample statistic for ATE but ATE is indistin-
guishable from zero. However, if we’re interested in response heterogeneity and
other treatment effects, OLS, not surprisingly, is sorely lacking. OLS provides in-
consistent estimates of treatment effects on the treated and untreated and has al-
most no diagnostic power for detecting response heterogeneity — notice there is
little variation in OLS-estimated ATE, ATT, and ATUT.

Propensity score as an instrument

Now, we estimate the propensity score via a probit regression of D onto instru-
ments α and γ, and use the estimated probabilities

m = Pr (D = 1 | zα, zσ)

25As we discuss later, these conditions are sufficient to establish α and γ as instruments — though
weak instruments.
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Table 10.42: Continuous report precision but observed binary OLS parameter
estimates

statistic β0 β1 β2
mean 634.3 0.423 0.004
median 634.3 0.425 0.009
std.dev. 1.486 0.096 0.144
minimum 630.7 0.151 −0.313
maximum 638.4 0.658 0.520
statistic β3 (estATE) estATT estATUT
mean −1.546 −1.544 −1.547
median −1.453 −1.467 −1.365
std.dev. 2.083 2.090 2.078
minimum −8.108 −8.127 −8.088
maximum 5.170 5.122 5.216
E [Y | s,D] = β0 + β1 (s− s) + β2D (s− s) + β3D

Table 10.43: Continuous report precision but observed binary average treatment
effect sample statistics

statistic ATE ATT ATUT
mean 0.194 64.60 −64.20
median 0.215 64.55 −64.18
std.dev. 1.699 1.634 1.524
minimum −4.648 60.68 −68.01
maximum 4.465 68.70 −60.18
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Table 10.44: Continuous report precision but observed binary propensity score
parameter estimates

statistic β0 β1 β2 β3
mean 612.2 0.095 0.649 42.80
median 619.9 0.309 0.320 24.43
std.dev. 248.2 4.744 9.561 499.2
minimum −1693 −29.80 −46.64 −1644
maximum 1441 23.35 60.58 4661
statistic estATE estATT estATUT
mean −1.558 −1.551 −1.565
median −1.517 −1.515 −1.495
std.dev. 2.086 2.090 2.085
minimum −8.351 −8.269 −8.437
maximum 5.336 5.300 5.370
E [Y | s,m] = β0 + β1 (s− s) + β2 (s− s)m+ β3m

Table 10.45: Continuous report precision but observed binary propensity score
matching parameter estimates

statistic estATE estATT estATUT
mean −1.522 −1.612 −1.430
median −1.414 −1.552 −1.446
std.dev. 2.345 2.765 2.409
minimum −7.850 −8.042 −8.638
maximum 6.924 9.013 4.906

in place of D to estimate the treatment effects.

E [Y | s,m] = β0 + β1 (s− s) + β2 (s− s)m+ β3m

Model-based estimates of the treatment effects are reported in 10.44. These results
again are very unsatisfactory and highly variable. As before, poor performance of
the propensity score IV for estimating average treatment effects is not surprising
as the data are inherently heterogeneous and the key propensity score IV identifi-
cation condition is ignorability of treatment (conditional mean redundancy).

Propensity score matching

Propensity score matching estimates of average treatment effects are reported in
table 10.45.26 While not as erratic as the previous results, these results are also
unsatisfactory. Estimated ATT and ATUT are nearly identical even though the data
are quite heterogeneous. The poor performance is not surprising as ignorability

26Propensity scores within 0.02 are matched using Sekhon’s [2008] R matching package. Other bin
sizes (say, 0.01) produce similar results though fewer matches..
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Table 10.46: Continuous report precision but observed binary ordinate control IV
parameter estimates

statistic β0 β1 β2 β3
mean −11633 5.798 −10.68 30971
median 772.7 0.680 −0.497 −390.8
std.dev. 176027 36.08 71.36 441268
minimum −2435283 −58.78 −663.3 −1006523
maximum 404984 325.7 118.6 6106127
statistic β4 (estATE) estATT estATUT
mean −173.7 12181 −12505
median −11.21 −168.6 176.3
std.dev. 1176 176015 175648
minimum −11237 −407049 −2431259
maximum 2598 2435846 390220
E [Y | s,D,φ] = β0 + β1 (s− s) + β2D (s− s) + β3φ (Zθ) + β4D

of treatment (conditional stochastic independence, or at least, conditional mean
independence) is the key identifying condition for propensity score matching.

Ordinate IV control

Now, we consider two IV approaches for addressing endogeneity. The ordinate
control function regression is

E [Y | s,D,φ] = β0 + β1 (s− s) + β2D (s− s) + β3φ (Zθ) + β4D

and is estimated via IV where instruments

{ι, (s− s) ,m (s− s) ,φ (Zθ) ,m}

are employed and

m = Pr
�
D = 1 | Z = �

ι α γ
��

is estimated via probit. ATE is estimated via β4, the coefficient on D. Simulation
results are reported in table 10.46. The ordinate control function results are incon-
sistent and extremely noisy. Apparently, the instruments, α and γ, are sufficiently
weak that the propensity score is a poor instrument. If this conjecture holds, we
should see similar poor results in the second IV control function approach as well.

Inverse-Mills IV

The inverse-Mills IV control function regression is

E [Y | s,D,λ] = β0 + β1 (1−D) (s− s) + β2D (s− s)
+β3Dλ

H + β4 (1−D)λL + β5D
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Table 10.47: Continuous report precision but observed binary inverse Mills IV
parameter estimates

statistic β0 β1 β2 β3 β4
mean 633.7 0.423 0.427 −0.926 −55.41
median 642.2 0.424 0.418 9.178 −11.44
std.dev. 198.6 0.096 0.106 249.9 407.9
minimum −1141 0.152 0.164 −2228 −3676
maximum 1433 0.651 0.725 1020 1042
statistic β5 (estATE) estATT estATUT
mean 43.38 −0.061 86.87
median 23.46 −16.03 17.39
std.dev. 504.2 399.1 651.0
minimum −1646 −1629 −1663
maximum 12.50 3556 5867

E [Y | s,D,λ] = β0 + β1 (1−D) (s− s) + β2D (s− s)
+β3Dλ

H + β4 (1−D)λL + β5D

where s is the sample average of s, λH = − φ(Zθ)
1−Φ(Zθ) , λ

L = φ(Zθ)
Φ(Zθ) , and θ is

the estimated parameters from a probit regression of precision choice D on Z =�
ι α γ

�
(ι is a vector of ones). The coefficient on D, β5, is the estimate of

the average treatment effect, ATE. The average treatment effect on the treated is
estimated as

ATT = β5 + (β2 − β1)E [s− s] + (β4 − β3)E
6
λL
7

While the average treatment effect on the untreated is estimated as

ATUT = β5 + (β2 − β1)E [s− s] + (β4 − β3)E
6
λH

7
Simulation results including estimated average treatment effects on treated (es-
tATT) and untreated (estATUT) are reported in table 10.47. While not as variable
as ordinate control function model estimates, the inverse-Mills IV estimates are
inconsistent and highly variable. It’s likely, we are unable to detect endogeneity
or diagnose heterogeneity based on this strategy as well.

The explanation for the problem lies with our supposed instruments, α and γ.
Conditional mean independence may be violated due to variation in report pre-
cision or the instruments may be weak. That is, optimal report precision is in-
fluenced by variation in α and γ and variation in report precision is reflected in
outcome error variation

UL = −
�
βL − E [β]

��
D
σ21
�
σ̄L2
�2

σ21 +
�
σ̄L2
�2 + (1−D) σ21

�
σ̄H2

�2
σ21 +

�
σ̄H2

�2
�

and

UH = −
�
βH − E [β]

��
D
σ21
�
σ̄L2
�2

σ21 +
�
σ̄L2
�2 + (1−D) σ21

�
σ̄H2

�2
σ21 +

�
σ̄H2

�2
�
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Table 10.48: Continuous report precision but observed binary sample correlations

statistic r
�
α, UL

�
r
�
α, UH

�
r
�
γ, UL

�
r
�
γ, UH

�
mean −0.001 −0.002 0.003 −0.000
median −0.001 −0.004 0.003 0.001
std.dev. 0.020 0.024 0.023 0.024
minimum −0.052 −0.068 −0.079 −0.074
maximum 0.049 0.053 0.078 0.060
statistic r (α, D) r (γ, D) r (w1, D) r (w2, D)
mean −0.000 0.001 −0.365 0.090
median −0.001 0.003 −0.365 0.091
std.dev. 0.021 0.025 0.011 0.013
minimum −0.046 −0.062 −0.404 0.049
maximum 0.050 0.075 −0.337 0.122

To investigate the poor instrument problem we report in table 10.48 sample cor-
relation statistics r (·, ·) for α and γ determinants of optimal report precision with
unobservable outcome errors UL and UH . We also report sample correlations
between potential instruments, α, γ, w1, w2, and treatment D to check for weak
instruments. The problem with the supposed instruments, α and γ, is apparently
that they’re weak and not that they’re correlated with UL and UH . On the other
hand, w1 and w2 (defined below) hold some promise. We experiment with these
instruments next.

Stronger instruments

To further investigate this explanation, we employ stronger instruments, w1 (the
component of αd independent of UL and UH ) and w2 (the component of σD2 ≡
DσL2 + (1−D)σH2 independent of UL and UH ),27 and reevaluate propensity
score as an instrument.28

Propensity score as an instrument. Now, we use the estimated probabilities

m = Pr (D = 1 | w1, w2)
from the above propensity score in place of D to estimate the treatment effects.

E [Y | s,m] = β0 + β1 (s− s) + β2 (s− s)m+ β3m
Model-based estimates of the treatment effects are reported in table 10.49. These
results again are very unsatisfactory and highly variable. As before, poor perfor-
mance of the propensity score IV for estimating average treatment effects is not
surprising as the data are inherently heterogeneous and the key propensity score

27For purposes of the simulation, these are constructed from the residuals of regressions of αd and
σD2 on unobservables UH and UL.

28A complementary possibility is to search for measures of nonpecuniary satisfaction as instruments.
That is, measures which impact report precision choice but are unrelated to outcomes.
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Table 10.49: Continuous report precision but observed binary stronger propensity
score parameter estimates

statistic β0 β1 β2 β3
mean 637.1 0.419 0.012 −7.275
median 637.1 0.419 −0.007 −7.215
std.dev. 2.077 0.203 0.394 3.455
minimum 631.8 −0.183 −0.820 −16.61
maximum 1441 23.35 60.58 4661
statistic estATE estATT estATUT
mean −70.35 −99.53 −41.10
median −69.73 −97.19 −41.52
std.dev. 12.92 21.04 7.367
minimum −124.0 −188.0 −58.59
maximum 5.336 5.300 5.370
E [Y | s,m] = β0 + β1 (s− s) + β2 (s− s)m+ β3m

Table 10.50: Continuous report precision but observed binary stronger propensity
score matching parameter estimates

statistic estATE estATT estATUT
mean 2.291 −7.833 13.80
median 2.306 −8.152 13.74
std.dev. 2.936 3.312 3.532
minimum −6.547 −17.00 5.189
maximum 12.38 4.617 24.94

IV identification condition is ignorability of treatment (conditional mean indepen-
dence).

Propensity score matching

Propensity score matching estimates of average treatment effects are reported in
table 10.50.29 While not as erratic as the previous results, these results are also
unsatisfactory. Estimated ATT and ATUT are opposite their sample statistics. The
poor performance is not surprising as ignorability of treatment is the key identify-
ing condition for propensity score matching.

Ordinate IV control function. The ordinate control function regression is

E [Y | s,D,φ] = β0 + β1 (s− s) + β2D (s− s) + β3φ (Zθ) + β4D

and is estimated via IV where instruments

{ι, (s− s) ,m (s− s) ,φ (Zθ) ,m}

29Propensity scores within 0.02 are matched.



10.7 Regulated report precision 261

Table 10.51: Continuous report precision but observed binary stronger ordinate
control IV parameter estimates

statistic β0 β1 β2 β3
mean 616.0 0.419 0.010 66.21
median 616.5 0.418 −0.006 65.24
std.dev. 7.572 0.202 0.381 24.54
minimum 594.0 −0.168 −0.759 1.528
maximum 635.5 0.885 1.236 147.3
statistic β4 (estATE) estATT estATUT
mean −11.91 12.52 −36.35
median −11.51 12.31 −36.53
std.dev. 4.149 7.076 12, 14
minimum −24.68 −5.425 −77.47
maximum −2.564 32.37 −4.535
E [Y | s,D,φ] = β0 + β1 (s− s) + β2D (s− s) + β3φ (Zθ) + β4D

are employed and

m = Pr
�
D = 1 | Z = �

ι w1 w2
��

is estimated via probit. ATE is estimated via β4, the coefficient on D. Simu-
lation results are reported in table 10.51. The ordinate control function results
are markedly improved relative to those obtained with poor instruments, α and
γ. Model-estimated average treatment effects are biased somewhat toward zero.
Nonetheless, the ordinate control IV approach might enable us to detect endogene-
ity via heterogeneity even though OLS and ATE are within sampling variation of
one another. The important point illustrated here is that the effectiveness of IV
control function approaches depend heavily on strong instruments. It’s important
to remember proper instruments in large part have to be evaluated ex ante — sam-
ple evidence is of limited help due to unobservability of counterfactuals.

Inverse-Mills IV

The inverse-Mills IV regression is

E [Y | s,D,λ] = β0 + β1 (1−D) (s− s) + β2D (s− s)
+β3Dλ

H + β4 (1−D)λL + β5D

where s is the sample average of s, λH = − φ(Zθ)
1−Φ(Zθ) , λ

L = φ(Zθ)
Φ(Zθ) , and θ

is the estimated parameters from a probit regression of precision choice D on
Z =

�
ι w1 w2

�
(ι is a vector of ones). The coefficient on D, β5, is the

estimate of the average treatment effect, ATE. Simulation results including es-
timated average treatment effects on treated (estATT) and untreated (estATUT)
are reported in table 10.52. While the inverse-Mills IV average treatment effect
estimates come closest of any strategies (so far considered) to maintaining the
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Table 10.52: Continuous report precision but observed binary stronger inverse
Mills IV parameter estimates

statistic β0 β1 β2 β3 β4
mean 611.6 0.423 0.428 −32.03 80.04
median 611.5 0.431 0.422 −32.12 79.84
std.dev. 2.219 0.093 0.099 3.135 6.197
minimum 606.6 0.185 0.204 −41.47 62.39
maximum 617.5 0.635 0.721 −20.70 98.32
statistic β5 (estATE) estATT estATUT
mean −35.55 43.77 −114.8
median −35.11 43.80 −114.7
std.dev. 3.868 4.205 8.636
minimum −47.33 30.02 −142.0
maximum −26.00 57.97 −90.55

E [Y | s,D,λ] = β0 + β1 (1−D) (s− s) + β2D (s− s)
+β3Dλ

H + β4 (1−D)λL + β5D

spread between and direction of ATT and ATUT, all average treatment effect es-
timates are biased downward and the spread is somewhat exaggerated. Neverthe-
less, we are able to detect endogeneity and diagnose heterogeneity by examining
estimated ATT and ATUT. Importantly, this derives from employing strong in-
struments, w1 (the component of αd independent of UL and UH ) and w2 (the
component of σD2 = Dσ

L
2 + (1−D)σH2 independent of UL and UH ). The next

example reexamines treatment effect estimation in a setting where OLS and ATE
differ markedly and estimates of ATE may help detect endogeneity.

Simpson’s paradox

Suppose a firm’s owner receives nonpecuniary and unobservable (to the analyst)
satisfaction associated with report precision choice. This setting highlights a deep
concern when analyzing data — perversely omitted, correlated variables which
produce a Simpson’s paradox result.

Consider αLd is normally distributed with mean 1.0 and standard deviation 0.25,
while αHd is normally distributed with mean 0.04 and standard deviation 0.01.30

As with βj , these differences between L and H-type cost parameters are perceived
or observed by the owner; importantly, βL has standard deviation 2 while βH has
standard deviation 0.2 and each has mean 7. The unpaid cost of transaction design
is passed on to the firm and its investors by L-type owners. Investors are aware of
this (and price the firm accordingly) but the analyst is not (hence it’s unobserved).
L-type owners get nonpecuniary satisfaction from transaction design such that

their personal cost is only 2% of αLd
�2b− σ22�2, while H-type owners receive

30The labels seem reversed, but bear with us.
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no nonpecuniary satisfaction — hence the labels.31 Other features remain as in
the previous setting. Accordingly, expected utility for L-type owners who choose
treatment is

EUL
�
σL2
�
= μ− βL σ21

�
σ̄L2
�2

σ21 +
�
σ̄L2
�2 − γ σ41

�
σ21 +

�
σ̄L2
�2��

σ21 +
�
σ̄L2
�2�2

−α
�
b− �σL2 �2�2 − 0.02αLd �b̂− �σL2 �2�2

while expected utility for H-type owners who choose no treatment is

EUH
�
σH2

�
= μ− βH σ21

�
σ̄H2

�2
σ21 +

�
σ̄H2

�2 − γ σ41
�
σ21 +

�
σ̄H2

�2��
σ21 +

�
σ̄H2

�2�2
−α

�
b− �σH2 �2�2 − αHd �b̂− �σH2 �2�2

Also, outcomes or prices for owners who choose treatment include the cost of
transaction design and accordingly are

Y L = P
�
σ̄L2
�
= μ+

σ21

σ21 +
�
σ̄L2
�2 �sL − μ�−βL σ21

�
σ̄L2
�2

σ21 +
�
σ̄L2
�2−αLd �b̂− �σL2 �2�2

OLS

An OLS regression is

E [Y | s,D] = β0 + β1 (s− s) + β2D (s− s) + β3D

Simulation results are reported in table 10.53. The average treatment effect sam-
ple statistics from the simulation are reported in table 10.54. Clearly, OLS pro-
duces poor estimates of the average treatment effects. As other ignorable treat-
ment strategies fair poorly in settings of rich heterogeneity, we skip propensity
score strategies and move ahead to control function strategies.

Ordinate IV control

We consider two IV control function approaches for addressing endogeneity. An
ordinate control function regression is

E [Y | s,D,φ] = β0 + β1 (s− s) + β2D (s− s) + β3φ (Zθ) + β4D

31The difference in variability between βL and βH creates the spread between ATE and the effect
estimated via OLS while nonpecuniary reward creates a shift in their mean outcomes such that OLS is
positive and ATE is negative.



264 10. Treatment effects: IV

Table 10.53: Continuous report precision but observed binary OLS parameter
estimates for Simpson’s paradox DGP

statistic β0 β1 β2
mean 603.2 0.434 −0.014
median 603.2 0.434 −0.007
std.dev. 0.409 0.023 0.154
minimum 602.2 0.375 −0.446
maximum 604.4 0.497 0.443
statistic β3 (estATE) estATT estATUT
mean 54.03 54.03 54.04
median 53.89 53.89 53.91
std.dev. 2.477 2.474 2.482
minimum 46.17 46.26 46.08
maximum 62.31 62.25 62.37
E [Y | s,D] = β0 + β1 (s− s) + β2D (s− s) + β3D

Table 10.54: Continuous report precision but observed binary average treatment
effect sample statistics for Simpson’s paradox DGP

statistic ATE ATT ATUT
mean −33.95 57.76 −125.4
median −34.06 57.78 −125.4
std.dev. 2.482 2.386 2.363
minimum −42.38 51.15 −131.3
maximum −26.57 66.49 −118.5
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Table 10.55: Continuous report precision but observed binary ordinate control IV
parameter estimates for Simpson’s paradox DGP

statistic β0 β1 β2 β3
mean 561.0 0.441 −0.032 266.3
median 561.5 0.479 −0.041 263.7
std.dev. 9.703 0.293 0.497 31.41
minimum 533.5 −0.442 −1.477 182.6
maximum 585.7 1.305 1.615 361.5
statistic β4 (estATE) estATT estATUT
mean −48.72 48.45 −145.6
median −49.02 47.97 −143.0
std.dev. 8.190 10.43 16.58
minimum −71.88 21.53 −198.0
maximum −25.12 84.89 −99.13
E [Y | s,D,φ] = β0 + β1 (s− s) + β2D (s− s) + β3φ (Zθ) + β4D

and is estimated via IV where instruments

{ι, s,m (s− s)m,φ (Zθ) ,m}
are employed and

m = Pr
�
D = 1 | Z = �

ι w1 w2
��

is estimated via probit. ATE is estimated via β4, the coefficient on D. Simula-
tion results are reported in table 10.55. As expected, the ordinate control function
fairs much better than OLS. Estimates of ATUT are biased somewhat away from
zero and, as expected, more variable than the sample statistic, but estimates are
within sampling variation. Nevertheless, the ordinate control IV model performs
better than in previous settings. Next, we compare results with the inverse-Mills
IV strategy.

Inverse-Mills IV

The inverse-Mills IV control function regression is

E [Y | s,D,λ] = β0 + β1 (1−D) (s− s) + β2D (s− s)
+β3 (1−D)λH + β4DλL + β5D

where s is the sample average of s, λH = − φ(Zθ)
1−Φ(Zθ) , λ

L = φ(Zθ)
Φ(Zθ) , and θ

is the estimated parameters from a probit regression of precision choice D on
Z =

�
ι w1 w2

�
(ι is a vector of ones). The coefficient on D, β5, is the

estimate of the average treatment effect, ATE. Simulation results including esti-
mated average treatment effects on treated (estATT) and untreated (estATUT) are
reported in table 10.56. As with the ordinate control function approach, inverse-
Mills estimates of the treatment effects (especially ATUT) are somewhat biased
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Table 10.56: Continuous report precision but observed binary inverse Mills IV
parameter estimates for Simpson’s paradox DGP

statistic β0 β1 β2 β3 β4
mean 603.3 0.434 0.422 0.057 182.8
median 603.2 0.434 0.425 0.016 183.0
std.dev. 0.629 0.023 0.128 0.787 11.75
minimum 601.1 0.375 0.068 −2.359 151.8
maximum 604.9 0.497 0.760 1.854 221.7
statistic β5 (estATE) estATT estATUT
mean −74.17 53.95 −201.9
median −74.46 53.88 −201.3
std.dev. 8.387 2.551 16.58
minimum −99.78 45.64 −256.7
maximum −52.65 61.85 −159.1

E [Y | s,D,λ] = β0 + β1 (1−D) (s− s) + β2D (s− s)
+β3 (1−D)λH + β4DλL + β5D

away from zero and, as expected, more variable than the sample statistics. How-
ever, the model supplies strong evidence of endogeneity (ATE along with ATT and
ATUT differ markedly from OLS estimates) and heterogeneous response (ATE �=
ATT �= ATUT ). Importantly, mean and median estimates reveal a Simpson’s
paradox result—OLS estimates a positive average treatment effect while endo-
geneity of selection produces a negative average treatment effect.32

10.7.3 Observable continuous report precision choice
Now we consider the setting where the analyst observes a continuum of choices
based on the investors’ (equilibrium) conjecture of the owner’s report precision
τ = 1

σ21+σ
2
2

. This plays out as follows. The equilibrium strategy is the fixed point

where the owner’s expected utility maximizing report precision, 1
σ2 =

1
σ21+σ

2
2

,

equals investors’ conjectured best response report precision, τ = 1
σ21+σ

2
2

. Let con-

jectured report variance be denoted σ2 ≡ σ21 + σ22. The owner’s expected utility
is

EU (σ2) = μ− β σ21σ̄
2
2

σ21 + σ̄
2
2

− γ σ
4
1

�
σ21 + σ

2
2

�
(σ21 + σ̄

2
2)
2 − α �b− σ22�2 − αd �b̂− σ22�2

32As noted previously, untabulated results using weak instruments (α and γ) reveal extremely erratic
estimates of the treatment effects.
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substitution of σ2 for σ21 + σ
2
2 yields

EU (σ2) = μ− β σ
2
1

�
σ̄2 − σ21

�
σ̄2

− γ σ
4
1σ

2

σ̄4

−α �b− σ2 + σ21�2 − αd �b̂− σ2 + σ21�2
The first order condition combined with the equilibrium condition is

σ2 =
αb+ αd2b− γ σ41

2σ4

α+ αd

s.t. σ2 = σ2

As the outcome equation

Y = P
�
σ̄22
�
= μ+

σ21
σ21 + σ̄

2
2

(s− μ)− β σ21σ̄
2
2

σ21 + σ̄
2
2

= P (τ) = μ+ σ21 (s− μ) τ − βσ21
�
1− σ21τ

�
is not directly affected by the owner’s report precision choice (but rather by the
conjectured report precision), we exploit the equilibrium condition to define an
average treatment effect

ATE (τ) = E

�
∂Y

∂τ

�
= βσ41

and an average treatment effect on the treated33

ATT (τ) = E

�
∂Y

∂τ
| τ = τ j

�
= βjσ

4
1

If β differs across firms, as is likely, the outcome equation

Yj =
�
μ− βjσ21

�
+
�
σ21
�
(sj − μ) τ j +

�
βjσ

4
1

�
τ j

is a random coefficients model. And, if βjσ
4
1 and τ j = 1

σ21+(σ2j)
2 are related, then

we’re dealing with a correlated random coefficients model.
For our experiment, a simulation based on 200 samples of (balanced) panel

data with n = 200 individuals and T = 10 periods (sample size, nT = 2, 000) is
employed. Three data variations are explored.

33As Heckman [1997] suggests the average treatment effect based on a random draw from the pop-
ulation of firms often doesn’t address a well-posed economic question whether treatment is continuous
or discrete.
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Table 10.57: Continuous treatment OLS parameter estimates and average
treatment effect estimates and sample statistics with only between individual

variation

statistic ω0 ω1 ω2 (estATE) ATE corr (ω2i, τ i)
mean 300.4 100.3 69916. 70002. −0.001
median 300.4 100.3 69938. 70007. 0.002
std.dev. 7.004 1.990 1616 73.91 0.067
minimum 263.1 93.44 61945. 69779. −0.194
maximum 334.9 106.2 78686. 70203. 0.140

E [Y | s, τ ] = ω0 + ω1 (s− s) τ + ω2τ

Between individual variation

First, we explore a setting involving only variation in report precision between in-
dividuals. The following independent stochastic parameters characterize the data

Stochastic components
parameters number of draws

α ∼ N (0.02, 0.005) n
αd ∼ N (0.02, 0.005) n
γ ∼ N (2.5, 1) n
β ∼ N (7, 0.1) n
s ∼ N (1000,σ) nT

where σ is the equilibrium report standard deviation; σ varies across firms but is
constant through time for each firm.

First, we suppose treatment is ignorable and estimate the average treatment
effect via OLS.

E [Y | s, τ ] = ω0 + ω1 (s− μ) τ + ω2τ
Then, we accommodate unobservable heterogeneity (allow treatment and treat-
ment effect to be correlated) and estimate the average treatment effect via 2SLS-
IV.

Hence, the DGP is

Y = 300 + 100 (s− μ) τ + (70, 000 + εβ) τ

where εβ = βj − E
�
βj
� ∼ N (0, 1), j = 1, . . . , n.

OLS

Results for OLS along with sample statistics for ATE and the correlation between
treatment and treatment effect are reported in table 10.57 where ω2 is the estimate
of ATE. The OLS results correspond quite well with the DGP and the average
treatment effect sample statistics. This is not surprising given the lack of correla-
tion between treatment and treatment effect.
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Table 10.58: Continuous treatment 2SLS-IV parameter and average treatment
effect estimates with only between individual variation

statistic ω0 ω1 ω2 (estATE)
mean 300.4 100.3 69916.
median 300.4 100.2 69915.
std.dev. 7.065 1.994 1631
minimum 262.7 93.44 61308.
maximum 337.6 106.2 78781.
E [Y | s, τ ] = ω0 + ω1 (s− s) τ + ω2τ

2SLS-IV

On the other hand, as suggested by Wooldridge [1997, 2003], 2SLS-IV consis-
tently estimates ATE in this random coefficients setting. We employ the residuals
from regressions of (s− μ) τ and τ on U as instruments, z1 and z2; these are
strong instruments. Results for 2SLS-IV are reported in table 10.58. The IV re-
sults correspond well with the DGP and the sample statistics for ATE. Given the
lack of correlation between treatment and treatment effect, it’s not surprising that
IV (with strong instruments) and OLS results are very similar.

Modest within individual variation

Second, we explore a setting involving within individual as well as between in-
dividuals report variation. Within individual variation arises through modest vari-
ation through time in the cost parameter associated with transaction design. The
following independent stochastic parameters describe the data

Stochastic components
parameters number of draws

α ∼ N (0.02, 0.005) n
αd ∼ N (0.02, 0.0005) nT

γ ∼ N (2.5, 1) n
β ∼ N (7, 0.1) n

βi = β +N (0, 0.0001) nT
s ∼ N (1000,σ) nT

where σ is the equilibrium report standard deviation; σ varies across firms and
through time for each firm and unobserved βi produces residual uncertainty.

OLS

This setting allows identification ofATE andATT whereATT (τ = median [τ ]).
First, we estimate the average treatment effects via OLS where individual specific
intercepts and slopes are accommodated.

E [Y | si, τ i] =
n/
i=1

ω0i + ω1i (si − μ) τ i + ω2iτ i
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Table 10.59: Continuous treatment OLS parameter and average treatment effect
estimates for modest within individual report precision variation setting

statistic estATE estATT (τ = median [τ ])
mean 70306. 70152.
median 70193. 70368.
std.dev. 4625. 2211.
minimum 20419. 64722.
maximum 84891. 75192.
E [Y | si, τ i] =

,n
i=1 ω0i + ω1i (si − μ) τ i + ω2iτ i

Table 10.60: Continuous treatment ATE and ATT sample statistics and
correlation between treatment and treatment effect for modest within individual

report precision variation setting

statistic ATE ATT (τ = median [τ ]) corr (ω2it, τ it)
mean 70014. 70026 −0.0057
median 70014. 69993 −0.0063
std.dev. 65.1 974. 0.072
minimum 69850. 67404 −0.238
maximum 70169. 72795 0.173

We report the simple average of ω2 for estATE, and ω2i for the median (of av-
erage τ i by individuals) as estATT in table 10.59. That is, we average τ i for
each individual, then select the median value of the individual averages as the fo-
cus of treatment on treated. Panel data allow us to focus on the average treatment
effect for an individual but the median reported almost surely involves different
individuals across simulated samples.

Sample statistics for ATE and ATT (τ = median [τ ]) along with the correla-
tion between treatment and the treatment effect are reported in table 10.60. There
is good correspondence between the average treatment effect estimates and sam-
ple statistics. The interval estimates for ATT are much tighter than those for ATE.
Correlations between treatment and treatment effect suggest there is little to be
gained from IV estimation. We explore this next.

2SLS-IV

Here, we follow Wooldridge [1997, 2003], and estimate average treatment effects
via 2SLS-IV in this random coefficients setting. We employ the residuals from
regressions of (s− μ) τ and τ on U as strong instruments, z1 and z2. Results for
2SLS-IV are reported in table 10.61. The IV results correspond well with the DGP
and the sample statistics for the average treatment effects. Also, as expected given
the low correlation between treatment and treatment effect, IV produces similar
results to those for OLS.
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Table 10.61: Continuous treatment 2SLS-IV parameter and average treatment
effect estimates for modest within individual report precision variation setting

statistic estATE estATT (τ = median [τ ])
mean 69849. 70150.
median 70096. 70312.
std.dev. 5017 2210
minimum 35410. 64461.
maximum 87738. 75467.
E [Y | si, τ i] =

,n
i=1 ω0i + ω1i (si − μ) τ i + ω2iτ i

More variation

Finally, we explore a setting with greater between individuals report variation as
well as continued within individual variation. The independent stochastic parame-
ters below describe the data

Stochastic components
parameters number of draws

α ∼ N (0.02, 0.005) n
αd ∼ N (0.02, 0.0005) nT

γ ∼ N (2.5, 1) n
β ∼ N (7, 1) n

βi = β +N (0, 0.001) nT
s ∼ N (1000,σ) nT

where σ is the equilibrium report standard deviation; σ varies across firms and
through time for each firm and greater unobserved βi variation produces increased
residual uncertainty.

OLS

This setting allows identification ofATE andATT whereATT (τ = median [τ ]).
First, we estimate the average treatment effects via OLS where individual specific
intercepts and slopes are accommodated.

E [Y | si, τ i] =
n/
i=1

ω0i + ω1i (si − μ) τ i + ω2iτ i

We report the simple average of ω2i for estATE and ω2i for the median of aver-
age τ i by individuals as estATT in table 10.62.

Sample statistics for ATE and ATT (τ = median [τ ]) along with the correla-
tion between treatment and the treatment effect are reported in table 10.63. As
expected with greater residual variation, there is weaker correspondence between
the average treatment effect estimates and sample statistics. Correlations between
treatment and treatment effect again suggest there is little to be gained from IV
estimation. We explore IV estimation next.
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Table 10.62: Continuous treatment OLS parameter and average treatment effect
estimates for the more between and within individual report precision variation

setting

statistic estATE estATT (τ = median [τ ])
mean 71623. 67870.
median 70011. 68129.
std.dev. 34288. 22360.
minimum −20220. −8934.
maximum 223726. 141028.
E [Y | si, τ i] =

,n
i=1 ω0i + ω1i (si − μ) τ i + ω2iτ i

Table 10.63: Continuous treatment ATE and ATT sample statistics and
correlation between treatment and treatment effect for the more between and

within individual report precision variation setting

statistic ATE ATT (τ = median [τ ]) corr (ω2it, τ it)
mean 69951. 69720. −0.0062
median 69970. 70230. −0.0129
std.dev. 709. 10454. 0.073
minimum 67639. 34734 −0.194
maximum 71896. 103509 0.217

2SLS-IV

Again, we follow Wooldridge’s [1997, 2003] random coefficients analysis, and
estimate average treatment effects via 2SLS-IV. We employ the residuals from
regressions of (s− μ) τ and τ on U as strong instruments, z1 and z2. Results for
2SLS-IV are reported in table 10.64. The IV results are similar to those for OLS as
expected given the near zero correlation between treatment and treatment effect.

Table 10.64: Continuous treatment 2SLS-IV parameter and average treatment
effect estimates for the more between and within individual report precision

variation setting

statistic estATE estATT (τ = median [τ ])
mean 66247. 67644.
median 68998. 68004.
std.dev. 36587 22309.
minimum −192442. −9387.
maximum 192722. 141180.
E [Y | si, τ i] =

,n
i=1 ω0i + ω1i (si − μ) τ i + ω2iτ i
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10.8 Summary

This chapter has surveyed some IV approaches for identifying and estimating av-
erage treatment effects and illustrated them in a couple of ways. The Tuebingen-
style examples illustrate critical features for IV identification then we added ac-
counting context. The endogenous selection of report precision examples high-
light several key features in the econometric analysis of accounting choice. First,
reliable results follow from carefully linking theory and data. For instance, who
observes which data is fundamental. When the analysis demands instruments (ig-
norable treatment conditions are typically not satisfied by the data in this context),
their identification and collection is critical. Poor instruments (exclusion restric-
tion fails) or weak instruments (weakly associated with selection) can lead to situ-
ations where the "cure" is worse than the symptom. IV results can be less reliable
(more prone to generate logical inconsistencies) than OLS when faced with endo-
geneity if we employ faulty instruments. Once again, we see there is no substitute
for task-appropriate data. Finally, two (or more) poor analyses don’t combine to
produce one satisfactory analysis.

10.9 Additional reading

Wooldridge [2002] (chapter 18 is heavily drawn upon in these pages), Amemiya
[1985, chapter 9], and numerous other econometric texts synthesize IV treatment
effect identification strategies. Recent volumes of Handbook of Econometrics (es-
pecially volumes 5 and 6b) report extensive reviews as well as recent results.





11
Marginal treatment effects

In this chapter, we review policy evaluation and Heckman and Vytlacil’s [2005,
2007a] (HV) strategy for linking marginal treatment effects to other average treat-
ment effects including policy-relevant treatment effects. Recent innovations in the
treatment effects literature including dynamic and general equilibrium consider-
ations are mentioned briefly but in-depth study of these matters is not pursued.
HV’s marginal treatment effects strategy is applied to the regulated report pre-
cision setting introduced in chapter 2, discussed in chapter 10, and continued in
the next chapter. This analysis highlights the relative importance of probability
distribution assignment to unobservables and quality of instruments.

11.1 Policy evaluation and policy invariance
conditions

Heckman and Vytlacil [2007a] discuss causal effects and policy evaluation. Fol-
lowing the lead of Bjorklund and Moffitt [1987], HV base their analysis on mar-
ginal treatment effects. HV’s marginal treatment effects strategy combines the
strengths of the treatment effect approach (simplicity and lesser demands on the
data) and the Cowles Commission’s structural approach (utilize theory to help ex-
trapolate results to a broader range of settings). HV identify three broad classes of
policy evaluation questions.

(P-1) Evaluate the impact of historically experienced and documented policies
on outcomes via counterfactuals. Outcome or welfare evaluations may be objec-
tive (inherently ex post) or subjective (may be ex ante or ex post). P-1 is an inter-

275D. A. Schroeder, Accounting and Causal Effects, DOI 10.1007/978-1-4419-7225-5_11,
© Springer Science+Business Media, LLC 2010



276 11. Marginal treatment effects

nal validity problem (Campbell and Stanley [1963]) — the problem of identifying
treatment parameter(s) in a given environment.

(P-2) Forecasting the impact of policies implemented in one environment by ex-
trapolating to other environments via counterfactuals. This is the external validity
problem (Campbell and Stanley [1963]).

(P-3) Forecasting the impact of policies never historically experienced to vari-
ous environments via counterfactuals. This is the most ambitious policy evaluation
problem.

The study of policy evaluation frequently draws on some form of policy invari-
ance. Policy invariance allows us to characterize outcomes without fully specify-
ing the structural model including incentives, assignment mechanisms, and choice
rules. The following policy invariance conditions support this relaxation.1

(PI-1) For a given choice of treatment, outcomes are invariant to variations in
incentive schedules or assignment mechanisms. PI-1 is a strong condition. It says
that randomized assignment or threatening with a gun to gain cooperation has
no impact on outcomes for a given treatment choice (see Heckman and Vytlacil
[2007b] for evidence counter to the condition).

(PI-2) The actual mechanism used to assign treatment does not impact out-
comes. This rules out general equilibrium effects (see Abbring and Heckman
[2007]).

(PI-3) Utilities are unaffected by variations in incentive schedules or assignment
mechanisms. This is the analog to (PI-1) but for utilities or subjective evaluations
in place of outcomes. Again, this is a strong condition (see Heckman and Vytlacil
[2007b] for evidence counter to the condition).

(PI-4) The actual mechanism used to assign treatment does not impact utilities.
This is the analog to (PI-2) but for utilities or subjective evaluations in place of
outcomes. Again, this rules out general equilibrium effects.

It’s possible to satisfy (PI-1) and (PI-2) but not (PI-3) and (PI-4) (see Heckman
and Vytlacil [2007b]). Next, we discuss marginal treatment effects and begin the
exploration of how they unify policy evaluation.

Briefly, Heckman and Vytlacil’s [2005] local instrumental variable (LIV) esti-
mator is a more ambitious endeavor than the methods discussed in previous chap-
ters. LIV estimates the marginal treatment effect (MTE) under standard IV condi-
tions. MTE is the treatment effect associated with individuals who are indifferent
between treatment and no treatment. Heckman and Vytlacil identify weighted dis-
tributions (Rao [1986] and Yitzhaki [1996]) that connect MTE to a variety of other
treatment effects including ATE, ATT, ATUT, LATE, and policy-relevant treatment
effects (PRTE).

MTE is a generalization of LATE as it represents the treatment effect for those
individuals who are indifferent between treatment and no treatment.

MTE = E [Y1 − Y0 | X = x, VD = vD]

1Formal statements regarding policy invariance are provided in Heckman and Vytlacil [2007a].



11.2 Setup 277

Or, the marginal treatment effect can alternatively be defined by a transforma-
tion of unobservable V by UD = FV |X (V ) so that we can work with UD ∼
Unif [0, 1]

MTE = E [Y1 − Y0 | X = x, UD = uD]

11.2 Setup

The setup is the same as the previous chapters. We repeat it for convenience.
Suppose the DGP is
outcome equations:

Yj = μj (X) + Vj , j = 0, 1

selection equation:
D∗ = μD (Z)− VD

observable response:

Y = DY1 + (1−D)Y0
= μ0 (X) + (μ1 (X)− μ0 (X))D + V0 + (V1 − V0)D

where

D =
1 D∗ > 0
0 otherwise

and Y1 is (potential) outcome with treatment while Y0 is the outcome without
treatment. The outcomes model is the Neyman-Fisher-Cox-Rubin model of po-
tential outcomes (Neyman [1923], Fisher [1966], Cox ]1958], and Rubin [1974]).
It is also Quandt’s [1972] switching regression model or Roy’s income distribution
model (Roy [1951] or Heckman and Honore [1990]).

The usual exclusion restriction and uniformity applies. That is, if instrument
changes from z to z� then everyone either moves toward or away from treatment.
Again, the treatment effects literature is asymmetric; heterogeneous outcomes are
permitted but homogeneous treatment is required for identification of estimators.
Next, we repeat the generalized Roy model — a useful frame for interpreting
causal effects.

11.3 Generalized Roy model

Roy [1951] introduced an equilibrium model for work selection (hunting or fish-
ing).2 An individual’s selection into hunting or fishing depends on his/her aptitude

2The basic Roy model involves no cost of treatment. The extended Roy model includes only ob-
served cost of treatment. While the generalized Roy model includes both observed and unobserved
cost of treatment (see Heckman and Vytlacil [2007a, 2007b]).
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as well as supply of and demand for product of labor. A modest generalization of
the Roy model is a common framing of self-selection that forms the basis for
assessing treatment effects (Heckman and Robb [1986]).

Based on the DGP above, we identify the constituent pieces of the selection
model.
Net benefit (or utility) from treatment is

D∗ = μD (Z)− VD
= Y1 − Y0 − c (W )− Vc
= μ1 (X)− μ0 (X)− c (W ) + V1 − V0 − VC

Gross benefit of treatment is

μ1 (X)− μ0 (X)
Cost associated with treatment is3

c (W ) + VC

Observable cost associated with treatment is

c (W )

Observable net benefit of treatment is

μ1 (X)− μ0 (X)− c (W )
Unobservable net benefit of treatment is

−VD = V1 − V0 − VC
where the observables are

�
X Z W

�
, typically Z contains variables not in

X or W and W is the subset of observables that speak to cost of treatment.

11.4 Identification

Marginal treatment effects are defined conditional on the regressors X and unob-
served utility VD

MTE = E [Y1 − Y0 | X = x, VD = vD]

or transformed unobserved utility UD.

MTE = E [Y1 − Y0 | X = x, UD = uD]

HV describe the following identifying conditions.

3The model is called the original or basic Roy model if the cost term is omitted. If the cost is
constant (VC = 0 so that cost is the same for everyone) it is called the extended Roy model.



11.4 Identification 279

Condition 11.1 {U0, U1, VD} are independent of Z conditional on X (condi-
tional independence),

Condition 11.2 μD (Z) is a nondegenerate random variable conditional on X
(rank condition),

Condition 11.3 the distribution of VD is continuous,

Condition 11.4 the values of E [|Y0|] and E [|Y1|] are finite (finite means),

Condition 11.5 0 < Pr (D = 1 | X) < 1 (common support).

These are the base conditions for MTE. They are augmented below to facilitate
interpretation.4 Condition 11.7 applies specifically to policy-relevant treatment
effects where p and p� refer to alternative policies.

Condition 11.6 Let X0 denote the counterfactual value of X that would be ob-
served if D is set to 0. X1 is defined analogously. Assume Xd = X for d = 0, 1.
(The XD are invariant to counterfactual manipulations.)

Condition 11.7 The distribution of (Y0,p, Y1,p, VD,p) conditional on Xp = x is
the same as the distribution of(Y0,p� , Y1,p� , VD,p�) conditional onXp� = x (policy
invariance of the distribution).

Under the above conditions, MTE can be estimated by local IV (LIV)

LIV = ∂E[Y |X=x,P (Z)=p]
∂p p=uD

where P (Z) ≡ Pr (D | Z). To see the connection between MTE and LIV rewrite
the numerator of LIV

E [Y | X = x, P (Z) = p] = E [Y0 + (Y1 − Y0)D | X = x, P (Z) = p]

by conditional independence and Bayes’ theorem we have

E [Y0 | X = x] + E [Y1 − Y0 | X = x,D = 1]Pr (D = 1 | Z = z)

transforming VD such that UD is distributed uniform[0, 1] produces

E [Y0 | X = x] +

1 p

0

E [Y1 − Y0 | X = x, UD = uD] duD

Now, the partial derivative of this expression with respect to p evaluated at p = uD
is

∂E[Y |X=x,P (Z)=p]
∂p p=uD

= E [Y1 − Y0 | X = x, UD = uD]

4The conditions remain largely the same for MTE analysis of alternative settings including multi-
level discrete treatment, continuous treatment, and discrete outcomes. Modifications are noted in the
discussions of each.
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Hence, LIV identifiesMTE.
With homogeneous response, MTE is constant and equal to ATE, ATT, and

ATUT. With unobservable heterogeneity, MTE is typically a nonlinear function
of uD (where uD continues to be distributed uniform[0, 1]). The intuition for this
is individuals who are less likely to accept treatment require a larger potential gain
from treatment to induce treatment selection than individuals who are more likely
to participate.

11.5 MTE connections to other treatment effects

Heckman and Vytlacil show that MTE can be connected to other treatment ef-
fects (TE) by weighted distributions hTE (·) (Rao [1986] and Yitzhaki [1996]).5

Broadly speaking and with full support

TE (x) =

1 1

0

MTE (x, uD)hTE (x, uD) duD

and integrating out x yields the population moment

Average (TE) =

1 1

0

TE (x) dF (x)

If full support exists, then the weight distribution for the average treatment effect
is

hATE (x, uD) = 1

Let f be the density function of observed utility W̃ = μD (Z), then the weighted
distribution to recover the treatment effect on the treated from MTE is

hTT (x, uD) =

�1 1

uD

f (p | X = x) dp

�
1

E [p | X = x]

=
Pr
�
P
�
W̃
�
> uD | X = x

�
. 1
0
Pr
�
P
�
W̃
�
> uD | X = x

�
dud

where P
�
W̃
�
≡ Pr

�
D = 1 | W̃ = w

�
. Similarly, the weighted distribution to

recover the treatment effect on the untreated from MTE is

hTUT (x, uD) =

�1 uD

0

f (p | X = x) dp

�
1

E [1− p | X = x]

=
Pr
�
P
�
W̃
�
≤ uD | X = x

�
. 1
0
Pr
�
P
�
W̃
�
≤ uD | X = x

�
dud

5Weight functions are nonnegative and integrate to one (like density functions).
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Figure 11.1 depicts MTE (ΔMTE (uD)) and weighted distributions for treatment
on treated hTT (uD) and treatment on the untreated hTUT (uD) with regressors
suppressed.

Figure 11.1: MTE and weight functions for other treatment effects

Applied work determines the weights by estimating

Pr
�
P
�
W̃
�
> uD | X = x

�
SincePr

�
P
�
W̃
�
> uD | X = x

�
= Pr

�
I
6
P
�
W̃
�
> uD

7
= 1 | X = x

�
where

I [·] is an indicator function, we can use our selection or choice model (say, probit)
to estimate

Pr
�
I
6
P
�
W̃
�
> uD

7
= 1 | X = x

�
for each value of uD. As the weighted distributions integrate to one, we use their
sum to determine the normalizing constant (the denominator). The analogous idea
applies to hTUT (x, uD).

However, it is rare that full support is satisfied as this implies both treated and
untreated samples would be evidenced at all probability levels for some model
of treatment (e.g., probit). Often, limited support means the best we can do is
estimate a local average treatment effect.

LATE (x) =
1

u� − u
1 u�

u

MTE (x, uD) duD

In the limit as the interval becomes arbitrarily small LATE converges to MTE.
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11.5.1 Policy-relevant treatment effects vs. policy effects
What is the average gross gain from treatment following policy intervention?
This is a common question posed in the study of accounting. Given uniformity
(one way flows into or away from participation in response to a change in instru-
ment) and policy invariance, IV can identify the average treatment effect for pol-
icy a compared with policy a�, that is, a policy-relevant treatment effect (PRTE).
Policy invariance means the policy impacts the likelihood of treatment but not
the potential outcomes (that is, the distributions of {y1a, y0a, VDa | Xa = x} and
{y1a� , y0a� , VDa� | Xa� = x} are equal).

The policy-relevant treatment effect is

PRTE = E [Y | X = x, a]− E [Y | X = x, a�]

=

1 1

0

MTE (x, uD)
�
FP (a�)|X (uD | x)− FP (a)|X (uD | x)

�
duD

where FP (a)|X (uD | x) is the distribution of P , the probability of treatment con-
ditional on X = x, and the weight function is hPRTE (x, uD).6

hPRTE (x, uD) =
�
FP (a�)|X (uD | x)− FP (a)|X (uD | x)

�
Intuition for the above connection can be seen as follows, where conditioning on
X is implicit.

E [Y | a] =

1 1

0

E [Y | P (Z) = p] dFP (a) (p)

=

1 1

0


 . 1
0
�[0,p] (uD)E (Y1 | U = uD)

+�
(p,1]

(uD)E (Y0 | U = u) duD

�
dFP (a) (p)

=

1 1

0


 �
1− FP (a) (uD)

�
E [Y1 | U = uD]

+FP (a) (uD)E [Y0 | U = uD]
�
duD

6Heckman and Vytlacil [2005] also identify the per capita weight for policy-relevant treatment as

Pr
�
P
�
W̃
�
≤ uD | X = x, a�

�
− Pr
�
P
�
W̃
�
≤ uD | X = x, a

�
� 1
0 Pr
�
P
�
W̃
�
≤ uD | X = x, a�

�
dud −
� 1
0 Pr
�
P
�
W̃
�
≤ uD | X = x, a

�
dud
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where �A (uD) is an indicator function for the event uD ∈ A. Hence, comparing
policy a to a�, we have

E [Y | X = x, a]− E [Y | X = x, a�]

=

1 1

0


 �
1− FP (a) (uD)

�
E [Y1 | U = uD]

+FP (a) (uD)E [Y0 | U = uD]
�
duD

−
1 1

0


 �
1− FP (a�) (uD)

�
E [Y1 | U = uD]

+FP (a�) (uD)E [Y0 | U = uD]
�
duD

=

1 1

0

�
FP (a�) (uD)− FP (a) (uD)

�
E [Y1 − Y0 | U = uD] duD

=

1 1

0

�
FP (a�) (uD)− FP (a) (uD)

�
MTE (U = uD) duD

On the other hand, we might be interested in the policy effect or net effect
of a policy change rather than the treatment effect. In which case it is perfectly
sensible to estimate the net impact with some individuals leaving and some en-
tering, this is a policy effect not a treatment effect. The policy effect parameter is
E [Y | Za� = z�]− E [Y | Za = z]

= E [Y1 − Y0 | D (z�) > D (z)] Pr (D (z�) > D (z))
−E [Y1 − Y0 | D (z�) ≤ D (z)] Pr (D (z�) ≤ D (z))

Notice the net impact may be positive, negative, or zero as two way flows are
allowed (see Heckman and Vytlacil [2006]).

11.5.2 Linear IV weights
As mentioned earlier, HV argue that linear IV produces a complex weighting of
effects that can be difficult to interpret and depends on the instruments chosen.
This argument is summarized by their linear IV weight distribution. Let J (Z) be
any function of Z such that Cov [J (Z) , D] �= 0. The population analog of the IV
estimator is Cov[J(Z),Y ]

Cov[J(Z),D] . Consider the numerator.

Cov [J (Z) , Y ] = E [(J (Z)− E [J (Z)])Y ]
= E [(J (Z)− E [J (Z)]) (Y0 +D (Y1 − Y0))]
= E [(J (Z)− E [J (Z)])D (Y1 − Y0)]
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Define J̃ (Z) = J (Z)− E [J (Z)]. Then, Cov [J (Z) , Y ]

= E
6
J̃ (Z)D (Y1 − Y0)

7
= E

6
J̃ (Z) I [UD ≤ P (Z)] (Y1 − Y0)

7
= E

6
J̃ (Z) I [UD ≤ P (Z)]E [(Y1 − Y0) | Z, VD]

7
= E

6
J̃ (Z) I [UD ≤ P (Z)]E [(Y1 − Y0) | VD]

7
= EVD

6
EZ

6
J̃ (Z) I [UD ≤ P (Z)] | UD

7
E [(Y1 − Y0) | UD]

7
=

1 1

0

E
6
J̃ (Z) | P (Z) ≥ uD

7
Pr (P (Z) ≥ uD)

×E [(Y1 − Y0) | UD = uD] duD
=

1 1

0

ΔMTE (x, uD)E
6
J̃ (Z) | P (Z) ≥ uD

7
Pr (P (Z) ≥ uD) duD

where P (Z) is propensity score utilized as an instrument.
For the denominator we have, by iterated expectations,

Cov [J (Z) , D] = Cov [J (Z) , P (Z)]

Hence,

hIV (x, uD) =
E
6
J̃ (Z) | P (Z) ≥ uD

7
Pr (P (Z) ≥ uD)

Cov [J (Z) , P (Z)]

where Cov [J (Z) , P (Z)] �= 0. Heckman, Urzua, and Vytlacil [2006] illustrate
the sensitivity of treatment effects identified via linear IV to choice of instruments.

11.5.3 OLS weights
It’s instructive to identify the effect exogenous dummy variable OLS estimates
as a function of MTE. While not a true weighted distribution (as the weights
can be negative and don’t necessarily sum to one), for consistency we’ll write
hOLS (x, uD) =

1 + E[Y1|x,uD]hATT (x,uD)−E[v0|x,uD]hATUT (x,uD)
MTE(x,uD)

MTE (x, uD) �= 0

0 otherwise
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Table 11.1: Comparison of identification conditions for common econometric
strategies (adapted from Heckman and Navarro-Lozano’s [2004] table 3)

Method Exclusion required?
Separability of observables

and unobservables
in outcome equations?

Matching no no
Control
function

yes,
for nonparametric identification

conventional,
but not required

IV (linear) yes yes
LIV yes no

Method Functional form required?
Marginal = Average
(given X,Z)?

Matching no yes
Control
function

conventional,
but not required

no

IV (linear) no
no

(yes, in standard case)
LIV no no

Method
Key identification conditions for means

(assuming separability)

Matching
E [U1 | X,D = 1, Z] = E [U1 | X,Z]
E [U0 | X,D = 1, Z] = E [U0 | X,Z]

Control
function

E [U0 | X,D = 1, Z]
and E [U1 | X,D = 1, Z]

can be varied independently of μ0 (X) and μ1 (X) , respectively,
and intercepts can be identified through limit arguments

(identification at infinity), or symmetry assumptions

IV (linear)

E [U0 +D (U1 − U0) | X,Z] = E [U0 +D (U1 − U0) | X]
(ATE)

E [U0 +D (U1 − U0)− E [U0 +D (U1 − U0) | X] | P (W ) , X]
= E [U0 +D (U1 − U0)− E [U0 +D (U1 − U0) | X] | X]

(ATT)
LIV (U0, U1, UD) independent of Z | X
Method

Key identification conditions
for propensity score

Matching 0 < Pr (D = 1 | Z,X) < 1
Control
function

0 ≤ Pr (D = 1 | Z,X) ≤ 1
is a nontrivial function of Z for each X

IV (linear) not needed

LIV
0 < Pr (D = 1 | X) < 1
0 ≤ Pr (D = 1 | Z,X) ≤ 1

is a nontrivial function of Z for each X
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11.6 Comparison of identification strategies

Following Heckman and Navarro-Lozano [2004], we compare and report in ta-
ble 11.1 treatment effect identification strategies for four common econometric
approaches: matching (especially, propensity score matching), control functions
(selection models), conventional (linear) instrumental variables (IV), and local in-
strumental variables (LIV).

All methods define treatment parameters on common support — the intersec-
tion of the supports of X given D = 1 and X given D = 0, that is,

Support (X | D = 1) ∩ Support (X | D = 0)

LIV employs common support of the propensity score — overlaps in P (X,Z) for
D = 0 and D = 1. Matching breaks down if there exists an explanatory variable
that serves as a perfect classifier. On the other hand, control functions exploit limit
arguments for identification,7 hence, avoiding the perfect classifier problem. That
is, identification is secured when P (X,Z) = 1 for some Z = z but there exists
P (X,Z) < 1 for someZ = z�. Similarly, when P (W ) = 0, whereW = (X,Z),
for some Z = z there exists P (X,Z) > 0 for some Z = z��.

11.7 LIV estimation

We’ve laid the groundwork for the potential of marginal treatment effects to ad-
dress various treatment effects in the face of unobserved heterogeneity, it’s time
to discuss estimation. Earlier, we claimed LIV can estimate MTE

∂E[Y |X=x,P (Z)=p]
∂p p=uD

= E [Y1 − Y0 | X = x, UD = uD]

For the linear separable model we have

Y1 = δ + α+Xβ1 + V1

and
Y0 = δ +Xβ0 + V0

Then,

E [Y | X = x, P (Z) = p] = Xβ0 +X (β1 − β0) Pr (Z) + κ (p)
where

κ (p) = αPr (Z)+E [v0 | Pr (Z) = p]+E [v1 − v0 | D = 1,Pr (Z) = p] Pr (Z)

Now, LIV simplifies to

LIV = X (β1 − β0) + ∂κ(p)
∂p p=uD

7This is often called "identification at infinity."
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Since MTE is based on the partial derivative of expected outcome with respect
to p

∂

∂p
E [Y | X = x, P (Z) = p] = X (β1 − β0) +

∂κ (p)

∂p
,

the objective is to estimate (β1 − β0) and the derivative of κ (p). Heckman, Urzua,
and Vytlacil’s [2006] local IV estimation strategy employs a relaxed distribu-
tional assignment based on the data and accommodates unobservable heterogene-
ity. LIV employs nonparametric (local linear kernel density; see chapter 6) regres-
sion methods.

LIV Estimation proceeds as follows:
Step 1: Estimate the propensity score, P (Z), via probit, nonparametric discrete

choice, etc.
Step 2: Estimate β0 and (β1 − β0) by employing a nonparametric version of

FWL (double residual regression). This involves a local linear regression (LLR) of
each regressor inX andX ∗P (Z) onto P (Z). LLR forXk (the kth regressor) is
{τ0k (p) , τ1k (p)} =

argmin
{τ0(p),τ1(p)}

⎧⎨⎩
n/
j=1

(Xk (j)− τ0 − τ1 (P (Zj)− p))2K


P (Zj)− p

h

�⎫⎬⎭
where K (W ) is a (Gaussian, biweight, or Epanechnikov) kernel evaluated at W .
The bandwidth h is estimated by leave-one out generalized cross-validation based
on the nonparametric regression of Xk (j) onto (τ0k + τ1kp).

For each regressor in X and X ∗ P (Z) and for the response variable y esti-
mate the residuals from LLR. Denote the matrix of residuals from the regressors
(ordered with X followed by X ∗ P (Z)) as eX and the residuals from Y , eY .

Step 3: Estimate [β0,β1 − β0] from a no-intercept linear regression of eY onto

eX . That is,
63β0,β1 − β07T = �

eTXeX
�−1

eTXeY .

Step 4: For E [Y | X = x, P (Z) = p], we’ve effectively estimated β0Xi +
(β1 − β0)Xi ∗ P (Zi). What remains is to estimate the derivative of κ (p). We
complete nonparametric FWL by defining the restricted response as follows.

Ỹi = Yi −3β0Xi − �β1 − β0�Xi ∗ P (Zi)
The intuition for utilizing the restricted response is as follows. In the textbook
linear model case

Y = Xβ + Zγ + ε

FWL produces
E [Y | X,Z] = PZY + (I − PZ)Xb

where b is the OLS estimator for β and PZ is the projection matrixZ(ZTZ)−1ZT .
Rewriting we can identify the estimator for γ, g, from

E [Y | X,Z] = Xb+ PZ (Y −Xb) = Xb+ Zg
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Hence, g =
�
ZTZ

�−1
ZT (Y −Xb). That is, g is estimated from a regression

of the restricted response (Y −Xb) onto the regressor Z. LIV employs the non-
parametric analog.

Step 5: Estimate τ1 (p) =
∂κ(p)
∂p by LLR of Yi−3β0Xi−�β1 − β0�Xi∗P (Zi)

onto P (Zi) for each observation i in the set of overlaps. The set of overlaps is the
region for which MTE is identified — the subset of common support of P (Z) for
D = 1 and D = 0.

Step 6: The LIV estimator of MTE(x, uD) is
�
β1 − β0

�
X + τ1 (p).

MTE depends on the propensity score p as well as X . In the homogeneous
response setting, MTE is constant and MTE = ATE = ATT = ATUT .
While in the heterogeneous response setting, MTE is nonlinear in p.

11.8 Discrete outcomes

Aakvik, Heckman, and Vytlacil [2005] (AHV) describe an analogous MTE ap-
proach for the discrete outcomes case. The setup is analogous to the continuous
case discussed above except the following modifications are made to the potential
outcomes model.

Y1 = μ1 (X,U1)

Y0 = μ0 (X,U0)

A linear latent index is assumed to generate discrete outcomes

μj (X,Uj) = I
�
Xβj ≥ Uj

�
AHV describe the following identifying conditions.

Condition 11.8 (U0, VD) and (U1, VD) are independent of (Z,X) (conditional
independence),

Condition 11.9 μD (Z) is a nondegenerate random variable conditional on X
(rank condition),

Condition 11.10 (V0, VD) and (V1, VD) are continuous,

Condition 11.11 the values ofE [|Y0|] andE [|Y1|] are finite (finite means is triv-
ially satisfied for discrete outcomes),

Condition 11.12 0 < Pr (D = 1 | X) < 1.
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Mean treatment parameters for dichotomous outcomes are

MTE (x, u) = Pr (Y1 = 1 | X = x, UD = u)

−Pr (Y0 = 1 | X = x, UD = u)

ATE (x) = Pr (Y1 = 1 | X = x)− Pr (Y0 = 1 | X = x)

ATT (x,D = 1) = Pr (Y1 = 1 | X = x,D = 1)

−Pr (Y0 = 1 | X = x,D = 1)

ATUT (x,D = 0) = Pr (Y1 = 1 | X = x,D = 0)

−Pr (Y0 = 1 | X = x,D = 0)

AHV also discuss and empirically estimate treatment effect distributions utilizing
a (single) factor-structure strategy for model unobservables.8

11.8.1 Multilevel discrete and continuous endogenous treatment
To this point, our treatment effects discussion has been limited to binary treatment.
In this section, we’ll briefly discuss extensions to the multilevel discrete (ordered
and unordered) case (Heckman and Vytlacil [2007b]) and continuous treatment
case (Florens, Heckman, Meghir, and Vytlacil [2003] and Heckman and Vytlacil
[2007b]). Identification conditions are similar for all cases of multinomial treat-
ment.

FHMV and HV discuss conditions under which control function, IV, and LIV
equivalently identify ATE via the partial derivative of the outcome equation with
respect to (continuous) treatment. This is essentially the homogeneous response
case. In the heterogenous response case, ATE can be identified by a control func-
tion or LIV but under different conditions. LIV allows relaxation of the standard
single index (uniformity) assumption. Refer to FHMV for details. Next, we re-
turn to HV’s MTE framework and briefly discuss how it applies to ordered choice,
unordered choice, and continuous treatment.

Ordered choice

Consider an ordered choice model where there are S choices. Potential outcomes
are

Ys = μs (X,Us) for s = 1, . . . , S

Observed choices are

Ds = 1 [Cs−1 (Ws−1) < μD (Z)− VD < Cs (Ws)]

for latent index U = μD (Z) − VD and cutoffs Cs (Ws) where Z shift the index
generally andWs affect s-specific transitions. Intuitively, one needs an instrument

8Carneiro, Hansen, and Heckman [2003] extend this by analyzing panel data, allowing for multiple
factors, and more general choice processes.
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(or source of variation) for each transition. Identifying conditions are similar to
those above.

Condition 11.13 (Us, VD) are independent of (Z,W ) conditional on X for s =
1, . . . , S (conditional independence),

Condition 11.14 μD (Z) is a nondegenerate random variable conditional on (X,W )
(rank condition),

Condition 11.15 the distribution of VD is continuous,

Condition 11.16 the values of E [|Ys|] are finite for s = 1, . . . , S (finite means),

Condition 11.17 0 < Pr (Ds = 1 | X) < 1 for s = 1, . . . , S (in large samples,
there are some individuals in each treatment state).

Condition 11.18 For s = 1, . . . , S − 1, the distribution of Cs (Ws) conditional
on (X,Z) and the other Cj (Wj), j = 1, . . . S, j �= s, is nondegenerate and
continuous.

The transition-specific MTE for the transition from s to s+ 1 is

ΔMTE
s,s+1 (x, v) = E [Ys+1 − Ys | X = x, VD = v] for s = 1, . . . , S − 1

Unordered choice

The parallel conditions for evaluating causal effects in multilevel unordered dis-
crete treatment models are:

Condition 11.19 (Us, VD) are independent of Z conditional onX for s = 1, . . . ,
S (conditional independence),

Condition 11.20 for each Zj there exists at least one element Z [j] that is not an
element of Zk, j �= k, and such that the distribution of μD (Z) conditional on�
X,Z [−j]

�
is not degenerate,

or

Condition 11.21 for each Zj there exists at least one element Z [j] that is not an
element of Zk, j �= k, and such that the distribution of μD (Z) conditional on�
X,Z [−j]

�
is continuous.

Condition 11.22 the distribution of VD is continuous,

Condition 11.23 the values of E [|Ys|] are finite for s = 1, . . . , S (finite means),

Condition 11.24 0 < Pr (Ds = 1 | X) < 1 for s = 1, . . . , S (in large samples,
there are some individuals in each treatment state).

The treatment effect is Yj − Yk where j �= k. And regime j can be compared
with the best alternative, say k, or other variations.
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Continuous treatment

Continue with our common setup except assume outcome Yd is continuous in d.
This implies that for d and d� close so are Yd and Yd� . The average treatment effect
can be defined as

ATEd (x) = E

�
∂

∂d
Yd | X = x

�
The average treatment effect on treated is

ATTd (x) = E

�
∂

∂d1
Yd1 | D = d2, X = x

�|
d=d1=d2

And the marginal treatment effect is

MTEd (x, u) = E

�
∂

∂d
Yd | X = x, UD = u

�
See Florens, Heckman, Meghir, and Vytlacil [2003] and Heckman and Vytlacil
[2007b, pp.5021-5026] for additional details regarding semiparametric identifica-
tion of treatment effects.

11.9 Distributions of treatment effects

A limitation of the discussion to this juncture is we have focused on popula-
tion means of treatment effects. This prohibits discussion of potentially important
properties such as the proportion of individuals who benefit or who suffer from
treatment.

Abbring and Heckman [2007] discuss utilization of factor models to identify
the joint distribution of outcomes (including counterfactual distributions) and ac-
cordingly the distribution of treatment effects Y1−Y0. Factor models are a type of
replacement function (Heckman and Robb [1986]) where conditional on the fac-
tors, outcomes and choice equations are independent. That is, we rely on a type of
conditional independence for identification. A simple one-factor model illustrates.
Let θ be a scalar factor that produces dependence amongst the unobservables (un-
observables are assumed to be independent of (X,Z)). LetM be a proxy measure
for θ where M = μM (X) + αMθ + εM

V0 = α0θ + ε0

V1 = α1θ + ε1

VD = αDθ + εD

ε0, ε1, εD, εM are mutually independent and independent of θ, all with mean zero.
To fix the scale of the unobserved factor, normalize one coefficient (loading) to,



292 11. Marginal treatment effects

say, αM = 1. The key is to exploit the notion that all of the dependence arises
from θ.

Cov [Y0,M | X,Z] = α0αMσ
2
θ

Cov [Y1,M | X,Z] = α1αMσ
2
θ

Cov [Y0, D
∗ | X,Z] = α0

αD
σUD

σ2θ

Cov [Y1, D
∗ | X,Z] = α1

αD
σUD

σ2θ

Cov [D∗,M | X,Z] =
αD
σUD

αMσ
2
θ

From the ratio of Cov [Y1, D∗ | X,Z] to Cov [D∗,M | X,Z], we find α1 (αM =

1 by normalization). From Cov[Y1,D
∗|X,Z]

Cov[Y0,D∗|X,Z] =
α1
α0

, we determine α0. Finally, from

either Cov [Y0,M | X,Z] or Cov [Y1,M | X,Z] we determine scale σ2θ. Since
Cov [Y0, Y1 | X,Z] = α0α1σ

2
θ, the joint distribution of objective outcomes is

identified.
See Abbring and Heckman [2007] for additional details, including use of prox-

ies, panel data and multiple factors for identification of joint distributions of sub-
jective outcomes, and references.

11.10 Dynamic timing of treatment

The foregoing discussion highlights one time (now or never) static analysis of
the choice of treatment. In some settings it’s important to consider the impact
of acquisition of information on the option value of treatment. It is important to
distinguish what information is available to decision makers and when and what
information is available to the analyst. Distinctions between ex ante and ex post
impact and subjective versus objective gains to treatment are brought to the fore.

Policy invariance (P-1 through P-4) as well as the distinction between the eval-
uation problem and the selection problem lay the foundation for identification.
The evaluation problem is one where we observe the individual in one treatment
state but wish to determine the individual’s outcome in another state. The selection
problem is one where the distribution of outcomes for an individual we observe
in a given state is not the same as the marginal outcome distribution we would
observe if the individual is randomly assigned to the state. Policy invariance sim-
plifies the dynamic evaluation problem to (a) identifying the dynamic assignment
of treatments under the policy, and (b) identifying dynamic treatment effects on
individual outcomes.

Dynamic treatment effect analysis typically takes the form of a duration model
(or time to treatment model; see Heckman and Singer [1986] for an early and ex-
tensive review of the problem). A variety of conditional independence, matching,
or dynamic panel data analyses supply identification conditions. Discrete-time and
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continuous-time as well as reduced form and structural approaches have been pro-
posed. Abbring and Heckman [2007] summarize this work, and provide additional
details and references.

11.11 General equilibrium effects

Policy invariance pervades the previous discussion. Sometimes policies or pro-
grams to be evaluated are so far reaching to invalidate policy invariance. Inter-
actions among individuals mediated by markets can be an important behavioral
consideration that invalidates the partial equilibrium restrictions discussed above
and mandates general equilibrium considerations (for example, changing prices
and/or supply of inputs as a result of policy intervention). As an example, Heck-
man, Lochner, and Tabor [1998a, 1998b, 1998c] report that static treatment effects
overstate the impact of college tuition subsidy on future wages by ten times com-
pared to their general equilibrium analysis. See Abbring and Heckman [2007] for
a review of the analysis of general equilibrium effects.

In any social setting, policy invariance conditions PI-2 and PI-4 are very strong.
They effectively claim that untreated individuals are unaffected by who does re-
ceive treatment. Relaxation of invariance conditions or entertainment of general
equilibrium effects is troublesome for standard approaches like difference - in -
difference estimators as the "control group" is affected by policy interventions but
a difference-in-difference estimator fails to identify the impact. Further, in stark
contrast to conventional uniformity conditions of microeconometric treatment ef-
fect analysis, general equilibrium analysis must accommodate two way flows.

11.12 Regulated report precision example

LIV estimation of marginal treatment effects is illustrated for the regulated report
precision example from chapter 10. We don’t repeat the setup here but rather refer
the reader to chapters 2 and 10. Bayesian data augmentation and analysis of mar-
ginal treatment effects are discussed and illustrated for regulated report precision
in chapter 12.

11.12.1 Apparent nonnormality and MTE
We explore the impact of apparent nonnormality on the analysis of report pre-
cision treatment effects. In our simulation, αd is observed by the owner prior to
selecting report precision, αLd is drawn from an exponential distribution with rate
1
0.02 (reciprocal of the mean), αHd is drawn from an exponential distribution with
rate 1

0.04 , α is drawn from an exponential distribution with rate 1
0.03 and γ is
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drawn from an exponential distribution with rate 1
5 .9 This means the unobservable

(by the analyst) portion of the choice equation is apparently nonnormal. Setting
parameters are summarized below.

Stochastic parameters
αLd ∼ exp

�
1
0.02

�
αHd ∼ exp

�
1
0.04

�
α ∼ exp � 1

0.03

�
γ ∼ exp � 15�
βL ∼ N (7, 1)

βH ∼ N (7, 1)
First, we report benchmark OLS results and results from IV strategies developed
in chapter 10. Then, we apply LIV to identify MTE-estimated average treatment
effects.

OLS results

Benchmark OLS simulation results are reported in table 11.2 and sample statistics
for average treatment effects in table 11.3. Although there is little difference be-
tween ATE and OLS, OLS estimates of other average treatment effects are poor,
as expected. Further, OLS cannot detect outcome heterogeneity. IV strategies may
be more effective.

Ordinate IV control model

The ordinate control function regression is

E [Y | s,D,φ] = β0 + β1 (s− s) + β2D (s− s) + β3φ (Zθ) + β4D
and is estimated via two stage IV where instruments

{ι, (s− s) ,m (s− s) ,φ (Zθ) ,m}
are employed and

m = Pr
�
D = 1 | Z = �

ι w1 w2
��

is estimated via probit. The coefficient on D, β4, estimates ATE. Simulation re-
sults are reported in table 11.4. Although, on average, the rank ordering of ATT

9Probability as logic implies that if we only know the mean and support is nonnegative, then we
conclude αd has an exponential distribution. Similar reasoning implies knowledge of the variance
leads to a Gaussian distribution (see Jaynes [2003] and chapter 13).
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Table 11.2: Continuous report precision but observed binary OLS parameter
estimates for apparently nonnormal DGP

statistic β0 β1 β2
mean 635.0 0.523 −.006
median 635.0 0.526 −0.066
std.dev. 1.672 0.105 0.148
minimum 630.1 0.226 −0.469
maximum 639.6 0.744 0.406
statistic β3 (estATE) estATT estATUT
mean 4.217 4.244 4.192
median 4.009 4.020 4.034
std.dev. 2.184 2.183 2.187
minimum −1.905 −1.887 −1.952
maximum 10.25 10.37 10.13
E [Y | s,D] = β0 + β1 (s− s) + β2D (s− s) + β3D

Table 11.3: Continuous report precision but observed binary average treatment
effect sample statistics for apparently nonnormal DGP

statistic ATE ATT ATUT
mean −1.053 62.04 −60.43
median −1.012 62.12 −60.44
std.dev. 1.800 1.678 1.519
minimum −6.007 58.16 −64.54
maximum 3.787 65.53 −56.94

Table 11.4: Continuous report precision but observed binary ordinate control IV
parameter estimates for apparently nonnormal DGP

statistic β0 β1 β2 β3
mean 805.7 −2.879 5.845 54.71
median 765.9 −2.889 5.780 153.3
std.dev. 469.8 1.100 1.918 1373
minimum −482.7 −5.282 0.104 −3864
maximum 2135 0.537 10.25 3772
statistic β4 (estATE) estATT estATUT
mean −391.4 −369.6 −411.7
median −397.9 −336.5 −430.7
std.dev. 164.5 390.4 671.2
minimum −787.4 −1456 −2190
maximum 130.9 716.0 1554
E [Y | s,D,φ] = β0 + β1 (s− s) + β2D (s− s) + β3φ (Zθ) + β4D
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Table 11.5: Continuous report precision but observed binary inverse Mills IV
parameter estimates for apparently nonnormal DGP

statistic β0 β1 β2 β3 β4
mean 636.7 0.525 0.468 2.074 0.273
median 636.1 0.533 0.467 0.610 −4.938
std.dev. 30.61 0.114 0.114 39.74 41.53
minimum 549.2 0.182 0.108 −113.5 −118.4
maximum 724.4 0.809 0.761 116.0 121.4
statistic β5 (estATE) estATT estATUT
mean 2.168 0.687 3.555
median 5.056 0.439 12.26
std.dev. 48.44 63.22 66.16
minimum −173.4 −181.4 −192.9
maximum 117.8 182.6 190.5

E [Y | s,D,λ] = β0 + β1 (1−D) (s− s) + β2D (s− s)
+β3 (1−D)λH + β4DλL + β5D

and ATUT is consistent with the sample statistics,.the ordinate control function
treatment effect estimates are inconsistent (biased downward) and extremely vari-
able, In other words, the evidence suggests nonnormality renders the utility of a
normality-based ordinate control function approach suspect.

Inverse-Mills IV model

Heckman’s inverse-Mills ratio regression is

E [Y | s,D,λ] = β0 + β1 (1−D) (s− s) + β2D (s− s)
+β3 (1−D)λH + β4DλL + β5D

where s is the sample average of s, λH = − φ(Zθ)
1−Φ(Zθ) , λ

L = φ(Zθ)
Φ(Zθ) , and θ

is the estimated parameters from a probit regression of precision choice D on
Z =

�
ι w1 w2

�
(ι is a vector of ones). The coefficient on D, β5, is the

estimate of the average treatment effect, ATE. Simulation results including esti-
mated average treatment effects on treated (estATT) and untreated (estATUT) are
reported in table 11.5. The inverse-Mills estimates of the treatment effects are
inconsistent and sufficiently variable that we may not detect nonzero treatment ef-
fects — though estimated treated effects are not as variable as those estimated by
the ordinate control IV model. Further, the inverse-Mills results suggest greater
homogeneity (all treatment effects are negative, on average) which suggests we
likely would be unable to identify outcome heterogeneity based on this control
function strategy.

MTE estimates via LIV

Next, we employ Heckman’s MTE approach for estimating the treatment effects
via a semi-parametric local instrumental variable estimator (LIV). Our LIV semi-
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Table 11.6: Continuous report precision but observed binary LIV parameter
estimates for apparently nonnormal DGP

statistic β1 β2 estATE estATT estATUT
mean 1.178 −1.390 17.98 14.73 25.79
std.dev. 0.496 1.009 23.54 26.11 38.08
minimum 0.271 −3.517 −27.63 −32.86 −55.07
maximum 2.213 0.439 64.67 69.51 94.19

E [Y | s,D, τ1 (p)] = β1 (s− s) + β2D (s− s) + τ1 (p)

parametric approach only allows us to recover estimates from the outcome equa-
tions for β1 and β2 where the reference regression is

E [Y | s,D, τ1 (p)] = β1 (s− s) + β2D (s− s) + τ1 (p)
We employ semi-parametric methods to estimate the outcome equation. Estimated
parameters and treatment effects based on bootstrapped semi-parametric weighted
MTE are in table 11.6.10 While the MTE results may more closely approximate
the sample statistics than their parametric counterpart IV estimators, their high
variance and apparent bias compromises their utility. Could we reliably detect
endogeneity or heterogeneity? Perhaps — however the ordering of the estimated
treatment effects doesn’t correspond well with sample statistics for the average
treatment effects.

Are these results due to nonnormality of the unobservable features of the se-
lection equation? Perhaps, but a closer look suggests that our original thinking
applied to this DGP is misguided. While expected utility associated with low (or
high) inverse report precision equilibrium strategies are distinctly nonnormal, se-
lection involves their relative ranking or, in other words, the unobservable of in-
terest comes from the difference in unobservables. Remarkably, their difference
(VD) is not distinguishable from Gaussian draws (based on descriptive statistics,
plots, etc.).

Then, what is the explanation? It is partially explained by the analyst observ-
ing binary choice when there is a multiplicity of inverse report precision choices.
However, we observed this in an earlier case (see chapter 10) with a lesser impact
than demonstrated here. Rather, the feature that stands out is the quality of the
instruments. The same instruments are employed in this "nonnormal" case as pre-
viously employed but, apparently, are much weaker instruments in this allegedly
nonnormal setting. In table 11.7 we report the analogous sample correlations to
those reported in chapter 10 for Gaussian draws. Correlations between the instru-
ments, w1 and w2, and treatment, D, are decidedly smaller than the examples
reported in chapter 10. Further, α and γ offer little help.

10Unlike other simulations which are developed within R, these results are produced using Heck-
man, Urzua, and Vytlacil’s MTE program. Reported results employ a probit selection equation. Similar
results obtain when either a linear probability or nonparametric regression selection equation is em-
ployed.
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Table 11.7: Continuous report precision but observed binary sample correlations
for apparently nonnormal DGP

statistic r
�
α, UL

�
r
�
α, UH

�
r
�
γ, UL

�
r
�
γ, UH

�
mean −0.004 0.000 0.005 −0.007
median −0.005 −0.001 0.007 −0.006
std.dev. 0.022 0.024 0.023 0.022
minimum −0.081 −0.056 −0.048 −0.085
maximum 0.054 0.064 0.066 0.039

statistic r (α, D) r (γ, D) r (w1, D) r (w2, D)
mean 0.013 −0.046 −0.114 0.025
median 0.013 −0.046 −0.113 0.024
std.dev. 0.022 0.021 0.012 0.014
minimum −0.042 −0.106 −0.155 −0.011
maximum 0.082 0.017 −0.080 0.063

Stronger instruments

To further explore this explanation, we create a third and stronger instrument, w3,
and utilize it along with w1 in the selection equation where W =

�
w1 w3

�
.

This third instrument is the residuals of a binary variable

� �EU �σL2 ,σL2 � > EU �σH2 ,σL2 ��
regressed onto UL and UH where � (·) is an indicator function. Below we report
in table 11.8 ordinate control function results. Average treatment effect sample
statistics for this simulation including the OLS effect are reported in table 11.9.
Although the average treatment effects are attenuated a bit toward zero, these re-
sults are a marked improvement of the previous, wildly erratic results. Inverse-
Mills results are reported in table 11.10. These results correspond quite well with
treatment effect sample statistics. Hence, we’re reminded (once again) the value
of strong instruments for logically consistent analysis cannot be over-estimated.

Finally, we report in table 11.11 LIV-estimated average treatment effects de-
rived from MTE with this stronger instrument,w3. Again, the results are improved
relative to those with the weaker instruments but as before the average treatment
effects are attenuated.11 Average treatment on the untreated along with the aver-
age treatment effect correspond best with their sample statistics. Not surprisingly,
the results are noisier than the parametric results. For this setting, we conclude
that strong instruments are more important than relaxed distributional assignment
(based on the data) for identifying and estimating various average treatment ef-
fects.

11Reported results employ a probit regression for the selection equations (as is the case for the
foregoing parametric analyses). Results based on a nonparametric regression for the treatment equation
are qualitatively unchanged.
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Table 11.8: Continuous report precision but observed binary stronger ordinate
control IV parameter estimates for apparently nonnormal DGP

statistic β0 β1 β2 β3
mean 596.8 0.423 0.024 137.9
median 597.0 0.414 0.025 138.2
std.dev. 4.168 0.140 0.238 14.87
minimum 586.8 −0.012 −0.717 90.56
maximum 609.8 0.829 0.728 179.2
statistic β4 (estATE) estATT estATUT
mean −2.494 40.35 −43.77
median −2.449 40.07 −43.58
std.dev. 2.343 −4.371 5.598
minimum −8.850 28.50 −58.91
maximum 4.162 52.40 −26.60
E [Y | s,D,φ] = β0 + β1 (s− s) + β2D (s− s) + β3φ (Wθ) + β4D

Table 11.9: Continuous report precision but observed binary average treatment
effect sample statistics for apparently nonnormal DGP

statistic ATE ATT ATUT OLS
mean −0.266 64.08 −62.26 0.578
median −0.203 64.16 −62.30 0.764
std.dev. 1.596 1.448 1.584 2.100
minimum −5.015 60.32 −66.64 −4.980
maximum 3.746 67.48 −57.38 6.077

Table 11.10: Continuous report precision but observed binary stronger inverse
Mills IV parameter estimates for apparently nonnormal DGP

statistic β0 β1 β2 β3 β4
mean 608.9 0.432 0.435 −48.27 61.66
median 608.9 0.435 0.438 −48.55 61.60
std.dev. 1.730 0.099 0.086 2.743 3.949
minimum 603.8 0.159 0.238 −54.85 51.27
maximum 613.3 0.716 0.652 −40.70 72.70
statistic β5 (estATE) estATT estATUT
mean −8.565 57.61 −72.28
median −8.353 57.44 −72.28
std.dev. 2.282 3.294 4.628
minimum −15.51 48.44 −85.37
maximum −2.814 67.11 −60.39

E [Y | s,D,λ] = β0 + β1 (1−D) (s− s) + β2D (s− s)
+β3 (1−D)λH + β4DλL + β5D
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Table 11.11: Continuous report precision but observed binary stronger LIV
parameter estimates for apparently nonnormal DGP

statistic β1 β2 estATE estATT estATUT
mean 0.389 0.220 −7.798 9.385 −24.68
std.dev. 0.159 0.268 9.805 14.17 16.38
minimum 0.107 −0.330 −26.85 −17.69 −57.14
maximum 0.729 0.718 11.58 37.87 −26.85
statistic OLS ATE ATT ATUT
mean 3.609 1.593 63.76 −61.75
median 3.592 1.642 63.91 −61.70
std.dev. 2.484 1.894 1.546 1.668
minimum −3.057 −4.313 59.58 −66.87
maximum 11.28 5.821 67.12 −58.11

E [Y | s,D, τ1] = β1 (s− s) + β2D (s− s) + τ1 (p)

11.13 Additional reading

There are numerous contributions to this literature. We suggest beginning with
Heckman’s [2001] Nobel lecture, Heckman and Vytlacil [2005, 2007a, 2007b],
and Abbring and Heckman [2007]. These papers provide extensive discussions
and voluminous references. This chapter has provided at most a thumbnail sketch
of this extensive and important work. A FORTRAN program and documentation
for estimating Heckman, Urzua, and Vytlacil’s [2006] marginal treatment effect
can be found at URL: http://jenni.uchicago.edu/underiv/.
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Bayesian treatment effects

We continue with the selection setting discussed in the previous three chapters and
apply Bayesian analysis. Bayesian augmentation of the kind proposed by Albert
and Chib [1993] in the probit setting (see chapter 5) can be extended to selec-
tion analysis of treatment effects (Li, Poirier, and Tobias [2004]). An advantage
of the approach is treatment effect distributions can be identified by bounding the
unidentified parameter. As counterfactuals are not observed, the correlation be-
tween outcome errors is unidentified. However, Poirier and Tobias [2003] and Li,
Poirier, and Tobias [2004] suggest using the positive definiteness of the variance-
covariance matrix (for the selection equation error and the outcome equations’
errors) to bound the unidentified parameter. This is a computationally-intensive
complementary strategy to Heckman’s factor analytic approach (see chapter 11
and Abbring and Heckman [2007]) which may be accessible even when factors
cannot be identified.1 Marginal treatment effects identified by Bayesian analysis
are employed in a prototypical selection setting as well as the regulated report
precision setting introduced in chapter 2 and continued in chapters 10 and 11.
Also, policy-relevant treatment effects discussed in chapter 11 are revisited in this
chapter including Bayesian applications to regulated versus unregulated report
precision.

1We prefer to think of classic and Bayesian approaches as complementary strategies. Together, they
may help us to better understand the DGP.

301D. A. Schroeder, Accounting and Causal Effects, DOI 10.1007/978-1-4419-7225-5_12,
© Springer Science+Business Media, LLC 2010
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12.1 Setup

The setup is the same as the previous chapters. We repeat it for convenience.
Suppose the DGP is
outcome equations:

Yj = μj (X) + Vj , j = 0, 1

selection equation:
D∗ = μD (Z)− VD

observable response:

Y = DY1 + (1−D)Y0
= μ0 (X) + (μ1 (X)− μ0 (X))D + V0 + (V1 − V0)D

where

D =
1 D∗ > 0
0 otherwise

and Y1 is the (potential) outcome with treatment while Y0 is the outcome with-
out treatment. The usual IV restrictions apply as Z contains some variable(s) not
included in X .

There are effectively three sources of missing data: the latent utility index D∗,
and the two counterfactuals (Y1 | D = 0) and (Y0 | D = 1). If these data were ob-
servable identification of treatment effects Δ ≡ Y1 − Y0 (including distributions)
would be straightforward.

12.2 Bounds and learning

Even if we know Δ is normally distributed, unobservability of the counterfactuals
creates a problem for identifying the distribution of Δ as

V ar [Δ | X] = V ar [V1] + V ar [V0]− 2Cov [V1, V0]
and ρ10 ≡ Corr [V1, V0] is unidentified.2 Let η ≡ [VD, V1, V0]T then

Σ ≡ V ar [η] =
⎡⎣ 1 ρD1σ1 ρD0σ0
ρD1σ1 σ21 ρ10σ1σ0
ρD0σ0 ρ10σ1σ0 σ20

⎤⎦
From the positivity of the determinant (or eigenvalues) of Σ we can bound the
unidentified correlation

ρD1ρD0−
��
1− ρ2D1

� �
1− ρ2D0

�� 1
2 ≤ ρ10 ≤ ρD1ρD0+

��
1− ρ2D1

� �
1− ρ2D0

�� 1
2

This allows learning about ρ10 and, in turn, identification of the distribution of
treatment effects. Notice the more pressing is the endogeneity problem (ρD1, ρD0
large in absolute value) the tighter are the bounds.

2The variables are never simultaneously observed as needed to identify correlation.
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12.3 Gibbs sampler

As in the case of Albert and Chib’s augmented probit, we work with conditional
posterior distributions for the augmented data. Define the complete or augmented
data as

r∗i =
�
D∗
i DiYi + (1−Di)Y missi DiY

miss
i + (1−Di)Yi

�T
Also, let

Hi =

⎡⎣ Zi 0 0
0 Xi 0
0 0 Xi

⎤⎦
and

β =

⎡⎣ θ
β1
β0

⎤⎦
12.3.1 Full conditional posterior distributions
Let Γ−x denote all parameters other than x. The full conditional posteriors for the
augmented outcome data are

Y missi | Γ−Ymiss
i

, Data ∼ N ((1−Di)μ1i +Diμ0i, (1−Di)ω1i +Diω0i)

where standard multivariate normal theory is applied to derive means and vari-
ances conditional on the draw for latent utility and the other outcome

μ1i = Xiβ1 +
σ20σD1 − σ10σD0

σ20 − σ2D0
(D∗

i − Ziθ) +
σ10 − σD1σD0
σ20 − σ2D0

(Yi −Xiβ0)

μ0i = Xiβ0 +
σ21σD0 − σ10σD1

σ21 − σ2D1
(D∗

i − Ziθ) +
σ10 − σD1σD0
σ21 − σ2D1

(Yi −Xiβ1)

ω1i = σ
2
1 −

σ2D1σ
2
0 − 2σ10σD1σD0 + σ210

σ20 − σ2D0

ω0i = σ
2
0 −

σ2D0σ
2
1 − 2σ10σD1σD0 + σ210

σ21 − σ2D1
Similarly, the conditional posterior for the latent utility is

D∗
i | Γ−D∗

i
, Data ∼ TN(0,∞)

�
μDi

ωD
�

if Di = 1
TN(−∞,0)

�
μDi

ωD
�
if Di = 0

where TN (·) refers to the truncated normal distribution with support indicated
via the subscript and the arguments are parameters of the untruncated distribution.
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Applying multivariate normal theory for (D∗
i | Yi) we have

μDi
= Ziθ +

�
DiYi + (1−Di)Y missi −Xiβ1

� σ20σD1 − σ10σD0
σ21σ

2
0 − σ210

+
�
DiY

miss
i + (1−Di)Yi −Xiβ0

� σ21σD0 − σ10σD1
σ21σ

2
0 − σ210

ωD = 1− σ
2
D1σ

2
0 − 2σ10σD1σD0 + σ2D0σ21

σ21σ
2
0 − σ210

The conditional posterior distribution for the parameters is

β | Γ−β , Data ∼ N
�
μβ ,ωβ

�
where by the SUR (seemingly-unrelated regression) generalization of Bayesian
regression (see chapter 7)

μβ =
6
HT

�
Σ−1 ⊗ In

�
H + V −1β

7−1 6
HT

�
Σ−1 ⊗ In

�
r∗ + V −1β β0

7
ωβ =

6
HT

�
Σ−1 ⊗ In

�
H + V −1β

7−1
and the prior distribution is p (β) ∼ N (β0, Vβ). The conditional distribution for
the trivariate variance-covariance matrix is

Σ | Γ−Σ, Data ∼ G−1

where
G ∼Wishart (n+ ρ, S + ρR)

with prior p (G) ∼ Wishart (ρ, ρR), and S =

n/
i=1

(r∗i −Hiβ) (r∗i −Hiβ)T .

As usual, starting values for the Gibbs sampler are varied to test convergence of
parameter posterior distributions.

Nobile’s algorithm

Recall σ2D is normalized to one. This creates a slight complication as the condi-
tional posterior is no longer inverse-Wishart. Nobile [2000] provides a convenient
algorithm for random Wishart (multivariate χ2) draws with a restricted element.
The algorithm applied to the current setting results in the following steps:

1. Exchange rows and columns one and three in S + ρR, call this matrix V .

2. Find L such that V =
�
L−1

�T
L−1.

3. Construct a lower triangular matrix A with
a. aii equal to the square root of χ2 random variates, i = 1, 2.
b. a33 = 1

l33
where l33 is the third row-column element of L.

c. aij equal to N (0, 1) random variates, i > j.
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4. Set V
�
=
�
L−1

�T �
A−1

�T
A−1L−1.

5. Exchange rows and columns one and three in V
�

and denote this draw Σ.

Prior distributions

Li, Poirier, and Tobias choose relatively diffuse priors such that the data dominates
the posterior distribution. Their prior distribution for β is p (β) ∼ N (β0, Vβ)
where β0 = 0, Vβ = 4I and their prior for Σ−1 is p (G) ∼ Wishart (ρ, ρR)
where ρ = 12 and R is a diagonal matrix with elements

�
1
12 ,

1
4 ,

1
4

�
.

12.4 Predictive distributions

The above Gibbs sampler for the selection problem can be utilized to generate

treatment effect predictive distributions
�
Y f1 − Y f0

�
conditional on Xf and Zf

using the post-convergence parameter draws. That is, the predictive distribution
for the treatment effect is

p
�
Y f1 − Y f0 | Xf

�
∼ N �

Xf [β1 − β0] , γ2
�

where γ2 ≡ V ar
6
Y f1 − Y f0 | Xf

7
= σ21 + σ

2
0 − 2σ10.

Using Bayes’ theorem, we can define the predictive distribution for the treat-
ment effect on the treated as

p
�
Y f1 − Y f0 | Xf , D

�
Zf
�
= 1

�
=

p
�
Y f1 − Y f0 | Xf

�
p
�
D
�
Zf
�
= 1 | Y f1 − Y f0 , Xf

�
p (D (Zf ) = 1)

where

p
�
D
�
Zf
�
= 1 | Y f1 − Y f0 , Xf

�
= Φ

⎛⎝Zfθ + γ1
γ2

6�
Y f1 − Y f0

�
−Xf (β1 − β0)

7
;
1− γ21

γ2

⎞⎠
and

γ1 = Cov
6
Y f1 − Y f0 , D∗ | X,Z

7
= σD1 − σD0

Analogously, the predictive distribution for the treatment effect on the untreated
is

p
�
Y f1 − Y f0 | Xf , D

�
Zf
�
= 0

�
=

p
�
Y f1 − Y f0 | Xf

� 6
1− p

�
D
�
Zf
�
= 1 | Y f1 − Y f0 , Xf

�7
1− p (D (Zf ) = 1)
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Also, the predictive distribution for the local treatment effect is

p
�
Y f1 − Y f0 | Xf , D

�
Z

�f
�
= 1, D

�
Zf
�
= 0

�
=

p
�
Y f1 − Y f0 | Xf

�
p (D (Z �f ) = 1)− p (D (Zf ) = 0)

×
⎡⎣ p

�
D
�
Z �f

�
= 1 | Y f1 − Y f0 , Xf

�
−p

�
D
�
Zf
�
= 0 | Y f1 − Y f0 , Xf

� ⎤⎦
12.4.1 Rao-Blackwellization
The foregoing discussion focuses on identifying predictive distributions condi-
tional on the parameters Γ. "Rao-Blackwellization" efficiently utilizes the evi-
dence to identify unconditional predictive distributions (see Rao-Blackwell theo-
rem in the appendix). That is, density ordinates are averaged over parameter draws

p
�
Y f1 − Y f0 | Xf

�
=
1

m

m/
i=1

p
�
Y f1 − Y f0 | Xf ,Γ = Γi

�
where Γi is the ith post-convergence parameter draw out ofm such draws.

12.5 Hierarchical multivariate Student t variation

Invoking a common over-dispersion practice, for example Albert and Chib [1993],
Li, Poirier, and Tobias [2003] add a mixing variable or hyperparameter, λ, to ex-
tend their Gaussian analysis to a multivariate Student t distribution on marginaliz-
ing λ. λ is assigned an inverted gamma prior density, λ ∼ IG (a, b) where

p(λ) ∝ λ−(a+1) exp
�
− 1

bλ

�
For computational purposes, Li, Poirier, and Tobias [2003] scale all variables by λ
in the non-lambda conditionals to convert back to Gaussians and proceed as with
the Gaussian McMC selection analysis except for the addition of sampling from
the conditional posterior for the mixing parameter, λ, where the unscaled data are
employed.

12.6 Mixture of normals variation

We might be concerned about robustness to departure from normality in this se-
lection analysis. Li, Poirier, and Tobias suggest exploring a mixture of normals.
For a two component mixture the likelihood function is

p (r∗i | Γ) = π1φ
�
r∗i ;Hiβ

1,Σ1
�
+ π2φ

�
r∗i ;Hiβ

2,Σ2
�
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where each component has its own parameter vector βj and variance-covariance
matrix Σj , and π1 + π2 = 1.3

Conditional posterior distributions for the components are

ci | Γ−c, Data ∼Multinomial
�
1, p1, p2

�
4

where

pj =
πj |Σ|−

1
2 exp

6
− 1
2

�
r∗i −Hiβj

�T �
Σj
�−1 �

r∗i −Hiβj
�7

2/
j=1

πj |Σ|−
1
2 exp

6
− 1
2

�
r∗i −Hiβj

�T
(Σj)

−1 �
r∗i −Hiβj

�7
The conditional posterior distribution for component probabilities follows a Dirich-
let distribution (see chapter 7 to review properties of the Dirichlet distribution).

πi | Γ−π, Data ∼ Dirichlet (n1 + α1, n2 + α2)

with prior hyperparameter αj and nj =
n/
i=1

cji.

Conditional predictive distributions for the mixture of normals selection analy-
sis are the same as above except that we condition on the component and utilize
parameters associated with each component. The predictive distribution is then
based on a probability weighted average of the components.

12.7 A prototypical Bayesian selection example

An example may help fix ideas regarding McMC Bayesian data augmentation
procedures in the context of selection and missing data on the counterfactuals.
Here we consider a prototypical selection problem with the following DGP. A
decision maker faces a binary choice where the latent choice equation (based on
expected utility, EU , maximization) is

EU = γ0 + γ1x+ γ2z + V

= −1 + x+ z + V
x is an observed covariate, z is an observed instrument (both x and z have mean
0.5), and V is unobservable (to the analyst) contributions to expected utility. The
outcome equations are

Y1 = β10 + β
1
1x+ U1

= 2 + 10x+ U1

Y0 = β00 + β
0
1x+ U0

= 1 + 2x+ U0

3Li, Poirier, and Tobias [2004] specify identical priors for all Σj .
4A binomial distribution suffices for the two component mixture.
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Unobservables
�
V U1 U0

�T
are jointly normally distributed with expected

value
�
0 0 0

�T
and variance Σ =

⎡⎣ 1 0.7 −0.7
0.7 1 −0.1
−0.7 −0.1 1

⎤⎦. Clearly, the

average treatment effect is

ATE = (2 + 10 ∗ 0.5)− (1 + 2 ∗ 0.5) = 5.

Even though OLS estimates the same quantity as ATE,

OLS = E [Y1 | D = 1]− E [Y0 | D = 0] = 7.56− 2.56 = 5

selection is inherently endogenous. Further, outcomes are heterogeneous as5

ATT = E [Y1 | D = 1]− E [Y0 | D = 1] = 7.56− 1.44 = 6.12

and

ATUT = E [Y1 | D = 0]− E [Y0 | D = 0] = 6.44− 2.56 = 3.88

12.7.1 Simulation
To illustrate we generate 20 samples of 5, 000 observations each. For the simula-
tion, x and z are independent and uniformly distributed over the interval (0, 1),
and

�
V U1 U0

�
are drawn from a joint normal distribution with zero mean

and variance Σ. If EUj > 0, then Dj = 1, otherwise Dj = 0. Relatively
diffuse priors are employed with mean zero and variance 100I for the parame-
ters

�
β1 β0 γ

�
and trivariate error

�
V U1 U0

�
distribution degrees of

freedom parameter ρ = 12 and sums of squares variation ρI .6 Data augmenta-
tion produces missing data for the latent choice variable EU plus counterfactuals
(Y1 | D = 0) and (Y0 | D = 1).7 Data augmentation permits collection of statis-
tical evidence directly on the treatment effects. The following treatment effect

5We can connect the dots by noting the average of the inverse Mills ratio is approximately 0.8 and
recalling

ATE = Pr (D = 1)ATT + Pr (D = 0)ATUT

= 0.5 (6.12) + 0.5 (3.88) = 5

6Initialization of the trivariate variance matrix for the Gibbs sampler is set equal to 100I . Burn-in
takes care of initialization error.

7Informativeness of the priors for the trivariate error variance is controlled by ρ. If ρ is small
compared to the number of observations in the sample, the likelihood dominates the data augmentation.
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statistics are collected:

estATE =
1

n

n/
j=1

�
Y ∗1j − Y ∗0j

�

estATT =

n/
j=1

Dj
�
Y ∗1j − Y ∗0j

�
n/
j=1

Dj

estATUT =

n/
j=1

(1−Dj)
�
Y ∗1j − Y ∗0j

�
n/
j=1

(1−Dj)

where Y ∗j is the augmented response. That is,

Y ∗1j = DjY1 + (1−Dj) (Y1 | D = 0)

and
Y ∗0j = Dj (Y0 | D = 1) + (1−Dj)Y0

12.7.2 Bayesian data augmentation and MTE
With a strong instrument in hand, this is an attractive setting to discuss a version
of Bayesian data augmentation-based estimation of marginal treatment effects
(MTE). As data augmentation generates repeated draws for unobservables Vj ,
(Y1j | Dj = 0), and (Y0j | Dj = 1), we exploit repeated samples to describe the
distribution for MTE (uD) where V is transformed to uniform (0, 1), uD = pv .
For each draw, V = v, we determine uD = Φ (v) and calculate MTE (uD) =
E [Y1 − Y0 | uD].

MTE is connected to standard population-level treatment effects, ATE, ATT, and
ATUT, via non-negative weights whose sum is one

wATE (uD) =

,n
j=1 I (uDj)

n

wATT (uD) =

,n
j=1 I (uDj)Dj,n

j=1Dj

wATUT (uD) =

,n
j=1 I (uDj) (1−Dj),n

j=1 (1−Dj)
where probabilities pk refer to bins from 0 to 1 by increments of 0.01 for indicator
variable

I (uDj) = 1 uDj = pk
I (uDj) = 0 uDj �= pk
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Table 12.1: McMC parameter estimates for prototypical selection

statistic β10 β11 β00 β01
mean 2.118 9.915 1.061 2.064
median 2.126 9.908 1.059 2.061
std.dev. 0.100 0.112 0.063 0.102
minimum 1.709 9.577 0.804 1.712
maximum 2.617 10.283 1.257 2.432
statistic γ0 γ

1
γ
2

mean −1.027 1.001 1.061
median −1.025 0.998 1.061
std.dev. 0.066 0.091 0.079
minimum −1.273 0.681 0.729
maximum −0.783 1.364 1.362
statistic cor (V,U1) cor (V,U0) cor (U1, U0)
mean 0.621 −0.604 −0.479
median 0.626 −0.609 −0.481
std.dev. 0.056 0.069 0.104
minimum 0.365 −0.773 −0.747
maximum 0.770 −0.319 0.082

Y1 = β
1
0 + β

1
1x+ U1

Y0 = β
0
0 + β

0
1x+ U0

EU = γ0 + γ1x+ γ2z + V

Simulation results

Since the Gibbs sampler requires a burn-in period for convergence, for each sam-
ple we take 4, 000 conditional posterior draws, treat the first 3, 000 as the burn-in
period, and retain the final 1, 000 draws for each sample, in other words, a total of
20, 000 draws are retained. Parameter estimates for the simulation are reported in
table 12.1. McMC estimated average treatment effects are reported in table 12.2
and sample statistics are reported in table 12.3. The treatment effect estimates are
consistent with their sample statistics despite the fact that bounding the unidenti-
fied correlation between U1 and U0 produces a rather poor estimate of this para-
meter.

Table 12.2: McMC estimates of average treatment effects for prototypical
selection

statistic estATE estATT estATUT
mean 4.992 6.335 3.635
median 4.996 6.329 3.635
std.dev. 0.087 0.139 0.117
minimum 4.703 5.891 3.209
maximum 5.255 6.797 4.067
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Table 12.3: McMC average treatment effect sample statistics for prototypical
selection

statistic ATE ATT ATUT OLS
mean 5.011 6.527 3.481 5.740
median 5.015 6.517 3.489 5.726
std.dev. 0.032 0.049 0.042 0.066
minimum 4.947 6.462 3.368 5.607
maximum 5.088 6.637 3.546 5.850

Table 12.4: McMC MTE-weighted average treatment effects for prototypical
selection

statistic estATE estATT estATUT
mean 4.992 5.861 4.114
median 4.980 5.841 4.115
std.dev. 0.063 0.088 0.070
minimum 4.871 5.693 3.974
maximum 5.089 6.003 4.242

In addition, we report results on marginal treatment effects. First, MTE (uD)
versus uD = pv is plotted. The conditional mean MTE (uD) over the 20,000
draws is plotted below versus uD = pv . Figure 12.1 depicts the mean at each
pv .Nonconstancy, indeed nonlinearity, of MTE is quite apparent from the plot. Ta-
ble 12.4 reports simulation statistics from weighted averages of MTE employed to
recover standard population-level treatment effects, ATE, ATT, and ATUT. Non-
constancy of MTE (uD) along with marked differences in estATE, estATT ,
and estATUT provide support for heterogeneous response. The MTE-weighted
average treatment effect estimates are very comparable (perhaps slightly damp-
ened) to the previous estimates and average treatment effect sample statistics.

12.8 Regulated report precision example

Consider the report precision example initiated in chapter 2. The owner’s expected
utility is

EU (σ2) = μ− β σ21σ̄
2
2

σ21 + σ̄
2
2

− γ σ
4
1

�
σ21 + σ

2
2

�
(σ21 + σ̄

2
2)
2 − α �b− σ22�2 − αd �b̂− σ22�2

selection is binary (to the analyst)

D =
1

�
σL2
�

if EU
�
σL2
�− EU �σH2 � > 0

0
�
σH2

�
otherwise
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Figure 12.1: MTE (uD) versus uD = pν for prototypical selection

outcomes are

Y ≡ P (σ̄2)

= D (Y1 | D = 1) + (1−D) (Y0 | D = 0)

= μ+D

�
σ21

σ21 +
�
σ̄L2
�2 �sL − μ�− βL σ21

�
σ̄L2
�2

σ21 +
�
σ̄L2
�2
�

+(1−D)
�

σ21

σ21 +
�
σ̄H2

�2 �sH − μ�− βH σ21
�
σ̄H2

�2
σ21 +

�
σ̄H2

�2
�

observed outcomes are

Y j =
(Y1 | D = 1) j = L
(Y0 | D = 0) j = H

Y j = βj0 + β
j
1

�
sj − μ�+ U j

and factual and counterfactual outcomes with treatment are

Y1 = D (Y1 | D = 1) + (1−D) (Y1 | D = 0)
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and without treatment are

Y0 = D (Y0 | D = 1) + (1−D) (Y0 | D = 0)

Notice, factual observations, (Y1 | D = 1) and (Y0 | D = 0), are outcomes as-
sociated with equilibrium strategies while the counterfactuals, (Y1 | D = 0) and
(Y0 | D = 1), are outcomes associated with off-equilibrium strategies.

We now investigate Bayesian McMC estimation of treatment effects associated
with report precision selection. We begin with the binary choice (to the owner)
and normal unobservables setting.

12.8.1 Binary choice
The following parameters characterize the binary choice setting:

Binary choice parameters
μ = 1, 000
σ1 = 10
γ = 2.5
α = 0.02
b = 1502b = 128.4

αLd ∼ N (0.02, 0.005)
αHd ∼ N (0.04, 0.01)
βL,βH

iid∼ N (7, 1)

sj ∼ N


μ,σ21 +

�
σj2

�2�
j = L or H

The owners know the expected value of αjd when report precision is selected but
not the draw.

While the draws for βLand βH impact the owner’s choice of high or low preci-
sion, the numerical value of inverse report precision

σL2 = f
�
α, γ, E

�
αLd
� | σL2 �

or
σH2 = f

�
α, γ, E

�
αHd

� | σH2 �
that maximizes her expected utility is independent of the βj draws

EU
�
σL2 ,β

L | σL2
�
− EU

�
σH2 ,β

H | σH2
�
> 0 D = 1

otherwise D = 0

σL2 = argmax
σ2

EU
�
σ1,α, γ, E

�
αLd
� | σL2 �

σH2 = argmax
σ2

EU
�
σ1,α, γ, E

�
αHd

� | σH2 �
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The analyst only observes report precision selectionD = 1 (for σL2 ) orD = 0 (for
σH2 ), outcomes Y = DY L + (1−D)Y H , covariate s, and instruments w1 and
w2. The instruments,w1 andw2, are the components of αd = DαLd+(1−D)αHd ,
and σ2 = DσL2 + (1−D)σH2 orthogonal to

UL = −
�
βL − E [β]

��
D
σ21
�
σL2
�2

σ21 +
�
σL2
�2 + (1−D) σ21

�
σH2

�2
σ21 +

�
σH2

�2
�

and

UH = −
�
βH − E [β]

��
D
σ21
�
σL2
�2

σ21 +
�
σL2
�2 + (1−D) σ21

�
σH2

�2
σ21 +

�
σH2

�2
�

The keys to selection are the relations between V and UL, and V and UH where

V = −
�
βL − βH

��
D
σ21
�
σL2
�2

σ21 +
�
σL2
�2 + (1−D) σ21

�
σH2

�2
σ21 +

�
σH2

�2
�

−γ

⎛⎜⎝σ41
�
σ21 +

�
σL2
�2��

σ21 +
�
σ̄L2
�2�2 −

σ41

�
σ21 +

�
σH2

�2��
σ21 +

�
σ̄H2

�2�2
⎞⎟⎠

−α

�
b− �σL2 �2�2 − �b− �σH2 �2�2�

−


E
�
αLd
� �
b̂− �σL2 �2�2 − E �αHd � �b̂− �σH2 �2�2�

− (γ0 + γ1w1 + γ2w2)

Simulation results

We take 4, 000 conditional posterior draws, treat the first 3, 000 as the burn-in
period, and retain the final 1, 000 draws for each sample. Twenty samples for
a total of 20, 000 draws are retained. Parameter estimates are reported in table
12.5, average treatment effect estimates are reported in table 12.6, and average
treatment effect sample statistics for the simulation are reported in table 12.7. The
correspondence of estimated and sample statistics for average treatment effects
is quite good. Model estimates of average treatment effects closely mirror their
counterpart sample statistics (based on simulated counterfactuals). Further, the
model provides evidence supporting heterogeneity. As seems to be typical, the
unidentified correlation parameter is near zero but seriously misestimated by our
bounding approach.

A plot depicting the nonconstant nature of the simulation average marginal
treatment effect is depicted in figure 12.2. Consistent with outcome heterogene-
ity, the plot is distinctly nonconstant (and nonlinear). Weighted-MTE estimates of
population-level average treatment effects are reported in table 12.8.
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Table 12.5: Binary report precision McMC parameter estimates for
heterogeneous outcome

statistic β10 β11 β00 β01
mean 603.4 0.451 605.1 0.459
median 603.5 0.462 605.2 0.475
std.dev. 1.322 0.086 1.629 0.100
minimum 597.7 0.172 599.3 0.118
maximum 607.2 0.705 610.0 0.738
statistic γ0 γ

1
γ
2

mean 0.002 −0.899 38.61
median −0.003 0.906 38.64
std.dev. 0.038 2.276 1.133
minimum −0.123 −10.13 33.96
maximum 0.152 7.428 42.73

statistic cor (V,UL) cor (V,UH) cor (UL, UH)
mean 0.858 −0.859 −1.000
median 0.859 −0.859 −1.000
std.dev. 0.010 0.010 0.000
minimum 0.820 −0.888 −1.000
maximum 0.889 −0.821 −0.998

Y L = βL0 + β
L
1

�
sL − s�+ UL

Y H = βH0 + β
H
1

�
sH − s�+ UH

EU = γ0 + γ1w1 + γ2w2 + V

Table 12.6: Binary report precision McMC average treatment effect estimates for
heterogeneous outcome

statistic estATE estATT estATUT
mean −1.799 55.51 −58.92
median −1.801 54.99 −58.57
std.dev. 1.679 1.942 1.983
minimum −5.848 51.83 −63.21
maximum 2.148 59.42 −54.88

Table 12.7: Binary report precision McMC average treatment effect sample
statistics for heterogeneous outcome

statistic ATE ATT ATUT OLS
mean −0.008 64.39 −64.16 −2.180
median 0.147 64.28 −64.08 −2.218
std.dev. 1.642 0.951 0.841 1.195
minimum −2.415 62.43 −65.71 −4.753
maximum 4.653 66.07 −62.53 −0.267
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Figure 12.2: MTE (uD) versus uD = pν for binary report precision

These MTE-weighted estimation results are similar to the estimates above, though
a bit dampened. Next, we consider a multitude of report precision choices to the
owners but observed as binary (high or low inverse report precision) by the ana-
lyst.

12.8.2 Continuous report precision but observed binary selection
The owners’ report precision selection is highly varied as it depends on the real-
ized draws for α, γ, αLd , and αHd but the analyst observes binary (high or low)
report precision.8 That is, the owner chooses between inverse report precision

σL2 ≡ argmax
σ2

EU
�
σ1,α, γ, E

�
αLd
� | σL2 �

8We emphasize the distinction from the binary selection case. Here, α and γ refer to realized draws
from a normal distribution whereas in the binary case they are constants (equal to the means of their
distributions in this setting).
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Table 12.8: Binary report precision McMC MTE-weighted average treatment
effect estimates for heterogeneous outcome

statistic estATE estATT estATUT
mean −1.799 52.13 −55.54
median −1.757 51.35 −55.45
std.dev. 1.710 1.941 1.818
minimum −5.440 48.86 −58.87
maximum 1.449 55.21 −52.92

and
σH2 ≡ argmax

σ2

EU
�
σ1,α, γ, E

�
αHd

� | σH2 �
to maximize her expected utility

D =
1 EU

�
σL2 ,β

L | σL2
�
− EU

�
σH2 ,β

H | σH2
�
> 0

0 otherwise

The analyst only observes report precision selection D = 1 (σL2 ) or D = 0 (σH2 ),
outcomes Y , covariate s, instruments w1 and w2, and αd = DαLd + (1−D)αHd
where draws are αLd ∼ N (0.02, 0.005) and αHd ∼ N (0.04, 0.01). As discussed
earlier, the instruments are the components of αd and σ2 = DσL2 + (1−D)σH2
orthogonal to

UL = −
�
βL − E [β]

��
D
σ21
�
σL2
�2

σ21 +
�
σL2
�2 + (1−D) σ21

�
σH2

�2
σ21 +

�
σH2

�2
�

and

UH = −
�
βH − E [β]

��
D
σ21
�
σL2
�2

σ21 +
�
σL2
�2 + (1−D) σ21

�
σH2

�2
σ21 +

�
σH2

�2
�

The following parameters characterize the setting:

Continuous choice but observed binary parameters
μ = 1, 000
σ1 = 10
b = 1502b = 128.4

γ ∼ N (2.5, 1)
α ∼ N �

0.02, 0.0052
�

αLd ∼ N (0.02, 0.005)
αHd ∼ N (0.04, 0.01)
βL,βH

iid∼ N (7, 1)

sj ∼ N


μ,σ21 +

�
σj2

�2�
j = L or H
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Table 12.9: Continuous report precision but observed binary selection McMC
parameter estimates

statistic β10 β11 β00 β01
mean 586.0 0.515 589.7 0.370
median 586.5 0.520 589.8 0.371
std.dev. 2.829 0.086 2.125 0.079
minimum 575.6 0.209 581.1 0.078
maximum 592.1 0.801 596.7 0.660
statistic γ0 γ

1
γ
2

mean −0.055 −39.49 0.418
median −0.055 −39.51 0.418
std.dev. 0.028 2.157 0.161
minimum −0.149 −47.72 −0.222
maximum 0.041 −31.51 1.035
statistic cor (V,UL) cor (V,UH) cor (UL, UH)
mean 0.871 −0.864 −0.997
median 0.870 −0.864 −1.000
std.dev. 0.014 0.015 0.008
minimum 0.819 −0.903 −1.000
maximum 0.917 −0.807 −0.952

Y L = βL0 + β
L
1

�
sL − s�+ UL

Y H = βH0 + β
H
1

�
sH − s�+ UH

EU = γ0 + γ1w1 + γ2w2 + V

Again, we take 4, 000 conditional posterior draws, treat the first 3, 000 as the
burn-in period, and retain the final 1, 000 draws for each sample, a total of 20, 000
draws are retained. McMC parameter estimates are reported in table 12.9, average
sample statistics are reported in table 12.10, and average treatment effect sample
statistics are reported in table 12.11. The correspondence of estimated and sample
statistics for average treatment effects is not quite as strong as for the binary case.
While model estimated ATE mirrors its counterpart sample statistic, estimates of
both ATT and ATUT are over-estimated relative to their sample statistics. How-
ever, the model provides evidence properly supporting heterogeneity. As seems to

Table 12.10: Continuous report precision but observed binary selection McMC
average treatment effect estimates

statistic estATE estATT estATUT
mean −3.399 87.49 −93.86
median −2.172 87.66 −92.59
std.dev. 3.135 3.458 4.551
minimum −13.49 76.86 −106.2
maximum 1.124 96.22 −87.21
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Table 12.11: Continuous report precision but observed binary selection McMC
average treatment effect sample statistics

statistic ATE ATT ATUT OLS
mean 0.492 64.68 −63.40 −1.253
median 0.378 64.67 −63.32 −1.335
std.dev. 1.049 0.718 0.622 1.175
minimum −1.362 63.42 −64.70 −4.065
maximum 2.325 65.77 −62.44 0.970

Table 12.12: Continuous report precision but observed binary selection McMC
MTE-weighted average treatment effect estimates

statistic estATE estATT estATUT
mean −3.399 84.08 −90.46
median −2.194 84.00 −89.08
std.dev. 3.176 3.430 4.602
minimum −11.35 79.45 −101.2
maximum 0.529 92.03 −84.96

be typical, the unidentified correlation parameter is near zero but poorly estimated
by our bounding approach.

Figure 12.3 depicts the nonconstant nature of the simulation average marginal
treatment effect. Consistent with outcome heterogeneity, the plot is distinctly non-
constant (and nonlinear). Table 12.12 reports weighted-MTE estimates of population-
level average treatment effects. These MTE-weighted estimation results are very
similar to the estimates above.

12.8.3 Apparent nonnormality of unobservable choice
The following parameters characterize the setting where the analyst observes bi-
nary selection but the owners’ selection is highly varied and choice is apparently
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Figure 12.3: MTE (uD) versus uD = pν for continuous report precision but
binary selection

nonnormal as unobservables α, γ, and αjd are exponential random variables:

Apparent nonnormality parameters
μ = 1, 000
σ1 = 10
b = 1502b = 128.4

γ ∼ exp � 15�
α ∼ exp � 1

0.03

�
αLd ∼ exp

�
1
0.02

�
αHd ∼ exp

�
1
0.04

�
βL,βH

iid∼ N (7, 1)

sj ∼ N


μ,σ21 +

�
σj2

�2�
j = L or H
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The owner chooses between inverse report precision

σL2 ≡ argmax
σ2

EU
�
σ1,α, γ, E

�
αLd
� | σL2 �

and
σH2 ≡ argmax

σ2

EU
�
σ1,α, γ, E

�
αHd

� | σH2 �
to maximize her expected utility

D =
1 EU

�
σL2 ,β

L | σL2
�
− EU

�
σH2 ,β

H | σH2
�
> 0

0 otherwise

The analyst does not observe αd = DαLd + (1−D)αHd . Rather, the analyst only
observes report precision selection D = 1 (for σL2 ) or D = 0 (for σH2 ), outcomes
Y , covariate s, and instruments w1 and w2. As discussed earlier, the instruments
are the components of αd and σ2 = DσL2 + (1−D)σH2 orthogonal to

UL = −
�
βL − E [β]

��
D
σ21
�
σL2
�2

σ21 +
�
σL2
�2 + (1−D) σ21

�
σH2

�2
σ21 +

�
σH2

�2
�

and

UH = −
�
βH − E [β]

��
D
σ21
�
σL2
�2

σ21 +
�
σL2
�2 + (1−D) σ21

�
σH2

�2
σ21 +

�
σH2

�2
�

Again, we take 4, 000 conditional posterior draws, treat the first 3, 000 as the
burn-in period, and retain the final 1, 000 draws for each sample, a total of 20, 000
draws are retained. McMC parameter estimates are reported in table 12.13, av-
erage sample statistics are reported in table 12.14, and average treatment effect
sample statistics are reported in table 12.15. These results evidence some bias
which is not surprising as we assume a normal likelihood function even though the
DGP employed for selection is apparently nonnormal. The unidentified correla-
tion parameter is near zero but again poorly estimated by our bounding approach.
Not surprisingly, the model provides support for heterogeneity (but we might be
concerned that it would erroneously support heterogeneity when the DGP is ho-
mogeneous).

The simulation average marginal treatment effect is plotted in figure 12.4. The
plot is distinctly nonconstant and, in fact, nonlinear — a strong indication of out-
come heterogeneity. Weighted-MTE population-level average treatment effects are
reported in table 12.16. These results are very similar to those reported above and
again over-state the magnitude of self-selection (ATT is upward biased and ATUT
is downward biased).

Stronger instrument

As discussed in the classical selection analysis of report precision in chapter 10,
the poor results obtained for this case is not likely a result of nonnormality of
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Table 12.13: Continuous report precision but observed binary selection McMC
parameter estimates for nonnormal DGP

statistic β10 β11 β00 β01
mean 568.9 0.478 575.9 0.426
median 569.1 0.474 576.1 0.430
std.dev. 2.721 0.101 2.709 0.093
minimum 561.2 0.184 565.8 0.093
maximum 577.0 0.872 583.8 0.738
statistic γ0 γ

1
γ
2

mean −0.066 −3.055 0.052
median −0.064 −3.043 0.053
std.dev. 0.028 0.567 0.052
minimum −0.162 −5.126 −0.139
maximum 0.031 −1.062 0.279
statistic cor (V,U1) cor (V,U0) cor (U1, U0)
mean 0.917 −0.917 −1.000
median 0.918 −0.918 −1.000
std.dev. 0.007 0.007 0.000
minimum 0.894 −0.935 −1.000
maximum 0.935 −0.894 −0.999

Y L = βL0 + β
L
1

�
sL − s�+ UL

Y H = βH0 + β
H
1

�
sH − s�+ UH

EU = γ0 + γ1w1 + γ2w2 + V

Table 12.14: Continuous report precision but observed binary selection McMC
average treatment effect estimates for nonnormal DGP

statistic estATE estATT estATUT
mean −6.575 124.6 −127.5
median −5.722 124.4 −127.4
std.dev. 2.987 4.585 3.962
minimum −12.51 117.3 −135.8
maximum −1.426 136.3 −117.9

Table 12.15: Continuous report precision but observed binary selection McMC
average treatment effect sample statistics for nonnormal DGP

statistic ATE ATT ATUT OLS
mean −0.183 61.79 −57.32 1.214
median −0.268 61.70 −57.49 0.908
std.dev. 0.816 0.997 0.962 1.312
minimum −2.134 59.79 −58.60 −0.250
maximum 1.409 63.64 −55.19 4.962
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Figure 12.4: MTE (uD) versus uD = pν for nonnormal DGP

unobservable utility but rather weak instruments. We proceed by replacing in-
strument w2 with a stronger instrument, w3, and repeat the Bayesian selection
analysis.9 McMC parameter estimates are reported in table 12.17, average sample
statistics are reported in table 12.18, and average treatment effect sample statistics
are reported in table 12.19. The average treatment effect estimates correspond
nicely with their sample statistics even though the unidentified correlation para-
meter is near zero but again poorly estimated by our bounding approach. The
model strongly (and appropriately) supports outcome heterogeneity.

The simulation average marginal treatment effect is plotted in figure 12.5. The
plot is distinctly nonconstant and nonlinear — a strong indication of outcome het-
erogeneity. Weighted-MTE population-level average treatment effects are reported
in table 12.20. These results are very similar to those reported above.

9Instrument w3 is constructed, for simulation purposes, from the residuals of a regression of the
indicator variable � �EU �σL2 ,σL2 � > EU �σH2 ,σL2 �� onto UL and UH .
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Table 12.16: Continuous report precision but observed binary selection McMC
MTE-weighted average treatment effect estimates for nonnormal DGP

statistic estATE estATT estATUT
mean −5.844 123.7 −125.7
median −6.184 123.7 −127.0
std.dev. 4.663 3.714 5.404
minimum −17.30 117.9 −137.6
maximum 3.211 131.9 −116.2

Table 12.17: Continuous report precision but observed binary selection stronger
McMC parameter estimates

statistic β10 β11 β00 β01
mean 603.8 0.553 605.5 0.536
median 603.7 0.553 605.4 0.533
std.dev. 1.927 0.095 1.804 0.080
minimum 598.1 0.192 600.4 0.270
maximum 610.3 0.880 611.6 0.800

statistic γ0 γ
1

γ
2

mean −0.065 −0.826 2.775
median −0.063 −0.827 2.768
std.dev. 0.030 0.659 0.088
minimum −0.185 −3.647 2.502
maximum 0.037 1.628 3.142
statistic cor (V,U1) cor (V,U0) cor (U1, U0)
mean 0.832 −0.832 −1.000
median 0.833 −0.833 −1.000
std.dev. 0.014 0.014 0.000
minimum 0.775 −0.869 −1.000
maximum 0.869 −0.775 −0.998

Y L = βL0 + β
L
1

�
sL − s�+ UL

Y H = βH0 + β
H
1

�
sH − s�+ UH

EU = γ0 + γ1w1 + γ2w2 + V

Table 12.18: Continuous report precision but observed binary selection stronger
McMC average treatment effect estimates

statistic estATE estATT estATUT
mean −1.678 62.29 −61.03
median −1.936 62.49 −61.27
std.dev. 1.783 2.370 3.316
minimum −6.330 56.86 −66.97
maximum 2.593 67.19 −52.46
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Table 12.19: Continuous report precision but observed binary selection stronger
McMC average treatment effect sample statistics

statistic ATE ATT ATUT OLS
mean 0.151 62.53 −57.72 0.995
median −0.042 62.41 −57.36 1.132
std.dev. 1.064 1.086 1.141 1.513
minimum −1.918 60.92 −56.96 −1.808
maximum 1.904 64.63 −55.60 3.527

Figure 12.5: MTE (uD) versus uD = pν with stronger instruments
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Table 12.20: Continuous report precision but observed binary selection stronger
McMC MTE-weighted average treatment effect estimates

statistic estATE estATT estATUT
mean −1.678 57.14 −56.26
median −1.965 57.35 −56.36
std.dev. 1.814 2.301 3.147
minimum −5.764 52.86 −60.82
maximum 2.319 60.24 −49.43

12.8.4 Policy-relevant report precision treatment effect
An important question involves the treatment effect induced by policy interven-
tion. Regulated report precision seems a natural setting to explore policy interven-
tion. What is the impact of treatment on outcomes when the reporting environ-
ment changes from unregulated (private report precision selection) to regulated
(with the omnipresent possibility of costly transaction design). This issue was
first raised in the marginal treatment effect discussion of chapter 11. The policy-
relevant treatment effect and its connection to MTE when policy intervention af-
fects the likelihood of treatment but not the distribution of outcomes is

PRTE = E [Y | X = x, a]− E [Y | X = x, a�]

=

1 1

0

MTE (x, uD)
�
FP (a�)|X (uD | x)− FP (a)|X (uD | x)

�
duD

where FP (a)|X (uD | x) is the distribution function for the probability of treat-
ment, P , and policy a refers to regulated report precision while policy a� denotes
unregulated reporting precision.

Treatment continues to be defined by high or low inverse-report precision. How-
ever, owner type is now defined by high or low report precision cost αH = 0.04 or
αL = 0.02 rather than transaction design cost αd = 0.02 to facilitate comparison
between regulated and unregulated environments. Since transaction design cost
of deviating from the standard does not impact the owner’s welfare in an unregu-
lated report environment, high and low inverse report precision involves different
values for σL2 =

√
139.1 or σH2 =

√
144.8 for unregulated privately selected re-

port precision than for regulated report precision, σL2 =
√
133.5 or σH2 =

√
139.2.

Consequently, marginal treatment effects can be estimated from either the unregu-
lated privately selected report precision data or the regulated report precision data.
As the analyst likely doesn’t observe this discrepancy or any related divergence in
outcome distributions, the treatment effect analysis is potentially confounded. We
treat the data source for estimating MTE as an experimental manipulation in the
simulation reported below.

We explore the implications of this potentially confounded policy intervention
induced treatment effect via simulation. In particular, we compare the sample sta-
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Table 12.21: Policy-relevant average treatment effects with original precision
cost parameters

statistic estPRTE (a) estPRTE (a�) PRTE sample statistic
mean 0.150 0.199 6.348
median 0.076 0.115 6.342
std.dev. 0.542 0.526 0.144
minimum −0.643 −0.526 6.066
maximum 1.712 1.764 6.725

tistic for E [Y | X = x, a] − E [Y | X = x, a�] (PRTE sample statistic)10 with
the treatment effects estimated via the regulatedMTE (a) data

estPRTE (a) =

1 1

0

MTE (x, uD, a)

× �FP (a�)|X (uD | x)− FP (a)|X (uD | x)� duD
and via the unregulated MTE (a�) data

estPRTE (a�) =

1 1

0

MTE (x, uD, a
�)

× �FP (a�)|X (uD | x)− FP (a)|X (uD | x)� duD
The simulation employs 20 samples of 5, 000 draws. 4, 000 conditional poste-
rior draws are draws with 3, 000 discarded as burn-in. As before, γ = 2.5, w3
is employed as an instrument,11 and stochastic variation is generated via inde-
pendent draws for βL and βH normal with mean seven and unit variance. Mar-
ginal treatment effects and their estimated policy-relevant treatment effects for
the unregulated and regulated regimes are quite similar. However, (interval) es-
timates of the policy-relevant treatment effect based on MTE from the regulated
regime (estPRTE (a)) or from the unregulated regime (estPRTE (a�)) diverge
substantially from the sample statistic as reported in table 12.21. These results
suggest it is difficult to satisfy the MTE ceteris paribus (policy invariance) condi-
tions associated with policy-relevant treatment parameters in this report precision
setting.

10In this report precision setting, this is what a simple difference-in-difference regression estimates.
For instance,

E [Y | s,D,� (pa)] = β0 + β1D + β2� (pa) + β3D� (pa)
+β4 (s− s) + β5 (s− s)D + β6 (s− s)� (pa)
+β7 (s− s)D� (pa)

where � (pa) is an indicator for change in policy from a� to a and β3 is the parameter of interest. Of
course, in general it may be difficult to identify and control for factors that cause changes in outcome
in the absence of policy intervention.

11The instrument,w3, is constructed from the residuals ofDσL2 +(1−D)σH2 regressed onto UL

and UH .
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Table 12.22: Policy-relevant average treatment effects with revised precision cost
parameters

statistic estPRTE (a) estPRTE (a�) PRTE sample statistic
mean 1.094 1.127 0.109
median 0.975 0.989 0.142
std.dev. 0.538 0.545 0.134
minimum −0.069 −0.085 −0.136
maximum 2.377 2.409 0.406

Now, suppose σL2 and σH2 are the same under both policy a� and a, say as the
result of some sort of fortuitous general equilibrium effect. Let αL = 0.013871
rather than 0.02 and αH = 0.0201564 rather than 0.04 leading to σL2 =

√
133.5

or σH2 =
√
139.2 under both policies. Of course, this raises questions about the

utility of policy a. But what does the analyst estimate from data? Table 12.22 re-
ports results from repeating the above simulation but with this input for α. As
before, MTE is very similar under both policies. Even with these "well-behaved"
data, the MTE estimates of the policy-relevant treatment effect are biased upward
somewhat, on average, relative to their sample statistic. Nonetheless, in this case
the intervals overlap with the sample statistic and include zero, as expected. Un-
fortunately, this might suggest a positive, albeit modest, treatment effect induced
by the policy change when there likely is none. A plot of the average marginal
treatment effect, confirming once again heterogeneity of outcomes, is depicted in
figure 12.6.

12.8.5 Summary
A few observations seem clear. First, choice of instruments is vital to any IV
selection analysis. Short changing identification of strong instruments risks se-
riously compromising the analysis. Second, estimation of variance via Wishart
draws requires substantial data and even then the quality of variance estimates is
poorer than estimates of other parameters.12 In spite of these concerns, Bayesian
data augmentation with a multivariate Gaussian likelihood compares well with
other classical analysis of the selection problem. Perhaps, the explanation involves
building the analysis around what we know (see the discussion in the next sec-
tion). Finally, policy invariance is difficult to satisfy in many accounting contexts;
hence, there is more work to be done to address policy-relevant treatment effects
of accounting regulations. Perhaps, an appropriately modified (to match what is
known about the setting) difference-in-difference approach such as employed by
Heckman, Ichimura, Smith, and Todd [1998] provides consistent evaluation of the
evidence and background knowledge.

12Our experiments with mixtures of normals, not reported, are seriously confounded by variance
estimation difficulties.
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Figure 12.6:MTE (uD) versus uD = pν for policy-relevant treatment effect
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12.9 Probability as logic and the selection problem

There is a good deal of hand-wringing over the error distribution assignment for
the selection equation. We’ve recounted some of it in our earlier discussions of
identification and alternative estimation strategies. Jaynes [2003] suggests this is
fuzzy thinking (Jaynes refers to this as an example of the mind projection fallacy)
— probabilities represent a state of knowledge or logic, and are not limited to a
description of long-run behavior of a physical phenomenon. What we’re interested
in is a consistent assessment of propositions based on our background knowledge
plus new evidence. What we know can be expressed through probability assign-
ment based on the maximum entropy principle (MEP). MEP incorporates what we
know but only what we know — hence, maximum entropy. Then, new evidence
is combined with background knowledge via Bayesian updating — the basis for
consistent (scientific) reasoning or evaluation of propositions.

For instance, if we know something about variation in the data, then the max-
imum entropy likelihood function or sampling distribution is Gaussian. This is
nearly always the case in a regression (conditional mean) setting. In a discrete
choice setting, if we only know choice is discrete then the maximum entropy
likelihood is the extreme value or logistic distribution. However, in a selection
setting with a discrete selection mechanism, we almost always know something
about the variation in the response functions, the variance-covariance matrix for
the selection and response errors is positive definite, and, as the variance of the
unobservable expected utility associated with selection is not estimable, its vari-
ance is normalized (to one). Collectively, then we have bounds on the variance-
covariance matrix for the unobservables associated with the choice equation and
the response equations. Therefore (and somewhat ironically given how frequently
it’s maligned), in the selection setting, the maximum entropy likelihood function is
typically multivariate Gaussian.13 Bayesian data augmentation (for missing data)
strengthens the argument as we no longer rely on the hazard rate for estimation
(or its nonlinearity for identification).

Another pass at what we know may support utilization of a hierarchical model
with multivariate Student t conditional posteriors (Li, Poirier, and Tobias [2003]).
The posterior probability of treatment conditional on Gaussian (outcome) evi-
dence has a logistic distribution (Kiefer [1980]). Gaussians with uncertain vari-
ance go to a noncentral, scaled Student t distribution (on integrating out the vari-
ance nuisance parameter to derive the posterior distribution for the mean — the
primary concern for average treatment effects). This suggests we assign selection
a logistic distribution and outcome a multivariate Student t distribution. Since,
the Student t distribution is an excellent approximation for the logistic distribu-
tion (Albert and Chib [1993]), we can regard the joint distribution as (approxi-
mately) multivariate Student t (O’Brien and Dunson [2003, 2004]). Now, we can

13If we had knowledge of multimodality, particularly, multimodal unobservable elements in the
selection equation, we would be led to a Gaussian mixture likelihood. This is not the case in the
regulated report precision setting.
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employ a multivariate Student t Gibbs sampler (Li, Poirier, and Tobias [2003])
with degrees of freedom ν = 7.3. This choice of ν minimizes the integrated
squared distance between the logistic and Student t densities. If we normalize the
scale parameter, σ, for the scaled Student t distributed selection unobservables to
σ2 = π2

3
ν−2
ν , then the variances of the scaled Student t and logistic distributions

are equal (O’Brien and Dunson [2003]).14,15

Perhaps, it’s more fruitful to focus our attention on well-posed (framed by the-
ory) propositions, embrace endogeneity and inherent heterogeneity, identification
of strong instruments, and, in general, collection of better data, than posturing
over what we don’t know about sampling distributions. Further, as suggested by
Heckman [2001], we might focus on estimation of treatment effects which address
questions of import rather than limiting attention to the average treatment effect.
Frequently, as our examples suggest, the average treatment effect (ATE) is not
substantively different from the exogenous effect estimated via OLS. If we look
only to ATE for evidence of endogeneity there’s a strong possibility that we’ll fail
to discover endogeneity even though it’s presence is strong. Treatment effects on
treated and untreated (ATT and ATUT) as well as nonconstant marginal treatment
effects (MTE) are more powerful diagnostics for endogeneity and help character-
ize outcome heterogeneity.

In this penultimate chapter we discussed Bayesian analysis of selection and
identification of treatment effects. In the final chapter, we explore Bayesian iden-
tification and inference a bit more broadly reflecting on the potential importance
of informed priors.

12.10 Additional reading

Vijverberg [1993] and Koop and Poirier [1997] offer earlier discussions of the
use of positive definiteness to bound the unidentified correlation parameter. Chib
and Hamilton [2000] also discuss using McMC (in particular, the Metropolis-
Hastings algorithm) to identify the posterior distribution of counterfactuals where
the unidentified correlation parameter is set to zero. Chib and Hamilton [2002]
apply general semiparametric McMC methods based on a Dirichlet process prior
to longitudinal data.

14The univariate noncentral, scaled Student t density is

p (t | μ,σ) = Γ
�
ν+1
2

�
Γ
�
ν
2

�√
νπσ

�
1 +

(t− μ)2
νσ2

�− ν+1
2

with scale parameter σ and ν degrees of freedom.
15Alternatively, instead of fixing the degrees of freedom, ν, we could use a Metropolis-Hastings

algorithm to sample the conditional posterior for ν (Poirier, Li, and Tobias [2003]).





13
Informed priors

When building an empirical model we typically attempt to include our under-
standing of the phenomenon as part of the model. This commonly describes both
classical and Bayesian analyses (usually with locally uninformed priors). How-
ever, what analysis can we undertake if we have no data (new evidence) on which
to apply our model. The above modeling strategy leaves us in a quandary. With no
new data, we are not (necessarily) in a state of complete ignorance and this setting
suggests the folly of ignoring our background knowledge in standard data analy-
sis. If our model building strategy adequately reflects our state of knowledge plus
the new data, we expect inferences from the standard approach described above
to match Bayesian inference based on our informed priors plus the new data. If
not, we have been logically inconsistent in at least one of the analyses. Hence, at
a minimum, Bayesian analysis with informed priors serves as a consistency check
on our analysis.

In this section, we briefly discuss maximum entropy priors conditional on our
state of knowledge (see Jaynes [2003]). Our state of knowledge is represented
by various averages of background knowledge (this includes means, variances,
covariances, etc.). This is what we refer to as informed priors. The priors reflect
our state of knowledge but no more; hence, maximum entropy conditional on
what we know about the problem. Apparently, the standard in physical statistical
mechanics for over a century.

333D. A. Schroeder, Accounting and Causal Effects, DOI 10.1007/978-1-4419-7225-5_13,
© Springer Science+Business Media, LLC 2010
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13.1 Maximum entropy

What does it mean to be completely ignorant? If we know nothing, then we are
unable to differentiate one event or state from another. If we are unable to differen-
tiate events then our probability assignment consistent with this is surely that each
event is equally likely. To suggest otherwise, presumes some deeper understand-
ing. In order to deal with informed priors it is helpful to contrast with complete
ignorance and its probability assignment. Maximum entropy priors are objective
in the sense that two (or more) individuals with the same background knowledge
assign the same plausibilities regarding a given set of propositions prior to con-
sidering new evidence.

Shannon’s [1948] classical information theory provides a measure of our igno-
rance in the form of entropy. Entropy is defined as

H = −
n/
i=1

pi log pi

where pi ≥ 0 and
n/
i=1

pi = 1. This can be developed axiomatically from the

following conditions.

Condition 13.1 Some numerical measure Hn (p1, . . . , pn) of "state of knowl-
edge" exists.

Condition 13.2 Continuity:Hn (p1, . . . , pn) is a continuous function of pi.1

Condition 13.3 Monotonicity: Hn (p1, . . . , pn) is a monotone increasing func-
tion of n.2

Condition 13.4 Consistency: if there is more than one way to derive the value for
Hn (p1, . . . , pn), they each produce the same answer.

Condition 13.5 Additivity:3

Hn (p1, . . . pn) = Hr (p1, . . . pr) + w1Hk



p1
w1
, . . . ,

pk
w1

�
+w2Hm



pk+1
w2

, . . . ,
pk+m
w2

�
+ · · ·

Now, we sketch the arguments. Let

h (n) ≡ H


1

n
, . . . ,

1

n

�
1Otherwise, an arbitrarily small change in the probability distribution could produce a large change

inHn (p1, . . . , pn).
2Monotonicity provides a sense of direction.
3For instance,H3 (p1, p2, p3) = H2 (p1, q) + qH2

�
p2
q
, p3
q

�
.
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and

pi =
ni
n/
i=1

ni

for integers ni. Then, combining the above with condition 13.5 implies

h

�
n/
i=1

ni

�
= H (p1, . . . , pn) +

n/
i=1

pih (ni)

Consider an example where n = 3 , n1 = 3, n2 = 4, n3 = 2,

h (9) = H



3

9
,
4

9
,
2

9

�
+
3

9
h (3) +

4

9
h (4) +

2

9
h (2)

= H



3
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4
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,
2

9

�
+
3

9
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1
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1

3
,
1

3

�
+
4
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1
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,
1

4
,
1

4
,
1

4

�
+
2

9
H



1

2
,
1

2

�
= H



1

9
, . . . ,

1

9

�

If we choose ni = m then the above collapses to yield

h (mn) = h (m) + h (n)

and apparently h (n) = K logn, but since we’re maximizing a monotone increas-
ing function in pi we can work with

h (n) = logn

then

h

�
n/
i=1

ni

�
= H (p1, . . . , pn) +

n/
i=1

pih (ni)

= H (p1, . . . , pn) +
n/
i=1

pi log ni

Rewriting yields

H (p1, . . . , pn) = h

�
n/
i=1

ni

�
−

n/
i=1

pi log ni
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Substituting pi
/
i

ni for ni yields

H (p1, . . . , pn) = h

�
n/
i=1

ni

�
−

n/
i=1

pi log

�
pi
/
i

ni

�

= h

�
n/
i=1

ni

�
−

n/
i=1

pi log pi −
n/
i=1

pi log

�/
i

ni

�

= h

�
n/
i=1

ni

�
−

n/
i=1

pi log pi − log
�/

i

ni

�

Since h (n) = log n, h

�
n/
i=1

ni

�
= log

�/
i

ni

�
, and we’re left with Shannon’s

entropy measure

H (p1, . . . , pn) = −
n/
i=1

pi log pi

13.2 Complete ignorance

Suppose we know nothing, maximization ofH subject to the constraints involves
solving the following Lagrangian for pi, i = 1, . . . , n, and λ0.4

−
n/
i=1

pi log pi − (λ0 − 1)
�

n/
i=1

pi − 1
�

The first order conditions are

−λ0 − log (pi) = 0 for all i
n/
i=1

pi − 1 = 0

Then, the solution is

pi = exp [−λ0] for all i
λ0 = log n

In other words, as expected, pi = 1
n for all i. This is the maximum entropy prob-

ability assignment.

4It’s often convenient to write the Lagrange multiplier as (λ0 − 1).
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13.3 A little background knowledge

Suppose we know a bit more. In particular, suppose we know the mean is F . Now,
the Lagrangian is

−
n/
i=1

pi log pi − (λ0 − 1)
�

n/
i=1

pi − 1
�
− λ1

�
n/
i=1

pifi − F
�

where fi is the realized value for event i. The solution is

pi = exp [−λ0 − fiλ1] for all i

For example, n = 3, f1 = 1 , f2 = 2, f3 = 3, and F = 2.5, the maximum entropy
probability assignment and multipliers are5

p1 0.116
p2 0.268
p3 0.616
λ0 2.987
λ1 −0.834

13.4 Generalization of maximum entropy principle

Suppose variable x can take on n different discrete values (x1, . . . xn) and our
background knowledge implies there arem different functions of x

fk (x) , 1 ≤ k ≤ m < n

and these have expectations given to us in our statement of the background knowl-
edge

E [fk (x)] = Fk =
n,
i=1

pifk (xi) , 1 ≤ k ≤ m

The set of probabilities with maximum entropy that satisfy these m constraints
can be identified by Lagrangian methods. As above, the solution is

pi = exp

�
−λ0 −

m,
j=1

λjfj (xi)

�
for all i

and the sum of the probabilities is unity,

1 =

n/
i=1

pi = exp [−λ0]
n/
i=1

exp

⎡⎣− m/
j=1

λjfj (xi)

⎤⎦
5Of course, if F = 2 then pi =

1
3

and λ1 = 0.
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Now define a partition function

Z (λ1, . . . ,λm) ≡
n/
i=1

exp

⎡⎣− m/
j=1

λjfj (xi)

⎤⎦
and we have

1 = exp [−λ0]Z (λ1, . . . ,λm)

which reduces to

exp [λ0] = Z (λ1, . . . ,λm)

or

λ0 = log [Z (λ1, . . . ,λm)]

Since the average value Fk equals the expected value of fk (x)

Fk = exp [−λ0]
n/
i=1

fk (xi) exp

⎡⎣− m/
j=1

λjfj (xi)

⎤⎦
and

−∂ log [Z (λ1, . . . ,λm)]
∂λk

=

n,
i=1

fk (xi) exp

�
−

m,
j=1

λjfj (xi)

�
Z (λ1, . . . ,λm)

= exp [−λ0]
n/
i=1

fk (xi) exp

⎡⎣− m/
j=1

λjfj (xi)

⎤⎦
Therefore,6

Fk = −∂ logZ (λ1, . . . ,λm)
∂λk

6Return to the example with n = 3, f1 (x1) = 1 , f1 (x2) = 2, f1 (x3) = 3, and F = 2.5. The
partition function is

Z (λ1) = exp [−f1λ1] + exp [−f2λ1] + exp [−f3λ1] .

It is readily verified that − ∂ logZ(λ1)
∂λ1

= F = 2.5 on substituting the values of the multipliers.
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The maximum value of entropy is

Hmax = max

�
−

n/
i=1

pi log pi

�

= exp [−λ0]
n/
i=1

exp

⎡⎣− m/
j=1

λjfj (xi)

⎤⎦⎛⎝λ0 + m/
j=1

λjfj (xi)

⎞⎠
= λ0 + exp [−λ0]

m/
j=1

n/
i=1

λjfj (xi) exp

⎡⎣− m/
j=1

λjfj (xi)

⎤⎦
= λ0 +

m/
j=1

λjFj

To establish support for a global maximum, consider two possible probability
distributions

n/
i=1

pi = 1 pi ≥ 0

and
n/
i=1

ui = 1 ui ≥ 0

Note
log x ≤ x− 1 0 ≤ x <∞

with equality if and only if x = 1. Accordingly,

n/
i=1

pi log
ui
pi
≤

n/
i=1

pi



ui
pi
− 1

�
=

n/
i=1

(ui − pi) = 0

with equality if and only if pi = ui, i = 1, . . . , n. Rewrite the left hand side in
terms of entropy for pi

n/
i=1

pi log
ui
pi

=

n/
i=1

pi log ui −
n/
i=1

pi log pi

=

n/
i=1

pi log ui +H (p1, . . . pn)

Substitution into the inequality and rearrangement yields

H (p1, . . . pn) ≤ 0−
n/
i=1

pi log ui

or

H (p1, . . . pn) ≤
n/
i=1

pi log
1

ui
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Let

ui ≡ 1

Z (λ1, . . . ,λm)
exp

⎡⎣− m/
j=1

λjfj (xi)

⎤⎦
where the partition function Z (λ1, . . . ,λm) effectively serves as a normalizing
factor. Now we can write the inequality

H (p1, . . . pn) ≤
n/
i=1

pi log
1

ui

as

H (p1, . . . pn) ≤
n/
i=1

pi

⎡⎣logZ (λ1, . . . ,λm) + m/
j=1

λjfj (xi)

⎤⎦
or

H (p1, . . . pn) ≤ logZ (λ1, . . . ,λm) +
m/
j=1

λjE [fj (xi)]

Since pi can vary over all possible probability distributions and it attains its max-
imum only when

pi = ui ≡ 1

Z (λ1, . . . ,λm)
exp

⎡⎣− m/
j=1

λjfj (xi)

⎤⎦
we have a general derivation for the maximum entropy probability assignment
subject to background knowledge Fj , j = 1, . . . ,m.

13.5 Discrete choice model as maximum entropy prior

From here we can provide a more rigorous argument for the frequent utilization
of logistic regression when faced with discrete choice analysis. The logit model
for discrete choice D conditional on (regime differences in) covariates X is

Pr (D | X) =
1

1 + exp [−Y ]
=

1

1 + exp [−Xγ]
but the basis for this specification is frequently left unanswered. Following Blower
[2004], we develop this model specification from the maximum entropy principle.

Bayesian revision yields

Pr (D | X) = Pr (D,X)

Pr (X)
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and for treatment selection

Pr (D = 1 | X) = Pr (D = 1, X)

Pr (D = 1, X) + Pr (D = 0, X)

Rewrite this expression as

Pr (D = 1 | X) = 1

1 + Pr(D=0,X)
Pr(D=1,X)

The maximum entropy probability assignments, denoted , for the joint likeli-
hoods, Pr (D = 1, X) and Pr (D = 0, X), are

Pr (D = 1, X, ) =

exp

�
−

m,
j=1

λjfj (X1)

�
Z (λ1, . . . ,λm)

and

Pr (D = 0, X, ) =

exp

�
−

m,
j=1

λjfj (X0)

�
Z (λ1, . . . ,λm)

The likelihood ratio is

Pr (D = 0, X, )

Pr (D = 1, X, )
=

exp

�
−

m,
j=1

λjfj (X0)

�

exp

�
−

m,
j=1

λjfj (X1)

�
= exp [−Y ]

where

Y = exp

⎡⎣ m/
j=1

λj {fj (X1)− fj (X0)}
⎤⎦

Hence, we have the logistic regression specification as a maximum entropy prob-
ability assignment

Pr (D = 1 | X, ) =
1

1 + Pr(D=0,X, )
Pr(D=1,X, )

=
1

1 + exp [−Y ]
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13.6 Continuous priors

Applying the principle of maximum entropy to continuous prior distributions is
more subtle. We sketch Jaynes’ [2003, ch. 12] limit arguments by taking the dis-
crete expression of entropy

Hd = −
n/
i=1

pi log pi

to a continuous expression for entropy

Hc
5 = −

1 b

a

p (x | �) log p (x | �)
m (x)

dx

whose terms are defined below.
Let the number of discrete points xi, i = 1, . . . , n, become very numerous such

that

lim
n→∞

1

n
(number of points in a < x < b) =

1 b

a

m (x) dx

and assume this is sufficiently well-behaved that adjacent differences tend to zero
such that

lim
n→∞n (xi+1 − xi) =

1

m (xi)

The discrete probability distribution pi goes into a continuous density, p (x | �),
with background knowledge, �, via the limiting form of

pi = p (xi | �) (xi+1 − xi)
or utilizing the limit above

pi → p (xi | �) 1

nm (xi)

Since

lim
n→∞

n/
i=1

1

nm (xi)
=

1 b

a

dx

the limit of discrete entropy is

Hd
5 ≡ lim

n→∞H
d

= − lim
n→∞

n/
i=1

pi log pi

= − lim
n→∞

n/
i=1

p (xi | �)
nm (xi)

log
p (xi | �)
nm (xi)

= −
1 b

a

p (x | �) log p (x | �)
nm (x)

dx
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The limit contains an infinite term, logn. Normalize Hd
5 by subtracting this term

and we have Jaynes’ continuous measure of entropy

Hc
5 ≡ lim

n→∞
�
Hd
5 − logn

�
= −

1 b

a

p (x | �) log p (x | �)
m (x)

dx+

1 b

a

p (x | �) log (n) dx− log n

= −
1 b

a

p (x | �) log p (x | �)
m (x)

dx

Next, we revisit maximum entropy for continuous prior distributions.

13.6.1 Maximum entropy
The maximum entropy continuous prior is normalized1 b

a

p (x | �) dx = 1

and is constrained bym mean values Fk for the various different functions fk (x)
from our background knowledge

Fk =
. b
a
fk (x) p (x | �) dx k = 1, 2, . . . ,m

Treating m (x) as known, the solution to the Lagrangian identifies the maximum
entropy continuous prior

p (x | �) = m (x) exp [λ1f1 (x) + · · ·+ λmfm (x)]
Z (λ1, . . . ,λm)

where the partition function is

Z (λ1, . . . ,λm) =

1 b

a

m (x) exp [λ1f1 (x) + · · ·+ λmfm (x)] dx

and the Lagrange multipliers are determined from

Fk = −∂ logZ(λ1,...,λm)
∂λk

k = 1, 2, . . . ,m

Then, with the maximum entropy prior in hand, our best estimate (by quadratic
loss) of any other function of the parameters, say q (x), is

E [q (x)] =

1 b

a

q (x) p (x | �) dx

What is the role of the invariance measure, m (x)? First note what m (x) buys
us. Inclusion of m (x) in the entropy measure of our state of knowledge means
the entropy measure Hc

5 , partition function, Lagrange multipliers, and E [q (x)]
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are invariant under a transformation of parameters, say x→ y (x). What does this
imply for ignorance priors? Suppose we only know a < x < b, then there are no
multipliers and

p (x | �) =
m (x) exp [0]. b

a
m (x) exp [0] dx

=
m (x). b

a
m (x) dx

so that, except for normalizing constant 1� b
a
m(x)dx

, m (x) is the prior distribution

p (x | �). Next, we briefly discuss use of transformation groups for resolving the
invariance measure,m (x), and fully specifying ignorance priors.

13.6.2 Transformation groups
We focus on ignorance priors since the maximum entropy principle dictates only
our background knowledge is included in the prior; this means we must recognize
our state of ignorance. Consider one of the most common problems in practice, a
two parameter sampling distribution. We observe a sample x1, . . . , xn from a con-
tinuous sampling distribution p (x | ν,σ) dx = φ (ν,σ) dx where ν is a location
parameter and σ is a scale parameter and we wish to estimate ν and σ. Suppose we
have no knowledge of the location and scale parameters. What is the prior distribu-
tion p (ν,σ | �) dνdσ = f (ν,σ) dνdσ? What does it mean to have no knowledge
of the location and scale parameters? Jaynes [2003, ch. 12] suggests the follow-
ing characterization. If a change of location or scale alters our perception of the
distribution of the parameters, we must not have been completely ignorant with
regard to location and scale. Therefore, the distributions should be invariant to a
transformation group.

Suppose we transform the variables as follows

ν� = ν + b

σ� = aσ

x� − ν� = a (x− ν)

−∞ < b < ∞ and 0 < a < ∞. Invariance implies the sampling distribution for
the transformed variables is the same as the sampling distribution for the original
variables

p (x� | ν�,σ�) dx� = ψ (x�, ν�,σ�) dx� = φ (x, ν,σ) dx

Similarly, the prior distribution for the transformed parameters, based on the Ja-
cobian, is

g (ν�,σ�) = a−1f (ν,σ)

These relations hold irrespective of the distributions φ (x, ν,σ) and f (ν,σ).
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If the sampling distribution is invariant under the above transformation group,
then the two functions are the same

ψ (x, ν,σ) = φ (x, ν,σ)

for all values a and b. Invariance to location and scale implies

φ (x, ν,σ) =
1

σ
h



x− ν
σ

�
for arbitrary function h (·).7 Now, we return to priors.

Consider another problem with sample x
�
1, . . . , x

�
n and we wish to estimate ν�

and σ� but again have no initial knowledge of the location and scale. Let the prior
distribution be g (ν�,σ�). Since we have two problems with the same background
knowledge consistency requires we assign the same prior. Invariance to parameter
transformation implies the functions are the same

f (ν,σ) = g (ν,σ)

Combining
g (ν�,σ�) = a−1f (ν,σ)

with the transformation group gives

g (ν + b, aσ) = a−1f (ν,σ)
f (ν,σ) = ag (ν + b, aσ)

Now,

f (ν,σ) = g (ν,σ)

f (ν + b, aσ) = g (ν + b, aσ)

combining this with the above yields

f (ν,σ) = af (ν + b, aσ)

Satisfying this condition implies the prior distribution is

f (ν,σ) =
constant
σ

— this is Jeffrey’s prior.
To illustrate, suppose we only know 0 < ν < 2 and 1 < σ < 2, then we can

assign m (ν,σ) = 1
σ and f (ν,σ) = 1

2 log 2
1
σ . Now, consider the transformation

b = 0.1, and a = 1
2 , then af (ν + b, aσ) = 1

2f
�
v + 0.1, 12σ

�
= 1

2 log 2
1
2
1
1
2σ
=

1
2 log 2

1
σ = f (ν,σ) and m (v�,σ�) = 1

2
1
σ� =

1
2
1
1
2σ
= 1

σ . If we assign m (v�,σ�) =
1
σ� , thenm (v,σ) = 2 1σ = 2

1
2σ� =

1
σ� . The key is existence ofm (x).

7This discussion attempts to convey the intuitive implications of transformation groups for maxi-
mum entropy. See Jaynes [2003, p. 379] for a more complete discussion.
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13.6.3 Uniform prior
Next, we temporarily suppress the invariance measure, m (x), and derive a maxi-
mum entropy ignorance prior utilizing differential entropy

H = −
1 b

a

f (x) log f (x) dx

as a measure of continuous entropy. Suppose we’re completely ignorant except
that x has continuous support over the interval {a, b}. The maximum entropy prior
distribution is surely uniform. Its derivation involves maximization of the limiting
form of entropy such that f (x) ≥ 0 and

. b
a
f (x) dx = 1. Following Cover and

Thomas [1991, ch. 11], formulate the Lagrangian8

L = −
1 b

a

f (x) log f (x) dx+ λ0

�1 b

a

f (x) dx− 1
�

Since the partial derivative of the functional − . b
a
f (x) log f (x) dx with respect

to f (x) for each value x is

∂

∂f (xi)

�
−
1 b

a

f (x) log f (x) dx

�
= − ∂

∂f (xi)
f (xi) log f (xi)

= − log f (xi)− 1
the gradient of the Lagrangian is

− log f (x)− 1 + λ0
Solving the first order conditions yields9

f (x) = exp [−1 + λ0]
Utilizing the constraint to solve for λ0 we have1 b

a

f (x) dx = 11 b

a

exp [−1 + λ0] dx = 1

exp [−1 + λ0] (b− a) = 1

λ0 = 1− log (b− a)
Now,

f (x) = exp [−1 + λ0]

8Alternatively, we could begin from the partition function.
9Since the second partial derivatives with respect to f (x) are negative for all x, − 1

f(x)
, a maxi-

mum is assured.
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becomes

f (x) = exp [−1 + 1− log (b− a)]
f (x) =

1

b− a
The maximum entropy prior with no background knowledge (other than con-

tinuity and support) is the uniform distribution. If we return to Jaynes’ definition
of continuous entropy then we can assign m (x) = 1 (an invariance measure ex-
ists) and normalization produces f (x) = m(x)� b

a
m(x)dx

= 1
b−a , as discussed earlier.

Hereafter, we work with differential entropy (for simplicity) and keep in mind the
existence of m (x).

13.6.4 Gaussian prior
Suppose our background knowledge is limited to a continuous variable with finite
mean μ and finite variance σ2. Following the development above, the Lagrangian
is

L = −
1 ∞

−∞
f (x) log f (x) dx+ λ0


1 ∞

−∞
f (x) dx− 1

�
+λ1


1 ∞

−∞
xf (x) dx− μ

�
+ λ2


1 ∞

−∞
(x− μ)2 f (x) dx− σ2

�
The first order conditions are

−1− log f (x) + λ0 + λ1x+ λ2 (x− μ)2 = 0
or

f (x) = exp
6
−1 + λ0 + λ1x+ λ2 (x− μ)2

7
Utilizing the constraints to solve for the multipliers involves1 ∞

−∞
exp

6
−1 + λ0 + λ1x+ λ2 (x− μ)2

7
dx = 11 ∞

−∞
x exp

6
−1 + λ0 + λ1x+ λ2 (x− μ)2

7
dx = μ1 ∞

−∞
(x− μ)2 exp

6
−1 + λ0 + λ1x+ λ2 (x− μ)2

7
dx = σ2

A solution is10

λ0 = 1− 1
4
log

�
4π2σ4

�
λ1 = 0

λ2 = − 1

2σ2

10The result, λ1 = 0, suggests how pivotal variance knowledge is to a Gaussian maximum entropy
prior. In fact, for a given variance, the Gaussian distribution has maximum entropy.
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Substitution of these values for the multipliers reveals

f (x) = exp
6
−1 + λ0 + λ1x+ λ2 (x− μ)2

7
f (x) =

1√
2πσ

exp

�
−1
2

(x− μ)2
σ2

�
Hence, the maximum entropy prior given knowledge of the mean and variance is
the Gaussian or normal distribution.

13.6.5 Multivariate Gaussian prior
If multiple variables or parameters are of interest and we have background knowl-
edge of only their means μ and variances σ2, then we know the maximum entropy
prior for each is Gaussian (from above). Further, since we have no knowledge of
their interactions, their joint prior is the product of the marginals.

Now, suppose we have background knowledge of the covariances as well. A
straightforward line of attack is to utilize the Cholesky decomposition to write the
variance-covariance matrix Σ as ΓΓT . We may now work with the transformed
data z = Γ−1x, derive the prior for z, and then by transformation of variables
identify priors for x. Of course, since the prior for z is the product of marginal
Gaussian priors, as before,

f (z1, . . . , zk) = f (z1) · · · f (zk)

= (2π)
− k

2

k0
i=1

exp

�
−1
2

�
zi − Γ−1μi

�2�

where f (zi) = 1√
2π
exp

6
− 1
2

�
zi − Γ−1μi

�27
, the transformation back to the

vector x = Γz produces the multivariate Gaussian distribution

f (x) = (2π)
− k

2 J exp

�
−1
2

�
Γ−1x− Γ−1μ

�T �
Γ−1x− Γ−1μ

��
= (2π)

− k
2 J exp

�
−1
2
(x− μ)T Σ−1 (x− μ)

�
where J is the Jacobian of the transformation. Since J =



Γ−1

 = |Γ|−1 and

Σ =
�
LD

1
2

��
D

1
2LT

�
= ΓΓT is positive definite, |Γ|−1 = |Σ|− 1

2 where L is

a lower triangular matrix and D is a diagonal matrix. Now, the density can be
written in standard form

f (x) = (2π)
− k

2 |Σ|− 1
2 exp

�
−1
2
(x− μ)T Σ−1 (x− μ)

�
Hence, the maximum entropy prior when background knowledge is comprised
only of means, variances, and covariances for multiple variables or parameters is
the multivariate Gaussian distribution.
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13.6.6 Exponential prior
Suppose we know the variable of interest has continuous but non-negative support
and finite mean β. The Lagrangian is

L = −
1 ∞

0

f (x) log f (x) dx+ λ0


1 ∞

0

f (x) dx− 1
�

+λ1


1 ∞

0

xf (x) dx− β
�

The first order conditions are

−1− log f (x) + λ0 + λ1x = 0
Solving for f (x) produces

f (x) = exp [−1 + λ0 + λ1x]
Using the constraints to solve for the multipliers involves1 ∞

0

exp [−1 + λ0 + λ1x] dx = 11 ∞

0

x exp [−1 + λ0 + λ1x] dx = β

and produces

λ0 = 1− log β
λ1 = − 1

β

Substitution of these multipliers identifies the prior

f (x) = exp [−1 + λ0 + λ1x]
f (x) =

1

β
exp

�
−x
β

�
Hence, the maximum entropy prior is an exponential distribution with mean β.

13.6.7 Truncated exponential prior
If support is shifted to, say, (a,∞) for a > 0 and the mean equals β, the maximum
entropy prior is a "truncated" exponential distribution. The first order conditions
continue to be

−1− log f (x) + λ0 + λ1x = 0
Solving for f (x) again produces

f (x) = exp [−1 + λ0 + λ1x]
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But using the constraints to solve for the multipliers involves1 ∞

a

exp [−1 + λ0 + λ1x] dx = 11 ∞

a

x exp [−1 + λ0 + λ1x] dx = β

and produces

λ0 = 1− a

a+ β
− log [β − a]

λ1 =
1

a− β
Substitution of these multipliers identifies the prior

f (x) = exp [−1 + λ0 + λ1x]
f (x) =

1

β − a exp
�
−x− a
β − a

�
Hence, the maximum entropy prior is a "truncated" exponential distribution with
mean β.

13.6.8 Truncated Gaussian prior
Suppose our background knowledge consists of the mean and variance over the
limited support region, say (a,∞), the maximum entropy prior is the truncated
Gaussian distribution. This is consistent with the property the Gaussian distribu-
tion has maximum entropy of any distribution holding the variance constant.

As an example suppose we compare a mean zero Gaussian with the exponential
distribution with variance one (hence, a = 0 and the mean of the exponential
distribution is also one). If the variance of the truncated Gaussian equals one, then
the underlying untruncated Gaussian has variance σ2 = 2.752.11 Entropy for the

11A general expression for the moments of a truncated Gaussian is

E [x | a ≤ x < b] = μ+
φ
�
a−μ
σ

�
− φ
�
b−μ
σ

�
Φ
�
b−μ
σ

�
− Φ
�
a−μ
σ

�σ

V ar [x | a ≤ x < b] = σ2

⎡⎢⎢⎢⎢⎣
1 +

a−μ
σ

φ
�
a−μ
σ

�
− b−μ

σ
φ
�
b−μ
σ

�
Φ
�
b−μ
σ

�
−Φ

�
a−μ
σ

�
−
�
φ
�
a−μ
σ

�
−φ

�
b−μ
σ

�
Φ
�
b−μ
σ

�
−Φ

�
a−μ
σ

�

2

⎤⎥⎥⎥⎥⎦
where φ (·) is the standard normal density function and Φ (·) is the standard normal cumulative distri-
bution function. For the setting under consideration, we set the variance of the truncated distribution
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exponential distribution is

H = −
∞1
0

exp [−x] log (exp [−x]) dx

=

∞1
0

x exp [−x] dx = 1

Entropy for the truncated Gaussian distribution is

H = −
∞1
0

2√
2πσ

exp

�
−1
2

x2

σ2

�
log



2√
2πσ

exp

�
−1
2

x2

σ2

��
dx

= −
∞1
0

2√
2πσ

exp

�
−1
2

x2

σ2

� �
log



2√
2πσ

�
− 1
2

x2

σ2

�
dx

= 1.232

As claimed, a truncated Gaussian distribution with the same variance has greater
entropy.

13.7 Variance bound and maximum entropy

A deep connection between maximum entropy distributions and the lower bound
of the sampling variance (often called the Cramer-Rao lower bound) can now be
demonstrated. Consider a sample of n observations

x ≡ {x1, x2, . . . , xn}
with sampling distribution dependent on θ, p (x | θ). Let

u (x, θ) ≡ ∂ log p (x | θ)
∂θ

and

(f, g) =

1
f (x) g (x) dx

equal to one (equal to the variance of the exponential)

1 = σ2

�
1−
�

φ (0)

1− Φ (0)

	2�
and solve for σ2. The mean of the truncated normal distribution is

E [x | 0 < x <∞] = 0 + σ φ (0)

1− Φ (0)
= 1.324
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By the Schwartz inequality we have

(f, g)
2 ≤ (f, f) (g, g)

or, writing it out,

�1
f (x) g (x) dx

�2
=

1
f (x) f (x) dx

1
g (x) g (x) dx

where equality holds if and only if f (x) = qg (x), q = (f,g)
(g,g) not a function of x

but possibly a function of θ.12

Now, choose

f (x) = u (x, θ)
:
p (x | θ)

and

g (x) = (β (x)− E [β])
:
p (x | θ)

then

(f, g) =

1
u (x, θ) (β (x)− E [β]) p (x | θ) dx

= E [βu]− E [β]E [u]

12Clearly,
�
[f (x)− qg (x)]2 dx ≥ 0. Now, find q to minimize the integral. The first order condi-

tion is

0 =

!
[f (x)− qg (x)] g (x) dx

0 =

!
f (x) f (x) dx− q

!
g (x) g (x) dx

solving for q gives

q =
(f, g)

(g, g)

and the inequality becomes an equality


!
(f, g)

(g, g)
g (x) g (x) dx

�2
≤
! �

(f, g)

(g, g)

	2
g (x) g (x) dx

!
g (x) g (x) dx�

(f, g)

(g, g)

	2 
!
g (x) g (x) dx

�2
=

�
(f, g)

(g, g)

	2 !
g (x) g (x) dx

!
g (x) g (x) dx
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since

E [u] =

1
u (x, θ) p (x | θ) dx

=

1
∂ log p (x | θ)

∂θ
p (x | θ) dx

=
∂

∂θ

�1
p (x | θ) dx

�
=

∂

∂θ
[1]

E [u] = 0

we have

(f, g) = E [βu]

We also have

(f, f) =

1
[u (x, θ)]

2
p (x | θ) dx

= E
�
u2
�

= V ar [u]

the latter from E [u] = 0, and

(g, g) =

1
(β (x)− E [β])2 p (x | θ) dx

= V ar [β]

So the Schwartz inequality simplifies to

E [βu]
2 ≤ V ar [β]V ar [u]

or

E [βu] ≤
:
V ar [β]V ar [u]

But

E [βu] =

1
β (x)

∂ log p (x | θ)
∂θ

p (x | θ) dx

=

1
β (x)

∂p (x | θ)
∂θ

dx

=
dE [β]

dθ
= 1 + b� (θ)
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where b (θ) = (E [β]− θ), bias in the parameter estimate, and b� (θ) = ∂b(θ)
∂θ =

∂E[β]
∂θ − 1. This means the inequality can be rewritten as

V ar [β] ≥ E [βu]
2

V ar [u]

≥ [1 + b� (θ)]2. 6∂ log p(x|θ)
∂θ

72
p (x | θ) dx

A change of parameters (θ → τ) where q (θ) = −∂τ
∂θ and substitution into

f = qg yields

∂ log p (x | θ)
∂θ

:
p (x | θ) = −∂τ

∂θ
(β (x)− E [β])

:
p (x | θ)

∂ log p (x | θ)
∂θ

= −∂τ
∂θ
(β (x)− E [β])

Now, integrate over θ

1
∂ log p (x | θ)

∂θ
dθ =

1
−τ � (θ) (β (x)− E [β]) dθ

log p (x | θ) = −τ (θ)β (x) +
1
∂τ

∂θ
E [β] dθ

= −τ (θ)β (x) +
1
E [β] dτ + constant

Notice
.
E [β] dτ is a function of θ, call it − logZ (τ). Also, the constant is inde-

pendent of θ but may depend on x, call it logm (x). Substitution gives

log p (x | θ) = −τ (θ)β (x)− logZ (τ) + logm (x)
p (x | θ) =

m (x)

Z (τ)
e−τ(θ)β(x)
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This is the maximum entropy distribution with a constraint13 fixing E [β (x)] and
Z (τ) is a normalizing constant such that

Z (τ) =

1
m (x) e−τ(θ)β(x)dx

The significance of this connection merits deeper consideration. If the sampling
distribution is a maximum entropy distribution then maximal efficiency is achiev-
able in the squared error loss sense, that is, the Cramer-Rao lower bound for the
sampling variance is achievable.14 Bayesian inference consistently processes all
information by combining the maximum entropy prior distribution and maximum
entropy likelihood function or sampling distribution. This affirms the power of
probability as logic (Jaynes [2003]).

13.8 An illustration: Jaynes’ widget problem

Jaynes’ widget problem is a clever illustration of informed priors (Jaynes [1963],
[2003], ch. 14). A manager of a process that produces red (R), yellow (Y), and
green (G) widgets must choose between producing R, Y, or G widgets as only 200
of one type of widgets per day can be produced. If this is all that is known (nearly
complete ignorance), the manager is indifferent between R, Y, or G. Suppose the
manager acquires some background knowledge. For illustrative purposes, we ex-
plore stages of background knowledge.

Stage 1: The manager learns the current stock of widgets: 100 red, 150 yellow,
and 50 green. With only this background knowledge including no knowledge of
the consequences, the manager intuitively chooses to produce green widgets.

Stage 2: The manager learns the average daily orders have been 50 red, 100
yellow, and 10 green widgets. With this background knowledge, the manager may
intuitively decide to produce yellow widgets.

13The constraint is E [β (x)] = − ∂ logZ(τ)
∂τ

as

E [β (x)] =

!
β (x)

m (x)

Z (τ)
e−τ(θ)β(x)dx

and

−∂ logZ (τ)
∂τ

= −∂
�
m (x) e−τ(θ)β(x)dx

∂τ

= − 1

Z (τ)

!
m (x) e−τ(θ)β(x) (−β (x)) dx

=

!
β (x)

m (x)

Z (τ)
e−τ(θ)β(x)dx

14See Jaynes [2003], p. 520 for exceptions. Briefly, if the sampling distribution does not have the
form of a maximum entropy distribution either the lower bound is not achievable or the sampling
distribution has discontinuities.
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Table 13.1: Jaynes’ widget problem: summary of background knowledge by
stage

Stage R Y G Decision
1. in stock 100 150 50 G
2. aver. daily orders 50 100 10 Y
3. aver. individual order size 75 10 20 R
4. specific order 0 0 40 ?

Stage 3: The manager learns the average order size has been 75 red, 10 yel-
low, and 20 green widgets. With this background knowledge, the manager may
intuitively switch to producing red widgets.

Stage 4: The manager learns an emergency order for 40 green widgets is im-
minent. Now, what does the manager decide to produce? It seems common sense
is not enough to guide the decision. We’ll pursue a formal analysis but first we
summarize the problem in table 13.1.

Of course, this is a decision theoretic problem where formally the manager
(a) enumerates the states of nature, (b) assigns prior probabilities associated with
states conditional on background knowledge, (c) updates beliefs via Bayesian
revision (as this framing of the problem involves no new evidence, this step is
suppressed), (d) enumerates the possible decisions (produce R, Y, or G), and (e)
selects the expected loss minimizing alternative based on a loss function which
incorporates background knowledge of consequences.

13.8.1 Stage 1 solution
The states of nature are the number of red, yellow, and green widgets ordered
today. Let n1 = 0, 1, 2, . . . be the number of red widgets ordered. Similarly,
let n2 and n3 be the number of yellow and green widgets ordered. If this triple
(n1, n2, n3) is known the problem is likely trivial. The maximum entropy prior
given only stage 1 background knowledge is

max
p(n1,n2,n3)

�
−

∞/
n1=0

∞/
n2=0

∞/
n3=0

p (n1, n2, n3) log p (n1, n2, n3)

�
s.t.

,∞
n1=0

,∞
n2=0

,∞
n3=0

p (n1, n2, n3) = 1

or solve the Lagrangian

L = −
∞/

n1=0

∞/
n2=0

∞/
n3=0

p (n1, n2, n3) log p (n1, n2, n3)

− (λ0 − 1)
� ∞/
n1=0

∞/
n2=0

∞/
n3=0

p (n1, n2, n3)− 1
�

The solution is the improper (uniform) prior

p (n1, n2, n3) = exp [−λ0] for all (n1, n2, n3)



13.8 An illustration: Jaynes’ widget problem 357

where λ0 = lim
n→∞ logn.

As we have no background knowledge of consequences, the loss function is
simply

R (x) = x x > 0
0 x ≤ 0

and the loss associated with producing red widgets (decision D1) is

L (D1;n1, n2, n3) = R (n1 − S1 − 200) +R (n2 − S2) +R (n3 − S3)

where Si is the current stock of widget i = R, Y, or G. Similarly, the loss associ-
ated with producing yellow widgets (decision D2) is

L (D2;n1, n2, n3) = R (n1 − S1) +R (n2 − S2 − 200) +R (n3 − S3)

or green widgets (decision D3) is

L (D3;n1, n2, n3) = R (n1 − S1 − 200) +R (n2 − S2) +R (n3 − S3 − 200)

Then, the expected loss for decision D1 is

E [L (D1)] =
/
ni

p (n1, n2, n3)L (D1;n1, n2, n3)

=
∞/

n1=0

p (n1)R (n1 − S1 − 200)

+
∞/

n2=0

p (n2)R (n2 − S2)

+

∞/
n3=0

p (n3)R (n3 − S3)

Expected loss associated with decision D2 is

E [L (D2)] =
∞/

n1=0

p (n1)R (n1 − S1)

+
∞/

n2=0

p (n2)R (n2 − S2 − 200)

+
∞/

n3=0

p (n3)R (n3 − S3)
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and for decision D3 is

E [L (D3)] =
∞/

n1=0

p (n1)R (n1 − S1)

+
∞/

n2=0

p (n2)R (n2 − S2)

+
∞/

n3=0

p (n3)R (n3 − S3 − 200)

Recognize p (ni) = p for all ni, let b any arbitrarily large upper limit such that
p = 1

b , and substitute in the current stock values

E [L (D1)] =

b/
n1=0

pR (n1 − 300) +
b/

n2=0

pR (n2 − 150)

+

b/
n3=0

pR (n3 − 50)

=
(b− 300) (b− 299)

2b
+
(b− 150) (b− 149)

2b

+
(b− 50) (b− 49)

2b

=
114500− 997b+ 3b2

2b

E [L (D2)] =
b/

n1=0

pR (n1 − 100) +
b/

n2=0

pR (n2 − 350)

+

b/
n3=0

pR (n3 − 50)

=
(b− 100) (b− 99)

2b
+
(b− 350) (b− 349)

2b

+
(b− 50) (b− 49)

2b

=
134500− 997b+ 3b2

2b



13.8 An illustration: Jaynes’ widget problem 359

E [L (D3)] =

b/
n1=0

pR (n1 − 100) +
b/

n2=0

pR (n2 − 150)

+

b/
n3=0

pR (n3 − 250)

=
(b− 100) (b− 99)

2b
+
(b− 150) (b− 149)

2b

+
(b− 250) (b− 249)

2b

=
94500− 997b+ 3b2

2b

Since the terms involving b are identical for all decisions, expected loss minimiza-
tion involves comparison of the constants. Consistent with intuition, the expected
loss minimizing decision is D3.

13.8.2 Stage 2 solution
For stage 2 we know the average demand for widgets. Conditioning on these three
averages adds three Lagrange multipliers to our probability assignment. Following
the discussion above on maximum entropy probability assignment we have

p (n1, n2, n3) =
exp [−λ1n1 − λ2n2 − λ3n3]

Z (λ1,λ2,λ3)

where the partition function is

Z (λ1,λ2,λ3) =
∞/

n1=0

∞/
n2=0

∞/
n3=0

exp [−λ1n1 − λ2n2 − λ3n3]

factoring and recognizing this as a product of three geometric series yields

Z (λ1,λ2,λ3) =

30
i=1

(1− exp [−λi])−1

Since the joint probability factors into

p (n1, n2, n3) = p (n1) p (n2) p (n3)

we have

p (ni) = (1− exp [−λi]) exp [−λini] i = 1, 2, 3
ni = 0, 1, 2, . . .

E [ni] is our background knowledge and from the above analysis we know

E [ni] = −∂ logZ (λ1,λ2,λ3)
∂λi

=
exp [−λi]

1− exp [−λi]
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Manipulation produces

exp [−λi] = E [ni]

E [ni] + 1

substitution finds

p (ni) = (1− exp [−λi]) exp [−λini]
= 1

E[ni]+1

�
E[ni]
E[ni]+1

�ni
ni = 0, 1, 2, . . .

Hence, we have three exponential distributions for the maximum entropy proba-
bility assignment

p1 (n1) =
1

51



50

51

�n1
p2 (n2) =

1

101



100

101

�n2
p3 (n3) =

1

11



10

11

�n3
Now, combine these priors with the uninformed loss function, say for the first

component of decision D1

∞/
n1=0

p (n1)R (n1 − 300) =
∞/

n1=300

p (n1) (n1 − 300)

=
∞/

n1=300

p (n1)n1 −
∞/

n1=300

p (n1) 300

By manipulation of the geometric series

∞/
n1=300

p (n1)n1 = (1− exp [−λ1])

×exp [−300λ1] (300 exp [λ1]− 299) exp [−λ1]
(1− exp [−λ1])2

=
exp [−300λ1] (300 exp [λ1]− 299)

exp [λ1]− 1

and

∞/
n1=300

p (n1) 300 = 300 (1− exp [−λ1]) exp [−300λ1]
1− exp [−λ1]

= 300 exp [−300λ1]
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Combining and simplifying produces

∞/
n1=300

p (n1) (n1 − 300) =
exp [−300λ1] (300 exp [λ1]− 299)

exp [λ1]− 1

−exp [−300λ1] (300 exp [λ1]− 300)
exp [λ1]− 1

=
exp [−300λ1]
exp [λ1]− 1

substituting exp [−λ1] = E[n1]
E[n1]+1

= 50
51 yields

∞/
n1=300

p (n1) (n1 − 300) =
�
50
51

�300
51
50 − 1

= 0.131

Similar analysis of other components and decisions produces the following sum-
mary results for the stage 2 decision problem.

E [L (D1)] =

∞/
n1=0

p (n1)R (n1 − 300) +
∞/

n2=0

p (n2)R (n2 − 150)

+

∞/
n3=0

p (n3)R (n3 − 50)

= 0.131 + 22.480 + 0.085 = 22.70

E [L (D2)] =
∞/

n1=0

p (n1)R (n1 − 100) +
∞/

n2=0

p (n2)R (n2 − 350)

+

∞/
n3=0

p (n3)R (n3 − 50)

= 6.902 + 3.073 + 10.060 = 10.06

E [L (D3)] =

∞/
n1=0

p (n1)R (n1 − 100) +
∞/

n2=0

p (n2)R (n2 − 150)

+
∞/

n3=0

p (n3)R (n3 − 250)

= 6.902 + 22.480 + 4× 10−10 = 29.38

Consistent with our intuition, the stage 2 expected loss minimizing decision is
produce yellow widgets.
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13.8.3 Stage 3 solution
With average order size knowledge, we are able to frame the problem by enu-
merating more detailed states of nature. That is, we can account for not only total
orders but also individual orders. A state of nature can be described as we receive
u1 orders for one red widget, u2 orders for two red widgets, etc., we also receive
vy orders for y yellow widgets and wg orders for g green widgets. Hence, a state
of nature is specified by

θ = {u1, . . . , v1, . . . , w1, . . .}
to which we assign probability

p (u1, . . . , v1, . . . , w1, . . .)

Today’s total demands for red, yellow and green widgets are

n1 =
∞/
r=1

rur, n2 =
∞/
y=1

yuy, n3 =
∞/
g=1

gug

whose expectations from stage 2 areE [n1] = 50,E [n2] = 100, andE [n3] = 10.
The total number of individual orders for red, yellow, and green widgets are

m1 =
∞/
r=1

ur, m2 =
∞/
y=1

uy, m3 =
∞/
g=1

ug

Since we know the average order size for red widgets is 75, for yellow widgets is
10, and for green widgets is 20, we also know the average daily total number of
orders for red widgets is E [m1] =

E[n1]
75 = 50

75 , for yellow widgets is E [m2] =
E[n2]
10 = 100

10 , and for green widgets is E [m3] =
E[n3]
20 = 10

20 .
Six averages implies we have six Lagrange multipliers and the maximum en-

tropy probability assignment is

p (θ) =
exp [−λ1n1 − μ1m1 − λ2n2 − μ2m2 − λ3n3 − μ3m3]

Z (λ1,μ1,λ2,μ2,λ3,μ3)

Since both the numerator and denominator factor, we proceed as follows

p (θ) = p (u1, . . . , v1, . . . , w1, . . .)

= p1 (u1, . . .) p2 (v1, . . .) p3 (w1, . . .)

where, for instance,

Z1 (λ1,μ1) =

∞/
u1=0

∞/
u2=0

· · · exp [−λ1 (u1 + 2u2 + 3u3 + · · · )]

× exp [−μ1 (u1 + u2 + u3 + · · · )]

=
∞0
r=1

1

1− exp [−rλ1 − μ1]
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Since

E [ni] = −∂ logZi (λi,μi)
∂λi

and

E [mi] = −∂ logZi (λi,μi)
∂μi

we can solve for, say, λ1 and μ1 via

E [ni] =
∂

∂λ1

∞/
r=1

log (1− exp [−rλ1 − μ1])

=
∞/
r=1

r

exp [rλ1 + μ1]− 1

and

E [mi] =
∂

∂μ1

∞/
r=1

log (1− exp [−rλ1 − μ1])

=
∞/
r=1

1

exp [rλ1 + μ1]− 1

The expressions for E [ni] and E [mi] can be utilized to numerically solve for
λi and μi to complete the maximum entropy probability assignment (see Tribus
and Fitts [1968]), however, as noted by Jaynes [1963, 2003], these expressions
converge very slowly. We follow Jaynes by rewriting the expressions in terms of
quickly converging sums and then follow Tribus and Fitts by numerically solving
for λi and μi.

15

For example, use the geometric series

E [m1] =

∞/
r=1

1

exp [rλ1 + μ1]− 1

=
∞/
r=1

∞/
j=1

exp [−j (rλ1 + μ1)]

Now, evaluate the geometric series over r

∞/
r=1

∞/
j=1

exp [−j (rλ1 + μ1)] =
∞/
j=1

exp [−j (λ1 + μ1)]
1− exp [−jλ1]

15Jaynes [1963] employs approximations rather than computer-based numerical solutions.
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Table 13.2: Jaynes’ widget problem: stage 3 state of knowledge

Widget S E [ni] E [mi] λi μi
Red 100 50 50

75 0.0134 4.716

Yellow 150 100 100
10 0.0851 0.514

Green 50 10 10
20 0.051 3.657

This expression is rapidly converging (the first term alone is a reasonable approx-
imation). Analogous geometric series ideas apply to E [ni]

E [n1] =

∞/
r=1

r

exp [rλ1 + μ1]− 1

=
∞/
r=1

∞/
j=1

r exp [−j (rλ1 + μ1)]

=
∞/
j=1

exp [−j (λ1 + μ1)]
(1− exp [−jλ1])2

Again, this series is rapidly converging. Now, numerically solve for λi and μi
utilizing knowledge of E [ni] and E [mi]. For instance, solving

E [m1] =
50

75
=

∞/
j=1

exp [−j (λ1 + μ1)]
1− exp [−jλ1]

E [n1] = 50 =
∞/
j=1

exp [−j (λ1 + μ1)]
(1− exp [−jλ1])2

yields λ1 = 0.0134 and μ1 = 4.716. Other values are determined in analogous
fashion and all results are described in table 13.2.16

Gaussian approximation

The expected loss depends on the distribution of daily demand, ni. We compare
a Gaussian approximation based on the central limit theorem with the exact dis-
tribution for ni. First, we consider the Gaussian approximation. We can write the

16Results are qualitatively similar to those reported by Tribus and Fitts [1968].
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expected value for the number of orders of, say, size r as

E [ur] =

∞/
ur=0

p1 (ur)ur

=

∞/
ur=0

exp [− (rλ1 + μ1)ur]
Z (λ1,μ1)

ur

=

∞/
ur=0

exp [− (rλ1 + μ1)ur]
1

1−exp[−rλ1−μ1]
ur

= (1− exp [−rλ1 − μ1])
exp [−rλ1 − μ1]

(1− exp [−rλ1 − μ1])2

=
1

exp [rλ1 + μ1]− 1
and the variance of ur as

V ar [ur] = E
�
u2r
�− E [ur]2

E
�
u2r
�
=

∞/
ur=0

exp [− (rλ1 + μ1)ur]
1

1−exp[−rλ1−μ1]
u2r

=
∞/

ur=0

(1− exp [−rλ1 − μ1])

×exp [− (rλ1 + μ1)] + exp [−2 (rλ1 + μ1)]
(1− exp [−rλ1 − μ1])3

=
exp [rλ1 + μ1] + 1

(exp [rλ1 + μ1]− 1)2

Therefore,

V ar [ur] =
exp [rλ1 + μ1]

(exp [rλ1 + μ1]− 1)2
Since n1 is the sum of independent random variables

n1 =

∞/
r=1

rur

the probability distribution for n1 has mean E [n1] = 50 and variance

V ar [n1] =
∞/
r=1

r2V ar [ur]

=
∞/
r=1

r2 exp [rλ1 + μ1]

(exp [rλ1 + μ1]− 1)2
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Table 13.3: Jaynes’ widget problem: stage 3 state of knowledge along with
standard deviation

Widget S E [ni] E [mi] λi μi σi
Red 100 50 50

75 0.0134 4.716 86.41

Yellow 150 100 100
10 0.0851 0.514 48.51

Green 50 10 10
20 0.051 3.657 19.811

We convert this into the rapidly converging sum17

∞/
r=1

r2 exp [rλ1 + μ1]

(exp [rλ1 + μ1]− 1)2
=

∞/
r=1

∞/
j=1

jr2 exp [−j (rλ1 + μ1)]

=
∞/
j=1

j
exp [−j (λ1 + μ1)] + exp [−j (2λ1 + μ1)]

(1− exp [−jλ])3

Next, we repeat stage 3 knowledge updated with the numerically-determined stan-
dard deviation of daily demand, σi, for the three widgets in table 13.3.18,19

The central limit theorem applies as there are many ways for large values of ni
to arise.20 Then the expected loss of failing to meet today’s demand given current
stock, Si, and today’s production, Pi = 0 or 200, is

∞/
ni=1

p (ni)R (ni − Si − Pi)

≈ 1√
2πσi

1 ∞

Si+Pi

(ni − Si − Pi) exp
�
−1
2

(ni − E [ni])2
σ2i

�
dni

Numerical evaluation yields the following expected unfilled orders conditional on
decision Di.

E [L (D1)] = 0.05 + 3.81 + 0.16 = 4.02

E [L (D2)] = 15.09 + 0.0 + 0.16 = 15.25

E [L (D3)] = 15.09 + 3.81 + 0.0 = 18.9

Clearly, producing red widgets is preferred given state 3 knowledge based on our
central limit theorem (Gaussian) approximation. Next, we follow Tribus and Fitts
[1968] and revisit the expected loss employing exact distributions for ni.

17For both variance expressions, V ar [ur] and V ar [n1] , we exploit the idea that the converging

sum
∞�
j=1

j2 exp [−jx] = exp[−x]+exp[−2x]
(1−exp[−x])3 .

18Jaynes [1963] employs the quite good approximation V ar [ni] ≈ 2
λi
E [ni].

19Results are qualitatively similar to those reported by Tribus and Fitts [1968].
20On the other hand, when demand is small, say, ni = 2, there are only two ways for this to occur,

u1 = 2 or u2 = 1.
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Exact distributions

We derive the distribution for daily demand given stage 3 knowledge, p (nr | �3),
from the known distribution of daily orders p (u1, . . . | �3) by appealing to Bayes’
rule

p (nr | �3) =

∞/
u1=0

∞/
u2=0

· · · p (nru1u2 . . . | �3)

=

∞/
u1=0

∞/
u2=0

· · · p (nr | u1u2 . . .�3) p (u1u2 . . . | �3)

We can write

p (nr | u1u2 . . .�3) = δ
⎛⎝nr − ∞/

j=1

juj

⎞⎠
where δ (x) = 1 if x = 0 and δ (x) = 0 otherwise. Using independence of ui, we
have

p (nr | �3) =
∞/

u1=0

∞/
u2=0

· · · δ
⎛⎝nr − ∞/

j=1

juj

⎞⎠ ∞0
i=1

p (ui | �3)

Definition 13.1 Define the z transform as follows. For f (n) a function of the
discrete variable n, the z transform F (z) is

F (z) ≡
∞,
n=0

f (n) zn 0 ≤ z ≤ 1

Let P (z) be the z transform of p (nr | �3)

P (z) =
∞/

nr=0

∞/
u1=0

∞/
u2=0

· · · znrδ
⎛⎝nr − ∞/

j=1

juj

⎞⎠ ∞0
i=1

p (ui | �3)

=

∞/
u1=0

∞/
u2=0

· · · z
∞�
j=1

juj
∞0
i=1

p (ui | �3)

=

∞/
u1=0

∞/
u2=0

· · ·
∞0
i=1

p (ui | �3) ziui

=

∞0
i=1

∞/
ui=0

ziuip (ui | �3)

Substituting p (ui | �3) = (1− exp [−iλ1 − μ1]) exp [−ui (iλ1 + μ1)] yields

P (z) =

∞0
i=1

(1− exp [−iλ1 − μ1])
∞0
i=1

∞/
ui=0

�
zi exp [−iλ1 − μ1]

�ui
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Since P (0) =
∞-
i=1

(1− exp [−iλ1 − μ1]), we can write

P (z) = P (0)
∞0
i=1

∞/
ui=0

�
zi exp [−iλ1 − μ1]

�ui
The first few terms in the product of sums is

P (z)

P (0)
=

∞0
i=1

∞/
ui=0

�
zi exp [−iλ1 − μ1]

�ui
= 1 +

�
ze−λ1

�
e−μ1 +

�
ze−λ1

�2 �
e−μ1 + e−2μ1

�
+
�
ze−λ1

�3 �
e−μ1 + e−2μ1 + e−3μ1

�
+ · · ·

Or, write
P (z)

P (0)
=

∞/
n=0

Cn
�
ze−λ1

�n
where the coefficients Cn are defined by C0 = 1 and

Cn =
n,
j=1

Cj,ne
−jμ1 ,

∞,
i=1

ui = j,
∞,
i=1

iui = n

and
Cj,n = Cj−1,n−1 + Cj,n−j

with starting values C1,1 = C1,2 = C1,3 = C1,4 = C2,2 = C2,3 = C3,3 =
C3,4 = C4,4 = 1 and C2,4 = 2.21

Let p0 ≡ p (n = 0 | �3). Then, the inverse transform of P (z) yields the distri-
bution for daily demand

p (n | �3) = p0Cne−nλ1

We utilize this expression for p (n | �3), the coefficientsCn =
n,
j=1

Cj,ne
−jμ1 , the

recursion formula Cj,n = Cj−1,n−1 + Cj,n−j , and the earlier-derived Lagrange
multipliers to numerically derive the distributions for daily demand for red, yel-
low, and green widgets. The distributions are plotted in figure 13.1.

As pointed out by Tribus and Fitts, daily demand for yellow widgets is nearly
symmetric about the mean while daily demand for red and green widgets is "hit

21Cj,j = 1 for all j and Cj,n = 0 for all n < j. See the appendix of Tribus and Fitts [1968] for a
proof of the recursion expression.
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Figure 13.1: "Exact" distributions for daily widget demand

or miss." Probabilities of zero orders for the widgets are

p (n1 = 0) = 0.51
p (n2 = 0) = 0.0003
p (n3 = 0) = 0.61

Next, we recalculate the minimum expected loss decision based on the "exact"
distributions. The expected loss of failing to meet today’s demand given current
stock, Si, and today’s production, Pi = 0 or 200, is

∞/
ni=1

p (ni | �3)R (ni − Si − Pi) =
∞/

Si+Pi

(ni − Si − Pi) p (ni | �3)

Numerical evaluation yields the following expected unfilled orders conditional on
decision Di.

E [L (D1)] = 2.35 + 5.07 + 1.31 = 8.73

E [L (D2)] = 18.5 + 0.0 + 1.31 = 19.81

E [L (D3)] = 18.5 + 5.07 + 0.0 = 23.58

While the Gaussian approximation for the distribution of daily widget demand
and numerical evaluation of the "exact" distributions produce somewhat different
expected losses, the both demonstrably support production of red widgets today.
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13.8.4 Stage 4 solution
Stage 4 involves knowledge of an imminent order of 40 green widgets. This ef-
fectively changes the stage 3 analysis so that the current stock of green widgets is
10 rather than 50. Expected losses based on the Gaussian approximation are

E [L (D1)] = 0.05 + 3.81 + 7.9 = 11.76

E [L (D2)] = 15.09 + 0.0 + 7.9 = 22.99

E [L (D3)] = 15.09 + 3.81 + 0.0 = 18.9

On the other hand, expected losses based on the "exact" distributions are

E [L (D1)] = 2.35 + 5.07 + 6.70 = 14.12

E [L (D2)] = 18.5 + 0.0 + 6.70 = 25.20

E [L (D3)] = 18.5 + 5.07 + 0.0 = 23.58

While stage 4 knowledge shifts production in favor of green relative to yellow
widgets, both distributions for daily widget demand continue to support producing
red widgets today. Next, we explore another probability assignment puzzle.

13.9 Football game puzzle

Jaynes [2003] stresses consistent reasoning as the hallmark of the maximum en-
tropy principle. Sometimes, surprisingly simple settings can pose a challenge.
Consider the following puzzle posed by Walley [1991, pp. 270-271]. A football
match-up between two football rivals produces wins (W ), losses (L), or draws
(D) for the home team. If this is all we know then the maximum entropy prior
for the home team’s outcome is uniform Pr (W,L,D) =

�
1
3 ,

1
3 ,

1
3

�
. Suppose we

know the home team wins half the time. Then, the maximum entropy prior is
Pr (W,L,D) =

�
1
2 ,

1
4 ,

1
4

�
. Suppose we learn the game doesn’t end in a draw. The

posterior distribution is Pr (W,L,D) =
�
2
3 ,

1
3 , 0

�
.22

Now, we ask what is the maximum entropy prior if the home team wins half the
time and the game is not a draw. The maximum entropy prior is Pr (W,L,D) =�
1
2 ,

1
2 , 0

�
. What is happening? This appears to be inconsistent reasoning. Is there

something amiss with the maximum entropy principle?
We suggest two different propositions are being evaluated. The former involves

a game structure that permits draws but we gain new evidence that a particular
game did not end in a draw. On the other hand, the latter game structure precludes
draws. Consequently, the information regarding home team performance has a
very different implication (three states of nature, W vs. L or D, compared with

22We return to this puzzle later when we discuss Jaynes’ Ap distribution.
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two states of nature,W vs. L). This is an example of what Jaynes [2003, pp. 470-
3] calls "the marginalization paradox," where nuisance parameters are integrated
out of the likelihood in deriving the posterior. If we take care to recognize these
scenarios involve different priors and likelihoods, there is no contradiction. In
Jaynes’ notation where we let ς = W , y = not D, and z = null, the former
involves posterior p (ς | y, z,�1) with prior �1 permitting W , L, or D, while
the latter involves posterior p (ς | z,�2) with prior �2 permitting only W or L.
Evaluation of propositions involves joint consideration of priors and likelihoods,
if either changes there is no surprise when our conclusions are altered.

The example reminds us of the care required in formulating the proposition
being evaluated. The next example revisits an accounting issue where informed
priors are instrumental to identification and inference.

13.10 Financial statement example

13.10.1 Under-identification and Bayes
If we have more parameters to be estimated than data, we often say the problem
is under-identified. However, this is a common problem in accounting. To wit, we
often ask what activities did the organization engage in based on our reading of
their financial statements. We know there is a simple linear relation between the
recognized accounts and transactions

Ay = x

where A is an m × n matrix of ±1 and 0 representing simple journal entries in
its columns and adjustments to individual accounts in its rows, y is the transaction
amount vector, and x is the change in the account balance vector over the period of
interest (Arya, et al [2000]). Since there are onlym−1 linearly independent rows
(due to the balancing property of accounting) and m (the number of accounts) is
almost surely less than n (the number of transactions we seek to estimate) we’re
unable to invert from x to recover y. Do we give up? If so, we might be forced to
conclude financial statements fail even this simplest of tests.

Rather, we might take a page from physicists (Jaynes [2003]) and allow our
prior knowledge to assist estimation of y. Of course, this is what decision the-
ory also recommends. If our prior or background knowledge provides a sense
of the first two moments for y, then the Gaussian or normal distribution is our
maximum entropy prior. Maximum entropy implies that we fully utilize our back-
ground knowledge but don’t use background knowledge we don’t have (Jaynes
[2003], ch. 11). That is, maximum entropy priors combined with Bayesian revi-
sion make efficient usage of both background knowledge and information from
the data (in this case, the financial statements). As in previously discussed ac-
counting examples, background knowledge reflects potential equilibria based on
strategic interaction of various, relevant economic agents and accounting recogni-
tion choices for summarizing these interactions.
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Suppose our background knowledge � is completely summarized by

E [y | �] = μ

and

V ar [y | �] = Σ

then our maximum entropy prior distribution is

p (y | �) ∼ N (μ,Σ)

and the posterior distribution for transactions, y, conditional on the financial state-
ments, x, is

p (y | x,�)
∼ N

�
μ+ ΣAT0

�
A0ΣA

T
0

�−1
A0 (y

p − μ) ,Σ− ΣAT0
�
A0ΣA

T
0

�−1
A0Σ

�
where N (·) refers to the Gaussian or normal distribution with mean vector de-
noted by the first term, and variance-covariance matrix denoted by the second
term, A0 is A after dropping one row and yp is any consistent solution to Ay = x
(for example, form any spanning tree from a directed graph of Ay = x and solve
for yp). For the special case where Σ = σ2I (perhaps unlikely but nonetheless
illuminating), this simplifies to

p (y | x,�) ∼ N �
PR(A)y

p +
�
I − PR(A)

�
μ,σ2

�
I − PR(A)

��
where PR(A) = AT0

�
A0A

T
0

�−1
A0 (projection into the rowspace of A), and then

I − PR(A) is the projection into the nullspace of A.23

23In the general case, we could work with the subspaces (and projections) ofA0Γ where Σ = ΓΓT

(the Cholesky decomposition of Σ) and the transformed data z ≡ Γ−1y ∼ N
�
Γ−1μ, I

�
(Arya,

Fellingham, and Schroeder [2000]). Then, the posterior distribution of z conditional on the financial
statements x is

p (z | x,�) ∼ N �PR(A0Γ)zp + �I − PR(A0Γ)�μz , I − PR(A0Γ)�
where zp = Γ−1yp and μz = Γ−1μ. From this we can recover the above posterior distribution of y
conditional on x via the inverse transformation y = Γz.
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13.10.2 Numerical example
Suppose we observe the following financial statements.

Balance sheets Ending balance Beginning balance
Cash 110 80
Receivables 80 70
Inventory 30 40
Property & equipment 110 100

Total assets 330 290

Payables 100 70
Owner’s equity 230 220

Total equities 330 290

Income statement for period
Sales 70
Cost of sales 30
SG&A 30

Net income 10

Let x be the change in account balance vector where credit changes are negative.
The sum of x is zero; a basis for the left nullspace of A is a vector of ones.

change in account amount
Δ cash 30

Δ receivables 10
Δ inventory (10)

Δ property & equipment 10
Δ payables (30)

sales (70)
cost of sales 30

sg&a expenses 30

We envision the following transactions associated with the financial statements
and are interested in recovering their magnitudes y.

transaction amount
collection of receivables y1

investment in property & equipment y2
payment of payables y3

bad debts expense y4
sales y5

depreciation - period expense y6
cost of sales y7

accrued expenses y8
inventory purchases y9

depreciation - product cost y10
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A crisp summary of these details is provided by a directed graph as depicted in
figure 13.2.

Figure 13.2: Directed graph of financial statements

TheAmatrix associated with the financial statements and directed graph where
credits are denoted by −1 is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 0 0 0 0 0 0 0
−1 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 −1 0 1 1
0 1 0 0 0 −1 0 0 0 −1
0 0 1 0 0 0 0 −1 −1 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and a basis for the nullspace is immediately identified by any set of linearly inde-
pendent loops in the graph, for example,

N =

⎡⎣ 1 0 1 −1 0 0 0 1 0 0
0 1 −1 0 0 0 0 0 −1 1
0 0 0 0 0 1 0 −1 1 −1

⎤⎦
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A consistent solution yp is readily identified by forming a spanning tree and solv-
ing for the remaining transaction amounts. For instance, let y3 = y6 = y9 = 0,
the spanning tree is depicted in figure 13.3.

Figure 13.3: Spanning tree

Then, (yp)T =
�
60 30 0 0 70 0 30 30 0 20

�
.

Now, suppose background knowledge � regarding transactions is described by
the first two moments

E
�
yT | �� = μT = �

60 20 25 2 80 5 40 10 20 15
�

and

V ar [y | �] = Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 5 0 0 0 0 0
0 1 0 0 0 0.2 0 0 0 0.2
0 0 1 0 0 0 0 0.2 0 0
0 0 0 0.5 0.1 0 0 0 0 0
5 0 0 0.1 10 0 3.5 0 0 0
0 0.2 0 0 0 1 0 0 0 0
0 0 0 0 3.5 0 5 0 0.2 0
0 0 0.2 0 0 0 0 1 0 0
0 0 0 0 0 0 0.2 0 1 0
0 0.2 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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maximum entropy priors for transactions are normally distributed with parameters
described by the above moments.

Given financial statements x and background knowledge �, posterior beliefs
regarding transactions are normally distributed with E

�
yT | x,�� =

[ 58.183 15.985 12.198 1.817 70 5.748 30 22.435 19.764 0.236 ]

and V ar [y | x,�] =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.338 0.172 0.167 −0.338 0 0.164 0 0.174 −0.007 0.007
0.172 0.482 −0.310 −0.172 0 0.300 0 −0.128 −0.182 0.182
0.167 −0.310 0.477 −0.167 0 −0.135 0 0.302 0.175 −0.175
−0.338 −0.172 −0.167 0.338 0 −0.164 0 −0.174 0.007 −0.007
0 0 0 0 0 0 0 0 0 0

0.164 0.300 −0.135 −0.164 0 0.445 0 −0.281 0.145 −0.145
0 0 0 0 0 0 0 0 0 0

0.174 −0.128 0.302 −0.174 0 −0.281 0 0.455 −0.153 0.153
−0.007 −0.182 0.175 0.007 0 0.145 0 −0.153 0.328 −0.328
0.007 0.182 −0.175 −0.007 0 −0.145 0 0.153 −0.328 0.328

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
As our intuition suggests, the posterior mean of transactions is consistent with the
financial statements, A (E [y | x,�]) = x, and there is no residual uncertainty
regarding transactions that are not in loops, sales and cost of sales are y5 = 70
and y7 = 30, respectively. Next, we explore accounting accruals as a source of
both valuation and evaluation information.

13.11 Smooth accruals

Now, we explore valuation and evaluation roles of smooth accruals in a simple, yet
dynamic setting with informed priors regarding the initial mean of cash flows.24

Accruals smooth cash flows to summarize the information content regarding ex-
pected cash flows from the past cash flow history. This is similar in spirit to Arya et
al [2002]. In addition, we show in a moral hazard setting that the foregoing accrual
statistic can be combined with current cash flows and non-accounting contractible
information to efficiently (subject to LEN model restrictions25) supply incentives
to replacement agents via sequential spot contracts. Informed priors regarding the
permanent component of cash flows facilitates performance evaluation. The LEN
(linear exponential normal) model application is similar to Arya et al [2004]. It
is not surprising that accruals can serve as statistics for valuation or evaluation,
rather the striking contribution here is that the same accrual statistic can serve
both purposes without loss of efficiency.

24These examples were developed from conversations with Joel Demski, John Fellingham, and Hai-
jin Lin.

25See Holmstrom and Milgrom [1987], for details on the strengths and limitations of the LEN (linear
exponential normal) model.
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13.11.1 DGP
The data generating process (DGP ) is as follows. Period t cash flows (excluding
the agent’s compensation s) includes a permanent componentmt that derives from
productive capital, the agent’s contribution at, and a stochastic error et.

cft = mt + at + et

The permanent component (mean) is subject to stochastic shocks.

mt = g mt−1 + �t

where m0 is common knowledge (strongly informed priors), g is a deterministic
growth factor, and stochastic shock �t. In addition, there exists contractible, non-
accounting information that is informative of the agent’s action at with noise μt.

yt = at + μt

Variance knowledge for the errors, e, �, and μ, leads to a joint normal probabil-
ity assignment with mean zero and variance-covariance matrix Σ. The DGP is
common knowledge to management and the auditor. Hence, the auditor’s role is
simply to assess manager’s reporting compliance with the predetermined account-
ing system.26

The agent has reservation wage RW and is evaluated subject to moral haz-
ard. The agent’s action is binary a ∈ {aH , aL}, aH > aL, with personal cost
c(a), c(aH) > c(aL), and the agent’s preferences for payments s and actions are
CARA U(s, a) = −exp{−r[s− c(a)]}. Payments are linear in performance mea-
sures wt (with weights γt) plus flat wage δt, st = δt + γTt wt.

The valuation role of accruals is to summarize next period’s unknown expected
cash flowmt+1 based on the history of cash flows through time t (restricted recog-
nition). The incentive-induced equilibrium agent action a∗t is effectively known
for valuation purposes. Hence, the observable cash flow history at time t is {cf1−
a∗1, cf2 − a∗2, . . . , cft − a∗t }.

13.11.2 Valuation results
For the case Σ = D where D is a diagonal matrix comprised of σ2e,σ

2
� , and σ2μ

(appropriately aligned), the following OLS regression identifies the most efficient
valuation usage of the past cash flow history.

2mt = (H
TH)−1HT z,

26Importantly, this eliminates strategic reporting considerations typically associated with equilib-
rium earnings management.
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H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ν 0 0 0 0
1 0 0 0 0
νg −ν 0 0 0
0 1 0 0 0
...

...
. . .

...
...

0 0 · · · νg −ν
0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−νg m0

cf1 − a∗1
0

cf2 − a∗2
...
0

cft − a∗t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and ν =

σe
σε
.27

Can accruals supply a sufficient summary of the cash flow history for the cash
flow mean?28

We utilize difference equations to establish accruals as a valuation statistic. Let

mt = g mt−1 + �t, ν = σe
σ� , and φ = σe

σμ . Also, B =

�
1 + ν2 ν2

g2 g2ν2

�
=

SΛS−1 where

Λ =

⎡⎣ 1+ν2+g2ν2−
√
(1+ν2+g2ν2)2−4g2ν4
2 0

0
1+ν2+g2ν2+

√
(1+ν2+g2ν2)2−4g2ν4
2

⎤⎦
and

S =

�
1+ν2−g2ν2−

√
(1+ν2+g2ν2)2−4g2ν4
2g2

1+ν2−g2ν2+
√
(1+ν2+g2ν2)2−4g2ν4
2g2

1 1

�
.

Now, define the difference equations by�
dent
numt

�
= Bt

�
den0
num0

�
= SΛtS−1

�
1
0

�
.

The primary result for accruals as a valuation statistic is presented in proposi-
tion 13.1.29

Proposition 13.1 Letmt = g mt−1+et, Σ = D, and ν = σe
σ�

. Then, accrualst−1
and cft are, collectively, sufficient statistics for the mean of cash flows mt based
on the history of cash flows and gt−1accrualst is an efficient statistic formt

[2mt|cf1, ..., cft] = gt−1accrualst

=
1

dent

�
numt

g2
(cft − a∗t ) + gt−1ν2dent−1accrualst−1

�

where accruals0 = m0, and
�
dent
numt

�
= Bt

�
den0
num0

�
= SΛtS

�
1
0

�
. The

variance of accruals is equal to the variance of the estimate of the mean of cash

27Other information, yt, is suppressed as it isn’t informative for the cash flow mean.
28As the agent’s equilibrium contribution a∗ is known, expected cash flow for the current period is

estimated by "mt + a∗t and next period’s expected cash flow is predicted by g "mt + a∗t+1.
29All proofs are included in the end of chapter appendix.
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flows multiplied by g2(t−1); the variance of the estimate of the mean of cash
flows equals the coefficient on current cash flow multiplied by σ2e, V ar [2mt] =
numt

dentg2
σ2e.

Hence, the current accrual equals the estimate of the current mean of cash flows
scaled by gt−1, accrualst = 1

gt−1 2mt.

Tidy accruals

To explore the tidiness property of accruals in this setting it is instructive to con-
sider the weight placed on the most recent cash flow as the number of periods
becomes large. This limiting result is expressed in corollary 13.2.

Corollary 13.2 As t becomes large, the weight on current cash flows for the effi-
cient estimator of the mean of cash flows approaches

2

1 + (1− g2) ν2 +
;
(1 + (1 + g2) ν2)

2 − 4g2ν4

and the variance of the estimate approaches

2

1 + (1− g2) ν2 +
;
(1 + (1 + g2) ν2)

2 − 4g2ν4
σ2e.

Accruals, as identified above, are tidy in the sense that each period’s cash flow is
ultimately recognized in accounting income or remains as a "permanent" amount
on the balance sheet.30 This permanent balance is approximately

k−1/
t=1

cft

�
1− numt

numk
− numt

k−1/
n=t

gn−t−2ν2(n−1)

gn−1denn

�

where k is the first period where numt

g2dent
is well approximated by the asymptotic

rate identified in corollary 1 and the estimate of expected cash flow 2mt is identified
from tidy accruals as gt−1accrualst.31

In the benchmark case (Σ = σ2eI , ν = φ = 1, and g = 1), this balance reduces
to

k−1/
t=1

cft

�
1− F2t

F2k
− F2t

k−1/
n=t

1

F2n+1

�
where the estimate of expected cash flow 2mt is equal to tidy accrualst.

30The permanent balance is of course settled up on disposal or dissolution.
31Cash flows beginning with period k and after are fully accrued as the asymptotic rate effectively

applies each period. Hence, a convergent geometric series is formed that sums to one. On the other
hand, the permanent balance arises as a result of the influence of the common knowledge initial ex-
pected cash flowm0.
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13.11.3 Performance evaluation
On the other hand, the evaluation role of accruals must regard at as unobservable
while previous actions of this or other agents are at the incentive-induced equi-
librium action a∗, and all observables are potentially (conditionally) informative:
{cf1 − a∗1, cf2 − a∗2, . . . , cft}, and {y1 − a∗1, y2 − a∗2, . . . , yt}.32

For the case Σ = D, the most efficient linear contract can be found by determin-
ing the incentive portion of compensation via OLS and then plugging a constant δ
to satisfy individual rationality.33 The (linear) incentive payments are equal to the
OLS estimator, the final element of 2at, multiplied by Δ = c(aH)−c(aL)

aH−aL , γt= Δ 2at
where34

2at = (HT
a Ha)

−1HT
a wt,

Ha =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ν 0 0 0 0 0
1 0 0 0 0 0
νg −ν 0 0 0 0
0 1 0 0 0 0
...

...
. . .

...
...

...
0 0 · · · νg −ν 0
0 0 · · · 0 1 1
0 0 · · · 0 0 φ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, wt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−νg m0

cf1 − a∗1
0

cf2 − a∗2
...
0
cft
φyt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and φ =

σe
σε
.

Further, the variance of the incentive payments equals the last row, column ele-
ment of Δ2(HT

a Ha)
−1σ2e.

In a moral hazard setting, the incentive portion of the LEN contract based on
cash flow and other monitoring information history is identified in proposition
13.3. Incentive payments depend only on two realizations: unexpected cash flow
and other monitoring information for period t. Unexpected cash flow at time t is

cft − E[cft|cf1, . . . , cft−1] = cft − gt−1accrualst−1
= cft − 2mt−1
= cft − [2mt|cf1, . . . , cft−1].

As a result, sequential spot contracting with replacement agents has a particularly
streamlined form. Accounting accruals supply a convenient and sufficient sum-
mary of the cash flow history for the cash flow mean. Hence, the combination of
last period’s accruals with current cash flow yields the pivotal unexpected cash
flow variable.

32For the case Σ = D, past y’s are uninformative of the current period’s act.
33Individual rationality is satisfied if
δ = RW − {E[incentivepayments|a]− 1

2
rV ar[s]− c(a)}.

34The nuisance parameters (the initial 2t elements of "at) could be avoided if one employs GLS in
place of OLS.
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Proposition 13.3 Let mt = g mt−1 + et, Σ = D, ν = σe
σ�

, and φ = σe
σμ

. Then,
accrualst−1, cft, and yt, collectively, are sufficient statistics for evaluating the
agent with incentive payments given by

γTt wt = Δ
1

ν2dent−1 + φ2dent

�
φ2dentyt

+ν2dent−1
�
cft − gt−1accrualst−1

� �
and variance of payments equal to

V ar[γTt wt] = Δ2 dent

ν2dent−1 + φ2dent
σ2e

where Δ = c(aH)−c(aL)
aH−aL , and accrualst−1 and dent are as defined in proposition

13.1.

Benchmark case
Suppose Σ = σ2eI (ν = φ = 1) and g = 1. This benchmark case highlights
the key informational structure in the data. Corollary 13.4 identifies the linear
combination of current cash flows and last period’s accruals employed to estimate
the current cash flow mean conditional on cash flow history for this benchmark
case.

Corollary 13.4 For the benchmark case Σ = σ2eI (ν = φ = 1) and g = 1,
accruals at time t are an efficient summary of past cash flow history for the cash
flow mean if

[2mt|cf1, ..., cft] = accrualst

=
F2t
F2t+1

(cft − a∗t ) +
F2t−1
F2t+1

accrualst−1

where Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1 (the Fibonacci series), and the
sequence is initialized with accruals0 = m0 (common knowledge mean beliefs).
Then, variance of accruals equals V ar [2mt] =

F2t
F2t+1

σ2e.

For the benchmark case, the evaluation role of accruals is synthesized in corol-
lary 13.5.

Corollary 13.5 For the benchmark case Σ = σ2eI (ν = φ = 1) and g = 1,
accrualst−1, cft, and yt are, collectively, sufficient statistics for evaluating the
agent with incentive payments given by

γTt wt = Δ

�
F2t+1
L2t

yt +
F2t−1
L2t

(cft − accrualst−1)
�

and variance of payments equals Δ2 F2t+1
L2t

σ2e where accrualst−1 is as defined
in corollary 2, Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1 (the Lucas series), and
Δ = c(aH)−c(aL)

aH−aL .35

35The Lucas and Fibonacci series are related by Ln = Fn−1 + Fn+1, for n = 1, 2, ... .
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13.11.4 Summary
A positive view of accruals is outlined above. Accruals combined with current
cash flow can serve as sufficient statistics of the cash flow history for the mean
of cash flows. Further, in a moral hazard setting accruals can be combined with
current cash flow and other monitoring information to efficiently evaluate replace-
ment agents via sequential spot contracts. Informed priors regarding the conta-
minating permanent component facilitates this performance evaluation exercise.
Notably, the same accrual statistic serves both valuation and evaluation purposes.

Next, we relax common knowledge of the DGP by both management and the
auditor to explore strategic reporting equilibria albeit with a simpler DGP. That
is, we revisit earnings management with informed priors and focus on Bayesian
separation of signal (regarding expected cash flows) from noise.

13.12 Earnings management

We return to the earnings management setting introduced in chapter 2 and contin-
ued in chapter 3.36 Now, we focus on belief revision with informed priors. First,
we explore stochastic manipulation, as before, and, later on, selective manipula-
tion.

13.12.1 Stochastic manipulation
The analyst is interested in uncovering the mean of accruals E [xt] = μ (for all
t) from a sequence of reports {yt} subject to stochastic manipulation by man-
agement. Earnings management is curbed by the auditor such that manipulation
is limited to δ. That is, reported accruals yt equal privately observed accruals xt
when there is no manipulation It = 0 and add δ when there is manipulation It = 1

yt = xt Pr (It = 0) = 1− α
yt = xt + δ Pr (It = 1) = α

The (prior) probability of manipulation α is known as well as the variance of xt,
σ2d. Since the variance is known, the maximum entropy likelihood function for
the data is Gaussian with unknown, but finite and constant, mean. Background
knowledge regarding the mean of xt is that the mean is μ0 with variance σ20.
Hence, the maximum entropy prior distribution for the mean is also Gaussian.
And, the analysts’ interests focus on the mean of the posterior distribution for x,
E
�
μ | μ0,σ20,σ2d, {yt}

�
.

Consider the updating of beliefs when the first report is observed, y1. The ana-
lyst knows

y1 = x1 I1 = 0
y1 = x1 + δ I1 = 1

36These examples were developed from conversations with Joel Demski and John Fellingham.
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plus the prior probability of manipulation is α. The report contains evidence re-
garding the likelihood of manipulation. Thus, the posterior probability of manip-
ulation37 is

p1 ≡ Pr
�
I1 = 1 | μ0,σ20,σ2d, y1

�
=

αφ



y1−δ−μ0√
σ2d+σ

2
0

�
αφ



y1−δ−μ0√
σ2d+σ

2
0

�
+ (1− α)φ



y1−μ0√
σ2d+σ

2
0

�
where φ (·) is the standard Normal (Gaussian) density function. The density func-
tions are, of course, conditional on manipulation or not and the random variable
of interest is x1 − μ0 which is Normally distributed with mean zero and variance
σ2d + σ

2
0 = σ

2
d

�
1 + 1

ν2

�
where ν = σd

σ0
.

Bayesian updating of the mean following the first report is

μ1 = μ0 + σ
2
1

1

σ2d
(p1 (y1 − δ) + (1− p1) y1 − μ0)

=
1

ν2 + 1

�
ν2μ0 + p1 (y1 − δ) + (1− p1) y1

�
where the variance of the estimated mean is

σ21 =
1

1
σ20
+ 1

σ2d

=
σ2d

ν2 + 1

Since

V ar [pt (yt − δ | It = 1) + (1− pt) (yt | It = 0)] = V ar [xt] ≡ σ2d for all t

σ21, . . . ,σ
2
t are known in advance of observing the reported data. That is, the in-

formation matrix is updated each period in a known way.

37The posterior probability is logistic distributed (see Kiefer [1980]).

pt =
1

1 + Exp [at + btyt]

where

at = ln

�
1− α
α

	
+

1

2
�
σ2d + σ

2
t−1
� #�δ + μt−1�2 − μ2t−1$

and

bt =
1�

σ2d + σ
2
t−1
� #μ2t−1 − �δ + μt−1�2$
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This updating is repeated each period.38 The posterior probability of manipula-
tion given the series of observed reports through period t is

pt ≡ Pr
�
It = 1 | μ0,σ20,σ2d, {yt}

�
=

αφ



yt−δ−μt−1√
σ2d+σ

2
t−1

�
αφ



yt−δ−μt−1√
σ2d+σ

2
t−1

�
+ (1− α)φ



y1−μt−1√
σ2d+σ

2
t−1

�
where the random variable of interest is xt − μt−1 which is Normally distributed
with mean zero and variance σ2d + σ

2
t−1. The updated mean is

μt = μt−1 + σ
2
t

1

σ2d

�
pt (yt − δ) + (1− pt) yt − μt−1

�
=

1

ν2 + t

�
ν2μ0 +

t/
k=1

pk (yk − δ) + (1− pk) yk
�

and the updated variance of the mean is39

σ2t =
1

1
σ20
+ t 1

σ2d

=
σ2d
ν2 + t

38To see this as a standard conditional Gaussian distribution result, suppose there is no manipulation
so that x1, . . . , xt are observed and we’re interested in E [μ | x1, . . . , xt] and V ar [μ | x1, . . . , xt].
The conditional distribution follows immediately from the joint distribution of

μ = μ0 + η0

x1 = μ+ ε1 = μ0 + η0 + ε1

and so on
xt = μ+ εt = μ0 + η0 + εt

The joint distribution is multivariate Gaussian

N

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
μ0
μ0
...
μ0

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
σ20 σ20 σ20 σ20
σ20 σ20 + σ

2
d σ20 σ20

σ20

...
. . .

...
σ20 σ20 · · · σ20 + σ

2
d

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

With manipulation, the only change is xt is replaced by (yt − δ | It = 1) with probability pt and
(yt | It = 0) with probability 1− pt.

39Bayesian updating of the mean can be thought of as a stacked weighted projection exercise where
the prior "sample" is followed by the new evidence. For period t, the updated mean is

μt ≡ E [μ | μ0, {yt}] =
�
XT
t Xt
�−1

XT
t Yt

and the updated variance of the mean is

σ2t ≡ V ar [μ | μ0, {yt}] =
�
XT
t Xt
�−1
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Now, it’s time to look at some data.

Experiment

Suppose the prior distribution for x has mean μ0 = 100 and standard devia-
tion σ0 = 25, then it follows (from maximum entropy) the prior distribution is
Gaussian. Similarly, xt is randomly sampled from a Gaussian distribution with
mean μ, where the value of μ is determined by a random draw from the prior
distribution N (100, 25), and standard deviation σd = 20. Reports yt are stochas-
tically manipulated as xt+ δ with likelihood α = 0.2, where δ = 20, and yt = xt
otherwise.

Results

Two plots summarize the data. The first data plot, figure 13.4, depicts the mean of
100 simulated samples of t = 100 observations and the mean of the 95% inter-
val estimates of the mean along with the baseline (dashed line) for the randomly
drawn mean μ of the data. As expected, the mean estimates converge toward the
baseline as t increases and the interval estimates narrow around the baseline.

The second data plot, figure 13.5, shows the incidence of manipulation along
with the assessed posterior probability of manipulation (multiplied by δ) based
on the report for a representative draw. The graph depicts a reasonably tight cor-
respondence between incidence of manipulation and posterior beliefs regarding
manipulation.

Scale uncertainty

Now, we consider a setting where the variance (scale parameter) associated with
privately observed accruals, σ2d, and the prior, σ20, are uncertain. Suppose we only

where

Yt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
σ0
μ0√

p1
σd

(y1 − δ)√
1−p1
σd

y1

...√
pt
σd

(yt − δ)√
1−pt
σd

yt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

Xt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
σ0√
p1
σd√
1−p1
σd
...√
pt
σd√
1−pt
σd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 13.4: Stochastic manipulation σd known

Figure 13.5: Incidence of stochastic manipulation and posterior probability
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know ν = σd
σ0

and σ2d and σ20 are positive. Then, Jeffreys’ prior distribution for
scale is proportional to the square root of the determinant of the information matrix
for t reports {yt} (see Jaynes [2003]),

f (σd) ∝
=
ν2 + t

σ2d

Hence, the prior for scale is proportional to 1
σd

f (σd) ∝ 1

σd

With the mean μ and scale σ2d unknown, following Box and Tiao [1973, p. 51],
we can write the likelihood function (with priors on the mean incorporated as
above) as

<
�
μ,σ2d | {yt}

�
=
�
σ2d
�− t+1

2 exp

�
− 1

2σ2d
(Y −Xμ)T (Y −Xμ)

�
Now, rewrite40

(Y −Xμ)T (Y −Xμ) =
�
Y − 2Y �T �Y − 2Y �
+
�2Y −Xμ�T �2Y −Xμ�

= ts2t + (μ− μt)T XTX (μ− μt)

40The decomposition is similar to decomposition of mean square error into variance and squared
bias but without expectations. Expand both sides of

(Y −Xμ)T (Y −Xμ) =
�
Y − "Y �T �Y − "Y �+ �"Y −Xμ�T �"Y −Xμ�

The left hand side is
Y TY − 2Y TXμ+ μTXTXμ

The right hand side is

Y TY − 2Y TX"μ+ "μTXTX"μ+ μTXTXμ− 2μTXTX"μ+ "μTXTX"μ
Now show

−2Y TXμ = −2Y TX"μ+ 2"μTXTX"μ− 2"μTXTXμ

Rewriting yields
Y TX ("μ− μ) = "μTXTX ("μ− μ)

or combining

(Y −X"μ)T X ("μ− μ) = 0"εTX ("μ− μ) = 0

The last expression is confirmed as XT"ε = 0 by least squares estimator construction (the residuals "ε
are chosen to be orthogonal to the columns of X).
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where

s2t =
1

t

�
Y − 2Y �T �Y − 2Y �

Y T =
�
νμ0

√
p1y1

√
1− p1y1 · · · √

ptyt
√
1− ptyt

�
2Y = Xμt

XT =
�
ν

√
p1

√
1− p1 · · · √

pt
√
1− pt

�
μt =

�
XTX

�−1
XTY

Hence,

<
�
μ,σ2d | {yt}

�
=

�
σ2d
�− t+1

2 exp

�
− ts

2
t

2σ2d
− (μ− μt)

T
XTX (μ− μt)
2σ2d

�

=
�
σ2d
�− t+1

2 exp

�
− ts

2
t

2σ2d

�
exp

�
− (μ− μt)

T
XTX (μ− μt)
2σ2d

�

The posterior distribution for the unknown parameters is then

f
�
μ,σ2d | {yt}

� ∝ < �μ,σ2d | {yt}� f (σd)
substitution from above gives

f
�
μ,σ2d | {yt}

� ∝ �
σ2d
�−( t2+1) exp �− ts2t

2σ2d

�
× exp

�
− (μ− μt)

T
XTX (μ− μt)
2σ2d

�

The posterior decomposes into

f
�
μ,σ2d | {yt}

�
= f

�
σ2d | s2t

�
f
�
μ | μt,σ2d

�
where

f
�
μ | μt,σ2d

� ∝ exp�− (μ− μt)T XTX (μ− μt)
2σ2d

�
is the multivariate Gaussian kernel, and

f
�
σ2d | s2t

� ∝ �
σ2d
�−( t2+1) exp �− ts2t

2σ2d

�
, t ≥ 1

is the inverted chi-square kernel, which is conjugate prior to the variance of a
Gaussian distribution. Integrating out σ2d yields the marginal posterior for μ,

f (μ | {yt}) =
1 ∞

0

f
�
μ,σ2d | {yt}

�
dσ2d
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which has a noncentral, scaled-Student t
�
μt, s

2
t

�
XTX

�−1
, t
�

distribution. In

other words,

T =
μ− μt
st√
ν2+t

has a Student t(t) distribution, for t ≥ 1 (see Box and Tiao [1973, p. 117-118]).41

Now, the estimate for μ conditional on reports to date is the posterior mean42

μt ≡ E [μ | {yt}]

=

.∞
−∞ μf (μ | {yt}) dμ.∞
−∞ f (μ | {yt}) dμ

=
ν2μ0 + p1y1 + (1− p1) y1 + · · ·+ ptyt + (1− pt) yt

ν2 + t

from the above posterior distribution and pt is defined below. The variance of the
estimate for μ is

σ2t ≡ V ar [μt]

= 5s2t �XTX
�−1

=
5s2t

t+ ν2
, t ≥ 1

where 5s2t is the estimated variance of the posterior distribution for xt (see dis-
cussion below under a closer look at the variance). Hence, the highest posterior
density (most compact) interval for μ with probability p is

μt ± t
�
t; 1− p

2

�
σt

ν2μ0+p1y1+(1−p1)y1+···+ptyt+(1−pt)yt
ν2+t

±t
�
t; 1− p

2

� �st√
t+ν2

t ≥ 1

41This follows from a transformation of variables,

z =
A

2σ2d

where
A = ts2 + (μ− μt)T XTX (μ− μt)

that produces the kernel of a scaled Student t times the integral of a gamma distribution (see Gelman
et al [2004], p.76). Or, for a > 0, p > 0,! ∞

0
x−(p+1)e−

a
x dx = a−pΓ (p)

where

Γ (z) =

! ∞
0

tz−1e−tdt

and for n a positive integer
Γ (n) = (n− 1)!

a constant which can be ignored when identifying the marginal posterior (see Box and Tiao [1973, p.
144]).

42For emphasis, we write the normalization factor in the denominator of the expectations expression.
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The probability the current report yt, for t ≥ 2,43 is manipulated conditional on
the history of reports (and manipulation probabilities) is

pt ≡ Pr
�
It = 1 | ν, {yt} , {pt−1} ,μt−1,σ2t−1

�
, t ≥ 2

=
α
� �

f(yt|Dt=1,μ,σ
2
d)f(μ|μt−1,σ2d)f(σ2d|s2t−1)dμdσ2d
den(pt)

=
α
� �
(σ2d)

− 1
2 exp

�
− (yt−δ−μ)2

2σ2
d

	
(σ2d)

− 1
2 exp

�
− (μ−μt−1)X

TX(μ−μt−1)
2σ2

d

	
dμ

den(pt)

× �σ2d�−( t2+1) exp 6− (t−1)s2t−1
2σ2d

7
dσ2d

+(1− α) . 1√
σ2d+σ

2
t−1

exp

�
− 1
2

(yt−μt−1)
2

σ2d+σ
2
t−1

�
× �σ2d�−( t2+1) exp 6− (t−1)s2t−1

2σ2d

7
dσ2d

where

den (pt) = α

1
1;

σ2d + σ
2
t−1

exp

�
−1
2

�
yt − δ − μt−1

�2
σ2d + σ

2
t−1

�

× �σ2d�−( t2+1) exp �− (t− 1) s2t−12σ2d

�
dσ2d

+(1− α)
1

1;
σ2d + σ

2
t−1

exp

�
−1
2

�
yt − μt−1

�2
σ2d + σ

2
t−1

�

× �σ2d�−( t2+1) exp �− (t− 1) s2t−12σ2d

�
dσ2d

Now, we have

f (yt − δ | Dt = 1) =
.∞
0

1√
σ2d+σ

2
t−1

exp

�
−1
2

(yt−δ−μt−1)
2

σ2d+σ
2
t−1

�
× �σ2d�−( t2+1) exp 6− (t−1)s2t−1

2σ2d

7
dσ2d

and

f (yt | Dt = 0) =

1 ∞

0

1;
σ2d + σ

2
t−1

exp

�
−1
2

�
yt − μt−1

�2
σ2d + σ

2
t−1

�

× �σ2d�−( t2+1) exp �− (t− 1) s2t−12σ2d

�
dσ2d

43For t = 1, pt ≡ Pr (Dt = 1 | yt) = α as the distribution for (yt | Dt) is so diffuse (s20 has
zero degrees of freedom) the report yt is uninformative.
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are noncentral, scaled-Student t
�
μt−1, s

2
t−1 + s

2
t−1

�
XTX

�−1
, t− 1

�
distributed.

In other words,

T =
yt − μt−1;
s2t−1 +

s2t−1
ν2+t−1

has a Student t(t− 1) distribution for t ≥ 2.
A closer look at the variance.

Now, we more carefully explore what s2 estimates. We’re interested in estimates

of μ and σ2d
ν2+t and we have the following relations:

xt = μ+ εt

= yt − δDt
If Dt is observed then xt is effectively observed and estimates of μ = E [x] and
σ2d = V ar [x] are, by standard methods, x and s2. However, when manipulation
Dt is not observed, estimation is more subtle. xt = yt − δDt is estimated via
yt−δpt which deviates from xt by ηt = −δ (Dt − pt). That is, xt = yt−δpt+ηt.
where

E [ηt | yt] = −δ [pt (1− pt) + (1− pt) (0− pt)] = 0
and

V ar [ηt | yt] = δ2
6
pt (1− pt)2 + (1− pt) (0− pt)2

7
= δ2pt (1− pt) = δ2V ar [Dt | yt]

s2 estimates E
62εTt 2εt | yt7 where 2εt = yt− δpt−μt. However, σ2d = E

�
εTt εt

�
is the object of interest. We can write

2εt = yt − δpt − μt
= (δDt + μ+ εt)− δpt − μt
= εt + δ (Dt − pt) + (μ− μt)

In other words,
εt + (μ− μt) = 2εt − δ (Dt − pt)

Since E
�
XT εt

�
= 0 (the regression condition) and μt is a linear combination of

X , Cov [εt, (μ− μt)] = 0. Then, the variance of the left-hand side is a function
of σ2d, the parameter of interest.

V ar [εt + (μ− μt | yt)] = V ar [εt] + V ar [μ− μt | yt]
= σ2d + σ

2
d

1

ν2 + t

=
ν2 + t+ 1

ν2 + t
σ2d
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As Dt is stochastic
E [2εt (Dt − pt) | yt] = 0

the variance of the right-hand side is

V ar [2εt − δ (Dt − pt) | yt] = V ar [2εt | yt] + δ2V ar [(Dt − pt) | yt]
−2δCov [2εt, (Dt − pt) | yt]

= V ar [2εt | yt]
+δ2

6
pt (1− pt)2 + (1− pt) (0− pt)2

7
= V ar [2εt | yt] + δ2pt (1− pt)

As V ar [2εt] is consistently estimated via s2, we can estimate σ2d by

2σ2d =
ν2 + t

ν2 + t+ 1

�
s2 + δ2pt (1− pt)

�
2σ2d =

ν2 + t

ν2 + t+ 1
5s2

where pt (1− pt) is the variance ofDt and 5s2 = s2 + δ2pt (1− pt) estimates the
variance of 2εt + ηt given the data {yt}.

Experiment

Repeat the experiment above except now we account for variance uncertainty as
described above.44

Results

For 100 simulated samples of t = 100, we generate a plot, figure 13.6, of the mean
and average 95% interval estimates. As expected, the mean estimates converge
toward the baseline (dashed line) as t increases and the interval estimates narrow
around the baseline but not as rapidly as the known variance setting.

44Another (complementary) inference approach involves creating the posterior distribution via con-
ditional posterior simulation. Continue working with prior p

�
σ2d | X
� ∝ 1

σ2
d

to generate a posterior

distribution for the variance

p
�
σ2d | X, {yt}

� ∼ Inv − χ2 �t, "σ2d�
and conditional posterior distribution for the mean

p
�
μ | σ2d, X, {yt}

� ∼ N ��XTX
�−1

XTY,σ2d

�
XTX
�−1	

That is, draw σ2d from the inverted, scaled chi-square distribution with t degrees of freedom and scale

parameter "σ2d. Then draw μ from a Gaussian distribution with mean
�
XTX
�−1

XTY and variance

equal to the draw for σ2d
�
XTX
�−1 from the step above.
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Figure 13.6: Stochastic manipulation σd unknown

13.12.2 Selective earnings management
Suppose earnings are manipulated whenever privately observed accruals xt lie
below prior periods’ average reported accruals yt−1. That is,

xt < yt−1 It = 1
otherwise It = 0

where y0 = μ0; for simplicity, μ0 and yt are commonly observed.45 The set-
ting differs from stochastic earnings management only in the prior and posterior
probabilities of manipulation. The prior probability of manipulation is

αt ≡ Pr
�
xt < yt−1 | μ0,σ20,σ2d, {yt−1}

�
= Φ

⎛⎝ yt−1 − μt−1;
σ2d + σ

2
t−1

⎞⎠
where Φ (·) represents the cumulative distribution function for the standard nor-
mal. Updated beliefs are informed by reported results even though they may be
manipulated. If reported results exceed average reported results plus δ, then we

45This assumption could be relaxed or, for example, interpreted as an unbiased forecast conveyed
via the firm’s prospectus.
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know there is no manipulation. Or, if reported results are less than average re-
ported results less δ, then we know there is certain manipulation. Otherwise, there
exists a possibility the reported results are manipulated or not. Therefore, the pos-
terior probability of manipulation is

Pr
�
It = 1 | μ0,σ20,σ2d, {yt} , yt > yt−1 + δ

�
= 0

pt ≡ Pr
�
It = 1 | μ0,σ20,σ2d, {yt} , yt < yt−1 − δ

�
= 1

Pr
�
It = 1 | μ0,σ20,σ2d, {yt} , yt−1 − δ ≤ yt ≤ yt−1 + δ

�
=

αtφ



yt−δ−μt−1√

σ2
d
+σ2

t−1

�

αtφ



yt−δ−μt−1√

σ2
d
+σ2

t−1

�
+(1−αt)φ



y1−μt−1√
σ2
d
+σ2

t−1

�

As before, the updated mean is

μt = μt−1 + σ
2
t

1

σ2d

�
pt (yt − δ) + (1− pt) yt − μt−1

�
=

1

ν2 + t

�
ν2μ0 +

t/
k=1

pk (yk − δ) + (1− pk) yk
�

and the updated variance of the mean is

σ2t =
1

1
σ20
+ t 1

σ2d

=
σ2d
ν2 + t

Time for another experiment.

Experiment

Suppose the prior distribution for x has mean μ0 = 100 and standard devia-
tion σ0 = 25, then it follows (from maximum entropy) the prior distribution is
Gaussian. Similarly, xt is randomly sampled from a Gaussian distribution with
mean μ, a random draw from the prior distribution N (100, 25), and standard de-
viation σd = 20. Reports yt are selectively manipulated as xt+δ when xt < yt−1,
where δ = 20, and yt = xt otherwise.

Results

Again, two plots summarize the data. The first data plot, figure 13.7, depicts the
mean and average 95% interval estimates based on 100 simulated samples of t =
100 observations along with the baseline (dashed line) for the randomly drawn
mean μ of the data. As expected, the mean estimates converge toward the baseline
as t increases and the interval estimates narrow around the baseline. The second
data plot, figure 13.8, shows the incidence of manipulation along with the assessed
posterior probability of manipulation (multiplied by δ) based on the report for a
representative draw. The graph depicts a reasonably tight correspondence between
incidence of manipulation and posterior beliefs regarding manipulation.
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Figure 13.7: Selective manipulation σd known

Figure 13.8: Incidence of selective manipulation and posterior probability
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Scale uncertainty

Again, we consider a setting where the variance (scale parameter) associated with
privately observed accruals σ2d is uncertain but manipulation is selective. The only
changes from the stochastic manipulation setting with uncertain scale involve the
probabilities of manipulation.

The prior probability of manipulation is

αt ≡
1
Pr
�
xt < yt−1 | μ0, ν,σ2d, {yt−1}

�
f
�
σ2d | s2t−1

�
dσ2d

=

1 ∞

0

1 yt−1

−∞
f
�
xt | μ0, ν,σ2d, {yt−1}

�
dxtf

�
σ2d | s2t−1

�
dσ2d, t ≥ 2

On integrating σ2d out, the prior probability of manipulation then simplifies as

αt =

1 yt−1

−∞
f (xt | μ0, ν, {yt−1}) dxt, t ≥ 2

a cumulative noncentral, scaled-Student t
�
μt−1, s

2
t−1 + s

2
t−1

�
XTX

�−1
, t− 1

�
distribution; in other words,

T =
xt − μt−1;
s2t−1 +

s2t−1
ν2+t−1

has a Student t(t− 1) distribution, t ≥ 2.46

Following the report yt, the posterior probability of manipulation is

Pr
�
It = 1 | μ0, ν, {yt} , yt > yt−1 + δ

�
= 0

pt ≡ Pr
�
It = 1 | μ0, ν, {yt} , yt < yt−1 − δ

�
= 1

Pr
�
It = 1 | μ0, ν, {yt} , yt−1 − δ ≤ yt ≤ yt−1 + δ

�
=

αt
�
f(yt|It=1,�t−1,σ2d)f(σ2d|s2t−1)dσ2d�
f(yt|�t−1,σ2d)f(σ2d|s2t−1)dσ2d

, t ≥ 2

where �t−1 = [μ0, ν, {yt−1}],
f
�
yt | �t−1,σ2d

�
= αtf

�
yt − δ | It = 1,�t−1,σ2d

�
+(1− αt) f

�
yt | It = 0,�t−1,σ2d

�
f
�
yt − δ | It = 1,�t−1,σ2d

�
and f

�
yt | It = 0,�t−1,σ2d

�
are noncentral, scaled-

Student t
�
μt−1, s

2
t−1 + s

2
t−1

�
XTX

�−1
, t− 1

�
distributed. In other words,

T =
yt − μt−1;
s2t−1 +

s2t−1
ν2+t−1

has a Student t(t− 1) distribution for t ≥ 2.

46The prior probability of manipulation is uninformed or pt = 1
2

for t < 2.
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A closer look at the variance.

In the selective manipulation setting,

V ar [2εt − δ (Dt − pt) | yt] = V ar [2εt | yt] + δ2V ar [(Dt − pt) | yt]
−2δE [2εt (Dt − pt) | yt]

= V ar [2εt | yt] + δ2pt (1− pt)
−2δE [2εt (Dt − pt) | yt]

The last term differs from the stochastic setting as selective manipulation produces
truncated expectations. That is,

2δE [2εt (Dt − pt) | yt] = 2δ{ptE [2εt (1− pt) | yt, Dt = 1]
+ (1− pt)E [2εt (0− pt) | yt, Dt = 0]}

= 2δ{ptE
�2εt (1− pt) | yt, xt < yt−1�

+(1− pt)E
�2εt (0− pt) | yt, xt > yt−1�}

= 2δ{ptE
�2εt (1− pt) | yt,2εt + ηt < yt−1 − μt�

+(1− pt)E
�2εt (0− pt) | yt,2εt + ηt > yt−1 − μt�}

= 2δ
�
ptE

�2εt | yt,2εt + ηt < yt−1 − μt�− E [2εtpt | yt]�
= 2δ

�
pt

1 1
σφ



yt−1 − μ

σ
| μ,σ

�
f (μ,σ) dμdσ − 0

�
= −2δpt5sf 
yt−1 − μt5s

�
where 5s2 = s2+δ2pt (1− pt) estimates the variance of2εt+ηt with no truncation,

σ2. The extra term, 5sf �yt−1−μt�s
�

, arises from truncated expectations induced by

selective manipulation rather than random manipulation. As both μ and σ are

unknown, we evaluate this term by integrating out μ and σ where f
�
yt−1−μt�s

�
has a Student t(t) distribution. Hence, we can estimate σ2d by

2σ2d =
ν2 + t

ν2 + t+ 1



s2 + δ2pt (1− pt) + 2δpt5sf 
yt−1 − μt5s

��
=

ν2 + t

ν2 + t+ 1


5s2 + 2δpt5sf 
yt−1 − μt5s
��

conditional on the data {yt}.

Experiment

Repeat the experiment above except now we account for variance uncertainty.
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Figure 13.9: Selective manipulation σd unknown

Results

For 100 simulated samples of t = 100 observations, we generate a plot, figure
13.9, of the mean and average 95% interval estimates to summarize the data.As
expected, the mean estimates converge toward the baseline (dashed line) as t in-
creases and the interval estimates narrow around the baseline but not as rapidly as
the known variance setting.

13.13 Jaynes’ Ap distribution

Our story is nearly complete. However, consistent reasoning regarding proposi-
tions involves another, as yet unaddressed, element. For clarity, consider binary
propositions. We might believe the propositions are equally likely but we also
may be very confident of these probabilities, somewhat confident, or not confi-
dent at all. Jaynes [2003, ch. 18] compares propositions regarding heads or tails
from a coin flip with life ever existing on Mars. He suggests that the former is very
stable in light of additional evidence while the latter is very instable when faced
with new evidence. Jaynes proposes a self-confessed odd proposition or distrib-
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ution (depending on context) denoted Ap to tidily handle consistent reasoning.47

The result is tidy in that evaluation of new evidence based on background knowl-
edge (including Ap) follows from standard rules of probability theory — Bayes’
theorem.

This new proposition is defined by

Pr (A | Ap, E,�) ≡ p
where A is the proposition of interest, E is any additional evidence, � mathe-
matically relevant background knowledge, and Ap is something like regardless of
anything else the probability of A is p. The propositions are mutually exclusive
and exhaustive. As this is surely an odd proposition or distribution over a prob-
ability, let the distribution for Ap be denoted (Ap). High instability or complete
ignorance leads to

(Ap | �) = 1 0 ≤ p ≤ 1
Bayes’ theorem leads to

(Ap | E,�) = (Ap | �) Pr (E | Ap,�) Pr (�)
Pr (E | �) Pr (�)

= (Ap | �) Pr (E | Ap,�)
Pr (E | �)

Given complete ignorance, this simplifies as

(Ap | E,�) = (1)
Pr (E | Ap,�)
Pr (E | �)

=
Pr (E | Ap,�)
Pr (E | �)

Also, integrating out Ap we have

Pr (A | E,�) =
1 1

0

(A,Ap | E,�) dp

expanding the integrand gives

Pr (A | E,�) =
1 1

0

Pr (A | Ap, E,�) (Ap | E,�) dp

from the definition of Ap, the first factor is simply p, leading to

Pr (A | E,�) =
1 1

0

p× (Ap | E,�) dp

Hence, the probability assigned to the proposition A is just the first moment or
expected value of the distribution for Ap conditional on the new evidence. The
key feature involves accounting for our uncertainty via the joint behavior of the
prior and the likelihood.

47Jaynes’ Ap distribution is akin to over-dispersed models. That is, hierarchical generalized linear
models that allow dispersion beyond the assigned sampling distribution.
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13.13.1 Football game puzzle revisited
Reconsider the football game puzzle posed by Walley [1991, pp. 270-271]. Re-
call the puzzle involves a football match-up between two football rivals which
produces either a win (W ), a loss (L), or a draw (D) for the home team. Sup-
pose we know the home team wins more than half the time and we gain evidence
the game doesn’t end in a draw. Utilizing Jaynes’ Ap distribution, the posterior
distribution differs from the earlier case where the prior probability of a win is
one-half, Pr (W,L,D) =

�
3
4 ,

1
4 , 0

�
. The reasoning for this is as follows. Let A be

the proposition the home team wins (the argument applies analogously to a loss)
and we know only the probability is at least one-half, then

(Ap | �1) = 2 1
2 ≤ p ≤ 1

and

(Ap | E,�1) = (2) Pr (E | Ap,�)
Pr (E | �)

Since, Pr (E = not D | �1) = Pr (E = not D | Ap,�1) = 3
4 if draws are per-

mitted, or Pr (E = not D | �2) = Pr (E = not D | Ap,�2) = 1 if draws are not
permitted by the game structure.

(Ap | E,�1) = (2)
3
4
3
4

= 2

(Ap | E,�2) = (2)
1

1
= 2

Hence,

Pr (A =W | E,�j) =

1 1

1
2

p · (Ap | E,�j) dp

=

1 1

1
2

(2p) dp =
3

4

Here the puzzle is resolved by careful interpretation of prior uncertainty combined
with consistent reasoning enforced by Jaynes’ Ap distribution.48 Prior instability
forces us to reassess the evaluation of new evidence; consistent evaluation of the
evidence is the key. Some alternative characterizations of our confidence in the
prior probability the home team wins are illustrated next.

How might we reconcile Jaynes’ Ap distribution and Walley’s
�
2
3 ,

1
3 , 0

�
or�

1
2 ,

1
2 , 0

�
probability conclusion. The former follows from background knowl-

edge that the home team wins more than half the time with one-half most likely

48For a home team loss, we have

Pr (A = L | E,�) =
! 1

2

0
2pdp =

1

4
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and monotonically declining toward one. Ap in this case is triangular 8 − 8p for
1
2 ≤ p ≤ 1. The latter case is supported by background knowledge that the home
team wins about half the time but no other information regarding confidence in
this claim. Then, Ap is uniform for 0 ≤ p ≤ 1.

13.14 Concluding remarks

Now that we’re "fully" armed, it’s time to re-explore the accounting settings in
this and previous chapters as well as other settings, collect data, and get on with
the serious business of evaluating accounting choice. But this monograph must
end somewhere, so we hope the reader will find continuation of this project a
worthy task. We anxiously await the blossoming of an evidentiary archive and
new insights.

13.15 Additional reading

There is a substantial and growing literature on maximum entropy priors. Jaynes
[2003] is an excellent starting place. Cover and Thomas [1991, ch. 12] expand the
maximum entropy principle via minimization of relative entropy in the form of a
conditional limit theorem. Also, Cover and Thomas [1991, ch. 11] discuss max-
imum entropy distributions for time series data including Burg’s theorem (Cover
and Thomas [1991], pp. 274-5) stating the Gaussian distribution is the maximum
entropy error distribution given autocovariances. Walley [1991] critiques the pre-
cise probability requirement of Bayesian analysis, the potential for improper ig-
norance priors, and the maximum entropy principle while arguing in favor of an
upper and lower probability approach to consistent reasoning (see Jaynes’ [2003]
comment in the bibliography).

Financial statement inferences are extended to bounding transactions amounts
and financial ratios in Arya, Fellingham, Mittendorf, and Schroeder [2004]. Earn-
ings management implications for performance evaluation are discussed in path
breaking papers by Arya, Glover, and Sunder [1998] and Demski [1998]. Arya
et al discuss earnings management as a potential substitute for (lack of) com-
mitment in conveying information about the manager’s input. Demski discusses
accruals smoothing as a potential means of conveying valuable information about
the manager’s talent and input. Demski, Fellingham, Lin, and Schroeder [2008]
discuss the corrosive effects on organizations of excessive reliance on individual
performance measures.

13.16 Appendix

This appendix supplies proofs to the propositions and corollaries for the smooth
accruals discussion.
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Proposition 13.1. Let mt = g mt−1 + et, Σ = D, and ν = σe
σ�

. Then,
accrualst−1 and cft are, collectively, sufficient statistics for the mean of cash
flows mt based on the history of cash flows and gt−1accrualst is an efficient
statistic for mt

[2mt|cf1, ..., cft] = gt−1accrualst

=
1

dent

�
numt

g2
(cft − a∗t ) + gt−1ν2dent−1accrualst−1

�
where accruals0 = m0, and

�
dent
numt

�
= Bt

�
den0
num0

�
= SΛtS

�
1
0

�
. The

variance of accruals is equal to the variance of the estimate of the mean of cash
flows multiplied by g2(t−1); the variance of the estimate of the mean of cash
flows equals the coefficient on current cash flow multiplied by σ2e, V ar [2mt] =
numt

dentg2
σ2e.

Proof. Outline of the proof:

1. Since the data are multivariate normally distributed, BLU estimation is effi-
cient (achieves the Cramer-Rao lower bound amongst consistent estimators;
see Greene [1997], p. 300-302).

2. BLU estimation is written as a recursive least squares exercise (see Strang
[1986], p. 146-148).

3. The proof is completed by induction. That is, the difference equation solu-
tion is shown, by induction, to be equivalent to the recursive least squares
estimator. A key step is showing that the information matrix � and its in-
verse can be derived in recursive fashion via LDLT decomposition (i.e.,
D−1L−1� = LT ).

Recursive least squares. LetH1 =

� −ν
1

�
(a 2 by 1matrix),H2 =

�
gν −ν
0 1

�
(a 2 by 2 matrix), Ht =

�
0 · · · 0 gν −ν
0 · · · 0 0 1

�
(a 2 by t matrix with t − 2

leading columns of zeroes), z1 =

� −gνm0

cf1 − a∗1

�
, z2 =

�
0

cf2 − a∗2

�
, and zt =�

0
cft − a∗t

�
. The information matrix for a t-period cash flow history is

�t = �at−1 +HT
t Ht

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 + ν2 + g2ν2 −gν2 0 · · · 0

−gν2 1 + ν2 + g2ν2 −gν2 . . .
...

0 −gν2 . . . −gν2 0
...

. . . −gν2 1 + ν2 + g2ν2 −gν2
0 · · · 0 −gν2 1 + ν2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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a symmetric tri-diagonal matrix, where �at−1 is �t−1 augmented with a row and
column of zeroes to conform with �t. For instance, �1 =

�
1 + ν2

�
and �a1 =�

1 + ν2 0
0 0

�
. The estimate of the mean of cash flows is derived recursively as

bt = b
a
t−1 + kt

�
zt −Htbat−1

�
for t > 1 where kt = �−1t HT

t , the gain matrix, and bat−1 is bt−1 augmented with
a zero to conform with bt. The best linear unbiased estimate of the current mean
is the last element in the vector bt and its variance is the last row-column element
of �−1t multiplied by σ2e.

Difference equations. The difference equations are�
dent
numt

�
=

�
1 + ν2 ν2

g2 g2ν2

� �
dent−1
numt−1

�
with

�
den0
num0

�
=

�
1
0

�
. The difference equations estimator for the current

mean of cash flows and its variance are

2mt =
1

dent



numt

g2
(cft − a∗t ) + gν2dent−1 2mt−1

�
= gt−1 accrualst

=
1

dent



numt

g2
(cft − a∗t ) + gt−1ν2dent−1accrualst−1

�
where accruals0 = m0, and

V ar [2mt] = g
2(t−1)V ar [accrualst] = σ2e

numt

g2dent
.

Induction steps. Assume

2mt =
1

dent



numt

g2
(cft − a∗t ) + gν2dent−1 2mt−1

�
= gt−1 accrualst

=
1

dent



numt

g2
(cft − a∗t ) + gt−1ν2dent−1accrualst−1

�
=

�
bat−1 + kt

�
zt −Htbat−1

��
[t]

and
V ar [2mt] = g

2(t−1)V ar [accrualst] = V ar [bt] [t, t]

where [t] ([t, t]) refers to element t (t, t) in the vector (matrix). The above is clearly
true for the base case, t = 1 and t = 2. Now, show

2mt+1 =
1

dent+1



numt+1

g2
�
cft+1 − a∗t+1

�
+ gtν2dentaccrualst

�
= [bat + kt+1 (zt+1 −Ht+1bat )] [t+ 1] .
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Recall zt+1 =

�
0

ct+1 − a∗t+1

�
and Ht+1 =

�
0 · · · 0 gν −ν
0 · · · 0 0 1

�
. From

LDLT decomposition of �t+1 (recall LT = D−1L−1� where L−1 is simply
products of matrices reflecting successive row eliminations - no row exchanges
are involved due to the tri-diagonal structure and D−1 is the reciprocal of the
diagonal elements remaining following eliminations) the last row of �−1t+1 is6

gt−1ν2(t−1)num1

g2dent+1
· · · g2ν4numt−1

g2dent+1

gν2numt

g2dent+1

numt+1

g2dent+1

7
.

This immediately identifies the variance associated with the estimator as the last
term in �−1t+1 multiplied by the variance of cash flows, numt+1

g2dent+1
σ2e. Hence, the

difference equation and the recursive least squares variance estimators are equiv-
alent.

SinceHT
t+1zt+1 =

⎡⎢⎢⎢⎣
0
...
0

cft+1 − a∗t+1

⎤⎥⎥⎥⎦, the lead term on the RHS of the [t+ 1]

mean estimator is numt+1

g2dent+1

�
cft+1 − a∗t+1

�
which is identical to the lead term on

the left hand side (LHS). Similarly, the second term on the RHS (recall the focus
is on element t, the last element of bat is 0) is

[(I − kt+1Ht+1) bat ] [t+ 1]

=

⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝I −�
−1
t+1

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 · · · 0 0

0
...

. . .
...

...
... 0

. . . 0 0
0 · · · 0 g2ν2 −gν2
0 · · · 0 −gν2 1 + ν2

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ b
a
t

⎤⎥⎥⎥⎥⎥⎥⎦ [t+ 1]

=


−g3ν4numt

g2dent+1
+
gν2numt+1

g2dent+1

� 2mt

=


−g3ν4numt + gν
2numt+1

g2dent+1

�
gt−1 accrualst.

The last couple of steps involve substitution of 2mt for bat [t+ 1] followed by
gt−1accrualst for 2mt on the right hand side (RHS) The difference equation rela-
tion, numt+1 = g

2dent + g
2ν2numt, implies

−g3ν4numt + gν
2numt+1

g2dent+1
2mt =

1

dent+1
gν2dent 2mt

=
1

dent+1
gtν2dent accrualst

the second term on the LHS. This completes the induction steps.
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Corollary 13.2. As t becomes large, the weight on current cash flows for the
efficient estimator of the mean of cash flows approaches

2

1 + (1− g2) ν2 +
;
(1 + (1 + g2) ν2)

2 − 4g2ν4

and the variance of the estimate approaches

2

1 + (1− g2) ν2 +
;
(1 + (1 + g2) ν2)

2 − 4g2ν4
σ2e.

Proof. The difference equations�
dent
numt

�
= SΛtS−1

�
den0
num0

�
= SΛtS−1

�
1
0

�
= SΛtc

imply

c = S−1
�
den0
num0

�
=

⎡⎣ −g2
1+(1+g2)ν2+

√
(1+(1+g2)ν2)2−4g2ν4
g2

1+(1+g2)ν2+
√
(1+(1+g2)ν2)2−4g2ν4

⎤⎦
Thus, �

dent
numt

�
= S

�
λt1 0
0 λt2

�
c

=
1;

(1 + (1 + g2) ν2)
2 − 4g2ν4

×

⎡⎢⎢⎢⎢⎣
1
2

⎧⎪⎪⎨⎪⎪⎩
λt2



1 +

�
1− g2� ν2 +;(1 + (1 + g2) ν2)2 − 4g2ν4�

−λt1


1 +

�
1− g2� ν2 −;(1 + (1 + g2) ν2)2 − 4g2ν4�

⎫⎪⎪⎬⎪⎪⎭
g2
�
λt2 − λt1

�

⎤⎥⎥⎥⎥⎦
Since λ2 is larger than λ1, λt1 contributes negligibly to

�
dent
numt

�
for arbitrarily

large t. Hence,

lim
t→∞

numt

g2dent
=

2

1 + (1− g2) ν2 +
;
(1 + (1 + g2) ν2)

2 − 4g2ν4
.
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From proposition 13.1, the variance of the estimator for expected cash flow is
numt

g2dent
σ2e. Since

lim
t→∞

numt

g2dent
=

2

1 + (1− g2) ν2 +
;
(1 + (1 + g2) ν2)

2 − 4g2ν4
.

the asymptotic variance is

2

1 + (1− g2) ν2 +
;
(1 + (1 + g2) ν2)

2 − 4g2ν4
σ2e.

This completes the asymptotic case.

Proposition 13.2. Let mt = g mt−1 + et, Σ = D, ν = σe
σ�

, and φ = σe
σμ

. Then,
accrualst−1, cft, and yt, collectively, are sufficient statistics for evaluating the
agent with incentive payments given by

γTt wt = Δ
1

ν2dent−1 + φ2dent
× �φ2dentyt + ν2dent−1 �cft − gt−1accrualst−1��

and variance of payments equal to

V ar[γTt wt] = Δ2 dent

ν2dent−1 + φ2dent
σ2e

where Δ = c(aH)−c(aL)
aH−aL , and accrualst−1 and dent are as defined in proposition

13.1.

Proof. Outline of the proof:

1. Show that the "best" linear contract is equivalent to the BLU estimator of
the agent’s current act rescaled by the agent’s marginal cost of the act.

2. The BLU estimator is written as a recursive least squares exercise (see
Strang [1986], p. 146-148).

3. The proof is completed by induction. That is, the difference equation solu-
tion is shown, by induction, to be equivalent to the recursive least squares
estimator. Again, a key step involves showing that the information matrix
�a and its inverse can be derived in recursive fashion via LDLT decompo-
sition (i.e., D−1L−1�a = LT ).

"Best" linear contracts. The program associated with the optimal aH -inducing
LEN contract written in certainty equivalent form is

Min
δ,γ

δ + E
�
γTw|aH

�
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subject to

δ + E
�
γTw|aH

�− r

2
V ar

�
γTw

�− c (aH) ≥ RW (IR)

δ + E
�
γTw|aH

�− r

2
V ar

�
γTw

�− c (aH)
≥ δ + E �γTw|aL�− r

2
V ar

�
γTw

�− c (aL) (IC)

As demonstrated in Arya et al [2004], both IR and IC are binding and γ equals
the BLU estimator of a based on the history w (the history of cash flows cf and
other contractible information y) rescaled by the agent’s marginal cost of the act
Δ = c(aH)−c(aL)

aH−aL . Since IC is binding,

δ + E
�
γTw|aH

�− r

2
V ar

�
γTw

�− �δ + E �γTw|aL�− r

2
V ar

�
γTw

��
= c (aH)− c (aL)

E
�
γTw|aH

�− E �γTw|aL� = c (aH)− c (aL)
γT {E [w|aH ]− E [w|aL]} = c (aH)− c (aL)

(aH − aL) γT = c (aH)− c (aL)
where

w =

⎡⎢⎢⎢⎢⎢⎣
cf1 −m0 − a∗1
cf2 −m0 − a∗2

...
cft −m0

yt

⎤⎥⎥⎥⎥⎥⎦
and is a vector of zeroes except the last two elements are equal to one, and

γT =
c (aH)− c (aL)
aH − aL .

Notice, the sum of the last two elements of γ equals one, γT = 1, is simply
the unbiasedness condition associated with the variance minimizing estimator of
a based on design matrixHa. Hence, γTw equals the BLU estimator of a rescaled
by Δ, γTt wt = Δ2at. As δ is a free variable, IR can always be exactly satisfied by
setting

δ = RW −
8
E
�
γTw|aH

�− r

2
V ar

�
γTw

�− c (aH)9 .
Recursive least squares.Ht remains as defined in the proof of proposition 13.1.

Let Ha1 =

⎡⎣ −ν 0
1 1
0 φ

⎤⎦ (a 3 by 2 matrix), Ha2 =

⎡⎣ gν −ν 0
0 1 1
0 0 φ

⎤⎦ (a 3 by 3
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matrix), Hat =

⎡⎣ 0 · · · 0 gν −ν 0
0 · · · 0 0 1 1
0 · · · 0 0 0 φ

⎤⎦ (a 3 by t+ 1 matrix with leading

zeroes), 5w1 =
⎡⎣ −gνm0

cf1
y1

⎤⎦, 5w2 =
⎡⎣ 0
cf2
y2

⎤⎦, and 5wt =
⎡⎣ 0
cft
yt

⎤⎦. The infor-

mation matrix for a t-period cash flow and other monitoring information history
is

�at = �aat−1 +HT
atHat =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + ν2 + g2ν2 −gν2 0 0 · · · 0

−gν2 1 + ν2 + g2ν2 −gν2 . . . · · · 0

0 −gν2 . . .
. . . 0

...

0
. . .

. . . 1 + ν2 + g2ν2 −gν2 0
... · · · 0 −gν2 1 + ν2 1

0 0 · · · 0 1 1 + φ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
a symmetric tri-diagonal matrix where �aat−1 is �at−1 (the augmented information
matrix employed to estimate the cash flow mean in proposition 13.1) augmented
with an additional row and column of zeroes (i.e., the information matrix from
proposition 13.1, �t−1, is augmented with two columns of zeroes on the right and
two rows of zeroes on the bottom). The recursive least squares estimator is

bat =
�
baat−1 + kat

� 5wt −Hatbaat−1��
for t > 1 where baat−1 is bt−1 (the accruals estimator of mt−1 from proposition
13.1) augmented with two zeroes and kat = �−1at HT

at. The best linear unbiased
estimate of the current act is the last element in the vector bat and its variance
is the last row-column element of �−1at multiplied by σ2e. Notice, recursive least
squares applied to the performance evaluation exercise utilizes the information
matrix �aat−1 (the information matrix employed in proposition 13.1 augmented
with two trailing rows-columns of zeroes) and estimator baat−1 (the accruals esti-
mator of mt−1 from proposition 13.1 augmented with the two trailing zeroes).
This accounts for the restriction on the parameters due to past actions already
having been motivated in the past (i.e., past acts are at their equilibrium level a∗).
Only the current portion of the design matrixHat and the current observations wt
(in place of zt) differ from the setup for accruals (in proposition 13.1).

Difference equations. The difference equations are�
dent
numt

�
=

�
1 + ν2 ν2

g2 g2ν2

� �
dent−1
numt−1

�
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with

�
den0
num0

�
=

�
1
0

�
. The difference equations estimator for the linear in-

centive payments γTw is

γTt wt = Δ
1

ν2dent−1 + φ2dent

�
φ2dentyt + ν

2dent−1 (cft − g 2mt−1)
�

= Δ
1

ν2dent−1 + φ2dent
× �φ2dentyt + ν2dent−1 �cft − gt−1 accrualst−1��

and the variance of payments is

V ar
�
γTw

�
= Δ2 dent

ν2dent−1 + φ2dent
σ2e.

Induction steps. Assume

γTt wt = Δ
1

ν2dent−1 + φ2dent

�
φ2dentyt + ν

2dent−1 (cft − g 2mt−1)
�

= Δ
1

ν2dent−1 + φ2dent
× �φ2dentyt + ν2dent−1 �cft − gt−1 accrualst−1��

= Δ
�
bat−1 + kat

�
wt −Hatbat−1

��
[t+ 1]

and

V ar
�
γTt wt

�
= Δ2V ar [2at] [t+ 1, t+ 1]

where [t+ 1] ([t+ 1, t+ 1]) refers to element t + 1 (t+ 1, t+ 1) in the vector
(matrix). The above is clearly true for the base case, t = 1 and t = 2. Now, show

Δ
1

ν2dent + φ
2dent+1

�
φ2dent+1yt+1 + ν

2dent (cft+1 − g 2mt)
�

= Δ
1

ν2dent + φ
2dent+1

�
φ2dent+1yt+1 + ν

2dent
�
cft+1 − gt accrualst

��
= Δ [bat + kat+1 ( 5wt+1 −Hat+1bat )] [t+ 2] .

Recall 5wt+1 =
⎡⎣ 0
cft+1
φyt+1

⎤⎦ and Hat+1 =

⎡⎣ 0 · · · 0 gν ν 0
0 · · · 0 0 1 1
0 · · · 0 0 0 φ

⎤⎦. From

LDLT decomposition of �at+1 (recall LT = D−1L−1�a where L−1 is simply
products of matrices reflecting successive row eliminations - no row exchanges
are involved due to the tri-diagonal structure and D−1 is the reciprocal of the
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remaining elements remaining after eliminations) the last row of �−1at+1 is

1

ν2dent + φ
2dent+1

⎡⎢⎢⎢⎢⎢⎣
−gt−1ν2(t−1)den1

...
−gν2 �dent−1 + ν2numt−1

�
− �dent + ν2numt

�
dent+1

⎤⎥⎥⎥⎥⎥⎦
T

.49

This immediately identifies the variance associated with the estimator as the last
term in �−1at+1 multiplied by the product of the agent’s marginal cost of the act

squared and the variance of cash flows, Δ2 dent+1
ν2dent+φ2dent+1

σ2e. Hence, the differ-
ence equation and the recursive least squares variance of payments estimators are
equivalent.

Since HT
at+1 5wt+1 =

⎡⎢⎢⎢⎢⎢⎣
0
...
0

cft+1
cft+1 + yt+1

⎤⎥⎥⎥⎥⎥⎦ and the difference equation implies

dent+1 =
�
1 + ν2

�
dent + ν

2numt, the lead term on the RHS is

dent+1

ν2dent + φ
2dent+1

(yt+1 + cft+1)− dent + ν
2numt

ν2dent + φ
2dent+1

cft+1

=
dent+1

ν2dent + φ
2dent+1

yt+1 − ν2dent

ν2dent + φ
2dent+1

cft+1

which equals the initial expression on the LHS of the [t+ 2] incentive payments.
Similarly, the 2mt = gt−1 accrualst term on the RHS (recall the focus is on
element t+ 2) is

[(I − kat+1Hat+1) bat ] [t+ 2]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
I −�−1at+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 0

0
...

. . .
...

...
...

... 0 · · · 0 0 0
0 · · · 0 g2ν2 −gν2 0
0 · · · 0 −gν2 1 + ν2 1

0 · · · 0 0 1 1 + φ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
bat

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[t+ 2]

= − gν2dent

ν2dent + φ
2dent+1

2mt

= − gtν2dent

ν2dent + φ
2dent+1

accrualst.

49Transposed due to space limitations.
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Combining terms and simplifying produces the result

1

ν2dent + φ
2dent+1

�
φ2dent+1yt+1 + ν

2dent (cft+1 − g 2mt)
�

=
1

ν2dent + φ
2dent+1

�
φ2dent+1yt+1 + ν

2dent
�
cft+1 − gt accrualst

��
.

Finally, recall the estimator 2at (the last element of bat) rescaled by the agent’s
marginal cost of the act identifies the "best" linear incentive payments

γTt wt = Δ2at
= Δ

1

ν2dent−1 + φ2dent

�
φ2dentyt + ν

2dent−1 (cft − g 2mt−1)
�

= Δ
1

ν2dent−1 + φ2dent
× �φ2dentyt + ν2dent−1 �cft − gt−1 accrualst−1�� .

This completes the induction steps.

Corollary 13.4. For the benchmark case Σ = σ2eI (ν = φ = 1) and g = 1,
accruals at time t are an efficient summary of past cash flow history for the cash
flow mean if

[2mt|cf1, ..., cft] = accrualst

=
F2t
F2t+1

(cft − a∗t ) +
F2t−1
F2t+1

accrualst−1

where Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1 (the Fibonacci series), and the
sequence is initialized with accruals0 = m0 (common knowledge mean beliefs).
Then,variance of accruals equals V ar [2mt] =

F2t
F2t+1

σ2e.

Proof. Replace g = ν = 1 in proposition 13.1. Hence,�
dent
numt

�
= B

�
dent−1
numt−1

�
reduces to �

dent
numt

�
=

�
2 1
1 1

� �
dent−1
numt−1

�
.

Since �
Fn+1
Fn

�
=

�
1 1
1 0

� �
Fn
Fn−1

�
and �

Fn+2
Fn+1

�
=

�
1 1
1 0

� �
1 1
1 0

� �
Fn
Fn−1

�
=

�
2 1
1 1

� �
Fn
Fn−1

�
,
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dent = F2t+1, numt = F2t, dent−1 = F2t−1, and numt−1 = F2t−2.

For g = ν = 1, the above implies2mt = gt−1accrualst

=
1

dent



numt

g2
(cft − a∗t ) + gt−1ν2dent−1accrualst−1

�
reduces to

F2t
F2t+1

(cft − a∗t ) +
F2t−1
F2t+1

accrualst−1

and variance of accruals equals F2t
F2t+1

σ2e.

Corollary 13.5 For the benchmark case Σ = σ2eI (ν = φ = 1) and g =
1,accrualst−1, cft, and yt are, collectively, sufficient statistics for evaluating the
agent with incentive payments given by

γTt wt = Δ

�
F2t+1
L2t

yt +
F2t−1
L2t

(cft − accrualst−1)
�

and variance of payments equals Δ2 F2t+1
L2t

σ2e where accrualst−1 is as defined in
corollary 13.4 and Ln = Ln−1 + Ln−2, L0 = 2, and L1 = 1 (the Lucas series),
and Δ = c(aH)−c(aL)

aH−aL .

Proof. Replace g = ν = φ = 1 in proposition 13.3. Hence,�
dent
numt

�
= B

�
dent−1
numt−1

�
reduces to �

dent
numt

�
=

�
2 1
1 1

� �
dent−1
numt−1

�
.

Since �
Fn+1
Fn

�
=

�
1 1
1 0

� �
Fn
Fn−1

�
and �

Fn+2
Fn+1

�
=

�
1 1
1 0

� �
1 1
1 0

� �
Fn
Fn−1

�
=

�
2 1
1 1

� �
Fn
Fn−1

�
dent = F2t+1, numt = F2t, dent−1 = F2t−1, numt−1 = F2t−2, and Lt =
Ft+1 + Ft−1. For g = ν = φ = 1, the above implies

γTt wt = Δ
1

ν2dent−1φ2dent

�
φ2dentyt + ν

2dent−1
�
cft − gt−1accrualst−1

��
reduces to

Δ

�
F2t−1
L2t

(cft − accrualst−1) + F2t+1
L2t

yt

�
and variance of payments equals Δ2 F2t+1

L2t
σ2e.



Appendix A
Asymptotic theory

Approximate or asymptotic results are an important foundation of statistical in-
ference. Some of the main ideas are discussed below. The ideas center around the
fundamental theorem of statistics, laws of large numbers (LLN), and central limit
theorems (CLT). The discussion includes definitions of convergence in probabil-
ity, almost sure convergence, convergence in distribution and rates of stochastic
convergence.

The fundamental theorem of statistics states that if we sample randomly with
replacement from a population, the empirical distribution function is consistent
for the population distribution function (Davidson and MacKinnon [1993], p. 120-
122). The fundamental theorem sets the stage for the remaining asymptotic theory.

A.1 Convergence in probability (laws of large
numbers)

Definition A.1 Convergence in probability.
xn converges in probability to constant c if lim

n→∞Pr (|xn − c| > ε) = 0 for all
ε > 0. This is written p lim (xn) = c.

A frequently employed special case is convergence in quadratic mean.

Theorem A.1 Convergence in quadratic mean (or mean square).
If xn has mean μn and variance σ2n such that ordinary limits of μn and σ2n are c
and 0, respectively, then xn converges in mean square to c and p lim (xn) = c.

A proof follows from Chebychev’s Inequality.

413D. A. Schroeder, Accounting and Causal Effects, DOI 10.1007/978-1-4419-7225-5,
© Springer Science+Business Media, LLC 2010
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Theorem A.2 Chebychev’s Inequality.
If xn is a random variable and cn and ε are constants then

Pr (|xn − cn| > ε) ≤ E
6
(xn − cn)2

7
/ε2

A proof follows from Markov’s Inequality.

Theorem A.3 Markov’s Inequality.
If yn is a nonnegative random variable and δ is a positive constant then

Pr (yn ≥ δ) ≤ E [yn] /δ

Proof.

E [yn] = Pr (yn < δ)E [yn | yn < δ] + Pr (yn ≥ δ)E [yn | yn ≥ δ]

Since yn ≥ 0 both terms are nonnegative.
Therefore, E [yn] ≥ Pr (yn ≥ δ)E [yn | yn ≥ δ].
Since E [yn | yn ≥ δ] must be greater than δ, E [yn] ≥ Pr (yn ≥ δ) δ.

Proof. To prove Theorem A.2, let yn = (xn − c)2 and δ = ε2 then

(xn − c)2 > δ

implies |x− c| > ε.

Proof. Now consider a special case of Chebychev’s Inequality. Let c = μn,
Pr (|xn − μn| > ε) ≤ σ2/ε2. Now, if lim

n→∞E [xn] = c and lim
n→∞V ar [xn] = 0,

then lim
n→∞Pr (|xn − μn| > ε) ≤ lim

n→∞σ
2/ε2 = 0. The proof of Theorem A.1 is

completed by Definition A.1 p lim (xn) = μn.

We have shown convergence in mean square implies convergence in probability.

A.1.1 Almost sure convergence
Definition A.2 Almost sure convergence.
zn

as−→ z if Pr
�
lim
n→∞ |zn − z| < ε

�
= 1 for all ε > 0.

That is, there is large enough n such that the probability of the joint event
Pr (|zn+1 − z| > ε, |zn+2 − z| > ε, ...) diminishes to zero.

Theorem A.4 Markov’s strong law of large numbers.
If {zj} is sequence of independent random variables with E [zj ] = μj < ∞ and
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if for some δ > 0,
E
�|zj−μj|1+δ�

j1+δ
< ∞ then zn − μn converges almost surely to

0, where zn = n−1
n,
j=1

zj and μn = n−1
n,
j=1

μj .

This is denoted zn − μn as−→ 0.

Kolmogorov’s law is somewhat weaker as it employs δ = 1.

Theorem A.5 Kolmogorov’s strong law of large numbers.
If {z} is sequence of independent random variables with E [zj ] = μj < ∞,

V ar [zj ] = σ
2
j <∞ and

n,
j=1

σ2j
j2 <∞ then zn − μn as−→ 0.

Both of the above theorems allow variances to increase but slowly enough that
sums of variances converge. Almost sure convergence states that the behavior of
the mean of sample observations is the same as the behavior of the average of the
population means (not that the sample means converge to anything specific).

The following is a less general result but adequate for most econometric appli-
cations. Further, Chebychev’s law of large numbers differs from Kinchine’s in that
Chebychev’s does not assume iid (independent, identical distributions).

Theorem A.6 Chebychev’s weak law of large numbers.
If {z} is sequence of uncorrelated random variables with E [zj ] = μj < ∞,

V ar [zj ] = σ
2
j <∞, and lim

n→∞n
−2 ∞,

j=1

σ2j <∞, then zn − μn p−→ 0.

Almost sure convergence implies convergence in probability (but not necessarily
the converse).

A.1.2 Applications of convergence
Definition A.3 Consistent estimator.
An estimator θ̂ of parameter θ is a consistent estimator iff p lim

�
θ̂
�
= θ.

Theorem A.7 Consistency of sample mean.
The mean of a random sample from any population with finite mean μ and finite
variance σ2 is a consistent estimator of μ.

Proof. E [x̄] = μ and V ar [x̄] = σ2

n , therefore by Theorem A.1 (convergence in
quadratic mean) p lim (x̄) = μ.
An alternative theorem with weaker conditions is Kinchine’s weak law of large
numbers.

Theorem A.8 Kinchine’s theorem (weak law of large numbers).
Let {xj}, j = 1, 2, ..., n, be a random sample (iid) and assume E [xj ] = μ (a
finite constant) then x̄ p−→ μ.

The Slutsky Theorem is an extremely useful result.
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Theorem A.9 Slutsky Theorem.
For continuous function g (x) that is not a function of n,

p lim (g (xn)) = g (p lim (xn))

A proof follows from the implication rule.

Theorem A.10 The implication rule.
Consider events E and Fj , j = 1, ..., k, such that E ⊃ ∩j=1,kFj .
Then Pr

�
Ē
� ≤ k,

j=1

Pr
�
F̄j
�
.

Notation: Ē is the complement to E, A ⊃ B means event B implies event A
(inclusion), and A ∩B ≡ AB means the intersection of events A and B.

Proof. A proof of the implication rule is from Lukacs [1975].
1. Pr (A ∪B) = Pr (A) + Pr (B)− Pr (AB).
2. Pr

�
Ā
�
= 1− Pr (A).

from 1

3. Pr (A ∪B) ≤ Pr (A) + Pr (B)
4. Pr (∪j=1,∞Aj) ≤

k,
j=1

Pr (Aj)

1 and 2 implyPr (AB) = Pr (A)−Pr (B)+1−Pr (A ∪B). Since 1−Pr (A ∪B) ≥
0, we obtain

5. Pr (AB) ≥ Pr (A)− Pr �B̄� = 1− Pr �Ā�− Pr �B̄� (Boole’s Inequality).
Pr (∩jAj) ≥ 1− Pr

�
Ā1
�− Pr �∩j=2,∞Aj� = 1− Pr (A1)− Pr �∪j=2,∞Āj�.

This inequality and 4 imply

6. Pr (∩j=1,kAj) ≥ 1−
k,
j=1

Pr
�
Āj
�

(Boole’s Generalized Inequality).

5 can be rewritten as

7. Pr
�
Ā
�
+ Pr

�
B̄
� ≥ 1− Pr (AB) = Pr �AB� = Pr �Ā ∪ B̄�.

Now let C be an event implied by AB, that is C ⊃ AB, then C̄ ⊂ Ā ∪ B̄ and

8. Pr
�
C̄
� ≤ Pr �Ā ∪ B̄�.

Combining 7 and 8 obtains
The Implication Rule.

Let A, B, and C be three events such that C ⊃ AB, then
Pr
�
C̄
� ≤ Pr �Ā�+ Pr �B̄�.
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Proof. Slutsky Theorem (White [1984])
Let gj ∈ g. For every ε > 0, continuity of g implies there exists δ (ε) > 0 such that
if |xnj (w)− xj | < δ (ε), j = 1, ..., k, then |gj (xn (w))− gj (x)| < ε. Define
events

Fj ≡ [w : |xnj (w)− xj | < δ (ε)]
and

E ≡ [w : |gj (xnj (w))− gj (x)| < ε]

Then E ⊃ ∩j=1,kFj , by the implication rule, leads to Pr
�
Ē
� ≤ k,

j=1

Pr
�
F̄j
�
.

Since xn
p−→ x for arbitrary η > 0 and all n sufficiently large, Pr (Fj) ≤ η.

Thus, Pr
�
Ē
� ≤ kη or Pr (E) ≥ 1 − kη. Since Pr [E] ≤ 1 and η is arbitrary,

Pr (E) −→ 1 as n −→ ∞. Hence, gj (xn (w))
p−→ gj (x). Since this holds for

all j = 1, ..., k, g (xn (w))
p−→ g (x).

Comparison of Slutsky Theorem with Jensen’s Inequality highlights the difference
between the expectation of a random variable and probability limit.

Theorem A.11 Jensen’s Inequality.
If g (xn) is a concave function of xn then g (E [xn]) ≥ E [g (x)].
The comparison between the Slutsky theorem and Jensen’s inequality helps ex-
plain how an estimator may be consistent but not be unbiased.1

Theorem A.12 Rules for probability limits.
If xn and yn are random variables with p lim (xn) = c and p lim (yn) = d then
a. p lim (xn + yn) = c+ d (sum rule)
b. p lim (xnyn) = cd (product rule)
c. p lim

�
xn
yn

�
= c

d if d �= 0 (ratio rule)

IfWn is a matrix of random variables and if p lim (Wn) = Ω then
d. p lim

�
W−1
n

�
= Ω−1 (matrix inverse rule)

IfXn and Yn are random matrices with p lim (Xn) = A and p lim (Yn) = B then
e. p lim (XnYn) = AB (matrix product rule).

A.2 Convergence in distribution (central limit
theorems)

Definition A.4 Convergence in distribution.
xn converges in distribution to random variable x with CDF F (x) if
lim
n→∞ |F (xn)− F (x)| = 0 at all continuity points of F (x).

1Of course, Jensen’s inequality is exploited in the construction of concave utility functions to rep-
resent risk aversion.
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Definition A.5 Limiting distribution.
If xn converges in distribution to random variable x with CDF F (x) then F (x)
is the limiting distribution of xn; this is written xn

d−→ x.

Example A.1 tn−1
d−→ N (0, 1).

Definition A.6 Limiting mean and variance.
The limiting mean and variance of a random variable are the mean and variance
of the limiting distribution assuming the limiting distribution and its moments
exist.

Theorem A.13 Rules for limiting distributions.
(a) If xn

d−→ x and p lim (yn) = c, then xnyn
d−→ xc.

Also, xn + yn
d−→ x+ c, and

xn
yn

d−→ x
c , c �= 0.

(b) If xn
d−→ x and g (x) is a continuous function then g (xn)

d−→ g (x) (this is
the analog to the Slutsky theorem).
(c) If yn has limiting distribution and p lim (xn − yn) = 0, then xn has the same
limiting distribution as yn.

Example A.2 F (1, n) d−→ χ2 (1).

Theorem A.14 Lindberg-Levy Central Limit Theorem (univariate).
If x1, ..., xn are a random sample from probability distribution with finite mean μ

and finite variance σ2 and x̄ = n−1
n,
t=1
xt, then

√
n (x̄− μ) d−→ N

�
0,σ2

�
.

Proof. (Rao [1973], p. 127)
Let f (t) be the characteristic function ofXt − μ.2 Since the first two moments

exist,

f (t) = 1− 1
2
σ2t2 + o

�
t2
�

The characteristic function of Yn = 1√
nσ

,n
i=1 (Xi − μ) is

fn (t) =

�
f



t

σ
√
n

��n
=

�
1− 1

2
σ2t2 + o

�
t2
��n

2The characteristic function f (t) is the complex analog to the moment generating function

f (t) =

!
eitxdF (x)

=

!
cos (tx) dF (x) + i

!
sin (tx) dF (x)

where i =
√−1 (Rao [1973], p. 99).
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And

log

�
1− 1

2
σ2t2 + o

�
t2
��n

= n log

�
1− 1

2
σ2t2 + o

�
t2
��n → − t

2

2

That is, as n→∞
fn (t)→ e−

t2

2

Since the limiting distribution is continuous, the convergence of the distribution
function of Yn is uniform, and we have the more general result

lim
n→∞ [FYn (xn)− Φ (xn)]→ 0

where xn may depend on n in any manner. This result implies that the distribution
function of Xn can be approximated by that of a normal random variable with
mean μ and variance σ2

n for sufficiently large n.

Theorem A.15 Lindberg-Feller Central Limit Theorem (unequal variances).
Suppose {x1, ..., xn} is a set of random variables with finite means μj and finite

variance σ2j . Let μ̄ = n−1
n,
t=1
μt and σ̄2n = n−1

�
σ21 + σ

2
2 + ...

�
. If no single

term dominates the average variance ( lim
n→∞

max(σj)
nσ̄n

= 0), if the average vari-

ance converges to a finite constant ( lim
n→∞σ̄

2
n = σ̄2), and x̄ = n−1

n,
t=1
xt, then

√
n (x̄− μ̄) d−→ N

�
0, σ̄2

�
.

Multivariate versions apply to both; the multivariate version of the Lindberg-Levy
CLT follows.

Theorem A.16 Lindberg-Levy Central Limit Theorem (multivariate).
IfX1, ..., Xn are a random sample from multivariate probability distribution with

finite mean vector μ and finite covariance matrix Q, and x̄ = n−1
n,
t=1
xt, then

√
n
�
X̄ − μ� d−→ N (0, Q).

Delta method.
The “Delta method” is used to justify usage of linear Taylor series approxima-

tion to analyze distributions and moments of a function of random variables. It
combines Theorem A.9 Slutsky’s probability limit, Theorem A.13 limiting distri-
bution, and the Central Limit Theorems A.14-A.16.

Theorem A.17 Limiting normal distribution of a function.
If
√
n (zn − μ) d−→ N

�
0,σ2

�
and if g (zn) is a continuous function not involving

n, then √
n (g (zn)− g (μ)) d−→ N

�
0, {g� (μ)}2 σ2

�
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A key insight for the Delta method is the mean and variance of the limiting dis-
tribution are the mean and variance of a linear approximation evaluated at μ,
g (zn) ≈ g (μ) + g� (μ) (zn − μ).
Theorem A.18 Limiting normal distribution of a set of functions (multivariate).
If zn is aK × 1 sequence of vector-valued random variables such that

√
n (zn − μn) d−→ N (0,Σ)

and if c (zn) is a set of J continuous functions of zn not involving n, then
√
n (c (zn)− c (μn)) d−→ N

�
0, CΣCT

�
where C is a J × K matrix with jth row a vector of partial derivatives of jth
function with respect to zn, ∂c(zn)

∂zTn
.

Definition A.7 Asymptotic distribution.
An asymptotic distribution is a distribution used to approximate the true finite
sample distribution of a random variable.

Example A.3 If
√
n
�
xn−μ
σ

� d−→ N (0, 1), then approximately or asymptotically
x̄n ∼ N

�
μ, σ

2

n

�
. This is written x̄n

d−→ N
�
μ, σ

2

n

�
.

Definition A.8 Asymptotic normality and asymptotic efficiency.
An estimator 2θ is asymptotically normal if

√
n
�2θ − θ� d−→ N (0, V ). An esti-

mator is asymptotically efficient if the covariance matrix of any other consistent,
asymptotically normally distributed estimator exceeds n−1V by a nonnegative
definite matrix.

Example A.4 Asymptotic inefficiency of median in normal sampling.
In sampling from a normal distribution with mean μ and variance σ2, both the
sample mean x̄ and median M are consistent estimators of μ. Their asymptotic
properties are x̄n

a−→ N
�
μ, σ

2

n

�
and M a−→ N

�
μ, π2

σ2

n

�
. Hence, the sample

mean is a more efficient estimator for the mean than the median by a factor of
π/2 ≈ 1.57.
This result for the median follows from the next theorem (see Mood, Graybill, and
Boes [1974], p. 257).

Theorem A.19 Asymptotic distribution of order statistics.
Let x1, ..., xn be iid random variables with density f and cumulative distribution
function F . F is strictly monotone. Let ξp be a unique solution in x of F (x) = p
for some 0 < p < 1 (ξp is the pth quantile). Let pn be such that npn is an integer
and n |pn − p| is bounded. Let y(n)npn denote (np)th order statistic for a random
sample of size n. Then y(n)npn is asymptotically distributed as a normal distribution
with mean ξp and variance p(1−p)

n[f(ξp)]
2 .
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Example A.5 Sample median.
Let p = 1

2 (implies ξp = sample median). The sample median

M
a−→ N

�
ξp,

1

4n [f (1/2)]
2

�

Since ξ 1
2
= μ, f

�
ξ 1
2

�2
=
�
2πσ2

�−1 and the variance is
1
2 (

1
2 )

nf

�
ξ 1
2

�2 = π
2
σ2

n , the

result asserted above.

Theorem A.20 Asymptotic distribution of nonlinear function.
If 2θ is a vector of estimates such that 2θ a−→ N

�
θ, n−1V

�
and if c (θ) is a set of J

continuous functions not involving n, then

c
�2θ� a−→ N

�
c (θ) , n−1C (θ)V C (θ)T

�
where C (θ) = ∂c(θ)

∂θT
.

Example A.6 Asymptotic distribution of a function of two estimates.
Suppose b and t are estimates of β and θ such that�

b
t

�
a−→ N


�
β
θ

�
,

�
σββ σβθ
σθβ σθθ

��
We wish to find the asymptotic distribution for c = b

1−t . Let γ = β
1−θ – the true

parameter of interest. By the Slutsky Theorem and consistency of the sample mean,
c is consistent for γ. Let γβ =

∂γ
∂β =

1
1−θ and γθ =

∂γ
∂θ =

β
(1−θ)2 . The asymptotic

variance is

Asy.V ar [c] =
�
γβ γθ

�
Σ

�
γβ
γθ

�
= γβσββ + γθσθθ + 2γβγθσβθ

Notice this is simply the variance of a linear approximation 2γ ≈ γ+γβ (b− β)+
γθ (t− θ).

Theorem A.21 Asymptotic normality of MLE Theorem
MLE, θ̂, for strongly asymptotically identified model represented by log-likelihood
function < (θ), when it exists and is consistent for θ, is asymptotically normal if
(i) contributions to log-likelihood <t (y, θ) are at least twice continuously differ-
entiable in θ for almost all y and all θ,
(ii) component sequences

�
D2
θθ<t (y, θ)

�
t=1,∞ satisfy WULLN (weak uniform

law) on θ,
(iii) component sequences {Dθ<t (y, θ)}t=1,∞ satisfy CLT.
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A.3 Rates of convergence

Definition A.9 Order 1/n (big-O notation).
If f and g are two real-valued functions of positive integer variable n, then the
notation f (n) = O (g (n)) (optionally as n → ∞) means there exists a constant
k > 0 (independent of n) and a positive integer N such that




 f(n)g(n)




 < k for all
n < N . (f (n) is of same order as g (n) asymptotically).

Definition A.10 Order less than 1/n (little-o notation).
If f and g are two real-valued functions of positive integer variable n, then the
notation f (n) = o (g (n)) means the lim

n→∞
f(n)
g(n) = 0 (f (n) is of smaller order

than g (n) asymptotically).

Definition A.11 Asymptotic equality.
If f and g are two real-valued functions of positive integer variable n such that
lim
n→∞

f(n)
g(n) = 1, then f (n) and g (n) are asymptotically equal. This is written

f (n)
a
= g (n).

Definition A.12 Stochastic order relations.
If {an} is a sequence of random variables and g (n) is a real-valued function of
positive integer argument n, then
(1) an = op (g (n)) means lim

n→∞
an
g(n) = 0,

(2) similarly, an = Op (g (n))means there is a constant k such that (for all ε > 0)
there is a positive integer N such that Pr

�


 ang(n) 


 > k� < ε for all n > N , and

(3) If {bn} is a sequence of random variables, then the notation an
a
= bn means

lim
n→∞

an
bn
= 1.

Comparable definitions apply to almost sure convergence and convergence in dis-
tribution (though these are infrequently used).

Theorem A.22 Order rules:

O (np)±O (nq) = O
�
nmax(p,q)

�
o (np)± o (nq) = o

�
nmax(p,q)

�
O (np)± o (nq) = O

�
nmax(p,q)

�
if p ≥ q

= o
�
nmax(p,q)

�
if p < q

O (np)O (nq) = O
�
np+q

�
o (np) o (nq) = o

�
np+q

�
O (np) o (nq) = o

�
np+q

�
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Example A.7 Square-root n convergence.

(1) If each x = O (1) has mean μ and the central limit theorem applies
n,
t=1
xt =

O (n) and
n,
t=1
(xt − μ) = O (

√
n).

(2) Let Pr (yt = 1) = 1/2, Pr (yt = 0) = 1/2, zt = yt − 1/2, and bn =
√
n

n,
t=1
zt. V ar [bn] = n−1V ar [zt] = n−1 (1/4).

√
nbn = n

− 1
2

n,
t=1
zt.

E
�√
nbn

�
= 0

and

V ar
�√
nbn

�
= 1/4

Thus,
√
nbn = O (1) which implies bn = O

�
n−

1
2

�
.

These examples represent common econometric results. That is, the average of n

centered quantities is O
�
n−

1
2

�
, and is referred to as square-root n convergence.

A.4 Additional reading

Numerous books and papers including Davidson and MacKinnon [1993, 2003],
Greene [1997], and White [1984] provide in depth review of asymptotic theory.
Hall and Heyde [1980] reviews limit theory (including laws of large numbers and
central limit theorems) for martingales.
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& Student t distribution, 330
prototypical example, 307

average treatment effect sample
statistics, 310

DGP, 307
latent utility, 307

McMC estimated average treat-
ment effects, 310

McMC estimated marginal treat-
ment effects, 311

McMC MTE-weighted average
treatment effects, 311

outcome, 307
simulation, 308

regulated continuous but observed
binary report precision, 316–
319

instrument, 317
latent utility, 317
McMC estimated average treat-

ment effects, 318
McMC estimated average treat-

ment effects from MTE, 319
regulated continuous, nonnormal but

observed binary report preci-
sion, 319–323

latent utility, 321
McMC estimated average treat-

ment effects, 321
McMC estimated average treat-

ment effects from MTE, 321
nonnormality, 319
policy-relevant treatment effect,

326
stronger instrument, 323
stronger instrument McMC av-

erage treatment effect estimates,
323

stronger instrument McMC av-
erage treatment effect estimates
from MTE, 323

regulated report precision, 311
latent utility, 311
outcome, 312

selection, 302
Bernoulli distribution, 240
best linear predictor theorem (regression

justification II), 57
beta distribution, 113
BHHH estimator, 66, 70
binomial distribution, 65, 94, 107, 113
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block matrix, 44
block one factorization, 24
BLU estimator, 21
bootstrap, 108

paired, 109
panel data regression, 109
regression, 108
wild, 109

BRMR, 89
BRMR (binary response model regres-

sion), 88
burn-in, 118, 120, 121

CAN, 21, 102, 212
CARA, 15
causal effect, 1, 275, 277

definition, 125
general equilibrium, 293

policy invariance, 293
uniformity, 293

causal effects, 14, 22, 105, 123, 128
CEF decomposition theorem, 55
CEF prediction theorem, 55
central limit theorem, 35
certainty equivalent, 15
certified value, 12
chi-square distribution, 74
chi-squared statistic, 38
Cholesky decomposition, 21, 119
classical statistics, 4, 17
CLT, 41, 69, 70
completeness, 3
conditional expectation function (CEF),

55
conditional likelihood ratio statistic, 135
conditional mean independence, 158, 164,

167, 204
conditional mean independence (redun-

dancy), 213
conditional mean redundancy, 213, 214,

238
conditional moment tests, 101
conditional posterior distribution, 95, 117–

119
conditional score statistic, 135

conditional stochastic independence, 158,
165, 172

conjugacy, 111
conjugate prior, 111
consistency, 42, 45, 70, 102, 155, 213
consistent, 108
contribution to gradient (CG) matrix, 67
control function, 203

inverse Mills, 130
convergence, 98
convolution, 35
cost of capital, 129
counterfactual, 142, 173, 207, 215, 218,

275
covariance for MLE, 66
Cramer-Rao lower bound, 67
critical smoothing, 93

data, 1–3, 11, 123, 155
delta method, 41
density-weighted average derivative es-

timator
instrumental variable, 143

DGP, 19, 21, 22, 38, 41–44, 68, 89, 91,
123, 147, 148, 155, 159, 167,
181, 207, 210

diagnostic checks, 3
differences-in-differences, 129
Dirichlet distribution, 115, 146
duration model, 143–145

Bayesian semiparametric, 144
proportional hazard, 144, 145
semiparametric proportional hazard,

144

earnings inequality, 210
earnings management, 10–12, 16, 48–

54, 382–397, 401–412
equilibrium reporting behavior, 382
logistic distribution, 383
performance evaluation, 401

accruals smoothing, 401
limited commitment, 401

selective manipulation, 393–397
closer look at the variance, 397
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noncentral scaled t distribution,
396

scale uncertainty, 396
scale uncertainty simulation, 397
simulation, 394
truncated expectations, 397

stacked weighted projection, 384
stochastic manipulation, 382–392

closer look at variance, 391
inverted chi-square distribution,

388
noncentral scaled t distribution,

388, 391
scale uncertainty, 385
scale uncertainty simulation, 392
simulation, 385

Eicker-Huber-White estimator, 22
empirical model building, 2
empiricist, 1
endogeneity, 1, 3, 9, 14, 123, 130, 148,

155
endogenous causal effects, 9
endogenous regressor, 43, 126
entropy, 334
equilibrium, 9, 11, 12, 15–17
equilibrium earnings management, 10–

12, 16, 48–54, 382–397, 401–
412

analyst, 52
Bernoulli distribution, 50
data, 54
endogeneity, 48
equilibrium, 49
fair value accruals, 48
information advantage, 52
instrument, 48
model specification, 54
nonlinear price-accruals relation, 50
omitted variable, 51
private information, 48
propensity score, 48, 51, 53, 54

logit, 54
saturated design, 51
social scientist, 52
theory, 54

unobservable, 53, 54
error cancellation, 35
error components model, 26
estimand, 123, 218
evidentiary archive, 401
exact tests, 108
exchangeable, 107, 110, 146
exclusion restriction, 207, 218, 221
expected squared error loss, 71, 72
expected utility, 13, 16, 77
exponential distribution, 113, 145
external validity, 276
extreme value (logistic) distribution, 79

F statistic, 21, 37, 38, 40
fair value accruals, 10
financial statement example

directed graph, 374
Gaussian distribution, 371
left nullspace, 372
linear independence, 371
nullspace, 374
posterior distribution, 375
spanning tree, 374
under-identification and Bayes, 370

financial statement inference, 17, 370–
375, 401

bounding, 401
fineness, 3
first order considerations, 3
fixed effects, 127

lagged dependent variable, 129
fixed effects model, 26–30

between-groups (BG) estimator, 27
FWL, 26

projection matrix, 27
individual effects, 26
OLS, 26
time effects, 26
within-groups (WG) estimator, 27

fixed vs. random effects, 26–30
consistency & efficiency consider-

ations, 26
equivalence of GLS and fixed eff-

fects, 30
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equivalence of GLS and OLS, 30
Hausman test, 26

flexible fit, 97
football game puzzle

marginalization paradox, 370
probability as logic, 369
proposition, 370

Frisch-Waugh-Lovell (FWL), 22, 36, 38,
39, 99, 126, 128

fundamental principle of probabilistic in-
ference, 4

fundamental theorem of statistics, 108

gains to trade, 14
gamma distribution, 113
Gauss-Markov theorem, 19
Gauss-Newton regression (GNR), 62–

65
Gaussian distribution, 33, 55, see nor-

mal distribution
Gaussian function, 35

convergence, 35
convolution, 35
Fourier transform, 35
maximum entropy given variance,

35
preservation, 35
product, 35

GCV (generalized cross-validation), 104
general equilibrium, 276
generalized least squares (GLS), 21
Gibbs sampler, 95, 118
global concavity, 66
GLS, 110
GNR, 88
gradient, 40, 63, 67
Gumbel distribution, 80, 83

Halton draw
random, 121

Halton sequences, 120
Hammersley-Clifford theorem, 117
Hausman test, 43
hazard function

conditional, 145

integrated, 144
unconditional, 144

Heckman’s two-stage procedure, 214
standard errors, 214

Hessian, 62, 63, 66, 67, 70
positive definite, 63

heterogeneity, 129, 144, 146, 162, 210
heterogeneous outcome, 14
heteroskedastic-consistent covariance es-

timator, 65
homogeneity, 146, 159, 210, 211
homogeneous outcome, 14

identification, 78, 79, 83, 87, 107, 142,
158, 207, 210, 211, 238

Bayes, 165
Bayes’ sum and product rules, 219
control functions, 213
LATE

binary instrument, 218
nonparametric, 164
propensity score, 169
propensity score and linearity, 172

ignorable treatment (selection on observ-
ables), 148, 149, 157–204, 207

independence of irrelevant alternatives
(IIA), 78, 80–83, 92

index sufficiency, 172
inferring transactions from financial state-

ments, 17, 370–375
information matrix, 67, 68

asymptotic or limiting, 67
average, 67

informational complementarities, 3
informed priors, 333–401
instrument, 41, 42, 142, 143, 164, 211

binary, 218
instrumental variable (IV), 41, 43, 95,

100, 105, 126
2SLS-IV, 126, 211
exclusion restriction, 277
linear

exclusion restrictions, 211
local (LIV), 276
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over-identifying tests of restrictions,
211

internal validity, 276
interval estimation, 36

normal (Gaussian) distribution, 36
intervention, 130
inverse Mills, 142
inverse-gamma distribution, 116
inverse-Wishart distribution, 116
iterated expectations, 172, 216

James-Stein shrinkage estimator, 70–75
Jaynes’ Ap distribution, 398

Bayes’ theorem, 399
football game puzzle revisited, 400

Jaynes’ widget problem, 355–369
stage 1 knowledge, 356

expected loss, 357
stage 2 knowledge, 358
stage 3 knowledge, 361

exact distributions, 366
Gaussian approximation, 363
rapidly converging sum, 365
z transform, 366

stage 4 knowledge, 369
joint density, 6

kernel, 111
kernel density, 92, 98, 102, 146

Gaussian, 100
leave one out, 98

Lagrange Multiplier (LM) statistic, 40
Lagrange multiplier (LM) statistic, 38
Lagrange multiplier (LM) test, 43
latent IV, 147
latent utility, 77, 79, 83, 86–88, 95
latent variable, 119
law of iterated expectations, 55
LEN model, 15
likelihood, 65
likelihood function, 111
likelihood ratio (LR) statistic, 38, 40
likelihood ratio (LR) test, 87
limited information estimation, 131
Lindberg-Feller CLT, 40

linear CEF theorem (regression justifi-
cation I), 56

linear conditional expectation function
Mathiowetz, 54

linear loss, 61
linear probability model, 78
link function, 77
LIV

estimation, 286
common support, 288
nonparametric FWL (double resid-

ual regression), 287
nonparametric kernel regression,

287
propensity score, 287

LLN, 63, 69, 70
log-likelihood, 34, 40, 62, 65, 67, 70,

83, 86, 87, 94, 131–134, 146
logistic distribution, 66, 79
logit, 66–84

binary, 79
conditional, 80, 82, 84
generalized extreme value (GEV),

81
generalized nested (GNL), 82, 84
multinomial, 82
multinomial , 80
nested, 82, 84
nested (NL), 82
nests, 81

lognormal distribution, 145

marginal density, 6
marginal posterior distribution, 117
marginal probability effect, 78, 86, 87,

138, 140
marginal treatment effect (MTE), 275–

300
discrete outcome

identification, 288
FORTRAN program, 300
heterogeneity, 288
identification, 278

Bayes’ theorem, 279
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policy-relevant treatment effect,
279

local instrumental variable (LIV),
279

support, 280
uniform distribution, 279

market portfolio, 2
maximum entropy, 334–354

background knowledge, 337
Cholesky decomposition, 348
continuous distributions

exponential, 349
Gaussian, 347
multivariate Gaussian, 348
truncated exponential, 349
truncated Gaussian, 350
uniform, 346

continuous support, 342
discrete choice logistic regression

(logit), 340
generalization, 337
ignorance, 334, 336
Lagrangian, 337
partition function, 338
probability as logic, 355
probability assignment, 334
transformation groups, 344

invariance, 344
Jeffrey’s prior, 345
location and scale knowledge, 344

variance bound, 351
Cramer-Rao, 351
Schwartz inequality, 353

maximum entropy principle (MEP), 4,
8, 17

maximum entropy priors, 333
maximum likelihood estimation (MLE),

33, 65, 68, 69, 89, 214
McMC (Markov chain Monte Carlo), 95,

117-120
tuning, 120

mean conditional independence, 43
measurement error, 41
Metropolis-Hastings (MH) algorithm, 118–

120

random walk, 119
tuning, 120

minimum expected loss, 59
minimum mean square error (MMSE),

55
missing data, 97
mixed logit

robust choice model, 92
model specification, 1, 54, 86, 89, 123,

155
MSE (mean squared error), 103, 104
multinomial distribution, 115

Nash equilibrium, see equilibrium
natural experiment, 129
negative-binomial distribution, 113
Newey-West estimator, 22
Newton’s method, 62
non-averaging statistics, 76
noncentrality parameter, 71
nonlinear least squares, 66
nonlinear regression, 62, 88
nonlinear restrictions, 41
nonnormal distribution, 147
nonparametric, 146
nonparametric discrete choice regression

robust choice model, 93
nonparametric kernel matching, 182
nonparametric model, 143
nonparametric regression, 97–105

fuzzy discontinuity design, 198
leave one out, 104
locally linear, 103
objectives, 97
specification test, 101

normal distribution, 86, 92, 94, 116, 132,
138, 139

bivariate, 130
nR-squared test, 40, 43

observationally equivalent, 208
OLS, 20–23, 41–43, 45, 64, 101, 110,

124, 133, 150
exogenous dummy variable regres-

sion, 158, 166
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omitted variable, 3, 41, 43, 123, 128,
149, 203, 207, 211

omitted variables, 99
OPG estimator, 70
ordinal, 78
ordinary least squares (OLS), 19
orthogonal matrix, 75
orthogonality, 19, 41
outcome, 14, 16, 147, 157, 207, 208,

211, 219
objective, 275
subjective, 275

outerproduct of gradient (OPG), 66
over-identifying restriction, 43

panel data, 26, 129
regression, 26

partition, 173
partitioned matrix, 126
perfect classifier, 79
perfect regressor, 159
performance evaluation

excessive individual measures, 401
pivotal statistic, 108

asymptotically, 111
pivots, 21
Poisson distribution, 73
poisson distribution, 113
policy evaluation, 155, 205, 275
policy invariance, 276

utility, 276
positive definite matrix, 72
posterior distribution, 111
posterior mean, 59
posterior mode, 59, 62
posterior quantile, 59, 61
prior distribution, 111
private information, 2, 3, 15, 175
probability as logic, 3, 4, 8, 333-401
probability assignment, 5, 6
probability limit (plim), 126
probit, 66, 86, 118, 142

Bayesian, 95
bivariate, 130
conditionally-heteroskedastic, 86, 90

simultaneous, 131
2SCML (two-stage conditional

maximum likelihood), 133
G2SP (generalized two-stage si-

multaneous probit), 133
IVP (instrumental variable pro-

bit), 132
LIML (limited information max-

imum likelihood), 132
projection, 36, 38, 64, 98
proxy variables, 43, 44
public information, 2, 15

quadratic loss, 60

R program
Matching library, 182

R project
bayesm package, 119

random coefficients, 31–33
correlated

average treatment effect, 33
panel data regression, 33
stochastic regressors identifica-

tion, 32
nonstochastic regressors identifica-

tion, 31
random effects model, 26–30

consistency, 30
GLS, 28

random utility model (RUM), 78, 92,
150

Rao-Blackwell theorem, 21
recursive, 135
recursive least squares, 117
reduced form, 124
regression CEF theorem (regression jus-

tification III), 57
regression justification, 55
regulated report precision, 14–17, 239–

272, 293–299, 311–329
adjusted outcome, 244
binary treatment, 239
causal effect, 239
continous treatment



456 INDEX

balanced panel data, 267
endogeneity, 239
equilibrium selection, 244
expected utility, 239
heterogeneity, 244

average treatment effects, 249
common support, 245
continuous choice but observed

binary, 253
DGP, 246
estimated average treatment ef-

fect, 246
estimated average treatment ef-

fect on treated, 246
estimated average treatment ef-

fect on untreated, 246
inverse Mills IV control function,

252, 257, 261
OLS estimate, 246
OLS estimated average treatment

effects, 254
ordinate IV control function, 250,

257, 260
poor instruments, 246
propensity score, 249, 254, 259
propensity score matching, 250,

256, 260
stronger instrument, 249, 259
treatment effect on treated, 245
treatment effect on untreated, 246
unobservable, 245
weak instruments, 248

homogeneity, 244
MTE, 293
nonnormality, 293

inverse Mills IV control function,
296

MTE via LIV, 296
nonparametric selection, 298
OLS estimated average treatment

effects, 294
ordinate IV control function, 294
stronger instrument and inverse

Mills IV, 298
stronger instrument and LIV, 298

stronger instrument and ordinate
IV control, 298

unobservable, 297
weak instruments, 297

observed continous treatment
equilibrium, 267
OLS estimated average treatment

effect on treated, 268
outcome, 267

observed continuous treatment, 266
2SLS-IV estimated average treat-

ment effect on treated, 269, 270,
272

OLS estimand, 241
OLS selection bias, 241
outcome, 239
perfect predictor of treatment, 243
saturated regression, 244
Simpson’s paradox, 262

inverse Mills IV control function,
265

OLS estimated treatment effects,
263

ordinate IV control function, 263
transaction design, 16
treatment effect

sample statistics, 242
treatment effect on treated, 240
treatment effect on untreated, 241
unobservable cost, 239

representative utility, 77
restricted least squares, 181
ridge regression, 104
risk preference, 14
Roy model

DGP, 278
extended, 277, 278
generalized, 210, 277
gross benefit, 278
observable cost, 278
observable net benefit, 278
original (basic), 210, 277, 278
treatment cost, 278
unobservable net benefit, 278
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sample selection, 142, 148
scale, 78, 87, 91, 98
scientific reasoning, 4
score vector, 67
selection, 14, 41, 105, 147, 149, 157,

207, 208, 210
logit, 212, 213, 217
probit, 212–214, 217, 249

selection bias, 205
selective experimentation, 149
semiparametric regression

density-weighted average derivative,
100

discrete regressor, 105
partial index, 101, 128, 143
partial linear regression, 99, 128
single index regression, 99

semiparametric single index discrete choice
models

robust choice model, 92
Simpson’s paradox, 148, 149
simulation

Bayesian, 111
McMC (Markov chain Monte Carlo),

117
Monte Carlo, 108

simultaneity, 41, 124
simultaneity bias, 125
singular value decomposition (SVD), 29

eigenvalues, 29
eigenvectrors, 29

orthogonal matrix, 29
Slutsky’s theorem, 42, 416
smooth accruals, 376-381, 401-412

accruals as a statistic, 376
tidiness, 379

appendix, 401-412
BLU estimation, 402
Cramer-Rao lower bound, 402
difference equations, 403
Fibonacci series, 411
induction, 403
information matrix, 402
LDL’ factorization, 402
LEN contract, 406

Lucas series, 412
proofs, 401

DGP, 376
LEN model, 376
performance evaluation role, 379
valuation role, 377

social scientist, 2
squared bias, 105
statistical sufficiency, 3
stochastic regressors, 20
strategic choice model, 135–141

analyst error, 135
expected utility, 135
logistic distribution, 135
normal distribution, 135
private information, 135
quantal response equilibrium, 135
sequential game, 135
unique equilibrium, 135

strategic interaction, 17
strategic probit, 139
strong ignorability, 172
structural, 124, 275
structural model, 237
Student t distribution, 114

multivariate, 116
sum of uniform random variables, 4
SUR (seemingly unrelated regression),

26
survivor function, 145

t statistic, 21
Taylor series, 62, 69
tests of restrictions, 22, 38
theory, 1, 11, 123, 155, 275
three-legged strategy, 1, 3
Tobit (censored regression), 94
trace, 72
trace plots, 118
treatment, 14, 16, 276

continuous, 236
cost, 210
gross benefit, 210
latent utility, 210
observable cost, 210
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observable net benefit, 210
uniformity, 233
unobservable net benefit, 210

treatment effect, 130, 147, 157, 207
ANOVA (nonparametric regression),

168
average, 147, 280
average (ATE), 147, 150, 158, 159,

165, 166, 169, 204, 208, 212,
216

average on treated, 280
average on treated (ATE), 158
average on treated (ATT), 147, 150,

169, 173, 204, 209, 212, 216
heterogeneity, 217

average on untreated, 280
average on untreated (ATUT), 148,

150, 158, 169, 173, 204, 209,
216

heterogeneity, 217
average on utreated (ATUT), 212
common support, 205, 214
compared with structural modeling,

155
comparison of identification strate-

gies
control function, 284
linear IV, 284
LIV (local IV), 284
matching, 284

conditional average (ATE(X)), 166,
167, 216

conditional average on treated (ATT(X)),
215

conditional average on untreated (ATUT(X)),
216

continuous, 289, 291
2SLS-IV, 238

DGP, 301
distributions, 291

factor model, 291
dynamic timing, 292

duration model, 292
outcome, 292
policy invariance, 292

endogenous dummy variable IV model,
211

heterogeneity, 212
heterogeneous outcome, 277
identification

control functions, 286
linear IV, 286
local IV, 286
matching, 286
perfect classifier, 286

identification via IV, 148
inverse Mills IV control function

heterogeneity, 214
LATE

always treated, 222
complier, 221, 222
defier, 221
never treated, 222

LATE 2SLS-IV estimation, 221
LATE = ATT, 221
LATE = ATUT, 221
linear IV weight, 283
LIV identification

common propensity score sup-
port, 286

local average, 281
local average (LATE), 198, 209, 218

censored regression, 234
discrete marginal treatment ef-

fect, 218
local IV (LIV), 233
marginal (MTE), 209, 212, 233, 276
multilevel discrete, 289

ordered choice, 289
unordered choice, 290

OLS bias for ATE, 151
OLS bias for ATT, 150
OLS bias for ATUT, 151
OLS inconsistent, 211
OLS weight, 284
ordinate IV control function

heterogeneity, 213
outcome, 277
policy invariance, 282
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policy-relevant treatment effect ver-
sus policy effect, 282

probit, 281
propensity score, 169

estimands, 169
propensity score IV, 212
propensity score IV identification

heterogeneity, 213
propensity score matching, 172
propensity score matching versus

general matching, 173
quantile, 234
selection, 277
Tuebingen example

case 8-1, 151
case 8-2, 151
case 8-3, 153
case 8-4 Simpson’s paradox, 153

Tuebingen example with regressors
case 9-1, 159
case 9-2, 160
case 9-3, 161
case 9-4 Simpson’s paradox, 162

Tuebingen IV example
case 10-1 ignorable treatment, 223
case 10-1b uniformity fails, 223
case 10-2 heterogeneous response,

225
case 10-2b LATE = ATT, 227
case 10-3 more heterogeneity, 228
case 10-3b LATE = ATUT, 228
case 10-4 Simpsons’ paradox, 229
case 10-4b exclusion restriction

violated, 230
case 10-5 lack of common sup-

port, 231
case 10-5b minimal common sup-

port, 232
Tuebingen-style, 149
uniformity, 221, 277, 282

truncated normal distribution, 95, 119,
215

U statistic, 100
unbiasedness, 20

uniform distribution, 83, 120, 138, 179
union status, 129
unobservable heterogeneity, 208, 218, 233
unobservables, 14, 17, 78, 84, 86, 87,

89, 123, 129, 146

variance, 105
variance for MLE, see covariance for

MLE

Wald statistic, 38, 40, 41, 43
modified, 134

Weibull distribution, 145
weighted distribution, 280
weighted least squares, 236
winBUGs, 120
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