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Preface

Harmonic analysis is the study of objects (functions, measures, etc.),
defined on topological groups. The group structure enters into the study
by allowing the consideration of the translates of the object under study,
that is, by placing the object in a translation-invariant space. The study
consists of two steps. First: finding the "elementary components” of
the object, that is, objects of the same or similar class, which exhibit
the simplest behavior under translation and which "belong” to the ob-
ject under study (harmonic or spectealalysig; and second: finding
a way in which the object can be construed as a combination of its
elementary components (harmonic or spedyalthesik

The vagueness of this description is due not only to the limitation
of the author but also to the vastness of its scope. In trying to make it
clearer, one can proceed in various wayge have chosen here to sac-
rifice generality for the sake of concreteness. We start with the circle
group T and deal with classical Fourier series in the first five chap-
ters, turning then to the real line in Chapter VI and coming to locally
compact abelian groups, only for a brief sketch, in Chapter VII. The
philosophy behind the choice of this approach is that it makes it easier
for students to grasp the main ideas and gives them a large class of con-
crete examples which are essential for the proper understanding of the
theory in the general context of topological groups. The presentation of
Fourier series and integrals differs from that in [1], [7], [8], and [28] in
being, | believe, more explicitly aimed at the general (locally compact
abelian) case.

The last chapter is an introduction to the theory of commutative
Banach algebras. It is biased, studying Banach algebras mainly as a
tool in harmonic analysis.

This book is an expanded version of a set of lecture notes written

THence the indefinite article in the title of the book.
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for a course which | taught at Stanford University during the spring
and summer quarters of 1965. The course was intended for graduate
students who had already had two quarters of the basic "real-variable"
course. The book is on the same level: the reader is assumed to be fa-
miliar with the basic notions and facts of Lebesgue integration, the most
elementary facts concerning Borel measures, some basic facts about
holomorphic functions of one complex variable, and some elements of
functional analysis, namely: the notions of a Banach space, continuous
linear functionals, and the three key theorems—"the closed graph", the
Hahn-Banach, and the "uniform boundedhess" theorems. All the pre-
requisites can be found in [23] and (except, for the complex variable)
in [22]. Assuming these prerequisites, the book, or most of it, can be
covered in a one-year course. A slower moving course or one shorter
than a year may exclude some of the starred sections (or subsections).
Aiming for a one-year course forced the omission not only of the more
general setup (non-abelian groups are not even mentioned), but also of
many concrete topics such as Fourier analysi®om, > [, and finer
problems of harmonic analysis hor R (some of which can be found

in [13]). Also, some important material was cut into exercises, and we
urge the reader to do as many of them as he can.

The bibliography consists mainly of books, and it is through the bib-
liographies included in these books that the reader is to become famil-
iar with the many research papers written on harmonic analysis. Only
some, more recent, papers are included in our bibliography. In general
we credit authors only seldom—most often for identification purposes.
With the growing mobility of mathematicians, and the happy amount
of oral communication, many results develop within the mathematical
folklore and when they find their way into print it is not always easy
to determine who deserves the credit. When | was writing Chapter llI
of this book, | was very pleased to produce the simple elegant proof of
Theorem 1.6 there. | could swear | did it myself until | remembered
two days later that six months earlier, "over a cup of coffee,” Lennart
Carleson indicated to me this same proof.

The book is divided into chapters, sections, and subsections. The
chapter numbers are denoted by roman numerals and the sections and
subsections, as well as the exercises, by arabic numerals. In cross ref-
erences within the same chapter, the chapter number is omitted; thus
Theorem [11.1.6, which is the theorem in subsection 6 of Section 1
of Chapter Ill, is referred to as Theorem 1.6 within Chapter Ill, and
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Theorem Il.1.6 elsewhere. The exercises are gathered at the end of the
sections, and exercise V.1.1 is the first exercise at the end of Section 1,
Chapter V. Again, the chapter number is omitted when an exercise is
referred to within the same chapter. The ends of proofs are marked by
a triangle @).

The book was written while | was visiting the University of Paris
and Stanford University and it owes its existence to the moral and tech-
nical help 1 was so generously given in both places. During the writing
| have benefitted from the advice and criticism of many friends; 1 would
like to thank them all here. Particular thanks are due to L. Carleson, K.
DelLeeuw, J.-P. Kahane, O.C. McGehee, and W. Rudin. | would also
like to thank the publisher for the friendly cooperation in the production
of this book.

YITZHAK KATZNELSON
Jerusalem
April 1968

The 2002 edition

The second edition was essentially identical with the first, except for
the correction of a few misprints. The current edition has some more
misprints and “miswritings” corrected, and some material added: an
additional section in the first chapter, a few exercises, and an additional
appendix. The added material does not reflect the progress in the field
in the past thirty or forty years. Almost all of it could, and should have
been included in the first edition of the book.

Stanford
March 2002
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Chapter |

Fourier Series onT

We denote byR the additive group of real numbers and Hythe
subgroup consisting of the integers. The gr@up defined as the quo-
tient R/27Z where, as indicated by the notatidixZ is the group of
the integral multiples ofx. There is an obvious identification between
functions onT and 2r-periodic functions orR, which allows an im-
plicit introduction of notions such as continuity, differentiability, etc.
for functions onT. The Lebesgue measumn T, also, can be defined
by means of the preceding identification: a functjois integrable on
T if the correspondingr-periodic function, which we denote again by
f, is integrable orf0, 27) and we set

2m
/f(t)dt = f(x)dx.
T 0

In other words, we consider the intery@l27) as a model fofl and the
Lebesgue measude onT is the restriction of the Lebesgue measure of
R to [0,27). The total mass oft on T is equal to2r and many of our
formulas would be simpler if we normalizetd to have total mass 1,
that is, if we replace it byiz/27. Taking intervals ofR as "models" for
T is very convenient, however, and we choose todput dz in order to
avoid confusion. We "pay" by having to write the factger in front
of every integral.

An all-important property ofit on T is its translation invariance,
that is, for allty € T andf defined orfT,

/f(t*to)dt:/f(t)dﬂ

fThroughout this chapter, integrals with unspecified limits of integration are taken
overT.
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1 FOURIER COEFFICIENTS

1.1 We denote byL'(T) the space of all (equivalencelasses of)
complex-valued, Lebesgue integrable functionsTonFor f € L'(T)
we put

1
£l = %/T|f(t)|dt.

It is well known thatZ!(T), with the norm so defined, is a Banach
space.

DEFINITION: A trigonometric polynomiabn T is an expression of the
form

N
(1.1) Pr~ Y ane™.
n=—N

The numbers appearing in (1.1) are called the frequencie$’pthe
largest integer. such thata,| + |a—,| # 0 is calledthe degree ofP.
The values assumed by the indexare integers so that each of the
summands in (1.1) is a function dh Since (1.1) is a finite sum, it
represents a function, which we denote againfyydefined for each
teT by

N .
(1.2) Pt)= Y ane™.
n=—N

Let P be defined by (1.2). Knowing the functidghwe can compute
the coefficients:, by the formula

1

n:%

(1.3) a P(t)e ™ qt

which follows immediately from the fact that for integers j,

iy 1 ifj=0
i/e”tdt: . J ’
2 0 ifj#0.
Thus we see that the functioh determines the expression (1.1)
and there seems to be no point in keeping the distinction between the

expression (1.1) and the functidry we shall consider trigonometric
polynomials as both formal expressions and functions.

tf ~ gif f(t) = g(t) aimost everywhere
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1.2 DEFINITION: A trigonometric series off is an expression of
the form

(1.4) S ~ i ane’™.

n=—oo

Again,n assumes integral values; however, the number of terms in (1.4)
may be infinite and there is no assumption whatsoever about the size
of the coefficients or about convergence. The conjugaftéhe series
(1.4) is, by definition, the series

oo

S~ Z —isgn(n)a,e™.

where sgrin) = 0 if n = 0 and sgrin) = n/|n| otherwise.

1.3 Let f € LY(T). Motivated by (1.3) we define thieth Fourier
coefficient off by

(1.5) f(n) = % / f(t)e~tdt.

DEFINITION: The Fourier seriesS[f] of a functionf € L(T) is the
trigonometric series

S[f1~ Y fn)e™.

The series conjugate t6[/] will be denoted byS|[f] and referred to
as the conjugate Fourier seriesfof We shall say that a trigonometric
series is a Fourier series if it is the Fourier series of sgrae.!(T).

1.4 We turn to some elementary properties of Fourier coefficients.
Theorem. Let f,g € L'(T), then
@) (f +9)(n) = f(n) +d(n).

(b) For any complex number

— ~

(af)(n) = af(n).

(c) If f is the complex conjugaitef f thenf(n) = f(—n).

fSee Chapter llI for motivation of the terminology.

§Defined by:f(t) = f(t)) forallt € T.
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(d) Denotef,(t) = f(t —7), 7€ T;then

fr(n) = f(n)e.

@) 1f ()] < 5 [1f@)]dt = || fl|x

The proofs of (a) through (e) follow immediately from (1.5) and the
details are left to the reader.

1.5 Corollary. Assumef; € L'(T), j =0,1,...,and| f;— folz: — 0.
Thenf(n) — fo(n) uniformly.

1.6 Theorem. Let f € L'(T), assume(0) = 0, and define

F(t):/o f(r)dr.

ThenF is continuous2r-periodic, and

1 .
(1.6) F(n) = —f(n), n#0.
PrROOF The continuity (and, in fact, the absolute continuity)iofis
evident. The periodicity follows from
t+27 R
F(t+27r)fF(t):/ f(r)dr =27 f(0) =0,
t

and (1.6) is obtained through integration by parts:

F(n) = S " F(t)e ™ dt = -1 /% F’(t)L —intgp = if
= 27T 0 € o 27T 0 _Z'/n/e o Zn )
1.7 We now define the convolution operation in(T). The reader

will notice the use of the group structure Bfand of the invariance of
dt in the subsequent proofs.

Theorem. Letf,g € L'(T). For almost allt, the functionf(t — 7)g(7)
is integrable (as a function af onT), and, if we write

1
(1.7) ) = 5 [ £t=g(ryar
thenh € LY(T) and
(1.8) Ihlzs < £l lglzs.
Moreover

(1.9) h(n) = f(n)g(n) for all n.
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PrROOF The functionsf (¢ — 7) andg(7), considered as functions of the
two variablegt, z), are clearly measurable, hence so is

F(t,7) = f(t =7)g(7).

For everyr, F(t,7) is just a constant multiple of,, hence integrable
dt, and

o [ (5 [irenia) dr = o [l 1fldr = 1ol

Hence, by the theorem of Fubirfiit—7)g(7) is integrable (ovef0, 27))
as a function of- for almost allt, and

1 1 1 1
= — | F < — F(t dtd
or /‘h(t”dt 2m /‘27r/ (t’T)dT’dt* 472 //| (¢, 7)ldt dr

=[Ifllzllgllze

which establishes (1.8). In order to prove (1.9) we write

h(n) = ! /h( Ye Mtdt = //f e T g(r)e ™M dt dr

—or [ Foe a5 / (r)e"nTdr = f(n)g(n).

As above the change in the order of integration is justified by Fubini’s
theorem. <

1.8 DEFINITION: Theconvolutionf = g of the (L!(T) functions) f
andy is the functionh defined by (1.8). Using the star notation for the
convolution, we can write (1.9):

(1.10) f+g(n) = f(n)g(n).

Theorem. The convolution operation in!(T) is commutative, asso-
ciative, and distributive (with respect to the addition).

PrRoOF. The change of variablé = ¢ — 7 gives

or [ £e=ngwyir = o [ gt~ o) 5@av.

that is,
fxg=gx*f.
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If f1, f2, f3 € L*(T), then
(% f2efal) = 33 [ [ £t = u =) falwhfa(r)dudr =
1 [[ 51— s dr = i (o )

Finally, the distributive law

fix(fot+ f3)=fixfa+ f1x f3

is evident from (1.7). <

1.9 Lemma. Assumef € L'(T) and lety(t) = ¢ for some integer
n. Then

(@ F)(t) = f(n)e™.
PROOF.

(Lp * f)(t) = % /ein(th)f(T)dT _ eim‘/% / % /f(T)eiianT. <

Corollary. If f e LY(T) andk(t) = YN ane™, then

N
(1.11) (k* )(t) =Y anf(n)e™.
-N

EXERCISES FOR SECTION 1

1. Compute the Fourier coefficients of the following functions (defined by
their values on—m, 7):

Vor o |t < &
(a) F) = 1<

0 5 < [t] < .

-]t |t <1
b A(t) =
(®) ®) {0 1<t <.
What relation do you see betwegrandA ?

1 -1<t<0

(c) gt)=¢ -1 0<t<1

0 1< ¢,
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What relation do you see betwegandA?
(d) h(t)=t —T<t<

2. Remembering Euler’s formulas
1 it —1it . 1 it —it
t= = t=—(e" —
cos 2(6 +e ), sin 57 (e e "),
or
e’ = cost 4+ isint,

show that the Fourier series of a functipre L'(T) is formally equal to

@ + Z(An cosnt + B, sinnt)
=1

where4,, = f(n) + f(—n) andB,, = i(f(n) — f(—n)). Equivalently:

/f t) cos nt dt
= ;/f(t)sinntdt.

Show also that iff is real valued, themi,, and B,, are all real; iff is even,
that is, if f(t) = f(-t), thenB,, = 0 for all n; and if f is odd, that is, if
@) =—f(-t), thenA, = 0 for all n.

3. Show that ifS ~ 3" a; cosyt thenS ~ > a; sin jt.

4. Letf ¢ L*(T) and letP(t Z ~ Gneint. COmpute the Fourier coeffi-
cients of the functiory P.

5. Letf ¢ L'(T), letm be a positive integer, and write

fam) (8) = f(mt).

Show A
— . ) f(zx) ifm|n.
Jom (n) = {0 if m{n
6. The trigonometric polynomialosnt = % (e"™* + e***) is of degreen

and ha®n zeros oril. Show that no trlgonometnc polynomial of degree- 0
can have more thatn zeros orr.
Hint: Identify >" aje”* onT with 2= >°" a;2"* on|z| = 1.

7. Denote byC* the multiplicative group of complex numbers different
from zero. Denote by™ the subgroup of alt € C* such thatz| = 1. Prove
that if G is a subgroup of* which is compact (as a set of complex numbers),
thenG C T*.

8. Let G be a compact proper subgroup ®f Prove thatG is finite and
determine its structure.
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Hint: Show thatZ is discrete.

9. LetG be an infinite subgroup df. Prove thatG is dense irf.
Hint: The closure of7 in T is a compact subgroup.

10. Leta be an irrational multiple o27. Prove thafna (mod 27)}rez IS
dense irf.

11. Prove that a continuous homomorphismTointo C* is necessarily
given by an exponential function.

Hint: Use exercise 7 to show that the mapping is ifitgp determine the map-
ping on "small" rational multiples dfr and use exercise 9.

12 If E is a subset off andr, € T, we defineE + o = {t + 70:t € E};

we say thatF is invariant under translation by if £ = E + . Show that,
given a sett, the set ofr € T such thatE is invariant under translation by
7 is a subgroup off. Hence prove that i is a measurable set dhand £
is invariant under translation by infinitely many e T, then eitherE or its
complement has measure zero.
Hint: A setE of positive measure has points of density, that is, poirgach
that(2e) ' |EN(r—¢,7+¢)| — 1 ass — 0. (|Eo| denotes the Lebesgue measure
of E())

13. If E andF are subsets df, we write

E+F={t+7:t€E, T€F}

and callE + F the algebraic sum of and F'. Similarly we define the sum of
any finite number of sets. A sétis calleda basisfor Tif there exists an integer
N suchthatt + E + --- + E (IV times) isT. Prove that every sét of positive
measure off is a basis.
Hint: Prove that ifE contains an interval it is a basis. Using points of density
prove that ifE has positive measure théh+ E contains intervals.

14. Show that measurable proper subgrougg lbhve measure zero.

15. Show that measurable homomorphism$ ofto C* map it into7™.

16. Letf be a measurable homomorphismibinto 7*. Show that for all
values ofn, except possibly one valug(n) = O.

2 SUMMABILITY IN NORM AND HOMOGENEOUS BANACH
SPACES ONT

2.1 We have defined the Fourier series of a functfos L!(T) as

a certain (formal) trigonometric series. The reader may wonder what
is the point in the introduction of such formal series. After all, there
is no more information in the (formal) expressidir f(n)e'™ than

there is in the simpler ongf(n)}>___ or the even simplef with the

n=—oo

understanding that the functiohis defined on the integers. As we
shall see, both expressions, f(n)e"* and f, have their advantages;
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the main advantages of the series notation being that it indicates the
way in which f can be reconstructed froth Much of this chapter
and all of chapter Il will be devoted to clarifying the sense in which
S f(n)ei™ representd. In this section we establish some of the main
facts; we shall see thgtdeterminesf uniquely and we show how we
can findy if we know f.

Two very important properties of the Banach sp@ac€T) are the
following:

H-1" If f € LY(T) andr € T, then
fr(&) = f(t—7) € LY(T) and||f;[lz: = [|fllz:

H-2" The L!(T)-valued functionr — £, is continuous off, that is, for
feLYT)andr €T

(21) Th—>H7}UHfT — fTo||L1 =0.

We shall refer to (H-1") as the translation invarianceldfT); it is
an immediate consequence of the translation invariance of the measure
dt. In order to establish (H-2") we notice first that (2.1) is clearly valid if
f is a continuous function. Remembering that the continuous functions
are dense iri.}(T), we now consider an arbitrarye L!(T) ande > 0.
Let g be a continuous function dhsuch that|g — f|.: < ¢/2; thus

”f'r - f”roHLl < HfT _gTHL1 + ”gT _g'mHLl + ”gTo - f‘l'o”Ll =
=[1(f = 9rller + lgr = grollr + 119 = Frellr < e+ llgr — grollrr-

Hencelim||f, — f,,[lz: < € and,e being an arbitrary positive number,
(H-2’) is established.

2.2 DEeFRINITION: A summability kernells a sequencék,, } of con-
tinuous2r-periodic functions satisfying:

(S-1) € / o ()t = 1
2w
1
- — <
(5-2) o /|kn(t)|dt < const
(8-3) Forallo<é <,
21 —§
lim |kn (t)]dt =0

n—oo [s
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A positive summability kerné one such that,,(t) > 0 for all ¢ andn.
For positive kernels the assumption (S-2) is clearly redundant.

We consider also families. depending on a continuous parameter
r instead of the discrete. Thus the Poisson kern&lr,¢), which we
shall define at the end of this section, is definedofer » < 1 and we
replace in (S-3), as well as in the applications, the liniit;, ...” by
‘qhnrﬁlt

The following lemma is stated in terms of vector-valued integrals.
We refer to Appendix A for the definition and relevant properties.

Lemma. Let B be a Banach space, a continuousB-valued function
onT, and{k,} a summability kernel. Then:

PROOF. By (S-I) we have, fob < § <,

2z [ EnDe)r = 0(0) = 3= [ k(o) - pl0))dr
(2.2) 5 o2r—§
- ( |+ ) a7 (() — 9(0))dr.
Now

)
@3) [5: [ ka(ntetr) = clO)ar] | < maxlelr) = 2Okl
and

(2.4) H% /:ﬂa kn(7)((7) — (,0(0))dTHB <

2r—9
< manga(T) — ga(O)HB %/5 |kn, (7)|dT.

By (S-2) and the continuity ap(r) atT = 0, givene > 0 we can find
d > 0 so that (2.3) is bounded hy and keeping this, it results from
(S-3) that (2.4) tends to zero as— oo so that (2.2) is bounded [2¢.

<

2.3 For f € LY(T) we pute(r) = f-(t) = f(t — 7). By (H-1") and
(H-2"), ¢ is a continuoud.!(T)-valued function oril' and ¢(0) = f.
Applying lemma 2.2 we obtain
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Theorem. Let f € L'(T) and {k,} be a summability kernel; then

n—oo 27

(2.5) f= lim i/kn(T)deT

in the L' (T) norm.

2.4 The integrals in (2.5) have the formal appearance of a convolu-
tion although the operation involved, that is, vector integration, is dif-
ferent from the convolution as defined in section 1.7. The ambiguity,
however, is harmless.

Lemma. Letk be a continuous function dhand f € L!(T). Then

(2.6) %/k(T)deT =kxf.

PROOF Assume first thaf is continuous off. We have, Appendix A,
1 1.
o | K(n)frdr = 5 lim Zj:(Tj“ = 75)k(7;) [+

the limit being taken in thé! (T) norm as the subdivisiofr; } of [0, 27)
becomes finer and finer. On the other hand,

1

%lim . (Tj41 — T)k(T5) f(t —75) = (k= f)(1)

uniformly and the lemma is proved for continuogis For arbitrary
f € LY(T), lete > 0 be arbitrary and leg be a continuous function on
T such that|f — g||.1 < e. Then, since (2.6) is valid fay,

1

or [ B dr =k f = o [RE(F = ghrdr 4 ke (g f)

and consequently

1
— < 1€.
|5- /k(T)deT kef| <2kl -
Using lemma 2.4 we can rewrite (2.5):

(2.5) f=lim k,xf in the L' (T) norm.
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2.5 One of the most useful summability kernels, and probably the
best known, is Fejér’s kernel (which we denote{l, }) defined by

2.7) Ko (1) = Zn: (1 - n‘i‘ 1)&3‘#

j=—n

The fact thaK,, satisfies (S-1) is obvious from (2.7); th&t(¢) > 0
and that (S-3) is satisfied is clear from

. n 2
K, (1) = 1 <st2r1>.

n+1\ sin3t

Lemma.

PrRoOOF Recall that

t 1 1 _. 1 1.
(2.8) sin? 3= 5(1 —cost) = —Ze_” + 5~ Ze”.

A direct computation of the coefficients in the product shows that

1 —it 1 1 it = |]| ijt
-1 P ) 1— ) ijt
< 1© T 4e>j§;f n+1/¢

1 1 _. 1 1.
= _~o—i(nt1)t -~ i(n+1)t
n+1 ( 4° + 2 1° ) T <

We adhere to the generally used notation and veritg) = K,, = f
ando,(f,t) = (K, * f)(t). It follows from corollary 1.9 that

n

(2.9) outf. )= 3 (1- ) e

n+1

2.6 The fact that,,(f) — f in the L}(T) norm for everyf € L(T),
which is a special case of (2.5), and the fact thatf) is a trigono-
metric polynomial imply that trigonometric polynomials are dense in
L(T). Other immediate consequences are the following two important
theorems.

2.7 Theorem (The Uniqueness Theorem)Let f € L(T) and
assume that(n) = 0 for all n. Thenf = 0.

PROOFE By (2.9)0,(f) = 0 for all n. Sinceo,(f) — f, it follows that
f=0. <



|. FOURIER SERIES ONT 13

An equivalent form of the uniqueness theorem is: fegte L'(T) and
assumef(n) = g(n) for all n, thenf = g.

2.8 Theorem The Riemann-Lebesgue Lemmalet f € L'(T),
then

| llim f(n)=o0.
PROOFE Lete > 0 and letP be a trigonometric polynomial ofi such
that||f — P||z: < e. If |n| > degree ofP, then

1F0) = 1(F=P)m)| < |If - Pllp <e. )

Remark: If K is a compact set in'(T) ande > 0, there exist a finite
number of trigonometric polynomial ..., Py such that for every <

K there exists g, 1 < j < N, such thaf|f — P, < e. If |n| is greater

than max, < j< y(degree ofP;) then|f(n)| < ¢ for all f € K. Thus,

the Riemann-Lebesgue lemma holds uniformly on compact subsets of
LY(T).

2.9 Fore L'(T) we denote by, (f) thenth partial sum of5|[f], that
is,

(2.10) (Sn(D)(E) = Su(fit) = f()e".
If we compare (2.9) and (2.10) we see that
@11 oulf) = —(Soll) + Si() + -+ Sulf))

in other words, the,,(f) are the arithmetic meahsf S,,(f). It follows
that if S,,(f) converge inL!'(T) asn — oo, then the limit is necessarily
f.

From corollary 1.9 it follows tha#,,(f) = D,, = f whereD,, is the
Dirichlet kernel defined by

n

(2.12) Dn(t) =) et =

—-n

sin(n + 1)t

i L
51n2t

TOften referred to as the Cesaro means or, especially in Fourier Analysis, as the Fejér
means.
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It is important to notice thafD,,} is not a summability kernel in our
sense. It does satisfy condition (S-1); however, it does not satisfy ei-
ther (S-2) or (S-3). This explains why the problem of convergence for
Fourier series is so much harder than the problem of summability. We
shall discuss convergence in chapter II.

2.10 DEFINITION: A homogeneous Banach spaceTbis a linear
subspaces of L(T) having a norm| ||z > || ||z: under which it is a
Banach space, and having the following properties:

(H-1) If f € Bandr € T, thenf, € Band|f.|lz = ||fllz (where
f=(t) = f(t=7)).

(H-2) Forallfe B, 7,70€eT, lim, .l f-—fol=0.

Remarks: Condition (H-1) is referred to as translation invariance and
(H-2) as continuity of the translation. We could simplify (H-2) some-
what by requiring continuity at one specifig € T, sayr, = 0 rather
than at every € T, since by (H-1)

lfr = FrollB = Il frro = fllB

Also, the method of the proof of (H-2') (see 2.1) shows that if we have
a space B satisfying (H-1) and we want to show that it satisfies (H-2) as
well, it is sufficient to check the continuity of the translation on a dense
subset of B. An almost equivalent statement is

Lemma. Let B ¢ L!(T) be a Banach space satisfying (H-1). Denote
by B. the set of allf € B such thatr — f, is a continuousB-valued
function. TherB, is a closed subspace &

Examples of homogeneous Banach spaceb on
(a) C(T)—the space of all continuo@s-periodic functions with the
norm

(2.13) [flloc = mas| (1)

(b) C™(T)—the subspace @f(T) of all n-times continuously differ-
entiable functionss( being a rational integer) with the norm

(2.13) Il =3 5 max] 9 e)
j=0""
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(c) LP(T), 1 < p < oo—the subspace df!(T) consisting of all the
functionsf for which [|f(¢)|Pdt < oo with the norm

(2.14) 1 = (& firer)

The validity of (H-1) for all three examples is obvious. The validity
of (H-2) for (a) and (b) is equivalent to the statement that continuous
functions on T are uniformly continuous. The proof of (H-2) for (c) is
identical to that of (H-2’) (see 2.1).

We now extend Theorem 2.3 to homogeneous Banach spades on

2.11 Theorem.Let B be a homogeneous Banach spaceTyriet
f € B and let{k,,} be a summability kernel. Then

lkwxf= =0 as n—o.

PROOF. Since|| ||z > | ||z, the B-valued integrak- [ k,(7)f-d7 is

the same as the!(T)-valued integral which, by Lemma 2.4, is equal to
k, = f. The theorem now follows from Lemma 2.2. <

2.12 Theorem.Let B be a homogeneous Banach spacelomhen
the trigonometric polynomials i® are everywhere dense.

PROOF. Forevery.f € B, o,(f) — f. <

Corollary (Weierstrass Approximation Theorem}Every contin-
uous2r-periodic function can be approximated uniformly by trigono-
metric polynomials.

2.13 We finish this section by mentioning two important summabil-
ity kernels.
a. The de la Vallée Poussin kernel:

(215) Vn(t) = 2K2n+1(t) - Kn(t)

(8-1), (S-2) and (S-3) are obvious from (2.1%), is a polynomial of
degree2n + 1 having the property tha¥,,(j) = 1 if [j| < n+ 1; it
is therefore very useful when we want to approximate a funcfiby
polynomials having the same Fourier coefficients awver prescribed
intervals (namely,, * f).
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b. The Poisson kernel: fdr< r < 1 put

2

I >, . 1—7
2.16) P = rlilet =142 "1 cos jt =
( ) P(rt) rile + j_lr cos jt l

— 2rcost+1r2’

It follows from Corollary 1.9 and from the fact that the series in (2.16)
converges uniformly, that

(2.17) P(r,t)« f =Y f(n)rile™.

ThusP « f is the Abel mean of[f] and Theorem 2.11 (with Poisson’s
kernel) states that fof € B, S[f] is Abel summable tg in the B norm.
Compared to the Fejér kernel, the Poisson kernel has the disadvantage
of not being a polynomial; however, being essentially the real part of
the Cauchy kernel—preciselp(r,t) = %(}j;gi) the Poisson kernel
links the theory of trigonometric series with the theory of analytic func-
tions. We shall make much use of that in chapter Ill. Another important

property ofP(r,t) is that it is a decreasing function ofor 0 < ¢ < .

EXERCISES FOR SECTION 2

1. Show that every measurable homomorphisii afto 7% has the form
t — e wheren is a rational integer.
Hint: Use Exercise 1.16.
2. Show that in the following examples (H-1) is satisfied but (H-2) is not
satisfied:
(a) L°°(T)—the space of essentially bounded functions (i) with the norm

[ fllc = €SS supy|f(t)]
(b) Lip,(T), 0 < a < 1-the subspace af(T) consisting of the functiong

for which 4R — FO)
+ —
SugeT, h£0 T < o0

with the norm

I fllup, = suplf(t)| + supcr, he£0 W

3. Show that forB = L*°(T), B. (see Lemma 2.10) i€ (T).
4. Assumé) < « < 1; show that forB = Lip_ (T)

B. =lip(T) = {f: ;lLii%SUQ w = 0}.
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5. Show that forB = Lip,(T), B. = C*(T).

6. Let B be a Banach space @h satisfying (H-1). Prove thaB. is the
closure of the set of trigopnometric polynomialsin

7. Use exercise 1.1 and the fact that step functions are derfsg) to
prove the Riemann-Lebesgue lemma.

8. (Fejérs lemma). Iff ¢ L'(T) andg € L>°(T), then

n—oo

lim / F(Bg(ntydt = F(0)5(0).

Hint: Approximatef in the L' (T) norm by polynomials.

9. Show that forf € L*(T) the norm of the operatdr: g — f * g on L*(T)
is £l
Hint: [[Knllps =1, [Kn * fllr — [If]1

10. Defining thesupportof a functionf € L' (T) as the smallest closed set
S such thatf(t) = 0 almost everywhere in the complement$fshow that the
support off x g for f,g € L'(T) is included in the algebraic sum supggit+
supportg).

11. Forn = 1,2,... let k, be a nonnegative, infinitely differentiable func-
tion on T having the properties (i} k. (t)dt = 1, (i) kn(t) = 0if [t| > 1/n.
Show that{k, } is a summability kernel and deduce thaBiis a homogeneous
Banach space of and f € B, thenf can be approximated in the norm by
infinitely differentiable functions with supports arbitrarily close to the support
of f.

12. (Bernstein) Let P be a trigonometric polynomial of degree Show
that sup|P’(¢)| < 2nsup|P(t)|.

Hint: P’ = —P % 2nK,,_1(t) sinnt. AlSO ||2nK, 1 sinnt| ;1) < 2n.

13. LetB be a homogeneous Banach spacéTorshow that ifg € L' (T)

andf € Bthengx f € B, and

llg = flls < lgllcllfll5-

14. Let B be a homogeneous Banach spacd’ohet H C B be a closed,
translation-invariant subspace. Show tlats spanned by the exponentials it
contains and deduce that a functine B is in H if, and only if, for every
n € Z such thatf(n) # 0, there existg € H such thatj(n) # 0.

3 POINTWISE CONVERGENCE OF o, (f).

We saw in section 2 that if € L!(T), theno, (f) converges tof
in the topology of any homogeneous Banach space that contains
particular, if f € C(T) theno,(f) converges tg uniformly. However,

tBernstein’s inequality is: sUp’| < nsugP|, and can be proved similarly, see exer-
cise 14 on page 48.
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if fis not continuous, we cannot usually deduce pointwise convergence
of o,,(f) from its convergence in norm, nor can we relate the limit of
an(f,to), in case it exists, tg(¢y), We therefore have to reexamine the
integrals definingr,, (f) for pointwise convergence.

3.1 Theorem Eejér). Letf € L(T).

(@) Assume thalim,_.o(f(to + h) + f(to — h)) exists (we allow the
values—oco and+o0); then

(3.1) ou(Frto) = 3 I (F(to +h) + f(to — h)

In particular, if ¢y is a point of continuity off, theno,,(f,to) — f(to)-

(b) If every point of a closed intervdlis a point of continuity forf,
on(f,t) converges tqg (¢) uniformly onI.

(c) Iffora.e.t, m < f(t), thenm < o,(f,t); if fora.e. t, f(t) < M,
theno, (f,t) < M.

Remark: The proof will be based on the fact thd,,(¢)} is a positive
summability kernel which has the following properties:

(3.2) Foro<d¥<m, lim (sup9<t<27,_19 Kn(t)) =0,

(3.3) K, (t) = Kp(—1)

The statement of the theorem remains valid if we replagg’) by

kn = f, where{k, } is a positive summability kernel satisfying (3.2) and
(3.3). For example: the Poisson kernel satisfies all the these require-
ments and the statement of the theorem remains valid if we replace
o, (f) by the Abel means of the Fourier seriesfof

PROOF OFFEJER S THEOREM We assume for simplicity that
fto) = lim 3 (f(to + h) + f(to — h)) is finite; the modifications needed
for the caseg(ty) = +oo or f(ty) = —oo being obvious. Now

U’n,(fa 7LO .]E tO 27 / n tO - T) f(tO))dT =

1 - »
(3.4) ~or < ) Kn(T) (f( o—7)— f(t ))

(/ / > (f(to+7)‘;f(to — ) —f(to))dr.

mw
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(Notice that the last equality in (3.4) depends on (3.3).)
Givene > 0, we choosé > 0 so small that

fllo+7)+ flto—7) =

(3.5) IT| <9 = 5 f(to)| <e,
and them, so large that: > ny implies

(3.6) SUR cor_y Kn(T) <e.

From (3.4), (3.5), and (3.6) we obtain

(3.7) |on(fito) = FE+0)| <etellf = flto)ll

which proves part (a).
Part (b) follows from the uniform continuity of on I; we can pick
9 so that (3.5) is valid for ally € I, andng depends only o (ande).
Part (c) depends only on the fact thégt(t) > 0 and5-K,, (t)dt = 1;
if m < fthen

on(fit) —m = %/Kn(T)(f(t*T)*m)dTZO

the integrand being nonnegative.flIK M then
M —an(f,t) = %/Kn(r)(M —ft—7))dr >0
for the same reason. <

Corollary. If tg is a point of continuity off and if the Fourier series
of f converges at, then its sum ig (¢y) (cf. 2.9).

3.2 Fejér's condition
: flto+h)+ f(to —h)

f(to) = lim 5
implies that
1 M fllo+T)+fllo—T) _
38  Jm ﬁ/o | : ~ F(ty)|ar = 0.

Requiring the existence of a numbgr) such that (3.8) is valid is far
less restrictive than Fejér's condition and more natural for summable
functions. It does not change if we modifyon a set of measure zero
and, although for some functiof Fejér's condition may hold for no
valuety, (3.8) holds Withf(to) = f(to) for almost allt, (cf. [28], Vol.

1, p. 65).
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Theorem (Lebesgue).If (3.8) holds, themw,, (f,to) — f(to). In par-
ticular o,,(f,t) — f(t) almost everywhere.

PROOF. As in the proof of Fejér’s theorem,
Un(fv tO) - f(tO

) =
(3.9) _ 71r(/019+/;)Kn(T)[f(to+T)';f(to—T) — F(to)|dr.

1 sin(n+1)7/2 2 . T .
AsK,(T) = Tﬂ(w) andsin § > ~ for 0 < 7 < 7, we obtain

3.10 r

: < mi — ).

( ) K,(1) < mm(n +1, it 1)7_2>

In particular we see that the second integral in (3.9) tends to zero pro-
vided (n + 1)¥? tends toso. We pickd = n~'/4 and turn to evaluate the
first integral.

Denote
"1 fto+7) + flto — ;
0
then
1 to+7) + flto — . 1% 1 [°
[ [ L= gl <2 | 1)
0 m™lJo mTJL
n+1_1 T v fho+7)+ fto—7) = dr
=5 QI)(anH/}L 2 —Jto)| 75 -
The term™tL & (1) tends to zero by (3.8). Integration by parts gives
7T Nfto+ )+ fllo—7) dr
n—O—l/; 2 A
(3.11) " 9
77 [‘I)(T)}ﬁ n 27 / <I>(7-)dT
S n+1l 72l n+l \n T '

Fore > 0 andn > n(e) we have by (3.8)
d(r)<er in O<T<O=n"t*

hence (3.11) is bounded by

mEN n 2me /’9 dT<3
—_t — — TE.
n+l n+1/,, <
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Corollary. If the Fourier series off € L!(T) converges on a sét of
positive measure, its sum coincides withlmost everywhere oA. In
particular, if a Fourier series converges to zero almost everywhere, all
its coefficients must vanish.

Remark: This last result is not true for all trigonometric series. There
are examples of trigonometric series converging to zero almost every-
wheré without being identically zero.

3.3 The need to impose in Theorem 3.2 the strict condition (3.8)
rather than the weaker condition

h _ §
@8  win- [ (LoD IO T 1)) ar = o(h)

comes from the fact that in order to carry the integration by parts we
2

have to replac&, (¢) by the monotonic majorantin (n +1, W)
If we want to prove the analogous result #®fr, ¢) rather thatk,,(¢),

the condition (3.8) is sufficient. Thus we obtain:

Theorem (Fatou). If (3.8’) holds, then

lim fjf(j)r‘j‘e”to = f(to).

r—1

The condition (3.8’) withf(ty) = f(to) is satisfied at every poing
wheref is the derivative of its integral (hence almost everywhere).

EXERCISES FOR SECTION 3

1. Let0 < a < 1 and letf € L*(T). Assume that at the point € T, f
satisfies a Lipschitz condition of order that is,|f(to + 7) — f(to)| < K|7|*
for |7| < = Prove that forx < 1

o (f, to) — f(to)] < %ma

while fora =1 1
|U’ﬂ(f7 tO) - f(to)‘ < 271']{% .

Hint: Use (3.10) and (3.4) witd = X

n

THowever, a trigonometric series converging to zero everywhere is identically zero
(see [13], Chapter 5).
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If felLip,(T),0<a<1,then

< const || fllLip,n”* whend < a <1,
Ho'n(f)_fHOO = logn _
const || f|lLip, fora = 1.

n

3. Letf € L>*(T) and assumgf(n)| < K|n|~'. Prove that for alh andt,
1Sn(f, )] < [ flloo + 2K.
Hint:

5,006 = () + 30 e
4. Show that for alh andt, > j~'sinjt| < $7+ 1.
Hint: Considerf(t) =t/2in [0, 27).
5. Jackson's kernel i, (t) = [|K,|| ZK}(t). Verify
a. {J,}is a positive summability kernel.
b. For—m <t <m Ju(t) < 2rin=3t7%

c. If f € Lip,(T), then|Jn = f — flloo < const || f|Lip,n~". Compare this to

the corresponding estimate fti,, x f — f|| in exercise 2 above.

4 THE ORDER OF MAGNITUDE OF
FOURIER COEFFICIENTS

The only things we know so far about the size of Fourier coefficients
{f(n)} of a functionf e L'(T) is that they are bounded Hyf| .,
(1.4(e)) and thatim,| . f(n) = 0 (the Riemann-Lebesgue lemma).
In this section we discuss the following three questions:

(a) Can the Riemann-Lebesgue lemma be improved to provide a
certain rate of vanishing of(n) as|n| — co?

We show that the answer to (a) is negatiyén) can go to zero
arbitrarily slowly (see 4.1).

(b) In view of the negative answer to (a), is it true that any sequence
{a,} which tends to zero g&| — ~ is the sequence of Fourier coeffi-
cients of somef € LY(T)?

The answer to (b) is again negative (see 4.2).

(c) How are properties like boundedhess, continuity, smoothness,
etc. of a functionf reflected by{ f(n)}?

Question (c), in one form or another, is a recurrent topic in har-
monic analysis. In the second half of this section we show how var-
ious smoothness conditions affect the size of the Fourier coefficients.
“Order of magnitude” conditions on the Fourier coefficients are sel-
dom necessary and sufficient for the function to belong to a given



|. FOURIER SERIES ONT 23

function space. For example, a necessary conditiory far C(T) is
SIf(n)]? < oo, a sufficient condition i§”| f(n)| < oo; in both cases the
exponents are best possible.

The only spaces, defined by conditions of size or smoothness of
the functions, for which we obtain (in the following section) complete
characterization, that is, a necessary and sufficient condition expressed
in terms of order of magnitude, for a sequereg} to be the Fourier
coefficients of a function in the space, d&&T) and its “derivatives?’.

4.1 Theorem. Let {a,}52__ be an even sequence of nonnegative
numbers tending to zero at infinity. Assume thatifor 0

(41) an—1+ any1 — 2a, > 0.
Then there exists a nonnegative functfoa L*(T) such thatf (n) = a,,.

PROOF We remark first tha} " (a,, — an+1) = ap and that the convexity
condition (4.1) implies thata, — a,1) iS monotonically decreasing
with n, hence

lim n(a, —aps+1) =0,
n—oo

and consequently

N
Z n(an—1 + ang1 — 2a,) = ap —ay — N(an — an41)

n=1

converges tay asN — oo. Put
(42) f(t) = Z n(an—l + Ap41 — 2an)Kn—1(t)a
n=1

whereK,, denotes, as usual, the Fejér kernel. Sifkkg| ;. = 1, the
series (4.2) converges it¥(T) and, all its terms being nonnegative, its
limit f is nonnegative. Now

f(]) = Z n(an-1+ Gnt1 — 2an)kn71(j) =

n=1
9]

= Z n(ap—1+ apy1 — 2%)( - %) = ajj);

n=|[j|+1

and the proof is complete. <

TSuch as the space of absolutely continuous functions with derivative(f).
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4.2 Comparing theorem 4.1 to our next theorem shows the basic dif-
ference between sine-series f = —a,) and cosine-series (,, = a,).

Theorem. Let f € L'(T) and assume that(|n|) = —f(—|n|) > 0.
Then )

Z —f(n) < co.

n>0 n

PROOF. Without loss of generality we may assume tfi@t) = 0. Write
F(t) = [, f(r)dr; thenF e C(T) and, by theorem 1.6,

F(n)= %f(n), n # 0.

Since F is continuous, we can apply Fejér's theoremtfor= 0 and
obtain

(4.3) ]&@OOQ;Q - N:‘L 1)@ = i(F(0) — E(0)) = —iF(0),

and since@ > (), the theorem follows. <

Corollary. If a, > 0, > a,/n = oo, then}_ a, sinnt is not a Fourier
series. Hence there exist trigonometric series with coefficients tending
to zero which are not Fourier series.

By Theorem 4.1, the series
i cos nt Z eint
= logn o2 2log|n|
is a Fourier series while, by theorem 4.2, its conjugate series
=, sinnt sgn(n) ;
Z smnt Z ) (n)e'mt
logn 2log|n|

In|>2

is not.

4.3 We turn now to some simple results about the order of magni-
tude of Fourier coefficients of functions satisfying various smoothness
conditions.

Theorem. If f € L'(T) is absolutely continuous, theftin) = o(1/n).
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PROOF By theorem 1.6 we hav&(n) = (1/in)f'(n) and (the Riemann-
Lebesgue lemmaj (n) — 0. <

Remark: By repeated application of Theorem 1.6 (i.e., by repeated
integration by parts) we see thatfifs k-times differentiable ang®*—1)
is absolutely continuotighen

4.4) f(n) = o(n™F) as |n| — oo.

4.4 \We can obtain a somewhat more precise estimate than the asymp-
totic (4.4). All that we have to do is notice that(f< ; < k, then

f(n) = (in)~7 f@(n) and hence
(4.5) OIS
We thus obtain

Theorem. If f is k-times differentiable, and(*~1) is absolutely con-
tinuous, then

; D
< m
[f(m)] < jmin )

If f is infinitely differentiable, then

; N FD |
|f(n)] < min o
4.5 Theorem. If f is of bounded variation offi, then

A var(f)
< 57

PROOF. We integrate by parts using Stieltjes integrals

o= 1 oo = 5 o] 0.

4.6 Forf e C(T)we denote by(f, ) themodulus of continuitpf

, that is,
TS gy = sugycall 7 +9) — 1)

For f € L'(T) we denote by)(f, ») the integral modulus of continuity
of f, thatis,

(4.6) Qfh) = 1FE+h) = F@O)lr-
We clearly have)(f, h) < w(f,h).

tSo thatf(®) € L1(T) andf*—1 is its primitive,
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Theorem. Forn # 0, | f(n)| < 3Q(f, &)-

PROOR f(n) = 5= [ f(t)e~™dt = 3L [ f(t)e~™(t+7/™dt; by a change
of variable,

f = o= [ (£6+ D)= 1) e,

hence

Corollary. If f e Lip,(T), thenf(n) = O (n=®).

4.7 Theorem. Letl <p <2 gnd letqg be the conjugate exponent, i.e.,
q= ;5. If f € LP(T) then_|f(n)]? < oc.

The casep = 2 will be proved in the following section. The case
1 < p < 2 will be proved in chapter IV.

Remark: Theorem 4.7 cannot be extendegts 2. Thus, iff € LP(T)

with p > 2, thenf e L2(T) and consequently"|f(n)]> < co. This

is all that we can assert even for continuous functions. There exist
continuous functiong such thaty’|f(n)|?>~¢ = oo for all ¢ > 0, see
IV.2. In fact, given any{c,} € ¢2, there exists a continuous functign
such that f(n)| > |c,|, see Appendix B.2.1.

EXERCISES FOR SECTION 4

I. Given a sequencgw, } of positive numbers such that, — 0 as|n| — oo,
show that there exists a sequeHrag} satisfying the conditions of theorem 4.1
and

Qn > Wy for all n.

2. Show that ifS_|f(n)||n|" < oo, thenf is I-times continuously differen-
tiable. Hence, iff (n) = O (|n|™*) wherek > 2, and if

= k—2 kinteger
B [k] =1 otherwise

thenf is I-times continuously differentiable.
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Remarks:Properly speaking the elementsigf(T) are equivalence classes of
functions any two of which differ only on a set of measure zero. Saying that
a functionf € L*(T) is continuous or differentiable etc. is a convenient and
innocuous abuse of language with obvious meaning.

Exercise 2 is all that we can state as a converse to theorem 4.4 if we look
for continuous derivatives. It can be improved if we allow square summable
derivatives (see exercise 5.5).

3. Afunction f is analytic onT if in a neighborhood of every, € T, f(t)
can be represented by a power series (of the fFfi | an(t — t0)" ). Show
that f is analytic if, and only if,f is infinitely differentiable onT and there
exists a numbeR such that

sug|f™ ()] <n!R", n>0.

4. Show thatf is analytic onT if, and only if, there exist constanfs > 0
anda > 0 such that f(j)| < Ke~ 7!, Hence show thaf is analytic onT if,
and only if, 3" f(j)e’* converges fof(z)| < a for somea > 0.

5. Letf be analytic o and letg(e) = f(t). What is the relation between
the Laurent expansion gfabout0 (which converges in an annulus containing
the circle|z| = 1) and the Fourier series g¢f?

6. Let f be infinitely differentiable orT and assume that for some> 0,
and alln > 0, sup|f™ ()| < Kn®". Show that

7)1 < Kexp(=2151*).

7. Assuméf(j)| < K exp(—|j|'/*) . Show thatf is infinitely differentiable
and
F )] < Kt n

for some constanisand K .
Hint: | (1) < 2K Y_|5|™ exp(—|j|*/*). Compare this last sum to the integral
J,” &™ exp(—x'/*)dz and change the variable of integration putting «'/* .

8. Prove that ifd < a < 1, thenf(t) = S_7° <=3* pelongs to Lip (T);
hence corollary 4.6 cannot be improved.

9. Show that the seri€s >> _ 22t converges for alt € T.

n=2 logn

5 FOURIER SERIES OF SQUARE SUMMABLE FUNCTIONS

In some respects the greatest success in representing functions by
means of their Fourier series happens for square summable functions.
The reason is that?(T) is a Hilbert space, its inner product being de-
fined by

(5.1) (f9) = 5= [ £,
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and in this Hilbert space the exponentials form a complete orthogonal
system. We start this section with a brief review of the basic prop-
erties of orthonormal and complete systems in abstract Hilbert space
and conclude with the corresponding statements about Fourier series in
LY(T).

5.1 LetH be a complex Hilbert space. L¢tg € H. We say thatf
is orthogonal tg; if (f,g) = 0. This relation is clearly symmetric. B
is a subset ot we say thatf € H is orthogonal ta? if f is orthogonal
to every element of). A setFE C H is orthogonalif any two vectors in
E are orthogonal to each other. A getc H is an orthonormal system
if it is orthogonal and the norm of each vectorAnis one, that is, if,
wheneverf,g € E, (f,g) =0if f #gand(f, f) = 1.

Lemma. Let{p,}N_; be a finite orthonormal system. Let ..., ax
be complex numbers. Then

N N
1> anionl| =D lanf?.
1 1

PrROOF,

N N N N N
HZ anSOnH = <Z an@nyzan@n> = Zan<‘pn>zam§0m>
1 1 1 1 1
ZZan&n:Z|an|2 <

Corollary. Let{y,}:° be an orthonormal system #i and let{a,, }{°
be a sequence of complex numbers such Wat,|> < co. Then
Yoo | antprn CONVErges irk.

PROOF SinceH is complete, all that we have to show is that the partial
sumsSy = Zf[ ann form a Cauchy sequence’a Now, for N > M,

N N
1Sy = Sal® = | - angn]® = Y Janl? — 0 as M — co.
M+1 M+1 <

5.2 Lemma. LetH be a Hilbert space. L€y, } be a finite orthonor-
mal system irH. For f € H write a,, = (f, p»). Then

N N
(52) 0<|[f =3 angall” = 1A = > lanl>.
1 1
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PROOFE
N ) N N
Hf—za"@"H :<f—zan90n,f—2ang0n>:
1 1 1
N

N N N
= ||f||2 - Za7l<f7 Pn) — Zan<§0naf> + Z|an|2 = ||fH2 - Z|an|2-
1 1 1

1
<

Corollary (Bessel’s inequality).Let 1 be a Hilbert space andlp,, }
an orthonormal system iH. For f € H write a, = (f, ¢o) Then

(5.3) > laal> < 1117

The family {4, } in the statement of Bessel’s inequality need not be
finite nor even countable. The inequality (5.3) is equivalent to saying
that for every finite subset dfp, } we have (5.2). In particular, = 0
except for countably many values®find the serie¥’|a, |* converges.

If H = L?(T) all orthonormal systems i are finite or countable
(cf. exercise 2 at the end of this section) and we write them as sequences

{en}-

5.3 DEFINITION: A complete orthonormal systeim H is an or-
thonormal system having the additional property that the only vector in
‘H orthogonal to it is the zero vector.

Lemma. Let{y,} be an orthonormal system #. Then the following
statements are equivalent:

(a) {pn} is complete.

(b) For everyf € H we have

(5.4) FRED A
(© =2 s ¢n)pn.

PrRooOF. The equivalence of (b) and (c) follows immediately from (5.2).
If 7 is orthogonal to{y,} and if (5.4) is valid, thenr|f||> = 0, hence

f = 0. Thus (b)= (a). We complete the proof by showing (&) (c).
From Bessel’s inequality and corollary 5.1 it follows that f, ©,)¢n
converges irH. If we denotey = > (£, vn)n We have(g, o,) = (f, on)

or, equivalentlyg — f is orthogonal to{¢,, }. Thus if{¢, } is complete

f=y. <
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5.4 Lemma Parseval) Let{y,} be a complete orthonormal system
inH. Letf,g € H. Then

oo

(55) <fag> = Z<f799n><¢nvg>

n=1

PROOF If f is afinite linear combination ofy,,}, (5.5) is obvious. In
the general case

N N

(fr9) = Jim (3 (f.0n)¢n9) = lim > (f.0n){pn.g)-

n=1 n=1 <

5.5 ForH = L*(T) the exponentialg§e™t}>° ___ form a complete
orthonormal system. The orthonormality is evident:

<€mt, eimt> _ 2i /ei(n—m)tdt = 6n}m .
T

The completeness is somewhat less evident; it follows from Theorem
2.7 since

(e = 5o [ e = o).

The general results about complete orthonormal systems in Hilbert space
now yield

Theorem. Let f € L?(T). Then

@ SIF = o [Irte) P
N
(b) f= lim > f(n)e™  in the L*(T) norm.

(c) Forany square summable sequekeg},.cz of complex numbers,
that is such tha}_|a,|? < oo, there exists a uniqug¢ € L?(T) such that
an = f(n).

(d) Letf,g€ L*(T). Then

or [ £05@ =Y i

n=—oo
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We denote by? the space of all square summable sequefices®, ,
(that is, such tha}_|a,|?> < oo). With pointwise addition and scalar

multiplication, and with the norn(Z\anP)% and the inner product
Han}, {bn}) = X7 anb,, ¢*is a Hilbert space. Theorem 5.5 amounts
to the statement that the correspondefices {f(n)} is an isometry
betweenL?(T) and/2.

EXERCISES FOR SECTION 5

1. Let{p,}2_, be an orthogonal system in a Hilbert spatelet f € H.

Show that
N
= ae;
1

is attained at the point; = (f,¢;), 7 =1,..., N, and only there.

2. A Hilbert spaceH is separablef it contains a dense countable subset.
Show that an orthonormal system in a separable Hilbert space is either finite or
countable.

Hint: The distance between two orthogonal vectors of normyi2is

3. Prove that an orthonormal systém, } in H is complete if, and only if,
the set of finite linear combinations ¢p.,. } is dense irH.

4. Let f be absolutely continuous dhand assume¢’ ¢ L?(T); prove that

at,..., an

ST < Nflle +

2) 2 | f]| e
1

Hint: [£(0)] < [[fll.1, and> |nf(n)> = ||f']%.; apply the Cauchy-Schwarz
inequality to the last identity,

5. Assumef € LY(T) and f(n) = O(|n|~*). Show thatf is m-times
differentiable withf™ € L*(T) providedk —m > 1.

6 ABSOLUTELY CONVERGENT FOURIER SERIES

We shall study absolutely convergent Fourier series in some detail
later on: here we mention only some elementary facts.

6.1 We denote by (T) the space of (continuous) functionsDhav-

ing an absolutely convergent Fourier series, that is, the funcfidos
which 3>%°_|f(n)| < co. The mappingf — {f(n)}nez of A(T) into ¢!

(the Banach space of absolutely convergent sequences) is clearly lin-
ear and one-to-one. - |a,| < oo the seriesy a,e™* converges
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uniformly onT and, denoting its sum by, we havea,, = §(n). It fol-
lows that the mapping above is an isomorphism4¢f) onto ¢*. We
introduce a norm tol(T) by

(6.1) 1f ey = D_If(n)].

With this normA(T) is a Banach space isometricg we now claim
it is an algebra.

Lemma. Assume thaf, g € A(T). Thenfg € A(T) and

I fallacmy < I fllaemllgllacr -

PROOF We havef(t) = Y f(n)ei™, g(t) = 3 g(n)e™ and since
both series converge absolutely:

Fg(t) =YY fk)g(m)eE+mr.
k. m

Collecting the terms for which k + m = n we obtain

F@gt) =YY" f(k)g(n —k)e™
n k

so thatfg(n) = 3, f(k)j(n — k); hence

Y IFgm < DN Bl —k) =D IFEID o). o
n k

6.2 Not every continuous function dhhas an absolutely convergent
Fourier series, and those that have cahbetcharacterized by smooth-
ness conditions (see exercise 5 of this section). Some smoothness con-
ditions are sufficient, however, to imply the absolute convergence of
the Fourier series.

Theorem. Let f be absolutely continuous dhand f’ € L%(T). Then
f € A(T) and

(6.2) 1 llacey < 11z + (230 072) 17 e
1

PROOFE This is exercise 4 of the previous section and the hint given
there is essentially the whole proof. |

tSee, however, exercise 7.8.



|. FOURIER SERIES ONT 33

x6.3  We refer to exercise 2.2 for the definitions of L{{I') and of its
norm.

Theorem Bernstein). If f € Lip,,(T) for somen > 1, thenf € A(T)
and

(6.3) 1fllaer) < callfllLip,
where the constant, depends only on.

PROOF,

Fle=h) = f&) ~ D (e = 1) f(n)e'™.

if take h = 27/(3-2™) and2™ < n < 2™*! we havele™ ™" — 1| > /3
and consequently

> \2<Z|e 1P = [ — fl2e <

(64) 27n§n<2m,+1
2w 2«
2 2
<fn - 1% < (52) I 1Epa-

Noticing that the sum on the left of (6.4) consists of at n2ost! terms,
we obtain by the Cauchy-Schwarz inequality

" 21
(6.5) S 1 <22 () flupa.
2m<p<2mtl
Sincea > 1, we can sum the inequalities (6.5) for = 0,1,..., and
remembering thatf (0)| < | fllLip, we obtain (6.3). <

Bernstein’s theorem is sharp; there exist functions i in (iH whose
Fourier series does not converge absolutely. A classical example is the
Hardy-Littlewood serie$">° | <" **"¢int (see [28], Vol. 1, p. 197).
Another example is given in exermse 6.6.

x6.4 The Lipschitz condition in Theorem 6.3 can be relaxef i of
bounded variation.

Theorem Zygmund). Let f be of bounded variation ofi and as-
sumef € Lip, (T) for somex > 0. Thenf € A(T).

We refer to [28], Vol. 1, p. 241, for the proof.
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x6.5 Remark: There is a change of scene in this section compared
with the rest of the chapter. We no longer talk about functions summable
onT and their Fourier series—we discuss functions summabhli(oa.,
absolutely convergent sequences) and their "Fourier transforms" which
happen to be continuous functions '©n Lemma 6.1, for instance, is
completely analogous to theorem 1.7 with the roleB ahdZ reversed.

EXERCISES FOR SECTION 6

1. Forn = 1,2,... let f, € A(T) and||falla) < 1. Assume thatf,
converge tof uniformly onT. Show thatf € A(T) and||f|| < 1.

2. Show that the conditions in exercise 1 do notimjphy| f — fn|lacm) = O;
however, if we add the assumption thigt| 4(r) = limn oo || fnl| a(r) then we do
have(|f — fullacr) — 0.

3. For0 < a < 7 define

1—a '] for|t| <
Ay {1maT forl<a
0 fora <|t| <=

Show thatA, € A(T) and||Aq]|am = 1.
Hint: A, (n) > 0 for all n.

4. Let f € C(T) be even or(—m, 7), decreasing of0, =] and convex there
(i.e., f(t+2Rh)+ f(t) > 2f(t+ h) for 0 <t < t+2h < 7). Show thatf € A(T)
and, if f > 0, || f[lacr) = f(0).

Hint: f can be approximated uniformly by positive combinationagf Com-
pare with theorem 4.1.

5. Lety be a "modulus of continuity,” that is, an increasing concave func-
tion on [0, 1] with ¢(0) = 0. Show that if the sequence of integ€ls,} in-
creases fast enough andfift) = > n%e'*!, thenw(f,h) # O (p(h)) as
h — 0. w(f, h) is the modulus of continuity of (defined in 4.6).

6. (Rudin, Shapiro.) We define the trigonometric polynomisandQ.,
inductively as follows:P, = Qo = 1 and

Prs1(t) = Pu(t) + € 1Qm(t)
Qm+1(t) = PM(t) - emmttQm (t)
(a) Show that
[P () + Qa1 (D) = 2(1Pn ()] + [Qm (1))

hence PO + |Qu () = 27"

n
and Pullen < o(m+1)/2
(b) For|n| < 2™, Pr,y1(n) = P..(n), hence there exists a sequefieg} 5>,

such that,, is either 1 or -1 and such that, (t) = 32 " e.e’™.
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(C) Write fo = Pp — Pyt = €2 tQm_1 and f = 0727 frm. Show
thatf € Lip%(’lr) andf ¢ A(T).
Hint: For2=* <h < 21*k write, ~

Fe4m) =10 = (D0 + D)2 Ut + 1) = fm(®)

1 k+1
By part (a) the sun} " | is bounded by} = | 2~ mom/2 < 5p3 . Using part
(a), exercise 2.12, and the fact thfat is a trigonometric polyomial of degree
2™ — 1, one obtains a similar estimate 9t} .
7. Letf, g € L*(T). Show thatf x g € A(T).

7 FOURIER COEFFICIENTS OF LINEAR FUNCTIONALS

We consider a homogeneous Banach sgaoa T and assume, for
simplicity, thatei”* € B for all n. As usual, we denote bg* the dual
space ofB.

7.1 The Fourier coefficients of a functionale B* are, by definition:
(7.1) a(n) = (e, ), n € Z;

and we call the trigonometric series

Sl ~ > n)e™
the Fourier seriésof ;. Clearly

()] < llpll-e™ |5 -

The notation (7.1) is consistent with our definition of Fourier coeffi-
cients in case that is identified naturally with a summable function.
For instance, iB = LP(T), 1 <p < oo, B*is canonically identified
with L(T) whereq = p/(p— 1). To the functiory € L4(T) corresponds
the linear functional

froh9) = 5o [ fde f e

and 1 —— 1 ;
@G = 5r [ et = o [ gt

2 2T

thus g(n) defined in (7.1) for the functional coincides with thenth
Fourier coefficient of the function.

TWe keep, however, the convention of 1.3 that a Fourier series, without complements,
is a Fourier series of a summable function.
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Theorem (Parseval’s formula).Let f € B, u € B*; then

(7.2) fouy = Jim 2(17 N"ﬂl) F(n)am).

PrROOF (a) For polynomialsP(t) = Zf’N P(n)e'™ we clearly have
(P.p) = SNy P(n)a(n).

(b) Since, by theorem 2.1¥, = limy_,» on(f) in the B norm, it
follows from (a) and the continuity of that

N

(f, ) =lim{on(f), ) = lim Z(l —
N

N—o0

oo =) f(m)ia(). )

Remark: The fact that the limit in (7.2) exists is an implicit part of
the theorem. It is equivalent to the C-1 summabilitf the series
S f(n)a(n). If this last series converges then clearly

(7.3) (fom) =" f(n)ir(n)

We shall sometimes refer to (7.3) as Parseval's formula, keeping in
mind that if the series on the right does not converge then (7.3) is simply
an abbreviation for (7.2).

Corollary (Uniqueness theorem)lf ji(n) = 0 for all n, theny = 0.

7.2  We shall writey ~ >~ fi(n)e™, and may writeu = > ji(n)e™t

if the series converges in some sense (which should be clear from the

context). This is an abuse of language which, if used with caution,

presents no risk of misunderstanding and obviates tedious repetitions.
In accordance with our abuse of language we defing, fo3*, the

elementsS, () ando, () of B* by

Z:U’ z_]t
n

on (1) :Z;(l - n|_J’_| 1)ﬂ(j)eijt

tCesaro of order 1

(7.4)
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We shall also write

Sulp,t) =Y u5)e!
(7.5) o

i) =Y (1= 5 )ite

The correspondence between the functionals (7.4) and the functions
(7.5) is clearly

n

(F8u(0)) = o7 [ FOS G0 = Y FHRT)

—n

for all f € B; similarly for o, ().

The mappingS,, : f — S,(f) on B is clearly a bounded linear
operator, and so iS,, : u — S,(u) on B*. It follows from Parseval’s
formula thatS,, on B* is the adjoint ofS,, on B and consequently has
the same norm. Similarlyr,, : 1 — o,() on B* is the adjoint of
o, f—o,(f)onBand consequen@I)HanHB* =1.

We remark that by Parseval’s formula, for everye B*, o, (u)
converges weak-star {0

7.3 Parseval's formula enables us to characterize sequences of Fourier
coefficients of linear functionals.

Theorem. Let B be a homogeneous Banach spacelossume that
e e Bforall n. Let{a,}>__ be a sequence of complex numbers.
Then the following two conditions are equivalent:

(a) There existg € B*, || < C, such thati(n) = a, for all n.

(b) For all trigonometric polynomials$’
1> P(nyaz| < CIIP| 5.
PrROOFE The implication (a)= (b) follows immediately from Parse-
val’'s formula. If we assume (b) then
(7.6) P Z P(n)a,
is a linear functional on the space of all trigonometric polynomials,

bounded in the B norm, and therefore (theorem 2.12) admits a unique
extensionu of norm< C to B. Sinceu extends (7.6) we have

fi(n) = (€™, p) = an. <

§lo||B" denotes the norm af,, as operator omB*.
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Corollary. A trigonometric series ~ > a,e™ is the Fourier series

of someu € B*, ||u|| < C, if, and only if, [[on(S)|| < C for all N.
Here o (S) denotes the element in B* the Fourier series of which is
SN = [il/(N +1))azeist.

PROOF The necessity follows from 7.2; the sufficiency from the cur-
rent theorem and the observation that for trigonometric polynoniials

> P(n)a, = Jim (P ox(9)) <

7.4 In the caseB = C(T) the dual spac&* is identified with the
spaceM (T) of all (Borel) measures ofi (we set(f,u) = [ fdu) We

shall refer to Fourier coefficients of measures as Fourier-Stieltjes co-
efficients and to Fourier series of measures as Fourier-Stieltjes series.
The mappingf — (1/27)f(t)dt is an isometric embedding df'(T)

in M(T). The Fourier coefficients aft /2x)f(t)dt are preciselyf(n),
hence a Fourier series is a Fourier-Stieltjes series.

An example of a measure that is not obtaine@ld8r) f(¢)dt is the
so-called Dirac measure; it is the measéif mass one concentrated
att = 0. ¢ can also be defined byf,s) = f(0) for all f € C(T). We
denote by, 7 € T, the unit mass concentratedatThusé = §, and
(f,6,) = f(r) for all 7 € T. From (7.1) it follows that,(n) = e~ "7
and in particulan(n) = 1. This shows that Fourier-Stieltjes coefficients
need not tend to zero at infinity (however, by 7/n)| < ||l acr))-

7.5 We recall that a measugeis positive ifu(E) > 0 for every mea-
surable seF, or equivalently, if[ fdu > 0 wheneverf € C(T) is non-
negative. Ifu is absolutely continuous, that is,if= (1/27)g(¢t)dt with
g € LY(T), theny is positive if and only ifg(¢) > 0 almost everywhere.

Lemma. A seriesS ~ Y a,ei™ is the Fourier-Stieltjes series of a
positive measure if, and only if, for allandt € T,

n

on(S,t) =Y (1 =jl/(n+1))a;e”" > 0.

—n

PROOE If S = S(u) for a positivep, € M(T) and if f € C(T) is non-
negative, we have

3= | 1070 = >(1- LY FRG) = o) 2 0
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sincep > 0 and, by 3.1, (f,t) > 0. Since this is true for arbitrary
nonnegativef, 0, (S,t) > 0 onT. Assumingo, (S, t) > 0 we obtain

1
Han(S)HJW(T) = Gy /Un(S, t)dt = ag

and, by Corollary 7 35 = S(u) for somey € M(T). For arbitrary
nonnegativef € C(T), [ fdp = lim, .o (/27 [ f(t)o,(S,t)dt > 0 and
it follows thaty is a positive measure. <

Remark: The condition %,,(S,t) > 0 for all n” can clearly be replaced

by “o,,(S,t) > 0 for infinitely manyn’s”.

7.6 We are now able to characterize Fourier-Stieltjes coefficients of
positive measures as positive definite sequences.

DEFINITION: A numerical sequencg:, },.cz is positive definite if for
any sequencéz, } having only a finite number of terms different from
zero we have

n,m

Theorem (Herglotz). A numerical sequende, } ¢z IS positive def-
inite if, and only if, there exists a positive measpre M (T) such that
an, = fi(n) for all n.

PROOF Assumeu,, = ji(n) with positivey. Then
(7.8) Zan,mzném = Z/e*mteimtznfm = /’Z zpe it

If, on the other hand, we assume that } is positive definite, we write
S ~ Y a,ei™ and, for arbitraryV andt € T we choose

eint "fl| S N
0 In| > N

2
du > 0.

n =

We havey-, . an-mznZm = Y, Cjnaje’" whereC; v is the number
of ways to writej in the formn — m where|n| < N and|m| < N, that
is, Cj v = max(0,2N +1 — |j|). It follows that

JQN(S t) ZC Naj eut > 0

2N—|—1

and the theorem follows from 7.5. <
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7.7 If {a,} is positive definite, then
(7.9) lan| < ag,

and the sequencia, — »=1F%=+1)} is positive definite. This can be
seen directly by checking condition (7.7), or deduced from Herglotz’
theorem and the observations that ik the positive measure such that
an = [i(n), thenag = 4(0) = ||p|l, v = (1 — cost)u is nonnegative, and
o(n) = a, — =13t

Also, sincea,, = a—,, we haven, — Ra; = ag — =% = (0).
Combining all this, we obtain

Lemma. If {a,} is positive definite, then

(7.10) ‘(an—%)‘ < ag— RNa;.

Positive definite functions can be defined over any abelian group by
the same inequality (7.7). In Chapter VI we shall see that the preceding
lemma implies in particular that positive definite functionshat
are continuous dtare in fact uniformly continuous.

7.8 The Spectral Theorem.Positive definite sequences arise nat-
urally in the context of unitary operators on a Hilbert space. et
be a Hilbert spacel/ a unitary operator orH, and f € H; write

a, = (U™f, f). The sequencéu,} is positive definite since for any
finite sequencéz, } we have

Z Ap—mZnZm = Z<ZnUinf7 ZmUimf>

Zan_"f

The positive measune = p; € M(T) for which ji(n) = a, is calledthe
spectral measure of. Comparing (7.8) and (7.11), one realizes that
the correspondence

(7.11)

2
‘ > 0.
H

(7.12) H> Uf +—— et ¢ Lz(’u,f)

extends to an isometry of the closed spdp of {U™f} in H onto
L*(uuy), which conjugate#’ to the operator of multiplication by* on
L%(uy). This is in essendethe spectral theorem for unitary operators
on a Hilbert space.

Twhat we omit here is the analysis of theultiplicity of U on .
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Corollary (The Ergodic Theorem).Let H be a Hilbert space and
U a unitary operator ort{. Denote byH,,,, the subspace df-invariant
vectors inH, and byP;,,, the orthogonal projection dff on’H;,,,. Then

1 N—-1
lim — Uj = Pinva

the limit in the strong operator topology.

PROOF. The claim is that for every € H, lim & S0 "1 U7 f = Py, f in
norm. By the spectral theorem, we may assumetthatmultiplication

by ¢/ on L?(uy), and so S0 "' U7 is just multiplication by

1 N-1 - eiNt_l
—— wyt — -~ 0000—

The elements of?(u¢) which are invariant under multiplication by
e’ are just the multiples ofi (¢, (the indicator function of0}), and
P, in this context is multiplication byl ;o,. AS [[¢n]lec = 1 andey
converge pointwise td y;, we havelim o1 = 1(0)1 ¢ in norm for
anyvy € L*(uys), and in particular for the constant 1, the imagefof
under the “spectral” isometry. <

7.9 An important property of Fourier-Stieltjes coeffcients is that of
being "universal multipliers." More precisely:

Theorem. LetB be a homogeneous Banach spac&€@mdy € M(T).
There exists a unique linear operateion B having the following prop-
erties:

() HE\H < ”:U'HJ\I(’]I‘)A
(i) pf(n)=pn)f(n)forall f e B.

PROOF. If an operatoru satisfies (i), then forf = 2" f(n)e™ we

haveuf = ZJXN fi(n) f(n)e'™, that is,u is completely determined on
the polynomials inB. If u is bounded it is completely determined. In
order to show the existence pfit is suffcient to show that if we define

(7.13) pf =Y j(n)f(n)e"

for all polynomialsf then

(7.14) eIl < Nellaren £ 1|8,



42 AN INTRODUCTION TOHARMONIC ANALYSIS

sincep would then have a unique extension of nofm| x|yt to all
of B. If u = (1/2m)g(t)dt with g € C(T), itis clear thatuf, as defined
in (7.13), is simplyg = f which we can write as &-valued integral (see
2.4)

1

(7.15) wf=g<f =5 [ o
Y8

and deduce the estimate

1
I7ls < 171a 5z [la)ldr = Inlrce) -

For arbitraryu € M(T), o,(p) has the form(1/2x)g,(t)dt, where
gn(t) = 30, (1 = 15l/(n + 1)ia(j)e”" and

1
or [ lan@dt = lormli s < sy

By our previous remarkg, = f| g < ||ulla(m || f|| 2. Sincef is a trigono-
metric polynomial, we clearly havef = lim,_... g, * f and (7.14)
follows. <

Corollary. Letf e Bandu € M(T). Then{ji(n)f(n)} is the sequence

of Fourier coefficients of some functionih

In view of (7.15) we shall write: = f instead ofuf, and refer to it as
the convolution of: and f. With this notation, our earlier condition (ii)
becomes a (formal) extension of (1.10).

7.10 Forp € M(T) we defineu® € M(T) by

(7.16) i#(B) = i(—E)

for every Borel setr (recall that—F = {¢t: —t € E}), or equivalently,
by

(7.17) [ s = [ -0

for all f € C(T). It follows from (7.17) that

(7.18) §#(n) = i(n) .
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7.11 By Parseval’s formula, the adjoint @f is the operator which
assigns to every € B* trlg element oB* whose Fourier series is given
by 3" iu(n)o(n)e™ = S u#(n)o(n)e'™. We extend the notation of 7.7,
write this element of3* asp* * v, and refer to it as the convolution of
p# andv. We summarize:

Theorem. Let B be a homogeneous Banach spaceToand B* its
dual. Lety € M(T), v € B*; then_ i(n)(n)e™ is the Fourier series
of an element x v € B*. Moreover||p * v| g« < ||u||ar¢r) V] B~ -

The norm estimate follows from (7.14) and the facts that the norm
of the adjoint of an operator is equal to the norm of the operator, and

||M#||M(1r) = ||M||M(1r) . 4
It follows, in particular, that ifu, v € M(T), then}_ i(n)2(n)e™ is
the Fourier-Stieltjes series of the measurev.

7.12 We have introduced the convolution pf v € M(T) by its
Fourier-Stieltjes series. It can, of course, be done directly. With
andv given, and forf € C(T), the double integral

1) = [[ s+ Do)
is well defined, is clearly linear iifi, and satisfies
O < Nellaeemy 1l arery-
By the Riesz representation theorem, which identifig¥) as the dual
of C(T), there exists a measurec M (T) such thati(f) = [ f(t)dA.

Taking f(t) = e~ we obtain\(n) = ji(n)0(n), that is,\ = p*v. In
other words

(7.19) /fd(u v = // Ft+ T)dp(t)dv (7).
Taking a (bounded) sequence of functighahich converge to the in-

dicator function of an arbitrary closed detwe see that (7.19) is equiv-
alentto (denotingg — 7 = {t:t + 7 € E})

(7.20) (4 v)(E) = / W(E — 7)du (7).

By regularity, (7.20) holds for every Borel sBEt
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7.13 We recall that a measugec M(T) is discrete ify = " a;0-,
wherea’ are complex numbers; we then haye|,,m = > |a;[. A
measurey is continuous ifu(t) = 0 for everyt € T ({t} is the set
whose only member is the point. Equivalentlyy is continuous if
lim,, ¢ fttf7:’|du| =0forallt € T. Everyu € M(T) can be uniquely
decomposed to a sum = . + ug Wherepu, is continuous angy is
discrete.

It is clear from (7.20) that ifx is a continuous measure then, for
everyv € M(T), p*v is continuous. Also, sinc&r) «6(r') = 6(r+7'),
if p= > a;6-, andv = 3 by, thenpxv = 37 a;bed, . If
u = pe + pa is the decomposition ofi into continuous and discrete
parts, thenu? the continuous part of* and uf is its discrete part.
Thus

fo i = (pe * il + e x gl + pax pl) + pax

the sum of the first three terms is continuous and the last term is dis-
crete. Ifuqg = > a;dy, thenud# = ) ajé_,, and consequently the mass
atr = 0 of the measurg x p# is >"|a;|?. We have proved:

Lemma. Let y € M(T). Then Y |u({r})|? = (u * p#)({0}). In
particular: 4 is continuous if, and only if,

(u* p™)({0}) = 0.

The discrete part of a measurean be “recovered” from its Fourier-
Stieltjes series.

Theorem. Lety € M(T), 7 € T. Then

N

. 1 ~ nT
p({r}) = lim WZM(H)E .

N—oo
—-N

PROOF. The functionspy (t) = 555 Dn(t—7) = 55+ SN eminTeint
are bounded by 1 and tend to zero uniformly outside any neighborhood
of t = 7. Remembering that

T+
lim |ld(p — p({7})é-)] =0
- T—10
we obtain
(7.21) Jm (o i = p({T})dr) =0
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Now
- .
(ono = p{rDor) = 5 g gu(n)e — u({r})
and the theorem follows from (7.21). <

Corollary (Wiener). Lety € M(T). Then

N
(722)  Y(rE = Jim o NP,
-N

In particular: p is continuous if, and only if,

N
. 1 UND
(7.23) NN T ZNW)' =0

Remarks:a. The averaging that appears in the Theorem and in the
corollary need not be on intervals symmetric with respect to QMf}
is an arbitrary sequence of integers, and— oo, then for allr € T

M;+N,;
(7.24) plir)) = Jim 5=y %} fu(n)e™” .

The proof as above, withy replaced byp; = 1 S et

b. The exponent 2 in (7.22) is essential, in (7.23) it can be re-
placed by any positive number. What the condition really says is that
fi(n) tends to zero in densityhat is: givere > 0, the proportion in all
sufficiently large intervals, of the integetssuch thatj(n)| > e, is ar-
bitrarily small. In particular, for every > 0 and positiveN there exist
in any sufficiently large interval of, intervals of lengthV, on which
Al <.

EXERCISES FOR SECTION 7

1. Let B be homogeneous dhand B* its dual. Show that ~ > ane™™
is the Fourier series of some € B* if and only if |jox(S5)| is bounded as
N — 0.

2. DenoteK,, . (t) = Ky (t — 7). Show that for every. € M(T)

on(pt, ) = (Knyr, ) -
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Deduce that,, (u, ) > 0 if u is positive.

3. Show that a trigonometric serids a,e™ such thad " ane™ >0
for all N andt € T is a Fourier-Stieltjes series of a positive measure.

4. We shall prove later (see IV.2.1) thatfife L”(T) with 1 < p < 2, then

e = (W) il (0= 525).

Assuming this, show that ifa.,} € ¢* is a numerical sequence then there exists
a functiong € L4(T) such thag(n) = an, and||g||a(ry < |[{an}|ler -

5. The elements of the dual space®f (T) are calleddistributions of
orderm onT. We denote byD™(T) = (C™(T))* the space of distributions of
orderm onT. SinceC™!(T) c C™(T) we haveD™(T) Cc D™ !(T). Write
D(T) = Uy D™(T).

(a) Prove thatif. € D™ then

|i(n)| < const |n|™ n #0.

(b) Given a numerical sequenge™} satisfyinga, = O (|n|™), there exists a
distributiony, € D™ such that,, = ji(n) for all n.
Hint: If f € C™(T) then> |n™ f(n)| < oco.
Thus a trigonometric seri€s, a,e™ is the Fourier series of a distribution
onT if and only if, for somem, a, = O (|n|™) n # 0.

Let » € D and letO be an open subset @f We say thaj vanishes orO
if {p,uy =0forall p € C*(T) such that the support qf (i.e., the closure
of the set{t: ¢(t) # 0}) is contained irO.

(c) Prove that ify vanishes on the open safs andO,, then it vanishes on
01 UOas.

Hint: Show that if the support op € C*°(T) is contained in0; U O2
then there exisp:, ¢» € C°°(T), with supports contained i@, O, re-
spectively, such that = ¢; + po.

(d) Extend the result of (c) to any finite union of open sets; hence, using the
compactness of the support of the test functipnshow that if, vanishes
in the open set®,, a running over some index sét theny vanishess on
U.es Oa-

Thus the union of all the open subsetsTobn whichu vanishes is again
such a set. This is clearly the largest open set on whiehnishes.

DEFINITION: Thesupportof i is the complement ifi of the largest open
setO C T on whichy vanishes.

(e) Show that ifu € D™ and if f € C™(T) vanishes on a neighborhood of
the support ofu, then(f, ) = 0. The same conclusion holds if for some
homogeneous Banach spaggthe distributiory, belongs toB* andf € B
(see exercise 2.11).
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(f) We define the derivativg’ of a distributiony, € D™ by

(f,'y=—=(f'spy for f e C™T(T).
Show thaty’ € D™ and/(n) = in ji(n).
(g) Show thatupport(y') C support(u).

(h) Show that the map — ' mapsD™ onto the subspace @™ consisting
of all x € D™ satisfying/:(0) = 0.
Hence, every, € D™ can be written in the forna(0)dt + p1 wherep, is
themth derivative of a measure.

(i) A distribution i on T is positiveif (f,u) > 0 for every nonnegative test
function f € C*°(T). Show that a positive distribution is a measure.

Hint: Positivity implies, for real-valued, (f, u) < max f(¢)(1, u).

6. The dual space od(T) is commonly denoted by M(T) and its ele-
ments referred to as pseudo-measures. Show that with the natural identifica-
tions M(T) c PM(T) c D*(T), and PM(T) consists precisely of thogefor
which {j(n)} is bounded. Moreover, the correspondepce {ji(n)} is an
isometry of PM(T) onto£°°.

7. Leta, B € T, let N be an integer, and let be the measure carried by the
arithmetic progressiof + j3} 7~ _ 5, which places the mass zerocaand the
massj ! ata + jB, 1< |j| < N. Show that|u||parr < 7+ 2.

Hint: See exercise 3.4.

8. Letf € A(T) be real valued and monotonic in a neighborhooé,af T.
Show that f(t) — f(to)| = O ((log|t — to| ') ") ast — to.

9. Letu, un € M(T), n = 1,2,.... Prove thafu, — u in the weak-star
topology if, and only if,||in || a1y = O (1) andjin (5) — f(5) for all 5.

10. By definition, a sequendg, }5=; C T is uniformly distributedif for
any arc/ ¢ T we havelimy_..o N7' 320 1;(6,) = (2n)7'|I]. Prove the
following statements:

a. {&}nz. C Tis uniformly distributed if, and only ifu, = n=" Y 7 &,
converge in the weak-star topology (@r)~'dt, i.e., if for all integers # 0,
n~' Y e — 0. (Weyl's criterion).

b. if ais anirrational multiple ofr, the sequencgua} is uniformly distributed
onT.

11. Show that a measurec M (T) is absolutely continuous if, and only if,
lim._o|lu- — p]| = 0, wherep, is the translate of: by = (defined by, (F) =
p(E — 7))

12. Letu € M(T). Prove:o,(u,t) converge to zero at evety? supportfs),
the convergence uniform on every closed set disjoint from support(

13. Letu € M(T) be singular with respect to dt (that is, there exists a Borel
setE, of Lebesgue measure zero, such thdt) = u(E N Eop) for every Borel
setE). Show thatr, (i, t) — 0 almost everywhere (dt).
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14. Show that the conclusion of exercise 12 is false if we asgumeD?
instead ofu € M(T); however, if we replace Fejér’s kernel by Poisson’s, the
conclusion is valid for every € D.

Hint: For0 < § < =, and positive integers, lim,_,1
in (6,2m —§).

15. (Bernstein’s inequality) et t;,, = 24" andg; , = 4, . Write

O"MP(r,t) __

S 0 uniformly

2n—1

1
R L T
0

(&) Check thav,|| = 9,(0) = 1.
(b) Writev; = ne™'v,, then||vi|| = n, andz;;(j) is periodic of periodin and

S/ ] for ‘]' S n,
Vn(]) = X .
2n—j forn <j < 3n.

(c) Prove Bernstein's inequalityf P =" a;e”*, then

(7.25) [P lloo < n[|Plloc -
Hint: P’ = v} x P.

(d) Prove thatifP = 3" a;e, then || P'||s < n||Ploo -
Hint: Find a measurg,, of normn such thafi, () = |j| for |j| < n.

(e) LetB be a homogeneous Banach spac&pandP = " a;e”* € B.
Prove that| P'||z < n||P||5, and||P’'||z < n||P| 5.

8 ADDITIONAL COMMENTS AND APPLICATIONS

8.1 Approximation by trigonometric polynomials. The order
of magnitude of the Fourier coefficients of a functigrgives some
indication of the smoothenss of the function. We get more precise in-
formation from the rapidity of the approximation pby trigonometric
polynomials (as a function of their degree), or from the decomposition
of f into a series of polynomials given by (8.8) below.

For ¢ € C(T) denoteE,,(¢) = inf|¢ — P|l«, the infimum for all
trigonometric polynomial$® of degree< n.

If m is a positive integer an@ < n < 1, C™*"(T) denotes the space
{f € C™(T): f™ € Lip, }, endowed with the norm

1Fllgmsn = 1 lememy + 17 lLip, -
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Theorem (Jackson). Letm be a non-negative integer, afdk n < 1.
If f e C™(T), then:
(8.1) E,(f)=0(n"™7").
The converse of the statement is true proviged0. See 8.3 below.

The proof will use the information we have in the exercises for Sec-
tion 3, Bernstein’'s inequality for derivatives of polynomials (exercise
7.15 above), and the “reverse inequality” which is discussed in the fol-
lowing subsection.

8.2 The “reverse Bernstein inequality”.

Theorem. Letm be a positive integer. There exist a constaptsuch
thatif f =37, 5, a;e”" € C™(T), then

(8.2) 1£lloo < Coalnl =™ [LF7™| oo

PrRoOOF. We prove the following statemengiven positive integers:
andn, there exist measures,, ,, such that

(83) U/m\,n(n = jim for |.7| >n, and ”,Um,n

lvr) < Cn™™

Sincef = i . * £, this clearly implies (8.2).
Denote bys,, ., the positive function in.! (T) whose Fourier coef-
ficients are given by

. jmm for |j| > n
Gmn(d) = _ . _ - :
(=) (7" = (n+1)7m) for i < n.

The coefficients in the rangg| < n are chosen so as to fulfill the
conditions of Theorem 4.1: they are symmetric, linegbin + 1] with
slope matching that dfj—™} on[n,n + 1], so thatqs/n;(j) is convex on
[0,00). It follows that

|om.nllLr = qgn\n(()) <(m+1)n"™.

For evenm setyu,, », = ¢, »dt and obtainC,, = m + 1.
Form = 1, we use the polynomials

1 i2k+1

ok
\I/n,k = 612 ntK2k(n—1) + 56 ntKZ’“(n—l)v
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—

Clearly ||V, x|l () < 3/2, ¥, x(j) = 0 for negativej, while for j > n
5% ¥, x(j) = 1 (with one or two non-zero summands for egghit
follows that the function

O () = > Wn g * by pon

k=0
satisfies:®r (j) = 0 for j < 0, &= (j) = 1/j for all j > n, and

(8.4) ]

o,

< 3/2 < 6n L.
pray S H2D 61l S 61

We sety ,, = (@ (t) — ®;(—t))dt, and (8.2) holds withT; = 12.
Finally, form = 21 + 1 we setu,, ., = p1.n * por,, aNdC,, = 12m. <

For polynomials of the fornP = 3°, _ . .,,, a;e”’" we have

(8.5) Crn' ™| Pllo < 1P oo < (47)™ || Ploc-

Moreover, the same holds if we replad., by the norm of any ho-
mogeneous Banach spaceTn

8.3 Lemma. Let P, be trigonometric polynomials of degrees bounded
by 2¥ and || Py[|sc = O (2~ ("+M¥). Thenf = 3" P, € C™+1(T).

PROOF. By Bernstein’s inequality, we havgP;||c ) = O (277%) so
the series converges @1 (T), andf € C™. Focusing orP,Em) we have

8.6) [Pl =0(27"), and [P V| =0 (2(1—n)k) 7
which imply

C|h|2F(=m)  for |h| < 277

8.7) |P™(t+n)—P™ )<
®7) 1P - A OI< for ] > 2-*7

the constan coming from theO bound. For any, and anyt € T,

_ X < - o >~ U1 07
’f(m)(t—‘rh) f(m)(t)’ <C( Z ‘h|2k(1 ’77)_|_ Z 2 ’WI) <C |h‘

|h|<2=kn [h|>2=Fn

andf € C™+(T). <
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If feC(T),n > 2, the polynomiaWW,,(f) = (V2, — V) * f is of the
form 3=, i<, aje". We setiW(f) = Vo * f, and have

(8.8) f=lmVo s f =Y Wa(f).
E>1
Notice that, sincg{Vs,, — V|11 (1) < 6, we have, for any homoge-
nous Banach spadgonT,

(8.9) W (Hlls <615

Theorem. Letm > 0 be an integer and < n < 1. A necessary and
sufficient condition foyf to be inC™*"(T) is

(8.10) W (llec = O (n7"77).

For n = 0, the condition(8.10)is necessary, but not sufficient.
PROOF. For anyg, W,,(g9) = 2(Kun¥g—g) —3(Kap g —g)+ (Kn*xg—g),
and hence

(8.11) [Wa(@)llso <6 _max [low(g) = glloc-

=n,2n,

Combine this (forg = f™), wheref ¢ C™*7, and0 < n < 1,) with
exercise 2 at the end of Section 3, and obtain

(8.12) IWa(F™)lso < CIF™ lILip, ™",

whereC is a universal constant. By (8.5), and the fact that convolution
commutes with differentiation, thusv,,(f)|l < C|fllgmnn= ("]
and we proved the “necessary” part of the theorem. For the proof that
condition (8.10) is sufficient, writ&, = W,.(f) and apply the lemma.

<

This is essentially Jackson’s theorem. Our estimat&pff) was
based on the estimate,, (f(™) — f(™ | < C|/f|l¢man~", Which
implies the same (with a different constant) fiau,, = (™ — fm)|| .,
and the “reverse Bernstein inequality” gives

En(f) < IVa# f = flloo < Cllf lgmenn™ "7,

This is the “direct” side of Jackson’s theorem. The “converse” follows
from the current theorem combined with the observation that for any
polynomial P of degree less tha2l we haveW,. (f) = War(f — P),
hence|War (f)]lco < Eor-1(f).

TThis is the reason we uag, rather thars,,: for f = cost, on(f) — f =n~Lf.
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8.4 One application of Theorem 8.2 is the fact thatfife C™*7,
wherem > 0 is an integer, an@ < n < 1, theng[f], the conjugate
Fourier series of, is also the Fourier series of a functiondf**7. In
the terminology of the next chapter*" admits conjugation This
follows from

Lemma. LetP be a polynomial of the form? = 3° .., a;¢'*, and
Pits conjugatel = 3~ _ ;< SN(j)a;e!. Then

[Plloc < 7|IP|oo-

PROOF P = P — 2(e~3"V,, % P). <

Theorem. C™*" admits conjugation.
PROOF. With some abuse of notation we may wrjte= don>1 Vm)
use the lemma, and invoke Theorem 8.2. <

8.5 Multipliers on Fourier coefficients. Let B and B; be ho-
mogeneous Banach spacesand letT be an operator fron® into

B; which commutes with translations. Then, for@allTei™t = t(n)ei™t

and for f € B the Fourier series of'f is S t(n)f(n)e™. In other
words, T is expressed asmaultiplier on the Fourier coefficients of.

We have seen concrete examples of this whevas differentiation, or
convolution by a fixed measure, and just in the previous subsection—
conjugation, for which the multiplier i§n) = sgn(n).

The proof of Theorem 8.4 can be imitated for other multipliers. For-
mally, if {¢(n)} is given, the operataf : f — Y t(n)f(n)e™ is well
defined for polynomialg. If we denot€g|T||,, the norm of the multiplier
restricted to the sup-normed space of trigonometric polynomials of the
form 37, < |jj<an+2 a;e”*, then the proof of Theorem 8.4 consisted in
the observation thdtT||,, is uniformly bounded when(n) = sgn(n).

The same argument, using Theorem 8.2, proves

Theorem. A sequencét(n)} is a multiplierC™ — C"™2,r, ¢ Z, if and
only if | 7|, = O* (2»("2=")) . In particular, this is true if

(8.13) Y P =0 (22"“2—7’1)) :

2n<j|<2nt?
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PROOF We check that (8.13) implies the estimafg|,, = O (2"(r=="1)).
For polynomials of the forn},. . ;j<on+2 aje’’* the operatofl” is the
convolution with the kerner’, (t) = 3o, < |j<an+2 t(7)e”*, and its norm
is bounded by‘Tn”Ll(T) < HTn||L2(’]1‘) <

8.6 The difference equation. Given a functionf € L!(T) and
a € T, we are asked to fingsuch that

(8.14) g(t+a)—g(t) = f(f)
Under what condition can this be done and what can be said about the
“solution” ¢7?

Formally the solution is obvious, at leastgfe L!(T): (8.14) is
satisfied if, and only if,

(8.15) forallneZ  §(n)(e™™ —1) = f(n),
in other words, we need to sgi0) = 0 and

(8.16) g(n) = (" = 1)~ f(n),

and the question becomes that of identifying (pairs of) spaces on which
the sequencé&™> — 1)~! is a multiplier. The answer depends on the
diophantine properties af, i.e., on the rate of growth gk~ — 1)-L.

Theorem. If | — 1| > C|n|™" then the sequendge™® — 1)~ 1} is
a multiplier ™+ (T) — C™2(T) whenever; — r, > v. If ro is not an
integer, the same holds for — r, = 7.

Lemma. Let{z;}™,, c T be such that foj # k, |z; — zx| > a, and
|Z]‘ — 1| > a. Then2|2’j — 1|_2 < 4a~2,

PrROOF. The worst estimate is obtained when the points are packed as

close to 1 as the condition permits, that is, for= ¢“¢, j # 0, and

20 = e!M+1a, |

PROOF OF THE THEOREM The lemma, with\/ = 2**t2 anda = C2—™7,

implies
Z |(eina _ 1)|72 -0 (22nv) )

an<|j|<ant?

Now apply theorem 8.5. <
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EXERCISES FOR SECTION 8

1. Show that ifm is an integer, the conditiof,,(f) = o (n™ ™ logn) is
necessary fof € C™(T) but is not sufficient. Show also that the condition
> 28 Eqi (f) < oo is sufficient; is it necessary?

2. Let B be a homogenoeous Banach spac&ofor f € B consider the
B-valued functionp(7) = f.. Prove that ify is differentiable at some, € T,
it is uniformly differentiable orfT, and that this happens if, and only jf, € B.

3. Let B be a homogeneous Banach spac&@nd assume that, for some
1 < p < oo, |||z is equivalent to||{||Wa~(-)||s}|le». Prove thatB admits
conjugation



Chapter Il

The Convergence of Fourier Series

We have mentioned already that the problems of convergence of
Fourier series, that is, the convergence of the (symmetric) partial sums,
Sn(f), are far more delicate than the corresponding problems of summa-
bility with respect to "good" summability kernels such as Fejér’s or
Poisson’s. As in the case of summability, problems of convergence "in
norm" are usually easier than those of pointwise convergence. Many
problems, concerning pointwise convergence for various spaces, are
still unsolved and the convergence almost everywhere of the Fourier
series of square summable functions was proved only recently (L. Car-
leson 1965). Convergence is closely related to the existence and proper-
ties of theconjugate functionin this chapter we give only a temporary
incomplete definition of the conjugate function. A proper definition
and the study of the basic properties of conjugation are to be found in
chapter IlI.

1 CONVERGENCE IN NORM
1.1 Let B be a homogeneous Banach spac& oAs usual we write

(1.1) Su(f) = Su(fit) = F(5)eV",

We say thaiB admits convergence in norm if
(1.2) im [1S,(f) = fllz = 0.

Our purpose in this section is to characterize the sp8cakich have
this property.

We have introduced the operat®s : f — S,(f) in chapter |.S,,
is well defined in every homogeneous Banach sgaceie denote its
norm, as an operator ag, by ||S,,|| 5.

55
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Theorem. A homogeneous Banach spaBeadmits convergence in
norm if, and only if /S, ||® are bounded (as — o), that is, if there
exist a constank such that

(1.3) 1Sn(H)lls < K fllB

forall f € Bandn > 0.

PROOF If S,,(f) converge tof for all f € B, thenS,(f) are bounded
for every f € B. By the uniform boundedness theorem, it follows that
[IS.||Z = O(1). On the other hand, if we assume (1.3) flet B, ¢ > 0,
and letP be a trigonometric polynomial satisfying — P| g < ¢/2K.
Forn greater than the degree Bf we haveS, (P) = P and hence

150 (f) = fllB =[1Sn(f) = Sn(P) + P = fllB

S S
<|IS,.(f — P P <K— 4 - <e.
<ISulf = P)ls + 1P~ flp S Koo+ 5o <o

1.2 ThefactthatS,(f) = D, = f, whereD,,, is the Dirichlet kernel

n

_ N gt = Sin(n A 1/2)t
(1.4) Dy (t) = ;e = i
yields a simple bound fdfS,,||Z. In fact,|| D, * f||z < || Dnllz: || £l 3, SO
that

(1.5) 18417 < [ Dnllzs -

The numberd.,, = ||D,|;: are called the_ebesgue constantshey
tend to infinity like a constant multiple dbgn (see exercise 1 at the
end of this section).

Inthe cases = L!(T) the inequality (1.5) becomes an equality. This
can be seen as follows: denote Ky, the Fejér kernel and remember
that |Ky|/1 = 1. We have||S,[|X" > [|Su(Kn)|lz: = llon (Dn)]|: and
sinceoy(D,) — D,, asN — oo, we obtain

1 1
I1Sall” ™ > 1Dyl ; hencel|S||” ® = [|Dy 1.

It follows that L' (T) does not admit convergence in norm.
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1.3 In the caseB = C(T) convergence in norm is simply uniform
convergence. We show that Fourier series of continuous functions need
not converge uniformly by showing thgs,, |©™ are unbounded; more
precisely we show thdls,,||°(™ = L,. For this, we consider continu-
ous functions),, satisfying

||wn||00 = SUQWn(t)\ <1

and such that), (t) = sgn(D,,(¢)) except in small intervals around the
points of discontinuity of sgfD,,(¢)). If the sum of the lengths of these
intervals is smaller thag/2n, we have

1Sn |9 > |, (¢hn, 0)] = % /Dn(t)wn(t) dt > L, —

which, together with (1.5), proves our statement.

1.4 For a class of homogeneous Banach space®,dhe problem
of convergence in norm can be related to invariance under conjugation.
In chapter | we defined the conjugate series of a trigonometric series
> ane™ to be the series-i > sgn(n)a,e™. If f € L'(T) and if the
series conjugate t§" f(n)ei™ is the Fourier series of some function
g € L*(T), we callg the conjugate function of and denote it byf.
This definition is adequate for the purposes of this section; however, it
does not defing for all f ¢ L'(T) and we shall extend it later.
DEFINITION: A space of function®3 C L!(T) admits conjugation
if for every f € B, fis defined and belongs 1®.
If B is a homogeneous Banach space which admits conjugation,
then the mapping — f is a bounded linear operator @ The linear-
ity is evident from the definition and in order to prove the boundedness
we apply the closed graph theorem. All that we have to do is show that
the operatoyf — fis closed, that is, that ifm f,, = f andlim f,, = g in
B, theng = f. This follows from the fact that for every integgr

() = lim fu(j) = lim —isgn(j)fa(j) = —isgn(j) lim f,(j)

= —isgn(j)f(j) = f(j).
If B admits conjugation then the mapping

oo

b_lA 17
(1.6) fef=5f0+ f+zf > f()e

0
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is a well-defined, bounded linear operator®nConversely, if the map-
ping f — f" is well-defined in a spacg, then B admits conjugation

sincef = —i(2f° — f — £(0)).

Theorem. Let B be a homogeneous Banach spaceTaand assume
that for f € B and for alln, e f € B and

(1.7) le™ flls = 1f115-

Then B admits conjugation if, and only ifB admits convergence in
norm.

PROOFE By Theorem 1.1 and the foregoing remarks, it is clearly suf-
ficient to prove that the mapping — f” is well defined inB if, and
only if, the operatorss,, are uniformly bounded o®. Assume first
that there exists a constakitsuch that|S,,||” < K. Define

2n

(1.8) Sp(f) =Y f(G)e? = ™S, (e f);
0

by (1.7) we haveS°||® < K.

let f € Bande > 0; let P € B be a trigonometric polynomial
satisfying||f — P| g < ¢/2K. We have

(1.9) 15(f) — S%(P)ls = |IS5(f — P)lls <

| ™

If » andm are both greater than the degreeryfs’ (P) = S, (P) and
it follows from (1.9) that

150.(f) = Sou(f)lls < e.

The sequencgs’ (f)} is thus a Cauchy sequencelnit converges and
its limit has the Fourier seri€s° f(j)e¥*. Sof’ = 1im S’,(f) € B.

Assume conversely that— f is well defined, hence bounded, in
B. Then

SELf — fb _ ei(2n+1)t(e—i(2n+1)tf)b

which means thattS’ ||” is bounded by twice the norm ovér of the
mappingf — f°. Since, by (1.7) and (1.8)S,.|” = ||S:||?, the theo-
rem follows. <
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1.5 We shall see in chapter Ill that, far< p < oo, LP(T) admits
conjugation, hence:

Theorem. For 1 < p < o, the Fourier series of every € LP(T)
converges tqg in the L?(T) norm.

EXERCISES FOR SECTION 1

1. Show that the Lebesgue constabts= || Dx|| .1 (1), Satisfy
L, =4/n%logn + O (1).
Hint:

n—1
sin n—|— n+1/2 |sm n+ )‘
L,=~— dt = 76115 1);
/| slnt/Q | Z/ o)

j=1 n+1/2

remember that
G+=
n+1/2 2

i 1 = —.
|sin(n 4+ 1/2)t|dt T

j

nti/z

2. Show that if the sequendeV,} tends to infinity fast enough, then the
Fourier series of the function

t) = i 277K, (t)

does not converge ih*(T).

3. Let{a,} be an even sequence of positive numbers, conve0or)
and vanishing at infinity (cf. 1.4.1). Prove that the partial sums of the series
> ane'™ are bounded i (T) if, and only if, a,, logn = O (1) and the series
converges ir.' (T) if, and only if, lim a,, logn = 0.

4. Show thatB = C™(T) does not admit convergence in norm.

Hint: S, commute with derivation.

5. Letp be a continuous, concave (i.e(h) + p(h +2§) < 2p(h+§)), and
increasing function off, 1], satisfyinge(0) = 0. Denote byA,, the subspace
of C(T) consisting of the functiong for which, ash — 0, w(f, h) = O (p(h)).
Denote by, the subspace ok, consisting of the functiong for which
w(f,h) = o(p(h)) ash — 0. (w(f,h) is the modulus of continuity of; see
1.4.6.) Consider the following statements:

(@) p(h) = O (—(logh)™") ash — 0.

(b) For everyf € A\, S[f] is uniformly convergent.

(©) p(h) = o(—(logh)™") ash — 0.

(d) For everyf € A, S[f] is uniformly convergent.

Show that (a) is equivalent to (b) and that (c) is equivalent to (d).

tFor another way, see [16].
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2 CONVERGENCE AND DIVERGENCE AT A POINT

We have seen in the previous section that the Fourier series of a
continuous function need not converge uniformly. In this section we
show that it may even fail to converge pointwise, and then give two
criteria for the convergence of Fourier series at a point.

2.1 Theorem. There exists a continuous function whose Fourier se-
ries diverges at a point.

We give two proofs which are in fact one; the first is "abstract"
based on the Uniform Boundedness Principle, and is very short. The
second is a construction of a concrete example in essentially the way
one proves the Uniform Boundedness Principle.

PROOFA: The mappingg — S,(f,0) are continuous linear function-
als onC(T), We saw in the previous section that these functionals are
not uniformly bounded and consequently, by the Uniform Boundedness
theorem, there exists ghe C(T) such that{S,,(f,0)} is not bounded.
In other words, the Fourier series pfdiverges unboundedly at= 0.

<

PROOFB: As we have seen in section 1, there exists a sequence of
functionsy,, € C(T) satisfying:

(2.1) [¥nllee <1,

1 1
2.2 n\¥n, S DnllL —1 v
(2.2) S0, 0)| > 5IDallss > = logn

We putp,(t) = o,2(¥,,t) and notice thatp,, is a trigonometric
polynomial of degree? satisfying

(2.1) lenlloo <1,

and [Sn(ent) = Sn(wa.n] <2
hence

2.2) S0 (o 0)] > %logn—z

With \,, = 23" we define

(2.3) £ =32 e, Ot
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and claim thayf is a continuous function whose Fourier series diverges
att = 0. The continuity off follows immediately from the uniform
convergence of the series in (2.3); to show the divergence of the Fourier
series off at zero, we notice that,, (\;t) = >, ¥, (m)e'?; hence

n 1

1S3 (0] = 15 (3 jimj (31).0) + 3 585, 0)

1 n+1
n—1 00
1 1 1___
(2.4) =3 Sen 0+ 58,02, 0) + > =5, (0)]
1 J n n+1 J
K
> — log A\, — 3,
n
which tends tax, and the theorem follows. <

Remark: )
'~ 1 =1
f(t) = Z ﬁ@/\n()‘nt) + Z E@An (And).
1 n

The first sum is a trigonometric polynomial and so does not affect the
convergence of the Fourier series fof The second sum is periodic
with period2r /A, (since),, divides)\, for & > m); consequently the
partial sums of the Fourier series pfaire unbounded at every point of
the form2xj /), for any positive integergandm. If we want to obtain
divergence at every rational multiple &f, all that we have to do is put

A = 123",

2.2 Our first convergence criterion is really a simple Tauberian theo-
rem due to Hardy.

Theorem. Let f € L'(T) and assume
(2.5) fn)y=0 (i) as [n| — co.

ThenS,(f,t) ando,(f,t) converge for the same valuestaind to the
same limit. Also, it,(f,¢) converges uniformly on some set, so does

Sn(fa t)'

PrRooOF The condition (2.5) implies the following weaker condition
which is really all that we need: for eveey> 0 there exists & > 1
such that

(2.5") lim sup Z IF ()| < e.

T n<jI<an
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Lete > 0 and let\ > 1 be such that (2.5’) is valid. We have
[An]+1 n+1

Sn(fa t) O(An] (f7 ) On (f t)
2.6) [An] — [An] —n
' [/\’I’L} ‘ £ zyt
[/\n] -n nﬁuzﬁ)\n<l B [A] + )f( e

(where[\n] denotes the integral part af). By (2.5%) there exists an
ng such that ifn. > ng, the last term in (2.6) is bounded bylf o,,(f, %)
converge to a limitr(f, ¢y), it follows from (2.6) that fom, sufficiently
large,n > ny implies

(27) |Sn(f7t0) _U(f7t0)| < 257
in other words,

The choice ofn; depends only on the rate of convergence gff, to)
toa(f,to) so that if this convergence is uniform on some set, sois (2.8).
<

Corollary. Let f be of bounded variation of; then the partial sums

S, (f.t) converge ta, (f(t+0)+ f(t—0)) and in particular tof (t) at ev-

ery point of continuity. The convergence is uniform on closed intervals
of continuity off.

PrROOF By Fejér’s theorem the foregoing holds true for(f,¢), and
the statement follows from the fact that for functions of bounded varia-
tion, (2.5) is valid (cf. Theorem 1.4.5). <

2.3 Lemma. Letf € L(T) and assumg’ | |Z2 |dt < co. Then

lim S, (f,0) =

PrROOF,

S (£,0) :i / f(ti sin(n + 1/2)tdt =

f(t)cost/2 "
tdt ntdt
/f cosntdt+ 5 / sint/2

(2.9)

By our assumptlorM € L(T); hence, by the Riemann-Lebesgue
lemma, all the mtegrals in (2.9) tend to zero. <
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2.4 Theorem Erinciple of localization) Let f € L'(T) and as-
sume thatf vanishes in an open intervdl ThensS,(f,t) converge to
zero fort € I, and the convergence is uniform on closed subsets of

PROOF. The convergence to zero at every I is an immediate conse-
quence of Lemma 2.3. Ify is a closed subinterval df, the functions

RO w, to € Iy, form a compact family in.*(T),

sint/2
hence by Remark 1.2.8, the integrals in (2.9) correspondirfgtte ¢ ),
to € Iy, tend to zero uniformly. <

The principle of localization is often stated as follovet f, g € L(T)
and assume that(t) = g(¢) in some neighborhood of a poifit. Then
the Fourier series of andg at ¢, are either both convergent and to the
same limit or both divergent and in the same manner.

2.5 Another immediate application of Lemma 2.3 yields

Theorem (Dini’s test). Let f € L}(T). If

/1’f(t+t01—f(to) df < o
1

then
S’n(fv tO) - f(to).

EXERCISES FOR SECTION 2

1. Show that if a sequence of continuous functions on some interval is
unbounded on a dense subset of the interval, then it is bounded only on a set of
the first category. Use that to show that the Fourier seriggdéfined in (2.3))
converges only on a set of the first category.

2. Show that for every given (countable) sequefice there exists a con-
tinuous function whose Fourier series diverges at evigry

3. Letg be the2r-periodic function defined by (0) = 0, g(¢t) = t — = for
0<t<2m.

(a) Discuss the convergence of the Fourier serigs of

(b) Show that S, (g,t)| < = + 2 for all n and.

(c) Putp, () = (m+2) e S, (g,t); show that|p, ||« < 1and|S,(pn,0)| >
K log n for some constank > 0.

(d) Show that foiit| < 7/2, some constark’,, and alln andm,

K
[Sm (g, 8)] < |T|1
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(e) Show that for a proper choice of the integersand )\;, the Fourier
series of the continuous function

oo

£ =3 53¢, 0

Jj=1

diverges fort = 0 and converges for all otherc T.

*3 SETS OF DIVERGENCE
3.1 We consider a homogeneous Banach spgaoca T.

DEFINITION: A setE C T is aset of divergence foB if there exists
an f € B whose Fourier series diverges at every poinkof

3.2 DEFINITION: Forf € L'(T) we put

S:L(f7 t) :Sugn§n|sm,(f7 t)‘

(3.1)
S*(fvt) :Supn‘Sn(f’ t)|

Theorem. E'is a set of divergence fas if, and only if, there exists an
elementf € B such that

(3.2) S*(f,t) =00 for teE.

The theorem is an easy consequence of the following:

Lemma. Letg € B. There exist an elemeliitc B, and a positive even
sequencg;} such thatim;_. ., 2; = co monotonically, and such that

£() = Q;4(j) for all j € Z.

PROOF OF THE LEMMA Let \(n) be such thafioy,)(g9) — gllp < 27"
We write f = g+ > (g — o, (9)). The series converges in norm; hence
f € B. Also f(j) = Q,4(j) whereQ; =1+ > min(1, |j|/(A\, + 1)).

<

PROOF OF THE THEOREM Condition (3.2) is clearly sufficient for the
divergence oy f(j)e/* for all t € E. Assume, on the other hand, that
for someg € B, Y g(j)e”t diverges at every point of. Let f € B
and{Q,} be the function and the sequence correspondingly the
lemma. We claim that (3.2) holds fgt
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This follows from: forn > m,

n

Sn(g:t) = Smlg,t) = > (S;(f,t) = Sj-1(f, 1)

m—+1
(3.3) =Sn(f, )0, = S (£, )24
n—1
+ Z j+1 S;i(f,1),
m—+1

hence

‘Sn(.ﬂt) - Sm(fat)‘ < 25*(fa ) m+1
It follows that if S*(f,t) < oo, the Fourier series of converges and
t¢ E. <

Remark: Let w,,, n > 1, be positive numbers such that = O (Q,),

and) 7 (Q; ' — Q7 )w; < oo. Then, forallt € E, S;(f,t) # o(w;).

This follows immediately from (3.3).

3.3 For the sake of simplicity we assume throughout the rest of this
section that

(3.4) IffeBandnecZ thene™ fec Band ||e™ f||g = | fls-

Lemma. Assumg3.4), then E is a set of divergence foB if, and
only if, there exists a sequence of trigonometric polynomials B
such that

(35 Y|Pz <co and sups*(P;,t)=oco on E.

PROOF Assume the existence of a sequefig} satisfying (3.5). De-
note bym; the degree oP; and letv; be integers satisfying

vj > Vi1 +mj_1+m;.
Putf(t) = > e™i*P;(t). Forn < m; we have
Sun(frt) = Su;—n-1(f,1) = "' S, (Py, 1);
hencey" f(j)e't diverges onk.

Conversely, assume thatis a set of divergence fas. By Remark
3.2 there exists a monotone sequeage— oo and a functionf € B
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such thats,, (f,t)| > w, infinitely often for everyt € E. We now pick
a sequence of intege{s,} such that

(3.6) If = ox (Hlls <277
and then integerg; such that
(3.7) Wy, > 28uUp S*(oy,(f),1)

and writeP; = V.., * (f — ox,(f)) where as usua¥,, denotes de la
Vallée Poussin’s kernel (see 1.2.13). It follows immediately from (3.6)
that)"||P;||s < co. If t € E andn is an integer such thas,, (f,t)| > wy,,
then for someg, p; <n < p;41 and

Sp(Pj,t) = Sp(f — OX; (f).t) = Sn(fit) — Sn(gx\j (f):1).
Hence, by (3.7)|S,.(P;, t)| > jwn, and (3.5) follows. <

Theorem. Assume (3.4). LeE;, j = 1,2,..., be sets of divergence
for B. ThenE = UE; is a set of divergence fas.

PROOF. Let{P?} be the sequence of polynomials correspondingj;to
Omitting a finite number of terms for eagldoes not change (3.5), but
permits us to assumg, | P} || < oo which shows, by the lemma, that
E is a set of divergence fas. <

3.4 We turn now to examine the sets of divergenceBot C(T).

Lemma. LetE be a union of a finite number of intervals @ndenote
the measure of by §. There exists a trigonometric polynomiakuch
that

1 1
(o, t) >—1 (—) OnE
Sy )>27T 8 30
[olloo < 1.

ProoOF It will be convenient to identifyl with the unit circumference
{z:]z] = 1}. LetI be a (small) interval off, I = {e®|t —to| <e:};
the functiom); = (1 + ¢ — ze~*°)~! has a positive real part throughout
the unit disc, its real part is larger thap3e on I, and its value at the
origin (z = 0) is (1 + &) ~1. We now writeEE c U I, thel; being small
intervals of equal length: such thatVe < §, and consider the function

9 = 123, ()

(3.8)
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1 has the following properties:

R(p(z)) >0 for |z] <1
(3.9) $(0) =1

The functionlog vy which takes the value zero at= 0 is holomorphic
in a neighborhood of:: |z| < 1} and has the properties

[S(log(z))| < m onT

(3.10) .
[log 1 (z)| > log(39) OnkE

Since the Taylor series &g 1) converges uniformly off, we can take
a partial sumd(z) = Zi” a,z" of that series such that (3.10) is valid
for @ in place oflog+. We can now put

™

1 1 M M
<p(t) = 7e—th%<©(eit)) — i‘e—lﬂft (Z aneznt _ Zdne—znt)
™
1 1

and notice that
1 3
|5M(997t)|:%\‘1’(€ 9. <

Theorem. Every set of measure zero is a set of divergence{ay.

PROOFE If F is a set of measure zero, it can be covered by a union
Ul,, the I, being intervals of lengthr,,| such thaty |I,,| < 1 and such
that everyt € E belongs to infinitely many,’s. Grouping finite sets

of intervals we can coverF infinitely often by UE,, such that every
E, is a finite union of intervals and such thdt,| <—2". Lety, be

a polynomial satisfying (3.8) foF = E, and putP, = n=2¢, We
clearly have}||P, ||« < oo andS*(P,,t) > 2"~!/2mn? on E,,. Since
everyt € E belongs to infinitely manyz,,’s, our theorem follows from
Lemma 3.3. <

3.5 Theorem. Let B be a homogeneous Banach spacelosatisfy-
ing the condition(3.4). AssumeB > C(T); then eitherT is a set of
divergence forB or the sets of divergence fd are precisely the sets
of measure zero.
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PROOFE By Theorem 3.4 it is clear that every set of measure zero is a
set of divergence foB. All that we have to show in order to complete
the proof is that, if some set of positive measure is a set of divergence
for B, thenT is a set of divergence fas.

Assume that’ is a set of divergence of positive measure. &a T
denote byE, the translate of by «; F, is clearly a set of divergence
for B. Let {a,,} be the sequence of all rational multiples2afand put
E = UE,. By Theorem 3.2 is a set of divergence, and we claim that
T\ E is a set of measure zero. In order to prove that, we denote by
the indicator function of and notice that

x(t —a) = x(¥) for all t anda,.

This means
Do R(eT et =Y R ()
J j

or

X(@e " =x0)  (@lay)
If 7 # 0, thisimpliesx(j) = 0; hencex(¢) =constant almost everywhere
and, sincey is an indicator function, this implies that the measuré&of
is either zero oer. SinceE > E, E is almost all ofT.
Now T \ E is a set of divergence (being of measure zero) Arisla
set of divergence, hendgis a set of divergence. <

3.6 Thus, for spaces satisfying the conditions of Theorem 3.5, and
in particular forB = L?(T), 1 < p < oo, Or B = C(T), either there
exists a functionf € B whose Fourier series diverges everywhere, or
the Fourier series of everfy e B converges almost everywhere. In the
caseB = L!(T) it was shown by Kolmogorov that the first possibility
holds. The case a8 = L?(T) was settled only recently by L. Carleson
[4], who proved the famous "Lusin conjecture”; namely that the Fourier
series of functions ir.(T) converge almost everywhere. This result
was extended by Hunt [12] to all’(T) with p > 1. The proof of these
results is still rather complicated and we do not include it. We finish
this section with Kolmogorov’s theorem.

Theorem. There exists a Fourier series diverging everywhere.

PROOF For arbitraryx > 0 we shall describe a positive measuyg of
total mass one having the property that for almost alll

(3.11) 5™ (ps t) = SUR,[Sn (i, 1)] > £
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Assume for the moment that sugh exist; it follows from (3.11) that
there exists an integey¥,, and a sef,. of (normalized Lebesgue) mea-
sure greater thah— 1/, such that for. € E,

(3.12) SUR -y, |Sn (pie, t)] > &

If we write nowy,, = pu, * V., (Vy,_ being de la Vallée Poussin’s
kernel), theny, is a trigonometric polynomialje,|/.:(ry < 3 and

S*(pr,t) > Supn<NN|Sn(90mt)| = Supn<NK|Sn(Nmt)| > K

on E,.. Applying Lemma 3.3 withP?; = j~2¢,; we obtain that the set
E = Ny, Un<; Eys is a set of divergence fat! (T). SinceE is almost
all T, Kolmogorov’s theorem would follow from Theorem 3.5.

The description of the measurgsis very simple; however, for the
proof that (3.11) holds for almost alke T, we shall need the following
very important theorem of Kronecker (see VI.9).

Theorem (Kronecker). Let {a:j}j-\’zl, N > 1, be real numbers such
that z1,...,zy, 7 are linearly independent over the field of rational
numbers. Let > 0 andag,...,ay be real numbers, then there exists

an integern such that
lein®i — eii| < ¢ j=1,...,N.

We construct now the measurgs as follows: letN be an integer,
letzy,...,zy be real numbers such that, . .., zy, 7 are linearly inde-
pendent over the rationals and such that- (27 /N)| < 1/N?, and let
p=1/N3 Oa; -

Fort¢ € T we have

For almost allt € T, the numbersg — z1,...,t — zy, 7 are linearly
independent over the rationals. By Kronecker’s theorem there exist, for
each such, integers: such that

) t—x;
eint3)(t—z;) _ Z’sgn(sin 256] )’ < = j=1,...,N:
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hence

: +l t — . 1 t— il

sm(.n 1 5)(t—x;) o Ngn t=% for all ;.

sin 5 (t — x;) 2
It follows that
N
1 _t—xy Tt

(3.13) Sn(p,t) > ﬁ; ST

and since the;’s are so close to the roots of unity of ordat, the
sum in (3.13) is bounded below l:é/ff/N|sint/2|—1dt > log N > &,
provided we takeV large enough. <

EXERCISE FOR SECTION 3

1. Let B be a homogeneous Banach spac&o8how that for every € B
there exisyy € B andh € L'(T) such thatf = g * h.
Hint: Use Lemma 3.2 and Theorem 1.4.1.



Chapter Il

The Conjugate Function and Functions
Analytic in the Unit Disc

We defined the conjugate function for some summable functions by
means of their conjugate Fourier series. Our first purpose in this chap-
ter is to extend the notion to all summable functions and to study the
basic properties of the conjugate function for various classes of func-
tions. This is done mainly in the first two sections. In section 1 we use
the "complex variable" approach to define the conjugate function and
obtain some basic results about the distribution functions of conjugates
to functions belonging to various classes. In section 2 we introduce
the Hardy-Littlewood maximal functions and use them to obtain re-
sults about the so-called maximal conjugate function. We show that the
conjugate function can also be defined by a singular integral and use
this to obtain some of its local properties. In section 3 we discuss the
Hardy spacesgi?. As further reading we mention [11].

1 THE CONJUGATE FUNCTION

1.1 We identify T with the unit circumferencéz:z = ¢} in the
complex plane. The unit disgz:|z| < 1} is denoted byD and the
closed unit disc{z:|z| < 1}, by D. For f € L'(T) we denote by
f(rett),r < 1, thePoisson integrabf f,

(1.1) Frey = (P(r,) « (1) = S vl fn)ei.

In chapter | we have consider®dr, -) = f as a family of functions
on T, depending on the parameter0 < r < 1. The main idea in this
section is to consider it as a function of the complex variablere’t
in D.

71
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The functionsr”le’™, —c0 < n < oo, are harmonic inD, and,
since the series in (1.1) converges uniformly on compact subsets of
D, it follows that f(re') is harmonic inD. We saw in 1.3.3 that at
every pointt where f is the derivative of its integral (hence almost
everywhere)f (ei') = lim,_; f(re®). Actually it is not very hard to see
that for almost alk, f(z) — f(e*) asz — e nontangentially (i.e., if
z — €', remaining in a sector of the forf : |arg(1 — (e~ )| < a < 7}.

(See [28], Vol. 1, p. 101.)
The harmonic conjugate to (1.1) is the function

1.2)  fre")=—i)_sgn(n)(n)r™ f(n)e™ = (Q(r,) * £)(1)

where

, —~ nls int 2rsint
(1.2) Q(r,t) = —z;osgn(n)(n)r‘ heint = S Ep—
is the harmonic conjugate of Poisson’s kerRél, t) (normalized by the
conditionQ(0,¢) = sgn(0) = 0). We shall show that(re'*) has a radial
limit for almost allt. Denoting this radial limit byf (¢’*) we shall show
that if f has a conjugate in the sense of section Il.1, then this conjugate
is f(e'). We may therefore calf the conjugate function of.

1.2 Lemma. Every function harmonic and boundediinis the Pois-
son integral of some bounded functiondn

PROOF Let F be harmonic and bounded in. Letr, 7 1 and write
fn(e®) = F(r,e't). The sequencgf, } is a bounded sequenceliff (T);
hence for some sequeneg — oo, f,, converges in the weak-star
topology (L°°(T) being the dual of.}(T)) to some functiorF'(¢*). Let
pe'™ € D, then
o [ PGt~ ) F(e )it :jli)r{.lo%/P(p,t—T)fnj(e”)dt
= lim F(r,, pe'™) = F(pe').
oo g <

1.3 Lemma. Assumef € L'(T) and letf(re') be defined by1.2).
Then, for almost alt, f(re®) tends to a limit as — 1.

PROOF. Since the mapping — f(re') is clearly linear and since any
fin L}(T) can be written ag; — f> + ifs — ifs With f; > 0in L(T),
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there is no loss of generality in assumifig- 0. The functionF'(z) =

e~ f(?)=f(2) is holomorphic (hence harmonic) in. Since the Poisson
integral of a nonnegative function is nonnegatj(e) > 0, and since
f is real valued (being the harmonic conjugate of the real vajf)ed
it follows that|F(z)|] < 1in D. By Lemma 1.2 (and 1.3.3F has a
radial limit of moduluse=/(*) almost everywhere. Sincg ¢ L'(T),
f(e*) < oo, hencdim,_.; F(re') # 0 almost everywhere; and at every
point whereF (¢'t) exists and is nonzerg(re™) has a finite radial limit.

<

1.4 DeFINITION: The conjugate functioof a functionf € L!(T)
is the functionf(e’*) = lim,_; f(re®).

If the series conjugate to the Fourier serieg @ the Fourier series
of someg e L'(T), then the Poisson integral gfis clearly f(re'),
which converges radially tg(e®) for almost allt (theorem 1.3.3). It
follows that in this cas¢ = g and our new definition of the conjugate
function extends that of 11.1.

We have seen in 1.4.2 thaf >~ , Cﬁ?ff is a Fourier series while

the conjugate serie§, >, Slglg’}f is not. Since>_>7, Sllong% converges

everywhere, its sum is the conjugate functionfof > °>7 , Clgsg’;f and

we can check thaf" >, Sﬁ)n—’";f ¢ L*(T). Thus the conjugate function
of a summable function need not be summable.

Remark: At this point we cannot deduce that ”, %{Cﬁf ¢ LY(T)
from the mere fact that the series is not a Fourier series. However, we
shall prove in section 3 that if € L'(T), for somef e L'(T), then
f(reit) is the Poisson integral of. From that we can deduce that if

f € L}(T) then its Fourier series i§[f] so that ifS[f] is not a Fourier
series therf ¢ L'(T).

The difficulty in asserting immediately thgtre®) is the Poisson
integral of f stems from the fact that we have only established point-
wise convergence almost everywheref¢fe’®) to f(ei) and this type
of convergence is not sufficient to imply convergence of integrals.

1.5 We denote the (Lebesgue) measure of a measurabieséat by
|E].

DEFINITION: The distribution functiorof a measurable, real-valued
function f onT is the function

m(z) =my(z) = [{t: f(t) <z}|, —o0o<z<o00.
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Distribution functions are clearly continuous to the right and mono-
tone, increasing from zero at= —oo t0 2r asz — oo. The basic
property of distribution functions is: for every continuous functi®n
onR

(1.3) [ Puana = [ Pajam(a).

DEFINITION: A measurable functioffiis of weakL? type,0 < p < oo,
if there exists a constant such that for allh > 0

(1.9) mys(A) > 27— CA7P

(or equivalently|{t:|f(t)| > A} < CA7P).
Every f € LP(T) is clearly of weak? type. In fact, for allx > 0

1 o0 1 oo
p = — pdlll > — pd
Il =57 | @Pdmg (@) 2 27rA aPdm ()
> 1 AP dm, g (x) = al (2m —my (X))
= £ £
2w A 2w

hence (1.4) is satisfied with = 2x|| f||,. It is equally clear that there
are functions of weall” type which are not inL?(T); |sint|~'/? is a
simple example.

Lemma. If f is of weakL? type thenf € L¥ (T) for everyp’ < p.
PROOF.
/|f‘pldt = /0 xp,dmm(w) S mm(l) +/1 mpdmm(x) =

=my(1) — [27 (27 — my7(2))]° + /1 (27 — myy (z))d(z?")

§27T—|—C’/ zfpd(xp/):2ﬂ'+0/ 2? P < oo.
1 1

1.6 Theorem.If f ¢ L'(T) thenf is of weakL' type.

PROOF. We assume first thgt > 0; also, we normaliz¢ by assuming
/Il = 1. We want to evaluate the measure of the set of points where

|f| > A\. The functionHy(z) = 1+ Larg 22 =1 + %%(bg Z—“) is

Z+1A Z+1A
clearly harmonic and nonnegative in the half plate) > 0, and its
level lines are circular arcs passing through the pointnd—:\. The



I1l. THE CONJUGATEFUNCTION 75
level line H,(z) = 1 is the half circlez = A\¢’?, —7/2 < ¥ < 7/2, hence
if [z| > AthenH,(z) > 1. Also itis clear that

H)(1) =1— (27) arctan A < 2/7mA.

Now H,(f(z) 4+ if(z)) is a well-defined positive harmonic function in
D, hence

1.5) % /HA(f(re”) +if(re™))dt = Hy(f(0)) = H\(1) < —

and remembering thaf, (f +if) > L if |f +if] > A, we obtain,

2 1F(re™)] > A} < 5

Since the mapping — f is linear it is clear that if we omit the normal-
ization || f||,» = 1 we obtain, letting- — 1, that forf > 0in L'(T)

[{t:[F(e™)] > A} < 8|l fllaA
Every f € L'(T) can be written ag = f, — fo +ifs —ifs wheref; > 0
and||fj|lzr < ||fllz:- We havef = f, — fo +ifs —if, and consequently
4
{t:[F(e™)] > A} ¢ [J{tE:1f5 )] > A/4}
=1

It follows that forc = 128 and everyf € L!(T)

(1.6) {1 (re')l > A} < el| fll A <
Corollary. If f € L}(T) thenf € L*(T) for all a < 1.
PrROOF Lemma 1.5. <

1.7 The method of proof of Theorem 1.6 can be used for bounded
functions as well.

Theorem. If f is real valued andf| < 1, then for0 < o < 7/2

(1.7) i/eav"(e”ndtg 2

2 COS «
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PROOF PutF(z) = f(z) —if(z). Sincecos(af(z)) > cos o, we have
R(e* ) > cosar|e?F*)| = cosozeo‘f(z)7

and sincel [R(e*Fre))dt = R(eF(©)) = cosaf(0) < 1, it follows
that

i/eaf(mu)dﬁ <
21

Similarly, ;/e—‘lf(*f«“)dt < b
™

cos o cosa

Adding and letting: — 1 we obtain (1.7). <

Corollary. If |f| <1, then

(1.8) m (%) > 27 (1 Coj ﬂe*A)

PROOF. Write f = fi +if, where fi, f> are real valued. We have
f = f1+if, and consequentlyf(¢*)| > X happens only if either

[file)] >272x or  |fa(e)] > 273
Now, by (1.7) witha = /2,

4T

€ ’
cos V2

and (1.8) follows. <

{t:|f;] > 2732} <

j=1,2

x1.8 We shall see in chapter VI that a finite Borel measur&dsmcom-
pletely determined by its Fourier-Stieltjes transform (just as measures
onT are determined by their Fourier-Stieltjes coefficients). This means
that two distribution functionan;(z) andms(z), of real-valued func-
tions onT are equal if[ e®®dm;(z) = [e®“dmy(z) for all ¢ € R.
Using this remark we shall show now thatfifis the indicator func-
tion of some set/ C T, thenm () depends only on the measurelof
and not on the particular structure @f Thus we can compute ;())
explicitly by replacingU by an interval of the same measure.

Theorem. LetU c T be a set of measur. Let f be the indicator
function of U and lety, be the indicator function of—«, «). Write
m,(A) = mg, (A). Thenm(A) = mq(A).
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PrROOF. Apply Cauchy’s formula onr = r¢® to the analytic functions
F&(z) = £+ () letr — 1 and remember that=0onT \ U and
f =1onU,; this gives

(2.9) / el gy + ef/ eI gt = or e (0) = 2met/™,
T\U U

Rewriting (1.9) for—¢ instead of and then taking complex conjugates,
we obtain

(1.10) / eiff(e“)dwe—f/ ) gt — ae—taln,
T\U U

From (1.9) and (1.10) we obtain

sinh &
s

i€fe) gt — 9
/Ue i sinh &

o Fit inhé(1— ¢
eI g = 27r8m§(7”),
T\U Slnhf

(1.11)

We write nowm ;(\) = n;(A) + na(\) where

ni(\) = [UN{t: f(e") <A}

and .
ny(A) = [(T\U) N {t: f(e') < A}
and we can rewrite (1.11) as

. inh &2
i€o g _y sinh =
/e (o) =2m2 %

, sinh¢(1— £
/elfxdng(x) = 271'51(1}15”).

We see thah, (z) andn;(z) are uniquely determined hyand so they
are the same fof andy, We thus obtain that and;”@ have the same
distribution of values not only off but also oriJ for f and(—«, «) for

Xa- A |

(1.12)

The Fourier series of, is

oo

. oo .
sinna o sin na
E et = =429 E cos nt

™ T — ™
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, =, . sinna . cosn(t —a) —cosn(t + a)
Xa(re') =2 Z r" sinnt = Z r’ ’
1

™ T ™
Io/e=1_ . <1
:7%( S ongin(t—a) ~.n 2n(t+a))
= ; nT € 21: nr e
1 reit _ eia
=—log|— —
T rett — et
and finally
, 1 elt — et 1 1 — cos(t — a)
1.13 c(eit) = Llog| T | 2 L Lotz o)
( ) Xa(e™) p og it _ o—ia o Ogl—cos(t+a)

It follows from (1.13) that forA > 1 the set{t:x.(e!*) > A} is an
interval containing = —« and contained if—a — 1, —a + (2) where

—mT hence

B _ B _,
20+ 1 2a— P
(1.14) m,(\) > 27 — 5ae ™.

Corollary. Let f be the indicator function of a sét of measurea
onT. Then, for\ > 1

(1.15) [{t:[f(e™)] > A}| < 10ae™™.

1.9 Returning taL!(T), we use Theorem 1.6 and the fact that conjuga-
tion is an operator of norm 1 ok (T) to obtain the following theorem.
The method applies in a general context which we discuss briefly in the
following subsection.

Theorem. If T flog™|f| € LY(T), thenf € L(T).

PROOF. We shall use the fact that fgre L?(T) we haveg € L?(T) and
lgllzz < llgllzz- This is an immediate corollary of Theorem 1.5.5. As
we have seen in 1.5, this implies

(1.16) my5(A) > 2m(1 — |lg[[7A7).

We have to prove thaf™ Adm, 7 (A) < oo which is the same thing as
flR Adm, 5 (A) = O (1) asR — oo. Integrating by parts and remembering

flog™ = = suplog z, 0) for = > 0.
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(1.6) we see that the theorem is equivalent to
R
(2.17) / (2m — mm()\))d)\ =0(1) asR— .
1

In order to estimatevr—mm (\) we write f = g+ h, whereg = f when
|f| < Aandh = f when|f| > \. We havef = j + h and consequently

(1.18) {t:1F()] > A} {t:]g(t)] > A2} U {t:|h(t)] > N/2}.
By (1.16)
A
(L.19) {150 > A/2}] < 87A2g|[% = sm—2/o w2dm ;
and by (1.6)
t: R(6)] > A/2}] < 26N |[hl 1 = 2eA A wdm 7

for z > A, (logz)z > (log )2 and we obtain

- 2c >
(1.20) Ht:1h(t)| > N/2}| < /\\/@//\ zy/log zdm, 7

By (1.18), (1.19), and (1.20) we have

A [
2c
2m —m, 5 (A §87T/\_2/ 22dm, ; +7/ z+/log xdm, 7.
\f\() 0 P17 Xlog X /1

Thus (1.17), and hence the theorem, will follow if we show that as

R — o0,
/1R A2<K #2dmy ) A\ = O (1)
/1R A\/llo@(/;O”:\/@dmu?)dA =0(1)

The information that we have concerniﬂgﬂ is that it is a monotonic
function tending t@r at infinity and such that

(1.21)

(1.22) / zlog zdm, 5 < oo
1
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In order to derive (1.21) from (1.22) we apply Fubini’s theorem. The
domain for the first integral is the trapezoid

{(z,\):1< A< R, 0<z<A}

and integrating first with respect fowe obtain

R A 1 R
/1 /\‘2(/0 #dm 7 )dA :/O (1- 5)eim +/1 (5 - & )etdmy;
<27 + /ledm”z =0(1)
The domain for the second integral is the strip
{(z,\):1 <A< R, A<z}

Integrating first with respect td we obtain

R 1 oo
R 0o
2/ zlog zdm, —|—2\/logR/ zy/log zdm, 7 = O (1)
1 R
and the proof is complete. <

1.10 When the underlying measure space is infinite, e.g. theRine
rather tharil, we can usei({z: f(z)} > A) instead of the distribution
function. For postive integrable functions it gives the complete infor-
mation about the distribution gf.

A slightly coarser gauge, which is often more transparent and easier
than the distribution function to work with, even when the underlying
measure is finite, is the “lumping” @fm/, defined (for arbitrary mea-
sure space¢X, B, u}, finite or infinite), as follows:

DEFINITION: For a measurable real-valugdindn € Z set

m,, = m,(f) = p({z: 2" <|f(2)| <2"}).

Observe that: aj is of weak typep if, and only if, m,,(f) = O (27"P),
b) f € Lrifand only if >>%__ 2"m,(f) < oo, in fact

(1.23) A2, < 2Pmy,(f) < 27| fIIF,-
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1.11 What we have done in 1.9 isterpolate using what we know
about the properties of an operator (the conjugation operator f)

on L'(T) and onL?(T), to prove that it maps the intermediate space
Llog L(T) into L(T).

The same method can be used to prove M. Riesz’ theorem below.
We use the parametets,, rather than the distribution functions, and
the reader should compare tfiest proof below to that of 1.9.

Riesz’ original proof is given asecond proof

Theorem (M. Riesz).For 1 < p < oo, the mappingf — f is a
bounded linear operator oA?(T).

We have mentioned already that for= 2 the theorem is obvious
(from Theorem 1.5.5). From Parseval’s formula (1.7.1) it follows that
if p andq are conjugate exponents, the mappirigs: f in L?(T) and
in L(T) are, except for a sign, each other’s adjoints and consequently
if one is bounded, so is the other and by the same bound. Thus it is
enough to prove the theorem fok p < 2.

FIRST PROOFE. Assumel < p < 2. We need to show that there exists a
constantC, such that iff € L?(T) thenf ¢ L?(T), and| |, < C,||fll,-

Since| flI5, < 3% 2""m, (f), we estimatem,,(f). Givenn, we
write f = fo, + f1,,» Wherefo,(t) = f(t) if |f(t)] > 2" (and is zero
elsewhere) and, ,,(t) = f(t) if |f(¢)] < 2", (and is zero elsewhere).
Sincel < p < 2, fo., € L' andf, ,, € L2. We have

124)  [foulle <D 2'ma(), Ifrallze <3022 ma(f).
n+1

As f = fon + f1n, the inequality f(¢)| > 2" implies at least one of
the inequlitieg fo.,(t)| > 2"~ or | f1,,(¢)| > 2", so that

(1.25) my1(F) < p{t: [ fon(®)] > 27711 + p({t: | fra(t)] > 277 1))
By 1.6 we have

(1.26)  p{t: o)) > 27y < 0l < g Sy

n+1

and since conjugation has norm 1 bH(T),

(L27) e fun(t) > 2 y) < Winllie o poon g™y (o

22n—2
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It follows that

m,(f) < 27" i m;(f)2 + 27" i m;(f)2%

and [|f|F, <> 2" m,(f)

<cs Z arn (2*” i m;(f)27 427" z”: mj(f)22j)

n+1

—cs (Z 2D D (F)27 4 37 2(p—2)<n—j)mj(f)2jp)

n<g nzj

the sums with respect to bothand;j. Summing first with respect to
produces constants which depend onlyp@and we have

I£1%, < e Y m;(£)277 < C)lIfI5,
J

<

SECOND PROOF. Let f € LP(T), f > 0. Let f(re'") be its Poisson inte-
gral, f(re') the harmonic conjugate, arfd(re’) = f(re) + if (re').
We may clearly assume thgtdoes not vanish identically, and, since
f >0, it follows that f(re®) > 0, henceH (re't) # 0 in D. Let G(re®)

be the branch ofH(re'))? which is real atr = 0. Let~ be a real
number satisfying

(1.28) v <

For0 < r < 1 we have
—/|G H\dt = —/|G |dt+— |G(7‘e )| dt,

where [} is taken over the set wheferg(H(z))| < v and [, is taken
over the complementary set (defined by the condition |arg(H (z))|
< m/2, wherez = re'). In [, we have

[H(2)] < f(2)(cos7) 7",

hence

(1.29) 5 [1Genlar < os) A1
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and, in particular,

(1.30) %/?RG(re”)dt < (cosy) 7P| fI1%
On the other hand, we have ji

(1.31) |G(2)| < R(G(2))(cospy) ™!

(both factors being negative). Now, since

o [ RGlreat =GO = (FO).

it follows from (1.30) that

1

o H\?R(G(TG”))Idt < (F(0))? + (cos M) P f 17y

and this, combined with (1.31) and (1.29), implies

1 i
(1.32) or [I6tedt < eI,

wherec, is a constant depending only pn
Since|[f(re")[P < [H(re")|P = |G(re™)], it follows from (1.32),
lettingr — 1, thatf € LP(T) and

I lle < /(1 fllzo-

The theorem now follows from the cage> 0 and the linearity of the
mappingf — f. <

EXERCISES FOR SECTION 1

1. Show that there exists a constansuch that for all, A and f € C(T),
such that| f|l- <1,
[{t:Su(f,t) > A} < Ae™?

2. Show that forl < p < oo there exist constantd, such that for alk, A
andf € LP(T), such that|f||.» <1

A
[{t:8n(£,1) > A} < -
3. Prove that iff € L?(T), 1 < p < oo, then

tim | f(re’) — (") |r = 0.
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4. Prove that iff € LP(T), g € LY(T), wherep ' + ¢ ' =1,1 < p < o
theny"*  f(n)g(n) converges.

5. Show that Theorem 1.7 is sharp in the sense that there exist real valued
functionsf such thatf| < 1 and [ e™/1/2dt = oo.
Hint: Takef = 2x, — 1. )

6. Prove that iff € C(T) thene’ € L*(T) no matter how largé f|| - is.

Hint: Write f = P + f, whereP is a polynomial and f1|| < 1
it i it (%1

e —e€ _ e —e€ i i
7. Show thatlog W‘ = %(log(eit — em)) is a constant multi-
ple of the conjugate function of the indicator function(ef 3) by examining
it (16
(1 %))_
\y( Og(e” — e’

8. Letl < p < co. Show that there exists a constaptsuch that forf in
L?(T), andX > 0,

[{t: 17 ()] > A} < epllf A"

Remark: This is an immediate consequence of 1.11; try, however, to prove it
by using 1.8.

Hint: Assume thatf is real valued. Denot&, = {t: f(e'') > A} andV) =

{t: f(e") < —)}. Denote byg, the indicator function of/,; deduce from
Parseval’s formula that (with = p/(p — 1))

AU < / F(e)gr(eydt = — / G ()t < 2 w930
and use (1.15) to evaluafi@, || .«. Repeat foV,.

2 THE MAXIMAL FUNCTION OF HARDY AND LITTLEWOOD

2.1 DEFINITION: The maximal functiof a functionf € L*(T) is

the function
1 t+h
ﬁ/t . f(T)dT’.

If we allow the value+oo thenMy(t) is well defined for alk € T. We
shall see presently that,(t) is finite for almost alk € T and that\/
is of weakL!-type. This will follow from the following simple

(2.1) My (t) = SURy p<x

Lemma (Vitali). From any familyQ? = {I,,} of intervals orl one can
extract a sequencg,, } of pairwise disjoint intervals, such that

1
> 7l Ur

(2.2) ‘ f_j I,
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PROOF. Denotea; = sup,q|I| and letl; be any interval of satisfy-
ing |I1] > 3ay; let Q, be the subfamily of all the intervals i which
do not intersecf;. Denotea, = sup, || and letl; € Q, be such
that | 15| > %ag. We continue by induction; having picked, ..., Iy
we consider the family2, ., of the intervals of) which intersect none
of I;,j < k, and pickI1 € Q441 such thatil,, | > 3ar1 where
ak+1 = SUPcq, ., [I|. We claim that the sequenge, } so obtained sat-
isfies (2.2). In fact, denoting by, the interval of lengthi|7,,| of which
I,, is the center part, we claim thgtJ,, > | I, which clearly implies
(2.2).

We notice first that, — 0 and consequentlyQ, = 0. ForI € Q let
k denote the first index such thatZ Q,; thenI N I,_; # @ and, since
[Ty—1] > %|I|, I C J,_; and the lemma is proved. <

2.2 Theorem. For f € L'(T), My is of weakL! type.

PROOF. SinceM;(t) < My (t), we may assume thgt> 0. Let A > 0;
if M,(t) > XletI, be an interval centered asuch that

(2.3) F(t)dt > AI,).
Iy

Thus we cover the sét: M,(¢) > A} by a family of intervals{I;}. Let
{I,,} be a pairwise disjoint subsequence{f} satisfying (2.2). Then,
by (2.2) and (2.3),

(2.4) [{t: My(t) > M < [UL| < 4UL| < 5 fop, f(OdE < 5 [y f(t)dt
<

2.3 The maximal function of a bounded function is clearly bounded
by the same bound so that the map— M; has norm 1 inL>(T).
The map is subliniearrather then linear, but we can still interpolate
betweenL!(T) andL>(T).

Lemma. Let f € L'(T) and letm(\) = m,; () be the distribution
function of|f|. Then

o0

(2.5) [{:05(0) > 2 < 1 [ vm(y),

A

tAn operators is sublinearif S(f1 + f2) is defined wheneves f; andsS f» are both
defined, and if
[S(f1+ f2)l < [Sf1l +[Sf2] ae.
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PROOF. Write f = g + h whereg = f when|f| < A andh = f when
|f] > X. We haveM(t) < My(t) + Mp(t) < A+ My(t); hence, by (2.4),

[{8:05(0) > 2] < I{t:Mu(0) > A} < T [I(r)lar < i/:o ydm(y).
»

In terms of the “lumped” distribution this says, (witlshifted ton —2),

(2.6)  m,(Mp) <4277 3" Pmy(f) =16 > 207 my(f)

j>n—1 j>n—1

Theorem. (a) For 1 < p < oo there exists a constai}, such that if
f e LP(T), thenM; € LP(T) and || M| r < cpl| fllze-
(b) If flog*|f| € L'(T) thenM; € L(T) and

Myl <244 / (Flog™ | fdt.
PROOF (a) If f € LP(T) theny>, 2/7m;(f) < 27| f|[5,.. By (2.6),

IMy|7, <D 2" m, (M) <16 ) 27707 my(f)

j+1>n
—16 3 2D girm () = 16 2070 S 2P m (f)
j+1>n n<l1 J
<16 27V fllL, = lIF I
n<l1

(b) If flog™|f| € LY(T) theny ., jm;(f) < log2-5- [|f[log™|fl.

IMpllpr 14 2"my(My) <1416 Y 2" my(f)

n>1 jH1>n>1
=1416) > 2m(f)=1+16Y (j+1)2/m;(f).
j>01<n<j+1 J>0
by (2.6). <«

The use of the “lumped distribution” necessarily gives somewhat
worse constants than the same proof done with the distribution func-
tions. Here is the proof done “properly”.
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PROOF Denote bym()) andn()) the distribution functions off| and
M, respectively. We can rewrite (2.5) in the form

@7 2-nen<g [ wdmi)< 5 [y dmi)

hence iff € LP(T), 1 < p < oo, we haveAP(27r —n(A)) — 0asA — oo.
We have| M|, = %f /\Pdn = Z [ A\Pdn(2)); integrating by
parts we obtaini(< p <

/OO Mdn(2)) = [N\ (21 — n(2)))]° + /00(271' —n(2)\))pAP~tdA
0 0

- 8p [y 7 AP [ ydm(y)dA ifp>1
T 2r 8 AT [T ydm(y)dh ifp=1
and integrating by parts again we finally obtain:

(orp>1) [ wanen) < 2 [T vamn) = o p),
0 p— 0

Adn(2)) < 27 + 8/ Alog Addm(\)
1

(for p=1) 0
=27 + 8/|f| log™ | f|dt.
T <

2.4 Lemma. Letk be a nonnegative even function Gar, ), mono-
tone nonincreasing o0, 7), such that/” k(t)dt = 1. Then for all

feLX(T)
(2.8) ‘/k(t - T)f(T)dT’ < M (2).

PROOF. The definition (2.1) is equivalent to

Ms(t) = SURy << /qﬁh(t —7)f(r)dr

whereg,, is the indicator function of—#, k) multiplied by1/2h (so that

[ ¢ndt = 1). A function k satisfying the conditions of the lemma can
be uniformly approximated by convex combinationssgf 0 < h < ,
and (2.8) is then obvious. |
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2.5 Let f € L'(T), let f(re") be its Poisson integral and Igtret) be
the harmonic conjugate,

DEFINITION: The maximal conjugate function gfis the function
fle") = sup, 1 |F(re™)].
Theorem. Let f € LP(T), 1 < p < 0; thenf e LP(T) and

1Fllze < Coll Fllo

PROOF. Since f(re't) is the Poisson integral of(e™) and the Pois-
son kernel satisfies the condition of Lemma 2.4, we obitire'!)| <

M(t). Hencef(e“) < M¢(t) and the theorem follows from 2.3 and
1.11. <

2.6 We have defined the conjugafeof~a functionf € L(T) as the

boundary value of the harmonic functigtvei’) = (Q(r,-) * f)(t) where
2rsint

(2.9) QU = 1o st 2

is the conjugate Poisson kernel. Since the limit

. sint cost/2 t
(2.10) Q) = }LH%Q(T’ t) = 1—cost sint/2 cot 2

is so obvious and so explicit, we are tempted to reverse the order of the
operations and write

(2.11) f=Q,t)*f

The difficulty, however, is thad(1, ¢) is not Lebesgue integrable so that
the convolution (2.11) is, as yet, undefined. We propose to show next
that, the convolution appearing in (2.11) can be defined as an improper
integral and that, with this definition, (2.11) is valid almost everywhere.

Lemma. For f € LY(T) andy = 1 — r, we have

2 —19

E(r,t) = ‘%/ﬂ QL 7)f(t—7)dr — f(reit) < AM 5 ((2).
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PrROOFE Write
27—
B0 <3 [ @un - Q) -+
1 0
Jr’% /19 Q(r,7)f(t — T)dTl = Ey(r,t) + Ex(r,t).

We notice that the function

_ (1 —7r)?sint
(2.13) Q(L,t) — Q(r,t) _(1 —cost)(1 — 2rcost 4 r2)

1—r
— - QLOP(Y)

is odd, and is monotone decreasing(ofr). Ford <t <«

1 - .
. +:Q(17t) < 1+:(Sin19/2) Yen

so that

(2.14) Q(1,t) — Q(r,t) < 7P(r,t).

It follows that

1 2w —19
B o= [ 1000 - QuiolIfe - s
(2.15) TJ9

< %/P(T,T)‘f(t—T”dT < ﬂ'Mm(t).

In order to estimate’y(r, t) it is sufficient to notice that if—d,d) we

have|Q(r,t)| < IET and consequently

v 2
(2.16) Ba(r,t) < ﬁ | (= mlar < My ).

Corollary.

27— ~
/19 QL) f(t—71)dr| < f(eit)+4M‘f|(t).

Sun)<19<ﬂ'
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2.7 The estimates (2.15) and (2.16) are clearly very wasteful. They
do not take into account the fact th@tr, ¢t) is odd and we can improve
them by writing

(2.17) Ei(rt) = % /: (QULT) = Q) (f(t = 7) = f(t +7))dr|

and

]
Ba(rit) = |5 [ Qs =) = e+ m)ar
(2.18) 0

< M‘Aﬂl(f(t—T) —f(t+7'))d7"

where0 < 9; < 9 (the mean value theorem).
At every pointt of continuity of f, and more generally, at every
point in which the primitive off is differentiable, we have:

91
(2.19) /O (F(t—7) — f(t +7))dr = o(0)).

By (2.18) itis clear that if (2.19) holdgys(r, t) — 0.

Theorem. Let f € L'(T); at everyt € T for which(2.19)is valid we
have,(¥ =1 —r),

27—

E(r,t) = ‘%/ﬂ QU 7V f(t — T)dr — f(re™)| =0
asr — 1.

PROOF As in (2.12), E(r,t) < Ey(r,t) + Ex(r,t). We have already
remarked that under the assumption (2.19), ., F>(r,t) = 0 so that
we can confine our attention #, (r,t). Fore > 0, letn > 0 be such
that for0 < 9; <17

91
(2.20) ‘/0 (ft—7)— f(t+r))d7‘ < ety
and write

i) =|( [+ ) @07 - Qo) (e =) - -4 7]
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The second integral tends to zero by virtue of the fact thatmon),
Q(r,7) — Q(1,7) uniformly. The first integral is integrated by parts.
Writing

91
B(9,) :/0 (F(t —7) — f(t +7))dr,

we see that it is bounded by

[B(02)(QUL0) - Qo)) + <] [ 0@, - Qo)

integrating by parts once more and remembering@{atd,) < /91,
it follows from (2.14) and (2.20) thak, (r,t) < 10e + o(1) and the
theorem is proved. <

2.8 Let F be defined off and assume that for all> 0, F' is integrable
onT\ (-9,9).
DEFINITION:  The principal value off, F'(t)dt is

2 —19
PV / F(t)dt = lim F(t)dt.
T 9—=0 Jy
For f € L*(T) condition (2.19) is satisfied for almost alE T; since
f(re't) — f(e') almost everywhere, we obtain,

Theorem. Let f € L*(T). The principal value of- [ f(t — 1) cot Zdr
exists for almost alf € T, and, almost everywhere,

Fety = Pvi/f(tff) cotgdr

2.9 Theorem 2.7 can be used both ways. We can use it to show the
existence of the principal value @tV [ f(t — ) cot Zdr if we know
that f(e’*) exists or to obtain the existence ff’’) at points where

PV/f(t—T) Cot%dT

clearly exists. For instance, if satisfies a Lipschitz condition af
thatis, if |f(¢t + h) — f(t)| < K|h|* for someK > 0 anda > 0, then
Jo If(t=7) = f(t+7)| cot Fdr < oo and it follows thatf (e'*) exists and

(2.21) f(et) = 1 /Ow(f(t —7)— f(t+7))cot gdr

T oor
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If f satisfies a Lipschitz condition uniformly on a detc T, that is, if
for someK > 0 anda > 0

[f(t+h)— f(t)] < K|h|* forallt c E,

then the integrals (2.21) are uniformly bounded and

1 [ .
— (f(t—T)—f(t—|—r))cotzd7'—>f(e”)

2m J. 2

uniformly int € F ase — 0. It follows, reexamining the proof of 2.7,
that f(re') — f(e') uniformly fort € E asr — 1. In particular, if £ is
an interval, it follows thaff (¢") is continuous orE.

2.10 Conjugation is not a local operation; that is, it is not true that if
f(t) = ¢(t) in some intervall, thenf(t) = g(¢) on I, or equivalently,
thatif f(t) = 0onI, thenf(¢t) = 0 onI. However,

Theorem. If f(t) = 0 on an intervall, thenf(t) is analytic on/.

PROOFE By the previous remarks is continuous ord. Thus the func-
tion F = f +if is analytic inD and is continuous and purely imaginary
onI. By Schwarz’s reflection principl& admits an analytic extension
through!, and sinceF(¢!) = if(e') on I, the theorem follows. <«

Remark: Using (2.21) we can estimate the successive derivatives of
at pointst € I and show thay is analytic onl without the use of the
"complex” reflection principle.

EXERCISES FOR SECTION 2

The first three exercises were covered already in Theorem 1.8.4. The main
point here is the localization (exercise 4).

1. Assumef ¢ Lip_(T), 0 < a < 1. Show thatf € Lip_,(T) forall &’ < a.

2. Assumef € C™(T), n > 1. Show thatf € C" }(T) and /"~ ¢
Lip_(T) for all & < 1.

3. Assumef € Lip_(T), 0 < a < 1. Show thatf € Lip_(T)
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Hint:

Ft+h) — ft) :%/(f(tnth—r) —f(t—&-h))cot%dr

_ 1
2T

:O(h‘*)+/ ) (f(t—T)—f(t—i—h))CO‘uT;rth—

h

(F(t —7) = f(t)) cot ng

_/ﬂ7 (f(t—T)—f(t))cot%dT

h
N 2w —2h T+h ’
=0 (h )+/% (f(th)ff(t))(cotT—Coti)dT
2w —2h

f(f(t+h)ff(t))/ cotT+h

2h

4. Localize exercises 1-3, that is, assume thaatisfies the respective
conditions on an an intervdlc T and show that the conclusions holdlin

3 THE HARDY SPACES

In this section we study some spaces of functions holomorphic in
the unit discD. These spaces are closely related to spaces of functions
on T and we obtain, for example, a characterizationLdffunctions
and of measures whose Fourier coefficients vanish for negative values
of n. We also prove that if for somg € L'(T), f(e*) is summahie
thensS[f] = S[f], and, finally, we obtain results concerning the absolute
convergence of some classes of Fourier series. We start with some

preliminary remarks about products of Moebius functions.

3.1 Let 0 < |¢| < 1; the functionb(z,¢) = |<<|E§:§)E) defines, as is
well known, a conformal representation bBfonto itself, taking( into
zero and zero int®¢|. The important thing for us now is thatz, ¢)
vanishes only at = ¢ and|b(z,¢)| = 1 on|z[ = 1. If 0 < |¢| < r, then
b(%,%) = rpi—2s is holomorphic injz| < r, vanishes only at = ¢,
and|b(Z, )| =1 on|z| = r. For¢ = 0 we defineb(z,0) = =.

Let f be holomorphic injz| < r and denote its zeros there by
(1,...,¢ (counting each zero as many times as its multiplicity). The

function f,(z) = f(z)(]‘[b(E ﬁ))f1 is holomorphic in|z| < r, is

r)or

zero-free and satisfigg; (z)| = |f(z)| for |z| = r. Sincelog|fi(2)| is



94 AN INTRODUCTION TOHARMONIC ANALYSIS

harmonic in|z| < » we have

log 1(0) = 5= [ logl(re")

and if we assume, for simplicity, thg{0) +# 0, the formula above is
equivalent tdPoisson-Jensen’s formula

k
(3.1) log| £(0)| —|—10gnli[1r|§n\_1 = % /log|f(reit)|dt.

We implicitly assumed that has no zeros of modulus however,
since both sides of the formula depend continuously,dhe above is
valid even if f vanishes onz| = r. The reader should check the form
that Poisson-Jensen’s formula takes wifemnishes at = 0.

The termlog H’;:lr|§n\*1 is positive, and removing it from (3.1)
we obtain Jensen’s inequality

1 .
(3:2) logl (0)| < 5 [ logl(re) .
or, if f has a zero of orderatz = 0,
log\lir% 270 f(2)| + log(r®) < 2i /log|f(re“)|dt.
z— T

Another form of Jensen’s inequality is: lg¢tbe holomorphic in
|z| < randletl,..., ¢, be (some) zeros ofin |z| < r, counted each
one at most as many times as its multiplicity. Then

(B3 logl(O)]+ > log(rlGil ) < 5 [ logiflred.
1

Inequality (3.3) is obtained from (3.1) by deleting some (positive) terms
of the formlog(r|¢,|~!) from the left-hand side.

3.2 Letp > 0 and letf be holomorphic inD. We introduce the nota-
tion

(3.4) R e

If 0 <r < Iandp < 1we havef(rpet) = f(rei) « P(p,t) and conse-
quently forp > 1 we have

hy(frp) = |1 (rpe e < 1 (re)g = hy(f.7)
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or, in other wordsh,(f,r) is a monotone nondecreasing function-of
The case = 2 is particularly obvious since fof(z) = > a,, 2™ we have
ha(f,r) = > |an|?r*. We show now that the same is true foralt 0.

Lemma. Let f be holomorphic inD andp > 0. Thenh,(f,r) is a
monotone nondecreasing functionrof

PROOF We reduce the case of an arbitrary positite the case = 2.
Letr; < r < 1. Assume first thaf has no zeros ofz| < r and consider
the function g(z) = (f(2))?/?; then

1 it\|p 1 it\(2 1 / ity|2
—_— = — <7
o /|f(7“1€ )|Pdt oy /|9(7“1€ )l dt_27T lg(re™)|"dt

:%/V(re“)\pdt
orhp(f’Tl) < hp(f’T)'

If f has zeros insidg| < r but not on|z| = r, we denote the zeros,
repeating each according to its multiplicity, by . . ., ¢x, and write

For|z| < r we havelf(2)| < |f1(2)|, for |z| = r we have f(2)| = |f1(2)]
andf; is zero-free inz| < r. It follows that

hp(fa rl) < hp(flvrl) S hp(flar) = hp(fa T)'

Sinceh,(f,r) is a continuous function of, the same is true even jf
does have zeros dn| = r, and the lemma is proved, <

3.3 Lemma. Let {¢,} be a sequence of complex numbers satisfying
[¢n] < 1and> (1 —|¢,]) < oo. Then the product

(3.5) B(z) = 2,Cn) = 2™
1:[ C];[O ¢l (1 ZCn)

converges absolutely and uniformly in every disc = {z:|z| < r},
r<l1.

tAny branch of(f(z))?/2.
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PROOF. It is sufficient to show thaf"|1 — %\ converges uni-
formly in |z| <r < 1. But

Cn Cn_z ‘ |<n|+ZCn ]-_|<n|) < 1—|—T(1_|C |)
|<n (1= 2Cn) 1Cal (1 = 2¢p) —1-r "
and the series convergg3(l — [¢,]) < oo. <

The product (3.5), often called the Blaschke product corresponding
to {¢,»}, is clearly holomorphic inD and it vanishes precisely at the
points¢,. Nothing prevents, of course, repeating the same complex
number a (finite) number of times i, }, so that we can prescribe not
only the zeros but their multiplicities as well. Since all the terms in
(3.5) are bounded by 1 in modulus, we haBéz)| < 1in D.

3.4 We now introduce the spacd#’ (H for Hardy) andN (N for
Nevanlinna).

DEFINITION: The spacei?, p > 0, is the (linear) space of all func-
tions f holomorphic inD, such that

(36) ”prHp = }1_12 hp(fv T) = Sup0<r<1hp(fa T) < 00

The spacéV is thc space of all functiong holomorphic inD, such that

1 ,
(3.7) Il = SRt 5 [ 1o LFre it < .

Remarks:(a) Forp > 1, || ||z» as defined in (3.6) is a norm and we
shall show later that’? endowed with this norm, can be identified with
a closed subspace @f(T). Forp < 1, | ||%, satisfies the triangle
inequality and is homogeneous of degpedt can be used as a metric
for H?; || ||w» is homogeneous of degree one but does not satisfy the
triangle inequality.|| ||, is not homogeneous and does not satisfy the
triangle inequality.

(b) If p’ < pwe haveN > H? > HP.

The spacédi? has a simple characterization:

Lemma. Let f(z) = Y a,2"; thenf € H?if, and only if,Y""|a,|? is
finite.

PROOF hy(f,r) = 5%|an[2r2". It follows that]|f[|2,. = S5lan]?. <
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An immediate consequence is that in this cAs®the Poisson integral
of f(e') ~ >3 ane™.

3.5 Lemma. Let f € N and denote its zeros iR by (1, (s, ..., each
repeated according to its multiplicity. Then(1 — |¢,|) < oo.

Remark: The convergence of the serigg1—[(,|) is equivalent to the
convergence of the produEf|¢,,| hence to the boundedhess (below) of
the series " log|¢,| (not counting the zeros at the origin, if any).

PROOF We may assumg(0) # 0. By Jensen’s inequality (3.3), if/
is fixed andr sufficiently close to 1

M
log| f(0) — [ fllw < Zlog|Cn| — Mlogr.
1

Lettingr — 1 we obtain

M
log|£(0)] = || flla < log|¢al
1

and sinceM is arbitrary the lemma follows |

3.6 If we combine Lemma 3.3 with 3.5 we see thatfifc N, the
Blaschke product corresponding to the sequence of zerpsaf well-
defined holomorphic function i®, having the same zeros (with the
same multiplicities) ag and satisfyingB(z)| < 1 in D. If we write
F(z) = f(2)(B(2))~! then F is holomorphic and satisfigg’(z)| >
|f(2)] in D. We shall refer tof = BF as thecanonical factorization
of f.

Theorem. Let f € HP?, p > 0, and letf = BF be its canonical
factorization. Thert’ € H? and||F||g» = || f]|g»-

PROOF. The Blaschke produds has the form
N
B(z) = lim 2" 111 b(z, Cn)-

If we write Fx(z) = f(2)(z™ [TV b(z,(n))*l, then Fy converges td”
uniformly on every disc of the fornz| < » < 1. Since the absolute
value of the finite product appearing in the definitionff tends to
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one uniformly agz| — 1, it follows from Lemma 3.2 thaky € H? and
||FN||Hp = ||f||Hp Letr < 1, then

hp(F,r) = T Ty (Fy,r) < Jim || Pl = £

Now h,(F,r) < |||, for all » < 1 is equivalent to| F| gz» = || f||z»,
and since the reverse inequality is obvious, the theorem is proved.

Theorem 3.6 is a key theorem in the theoryHsf spaces. It allows
us to operate mainly with zero-free functions which, by the fact of being
zero-free, can be raised to arbitrary powers and thereby move from one
HP? to a more convenient one. This idea was already used in the proof
of Lemma 3.2. Our first corollary to Theorem 3.6 deals with Blaschke
products.

3.7 Corollary. Let B be a Blaschke product. Théfe')| = 1 almost
everywhere.

PROOF. Since|B(z)| < 1in D it follows from Lemma 1.2 thaB(e®)
exists as a radial (actually: nontangential), limit for almost: adl T.
The canonical factorization gf = B is trivial, the functionF' is identi-
cally one, and consequently

1 i
1B = o [1B()Par

Since|B(e')| < 1, the equality above can hold only [iB(ei)| = 1
almost everywhere. <

3.8 Theorem. Assumef € H?, p > 0. Then the limifim, ., f(re')
exists for almost alt € T and, denoting it by (¢?*), we have

191 = 5 [ 18P

PROOF The case p = 2 follows from 3.4.

For arbitraryp > 0, let f = BF be the canonical factorization of
f, and writeG(z) = (F(z))?/2. ThenG belongs toH? and conse-
quentlyG(re') — G(e') for almost allt € T; at every such, F(re')
converges to somé&'(e't) such that|F(e*)[P/?2 = |G(e)|. Since B
has radial limit of absolute value one almost everywhere we see that
f(e) = lim f(re') exists andf(e?)[P/2 = |G(e')| almost everywhere.
NOW ([ £1[%, = [ Fl%, = 1GI%= = 2= [IG(e)2dt = & [|f(e")|P and
the proof is complete. <
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3.9 The convergence assured by Theorem 3.8 is pointwise conver-
gence almost everywhere. Fpr> 2 we know thatf is the Poisson
integral of f(e*) and consequently(reit) converges tof(e®) in the
L?(T) norm. We shall show that the same holds ot 1 (hence for

p > 1); first, however, we use the cage> 2 to prove:

Theorem. Let0 < p < p’ and suppos¢g € H? and f(e'*) € L¥' (T).
Thenf e H?'.

PROOF. As before, if we writef = BF, G(z) = (F(2))?/?, thenG ¢
H? and G(e't) e L*'/?(T). G is the Poisson integral af(e't) and
consequentlys € H2'/? which means” € H?, hencef € H? . <
Corollary. Letf e L(T) and assum¢ € L'(T): then(f +if) € H'.
PrROOF. We know (Corollary 1.6) thatf + if) € H? forall p < 1 and
by the assumptioff + if)(e'*) € L*(T). <

3.10 Theorem.Every functionf in H' can be factored ag = f, f»
with f1, fo € H?.

PrROOFE Let f = BF be the canonical factorization gf We can take
fi=F'Y2 fo = BF'/2, <
3.11 We can now prove:

Theorem. Let f € H! and letf(ei) be its boundary value. Thehis
the Poisson integral of (¢'t).

PROOF. We prove the theorem by showing thatc*) converges to
f(e') in the L' norm. This implies that iff(z) = >_ a,,2", thena,, are
the Fourier coefficients of (') which is clearly equivalent tg being
the Poisson integral of(e™).

Write f = flfg with fj S HQ, j= 1,2.

Fre') = F(e) = fulre) f(re®) = Fi(e) fo(e™);

adding and subtracting (e®) fo(ret’) and using the Cauchy-Schwarz
inequality, we obtain

1£(re™) = fe) e < I f2llz2llfr(re™) = fr(e™)la
+lfillzell f2(re™) = fa(e™)]l L2

Asr — 1, |f;(re’) — f;(e")| = — 0, and the proof is complete. <
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Remark: See exercise 2 at the end of the section for an extension of
the theorem to the case< p < 1.

Corollary. Letf e L'(T)andf € L'(T). ThenS[f] = S[f].

PROOF. From 3.9 and the theorem above follows thigte't) is the
Poisson integral of (¢*) (see Remark 1.4). <

3.12 Theorem.Assume > 1. A functionf belongs toH? if, and
only if, it is the Poisson integral of sonféc‘t) € LP(T) satisfying

(3.8) f(n)y=0 foralln<o.

PROOF Let f € HP?; by Theorem 3.11f is the Poisson integral of
f(e) and (3.8) is clearly satisfied. On the other hand,flet L?(T)
and assume (3.8); the Poisson integraf of

Fret) = 3 fyremt =3 fm)en
0 0

is holomorphic inD, and since| f (re*)|| > < | f(e®)]| L, it follows that
f(z) € HP. <

3.13 Forp > 1, we can prove that everfye H? is the Poisson integral

of f(e'*) without appeal to Theorem 3.11 or any other result obtained in
this section. We just repeat the proof of Lemma 1.2 (which is the case
p = oo of 3.12): if f € LP(R), || f(re')]|, is bounded as — 1; we can

pick a sequence, — 1 such thatf,,(e) = f(r,e") converge weakly

in LP(T) to somef(e'). Since weak convergence it?(T) implies
convergenee of Fourier coefficients, it is clear that (3.8) is satisfied and
that the functionf with which we started is the Poisson integral of
e,

For p = 1 the proof as given above is insufficient! (T) is a sub-
space ofM (T), the space of Borel measures Bywhich is the dual of
C(T), and the argument above can be used to show that gveryi!
is the Poisson integral of some measuren T. This measure has the

property
(3.9) fa(n) =0, foralln<0.

All that we have to do in order to complete the (alternative) proof of
Theorem 3.12 in the cage= 1 is to prove that the measures satisfying
(3.9), often called analytic measures, are absolutely continuous with
respect to the Lebesgue measureron
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Theorem (F. and M. Riesz).Letu be a Borel measure dh satisfy-

ing

3.9 fa(n) =0, foralln<o.

Theny is absolutely continuous with respect to Lebesgue measure.
We first prove:

Lemma. Let E c T be a closed set of measure zero. There exists a
functiony holomorphic inD and continuous irD such that:

(i) p(e™)y=1 onE,
(i) |p(e®) <1 onD\E.

PROOF SinceF is closed and of measure zero we can construct a func-
tion ¢ onT such that(e’*) > 0 everywherey(e®) is continuously dif-
ferentiable in each component ®f\ E, ¢ (e*) — oo ast approaches

E, andy(e') € L?(T). The Poisson integrakb(z) of ¥(e') is positive

on D and«(z) — oo asz approaches’. The conjugate function is
continuous inD \ E (see the end of section 2) and consequently, if we

_ _Y@+i() ; L . _
pute(z) = TG HTE theny is holomorphic inD and continuous in

D\ E. At every point where)(z) < oo we have|y(z)| < 1, and as
P(z) — oo, p(z) — 1. If we definep(z) = 1 on E theny satisfies

(3.10). <

(3.10)

PROOF OF THE THEOREM Assume thaj satisfies the condition (3.9).
We can assumg(0) = 0 as well (otherwise consider— i(0)d¢) and it
then follows from Parseval’s formula that

(3.11) (Fom) = / fdu =0

for everyf € C(T) which is the boundary value of a holomorphic func-
tion in D or, equivalently, such thaf(n) = 0 for all negativen. Let

E C T be closed and of (Lebesgue) measure zero.gls a function
satisfying (3.10). Then, by (3.11)

/@mduzo forallm >0
and by (3.10)
lim /gpmdu = u(E).

Thusyu(E) = 0 for every closed seE of Lebesgue measure zero and,
sincey is regular, the theorem follows. <
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3.14 Theorem 3.13 can be given a more complete form in view of the
following important

Theorem. Let f € H?, p > 0; then
log| f(e™)] € L'(T)

Remarks: The same conclusion holds under the weaker assumption
f € N. We state it fore/? since we did not prove the existencefdgt®)

for f € N (cf. [28], Vol. 1, p. 276). Sincelog™|f| < |f|P we already
know thatlog™ | f(e'*)| € L*(T). Thus the content of the theorem is that
f(e®) cannot be too small on a large set.

PROOF. Replacingf by =™ f, if f has a zero of order. atz = 0, we
may assumg(0) # 0. Letr < 1; then, by Jensen’s inequality

logl F0) ~ v < —5- [ 1og” (e lar <0

(wherelog™ x = —logz if © < 1 and zero otherwise). It follows that
[log| f(rei)||dt is bounded as — 1 and the theorem follows from
Fatou’s lemma. <

Corollary. If f # 0isin H?, f(e') can vanish only on a set of measure
zero.

Combining Theorem 3.13 with our last corollary we obtain that ana-
lytic measures are equivalent to Lebesgue’s measure (i.e., they all have
the same null sets).

3.15 Theorem. LetE be a closed proper subsetdf Any continuous
function onE can be approximated uniformly by Taylor polynomials

PROOF. We denote by’ (FE) the algebra of all continuous functions on
E endowed with the supremum norm. The theorem claims that the
restrictions toF of Taylor polynomials are dense (' E).

If a measure: carried byFE is orthogonal to alk™, n = 0,1, ...,
it is analytic: (2, u) = i(n) = 0, and hence: = fdt with f € H*, f
carried byE. By Theorem 3.14f = 0. Hence there is no nontrivial
functional onC(E), which is orthogonal to all Taylor polynomials, and
the theorem follows from the Hahn-Banach theorem. <

fWe use the term "Taylor polynomial" to designate trigonometric polynomials of the
form Z(I)V ane'™t.



IIl. THE CONJUGATEFUNCTION 103

3.16 We finish this section with another application of 3.10.
Theorem (Hardy). Letf(z)=Y " a,2" € H'. Then} {°|a,|n~! < occ.

Remark: The theorem can also be statéd:t f € L!(T) satisfy(3.8),
then} =7 f(n)[n =t < || f]lz:.

PROOF If F(e') is a primitive of f(e) thenF is continuous ofT and
consequently its Fourier series is Abel summablé&'tat every: € T.
In particular)~ ;" (a,, /n)r™ tends to a finite limit as — 1. If we assume
a, > 0 for all n then}"7°a, /n is clearly convergent (compare with
1.4.2).
In the general case we write= f, fo with f; = > A;,,2" € H?,
J=1,2. Write f7(2) = Y| A;0|2", andf*(z) = 7 (2)f5(2) = Y ap=".
The functionsf;‘ are clearly inf/?, hencef* € H! and, since, > 0,
it follows from the first part of the proof that (a’ /n) < co. But

n n
lan| = |Z A1 pAo k| < Z|A1,k‘|A2,nfk| = ay,
k=0 k=0

and the theorem follows. <

3.17 Let f € H' and assume that(c®) is of bounded variation on
T. If f ~ > ane™ then) (°ina,e™ is the Fourier-Stieltjes series
of df. Thus the measur# satisfies the condition of Theorem 3.13 and
consequentlylf = f’dt and f’(z) is in H*. Combining this with 3.16
we obtain:

Theorem. Let f € H! and assume that(c®) is of bounded variation
onT. Thenf(e) is absolutely continuous ang™_|f(n)| < co.

An equivalent form of the theorem is (see 3.9):

Theorem. Let f,f € LY(T) and assume that botfi and f are of
bounded variation. Then bothand f are absolutely continuous. and

2 f ()] < oo

EXERCISES FOR SECTION 3

1. Deduce Theorem 3.13 (F. and M. Riesz) from Theorem 3.11.
2. Show that for alp > 0, if f € H?, then [|f(e") — f(re)|Pdt — 0 as

r— 1.
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Hint: Reduce the general case to the case in wiiichzero-free. In the case
. . 1
that f is zero-free, writef; = f2; thenf, € H* and

P = Fre) = (Fi(e") = flre (i) + filre));

hence show that if the statement is valid pris also valid forp. Use the fact
that it is valid forp > 2.

3. Let £ be a closed set of measure zeroTn Let ¢ be a continuous
function onk.

(a) Show that there exists a functign holomorphic inD and continuous
on D such tha®(e™) = ¢(e*) on E.

(b) Show thatd can be chosen satisfying the additional condition

SUp,cp|®(2)| = SUPitcplo(e™)].

Hint: Construct® by successive approximation using 3.15 and Lemma 3.13.
4. Letf € L*(T) be absolutely continuous and assufhivg™|f'| € L*(T).
Prove tha | f(n)| < oo.



Chapter IV

Interpolation of Linear Operators and the
Theorem of Hausdorff-Young

Interpolation of norms and of linear operators is really a topic in
functional analysis rather than harmonic analysis proper; but, though
less so than ten years ago, it still seems esoteric among authors in func-
tional analysis and we include a brief account. The interpolation theo-
rems that are the most useful in Fourier analysis are the Riesz-Thorin
theorem and the Marcinkiewicz theorem. We give a general description
of the complex interpolation method and prove the Riesz-Thorin theo-
rem in section 1. In the second section we use Riesz-Thorin to prove
the Hausdorff-Young theorem. We do not discuss the Marcinkiewicz
theorem although it appeared implicitly in the proof of theorem 111.1.9.
We refer the reader to Zygmund ([28] chap. XII) for a complete account
of Marcinkiewicz’'s theorem.

1 INTERPOLATION OF NORMS AND OF LINEAR OPERATORS

1.1 Let B be a normed linear space and lebe defined in some do-
main Q in the complex plane, taking values ;. We say thatf is
holomorphic inQ if, for every continuous linear functionalon B, the
numerical functior(z) = (F(z), 1) is holomorphic inQ2. Assume now
that B is a linear space with two nornjs|, and|| ||, defined on it. We
consider the family3 of all B-valued functions which are holomorphic
and bounded, with respect to both norms, in a neighborhood of the strip
Q={z:0<R(z) < 1}. Bis alinear space which we norm as follows:
for F € B put

(1.1) IE]l = sup,{lIF(iy)llo, [[F'(1 +iy)l}-

For0 < a < 1, the setB, = {F € B: F(a) = 0} a linear subspace of
B. We shall say that ||, and|| ||, are consistent iB,, is closed ins for

105
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all 0 < a < 1. A convenient criterion for consistency is the following
lemma:

Lemma. Assume thatforeverye B, f # 0, there exists a functional
w continuous with respect to both|lo and| ||; , such that(f, u) # 0.
Then| ||o and|| ||, are consistent.

PROOF Let0 < a < 1 and letF, € B, F, — Fin B. Letu be an
arbitrary linear functional continuous with respect to both norms. The
functions(F'n(z), 1) are bounded on the strip and tend to(F(z), )
uniformly on the linesz = iy andz = 1+ iy. By the theorem of
Phragmeén-Lindel6f the convergence is uniform throughowtnd in
particular (F(a), p) = lim,—(F,(a),p = 0. Since this is true for
every functional It it follows thatF(«) = 0, that is, F € B, and the
lemma is proved. <

Remark: The condition of the lemma is satisfied||ifl, and|| ||, both
majorize a third nornj| ||2. This follows from the Hahn-Banach theo-
rem: if f # 0, there exists a functionalcontinuous with respect to||-
such that(f, u) # 0. Itis clear that if ,|| ||; > || ||» theny is continuous
with respect tq| ||;, 7 =0, 1.

1.2 We interpolate consistent norms @nas follows: for0 < o < 1,
the quotient spacB/5, is algebraically isomorphic t® (through the
mappingF — F(«)). SinceB,, is closed inB, B/5, has a canonical
quotient norm which we can transfer Bthrough the aforementioned
isomorphism; we denote this new norm Brby || ||

The usefulness of this method of interpolating norms comes from
the fact that it permits us to interpolate linear operators in the following
sense:

Theorem. Let B (resp. B’) be a normed linear space with two consis-
tent norms| |jo and|| ||; (resp.|| || and|| ||;. Denote the interpolating
norms by ||, (resp.|| ||4), 0 < a < 1. LetS be a linear transformation
from B to B’ which is bounded as

S .
(1.2) (Bl = (B 115) 4=0,1.
ThensS is bounded as
S
(1.3) (B, la) = (B 15
and its norm||S||, satisfies

(1.4) ISlle < [ISllg~*ISII5-
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PROOE We denote by’ the space of holomorphig’-valued functions
which is used in defining ||,. The mapB 5, B’ can be extended to a
mapB 5B by writing SF(z) = S(F(z)). To show thaSF so defined
is holomorphic, we consider an arbitrary functiopatontinuous with
respect td| ||, or || ||; and notice thatSF(z), u) = (F(z),S*u). Since
SF(z) is clearly bounded it follows th&8F € B'.

Let f € B, || flla« = 1; then there exists afi € B such thatf'(a) = f
and such thafF|| < 1+ . Applying S to F', we obtain

ISl < ISF||" < (1 + ) max(||S|lo, [IS[l);

hence
[Sla < max([[Sllo, [[S]1)

which proves the continuity of (1.3). To prove the better estimate (1.4),
we consider the functioa®*=* F(z), wheree® = ||S|, ||S||7'. We
have

IS£]l < IS~V F(2))|
= sup{e "[|SF(it)|, e~ SF(1+it)|, }
< (1 +¢) sup{e™[Slo, e* =181}
= (L+2)[SlglIsIls- <

Remark: The idea of using the functiari*—*) goes back to Hadamard
(the "three-circles theorem"); it can be used to show that, for every
feB,

(1.5) IFlle < If N0~ NA1T -

1.3 A very important example of interpolation of norms is the follow-
ing: let (X,dr) be a measure space, le py < p1 < oo, and letB

be a subspace dfro N LP:(dr). We claim that the norm§ ||o and|| |1
induced onB by LP°(dy) and L (dy), respectively, are consistent. By
Lemma 1.1, all we have to show is that, givea B, f # 0, there exists

a linear functional:, continuous with respect to both norms, such that
(f,p) # 0; we can take ag the functional defined byf, ) = [ fgdr
whereg € L' N L>°(dx) has the properfythat fg > 0 whenevet f| > 0.

T1f we write f = | f|e’? with real-valuedp, we may takgy = min(1, |f|P0)e?®.
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Theorem. Let (X,dy) be a measure spac®& = LPo N LP(dr) (with
1 <po < p1 < o0). Denote by |/;, the norms induced b#?s (dr), and
by || || the interpolating norms. Thef ||, coincides with the norm
induced onB by LP-(dr) where

_ PopP1 _ _bo _
(1.6) paip—oa—&—pl(l—a) ( o if pp oo).

PROOF. Let f € B and| f|l,« < 1. ConsiderF(z) = |f|*zTo)+leiv
wheref = |fle! and

= _ Po—DP1 (: -1 plzoo)
poc +pi(l — ) -« .

We haveF(«) = f and consequentlyf||, < ||F]||. Notice now that
|F(iy)| = |f|'~ = |fro/Po| sO that

7ol = ( [1s1mar) ™ <1

similarly || F(1+1t)|1 <1 (use the same argumenpif < co and check
directly if p; = c0); hence| f||. < 1. This proves| ||, < || ||zra. In

order to prove the reverse inequality, we denotedy; the conjugate
exponents o, andp; and notice that the exponent conjugate tas

) q091 q .
@8)  w=rig  (ta P w=x)
We now setB’ = L% N L% (dx) and denote by3’ the corresponding
space of holomorphi®’-valued functions.

Let fB and assumgf| .- > 1; then, sinceB’ is dense i, there
exists ag € B’ such that|g||... <1 and such thaf fgdr > 1. Asin the
first part of this proof, there exists a functiGhe B’ such thatG(a) = ¢
and |G| (with respect tay, ¢;) is bounded by 1. LeF € B such that
F(a) = f. The functionh(z) = fF(2)G(z)dr (remember that for each
z € Q, F(z) € BandG(z) € B’) is holomorphic and bounded {n (see
Appendix A). Nowh(a) > 1, hence, by the Phragmeén-Lindel6ff theo-
rem,|h(z)] must exceed 1 on the boundary. However, on the boundary
Ih(z)] < [FIIG] < | F| so that|F|| > 1. This proves|f|, > 1 and it
follows that|| ||, and|| ||.». are identical. <

1.4 As a corollary to Theorems 1.2 and 1.3, we obtain the Riesz-
Thorin theorem.
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Theorem. Let (%,r) and (9),y) be measure spaces. LBt= L N
L (dx) and B’ = Lro N LP1(dy), and letS be a linear transformation
from B to B, continuous a8 : (B, | ||;) — (B, II}), j = 0,1, where
| 1l; (resp.]| [|%) is the norm induced b¥?: (dr) (resp.L"i(dy)). ThenS
is continuous as

S: (Bl lla) = (B, lla)

where|| ||, (resp.| ||%,) is the norm induced bgP= (dx) (resp. LP=(dy)),
po @andp’, are defined irn(1.6)).

A bounded linear transformatia® from one normed spacB to
another can be completed in one and only one way, to a transformation
having the same norm, from the completion®into the completion
of the range space 8. Thus, under the assumption of 18l,can
be extended as a transformation frdwr (¢) into L*~(y) with norm
satisfying (1.4). The same remark is clearly valid for Theorem 1.2.

1.5 Our first application of the Riesz-Thorin theorem is Bochner’s
proof of M. Riesz’ Theorem IIl.1.11. We show that(T) admits con-
jugation ifp is an even integer. It then follows by interpolation that the
same is true for alp > 2, and by duality, for alp > 1.

Let f be a real-valued trigonometric polynomial and assume, for
simplicity, £(0) = 0. As usual we denote the conjugate pyand put
> = L(f+if). f*is a Taylor polynomidl and its constant term is
zero; the same is clearly true fof°)?, p being any positive integer.

Consequently
1

2
Assume now thap is even,p = 2k, and consider the real part of the
identity above; we obtain:

o [ () [sas ()5 [
N

(£ (t)Pdt = 0.

By Hdlder's inequality

1 MN\2k—2m r2m 3 —2m m
5 [[P2m gomat] < 1P 12

fWe use the term "Taylor polynomial” to designate trigonometric polynomials of the
form Zé\’ eint,
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hence
~ 2K\ | x0p_ 2k\ |\ 7126—
17125 < (% ) LA+ (4 )M U+

or, denoting
Y = || fllzas | Il 72
we have

YQk S <22k> Y2k—2 + (24k) Y2kj—4Y2k—4 44 1

which implies thaty” is bounded by a constant dependingfofi.e.,

on p). Thus the mapping — f is bounded in theL?(T) norm for all

polynomialsf, and, since polynomials are dense.i{T), the theorem
follows.

EXERCISES FOR SECTION 1

1. Prove inequality (1.5).

2. Let{an} be a sequence of numbers. Fiméh(> |a.|) under the con-
ditions } an|* = 1, ) |an|* = a. 3. Let B be a vector space with consistent
norms|| |lo, || ||, andB a space of linear functionals dawhich are continu-
ous with respect to botfi||o and| ||:. Let|| ||; be the norm orB induced by
the duality with(B, | ||;), 7 = 0,1, and]| ||; the interpolating norms. Léft||.~
be the norm orB induced by the dual ofB, || ||). Prove that forf € B,

[fllax < 11 flla-

4. Let (X, B) be a measurable space, anddetndr be positive measures
onit. LetB = L*(X,B,u) N L*(X,B,v).
i. What are necessary and sufficient conditions for the consistency of the
norms (onB): || [lo = || lz2(u. @and|| [[x = || lz2()-
ii. When the norms above are consistent, what are the interpolating norms

a7
1

5. Let0 < a < b. For f € C>(T), definel|f]lo = (Z|f(n)\2|n|2“>§, and

1
Iflh = (1F(m)|*n**) . Show that the norms so defined are consistent on

C*°(T) and find the interpolating norms||..

6. Assuméa) < a < b. What are the interpolating norms between the ones
induced onC**(T) by C*(T) and byC®(T)?
Hint: For f € LY(T) define||f|lw.x = ||[War(f)|loo; the notation is that of
1.8.2. For0 < a < b, and forf € C>(T), define||f|lo = sup.|f|lw,x2** and
£l = sup.|lfllw.x2*.
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2 THE THEOREM OF HAUSDORFF-YOUNG

The theorem of Riesz-Thorin enables us to prove now a theorem
that we stated without proof at the end of 1.4 (Theorem 1.4.7); it is
known as the Hausdorff-Young theorem:

2.1 Theorem.Letl < p < 2 and letq be the conjugate exponent,
thatis,q =p/(p—1). If f € LP(T) then>_|f(n)|? < co. More precisely

(SIF )Y < (1f 1o

PROOF. The mappingF : f — {f(n)} is a transformation of functions

on the measure spa€R, dt) into functions onZ, dn), Z being the group

of integers andn the so-called counting measure, that is, the measure
that places a unit mass at each integer. We know that the norm of the
mapping ad.!(T) — L>=(Z) = (> is 1 (1.1.4) and we know that it is an
isometry of L2(T) onto L?(Z) = ¢? (1.5.5). It follows from the Riesz-
Thorin theorem thaf is a transformation of norra 1 from L?(T) into

L1(Z) = ¢4, which is precisely the statement of our theorem. We can
add that since the exponentials are mapped with no loss in norm, the
norm of 7 on L?(T) into ¢4 is exactly 1. <

2.2 Theorem. Letl < p < 2 and letq be the conjugate exponent. If
{an} € ¢P then there exists a functioh e L4(T) such thata,, = f(n).
Moreover,||fllz« < (3 ]an|?)/?.

PrROOFE Theorem 2.2 is the exact analog to 2.1 with the roles of the
groupsT andZ reversed. The proof is identical: {fz,,} € ¢! then
f(t) = S ane™ is continuous o and f(n) = a,. The case = 2 is
again given by Theorem 1.5.5 and the case p < 2 is obtained by
interpolation. <

2.3 We have already made the remark (end of 1.4) that Theorem 2.1
cannot be extended to the casg 2 since there exist continuous func-
tions f such thaty_|f(n)|>~¢ = oo for all ¢ > 0. An example of such
. . 00 ginlogn int i

a function isf(t) = 307, oo mee™ (see [28], vol. 1, p. 199);
another example ig(t) = . m~22-™/2f, (t) wheref,, are the Rudin-
Shapiro polynomials (see exercise 6, part c of 1.6). We can try to ex-
plain the phenomenon by a less explicit but more elementary construc-
tion.

The first remark is that this, like many problems in analysis, is a
problem of comparison of norms. It is sufficient, we claim, to show
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that, givenp < 2, there exist functiong such that||g|. < 1 and

> 1g(n)|P is arbitrarily big. If we assume that, we may assume that our
functionsg are polynomials (replace by o, (g) with sufficiently big

n) and then, taking a sequenge— 2, g; satisfying||g;||~ << 1 and
Mg (n)Pi > 27 we can writef = > j~lei™itg;(t) where the integers
m; increase fast enough to ensure thati'g;(t) ande™™+'g;(t) have

no frequencies in common jf # k. The series defining converges
uniformly and for any < 2 we have

Sl |p—ZZ e _Zjig@j(n)w:oo_

pj>p

One way to show the existence of the functigradove is to show that,
givene > 0, there exist functiong satisfying

1 R
(2.1) lglleo =1, lgllzz 2 5. SURIg(n)| <e.

In fact, if (2.1) is valid then

Sam) = =22 S g = ser2,

and ife can be chosen arbitrarily small, the correspondingll have
>"1g(n)|P arbitrarily large.

Functions satisfying (2.1) are not hard to find; however, it is im-
portant to realize that when we need a function satisfying certain con-
ditions, it may be easier to construct an example rather than look for
one in our inventory. We therefore include a construction of functions
satisfying (2.1). The key remark in the construction is simple yet very
useful: if P is a trigonometric polynomial of degre¥, f € L'(T) and
A > 2N is an integer, then the Fourier coefficientsggf) = f(A\t)P(t)
are either zero or have the forfm)P(k). This follows from the iden-
tity (n) = 3\ ninen f(m)P(k) and the fact that there is at most one
way to writen = Am + k with integersm, k& such thatk| < N < \/2.

Consider now any continuous function of modulus 1pmvhich is
not an exponential (of the formi™); for example the function(t) =
eicost. SinceY )| = ||¢]|2. = 1 and the sum contains more than one
term, it follows that sup)(n)| = p < 1. Let M be an integer such that
pM < e. Letn < 1 be such thay > L. Lety = on(3), Where the
order N is high enough to ensure < |¢(¢t)] < 1. It follows from the
preceding remark that if we sat= 3N andyg(t) = HjM:l ©(Mt), the
Fourier coefficients of are products of\f Fourier coefficients ob;

,J;
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hencelg(n)| < pM < e. On the other hand < ™ < [g(t)] < 1 and
(2.1) is valid.

2.4 We can use the polynomials satisfying (2.1) to show also that The-
orem 2.2 does not admit an extension to the gase2. In fact, we
can construct a trigonometric seri®3a,, ¢ which is not a Fourier-
Stieltjes series, and such thafa,|? < oo for all p > 2.

Let g; be a trigonometric polynomial satisfying (2.1) with= 277,
Since nowp > 2 we have

Z\ﬁj(n)\p <eP? Z@J’(”)\Q < 9-i(e-2)

and consequently, for any choice of the integers > jei™itg;(t) =

> ane™ does satisfyd|a,|[P < ~ for all p > 2. We now choose the
integersm; increasing very rapidly in order to well separate the blocks
corresponding tge™itg;(t) in the series above. If we denote by

the degree of the polynomig}, we can taken; so thatm; — 3N; >
mj_1+3N;_1. If 3 a,e™ is the Fourier-Stieltjes series of a measure
then

I * e“”-ftij = je'™itg; (Vn, being de la Vallée Poussin’s keriel

and consequently

: J
3l arery > dllgslle > 1

which is impossible. We have thus proved

Theorem. (a) There exists a continuous functigrsuch that for all
p <2, YIf ()P = . |

(b) There exists a trigonometric seriés,a,,¢"*t, which is not a Fourier-
Stieltjes series, such that|f(n)|? < cc for all p > 2.

Both statements can be improved. See Appendix B.

2.5 We finish this section with another construction: that of afset

of positive measure ofi which carries no function with Fourier coeffi-
cients in¢? for any p < 2. Such a set clearly must be totally disconnected
and therefore carries no continuous functions. Its indicator function,
however, is a bounded function whose Fourier coefficients belong to no
P, p < 2.

Theorem. There exists a compact seton T such thatF has pos-
itive measure and such that, the only functiprcarried by E with
S If()|P < oo for somep < 2, is f = 0.
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First, we introduce the notatibn
(2.2) £l e = supf(5)| Howpz(EZMUMﬂlw;
and prove:

Lemma. Lete > 0, 1 < p < 2. There exists a closed sét, C T
having the following properties:

(1) The measure df, , is > 27 —e.

(2) If f is carried byE. , then

[fll7eee < el fllFer -
PROOF. Let~ > 0. Put

t) % for 0<t<~vy mod2r
SD =
K 1 fory <t <27 mod 2.

Then, by Theorem 2.1

1

1_ 1 1
@3) ol < llea e <2077, wheres 4 — 1.

We notice that, (0) = 0 so that, if we choose the integexs Xz, ..., Ax
increasing fast enough, every Fourier coefﬁcien@ﬁl oy (Ajt) is es-

sentially a Fourier coefficient of one of the summands. It then follows
that

N
1 1_
@4 | et < Vi gyl
1
We take a large value fav and puty = /N and
1 N
(1) = 5 D e (Agh)-
1

Then, by (2.3) and (2.4), it follows that

1

1_1 l,l_ 1 1 1_
||| e < dmy?” "Na " =4mer” "Na »

so that if N is large enoughi®| . < e. We can take

N
Bep={t:0(t) =1} = ({t: 0, (0t) = 1}.
1

Notice that|| || 1 is the same a§ || ().
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Sincey, (A;t) # 1 on a set of measurg it follows that
|Ee p| > 27 — Ny =271 — €.
Now if f is carried byE, ,, then for arbitrary n,

) = % / eIt F ()t = % / =i £ (1) (t)dt.

It follows from Parseval’s formula that

)| =13 fn—m)@m)] < |@llrell fllre < ellf]lrer;

and the proof of the lemma is complete. <

PROOF OF THE THEOREM TakeE =N, E,, , Wheree, =37, and
p, = 2—¢,. The measure aof is clearly positive, and if is carried by
E and|| f|| e« < o0, it follows that for alln large enough

[fllFese < enllfllren < enllfllFer,

hencef = 0 and sof = 0. <

EXERCISES FOR SECTION 2

1. Verify that2=(m+Y/2f,_ (.., as defined in exercise 6 part c) of .6,
satisfy (2.1) wherz=(m+1/2 < ¢,

2. Show that iV > ¢~! and if m,, increases fast enough, thgndefined
by: g(t) = V™! for 2nn/N <t < 2x(n+1)/N,n =0,..., N, satisfies (2.1).

3. Let{a,} be an even sequence of positive numbers. A closed sefl
is a set of typeU(a,) if the only distributiony carried by E and satisfying
fa(n) = o(ay) as|n| — oo, is u = 0. Show that ifa, — 0 there exist set& of
positive measure which are of typ&a,). Hint: For0 < a < 7= we write (see
exercise 3 of 1.6):

0 a<|t| <.

L—a™'ft] |t <
Aa(t):{ o™il il <a

We haveA, € A(T), ||[Aallar = 1, andA,(0) = a/27. Choosen; so that
In| > n; impliesa, < 1077; put E; = {t: A, ;(2n;t) = 0} andE = N2, E;.

Notice that E| > 27 — Y 2'"7 > 0. If 41 is carried byE we have, for alln and
Js <e””tA3,j(2n],t>, wy = 0 sinceA;—; (2n,t) vanishes in a neighborhood &f.

By Parseval’'s formula

0= (™ Mgy iy 0018) = S ) + 3 Bogs (WA T 2.
373 (2n 1) o - 3-J j
0
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If n; > |m| andif|i(n)| < a, we have fork > 0, |i(m + 2n;k)| < 1077, hence
(379 /2m)|a(m)| < 1079, Lettingj — oo we obtaini(m) = 0, and,m being
arbitrary,u = 0.



Chapter V

Lacunary Series and Quasi-analytic
Classes

The theme of this chapter is that of 1.4, namely, the study of the
ways in which properties of functions or of classes of functions are
reflected by their Fourier series.

We consider important special cases of the following general prob-
lem: let A be a sequence of integers afda homogeneous Banach
space orT; denote by, the closed subspace Bfspanned bye '},
or, equivalently, the space of glle B with Fourier series of the form
> sen axe’™. Describe the properties of functions By, in terms of
their Fourier series (and). An obvious example of the above is the
case of a finite\ in which all the functions inB, are polynomials. If
A is the sequence of nonnegative integers &ng LP(T), 1 < p <
oo, then B, is the space of boundary values of functions in the cor-
respondingH?”. In the first section we consider lacunary sequences
A and show, for instance, that i is lacunary a la Hadamard then
(LY(T))a = (L'(T))a and every bounded function ii!(T)), has an
absolutely convergent Fourier series.

In the second section we prove the Denjoy-Carleman theorem on
the quasi-analyticity of classes of infinitely differentiable functions and
discuss briefly some related problems.

1 LACUNARY SERIES

1.1 A sequence of positive integefs,,} is said to beHadamard la-
cunary, or simply lacunary, if there exists a constant 1 such that
Ai1 > q), for all n. A power seriesy a,2*" is lacunary if the se-
quence{),} is, and a trigonometric series is lacunary if all the fre-
quencies appearing in it have the fotm, where{\,} is lacunary.

The reason for mentioning Hadamard’s name is his classical theo-

117
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rem stating that the circle of convergence of a lacunary power series is a
natural boundary for the function given by the sum of the series within
its domain of convergence. The general idea behind Hadamard'’s theo-
rem and behind most of the results concerning lacunary series is that the
sparsity of the exponents appearing in the series forces on it a certain
homogeneity of behavior.

1.2 Lacunarity can be used technically in a number of ways. Our first
example is "local"; it illustrates how a Fourier coefficient that stands
apart from the others is affected by the behavior of the function in a
neighborhood of a point.

Lemma. Let f € L'(T) and assume that(j) = 0 for all j satisfying
1< |ng—j| <2N. Assume thaf(t) = O (t) ast — 0. Then
(1.1 [Fno)| < 20 (N7 SURy <y 1/at T F O] + N2 ]122).

PROOF We use the conditiofi(j) = 0 for 1 < |ng—j| < 2N as follows:
if gn be any polynomial of degre®V satisfyinggy (0) = 1, then

1

flno) = o / e~ Mot f (1) g (t)dt.

As gy We take the Jackson kerndly = ||Ky|;7K%. By 1.(3.10), and
. 2
the estimaté/K v |2, = Zﬂv( - A%) > &, we obtain

In(t) < 2r* N34,

We now write

| f(no)| < %/If(t)UN(t)dt:

1
([ +] +f L0y .
[t|<N—1 N-l<|t|<N—1/4 N-Vic|t|<n 27

The first integral is bounded by

1
Nt sthKN_l\t*lf(t)|ﬂ /\JN(t)|dt = N~'sup, oy [t F(B)]-

The second integral is bounded by

N-—1/4

N2 supy, oyt f(1)] . t72dt <7 Nt sup, oy-ualtTH ()]
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The third integral is bounded by

N [17(0ldt = 20N 2| ],
Adding up the three estimates we obtain (1.1). <

Corollary. Let {\,} be a lacunary sequence arfd~ > a, cos \,t
be in L(T). Assume thaf is differentiable at one point. Then, =
o(Az1).

PROOFE Assume thatf is differentiable at = 0. Replacing it, if nec-
essary, byf — f(0)cost — f/(0)sint we can assumg(0) = f/(0) = 0.
It follows that f(t) = o(t) ast — 0. The lacunarity condition o\, }
is equivalent to saying that there exists a positive consgtanth that,
for all n, none of the numbers satisfyingl < |\, — j| < ¢\, isin
the sequence; hengéj) = 0 for all suchj. Applying the lemma with
no = Ap, @and2N = c\,,, we obtaina,, = 2f(\,) = o(A;1). <

Corollary. The Weierstrass functiomn, 2~ cos 2"t is nowhere differ-
entiable.

The conditior,, = o(\,;!) clearly implies thab"|a,,| < cc. Itis not
hard to see (see Zygmund [28], chap. 2, 83, 4) fiat= > a,, cos A\t
is then in Lip,(T) for all « < 1 and that it is differentiable on a set
having the power of the continuum in every interval. Thus, for a lacu-
nary series, differentiability at one point implies differentiability on an
everywhere dense set. This is one example of the "certain homogeneity
of behavior" mentioned earlier. We can obtain a more striking result
if instead of differentiability we consider Lipschitz conditions. For in-
stant, if0 < o < 1, a lacunary series that satisfies a |.igpndition at a
point satisfies the same conditiemerywherdgsee exercise 1 at the end
of the section).

1.3 Another typical use of the condition of lacunarity is through its
arithmetical consequences. A useful remark is that ifi > ¢\; with

q > 3, then every integer has at most one representation of the form
n =Y n;A; wheren; = —1,0, 1. With this remark in mind we consider
products of the form

N

(1.2) Py(t) =[] (1 + aj cos(A\jt + ¢)))
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theq;’s being arbitrary complex numbers apge T.

The Fourier coefficients of a factdr+ a; cos(\;t + ¢;) are: 1 for
n = 0, 3ajie’¥ for n = );), tajie™ n = —);), and zero else-
where. If we assume the lacunarity condition with> 3, it follows
that Py (n) = 0 unlessn = Y 7;);, with n; = —1,0,1, in which case
P (n) = [1,,, 40 5a;i¢™%7; in particularPy (0) = 1. If we compare the
Fourier series oy to that of Py we see thaPy.; containsPy as
a partial sum, and contains two more b|00%&21v+1iei9"N+1eMN“tPN
andiay e N+ ANt Py The frequencies appearing in the first
block lie within the interva(/\NH—Z]lV /\j,)\N+1+Zf[ Aj) C (Ant1(g—
2)/(¢—1),An+1¢/(g—1)) and the second block is symmetric to the first
with respect to the origin. No matter what coefficieatsve take, the
(formal) infinite product

o0

P(t) = [](1 + a; cos(At + ;)

can be expanded as a well-defined trigonometric series, and if the prod-
uct converges in the weak-star topologyMfT) to a functionf or a
measureu, then the corresponding trigonometric series is the Fourier
series off (resp.u).

We shall refer to the finite or infinite products described above as
Riesz products. Two classes of Riesz products will be of special inter-
est.

1. The coefficients;; are all real anda;| < 1. In this casel +
aj cos(Ajt+¢;) > 0 hencePy(t) > 0forall N. Itfollows that|| Py || =
1 and, taking a weak-star limit point, it follows thatis a positive mea-
sure of total mass 1 (i.e., that the trigonometric series formally corre-
sponding toP is 'the Fourier-Stieltjes series of a positive measure of
mass 1).

2. The coefficients; are purely imaginary (in which case we shall
write P(t) = [](1+ia; cos(A;jt+¢;)) with a; real) and satisfy_|a;|? <
co. In this casel < [1 +iajcos(Ajt + ¢;)> < 1+a5 1 < |[Py(t)]* <
[13°(1 + a3) < oo. Since thePy are uniformly bounded we can pick a
sequenceV; such thatPy, converge weakly to a bounded functién
whose Fourier series is the formal expansioof

1.4 The usefulness of the Riesz products can be seen in the proof of

Lemma. Let f(t) = SV ¢;je™t with A_; = —);, A, > 0 and, for
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someg > 1, A\jy1 > ¢)j, j=1,2,...,N. Then

(1.3) > leil < Agllfll
and
(1.4) I fllz2 < Bgllfllee

whereA, and B, are constants depending only gn

PROOF We remark first that it is sufficient to prove (1.3) and (1.4) in
the case thaf is real valued (i.e.¢; = ¢_;) since we can then apply
them separately to the real and imaginary parts of arbitfatiiereby
at most doubling the constants and B,

Assume first thaty > 3. In order to prove (1.3) we consider the
Riesz productP(t) = [Ty (1 + cos(\jt + ¢;)) Whereyp; is defined by
the conditioné;e’?i = |c;|. We have|P| ;. = 1 and consequently
[1/27 [ P(t)f(t)dt| < ||flleo- SinceP();) = Lei¥s we obtain from Par-
seval's formula:} 3" ¢;e’¢7 = 13" |¢;| < | flls, and (1.3) follows with
A, = 2 for real-valuedf and A, = 4 in the general case.

For the proof of (1.4) we consider a Riesz product of the second
type. We remark thatf||2, = 3"|c;|? and if we takea; = |¢;|-[|f]| ;2
andy; such thatic;e’? = |c;| thenP(t) = [[(1 + ia; cos(Ajt + ;)
is uniformly bounded by [(1 + af)% < e XY < b By Parseval’s
formula

e = 5 Yl = 5= [ POT@ar < e s

which is (1.4) withB, = 2e2. Again if we putB, = 4e? then (1.4) is
valid for complex-valued functions as well.

If 1 < g < 3 and we try to repeat the proofs above, we face the dif-
ficulty that, having set the produétthe way we did, we cannot assert
that P()\;) is Je'#i (or Liase’s in case 2) since,; may happen to sat-
isfy nontrivial relations of the form; = 3" neA\r with n, = 0,1, —1. We
can, however, construct the Riesz products for subsequendes jof
Let M = M, be an integer large enough so that

1 ! >1 and 1+
M -1" ¢ M -1

(1.5) M >3, < q.

Fork < m < M write \"™ = X, and notice thaa(]} > ¢™A{™.
By the remark concerning the frequencies appearing in a Riesz product
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it follows that all the frequenciea appearing in any product corre-

sponding to{/\§.m)} satisfy||n| — /\§.m)| < quJIA for somej, hence by
(1.5)ifk >0,k #m mod M, )\, does not appear as a frequency in a
Riesz product constructed ga\™ 1. It follows that if

N

P(t) = [J(1 + amtinr cosmjart + Pmyjna))
1

then

1 — 1 ; _ i .
o P(t)f(t)dt = 5 0m+iM (e"Pmtit e iy 4 e e )

and repeating the two constructions used above we obtain

(1.3) > lemsinl <40 fll

(1.4) (Xlemssnal?)” < aetifll

Adding (1.3") and (1.4’) form = 1,..., M we obtain (1.3) and (1.4)
with A, = 4M, and B, = 4e3 M,. <

Theorem. Let {)\;} be lacunary. (a) Iff = 3 c;e’?t is the Fourier
series of a bounded function, th&h¢;| < oco.
(b) If 3" c;eit is a Fourier series, thel"|c;|? < oo.

PROOF Write f ~ Y c;e'i® and apply (1.3) resp.(1.4) to,(f,t). <«

1.5 The role of the Riesz products in the proof of Lemma 1.4 may
become clearer if we consider the statements obtained from 1.4 by du-
ality. For an arbitrary sequence of integerswe denote byC, the
space of all continuous functiorfson T such thatf(n) = 0 if n & A.

C, is clearly a closed subspace®(T).

DEFINITION: A set of integers\ is aSidon setf every f € Cy has an
absolutely convergent Fourier series. It follows from the closed-graph
theorem that\ is a Sidon set if, and only if, there exists a constant
such that

(1.6) D @) < Kllf o

for every polynomialf € Cj.
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Lemma. A set (of integers) is a Sidon set if, and only if, for every
bounded sequend@, },ca there exists a measupec M(T) such that
(X)) = dy for A € A.

PROOF. Let A be a Sidon set anfll)} cx a bounded sequence an

The mappingf — > ., f(\)d, is a well-defined linear functional on
Cy. By the Hahn-Banach theorem it can be extended to a functional on
C(T), that is, a measure. For this measurge we have

(1.7) A\ = / ¢Ngn = dy forall A e A.

Assume, on the other hand, that the interpolation (1.7) is always pos-
sible. Letf € Cy and writed, = sgn(f())). Then, by Parseval’s for-
mula, 32| (V)] = 32 f(\)d» is summable tdf, 1) wherey is a measure
which satisfies (1.7). Since for series with positive terms summability
is equivalent to convergencg,|f()\)| < oo and the proof is complete.

<

The statement of part (a) of Theorem 1.4 is that lacunary sequences
are Sidon sets, and the Riesz product is simply an explicit construction
of corresponding interpolating measures.

1.6 The statement of part (b) of Theorem 1.4 is that for lacungry
(L'T))a = (L*(T))s. Every sequencéd,} such thatd |d\|? < oo
defines, as above, a linear functional @?#(T)), which, by 1.4, is a
closed subspace df!(T). Remembering that the dual spaceldfT)

is L>°(T), we obtain, using the Hahn-Banach theorem, that there exists
a bounded measurable functigpsuch that

(1.8) G\ =dy A€A.

Here, again, Riesz products (of type 2) provide explicit construction of
such functiong. One can actually prove the somewhat finer result:

Theorem. Let A be lacunary and assume that|d,|> < oc. Then
there exists a continuous functigrsuch that(1.8)is valid.

We refer the reader to exercise 6 for the proof.

EXERCISES FOR SECTION 1

1. Let{\,} be lacunary and let ~ 3" a, cos \,t. Assume thaf satisfies
a Lip, condition with0 < a < 1 att = to. Show thata, = O (X, *) asn — cc.
Deduce thaf € Lip_ (T).
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2. Let{)\,} be a sequence of integers and assume that for some < 1
the following statement is true: jf ~ " a, cos Ant satisfies a Lip condition
at one point, therf € Lip_, (T). Show that{\,.} is lacunary.

Hint: If the sequencé\,.} is not lacunary it has a subsequeRge} such that
lim pok—1/p2r = 1 @andlim pok41/p2k = co. FOr an appropriate sequengs, },
the functionf(t) = > ax(cos part — cos pak—1t) satisfies a Lig condition at
t=0butf ¢ Lip(T).

3. Letf € L'(T), f ~ > an cos At With {)\,,} lacunary. Assumg(t) = 0
for |t| < n, n being a positive number. Show thats infinitely differentiable.

4. Show directly, without the use of Riesz products, that,if; > 4\, and
f(t) = 37 an cos At is real-valued, then

supf (6] > 5 3 Janl.

Hint: Consider the set§ : a, cos A\t > |an/2]}.

5. If d, — 0 asn — oo we can writed,, = §,¥, where{4,} is bounded
andy,, = v (n) for somey € L'(T). (See theorem 1.4.1 and exercise 1.4.1.)
Deduce that ifA is a lacunary sequence add — 0 as|\| — oo, there exists a
functiong € L*(T) such that

dx =g(A) for Xe A

6. Use Theorem 1.4.1 to show that¥f|d.|*> < oo, there exist sequences
{6,} and {¢,,} such thaid, = §,9,, >[6a|* < oo, andip, = 1b(n) for some
¥ € L*(T). Remembering that the convolution of a summable function with a
bounded function is continuous, prove Theorem 1.6.

7. Assume)l;;1/)\; > ¢ > 1. There exists a numbél = M, such that
every integem has at most one representation of the form: >~ 7\, +im
wheren; = —1,0,1, and1 < m; < M. Use this to show that the product
[1°Q+ Y disjar cos(Amjart + pmejr)) has (formally) the Fourier co-
efficient Jdre’#* at the point\;). Show that if0 < di. < I/M, for all k, then
the product above is the Fourier Stieltjes series of a positive measure which
interpolates{ 3 dxe’#* } on {\}.

8. Assume);41/); > ¢ > 1 and) |d;|* < co. Find a product analogous
to that of exercise 7), which is the Fourier series of a bounded function, and
which interpolategd,;} on{\;}.

*9. Show that the following condition is sufficient to imply that the se-
guenceA is a Sidon set: to every sequenei } such thatd,| < 1 there exists
ameasure € M(T) such thatii(\) — da| < 3.

10. Show that a finite union of lacunary sequences is a Sidon set.

*11. Let )\, be positive integers such that./\, > 3. Show that for
everyU > 0 ande > 0 there exists: > 0 such that ifb,, are real numbers,
>"|ba|? = 2 and supb,| < a, then, if|u| < U, we have

) w2
(19) ’QL elqun cosAnt e | <c
us
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Hint: Write H elubn cosAnt H(l + iuby, cos Ant — %u%i cos? )\nt) (14 cn)

with [c,.| < U?|b,[*. If aU® << &, we have|[J(1+¢.) — 1| << ¢, and the factor
[1(1+¢n) can be ignored. In the main factor replacs’ A, t by 1 (1+cos2A.t),

and check that the constant term of the product is the product of the constant
terms of the factors.

*2 QUASI-ANALYTIC CLASSES

2.1 We consider classes of infinitely differentiable functionsoh.et
{M,} be a sequence of positive numbers; we denot€ b\, } the
class of all infinitely differentiable functiong on T such that for an
appropriateR > 0

(2.1) 1/l < R"M,, n=1,2,...

We shall denote by'#{M,,} the class of infinitely differentiable func-
tions onT satisfying:

(2.2) £ ™ |e < R"M, n=1,2,...

for someR (depending ory).

The inclusionC*{M,,} c C#{M,} is obvious; on the other hand,
since the mean value of derivativesDis zero, we obtait} f ) (t)|| o <
|f®*+D||;2 and consequentlg#{M,} ¢ C*{M,,,}. Thus the two
classes are fairly close to each other.

Examples: If M, = 1 for all n, thenC#{M,,} is precisely the class of
all trigonometric polynomials off.

If M, =n!, C#*{M,} is precisely the class of all functions analytic
onT. (See exercise 1.4.3)

We recall that a sequenée, }, ¢, > 0, islog-conveif the sequence
{log ¢, } Is a convex function ofi. This amounts to saying that, given
k <l < min the range of,, we have

(2.3) logc < m log ¢, + log ¢,
—k m—k

or equivalently

(24) o < C](Cm*l)/(m*k)Cgrll—k)/(m—k)

2.2 The identity||f™ |2 = (3 f(j)%*")z allows an expression of
condition (2.2) directly in terms of the Fourier coefficientsfofAlso it
implies
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Lemma. Let f be N times differentiable orT. Then the sequence
{lf™] .-} is monotone increasing and log-convex fox n < N.

PROOF. The fact that| £ ||;= = (3 f(j)%j2")2 is monotone increas-
ing is obvious. In order to prove (2.4) we write= (m — k)/(m — 1),
andq = (m — k)/(l — k); then 1/p + I/q = 1 and by Hdlder’s inequality

SIFG)% = SAFG)P/P32/P) (| ()2 152m 0y < || f&) |28 £

which is exactly (2.4). <

It follows from lemma 2.2 (cf. exercise 2 at the end of this section) that
for every sequencgM}, } there exists a sequenggf,, } which is mono-
tone increasing and log-convex such th&t{),,} = C#{M/}. Thus,
when studying classe&s” { M, } we may assume without loss of gener-
ality that{M,,} is monotone increasing and log-convex; throughout the
rest of this section we always assume thatjfer! < m,

(2.5) M, < Mém*l)/(m*k)M}i—k)/(m—k)

2.3 For a (monotone increasing and log-convex) sequence we define
theassociated function(r) by

(2.6) T(r) = rlgfo M,r—"™.

We consider sequences$, which increase faster that* for all R > 0;
the infimum in (2.6) is attained and we can write) = min,, > M,,r~".
If we write 4, = M; ', andyu, = M, /M, for n > 1; thenpu, is
monotone-decreasing since by (2.5),.1/pn = M2/M,_1M,1 < 1;
we haveM,r—" = [} (u,;r)~" and consequently

(2.6) ()= ] (mm)™"

pir>1

The functionr(r) was implicitly introduced in 1.4; thus it follows from
l.4.4 that if f € C#{M,,} then, for the appropriatg > 0

1fG) < T(GR™Y,

and exercise 1.4.6 is essentially an estimate-foy in the case\/,, =

nan
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2.4 An analytic function onT is completely determined by its Tay-
lor expansion around any point t9 € T, that is, by the sequence
{f™(tg)}o,. In particular if (™) (ty) = 0, n = 0,1,2,..., it follows
that f = 0 identically.
DEFINITION: A class of infinitely differentiable functions of is
quasi-analyticif the only function in the class, which vanishes with
all its derivatives at somg € T, is the function which vanishes identi-
cally.

The main result of this section is the so-called Denjoy-Carleman
theorem which gives a necessary and sufficient conditions for the quasi-
analyticity of classes'# {M,,}.

Theorem. Let{M, } be monotone increasing and log-convex. t(e}
be the associated functig2.6). The following three conditions are
equivalent:

(i) C#{M,} isquasi-analytic
(i1) / log 7(r) dr = —o0
1

1472
M,

The proof will consist in establishing the three implicati¢iis=- (i)
(Theorem 2.4 below);) = (ii7) (Theorem 2.8), an@lii) = (i7) (Lemma
2.9).

We begin with:

2.5 Lemma. Let p(z) # 0 be holomorphic and bounded in the half
plane®(z) > 0 and continuous of(z) > 0. Then

/ log|ip(£iy)|
0

Y
>_
1492 o

PROOE The functionF'(¢) = gp(%) is holomorphic and bounded in

the unit discD (and is continuous ol except possibly a = 1). By
111.3.14 we have/; log|F(¢')|dt > —oo. The change of variables that
we have introduced gives for the boundakés= (iy — 1)/(iy + 1), or

t = 2arc coty.

Consequentlylt = =2

Tryb and

log|p(iy 727/ log| F'(e")|dt > —oo;
| ostetini iz = 5 [ orlPie)
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similarly [ 10g|g0(—iy)|% > —oo and the lemma is proved. <«

2.6 Theorem. A sufficient condition for the quasi-analyticity of the
classC#{M,} is that [ lOﬂ%dr = —oo Wherer(r) is defined by
(2.6).

PROOF Let f € C#{M,} and assume that™(0) = 0 n = 0,1,....
Define

o(z) = / T (0.

T om
Integrating by parts we obtain,# 0,

1 1 2

o(2) = — [ e =t ()] +

2~ 2 2z 0

e (t)dt

and sincef (0) = f(27) = 0 the first term vanishes for all# 0 (we have

used the same integration by parts in 1.4.5; there we did not assume
f(0) = 0 but considered only the case= im, that is,e *'f is 2n-
periodic.) Repeating the integration by pastimes (usingf’)(0) =
f9(2r) = 0 for j < n), we obtain

2
) =g [ e
0

22"

ForR(z) > 0, e=*!] < 1 on(0,27) and consequently

M,

z
hence

lp(2)| < 7(|2])
or

log|(z)| < log 7(|z]).
It follows that [, log|¢(iy)| 1_‘32 = —oo and by lemma 2.4(z) = 0.

Sincep(in) = f(n) it follows that f = 0.

oo sinpjk

2.7 Lemma. Assumey; > 0, > 0" p; < 1. Write o(k) =[], TR
Thenf(t) = 3 ¢(k)e*t is carried by[—1,1] ( mod 27), it is in-
finitely differentiable and| f")|| < 2[]g ;"
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PROOFE All the factors in the product defining(k) are bounded by

so that the product either converges or diverges to zero (actually it con-
verges for allk) and o(k) is well defined. (k) clearly tends to zero
faster than any power df so that the series definingconverges uni-
formly andf is infinitely differentiable. We have(0) = 1 so thatf # 0.

The sequenc%%}k is the sequence of Fourier coefficients of
. _7_00 . N sinpk
the functionl'; (t) = mu; 'y, .- If we write o (k) = T, 2

have

,we

fn(t) = ZgoN(k)eikt =Tg*Dy*...TN

and the support ofy is equal td— 30 115, S0 1] mod 27. Sincefy
converges uniformly t@, the support of is equal td— > 115, > 115]
mod 2. Finally, sincel|f™|2, = 3 |¢(k)|?k*" and

n

|¢(k)| S H(,Uzjk)_l = (H/’é.j>_1k_”_1,
0 0
we obtain|[f™|[z2 < (ITg 1) " (Xy.0 k~2)"/* and the proof is com-
plete. "

2.8 Theorem. A necessary condition for the quasi-analyticity of the

classC#{M,} is that}® 37~ = cc.

PROOF Assume tha} 1\%11 < oo. Without loss of generality we may
assumes Mf‘ﬁl < 3 (replacingM,, by M} = M, R" does not change
the classC'#{M,,} while " M = =137 M),

M, M1
Write po = p1 = 1/4, pj = M;_1/M;, j > 2. Then the function
f defined by Lemma 2.7 has a zero of infinite order (actually vanishes

outside of[—1, 1]), is not identically zero, and € C#{M,,}. <

2.9 Lemma. Under the assumption of theorem 2.4 we have

Z % < 264/ log 7(r) dr.
Mn+1 e 1 + 7"2

2

PROOF As before we writgs,, = Y-t

tion M(r) of {u,} by:

We define the counting func-

M(r) = the number of elemenjs; such thaf;r > e,
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and recall that (r) =[], ,~(u;7)~"; hence

“logr(r) = Y log(ur) = Y log(ur) = M(r).
pgr>1 niT>e
Thus fork =2,3,...

+1

ekt k ok b
(2.7) / 710gT(T)dr > M(e?) / dr > %M(e );

% 1472 — 2e2kt2

on the other hand,

(2.8) S

61_k</,l,j<€2_k

INA
<
—
]
E
~
|
—
]
T
—
~
~—
T
E
A
]

and the theorem follows by summing (2.7) and (2.8) with respect to
k, k=2,3,.... <

Remark: Theorems 2.4, 2.8, and lemma 2.9 together prove Theorem
2.4. We see in particular that#{M,,} is not quasi-analytic, it con-
tains functions (which are not identically zero) having arbitrarily small
supports.

For further reading, generalizations, and related topics we mention
[17]].

EXERCISES FOR SECTION 2

1. Show thafc,} is log-convex if, and only ife2 < cp_1cny forall n.

2. (a) Let{cy}>=, be a log-convex sequence for allbelonging to some
index set/. Assume thal\l,, = supacrcp < oo for all n. Prove that{ M, } is
log-convex.

(b) Let {M;,,} be a sequence of positive numbers. L&t} be the family
of all log-convex sequences satisfyiay < M,, for all n. PutM,, = sup, c5.
ThenC#{M,} = C*{M,}.

3. Let M; < j! for infinitely many values ofi. Show thatC*{M,} and
Cc#*{M,} are quasi-analytic.

Hint: Assumingf € C*{M,} andf®*)(0) = 0 for all k, use Taylor's expansion
with remainder to show = 0.

4. We say that a functiop € C*°(T) is quasi-analytic iC# {||¢™|| .2} is
quasi-analytic. Lef € C*°(T); show that if the sequendg\;} increases fast
enough and if we set

A=Y dey <k < dagnaf(k)e™,
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then bothf; andf, = f — fi are quasi-analytic. Thus, every infinitely differen-
tiable function is the sum of two quasi-analytic functions.

5. Show thatC#{n!(logn)*"} is quasi-analytic if0 < o« < 1, and is
nonquasi-analytic if > 1.

6. Let7(r) be the function associated with a sequefitg, }.

(a) Show thatr(r))~! is log-convex function of-.

(b) Show thatV/,, = max, r"7 (r).

7. Let{w,} be alog-convex sequence=0,1,...,w, > 1, and letA{w, }
be the space of alf ¢ C(T) such that|f||;...; = Z|f(n)|w\n| < oo. Show
that with the norm| |1...3, A{w.} is @ Banach space. Show that a necessary
and sufficient condition ford{w,} to contain functions with arbitrarily small
support isy 7 18 < oo,

8. Let{w,} be log-convexw, > 1, and assume that, — oo faster than
any power of n. The sequences = {W7A| }:;oo tend to zero afg| — .

Show that the subspace that, £ = 0,1,... generate i (the space
of sequences tending to zero&) is uniformly dense i, if, and only if,

logwn _
Yo —

o0

Hint: The dual space aof; is *. If {a,} € ¢* is orthogonal tary, k = 0, .. .,
the functionf(t) = > Z—zei”t, which clearly belongs tel{w,}, has a zero of
infinite order.

9. Let f be as in exercise 1.3. Show that 0 identically.



Chapter VI

Fourier Transforms on the Line

In the preceding chapters we studied objects (functions, measures,
and so on) defined of. Our aim in this chapter is to extend the study
to objects defined on the real lile Much of the theory, especially the
L' theory, extends almost verbatim and with only trivial modifications
of the proofs; such results, analogous in statement and in proof to the-
orems that we have proved fét often are stated without a proof. The
difference between the circle and the line becomes more obvious when
we try to see what happens fof with p > 1. The (Lebesgue) measure
of Rbeing infinite entails that, unliké! (T) which contains most of the
"natural” function spaces oh, L!(R) is relatively small; in particular
LP(R) ¢ L*(R) for p > 1. The definition of Fourier transforms it (R)
has now a much more special character and a new definition (i.e., an
extension of the definition) is needed fo¥(R), p > 1. The situation
turns out to be quite different for < 2 and forp > 2. If p < 2, Fourier
transforms of functions id?(R) can be defined by continuity as func-
tions in LY(R), ¢ = p/(p — 1); however, ifp > 2, the only reasonable
way to define the Fourier transform di(R) is through duality and
Fourier transforms are now defined as distributions. The plan of this
chapter is as follows: in section 1 we define the Fourier transform in
L'(R) and discuss its elementary properties. We also mention the con-
nection between Fourier transforms and Fourier coefficients and prove
Poisson’s formula. In section 2 we define Fourier-Stieltjes transforms
and obtain various characterizations of Fourier-Stieltjes transforms of
arbitrary and positive measures. In section 3 we prove Plancherel’s
theorem and the Hausdorff-Young inequality, thereby defining Fourier
transforms inL?(R), 1 < p < 2. In section 4 we use Parseval’s for-
mula, that is duality, to define the Fourier transforms of tempered dis-
tributions, and study some of the properties of Fourier transforms of
functions inL?(R),p < co. Sections 5 and 6 deal with spectral anal-

132
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ysis and synthesis in>°(R). In section 5 we consider the problems
relative to the norm topology and show that the class of functions for
which we have satisfactory theory is precisely that of Bohr's almost pe-
riodic functions. In section 6 we study the analogous problems for the
weak-star topology. Sections 7 and 8 are devoted to relations between
Fourier transforms and analytic functions. Finally, section 9 contains
Kronecker's theorem (which we have already used in chapter II) and
some variations on the same theme.

1 FOURIER TRANSFORMS FOR L'(R)

1.1 We denote byL!(R) the space of Lebesgue integrable functions
on the real line. Fof € L}(R) we write

Il = [ 1#@)da,
and when there is no risk of confusion, we wijit&| .. or simply|| f||
instead ofl| f|| .1 (r)- A
The Fourier transfornf of f is defined by

(1.1) f() = /f(a:)e*lfzdx for all real¢t

This definition is analogous to 1.(1.5), and the disappearance of the
factor1/2x is due to none other than our (arbitrary) choice to remove
it. It was a natural normalizing factor for the Lebesgue measurg; on
but, at this point, it seems arbitrary fer The factorl /27 will reappear

in the inversion formula and some authors, seeking more symmetry for
the inversion formula, writg/1/2x in front of the integral (1.1) so that
the same factor appear in the Fourier transform and its inverse. The
added symmetry, however, may increase the possibility of confusion
between the domains of definition of a function and its transform. In
L'(T) the functions are defined oh whereas the Fourier transforms
are defined on the integers; in(R) the functions are defined dand

the domain of definition of the Fourier is again the real line. It may be
helpful to consider two copies of the real line: on&isand the other,
which will serve as the domain of definition of Fourier transforms of
functions inL!(R), we denote b{. This notation is in accordance with
that of chapter VII.

TThroughout this chapter, integrals with unspecified limits of integration are always
to be taken over the entire real line.
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Most of the elementary properties of Fourier coefficients are valid
for Fourier transforms.

Theorem. Let f,g € L'(R). Then
(2) (F+9)(&) = f©+9(©)

(b) For any complex number
(@f)(&) = af(€)

(c) If f is the complex conjugate ¢f then

(d) Denotef,(z) = f(x —y), y € R. Then
(&) = f(&)e™

(e) 1F©)] < [If(@)lde = | f]
(f) For positive\ denote

then

PrRoOFE The theorem follows immediately from (1.1). Parts (a) through
(e) are analogous to the corresponding parts of I.1.4. Part (f) is obtained
by a change of variablg = \z:

50 = [ fome P = [ e iy = i5).
1.2 Theorem. Let f € L!(R). Thenf is uniformly continuous oR.
PROOF.
flewm = f() = [ fa(e e - s,
hence
(1.2) fe+m) = O < [If@le - 1/da.

The integral on the right of (1.2) is independentépthe integrand is
bounded by|f(z)| and tends to zero everywhereips- 0. <
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1.3 The following are immediate adaptations of the corresponding the-
orems in chapter I.

Theorem. Letf,g € L*(R). Foralmostallz, f(z—y)g(y) is integrable
(as a function of)) and, if we write

hz) = / £z - y)a(y)dy,

thenh € L*(R) and
1R <11 gl

moreover,

h(E) = f(©a¢)  foralle,

As in chapter | we denotle= f g, call h theconvolutionof f andg,
and notice that the convolution operation is commutative, associative,
and distributive.

1.4 Theorem. Letf,h € L'(R) and

o) = 5 [ H(©)ewdg
with integrableH (¢). Then
(1.3) (s $)@) = 5 [ HEOF©de.

PrROOF The functionH (£)f(y) is integrable in(¢,y), hence, by Fu-
bini’s theorem,

(s £)@) = [ btz = sy = - [ [ @ s(0)dedy
— 5 [H@e [ = o [ HOf©

<

1.5 Theorem. Let f € L' (R) and define
F(r) = / f(y)dy.
Then, ifF € L'(R) we have

(1.4) FE) = —=f(©) all real ¢ # 0.
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An equivalent statement of the theorem is: FifF” € L' (R), then
FI(§) = igF(&).

1.6 Theorem. Letf e L'(R) andzf(z) € L'(R). Thenf is differen-
tiable and

d , —
(1.5) d@f(é) = (—izf)(§).
PrRoOOF
(1.6) f(“h /f eier( 1)da:.

The integrand in (1.6) is bounded byf(x)| (which is in L(R) by
assumption) and tends taiz f(z)e~%* pointwise, hence (Lebesgue) it
converges to-izf(x)e * in the L*(R) norm. This implies that, as
h — 0, the right-hand side of (1.6) converges(@)(g) and the
theorem follows. <

1.7 Theorem (Riemann-Lebesgue lemma)or f € L}(R)

lim f(¢) =

1€]—0

PROOFE If ¢ is continuously differentiable and with compact support
we have, by 1.5 and 1.159(¢)| < ||¢'|| .1 ) hencelim¢|—.[g(§)] = 0.
For arbitraryf € L'(R), lete > 0 andg be a continuously differentiable,
compactly supported function such thgt — g|| .1 (z). We have both
1£(§) — 9(&)] < e andlime_[§(¢)| = 0; hencelimsup¢| ||/ ()] <.
This being true for alk > 0, we obtainlim, ., f(£) = 0. <

1.8 We denote byA(R) the space of all functiong on R, which are
the Fourier transforms of functions ib'(R). By the results above,
A(R) is an algebra of continuous functions vanishing at infinity, that
is, a subalgebra af(R), the algebra of all continuous functions &n
which vanish at infinity. We introduce a norm #{R) by transferring

to it the norm ofL!(R), that is, we write

HfHA(R) =[1fllzr®)-

It follows from 1.3 that the norn |, ), is multiplicative, that is,
satisfies the inequality:

o1zl gy ol oy 12l 4
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The norm| ||, is not equivalent to the supremum norm; conse-
quently, A(R) is a proper subalgebra 6f(R).
1.9 A summability kernel on the real line is a family of continuous

functions{k,} onR, with either discrete or continuous paraméteat-
isfying the following:

/k,\(x)dx =1
@.7) kx|l = O* (1) asA — oo
lim |kx(z)|dz =0, foralla > 0.

A—00 |z|>6

A common way to produce summability kernels®iis to take a func-
tion f € L'(R) such that[ f(z)dz = 1 and to writek,(z) = Af(\z)

for A > 0. Condition (1.7) is satisfied since, introducing the change of
variabley = Az, we obtain

[ @iz = [ iy =1

ksl = / INO / F@)ldy = £
and
/ |/€A($)|dﬂ7:/ F@)ldy —0 as A — oo,
|z|>48 ly|>Aé

The Fejér kernel o is defined by
Ka(z) = AK(Az), A>0,

where

1 (sinz/2\> 1 [! ,
1. == = — €z qe
@8 K=o () = L [ - lehesac
The second equality in (1.8) is obtained directly by integration. By the
previous remark itis clear that the only thing we need to check, in order
to establish tha{K,} is a summability kernel, is thaf K(z)dz = 1.
This can be done directly, for example, by contour integration, or using

fThe indexing parametex is often real valued; however, it should not be considered
as an element a& so that no confusion with the notation of 1.1.d should arise.
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the information that we have about the Fejér kernel of the circle, that
is, thatforallo < § < =

(1.9 lim 1/_5 1 (sin(n+1)x/2>2dx: 1.

sinx /2

Since [ K(z)dz = [ K\ (z)dz, we may take\ = n + 1, in which case

. 2
KA(®) = 570051 (51“(”;;)7”/2) , and notice that i§ > 0 is small enough,
the ratio of27K, (z) to the integrand in (1.9) is arbitrarily close to one

in |z| < . More precisely, we obtaim\(=n + 1):

sind\> 1 [0 1 sin(n + 1)x/2 2 1 /0
oy dr < — | K
( ) > 2#/5n+1( x/2 > x<2w[5 A(@)
1 /™ 1 i Dax/2\?
(sm(n—i— Y/ ) i

<7
2r J_.n+1 sinx /2

Letting n — oo we see thaf K(z)dz = lim_.« ff5 K (z)dz is a num-
ber betweenin? §/6% and1; sinces > 0 is arbitrary [ K(z)dz = 1.

1.10 Theorem.Letf € L'(R) and let{k,} be a summability kernel
on R, then

A1LH;O||f —kx* fllim) = 0.

PROOF. Repeat the proof of theorem 1.2.3 and lemma 1.2.4. <

1.11 Specifying theorem 1.10 to the Fejér kernel and using theorem
1.4, we obtain

Theorem. Let f € L'(R), then

(1.10) f=lim / ' <1 - 'ﬁ') f(e)eiee de

A—oo 2T Y

in the L*(R) norm.

Corollary (The uniqueness theorem)Let f € L}(R) and assume
that f(¢) = 0 for all ¢ € Rthenf = 0.
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1.12 If it happens thatf is Lebesgue integrable, the integral on the
right-hand side of (1.10) converges, uniformlyzifto . [ £(£)e’® de.
We see thaf is equivalent to a uniformly continuous function and ob-
tain the so-called "inversion formula™:

(1.11) fla) = %/f(g)ei&’ de .
An immediate consequence of (1.11) is
(1.12) R;\(f) = max (1 - §\|,0)
and, by theorem 1.3,
— 1 — 1Y 7 A\
(1.13) (K )(O) = {( YDio s
0, €] > A

Combining this with theorem 1.10, we obtain

Theorem. The functions with compactly carried Fourier transforms
form a dense subspace bf(R).

This theorem is analogous to the statement that trigonometric poly-
nomials form a dense subspacel6fT).

1.13 Besides the Fejér kernel we mention the following:
De la Vallée Poussin’s kernel

(114) V)\(x) = 2K2)\(l’) — K)\(.’II),
whose Fourier transform is given by

1, €l <1
(1.15) Va(§) =q2- &, A< g <2x
0, 2X < [¢].

Poisson’s kernel
Pi(z) = AP(\x),

where

(1.16) P(z) =
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and

(1.17) P(¢) =e I8l

and finally Gauss’ kernel

where

(1.18) G(x) = (2r) te %7
and

(1.19) G&)—e 7.

To the inversion formula (1.11) and the summability in norm (theo-
rems 1.10 and 1.11, one should add results about pointwise summabil-
ity. Both the statements and the proofs of section 1.3 can be adapted to
L'(R) almost verbatim and we avoid the repetition.

1.14 Asin chapter |, we can replace thé(R) norm, in the statement

of theorems 1.10 and 1.11, by the norm of any homogeneous Banach
spaceB C L!'(R). As in chapter I, a homogeneous Banach space is a
space of functions which is invariant under translation and such that for
everyf € B, f, (defined byf,(z) = f(z —y)) depends continuously
ony. The assumptio® C L!(R) is more restrictive than was the as-
sumptionB c LY(T) in chapter I; it excludes such natural spaces as
LP(R), p > 1. We can obtain a reasonably general theory by consid-
ering homogeneous Banach space of locally summable functions, that
is, functions which are Lebesgue integrable on every finite interval. We
denote by, the space of all measurable functiofien R such that

y+1
1fllc = supy/ |f(x)|dz < 0o
Y

and by L. the subspace of consisting of all the functions f which
satisfy
Ify = flle =0  asy—o0.

Theorem. If B is a homogeneous Banach space of locally summable
functions orR and if convergence i implies convergence in measure,
then the£ norm is majorized by th& norm and, in particularB C L.
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PrROOF If the £ norm is not majorized by ||z, we can choose a se-
quencef, € B such that|f,||z < 27™ and| f.||z > 3". Replacingf,

by f.(z — y,) (if necessary) we may assunjéf,(z)|dz > 3" Since
Ifzllz — 0, f, converges to zero in measure and it follows that if
n; — oo fast enoughy” f,,, which belongs ta3, is not integrable on
(0,1). <

We can now extend Theorem 1.10 to homogeneous Banach spaces of
locally summable functions (see exercises 11-14 at the end of this sec-
tion); Theorem 1.11 can be generalized only after we extend the defi-
nition of the Fourier transformation.

1.15 We finish this section with a remark concerning the relation be-
tween Fourier coefficients and Fourier transforms.
Let f € L'(R) and definey by

o(t) = 2w Z f(t +2mj).

j=—c0

t is a real number, but it is clear thatt) depends only omn (mod 27)
so that we can consideras defined off. We clearly haver € L'(T)
and

lellrery < Ifllzr -
Forn € Z, we have

e 21
@(n) = % /@(t)e_intdt = Z A f(t + 27Tj)€_intdt

:]f(m)e_i7‘wdx = f(n).

so thatp is simply the restriction to the integers 6f Similarly, if we
write f(z) = A f(Az) and:

(1.20) pa(t) =21 Y fat+ 2m)),
Jj=—00

we obtain, using 1.1,

(1.21) o) = f(3).

The preceding remarks, as simple as they sound, link the theory of
Fourier integrals to that of Fourier series, and we can obtain a great
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many facts about Fourier integrals from the corresponding facts about
Fourier series. (For examples, see exercises 5 and 6 at the end of this
section.)

An application to the procedure above is the very impotfaimhula
of Poisson:

(1.22) oA > feman) = Y f(g).

n—=00 n=-—oo

In order to establish Poisson’s formula, to understand its meaning and
its domain of validity, all that we need to do is simply rewrite it as

(oo}

(1.23) PA(0)= Y @aln).

n=—oo

If ©»(0), as defined by (1.20), is well defined and if the Fourier series of
) converges ta, (0) for ¢ = 0, then (1.23) and (1.22) are valid. One
enhances the generality of (1.22) considerably by interpreting the sum

on the right as
N

Jm 3 (1= ) 7

that is, using C-1 summability instead of summation. Using Fejér’s
theorem, for instance, one obtains that, with this interpretation, (1.22)
is valid if t = 0 is a point of continuity ofp,. We remark that the
continuity of f and f is not sufficient to imply (1.22) even if both sides
of (1.22) converge absolutely (see exercise 15).

EXERCISES FOR SECTION |

1. Perform the integration in (1.8).

2. Prove thatl- [ (27/2)dxz = 1 by contour integration.

3. Prove (1.17).
Hint: Use contour integration.

4. Prove (1.19).
Hint: Show thatG(¢) satisfies the equatiofyd¢G(¢) = —£G(¢), (use 1.5 and
1.6).

5. Letf € L'(R) andy, (t) defined by (1.20). Show théitnx . [|oall 1 (r)
= [|fllL1(®); hence deduce the uniqueness theorem from (1.21).

6. Prove Theorem 1.7 using (1.21), the uniform continuity of Fourier trans-
forms and the Riemann-Lebesgue lemma for Fourier coefficients.
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7. Show thatA(R) contains every twice continuously differentiable func-
tion with compact support aR. Deduce thati(R) is uniformly dense i (R);
however, show thati(R) # Cy(R).

8. Letf € Ll( ) be continuous at = O and assume that(¢) > 0, ¢ € R.
Show thatf € L'(R) and f(0) = 5= [ f(€)

Hint: Use the analog to Fejers theorem and the fact that for positive functions
C-1 summability is equivalent to convergence.

9. Show thaiC, N L'(R), with the norm||a|| = sup,|f(z)| + || fll 11 is
a homogeneous Banach spaceRoand conclude that if € Co N L*(R) then
f(@) = lima—oo 5= [ (1 —[€]/X) f(€)d€ uniformly.

10. Letf be bounded and continuous &rand let{k,} be a summability
kernel. Show thak, * f = ka(x — y)f(y)dy converges tof uniformly on
compact sets oR.

11. Letf € L. and lety be continuous with compact support; write

pxf= /@(y)f(x —y)dy.

Interpreting the integral above as &p-valued integral, show that « f € L.
and|¢ * fllz < [l¢lloiwllflle. Use this to defing « f for g € L'(R) and
feLe.

12. Show that iff € L. then|f| € £. (notice, however, that®!°elel ¢ £ )
and, using exercise 11, prove thaffit £. andg € L*(R) then for almost all
x € R ( )f(a: —y) € L'(R) andg * f, as defined in exercise 11, is equal to

[ 9(v) y)dy.
13 Letf € £ and Ietg e L} (]R). Prove thaty(y) f(z —y) € L'(R) for
almost allz, and thatv(z) = [ g(y) y)dy satisfies|h||z < |lg|l 1)l fllz-

14. Let{k,} be a summab|I|ty kernel iL'(R) and letB C L. be a ho-
mogeneous Banach space. Show that for eye®), ||k, x f — f|lz — O, and
conclude that iff € BN L'(R), f = limy— ffA(l —€]/A) f(€)e**de inthe B
norm.

15. Construct a continuous functioh € L'(R) such thatf € L'(R),
f(27n) = 0 for all integersn, £(0) = 1 andf(n) = 0 for all integersn # 0.
Hints:

(a) We denotg| fllam) = 3= f|f £)|d¢. Let g be continuous with support in
[0,27] and such thag € L' (R). Write

1 N
QN(iU):N_H (1—
N

Show thatgn (¢) = (N + 1)" 'Ky (€)§(€) whereKy is the 2r-periodic Fejér
kernel, and deduce th8§y || ar) — 0 asN — oo.

! 1) g(z — 2mj).
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(b) Let g0 be nonnegative continuous functions such tﬁgﬂt e L'(R)

: 1 0 <1
and such thad ° ¢V (z) = { R

) Then, if N; — oo fast
0 otherwise

enough,||g§{,: lag) <277 andf = Z;‘;l gﬁj has the desired properties.

2 FOURIER-STIELTJES TRANSFORMS.

2.1 We denote byM (R) the space of all finite Borel measures Rn
M (R) is identified with the dual space @f,(R)—the (sup-normed)
space of all continuous functions @ which vanish at infinity—by
means of the coupling

2.1) mmz/ﬁﬁ f € Co(R), peMR),

The total mass norm on/(R) is defined by||u|ly®) = [|du| and is
identical to the "dual space" norm defined by means of (2.1). The map-
ping f — f(x)dx identifies L!(R) with a closed subspace af (R).

The convolution of a measugec M(R) and a functionp € Cy(R) is
defined by the integral

(2.2) m*ﬂu»:/ww—ymmw.

anditis clear thatx o € Co(R) and that| ¢l < [|ullar@w)ll¢ll- The
convolution of two measures, v € M(R), can be defined by means of
duality and (2.2), analogously to what we have done in 1.7, or directly

by defining
(4 0)(B) = [ nlE = y)iv(y)

for every Borel setrF. Whichever way we do it, we obtain easily that
e v < Nl vl

2.2 The Fourier-Stieltjes transform of a measure M (R) is defined
by:

@3 o= [l = [ due) ¢k

It is clear that ify is absolutely continuous with respect to Lebesgue
measure, sayu = f(z)dz, thenj(¢) = f(¢€). Many of the properties
of L' Fourier transforms are shared by Fourier-Stieltjes transforms: if
p, v € M(R) then|a(6)] < [|pllamm), 2(£) is uniformly continuous, and
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pxv(€) = p(&)v(€). A departure from the theory df' Fourier trans-
forms is the failing of the Riemann-Lebesgue lemma (the same way it
fails for M (T)); the Fourier-Stieltjes transform of a measuneeed not
vanish at infinity.

Theorem (Parseval's formula).Letu € M(R) and letf be a con-
tinuous function inL!(R) such thatf € L'(R). Ther

(2.4) [ t@nto) = 5- [ Feit-

PrROOF. By (1.11)
1 ~ .
_ i€z ge.
— 5 [ Foeas
hence

[t@aut) =5 [[ Focun s = - [Foi-9. o

Corollary (uniqueness theorem)lf /i(¢) = 0 for all &, theny = 0.

The assumptiorf(¢) e L!(R) justifies the change of order of integra-
tion (by Fubini’'s theorem); however, it is not really needed Formula
(2.4) is valid under the weaker assumptif(g)i(—¢) € L'(R), and is
valid for all bounded continuous < L!(R) if we replace the integral on

the right bylimy .. & [, (1 - @) F(&)(—€)de (cf. exercise 1.10).

2.3 The problem of characterizing Fourier-Stieltjes transforms among
bounded and uniformly continuous functions Rnis very hard. As
far as local behavior is concerned this is equivalent to characterizing
A(R): every f € A(R) is a Fourier-Stieltjes transform, and on the other
hand, ifu € M(R) andV, is de la Vallée Poussin’s kernel (1.14), then
jx Vi € LN(T) andp« V5 (€) = ji(€) for [¢] < .

The following theorem is analogous to 1.7.3:

Theorem. Lety be continuous o, define®, by:

Dy (2) = o /1 (1 - 'i) () de

Theny is a Fourier-Stieltjes transform if, and only i6, € L'(R) for
all X >0, and||®x |21 (r) is bounded as — oo.

Notice that (2.4) is equivalent tp f(z)du(z) = 1/2 [ £(£)/(€)dE
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PROOF If ¢ = i with u € M(R), then®, = u « K,. It follows that for
allA>0,9, ¢ L1<R) and||<I>AHL1(R) < HMHM(R)

If we assume thad, € L'(R) with uniformly bounded norms, we
consider the measuré@s (z)dx and denote by, a weak-star limit point
of ®,(z)dx as\ — oo. We claim thatp = /i and since both functions
are continuous, this will follow if we show that

(2.5) / P(—E)g(€)de = / A(—€)g(€)de

for every twice continuously differentiablenith compact support. For
suchg we haveg = G with G € L' N Cy(R); by Parseval's formula

[ s(@re-e1i = Ag(@go( o (1-5)a
= hm 27T/G )P (z d;v—27r/G Ydp(x

- / 9(€)A(~€)de
and the proof is complete. <

Remark: The application of Parseval’s formula above is typical and is
the, more or less, standard way to check that weak-star limit$(iR)

are what we expect them to be. Nothing like that was needed in the case
of M(T) since weak-star convergenceM(T) implies pointwise con-
vergence of the Fourier-Stieltjes coefficients (the exponentials belng to
C(T) of which M (T) is the dual). The exponentials &do not belong

to Cy(R) and it is false that weak-star convergenceMiiR) implies
pointwise convergence of the Fourier-Stieltjes transforms (cf. exercise
1 at the end of this section.) However, the argument above gives:

Lemma. Lety, € M(R) and assume that, — u in the weak-star
topology. Assume also thag (&) — ¢(&) pointwisep being continuous
onR. Theng = ¢.

2.4 A similar application of Parseval's formula gives the following
useful criterion:

Theorem. A functiony defined and continuous dh, is a Fourier-
Stieltjes transform if, and only if, there exists a constarsuch that

(2.6) o / F(©)p(—€)de| < Csup,|f()]
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for every continuoug € L'(R) such thatf has compact support.

PrROOF If ¢ = 1, (2.6) follows from (2.4) withC' = ||| as(w)- if (2.6)
holds, f — %ff(f)go(—f)df defines a bounded linear functional on
a dense subspace 6f(R), namely on the space of all the functions
f € ConL*(R) such thatf has a compact support. This functional has a
unique bounded extensiondQ(R), which, by the Riesz representation
theorem, has the forn — [ f(x)du(x). Moreover,||ullyr) < C.
Using (2.4) again we see that- ¢ is orthogonal to all the continuous,
compactly supported functionswith f € L!(R), and consequently
Y = [ <

Remark: The family {f} of test functions for which (2.6) should be
valid can be taken in many ways. The only properties that have been
used are thatf} is dense irC;(R) and{f} is dense irCy(R). Thus we
could require the validity of (2.6) only for (a) functiorfssuch thatf is
infinitely differentiable with compact support; or (b) functiofigvhich
are themselves infinitely differentiable with compact support, and so
on.

2.5 With measures ofR we can associate measuresDsgimply by
integrating2r-periodic functions. Formally: i is a Borel set orT
(T being identified with(—7, 7]) we denote by&,, the sett + 27n and
write £ = UE,,; if u € M(R) we define

pr(E) = u(E).

It is clear thatur is a measure off and that, identifying continuous
functions on T wither-periodic functions o

@2.7) /Rf(x)da::/Tf(t)dt.

The mappingu — upr is an operator of norm one from/(R) onto

M (T), and its restriction td.! (R) is the mapping that we have discussed
in section 1.15. It follows from (2.7) thdt(n) = jr(n) for all n; thus

the restriction of a Fourier-Stieltjes transform to the integers gives a
sequence of Fourier-Stieltjes coefficients.

Theorem. A functiony defined and continuous dh, is a Fourier-
Stieltjes transform if, and only if, there exists a constant 0, such
that for all A > 0, {e(An)}c2 __ are the Fourier-Stieltjes coefficients

of a measure of norra C onT.



148 AN INTRODUCTION TOHARMONIC ANALYSIS

PROOE If ¢ = i with u € M(R) we havep(n) = i(n) = fr(n) with
[l || < ||wl]- Writing dp(2zz/X) for the measure satisfying

[t@au(3) = [ 10w dua

—

we have(|u(z/A)llm@) = llullare andu(z/A)(€) = A(€A). This implies
w(An) = p(xz/N)r(n) and the "only if" part is established.

For the converse we use 2.4. Lgte continuous and integrable
onR and assume thatis infinitely differentiable and compactly sup-
ported. We want to estimate the integgglff(g)w(—g)df and, since
the integrand is continuous and compactly supported, we can approxi-
mate the integral by its Riemann sums. Thus, for arbitearyo, if \ is

small enough:

1 A A .
@8 |5 [ HOe-0de| < | 3 Fompet-xm)| +<.
Now, (\/27)f(A\n) are the Fourier coefficients of the functigi(t) =
S F((t+2mm)/X) onT, and since the infinite differentiability of

f implies a very fast decrease ffz) as|z| — oo, we see that if\ is
sufficiently small

(2.9) supa(t)| < supf(z)| +e.

Assuming thatp(An) = jix(n), px € M(T) and||px|lam < C, we
obtain from Parseval’s formula

e S fm)e-)

= |3 dam)ia(=m)| < € supva(e);
by (2.8) and (2.9)
1 A
37 [ 1©et-0de| < csus@ + (€ + 1

and sinces > 0 is arbitrary, (2.6) is satisfied and the theorem follows
from theorem 2.4. <

2.6 Parseval’s formula also offers an obvious criterion for determin-
ing when a functiony is the Fourier-Stieltjes transform of a positive
measure. The analog to 2.4 is
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Theorem. A functiony, bounded and continuous & is the Fourier-
Stieltjes transform of a positive measure®if, and only if,

(2.10) / F(©)p(—£) > 0

for every nonnegative functiofiwhich is infinitely differentiable and
compactly supported.

PROOFE Parseval's formula clearly implies the "only if" part and also
the fact that if we assumg = i with y € M(R), theny is a positive
measure. To complete the proof we show that (2.10) implies (2.6),
with C = ¢(0), for every real-valued, compactly supported infinitely
differentiablesf (hence withC = 2¢(0) for complex-valued).

As usual, we denote big, (z) the Fejér kernel (1.8) and notice that

. 2
A Ky (2) = K(Az) = & (Slijff) is nonnegative and tends 1¢2r,
as\ — 0, uniformly on compact subsets & By (1.12) the Fourier
transform ofK(\z) is A~ max(1 — |¢|/\,0) and, asp(€) is continuous
ate =0,

(2.11) tim [ SRA(€)¢(~€) de = 9(0).

If fis real-valued and compactly supported and 0, then, for suffi-
ciently small) and allz,

2m(e + supf)) K (Az) — f(z) = 0;
hence, by (2.10) and (2.11), ffe L!(R)
@12) - [FOe-ds < po + sups)).

rewriting (2.12) for—f and lettings — 0 we obtain:

3 [ FO0-91| < o0 sums «

2.7 The analogto 2.5 is:

Theorem. A functiony, defined and continuous d is the Fourier-
Stieltjes transform of a positive measure, if and only if, forxatt 0,
{p(An)}>2 _ are the Fourier-Stieltjes coefficients of a positive mea-
sure onT.
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PrRoOFE The "only if* part follows as in 2.5. For the "if" part we notice
first that if o(An) = fx(n) with gy > 0 on T, then||u|| = »(0) and
consequently, by 2.9; is a Fourier-Stieltjes transform. Using the con-
tinuity of » we can now establish (2.10) by approximating the integral
by its Riemann sums as in the proof of 2.5. <

2.8 Definition: A functiony defined orR is said to bepositive definite
if, for every choice ot;,...,{x € R and complex numbers, ..., zy,
we have

(2.13) (& —&k)zizk > 0.

1

N
J.k=

Immediate consequences of (2.13) are:

(2.14) (=& = (&)
and
(2.15) lp(€)] < ¢(0).

In order to prove (2.14) and (2.15), we take= 2, z; = 1, 2z = z;
then (2.13) reads

P(0)(1+ |2*) + ¢(&)z + p(~=€)z = 0;

setz = 1, we getp(§) + (=€) real; setz = i, we geti(¢(£) — p(—£)
real, hence (2.14). If we takesuch thaty(&) = —|¢(¢)| we obtain:

2¢(0) — 2|¢(§)l = 0
which establishes (2.15).

Theorem (Bochner). A function, defined orR, is a Fourier-Stieltjes
transform of a positive measure if, and only if, it is positive definite and
continuous.

PROOFE Assume firstp = g with p > 0. Let&,...,&y € N and
z1,...,2zn be complex numbers; then

Z g&(ﬁj - Ek)zjﬁ = / Z 6_15jwzjei£kwﬁdu(x)

gk
N
J[$
1

(2.16) ,
dp(z) = 0
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so that Fourier-Stieltjes transforms of positive measures are positive
definite.

If, on the other hand, we assume thas positive definite, it follows
that for allAx > 0, {p(A\n)} is a positive definite sequence (cf. 1.7.6).
By Herglotz’ theorem 1.7.6p(A\n) = ji,(n) for some positive measure
wx onT, and by theorem 2.7; = i for some positivg: € M (R). <

x2.9 Some assumption of continuity gfin Bochner’s theorem is es-
sential, but one may assume only that it is continuous=at) since a
positive definite function which is continuouséat 0 is uniformly con-
tinuous on the line. This can be obtained directly from condition (2.13)
or as a consequence of Lemma 1.7.7 applied(ta:), and lettingh — 0
(see exercise 9).

Lemma. Let p = ;i for some positive. € M(R). Assume thap is
twice differentiable af = 0 or just that2¢(0) — (k) — o(—h) = O (h?).
Then| 2?du < oo, andy has a uniformly continuous second derivative
onR.

PrROOF. The assumption is that for some constant

I2(p(0) — o(h) — p(—h)) = / 9h2(1 — cos ha)du(z) < C.

Since the integrand is nhonnegative, for every o,

/ 2dp(r) < lizniglf/2h_2(1 —coshx)du(z) < C.

—a

Now, v = z?u € M(R), andy” = —7. <

Notice that if 2¢0(0) — ¢(h) — ¢(—h) = o(h?), we haveu = ¢(0)d.
By induction onm we obtain

Proposition. Let ¢ = /i for some positive, € M(R). Assume that
¢ is 2m-times differentiable af = 0, then [ 2*"dy < o, and has
a uniformly continuous derivative of ordem onR. If 2™ (0) = 0,
thenu = ©(0)do.

*2.10 Positive definite functions which are analytic@t 0 are au-
tomatically analytic in a strig¢:¢ = £ + in, |n| < a}, with a > 0.
By Bochner’'s theorem (and the previous remark) such functions are
Fourier-Stieltjes transforms of positive measures.
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Lemma. Letyu be a positive measure da Assume thak'(¢) = i(€)
is analytic at¢ = 0. Then there exists> 0 such that/ e**ldu < oo and
i1 is the restriction taR of the function

(2.17) F(¢) = /e*i@du(m)‘

PROOF. The assumption is: for some > 0, F(§) = > ° %5”

in |¢| < a. This implies|F™(0)] < Cnla=, and in particular that

[ 2?™mdp < C(2m)la=?™. Since|z >+ < 2™ + z?™+2 we have
/|x\2’”+1du < (24 a?)C(2m + 2)la=2m+?

and

n|.,.|n ng
@1 [erlgu=y [T gy ST o

forall n < a. <

An immediate corollary of (2.17) is the fact th&at¢ + in) is positive
definite ing, and (with¢ = £ + in),

(2.19) |F(Q)] < F(in).
Also, sinceF®)(¢) = [(—ix)ke~*du, we have
(2.20) [FOO] < [FE (i) +0 (1)

It follows that if {¢ = £+ in:ap < n < a1} is @ maximal strip in which
F(¢) is holomorphic, then the points, andia, are both singular points
of F.

If Fis holomorphic on the entire imaginary axis, it is entire and we
obtain the following special case of a theorem of Marcinkiewicz:

Theorem. Assume that”© is the Fourier-Stieltjes transform of a
positive measure, witR a polynomial, thenleg P < 2.

PROOF. We must have?(©) = [e~“=dy. If P(¢) = Zg a;j&l, ay # 0,
there are: directionsy; such that?'(re??s) ~ el +0(r* 1) "By (2.19)
¥; = £5 andk < 2. <
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x2.11 Positive measures and positive definite functions are the bread
and butter of Probability theory, which uses its own terminology.
A real-valued random variables, by definition, a measurable real-
valued functionX on some probability measure spg€e 3, P).
The expectatiomf an integrable random variabl€ is its integral
with respect tdP. It is denotede (X).
The distribution of a (real-valued) random variahleis the image
of P underX; it is a probability measure dR.
The (cumulative) distribution functiarf X is the function

(2.21) Fx(3) =P (X <));

(so that the distribution oK is simply the measuréF'y). If ® is con-
tinuous onR then® o X is integrable o2, B, P) if, and only if ® is
integrabledFx, and

(2.22) E(®oX)= /@()\)dFX()\).

The characteristic functioof a random variabl& is, by definition, the
Fourier-Stieltjes transform of its distribution. TakidgX) = %X in
equation (2.22), we have

(2.23) X x (&) = E (%) = / M dFx ().

The term is justified by the uniqueness theorem 2.2
A normal (real-valued) variablés one whose distributiodFy is
G(z)dz; X is Gaussiarif it is a constant multiple of a normal variable.
~ 2
Notice thatX is normal if, and only if, X  ({) = G(&) = e .
A sequenceX,, of real-valued random variablesnverge in distri-

butionto X, meansdFy, — dFx, in the weak-star topology.

2.12 For the convenience of future reference we state here the analog
to Wiener’s theorem 1.7.13. The theorem can be proved either by es-
sentially repeating the proof of 1.7.13 or by reducing it to 1.7.13. We
leave the proof as an exercise (exercise 7 at the end of this section) to
the reader.

Theorem. Lety € M(R). Then

A
SlnahP = im 5o [ i) de.
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In particular, a necessary and sufficient condition for the continuity of
uis
A
lim —
Moo 2N _

|(€)]* d€ = 0.

EXERCISES FOR SECTION 2

1. Denote bys,, the measure of mass one Bnconcentrated at = n.
Show thatlim, . d, = 0 in the weak-star topology af/(R) and conclude
that weak-star convergence of a sequence of measures does not imply pointwise
convergence of the Fourier-Stieltjes transforms.

2. Letu, = n7 (81 + 82 + --- 4+ 6,). Show thatu, — 0 in the weak-
star topology andi, (¢) converges for every € R; however,lim /i, (£) is not
identically zero.

3. AsetB C M(R) is uniformly-boundedly-spreaB € U BS for short),
if it is bounded andimy ... SUp, ¢ 5 ‘ﬁw|>k‘dﬂ| =0.

a. Prove thaB € U BS implies equi-continuity of i: 4 € B}.

b. If u, are probability measures, add,} is equi-continuous a = 0 then
{un} € UBS.

c. If {un} € UBS, andu,, — p in the weak-star topology, themn, (£) — 4(¢)
uniformly on compact subsets Bf

4. Letu, € M(R) such that|u,|| < 1. Assume that, converges pointwise
to a continuous functiop. Show thaty = j for somep € M(R) such that
lu|l < 1; moreoveru,, — u weak-star.

5. Let), be integers such that, 41/, > 3. Write X, = /2 "7 cos Ajt.
(X, are real-valued random variables on the probability sfiaeedowed with
the normalized Lebesgue measure). Prove Xhatonverge in distribution to a
normal variable
Hint: Exercise V.1.11.

6. Show that ify is continuous orR and (2.10) is valid, thew is posi-
tive definite. Conclude from (2.15) that the boundedness assumption of 2.6 is
superfluous.

7. Prove Theorem 2.12.

8. Expressi{[a, b]} andu{(a,b)} in terms off. ([a,b] is the closed interval
with endpoints: andb, and(a, b) is the open one.)

9. Leta, be complex numbersqg,| < 1. Setb, = ant1 — an, ande, =
bn — bn—1 = ant1 + an—1 — 2a,. Prove that ific,| < e, then|b,| < 24/e.

a. How does this imply that a positive definite function which is continuous at
¢ = 0 is uniformly continuous ofR?

b. Prove that ifp is positive definite angh(0) — Rp(h) = o(h?), ash — 0, then

¢ is a constant.
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10. Show that there exists a uniformly continuous bounded fungtion
which is not a Fourier-Stieltjes transform, and such flgdi\n) } is a sequence
of Fourier-Stieltjes coefficients for evepy> 0.

Hint: Construct a continuous function with compact support which is not a
Fourier transform of a summable function.

3 FOURIER TRANSFORMS IN LP(R); 1<p < 2.

The definition of the Fourier transform (i.e., Fourier coefficients)
for functions in various function spaces @, was largely simplified
by the fact that all these spaces were containeld ). The fact that
the Lebesgue measure R&fis infinite changes the situation radically.
If p > 1 we no longer havéd? c L!, and, if we want to have Fourier
transforms for functions ir?(R) (or other function spaces dr), we
have to find a new way to define them. In this section we consider the
casel < p < 2 and obtain a reasonably satisfactory extension of the
Fourier transformation for this case.

3.1 We start withL?(R).

Lemma. Let f be continuous and with compact supportiirthen

1 .
= [if©rd= [i5wpa.
We give two proofs.

PROOFI: Assume first that the support ¢fis included in(—=, 7). By
theorem 1.5.5,
1 R~ I SPENT
g J 1T = 3 | s
and replacing’ by e~#* f we have
2 _ i - i 2.
(3.1) JICREEF= SRS

n—=—oo

integrating both sides of (3.1) with respectton0 < « < 1, we obtain

Jir@rds = o [17©Pd
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If the support off is not in (-, ), we conside(z) = \/2f(\z). If
A is sufficiently big, the support of is included in(—, 7) and, since
§(&) = A"12f(¢/)\), we obtain

J1r@ e = [lg@)Pds = 5 [19©)Pde = 5 [17(€)Pae

<

PROOFII: Write g = f = f(—z); we haveg(0) = [ f(z)f(z)dz =
[1f(x)]2dz andj(€) = |f(€)|?. If we know that[|f(¢)|2d¢ < o (e.9., we
assume that is differentiable), it follows from the inversion formula
(1.12) that

o [17©F &6 = 90) = [17@) d.

In the general case we may apply Fejér’'s theorem and obtain

i 1
m —
A—oo 270

(1 - 'i') |f(©)dg = 9(0)

and, since the integrand is nonnegative, its C-1 summability is equiva-
lent to its convergence and the proof is complete. <

DEFINITION: Forg e L2(R) we write

1 1/2
ooy = (5 [lot@Pac)

Theorem (Plancherel). There exists a unique operatsrfrom L?(R)
onto L%(R) having the properties:

(3.2) Ff=f for feL'nL*R),
(3.3) IFfll 2@y = I1f1lL2)-

Remark:In view of (3.2) we shall often writd instead ofF .

PROOF We notice first that! N L?(R) is dense inL?(R) and conse-
guently any continuous operator defined/GriR) is determined by its
values onL! N L?(R). This shows that there exists at most one oper-
ator satisfying (3.2) and (3.3). By the lemma, (3.3) is satisfietligf
continuous with compact support, and since continuous functions with
compact support are dense id N L?(R) (with respect to the norm

| lerw) + I ll22®)), (3.3) holds for allf € L' n L?*(R). The mapping
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f — f clearly can be extended by continuity to an isometry fiGHR)
into L2(R). Finally, since every twice differentiable compactly sup-
ported function orR is the Fourier transform of a bounded integrable
function onR (1.5 and the inversion formula), it follows that the range
of f — f is dense inL2(R) and hence coincides with it. <

Remarksia) Given a functiorf € L2(R) we definef as the limit (in
L3(R)) of f,, wheref,, is any sequence ih! N L?(R) which converges
to fin L?(R). As such a sequence we can take

_Jf@) |z <n
fn{O |z| > n

and obtain the following form of Plancherel’s theorem: the sequence
(3.4) 2O = [ e i

converges, irL2(R), to a function which we denote b and for which
(3.2) and (3.3) are valid.

(b) The mappingf — f being an isometry of.2(R) onto L2(R),
clearly has an inverse. Using theorem 1.11 and the fact that we have an
isometry, we obtain the inverse map py- lim f,, in L?(R) where

(3.5) fon@ = 2 [ jeyae.

2 J_,

(c) Parseval’s formula

(3.6) [ @ = 5= [ feaee
for f.g € L*(R), follows immediately from (3.3) (and in fact is equiva-
lent to it).

3.2 We turn now to define Fourier transforms for functiong#{R),
1 < p < 2. Using the Riesz-Thorin theorem and the fact thatf — f
has norm 1 as operator froit (R) into L>(RR) and from L2(R) onto
L2(R), we obtain as in IV.2:

Theorem (Hausdorff-Young). Let1l < p < 2, ¢ = p/(p — 1) and
f e L'NnL3(R). Then

(i 170rmae) " < fusyras) "
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For f € LP(R), 1 < p < 2, we now definef by continuity; for
example, as the limit i (R off e~ f(z)dz. The mappingF :
f — f so defined is an operator of norm 1 frobA(R) into L4(R);
however, it is no longer an isometry and the range is not the whole of
(see exercise 10 at the end of this section).

3.3 The fact that fop < 2, F is not an invertible operator frob?’ (R)

onto L?(R) makes the inversion problem more delicate than it is for
L2. The situation in the case di?(R) is similar to that which we
encountered fol”’(T). We have inversion formulas both in terms of
summability and in terms of convergence. The summability result can
be stated in terms of general summability kernels without reference to
the Fourier transform as we did in 1.10 fof(R); and in fact the state-
ment of Theorem 1.10 remains valid if we replace in'i{R)by L?(R),

1 < p < oo. Forp < 2 we can generalize theorem 1.11. We first
check (see exercise 9 at the end of this section) thatifZ?(R) and

f € L'(R) thenf x g is a well-defined element ih?(R) andj xg=fg.

This is particularly simple if we take fof the Fejér kerneK,: we have

EEZ:<1—§09

and, sincek),, x g is clearly boundedK, € LY(R), ¢ = p/(p — 1)) and
hence belongs to! N L>°(R) c L?(R), it follows that

mw—/( B stereeae

and from the general form of theorem 1.10 we obtain:

Theorem. Letg € L?(R), 1 < p < 2; then

1 1 A |€| ilx
g_xlinéo%/,\(l ) gle)errde

in the LP(R) norm.

Corollary. The functions whose Fourier transforms have compact sup-
port form a dense subspacef(R).

3.4 The analog to the inversion given by 3.1, remark (b) (i.e., con-
vergence rather than summability) is valid for< p < 2 but not as
easy to prove as fqr = 2; it corresponds to theorem I1.1.5 and can be
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proved either through the study of conjugate harmonic functions in the
half-plane, analogous to that done for the disc in chapter lll, or directly
from 11.1.5. The idea needed in order to obtain the norm inversion for-
mula for L?(R), 1 < p < 2, from 11.1.5 is basically the one we have
used in proof | of lemma 3.1.

For f € Ui<p<2LP(R) we write Sy (f, z) = 5= f f(&)es de.
Lemma. For 1 < p < oo, there exist constants, such that
(3.7) SN fllr @) < cpll fllLe )

for every functionf with compact support and evefy > 0.
PROOF Inequality (3.7) is equivalent to the statement that Afbr- oo

M 1/p
(3-8) </_M|5N(f,w)|”dl“> < Cpllfllr

Writing ¢a(z) = MYP f(Mz) we see thatioa | zo®) = || f|lrr) and
check that

(3.9) Sun(par,z) = MYPSy(f, M),

In view of (3.9), (3.8) is equivalent to

1 1/p
(3.10) </ SMN(cpM,:zz)|pdx> < Cpllom||Lr(r)-
~1

As M — oo, the support ofpy; shrinks to zero and consequently the
lemma will be proved if we show that (3.8) is valid, with an appropriate
C,, for all f with support contained i, 7) for A = 1 (or any other
fixed positive number) and for all integels We now write

1 N—-1

(3.11) / Z QL 1(n+a)xda

and notice thaE (jﬂ)f(n + a)e™™® is a partial sum of the Fourier
series off (v)e~ @ (|t is carried by(—m, 7) which we now identify with
T). As anL?(T)-valued function ofy, the integrand in (3.11) is clearly
continuous and, by I1.1.2 and I1.1.5, it is bounded it¥(T) by a con-

stant multiple of| fe?||;;;,; = (2m) ~/?|| f|| £ =). We therefore obtain

1 1/p ™ 1/p
([ swtropas) < ([ isviralra) <Gl

TNote thatf, having a compact a support, isif (R) andf is therefore continuous.
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and the proof is complete. <

Corollary. For1 < p < 2, inequality(3.7)is valid for all f € L?(R).

PROOF Write f = lim,, ., fn, With f,, € LP(R), f, having compact
supports and the limit being taken in the(R) norm. By theorem 3.2,
f = lim f, in L7(R) and consequently, we have for every fixgd> 0,
Sn(f,x) = lim,, Sy (fn,z) uniformly in z. It follows that

1SN ()l zew) Slirglinf\\sN(fn)||Lp(R) <

Cp li£n||anLp(R) = CpllfllLr(r)- <

Theorem. Letf € LP(R), 1 < p < 2. Then
A}LIHOC”SN(f) — fllzr@r) = 0.

PROOF {Sn} is a uniformly bounded family of operators which con-
verge to the identity, a& — oo, on all functions with compactly sup-
ported Fourier transform, and hence, by corollary 3.3, it converges to
the identity in the strong topology. <

EXERCISES FOR SECTION 3

1. LetB C L. be a homogeneous Banach spac&and letf € B. Show
that: (a) for everyp € L'(R), ¢ * f can be approximated (in thB norm)
by linear combinations of translates ¢f In other words: for every > 0,
there exist numberg,, ..., y, € R and complex numbersd,, ..., A, such that
o £ =320 Ajfy, |l < e, wheref, (z) = f(z —y).

(b) For everyy € R, f, can be approximated by functions of the fogm f
with » € L'(R). Deduce that a closed subspdf®f B is translation invariant
(i,e., f € H implies f, € H for all y € R) if, and only if, f € H implies
@ f € H foreveryp € L'(R).

2. LetF,G e L*(R) and assumé'(¢) = 0 implies G(¢) = 0 for almost all
¢ € R. Show that, giverr > 0, there exists a twice-differentiable compactly
supported functio® such that

[PF — Gl 2 <e

3. Letf,g € L*(R) and assume thaft(¢) = 0 implies j(¢) = 0 for almost
all ¢ € R. Show thaty can be approximated af?(R) by linear combinations
of translates off. Hint: Use exercises | and 2 and Plancherel’s theorem.
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4. For measurable sefs c R denoteHr = {f € L*(R):f = 1xf}.
Prove thatHg is a closed translation invariant subspaceLd{R), and that
every closed translation invariant subspac&4iR) is obtained this way.

5. Show that every closed translation invariant subspade @) is singly
generated.

6. Let f € L*(R). Show that the translates ¢fgeneratd.?(R) if, and only
if, f # 0 almost everywhere.

7. The information obtained from exercises 2 through 6 can be obtained
very easily by duality arguments (i.e., using the Hahn-Banach theorem). For
instance, by Plancherel’s theorem, exercise 6 is equivalent to the statement that
{f(€)e***} .cr spansL?(R) if, and only if, f(¢) # 0 almost everywhere. By the
Hahn-Banach theorefy (¢)e’*},cr doesnotspanL?(R) if, and only if, there
is afunctiony € L*(R), notidentically zero, such thgt £ (€)1 (€)e’** d¢ = 0 for
all z € R. By the uniqueness theorem this is equivalentfio:= 0 identically,
that is, f vanishes on the support ¢f

Use the same method to prove exercises 3 through 5.

8. Both the "if" and the "only if" parts of exercise 6 are based on Plancherel’s
theorem and are both false fof (R), p < 2. Assuming the existence of a mea-
surey carried by a closed set of measure zero and suchithat? for all g > 2,
construct a functiorf € L' N L™= (R) such thatf(¢) # 0 almost everywhere and
such that the translates gfdo not spar.” (R) for anyp < 2.

Hint: Puty onR.

9. Show that iff € L*(R) andg € L?(R), thenf « g = /4.

We denote byFL” the space of all functiong such thatf € L?(R), (thus
FL' = A(R)). By definition:

IfllFee = 1 £lle -

10. If p € M(R) andp € FLP,1 < p < 2,thenjyp € FLP.
11. Show thatifp € FL?,1 < p < 2, and if we write

_Je® £>0

theny € FLP, and||¢| < Cpllerrr]|.
12. Leta andg be real numbersy3 # 0. Show thatifp € FLP, I < p < 2,

and if we write
() — {w(aﬁ) £>0
p(Bg) £<0,
theny, g € FLP.
13. Letf € LP(R), 1 < p < 2. Show thath(z) = 7! ff(a; — y)siny/ydy
is well defined and continuous @ h € L?(R) and||h| r &) < Cpll fllLr®)-
14. Show that, fon < p < 2, the norms||¢||z.» and|¢|| ., are not

equivalent. Deduce theftL? # LI(R) (¢ = p/(p — 1)). Hint: See IV.2.
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4 TEMPERED DISTRIBUTIONS AND PSEUDO-MEASURES

In the previous section we defined the Fourier transforms for func-
tions in L?(R), 1 < p < 2, by showing that on dense subspace on which
F : f~ fis already well defined (e.g., ait N L2(R)), we have the
norm inequality

1 oy < 1Flzr
and consequently there exists a unique continuous extensién ad
an operator fronf?(R) into L4(R). If p > 2 this procedure fails. It is
not hard to see that not only is itimpossible to extend the validity of the
Hausdorff-Young theorem far > 2, but also there is no homogeneous
Banach spac® on R such that for some > 2, some constant' and
all f € L' N L*=(R),

1 £l < Clfllzew)-
So, a different procedure is needed if we want to extend the notion
of Fourier transforms td.?(R), p > 2. Clearly, we try to extend the
notion, keeping as many of its properties as possible; in particular, we
would like to keep some form of the inversion formula and the very use-
ful Parseval’s formula. We realize immediately that, since the Fourier
transforms of measures are bounded functions, if any reasonable form
of inversion is to be valid, the Fourier transforms of some bounded
functions will have to be measures; and once we accept the idea that
Fourier transforms need not be functions but could be other objects,
such as measures, the procedure that we look for is given to us by Par-
seval’s formula.

So far we have established Parseval's formula for various function
spaces as a theorem following the definition of the Fourier transforms
of functions in the corresponding spaces. In this section we consider
Parseval’s formula as a definition of Fourier transform for a much larger
class of objects. Having proved Parseval's formulaffgmR), 1 < p <
2, we are assured that our new definition is consistent with the previous
ones.

4.1 We denote by5(R) the space of all infinitely differentiable func-
tions onR which satisfy:

(4.1) lim #"fU(z)=0 foralln>0,;j>0.

|| — o0

S(R) is a topological vector space, the topology given by the family
of seminorms

(4.2) [£1ljn = supa™ f9) (x)].



VI. FOURIER TRANSFORMS ON THELINE 163

This topology onS(R) is clearly metrizableand S(R) is complete, in
other words,S(R) is a Frechet space.

DEFINITION: A tempered distribution of® is a continuous linear
functional onS(R).

We denote the space of tempered distribution® dhat is, the dual
of S(R), by S*(R). S(R) is a natural space to study within the theory
of Fourier transforms. By theorems 1.5 and 1.6 we see thatdf
S(R) then f € S(R) (the analogous space @) and, as¢” fU)(¢) is
the Fourier transform of—i)"+/ == " \ve see that the mapping
f — f is continuous fromS(R) into S(R). By the inversion formula
this mapping is ont®(R) and is bicontinuous.

We now defingi, for 1 € S*(R), as the tempered distribution @
satisfying

(4.3) (f. i) = (f. )

forall f € S(R).

The space of tempered distributions Bnis quite large. Every
function g which is measurable and locally summable, and which is
bounded at infinity by a power aof can be identified with a tempered
distribution by means of:

(f.9) = / f@)a@dr  feS®)

and so can everye LP(R), foranyp > 1, and every measugec M (R);
thus our definition has a very satisfactory domain. However, the range
of the definition is as large and this is clearly a disadvantage; it gives
relatively little information about the Fourier transform. We thus have
to supplement this definition with studies of the following general prob-
lem: knowing that a distributiop € S*(R) has some special properties,
what can we say abouf?

Much of what we have done in the first three sections of this chapter
falls into this category: ifi is (identified with) a summable function,
thenj is (identified with) a function irCy(R); if 1 is a measure, then

tA sequence of functions,, € S(R) converges tqf if lim,— oo fm — f|j,n = O for
all j > 0 andn > 0. The metric inS(R) can be defined by:

. B 1 lf=glimn
dist(f,g) = ZO 2 T4 ||f — gijn.

Jynz
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i is a uniformly continuous bounded function; if € L?(R) with
1 <p<2thenie LI(R), ¢=p/(p—1).

We shall presently obtain some information about Fourier trans-
forms of functions inLP(R) with 2 < p < oo but we should not leave
the general setup without mentioning the notion of the support of a

tempered distribution.

4.2 DEFINITION: A distributionv € S*(R) vanishes on an open set
O C R, if (p,v) = 0forall ¢ € S(R) with compact support contained
in O.

Lemma. LetO, O, be open orfiR and letK be a compact set such that
K C O UOs. Then there exist two compactly supporé&d functions
¢1 andy, satisfying: support op; C o; andy; + ¢2 =1 0N K.

PROOF. Let U; C O; have the following propertied?; is open,U; is
compact and included i®;, and K C U; U U,. Denote the indicator
function of U; by ¢ and that ofU; \ U; by ¢». Lete > 0 be smaller
than the distance df to the boundary of/; U U, and also smaller than
the distance ot/; to the complement 0®,;,; = 1,2. Letd(z) be an
infinitely differentiable function carried by, <) and whose integral
is 1. Then we can take; = 1 0 <

Corollary. If v € S*(R) vanishes or0; and on0O,, it vanishes on
01 UOs.

PROOFE Let f € S(R) have a compact support includeddn U Os.
Denote the support of by K and lety;, - be the functions described
in the lemma. Therp; € S(R), f = f(¢1 + ¢2) = feo1 + fe2. Now
(fo1,v) =0, {fe1,v) =0, and consequentlyf, v) = 0. <

Our corollary clearly implies that the union of any finite number of
open sets on whiclr vanishes has the same property, and since our
test functions all have compact support, the same is valid for arbitrary
unions. The union of all the open sets on whickanishes is clearly
the largest such set.

4.3 DEFINITION: The support(v) of v € §*(R) is the complement
of the largest open sét ¢ R on whichv vanishes.

Remarks:(a) If v is (identified with) a continuous functignthenX(v)
is the closure ofz: g(z) # 0}. If v is a measurable functignthenX(v)



VI. FOURIER TRANSFORMS ON THELINE 165

is the closure of the set of points of density{af: g(z) # 0}. The set
of points of density of z:: g(x) # 0} is a finer notion of support which
may be useful (cf. exercise 3.4).

(b) The definition of¥(v) implies that ify € S(R) and if the sup-
port of ¢ is compact and disjoint fror(v) then(p,v) = 0. It may be
useful to notice that ify € S(R) and if§ is infinitely differentiable with
compact support ané(0) = 1, theny = limx_od(Az)y in S(R), and
consequently if the support @f is disjoint fromX(v) (but not neces-
sarily compact) we hav@),v) = limy_.q{6(Az)¥,v) = 0. In particular,
if X(v) =0 thenv = 0.

(c) Let B > S(R) be a function space and assume that eyesyB
with compact support can be approximated in the topology dfy
functionsy,, € S(R) such that the supports ¢f, tend to that off. Let
v € S*(R) and assume that can be extended to a continuous linear
functional onB. If f € B has a compact support disjoint froB(v),
then(f,v) = 0.

4.4 S(R)is an algebra under pointwise multiplication. The prodfict
of a functionf € S(R) and a distributionv € S*(R) is defined by

<g,f1/)=<gf,l/>, gES(R)'

i.e., the multiplication byf in S*(R) is the adjoint of the multiplication
by f in S(R). From the definitions above, it is clear tha{fv) C

E(f)Nn2(v).

4.5 We denote byFL? = FL?(R)) the space of distributions oR
which are Fourier transforms of functions I#(R),1 < p < oo (we
keep the notatiom(R) for FL'(R)). FL? inherits fromL?(R) its Ba-
nach space structure; we simply pit| .. = ||f||L*(R); and we can
identify FL? with the dual of FL? if ¢ = p/(p — 1) < oo. In par-
ticular, FL> is the dual ofA(R). This identification may be consid-
ered as purely formal: writingf, §) = (f,¢) carries the duality from
(LP(R), L1(R)) to (FL?, FL7); however, we have already made enough
formal identifications to allow a somewhat clearer meaning to the one
above. Having identified functions with the corresponding distribu-
tions, we clearly haves(R) c FL? and, ifp < oo, S(R) is dense

in FLP; consequently, every continuous linear functional Bf? is
canonically identified with a tempered distribution. The identification
of FL4 as the dual ofFL? now becomes a theorem stating that a dis-
tribution » € S*(R) is continuous orS(R) with respect to the norm
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induced byFL? if, and only if, v € FL?. We leave the proof as an
exercise to the reader.

We now confine our attention t6L>. If ;. is a measure in/ (R),
it is the Fourier transform of the bounded functibf) = [ e**du(¢);
thus M (R) ¢ FL*®. The elements af L> are commonly referred to
as pseudo-measures. It is clear th&tR) is a relatively small part of
FL*; for instance, ifp € L* is not uniformly continuous oIR, ¢

cannot be a measure.

DEFINITION: The convolutior; « h, of the pseudo-measurés and
}32, (hj € L*(R)), is the Fourier transform df; h,.

Again we reverse the roles; we take something which we have proved
for measures, as a definition for the larger class of pseudo-measures.
Thus, if h; andh, happen to be measurés, * h, is their (measure
theoretic) convolution.

4.6 Another case in which we can identify the convolution is given by

Lemma. Leth; € L*(R) andhy € L' N L>=(R); then

(4.4) (A1 # ha)(€) = (ha(& =), ha ().

PROOF We remark first thathy € L' N L>(R) and consequently
hi * ha = hiHy € A(R) so that we can talk about its valuegat R. If
hi € S(R) we have

(hy % ho)(€) = | / hy(z)he(x)e S dx = % | / / hy (n)ha(2)e =% da dn

= L [ hate ~ madn = (hate ). T

Since S(R) is dense inL*>°(R) in the weak-star topology (as dual of
L'(R)), and since both sides of (4.4) dependgrontinuously with re-
spect to the weak-star topology, (4.4) is valid for arbitraye L>°(R).

Corollary. If by € L*°(R) andhy € L' N L*°(R), then
S (hy * hy) C B(hy) + B(hs).

4.7 This corollary can be improved:

Lemma. Assumeéi, he € L°°(R). Then

S (hy * hy) C B(hy) + B(he).
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PROOF. Consider a smooth functiof € A(R) with compact support
disjoint fromX(h) 4+ X (hs). We have to show thdlf, hyhs) = 0 which
is the same a$ fhihodz = (fﬁl,ﬁ;) =0.

Now %(h1) = {¢: —¢ € %(h1)} and, by 4.635(fh1) € B(f)+E(h1).
If & € B(fh1) N X(hy), then there exist, € X(f) andn; € %(hy) such
thatéy = ng — m1, that is,ng = & + n;. This would contragg:t the
assumptions(f) N (B(hy) + (hy)) = 0. It follows that =(fh,) is
disjoint from = (%), hence(f, h1hs) = (fh1, ha) = 0 and the lemma is
proved. <

o~

4.8 The reader might have noticed that we were using not only the du-
ality betweenZ!(R) and L>(R) but also the fact that a multiplication
by a bounded function is a bounded operator.6(R). Another opera-
tion between.!(R) and L>(R) which we have used is the convolution
that takes.! x L*> into L>°(R). Passing to Fourier transforms we see
thatFL> is a module over (R) the multiplication of a pseudomeasure
by a function inA(R) being the adjoint of the multiplication i (R).

This extends the notion of multiplication introduced in 4.4.

4.9 Letk be aninfinitely differentiable function dk, carried by[—1, 1]
and such thaf k(¢)d¢ = 1. For f € A(R) we set

o= M)« F = A / kO F(€ — n)dn.

f» is infinitely differentiable,=(f\) ¢ 2(f) + [-1/),1/)], and as
A — o0, fr — fin A(R).

By 4.3, remark (c) it follows that it € FL> and if f € A(R) has
a compact support disjoint froiB (), we have(f,v) = 0. Further, if
f e AR) andX(f) N 2(v) = 0, it follows that (1 — [¢|/\)f,v) = 0
for all A > 0 and letting\ — oo, we obtain(f,~) = 0. For convenient
reference we state this as:

Lemma. Letv € FL> and f € A(R). If £(f) n 2(v) = 0§ then
(f,v)=o0.

4.10 We leave the proof of the following lemma as an exercise to the
reader.

Lemma. Letr € FL>™ andf € A(R): then

S(frv) c 2(f)nS(w).
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4.11 We show now that a pseudo-measure with finite support is a mea-
sure. Using the multiplication by elements4fR) we see that a pseu-
domeasure with finite support is a linear combination of pseudomea-
sures carried by one point each; thus it would be sufficient to prove:

Theorem. A pseudo-measure carried by one point is a measure.

PROOF. Let h € L>*°(R) and assume&(h) = {0}. If 1, vo € AR
ande: (£) = ¢2(£) in a neighborhood of = 0, then<<,91,l3> = (pa, h).
Putc = (p,h) whereyp is any function inA(R) such thatp(¢) = 1
nearé = 0. As usual we denote bl the Fejér kernel and recall that
K(¢) = suf(l — [¢],0). By lemma 4.6 we have

(4.5) RK(€) = (K(€ — 1), h(n)).

For|¢| > 1 we clearly have‘LK(g) =0. If -1 < & < & < 0we have
K& —n) = K& —n) = & — & for n near zero. By (4.5) and the
deflnltlon ofc we conclude thaﬂzK(gg — hK(§2 = c(£2 —¢&1), and since
hK(f) is continuous, upon lettingg — —1 we obtalnhK(f) =c(1+¢)
for —1 < ¢ < 0. Repeating the argument for< ¢ < 1 we obtain
/?R(g) = ¢K(¢) and by the uniqueness theoréifz) = ¢ a.e. It follows
thath is the measure of massoncentrated at the origin. <

4.12 We add a few remarks about distributionsAi?, 2 < p < co.
There is clearly no inclusion relation betwe&n(R) and L>(R) but
it might be useful to notice that locallfL* ¢ FL* if p < p’ and in
particular all distributions irF L? are locally pseudomeasures. (We re-
call that a tempered distributianbelongs locally to a set c S*(R)
if for every ¢ € R there exists. € G such thatS(x — v) does not
contain¢). If v € FL? and¢ € R we may takex > |§| and con-
sider;, = V,v whereV, is de la Vallée Poussin's kernéV((¢) = 1
for [¢] < A, =2 —[gIA"t for A < [¢] < 2), and= 0 for || > N).
Itis clear thaty = p on (=\,\), thatis,X(u — v) N (=X, \) = 0 and if
v = fwith f € LP(R), theny = V, * f andV  f € L? N L=(R) since
V) € L' N LY(R), ¢ = p/(p — 1). In particular, ifX(v) is compact, say
3(v) C (=X, ), theny = v; we have thus proved:

Theorem. If v € FL? andX(v) is compact, themr € FL>.

4.13 If v € FLP N FL*> we can consider the repeated convolution of
v with itself; writing v = f with f € L? N L>°(R), the convolution of
v with itself m times is the Fourier transform gf”*, and if m > p,
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fm™ e LY(R) so that % --- x v € A(R). In particular, assuming # 0
Y(v*---xv) C B(v)+---+ X(v) contains an interval. As animmediate
consequence we obtain:

Theorem. Letv € FL?, p < oo, and letJ be an open interval OfR,
such that/ N X(v) # 0. ThenJ N X(v) is a basis forR.

Theorems 4.11 and 4.13 are equivalent to the following approxima-
tion theorems:

4.11’ Theorem. Let¢ € R and denote

I(¢) ={f:f € AR), f(¢) = 0}
() ={f:f€SMR),&X(f)}

Thenl,(¢) is dense il (¢) in the A(R) topology.

4.13' Theorem. LetE c R be closed, and denote
Io(E) ={f:f € S(R),=(f)N E = 0}.

Assume thab + E + - -- + E (m times) has no interior. Let < p <m
andg =p/(p —1). Thenly(E) is (norm) dense itFL9.

The proofs of 4.11’ and 4.13’ are essentially the same and follow
immediately from the Hahn-Banach theorem (and 4.11, 4.13, respec-
tively). A linear functional onA(R) which annihilated,(¢) is a pseu-
domeasure supported Hy}, hence is constant multiple of the Dirac
measure a, and hence annihilatgg¢). A linear functional onF L4
which annihilated, (F) is an element ofF L? supported by; hence it
must be zero. <

EXERCISES FOR SECTION 4

1. Deduce 4.11 from 4.11".

2. Deduce 4.13 from 4.13'.

3. What is a functiork € L= (R) such that=(h) is finite?
4.1f f € A(R) andv € FL™, then

I fvllFree <|1fllagllvilFzLes

5. Letf € L*=(R). Show that(R(f)) € B(f) U (==(f)).
6. (Bernstein) Leth € L=°(R) and assume that(h) c [k, k]. Show that

h is infinitely differentiable and thath(™ || < &™||A]|co.
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7. Leth € L=(R), h # 0. Assume that(z + y) = h(z)h(y) a.e. in(z,y).
Show that for someg, € R, h(z) = €'°® a.e.

8. Assumey; € FL™,j =0,1,..., andv; — 1, in the weak-star topology.
LetU be an open set such tHan 3(v;) = 0 for infinitely many;’s. Show that
U N 2(1/0) = @

9. Fourier transforms of functions ith (R) are calledoseudofunctionéon

R).
(a) Show that iff € L*(R), thenf is a pseudo-function.

(b) Show that iff; are pseudo-functions dh, || f;||zr~ < cand); — oo
fast enough, thed_ E**i¢ f; converges (weak-star) iRL>.

10. Leth(z) = sin z2. Show thak¢h — 0 (weak-star) ag\| — oo

5 ALMOST-PERIODIC FUNCTIONS ON THE LINE

The usefulness of Fourier series of functions on T is largely due
to the information they offer about approximation of the functions by
trigonometric polynomials. On the line, trigonometric polynomials do
not belong to many of the function spaces in which we are interested,
for example, toL?(R) for p < oo; and the positive results, which we
had forLP(R),1 < p < 2, were in terms of trigonometric integrals rather
than polynomials. Trigonometric polynomials do belond.t®(R), and
in this section we characterize the functions that are uniform limits of
trigonometric polynomials.

5.1 DEFINITION: Let f be a complex-valued function di and let
e > 0. An e-almost-period off is a number such that

sup,|f(z —7) - f(2)] <e.

Examplest = 0 is a triviale-almost-period for alt > 0; if f is periodic
then its period, or any integral multiple thereof, issaalmost-period
for all ¢ > 0; if f is uniformly continuous, every sufficiently smalis
ane-almost-period.

5.2 DEFINITION: A function f is (uniformly) almost-periodic o if

it is continuous and if for every > 0 there exists a number= A(e, f)

such that every interval of lengthonR contains ar-almost-period of

f. We denote byl P(R) the set of all almost-periodic functions &n
Examples: (a) Continuous periodic functions are almost-periodic.
(b) We shall show (see 5.7) that the sum of two almost-periodic

functions is almost-periodic; henge= cos x+cos 7z is almost periodic

(see also exercise 1 at the end of this section); noticing, however, that

f(z) =2 only for x = 0, we see thaf is not periodic.
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(c) If f is almost-periodic, so at¢|, f, af for any complex number
a, andf(Azx) for any real\.

5.3 Lemma. Almost-periodic functions are bounded.

PROOFE Let f be almost-periodic. Take= 1 and letA = A(1, f). For
arbitraryz € R let 7 be a 1-almost-period in the interval — A, z].
We have0 < =z —r < A and|f(z) — f(z — 7)| < 1, consequently

|f(z)] < sup<,<alf(y)] + 1. <

Corollary. If fis almost-periodic, so i$2.

PrROOF Without loss of generality we may assumiéx)| < 1/2 for all
v € R. We havef*(z —7) — f*(z) = (f(z —7) + f(2))(f(z — 7) — f())

which implies that, for every > 0, e-almost-periods of are also:-
almost-periods of?. <

5.4 Lemma. Almost-periodic functions are uniformly continuous.

PROOF. Let f be almost-periodics > 0, A = A(e/3, f). Sincef is
uniformly continuous orf0, A], there exists), > 0 such that for all
Inl < no

SUR < calf(z +n) = f(2)] <2/3.

Lety € R; we can find arz/3-almost-period off sayr, within the
interval[y — A, y], and writing

fly+n) = fly)=ly+n)—fly—7+n)+
(=740 = fly—7)+(fly—7) = fy),
we see that each of the three summands is bounded3ythe first
and the third since is ane/3-almost-period, and the second siricg

y—7 < Aandln| <no. Thusif|n| < no, |f(z+n) — f(x)] < e forall z,
and the proof is complete. <

5.5 For a functionf € L>(R) we denote byV,(f) the set of all trans-
lates off; Wo(f) = {fy}yer'

Theorem. A functionf € L*°(R) is almost-periodic if, and only if,
Wo(f) is precompact (in the norm topology bf (R)).

fRemember the notatiofy (z) = f(z — y).
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PROOFE We recall that a set in a complete metric space is precompact
(i.e., has a compact closure) if, and only if, it is totally bounded, that
is, if for everye > 0, it can be covered by a union of a finite number
of balls of radiuss. Assume first thaf is almost-periodic and let us
show thatWy (f) is totally bounded in.>°(R). Lete > 0 be given and
let A = A(e/2, f); by the uniform continuity off we can find numbers
My MM in [O, A] such that ifo < Yo < A, inflSjSMnyo — fnJ || < 8/2
For arbitraryy € R let = be ane/2-almost-period off in [y — A, y];
writing yo = y — 7 we obtain0 < yo < A and || f, — fyllee < €/2;
consequentlyinfi <<l fy — fn,llec < € @andWy(f) is covered by the
union of balls of radius, centered af,,,, j =1,..., M.

Assume now thaiiy(f) is precompact. Let > 0 and letO,,...,0n
be balls of radius/2 such thatV,(f) c UMO,. We may clearly assume
thatO; N Wy (f) # 0 and hence pick,, € O;, j =1,...,M. The balls
of radiuse centered ay; coverWy(f).

We claim that every interval of lengthA = 2max;<;<a|y;| con-
tains anz-almost-period off. If .J is such an interval, denote hy
its midpoint. There exists g such that||f, — f,, [« < & writing
T =y —yj, itis clear that € J and, on the other hand,

fr = Flloo = 1 fr4uy = fusolloo < e

All that we have to do in order to complete the proof is show that, under
the assumption tha¥,(f) is precompacty is continuous. We show
that it is uniformly continuous, that isim, ¢/ f;, — f|lcc = 0. Given

e >0, letOy,...,0y be balls of radius/2 coveringiWy(f), as above,
and writeE; = {r: f, € O;}. SinceUE; = R, at least one of these, say
E,,, has positive mesure. But théf), — E,, is a neighborhood af in

R, and fory € E; — E; we have||f, — f|le <e. <

5.6 DEFINITION: The translation convex hully(f), of a function
f € L*(R) is the closed convex hull ¢f} , ., Wo(af). Equivalently, it
is the set of uniform limits of functions of the form

(5.1) > arfe,,  wR€RY lag| <1

Remark: If f is uniformly continuous we can defin€(f) as the clo-
sure of the set of all functions of the form

(5.19) exf with e L' (R), lollzrm < 1.

fThat is: f is equal a.e. to a continuous function.
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Another observation that will be useful later is:
(5.2) W (e f) ={e"g:9 € W(f)}.

By its very definitionWV(f) is convex and closed ih*(R). Since
W(f) > Wy(f), it is clear that ifiW(f) is compact thefW,(f) is pre-
compact; the converse is also trueWif(f) is precompact, there exist
for everye > 0, a finite number of translatey’,, } 2, such that every
translate off lies within less tharx from f, for somel < j < M.
Thus, every function of the form (5.1) lies withirof a function having
the form Y77, b; f,, with 3°[b;| < 1. In the unit disclp| < 1 we can
pick a finite number of pointéc, }2_, such that every in the unit disc
lies withineM 1| f|| ;= (&) from one of the,’s; thus every combination
Y bify, >olbj| < 1lies withine of some

M
(5.3) S Uity b€ {enkiss
1

It follows thatW (f) is covered by the union agf/ N balls of radius
3e centered at the functions of the form (5.3); heficéf) is precom-
pact and being closed it is compact. We have proved:

Lemma. W(f) is compact if, and only ifity(f) is precompact, that
is, if, and only if,f € AP(R).

5.7 Theorem. AP(R) is a closed subalgebra @ (R).

PROOF In order to show thatt P(R)is a subspace, we have to show that
if f,g € AP(R) so does +g. We clearly havéV (f+g) c W(f)+W (g)
and since, by 5.6/V(f) andW (g) are both compacty (f) + W(g) is
compact and hend®& (f + g) is precompact. Sinc# (f + g) is closed,
it is compact, and by 5.6, + g € AP(R).

It follows from the corollary 5.3 that?, ¢2, (f + ¢)? € AP(R) and
consequentlyfg = 1/2((f + g)? — f? — ¢%) is almost-periodic and we
have proved thatl P(R)is a subalgebra of.>°(R). In order to show
that it is closed, we consider a functigrin its closure. Sinc¢ is the
uniform limit of continuous functions, it is continuous. Given> 0
we can find & € AP(R) such that|f — g||>° < ¢/3, and ifr, is ane/3
almost-period of; we have

f‘r_f:(f‘r_gr)“!‘(g‘r_g)—'_(g_f)a
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hence|| f: — fll~ < ¢/3 +¢/3 +¢/3 = ¢ andr is anc-almost-period of
f. Thus every interval of length(s/3, g) contains arz-almost-period
of f, andf is almost-periodic. <

5.8 DEFINITION: A trigonometric polynomiabn R is a function of
the form

n
flx) = Zajezgﬂ, & eR
1

The numberg; are calledthe frequencies of.

By theorem 5.7, all trigonometric polynomials and all uniform lim-
its of trigonometric polynomials are almost-periodic. The main theo-
rem in the theory of almost-periodic functions states that every almost-
periodic function is the uniform limit of trigonometric polynomials,
and actually gives a recipe, analogous to Fejér’s theorem for periodic
functions, for finding the approximating polynomials (see 5.20.

5.9 DEerINITION: The norm spectruraf a functionh € L>(R) is the
set

o(h) = {€:€ € R,ae’®® € W(h) for sufficiently smalla # 0}.

a(h) may well be empty even i # 0; for instance, ifh € Cy(R) we
haveV (h) C Cy(R) and consequently(h) = (. We notice that from
(5.2) and our definition above it follows immediately that

(5.4) o(e®h) = ¢+ o(h) = {E+n:n€a(h)}.

Lemma. If h € L*°(R) theno(h) C X(h).
PROOF. Sinceh, = ¢¥h it is clear that(h,) = =(h) and conse-

quently =(f) C =(h) for any f € W(h). If f = ae’®”, thenf = ade

(0¢ is the measure of mass one concentrated ahd>(f) = {¢}; thus
if £ € o(h) theng € X(h). <

5.10 Lemma. Leth be bounded and uniformly continuous. Assume
that nK(nz) = h converges uniformly as — 0 to a limit which is not
identically zero. Thenf € o(h).

PROOF. Writing g, = nK(nz) + h we haveg, = K(¢/n)h, so that
%(4,) C [-n,n) and hence(lim, o g,) = {0}. By 4.11,lim, .o g,
is a constant, and by the remark following definition 56, W (h)
and hencdim,_.og, € W(h) ; now, aslimg, is a constant different
from zero, we obtain € o(h). <
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Corollary. Let ;. be a measure ok and assume:({0}) # 0. Let
h(z) = [e*®du(€) (so thaty = h); theno € o (h).

ProOF. Keeping the notations above, we haye= K(¢/n)u and con-

sequentlyg, tends tou({0})d, in M(R) which impliesg, — n({0})
uniformly. <

5.11 Remarks: |t is clear that0 € R plays no specific role in 5.9;
if u({¢}) # 0 we have¢ € o(h) (h as above). Also, it is not essen-
tial to use Fejér's kernel: if" € L'(R), and if we assume thag, « h
converges uniformly to a nonvanishing limit, whefg = nF(nz), it
follows that0 € o(h). This can be seen as follows: given a sequence
e, — 0, we can writeF = G,, + H,, such thatG,,, H, € L'(R), G,
has compact support, say included(irc,, c,), and||H,|[ ;1 (r) < €n-
Writing G, ,(z) = nG,(nz), H,,(z) = nH,(nz) and noticing that
|Hpy * hllpoer)y < enllh]|, we obtainlim, .o Gy, * h = F,, x h. Re-
membering thaE(an?h) C (—nen, ne,) we obtain, lettingy — 0
faster thare,, — oo, E(Ii@ h) = 0 as before.

The condition of existence of a uniform limit &f, « » asy — 0 can
clearly be replaced by the less stringent condition of the existence of a
nonvanishing limit point, that is. a limit of some sequetge * h with
nn—0. We restate these remarks as:

Lemma. Letf € AP(R) and assume ¢ o(f); then for all F € L1(R)
limy—o[[nF'(nz) * fll=®) = 0.

PROOF. Let F € L'(R); with no loss of generality we may assume that
| F|lL1 @y < 1. Itfollows thatnF(nx)« f € W(f) and, ifit did not tend to
zero as) — 0, it would have W (f) being compact, other limit points.
By the preceding remarks this would imglye o(f). <

5.12 Lemma 5.11 has the following converse:

Lemma. Let f € AP(R), F € L*(R) and [ F(z)dz # 0. If for some
sequence,, — 0, lim, o ||7, F(nnx) * f|| = 0, then0 & o(f).

PROOF. We notice first that for any translate ¢f hence for any lin-
ear combination of translates, and hence for ary W(f), we have
limy, oo |9 F (0n) * gl| Lo (m) = 0. If g = const , 9, F(n,x) * g = F(0)g
and consequently the only constant in W(f) is zero, that &g (f). «
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5.13 Theorem.To everyf € AP(R) there corresponds a unique
numberM (f), called the mean value g¢f, having the property that

0&a(f—M(f)).

PROOF We have seen before that uniform limit pointsd€(nz) = f
asn — 0 are necessarily constants. Sing€(nz) x f € W(f) and
sinceW (f) is compact, there exists a numhbeisuch that for an ap-
propriate sequencg, — 0, n,K(n,z) * f converges uniformly ta.
SinceK(0) = 1, 7. K(nnz) * (f — a) — 0 uniformly; hence, by 5.12,
0¢&o(f— «). If gis another number such that o(f — ) we obtain,
using 5.11, that as — 0

nKnz) = [(f —a) = (f = B)] = nK(nz) * (f — ) —nK(nz) = (f — B)

converges to zero uniformly. ByK(nz) = [(f —a) — (f —3)]| = —«
identically and consequently = «. Thus the property ¢ o(f — «)
determinesy uniquely and we set/(f) = a. <

Corollary. If f € AP(R) andF € L'(R), thennF(nz) = f converges
uniformly aspy — 0 to F(0)M(f).

1/2 lz| < 1
0 |z] > 1
evaluating the convolution at the origin, we obtain:

In particular, takingF'(z) = writing T =n~!, and

Corollary. For f € AP(R),
(5.5) M(f) = lim — [ f@yia

Using the mean value we can determine the norm spectrugn of
completely. By (5.4) it is clear thag € o(f) if, and only if, 0 €
o(fe~%7) and consequently

(5.6) Eea(f) & M(feT ") #£0

By our definition of M (f

) and by corollary 5.9 it is clear that jfis
a measure thefi({0}) = M ()

and similarly

(5.6) F(&) = M(fem%);

thus we can recover the discrete parifofVe shall soon see théthas
no continuous part whefie AP(R).



VI. FOURIER TRANSFORMS ON THELINE 177

5.14 The mean value clearly has the basic properties of a translation
invariant integral, namely:

(5.7) M(f +g) = M(f)+ M(g),

(5.8) M(af) = aM(f),

(5.9) M(fy) = M(f) (wheref,(z) = f(z —y)).
Itis also positive:

Lemma. Assumef € AP(R), f(z) > 0 onR, and f not identically
zero. ThenV/(f) > 0.

PrROOFE By (5.7) we may assumg(0) > 0 and consequently, i > 0
is small enoughyf(z) > a on—a < z < a. LetA = A(a/2, f); every
interval of lengthA contains anx/2-almost-period off, sayr, and
f(z) > a/21in (1t — a,7 + «). It follows that the integral of over any
interval of lengthA is at leastv?; henceM (f) > o2 /A. <

5.15 We define the inner product of almost-periodic functions by:

(5.10) (fr9)m = M(f7)

and claim that with the inner product so defindd(R) is a preHilbert
space, that is, satisfies all the axioms of a Hilbert space except for
completeness. The bilinearity of, g)»s is obvious and the fact that
(f,9)m > 0 unlessf = 0 has been established in 5.14. In this pre-
Hilbert space, the exponentiaﬂsﬁfz}geﬂi form an orthonormal family,
since

o i I 1 ife=
(€€ )y = lim — / GiE—ma gy — ite=n
Tl 0 if&#n

We now introduce the notatién

(5.11) FHEY) = (f, %) ar = M(fe ™).

that is, f({¢}) are the Fourier coefficients gfrelative to the orthonor-
mal family {eif”}EER. Bessel’s inequality now reads

(5.12) STIFHENIE < (f fyar = M(If]?)

ecR

S§If fisa measure oRt, (5.11) agrees with (5.6"). By abuse of language we shall
sometimes refer tg({¢}) for arbitrary f € AP(R), as the mass of the pseudomeasfure
ate.
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and it follows thatf({¢}) = 0 except possibly for a countable setsts.
Combining this with (5.6) we obtain that for afl € AP(R), o(f) is
countable.

5.16 We now introduce the mean convolutiof X9 of two almost-

periodic functions.
Let f, g € AP(R); then for everyr € R, f(x — y)g(y), as a function
of y, is almost periodic and/, (f(xz — y)g(y)) is well defined. Write:

(5.13) (f * 9)(x) = My(f(x ~ v)g(y)) = Jim / fo—y)

T—o0
Lemma. fA*Jg is almost-periodic. M (|g|) < 1, thenfl\a}g e W(f).

PrRoOOF Without loss of generality we assume thdt|g|) < 1. It fol-
lows that for all sufficiently larg&”

/ f(z — )g(y)dy € W(f)

and, combining the compactnessif f) with the fact that the point-
wise limitin (5.13) is well defined, we obtai]ﬁgzg as the uniform limit

Oflf flx —y)g(y)dy. <

The convolutionf X9 has all the properties of convolutions @n
andR; in particular

(f 9V €D = M (M, (f(2 = p)g(y))e ™)

(5.14) - . '
= M, M, (Flz — e Cg(y)e W) = f({ehaled.

Also,
fx e = M, (f(z — y)e™¥) = My(f(£)e™ 1) = F({¢})e’®,
so that ifg(z) = > §({¢})e*® (finite sum) then

x 9= g({enfenes.
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5.17 For f € AP(R), write f*(z) = f(—=x), a
(5.15) h=fx " =M(fy)f(=+ ))

Sincef*({¢}) = f({¢}) we have by (5.14),
h({eh) = IF{eD P

If | flloo <1, which we assume for convenience, thiea W (f).
Lemma. h, defined by5.15) is positive definite.

PROOF. Letz; € R andz; are complex numberg,=1,..., N, then

n— o0 2T

=t g7 [ St v o wzo

Zh | — X)ziZp = lim / Zf z; +y) f(zr +y)ziZdy

<
Sinceh is continuous, Bochner’s theorem 2.8 says thistthe Fourier
transform of a positive measure or, equivaleritlis a positive measure.

5.18 Proposition. If f € AP(R )andf € M(R), thenf = 3 f({€})ds,
1Fllarey = SIF D], and f(z) = 3 F({}) e,

PROOF. By (5.6'), the discrete part of is 3 f({¢})de, and we have
SN < ||f||M . We claim that the continuous part pis zero.

Denote the contmuous part gfby p; it is the Fourier transform
of the almost-periodic functiop = f — > f({£})e’s*. By Wiener's
theorem 2.12lim(27)~" [7_|g(z)[?dz = 0 and, by 5.144 = 0. <

5.19 Theorem (Parseval’s identity).Let f € AP(R), then

(5.16) Y IFEEN? = M(f).
PrRooF. Defineh by (5.15). By Proposition 5.18 we have
DOIFHENE =D h{e}) = h(0) = M(IfP).

<

Corollary ( Completeness){eiix}geR is a complete orthonormal ba-
sis for AP(R).

Corollary (Uniqueness).Let f € AP(R), f # 0. Theno(f) # 0.
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5.20 For arbitraryf € AP(R), the series” f({¢})e’*, to which we
refer as the Fourier series ¢f converges tg in the norm induced by
the bilinear formy-, -) ;. Our next goal is to show that, as in the case of
periodic functions, the Fourier series of afy AP(R) is summable to

f in the uniform norm.

5.21 Lemma. Given a finite number of points, ..., ¢y € R and an
e > 0, there exists a trigonometric polynomiBlhaving the following
properties:

(@ B(z)>0
(b) M(B)=1
() B({¢))>1—¢ for j=1,...,N.

PROOF We notice first that iy, ..., &y happen to be integers andif

is an integer larger thasm ! max|¢;|, then the Fejér kernel of order,
namelyK,, = >" (1 - %)e“ﬂ has all the properties mentioned. In
the general case lat, ..., \, be abasisfof;, ..., ¢{y; thatis, A, ..., )\,

are linearly independent over the rationals and egegan be written

in the form¢; = 9 A; .\, with integral A; ;. Lete; > 0 be such
that(1 — ;)7 > 1 — ¢, and letm > ;' max; 1|4, |; we contend that

B = []{ K.» (M) has all the required properties. Property (a) is obvious
sinceB is a product of nonnegative functions. In order to check (b) and
(c) we rewriteB as

(5.17) B(z) = Z(l - nlk}r'l) (1 - %)eiwwwmwmm’

the summation extending over| < m,...,|k,] < m. Because of the
independence of thg;’s there is no regrouping of terms having the
same frequency and we conclude from (5.17) @b = the constant
termin (5.17)= M(B) = 1, which establishes (b), and

B({¢}) = B({Zq: Aj,lc/\k}) = ﬁ (1 - M) >(1—g)?>1—¢,

pie m+1
which establishes (c). <

Theorem. Let f € AP(R). Thenf can be approximated uniformly by
trigonometric polynomials, € W (f).
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PROOF. Sinceo(f) is countable we can write it 8;}32,. For each
n let B,, be the polynomial described in the lemma §for. .., &, and
e=1/n. Write P, = f x B.. By 5.17,P, € W(f) and taking account

of (c) abovelim P,({¢;}) = f({¢}) for every¢; € o(f). If & & o(f) we
haveP, ({¢}) = f({¢}) = 0 for all n. It follows that if g is a limit point
of P, in W(f), thenj({¢}) = f({¢}) for all ¢ and by the uniqueness
theoremy = f. Thus,f is the only limit point of the sequendg, in the
compact spac®#/(f) and it follows thatP, converge tof (in norm, i.e.,
uniformly.) <

Corollary. Every closed translation invariant subspaceA®(R) is
spanned by exponentials.

5.22 We finish this section with two theorems providing sufficient
conditions for functions to be almost-periodic. Though apparently dif-
ferent they are essentially equivalent and both are derived from the
same principle. We start with some preliminary definitions and lem-
mas.

Forh € AP(R), we say, by abuse of language, th&s analmost-
periodic pseudo-measure.

DEFINITION: A pseudo-measure is almost-periodic at a point
& € R, if there exists a functiop € A(R), ¢(¢) = 1 in some neighbor-
hood of¢,, such thatpr is almost-periodic.

Itis clear that is almost-periodic &, if, and only if, v is almost-
periodic for everyy € A(R) whose support is sufficiently close §
(e.g., within the neighborhood @f on which the functionp above is
equal to one). In particulaw, is almost-periodic at every¢ X (v).

Lemma. Letr € FL*> and assume th&E(v) is compact and that is
almost-periodic at every point &f(v). Thenv is almost-periodic.

PROOF. By a standard compactness argument we see that there exists
ann > 0 such thatv is almost-periodic for every € A(R) which is
supported by an interval of length Let; € A(R) have their sup-
ports contained in intervals of length j = 1,2,..., N, and such that

Ef’ ¢; =1 on a neighborhood df(v). By the assumption concerning

the supports of;, ;v is almost-periodic for alf, and consequently

N N
> (Whv) = (Z %‘)V =v

is almost-periodic. <
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5.23 Theorem.Leth € L>(R) and assume th&(h) is compact and
that 7 is almost-periodic at every € R except, possibly, &= 0. Then
h € AP(R).

5.24 Theorem (Bohr). Leth € L*°(R) and assume that it is differ-
entiable and that' € AP(R). Thenh € AP(R).

These two theorems are very closely related. We shall first show how
theorem 5.23 follows from 5.24, and then prove 5.24.

PROOF OF5.23: We begin by showing that iE(h) is compact, then
h is differentiable and’ = i¢h (see exercise 4.6). Legt € S(R) be
such thatf(¢) = 1 in a neighborhood o&(h). We haveh = fh and
consequentlyy = fxhorh(z) = [ f(z —y)h(y)dy. Sinceh is bounded
and f € S(R) we can differentiate under the integral sign and obtain
that# is (infinitely) differentiable and that’ = f’ x h. Remembering
that f/(¢) = i¢ in a neighborhood of(h), we obtaini’ = f'h = i¢h.

By theorem 4.11’ there exists a sequeree} in L'(R) such that

o~

én (&) = 0in a neighborhood of = 0, and such thafy,, — f'||A(R) — 0.
This implies (exercise 4.4) thiits,h — V|| /7= — 0, that is, 1’ is the
uniform limit of ¢,, x h. Now, sincey,,, vanishes in a neighborhood of
¢ =0, it follows from 5.22 thatp,, x h € AP(R); by 5.7, € AP(R),
and by 5.24, € AP(R).

PROOF OF5.24: Sinceh is clearly continuous we only have to show
that for everye > 0 there exists a constante, h) such that every inter-
val of lengthA(e, h) contains am-almost period of.. In view of 5.7 we
may consider the real and the imaginary parté aeparately, so that
we may assume thatis real-valued. Denote

(5.18) M =sup, h(z), m =infh(z).

Lete > 0. Letzy andz; be real numbers such that

(5.19) h(zo) <m—|—%, h(z1) >M—§;
we pute; = m and claim that ifr is ane;-almost period of’ then
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h(zo —7) < m + /2. In order to see this we write
h(z1 — 1) — h(zor) = / W (x — 7)da
(5.20) _ /I W (2)dz + /I (W(z —7) — H'(2))de
— h(n) — h(zo) + / (W (2 —7) — W (2))de,

and, since the last integral is bounded|by — z¢|e; = £/4 it follows
from (5.19) and (5.20) that

h(x1 — 1) — h(zo — 7) >M—m—§
and, sincéi(xz; — 7) < M, we obtainh(zo — 7) < m +¢/2.

We now use the pointszy — 7}, wherer is ane; /2-almost-period
of 1’ as reference points. Lat; = A(s1/2,4') and defines; by e; =
min(q/2,e1/2, ¢/A1). We claim that every,-almost-period of’ is an
e-almost-period of.. In order to prove it let: € R and letr; be anes-
almost-period ofi’; we taker, to be ane; /2-almost-period ofi’ such
thatz < zg — 70 < z + A;, and write

h(x —711) — h(z) =h(x —711) — h(zg — 70 — T1)
(5.19) + h(zg — 10 — 1) — h(mo — T0) + h(T0 — T0) — h(T)

Zo—To0

Zh(wo—To—Tl)—h(l”o—To)'i‘/ (W'(y) =R (y—m1))dy.

Sincerg andr, + 7, are bothe; -almost-periods we have
m<h(zg—10—71) <m+¢e/2 and m < h(xg —19) < m+¢/2,
hence|h(zg — 70 — 71) — h(zo — 70)| < /2. The integral in (5.21) is
bounded by,A; < /2 and it follows thath(z — 1) — h(z)| < €. Thus,

every interval of length\(e,, #’) contains are-almost-period of. and
the proof is complete. <

5.25 Theorem. Leth € L>°(R) and assume tha&t(h) is compact and
countable. Then € AP(R).

PROOF. This is a corollary of 5.20. The set of pointsuch that: is not
almost-periodic at is a subset o8(h) and, by 5.23, has no isolated
points. Since a countable set contains no nonempty perfectisists,
almost-periodic at every € R and, by 5.22h € AP(R). <
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EXERCISES FOR SECTION 5

1. Show thatf = cos2rz + cosz is almost-periodic by showing directly
that givene > 0, there exists an integev/ such that at least one of any
consecutive integers lies withinfrom an integral multiple ofr.

2. Leth € L*(R). Show that, ifh is uniformly continuousg (k) contains
every isolated point oE(h).

3.Letf,g € AP(R). Show thatf x g =37 FHEHIEED)es™.

4. Let f € AP(R) and assume tha¥ (f) is minimal in the sense that if
h € W(f)andh # 0 thenaf € W (h) for sufficiently smalle. Show thatf is a
constant multiple of an exponential.

5. Let f € AP(R) and assume that is uniformly continuous. Show that
f € AP(R).

6. Show that the assumption tHath) is compact is essential in the state-
ment of theorem 5.25.

Hint: Consider discontinuous periodic functions.

7. Show that in the statement of theorem 5.25, the assumptio®thais
compact can be replaced by the weaker condition/hzg uniformly continu-
ous.

8. Deduce 5.24 from 5.23.

9. Let P be a trigonometric polynomial oR, and lete > 0. Show that
there exists a positive = n(P,¢) such that ifQ € L*(R), ||Q| < 1 and
2(Q) C (~n,m), then

range(P + Q) + (—e, e) D range(P) + range(Q).

Hint: The conditions o) imply that||Q’|| < n; see exercise 4.6.

10. Leth € FL*™, & € R and{n,} a sequence tending to zero. Show that
if K(n,'(¢ — &))h tends to a limit (in the weak-star topology), then the limit
has the formud.,. Introducing the notatiom = h({&},K, {n.}), show that
SIh({&}, K, {n.})|? < oo where the summation extends overglle R such
that weak-statim,, .., K(n, ' (¢ — &))h exists.

11. Leth € FL*>. Show that for all, € R, except possibly countably
many, weak-stakim,, ...K(n, * (€ — &))h exists and is equal to zero.

12. Show that if, € L*°(R), o(h) is countable.

13. LetB be a homogeneous Banach spac&much thatAP(R) C B C
L. (see 1.14). Describe the closureBrof AP(R).

6 THE WEAK-STAR SPECTRUM OF BOUNDED FUNCTIONS

6.1 Given a functiomh € L>(R), we denote byh| the smallest trans-
lation invariant subspace df>~(R) that containg:; that is, the span

of {h,},cr. We denote byr| the norm closure ofr] in L>°(R), and
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by [h],~, the weak-star closur@] in L>°(R). Our definition 5.9 of the
norm spectrum ofi is clearly equivalent to

a(h) = {¢:e*" € [n]}
and we define the weak-star spectrum by
O (h) = {€:€% € [h] -}

Leth € L*°(R). The problem of weak-star spectral analysis is: find
aw+(h). The problem of weak-star spectral synthesis is: ddeslongs
to the weak-star closure of sp@ﬂfﬂ”}gegw* n)?

The corresponding problems for the uniform topology were studied
in section 5. We have obtained some information alaguj for arbi-
trary h and complete information in the case thatas almost-periodic
(see (5.6)); we proved that the norm spectral synthesis is validifor
and only if, h € AP(R). The problem of weak-star spectral analysis
admits the following answer:

Theorem. For h € L (R), 0,,- (h) = 2(h).

PROOF. The subspace df!(R) orthogonal tdh] is composed of all the
functionsf € L'(R) satisfying

/f(x)h(:c —y)dz=0 forall yeR
which is equivalent to
(6.1) fxh(—z)=0.

We denote this subspace bf(R) by [r]*.
By the Hahn-Banach theorewri$® < [h],,- if, and only if,

[t = i) =0

for all f € [n]*.

We thus have an equivalent definition @f-(h) as the set of all
common zeros of f: f € [h]*}.

Assumet, ¢ S(h); if € > 0is small enouglié,—¢, &y +¢)NS(h) = 0
so that iff € L!(R) and the support of is contained in&, — ¢, & + ¢)

we have

(f,h) = / f(z)h(z)dz = 0.
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We claim thatf is orthogonal not only té, but also to all the translates
of h, hence tdh]. This follows from

(6.2) [ t@hE =iz = [ @+ s

and since the Fourier transform gz + ) is Y f, hence supported by
(£o—¢,&0+¢), both sides of (6.2) must vanish. There are many functions
fin A(R) supported by&, — e, & + ¢) such thatf (&) # 0; it follows
that¢, is not a common zero dff: f € [h]*} hencegy ¢ o, (h); this
provess,-(h) C S[h).

In the course of the proof of the converse inclusion we shall need
the following lemma, due to Wiener. The proof of the lemma will come

in chapter VIII (see VIII.6.2).

Lemma. Assumef, f; € A(R) and assume that the support fAif is
contained in a bounded interval on whichf is bounded away from
zero. Then

fi=gf forsomeye L'(R).

To proveXi|h| C oy~ (h), we have to show that &, & o, (h), then
h vanishes in some neighborhoodsgf Now, sincet, ¢ o, (h), there
exists a functiory e L'(R) satisfying (6.1) and such thgt¢,) # 0 and
consequently is bounded away from zero on some neighborhood U of
&. We contend thal vanishes irl/, a contention that will be proved if
we show that iff; € L!(R) and the support ofl is contained irU then
f1 = h(—z) = 0. By Wiener’s lemma there exists a functigre L'(R)
such thatf; = f or equivalentlyf; = g « f. Now

froh(=x) = (g f)  h(—x) = g+ (f * h(—2)) = 0

and the proof is complete. <

6.2 The Hahn-Banach theorem, used as in the foregoing proof, gives
a convenient restatement of the problem of spectral synthesis. We in-
troduce first the following notations: i is a closed set oR write

(6.3) I(E)={f:feL'R), f()=0 on E}
and

(6.4) Q(E)={g:9€ L>(R) and(f,g) =0 forall fe I(E)}.
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I(E) is clearly the orthogonal complement it (R) to the span of
{e’*}ccp andQ(E) is the orthogonal complement itP° (R) of I(E).

By the Hahn-Banach theorefi( ) is precisely the weak-star closure
of span{e®*}.cr and the problem of (weak-star) spectral synthesis for
h € L*°(R) can be formulated as: is it true thiat Q(o,~(h))? Equiv-
alently, is it true that forf € A(R)

(6.5) F(©)=0 on gy (h) = (f,h) =07

or: is it true that(f € A(R))

(6.6) f(€)=0 on = fh=0?

(The equivalence of (6.5) and (6.6) follows from (6.2)).

Theorem. Let f € A(R) andh € FL> and assume thaf(¢) = 0 on
% (h). Then(fh) is a perfect subset &(f) N bdry(X(h)).

PROOF. By 4.10,%(fh) ¢ (f) N (k) and sincef vanishes orE(h),
no interior point of (k) is in £(f). Let & be an isolated point of
>(fh); with no loss of generality we may assurg = 0 and that
(—n,n) contains no other point & ( fh).

Write K,,(€) = K(1~'€) = sup(0, 1-|5~'€). We haves(K,, f7) = {0}
and consequently (see 4.1/) fh = a6, with a # 0 a constant, and
the unit mass concentrated@t= 0. By 4.11’ there exists a function
g € LY(R) such thaty vanishes in a neighborhood ¢f= 0, say in
(—=m,m), and such thaflg — fllrie) < (lal/2)[h] g (remember
that f(0) = 0). Since[|K,| = 1, we have|K,(f — §)h|| < |a|/2 and,
multiplying everything byK,, we obtain, (remember that, § = 0),
la|] = ||ad]| L~ < |a|/2 which is a contradiction. ThuX(fh) has no
isolated points and the proof is complete. <

Corollary. If ¥(h) has countable boundary thénadmits weak-star
spectral synthesis; that ig, € Q(o - (h)).

We recall that if(h) itself, and not just its boundary, is countable,
and if h is uniformly continuous, theh € AP(R) (theorem 5.25), that
is, admits norm spectral synthesis.

Weak-star spectral synthesis is closely related to the structure of
closed ideals iM(R), and we shall discuss it further in chapter VIII. In
particular, we shall show that weak-star spectral synthesisIity is
not always possible.
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7 THE PALEY-WIENER THEOREMS

7.1 Our purpose in this section is to study the relationship between

properties of analyticity and growth of a function Bnand the growth

of its Fourier transform oi®. The situation is similar to, though not as

simple as, the case of functions on the circle. We have seen in chapter

| (see exercise 1.4.4) that a functighdefined oril, is analytic if, and

only if, f(n) tends to zero exponentially &s — co. The simplicity of

this characterization of analytic functions @ris due to the compact-

ness ofT. If we consider the canonical identification®fvith the unit

circle inthe complex plane (i.e.« ¢%), then a functiory is analytic on

T (i.e., is locally the sum of a convergent power series) if, and only if,

f is the restriction tdr of a functionF, holomorphic in some annulus,

concentric and containing the unit circle. This functiBris automati-

cally bounded in an annulus containing the unit circle, and the Fourier

series off is simply the restriction t@ of the Laurent expansion df.
ConsideringR as the real axis in the complex plane, it is clear that

a functionf is analytic onR if, and only if, it is the restriction t@® of

a functionF, holomorphic in some domain containii®g however, this

domain need not contain a whole stfip: z = = + iy, |y| < a}, nor need

F be bounded in strips arouridor onR itself (cf. exercises 1 through

3 at the end of this section). If we assume exponential decreasatof

infinity we can deduce more than just the analyticityf@n R; in fact,

writing

F) = 5 [ HOede

we see that iff (¢) = O (e?/¢l) for somea > 0, thenF is well defined
and holomorphic in the stripz : |y| < a}, and is bounded in every strip
{z:|yl < a1}, a1 < a; by the inversion formulg F|g = f. Under the
same assumption we obtain also that, sifieeL2(R), f € L2(R); and
since for|y| < a, F(z + iy) is the inverse Fourier transforms @f¢v f,

we see that, as a function of F(z + iy) € L*(R) for all |y| < a. Even
with all this added information about the analytic function extending
/ to a strip, we cannot obtain exponential decreasg; afe can only
obtain thate—¢v f € L2(R) for all |y| < a.

Theorem (Paley-Wiener).For f € L*(R), the following two condi-
tions are equivalent:

*F\R denotes the restriction @f to R.
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(1) f is the restriction tdR of a functionF holomorphic in the strip
{z:]y| < a} and satisfying

(7.1) /|F(:L +iy)?|de < const  |y| < a.

(2) el f e L2(R).

PROOFE (2)=(1): write
(7.2) F:) = 5= [ HOeds

then by the inversion formul&|r = f; the functionF is well defined
and holomorphic i z:|y| < a}, and, by Plancherel’'s theorem:

22£ al&
J1F s ipide = o [17©PEvdE < e,

1)=(2); write f,(z) = F(x +iy) (thus f = f,), and consider the
Fourier transformgfy We want to show thaf,(¢) = f(€)e ¥ since
by Plancherel’'s theorem and (7.1), we would then hae¢)|?e*vdz
uniformly bounded iny| < a, which clearly implies (2). Notice that if
we assume (2) then, by the first part of the proof, we do bf@@ =
f(&)eev.

For A\ > 0 andz in the strip{z: |y| < a} we put:
(7.3) Ga(z) =Kyx F = / (z — u)Ky(u)du,

whereK denotes Fejér’s kernet7,, is clearly holomorphic in the strip
{z:]y| < a} and we notice that, ,(z) = Gx(z+1iy) = Kx* f, and hence
g/fy(g) KAAfy(g) Now sincey, ,(£) has a compact support (contained
n [-A,A]) we havegy,(£) = gro0(§)e ~¢¥ and consequently ift| < A,
fy(g) f(€)e~¢¥. SinceX > 0 is arbitrary, the above holds for glland
the proof is complete. <

We may clearly replace the "symmetric" conditions of 7.1 by non-
symmetric ones. The assumption (7.1) faer, <y < a, witha, a; > 0,
is equivalent toe®¢ + =) f(£) € L3(R).

7.2 Theorem (Paley-Wiener).For f € L*(R) the following two
conditions are equivalent:
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(1) There exists a functiof’, holomorphic in the upper half-plane
{z:y > 0}, and satisfying:

(7.4) /\F(x + iy)|?dx < const , y>0
and
. . 2 _
(7.5) 1;%/|F(z +iy) — f(z)Pdz = 0.
2) f© =0 for ¢<o.

PROOF (2)=-(1): DefineF(z), fory > 0, by (7.2). F is clearly holo-
morphic, F(x + iy) is the inverse Fourier transform ef¢¥f and, by
Plancherel’s theorem,

IF (2 + i)l 2@ = 1fe™ N 2@y < 1120
which establishes (7.4), and also
IF(z +iy) = fll2m = /(e — D2 — 0

asy | 0.
D)= (2); write f1(z) = F(z +1). By 7.1:

I fe N oy = I1F@+i+iy)|2@ for—1<y<oo

and, in particular, by (7.4):
(7.6) /\f1(§)|26_25yd§ < const .

Letting y — oo, (7.6) clearly implies thAaf(f) = 0for¢ < 0. By
7.1, the Fourier transform df (z + iy) is f(£)ef"~%); hence, by (7.5),

F(&) = f1(&)et, andf(€) = 0 for & < 0. <

*x7.3 The foregoing proofs yield more information than that stated ex-
plicitly. The proof of the implication(2) = (1) also shows that" is
bounded fory > ¢ > 0 sincej’\f(g)e*@\dg is then bounded. In the
proof (1) = (2) no mention off is needed nor is the assumption (7.5);
if we simply assume thaft is holomorphic in the upper half-plane and
satisfies (7.4), we obtain, keeping the notations of the proof above, that
fiet € L*(R) and, denoting by the function inL?(R) of which fe¢
is the Fourier transform, we obtain (7.5) as a consequence (rather than
as an assumption). The Phragmén-Lindel6f theorem allows a further
improvement:
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Lemma. LetF be holomorphic in a neighborhood of the closed upper
half-plane{z:y > 0} and assume that

(7.7) /|F(x)|2dx < o0
and
(7.8) lim r~* log+|F(rem)| =0

forall 0 < 9 < «. Then(7.4)is valid.

PROOF Let ¢ be continuous with compact support Bn||¢||z2 < 1.
Write G(z) = ¢« F = [*_F(z — u)p(u)du; thenG is holomorphic in
{z:y > 0}, satisfies the condition (7.8), and, Bri

G(@)| < IF[Rlle2llelle < I1F[RIlL2-

By the Phragmén-Lindel6f theorem we haw€z)| < ||F|g|[.> through-
out the upper half-plane, which meaiis”(z+iy)o(—z)dz| < ||F|R|| >
for y > 0. Since this is true for every (continuous and with compact
support) such thaky| ;- < 1, it follows that

[1F@+ig)Pds < [1F@)Pde «

7.4 Theorem. Let F be an entire function and > 0. The following
two conditions orF are equivalent:
(1) F|g € L*(R) and

(7.9) |F ()] = o(e”)

(2) There exists a functiofi € L2(R), f(¢) = 0 for |¢| > a, such
that

(7.10) F(z) 1 af(g)eideg.

T or —a

PROOFE (2) = (1); if (7.10) is valid we have

~ N 1 a %
P < 1@ Ny < 1l (52 / *vde)”.

iF\R denotes the restriction df to R.
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Now

L[ o 1, 9 e
il dé = — (29 _ o—20) <
27 / ¢ ¢ 4y (e ¢ )

and consequently

—a

eyl

\/WHJC“IP(R)
which is clearly stricter than (7.9). The square summability#'¢f
follows from Plancherel’s theorem.

(1)= (2); assume first thaf | is bounded. The functiot'(z) =
e"**F(z) is entire, satisfies (7.9) in the upper half-plane, &) — 0
asy — oo. By the Phragmén-Lindel6f theorer@, is bounded in the
upper half-plane and, writing= G|, it follows from Lemma 7.3 and
Theorem 7.2 thag is carried by(0,00). Writing f = F|g we clearly
have f(¢) = §(¢ + a) which impliesf(¢) = 0 for ¢ < —a. Similarly,
consideringGi(z) = e "**F(z), we obtainf(¢) = 0 for ¢ > a and,
writing H(z) = 1/2x [ f(€)e’é*d¢, we obtain, by the inversion theorem,
H|r = F|r so thatd = F' and (7.10) is established.

In the general case, that is without assuming thas bounded on
R, we considerF,(z) = ¢« F = [F(z — u)p(u)du Wherey is an
arbitrary continuous function with compact suppoH, satisfies the
conditions in (1) and is bounded dn Writing f, = F,|gr we have
fo(6) = f(O)@p(€) and f,(€) = 0if |¢| > a. Sincey is arbitrary this
implies f(¢) = 0 for |¢| > a and the proof is completed as before. <

|F(2)] <

EXERCISES FOR SECTION 7

1. Show thatF'(z) = 3> 27"[(z + n)* + n~']"" is analytic onR and
F\R € L' n L*(R); however,F is not holomorphic in any strigz: |y| < a},
a > 0.

2. Show that for a proper choice of the constgats} and{b, } the function

G(z) = Z ane_b"(z_">2

is entire,G|g € L'(R), butG is unbounded of.

3. Show thatH (z) = e is entire,H|p € L' N L= (R); however,H is
unbounded on any ling = const # 0.

4. Let F be holomorphic in a neighborhood of the stfip: |y| < a} and
assumef|F(z + iy)|*dz < const for |y| < a. Show that forz in the interior of

the strip: - 1 [®/F(u—ia) F(u+ia)
Z)—ﬁ/oo( _ )du

2 u—ta—z u-+tia—=z
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5. Let, be a measure oR, supported by—a, a]. Define:
Fz) = / I du(e).

Show thatF is entire and satisfieB(z) = O (e“‘y‘). Give an example to show
that I’ need not satisfy (7.9).
Hint: F(z) = cosaz.

6. Letv be a distribution o, supported by—a, a]. Show that the function
F, defined byF(z) = [ e***dv, is entire and that there exists an integlesuch
that

F(z)=0 (zNealyl) as|z| — oo.

7. Titchmarsh’s convolution theorem:

(a) Let F" be an entire function of exponential type (i.€(z) = O (e“'z‘)
for somea > 0) and assume th&f'(z)| < 1 for all realz and thatF'(iy) is real
valued. Assuming that' is unbounded in the upper half-plane, show that the
domainD = {z:y > 0, |F(z)| > 2} is symmetric with respect to the imaginary
axis, is connected, and its intersection with the imaginary axis is unbounded.
Hint: Phragmén-Lindel6f.

(b) Let F1 and F» both have the properties @f in part (a) and denote the
corresponding domains by,, D-, respectively. Show thab; N D» # § and
deduce that F» is unbounded in the upper half-plane.

(c) Let f; € L*(R), j = 1,2, and assume that are both real-valued and
carried by[—a, 0]. Show that iff; « f> vanishes in a neighborhood &f 0, so
does at least one of the functiofis

Remark:: Titchmarsh’s theorem is essentially statement (c) above. The as-
sumption thatf; are real-valued is introduced to ensure that the corresponding
F;, defined by an integral analogous to (7.10), is real-valued on the imaginary
axis. This assumption is not essential; in fact, part (c) is an immediate conse-
quence of the Paley-Wiener theorems in the case f, (in which case part
(b) is trivial), and the full part (c) can be obtained from it quite simply (see
[18]).

*8 THE FOURIER-CARLEMAN TRANSFORM

We sketch briefly another way to extend the domain of the Fourier
transformation. There is no aim here at maximum generality and we
describe the main ideas using’ (R) as an example, although only mi-
nor modifications are needed in order to extend the theory to functions
of polynomial growth at infinity or, more generally, to functions whose
growth at infinity is slower than exponential. For more details we refer
the reader to [3].
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8.1 Forh € L (R) we write

0

Fi(h,¢) = / e T h(z)dx (=&+in, n>0
(8.1) oo

Fy(h,¢) = —/ e~ h(x)dx ¢=&+1in, n<O.

0
Fi(h,¢) and Fy(h,¢) are clearly holomorphic in their respective do-
mains of definition, and it is apparent from (8.1) thayif> 0, then
Fy(h, & +in) — Fy(h, & — in) is the Fourier transform aof "l*/h. Hence
if h € L*(R) we obtain
(8.2) Jim (Fy (b + i) = Fa(h, € = im) = h(©)
uniformly. Sincee~"*I), tends toh in the weak-star topology for any
h e L*(R), (8.2) is valid for everyr € L>°(R) providedh is allowed to
be a pseudo-measure and the limit is in the weak-star topology. &f
as dual ofA(R).
Let us consider the cagec L!(R). If I is an interval orR disjoint

from the support of, andD is the disc of whicH is a diameter, and if
we define the functio’ in D by

(8.3) F(h¢) = {2&28 [

then it follows from (8.2) that'(h, ¢) is well defined and continuous in
D and itis holomorphic irD\ I. Itis well known that this implies (e.qg.,
by Morera’s theorem) that'(h, ¢) is holomorphic inD. We see that in
the caseé € L'NL>(R), Fy(h,¢) andF;(h, () are analytic continuations
of each other through the complemensitf,) onR. On the other hand,

if F1(h,¢) andF,(h, () are analytic continuations of each other through
an open interval, (&) = Fy(h, &) — Fy(h, &) = 0onI, andINX(h) = 0.
Denoting byc(h) the set of concordance 6y (h, (), Fa(h,()), that is,
the set of points oR in the neighborhood of which; (h, ¢) andF,(h, ¢)

are analytic continuations of each other, we can state our result as

Lemma. Assume: € L' N L>(R); then X(h) is the complement of
c(h).

8.2 We now show that the same is true without assunirgL!(R).

Theorem. For every bounded functioh, X (k) is the complement of
c(h).
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PROOF Let F be a compact subset @{h); then, asp — 0+,
Fi(h,& +in) — Fa(h, & —in) — 0 uniformly for ¢ € E. If f € AR)
and the support of is contained inF, then

®4) (70 = lim o [ FORGET )~ Falhn — md¢ =0

which provess(h) N e(h) = 0.
The fact thatt, ¢ X(h) impliesé, € c¢(h) is obtained from Lemma
8.1 and the following simple lemma about removable singularities:

8.3 Lemma. LetI be an interval on the real line) the disc in the
¢ plane of which! is a diameter,F” a holomorphic function defined in
D\ I, satisfying the growth condition

(8.5) |F (&4 in)| < const |n|~".

Assume that there exist functioftg which are holomorphic D,
satisfy(8.5) (with a constant independent ¢f and ®;({) — F(¢) in
D\ I. ThenF can be extended to a function holomorphidin

PROOF. Let D; be a concentric disc properly includedinand D, a
concentric disc properly included iD,. Denote by;, {; the points of
intersection of the boundary @f' with I.

The functions(¢ — ¢1)"(¢ — ¢2)"®,(¢) are uniformly bounded on
the boundary ofD,, hence inD,, and consequentl®,; are uniformly
bounded inD,. The Cauchy integral formula now shows tldgtcon-
verge uniformly inD, to a holomorphic function which agrees with
on D, \ I. SinceD? is an arbitrary concentric disc iP, the lemma
follows. |

8.4 Lemma. Leth € L>°(R); then

[F1(h, Q)] < [lhlloon™ (=&+in,n>0
|Fo(h, Q)] < [[h]lssn] ™! ¢=&+1in, n>0.

PrROOF,

0

0
|F1(h, € S/ e h(x)|dr < thloc/ " dx = |[hl|ocn ™

— 00

and similarly forFy. <



196 AN INTRODUCTION TOHARMONIC ANALYSIS

We can now finish the proof of Theorem 8.2. We have to show that
if & & B(h), thengy € ¢(h). Assumet, € X(h); by Lemma 4.7
has an interval about it which does not interseEl:(lﬁ(\k) provided\
is large enoughK, is the Fejér kernel anB(K,) = [-1/X,1/))). If D
is the disc for whichl is a diameter, it follows from Lemma 8.1 that
the pair(Fy(hKy, (), Fo(hKj, ¢)) defines holomorphic function®,, in
D, which clearly converge, as— oo to (Fy(h, ), F»(h,{)) on D\ 1. By
Lemma 8.4 we can apply Lemma 8.3 and the theorem follows. «

The Fourier-Carleman transform thus gives an alternative definition
of the weak-star spectrum of a bounded function. As an illustration
we indicate briefly how Theorem 4.11 can be obtained by Carleman’s
method. We assume againe L>°(R) and £(h) = {0}. The pair
(F1(h,Q), Fa(h,¢)) defines an analytic function whose only singularity
in the finite ¢ plane is at the poinf = 0. By Lemma 8.4 and the
Phragmén-Lindelof theoren®,tends to zero at infinity and has a simple
pole at¢ = 0. Hence, for some constaat®(¢) = c/i¢, which is the
Fourier-Carleman transform of the constant

9 KRONECKER'S THEOREM

9.1 Theorem (Kronecker). Let )\, Ao, ..., \, be real numbers, in-
dependent over the rationals. Let, ..., o, be real numbers and> 0.
Then there exists a real numbesuch that

(9.2) lei® — i | < g, j=1,2,...,n.
Kronecker’'s theorem is equivalent to

9.2 Theorem. A\, \s, ..., A, be real numbers, independent over the
rationals, \o = 0, and letag, a1, . . ., a, be any complex numbers. Then

n
= lajl.
=0

We first establish the equivalence of Theorems 9.1 and 9.2 and then
obtain 9.2 as a limit theorem.

(9.2) Sug‘i a;eNi®
7=0

PROOF THAT9.1=9.2: Write a; = r;e’®/, r; > 0. By 9.1, there exist
values ofz for which |e?*i® — ¢i(@0—)| is small,j = 1,...,n. For these
values ofz, 3°7_; a;e* is close toe'™ Y- r;. <
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PROOF THAT 9.2=>9.1: Consider the polynomiak->"7 e~*@i¢?*i® and
notice that its absolute value can be close to n + 1 only if all the sum-
mands are close to 1, that is, only if (9.1) is satisfied. <

Remark:If Xi,...,\,, 7 are linearly independent over the rationals,
we can add the conditiop®™** — 1| < e which essentially means that
we can pickrz in (9.1) to be an integer.

Theorem 9.2 is a limiting case of Theorem §.Below. The idea in the
proof is that used in the proof of Lemma V.1.3, that is, the application
of Riesz products and of the inequality

(9.3) M(fg) < | fllooM(lg])

which is clearly valid forf,g € AP(R) (see (5.5)). Actually, we use
(9.3) for polynomials only, in which case the existence of the limit (5.5)
and the fact that it equals the constant term are obvious, and this section
is essentially independent of section 5.

For the sake of clarity we state 9;:3irst for N = 1, as

9.3 Theorem. Let \,..., A, be real numbers having the following
properties:

(a) Zaj/\j:O sj:—l,O,l, = 6]‘20 for all 7.
1
(b) > eihi=XM g =-101 = g =0 forj#k.
1
Then, for any complex numbers. .., a,

1
> 52\%‘\-

(9.4) supr‘z a;eN®

PROOF. Write a; = rje’*, r; > 0 and

n

@) =TT + cos(Njz + )

1
flx) = Zajei’\jw.

g is a nonnegative trigonometric polynomial whose frequencies all have
the form) ¢; )\, e; = —1,0,1. By (a), the constant term ipis 1, hence
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M(g) = M(lg|) = 1. By (b), the constant term (which is the same as the
mean value) of’g is ; >" r; and, by (9.3),

N |

;rjgsuqﬂ. <

9.3y Theorem. Let)y,..., )\, be real numbers having the following
properties:

(a) > A =0 ¢ integers || <N = ¢;=0 forallj.
1

(b) Zgj)\j = A\ €j integers |€j| <N = €j = 0 forj #* k.
1

Then, for any complex numbers ..., a,

> (1= 5p) Xl

PROOF Virtually identical to that of 9.3; we only have to replagas
defined there by

(9.4v) SUQE‘Z a e

n

g9(z) = [[Kn(\jz + )
1

whereK y (z) = 32V, (1 - N%'le"jm). We leave the details to the reader,
<

Itis clear that if\q, ..., )\, are linearly independent, the conditions
of 9.3y are satisfied for allv and consequently we obtain (Q.4for
all N, hence (9.2). This completes the proof of theorem 9.2 and hence
of Kronecker’s theorem. <

For a different approach see VII.3.

9.4 The extension of theorem 9.1 to infinite, linearly independent sets
presents a certain number of problems, not all of which are solved. We
restrict our attention to compact linearly independent getnd ask
under what conditions is it possible to approximate uniformlyEoev-

ery function of modulus 1, by an exponential. The obvious answer is
that this is possible if, and only if, E is finite; this follows from Kro-
necker’s theorem ("if*) and the fact that uniform limits of exponentials
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must be continuous of, and if £ is infinite (and compact) not all func-
tions of modulus 1 are continuous ("only if"). We therefore modify our
questions and ask under what condition is it possible to approximate
uniformly on E every continuous function of modulus 1 by an expo-
nential. We do not have a satisfactory answer to this question; for some
setsE the approximation is possible, for others it is not, and we intro-
duce the following:

DEFINITION: A compact seE C R is aKronecker seif every contin-
uous function of modulus 1 oA can be approximated af uniformly
be exponentials.

The existence of an infinite perfect Kronecker set is not hard to es-
tablish by a direct construction. We choose, however, to prove it by a
less direct method which also may be used to obtain finer results (see
[14]).

Theorem. Let E be a perfect totally disconnected set ®n Denote
by Ckr(F) the space of continuous, real-valued functionskanThen
there exists a sef of the first categorlyin Cy(F) such that every <
Cr(E) \ G mapsE homeomorphically onto a Kronecker set.

PROOF A functiony € Cr(E) mapsE homeomorphically onto a Kro-
necker set if, and only if, for every continuous functionf modulus 1
on E and for every > 0, there exists a real numbgisuch that

(9.5) SUQGE‘eM‘P(m) - h(m)‘ <e

We show first that if we fixa ande, the set of functions for which
(9.5) holds for an appropriateis everywhere dense itk (E). For this,
let ¢y € Cr(F) and lety > 0. We take) = 10n~! and write E as a
union of disjoint closed subseis, j = 1,..., N, the E;'s being small
enough so that the variation of eithieor ¢:*¥ on E; does not exceed
/3. Lete'™ be a value assumed tyon E; ande'”i a value assumed
by ei*¥ on E;; we may clearly assume;| < = and|g;| < = for all j.
We now define

(9.6) o(z) =¢Y(z) + aj%ﬁj forz € E;.

We havep € Cr(F) and||¢ — ¢|| < 27/X < n; also, checking on each
E;, itis clear that (9.5) holds.

TCg(E), with the metric given by the normip|lec = sup,czle(z)l, is a complete
metric space.
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It follows that the seG(h, ) of all ¢ € Cr(E) for which (9.5) holds
for no A € R, a set which is clearly closed, is nondense. Taking a se-
guence of continuous functions of modulus 1, §ay}, which is dense
in the set of all such functions, and taking a sequence of positive num-
bers{e,,} such that,, — 0, itis clear thaG = U,, ,,G(hn, e,,) is Of the
first category. Also, ifp ¢ G, then evenyh,, can be approximated uni-
formly on E by ¢*** with appropriate\’s hence so can every continuous
function of modulus 1 and the theorem follows. <

EXERCISES FOR SECTION 9

1. Let)y,..., A\, belinearly independent over the rationals angiet. ., f,,
be continuous and periodic d having periods\;1 respectively. Show that
the closure of the range ¢f= fi +-- -+ f, is precisely rangéf,) + - - - +range
(f»). Deduce that i) € range(f;) for all j, then

IS5l 2 5 Dl

Hint: Show thatife; ..., ¢, are complex numbers, one can find. . . ; ¢, the
¢;'s being zero or one, such thgt e;c;| > £ > ¢l

2. Letf € AP(R) and assume that( f) is independent over the rationals.
Show thatf is a measure and thaf || = [|f]|/z)-

3. Letf € AP(R) and assume thai(f) C {377}52,. Show thatf is a
measure and thatf | ,,z) < 2/|flloc-

4. Let)Ay,...,\, be real numbers. Sef, = 0 and assume that for any
choice of complex numbeis, ..., a,, (9.2) is valid. Show thak,, ..., \, are
linearly independent over the rationals.

5. Construct a sequende,;} of linearly independent numbers such that
A; — 0, and such thaf);} U {0} is not a Kronecker set.

6. Show that every convergent sequence of linearly independent numbers
contains an (infinite) subsequence which is a Kronecker set.



Chapter VI

Fourier Analysis on Locally Compact
Abelian Groups

We have been dealing so far with spaces of functions defined on
the circle groupr, the group of integerg, or the real lineR (or R).
Most of the theory can be carried, without too much effort, to spaces of
functions defined on any locally compact abelian group. The interest
in such a generalization lies not only in the fact that we have a more
general theory, but also in the light it sheds on the "classical” situations.
We give only a brief sketch of the theory: proofs, many more facts, and
other references can be found in [5], [9], [15] and [24].

1 LOCALLY COMPACT ABELIAN GROUPS

A locally compact abelian (LCA) group is an abelian group, Say
which is at the same time a locally compact Hausdorff space and such
that the group operations are continuous. To be precise: if we write
the group operation as addition, the continuity requirement is that both
mappingsr — —z of G onto G and(z,y) — z + y of GxG ontoG are
continuous. For a fixed € G, the mappingg — z + y is a homeomor-
phism ofG onto itself which takes$ into z. Thus the topological nature
of G atanyzr € G is the same as itis &t

Examples:

(a) Any abelian groug is trivially an LCA group with the discrete
topology.

(b) The circle grou and the real lin€R with the usual topology.

(c) Let G be an LCA group and{ a closed subgroup, theli with
the induced structure is an LCA group. The same is true for the
quotient grougs/ H if we put on it the canonical quotient topology

201
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that is, if we agree that a sétin G/H is open if, and only if, its
preimage inG is open.

(d) The direct sum of a finite number of LCA groups is defined as the
algebraic direct sum endowed with the product topology; itis again
an LCA group.

(e) Thecomplete direct sunof a family {G.}, « € I, of abelian
groups is the group of all "vectors@, }aer, o € Ga, Where the
addition is performed coordinatewisg:, } + {yo} = {za +ya}- If
foralla € I, G, is acompact abelian group, the product topology
on the complete direct sums make it a compact abelian group. This
follows easily from Tychonoff’s theorem.

If for every positive integer, G,, is the group of order two, then
the complete direct sum diG,,} is the group of all sequencds,, },
e, = 0,1 with coordinatewise addition modulo 2, and with the topology
that makes the mapping@,.} — 2> ¢,3™" a homeomorphism of the
group onto the classical cantor set on the line. We denote this particular
group byD.

2 THE HAAR MEASURE

Let G be a locally compact abelian group. A Haar measuré& as
a positive regular Borel measutéhaving the following two properties:

(1) u(F) < o if Eis compact;
(2) u(E + z) = p(F) for all measurable c G and allz € G.

One proves that a Haar measure always exists and that it is unique up
to multiplication by a positive constant; by abuse of language one may
therefore talk abouhe Haar measure. The Haar measur&a$ finite

if, and only if, G is compact and it is then usuallpormalized to have

total mass one. I& = T or G = T™ the Haar measure is simply the
normalized Lebesgue measure Glf= R the Haar measure is again a
multiple of the Lebesgue measuredfis discrete, the Haar measure is
usually normalized to have mass one at each pointz I§ the direct

sum afG; andG,, the Haar measure af is the product measure of

the Haar measures 6f; andG,. The Haar measure on the complete

TExcept when G is finite; it is as usual to introduce the "compact" normalization as it
is the "discrete.”
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direct sum of a family of compact groups is the product of the corre-
sponding normalized Haar measures. In particular, the Haar measure
on the grou® defined above corresponds to the well-known Lebesgue
measure on the Cantor set, the homeomorphism defined above being
also measure preserving.

Let G be an LCA group; we denote the Haar measuré&dy dz,
and the integral of with respect to the Haar measure fyf(x)dz or
simply [ f(z)dz. Forl < p < co we denote byL?(G) the L? space
on G corresponding to the Haar measure. One defines convolution on
Gby (f+9)(y) = [, fly — z)g(z)dx and proves that iff,g € L'(G)
thenf x g € L'(G) and||f * gl < Iflli @9l so thatl'(G)
is a Banach algebra under convolution. We may define homogeneous
Banach spaces on any LCA grogpas we did forT or R, that is, as
Banach spaceB of locally integrable functions, norm invariant under
translation and such that the mappings- f, are continuous frong-
to B for all f € B. Remembering that for < p < oo the continuous
functions with compact support are norm densei(), it is clear that
L?(G) is a homogeneous Banach space-on

Let B be a homogeneous Banach space on an LCA géupsing
vector-valued integration we can extend the definition of convolution
so thatf * g is defined and belongs B for all f € L'(G) andg € B
and show thal f = glls < [[fllz1(c)llgll 5-

DEFINITION: A summability kernebn the LCA groupG is a di-
rected family{k,} in L' (G) satisfying the following conditions:

(@) [kallzr(e) < const,
(b) [ ka(z)dz =1;
(c) if Vis an neighborhood afin G, lim, [q y [ka(z)|dz = 0.

If {k,} is a summability kernel o’ and if B is a homogeneous
Banach space ofi, thenlim, ||k, * g — g||p = 0 for all g € B.

3 CHARACTERS AND THE DUAL GROUP

A characteron an LCA groupZ is a continuous homomorphism of
G into the multiplicative group of complex numbers of modulus 1, that
is, a continuous complex-valued functigfxr) on G satisfying:

@) =1 and ¢z +y) =E(@)Ey).
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The trivial character ig(z) = 1 identically. If G is non-trivial there are
non-trivial characters on it.

The set of all the characters off is clearly a commutative multi-
plicative group (under pointwise multiplication). We change the nota-
tion and write the group operation Gfas addition and replacgz) by
(z, &) or sometimes by,

We introduce a topology to: by stipulating that convergence in
G is equivalent to uniform convergence on compact subsets (tfie
elements of? being functions orG). Thus, a basis of neighborhoods
of 0 in G is given by sets of the forrf¢ : |(z,¢) — 1| < ¢ forall z € K}
whereK is a compact subset df ande > 0. Neighborhoods of other
points in( are translates of neighborhhods of 0. It is not hard to see
that with this topology is an LCA group; we call ithe dual groupof
G.

For eachr € G, the mapping — (z,¢) defines a character ag.

The Pontryagin duality theorem states that every charactéitas this

form and that the topology of uniform convergence on compact subsets
of G coincides with the original topology o@. In other words, ifG is

the dual group of7, theng is the dual ofG.

Examples: (a) ForG = T with the usual topology every character
has the formt — e~ for some integen, the topology of uniform
convergence off is clearly the discrete topology afit= Z. Similarly,
we checkZ = T; this illustrates the Pontryagin duality theorem.

The exampleZ = T hints the following general theorernthe dual
group of any compact group is discrgsee exercise 5 at the end of this
section). Also: The dual group of every discrete group is compact.

(b) Characters o all have the formz — €¥* for some reak.
The dual group topology is the usual topology of the reals rid
isomorphic toR.

(c) If H is a closed subgroup of an LCA gro@ the annihilator
of H, denotedH *, is the set of all characters 6f which are equal to
1onH. H* is clearly a closed subgroup 6f. If ¢ € H+, ¢ defines
canonically a character oi/H; on the other hand, every character
on G/H defines canonically (by composition with the mappirg—
G/H) a character ort. This establishes an algebraic isomorphism
between the dual group 6f/H andH+. One checks that this is also a
homeomorphism and the dual Gf H can be identified with7-.

If H is a proper closed subgroup, thAr is non-trivial.

(d) By (c) above and the Pontryagin duality theore#i:H. is the
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dual group ofH. o
(e) If G; and G4 are LCA groups, theid/; & G2 can be identified
with G, @ G through

< (%1,332), (fl,fg) >=< J)l,gl > l‘g,fg > .

In particular, the dual group df” is Z", the characters have the
form (ti,...,t,) — e~12- %t with aj € Z.

() If G., is a compact abelian group for everyelonging to some
index setl, and ifG is the complete direct sum &}, thenG can be
identified with the direct sum dfG,} (with the discrete topology). The
direct sumof a family {G,} of groups is the subgroup of the complete
direct sum consisting of those vectols, acr, o € G., such that
(&, =10in G, for all but a finite number of indices.

The dual group of the group of order two is again the group of order
two. Consequently, the dual group of the grdujntroduced above is
the direct sum of a sequence of groups of order two. If we identify the
elements oD as sequencds,,.}, ¢, = 0, 1, thenD is the discrete group
of sequence$(, }, ¢, = 0,1 with only a finite number of ones, and

< e} {Ga) >= (~1)2 =,

Remark: A natural way to look at Kronecker’s theorem VI1.9.3 is:
Assume that\,..., \,’s are rationally independent matk and

consider\ = (A1...\,) € T". The setA = {jA:j € Z} is a subgroup,

and Kronecker’s theorem states that it is dens&in If it weren't,

its closureA would be a closed proper subgroup and there would be a

non-trivial (a1, .. .,a,) € Z" which is trivial onA, i.e. >~ a;\; € 27Z.

4 FOURIER TRANSFORMS

Let G be an LCA group; the Fourier transform ¢fc LY(G) is
defined by

f(f)z/GWf(x)dx, ced.

We denote byA(G) the space of all Fourier transforms of functions in
LY(G). Since we havéf +¢) = f +gandf+g = fg, A(G) is an al-
gebra of functions ox under the pointwise operations. The functions
in A(G) are continuous oW; in fact, an equivalent way to define the
topology onG is as the weak topology determined HyG), that is, as
the weakest topology for which all the functionsAG) are continu-

ous.



206 AN INTRODUCTION TOHARMONIC ANALYSIS

With the Haar measures @handG properly normalized one proves
inversion formulas stating essentially thit-«) is the Fourier trans-
form of f in some appropriate sense, and literallyfifs continuous
andf € L'(G). One deduces the uniqueness theorem stating that if
fe L@ andf =0thenf = 0.

From the inversion formulas one can also prove Plancherel’s the-
orem. This states that the Fourier transformation is an isometry of
L' N L2(G) onto a dense subspace B¥(G) and can therefore be ex-
tended to an isometry df?(G) onto L?(G). One can now define the
Fourier transform of functions ii*(G), 1 < p < 2, by interpolation,
and obtain inequalities generalizing the Hausdorff-Young theorem (as
we did in V1.3 for the cas& = R).

We denote byM (G) the space of (finite) regular Borel measures
onG. M(G) is a Banach space canonically identified with the dual of
C°(G). The fact that the underlying spa€eés a group permits the def-
inition of convolution inM (G) (analogous to that which we introduced
in 1.7 for the caseG = T). With the convolution as multiplication,
M(G) is a Banach algebra. We keep the notatiorv for the convolu-
tion of the measuresandv. L' (G) is identified as a closed subalgebra
of M (G) through the correspondeng¢e— fdz.

The Fourier (Fourier-Stieltjes) transform o M (G) is defined by

A(e) = / ST Esdu(z), £<C.

For allx € M (@), ji(€) is uniformly continuous o If = fdx with

f e LYG), thenji(¢) = f(¢). The mapping: — £ is clearly linear
and we haveixv = v so that the familyB(G) = {ji:u € M(G)} of

all Fourier-Stieltjes transforms is an algebra of uniformly continuous
functions on@ under pointwise addition and multiplication.

A function ¢ defined onG is calledpositive definitdf, for every
choice of¢,....&x € G and complex numbers,,...,zy we have
kazl (& —&k)zzr > 0. Weil's generalization of Herglotz-Bochner’s
theorem states that a functigii¢) on G is the Fourier transform of a
positive measure off if, and only if, it is continuous and positive def-
inite.

5 ALMOST-PERIODIC FUNCTIONS AND THE BOHR
COMPACTIFICATION

Let G be an LCA group. A functiory € L*°(G) is, by definition,
almost-periodicif the set of all translates of, {f,},cc is precom-
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pact in the norm topology of>°(G) (compare with VI1.5.5). We de-
note the space of all almost-periodic functions®my AP(G). One
proves that almost-periodic functions are uniformly continuous and are
uniform limits of trigonometric polynomials o& (i.e., of finite lin-
ear combinations of characters). Since trigonometric polynomials are
clearly almost-periodic, one obtains th&aP(G) is precisely the closure
in L>°(@G) of the space of trigopnometric polynomials.

If G is compact we havelP(G) = C(G). In the general case we
consider the group&>), the dual group of? with its topology replaced
by the discrete topology, ar@, the dual group ofG),. G is the group
of all homomorphisms of! into T, and it therefore contains (which
is identified with the group of all continuous homomorphismé!afito
T). One proves that the natural imbeddinginto G is a continuous
isomorphism and tha is dense inG. Being the dual of a discrete
group, G is compact; we call ithe Bohr compactification ofs. The
Bohr compactification of the real line is the dual group of the discrete
real line and is usually called tH&ohr group

Assumef € AP(G); let {P;} be a sequence of trigonometric poly-
nomials which converges t$ uniformly. Then, since? is dense in
G, {P;} converges uniformly or@; (every character o extends by
continuity to a character o@. It follows that f is the restriction ta>
of lim P; = F € C(G). Conversely, since every continuous functien
on G can be approximated uniformly by trigonometric polynomials, it
follows thatAP(G) is simply the restriction ta’ of C(G).

EXERCISES

1. LetG be an LCA group ang the Haar measure ai. Show that ifU is
a nonempty open set il thenu(U) > 0.
Hint: Every compact séf C G can be covered by a finite number of translates
of U.

2. LetG be an LCA group andg. the Haar measure ofi. Let H be a
compact subgroup. Describe the Haar measur€ .

3. LetG; andG- be compact abelian groups anddet G, @ G». Denote
by u, w1, pe the normalized Haar measures @nG., G2, respectively. Con-
sideringu;, 7 = 1, 2, as measures af (carried by the closed subgrou@s),
prove that

H= g1k pa.

4. LetG be a compact group afd{,, } an increasing sequence of compact
subgroups such thati° H,, is dense inG. Denote byu, u., respectively, the
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normalized Haar measure ¢f, H,, respectively. Considering the,’'s as
measures o, show thatu,, — u in the weakstar topology of measures.
5. LetG be a group and lgh and¢; be distinct characters ar. Show that

sUp,col< 2,6 > — < 2,6 >| > V3.

Deduce that i3 is a compact abelian group, théhis discrete.
6. LetG be a compact abelian group with normalized Haar measure and let

¢ € G. Show that
1 ife=
/<1:,£>d:c: Ié 0
a 0 if&#£0.

7. LetG be a compact abelian group. Show that the characte@sform a
complete orthonormal family ifi?(G).



Chapter VIl

Commutative Banach Algebras

Many of the spaces we have been dealing with are algebras. We
used this fact, implicitly or semi-explicitly, but only on the most ele-
mentary level. Our purpose in this chapter is to introduce the reader
to the theory of commutative Banach algebras and to show, by means
of examples, how natural and useful the Banach algebra setting can be
in harmonic analysis. There is no claim, of course, that every prob-
lem in harmonic analysis has to be considered in this setting; however,
if a space under study happens to be either a Banach algebra, or the
dual space of one, keeping this fact in mind usually pays dividends.
The introduction that we offer here is by no means unbiased. The top-
ics discussed are those that seem to be the most pertinent to harmonic
analysis and some very important aspects of the theory of commutative
Banach algebras (as well as the entire realm of the noncommutative
case) are omitted. As further reading on the theory of Banach algebras
we mention [5], [15], [19] and [21].

1 DEFINITION, EXAMPLES, AND ELEMENTARY PROPERTIES

1.1 DEFINITION: A complex Banach algebia an algebraB over the
field C of complex numbers, endowed with a nofinfj under which it
is a Banach space and such that

(1.1) lzyll < [lz [yl

foranyz,y € B.

Examples: (1) The fieldC of complex numbers, with the absolute
value as norm.

(2) Let X be a compact Hausdorff space afiX) the algebra of
all continuous complex-valued functions &nwith pointwise addition
and multiplication. C(X) is a Banach algebra under the supremum

209
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norm (also referred to as the sup-norm)
1.2) [flloc = SURex ()]

(3) Similarly, if X is a locally compact Hausdorff space, we denote
by Cy(X) the sup-normed algebra (with pointwise addition and multi-
plication) of all continuous functions on X which vanish at infinity (i.e.,
the functionsf for which{z:|f(z)| > ¢} is compact for alk > 0).

(4)C™(T)—the algebra of all n-times continuously differentiable func-
tions onT with pointwise addition and multiplication and with the norm

n

1 ,
I fllem =" il mgXIf(”(t)L

0 .

(5) HC(D)—the algebra of all functions holomorphic in(the unit
disc {z:|z| < 1}) and continuous inD, with pointwise addition and
multiplication and with the sup-norm. (8)' (T)—with pointwise addi-
tion and the convolution (1.1.8) as multiplication, and with the norm
| I|z:. Condition (1.1) is proved in Theorem I.1.7. Similariy/<R).

(7) M(T)—the space of (Borel) measures Bnwith convolution as
multiplication and with the nornj |[y;(r) (see 1.1.7). Similarly? (R).

(8) The algebra of linear operators on a Banach space with the stan-
dard multiplication and the operator norm.

(9) Let B be a Banach space; we introduce to B the trivial multipli-
cationzy = 0 for all z,y € B. With this multiplicationB is a Banach
algebra. All the foregoing examples, except (8), have the additional
property that the multiplication is commutative. In all that follows we
shall deal mainly with commutative Banach algebras.

1.2 In all the examples except for (3), (6), and (9), the algebras have
a unit element for the multiplication: the number 1 in (1); the function
f(z) =1in (2), (4), and (5); the unit mass at the origin in (7); and the
identity operator in (8). It is clear from 1.1.7 that ffc L'(T) were a

unit element, we would hav&n) = 1 for all n which, by the Riemann-
Lebesgue lemma, is impossible; thiiST) does not have a unit.

Let B be a Banach algebra. We consider the direct 8ym B@C,
that is, the set of pairsx,\), € B, A € C; and define addition,
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multiplication, scalar multiplication and norm iy by:

(w1, A1) + (22, A2) = (21 + 2, A1 + A2)
(21, A1) (22, A2) = (z122 + M2 + X221, A1 A2)
Mz, A1) = (Az1, A\)

(@, M, = llzllz + [Al-

It is clear, by direct verification, that! is a Banach algebra with a unit
element (namelyo, 1)). We now identifyB with the set of pairs of the
form (z,0), which is clearly an ideal of codimension 1. We say

that B, is obtained fromB by a formal adjoining of a unit element;
this simple operation allows the reduction of many problems concern-
ing Banach algebras without a unit to the corresponding problems for
Banach algebras with unit. If B is an algebra with a unit element we
often denote the unit by 1 and identify its scalar multiples with the cor-
responding complex numbers. Thus we write€' B" instead of 'B

has a unit element,” and so on. This notation will be used when con-
venient and may be dropped when the unit element has been identified
differently.

1.3 Every normed algebra, that is, complex algebra with a norm satis-
fying (1.1) but under which it is not necessarily complete, can be com-
pleted into a Banach algebra. This is done in the same way a normed
space is completed into a Banach space&lfs a normed algebra, we
denote byB the space of equivalence classes of Cauchy sequences in
By, determined by the equivalence relation:

{zn} ~{yn} if,andonlyif, lim|z, —y,| =0.

One checks immediately, and we leave it to the reader, tHat,if ~
{z7,} and{yn} ~ {y,} then{z, +yn} ~ {2}, + v}, {Azn} ~ {A2l},
{znyn} ~ {2y} andlim, ||z, || = lim,—|z,|; hence we can de-
fine addition, scalar multiplication, multiplication, and normBnas
follows: for z,y € B, let{xz,} (resp. {y,}) be a Cauchy sequence in
the equivalence class(resp.y), thenz + y (resp. Az, zy) will be the
equivalence class containifg,, + y,} (resp.{\z,}, {z,y,}) and||z||
is, by definition,lim, .| z,|. With these definitionsB is a Banach
algebra and the mapping which associates with an elemen®, the
equivalence class of the "constant” sequencg, =, = a for all n, is
an isometric embedding &, in B as a dense subalgebra.
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1.4 The condition (1.1) on the norm in a Banach algebra implies the
continuity of the multiplication in both factors simultaneously. Con-
versely:

Theorem. Let B be an algebra with unit and with a norfh| under
which it is a Banach space. Assume that the multiplication is continu-
ous in each factor separately. Then there exists a npffrequivalent

to || ||, for which(1.1)s valid.

PROOF By the continuity assumption, everye B defines a contin-
uous linear operatod, : y — xzyon B. If x # 0, A4,(1) = =, and
consequenthyd, # 0; alsoA,, ., (y) = 122y = Ay, (2y) = Ay, Aryy
hence the mapping— A, is an isomorphism of the algebiainto the
algebra of all continuous linear operators®nLet || || be the induced
norm, that is,

(1.3) )" = [[ Azl = supy<illzyl

then| ||’ is clearly a norm o3 and it clearly satisfies (1.1). We also
remark that

(1.4) [ = Yt

(takey = ||1]|~* in (1.3)) and, consequently,if,, is a Cauchy sequence
in || ||, itis also a Cauchy sequencel|ir|, and so converges to some
xo € B. We contend now thdim||z, — z¢|’ = 0 which is the same
aslim||A,, — A, || = 0. This follows from: (a){A4.,} is a Cauchy
sequence in the algebra of linear operatorsBohence converges in
norm to some operatoty; (b) A,, vy = 2y — 2oy = A,y forally € B
(here we use the continuity efy in z). It follows thatA, = 4,, and
the contention is proved. We have proved tBas complete under the
norm|| ||, and since the two norms,|| and|| || are comparable, (1.4),
they are in fact equivalent (closed graph theorem). <

Remark: The norm|| |’ has the additional property th@t|’ = 1;
hence there is no loss of generality in assuming as we shall henceforth
do implicitly, that whenevet € B, ||1]] = 1.

1.5 Theorem. Let B be a commutative Banach algebra and let
be a closed ideal ilB. The quotient algebra3/I endowed with the
canonical quotient norm is a Banach algebra.



VIIl. COMMUTATIVE BANACH ALGEBRAS 213

PROOFE The only thing to verify is the validity of (1.1). Let > 0,
letz, § € B/I and letz, y € B be representatives of the cosétsj
respectively, such that:| < ||z +e, [ly|| < ||g]| + . We havery € &y
and consequently

1Z5] < llzyll < Nelllyll < Nzlligh +edlz] + 17]) +

and since > 0 is arbitrary,||zg| < ||Z||/|7]]- <

EXERCISES FOR SECTION 1

1. Verify condition (1.1) in the case ¢f"(T) (example 4 above).

2. Let B be a homogeneous Banach spacé&pdefine multiplication inB
as convolution (inherited fromy*(T)). Show that with this multiplicatio is
a Banach algebra.

3. Let X be alocally compact, noncompact, Hausdorff space and denote by
X its one-point compactification. Show th@tX..) is isomorphic (though
not isometric) to the algebra obtained by formally adjoining a unif¢@x).

4. Let B be an algebra with two consistent norms (see IV.1.]y and
I 1. Assume that both these norms are multiplicative (i.e., satisfy condition
(1.1)). Show that all the interpolating normigl., 0 < o < 1 (see IV.1.2), are
multiplicative.

Hint: B is a normed algebra arél, are ideals ir.

2 MAXIMAL IDEALS AND MULTIPLICATIVE
LINEAR FUNCTIONALS

2.1 Let B be a commutative Banach algebra with a unit 1. An element
r € Bis invertible if there exists an element! € B such thatz—! =
1.

Lemma. Consider a Banach algebr& with a unit 1. Letz € B and
assumeé|x — 1|| < 1. Thenz is invertible and

o0

(2.1) et =) (1-a).

=0

PROOF By (1.1),]|(1—=)’|| < ||(1—=2)|]’; hence the series on the right
of (2.1) converges iB. Writing z = 1 — (1 — ) and multiplying term
be term we obtain 372 (1 — z)’ = 1 <
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2.2 Lemma. Letz € B be invertible and; € B satisfying|ly — z| <
lz=t|~!. Theny is invertible and

oo

(2.2) y t=at Z(l—m_ly)j.
3=0

PROOF [[1 —a~'y| <[lz7'|[|lz —yll. Apply Lemma 2.1t 'y. <

Corollary. The sel of invertible elements i is open and the func-
tion z — z~! is continuous or/.

PROOF We only need to check the continuity, Lete U, y — z; by
(2.2)we havey ' —z~' =27' 3777 (1 -2~ "y)’; hence

o0
ly™ =27 <Y e P e =yl < 207t Plle -yl
j=1

provided|jz — y|| < [z~ 1|7 <
2.3 DEFINITION: Theresolvent seR(z) = Rp(z) of an element in a

Banach algebr® with a unit is the set of complex numbersuch that
z — Mlis invertible.

Lemma. Forx € B, R(z) is open and¥(\) = (x — A\)~! is a holomor-
phic B-valued function orR(z).

PROOE This is again an immediate consequence of Lemma 2.2.

Ao € R(z) and) is close to), it follows from (2.2) that
2.3) (=X =(x—X)" Z(l—(x —X0) M@= Ao+ Ao — A
' = =3 (@ = 2o) T (Ao - A

(2.3) is the expansion @¢f: — \)~! to a convergent power seriesin- )\,
with coefficients in B. <

2.4 Lemma. R(x) can never be the entire complex plane.

PROOF AssumeR(z) = C. The function(z — \)~! is an entireB-
valued function and 3| —

_ 1 (T -1 _
I@=27 =R (5 -1) I~ =0

It follows from Liouville’s theorem (see appendix A) that-\)~! = 0,
which is impossible. <
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Theorem (Gelfand—Mazur). A complex commutative Banach alge-
bra which is a field is isomorphic t0.

PROOF Letxz € B, A a complex numbek ¢ R(z); thenz — X is not
invertible and, since the only noninvertible element in a field is zero,
x = A. Thus, having identified the unit d¢ with the number I.B is
canonically identified wittC.

2.5 We now turn to establish some basic facts about ideals in a Banach
algebra.

Lemma. Let I be an ideal in an algebraB with a unit. ThenI is
contained in a maximal ideal.

PROOFE Consider the familyZ of all the ideals inB which contain!.

T is partially ordered by inclusion and, by Zorn’s lemma, contains a
maximal linearly ordered subfamilgp. The union of all the ideals in

T, is a proper ideal, since it does not contain the unit element aihd

it is clearly maximal by the maximality df;. <

Remark: The conditionl € B in the statement of the lemma can be
relaxed somewhat. For instance/ifc B is an ideal and if. € B is
such that(u, I)—the ideal generated by and I—is the whole algebra,
thenu belongs to no proper ideal containifgand the union of all the
ideals inZ, (in the proof above) is again a proper ideal since it does not
containu.

2.6 DEFINITION: The ideall ¢ B isregularif B has a unit mod;
that is, if there exists an elemente B such that — uz € T for all
x € B. If B has a unit element, evelyc B is regular. If] is regular in
B andu is a unit modI then, since for every € B, © = ux + (z — ux),
we see thatu, ) = B. Using Remark 2.5 we obtain:

Lemma. LetI be aregularideal in an algebr®. Thenl is contained
in a (regular) maximal ideal.

2.7 Lemmas 2.5 and 2.6 did not depend on the topological structure
of B. If B is a Banach algebra with a unit it follows from Lemma
2.1 that the distance of 1 to any proper ideal is one, and consequently
the closure of any proper ideal is again a proper ideal; in particular,
maximal ideals inB are closed. Our next lemma shows that the same
is true even ifB does not have a unit element provided we restrict our
attention to regular maximal ideals.
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Lemma. Let be a regular ideal in a Banach algebra. Letu be a
unit mod!. Thendist(()u, I) > 1.

PROOF. We show that iv € B and||u — v|| < 1, then(Z,v) = B; hence
v ¢ I. Forz € B we have

o0

(2.4) x= (Z(u—v)jx—uZ(u—y)j> +UZ(U_U)j$'
0 0

0

The differencg} ;" (v — v)7z — u ) (u — v)?) belongs tal sinceu is
a unit modI, and the third term is a multiple of hence(I,v) = B and
the lemma is proved. <

Corollary. Regular maximal ideals in a Banach algebra are closed.

2.8 DeFINITION: A multiplicative linear functionabn a Banach alge-
bra B is a nontrivial linear functionaks(x) satisfying

(2.5) w(zy) = w(z)w(y), z,y € B.
Equivalently, it is a homomorphism &f onto the complex numbers.

We do not require in the definition that be continuous—we can
prove the continuity:

Lemma. Multiplicative linear functionals are continuous and have
norms bounded by 1.

PROOFE Let w be a multiplicative linear functional; denote its kernel
by M. M is clearly a regular maximal ideal and is consequently closed.
The mapping — w(z) identifies canonically the quotient alget®an

with C, and if we denote by ||’ the norm induced o€ by B/M, we

clearly have||\||" = ||1]|/|A| for all A € C. By (1.1), ||1|' > 1 and
hence|\| < ||A| for all X € C; it follows that for anyz € B, |w(z)| <
[w(@)]" < [l=[]- <

Theorem. The mappingw — ker(w) defines a one-one correspon-
dence between the multiplicative linear functionalsband its regular
maximal ideals.

A linear functional which is not identically zero.
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PROOFE A multiplicative linear functionalv is completely determined
by its kernelM: if z € M thenw(z) = 0: if © ¢ M, w(z) is the unique
complex number for which? — w(z)z € M. On the other hand, if
M is a regular maximal ideal in a commutative Banach algéhrthe
quotient algebraB/M is a field. SinceM is closedB/M is itself a
complex Banach algebra (Theorem 1.5), and by TheoremZ/ 4, is
canonically identified witlC. It follows that the mappin@® — B/M is
a multiplicative linear functional ors. <

Corollary. Let B be a commutative Banach algebra with a unit ele-
ment. An element € B is invertible if, and only ifw(z) # 0 for every
multiplicative linear functionalv on B.

PROOF If x is invertiblew(x)w(z~') = 1 for every multiplicative lin-
ear functionaky, hencew(z) # 0. If z is not invertible then:B is a
proper ideal which by Lemma 2.5, is contained in a maximal idéal
Sincex = z-1 € zB C M it follows thatw(x) = 0 wherew is the
multiplicative linear functional whose kernel ig. <

2.9 At this point we can already give one of the nicest applications of
the theory of Banach algebras to harmonic analysis.

Theorem (Wiener). Letf € A(T) and assume thgtvanishes nowhere
onT; thenf~! € A(T).

PROOF We have seen in 1.6.1 thalf(T) is an algebra under pointwise
multiplication and that the norm

1 llaey = Y1)

is multiplicative. SinceA(T) is clearly a Banach space (isometric to
¢1), it follows that it is a Banach algebra.

Let w be a multiplicative linear functional oA(T); denote) =
w(e™) (the value ofw at the functiore™ € A(T)). Sincel|e®|| 41y = 1
it follows from Lemma 2.8 thah < 1; similarly we obtain thaf—! =
w((e)™1) = w(e™*) satisfiegA~!| < 1, and consequently\| = [, that
is A = eito for somet,. By the multiplicativity ofw, w(e™™) = eto for
all n; by the linearityw(P) = P(ty) for every trigonometric polynomial
P; and by the continuityw(f) = f(to) for all f € A(T). It follows that
every multiplicative linear functional on A is an evaluation at some
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toty € T; every toty, € T clearly gives rise to such a functional and
we have thus identified all multiplicative linear functionals (T).
Let f € A(T) such thatf(¢) # 0 for all t € T. By Corollary 2.8,f is
invertible in A(T), that is, there exists a functione A(T) such that
g(t)f(t) = 1 or equivalentlyf—! € A(T). <

2.10 The algebrai(T) is closely related tol(R) and Theorem 2.9 can

be used in determining the maximal idealsA(R) (or, equivalently,
L!(R)); this can also be done directly and our proof below has the ad-
vantage of applying for many convolution algebras (see also exercise 4
at the end of this section).

Theorem. Every multiplicative linear functional oi!(R) has the
form f — f(&) for someg, € R.

PROOF Let w be a multiplicative linear functional oDl( ) As any
linear functional onL!(R) w has the formw(f) = [ f(z)h(x)dz for
someh € L>*(R). We have

fxg) //f T—y dyd:rf//f h(z + y)dx dy
wlg) = [ Fe)ads / iy~ | / £ ()9 () Ry dz dy

By the multiplicativity ofw and the fact that the linear combinations of
the formY" f;(z)g;(y), f;,9; € L'(R) are dense i} (RzR), it follows
thath(x +vy) = h(z)h(y) almost everywhere iRzR. Thus (see exercise
VI.4.7) h(z) = eio® for someg, € R, andw(f) = f(&). <

2.11 We shall use the term “function algebra” for algebras of contin-
uous functions on a compact or locally compact Hausdorff space with
pointwise addition and multiplication. It is clear thatAfis a function
algebra on a space and ifz € X, thenf — f(z) is either a multiplica-

tive linear functional onB, or zero, and consequently (Lemma 2.8) if
B is a Banach algebra under a nofinij, we have|f(x)| < ||f|| for all

x € Xandf € B.

2.12 Let B be afunction algebra on a locally compact Hausdorff space
X and assume that for alle X there exists a functioli € B such that
f(x) # 0. Denote byw, the multiplicative linear functionaf — f(x).
Recall thatB is separating oiX if for any z;, x2 € X, z1 # 2, there
exists anfB such thatf(z,) # f(z2); this amounts to saying that if
x1 # x5 thenw,, # w,,. Thus, if B is separating otX and not all the
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functions inB vanish at any: € X, the mapping: — w, identifiesX

as a set of multiplicative linear functionals @h In general we obtain
only part of the set of multiplicative linear functionals as, + € X

(see exercise 6 at the end of this section); however, in some important
cases, every multiplicative linear functional &nhas the formw, for
somez € X. We give one typical illustration.

DEFINITION: A function algebraB on a spac€ is self-adjoint onX
if wheneverf € B then alsof € B (wheref(z) = f(z)).

DEFINITION: A function algebraB on a spaceX is inverse closedf
1 € B and wheneveyf € B andf(x) # 0 for all x € X, thenf~! € B.
Thus we can restate Theorem 2.9 a4(T) is inverse closed."

Theorem. Let B be a separating, self-adjoint, inverse-closed function
algebra on a compact Hausdorff spade Then every multiplicative
linear functional onB has the formw,, (i.e., f — f(z)) for somer € X.

PROOFE If we denoteM, = {f:f(z) = 0}, or equivalentlyM, =
ker(w,), then, by theorem 2.8, the assertion that we want to prove is
equivalent to the assertion that every maximal idedabihas the form
M, for somez € X. We prove this by showing that every proper ideal
is contained in at least on&,,. Let I be an ideal inB and assume
I ¢ M, for all zX. This means that for every € X there exists a
function f € I such thatf(z) # 0. Sincef is continuous,f(y) # 0
for all y in some neighborhood,. of z. By the compactness df we
can find a finite number of points, ..., z, with corresponding; € !
and neighborhoods,, j = 1,...,n, such thatX = U0, and such that
fi(y) # 0fory € O;. The functionp = 3. f; f; belongs td,, is positive
on X, and sinceB is assumed to be inverse closeds invertible and

1 eI, thatis,l = B. <

Corollary. Let X be a compact Hausdorff space. Then every multi-
plicative linear functional orC'(X) has the formw,, (i.e., f — f(z)) for
somer € X.

EXERCISES FOR SECTION 2

1. Use the method of the proof of 2.9 to determine all the multiplicative
linear functionals orC(T).

2. The same fo€™(T).
Hint: ||e™||cn = O (m™).
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3. Check the results of exercises 1 and 2 using 2.12.

4. LetG be an LCA group, and € denote the convolution algebfa (G).
Show that every multiplicative linear functional dhhas the formf — f(~)
for somey € G. Hint: Repeat the proof of 2.10.

5. Determine the multiplicative linear functionals &C (D) (see section
1, example 5).

6. Let B be the sup-norm algebra of all the continuous functigre T
such thatf(n) = 0 for all negative integers. Show thatB is a separating
function algebra off’; however, not every multiplicative linear functional &n
has the formw, for somet € T. Hint: What is the relationship betwedhand
HC(D)?

7. Show that a commutative Banach algeBrenay have no multiplicative
linear functionals (hint: example 9 of section 1); howevelf, & B, B has at
least one such functional.

8. Determine the multiplicative linear functionals ai(X), X being a
locally compact Hausdorff space.

3 THE MAXIMAL-IDEAL SPACE AND THE
GELFAND REPRESENTATION

3.1 Consider a commutative Banach algel®and denote byt the

set of all of its regular maximal ideals. By Theorem 2.8 we have canon-
ical identification of everyM e Mt with a multiplicative linear func-
tional, and hence, by Lemma 2.8, we can idenfifywith a subset of
the unit ballU* of B*—the dual space aB. This identification induces

on 9t whatever topological structure we have Gh, and two impor-
tant topologies come immediately to mind: the norm topology and the
weak-star topology. We limit our discussion of the metric induced on
M by the norm inB* to exercises 1-3 at the end of this section and refer
to [6] for a more complete discussion. The topology induceéybhy

the weak-star topology oB* is more closely related to the algebraic
properties ofB; we shall refer to it as the weak-star topologyosn

Lemma. 9 U {0} is closed inU* in the weak-star topology. If € B
then9 is closed.

PROOF. In order to prove the first statement we have to show that if
ug € M, thenug(zy) = ug(z)ue(y) for all z,y € B. From this it would
follow that eitherug € M orug = 0. Lete > 0, =,y € B and consider
the neighborhood af, in U* defined by

(3-1) {u:fu(z) —uo(x)| <&, |uly) —uo(y)l <e, [u(zy) —uo(zu)| <e};
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Sinceu, € M there exists av € M in (3.1), and remembering that
w(zy) = w(z)w(y) we obtain

uo(zy) — uo(z)uo(y)| < (X + [lz]l + [ly])-

Sincee > 0 is arbitrary,ug(zy) = ug(z)uo(y).

In order to prove the second statement we have to show that i#,
theno0 ¢ M. Sincew(1) = 1 for all w € M, it follows that{u: |u(1)| <
1} is a neighborhood df disjoint from 2t and the proof is complete.

<

SinceU* with the weak-star topology is a compact Hausdorff space,
it follows that the same is true fom U {0} or, if 1 € B, for M. This is
sufficiently important to be stated as:

Corollary. 2, with the weak-star topology, is a locally compact Haus-
dorff space. Ifl € B thenft is compact.

We shall see later (see Theorem 3.5) that in some cases the com-
pactness ofit implies1 € B. However, considering example (9) of
section 1, we realize thatt may be compact (as a matter of fact empty
I) for algebras without unit. The reader who feels unconvinced by an
example consisting of the empty set should refer to exercise 4 at the
end of this section.

3.2 Forz € BandM € 9t we now writez(M) = = mod M (i.e.,
the image ofr under the multiplicative linear functional corresponding
to M). By its definition, the weak-star topology on is the weakest
topology such that all the functiods (M) : z € B} are continuous.

Lemma. If 1 € B, the mappinge — & is a homomorphism of norm
one of B intoC'(Mn).

PrROOF. The algebraic properties of the mapping are obvious. For
every M € M andz € B, |Z(M)] < ||z| (Lemma 2.8) and hence
supy,|#(M)| < |lz|. On the other hand(M) = 1 and the norm of
not smaller than one. <

If we do not assume € B, the set{M : |&(M)| > ¢} is compact iron
for everyz € B ande > 0; consequently: — % is a homomorphism
of norm at most one, of3 into Cy(M). The subalgebrds of C(MM)
(resp. Cy(9M)) obtained as the image & under the homomorphism
x +— 7 is calledthe Gelfand representation df. The functionz (M) is
sometimes referred to as the Fourier-Gelfand transform of
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3.3 In many cases we can identify the weak-star topology on con-
cretely in virtue of the following simple fact (cf. [15], p.6): letr;

be Hausdorff topologies on a spa®eand assume thatt is compact

in both topologies and that the two topologies are comparable; then
7 = 71. In our case this means thatlife B and if 7 is a Hausdorff
topology on9t in which 9t is compact, and such that all the func-
tionsz(M) in B arer-continuous, then, since the weak-star topology is
weaker than or equal te, the two are equal. By a formal adjoining of

a unit we obtain, similarly, that if ¢ B andr is a Hausdorff topology

on 91 such thadn is locally compact and? ¢ Cy (9, 7) thenr is the
weak-star topology of.

3.4 DEFINITION: The radical,Rad(B), of a commutative Banach

algebraB is the intersection of all the regular maximal ideals5in
Rad(B) is clearly a closed ideal i and is the kernel of the ho-

momorphismz: — # of B onto B. The radical ofB may coincide with

B (example 9 of section 1) in which case we say tBaits a radical

algebra; it may be a nontrivial proper ideal, or it may be reduced to

zero.

3.5 DEFINITION: A commutative Banach algebiais semisimplef
Rad(B) = 0. Equivalently:B is semisimple if the mapping— % is an
isomorphism.

3.6 DEFINITION: Thespectral normi of an element: € B, denoted
lz|lsp» IS SURcon|Z(M)]. The spectral norm can be computed from
the B norm by:

Lemma. 7] sp = limy, oo ||z 2/

PrROOF. The claim is that the limit on the right exists and is equal to
||lz||sp- This follows from the two inequalities:

@) lollsp < liminfflam]|'/";

(0) lzlsp > Timsupllz /"

TThe origin of the term is in the fact that the set of complex numbeiwr which
z — A is not invertible (assuming € B) is commonly called "the spectrum of and the
spectral norm of; is defined as syp| for X in the spectrum ot. By Corollary 2.8, the
spectrum ofc coincides with the range af(1/), which justifies our definition; we prefer
to avoid using the much abused word "spectrum” in any sense other than that of chapter
VI.
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We notice first that for every, |z||5, = [lz"[|s, < [z, that is,
|z]|lsp < ||l2™||*/™, which proves (a). In the proof of (b) we assume first
that1 € B, and considefr — \)~! as a function of\. By Lemma 2.3,

(z — X\)~! is holomorphic for\| > ||z[sp. If |A] > ||z|| we have

(=A== AT —z/A) T =AY amAT
and if F' is any linear functional o,
(w=XN"LF)==2Y (@ F)A™"

is holomorphic, hence convergent fof > ||z||s,. Pick anyA > ||z||sp
then(\~"z" F) is bounded (in fact, it tends to zero) for &l € B*,

and it follows from the Uniform Boundedness Principle that ||« || is
bounded, hencem sup||z™||*/™ < A. Since\ is any number of modulus
greater tharz||,,, (b) follows. If 1 ¢ B we may adjoin a unit formally.
Both the norm and the spectral norm of an elemeatB are the same

in the extended algebra and since (b) is valid in that algebra, the proof
is complete. <

Corollary. z € Rad(B) <= lim|z"||/" =0

PROOF. z € Rad(B) <= ||z|ls = 0. <

3.7 Lemma 3.6 allows a simple characterization of the Banach alge-
bras for which the spectral norm is equivalent to the original norm.
Such an algebra is clearly semisimple, and the Gelfand representation
identifies it with a (uniformly) closed subalgebra of the algebra of all
continuous functions on its maximal ideal space.

Theorem. A necessary and sufficient condition for the equivalence of

Il l|sp and the original normj| || of a Banach algebraB is the existence

of a constant such that|z||? < K||«?| for all = € B.

PROOF If || || < Ki| |lsp, thenllz|® << KP[lz|%, < K7;ll=||*; this
establishes the necessity. On the other hand, if the condition above is
satisfied,

||33H << KI/QHJTQHUQ SK1/2+1/4”734”1/4 <

< o< KU/ A2 2 2

)

and, by Lemma 3.6}z|| < K||z||sp. <
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3.8 DEFINITION: A commutative Banach algebrais self-adjointif
B is self-adjoint on the maximal ideal spae

Remark: Notice the specific reference to the maximal ideal space. The
algebra of functions defined on the segmeast [0, 1] which are restric-
tions tor of functions holomorphic on the unit disc and continuous on
the boundary (i.e., of functions iHC(D)), is self-adjoint as a function
algebra on/. As a Banach algebra it is isomorphic & (D) which is

not self-adjoint. (See also exercise 11 at the end of this section).

Theorem. Let B be self-adjoint with unit and assume that there exists
a constantk’ such that|z||? < K||2?| for all z € B. ThenB = C(9M).

PROOF. By the Stone-Weierstrass theordhis dense irC(9t), and by
3.7 itis uniformly closed. <

3.9 Let F(z) = > a,z™ be a holomorphic function in the disgl < R
andz an element in a Banach algelasuch that|z||,, < R. It follows
from Lemma 3.6 that the seriés a,,2™ converges imB (if 1 ¢ B, we
assume, = 0) and we denote its sum y(x). If M is a maximal ideal
in B, we clearly haveF/(})(M) = F(&(M)).

Instead of power series expansion, we can use the Cauchy integral
formula:

Theorem. Assumd € B. Let F be a complex-valued function, holo-
morphic in a regiof G in the complex plane. Let € B be such that
the range of: is contained inG. Lety be a closed rectifiable curvén

G, enclosing the range df, and whose index with respect to aiy/),

M € 9, is one, and is zero with respect to any point outside G. Then
the integral

(3.2) Flz) = ﬁ / %dz
is a well-defined element iB and
(3.3) F(z)(M) = F(&(M))

for all M € M.

PROOFE The integrand is a continuous-valued function ofz, hence
(3.2) is well defined and (3.3) is valid. <

fNot necessarily connected!
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Remarks:: (a) The element’(z) defined by (3.2) does not depend
on the particular choice of. Also, it can be shown, using the Cauchy
integral (3.2), that for a given € B, the mapping® — F(z) is a homo-
morphism of the algebra of functions holomorphic in a neighborhood
of the range of: into B (cf. [5], §6).

(b) Though the integral (3.2) clearly depends upon the assumption
1 € B, we can "save" the theorem in the casg B by formally adjoin-
ing a unit. Denoting byB’ the algebra obtained by adjoining a unit to
B, we notice that for: € B the range oft over9t’ (the maximal ideal
space ofB’) is the union of 0} with the range of: onMt. If we require
0 € G, then (3.2) can be taken asB&valued integral, and it'(0) = 0

—

then F'(x) vanishes wheneverdoes, and in particular(x) € B.

3.10 Theorem 3.9 states essentially thats stable under the oper-
ation of analytic functions. For the algebrdT) this is Paul Levy’s
extension of Wiener’s theorem 2.9:

Theorem (Wiener-Levy).Let f(t) = 3 f(j)e't with 3| f(5)| < .
Let 7' be holomorphic in a neighborhood of the rangefofTheng(t) =
F(f(¢)) has an absolutely convergent Fourier series.

3.11 As another simple application we mention that if there exists an
elementr € B such thati(M) is bounded away from zero ofi then,
denoting byF(z) the function which is identically 1 fofz| > ¢ and
identically zero for|z| < ¢/2 (wheree = 1inf|#(M)[), we see that
F/(E) =1 onM. If we assume thaB is semisimple it follows thaf'(z)

is a unit element irB.

The assumption that is bounded away from zero for someB
implies directly thabi is compact (see the proof of 3.1); if we assume,
on the other hand, tham is compact, ther is not a limit point of
oM in U* and consequently there exists a neighborhood of zetd jn
disjoint from 9. By the definition of the weak-star topology this is
equivalent to the existence of a finite number of elements. ., z,, in
B suchthatz;|+---+]Z,| is bounded away from zero é. Operating
with functions of several complex variables one can prove again that
1 € B. We refer the reader to ([5], 813) for a discussion of operation by
functions of several complex variables on element®iand state the
following theorem without proof:

Theorem. If B is semisimple ané is weak-star compact, theine
B.
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3.12 Another very important theorem which is proved by application
of holomorphic functions of several complex variables, deals with the
existence of idempotents:

Theorem. Assume thaft is disconnected and Iéf C 9t be both
open and compact in the weak-star topology. Then there exists an ele-
mentu € B such that

(a) u? =u

0 MgU
b) w(M) =
(b) M) {1 MeU
Remarks:(i) If B is semisimple then (a) is a consequence of (b).

(if) The idempotent, allows a decomposition d@# into a direct sum

of ideals. Writel; = uB = {x € B:z = uz} andly = {x € B:ux = 0};
it is clear that/; and I, are disjoint closed ideals and for amyc B,
z=uz+ (r—uzx);thusB=1, & I,.

We refer to ([5], 814) for a proof; here we only point out that if
we know thatB is uniformly dense inC'(90) (resp. Co(9)), and in
particular if B is self-adjoint orti, theorem 3.12 follows from 3.9. In
fact, there exists an element B such thati(M) — 1| < 1 for M € U
and|z(M)| < 1 for M € 9\ U. Defining F(z) asl for |z — 1| < 1 and
0 for |z| < 1, we obtainu asF(z).

EXERCISES FOR SECTION 3

1. Show that the distance between any two point$,afonsidered as the
maximal ideal space af (T), in the metric induced by the dual (in this case
M (T)) is equal ta2; hence the norm topology is discrete.

2. We have seen that the maximal ideal spac6{D)isD = DUT =
{z:]z| < 1}. Show that the norm topology ab (i.e., the topology induced
by the metric of the dual space on the set of multiplicative linear functionals)
coincides with the topology of the complex plane brand with the discrete
topology onT.

Hint: Schwarz’ lemma.

3. Show that the relatiofw; — w?|| < 2 is an equivalence relation in the
space of maximal ideals (multiplicative linear functionals) of a sup-normed Ba-
nach algebra. The corresponding equivalence classes are called the "Gleason
parts" of the maximal ideal space.

4. Let B be an arbitrary Banach algebra and #&tbe a Banach algebra
with trivial multiplication (example 9 of section 1). Denote Bythe orthogonal
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direct sum ofB and By, that is, the set of all pair&e,y) with z € B, y € By
with the following operations:

(@, y) + (z1,91) = (@ + 21,y + 91)
Az,y) = (Az, Ay) for complexi
(z,y)(@1,91) = (221,0)

and the norml||(z,y)|| = |lz|llz + |lylls,- Show thatB is a Banach algebra
without unit and with the same maximal ideal spacéas

5. Let X be a compact (locally compact) Hausdorff space. Show that the
maximal ideal space af'(X) (resp.Co (X)), with the weak-star topology, co-
incides withX as a topological space.

6. We recall that a s€fxy,...,2,} C B is a set of generators iR if it is
contained in no proper closed subalgebraiobr, equivalently, if the algebra
of polynomials inz4, ..., z, is dense inB. Show that if{z1,...,z,} is a set of
generators iB, then the mappind/ — (Z1(M), ..., 2. (M)) identifiesdn, as
a topological space, with a bounded subsetdf

7. LetI be a closed ideal if3. Denote byh(I)—the hull of I-the set of all
regular maximal ideals containing I. Show that the maximal ideal spaBg bf
can be canonically identified with(I).

8. Let 1, I be (nontrivial) closed ideals in an algebBasuch thatl € B.
Assume thaB = I & I,. Show thath is disconnected.

9. Show that not every multiplicative linear functional @f(T) has the
form p — fi(n) for some integen.

10. Show that for any LCA grou@, L'(G) and M (G) are semisimple.

11. LetB be a Banach algebra with a unit, realized as a self-adjoint function
algebra on a spack.

(a) Prove that3 is self-adjoint if, and only if,f is real valued oM for every
f € B which is real valued oiX .

(b) Prove thatB is self-adjoint if, and only if1 + | f|? is invertible inB for all
feB.

12. Let{wn, }nez be a sequence of positive numbers satisfyirgw,+m <
wnwy, for all n,m € Z. Denoté by A{w,} the subspace of(T) consisting of
the functionsf for which

Hf“{wn} = Z|f(n)\wn < 00.

(a) Show that with the norm so definet{w. } is a Banach algebra.
(b) Assume that for some > 0, w, = O (|n\k). Show that the maximal
ideal space ofi{w, } can be identified witT.

§Compare with exercise V.2.7.
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(c) Under the assumption of (b), show th&fw,} is self-adjoint if, and

only if,
wow”}: =0(1) as|n| — oco.

13. LetB be a Banach algebra with norjn||, and maximal ideal space
M. Let By C B be a dense subalgebra which is itself a Banach algebra under
a norm|| ||:. Assume that its maximal ideal space is agair{this means that
every multiplicative linear functional oB; is continuous there with respect to
Il llo). Assume thaf| ||o and| || are consistent o, and denote by ||,

0 < a < 1, the interpolating norms (see IV.l.2 and exercise 1.4) an#byhe
completion ofB; with respect to the norr ||.. Show that the maximal ideal
space ofB,, is againin.

Remark: If B is semisimple the norr || is majorized by|| ||:, (see section
4) and hence by ||, forall 0 < a < 1.

14. LetB; C B’ C B be Banach algebras with nornjs|j;, || ||' and
|| || respectively. Assume thad; is dense inB and in B’ in their respective
norms and thaB and B; have the same maximal ideal spae Show that the
maximal ideal space dB’ is againin.

Remark: The assumption that; is dense inB’ is essential; see exercise 11 of
Section 9.

4 HOMOMORPHISMS OF BANACH ALGEBRAS

4.1 We have seen (Lemma 2.8) that homomorphisms of any Banach
algebra into the field” are always continuous. The Gelfand represen-
tation enables us to extend this result:

Theorem. Let B be a semisimple Banach algebra, &t be any Ba-
nach algebra and lepp be a homomorphism d$; into B. Theny is
continuous.

PROOF. We use the closed graph theorem and prove the continuity of
¢ by showing that its graph is closed. Let € B, and assume that

xj — zo in By andez; — yo in B. Let M be any maximal ideal in

B; the mapr — @z(M) is a multiplicative linear functional o, and

by Lemma 2.8 it is continuous. It follows thgiz; (M) converges to
pzo(M); on the other hand, singgr; — yo In B, @z; (M) — go(M),

so thatpzo (M) = go(M). Hencepzy — yo € M for all maximal ideals

M in B and, by the assumption tha&tis semisimplepzy = yo. Thus

the graph ofp is closed and is continuous. <

Corollary. There exists at most one norm, up to equivalence, with
which a semisimple algebra can be a Banach algebra.
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4.2 Let B and B; be Banach algebras with maximal ideal spa®es
andi,, respectively. Letp be a homomorphism a8, into B. As we
have seen in the course of the preceding proof, exéry 9 defines

a multiplicative linear functionab(x) = @z (M) on B;. We denote the
corresponding maximal ideal byM. It may happen, of course, that
w is identically zero and the "corresponding maximal ideal" is then the
entire By; thusy is a map front into M, U {B;}. In terms of linear
functionals,p is clearly the restriction tan of the adjoint ofip.

Theorem. ¢ : M — My U {B;} is continuous when both spaces are
endowed with the weak-star topology. dfB;) is dense inB in the
spectral norm, therp is a homeomorphism @ft onto a closed subset
Ofml.

PROOF. A sub-basis for the weak-star topology @ U {B;} is the
collection of sets of the forry; = {M :Z;(M;) € O}, O an open set in
C andz; € B'. They pre-image i of U, isU = {M : pz1(M) € O}
which is clearly open. It@ is uniformly dense inB, the functions
pr1(M), r1 € By, determine the weak-star topology @ and it is
obvious thaty is one-to-one intdM; and that it is a homeomorphism.
What remains to sholis that ichB\l) is uniformly dense inB then
»(MM) is closed i1, . We start with two remarks:

(a) ForMy € My the mappx; — z1(M;) is well defined onp(B;)
if, and only if, for allz; € By, pz; = 0 impliesz; (M;) = 0.

(b) When the above-mentioned map is defined, it is clearly multi-
plicative and (assumincg/(B\l) uniformly dense i) it can be extended
to a multiplicative linear functional oB if, and only if, for allz; € By:

21 (M) < [lpza]lsp -

Assume now that/; € 9, is in the weak-star closure of(9). For
anyz; € B; ande > 0 there exists ai/ € 9 such that

|21 (My) = Z1(pM)| = [21(My) — Pz (M)] <e.

Sincee > 0 is arbitrary and sincépz; (M)| < ||pz1]sp, it follows that
|Z1(M1)] < |l¢z1]lsp, and by our remark (b) there exists afy € I
such thatpz; (My) = z1(M;) for all z; € By; that is,pM, = M; and
My € (). <

fNotice that if1 € B thent is compact angy(9n) is therefore compact, so that in
this case the rest of the proof is superfluous.
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4.3 From 4.2 it follows in particular that ifp is an automorphism of
B, thenyp is a homeomorphism abt, and if B is semisimple (so that
we can identify it with its Gelfand representation), theis given by
Fr(M) = i(pM).

In other wordsEvery automorphism, of a semisimple Banach alge-
bra is given by a (homeomorphic) "change of variable" on the maximal
ideal space.

Of course not every homeomorphism 9t defines an automor-
phism of B (or B), and the question which homeomorphisms do, is
equivalent to the characterization of all the automorphisms afnd
can be quite difficult.

*x4.4 The following lemma is sometimes helpful in determining the au-
tomorphisms of Banach algebras of functions on the line.

Lemma. Lety be a continuous function defined on an interiab)
and having the following property: lfy,r1,...,rn are real numbers
such that all the" points

N
(41) No = To + ZEJ"I“]‘, €j = 0,1
1

lie in [a,b], then the numberép(n;)} are linearly dependent over the
rationals. Then the set of points in a neighborhood of whicls a
polynomial of degree smaller thayi is everywhere dense ja, b).

PROOF. LetI be any interval contained in, b]; we show that there ex-
ists an interval’ c I such thaty coincides orl’ with some polynomial
of degree smaller thaiy. Without loss of generality we may assume
that? > [0, N+1] sothatifo <r; <1, j=0,1,...,N, all the points),
defined by (4.1) are contained in By the assumption of the lemma,
to each choice ofrg, ..., ry) such thabt < r; < 1, corresponds at least
one vector( 4, ..., Ay~ ) with integral entries not all of which vanish,
such that

(4.2) > Aap(na) =0.

Denote byE(A4, ..., A,~) the set of pointgrg,...,rV) in the N + 1-
dimensional cube < r; < 1, for which (4.2) is valid. Since is con-
tinuous it follows thatE(A,, ... .Ayn ) is closed for everyA,, ..., Aon)
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and sincg J E(A4, ..., Ayv) is the entire cub® < r; < 1, it follows
from Baire’s category theorem that somgA,, ..., A,~) contains a
box of the form{r? <r;< le-},j =0,...,N.

Lete > 0 be smaller thad (r§ — rJ) and lety. be infinitely differ-
entiable function carried by—«, ) such that/ ¢, (£)d¢ = 1. We put
pe = ¢ * 1. and notice that

2N

Z Aa@e(na) = e (Z Aa@(na))
a=1 a=1

and consequently

2N
(4.3) ZAaSDs(na) =0
a=1
for
(4.4) rSte<rg<rg—e, rP<r;<rl, j=1,...,N.

Now, ¢. is infinitely differentiable and we can differentiate (4.3) with
respect to various;’s, j > 1. Assume thatd,, # 0 and that the coef-
ficient of r;, in 7, is equal to one. Differentiating (4.3) with respect to
rj, We obtain

(4.5) S Aal(na) = 0

where the summation extends now only over those values siich
that the coefficient of,, in 1, is equal to one. Also, (4.5) is nontrivial
since it contains the term,, ¢.(n.,). Repeating this argument with
otherr,’s we finally obtain a nontrivial relatior, o (1,) = 0, that
is ™) (n,) = 0, with M < N, and it follows that on the range of,
corresponding to (4.4), salf, ¢. is a polynomial of degree smaller
thanM — 1 < N. Ase — 0, p. — ¢ andy is a polynomial of degree

smaller thanv on I’. <

Corollary. If ¢, as above, igV-times continuously differentiable on
[a, ], then it is a polynomial of degree smaller thanon [a, b].

x4.5 Theorem (Beurling-Helson).Let ¢ be an automorphism of
A(R) and lety be the corresponding change of variable®iisee 4.3).
Theny(§) = a& + b witha,b € R anda # 0.
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PROOFE The proof is done in two steps. First we show thas linear
on some interval ofX, and then that the fact thatis linear on some
interval implies that it is linear oft.

First step: By 4.1, ¢ is a continuous linear operator of{R). Let
N be an even integer such that > ||¢|*; we claim thaty satisfies the
condition of Lemma 4.4 for this value &f. If we show this, it follows
from 4.4 thaty is a polynomial on some intervdl c R. » mapsI’
onto some interval, and, sincep is an automorphism we can repeat
the same argument fgs—! and obtain that the inverse function of
is a polynomial on some intervd) C I,. Since a polynomial whose
inverse function (on some interval) is again a polynomial must be linear
it follows that is linear onI’.

The adjointy* of ¢ maps the unit measure concentrated &t the

unit measure concentrated@tt). Since|¢*|| = ||| we obtain that
for every choice ofi; € C and¢; € R
(4.6) 1>~ bl e < olllD_ a5, ]| 7y

We remember also that by Kronecker’s theorem (VI.9.2)if¢;)} are
linearly independent over the rationals, thén a;d, )l L~ = >_la;|.
We show now that for every choice of,ry,...,ry € R, if the 2V
pointsy,, given by (4.1) are all distinct, there exists a measucarried
by {1} such thaf|v| ;) = 1 and|jv|zr-~ < 27N/

Put

1 .
4.7) Wi = 1(504—57«%71 —|—57»2j —5(T2j71+r2j)) j=1,...,N/2.

The total mass of;; is clearly 1 and

(4.8)

u](m) :Z(l + eir2i—1T + PUETE ez(r2171+r23)$) _

:§ezr2;—1m/2 cos T2j—lx/2 + 56—1(7’2171—0—723/2):1, Sinra,_12/2

so that

(4.9) ()] < = (Jcos raj_12/2| + |sinryj_12/2]) < 273,

N | =

We now takes = d,, * py * - - * iy /2. v IS Clearly carried by{n; } and if
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then’s are all distinct the total mass ofis 1. On the other hand

N/2
WlFre < [lusllree <27V
1
If {n;} are linearly independent over the rationals it follows first that the
n's are all distinct, and by (4.6) applied to and Kronecker’s theorem
1 < |Je]|2~N/* which contradicts the assumptiofl > |¢||*.
Second stepFor alln and ), ||6m§\//\AHA(]R) < 3; hence

e OVA ()l aggy < 3llell

As \ — oo, \//:\(go(f)) becomes 1 on larger and larger intervalskn
which eventually cover any finite interval @& By VI.2.4 (or by taking
weak limits), e¢() is a Fourier-Stieltjes transform of a measure of
total mass at mos}j|,||. If we denote by, the measure oR such that
11(€) = %@ it follows thate#(%) is the Fourier-Stieltjes transform
of

wi™ =ppk--okpy (ntimes)

and we have

(4.10) 3™ ey < 3|l

By the first step we know that(¢) = a£ + b on some interval on
R. We now consider the measyrebtained fromy; by multiplying it
by e~ and translating it by.. We haveji(¢) = e~ “(«+07(¢), that is
a(€) =1onI (and|i(¢)| = 1 everywhere). It follows from (4.10) that

(4.11) I Iy < 3lleell-

Consider the measures = 27"(6 + u)*", (6 = o being the unit mass

at¢ = 0). We have
n .
vy = 2771 i * 7
2 ()

0

and consequentliy, || < 3||¢|l; also,r, (&) = (%@)n which is equal
to 1if u(¢) = 1 and tends to zero ji(¢) # 1. Taking a weak limit of,
asn — oo we obtain a measutesuch that’ is equal almost everywhere
to the indicator function of the sét: /i(¢) = 1} which clearly implies
7(¢) = 1 identically onR, henceji(¢) = 1 almost everywhere oR and
sincef: is continuousyi(¢) = 1 everywhere. It follows that’»()) =
¢'(at+d) everywhere oiR, andy(€) = a¢ + b. <
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Remarks:(a) The first step of the proof applies to a large class of
algebras. For instance, if is an algebra whose maximal ideal space is
R, B D A(R) and for each constaiif there exists an integé¥ such that
every set{n, } defined by (4.1) (such that thés are all distinct) carries
a measure such that|v| - < K~ !||v||mw), step 1 goes verbatim for
B.

(b) If we assume thap is continuously differentiable, step 2 is su-
perfluous. In fact, step 1 shows that the set of points near whish
linear is everywhere dense andiifexists and is continuous, the slope
must be always the same apdmust be linear. This proves that for
the algebras discussed in remark (a), the continuously differentiable
changes of variable induced by an automorphism must be linear.

(c) We have used the fact thagt was an automorphism of(R)
rather than an endomorphism once, when deducing in the first step that
© was linear in some interval from the fact that it is a polynomial (on
an interval) whose inverse function is also a polynomial. This part
of the argument can be replaced (see exercise 12 at the end of this
section), and we thereby obtain that every nontrivial endomorphism of
A(R) is given by a linear change of variable (and consequently is an
automorphism).

EXERCISES FOR SECTION 4

1. Let B be a semisimple Banach algebra with ndfnj andB; C B a
subalgebra oB which is a Banach algebra with a notfr|;. Show that there
exists a constar@ such that|z|| < C||z||, for all z € B;.

2. Let B be a Banach algebra of infinitely differentiable functiond@n],
having|[o, 1] as its space of maximal ideals. Show that there exists a sequence
{M,}22, such that suf ™ (z)| < M.,||f| for everyf € B.

3. Show that the space of all infinitely differentiable functions[@m]
cannot be normed so as to become a Banach algebra. 4. Let B be a semisimple
Banach algebra with maximal ideal spage Prove that a homeomorphisim
of M is induced by an endomorphism Bfif, and only if f € B= f o € B,
where(f o ))(M) = f((M)).

5. What condition on) above is equivalent to its being induced by an
automorphism?

6. Construct examples of semisimple Banach algelsraand B; and a
homomorphismy : B; — B (such thatp/B\1 is not dense im3) and such that
the corresponding mapping (a) is not one-to-one; (b) is one-to-one but not a
homeomorphism; (c) map& onto a dense proper subsetif .

7. Show that a homeomorphisgof T onto itself is induced by an auto-
morphism ofA(T) if, and only if,e"¢ € A(T) for all n and||e""?|| 4¢ry = O (1).
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8. (Van der Corput’'s lemma): (a) Letbe real-valued on an intervad, b],
and assume that it has there a monotone derivative satisgyigg> p > 0 on
[a,b]. Show that [ e dg| < 2/p.

(b) Instead of assuming’(¢) > p > 0 on [a,b], assume thap is twice
differentiable and thap” > x > 0 on[a, b]. Show that

b
|/ e“"(5>d§| < 6r" 2

Hint: For (a) write [ e*?®d¢ = —i [ d®(£)/¢'(€), whered(¢) = #©). and
apply the so-called "second mean-value theorem." For (bj(if = 0, write

1 1
b c—k 2 ctr 2 b
/ :/ +/ . +/ .
a a c—Kr 2 ct+r 2

the middle integral is clearly bounded by~ 2; evaluate the other two integrals
by (a).

9. Lety be twice differentiable, real-valued function @n1] and assume
thaty” > x > 0 there. Show that

1
|/ e de| < 12572
0

Hint: Integrate by parts and use exercise 8.

10. Lety be twice differentiable, real-valued function ¢nl, 1] and as-
sume thaty” > n > 0 there. Putd,(¢) = (1 — [¢])e™*® for [¢| < 1 and
@, (&) = 0for || > 1 Show that for alk: € R,

1
2w

1
/ ®,(§)e'S"dg| < dn~Tn~2
-1

Hint: @, (£)e* = (1—[¢])e'"#©)~¢*) The second derivative of the exponent
is > nn; use exercise 9.

11. Show that for some > 0, |[®n|| 4 > cv/n; ©n being the function
introduced in exercise 10.
Hint: Use exercise 10, Plancherel's theorem, and the fact|taf, . g, is
independent of..

12. Prove that every nontrivial endomorphism4iiR) is given by a linear
change of variable.
Hint: See remark (c) of 4.5. I is the change of variable induced by an
endomorphismp, ¢ is a polynomial on some interval and if it is not linear,
0" (€) > n (or " (£) < —n) for somen > 0 on some interval. A linear change
of variable allows the assumpti¢nl, 1] C I. As in the second step of the proof
of 4.5, [l VL ((9))l|aey < 3liell, hencel| 2. (VAL < 3lel.
For X sufficiently large®.,, (5)\//:(@(5)) = ©, (&) and by exercise 1Y®n || gz
tends to infinity withn, which gives the desired contradiction.
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5 REGULAR ALGEBRAS

5.1 DefFINITION: A function algebraB on a compact Hausdorff space
X is regular if, given a pointp € X and a compact sét ¢ X such
thatp ¢ K, there exists a functiorf € B such thatf(p) = 1 and f
vanishes orK. The algebraB is normalif, given two disjoint compact
setsK,, K, in X, there existy € B suchthatf =0onK; andf =1
on K.

Examples: (a) LeX be a compact Hausdorff space. Th@fX) is
normal. This is essentially the contents of Urysohn’s lemma (see [15],
p. 6).

(b) HC (D), the algebra of functions holomorphic inside the unit
disc and continuous on the boundary, is not regular.

Theorem (partition of unity). Let X be a compact Hausdorff space
and B a normal function algebra orX, containing the identity. Let
{U;}%_,, be an open covering of . Then there exist functions;, j =
1,...,n, in B satisfying

(5.1) support of ¢; C U;
e =1

PROOFE We use induction on. Assumen = 2. Let 14, V, be open sets
satisfyingV; c U; andV; UV, = X. There exists a functiofi € B such
that f = 0 on the complement of; and f = 1 on the complement of
Vo. Putpr = f, 02 =1 f.

Assume now that the statement of the theorem is valid for coverings
by fewer thann open sets and lédt;,...,U, be an open covering of
X. PutlU’ = U,_1 UU, and apply the induction hypothesis to the
coveringl,...,U,_», U’ thereby obtaining functiong, ..., ¢, 2, ¢’
in B, satisfying (5.1). Denote the support@fby S and letV,,_,,V,
be open sets such thet c U; (j =n —1,n) andV,,_; UV, D S. Let
feBsuchthatt =0onS\V,_; andf =10onS\V,. Puty,_1 =¢'f
andy, = ¢'(1 — f). The functionsp, .. ., ¢, satisfy (5.1). <

Remark: The family{¢;} satisfying (5.1) is callea partition of unity

in B, subordinate tqU;}. Partitions of unity are the main tool in tran-
sition from "local" properties to "global" ones. A typical and very im-
portant illustration is Theorem 5.2 below.
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5.2 Let F be a family of functions on a topological spake A func-
tion f is said to belong toF locally at a pointp € X, if there exists a
neighborhood’ of p and a functiory € F such thatf = ginU. If f
belongs taF locally at everyp € X, we say thaff is locally in F.

Theorem. Let X be a compact Hausdorff space asda normal al-
gebra of functions orX. If a function f belongs toF locally, then
ferF.

PROOFE Foreveryp € X letU be an open neighborhood@éndg € F

such thay = f in U. SinceX is compact, we can pick a finite cover of
X, {Uj};.‘:l, among the above mentioned neighborhoods. Denote the
corresponding elements &fby g;; thatis,g; = f in U;. Let{y;} be a
partition of unity inF subordinate tqU,}. Then

(5.2) F=Y0if=> wig €F. <

Remark: Itis clear from (5.2) thatiff C Fis anideal, and if belongs
to J locally (i.e.,g; € J), thenf € J.

5.3 We consider a semisimple Banach algeBraith a unit, and de-
note its maximal ideal space by

DEFINITION: The hull h(I), of anideall in B, is the setof all/ € 9
such thatr ¢ M. Equivalently:h(I) is the set of all common zeros of
#(M) for x € I. Since the set of common zeros of any family of
continuous functions is closel(7) is always closed ift.

DEFINITION: Thekernel k(E), of a setE C 9, is the ideahy;cg M.
Equivalently: k(F) is the set of alke € B such thati:(M) = 0 on E.
k(FE) is always a closed ideal iB.

5.4 If E Cc 9, thenh(k(F)) is a closed set it that clearly contains

E. One can show (see [15], p. 60) that the hull-kernel operation is a
proper closure operation defining a topologyfn Sinceh(k(E)) is
closed inM, the hull-kernel topology is not finer than the weak-star
topology. The two coincide if for every closed setc 2t we have

E = h(k(F)) which means that i, ¢ E there exists an element

x € k(E) such thati(M,) # 0. Remembering that € k(E) means
#(M) = 0 on E, we see that the hull-kernel topology coincides with the
weak-star topology oft if, and only if B is a regular function algebra.

In this case we say that is regular.
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DEFINITION: A semisimple Banach algebiais regular (resp. nor-
mal) if B is regular (resp. normal) dnit.

5.5 Theorem. Let B be a regular Banach algebra anfl a closed
subset offt. Then the maximal ideal space®Bfk(E) can be identified
with E.

PrROOF The maximal ideals iBB/k(E) are the canonical images of
maximal ideals inB which containk(E), that is, which belong to
h(k(E)) = E. This identifiesh(B/k(E)) andE as sets and we claim
that they can be identified as topological spaces. We notice that the
Gelfand representation @&f/k(E) is simply the restriction o to E. A
typical open set in a sub-base for the topologyi(iB/k(F)) has the
form

U={M:M € E, zg(M) € O},

O an open set in the complex plane,c B, andzg = xmod k(E).
A typical open set in a sub-base for the topologybfhas the form
U ={M:z1(M) € O'} with O’ open inC andz; € B. If O = 0’ and
x =z thenU = ENU’ and the topology oft(B/k(E)) is precisely
the topology induced bgn. <

5.6 Theorem. Let B be a regular Banach algebrd,an ideal inB, F
a closed set i such thate N h(I) = (. Then there exists an element
x € I such thatt:(M)=10nE.

PrROOF The ideal generated hyandk(FE) is contained in no maximal
ideal sinceM > (I,k(E)) impliesM > I andM > k(E), that is,
M € Enh(I). It follows that the image of in B/k(E) is the entire
algebra and consequently there exists an elemenit such thatr = 1
mod k(FE), which is the same as saying)/) = 1 on E. <

Corollary. A regular Banach algebra is normal.

PROOF If E; andE, are disjoint closed sets imt, apply the theorem
tOI:k(El),andE:EQ. |

5.7 We turn now to some general facts about the relationship between
ideals in regular Banach algebras and their hulls.

Theorem. LetI be anideal in aregular Banach algebfaandzx € B.
Thenz belongs tal locally at every interior point oh(x) and at every
point M ¢ h(I).
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PROOF We writeh(z) for h((z)), that is, the set of zeros éfin M. If
M is an interior point of(z), & = 0 in a neighborhood o/ ando € I.
If M ¢ h(I), M has a compact neighborho@ddisjoint fromh(7). By
Theorem 5.6 there exists an elemgrd I such thatj(M) = 1 on E.
Now # = 2 on E andzy € . <

Corollary. Let! be an ideal in a regular semisimple Banach algebra
B andzx € B. If the support of: is disjoint fromh(7), thenz € I.

ProOOF By Theorem 5.7 belongs tol locally at every point, and
by Corollary 5.6 and the remark following Theorem 5.2 it follows that
& e I hencer € l. <

5.8 Let E be a closed subset aft. The setly(E) of all z € B such
thatz(A) vanishes on a neighborhood Bfis clearly an ideal and if
Bisregularh(Iy(E)) = E. It follows from Corollary 5.7 thafy(E) is
contained in every idedl such thah(7) = E. In other words:(F) is
the smallest ideal satisfying(/) = E, andI,(E) is the smallest closed
ideal satisfyindh(I) = E. On the other hand(FE) is clearly the largest
ideal satisfyinch(I) = E.
DEFINITION: A primary idealin a commutative Banach algebra is an
ideal contained in only one maximal ideal.

In other words, an ideal is primary if its hull consists of a single
point.

If B is a semisimple regular Banach algebra, every maximal ideal
M C B contains a smallest primary ideal, naméjy{M}). We sim-
plify the notation and writel,(M) instead ofl,({M}). The closure,
Iy(M), is clearly the smallest closed primary ideal contained/inin
some case%) (M) = M and we say then that/ contains no nontrivial
closed primary ideals. Such is the cas®@if C(T) (trivial) and also if
B = A(T) (Theorem VI1.4.11’). On the other hand,&#f = C™(T) with
n > 1, the maximal idea{ f : f(t;) = 0} contains the nontrivial closed

primary ideal{f: f(to) = f'(to) = 0}.

5.9 DEFINITION: A semisimple Banach algebia satisfies condition
(D) at M € g if, for any = € M there exists a sequene, } C [o(M)
such thatez,, — x in B. We say thaB satisfies the condition (D) iB
satisfies (D) at every/ € M.

If B satisfies condition (D) at/ € 9, M contains no nontrivial
closed primary ideal sinc& (M) is dense inM. It is not known if
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the condition that\/ contains no nontrivial closed primary ideals is
sufficient to imply (D) or not; however, if we know that there exists a
constantk” such that for every neighborhoddof M there existy € B
such that|y|| < K, g has its support iV andg = 1 in some (smaller)
neighborhood of\/, then we can deduce (D) frofy(M) = M. For

x € M letz, € Iy(M) such that,, — z. LetU,, be a neighborhood of
M such that;,, = 0 on U, and lety,, € B such that|y,| < K, y, =0
outsideU,, andy,, = 1 nearM. Putz, = 1 — y,. We haver,, € Iy(M),

T — xxy = xyYn = (& — 2,)yn (SiNCEZ,y, = 0), and

(@ = zn)yall < K|z — za]l — 0. «

5.10 Lemma. Let B be a regular semisimple Banach algebra satisfy-
ing condition (D) atM, € 9. LetI be a closed ideal ilB andz € M.
Assume that there exists a neighborhébof M, such that: € [ locally
ateveryM € U\ {My}. Thenz € [ locally at M.

PROOF. Lety € B be such that the support ¢fis included inU and
7 = 1 in some neighborhood of M,. yx belongs tal locally at every
M # M, andyzz, belongs locally tol everywhere {z,,} being the
sequence given by (D); remember thiat= 0 nearh,); henceyzz,, € I
and sincerz, — x andI is closedyx € I. Butyz = £ in V and the
lemma follows. <

Theorem (Ditkin-Shilov). Let B be a semisimple regular Banach
algebra satisfying (D). Lel be a closed ideal i3 andz € k(h([))
such that the intersection of the boundarsh¢f) with h(I) contains no
nontrivial perfect sets. Thene I.

PROOF Denote by9t the set ofAM/ € 91 such thatr does not belong
to I locally at M. By Theorem 5.79t C (bdry(h)(x)) N h(I) and
by the lemma has no isolated points; hengeis perfect and since
(bdry(h)(x))Nh(I) contains no nontrivial perfects set$ = () andz € I.
<

Corollary. Under the same assumptions Bnif £ C 91 is compact
and its boundary contains no nontrivial perfect subsets, théna) =
k(E).
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5.11 We have been dealing so far with algebras with a unit element.
The definitions and most of the results can be extended to algebras
without a unit element simply by identifying the algelBaas a maxi-
mal ideal inB & C. Instead of0t we consider its one point compact-
ification 91 and we say thaB is regular oro)t if B @ C is regular on

M. This is equivalent to adding to the regularity condition the follow-
ing regularity at infinity: givenM e 9, there exists: € B such that
#(M) = 1 andz has compact support. Similarly, we have to require in
defining "r belongs locally ta" not onlyz € I locally at everyM < 91,

but alsoz € I at infinity, that is, the existence of sompe= [ such that

% = g outside of some compact set. The condition (D) at infinity is: for
everyz € B there exists a sequengg € B such that:,, are compactly
supported andzx,, — x.

EXERCISES FOR SECTION 5

1. Let B be a semisimple Banach algebra,det. .., z,, € B be generators
for B, and assume that

> log|le™™ | ,
[ Tdey<oo, 7=1...,n.

oo

Show thatB is regular.
2. Describe the closed primary ideals@f(T), n a positive integer.

6 WIENER’'S GENERAL TAUBERIAN THEOREM

In this section we prove Wiener’s lemma stated in the course of
the proof of theorem VI1.6.1, and Wiener’s general Tauberian theorem.
These results are obtained as more or less immediate consequences of
some of the material in the preceding section; it should be kept in mind
that Wiener’s work preceded, and to some extent motivated, the study
of general Banach algebras.

6.1 We start with the analog of Wiener’s lemma f&(T).

Lemma. Let f, fi € A(T) and assume that is bounded away from
zero on the support of;. Thenf; f~1 € A(T).

PROOF A(T) is a regular Banach algebra. Denote Ibthe principal
ideal generated by; thenh(l) = {¢: f(¢) = 0} is disjoint from the
support off;. By corollary 5.7,f; € I, which meansf; = gf for some
g € A(T). Thusf, f~1 € A(T) locally and we apply Theorem 5.2. «
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6.2 We obtain Wiener’'s lemma by showing thatR) is locally the
same asi(T).

Lemma. Lete > 0 and lety be a continuously differentiable function
supported by—7 + ¢, 7 — £). There exists a constaif depending on
¢ such that for all-1 < o < 1, [|e" )| 41y < K.

PROOF. We clearly have|e’*y)||c1 () bounded, and thel(T) norm is
majorized by the>!(T) norm. <

Theorem. Let f be a continuous function carried fy-7 + ¢, 7 — ¢).
Then

/If(f)lds <oo = > |f(n)] < oc.

PROOF. Letvy € C! be carried by(—7 + ¢/2,7 — ¢/2), and(t) = 1
on(—m 4 &, —¢). Assume thab|f(n)| < oo; thenf € A(T); hence
fe*p e A(T) and||fe'||laery < K| fllacm for =1 < o < 1. Now
feietyh = feiot and itsA(T) normis(1/27) 3| f(n—«)|. Integrating the

inequality A A
Y lfn—a)l <K Y |fn)

on0 < a <1, we obtain
[1it@e < & X1,

Conversely, if we assume thdtf(€)ldc = X [)|f(n — a)lda < oo
it follows from Fubini’'s theorem that for almost all, 0 < a < 1,
S|f(n—a)| < oo, which meansi®t f € A(T). As in the first part of the
proof this impliese® fe~ity = f € A(T) and|f(n)]. <

Corollary. ldentifyingT with (-, 7], a functionf defined in a neigh-
borhood oft, € T belongs taA(T) locally att, if, and only if, it belongs
to A(R) at to.

6.3 Lemma Wiener's lemma) Let f and f; € A(R) be such that
the support off; is compact andf is bounded away from zero on it.
Thenf, = gf with g € A(R).

PrROOF. Without loss of generality we assume that the suppoyft o
included in(—2,2). Replacingf by fo, wherep € A(R), ¢ = 1 on
(—2,2) andy = 0 outside of(—3,3), it follows from Lemma 6.1 that
g = fif~' € A(T); hence, by Theorem 6.3, A(R). <
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6.4 Theorem Wiener's general Tauberian theorem)Let f <
A(R) and assumg (&) # 0 for all £ € R. Thenf is contained in no
proper closed ideal ofi(R).

PROOF. By Lemma 6.2 it follows that iff, € A(R) has compact sup-
port, thenf,/f € A(R), that is, f; belongs to(f) (the principal ideal
generated byf). By theorem VI.1.12(f) is dense inA(R) and the
proof is complete. <

Instead of considering principal ideals, one may consider any closed
ideal . If for every ¢ € R, there exists’ e I such thatf(¢) # 0, then
I = A(R). As a corollary we obtain again that all maximal ideals in
A(R) have the form{f: f(¢&) = 0} for some¢, € R. We leave the
details to the reader.

6.5 The Tauberian character of Theorem 6.4 may not be obvious at
first glance. A Tauberian theorem is a theorem that indicates condi-
tions under which some form of summability implies convergence or,
more generally, another form of summability. The first such theorem
was proved by Tauber and stated thatif, ., ).~ a,2™ = A and

an, = o(1/n), thend_ a, = A. Hardy and Littlewood, who introduced
the term "Tauberian theorem,” improved Tauber’s result by showing
that Tauber's conditiom,, = o(1/n) can be replaced by the weaker
a, = O(1/n), an improvement that is a great deal deeper and harder
than Tauber’s rather elementary result. Wiener’s original statement of
Theorem 6.4 was much more clearly Tauberian:

Theorem (Wiener's general Tauberian theorem)LetK; € L!(R)
andf € L>°(R). Assuméx (¢) # 0 for all ¢ € R and

(6.2) lim [ Ky (e~ y)f(y)dy = A /'chc)dx.
Then
6.2) lim. / Kalz =) f(0)dy = A [ Ka(w)dz.

for all Ky € L'(R).

Remark: If f(z) tends to a limit whenr — oo then (6.1) is clearly
satisfied withA = lim, .., f(z). (6.1) states thaf(z) tends to the limit
A in the mean with respect to the kern€l; the theorem states that
the existence of the limit with respect to the mdanimplies that of



244 AN INTRODUCTION TOHARMONIC ANALYSIS

the limit with respect to any meah,, providedk; never vanishes.
We refer to [27], chapter 3, for examples of derivations of "concrete"
Tauberian theorems from theorem 6.5.

PROOF OF THEOREM6.5: Denote byl the subset of ! (R) of functions

K, satisfying (6.2). | is clearly a linear subspace, invariant under trans-
lation and closed in thé!(R) norm, that is, a closed ideal ib!(R).
SinceK; € I, it follows from Theorem 6.4 that = L'(R) and the
proof is complete. <

7 SPECTRAL SYNTHESIS IN REGULAR ALGEBRAS

Let B be a semisimple regular Banach algebra with afulienote
by 9 its maximal ideal space and B/ its dual.

7.1 DEFINITION: A functionalv € B* vanishes on an open sétif
(x,v) = 0 for everyz € B such that the support dfis contained irO.

Lemma. If v € B* vanishes on the open se&bs and O, thenv van-
ishes onD; U Os.

PROOF Let z € B and assume that the supportifs contained in
01 UO,. Denote byO; the complement il of the support oft and let
$;, 7 =1,2,3 be a partition of unity inB subordinate t®;, j=1,2,3.
Thenz =z +zp2 and(z, v) = (xp1,v) + (xp2,v) = 0, SiNCexps =0
andze; has its support i®,. <

From the lemma it follows immediately thatif e B* vanishes on
every set in some finite collection of open sets it vanishes also on their
union; and sincén is compact the same holds for arbitrary unions. The
union of all the open sets on whicghvanishes is the largest set having
this property and we define the suppdtty), of v as the complement
of this set (compare with VI.4).

7.2 For M € "M we denote by,, the multiplicative linear functional
associated with\/, (x,d0,;) = 2(M); thuséd,, is naturally identifiable
with the measure of mass 1 concentratefi/at

DEFINITION: A functionalv € B* admits spectral synthesisv be-
longs to the weak-star closure of the spaBinof {da},, S(v)-

fThe standing assumptidne B is introduced for convenience only. Itis not essential
and the reader is urged to extend the notions and results to the gaBe
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Since the subspace &f orthogonal to the span QEM}ME =) is
precisely the set of alt € B such that:(M) = 0 for all M € X(v), that
is, the ideak(X(v)), we see, using the Hahn-Banach theorem as we did
in V1.6, thaty admits spectral synthesis if, and only if, it is orthogonal
tok(X(v)).

7.3 It seems natural to define a set of spectral synthesis as & set
having the property that every € B* such thatX(v) = E admits
spectral synthesis. 1 is very large, however, there may be séts
which are the support of no € B* and we prefer to introduce the
following.

DEFINITION: A closed setE c 9 is a set of spectral synthesif
everyv € B* such that(v) C F is orthogonal t&k(F).

This condition implies in particular that () = F thenr admits
spectral synthesis.

It is clear that the conditio®(v) C E is equivalent to the condition
thatv be orthogonal tdy(FE). The condition tha® is of spectral syn-
thesis is therefore equivalent to requiring that every B* which is
orthogonal toly(E) be also orthogonal tk(E). By the Hahn-Banach
theorem this meank (E) = k(FE). Thus: E is of spectral synthesis if
and only if [ (E) is dense irk(FE). We restate Corollary 5.10 as:

Theorem. Assume thaB satisfies (D) and leE ¢ 9t be closed and
its boundary contain no perfect subsets. Thas of spectral synthesis.

7.4 In some cases every closéd c 9 is of spectral synthesis and
we say that spectral synthesis is possibleé3in Spectral synthesis is
possible ifB = C(X), X a compact Hausdorff space. Another class of
examples is given by Theorem 7.8: satisfying (D) with)t contain-
ing no perfect subsets. In particulardfis a discrete abelian group and
B = A(G) (to which we formally add a unit if we want to remain within
our standing assumptions), then (D) is satisfied@ihcontains no per-
fect subsets. It follows that for discrefe spectral synthesis holds in
A(G). We devote the rest of this section to prove:

Theorem (Malliavin). If Gis a nondiscrete LCA group then spectral
synthesis fails for(G).

The construction is somewhat simpler technically in the ¢aseD
than in the general case and we do it there. For a nondiscrete LCA
group@G, a Cantor seF on G is a compact set for which there exists
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a sequencér;} C G such that the finite sums | ¢;r;, ¢; = 0,1, are

all distinct and form a dense subset®f The construction we give
below can be adapted to show that every Cantor s€t obntains a
subset which is not of spectral synthesis fiG). Notice that every
nondiscrete LCA group has Cantor subsets. We mention, finally, that
for G = R™ with n > 3, any sphere is an example of a set which is
not of spectral synthesis; this was shown by L. Schwartz (some eleven
years before the general case was settled).

7.5 We state the principle on which our construction depends in the
general setting of this section, that is, for a semisimple regular Banach
algebra with a unit. For typographical simplicity we identifyand B

and use the letterg, g and so on, for elements &. We remind the
reader that the dua* is canonically aB module.

Theorem. Let f € Bandu € B*, 1 # 0, and denote

(7.1) Clu) = [l |

B*-
Assume that for an intege¥ > 1

(7.2) / C(u)|u|Ndu < oo.

Then there exists a real valug such thatf, = ag + f has the property

that the closed ideals generated f§y, n = 1,..., N + 1 are all distinct.

PROOFE We begin with two remarks.
First: There is no loss of generality assuming tfiag:) # 0. In fact
for someh € B (h,pu) = (1, hu) # 0 and since

le™ Al g < |IBllsle™ ul

B*,

(7.2) remains valid if we replageby hy.

Second: Write ®(u) = (1,e™fu); then|®(u)| < C(u) € L*(R),
®(u) is continuous an@(0) = (1, u) # 0. It follows that®(¢) is well
defined and is not identically zero so that there exists a real number
for which i)(—ao) # 0. This is theay we are looking for (as we shall
see) and again we may simplify the typography by assuming 0;
we simply replacef by ao + f and notice that?(®0+f) = ¢ivaoeivf gg
that ||e?*(®0+1) || g« = ||’/ u||p-. Thus we assume

(7.3) /00 (1, pydu # 0

— 00
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Forp < N the B*-valued integral

(7.4) Ay (f, ) :/ ()P (™ 1) du
is well defined since the integrand is continuous and, by (7.2), norm
integrable.

Letq¢ > 0 be an integery; € B and consider

T8 L=t (0 = [ (ot )
Integrating (7.5) by parts we obtain

Ipg=—plp—14-1 if p>0, ¢ >0,

(7.6) :
I,y =0 if p=0, ¢>0.

It follows that if ¢ > p we haver, , = 0 no matter what ig;, € B. In
other words A, (f, ) is orthogonal to the ideal generated fy!.
Now, using (7.6) withp = ¢, g1 = 1, we obtain

oo

@7 A = 1 [ e du £
by (7.3). Thusf? does not belong to the closed ideal generatedrthy
and the proof is complete. <

Corollary. The sets~1(0) andX(u) N £~1(0) are not sets of spectral
synthesis.

PROOF The hull of the ideal generated K% is f~1(0). Since we found
distinct closed ideals having=!(0) as hull, f~1(0) is not of spectral
synthesis. The fact that,(f, ) is orthogonal to the ideal generated by
Pt implies (see Corollary 5.7) th&(A,(f, 1)) € f71(0).

Forg € B we have

oo o0

(7.8) (9. A,(fon)) = / (9, € ) ()P du = / (ge™! | ) ()P du

—0o0 — 00

so that if the support of is disjoint fromX(p) then(g, A,(f, p)) = 0.
This means that (A, (f, 1)) € X(n); hence

(7.9) (Ap(f,1) € B(p) N FH0). <
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7.6 In the caseB = A(D) we show thaj: and f can be chosen so that
C(u), defined by (7.1), goes to zero faster than any (negative) power
of |u|. We can take ag simply the Haar measure @f and we shall
have f quite explicitly too, but before describing it we make a few
observations.

We identify the elements db as sequence&,}, ¢, = 0,1, the
group operation being addition mod 2. Functionsoare functions
of the infinitely many variables,,, n = 1,2,.... Denote byz,, the
element inD all of whose coordinates except thdah are zero. De-
note by E,, the subgroup oD generated byt,,,_; andzs,, that is,
{0, 2m—1, Tom, Tam—1 + Tom . Denote byu,, the measure having the
massl/4 at each of the points of,,. u.,, is the Haar measure af,,
and one checks easily that the convolutipns - - - x u,, converge in the
weak-star topology of measures to the Haar measwfeD. We write
this formally asu = []7° 4.

Lemma. LetFE; = {x1,...,zx} and E> = {y1, ...,y } be finite sets on
agroupG. LetE = E1+Ey ={z,+yq, p=1,...,k, ¢g=1,...,1} and
assume thak hask! points. Leth; andhs be functions or such that
hi(zp+yq) = g1(zp) andha(z, +y4) = 92(yq). Then, ifu,, is a measure
carried byE,,,m = 1,2,

(7.10) haha(pa * p2) = (g1p1) * (g2p2).

PROOF. Both sides of equation (7.10) are carried Byand have the
massg: (zp)g2(yg) 1 ({zp}) 2 ({ye}) atay + yq. <

The lemma can be generalized either by induction or by direct ver-
ification to sums ofV setsFE,,. The flaw in notation of denoting by
E,, first specific sets and then, in the lemma, variable sets (and simi-
larly for i) is forgivable in view of the fact that we use the lemma pre-
cisely for the set€,,, and the measurgs,,, introduced above. Thus,
if h,,, m =1,2,... are functions o and if h,, depends only on the
variables,,,_1 andes,,, we have

N
(7.11) (TT P ) i1 e v = (agan) -5 ().

We shall have' = Y a0 With ¢, € A(D), ., depending only on the
variableses,,,_; andes,,, and the series convergent in tdéD) norm.
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Using (7.11) and taking weak-star limits, we obtain the convenient for-
mula:

(7.12) ey = H K (etuamem Y.
1

We recall that the norm of a measureA(D)* is the supremum of its
Fourier transform, and that the Fourier transform of a convolution is the
product of the transforms of the factors; thus we obtain

(713) ||eiuf/14||A(]DJ)* < HHeiua"ﬁa"”NmHA(D)*
1

The functionsp,, are defined by:
(714) (p(l‘) = €29m—1&2m for z = {€j}.

If we denote by,, the character o defined by

(7.15) <@, &y >= (1) for z = {¢;},
then
(716) Spm, == i(l + £2m71€2m - €2m71 - £2m)

so thaty,, € A(D), and||y, || amw) = 1.

The Fourier transform of the measufe*~,,,, can be computed
explicitly: if £ = {¢;} € D then
/ <a,&> e @dy, () =

— i(l T (_1)€2m_1 + (_I)sz + eia(_l)CQWL—l"FCQm,)’

(7.17)

which assumes only the three valuggg™, =<, <“=1 |t follows
that if |« — 7| < 7/3 mod 27, then

(7.18) €™ o || )+ < 5.

Theorem. Denote the Haar measure dhby 1. There exists a real-
valued functionf € A(D) such that, agu| — oo, C(u) = ||/ i o)
vanishes faster than any power|of.
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PROOF Let {N,} be a sequence of integers such thaiv,2—* < .
Write a,, = 7/3-25~1 for V' N; < m < S2FN;. We clearly have
Ya, = (21/3)Y. N;27% < oo, so that writingf = > anem as in
(7.14), we havef € A(D). For2* < v < 2¢+! we have2r /3 < ua,, <
47 /3 for the Ny, values ofm such that,, = 7/3-2*~1. For these values
it follows from (7.18) that

||eiuamwmum”A(D)* < %

and consequently, using (7.13),
(7.19) Clu) < H||€iuam%”ﬂm||,4(m)* < (%)Nk
1

since all the factors in (7.19) are bounded by 1 and at ¥astf them
by 3. If we takeN;, = 2¥k~2 we obtainC(u) < (3)*1e"“ for u — oo,
and since for real-valuef] C(—u) = C(u), the proof is complete. «

Corollary. There exists a real-valuefl ¢ A(D) such that the closed
ideals generated by®, n = 1,2, ..., are all distinct.

EXERCISES FOR SECTION 7

1. Prove that for every functiom(u) such that:~*a(u) is monotonic and
S"27%q(2%) < oo, there exists a real-valued functigne A(D) for which
Cu) = O (e=2(uD).

2. Denote byB,, 0 < a < 1, the algebras obtained from(D) andC (D)
by the interpolation procedure described in IV.1. Show that spectral synthesis
fails in B,.

8 FUNCTIONS THAT OPERATE IN REGULAR
BANACH ALGEBRAS

8.1 We again consider regular semisimple Banach algebras with unit.

DEFINITION: A function F', defined in a sef in the complex plane,
operates inB if F(&) e B for everyi e B whose range is included in

Q. The study of functions that operateinis also calledhe symbolic
calculus inB. Theorem 3.9 can be stated as: a functiormefined

and analytic in an open sét operates in (anypB. Saying thatB is
self-adjoint is equivalent to saying thaiz) = z operates inB. If B

is self-adjoint and regular, we can prove Theorem 3.9 and a great deal
more without the use of Cauchy’s integral formula. We first prove:
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Lemma. Let B be a regular, self-adjoint Banach algebra with maxi-
mal ideal spacem. Let M, € M and letU be a neighborhood af7,.
Then there exists an element B such that has its support withi/,

¢ = 1 on some neighborhodd of M, and0 < é < 1 on 9.

PrROOF. By the regularity ofB there exists am € B such thati has
its support in/ andz = 1 in some neighborhoott of M,. Takeé =
sin? 722 /2. (Notice thatsin® 7i4/2 is well defined by means of power
series.) <

Theorem. Letx € B and letf be a continuous function ot such
that in a neighborhood of eachi, € 91, f can be written asF(z),

whereF'(¢) = F(¢ + in) is real-analytic in¢ andn in a neighborhood
of #(My). Thenf € B.

Remark: The two points in which this result is more general than The-
orem 3.9 are:

(a) We allow real-analytic functions.

(b) We allow many-valued functions (providéd:z (1)) can be de-
fined as a continuous function.)

PROOF. We show thatf(M) € B locally at every point. Lef/, € 9,
x € B, andF such thatf = F(z) in a neighborhood/, of M,. Re-
placingz by z — #(My) and F(¢) by F(¢ — #(mg)), we may assume
thati(M,) = 0, and that near zero, say f@ < 1, |7 < 1, we have
F(§+in) = Zan,mgnnm-

LetU c U, be a neighborhood aff, such thatz(AM)| < 3 in U, let
é € B have the properties listed in the lemma and wiite= R(é2) =
3(é¢ + éz) andz; = S(ed). By Lemma 3.6 the serie€y aj, n,z7 a5’
converges irB and we denotg = ) a,, ,,z7z5’; theng(M) = F(&(M))
inV. <

8.2 It is not hard to see that operation by analytic (or real-analytic)
functions, even in the setup of Theorem 8.1 which allows many valued
functions, is continuous. This follows from the (local) power series
expansion. There is no reason to assume, however, that whenever a
function F' operates in a regular semisimple algeBrahe operation is
continuous (see exercise 2 at end of this section). Still, the regularity
of B makes it easy to "condense singularities" which allows us to show
that the "bad" behavior of the operation is localized®rno the neigh-
borhood of a finite set. The notions, arguments, and results that follow
are typical of regular algebras.
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8.3 We assume that is self-adjoint, regular, and with a unit, and we
assume for simplicity thaf' is a continuous function, defined on the
real line, and operates iB.

DEFINITION: F operates boundediythere exist constants> 0 and
K > 0 such that ifz (M) is real valued anglz|| < ¢, therl ||F(z)|| < K.
F operates boundedly af € 9, if there exists a neighborhodd,,
of M and constants > 0 and K > 0 such that if the support af is
contained irnJ,; and||z|| < ¢, then||F(z)| < K.

Lemma. F operates boundedly if, and only if, it operates boundedly
at everyM < 9.

PROOF ReplacingF’ by F — F(0) we may assume'(0) = 0. Itis clear
that if " operates boundedly, it does so locally at eathAssume that
the operation is bounded locally, and pitk, M, ..., M,, such that the
corresponding neighborhoods,,, ..., Uy, coverd. LetVy,...,V,
be open sets such thﬁ C Un, and such tha{V;} coveri. Let
Y; € B be real valued with support insidé,,;, and«; = 1 on V},
and let{y;} be a partition of the unity ir3 relative to{V;}. Lete;
and K; be the constants correspondingltg, and now take: > 0 so
that ||ey;|| < ¢; for all j, andK = Y K;l¢,|. Assume that: ¢ B
is real valued andz| < ¢; then||zy;|| < ||z||||l¢;]| < ¢; and iy, is
supported by/,;,, hencel|F(z1);)|| < K;. BUt F(z) = > ¢, F(2;) SO
that || F(x)| < 3|l;|1K; = K. <

8.4 Lemma. Let B be a regular, self-adjoint Banach algebra and

a function defined on the real line and operating in B. Then there exists
at most a finite number of points @k at which F' does not operate
boundedly.

PROOF. Again we assume, with no loss of generality, tfh&0) = 0.
Assume thar” operates unboundedly at infinitely many point®irand
pick a sequence of such poi{t¥/; } having pairwise disjoint neighbor-
hoodsV;. We now pick a neighborhood’; of M; such thaiV; c V;.
Saying thatF’ does not operate boundedlyd; means that, given any
neighborhoodV; of A/; and any constants; > 0 and K; > 0, there
exists a real-valueg; ¢ B carried byW; such that||f;| < ¢;, and
|F(f;)] > K;. We takes; = 277 andK; = 27| p;||, wherep; € B is
carried byV; andy; = 1 onW;. We now considef = ) f; andF(f).

TWe denote by (z) the element inB whose Gelfand transform ().
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By the choice of:; the series defining converges and consequently
f e BandF(f) e B. Now

1

F(f)| > 27 forallj,

1
IEOI = sl I =
15l
which gives the desired contradiction. <

8.5 For some Banach algebras, Lemma 8.4 takes us as far as we can
go; for others it can be improved. Consider, for instance, an automor-
phisme of B inducing the change of variableson 9. If f € B, then
F(of) = F(f(eM)) = o(F(f)), which means that the operations by
F (on the function) and by (on the variables) commute. Sineeis

a bounded, invertible operator, it follows thatoperates boundedly at

a pointM € M if and only if it operates boundedly atV/. From this
remark and Lemma 8.4 it follows that#f does not operate boundedly
at M € M, the set of images af/ under all the automorphisms &f

is finite. In particular, if for everyM € 9 the set{cM}, o ranging
over all the automorphisms @, is infinite, then every function that
operates inB does so boundedly at evefy € 9, and consequently,
operates boundedly. In particular:

Theorem. Let G be a compact abelian group anfl a continuous
function defined on the real line. K operates inA(G), it does so
boundedly.

PrRoOF The maximal ideal space of(G) is G. For everyy € G the
mappingf — f,* is an automorphism aof(G) which carries the max-
imal ideal corresponding tg to that corresponding to € G. If G is
infinite the statement of the theorem follows from the discussion above.
If G is finite the operation by is clearly continuous. <

Remark: Since the operation of a function on a Banach algebra is
not linear, we cannot usually deduce continuity from boundedness, nor
boundedness in one ball i from boundedness in another (see exer-
cise 3 at the end of this section).

8.6 For some algebras Theorem 8.1 is far from being sharp. For in-
stance, ifB = C(9) every continuous function operatesiy if B =
C™(T) everyn-times continuously differentiable function operates. For

Hfy(a) = flz —y).
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group algebras of infinite LCA groups Theorem 8.1 is sharp. We shall
prove now that for the algebi = A(T), only analytic functions oper-
ate. This is a special case of the following:

Theorem. LetG be a nondiscrete LCA group and IEtbe a function
defined on an interval of the real line. Assume thdt operates in
A(G). ThenrF is analytic on!.

Remark: If G is not compact, one of our standing assumptions, namely
1 € B, is not satisfied. Since in this case all the functiond (') tend

to zero at infinity, we have to add to the statement of the theorem the
assumptiord € I since otherwise every function defined boperates
trivially (the condition of operation being void). The theorem can be
extended to infinite discrete groups: we have to assuirael (since
discrete and compact implies finite) and the conclusion isfhatan-
alytic at zero (see exercise 1 at the end of this section). As mentioned
above we prove the theorem far = T; the proof of the general case
runs along the same lines (see [24], chapter 6).

PROOF OF THE THEOREMG = T): Let b be an interior point of and
consider the functior¥y (z) = F(x + b). F is defined on/ — b and
clearly operates ini(T). If we prove thatF(x) is analytic atz = 0 it
would follow that F'(z) is analytic ath, so that, in order to prove that
F is analytic at every interior point of we may assumeé € int(l)
and prove the analyticity of at0. Once we know that functions that
operate are necessarily analytic at the interior point$ wfe obtain
the analyticity at the endpoints as follows (we assume, for simplicity,
that7 = [0,1] and we prove that F(x) is analytic at= 0): consider
Fy(z) = F(2?). Fy is defined orj—1, 1] and clearly operates iA(T) so
that nearr = 0, Fi(z) = Y b;2?/. Now, sinceF;(z) = F(z?) is even,
bej—1 = 0 for all j, so thatF (z) = Y byjz* andF(z) = 3 be;a’. The
proof will therefore be complete if, assumiag: int(I), we prove that
F is analytic a0.

By Theorem 8.5F operates boundedly which means that there exist
constants > 0 and K > 0 such that iff € A(T) is real valued and
I7]l < e, then||F(f)]] < K. Picka > 0 so small that (i)—a,a] C I,
and (ii) ae® < ¢, and considef; (z) = F(asinz). By (i), F; is well
defined and it clearly ig7-periodic and operates iA(T). Now if f €
A(T) is real valued andlf|| < 5, thenasin f is real-valued, and by (ii),
lasin f]] < e so that|| F1(f)|| < K.
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In particular, ifp € A(T), ||¢]| < 1,7 € R, |7| <, then
(8.1) |Fi(e+1)|| < K

Now asinz € A(T); henceF; € A(T) and we can write

(8.2) Fi(z) =) Ane™;

in particular,F; is continuous. For real-valuetle A(T), F1(f) € A(T)
and therefore can be written as

(8.3) Fi(f(8) = > an(f)e™, D lan(f)] < oo
SinceF; is uniformly continuous ofR it follows that

1

o) = o [ Fr(so)e e

depends continuously ghand therefore, for eacN, the mapping
N .

(8.4) Fe) an(f)em™
-N

is continuous from the real functions ¥(T) into A(T). We conclude
from (8.3) thatFy(f) is a pointwise limit of continuous functions on
A(T), that is, is a Baire function oA(T), and in particular:Fy (o + 7)
considered as a function efon [—r, 7] is a measurable vector-valued
function which is bounded b¥ if ||¢|| < 1. It follows that

1 —inT .
(8.5) H%/Fl(gaJrr)e dTH <K
however,
1 ) )
(8.6) Py / Fi(o+1)e ""dr = Ane™?,
™

as can be checked by evaluating both sides of (8.6) for ever, and
we rewrite (8.5) as

(8.5) |Ane™?| < K.
Let us write

(8.7) N(u) = SUBeqr | 7<ulle’ llam);
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then it follows from (8.5’) that
(8.8) An| < K (N (n))

-1

and if we show thatV'(u) grows exponentially with:, it would follow

that (8.2) converges not only on the real axis, but in a strip around it, so
that £y is analytic onR and, finally,F is analytic a©. All that we need

in order to complete the proof is:

Lemma. Let N (u) be defined by8.7). Then
(8.9) N(u) = e*.

PROOF It is clear from the power series expansioretfthat for any
Banach algebra
N(u) < e*.

The proof that, forA(T), N'(u) > e* is based on the following two
remarks:
(a) Letf, g € A(T), then

(8.10) IFBgA)[ = [1F ] lgll - asA — oo

(X being integer). We prove (8.10) by noticing thatfifis a trigono-
metric polynomial and\ is greater than twice the degree pfthen
&g\ = IIfllllgll. For arbitraryf € A(T) ande > 0 we write
f = f1+ f» wheref; is a trigonometric polynomial anfs || < || f||- If
A/2 is greater than the degree ffwe have

£ g = | f1()gA) | = [ f2(O)g(AO)[| = (1 = 2e)[[ £l | 9]]-
(b) If a is positive, theri@ st = 1 + jacost + ... so that
(8.11) €7 4m) = 1+ a+ O (a?).

Letu > 0; we pick a largeV and writef = > (u/N) cos A;t where the
A;'s increase fast enough to ensure

1 N
>1-pll

ei(u/N)cost

N
(8.12) HH ei(u/N) cos \jt
j=1

f is clearly real valued|f| = u, and, by (8.11) and (8.12),

e = (1 - %) (1++ +o(%))N > (1—e)e

if N is large enough. <
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This completes the proof of the theorem (for= T).

The lemma is not accidental: the exponential growth/df) is the
real reason for the validity of the theorem. The function as defined
by (8.7) can be considered for any Banach algeébind if, for some
B, N(u) does not have exponential growth at infinity, then there exist
nonanalytic functions which operate ;1 As an example we can take
any F(x) = Y A,e™™® such that4,, does not vanish exponentially as
|u| — oo but such that for alk > 0, >~ A, N(k|n|) < co; F operates
in B since for any real-valuedl € B, F(f) = Y. A,e™/ and the series
converges in norm.

8.7 We finish this section with some remarks concerning the so-called
“individual symbolic calculus” in regular semisimple Banach algebras.
Inasmuch as "symbolic calculus" is the study of functions that operate
in an algebra and of their mode of operation, individual symbolic cal-
culus is the study of the functions that operate on a fixed element in
the algebra. Let us be more precise. We consider a regular, semisimple
Banach algebra (identify it with its Gelfand transform) and say that a
function F operates on an elemepte B if the domain ofF’ contains

the range off and F(f) € B. Itis clear that a functior¥ operates in

B if it operates on every € B with range contained in the domain
of F. Itis also clear that for each fixefl € B, the set of functions
that operate ory is a function algebra on the range fif we denote
this algebra by f]. For I’ € [f] we write | F||;; = ||F(f)|lz and with

this norm|f] is a normed algebra. If we denote py]] the subalge-
bra of B consisting of the elements(f), F' € [f], it is clear that the
correspondencé& — F(f) is an isometry of f] onto [[f]]. Since][f]]
consists of aly € B which respect the level lines gf(i.e., such that
f(My) = f(M2)=g(M; = g(Ms)), [[f]] and[f] are Banach algebras.
We say thaf[f]] is the subalgebrgenerated formallyy f; it clearly
contains the subalgebra generatedfi{ywhich corresponds to the clo-
sure of the polynomials ify]).

It should be noted that the "concrete" algeljadepends orf more
than[[f]]. The latter depends only on the level linesfoaind is the
same, for example, if we replace a real-valyely f3. Even if the
ranges off and f3 are the same we usually haj@ # [f3].

If f is real valued]f] always contains non-analytic functions. In
fact, since|e/||5, = 1, it follows from Lemma 3.6 that

lim [l ||Y/" =1
n—oo
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so that there exists a sequerek, } that does not vanish exponentially
such thaty” A,.e'f converges in norm; hencg(z) = > A,e"* be-
longs to[f]. The fact that{ 4,,} does not vanish exponentially implies
that F'(z) is not analytic on the entire real line but it can still be analytic
on portions thereof which may contain the rangef ofSo we impose
the additional condition that,, = O unless = m!, m = 1,2, ..., which
implies thaty_ A,,¢™* is analytic nowhere oR.

8.8 Individual symbolic calculus is related to the problem of spectral
synthesis inB. Assume for instance that the rangefois [-1, 1] and
that[f] c C™([-1,1]), m > 1. Since inC™, F(z) = = does not belong
to the ideal generated hy, and since (Theorem 4.1) the imbedding of
[f] in C™ is continuous does not belong to the ideal generatedfby
in [[f]]. This does not mean a-priori that the same is trus.inVe do
have a linear functional on [[f]] which is orthogonal tgf?) and such
that(f,v) # 0 and we can extend it by the Hahn-Banach theorem to a
functional onB; there is no reason, however, to expect that the support
of the extended functional should always be containefi0). If v
can be extended tB with X(v) c f~1(0), spectral synthesis fails iA.
Going back toC™ one identifies immediately a functional orthog-
onal to the ideal generated hy but not tox; for instance,d’, the
derivative (in the sense of the theory of distributions) of the point mass
at zero, which assigns to evefy € C™ the value of its derivative at
the origin. In[[f]] the corresponding functional can be denoted by
§'(f) and remembering that the Fourier transforns'ois & (u) = —iu
one may try to extend’(f) to B using the Fourier inversion formula
§'(f) = 5= [(iw)e™/du. Strictly speaking this is meaningless, but it
provided the motivation for Theorem 7.5.

EXERCISES FOR SECTION 8

1. Let B be a semisimple Banach algebra without unit and with discrete
maximal ideal space. Show that every functibranalytic near zero and satis-
fying F'(0) = 0, operates irB.

2. Asin chapter I, Lip(T) denotes the subalgebra@{T) consisting of the

functionsf satisfying sup,_,, | {2=L12) | < oo,

(a) Find the functions that operate in L{f).

(b) Show that every function which operates in [(ip) is bounded in every
ball.

(c) Show that'(z) = |z| does not operate continuouslyfat sin t.
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3. Assume thaf¥" is defined orR and operates il (T). Assume that for
everyr > 0 there existdX = K (r) such that iff is real-valued and f|| < r,
then||F(f)|| < K(r). Show thatF is the restriction t@® of an entire function.

4. Let B be a regular, semisimple, self-adjoint Banach algebra with a unit.
Assume thaf'(z) = +/|z| operates boundedly ii. Prove that3 = C/(1).

Hint: Use Theorem 3.8.

5. Use the construction of section 7 to show that for the alg8braA(D),

N (u) has exponential growth at infinity; hence prove Theorem 8.6 for the case
G =D.

6. Leta(u) be a positive function) < u < oo, such thair(u) < % and

a(u) — 0 asu — oo. Show that there exists a real-valugd A(T) such that

”eiufH > eua(u).

7. (a) Show that ifo(¢, 7) € A(T?), then for everyr € T, v, (t) = p(t,7),
considered as a function ofilone, belongs tel(T) and ||y || acr) < [l@]l acr2)-
Furthermorez)-(t) is a continuousA(T)-valued function ofr.

(b) Prove: for every functiom(u) as in exercise 6. above, there exists a
real-valuedy € A(T?) whose range contairs-7, 7] and such that if"(z) =
> Ane™ € [g], thend, = O (e~ "m0
Hint: Takeg(t,7) = f(t)+5sin 7, wheref is a function constructed in exercise
6 above. Apply part (a) and the argument of 8.6.

(c) Deduce theorem 8.6 for the case= T? from part (b).

9 THE ALGEBRA M(T) AND FUNCTIONS THAT OPERATE ON
FOURIER-STIELTJES COEFFICIENTS

In this section we study the Banach algebra of measures on a non-
discrete LCA group. We shall actually be more specific and consider
M (T); this in order to avoid some (minor) technical difficulties while
presenting all the basic phenomena of the general case.

9.1 We have little information so far about the Banach algelr&).
We know that for every. € Z, the mapping: — fi(n) is a multiplicative
linear functional onV/ (T); this identifiesZ as part of the maximal ideal
spaceM of M(T). How big a part of is Z? We have one negative
indication: sincelt is compact the range of evefyon 2t is compact
and therefore contains the closure of the sequgn¢e)},cz, which
may well be uncountable (e.g., f(n) = cosn, n € Z). Thusd is
uncountable and is therefore much bigger tdarBut we also have a
positive indication: a measuygeis determined by its Fourier-Stieltjes
coefficients, that s, if. = 0 onZ theny = 0 and thereforgi = 0 on 1.
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This proves thatV/(T) is semisimple and may suggest the following
question:

(a) IsZ dense irm?
Other natural questions are:

(b) Is M (T) regular?

(c) Is M (T) self-adjoint?

Theorem. There exists a measuyeV/(T) such that is real valued
onZ butis not real valued ofn.

Corollary. The answer to all three questions above is "no."

PROOF ltis clear that the theorem implies tHats not dense ift. If
M e M is not in the closure df, there is nqu € M (T) such thati = 0
on Z while (M) # 0 (sinceji = 0 onZ implies u = 0); so M (T) is
not regular. Finally: ifu is a measure with real-valued Fourier-Stieltjes
coefficients and if for some € M(T), 7 = i on9M, we haver = i on
7, hencer = pandj = i on9t which means that is real valued ofn.
Thus, if . has the properties described in the theorem, fhen/ (T).

<

9.2 In the proof of Theorem 9.1 we shall need

Lemma. Let G; and G, be disjoint subgroups ofl and letE; C
G;, j =1,2, be compact. Let; be carried byE;, j =1,2. Then

(9.1) k1 * pol[arery = lallareny | o2l arery -
PROOFE Lete > 0 and lety; be continuous oit;, satisfying|y;| <1
and [ p;du; > ||pil| — e. The functiony(t + 1) = o1 (t)pa(r) is well

defined and continuous afy + FE- (this is where we use the fact that
E; are contained in disjoint subgroups) and

/¢d(ﬂl * [12) Z//¢(t+7)dl~tldﬂ2 :/90161/11/90261,“2

which implies|m,  ps|| = (1]l = €)(l[n2]l = €)- <

fThatis:G1 N G2 = {0}.
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9.3 PROOF 0F9.1: We construct a measupes M (T) with real Fourier-
Stieltjes coefficients and such that

(92) Heiu#”]\,f(']r) =e" formn Z 0.

By Lemma 3.6 it follows that the spectral norm @f is equal toe
which means thai (i) = —1 somewhere ofit.

Let E be a perfect independent set ©n(see VI.9.4). Letw be a
continuous measure carried Byand»# the symmetric image of,
defined byv#(F) = v(—F) for all measurable setg. v# is clearly
carried by—E and if we writey = v + v# we haveji(n) = 2R(2(n)) for
all n € Z. We claim that for such

9.2) ||| = ellell

Let N be a large integer and writ8 as a union ofV disjoint closed
subsetsZ; such that the norm of the portion pfcarried byE; U —E;,

call it u;, is precisely||u||N~! (Here we use the fact thatis continu-
ous.) Nowe'i = § +iu;+[a measure whose normds(N ~2)] wheres

is the identity inM (T), that is, the unit mass concentrated at the origin.
We havel|§ + ip;|| =1+ ||p| N~ and

N N
it — H*ewy‘ = H*(5 +ip) 4 p

1 1
wherep is a measure whose normas(N—!). SincekF is independent
the subset$’; generate disjoint subgroups @fand, by Lemma 9.2,
e = (1 + ||u|N"HN + O (N7!); asN — oo, (9.2") follows. Itis
now clear that if we normalizg to have norni and apply (9.2") towu
we have (9.2). |

Remark: Since the measurne described above, has norm 1, its spec-
trum lies in the disdz| < 1. The only point in the unit disc whose
imaginary partis -1 i = —i. It follows that -1 is in the spectrum of
which means that + ;2 is not invertible. The Fourier-Stieltjes coeffi-
cients ofs + p? arel + (ii(n))? > 1 (sincef(n) is real-valued) and yet
(1+ (a(n))?)~! are not the Fourier-Stieltjes coefficients of any measure
onT. This phenomenon was discovered by Wiener and Pitt.

9.4 DEFINITION: A function F, defined in some subset 6f oper-
ates on Fourier-Stieltjes coefficients{ F(ji(n))}.cz iS a sequence of
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Fourier-Stieltjes coefficients for evepye M(T) such thafi(n)}nez is
contained in the domain of definition &f.

SinceZ is not the entire maximal ideal space &f(T) there is no
reason to expect that if' is holomorphic on its domain, it operates
on Fourier-Stieltjes coefficients; and by the remark above, the function
defined orR by F(z) = (1+22)~! does not operate on Fourier-Stieltjes
coefficients. This is a special case of

Theorem. Let F' be defined in an interval ¢ R and assume that it
operates on Fourier-Stieltjes coefficients. THers the restriction tal
of an entire function.

The theorem can be proved along the same lines as 8.6. The main
difference is that one shows that#foperates on Fourier-Stieltjes co-
efficients, the operation is bounded in every ballofT) (rather than
some ball, as in the case d{G)), that is, for allr > 0 there exists a
K = K(r) such that ifi|u| < r andji(n) € I for all n € Z, thenF(ii(n))
are the Fourier-Stieltjes coefficients of a measure of narfy. We
refer to [24], chapter 6 and to exercises 6 through 9 at the end of this
section for further details.

9.5 The individual symbolic calculus ol (T) is also more restrictive
than an individual symbolic calculus can be in a Banach algebra consid-
ered as function algebra on the entire maximal ideal space. There exist
measureg in M (T) with real-valued Fourier-Stieltjes coefficients such
that every continuous function which operatesuanust be the restric-

tion toR of some function analytic in a disc (see exercise 10 at the end
of this section). This suggests that portions of the maximal ideal space
of M (T) may carry analytic structure.

EXERCISES FOR SECTION 9

1. Letu € M(T) be such thafle®*|| = el®ll*l for all « € C. Show that
{#"}, n=0,1,2... are mutually singular.

2. LetE be a linearly independent compact setlband let,, be a contin-
uous measure carried U —E. Show thaf{y"}, n =0,1,2... are mutually
singular.

3. Show that ifu € M(T), ii(n) is real for alln € Z andy™ are mutually
singular forn = 1,2, ... theny is continuous.

4. Deduce Theorem 9.1 from Theorem 9.4.

5. Letr;,j = 1,2,... be positive numbers such that/r;_; < 1 and
rj/rji-1 — 0 asj — oco. Show thaty(n) = [["cosrjn, n € Z are the
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Fourier-Stieltjes coefficients of a measureand thafu” are mutually singular,
n=12....
Hint: Show that ifr;_, /r; > M for all j, then{x"}*_, are mutually singular.

6. Let F' be continuous ofi-1,1] and F(0) = 0. Show that the following
two conditions are equivalent:

@) If pe M(T), |pu] <rand—1 < j(n) < 1 for all n, then{F(i(n))}
are the Fourier-Stieltjes coefficients of some measi(ie@ € M(T) such that
1By < K-

(i)If —1<a, <landP =73 ane'™ a polynomial satisfying P 1 (1) < 7,
then||>" F(an)e™ || L1y < K.

Also show that in (i) we may add the assumption thatdheare rational
numbers without affecting the equivalence of (i) and (ii).

7. (For the purpose of this exercise) we say that a meagswantains a
polynomial P if for appropriatem andM, P(n) = fi(m + nM) for all integers
n which are bounded in absolute value by twice the dedrefeP. Notice that
if ;, containsP then

P(Mt) = Vg(Mt) * (e p)

and consequentlyyP| 1 (py < 2||ullarery- Show that there exists a measure
with real Fourier-Stieltjes coefficientsy|| < 2, andu contains every polyno-
mial P with rational coefficients such thiP|| 1) < 1.

Hint: Show that for every sequence of integéhs } there exists a sequence of
integers{);} such that, writing\; = {kAj}fjil andA = U;A;, every function

f € Ca (see chapter V for the notatiofly) can be writtenf = Y f;, with

fi € Ca;, and) | fillo < 2| fllo. Deduce, using the Hahn-Banach theorem,
that if the numbers,; ,, are such that for each szNil ajre™|| < 1, then
there exists a measupec M (T) such that|u| xmy < 2 andi(kX;) = aj,x for
appropriate\; and1 < k < N;. If the numbers:; , above are real, one can
replaceu by % (u + p#).

8. Let F be defined and continuous dhand assume that it operates on
Fourier-Stieltjes coefficients. Prove that the operation is bounded on every ball
of M(T).

Hint: Use exercises 6 and 7 above; show th&tjfy ) < rthen||F(v)|| ey <
2| F(rp)l aeery -

9. Prove Theorem 9.4.

10. Show that if" is defined and continuous dk and if F'(i(n)) are
Fourier-Stieltjes coefficients, being the measure introduced in exercise 7, then
Fis analytic at the origin. I#(k/i(n)) are Fourier Stieltjes coefficients for all
k, thenF is entire.

11. Letu € M(T) be carried by a compact independent set and assume that
i(n) — 0 as|n| — oco. (Such measures exist: see [25].) Lbe the closed
subalgebra of/ (T) generated by.'(T) and .
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(a) Check that Theorems 9.1 and 9.4 are valid if we replace in their state-
mentM (T) by B.

(b) Notice that the restriction a8 to Z is a function algebra o#, interme-
diate betweeri(Z) andc, both of which haveZ as maximal ideal space, and
yet its maximal ideal space is larger than

10 THE USE OF TENSOR PRODUCTS

In this final section we prove a theorem concerning the symbolic
calculus and the failing of spectral synthesis in some quotient algebras
of A(R). The theorem and its proof are due to Varopoulos and serve
here as an illustration of a general method which he introduced. We
refer to [26] for a systematic account of the use of tensor algebras in
harmonic analysis.

10.1 Let E C R be compact. We denote by E) the algebra of func-
tions on E which are restrictions t& of elements ofA(R). A(FE)

is canonically identified with the quotient algeb#@R)/k(E) (where
E(E)={f:f € A(R)andf =0onE}) and is therefore a Banach alge-
bra with £ as the space of maximal ideals (see 5.5). The main theorem
of this section is:

Theorem. Let E;, E; be nonempty disjoint perfect subset®otuch
that £, U E, is a Kronecker set. PWt = E; + E»'. Then:

(a) Every functior¥, defined orR, which operates i (F) is analytic.
(b) Spectral synthesis fails iA(E).

Remarks: (i) We placeE on R for the sake of technical simplicity
and in accordance with the general trend of this book. Only minor
modifications are needed in order to pldce an arbitrary nondiscrete
LCA group, obtaining thereby a proof of Malliavin’s theorem 7.4 in its
full generality.

(i) We shall actually prove more, namelyt(E) is isomorphic to a
fixed Banach algebra (subsections 10.2, 10.3, and 10.4) for which (a)
and (b) are valid (subsection 10.5).

10.2 Let X andY be compact Hausdorff spacesx Y their cartesian
product. We denote by = V(X,Y) the projective tensor product of
C(X) and C(Y); that is, the space of all continuous functiopn
X x Y that admit a representation of the form

TEy + Es ={z:z =2x1 + 22 Withz; € E;}.
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(10.1) o(z,y) = fi(2)g(y)
with f; € C(X), g, € C(Y), and

(10.2) Y I fillssllgslle < oo

We introduce the norm

(10.3) lllv = int 11 f5lloollgslloo

where the infimum is taken with respect to all possible representations
of ¢ in the form (10.1). It is immediate to check that the ndfmh, is
multiplicative and that” is complete; thu¥” is a Banach algebra.

Lemma. The maximal ideal space &f can be identified canonically
with X x Y.

PrRooF. Denote byV; (resp. V3) the subalgebra oV consisting of
the functionsy(z,y) which depend only on: (resp. only ony). It

is clear thatl; andV, are canonically isomorphic t6(X) andC(Y)

respectively. A multiplicative linear functionaé on V induces, by
restriction, multiplicative linear functionals, onV; andw, onV;. By

Corollary, 2.12,w; has the formf — f(x¢) for somez, € X; wy has
the formg — g(yo) for somey, € Y, and it follows that if

p(x,y) =Y fi(@)9;(y),

then
w(p) =Y f;(x0)g;(y0) = ¢(z0, %0). «

Corollary. V is semisimple, self-adjoint, and regular.

10.3 We assume now that is homeomorphic to a compact abelian
groupG (more precisely, to the underlying topological spacé&pand
thatY is homeomarphic to a compact abelian gréiipWe denote both
homeomorphism& — G andY — H by ¢. ¢ induces canonically a
homeomorphism ok x Y ontoG @ H, and hence an isomorphism of
C(Ge H)ontoC(X xY).

Lemma. The canonical isomorphism @f(G ® H) onto C(X x Y)
mapsA(G @ H) into V.
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PROOFE Lety be a character o © H and lety be its image under the
canonical isomorphism, namely

(10.4) x(z,y) = x(oz, 0y).
Sincex(cx,oy) = x(oz,0)x(0,0y) we have
(10.5) x(z,y) = x(z,0)x(0,y)

so thatxy € Vand|x|v = 1. If ¢ € A(G® H) theny = > ayx
the summation extending overe H and|¢|la = > |a,|. The image
of ¢ under the canonical isomorphism¢s = > a,x and therefore

lellv < Xlay| = llella- <

If ¢ € A(G @ H) depends only on the first variable, that isp{fr, y) =
¥(z), theny € A(G). AssumingG to be infinite we havel(G) # C(G)
and it follows that the image of (G @ H) in V does not contaifr; and
is therefore a proper part of.

The connection betweetG & H) andV is only that of (canonical)
inclusion, which is too loose for obtaining information for one algebra
from the other. A closer look reveals, however, that the structure needed
for the lemma is not the group structure Ghor on H but only the
cartesian structure af ¢ H, while in order to show that the image of
A(G @ H) is not the entiréd” we use the group structure 6f The idea
now is to keep the useful structure and obliterate the hampering one;
this is the reason for the appeal to Kronecker sets.

10.4 Theorem.LetE;, E,, andE be as in the statement of Theorem
10.1. Let X andY be homeomorphic to the (classical) Cantor set. Then
A(E) is isomorphic toV (X, Y).

PROOFE We begin by noticing tha¥; and E,, being portions of a
Kronecker set, are clearly totally disconnected and, being perfect and
nonempty, are homeomorphic to the Cantor set. THug;, £; andF,

are all homeomorphic and we simplify the typography by identifying
X with E; andY with E,. SinceFE; U E, is a Kronecker set, hence
independent, the mappirig, y) — = +y is a homeomorphism of xY

on E. We now show that the induced mapping¥fE) ontoC(X xY)
mapsA(E) ontoV. The fact thatd(E) is mapped intd” (and that the
map is of norm 1) is a verbatim repetition of 10.3. We therefore have
only to prove that the mapping is surjective that is, maps) ontoV'.

We shall need:
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Lemma. Let E be a Kronecker set. Then evefye C(E) can be
written as f(z) = 3 ane** with Yla,| < 3|/fll¢(z. In particular:
A(E) = C(E) and||f]| o) < 3I|flloo-

PROOF OF THE LEMMA It is enough to show that if € C(E) is real
valued, f(z) = 3 ane*® with Y|a,| < 3/2|f]l«- Let f real valued
and assume, for simplicity, thf||.. = 1; defineg(z) = /1 — (f(x))?,

theng is continuous and = f + ig has modulus 1 o. Let \; be
such that® — 12| < L on E; this implies| f — cos \jz| < &5 on E. If

| flloo is Not 1 considefi f||-} f and obtain\; such that

1 -
|f = [[flloc cos Mz| < TOHf”oo on L.

We now proceed by induction. Defing = ||f|-~, A1 as above, and
f1 = f —aicosA\iz; once we have ...,a,, \1 ..., \,, andf,, define
ant+1 = || falloos Ans1 DY the condition f,, — cos Apy12| < a,41/10, and
fas1 = fa — Gny1cos Ay = f — 37 aj cos Az

We clearly haven,, 11 < a,/10 < ||f]lc10~™ and it follows that
f(@) = Y ane™® With 3lan| = Y an < [[fllee 207107 < 3/2]f]l -

Writing cos A,z = 1(e»* 4 ¢~*»%) we obtainf as a series of expo-
nentials. <

Remark: A(E) is actually isometric t@’(E); see exercise 2 at the end
of this section.

PROOF OF THE THEOREMCOMPLETED: We identify X xY with £, and
V with the subalgebra of'(E) consisting of the functions which
admit a representation

(10.6) plety) =) fil@)g(y), z€E, ye b

wheref; € C(Ey), g; € C(E2) such that (10.2) is valid. All that we
need to show is that ip € V theny € A(E).
Lety € V and consider a representation of the form (10.6) such that

(10.7) Y I fillssllgslloe < 2llellv-

Using the lemma we write each as an exponential serie8(, being
a portion of a Kronecker set, is itself one) and similarly for the
Denoting the frequencies appearing in ffeby A, and those appearing
in the g's by v, and taking account of (10.6) and (10.7), we obtain

(10.8) oz +y) = Za,\,uei’\zei”ya € Ey, ye by
AV
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where

(10.9) > laxy| < 18[lellv-

We now use the fact thd; U F, is a Kronecker set: lgt\, v) be a pair
which appears in (10.8) and define

e“‘m I'GEl,
h(x) = )
(@) {ez”” T € Ko,

his clearly continuous and of modulus 1 &aU F; and it follows that
there exists a real numbgésuch that

(10.10) |e® — h(x)| < 1/200  OnE; U Es.
We have (forx € E1, y € Es),
ei(zty) _ gidwivy _ (eifac _ e—m)eify + ei,\x(eigy — )
which means that (with the canonical identifications)
[[e?=Fw) — eAreivy||y < 1/100.
We can now writep = 91 + ¢; where
Vi(z+y) = Z a, et
and
o1(z +y) = Za)\yu(ei/\zeiyy — eié@tn))
and notice that), € A(E) and, by (10.9),
W1llace) <D lars| < 18]lellv;
also 18 )
lelly < w=lellv < Zliellv.
Repeating, we obtain inductively
on = Unt1 + Pt
where
It €AE),  nsallam) < 8lenllv. and onnlly < £lienlv.
It follows thaty = 3" 9,, € A(F) and

lellas) < 25 57lellv < 25]@llv- <
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10.5 We now show that statements (a) and (b) of Theorem 10.1 are
valid for V. = V(X,Y) (X andY being both homeomorphic images
of the Cantor set). This is obtained as a consequence of the fact that
(a) and (b) are valid for the algebrdD)) (see exercise 8.5 for (a) and
Theorem 7.4 for (b)).

SinceX andY are homeomorphic t® we may considef” as a
function algebra o x D. Using the group structure and the Haar
measure on 1) we now define two linear operadMrandP as follows:

(10.112) forf € C(D), write M f(z,y) = f(z +y);

(10.12) forp € C(D x D), write Po(x) = / wlr —y,y)dy.
D

M mapsC(D) into C(D x D), P mapsC(D x D) into C(D), and, since
for f € C(D);

PM f(r) = /D M (x — y,y)dy = /D F@)dy = f(x),

it follows thatPM is the identity map of(D).

Lemma. M mapsA(D) into V' and its norm as such is. P mapsV
into A(D) and its norm as such is 1.

PROOF. If f =3 a,x with >~ |ay| = || fllam) < oo then
Mf =3 ax(z)x(y) eV and [Mflly <) lay| = [If]aw

If o(z,y) = f(x)g(y) then
Py = /f(fv —y)g(y)dy = fxg

hence

1/2

IPellac = Y17 00a00l <(X1F00)” (Slacor)

= [Ifllz2llgllze <l llollglloo

By (10.13) and the definition (10.3) of the normiinit follows that for
arbitraryp € V, [Pyl am) < [lo]lv. <

(10.13)
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Corollary. Lety € C(D x D) and assume that for somec C(D) we
havep(x,y) = ¢¥(z+vy). Thenp € V if, and only if,4) € A(D), and then
lellv = 1Yl am)-

In other wordsM is an isometry ofA(D) onto the closed subalgebra
V3 of V of all the functionsp(z, y) which depend only om + y.

Remark: The subalgebrd’; is determined by the "level lines":
x +y = const, which clearly depend on the group structur®.ofn-
stead ofD we can take any grou@ whose underlying topological space
is homeomorphic to the Cantor set; for every sath/ has a closed
subalgebra isometric ta(G).

We are now ready to prove:

Theorem. (a) Every functiorn?, defined orR, which operates iV is
analytic. (b) Spectral synthesis is not always possibl&.in

PROOF (a) If F operates ir//, so it does irl; (since the operation by
F conserves the level lines), henced(D) and by Theorem 8.6 (rather,
exercise 8.5)F is analytic.

(b) Let H c D be a closed set which is not a set of spectral synthesis
for A(D) (see Theorem 7.4). Define:

H" ={(z,y):z+yec H} CDxD.

We contend that#* is not a set of spectral synthesisih By 7.3
we have a functiorf € A(D) which vanishes ol and which cannot
be approximated by functions ifiy(H) (i.e., functions that vanish in
a neighborhood of?), that is, for some > 0, ||f — g|lam) > ¢ for
everyg € Iy(H). We show thaf* is not of spectral synthesis for by
showing that foM f, which clearly vanishes off*, and everyp € V
which vanishes in a neighborhood &f, we have|M f — ¢||v > 4.

For this we notice that i vanishes on a neighborhood &f, then
Py vanishes on a neighborhood of H, so that

IMf —ollv > [PMf —Pollapy = |f — Pellam) > 0.

Theorems 10.4 and 10.5 clearly imply Theorem 10.1.



VIIl. COMMUTATIVE BANACH ALGEBRAS 271

EXERCISES FOR SECTION 10

1. Let f be a continuous complex-valued function on a topological space
X. Assume) < |f(z)] < 1 onX. Show thatf admits a unique representation
in the form f = 1(g1 + g2) such thatg;(z)| = 1 on X andg; are continuous,

j = 1,2. Deduce that ifX is homeomorphic to the Cantor set, every con-
tinuous complex-valued functiofi on X admits representations of the form
f = 3fllec(g1 — g2) + f1 whereg; are continuousjg;(z)| = 1 on X, and

[l f1]l= is arbitrarily small.

2. Let B be a Banach space with the notm|jo and letB; C B be a
subspace which is a Banach space under a tfjidfnsuch that the imbedding of
B in B is continuous. Show that if there exist constakits- 0 and0 < 7n < 1
such that for every € B there exisy € B, andf, € B satisfyingf = g — f1,
lglls < KI|£llo, and]| f1llo < 1] £llo, thenBy = B and]| |+ < K(1—n)~"| .
Use this and exercise 1 to prove remark 10.4.

Hint: See either proofin 10.4.



Appendix A

Vector-Valued Functions

1 RIEMANN INTEGRATION

Consider a Banach spaéeand letF be aB-valued function, de-
fined and continuous on a compact interigab] ¢ R. We define the
(Riemann) integral of” on [a, ] in @ manner completely analogous to
that used in the case of numerical functions, namely:

DEFINITION: f; F(z)dx = lim Zj\'zo(xjﬂ —x;j)F(z;) where
a=x9 <z < - <Tng1 =D,

and the limit is taken as the subdivisic{mj}j.\’;[)1 becomes finer and
finer, thatis: asV — oo andmaxo<j<n(z;+1 — ;) — 0. The existence

of the limit is proved, as in the case of numerical functions, by showing
that if {z;} and{y;} are subdivisions offz, b] which are fine enough to
ensure thaj F(a) — F(3)|| < ¢ whenevern and belong to the same
interval [z, z;41] (Or [y;,y,+1]), then

M

N
1Y (@1 — @) Fa) = > (werr — o) Flue) || < 200 — a)e.
7=0

j=0
This is done most easily by comparing either sum to the sum corre-
sponding to a common refinement{af; } and{y;}.
The following properties of the integral so defined are obvious:
(1) If F andG are both continuou$-valued functions orja, b], and
cy1, Co € C, then:

/ab(ch(x) + c2G(x))dr = 1 /ab F(x)dx + cp /ab G(x)dz .

(2)If a < c<bthen

/abF(a;)d:c - /:F(x)dx—i—/ch(x)dx

272
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b b
3) | [ F@s] < [ 1F@)ds.

(4) If nis a continuous linear functional ag, then:
b b
([ F@do = [ (#@).pda.

2 IMPROPER INTEGRALS

Let F be aB-valued function, defined and continuous in a nonclosed
interval (open or half-open; finite or infinite) sé&y, b).

The (improper) integrayf F(z)dz is, by definition, the limit of
ff F(z)dx wherea < o/ < b < b and the limit is taken asg’ — «a
andd’ — b. As in the case of numerical functions the improper integral
need not always exist. A sufficient condition for its existence is

b
/ |F(x)|dx < oo.

3 MORE GENERAL INTEGRALS

Once in this book (in VIII.8) we integrate a vector-valued function
which we do not know a-priori to be continuous. It is, however, the
pointwise limit of a sequence of continuous functions and is therefore
Bochner-integrable. We refer the reader to [10], chapter 3, 81, for de-
tails on the Bochner integral; we point out also that for the purpose of
VII1.8, as well as in other situations where the integral is used mainly to
evaluate the norm of a given vector, one can obviate the vector-valued
integration by applying linear functionals to the integrand before the
integration.

4 HOLOMORPHIC VECTOR-VALUED FUNCTIONS

A B-valued functionF'(z), defined in a domaif2 c C is holomor-
phic inQ if for every continuous linear functionalon B, the numerical
functionh(z) = (F(2), u) is holomorphic inf.

This condition is equivalent to the apparently stronger one stating
that for eachy, € Q, F has the representatidf(z) = Y7 an(z — z0)"
in some neighborhood ofy; the coefficients:,, being vectors inB
and the series converging in norm. One proves that, as in the case of
complex-valued functions, the power series expansion converges in the
largest disc, centered &, which is contained if2. These results are
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consequences of the uniform boundedness theorem (see [10], chapter
3, 82).

Many theorems about numerical holomorphic functions have their
generalizations to vector-valued functions. The generalizations of the-
orems dealing with "size and growth" such as the maximum princi-
ple, the theorem of Phragmeéen-Lindel6f, and Liouville’s theorem are
almost trivial to generalize. For instance: the form of Liouville’s theo-
rem which we use in VIIl.2.4 is

Theorem. Let F' be a bounded entir&-valued function. The#' is a
constant.

PROOF If F(z1) # F(z2) there should exist functionals € B* such
that (F'(z1),p) # (F(22), ) However, for ally € B*, (F(z),u) is a
bounded (numerical) entire function and hence, by Liouville’s theorem,
is a constant. <

Another theorem which we use in IV.1.3 is an immediate conse-
guence of the power series expansion. We refer to

Theorem. Let F' be aB-valued function holomorphic in a domain
Let ¥ be a B*-valued function in®2, holomorphic inz. Thenh(z) =
(F(z),%(z)) is a holomorphic (numerical) function i.

PROOE Let zp € Q; in some disc around iF'(z) = > an(z — 20)",
U(z) =Y ba(z —20) , henceh(z) = > (> p_olak, ba—i))(z — 20)™, and
the series converges in the same disc.

Remark: @ of IV.1.3 corresponds t& here.



Appendix B

Elementary Probabilistic methods

In this appendix we give a few examples of the power of Probabilis-
tic methods in Harmonic analysis.

The approach is to replace the studypafticular functions or se-
ries, by the study ofypical functions or series. There are several ways
to define “typical”,

1. The Baire category “typical” in a complete metric space— what
happens for all but an exceptional set of the first category.

2. The measure or probabilistic definition. Here one defines a prob-
ability measure on a class of objects, say series, and “typical” is what
happens for all but an exceptional set of measure zero.

A beautiful example of the use of the category method is Kaufman’s
theorem V1.9.4. Here we limit ourselves to the second approach in one
concrete case, that of series with coefficients that have random signs.

1 RANDOM SERIES

1.1 Independence.We refer the reader to ¥2.11 for some of the
basic terms.

Let (22, B, P)be a probability space a;, j = 1,...,k sub-sigma-
algebras oB.
DEFINITION: F; areindependenif, wheneverO; € F;,j =1,...,k,
then

(1.1) P((k]oj) = ﬂp(oj).

The variables\, ..., X} areindependenf 7y, are independent, where
Fx, denotes the field of the variable;, that is the sul-algebra of3
spanned by the even{s(; € O} = {w: X, (w) € O}, O open.

Theorem. The following conditions are equivalent:

275
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1. The random variableX, ..., X, are independent.

2. The image of: under the mapX — R* given by(X,,..., X}) is
a product measure.

3. If f; are continuous functions on the line such thfatX,) have
expectation (are integrable), theéb([] f,;(X;)) = [1E (f;(X,)).

4. dF~ =[] *dFx; (convolution product).

1.2 Rademacher functions. TheRademacher functionér, }, is a
sequence of independent random variables, taking the valaed—1
with probability £ for each.

A standard concrete realization is to defieon the intervalo, 1],
(endowed with the Lebesgue measure) as followsz,Jét) be the co-
efficients in the (non-terminating) binary expansiorn:of [0, 1), that
isz = Y ¢g;(x)277, with ¢;(z) either zero or one, and sef(z) =
(1)),

Another common representation of the Rademacher functions is as
the characters,, defined by VIII.(7.15) on the group (with its Haar
measure).

Proposition. Leta, be real numbers such that|a,|?> = a%. Then,
forall X > 0,

(1.2) P (Y anrn>ar) <e ¥,
and

(1.3) P (‘Zanrn > a>\> < 2%
For complexa,, with Y"[a2| = a2,

(1.4) P (|3 ara| > ar) <ae*

ProOF For real valued,,
E (e)\Zanrn) — HE (e)\anrn) _ HCOSh)\an < He%aiAz _ 6%{12)‘2,

Write Y = 3 a,r,. As E (e“_l)‘y) > e P (Y > a)), we obtain (1.2).
Applying the same inequality teY’, we have (1.3).
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If the a,, are complex we write;; = ¢; + id;, the decomposition
to real and imaginary parts, and notice thgt* = c? + d? so that if

Y5 =c®andy di = d?, thena® = & + d*. If ‘Zajrj’ > a) then

either
’chrj >ch or ‘Zdjrj

and we have (1.4) <

> dA

1.3 We denote byIrim), the operator ofrimming at height\, namely,
given a complex valued functiap we define

(1.5) Trim, g = min(|g|, A)-sgn(g),

where sgrig) = g/|g| (and sgr{0) = 0).

Lemma. Assumé&_|a,|> = ¢?, and setX = Y a,r,. Then, forx > 0,
2
(1.6) |X — Trimy X |2, < 4(\% + 2a%)e " 27

PROOFE If Gx(z) = P (]X| > z), then

22dGx = N*Gx(\) + 2/ 2xGx (x)dx.

||X — Trim)\ XH%z = —/
A

A
SinceGx (z) < 4e 37, this is bounded by(A\2 + 2a2)e ™ 2.2 <

1.4 Fubini. Let} a2 =a® < oo,andX (t) = X(t,w) =Y ane™r, (w).
Given )\ > 0, we have estimate (1.6) for everg T, and integratinglt
we have

(1.7) /E (|X (t) — Trim, X (t)[?) ;i < 4(N? 4 202)e 52
m
Reversing the order of integration (Fubini’'s theorem) we obtain that
there exist choices aof for which

(1.8) [ X(t) — Trimy X(£)[320p) < 4N + 20%)e 202
This proves

Theorem. Given complex numbeds such tha " |a?| = a? and given
A > 0, there exists a choice ef = 41 such that, withy(t) = > ¢,a,¢™,

2

. 2T
(1.9) lg(t) = Trimy g(t)l[72(p) < 4(N° + 20%)e ™ 22
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When (1.9) is valid, itV is sufficiently large, we can repla@@im) g
by the Fejér sunp = o (Trim, g) and still have|p||. < A and

_a2
(1.10) lg(®) = @lIZ2(m) < 4N + 2a%)e” 22

In the next section we use (1.10) systematically with= 10%||gx | .2,
andyy = oy, (Trim,, gx), WhereN;, is big enough to guarantee

(1.11) g (t) = @r(t)|72(ry < 5-10°% exp(—.5-10°%)]|g|7

which we often replace by the (very wasteful)

(1.12) lgr(t) = @)1 22(ry < exp(=10)[lg]Z--

These inequalities are valid for a proper choice of signs.

2 FOURIER COEFFICIENTS OF CONTINUOUS FUNCTIONS

What we show here is that, in terms of size, Fourier transforms of
continuous functions majorize a¥ sequence.

2.1 Theorem (deLeeuw-Kahane-Katznelson)For any sequence
{a, } € ¢* there exist functiong € C(T) such that f(n)| > |a,| for all
n e Z.

PROOF. We may clearly assume that > 0, and thaty_a? = 1. The
required continuous functiofi is obtained as a uniformly convergent
sumy ", ¢ with ¢, defined recursively.

Write g1 = 2" e,a,e™, \; = 20, and choose,, = +1 such that
(1.11) is valid forgy, A1, andyy, so that

llgr — @122 < 4-500e 70 < 1072,

The choice of\; = 20 is not optimal; it is done to make obvious the
super—exponential decay x| 2 below. Write

Ay ={ne€Z:|p1(n)| < 3an/2}.

If n € A; then|gi(n) — ¢1](n) > a,/2, which implies

(2.1) Z ay, <4llgr — e1ll7. < 41077
neA;
Write g, = 3 ZneAl en2a,e™ Wheres,, » = +1 are chosen such that

(111) is valid forgz, Ao = 100 ||gg||L2, No, andgog = 0N, (’I‘I‘irn)\2 gg).
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Notice that
llg2llzz < 6-107° and |@1(n) + go(n)| > (1 +2")a, foralln.

The inductive step is virtually identical: assumipgand¢; known,
j<k,and

(22)  eu(n) oo+ e (n) +g(n) = (142" F)ay,
for all n, we set
(23)  Ar={neZ:|p1(n)+ -+ drn)| < (1+2%)a,}

and defineg, 1 = 3, .4, Enkane™ With {e,;} such that (1.12) is
valid for A, = 10*. Independetly of the choice of signs, (2.2) is valid
fork + 1.

Forn € A, we have gy (n) — ¢r(n)| > 27 %a,, so

(2.4) lgrsillZe < 2°"llge — @rll7e < 2°% exp(—10°)lgxl|7-.

The norms||gx ||z decrease super—exponentiallys, |- are only
exponentially bigger so that the serigs= > ¢, converges uniformly
and (2.2) implies thatf (n)| > a,, for all n. <

3 PALEY-ZYGMUND, (when Y a,|* =o0).

The following special case of a theorem of Paley and Zygmund
shows that, as opposed to the “smoothing effect” that adding random
signs has on trigonometric series with coefficient&irturning the se-
ries a.s. into the Fourier series of a subgaussian furfctoril, the
seriesy_ a,r,e™ with Y |a,|? = oo is almost surelynot a Fourier—
Stieltjes series.

This and Theorem 2.1 are, in a sense, two sides of the same coin;
showing, in particular, that the Hausdorff—=Young theorem can not be
extended beyongd = 2.

3.1 Lemma. Assumé_|a2| = a?. Then||> a,r, (W) > a(ev/2)~ 1.

PROOFE We may assume, with no loss of generality, that 1. If
a, are real-valued, the functionsy = Hi\’(l + ia,r,) are uniformly

bounded by[J(1 + |a,|?) < el = .

B [Yarw) > 6_1‘/(2 antn(@)one| = e Y Jan

*A random variableX is subgaussiaif eclX1? g integrable for some constant> 0.
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since the only integrands with non-zero integralsiarg?.
For a,, which are not necessarily real-valued, break the sum into its
real and imaginary parts, and apply (3.1) to each. <

Remark: The products defining y are the Riesz products of the sec-
ond kind (see V.1.3) for the group.

3.2 Lemma. LetX be a non-negative random variabg,(X?) < occ.
Then for0 < A < 1,

2 E(X)*

P({w: X (@) 2 XE (X)) > (1= N & gy

PROOF Denoted = {w: X(w) > AE(X)}, a = P(A). The contribu-
tion of the setd to E (X) is at least(1 — \)E (X), which means that
average ofX on A is at leasta—!(1 — M\)E (X), and the contribution
of A to E (X?) is therefore at least (1 — )\)?E (X)*. It follows that
a~'(1-))2E (X)? < E(X?),anda > (1 — \)’E (X)* /E (X?). <

Corollary. If Y |a2| = a?, then
(3.2) P({w: ‘Zanrn(w)‘ > a/10}) > 27372,
PrROOFE Take )\ = % X = |> anry| and use Lemma 3.1 to estimate

E (X). <

Theorem (Paley—Zygmund).If >"|a,|?> = oo then the series

(3.3) Z anrpe™
is almost surelynot a Fourier—Stieltjes series.

PrROOF. We use the standard notation for the Fejér kernel,

(3.4) Ko() = 3 (1- n‘i‘l)eiﬁ,

Jj=—n

the de la Vallée Poussin kernel,

(35) Vn(t) = 2K2n+1(t) - Kn(t)a
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and introduce the polynomials

(36)  Wun(t)=Vn({t)-Vou(t)= > cun(n)e™
M<|n|<2N+1

We have0 < ¢y ny(n) < 1 and, forn such that2M < |n| < N,
C]\,{’N(n) = 1. AlSO, HKTLHLI =1, HVn”Ll < 2, and||WM’NHL1 < 4,
and it follows that ifv € M(T), then for everyN > M € N, the L!-
norm of the polynomial

3.7 v Wy N = Z ev v (n)v(n)e™
M<|n|<2N+1
is bounded byA||v|| s (r)-

Choose inductively{M;, N;} such thatM; > 3N;_;, and thenN;
big enough to hav@>,,, |, <, lan|* > 10-2%, and write

(3.8) Uj(w,t) = Z earn(n)a,rpe™.

Mj<|n\<2Nj+1

If for a givenw’ the series (3.3) is the Fourier—Stieltjes series of a
measure,,, then

(39) \I/j(w',t) = Uy ¥ WMj,NJ, and ||\I/j(wl7t)||L1(u) < 4||Vw/||.

For every: € T, (3.2) impliesP(¥; (w,t) > 27) > ¢ = 273¢~2. This
implies
P @ u({(wt): ¥w,t) > 27}) > &,

so that setting; = {w: pu({t: ¥;(w,t) > 27}) > c}, we haveP(Q,) > c.

Since; are independent, we hatlim sup 2;) = 1 (Borel-Cantelli),

and for nav € limsup Q; can the series (3.3) be Fourier—Stieltjes series.
<
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