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Preface

Harmonic analysis is the study of objects (functions, measures, etc.),
defined on topological groups. The group structure enters into the study
by allowing the consideration of the translates of the object under study,
that is, by placing the object in a translation-invariant space. The study
consists of two steps. First: finding the "elementary components" of
the object, that is, objects of the same or similar class, which exhibit
the simplest behavior under translation and which "belong" to the ob-
ject under study (harmonic or spectralanalysis); and second: finding
a way in which the object can be construed as a combination of its
elementary components (harmonic or spectralsynthesis).

The vagueness of this description is due not only to the limitation
of the author but also to the vastness of its scope. In trying to make it
clearer, one can proceed in various ways†; we have chosen here to sac-
rifice generality for the sake of concreteness. We start with the circle
groupT and deal with classical Fourier series in the first five chap-
ters, turning then to the real line in Chapter VI and coming to locally
compact abelian groups, only for a brief sketch, in Chapter VII. The
philosophy behind the choice of this approach is that it makes it easier
for students to grasp the main ideas and gives them a large class of con-
crete examples which are essential for the proper understanding of the
theory in the general context of topological groups. The presentation of
Fourier series and integrals differs from that in [1], [7], [8], and [28] in
being, I believe, more explicitly aimed at the general (locally compact
abelian) case.

The last chapter is an introduction to the theory of commutative
Banach algebras. It is biased, studying Banach algebras mainly as a
tool in harmonic analysis.

This book is an expanded version of a set of lecture notes written

†Hence the indefinite article in the title of the book.
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IV AN INTRODUCTION TOHARMONIC ANALYSIS

for a course which I taught at Stanford University during the spring
and summer quarters of 1965. The course was intended for graduate
students who had already had two quarters of the basic "real-variable"
course. The book is on the same level: the reader is assumed to be fa-
miliar with the basic notions and facts of Lebesgue integration, the most
elementary facts concerning Borel measures, some basic facts about
holomorphic functions of one complex variable, and some elements of
functional analysis, namely: the notions of a Banach space, continuous
linear functionals, and the three key theorems—"the closed graph", the
Hahn-Banach, and the "uniform boundedhess" theorems. All the pre-
requisites can be found in [23] and (except, for the complex variable)
in [22]. Assuming these prerequisites, the book, or most of it, can be
covered in a one-year course. A slower moving course or one shorter
than a year may exclude some of the starred sections (or subsections).
Aiming for a one-year course forced the omission not only of the more
general setup (non-abelian groups are not even mentioned), but also of
many concrete topics such as Fourier analysis onRn, n > l, and finer
problems of harmonic analysis inT or R (some of which can be found
in [13]). Also, some important material was cut into exercises, and we
urge the reader to do as many of them as he can.

The bibliography consists mainly of books, and it is through the bib-
liographies included in these books that the reader is to become famil-
iar with the many research papers written on harmonic analysis. Only
some, more recent, papers are included in our bibliography. In general
we credit authors only seldom—most often for identification purposes.
With the growing mobility of mathematicians, and the happy amount
of oral communication, many results develop within the mathematical
folklore and when they find their way into print it is not always easy
to determine who deserves the credit. When I was writing Chapter Ill
of this book, I was very pleased to produce the simple elegant proof of
Theorem 1.6 there. I could swear I did it myself until I remembered
two days later that six months earlier, "over a cup of coffee," Lennart
Carleson indicated to me this same proof.

The book is divided into chapters, sections, and subsections. The
chapter numbers are denoted by roman numerals and the sections and
subsections, as well as the exercises, by arabic numerals. In cross ref-
erences within the same chapter, the chapter number is omitted; thus
Theorem llI.1.6, which is the theorem in subsection 6 of Section 1
of Chapter Ill, is referred to as Theorem 1.6 within Chapter IlI, and
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Theorem Ill.1.6 elsewhere. The exercises are gathered at the end of the
sections, and exercise V.1.1 is the first exercise at the end of Section 1,
Chapter V. Again, the chapter number is omitted when an exercise is
referred to within the same chapter. The ends of proofs are marked by
a triangle (J).

The book was written while I was visiting the University of Paris
and Stanford University and it owes its existence to the moral and tech-
nical help 1 was so generously given in both places. During the writing
I have benefitted from the advice and criticism of many friends; 1 would
like to thank them all here. Particular thanks are due to L. Carleson, K.
DeLeeuw, J.-P. Kahane, O.C. McGehee, and W. Rudin. I would also
like to thank the publisher for the friendly cooperation in the production
of this book.

Y ITZHAK KATZNELSON

Jerusalem
April 1968

The 2002 edition

The second edition was essentially identical with the first, except for
the correction of a few misprints. The current edition has some more
misprints and “miswritings” corrected, and some material added: an
additional section in the first chapter, a few exercises, and an additional
appendix. The added material does not reflect the progress in the field
in the past thirty or forty years. Almost all of it could, and should have
been included in the first edition of the book.

Stanford
March 2002
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Chapter I

Fourier Series onT

We denote byR the additive group of real numbers and byZ the
subgroup consisting of the integers. The groupT is defined as the quo-
tient R/2πZ where, as indicated by the notation,2πZ is the group of
the integral multiples of2π. There is an obvious identification between
functions onT and2π-periodic functions onR, which allows an im-
plicit introduction of notions such as continuity, differentiability, etc.
for functions onT. TheLebesgue measureon T, also, can be defined
by means of the preceding identification: a functionf is integrable on
T if the corresponding2π-periodic function, which we denote again by
f , is integrable on[0, 2π) and we set

∫

T
f(t)dt =

∫ 2π

0

f(x)dx.

In other words, we consider the interval[0, 2π) as a model forT and the
Lebesgue measuredt onT is the restriction of the Lebesgue measure of
R to [0, 2π). The total mass ofdt onT is equal to2π and many of our
formulas would be simpler if we normalizeddt to have total mass 1,
that is, if we replace it bydx/2π. Taking intervals onR as "models" for
T is very convenient, however, and we choose to putdt = dx in order to
avoid confusion. We "pay" by having to write the factor1/2π in front
of every integral.

An all-important property ofdt on T is its translation invariance,
that is, for allt0 ∈ T andf defined onT,

∫

f(t− t0)dt =
∫

f(t)dt†

†Throughout this chapter, integrals with unspecified limits of integration are taken
overT.

1



2 AN INTRODUCTION TOHARMONIC ANALYSIS

1 FOURIER COEFFICIENTS

1.1 We denote byL1(T) the space of all (equivalence† classes of)
complex-valued, Lebesgue integrable functions onT. For f ∈ L1(T)
we put

‖f‖L1 =
1

2π

∫

T
|f(t)|dt.

It is well known thatL1(T), with the norm so defined, is a Banach
space.

DEFINITION: A trigonometric polynomialonT is an expression of the
form

(1.1) P ∼
N
∑

n=−N

ane
int.

The numbersn appearing in (1.1) are called the frequencies ofP ; the
largest integern such that|an| + |a−n| 6= 0 is calledthe degree ofP .
The values assumed by the indexn are integers so that each of the
summands in (1.1) is a function onT. Since (1.1) is a finite sum, it
represents a function, which we denote again byP , defined for each
t ∈ T by

(1.2) P (t) =
N
∑

n=−N

ane
int.

LetP be defined by (1.2). Knowing the functionP we can compute
the coefficientsan by the formula

(1.3) an =
1

2π

∫

P (t)e−intdt

which follows immediately from the fact that for integers j,

1
2π

∫

eijtdt =

{

1 if j = 0,

0 if j 6= 0.

Thus we see that the functionP determines the expression (1.1)
and there seems to be no point in keeping the distinction between the
expression (1.1) and the functionP ; we shall consider trigonometric
polynomials as both formal expressions and functions.

†f ∼ g if f(t) = g(t) almost everywhere
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1.2 DEFINITION: A trigonometric series onT is an expression of
the form

(1.4) S ∼
∞
∑

n=−∞
ane

int.

Again,n assumes integral values; however, the number of terms in (1.4)
may be infinite and there is no assumption whatsoever about the size
of the coefficients or about convergence. The conjugate‡ of the series
(1.4) is, by definition, the series

S̃ ∼
∞
∑

n=−∞
−i sgn(n)aneint.

where sgn(n) = 0 if n = 0 and sgn(n) = n/|n| otherwise.

1.3 Let f ∈ L1(T). Motivated by (1.3) we define thenth Fourier
coefficient off by

(1.5) f̂(n) =
1

2π

∫

f(t)e−intdt.

DEFINITION: The Fourier seriesS[f ] of a functionf ∈ L1(T) is the
trigonometric series

S[f ] ∼
∞
∑

−∞
f̂(n)eint.

The series conjugate toS[f ] will be denoted by˜S[f ] and referred to
as the conjugate Fourier series off . We shall say that a trigonometric
series is a Fourier series if it is the Fourier series of somef ∈ L1(T).

1.4 We turn to some elementary properties of Fourier coefficients.

Theorem. Let f, g ∈ L1(T), then

(a) ̂(f + g)(n) = f̂(n) + ĝ(n).

(b) For any complex numberα

̂(αf)(n) = αf̂(n).

(c) If f̄ is the complex conjugate§ of f then ˆ̄f(n) = f̂(−n).

‡See Chapter III for motivation of the terminology.
§Defined by:f̄(t) = f(t)) for all t ∈ T.
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(d) Denotefτ (t) = f(t− τ), τ ∈ T; then

f̂τ (n) = f̂(n)e−inτ .

(e) |f̂(n)| ≤ 1
2π

∫

|f(t)|dt = ‖f‖L1

The proofs of (a) through (e) follow immediately from (1.5) and the
details are left to the reader.

1.5 Corollary. Assumefj ∈ L1(T), j = 0, 1, . . . , and‖fj−f0‖L1 → 0.
Thenf̂(n)→ f̂0(n) uniformly.

1.6 Theorem. Let f ∈ L1(T), assumêf(0) = 0, and define

F (t) =
∫ t

0

f(τ)dτ.

ThenF is continuous,2π-periodic, and

(1.6) F̂ (n) =
1
in
f̂(n), n 6= 0.

PROOF: The continuity (and, in fact, the absolute continuity) ofF is
evident. The periodicity follows from

F (t+ 2π)− F (t) =
∫ t+2π

t

f(τ)dτ = 2πf̂(0) = 0,

and (1.6) is obtained through integration by parts:

F̂ (n) =
1

2π

∫ 2π

0

F (t)e−intdt =
−1
2π

∫ 2π

0

F ′(t)
1
−in

e−intdt =
1
in
f̂ . J

1.7 We now define the convolution operation inL1(T). The reader
will notice the use of the group structure ofT and of the invariance of
dt in the subsequent proofs.

Theorem. Letf, g ∈ L1(T). For almost allt, the functionf(t− τ)g(τ)
is integrable (as a function ofτ onT), and, if we write

(1.7) h(t) =
1

2π

∫

f(t− τ)g(τ)dτ,

thenh ∈ L1(T) and

(1.8) ‖h‖L1 ≤ ‖f‖L1‖g‖L1 .

Moreover

(1.9) ĥ(n) = f̂(n)ĝ(n) for all n.
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PROOF: The functionsf(t− τ) andg(τ), considered as functions of the
two variables(t, x), are clearly measurable, hence so is

F (t, τ) = f(t− τ)g(τ).

For everyτ , F (t, τ) is just a constant multiple offτ , hence integrable
dt, and

1
2π

∫ (

1
2π

∫

|F (t, τ)|dt
)

dτ =
1

2π

∫

|g(τ)|·‖f‖L1dτ = ‖f‖L1‖g‖L1

Hence, by the theorem of Fubini,f(t−τ)g(τ) is integrable (over(0, 2π))
as a function ofτ for almost allt, and

1
2π

∫

|h(t)|dt =
1

2π

∫
∣

∣

∣

1
2π

∫

F (t, τ)dτ
∣

∣

∣dt ≤
1

4π2

∫∫

|F (t, τ)|dt dτ

= ‖f‖L1‖g‖L1

which establishes (1.8). In order to prove (1.9) we write

ĥ(n) =
1

2π

∫

h(t)e−intdt =
1

4π2

∫∫

f(t− τ)e−in(t−τ)g(τ)e−inτdt dτ

=
1

2π

∫

f(t)e−intdt· 1
2π

∫

g(τ)e−inτdτ = f̂(n)ĝ(n).

As above the change in the order of integration is justified by Fubini’s
theorem. J

1.8 DEFINITION: The convolutionf ∗ g of the (L1(T) functions)f
andg is the functionh defined by (1.8). Using the star notation for the
convolution, we can write (1.9):

(1.10) ̂f ∗ g(n) = f̂(n)ĝ(n).

Theorem. The convolution operation inL1(T) is commutative, asso-
ciative, and distributive (with respect to the addition).

PROOF: The change of variableϑ = t− τ gives

1
2π

∫

f(t− τ)g(τ)dτ =
1

2π

∫

g(t− ϑ)f(ϑ)dϑ,

that is,
f ∗ g = g ∗ f.
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If f1, f2, f3 ∈ L1(T), then

[(f1 ∗ f2)∗f3](t) =
1

4π2

∫∫

f1(t− u− τ)f2(u)f3(τ)du dτ =

1
4π2

∫∫

f1(t− ω)f2(ω − τ)f3(τ)dω dτ = [f1 ∗ (f2 ∗ f3)](t).

Finally, the distributive law

f1 ∗ (f2 + f3) = f1 ∗ f2 + f1 ∗ f3

is evident from (1.7). J

1.9 Lemma. Assumef ∈ L1(T) and letϕ(t) = eint for some integer
n. Then

(ϕ ∗ f)(t) = f̂(n)eint.

PROOF:

(ϕ ∗ f)(t) =
1

2π

∫

ein(t−τ)f(τ)dτ = eint
1

2π

∫

1
2π

∫

f(τ)e−inτdτ. J

Corollary. If f ∈ L1(T) andk(t) =
∑N
−N ane

int, then

(1.11) (k ∗ f)(t) =
N
∑

−N

anf̂(n)eint.

EXERCISES FOR SECTION 1

1. Compute the Fourier coefficients of the following functions (defined by
their values on[−π, π):

(a) f(t) =

{√
2π |t| < 1

2

0 1
2
≤ |t| ≤ π.

(b) ∆(t) =

{

1− |t| |t| < 1

0 1 ≤ |t| ≤ π.

What relation do you see betweenf and∆ ?

(c) g(t) =











1 −1 < t ≤ 0

−1 0 < t < 1

0 1 ≤ |t|,
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What relation do you see betweeng and∆?

(d) h(t) = t − π < t < π.

2. Remembering Euler’s formulas

cos t =
1

2
(eit + e−it), sin t =

1

2i
(eit − e−it),

or
eit = cos t+ i sin t ,

show that the Fourier series of a functionf ∈ L1(T) is formally equal to

A0

2
+

∞
∑

n=1

(An cosnt+Bn sinnt)

whereAn = f̂(n) + f̂(−n) andBn = i(f̂(n)− f̂(−n)). Equivalently:

An =
1

π

∫

f(t) cosnt dt

Bn =
1

π

∫

f(t) sinnt dt.

Show also that iff is real valued, thenAn andBn are all real; iff is even,
that is, if f(t) = f(−t), thenBn = 0 for all n; and if f is odd, that is, if
f(t) = −f(−t), thenAn = 0 for all n.

3. Show that ifS ∼
∑

aj cos jt, thenS̃ ∼
∑

aj sin jt.
4. Letf ∈ L1(T) and letP (t) =

∑N

−N aneint . Compute the Fourier coeffi-
cients of the functionfP .

5. Letf ∈ L1(T), letm be a positive integer, and write

f(m)(t) = f(mt).

Show

̂f(m)(n) =

{

f̂( n
m

) if m | n.

0 if m - n

6. The trigonometric polynomialcosnt = 1
2
(eint + e−int) is of degreen

and has2n zeros onT. Show that no trigonometric polynomial of degreen > 0

can have more than2n zeros onT.
Hint: Identify

∑n

−n aje
ijt onT with z−n

∑n

−n ajz
n+j on |z| = 1.

7. Denote byC∗ the multiplicative group of complex numbers different
from zero. Denote byT ∗ the subgroup of allz ∈ C∗ such that|z| = 1. Prove
that ifG is a subgroup ofC∗ which is compact (as a set of complex numbers),
thenG ⊆ T ∗.

8. LetG be a compact proper subgroup ofT. Prove thatG is finite and
determine its structure.
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Hint: Show thatG is discrete.
9. LetG be an infinite subgroup ofT. Prove thatG is dense inT.

Hint: The closure ofG in T is a compact subgroup.
10. Letα be an irrational multiple of2π. Prove that{nα (mod 2π)}n∈Z is

dense inT.
11. Prove that a continuous homomorphism ofT into C∗ is necessarily

given by an exponential function.
Hint: Use exercise 7 to show that the mapping is intoT ∗; determine the map-
ping on "small" rational multiples of2π and use exercise 9.

12 If E is a subset ofT andτ0 ∈ T, we defineE + τ0 = {t + τ0 : t ∈ E};
we say thatE is invariant under translation byτ if E = E + τ . Show that,
given a setE, the set ofτ ∈ T such thatE is invariant under translation by
τ is a subgroup ofT. Hence prove that ifE is a measurable set onT andE
is invariant under translation by infinitely manyτ ∈ T, then eitherE or its
complement has measure zero.
Hint: A setE of positive measure has points of density, that is, pointsτ such
that(2ε)−1|E∩(τ−ε, τ+ε)| → 1 asε→ 0. (|E0| denotes the Lebesgue measure
of E0.)

13. If E andF are subsets ofT, we write

E + F = {t+ τ : t ∈ E, τ ∈ F}

and callE + F the algebraic sum ofE andF . Similarly we define the sum of
any finite number of sets. A setE is calleda basisfor Tif there exists an integer
N such thatE +E + · · ·+E (N times) isT. Prove that every setE of positive
measure onT is a basis.
Hint: Prove that ifE contains an interval it is a basis. Using points of density
prove that ifE has positive measure thenE + E contains intervals.

14. Show that measurable proper subgroups ofT have measure zero.
15. Show that measurable homomorphisms ofT intoC∗ map it intoT ∗.

16. Letf be a measurable homomorphism ofT into T ∗. Show that for all
values ofn, except possibly one value,̂f(n) = O.

2 SUMMABILITY IN NORM AND HOMOGENEOUS BANACH
SPACES ONT

2.1 We have defined the Fourier series of a functionf ∈ L1(T) as
a certain (formal) trigonometric series. The reader may wonder what
is the point in the introduction of such formal series. After all, there
is no more information in the (formal) expression

∑∞
−∞ f̂(n)eint than

there is in the simpler one{f̂(n)}∞n=−∞ or the even simpler̂f with the
understanding that the function̂f is defined on the integers. As we
shall see, both expressions,

∑

f̂(n)eint andf , have their advantages;
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the main advantages of the series notation being that it indicates the
way in which f can be reconstructed from̂f . Much of this chapter
and all of chapter II will be devoted to clarifying the sense in which
∑

f̂(n)eint representsf . In this section we establish some of the main
facts; we shall see that̂f determinesf uniquely and we show how we
can findf if we know f̂ .

Two very important properties of the Banach spaceL1(T) are the
following:

H-1’ If f ∈ L1(T) andτ ∈ T, then

fτ (t) = f(t− τ) ∈ L1(T) and‖fτ‖L1 = ‖f‖L1

H-2’ TheL1(T)-valued functionτ 7→ fτ is continuous onT, that is, for
f ∈ L1(T) andτ0 ∈ T

(2.1) lim
τ→τ0

‖fτ − fτ0‖L1 = 0.

We shall refer to (H-1’) as the translation invariance ofL1(T); it is
an immediate consequence of the translation invariance of the measure
dt. In order to establish (H-2’) we notice first that (2.1) is clearly valid if
f is a continuous function. Remembering that the continuous functions
are dense inL1(T), we now consider an arbitraryf ∈ L1(T) andε > 0.
Let g be a continuous function onT such that‖g − f‖L1 < ε/2; thus

‖fτ − fτ0‖L1 ≤ ‖fτ − gτ‖L1 + ‖gτ − gτ0‖L1 + ‖gτ0 − fτ0‖L1 =

= ‖(f − g)τ‖L1 + ‖gτ − gτ0‖L1 + ‖(g − f)τ0‖L1 ≤ ε+ ‖gτ − gτ0‖L1 .

Hencelim‖fτ − fτ0‖L1 < ε and,ε being an arbitrary positive number,
(H-2’) is established.

2.2 DEFINITION: A summability kernelis a sequence{kn} of con-
tinuous2π-periodic functions satisfying:

(S-1)
1

2π

∫

kn(t)dt = 1

(S-2)
1

2π

∫

|kn(t)|dt ≤ const

(S-3) For all0 < δ < π,

lim
n→∞

∫ 2π−δ

δ

|kn(t)|dt = 0
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A positive summability kernelis one such thatkn(t) ≥ 0 for all t andn.
For positive kernels the assumption (S-2) is clearly redundant.

We consider also familieskr depending on a continuous parameter
r instead of the discreten. Thus the Poisson kernelP(r, t), which we
shall define at the end of this section, is defined for0 ≤ r < 1 and we
replace in (S-3), as well as in the applications, the limit “limn→∞” by
“ limr→1”.

The following lemma is stated in terms of vector-valued integrals.
We refer to Appendix A for the definition and relevant properties.

Lemma. LetB be a Banach space,ϕ a continuousB-valued function
onT, and{kn} a summability kernel. Then:

lim
n→∞

1
2π

∫

kn(τ)ϕ(τ)dτ = ϕ(0).

PROOF: By (S-l) we have, for0 < δ < π,

1
2π

∫

kn(τ)ϕ(τ)dτ − ϕ(0) =
1

2π

∫

kn(τ)(ϕ(τ)− ϕ(0))dτ

=
1

2π

(

∫ δ

−δ
+
∫ 2π−δ

δ

)

kn(τ)(ϕ(τ)− ϕ(0))dτ.
(2.2)

Now

(2.3)
∥

∥

∥

1
2π

∫ δ

−δ
kn(τ)(ϕ(τ)− ϕ(0))dτ

∥

∥

∥

B
≤ max
|τ |≤δ
‖ϕ(τ)− ϕ(0)‖B‖kn‖L1

and

∥

∥

∥

1
2π

∫ 2π−δ

δ

kn(τ)(ϕ(τ)− ϕ(0))dτ
∥

∥

∥

B
≤

≤ max
∥

∥ϕ(τ)− ϕ(0)
∥

∥

B

1
2π

∫ 2π−δ

δ

|kn(τ)|dτ.
(2.4)

By (S-2) and the continuity ofϕ(τ) at τ = 0, givenε > 0 we can find
δ > 0 so that (2.3) is bounded byε, and keeping thisδ, it results from
(S-3) that (2.4) tends to zero asn → ∞ so that (2.2) is bounded by2ε.

J

2.3 For f ∈ L1(T) we putϕ(τ) = fτ (t) = f(t − τ). By (H-1’) and
(H-2’), ϕ is a continuousL1(T)-valued function onT andϕ(0) = f .
Applying lemma 2.2 we obtain
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Theorem. Let f ∈ L1(T) and{kn} be a summability kernel; then

(2.5) f = lim
n→∞

1
2π

∫

kn(τ)fτdτ

in theL1(T) norm.

2.4 The integrals in (2.5) have the formal appearance of a convolu-
tion although the operation involved, that is, vector integration, is dif-
ferent from the convolution as defined in section 1.7. The ambiguity,
however, is harmless.

Lemma. Letk be a continuous function onT andf ∈ L1(T). Then

(2.6)
1

2π

∫

k(τ)fτdτ = k ∗ f.

PROOF: Assume first thatf is continuous onT. We have, Appendix A,

1
2π

∫

k(τ)fτdτ =
1

2π
lim
∑

j

(τj+1 − τj)k(τj)fτj ,

the limit being taken in theL1(T) norm as the subdivision{τj} of [0, 2π)
becomes finer and finer. On the other hand,

1
2π

lim
∑

j

(τj+1 − τj)k(τj)f(t− τj) = (k ∗ f)(t)

uniformly and the lemma is proved for continuousf . For arbitrary
f ∈ L1(T), let ε > 0 be arbitrary and letg be a continuous function on
T such that‖f − g‖L1 < ε. Then, since (2.6) is valid forg,

1
2π

∫

k(τ)fτdτ − k ∗ f =
1

2π

∫

k(τ)(f − g)τdτ + k ∗ (g − f)

and consequently

∥

∥

∥

1
2π

∫

k(τ)fτdτ − k ∗ f
∥

∥

∥

L1
≤ 2‖k‖L1 ε.

J

Using lemma 2.4 we can rewrite (2.5):

(2.5’) f = lim
n→∞

kn ∗ f in theL1(T) norm.
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2.5 One of the most useful summability kernels, and probably the
best known, is Fejér’s kernel (which we denote by{Kn}) defined by

(2.7) Kn(t) =
n
∑

j=−n

(

1− |j|
n+ 1

)

eijt .

The fact thatKn satisfies (S-1) is obvious from (2.7); thatKn(t) ≥ 0
and that (S-3) is satisfied is clear from

Lemma.

Kn(t) =
1

n+ 1

(

sin n+1
2

sin 1
2 t

)2

.

PROOF: Recall that

(2.8) sin2 t

2
=

1
2

(1− cos t) = −1
4
e−it +

1
2
− 1

4
eit.

A direct computation of the coefficients in the product shows that

(

−1
4
e−it +

1
2
− 1

4
eit
) n
∑

j=−n

(

1− |j|
n+ 1

)

eijt =

=
1

n+ 1

(

−1
4
e−i(n+1)t +

1
2
− 1

4
ei(n+1)t

)

.
J

We adhere to the generally used notation and writeσn(f) = Kn ∗ f
andσn(f, t) = (Kn ∗ f)(t). It follows from corollary 1.9 that

(2.9) σn(f, t) =
n
∑

−n

(

1− |j|
n+ 1

)

f̂(j)eijt.

2.6 The fact thatσn(f) → f in theL1(T) norm for everyf ∈ L1(T),
which is a special case of (2.5’), and the fact thatσn(f) is a trigono-
metric polynomial imply that trigonometric polynomials are dense in
L1(T). Other immediate consequences are the following two important
theorems.

2.7 Theorem (The Uniqueness Theorem). Let f ∈ L1(T) and
assume that̂f(n) = 0 for all n. Thenf = 0.

PROOF: By (2.9)σn(f) = 0 for all n. Sinceσn(f) → f , it follows that
f = 0. J



I. FOURIER SERIES ONT 13

An equivalent form of the uniqueness theorem is: Letf, g ∈ L1(T) and
assumêf(n) = ĝ(n) for all n, thenf = g.

2.8 Theorem (The Riemann-Lebesgue Lemma). Let f ∈ L1(T),
then

lim
|n|→∞

f̂(n) = 0.

PROOF: Let ε > 0 and letP be a trigonometric polynomial onT such
that‖f − P‖L1 < ε. If |n| > degree ofP , then

|f̂(n)| = | ̂(f − P )(n)| ≤ ‖f − P‖L1 < ε. J

Remark: If K is a compact set inL1(T) andε > 0, there exist a finite
number of trigonometric polynomialsP1 . . . , PN such that for everyf ∈
K there exists aj, 1 ≤ j ≤ N , such that‖f −Pj‖L1 < ε. If |n| is greater
than max1≤j≤N (degree ofPj) then |f̂(n)| < ε for all f ∈ K. Thus,
the Riemann-Lebesgue lemma holds uniformly on compact subsets of
L1(T).

2.9 For∈ L1(T) we denote bySn(f) thenth partial sum ofS[f ], that
is,

(2.10) (Sn(f))(t) = Sn(f, t) =
n
∑

−n
f̂(j)eijt.

If we compare (2.9) and (2.10) we see that

(2.11) σn(f) =
1

n+ 1
(S0(f) + S1(f) + · · ·+ Sn(f)),

in other words, theσn(f) are the arithmetic means† of Sn(f). It follows
that if Sn(f) converge inL1(T) asn → ∞, then the limit is necessarily
f .

From corollary 1.9 it follows thatSn(f) = Dn ∗ f whereDn is the
Dirichlet kernel defined by

(2.12) Dn(t) =
n
∑

−n
eijt =

sin(n+ 1
2 )t

sin 1
2 t

.

†Often referred to as the Cesàro means or, especially in Fourier Analysis, as the Fejér
means.
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It is important to notice that{Dn} is not a summability kernel in our
sense. It does satisfy condition (S-1); however, it does not satisfy ei-
ther (S-2) or (S-3). This explains why the problem of convergence for
Fourier series is so much harder than the problem of summability. We
shall discuss convergence in chapter II.

2.10 DEFINITION: A homogeneous Banach space onT is a linear
subspaceB of L1(T) having a norm‖ ‖B ≥ ‖ ‖L1 under which it is a
Banach space, and having the following properties:

(H-1) If f ∈ B andτ ∈ T, thenfτ ∈ B and‖fτ‖B = ‖f‖B (where
fτ (t) = f(t− τ)).

(H-2) For allf ∈ B, τ, τ0 ∈ T, limτ→τ0‖fτ − fτ0‖ = 0.

Remarks:Condition (H-1) is referred to as translation invariance and
(H-2) as continuity of the translation. We could simplify (H-2) some-
what by requiring continuity at one specificτ0 ∈ T, sayτ0 = 0 rather
than at everyτ ∈ T, since by (H-1)

‖fτ − fτ0‖B = ‖fτ−τ0 − f‖B

Also, the method of the proof of (H-2’) (see 2.1) shows that if we have
a space B satisfying (H-1) and we want to show that it satisfies (H-2) as
well, it is sufficient to check the continuity of the translation on a dense
subset of B. An almost equivalent statement is

Lemma. LetB ⊂ L1(T) be a Banach space satisfying (H-1). Denote
byBc the set of allf ∈ B such thatτ 7→ fτ is a continuousB-valued
function. ThenBc is a closed subspace ofB.

Examples of homogeneous Banach spaces onT .
(a)C(T)–the space of all continuous2π-periodic functions with the

norm

(2.13) ‖f‖∞ = max
t
|f(t)|

(b) Cn(T)–the subspace ofC(T) of all n-times continuously differ-
entiable functions (n being a rational integer) with the norm

(2.13’) ‖f‖Cn =
n
∑

j=0

1
j!

max
t
|f (j)(t)|
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(c) Lp(T), 1 ≤ p < ∞–the subspace ofL1(T) consisting of all the
functionsf for which

∫

|f(t)|pdt <∞ with the norm

(2.14) ‖f‖Lp =
(

1
2π

∫

|f(t)|p
)1/p

.

The validity of (H-1) for all three examples is obvious. The validity
of (H-2) for (a) and (b) is equivalent to the statement that continuous
functions on T are uniformly continuous. The proof of (H-2) for (c) is
identical to that of (H-2’) (see 2.1).

We now extend Theorem 2.3 to homogeneous Banach spaces onT.

2.11 Theorem.Let B be a homogeneous Banach space onT, let
f ∈ B and let{kn} be a summability kernel. Then

‖kn ∗ f − f‖ → 0 as n→∞.

PROOF: Since‖ ‖B ≥ ‖ ‖L1 , theB-valued integral 1
2π

∫

kn(τ)fτdτ is
the same as theL1(T)-valued integral which, by Lemma 2.4, is equal to
kn ∗ f . The theorem now follows from Lemma 2.2. J

2.12 Theorem.LetB be a homogeneous Banach space onT. Then
the trigonometric polynomials inB are everywhere dense.

PROOF: For every.f ∈ B, σn(f)→ f . J

Corollary ( Weierstrass Approximation Theorem).Every contin-
uous2π-periodic function can be approximated uniformly by trigono-
metric polynomials.

2.13 We finish this section by mentioning two important summabil-
ity kernels.

a. The de la Vallée Poussin kernel:

(2.15) Vn(t) = 2K2n+1(t)−Kn(t)

(S-1), (S-2) and (S-3) are obvious from (2.15).Vn is a polynomial of
degree2n + 1 having the property that̂Vn(j) = 1 if |j| ≤ n + 1; it
is therefore very useful when we want to approximate a functionf by
polynomials having the same Fourier coefficients asf over prescribed
intervals (namelyVn ∗ f).
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b. The Poisson kernel: for0 < r < 1 put

(2.16) P(r, t) =
∑

r|j|eijt = 1 + 2
∞
∑

j=1

rj cos jt =
1− r2

1− 2r cos t+ r2
.

It follows from Corollary 1.9 and from the fact that the series in (2.16)
converges uniformly, that

(2.17) P(r, t) ∗ f =
∑

f̂(n)r|n|eint.

ThusP ∗ f is the Abel mean ofS[f ] and Theorem 2.11 (with Poisson’s
kernel) states that forf ∈ B, S[f ] is Abel summable tof in theB norm.
Compared to the Fejér kernel, the Poisson kernel has the disadvantage
of not being a polynomial; however, being essentially the real part of
the Cauchy kernel—precisely:P(r, t) = <

(

1+reit

1−reit
)

, the Poisson kernel
links the theory of trigonometric series with the theory of analytic func-
tions. We shall make much use of that in chapter III. Another important
property ofP(r, t) is that it is a decreasing function oft for 0 < t < π.

EXERCISES FOR SECTION 2

1. Show that every measurable homomorphism ofT into T ∗ has the form
t 7→ eint wheren is a rational integer.
Hint: Use Exercise 1.16.

2. Show that in the following examples (H-1) is satisfied but (H-2) is not
satisfied:
(a)L∞(T)–the space of essentially bounded functions inL1(T) with the norm

‖f‖∞ = ess supt∈T|f(t)|

(b) Lipα(T), 0 < α < 1–the subspace ofC(T) consisting of the functionsf
for which

supt∈T, h6=0

|f(t+ h)− f(t)|
|h|α <∞

with the norm

‖f‖Lipα = supt|f(t)|+ supt∈T, h6=0

|f(t+ h)− f(t)|
|h|α .

3. Show that forB = L∞(T), Bc (see Lemma 2.10) isC(T).
4. Assume0 < α < 1; show that forB = Lipα(T)

Bc = lipα(T) =
{

f : lim
h→0

supt
|f(t+ h)− f(t)|

|h|α = 0
}

.
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5. Show that forB = Lip1(T), Bc = C1(T) .

6. LetB be a Banach space onT, satisfying (H-1). Prove thatBc is the
closure of the set of trigonometric polynomials inB.

7. Use exercise 1.1 and the fact that step functions are dense inL1(T) to
prove the Riemann-Lebesgue lemma.

8. (Fejér’s lemma). Iff ∈ L1(T) andg ∈ L∞(T), then

lim
n→∞

∫

f(t)g(nt)dt = f̂(0)ĝ(0).

Hint: Approximatef in theL1(T) norm by polynomials.
9. Show that forf ∈ L1(T) the norm of the operatorf : g 7→ f ∗ g onL1(T)

is ‖f‖L1 .
Hint: ‖Kn‖L1 = 1, ‖Kn ∗ f‖L1 → ‖f‖L1 .

10. Defining thesupportof a functionf ∈ L1(T) as the smallest closed set
S such thatf(t) = 0 almost everywhere in the complement ofS, show that the
support off ∗ g for f, g ∈ L1(T) is included in the algebraic sum support(f) +
support(g).

11. Forn = 1, 2, . . . let kn be a nonnegative, infinitely differentiable func-
tion onT having the properties (i)

∫

kn(t)dt = 1, (ii) kn(t) = 0 if |t| > 1/n.
Show that{kn} is a summability kernel and deduce that ifB is a homogeneous
Banach space onT andf ∈ B, thenf can be approximated in theB norm by
infinitely differentiable functions with supports arbitrarily close to the support
of f .

12. (Bernstein)‡ Let P be a trigonometric polynomial of degreen. Show
that supt|P

′(t)| ≤ 2n supt|P (t)|.
Hint: P ′ = −P ∗ 2nKn−1(t) sinnt. Also ‖2nKn−1 sinnt‖L1(T) < 2n.

13. LetB be a homogeneous Banach space onT. Show that ifg ∈ L1(T)

andf ∈ B theng ∗ f ∈ B, and

‖g ∗ f‖B ≤ ‖g‖L1‖f‖B .

14. LetB be a homogeneous Banach space onT . LetH ⊂ B be a closed,
translation-invariant subspace. Show thatH is spanned by the exponentials it
contains and deduce that a functionf ∈ B is in H if, and only if, for every
n ∈ Z such thatf̂(n) 6= 0, there existsg ∈ H such that̂g(n) 6= 0.

3 POINTWISE CONVERGENCE OF σn(f).

We saw in section 2 that iff ∈ L1(T), thenσn(f) converges tof
in the topology of any homogeneous Banach space that containsf . In
particular, iff ∈ C(T) thenσn(f) converges tof uniformly. However,

‡Bernstein’s inequality is: sup|P ′| ≤ n sup|P |, and can be proved similarly, see exer-
cise 14 on page 48.
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if f is not continuous, we cannot usually deduce pointwise convergence
of σn(f) from its convergence in norm, nor can we relate the limit of
σn(f, t0), in case it exists, tof(t0), We therefore have to reexamine the
integrals definingσn(f) for pointwise convergence.

3.1 Theorem (Fejér). Let f ∈ L1(T).

(a) Assume thatlimh→0(f(t0 + h) + f(t0 − h)) exists (we allow the
values−∞ and+∞); then

(3.1) σn(f, t0)→ 1
2

lim
h→0

(f(t0 + h) + f(t0 − h))

In particular, if t0 is a point of continuity off , thenσn(f, t0)→ f(t0).

(b) If every point of a closed intervalI is a point of continuity forf ,
σn(f, t) converges tof(t) uniformly onI.

(c) If for a.e. t, m ≤ f(t), thenm ≤ σn(f, t); if for a.e. t, f(t) ≤ M ,
thenσn(f, t) ≤M .

Remark: The proof will be based on the fact that{Kn(t)} is a positive
summability kernel which has the following properties:

(3.2) For0 < ϑ < π, lim
n→∞

(

supϑ<t<2π−ϑKn(t)
)

= 0,

(3.3) Kn(t) = Kn(−t)

The statement of the theorem remains valid if we replaceσn(f) by
kn ∗ f , where{kn} is a positive summability kernel satisfying (3.2) and
(3.3). For example: the Poisson kernel satisfies all the these require-
ments and the statement of the theorem remains valid if we replace
σn(f) by the Abel means of the Fourier series off .

PROOF OFFEJÉR’ S THEOREM: We assume for simplicity that
f̌(t0) = lim 1

2

(

f(t0 + h) + f(t0 − h)
)

is finite; the modifications needed
for the casešf(t0) = +∞ or f̌(t0) = −∞ being obvious. Now

σn(f, t0)− f̌(t0) =
1

2π

∫

T
Kn(τ)

(

f(t0 − τ)− f̌(t0)
)

dτ =

=
1

2π

(

∫ ϑ

−ϑ
+
∫ 2π−ϑ

ϑ

)

Kn(τ)
(

f(t0 − τ)− f̌(t0)
)

dτ =

=
1
π

(

∫ ϑ

0

+
∫ π

ϑ

)

Kn(τ)
(f(t0 + τ) + f(t0 − τ)

2
− f̌(t0)

)

dτ.

(3.4)
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(Notice that the last equality in (3.4) depends on (3.3).)
Givenε > 0, we chooseϑ > 0 so small that

(3.5) |τ | < ϑ⇒
∣

∣

∣

f(t0 + τ) + f(t0 − τ)
2

− f̌(t0)
∣

∣

∣ < ε,

and thenn0 so large thatn > n0 implies

(3.6) supϑ<τ<2π−ϑKn(τ) < ε.

From (3.4), (3.5), and (3.6) we obtain

(3.7)
∣

∣σn(f, t0)− f̌(t+ 0)
∣

∣ < ε+ ε‖f − f̌(t0)‖L1

which proves part (a).
Part (b) follows from the uniform continuity off on I; we can pick

ϑ so that (3.5) is valid for allt0 ∈ I, andn0 depends only onϑ (andε).
Part (c) depends only on the fact thatKn(t) ≥ 0 and 1

2πKn(t)dt = 1;
if m ≤ f then

σn(f, t)−m =
1

2π

∫

Kn(τ)
(

f(t− τ)−m
)

dτ ≥ 0

the integrand being nonnegative. Iff ≤M then

M − σn(f, t) =
1

2π

∫

Kn(τ)
(

M − f(t− τ)
)

dτ ≥ 0

for the same reason. J

Corollary. If t0 is a point of continuity off and if the Fourier series
of f converges att0 then its sum isf(t0) (cf. 2.9).

3.2 Fejér’s condition

f̌(t0) = lim
h→0

f(t0 + h) + f(t0 − h)
2

implies that

(3.8) lim
h→0

1
h

∫ h

0

∣

∣

∣

f(t0 + τ) + f(t0 − τ)
2

− f̌(t0)
∣

∣

∣dτ = 0.

Requiring the existence of a numberf̌(t) such that (3.8) is valid is far
less restrictive than Fejér’s condition and more natural for summable
functions. It does not change if we modifyf on a set of measure zero
and, although for some functionf Fejér’s condition may hold for no
valuet0, (3.8) holds withf̌(t0) = f(t0) for almost allt0 (cf. [28], Vol.
1, p. 65).
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Theorem (Lebesgue).If (3.8) holds, thenσn(f, t0) → f(t0). In par-
ticular σn(f, t)→ f(t) almost everywhere.

PROOF: As in the proof of Fejér’s theorem,

σn(f, t0)− f̌(t0) =

=
1
π

(

∫ ϑ

0

+
∫ π

ϑ

)

Kn(τ)
[f(t0 + τ) + f(t0 − τ)

2
− f̌(t0)

]

dτ.
(3.9)

AsKn(τ) = 1
n+1

(

sin(n+1)τ/2
sin τ/2

)2

andsin τ
2 >

τ
π for 0 < τ < π, we obtain

(3.10) Kn(τ) ≤ min
(

n+ 1,
π2

(n+ 1)τ2

)

.

In particular we see that the second integral in (3.9) tends to zero pro-
vided(n+ 1)ϑ2 tends to∞. We pickϑ = n−1/4 and turn to evaluate the
first integral.

Denote

Φ(h) =
∫ h

0

∣

∣

∣

f(t0 + τ) + f(t0 − τ)
2

− f̌(t0)
∣

∣

∣dτ ;

then
∣

∣

∣

1
π

∫ ϑ

0

Kn(τ)
[f(t0 + τ) + f(t0 − τ)

2
− f̌(t0)

]

dτ
∣

∣

∣ ≤
1
π

∣

∣

∣

∫ 1
n

0

∣

∣

∣+
1
π

∣

∣

∣

∫ ϑ

1
n

∣

∣

∣

≤ n+ 1
π

Φ(
1
n

) +
π

n+ 1

∫ ϑ

1
n

∣

∣

∣

f(t0 + τ) + f(t0 − τ)
2

− f̌(t0)
∣

∣

∣

dτ

τ2
.

The termn+1
π Φ( 1

n ) tends to zero by (3.8). Integration by parts gives

π

n+ 1

∫ ϑ

1
n

∣

∣

∣

f(t0 + τ) + f(t0 − τ)
2

− f̌(t0)
∣

∣

∣

dτ

τ2
=

=
π

n+ 1

[Φ(τ)
τ2

]ϑ

1/n
+

2π
n+ 1

∫ ϑ

1/n

Φ(τ)
τ3

dτ .

(3.11)

For ε > 0 andn > n(ε) we have by (3.8)

Φ(τ) < ετ in 0 < τ < ϑ = n−1/4

hence (3.11) is bounded by

πεn

n+ 1
+

2πε
n+ 1

∫ ϑ

1/n

dτ

τ2
< 3πε.

J
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Corollary. If the Fourier series off ∈ L1(T) converges on a setE of
positive measure, its sum coincides withf almost everywhere onE. In
particular, if a Fourier series converges to zero almost everywhere, all
its coefficients must vanish.

Remark: This last result is not true for all trigonometric series. There
are examples of trigonometric series converging to zero almost every-
where† without being identically zero.

3.3 The need to impose in Theorem 3.2 the strict condition (3.8)
rather than the weaker condition

(3.8’) Ψ(h) =
∫ h

0

(f(t0 + τ) + f(t0 − τ)
2

− f̌(t0)
)

dτ = o(h)

comes from the fact that in order to carry the integration by parts we

have to replaceKn(t) by the monotonic majorantmin
(

n + 1, π2

(n+1)τ2

)

.

If we want to prove the analogous result forP(r, t) rather thatKn(t),
the condition (3.8’) is sufficient. Thus we obtain:

Theorem (Fatou). If (3.8’) holds, then

lim
r→1

∞
∑

−∞
f̂(j)r|j|eijt0 = f̌(t0).

The condition (3.8’) withf̌(t0) = f(t0) is satisfied at every pointt0
wheref is the derivative of its integral (hence almost everywhere).

EXERCISES FOR SECTION 3

1. Let 0 < α < 1 and letf ∈ L1(T). Assume that at the pointt0 ∈ T, f
satisfies a Lipschitz condition of orderα, that is,|f(t0 + τ) − f(t0)| < K|τ |α

for |τ | < π Prove that forα < 1

|σn(f, t0)− f(t0)| ≤ π + 1

1− αKn
−α

while for α = 1

|σn(f, t0)− f(t0)| ≤ 2πK
logn

n
.

Hint: Use (3.10) and (3.4) withϑ = 1
n

†However, a trigonometric series converging to zero everywhere is identically zero
(see [13], Chapter 5).
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If f ∈ Lipα(T), 0 < α ≤ 1, then

‖σn(f)− f‖∞ ≤

{

const ‖f‖Lipαn
−α when0 < α < 1,

const ‖f‖Lip1
logn
n

for α = 1.

3. Letf ∈ L∞(T) and assume|f̂(n)| < K|n|−1. Prove that for alln andt,
|Sn(f, t)| ≤ ‖f‖∞ + 2K.
Hint:

Sn(f, t) = σn(f, t) +

n
∑

−n

|j|
n+ 1

f̂(j)eijt .

4. Show that for alln andt, |
∑n

1
j−1 sin jt| ≤ 1

2
π + 1.

Hint: Considerf(t) = t/2 in [0, 2π).
5. Jackson’s kernel isJn(t) = ‖Kn‖−2

L2K
2
n(t). Verify

a. {Jn} is a positive summability kernel.

b. For−π < t < π, Jn(t) < 2π4n−3t−4.

c. If f ∈ Lip1(T), then‖Jn ∗ f − f‖∞ ≤ const ‖f‖Lip1
n−1. Compare this to

the corresponding estimate for‖Kn ∗ f − f‖∞ in exercise 2 above.

4 THE ORDER OF MAGNITUDE OF
FOURIER COEFFICIENTS

The only things we know so far about the size of Fourier coefficients
{f̂(n)} of a functionf ∈ L1(T) is that they are bounded by‖f‖L1 ,
(1.4(e)) and thatlim|n|→∞ f̂(n) = 0 (the Riemann-Lebesgue lemma).
In this section we discuss the following three questions:

(a) Can the Riemann-Lebesgue lemma be improved to provide a
certain rate of vanishing of̂f(n) as|n| → ∞?

We show that the answer to (a) is negative;f̂(n) can go to zero
arbitrarily slowly (see 4.1).

(b) In view of the negative answer to (a), is it true that any sequence
{an} which tends to zero as|n| → ∞ is the sequence of Fourier coeffi-
cients of somef ∈ L1(T)?

The answer to (b) is again negative (see 4.2).
(c) How are properties like boundedhess, continuity, smoothness,

etc. of a functionf reflected by{f̂(n)}?
Question (c), in one form or another, is a recurrent topic in har-

monic analysis. In the second half of this section we show how var-
ious smoothness conditions affect the size of the Fourier coefficients.
“Order of magnitude” conditions on the Fourier coefficients are sel-
dom necessary and sufficient for the function to belong to a given
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function space. For example, a necessary condition forf ∈ C(T) is
∑

|f̂(n)|2 <∞, a sufficient condition is
∑

|f̂(n)| <∞; in both cases the
exponents are best possible.

The only spaces, defined by conditions of size or smoothness of
the functions, for which we obtain (in the following section) complete
characterization, that is, a necessary and sufficient condition expressed
in terms of order of magnitude, for a sequence{an} to be the Fourier
coefficients of a function in the space, areL2(T) and its “derivatives”†.

4.1 Theorem. Let {an}∞n=−∞ be an even sequence of nonnegative
numbers tending to zero at infinity. Assume that forn > 0

(4.1) an−1 + an+1 − 2an ≥ 0.

Then there exists a nonnegative functionf ∈ L1(T) such thatf̂(n) = an.

PROOF: We remark first that
∑

(an−an+1) = a0 and that the convexity
condition (4.1) implies that(an − an+1) is monotonically decreasing
with n, hence

lim
n→∞

n(an − an+1) = 0,

and consequently

N
∑

n=1

n(an−1 + an+1 − 2an) = a0 − aN −N(aN − aN+1)

converges toa0 asN →∞. Put

(4.2) f(t) =
∞
∑

n=1

n(an−1 + an+1 − 2an)Kn−1(t),

whereKn denotes, as usual, the Fejér kernel. Since‖Kn‖L1 = 1, the
series (4.2) converges inL1(T) and, all its terms being nonnegative, its
limit f is nonnegative. Now

f̂(j) =
∞
∑

n=1

n(an−1 + an+1 − 2an)K̂n−1(j) =

=
∞
∑

n=|j|+1

n(an−1 + an+1 − 2an)
(

1− |j|
n

)

= a|j|,

and the proof is complete. J

†Such as the space of absolutely continuous functions with derivatives inL2(T).
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4.2 Comparing theorem 4.1 to our next theorem shows the basic dif-
ference between sine-series (a−n = −an) and cosine-series (a−n = an).

Theorem. Let f ∈ L1(T) and assume that̂f(|n|) = −f̂(−|n|) ≥ 0.
Then

∑

n>0

1
n
f̂(n) <∞.

PROOF: Without loss of generality we may assume thatf̂(0) = 0. Write
F (t) =

∫ t

0
f(τ)dτ ; thenF ∈ C(T) and, by theorem 1.6,

F̂ (n) =
1
in
f̂(n), n 6= 0.

Since F is continuous, we can apply Fejér’s theorem fort0 = 0 and
obtain

(4.3) lim
N→∞

2
N
∑

n=1

(

1− n

N + 1

) f̂(n)
n

= i
(

F (0)− F̂ (0)
)

= −iF̂ (0),

and sincef̂(n)
n ≥ 0, the theorem follows. J

Corollary. If an > 0,
∑

an/n = ∞, then
∑

an sinnt is not a Fourier
series. Hence there exist trigonometric series with coefficients tending
to zero which are not Fourier series.

By Theorem 4.1, the series

∞
∑

n=2

cosnt
log n

=
∑

|n|≥2

eint

2 log|n|

is a Fourier series while, by theorem 4.2, its conjugate series

∞
∑

n=2

sinnt
log n

= −i
∑

|n|≥2

sgn(n)
2 log|n|

eint

is not.

4.3 We turn now to some simple results about the order of magni-
tude of Fourier coefficients of functions satisfying various smoothness
conditions.

Theorem. If f ∈ L1(T) is absolutely continuous, then̂f(n) = o(1/n).
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PROOF: By theorem 1.6 we havêf(n) = (1/in)̂f ′(n) and (the Riemann-
Lebesgue lemma)̂f ′(n)→ 0. J

Remark: By repeated application of Theorem 1.6 (i.e., by repeated
integration by parts) we see that iff is k-times differentiable andf (k−1)

is absolutely continuous‡ then

(4.4) f̂(n) = o
(

n−k
)

as |n| → ∞.

4.4 We can obtain a somewhat more precise estimate than the asymp-
totic (4.4). All that we have to do is notice that if0 ≤ j ≤ k, then
f̂(n) = (in)−ĵf (j)(n) and hence

(4.5) |f̂(n)| ≤ |n|−j‖f (j)‖L1 .

We thus obtain

Theorem. If f is k-times differentiable, andf (k−1) is absolutely con-
tinuous, then

|f̂(n)| ≤ min
0≤j≤k

‖f (j)‖L1

|n|j
.

If f is infinitely differentiable, then

|f̂(n)| ≤ min
0≤j

‖f (j)‖L1

|n|j
.

4.5 Theorem. lf f is of bounded variation onT, then

|f̂(n)| ≤ var(f)
2π|n|

.

PROOF: We integrate by parts using Stieltjes integrals

|f̂(n)| =
∣

∣

1
2π

∫

e−intf(t)dt
∣

∣ =
∣

∣

∣

1
2πin

∫

e−intdf(t)
∣

∣

∣ ≤
var(f)
2π|n|

. J

4.6 For f ∈ C(T) we denote byω(f, h) themodulus of continuityof
f , that is,

ω(f, h) = sup|y|≤h‖f(t+ y)− f(t)‖∞.

For f ∈ L1(T) we denote byΩ(f, h) the integral modulus of continuity
of f , that is,

(4.6) Ω(f, h) = ‖f(t+ h)− f(t)‖L1 .

We clearly haveΩ(f, h) ≤ ω(f, h).

‡So thatf (k) ∈ L1(T) andf (k−1) is its primitive,
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Theorem. For n 6= 0, |f̂(n)| ≤ 1
2Ω(f, π|n| ).

PROOF: f̂(n) = 1
2π

∫

f(t)e−intdt = −1
2π

∫

f(t)e−in(t+π/n)dt; by a change
of variable,

f̂(n) =
1

4π

∫

(

f(t+
π

n
)− f(t)

)

e−intdt,

hence

|f̂(n)| ≤ 1
2

Ω(f,
π

|n|
)

J

Corollary. lf f ∈ Lipα(T), thenf̂(n) = O (n−α).

4.7 Theorem. Let1 < p ≤ 2 and letq be the conjugate exponent, i.e.,
q = p

p−1 . If f ∈ Lp(T) then
∑

|f̂(n)|q <∞.

The casep = 2 will be proved in the following section. The case
1 < p < 2 will be proved in chapter IV.

Remark: Theorem 4.7 cannot be extended top > 2. Thus, iff ∈ Lp(T)
with p > 2, thenf ∈ L2(T) and consequently

∑

|f̂(n)|2 < ∞. This
is all that we can assert even for continuous functions. There exist
continuous functionsf such that

∑

|f̂(n)|2−ε = ∞ for all ε > 0, see
IV.2. In fact, given any{cn} ∈ `2, there exists a continuous functionf
such that|f̂(n)| > |cn|, see Appendix B.2.1.

EXERCISES FOR SECTION 4

I. Given a sequence{ωn} of positive numbers such thatωn → 0 as|n| → ∞,
show that there exists a sequence{an} satisfying the conditions of theorem 4.1
and

an > ωn for all n.

2. Show that if
∑

|f̂(n)||n|l < ∞, thenf is l-times continuously differen-
tiable. Hence, iff̂(n) = O

(

|n|−k
)

wherek > 2, and if

l =

{

k − 2 k integer

[k]− 1 otherwise

thenf is l-times continuously differentiable.
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Remarks:Properly speaking the elements ofL1(T) are equivalence classes of
functions any two of which differ only on a set of measure zero. Saying that
a functionf ∈ L1(T) is continuous or differentiable etc. is a convenient and
innocuous abuse of language with obvious meaning.

Exercise 2 is all that we can state as a converse to theorem 4.4 if we look
for continuous derivatives. It can be improved if we allow square summable
derivatives (see exercise 5.5).

3. A functionf is analytic onT if in a neighborhood of everyt0 ∈ T, f(t)

can be represented by a power series (of the form
∑∞

n=0
an(t − t0)n ). Show

that f is analytic if, and only if,f is infinitely differentiable onT and there
exists a numberR such that

supt|f
(n)(t)| ≤ n!Rn, n > 0.

4. Show thatf is analytic onT if, and only if, there exist constantsK > 0

anda > 0 such that|f̂(j)| ≤ Ke−a|j|. Hence show thatf is analytic onT if,
and only if,

∑

f̂(j)eijz converges for|=(z)| < a for somea > 0.
5. Letf be analytic onT and letg(eit) = f(t). What is the relation between

the Laurent expansion ofg about0 (which converges in an annulus containing
the circle|z| = 1) and the Fourier series off?

6. Let f be infinitely differentiable onT and assume that for someα > 0,
and alln ≥ 0, supt|f

(n)(t)| < Knαn. Show that

|f̂(j)| ≤ K exp
(

−α
e
|j|1/α

)

.

7. Assume|f̂(j)| ≤ K exp
(

−|j|1/α
)

. Show thatf is infinitely differentiable
and

|f (n)(t)| ≤ K1e
annan

for some constantsa andK1.
Hint: |f (n)(t)| ≤ 2K

∑

|j|n exp(−|j|1/α). Compare this last sum to the integral
∫∞

0
xn exp(−x1/α)dx and change the variable of integration puttingy = x1/α .
8. Prove that if0 < α < 1, thenf(t) =

∑∞
1

cos 3nt
3nα

belongs to Lipα(T);
hence corollary 4.6 cannot be improved.

9. Show that the series
∑∞

n=2
sinnt
logn

converges for allt ∈ T.

5 FOURIER SERIES OF SQUARE SUMMABLE FUNCTIONS

In some respects the greatest success in representing functions by
means of their Fourier series happens for square summable functions.
The reason is thatL2(T) is a Hilbert space, its inner product being de-
fined by

(5.1) 〈f, g〉 =
1

2π

∫

f(t)ḡ(t)dt,
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and in this Hilbert space the exponentials form a complete orthogonal
system. We start this section with a brief review of the basic prop-
erties of orthonormal and complete systems in abstract Hilbert space
and conclude with the corresponding statements about Fourier series in
L1(T).

5.1 Let H be a complex Hilbert space. Letf, g ∈ H. We say thatf
is orthogonal tog if 〈f, g〉 = 0. This relation is clearly symmetric. IfE
is a subset ofH we say thatf ∈ H is orthogonal toE if f is orthogonal
to every element ofE. A setE ⊂ H is orthogonalif any two vectors in
E are orthogonal to each other. A setE ⊂ H is an orthonormal system
if it is orthogonal and the norm of each vector inE is one, that is, if,
wheneverf, g ∈ E, 〈f, g〉 = 0 if f 6= g and〈f, f〉 = 1.

Lemma. Let {ϕn}Nn=1 be a finite orthonormal system. Leta1, . . . , aN
be complex numbers. Then

∥

∥

N
∑

1

anϕn
∥

∥ =
N
∑

1

|an|2.

PROOF:

∥

∥

N
∑

1

anϕn
∥

∥ = 〈
N
∑

1

anϕn,

N
∑

1

anϕn〉 =
N
∑

1

an〈ϕn,
N
∑

1

amϕm〉

=
∑

anān =
∑

|an|2 J

Corollary. Let {ϕn}∞1 be an orthonormal system inH and let{an}∞1
be a sequence of complex numbers such that

∑

|an|2 < ∞. Then
∑∞
n=1 anϕn converges inH.

PROOF: SinceH is complete, all that we have to show is that the partial
sumsSN =

∑N
1 anϕn form a Cauchy sequence inH. Now, forN > M ,

‖SN − SM‖2 =
∥

∥

N
∑

M+1

anϕn
∥

∥

2 =
N
∑

M+1

|an|2 → 0 as M →∞.
J

5.2 Lemma. LetH be a Hilbert space. Let{ϕn} be a finite orthonor-
mal system inH. For f ∈ H write an = 〈f, ϕn〉. Then

(5.2) 0 ≤
∥

∥f −
N
∑

1

anϕn
∥

∥

2 = ‖f‖2 −
N
∑

1

|an|2 .
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PROOF:

∥

∥f −
N
∑

1

anϕn
∥

∥

2 = 〈f −
N
∑

1

anϕn, f −
N
∑

1

anϕn〉 =

= ‖f‖2 −
N
∑

1

ān〈f, ϕn〉 −
N
∑

1

an〈ϕn, f〉+
N
∑

1

|an|2 = ‖f‖2 −
N
∑

1

|an|2 .

J

Corollary ( Bessel’s inequality).LetH be a Hilbert space and{ϕα}
an orthonormal system inH. For f ∈ H write aα = 〈f, ϕα〉 Then

(5.3)
∑

|aα|2 ≤ ‖f‖2.

The family{ϕα} in the statement of Bessel’s inequality need not be
finite nor even countable. The inequality (5.3) is equivalent to saying
that for every finite subset of{ϕα} we have (5.2). In particularaα = 0
except for countably many values ofα and the series

∑

|aα|2 converges.
If H = L2(T) all orthonormal systems inH are finite or countable

(cf. exercise 2 at the end of this section) and we write them as sequences
{ϕn}.

5.3 DEFINITION: A complete orthonormal systemin H is an or-
thonormal system having the additional property that the only vector in
H orthogonal to it is the zero vector.

Lemma. Let{ϕn} be an orthonormal system inH. Then the following
statements are equivalent:

(a) {ϕn} is complete.
(b) For everyf ∈ H we have

(5.4) ‖f‖2 =
∑

|〈f, ϕn〉|2.

(c) f =
∑

〈f, ϕn〉ϕn.

PROOF: The equivalence of (b) and (c) follows immediately from (5.2).
If f is orthogonal to{ϕn} and if (5.4) is valid, then‖f‖2 = 0, hence
f = 0. Thus (b)⇒ (a). We complete the proof by showing (a)⇒ (c).
From Bessel’s inequality and corollary 5.1 it follows that

∑

〈f, ϕn〉ϕn
converges inH. If we denoteg =

∑

〈f, ϕn〉ϕn we have〈g, ϕn〉 = 〈f, ϕn〉
or, equivalently,g − f is orthogonal to{ϕn}. Thus if{ϕn} is complete
f = g. J
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5.4 Lemma (Parseval). Let{ϕn} be a complete orthonormal system
in H. Letf, g ∈ H. Then

(5.5) 〈f, g〉 =
∞
∑

n=1

〈f, ϕn〉〈ϕn, g〉 .

PROOF: If f is a finite linear combination of{ϕn}, (5.5) is obvious. In
the general case

〈f, g〉 = lim
N→∞

〈
N
∑

n=1

〈f, ϕn〉ϕn, g〉 = lim
N→∞

N
∑

n=1

〈f, ϕn〉〈ϕn, g〉 .
J

5.5 For H = L2(T) the exponentials{eint}∞n=−∞ form a complete
orthonormal system. The orthonormality is evident:

〈eint, eimt〉 =
1

2π

∫

ei(n−m)tdt = δn,m .

The completeness is somewhat less evident; it follows from Theorem
2.7 since

〈f, eint〉 =
1

2π

∫

f(t)eintdt = f̂(n) .

The general results about complete orthonormal systems in Hilbert space
now yield

Theorem. Let f ∈ L2(T). Then

(a)
∑

|f̂(n)|2 =
1

2π

∫

|f(t)|2dt

(b) f = lim
N→∞

N
∑

−N
f̂(n)eint in theL2(T) norm.

(c) For any square summable sequence{an}n∈Z of complex numbers,
that is such that

∑

|an|2 <∞, there exists a uniquef ∈ L2(T) such that
an = f̂(n).
(d) Let f, g ∈ L2(T). Then

1
2π

∫

f(t)g(t)dt =
∞
∑

n=−∞
f̂(n)ĝ(n) .
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We denote bỳ2 the space of all square summable sequences{an}∞−∞,
(that is, such that

∑

|an|2 < ∞). With pointwise addition and scalar

multiplication, and with the norm
(∑

|an|2
) 1

2 and the inner product
〈{an}, {bn}〉 =

∑∞
−∞ anb̄n, `2 is a Hilbert space. Theorem 5.5 amounts

to the statement that the correspondencef 7→ {f̂(n)} is an isometry
betweenL2(T) and`2.

EXERCISES FOR SECTION 5

1. Let{ϕn}Nn=1 be an orthogonal system in a Hilbert spaceH. Let f ∈ H.
Show that

min
a1,...,aN

∥

∥

∥f −
N
∑

1

ajϕj

∥

∥

∥

is attained at the pointaj = 〈f, ϕj〉, j = 1, . . . , N , and only there.
2. A Hilbert spaceH is separableif it contains a dense countable subset.

Show that an orthonormal system in a separable Hilbert space is either finite or
countable.
Hint: The distance between two orthogonal vectors of norm 1 is

√
2.

3. Prove that an orthonormal system{ϕn} in H is complete if, and only if,
the set of finite linear combinations of{ϕn} is dense inH.

4. Letf be absolutely continuous onT and assumef ′ ∈ L2(T); prove that

∑

|f̂(n)| ≤ ‖f‖L1 +

√

√

√

√2

∞
∑

1

n−2 ‖f ′‖L2 .

Hint: |f̂(0)| ≤ ‖f‖L1 , and
∑

|nf̂(n)|2 = ‖f ′‖2L2 ; apply the Cauchy-Schwarz
inequality to the last identity,

5. Assumef ∈ L1(T) and f̂(n) = O(|n|−k). Show thatf is m-times
differentiable withf (m) ∈ L2(T) providedk −m > 1

2
.

6 ABSOLUTELY CONVERGENT FOURIER SERIES

We shall study absolutely convergent Fourier series in some detail
later on: here we mention only some elementary facts.

6.1 We denote byA(T) the space of (continuous) functions onT hav-
ing an absolutely convergent Fourier series, that is, the functionsf for
which

∑∞
−∞|f̂(n)| < ∞. The mappingf 7→ {f̂(n)}n∈Z of A(T) into `1

(the Banach space of absolutely convergent sequences) is clearly lin-
ear and one-to-one. If

∑∞
−∞|an| < ∞ the series

∑

ane
int converges
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uniformly onT and, denoting its sum byg, we havean = ĝ(n). It fol-
lows that the mapping above is an isomorphism ofA(T) onto `1. We
introduce a norm toA(T) by

(6.1) ‖f‖A(T) =
∞
∑

−∞
|f̂(n)| .

With this normA(T) is a Banach space isometric to`1; we now claim
it is an algebra.

Lemma. Assume thatf, g ∈ A(T). Thenfg ∈ A(T) and

‖fg‖A(T) ≤ ‖f‖A(T)‖g‖A(T) .

PROOF: We havef(t) =
∑

f̂(n)eint, g(t) =
∑

ĝ(n)eint and since
both series converge absolutely:

f(t)g(t) =
∑

k

∑

m

f̂(k)ĝ(m)ei(k+m)t .

Collecting the terms for which k + m = n we obtain

f(t)g(t) =
∑

n

∑

k

f̂(k)ĝ(n− k)eint

so that̂fg(n) =
∑

k f̂(k)ĝ(n− k); hence
∑

|̂fg(n)| ≤
∑

n

∑

k

|f̂(k)||ĝ(n− k)| =
∑

|f̂(k)|
∑

|ĝ(n)| . J

6.2 Not every continuous function onT has an absolutely convergent
Fourier series, and those that have cannot† be characterized by smooth-
ness conditions (see exercise 5 of this section). Some smoothness con-
ditions are sufficient, however, to imply the absolute convergence of
the Fourier series.

Theorem. Let f be absolutely continuous onT andf ′ ∈ L2(T). Then
f ∈ A(T) and

(6.2) ‖f‖A(T) ≤ ‖f‖L1 +
(

2
∞
∑

1

n−2
) 1

2 ‖f ′‖L2 .

PROOF: This is exercise 4 of the previous section and the hint given
there is essentially the whole proof. J

†See, however, exercise 7.8.
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?6.3 We refer to exercise 2.2 for the definitions of Lipα(T) and of its
norm.

Theorem (Bernstein). If f ∈ Lipα(T) for someα > 1
2 , thenf ∈ A(T)

and

(6.3) ‖f‖A(T) ≤ cα‖f‖Lipα

where the constantcα depends only onα.

PROOF:
f(t− h)− f(t) ∼

∑

(e−inh − 1)f̂(n)eint.

if take h = 2π/(3 ·2m) and2m ≤ n ≤ 2m+1 we have|e−inh − 1| ≥
√

3
and consequently

∑

2m≤n<2m+1

|f̂(n)|2 ≤
∑

n

|e−inh − 1|2|f̂(n)|2 = ‖fh − f‖2L2 ≤

≤ ‖fh − f‖2∞ ≤
( 2π

3·2m
)2α

‖f‖2Lip α .

(6.4)

Noticing that the sum on the left of (6.4) consists of at most2m+1 terms,
we obtain by the Cauchy-Schwarz inequality

(6.5)
∑

2m≤n<2m+1

|f̂(n)| ≤ 2(m+1)/2
( 2π

3·2m
)α

‖f‖Lip α .

Sinceα > 1
2 , we can sum the inequalities (6.5) form = 0, 1, . . . , and

remembering that|f̂(0)| ≤ ‖f‖Lipα we obtain (6.3). J

Bernstein’s theorem is sharp; there exist functions in Lip1
2
(T) whose

Fourier series does not converge absolutely. A classical example is the
Hardy-Littlewood series

∑∞
n=1

ein logn

n eint (see [28], Vol. 1, p. 197).
Another example is given in exercise 6.6.

?6.4 The Lipschitz condition in Theorem 6.3 can be relaxed iff is of
bounded variation.

Theorem (Zygmund). Let f be of bounded variation onT and as-
sumef ∈ Lipα(T) for someα > 0. Thenf ∈ A(T).

We refer to [28], Vol. 1, p. 241, for the proof.
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?6.5 Remark: There is a change of scene in this section compared
with the rest of the chapter. We no longer talk about functions summable
onT and their Fourier series–we discuss functions summable onZ (i.e.,
absolutely convergent sequences) and their "Fourier transforms" which
happen to be continuous functions onT. Lemma 6.1, for instance, is
completely analogous to theorem 1.7 with the roles ofT andZ reversed.

EXERCISES FOR SECTION 6

1. For n = 1, 2, . . . let fn ∈ A(T) and ‖fn‖A(T) ≤ 1. Assume thatfn
converge tof uniformly onT. Show thatf ∈ A(T) and‖f‖ ≤ 1.

2. Show that the conditions in exercise 1 do not implylim‖f−fn‖A(T) = 0;
however, if we add the assumption that‖f‖A(T) = limn→∞‖fn‖A(T) then we do
have‖f − fn‖A(T) → 0.

3. For0 < a < π define

∆a(t) =

{

1− a−1|t| for |t| ≤ a
0 for a ≤ |t| ≤ π

Show that∆a ∈ A(T) and‖∆a‖A(T) = 1.
Hint: ∆̂a(n) ≥ 0 for all n.

4. Letf ∈ C(T) be even on(−π, π), decreasing on[0, π] and convex there
(i.e.,f(t+ 2h) + f(t) > 2f(t+ h) for 0 ≤ t ≤ t+ 2h ≤ π). Show thatf ∈ A(T)

and, iff ≥ 0, ‖f‖A(T) = f(0).
Hint: f can be approximated uniformly by positive combinations of∆a. Com-
pare with theorem 4.1.

5. Letϕ be a "modulus of continuity," that is, an increasing concave func-
tion on [0, 1] with ϕ(0) = 0. Show that if the sequence of integers{λn} in-
creases fast enough and iff(t) =

∑

n−2eiλnt, thenω(f, h) 6= O (ϕ(h)) as
h→ 0. ω(f, h) is the modulus of continuity off (defined in 4.6).

6. (Rudin, Shapiro.) We define the trigonometric polynomialsPm andQm
inductively as follows:P0 = Q0 = 1 and

Pm+1(t) = Pm(t) + ei2
mttQm(t)

Qm+1(t) = Pm(t)− ei2
mttQm(t).

(a) Show that

|Pm+1(t)|2 + |Qm+1(t)|2 = 2
(

|Pm(t)|2 + |Qm(t)|2
)

hence |Pm(t)|2 + |Qm(t)|2 = 2m+1

and ‖Pm‖C(T) ≤ 2(m+1)/2 .

(b) For|n| < 2m, P̂m+1(n) = P̂m(n), hence there exists a sequence{εn}∞n=0

such thatεn is either 1 or -1 and such thatPm(t) =
∑2m−1

0
εne

int.
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(c) Write fm = Pm − Pm+1 = ei2
m−1tQm−1 andf =

∑∞
1

2−mfm. Show
thatf ∈ Lip 1

2
(T) andf 6∈ A(T).

Hint: For 2−k ≤ h ≤ 21−k write

f(t+ h)− f(t) =
(

k
∑

1

+

∞
∑

k+1

)

2−m(fm(t+ h)− fm(t)) .

By part (a) the sum
∑∞

k+1
is bounded by2

∑∞
k+1

2−m2m/2 < 5h
1
2 . Using part

(a), exercise 2.12, and the fact thatfm is a trigonometric polyomial of degree
2m − 1, one obtains a similar estimate for

∑k

1
.

7. Letf, g ∈ L2(T). Show thatf ∗ g ∈ A(T).

7 FOURIER COEFFICIENTS OF LINEAR FUNCTIONALS

We consider a homogeneous Banach spaceB onT and assume, for
simplicity, thateint ∈ B for all n. As usual, we denote byB∗ the dual
space ofB.

7.1 The Fourier coefficients of a functionalµ ∈ B∗ are, by definition:

(7.1) µ̂(n) = 〈eint, µ〉, n ∈ Z;

and we call the trigonometric series

S[µ] ∼
∞
∑

−∞
µ̂(n)eint

the Fourier series† of µ. Clearly

|µ̂(n)| ≤ ‖µ‖B∗‖eint‖B .

The notation (7.1) is consistent with our definition of Fourier coeffi-
cients in case thatµ is identified naturally with a summable function.
For instance, ifB = Lp(T), 1 < p < ∞, B∗ is canonically identified
with Lq(T) whereq = p/(p− 1). To the functiong ∈ Lq(T) corresponds
the linear functional

f 7→ 〈f, g〉 =
1

2π

∫

f(t)g(t)dt, f ∈ Lp(T)

and
〈eint, g〉 =

1
2π

∫

eintg(t)dt =
1

2π

∫

e−intg(t)dt

thus ĝ(n) defined in (7.1) for the functionalg coincides with thenth
Fourier coefficient of the functiong.

†We keep, however, the convention of 1.3 that a Fourier series, without complements,
is a Fourier series of a summable function.
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Theorem (Parseval’s formula).Let f ∈ B, µ ∈ B∗; then

(7.2) 〈f, µ〉 = lim
N→∞

N
∑

−N

(

1− |n|
N + 1

)

f̂(n)µ̂(n).

PROOF: (a) For polynomialsP (t) =
∑N
−N P̂ (n)eint we clearly have

〈P, µ〉 =
∑N
−N P̂ (n)µ̂(n).

(b) Since, by theorem 2.11,f = limN→∞ σN (f) in theB norm, it
follows from (a) and the continuity ofµ that

〈f, µ〉 = lim〈σN (f), µ〉 = lim
N→∞

N
∑

−N

(

1− |n|
N + 1

)

f̂(n)µ̂(n).
J

Remark: The fact that the limit in (7.2) exists is an implicit part of
the theorem. It is equivalent to the C-1 summability‡ of the series
∑

f̂(n)µ̂(n). If this last series converges then clearly

(7.3) 〈f, µ〉 =
∞
∑

−∞
f̂(n)µ̂(n)

We shall sometimes refer to (7.3) as Parseval’s formula, keeping in
mind that if the series on the right does not converge then (7.3) is simply
an abbreviation for (7.2).

Corollary ( Uniqueness theorem).If µ̂(n) = 0 for all n, thenµ = 0.

7.2 We shall writeµ ∼
∑

µ̂(n)eint, and may writeµ =
∑

µ̂(n)eint

if the series converges in some sense (which should be clear from the
context). This is an abuse of language which, if used with caution,
presents no risk of misunderstanding and obviates tedious repetitions.

In accordance with our abuse of language we define, forµ ∈ B∗, the
elementsSn(µ) andσn(µ) of B∗ by

Sn(µ) =
n
∑

−n
µ̂(j)eijt

σn(µ) =
n
∑

−n

(

1− |j|
n+ 1

)

µ̂(j)eijt
(7.4)

‡Cesàro of order 1
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We shall also write

Sn(µ, t) =
n
∑

−n
µ̂(j)eijt

σn(µ, t) =
n
∑

−n

(

1− |j|
n+ 1

)

µ̂(j)eijt
(7.5)

The correspondence between the functionals (7.4) and the functions
(7.5) is clearly

〈f, Sn(µ)〉 =
1

2π

∫

f(t)Sn(µ, t)dt =
n
∑

−n
f̂(j)µ̂(j)

for all f ∈ B; similarly for σn(µ).
The mappingSn : f 7→ Sn(f) on B is clearly a bounded linear

operator, and so isSn : µ 7→ Sn(µ) onB∗. It follows from Parseval’s
formula thatSn onB∗ is the adjoint ofSn onB and consequently has
the same norm. Similarly,σn : µ 7→ σn(µ) on B∗ is the adjoint of
σn : f 7→ σn(f) on B and consequently§ ‖σn‖B

∗
= 1.

We remark that by Parseval’s formula, for everyµ ∈ B∗, σn(µ)
converges weak-star toµ.

7.3 Parseval’s formula enables us to characterize sequences of Fourier
coefficients of linear functionals.

Theorem. LetB be a homogeneous Banach space onT. Assume that
eint ∈ B for all n. Let {an}∞n=−∞ be a sequence of complex numbers.
Then the following two conditions are equivalent:

(a) There existsµ ∈ B∗, ‖µ‖ ≤ C, such that̂µ(n) = an for all n.
(b) For all trigonometric polynomialsP

∣

∣

∑

P̂ (n)an
∣

∣ ≤ C‖P‖B .

PROOF: The implication (a)⇒ (b) follows immediately from Parse-
val’s formula. If we assume (b) then

(7.6) P 7→
∑

P̂ (n)an
is a linear functional on the space of all trigonometric polynomials,
bounded in the B norm, and therefore (theorem 2.12) admits a unique
extensionµ of norm< C toB. Sinceµ extends (7.6) we have

µ̂(n) = 〈eint, µ〉 = an. J

§‖σn‖B
∗

denotes the norm ofσn as operator onB∗.
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Corollary. A trigonometric seriesS ∼
∑

ane
int is the Fourier series

of someµ ∈ B∗, ‖µ‖ ≤ C, if, and only if, ‖σN (S)‖ ≤ C for all N .
Here σN (S) denotes the element in B* the Fourier series of which is
∑N
N (1− |j|/(N + 1))ajeijt.

PROOF: The necessity follows from 7.2; the sufficiency from the cur-
rent theorem and the observation that for trigonometric polynomialsP

∑

P̂ (n)an = lim
N→∞

〈P, σN (S)〉 .
J

7.4 In the caseB = C(T ) the dual spaceB∗ is identified with the
spaceM(T) of all (Borel) measures onT (we set〈f, µ〉 =

∫

fdµ) We
shall refer to Fourier coefficients of measures as Fourier-Stieltjes co-
efficients and to Fourier series of measures as Fourier-Stieltjes series.
The mappingf 7→ (1/2π)f(t)dt is an isometric embedding ofL1(T)
in M(T). The Fourier coefficients of(1/2π)f(t)dt are preciselyf̂(n),
hence a Fourier series is a Fourier-Stieltjes series.

An example of a measure that is not obtained as(1/2π)f(t)dt is the
so-called Dirac measure; it is the measureδ of mass one concentrated
at t = 0. δ can also be defined by〈f, δ〉 = f(0) for all f ∈ C(T). We
denote byδτ , τ ∈ T, the unit mass concentrated atτ . Thusδ = δ0 and
〈f, δτ 〉 = f(τ) for all τ ∈ T. From (7.1) it follows thatδ̂τ (n) = e−inτ

and in particular̂δ(n) = 1. This shows that Fourier-Stieltjes coefficients
need not tend to zero at infinity (however, by 7.1,|µ̂(n)| ≤ ‖µ‖M(T)).

7.5 We recall that a measureµ is positive ifµ(E) ≥ 0 for every mea-
surable setE, or equivalently, if

∫

fdµ ≥ 0 wheneverf ∈ C(T) is non-
negative. Ifµ is absolutely continuous, that is, ifµ = (1/2π)g(t)dt with
g ∈ L1(T), thenµ is positive if and only ifg(t) ≥ 0 almost everywhere.

Lemma. A seriesS ∼
∑

ane
int is the Fourier-Stieltjes series of a

positive measure if, and only if, for alln andt ∈ T,

σn(S, t) =
n
∑

−n

(

1− |j|/(n+ 1)
)

aje
ijt ≥ 0.

PROOF: If S = S(µ) for a positiveµ ∈ M(T) and if f ∈ C(T) is non-
negative, we have

1
2π

∫

f(t)σn(S, t)dt =
n
∑

−n

(

1− |j|
n+ 1

)

f̂(j)µ̂(j) = σn(f)dµ ≥ 0
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sinceµ ≥ 0 and, by 3.1,σn(f, t) > 0. Since this is true for arbitrary
nonnegativef , σn(S, t) ≥ 0 onT. Assumingσn(S, t) ≥ 0 we obtain

‖σn(S)‖M(T) =
1

2π

∫

σn(S, t)dt = a0

and, by Corollary 7.3,S = S(µ) for someµ ∈ M(T). For arbitrary
nonnegativef ∈ C(T),

∫

fdµ = limn→∞(l/2π
∫

f(t)σn(S, t)dt ≥ 0 and
it follows thatµ is a positive measure. J

Remark: The condition “σn(S, t) ≥ 0 for all n” can clearly be replaced
by “σn(S, t) ≥ 0 for infinitely manyn’s”.

7.6 We are now able to characterize Fourier-Stieltjes coefficients of
positive measures as positive definite sequences.

DEFINITION: A numerical sequence{an}n∈Z is positive definite if for
any sequence{zn} having only a finite number of terms different from
zero we have

(7.7)
∑

n,m

an−mznz̄m ≥ 0.

Theorem (Herglotz). A numerical sequence{an}n∈Z is positive def-
inite if, and only if, there exists a positive measureµ ∈ M(T) such that
an = µ̂(n) for all n.

PROOF: Assumean = µ̂(n) with positiveµ. Then

(7.8)
∑

n,m

an−mznz̄m =
∑

n,m

∫

e−inteimtznz̄m =
∫
∣

∣

∣

∑

n

zne
−int

∣

∣

∣

2

dµ ≥ 0.

If, on the other hand, we assume that{an} is positive definite, we write
S ∼

∑

ane
int and, for arbitraryN andt ∈ T we choose

zn =

{

eint |n| ≤ N
0 |n| > N

We have
∑

n,m an−mznz̄m =
∑

j Cj,Naje
ijt whereCj,N is the number

of ways to writej in the formn −m where|n| ≤ N and|m| ≤ N , that
is,Cj,N = max(0, 2N + 1− |j|). It follows that

σ2N (S, t) =
1

2N + 1

∑

j

Cj,Naje
ijt ≥ 0

and the theorem follows from 7.5. J
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7.7 If {an} is positive definite, then

(7.9) |an| ≤ a0,

and the sequence{(an − an−1+an+1
2 )} is positive definite. This can be

seen directly by checking condition (7.7), or deduced from Herglotz’
theorem and the observations that ifµ is the positive measure such that
an = µ̂(n), thena0 = µ̂(0) = ‖µ‖, ν = (1 − cos t)µ is nonnegative, and
ν̂(n) = an − an−1+an+1

2 .
Also, sincean = a−n, we havea0 −<a1 = a0 − a−1+a1

2 = ν̂(0).
Combining all this, we obtain

Lemma. If {an} is positive definite, then

(7.10)
∣

∣

∣

(

an −
an−1 + an+1

2
)

∣

∣

∣ ≤ a0 −<a1.

Positive definite functions can be defined over any abelian group by
the same inequality (7.7). In Chapter VI we shall see that the preceding
lemma implies in particular that positive definite functions onR that
are continuous at0 are in fact uniformly continuous.

7.8 The Spectral Theorem.Positive definite sequences arise nat-
urally in the context of unitary operators on a Hilbert space. LetH
be a Hilbert space,U a unitary operator onH, and f ∈ H; write
an = 〈U−nf, f〉. The sequence{an} is positive definite since for any
finite sequence{zn} we have

∑

n,m

an−mznz̄m =
∑

n,m

〈znU−nf, zmU−mf〉

=
∥

∥

∥

∑

n

znU
−nf

∥

∥

∥

2

H
≥ 0.

(7.11)

The positive measureµ = µf ∈M(T) for which µ̂(n) = an is calledthe
spectral measure off . Comparing (7.8) and (7.11), one realizes that
the correspondence

(7.12) H 3 Unf ←→ eint ∈ L2(µf )

extends to an isometry of the closed spanHf of {Unf} in H onto
L2(µf ), which conjugatesU to the operator of multiplication byeit on
L2(µf ). This is in essence¶ the spectral theorem for unitary operators
on a Hilbert space.

¶What we omit here is the analysis of themultiplicity of U onH.
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Corollary ( The Ergodic Theorem).LetH be a Hilbert space and
U a unitary operator onH. Denote byHinv the subspace ofU-invariant
vectors inH, and byPinv the orthogonal projection ofH onHinv. Then

lim
1
N

N−1
∑

0

U j = Pinv,

the limit in the strong operator topology.

PROOF: The claim is that for everyf ∈ H, lim 1
N

∑N−1
0 U jf = Pinvf in

norm. By the spectral theorem, we may assume thatU is multiplication
by eit onL2(µf ), and so1

N

∑N−1
0 U j is just multiplication by

ϕN (t) =
1
N

N−1
∑

0

eijt =
eiNt − 1
N(eit − 1)

.

The elements ofL2(µf ) which are invariant under multiplication by
eit are just the multiples of11{0} (the indicator function of{0}), and
Pinv in this context is multiplication by11{0}. As ‖ϕN‖∞ = 1 andϕN
converge pointwise to11{0}, we havelimϕNψ = ψ(0)11{0} in norm for
anyψ ∈ L2(µf ), and in particular for the constant 1, the image off

under the “spectral” isometry. J

7.9 An important property of Fourier-Stieltjes coeffcients is that of
being "universal multipliers." More precisely:

Theorem. LetB be a homogeneous Banach space onT andµ ∈M(T).
There exists a unique linear operatorµ onB having the following prop-
erties:
(i) ‖µ‖ ≤ ‖µ‖M(T)

(ii) ̂µf(n) = µ̂(n)f̂(n) for all f ∈ B.

PROOF: If an operatorµ satisfies (ii), then forf =
∑n
−N f̂(n)eint we

haveµf =
∑N
−N µ̂(n)f̂(n)eint, that is,µ is completely determined on

the polynomials inB. If µ is bounded it is completely determined. In
order to show the existence ofµ it is suffcient to show that if we define

(7.13) µf =
∑

µ̂(n)f̂(n)eint

for all polynomialsf then

(7.14) ‖µf‖ ≤ ‖µ‖M(T)‖f‖B ,
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sinceµ would then have a unique extension of norm≤ ‖µ‖M(T) to all
of B. If µ = (1/2π)g(t)dt with g ∈ C(T), it is clear thatµf , as defined
in (7.13), is simplyg ∗ f which we can write as aB-valued integral (see
2.4)

(7.15) µf = g ∗ f =
1

2π

∫

g(τ)fτdτ

and deduce the estimate

‖µf‖B ≤ ‖f‖B ·
1

2π

∫

|g(τ)|dτ = ‖µ‖M(T)‖f‖B .

For arbitraryµ ∈ M(T), σn(µ) has the form(1/2π)gn(t)dt, where
gn(t) =

∑n
−n(1− |j|/(n+ 1))µ̂(j)eijt and

1
2π

∫

|gn(t)|dt = ‖σn(µ)‖M(T) ≤ ‖µ‖M(T) .

By our previous remark‖gn∗f‖B ≤ ‖µ‖M(T)‖f‖B. Sincef is a trigono-
metric polynomial, we clearly haveµf = limn→∞ gn ∗ f and (7.14)
follows. J

Corollary. Letf ∈ B andµ ∈M(T). Then{µ̂(n)f̂(n)} is the sequence
of Fourier coefficients of some function inB.

In view of (7.15) we shall writeµ ∗ f instead ofµf , and refer to it as
the convolution ofµ andf . With this notation, our earlier condition (ii)
becomes a (formal) extension of (1.10).

7.10 Forµ ∈M(T) we defineµ# ∈M(T) by

(7.16) µ#(E) = µ(−E)

for every Borel setE (recall that−E = {t : − t ∈ E}), or equivalently,
by

(7.17)
∫

f(t)dµ# =
∫

f(−t)dµ

for all f ∈ C(T). It follows from (7.17) that

(7.18) ̂µ#(n) = µ̂(n) .
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7.11 By Parseval’s formula, the adjoint ofµ is the operator which
assigns to everyν ∈ B∗ the element ofB∗ whose Fourier series is given
by
∑

µ̂(n)ν̂(n)eint =
∑

̂µ#(n)ν̂(n)eint. We extend the notation of 7.7,
write this element ofB∗ asµ# ∗ ν, and refer to it as the convolution of
µ# andν. We summarize:

Theorem. Let B be a homogeneous Banach space onT andB∗ its
dual. Letµ ∈M(T), ν ∈ B∗; then

∑

µ̂(n)ν̂(n)eint is the Fourier series
of an elementµ ∗ ν ∈ B∗. Moreover‖µ ∗ ν‖B∗ ≤ ‖µ‖M(T)‖ν‖B∗ .

The norm estimate follows from (7.14) and the facts that the norm
of the adjoint of an operator is equal to the norm of the operator, and
‖µ#‖M(T) = ‖µ‖M(T) .

It follows, in particular, that ifµ, ν ∈M(T), then
∑

µ̂(n)ν̂(n)eint is
the Fourier-Stieltjes series of the measureµ ∗ ν.

7.12 We have introduced the convolution ofµ, ν ∈ M(T) by its
Fourier-Stieltjes series. It can, of course, be done directly. Withµ

andν given, and forf ∈ C(T), the double integral

I(f) =
∫∫

f(t+ τ)dµ(t)dν(τ)

is well defined, is clearly linear inf , and satisfies

|I(f)| ≤ ‖µ‖M(T)‖ν‖M(T).

By the Riesz representation theorem, which identifiesM(T) as the dual
of C(T), there exists a measureλ ∈ M(T) such thatI(f) =

∫

f(t)dλ.
Takingf(t) = e−int we obtainλ̂(n) = µ̂(n)ν̂(n), that is,λ = µ ∗ ν. In
other words

(7.19)
∫

fd(µ ∗ ν) =
∫∫

f(t+ τ)dµ(t)dν(τ) .

Taking a (bounded) sequence of functionsf which converge to the in-
dicator function of an arbitrary closed setE, we see that (7.19) is equiv-
alent to (denotingE − τ = {t : t+ τ ∈ E})

(7.20) (µ ∗ ν)(E) =
∫

µ(E − τ)dν(τ) .

By regularity, (7.20) holds for every Borel setE.
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7.13 We recall that a measureµ ∈ M(T) is discrete ifµ =
∑

ajδτj
whereaj are complex numbers; we then have‖µ‖M(T) =

∑

|aj |. A
measureµ is continuous ifµ(t) = 0 for every t ∈ T ({t} is the set
whose only member is the pointt). Equivalentlyµ is continuous if
limη→0

∫ t+η

t−η |dµ| = 0 for all t ∈ T. Everyµ ∈ M(T) can be uniquely
decomposed to a sumµ = µc + µd whereµc is continuous andµd is
discrete.

It is clear from (7.20) that ifµ is a continuous measure then, for
everyν ∈M(T), µ∗ν is continuous. Also, sinceδ(τ)∗δ(τ ′) = δ(τ +τ ′),
if µ =

∑

ajδτj , and ν =
∑

bkδτ ′
k

thenµ ∗ ν =
∑

j,k ajbkδτj+τ ′k . If
µ = µc + µd is the decomposition ofµ into continuous and discrete
parts, thenµ#

c the continuous part ofµ# andµ#
d is its discrete part.

Thus
µ ∗ µ# = (µc ∗ µ#

c + µc ∗ µ#
d + µd ∗ µ#

c ) + µd ∗ µ#
d ,

the sum of the first three terms is continuous and the last term is dis-
crete. Ifµd =

∑

ajδτj thenµ#
d =

∑

ājδ−τj and consequently the mass
at τ = 0 of the measureµ ∗ µ# is

∑

|aj |2. We have proved:

Lemma. Let µ ∈ M(T). Then
∑

|µ({τ})|2 = (µ ∗ µ#)({0}). In
particular: µ is continuous if, and only if,

(µ ∗ µ#)({0}) = 0.

The discrete part of a measureµ can be “recovered” from its Fourier-
Stieltjes series.

Theorem. Letµ ∈M(T), τ ∈ T. Then

µ({τ}) = lim
N→∞

1
2N + 1

N
∑

−N

µ̂(n)einτ .

PROOF: The functionsϕN (t) = 1
2N+1DN (t−τ) = 1

2N+1

∑N
−N e

−inτeint

are bounded by 1 and tend to zero uniformly outside any neighborhood
of t = τ . Remembering that

lim
ϑ→0

∫ τ+ϑ

τ−ϑ
|d(µ− µ({τ})δτ )| = 0

we obtain

(7.21) lim
N→∞

〈ϕN , µ− µ({τ})δτ 〉 = 0



I. FOURIER SERIES ONT 45

Now

〈ϕN , µ− µ({τ})δτ 〉 =
1

2N + 1

N
∑

−N

µ̂(n)einτ − µ({τ})

and the theorem follows from (7.21). J

Corollary ( Wiener). Letµ ∈M(T). Then

(7.22)
∑

|µ({τ})|2 = lim
N→∞

1
2N + 1

N
∑

−N

|µ̂(n)|2 .

In particular: µ is continuous if, and only if,

(7.23) lim
N→∞

1
2N + 1

N
∑

−N

|µ̂(n)|2 = 0.

Remarks:a. The averaging that appears in the Theorem and in the
corollary need not be on intervals symmetric with respect to 0. If{Mj}
is an arbitrary sequence of integers, andNj →∞, then for allτ ∈ T

(7.24) µ({τ}) = lim
j→∞

1
Nj + 1

Mj+Nj
∑

Mj

µ̂(n)einτ .

The proof as above, withϕN replaced byΦj = 1
Nj+1

∑Mj+Nj
Mj

eint .

b. The exponent 2 in (7.22) is essential, in (7.23) it can be re-
placed by any positive number. What the condition really says is that
µ̂(n) tends to zero in density, that is: givenε > 0, the proportion in all
sufficiently large intervals, of the integersn such that|µ̂(n)| > ε, is ar-
bitrarily small. In particular, for everyε > 0 and positiveN there exist
in any sufficiently large interval onZ, intervals of lengthN , on which
|µ̂| < ε.

EXERCISES FOR SECTION 7

1. LetB be homogeneous onT andB∗ its dual. Show thatS ∼
∑

ane
int

is the Fourier series of someµ ∈ B∗ if and only if ‖σN (S)‖ is bounded as
N →∞.

2. DenoteKn,τ (t) = KN (t− τ). Show that for everyµ ∈M(T)

σn(µ, τ) = 〈Kn,τ , µ〉 .
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Deduce thatσn(µ, τ) ≥ 0 if µ is positive.
3. Show that a trigonometric series

∑

ane
int such that

∑N

−N ane
int ≥ 0

for all N andt ∈ T is a Fourier-Stieltjes series of a positive measure.
4. We shall prove later (see IV.2.1) that iff ∈ Lp(T) with 1 < p ≤ 2, then

‖f̂‖`q =
(
∑

|f̂(n)|q
)1/q

≤ ‖f‖Lp(T)

(

q =
p

p− 1

)

, .

Assuming this, show that if{an} ∈ `p is a numerical sequence then there exists
a functiong ∈ Lq(T) such that̂g(n) = an, and‖g‖Lq(T) ≤ ‖{an}‖`p .

5. The elements of the dual space ofCm(T) are calleddistributions of
orderm onT. We denote byDm(T) = (Cm(T))∗ the space of distributions of
orderm on T. SinceCm+1(T) ⊂ Cm(T) we haveDm(T) ⊂ Dm+1(T). Write
D(T) = ∪mDm(T).

(a) Prove that ifµ ∈ Dm then

|µ̂(n)| ≤ const |n|m n 6= 0.

(b) Given a numerical sequence{an} satisfyingan = O (|n|m), there exists a
distributionµ ∈ Dm+1 such thatan = µ̂(n) for all n.

Hint: If f ∈ Cm+1(T) then
∑

|nmf̂(n)| <∞.

Thus a trigonometric series
∑

ane
int is the Fourier series of a distribution

onT if and only if, for somem, an = O (|n|m) n 6= 0.

Let µ ∈ D and letO be an open subset ofT. We say thatµ vanishes onO
if 〈ϕ, µ〉 = 0 for all ϕ ∈ C∞(T) such that the support ofϕ (i.e., the closure
of the set{t :ϕ(t) 6= 0}) is contained inO.

(c) Prove that ifµ vanishes on the open setsO1 andO2, then it vanishes on
O1 ∪O2.

Hint: Show that if the support ofϕ ∈ C∞(T) is contained inO1 ∪ O2

then there existϕ1, ϕ2 ∈ C∞(T), with supports contained inO1, O2 re-
spectively, such thatϕ = ϕ1 + ϕ2.

(d) Extend the result of (c) to any finite union of open sets; hence, using the
compactness of the support of the test functionsϕ, show that ifµ vanishes
in the open setsOα, α running over some index setI, thenµ vanishess on
⋃

α∈I Oα.

Thus the union of all the open subsets ofT on whichµ vanishes is again
such a set. This is clearly the largest open set on whichµ vanishes.

DEFINITION: Thesupportof µ is the complement inT of the largest open
setO ⊂ T on whichµ vanishes.

(e) Show that ifµ ∈ Dm and if f ∈ Cm(T) vanishes on a neighborhood of
the support ofµ, then〈f, µ〉 = 0. The same conclusion holds if for some
homogeneous Banach spaceB, the distributionµ belongs toB∗ andf ∈ B
(see exercise 2.11).
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(f) We define the derivativeµ′ of a distributionµ ∈ Dm by

〈f, µ′〉 = −〈f ′, µ〉 for f ∈ Cm+1(T).

Show thatµ′ ∈ Dm+1 and̂µ′(n) = in µ̂(n).

(g) Show thatsupport(µ′) ⊂ support(µ).

(h) Show that the mapµ 7→ µ′ mapsDm onto the subspace ofDm+1 consisting
of all µ ∈ Dm+1 satisfyingµ̂(0) = 0.

Hence, everyµ ∈ Dm can be written in the form̂µ(0)dt + µ1 whereµ1 is
themth derivative of a measure.

(i) A distribution µ on T is positiveif 〈f, µ〉 ≥ 0 for every nonnegative test
functionf ∈ C∞(T). Show that a positive distribution is a measure.

Hint: Positivity implies, for real-valuedf , 〈f, µ〉 ≤ max f(t)〈1, µ〉.

6. The dual space ofA(T) is commonly denoted byPM(T) and its ele-
ments referred to as pseudo-measures. Show that with the natural identifica-
tionsM(T) ⊂ PM(T) ⊂ D1(T), andPM(T) consists precisely of thoseµ for
which {µ̂(n)} is bounded. Moreover, the correspondenceµ ↔ {µ̂(n)} is an
isometry ofPM(T) onto`∞.

7. Letα, β ∈ T, letN be an integer, and letµ be the measure carried by the
arithmetic progression{α+ jβ}Nj=−N , which places the mass zero atα and the
massj−1 atα+ jβ, 1 ≤ |j| ≤ N . Show that‖µ‖PM(T) ≤ π + 2.
Hint: See exercise 3.4.

8. Letf ∈ A(T) be real valued and monotonic in a neighborhood oft0 ∈ T.
Show that|f(t)− f(t0)| = O

(

(log|t− t0|−1)−1
)

ast→ t0.
9. Let µ, µn ∈ M(T), n = 1, 2, . . . . Prove thatµn → µ in the weak-star

topology if, and only if,‖µn‖M(T) = O (1) andµ̂n(j)→ µ̂(j) for all j.
10. By definition, a sequence{ξn}∞n=1 ⊂ T is uniformly distributedif for

any arcI ⊂ T we havelimN→∞N
−1
∑N

n=1
11I(ξn) = (2π)−1|I|. Prove the

following statements:
a. {ξn}∞n=1 ⊂ T is uniformly distributed if, and only if,µn = n−1

∑n

1
δξj

converge in the weak-star topology to(2π)−1dt, i.e., if for all integersl 6= 0,
n−1

∑n

1
eilξj → 0. (Weyl’s criterion).

b. if α is an irrational multiple ofπ, the sequence{nα} is uniformly distributed
onT.

11. Show that a measureµ ∈M(T) is absolutely continuous if, and only if,
limτ→0‖µτ − µ‖ = 0, whereµτ is the translate ofµ by τ (defined byµτ (E) =

µ(E − τ)).
12. Letµ ∈M(T). Prove:σn(µ, t) converge to zero at everyt 6∈ support(µ),

the convergence uniform on every closed set disjoint from support(µ).
13. Letµ ∈M(T) be singular with respect to dt (that is, there exists a Borel

setE0 of Lebesgue measure zero, such thatµ(E) = µ(E ∩ E0) for every Borel
setE). Show thatσn(µ, t)→ 0 almost everywhere (dt).
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14. Show that the conclusion of exercise 12 is false if we assumeµ ∈ D1

instead ofµ ∈ M(T); however, if we replace Fejér’s kernel by Poisson’s, the
conclusion is valid for everyµ ∈ D.
Hint: For 0 < δ < π, and positive integersm, limr→1

∂mP(r,t)
∂tm

= 0 uniformly
in (δ, 2π − δ).

15. (Bernstein’s inequality)Let tj,n = (2j+1)π
4n

, andδj,n = δtj,n . Write

µn =
1

2n

2n−1
∑

0

δj,n, νn = Kn(t)µn.

(a) Check that‖νn‖ = ν̂n(0) = 1.

(b) Writeν∗n = neintνn, then‖ν∗n‖ = n, and ̂ν∗n(j) is periodic of period4n and

̂ν∗n(j) =

{

j for |j| ≤ n,
2n− j for n ≤ j ≤ 3n.

(c) Prove Bernstein’s inequality:if P =
∑n

−n aje
ijt, then

(7.25) ‖P ′‖∞ ≤ n ‖P‖∞ .

Hint: P ′ = ν∗n ∗ P .

(d) Prove that ifP =
∑n

−n aje
ijt, then ‖˜P ′‖∞ ≤ n ‖P‖∞ .

Hint: Find a measureµn of normn such that̂µn(j) = |j| for |j| ≤ n.

(e) LetB be a homogeneous Banach space onT, andP =
∑n

−n aje
ijt ∈ B.

Prove that‖P ′‖B ≤ n‖P‖B, and‖˜P ′‖B ≤ n ‖P‖B .

8 ADDITIONAL COMMENTS AND APPLICATIONS

8.1 Approximation by trigonometric polynomials. The order
of magnitude of the Fourier coefficients of a functionf gives some
indication of the smoothenss of the function. We get more precise in-
formation from the rapidity of the approximation off by trigonometric
polynomials (as a function of their degree), or from the decomposition
of f into a series of polynomials given by (8.8) below.

For ϕ ∈ C(T) denoteEn(ϕ) = inf‖ϕ − P‖∞, the infimum for all
trigonometric polynomialsP of degree≤ n.

If m is a positive integer and0 < η < 1, Cm+η(T) denotes the space
{f ∈ Cm(T) : f (m) ∈ Lipη}, endowed with the norm

‖f‖Cm+η = ‖f‖Cm(T) + ‖f (m)‖Lipη .
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Theorem (Jackson). Letm be a non-negative integer, and0 ≤ η < 1.
If f ∈ Cm+η(T), then:

(8.1) En(f) = O
(

n−m−η
)

.

The converse of the statement is true providedη > 0. See 8.3 below.

The proof will use the information we have in the exercises for Sec-
tion 3, Bernstein’s inequality for derivatives of polynomials (exercise
7.15 above), and the “reverse inequality” which is discussed in the fol-
lowing subsection.

8.2 The “reverse Bernstein inequality”.

Theorem. Letm be a positive integer. There exist a constantCm such
that if f =

∑

|j|≥n aje
ijt ∈ Cm(T), then

(8.2) ‖f‖∞ ≤ Cm|n|−m‖f (m)‖∞.

PROOF: We prove the following statement:given positive integersm
andn, there exist measuresµm,n such that

(8.3) µ̂m,n(j) = j−m for |j| ≥ n, and ‖µm,n‖M(T) ≤ Cmn−m.

Sincef = imµm,n ∗ f (m), this clearly implies (8.2).
Denote byφm,n the positive function inL1(T) whose Fourier coef-

ficients are given by

̂φm,n(j) =

{

j−m for |j| ≥ n
n−m + (n− |j|)(n−m − (n+ 1)−m) for |j| < n.

The coefficients in the range|j| < n are chosen so as to fulfill the
conditions of Theorem 4.1: they are symmetric, linear in[0, n+ 1] with
slope matching that of{j−m} on [n, n+ 1], so that̂φm,n(j) is convex on
[0,∞). It follows that

‖φm,n‖L1 = ̂φm,n(0) < (m+ 1)n−m.

For evenm setµm,n = φm,ndt and obtainCm = m+ 1.
Form = 1, we use the polynomials

Ψn,k = ei2
kntK2k(n−1) +

1
2
ei2

k+1ntK2k(n−1),
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Clearly‖Ψn,k‖L1(T) ≤ 3/2, ̂Ψn,k(j) = 0 for negativej, while for j ≥ n
∑∞
k=0

̂Ψn,k(j) = 1 (with one or two non-zero summands for eachj). It
follows that the function

Φ∗n(t) =
∞
∑

k=0

Ψn,k ∗ φ1,n2k

satisfies:̂Φ∗n(j) = 0 for j ≤ 0, ̂Φ∗n(j) = 1/j for all j ≥ n, and

(8.4)
∥

∥

∥Φ∗n
∥

∥

∥

L1(T)
≤ 3/2

∑

‖φ1,n2k‖ ≤ 6n−1.

We setµ1,n =
(

Φ∗n(t)− Φ∗n(−t)
)

dt, and (8.2) holds withC1 = 12.
Finally, form = 2l + 1 we setµm,n = µ1,n ∗ µ2l,n andCm = 12m. J

For polynomials of the formP =
∑

n≤|j|≤4n aje
ijt we have

(8.5) C−1
m nm‖P‖∞ ≤ ‖P (m)‖∞ ≤ (4n)m‖P‖∞.

Moreover, the same holds if we replace‖ ‖∞ by the norm of any ho-
mogeneous Banach space onT.

8.3 Lemma. LetPk be trigonometric polynomials of degrees bounded
by 2k and‖Pk‖∞ = O

(

2−(m+η)k
)

. Thenf =
∑

Pk ∈ Cm+η(T).

PROOF: By Bernstein’s inequality, we have‖Pk‖Cm(T) = O
(

2−ηk
)

so

the series converges inCm(T), andf ∈ Cm. Focusing onP (m)
k we have

(8.6) ‖P (m)
k ‖∞ = O

(

2−ηk
)

, and ‖P (m+1)
k ‖∞ = O

(

2(1−η)k
)

,

which imply

(8.7) |P (m)
k (t+ h)− P (m)

k (t)| ≤

{

C|h|2k(1−η)) for |h| ≤ 2−kη

C2−kη for |h| ≥ 2−kη

the constantC coming from theO bound. For anyh and anyt ∈ T,

∣

∣f (m)(t+h)−f (m)(t)
∣

∣ ≤ C
(
∑

|h|≤2−kη

|h|2k(1−η)+
∑

|h|≥2−kη

2−kη
)

≤ C1|h|η,

andf ∈ Cm+η(T). J
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If f ∈ C(T), n ≥ 2, the polynomialWn(f) = (V2n−Vn)∗ f is of the
form

∑

n≤|j|≤4n aje
ijt. We setW1(f) = V2 ∗ f , and have

(8.8) f = limV2k ∗ f =
∑

k≥1

W2k(f).

Notice that, since‖V2n − Vn‖L1(T) < 6, we have, for any homoge-
nous Banach spaceB onT,

(8.9) ‖Wn(f)‖B ≤ 6 ‖f‖B .

Theorem. Letm ≥ 0 be an integer and0 < η < 1. A necessary and
sufficient condition forf to be inCm+η(T) is

(8.10) ‖Wn(f)‖∞ = O
(

n−m−η
)

.

For η = 0, the condition(8.10)is necessary, but not sufficient.

PROOF: For anyg,Wn(g) = 2(K4n ∗g−g)−3(K2n ∗g−g)+(Kn ∗g−g),
and hence

(8.11) ‖Wn(g)‖∞ ≤ 6 max
k=n,2n,4n

‖σk(g)− g‖∞.

Combine this (forg = f (m), wheref ∈ Cm+η, and0 < η < 1,) with
exercise 2 at the end of Section 3, and obtain

(8.12) ‖Wn(f (m))‖∞ ≤ C‖f (m)‖Lipηn
−η,

whereC is a universal constant. By (8.5), and the fact that convolution
commutes with differentiation, thus‖Wn(f)‖∞ ≤ C‖f‖Cm+ηn−(m+η),
and we proved the “necessary” part of the theorem. For the proof that
condition (8.10) is sufficient, writePk = W2k(f) and apply the lemma.

J

This is essentially Jackson’s theorem. Our estimate ofWn(f) was
based on the estimate‖σn(f (m)) − f (m)‖∞ ≤ C‖f‖Cm+ηn−η, which
implies the same (with a different constant) for‖Vn ∗ f (m) − f (m)‖∞,
and the “reverse Bernstein inequality” gives†

En(f) ≤ ‖Vn ∗ f − f‖∞ ≤ C‖f‖Cm+ηn−(m+η).

This is the “direct” side of Jackson’s theorem. The “converse” follows
from the current theorem combined with the observation that for any
polynomialP of degree less than2k we haveW2k(f) = W2k(f − P ),
hence‖W2k(f)‖∞ ≤ E2k−1(f).

†This is the reason we useVn rather thanσn: for f = cos t, σn(f)− f = n−1f .
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8.4 One application of Theorem 8.2 is the fact that iff ∈ Cm+η,
wherem ≥ 0 is an integer, and0 < η < 1, then ˜S[f ], the conjugate
Fourier series off , is also the Fourier series of a function inCm+η. In
the terminology of the next chapter,Cm+η admits conjugation. This
follows from

Lemma. LetP be a polynomial of the formP =
∑

n≤|j|≤4n aje
ijt, and

˜P its conjugate,˜P =
∑

n≤|j|≤4n sgn(j)ajeijt. Then

‖ ˜P‖∞ ≤ 7‖P‖∞.

PROOF: ˜P = P − 2(e−i 3ntV2n ∗ P ). J

Theorem. Cm+η admits conjugation.

PROOF: With some abuse of notation we may writef̃ =
∑

n≥1 W̃2n(f),
use the lemma, and invoke Theorem 8.2. J

8.5 Multipliers on Fourier coefficients. Let B andB1 be ho-
mogeneous Banach spaces onT and letT be an operator fromB into
B1 which commutes with translations. Then, for alln, Teint = t(n)eint

and for f ∈ B the Fourier series ofTf is
∑

t(n)f̂(n)eint. In other
words,T is expressed as amultiplier on the Fourier coefficients off .
We have seen concrete examples of this whenT was differentiation, or
convolution by a fixed measure, and just in the previous subsection—
conjugation, for which the multiplier ist(n) = sgn(n).

The proof of Theorem 8.4 can be imitated for other multipliers. For-
mally, if {t(n)} is given, the operatorT : f 7→

∑

t(n)f̂(n)eint is well
defined for polynomialsf . If we denote‖T‖n the norm of the multiplier
restricted to the sup-normed space of trigonometric polynomials of the
form

∑

2n≤|j|≤2n+2 aje
ijt, then the proof of Theorem 8.4 consisted in

the observation that‖T‖n is uniformly bounded whent(n) = sgn(n).
The same argument, using Theorem 8.2, proves

Theorem. A sequence{t(n)} is a multiplierCr1 7→ Cr2 , r2 6∈ Z, if and
only if ‖T‖n = O∗

(

2n(r2−r1)
)

. In particular, this is true if

(8.13)
∑

2n≤|j|≤2n+2

|t(n)|2 = O
(

22n(r2−r1)
)

.
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PROOF: We check that (8.13) implies the estimate‖T‖n = O
(

2n(r2−r1)
)

.
For polynomials of the form

∑

2n≤|j|≤2n+2 aje
ijt the operatorT is the

convolution with the kernelTn(t) =
∑

2n≤|j|≤2n+2 t(j)eijt, and its norm
is bounded by‖Tn‖L1(T) ≤ ‖Tn‖L2(T). J

8.6 The difference equation. Given a functionf ∈ L1(T) and
α ∈ T, we are asked to findg such that

(8.14) g(t+ α)− g(t) = f(f).

Under what condition can this be done and what can be said about the
“solution” g?

Formally the solution is obvious, at least ifg ∈ L1(T): (8.14) is
satisfied if, and only if,

(8.15) for alln ∈ Z ĝ(n)(einα − 1) = f̂(n),

in other words, we need to setĝ(0) = 0 and

(8.16) ĝ(n) = (einα − 1)−1f̂(n),

and the question becomes that of identifying (pairs of) spaces on which
the sequence(einα − 1)−1 is a multiplier. The answer depends on the
diophantine properties ofα, i.e., on the rate of growth of(einα − 1)−1.

Theorem. If |einα − 1| ≥ C|n|−γ then the sequence{(einα − 1)−1} is
a multiplier Cr1(T) 7→ Cr2(T) wheneverr1 − r2 > γ. If r2 is not an
integer, the same holds forr1 − r2 = γ.

Lemma. Let {zj}M−M ⊂ T be such that forj 6= k, |zj − zk| ≥ a, and
|zj − 1| ≥ a. Then

∑

|zj − 1|−2 ≤ 4a−2.

PROOF: The worst estimate is obtained when the points are packed as
close to 1 as the condition permits, that is, forzj = eija, j 6= 0, and
z0 = ei(M+1)a. J

PROOF OF THE THEOREM. The lemma, withM = 2n+2 anda = C2−nγ ,
implies

∑

2n≤|j|≤2n+2

|(einα − 1)|−2 = O
(

22nγ
)

.

Now apply theorem 8.5. J
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EXERCISES FOR SECTION 8

1. Show that ifm is an integer, the conditionEn(f) = o
(

n−m logn
)

is
necessary forf ∈ Cm(T) but is not sufficient. Show also that the condition
∑

k
2kmE2k(f) <∞ is sufficient; is it necessary?
2. LetB be a homogenoeous Banach space onT. For f ∈ B consider the

B-valued functionϕ(τ) = fτ . Prove that ifϕ is differentiable at someτ0 ∈ T,
it is uniformly differentiable onT, and that this happens if, and only if,f ′ ∈ B.

3. LetB be a homogeneous Banach space onT and assume that, for some
1 ≤ p < ∞, ‖ · ‖B is equivalent to‖{‖W2n( · )‖B}‖`p . Prove thatB admits
conjugation



Chapter II

The Convergence of Fourier Series

We have mentioned already that the problems of convergence of
Fourier series, that is, the convergence of the (symmetric) partial sums,
Sn(f), are far more delicate than the corresponding problems of summa-
bility with respect to "good" summability kernels such as Fejér’s or
Poisson’s. As in the case of summability, problems of convergence "in
norm" are usually easier than those of pointwise convergence. Many
problems, concerning pointwise convergence for various spaces, are
still unsolved and the convergence almost everywhere of the Fourier
series of square summable functions was proved only recently (L. Car-
leson 1965). Convergence is closely related to the existence and proper-
ties of theconjugate function. In this chapter we give only a temporary
incomplete definition of the conjugate function. A proper definition
and the study of the basic properties of conjugation are to be found in
chapter III.

1 CONVERGENCE IN NORM

1.1 LetB be a homogeneous Banach space onT. As usual we write

(1.1) Sn(f) = Sn(f, t) =
n
∑

−n
f̂(j)eijt.

We say thatB admits convergence in norm if

(1.2) lim
n→∞

‖Sn(f)− f‖B = 0.

Our purpose in this section is to characterize the spacesB which have
this property.

We have introduced the operatorsSn : f 7→ Sn(f) in chapter I.Sn
is well defined in every homogeneous Banach spaceB; we denote its
norm, as an operator onB, by ‖Sn‖B.

55
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Theorem. A homogeneous Banach spaceB admits convergence in
norm if, and only if,‖Sn‖B are bounded (asn → ∞), that is, if there
exist a constantK such that

(1.3) ‖Sn(f)‖B ≤ K‖f‖B

for all f ∈ B andn > 0.

PROOF: If Sn(f) converge tof for all f ∈ B, thenSn(f) are bounded
for everyf ∈ B. By the uniform boundedness theorem, it follows that
‖Sn‖B = O(1). On the other hand, if we assume (1.3), letf ∈ B, ε > 0,
and letP be a trigonometric polynomial satisfying‖f − P‖B ≤ ε/2K.
Forn greater than the degree ofP , we haveSn(P ) = P and hence

‖Sn(f)− f‖B =‖Sn(f)− Sn(P ) + P − f‖B

≤‖Sn(f − P )‖B + ‖P − f‖B ≤ K
ε

2K
+

ε

2K
≤ ε. J

1.2 The fact thatSn(f) = Dn ∗ f , whereDn, is the Dirichlet kernel

(1.4) Dn(t) =
n
∑

−n
eijt =

sin(n+ 1/2)t
sin t/2

yields a simple bound for‖Sn‖B. In fact,‖Dn ∗f‖B ≤ ‖Dn‖L1‖f‖B, so
that

(1.5) ‖Sn‖B ≤ ‖Dn‖L1 .

The numbersLn = ‖Dn‖L1 are called theLebesgue constants; they
tend to infinity like a constant multiple oflog n (see exercise 1 at the
end of this section).

In the caseB = L1(T) the inequality (1.5) becomes an equality. This
can be seen as follows: denote byKN the Fejér kernel and remember
that‖KN‖L1 = 1. We have‖Sn‖L

1 ≥ ‖Sn(KN )‖L1 = ‖σN (Dn)‖L1 and
sinceσN (Dn)→ Dn, asN →∞, we obtain

‖Sn‖L
1(T) ≥ ‖Dn‖L1 ; hence‖Sn‖L

1(T) = ‖Dn‖L1 .

It follows thatL1(T) does not admit convergence in norm.
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1.3 In the caseB = C(T) convergence in norm is simply uniform
convergence. We show that Fourier series of continuous functions need
not converge uniformly by showing that‖Sn‖C(T) are unbounded; more
precisely we show that‖Sn‖C(T) = Ln. For this, we consider continu-
ous functionsψn satisfying

‖ψn‖∞ = supt|ψn(t)| ≤ 1

and such thatψn(t) = sgn(Dn(t)) except in small intervals around the
points of discontinuity of sgn(Dn(t)). If the sum of the lengths of these
intervals is smaller thanε/2n, we have

‖Sn‖C(T) ≥ |Sn(ψn, 0)| = 1
2π

∫

Dn(t)ψn(t) dt > Ln − ε

which, together with (1.5), proves our statement.

1.4 For a class of homogeneous Banach spaces onT, the problem
of convergence in norm can be related to invariance under conjugation.
In chapter I we defined the conjugate series of a trigonometric series
∑

ane
int to be the series−i

∑

sgn(n)aneint. If f ∈ L1(T) and if the
series conjugate to

∑

f̂(n)eint is the Fourier series of some function
g ∈ L1(T), we call g the conjugate function off and denote it bỹf .
This definition is adequate for the purposes of this section; however, it
does not definẽf for all f ∈ L1(T) and we shall extend it later.

DEFINITION: A space of functionsB ⊆ L1(T) admits conjugation
if for every f ∈ B, f̃ is defined and belongs toB.

If B is a homogeneous Banach space which admits conjugation,
then the mappingf 7→ f̃ is a bounded linear operator onB. The linear-
ity is evident from the definition and in order to prove the boundedness
we apply the closed graph theorem. All that we have to do is show that
the operatorf 7→ f̃ is closed, that is, that iflim fn = f andlim f̃n = g in
B, theng = f̃ . This follows from the fact that for every integerj

ĝ(j) = lim
n→∞

ˆ̃
fn(j) = lim

n→∞
−i sgn(j)f̂n(j) = −i sgn(j) lim

n→∞
f̂n(j)

= −i sgn(j)f̂(j) = ˆ̃
f(j).

If B admits conjugation then the mapping

(1.6) f 7→ f [ =
1
2
f̂(0) +

1
2

(f + if̃) ∼
∞
∑

0

f̂(j)eijt
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is a well-defined, bounded linear operator onB. Conversely, if the map-
ping f 7→ f [ is well-defined in a spaceB, thenB admits conjugation
sincef̃ = −i(2f [ − f − f(0)).

Theorem. LetB be a homogeneous Banach space onT and assume
that for f ∈ B and for alln, eintf ∈ B and

(1.7) ‖eintf‖B = ‖f‖B .

ThenB admits conjugation if, and only if,B admits convergence in
norm.

PROOF: By Theorem 1.1 and the foregoing remarks, it is clearly suf-
ficient to prove that the mappingf 7→ f [ is well defined inB if, and
only if, the operatorsSn are uniformly bounded onB. Assume first
that there exists a constantK such that‖Sn‖B ≤ K. Define

(1.8) S[n(f) =
2n
∑

0

f̂(j)eijt = eintSn(e−intf);

by (1.7) we have‖S[‖B ≤ K.
let f ∈ B and ε > 0; let P ∈ B be a trigonometric polynomial

satisfying‖f − P‖B ≤ ε/2K. We have

(1.9) ‖S[n(f)− S[n(P )‖B = ‖S[n(f − P )‖B ≤
ε

2
.

If n andm are both greater than the degree ofP , S[n(P ) = S[m(P ) and
it follows from (1.9) that

‖S[n(f)− S[m(f)‖B ≤ ε.

The sequence{S[n(f)} is thus a Cauchy sequence inB; it converges and
its limit has the Fourier series

∑∞
0 f̂(j)eijt. Sof [ = limS[n(f) ∈ B.

Assume conversely thatf 7→ f [ is well defined, hence bounded, in
B. Then

S[nf = f [ − ei(2n+1)t(e−i(2n+1)tf)[

which means that‖S[n‖B is bounded by twice the norm overB of the
mappingf 7→ f [. Since, by (1.7) and (1.8),‖Sn‖B = ‖S[n‖B, the theo-
rem follows. J
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1.5 We shall see in chapter III that, for1 < p < ∞, Lp(T) admits
conjugation, hence:

Theorem. For 1 < p < ∞, the Fourier series of everyf ∈ Lp(T)
converges tof in theLp(T) norm.

EXERCISES FOR SECTION 1

1. Show that the Lebesgue constantsLn = ‖Dn‖L1(T), satisfy
Ln = 4/π2 logn+O (1).
Hint:†

Ln =
1

π

∫ π

0

∣

∣

sin(n+ 1
2
)t

sin t/2

∣

∣dt =
2

π

n−1
∑

j=1

∫ (j+1)π
n+1/2

jπ
n+1/2

|sin(n+ 1
2
)t|

t
dt+O (1) ;

remember that
∫ (j+1)π

n+1/2

jπ
n+1/2

|sin(n+ 1/2)t|dt =
2

n+ 1
.

2. Show that if the sequence{Nj} tends to infinity fast enough, then the
Fourier series of the function

f(t) =

∞
∑

1

2−jKNj (t)

does not converge inL1(T).
3. Let {an} be an even sequence of positive numbers, convex on(0,∞)

and vanishing at infinity (cf. I.4.1). Prove that the partial sums of the series
∑

ane
int are bounded inL1(T) if, and only if, an logn = O (1) and the series

converges inL1(T) if, and only if, lim an logn = 0.
4. Show thatB = Cm(T) does not admit convergence in norm.

Hint: Sn commute with derivation.
5. Letϕ be a continuous, concave (i.e.,ϕ(h) +ϕ(h+ 2δ) ≤ 2ϕ(h+ δ)), and

increasing function on[0, 1], satisfyingϕ(0) = 0. Denote byΛϕ the subspace
of C(T) consisting of the functionsf for which, ash→ 0, ω(f, h) = O (ϕ(h)).
Denote byλϕ the subspace ofΛϕ consisting of the functionsf for which
ω(f, h) = o(ϕ(h)) ash → 0. (ω(f, h) is the modulus of continuity off ; see
I.4.6.) Consider the following statements:

(a)ϕ(h) = O
(

−(log h)−1
)

ash→ 0.
(b) For everyf ∈ λϕ S[f ] is uniformly convergent.
(c) ϕ(h) = o(−(log h)−1) ash→ 0.
(d) For everyf ∈ Λϕ, S[f ] is uniformly convergent.
Show that (a) is equivalent to (b) and that (c) is equivalent to (d).

†For another way, see [16].
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2 CONVERGENCE AND DIVERGENCE AT A POINT

We have seen in the previous section that the Fourier series of a
continuous function need not converge uniformly. In this section we
show that it may even fail to converge pointwise, and then give two
criteria for the convergence of Fourier series at a point.

2.1 Theorem. There exists a continuous function whose Fourier se-
ries diverges at a point.

We give two proofs which are in fact one; the first is "abstract"
based on the Uniform Boundedness Principle, and is very short. The
second is a construction of a concrete example in essentially the way
one proves the Uniform Boundedness Principle.

PROOFA: The mappingsf 7→ Sn(f, 0) are continuous linear function-
als onC(T), We saw in the previous section that these functionals are
not uniformly bounded and consequently, by the Uniform Boundedness
theorem, there exists anf ∈ C(T) such that{Sn(f, 0)} is not bounded.
In other words, the Fourier series off diverges unboundedly att = 0.

J

PROOFB: As we have seen in section 1, there exists a sequence of
functionsψn ∈ C(T) satisfying:

(2.1) ‖ψn‖∞ ≤ 1,

(2.2) |Sn(ψn, 0)| > 1
2
‖Dn‖L1 >

1
10

log n.

We putϕn(t) = σn2(ψn, t) and notice thatϕn is a trigonometric
polynomial of degreen2 satisfying

(2.1’) ‖ϕn‖∞ ≤ 1,

and |Sn(ϕn,t) − Sn(ψn,t)| < 2

hence

(2.2’) |Sn(ϕn, 0)| > 1
10

log n− 2.

With λn = 23n we define

(2.3) f(t) =
∑ 1

n2
ϕλn(λnt)
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and claim thatf is a continuous function whose Fourier series diverges
at t = 0. The continuity off follows immediately from the uniform
convergence of the series in (2.3); to show the divergence of the Fourier
series off at zero, we notice thatϕλj (λjt) =

∑

m ϕ̂λj (m)eiλjt; hence

|Sλ2
n
(f, 0)| = |Sλ2

n

(
n
∑

1

1
j2
ϕλj (λjt), 0

)

+
∞
∑

n+1

1
j2
ϕ̂λj (0)|

=
∣

∣

∣

n−1
∑

1

1
j2
ϕλj (0) +

1
n2
Sλn(ϕλn , 0) +

∞
∑

n+1

1
j2
ϕ̂λj (0)

∣

∣

∣

≥ K

n2
log λn − 3,

(2.4)

which tends to∞, and the theorem follows. J

Remark:

f(t) =
m−1
∑

1

1
n2
ϕλn(λnt) +

∞
∑

n

1
n2
ϕλn(λnt).

The first sum is a trigonometric polynomial and so does not affect the
convergence of the Fourier series off . The second sum is periodic
with period2π/λm (sinceλm dividesλk for k ≥ m); consequently the
partial sums of the Fourier series off are unbounded at every point of
the form2πj/λm for any positive integersj andm. If we want to obtain
divergence at every rational multiple of2π, all that we have to do is put
λn = n!23n .

2.2 Our first convergence criterion is really a simple Tauberian theo-
rem due to Hardy.

Theorem. Let f ∈ L1(T) and assume

(2.5) f̂(n) = O

(

1
n

)

as |n| → ∞.

ThenSn(f, t) andσn(f, t) converge for the same values oft and to the
same limit. Also, ifσn(f, t) converges uniformly on some set, so does
Sn(f, t).

PROOF: The condition (2.5) implies the following weaker condition
which is really all that we need: for everyε > 0 there exists aλ > 1
such that

(2.5’) lim sup
n→∞

∑

n≤|j|≤λn

|f̂(j)| < ε.
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Let ε > 0 and letλ > 1 be such that (2.5’) is valid. We have

Sn(f, t) =
[λn] + 1
[λn]− n

σ[λn](f, t)−
n+ 1

[λn]− n
σn(f.t)

− [λn] + 1
[λn]− n

∑

n≤|j|≤λn

(

1− |j|
[λ] + 1

)

f̂(j)eijt .
(2.6)

(where[λn] denotes the integral part ofλn). By (2.5’) there exists an
n0 such that ifn > n0, the last term in (2.6) is bounded byε. If σn(f, t0)
converge to a limitσ(f, t0), it follows from (2.6) that forn1 sufficiently
large,n > n1 implies

(2.7) |Sn(f, t0)− σ(f, t0)| < 2ε,

in other words,

(2.8) limSn(f, t0) = σ(f, t0).

The choice ofn1 depends only on the rate of convergence ofσn(f, t0)
to σ(f, t0) so that if this convergence is uniform on some set, so is (2.8).

J

Corollary. Let f be of bounded variation onT; then the partial sums
Sn(f, t) converge to1

2 (f(t+0)+f(t−0)) and in particular tof(t) at ev-
ery point of continuity. The convergence is uniform on closed intervals
of continuity off .

PROOF: By Fejér’s theorem the foregoing holds true forσn(f, t), and
the statement follows from the fact that for functions of bounded varia-
tion, (2.5) is valid (cf. Theorem I.4.5). J

2.3 Lemma. Let f ∈ L1(T) and assume
∫ 1

−1

∣

∣
f(t)
t

∣

∣dt <∞. Then

limSn(f, 0) = 0.

PROOF:

Sn(f, 0) =
1

2π

∫

f(t)
sin t

2

sin(n+ 1/2)t dt =

1
2π

∫

f(t) cosntdt+
1

2π

∫

f(t) cos t/2
sin t/2

sin tdt
(2.9)

By our assumptionf(t) cos t/2
sin t/2 ∈ L1(T); hence, by the Riemann-Lebesgue

lemma, all the integrals in (2.9) tend to zero. J
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2.4 Theorem (Principle of localization). Let f ∈ L1(T) and as-
sume thatf vanishes in an open intervalI. ThenSn(f, t) converge to
zero fort ∈ I, and the convergence is uniform on closed subsets ofI.

PROOF: The convergence to zero at everyt ∈ I is an immediate conse-
quence of Lemma 2.3. IfI0 is a closed subinterval ofI, the functions

ϕt0(t) = f(t− t0) cos t/2
sin t/2 , t0 ∈ I0, form a compact family inL1(T),

hence by Remark I.2.8, the integrals in (2.9) corresponding tof(t− t0),
t0 ∈ I0, tend to zero uniformly. J

The principle of localization is often stated as follows:let f, g ∈ L1(T)
and assume thatf(t) = g(t) in some neighborhood of a pointt0. Then
the Fourier series off andg at t0 are either both convergent and to the
same limit or both divergent and in the same manner.

2.5 Another immediate application of Lemma 2.3 yields

Theorem (Dini’s test). Let f ∈ L1(T). If

∫ 1

−1

∣

∣

∣

f(t+ t0)− f(t0)
t

∣

∣

∣dt <∞

then
Sn(f, t0)→ f(t0).

EXERCISES FOR SECTION 2

1. Show that if a sequence of continuous functions on some interval is
unbounded on a dense subset of the interval, then it is bounded only on a set of
the first category. Use that to show that the Fourier series off (defined in (2.3))
converges only on a set of the first category.

2. Show that for every given (countable) sequence{tn} there exists a con-
tinuous function whose Fourier series diverges at everytn.

3. Letg be the2π-periodic function defined by:g(0) = 0, g(t) = t− π for
0 < t < 2π.

(a) Discuss the convergence of the Fourier series ofg.
(b) Show that|Sn(g, t)| ≤ π + 2 for all n andt.
(c) Putϕn(t) = (π+2)−1eintSn(g, t); show that‖ϕn‖∞ ≤ 1 and|Sn(ϕn, 0)| >

K logn for some constantK > 0.
(d) Show that for|t| < π/2, some constantK1, and alln andm,

|Sm(ϕn, t)| ≤
K1

|t|
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(e) Show that for a proper choice of the integersnj andλj , the Fourier
series of the continuous function

f(t) =

∞
∑

j=1

1

j2
eiλjtϕnj (t)

diverges fort = 0 and converges for all othert ∈ T.

?3 SETS OF DIVERGENCE

3.1 We consider a homogeneous Banach spaceB onT.

DEFINITION: A setE ⊂ T is aset of divergence forB if there exists
anf ∈ B whose Fourier series diverges at every point ofE.

3.2 DEFINITION: For f ∈ L1(T) we put

S∗n(f, t) = supm≤n|Sm(f, t)|

S∗(f, t) = supn|Sn(f, t)|.
(3.1)

Theorem. E is a set of divergence forB if, and only if, there exists an
elementf ∈ B such that

(3.2) S∗(f, t) =∞ for t ∈ E.

The theorem is an easy consequence of the following:

Lemma. Letg ∈ B. There exist an elementf ∈ B, and a positive even
sequence{Ωj} such thatlimj→∞ Ωj =∞ monotonically, and such that
f̂(j) = Ωj ĝ(j) for all j ∈ Z.

PROOF OF THE LEMMA: Let λ(n) be such that‖σλ(n)(g) − g‖B < 2−n.
We writef = g +

∑

(g − σλn(g)). The series converges in norm; hence
f ∈ B. Also f̂(j) = Ωj ĝ(j) whereΩj = 1 +

∑∞
n=1 min(1, |j|/(λn + 1)).

J

PROOF OF THE THEOREM: Condition (3.2) is clearly sufficient for the
divergence of

∑

f̂(j)eijt for all t ∈ E. Assume, on the other hand, that
for someg ∈ B,

∑

ĝ(j)eijt diverges at every point ofE. Let f ∈ B

and{Ωj} be the function and the sequence corresponding tog by the
lemma. We claim that (3.2) holds forf .
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This follows from: forn > m,

Sn(g, t)− Sm(g, t) =
n
∑

m+1

(

Sj(f, t)− Sj−1(f, t)
)

Ω−1
j

=Sn(f, t)Ω−1
n − Sm(f, t)Ω−1

m+1

+
n−1
∑

m+1

(Ω−1
j − Ω−1

j+1)Sj(f, t),

(3.3)

hence
∣

∣Sn(f, t)− Sm(f, t)
∣

∣ ≤ 2S∗(f, t)Ω−1
m+1.

It follows that if S∗(f, t) < ∞, the Fourier series ofg converges and
t 6∈ E. J

Remark: Let ωn, n ≥ 1, be positive numbers such thatωj = O (Ωj),
and

∑∞
1 (Ω−1

j − Ω−1
j+1)ωj < ∞. Then, for allt ∈ E, Sj(f, t) 6= o(ωj).

This follows immediately from (3.3).

3.3 For the sake of simplicity we assume throughout the rest of this
section that

(3.4) If f ∈ B and n ∈ Z then eintf ∈ B and ‖eintf‖B = ‖f‖B .

Lemma. Assume(3.4); then E is a set of divergence forB if, and
only if, there exists a sequence of trigonometric polynomialsPj ∈ B

such that

(3.5)
∑

‖Pj‖B <∞ and supS∗(Pj , t) =∞ on E.

PROOF: Assume the existence of a sequence{Pj} satisfying (3.5). De-
note bymj the degree ofPj and letνj be integers satisfying

νj > νj−1 +mj−1 +mj .

Putf(t) =
∑

eiνjtPj(t). Forn ≤ mj we have

Sνj+n(f, t)− Sνj−n−1(f, t) = eiνjtSn(Pj , t);

hence
∑

f̂(j)eijt diverges onE.
Conversely, assume thatE is a set of divergence forB. By Remark

3.2 there exists a monotone sequenceωn → ∞ and a functionf ∈ B
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such that|Sn(f, t)| > ωn infinitely often for everyt ∈ E. We now pick
a sequence of integers{λj} such that

(3.6) ‖f − σλj (f)‖B < 2−j

and then integersµj such that

(3.7) ωµj > 2 supt S
∗(σλj (f), t)

and writePj = Vµj+1 ∗ (f − σλj (f)) where as usualVµ denotes de la
Vallée Poussin’s kernel (see 1.2.13). It follows immediately from (3.6)
that

∑

‖Pj‖B <∞. If t ∈ E andn is an integer such that|Sn(f, t)| > ωn,
then for somej, µj < n ≤ µj+1 and

Sn(Pj , t) = Sn(f − σλj (f), t) = Sn(f, t)− Sn(σλj (f), t).

Hence, by (3.7),|Sn(Pj , t)| > 1
2ωn, and (3.5) follows. J

Theorem. Assume (3.4). LetEj, j = 1, 2, . . . , be sets of divergence
for B. ThenE = ∪Ej is a set of divergence forB.

PROOF: Let {P jn} be the sequence of polynomials corresponding toEj.
Omitting a finite number of terms for eachj does not change (3.5), but
permits us to assume

∑

j,n‖P jn‖ < ∞ which shows, by the lemma, that
E is a set of divergence forB. J

3.4 We turn now to examine the sets of divergence forB = C(T).

Lemma. LetE be a union of a finite number of intervals onT; denote
the measure ofE by δ. There exists a trigonometric polynomialϕ such
that

S∗(ϕ, t) >
1

2π
log
( 1

3δ

)

onE

‖ϕ‖∞ ≤ 1 .
(3.8)

PROOF: It will be convenient to identifyT with the unit circumference
{z : |z| = 1}. Let I be a (small) interval onT, I = {eit|t− t0| ≤ ε : };
the functionψI = (1 + ε− ze−it0)−1 has a positive real part throughout
the unit disc, its real part is larger than1/3ε on I, and its value at the
origin (z = 0) is (1 + ε)−1. We now writeE ⊂ ∪N1 Ij, thelj being small
intervals of equal length2ε such thatNε < δ, and consider the function

ψ(z) =
1 + ε

N

∑

ψtj (z).
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ψ has the following properties:

<(ψ(z)) >0 for |z| ≤ 1

ψ(0) =1

|ψ(z)| ≥ <(ψ(z)) >
1

3Nε
>

1
3δ

on E .

(3.9)

The functionlogψ which takes the value zero atz = 0 is holomorphic
in a neighborhood of{z : |z| ≤ 1} and has the properties

|=(logψ(z))| < π onT
|logψ(z)| > log(3δ)−1 onE

(3.10)

Since the Taylor series oflogψ converges uniformly onT, we can take
a partial sumΦ(z) =

∑M
1 anz

n of that series such that (3.10) is valid
for Φ in place oflogψ. We can now put

ϕ(t) =
1
π
e−iMt=(Φ(eit)) =

1
πi
e−iMt

(
M
∑

1

ane
int −

M
∑

1

āne
−int

)

and notice that

|SM (ϕ, t)| = 1
2π
|Φ(eit)|. J

Theorem. Every set of measure zero is a set of divergence forC(T).

PROOF: If E is a set of measure zero, it can be covered by a union
∪In, theIn being intervals of length|In| such that

∑

|In| < 1 and such
that everyt ∈ E belongs to infinitely manyln’s. Grouping finite sets
of intervals we can coverE infinitely often by∪En such that every
En is a finite union of intervals and such that|En| <−2n . Let ϕn be
a polynomial satisfying (3.8) forE = En and putPn = n−2ϕn We
clearly have

∑

‖Pn‖∞ < ∞ andS∗(Pn, t) > 2n−1/2πn2 onEn. Since
everyt ∈ E belongs to infinitely manyEn’s, our theorem follows from
Lemma 3.3. J

3.5 Theorem. LetB be a homogeneous Banach space onT satisfy-
ing the condition(3.4). AssumeB ⊃ C(T); then eitherT is a set of
divergence forB or the sets of divergence forB are precisely the sets
of measure zero.
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PROOF: By Theorem 3.4 it is clear that every set of measure zero is a
set of divergence forB. All that we have to show in order to complete
the proof is that, if some set of positive measure is a set of divergence
for B, thenT is a set of divergence forB.

Assume thatE is a set of divergence of positive measure. Forα ∈ T
denote byEα the translate ofE by α; Eα is clearly a set of divergence
for B. Let {αn} be the sequence of all rational multiples of2π and put
Ẽ = ∪Eα. By Theorem 3.2̃E is a set of divergence, and we claim that
T \ Ẽ is a set of measure zero. In order to prove that, we denote byχ

the indicator function of̃E and notice that

χ(t− α) = χ(t) for all t andαn.

This means
∑

j

χ̂(j)e−iαnjeijt =
∑

j

χ̂(j)eijt

or
χ̂(j)e−iαnj = χ̂(j) (all αn)

If j 6= 0, this impliesχ̂(j) = 0; henceχ(t) =constant almost everywhere
and, sinceχ is an indicator function, this implies that the measure ofẼ

is either zero or2π. SinceẼ ⊃ E, Ẽ is almost all ofT.
Now T \ Ẽ is a set of divergence (being of measure zero) andẼ is a

set of divergence, henceT is a set of divergence. J

3.6 Thus, for spacesB satisfying the conditions of Theorem 3.5, and
in particular forB = Lp(T), 1 < p < ∞, or B = C(T), either there
exists a functionf ∈ B whose Fourier series diverges everywhere, or
the Fourier series of everyf ∈ B converges almost everywhere. In the
caseB = L1(T) it was shown by Kolmogorov that the first possibility
holds. The case ofB = L2(T) was settled only recently by L. Carleson
[4], who proved the famous "Lusin conjecture"; namely that the Fourier
series of functions inL2(T) converge almost everywhere. This result
was extended by Hunt [12] to allLp(T) with p > 1. The proof of these
results is still rather complicated and we do not include it. We finish
this section with Kolmogorov’s theorem.

Theorem. There exists a Fourier series diverging everywhere.

PROOF: For arbitraryκ > 0 we shall describe a positive measureµκ, of
total mass one having the property that for almost allt ∈ T

(3.11) S∗(µκ, t) = supn|Sn(µκ, t)| > κ.
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Assume for the moment that suchµκ exist; it follows from (3.11) that
there exists an integerNκ and a setEκ of (normalized Lebesgue) mea-
sure greater than1− 1/κ, such that fort ∈ Eκ

(3.12) supn<Nκ |Sn(µκ, t)| > κ

If we write nowϕκ = µκ ∗ VNκ , (VNκ being de la Vallée Poussin’s
kernel), thenϕκ is a trigonometric polynomial,‖ϕκ‖L1(T) < 3 and

S∗(ϕκ, t) ≥ supn<Nκ |Sn(ϕκ, t)| = supn<Nκ |Sn(µκ, t)| > κ

onEκ. Applying Lemma 3.3 withPj = j−2ϕ2j we obtain that the set
E = ∩m ∪m≤j E2j is a set of divergence forL1(T). SinceE is almost
all T, Kolmogorov’s theorem would follow from Theorem 3.5.

The description of the measuresµκ is very simple; however, for the
proof that (3.11) holds for almost allt ∈ T, we shall need the following
very important theorem of Kronecker (see VI.9).

Theorem (Kronecker). Let {xj}Nj=1, N ≥ 1, be real numbers such
that x1, . . . , xN , π are linearly independent over the field of rational
numbers. Letε > 0 andα1, . . . , αN be real numbers, then there exists
an integern such that

|einxj − eiαj | < ε j = 1, . . . , N.

We construct now the measuresµκ as follows: letN be an integer,
let x1, . . . , xN be real numbers such thatx1, . . . , xN , π are linearly inde-
pendent over the rationals and such that|xj − (2πj/N)| < 1/N2, and let
µ = 1/N

∑

δxj .
For t ∈ T we have

Sn(µ, t) =
∫

Dn(t− x)dµ(x) =
1
N

N
∑

1

Dn(t− xj) =

=
1
N

N
∑

1

sin(n+ 1
2 )(t− xj)

sin(t− xj)
.

For almost allt ∈ T, the numberst − x1, . . . , t − xN , π are linearly
independent over the rationals. By Kronecker’s theorem there exist, for
each sucht, integersn such that

∣

∣

∣ei(n+ 1
2 )(t−xj) − isgn

(

sin
t− xj

2
)

∣

∣

∣ <
1
2

j = 1, . . . , N :



70 AN INTRODUCTION TOHARMONIC ANALYSIS

hence

sin(n+ 1
2 )(t− xj)

sin 1
2 (t− xj)

>
1
2

∣

∣

∣sin
t− xj

2

∣

∣

∣

−1

for all j.

It follows that

(3.13) Sn(µ, t) >
1

2N

N
∑

j=1

∣

∣

∣sin
t− xj

2

∣

∣

∣

−1

and since thexj ’s are so close to the roots of unity of orderN , the
sum in (3.13) is bounded below by1

2

∫ π

1/N
|sin t/2|−1dt > logN > κ,

provided we takeN large enough. J

EXERCISE FOR SECTION 3

1. LetB be a homogeneous Banach space onT. Show that for everyf ∈ B
there existg ∈ B andh ∈ L1(T) such thatf = g ∗ h.
Hint: Use Lemma 3.2 and Theorem I.4.1.



Chapter III

The Conjugate Function and Functions
Analytic in the Unit Disc

We defined the conjugate function for some summable functions by
means of their conjugate Fourier series. Our first purpose in this chap-
ter is to extend the notion to all summable functions and to study the
basic properties of the conjugate function for various classes of func-
tions. This is done mainly in the first two sections. In section 1 we use
the "complex variable" approach to define the conjugate function and
obtain some basic results about the distribution functions of conjugates
to functions belonging to various classes. In section 2 we introduce
the Hardy-Littlewood maximal functions and use them to obtain re-
sults about the so-called maximal conjugate function. We show that the
conjugate function can also be defined by a singular integral and use
this to obtain some of its local properties. In section 3 we discuss the
Hardy spacesHp. As further reading we mention [11].

1 THE CONJUGATE FUNCTION

1.1 We identify T with the unit circumference{z : z = eit} in the
complex plane. The unit disc{z : |z| < 1} is denoted byD and the
closed unit disc,{z : |z| ≤ 1}, by D̄. For f ∈ L1(T) we denote by
f(reit), r < 1, thePoisson integralof f ,

(1.1) f(reit) = (P(r, ·) ∗ f)(t) =
∞
∑

−∞
r|n|f̂(n)eint.

In chapter I we have consideredP(r, ·) ∗ f as a family of functions
onT, depending on the parameterr, 0 ≤ r < 1. The main idea in this
section is to consider it as a function of the complex variablez = reit

in D.

71
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The functionsr|n|eint, −∞ < n < ∞, are harmonic inD, and,
since the series in (1.1) converges uniformly on compact subsets of
D, it follows that f(reit) is harmonic inD. We saw in I.3.3 that at
every pointt wheref is the derivative of its integral (hence almost
everywhere)f(eit) = limr→1 f(reit). Actually it is not very hard to see
that for almost allt, f(z) → f(eit) asz → eit nontangentially (i.e., if
z → eit, remaining in a sector of the form{ζ : |arg(1−ζe−it)| ≤ α < π}.
(See [28], Vol. 1, p. 101.)

The harmonic conjugate to (1.1) is the function

(1.2) f̃(reit) = −i
∞
∑

−∞
sgn(n)(n)r|n|f̂(n)eint = (Q(r,·) ∗ f)(t)

where

(1.2’) Q(r, t) = −i
∞
∑

−∞
sgn(n)(n)r|n|)eint =

2r sin t
1− 2r cos t+ r2

is the harmonic conjugate of Poisson’s kernelP (r, t) (normalized by the
conditionQ(0, t) = sgn(0) = 0). We shall show that̃f(reit) has a radial
limit for almost allt. Denoting this radial limit bỹf(eit) we shall show
that if f has a conjugate in the sense of section II.1, then this conjugate
is f̃(eit). We may therefore call̃f the conjugate function off .

1.2 Lemma. Every function harmonic and bounded inD is the Pois-
son integral of some bounded function onT.

PROOF: Let F be harmonic and bounded inD. Let rn ↑ 1 and write
fn(eit) = F (rneit). The sequence{fn} is a bounded sequence inL∞(T);
hence for some sequencenj → ∞, fnj converges in the weak-star
topology (L∞(T) being the dual ofL1(T)) to some functionF (eit). Let
ρeiτ ∈ D, then

1
2π

∫

P(ρ, t− τ)F (eit)dt = lim
j→∞

1
2π

∫

P(ρ, t− τ)fnj (e
it)dt

= lim
j→∞

F (rnjρe
iτ ) = F (ρeiτ ).

J

1.3 Lemma. Assumef ∈ L1(T) and letf̃(reit) be defined by(1.2) .
Then, for almost allt, f(reit) tends to a limit asr → 1.

PROOF: Since the mappingf 7→ f̃(reit) is clearly linear and since any
f in L1(T) can be written asf1 − f2 + if3 − if4 with fj ≥ 0 in L1(T),
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there is no loss of generality in assumingf > 0. The functionF (z) =
e−f(z)−if̃(z) is holomorphic (hence harmonic) inD. Since the Poisson
integral of a nonnegative function is nonnegativef(z) > 0, and since
f̃ is real valued (being the harmonic conjugate of the real valuedf),
it follows that |F (z)| ≤ 1 in D. By Lemma 1.2 (and I.3.3)F has a
radial limit of moduluse−f(t) almost everywhere. Sincef ∈ L1(T),
f(eit) < ∞, hencelimr→1 F (reit) 6= 0 almost everywhere; and at every
point whereF (eit) exists and is nonzero,̃f(reit) has a finite radial limit.

J

1.4 DEFINITION: The conjugate functionof a functionf ∈ L1(T)
is the functionf̃(eit) = limr→1 f̃(reit).

If the series conjugate to the Fourier series off is the Fourier series
of someg ∈ L1(T), then the Poisson integral ofg is clearly f̃(reit),
which converges radially tog(eit) for almost allt (theorem I.3.3). It
follows that in this casẽf = g and our new definition of the conjugate
function extends that of II.1.

We have seen in I.4.2 that
∑∞
n=2

cosnt
log n is a Fourier series while

the conjugate series,
∑∞
n=2

sinnt
log n , is not. Since

∑∞
n=2

sinnt
log n converges

everywhere, its sum is the conjugate function off =
∑∞
n=2

cosnt
log n and

we can check that
∑∞
n=2

sinnt
log n 6∈ L

1(T). Thus the conjugate function

of a summable function need not be summable.

Remark: At this point we cannot deduce that
∑∞
n=2

sinnt
log n 6∈ L1(T)

from the mere fact that the series is not a Fourier series. However, we
shall prove in section 3 that if̃f ∈ L1(T), for somef ∈ L1(T), then
f̃(reit) is the Poisson integral of̃f . From that we can deduce that if
f̃ ∈ L1(T) then its Fourier series is̃S[f ] so that ifS̃[f ] is not a Fourier
series theñf 6∈ L1(T).

The difficulty in asserting immediately that̃f(reit) is the Poisson
integral of f̃ stems from the fact that we have only established point-
wise convergence almost everywhere off̃(reit) to f̃(eit) and this type
of convergence is not sufficient to imply convergence of integrals.

1.5 We denote the (Lebesgue) measure of a measurable setE ⊂ T by
|E|.
DEFINITION: The distribution functionof a measurable, real-valued
functionf onT is the function

m(x) = mf (x) = |{t : f(t) ≤ x}|, −∞ < x <∞.
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Distribution functions are clearly continuous to the right and mono-
tone, increasing from zero atx = −∞ to 2π asx → ∞. The basic
property of distribution functions is: for every continuous functionF

onR

(1.3)
∫

T
F (f(t))dt =

∫

F (x)dmf (x).

DEFINITION: A measurable functionf is of weakLp type,0 < p <∞,
if there exists a constantC such that for allλ > 0

(1.4) mf (λ) ≥ 2π − Cλ−p

(or equivalently,|{t : |f(t)| ≥ λ}| ≤ Cλ−p).
Everyf ∈ Lp(T) is clearly of weakLp type. In fact, for allλ > 0

‖f‖pLp =
1

2π

∫ ∞

0

xpdm|f |(x) ≥ 1
2π

∫ ∞

λ

xpdm|f |(x)

≥ 1
2π
λp
∫ ∞

λ

dm|f |(x) =
λp

2π
(2π −m|f |(λ))

hence (1.4) is satisfied withC = 2π‖f‖pLp . It is equally clear that there
are functions of weakLp type which are not inLp(T); |sin t|−1/p is a
simple example.

Lemma. lf f is of weakLp type thenf ∈ Lp′(T) for everyp′ < p.

PROOF:
∫

|f |p
′
dt =

∫ ∞

0

xp
′
dm|f |(x) ≤m|f |(1) +

∫ ∞

1

xpdm|f |(x) =

= m|f |(1)− [xp
′
(2π −m|f |(x))]∞1 +

∫ ∞

1

(2π −m|f |(x))d(xp
′
)

≤ 2π + C

∫ ∞

1

x−pd(xp
′
) = 2π + C

∫ ∞

1

xp
′−p−1dx <∞.

J

1.6 Theorem. lf f ∈ L1(T) thenf̃ is of weakL1 type.

PROOF: We assume first thatf > 0; also, we normalizef by assuming
‖f‖L1 = 1. We want to evaluate the measure of the set of points where

|f̃ | > λ. The functionHλ(z) = 1 + 1
π arg z−iλ

z+iλ = 1 + 1
π=
(

log z−iλ
z+iλ

)

is

clearly harmonic and nonnegative in the half plane<(z) > 0, and its
level lines are circular arcs passing through the pointsiλ and−iλ. The
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level lineHλ(z) = 1
2 is the half circlez = λeiϑ, −π/2 < ϑ < π/2, hence

if |z| > λ thenHλ(z) > 1
2 . Also it is clear that

Hλ(1) = 1− (2π) arctanλ < 2/πλ.

Now Hλ(f(z) + if̃(z)) is a well-defined positive harmonic function in
D, hence

(1.5)
1

2π

∫

Hλ

(

f(reit) + if̃(reit)
)

dt = Hλ(f(0)) = Hλ(1) <
2
πλ

,

and remembering thatHλ(f + if̃) ≥ 1
2 if |f + if̃ | > λ, we obtain,

|{t : |f̃(reit)| > λ}| ≤ 8
λ
.

Since the mappingf 7→ f̃ is linear it is clear that if we omit the normal-
ization‖f‖L1 = 1 we obtain, lettingr → 1, that forf ≥ 0 in L1(T)

|{t : |f̃(eit)| > λ}| ≤ 8‖f‖L1λ−1.

Everyf ∈ L1(T) can be written asf = f1 − f2 + if3 − if4 wherefj ≥ 0
and‖fj‖L1 ≤ ‖f‖L1 . We havef̃ = f̃1 − f̃2 + if̃3 − if̃4 and consequently

{t : |f̃(eit)| > λ} ⊂
4
⋃

j=1

{t : |f̃j(eit)| > λ/4}.

It follows that forc = 128 and everyf ∈ L1(T)

(1.6) |{t : |f̃(reit)| > λ}| ≤ c‖f‖L1λ−1. J

Corollary. If f ∈ L1(T) thenf ∈ Lα(T) for all α < 1.

PROOF: Lemma 1.5. J

1.7 The method of proof of Theorem 1.6 can be used for bounded
functions as well.

Theorem. lf f is real valued and|f | ≤ 1, then for0 ≤ α < π/2

(1.7)
1

2π

∫

eα|f̃(eit)|dt ≤ 2
cosα

.
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PROOF: PutF (z) = f̃(z)− if(z). Sincecos(αf(z)) ≥ cosα, we have

<(eαf(z)) ≥ cosα |eαF (z)| = cosα eαf̃(z),

and since 1
2π

∫

<(eαF (reit))dt = <(eαF (0)) = cosαf(0) ≤ 1, it follows
that

1
2π

∫

eαf̃(reit)dt ≤ 1
cosα

. Similarly,
1

2π

∫

e−αf̃(reit)dt ≤ 1
cosα

.

Adding and lettingr → 1 we obtain (1.7). J

Corollary. If |f | ≤ 1, then

(1.8) m|f̃ |(λ) > 2π
(

1− 4
cos
√

2
e−λ

)

PROOF: Write f = f1 + if2 wheref1, f2 are real valued. We have
f̃ = f̃1 + if̃2 and consequently|f̃(eit)| > λ happens only if either

|f̃1(eit)| > 2−
1
2λ or |f̃2(eit)| > 2−

1
2λ

Now, by (1.7) withα =
√

2,

∣

∣

∣{t : |f̃j | > 2−
1
2λ}

∣

∣

∣ <
4π

cos
√

2
e−λ, j = 1, 2

and (1.8) follows. J

?1.8 We shall see in chapter VI that a finite Borel measure onR is com-
pletely determined by its Fourier-Stieltjes transform (just as measures
onT are determined by their Fourier-Stieltjes coefficients). This means
that two distribution functions,m1(x) andm2(x), of real-valued func-
tions onT are equal if

∫

eiξxdm1(x) =
∫

eiξxdm2(x) for all ξ ∈ R.
Using this remark we shall show now that iff is the indicator func-
tion of some setU ⊂ T, thenmf̃ (λ) depends only on the measure ofU

and not on the particular structure ofU . Thus we can computemf̃ (λ)
explicitly by replacingU by an interval of the same measure.

Theorem. LetU ⊂ T be a set of measure2α. Let f be the indicator
function ofU and letχα be the indicator function of(−α, α). Write
mα(λ) = mχ̃α(λ). Thenmf̃ (λ) = mα(λ).
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PROOF: Apply Cauchy’s formula onz = reit to the analytic functions
F ξ(z) = eξ(f(z)+if̃(z)), let r → 1 and remember thatf = 0 onT \ U and
f = 1 onU ; this gives

(1.9)
∫

T\U
eiξf̃(eit)dt+ eξ

∫

U

eiξf̃(eit)dt = 2πF ξ(0) = 2πeξα/π.

Rewriting (1.9) for−ξ instead ofξ and then taking complex conjugates,
we obtain

(1.10)
∫

T\U
eiξf̃(eit)dt+ e−ξ

∫

U

eiξf̃(eit)dt = 2πe−ξα/π.

From (1.9) and (1.10) we obtain

∫

U

eiξf̃(eit)dt = 2π
sinh ξα

π

sinh ξ
∫

T\U
eiξf̃(eit)dt = 2π

sinh ξ
(

1− α
π

)

sinh ξ
.

(1.11)

We write nowmf̃ (λ) = n1(λ) + n2(λ) where

n1(λ) = |U ∩ {t : f̃(eit) ≤ λ}|

and
n2(λ) = |(T \ U) ∩ {t : f̃(eit) ≤ λ}|

and we can rewrite (1.11) as

∫

eiξxdn1(x) = 2π
sinh ξα

π

sinh ξ
∫

eiξxdn2(x) = 2π
sinh ξ

(

1− α
π

)

sinh ξ
.

(1.12)

We see thatn1(x) andn2(x) are uniquely determined byα and so they
are the same for̃f andχ̃α We thus obtain that̃f andχ̃α have the same
distribution of values not only onT but also onU for f̃ and(−α, α) for
χ̃α. J

The Fourier series ofχa is

∞
∑

−∞

sinnα
πn

eint =
α

π
+ 2

∞
∑

1

sinnα
πn

cosnt
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hence

χ̃α(reit) =2
∞
∑

1

rn
sinnα
πn

sinnt =
∞
∑

1

rn
cosn(t− α)− cosn(t+ α)

πn

=
1
π
<
(
∞
∑

1

1
n
rnein(t−α) −

∞
∑

1

1
n
rnein(t+α)

)

=
1
π

log
∣

∣

∣

reit − eiα

reit − e−iα
∣

∣

∣

and finally

(1.13) χ̃α(eit) =
1
π

log
∣

∣

∣

eit − eiα

eit − e−iα
∣

∣

∣ =
1

2π
log

1− cos(t− α)
1− cos(t+ α)

.

It follows from (1.13) that forλ > 1 the set{t : χ̃α(eit) > λ} is an
interval containingt = −α and contained in(−α− β1,−α+ β2) where

β1
2α+ β1

= β2
2α− β2

= e−πα, hence

(1.14) mα(λ) ≥ 2π − 5αe−πλ .

Corollary. Let f be the indicator function of a setU of measure2α
onT. Then, forλ > 1

(1.15)
∣

∣{t : |f̃(eit)| > λ}
∣

∣ < 10αe−πλ.

1.9 Returning toL1(T), we use Theorem 1.6 and the fact that conjuga-
tion is an operator of norm 1 onL2(T) to obtain the following theorem.
The method applies in a general context which we discuss briefly in the
following subsection.

Theorem. If † f log+|f | ∈ L1(T), thenf̃ ∈ L1(T).

PROOF: We shall use the fact that forg ∈ L2(T) we havẽg ∈ L2(T) and
‖g̃‖L2 ≤ ‖g‖L2 . This is an immediate corollary of Theorem I.5.5. As
we have seen in 1.5, this implies

(1.16) m|g̃|(λ) ≥ 2π(1− ‖g‖2L2λ−1).

We have to prove that
∫∞

1
λdm|f̃ |(λ) < ∞ which is the same thing as

∫ R

1
λdm|f̃ |(λ) = O (1) asR→∞. Integrating by parts and remembering

†log+ x = sup(log x, 0) for x ≥ 0.
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(1.6) we see that the theorem is equivalent to

(1.17)
∫ R

1

(

2π −m|f̃ |(λ)
)

dλ = O (1) asR→∞.

In order to estimate2π−m|f̃ |(λ) we writef = g+h, whereg = f when

|f | ≤ λ andh = f when|f | > λ. We havef̃ = g̃ + h̃ and consequently

(1.18) {t : |f̃(t)| > λ} ⊂ {t : |g̃(t)| > λ/2} ∪ {t : |h̃(t)| > λ/2}.

By (1.16)

(1.19) |{t : |g̃(t)| > λ/2}| ≤ 8πλ−2‖g‖2L2 = 8πλ−2

∫ λ

0

x2dm|f̃ |

and by (1.6)

|{t : |h̃(t)| > λ/2}| ≤ 2cλ−1‖h‖L1 = 2cλ−1

∫ ∞

λ

xdm|f̃ |;

for x ≥ λ, (log x)
1
2 ≥ (log λ)

1
2 and we obtain

(1.20) |{t : |h̃(t)| > λ/2}| ≤ 2c
λ
√

log λ

∫ ∞

λ

x
√

log xdm|f̃ |

By (1.18), (1.19), and (1.20) we have

2π −m|f̃ |(λ) ≤ 8πλ−2

∫ λ

0

x2dm|f̃ | +
2c

λ
√

log λ

∫ ∞

λ

x
√

log xdm|f̃ |.

Thus (1.17), and hence the theorem, will follow if we show that as
R→∞,

∫ R

1

λ−2
(

∫ λ

0

x2dm|f̃ |
)

dλ = O (1)

∫ R

1

1
λ
√

log λ

(

∫ ∞

λ

x
√

log xdm|f̃ |
)

dλ = O (1)
(1.21)

The information that we have concerningm|f̃ | is that it is a monotonic
function tending to2π at infinity and such that

(1.22)
∫ ∞

1

x log xdm|f̃ | <∞
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In order to derive (1.21) from (1.22) we apply Fubini’s theorem. The
domain for the first integral is the trapezoid

{(x, λ) : 1 < λ < R, 0 < x < λ}

and integrating first with respect toλ we obtain

∫ R

1

λ−2
(

∫ λ

0

x2dm|f̃ |
)

dλ =
∫ 1

0

(

1− 1
R

)

x2dm|f̃ | +
∫ R

1

( 1
x
− 1
R

)

x2dm|f̃ |

≤2π +
∫ R

1

xdm|f̃ | = O (1)

The domain for the second integral is the strip

{(x, λ) : 1 < λ < R, λ < x}.

Integrating first with respect toλ we obtain

∫ R

1

1
λ
√

log λ

(

∫ ∞

λ

x
√

log xdm|f̃ |
)

dλ =

2
∫ R

1

x log xdm|f̃ | + 2
√

logR
∫ ∞

R

x
√

log xdm|f̃ | = O (1)

and the proof is complete. J

1.10 When the underlying measure space is infinite, e.g. the lineR
rather thanT, we can useµ({x : f(x)} > λ) instead of the distribution
function. For postive integrable functions it gives the complete infor-
mation about the distribution off .

A slightly coarser gauge, which is often more transparent and easier
than the distribution function to work with, even when the underlying
measure is finite, is the “lumping” ofdmf , defined (for arbitrary mea-
sure space{X,B, µ}, finite or infinite), as follows:

DEFINITION: For a measurable real-valuedf andn ∈ Z set

mn = mn(f) = µ({x : 2n−1 < |f(x)| ≤ 2n}).

Observe that: a)f is of weak typep if, and only if, mn(f) = O (2−np),
b) f ∈ Lp if and only if

∑∞
−∞ 2npmn(f) <∞, in fact

(1.23) ‖f‖pLp ≤
∞
∑

−∞
2npmn(f) ≤ 2p‖f‖pLp .
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1.11 What we have done in 1.9 isinterpolate, using what we know
about the properties of an operator (the conjugation operatorf 7→ f̃)
on L1(T) and onL2(T), to prove that it maps the intermediate space
L logL(T) into L1(T).

The same method can be used to prove M. Riesz’ theorem below.
We use the parametersmn rather than the distribution functions, and
the reader should compare thefirst proof below to that of 1.9.

Riesz’ original proof is given assecond proof.

Theorem (M. Riesz).For 1 < p < ∞, the mappingf 7→ f̃ is a
bounded linear operator onLp(T).

We have mentioned already that forp = 2 the theorem is obvious
(from Theorem I.5.5). From Parseval’s formula (I.7.1) it follows that
if p andq are conjugate exponents, the mappingsf 7→ f̃ in Lp(T) and
in Lq(T) are, except for a sign, each other’s adjoints and consequently
if one is bounded, so is the other and by the same bound. Thus it is
enough to prove the theorem for1 < p < 2.

FIRST PROOF: Assume1 < p < 2. We need to show that there exists a
constantCp such that iff ∈ Lp(T) thenf̃ ∈ Lp(T), and‖f̃‖p ≤ Cp‖f‖p.

Since‖f̃‖pLp ≤
∑∞
−∞ 2npmn(f̃), we estimatemn(f̃). Givenn, we

write f = f0,n + f1,n wheref0,n(t) = f(t) if |f(t)| ≥ 2n (and is zero
elsewhere) andf1,n(t) = f(t) if |f(t)| < 2n, (and is zero elsewhere).
Since1 < p < 2, f0,n ∈ L1 andf1,n ∈ L2. We have

(1.24) ‖f0,n‖L1 ≤
∞
∑

n+1

2nmn(f), ‖f1.n‖L2 ≤
n
∑

22nmn(f).

As f̃ = f̃0,n + f̃1,n, the inequality|f̃(t)| > 2n implies at least one of
the inequlities|f̃0,n(t)| > 2n−1 or |f̃1,n(t)| > 2n−1, so that

(1.25) mn+1(f̃) ≤ µ({t : |f̃0,n(t)| > 2n−1}) + µ({t : |f̃1,n(t)| > 2n−1})

By 1.6 we have

(1.26) µ({t : |f̃0,n(t)| > 2n−1}) ≤ ‖f0,n‖L1

2n−1
≤ c12−n

∞
∑

n+1

mj(f)2j ,

and since conjugation has norm 1 onL2(T),

(1.27) µ({t : |f̃1,n(t)| > 2n−1}) ≤
‖f1,n‖2L2

22n−2
≤ c22−2n

n
∑

mj(f)22j .
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It follows that

mn(f̃) ≤ c12−n
∞
∑

n

mj(f)2j + c22−2n
n
∑

mj(f)22j

and ‖f̃‖pLp ≤
∞
∑

−∞
2npmn(f̃)

≤c3
∑

2pn
(

2−n
∞
∑

n+1

mj(f)2j + 2−2n
n
∑

mj(f)22j
)

=c3
(
∑

n≤j

2(n−j)(p−1)mj(f)2jp +
∑

n≥j

2(p−2)(n−j)mj(f)2jp
)

the sums with respect to bothn andj. Summing first with respect ton
produces constants which depend only onp and we have

‖f̃‖pLp ≤ cp
∑

j

mj(f)2jp ≤ C(p)‖f‖pLp .
J

SECOND PROOF: Let f ∈ Lp(T), f ≥ 0. Let f(reit) be its Poisson inte-
gral, f̃(reit) the harmonic conjugate, andH(reit) = f(reit) + if̃(reit).
We may clearly assume thatf does not vanish identically, and, since
f ≥ 0, it follows thatf(reit) > 0, henceH(reit) 6= 0 in D. LetG(reit)
be the branch of(H(reit))p which is real atr = 0. Let γ be a real
number satisfying

(1.28) γ <
π

2
, pγ >

π

2
,

For 0 < r < 1 we have

1
2π

∫

|G(reit)|dt =
1

2π

∫

I

|G(reit)|dt+
1

2π

∫

II

|G(reit)|dt,

where
∫

I
is taken over the set where|arg(H(z))| < γ and

∫

II
is taken

over the complementary set (defined by the conditionγ ≤ |arg(H(z))|
< π/2, wherez = reit). In

∫

I
we have

|H(z)| < f(z)(cos γ)−1,

hence

(1.29)
1

2π

∫

I

|G(reit)|dt ≤ (cos γ)−p‖f‖plp
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and, in particular,

(1.30)
1

2π

∫

<G(reit)dt ≤ (cos γ)−p‖f‖plp

On the other hand, we have in
∫

II

(1.31) |G(z)| ≤ <(G(z))(cos pγ)−1

(both factors being negative). Now, since

1
2π

∫

<(G(reit))dt = G(0) = (f̂(0))p ,

it follows from (1.30) that

1
2π

∫

II

|<(G(reit))|dt ≤ (f̂(0))p + (cos γ)−p‖f‖pLp(T)

and this, combined with (1.31) and (1.29), implies

(1.32)
1

2π

∫

|G(reit)|dt ≤ cp‖f‖pLp

wherecp is a constant depending only onp.
Since |f̃(reit)|p ≤ |H(reit)|p = |G(reit)|, it follows from (1.32),

letting r → 1, thatf̃ ∈ Lp(T) and

‖f̃‖Lp ≤ c1/pp ‖f‖Lp .

The theorem now follows from the casef > 0 and the linearity of the
mappingf 7→ f̃ . J

EXERCISES FOR SECTION 1

1. Show that there exists a constantA such that for alln, λ andf ∈ C(T),
such that‖f‖∞ ≤ 1,

∣

∣{t :Sn(f, t) > λ}
∣

∣ < Ae−λ

2. Show that for1 ≤ p < ∞ there exist constantsAp such that for alln, λ
andf ∈ Lp(T), such that‖f‖Lp ≤ 1

∣

∣{t :Sn(f, t) > λ}
∣

∣ <
Ap
λp
.

3. Prove that iff ∈ Lp(T), 1 < p <∞, then

lim
r→1
‖f̃(reit)− f̃(eit)‖Lp = 0.
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4. Prove that iff ∈ Lp(T), g ∈ Lq(T), wherep−1 + q−1 = 1, 1 < p < ∞
then

∑∞
−∞ f̂(n)ĝ(n) converges.

5. Show that Theorem 1.7 is sharp in the sense that there exist real valued
functionsf such that|f | ≤ 1 and

∫

eπ|f̃ |/2dt =∞.
Hint: Takef = 2χα − 1.

6. Prove that iff ∈ C(T) thenef̃ ∈ L1(T) no matter how large‖f‖∞ is.

Hint: Write f = P + f1 whereP is a polynomial and‖f1‖ < 1

7. Show thatlog
∣

∣

∣

eit − eiα
eit − eiβ

∣

∣

∣ = <
(

log
(

eit − eiα
eit − eiβ

))

is a constant multi-

ple of the conjugate function of the indicator function of(α, β) by examining

=
(

log
(

eit − eiα
eit − eiβ

))

.

8. Let 1 < p < ∞. Show that there exists a constantcp such that forf in
Lp(T), andλ > 0,

∣

∣{t : |f̃(eit)| > λ}
∣

∣ < cp‖f‖pLpλ
−p.

Remark: This is an immediate consequence of 1.11; try, however, to prove it
by using 1.8.
Hint: Assume thatf is real valued. DenoteUλ = {t : f̃(eit) > λ} andVλ =

{t : f̃(eit) < −λ}. Denote bygλ the indicator function ofUλ; deduce from
Parseval’s formula that (withq = p/(p− 1))

λ|Uλ| ≤
∫

f̃(eit)gλ(eit)dt = −
∫

f(eit)g̃λ(eit)dt ≤ 2π‖f‖Lp‖g̃λ‖Lq

and use (1.15) to evaluate‖g̃λ‖Lq . Repeat forVλ.

2 THE MAXIMAL FUNCTION OF HARDY AND LITTLEWOOD

2.1 DEFINITION: The maximal functionof a functionf ∈ L1(T) is
the function

(2.1) Mf (t) = sup0<h≤π

∣

∣

∣

1
2h

∫ t+h

t−h
f(τ)dτ

∣

∣

∣ .

If we allow the value+∞ thenMf (t) is well defined for allt ∈ T. We
shall see presently thatMf (t) is finite for almost allt ∈ T and thatMf

is of weakL1-type. This will follow from the following simple

Lemma (Vitali). From any familyΩ = {Iα} of intervals onT one can
extract a sequence{In} of pairwise disjoint intervals, such that

(2.2)
∣

∣

∣

∞
⋃

n=1

In

∣

∣

∣ >
1
4

∣

∣

∣

⋃

α

Iα

∣

∣

∣ .
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PROOF: Denotea1 = supI∈Ω|I| and letI1 be any interval ofΩ satisfy-
ing |I1| > 3

4a1; let Ω2 be the subfamily of all the intervals inΩ which
do not intersectI1. Denotea2 = supI∈Ω2

|I| and letI2 ∈ Ω2 be such
that |I2| > 3

4a2. We continue by induction; having pickedI1, . . . , Ik
we consider the familyΩk+1 of the intervals ofΩ which intersect none
of Ij , j ≤ k, and pickIk+1 ∈ Ωk+1 such that|Ik+1| > 3

4ak+1 where
ak+1 = supI∈Ωk+1

|I|. We claim that the sequence{In} so obtained sat-
isfies (2.2). In fact, denoting byJn the interval of length4|In| of which
In is the center part, we claim that

⋃

Jn ⊃
⋃

Iα which clearly implies
(2.2).

We notice first thatak → 0 and consequently∩Ωk = ∅. ForI ∈ Ω let
k denote the first index such thatI 6∈ Ωk; thenI ∩ Ik−1 6= ∅ and, since
|Ik−1| ≥ 3

4 |I|, I ⊂ Jk−1 and the lemma is proved. J

2.2 Theorem. For f ∈ L1(T), Mf is of weakL1 type.

PROOF: SinceMf (t) ≤ M|f |(t), we may assume thatf ≥ 0. Let λ > 0;
if Mf (t) > λ let It be an interval centered att such that

(2.3)
∫

It

f(t)dt > λ|It|.

Thus we cover the set{t :Mf (t) > λ} by a family of intervals{It}. Let
{In} be a pairwise disjoint subsequence of{It} satisfying (2.2). Then,
by (2.2) and (2.3),

(2.4) |{t :Mf (t) > λ}| ≤ |
⋃

It| ≤ 4|
⋃

In| ≤ 4
λ

∫

∪In f(t)dt ≤ 4
λ

∫

T f(t)dt.
J

2.3 The maximal function of a bounded function is clearly bounded
by the same bound so that the mapf 7→ Mf has norm 1 inL∞(T).
The map is subliniear† rather then linear, but we can still interpolate
betweenL1(T) andL∞(T).

Lemma. Let f ∈ L1(T) and letm(λ) = m|f |(λ) be the distribution
function of|f |. Then

(2.5) |{t :Mf (t) > 2λ}| ≤ 4
λ

∫ ∞

λ

ydm(y).

†An operatorS is sublinearif S(f1 + f2) is defined wheneverSf1 andSf2 are both
defined, and if

|S(f1 + f2)| ≤ |Sf1|+ |Sf2| a.e.
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PROOF: Write f = g + h whereg = f when|f | ≤ λ andh = f when
|f | > λ. We haveMf (t) ≤Mg(t) +Mh(t) ≤ λ+Mh(t); hence, by (2.4),

|{t :Mf (t) > 2λ}| ≤ |{t :Mh(t) > λ}| ≤ 4
λ

∫

|h(τ)|dτ ≤ 4
λ

∫ ∞

λ

ydm(y).

J

In terms of the “lumped” distribution this says, (withn shifted ton−2),

(2.6) mn(Mf ) ≤ 4·22−n
∑

j≥n−1

2jmj(f) = 16
∑

j≥n−1

2(j−n)mj(f)

Theorem. (a) For 1 < p < ∞ there exists a constantcp such that if
f ∈ Lp(T), thenMf ∈ Lp(T) and‖Mf‖Lp ≤ cp‖f‖Lp .

(b) If f log+|f | ∈ L1(T) thenMf ∈ L1(T) and

‖Mf‖L1 ≤ 2 + 4
∫

T
|f | log+|f |dt.

PROOF: (a) If f ∈ Lp(T) then
∑

j 2jpmj(f) ≤ 2p‖f‖pLp . By (2.6),

‖Mf‖pLp ≤
∑

2npmn(Mf ) ≤ 16
∑

j+1≥n

2np+(j−n)mj(f)

= 16
∑

j+1≥n

2(n−j)(p−1) ·2jpmj(f) = 16
∑

n≤1

2(p−1)n
∑

j

2jpmj(f)

≤ 16
∑

n≤1

2(p−1)n ·‖f‖pLp = cpp‖f‖
p
Lp .

(b) If f log+|f | ∈ L1(T) then
∑

j>0 jmj(f) ≤ log 2· 1
2π

∫

|f | log+|f |.

‖Mf‖L1 ≤ 1 +
∑

n≥1

2nmn(Mf ) ≤ 1 + 16
∑

j+1≥n≥1

2n+(j−n)mj(f)

= 1 + 16
∑

j>0

∑

1≤n≤j+1

2jmj(f) = 1 + 16
∑

j>0

(j + 1)2jmj(f).

by (2.6). J

The use of the “lumped distribution” necessarily gives somewhat
worse constants than the same proof done with the distribution func-
tions. Here is the proof done “properly”.
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PROOF: Denote bym(λ) andn(λ) the distribution functions of|f | and
Mf respectively. We can rewrite (2.5) in the form

(2.7) 2π − n(2λ) ≤ 4
λ

∫ ∞

λ

y dm(y) ≤ 4
λp

∫ ∞

λ

yp dm(y);

hence iff ∈ Lp(T), 1 ≤ p <∞, we haveλp(2π − n(λ))→ 0 asλ→∞.
We have‖Mf‖pLp = 1

2π

∫∞
0
λpdn(λ) = 2p

2π

∫∞
0
λpdn(2λ); integrating by

parts we obtain (1 ≤ p <∞)

∫ ∞

0

λpdn(2λ) = [λp(2π − n(2λ))]∞0 +
∫ ∞

0

(2π − n(2λ))pλp−1dλ

≤

{

8p
∫∞

0
λp−2

∫∞
λ
ydm(y)dλ if p > 1

2π + 8
∫∞

1
λ−1

∫∞
λ
ydm(y)dλ if p = 1

and integrating by parts again we finally obtain:

(for p>1)
∫ ∞

0

λpdn(2λ) ≤ 8p
p− 1

∫ ∞

0

λpdm(λ) =
8p
p− 1

2π‖f‖pLp ;

∫ ∞

0

λdn(2λ) ≤ 2π + 8
∫ ∞

1

λ log λdm(λ)

= 2π + 8
∫

T
|f | log+|f |dt.

(for p=1)

J

2.4 Lemma. Letk be a nonnegative even function on(−π, π), mono-
tone nonincreasing on(0, π), such that

∫ π

−π k(t)dt = 1. Then for all
f ∈ L1(T)

(2.8)
∣

∣

∣

∫

k(t− τ)f(τ)dτ
∣

∣

∣ ≤Mf (t).

PROOF: The definition (2.1) is equivalent to

Mf (t) = sup0<h≤π

∣

∣

∣

∫

φh(t− τ)f(τ)dτ
∣

∣

∣

whereφh is the indicator function of(−h, h) multiplied by1/2h (so that
∫

φhdt = 1). A function k satisfying the conditions of the lemma can
be uniformly approximated by convex combinations ofφh, 0 < h ≤ π,
and (2.8) is then obvious. J
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2.5 Let f ∈ L1(T), let f(reit) be its Poisson integral and letf̃(reit) be
the harmonic conjugate,

DEFINITION: The maximal conjugate function off is the function

˜̃
f(eit) = sup0<r<1|f̃(reit)|.

Theorem. Let f ∈ Lp(T), 1 < p <∞; then ˜̃
f ∈ Lp(T) and

‖ ˜̃
f‖Lp ≤ Cp‖f‖Lp

PROOF: Since f̃(reit) is the Poisson integral of̃f(eit) and the Pois-
son kernel satisfies the condition of Lemma 2.4, we obtain|f̃(reit)| ≤
Mf̃ (t). Hence ˜̃

f(eit) < Mf̃ (t) and the theorem follows from 2.3 and
1.11. J

2.6 We have defined the conjugatẽf of a functionf ∈ L1(T) as the
boundary value of the harmonic functioñf(reit) = (Q(r,·)∗f)(t) where

(2.9) Q(r, t) =
2r sin t

1− 2r cos t+ r2

is the conjugate Poisson kernel. Since the limit

(2.10) Q(1, t) = lim
r→1

Q(r, t) =
sin t

1− cos t
=

cos t/2
sin t/2

= cot
t

2

is so obvious and so explicit, we are tempted to reverse the order of the
operations and write

(2.11) f̃ = Q(1, t) ∗ f

The difficulty, however, is thatQ(1, t) is not Lebesgue integrable so that
the convolution (2.11) is, as yet, undefined. We propose to show next
that, the convolution appearing in (2.11) can be defined as an improper
integral and that, with this definition, (2.11) is valid almost everywhere.

Lemma. For f ∈ L1(T) andϑ = 1− r, we have

E(r, t) =
∣

∣

∣

1
2π

∫ 2π−ϑ

ϑ

Q(1, τ)f(t− τ)dτ − f̃(reit)
∣

∣

∣ ≤ 4M|f |(t).
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PROOF: Write

E(r, t) ≤
∣

∣

∣

1
2π

∫ 2π−ϑ

ϑ

(

Q(1, τ)−Q(r, τ)
)

f(t− τ)dτ
∣

∣

∣+

+
∣

∣

∣

1
2π

∫ ϑ

−ϑ
Q(r, τ)f(t− τ)dτ

∣

∣

∣ = E1(r, t) + E2(r, t).
(2.12)

We notice that the function

Q(1, t)−Q(r, t) =
(1− r)2 sin t

(1− cos t)(1− 2r cos t+ r2)

=
1− r
1 + r

Q(1, t)P(r, t)
(2.13)

is odd, and is monotone decreasing on(0, π). Forϑ < t < π

1− r
1 + r

Q(1, t) ≤ 1− r
1 + r

(

sinϑ/2
)−1

< π

so that

(2.14) Q(1, t)−Q(r, t) < πP(r, t).

It follows that

E1(r, t) ≤ 1
2π

∫ 2π−ϑ

ϑ

|Q(1, t)−Q(r, t)||f(t− τ)|dτ

≤ 1
2

∫

P(r, τ)|f(t− τ)|dτ ≤ πM|f |(t).
(2.15)

In order to estimateE2(r, t) it is sufficient to notice that in(−ϑ, ϑ) we
have|Q(r, t)| < 2

1−r and consequently

(2.16) E2(r, t) ≤ 1
π(1− r)

∫ ϑ

−ϑ
|f(t− τ)|dτ ≤ 2

π
M|f |(t).

J

Corollary.

supo<ϑ<π
∣

∣

∣

∫ 2π−ϑ

ϑ

Q(1, τ)f(t− τ)dτ
∣

∣

∣ ≤ ˜̃
f(eit) + 4M|f |(t).
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2.7 The estimates (2.15) and (2.16) are clearly very wasteful. They
do not take into account the fact thatQ(r, t) is odd and we can improve
them by writing

(2.17) E1(r, t) =
∣

∣

∣

1
2π

∫ π

ϑ

(

Q(1, τ)−Q(r, τ)
)(

f(t− τ)− f(t+ τ)
)

dτ
∣

∣

∣

and

E2(r, t) =
∣

∣

∣

1
2π

∫ ϑ

0

Q(r, τ)
(

f(t− τ)− f(t+ τ)
)

dτ
∣

∣

∣

≤ 1
π(1− r)

∣

∣

∣

∫ ϑ1

0

(

f(t− τ)− f(t+ τ)
)

dτ
∣

∣

∣

(2.18)

where0 < ϑ1 < ϑ (the mean value theorem).
At every pointt of continuity of f , and more generally, at every

point in which the primitive off is differentiable, we have:

(2.19)
∫ ϑ1

0

(

f(t− τ)− f(t+ τ)
)

dτ = o(ϑ1).

By (2.18) it is clear that if (2.19) holds,E2(r, t)→ 0.

Theorem. Let f ∈ L1(T); at everyt ∈ T for which (2.19) is valid we
have,(ϑ = 1− r),

E(r, t) =
∣

∣

∣

1
2π

∫ 2π−ϑ

ϑ

Q(1, τ)f(t− τ)dτ − f̃(reit)
∣

∣

∣→ 0

asr → 1.

PROOF: As in (2.12),E(r, t) ≤ E1(r, t) + E2(r, t). We have already
remarked that under the assumption (2.19),limr→1E2(r, t) = 0 so that
we can confine our attention toE1(r, t). For ε > 0, let η > 0 be such
that for0 < ϑ1 ≤ η

(2.20)
∣

∣

∣

∫ ϑ1

0

(

f(t− τ)− f(t+ τ)
)

dτ
∣

∣

∣ ≤ εϑ1

and write

2πE1(reit) =
∣

∣

∣

(

∫ η

ϑ

+
∫ π

η

)

(

Q(1, τ)−Q(r, τ)
)(

f(t− τ)− f(t+ τ)
)

dτ
∣

∣

∣ .
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The second integral tends to zero by virtue of the fact that on(η, π),
Q(r, τ) → Q(1, τ) uniformly. The first integral is integrated by parts.
Writing

Φ(ϑ1) =
∫ ϑ1

0

(

f(t− τ)− f(t+ τ)
)

dτ,

we see that it is bounded by

[Φ(ϑ1)
(

Q(1, ϑ1)−Q(r, ϑ1)
)

]ηϑ + ε
∣

∣

∣

∫ η

ϑ

ϑ1d
(

Q(1, ϑ1)−Q(r, ϑ1)
)

∣

∣

∣;

integrating by parts once more and remembering thatQ(1, ϑ1) < π/ϑ1,
it follows from (2.14) and (2.20) thatE1(r, t) < 10ε + o(1) and the
theorem is proved. J

2.8 LetF be defined onT and assume that for allϑ > 0, F is integrable
onT \ (−ϑ, ϑ).

DEFINITION: The principal value of
∫

T F (t)dt is

PV

∫

T
F (t)dt = lim

ϑ→0

∫ 2π−ϑ

ϑ

F (t)dt.

For f ∈ L1(T) condition (2.19) is satisfied for almost allt ∈ T; since
f(reit)→ f(eit) almost everywhere, we obtain,

Theorem. Letf ∈ L1(T). The principal value of12π
∫

f(t− τ) cot τ2dτ
exists for almost allt ∈ T, and, almost everywhere,

f̃(eit) = PV
1

2π

∫

f(t− τ) cot
τ

2
dτ.

2.9 Theorem 2.7 can be used both ways. We can use it to show the
existence of the principal value ofPV

∫

f(t − τ) cot τ2dτ if we know
thatf(eit) exists or to obtain the existence off̃(eit) at points where

PV

∫

f(t− τ) cot
τ

2
dτ

clearly exists. For instance, iff satisfies a Lipschitz condition att,
that is, if |f(t + h) − f(t)| < K|h|α for someK > 0 andα > 0, then
∫ π

0
|f(t− τ)− f(t+ τ)| cot τ2dτ <∞ and it follows thatf̃(eit) exists and

(2.21) f̃(eit) =
1

2π

∫ π

0

(

f(t− τ)− f(t+ τ)
)

cot
τ

2
dτ
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If f satisfies a Lipschitz condition uniformly on a setE ⊂ T, that is, if
for someK > 0 andα > 0

|f(t+ h)− f(t)| ≤ K|h|α for all t ∈ E,

then the integrals (2.21) are uniformly bounded and

1
2π

∫ π

ε

(

f(t− τ)− f(t+ τ)
)

cot
τ

2
dτ → f̃(eit)

uniformly in t ∈ E asε → 0. It follows, reexamining the proof of 2.7,
that f̃(reit)→ f̃(eit) uniformly for t ∈ E asr → 1. In particular, ifE is
an interval, it follows that̃f(eit) is continuous onE.

2.10 Conjugation is not a local operation; that is, it is not true that if
f(t) = g(t) in some intervalI, thenf̃(t) = g̃(t) on I, or equivalently,
that if f(t) = 0 on I, thenf̃(t) = 0 on I. However,

Theorem. lf f(t) = 0 on an intervalI, thenf̃(t) is analytic onI.

PROOF: By the previous remarksf is continuous onI. Thus the func-
tionF = f + if̃ is analytic inD and is continuous and purely imaginary
on I. By Schwarz’s reflection principleF admits an analytic extension
throughI, and sinceF (eit) = if̃(eit) on I, the theorem follows. J

Remark: Using (2.21) we can estimate the successive derivatives off

at pointst ∈ I and show thatf is analytic onI without the use of the
"complex" reflection principle.

EXERCISES FOR SECTION 2

The first three exercises were covered already in Theorem I.8.4. The main
point here is the localization (exercise 4).

1. Assumef ∈ Lipα(T), 0 < α ≤ 1. Show thatf̃ ∈ Lipα′(T) for all α′ < α.

2. Assumef ∈ Cn(T), n ≥ 1. Show thatf̃ ∈ Cn−1(T) and f̃ (n−1) ∈
Lipα(T) for all α < 1.

3. Assumef ∈ Lipα(T), 0 < α < 1. Show thatf̃ ∈ Lipα(T)
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Hint:

f̃(t+ h)− f̃(t) =
1

2π

∫

(

f(t+ h− τ)− f(t+ h)
)

cot
τ

2
dτ

− 1

2π

∫

(

f(t− τ)− f(t)
)

cot
τ

2
dτ

=O (hα) +

∫ 2π−2h

2h

(

f(t− τ)− f(t+ h)
)

cot
τ + h

2
dτ−

−
∫ 2π−2h

2h

(

f(t− τ)− f(t)
)

cot
τ

2
dτ

=O (hα) +

∫ 2π−2h

2h

(

f(t− τ)− f(t)
)(

cot
τ + h

2
− cot

τ

2

)

dτ

−
(

f(t+ h)− f(t)
)

∫ 2π−2h

2h

cot
τ + h

2
dτ.

4. Localize exercises 1-3, that is, assume thatf satisfies the respective
conditions on an an intervalI ⊂ T and show that the conclusions hold inI.

3 THE HARDY SPACES

In this section we study some spaces of functions holomorphic in
the unit discD. These spaces are closely related to spaces of functions
on T and we obtain, for example, a characterization ofLp functions
and of measures whose Fourier coefficients vanish for negative values
of n. We also prove that if for somef ∈ L1(T), f̃(eit) is summahie
thenS[f̃ ] = S̃[f ], and, finally, we obtain results concerning the absolute
convergence of some classes of Fourier series. We start with some
preliminary remarks about products of Moebius functions.

3.1 Let 0 < |ζ| < 1; the functionb(z, ζ) = ζ̄(ζ−z)
|ζ|(1−zζ̄) defines, as is

well known, a conformal representation ofD onto itself, takingζ into
zero and zero into|ζ|. The important thing for us now is thatb(z, ζ)
vanishes only atz = ζ and|b(z, ζ)| = 1 on |z| = 1. If 0 < |ζ| < r, then
b
(

z
r ,

ζ
r

)

= r ζ̄(ζ−z)
|ζ|(r2−zζ̄) is holomorphic in|z| < r, vanishes only atz = ζ,

and
∣

∣b
(

z
r ,

ζ
r

)∣

∣ = 1 on |z| = r. Forζ = 0 we defineb(z, 0) = z.
Let f be holomorphic in|z| < r and denote its zeros there by

ζ1, . . . , ζk (counting each zero as many times as its multiplicity). The

function f1(z) = f(z)
(

∏

b
(

z
r ,

ζn
r

)

)−1

is holomorphic in|z| < r, is

zero-free and satisfies|f1(z)| = |f(z)| for |z| = r. Sincelog|f1(z)| is
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harmonic in|z| < r we have

log|f1(0)| = 1
2π

∫

log|f1(reit)|dt

and if we assume, for simplicity, thatf(0) 6= 0, the formula above is
equivalent toPoisson-Jensen’s formula:

(3.1) log|f(0)|+ log
k
∏

n=1

r|ζn|−1 =
1

2π

∫

log|f(reit)|dt.

We implicitly assumed thatf has no zeros of modulusr; however,
since both sides of the formula depend continuously onr, the above is
valid even iff vanishes on|z| = r. The reader should check the form
that Poisson-Jensen’s formula takes whenf vanishes atz = 0.

The termlog
∏k
n=1 r|ζn|−1 is positive, and removing it from (3.1)

we obtain Jensen’s inequality

(3.2) log|f(0)| ≤ 1
2π

∫

log|f(reit)|dt.

or, if f has a zero of orders at z = 0,

log| lim
z→0

z−sf(z)|+ log(rs) ≤ 1
2π

∫

log|f(reit)|dt.

Another form of Jensen’s inequality is: letf be holomorphic in
|z| < r and letζ ′1, . . . , ζ

′
m, be (some) zeros off in |z| < r, counted each

one at most as many times as its multiplicity. Then

(3.3) log|f(0)|+
m
∑

1

log(r|ζ ′n|−1) ≤ 1
2π

∫

log|f(reit)|dt.

Inequality (3.3) is obtained from (3.1) by deleting some (positive) terms
of the formlog(r|ζn|−1) from the left-hand side.

3.2 Let p > 0 and letf be holomorphic inD. We introduce the nota-
tion

(3.4) hp(f, r) =
1

2π

∫

|f(reit)|pdt.

If 0 < r < I andρ < 1 we havef(rρeit) = f(reit) ∗ P(ρ, t) and conse-
quently forp > 1 we have

hp(f, rρ) = ‖f(rρeit)‖pLp ≤ ‖f(reit)‖pLp = hp(f, r)
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or, in other words,hp(f, r) is a monotone nondecreasing function ofr.
The casep = 2 is particularly obvious since forf(z) =

∑

anz
n we have

h2(f, r) =
∑

|an|2r2n. We show now that the same is true for allp > 0.

Lemma. Let f be holomorphic inD and p > 0. Thenhp(f, r) is a
monotone nondecreasing function ofr.

PROOF: We reduce the case of an arbitrary positivep to the casep = 2.
Let r1 < r < 1. Assume first thatf has no zeros on|z| ≤ r and consider
the function† g(z) = (f(z))p/2; then

1
2π

∫

|f(r1e
it)|pdt =

1
2π

∫

|g(r1e
it)|2dt ≤ 1

2π

∫

|g(reit)|2dt

=
1

2π

∫

|f(reit)|pdt

or hp(f, r1) ≤ hp(f, r).
If f has zeros inside|z| < r but not on|z| = r, we denote the zeros,

repeating each according to its multiplicity, byζ1, . . . , ζk, and write

f1(z) = f(z)
(
k
∏

1

b
(z

r
,
ζn
r

)

)−1

For |z| < r we have|f(z)| < |f1(z)|, for |z| = r we have|f(z)| = |f1(z)|
andf1 is zero-free in|z| ≤ r. It follows that

hp(f, r1) < hp(f1, r1) ≤ hp(f1, r) = hp(f, r).

Sincehp(f, r) is a continuous function ofr, the same is true even iff
does have zeros on|z| = r, and the lemma is proved, J

3.3 Lemma. Let {ζn} be a sequence of complex numbers satisfying
|ζn| < 1 and

∑

(1− |ζn|) <∞. Then the product

(3.5) B(z) =
∞
∏

1

b(z, ζn) = zm
∏

ζn 6=0

ζ̄n(ζn − z)
|ζn|(1− zζ̄n)

converges absolutely and uniformly in every discDr = {z : |z| ≤ r},
r < 1.

†Any branch of(f(z))p/2.
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PROOF: It is sufficient to show that
∑
∣

∣1 − ζ̄n(ζn−z)
|ζn|(1−zζ̄n)

∣

∣ converges uni-
formly in |z| ≤ r < 1. But

∣

∣

∣1−
ζ̄n(ζn − z)
|ζn|(1− zζ̄n)

∣

∣

∣ =
∣

∣

∣

(

|ζn|+ zζn
)(

1− |ζn|
)

|ζn|(1− zζn)

∣

∣

∣ ≤
1 + r

1− r
(1− |ζn|)

and the series converges
∑

(1− |ζn|) <∞. J

The product (3.5), often called the Blaschke product corresponding
to {ζn}, is clearly holomorphic inD and it vanishes precisely at the
points ζn. Nothing prevents, of course, repeating the same complex
number a (finite) number of times in{ζn}, so that we can prescribe not
only the zeros but their multiplicities as well. Since all the terms in
(3.5) are bounded by 1 in modulus, we have|B(z)| < 1 in D.

3.4 We now introduce the spacesHp (H for Hardy) andN (N for
Nevanlinna).

DEFINITION: The spaceHp, p > 0, is the (linear) space of all func-
tionsf holomorphic inD, such that

(3.6) ‖f‖pHp = lim
r→1

hp(f, r) = sup0<r<1hp(f, r) <∞.

The spaceN is thc space of all functionsf holomorphic inD, such that

(3.7) ‖f‖N = sup0<r<1

1
2π

∫

log+|f(reit)|dt <∞.

Remarks:(a) Forp ≥ 1, ‖ ‖Hp as defined in (3.6) is a norm and we
shall show later thatHp endowed with this norm, can be identified with
a closed subspace ofLp(T). For p < 1, ‖ ‖pHp satisfies the triangle
inequality and is homogeneous of degreep. It can be used as a metric
for Hp; ‖ ‖Hp is homogeneous of degree one but does not satisfy the
triangle inequality.‖ ‖N is not homogeneous and does not satisfy the
triangle inequality.

(b) If p′ < p we haveN ⊃ Hp′ ⊃ Hp.

The spaceH2 has a simple characterization:

Lemma. Let f(z) =
∑

anz
n; thenf ∈ H2 if, and only if,

∑∞
0 |an|2 is

finite.

PROOF: h2(f, r) =
∑∞

0 |an|2r2n. It follows that‖f‖2H2 =
∑∞

0 |an|2. J
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An immediate consequence is that in this casef is the Poisson integral
of f(eit) ∼

∑∞
0 ane

int.

3.5 Lemma. Let f ∈ N and denote its zeros inD by ζ1, ζ2, . . . , each
repeated according to its multiplicity. Then

∑

(1− |ζn|) <∞.

Remark: The convergence of the series
∑

(1−|ζn|) is equivalent to the
convergence of the product

∏

|ζn| hence to the boundedhess (below) of
the series

∑

log|ζn| (not counting the zeros at the origin, if any).

PROOF: We may assumef(0) 6= 0. By Jensen’s inequality (3.3), ifM
is fixed andr sufficiently close to 1

log|f(0)| − ‖f‖N ≤
M
∑

1

log|ζn| −M log r.

Letting r → 1 we obtain

log|f(0)| − ‖f‖N ≤
M
∑

1

log|ζn|

and sinceM is arbitrary the lemma follows J

3.6 If we combine Lemma 3.3 with 3.5 we see that iff ∈ N , the
Blaschke product corresponding to the sequence of zeros off is a well-
defined holomorphic function inD, having the same zeros (with the
same multiplicities) asf and satisfying|B(z)| < 1 in D. If we write
F (z) = f(z)(B(z))−1 then F is holomorphic and satisfies|F (z)| >
|f(z)| in D. We shall refer tof = BF as thecanonical factorization
of f .

Theorem. Let f ∈ Hp, p > 0, and let f = BF be its canonical
factorization. ThenF ∈ Hp and‖F‖Hp = ‖f‖Hp .

PROOF: The Blaschke productB has the form

B(z) = lim
N→∞

zm
N
∏

1

b(z, ζn).

If we write FN (z) = f(z)
(

zm
∏N

1 b(z, ζn)
)−1

, thenFN converges toF
uniformly on every disc of the form|z| < r < 1. Since the absolute
value of the finite product appearing in the definition ofFN tends to
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one uniformly as|z| → 1, it follows from Lemma 3.2 thatFN ∈ Hp and
‖FN‖Hp = ‖f‖Hp . Let r < 1, then

hp(F, r) = lim
N→∞

hp(FN , r) ≤ lim
N→∞

‖FN‖pHp = ‖f‖pHp .

Now hp(F, r) ≤ ‖f‖pHp for all r < 1 is equivalent to‖F‖Hp = ‖f‖Hp ,
and since the reverse inequality is obvious, the theorem is proved.J

Theorem 3.6 is a key theorem in the theory ofHp spaces. It allows
us to operate mainly with zero-free functions which, by the fact of being
zero-free, can be raised to arbitrary powers and thereby move from one
Hp to a more convenient one. This idea was already used in the proof
of Lemma 3.2. Our first corollary to Theorem 3.6 deals with Blaschke
products.

3.7 Corollary. LetB be a Blaschke product. Then|(eit)| = 1 almost
everywhere.

PROOF: Since|B(z)| < 1 in D it follows from Lemma 1.2 thatB(eit)
exists as a radial (actually: nontangential), limit for almost allt ∈ T.
The canonical factorization off = B is trivial, the functionF is identi-
cally one, and consequently

‖B‖2H2 =
1

2π

∫

|B(eit)|2dt.

Since |B(eit)| ≤ 1, the equality above can hold only if|B(eit)| = 1
almost everywhere. J

3.8 Theorem. Assumef ∈ Hp, p > 0. Then the limitlimr→1 f(reit)
exists for almost allt ∈ T and, denoting it byf(eit), we have

‖f‖pHp =
1

2π

∫

|f(eit)|pdt.

PROOF: The case p = 2 follows from 3.4.
For arbitraryp > 0, let f = BF be the canonical factorization of

f , and writeG(z) = (F (z))p/2. ThenG belongs toH2 and conse-
quentlyG(reit) → G(eit) for almost allt ∈ T; at every sucht, F (reit)
converges to someF (eit) such that|F (eit)|p/2 = |G(eit)|. SinceB
has radial limit of absolute value one almost everywhere we see that
f(eit) = lim f(reit) exists and|f(eit)|p/2 = |G(eit)| almost everywhere.
Now ‖f‖pHp = ‖F‖pHp = ‖G‖2H2 = 1

2π

∫

|G(eit)|2dt = 1
2π

∫

|f(eit)|p and
the proof is complete. J
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3.9 The convergence assured by Theorem 3.8 is pointwise conver-
gence almost everywhere. Forp ≥ 2 we know thatf is the Poisson
integral of f(eit) and consequentlyf(reit) converges tof(eit) in the
Lp(T) norm. We shall show that the same holds forp = 1 (hence for
p ≥ 1); first, however, we use the casep ≥ 2 to prove:

Theorem. Let 0 < p < p′ and supposef ∈ Hp and f(eit) ∈ Lp′(T).
Thenf ∈ Hp′ .

PROOF: As before, if we writef = BF , G(z) = (F (z))p/2, thenG ∈
H2 andG(eit) ∈ L2p′/p(T). G is the Poisson integral ofG(eit) and
consequentlyG ∈ H2p′/p which meansF ∈ Hp′ , hencef ∈ Hp′ . J

Corollary. Letf ∈ L1(T) and assumẽf ∈ L1(T): then(f + if̃) ∈ H1.

PROOF: We know (Corollary 1.6) that(f + if̃) ∈ Hp for all p < 1 and
by the assumption(f + if̃)(eit) ∈ L1(T). J

3.10 Theorem.Every functionf in H1 can be factored asf = f1f2

with f1, f2 ∈ H2.

PROOF: Let f = BF be the canonical factorization off . We can take
f1 = F 1/2, f2 = BF 1/2. J

3.11 We can now prove:

Theorem. Let f ∈ H1 and letf(eit) be its boundary value. Thenf is
the Poisson integral off(eit).

PROOF: We prove the theorem by showing thatf(reit) converges to
f(eit) in theL1 norm. This implies that iff(z) =

∑

anz
n, thenan are

the Fourier coefficients off(eit) which is clearly equivalent tof being
the Poisson integral off(eit).

Write f = f1f2 with fj ∈ H2, j = 1, 2.

f(reit)− f(eit) = f1(reit)f2(reit)− f1(eit)f2(eit);

adding and subtractingf1(eit)f2(reit) and using the Cauchy-Schwarz
inequality, we obtain

‖f(reit)− f(eit)‖L1 ≤ ‖f2‖L2‖f1(reit)− f1(eit)‖L2

+ ‖f1‖L2‖f2(reit)− f2(eit)‖L2

As r → 1, ‖fj(reit)− fj(eit)‖L2 → 0, and the proof is complete. J
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Remark: See exercise 2 at the end of the section for an extension of
the theorem to the case0 < p < 1.

Corollary. Let f ∈ L1(T) and f̃ ∈ L1(T). ThenS[f̃ ] = S̃[f ].

PROOF: From 3.9 and the theorem above follows thatf̃(reit) is the
Poisson integral of̃f(eit) (see Remark 1.4). J

3.12 Theorem.Assumep ≥ 1. A functionf belongs toHp if, and
only if, it is the Poisson integral of somef(eit) ∈ Lp(T) satisfying

(3.8) f̂(n) = 0 for all n < 0.

PROOF: Let f ∈ Hp; by Theorem 3.11,f is the Poisson integral of
f(eit) and (3.8) is clearly satisfied. On the other hand, letf ∈ Lp(T)
and assume (3.8); the Poisson integral off ,

f(reit) =
∞
∑

0

f̂(n)rneint =
∞
∑

0

f̂(n)zn

is holomorphic inD, and since‖f(reit)‖Lp ≤ ‖f(eit)‖Lp , it follows that
f(z) ∈ Hp. J

3.13 Forp > 1, we can prove that everyf ∈ Hp is the Poisson integral
of f(eit) without appeal to Theorem 3.11 or any other result obtained in
this section. We just repeat the proof of Lemma 1.2 (which is the case
p = ∞ of 3.12): if f ∈ Lp(R), ‖f(reit)‖p is bounded asr → 1; we can
pick a sequencern → 1 such thatfn(eit) = f(rneit) converge weakly
in Lp(T) to somef(eit). Since weak convergence inLp(T) implies
convergenee of Fourier coefficients, it is clear that (3.8) is satisfied and
that the functionf with which we started is the Poisson integral of
f(eit).

For p = 1 the proof as given above is insufficient.L1(T) is a sub-
space ofM(T), the space of Borel measures onT, which is the dual of
C(T), and the argument above can be used to show that everyf ∈ H1

is the Poisson integral of some measureµ onT. This measure has the
property

(3.9) µ̂(n) = 0, for all n < 0.

All that we have to do in order to complete the (alternative) proof of
Theorem 3.12 in the casep = 1 is to prove that the measures satisfying
(3.9), often called analytic measures, are absolutely continuous with
respect to the Lebesgue measure onT.
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Theorem (F. and M. Riesz).Letµ be a Borel measure onT satisfy-
ing

(3.9) µ̂(n) = 0, for all n < 0.

Thenµ is absolutely continuous with respect to Lebesgue measure.

We first prove:

Lemma. Let E ⊂ T be a closed set of measure zero. There exists a
functionϕ holomorphic inD and continuous in̄D such that:

(i) ϕ(eit) = 1 onE,

(ii) |ϕ(eit)| < 1 on D̄ \ E.
(3.10)

PROOF: SinceE is closed and of measure zero we can construct a func-
tion ψ onT such thatψ(eit) > 0 everywhere,ψ(eit) is continuously dif-
ferentiable in each component ofT \ E, ψ(eit) → ∞ as t approaches
E, andψ(eit) ∈ L2(T). The Poisson integralψ(z) of ψ(eit) is positive
on D andψ(z) → ∞ as z approachesE. The conjugate function is
continuous inD̄ \ E (see the end of section 2) and consequently, if we

putϕ(z) = ψ(z)+iψ̃(z)

ψ(z)+iψ̃(z)+1
thenϕ is holomorphic inD and continuous in

D̄ \ E. At every point whereψ(z) < ∞ we have|ϕ(z)| < 1, and as
ψ(z) → ∞, ϕ(z) → 1. If we defineϕ(z) = 1 on E thenϕ satisfies
(3.10). J

PROOF OF THE THEOREM: Assume thatµ satisfies the condition (3.9).
We can assumêµ(0) = 0 as well (otherwise considerµ− µ̂(0)dt) and it
then follows from Parseval’s formula that

(3.11) 〈f̄ , µ〉 =
∫

fdµ = 0

for everyf ∈ C(T) which is the boundary value of a holomorphic func-
tion in D or, equivalently, such that̂f(n) = 0 for all negativen. Let
E ⊂ T be closed and of (Lebesgue) measure zero. Letϕ be a function
satisfying (3.10). Then, by (3.11)

∫

ϕmdµ = 0 for all m > 0

and by (3.10)

lim
m→∞

∫

ϕmdµ = µ(E).

Thusµ(E) = 0 for every closed setE of Lebesgue measure zero and,
sinceµ is regular, the theorem follows. J
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3.14 Theorem 3.13 can be given a more complete form in view of the
following important

Theorem. Let f ∈ Hp, p > 0; then

log|f(eit)| ∈ L1(T)

Remarks:The same conclusion holds under the weaker assumption
f ∈ N . We state it forHp since we did not prove the existence off(eit)
for f ∈ N (cf. [28], Vol. 1, p. 276). Sincep log+|f | < |f |p we already
know thatlog+|f(eit)| ∈ L1(T). Thus the content of the theorem is that
f(eit) cannot be too small on a large set.

PROOF: Replacingf by z−mf , if f has a zero of orderm at z = 0, we
may assumef(0) 6= 0. Let r < 1; then, by Jensen’s inequality

log|f(0)| − ‖f‖N ≤ −
1

2π

∫

log−|f(reit)|dt ≤ 0

(wherelog− x = − log x if x < 1 and zero otherwise). It follows that
∫

|log|f(reit)||dt is bounded asr → 1 and the theorem follows from
Fatou’s lemma. J

Corollary. If f 6= 0 is inHp, f(eit) can vanish only on a set of measure
zero.

Combining Theorem 3.13 with our last corollary we obtain that ana-
lytic measures are equivalent to Lebesgue’s measure (i.e., they all have
the same null sets).

3.15 Theorem.LetE be a closed proper subset ofT. Any continuous
function onE can be approximated uniformly by Taylor polynomials‡.

PROOF: We denote byC(E) the algebra of all continuous functions on
E endowed with the supremum norm. The theorem claims that the
restrictions toE of Taylor polynomials are dense inC(E).

If a measureµ carried byE is orthogonal to allzn, n = 0, 1, . . . ,
it is analytic: 〈zn, µ〉 = µ̂(n) = 0, and henceµ = fdt with f ∈ H1, f
carried byE. By Theorem 3.14,f = 0. Hence there is no nontrivial
functional onC(E), which is orthogonal to all Taylor polynomials, and
the theorem follows from the Hahn-Banach theorem. J

‡We use the term "Taylor polynomial" to designate trigonometric polynomials of the
form

∑N

0
aneint.
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3.16 We finish this section with another application of 3.10.

Theorem (Hardy). Letf(z)=
∑∞

0 anz
n ∈H1. Then

∑∞
1 |an|n−1<∞.

Remark: The theorem can also be stated:Let f ∈ L1(T) satisfy(3.8),
then

∑∞
1 |f̂(n)|n−1 ≤ ‖f‖L1 .

PROOF: If F (eit) is a primitive off(eit) thenF is continuous onT and
consequently its Fourier series is Abel summable toF at everyt ∈ T.
In particular

∑∞
1 (an/n)rn tends to a finite limit asr → 1. If we assume

an ≥ 0 for all n then
∑∞

1 an/n is clearly convergent (compare with
I.4.2).

In the general case we writef = f1f2 with fj =
∑

Aj,nz
n ∈ H2,

j = 1, 2. Write f∗j (z) =
∑

|Aj,n|zn, andf∗(z) = f∗1 (z)f∗2 (z) =
∑

a∗nz
N .

The functionsf∗j are clearly inH2, hencef∗ ∈ H1 and, sincea∗n ≥ 0,
it follows from the first part of the proof that

∑

(a∗n/n) <∞. But

|an| =
∣

∣

n
∑

k=0

A1,kA2,n−k
∣

∣ ≤
n
∑

k=0

|A1,k||A2,n−k| = a∗n

and the theorem follows. J

3.17 Let f ∈ H1 and assume thatf(eit) is of bounded variation on
T. If f ∼

∑∞
0 ane

int then
∑∞

1 inane
int is the Fourier-Stieltjes series

of df . Thus the measuredf satisfies the condition of Theorem 3.13 and
consequentlydf = f ′dt andf ′(z) is in H1. Combining this with 3.16
we obtain:

Theorem. Let f ∈ H1 and assume thatf(eit) is of bounded variation
onT. Thenf(eit) is absolutely continuous and

∑∞
−∞|f̂(n)| <∞.

An equivalent form of the theorem is (see 3.9):

Theorem. Let f, f̃ ∈ L1(T) and assume that bothf and f̃ are of
bounded variation. Then bothf and f̃ are absolutely continuous. and
∑∞
−∞|f̂(n)| <∞.

EXERCISES FOR SECTION 3

1. Deduce Theorem 3.13 (F. and M. Riesz) from Theorem 3.11.
2. Show that for allp > 0, if f ∈ Hp, then

∫

|f(eit) − f(reit)|pdt → 0 as
r → 1.
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Hint: Reduce the general case to the case in whichf is zero-free. In the case
thatf is zero-free, writef1 = f

1
2 ; thenf1 ∈ H2p and

f(eit)− f(reit) = (f1(eit)− f1(reit))(f1(eit) + f1(reit));

hence show that if the statement is valid for2p is also valid forp. Use the fact
that it is valid forp ≥ 2.

3. Let E be a closed set of measure zero onT. Let ϕ be a continuous
function onE.

(a) Show that there exists a functionΦ, holomorphic inD and continuous
on D̄ such thatΦ(eit) = ϕ(eit) onE.

(b) Show thatΦ can be chosen satisfying the additional condition

supz∈D̄|Φ(z)| = supeit∈E |ϕ(eit)|.

Hint: ConstructΦ by successive approximation using 3.15 and Lemma 3.13.
4. Letf ∈ L1(T) be absolutely continuous and assumef ′ log+|f ′| ∈ L1(T).

Prove that
∑

|f̂(n)| <∞.



Chapter IV

Interpolation of Linear Operators and the
Theorem of Hausdorff-Young

Interpolation of norms and of linear operators is really a topic in
functional analysis rather than harmonic analysis proper; but, though
less so than ten years ago, it still seems esoteric among authors in func-
tional analysis and we include a brief account. The interpolation theo-
rems that are the most useful in Fourier analysis are the Riesz-Thorin
theorem and the Marcinkiewicz theorem. We give a general description
of the complex interpolation method and prove the Riesz-Thorin theo-
rem in section 1. In the second section we use Riesz-Thorin to prove
the Hausdorff-Young theorem. We do not discuss the Marcinkiewicz
theorem although it appeared implicitly in the proof of theorem III.1.9.
We refer the reader to Zygmund ([28] chap. XII) for a complete account
of Marcinkiewicz’s theorem.

1 INTERPOLATION OF NORMS AND OF LINEAR OPERATORS

1.1 Let B be a normed linear space and letF be defined in some do-
main Ω in the complex plane, taking values inB. We say thatF is
holomorphic inΩ if, for every continuous linear functionalµ onB, the
numerical functionh(z) = 〈F (z), µ〉 is holomorphic inΩ. Assume now
thatB is a linear space with two norms‖ ‖0 and‖ ‖1 defined on it. We
consider the familyB of all B-valued functions which are holomorphic
and bounded, with respect to both norms, in a neighborhood of the strip
Ω = {z : 0 ≤ <(z) ≤ 1}. B is a linear space which we norm as follows:
for F ∈ B put

(1.1) ‖F‖ = supy{‖F (iy)‖0, ‖F (1 + iy)‖1}.

For 0 < α < 1, the setBα = {F ∈ B :F (α) = 0} a linear subspace of
B. We shall say that‖ ‖0 and‖ ‖1 are consistent ifBα is closed inB for

105
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all 0 < α < 1. A convenient criterion for consistency is the following
lemma:

Lemma. Assume that for everyf ∈ B, f 6= 0, there exists a functional
µ continuous with respect to both‖ ‖0 and‖ ‖1 , such that〈f, µ〉 6= 0.
Then‖ ‖0 and‖ ‖1 are consistent.

PROOF: Let 0 < α < 1 and letFn ∈ B, Fn → F in B. Let µ be an
arbitrary linear functional continuous with respect to both norms. The
functions〈Fn(z), µ〉 are bounded on the stripΩ and tend to〈F (z), µ〉
uniformly on the linesz = iy and z = 1 + iy. By the theorem of
Phragmèn-Lindelöf the convergence is uniform throughoutΩ and in
particular 〈F (α), µ〉 = limn→∞〈Fn(α), µ = 0. Since this is true for
every functional It it follows thatF (α) = 0, that is,F ∈ Bα and the
lemma is proved. J

Remark: The condition of the lemma is satisfied if‖ ‖0 and‖ ‖1 both
majorize a third norm‖ ‖2. This follows from the Hahn-Banach theo-
rem: if f 6= 0, there exists a functionalµ continuous with respect to‖ ‖2
such that〈f, µ〉 6= 0. It is clear that if ,‖ ‖j ≥ ‖ ‖2 thenµ is continuous
with respect to‖ ‖j , j = 0, 1.

1.2 We interpolate consistent norms onB as follows: for0 < α < 1,
the quotient spaceB/Bα is algebraically isomorphic toB (through the
mappingF 7→ F (α)). SinceBα is closed inB, B/Bα has a canonical
quotient norm which we can transfer toB through the aforementioned
isomorphism; we denote this new norm onB by ‖ ‖α.

The usefulness of this method of interpolating norms comes from
the fact that it permits us to interpolate linear operators in the following
sense:

Theorem. LetB (resp.B′) be a normed linear space with two consis-
tent norms‖ ‖0 and‖ ‖1 (resp.‖ ‖′0 and‖ ‖′1. Denote the interpolating
norms by‖ ‖α (resp.‖ ‖′α), 0 < α < 1. LetS be a linear transformation
fromB toB′ which is bounded as

(1.2) (B, ‖ ‖j
S−→ (B′, ‖ ‖′j) j = 0, 1.

ThenS is bounded as

(1.3) (B, ‖ ‖α) S−→ (B′, ‖ ‖′α),

and its norm‖S‖α satisfies

(1.4) ‖S‖α ≤ ‖S‖1−α0 ‖S‖α1 .
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PROOF: We denote byB′ the space of holomorphicB′-valued functions

which is used in defining‖ ‖′α. The mapB S−→ B′ can be extended to a

mapB S−→ B′ by writing SF (z) = S(F (z)). To show thatSF so defined
is holomorphic, we consider an arbitrary functionalµ continuous with
respect to‖ ‖′0 or ‖ ‖′1 and notice that〈SF (z), µ〉 = 〈F (z),S∗µ〉. Since
SF (z) is clearly bounded it follows thatSF ∈ B′.

Let f ∈ B, ‖f‖α = 1; then there exists anF ∈ B such thatF (α) = f

and such that‖F‖ < 1 + ε. Applying S to F , we obtain

‖Sf‖
′

α ≤ ‖SF‖
′
≤ (1 + ε) max(‖S‖0, ‖S‖1);

hence
‖S‖α ≤ max(‖S‖0, ‖S‖1)

which proves the continuity of (1.3). To prove the better estimate (1.4),
we consider the functionea(z−α)F (z), whereea = ‖S‖0, ‖S‖−1

1 . We
have

‖Sf‖
′

α ≤ ‖S(ea(z−α)F (z))‖
′

= supt{e
−aα‖SF (it)‖

′

0, e
a(1−α)‖SF (1 + it)‖

′

1}

≤ (1 + ε) sup{e−aα‖S‖0, ea(1−α)‖S‖1}
= (1 + ε)‖S‖1−α0 ‖S‖α1 . J

Remark: The idea of using the functionea(z−α) goes back to Hadamard
(the "three-circles theorem"); it can be used to show that, for every
f ∈ B,

(1.5) ‖f‖α ≤ ‖f‖1−α0 ‖f‖α1 .

1.3 A very important example of interpolation of norms is the follow-
ing: let (X, dx) be a measure space, let1 ≤ p0 < p1 ≤ ∞, and letB
be a subspace ofLp0 ∩ Lp1(dx). We claim that the norms‖ ‖0 and‖ ‖1
induced onB by Lp0(dx) andLp1(dx), respectively, are consistent. By
Lemma 1.1, all we have to show is that, givenf ∈ B, f 6= 0, there exists
a linear functionalµ, continuous with respect to both norms, such that
〈f, µ〉 6= 0; we can take asµ the functional defined by〈f, µ〉 =

∫

fḡdx

whereg ∈ L1 ∩ L∞(dx) has the property† thatfg > 0 whenever|f | > 0.

†If we write f = |f |eiϕ with real-valuedϕ, we may takeg = min(1, |f |p0 )eiϕ.
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Theorem. Let (X, dx) be a measure space,B = Lp0 ∩ Lp1(dx) (with
1 ≤ p0 < p1 ≤ ∞). Denote by‖ ‖j, the norms induced byLpj (dx), and
by ‖ ‖α the interpolating norms. Then‖ ‖α coincides with the norm
induced onB byLpα(dx) where

(1.6) pα =
p0p1

p0α+ p1(1− α)

(

=
p0

1− α
if p1 =∞

)

.

PROOF: Let f ∈ B and‖f‖pα ≤ 1. ConsiderF (z) = |f |a(z+α)+1eiϕ

wheref = |f |eiϕ and

a =
p0 − p1

p0α+ p1(1− α)

(

=
−1

1− α
if p1 =∞

)

.

We haveF (α) = f and consequently‖f‖α ≤ ‖F‖. Notice now that
|F (iy)| = |f |1−aα = |fpα/p0 | so that

‖F (it)‖0 =
(

∫

|f |pαdx
)1/pα

≤ 1;

similarly ‖F (1 + it)‖1 ≤ 1 (use the same argument ifp1 <∞ and check
directly if p1 = ∞); hence‖f‖α ≤ 1. This proves‖ ‖α ≤ ‖ ‖Lpα . In
order to prove the reverse inequality, we denote byq0, q1 the conjugate
exponents ofp0 andp1 and notice that the exponent conjugate topα is

(1.6’) qα =
q0q1

q0α+ q1(1− α)

(

=
q1

α
if q0 =∞

)

We now setB′ = Lq0 ∩ Lq1(dx) and denote byB′ the corresponding
space of holomorphicB′-valued functions.

Let fB and assume‖f‖Lpα > 1; then, sinceB′ is dense inLqα , there
exists ag ∈ B′ such that‖g‖Lqα ≤ 1 and such that

∫

fgdx > 1. As in the
first part of this proof, there exists a functionG ∈ B′ such thatG(α) = g

and‖G‖ (with respect toq0, q1) is bounded by 1. LetF ∈ B such that
F (α) = f . The functionh(z) = fF (z)G(z)dx (remember that for each
z ∈ Ω, F (z) ∈ B andG(z) ∈ B′) is holomorphic and bounded inΩ (see
Appendix A). Nowh(α) > 1, hence, by the Phragmèn-Lindelöff theo-
rem, |h(z)| must exceed 1 on the boundary. However, on the boundary
|h(z)| ≤ ‖F‖‖G‖ ≤ ‖F‖ so that‖F‖ > 1. This proves‖f‖α ≥ 1 and it
follows that‖ ‖α and‖ ‖Lpα are identical. J

1.4 As a corollary to Theorems 1.2 and 1.3, we obtain the Riesz-
Thorin theorem.
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Theorem. Let (X, x) and (Y, y) be measure spaces. LetB = Lp0 ∩
Lp1(dx) andB′ = Lp

′
0 ∩ Lp′1(dy), and letS be a linear transformation

fromB toB′, continuous asS : (B, ‖ ‖j) 7→ (B′, ‖ ‖′j), j = 0, 1, where

‖ ‖j (resp.‖ ‖′j) is the norm induced byLpj (dx) (resp.Lp
′
j (dy)). ThenS

is continuous as
S : (B, ‖ ‖α) 7→ (B′, ‖ ‖′α)

where‖ ‖α, (resp.‖ ‖′α) is the norm induced byLpα(dx) (resp.Lp
′
α(dy)),

pα andp′α are defined in(1.6)).

A bounded linear transformationS from one normed spaceB to
another can be completed in one and only one way, to a transformation
having the same norm, from the completion ofB into the completion
of the range space ofS. Thus, under the assumption of 1.4,S can
be extended as a transformation fromLpα(x) into Lp

′
α(y) with norm

satisfying (1.4). The same remark is clearly valid for Theorem 1.2.

1.5 Our first application of the Riesz-Thorin theorem is Bochner’s
proof of M. Riesz’ Theorem III.1.11. We show thatLp(T) admits con-
jugation if p is an even integer. It then follows by interpolation that the
same is true for allp > 2, and by duality, for allp > 1.

Let f be a real-valued trigonometric polynomial and assume, for
simplicity, f(0) = 0. As usual we denote the conjugate byf̃ and put
f [ = 1

2 (f + if̃). f [ is a Taylor polynomial‡ and its constant term is
zero; the same is clearly true for(f [)p, p being any positive integer.
Consequently

1
2π

∫

(f [(t))pdt = 0 .

Assume now thatp is even,p = 2k, and consider the real part of the
identity above; we obtain:

1
2π

∫

(f̃)2kdt−
(

2k
2

)

1
2π

∫

(f̃)2k−2f2dt+
(

2k
4

)

1
2π

∫

(f̃)2k−4f4dt

− · · · = 0.

By Hölder’s inequality

∣

∣

1
2π

∫

(f̃)2k−2mf2mdt
∣

∣ ≤ ‖f̃‖2k−2m
L2k ‖f‖2mL2k ;

‡We use the term "Taylor polynomial" to designate trigonometric polynomials of the
form

∑N

0
eint.
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hence

‖f̃‖2kL2k ≤
(

2k
2

)

‖f̃‖2k−2
L2k ‖f‖2L2k +

(

2k
4

)

‖f̃‖2k−4
L2k ‖f‖4L2k + . . . ,

or, denoting
Y = ‖f̃‖L2k‖f‖−1

L2k

we have

Y 2k ≤
(

2k
2

)

Y 2k−2 +
(

2k
4

)

Y 2k−4Y 2k−4 + · · ·+ 1

which implies thatY is bounded by a constant depending onk (i.e.,
on p). Thus the mappingf 7→ f̃ is bounded in theLp(T) norm for all
polynomialsf , and, since polynomials are dense inLp(T), the theorem
follows.

EXERCISES FOR SECTION 1

1. Prove inequality (1.5).
2. Let {an} be a sequence of numbers. Findmin(

∑

|an|) under the con-
ditions

∑

|an|2 = 1,
∑

|an|4 = a. 3. LetB be a vector space with consistent
norms‖ ‖0, ‖ ‖1, and ˜B a space of linear functionals onB which are continu-
ous with respect to both‖ ‖0 and‖ ‖1. Let ‖ ‖∗j be the norm on˜B induced by
the duality with(B, ‖ ‖j), j = 0, 1, and‖ ‖∗α the interpolating norms. Let‖ ‖α∗
be the norm on˜B induced by the dual of(B, ‖ ‖α). Prove that forf ∈ ˜B,

‖f‖α∗ ≤ ‖f‖∗α.

4. Let
(

X,B
)

be a measurable space, and letµ andν be positive measures
on it. LetB = L2

(

X,B, µ
)

∩ L2
(

X,B, ν
)

.

i. What are necessary and sufficient conditions for the consistency of the
norms (onB): ‖ ‖0 = ‖ ‖L2(µ), and‖ ‖1 = ‖ ‖L2(ν).

ii. When the norms above are consistent, what are the interpolating norms
‖ ‖α?

5. Let 0 < a < b. For f ∈ C∞(T), define‖f‖0 =
(

∑

|f̂(n)|2|n|2a
) 1

2
, and

‖f‖1 =
(

∑

|f̂(n)|2|n|2b
) 1

2
. Show that the norms so defined are consistent on

C∞(T) and find the interpolating norms‖ ‖α.
6. Assume0 < a < b. What are the interpolating norms between the ones

induced onC∞(T) byCa(T) and byCb(T)?
Hint: For f ∈ L1(T) define‖f‖W,k = ‖W2k(f)‖∞; the notation is that of
I.8.2. For0 < a < b, and forf ∈ C∞(T), define‖f‖0 = supk‖f‖W,k2ak and
‖f‖1 = supk‖f‖W,k2bk.
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2 THE THEOREM OF HAUSDORFF-YOUNG

The theorem of Riesz-Thorin enables us to prove now a theorem
that we stated without proof at the end of 1.4 (Theorem I.4.7); it is
known as the Hausdorff-Young theorem:

2.1 Theorem. Let 1 ≤ p ≤ 2 and letq be the conjugate exponent,
that is,q = p/(p− 1). If f ∈ Lp(T) then

∑

|f̂(n)|q <∞. More precisely
(∑

|f̂(n)|q
)1/q ≤ ‖f‖Lp

PROOF: The mappingF : f 7→ {f̂(n)} is a transformation of functions
on the measure space(T, dt) into functions on(Z, dn),Z being the group
of integers anddn the so-called counting measure, that is, the measure
that places a unit mass at each integer. We know that the norm of the
mapping asL1(T) 7→ L∞(Z) = `∞ is 1 (I.1.4) and we know that it is an
isometry ofL2(T) ontoL2(Z) = `2 (I.5.5). It follows from the Riesz-
Thorin theorem thatF is a transformation of norm≤ 1 fromLp(T) into
Lq(Z) = `q, which is precisely the statement of our theorem. We can
add that since the exponentials are mapped with no loss in norm, the
norm ofF onLp(T) into `q is exactly 1. J

2.2 Theorem. Let 1 ≤ p ≤ 2 and letq be the conjugate exponent. If
{an} ∈ `p then there exists a functionf ∈ Lq(T) such thatan = f̂(n).
Moreover,‖f‖Lq ≤ (

∑

|an|p)1/p.

PROOF: Theorem 2.2 is the exact analog to 2.1 with the roles of the
groupsT andZ reversed. The proof is identical: if{an} ∈ `1 then
f(t) =

∑

ane
int is continuous onT and f̂(n) = an. The casep = 2 is

again given by Theorem I.5.5 and the case1 < p < 2 is obtained by
interpolation. J

2.3 We have already made the remark (end of 1.4) that Theorem 2.1
cannot be extended to the casep > 2 since there exist continuous func-
tions f such that

∑

|f̂(n)|2−ε = ∞ for all ε > 0. An example of such
a function isf(t) =

∑∞
n=2

ein logn

n1/2(log n)2 e
int (see [28], vol. I, p. 199);

another example isg(t) =
∑

m−22−m/2fm(t) wherefm are the Rudin-
Shapiro polynomials (see exercise 6, part c of I.6). We can try to ex-
plain the phenomenon by a less explicit but more elementary construc-
tion.

The first remark is that this, like many problems in analysis, is a
problem of comparison of norms. It is sufficient, we claim, to show
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that, givenp < 2, there exist functionsg such that‖g‖∞ ≤ 1 and
∑

|ĝ(n)|p is arbitrarily big. If we assume that, we may assume that our
functionsg are polynomials (replaceg by σn(g) with sufficiently big
n) and then, taking a sequencepj → 2, gj satisfying‖gj‖∞ ≤< 1 and
∑

|ĝj(n)|pj > 2j we can writef =
∑

j−1eimjtgj(t) where the integers
mj increase fast enough to ensure thateimjtgj(t) andeimktgk(t) have
no frequencies in common ifj 6= k. The series definingf converges
uniformly and for anyp < 2 we have

∑

|f̂(n)|p =
∑

j

∑

n

1
j2
|ĝj(n)|p ≥

∑

pj>p

1
j2
|ĝj(n)|p =∞ .

One way to show the existence of the functionsg above is to show that,
givenε > 0, there exist functionsg satisfying

(2.1) ‖g‖∞ ≤ 1, ‖g‖L2 ≥ 1
2
, supn|ĝ(n)| ≤ ε .

In fact, if (2.1) is valid then

∑

|ĝ(n)|p ≥ εp−2
∑

|ĝ(n)|2 ≥ 1
4
εp−2,

and if ε can be chosen arbitrarily small, the correspondingg will have
∑

|ĝ(n)|p arbitrarily large.
Functions satisfying (2.1) are not hard to find; however, it is im-

portant to realize that when we need a function satisfying certain con-
ditions, it may be easier to construct an example rather than look for
one in our inventory. We therefore include a construction of functions
satisfying (2.1). The key remark in the construction is simple yet very
useful: ifP is a trigonometric polynomial of degreeN , f ∈ L1(T) and
λ > 2N is an integer, then the Fourier coefficients ofϕ(t) = f(λt)P (t)
are either zero or have the form̂f(m)P̂ (k). This follows from the iden-
tity ϕ̂(n) =

∑

λm+k=n f̂(m)P̂ (k) and the fact that there is at most one
way to writen = λm+ k with integersm, k such that|k| < N < λ/2.

Consider now any continuous function of modulus 1 onT, which is
not an exponential (of the formeint); for example the functionψ(t) =
ei cos t. Since

∑

|ψ̂|2 = ‖ψ‖2L2 = 1 and the sum contains more than one
term, it follows that sup|ψ̂(n)| = ρ < 1. LetM be an integer such that
ρM < ε. Let η < 1 be such thatηM > 1

2 . Let ϕ = σN (ψ), where the
orderN is high enough to ensureη < |ϕ(t)| < 1. It follows from the
preceding remark that if we setλ = 3N andg(t) =

∏M
j=1 ϕ(λjt), the

Fourier coefficients ofg are products ofM Fourier coefficients ofϕ;
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hence|ĝ(n)| ≤ ρM < ε. On the other hand12 < ηM < |g(t)| < 1 and
(2.1) is valid.

2.4 We can use the polynomials satisfying (2.1) to show also that The-
orem 2.2 does not admit an extension to the casep > 2. In fact, we
can construct a trigonometric series

∑

ane
int which is not a Fourier-

Stieltjes series, and such that
∑

|an|p <∞ for all p > 2.
Let gj be a trigonometric polynomial satisfying (2.1) withε = 2−j.

Since nowp > 2 we have
∑

|ĝj(n)|p ≤ εp−2
∑

|ĝj(n)|2 ≤ 2−j(p−2)

and consequently, for any choice of the integersmj,
∑

jeimjtgj(t) =
∑

ane
int does satisfy

∑

|an|p < ∞ for all p > 2. We now choose the
integersmj increasing very rapidly in order to well separate the blocks
corresponding tojeimjtgj(t) in the series above. If we denote byNj
the degree of the polynomialgj, we can takemj so thatmj − 3Nj >
mj−1 + 3Nj−1. If

∑

ane
int is the Fourier-Stieltjes series of a measureµ

then

µ ∗ eimjtVNj = jeimjtgj (VNj being de la Vallée Poussin’s kernel)

and consequently

3‖µ‖M(T) > j‖gj‖L1 >
j

4
which is impossible. We have thus proved

Theorem. (a) There exists a continuous functionf such that for all
p < 2,

∑

|f̂(n)|p =∞.
(b) There exists a trigonometric series,

∑

ane
int, which is not a Fourier-

Stieltjes series, such that
∑

|f̂(n)|p <∞ for all p > 2.

Both statements can be improved. See Appendix B.

2.5 We finish this section with another construction: that of a setE

of positive measure onT which carries no function with Fourier coeffi-
cients iǹ p for any p < 2. Such a set clearly must be totally disconnected
and therefore carries no continuous functions. Its indicator function,
however, is a bounded function whose Fourier coefficients belong to no
`p, p < 2.

Theorem. There exists a compact setE on T such thatE has pos-
itive measure and such that, the only functionf carried byE with
∑

|f̂(j)|p <∞ for somep < 2, is f = 0.
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First, we introduce the notation†

(2.2) ‖f‖F`∞ = sup|f̂(j)| ‖f‖F`p =
(
∑

|f̂(j)|p
)1/p;

and prove:

Lemma. Let ε > 0, 1 ≤ p < 2. There exists a closed setEε,p ⊂ T
having the following properties:
(1) The measure ofEε,p is> 2π − ε.
(2) If f is carried byEε,p then

‖f‖F`∞ ≤ ε‖f‖F`p .

PROOF: Let γ > 0. Put

ϕγ(t) =

{

γ−2π
γ for 0 < t < γ mod 2π

1 for γ ≤ t ≤ 2π mod 2π.

Then, by Theorem 2.1

(2.3) ‖ϕγ‖F`q ≤ ‖ϕγ‖Lp ≤ 2πγ
1
p−1, where

1
p

+
1
q

= 1.

We notice that̂ϕγ(0) = 0 so that, if we choose the integersλ1, λ2, . . . , λN
increasing fast enough, every Fourier coefficient of

∑N
1 ϕγ(λjt) is es-

sentially a Fourier coefficient of one of the summands. It then follows
that

(2.4)
∥

∥

∥

1
N

N
∑

1

ϕγ(λjt)
∥

∥

∥

F`q
≤ N

1
q−1‖ϕγ‖F`q .

We take a large value forN and putγ = ε/N and

Φ(t) =
1
N

N
∑

1

ϕγ(λjt).

Then, by (2.3) and (2.4), it follows that

‖Φ‖F`q ≤ 4πγ
1
p−1N

1
q−1 = 4πε

1
p−1N

1
q−

1
p

so that ifN is large enough‖Φ‖F`q ≤ ε. We can take

Eε,p = {t : Φ(t) = 1} =
N
⋂

1

{t :ϕγ(λjt) = 1}.

†Notice that‖ ‖F`1 is the same as‖ ‖A(T).
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Sinceϕγ(λjt) 6= 1 on a set of measureγ, it follows that

|Eε,p| ≥ 2π −Nγ = 2π − ε.

Now if f is carried byEε,p, then for arbitrary n,

f̂(n) =
1

2π

∫

e−intf(t)dt =
1

2π

∫

e−intf(t)Φ(t)dt.

It follows from Parseval’s formula that

|f̂(n)| = |
∑

f̂(n−m)Φ̂(m)| ≤ ‖Φ‖F`q‖f‖F`p ≤ ε‖f‖F`p ;

and the proof of the lemma is complete. J

PROOF OF THE THEOREM: TakeE = ∩∞n=1Eεn,pn whereεn = 3−n, and
pn = 2− εn. The measure ofE is clearly positive, and iff is carried by
E and‖f‖F`q <∞, it follows that for alln large enough

‖f‖F`∞ ≤ εn‖f‖F`pn ≤ εn‖f‖F`p ,

hencef̂ = 0 and sof = 0. J

EXERCISES FOR SECTION 2

1. Verify that 2−(m+1)/2fm (fm, as defined in exercise 6 part c) of I.6,
satisfy (2.1) when2−(m+1)/2 < ε.

2. Show that ifN > ε−1 and ifmn increases fast enough, theng, defined
by: g(t) = eiNmnt for 2πn/N ≤ t ≤ 2π(n+ 1)/N, n = 0, . . . , N , satisfies (2.1).

3. Let{an} be an even sequence of positive numbers. A closed setE ⊂ T
is a set of typeU(an) if the only distributionµ carried byE and satisfying
µ̂(n) = o(an) as|n| → ∞, is µ = 0. Show that ifan → 0 there exist setsE of
positive measure which are of typeU(an). Hint: For 0 < a < π we write (see
exercise 3 of I.6):

∆a(t) =

{

1− a−1|t| |t| ≤ a
0 a ≤ |t| ≤ π.

We have∆a ∈ A(T), ‖∆a‖A(T) = 1, and∆̂a(0) = a/2π. Choosenj so that
|n| > nj impliesan < 10−j ; putEj = {t : ∆2−j (2njt) = 0} andE = ∩∞j=1Ej .
Notice that|E| ≥ 2π−

∑

21−j > 0. If µ is carried byE we have, for allm and
j, 〈eimt∆3−j(2njt), µ〉 = 0 since∆3−j (2njt) vanishes in a neighborhood ofE.
By Parseval’s formula

0 = 〈eimt∆3−j(2njt), µ〉 =
3−j

2π
µ̂(m) +

∑

k 6=0

∆̂3−j (k)µ̂(m+ 2njk).



116 AN INTRODUCTION TOHARMONIC ANALYSIS

If nj > |m| and if |µ̂(n)| ≤ an we have fork ≥ 0, |µ̂(m+ 2njk)| < 10−j , hence
(3−j/2π)|µ̂(m)| < 10−j . Letting j → ∞ we obtainµ̂(m) = 0, and,m being
arbitrary,µ = 0.



Chapter V

Lacunary Series and Quasi-analytic
Classes

The theme of this chapter is that of I.4, namely, the study of the
ways in which properties of functions or of classes of functions are
reflected by their Fourier series.

We consider important special cases of the following general prob-
lem: let Λ be a sequence of integers andB a homogeneous Banach
space onT; denote byBΛ the closed subspace ofB spanned by{eiλt}λ∈Λ

or, equivalently, the space of allf ∈ B with Fourier series of the form
∑

λ∈Λ aλe
iλt. Describe the properties of functions inBΛ in terms of

their Fourier series (andΛ). An obvious example of the above is the
case of a finiteΛ in which all the functions inBΛ are polynomials. If
Λ is the sequence of nonnegative integers andB = Lp(T), 1 < p <

∞, thenBΛ is the space of boundary values of functions in the cor-
respondingHp. In the first section we consider lacunary sequences
Λ and show, for instance, that ifΛ is lacunary à la Hadamard then
(L1(T))Λ = (L1(T))Λ and every bounded function in(L1(T))Λ has an
absolutely convergent Fourier series.

In the second section we prove the Denjoy-Carleman theorem on
the quasi-analyticity of classes of infinitely differentiable functions and
discuss briefly some related problems.

1 LACUNARY SERIES

1.1 A sequence of positive integers{λn} is said to beHadamard la-
cunary, or simply lacunary, if there exists a constantq > 1 such that
λn+1 > qλn for all n. A power series

∑

anz
λn is lacunary if the se-

quence{λn} is, and a trigonometric series is lacunary if all the fre-
quencies appearing in it have the form±λn where{λn} is lacunary.

The reason for mentioning Hadamard’s name is his classical theo-

117
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rem stating that the circle of convergence of a lacunary power series is a
natural boundary for the function given by the sum of the series within
its domain of convergence. The general idea behind Hadamard’s theo-
rem and behind most of the results concerning lacunary series is that the
sparsity of the exponents appearing in the series forces on it a certain
homogeneity of behavior.

1.2 Lacunarity can be used technically in a number of ways. Our first
example is "local"; it illustrates how a Fourier coefficient that stands
apart from the others is affected by the behavior of the function in a
neighborhood of a point.

Lemma. Let f ∈ L1(T) and assume that̂f(j) = 0 for all j satisfying
1 ≤ |n0 − j| ≤ 2N . Assume thatf(t) = O (t) ast→ 0. Then

(1.1) |f̂(n0)| ≤ 2π4
(

N−1 sup|t|<N−1/4 |t−1f(t)|+N−2‖f‖L1

)

.

PROOF: We use the condition̂f(j) = 0 for 1 < |n0−j| < 2N as follows:
if gN be any polynomial of degree2N satisfyingĝN (0) = 1, then

f̂(n0) =
1

2π

∫

e−in0tf(t)gN (t)dt.

As gN we take the Jackson kernel,JN = ‖KN‖−2
L2K2

N . By I.(3.10), and

the estimate‖KN‖2L2 =
∑N
−N

(

1− |j|
N+1

)2

> N
2 , we obtain

JN (t) < 2π4N−3t−4.

We now write

|f̂(n0)| ≤ 1
2π

∫

|f(t)|JN (t)dt =

=

(

∫

|t|<N−1
+
∫

N−1<|t|<N−1/4
+
∫

N−1/4<|t|<π

)

1
2π
|f(t)|JN (t)dt.

The first integral is bounded by

N−1 sup|t|<N−1 |t−1f(t)| 1
2π

∫

|JN (t)|dt = N−1 sup|t|<N−1 |t−1f(t)|.

The second integral is bounded by

π3N−3 sup|t|<N−1/4 |t−1f(t)|
∫ N−1/4

N−1
t−3dt ≤ π3N−1 sup|t|<N−1/4 |t−1f(t)|.
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The third integral is bounded by

π3N−2

∫

|f(t)|dt = 2π4N−2‖f‖L1 .

Adding up the three estimates we obtain (1.1). J

Corollary. Let {λn} be a lacunary sequence andf ∼
∑

an cosλnt
be inL1(T). Assume thatf is differentiable at one point. Thenan =
o(λ−1

n ).

PROOF: Assume thatf is differentiable att = 0. Replacing it, if nec-
essary, byf − f(0) cos t − f ′(0) sin t we can assumef(0) = f ′(0) = 0.
It follows thatf(t) = o(t) ast → 0. The lacunarity condition on{λn}
is equivalent to saying that there exists a positive constantc such that,
for all n, none of the numbersj satisfying1 ≤ |λn − j| ≤ cλn, is in
the sequence; hencêf(j) = 0 for all suchj. Applying the lemma with
n0 = λn and2N = cλn, we obtainan = 2f̂(λn) = o(λ−1

n ). J

Corollary. The Weierstrass function
∑

2−n cos 2nt is nowhere differ-
entiable.

The conditionan = o(λ−1
n ) clearly implies that

∑

|an| <∞. It is not
hard to see (see Zygmund [28], chap. 2, §3, 4) thatf(t) =

∑

an cosλnt
is then in Lipα(T) for all α < 1 and that it is differentiable on a set
having the power of the continuum in every interval. Thus, for a lacu-
nary series, differentiability at one point implies differentiability on an
everywhere dense set. This is one example of the "certain homogeneity
of behavior" mentioned earlier. We can obtain a more striking result
if instead of differentiability we consider Lipschitz conditions. For in-
stant, if0 < α < 1, a lacunary series that satisfies a Lipα condition at a
point satisfies the same conditioneverywhere(see exercise 1 at the end
of the section).

1.3 Another typical use of the condition of lacunarity is through its
arithmetical consequences. A useful remark is that ifλj+1 ≥ qλj with
q ≥ 3, then every integern has at most one representation of the form
n =

∑

ηjλj whereηj = −1, 0, 1. With this remark in mind we consider
products of the form

(1.2) PN (t) =
N
∏

1

(

1 + aj cos(λjt+ ϕj)
)
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theaj ’s being arbitrary complex numbers andϕj ∈ T.
The Fourier coefficients of a factor1 + aj cos(λjt + ϕj) are: 1 for

n = 0, 1
2ajie

iϕj for n = λj), 1
2ajie

−iϕj n = −λj), and zero else-
where. If we assume the lacunarity condition withq ≥ 3, it follows
that P̂N (n) = 0 unlessn =

∑

ηjλj, with ηj = −1, 0, 1, in which case
P̂N (n) =

∏

ηj 6=0
1
2ajie

iηjϕj ; in particularP̂N (0) = 1. If we compare the
Fourier series ofPN+1 to that ofPN we see thatPN+1 containsPN as
a partial sum, and contains two more blocks:1

2aN+1ie
iϕN+1eiλN+1tPN

and 1
2aN+1ie

−iϕN+1e−iλN+1tPN . The frequencies appearing in the first
block lie within the interval(λN+1−

∑N
1 λj , λN+1+

∑N
1 λj) ⊂ (λN+1(q−

2)/(q−1), λN+1q/(q−1)) and the second block is symmetric to the first
with respect to the origin. No matter what coefficientsaj we take, the
(formal) infinite product

P (t) =
∞
∏

1

(

1 + aj cos(λjt+ ϕj)
)

can be expanded as a well-defined trigonometric series, and if the prod-
uct converges in the weak-star topology ofM(T) to a functionf or a
measureµ, then the corresponding trigonometric series is the Fourier
series off (resp.µ).

We shall refer to the finite or infinite products described above as
Riesz products. Two classes of Riesz products will be of special inter-
est.

1. The coefficientsaj are all real and|aj | ≤ 1. In this case1 +
aj cos(λjt+ϕj) ≥ 0 hencePN (t) ≥ 0 for allN . It follows that‖PN‖L1 =
1 and, taking a weak-star limit point, it follows thatP is a positive mea-
sure of total mass 1 (i.e., that the trigonometric series formally corre-
sponding toP is ’the Fourier-Stieltjes series of a positive measure of
mass 1).

2. The coefficientsaj are purely imaginary (in which case we shall
writeP (t) =

∏(

1+ iaj cos(λjt+ϕj)
)

with aj real) and satisfy
∑

|aj |2 <
∞. In this case1 < |1 + iaj cos(λjt + ϕj)|2 ≤ 1 + a2

j 1 ≤ |PN (t)|2 ≤
∏∞

1 (1 + a2
j ) < ∞. Since thePN are uniformly bounded we can pick a

sequenceNj such thatPNj converge weakly to a bounded functionP
whose Fourier series is the formal expansion ofP .

1.4 The usefulness of the Riesz products can be seen in the proof of

Lemma. Let f(t) =
∑N
−N cje

iλjt with λ−j = −λj , λ1 > 0 and, for
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someq > 1, λj+1 > qλj, j = 1, 2, . . . , N . Then

(1.3)
∑

|cj | ≤ Aq‖f‖∞

and

(1.4) ‖f‖L2 ≤ Bq‖f‖L1

whereAq andBq are constants depending only onq.

PROOF: We remark first that it is sufficient to prove (1.3) and (1.4) in
the case thatf is real valued (i.e.,cj = c̄−j) since we can then apply
them separately to the real and imaginary parts of arbitraryf , thereby
at most doubling the constantsAq andBq.

Assume first thatq > 3. In order to prove (1.3) we consider the
Riesz productP (t) =

∏N
1

(

1 + cos(λjt + ϕj)
)

whereϕj is defined by
the conditionc̄jeiϕj = |cj |. We have‖P‖L1 = 1 and consequently
|1/2π

∫

P (t)f(t)dt| ≤ ‖f‖∞. SinceP̂ (λj) = 1
2e
iϕj we obtain from Par-

seval’s formula:1
2

∑

c̄je
iϕj = 1

2

∑

|cj | ≤ ‖f‖∞, and (1.3) follows with
Aq = 2 for real-valuedf andAq = 4 in the general case.

For the proof of (1.4) we consider a Riesz product of the second
type. We remark that‖f‖2L2 =

∑

|cj |2 and if we takeaj = |cj | ·‖f‖−1
L2

andϕj such thaticjeiϕj = |cj | thenP (t) =
∏(

1 + iaj cos(λjt + ϕj)
)

is uniformly bounded by
∏

(1 + a2
j )

1
2 ≤ e

1
2

∑

a2
j ≤ e

1
2 . By Parseval’s

formula

‖f‖L2 =
1
2

∑

|cj |aj =
1

2π

∫

P (t)f(t)dt ≤ e 1
2 ‖f‖L1

which is (1.4) withBq = 2e
1
2 . Again if we putBq = 4e

1
2 then (1.4) is

valid for complex-valued functions as well.
If 1 < q < 3 and we try to repeat the proofs above, we face the dif-

ficulty that, having set the productP the way we did, we cannot assert
that P̂ (λj) is 1

2e
iϕj (or 1

2 iaje
iϕj in case 2) sinceλj may happen to sat-

isfy nontrivial relations of the formλj =
∑

ηkλk with ηk = 0, 1,−1. We
can, however, construct the Riesz products for subsequences of{λj}.
LetM = Mq be an integer large enough so that

(1.5) qM > 3, 1− 1
qM − 1

>
1
q

and 1 +
1

qM − 1
< q.

For k ≤ m < M write λ(m)
j = λm+jM and notice thatλ(m)

j+1 > qMλ
(m)
j .

By the remark concerning the frequencies appearing in a Riesz product
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it follows that all the frequenciesn appearing in any product corre-

sponding to{λ(m)
j } satisfy ||n| − λ(m)

j | < λ
(m)
j

qM−1
for somej, hence by

(1.5) if k > 0, k 6≡ m mod M , ±λk does not appear as a frequency in a
Riesz product constructed on{λ(m)

j }. It follows that if

P (t) =
N
∏

1

(

1 + am+jM cos(λm+jM t+ ϕm+jM )
)

then

1
2π

∫

P (t)f(t)dt =
∑ 1

2
am+jM

(

eiϕm+jM cm+jM + e−iϕm+jM c−m−jM
)

and repeating the two constructions used above we obtain

(1.3’)
∑

|cm+jM | ≤ 4‖f‖∞

(1.4’)
(
∑

|cm+jM |2
) 1

2 ≤ 4e
1
2 ‖f‖1

Adding (1.3’) and (1.4’) form = 1, . . . ,M we obtain (1.3) and (1.4)
with Aq = 4Mq andBq = 4e

1
2Mq. J

Theorem. Let {λj} be lacunary. (a) Iff =
∑

cje
iλjt is the Fourier

series of a bounded function, then
∑

|cj | <∞.
(b) If

∑

cje
iλjt is a Fourier series, then

∑

|cj |2 <∞.

PROOF: Write f ∼
∑

cje
iλjt and apply (1.3) resp.(1.4) toσn(f, t). J

1.5 The role of the Riesz products in the proof of Lemma 1.4 may
become clearer if we consider the statements obtained from 1.4 by du-
ality. For an arbitrary sequence of integersΛ, we denote byCΛ the
space of all continuous functionsf on T such thatf̂(n) = 0 if n 6∈ Λ.
CΛ is clearly a closed subspace ofC(T).

DEFINITION: A set of integersΛ is aSidon setif everyf ∈ CΛ has an
absolutely convergent Fourier series. It follows from the closed-graph
theorem thatΛ is a Sidon set if, and only if, there exists a constantK

such that

(1.6)
∑

|f̂(n)| ≤ K‖f‖∞

for every polynomialf ∈ CΛ.
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Lemma. A set (of integers)Λ is a Sidon set if, and only if, for every
bounded sequence{dλ}λ∈Λ there exists a measureµ ∈ M(T) such that
µ̂(λ) = dλ for λ ∈ Λ.

PROOF: Let Λ be a Sidon set and{dλ}λ∈Λ a bounded sequence onΛ.
The mappingf 7→

∑

λ∈Λ f̂(λ)d̄λ is a well-defined linear functional on
CΛ. By the Hahn-Banach theorem it can be extended to a functional on
C(T), that is, a measureµ. For this measureµ we have

(1.7) µ̂(λ) =
∫

eiλtdµ = dλ for all λ ∈ Λ.

Assume, on the other hand, that the interpolation (1.7) is always pos-
sible. Letf ∈ CΛ and writedλ = sgn(f̂(λ)). Then, by Parseval’s for-
mula,

∑

|f̂(λ)| =
∑

f̂(λ)dλ is summable to〈f, µ〉 whereµ is a measure
which satisfies (1.7). Since for series with positive terms summability
is equivalent to convergence,

∑

|f̂(λ)| < ∞ and the proof is complete.
J

The statement of part (a) of Theorem 1.4 is that lacunary sequences
are Sidon sets, and the Riesz product is simply an explicit construction
of corresponding interpolating measures.

1.6 The statement of part (b) of Theorem 1.4 is that for lacunaryΛ,
(L1T))Λ = (L2(T))Λ. Every sequence{dλ} such that

∑

|dλ|2 < ∞
defines, as above, a linear functional on(L2(T))Λ which, by 1.4, is a
closed subspace ofL1(T). Remembering that the dual space ofL1(T)
is L∞(T), we obtain, using the Hahn-Banach theorem, that there exists
a bounded measurable functiong such that

(1.8) ĝ(λ) = dλ λ ∈ Λ.

Here, again, Riesz products (of type 2) provide explicit construction of
such functionsg. One can actually prove the somewhat finer result:

Theorem. Let Λ be lacunary and assume that
∑

|dλ|2 < ∞. Then
there exists a continuous functiong such that(1.8) is valid.

We refer the reader to exercise 6 for the proof.

EXERCISES FOR SECTION 1

1. Let{λn} be lacunary and letf ∼
∑

an cosλnt. Assume thatf satisfies
a Lipα condition with0 < α < 1 at t = t0. Show thatan = O

(

λ−αn
)

asn→∞.
Deduce thatf ∈ Lipα(T).
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2. Let{λn} be a sequence of integers and assume that for some0 < α < 1

the following statement is true: iff ∼
∑

an cosλnt satisfies a Lipα condition
at one point, thenf ∈ Lipα(T). Show that{λn} is lacunary.
Hint: If the sequence{λn} is not lacunary it has a subsequence{µk} such that
limµ2k−1/µ2k = 1 andlimµ2k+1/µ2k =∞. For an appropriate sequence{ak},
the functionf(t) =

∑

ak(cosµ2kt − cosµ2k−1t) satisfies a Lipα condition at
t = 0 but f 6∈ Lipα(T).

3. Letf ∈ L1(T), f ∼
∑

an cosλnt with {λn} lacunary. Assumef(t) = 0

for |t| < η, η being a positive number. Show thatf is infinitely differentiable.
4. Show directly, without the use of Riesz products, that ifλn+1 > 4λn and

f(t) =
∑N

1
an cosλnt is real-valued, then

sup|f(t)| ≥ 1

2

∑

|an|.

Hint: Consider the sets{t : an cosλnt > |an/2|}.
5. If dn → 0 asn → ∞ we can writedn = δnψn where{δn} is bounded

andψn = ψ̂(n) for someψ ∈ L1(T). (See theorem 1.4.1 and exercise 1.4.1.)
Deduce that ifΛ is a lacunary sequence anddλ → 0 as|λ| → ∞, there exists a
functiong ∈ L1(T) such that

dλ = ĝ(λ) for λ ∈ Λ

6. Use Theorem I.4.1 to show that if
∑

|dn|2 < ∞, there exist sequences
{δn} and{ψn} such thatdn = δnψn,

∑

|δn|2 < ∞, andψn = ψ̂(n) for some
ψ ∈ L1(T). Remembering that the convolution of a summable function with a
bounded function is continuous, prove Theorem 1.6.

7. Assumeλj+1/λj > q > 1. There exists a numberM = Mq such that
every integern has at most one representation of the formn =

∑

ηjλmj+jM
whereηj = −1, 0, 1, and1 ≤ mj ≤ M . Use this to show that the product
∏∞

1
(1 +

∑M

m=1
dm+jM cos(λm+jM t+ ϕm+jM )) has (formally) the Fourier co-

efficient 1
2
dke

iϕk at the pointλk). Show that if0 < dk < I/Mq for all k, then
the product above is the Fourier Stieltjes series of a positive measure which
interpolates{ 1

2
dke

iϕk} on{λk}.
8. Assumeλj+1/λj > q > 1 and

∑

|dj |2 < ∞. Find a product analogous
to that of exercise 7), which is the Fourier series of a bounded function, and
which interpolates{dj} on{λj}.

*9. Show that the following condition is sufficient to imply that the se-
quenceΛ is a Sidon set: to every sequence{dλ} such that|dλ| ≤ 1 there exists
a measureµ ∈M(T) such that|µ̂(λ)− dλ| < 1

2
.

10. Show that a finite union of lacunary sequences is a Sidon set.
*11. Let λn be positive integers such thatλn+1/λn ≥ 3. Show that for

everyU > 0 andε > 0 there existsa > 0 such that ifbn are real numbers,
∑

|bn|2 = 2 and sup|bn| ≤ a, then, if |u| < U , we have

(1.9)
∣

∣

∣

1

2π

∫

eiu
∑

bn cosλnt − e−
u2
2

∣

∣

∣ < ε.
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Hint: Write
∏

eiubn cosλnt =
∏(

1 + iubn cosλnt − 1
2
u2b2n cos2 λnt

)

(1 + cn)

with |cn| ≤ U3|bn|3. If aU3 << ε, we have
∣

∣

∏

(1+cn)−1
∣

∣ << ε, and the factor
∏

(1+cn) can be ignored. In the main factor replacecos2 λnt by 1
2
(1+cos 2λnt),

and check that the constant term of the product is the product of the constant
terms of the factors.

?2 QUASI-ANALYTIC CLASSES

2.1 We consider classes of infinitely differentiable functions onT. Let
{Mn} be a sequence of positive numbers; we denote byC∗{Mn} the
class of all infinitely differentiable functionsf on T such that for an
appropriateR > 0

(2.1) ‖f (n)‖∞ ≤ RnMn n = 1, 2, . . .

We shall denote byC#{Mn} the class of infinitely differentiable func-
tions onT satisfying:

(2.2) ‖f (n)‖L2 ≤ RnMn n = 1, 2, . . .

for someR (depending onf).
The inclusionC∗{Mn} ⊂ C#{Mn} is obvious; on the other hand,

since the mean value of derivatives onT is zero, we obtain‖f (n)(t)‖∞ ≤
‖f (n+1)‖L2 and consequentlyC#{Mn} ⊂ C∗{Mn+1}. Thus the two
classes are fairly close to each other.

Examples: If Mn = 1 for all n, thenC#{Mn} is precisely the class of
all trigonometric polynomials onT.

If Mn = n!, C#{Mn} is precisely the class of all functions analytic
onT. (See exercise I.4.3)

We recall that a sequence{cn}, cn > 0, is log-convexif the sequence
{log cn} is a convex function ofn. This amounts to saying that, given
k < l < m in the range ofn, we have

(2.3) log cl ≤
m− l
m− k

log ck +
l − k
m− k

log cm

or equivalently

(2.4) cl ≤ c(m−l)/(m−k)
k c(l−k)/(m−k)

m

2.2 The identity‖f (n)‖L2 = (
∑

f̂(j)2j2n)
1
2 allows an expression of

condition (2.2) directly in terms of the Fourier coefficients off . Also it
implies
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Lemma. Let f beN times differentiable onT. Then the sequence
{‖f (n)‖L2} is monotone increasing and log-convex for1 ≤ n ≤ N .

PROOF: The fact that‖f (n)‖L2 = (
∑

f̂(j)2j2n)
1
2 is monotone increas-

ing is obvious. In order to prove (2.4) we writep = (m − k)/(m − l),
andq = (m − k)/(l − k); then 1/p + l/q = 1 and by Hölder’s inequality
∑

|f̂(j)|2j2l =
∑

(|f̂(j)|2/pj2k/p)(|f̂(j)|2/qj2m/q) ≤ ‖f (k)‖2/pL2 ‖f (m)‖2/qL2

which is exactly (2.4). J

It follows from lemma 2.2 (cf. exercise 2 at the end of this section) that
for every sequence{M ′n} there exists a sequence{Mn} which is mono-
tone increasing and log-convex such thatC#{Mn} = C#{M ′n}. Thus,
when studying classesC#{Mn} we may assume without loss of gener-
ality that{Mn} is monotone increasing and log-convex; throughout the
rest of this section we always assume that, fork < l < m,

(2.5) Ml ≤M (m−l)/(m−k)
k M (l−k)/(m−k)

m

2.3 For a (monotone increasing and log-convex) sequence we define
theassociated functionτ(r) by

(2.6) τ(r) = inf
n≥0

Mnr
−n.

We consider sequencesMn which increase faster thatRn for all R > 0;
the infimum in (2.6) is attained and we can writeτ(r) = minn≥0Mnr

−n.
If we write µ1 = M−1

1 , andµn = Mn−1/Mn for n > 1; thenµn is
monotone-decreasing since by (2.5),µn+1/µn = M2

n/Mn−1Mn+1 < 1;
we haveMnr

−n =
∏n

1 (µjr)−1 and consequently

(2.6’) τ(r) =
∏

µjr>1

(µjr)−1.

The functionτ(r) was implicitly introduced in 1.4; thus it follows from
I.4.4 that iff ∈ C#{Mn} then, for the appropriateR > 0

|f̂(j)| ≤ τ(jR−1),

and exercise 1.4.6 is essentially an estimate forτ(r) in the caseMn =
nαn.
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2.4 An analytic function onT is completely determined by its Tay-
lor expansion around any point tot0 ∈ T, that is, by the sequence
{f (n)(t0)}∞n=0. In particular iff (n)(t0) = 0, n = 0, 1, 2, . . . , it follows
thatf = 0 identically.

DEFINITION: A class of infinitely differentiable functions onT is
quasi-analyticif the only function in the class, which vanishes with
all its derivatives at somet0 ∈ T, is the function which vanishes identi-
cally.

The main result of this section is the so-called Denjoy-Carleman
theorem which gives a necessary and sufficient conditions for the quasi-
analyticity of classesC#{Mn}.

Theorem. Let{Mn} be monotone increasing and log-convex. Letτ(r)
be the associated function(2.6). The following three conditions are
equivalent:

(i) C#{Mn} is quasi-analytic

(ii)
∫ ∞

1

log τ(r)
1 + r2

dr = −∞

(iii)
∑ Mn

Mn+1
=∞

The proof will consist in establishing the three implications(ii)⇒ (i)
(Theorem 2.4 below),(i)⇒ (iii) (Theorem 2.8), and(iii)⇒ (ii) (Lemma
2.9).

We begin with:

2.5 Lemma. Let ϕ(z) 6≡ 0 be holomorphic and bounded in the half
plane<(z) > 0 and continuous on<(z) ≥ 0. Then

∫ ∞

0

log|ϕ(±iy)| dy

1 + y2
> −∞

PROOF: The functionF (ζ) = ϕ
(

1+ζ
1−ζ

)

is holomorphic and bounded in

the unit discD (and is continuous on̄D except possibly atζ = 1). By
III.3.14 we have

∫ π

0
log|F (eit)|dt > −∞. The change of variables that

we have introduced gives for the boundarieseit = (iy − 1)/(iy + 1), or
t = 2 arc coty.

Consequentlydt = −2dy
1+y2 and

∫ ∞

0

log|ϕ(iy)| dy

1 + y2
=

1
2

∫ π

0

log|F (eit)|dt > −∞;
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similarly
∫∞

0
log|ϕ(−iy)| dy1+y2 > −∞ and the lemma is proved. J

2.6 Theorem. A sufficient condition for the quasi-analyticity of the
classC#{Mn} is that

∫∞
1

log τ(r)
1+r2 dr = −∞ whereτ(r) is defined by

(2.6).

PROOF: Let f ∈ C#{Mn} and assume thatf (n)(0) = 0 n = 0, 1, . . . .
Define

ϕ(z) =
1

2π

∫ 2π

0

e−ztf(t)dt.

Integrating by parts we obtain,z 6= 0,

ϕ(z) =
1

2π
[−1
z
e−ztf(t)

]2π

0
+

1
2πz

∫ 2π

0

e−ztf ′(t)dt

and sincef(0) = f(2π) = 0 the first term vanishes for allz 6= 0 (we have
used the same integration by parts in I.4.5; there we did not assume
f(0) = 0 but considered only the casez = im, that is,e−ztf is 2π-
periodic.) Repeating the integration by partsn times (usingf (j)(0) =
f (j)(2π) = 0 for j ≤ n), we obtain

ϕ(z) =
1

2πzn

∫ 2π

0

e−ztf (n)(t)dt.

For<(z) ≥ 0, |e−zt| ≤ 1 on (0, 2π) and consequently

|ϕ(z)| ≤ Mn

|z|n
for n = 0, 1. . . .

hence
|ϕ(z)| ≤ τ(|z|)

or
log|ϕ(z)| ≤ log τ(|z|).

It follows that
∫∞

1
log|ϕ(iy)| dy1+y2 = −∞ and by lemma 2.4ϕ(z) = 0.

Sinceϕ(in) = f̂(n) it follows thatf = 0. J

2.7 Lemma. Assumeµj > 0,
∑∞

0 µj ≤ 1. Writeϕ(k) =
∏∞

0
sinµjk
µjk

.

Thenf(t) =
∑∞
−∞ ϕ(k)eikt is carried by [−1, 1] ( mod 2π), it is in-

finitely differentiable and‖f (n)‖ ≤ 2
∏n

0 µ
−1
j .
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PROOF: All the factors in the product definingϕ(k) are bounded by1
so that the product either converges or diverges to zero (actually it con-
verges for allk) andϕ(k) is well defined.ϕ(k) clearly tends to zero
faster than any power ofk so that the series definingf converges uni-
formly andf is infinitely differentiable. We haveϕ(0) = 1 so thatf 6≡ 0.

The sequence
{

sinµjk
µjk

}∞

k=−∞
is the sequence of Fourier coefficients of

the functionΓj(t) = πµ−1
j 11[−µj ,µj ]. If we writeϕN (k) =

∏N
0

sinµjk
µjk

, we
have

fN (t) =
∞
∑

−∞
ϕN (k)eikt = Γ0 ∗ Γ1 ∗ . . .ΓN

and the support offN is equal to[−
∑N

0 µj ,
∑N

0 µj ] mod 2π. SincefN
converges uniformly tof , the support off is equal to[−

∑∞
0 µj ,

∑∞
0 µj ]

mod 2π. Finally, since‖f (n)‖2L2 =
∑

|ϕ(k)|2k2n and

|ϕ(k)| ≤
n
∏

0

(µjk)−1 = (
n
∏

0

µj)−1k−n−1,

we obtain‖f (n)‖L2 ≤ (
∏n

0 µj)
−1(
∑

k 6=0 k
−2)1/2 and the proof is com-

plete. J

2.8 Theorem. A necessary condition for the quasi-analyticity of the
classC#{Mn} is that

∑ Mn

Mn+1
=∞.

PROOF: Assume that
∑ Mn

Mn+1
<∞. Without loss of generality we may

assume
∑ Mn

Mn+1
< 1

2 (replacingMn by M ′n = MnR
n does not change

the classC#{Mn} while
∑ M ′n

M ′
n+1

= R−1
∑ Mn

Mn+1
).

Write µ0 = µ1 = 1/4, µj = Mj−1/Mj , j ≥ 2. Then the function
f defined by Lemma 2.7 has a zero of infinite order (actually vanishes
outside of[−1, 1]), is not identically zero, andf ∈ C#{Mn}. J

2.9 Lemma. Under the assumption of theorem 2.4 we have

∑ Mn

Mn+1
≤ 2e4

∫ ∞

e2

log τ(r)
1 + r2

dr.

PROOF: As before we writeµn = Mn−1
Mn

. We define the counting func-
tionM(r) of {µn} by:

M(r) = the number of elementsµj such thatµjr > e,
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and recall thatτ(r) =
∏

µjr>1(µjr)−1; hence

− log τ(r) =
∑

µjr>1

log(µjr) ≥
∑

µjr>e

log(µjr) ≥M(r).

Thus fork = 2, 3, . . .

(2.7)
∫ ek+1

ek

− log τ(r)
1 + r2

dr ≥ M(ek)
2e2k+2

∫ ek+1

ek
dr >

1
2e2

M(ek)
ek

;

on the other hand,

(2.8)
∑

e1−k<µj<e2−k

µj ≤
(

M(ek)−M(ek−1)
)

e2−k ≤ e2M(ek)
ek

and the theorem follows by summing (2.7) and (2.8) with respect to
k, k = 2, 3, . . . . J

Remark: Theorems 2.4, 2.8, and lemma 2.9 together prove Theorem
2.4. We see in particular that ifC#{Mn} is not quasi-analytic, it con-
tains functions (which are not identically zero) having arbitrarily small
supports.

For further reading, generalizations, and related topics we mention
[17]].

EXERCISES FOR SECTION 2

1. Show that{cn} is log-convex if, and only if,c2n ≤ cn−1cn+1 for all n.
2. (a) Let{cαn}∞n=1 be a log-convex sequence for allα belonging to some

index setI. Assume thatMn = supα∈Ic
α
n < ∞ for all n. Prove that{Mn} is

log-convex.
(b) Let {M ′n} be a sequence of positive numbers. Let{cαn} be the family

of all log-convex sequences satisfyingcαn ≤ M ′n for all n. PutMn = supα c
α
n.

ThenC#{Mn} = C#{M ′n}.
3. LetMj ≤ j! for infinitely many values ofj. Show thatC∗{Mn} and

C#{Mn} are quasi-analytic.
Hint: Assumingf ∈ C∗{Mn} andf (k)(0) = 0 for all k, use Taylor’s expansion
with remainder to showf ≡ 0.

4. We say that a functionϕ ∈ C∞(T) is quasi-analytic ifC#{‖ϕ(n)‖L2} is
quasi-analytic. Letf ∈ C∞(T); show that if the sequence{λj} increases fast
enough and if we set

f1(t) =
∑

j

∑

λ2j < k ≤ λ2j+1f̂(k)eikt,
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then bothf1 andf2 = f − f1 are quasi-analytic. Thus, every infinitely differen-
tiable function is the sum of two quasi-analytic functions.

5. Show thatC#{n!(logn)αn} is quasi-analytic if0 ≤ α ≤ 1, and is
nonquasi-analytic ifα > 1.

6. Letτ(r) be the function associated with a sequence{Mn}.
(a) Show that(τ(r))−1 is log-convex function ofr.
(b) Show thatMn = maxr r

nτ (r).
7. Let{ωn} be a log-convex sequence,n = 0, 1, . . . , ωn ≥ 1, and letA{ωn}

be the space of allf ∈ C(T) such that‖f‖{ωn} =
∑

|f̂(n)|ω|n| < ∞. Show
that with the norm‖ ‖{ωn}, A{ωn} is a Banach space. Show that a necessary
and sufficient condition forA{ωn} to contain functions with arbitrarily small
support is

∑∞
1

logωn
n2 <∞.

8. Let {ωn} be log-convex,ωn ≥ 1, and assume thatωn → ∞ faster than
any power of n. The sequencesσn =

{

nk

ω|n|

}∞
n=−∞

tend to zero as|n| → ∞.

Show that the subspace thatσn, k = 0, 1, . . . generate inc0 (the space
of sequences tending to zero at∞) is uniformly dense inc0 if, and only if,
σ logωn

n2 =∞
Hint: The dual space ofc0 is `1. If {an} ∈ `1 is orthogonal toσk, k = 0, . . . ,

the functionf(t) =
∑

an
ωn
eint, which clearly belongs toA{ωn}, has a zero of

infinite order.
9. Letf be as in exercise 1.3. Show thatf = 0 identically.



Chapter VI

Fourier Transforms on the Line

In the preceding chapters we studied objects (functions, measures,
and so on) defined onT. Our aim in this chapter is to extend the study
to objects defined on the real lineR. Much of the theory, especially the
L1 theory, extends almost verbatim and with only trivial modifications
of the proofs; such results, analogous in statement and in proof to the-
orems that we have proved forT, often are stated without a proof. The
difference between the circle and the line becomes more obvious when
we try to see what happens forLp with p > 1. The (Lebesgue) measure
of Rbeing infinite entails that, unlikeL1(T) which contains most of the
"natural" function spaces onT, L1(R) is relatively small; in particular
Lp(R) 6⊂ L1(R) for p > 1. The definition of Fourier transforms inL1(R)
has now a much more special character and a new definition (i.e., an
extension of the definition) is needed forLp(R), p > 1. The situation
turns out to be quite different forp ≤ 2 and forp > 2. If p < 2, Fourier
transforms of functions inLp(R) can be defined by continuity as func-
tions inLq(R), q = p/(p − 1); however, ifp > 2, the only reasonable
way to define the Fourier transform onLp(R) is through duality and
Fourier transforms are now defined as distributions. The plan of this
chapter is as follows: in section 1 we define the Fourier transform in
L1(R) and discuss its elementary properties. We also mention the con-
nection between Fourier transforms and Fourier coefficients and prove
Poisson’s formula. In section 2 we define Fourier-Stieltjes transforms
and obtain various characterizations of Fourier-Stieltjes transforms of
arbitrary and positive measures. In section 3 we prove Plancherel’s
theorem and the Hausdorff-Young inequality, thereby defining Fourier
transforms inLp(R), 1 < p < 2. In section 4 we use Parseval’s for-
mula, that is duality, to define the Fourier transforms of tempered dis-
tributions, and study some of the properties of Fourier transforms of
functions inLp(R), p ≤ ∞. Sections 5 and 6 deal with spectral anal-

132
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ysis and synthesis inL∞(R). In section 5 we consider the problems
relative to the norm topology and show that the class of functions for
which we have satisfactory theory is precisely that of Bohr’s almost pe-
riodic functions. In section 6 we study the analogous problems for the
weak-star topology. Sections 7 and 8 are devoted to relations between
Fourier transforms and analytic functions. Finally, section 9 contains
Kronecker’s theorem (which we have already used in chapter II) and
some variations on the same theme.

1 FOURIER TRANSFORMS FOR L1(R)

1.1 We denote byL1(R) the space of Lebesgue integrable functions
on the real line. Forf ∈ L1(R) we write

‖f‖L1(R) =
∫ ∞

−∞
|f(x)|dx,

and when there is no risk of confusion, we write‖f‖L1 or simply‖f‖
instead of‖f‖L1(R).

The Fourier transform̂f of f is defined by

(1.1) f̂(ξ) =
∫

f(x)e−iξxdx for all realξ†

This definition is analogous to I.(1.5), and the disappearance of the
factor1/2π is due to none other than our (arbitrary) choice to remove
it. It was a natural normalizing factor for the Lebesgue measure onT;
but, at this point, it seems arbitrary forR. The factor1/2π will reappear
in the inversion formula and some authors, seeking more symmetry for
the inversion formula, write

√

1/2π in front of the integral (1.1) so that
the same factor appear in the Fourier transform and its inverse. The
added symmetry, however, may increase the possibility of confusion
between the domains of definition of a function and its transform. In
L1(T) the functions are defined onT whereas the Fourier transforms
are defined on the integers; inL1(R) the functions are defined onR and
the domain of definition of the Fourier is again the real line. It may be
helpful to consider two copies of the real line: one isR and the other,
which will serve as the domain of definition of Fourier transforms of
functions inL1(R), we denote bŷR. This notation is in accordance with
that of chapter VII.

†Throughout this chapter, integrals with unspecified limits of integration are always
to be taken over the entire real line.
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Most of the elementary properties of Fourier coefficients are valid
for Fourier transforms.

Theorem. Let f, g ∈ L1(R). Then

(a) (f̂ + g)(ξ) = f̂(ξ) + ĝ(ξ)

(b) For any complex numberα

̂(αf)(ξ) = αf̂(ξ)

(c) If f̄ is the complex conjugate off , then

ˆ̄f(ξ) = f̂(−ξ)

(d) Denotefy(x) = f(x− y), y ∈ R. Then

f̂y(ξ) = f̂(ξ)e−iξy

(e) |f̂(ξ)| ≤
∫

|f(x)|dx = ‖f‖

(f) For positiveλ denote

ϕ(x) = λf(λx);

then
ϕ̂(ξ) = f̂(

ξ

λ
).

PROOF: The theorem follows immediately from (1.1). Parts (a) through
(e) are analogous to the corresponding parts of I.1.4. Part (f) is obtained
by a change of variabley = λx:

ϕ̂(ξ) =
∫

f(λx)e−i(ξ/λ)λxdλx =
∫

f(y)e−i(ξ/λy)dy = f̂(
ξ

λ
). J

1.2 Theorem. Let f ∈ L1(R). Thenf̂ is uniformly continuous on̂R.

PROOF:

f̂(ξ + η)− f̂(ξ) =
∫

f(x)
(

e−i(ξ+η)x − e−iξx
)

dx,

hence

(1.2) |f̂(ξ + η)− f̂(ξ)| ≤
∫

|f(x)||e−iηx − 1|dx.

The integral on the right of (1.2) is independent ofξ, the integrand is
bounded by2|f(x)| and tends to zero everywhere asη → 0. J



VI. FOURIER TRANSFORMS ON THEL INE 135

1.3 The following are immediate adaptations of the corresponding the-
orems in chapter I.

Theorem. Letf, g ∈ L1(R). For almost allx, f(x−y)g(y) is integrable
(as a function ofy) and, if we write

h(x) =
∫

f(x− y)g(y)dy,

thenh ∈ L1(R) and
‖h‖ ≤ ‖f‖ ‖g‖;

moreover,
ĥ(ξ) = f̂(ξ)ĝ(ξ) for all ξ.

As in chapter I we denoteh = f ∗g, callh theconvolutionof f andg,
and notice that the convolution operation is commutative, associative,
and distributive.

1.4 Theorem. Let f, h ∈ L1(R) and

h(x) =
1

2π

∫

H(ξ)eiξxdξ

with integrableH(ξ). Then

(1.3) (h ∗ f)(x) =
1

2π

∫

H(ξ)f̂(ξ)eiξxdξ.

PROOF: The functionH(ξ)f(y) is integrable in(ξ, y), hence, by Fu-
bini’s theorem,

(h ∗ f)(x) =
∫

h(x− y)f(y)dy =
1

2π

∫ ∫

H(ξ)eiξxe−iξyf(y)dξdy

=
1

2π

∫

H(ξ)eiξx
∫

e−iξyf(y)dydξ =
1

2π

∫

H(ξ)f̂(ξ)eiξxdξ.

J

1.5 Theorem. Let f ∈ L1 (R) and define

F (x) =
∫ x

−∞
f(y)dy.

Then, ifF ∈ L1(R) we have

(1.4) F̂ (ξ) =
1
iξ
f̂(ξ) all real ξ 6= 0.
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An equivalent statement of the theorem is: ifF, F ′ ∈ L1 (R), then
̂F ′(ξ) = iξF̂ (ξ).

1.6 Theorem. Let f ∈ L1(R) andxf(x) ∈ L1(R). Thenf̂ is differen-
tiable and

(1.5)
d

dξ
f̂(ξ) = ̂(−ixf)(ξ).

PROOF:

(1.6)
f̂(ξ + h)− f̂(ξ)

h
=
∫

f(x)e−iξx
(e−ihx − 1

h

)

dx.

The integrand in (1.6) is bounded by|xf(x)| (which is inL1(R) by
assumption) and tends to−ixf(x)e−iξx pointwise, hence (Lebesgue) it
converges to−ixf(x)e−iξx in the L1(R) norm. This implies that, as

h → 0, the right-hand side of (1.6) converges tô(−ixf)(ξ) and the
theorem follows. J

1.7 Theorem (Riemann-Lebesgue lemma).For f ∈ L1(R)

lim
|ξ|→0

f̂(ξ) = 0.

PROOF: If g is continuously differentiable and with compact support
we have, by 1.5 and 1.1,|ξĝ(ξ)| ≤ ‖g′‖L1(R) hencelim|ξ|→∞|ĝ(ξ)| = 0.
For arbitraryf ∈ L1(R), letε > 0 andg be a continuously differentiable,
compactly supported function such that‖f − g‖L1(R). We have both
|f̂(ξ)− ĝ(ξ)| < ε andlimξ→∞|ĝ(ξ)| = 0; hencelim sup|ξ|→∞||f̂(ξ)|| < ε.

This being true for allε > 0, we obtainlimξ→∞ f̂(ξ) = 0. J

1.8 We denote byA(R̂) the space of all functionsϕ on R̂, which are
the Fourier transforms of functions inL1(R). By the results above,
A(R) is an algebra of continuous functions vanishing at infinity, that
is, a subalgebra ofC0(R), the algebra of all continuous functions onR̂
which vanish at infinity. We introduce a norm toA(R̂) by transferring
to it the norm ofL1(R), that is, we write

‖f̂‖A(R̂) = ‖f‖L1(R).

It follows from 1.3 that the norm‖ ‖A(R̂), is multiplicative, that is,
satisfies the inequality:

‖ϕ1ϕ2‖A(R̂)‖ϕ1‖A(R̂)‖ϕ2‖A(R̂)
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The norm‖ ‖A(R̂) is not equivalent to the supremum norm; conse-

quently,A(R̂) is a proper subalgebra ofC0(R̂).

1.9 A summability kernel on the real line is a family of continuous
functions{kλ} onR, with either discrete or continuous parameter‡ sat-
isfying the following:

∫

kλ(x)dx = 1

‖kλ‖ = O∗(1) asλ→∞

lim
λ→∞

∫

|x|>δ
|kλ(x)|dx = 0, for all a > 0.

(1.7)

A common way to produce summability kernels onR is to take a func-
tion f ∈ L1(R) such that

∫

f(x)dx = 1 and to writekλ(x) = λf(λx)
for λ > 0. Condition (1.7) is satisfied since, introducing the change of
variabley = λx, we obtain

∫

kλ(x)dx =
∫

f(y)dy = 1

‖kλ‖ =
∫

|kλ(x)|dx =
∫

|f(y)|dy = ‖f‖

and
∫

|x|>δ
|kλ(x)|dx =

∫

|y|>λδ
|f(y)|dy → 0 as λ→∞.

The Fejér kernel onR is defined by

Kλ(x) = λK(λx), λ > 0,

where

(1.8) K(x) =
1

2π

(

sinx/2
x/2

)2

=
1

2π

∫ 1

−1

(

1− |ξ|
)

eiξxdξ .

The second equality in (1.8) is obtained directly by integration. By the
previous remark it is clear that the only thing we need to check, in order
to establish that{Kλ} is a summability kernel, is that

∫

K(x)dx = 1.
This can be done directly, for example, by contour integration, or using

‡The indexing parameterλ is often real valued; however, it should not be considered
as an element ofR so that no confusion with the notation of 1.1.d should arise.
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the information that we have about the Fejér kernel of the circle, that
is, that for all0 < δ < π

(1.9) lim
n→∞

1
2π

∫ δ

−δ

1
n+ 1

(

sin(n+ 1)x/2
sinx/2

)2

dx = 1.

Since
∫

K(x)dx =
∫

Kλ(x)dx, we may takeλ = n + 1, in which case

Kλ(x) = 1
2π(n+1)

(

sin(n+1)x/2
x/2

)2

, and notice that ifδ > 0 is small enough,

the ratio of2πKλ(x) to the integrand in (1.9) is arbitrarily close to one
in |x| < δ. More precisely, we obtain (λ = n+ 1):

(

sin δ
δ

)2 1
2π

∫ δ

−δ

1
n+ 1

(

sin(n+ 1)x/2
x/2

)2

dx <
1

2π

∫ δ

−δ
Kλ(x)

<
1

2π

∫ π

−π

1
n+ 1

(

sin(n+ 1)x/2
sinx/2

)2

dx

Lettingn→∞ we see that
∫

K(x)dx = limλ→∞
∫ δ

−δ Kλ(x)dx is a num-
ber betweensin2 δ/δ2 and1; sinceδ > 0 is arbitrary

∫

K(x)dx = 1.

1.10 Theorem.Let f ∈ L1(R) and let{kλ} be a summability kernel
on R, then

lim
λ→∞

‖f − kλ ∗ f‖L1(R) = 0.

PROOF: Repeat the proof of theorem I.2.3 and lemma I.2.4. J

1.11 Specifying theorem 1.10 to the Fejér kernel and using theorem
1.4, we obtain

Theorem. Let f ∈ L1(R), then

(1.10) f = lim
λ→∞

1
2π

∫ λ

−λ

(

1− |ξ|
λ

)

f̂(ξ)eiξx dξ

in theL1(R) norm.

Corollary ( The uniqueness theorem).Let f ∈ L1(R) and assume
that f̂(ξ) = 0 for all ξ ∈ R̂ thenf = 0.



VI. FOURIER TRANSFORMS ON THEL INE 139

1.12 If it happens thatf is Lebesgue integrable, the integral on the
right-hand side of (1.10) converges, uniformly inx, to 1

2π

∫

f̂(ξ)eiξx dξ.
We see thatf is equivalent to a uniformly continuous function and ob-
tain the so-called "inversion formula":

(1.11) f(x) =
1

2π

∫

f̂(ξ)eiξx dξ .

An immediate consequence of (1.11) is

(1.12) ̂Kλ(ξ) = max
(

1− |ξ|
λ
, 0
)

and, by theorem 1.3,

(1.13) ̂(Kλ ∗ f)(ξ) =







(

1− |ξ|λ
)

f̂(ξ) |ξ| ≤ λ

0, |ξ| ≥ λ.

Combining this with theorem 1.10, we obtain

Theorem. The functions with compactly carried Fourier transforms
form a dense subspace ofL1(R).

This theorem is analogous to the statement that trigonometric poly-
nomials form a dense subspace ofL1(T).

1.13 Besides the Fejér kernel we mention the following:
De la Vallée Poussin’s kernel

(1.14) Vλ(x) = 2K2λ(x)−Kλ(x),

whose Fourier transform is given by

(1.15) V̂λ(ξ) =















1, |ξ| ≤ 1

2− |ξ|λ , λ ≤ |ξ| ≤ 2λ

0, 2λ ≤ |ξ|.

Poisson’s kernel
Pλ(x) = λP(λx),

where

(1.16) P(x) =
1

π(1 + x2)
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and

(1.17) P̂(ξ) = e−|ξ|,

and finally Gauss’ kernel

Gλ(x) = λG(λx),

where

(1.18) G(x) = (2π)−
1
2 e−

x2
2

and

(1.19) Ĝ(ξ) = e−
ξ2

2 .

To the inversion formula (1.11) and the summability in norm (theo-
rems 1.10 and 1.11, one should add results about pointwise summabil-
ity. Both the statements and the proofs of section I.3 can be adapted to
L1(R) almost verbatim and we avoid the repetition.

1.14 As in chapter I, we can replace theL1(R) norm, in the statement
of theorems 1.10 and 1.11, by the norm of any homogeneous Banach
spaceB ⊂ L1(R). As in chapter I, a homogeneous Banach space is a
space of functions which is invariant under translation and such that for
everyf ∈ B, fy (defined byfy(x) = f(x − y)) depends continuously
on y. The assumptionB ⊂ L1(R) is more restrictive than was the as-
sumptionB ⊂ L1(T) in chapter I; it excludes such natural spaces as
Lp(R), p > 1. We can obtain a reasonably general theory by consid-
ering homogeneous Banach space of locally summable functions, that
is, functions which are Lebesgue integrable on every finite interval. We
denote byL the space of all measurable functionsf onR such that

‖f‖L = supy

∫ y+1

y

|f(x)|dx <∞

and byLc the subspace ofL consisting of all the functions f which
satisfy

‖fy − f‖L → 0 asy → 0.

Theorem. If B is a homogeneous Banach space of locally summable
functions onR and if convergence inB implies convergence in measure,
then theL norm is majorized by theB norm and, in particular,B ⊂ Lc.
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PROOF: If the L norm is not majorized by‖ ‖B, we can choose a se-
quencefn ∈ B such that‖fn‖B < 2−n and‖fn‖L > 3n. Replacingfn
by fn(x − yn) (if necessary) we may assume

∫

|fn(x)|dx > 3n Since
‖fn‖B → 0, fn converges to zero in measure and it follows that if
nj → ∞ fast enough

∑

fnj , which belongs toB, is not integrable on
(0, 1). J

We can now extend Theorem 1.10 to homogeneous Banach spaces of
locally summable functions (see exercises 11-14 at the end of this sec-
tion); Theorem 1.11 can be generalized only after we extend the defi-
nition of the Fourier transformation.

1.15 We finish this section with a remark concerning the relation be-
tween Fourier coefficients and Fourier transforms.

Let f ∈ L1(R) and defineϕ by

ϕ(t) = 2π
∞
∑

j=−∞
f(t+ 2πj).

t is a real number, but it is clear thatϕ(t) depends only ont (mod 2π)
so that we can considerϕ as defined onT. We clearly haveϕ ∈ L1(T)
and

‖ϕ‖L1(T) ≤ ‖f‖L1(R).

Forn ∈ Z, we have

ϕ̂(n) =
1

2π

∫

ϕ(t)e−intdt =
∞
∑

j=−∞

∫ 2π

0

f(t+ 2πj)e−intdt

=
∫

f(x)e−inxdx = f̂(n).

so thatϕ̂ is simply the restriction to the integers off̂ . Similarly, if we
write fλ(x) = λf(λx) and:

(1.20) ϕλ(t) = 2π
∞
∑

j=−∞
fλ(t+ 2πj),

we obtain, using 1.1,

(1.21) ϕ̂λ(n) = f̂(
n

λ
).

The preceding remarks, as simple as they sound, link the theory of
Fourier integrals to that of Fourier series, and we can obtain a great
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many facts about Fourier integrals from the corresponding facts about
Fourier series. (For examples, see exercises 5 and 6 at the end of this
section.)

An application to the procedure above is the very importantformula
of Poisson:

(1.22) 2πλ
∞
∑

n−=∞
f(2πλn) =

∞
∑

n=−∞
f̂(
n

λ
).

In order to establish Poisson’s formula, to understand its meaning and
its domain of validity, all that we need to do is simply rewrite it as

(1.23) ϕλ(0) =
∞
∑

n=−∞
ϕ̂λ(n).

If ϕλ(0), as defined by (1.20), is well defined and if the Fourier series of
ϕλ converges toϕλ(0) for t = 0, then (1.23) and (1.22) are valid. One
enhances the generality of (1.22) considerably by interpreting the sum
on the right as

lim
N→∞

N
∑

−N

(

1− |n|
N

)

f̂(
n

λ
),

that is, using C-1 summability instead of summation. Using Fejér’s
theorem, for instance, one obtains that, with this interpretation, (1.22)
is valid if t = 0 is a point of continuity ofϕλ. We remark that the
continuity off andf̄ is not sufficient to imply (1.22) even if both sides
of (1.22) converge absolutely (see exercise 15).

EXERCISES FOR SECTION I

1. Perform the integration in (1.8).
2. Prove that1

2π

∫ (

sin x/2
x/2

)

dx = 1 by contour integration.
3. Prove (1.17).

Hint: Use contour integration.
4. Prove (1.19).

Hint: Show thatĜ(ξ) satisfies the equationd/dξĜ(ξ) = −ξĜ(ξ), (use 1.5 and
1.6).

5. Letf ∈ L1(R) andϕλ(t) defined by (1.20). Show thatlimλ→∞‖ϕλ‖L1(T)

= ‖f‖L1(R); hence deduce the uniqueness theorem from (1.21).
6. Prove Theorem 1.7 using (1.21), the uniform continuity of Fourier trans-

forms and the Riemann-Lebesgue lemma for Fourier coefficients.
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7. Show thatA(R̂) contains every twice continuously differentiable func-
tion with compact support onR. Deduce thatA(R̂) is uniformly dense inC0(R̂);
however, show thatA(R̂) 6= C0(R̂).

8. Letf ∈ L1(R) be continuous atx = 0 and assume that̂f(ξ) ≥ 0, ξ ∈ R̂.
Show thatf̂ ∈ L1(R̂) andf(0) = 1

2π

∫

f̂(ξ)dξ.
Hint: Use the analog to Fejér’s theorem and the fact that for positive functions
C-1 summability is equivalent to convergence.

9. Show thatC0 ∩ L1(R), with the norm‖h‖ = supx|f(x)| + ‖f‖L1(R) is
a homogeneous Banach space onR and conclude that iff ∈ C0 ∩ L1(R) then
f(x) = limλ→∞

1
2π

∫ λ

−λ

(

1− |ξ|/λ
)

f̂(ξ)dξ uniformly.
10. Letf be bounded and continuous onR and let{kλ} be a summability

kernel. Show thatkλ ∗ f =
∫

kλ(x − y)f(y)dy converges tof uniformly on
compact sets onR.

11. Letf ∈ Lc and letϕ be continuous with compact support; write

ϕ ∗ f =

∫

ϕ(y)f(x− y)dy.

Interpreting the integral above as anLc-valued integral, show thatϕ ∗ f ∈ Lc
and‖ϕ ∗ f‖L ≤ ‖ϕ‖L1(R)‖f‖L. Use this to defineg ∗ f for g ∈ L1(R) and
f ∈ Lc.

12. Show that iff ∈ Lc then|f | ∈ Lc (notice, however, thateix log|x| 6∈ Lc)
and, using exercise 11, prove that iff ∈ Lc andg ∈ L1(R) then for almost all
x ∈ R, g(y)f(x − y) ∈ L1(R) andg ∗ f , as defined in exercise 11, is equal to
∫

g(y)f(x− y)dy.
13. Let f ∈ L and letg ∈ L1(R). Prove thatg(y)f(x − y) ∈ L1(R) for

almost allx, and thath(x) =
∫

g(y)f(x− y)dy satisfies‖h‖L ≤ ‖g‖L1(R)‖f‖L.
14. Let{kλ} be a summability kernel inL1(R) and letB ⊂ Lc be a ho-

mogeneous Banach space. Show that for everyfeB, ‖kλ ∗ f − f‖B → O, and
conclude that iff ∈ B ∩L1(R), f = limλ→∞

∫ λ

−λ(1− |ξ|/λ)f̂(ξ)eiξxdξ in theB
norm.

15. Construct a continuous functionf ∈ L1(R) such thatf̂ ∈ L1(R̂),
f(2πn) = 0 for all integersn, f̂(0) = 1 andf̂(n) = 0 for all integersn 6= 0.
Hints:

(a) We denote‖f‖A(R) = 1
2π

∫

|f̂(ξ)|dξ. Let g be continuous with support in
[0, 2π] and such that̂g ∈ L1(R). Write

gN (x) =
1

N + 1

N
∑

N

(

1− |j|
N + 1

)

g(x− 2πj).

Show thatĝN (ξ) = (N + 1)−1KN (ξ)ĝ(ξ) whereKN is the2π-periodic Fejér
kernel, and deduce that‖gN‖A(R) → 0 asN →∞.
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(b) Let g(j) be nonnegative continuous functions such that̂g(j) ∈ L1(R̂)

and such that
∑∞

1
g(j)(x) =

{

1 0 < x < 1,

0 otherwise.
Then, ifNj → ∞ fast

enough,‖g(j)
Nj
‖A(R) ≤ 2−j andf =

∑∞
j=1

g
(j)
Nj

has the desired properties.

2 FOURIER-STIELTJES TRANSFORMS.

2.1 We denote byM(R) the space of all finite Borel measures onR.
M(R) is identified with the dual space ofC0(R)—the (sup-normed)
space of all continuous functions onR which vanish at infinity—by
means of the coupling

(2.1) 〈f, µ〉 =
∫

fdµ f ∈ C0(R), µ ∈M(R),

The total mass norm onM(R) is defined by‖µ‖M(R) =
∫

|dµ| and is
identical to the "dual space" norm defined by means of (2.1). The map-
ping f 7→ f(x)dx identifiesL1(R) with a closed subspace ofM(R).
The convolution of a measureµ ∈ M(R) and a functionϕ ∈ C0(R) is
defined by the integral

(2.2) (µ ∗ f)(x) =
∫

ϕ(x− y)dµ(y).

and it is clear thatµ∗ϕ ∈ C0(R) and that‖µ∗ϕ‖∞ ≤ ‖µ‖M(R)‖ϕ‖∞. The
convolution of two measures,µ, ν ∈M(R), can be defined by means of
duality and (2.2), analogously to what we have done in 1.7, or directly
by defining

(µ ∗ ν)(E) =
∫

µ(E − y)dν(y)

for every Borel setE. Whichever way we do it, we obtain easily that
‖µ ∗ ν‖M(R) ≤ ‖µ‖M(R)‖ν‖M(R).

2.2 The Fourier-Stieltjes transform of a measureµ ∈ M(R) is defined
by:

(2.3) µ̂(ξ) =
∫

eiξxdµ(x) =
∫

e−iξxdµ(x) ξ ∈ R̂.

It is clear that ifµ is absolutely continuous with respect to Lebesgue
measure, saydµ = f(x)dx, thenµ̂(ξ) = f̂(ξ). Many of the properties
of L1 Fourier transforms are shared by Fourier-Stieltjes transforms: if
µ, ν ∈ M(R) then|µ̂(ξ)| ≤ ‖µ‖M(R), µ̂(ξ) is uniformly continuous, and
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µ̂ ∗ ν(ξ) = µ̂(ξ)ν̂(ξ). A departure from the theory ofL1 Fourier trans-
forms is the failing of the Riemann-Lebesgue lemma (the same way it
fails forM(T)); the Fourier-Stieltjes transform of a measureµ need not
vanish at infinity.

Theorem (Parseval’s formula).Let µ ∈ M(R) and letf be a con-
tinuous function inL1(R) such thatf̂ ∈ L1(R̂). Then†

(2.4)
∫

f(x)dµ(x) =
1

2π

∫

f̂(ξ)µ̂(−ξ).

PROOF: By (1.11)

f(x) =
1

2π

∫

f̂(ξ)eiξxdξ;

hence
∫

f(x)dµ(x) =
1

2π

∫∫

f̂(ξ)eiξxdµ(x) dξ =
1

2π

∫

f̂(ξ)µ̂(−ξ). J

Corollary ( uniqueness theorem).If µ̂(ξ) = 0 for all ξ, thenµ = 0.

The assumption̂f(ξ) ∈ L1(R̂) justifies the change of order of integra-
tion (by Fubini’s theorem); however, it is not really needed. Formula
(2.4) is valid under the weaker assumptionf̂(ξ)µ̂(−ξ) ∈ L1(R̂), and is
valid for all bounded continuousf ∈ L1(R) if we replace the integral on

the right bylimλ→∞
1

2π

∫ λ

−λ

(

1− |ξ|λ
)

f̂(ξ)µ̂(−ξ)dξ (cf. exercise 1.10).

2.3 The problem of characterizing Fourier-Stieltjes transforms among
bounded and uniformly continuous functions onR̂ is very hard. As
far as local behavior is concerned this is equivalent to characterizing
A(R̂): everyf ∈ A(R̂) is a Fourier-Stieltjes transform, and on the other
hand, ifµ ∈ M(R) andVλ is de la Vallée Poussin’s kernel (1.14), then
µ ∗ Vλ ∈ L1(T) andµ̂ ∗ Vλ(ξ) = µ̂(ξ) for |ξ| ≤ λ.

The following theorem is analogous to I.7.3:

Theorem. Letϕ be continuous on̂R, defineΦλ by:

Φλ(x) =
1

2π

∫ λ

−λ

(

1− |ξ|
λ

)

ϕ(ξ)eiξxdξ .

Thenϕ is a Fourier-Stieltjes transform if, and only if,Φλ ∈ L1(R) for
all λ > 0, and‖Φλ‖L1(R) is bounded asλ→∞.

†Notice that (2.4) is equivalent to
∫

f(x)dµ(x) = 1/2π
∫

f̂(ξ)µ̂(ξ)dξ
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PROOF: If ϕ = µ̂ with µ ∈ M(R), thenΦλ = µ ∗Kλ. It follows that for
all λ > 0, Φλ ∈ L1(R) and‖Φλ‖L1(R) ≤ ‖µ‖M(R).

If we assume thatΦλ ∈ L1(R) with uniformly bounded norms, we
consider the measuresΦλ(x)dx and denote byµ a weak-star limit point
of Φλ(x)dx asλ → ∞. We claim thatϕ = µ̂ and since both functions
are continuous, this will follow if we show that

(2.5)
∫

ϕ(−ξ)g(ξ)dξ =
∫

µ̂(−ξ)g(ξ)dξ

for every twice continuously differentiableg with compact support. For
suchg we haveg = Ĝ with G ∈ L1 ∩ C0(R); by Parseval’s formula

∫

g(ξ)ϕ(−ξ)dξ = lim
λ→∞

∫ λ

−λ
g(ξ)ϕ(−ξ)

(

1− |ξ|
λ

)

dξ

= lim
λ→∞

2π
∫

G(x)Φλ(x)dx = 2π
∫

G(x)dµ(x)

=
∫

g(ξ)µ̂(−ξ)dξ

and the proof is complete. J

Remark: The application of Parseval’s formula above is typical and is
the, more or less, standard way to check that weak-star limits inM(R)
are what we expect them to be. Nothing like that was needed in the case
of M(T) since weak-star convergence inM(T) implies pointwise con-
vergence of the Fourier-Stieltjes coefficients (the exponentials be1ng to
C(T) of whichM(T) is the dual). The exponentials onR do not be1ong
to C0(R) and it is false that weak-star convergence inM(R) implies
pointwise convergence of the Fourier-Stieltjes transforms (cf. exercise
1 at the end of this section.) However, the argument above gives:

Lemma. Let µn ∈ M(R) and assume thatµn → µ in the weak-star
topology. Assume also thatµ̂n(ξ)→ ϕ(ξ) pointwise,ϕ being continuous
on R̂. Thenµ̂ = ϕ.

2.4 A similar application of Parseval’s formula gives the following
useful criterion:

Theorem. A functionϕ defined and continuous on̂R, is a Fourier-
Stieltjes transform if, and only if, there exists a constantC such that

(2.6) | 1
2π

∫

f̂(ξ)ϕ(−ξ)dξ| ≤ C supx|f(x)|
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for every continuousf ∈ L1(R) such thatf̂ has compact support.

PROOF: If ϕ = µ̂, (2.6) follows from (2.4) withC = ‖µ‖M(R). if (2.6)
holds,f 7→ 1

2π

∫

f̂(ξ)ϕ(−ξ)dξ defines a bounded linear functional on
a dense subspace ofC0(R), namely on the space of all the functions
f ∈ C0∩L1(R) such thatf̂ has a compact support. This functional has a
unique bounded extension toC0(R), which, by the Riesz representation
theorem, has the formf 7→

∫

f(x)dµ(x). Moreover,‖µ‖M(R) ≤ C.
Using (2.4) again we see thatµ̂− ϕ is orthogonal to all the continuous,
compactly supported functionŝf with f ∈ L1(R), and consequently
ϕ = µ̂. J

Remark: The family {f} of test functions for which (2.6) should be
valid can be taken in many ways. The only properties that have been
used are that{f} is dense inC0(R) and{f̂} is dense inC0(R̂). Thus we
could require the validity of (2.6) only for (a) functionsf such thatf̂ is
infinitely differentiable with compact support; or (b) functionsf which
are themselves infinitely differentiable with compact support, and so
on.

2.5 With measures onR we can associate measures onT simply by
integrating2π-periodic functions. Formally: ifE is a Borel set onT
(T being identified with(−π, π]) we denote byEn the setE + 2πn and
write Ẽ = ∪En; if µ ∈M(R) we define

µT(E) = µ(Ẽ) .

It is clear thatµT is a measure onT and that, identifying continuous
functions on T with2π-periodic functions onR

(2.7)
∫

R
f(x)dx =

∫

T
f(t)dt.

The mappingµ 7→ µT is an operator of norm one fromM(R) onto
M(T), and its restriction toL1(R) is the mapping that we have discussed
in section 1.15. It follows from (2.7) that̂µ(n) = µ̂T(n) for all n; thus
the restriction of a Fourier-Stieltjes transform to the integers gives a
sequence of Fourier-Stieltjes coefficients.

Theorem. A functionϕ defined and continuous on̂R, is a Fourier-
Stieltjes transform if, and only if, there exists a constantC > 0, such
that for all λ > 0, {ϕ(λn)}∞n=−∞ are the Fourier-Stieltjes coefficients
of a measure of norm≤ C onT.
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PROOF: If ϕ = µ̂ with µ ∈ M(R) we haveϕ(n) = µ̂(n) = µ̂T(n) with
‖µT‖ ≤ ‖µ‖. Writing dµ(x/λ) for the measure satisfying

∫

f(x) dµ
(x

λ

)

=
∫

f(λx) dµx

we have‖µ(x/λ)‖M(R) = ‖µ‖M(R) andµ̂(x/λ)(ξ) = µ̂(ξλ). This implies

ϕ(λn) = ̂µ(x/λ)T(n) and the "only if" part is established.
For the converse we use 2.4. Letf be continuous and integrable

onR and assume that̂f is infinitely differentiable and compactly sup-
ported. We want to estimate the integral1

2π

∫

f̂(ξ)ϕ(−ξ)dξ and, since
the integrand is continuous and compactly supported, we can approxi-
mate the integral by its Riemann sums. Thus, for arbitraryε > 0, if λ is
small enough:

(2.8)
∣

∣

∣

1
2π

∫

f̂(ξ)ϕ(−ξ)dξ
∣

∣

∣ <
∣

∣

∣

λ

2π

∑

f̂(λn)ϕ(−λn)
∣

∣

∣+ ε .

Now, (λ/2π)f̂(λn) are the Fourier coefficients of the functionψλ(t) =
∑∞
m=−∞ f((t+ 2πm)/λ) onT, and since the infinite differentiability of

f̂ implies a very fast decrease off(x) as |x| → ∞, we see that ifλ is
sufficiently small

(2.9) sup|ψλ(t)| ≤ sup|f(x)|+ ε .

Assuming thatϕ(λn) = µ̂λ(n), µλ ∈ M(T) and‖µλ‖M(T) ≤ C, we
obtain from Parseval’s formula

∣

∣

∣

∣

λ

2π

∑

f̂(λn)ϕ(−λn)
∣

∣

∣

∣

=
∣

∣

∣

∑

ψ̂λ(n)µ̂λ(−n)
∣

∣

∣ ≤ C sup|ψλ(t)|;

by (2.8) and (2.9)
∣

∣

∣

∣

1
2π

∫

f̂(ξ)ϕ(−ξ) dξ
∣

∣

∣

∣

≤ C sup|f(x)|+ (C + 1)ε

and sinceε > 0 is arbitrary, (2.6) is satisfied and the theorem follows
from theorem 2.4. J

2.6 Parseval’s formula also offers an obvious criterion for determin-
ing when a functionϕ is the Fourier-Stieltjes transform of a positive
measure. The analog to 2.4 is
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Theorem. A functionϕ, bounded and continuous on̂R, is the Fourier-
Stieltjes transform of a positive measure onR if, and only if,

(2.10)
∫

f̂(ξ)ϕ(−ξ) ≥ 0

for every nonnegative functionf which is infinitely differentiable and
compactly supported.

PROOF: Parseval’s formula clearly implies the "only if" part and also
the fact that if we assumeϕ = µ̂ with µ ∈ M(R), thenµ is a positive
measure. To complete the proof we show that (2.10) implies (2.6),
with C = ϕ(0), for every real-valued, compactly supported infinitely
differentiablef (hence withC = 2ϕ(0) for complex-valuedf).

As usual, we denote byKλ(x) the Fejér kernel (1.8) and notice that

λ−1Kλ(x) = K(λx) = 1
2π

(

sinλx/2
λx/2

)2

is nonnegative and tends to1/2π,
asλ → 0, uniformly on compact subsets ofR. By (1.12) the Fourier
transform ofK(λx) is λ−1 max(1 − |ξ|/λ, 0) and, asϕ(ξ) is continuous
at ξ = 0,

(2.11) lim
λ→0

∫

1
λ
K̂λ(ξ)ϕ(−ξ) dξ = ϕ(0).

If f is real-valued and compactly supported andε > 0, then, for suffi-
ciently smallλ and allx,

2π(ε+ sup|f |)K(λx)− f(x) ≥ 0;

hence, by (2.10) and (2.11), if̂f ∈ L1(R̂)

(2.12)
1

2π

∫

f̂(ξ)ϕ(−ξ) dξ ≤ ϕ(0)(2ε+ sup|f |),

rewriting (2.12) for−f and lettingε→ 0 we obtain:
∣

∣

∣

∣

1
2π

∫

f̂(ξ)ϕ(−ξ) dξ
∣

∣

∣

∣

≤ ϕ(0) sup|f |. J

2.7 The analog to 2.5 is:

Theorem. A functionϕ, defined and continuous on̂R, is the Fourier-
Stieltjes transform of a positive measure, if and only if, for allλ > 0,
{ϕ(λn)}∞n=−∞ are the Fourier-Stieltjes coefficients of a positive mea-
sure onT.
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PROOF: The "only if" part follows as in 2.5. For the "if" part we notice
first that if ϕ(λn) = µ̂λ(n) with µλ > 0 on T, then‖µλ‖ = ϕ(0) and
consequently, by 2.5,ϕ is a Fourier-Stieltjes transform. Using the con-
tinuity of ϕ we can now establish (2.10) by approximating the integral
by its Riemann sums as in the proof of 2.5. J

2.8 Definition: A functionϕ defined on̂R is said to bepositive definite
if, for every choice ofξ1, . . . , ξN ∈ R̂ and complex numbersz1, . . . , zN ,
we have

(2.13)
N
∑

j,k=1

ϕ(ξj − ξk)zjzk ≥ 0 .

Immediate consequences of (2.13) are:

(2.14) ϕ(−ξ) = ϕ(ξ)

and

(2.15) |ϕ(ξ)| ≤ ϕ(0) .

In order to prove (2.14) and (2.15), we takeN = 2, z1 = 1, z2 = z;
then (2.13) reads

ϕ(0)(1 + |z|2) + ϕ(ξ)z + ϕ(−ξ)z̄ ≥ 0 ;

setz = 1, we getϕ(ξ) + ϕ(−ξ) real; setz = i, we geti(ϕ(ξ) − ϕ(−ξ)
real, hence (2.14). If we takez such thatzϕ(ξ) = −|ϕ(ξ)| we obtain:

2ϕ(0)− 2|ϕ(ξ)| ≥ 0

which establishes (2.15).

Theorem (Bochner). A functionϕ defined on̂R, is a Fourier-Stieltjes
transform of a positive measure if, and only if, it is positive definite and
continuous.

PROOF: Assume firstϕ = µ̂ with µ ≥ 0. Let ξ1, . . . , ξN ∈ N and
z1, . . . , zN be complex numbers; then

∑

j,k

ϕ(ξj − ξk)zjzk =
∫

∑

e−iξjxzje
iξkxzkdµ(x)

=
∫
∣

∣

∣

N
∑

1

zje
−iξjx

∣

∣

∣

2

dµ(x) ≥ 0

(2.16)
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so that Fourier-Stieltjes transforms of positive measures are positive
definite.

If, on the other hand, we assume thatϕ is positive definite, it follows
that for allλ > 0, {ϕ(λn)} is a positive definite sequence (cf. I.7.6).
By Herglotz’ theorem I.7.6,ϕ(λn) = µ̂λ(n) for some positive measure
µλ onT, and by theorem 2.7,ϕ = µ̂ for some positiveµ ∈M(R). J

?2.9 Some assumption of continuity ofϕ in Bochner’s theorem is es-
sential, but one may assume only that it is continuous atξ = 0 since a
positive definite function which is continuous atξ = 0 is uniformly con-
tinuous on the line. This can be obtained directly from condition (2.13)
or as a consequence of Lemma I.7.7 applied toϕ(λn), and lettingλ→ 0
(see exercise 9).

Lemma. Let ϕ = µ̂ for some positiveµ ∈ M(R). Assume thatϕ is
twice differentiable atξ = 0 or just that2ϕ(0)−ϕ(h)−ϕ(−h) = O

(

h2
)

.
Then

∫

x2dµ <∞, andϕ has a uniformly continuous second derivative
on R̂.

PROOF: The assumption is that for some constantC,

2h−2(ϕ(0)− ϕ(h)− ϕ(−h)) =
∫

2h−2(1− coshx)dµ(x) ≤ C.

Since the integrand is nonnegative, for everya > o,
∫ a

−a
x2dµ(x) ≤ lim inf

h→0

∫

2h−2(1− coshx)dµ(x) ≤ C.

Now, ν = x2µ ∈M(R), andϕ′′ = −ν̂. J

Notice that if 2ϕ(0)− ϕ(h)− ϕ(−h) = o(h2), we haveµ = ϕ(0)δ0.
By induction onm we obtain

Proposition. Let ϕ = µ̂ for some positiveµ ∈ M(R). Assume that
ϕ is 2m-times differentiable atξ = 0, then

∫

x2mdµ < ∞, andϕ has
a uniformly continuous derivative of order2m on R̂. If ϕ(2m)(0) = 0,
thenµ = ϕ(0)δ0.

?2.10 Positive definite functions which are analytic atξ = 0 are au-
tomatically analytic in a strip{ζ : ζ = ξ + iη, |η| < a}, with a > 0.
By Bochner’s theorem (and the previous remark) such functions are
Fourier-Stieltjes transforms of positive measures.
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Lemma. Letµ be a positive measure onR. Assume thatF (ξ) = µ̂(ξ)
is analytic atξ = 0. Then there existsb > 0 such that

∫

eb|x|dµ <∞ and
µ̂ is the restriction tôR of the function

(2.17) F (ζ) =
∫

e−iζxdµ(x).

PROOF: The assumption is: for somea > 0, F (ξ) =
∑∞

0
F (n)(0)
n! ξn

in |ξ| ≤ a. This implies|F (n)(0)| ≤ Cn!a−n, and in particular that
∫

x2mdµ ≤ C(2m)!a−2m. Since|x|2m+1 ≤ x2m + x2m+2, we have

∫

|x|2m+1dµ ≤ (2 + a2)C(2m+ 2)!a−2m+2

and

(2.18)
∫

eη|x|dµ =
∑

∫

ηn|x|n

n!
dµ =

∑

ηn
∫

|x|ndµ
n!

<∞

for all η < a. J

An immediate corollary of (2.17) is the fact thatF (ξ + iη) is positive
definite inξ, and (withζ = ξ + iη),

(2.19) |F (ζ)| ≤ F (iη).

Also, sinceF (k)(ζ) =
∫

(−ix)ke−iζxdµ, we have

(2.20) |F (k)(ζ)| ≤ |F (k)(iη)|+O (1) .

It follows that if {ζ = ξ + iη : a0 < η < a1} is a maximal strip in which
F (ζ) is holomorphic, then the pointsia0 andia1 are both singular points
of F .

If F is holomorphic on the entire imaginary axis, it is entire and we
obtain the following special case of a theorem of Marcinkiewicz:

Theorem. Assume thateP (ξ) is the Fourier-Stieltjes transform of a
positive measure, withP a polynomial, thendegP ≤ 2.

PROOF: We must haveeP (ζ) =
∫

e−iζxdµ. If P (ξ) =
∑k

0 ajξ
j, ak 6= 0,

there arek directionsϑj such thatF (reiϑj ) ≈ e|akr
k|+O(rk−1). By (2.19)

ϑj = ±π2 andk ≤ 2. J
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?2.11 Positive measures and positive definite functions are the bread
and butter of Probability theory, which uses its own terminology.

A real-valued random variableis, by definition, a measurable real-
valued functionX on some probability measure space

(

Ω,B,P
)

.
The expectationof an integrable random variableX is its integral

with respect toP. It is denotedE (X).
The distribution of a (real-valued) random variableX is the image

of P underX; it is a probability measure onR.
The (cumulative) distribution functionof X is the function

(2.21) FX(λ) = P (X ≤ λ) ;

(so that the distribution ofX is simply the measuredFX). If Φ is con-
tinuous onR thenΦ ◦ X is integrable on

(

Ω,B,P
)

if, and only if Φ is
integrabledFX , and

(2.22) E (Φ ◦X) =
∫

Φ(λ)dFX(λ).

The characteristic functionof a random variableX is, by definition, the
Fourier-Stieltjes transform of its distribution. TakingΦ(X) = eiξX in
equation (2.22), we have

(2.23) χX(ξ) = E
(

eiξX
)

=
∫

eiξλdFX(λ).

The term is justified by the uniqueness theorem 2.2
A normal (real-valued) variableis one whose distributiondFX is

G(x)dx; X is Gaussianif it is a constant multiple of a normal variable.

Notice thatX is normal if, and only if,χX(ξ) = Ĝ(ξ) = e−
ξ2

2 .

A sequenceXn of real-valued random variablesconverge in distri-
butiontoX0 means:dFXn → dFX0 in the weak-star topology.

2.12 For the convenience of future reference we state here the analog
to Wiener’s theorem I.7.13. The theorem can be proved either by es-
sentially repeating the proof of I.7.13 or by reducing it to I.7.13. We
leave the proof as an exercise (exercise 7 at the end of this section) to
the reader.

Theorem. Letµ ∈M(R). Then

∑

|µ({x})|2 = lim
λ→∞

1
2λ

∫ λ

−λ
|µ̂(ξ)|2 dξ .
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In particular, a necessary and sufficient condition for the continuity of
µ is

lim
λ→∞

1
2λ

∫ λ

−λ
|µ̂(ξ)|2 dξ = 0 .

EXERCISES FOR SECTION 2

1. Denote byδn, the measure of mass one onR concentrated atx = n.
Show thatlimn→∞ δn = 0 in the weak-star topology ofM(R) and conclude
that weak-star convergence of a sequence of measures does not imply pointwise
convergence of the Fourier-Stieltjes transforms.

2. Let µn = n−1(δ1 + δ2 + · · · + δn). Show thatµn → 0 in the weak-
star topology and̂µn(ξ) converges for everyξ ∈ R̂; however,lim µ̂n(ξ) is not
identically zero.

3. A setB ⊂ M(R) is uniformly-boundedly-spread(B ∈ UBS for short),
if it is bounded andlimλ→∞ supµ∈B

∫

|x|>λ|dµ| = 0.

a. Prove thatB ∈ UBS implies equi-continuity of{µ̂ :µ ∈ B}.
b. If µn are probability measures, and{µ̂n} is equi-continuous atξ = 0 then
{µn} ∈ UBS.
c. If {µn} ∈ UBS, andµn → µ in the weak-star topology, then̂µn(ξ) → µ̂(ξ)

uniformly on compact subsets ofR̂.
4. Letµn ∈M(R) such that‖µn‖ ≤ 1. Assume that̂µn converges pointwise

to a continuous functionϕ. Show thatϕ = µ̂ for someµ ∈ M(R) such that
‖µ‖ ≤ 1; moreover,µn → µ weak-star.

5. Letλn be integers such thatλn+1/λn > 3. WriteXn =
√

2
n

∑n

1
cosλjt.

(Xn are real-valued random variables on the probability spaceT endowed with
the normalized Lebesgue measure). Prove thatXn converge in distribution to a
normal variable.
Hint: Exercise V.1.11.

6. Show that ifϕ is continuous on̂R and (2.10) is valid, thenϕ is posi-
tive definite. Conclude from (2.15) that the boundedness assumption of 2.6 is
superfluous.

7. Prove Theorem 2.12.
8. Expressµ{[a, b]} andµ{(a, b)} in terms ofµ̂. ([a, b] is the closed interval

with endpointsa andb, and(a, b) is the open one.)
9. Let an be complex numbers,|an| ≤ 1. Setbn = an+1 − an andcn =

bn − bn−1 = an+1 + an−1 − 2an. Prove that if|cn| ≤ ε, then|bn| ≤ 2
√
ε.

a. How does this imply that a positive definite function which is continuous at
ξ = 0 is uniformly continuous on̂R?
b. Prove that ifϕ is positive definite andϕ(0)−<ϕ(h) = o(h2), ash→ 0, then
ϕ is a constant.
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10. Show that there exists a uniformly continuous bounded functionϕ

which is not a Fourier-Stieltjes transform, and such that{ϕ(λn)} is a sequence
of Fourier-Stieltjes coefficients for everyλ > 0.
Hint: Construct a continuous function with compact support which is not a
Fourier transform of a summable function.

3 FOURIER TRANSFORMS IN Lp(R); 1 < p ≤ 2.

The definition of the Fourier transform (i.e., Fourier coefficients)
for functions in various function spaces onT, was largely simplified
by the fact that all these spaces were contained inL1(T). The fact that
the Lebesgue measure ofR is infinite changes the situation radically.
If p > 1 we no longer haveLp ⊂ L1, and, if we want to have Fourier
transforms for functions inLp(R) (or other function spaces onR), we
have to find a new way to define them. In this section we consider the
case1 < p ≤ 2 and obtain a reasonably satisfactory extension of the
Fourier transformation for this case.

3.1 We start withL2(R).

Lemma. Let f be continuous and with compact support onR; then

1
2π

∫

|f̂(ξ)|2dξ =
∫

|f(x)|2dx .

We give two proofs.

PROOF I: Assume first that the support off is included in(−π, π). By
theorem I.5.5,

1
2π

∫

|f(x)|2dx =
∞
∑

n=−∞

∣

∣

∣

1
2π
f̂(n)

∣

∣

∣

2

and replacingf by e−iαxf we have

(3.1)
∫

|f(x)|2dx =
1

2π

∞
∑

n=−∞
|f̂(n+ α)|2;

integrating both sides of (3.1) with respect toα on0 ≤ α ≤ 1, we obtain

∫

|f(x)|2dx =
1

2π

∫

|f̂(ξ)|2dξ.
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If the support off is not in (−π, π), we considerg(x) = λ1/2f(λx). If
λ is sufficiently big, the support ofg is included in(−π, π) and, since
ĝ(ξ) = λ−1/2f̂(ξ/λ), we obtain

∫

|f(x)|2dx =
∫

|g(x)|2dx =
1

2π

∫

|ĝ(ξ)|2dξ =
1

2π

∫

|f̂(ξ)|2dξ.

J

PROOF II: Write g = f ∗ f(−x); we haveg(0) =
∫

f(x)f(x)dx =
∫

|f(x)|2dx andĝ(ξ) = |f̂(ξ)|2. If we know that
∫

|f̂(ξ)|2dξ <∞ (e.g., we
assume thatf is differentiable), it follows from the inversion formula
(1.11) that

1
2π

∫

|f̂(ξ)|2 dξ = g(0) =
∫

|f(x)|2 dx .

In the general case we may apply Fejér’s theorem and obtain

lim
λ→∞

1
2π

∫ (

1− |ξ|
λ

)

|f̂(ξ)|2dξ = g(0)

and, since the integrand is nonnegative, its C-1 summability is equiva-
lent to its convergence and the proof is complete. J

DEFINITION: For g ∈ L2(R̂) we write

‖g‖L2(R̂) =
(

1
2π

∫

|g(ξ)|2dξ
)1/2

.

Theorem (Plancherel). There exists a unique operatorF fromL2(R)
ontoL2(R̂) having the properties:

Ff = f̂ for f ∈ L1 ∩ L2(R),(3.2)

‖Ff‖L2(R̂) = ‖f‖L2(R).(3.3)

Remark:In view of (3.2) we shall often writêf instead ofFf .

PROOF: We notice first thatL1 ∩ L2(R) is dense inL2(R) and conse-
quently any continuous operator defined onL2(R) is determined by its
values onL1 ∩ L2(R). This shows that there exists at most one oper-
ator satisfying (3.2) and (3.3). By the lemma, (3.3) is satisfied iff is
continuous with compact support, and since continuous functions with
compact support are dense inL1 ∩ L2(R) (with respect to the norm
‖ ‖L1(R) + ‖ ‖L2(R)), (3.3) holds for allf ∈ L1 ∩ L2(R). The mapping
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f 7→ f̂ clearly can be extended by continuity to an isometry fromL2(R)
into L2(R̂). Finally, since every twice differentiable compactly sup-
ported function on̂R is the Fourier transform of a bounded integrable
function onR (1.5 and the inversion formula), it follows that the range
of f 7→ f̂ is dense inL2(R̂) and hence coincides with it. J

Remarks:(a) Given a functionf ∈ L2(R) we definef̂ as the limit (in
L2(R̂)) of f̂n, wherefn is any sequence inL1 ∩ L2(R) which converges
to f in L2(R). As such a sequence we can take

fn =

{

f(x) |x| < n

0 |x| ≥ n

and obtain the following form of Plancherel’s theorem: the sequence

(3.4) ̂fn(ξ) =
∫ n

n

f(x)e−iξxdx

converges, inL2(R̂), to a function which we denote bŷf , and for which
(3.2) and (3.3) are valid.

(b) The mappingf 7→ f̂ being an isometry ofL2(R) ontoL2(R̂),
clearly has an inverse. Using theorem 1.11 and the fact that we have an
isometry, we obtain the inverse map byf = lim f(n) in L2(R) where

(3.5) f(n)(x) =
1

2π

∫ n

−n
f̂(ξ) dξ .

(c) Parseval’s formula

(3.6)
∫

f(x)g(x)dx =
1

2π

∫ π

−π
f̂(ξ)ĝ(ξ)dξ

for f. g ∈ L2(R), follows immediately from (3.3) (and in fact is equiva-
lent to it).

3.2 We turn now to define Fourier transforms for functions inLp(R),
1 < p < 2. Using the Riesz-Thorin theorem and the fact thatF : f 7→ f̂

has norm 1 as operator fromL1(R) into L∞(R̂) and fromL2(R) onto
L2(R̂), we obtain as in IV.2:

Theorem (Hausdorff-Young). Let 1 < p < 2, q = p/(p − 1) and
f ∈ L1 ∩ L2(R). Then

(

1
2π

∫

|f̂(ξ)|qdξ
)1/q

≤
(∫

|f(x)|pdx
)1/p

.
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For f ∈ Lp(R), 1 < p < 2, we now definef̂ by continuity; for
example, as the limit inLq(R̂) of

∫ n

−n e
−iξxf(x)dx. The mappingF :

f 7→ f̂ so defined is an operator of norm 1 fromLp(R) into Lq(R̂);
however, it is no longer an isometry and the range is not the whole of
(see exercise 10 at the end of this section).

3.3 The fact that forp < 2, F is not an invertible operator fromLp(R)
onto Lq(R̂) makes the inversion problem more delicate than it is for
L2. The situation in the case ofLp(R) is similar to that which we
encountered forLp(T). We have inversion formulas both in terms of
summability and in terms of convergence. The summability result can
be stated in terms of general summability kernels without reference to
the Fourier transform as we did in 1.10 forL1(R); and in fact the state-
ment of Theorem 1.10 remains valid if we replace in itL1(R)byLp(R),
1 ≤ p < ∞. For p ≤ 2 we can generalize theorem 1.11. We first
check (see exercise 9 at the end of this section) that ifg ∈ Lp(R) and
f ∈ L1(R) thenf ∗ g is a well-defined element inLp(R) and ̂f ∗ g = f̂ ĝ.
This is particularly simple if we take forf the Fejér kernelKλ: we have

K̂λ ∗ g =
(

1− |ξ|
λ

)

ĝ

and, sinceKλ ∗ g is clearly bounded (Kλ ∈ Lq(R), q = p/(p − 1)) and
hence belongs toL1 ∩ L∞(R) ⊂ L2(R), it follows that

Kλ ∗ g =
1

2π

∫ λ

−λ

(

1− |ξ|
λ

)

ĝ(ξ)eiξxdξ

and from the general form of theorem 1.10 we obtain:

Theorem. Let g ∈ Lp(R), 1 ≤ p ≤ 2; then

g = lim
λ→∞

1
2π

∫ λ

−λ

(

1− |ξ|
λ

)

ĝ(ξ)eiξxdξ

in theLp(R) norm.

Corollary. The functions whose Fourier transforms have compact sup-
port form a dense subspace ofLp(R).

3.4 The analog to the inversion given by 3.1, remark (b) (i.e., con-
vergence rather than summability) is valid for1 < p < 2 but not as
easy to prove as forp = 2; it corresponds to theorem II.1.5 and can be
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proved either through the study of conjugate harmonic functions in the
half-plane, analogous to that done for the disc in chapter III, or directly
from II.1.5. The idea needed in order to obtain the norm inversion for-
mula forLp(R), 1 < p < 2, from II.1.5 is basically the one we have
used in proof I of lemma 3.1.

For f ∈ ∪1≤p≤2L
p(R) we writeSN (f, x) = 1

2π

∫ N

−N f̂(ξ)eiξx dξ.

Lemma. For 1 < p <∞, there exist constantsCp such that

(3.7) ‖SNf‖Lp(R) ≤ cp‖f‖Lp(R)

for every functionf with compact support and everyN > 0.

PROOF: Inequality (3.7) is equivalent to the statement that, forM →∞

(3.8)

(

∫ M

−M
|SN (f, x)|pdx

)1/p

≤ Cp‖f‖Lp(R).

Writing ϕM (x) = M1/pf(Mx) we see that‖ϕM‖Lp(R) = ‖f‖Lp(R) and
check that

(3.9) SMN (ϕM , x) = M1/pSN (f,Mx).

In view of (3.9), (3.8) is equivalent to

(3.10)
(∫ 1

−1

|SMN (ϕM , x)|pdx
)1/p

≤ Cp‖ϕM‖Lp(R).

As M → ∞, the support ofϕM shrinks to zero and consequently the
lemma will be proved if we show that (3.8) is valid, with an appropriate
Cp, for all f with support contained in(−π, π) for M = 1 (or any other
fixed positive number) and for all integersN . We now write

(3.11) SN (f, x) =
∫ 1

0

N−1
∑

−N

1
2π
f̂(n+ α)ei(n+α)xdα

and notice that
∑N−1
−N ( 1

2π )f̂(n + α)einx is a partial sum of the Fourier
series off(x)e−iαx (it is carried by(−π, π) which we now identify with
T). As anLp(T)-valued function ofα, the integrand in (3.11) is clearly
continuous† and, by II.1.2 and II.1.5, it is bounded inLp(T) by a con-
stant multiple of‖feiαx‖lt[p] = (2π)−1/p‖f‖Lp(R). We therefore obtain

(∫ 1

−1

|SN (f, x)|pdx
)1/p

≤
(∫ π

−π
|SN (f, x)|pdx

)1/p

≤ Cp‖f‖Lp(R)

†Note thatf , having a compact a support, is inL1(R) andf is therefore continuous.
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and the proof is complete. J

Corollary. For 1 < p ≤ 2, inequality(3.7) is valid for all f ∈ Lp(R).

PROOF: Write f = limn→∞ fn, with fn ∈ Lp(R), fn having compact
supports and the limit being taken in theLp(R) norm. By theorem 3.2,
f̂ = lim f̂n in Lq(R) and consequently, we have for every fixedN > 0,
SN (f, x) = limn SN (fn, x) uniformly in x. It follows that

‖SN (f)‖Lp(R) ≤ lim inf
n
‖SN (fn)‖Lp(R) ≤

Cp lim
n
‖fn‖Lp(R) = Cp‖f‖Lp(R). J

Theorem. Let f ∈ Lp(R), 1 < p ≤ 2. Then

lim
N→∞

‖SN (f)− f‖Lp(R) = 0.

PROOF: {SN} is a uniformly bounded family of operators which con-
verge to the identity, asN → ∞, on all functions with compactly sup-
ported Fourier transform, and hence, by corollary 3.3, it converges to
the identity in the strong topology. J

EXERCISES FOR SECTION 3

1. LetB ⊂ Lc be a homogeneous Banach space onR and letf ∈ B. Show
that: (a) for everyϕ ∈ L1(R), ϕ ∗ f can be approximated (in theB norm)
by linear combinations of translates off . In other words: for everyε > 0,
there exist numbersy1, . . . , yn ∈ R and complex numbersA1, . . . , An such that
‖ϕ ∗ f −

∑n

j=1
Ajfyj‖ < ε, wherefy(x) = f(x− y).

(b) For everyy ∈ R, fy can be approximated by functions of the formϕ ∗ f
with ϕ ∈ L1(R). Deduce that a closed subspaceH of B is translation invariant
(i.e., f ∈ H implies fy ∈ H for all y ∈ R) if, and only if, f ∈ H implies
ϕ ∗ f ∈ H for everyϕ ∈ L1(R).

2. LetF,G ∈ L2(R̂) and assumeF (ξ) = 0 impliesG(ξ) = 0 for almost all
ξ ∈ R̂. Show that, givenε > 0, there exists a twice-differentiable compactly
supported functionΦ such that

‖ΦF −G‖L2(R̂) < ε.

3. Let f, g ∈ L2(R) and assume that̂f(ξ) = 0 implies ĝ(ξ) = 0 for almost
all ξ ∈ R̂. Show thatg can be approximated onL2(R) by linear combinations
of translates off . Hint: Use exercises I and 2 and Plancherel’s theorem.
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4. For measurable setsE ⊂ R̂ denoteHE = {f ∈ L2(R) : f̂ = 11E f̂}.
Prove thatHE is a closed translation invariant subspace ofL2(R), and that
every closed translation invariant subspace ofL2(R) is obtained this way.

5. Show that every closed translation invariant subspace ofL2(R) is singly
generated.

6. Letf ∈ L2(R). Show that the translates off generateL2(R) if, and only
if, f̂ 6= 0 almost everywhere.

7. The information obtained from exercises 2 through 6 can be obtained
very easily by duality arguments (i.e., using the Hahn-Banach theorem). For
instance, by Plancherel’s theorem, exercise 6 is equivalent to the statement that
{f̂(ξ)eiξx}x∈R spansL2(R̂) if, and only if, f̂(ξ) 6= 0 almost everywhere. By the
Hahn-Banach theorem{f̂(ξ)eiξx}x∈R doesnot spanL2(R̂) if, and only if, there
is a functionψ ∈ L2(R̂), not identically zero, such that

∫

f̂(ξ)ψ(ξ)eiξxdξ = 0 for
all x ∈ R. By the uniqueness theorem this is equivalent to:f̂ ψ̄ = 0 identically,
that is,f vanishes on the support ofψ.

Use the same method to prove exercises 3 through 5.
8. Both the "if" and the "only if" parts of exercise 6 are based on Plancherel’s

theorem and are both false forLp(R), p < 2. Assuming the existence of a mea-
sureµ carried by a closed set of measure zero and such thatµ̂ ∈ Lq for all q > 2,
construct a functionf ∈ L1∩L∞(R) such thatf̂(ξ) 6= 0 almost everywhere and
such that the translates off do not spanLp(R) for anyp < 2.
Hint: Putµ on R̂.

9. Show that iff ∈ L1(R) andg ∈ Lp(R), then̂f ∗ g = f̂ ĝ.
We denote byFLp the space of all functionŝf such thatf ∈ Lp(R), (thus

FL1 = A(R̂)). By definition:

‖f̂‖FLp = ‖f‖Lp(R).

10. If µ ∈M(R) andϕ ∈ FLp, 1 ≤ p ≤ 2, thenµ̂ϕ ∈ FLp.
11. Show that ifϕ ∈ FLp, 1 < p ≤ 2, and if we write

ψ(ξ) =

{

ϕ(ξ) ξ > 0

0 ξ ≤ 0,

thenψ ∈ FLp, and‖ψ‖ ≤ Cp‖ϕFLp‖.
12. Letα andβ be real numbers,αβ 6= 0. Show that ifϕ ∈ FLp, I < p ≤ 2,

and if we write

ψα,β(ξ) =

{

ϕ(αξ) ξ > 0

ϕ(βξ) ξ ≤ 0,

thenψα,β ∈ FLp.
13. Letf ∈ Lp(R), 1 < p ≤ 2. Show thath(x) = π−1

∫

f(x − y) sin y/ydy

is well defined and continuous onR, h ∈ Lp(R) and‖h‖Lp(R) ≤ Cp‖f‖Lp(R).
14. Show that, for1 ≤ p < 2, the norms‖ϕ‖FLp and‖ϕ‖Lq(R̂) are not

equivalent. Deduce thatFLp 6= Lq(R̂) (q = p/(p− 1)). Hint: See IV.2.
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4 TEMPERED DISTRIBUTIONS AND PSEUDO-MEASURES

In the previous section we defined the Fourier transforms for func-
tions inLp(R), 1 < p ≤ 2, by showing that on dense subspace on which
F : f 7→ f̂ is already well defined (e.g., onL1 ∩ L2(R)), we have the
norm inequality

‖f̂‖Lq(R̂) ≤ ‖f‖Lp(R)

and consequently there exists a unique continuous extension ofF , as
an operator fromLp(R) into Lq(R̂). If p > 2 this procedure fails. It is
not hard to see that not only is it impossible to extend the validity of the
Hausdorff-Young theorem forp > 2, but also there is no homogeneous
Banach spaceB onR such that for somep > 2, some constantC and
all f ∈ L1 ∩ L∞(R),

‖f̂‖B ≤ C‖f‖Lp(R).

So, a different procedure is needed if we want to extend the notion
of Fourier transforms toLp(R), p > 2. Clearly, we try to extend the
notion, keeping as many of its properties as possible; in particular, we
would like to keep some form of the inversion formula and the very use-
ful Parseval’s formula. We realize immediately that, since the Fourier
transforms of measures are bounded functions, if any reasonable form
of inversion is to be valid, the Fourier transforms of some bounded
functions will have to be measures; and once we accept the idea that
Fourier transforms need not be functions but could be other objects,
such as measures, the procedure that we look for is given to us by Par-
seval’s formula.

So far we have established Parseval’s formula for various function
spaces as a theorem following the definition of the Fourier transforms
of functions in the corresponding spaces. In this section we consider
Parseval’s formula as a definition of Fourier transform for a much larger
class of objects. Having proved Parseval’s formula forLp(R), 1 ≤ p ≤
2, we are assured that our new definition is consistent with the previous
ones.

4.1 We denote byS(R) the space of all infinitely differentiable func-
tions onR which satisfy:

(4.1) lim
|x|→∞

xnf (j)(x) = 0 for all n ≥ 0, j ≥ 0.

S(R) is a topological vector space, the topology given by the family
of seminorms

(4.2) ‖f‖j,n = sup|xnf (j)(x)|.
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This topology onS(R) is clearly metrizable† andS(R) is complete, in
other words,S(R) is a Frechet space.

DEFINITION: A tempered distribution onR is a continuous linear
functional onS(R).

We denote the space of tempered distributions onR that is, the dual
of S(R), by S∗(R). S(R) is a natural space to study within the theory
of Fourier transforms. By theorems 1.5 and 1.6 we see that iff ∈
S(R) then f̂ ∈ S(R̂) (the analogous space on̂R) and, asξnf̂ (j)(ξ) is

the Fourier transform of(−i)n+j d
n(xjf(x))
dxn , we see that the mapping

f 7→ f̂ is continuous fromS(R) into S(R̂). By the inversion formula
this mapping is ontoS(R̂) and is bicontinuous.

We now definêµ, for µ ∈ S∗(R), as the tempered distribution on̂R
satisfying

(4.3) 〈f̂ , µ̂〉 = 〈f, µ〉

for all f ∈ S(R).
The space of tempered distributions onR is quite large. Every

function g which is measurable and locally summable, and which is
bounded at infinity by a power ofx can be identified with a tempered
distribution by means of:

〈f, g〉 =
∫

f(x)g(x)dx f ∈ S(R)

and so can everyg ∈ Lp(R), for anyp ≥ 1, and every measureµ ∈M(R);
thus our definition has a very satisfactory domain. However, the range
of the definition is as large and this is clearly a disadvantage; it gives
relatively little information about the Fourier transform. We thus have
to supplement this definition with studies of the following general prob-
lem: knowing that a distributionµ ∈ S∗(R) has some special properties,
what can we say aboutµ?

Much of what we have done in the first three sections of this chapter
falls into this category: ifµ is (identified with) a summable function,
thenµ̂ is (identified with) a function inC0(R); if µ is a measure, then

†A sequence of functionsfm ∈ S(R) converges tof if limm→∞‖fm− f‖j,n = 0 for
all j ≥ 0 andn ≥ 0. The metric inS(R) can be defined by:

dist(f, g) =
∑

j,n≥0

1

2j+n
‖f − g‖j,n

1 + ‖f − g‖j,n
.
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µ̂ is a uniformly continuous bounded function; ifµ ∈ Lp(R) with
1 < p ≤ 2, thenµ̂ ∈ Lq(R̂), q = p/(p− 1).

We shall presently obtain some information about Fourier trans-
forms of functions inLp(R) with 2 < p ≤ ∞ but we should not leave
the general setup without mentioning the notion of the support of a
tempered distribution.

4.2 DEFINITION: A distributionν ∈ S∗(R) vanishes on an open set
O ⊂ R, if 〈ϕ, ν〉 = 0 for all ϕ ∈ S(R) with compact support contained
in O.

Lemma. LetO1, O2 be open onR and letK be a compact set such that
K ⊂ O1 ∪ O2. Then there exist two compactly supportedC∞ functions
ϕ1 andϕ2 satisfying: support ofϕj ⊂ oj andϕ1 + ϕ2 = 1 onK.

PROOF: Let Uj ⊂ Oj have the following properties:Uj is open,U j is
compact and included inOj, andK ⊂ U1 ∪ U2. Denote the indicator
function ofU1 by ψ1 and that ofU2 \ U1 by ψ2. Let ε > 0 be smaller
than the distance ofK to the boundary ofU1 ∪U2 and also smaller than
the distance ofUj to the complement ofOj , j = 1, 2. Let δ(x) be an
infinitely differentiable function carried by(−ε, ε) and whose integral
is 1. Then we can takeϕj = ψj ∗ δ J

Corollary. If ν ∈ S∗(R) vanishes onO1 and onO2, it vanishes on
O1 ∪O2.

PROOF: Let f ∈ S(R) have a compact support included inO1 ∪ O2.
Denote the support off byK and letϕ1, ϕ2 be the functions described
in the lemma. Thenϕj ∈ S(R), f = f(ϕ1 + ϕ2) = fϕ1 + fϕ2. Now
〈fϕ1, ν〉 = 0, 〈fϕ1, ν〉 = 0, and consequently〈f, ν〉 = 0. J

Our corollary clearly implies that the union of any finite number of
open sets on whichν vanishes has the same property, and since our
test functions all have compact support, the same is valid for arbitrary
unions. The union of all the open sets on whichν vanishes is clearly
the largest such set.

4.3 DEFINITION: The supportΣ(ν) of ν ∈ S∗(R) is the complement
of the largest open setO ⊂ R on whichν vanishes.

Remarks:(a) If ν is (identified with) a continuous functiong thenΣ(ν)
is the closure of{x : g(x) 6= 0}. If ν is a measurable functiong thenΣ(ν)
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is the closure of the set of points of density of{x : g(x) 6= 0}. The set
of points of density of{x : g(x) 6= 0} is a finer notion of support which
may be useful (cf. exercise 3.4).

(b) The definition ofΣ(ν) implies that ifϕ ∈ S(R) and if the sup-
port ofϕ is compact and disjoint fromΣ(ν) then〈ϕ, ν〉 = 0. It may be
useful to notice that ifψ ∈ S(R) and if δ is infinitely differentiable with
compact support andδ(0) = 1, thenψ = limλ→0δ(λx)ψ in S(R), and
consequently if the support ofψ is disjoint fromΣ(ν) (but not neces-
sarily compact) we have〈ψ, ν〉 = limλ→0〈δ(λx)ψ, ν〉 = 0. In particular,
if Σ(ν) = ∅ thenν = 0.

(c) LetB ⊃ S(R) be a function space and assume that everyf ∈ B
with compact support can be approximated in the topology ofB by
functionsϕn ∈ S(R) such that the supports ofϕn tend to that off . Let
ν ∈ S∗(R) and assume thatν can be extended to a continuous linear
functional onB. If f ∈ B has a compact support disjoint fromΣ(ν),
then〈f, ν〉 = 0.

4.4 S(R) is an algebra under pointwise multiplication. The productfν

of a functionf ∈ S(R) and a distributionν ∈ S∗(R) is defined by

〈g, fν〉 = 〈gf̄ , ν〉, g ∈ S(R).

i.e., the multiplication byf in S∗(R) is the adjoint of the multiplication
by f in S(R). From the definitions above, it is clear thatΣ(fν) ⊂
Σ(f) ∩Σ(ν).

4.5 We denote byFLp = FLp(R̂)) the space of distributions on̂R
which are Fourier transforms of functions inLp(R), 1 < p ≤ ∞ (we
keep the notationA(R̂) for FL1(R̂)). FLp inherits fromLp(R) its Ba-
nach space structure; we simply put‖f̂‖FLp = ‖f‖Lp(R); and we can
identify FLp with the dual ofFLq if q = p/(p − 1) < ∞. In par-
ticular, FL∞ is the dual ofA(R̂). This identification may be consid-
ered as purely formal: writing〈f̂ , ĝ〉 = 〈f, g〉 carries the duality from
(Lp(R), Lq(R)) to (FLp,FLq); however, we have already made enough
formal identifications to allow a somewhat clearer meaning to the one
above. Having identified functions with the corresponding distribu-
tions, we clearly haveS(R̂) ⊂ FLp and, if p < ∞, S(R̂) is dense
in FLp; consequently, every continuous linear functional onFLp is
canonically identified with a tempered distribution. The identification
of FLq as the dual ofFLp now becomes a theorem stating that a dis-
tribution ν ∈ S∗(R̂) is continuous onS(R̂) with respect to the norm



166 AN INTRODUCTION TOHARMONIC ANALYSIS

induced byFLp if, and only if, ν ∈ FLq. We leave the proof as an
exercise to the reader.

We now confine our attention toFL∞. If µ is a measure inM(R̂),
it is the Fourier transform of the bounded functionh(x) =

∫

eiξxdµ(ξ);
thusM(R̂) ⊂ FL∞. The elements ofFL∞ are commonly referred to
as pseudo-measures. It is clear thatM(R̂) is a relatively small part of
FL∞; for instance, ifϕ ∈ L∞ is not uniformly continuous onR, ϕ̂
cannot be a measure.

DEFINITION: The convolution̂h1 ∗ ĥ2 of the pseudo-measuresĥ1 and
ĥ2, (hj ∈ L∞(R)), is the Fourier transform ofh1h2.

Again we reverse the roles; we take something which we have proved
for measures, as a definition for the larger class of pseudo-measures.
Thus, if ĥ1 and ĥ2 happen to be measures,ĥ1 ∗ ĥ2 is their (measure
theoretic) convolution.

4.6 Another case in which we can identify the convolution is given by

Lemma. Leth1 ∈ L∞(R) andh2 ∈ L1 ∩ L∞(R); then

(4.4) (ĥ1 ∗ ĥ2)(ξ) = 〈ĥ2(ξ − η), ĥ1(η)〉.

PROOF: We remark first thath1h2 ∈ L1 ∩ L∞(R) and consequently
ĥ1 ∗ ĥ2 = ĥ1H2 ∈ A(R) so that we can talk about its value atξ ∈ R. If
h1 ∈ S(R) we have

(ĥ1 ∗ ĥ2)(ξ) =
∫

h1(x)h2(x)e−iξxdx =
1

2π

∫∫

ĥ1(η)h2(x)ei(η−ξ)x dx dη

=
1

2π

∫

ĥ2(ξ − η)ĥ1(η)dη = 〈ĥ2(ξ − η), ĥ1(η)〉.

SinceS(R) is dense inL∞(R) in the weak-star topology (as dual of
L1(R)), and since both sides of (4.4) depend onh1 continuously with re-
spect to the weak-star topology, (4.4) is valid for arbitraryh1 ∈ L∞(R).

Corollary. If h1 ∈ L∞(R) andh2 ∈ L1 ∩ L∞(R), then

Σ(ĥ1 ∗ ĥ2) ⊂ Σ(ĥ1) + Σ(ĥ2).

4.7 This corollary can be improved:

Lemma. Assumeh1, h2 ∈ L∞(R). Then

Σ(ĥ1 ∗ ĥ2) ⊂ Σ(ĥ1) + Σ(ĥ2).
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PROOF: Consider a smooth function̂f ∈ A(R̂) with compact support
disjoint fromΣ(ĥ1) +Σ(ĥ2). We have to show that〈f̂ , ̂h1h2〉 = 0 which

is the same as
∫

fh̄1h̄2dx = 〈̂fh1,̂h2〉 = 0.

NowΣ(̂h1) = {ξ :−ξ ∈ Σ(̂h1)} and, by 4.6,Σ(̂fh1) ⊂ Σ(f̂)+Σ(̂h1).

If ξ0 ∈ Σ(̂fh1)∩Σ(ĥ2), then there existη0 ∈ Σ( ̂f) andη1 ∈ Σ(̂h1) such
that ξ0 = η0 − η1, that is,η0 = ξ0 + η1. This would contradict the

assumptionΣ( ̂f) ∩
(

Σ(̂h1) + Σ(̂h2)
)

= ∅. It follows that Σ(̂fh1) is

disjoint fromΣ(̂h2), hence〈 ̂f, ̂h1h2〉 = 〈̂fh1,̂h2〉 = 0 and the lemma is
proved. J

4.8 The reader might have noticed that we were using not only the du-
ality betweenL1(R) andL∞(R) but also the fact that a multiplication
by a bounded function is a bounded operator onL1(R). Another opera-
tion betweenL1(R) andL∞(R) which we have used is the convolution
that takesL1 × L∞ into L∞(R). Passing to Fourier transforms we see
thatFL∞ is a module overA(R̂) the multiplication of a pseudomeasure
by a function inA(R̂) being the adjoint of the multiplication inA(R̂).
This extends the notion of multiplication introduced in 4.4.

4.9 Letk be an infinitely differentiable function on̂R, carried by[−1, 1]
and such that

∫

k(ξ)dξ = 1. For f̂ ∈ A(R̂) we set

f̂λ = λk(λξ) ∗ f̂ = λ

∫

k(λη)f̂(ξ − η)dη.

f̂λ is infinitely differentiable,Σ(f̂λ) ⊂ Σ(f̂) + [−1/λ, 1/λ], and as
λ→∞, f̂λ → f̂ in A(R̂).

By 4.3, remark (c) it follows that ifν ∈ FL∞ and if f̂ ∈ A(R̂) has
a compact support disjoint fromΣ(ν), we have〈f̂ , ν〉 = 0. Further, if
f̂ ∈ A(R̂) andΣ(f̂) ∩ Σ(ν) = ∅, it follows that 〈(1 − |ξ|/λ)f̂ , ν〉 = 0
for all λ > 0 and lettingλ → ∞, we obtain〈f̂ , ν〉 = 0. For convenient
reference we state this as:

Lemma. Let ν ∈ FL∞ and f̂ ∈ A(R̂). If Σ(f̂) ∩ Σ(ν) = ∅ then
〈f̂ , ν〉 = 0.

4.10 We leave the proof of the following lemma as an exercise to the
reader.

Lemma. Let ν ∈ FL∞ and f̂ ∈ A(R̂): then

Σ(f̂ν) ⊂ Σ(f̂) ∩Σ(ν).
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4.11 We show now that a pseudo-measure with finite support is a mea-
sure. Using the multiplication by elements ofA(R̂) we see that a pseu-
domeasure with finite support is a linear combination of pseudomea-
sures carried by one point each; thus it would be sufficient to prove:

Theorem. A pseudo-measure carried by one point is a measure.

PROOF: Let h ∈ L∞(R) and assumeΣ(ĥ) = {0}. If ϕ1, ϕ2 ∈ AR̂
andϕ1(ξ) = ϕ2(ξ) in a neighborhood ofξ = 0, then〈ϕ1, ĥ〉 = 〈ϕ2, ĥ〉.
Put c = 〈ϕ, ĥ〉 whereϕ is any function inA(R̂) such thatϕ(ξ) = 1
nearξ = 0. As usual we denote byK the Fejér kernel and recall that
K̂(ξ) = sup(1− |ξ|, 0). By lemma 4.6 we have

(4.5) ̂hK(ξ) = 〈K̂(ξ − η), ĥ(η)〉.

For |ξ| ≥ 1 we clearly havêhK(ξ) = 0. If −1 < ξ1 < ξ2 < 0 we have
K̂(ξ2 − η) = K̂(ξ1 − η) = ξ2 − ξ1 for η near zero. By (4.5) and the
definition ofc we conclude that̂hK(ξ2 − ̂hK(ξ2 = c(ξ2 − ξ1), and since
̂hK(ξ) is continuous, upon lettingξ1 → −1 we obtain̂hK(ξ) = c(1 + ξ)
for −1 < ξ < 0. Repeating the argument for0 ≤ ξ ≤ 1 we obtain
̂hK(ξ) = cK̂(ξ) and by the uniqueness theoremh(x) = c a.e. It follows
that ĥ is the measure of massc concentrated at the origin. J

4.12 We add a few remarks about distributions inFLp, 2 < p < ∞.
There is clearly no inclusion relation betweenLp(R) andL∞(R) but
it might be useful to notice that locallyFLp ⊂ FLp′ if p ≤ p′ and in
particular all distributions inFLp are locally pseudomeasures. (We re-
call that a tempered distributionν belongs locally to a setG ⊂ S∗(R)
if for every ξ ∈ R̂ there existsµ ∈ G such thatΣ(µ − ν) does not
containξ). If ν ∈ FLp and ξ ∈ R̂ we may takeλ > |ξ| and con-
siderµ = ̂Vλν whereVλ is de la Vallée Poussin’s kernel (̂Vλ(ξ) = 1
for |ξ| ≤ λ, = 2 − |ξ|λ−1 for λ < |ξ| < 2λ, and= 0 for |ξ| ≥ λ).
It is clear thatν = µ on (−λ, λ), that is,Σ(µ − ν) ∩ (−λ, λ) = ∅ and if
ν = f̂ with f ∈ Lp(R), thenµ = V̂λ ∗ f andVλ ∗ f ∈ Lp ∩ L∞(R) since
Vλ ∈ L1 ∩ Lq(R), q = p/(p − 1). In particular, ifΣ(ν) is compact, say
Σ(ν) ⊂ (−λ, λ), thenµ = ν; we have thus proved:

Theorem. If ν ∈ FLp andΣ(ν) is compact, thenν ∈ FL∞.

4.13 If ν ∈ FLp ∩ FL∞ we can consider the repeated convolution of
ν with itself; writing ν = f̂ with f ∈ Lp ∩ L∞(R), the convolution of
ν with itself m times is the Fourier transform offm, and if m ≥ p,
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fm ∈ L1(R) so thatν ∗ · · · ∗ ν ∈ A(R̂). In particular, assumingν 6= 0
Σ(ν ∗ · · · ∗ν) ⊂ Σ(ν)+ · · ·+Σ(ν) contains an interval. As an immediate
consequence we obtain:

Theorem. Let ν ∈ FLp, p < ∞, and letJ be an open interval on̂R,
such thatJ ∩Σ(ν) 6= ∅. ThenJ ∩Σ(ν) is a basis forR̂.

Theorems 4.11 and 4.13 are equivalent to the following approxima-
tion theorems:

4.11’ Theorem. Let ξ ∈ R̂ and denote

I(ξ) = {f : f ∈ A(R̂), f(ξ) = 0}

I0(ξ) = {f : f ∈ S(R̂), ξ 6∈ Σ(f)}

ThenI0(ξ) is dense inI(ξ) in theA(R̂) topology.

4.13’ Theorem. LetE ⊂ R̂ be closed, and denote

I0(E) = {f : f ∈ S(R̂),Σ(f) ∩ E = ∅}.

Assume thatE + E + · · ·+ E (m times) has no interior. Let1 < p ≤ m

andq = p/(p− 1). ThenI0(E) is (norm) dense inFLq.

The proofs of 4.11’ and 4.13’ are essentially the same and follow
immediately from the Hahn-Banach theorem (and 4.11, 4.13, respec-
tively). A linear functional onA(R̂) which annihilatesI0(ξ) is a pseu-
domeasure supported by{ξ}, hence is constant multiple of the Dirac
measure atξ, and hence annihilatesI(ξ). A linear functional onFLq
which annihilatesI0(E) is an element ofFLp supported byE; hence it
must be zero. J

EXERCISES FOR SECTION 4

1. Deduce 4.11 from 4.11’.
2. Deduce 4.13 from 4.13’.
3. What is a functionh ∈ L∞(R) such thatΣ(ĥ) is finite?
4. If f ∈ A(R̂) andν ∈ FL∞, then

‖fν‖FL∞ ≤ ‖f‖A(R̂)‖ν‖FL∞

5. Letf ∈ L∞(R). Show thatΣ(̂<(f)) ⊂ Σ(f̂) ∪ (−Σ(f̂)).
6. (Bernstein) Let h ∈ L∞(R) and assume thatΣ(ĥ) ⊂ [−k, k]. Show that

h is infinitely differentiable and that‖h(m)‖∞ ≤ km‖h‖∞.
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7. Leth ∈ L∞(R), h 6= 0. Assume thath(x + y) = h(x)h(y) a.e. in(x, y).
Show that for someξ0 ∈ R̂, h(x) = eiξ0x a.e.

8. Assumeνj ∈ FL∞, j = 0, 1, . . . , andνj → ν0 in the weak-star topology.
LetU be an open set such thatU ∩Σ(νj) = ∅ for infinitely manyj’s. Show that
U ∩Σ(ν0) = ∅.

9. Fourier transforms of functions inC0(R) are calledpseudofunctions(on
R̂).

(a) Show that iff ∈ L1(R̂), thenf is a pseudo-function.
(b) Show that iffj are pseudo-functions on̂R, ‖fj‖FL∞ ≤ c andλj → ∞

fast enough, then
∑

Eiλjξfj converges (weak-star) inFL∞.
10. Leth(x) = sinx2. Show thateiλξĥ→ 0 (weak-star) as|λ| → ∞

5 ALMOST-PERIODIC FUNCTIONS ON THE LINE

The usefulness of Fourier series of functions on T is largely due
to the information they offer about approximation of the functions by
trigonometric polynomials. On the line, trigonometric polynomials do
not belong to many of the function spaces in which we are interested,
for example, toLp(R) for p < ∞; and the positive results, which we
had forLp(R), 1 ≤ p ≤ 2, were in terms of trigonometric integrals rather
than polynomials. Trigonometric polynomials do belong toL∞(R), and
in this section we characterize the functions that are uniform limits of
trigonometric polynomials.

5.1 DEFINITION: Let f be a complex-valued function onR and let
ε > 0. An ε-almost-period off is a numberτ such that

supx|f(x− τ)− f(x)| < ε.

Examples:t = 0 is a trivialε-almost-period for allε > 0; if f is periodic
then its period, or any integral multiple thereof, is anε-almost-period
for all ε > 0; if f is uniformly continuous, every sufficiently smallt is
anε-almost-period.

5.2 DEFINITION: A functionf is (uniformly) almost-periodic onR if
it is continuous and if for everyε > 0 there exists a numberΛ = Λ(ε, f)
such that every interval of lengthΛ onR contains anε-almost-period of
f . We denote byAP (R) the set of all almost-periodic functions onR.

Examples: (a) Continuous periodic functions are almost-periodic.
(b) We shall show (see 5.7) that the sum of two almost-periodic

functions is almost-periodic; hencef = cosx+cosπx is almost periodic
(see also exercise 1 at the end of this section); noticing, however, that
f(x) = 2 only for x = 0, we see thatf is not periodic.
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(c) If f is almost-periodic, so are|f |, f̂ , af for any complex number
a, andf(λx) for any realλ.

5.3 Lemma. Almost-periodic functions are bounded.

PROOF: Let f be almost-periodic. Takeε = 1 and letΛ = Λ(1, f). For
arbitraryx ∈ R let τ be a 1-almost-period in the interval[x − Λ, x].
We have0 ≤ x − r ≤ Λ and |f(x) − f(x − τ)| < 1, consequently
|f(x)| ≤ sup0≤y≤Λ|f(y)|+ 1. J

Corollary. If f is almost-periodic, so isf2.

PROOF: Without loss of generality we may assume|f(x)| ≤ 1/2 for all
x ∈ R. We havef2(x− τ)− f2(x) = (f(x− τ) + f(x))(f(x− τ)− f(x))
which implies that, for everyε > 0, ε-almost-periods off are alsoε-
almost-periods off2. J

5.4 Lemma. Almost-periodic functions are uniformly continuous.

PROOF: Let f be almost-periodic,ε > 0, Λ = Λ(ε/3, f). Sincef is
uniformly continuous on[0,Λ], there existsη0 > 0 such that for all
|η| < η0

sup0<x<Λ|f(x+ η)− f(x)| ≤ ε/3.

Let y ∈ R; we can find anε/3-almost-period off sayτ , within the
interval [y − Λ, y], and writing

f(y + η)− f(y) = (f(y + η)− f(y − τ + η))+

+(f(y − τ + η)− f(y − τ)) + (f(y − τ)− f(y)),

we see that each of the three summands is bounded byε/3; the first
and the third sinceτ is anε/3-almost-period, and the second since0 ≤
y − τ ≤ Λ and|η| < η0. Thus if |η| < η0, |f(x+ η)− f(x)| < ε for all x,
and the proof is complete. J

5.5 For a functionf ∈ L∞(R) we denote byW0(f) the set of all trans-
lates off ; W0(f) = {fy}y∈R†

Theorem. A functionf ∈ L∞(R) is almost-periodic if, and only if,
W0(f) is precompact (in the norm topology ofL∞(R)).

†Remember the notationfy(x) = f(x− y).
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PROOF: We recall that a set in a complete metric space is precompact
(i.e., has a compact closure) if, and only if, it is totally bounded, that
is, if for everyε > 0, it can be covered by a union of a finite number
of balls of radiusε. Assume first thatf is almost-periodic and let us
show thatW0(f) is totally bounded inL∞(R). Let ε > 0 be given and
let Λ = Λ(ε/2, f); by the uniform continuity off we can find numbers
η1, . . . , ηM in [0,Λ] such that if0 ≤ y0 ≤ Λ, inf1≤j≤M‖fy0 −fηj‖ < ε/2.
For arbitraryy ∈ R let τ be anε/2-almost-period off in [y − Λ, y];
writing y0 = y − τ we obtain0 ≤ y0 ≤ Λ and ‖fy − fy0‖∞ < ε/2;
consequently,inf1≤j≤M‖fy − fηj‖∞ < ε andW0(f) is covered by the
union of balls of radiusε, centered atfηj , j = 1, . . . ,M .

Assume now thatW0(f) is precompact. Letε > 0 and letO1, . . . , OM
be balls of radiusε/2 such thatW0(f) ⊂ ∪M1 Oj. We may clearly assume
thatOj ∩W0(f) 6= ∅ and hence pickfyj ∈ Oj , j = 1, . . . ,M . The balls
of radiusε centered atyj coverW0(f).

We claim that every intervalJ of lengthΛ = 2 max1≤j≤M |yj | con-
tains anε-almost-period off . If J is such an interval, denote byy
its midpoint. There exists aj0 such that‖fy − fyj0‖∞ < ε; writing
τ = y − yj0 it is clear thatτ ∈ J and, on the other hand,

‖fτ − f‖∞ = ‖fτ+yj0
− fyj0‖∞ < ε.

All that we have to do in order to complete the proof is show that, under
the assumption thatW0(f) is precompact,f is continuous.‡ We show
that it is uniformly continuous, that is,limη→0‖fη − f‖∞ = 0. Given
ε > 0, letO1, . . . , OM be balls of radiusε/2 coveringW0(f), as above,
and writeEj = {τ : fτ ∈ Oj}. Since∪Ej = R, at least one of these, say
Ej0 , has positive mesure. But thenEj0 − Ej0 is a neighborhood of0 in
R, and fory ∈ Ej − Ej we have‖fy − f‖∞ ≤ ε. J

5.6 DEFINITION: The translation convex hull,W (f), of a function
f ∈ L∞(R) is the closed convex hull of

⋃

|a|≤1W0(af). Equivalently, it
is the set of uniform limits of functions of the form

(5.1)
∑

akfxk , xk ∈ R,
∑

|ak| ≤ 1.

Remark: Iff is uniformly continuous we can defineW (f) as the clo-
sure of the set of all functions of the form

(5.1’) ϕ ∗ f with ϕ ∈ L1(R), ‖ϕ‖L1(R) ≤ 1.

‡That is:f is equal a.e. to a continuous function.
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Another observation that will be useful later is:

(5.2) W (eiξxf) = {eiξxg : g ∈W (f)}.

By its very definitionW (f) is convex and closed inL∞(R). Since
W (f) ⊃ W0(f), it is clear that ifW (f) is compact thenW0(f) is pre-
compact; the converse is also true: ifW0(f) is precompact, there exist
for everyε > 0, a finite number of translates{fyj}Mj=1 such that every
translate off lies within less thanε from fyj for some1 ≤ j ≤ M .
Thus, every function of the form (5.1) lies withine of a function having
the form

∑M
j=1 bjfyj with

∑

|bj | ≤ 1. In the unit disc|b| ≤ 1 we can
pick a finite number of points{ck}Nk=1 such that everyb in the unit disc
lies withinεM−1‖f‖−1

L∞(R) from one of theck’s; thus every combination
∑

bjfyj
∑

|bj | ≤ 1 lies within ε of some

(5.3)
M
∑

1

b′jfyj , b′j ∈ {ck}Nk=1.

It follows thatW (f) is covered by the union ofMN balls of radius
3ε centered at the functions of the form (5.3); henceW (f) is precom-
pact and being closed it is compact. We have proved:

Lemma. W (f) is compact if, and only if,W0(f) is precompact, that
is, if, and only if,f ∈ AP (R).

5.7 Theorem.AP (R) is a closed subalgebra ofL∞(R).

PROOF: In order to show thatAP (R)is a subspace, we have to show that
if f, g ∈ AP (R) so doesf+g. We clearly haveW (f+g) ⊂W (f)+W (g)
and since, by 5.6,W (f) andW (g) are both compact,W (f) + W (g) is
compact and henceW (f + g) is precompact. SinceW (f + g) is closed,
it is compact, and by 5.6,f + g ∈ AP (R).

It follows from the corollary 5.3 thatf2, g2, (f + g)2 ∈ AP (R) and
consequentlyfg = 1/2((f + g)2 − f2 − g2) is almost-periodic and we
have proved thatAP (R)is a subalgebra ofL∞(R). In order to show
that it is closed, we consider a functionf in its closure. Sincef is the
uniform limit of continuous functions, it is continuous. Givenε > 0
we can find ag ∈ AP (R) such that‖f − g‖∞ < ε/3, and if τ , is anε/3
almost-period ofg we have

fτ − f = (fτ − gτ ) + (gτ − g) + (g − f),
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hence‖fτ − f‖∞ < ε/3 + ε/3 + ε/3 = ε andτ is anε-almost-period of
f . Thus every interval of lengthΛ(ε/3, g) contains anε-almost-period
of f , andf is almost-periodic. J

5.8 DEFINITION: A trigonometric polynomialonR is a function of
the form

f(x) =
n
∑

1

aje
iξjx, ξj ∈ R̂.

The numbersξj are calledthe frequencies off .
By theorem 5.7, all trigonometric polynomials and all uniform lim-

its of trigonometric polynomials are almost-periodic. The main theo-
rem in the theory of almost-periodic functions states that every almost-
periodic function is the uniform limit of trigonometric polynomials,
and actually gives a recipe, analogous to Fejér’s theorem for periodic
functions, for finding the approximating polynomials (see 5.20.

5.9 DEFINITION: The norm spectrumof a functionh ∈ L∞(R) is the
set

σ(h) = {ξ : ξ ∈ R̂, aeiξx ∈W (h) for sufficiently smalla 6= 0}.

σ(h) may well be empty even ifh 6= 0; for instance, ifh ∈ C0(R) we
haveW (h) ⊂ C0(R) and consequentlyσ(h) = ∅. We notice that from
(5.2) and our definition above it follows immediately that

(5.4) σ(eiξxh) = ξ + σ(h) = {ξ + η : η ∈ σ(h)}.

Lemma. If h ∈ L∞(R) thenσ(h) ⊂ Σ(ĥ).

PROOF: Since ĥy = eiξyĥ it is clear thatΣ(ĥy) = Σ(ĥ) and conse-
quentlyΣ(f̂) ⊂ Σ(ĥ) for any f ∈ W (h). If f = aeiξx, then f̂ = aδξ
(δξ is the measure of mass one concentrated atξ) andΣ(f̂) = {ξ}; thus
if ξ ∈ σ(h) thenξ ∈ Σ(ĥ). J

5.10 Lemma. Let h be bounded and uniformly continuous. Assume
that ηK(ηx) ∗ h converges uniformly asη → 0 to a limit which is not
identically zero. Then0 ∈ σ(h).

PROOF: Writing gη = ηK(ηx) ∗ h we haveĝη = K̂(ξ/η)ĥ, so that
Σ(ĝη) ⊂ [−η, η] and henceΣ( ̂limη→0 gη) = {0}. By 4.11, limη→0 gη
is a constant, and by the remark following definition 5.6,gη ∈ W (h)
and hencelimη→0 gη ∈ W (h) ; now, aslim gη is a constant different
from zero, we obtain0 ∈ σ(h). J
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Corollary. Let µ be a measure on̂R and assumeµ({0}) 6= 0. Let
h(x) =

∫

eiξxdµ(ξ) (so thatµ = ĥ); then0 ∈ σ(h).

PROOF: Keeping the notations above, we haveĝη = K̂(ξ/η)µ and con-
sequentlyĝη tends toµ({0})δ0 in M(R̂) which impliesgη → µ({0})
uniformly. J

5.11 Remarks: It is clear that0 ∈ R̂ plays no specific role in 5.9;
if µ({ξ}) 6= 0 we haveξ ∈ σ(h) (h as above). Also, it is not essen-
tial to use Fejér’s kernel: ifF ∈ L1(R), and if we assume thatFη ∗ h
converges uniformly to a nonvanishing limit, whereFη = ηF (ηx), it
follows that0 ∈ σ(h). This can be seen as follows: given a sequence
εn → 0, we can writeF = Gn + Hn such thatGn, Hn ∈ L1(R), Ĝn
has compact support, say included in(−cn, cn), and‖Hn‖L1(R) < εn.
Writing Gn,η(x) = ηGn(ηx), Hn,η(x) = ηHn(ηx) and noticing that
‖Hn,η ∗ h‖L∞(R) < εn‖h‖, we obtainlimn→∞Gn,η ∗ h = Fη ∗ h. Re-

membering thatΣ(Ĝn,η ∗ h) ⊂ (−ηcn, ηcn) we obtain, lettingη → 0
faster thancn →∞, Σ( ̂limFη ∗ h) = 0 as before.

The condition of existence of a uniform limit ofFη ∗ h asη → 0 can
clearly be replaced by the less stringent condition of the existence of a
nonvanishing limit point, that is. a limit of some sequenceFηn ∗ h with
ηn→0. We restate these remarks as:

Lemma. Letf ∈ AP (R) and assume0 6∈ σ(f); then for allF ∈ L1(R)
limη→0‖ηF (ηx) ∗ f‖L∞(R) = 0.

PROOF: Let F ∈ L1(R); with no loss of generality we may assume that
‖F‖L1(R) ≤ 1. It follows thatηF (ηx)∗f ∈W (f) and, if it did not tend to
zero asη → 0, it would have,W (f) being compact, other limit points.
By the preceding remarks this would imply0 ∈ σ(f). J

5.12 Lemma 5.11 has the following converse:

Lemma. Let f ∈ AP (R), F ∈ L1(R) and
∫

F (x)dx 6= 0. If for some
sequenceηn → 0, limn→∞‖ηnF (ηnx) ∗ f‖ = 0, then0 6∈ σ(f).

PROOF: We notice first that for any translate off , hence for any lin-
ear combination of translates, and hence for anyg ∈ W (f), we have
limn→∞‖ηnF (ηnx) ∗ g‖L∞(R) = 0. If g = const , ηnF (ηnx) ∗ g = F̂ (0)g
and consequently the only constant in W(f) is zero, that is,0 6∈ σ(f). J
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5.13 Theorem.To everyf ∈ AP (R) there corresponds a unique
numberM(f), called the mean value off , having the property that
0 6∈ σ(f −M(f)).

PROOF: We have seen before that uniform limit points ofηK(ηx) ∗ f
as η → 0 are necessarily constants. SinceηK(ηx) ∗ f ∈ W (f) and
sinceW (f) is compact, there exists a numberα such that for an ap-
propriate sequenceηn → 0, ηnK(ηnx) ∗ f converges uniformly toα.
SinceK̂(0) = 1, ηnK(ηnx) ∗ (f − α) → 0 uniformly; hence, by 5.12,
0 6∈ σ(f − α). If β is another number such that0 6∈ σ(f − β) we obtain,
using 5.11, that asη → 0

ηK(ηx) ∗ [(f − α)− (f − β)] = ηK(ηx) ∗ (f − α)− ηK(ηx) ∗ (f − β)

converges to zero uniformly. ButηK(ηx) ∗ [(f − α)− (f − β)] = β − α
identically and consequentlyβ = α. Thus the property0 6∈ σ(f − α)
determinesα uniquely and we setM(f) = α. J

Corollary. If f ∈ AP (R) andF ∈ L1(R), thenηF (ηx) ∗ f converges
uniformly asη → 0 to F̂ (0)M(f).

In particular, takingF (x) =

{

1/2 |x| < 1

0 |x| ≥ 1
writing T = η−1, and

evaluating the convolution at the origin, we obtain:

Corollary. For f ∈ AP (R),

(5.5) M(f) = lim
T→∞

1
2T

∫ T

−T
f(x)dx.

Using the mean value we can determine the norm spectrum off

completely. By (5.4) it is clear thatξ ∈ σ(f) if, and only if, 0 ∈
σ(fe−iξx) and consequently

(5.6) ξ ∈ σ(f)⇔M(fe−iξx) 6= 0

By our definition ofM(f) and by corollary 5.9 it is clear that if̂f is
a measure then̂f({0}) = M(f) and similarly

(5.6’) f̂(ξ) = M(fe−iξx);

thus we can recover the discrete part off̂ . We shall soon see thatf has
no continuous part whenf ∈ AP (R).
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5.14 The mean value clearly has the basic properties of a translation
invariant integral, namely:

M(f + g) = M(f) +M(g),(5.7)

M(af) = aM(f),(5.8)

M(fy) = M(f) (wherefy(x) = f(x− y)).(5.9)

It is also positive:

Lemma. Assumef ∈ AP (R), f(x) ≥ 0 on R, and f not identically
zero. ThenM(f) > 0.

PROOF: By (5.7) we may assumef(0) > 0 and consequently, ifα > 0
is small enough,f(x) > α on−α < x < α. Let Λ = Λ(α/2, f); every
interval of lengthΛ contains anα/2-almost-period off , say τ , and
f(x) > α/2 in (τ − α, τ + α). It follows that the integral off over any
interval of lengthΛ is at leastα2; henceM(f) > α2/Λ. J

5.15 We define the inner product of almost-periodic functions by:

(5.10) 〈f, g〉M = M(fḡ)

and claim that with the inner product so defined,AP (R) is a preHilbert
space, that is, satisfies all the axioms of a Hilbert space except for
completeness. The bilinearity of〈f, g〉M is obvious and the fact that
〈f, g〉M > 0 unlessf = 0 has been established in 5.14. In this pre-
Hilbert space, the exponentials{eiξx}ξ∈R̂ form an orthonormal family,
since

〈eiξx, eiηx〉M = lim
T→∞

1
2T

∫ T

−T
ei(ξ−η)xdx =

{

1 if ξ = η

0 if ξ 6= η.

We now introduce the notation§

(5.11) f̂({ξ}) = 〈f, eiξx〉M = M(fe−iξx).

that is,f̂({ξ}) are the Fourier coefficients off relative to the orthonor-
mal family {eiξx}ξ∈R̂. Bessel’s inequality now reads

(5.12)
∑

ξ∈R̂

|f̂({ξ})|2 ≤ 〈f, f〉M = M(|f |2)

§If f is a measure on̂R, (5.11) agrees with (5.6’). By abuse of language we shall
sometimes refer tôf({ξ}) for arbitraryf ∈ AP (R), as the mass of the pseudomeasuref̂

at ξ.
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and it follows thatf̂({ξ}) = 0 except possibly for a countable set ofξ’s.
Combining this with (5.6) we obtain that for allf ∈ AP (R), σ(f) is
countable.

5.16 We now introduce the mean convolutionf ∗
M
g of two almost-

periodic functions.
Let f, g ∈ AP (R); then for everyx ∈ R, f(x− y)g(y), as a function

of y, is almost periodic andMy(f(x− y)g(y)) is well defined. Write:

(5.13) (f ∗
M
g)(x) = My(f(x− y)g(y)) = lim

T→∞

∫ T

−T
f(x− y)g(y)dy.

Lemma. f ∗
M
g is almost-periodic. IfM(|g|) ≤ 1, thenf ∗

M
g ∈W (f).

PROOF: Without loss of generality we assume thatM(|g|) < 1. It fol-
lows that for all sufficiently largeT

1
2T

∫ T

−T
f(x− y)g(y)dy ∈W (f)

and, combining the compactness ofW (f) with the fact that the point-
wise limit in (5.13) is well defined, we obtainf ∗

M
g as the uniform limit

of 1
2T

∫ T

−T f(x− y)g(y)dy. J

The convolutionf ∗
M
g has all the properties of convolutions onT

andR; in particular

(f ∗
M
g)̂ ({ξ}) = Mx

(

My

(

f(x− y)g(y)
)

e−iξx
)

= MxMy

(

f̄(x− y)e−iξ(x−y)g(y)e−iξ(y)
)

= f̂({ξ})ĝ({ξ}).
(5.14)

Also,

f ∗
M
eiξx = My(f(x− y)eiξy) = Mt(f(t)eiξ(x−t)) = f̂({ξ})eiξx,

so that ifg(x) =
∑

ĝ({ξ})eiξx (finite sum) then

f ∗
M
g =

∑

ĝ({ξ})f̂({ξ})eiξx.
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5.17 For f ∈ AP (R), write f∗(x) = f̄(−x), and

(5.15) h = f ∗
M
f∗ = My

(

f(y)f̄(x+ y)
)

.

Sincêf∗({ξ}) = f̂({ξ}) we have by (5.14),

ĥ({ξ}) = |f̂({ξ})|2.

If ‖f‖∞ ≤ 1, which we assume for convenience, thenh ∈W (f).

Lemma. h, defined by(5.15), is positive definite.

PROOF: Let xj ∈ R andzj are complex numbers,j = 1, . . . , N , then

∑

h(xj − xk)zj z̄k = lim
n→∞

1
2T

∫ T

−T

∑

f(xj + y)f(xk + y)zj z̄kdy

= lim
n→∞

1
2T

∫ T

−T

∣

∣

∣

∑

zjf(xj + y)
∣

∣

∣

2

dy ≥ 0 .

J

Sinceh is continuous, Bochner’s theorem 2.8 says thath is the Fourier
transform of a positive measure or, equivalently,ĥ is a positive measure.

5.18 Proposition. If f ∈ AP (R) andf̂ ∈M(R̂), thenf̂ =
∑

f̂({ξ})δξ,
‖f̂‖M(R̂) =

∑

|f̂({ξ})|, andf(x) =
∑

f̂({ξ})eiξx.

PROOF: By (5.6’), the discrete part of̂f is
∑

f̂({ξ})δξ, and we have
∑

|f̂({ξ})| ≤ ‖f̂‖M(R̂). We claim that the continuous part off̂ is zero.

Denote the continuous part of̂f by µ; it is the Fourier transform
of the almost-periodic functiong = f −

∑

f̂({ξ})eiξx. By Wiener’s
theorem 2.12,lim(2T )−1

∫ T

−T |g(x)|2dx = 0 and, by 5.14,µ = 0. J

5.19 Theorem (Parseval’s identity).Let f ∈ AP (R), then

(5.16)
∑

|f̂({ξ})|2 = M(|f |2) .

PROOF: Defineh by (5.15). By Proposition 5.18 we have
∑

|f̂({ξ})|2 =
∑

ĥ({ξ}) = h(0) = M(|f |2).

J

Corollary ( Completeness).{eiξx}ξ∈R̂ is a complete orthonormal ba-
sis forAP (R).

Corollary ( Uniqueness).Let f ∈ AP (R), f 6= 0. Thenσ(f) 6= ∅.
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5.20 For arbitraryf ∈ AP (R), the series
∑

f̂({ξ})eiξx, to which we
refer as the Fourier series off , converges tof in the norm induced by
the bilinear form〈·, ·〉M . Our next goal is to show that, as in the case of
periodic functions, the Fourier series of anyf ∈ AP (R) is summable to
f in the uniform norm.

5.21 Lemma. Given a finite number of pointsξ1, . . . , ξN ∈ R̂ and an
ε > 0, there exists a trigonometric polynomialB having the following
properties:

(a) B(x) ≥ 0

(b) M(B) = 1

(c) B̂({ξj}) > 1− ε for j = 1, . . . , N.

PROOF: We notice first that ifξ1, . . . , ξN happen to be integers and ifm
is an integer larger thanε−1 max|ξj |, then the Fejér kernel of orderm,
namelyKm =

∑m
−m
(

1− |k|
m+1

)

eikx has all the properties mentioned. In
the general case letλ1, . . . , λq be a basis forξ1, . . . , ξN ; that is,λ1, . . . , λq
are linearly independent over the rationals and everyξj can be written
in the form ξj =

∑q
1Aj,kλk with integralAj,k. Let ε1 > 0 be such

that (1 − ε1)q > 1 − ε, and letm > ε−1
1 maxj,k|Aj,k|; we contend that

B =
∏q

1 Km(λkx) has all the required properties. Property (a) is obvious
sinceB is a product of nonnegative functions. In order to check (b) and
(c) we rewriteB as

(5.17) B(x) =
∑
(

1− |k1|
m+ 1

)

. . .
(

1− |kq|
m+ 1

)

ei(k1λ1+···+kqλq)x,

the summation extending over|k1| ≤ m, . . . , |kq| ≤ m. Because of the
independence of theλj ’s there is no regrouping of terms having the
same frequency and we conclude from (5.17) thatB̂(0) = the constant
term in (5.17)= M(B) = 1, which establishes (b), and

B̂({ξj}) = B̂
(

{
q
∑

1

Aj,kλk}
)

=
q
∏

k=1

(

1− |Aj,k|
m+ 1

)

> (1− ε1)q > 1− ε,

which establishes (c). J

Theorem. Let f ∈ AP (R). Thenf can be approximated uniformly by
trigonometric polynomialsPn ∈W (f).
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PROOF: Sinceσ(f) is countable we can write it as{ξj}∞j=1. For each
n let Bn be the polynomial described in the lemma forξ1, . . . , ξn and
ε = 1/n. Write Pn = f ∗

M
Bn. By 5.17,Pn ∈ W (f) and taking account

of (c) above,lim P̂n({ξj}) = f̂({ξ}) for everyξj ∈ σ(f). If ξ 6∈ σ(f) we
haveP̂n({ξ}) = f̂({ξ}) = 0 for all n. It follows that ifg is a limit point
of Pn in W (f), then ĝ({ξ}) = f̂({ξ}) for all ξ and by the uniqueness
theoremg = f . Thus,f is the only limit point of the sequencePn in the
compact spaceW (f) and it follows thatPn converge tof (in norm, i.e.,
uniformly.) J

Corollary. Every closed translation invariant subspace ofAP (R) is
spanned by exponentials.

5.22 We finish this section with two theorems providing sufficient
conditions for functions to be almost-periodic. Though apparently dif-
ferent they are essentially equivalent and both are derived from the
same principle. We start with some preliminary definitions and lem-
mas.

For h ∈ AP (R), we say, by abuse of language, thatĥ is analmost-
periodic pseudo-measure.

DEFINITION: A pseudo-measureν is almost-periodic at a point
ξ0 ∈ R̂, if there exists a functionϕ ∈ A(R̂), ϕ(ξ) = 1 in some neighbor-
hood ofξ0, such thatϕν is almost-periodic.

It is clear thatν is almost-periodic atξ0 if, and only if,ψν is almost-
periodic for everyψ ∈ A(R̂) whose support is sufficiently close toξ0
(e.g., within the neighborhood ofξ0 on which the functionϕ above is
equal to one). In particular,ν is almost-periodic at everyξ 6∈ Σ(ν).

Lemma. Letν ∈ FL∞ and assume thatΣ(ν) is compact and thatν is
almost-periodic at every point ofΣ(ν). Thenν is almost-periodic.

PROOF: By a standard compactness argument we see that there exists
an η > 0 such thatν is almost-periodic for everyψ ∈ A(R̂) which is
supported by an interval of lengthη. Let ψj ∈ A(R̂) have their sup-
ports contained in intervals of lengthη, j = 1, 2, . . . , N , and such that
∑N

1 ψj = 1 on a neighborhood ofΣ(ν). By the assumption concerning
the supports ofψj, ψjν is almost-periodic for allj, and consequently

N
∑

1

(ψjν) =
(
N
∑

1

ψj

)

ν = ν

is almost-periodic. J
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5.23 Theorem.Leth ∈ L∞(R) and assume thatΣ(ĥ) is compact and
that ν̂ is almost-periodic at everyξ ∈ R̂ except, possibly, atξ = 0. Then
h ∈ AP (R).

5.24 Theorem (Bohr). Let h ∈ L∞(R) and assume that it is differ-
entiable and thath′ ∈ AP (R). Thenh ∈ AP (R).

These two theorems are very closely related. We shall first show how
theorem 5.23 follows from 5.24, and then prove 5.24.

PROOF OF5.23: We begin by showing that ifΣ(ĥ) is compact, then
h is differentiable and̂h′ = iξĥ (see exercise 4.6). Letf ∈ S(R) be
such thatf̂(ξ) = 1 in a neighborhood ofΣ(ĥ). We haveh = f̂h and
consequentlyh = f ∗ h or h(x) =

∫

f(x− y)h(y)dy. Sinceh is bounded
andf ∈ S(R) we can differentiate under the integral sign and obtain
thath is (infinitely) differentiable and thath′ = f ′ ∗ h. Remembering
that f̂ ′(ξ) = iξ in a neighborhood ofΣ(ĥ), we obtain̂h′ = ̂f ′h = iξh.

By theorem 4.11’ there exists a sequence{ϕn} in L1(R) such that

ϕ̂n(ξ) = 0 in a neighborhood ofξ = 0, and such that‖ϕ̂n− ̂f̂ ′‖A(R) → 0.
This implies (exercise 4.4) that‖ϕ̂nĥ − ̂h′‖F̂L∞ → 0, that is,h′ is the
uniform limit of ϕn ∗ h. Now, sinceϕ̂n, vanishes in a neighborhood of
ξ = 0, it follows from 5.22 thatϕn ∗ h ∈ AP (R); by 5.7,h′ ∈ AP (R),
and by 5.24h ∈ AP (R).

PROOF OF5.24: Sinceh is clearly continuous we only have to show
that for everyε > 0 there exists a constantΛ(ε, h) such that every inter-
val of lengthΛ(ε, h) contains anε-almost period ofh. In view of 5.7 we
may consider the real and the imaginary parts ofh separately, so that
we may assume thath is real-valued. Denote

(5.18) M = supx h(x), m = inf
x
h(x).

Let ε > 0. Let x0 andx1 be real numbers such that

(5.19) h(x0) < m+
ε

8
, h(x1) > M − ε

8
;

we pute1 = ε
4|x1−x0| and claim that ifτ is anε1-almost period ofh′ then
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h(x0 − τ) < m+ ε/2. In order to see this we write

h(x1 − τ)− h(x0τ) =
∫ x1

x0

h′(x− τ)dx

=
∫ x1

x0

h′(x)dx+
∫ x1

x0

(

h′(x− τ)− h′(x)
)

dx

= h(x1)− h(x0) +
∫ x1

x0

(

h′(x− τ)− h′(x)
)

dx,

(5.20)

and, since the last integral is bounded by|x1 − x0|ε1 = ε/4 it follows
from (5.19) and (5.20) that

h(x1 − τ)− h(x0 − τ) > M −m− ε

2

and, sinceh(x1 − τ) ≤M , we obtainh(x0 − τ) < m+ ε/2.
We now use the points{x0 − τ}, whereτ is anε1/2-almost-period

of h′ as reference points. LetΛ1 = Λ(ε1/2, h′) and defineε2 by ε2 =
min(q/2, ε1/2, ε/Λ1). We claim that everyε2-almost-period ofh′ is an
ε-almost-period ofh. In order to prove it letx ∈ R and letτ1 be anε2-
almost-period ofh′; we takeτ0 to be anε1/2-almost-period ofh′ such
thatx ≤ x0 − τ0 ≤ x+ Λ1, and write

h(x− τ1)− h(x) = h(x− τ1)− h(x0 − τ0 − τ1)

(5.19) + h(x0 − τ0 − τ1)− h(x0 − τ0) + h(x0 − τ0)− h(x)

= h(x0 − τ0 − τ1)− h(x0 − τ0) +
∫ x0−τ0

x

(

h′(y)− h′(y − τ1)
)

dy .

Sinceτ0 andτ0 + τ1 are bothε1-almost-periods we have

m ≤ h(x0 − τ0 − τ1) ≤ m+ ε/2 and m ≤ h(x0 − τ0) ≤ m+ ε/2,

hence|h(x0 − τ0 − τ1) − h(x0 − τ0)| ≤ ε/2. The integral in (5.21) is
bounded bye2Λ1 ≤ ε/2 and it follows that|h(x− τ1)−h(x)| < ε. Thus,
every interval of lengthΛ(ε2, h

′) contains anε-almost-period ofh and
the proof is complete. J

5.25 Theorem.Leth ∈ L∞(R) and assume thatΣ(h) is compact and
countable. Thenh ∈ AP (R).

PROOF: This is a corollary of 5.20. The set of pointsξ such that̂h is not
almost-periodic atξ is a subset ofΣ(h) and, by 5.23, has no isolated
points. Since a countable set contains no nonempty perfect sets,h is
almost-periodic at everyξ ∈ R̂ and, by 5.22,h ∈ AP (R). J
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EXERCISES FOR SECTION 5

1. Show thatf = cos 2πx + cosx is almost-periodic by showing directly
that givenε > 0, there exists an integerM such that at least one of anyM
consecutive integers lies withinε from an integral multiple of2π.

2. Leth ∈ L∞(R). Show that, ifh is uniformly continuous,σ(h) contains
every isolated point ofΣ(ĥ).

3. Letf, g ∈ AP (R). Show thatf ∗
M
g =

∑

f̂({ξ})ĝ({ξ})eiξx.

4. Let f ∈ AP (R) and assume thatW (f) is minimal in the sense that if
h ∈ W (f) andh 6= 0 thenaf ∈ W (h) for sufficiently smalla. Show thatf is a
constant multiple of an exponential.

5. Let f ∈ AP (R) and assume thatf ′ is uniformly continuous. Show that
f ′ ∈ AP (R).

6. Show that the assumption thatΣ(ĥ) is compact is essential in the state-
ment of theorem 5.25.
Hint: Consider discontinuous periodic functions.

7. Show that in the statement of theorem 5.25, the assumption thatΣ(ĥ) is
compact can be replaced by the weaker condition thath be uniformly continu-
ous.

8. Deduce 5.24 from 5.23.
9. Let P be a trigonometric polynomial onR, and letε > 0. Show that

there exists a positiveη = η(P, ε) such that ifQ ∈ L∞(R), ‖Q‖ < 1 and
Σ(Q̂) ⊂ (−η, η), then

range(P +Q) + (−e, e) ⊃ range(P ) + range(Q).

Hint: The conditions onQ imply that‖Q′‖ ≤ η; see exercise 4.6.
10. Letĥ ∈ FL∞, ξ0 ∈ R̂ and{ηn} a sequence tending to zero. Show that

if K̂(η−1
n (ξ − ξ0))ĥ tends to a limit (in the weak-star topology), then the limit

has the formaδξ0 . Introducing the notationa = ĥ({ξ0},K, {ηn}), show that
∑

|ĥ({ξ0},K, {ηn})|2 < ∞ where the summation extends over allξ0 ∈ R̂ such
that weak-star-limn→∞ K̂(η−1

n (ξ − ξ0))ĥ exists.
11. Let ĥ ∈ FL∞. Show that for allξ0 ∈ R̂, except possibly countably

many, weak-star-limn→∞K̂(η−1
n (ξ − ξ0))ĥ exists and is equal to zero.

12. Show that ifh ∈ L∞(R), σ(h) is countable.

13. LetB be a homogeneous Banach space onR such thatAP (R) ⊂ B ⊂
Lc (see 1.14). Describe the closure inB of AP (R).

6 THE WEAK-STAR SPECTRUM OF BOUNDED FUNCTIONS

6.1 Given a functionh ∈ L∞(R), we denote by[h] the smallest trans-
lation invariant subspace ofL∞(R) that containsh; that is, the span
of {hy}y∈R. We denote by[h] the norm closure of[h] in L∞(R), and
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by [h]w∗ , the weak-star closure[h] in L∞(R). Our definition 5.9 of the
norm spectrum ofh is clearly equivalent to

σ(h) = {ξ : eiξx ∈ [h]}

and we define the weak-star spectrum by

σw∗(h) = {ξ : eiξx ∈ [h]w∗} .

Let h ∈ L∞(R). The problem of weak-star spectral analysis is: find
σw∗(h). The problem of weak-star spectral synthesis is: doesh belongs
to the weak-star closure of span{eiξx}ξ∈σw∗ (h)?

The corresponding problems for the uniform topology were studied
in section 5. We have obtained some information aboutσ(h) for arbi-
traryh and complete information in the case thath was almost-periodic
(see (5.6)); we proved that the norm spectral synthesis is valid forh if,
and only if, h ∈ AP (R). The problem of weak-star spectral analysis
admits the following answer:

Theorem. For h ∈ L∞(R), σw∗(h) = Σ(ĥ).

PROOF: The subspace ofL1(R) orthogonal to[h] is composed of all the
functionsf ∈ L1(R) satisfying

∫

f(x)h(x− y)dx = 0 for all y ∈ R

which is equivalent to

(6.1) f ∗ ĥ(−x) = 0 .

We denote this subspace ofL1(R) by [h]⊥.
By the Hahn-Banach theorem,eiξx ∈ [h]w∗ if, and only if,

∫

f(x)eiξxdx = f̂(ξ) = 0

for all f ∈ [h]⊥.
We thus have an equivalent definition ofσw∗(h) as the set of all

common zeros of{f : f ∈ [h]⊥}.
Assumeξ0 6∈ Σ(ĥ); if ε > 0 is small enough(ξ0−ε, ξ0+ε)∩Σ(ĥ) = ∅

so that iff ∈ L1(R) and the support of̂f is contained in(ξ0 − ε, ξ0 + ε)
we have

〈f̂ , ĥ〉 =
∫

f(x)h(x)dx = 0.
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We claim thatf is orthogonal not only toh, but also to all the translates
of h, hence to[h]. This follows from

(6.2)
∫

f(x)h(x− y)dx =
∫

f(x+ y)h(y)dx,

and since the Fourier transform off(x+y) is eiξy f̂ , hence supported by
(ξ0−ε, ξ0+ε), both sides of (6.2) must vanish. There are many functions
f̂ in A(R) supported by(ξ0 − ε, ξ0 + ε) such thatf̂(ξ0) 6= 0; it follows
that ξ0 is not a common zero of{f : f ∈ [h]⊥} henceξ0 6∈ σw∗(h); this
provesσw∗(h) ⊂ Σ[ĥ].

In the course of the proof of the converse inclusion we shall need
the following lemma, due to Wiener. The proof of the lemma will come
in chapter VIII (see VIII.6.2).

Lemma. Assumef̂ , f̂1 ∈ A(R) and assume that the support off̂1 is
contained in a bounded intervalU on whichf̂ is bounded away from
zero. Then

f̂1 = ĝf̂ for someg ∈ L1(R).

To proveΣ[ĥ] ⊂ σw∗(h), we have to show that ifξ0 6∈ σw∗(h), then
ĥ vanishes in some neighborhood ofξ0. Now, sinceξ0 6∈ σw∗(h), there
exists a functionf ∈ L1(R) satisfying (6.1) and such that̂f(ξ0) 6= 0 and
consequentlŷf is bounded away from zero on some neighborhood U of
ξ0. We contend that̂h vanishes inU , a contention that will be proved if
we show that iff1 ∈ L1(R) and the support of̂f1 is contained inU then
f1 ∗ h(−x) = 0. By Wiener’s lemma there exists a functiong ∈ L1(R)
such thatf̂1 = ĝf̂ or equivalentlyf1 = g ∗ f . Now

f1 ∗ h(−x) = (g ∗ f) ∗ h(−x) = g ∗ (f ∗ h(−x)) = 0

and the proof is complete. J

6.2 The Hahn-Banach theorem, used as in the foregoing proof, gives
a convenient restatement of the problem of spectral synthesis. We in-
troduce first the following notations: ifE is a closed set on̂R write

(6.3) Î(E) = {f : f ∈ L!(R), f̂(ξ) = 0 on E}

and

(6.4) Ω(E) = {g : g ∈ L∞(R) and〈f, g〉 = 0 for all f ∈ Î(E)}.
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Î(E) is clearly the orthogonal complement inL1(R) to the span of
{eiξx}ξ∈E andΩ(E) is the orthogonal complement inL∞(R) of Î(E).
By the Hahn-Banach theoremΩ(E) is precisely the weak-star closure
of span{eiξx}ξ∈E and the problem of (weak-star) spectral synthesis for
h ∈ L∞(R) can be formulated as: is it true thath ∈ Ω(σw∗(h))? Equiv-
alently, is it true that for̂f ∈ A(R̂)

(6.5) f̂(ξ) = 0 on σw∗(h)⇒ 〈f, h〉 = 0?

or: is it true that,(f ∈ A(R̂))

(6.6) f̂(ξ) = 0 on ⇒ f̂ ĥ = 0?

(The equivalence of (6.5) and (6.6) follows from (6.2)).

Theorem. Let f ∈ A(R̂) and ĥ ∈ FL∞ and assume that̂f(ξ) = 0 on
Σ(ĥ). ThenΣ(f̂ ĥ) is a perfect subset ofΣ(f̂) ∩ bdry(Σ(ĥ)).

PROOF: By 4.10,Σ(f̂ ĥ) ⊂ Σ(f̂) ∩Σ(ĥ) and sincef vanishes onΣ(ĥ),
no interior point ofΣ(ĥ) is in Σ(f̂). Let ξ0 be an isolated point of
Σ(f̂ ĥ); with no loss of generality we may assumeξ0 = 0 and that
(−η, η) contains no other point ofΣ(f̂ ĥ).

WritêKη(ξ) = K̂(η−1ξ) = sup(0, 1−|η−1ξ|). We haveΣ(̂Kη f̂ ĥ) = {0}
and consequently (see 4.11)̂Kη f̂ ĥ = aδ, with a 6= 0 a constant, andδ
the unit mass concentrated atξ = 0. By 4.11’ there exists a function
g ∈ L1(R) such that̂g vanishes in a neighborhood ofξ = 0, say in
(−η1, η1), and such that‖g − f‖L1(R) < (|a|/2)‖h‖−1

L∞(R), (remember

that f̂(0) = 0). Since‖̂Kη‖ = 1, we have‖̂Kη(f̂ − ĝ)ĥ‖ < |a|/2 and,
multiplying everything bŷKη1 we obtain, (remember that̂Kη1 ĝ = 0),
|a| = ‖aδ‖FL∞ < |a|/2 which is a contradiction. ThusΣ(f̂ ĥ) has no
isolated points and the proof is complete. J

Corollary. If Σ(ĥ) has countable boundary thenh admits weak-star
spectral synthesis; that is,h ∈ Ω(σw∗(h)).

We recall that ifΣ(ĥ) itself, and not just its boundary, is countable,
and if h is uniformly continuous, thenh ∈ AP (R) (theorem 5.25), that
is, admits norm spectral synthesis.

Weak-star spectral synthesis is closely related to the structure of
closed ideals inA(R), and we shall discuss it further in chapter VIII. In
particular, we shall show that weak-star spectral synthesis inFL∞ is
not always possible.
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7 THE PALEY–WIENER THEOREMS

7.1 Our purpose in this section is to study the relationship between
properties of analyticity and growth of a function onR, and the growth
of its Fourier transform on̂R. The situation is similar to, though not as
simple as, the case of functions on the circle. We have seen in chapter
I (see exercise I.4.4) that a functionf , defined onT, is analytic if, and
only if, f̂(n) tends to zero exponentially as|n| → ∞. The simplicity of
this characterization of analytic functions onT is due to the compact-
ness ofT. If we consider the canonical identification ofT with the unit
circle in the complex plane (i.e.t↔ eit), then a functionf is analytic on
T (i.e., is locally the sum of a convergent power series) if, and only if,
f is the restriction toT of a functionF , holomorphic in some annulus,
concentric and containing the unit circle. This functionF is automati-
cally bounded in an annulus containing the unit circle, and the Fourier
series off is simply the restriction toT of the Laurent expansion ofF .

ConsideringR as the real axis in the complex plane, it is clear that
a functionf is analytic onR if, and only if, it is the restriction toR of
a functionF , holomorphic in some domain containingR; however, this
domain need not contain a whole strip{z : z = x+ iy, |y| < a}, nor need
F be bounded in strips aroundR or onR itself (cf. exercises 1 through
3 at the end of this section). If we assume exponential decrease off̂ at
infinity we can deduce more than just the analyticity off onR; in fact,
writing

F (z) =
1

2π

∫

f̂(ξ)eiξzdξ,

we see that iff̂(ξ) = O
(

e−a|ξ|
)

for somea > 0, thenF is well defined
and holomorphic in the strip{z : |y| < a}, and is bounded in every strip
{z : |y| < a1}, a1 < a; by the inversion formula†, F R = f . Under the
same assumption we obtain also that, sincef̂ ∈ L2(R), f ∈ L2(R); and
since for|y| < a, F (x + iy) is the inverse Fourier transforms ofe−ξy f̂ ,
we see that, as a function ofx, F (x+ iy) ∈ L2(R) for all |y| < a. Even
with all this added information about the analytic function extending
f to a strip, we cannot obtain exponential decrease off ; we can only
obtain thate−ξy f̂ ∈ L2(R̂) for all |y| < a.

Theorem (Paley-Wiener).For f ∈ L2(R), the following two condi-
tions are equivalent:

†F R denotes the restriction ofF toR.
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(1) f is the restriction toR of a functionF holomorphic in the strip
{z : |y| < a} and satisfying

(7.1)
∫

|F (x+ iy)2|dx ≤ const |y| < a.

(2) ea|ξ|f̂ ∈ L2(R̂).

PROOF: (2)⇒ (1): write

(7.2) F (z) =
1

2π

∫

f̂(ξ)eiξzdξ;

then by the inversion formulaF R = f ; the functionF is well defined
and holomorphic in{z : |y| < a}, and, by Plancherel’s theorem:

∫

|F (x+ iy)2|dx =
1

2π

∫

|f̂(ξ)|2e2ξydξ ≤ ‖f̂ ea|ξ|‖2
L2(R̂)

.

(1)⇒ (2); write fy(x) = F (x + iy) (thus f = f0), and consider the
Fourier transformŝfy. We want to show that̂fy(ξ) = f̂(ξ)e−ξy since
by Plancherel’s theorem and (7.1), we would then have

∫

|f̂(ξ)|2e2ξydx

uniformly bounded in|y| < a, which clearly implies (2). Notice that if
we assume (2) then, by the first part of the proof, we do havef̂y(ξ) =
f̂(ξ)e−ξy.

Forλ > 0 andz in the strip{z : |y| < a} we put:

(7.3) Gλ(z) = Kλ ∗ F =
∫ ∞

−∞
F (z − u)Kλ(u)du,

whereK denotes Fejér’s kernel.Gλ is clearly holomorphic in the strip
{z : |y| < a} and we notice thatgλ,y(x) = Gλ(x+iy) = Kλ∗fy and hence
ĝλ,y(ξ) = ̂Kλf̂y(ξ). Now sinceĝλ,y(ξ) has a compact support (contained
in [−λ, λ]) we haveĝλ,y(ξ) = ĝλ,0(ξ)e−ξy and consequently if|ξ| < λ,
f̂y(ξ) = f̂(ξ)e−ξy. Sinceλ > 0 is arbitrary, the above holds for allξ and
the proof is complete. J

We may clearly replace the "symmetric" conditions of 7.1 by non-
symmetric ones. The assumption (7.1) for−a1 < y < a, with a, a1 > 0,
is equivalent to:(ea1ξ + e−aξ)f̂(ξ) ∈ L2(R̂).

7.2 Theorem (Paley-Wiener).For f ∈ L2(R) the following two
conditions are equivalent:
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(1) There exists a functionF , holomorphic in the upper half-plane
{z : y > 0}, and satisfying:

(7.4)
∫

|F (x+ iy)|2dx < const , y > 0

and

(7.5) lim
y↓0

∫

|F (x+ iy)− f(x)|2dx = 0.

(2) f̂(ξ) = 0 for ξ < 0.

PROOF: (2)⇒ (1): DefineF (z), for y > 0, by (7.2).F is clearly holo-
morphic,F (x + iy) is the inverse Fourier transform ofe−ξy f̂ and, by
Plancherel’s theorem,

‖F (x+ iy)‖L2(R) = ‖f̂ e−ξy‖L2(R̂) ≤ ‖f̂‖L2(R̂)

which establishes (7.4), and also

‖F (x+ iy)− f‖L2(R) = ‖f̂(e−ξy − 1)‖L2(R̂) → 0

asy ↓ 0.
(1)⇒ (2); write f1(x) = F (x+ i). By 7.1:

‖f̂ e−ξy‖L2(R̂) = ‖F (x+ i+ iy)‖L2(R) for −1 < y <∞

and, in particular, by (7.4):

(7.6)
∫

|f̂1(ξ)|2e−2ξydξ ≤ const .

Letting y → ∞, (7.6) clearly implies that̂f(ξ) = 0 for ξ < 0. By
7.1, the Fourier transform ofF (x + iy) is f̂(ξ)eξ(1−y); hence, by (7.5),
f̂(ξ) = f̂1(ξ)eξ, andf̂(ξ) = 0 for ξ < 0. J

?7.3 The foregoing proofs yield more information than that stated ex-
plicitly. The proof of the implication(2)⇒ (1) also shows thatF is
bounded fory ≥ ε > 0 since

∫

|f̂(ξ)e−ξy|dξ is then bounded. In the
proof (1)⇒ (2) no mention off is needed nor is the assumption (7.5);
if we simply assume thatF is holomorphic in the upper half-plane and
satisfies (7.4), we obtain, keeping the notations of the proof above, that
f̂1e

ξ ∈ L2(R̂) and, denoting byf the function inL2(R) of which f̂1e
ξ

is the Fourier transform, we obtain (7.5) as a consequence (rather than
as an assumption). The Phragmén-Lindelöf theorem allows a further
improvement:
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Lemma. LetF be holomorphic in a neighborhood of the closed upper
half-plane{z : y ≥ 0} and assume that

(7.7)
∫

|F (x)|2dx <∞

and

(7.8) lim
r→∞

r−1 log+|F (reiϑ)| = 0

for all 0 < ϑ < π. Then(7.4) is valid.

PROOF: Let ϕ be continuous with compact support onR, ‖ϕ‖L2 ≤ 1.
Write G(z) = ϕ ∗ F =

∫∞
−∞ F (z − u)ϕ(u)du; thenG is holomorphic in

{z : y ≥ 0}, satisfies the condition (7.8), and, onR,‡

|G(x)| ≤ ‖F R‖L2‖ϕ‖L2 ≤ ‖F R‖L2 .

By the Phragmén-Lindelöf theorem we have|G(z)| ≤ ‖F R‖L2 through-
out the upper half-plane, which means|

∫

F (x+iy)ϕ(−x)dx| ≤ ‖F R‖L2

for y > 0. Since this is true for everyϕ (continuous and with compact
support) such that‖ϕ‖L2 ≤ 1, it follows that

∫

|F (x+ iy)|2dx ≤
∫

|F (x)|2dx
J

7.4 Theorem. LetF be an entire function anda > 0. The following
two conditions onF are equivalent:

(1) F R ∈ L2(R) and

(7.9) |F (z)| = o(ea|z|)

(2) There exists a function̂f ∈ L2(R̂), f̂(ξ) = 0 for |ξ| > a, such
that

(7.10) F (z) =
1

2π

∫ a

−a
f̂(ξ)eiξzdξ.

PROOF: (2) ⇒ (1); if (7.10) is valid we have

|F (z)| ≤ ‖f̂(ξ)e−ξy‖L1(R̂) ≤ ‖f̂‖L2(R̂)

( 1
2π

∫ a

−a
e2ξydξ

) 1
2
.

‡F R denotes the restriction ofF toR.
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Now
1

2π

∫ a

−a
e2ξydξ =

1
4πy

(

e2ay − e−2ay
)

≤ e2ay

2π|y|
and consequently

|F (z)| ≤ ea|y|
√

2π|y|
‖f̂‖L2(R̂)

which is clearly stricter than (7.9). The square summability ofF R
follows from Plancherel’s theorem.

(1)⇒ (2); assume first thatF R is bounded. The functionG(z) =
eiazF (z) is entire, satisfies (7.9) in the upper half-plane, andG(iy)→ 0
asy → ∞. By the Phragmén-Lindelöf theorem,G is bounded in the
upper half-plane and, writingg = G R, it follows from Lemma 7.3 and
Theorem 7.2 that̂g is carried by(0,∞). Writing f = F R we clearly
havef̂(ξ) = ĝ(ξ + a) which impliesf̂(ξ) = 0 for ξ < −a. Similarly,
consideringG1(z) = e−iazF (z), we obtainf(ξ) = 0 for ξ > a and,
writing H(z) = 1/2π

∫

f̂(ξ)eiξxdξ, we obtain, by the inversion theorem,
H R = F R so thatH = F and (7.10) is established.

In the general case, that is without assuming thatF is bounded on
R, we considerFϕ(z) = ϕ ∗ F =

∫

F (z − u)ϕ(u)du whereϕ is an
arbitrary continuous function with compact support.Fϕ satisfies the
conditions in (1) and is bounded onR. Writing fϕ = Fϕ R we have
f̂ϕ(ξ) = f̂(ξ)ϕ̂(ξ) and f̂ϕ(ξ) = 0 if |ξ| > a. Sinceϕ is arbitrary this
implies f̂(ξ) = 0 for |ξ| > a and the proof is completed as before.J

EXERCISES FOR SECTION 7

1. Show thatF (z) =
∑∞

n=1
2−n[(z + n)2 + n−1]−1 is analytic onR and

F R ∈ L
1 ∩ L∞(R); however,F is not holomorphic in any strip{z : |y| < a},

a > 0.
2. Show that for a proper choice of the constants{an} and{bn} the function

G(z) =
∑

ane
−bn(z−n)2

is entire,G R ∈ L
1(R), butG is unbounded onR.

3. Show thatH(z) = e−e
z2

is entire,H R ∈ L
1 ∩ L∞(R); however,H is

unbounded on any liney = const 6= 0.
4. LetF be holomorphic in a neighborhood of the strip{z : |y| ≤ a} and

assume
∫

|F (x+ iy)|2dx < const for |y| ≤ a. Show that forz in the interior of
the strip:

F (z) =
1

2πi

∫ ∞

∞

(

F (u− ia)

u− ia− z −
F (u+ ia)

u+ ia− z

)

du.
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5. Letµ be a measure on̂R, supported by[−a, a]. Define:

F (z) =

∫

e−iξzdµ(ξ).

Show thatF is entire and satisfiesF (z) = O
(

ea|y|
)

. Give an example to show
thatF need not satisfy (7.9).
Hint: F (z) = cos az.

6. Letν be a distribution on̂R, supported by[−a, a]. Show that the function
F , defined byF (z) =

∫

e−iξzdν, is entire and that there exists an integerN such
that

F (z) = O
(

zNea|y|
)

as|z| → ∞.

7. Titchmarsh’s convolution theorem:
(a) LetF be an entire function of exponential type (i.e.,F (z) = O

(

ea|z|
)

for somea > 0) and assume that|F (x)| ≤ 1 for all realx and thatF (iy) is real
valued. Assuming thatF is unbounded in the upper half-plane, show that the
domainD = {z : y > 0, |F (z)| > 2} is symmetric with respect to the imaginary
axis, is connected, and its intersection with the imaginary axis is unbounded.
Hint: Phragmén-Lindelöf.

(b) Let F1 andF2 both have the properties ofF in part (a) and denote the
corresponding domains byD1, D2, respectively. Show thatD1 ∩ D2 6= ∅ and
deduce thatF1F2 is unbounded in the upper half-plane.

(c) Let fj ∈ L2(R̂), j = 1, 2, and assume thatfj are both real-valued and
carried by[−a, 0]. Show that iff1 ∗ f2 vanishes in a neighborhood ofξ = 0, so
does at least one of the functionsfj .

Remark: : Titchmarsh’s theorem is essentially statement (c) above. The as-
sumption thatfj are real-valued is introduced to ensure that the corresponding
Fj , defined by an integral analogous to (7.10), is real-valued on the imaginary
axis. This assumption is not essential; in fact, part (c) is an immediate conse-
quence of the Paley-Wiener theorems in the casef1 = f2 (in which case part
(b) is trivial), and the full part (c) can be obtained from it quite simply (see
[18]).

?8 THE FOURIER-CARLEMAN TRANSFORM

We sketch briefly another way to extend the domain of the Fourier
transformation. There is no aim here at maximum generality and we
describe the main ideas usingL∞(R) as an example, although only mi-
nor modifications are needed in order to extend the theory to functions
of polynomial growth at infinity or, more generally, to functions whose
growth at infinity is slower than exponential. For more details we refer
the reader to [3].
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8.1 Forh ∈ L∞(R) we write

F1(h, ζ) =
∫ 0

−∞
e−iζxh(x)dx ζ = ξ + iη, η > 0

F2(h, ζ) = −
∫ ∞

0

e−iζxh(x)dx ζ = ξ + iη, η < 0.
(8.1)

F1(h, ζ) and F2(h, ζ) are clearly holomorphic in their respective do-
mains of definition, and it is apparent from (8.1) that ifη > 0, then
F1(h, ξ + iη) − F2(h, ξ − iη) is the Fourier transform ofe−η|x|h. Hence
if h ∈ L1(R) we obtain

(8.2) lim
η→0+

(F1(h, ξ + iη)− F2(h, ξ − iη)) = ĥ(ξ)

uniformly. Sincee−η|x|h tends toh in the weak-star topology for any
h ∈ L∞(R), (8.2) is valid for everyh ∈ L∞(R) providedĥ is allowed to
be a pseudo-measure and the limit is in the weak-star topology ofFL∞
as dual ofA(R̂).

Let us consider the caseh ∈ L1(R). If I is an interval on̂R disjoint
from the support of̂h, andD is the disc of whichI is a diameter, and if
we define the functionF in D by

(8.3) F (h, ζ) =

{

F1(h, ζ) η ≥ 0

F2(h, ζ) η ≤ 0,

then it follows from (8.2) thatF (h, ζ) is well defined and continuous in
D and it is holomorphic inD\I. It is well known that this implies (e.g.,
by Morera’s theorem) thatF (h, ζ) is holomorphic inD. We see that in
the caseh ∈ L1∩L∞(R), F1(h, ζ) andF2(h, ζ) are analytic continuations
of each other through the complement ofΣ(ĥ) on R̂. On the other hand,
if F1(h, ζ) andF2(h, ζ) are analytic continuations of each other through
an open intervalI, ĥ(ξ) = F1(h, ξ)−F2(h, ξ) = 0 onI, andI∩Σ(ĥ) = ∅.
Denoting byc(h) the set of concordance of(F1(h, ζ), F2(h, ζ)), that is,
the set of points on̂R in the neighborhood of whichF1(h, ζ) andF2(h, ζ)
are analytic continuations of each other, we can state our result as

Lemma. Assumeh ∈ L1 ∩ L∞(R); then Σ(ĥ) is the complement of
c(h).

8.2 We now show that the same is true without assumingh ∈ L1(R).

Theorem. For every bounded functionh, Σ(ĥ) is the complement of
c(h).
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PROOF: Let E be a compact subset ofc(h); then, asη → 0+,
F1(h, ξ + iη) − F2(h, ξ − iη) → 0 uniformly for ξ ∈ E. If f̂ ∈ A(R̂)
and the support of̂f is contained inE, then

(8.4) 〈f̂ , ĥ〉 = lim
η→0+

1
2π

∫

f̂(ξ)F1(h, ξ + iη)− F2(h, ξ − iη)dξ = 0

which provesΣ(ĥ) ∩ c(h) = ∅.
The fact thatξ0 6∈ Σ(ĥ) implies ξ0 ∈ c(h) is obtained from Lemma

8.1 and the following simple lemma about removable singularities:

8.3 Lemma. Let I be an interval on the real line,D the disc in the
ζ plane of whichI is a diameter,F a holomorphic function defined in
D \ I, satisfying the growth condition

(8.5) |F (ξ + iη)| < const |η|−n.

Assume that there exist functionsΦj which are holomorphic inD,
satisfy(8.5) (with a constant independent ofj) and Φj(ζ) → F (ζ) in
D \ I. ThenF can be extended to a function holomorphic inD.

PROOF: Let D1 be a concentric disc properly included inD andD2 a
concentric disc properly included inD1. Denote byζ1, ζ2 the points of
intersection of the boundary ofD1 with I.

The functions(ζ − ζ1)n(ζ − ζ2)nΦj(ζ) are uniformly bounded on
the boundary ofD1, hence inD1, and consequentlyΦj are uniformly
bounded inD2. The Cauchy integral formula now shows thatΦj con-
verge uniformly inD2 to a holomorphic function which agrees withF
on D2 \ I. SinceD2 is an arbitrary concentric disc inD, the lemma
follows. J

8.4 Lemma. Leth ∈ L∞(R); then

|F1(h, ζ)| ≤ ‖h‖∞η−1 ζ = ξ + iη, η > 0

|F2(h, ζ)| ≤ ‖h‖∞|η|−1 ζ = ξ + iη, η > 0.

PROOF:

|F1(h, ζ)| ≤
∫ 0

−∞
eηx|h(x)|dx ≤ ‖h‖∞

∫ 0

−∞
eηxdx = ‖h‖∞η−1

and similarly forF2. J
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We can now finish the proof of Theorem 8.2. We have to show that
if ξ0 6∈ Σ(ĥ), thenξ0 ∈ c(h). Assumeξ0 6∈ Σ(ĥ); by Lemma 4.7,ξ0
has an intervalI about it which does not intersectΣ(̂hKλ) providedλ
is large enough (Kλ is the Fejér kernel andΣ(K̂λ) = [−1/λ, 1/λ]). If D
is the disc for whichI is a diameter, it follows from Lemma 8.1 that
the pair(F1(hKλ, ζ), F2(hKλ, ζ)) defines holomorphic functionsΦλ in
D, which clearly converge, asλ→∞ to (F1(h, ζ), F2(h, ζ)) onD\ l. By
Lemma 8.4 we can apply Lemma 8.3 and the theorem follows. J

The Fourier-Carleman transform thus gives an alternative definition
of the weak-star spectrum of a bounded function. As an illustration
we indicate briefly how Theorem 4.11 can be obtained by Carleman’s
method. We assume againh ∈ L∞(R) and Σ(ĥ) = {0}. The pair
(F1(h, ζ), F2(h, ζ)) defines an analytic function whose only singularity
in the finite ζ plane is at the pointζ = 0. By Lemma 8.4 and the
Phragmén-Lindelöf theorem,Φ tends to zero at infinity and has a simple
pole atζ = 0. Hence, for some constantc, Φ(ζ) = c/iζ, which is the
Fourier-Carleman transform of the constantc.

9 KRONECKER’S THEOREM

9.1 Theorem (Kronecker). Let λ1, λ2, . . . , λn be real numbers, in-
dependent over the rationals. Letα1, . . . , αn be real numbers andε > 0.
Then there exists a real numberx such that

(9.1) |eiλjx − eiαj | < ε, j = 1, 2, . . . , n.

Kronecker’s theorem is equivalent to

9.2 Theorem. λ1, λ2, . . . , λn be real numbers, independent over the
rationals,λ0 = 0, and leta0, a1, . . . , an be any complex numbers. Then

(9.2) supx
∣

∣

∣

n
∑

j=0

aje
iλjx

∣

∣

∣ =
n
∑

j=0

|aj |.

We first establish the equivalence of Theorems 9.1 and 9.2 and then
obtain 9.2 as a limit theorem.

PROOF THAT 9.1⇒ 9.2: Write aj = rje
iαj , rj ≥ 0. By 9.1, there exist

values ofx for which |eiλjx− ei(α0−αj)| is small,j = 1, . . . , n. For these
values ofx,

∑n
j=0 aje

iλjx is close toeiα0
∑

rj. J
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PROOF THAT 9.2⇒ 9.1: Consider the polynomial1+
∑n

1 e
−iαjeiλjx and

notice that its absolute value can be close to n + 1 only if all the sum-
mands are close to 1, that is, only if (9.1) is satisfied. J

Remark: If λ1, . . . , λn, π are linearly independent over the rationals,
we can add the condition|e2πix − 1| < ε which essentially means that
we can pickx in (9.1) to be an integer.

Theorem 9.2 is a limiting case of Theorem 9.3N below. The idea in the
proof is that used in the proof of Lemma V.1.3, that is, the application
of Riesz products and of the inequality

(9.3) M(fg) ≤ ‖f‖∞M(|g|)

which is clearly valid forf, g ∈ AP (R) (see (5.5)). Actually, we use
(9.3) for polynomials only, in which case the existence of the limit (5.5)
and the fact that it equals the constant term are obvious, and this section
is essentially independent of section 5.

For the sake of clarity we state 9.3N first forN = 1, as

9.3 Theorem. Let λ1, . . . , λn be real numbers having the following
properties:

(a)
n
∑

1

εjλj = 0 εj = −1, 0, 1, ⇒ εj = 0 for all j.

(b)
n
∑

1

εjλj = λk εj = −1, 0, 1, ⇒ εj = 0 for j 6= k.

Then, for any complex numbersa1, . . . , an

(9.4) supx
∣

∣

∣

∑

aje
iλjx

∣

∣

∣ ≥
1
2

∑

|aj |.

PROOF: Write aj = rje
iαj , rj ≥ 0 and

g(x) =
n
∏

1

(

1 + cos(λjx+ αj)
)

f(x) =
∑

aje
iλjx.

g is a nonnegative trigonometric polynomial whose frequencies all have
the form

∑

εjλl, εj = −1, 0, 1. By (a), the constant term ing is 1, hence
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M(g) = M(|g|) = 1. By (b), the constant term (which is the same as the
mean value) offg is 1

2

∑n
1 rj and, by (9.3),

1
2

n
∑

1

rj ≤ sup|f |.
J

9.3N Theorem. Letλ1, . . . , λn be real numbers having the following
properties:

(a)
n
∑

1

εjλj = 0 εj integers, |εj | ≤ N ⇒ εj = 0 for all j.

(b)
n
∑

1

εjλj = λk εj integers, |εj | ≤ N ⇒ εj = 0 for j 6= k.

Then, for any complex numbersa1, . . . , an

(9.4N ) supx
∣

∣

∣

∑

aje
iλjx

∣

∣

∣ ≥
(

1− 1
N + 1

)
∑

|aj |.

PROOF: Virtually identical to that of 9.3; we only have to replaceg as
defined there by

g(x) =
n
∏

1

KN (λjx+ αj)

whereKN (x) =
∑N
−N

(

1− |j|
N+1e

ijx
)

. We leave the details to the reader,
J

It is clear that ifλ1, . . . , λn are linearly independent, the conditions
of 9.3N are satisfied for allN and consequently we obtain (9.4N ) for
all N , hence (9.2). This completes the proof of theorem 9.2 and hence
of Kronecker’s theorem. J

For a different approach see VII.3.

9.4 The extension of theorem 9.1 to infinite, linearly independent sets
presents a certain number of problems, not all of which are solved. We
restrict our attention to compact linearly independent setsE and ask
under what conditions is it possible to approximate uniformly onE ev-
ery function of modulus 1, by an exponential. The obvious answer is
that this is possible if, and only if, E is finite; this follows from Kro-
necker’s theorem ("if") and the fact that uniform limits of exponentials
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must be continuous onE, and ifE is infinite (and compact) not all func-
tions of modulus 1 are continuous ("only if"). We therefore modify our
questions and ask under what condition is it possible to approximate
uniformly onE every continuous function of modulus 1 by an expo-
nential. We do not have a satisfactory answer to this question; for some
setsE the approximation is possible, for others it is not, and we intro-
duce the following:

DEFINITION: A compact setE ⊂ R is aKronecker setif every contin-
uous function of modulus 1 onE can be approximated onE uniformly
be exponentials.

The existence of an infinite perfect Kronecker set is not hard to es-
tablish by a direct construction. We choose, however, to prove it by a
less direct method which also may be used to obtain finer results (see
[14]).

Theorem. Let E be a perfect totally disconnected set onR. Denote
by CR(E) the space of continuous, real-valued functions onE. Then
there exists a setG of the first category† in CR(E) such that everyϕ ∈
CR(E) \G mapsE homeomorphically onto a Kronecker set.

PROOF: A functionϕ ∈ CR(E) mapsE homeomorphically onto a Kro-
necker set if, and only if, for every continuous functionh of modulus 1
onE and for everyε > 0, there exists a real numberλ such that

(9.5) supx∈E
∣

∣eiλϕ(x) − h(x)
∣

∣ < ε

We show first that if we fixh andε, the set of functionsϕ for which
(9.5) holds for an appropriateλ is everywhere dense inCR(E). For this,
let ψ ∈ CR(E) and letη > 0. We takeλ = 10η−1 and writeE as a
union of disjoint closed subsetsEj , j = 1, . . . , N, theEj ’s being small
enough so that the variation of eitherh or eiλψ onEj does not exceed
ε/3. Let eiαj be a value assumed byh onEj andeiβj a value assumed
by eiλψ onEj; we may clearly assume|αj | ≤ π and|βj | ≤ π for all j.
We now define

(9.6) ϕ(x) = ψ(x) +
αj − βj

λ
for x ∈ Ej .

We haveϕ ∈ CR(E) and‖ϕ−ψ‖∞ ≤ 2π/λ < η; also, checking on each
Ej, it is clear that (9.5) holds.

†CR(E), with the metric given by the norm‖ϕ‖∞ = supx∈E |ϕ(x)|, is a complete
metric space.
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It follows that the setG(h, ε) of all ϕ ∈ CR(E) for which (9.5) holds
for no λ ∈ R, a set which is clearly closed, is nondense. Taking a se-
quence of continuous functions of modulus 1, say{hn}, which is dense
in the set of all such functions, and taking a sequence of positive num-
bers{εm} such thatεm → 0, it is clear thatG = ∪n,mG(hn, em) is of the
first category. Also, ifϕ 6∈ G, then everyhn can be approximated uni-
formly onE by eiλϕ with appropriateλ’s hence so can every continuous
function of modulus 1 and the theorem follows. J

EXERCISES FOR SECTION 9

1. Letλ1, . . . , λn be linearly independent over the rationals and letf1, . . . , fn
be continuous and periodic onR, having periodsλ−1

j respectively. Show that
the closure of the range off = f1 + · · ·+fn is precisely range(f0)+ · · ·+range
(fn). Deduce that if0 ∈ range(fj) for all j, then

∥

∥

∑

fj
∥

∥

∞
≥ 1

6

∑

‖fj‖∞.

Hint: Show that ifc1 . . . , cn are complex numbers, one can findε1, . . . , εn, the
εj ’s being zero or one, such that|

∑

εjcj | ≥ 1
6

∑

|cj |.
2. Let f ∈ AP (R) and assume thatσ(f) is independent over the rationals.

Show thatf̂ is a measure and that‖f‖∞ = ‖f̂‖M(R̂).

3. Let f ∈ AP (R) and assume thatσ(f) ⊂ {3−j}∞j=1. Show thatf̂ is a
measure and that‖f̂‖M(R̂) ≤ 2‖f‖∞.

4. Let λ1, . . . , λn be real numbers. Setλ0 = 0 and assume that for any
choice of complex numbersa0, . . . , an, (9.2) is valid. Show thatλ1, . . . , λn are
linearly independent over the rationals.

5. Construct a sequence{λj} of linearly independent numbers such that
λj → 0, and such that{λj} ∪ {0} is not a Kronecker set.

6. Show that every convergent sequence of linearly independent numbers
contains an (infinite) subsequence which is a Kronecker set.



Chapter VII

Fourier Analysis on Locally Compact
Abelian Groups

We have been dealing so far with spaces of functions defined on
the circle groupT, the group of integersZ, or the real lineR (or R̂).
Most of the theory can be carried, without too much effort, to spaces of
functions defined on any locally compact abelian group. The interest
in such a generalization lies not only in the fact that we have a more
general theory, but also in the light it sheds on the "classical" situations.
We give only a brief sketch of the theory: proofs, many more facts, and
other references can be found in [5], [9], [15] and [24].

1 LOCALLY COMPACT ABELIAN GROUPS

A locally compact abelian (LCA) group is an abelian group, sayG,
which is at the same time a locally compact Hausdorff space and such
that the group operations are continuous. To be precise: if we write
the group operation as addition, the continuity requirement is that both
mappingsx 7→ −x of G ontoG and(x, y) 7→ x + y of GxG ontoG are
continuous. For a fixedx ∈ G, the mappingsy 7→ x+ y is a homeomor-
phism ofG onto itself which takes0 into x. Thus the topological nature
of G at anyx ∈ G is the same as it is at0.

Examples:

(a) Any abelian groupG is trivially an LCA group with the discrete
topology.

(b) The circle groupT and the real lineR with the usual topology.

(c) Let G be an LCA group andH a closed subgroup, thenH with
the induced structure is an LCA group. The same is true for the
quotient groupG/H if we put on it the canonical quotient topology

201
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that is, if we agree that a setU in G/H is open if, and only if, its
preimage inG is open.

(d) The direct sum of a finite number of LCA groups is defined as the
algebraic direct sum endowed with the product topology; it is again
an LCA group.

(e) Thecomplete direct sumof a family {Gα}, α ∈ I, of abelian
groups is the group of all "vectors"{xα}α∈I , xα ∈ Gα, where the
addition is performed coordinatewise:{xα}+{yα} = {xα +yα}. If
for all α ∈ I, Gα is a compact abelian group, the product topology
on the complete direct sums make it a compact abelian group. This
follows easily from Tychonoff’s theorem.

If for every positive integern, Gn is the group of order two, then
the complete direct sum of{Gn} is the group of all sequences{εn},
εn = 0, 1 with coordinatewise addition modulo 2, and with the topology
that makes the mapping{εn} 7→ 2

∑

εn3−n a homeomorphism of the
group onto the classical cantor set on the line. We denote this particular
group byD.

2 THE HAAR MEASURE

LetG be a locally compact abelian group. A Haar measure onG is
a positive regular Borel measureµ having the following two properties:

(1) µ(E) <∞ if E is compact;

(2) µ(E + x) = µ(E) for all measurableE ⊂ G and allx ∈ G.

One proves that a Haar measure always exists and that it is unique up
to multiplication by a positive constant; by abuse of language one may
therefore talk abouttheHaar measure. The Haar measure ofG is finite
if, and only if,G is compact and it is then usually† normalized to have
total mass one. IfG = T or G = Tn the Haar measure is simply the
normalized Lebesgue measure. IfG = R the Haar measure is again a
multiple of the Lebesgue measure. IfG is discrete, the Haar measure is
usually† normalized to have mass one at each point. IfG is the direct
sum afG1 andG2, the Haar measure ofG is the product measure of
the Haar measures ofG1 andG2. The Haar measure on the complete

†Except when G is finite; it is as usual to introduce the "compact" normalization as it
is the "discrete."
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direct sum of a family of compact groups is the product of the corre-
sponding normalized Haar measures. In particular, the Haar measure
on the groupD defined above corresponds to the well-known Lebesgue
measure on the Cantor set, the homeomorphism defined above being
also measure preserving.

Let G be an LCA group; we denote the Haar measure onG by dx,
and the integral off with respect to the Haar measure by

∫

G
f(x)dx or

simply
∫

f(x)dx. For 1 ≤ p ≤ ∞ we denote byLp(G) theLp space
onG corresponding to the Haar measure. One defines convolution on
G by (f ∗ g)(y) =

∫

G
f(y − x)g(x)dx and proves that iff, g ∈ L1(G)

thenf ∗ g ∈ L1(G) and‖f ∗ g‖L1(G) ≤ ‖f‖L1(G)‖g‖L1(G) so thatL1(G)
is a Banach algebra under convolution. We may define homogeneous
Banach spaces on any LCA groupG as we did forT or R, that is, as
Banach spacesB of locally integrable functions, norm invariant under
translation and such that the mappingsy 7→ fy are continuous fromG
to B for all f ∈ B. Remembering that for1 < p < ∞ the continuous
functions with compact support are norm dense inLp(G), it is clear that
Lp(G) is a homogeneous Banach space onG.

LetB be a homogeneous Banach space on an LCA groupG. Using
vector-valued integration we can extend the definition of convolution
so thatf ∗ g is defined and belongs toB for all f ∈ L1(G) andg ∈ B
and show that‖f ∗ g‖B ≤ ‖f‖L1(G)‖g‖B.

DEFINITION: A summability kernelon the LCA groupG is a di-
rected family{kα} in L1(G) satisfying the following conditions:

(a) ‖kα‖L1(G) < const;

(b)
∫

kα(x)dx = 1;

(c) if V is an neighborhood of0 in G, limα

∫

G\V |kα(x)|dx = 0.

If {kα} is a summability kernel onG and if B is a homogeneous
Banach space onG, thenlimα‖kα ∗ g − g‖B = 0 for all g ∈ B.

3 CHARACTERS AND THE DUAL GROUP

A characteron an LCA groupG is a continuous homomorphism of
G into the multiplicative group of complex numbers of modulus 1, that
is, a continuous complex-valued functionξ(x) onG satisfying:

|ξ(x)| = 1 and ξ(x+ y) = ξ(x)ξ(y).
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The trivial character isξ(x) = 1 identically. IfG is non-trivial there are
non-trivial characters on it.

The setĜ of all the characters onG is clearly a commutative multi-
plicative group (under pointwise multiplication). We change the nota-
tion and write the group operation of̂G as addition and replaceξ(x) by
〈x, ξ〉 or sometimes byeiξx.

We introduce a topology tôG by stipulating that convergence in
Ĝ is equivalent to uniform convergence on compact subsets ofG (the
elements ofĜ being functions onG). Thus, a basis of neighborhoods
of 0 in Ĝ is given by sets of the form{ξ : |〈x, ξ〉 − 1| < ε for all x ∈ K}
whereK is a compact subset ofG andε > 0. Neighborhoods of other
points inĜ are translates of neighborhhods of 0. It is not hard to see
that with this topologyĜ is an LCA group; we call itthe dual groupof
G.

For eachx ∈ G, the mappingξ 7→ 〈x, ξ〉 defines a character on̂G.
The Pontryagin duality theorem states that every character onĜ has this
form and that the topology of uniform convergence on compact subsets
of Ĝ coincides with the original topology onG. In other words, ifĜ is
the dual group ofG, thenG is the dual ofĜ.

Examples: (a) ForG = T with the usual topology every character
has the formt 7→ e−int for some integern, the topology of uniform
convergence onT is clearly the discrete topology andT̂ = Z. Similarly,
we checkẐ = T; this illustrates the Pontryagin duality theorem.

The exampleG = T hints the following general theorem:The dual
group of any compact group is discrete(see exercise 5 at the end of this
section). Also: The dual group of every discrete group is compact.

(b) Characters onR all have the formx 7→ eiξx for some realξ.
The dual group topology is the usual topology of the reals andR̂ is
isomorphic toR.

(c) If H is a closed subgroup of an LCA groupG, the annihilator
of H, denotedH⊥, is the set of all characters ofG which are equal to
1 onH. H⊥ is clearly a closed subgroup of̂G . If ξ ∈ H⊥, ξ defines
canonically a character onG/H; on the other hand, every character
on G/H defines canonically (by composition with the mappingG 7→
G/H) a character onG. This establishes an algebraic isomorphism
between the dual group ofG/H andH⊥. One checks that this is also a
homeomorphism and the dual ofG/H can be identified withH⊥.

If H is a proper closed subgroup, thenH⊥ is non-trivial.
(d) By (c) above and the Pontryagin duality theorem:Ĝ/H⊥ is the



VII. F OURIER ANALYSIS ON LOCALLY COMPACT ABELIAN GROUPS 205

dual group ofH.
(e) If G1 andG2 are LCA groups, then̂G1 ⊕G2 can be identified

with Ĝ1 ⊕ Ĝ2 through

< (x1, x2), (ξ1, ξ2) >=< x1, ξ1 >< x2, ξ2 > .

In particular, the dual group ofTn is Zn, the characters have the
form (t1, . . . , tn) 7→ e−i

∑

ajtj with aj ∈ Z.
(f) If Gα, is a compact abelian group for everyα belonging to some

index setI, and ifG is the complete direct sum of{Gα}, thenĜ can be
identified with the direct sum of{Ĝα} (with the discrete topology). The
direct sumof a family {Ĝα} of groups is the subgroup of the complete
direct sum consisting of those vectors{ξα}α∈I , ξα ∈ Ĝα, such that
ξα = 0 in Ĝα for all but a finite number of indices.

The dual group of the group of order two is again the group of order
two. Consequently, the dual group of the groupD introduced above is
the direct sum of a sequence of groups of order two. If we identify the
elements ofD as sequences{εn}, εn = 0, 1, thenD̂ is the discrete group
of sequences{ζn}, ζn = 0, 1 with only a finite number of ones, and

< {εn}, {ζn} >= (−1)
∑

εnζn .

Remark: A natural way to look at Kronecker’s theorem VI.9.3 is:
Assume thatλ1, . . . , λn’s are rationally independent mod2π and

considerλ = (λ1 . . . λn) ∈ Tn. The setΛ = {jλ : j ∈ Z} is a subgroup,
and Kronecker’s theorem states that it is dense inTn. If it weren’t,
its closureΛ would be a closed proper subgroup and there would be a
non-trivial (a1, . . . , an) ∈ Zn which is trivial onΛ, i.e.

∑

ajλj ∈ 2πZ.

4 FOURIER TRANSFORMS

Let G be an LCA group; the Fourier transform off ∈ L1(G) is
defined by

f̂(ξ) =
∫

G

< x, ξ >f(x) dx, ξ ∈ Ḡ.

We denote byA(Ḡ) the space of all Fourier transforms of functions in

L1(G). Since we havê(f + g) = f̂ + ĝ and ̂f ∗ g = f̂ ĝ, A(Ĝ) is an al-
gebra of functions on̂G under the pointwise operations. The functions
in A(Ĝ) are continuous onG; in fact, an equivalent way to define the
topology onĜ is as the weak topology determined byA(Ĝ), that is, as
the weakest topology for which all the functions inA(Ĝ) are continu-
ous.
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With the Haar measures onG andĜ properly normalized one proves
inversion formulas stating essentially thatf(−x) is the Fourier trans-
form of f̂ in some appropriate sense, and literally iff is continuous
and f̂ ∈ L1(Ĝ). One deduces the uniqueness theorem stating that if
f ∈ L1(G) andf̂ = 0 thenf = 0.

From the inversion formulas one can also prove Plancherel’s the-
orem. This states that the Fourier transformation is an isometry of
L1 ∩ L2(G) onto a dense subspace ofL2(Ĝ) and can therefore be ex-
tended to an isometry ofL2(G) ontoL2(Ĝ). One can now define the
Fourier transform of functions inLp(G), 1 < p < 2, by interpolation,
and obtain inequalities generalizing the Hausdorff-Young theorem (as
we did in VI.3 for the caseG = R).

We denote byM(G) the space of (finite) regular Borel measures
onG. M(G) is a Banach space canonically identified with the dual of
C0(G). The fact that the underlying spaceG is a group permits the def-
inition of convolution inM(G) (analogous to that which we introduced
in I.7 for the caseG = T). With the convolution as multiplication,
M(G) is a Banach algebra. We keep the notationµ ∗ ν for the convolu-
tion of the measuresµ andν. L1(G) is identified as a closed subalgebra
of M(G) through the correspondencef 7→ fdx.

The Fourier (Fourier-Stieltjes) transform ofµ ∈M(G) is defined by

µ̂(ξ) =
∫

< x, ξ >dµ(x), ξ ∈ Ĝ.

For allµ ∈ M(G), µ̂(ξ) is uniformly continuous on̂G. If µ = fdx with
f ∈ L1(G), then µ̂(ξ) = f̂(ξ). The mappingµ 7→ µ̂ is clearly linear
and we haveµ̂ ∗ ν = µ̂ν̂ so that the familyB(Ĝ) = {µ̂ :µ ∈ M(G)} of
all Fourier-Stieltjes transforms is an algebra of uniformly continuous
functions onĜ under pointwise addition and multiplication.

A function ϕ defined onĜ is calledpositive definiteif, for every
choice of ξ1, . . . , ξN ∈ Ĝ and complex numbersz1, . . . , zN we have
∑N
j,k=1 ϕ(ξj−ξk)zjzk ≥ 0. Weil’s generalization of Herglotz-Bochner’s

theorem states that a functionϕ(ξ) on Ĝ is the Fourier transform of a
positive measure onG if, and only if, it is continuous and positive def-
inite.

5 ALMOST-PERIODIC FUNCTIONS AND THE BOHR
COMPACTIFICATION

Let G be an LCA group. A functionf ∈ L∞(G) is, by definition,
almost-periodicif the set of all translates off , {fy}y∈G is precom-
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pact in the norm topology ofL∞(G) (compare with VI.5.5). We de-
note the space of all almost-periodic functions onG by AP (G). One
proves that almost-periodic functions are uniformly continuous and are
uniform limits of trigonometric polynomials onG (i.e., of finite lin-
ear combinations of characters). Since trigonometric polynomials are
clearly almost-periodic, one obtains thatAP (G) is precisely the closure
in L∞(G) of the space of trigonometric polynomials.

If G is compact we haveAP (G) = C(G). In the general case we
consider the groups(Ĝ)d, the dual group ofGwith its topology replaced
by the discrete topology, and̃G, the dual group of(Ĝ)d. G̃ is the group
of all homomorphisms of̂G into T, and it therefore containsG (which
is identified with the group of all continuous homomorphisms ofĜ into
T). One proves that the natural imbedding ofG into G̃ is a continuous
isomorphism and thatG is dense inG̃. Being the dual of a discrete
group,G̃ is compact; we call itthe Bohr compactification ofG. The
Bohr compactification of the real line is the dual group of the discrete
real line and is usually called theBohr group.

Assumef ∈ AP (G); let {Pj} be a sequence of trigonometric poly-
nomials which converges tof uniformly. Then, sinceG is dense in
G̃, {Pj} converges uniformly oñG (every character onG extends by
continuity to a character oñG. It follows thatf is the restriction toG
of limPj = F ∈ C(G̃). Conversely, since every continuous functionF
on G̃ can be approximated uniformly by trigonometric polynomials, it
follows thatAP (G) is simply the restriction toG of C(G̃).

EXERCISES

1. LetG be an LCA group andµ the Haar measure onG. Show that ifU is
a nonempty open set inG thenµ(U) > 0.
Hint: Every compact setE ⊂ G can be covered by a finite number of translates
of U .

2. Let G be an LCA group andµ the Haar measure onG. Let H be a
compact subgroup. Describe the Haar measure onG/H.

3. LetG1 andG2 be compact abelian groups and letG = G1 ⊕G2. Denote
by µ, µ1, µ2 the normalized Haar measures onG, G1, G2, respectively. Con-
sideringµj , j = 1, 2, as measures onG (carried by the closed subgroupsGj),
prove that

µ = µ1 ∗ µ2.

4. LetG be a compact group and{Hn} an increasing sequence of compact
subgroups such that∪∞1 Hn is dense inG. Denote byµ, µn, respectively, the
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normalized Haar measure ofG, Hn, respectively. Considering theµn’s as
measures onG, show thatµn → µ in the weakstar topology of measures.

5. LetG be a group and letξ1 andξ2 be distinct characters onG. Show that

supx∈G|< x, ξ1 > − < x, ξ2 >| ≥
√

3.

Deduce that ifG is a compact abelian group, then̂G is discrete.
6. LetG be a compact abelian group with normalized Haar measure and let

ξ ∈ Ĝ. Show that
∫

G

< x, ξ > dx =

{

1 if ξ = 0

0 if ξ 6= 0.

7. LetG be a compact abelian group. Show that the characters onG form a
complete orthonormal family inL2(G).



Chapter VIII

Commutative Banach Algebras

Many of the spaces we have been dealing with are algebras. We
used this fact, implicitly or semi-explicitly, but only on the most ele-
mentary level. Our purpose in this chapter is to introduce the reader
to the theory of commutative Banach algebras and to show, by means
of examples, how natural and useful the Banach algebra setting can be
in harmonic analysis. There is no claim, of course, that every prob-
lem in harmonic analysis has to be considered in this setting; however,
if a space under study happens to be either a Banach algebra, or the
dual space of one, keeping this fact in mind usually pays dividends.
The introduction that we offer here is by no means unbiased. The top-
ics discussed are those that seem to be the most pertinent to harmonic
analysis and some very important aspects of the theory of commutative
Banach algebras (as well as the entire realm of the noncommutative
case) are omitted. As further reading on the theory of Banach algebras
we mention [5], [15], [19] and [21].

1 DEFINITION, EXAMPLES, AND ELEMENTARY PROPERTIES

1.1 DEFINITION: A complex Banach algebrais an algebraB over the
field C of complex numbers, endowed with a norm‖ ‖ under which it
is a Banach space and such that

(1.1) ‖xy‖ ≤ ‖x‖‖y‖

for anyx, y ∈ B.

Examples: (1) The fieldC of complex numbers, with the absolute
value as norm.

(2) LetX be a compact Hausdorff space andC(X) the algebra of
all continuous complex-valued functions onX with pointwise addition
and multiplication. C(X) is a Banach algebra under the supremum

209
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norm (also referred to as the sup-norm)

(1.2) ‖f‖∞ = supx∈X |f(x)|.

(3) Similarly, if X is a locally compact Hausdorff space, we denote
by C0(X) the sup-normed algebra (with pointwise addition and multi-
plication) of all continuous functions on X which vanish at infinity (i.e.,
the functionsf for which{x : |f(x)| ≥ ε} is compact for allε > 0).

(4 )Cn(T)–the algebra of all n-times continuously differentiable func-
tions onTwith pointwise addition and multiplication and with the norm

‖f‖Cn =
n
∑

0

1
j!

max
t
|f (j)(t)|.

(5)HC(D)—the algebra of all functions holomorphic inD (the unit
disc {z : |z| < 1}) and continuous in̄D, with pointwise addition and
multiplication and with the sup-norm. (6)L1(T)–with pointwise addi-
tion and the convolution (I.1.8) as multiplication, and with the norm
‖ ‖L1 . Condition (1.1) is proved in Theorem I.1.7. Similarly–L1(R).

(7) M(T )–the space of (Borel) measures onT with convolution as
multiplication and with the norm‖ ‖M(T) (see I.1.7). Similarly–M(R).

(8) The algebra of linear operators on a Banach space with the stan-
dard multiplication and the operator norm.

(9) LetB be a Banach space; we introduce to B the trivial multipli-
cationxy = 0 for all x, y ∈ B. With this multiplicationB is a Banach
algebra. All the foregoing examples, except (8), have the additional
property that the multiplication is commutative. In all that follows we
shall deal mainly with commutative Banach algebras.

1.2 In all the examples except for (3), (6), and (9), the algebras have
a unit element for the multiplication: the number 1 in (1); the function
f(x) = 1 in (2), (4), and (5); the unit mass at the origin in (7); and the
identity operator in (8). It is clear from I.1.7 that iff ∈ L1(T) were a
unit element, we would havêf(n) = 1 for all n which, by the Riemann-
Lebesgue lemma, is impossible; thusL1(T) does not have a unit.

Let B be a Banach algebra. We consider the direct sumB1 = B⊕C,
that is, the set of pairs(x, λ), x ∈ B, λ ∈ C; and define addition,
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multiplication, scalar multiplication and norm inB1 by:

(x1, λ1) + (x2, λ2) = (x1 + x2, λ1 + λ2)

(x1, λ1)(x2, λ2) = (x1x2 + λ1x2 + λ2x1, λ1λ2)

λ(x1, λ1) = (λx1, λλ1)

‖(x, λ)‖B1 = ‖x‖B + |λ|.

It is clear, by direct verification, thatB1 is a Banach algebra with a unit
element (namely(0, 1)). We now identifyB with the set of pairs of the
form (x, 0), which is clearly an ideal of codimension 1 inB1. We say
thatB1 is obtained fromB by a formal adjoining of a unit element;
this simple operation allows the reduction of many problems concern-
ing Banach algebras without a unit to the corresponding problems for
Banach algebras with unit. If B is an algebra with a unit element we
often denote the unit by 1 and identify its scalar multiples with the cor-
responding complex numbers. Thus we write "1 ∈ B" instead of "B
has a unit element," and so on. This notation will be used when con-
venient and may be dropped when the unit element has been identified
differently.

1.3 Every normed algebra, that is, complex algebra with a norm satis-
fying (1.1) but under which it is not necessarily complete, can be com-
pleted into a Banach algebra. This is done in the same way a normed
space is completed into a Banach space. IfB0 is a normed algebra, we
denote byB the space of equivalence classes of Cauchy sequences in
B0, determined by the equivalence relation:

{xn} ∼ {yn} if, and only if, lim‖xn − yn‖ = 0.

One checks immediately, and we leave it to the reader, that if{xn} ∼
{x′n} and{yn} ∼ {y′n} then{xn + yn} ∼ {x′n + y′n}, {λxn} ∼ {λx′n},
{xnyn} ∼ {x′ny′n} andlimn→∞‖xn‖ = limn→∞‖x′n‖; hence we can de-
fine addition, scalar multiplication, multiplication, and norm inB as
follows: for x, y ∈ B, let {xn} (resp. {yn}) be a Cauchy sequence in
the equivalence classx (resp.y), thenx + y (resp.λx, xy) will be the
equivalence class containing{xn + yn} (resp.{λxn}, {xnyn}) and‖x‖
is, by definition,limn→∞‖xn‖. With these definitions,B is a Banach
algebra and the mapping which associates with an elementa ∈ B0 the
equivalence class of the "constant" sequence{xn}, xn = a for all n, is
an isometric embedding ofB0 in B as a dense subalgebra.
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1.4 The condition (1.1) on the norm in a Banach algebra implies the
continuity of the multiplication in both factors simultaneously. Con-
versely:

Theorem. LetB be an algebra with unit and with a norm‖ ‖ under
which it is a Banach space. Assume that the multiplication is continu-
ous in each factor separately. Then there exists a norm‖ ‖′ equivalent
to ‖ ‖, for which(1.1)is valid.

PROOF: By the continuity assumption, everyx ∈ B defines a contin-
uous linear operatorAx : y 7→ xy on B. If x 6= 0, Ax(1) = x, and
consequentlyAx 6= 0; alsoAx1x2(y) = x1x2y = Ax1(x2y) = Ax1Ax2y

hence the mappingx 7→ Ax is an isomorphism of the algebraB into the
algebra of all continuous linear operators onB. Let ‖ ‖′ be the induced
norm, that is,

(1.3) ‖x‖′ = ‖Ax‖ = sup‖y‖≤1‖xy‖

then‖ ‖′ is clearly a norm onB and it clearly satisfies (1.1). We also
remark that

(1.4) ‖x‖′ ≥ ‖1‖−1‖x‖

(takey = ‖1‖−1 in (1.3)) and, consequently, ifxn, is a Cauchy sequence
in ‖ ‖′, it is also a Cauchy sequence in‖ ‖, and so converges to some
x0 ∈ B. We contend now thatlim‖xn − x0‖′ = 0 which is the same
as lim‖Axn − Ax0‖ = 0. This follows from: (a){Axn} is a Cauchy
sequence in the algebra of linear operators onB hence converges in
norm to some operatorA0; (b)Axny = xny → x0y = Ax0y for all y ∈ B
(here we use the continuity ofxy in x). It follows thatA0 = Ax0 and
the contention is proved. We have proved thatB is complete under the
norm‖ ‖′, and since the two norms,‖ ‖ and‖ ‖′ are comparable, (1.4),
they are in fact equivalent (closed graph theorem). J

Remark: The norm‖ ‖′ has the additional property that‖1‖′ = 1;
hence there is no loss of generality in assuming as we shall henceforth
do implicitly, that whenever1 ∈ B, ‖1‖ = 1.

1.5 Theorem. Let B be a commutative Banach algebra and letI

be a closed ideal inB. The quotient algebraB/I endowed with the
canonical quotient norm is a Banach algebra.
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PROOF: The only thing to verify is the validity of (1.1). Letε > 0,
let x̃, ỹ ∈ B/I and letx, y ∈ B be representatives of the cosetsx̃, ỹ
respectively, such that‖x‖ ≤ ‖x̃‖+ ε, ‖y‖ ≤ ‖ỹ‖+ ε. We havexy ∈ x̃ỹ
and consequently

‖x̃ỹ‖ ≤ ‖xy‖ ≤ ‖x‖‖y‖ ≤ ‖x̃‖‖ỹ‖+ ε(‖x̃‖+ ‖ỹ‖) + ε2

and sinceε > 0 is arbitrary,‖x̃ỹ‖ ≤ ‖x̃‖‖ỹ‖. J

EXERCISES FOR SECTION 1

1. Verify condition (1.1) in the case ofCn(T) (example 4 above).
2. LetB be a homogeneous Banach space onT, define multiplication inB

as convolution (inherited fromL1(T)). Show that with this multiplicationB is
a Banach algebra.

3. LetX be a locally compact, noncompact, Hausdorff space and denote by
X∞ its one-point compactification. Show thatC(X∞) is isomorphic (though
not isometric) to the algebra obtained by formally adjoining a unit toC0(X).

4. Let B be an algebra with two consistent norms (see IV.1.1,‖ ‖0 and
‖ ‖1. Assume that both these norms are multiplicative (i.e., satisfy condition
(1.1)). Show that all the interpolating norms‖ ‖α, 0 < α < 1 (see IV.1.2), are
multiplicative.

Hint: B is a normed algebra andBα are ideals inB.

2 MAXIMAL IDEALS AND MULTIPLICATIVE
LINEAR FUNCTIONALS

2.1 LetB be a commutative Banach algebra with a unit 1. An element
x ∈ B is invertible if there exists an elementx−1 ∈ B such thatxx−1 =
1.

Lemma. Consider a Banach algebraB with a unit 1. Letx ∈ B and
assume‖x− 1‖ < 1. Thenx is invertible and

(2.1) x−1 =
∞
∑

j=0

(1− x)j .

PROOF: By (1.1),‖(1− x)j‖ ≤ ‖(1− x)‖j; hence the series on the right
of (2.1) converges inB. Writing x = 1 − (1 − x) and multiplying term
be term we obtainx

∑∞
j=0(1− x)j = 1 J
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2.2 Lemma. Letx ∈ B be invertible andy ∈ B satisfying‖y − x‖ <
‖x−1‖−1. Theny is invertible and

(2.2) y−1 = x−1
∞
∑

j=0

(1− x−1y)j .

PROOF: ‖1− x−1y‖ ≤ ‖x−1‖‖x− y‖. Apply Lemma 2.1 tox−1y. J

Corollary. The setU of invertible elements inB is open and the func-
tion x 7→ x−1 is continuous onU .

PROOF: We only need to check the continuity, Letx ∈ U, y → x; by
(2.2) we havey−1 − x−1 = x−1

∑∞
j=1(1− x−1y)j; hence

‖y−1 − x−1‖ ≤
∞
∑

j=1

‖x−1‖j+1‖x− y‖j ≤ 2‖x−1‖2‖x− y‖

provided‖x− y‖ ≤ 1
2‖x
−1‖−1. J

2.3 DEFINITION: Theresolvent setR(x) = RB(x) of an elementx in a
Banach algebraB with a unit is the set of complex numbersλ such that
x− λ is invertible.

Lemma. For x ∈ B, R(x) is open andF (λ) = (x−λ)−1 is a holomor-
phicB-valued function onR(x).

PROOF: This is again an immediate consequence of Lemma 2.2. If
λ0 ∈ R(x) andλ is close toλ0, it follows from (2.2) that

(x− λ)−1 = (x− λ0)−1
∑

(1−(x− λ0)−1(x− λ0 + λ0 − λ)j

= −
∑

(x− λ0)−j−1(λ0 − λ)j .
(2.3)

(2.3) is the expansion of(x−λ)−1 to a convergent power series inλ−λ0

with coefficients in B. J

2.4 Lemma. R(x) can never be the entire complex plane.

PROOF: AssumeR(x) = C. The function(x − λ)−1 is an entireB-
valued function and as|λ| → ∞

‖(x− λ)−1‖ = |λ|−1
∥

∥

(x

λ
− 1
)−1∥

∥ ∼ |λ|−1 → 0.

It follows from Liouville’s theorem (see appendix A) that(x−λ)−1 ≡ 0,
which is impossible. J
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Theorem (Gelfand–Mazur). A complex commutative Banach alge-
bra which is a field is isomorphic toC.

PROOF: Let x ∈ B, λ a complex numberλ 6∈ R(x); thenx − λ is not
invertible and, since the only noninvertible element in a field is zero,
x = λ. Thus, having identified the unit ofB with the number l,B is
canonically identified withC.

2.5 We now turn to establish some basic facts about ideals in a Banach
algebra.

Lemma. Let I be an ideal in an algebraB with a unit. ThenI is
contained in a maximal ideal.

PROOF: Consider the familyI of all the ideals inB which containI.
I is partially ordered by inclusion and, by Zorn’s lemma, contains a
maximal linearly ordered subfamilyI0. The union of all the ideals in
I0 is a proper ideal, since it does not contain the unit element ofB, and
it is clearly maximal by the maximality ofI0. J

Remark: The condition1 ∈ B in the statement of the lemma can be
relaxed somewhat. For instance, ifI ⊂ B is an ideal and ifu ∈ B is
such that(u, I)–the ideal generated byu and I–is the whole algebra,
thenu belongs to no proper ideal containingI, and the union of all the
ideals inI0 (in the proof above) is again a proper ideal since it does not
containu.

2.6 DEFINITION: The idealI ⊂ B is regular if B has a unit modI;
that is, if there exists an elementu ∈ B such thatx − ux ∈ I for all
x ∈ B. If B has a unit element, everyI ⊂ B is regular. IfI is regular in
B andu is a unit modI then, since for everyx ∈ B, x = ux+ (x− ux),
we see that(u, I) = B. Using Remark 2.5 we obtain:

Lemma. LetI be a regular ideal in an algebraB. ThenI is contained
in a (regular) maximal ideal.

2.7 Lemmas 2.5 and 2.6 did not depend on the topological structure
of B. If B is a Banach algebra with a unit it follows from Lemma
2.1 that the distance of 1 to any proper ideal is one, and consequently
the closure of any proper ideal is again a proper ideal; in particular,
maximal ideals inB are closed. Our next lemma shows that the same
is true even ifB does not have a unit element provided we restrict our
attention to regular maximal ideals.
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Lemma. Let I be a regular ideal in a Banach algebraB. Letu be a
unit modI. Thendist(()u, I) ≥ 1.

PROOF: We show that ifv ∈ B and‖u− v‖ < 1, then(I, v) = B; hence
v 6∈ I. Forx ∈ B we have

(2.4) x =

( ∞
∑

0

(u− v)jx− u
∞
∑

0

(u− v)j
)

+ v

∞
∑

0

(u− v)jx.

The difference(
∑∞

0 (u − v)jx − u
∑∞

0 (u − v)j) belongs toI sinceu is
a unit modI, and the third term is a multiple ofv; hence(I, v) = B and
the lemma is proved. J

Corollary. Regular maximal ideals in a Banach algebra are closed.

2.8 DEFINITION: A multiplicative linear functionalon a Banach alge-
braB is a nontrivial† linear functionalw(x) satisfying

(2.5) w(xy) = w(x)w(y), x, y ∈ B.

Equivalently, it is a homomorphism ofB onto the complex numbers.

We do not require in the definition thatw be continuous—we can
prove the continuity:

Lemma. Multiplicative linear functionals are continuous and have
norms bounded by 1.

PROOF: Let w be a multiplicative linear functional; denote its kernel
byM . M is clearly a regular maximal ideal and is consequently closed.
The mappingx 7→ w(x) identifies canonically the quotient algebraB/M
with C, and if we denote by‖ ‖′ the norm induced onC by B/M , we
clearly have‖λ‖′ = ‖1‖′|λ| for all λ ∈ C. By (1.1), ‖1‖′ ≥ 1 and
hence|λ| ≤ ‖λ‖′ for all λ ∈ C; it follows that for anyx ∈ B, |w(x)| ≤
‖w(x)‖′ ≤ ‖x‖. J

Theorem. The mappingw 7→ ker(w) defines a one-one correspon-
dence between the multiplicative linear functionals onB and its regular
maximal ideals.

†A linear functional which is not identically zero.



VIII. C OMMUTATIVE BANACH ALGEBRAS 217

PROOF: A multiplicative linear functionalw is completely determined
by its kernelM : if x ∈ M thenw(x) = 0: if x 6∈ M , w(x) is the unique
complex number for whichx2 − w(x)x ∈ M . On the other hand, if
M is a regular maximal ideal in a commutative Banach algebraB, the
quotient algebraB/M is a field. SinceM is closedB/M is itself a
complex Banach algebra (Theorem 1.5), and by Theorem 2.4,B/M is
canonically identified withC. It follows that the mappingB 7→ B/M is
a multiplicative linear functional onB. J

Corollary. LetB be a commutative Banach algebra with a unit ele-
ment. An elementx ∈ B is invertible if, and only ifw(x) 6= 0 for every
multiplicative linear functionalw onB.

PROOF: If x is invertiblew(x)w(x−1) = 1 for every multiplicative lin-
ear functionalw, hencew(x) 6= 0. If x is not invertible thenxB is a
proper ideal which by Lemma 2.5, is contained in a maximal idealM .
Sincex = x ·1 ∈ xB ⊂ M it follows thatw(x) = 0 wherew is the
multiplicative linear functional whose kernel isM . J

2.9 At this point we can already give one of the nicest applications of
the theory of Banach algebras to harmonic analysis.

Theorem (Wiener). Letf ∈ A(T) and assume thatf vanishes nowhere
onT; thenf−1 ∈ A(T).

PROOF: We have seen in I.6.1 thatA(T) is an algebra under pointwise
multiplication and that the norm

‖f‖A(T) =
∞
∑

−∞
|f̂(n)|

is multiplicative. SinceA(T) is clearly a Banach space (isometric to
`1), it follows that it is a Banach algebra.

Let w be a multiplicative linear functional onA(T); denoteλ =
w(eit) (the value ofw at the functioneit ∈ A(T)). Since‖eit‖A(T) = 1
it follows from Lemma 2.8 thatλ ≤ 1; similarly we obtain thatλ−1 =
w((eit)−1) = w(e−it) satisfies|λ−1| ≤ 1, and consequently|λ| = l, that
is λ = eit0 for somet0. By the multiplicativity ofw, w(eint) = eint0 for
all n; by the linearity,w(P ) = P (t0) for every trigonometric polynomial
P ; and by the continuity,w(f) = f(t0) for all f ∈ A(T). It follows that
every multiplicative linear functional on A(T) is an evaluation at some
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to t0 ∈ T; every tot0 ∈ T clearly gives rise to such a functional and
we have thus identified all multiplicative linear functionals onA(T).
Let f ∈ A(T) such thatf(t) 6= 0 for all t ∈ T. By Corollary 2.8,f is
invertible inA(T), that is, there exists a functiong ∈ A(T) such that
g(t)f(t) = 1 or equivalentlyf−1 ∈ A(T). J

2.10 The algebraA(T) is closely related toA(R̂) and Theorem 2.9 can
be used in determining the maximal ideals ofA(R̂) (or, equivalently,
L1(R)); this can also be done directly and our proof below has the ad-
vantage of applying for many convolution algebras (see also exercise 4
at the end of this section).

Theorem. Every multiplicative linear functional onL1(R) has the
form f 7→ f̂(ξ0) for someξ0 ∈ R̂.

PROOF: Let w be a multiplicative linear functional onL1(R). As any
linear functional onL1(R) w has the formw(f) =

∫

f(x)h(x)dx for
someh ∈ L∞(R). We have

w(f ∗ g) =
∫∫

f(x− y)g(y)h(x)dy dx =
∫∫

f(x)g(y)h(x+ y)dx dy

w(f)w(g) =
∫

f(x)h(x)dx
∫

g(y)h(y)dy =
∫∫

f(x)g(y)h(x)h(y)dx dy

By the multiplicativity ofw and the fact that the linear combinations of
the form

∑

fj(x)gj(y), fj , gj ∈ L1(R) are dense inL1(RxR), it follows
thath(x+y) = h(x)h(y) almost everywhere inRxR. Thus (see exercise
VI.4.7) h(x) = eiξ0x for someξ0 ∈ R̂, andw(f) = f̂(ξ0). J

2.11 We shall use the term “function algebra” for algebras of contin-
uous functions on a compact or locally compact Hausdorff space with
pointwise addition and multiplication. It is clear that ifB is a function
algebra on a spaceX and ifx ∈ X, thenf 7→ f(x) is either a multiplica-
tive linear functional onB, or zero, and consequently (Lemma 2.8) if
B is a Banach algebra under a norm‖ ‖, we have|f(x)| ≤ ‖f‖ for all
x ∈ X andf ∈ B.

2.12 LetB be a function algebra on a locally compact Hausdorff space
X and assume that for allx ∈ X there exists a functionf ∈ B such that
f(x) 6= 0. Denote bywx the multiplicative linear functionalf 7→ f(x).
Recall thatB is separating onX if for any x1, x2 ∈ X, x1 6= x2, there
exists anfB such thatf(x1) 6= f(x2); this amounts to saying that if
x1 6= x2 thenwx1 6= wx2 . Thus, ifB is separating onX and not all the
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functions inB vanish at anyx ∈ X, the mappingx 7→ wx identifiesX
as a set of multiplicative linear functionals onB. In general we obtain
only part of the set of multiplicative linear functionals aswx, x ∈ X

(see exercise 6 at the end of this section); however, in some important
cases, every multiplicative linear functional onB has the formwx for
somex ∈ X. We give one typical illustration.

DEFINITION: A function algebraB on a spaceX is self-adjoint onX
if wheneverf ∈ B then alsof̄ ∈ B (wheref̄(x) = f(x)).

DEFINITION: A function algebraB on a spaceX is inverse closedif
1 ∈ B and wheneverf ∈ B andf(x) 6= 0 for all x ∈ X, thenf−1 ∈ B.
Thus we can restate Theorem 2.9 as: "A(T) is inverse closed."

Theorem. LetB be a separating, self-adjoint, inverse-closed function
algebra on a compact Hausdorff spaceX. Then every multiplicative
linear functional onB has the formwx (i.e.,f 7→ f(x)) for somex ∈ X.

PROOF: If we denoteMx = {f : f(x) = 0}, or equivalentlyMx =
ker(wx), then, by theorem 2.8, the assertion that we want to prove is
equivalent to the assertion that every maximal ideal inB has the form
Mx for somex ∈ X. We prove this by showing that every proper ideal
is contained in at least oneMx. Let I be an ideal inB and assume
I 6⊂ Mx for all xX. This means that for everyx ∈ X there exists a
function f ∈ I such thatf(x) 6= 0. Sincef is continuous,f(y) 6= 0
for all y in some neighborhoodOx of x. By the compactness ofX we
can find a finite number of pointsx1, . . . , xn with correspondingfj ∈ l
and neighborhoodsOj, j = 1, . . . , n, such thatX = ∪n1Oj and such that
fj(y) 6= 0 for y ∈ Oj. The functionϕ =

∑

j f̄jfj belongs toI, is positive
onX, and sinceB is assumed to be inverse closed,ϕ is invertible and
1 ∈ I, that is,I = B. J

Corollary. LetX be a compact Hausdorff space. Then every multi-
plicative linear functional onC(X) has the formwx (i.e.,f 7→ f(x)) for
somex ∈ X.

EXERCISES FOR SECTION 2

1. Use the method of the proof of 2.9 to determine all the multiplicative
linear functionals onC(T).

2. The same forCn(T).
Hint: ‖eimt‖Cn = O (mn).
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3. Check the results of exercises 1 and 2 using 2.12.
4. LetG be an LCA group, and letB denote the convolution algebraL1(G).

Show that every multiplicative linear functional onB has the formf 7→ f̂(γ)

for someγ ∈ Ĝ. Hint: Repeat the proof of 2.10.
5. Determine the multiplicative linear functionals onHC(D) (see section

1, example 5).
6. LetB be the sup-norm algebra of all the continuous functionsf on T

such thatf̂(n) = 0 for all negative integersn. Show thatB is a separating
function algebra onT; however, not every multiplicative linear functional onB
has the formwt for somet ∈ T. Hint: What is the relationship betweenB and
HC(D)?

7. Show that a commutative Banach algebraB may have no multiplicative
linear functionals (hint: example 9 of section 1); however, if1 ∈ B, B has at
least one such functional.

8. Determine the multiplicative linear functionals onC0(X), X being a
locally compact Hausdorff space.

3 THE MAXIMAL-IDEAL SPACE AND THE
GELFAND REPRESENTATION

3.1 Consider a commutative Banach algebraB and denote byM the
set of all of its regular maximal ideals. By Theorem 2.8 we have canon-
ical identification of everyM ∈ M with a multiplicative linear func-
tional, and hence, by Lemma 2.8, we can identifyM with a subset of
the unit ballU∗ of B∗–the dual space ofB. This identification induces
on M whatever topological structure we have onU∗, and two impor-
tant topologies come immediately to mind: the norm topology and the
weak-star topology. We limit our discussion of the metric induced on
M by the norm inB∗ to exercises 1-3 at the end of this section and refer
to [6] for a more complete discussion. The topology induced onM by
the weak-star topology onB∗ is more closely related to the algebraic
properties ofB; we shall refer to it as the weak-star topology onM.

Lemma. M ∪ {0} is closed inU∗ in the weak-star topology. If1 ∈ B
thenM is closed.

PROOF: In order to prove the first statement we have to show that if
u0 ∈ M, thenu0(xy) = u0(x)u0(y) for all x, y ∈ B. From this it would
follow that eitheru0 ∈ M or u0 = 0. Let ε > 0, x, y ∈ B and consider
the neighborhood ofu0 in U∗ defined by

(3.1) {u : |u(x)−u0(x)| < ε, |u(y)−u0(y)| < ε, |u(xy)−u0(xu)| < ε};
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Sinceu0 ∈ M there exists aw ∈ M in (3.1), and remembering that
w(xy) = w(x)w(y) we obtain

|u0(xy)− u0(x)u0(y)| ≤ ε(1 + ‖x‖+ ‖y‖).

Sinceε > 0 is arbitrary,u0(xy) = u0(x)u0(y).
In order to prove the second statement we have to show that if1 ∈ B,

then0 6∈ M. Sincew(1) = 1 for all w ∈ M, it follows that{u : |u(1)| <
1
2} is a neighborhood of0 disjoint fromM and the proof is complete.

J

SinceU∗ with the weak-star topology is a compact Hausdorff space,
it follows that the same is true forM ∪ {0} or, if 1 ∈ B, for M. This is
sufficiently important to be stated as:

Corollary. M, with the weak-star topology, is a locally compact Haus-
dorff space. If1 ∈ B thenM is compact.

We shall see later (see Theorem 3.5) that in some cases the com-
pactness ofM implies 1 ∈ B. However, considering example (9) of
section 1, we realize thatM may be compact (as a matter of fact empty
!) for algebras without unit. The reader who feels unconvinced by an
example consisting of the empty set should refer to exercise 4 at the
end of this section.

3.2 For x ∈ B andM ∈ M we now writex̂(M) = x mod M (i.e.,
the image ofx under the multiplicative linear functional corresponding
to M). By its definition, the weak-star topology onM is the weakest
topology such that all the functions{x̂(M) :x ∈ B} are continuous.

Lemma. If 1 ∈ B, the mappingx 7→ x̂ is a homomorphism of norm
one of B intoC(M).

PROOF: The algebraic properties of the mapping are obvious. For
everyM ∈ M and x ∈ B, |x̂(M)| ≤ ‖x‖ (Lemma 2.8) and hence
supM |x̂(M)| ≤ ‖x‖. On the other hand̂1(M) = 1 and the norm of
not smaller than one. J

If we do not assume1 ∈ B, the set{M : |x̂(M)| ≥ ε} is compact inM
for everyx ∈ B andε > 0; consequentlyx 7→ x̂ is a homomorphism
of norm at most one, ofB into C0(M). The subalgebrâB of C(M)
(resp. C0(M)) obtained as the image ofB under the homomorphism
x 7→ x̂ is calledthe Gelfand representation ofB. The functionx̂(M) is
sometimes referred to as the Fourier-Gelfand transform ofx.
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3.3 In many cases we can identify the weak-star topology on con-
cretely in virtue of the following simple fact (cf. [15], p.6): letτ, τ1
be Hausdorff topologies on a spaceM and assume thatM is compact
in both topologies and that the two topologies are comparable; then
τ = τ1. In our case this means that if1 ∈ B and if τ is a Hausdorff
topology onM in which M is compact, and such that all the func-
tionsx̂(M) in B̂ areτ -continuous, then, since the weak-star topology is
weaker than or equal toτ , the two are equal. By a formal adjoining of
a unit we obtain, similarly, that ifI 6∈ B andτ is a Hausdorff topology
on M such thatM is locally compact and̂B ⊂ C0(M, τ) thenτ is the
weak-star topology onM.

3.4 DEFINITION: The radical,Rad(B), of a commutative Banach
algebraB is the intersection of all the regular maximal ideals inB.

Rad(B) is clearly a closed ideal inB and is the kernel of the ho-
momorphismx 7→ x̂ of B ontoB̂. The radical ofB may coincide with
B (example 9 of section 1) in which case we say thatB is a radical
algebra; it may be a nontrivial proper ideal, or it may be reduced to
zero.

3.5 DEFINITION: A commutative Banach algebraB is semisimpleif
Rad(B) = 0. Equivalently:B is semisimple if the mappingx 7→ x̂ is an
isomorphism.

3.6 DEFINITION: Thespectral norm† of an elementx ∈ B, denoted
‖x‖sp , is supM∈M|x̂(M)|. The spectral norm can be computed from
theB norm by:

Lemma. ‖x‖sp = limn→∞‖xn‖1/n.

PROOF: The claim is that the limit on the right exists and is equal to
‖x‖sp. This follows from the two inequalities:

(a) ‖x‖sp ≤ lim inf‖xn‖1/n;
(b) ‖x‖sp ≥ lim sup‖xn‖1/n.

†The origin of the term is in the fact that the set of complex numbersλ for which
x− λ is not invertible (assuming1 ∈ B) is commonly called "the spectrum ofx" and the
spectral norm ofx is defined as sup|λ| for λ in the spectrum ofx. By Corollary 2.8, the
spectrum ofx coincides with the range of̂x(M), which justifies our definition; we prefer
to avoid using the much abused word "spectrum" in any sense other than that of chapter
VI.
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We notice first that for everyn, ‖x‖nsp = ‖xn‖sp ≤ ‖xn‖, that is,
‖x‖sp ≤ ‖xn‖1/n, which proves (a). In the proof of (b) we assume first
that1 ∈ B, and consider(x − λ)−1 as a function ofλ. By Lemma 2.3,
(x− λ)−1 is holomorphic for|λ| > ‖x‖sp. If |λ| > ‖x‖ we have

(x− λ)−1 = −λ−1(1− x/λ)−1 = −λ
∑

xnλ−n;

and ifF is any linear functional onB,

〈(x− λ)−1, F 〉 = −λ
∑

〈xn, F 〉λ−n

is holomorphic, hence convergent for|λ| > ‖x‖sp. Pick anyλ > ‖x‖sp
then〈λ−nxn, F 〉 is bounded (in fact, it tends to zero) for allF ∈ B∗,
and it follows from the Uniform Boundedness Principle thatλ−n‖xn‖ is
bounded, hencelim sup‖xn‖1/n < λ. Sinceλ is any number of modulus
greater than‖x‖sp, (b) follows. If 1 6∈ B we may adjoin a unit formally.
Both the norm and the spectral norm of an elementx ∈ B are the same
in the extended algebra and since (b) is valid in that algebra, the proof
is complete. J

Corollary. x ∈ Rad(B) ⇐⇒ lim‖xn‖1/n = 0

PROOF: x ∈ Rad(B) ⇐⇒ ‖x‖sp = 0. J

3.7 Lemma 3.6 allows a simple characterization of the Banach alge-
bras for which the spectral norm is equivalent to the original norm.
Such an algebra is clearly semisimple, and the Gelfand representation
identifies it with a (uniformly) closed subalgebra of the algebra of all
continuous functions on its maximal ideal space.

Theorem. A necessary and sufficient condition for the equivalence of
‖ ‖sp and the original norm‖ ‖ of a Banach algebraB is the existence
of a constantK such that‖x‖2 ≤ K‖x2‖ for all x ∈ B.

PROOF: If ‖ ‖ ≤ K1‖ ‖sp, then‖x‖2 <≤ K2
1‖x‖2sp ≤ K2

1 ; ‖x‖2; this
establishes the necessity. On the other hand, if the condition above is
satisfied,

‖x‖ ≤< K1/2‖x2‖1/2 ≤K1/2+1/4‖x4‖1/4 ≤

≤ · · · ≤ K1/2+1/4+···+2−n‖x2n‖2
−n
,

and, by Lemma 3.6,‖x‖ ≤ K‖x‖sp. J
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3.8 DEFINITION: A commutative Banach algebraB is self-adjointif
B̂ is self-adjoint on the maximal ideal spaceM.

Remark: Notice the specific reference to the maximal ideal space. The
algebra of functions defined on the segmentI = [0, 1] which are restric-
tions toI of functions holomorphic on the unit disc and continuous on
the boundary (i.e., of functions inHC(D)), is self-adjoint as a function
algebra onI. As a Banach algebra it is isomorphic toHC(D) which is
not self-adjoint. (See also exercise 11 at the end of this section).

Theorem. LetB be self-adjoint with unit and assume that there exists
a constantK such that‖x‖2 ≤ K‖x2‖ for all x ∈ B. ThenB̂ = C(M).

PROOF: By the Stone-Weierstrass theorem̂B is dense inC(M), and by
3.7 it is uniformly closed. J

3.9 Let F (z) =
∑

anz
n be a holomorphic function in the disc|z| < R

andx an element in a Banach algebraB such that‖x‖sp < R. It follows
from Lemma 3.6 that the series

∑

anx
n converges inB (if 1 6∈ B, we

assumea0 = 0) and we denote its sum byF (x). If M is a maximal ideal
in B, we clearly havêF (x)(M) = F (x̂(M)).

Instead of power series expansion, we can use the Cauchy integral
formula:

Theorem. Assume1 ∈ B. LetF be a complex-valued function, holo-
morphic in a region‡ G in the complex plane. Letx ∈ B be such that
the range of̂x is contained inG. Letγ be a closed rectifiable curve‡ in
G, enclosing the range of̂x, and whose index with respect to anyx̂(M),
M ∈ M, is one, and is zero with respect to any point outside G. Then
the integral

(3.2) F (x) =
1

2πi

∫

γ

F (z)
z − x

dz

is a well-defined element inB and

(3.3) ̂F (x)(M) = F (x̂(M))

for all M ∈M.

PROOF: The integrand is a continuousB-valued function ofz, hence
(3.2) is well defined and (3.3) is valid. J

‡Not necessarily connected!
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Remarks:: (a) The elementF (x) defined by (3.2) does not depend
on the particular choice ofγ. Also, it can be shown, using the Cauchy
integral (3.2), that for a givenx ∈ B, the mappingF 7→ F (x) is a homo-
morphism of the algebra of functions holomorphic in a neighborhood
of the range of̂x intoB (cf. [5], §6).

(b) Though the integral (3.2) clearly depends upon the assumption
1 ∈ B, we can "save" the theorem in the case1 6∈ B by formally adjoin-
ing a unit. Denoting byB′ the algebra obtained by adjoining a unit to
B, we notice that forx ∈ B the range of̂x overM′ (the maximal ideal
space ofB′) is the union of{0} with the range of̂x onM. If we require
0 ∈ G, then (3.2) can be taken as aB′-valued integral, and ifF (0) = 0
then ̂F (x) vanishes whenever̂x does, and in particularF (x) ∈ B.

3.10 Theorem 3.9 states essentially thatB̂ is stable under the oper-
ation of analytic functions. For the algebraA(T) this is Paul Levy’s
extension of Wiener’s theorem 2.9:

Theorem (Wiener-Levy).Let f(t) =
∑

f̂(j)eijt with
∑

|f̂(j)| < ∞.
LetF be holomorphic in a neighborhood of the range off . Theng(t) =
F (f(t)) has an absolutely convergent Fourier series.

3.11 As another simple application we mention that if there exists an
elementx ∈ B such that̂x(M) is bounded away from zero onM then,
denoting byF (z) the function which is identically 1 for|z| > ε and
identically zero for|z| < ε/2 (whereε = 1

2 inf|x̂(M)|), we see that
̂F (x) = 1 onM. If we assume thatB is semisimple it follows thatF (x)

is a unit element inB.
The assumption that̂x is bounded away from zero for somexeB

implies directly thatM is compact (see the proof of 3.1); if we assume,
on the other hand, thatM is compact, then0 is not a limit point of
M in U∗ and consequently there exists a neighborhood of zero inU∗,
disjoint from M. By the definition of the weak-star topology this is
equivalent to the existence of a finite number of elementsx1, . . . , xn in
B such that|x̂1|+· · ·+|x̂n| is bounded away from zero onM. Operating
with functions of several complex variables one can prove again that
1 ∈ B. We refer the reader to ([5], §13) for a discussion of operation by
functions of several complex variables on elements inB and state the
following theorem without proof:

Theorem. If B is semisimple andM is weak-star compact, then1 ∈
B.
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3.12 Another very important theorem which is proved by application
of holomorphic functions of several complex variables, deals with the
existence of idempotents:

Theorem. Assume thatM is disconnected and letU ⊂ M be both
open and compact in the weak-star topology. Then there exists an ele-
mentu ∈ B such that

(a) u2 = u

(b) û(M) =

{

0 M 6∈ U
1 M ∈ U

Remarks:(i) If B is semisimple then (a) is a consequence of (b).
(ii) The idempotentu allows a decomposition ofB into a direct sum

of ideals. WriteI1 = uB = {x ∈ B :x = ux} andI2 = {x ∈ B :ux = 0};
it is clear thatI1 andI2 are disjoint closed ideals and for anyx ∈ B,
x = ux+ (x− ux); thusB = I1 ⊕ I2.

We refer to ([5], §14) for a proof; here we only point out that if
we know thatB is uniformly dense inC(M) (resp. C0(M)), and in
particular ifB is self-adjoint onM, theorem 3.12 follows from 3.9. In
fact, there exists an elementx ∈ B such that|x̂(M)− 1| < 1

4 for M ∈ U
and|x̂(M)| < 1

4 for M ∈M \ U . DefiningF (z) as1 for |z − 1| < 1
4 and

0 for |z| < 1
4 , we obtainu asF (x).

EXERCISES FOR SECTION 3

1. Show that the distance between any two points ofT, considered as the
maximal ideal space ofC(T), in the metric induced by the dual (in this case
M(T)) is equal to2; hence the norm topology is discrete.

2. We have seen that the maximal ideal space ofHC(D) is D = D ∪ T =

{z : |z| ≤ 1}. Show that the norm topology onD (i.e., the topology induced
by the metric of the dual space on the set of multiplicative linear functionals)
coincides with the topology of the complex plane onD and with the discrete
topology onT.
Hint: Schwarz’ lemma.

3. Show that the relation‖w1 − w2‖ < 2 is an equivalence relation in the
space of maximal ideals (multiplicative linear functionals) of a sup-normed Ba-
nach algebraB. The corresponding equivalence classes are called the "Gleason
parts" of the maximal ideal space.

4. LetB be an arbitrary Banach algebra and letB1 be a Banach algebra
with trivial multiplication (example 9 of section 1). Denote byB̃ the orthogonal
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direct sum ofB andB1, that is, the set of all pairs(x, y) with x ∈ B, y ∈ B1

with the following operations:

(x, y) + (x1, y1) = (x+ x1, y + y1)

λ(x, y) = (λx, λy) for complexλ

(x, y)(x1, y1) = (xx1, 0)

and the norm‖(x, y)‖ = ‖x‖B + ‖y‖B1 . Show thatB is a Banach algebra
without unit and with the same maximal ideal space asB.

5. LetX be a compact (locally compact) Hausdorff space. Show that the
maximal ideal space ofC(X) (resp.C0(X)), with the weak-star topology, co-
incides withX as a topological space.

6. We recall that a set{x1, . . . , xn} ⊂ B is a set of generators inB if it is
contained in no proper closed subalgebra ofB, or, equivalently, if the algebra
of polynomials inx1, . . . , xn is dense inB. Show that if{x1, . . . , xn} is a set of
generators inB, then the mappingM 7→ (x̂1(M), . . . , x̂m(M)) identifiesM, as
a topological space, with a bounded subset ofCn.

7. Let I be a closed ideal inB. Denote byh(I)–the hull ofI–the set of all
regular maximal ideals containing I. Show that the maximal ideal space ofB/I

can be canonically identified withh(I).
8. Let I1, I2 be (nontrivial) closed ideals in an algebraB such that1 ∈ B.

Assume thatB = I1 ⊕ I2. Show thatM is disconnected.
9. Show that not every multiplicative linear functional onM(T) has the

form µ 7→ µ̂(n) for some integern.
10. Show that for any LCA groupG, L1(G) andM(G) are semisimple.
11. LetB be a Banach algebra with a unit, realized as a self-adjoint function

algebra on a spaceX.
(a) Prove thatB is self-adjoint if, and only if,f̂ is real valued onM for every
f ∈ B which is real valued onX.
(b) Prove thatB is self-adjoint if, and only if,1 + |f |2 is invertible inB for all
f ∈ B.

12. Let{wn}n∈Z be a sequence of positive numbers satisfying1 ≤ wn+m ≤
wnwm for all n,m ∈ Z. Denote§ byA{wn} the subspace ofA(T) consisting of
the functionsf for which

‖f‖{wn} =

∞
∑

−∞

|f̂(n)|wn <∞.

(a) Show that with the norm so defined,A{wn} is a Banach algebra.
(b) Assume that for somek > 0, wn = O

(

|n|k
)

. Show that the maximal
ideal space ofA{wn} can be identified withT.

§Compare with exercise V.2.7.
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(c) Under the assumption of (b), show thatA{wn} is self-adjoint if, and
only if,

wnw
−1
−n = O (1) as|n| → ∞.

13. LetB be a Banach algebra with norm‖ ‖0 and maximal ideal space
M. LetB1 ⊂ B be a dense subalgebra which is itself a Banach algebra under
a norm‖ ‖1. Assume that its maximal ideal space is againM (this means that
every multiplicative linear functional onB1 is continuous there with respect to
‖ ‖0). Assume that‖ ‖0 and‖ ‖1 are consistent onB1 and denote by‖ ‖α,
0 < α < 1, the interpolating norms (see IV.I.2 and exercise 1.4) and byBα the
completion ofB1 with respect to the norm‖ ‖α. Show that the maximal ideal
space ofBα is againM.

Remark: If B is semisimple the norm‖ ‖0 is majorized by‖ ‖1, (see section
4) and hence by‖ ‖α for all 0 < α < 1.

14. LetB1 ⊂ B′ ⊂ B be Banach algebras with norms‖ ‖1, ‖ ‖′ and
‖ ‖ respectively. Assume thatB1 is dense inB and inB′ in their respective
norms and thatB andB1 have the same maximal ideal spaceM. Show that the
maximal ideal space ofB′ is againM.

Remark: The assumption thatB1 is dense inB′ is essential; see exercise 11 of
Section 9.

4 HOMOMORPHISMS OF BANACH ALGEBRAS

4.1 We have seen (Lemma 2.8) that homomorphisms of any Banach
algebra into the fieldC are always continuous. The Gelfand represen-
tation enables us to extend this result:

Theorem. LetB be a semisimple Banach algebra, letB1 be any Ba-
nach algebra and letϕ be a homomorphism ofB1 into B. Thenϕ is
continuous.

PROOF: We use the closed graph theorem and prove the continuity of
ϕ by showing that its graph is closed. Letxj ∈ B1 and assume that
xj → x0 in B1 andϕxj → y0 in B. Let M be any maximal ideal in
B; the mapx 7→ ϕ̂x(M) is a multiplicative linear functional onB1, and
by Lemma 2.8 it is continuous. It follows that̂ϕxj(M) converges to
ϕ̂x0(M); on the other hand, sinceϕxj → y0 in B, ϕ̂xj(M) → ŷ0(M),
so thatϕ̂x0(M) = ŷ0(M). Henceϕx0 − y0 ∈ M for all maximal ideals
M in B and, by the assumption thatB is semisimple,ϕx0 = y0. Thus
the graph ofϕ is closed andϕ is continuous. J

Corollary. There exists at most one norm, up to equivalence, with
which a semisimple algebra can be a Banach algebra.
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4.2 Let B andB1 be Banach algebras with maximal ideal spacesM

andM1, respectively. Letϕ be a homomorphism ofB1 into B. As we
have seen in the course of the preceding proof, everyM ∈ M defines
a multiplicative linear functionalw(x) = ϕ̂x(M) onB1. We denote the
corresponding maximal ideal byϕM . It may happen, of course, that
w is identically zero and the "corresponding maximal ideal" is then the
entireB1; thusϕ is a map fromM into M1 ∪ {B1}. In terms of linear
functionals,ϕ is clearly the restriction toM of the adjoint ofϕ.

Theorem. ϕ : M 7→ M1 ∪ {B1} is continuous when both spaces are
endowed with the weak-star topology. Ifϕ(B1) is dense inB in the
spectral norm, thenϕ is a homeomorphism ofM onto a closed subset
of M1.

PROOF: A sub-basis for the weak-star topology onM1 ∪ {B1} is the
collection of sets of the formU1 = {M : x̂1(M1) ∈ O}, O an open set in
C andx1 ∈ B1. Theϕ pre-image inM of U1 is U = {M : ϕ̂x1(M) ∈ O}
which is clearly open. If̂ϕ(B1) is uniformly dense inB̂, the functions
ϕ̂x1(M), x1 ∈ B1, determine the weak-star topology onM and it is
obvious thatϕ is one-to-one intoM1 and that it is a homeomorphism.
What remains to show† is that if ϕ̂(B1) is uniformly dense inB̂ then
ϕ(M) is closed inM1. We start with two remarks:

(a) ForM1 ∈ M1 the mapϕx1 7→ x̂1(M1) is well defined onϕ(B1)
if, and only if, for allx1 ∈ B1, ϕx1 = 0 implies x̂1(M1) = 0.

(b) When the above-mentioned map is defined, it is clearly multi-
plicative and (assuminĝϕ(B1) uniformly dense in̂B) it can be extended
to a multiplicative linear functional onB if, and only if, for allx1 ∈ B1:

|x̂1(M1)| ≤ ‖ϕx1‖sp .

Assume now thatM1 ∈ M1 is in the weak-star closure ofϕ(M). For
anyx1 ∈ B1 andε > 0 there exists anM ∈M such that

|x̂1(M1)− x̂1(ϕM)| = |x̂1(M1)− ϕ̂x1(M)| < ε.

Sinceε > 0 is arbitrary and since|ϕ̂x1(M)| ≤ ‖ϕx1‖sp, it follows that
|x̂1(M1)| ≤ ‖ϕx1‖sp, and by our remark (b) there exists anM0 ∈ M

such thatϕ̂x1(M0) = x̂1(M1) for all x1 ∈ B1; that is,ϕM0 = M1 and
M1 ∈ ϕ(M). J

†Notice that if1 ∈ B thenM is compact andϕ(M) is therefore compact, so that in
this case the rest of the proof is superfluous.
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4.3 From 4.2 it follows in particular that ifϕ is an automorphism of
B, thenϕ is a homeomorphism ofM, and ifB is semisimple (so that
we can identify it with its Gelfand representation), thenϕ is given by
ϕ̂x(M) = x̂(ϕM).

In other words:Every automorphism, of a semisimple Banach alge-
bra is given by a (homeomorphic) "change of variable" on the maximal
ideal space.

Of course not every homeomorphism ofM defines an automor-
phism of B̂ (or B), and the question which homeomorphisms do, is
equivalent to the characterization of all the automorphisms ofB and
can be quite difficult.

?4.4 The following lemma is sometimes helpful in determining the au-
tomorphisms of Banach algebras of functions on the line.

Lemma. Let ϕ be a continuous function defined on an interval[a, b]
and having the following property: Ifr0, r1, . . . , rN are real numbers
such that all the2N points

(4.1) ηα = r0 +
N
∑

1

εjrj , εj = 0, 1

lie in [a, b], then the numbers{ϕ(ηj)} are linearly dependent over the
rationals. Then the set of points in a neighborhood of whichϕ is a
polynomial of degree smaller thanN is everywhere dense in[a, b].

PROOF: Let I be any interval contained in[a, b]; we show that there ex-
ists an intervalI ′ ⊂ I such thatϕ coincides onI ′ with some polynomial
of degree smaller thanN . Without loss of generality we may assume
thatI ⊃ [0, N +1] so that if0 ≤ rj ≤ 1, j = 0, 1, . . . , N , all the pointsηα
defined by (4.1) are contained inI. By the assumption of the lemma,
to each choice of(r0, . . . , rN ) such that0 ≤ rj < 1, corresponds at least
one vector(A1, . . . , A2N ) with integral entries not all of which vanish,
such that

(4.2)
2N
∑

α=1

Aαϕ(ηα) = 0.

Denote byE(A1, . . . , A2N ) the set of points(r0, . . . , r
N ) in theN + 1-

dimensional cube0 ≤ rj ≤ 1, for which (4.2) is valid. Sinceϕ is con-
tinuous it follows thatE(A1, . . . .A2N ) is closed for every(A1, . . . , A2N )
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and since
⋃

E(A1, . . . , A2N ) is the entire cube0 ≤ rj ≤ 1, it follows
from Baire’s category theorem that someE(A1, . . . , A2N ) contains a
box of the form{r0

j ≤ rj ≤ r1
j}, j = 0, . . . , N .

Let ε > 0 be smaller than12 (r1
0 − r0

0) and letψε be infinitely differ-
entiable function carried by(−ε, ε) such that

∫

ψα(ξ)dξ = 1. We put
ϕε = ϕ ∗ ψε and notice that

2N
∑

α=1

Aαϕε(ηα) = ψε
(

2N
∑

α=1

Aαϕ(ηα)
)

and consequently

(4.3)
2N
∑

α=1

Aαϕε(ηα) = 0

for

(4.4) r0
0 + ε ≤ r0 ≤ r1

0 − ε, r0
j ≤ rj ≤ r1

j , j = 1, . . . , N.

Now, ϕε is infinitely differentiable and we can differentiate (4.3) with
respect to variousrj ’s, j > 1. Assume thatAα0 6= 0 and that the coef-
ficient of rj0 in ηα is equal to one. Differentiating (4.3) with respect to
rj0 we obtain

(4.5)
∑

Aαϕ
′
ε(ηα) = 0

where the summation extends now only over those values ofα such
that the coefficient ofrj0 in ηα is equal to one. Also, (4.5) is nontrivial
since it contains the termAα0ϕ

′
ε(ηα0). Repeating this argument with

otherrj ’s we finally obtain a nontrivial relationAαϕ
(M)
ε (ηα) = 0, that

is ϕ(M)
ε (ηα) = 0, with M < N, and it follows that on the range ofηα

corresponding to (4.4), sayI ′, ϕε is a polynomial of degree smaller
thanM − 1 < N . As ε → 0, ϕε → ϕ andϕ is a polynomial of degree
smaller thanN on I ′. J

Corollary. If ϕ, as above, isN-times continuously differentiable on
[a, b], then it is a polynomial of degree smaller thanN on [a, b].

?4.5 Theorem (Beurling-Helson).Let ϕ be an automorphism of
A(R̂) and letϕ be the corresponding change of variable onR̂ (see 4.3).
Thenϕ(ξ) = aξ + b with a, b ∈ R̂ anda 6= 0.
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PROOF: The proof is done in two steps. First we show thatϕ is linear
on some interval on̂R, and then that the fact thatϕ is linear on some
interval implies that it is linear on̂R.

First step: By 4.1,ϕ is a continuous linear operator onA(R̂). Let
N be an even integer such that2N > ‖ϕ‖4; we claim thatϕ satisfies the
condition of Lemma 4.4 for this value ofN . If we show this, it follows
from 4.4 thatϕ is a polynomial on some intervalI ′ ⊂ R̂. ϕ mapsI ′

onto some intervalI0 and, sinceϕ is an automorphism we can repeat
the same argument forϕ−1 and obtain that the inverse function ofϕ
is a polynomial on some intervalI ′0 ⊂ I0. Since a polynomial whose
inverse function (on some interval) is again a polynomial must be linear
it follows thatϕ is linear onI ′.

The adjointϕ∗ of ϕ maps the unit measure concentrated atξ to the
unit measure concentrated atϕ(ξ). Since‖ϕ∗‖ = ‖ϕ‖ we obtain that
for every choice ofaj ∈ C andξj ∈ R̂

(4.6)
∥

∥

∑

ajδϕ(ξj)

∥

∥

FL∞ ≤ ‖ϕ‖
∥

∥

∑

ajδξj
∥

∥

FL∞

We remember also that by Kronecker’s theorem (VI.9.2) if{ϕ(ξj)} are
linearly independent over the rationals, then‖

∑

ajδϕ(ξj)‖FL∞ =
∑

|aj |.
We show now that for every choice ofr0, r1, . . . , rN ∈ R̂, if the 2N

pointsηα given by (4.1) are all distinct, there exists a measureν carried
by {ηα} such that‖ν‖M(R̂) = 1 and‖ν‖FL∞ ≤ 2−N/4.

Put

(4.7) µj =
1
4

(δ0 + δr2j−1 + δr2j − δ(r2j−1+r2j)) j = 1, . . . , N/2.

The total mass ofµj is clearly 1 and

µ̂j(x) =
1
4

(1 + eir2j−1x + eir2jx − ei(r2j−1+r2j)x) =

=
1
2
eir2j−1x/2 cos r2j−1x/2 +

i

2
e−i(r2j−1+r2j/2)x sin r2r−1x/2

(4.8)

so that

(4.9) |µ̂(x)| ≤ 1
2

(|cos r2j−1x/2|+ |sin r2j−1x/2|) ≤ 2−
1
2 .

We now takeν = δr0 ∗ µ1 ∗ · · · ∗ µN/2. ν is clearly carried by{ηj} and if
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theη’s are all distinct the total mass ofν is 1. On the other hand

‖ν‖FL∞ ≤
N/2
∏

1

‖µj‖FL∞ ≤ 2−N/4.

If {ηj} are linearly independent over the rationals it follows first that the
η’s are all distinct, and by (4.6) applied toν, and Kronecker’s theorem
1 ≤ ‖ϕ‖2−N/4 which contradicts the assumption2N > ‖ϕ‖4.

Second step:For alln andλ, ‖einξ̂Vλ‖A(R̂) ≤ 3; hence

‖einϕ(ξ)
̂Vλ(ϕ(ξ))‖A(R̂) ≤ 3‖ϕ‖.

As λ → ∞, ̂Vλ(ϕ(ξ)) becomes 1 on larger and larger intervals onR̂,
which eventually cover any finite interval on̂R. By VI.2.4 (or by taking
weak limits), einϕ(ξ) is a Fourier-Stieltjes transform of a measure of
total mass at most3‖ϕ‖. If we denote byµ1 the measure onR such that
µ̂1(ξ) = eiϕ(ξ), it follows thateinϕ(ξ) is the Fourier-Stieltjes transform
of

µ∗n1 = µ1 ∗ · · · ∗ µ1 (n times)

and we have

(4.10) ‖µ∗n1 ‖M(R) ≤ 3‖ϕ‖.

By the first step we know thatϕ(ξ) = aξ + b on some intervalI on
R̂. We now consider the measureµ obtained fromµ1 by multiplying it
by e−ib and translating it bya. We haveµ̂(ξ) = e−i(aξ+b)µ̂1(ξ), that is
µ̂(ξ) = 1 on I (and|µ̂(ξ)| = 1 everywhere). It follows from (4.10) that

(4.11) ‖µ∗n‖M(R) ≤ 3‖ϕ‖.

Consider the measuresνn = 2−n(δ + µ)∗n, (δ = δ0 being the unit mass
at ξ = 0). We have

νn = 2−n
n
∑

0

(

n

j

)

µ∗j

and consequently‖νn‖ ≤ 3‖ϕ‖; also,ν̂n(ξ) =
(

1+µ̂(ξ)
2

)n

which is equal

to 1 if µ̂(ξ) = 1 and tends to zero if̂µ(ξ) 6= 1. Taking a weak limit ofνn
asn→∞we obtain a measureν such that̂ν is equal almost everywhere
to the indicator function of the set{ξ : µ̂(ξ) = 1} which clearly implies
ν̂(ξ) = 1 identically onR̂, hencêµ(ξ) = 1 almost everywhere on̂R and
sinceµ̂ is continuous,̂µ(ξ) = 1 everywhere. It follows thateiϕ(ξ)) =
ei(aξ+b) everywhere on̂R, andϕ(ξ) = aξ + b. J
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Remarks:(a) The first step of the proof applies to a large class of
algebras. For instance, ifB is an algebra whose maximal ideal space is
R̂,B ⊃ A(R̂) and for each constantK there exists an integerN such that
every set{ηα} defined by (4.1) (such that theη’s are all distinct) carries
a measureν such that‖ν‖B∗ < K−1‖ν‖M(R), step 1 goes verbatim for
B.

(b) If we assume thatϕ is continuously differentiable, step 2 is su-
perfluous. In fact, step 1 shows that the set of points near whichϕ is
linear is everywhere dense and ifϕ′ exists and is continuous, the slope
must be always the same andϕ must be linear. This proves that for
the algebras discussed in remark (a), the continuously differentiable
changes of variable induced by an automorphism must be linear.

(c) We have used the fact thatϕ was an automorphism ofA(R̂)
rather than an endomorphism once, when deducing in the first step that
ϕ was linear in some interval from the fact that it is a polynomial (on
an interval) whose inverse function is also a polynomial. This part
of the argument can be replaced (see exercise 12 at the end of this
section), and we thereby obtain that every nontrivial endomorphism of
A(R̂) is given by a linear change of variable (and consequently is an
automorphism).

EXERCISES FOR SECTION 4

1. LetB be a semisimple Banach algebra with norm‖ ‖ andB1 ⊂ B a
subalgebra ofB which is a Banach algebra with a norm‖ ‖1. Show that there
exists a constantC such that‖x‖ ≤ C‖x‖1 for all x ∈ B1.

2. LetB be a Banach algebra of infinitely differentiable functions on[0, 1],
having[0, 1] as its space of maximal ideals. Show that there exists a sequence
{Mn}∞n=0 such that sup|f (n)(x)| ≤Mn‖f‖ for everyf ∈ B.

3. Show that the space of all infinitely differentiable functions on[0, 1]

cannot be normed so as to become a Banach algebra. 4. Let B be a semisimple
Banach algebra with maximal ideal spaceM. Prove that a homeomorphismψ
of M is induced by an endomorphism ofB if, and only if f̂ ∈ B̂⇒ f̂ ◦ ψ ∈ B̂,
where(f̂ ◦ ψ)(M) = f̂(ψ(M)).

5. What condition onψ above is equivalent to its being induced by an
automorphism?

6. Construct examples of semisimple Banach algebrasB andB1 and a
homomorphismϕ : B1 7→ B (such that̂ϕB1 is not dense in̂B) and such that
the corresponding mappingϕ (a) is not one-to-one; (b) is one-to-one but not a
homeomorphism; (c) mapsM onto a dense proper subset ofM1.

7. Show that a homeomorphismϕ of T onto itself is induced by an auto-
morphism ofA(T) if, and only if,einϕ ∈ A(T) for all n and‖einϕ‖A(T) = O (1).
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8. (Van der Corput’s lemma): (a) Letϕ be real-valued on an interval[a, b],
and assume that it has there a monotone derivative satisfyingϕ′(ξ) > ρ > 0 on
[a, b]. Show that

∣

∣

∫ b

a
eiϕ(ξ)dξ

∣

∣ ≤ 2/ρ.
(b) Instead of assumingϕ′(ξ) > ρ > 0 on [a, b], assume thatϕ is twice

differentiable and thatϕ′′ > κ > 0 on [a, b]. Show that

∣

∣

∫ b

a

eiϕ(ξ)dξ
∣

∣ ≤ 6κ−
1
2

Hint: For (a) write
∫

eiϕ(ξ)dξ = −i
∫

dΦ(ξ)/ϕ′(ξ), whereΦ(ξ) = eiϕ(ξ). and
apply the so-called "second mean-value theorem." For (b), ifϕ′(c) = 0, write

∫ b

a

=

∫ c−κ−
1
2

a

+

∫ c+κ
− 1

2

c−κ−
1
2

+

∫ b

c+κ
− 1

2

the middle integral is clearly bounded by2κ−
1
2 ; evaluate the other two integrals

by (a).
9. Letϕ be twice differentiable, real-valued function on[0, 1] and assume

thatϕ′′ > κ > 0 there. Show that

∣

∣

∫ 1

0

ξeiϕ(ξ)dξ
∣

∣ ≤ 12κ−
1
2

Hint: Integrate by parts and use exercise 8.
10. Letϕ be twice differentiable, real-valued function on[−1, 1] and as-

sume thatϕ′′ > η > 0 there. PutΦn(ξ) =
(

1 − |ξ|
)

einϕ(ξ) for |ξ| ≤ 1 and
Φn(ξ) = 0 for |ξ| ≥ 1 Show that for allx ∈ R,

∣

∣

1

2π

∫ 1

−1

Φn(ξ)eiξxdξ
∣

∣ ≤ 4η−
1
2 n−

1
2

Hint: Φn(ξ)eiξx =
(

1−|ξ|
)

ei(nϕ(ξ)−ξx). The second derivative of the exponent
is≥ ηn; use exercise 9.

11. Show that for somec > 0, ‖Φn‖A(R̂) ≥ c
√
n; Φn being the function

introduced in exercise 10.
Hint: Use exercise 10, Plancherel’s theorem, and the fact that‖Φn‖L2(R̂), is
independent ofn.

12. Prove that every nontrivial endomorphism ofA(R̂) is given by a linear
change of variable.
Hint: See remark (c) of 4.5. Ifϕ is the change of variable induced by an
endomorphismϕ, ϕ is a polynomial on some interval and if it is not linear,
ϕ′′(ξ) > η (orϕ′′(ξ) < −η) for someη > 0 on some intervalI. A linear change
of variable allows the assumption[−1, 1] ⊂ I. As in the second step of the proof
of 4.5, ‖einϕ(ξ)

̂Vλ(ϕ(ξ))‖A(R̂) ≤ 3‖ϕ‖, hence‖Φn(ξ)̂Vλ(ϕ(ξ))‖A(R̂) ≤ 3‖ϕ‖.
For λ sufficiently largeΦn(ξ)̂Vλ(ϕ(ξ)) = Φn(ξ) and by exercise 11,‖Φn‖A(R̂)

tends to infinity withn, which gives the desired contradiction.
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5 REGULAR ALGEBRAS

5.1 DEFINITION: A function algebraB on a compact Hausdorff space
X is regular if, given a pointp ∈ X and a compact setK ⊂ X such
that p 6∈ K, there exists a functionf ∈ B such thatf(p) = 1 andf
vanishes onK. The algebraB is normal if, given two disjoint compact
setsK1,K2 in X, there existsf ∈ B such thatf = 0 onK1 andf = 1
onK2.

Examples: (a) LetX be a compact Hausdorff space. ThenC(X) is
normal. This is essentially the contents of Urysohn’s lemma (see [15],
p. 6).

(b) HC(D), the algebra of functions holomorphic inside the unit
disc and continuous on the boundary, is not regular.

Theorem (partition of unity). LetX be a compact Hausdorff space
andB a normal function algebra onX, containing the identity. Let
{Uj}nj=1, be an open covering ofX. Then there exist functionsϕj, j =
1, . . . , n, in B satisfying

(5.1)







support of ϕj ⊂ Uj
∑

ϕj = 1.

PROOF: We use induction onn. Assumen = 2. LetV1, V2 be open sets
satisfyingVj ⊂ Uj andV1 ∪V2 = X. There exists a functionf ∈ B such
thatf = 0 on the complement ofV1 andf = 1 on the complement of
V2. Putϕ1 = f , ϕ2 = 1− f .

Assume now that the statement of the theorem is valid for coverings
by fewer thann open sets and letU1, . . . , Un be an open covering of
X. Put U ′ = Un−1 ∪ Un and apply the induction hypothesis to the
coveringU1, . . . , Un−2, U

′ thereby obtaining functionsϕ1, . . . , ϕn−2, ϕ
′

in B, satisfying (5.1). Denote the support ofϕ′ by S and letVn−1, Vn
be open sets such thatVj ⊂ Uj (j = n − 1, n) andVn−1 ∪ Vn ⊃ S. Let
f ∈ B such thatf = 0 onS \ Vn−1 andf = 1 onS \ Vn. Putϕn−1 = ϕ′f

andϕn = ϕ′(1− f). The functionsϕ1, . . . , ϕn satisfy (5.1). J

Remark: The family{ϕj} satisfying (5.1) is calleda partition of unity
in B, subordinate to{Uj}. Partitions of unity are the main tool in tran-
sition from "local" properties to "global" ones. A typical and very im-
portant illustration is Theorem 5.2 below.
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5.2 Let F be a family of functions on a topological spaceX. A func-
tion f is said to belong toF locally at a pointp ∈ X, if there exists a
neighborhoodU of p and a functiong ∈ F such thatf = g in U . If f
belongs toF locally at everyp ∈ X, we say thatf is locally inF .

Theorem. LetX be a compact Hausdorff space andF a normal al-
gebra of functions onX. If a functionf belongs toF locally, then
f ∈ F .

PROOF: For everyp ∈ X letU be an open neighborhood ofp andg ∈ F
such thatg = f in U . SinceX is compact, we can pick a finite cover of
X, {Uj}nj=1, among the above mentioned neighborhoods. Denote the
corresponding elements ofF by gj; that is,gj = f in Uj. Let {ϕj} be a
partition of unity inF subordinate to{Uj}. Then

(5.2) f =
∑

ϕjf =
∑

ϕjgj ∈ F . J

Remark: It is clear from (5.2) that ifJ ⊂ F is an ideal, and iff belongs
to J locally (i.e.,gj ∈ J), thenf ∈ J .

5.3 We consider a semisimple Banach algebraB with a unit, and de-
note its maximal ideal space byM

DEFINITION: The hull, h(I), of an idealI in B, is the set of allM ∈M

such thatI ⊂ M . Equivalently:h(I) is the set of all common zeros of
x̂(M) for x ∈ I. Since the set of common zeros of any family of
continuous functions is closed,h(I) is always closed inM.

DEFINITION: Thekernel, k(E), of a setE ⊂M, is the ideal∩M∈EM .
Equivalently: k(E) is the set of allx ∈ B such that̂x(M) = 0 on E.
k(E) is always a closed ideal inB.

5.4 If E ⊂ M, thenh(k(E)) is a closed set inM that clearly contains
E. One can show (see [15], p. 60) that the hull-kernel operation is a
proper closure operation defining a topology onM. Sinceh(k(E)) is
closed inM, the hull-kernel topology is not finer than the weak-star
topology. The two coincide if for every closed setE ⊂ M we have
E = h(k(E)) which means that ifM0 6∈ E there exists an element
x ∈ k(E) such that̂x(M0) 6= 0. Remembering thatx ∈ k(E) means
x̂(M) = 0 onE, we see that the hull-kernel topology coincides with the
weak-star topology onM if, and only if B̂ is a regular function algebra.
In this case we say thatB is regular.
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DEFINITION: A semisimple Banach algebraB is regular (resp. nor-
mal) if B̂ is regular (resp. normal) onM.

5.5 Theorem. Let B be a regular Banach algebra andE a closed
subset ofM. Then the maximal ideal space ofB/k(E) can be identified
withE.

PROOF: The maximal ideals inB/k(E) are the canonical images of
maximal ideals inB which containk(E), that is, which belong to
h(k(E)) = E. This identifiesM(B/k(E)) andE as sets and we claim
that they can be identified as topological spaces. We notice that the
Gelfand representation ofB/k(E) is simply the restriction of̂B to E. A
typical open set in a sub-base for the topology ofM(B/k(E)) has the
form

U = {M :M ∈ E, x̂E(M) ∈ O},

O an open set in the complex plane,x ∈ B, andxE = xmod k(E).
A typical open set in a sub-base for the topology ofM has the form
U ′ = {M : x̂1(M) ∈ O′} with O′ open inC andx1 ∈ B. If O = O′ and
x = x1 thenU = E ∩ U ′ and the topology onM(B/k(E)) is precisely
the topology induced byM. J

5.6 Theorem. LetB be a regular Banach algebra,I an ideal inB,E
a closed set inM such thatE ∩ h(I) = ∅. Then there exists an element
x ∈ I such that̂x(M) = 1 onE.

PROOF: The ideal generated byI andk(E) is contained in no maximal
ideal sinceM ⊃ (I,k(E)) implies M ⊃ I andM ⊃ k(E), that is,
M ∈ E ∩ h(I). It follows that the image ofI in B/k(E) is the entire
algebra and consequently there exists an elementx ∈ I such thatx ≡ 1
mod k(E), which is the same as sayingx̂(M) = 1 onE. J

Corollary. A regular Banach algebra is normal.

PROOF: If E1 andE2 are disjoint closed sets inM, apply the theorem
to I = k(E1), andE = E2. J

5.7 We turn now to some general facts about the relationship between
ideals in regular Banach algebras and their hulls.

Theorem. LetI be an ideal in a regular Banach algebraB andx ∈ B.
Thenx̂ belongs toI locally at every interior point ofh(x) and at every
pointM 6∈ h(I).
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PROOF: We writeh(x) for h((x)), that is, the set of zeros ofx̂ in M. If
M is an interior point ofh(x), x̂ = 0 in a neighborhood ofM and0 ∈ I.
If M 6∈ h(I), M has a compact neighborhoodE disjoint fromh(I). By
Theorem 5.6 there exists an elementy ∈ I such that̂y(M) = 1 onE.
Now x̂ = x̂ŷ onE andxy ∈ l. J

Corollary. Let I be an ideal in a regular semisimple Banach algebra
B andx ∈ B. If the support of̂x is disjoint fromh(I), thenx ∈ I.

PROOF: By Theorem 5.7,̂x belongs toI locally at every point, and
by Corollary 5.6 and the remark following Theorem 5.2 it follows that
x̂ ∈ Î hencex ∈ l. J

5.8 Let E be a closed subset ofM. The setI0(E) of all x ∈ B such
that x̂(M) vanishes on a neighborhood ofE is clearly an ideal and if
B is regular,h(I0(E)) = E. It follows from Corollary 5.7 thatI0(E) is
contained in every idealI such thath(I) = E. In other words:I0(E) is
the smallest ideal satisfyingh(I) = E, andI0(E) is the smallest closed
ideal satisfyingh(I) = E. On the other hand,k(E) is clearly the largest
ideal satisfyingh(I) = E.

DEFINITION: A primary idealin a commutative Banach algebra is an
ideal contained in only one maximal ideal.

In other words, an ideal is primary if its hull consists of a single
point.

If B is a semisimple regular Banach algebra, every maximal ideal
M ⊂ B contains a smallest primary ideal, namelyI0({M}). We sim-
plify the notation and writeI0(M) instead ofI0({M}). The closure,
I0(M), is clearly the smallest closed primary ideal contained inM . In
some casesI0(M) = M and we say then thatM contains no nontrivial
closed primary ideals. Such is the case ifB = C(T) (trivial) and also if
B = A(T) (Theorem VI.4.11’). On the other hand, ifB = Cn(T) with
n ≥ 1, the maximal ideal{f : f(t0) = 0} contains the nontrivial closed
primary ideal{f : f(t0) = f ′(t0) = 0}.

5.9 DEFINITION: A semisimple Banach algebraB satisfies condition
(D) atM ∈M if, for any x ∈ M there exists a sequence{xn} ⊂ I0(M)
such thatxxn → x in B. We say thatB satisfies the condition (D) ifB
satisfies (D) at everyM ∈M.

If B satisfies condition (D) atM ∈ M, M contains no nontrivial
closed primary ideal sinceI0(M) is dense inM . It is not known if
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the condition thatM contains no nontrivial closed primary ideals is
sufficient to imply (D) or not; however, if we know that there exists a
constantK such that for every neighborhoodU of M there existsy ∈ B
such that‖y‖ ≤ K, ŷ has its support inU andŷ = 1 in some (smaller)
neighborhood ofM , then we can deduce (D) fromI0(M) = M . For
x ∈ M let zn ∈ I0(M) such thatzn → x. Let Un be a neighborhood of
M such thatzn = 0 onUn, and letyn ∈ B such that‖yn‖ ≤ K, yn = 0
outsideUn andyn = 1 nearM . Putxn = 1− yn. We havexn ∈ I0(M),
x− xxn = xyn = (x− zn)yn (sinceznyn = 0), and
‖(x− zn)yn‖ ≤ K‖x− zn‖ → 0. J

5.10 Lemma. LetB be a regular semisimple Banach algebra satisfy-
ing condition (D) atM0 ∈M. LetI be a closed ideal inB andx ∈M0.
Assume that there exists a neighborhoodU ofM0 such thatx ∈ l locally
at everyM ∈ U \ {M0}. Thenx ∈ l locally atM0.

PROOF: Let y ∈ B be such that the support ofŷ is included inU and
ŷ = 1 in some neighborhoodV of M0. yx belongs toI locally at every
M 6= M0 andyxxn belongs locally toI everywhere ({xn} being the
sequence given by (D); remember thatx̂n = 0 nearM0); henceyxxn ∈ I
and sincexxn → x andI is closed,yx ∈ I. But ŷx = x̂ in V and the
lemma follows. J

Theorem (Ditkin-Shilov). Let B be a semisimple regular Banach
algebra satisfying (D). LetI be a closed ideal inB and x ∈ k(h(I))
such that the intersection of the boundary ofh(x) with h(I) contains no
nontrivial perfect sets. Thenx ∈ I.

PROOF: Denote byN the set ofM ∈ M such thatx does not belong
to I locally at M . By Theorem 5.7,N ⊂ (bdry(h)(x)) ∩ h(I) and
by the lemma,N has no isolated points; henceN is perfect and since
(bdry(h)(x))∩h(I) contains no nontrivial perfects sets,N = ∅ andx ∈ I.

J

Corollary. Under the same assumptions onB; if E ⊂ M is compact
and its boundary contains no nontrivial perfect subsets, thenI0(E) =
k(E).
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5.11 We have been dealing so far with algebras with a unit element.
The definitions and most of the results can be extended to algebras
without a unit element simply by identifying the algebraB as a maxi-
mal ideal inB ⊕ C. Instead ofM we consider its one point compact-
ification M and we say thatB is regular onM if B ⊕ C is regular on
M. This is equivalent to adding to the regularity condition the follow-
ing regularity at infinity: givenM ∈ M, there existŝx ∈ B̂ such that
x̂(M) = 1 andx̂ has compact support. Similarly, we have to require in
defining "x belongs locally toI" not onlyx ∈ I locally at everyM ∈M,
but alsox ∈ I at infinity, that is, the existence of somey ∈ l such that
x̂ = ŷ outside of some compact set. The condition (D) at infinity is: for
everyx ∈ B there exists a sequencexn ∈ B such that̂xn are compactly
supported andxxn → x.

EXERCISES FOR SECTION 5

1. LetB be a semisimple Banach algebra, letx1, . . . , xn ∈ B be generators
for B, and assume that

∫ ∞

−∞

log‖eiyxj‖
1 + y2

dy <∞, j = 1, . . . , n.

Show thatB is regular.
2. Describe the closed primary ideals ofCn(T), n a positive integer.

6 WIENER’S GENERAL TAUBERIAN THEOREM

In this section we prove Wiener’s lemma stated in the course of
the proof of theorem VI.6.1, and Wiener’s general Tauberian theorem.
These results are obtained as more or less immediate consequences of
some of the material in the preceding section; it should be kept in mind
that Wiener’s work preceded, and to some extent motivated, the study
of general Banach algebras.

6.1 We start with the analog of Wiener’s lemma forA(T).

Lemma. Let f, f1 ∈ A(T) and assume thatf is bounded away from
zero on the support off1. Thenf1f

−1 ∈ A(T).

PROOF: A(T) is a regular Banach algebra. Denote byI the principal
ideal generated byf ; thenh(I) = {t : f(t) = 0} is disjoint from the
support off1. By corollary 5.7,f1 ∈ I, which meansf1 = gf for some
g ∈ A(T). Thusf1f

−1 ∈ A(T) locally and we apply Theorem 5.2. J
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6.2 We obtain Wiener’s lemma by showing thatA(R̂) is locally the
same asA(T).

Lemma. Let ε > 0 and letψ be a continuously differentiable function
supported by(−π + ε, π − ε). There exists a constantK depending on
ψ such that for all−1 ≤ α ≤ 1, ‖eiαtψ‖A(T) ≤ K.

PROOF: We clearly have‖eiαtψ‖C1(T) bounded, and theA(T) norm is
majorized by theC1(T) norm. J

Theorem. Let f be a continuous function carried by(−π + ε, π − ε).
Then

∫

|f̂(ξ)|dξ <∞ ⇐⇒
∑

|f̂(n)| <∞.

PROOF: Let ψ ∈ C1 be carried by(−π + ε/2, π − ε/2), andψ(t) = 1
on (−π + ε, π − ε). Assume that

∑

|f̂(n)| < ∞; thenf ∈ A(T); hence
feiαtψ ∈ A(T) and‖feiαtψ‖A(T) ≤ K‖f‖A(T) for −1 ≤ α ≤ 1. Now
feiαtψ = feiαt and itsA(T) norm is(1/2π)

∑

|f̂(n−α)|. Integrating the
inequality

∑

|f̂(n− α)| ≤ K
∑

|f̂(n)|

on 0 ≤ α ≤ 1, we obtain
∫

|f̂(ξ)|dξ ≤ K
∑

|f̂(n)|.

Conversely, if we assume that
∫

|f̂(ξ)|dξ =
∑∫ 1

0
|f̂(n − α)|dα < ∞

it follows from Fubini’s theorem that for almost allα, 0 ≤ α ≤ 1,
∑

|f̂(n−α)| <∞, which meanseiαtf ∈ A(T). As in the first part of the
proof this implieseiαtfe−iαtψ = f ∈ A(T) and

∑

|f̂(n)|. J

Corollary. IdentifyingT with (−π, π], a functionf defined in a neigh-
borhood oft0 ∈ T belongs toA(T) locally at t0 if, and only if, it belongs
toA(R̂) at t0.

6.3 Lemma (Wiener’s lemma). Let f andf1 ∈ A(R̂) be such that
the support off1 is compact andf is bounded away from zero on it.
Thenf1 = gf with g ∈ A(R̂).

PROOF: Without loss of generality we assume that the support off1 is
included in(−2, 2). Replacingf by fϕ, whereϕ ∈ A(R̂), ϕ = 1 on
(−2, 2) andϕ = 0 outside of(−3, 3), it follows from Lemma 6.1 that
g = f1f

−1 ∈ A(T); hence, by Theorem 6.2,g ∈ A(R̂). J
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6.4 Theorem (Wiener’s general Tauberian theorem). Let f ∈
A(R̂) and assumef(ξ) 6= 0 for all ξ ∈ R̂. Thenf is contained in no
proper closed ideal ofA(R̂).

PROOF: By Lemma 6.2 it follows that iff1 ∈ A(R̂) has compact sup-
port, thenf1/f ∈ A(R̂), that is,f1 belongs to(f) (the principal ideal
generated byf). By theorem VI.1.12,(f) is dense inA(R̂) and the
proof is complete. J

Instead of considering principal ideals, one may consider any closed
ideal I. If for every ξ ∈ R̂, there existsf ∈ I such thatf(ξ) 6= 0, then
I = A(R̂). As a corollary we obtain again that all maximal ideals in
A(R̂) have the form{f : f(ξ0) = 0} for someξ0 ∈ R̂. We leave the
details to the reader.

6.5 The Tauberian character of Theorem 6.4 may not be obvious at
first glance. A Tauberian theorem is a theorem that indicates condi-
tions under which some form of summability implies convergence or,
more generally, another form of summability. The first such theorem
was proved by Tauber and stated that iflimx→1−0

∑∞
n=0 anx

n = A and
an = o(1/n), then

∑

an = A. Hardy and Littlewood, who introduced
the term "Tauberian theorem," improved Tauber’s result by showing
that Tauber’s conditionan = o(1/n) can be replaced by the weaker
an = O(1/n), an improvement that is a great deal deeper and harder
than Tauber’s rather elementary result. Wiener’s original statement of
Theorem 6.4 was much more clearly Tauberian:

Theorem (Wiener’s general Tauberian theorem).LetK1 ∈ L1(R)
andf ∈ L∞(R). AssumêK(ξ) 6= 0 for all ξ ∈ R̂ and

(6.1) lim
x→∞

∫

K1(x− y)f(y)dy = A

∫

K1(x)dx.

Then

(6.2) lim
x→∞

∫

K2(x− y)f(y)dy = A

∫

K2(x)dx.

for all K2 ∈ L1(R).

Remark: If f(x) tends to a limit whenx → ∞ then (6.1) is clearly
satisfied withA = limx→∞ f(x). (6.1) states thatf(x) tends to the limit
A in the mean with respect to the kernelK1; the theorem states that
the existence of the limit with respect to the meanK1 implies that of
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the limit with respect to any meanK2, providedK̂1 never vanishes.
We refer to [27], chapter 3, for examples of derivations of "concrete"
Tauberian theorems from theorem 6.5.

PROOF OF THEOREM6.5: Denote byI the subset ofL1(R) of functions
K2 satisfying (6.2). I is clearly a linear subspace, invariant under trans-
lation and closed in theL1(R) norm, that is, a closed ideal inL1(R).
SinceK1 ∈ I, it follows from Theorem 6.4 thatI = L1(R) and the
proof is complete. J

7 SPECTRAL SYNTHESIS IN REGULAR ALGEBRAS

LetB be a semisimple regular Banach algebra with a unit†. Denote
by M its maximal ideal space and byB∗ its dual.

7.1 DEFINITION: A functional ν ∈ B∗ vanishes on an open setO if
〈x, ν〉 = 0 for everyx ∈ B such that the support of̂x is contained inO.

Lemma. If ν ∈ B∗ vanishes on the open setsO1 andO2 thenν van-
ishes onO1 ∪O2.

PROOF: Let x ∈ B and assume that the support ofx̂ is contained in
O1∪O2. Denote byO3 the complement inM of the support of̂x and let
ϕ̂j , j = 1, 2, 3 be a partition of unity inB̂ subordinate toOj , j = 1, 2, 3.
Thenx = xϕ1 +xϕ2 and〈x, ν〉 = 〈xϕ1, ν〉+ 〈xϕ2, ν〉 = 0, sincexϕ3 = 0
andxϕj has its support inOj. J

From the lemma it follows immediately that ifν ∈ B∗ vanishes on
every set in some finite collection of open sets it vanishes also on their
union; and sinceM is compact the same holds for arbitrary unions. The
union of all the open sets on whichν vanishes is the largest set having
this property and we define the support,Σ(ν), of ν as the complement
of this set (compare with VI.4).

7.2 ForM ∈ M we denote byδM the multiplicative linear functional
associated withM , 〈x, δM 〉 = x̂(M); thusδM is naturally identifiable
with the measure of mass 1 concentrated atM .

DEFINITION: A functionalν ∈ B∗ admits spectral synthesisif ν be-
longs to the weak-star closure of the span inB∗ of {δM}M∈ Σ(ν).

†The standing assumption1 ∈ B is introduced for convenience only. It is not essential
and the reader is urged to extend the notions and results to the case1 6∈ B.
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Since the subspace ofB orthogonal to the span of{δM}M∈ Σ(ν) is

precisely the set of allx ∈ B such that̂x(M) = 0 for all M ∈ Σ(ν), that
is, the idealk(Σ(ν)), we see, using the Hahn-Banach theorem as we did
in VI.6, thatν admits spectral synthesis if, and only if, it is orthogonal
to k(Σ(ν)).

7.3 It seems natural to define a set of spectral synthesis as a setE

having the property that everyν ∈ B∗ such thatΣ(ν) = E admits
spectral synthesis. IfM is very large, however, there may be setsE

which are the support of noν ∈ B∗ and we prefer to introduce the
following.

DEFINITION: A closed setE ⊂ M is a set of spectral synthesisif
everyν ∈ B∗ such thatΣ(ν) ⊂ E is orthogonal tok(E).

This condition implies in particular that ifΣ(ν) = E thenν admits
spectral synthesis.

It is clear that the conditionΣ(ν) ⊂ E is equivalent to the condition
thatν be orthogonal toI0(E). The condition thatE is of spectral syn-
thesis is therefore equivalent to requiring that everyν ∈ B∗ which is
orthogonal toI0(E) be also orthogonal tok(E). By the Hahn-Banach
theorem this meansI0(E) = k(E). Thus:E is of spectral synthesis if
and only ifI0(E) is dense ink(E). We restate Corollary 5.10 as:

Theorem. Assume thatB satisfies (D) and letE ⊂ M be closed and
its boundary contain no perfect subsets. ThenE is of spectral synthesis.

7.4 In some cases every closedE ⊂ M is of spectral synthesis and
we say that spectral synthesis is possible inB. Spectral synthesis is
possible ifB = C(X), X a compact Hausdorff space. Another class of
examples is given by Theorem 7.3:B satisfying (D) withM contain-
ing no perfect subsets. In particular, ifG is a discrete abelian group and
B = A(G) (to which we formally add a unit if we want to remain within
our standing assumptions), then (D) is satisfied andM contains no per-
fect subsets. It follows that for discreteG spectral synthesis holds in
A(G). We devote the rest of this section to prove:

Theorem (Malliavin). If G is a nondiscrete LCA group then spectral
synthesis fails forA(G).

The construction is somewhat simpler technically in the caseG = D
than in the general case and we do it there. For a nondiscrete LCA
groupG, a Cantor setE onG is a compact set for which there exists
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a sequence{rj} ⊂ G such that the finite sums
∑n

1 εjrj , εj = 0, 1, are
all distinct and form a dense subset ofE. The construction we give
below can be adapted to show that every Cantor set ofG contains a
subset which is not of spectral synthesis forA(G). Notice that every
nondiscrete LCA group has Cantor subsets. We mention, finally, that
for G = Rn with n ≥ 3, any sphere is an example of a set which is
not of spectral synthesis; this was shown by L. Schwartz (some eleven
years before the general case was settled).

7.5 We state the principle on which our construction depends in the
general setting of this section, that is, for a semisimple regular Banach
algebra with a unit. For typographical simplicity we identifyB andB̂
and use the lettersf, g and so on, for elements ofB. We remind the
reader that the dualB∗ is canonically aB module.

Theorem. Let f ∈ B andµ ∈ B∗, µ 6= 0, and denote

(7.1) C(u) = ‖eiufµ‖B∗ .

Assume that for an integerN > 1

(7.2)
∫ ∞

−∞
C(u)|u|Ndu <∞.

Then there exists a real valuea0 such thatf0 = a0 + f has the property
that the closed ideals generated byfn0 , n = 1, ..., N + 1 are all distinct.

PROOF: We begin with two remarks.
First: There is no loss of generality assuming that〈1, µ〉 6= 0. In fact

for someh ∈ B 〈h, µ〉 = 〈1, hµ〉 6= 0 and since

‖eiufhµ‖B∗ ≤ ‖h‖B‖eiufµ‖B∗ ,

(7.2) remains valid if we replaceµ by hµ.
Second: Write Φ(u) = 〈1, eiufµ〉; then |Φ(u)| ≤ C(u) ∈ L1(R),

Φ(u) is continuous andΦ(0) = 〈1, µ〉 6= 0. It follows that Φ̂(ξ) is well
defined and is not identically zero so that there exists a real numbera0

for which Φ̂(−a0) 6= 0. This is thea0 we are looking for (as we shall
see) and again we may simplify the typography by assuminga0 = 0;
we simply replacef by a0 + f and notice thateiu(a0+f) = eiua0eiuf so
that‖eiu(a0+f)µ‖B∗ = ‖eiufµ‖B∗ . Thus we assume

(7.3)
∫ ∞

−∞
〈1, eiufµ〉du 6= 0
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For p ≤ N theB∗-valued integral

(7.4) ∆p(f, µ) =
∫ ∞

−∞
(iu)p(eiufµ)du

is well defined since the integrand is continuous and, by (7.2), norm
integrable.

Let q ≥ 0 be an integer,g1 ∈ B and consider

(7.5) Ip,q = 〈g1f
q,∆p(f, µ)〉 =

∫ ∞

−∞
〈g1f

q, eiufµ〉(iu)pdu.

Integrating (7.5) by parts we obtain

(7.6)
Ip,q = −pIp−1,q−1 if p > 0, q > 0,

Ip,q = 0 if p = 0, q > 0.

It follows that if q > p we haveIp,q = 0 no matter what isg1 ∈ B. In
other words,∆p(f, µ) is orthogonal to the ideal generated byfp+1.

Now, using (7.6) withp = q, g1 = 1, we obtain

(7.7) 〈fp,∆p(f, µ)〉 = (−1)pp!
∫ ∞

−∞
〈1, eiufµ〉du 6= 0

by (7.3). Thusfp does not belong to the closed ideal generated byfp+1

and the proof is complete. J

Corollary. The setsf−1(0) andΣ(µ)∩ f−1(0) are not sets of spectral
synthesis.

PROOF: The hull of the ideal generated byfp is f−1(0). Since we found
distinct closed ideals havingf−1(0) as hull,f−1(0) is not of spectral
synthesis. The fact that∆p(f, µ) is orthogonal to the ideal generated by
fp+1 implies (see Corollary 5.7) thatΣ(∆p(f, µ)) ⊂ f−1(0).

For g ∈ B we have

(7.8) 〈g,∆p(f, µ)〉 =
∫ ∞

−∞
〈g, eiufµ〉(iu)pdu =

∫ ∞

−∞
〈geiuf , µ〉(iu)pdu

so that if the support ofg is disjoint fromΣ(µ) then〈g,∆p(f, µ)〉 = 0.
This means thatΣ(∆p(f, µ)) ⊂ Σ(µ); hence

(7.9) Σ(∆p(f, µ)) ⊂ Σ(µ) ∩ f−1(0). J
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7.6 In the caseB = A(D) we show thatµ andf can be chosen so that
C(u), defined by (7.1), goes to zero faster than any (negative) power
of |u|. We can take asµ simply the Haar measure ofD and we shall
havef quite explicitly too, but before describing it we make a few
observations.

We identify the elements ofD as sequences{εn}, εn = 0, 1, the
group operation being addition mod 2. Functions onD are functions
of the infinitely many variablesεn, n = 1, 2, . . . . Denote byxm the
element inD all of whose coordinates except themth are zero. De-
note byEm the subgroup ofD generated byx2m−1 andx2m, that is,
{0, x2m−1, x2m, x2m−1 + x2m}. Denote byµm the measure having the
mass1/4 at each of the points ofEm. µm is the Haar measure onEm
and one checks easily that the convolutionsµ1 ∗ · · · ∗µn converge in the
weak-star topology of measures to the Haar measureµ of D. We write
this formally asµ =

∏∞
1 ∗µm.

Lemma. LetE1 = {x1, . . . , xk} andE2 = {y1, . . . , yl} be finite sets on
a groupG. LetE = E1 +E2 = {xp + yq, p = 1, . . . , k, q = 1, . . . , l} and
assume thatE haskl points. Leth1 andh2 be functions onE such that
h1(xp+yq) = g1(xp) andh2(xp+yq) = g2(yq). Then, ifµm is a measure
carried byEm,m = 1, 2,

(7.10) h1h2(µ1 ∗ µ2) = (g1µ1) ∗ (g2µ2).

PROOF: Both sides of equation (7.10) are carried byE and have the
massg1(xp)g2(yq)µ1({xp})µ2({yq}) atxp + yq. J

The lemma can be generalized either by induction or by direct ver-
ification to sums ofN setsEm. The flaw in notation of denoting by
Em first specific sets and then, in the lemma, variable sets (and simi-
larly for µ) is forgivable in view of the fact that we use the lemma pre-
cisely for the setsEm, and the measuresµm, introduced above. Thus,
if hm, m = 1, 2, . . . are functions onD and if hm depends only on the
variablesε2m−1 andε2m, we have

(7.11)
(
N
∏

1

hm

)

µ1 ∗ · · · ∗ µN = (h1µ1) ∗ · · · ∗ (hNµN ).

We shall havef =
∑

amϕm with ϕm ∈ A(D), ϕm depending only on the
variablesε2m−1 andε2m, and the series convergent in theA(D) norm.
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Using (7.11) and taking weak-star limits, we obtain the convenient for-
mula:

(7.12) eiufµ =
∞
∏

1

∗(eiuamϕmµm).

We recall that the norm of a measure inA(D)∗ is the supremum of its
Fourier transform, and that the Fourier transform of a convolution is the
product of the transforms of the factors; thus we obtain

(7.13) ‖eiufµ‖A(D)∗ ≤
∞
∏

1

‖eiuamϕmµm‖A(D)∗

The functionsϕm are defined by:

(7.14) ϕ(x) = ε2m−1ε2m for x = {εj}.

If we denote byξm the character onD defined by

(7.15) < x, ξm >= (−1)εm for x = {εj},

then

(7.16) ϕm = 1
4 (1 + ξ2m−1ξ2m − ξ2m−1 − ξ2m)

so thatϕm ∈ A(D), and‖ϕm‖A(D) = 1.
The Fourier transform of the measureeiαϕmµm, can be computed

explicitly: if ξ = {ζj} ∈ D̂ then

∫

< x, ξ > eiαϕm(x)dµm(x) =

= 1
4

(

1 + (−1)ζ2m−1 + (−1)ζ2m + eiα(−1)ζ2m−1+ζ2m
)

,

(7.17)

which assumes only the three values:3+eiα

4 , 1−eiα
4 , eiα−1

4 . It follows
that if |α− π| ≤ π/3 mod 2π, then

(7.18) ‖eiαϕmµm‖A(D)∗ ≤ 3
4 .

Theorem. Denote the Haar measure onD by µ. There exists a real-
valued functionf ∈ A(D) such that, as|u| → ∞, C(u) = ‖eiufµ‖A(D)∗

vanishes faster than any power of|u|.
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PROOF: Let {Nk} be a sequence of integers such that
∑

Nk2−k < ∞.
Write am = π/3 ·2k−1 for

∑k−1
1 Nj < m ≤

∑k
1 Nj. We clearly have

∑

am = (2π/3)
∑

Nk2−k < ∞, so that writingf =
∑

amϕm as in
(7.14), we havef ∈ A(D). For 2k ≤ u ≤ 2k+1 we have2π/3 ≤ uam ≤
4π/3 for theNk values ofm such thatam = π/3·2k−1. For these values
it follows from (7.18) that

‖eiuamϕmµm‖A(D)∗ ≤ 3
4

and consequently, using (7.13),

(7.19) C(u) ≤
∞
∏

1

‖eiuamϕmµm‖A(D)∗ ≤ ( 3
4 )Nk

since all the factors in (7.19) are bounded by 1 and at leastNk of them
by 3

4 . If we takeNk = 2kk−2 we obtainC(u) ≤ ( 3
4 )u log2 u for u → ∞,

and since for real-valuedf , C(−u) = C(u), the proof is complete. J

Corollary. There exists a real-valuedf ∈ A(D) such that the closed
ideals generated byfn, n = 1, 2, . . . , are all distinct.

EXERCISES FOR SECTION 7

1. Prove that for every functiona(u) such thatu−1a(u) is monotonic and
∑

2−ka(2k) < ∞ , there exists a real-valued functionf ∈ A(D) for which
C(u) = O

(

e−a(|u|)).
2. Denote byBα, 0 < α < 1, the algebras obtained fromA(D) andC(D)

by the interpolation procedure described in IV.1. Show that spectral synthesis
fails inBα.

8 FUNCTIONS THAT OPERATE IN REGULAR
BANACH ALGEBRAS

8.1 We again consider regular semisimple Banach algebras with unit.

DEFINITION: A function F , defined in a setΩ in the complex plane,
operates inB if F (x̂) ∈ B̂ for everyx̂ ∈ B̂ whose range is included in
Ω. The study of functions that operate inB is also calledthe symbolic
calculus inB. Theorem 3.9 can be stated as: a functionF defined
and analytic in an open setΩ operates in (any)B. Saying thatB is
self-adjoint is equivalent to saying thatF (z) = z̄ operates inB. If B
is self-adjoint and regular, we can prove Theorem 3.9 and a great deal
more without the use of Cauchy’s integral formula. We first prove:
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Lemma. LetB be a regular, self-adjoint Banach algebra with maxi-
mal ideal spaceM. LetM0 ∈ M and letU be a neighborhood ofM0.
Then there exists an elemente ∈ B such that̂e has its support withinU ,
ê = 1 on some neighborhoodV ofM0 and0 ≤ ê ≤ 1 onM.

PROOF: By the regularity ofB there exists anx ∈ B such that̂x has
its support inU andx̂ ≡ 1 in some neighborhoodV of M0. Takeê =
sin2 πx̂x̂/2. (Notice thatsin2 πx̂x̂/2 is well defined by means of power
series.) J

Theorem. Let x ∈ B and letf be a continuous function onM such
that in a neighborhood of eachM0 ∈ M, f can be written asF (x̂),
whereF (ζ) = F (ξ + iη) is real-analytic inξ andη in a neighborhood
of x̂(M0). Thenf ∈ B̂.

Remark: The two points in which this result is more general than The-
orem 3.9 are:

(a) We allow real-analytic functions.
(b) We allow many-valued functions (providedF (x̂(M)) can be de-

fined as a continuous function.)

PROOF: We show thatf(M) ∈ B̂ locally at every point. LetM0 ∈ M,
x ∈ B, andF such thatf = F (x̂) in a neighborhoodU0 of M0. Re-
placingx by x − x̂(M0) andF (ζ) by F (ζ − x̂(m0)), we may assume
that x̂(M0) = 0, and that near zero, say for|ξ| ≤ 1, |η| ≤ 1, we have
F (ξ + iη) =

∑

an,mξ
nηm.

Let U ⊂ U0 be a neighborhood ofM0 such that|x̂(M)| < 1
2 in U , let

ê ∈ B̂ have the properties listed in the lemma and writex̂1 = <(êx̂) =
1
2 (êx̂ + êx̂) and x̂2 = =(êx̂). By Lemma 3.6 the series

∑

an,mx
n
1x

m
2

converges inB and we denotey =
∑

an,mx
n
1x

m
2 ; thenŷ(M) = F (x̂(M))

in V . J

8.2 It is not hard to see that operation by analytic (or real-analytic)
functions, even in the setup of Theorem 8.1 which allows many valued
functions, is continuous. This follows from the (local) power series
expansion. There is no reason to assume, however, that whenever a
functionF operates in a regular semisimple algebraB, the operation is
continuous (see exercise 2 at end of this section). Still, the regularity
of B makes it easy to "condense singularities" which allows us to show
that the "bad" behavior of the operation is localized onM to the neigh-
borhood of a finite set. The notions, arguments, and results that follow
are typical of regular algebras.
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8.3 We assume thatB is self-adjoint, regular, and with a unit, and we
assume for simplicity thatF is a continuous function, defined on the
real line, and operates inB.

DEFINITION: F operates boundedlyif there exist constantsε > 0 and
K > 0 such that ifx̂(M) is real valued and‖x‖ < ε, then† ‖F (x)‖ < K.
F operates boundedly atM ∈ M, if there exists a neighborhoodUM
of M and constantsε > 0 andK > 0 such that if the support of̂x is
contained inUM and‖x‖ < ε, then‖F (x)‖ ≤ K.

Lemma. F operates boundedly if, and only if, it operates boundedly
at everyM ∈M.

PROOF: ReplacingF by F −F (0) we may assumeF (0) = 0. It is clear
that if F operates boundedly, it does so locally at eachM . Assume that
the operation is bounded locally, and pickM1,M2, . . . ,Mn such that the
corresponding neighborhoodsUM1 , . . . , UMn coverM. Let V1, . . . , Vn
be open sets such thatVj ⊂ Umj and such that{Vj} cover M. Let
ψj ∈ B̂ be real valued with support insideUMj andψj ≡ 1 on Vj,
and let{ϕj} be a partition of the unity in̂B relative to{Vj}. Let εj
andKj be the constants corresponding toUMj and now takeε > 0 so
that ‖εψj‖ < εj for all j, andK =

∑

Kj‖ϕj‖. Assume that̂x ∈ B̂

is real valued and‖x‖ < ε; then‖x̂ψj‖ ≤ ‖x̂‖‖ψj‖ < εj and x̂ψj is
supported byUMj , hence‖F (x̂ψj)‖ ≤ Kj. But F (x̂) =

∑

ϕjF (x̂ψj) so
that‖F (x)‖ ≤

∑

‖ϕj‖Kj = K. J

8.4 Lemma. LetB be a regular, self-adjoint Banach algebra andF
a function defined on the real line and operating in B. Then there exists
at most a finite number of points ofM at whichF does not operate
boundedly.

PROOF: Again we assume, with no loss of generality, thatF (0) = 0.
Assume thatF operates unboundedly at infinitely many points inM and
pick a sequence of such points{Mj} having pairwise disjoint neighbor-
hoodsVj. We now pick a neighborhoodWj of Mj such thatWj ⊂ Vj.
Saying thatF does not operate boundedly atMj means that, given any
neighborhoodWj of Mj and any constantsεj > 0 andKj > 0, there
exists a real-valuedfj ∈ B̂ carried byWj such that‖fj‖ ≤ εj, and
‖F (fj)‖ ≥ Kj. We takeεj = 2−j andKj = 2j‖ϕj‖, whereϕj ∈ B̂ is
carried byVj andϕj ≡ 1 onWj. We now considerf =

∑

fj andF (f).

†We denote byF (x) the element inB whose Gelfand transform isF (x̂).
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By the choice ofεj the series definingf converges and consequently
f ∈ B̂ andF (f) ∈ B̂. Now

‖F (f)‖ ≥ 1
‖ϕj‖

‖ϕjF (f)‖ =
1
‖ϕj‖

‖F (fj)‖ ≥ 2j for all j,

which gives the desired contradiction. J

8.5 For some Banach algebras, Lemma 8.4 takes us as far as we can
go; for others it can be improved. Consider, for instance, an automor-
phismσ of B inducing the change of variablesσ on M. If f ∈ B̂, then
F (σf) = F (f(σM)) = σ(F (f)), which means that the operations by
F (on the function) and byσ (on the variables) commute. Sinceσ is
a bounded, invertible operator, it follows thatF operates boundedly at
a pointM ∈ M if and only if it operates boundedly atσM . From this
remark and Lemma 8.4 it follows that ifF does not operate boundedly
atM ∈ M, the set of images ofM under all the automorphisms ofB
is finite. In particular, if for everyM ∈ M the set{σM}, σ ranging
over all the automorphisms ofB, is infinite, then every function that
operates inB does so boundedly at everyM ∈ M, and consequently,
operates boundedly. In particular:

Theorem. Let G be a compact abelian group andF a continuous
function defined on the real line. IfF operates inA(G), it does so
boundedly.

PROOF: The maximal ideal space ofA(G) is G. For everyy ∈ G the
mappingf 7→ fy

‡ is an automorphism ofA(G) which carries the max-
imal ideal corresponding toy to that corresponding to0 ∈ G. If G is
infinite the statement of the theorem follows from the discussion above.
If G is finite the operation byF is clearly continuous. J

Remark: Since the operation of a function on a Banach algebra is
not linear, we cannot usually deduce continuity from boundedness, nor
boundedness in one ball inB from boundedness in another (see exer-
cise 3 at the end of this section).

8.6 For some algebras Theorem 8.1 is far from being sharp. For in-
stance, ifB = C(M) every continuous function operates inB; if B =
Cn(T) everyn-times continuously differentiable function operates. For

‡fy(x) = f(x− y).
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group algebras of infinite LCA groups Theorem 8.1 is sharp. We shall
prove now that for the algebraB = A(T), only analytic functions oper-
ate. This is a special case of the following:

Theorem. LetG be a nondiscrete LCA group and letF be a function
defined on an intervalI of the real line. Assume thatF operates in
A(G). ThenF is analytic onI.

Remark: If G is not compact, one of our standing assumptions, namely
1 ∈ B, is not satisfied. Since in this case all the functions inA(G) tend
to zero at infinity, we have to add to the statement of the theorem the
assumption0 ∈ I since otherwise every function defined onI operates
trivially (the condition of operation being void). The theorem can be
extended to infinite discrete groups: we have to assume0 ∈ I (since
discrete and compact implies finite) and the conclusion is thatF is an-
alytic at zero (see exercise 1 at the end of this section). As mentioned
above we prove the theorem forG = T; the proof of the general case
runs along the same lines (see [24], chapter 6).

PROOF OF THE THEOREM(G = T): Let b be an interior point ofI and
consider the functionF1(x) = F (x + b). F1 is defined onI − b and
clearly operates inA(T). If we prove thatF (x) is analytic atx = 0 it
would follow thatF (x) is analytic atb, so that, in order to prove that
F is analytic at every interior point ofI we may assume0 ∈ int(I)
and prove the analyticity ofF at 0. Once we know that functions that
operate are necessarily analytic at the interior points ofI we obtain
the analyticity at the endpoints as follows (we assume, for simplicity,
that I = [0, 1] and we prove that F(x) is analytic atx = 0): consider
F1(x) = F (x2). F1 is defined on[−1, 1] and clearly operates inA(T) so
that nearx = 0, F1(x) =

∑

bjx
j. Now, sinceF1(x) = F (x2) is even,

b2j−1 = 0 for all j, so thatF1(x) =
∑

b2jx
2j andF (x) =

∑

b2jx
j. The

proof will therefore be complete if, assuming0 ∈ int(I), we prove that
F is analytic at0.

By Theorem 8.5,F operates boundedly which means that there exist
constantsε > 0 andK > 0 such that iff ∈ A(T) is real valued and
‖f‖ < ε, then‖F (f)‖ < K. Pickα > 0 so small that (i)[−α, α] ⊂ I,
and (ii) αe5 < ε, and considerF1(x) = F (α sinx). By (i), F1 is well
defined and it clearly is2π-periodic and operates inA(T). Now if f ∈
A(T) is real valued and‖f‖ < 5, thenα sin f is real-valued, and by (ii),
‖α sin f‖ < ε so that‖F1(f)‖ < K.
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In particular, ifϕ ∈ A(T), ‖ϕ‖ ≤ 1, τ ∈ R, |τ | ≤ π, then

(8.1) ‖F1(ϕ+ τ)‖ < K

Now α sinx ∈ A(T); henceF1 ∈ A(T) and we can write

(8.2) F1(x) =
∑

Ane
inx;

in particular,F1 is continuous. For real-valuedf ∈ A(T), F1(f) ∈ A(T)
and therefore can be written as

(8.3) F1(f(t)) =
∑

an(f)eint,
∑

|an(f)| <∞

SinceF1 is uniformly continuous onR it follows that

an(f) =
1

2π

∫

F1(f(t))e−intdt

depends continuously onf and therefore, for eachN , the mapping

(8.4) f 7→
N
∑

−N

an(f)eint

is continuous from the real functions inA(T) into A(T). We conclude
from (8.3) thatF1(f) is a pointwise limit of continuous functions on
A(T), that is, is a Baire function onA(T), and in particular:F1(ϕ + τ)
considered as a function ofτ on [−π, π] is a measurable vector-valued
function which is bounded byK if ‖ϕ‖ ≤ 1. It follows that

(8.5)
∥

∥

∥

1
2π

∫

F1(ϕ+ τ)e−inτdτ
∥

∥

∥ ≤ K :

however,

(8.6)
1

2π

∫

F1(ϕ+ τ)e−inτdτ = Ane
inϕ,

as can be checked by evaluating both sides of (8.6) for everyt ∈ T, and
we rewrite (8.5) as

(8.5’) ‖Aneinϕ‖ ≤ K.

Let us write

(8.7) N (u) = supf real, ‖f‖≤u‖e
if‖A(T);
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then it follows from (8.5’) that

(8.8) |An| ≤ K
(

N (n)
)−1

and if we show thatN (u) grows exponentially withu, it would follow
that (8.2) converges not only on the real axis, but in a strip around it, so
thatF1 is analytic onR and, finally,F is analytic at0. All that we need
in order to complete the proof is:

Lemma. LetN (u) be defined by(8.7). Then

(8.9) N (u) = eu.

PROOF: It is clear from the power series expansion ofeif that for any
Banach algebra

N (u) ≤ eu.

The proof that, forA(T), N (u) ≥ eu is based on the following two
remarks:

(a) Letf, g ∈ A(T), then

(8.10) ‖f(t)g(λt)‖ → ‖f‖ ‖g‖ asλ→∞

(λ being integer). We prove (8.10) by noticing that iff is a trigono-
metric polynomial andλ is greater than twice the degree off then
‖f(t)g(λt)‖ = ‖f‖ ‖g‖. For arbitraryf ∈ A(T) and ε > 0 we write
f = f1 + f2 wheref1 is a trigonometric polynomial and‖f2‖ < ε‖f‖. If
λ/2 is greater than the degree off1 we have

‖f(t)g(λt)‖ ≥ ‖f1(t)g(λt)‖ − ‖f2(t)g(λt)‖ ≥ (1− 2ε)‖f‖ ‖g‖.

(b) If α is positive, theneiα cos t = 1 + iα cos t+ . . . so that

(8.11) ‖eiα cos t‖A(T) = 1 + α+O
(

α2
)

.

Let u > 0; we pick a largeN and writef =
∑

(u/N) cosλjt where the
λj ’s increase fast enough to ensure

(8.12)
∥

∥

∥

N
∏

j=1

ei(u/N) cosλjt
∥

∥

∥ > (1− 1
N

)
N
∏

j=1

∥

∥

∥ei(u/N) cos t
∥

∥

∥

f is clearly real valued,‖f‖ = u, and, by (8.11) and (8.12),

‖eif‖ ≥
(

1− 1
N

)(

1 +
u

N
+O

( u2

N2

))N

> (1− ε)eu

if N is large enough. J
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This completes the proof of the theorem (forG = T).
The lemma is not accidental: the exponential growth ofN (u) is the

real reason for the validity of the theorem. The function as defined
by (8.7) can be considered for any Banach algebraB and if, for some
B, N (u) does not have exponential growth at infinity, then there exist
nonanalytic functions which operate inB. As an example we can take
anyF (x) =

∑

Ane
inx such thatAn does not vanish exponentially as

|u| → ∞ but such that for allk > 0,
∑

AnN (k|n|) < ∞; F operates
in B since for any real-valuedf ∈ B, F (f) =

∑

Ane
inf and the series

converges in norm.

8.7 We finish this section with some remarks concerning the so-called
“individual symbolic calculus” in regular semisimple Banach algebras.
Inasmuch as "symbolic calculus" is the study of functions that operate
in an algebra and of their mode of operation, individual symbolic cal-
culus is the study of the functions that operate on a fixed element in
the algebra. Let us be more precise. We consider a regular, semisimple
Banach algebra (identify it with its Gelfand transform) and say that a
functionF operates on an elementf ∈ B if the domain ofF contains
the range off andF (f) ∈ B. It is clear that a functionF operates in
B if it operates on everyf ∈ B with range contained in the domain
of F . It is also clear that for each fixedf ∈ B, the set of functions
that operate onf is a function algebra on the range off ; we denote
this algebra by[f ]. ForF ∈ [f ] we write ‖F‖[f ] = ‖F (f)‖B and with
this norm[f ] is a normed algebra. If we denote by[[f ]] the subalge-
bra ofB consisting of the elementsF (f), F ∈ [f ], it is clear that the
correspondenceF ↔ F (f) is an isometry of[f ] onto [[f ]]. Since[[f ]]
consists of allg ∈ B which respect the level lines off (i.e., such that
f(M1) = f(M2)⇒ g(M1 = g(M2)), [[f ]] and [f ] are Banach algebras.
We say that[[f ]] is the subalgebragenerated formallyby f ; it clearly
contains the subalgebra generated byf (which corresponds to the clo-
sure of the polynomials in[f ]).

It should be noted that the "concrete" algebra[f ] depends onf more
than [[f ]]. The latter depends only on the level lines off and is the
same, for example, if we replace a real-valuedf by f3. Even if the
ranges off andf3 are the same we usually have[f ] 6= [f3].

If f is real valued,[f ] always contains non-analytic functions. In
fact, since‖eif‖sp = 1, it follows from Lemma 3.6 that

lim
n→∞

‖einf‖1/n = 1
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so that there exists a sequence{An} that does not vanish exponentially
such that

∑

Ane
inf converges in norm; henceF (x) =

∑

Ane
inx be-

longs to[f ]. The fact that{An} does not vanish exponentially implies
thatF (x) is not analytic on the entire real line but it can still be analytic
on portions thereof which may contain the range off . So we impose
the additional condition thatAn = 0 unlessn = m!,m = 1, 2, . . . ,which
implies that

∑

Ane
inx is analytic nowhere onR.

8.8 Individual symbolic calculus is related to the problem of spectral
synthesis inB. Assume for instance that the range off is [−1, 1] and
that [f ] ⊂ Cm([−1, 1]), m ≥ 1. Since inCm, F (x) = x does not belong
to the ideal generated byx2, and since (Theorem 4.1) the imbedding of
[f ] in Cm is continuous,f does not belong to the ideal generated byf2

in [[f ]]. This does not mean a-priori that the same is true inB. We do
have a linear functionalν on [[f ]] which is orthogonal to(f2) and such
that 〈f, ν〉 6= 0 and we can extend it by the Hahn-Banach theorem to a
functional onB; there is no reason, however, to expect that the support
of the extended functional should always be contained inf−1(0). If ν
can be extended toB with Σ(ν) ⊂ f−1(0), spectral synthesis fails inB.

Going back toCn one identifies immediately a functional orthog-
onal to the ideal generated byx2 but not tox; for instance,δ′, the
derivative (in the sense of the theory of distributions) of the point mass
at zero, which assigns to everyF ∈ Cm the value of its derivative at
the origin. In [[f ]] the corresponding functional can be denoted by
δ′(f) and remembering that the Fourier transform ofδ′ is ̂δ′(u) = −iu
one may try to extendδ′(f) to B using the Fourier inversion formula
δ′(f) = 1

2π

∫

(iu)eiufdu. Strictly speaking this is meaningless, but it
provided the motivation for Theorem 7.5.

EXERCISES FOR SECTION 8

1. LetB be a semisimple Banach algebra without unit and with discrete
maximal ideal space. Show that every functionF analytic near zero and satis-
fying F (0) = 0, operates inB.

2. As in chapter I, Lip1(T) denotes the subalgebra ofC(T) consisting of the
functionsf satisfying supt1 6=t2

∣

∣
f(t1)−f(t2)

t1−t2

∣

∣ <∞.

(a) Find the functions that operate in Lip1(T).

(b) Show that every function which operates in Lip1(T) is bounded in every
ball.

(c) Show thatF (x) = |x| does not operate continuously atf = sin t.
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3. Assume thatF is defined onR and operates inA(T). Assume that for
everyr > 0 there existsK = K(r) such that iff is real-valued and‖f‖ ≤ r,
then‖F (f)‖ ≤ K(r). Show thatF is the restriction toR of an entire function.

4. LetB be a regular, semisimple, self-adjoint Banach algebra with a unit.
Assume thatF (x) =

√

|x| operates boundedly inB. Prove thatB = C(M).
Hint: Use Theorem 3.8.

5. Use the construction of section 7 to show that for the algebraB = A(D),
N (u) has exponential growth at infinity; hence prove Theorem 8.6 for the case
G = D.

6. Let α(u) be a positive function,0 < u < ∞, such thatα(u) ≤ 1
2

and
α(u)→ 0 asu→∞. Show that there exists a real-valuedf ∈ A(T) such that

‖eiuf‖ ≥ euα(u).

7. (a) Show that ifϕ(t, τ) ∈ A(T2), then for everyτ ∈ T, ψτ (t) = ϕ(t, τ),
considered as a function oft alone, belongs toA(T) and‖ψτ‖A(T) ≤ ‖ϕ‖A(T2).
Furthermore:ψτ (t) is a continuousA(T)-valued function ofτ .

(b) Prove: for every functionα(u) as in exercise 6. above, there exists a
real-valuedg ∈ A(T2) whose range contains[−π, π] and such that ifF (x) =
∑

Ane
inx ∈ [g], thenAn = O

(

e−|n|α(|n|)) .
Hint: Takeg(t, τ) = f(t)+5 sin τ , wheref is a function constructed in exercise
6 above. Apply part (a) and the argument of 8.6.

(c) Deduce theorem 8.6 for the caseG = T2 from part (b).

9 THE ALGEBRA M(T) AND FUNCTIONS THAT OPERATE ON
FOURIER-STIELTJES COEFFICIENTS

In this section we study the Banach algebra of measures on a non-
discrete LCA group. We shall actually be more specific and consider
M(T); this in order to avoid some (minor) technical difficulties while
presenting all the basic phenomena of the general case.

9.1 We have little information so far about the Banach algebraM(T).
We know that for everyn ∈ Z, the mappingµ 7→ µ̂(n) is a multiplicative
linear functional onM(T); this identifiesZ as part of the maximal ideal
spaceM of M(T). How big a part ofM is Z? We have one negative
indication: sinceM is compact the range of everŷµ on M is compact
and therefore contains the closure of the sequence{µ̂(n)}n∈Z, which
may well be uncountable (e.g., if̂µ(n) = cosn, n ∈ Z). ThusM is
uncountable and is therefore much bigger thanZ. But we also have a
positive indication: a measureµ is determined by its Fourier-Stieltjes
coefficients, that is, if̂µ = 0 onZ thenµ = 0 and thereforêµ = 0 onM.
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This proves thatM(T) is semisimple and may suggest the following
question:

(a) IsZ dense inM?
Other natural questions are:

(b) IsM(T) regular?
(c) lsM(T) self-adjoint?

Theorem. There exists a measureµM(T) such thatµ̂ is real valued
onZ but is not real valued onM.

Corollary. The answer to all three questions above is "no."

PROOF: It is clear that the theorem implies thatZ is not dense inM. If
M ∈M is not in the closure ofZ, there is noµ ∈M(T) such that̂µ = 0
on Z while µ̂(M) 6= 0 (sinceµ̂ = 0 on Z impliesµ = 0); soM(T) is
not regular. Finally: ifµ is a measure with real-valued Fourier-Stieltjes
coefficients and if for someν ∈ M(T), ν̂ = µ̂ on M, we havêν = µ̂ on
Z, henceν = µ andµ̂ = µ̂ onM which means that̂µ is real valued onM.
Thus, ifµ has the properties described in the theorem, thenµ̂ 6∈ M̂(T).

J

9.2 In the proof of Theorem 9.1 we shall need

Lemma. Let G1 and G2 be disjoint† subgroups ofT and letEj ⊂
Gj , j = 1, 2, be compact. Letµj be carried byEj , j = 1, 2. Then

(9.1) ‖µ1 ∗ µ2‖M(T) = ‖µ1‖M(T)‖µ2‖M(T).

PROOF: Let ε > 0 and letϕj be continuous onEj, satisfying|ϕj | ≤ 1
and

∫

ϕjdµj ≥ ‖µj‖ − ε. The functionψ(t + τ) = ϕ1(t)ϕ2(τ) is well
defined and continuous onE1 + E2 (this is where we use the fact that
Ej are contained in disjoint subgroups) and

∫

ψd(µ1 ∗ µ2) =
∫∫

ψ(t+ τ)dµ1dµ2 =
∫

ϕ1dµ1

∫

ϕ2dµ2

which implies‖m1 ∗ µ2‖ ≥ (‖µ1‖ − ε)(‖µ2‖ − ε). J

†That is:G1 ∩G2 = {0}.



VIII. C OMMUTATIVE BANACH ALGEBRAS 261

9.3 PROOF OF9.1: We construct a measureµ ∈M(T) with real Fourier-
Stieltjes coefficients and such that

(9.2) ‖eiuµ‖M(T) = en for n ≥ 0.

By Lemma 3.6 it follows that the spectral norm ofeiµ is equal toe
which means that=(µ̂) = −1 somewhere onM.

Let E be a perfect independent set onT (see VI.9.4). Letν be a
continuous measure carried byE and ν# the symmetric image ofν,
defined byν#(F ) = ν(−F ) for all measurable setsF . ν# is clearly
carried by−E and if we writeµ = v+ v# we haveµ̂(n) = 2<(ν̂(n)) for
all n ∈ Z. We claim that for suchµ

(9.2’) ‖eiµ‖ = e‖µ‖.

Let N be a large integer and writeE as a union ofN disjoint closed
subsetsEj such that the norm of the portion ofµ carried byEj ∪ −Ej,
call it µj, is precisely‖µ‖N−1 (Here we use the fact thatµ is continu-
ous.) Noweiµj = δ+ iµj+[a measure whose norm isO

(

N−2
)

] whereδ
is the identity inM(T), that is, the unit mass concentrated at the origin.
We have‖δ + iµj‖ = 1 + ‖µ‖N−1 and

eiµ =
N
∏

1

∗eiµj =
N
∏

1

∗(δ + iµj) + ρ

whereρ is a measure whose norm isO
(

N−1
)

. SinceE is independent
the subsetsEj generate disjoint subgroups ofT and, by Lemma 9.2,
‖eiµ‖ = (1 + ‖µ‖N−1)N + O

(

N−1
)

; asN → ∞, (9.2’) follows. It is
now clear that if we normalizeµ to have norm1 and apply (9.2’) tonµ
we have (9.2). J

Remark: Since the measureµ, described above, has norm 1, its spec-
trum lies in the disc|z| ≤ 1. The only point in the unit disc whose
imaginary part is -1 isz = −i. It follows that -1 is in the spectrum ofµ
which means thatδ + µ2 is not invertible. The Fourier-Stieltjes coeffi-
cients ofδ + µ2 are1 + (µ̂(n))2 ≥ 1 (sinceµ̂(n) is real-valued) and yet
(1 + (µ̂(n))2)−1 are not the Fourier-Stieltjes coefficients of any measure
onT. This phenomenon was discovered by Wiener and Pitt.

9.4 DEFINITION: A function F , defined in some subset ofC, oper-
ates on Fourier-Stieltjes coefficientsif {F (µ̂(n))}n∈Z is a sequence of
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Fourier-Stieltjes coefficients for everyµ ∈M(T) such that{µ̂(n)}n∈Z is
contained in the domain of definition ofF .

SinceZ is not the entire maximal ideal space ofM(T) there is no
reason to expect that ifF is holomorphic on its domain, it operates
on Fourier-Stieltjes coefficients; and by the remark above, the function
defined onR byF (x) = (1+x2)−1 does not operate on Fourier-Stieltjes
coefficients. This is a special case of

Theorem. Let F be defined in an intervalI ⊂ R and assume that it
operates on Fourier-Stieltjes coefficients. ThenF is the restriction toI
of an entire function.

The theorem can be proved along the same lines as 8.6. The main
difference is that one shows that ifF operates on Fourier-Stieltjes co-
efficients, the operation is bounded in every ball ofM(T) (rather than
some ball, as in the case ofA(G)), that is, for allr > 0 there exists a
K = K(r) such that if‖µ‖ ≤ r andµ̂(n) ∈ I for all n ∈ Z, thenF (µ̂(n))
are the Fourier-Stieltjes coefficients of a measure of norm< K. We
refer to [24], chapter 6 and to exercises 6 through 9 at the end of this
section for further details.

9.5 The individual symbolic calculus onM(T) is also more restrictive
than an individual symbolic calculus can be in a Banach algebra consid-
ered as function algebra on the entire maximal ideal space. There exist
measuresµ in M(T) with real-valued Fourier-Stieltjes coefficients such
that every continuous function which operates onµ must be the restric-
tion toR of some function analytic in a disc (see exercise 10 at the end
of this section). This suggests that portions of the maximal ideal space
of M(T) may carry analytic structure.

EXERCISES FOR SECTION 9

1. Let µ ∈ M(T) be such that‖eαµ‖ = e|α|‖µ‖ for all α ∈ C. Show that
{µn}, n = 0, 1, 2 . . . are mutually singular.

2. LetE be a linearly independent compact set onT and letµ be a contin-
uous measure carried byE ∪−E. Show that{µn}, n = 0, 1, 2 . . . are mutually
singular.

3. Show that ifµ ∈ M(T), µ̂(n) is real for alln ∈ Z andµn are mutually
singular forn = 1, 2, . . . thenµ is continuous.

4. Deduce Theorem 9.1 from Theorem 9.4.
5. Let rj , j = 1, 2, . . . be positive numbers such thatrj/rj−1 < 1

2
and

rj/rj−1 → 0 as j → ∞. Show thatϕ(n) =
∏∞

1
cos rjn, n ∈ Z are the
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Fourier-Stieltjes coefficients of a measureµ, and thatµn are mutually singular,
n = 1, 2, . . . .
Hint: Show that ifrj−1/rj > M for all j, then{µn}Mn=1 are mutually singular.

6. LetF be continuous on[−1, 1] andF (0) = 0. Show that the following
two conditions are equivalent:

(i) If µ ∈ M(T), ‖µ‖ < r and−1 < µ̂(n) < 1 for all n, then{F (µ̂(n))}
are the Fourier-Stieltjes coefficients of some measureF (µ) ∈ M(T) such that
‖F (µ)‖M(T) < K.

(ii) If −1 < an < 1 andP =
∑

ane
lnt a polynomial satisfying‖P‖L1(T) < r,

then‖
∑

F (an)eint‖L1(T) < K.
Also show that in (ii) we may add the assumption that thean are rational

numbers without affecting the equivalence of (i) and (ii).
7. (For the purpose of this exercise) we say that a measureµ contains a

polynomialP if for appropriatem andM , P̂ (n) = µ̂(m+ nM) for all integers
n which are bounded in absolute value by twice the degreed of P . Notice that
if µ containsP then

P (Mt) = Vd(Mt) ∗ (e−imtµ)

and consequently‖P‖L1(T) ≤ 2‖µ‖M(T). Show that there exists a measureµ
with real Fourier-Stieltjes coefficients,‖µ‖ ≤ 2, andµ contains every polyno-
mial P with rational coefficients such that‖P‖L1(T) ≤ 1.
Hint: Show that for every sequence of integers{Nj} there exists a sequence of
integers{λj} such that, writingΛj = {kλj}

Nj
k=1 andΛ = ∪jΛj , every function

f ∈ CΛ (see chapter V for the notationCΛ) can be writtenf =
∑

fj , with
fj ∈ CΛj , and

∑

‖fj‖∞ ≤ 2‖f‖∞. Deduce, using the Hahn-Banach theorem,
that if the numbersaj,k are such that for eachj, ‖

∑Nj
k=1

aj,ke
ikt‖ < 1, then

there exists a measureµ ∈ M(T) such that‖µ‖M(T) < 2 andµ̂(kλj) = aj,k for
appropriateλj and1 ≤ k ≤ Nj . If the numbersaj,k above are real, one can
replaceµ by 1

2
(µ+ µ#).

8. Let F be defined and continuous onR and assume that it operates on
Fourier-Stieltjes coefficients. Prove that the operation is bounded on every ball
of M(T).
Hint: Use exercises 6 and 7 above; show that if‖ν‖M(T) < r then‖F (ν)‖M(T) ≤
2‖F (rµ)‖M(T).

9. Prove Theorem 9.4.
10. Show that ifF is defined and continuous onR and if F (µ̂(n)) are

Fourier-Stieltjes coefficients,µ being the measure introduced in exercise 7, then
F is analytic at the origin. IfF (kµ̂(n)) are Fourier Stieltjes coefficients for all
k, thenF is entire.

11. Letµ ∈M(T) be carried by a compact independent set and assume that
µ̂(n) → 0 as |n| → ∞. (Such measures exist: see [25].) LetB be the closed
subalgebra ofM(T) generated byL1(T) andµ.
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(a) Check that Theorems 9.1 and 9.4 are valid if we replace in their state-
mentM(T) byB.

(b) Notice that the restriction of̂B to Z is a function algebra onZ, interme-
diate betweenA(Z) andc0 both of which haveZ as maximal ideal space, and
yet its maximal ideal space is larger thanZ.

10 THE USE OF TENSOR PRODUCTS

In this final section we prove a theorem concerning the symbolic
calculus and the failing of spectral synthesis in some quotient algebras
of A(R). The theorem and its proof are due to Varopoulos and serve
here as an illustration of a general method which he introduced. We
refer to [26] for a systematic account of the use of tensor algebras in
harmonic analysis.

10.1 Let E ⊂ R be compact. We denote byA(E) the algebra of func-
tions onE which are restrictions toE of elements ofA(R). A(E)
is canonically identified with the quotient algebraA(R)/k(E) (where
k(E) = {f : f ∈ A(R) andf = 0 onE}) and is therefore a Banach alge-
bra withE as the space of maximal ideals (see 5.5). The main theorem
of this section is:

Theorem. LetE1, E2 be nonempty disjoint perfect subsets ofR, such
thatE1 ∪ E2 is a Kronecker set. PutE = E1 + E2

†. Then:
(a) Every functionF , defined onR, which operates inA(E) is analytic.
(b) Spectral synthesis fails inA(E).

Remarks:(i) We placeE on R for the sake of technical simplicity
and in accordance with the general trend of this book. Only minor
modifications are needed in order to placeE in an arbitrary nondiscrete
LCA group, obtaining thereby a proof of Malliavin’s theorem 7.4 in its
full generality.

(ii) We shall actually prove more, namely:A(E) is isomorphic to a
fixed Banach algebra (subsections 10.2, 10.3, and 10.4) for which (a)
and (b) are valid (subsection 10.5).

10.2 LetX andY be compact Hausdorff spaces,X×Y their cartesian
product. We denote byV = V (X,Y ) the projective tensor product of
C(X) andC(Y ); that is, the space of all continuous functionsϕ on
X × Y that admit a representation of the form

†E1 + E2 = {x :x = x1 + x2 with xj ∈ Ej}.
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(10.1) ϕ(x, y) =
∑

fj(x)gj(y)

with fj ∈ C(X), gj ∈ C(Y ), and

(10.2)
∑

‖fj‖∞‖gj‖∞ <∞.

We introduce the norm

(10.3) ‖ϕ‖V = inf
∑

‖fj‖∞‖gj‖∞

where the infimum is taken with respect to all possible representations
of ϕ in the form (10.1). It is immediate to check that the norm‖ ‖V is
multiplicative and thatV is complete; thusV is a Banach algebra.

Lemma. The maximal ideal space ofV can be identified canonically
withX × Y .

PROOF: Denote byV1 (resp. V2) the subalgebra ofV consisting of
the functionsϕ(x, y) which depend only onx (resp. only ony). It
is clear thatV1 andV2 are canonically isomorphic toC(X) andC(Y )
respectively. A multiplicative linear functionalw on V induces, by
restriction, multiplicative linear functionalsw1 onV1 andw2 onV2. By
Corollary, 2.12,w1 has the formf 7→ f(x0) for somex0 ∈ X; w2 has
the formg 7→ g(y0) for somey0 ∈ Y , and it follows that if

ϕ(x, y) =
∑

fj(x)gj(y),

then
w(ϕ) =

∑

fj(x0)gj(y0) = ϕ(x0, y0). J

Corollary. V is semisimple, self-adjoint, and regular.

10.3 We assume now thatX is homeomorphic to a compact abelian
groupG (more precisely, to the underlying topological space ofG) and
thatY is homeomorphic to a compact abelian groupH. We denote both
homeomorphismsX 7→ G andY 7→ H by σ. σ induces canonically a
homeomorphism ofX × Y ontoG ⊕H, and hence an isomorphism of
C(G⊕H) ontoC(X × Y ).

Lemma. The canonical isomorphism ofC(G ⊕ H) onto C(X × Y )
mapsA(G⊕H) into V .
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PROOF: Let χ be a character onG⊕H and letχ be its image under the
canonical isomorphism, namely

(10.4) χ(x, y) = χ(σx, σy).

Sinceχ(σx, σy) = χ(σx, 0)χ(0, σy) we have

(10.5) χ(x, y) = χ(x, 0)χ(0, y)

so thatχ ∈ V and ‖χ‖V = 1. If ϕ ∈ A(G ⊕ H) thenϕ =
∑

aχχ

the summation extending over̂G⊕H and‖ϕ‖A =
∑

|aχ|. The image
of ϕ under the canonical isomorphism isϕ =

∑

aχχ and therefore
‖ϕ‖V ≤

∑

|aχ| = ‖ϕ‖A. J

If ϕ ∈ A(G⊕H) depends only on the first variable, that is, ifϕ(x, y) =
ψ(x), thenψ ∈ A(G). AssumingG to be infinite we haveA(G) 6= C(G)
and it follows that the image ofA(G⊕H) in V does not containV1 and
is therefore a proper part ofV .

The connection betweenA(G⊕H) andV is only that of (canonical)
inclusion, which is too loose for obtaining information for one algebra
from the other. A closer look reveals, however, that the structure needed
for the lemma is not the group structure onG or onH but only the
cartesian structure ofG ⊕H, while in order to show that the image of
A(G⊕H) is not the entireV we use the group structure ofG. The idea
now is to keep the useful structure and obliterate the hampering one;
this is the reason for the appeal to Kronecker sets.

10.4 Theorem.LetE1, E2, andE be as in the statement of Theorem
10.1. LetX andY be homeomorphic to the (classical) Cantor set. Then
A(E) is isomorphic toV (X,Y ).

PROOF: We begin by noticing thatE1 and E2, being portions of a
Kronecker set, are clearly totally disconnected and, being perfect and
nonempty, are homeomorphic to the Cantor set. Thus,X, Y, E1 andE2

are all homeomorphic and we simplify the typography by identifying
X with E1 andY with E2. SinceE1 ∪ E2 is a Kronecker set, hence
independent, the mapping(x, y) 7→ x+y is a homeomorphism ofX×Y
onE. We now show that the induced mapping ofC(E) ontoC(X × Y )
mapsA(E) ontoV . The fact thatA(E) is mapped intoV (and that the
map is of norm 1) is a verbatim repetition of 10.3. We therefore have
only to prove that the mapping is surjective that is, mapsA(E) ontoV .
We shall need:
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Lemma. Let Ẽ be a Kronecker set. Then everyf ∈ C(Ẽ) can be
written asf(x) =

∑

ane
iλnx with

∑

|an| ≤ 3‖f‖C(Ẽ). In particular:

A(Ẽ) = C(Ẽ) and‖f‖A(Ẽ) ≤ 3‖f‖∞.

PROOF OF THE LEMMA: It is enough to show that iff ∈ C(Ẽ) is real
valued,f(x) =

∑

ane
iλnx with

∑

|an| ≤ 3/2‖f‖∞. Let f real valued
and assume, for simplicity, that‖f‖∞ = 1; defineg(x) =

√

1− (f(x))2,
theng is continuous andΦ = f + ig has modulus 1 oñE. Let λ1 be
such that|Φ− eiλ1x| < 1

10 on Ẽ; this implies|f − cosλ1x| < 1
10 on Ẽ. If

‖f‖∞ is not 1 consider‖f‖−1
∞ f and obtainλ1 such that

|f − ‖f‖∞ cosλ1x| ≤
1
10
‖f‖∞ on Ẽ.

We now proceed by induction. Definea1 = ‖f‖∞, λ1 as above, and
f1 = f − a1 cosλ1x; once we havea1 . . . , an, λ1 . . . , λn, andfn, define
an+1 = ‖fn‖∞, λn+1 by the condition|fn − cosλn+1x| ≤ an+1/10, and
fn+1 = fn − an+1 cosλn+1x = f −

∑n+1
1 aj cosλjx.

We clearly havean+1 ≤ an/10 ≤ ‖f‖∞10−n and it follows that
f(x) =

∑

ane
iλnx with

∑

|an| =
∑

an ≤ ‖f‖∞
∑∞

0 10−n < 3/2‖f‖∞.
Writing cosλnx = 1

2 (eiλnx + e−iλnx) we obtainf as a series of expo-
nentials. J

Remark:A(Ẽ) is actually isometric toC(Ẽ); see exercise 2 at the end
of this section.

PROOF OF THE THEOREM, COMPLETED: We identifyX×Y withE, and
V with the subalgebra ofC(E) consisting of the functionsϕ which
admit a representation

(10.6) ϕ(x+ y) =
∑

fj(x)gj(y), x ∈ E1, y ∈ E2

wherefj ∈ C(E1), gj ∈ C(E2) such that (10.2) is valid. All that we
need to show is that ifϕ ∈ V thenϕ ∈ A(E).

Letϕ ∈ V and consider a representation of the form (10.6) such that

(10.7)
∑

‖fj‖∞‖gj‖∞ ≤ 2‖ϕ‖V .

Using the lemma we write eachfj as an exponential series (E1, being
a portion of a Kronecker set, is itself one) and similarly for thegj.
Denoting the frequencies appearing in thef ’s byλ, and those appearing
in theg’s by ν, and taking account of (10.6) and (10.7), we obtain

(10.8) ϕ(x+ y) =
∑

λ,ν

aλ,νe
iλxeiνy, x ∈ E1, y ∈ E2
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where

(10.9)
∑

|aλ,ν | ≤ 18‖ϕ‖V .

We now use the fact thatE1 ∪E2 is a Kronecker set: let(λ, ν) be a pair
which appears in (10.8) and define

h(x) =

{

eiλx x ∈ E1,

eiνx x ∈ E2;

h is clearly continuous and of modulus 1 onE1 ∪E2 and it follows that
there exists a real numberξ such that

(10.10) |eiξx − h(x)| < 1/200 onE1 ∪ E2.

We have (forx ∈ E1, y ∈ E2),

eiξ(x+y) − eiλxeiνy = (eiξx − e−λx)eiξy + eiλx(eiξy − eiνy)

which means that (with the canonical identifications)

‖eiξ(x+y) − eiλxeiνy‖V ≤ 1/100.

We can now writeϕ = ϑ1 + ϕ1 where

ϑ1(x+ y) =
∑

aλ,νe
iξ(x+y)

and
ϕ1(x+ y) =

∑

aλ,ν(eiλxeiνy − eiξ(x+y))

and notice thatϑ1 ∈ A(E) and, by (10.9),

‖ϑ1‖A(E) ≤
∑

|aλ,ν | ≤ 18‖ϕ‖V ;

also
‖ϕ1‖V ≤

18
100
‖ϕ‖V ≤

1
5
‖ϕ‖V .

Repeating, we obtain inductively

ϕn = ϑn+1 + ϕn+1

where

ϑn+1 ∈ A(E), ‖ϑn+1‖A(E) ≤ 18‖ϕn‖V , and ‖ϕn+1‖V ≤
1
5
‖ϕn‖V .

It follows thatϕ =
∑

ϑn ∈ A(E) and

‖ϕ‖A(E) ≤ (
∑∞

0 5−n)‖ϕ‖V ≤ 25‖ϕ‖V . J
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10.5 We now show that statements (a) and (b) of Theorem 10.1 are
valid for V = V (X,Y ) (X andY being both homeomorphic images
of the Cantor set). This is obtained as a consequence of the fact that
(a) and (b) are valid for the algebraA(D)) (see exercise 8.5 for (a) and
Theorem 7.4 for (b)).

SinceX andY are homeomorphic toD we may considerV as a
function algebra onD × D. Using the group structure and the Haar
measure on 1) we now define two linear operatorsM andP as follows:

(10.11) forf ∈ C(D), write Mf(x, y) = f(x+ y);

(10.12) forϕ ∈ C(D×D), write Pϕ(x) =
∫

D
ϕ(x− y, y)dy.

M mapsC(D) into C(D × D), P mapsC(D × D) into C(D), and, since
for f ∈ C(D);

PMf(x) =
∫

D
Mf(x− y, y)dy =

∫

D
f(x)dy = f(x),

it follows thatPM is the identity map ofC(D).

Lemma. M mapsA(D) into V and its norm as such is1. P mapsV
intoA(D) and its norm as such is 1.

PROOF: If f =
∑

aχχ with
∑

|aχ| = ‖f‖A(D) <∞ then

Mf =
∑

aχχ(x)χ(y) ∈ V and ‖Mf‖V ≤
∑

|aχ| = ‖f‖A(D)

If ϕ(x, y) = f(x)g(y) then

Pϕ =
∫

f(x− y)g(y)dy = f ∗ g

hence

‖Pϕ‖A(D) =
∑

|f̂(χ)ĝ(χ)| ≤
(
∑

|f̂(χ)|2
)1/2(∑

|ĝ(χ)|2
)1/2

= ‖f‖L2‖g‖L2 ≤‖f‖∞‖g‖∞

(10.13)

By (10.13) and the definition (10.3) of the norm inV it follows that for
arbitraryϕ ∈ V , ‖Pϕ‖A(D) ≤ ‖ϕ‖V . J
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Corollary. Letϕ ∈ C(D× D) and assume that for someψ ∈ C(D) we
haveϕ(x, y) = ψ(x+ y). Thenϕ ∈ V if, and only if,ψ ∈ A(D), and then
‖ϕ‖V = ‖ψ‖A(D).

In other words,M is an isometry ofA(D) onto the closed subalgebra
V3 of V of all the functionsϕ(x, y) which depend only onx+ y.

Remark: The subalgebraV3 is determined by the "level lines":
x + y = const, which clearly depend on the group structure ofD. In-
stead ofDwe can take any groupGwhose underlying topological space
is homeomorphic to the Cantor set; for every suchG, V has a closed
subalgebra isometric toA(G).

We are now ready to prove:

Theorem. (a) Every functionF , defined onR, which operates inV is
analytic. (b) Spectral synthesis is not always possible inV .

PROOF: (a) If F operates inV , so it does inV3 (since the operation by
F conserves the level lines), hence inA(D) and by Theorem 8.6 (rather,
exercise 8.5),F is analytic.

(b) LetH ⊂ D be a closed set which is not a set of spectral synthesis
for A(D) (see Theorem 7.4). Define:

H∗ = {(x, y) :x+ y ∈ H} ⊂ D× D.

We contend thatH∗ is not a set of spectral synthesis inV . By 7.3
we have a functionf ∈ A(D) which vanishes onH and which cannot
be approximated by functions inI0(H) (i.e., functions that vanish in
a neighborhood ofH), that is, for someδ > 0, ‖f − g‖A(D) > δ for
everyg ∈ I0(H). We show thatH∗ is not of spectral synthesis forV by
showing that forMf , which clearly vanishes onH∗, and everyϕ ∈ V
which vanishes in a neighborhood ofH∗, we have‖Mf − ϕ‖V > δ.

For this we notice that ifϕ vanishes on a neighborhood ofH∗, then
Pϕ vanishes on a neighborhood of H, so that

‖Mf − ϕ‖V ≥ ‖PMf −Pϕ‖A(D) = ‖f −Pϕ‖A(D) > δ.
J

Theorems 10.4 and 10.5 clearly imply Theorem 10.1.
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EXERCISES FOR SECTION 10

1. Let f be a continuous complex-valued function on a topological space
X. Assume0 < |f(x)| ≤ 1 onX. Show thatf admits a unique representation
in the formf = 1

2
(g1 + g2) such that|gj(x)| = 1 onX andgj are continuous,

j = 1, 2. Deduce that ifX is homeomorphic to the Cantor set, every con-
tinuous complex-valued functionf on X admits representations of the form
f = 1

2
‖f‖∞(g1 − g2) + f1 wheregj are continuous,|gj(x)| = 1 on X, and

‖f1‖∞ is arbitrarily small.
2. Let B be a Banach space with the norm‖ ‖0 and letB1 ⊂ B be a

subspace which is a Banach space under a norm‖ ‖1 such that the imbedding of
B1 in B is continuous. Show that if there exist constantsK > 0 and0 ≤ η < 1

such that for everyf ∈ B there existg ∈ B1 andf1 ∈ B satisfyingf = g − f1,
‖g‖1 ≤ K‖f‖0, and‖f1‖0 ≤ η‖f‖0, thenB1 = B and‖ ‖1 ≤ K(1 − η)−1‖ ‖0.
Use this and exercise 1 to prove remark 10.4.
Hint: See either proof in 10.4.



Appendix A

Vector-Valued Functions

1 RIEMANN INTEGRATION

Consider a Banach spaceB and letF be aB-valued function, de-
fined and continuous on a compact interval[a, b] ⊂ R. We define the
(Riemann) integral ofF on [a, b] in a manner completely analogous to
that used in the case of numerical functions, namely:

DEFINITION:
∫ b

a
F (x)dx = lim

∑N
j=0(xj+1 − xj)F (xj) where

a = x0 < x1 < · · · < xN+1 = b,

and the limit is taken as the subdivision{xj}N+1
j=0 becomes finer and

finer, that is: asN →∞ andmax0≤j≤N (xj+1−xj)→ 0. The existence
of the limit is proved, as in the case of numerical functions, by showing
that if {xj} and{yj} are subdivisions of[a, b] which are fine enough to
ensure that‖F (α) − F (β)‖ ≤ ε wheneverα andβ belong to the same
interval [xj , xj+1] (or [yj , yj+1]), then

∥

∥

N
∑

j=0

(xj+1 − xj)F (xj)−
M
∑

j=0

(yk+1 − yk)F (yk)
∥

∥ ≤ 2(b− a)ε.

This is done most easily by comparing either sum to the sum corre-
sponding to a common refinement of{xj} and{yk}.

The following properties of the integral so defined are obvious:
(1) If F andG are both continuousB-valued functions on[a, b], and
c1, c2 ∈ C, then:

∫ b

a

(c1F (x) + c2G(x))dx = c1

∫ b

a

F (x)dx+ c2

∫ b

a

G(x)dx .

(2) If a < c < b then
∫ b

a

F (x)dx =
∫ c

a

F (x)dx+
∫ b

c

F (x)dx

272
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(3)
∥

∥

∫ b

a

F (x)dx
∥

∥ ≤
∫ b

a

‖F (x)‖dx .

(4) If µ is a continuous linear functional onB, then:

〈
∫ b

a

F (x)dx, µ〉 =
∫ b

a

〈F (x), µ〉dx .

2 IMPROPER INTEGRALS

LetF be aB-valued function, defined and continuous in a nonclosed
interval (open or half-open; finite or infinite) say(a, b).

The (improper) integral
∫ b

a
F (x)dx is, by definition, the limit of

∫ b′

a′
F (x)dx wherea < a′ < b′ < b and the limit is taken asa′ → a

andb′ → b. As in the case of numerical functions the improper integral
need not always exist. A sufficient condition for its existence is

∫ b

a

‖F (x)‖dx <∞.

3 MORE GENERAL INTEGRALS

Once in this book (in VIII.8) we integrate a vector-valued function
which we do not know a-priori to be continuous. It is, however, the
pointwise limit of a sequence of continuous functions and is therefore
Bochner-integrable. We refer the reader to [10], chapter 3, §1, for de-
tails on the Bochner integral; we point out also that for the purpose of
VllI.8, as well as in other situations where the integral is used mainly to
evaluate the norm of a given vector, one can obviate the vector-valued
integration by applying linear functionals to the integrand before the
integration.

4 HOLOMORPHIC VECTOR-VALUED FUNCTIONS

A B-valued functionF (z), defined in a domainΩ ⊂ C is holomor-
phic inΩ if for every continuous linear functionalµ onB, the numerical
functionh(z) = 〈F (z), µ〉 is holomorphic inΩ.

This condition is equivalent to the apparently stronger one stating
that for eachz0 ∈ Ω, F has the representationF (z) =

∑∞
n=0 an(z− z0)n

in some neighborhood ofz0; the coefficientsan being vectors inB
and the series converging in norm. One proves that, as in the case of
complex-valued functions, the power series expansion converges in the
largest disc, centered atz0, which is contained inΩ. These results are
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consequences of the uniform boundedness theorem (see [10], chapter
3, §2).

Many theorems about numerical holomorphic functions have their
generalizations to vector-valued functions. The generalizations of the-
orems dealing with "size and growth" such as the maximum princi-
ple, the theorem of Phragmèn-Lindelöf, and Liouville’s theorem are
almost trivial to generalize. For instance: the form of Liouville’s theo-
rem which we use in Vlll.2.4 is

Theorem. LetF be a bounded entireB-valued function. ThenF is a
constant.

PROOF: If F (z1) 6= F (z2) there should exist functionalsµ ∈ B∗ such
that 〈F (z1), µ〉 6= 〈F (z2), µ〉 However, for allµ ∈ B∗, 〈F (z), µ〉 is a
bounded (numerical) entire function and hence, by Liouville’s theorem,
is a constant. J

Another theorem which we use in IV.I.3 is an immediate conse-
quence of the power series expansion. We refer to

Theorem. LetF be aB-valued function holomorphic in a domainΩ.
Let Ψ be aB∗-valued function inΩ, holomorphic inz̄. Thenh(z) =
〈F (z),Ψ(z)〉 is a holomorphic (numerical) function inΩ.

PROOF: Let z0 ∈ Ω; in some disc around itF (z) =
∑

an(z − z0)n,
Ψ(z) =

∑

bn(z − z0)
n
, henceh(z) =

∑

(
∑n
k=0〈ak, bn−k〉)(z − z0)n, and

the series converges in the same disc.

Remark: Φ of IV.1.3 corresponds toΨ here.



Appendix B

Elementary Probabilistic methods

In this appendix we give a few examples of the power of Probabilis-
tic methods in Harmonic analysis.

The approach is to replace the study ofparticular functions or se-
ries, by the study oftypical functions or series. There are several ways
to define “typical”,

1. The Baire category “typical” in a complete metric space— what
happens for all but an exceptional set of the first category.

2. The measure or probabilistic definition. Here one defines a prob-
ability measure on a class of objects, say series, and “typical” is what
happens for all but an exceptional set of measure zero.

A beautiful example of the use of the category method is Kaufman’s
theorem VI.9.4. Here we limit ourselves to the second approach in one
concrete case, that of series with coefficients that have random signs.

1 RANDOM SERIES

1.1 Independence.We refer the reader to VI.?2.11 for some of the
basic terms.

Let
(

Ω,B,P
)

be a probability space andFj, j = 1, . . . , k sub-sigma-
algebras ofB.

DEFINITION: Fj areindependentif, wheneverOj ∈ Fj, j = 1, . . . , k,
then

(1.1) P
(
k
⋂

1

Oj

)

=
k
∏

1

P(Oj).

The variablesX1, . . . , Xk areindependentif FXj are independent, where
FXj denotes the field of the variableXj, that is the sub-σ-algebra ofB
spanned by the events{Xj ∈ O} = {ω :Xj(ω) ∈ O}, O open.

Theorem. The following conditions are equivalent:

275
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1. The random variablesX1, . . . , Xk are independent.

2. The image ofµ under the mapX 7→ Rk given by(X1, . . . , Xk) is
a product measure.

3. If fj are continuous functions on the line such thatfj(Xj) have
expectation (are integrable), thenE (

∏

fj(Xj)) =
∏

E (fj(Xj)) .

4. dF∑k

1
Xj

=
∏

∗dFXj (convolution product).

1.2 Rademacher functions.TheRademacher functions, {rn}, is a
sequence of independent random variables, taking the values1 and−1
with probability 1

2 for each.
A standard concrete realization is to definern on the interval[0, 1],

(endowed with the Lebesgue measure) as follows: letεn(x) be the co-
efficients in the (non-terminating) binary expansion ofx ∈ [0, 1), that
is x =

∑

εj(x)2−j, with εj(x) either zero or one, and setrn(x) =
(−1)εn(x).

Another common representation of the Rademacher functions is as
the charactersξm defined by VIII.(7.15) on the groupD (with its Haar
measure).

Proposition. Let an be real numbers such that
∑

|an|2 = a2. Then,
for all λ > 0,

(1.2) P
(
∑

anrn > aλ
)

≤ e−λ
2
2 ,

and

(1.3) P
(∣

∣

∣

∑

anrn
∣

∣

∣ > aλ
)

≤ 2e−
λ2
2 .

For complexan with
∑

|a2
n| = a2,

(1.4) P
(∣

∣

∣

∑

anrn
∣

∣

∣ > aλ
)

≤ 4e−
λ2
2 .

PROOF: For real valuedan,

E
(

eλ
∑

anrn
)

=
∏

E
(

eλanrn
)

=
∏

coshλan ≤
∏

e
1
2a

2
nλ

2
= e

1
2a

2λ2
.

Write Y =
∑

anrn. As E
(

ea
−1λY

)

≥ eλ
2
P (Y ≥ aλ), we obtain (1.2).

Applying the same inequality to−Y , we have (1.3).
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If the an are complex we writeaj = cj + idj, the decomposition
to real and imaginary parts, and notice that|aj |2 = c2j + d2

j so that if
∑

c2j = c2 and
∑

d2
j = d2, thena2 = c2 + d2. If

∣

∣

∣

∑

ajrj
∣

∣

∣ > aλ then
either

∣

∣

∣

∑

cjrj
∣

∣

∣ > cλ or
∣

∣

∣

∑

djrj
∣

∣

∣ > dλ

and we have (1.4) J

1.3 We denote byTrimλ the operator oftrimming at heightλ, namely,
given a complex valued functiong, we define

(1.5) Trimλ g = min(|g|, λ)·sgn(g),

where sgn(g) = g/|g| (and sgn(0) = 0).

Lemma. Assume
∑

|an|2 = a2, and setX =
∑

anrn. Then, forλ > 0,

(1.6) ‖X −TrimλX‖2L2 ≤ 4(λ2 + 2a2)e−
λ2

2a2 .

PROOF: If GX(x) = P (|X| > x), then

‖X −TrimλX‖2L2 = −
∫ ∞

λ

x2dGX = λ2GX(λ) + 2
∫ ∞

λ

xGX(x)dx.

SinceGX(x) ≤ 4e−
x2

2a2 , this is bounded by4(λ2 + 2a2)e−
λ2

2a2 . J

1.4 Fubini. Let
∑

a2
n = a2 <∞, andX(t) = X(t, ω) =

∑

ane
intrn(ω).

Givenλ > 0, we have estimate (1.6) for everyt ∈ T, and integratingdt
we have

(1.7)
∫

E
(

|X(t)−TrimλX(t)|2
) dt

2π
≤ 4(λ2 + 2a2)e−

λ2

2a2

Reversing the order of integration (Fubini’s theorem) we obtain that
there exist choices ofω for which

(1.8) ‖X(t)−TrimλX(t)‖2L2(T) ≤ 4(λ2 + 2a2)e−
λ2

2a2 .

This proves

Theorem. Given complex numbersan such that
∑

|a2
n| = a2 and given

λ > 0, there exists a choice ofεn = ±1 such that, withg(t) =
∑

εnane
int,

(1.9) ‖g(t)−Trimλ g(t)‖2L2(T) ≤ 4(λ2 + 2a2)e−
λ2

2a2
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When (1.9) is valid, ifN is sufficiently large, we can replaceTrimλ g

by the Fejér sumϕ = σN (Trimλ g) and still have‖ϕ‖∞ ≤ λ and

(1.10) ‖g(t)− ϕ‖2L2(T) ≤ 4(λ2 + 2a2)e−
λ2

2a2

In the next section we use (1.10) systematically withλk = 10k‖gk‖L2 ,
andϕk = σNk(Trimλk gk), whereNk is big enough to guarantee

(1.11) ‖gk(t)− ϕk(t)‖2L2(T) ≤ 5·102k exp(−.5·102k)‖g‖2L2

which we often replace by the (very wasteful)

(1.12) ‖gk(t)− ϕk(t)‖2L2(T) ≤ exp(−10k)‖g‖2L2 .

These inequalities are valid for a proper choice of signs.

2 FOURIER COEFFICIENTS OF CONTINUOUS FUNCTIONS

What we show here is that, in terms of size, Fourier transforms of
continuous functions majorize any`2 sequence.

2.1 Theorem (deLeeuw-Kahane-Katznelson).For any sequence
{an} ∈ `2 there exist functionsf ∈ C(T) such that|f̂(n)| ≥ |an| for all
n ∈ Z.

PROOF: We may clearly assume thatan ≥ 0, and that
∑

a2
n = 1. The

required continuous functionf is obtained as a uniformly convergent
sum

∑

k ϕk with ϕk defined recursively.
Write g1 = 2

∑

εnane
int, λ1 = 20, and chooseεn = ±1 such that

(1.11) is valid forg1, λ1, andϕ1, so that

‖g1 − ϕ1‖2L2 < 4·500e−50 < 10−19.

The choice ofλ1 = 20 is not optimal; it is done to make obvious the
super–exponential decay of‖gk‖L2 below. Write

A1 = {n ∈ Z : |ϕ̂1(n)| < 3an/2}.

If n ∈ A1 then|ĝ1(n)− ϕ̂1|(n) ≥ an/2, which implies

(2.1)
∑

n∈A1

a2
n < 4 ‖g1 − ϕ1‖2L2 < 4·10−19.

Write g2 = 3
∑

n∈A1
εn,2ane

int whereεn,2 = ±1 are chosen such that
(1.11) is valid forg2, λ2 = 100 ‖g2‖L2 , N2, andϕ2 = σN2(Trimλ2 g2).
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Notice that

‖g2‖L2 ≤ 6·10−9 and |ϕ̂1(n) + ĝ2(n)| ≥ (1 + 2−1)an for all n.

The inductive step is virtually identical: assuminggj andϕj known,
j ≤ k, and

(2.2) |ϕ̂1(n) + · · ·+ ϕ̂k−1(n) + ĝk(n)| ≥ (1 + 21−k)an

for all n, we set

(2.3) Ak = {n ∈ Z : |ϕ̂1(n) + · · ·+ ϕ̂k(n)| < (1 + 2−k)an}

and definegk+1 = 3
∑

n∈Ak εn,kane
int with {εn,k} such that (1.12) is

valid for λk = 10k. Independetly of the choice of signs, (2.2) is valid
for k + 1.

Forn ∈ Ak we have|ĝk(n)− ϕ̂k(n)| > 2−kan, so

(2.4) ‖gk+1‖2L2 ≤ 22k‖gk − ϕk‖2L2 ≤ 22k exp(−10k)‖gk‖2L2 .

The norms‖gk‖L2 decrease super–exponentially;‖ϕk‖∞ are only
exponentially bigger so that the seriesf =

∑

ϕk converges uniformly
and (2.2) implies that|f̂(n)| ≥ an for all n. J

3 PALEY–ZYGMUND,
(

when
∑

|an|2 =∞
)

.

The following special case of a theorem of Paley and Zygmund
shows that, as opposed to the “smoothing effect” that adding random
signs has on trigonometric series with coefficients in`2, turning the se-
ries a.s. into the Fourier series of a subgaussian function∗ on T, the
series

∑

anrneint with
∑

|an|2 = ∞ is almost surelynot a Fourier–
Stieltjes series.

This and Theorem 2.1 are, in a sense, two sides of the same coin;
showing, in particular, that the Hausdorff–Young theorem can not be
extended beyondp = 2.

3.1 Lemma. Assume
∑

|a2
n| = a2. Then‖

∑

anrn(ω)‖L1 ≥ a(e
√

2)−1.

PROOF: We may assume, with no loss of generality, thata = 1. If
an are real-valued, the functionsψN =

∏N
1 (1 + ianrn) are uniformly

bounded by
∏

(1 + |an|2) ≤ e
∑

|a2
n| = e.

(3.1)
∥

∥

∥

∑

anrn(ω)
∥

∥

∥

L1
≥ e−1

∣

∣

∣

∫

(
∑

anrn(ω))ψNdω
∣

∣

∣ = e−1
∑

|an|2,

∗A random variableX is subgaussianif ec|X|
2

is integrable for some constantc > 0.
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since the only integrands with non-zero integrals arei|an|2.
For an which are not necessarily real-valued, break the sum into its

real and imaginary parts, and apply (3.1) to each. J

Remark: The products definingψN are the Riesz products of the sec-
ond kind (see V.1.3) for the groupD.

3.2 Lemma. LetX be a non-negative random variable,E
(

X2
)

<∞.
Then for0 < λ < 1,

P({ω :X(ω) ≥ λE (X)}) ≥ (1− λ)2 E (X)2

E (X2)
.

PROOF: DenoteA = {ω :X(ω) ≥ λE (X)}, a = P(A). The contribu-
tion of the setA to E (X) is at least(1 − λ)E (X), which means that
average ofX on A is at leasta−1(1 − λ)E (X), and the contribution
of A to E

(

X2
)

is therefore at leasta−1(1 − λ)2E (X)2. It follows that
a−1(1− λ)2E (X)2 ≤ E

(

X2
)

, anda ≥ (1− λ)2E (X)2
/E
(

X2
)

. J

Corollary. If
∑

|a2
n| = a2, then

(3.2) P({ω :
∣

∣

∣

∑

anrn(ω)
∣

∣

∣ ≥ a/10}) ≥ 2−3e−2.

PROOF: Takeλ = 1
2 , X = |

∑

anrn| and use Lemma 3.1 to estimate
E (X). J

Theorem (Paley–Zygmund).If
∑

|an|2 =∞ then the series

(3.3)
∑

anrneint

is almost surelynota Fourier–Stieltjes series.

PROOF: We use the standard notation for the Fejér kernel,

(3.4) Kn(t) =
n
∑

j=−n

(

1− |j|
n+ 1

)

eijt ,

the de la Vallée Poussin kernel,

(3.5) Vn(t) = 2K2n+1(t)−Kn(t),
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and introduce the polynomials

(3.6) WM,N (t) = VN (t)− V2M (t) =
∑

M<|n|<2N+1

cM,N (n)eint.

We have0 ≤ cM,N (n) ≤ 1 and, for n such that2M < |n| ≤ N ,
cM,N (n) = 1. Also, ‖Kn‖L1 = 1, ‖Vn‖L1 ≤ 2, and‖WM,N‖L1 ≤ 4,
and it follows that ifν ∈ M(T), then for everyN > M ∈ N, theL1-
norm of the polynomial

(3.7) ν ∗WM,N =
∑

M<|n|<2N+1

cM,N (n)ν̂(n)eint

is bounded by4‖ν‖M(T).

Choose inductively{Mj , Nj} such thatMj > 3Nj−1, and thenNj
big enough to have

∑

2Mj<|n|<Nj |an|
2 > 10·22j, and write

(3.8) Ψj(ω, t) =
∑

Mj<|n|<2Nj+1

cM,N (n)anrneint.

If for a givenω′ the series (3.3) is the Fourier–Stieltjes series of a
measureνω′ , then

(3.9) Ψj(ω′, t) = νω′ ∗WMj ,Nj , and ‖Ψj(ω′, t)‖L1(µ) ≤ 4‖νω′‖.

For everyt ∈ T, (3.2) impliesP(Ψj

(

ω, t) > 2j
)

> c2 = 2−3e−2. This
implies

P⊗ µ
(

{(ω, t) : Ψj(ω, t) > 2j}
)

> c2,

so that settingΩj = {ω :µ({t : Ψj(ω, t) > 2j}) > c}, we haveP(Ωj) > c.
SinceΩj are independent, we haveP(lim sup Ωj) = 1 (Borel–Cantelli),
and for noω ∈ lim sup Ωj can the series (3.3) be Fourier–Stieltjes series.

J
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