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Chapter 1

Introduction

The classical Calculus of Variations deals with finding minima of functionals

Φ : X → R that are bounded below. The basic idea of the direct method is to

consider a minimizing sequence Φ(un) → inf Φ, to find a convergent subsequence

unk
→ u, and to show that Φ(u) = inf Φ. In order to make this work the space

X should have a topology which is rather weak for the existence of a convergent

subsequence, and rather strong so that Φ is lower semicontinuous. In many ap-

plications the functional is not bounded below and instead of a minimizer one is

interested in critical points. This is the concern of the Calculus of Variations in

the Large or Critical Point Theory, which has undergone an enormous develop-

ment in the last century due to the work of mathematicians like Morse, Lusternik,

Schnirelman, Palais, Smale, Rabinowitz, Ambrosetti, Lions, Struwe, Witten, Floer

and many others, with applications to problems from analysis, geometry and math-

ematical physics. Here one usually requires X to be a Banach manifold and Φ to

be differentiable. An essential ingredient is the construction of a flow ϕ on X so

that Φ(ϕ(t, u)) is decreasing in t. This flow is used in the spirit of Morse theory,

to construct deformations of sublevel sets Φc = {u ∈ X : Φ(u) ≤ c}, and to find

Palais-Smale sequences (un)n, that is: Φ(un) is bounded and Φ′(un) → 0, replacing

the minimizing sequences. Typical results are the mountain pass theorem of Am-

brosetti and Rabinowitz or various linking theorems. The proofs use in an essential

way topological concepts based on the Brouwer or Leray-Schauder degree. The

theory has also been extended to deal with (semi-)continuous functions on metric

spaces, forced by problems from nonlinear elasticity (see [Degiovanni and Schuricht

(1998)]). Another generalization concerns variational methods for functionals on

closed convex subsets of Banach spaces developed by Struwe [Struwe (1989)] for

Plateau’s problem. Such functionals appear also in variational inequalities.

Motivated by several applications, for instance to finite- and infinite-dimensional

Hamiltonian systems, nonlinear Schrödinger equations and nonlinear Dirac equa-

tions, we were led to consider C1-functionals Φ : E = E− ⊕ E+ → R defined on

the product E = E− ⊕E+ of Banach spaces E± with dimE± = ∞ but where one

needs to work with the weak topology on E− in order to gain compactness. The

1
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functionals typically have the form

Φ(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
− Ψ(u) for u = u− + u+ ∈ E− ⊕E+. (1.1)

Since dimE± = ∞ the functional is strongly indefinite. Thus all of its critical points

have infinite Morse index. Moreover, Ψ′ : E → E∗ is not completely continuous

and the Palais-Smale condition does not hold in our applications. This makes

applications of Leray-Schauder degree type arguments rather subtle. On the other

hand the functional Ψ : E → R is weakly sequentially lower semicontinuous and

Ψ′ : E → E∗ is weakly sequentially continuous. It turns out that the product

topology

T = (weak topology on E−) × (norm topology on E+)

is well suited for certain arguments because Φ : (E, T ) → R is sequentially upper

semicontinuous, and Φ′ : (E, T ) → (E∗,weak* topology) is continuous. Given a

finite-dimensional subspace F ⊂ E+ the unit ball of E− ⊕ F is T -compact, and

given a bounded sequence (un)n the negative part (u−n )n T -converges (up to a sub-

sequence). When one wants to develop critical point theory with this topology

on E one needs to construct deformations on E which are T -continuous. Defor-

mations are usually obtained by integrating vector fields which in turn are con-

structed with the help of partitions of unity. So one needs to construct these in a

T -Lipschitz continuous way. A more difficult situation occurs when one is interested

in “normalized solutions”, that is critical points of Φ constrained to the unit sphere

SE = {u ∈ E : ‖u‖ = 1} or to other finite-codimensional submanifolds X of E.

The T -topology on X is not metrizable, therefore the by now well developed

critical point theory for (semi-)continuous functions on metric spaces cannot be

applied. Instead the T -topology is generated by a family D of semi-metrics. A

pair (X,D) consisting of a set X and a family of semi-metrics is called a gage

space; see [Kelley (1995)]. The paper [Bartsch and Ding (2006I)] is a first step

to develop critical point theory on gage spaces. We begin by settling some basic

topological questions. We introduce the concept of a Lipschitz map (X,D) → R

and of a Lipschitz normal gage space (disjoint closed sets can be separated by

Lipschitz maps). We find conditions on (X,D) so that X is Lipschitz normal and

so that Lipschitz partitions of unity (subordinated to a given open cover) exist. In

particular, we show that given a Banach space B, an arbitrary subset B0 ⊂ B, and

letting D be the family of semi-metrics on X = B∗ given by db(x, y) := |〈b, x −
y〉B,B∗ |, b ∈ B0, the gage space (B∗,D) is Lipschitz normal. More generally, if

(Y, dY ) is a metric space then the product gage space (B∗,D)× (Y, dY ) is Lipschitz

normal and has Lipschitz partitions of unity. In addition, if B is separable and

B0 ⊂ B is dense then also every locally closed subset (that is, an intersection of an

open and a closed subset) of this product gage space is Lipschitz normal and has

Lipschitz partitions of unity subordinated to an arbitrary open cover.

We then present some nonlinear problems where the abstract theory developed

here can be applied. These problems arise in mechanics, physics, control theory and
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other topics, which are variational in nature with the feature that their solutions

correspond to critical points of certain strongly indefinite functionals of the form

(1.1). We are interested in the existence and multiplicity of solutions to these

problems. The details are arranged in the last four chapters. In Chapter 5 we

study the homoclinic orbits in the classical Hamiltonian systems




J d

dt
z + L(t)z = Rz(t, z) for t ∈ R

z(t) → 0 as |t| → ∞
with periodic or non-periodic (with respect to the time t) Hamiltonians. Chapter 6

is devoted to the standing waves of the nonlinear Schrödinger equations
{
−∆u+ V (x)u = g(x, u) for x ∈ R

N

u(x) → 0 as |x| → ∞
with V and g being periodic in x. We also treat here semiclassical states of a

Hamiltonian system of perturbed Schrödinger equations:




−ε2∆ϕ+ α(x)ϕ = β(x)ψ + Fψ(x, ϕ, ψ)

−ε2∆ψ + α(x)ψ = β(x)ϕ + Fϕ(x, ϕ, ψ)

(ϕ, ψ) ∈ H1(RN ,R2)

without any periodicity assumption. Chapter 7 deals with localized solutions of the

nonlinear Dirac equations with external fields




−i~
3∑

k=1

αk∂ku+ βmu+M(x)u = Gu(x, u) for x ∈ R
N

u(x) → 0 as |x| → ∞
with either scale potentials (i.e., M(x) = βV (x)), or vector potentials (say, the

Coulomb-type potentials). We also study semiclassical solutions (as ~ → 0). Finally,

in Chapter 8 we handle solutions of homoclinic type to the systems of diffusion

equations
{

∂tu− ∆xu+ b(t, x)·∇xu+ V (x)u = Hv(t, x, u, v)

−∂tv − ∆xv − b(t, x)·∇xv + V (x)v = Hu(t, x, u, v)

for (t, x) ∈ R×RN with u(t, x), v(t, x) → 0 as |t|+ |x| → ∞. In all these problems

the nonlinear terms are assumed to be either asymptotically linear or super linear.

In the arguments certain analytical estimates which are needed to check the as-

sumptions of the abstract results require different techniques. We prove new results

extending the previous relative works in the literature.
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Chapter 2

Lipschitz partitions of unity

Let X be a set and D a family of semi-metrics on X . The pair (X,D) is called

a gage space. We write Td for the topology on X associated to the semi-metric

d : X ×X → R. Let TD be the topology on X generated by all Td, d ∈ D, that is,

the coarsest topology containing all Td, d ∈ D. If D = {dn : n ∈ N} is countable

then TD is semi-metrizable. Namely, setting d̃n := dn

1+dn
and d :=

∑
n∈N

1
2n d̃n one

easily checks that TD = Td. We call D saturated if d, d′ ∈ D implies max{d, d′} ∈ D.

Clearly, the family

D :=
{

max{d1, . . . , dk} : k ∈ N, d1, . . . , dk ∈ D
}

is the smallest saturated family of semi-metrics on X which contains D, the satu-

ration of D. It generates the same topology as D. In this section, all topological

notions refer to TD = TD.

A basis of this topology is given by the sets

Uε(x; d) := {y ∈ X : d(x, y) < ε}, x ∈ X, d ∈ D, ε > 0.

In fact, for x ∈ X the sets Uε(x, d), d ∈ D, ε > 0, form a neighborhood basis because

given semi-metrics d1, . . . , dk, and given ε1, . . . , εk > 0 we set ε = min{ε1, . . . , εk},
d = max{d1, . . . , dk} and obtain

Uε1(x; d1) ∩ . . . ∩ Uεk
(x; dk) ⊃ Uε(x; d).

Definition 2.1 ([Bartsch and Ding (2006I)]). A map f : X → (M,dM ) into

a semi-metric space M with semi-metric dM is said to be Lipschitz (continuous) if

there exist d ∈ D and λ > 0 such that

dM (f(x), f(y)) ≤ λd(x, y) for all x, y ∈ X.

f is called locally Lipschitz (continuous) if every x ∈ X has a neighborhood Ux such

that the restriction f |Ux is Lipschitz continuous.

Clearly, a (locally) Lipschitz map is continuous. Lipschitz continuity depends of

course on D and not just on the topology TD. We call two gage spaces (X,D)

and (Y, E) equivalent if there exists a homeomorphism h : X → Y such that for

every map f : (Y, E) → (M,dM ) into a semi-metric space there holds: f is (locally)

5
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Lipschitz if and only if f ◦ h is (locally) Lipschitz. In this sense, (X,D) and (X,D)

are equivalent.

For Y ⊂ X and d ∈ D we set

d( . , Y ) : X → R, d(x, Y ) := inf{d(x, y) : y ∈ Y }.
Then

|d(x1, Y ) − d(x2, Y )| ≤ d(x1, x2),

so d( . , Y ) is Lipschitz. Clearly, the zero set of d( . , Y ) is the closure of Y with

respect to the topology Td.
If A ⊂ X is closed and x 6∈ A then there exists a neighbourhood Uε(x; d) ⊂ X\A.

The map

f : X → [0, 1], f(y) = min{1, d(x, y)/ε}
is Lipschitz and satisfies f(x) = 0, f |A ≡ 1. Thus one can separate a point and a

disjoint closed set by a Lipschitz map. In particular, X is completely regular. It is

easy to see that one can also separate a compact set and a disjoint closed set by a

Lipschitz map.

In general, X need not be normal. If X is normal we do not know whether two

disjoint closed sets can be separated by a locally Lipschitz map. Similarly, if X is

paracompact we do not know whether one can construct locally finite partitions of

unity subordinated to an open cover of X and such that the maps in the partition

of unity are locally Lipschitz. In this section we shall prove results in this direction.

Lemma 2.1. f : X → M is locally Lipschitz if, and only if, for every x ∈ X there

exists d ∈ D, ε > 0, λ > 0 such that

dM (f(y), f(z)) ≤ λd(y, z) for all y, z ∈ Uε(x; d).

Proof. Suppose f is locally Lipschitz. Thus there exist d1 ∈ D, ε > 0 such that

f |Uε(x;d1) is Lipschitz, that is, for some d2 ∈ D, λ > 0 we have

dM (f(y), f(z)) ≤ λd2(y, z) for all y, z ∈ Uε(x; d1).

Setting d := max{d1, d2} the conclusion follows. The other implication is trivial.�

Lemma 2.2. Let f : X → M be locally Lipschitz. Then for K ⊂ X compact there

exists a neighbourhood U of K in X such that f |U is Lipschitz.

Proof. For x ∈ K we choose dx ∈ D, εx > 0, λx > 0 such that

dM (f(y), f(z)) ≤ λxdx(y, z) for y, z ∈ Uεx(x; dx).

There exist x1, . . . , xn ∈ K with K ⊂ ⋃nj=1 Uεxj
/2(xj ; dxj ). For j = 1, . . . , n we set

εj := εxj , dj := dxj , λj := λxj , Uj := Uεj/2(xj ; dj), and U :=
⋃n
j=1 Uj .

We first show that f(U) is bounded, that is

S := sup{dM (f(x), f(y)) : x, y ∈ U} <∞.



June 21, 2007 11:27 World Scientific Book - 9.75in x 6.5in VariationalMethods

Lipschitz partitions of unity 7

For x, y ∈ U there exist i, j with x ∈ Ui, y ∈ Uj . Then we have

dM
(
f(x), f(y)

)
≤ dM (f(x), f(xi)) + dM (f(xi), f(xj)) + dM (f(xj), f(y))

≤ λidi(x, xi) + dM (f(xi), f(xj)) + λjdj(xj , y)

≤ λiεi
2

+ dM (f(xi), f(xj)) +
λjεj

2

≤ max
k,l

(
λkεk

2
+ dM (f(xk), f(xl)) +

λlεl
2

)

<∞.

Now we prove that f |U is Lipschitz. Set ε := 1
2 min{ε1, . . . , εn}, λ :=

max{λ1, . . . , λn, S/ε} and d := max{d1, . . . , dn}. For x, y ∈ U we choose j with

y ∈ Uj . If dj(x, y) < εj/2 then x ∈ Uεj (xj ; dj) and therefore

dM
(
f(x), f(y)

)
≤ λjdj(x, y) ≤ λd(x, y),

as required. If on the other hand dj(x, y) ≥ εj/2 ≥ ε then

dM
(
f(x), f(y)

)
≤ S ≤ λdj(x, y) ≤ λd(x, y).

�

Lemma 2.3. Let K ⊂ X be compact and A ⊂ X be closed such that A ∩K = ∅.
Then there exists d ∈ D with

d(K,A) = inf{d(x, y) : x ∈ K, y ∈ A} > 0.

Proof. There exist x1, . . . , xn ∈ K, ε1, . . . , εn > 0 and d1, . . . , dn ∈ D with

K ⊂
n⋃
j=1

Uεj (xj ; dj) and
n⋃
j=1

U2εj (xj ; dj) ⊂ X \A. Then d := max{d1, . . . , dn} does

the job: d(K,A) ≥ min{ε1, . . . , εk}. �

In the situation of Lemma 2.3 the map

f : X → [0, 1], f(x) :=
d(x,K)

d(x,K) + d(x,A)
,

is well defined and Lipschitz, because the maps d(.,K), d(., A) are Lipschitz and

d(x,K) + d(x,A) ≥ d(K,A) > 0 for all x ∈ X . Clearly, f |K ≡ 0 and f |A ≡ 1. Thus

a compact set K and a disjoint closed set A can be separated by a Lipschitz map.

Definition 2.2 ([Bartsch and Ding (2006I)]). A gage space (X,D) is said to

be Lipschitz normal if X is Hausdorff, (equivalently, D separates points), and if for

any two closed disjoint sets A,B ⊂ X there exists a locally Lipschitz map f : X →
[0, 1] with f |A ≡ 0 and f |B ≡ 1.

If D = {d} and d is a metric then (X,D) is Lipschitz normal.

Lemma 2.4. Suppose (X,D) is Lipschitz normal and paracompact. Then for every

open covering U of X there exists a subordinated locally finite partition of unity

consisting of locally Lipschitz maps.
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Proof. Let {Uλ : λ ∈ Λ} be a locally finite refinement of U and let {Vλ : λ ∈ Λ}
be an open cover of X with V λ ⊂ Uλ for all λ ∈ Λ. Let ρλ : X → [0, 1] be a locally

Lipschitz map with ρλ|V λ
≡ 1 and ρλ|X\Uλ

≡ 0. Then

ρ : X → [1,∞), ρ(x) =
∑

λ∈Λ

ρλ(x),

is well defined and locally Lipschitz because V λ ⊂ supp ρλ ⊂ Uλ, hence each x ∈ X

has a neighbourhood which intersects only finitely many supp ρλ. The maps πλ :=

ρλ/ρ : X → [0, 1], λ ∈ Λ, are also locally Lipschitz and form the required partition

of unity. �

We shall now find conditions on the topology of X such that (X,D) is Lipschitz

normal. Recall that X is said to be σ-compact if there exists an increasing sequence

X1 ⊂ X2 ⊂ . . . of compact subsets of X whose union is X . If X is σ-compact then

it is also paracompact (hence normal) because X is regular.

Theorem 2.1 ([Bartsch and Ding (2006I)]). If X is σ-compact then (X,D) is

Lipschitz normal.

Proof. Let ∅ = X0 ⊂ X1 ⊂ X2 ⊂ . . . be compact subsets of X with X =
⋃
nXn.

Let A,B ⊂ X be disjoint closed subsets. We construct inductively sequences

(Vn)n∈N0 and (Wn)n∈N0 of open subsets of X such that Vn ⊂ Vn+1, Wn ⊂ Wn+1,

(X \ A) ∪ (A ∩ Xn) ⊂ Vn, B ∪ Xn ⊂ Wn, and Wn ∩ A ⊂ Vn, for all n ∈ N0. For

n = 0 we set V0 := X \ A and choose a neighbourhood W0 of B with W 0 ⊂ V0. If

Vn and Wn have been defined for some n ≥ 0, observe that

An := A ∩Xn+1 \ Vn ⊂ X \Wn is compact. (2.1)

According to Lemma 2.3 there exists dn ∈ D with

δn :=
1

2
dn(An,Wn) > 0. (2.2)

Now we define

Vn+1 := Vn ∪ Uδn(An; dn). (2.3)

Since (X \A) ∪ (A ∩Xn) ⊂ Vn we have Xn+1 ⊂ (X \A) ∪ (A ∩Xn+1) ⊂ Vn+1. By

normality there exists an open neighbourhood W ′
n+1 of Xn+1 with W ′

n+1 ⊂ Vn+1.

Setting Wn+1 := Wn ∪ W ′
n+1 we obtain B ∪ Xn+1 ⊂ Wn+1 and Wn+1 ∩ A ⊂

(Wn∩A)∪W ′
n+1 ⊂ Vn+1. This finishes the construction of (Vn)n∈N0 and (Wn)n∈N0 .

For n ∈ N0 we now consider the map

fn : X → [0, 1], fn(x) :=
dn(x, U δn(An; dn))

dn(x, U δn(An; dn)) + dn(x,X \ U2δn(An; dn))
.

This map is well defined and locally Lipschitz. Clearly we have

fn(x) = 0 ⇔ dn(x,An) ≤ δn
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and

fn(x) = 1 ⇔ dn(x,An) ≥ 2δn.

Since Wn ⊂ X \U2δn(An; dn) by (2.2) we see that fn|Wn ≡ 1 and therefore fm|Wn ≡
1 for all m ≥ n. This implies that the map f := infn∈N0 fn satisfies f |Wn =

min0≤k≤n fk|Wn . Thus f is locally Lipschitz because {Wn : n ∈ N0} is an open

cover of X . From B ⊂W0 ⊂Wn we deduce fn|B ≡ 1 for all n, so f |B ≡ 1. Finally,

observe that

Vn = (X \A) ∪
n−1⋃

k=0

Uδk
(Ak ; dk) for n ≥ 0,

hence f |Vn∩A ≡ 0. This yields f |A∩Xn ≡ 0 for all n and thus f |A ≡ 0. �

It is clear that a closed subspace Y ⊂ X with the induced family DY of semi-metrics

d|Y : Y ×Y → R is Lipschitz normal when (X,D) is Lipschitz normal. In [Smirnov

(1951)] Smirnov proved that an open Fσ-subspace Y ⊂ X of a normal space X

is normal. Recall that Y is an Fσ-subspace of X if Y =
⋃
n∈N

Yn is the union of

countably many closed subsets Yn of X . A corresponding result holds for Lipschitz

normality.

Theorem 2.2 ([Bartsch and Ding (2006I)]). Let (X,D) be Lipschitz normal

and Y ⊂ X be an open Fσ-subspace. Then (Y,DY ) is Lipschitz normal.

Proof. Let Y =
⋃
n∈N

Yn with Yn ⊂ X closed and Yn ⊂ Yn+1 for n ∈ N. Consider

two closed disjoint subsets A,B of Y . We write A, B for the closures of A and B in

X . Thus A∩Y = A, B∩Y = B and A∩B∩Y = ∅. As in the proof of Theorem 2.1

we construct inductively open subsets Vn, Wn of Y with Vn ⊂ Vn+1, Wn ⊂ Wn+1,

(Y \A) ∪ (A ∩ Yn) ⊂ Vn, B ∪ Yn ⊂Wn and Wn ∩A ∩ Y ⊂ Vn, for all n ∈ N0; here

Y0 := ∅. We set V0 := Y \A and choose an open neighbourhood W0 ⊂ Y of B such

that W 0 ∩ Y ⊂ V0. This is possible since Y is normal. Suppose Vn, Wn are defined

for some n ≥ 0. Then An := A ∩ Yn+1 \ Vn is closed in X and disjoint from the

closed subset W n of X . Since X is Lipschitz normal there exists a locally Lipschitz

continuous map fn : X → [0, 1] with fn|An ≡ 0 and fn|Wn
≡ 1. We set

Vn+1 := Vn ∪ {x ∈ Y : fn(x) < 1/2}
so that

Yn+1 ⊂ (Y \A) ∪ (A ∩ Yn+1) ⊂ Vn+1.

As a consequence of the normality of X there exists an open neighbourhood W ′
n+1

of Yn+1 with W ′
n+1 ⊂ Vn+1. We set Wn+1 := Wn ∪W ′

n+1.

In order to define a Lipschitz map f : Y → [0, 1] which separates A and B let

χ : [0, 1] → [0, 1] be defined by χ(t) = 0 for 0 ≤ t ≤ 1/2, and χ(t) = 2t − 1 for

1/2 ≤ t ≤ 1. Now we define

f : Y → [0, 1], f(x) := inf
n∈N

χ ◦ fn(x).
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From fn|Wn
≡ 1 we deduce fm|Wn

≡ 1 for allm ≥ n, hence f |Wn
= min

0≤k≤n
χ◦fk|Wn

.

This implies that f |Wn
is locally Lipschitz for n ∈ N0, and consequently f is locally

Lipschitz because {Wn : n ∈ N} is an open cover of Y . Moreover, f |B ≡ 1 because

B ⊂W0 ⊂Wn for all n ∈ N0. Finally, observe that

Vn = (Y \A) ∪
n−1⋃

k=0

{y ∈ Y : fk(y) < 1/2},

and that

A ∩ Yn ⊂ A ∩ Vn ⊂
n−1⋃

k=0

{y ∈ Y : fk(y) < 1/2} ⊂
n−1⋃

k=0

{y ∈ Y : χ ◦ fk(y) = 0}.

This implies f |A∩Yn ≡ 0 for all n ∈ N and therefore f |A ≡ 0. �

Remark 2.1. From the above proof one sees that each of the locally Lipschitz maps

from Y to [0, 1] of Theorem 2.2 can be required to be also a locally Lipschitz map

from X to [0, 1].

Next we investigate the behavior of Lipschitz normality with respect to finite

products. Recall that the product X × Y of normal spaces X,Y need not be

normal whereas the product of a σ-compact space X and a paracompact space Y

is paracompact, hence normal by a result of Michael (see Proposition 4 of [Michael

(1953)]). We extend this result to Lipschitz normality. In addition to (X,D) we

consider a set Y and a family E of semi-metrics on Y . Let TE be the associated

topology on Y . For d ∈ D and e ∈ E we have an induced semi-metric d × e on

Z = X × Y defined by

d× e
(
(x1, y1), (x2, y2)

)
:= max{d(x1, x2), e(y1, y2)}.

The topology on X ×Y generated by D×E = {d× e : d ∈ D, e ∈ E} is the product

topology (X, TD) × (Y, TE).

Theorem 2.3 ([Bartsch and Ding (2006I)]). Let (X,D) be σ-compact and

(Y, E) paracompact and Lipschitz normal. Then (X×Y,D×E) is Lipschitz normal.

Proof. Let (Xn)n∈N be an increasing sequence of compact subsets of X with X =⋃
n∈N

Xn and X0 = ∅. We set Z := X × Y and Zn := Xn × Y , n ∈ N. Let A,B be

closed subsets of Z and set Ay := A∩X×{y} for y ∈ Y . We proceed as in the proof

of Theorem 2.2 and construct inductively increasing sequences (Vn)n∈N, (Wn)n∈N

of open subsets of Z with (Z \ A) ∪ (A ∩ Zn) ⊂ Vn, B ∪ Zn ⊂ Wn, Wn ∩ A ⊂ Vn.

The inductive step also leads to a locally Lipschitz map fn : X → [0, 1] which will

be used later to finish the proof.

We begin with V0 := Z \A and an open set W0 satisfying B ⊂W0 and W 0 ⊂ V0.

Here we used that Z is normal. Suppose Vn,Wn are given for some n ≥ 0. Then

Ay ∩ Zn+1 \ Vn is compact and disjoint from W n, for any y ∈ Y . Thus there exist

open sets Wy, Vy ⊂ X , and ey ∈ E , εy > 0 such that V y ⊂Wy, and

Ay ∩ Zn+1 \ Vn ⊂ Vy × Uεy/2(y; ey) ⊂W y × Uεy (y; ey) ⊂ Z \Wn.
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Let PY : X×Y → Y be the projection. Since Xn is compact the restriction PY |Zn is

closed. Thus PY (A∩Zn+1 \Vn) is a closed subset of Y and therefore paracompact.

Consequently there exists a locally finite open refinement {Nλ : λ ∈ Λn} of the

covering {Uεy/2(y; ey) : y ∈ PY (A ∩ Zn+1 \ Vn)} of PY (A ∩ Zn+1 \ Vn). There also

exists an open covering {Pλ : λ ∈ Λn} of PY (A ∩ Zn+1 \ Vn) satisfying P λ ⊂ Nλ.

For λ ∈ Λn we choose yλ = y with Nλ ⊂ Uεy/2(y; ey). Then {Vyλ
× Pλ : λ ∈ Λn}

and {Wyλ
×Nλ : λ ∈ Λn} are locally finite open (in X ×Y ) covers of A∩Zn+1 \Vn

such that

V yλ
× Pλ ⊂Wyλ

×Nλ ⊂W yλ
×Nλ ⊂ Z \Wn.

We set

Vn+1 := Vn ∪
⋃

λ∈Λn

(Vyλ
× Pλ)

so that

Zn+1 ⊂ (Z \A) ∪ (A ∩ Zn+1) ⊂ Vn+1.

Since X×Y is normal there exists an open neighbourhood W ′
n+1 of Zn+1 in X×Y

with W ′
n+1 ⊂ Vn+1. SettingWn+1 := Wn∪W ′

n+1 we clearly have B∪Zn+1 ⊂Wn+1

and

Wn+1 ∩ A ⊂ (Wn ∩ A) ∪W ′
n+1 ⊂ Vn+1.

Now we construct the map fn : X → [0, 1]. For λ ∈ Λn let gλ : X → [0, 1] be a

locally Lipschitz map with gλ|V yλ
≡ 0 and gλ|X\Wyλ

≡ 1. It exists because (X,D) is

Lipschitz normal by Theorem 2.1. Similarly, let hλ : Y → [0, 1] be locally Lipschitz

satisfying hλ|Pλ
≡ 0 and hλ|Y \Nλ

≡ 1. Now we define

fn+1 : X × Y → [0, 1], fn+1(x, y) := inf
λ∈Λn

max{gλ(x), hλ(y)}.

Setting

gλ × hλ : X × Y → [0, 1], (x, y) 7→ max{gλ(x), hλ(y)},
we see that gλ × hλ|V yλ

×Pλ
≡ 0 and gλ × hλ|Z\(Wyλ

×Nλ) ≡ 1. Clearly gλ × hλ is

locally Lipschitz because gλ and hλ have this property. Since {Wyλ
×Nλ : λ ∈ Λn}

is locally finite it follows that for each (x, y) ∈ X × Y there exists a neighbourhood

U of (x, y) and a finite set Λ ⊂ Λn with fn+1|U = min
λ∈Λ

gλ × hλ|U . This implies that

fn+1 is locally Lipschitz. Finally we define the map

f := inf
n
fn : X × Y → [0, 1], f(x, y) = inf

n∈N

fn(x, y).

By construction we have fn|Wn
≡ 1 because W yλ

× Nλ ⊂ X × Y \Wn for every

λ. This implies the local Lipschitz continuity of f as in the proof of Theorem 2.2.

Clearly f |B ≡ 1 because B ⊂ W0 ⊂ Wn for every n ∈ N0. And f |A ≡ 0 follows

inductively from

A ∩ Zn+1 \ Vn ⊂
⋃

λ∈Λn

(Vyλ
× Pλ)

and fn|Vyλ
×Pλ

≡ 0 for every n. �
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Example 2.1. Let B be a Banach space, X = B∗ its dual, and B0 ⊂ B be arbitrary

which separates points. Define D0 = {db : b ∈ B0} by db(x, y) = |〈b, x− y〉B,B∗ | for

x, y ∈ X . The topology T0 generated by D0 is contained in the weak∗ topology on

B∗, and it coincides with the weak∗ topology if B0 = B. By the Banach-Alaoglu

theorem (B∗, T0) is σ-compact, and (B∗,D0) is Lipschitz normal as a consequence

of Theorem 2.1.

If in addition B0 is countable then (B∗, T0) is perfectly normal, that is, it is

normal and every closed subset of (B∗, T0) is a Gδ-subset. In fact, it is easy to

check that

A =
⋂

b∈B0

⋂

m∈N

{x ∈ X : db(x,A) < 1/m}.

We proved that every T0-closed subset is a Gδ-subset, hence every T0-open subset

of (B∗, T0) is an Fσ-subset. Thus (B∗,D0) is paracompact and Lipschitz normal

by Theorem 2.1. Moreover, if (Y, E) is Lipschitz normal and paracompact then

(B∗ × Y,D0 × E) is Lipschitz normal and paracompact. If (Y, E) is a metric space

then B∗ × Y is perfectly normal; see Proposition 5 of [Michael (1953)].

We remark that if C ⊂ B0 is a countable subset then any TC-closed subset

A of X is a Gδ-subset of (B∗, T0), where TC denotes the topology generated by

C0 := {dc : c ∈ C}.
In conclusion: If B is a separable Banach space, B0 ⊂ B a countable dense

subset, and (Y, d) a metric space then (B∗ × Y,D0 ×{d}) and every open subset of

this product gage space is paracompact and Lipschitz normal. Consequently also

every locally closed subset (being a closed subset of an open subset) is paracompact

and Lipschitz normal.

Appendix

We collect for the reader’s convenience some topological concepts which we used

previously (see [Kelley (1995)]).

Definition A.1. Let X be a set. A nonnegative real function d(·, ·) defined on

X ×X is called a semi-metric if it satisfies:

(1) d(x, x) = 0;

(2) d(x, y) = d(y, x);

(3) d(x, y) ≤ d(x, z) + d(z, x).

In the following let X denote a topological space.

Definition A.2. X is said to be Hausdorff if for any x 6= y ∈ X there exist two

disjoint open subsets U and V of X such that x ∈ U and y ∈ V . It is said to be

regular if for any closed subset A and any element x 6∈ A there exist two disjoint

open subsets U and V such that A ⊂ U and x ∈ V . It is said to be normal if for

any two disjoint closed subsets A and B there exist two disjoint open subsets U and
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V such that A ⊂ U and B ⊂ V .

Theorem A.3. (1) Assume X is regular. If U is an open subset of X and x ∈ U ,

then there is an open subset V of X such that x ∈ V ⊂ V ⊂ U .

(2) Assume X is normal. If A is a closed subset and U is an open subset with

A ⊂ U then there exists an open subset V such that A ⊂ V ⊂ V ⊂ U .

Theorem A.4.(Urysohn) X is normal if and only if for any two disjoint closed

subsets A and B there is a continuous map f : X → [0, 1] such that f |A = 0 and

f |B = 1.

Definition A.5. X is said to be completely regular if for any closed subset A and

any element x 6∈ A there is a continuous map f : X → [0, 1] satisfying f(x) = 0 and

f(y) = 1 for all y ∈ A.

Definition A.6. X is said to be paracompact if any open covering of X possesses

an open locally finite refinement.
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Chapter 3

Deformations on locally convex

topological vector spaces

Let E be a real vector space and P a family of semi-norms on E which separates

points. To each p ∈ P we associate a semi-metric dp, defined by dp(x, y) = p(x−y).
We write P for the saturation of P which consists of all finite maxima of elements

of P . Then D = {dp : p ∈ P}. The topology TP = TD induced by P or D on E

turns E into a locally convex, Hausdorff topological vector space. All topological

notions for E refer to this topology, all Lipschitz notions to D, except if explicitly

stated otherwise. In our applications, E is a Banach space with respect to a norm

‖ · ‖ /∈ P , and TP is contained in the weak topology.

Consider an open subset W ⊂ E, a locally finite partition {πj : j ∈ J} on W ,

and a family {wj : j ∈ J} in E. We assume that the maps πj : E → [0, 1] are locally

Lipschitz continuous (cf. Remark 2.1). Setting

f : W → E, f(u) =
∑

j∈J
πj(u)wj ,

it is clear that for u ∈W the Cauchy problem




d

dt
ϕ(t, u) = f(ϕ(t, u))

ϕ(0, u) = u
(3.1)

has a unique solution

ϕ( · , u) : Iu = (T−(u), T+(u)) →W

defined on a maximal interval Iu ⊂ R. In fact, there exists a neighbourhood U ⊂W

of u so that Ju := {j ∈ J : U ∩ suppπj 6= ∅} is finite. Let Fu be the span of u and

wj , j ∈ Ju. Then the Cauchy problem




η̇(t) = f
(
η(t)

)
=
∑

j∈Ju

πj(η(t))wj

η(0) = u

has a unique solution ηδ : [−δ, δ] → Fu for δ > 0 small enough because f |U is locally

Lipschitz continuous. One can now argue as in the case of ordinary differential

equations in order to obtain the maximal solution. Observe that for I ⊂ Iu compact

15
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the set ϕ(I, u) = {ϕ(t, u) : t ∈ I} is contained in a finite-dimensional subspace. This

is not the case for the whole trajectory ϕ(Iu, u), in general. Setting

O := {(t, u) : u ∈W, t ∈ Iu} ⊂ R ×W

we have a map ϕ : O →W which is a flow on W .

Theorem 3.1. The following conclusions are true:

a) O is an open subset of R ×W ;

b) ϕ is locally Lipschitz.

Proof. a) Let (t0, u0) ∈ O and suppose without loss of generality that t0 = 0. We

choose t1, t2 ∈ Iu0 with t1 < 0 and t2 > 0. The set K := ϕ([t1, t2], u0) is compact,

so there exists an open neighbourhood U of K with J0 := {j ∈ J : U ∩ supp πj 6= ∅}
being finite, and such that πj |U is Lipschitz for j ∈ J0. Hence there exists p ∈ P
and λ > 0 with

|πj(u) − πj(v)| ≤ λp(u− v) for all u, v ∈ U

and d(K,E \ U) > 0 where d = dp ∈ D. We choose δ > 0 with δ < d(K,E \ U),

set M :=
∑
j∈J0

λp(wj) and choose ε > 0 with ε ≤ δ/2eM(t2−t1). We claim that

for u ∈ Uε(u0; d) the orbit ϕ(t, u) is defined on [t1, t2] and lies in Uδ(K; d) ⊂ U .

Suppose to the contrary that there exists t3 ∈ (0, t2] with ϕ(t, u) ∈ Uδ(K; d) for

t ∈ [0, t3) and d(ϕ(t3, u),K) = δ. Then

p(ϕ(t, u) − ϕ(t, u0))

≤ p(u− u0) + p

(∫ t

0

(
f(ϕ(s, u)) − f(ϕ(s, u0))

)
ds

)

≤ p(u− u0) +
∑

j∈J0

p(wj)

∫ t

0

|πj(ϕ(s, u)) − πj(ϕ(s, u0))|ds

≤ p(u− u0) +
∑

j∈J0

λp(wj)

∫ t

0

p(ϕ(s, u) − ϕ(s, u0))ds

= p(u− u0) +M

∫ t

0

p(ϕ(s, u) − ϕ(s, u0))ds.

Now Gronwall’s inequality yields

p(ϕ(t, u) − ϕ(t, u0)) ≤ p(u− u0)e
Mt < εeMt ≤ δ/2 (3.2)

for t ∈ [0, t2] contradicting d(ϕ(t3, u),K) = δ.

Thus we have shown that [0, t2] ⊂ Iu for u ∈ Uε(u0, d). Similarly one sees that

[t1, 0] ⊂ Iu for u ∈ Uε(u0, d). It follows that [t1, t2] × Uε(u0, d) ⊂ O.

b) Since ϕ is differentiable with respect to t it suffices to show that ϕ is locally

Lipschitz with respect to u. The argument proceeds as in a) and is essentially

standard. In fact, given (t0, u0) ∈ O one can produce a neighbourhood N of (t0, u0)

in O, p ∈ P and M > 0 so that

p(ϕ(t, u) − ϕ(t, v)) ≤ p(u− v)eM |t| for (t, u), (t, v) ∈ N ;

compare the proof of (3.2) above. �
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For the critical point theory which we want to develop now, we suppose there

exists a norm ‖ · ‖ : E → R on E so that (E, ‖ · ‖) is a Banach space, and so that

all p ∈ P are of the form p(u) = |u∗p(u)| for some u∗p ∈ E∗. Thus the topology TP
induced by P is contained in the weak topology of E. We distinguish the topologies

by using notions like P-open, P-closed to refer to TP , versus norm open, norm

closed to refer to the norm topology. Observe that if a map f : (E,P) → (M,d)

into a metric space is (locally) Lipschitz then also f : (E, ‖ · ‖) → (M,d) is (locally)

Lipschitz. We assume in the remainder of the chapter that every P-open subset of

E is paracompact and Lipschitz normal with respect to P .

We consider a functional Φ : E → R which we assume to be C1 with respect

to the norm ‖ · ‖. For a, b ∈ R we write Φa := {u ∈ E : Φ(u) ≤ a}, Φa := {u ∈
E : Φ(u) ≥ a}, and Φba := Φa ∩Φb. In our applications the functional Φ is P-upper

semicontinuous but not P-continuous. The sets Φa have empty P-interior and the

sets Φa are not P-closed, any a ∈ R. Moreover, the map Φ′ : (E, TP ) → (E∗, Tw∗)

is not continuous, only its restriction to Φa. Here and after Tw∗ denotes the weak∗

topology on E∗. The map

τ(u) := sup{t ≥ 0 : ϕ(t, u) ∈ Φa}
is not P-continuous, and there may be no continuous map r : (Φb, TP) → (Φa, TP)

which is the identity on Φa.

The following theorem is a P-continuous version of the non-critical interval the-

orem in critical point theory.

Theorem 3.2 ([Bartsch and Ding (2006I)]). Consider a, b ∈ R with a < b so

that Φa is P-closed and Φ′ : (Φba, TP) → (E∗, Tw∗) is continuous. Suppose moreover

that

α := inf{‖Φ′(u)‖ : u ∈ Φba} > 0. (3.3)

Then there exists a deformation η : [0, 1]× Φb → Φb with the properties:

(i) η is continuous with either the P-topology or the norm topology on Φb;

(ii) for each t the map u 7→ η(t, u) is a homeomorphism of Φb onto η(t,Φb) with

the P-topology or with the norm topology;

(iii) η(0, u) = u for all u ∈ Φb;

(iv) η(t,Φc) ⊂ Φc for all c ∈ [a, b] and all t ∈ [0, 1];

(v) η(1,Φb) ⊂ Φa;

(vi) each point u ∈ Φb has a P-neighbourhood U in Φb so that the set {v− η(t, v) :

v ∈ U, 0 ≤ t ≤ 1} is contained in a finite-dimensional subspace of E;

(vii) if a finite group G acts isometrically on E and if Φ is G-invariant, then η is

equivariant in u.

Here G acts isometrically on E if each g ∈ G induces a bounded linear map

Rg ∈ L (E) which preserves the norm, and such that the unit e ∈ G induces the

identity operator Re = IdE and Rg ◦ Rh = Rgh for any g, h ∈ G. Observe that
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Rg : (E, TP) → (E, TP ) is also continuous. We simply write gu := Rg(u) as usual.

The most important example is the antipodal action of G = {1,−1} ∼= Z/2 on E.

Proof. For each u ∈ Φba we choose w(u) ∈ E with ‖w(u)‖ ≤ 2 and such that

Φ′(u)w(u) > ‖Φ′(u)‖. There exists a P-open neighbourhood N(u) of u in E so that

Φ′(v)w(u) > ‖Φ′(u)‖ for all v ∈ N(u) ∩ Φba.

For u ∈ E \Φa we set N(u) := E \Φa. Then W :=
⋃
u∈Φb N(u) is a P-open subset

of E containing Φb. Let {Uj : j ∈ J} be a P-locally finite P-open refinement of the

covering {N(u) : u ∈ Φb}, and let {πj : j ∈ J} be a P-locally P-Lipschitz partition

of unity subordinated to {Uj : j ∈ J}. For j ∈ J with Uj ∩ Φa 6= ∅ we choose

uj ∈ Φba so that Uj ⊂ N(uj), and we set wj := w(uj). For j ∈ J with Uj ∩ Φa = ∅
we set wj := 0. Now we define the vector field

f : W → E, f(u) :=
a− b

α

∑

j∈J
πj(u)wj ,

which is locally Lipschitz with respect to the norm. Let ϕ(t, u) be the associated

flow on W which is both norm continuous as well as P-continuous. Since ‖f(u)‖ ≤
2(b− a)/α for every u ∈W and since

Φ′(u)f(u) ≤ a− b < 0 for u ∈ Φba

we see that ϕ(t, u) is defined for all (t, u) ∈ [0,∞)×Φb and that η := ϕ|[0,1]×Φb satis-

fies (i)–(v). Property (vi) follows from the fact that f is P-locally finite-dimensional.

Finally, if Φ is G-invariant we replace f(u) by f̃(u) := 1
|G|
∑
g∈G gf(g−1u). The

corresponding flow ϕ̃ has all properties of ϕ and is equivariant in u because f̃ is

equivariant. �

Recall that (un)n is a (PS)c-sequence if Φ(un) → c and ‖Φ′(un)‖ → 0 as n→ ∞.

We say that (un)n is a (C)c-sequence if Φ(un) → c and (1 + ‖un‖)Φ′(un) → 0 as

n → ∞. A set A ⊂ E is said to be a (PS)c-attractor if for any ε, δ > 0 and

any (PS)c-sequence there exist n0 ∈ N with un ∈ Uε(A ∩ Φc+δc−δ) for n ≥ n0. This

concept is due to [Bartsch and Ding (1999)]. Similarly we define a (C)c-attractor if

this property holds for (C)c-sequences. A (PS)c-attractor is a (C)c-attractor but

not vice versa. Given I ⊂ R we say A is a (PS)I -attractor, or (C)I -attractor, if A

is a (PS)c-attractor, or (C)c-attractor, respectively, for every c ∈ I .

Theorem 3.2 results immediately the following consequence.

Corollary 3.1. Suppose c ∈ R is a regular value of Φ. Suppose moreover that

there exists ε0 > 0 so that Φc−ε is P-closed for 0 < ε ≤ ε0, and such that

Φ′ : (closP(Φc+ε0c−ε0), TP ) → (E∗, Tw∗) is continuous. Then, if Φ satisfies the (PS)c-

condition there exists δ > 0 and a deformation η : [0, 1] × Φc+δ → Φc+δ satisfying

the properties (i) - (vii) from Theorem 3.2 with a := c− δ, b := c+ δ.
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Motivated by our applications we now consider the following situation. Suppose

E = X ⊕ Y where X and Y are Banach spaces and X is separable and reflexive.

Let S ⊂ X∗ be a dense subset, let Q be the corresponding set of semi-norms

qs(x) :=
∣∣〈x, s〉X,X∗

∣∣, s ∈ S, on X , and D = {ds : s ∈ S} be the associated family

of semi-metrics on X ∼= X∗∗ as defined in Example 2.1. Let P be the family of

semi-norms on E consisting of all semi-norms

ps : E = X ⊕ Y → R, ps(x+ y) = qs(x) + ‖y‖, s ∈ S.
P induces the product topology on E given by the Q-topology on X and the norm

topology on Y . It is contained in the product topology (X, Tw) × (Y, ‖ · ‖) on E.

The product (X × Y,D × {‖ · ‖}) is a product gage space as described in Example

2.1. Recall that we have assumed that every P-open subset is paracompact and

Lipschitz normal in this chapter (this is the case for example if S is additionally

countable). By PX : E = X ⊕ Y → X we denote the continuous projection onto X

along Y , and by PY := I − PX : E → Y the complementary projection.

Theorem 3.3 ([Bartsch and Ding (2006I)]). Consider a, b ∈ R with a < b so

that Φa is P-closed and Φ′ : (Φba, TP) → (E∗, Tw∗) is continuous. Suppose moreover

that

α := inf{(1 + ‖u‖)‖Φ′(u)‖ : u ∈ Φba} > 0 (3.4)

and

there exists γ > 0 with ‖u‖ < γ‖PY u‖ for all u ∈ Φba. (3.5)

Then there exists a deformation η : [0, 1] × Φb → Φb with the properties (i)–(vii)

from Theorem 3.2.

Proof. Observe that, by (3.5), given u ∈ Φba, the set

Eu := {v ∈ E : γ‖PY v‖ > ‖u‖}
is a P-open neighborhood of u.

As before, for each u ∈ Φba we choose w(u) ∈ E with ‖w(u)‖ ≤ 2 such that

Φ′(u)w(u) > ‖Φ′(u)‖. There is a P-open neighborhood N(u) ⊂ Eu of u such that

Φ′(v)w(u) > ‖Φ′(u)‖, hence jointly with (3.4),

(1 + ‖u‖)Φ′(v)w(u) > (1 + ‖u‖)‖Φ′(u)‖ ≥ α for v ∈ N(u) ∩ Φba. (3.6)

For u ∈ E \ Φa we set N(u) := E \ Φa. Set W :=
⋃
u∈Φb N(u). Let {Uj : j ∈ J}

be a P-locally finite P-open refinement of {N(u) : u ∈ Φb}, and let {πj : j ∈ J}
be a P-locally P-Lipschitz partition of unity subordinated to {Uj : j ∈ J}. For

j ∈ J with Uj ∩ Φa 6= ∅ we choose uj ∈ Φba so that Uj ⊂ N(uj), and we set

wj := (1 + ‖uj‖)w(uj). For j ∈ J with Uj ∩ Φa = ∅ we set wj := 0. Define the

vector field

f : W → E, f(u) :=
a− b

α

∑

j∈J
πj(u)wj ,
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which is locally Lipschitz with respect to the norm. Let ϕ(t, u) be the associated

flow on W which is both norm continuous as well as P-continuous. Since suppπj ⊂
Uj ⊂ Euj if uj ∈ Φba and wj = 0 if Uj ∩ Φa = ∅, one has

‖f(u)‖ ≤ 2(b− a)

α
(1 + γ‖u‖) for every u ∈ W.

Moreover, by definition and (3.6),

Φ′(u)f(u) ≤ a− b < 0 for u ∈ Φba.

Thus ϕ(t, u) is defined for all (t, u) ∈ [0,∞) × Φb and that η := ϕ|[0,1]×Φb satisfies

(i)–(vi). Finally, if Φ is G-invariant we replace f(u) by f̃(u) := 1
|G|
∑

g∈G gf(g−1u).

The corresponding flow ϕ̃ has all properties of ϕ and is equivariant in u because f̃

is equivariant. �

As a consequence we have

Corollary 3.2. Suppose c ∈ R is a regular value of Φ. Suppose moreover that

there exists ε0 > 0 so that Φc−ε is P-closed for 0 < ε ≤ ε0, and such that Φ′ :

(closP(Φc+ε0c−ε0), TP ) → (E∗, Tw∗) is continuous. Then, if Φ satisfies (3.5) and the

(C)c-condition there exists δ > 0 and a deformation η : [0, 1] × Φc+δ → Φc+δ

satisfying the properties (i)– (vii) from Theorem 3.2 with a := c− δ, b := c+ δ.

Now we treat the case where (3.3) (or (3.4)) does not hold, that is, there exist

(PS)c-sequences (or (C)c-sequences) for some c ∈ [a, b]. One can prove various

versions of deformation lemmas in the presence of (PS)-sequences or (C)-sequences

with P-continuous deformations. The next result is a noncritical interval theorem

when Φ′ is not bounded away from 0.

Theorem 3.4 ([Bartsch and Ding (2006I)]). Consider a, b ∈ R with a < b,

I := [a, b], so that Φa is P-closed. Suppose Φ′ : (closP(Φba), TP ) → (E∗, Tw∗) is

continuous and

Φ′(u) 6= 0 for all u ∈ closP(Φba). (3.7)

Then the following holds.

a) If Φ has a (PS)I -attractor A so that PXA ⊂ X is bounded and

β := inf{‖PY u− PY v‖ : u, v ∈ A , PY u 6= PY v} > 0 (3.8)

then there exists a deformation η : [0, 1]×Φb → Φb with the properties (i), (iii)–(vii)

from Theorem 3.2.

b) If Φ has a (C)I -attractor A so that (3.8) holds, PY A ⊂ Y is bounded, and

if (3.5) holds, then there exists η as in a).

Proof. We only prove b) which is a bit more difficult and mention the changes

for the proof of a) at the end.
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We set B := PY A and denote Uσ := X × Uσ(B) for σ > 0; here Uσ(B) = {y ∈
Y : dist‖·‖(y,B) < σ}. Clearly Uσ is P-open. We fix σ < β/2 and observe that

α := inf{(1 + ‖u‖) · ‖Φ′(u)‖ : u ∈ Φba \ Uσ/4} > 0

because A is a (C)I -attractor. By (3.7) we may choose for every u ∈ Φb
a a pseudo-

gradient vector w(u) ∈ E with ‖w(u)‖ ≤ 2 and Φ′(u)w(u) > ‖Φ′(u)‖. For u ∈
Φba \ Uσ/2 there exists a P-open neighbourhood N(u) ⊂ X × Uσ/4(PY u) in E such

that

(1 + ‖u‖)Φ′(v)w(u) > (1 + ‖u‖)‖Φ′(u)‖ ≥ α for all v ∈ N(u) ∩ Φba.

For u ∈ Φba ∩ Uσ/2 there exists a P-open neighbourhood N(u) ⊂ U3σ/4 with

Φ′(v)w(u) > ‖Φ′(u)‖ > 0 for all v ∈ N(u) ∩ Φba.

Finally, for u ∈ E \Φa we set N(u) := E \Φa which is also P-open by assumption.

Then W :=
⋃
u∈Φb N(u) is a P-open subset of E. Let {Uj : j ∈ J} be a P-

locally finite P-open refinement of the covering {N(u) : u ∈ Φb} of W , and let

{πj : j ∈ J} be a P-locally P-Lipschitz continuous partition of unity subordinated

to {Uj : j ∈ J}. For j ∈ J with Uj ∩ Φa 6= ∅ we choose uj ∈ Φba with Uj ⊂ N(uj),

and we set wj := (1 + ‖uj‖)w(uj). If Uj ∩ Φa = ∅ we set wj := 0. We consider the

vector field

f : W → E, f(u) := −
∑

j∈J
πj(u)wj ,

and the associated flow ϕ(t, u) on W . As before ϕ is continuous both with the norm

topology on W and with the P-topology on W . We have that Φ′(u)f(u) ≤ −α for

u /∈ U3σ/4. If πj(u)wj 6= 0 then u ∈ N(uj) for uj ∈ Φba. In the case uj ∈ Φba \ Uσ/2
we have N(uj) ⊂ X × Uσ/2(PY uj), hence ‖PY uj − PY u‖ < σ/2. In the case

uj ∈ Φba ∩ Uσ/2 we have N(uj) ⊂ Uσ, hence ‖PY uj‖ ≤ σ + c where c is a bound

for B = PY A which exists by assumption. In any case it follows from (3.5) that

‖uj‖ ≤ C(1 + ‖u‖) for some C > 0, provided πj(u)wj 6= 0. From this we obtain

‖f(u)‖ ≤
∑

j∈J
πj(u)(1 + ‖uj‖)‖w(uj)‖ ≤ 2C(1 + ‖u‖) (3.9)

for all u ∈ Φb. This implies that ϕ(t, u) is defined for all t ≥ 0, u ∈ Φb. By

construction we have

Φ′(u)f(u) < 0 for all u ∈ Φba

and

Φ′(u)f(u) ≤ −α < 0 for all u ∈ Φba \ Uσ/2.
We claim that for u ∈ Φb there exists T (u) > 0 with Φ(ϕ(T (u), u)) < a. Arguing

indirectly we assume ϕ(t, u) ∈ Φba for all t ≥ 0, some u ∈ Φb. A standard argument

using Φ′(u)f(u) ≤ −α for u /∈ U3σ/4 yields that there exists T > 0 with ϕ(t, u) ∈ Uσ
for all t ≥ T . It follows from (3.8) that ϕ(t, u) ∈ X × Uσ(w) for some w ∈ B, all
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t ≥ T . By construction of the neighbourhoods N(uj) we obtain uj ∈ X ×U3σ/2(w)

if πj(ϕ(t, u)) > 0. Therefore we obtain for t ≥ T :

d

dt
Φ(ϕ(t, u)) ≤ − inf{(1 + ‖uj‖)‖Φ′(uj)‖ : πj(ϕ(t, u)) 6= 0}

≤ − inf{(1 + ‖uj‖)‖Φ′(uj)‖ : uj ∈ Φba ∩ (X × U3σ/2(w))}.

This cannot be bounded away from 0 because limt→∞ Φ(ϕ(t, u)) ≥ a. Consequently

there exists a sequence (ujk )k in Φba∩(X×U3σ/2(w)) with (1+‖ujk‖)‖Φ′(ujk)‖ → 0.

Since A is a (C)I -attractor it follows that ujk converges to A in norm, that is,

dist‖·‖(ujk ,A ) → 0 as k → ∞. This implies PY ujk → w because σ < β/2 with

β from (3.8). Moreover, (PXujk)k is bounded by (3.5), hence a subsequence Q-

converges to some v ∈ X . Therefore v + w ∈ closP(Φba) and Φ′(v + w) = 0,

contradicting (3.7).

Since ϕ(T (u), u) ∈ E \ Φa there exists a P-open neighbourhood V (u) of u with

ϕ(T (u), v) ∈ E \ Φa for v ∈ V (u). Set V :=
⋃
u∈Φb V (u) and choose a P-locally

finite P-open refinement {Wλ : λ ∈ Λ} of the covering {V (u) : u ∈ Φb} of V and

a P-locally P-Lipschitz continuous partition of unity {πλ : λ ∈ Λ} subordinated to

{Wλ : λ ∈ Λ}. Setting

τ : Φb → [0,∞), τ(u) :=
∑

λ∈Λ

πλ(u)T (uλ),

the map

η : [0, 1] × Φb → Φb, η(t, u) := ϕ(tτ(u), u),

has the required properties. In the equivariant case we replace f by f̃ as in the

proof of Theorem 3.2 so that ϕ is equivariant in u. We also replace τ(u) by τ̃(u) :=
1
|G|
∑

g∈G τ(g
−1u) which is G-invariant. This implies that η is equivariant in u and

proves part b).

The proof of a) proceeds as above with (1+‖uj‖)w(uj) replaced by wj := w(uj).

The vector field f is then automatically bounded. The bound for (PXujk)k needed

above follows from the boundedness of PXA . �

Now we prove a deformation theorem in the presence of critical points. Results

of this type are needed for the existence of multiple critical points.

Theorem 3.5 ([Bartsch and Ding (2006I)]). Consider a, b ∈ R with a < b,

I := [a, b], such that Φ : (Φba, TP) → R is upper semi-continuous, and Φ′ :

(Φba, TP ) → (E∗, Tw∗) is continuous.

a) If Φ has a (PS)I -attractor A then for every c ∈ (a, b) and every σ > 0 there

exists a deformation η : [0, 1] × Φb → Φb with the properties (i) - (iv), (vi), (vii)

from Theorem 3.2, and

(viii) η(1,Φc+δ) ⊂ Φc−δ ∪ Uσ and η(1,Φc+δ \ Uσ) ⊂ Φc−δ for δ > 0 small enough;

here Uσ = X × Uσ(PY A ) is as in the proof of Theorem 3.4.
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b) If Φ has a (C)I -attractor A so that PY A ⊂ Y is bounded, and such that

(3.5) is satisfied, then the conclusion as in a) holds.

Proof. Again we shall only prove b) because the proof of a) is similar and some-

what simpler. Fix c ∈ (a, b) and σ > 0. Since A is a (C)I -attractor there exists

α > 0 with

(1 + ‖u‖) · ‖Φ′(u)‖ ≥ 2α if u ∈ Φba \ Uσ/3.

For u ∈ Φba \Uσ/3 there exists w(u) ∈ E with ‖w(u)‖ ≤ 2 and Φ′(u)w(u) ≥ ‖Φ′(u)‖.
By the continuity condition on Φ′ there exists a P-open neighbourhood N(u) of u

such that

(1 + ‖u‖) · Φ′(v)w(u) > α for v ∈ N(u) ∩ Φba.

We may also assume that ‖u‖ < γ‖PY v‖ holds for v ∈ N(u)∩Φba. If u ∈ Φba ∩Uσ/3
we define w(u) := 0 and N(u) := Uσ/3. Finally, if Φ(u) < a we set w(u) := 0 and

N(u) := E \Φa. All sets N(u) are P-open, so there exists a P-locally finite P-open

refinement {Uj : j ∈ J} of {N(u) : u ∈ Φb} together with a subordinated P-locally

P-Lipschitz partition of unity {πj : j ∈ J}. For j ∈ J we choose uj ∈ Φb with

Uj ⊂ N(uj), and we define wj := (1 + ‖uj‖)w(uj). The vector field

f : W :=
⋃

j∈J
Uj =

⋃

u∈Φb

N(u) → E, f(u) := −
∑

j∈J
πj(u)wj ,

induces a flow ϕ(t, u) on W which is norm continuous and P-continuous. In the

equivariant case we replace the vector field f by its symmetrized version as in the

proof of Theorem 3.4. Clearly, Φ′(u)f(u) ≤ 0 for all u ∈ Φb. If u ∈ Uj ⊂ N(uj)

and wj 6= 0 then ‖uj‖ < γ‖PY u‖, hence ‖wj‖ ≤ 2(1+‖uj‖) ≤ 2(1+γ‖PY u‖). This

implies

‖f(u)‖ ≤ 2(1 + γ‖PY u‖) ≤ 2(1 + γ‖u‖) (3.10)

for all u ∈W and therefore ‖f(u)‖ is bounded on Uσ because PY A is bounded. It

also follows that ϕ(t, u) is defined for all t ≥ 0, all u ∈ Φb. We may therefore define

η := ϕ|[0,1]×Φb . It is easy to check that η satisfies the properties (i)-(iv), (vi) and

(vii).

In order to prove (viii) suppose to the contrary that η(1,Φc+δ) 6⊂ Φc−δ ∪Uσ for

every δ > 0. Then there exists a sequence un ∈ Φc+1/n and a sequence tn ∈ (0, 1)

with d
dtΦ(η(t, un))|t=tn → 0. From (3.10) it follows that η(tn, un) is a (C)c-sequence,

hence, since A is a (C)I -attractor, η(tn, un) ∈ Uσ/3 for n large. Consequently,

there are 0 ≤ rn < sn ≤ 1 such that η(rn, un) ∈ ∂Uσ/3, η(sn, un) ∈ ∂Uσ, and

η(t, un) ∈ Uσ \Uσ/3 for t ∈ (rn, sn). This implies ‖η(rn, un)−η(t, un)‖ ≥ 2σ/3. Let

M > 0 be a bound for ‖f(u)‖ in Uσ. Then ‖η(rn, un) − η(sn, un)‖ ≤ M(sn − rn)

and therefore sn − rn ≥ 2σ/3M . This however leads to the contradiction:
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2

n
> Φ(η(rn, un)) − Φ(η(sn, un)) = −

∫ sn

rn

d

dt
Φ(η(t, u)) dt

= −
∫ sn

rn

Φ′(η(t, u)f(η(t, u)) dt ≥ α(sn − rn) ≥ ασ/3M

for all n ∈ N. In a similar way one proves that η(1,Φc+δ \ Uσ) ⊂ Φc−δ for δ > 0

small enough. �
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Chapter 4

Critical point theorems

LetX,Y be Banach spaces withX being separable and reflexive, and set E = X⊕Y .

We write ‖ · ‖ for the norms on X , Y , and E. Let S ⊂ X∗ be a dense subset and

D = {ds : s ∈ S} be the associated family of semi-metrics on X ∼= X∗∗ as defined in

Example 2.1. Let P be the family of semi-norms on E consisting of all semi-norms

ps : E = X ⊕ Y → R, ps(x + y) = |s(x)| + ‖y‖, s ∈ S.
Thus P induces the product topology on E given by the D-topology on X and the

norm topology on Y . It is contained in the product topology (X, Tw) × (Y, ‖ · ‖)
on E. The product (X × Y,D × {‖ · ‖}) is a product gage space as described in

Example 2.1. The associated topology is just TP . Remark that if S is additionally

countable then every open subset is paracompact and Lipschitz normal. Clearly S
is countable if and only if P is countable. Our basic hypothesis is:

(Φ0) Φ ∈ C1(E,R); Φ : (E, TP ) → R is upper semicontinuous, that is, Φa is P-

closed for every a ∈ R; and Φ′ : (Φa, TP) → (E∗, Tw∗) is continuous for every

a ∈ R.

In fact, for our critical point theorems we can weaken the condition on Φ′. It is

required only for a in a certain interval, and Φa can be replaced by subsets like Φba,

depending on the situation. Similarly, Φa needs to be P-closed for certain values of

a only. In our applications (Φ0) holds because the following result applies.

Theorem 4.1 ([Bartsch and Ding (2006I)]). Consider a functional Φ ∈
C1(E,R) of the form

Φ(u) =
1

2

(
‖y‖2 − ‖x‖2

)
− Ψ(u) for u = x+ y ∈ E = X ⊕ Y

such that

(i) Ψ ∈ C1(E,R) is bounded from below;

(ii) Ψ : (E, Tw) → R is sequentially lower semicontinuous, that is, un ⇀ u in E

implies Ψ(u) ≤ lim inf Ψ(un);

(iii) Ψ′ : (E, Tw) → (E∗, Tw∗) is sequentially continuous.

(iv) ν : E → R, ν(u) = ‖u‖2, is C1 and ν′ : (E, Tw) → (E∗, Tw∗) is sequentially

continuous.

25
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Then Φ satisfies (Φ0). Moreover, for any countable dense subset S0 ⊂ S, Φ satisfies

(Φ0) with P replaced by P0 := {ps ∈ P : s ∈ S0} and TP by TP0 associated to P0.

Proof. Let S0 ⊂ S be a countable dense subset of X∗ with associated family

P0 ⊂ P of semi-norms on E. The topology TP0 is then metrizable. Clearly the

identity map (E, Tw) → (E, TP ) → (E, TP0) are continuous. Moreover, if (un)n is

a bounded sequence in E which P0-converges towards u ∈ E then it also converges

weakly to u. Here we use the fact that TP0 is Hausdorff. Now we show that Φa
is P0-closed, hence P-closed for every a ∈ R. Since TP0 is metrizable it suffices

to show that Φa is sequentially P0-closed. Consider a sequence (un)n in Φa which

P0-converges to u ∈ E, and write un = xn + yn, u = x+ y ∈ X ⊕ Y . Observe that

yn converges to y in norm. Since Ψ is bounded below it follows from
1

2
‖xn‖2 =

1

2
‖yn‖2 − Φ(un) − Ψ(un) ≤ C

that (xn)n is bounded, hence it converges weakly towards x and therefore un ⇀ u.

From condition (ii) and the form of Φ it follows that Φ(u) ≥ lim inf Φ(un) ≥ a, so

u ∈ Φa. Next we show that Φ′ : (Φa, TP) → (E∗, Tw∗) is continuous. It suffices to

prove that Φ′ : (Φa, TP0) → (E∗, Tw∗) is sequentially continuous because TP0 ⊂ TP
and TP0 is metrizable. Suppose (un)n P0-converges towards u in Φa. As above it

follows that (un)n is bounded and converges weakly towards u. Then Φ′(un)
w∗

→
Φ′(u) by (iii) and (iv). �

Next we introduce a new version of linking in the infinite-dimensional setting.

Of course, linking is essentially a finite-dimensional concept depending on degree

theory or methods from algebraic topology. Here we extend it in a rather general

and simple way. We need some notations. Given a subset A ⊂ Z of a locally convex

topological vector space we write L(A) := span(A) for the smallest closed linear

subspace containing A, and we write ∂A for the boundary of A in L(A). For a

linear subspace F ⊂ Z we set AF := A ∩ F . Finally let I = [0, 1].

Definition 4.1 ([Bartsch and Ding (2006I)]). Given two subsets Q,S ⊂ Z

with S ∩ ∂Q = ∅, we say that Q finitely links with S if for any finite-dimensional

linear subspace F ⊂ Z with F ∩ S 6= ∅, and any continuous deformation h :

I × QF → F + L(S) with h(0, u) = u for all u, and h(I × ∂QF ) ∩ S = ∅ there

holds h(t, QF ) ∩ S 6= ∅ for all t ∈ I.

Example 4.1. We present three examples of finite linking. In all cases the proof of

the finite linking property is not difficult and based on a Brouwer degree argument.

a) Given an open subset O ⊂ Z, u0 ∈ O, and u1 ∈ Z \O, then Q = {tu1 + (1−
t)u0 : t ∈ I} finitely links with S := ∂O.

b) Suppose Z is the topological sum Z = Z1⊕Z2 of two linear subspaces, O ⊂ Z1

is open and u0 ∈ O. Then Q = O finitely links with S = {u0} × Z2.

c) Given Z = Z1⊕Z2 as in b), two open subsets O1 ⊂ Z1, O2 ⊂ Z2, and u1 ∈ O1,

u2 ∈ Z2 \ O2. Then Q = O1 × {tu2 : t ∈ I} finitely links with S = {u1} × ∂O2.
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Now we come back to our functional Φ : E → R. If Q ⊂ E finitely links with

S ⊂ E we set

ΓQ,S := {h ∈ C(I ×Q,E) : h satisfies (h1) − (h5)}

where

(h1) h : I × (Q, TP) → (E, TP) is continuous;

(h2) h(0, u) = u for all u ∈ Q;

(h3) Φ(h(t, u)) ≤ Φ(u) for all t ∈ I , u ∈ Q;

(h4) h(I × ∂Q) ∩ S = ∅
(h5) each (t, u) ∈ I×Q has a P-open neighborhoodW such that the set {v−h(s, v) :

(s, v) ∈ W ∩ (I ×Q)} is contained in a finite-dimensional subspace of E.

Theorem 4.2 ([Bartsch and Ding (2006I)]). Suppose Φ satisfies (Φ0) with P
countable, and let Q,S ⊂ E be such that Q is P-compact and Q finitely links with

S. If supΦ(∂Q) ≤ inf Φ(S) then there exists a (PS)c-sequence for

c := inf
h∈ΓQ,S

sup
u∈Q

Φ(h(1, u)) ∈ [inf Φ(S), sup Φ(Q)].

If c = inf Φ(S) and if for all δ > 0 the set Sδ := {u ∈ E : dist‖ . ‖(u, S) ≤ δ} is

P-closed then there exists a (PS)c-sequence (un)n with un → S in norm.

Proof. The inequality c ≤ sup Φ(Q) is obvious. In order to see c ≥ inf Φ(S) we

first observe that h(I×∂Q)∩S = ∅ for every h ∈ ΓQ,S by (h3). Since Q is P-compact

there exists a finite-dimensional subspace F containing {u−h(t, u) : (t, u) ∈ I×Q}.
Consequently h(I ×QF ) ⊂ F . Since Q finitely links with S there exists u ∈ Q with

h(1, u) ∈ S which implies supu∈Q Φ(h(1, u)) ≥ inf Φ(S) as claimed.

Assume that ‖Φ′(u)‖ ≥ α for all u ∈ Φc+εc−ε, some α, ε > 0. Notice that since

P is assumed to be countable, every P-open subset is paracompact and Lipschitz

normal (see Example 2.1). We can take η to be the deformation from Theorem 3.2

for a := c − ε, b := c + ε. Now we choose h ∈ ΓQ,S with sup Φ(h(1, Q)) < c + ε

and define g : I × Q → E by g(t, u) := η(t, h(t, u)). Then g(0, u) = u for all u

and g satisfies (h1) − (h4). Moreover, (h5) follows from the equality u − g(t, u) =

(u−h(t, u))+(h(t, u)−η(t, h(t, u))). Thus g ∈ ΓQ,S which leads to the contradiction

c ≤ supu∈Q Φ(g(1, u)) ≤ c− ε.

We have seen that there exists a (PS)c-sequence. Now suppose c = inf Φ(S). If

there does not exist a (PS)c-sequence converging to S in norm then there exist ε > 0,

δ > 0, and α > 0 so that ‖Φ′(u)‖ ≥ α for all u ∈ Sδ ∩ Φc+εc−ε. For such u we choose

w(u) ∈ E with ‖w(u)‖ ≤ 2 and Φ′(u)w(u) > ‖Φ′(u)‖. We then choose a P-open

neighborhood N(u) of u so that Φ′(v)w(u) > ‖Φ′(u)‖ ≥ α for all v ∈ N(u) ∩ Φc−ε.
For u ∈ Φc+εc−ε \ Sδ we put N(u) := E \ Sδ and w(u) := 0. Lastly, for u ∈ E \ Φc−ε
we set N(u) := E \ Φc−ε and w(u) := 0. Then W :=

⋃
u∈Φc+ε N(u) is P-open. Let

{Uj : j ∈ J} be a P-locally finite P-open refinement of {N(u) : u ∈ Φc+ε} and

{πj : j ∈ J} a P-locally P-Lipschitz partition of unity subordinated to the covering
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{Uj : j ∈ J}. For j ∈ J with Uj ∩ Sδ 6= ∅ we choose uj with Uj ⊂ N(uj) and

define wj := w(uj). For j ∈ J with Uj ∩ Sδ = ∅ we set wj := 0. Then the vector

field f(u) := −∑j∈J πj(u)wj satisfies ‖f(u)‖ ≤ 2 for all u ∈ W , and it satisfies

Φ′(u)f(u) ≥ α for all u ∈ Sδ. Let ϕt(u) be the associated flow as in Chapter 3.

By construction we have that, if u ∈ Φc+αδ/4 \Sδ/2 then ϕt(u) /∈ S for all t ≥ 0.

Moreover, if u ∈ Sδ/2 we have ϕt(u) ∈ Sδ for 0 ≤ t ≤ δ/4, hence Φ(ϕδ/2(u)) ≤
Φ(u) − αδ/4 < c. Now take any h ∈ ΓQ,S with sup Φ(h(1, u)) ≤ c + αδ/4. Our

considerations yield ϕδ/2(h(1, u)) /∈ S for all u ∈ Q. This contradicts the linking

condition on Q and S because ϕδ/2 ◦ h(t, . ) ∈ ΓQ,S . �

Similarly, the finitely linking yields also a (C)c-sequence. We need the additional

assumption:

(Φ+) there exists ζ > 0 such that ‖u‖ < ζ‖PY u‖ for all u ∈ Φ0.

Remark 4.1. Let S0 ⊂ S be any countable dense subset with associated family P0

of semi-norms.

(1) The assumptions (Φ0) and (Φ+) imply that Φa is P0-closed and Φ′ :

(Φa, TP0) → (E∗, Tw∗) is continuous for each a ≥ 0, see the proof of Theo-

rem 4.1. Indeed, let (un)n in Φa which P0-converges to u ∈ E, and write

un = xn + yn, u = x + y ∈ X ⊕ Y . Then ‖yn − y‖ → 0, hence yn is bounded.

It follows from (Φ+) that xn, hence un is bounded. This implies that un weakly

hence P-converges to u. Now (Φ0) implies that u ∈ Φa, and Φ′(un)v → Φ′(u)v for

all v ∈ E.

(2) (Φ+) implies clearly (3.5) with 0 ≤ a ≤ b.

(3) Since every P0-open subset is paracompact and Lipschitz normal, Theorems

3.2, 3.3, 3.4 and 3.5 are applicable with gage topology TP0 for 0 ≤ a ≤ b. Letting η

stand for the deformations given by these theorems, we note that η : [0, 1]×Φb → Φb

are P-continuous because of their locally finite-dimensional property (vi).

Theorem 4.3. Suppose Φ satisfies (Φ0) and (Φ+). Let Q,S ⊂ E be such that Q

is P-compact and Q finitely links with S. If κ := inf Φ(S) > 0 and sup Φ(∂Q) ≤ κ

then Φ has a (C)c-sequence with κ ≤ c ≤ sup Φ(Q).

Proof. Repeating the arguments of the first two paragraphs of the proof of The-

orem 4.2 with the application of Theorem 3.2 replaced by Theorem 3.3 (see Remark

4.1) yields the desired conclusion. �

As a corollary of Theorems 4.2 we obtain an improvement of a very useful critical

point theorem of Kryszewski and Szulkin [Kryszewski and Szulkin (1998)].

Theorem 4.4 ([Bartsch and Ding (2006I)]). Consider a functional Φ : E →
R satisfying (Φ0) with P countable, e. g. Φ is as in Theorem 4.1. Suppose there

exist R > r > 0 and e ∈ Y , ‖e‖ = 1 such that we have for S := {u ∈ Y : ‖u‖ = r},
Q = {v + te ∈ E : v ∈ X, ‖v‖ < R, 0 < t < R}: inf Φ(S) ≥ Φ(0) ≥ sup Φ(∂Q).
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Then there exists a (PS)c-sequence for

c := inf
h∈ΓQ,S

sup
u∈Q

Φ(h(1, u)) ∈ [inf Φ(S), sup Φ(Q)].

If c = inf Φ(S) then there exists a (PS)c-sequence (un)n with un → S in norm.

Proof. By Example 4.1c) Q finitely links with S. Observe that Q is P-compact

and that Sδ := {u ∈ E : dist‖ . ‖(u, S) ≤ δ} is P-closed. Therefore the corollary

follows from Theorem 4.2. �

The original theorem in [Kryszewski and Szulkin (1998)] deals with the case

where E is a Hilbert space, Φ is as in Proposition 4.1, and inf Φ(S) > Φ(0) ≥
sup Φ(∂Q). The additional information on the Palais-Smale sequence in the case

c = inf Φ(S) has not been obtained in [Kryszewski and Szulkin (1998)]. It is however

important in applications when c = Φ(0) in order to construct a nontrivial critical

point. If the stronger hypothesis inf Φ(S) > Φ(0) holds then c > Φ(0). This is

sufficient to deduce the existence of a nontrivial critical point.

We have also the following consequence of Theorem 4.3.

Theorem 4.5. Let Φ satisfy (Φ0) and (Φ+), and suppose there exist R > r > 0

and e ∈ Y , ‖e‖ = 1 such that for S := {u ∈ Y : ‖u‖ = r}, Q = {v + te ∈ E : v ∈
X, ‖v‖ < R, 0 < t < R} we have κ := inf Φ(S) > 0 and sup Φ(∂Q) ≤ κ then Φ has

a (C)c-sequence with κ ≤ c ≤ sup Φ(Q).

Next we investigate symmetric functionals. We restrict our attention to the

symmetry group G = {e2kπi/p : 0 ≤ k < p} ∼= Z/p, p a prime number. Using

the more elaborate methods from [Bartsch (1993)] we could deal with more general

symmetry groups; see Remark 4.2 below. We suppose that G acts linearly and

isometrically on X and Y , hence on E = X × Y . We also assume that the action

is fixed point free on E \ {0}, that is, the fixed point set EG := {u ∈ E : gu =

u for all g ∈ G} = {0} is trivial. If A is a topological space on which G acts

continuously (e.g. A ⊂ E is invariant) then the genus of A, gen(A) ∈ N0 ∪ {∞},
is by definition the infimum over all k ∈ N0 such that there exist open invariant

subsets U1, . . . , Uk ⊂ A covering A, and there exist equivariant maps Uj → G,

j = 1, . . . , k. Here we use the convention inf ∅ = ∞. In particular, gen(A) = ∞ if

AG 6= ∅. The genus possesses the following standard properties:

1◦ Normalization: If u 6∈ EG, gen(Gu) = 1;

2◦ Mapping property: If f ∈ C(A,B) and f is equivariant, i.e. fg = gf for all

g ∈ G, then gen(A) ≤ gen(B);

3◦ Monotonicity: If A ⊂ B, gen(A) ≤ gen(B);

4◦ Subadditivity: gen(A ∪ B) ≤ gen(A) + gen(B);

5◦ Continuity: If A is compact and A ∩ EG = ∅, then gen(A) < ∞ and there is

an invariant neighborhood U of A such that gen(A) = gen(U).



June 21, 2007 11:27 World Scientific Book - 9.75in x 6.5in VariationalMethods

30 Variational Methods for Strongly Indefinite Problems

These properties can be found in [Bartsch (1993)] or [Chang (1993); Rabinowitz

(1986)].

In addition to (Φ0) we require the following conditions:

(Φ1) Φ is G-invariant;

(Φ2) there exists r > 0 with κ := inf Φ(SrY ) > Φ(0) = 0 where SrY := {y ∈ Y :

‖y‖ = r};
(Φ3) there exist a finite-dimensional G-invariant subspace Y0 ⊂ Y and R > r such

that we have for E0 := X × Y0 and B0 := {u ∈ E0 : ‖u‖ ≤ R}: b :=

sup Φ(E0) <∞ and sup Φ(E0 \B0) < inf Φ(BrY ).

Now we define a kind of pseudo-index for the topology of the sublevel sets Φc

for c ∈ R. For this purpose we consider the set M(Φc) of maps g : Φc → E with

the properties

(P1) g is P-continuous and equivariant;

(P2) g(Φ
a) ⊂ Φa for all a ∈ [κ, b];

(P3) each u ∈ Φc has a P-open neigbourhood W ⊂ E such that the set (id−g)(W ∩
Φc) is contained in a finite-dimensional linear subspace of E.

Observe that, if g ∈ M(Φa), h ∈ M(Φc) with a < c and h(Φc) ⊂ Φa then g ◦ h ∈
M(Φc). The properties (P1) and (P2) are trivially satisfied by g ◦ h. Property (P3)

follows from the equality id− g ◦ h = id− h+ (id− g) ◦ h. The pseudo-index of Φc

is then defined by

ψ(c) := min{gen(g(Φc) ∩ SrY ) : g ∈ M(Φc)} ∈ N0 ∪ {∞}.

Observe that it does not play a role whether we use the norm topology or the P-

topology on Φc since both induce the same topology on SrY ⊂ Y . As a consequence

of the monotonicity of the genus the function ψ : R → N0 ∪ {∞} is nondecreasing.

Clearly we have ψ(c) = 0 for c < κ since then Φc ∩ SrY = ∅.

Lemma 4.1. If Φ satisfies (Φ0) − (Φ3) then ψ(c) ≥ n := dimY0 for c ≥ b =

sup Φ(E0).

Proof. See Lemma 4.3 of [Bartsch and Ding (1999)]. Fix c ≥ supΦ(E0) =

sup Φ(B0). We shall show that gen(g(B0) ∩ SrY ) ≥ n for any g ∈ M(Φc). Then

ψ(c) ≥ n because B0 ⊂ Φc and because the genus is monotone. Fix g ∈ M(Φc).

Since B0 is P-compact it follows from (P3) that (id − g)(B0) is contained in a

finite-dimensional subspace F of E. We may assume that FY := PY F ⊃ Y0 and

F = FX ⊕ FY with FX := PXF ⊂ X . Consider the set

O := {u ∈ B0 ∩ F : ‖g(u)‖ < r} ⊂ F

and the map

h : ∂O → FX , h(u) := PX ◦ g(u).
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We observe that g(B0 ∩ F ) ⊂ F because (id− g)(B0) ⊂ F . Thus h is well defined.

Moreover, g : B0 ∩ F → F is continuous by (P1) since F is finite-dimensional. In

addition, (P2) implies that 0 ∈ O and O ⊂ int(B0 ∩ F ). Therefore O is a bounded

open neighborhood of 0 in Fn := F ∩ (X ⊕ Y0), hence, gen(∂O) = dimFn. From

the monotonicity of the genus we obtain

gen
(
∂O \ h−1(0)

)
≤ gen(PXFn \ {0}) = dimPXFn .

The continuity and the subadditivity yield

gen(∂O) ≤ gen
(
(h−1(0)

)
+ gen(∂O\h−1(0)).

It follows that

gen(h−1(0)) ≥ dimFn − dimPXFn = dimY0.

Finally, h(u) = 0 implies g(u) ∈ Y and u ∈ ∂O implies ‖g(u)‖ = r, thus g(h−1(0)) ⊂
g(B0) ∩ SrY . Therefore, using the monotonicity of the genus once more we obtain

the desired inequality

gen(g(B0) ∩ SrY ) ≥ gen(g(h−1(0))) ≥ gen(h−1(0)).
�

For later arguments we introduce a comparison function ψd : [0, d] → N0. For

d > 0 fixed set

M0(Φ
d) := {g ∈ M(Φd) : g is a homeomorphism from Φd to g(Φd)}.

Then we define for c ∈ [0, d]

ψd(c) := min
{
gen(g(Φc) ∩ SrY ) : g ∈ M0(Φ

d)
}
.

Note that since M0(Φ
d) ⊂ M(Φd) ↪→ M(Φc) via restriction g 7→ g|Φc we have

ψ(c) ≤ ψd(c) for all c ∈ [0, d].

Theorem 4.6 ([Bartsch and Ding (2006I)]). Let (P1) − (P3) be satisfied. As-

sume that Φ satisfies also either (Φ0) with P countable and the (PS)c-condition or

(Φ0), (Φ+) and the (C)c-condition for c ∈ [κ, b], then it has at least n := dim Y0

G-orbits of critical points.

Proof. We only treat the situation where (PS)c-condition is satisfied because the

other situation can be handled similarly.

For i = 1, . . . , n we set

ci := inf{c ≥ 0 : ψ(c) ≥ i} ∈ [κ, b].

If ci is not a critical value then there exists ε > 0 so that inf{‖Φ′(u)‖ : u ∈ Φc+εc−ε} >
0. Now Theorem 3.2 yields a deformation η such that h := η(1, ·) ∈ M(Φci+ε) and

h(Φci+ε) ⊂ Φci−ε. This implies the contradiction

ψ(ci − ε) = min{gen(g(Φci−ε) ∩ SrY ) : g ∈ M(Φci−ε)}
≥ min{gen(g(h(Φci+ε)) ∩ SrY ) : g ∈ M(Φci−ε)}
≥ min{gen(g(Φci+ε) ∩ SrY ) : g ∈ M(Φci+ε)}
= ψ(ci + ε).
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Here we used the monotonicity of the genus and the fact that for g ∈ M(Φci−ε) the

composition g ◦ h ∈ M(Φci+ε). Thus ci is a critical value for i = 1, . . . , n.

Suppose Φ has only finitely many critical points in Φbκ. Then A := {u ∈ Φbκ :

Φ′(u) = 0} is a finite (PS)I -attractor, so (3.8) holds trivially true. For σ > 0 small

we then have that Uσ(PY A ) ⊂ Y is the disjoint union of the σ-balls around the

elements of PY A . This implies that gen(Uσ) = gen(Uσ(PY A )) = gen(PY A ) = 1

where Uσ = X × Uσ(PY A ). Let η : [0, 1] × Φb → Φb be a deformation as in

Theorem 3.5a). For δ > 0 small enough the map h := η(1, ·) satisfies h(Φci+δ) ⊂
Φci−δ ∪ Uσ. Let d = b + 1 and choose g0 ∈ M0(Φ

d) such that ψd(ci − δ) =

gen(g0(Φ
ci−δ) ∩ SrY ). Consequently,

ψd(ci + δ) = min{gen(g(Φci+δ) ∩ SrY ) : g ∈ M(Φci+δ)}
≤ gen(g0 ◦ h(Φci+δ) ∩ SrY )

≤ gen(g0(Φ
ci−δ ∪ Uσ) ∩ SrY )

≤ gen(g0(Φ
ci−δ) ∩ SrY ) + gen(g0(Uσ))

≤ ψd(ci − δ) + 1.

This implies that κ < c1 < c2 < · · · < cn ≤ b so we have even n distinct critical

values. �

Remark 4.2. Theorem 4.6 holds true for more general classes of symmetries, for

instance for the abelian p-group (Z/p)k acting without fixed points on E \ {0}, or

for any finite group G which acts freely on E \{0}. If G = (S1)k is a torus, or more

generally G = (S1)k × (Z/p)l is a p-torus then Φ has at least 1
2 dim Y0 G-orbits

of critical points. For G = SU(2) we obtain at least 1
4 dimY0 G-orbits of critical

points. In all these cases there exists an index theory i : {A ⊂ E : A is invariant} →
N0 ∪ {∞} satisfying the monotonicity, continuity, and subadditivity properties as

well as a dimension property: i(F \{0}) = c·dimF for a finite-dimensional invariant

linear subspace F ⊂ E. We refer the reader to [Bartsch and Ding (1999); Bartsch

(1996); Benci (1982); Clapp and Puppe (1991)] for a discussion of group actions,

index theories, examples, and applications.

Our last critical point theorem is concerned with the existence of an unbounded

sequence of critical values in the presence of symmetries. We stick to the case where

G = Z/p acts linearly, isometrically on E and has no fixed points in E \ {0}. The

hypothesis (Φ3) is replaced by

(Φ4) there exists an increasing sequence of finite-dimensional G-invariant subspaces

Yn ⊂ Y and there exist Rn > r such that we have for Bn := {u ∈ X × Yn :

‖u‖ ≤ Rn}: sup Φ(X × Yn) < ∞ and supΦ(X × Yn \ Bn) < β := inf Φ({u ∈
Y : ‖u‖ ≤ r}).

Here r > 0 is from (Φ2). We also need the following compactness condition:
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(ΦI) One of the following holds:

– P is countable and Φ satisfies the (PS)c-condition for every c ∈ I ;

– P is countable and Φ has a (PS)I -attractor A with PXA ⊂ X\{0} bounded

and satisfying (3.8);

– (Φ+) holds and Φ has a (C)I -attractor A with PY A ⊂ Y \ {0} bounded

and satisfying (3.8).

Theorem 4.7 ([Bartsch and Ding (2006I)]). If Φ satisfies (Φ0) − (Φ2), (Φ4),

and (ΦI) for any compact interval I ⊂ (0,∞) then Φ has an unbounded sequence of

critical values.

Proof. Similarly to the proof of Theorem 4.6 we consider the set M(Φc) of maps

g : Φc → E with the properties (P1) − (P3) and the pseudoindex ψ(c). Given a

finite-dimensional invariant subspace Yn ⊂ Y we claim that ψ(c) ≥ dim Yn for any

c ≥ sup Φ(X × Yn) as in Lemma 4.1. In fact, given g ∈ M(Φc) we show that

gen(g(Bn) ∩ SrY ) ≥ dimYn. The claim follows then using the monotonicity of the

genus. Since Bn is P-compact there exists a finite-dimensional subspace F ⊂ E

containing (id− g)(Bn). Making F larger if necessary we may assume that Yn ⊂ F

and F = PXF + PY F . We define

O := {u ∈ Bn ∩ F : ‖g(u)‖ < r}
and

h : ∂O → PXF, h(u) := PX (g(u)).

Now one continues as in the proof of Lemma 4.1 in order to prove:

gen(g(Φc) ∩ SrY ) ≥ gen(g(Bn) ∩ SrY )

≥ gen(h−1(0))

≥ gen(∂O) − gen(∂O \ h−1(0))

≥ dim(F ∩ (X + Yn)) − gen(PXF \ {0})
= dim(F ∩ (X + Yn)) − dimPXF

= dimYn.

If the set of critical values of Φ is bounded above by some m > 0 then ψ is

constant on (m,∞). This follows immediately from Theorem 3.4. Therefore the

theorem is proved if we can show that ψ achieves only finite values. In order to see

this we consider the comparison function ψd, d > 0, defined as before. Recall that

ψ(c) ≤ ψd(c) for c ∈ [0, d]. Therefore it suffices to prove that ψd achieves only finite

values. Clearly ψd(c) = 0 for c < κ because id ∈ M0(Φ
d). Thus it suffices to show

that for any c ∈ (0, d] there exists δ > 0 with ψd(c+ δ) ≤ ψd(c− δ) + 1.

Set I := [κ/2, d + 1] and let A be a (PS)I -attractor (or (C)I -attractor) as in

(ΦI). This exists in particular if Φ satisfies the (PS)c-condition for c ∈ I . We shall

show that for any c ∈ [κ, d] there exists δ > 0 with ψd(c + δ) ≤ ψd(c − δ) + 1. Fix

σ < β/2 where β is as in (3.8), and let η be a deformation as in Theorem 3.5. Then
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h := η(1, ·) ∈ M0(Φ
d) and h(Φc+δ) ⊂ Φc−δ ∪ Uσ for δ > 0 small. We fix such a δ

and choose g ∈ M0(Φ
d) with ψd(c−δ) = gen(g(Φc−δ)∩SrY ). Then g◦h ∈ M0(Φ

d)

and g ◦ h(Φc+δ) ⊂ g(Φc−δ)∪ g(Uσ). Consequently, using the standard properties of

the genus we obtain:

ψd(c+ δ) ≤ gen(g ◦ h(Φc+δ) ∩ SrY )

≤ gen(g(Φc−δ) ∪ g(Uσ)) ∩ SrY )

≤ gen((g(Φc−δ) ∩ SrY ) ∪ g(Uσ))
≤ gen(g(Φc−δ) ∩ SrY ) + gen(g(Uσ))

≤ ψd(c− δ) + 1.

The equality gen(g(Uσ)) = gen(Uσ) ≤ 1 follows from the discreteness of PY (Uσ).�

Remark 4.3. Earlier versions of Theorem 4.7 have been proved in [Bartsch and

Ding (1999, 2002)] (see also [Kryszewski and Szulkin (1998)]). As in Remark 4.2

the theorem holds true for more general classes of symmetries; cf. [Bartsch (1993)].
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Chapter 5

Homoclinics in Hamiltonian systems

Consider the following Hamiltonian system

ż = JHz(t, z), (HS)

where z = (p, q) ∈ R2N , J denotes the standard symplectic structure in R2N :

J :=

(
0 − I

I 0

)
,

and H ∈ C1(R × R2N ,R) has the form

H(t, z) =
1

2
L(t)z · z +R(t, z)

with L(t) being a continuous symmetric 2N×2N -matrix valued function, Rz(t, z) =

o(|z|) as z → 0 and being either super linear or asymptotically linear as |z| → ∞.

A solution z of (HS) is a homoclinic orbit if z(t) 6≡ 0 and z(t) → 0 as |t| → ∞. We

study the existence and multiplicity of homoclinic orbits. In the first six sections

we deal with the case where the Hamiltonian depends periodically on t and in the

last section we handle the Hamiltonian without periodicity assumptions.

5.1 Existence and multiplicity results for periodic Hamiltonians

In the last years, existence and multiplicity of homoclinic orbits of (HS) were studied

extensively by means of critical point theory, and many results were obtained based

on various hypotheses on the functions L and R which we recall firstly below.

On L, it was assumed that either L is constant such that each eigenvalue of the

matrix JL has nonzero real part (see [Arioli and Szulkin (1999); Coti-Zelati, Eke-

land and Séré (1990); Hofer and Wysocki (1990); Séré (1992, 1993); Szulkin and Zou

(2001); Tanaka (1991)]), or L depends on t such that, more or less abstractly, 0 lies

in a gap (at least the boundary) of σ(A), the spectrum of the Hamiltonian operator

A := −
(
J d
dt + L

)
(see [Ding and Girardi (1999); Ding and Willem (1999)]).

For the super linear case, it was always assumed that R satisfies a condition of

the type of Ambrosetti-Rabinowitz, that is, there is µ > 2 such that

0 < µR(t, z) ≤ Rz(t, z)z whenever z 6= 0, (5.1)

35
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together with a technique assumption that there is κ ∈ (1, 2) such that

|Rz(t, z)|κ ≤ c (1 +Rz(t, z)z) for all (t, z) (5.2)

(here and below c or ci stands for a generic positive constant). In order to establish

the multiplicity, a regularity condition was also required: there are δ > 0 and ς ≥ 1

such that

|Rz(t, z + h) −Rz(t, z)| ≤ c0(1 + |z|ς)|h| if |h| ≤ δ. (5.3)

See [Coti-Zelati, Ekeland and Séré (1990); Ding and Willem (1999); Hofer and

Wysocki (1990); Tanaka (1991)] for the existence of at least one homoclinic orbit.

Infinitely homoclinic orbits were obtained firstly in the striking work [Séré (1992,

1993)] provided moreover that R(t, z) is strictly convex in z, and later in [Ding and

Girardi (1999)] and [Arioli and Szulkin (1999)] respectively provided additionally

that R(t, z) is even in z and that R(t, z) possesses certain more general symmetries.

In the asymptotically linear case, the existence of one homoclinic orbits was

obtained in the paper [Szulkin and Zou (2001)]. As far as we know there were no

results of existence of infinitely homoclinic orbits in this case.

The goal of this chapter is to establish the existence and multiplicity of ho-

moclinic orbits of (HS) under different hypotheses via new information in critical

point theory for strongly indefinite functionals stated in the previous chapter. In

contrast to the works mentioned above, the main contributions here are in three

aspects: firstly we deal with the super linearities more general than the Ambrosetti-

Rabinowitz type condition (5.1); secondly we prove that the asymptotically linear

system possesses infinitely many homoclinic orbits; and thirdly we establish without

the assumption (5.3) the existence of infinitely homoclinic orbits.

For describing our results, we will use the 2N × 2N matrix

J0 :=

(
0 I

I 0

)

and the notation

R̃(t, z) :=
1

2
Rz(t, z)z −R(t, z).

In the following, for any symmetric matrix value function M ∈ C(R,R2N×2N ), let

℘(M(t)) be the set of all eigenvalues of M(t) and set

λM := inf
t∈R

min℘(M(t)), ΛM := sup
t∈R

max℘(M(t)).

In particular, we denote λ0 := λJ0L and Λ0 := ΛJ0L for M(t) = J0L(t).

We make the following hypotheses:

(L0) L(t) is 1-period in t, and J0L(t) is positive definite;

(R0) R(t, z) is 1-period in t, R(t, z) ≥ 0 and Rz(t, z) = o(|z|) as z → 0 uniformly

in t.
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It is apparent that, under the periodicity condition, if z is a homoclinic orbit then

k ∗ z is also a homoclinic orbit for any k ∈ Z, where (k ∗ z)(t) = z(t + k) for all

t ∈ R. Two homoclinic orbits z1 and z2 will be said being geometrically distinct if

k ∗ z1 6= z2 for all k ∈ Z.

Firstly we treat the super linear case. Assume

(S1) R(t, z)|z|−2 → ∞ uniformly in t as |z| → ∞;

(S2) R̃(t, z) > 0 if z 6= 0, and there exist r1 > 0 and ν > 1 such that |Rz(t, z)|ν ≤
c1R̃(t, z)|z|ν if |z| ≥ r1.

Theorem 5.1 ([Ding (2006)]). Let (L0), (R0) and (S1)-(S2) be satisfied. Then

(HS) has at least one homoclinic orbit. If in addition R(t, z) is even in z then (HS)

has infinitely many geometrically distinct homoclinic orbits.

Remark 5.1. a) The following functions satisfy (R0) and (S1)-(S2) but do not

verify (5.1):

Ex1. R(t, z) = a(t)
(
|z|2 ln(1 + |z|) − 1

2 |z|2 + |z| − ln(1 + |z|)
)
,

Ex2. R(t, z) = a(t)
(
|z|µ + (µ− 2)|z|µ−ε sin2

( |z|ε
ε

))
, µ > 2, 0 < ε < µ− 2,

where a(t) > 0 and is 1-periodic in t.

b) If R(t, z) satisfies (5.1) and (5.2), then (S1)-(S2) hold. Indeed it is clear that

R(t, z) ≥ c1|z|µ for z away from 0, R̃(t, z) ≥ µ−2
2µ Rz(t, z)z > 0 if z 6= 0, and

|Rz(t, z)|ν ≤ c2|Rz(t, z)|ν−κRz(t, z)z ≤ c3|z|(ν−κ)/(κ−1)R̃(t, z)

≤ c4R̃(t, z)|z|ν

for all |z| ≥ 1 and 1 < ν ≤ κ/(2 − κ).

c) If |Rz(t, z)||z| ≤ c1Rz(t, z)z for |z| large, say |z| ≥ r1, then (S2) is satisfied

provided

(Ŝ2) There exist p > 2 and ω ∈ (0, 2) such that, for all |z| ≥ r1, |Rz(t, z)| ≤ c2|z|p−1

and

R(t, z) ≤
(

1

2
− 1

c3|z|ω
)
Rz(t, z)z.

Indeed, it is easy to check that (Ŝ2) implies that |Rz(t, z)|ν ≤ c4R̃(t, z)|z|ν for all

|z| ≥ r1, 1 < ν ≤ (p− ω)/(p− 2).

We now turn to the asymptotically linear case. Let

J1 :=

(−I 0

0 I

)
.

We assume besides (L0) that

(L1) L(t) and J1 are anti-commutative: J1L(t) = −L(t)J1 for all t ∈ R.
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For example, if B(t) is aN×N symmetric matrix valued function, then the function
(

0 B(t)

B(t) 0

)

satisfies (L1). For the nonlinearity we assume

(A1) Rz(t, z) − L∞(t)z = o(|z|) uniformly in t as |z| → ∞, where L∞(t) is a

symmetric matrix function with λL∞
> Λ0;

(A2) R̃(t, z) ≥ 0, and there is δ0 ∈ (0, λ0) such that if |Rz(t, z)| ≥ (λ0 − δ0)|z| then

R̃(t, z) ≥ δ0;

We point out that a condition similar to (A2) was firstly used in Jeanjean [Jean-

jean (1999)] for dealing with existence of solutions to certain asymptotically linear

problems on RN . We will prove the following result.

Theorem 5.2 ([Ding (2006)]). Let (L0)-(L1), (R0) and (A1)-(A2) be satisfied.

Then (HS) has at least one homoclinic orbit. If moreover R(t, z) is even in z and

satisfies also

(A3) there is δ1 > 0 such that R̃(t, z) 6= 0 if 0 < |z| ≤ δ1,

then (HS) has infinitely many geometrically distinct homoclinic orbits.

As mentioned before, if L is constant such that 0 lies in a gap (Λ′,Λ), Λ′ < 0 < Λ,

of the spectrum σ(A) and (R0), (A1)-(A2) are satisfied, then one homoclinic orbit

was obtained in [Szulkin and Zou (2001)]. The most interesting result here, in

Theorem 5.2, refers to the multiplicity.

Remark 5.2. The following function satisfies (R0) and (A1)-(A3) provided a(t) >

Λ0 and is 1-periodic in t:

Ex3. R(t, z) := a(t)|z|2
(
1 − 1

ln(e+|z|)

)
.

A more example is the following

Ex4. Rz(t, z) = h(t, |z|)z, where h(t, s) is 1-periodic in t and increasing for s ∈
[0,∞), and h(t, s) → 0 as s → 0, h(t, s) → a(t) as s → ∞ with a(t) > Λ0,

uniformly in t.

The following five sections are organized as follows. In next section we study the

spectrum of the operator A. We show by (L0) that σ(A) ⊂ R \ (−λ0, λ0). If (L1)

holds, then σ(A) is symmetric with respect to 0 ∈ R. Thus (L0) and (L1) imply

that λ0 ≤ inf (σ(A) ∩ (0,∞))≤ Λ0 which is needed in the asymptotically linear case

for getting a linking structure. In Section 5.3, based on the description on σ(A), we

obtain a proper variational setting for (HS) and represent the associated variational

functional in the form Φ(z) = 1
2

(
‖z+‖2 − ‖z−‖2

)
−
∫

R
R(t, z) defined on a Hilbert

space E = D(|A|1/2) ∼= H1/2(R,R2N ) with decomposition E = E− ⊕ E+, z =
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z− + z+, dimE± = ∞. In Section 5.4 we show the linking structure of Φ, that is,

inf Φ(E+∩∂Br) > 0 for some r > 0 and there is an increasing sequence (Yn) ⊂ E+ of

finite dimensional subspaces such that Φ(u) → −∞ as ‖u‖ → ∞ in En := E−⊕Yn.
Unlike the so called “Fountain” structure (see [Bartsch (1993); Willem (1996)])

where sup Φ(En) → ∞ as n→ ∞, we have supn sup Φ(En) <∞. In Section 5.5 we

show the boundedness of Cerami sequences for Φ, and then, by establishing without

the regularity condition (5.3) a splitting result, prove that for any bounded interval

I ⊂ R, there is a discrete (C)I -attractors consisting of finite sums of critical points

of Φ so that any Cerami sequence at level c ∈ I converges to A . In Section 5.6 we

firstly prove Theorem 5.1 by constructing a Cerami sequence at positive level via

Theorem 4.5 and applying the concentration principle to get a nontrivial critical

point of Φ, and we then apply Theorem 4.7 to prove the existence of infinitely many

homoclinic orbits, that is, Theorem 5.2.

5.2 Spectrum of the Hamiltonian operator

In order to establish a variational setting for the system (HS) we study in this

section the spectrum of the Hamiltonian operator.

Note that A = −
(
J d
dt + L

)
is selfadjoint on L2(R,R2N ) with domain D(A) =

H1(R,R2N ). Let σ(A) and σc(A) denote, respectively, the spectrum and the con-

tinuous spectrum. Set

µe := inf{λ : λ ∈ σ(A) ∩ [0,∞)}. (5.4)

Throughout the book by | · |q we denote the usual Lq-norm, and (·, ·)L2 the usual

L2-inner product.

Proposition 5.1. Assume (L0) is satisfied. Then

1◦ A has only absolute continuous spectrum : σ(A) = σc(A);

2◦ σ(A) ⊂ R \ (−λ0, λ0);

3◦ if (L1) also holds, σ(A) is symmetric : σ(A)∩ (−∞, 0) = −σ(A)∩ (0,∞); and

µe ≤ Λ0.

Proof. For the proof of 1◦ we see [Ding and Willem (1999)] where it was proved

that, for any periodic symmetric matrix functionM(t), the spectrum of the operator

−
(
J d
dt +M

)
is absolute continuous.

In order to show 2◦, we consider the operator A2 with domain D(A2) =

H2(R,R2N ). Observe that J 2
0 = I and J0J = −JJ0. We have, for z ∈ D(A2),
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(A2z, z)L2 =|Az|22 =

∣∣∣∣
(
J d

dt
+ J0(J0L− λ0)

)
z + λ0J0z

∣∣∣∣
2

2

=

∣∣∣∣
(
J d

dt
+ J0(J0L− λ0)

)
z

∣∣∣∣
2

2

+ λ2
0|J0z|22

+ (J ż, λ0J0z)L2 + (λ0J0z, J ż)L2

+ (J0(J0L− λ0)z, λ0J0z)L2 + (λ0J0z, J0(J0L− λ0)z)L2

=

∣∣∣∣
(
J d

dt
+ J0(J0L− λ0)

)
z

∣∣∣∣
2

2

+ λ2
0|z|22

+ 2λ0((J0L− λ0)z, z)L2

≥λ2
0|z|22 .

Thus σ(A2) ⊂ [λ2
0,∞). Let (Fλ)λ∈R and (F̃λ)λ≥0 denote the spectral families of A

and A2, respectively. Recall that

F̃λ = Fλ1/2 − F−λ1/2−0 = F[−λ1/2,λ1/2] for all λ ≥ 0, (5.5)

see (3.96) in Chapter VIII of [Dautray and Lions (1990)]. We obtain

dim (F[−λ1/2, λ1/2]L
2) = dim (F̃λL

2) = 0 for 0 ≤ λ < λ2
0, (5.6)

hence σ(A) ⊂ R \ (−λ0, λ0) which is 2◦.
We now turn to 3◦. Let λ ∈ σ(A) ∩ (0,∞). Take a sequence (zn) ⊂ D(A)

such that |zn|2 = 1 and |(A − λ)zn|2 → 0. Set z̃n = J1zn. Then |z̃n|2 = 1. Since

JJ1 = −J1J and J0J1 = −J1J0, we obtain Az̃n = −J1Azn and

|(A− (−λ))z̃n|2 = | − J1(A− λ)zn|2 → 0.

This implies that −λ ∈ σ(A). Similarly, if λ ∈ σ(A) ∩ (−∞, 0) then −λ ∈ σ(A) ∩
(0,∞). Thus σ(A) is symmetric with respect to 0. For showing µe ≤ Λ0 we

consider again the operator A2. Let µ̃e := inf σ(A2). Clearly µ̃e ≥ λ2
0. We claim

that µ̃e ≤ Λ2
0. Arguing indirectly, assume µ̃e > Λ2

0. Observe that J d
dt is selfadjoint

in L2 with 0 ∈ σ(J d
dt ) = R, and thus we can take a sequence zn ∈ C∞

0 (R,R2N )

with |zn|2 = 1 and |J d
dtzn|2 → 0. Then

Λ2
0 < µ̃e = µ̃e|zn|22 ≤ (A2zn, zn)L2 = (Azn, Azn)L2

=

∣∣∣∣J
d

dt
zn + Lzn

∣∣∣∣
2

2

≤
(∣∣∣∣J

d

dt
zn

∣∣∣∣
2

+ |Lzn|2
)2

≤ o(1) + Λ2
0,

a contradiction. Now using (5.5), for any ε > 0,

dim (F[−(µ̃e+ε)1/2, (µ̃e+ε)1/2]L
2) = dim (F̃µ̃e+εL

2) = ∞

which, together with (5.6), implies that at least one of ±µ̃1/2
e belongs to σ(A), hence

by the symmetry ±µ̃1/2
e ∈ σ(A). We get µe ≤ µ̃

1/2
e ≤ Λ0, finishing the proof. �
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5.3 Variational setting

In virtue of Proposition 5.1, L2 = L2(R,R2N ) possesses the orthogonal decomposi-

tion

L2 = L− ⊕ L+, z = z− + z+

corresponding to the spectrum decomposition of A such that (Az, z)L2 ≤ −λ0|z|22
for z ∈ L− ∩ D(A) and (Az, z)L2 ≥ λ0|z|22 for z ∈ L+ ∩ D(A). Denoting by |A|
the absolute value, let E := D(|A|1/2) be the Hilbert space equipped with the inner

product

(z1, z2) =
(
|A|1/2z1, |A|1/2z2

)
L2

and the norm ‖z‖ = (z, z)1/2. E has the orthogonal decomposition

E = E− ⊕E+ where E± = E ∩ L±.

Observe that, letting A0 = J d
dt+J0, Proposition 5.1 implies that there are c1, c2 > 0

such that

c1|A0z|2 ≤ |Az|2 ≤ c2|A0z|2
for all z ∈ H1(R,R2N ). A Fourier analysis shows that |A0z|2 = ‖z‖H1 , hence

c1‖z‖H1 ≤ |Az|2 ≤ c2‖z‖H1 . Thus by interpolation one has c′1‖z‖H1/2 ≤ ‖z‖ ≤
c′2‖z‖H1/2 for all z ∈ E (cf. [Ding and Willem (1999)]). Using the Sobolev embed-

ding theorem (on H1/2) we get directly the following lemma.

Lemma 5.1. Under (L0), the space E embeds continuously into Lp(R,R2N ) for

any p ≥ 2, and compactly into Lploc(R,R
2N ) for any p ∈ [1, ∞).

Note that, using A, the system (HS) can be rewritten as

Az = Rz(t, z). (5.7)

On E we define the functional

Φ(z) :=
1

2
‖z+‖2 − 1

2
‖z−‖2 − Ψ(z) where Ψ(z) =

∫

R

R(t, z). (5.8)

Our hypotheses on H(t, z) imply that Φ ∈ C1(E,R) and a standard argument

invoking (5.7) shows that critical points of Φ are homoclinic orbits of (HS) (cf.

[Ding and Willem (1999)]). We will write Φ′ for the derivative of Φ.

Observe that if (S2) holds, then |Rz(t, z)|ν ≤ c1|Rz(t, z)||z|ν+1, hence

|Rz(t, z)| ≤ d1|z|p−1 if |z| ≥ r1 (5.9)

for p ≥ 2ν/(ν − 1). Clearly (5.9) remains true for all p ≥ 2 if (A1) holds.

Lemma 5.2. Let (L0) and (R0) be satisfied, and assume moreover either (S1)-

(S2) or (A1)-(A2) hold. Then Ψ is non-negative, weakly sequentially lower semi-

continuous, and Ψ′ is weakly sequentially continuous.
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Proof. By (R0), R(t, z) is non-negative, so is Ψ. Let zj ∈ E with zj ⇀ z in E.

By Lemma 5.1, zj(t) → z(t), hence R(t, zj(t)) → R(t, z(t)) for a.e. t ∈ R. Thus the

Lebesgue theorem implies

Ψ(z) =

∫

R

R(t, z) =

∫

R

lim
j→∞

R(t, zj)

≤ lim inf
j→∞

∫

R

R(t, zj) = lim inf
j→∞

Ψ(zj),

proving that Ψ is weakly sequentially lower semi-continuous.

To show that Ψ′ is weakly sequentially continuous, let zj ⇀ z in E. By Lemma

5.1, zj → z in Lploc for any p ≥ 1. By (R0) and (5.9) we can take p > 2 so that

|Rz(t, z)| ≤ c1(|z| + |z|p−1). It is clear that, for any ϕ ∈ C∞
0 (R),

Ψ′(zj)ϕ =

∫

R

Rz(t, zj)ϕ→
∫

R

Rz(t, z)ϕ = Ψ′(z)ϕ. (5.10)

Since C∞
0 is dense in E , for any w ∈ E we take ϕn ∈ C∞

0 such that ‖ϕn −w‖ → 0

as n→ ∞. Note that

|Ψ′(zj)w − Ψ′(z)w| ≤ |(Ψ′(zj) − Ψ′(z))ϕn| + |(Ψ′(zj) − Ψ′(z))(w − ϕn)|
≤ |(Ψ′(zj) − Ψ′(z))ϕn|

+ c2

∫

R

(
|z| + |zj | + |z|p−1 + |zj |p−1

)
|w − ϕn|

≤ |(Ψ′(zj) − Ψ′(z))ϕn| + c3‖w − ϕn‖.

For any ε > 0, fix n so that ‖w − ϕn‖ < ε/2c3. By (5.10) there is j0 so that

|(Ψ′(zj) − Ψ′(z))ϕn| < ε/2 for all j ≥ j0. Then |Ψ′(zj)w − Ψ′(z)w| < ε for all

j ≥ j0, proving the weakly sequentially continuity. �

5.4 Linking structure

We now study the linking structure of Φ. Remark that (R0) and (5.9) implies that,

given arbitriarily p ≥ 2ν/(ν−1) in the super linear case, p ≥ 2 in the asymptotically

linear case, for any ε > 0, there is Cε > 0 such that

|Rz(t, z)| ≤ ε|z| + Cε|z|p−1 (5.11)

and

R(t, z) ≤ ε|z|2 + Cε|z|p (5.12)

for all (t, z). Firstly we have the following lemma.

Lemma 5.3. Under the assumptions of Lemma 5.2, there is r > 0 such that κ :=

inf Φ(S+
r ) > Φ(0) = 0 where S+

r = ∂Br ∩E+.
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Proof. Choose p > 2 such that (5.12) holds for any ε > 0. This, jointly with

Lemma 5.1, yields

Ψ(z) ≤ ε|z|22 + Cε|z|pp ≤ C(ε‖z‖2 + Cε‖z‖p)
for all z ∈ E. Now the lemma follows from the form (5.8) of Φ. �

In the following, we fix arbitrarily an ω ≥ 2µe for the super linear case (where

µe is the number defined by (5.4)), and set ω := λL∞
for the asymptotically linear

case. Remark that Proposition 5.1 and (A1) imply that λ0 ≤ µe ≤ Λ0 < λL∞
(this

is the only place we use (L1)). Thus, in both super and asymptotically cases, we

can take a number µ̄ satisfying

µe < µ̄ < ω. (5.13)

Since σ(A) = σc(A), the subspace Y0 := (Fµ̄ − F0)L
2 is infinite dimensional (recall

that (Fλ)λ∈R denotes the spectrum family of A). Note that

Y0 ⊂ E+ and µe|w|22 ≤ ‖w‖2 ≤ µ̄|w|22 for all w ∈ Y0. (5.14)

For any finite dimensional subspace Y of Y0 set EY = E− ⊕ Y .

Lemma 5.4. Let the assumptions of Lemma 5.2 be satisfied, and assume (L1) also

holds for the asymptotically linear case. Then for any finite dimensional subspace

Y of Y0, sup Φ(EY ) < ∞, and there is RY > 0 such that Φ(z) < inf Φ(Br) for all

z ∈ EY with ‖z‖ ≥ RY .

Proof. It is sufficient to show that Φ(z) → −∞ as z ∈ EY , ‖z‖ → ∞. Arguing

indirectly, assume that for some sequence zj ∈ EY with ‖zj‖ → ∞, there is M > 0

such that Φ(zj) ≥ −M for all j. Then, setting wj = zj/‖zj‖, we have ‖wj‖ = 1,

wj ⇀ w, w−
j ⇀ w−, w+

j → w+ ∈ Y and

− M

‖zj‖2
≤ Φ(zj)

‖zj‖2
=

1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫

R

R(t, zj)

‖zj‖2
. (5.15)

Remark that w+ 6= 0. Indeed, if not then it follows from (5.15) that

0 ≤ 1

2
‖w−

j ‖2 +

∫

R

R(t, zj)

‖zj‖2
≤ 1

2
‖w+

j ‖2 +
M

‖zj‖2
→ 0,

in particular, ‖w−
j ‖ → 0, hence 1 = ‖wj‖ → 0, a contradiction.

First, consider the super linear case and suppose (S1)− (S2) hold. Then by (S1)

there is r0 > 0 such that R(t, z) ≥ ω|z|2 if |z| ≥ r0. Using (5.13)-(5.14),

‖w+‖2 − ‖w−‖2 − ω

∫

R

|w|2 ≤ µ̄|w+|22 − ‖w−‖2 − ω|w+|22 − ω|w−|22

≤ −
(
(ω − µ̄)|w+|22 + ‖w−‖2

)
< 0,

hence, there is a > 0 large such that

‖w+‖2 − ‖w−‖2 − ω

∫ a

−a
|w|2 < 0. (5.16)



June 21, 2007 11:27 World Scientific Book - 9.75in x 6.5in VariationalMethods

44 Variational Methods for Strongly Indefinite Problems

Note that
Φ(zj)

‖zj‖2
≤1

2

(
‖w+

j ‖2 − ‖w−
j ‖2

)
−
∫ a

−a

R(t, zj)

‖zj‖2

=
1

2

(
‖w+

j ‖2 − ‖w−
j ‖2 − ω

∫ a

−a
|wj |2

)
−
∫ a

−a

R(t, zj) − ω
2 |zj |2

‖zj‖2

≤ 1

2

(
‖w+

j ‖2 − ‖w−
j ‖2 − ω

∫ a

−a
|wj |2

)
+
aωr20
‖zj‖2

.

Thus (5.15) and (5.16) imply that

0 ≤ lim
j→∞

(
1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫ a

−a

R(t, zj)

‖zj‖2

)

≤ 1

2

(
‖w+‖2 − ‖w−‖2 − ω

∫ a

−a
|w|2

)
< 0,

a contradiction.

Next consider the asymptotically linear case and assume (A1) holds. By (5.13)-

(5.14) again,

‖w+‖2 − ‖w−‖2 −
∫

R

L∞(t)ww ≤ ‖w+‖2 − ‖w−‖2 − ω|w|22

≤ −
(
(ω − µ̄)|w+|22 + ‖w−‖2

)
< 0,

hence, for some a > 0,

‖w+‖2 − ‖w−‖2 −
∫ a

−a
L∞(t)ww < 0. (5.17)

Set

F (t, z) := R(t, z)− 1

2
L∞(t)zz. (5.18)

By (A1), |F (t, z)| ≤ C|z|2 and F (t, z)/|z|2 → 0 as |z| → ∞ uniformly in t. It follows

from Lebesgue’s dominated convergence theorem and the fact |wj −w|L2(−a,a) → 0

that

lim
j→∞

∫ a

−a

F (t, zj)

‖zj‖2
= lim

j→∞

∫ a

−a

F (t, zj)|wj |2
|zj |2

= 0.

Thus (5.15) and (5.17) imply that

0 ≤ lim
j→∞

(
1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫ a

−a

R(t, zj)

‖zj‖2

)

≤ 1

2

(
‖w+‖2 − ‖w−‖2 −

∫ a

−a
L∞(t)ww

)
< 0,

a contradiction. �

As a special case we have

Lemma 5.5. Under the assumptions of Lemma 5.4, letting e ∈ Y0 with ‖e‖ = 1,

there is r0 > 0 such that sup Φ(∂Q) = 0 where Q := {u = u− + se : u− ∈ E−, s ≥
0, ‖u‖ ≤ r0}.
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5.5 The (C) sequences

We now study the Cerami sequences.

Lemma 5.6. Under the assumptions of Lemma 5.2, any (C)c-sequence is bounded.

Proof. Let (zj) ⊂ E be such that

Φ(zj) → c and (1 + ‖zj‖)Φ′(zj) → 0. (5.19)

Then

C0 ≥ Φ(zj) −
1

2
Φ′(zj)zj =

∫

R

R̃(t, zj) . (5.20)

Arguing indirectly, assume up to a subsequence ‖zj‖ → ∞. Set vj = zj/‖zj‖.
Then ‖vj‖ = 1 and |vj |s ≤ γs‖vj‖ = γs for all s ∈ [2,∞). Noting that

Φ′(zj)(z
+
j − z−j ) = ‖zj‖2

(
1 −

∫

R

Rz(t, zj)(v
+
j − v−j )

‖zj‖

)
,

it follows from (5.19) that

∫

R

Rz(t, zj)(v
+
j − v−j )

‖zj‖
→ 1. (5.21)

First we consider the super linear case and suppose (S1) − (S2) hold. Set for

r ≥ 0

g(r) := inf
{
R̃(t, z) : t ∈ R and z ∈ R

2N with |z| ≥ r
}

(S2) implies g(r) > 0 for all r > 0. Moreover,

c1R̃(t, z) ≥
( |Rz(t, z)|

|z|

)ν
=

( |Rz(t, z)||z|
|z|2

)ν

≥
(
Rz(t, z)z

|z|2
)ν

≥
(

2R(t, z)

|z|2
)ν

,

which, jointly with (S1), implies R̃(t, z) → ∞ uniformly in t, consequently g(r) → ∞
as r → ∞. Furthermore, set for 0 ≤ a < b

Ωj(a, b) = {t ∈ R : a ≤ |zj(t)| < b}

and

cba := inf

{
R̃(t, z)

|z|2 : t ∈ R and z ∈ R
2N with a ≤ |z| ≤ b

}
.

Since R(t, z) depends periodically on t and R̃(t, z) > 0 if z 6= 0, one has cba > 0 and

R̃(t, zj(x)) ≥ cba|zj(t)|2 for all t ∈ Ωj(a, b).



June 21, 2007 11:27 World Scientific Book - 9.75in x 6.5in VariationalMethods

46 Variational Methods for Strongly Indefinite Problems

It follows from (5.20) that

C0 ≥
∫

Ωj(0,a)

R̃(t, zj) +

∫

Ωj(a,b)

R̃(t, zj) +

∫

Ωj(b,∞)

R̃(t, zj)

≥
∫

Ωj(0,a)

R̃(t, zj) + cba

∫

Ωj (a,b)

|zj |2 + g(b)|Ωj(b,∞)|.

Thus

|Ωj(b,∞)| ≤ C0

g(b)
→ 0

as b→ ∞ uniformly in j, which implies by Hölder inequality that for any s ∈ [2,∞),∫

Ωj(b,∞)

|vj |s ≤ γs2s |Ωj(b,∞)|1/2 → 0 (5.22)

as b→ ∞ uniformly in j. In addition, for any fixed 0 < a < b,∫

Ωj (a,b)

|vj |2 =
1

‖zj‖2

∫

Ωj (a,b)

|zj |2 ≤ C0

cba‖zj‖2
→ 0 (5.23)

as j → ∞.

Let 0 < ε < 1/3. By (R0) there is aε > 0 such that |Rz(t, z)| < ε
γ2
|z| for all

|z| ≤ aε, consequently, ∫

Ωj(0,aε)

|Rz(t, zj)|
|zj |

|vj | |v+
j − v−j |

≤
∫

Ωj(0,aε)

ε

γ2
|v+
j − v−j | |vj | ≤

ε

γ2
|vj |22 ≤ ε

(5.24)

for all j. By (S2) and (5.22), setting µ = 2ν/(ν − 1) and ν ′ = µ/2 = ν/(ν − 1), we

can take bε ≥ r1 large so that∫

Ωj(bε,∞)

|Rz(t, zj)|
|zj |

|vj ||v+
j − v−j |

≤
(∫

Ωj (bε,∞)

|Rz(t, zj)|ν
|zj |ν

)1/ν (∫

Ωj (bε,∞)

(
|v+
j − v−j | |vj |

)ν′

)1/ν′

≤
(∫

R

c1R̃(t, zj)

)1/ν (∫

R

|v+
j − v−j |µ

)1/µ
(∫

Ωj (bε,∞)

|vj |µ
)1/µ

<ε

(5.25)

for all j. Note that there is γ = γ(ε) > 0 independent of j such that |Rz(t, zj)| ≤
γ|zj | for t ∈ Ωj(aε, bε). By (5.23) there is j0 such that∫

Ωj (aε,bε)

|Rz(t, zj)|
|zj |

|vj | |v+
j − v−j |

≤ γ

∫

Ωj(aε,bε)

|v+
j − v−j | |vj |

≤ γ|vj |2
(∫

Ωj(aε,bε)

|vj |2
)1/2

< ε

(5.26)
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for all j ≥ j0. Now the combination of (5.24)-(5.26) implies that for j ≥ j0∫

R

Rz(t, zj) (v+
j − v−j )

‖zj‖
≤
∫

R

|Rz(t, zj)|
|zj |

|vj | |v+
j − v−j | < 3ε < 1

which contradicts (5.21).

Next we consider the asymptotically linear case, hence assume (A1)-(A2) are

satisfied. Following the terminology introduced by Lions on the concentration com-

pactness principle [Lions (1984)], observe that either (vj) is vanishing (in this case

|vj |s → 0 for all s > 2), or it is nonvanishing, that is, there are r, η > 0 and (aj) ⊂ Z

such that lim supj→∞
∫ aj+r

aj−r |vj |2 ≥ η. We show as in [Jeanjean (1999); Szulkin

and Zou (2001)] that (vj) is neither vanishing nor nonvanishing.

Assume (vj) is vanishing. Set, in virtue of (A2),

Ij :=

{
t ∈ R :

|Rz(t, zj(t))|
|zj(t)|

≤ λ0 − δ0

}
.

By Proposition 5.1, λ0|vj |22 ≤ ‖vj‖2 = 1 and we get∣∣∣∣∣

∫

Ij

Rz(t, zj)(v
+
j − v−j )

‖zj‖

∣∣∣∣∣ =
∣∣∣∣∣

∫

Ij

Rz(t, zj)(v
+
j − v−j )|vj |

|zj |

∣∣∣∣∣

≤ (λ0 − δ0)|vj |22 ≤ λ0 − δ0
λ0

< 1

for all j. This, jointly with (5.21), implies that for Icj := R \ Ij

lim
j→∞

∫

Ic
j

Rz(t, zj)(v
+
j − v−j )

‖zj‖
> 1 − λ0 − δ0

λ0
=
δ0
λ0

.

Recalling that by (R0) and (A1)

|Rz(t, z)| ≤ C|z| for all (t, z), (5.27)

there holds for an arbitrarily fixed s > 2∫

Ic
j

Rz(t, zj)(v
+
j − v−j )

‖zj‖
≤ C

∫

Ic
j

|v+
j − v−j ||vj |

≤ C|vj |2|Icj |(s−2)/2s|vj |s ≤ Cγ2|Icj |(s−2)/2s|vj |s.
Since |vj |s → 0, one gets |Icj | → ∞. By (A2), R̃(t, zj) ≥ δ0 on Icj , hence∫

R

R̃(t, zj) ≥
∫

Ic
j

R̃(t, zj) ≥ δ0|Icj | → ∞,

contrary to (5.20).

Assume (vj) is nonvanishing. Setting z̃j(t) = zj(t + aj), ṽj(t) = vj(t+ aj) and

ϕj(t) = ϕ(t− aj) for any ϕ ∈ C∞
0 we have by (A1) (see (5.18) for F (t, z))

Φ′(zj)ϕj = (z+
j − z−j , ϕj) − (L∞zj , ϕj)L2 −

∫

R

Fz(t, zj)ϕj

= ‖zj‖
(

(v+
j − v−j , ϕj) − (L∞vj , ϕj)L2 −

∫

R

Fz(t, zj)ϕj
|vj |
|zj |

)

= ‖zj‖
(

(ṽ+
j − ṽ−j , ϕ) − (L∞ṽj , ϕ)L2 −

∫

R

Fz(t, z̃j)ϕ
|ṽj |
|z̃j |

)
.
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This results

(ṽ+
j − ṽ−j , ϕ) − (L∞ṽj , ϕ)L2 −

∫

R

Fz(t, z̃j)ϕ
|ṽj |
|z̃j |

→ 0.

Since ‖ṽj‖ = ‖vj‖ = 1, we can assume that ṽj ⇀ ṽ in E, ṽj → ṽ in L2
loc and

ṽj(t) → ṽ(t) a.e. in R. Since limj→∞
∫ r
−r |ṽj |2 ≥ η, ṽ 6= 0. By (5.27)

∣∣∣∣Fz(t, z̃j)ϕ
|ṽj |
|z̃j |

∣∣∣∣ ≤ C|ϕ||ṽj |,

it follows from (A1) and the dominated convergence theorem that
∫

R

Fz(t, z̃j)ϕ
|ṽj |
|z̃j |

→ 0,

hence

(ṽ+ − ṽ−, ϕ) − (L∞ṽ, ϕ)L2 = 0.

Thus ṽ is an eigenfunction of the operator Ã := J d
dt +(L+L∞) contradicting with

the fact that Ã has only continuous spectrum (since L(t) +L∞(t) is 1-periodic, see

[Ding and Willem (1999)]). �

In the following lemma we discuss further the (C)c-sequence (zj) ⊂ E. By

Lemma 5.6 it is bounded, hence, we may assume without loss of generality that

zj ⇀ z in E, zj → z in Lqloc for q ≥ 1 and zj(t) → z(t) a.e. in t. Plainly z is a

critical point of Φ. Set z1
j = zj − z.

Lemma 5.7. Under the assumptions of Lemma 5.2, along a subsequence:

1) Φ(z1
j ) → c− Φ(z);

2) Φ′(z1
j ) → 0.

Proof. The verification of 1) is somewhat standard (cf. [Ding and Girardi

(1999)]), so we only check 2).

Observe that, for any ϕ ∈ E,

Φ′(z1
j )ϕ = Φ′(zj)ϕ+

∫

R

(
Rz(t, zj) −Rz(t, z

1
j ) −Rz(t, z)

)
ϕ.

Since Φ′(zj) → 0, it suffices to show that

sup
‖ϕ‖≤1

∣∣∣∣
∫

R

(
Rz(t, zj) −Rz(t, z

1
j ) −Rz(t, z)

)
ϕ

∣∣∣∣ → 0. (5.28)

Recall that if R satisfies (5.3), then (5.28) follows easily from a standard argument,

see e.g. [Arioli and Szulkin (1999); Ding and Girardi (1999)]. However, in our case

such a regularity condition is not available and we hence provide another argument.

By (5.11) we choose p ≥ 2 such that |Rz(t, z)| ≤ |z|+C1|z|p−1 for all (t, z), and let

q stands for either 2 or p. Set Ia := [−a, a] for a > 0.
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We claim that there is a subsequence (zjn) such that, for any ε > 0 there exists

rε > 0 satisfying

lim sup
n→∞

∫

In\Ir

|zjn |q ≤ ε (5.29)

for all r ≥ rε. For verifying (5.29) note that, for each n ∈ N,
∫
In

|zj |q →
∫
In

|z|q as

j → ∞. There exists in ∈ N such that
∫

In

(|zj |q − |z|q) < 1

n
for all j = in +m, m = 1, 2, 3, ....

Without loss of generality we can assume in+1 ≥ in. In particular, for jn = in + n

we have ∫

In

(|zjn |q − |z|q) < 1

n
.

Observe that there is rε satisfying
∫

R\Ir

|z|q < ε (5.30)

for all r ≥ rε. Since
∫

In\Ir

|zjn |q =

∫

In

(|zjn |q − |z|q) +

∫

In\Ir

|z|q +

∫

Ir

(|z|q − |zjn |q)

≤ 1

n
+

∫

R\Ir

|z|q +

∫

Ir

(|z|q − |zjn |q) ,

(5.29) now follows.

As in [Ackermann (2004)] let η : [0,∞) → [0, 1] be a smooth function satisfying

η(t) = 1 if t ≤ 1, η(t) = 0 if t ≥ 2. Define z̃n(t) = η(2|t|/n)z(t) and set hn := z− z̃n.
Since z is a homoclinic orbit, we have by definition that hn ∈ H1 and

‖hn‖ → 0 and |hn|∞ → 0 as n→ ∞. (5.31)

Observe that for any ϕ ∈ E
∫

R

(
Rz(t, zjn) −Rz(t, z

1
jn) −Rz(t, z)

)
ϕ

=

∫

R

(Rz(t, zjn) −Rz(t, zjn − z̃n) −Rz(t, z̃n))ϕ

+

∫

R

(
Rz(t, z

1
jn + hn) −Rz(t, z

1
jn)
)
ϕ

+

∫

R

(Rz(t, z̃n) − Rz(t, z))ϕ.

Plainly, by (5.31),

lim
n→∞

∣∣∣∣
∫

R

(Rz(t, z̃n) −Rz(t, z))ϕ

∣∣∣∣ = 0
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uniformly in ‖ϕ‖ ≤ 1. It remains for checking (5.28) to show that

lim
n→∞

∣∣∣∣
∫

R

(Rz(t, zjn) −Rz(t, zjn − z̃n) −Rz(t, z̃n))ϕ

∣∣∣∣ = 0 (5.32)

and

lim
n→∞

∣∣∣∣
∫

R

(
Rz(t, z

1
jn + hn) −Rz(t, z

1
jn)
)
ϕ

∣∣∣∣ = 0 (5.33)

uniformly in ‖ϕ‖ ≤ 1.

To check (5.32), note that (5.31) and the compactness of Sobolev embeddings

imply that, for any r > 0,

lim
n→∞

∣∣∣∣
∫

Ir

(Rz(t, zjn) −Rz(t, zjn − z̃n) −Rz(t, z̃n))ϕ

∣∣∣∣ = 0

uniformly in ‖ϕ‖ ≤ 1. For any ε > 0 let rε > 0 so large that (5.29) and (5.30) hold.

Then

lim sup
n→∞

∫

In\Ir

|z̃n|q ≤
∫

R\Ir

|z|q ≤ ε

for all r ≥ rε. Using (5.29) for q = 2, p we have

lim sup
n→∞

∣∣∣∣
∫

R

(Rz(t, zjn) −Rz(t, zjn − z̃n) −Rz(t, z̃n))ϕ

∣∣∣∣

= lim sup
n→∞

∣∣∣∣∣

∫

In\Ir

(Rz(t, zjn) −Rz(t, zjn − z̃n) −Rz(t, z̃n))ϕ

∣∣∣∣∣

≤ c1 lim sup
n→∞

∫

In\Ir

(|zjn | + |z̃n|) |ϕ|

+ c2 lim sup
n→∞

∫

In\Ir

(
|zjn |p−1 + |z̃n|p−1

)
|ϕ|

≤ c1 lim sup
n→∞

(
|zjn |L2(In\Ir) + |z̃n|L2(In\Ir)

)
|ϕ|2

+ c2 lim sup
n→∞

(
|zjn |p−1

Lp(In\Ir) + |z̃n|p−1
Lp(In\Ir)

)
|ϕ|p

≤ c3ε
1/2 + c4ε

(p−1)/p,

which implies (5.32).

For verifying (5.33), define g(t, 0) = 0 and

g(t, z) =
Rz(t, z)

|z| if z 6= 0.

By (R0), g is continuous at z = 0, hence in R×R2N . g is 1-periodic in t since Rz is.

This, jointly with the uniformly continuity in [0, 1]×Ba, implies that g is uniformly

continuous in R ×Ba for any a > 0 where Ba := {z ∈ R2N : |z| ≤ a}. Moreover, it

follows from (5.11) that |g(t, z)| ≤ c5(1 + |z|p−2) for all (t, z). Set

Can := {t ∈ R : |z1
jn(t)| ≤ a} and Da

n := R \ Can.
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Since the Lebesgue measure

|Da
n| ≤

1

ap

∫

Da
n

|z1
jn |p ≤

C

ap
→ 0 as a→ ∞,

one has, for any ε > 0, there is â > 0 such that
∣∣∣∣∣

∫

Da
n

(
Rz(t, z

1
jn + hn) −Rz(t, z

1
jn)
)
ϕ

∣∣∣∣∣ ≤ ε (5.34)

uniformly in ‖ϕ‖ ≤ 1 for all a ≥ â and all n. By the uniformly continuity of g on

R ×Bâ, there is δ > 0 satisfying

|g(t, z + h) − g(t, z)| < ε for all (t, z) ∈ R ×Bâ and |h| ≤ δ,

and by (5.31), there exists n0 such that |hn|∞ ≤ δ for all n ≥ n0, hence

|g(t, z1
jn + hn) − g(t, z1

jn)| < ε for all n ≥ n0 and t ∈ C ân.

Note that
(
Rz(t, z

1
jn + hn) −Rz(t, z

1
jn)
)
ϕ = g(t, z1

jn + hn)
(
|z1
jn + hn| − |z1

jn |
)
ϕ

+
(
g(t, z1

jn + hn) − g(t, z1
jn)
)
|z1
jn |ϕ

and, by (5.31), |hn|2 < ε, |hn|p < ε for all n ≥ n1, some n1 ≥ n0. Thus, for all

‖ϕ‖ ≤ 1 and n ≥ n1,
∣∣∣∣∣

∫

Câ
n

(
Rz(t, z

1
jn + hn) −Rz(t, z

1
jn)
)
ϕ

∣∣∣∣∣

=

∫

Câ
n

c5
(
1 + |z1

jn + hn|p−2
)
|hn| |ϕ| + ε

∫

Câ
n

|z1
jn | |ϕ|

≤ c5|hn|2|ϕ|2 + c5|z1
jn + hn|p−2

p |hn|p|ϕ|p + ε|z1
jn |2|ϕ|2

≤ c6ε

which, together with (5.34), implies (5.33) ending the proof. �

Let K := {z ∈ E : Φ′(z) = 0} denote the critical set of Φ.

Lemma 5.8. Under the assumptions of Lemma 5.2, there hold

a) θ := inf{‖z‖ : z ∈ K \ {0}} > 0;

b) ĉ := inf{Φ(z) : z ∈ K \ {0}} > 0 provided additionally in the asymptotically

linear case (A3) also holds.

Proof. a) Assume there is a sequence (zj) ⊂ K \ {0} with zj → 0. Then

0 = ‖zj‖2 −
∫

R

Rz(t, zj)(z
+
j − z−j ).

Choose p > 2 such that (5.11) holds. Thus for any ε > 0 small,

‖zj‖2 ≤ ε|zj |22 + Cε|zj |pp
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which implies ‖zj‖2 ≤ c1Cε‖zj‖p or equivalently ‖zj‖2−p ≤ c1Cε, a contradiction.

b) Assume there is a sequence (zj) ⊂ K \ {0} such that Φ(zj) → 0. Then

o(1) = Φ(zj) = Φ(zj) −
1

2
Φ′(zj)zj =

∫

R

R̃(t, zj) (5.35)

and

‖zj‖2 =

∫

R

Rz(t, zj)(z
+
j − z−j ). (5.36)

Clearly (zj) is a (C)c=0 sequence, hence is bounded by Lemma 5.6.

First consider the super linear case. Using (5.35) and the notations defined in

the proof of Lemma 5.6, we see that, for any 0 < a < b and s ≥ 2,
∫
Ωj (a,b)

|zj |2 → 0

and
∫
Ωj (b,∞)

|zj |s → 0 as j → ∞. Therefore, as in the proof of Lemma 5.6, it follows

from (5.36) that for any ε > 0

lim sup
j→∞

‖zj‖2 ≤ ε,

contradicting to a).

Next consider the asymptotically linear case. Since ‖zj‖ ≥ θ by a), (5.36) and

(5.11) imply that (zj) is nonvanishing. By the Z-invariance of Φ, up to a translation,

we can assume zj ⇀ z ∈ K \ {0}. Since z is a homoclinic orbit of (HS), z(t) → 0

as |t| → ∞. Thus there is a bounded interval I ⊂ R with the measure |I | > 0 such

that 0 < |z(t)| ≤ δ for t ∈ I by (A3). Now (5.35) implies

0 ≥ lim
j→∞

∫

I

R̃(t, zj) =

∫

I

R̃(t, z) > 0,

a contradiction. �

Let [r] denote the integer part of r ∈ R, and F := (K \ {0})/Z, a set consisting

of arbitrarily chosen representatives of the Z-orbits. As a consequence of the above

lemmas, we have the following result (see [Coti-Zelati and Rabinowitz (1992); Ding

and Girardi (1999); Kryszewski and Szulkin (1998); Séré (1992)]).

Lemma 5.9. Assume that (L0) and (R0) are satisfied, and either (S1)-(S2) or

(A1)-(A3) hold. Let (zj) be a (C)c-sequence. Then either

(i) zj → 0 (and hence c = 0), or

(ii) c ≥ ĉ and there exist a positive integer ` ≤
[
c
ĉ

]
, points z1, · · · , z` ∈ F , a

subsequence denoted again by (zj), and sequences (aij) ⊂ Z such that
∥∥∥∥∥zj −

∑̀

i=1

(aij ∗ zi)
∥∥∥∥∥ → 0 as j → ∞

|aij − akj | → ∞ for i 6= k as j → ∞
and

∑̀

i=1

Φ(zi) = c.
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Proof. See [Ding and Girardi (1999)]. It can be outlined as follows. Lemma 5.6

shows that (zj) is bounded: ‖zj‖ ≤M . In addition,

c = lim
j→∞

(
Φ(zj) −

1

2
Φ′(zj)zj

)
= lim

j→∞

∫

R

R̃(t, zj) ≥ 0, (5.37)

and, as the proof of b) of Lemma 5.8, c = 0 if and only if zj → 0 in E.

Assume c > 0. The concentration principle implies that (zj) is either vanishing

or nonvanishing. By (5.11) and (5.12), choose p > 2 such that, for any ε > 0 there

is Cε > 0 satisfying R̃(t, z) ≤ ελ0M
−2|z|2 + Cε|z|p. If (zj) is vanishing, then it

follows from (5.37) that, for ε < c,

c = lim
j→∞

∫

R

R̃(t, zj) ≤ lim
j→∞

∫

R

(
ελ0|zj |2
M2

+ Cε|zj |p
)

≤ ε,

a contradiction. Thus (zj) is nonvanishing and by the Z-invariance of Φ we can

find a sequence (k1
j ) ⊂ Z such that k1

j ∗ zj ⇀ z1 ∈ K \ {0}. Let z1 ∈ F be the

representative in which z1 lies, and let k1 ∈ Z be such that k1 ∗ z1 = z1. Set

k̄1
j = k1 + k1

j and z1
j := k̄1

j ∗ zj − z1. By Z-invariance and Lemma 5.7, (z1
j ) is a

Cerami sequence at level c−Φ(z1). By (i), c−Φ(z1) ≥ 0 which, jointly with Lemma

5.8-b), implies ĉ ≤ Φ(z1) ≤ c. There are two possibilities: c = Φ(z1) or c > Φ(z1).

If c = Φ(z1), repeating the argument for (i) shows that z1
j → 0 in E, conse-

quently, the lemma holds with ` = 1 and a1
j = −k̄1

j .

If c > Φ(z1), then we argue again as above with (zj) and c replaced by (z1
j ) and

c − Φ(z1) respectively, and obtain z2 ∈ F with ĉ ≤ Φ(z2) ≤ c − Φ(z1). After at

most
[
c
ĉ

]
steps we arrive the desired conclusion. �

5.6 Proofs of the main results

We are now in a position to give the proofs of Theorems 5.1 and 5.2. In order to

prove the theorems we choose X = E− and Y = E+ with E± given in Section 5.3.

Then E = X ⊕ Y and Φ defined by (5.8) fit the general framework of Chapter 4,

which suggests the applications of Theorems 4.5 and 4.7.

Proof. [Proofs of Theorems 5.1 and 5.2] (Existence). In virtue of Lemma 5.2

and the form of Φ, an application of Theorem 4.1 shows that Φ satisfies (Φ0).

The expression (5.8) of Φ, together with the nonnegativity of R(t, z), implies the

condition (Φ+). Lemma 5.3 is nothing but (Φ2), which jointly with Lemma 5.5

gives the linking condition of Theorem 4.5. Therefore, Φ possesses a (C)c-sequence

(zn)n∈N with κ ≤ c ≤ sup Φ(Q) where κ > 0 is from Lemma 5.2 and Q is the subset

given by Lemma 5.5. By Lemma 5.6, (zn) is bounded. Consequently, Φ′(zn) → 0.

A standard argument shows that (zn) is non-vanishing, that is, there exist r, η > 0

and (an) ⊂ Z such that lim supn→∞
∫ an+r

an−r |zn|2 ≥ η. Set vn := an ∗ zn. It follows

from the invariance of the norm and of the functional under the ∗-action that

‖vn‖ = ‖zn‖ ≤ C and Φ(vn) → c ≥ κ,Φ′(vn) → 0. Therefore vn ⇀ v in E with
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v 6= 0 and Φ′(v) = 0, that is, v is a nontrivial solution of (HS), and the existence is

proved.

(Multiplicity). We now establish the multiplicity. The proof will be completed

in an indirect way, namely, we show that if

K/Z is a finite set, (†)
then Φ possesses an unbounded sequence of critical values, a contradiction. We do

this by checking that, if (†) is true then (Φ) verifies all the assumptions of Theorem

4.7.

The assumptions (Φ0) and (Φ2) have already been verified as above. By as-

sumption R(t, z) is even in z, hence Φ satisfies (Φ1). Recall that dim(Y0) = ∞. Let

(fk) be a base of Y0 and set Yn := span{f1, ..., fn}, En := E− ⊕ Yn. With such a

choice of sequence of subspaces it follows from Lemma 5.4 that (Φ4) is satisfied. In

order to check (ΦI ) assume (†) holds. Given ` ∈ N and a finite set B ⊂ E, let

[B, `] :=

{
j∑

i=1

(ai ∗ zi) : 1 ≤ j ≤ `, ai ∈ Z, zi ∈ B
}
.

Following an argument of [Coti-Zelati, Ekeland and Séré (1990); Coti-Zelati and

Rabinowitz (1991)] one sees that

inf{‖z − z′‖ : z, z′ ∈ [B, `], z 6= z′} > 0. (5.38)

Recalling that F = (K \ {0})/Z, (†) implies that F is a finite set and, since Φ′ is

odd, we may assume F is symmetric. For any compact interval I ⊂ (0,∞) with

b := max I , set ` = [b/ĉ] and take A = [F , `]. Then P+A = [P+F , `] where P+

stands for the projector onto E+. By (†), P+F is a finite set and

‖z‖ ≤ ` max{‖z̄‖ : z̄ ∈ F} for z ∈ A

which implies that A is bounded. In addition, by Lemma 5.9, A is a (C)I -attractor,

and by (5.38),

inf{‖z+
1 − z+

2 ‖ : z1, z2 ∈ A , z+
1 6= z+

2 }
= inf{‖z − z′‖ : z, z′ ∈ P+A , z 6= z′} > 0.

This argument shows that Φ verifies (ΦI ), and the proof hereby is complete. �

5.7 Non periodic Hamiltonians

In this section we are interested in the system (HS) without assuming periodicity

conditions. The materials are taken from the paper [Ding and Jeanjean (2007)].

Below, For two given symmetric real matrix functions M1(t) and M2(t), we say

that M1(t) ≤M2(t) if

max
ξ∈R2N ,|ξ|=1

(M1(t) −M2(t)) ξ · ξ ≤ 0.

For convenience, any real number b will be regarded as the matrix bI2N when

matrices are concerned. We make the following assumptions:
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(H0) There is b > 0 such that the set Λb := {t ∈ R : J0L(t) < b} is nonempty and

has finite measure;

(H1) R(t, z) ≥ 0 and Rz(t, z) = o(|z|) as z → 0 uniformly in t;

(H2) Rz(t, z) = M(t)z+rz(t, z), withM a bounded, continuous symmetric 2N×2N -

matrix valued function and rz(t, z) = o(|z|) uniformly in t as |z| → ∞;

(H3) m0 := inft∈R

[
inf(ξ∈R2N , |ξ|=1)M(t)ξ · ξ

]
> inf σ(A) ∩ (0,∞);

(H4) Either (i) 0 6∈ σ(A −M) or (ii) R̃(t, z) ≥ 0 for all (t, z) and R̃(t, z) ≥ δ0 for

some δ0 > 0 and all (t, z) with |z| large enough;

(H5) γ < bmax, where γ := sup|t|≥t0,z 6=0 |Rz(t, z)|/|z| for some t0 ≥ 0, and bmax :=

sup{b : |Λb| <∞}.

We will show that the set σ(A) ∩ (0, bmax) consists only of eigenvalues of finite

multiplicity. From the definition of m0 and γ we have m0 < γ < bmax. Let ` denote

the number of eigenfunctions with corresponding eigenvalues lying in (0,m0).

Theorem 5.3 ([Ding and Jeanjean (2007)]). Let (H0) − (H5) be satisfied.

Then (HS) has at least one homoclinic orbit. If in addition R(t, z) is even in z,

then (HS) has at least ` pairs of homoclinic orbits.

Remark 5.3. Let q ∈ C1(R,R) satisfy

(q0) There is b > 0 such that 0 < |Qb| <∞ where Qb := {t ∈ R : q(t) < b}.

Then L(t) = q(t)J0 satisfies (H0).

In the works where H(t, z) is periodic the periodicity is used to control the lack

of compactness due to the fact that (HS) is set on all R. In our situation we manage

to recover sufficient compactness by imposing a control on the size of R(t, z) with

respect to the behavior of L(t) at infinity in t, see condition (H5).

The proof of Theorem 5.3 can be outlined as follows. We first study the

spectrum of the operator A showing, thanks to (H0), that the essential spec-

trum σe(A) ⊂ R \ (−bmax, bmax). Based on the description on σ(A), we derive

a variational setting for (HS) and represent the associated functional in the form

Φ(z) = 1
2

(
‖z+‖2 − ‖z−‖2

)
−
∫

R
R(t, z) with Φ being defined on the Hilbert space

E = D(|A|1/2) ↪→ H1/2(R,R2N ) with decomposition E = E− ⊕ E0 ⊕ E+, z =

z− + z0 + z+, dimE± = ∞. We then show the linking structure of Φ, that is,

inf Φ(E+ ∩ ∂Bρ) > 0 for some ρ > 0 and there are finite dimensional subspaces

Y ⊂ E+ such that Φ(u) → −∞ as ‖u‖ → ∞ in EY := E− ⊕E0 ⊕ Y . Subsequently

we show that the Cerami condition for Φ holds. Since E0 maybe nontrivial this

require some care. Finally, we arrive at the proof of Theorem 5.3.
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5.7.1 Variational setting

In order to establish a variational setting for the system (HS) we first study the

spectrum of the associated Hamiltonian operator.

Recall that A = −
(
J d
dt + L

)
is selfadjoint on L2(R,R2N ) with domain D(A) =

H1(R,R2N ) if L(t) is bounded and D(A) ⊂ H1(R,R2N ) if L(t) is unbounded.

Observe that D(A) is a Hilbert space with the graph inner product

(z, w)A := (Az,Aw)L2 + (z, w)L2

and the induced norm |z|A := (z, z)
1/2
A .

Set A0 := J d
dt + J0 which is a selfadjoint operator acting on L2(R,R2N ) with

D(A0) = H1(R,R2N ) and satisfies A2
0 = − d2

dt2 + 1. Plainly,

||A0|z|2 = |A0z|2 = ‖z‖H1 for all z ∈ H1 (5.39)

where |A0| denotes the absolute value of A0 as usual.

Lemma 5.10. The condition D(A) ⊂ H1(R1,R2N ) implies that there is γ1 > 0

such that

‖z‖H1 = ||A0|z|2 ≤ γ1|z|A for all z ∈ D(A). (5.40)

Proof. Let Ar be the restriction of A0 to D(A). Ar is a linear operator from

D(A) to L2. We claim that Ar is closed. Indeed, let zn
|· |A−→ z and Arzn

|· |2−→ w.

Then z ∈ D(A), and since A0 is closed, Arzn = A0zn → A0z = Arz, hence the

claim. Now the closed graph theorem implies that Ar ∈ L (D(A), L2) (the Banach

space of bounded linear operators), so |A0z|2 = |Arz|2 ≤ γ1|z|A for all z ∈ D(A).

This, together with (5.39), implies (5.40). �

Let σ(A), σd(A) and σe(A) denote, respectively, the spectrum, the eigenvalues

of finite multiplicity, and the essential spectrum of A. Set

µ−
e := sup

(
σe(A) ∩ (−∞, 0]

)
, µ+

e := inf
(
σe(A) ∩ [0,∞)

)
.

Proposition 5.2. Assume (H0) is satisfied. Then σe(A) ⊂ R\ (−bmax, bmax), that

is, µ−
e ≤ −bmax and µ+

e ≥ bmax.

Proof. Let b > 0 be such that |Λb| <∞. Set

(J0L(t) − b)+ :=

{
J0L(t) − b if J0L(t) − b ≥ 0

0 if J0L(t) − b < 0

and (J0L(t) − b)− := (J0L(t) − b) − (J0L(t) − b)+. We have, since J 2
0 = I ,

A = A1 −J0(J0L(t) − b)− where

A1 = −
(
J d

dt
+ J0(J0L− b)+

)
− bJ0.



June 21, 2007 11:27 World Scientific Book - 9.75in x 6.5in VariationalMethods

Homoclinics in Hamiltonian systems 57

Observe that J0J = −JJ0. Thus, for z ∈ D(A),

(A1z, A1z)L2 =|A1z|22 =

∣∣∣∣
(
J d

dt
+ J0(J0L− b)+

)
z + bJ0z

∣∣∣∣
2

2

=

∣∣∣∣
(
J d

dt
+ J0(J0L− b)+

)
z

∣∣∣∣
2

2

+ b2|z|22

+ (J ż, bJ0z)L2 + (bJ0z, J ż)L2

+
(
J0(J0L− b)+z, bJ0z

)
L2 +

(
bJ0z, J0(J0L− b)+z

)
L2

=

∣∣∣∣
(
J d

dt
+ J0(J0L− b)+

)
z

∣∣∣∣
2

2

+ b2|z|22

+ 2b((J0L− b)+z, z)L2

≥b2|z|22 .

(5.41)

Here we have used the fact that (J ż, bJ0z)L2 + (bJ0z, J ż)L2 = 0. Indeed for

z = (u, v) ∈ C∞
0 one has

(J ż, bJ0z)L2 + (bJ0z, J ż)L2

= 2b

∫

R

(u̇u− v̇v) = b

∫

R

d

dt
(u2(t) − v2(t)))

= b lim
t→∞

(|u(t)|2 − |u(−t)|2 − |v(t)|2 + |v(−t)|2) = 0.

Thus, since C∞
0 is dense in E we get the result. Now (5.41) implies that σ(A1) ⊂

R \ (−b, b).
We claim that σe(A) ∩ (−b, b) = ∅. Assume by contradiction that there is

λ ∈ σe(A) with |λ| < b. Let (zn) ⊂ D(A) with |zn|2 = 1, zn ⇀ 0 in L2 and

|(A− λ)zn|2 → 0. It follows from (5.40) that

‖zn‖H1 ≤ c1|zn|A = c1(|Azn|22 + |zn|22)1/2 ≤ c2(|(A − λ)zn|22 + λ2 + 1)1/2 ≤ c3,

hence |J0(J0L− b)−zn|2 → 0. We get

o(1) = |(A− λ)zn|2 = |A1zn − λzn −J0(J0L− b)−zn|2
≥ |A1zn|2 − |λ| − o(1)

≥ b− |λ| − o(1)

which implies that 0 < b− |λ| ≤ 0, a contradiction.

Since the claim is true for any b > 0 with |Λb| < ∞, one sees that σe(A) ⊂
R \ (−bmax, bmax). �

Remark 5.4. a) If L(t) satisfies: |Λb| < ∞ for any b > 0, then, as a consequence

of Proposition 5.2, µ−
e = −∞ and µ+

e = ∞, that is, σ(A) = σd(A).

b) Let L(t) = q(t)J0 with q(t) satisfying (q0). Then σe(A) ⊂ R \ (−bmax, bmax).

Moreover, σ(A) is symmetric : σ(A) ∩ (−∞, 0) = −σ(A) ∩ (0,∞) (see the proof of

Proposition 5.1). In particular, letting 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk be all the eigenvalues

below inf σe(A
2) of A2, {±λ1/2

j : j = 1, ..., k} are all the eigenvalues in (µ−
e , µ

+
e ) of

A. Therefore, one obtains the eigenvalues of A from those of A2 = − d2

dt2 +q2+ q̇JJ0

which can be calculated via the minimax principle.
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Note that since 0 now may belong to σ(A), we need more arguments for getting

the suitable variational framwork.

Let {Fλ : λ ∈ R} denote the spectral family of A. A has the polar decomposition

A = U |A| with U = 1− F0 − F−0 (see [Kato (1966)]). Proposition 5.2 implies that

0 is at most an isolated eigenvalue of finite multiplicity of A. L2 has the orthogonal

decomposition:

L2 = L− ⊕ L0 ⊕ L+, z = z− + z0 + z+

so that A is negative definite (resp. positive definite) in L− (resp. L+) and L0 =

kerA. In fact, L± = {z ∈ L2 : Uz = ±z} and L0 = {z ∈ L2 : Uz = 0}. It follows

from

(z+, z−)L2 = (Uz+, z−)L2 = (z+, Uz−)L2

= (z+,−z−)L2 = −(z+, z−)L2

that L+ and L− are orthogonal with respect to the L2-inner product. Similarly one

sees that L± and L0 are orthogonal with respect to the L2-inner product.

Let P 0 : L2 → L0 denote the associated projector. P 0 commutes with A and

|A|. On D(A) we introduce the inner product

〈z, w〉A :=(Az,Aw)L2 + (P 0z, P 0w)L2

=(|A|z, |A|w)L2 + (P 0z, w)L2

whose deduced norm will be denoted by ‖z‖A. It is clear that | · |A and ‖ · ‖A are

equivalent norms on D(A):

γ2|z|A ≤ ‖z‖A ≤ γ3|z|A for all z ∈ D(A).

Define

Ã := |A| + P 0.

Then D(Ã) = D(A). Noting that P 0|A| = |A|P 0 = 0 we have for z, w ∈ D(A),

(Ãz, Ãw)L2 = (|A|z, |A|w)L2 + (|A|z, P 0w)L2 + (P 0z, |A|w)L2 + (P 0z, P 0w)L2

= (|A|z, |A|w)L2 + (P 0z, P 0w)L2 = 〈z, w〉A,
hence,

γ2|z|A ≤ ‖z‖A = |Ãz|2 ≤ γ3|z|A for all z ∈ D(A). (5.42)

Let E := D(|A|1/2) be the domain of the self-adjoint operator |A|1/2 which is a

Hilbert space equipped with the inner product

(z, w) = (|A|1/2z, |A|1/2w)L2 + (P 0z, P 0w)L2

and the induced norm ‖z‖ = (z, z)1/2. E possesses the following decomposition

E = E− ⊕E0 ⊕E+ with E± = E ∩ L± and E0 = L0,
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orthogonal with respect to both the inner products (·, ·)L2 and (·, ·). Observe that

for all z ∈ D(A) and w ∈ D(|A|1/2)

(Ã1/2z, Ã1/2w)L2 = (Ãz, w)L2 = ((|A| + P 0)z, w)L2 = (|A|z, w)L2 + (P 0z, w)L2

= (|A|1/2z, |A|1/2w)L2 + (P 0z, P 0w)L2 = (z, w).

Consequently, since D(A) = D(Ã) is a core of Ã1/2 we have

(z, w) = (Ã1/2z, Ã1/2w)L2 for all z, w ∈ D(|A|1/2)

which induces in particular that

‖z‖ = |Ã1/2z|2 for all z ∈ E. (5.43)

Lemma 5.11. E embeds continuously into H1/2(R,R2N ), hence, E embeds contin-

uously into Lp for all p ≥ 2 and compactly into Lploc for all p ≥ 1.

Proof. Firstly, by interpolation theory we have that H1/2 = [H1, L2]1/2 (see

Theorem 2.4.1 of [Triebel (1978)]). Noting that D(|A0|0) = L2 and by (5.39) one

has

H1/2 = [D(|A0|), D(|A0|0)]1/2
with equivalent norms. It then follows from Theorem 1.18.10 of [Triebel (1978)]

that

H1/2 = [D(|A0|), D(|A0|0)]1/2 = D(|A0|1/2),

hence ‖z‖H1/2 and ||A0|1/2z|2 are equivalent norms in H1/2:

γ4‖z‖H1/2 ≤ ||A0|1/2z|2 ≤ γ5‖z‖H1/2 for all z ∈ H1/2. (5.44)

By (5.40),

||A0|z|2 ≤ γ1|Ãz|2 = |(γ1Ã)z|2
for all z ∈ D(A). Thus (|A0|z, z)L2 ≤ (γ1Ãz, z)L2 for all z ∈ D(A) (see Proposition

III 8.11 of [Edmunds and Evans (1987)]). This implies

||A0|1/2z|22 = (|A0|z, z)L2 ≤ (γ1Ãz, z)L2 = γ1|Ã1/2z|22
for all z ∈ D(A) (see, Proposition III 8.12 of [Edmunds and Evans (1987)]). Since

D(A) is a core of Ã1/2 we obtain that ||A0|1/2z|22 ≤ γ1|Ã1/2z|22 for all z ∈ E. This,

jointly with (5.43), shows that

||A0|1/2z|22 ≤ γ1‖z‖2 for all z ∈ E

which, together with (5.44), implies that

‖z‖H1/2 ≤ γ6‖z‖ for all z ∈ E

ending the proof. �
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From now on we fix a number b with

γ < b < bmax (5.45)

where γ appears in (H5). Let k be the number of the eigenfunctions with corre-

sponding eigenvalues lying in [−b, b]. We write fi (1 ≤ i ≤ k) for the eigenfunctions.

Setting

Ld := span{f1, · · · , fk},
we have another orthogonal decomposition

L2 = Ld ⊕ Le, u = ud + ue.

Correspondingly, E has the decomposition:

E = Ed ⊕Ee with Ed = Ld and Ee = E ∩ Le, (5.46)

orthogonal with respect to both the inner products (·, ·)L2 and (·, ·). Remark that

by Proposition 5.2

b|z|22 ≤ ‖z‖2 for all z ∈ Ee. (5.47)

On E we define the functional

Φ(z) :=
1

2
‖z+‖2 − 1

2
‖z−‖2 − Ψ(z) where Ψ(z) =

∫

R

R(t, z). (5.48)

Our hypotheses onH(t, z) imply that Φ ∈ C1(E,R) and a standard argument shows

that critical points of Φ are homoclinic orbits of (HS).

Lemma 5.12. Let (H0) − (H2) be satisfied. Then Ψ is non-negative, weakly se-

quentially lower semi-continuous, and Ψ′ is weakly sequentially continuous.

Proof. It is similar to that of Lemma 5.2, hence the details are omitted. �

5.7.2 Linking structure

We now study the linking structure of Φ. Remark that under (H1) − (H2), given

p ≥ 2, for any ε > 0, there is Cε > 0 such that

|Rz(t, z)| ≤ ε|z| + Cε|z|p−1

and

R(t, z) ≤ ε|z|2 + Cε|z|p (5.49)

for all (t, z). First we have the following lemma.

Lemma 5.13. Let (H0) − (H2) be satisfied. Then there is ρ > 0 such that κ :=

inf Φ(S+
ρ ) > 0 where S+

ρ = ∂Bρ ∩ E+.

Proof. Choose p > 2 such that (5.49) holds for any ε > 0. This yields

Ψ(z) ≤ ε|z|22 + Cε|z|pp ≤ C(ε‖z‖2 + Cε‖z‖p)
for all z ∈ E. Now the lemma follows from the form of Φ (see (5.48)). �
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In the following, we arrange all the eigenvalues (counted with multiplicity) of A

in (0,m0) by 0 < µ1 ≤ µ2 ≤ ... ≤ µ` < m0 and let ej denote the corresponding

eigenfunctions: Aej = µjej for j = 1, ..., `. Set Y0 := span{e1, ..., e`}. Note that

µ1|w|22 ≤ ‖w‖2 ≤ µ`|w|22 for all w ∈ Y0. (5.50)

For any finite dimensional subspace W of Y0 set EW = E− ⊕E0 ⊕W .

Lemma 5.14. Let (H0) − (H3) be satisfied and ρ > 0 be given by Lemma 5.13.

Then for any subspace W of Y0, sup Φ(EW ) < ∞, and there is RW > 0 such that

Φ(z) < inf Φ(Bρ ∩E+) for all z ∈ EW with ‖z‖ ≥ RW .

Proof. It is sufficient to show that Φ(z) → −∞ as z ∈ EW , ‖z‖ → ∞. Arguing

indirectly we assume that for some sequence (zj) ⊂ EW with ‖zj‖ → ∞, there is

c > 0 such that Φ(zj) ≥ −c for all j. Then, setting wj = zj/‖zj‖, we have ‖wj‖ = 1,

wj ⇀ w, w−
j ⇀ w−, w0

j → w0, w+
j → w+ ∈ Y and

− c

‖zj‖2
≤ Φ(zj)

‖zj‖2
=

1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫

R

R(t, zj)

‖zj‖2
. (5.51)

We claim that w+ 6= 0. Indeed, if not it follows from (5.51) and (H1) that ‖w−
j ‖ → 0

and thus wj → w = w0. Also
∫

R

R(t,zj)
‖zj‖2 → 0.

Recall that R(t, z) = 1
2M(t)z · z + r(t, z) and r(t, z)/|z|2 → 0 uniformly in t as

|z| → ∞. Thus, since |zj(t)| → ∞ if w(t) 6= 0,
∫

R

r(t, zj)

‖zj‖2
=

∫

R

r(t, zj)

|zj |2
|wj |2

≤
∫

R

|r(t, zj)|
|zj |2

|wj − w|2 +

∫

R

|r(t, zj)|
|zj |2

|w|2

= o(1) +

∫

w(t)6=0

|r(t, zj)|
|zj |2

|w|2 = o(1).

(5.52)

Also, by (H3),

1

2

∫

R

M(t)zj · zj
‖zj‖2

=
1

2

∫

R

M(t)zj · zj
|zj |2

|wj |2 ≥ m0

2
|wj |22. (5.53)

From (5.52)-(5.53) and since
∫

R

R(t,zj)
‖zj‖2 → 0 it follows that |wj |2 → 0. Then 1 =

‖wj‖ → 0 and this contradiction implies that w+ 6= 0. Now since

‖w+‖2 − ‖w−‖2 −
∫

R

M(t)w · w ≤ ‖w+‖2 − ‖w−‖2 −m0|w|22

≤ −
(
(m0 − µ`)|w+|22 + ‖w−‖2 +m0|w0|22

)
< 0

(see (5.50)), there is a > 0 such that

‖w+‖2 − ‖w−‖2 −
∫ a

−a
M(t)w · w < 0. (5.54)
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As in (5.52) it follows from the fact |wj − w|L2(−a,a) → 0 that

lim
j→∞

∫ a

−a

r(t, zj)

‖zj‖2
= lim

j→∞

∫ a

−a

r(t, zj)|wj |2
|zj |2

= 0.

Thus (5.51) and (5.54) imply that

0 ≤ lim
j→∞

(
1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫ a

−a

R(t, zj)

‖zj‖2

)

≤ 1

2

(
‖w+‖2 − ‖w−‖2 −

∫ a

−a
M(t)w · w

)
< 0,

a contradiction. �

As a special case we have

Lemma 5.15. Let (H0) − (H3) be satisfied and κ > 0 be given by Lemma 5.13.

Then, letting e ∈ Y0 with ‖e‖ = 1, there is r0 > 0 such that sup Φ(∂Q) ≤ κ where

Q := {u = u− + u0 + se : u− + u0 ∈ E− ⊕E0, s ≥ 0, ‖u‖ ≤ r0}.

5.7.3 The (C)-condition

Here we discuss the Cerami condition.

Lemma 5.16. Let (H0) − (H2) and (H4) − (H5) be satisfied. Then any (C)c-

sequence is bounded.

Proof. Let (zj) ⊂ E be such that

Φ(zj) → c and (1 + ‖zj‖)Φ′(zj) → 0. (5.55)

Then, for a C0 > 0,

C0 ≥ Φ(zj) −
1

2
Φ′(zj)zj =

∫

R

R̃(t, zj) . (5.56)

To prove that (zj) is bounded we develop a contradiction argument related to

the one introduced in [Jeanjean (1999)]. We assume that, up to a subsequence,

‖zj‖ → ∞ and set vj = zj/‖zj‖. Then ‖vj‖ = 1, |vj |s ≤ γs‖vj‖ = γs for all

s ∈ [2,∞), and passing to a subsequence if necessary, vj ⇀ v in E, vj → v in Lsloc
for all s ≥ 1, vj(t) → v(t) for a.e. t ∈ R. Since, by (H2), |rz(t, z)| = o(z) as |z| → ∞
uniformly in t and |zj(t)| → ∞ if v(t) 6= 0, it is easy to see that

∫

R

Rz(t, zj(t))ϕ(t)

||zj ||
→
∫

R

M(t)vϕ

for all ϕ ∈ C∞
0 (R,R2N ). From this we deduce, using (5.55), that

J d

dt
v + (L(t) +M(t))v = 0. (5.57)

Multiplying (5.57) by J−1 = −J we also get

d

dt
v = J (L(t) +M(t))v. (5.58)
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We claim that v 6= 0. Arguing by contradiction we assume that v = 0. Then

vdj → 0 in E and vj → 0 in Lsloc. Set I0 := (−t0, t0) and Ic0 := R \ I0 where t0 > 0

is the number given in (H5). It follows from

Φ′(zj)(z
e+
j − ze−j )

‖zj‖2
= ‖vej‖2 −

∫

R

Rz(t, zj)

|zj |
(ve+j − ve−j )|vj |

that

‖vej‖2 =

∫

I0

Rz(t, zj)

|zj |
(ve+j − ve−j )|vj |

+

∫

Ic
0

Rz(t, zj)

|zj |
(ve+j − ve−j )|vj | + o(1)

≤ c

∫

I0

|vj ||ve+j − ve−j | + γ

∫

Ic
0

|vj ||ve+j − ve−j | + o(1)

≤ γ|vej |22 + o(1).

By (5.47) one gets
(
1 − γ

b

)
‖vej‖2 ≤ o(1),

which implies, by (5.45), that ‖vej‖2 → 0. Hence 1 = ‖vj‖2 = ‖vdj ‖2 + ‖vej‖2 → 0, a

contradiction.

Therefore, v 6= 0 which is impossible if (i) of (H4) is satisfied. Thus we assume

(ii) of (H4). Let Ωj(0, r) := {t ∈ R : |zj(t)| < r}, Ωj(r,∞) := {t ∈ R : |zj(t)| ≥ r},
and set for r ≥ 0

g(r) := inf
{
R̃(t, z) : t ∈ R and z ∈ R

2N with |z| ≥ r
}
.

By assumption there is r0 > 0 such that g(r0) > 0, hence one has by (5.56) that

|Ωj(r0,∞)| ≤ C0/g(r0). Set Ω := {t : v(t) 6= 0}. Since v satisfies (5.58) it follows

from Cauchy Uniqueness Principle that Ω = R. Indeed otherwise v ≡ 0 on R

contradicting the fact that v 6= 0. Now since |Ω| = ∞ there exists ε > 0 and ω ⊂ Ω

such that |v(t)| ≥ 2ε for t ∈ ω and 2C0/g(r0) ≤ |ω| <∞. By an Egoroff’s theorem

we can find a set ω′ ⊂ ω with |ω′| > C0/g(r0) such that vj → v uniformly on ω′.
So for almost all j, |vj(t)| ≥ ε and |zj(t)| ≥ r in ω′. Then

C0

g(r0)
< |ω′| ≤ |Ωj(r,∞)| ≤ C0

g(r0)
,

a contradiction. �

In the following lemma we discuss further the (C)c-sequence (zj) ⊂ E. By

Lemma 5.16 it is bounded, hence, we may assume without loss of generality that

zj ⇀ z in E, zj → z in Lqloc for q ≥ 1 and zj(t) → z(t) a.e. in t. Plainly z is a

critical point of Φ.
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Choose p > 2 such that |Rz(t, z)| ≤ |z|+C1|z|p−1 for all (t, z), and let q stands

for either 2 or p. Set Ia := [−a, a] for a > 0. As (5.29) we see easily that along a

subsequence, for any ε > 0, there exists rε > 0 such that

lim sup
n→∞

∫

In\Ir

|zjn |q ≤ ε (5.59)

for all r ≥ rε. Let η : [0,∞) → [0, 1] be a smooth function satisfying η(s) = 1 if

s ≤ 1, η(s) = 0 if s ≥ 2. Define z̃n(t) = η(2|t|/n)z(t) and set hn := z − z̃n. Since z

is a homoclinic orbit, we have by definition that hn ∈ H1 and

‖hn‖ → 0 and |hn|∞ → 0 as n→ ∞. (5.60)

Repeating the argument of (5.32) we see that, under (H0)− (H2) and (H4)− (H5),

lim
n→∞

∣∣∣∣
∫

R

(Rz(t, zjn) −Rz(t, zjn − z̃n) −Rz(t, z̃n))ϕ

∣∣∣∣ = 0 (5.61)

uniformly in ϕ ∈ E with ‖ϕ‖ ≤ 1. Then we have

Lemma 5.17. Let (H0) − (H2) and (H4) − (H5) be satisfied. Then

1) Φ(zjn − z̃n) → c− Φ(z);

2) Φ′(zjn − z̃n) → 0.

Proof. One has

Φ(zjn − z̃n) = Φ(zjn) − Φ(z̃n)

+

∫

R

(R(t, zjn) −R(t, zjn − z̃n) −R(t, z̃n)) .

Using (5.60) it is not difficult to check that
∫

R

(R(t, zjn) −R(t, zjn − z̃n) −R(t, z̃n)) → 0.

This, together with Φ(zjn) → c and Φ(z̃n) → Φ(z), gives 1).

To verify 2), observe that, for any ϕ ∈ E,

Φ′(zjn − z̃n)ϕ = Φ′(zjn)ϕ− Φ′(z̃n)ϕ

+

∫

R

(
Rz(t, zjn) −Rz(t, zjn − z̃n) −Rz(t, z̃n)

)
ϕ.

By (5.61) we get

lim
n→∞

∫

R

(
Rz(t, zjn) −Rz(t, zjn − z̃n) −Rz(t, z̃n)

)
ϕ = 0

uniformly in ‖ϕ‖ ≤ 1, proving 2). �

Lemma 5.18. Let (H0) − (H2) and (H4) − (H5) be satisfied. Then Φ satisfies the

(C)c-condition.
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Proof. In the following we use the decomposition E = Ed ⊕ Ee (see (5.46)).

Recall that dim(Ed) <∞. Write

yn := zjn − z̃n = ydn + yen.

Then ydn = (zdjn − zd) + (zd − z̃dn) → 0 and, by Lemma 5.17, Φ(yn) → c −
Φ(z), Φ′(yn) → 0. Set ȳen = ye+n − ye−n . Observe that

o(1) = Φ′(yn)ȳ
e
n = ‖yen‖2 −

∫

R

Rz(t, yn)ȳ
e
n.

Thus it follows that

‖yen‖2 ≤ o(1) +

∫

I0

|Rz(t, yn)|
|yn|

|yn||ȳen| +
∫

Ic
0

|Rz(t, yn)|
|yn|

|yn||ȳen|

≤ o(1) + c

∫

I0

|yn||ȳen| + γ

∫

Ic
0

|yn||ȳen|

≤ o(1) + γ|yen|22 ≤ o(1) +
γ

b
‖yen‖2.

Hence (1 − γ
b )‖yen‖2 → 0, and so ‖yn‖ → 0. Remark that zjn − z = yn + (z̃n − z),

hence ‖zjn − z‖ → 0. This ends the proof. �

5.7.4 Proof of Theorem 5.3

First we have

Lemma 5.19. Φ satisfies (Φ0).

Proof. We first show that Φa is TS-closed for every a ∈ R. Consider a sequence

(zn) in Φa which TS -converges to z ∈ E, and write zn = z−n +z0
n+z+

n , z = z−+z0 +

z+. Observe that (z+
n ) converges to z+ in norm. Since Ψ is bounded from below it

follows from

1

2
‖z−n ‖2 =

1

2
‖z+
n ‖2 − Φ(zn) − Ψ(zn) ≤ C

that (z−n ) is bounded, hence it converges weakly towards z−. Since dimE0 < ∞,

the TS-convergence coincides with the weak convergence. Therefore zn ⇀ z. From

Lemma 5.12 and the form of Φ it follows that Φ(z) ≥ lim inf Φ(zn) ≥ a, so z ∈ Φa.

Next we show that Φ′ : (Φa, TS) → (E∗, Tw∗) is continuous. Suppose (zn) TS-

converges towards z in Φa. As above it follows that (zn) is bounded and converges

weakly towards z. Then Φ′(zn)
w∗

→ Φ′(z) by Lemma 5.12. �

Also we have

Lemma 5.20. Under (H0) − (H2), for any c > 0, there is ζ > 0 such that :

‖z‖ < ζ‖z+‖ for all z ∈ Φc.
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Proof. We assume by contradiction that for some c > 0 there is a sequence (zn)

with Φ(zn) ≥ c and ‖zn‖2 ≥ n‖z+
n ‖2. The form of Φ implies

‖z−n + z0
n‖2 ≥ (n− 1)‖z+‖2 ≥ (n− 1)

(
2c+ ‖z−n ‖2 + 2

∫

R

R(t, zn)

)
,

or

‖z0
n‖2 ≥ (n− 1)2c+ (n− 2)‖z−n ‖2 + 2(n− 1)

∫

R

R(t, zn).

Since c > 0 and R(t, z) ≥ 0, it follows that ‖z0
n‖ → ∞, hence ‖zn‖ → ∞. Set

wn = zn/‖zn‖. We have ‖w+
n ‖2 ≤ 1/n→ 0. By

1 ≥ ‖w0
n‖2 ≥ (n− 1)2c

‖zn‖2
+ (n− 2)‖w−

n ‖2 + 2(n− 1)

∫

R

R(t, zn)

‖zn‖2
,

we also have ‖w−
n ‖2 ≤ 1/(n−2) → 0. Therefore, wn → w = w0 in E and ‖w0‖ = 1.

Recall that R(t, z) = 1
2M(t)z · z + r(t, z) with |r(t, z)|/|z|2 → 0 as |z| → ∞.

Therefore, since |zn(t)| → ∞ for w(t) 6= 0,
∫

R

r(t, zn)

‖zn‖2
=

∫

w(t)6=0

r(t, zn)

|zn|2
|wn|2 +

∫

w(t)=0

r(t, zn)

|zn|2
|wn − w|2

≤ 2

∫

w(t)6=0

|r(t, zn)|
|zn|2

|w|2 + c|wn − w|22 → 0.

This implies

1

2(n− 1)
≥
∫

R

R(t, zn)

‖zn‖2
=

1

2

∫

R

M(t)wn · wn +

∫

R

r(t, zn)

‖zn‖2

≥ m0

2
|wn|22 + o(1),

consequently, w0 = 0, a contradiction. �

Proof. [Proof of Theorem 5.3] (Existence). With X = E−⊕E0 and Y = E+ the

condition (Φ0) holds by Lemma 5.19 and (Φ+) holds by Lemma 5.20. Lemma 5.13

implies (Φ2). Lemma 5.15 shows that Φ possesses the linking structure of Theorem

4.5. Finally, Φ satisfies the (C)c-condition by virtue of Lemma 5.18. Therefore, Φ

has at least one critical point z with Φ(z) ≥ κ > 0.

(Multiplicity). Assume moreover that R(t, z) is even in z. Then Φ is even hence

satisfies (Φ1). Lemma 5.14 says that Φ satisfies (Φ3) with dimY0 = `. Therefore,

Φ has at least ` pairs of nontrivial critical points by Theorem 4.6. �
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Chapter 6

Standing waves of nonlinear

Schrödinger equations

This chapter is devoted to the study on existence and multiplicity of solutions to

the nonlinear Schrödinger equations. In the first five sections we treat standing

waves of a single equation with periodic potential and nonlinearity and 0 lying in

a gap of spectrum of the Schrödinger operator, and in the last section we handle

semiclassical states of a (Hamiltonian) system of perturbed Schrödinger equations.

The nonlinear couplings are assumed to be either asymptotically linear or super

linear.

6.1 Introduction and results

We consider the following nonlinear Schrödinger equation
{
−∆u+ V (x)u = g(x, u) for x ∈ R

N

u(x) → 0 as |x| → ∞
(NS)

where V : RN → R is a potential and g : RN × R → R a nonlinear coupling which

is either asymptotically linear or super linear as |u| → ∞.

The equation (NS) arises when one seeks for the standing wave solutions of the

following nonlinear Schrödinger equation

i~
∂ϕ

∂t
= − ~2

2m
∆ϕ+W (x)ϕ − f(x, |ϕ|)ϕ. (6.1)

A standing wave solution of (6.1) is a solution of the form ϕ(x, t) = u(x)e−
iEt

~ .

It is clear that ϕ(x, t) solves (6.1) if and only if u(x) solves (NS) with V (x) =
2m
~2 (W (x) −E) and g(x, u) = 2m

~2 f(x, |u|)u.
The Schrödinger equation with periodic potentials and nonlinearities has found

a great deal of interest in last years because not only it is important in applications

but it provides a good model for developing mathematical methods, see, e.g., [Alama

and Li (1992I); Ackermann (2004); Alama and Li (1992II); Bartsch and Ding (1999);

Buffoni, Jeanjean and Stuart (1993); Chabrowski and Szulkin (2002); Costa and

Tehrani (2001); Coti-Zelati and Rabinowitz (1992); Ding and Li (1995); Ding and

Luan (2004); Heinz, Küpper and Stuart (1992); Jeanjean (1994); Kryszewski and

67
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Szulkin (1998); Li and Szulkin (2002); Troestler and Willem (1996); Van Heerden

(2004); Willem and Zou (2003)] and the references therein. It is known that for

periodic potentials the spectrum σ(A) of the operator A := −∆ + V selfadjoint on

L2(RN ) is a union of closed intervals (cf. [Reed and Simon (1978)]). There have

been many results on existence and multiplicity of solutions of such an equation

depending on the location of 0 relative to σ(A), among which we recall the following

ones.

Case 1. 0 < inf σ(A). In [Coti-Zelati and Rabinowitz (1992)] Coti-Zelati and

Rabinowitz proved via a mountain-pass argument that (NS) has infinitely many

solutions provided g ∈ C2(RN ×R,R) and satisfies the superlinear condition: there

is µ > 2 such that

0 < µG(x, u) ≤ g(x, u)u for all x ∈ RN and u ∈ R \ {0} (6.2)

and the subcritical condition: there is s ∈ (2, 2∗) such that

|gu(x, u)| ≤ c1 + c2|u|s−2 for all (x, u) ∈ RN × R. (6.3)

Here (and in the following) G(x, u) :=
∫ u
0
g(x, t) dt, 2∗ = ∞ if N = 1, 2, 2∗ =

2N/(N − 2) if N ≥ 3, and ci denote positive constants. This result was shown

recently in [Ding and Luan (2004); Van Heerden (2004)] to remain true for more

general nonlinearities, particularly, for asymptotically linear ones.

Case 2. 0 lies in a gap of σ(A), that is,

Λ := sup (σ(A) ∩ (−∞, 0)) < 0 < Λ := inf (σ(A) ∩ (0,∞)) (6.4)

Assume again (6.2) and (6.3) are satisfied. If G(x, u) is strictly convex, existence

and multiplicity of solutions of (NS) were established in Alama and Li [Alama and Li

(1992I)], Alama and Li [Alama and Li (1992II)] and Buffoni et al. [Buffoni, Jeanjean

and Stuart (1993)] by virtue of a mountain-pass reduction. Without the convexity,

by using a generalized linking argument together with a weaker topology setting,

Troestler and Willem [Troestler and Willem (1996)] and Kryszewski and Szulkin

[Kryszewski and Szulkin (1998)] obtained the existence, and multiplicity provided

g(x, u) is odd in u, of solutions of (NS). See also [Ackermann (2004); Chabrowski

and Szulkin (2002); Ding and Li (1995)].

Case 3. 0 is a boundary point of a gap of σ(A), precisely, 0 ∈ σ(A) and (0,Λ)∩
σ(A) = ∅. Under (6.2), together with some other conditions, Bartsch and Ding

[Bartsch and Ding (1999)] found at least one nontrivial solution, and infinitely

many solutions provided moreover g(x, u) is odd in u. The existence result was later

extended to a slightly more general superlinear case in Willem and Zou [Willem and

Zou (2003)].

Observe that the conditions (6.2)-(6.3) play an important role for showing that

any Palais-Smale sequence is bounded in the works.

A case different from the above is that 0 lies in a gap and neither G(x, u) is

convex nor (6.2) holds. This case is difficult because the mountain-pass reduction

of [Alama and Li (1992I)] is not available on one hand, and it is not known if the
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Palais-Smale sequences are bounded on the other hand. We choose this case as the

object of the present chapter.

Firstly we handle the asymptotically linear problem. In what follows, G̃(x, u) :=
1
2g(x, u)u− G(x, u) and λ0 := min{−Λ, Λ} where Λ and Λ are the numbers given

by (6.4). Assume

(V0) V (x) is 1-periodic in xj for j = 1, ..., N such that 0 6∈ σ(−∆ + V );

(N0) g(x, u) is 1-periodic in xj for j = 1, ..., N , G(x, u) ≥ 0 and g(x, u) = o(|u|) as

u→ 0 uniformly in x.

(N1) g(x, u) − V∞(x)u = o(|u|) as |u| → ∞ uniformly in x with inf V∞ > Λ ;

(N2) G̃(x, u) ≥ 0, and there is δ0 ∈ (0, λ0) such that G̃(x, u) ≥ δ0 whenever

g(x, u)/u ≥ λ0 − δ0 .

In [Li and Szulkin (2002)] it was proved that if (V0) and (N0) − (N2) hold then

(NS) has at least one solution. Observe that, due to the periodicity of V and g,

if u is a solution of (NS), then so is k ∗ u for each k = (k1, ..., kN ) ∈ Z
N where

(k ∗u)(x) = u(x+ k). Two solutions u1 and u2 are said to be geometrically distinct

if k ∗ u1 6= u2 for all k ∈ ZN . We will prove the following multiplicity result.

Theorem 6.1 ([Ding and Lee (2006)]). Let (V0) and (N0) − (N2) be satisfied.

Then (NS) has at least one solution. If moreover g(x, u) is odd in u and, for some

δ > 0, G̃(x, u) > 0 whenever 0 < |u| ≤ δ, then (NS) possesses infinitely many

geometrically distinct solutions.

Next we deal with the superlinear case. Assume

(N3) G(x, u)/u2 → ∞ as |u| → ∞uniformly in x;

(N4) G̃(x, u) > 0 if u 6= 0, and there exist r0 > 0 and σ > max {1, N/2} such that

|g(x, u)|σ ≤ c0G̃(x, u)|u|σ if |u| ≥ r0.

Theorem 6.2 ([Ding and Lee (2006)]). Under the conditions (V0), (N0) and

(N3) − (N4), (NS) has at least one nontrivial solution. If in addition g(x, u) is

odd in u then (NS) possesses infinitely many geometrically distinct solutions.

Before going on some nonlinear examples and comments on the assumptions are

in order.

The following function is odd and satisfies all the asymptotically linear condi-

tions (N0) − (N2) :

Ex1. g(x, u) = V∞(x)u
(
1 − 1

ln(e+|u|)

)
where V∞(x) is 1-periodic in xj for j =

1, ..., N with inf V∞ > Λ.

Another asymptotically linear example is the following

Ex2. g(x, u) = h(x, |u|)u, where h(x, s) is 1-periodic in xj and increasing for s ∈
[0,∞), and h(x, s) → 0 as s → 0 and h(x, s) → V∞(x) as s → ∞ with
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V∞(x) > Λ uniformly in x.

Clearly, Ex2 satisfies (N0) − (N2).

Examples satisfying the superlinear conditions (N0) and (N3) − (N4) are the

following functions with V∞(x) > 0 and being 1-periodic in xj :

Ex3. g(x, u) = V∞(x)u ln(1 + |u|),
Ex4. G(x, u) = V∞(x)

(
|u|µ + (µ− 2)|u|µ−ε sin2

( |u|ε
ε

))
where µ > 2, 0 < ε < µ− 2

if N = 1, 2 and 0 < ε < µ+N −Nµ/2 if N ≥ 3.

Remark that these functions do not satisfy (6.2). For getting more examples satis-

fying the superlinear conditions we show the following

Lemma 6.1. The assumption (N4) holds provided g(x, u) satisfies :

(1◦) there exist r1 > 0 and p ∈ (2, 2∗) such that |g(x, u)| ≤ c1|u|p−1 if |u| ≥ r1;

(2◦) 2G(x, u) < g(x, u)u if u 6= 0, and there exist r1 > 0, ν > 0 with ν < 2 if N = 1,

ν < N + p− pN/2 if N ≥ 2, such that

G(x, u) ≤
(

1

2
− 1

c2|u|ν
)
g(x, u)u if |u| ≥ r1.

Proof. By (2◦), G̃(x, u) > 0 if u 6= 0 which implies G(x, u) ≥ cu2, hence

g(x, u)u ≥ 2cu2, for |u| ≥ 1. It follows from also (2◦) that

g(x, u)u

c2|u|ν
≤ G̃(x, u)

for |u| large. Consequently

2c|u|2−ν
c2

≤ g(x, u)u

c2|u|ν
≤ G̃(x, u)

which implies G̃(x, u) → ∞ as |u| → ∞ uniformly in x because ν < 2. Observe

that, for |u| large,

|g(x, u)|σ ≤ c G̃(x, u)|u|σ ⇐⇒ (g(x, u)u)σ

c|u|2σ ≤ G̃(x, u)

⇐⇒ G(x, u) ≤
(

1

2
− (g(x, u)u)σ−1

c|u|2σ
)
g(x, u)u

⇐⇒ (g(x, u)u)σ−1

c|u|2σ ≤ 1

2
− G(x, u)

g(x, u)u
.

Set σ = (p− ν)/(p− 2). Then σ > N/2, and by (1◦)

(g(x, u)u)σ−1

c|u|2σ ≤ 1

a1|u|2σ−p(σ−1)
=

1

a1|u|ν
,

by (2◦)

1

c2|u|ν
≤ 1

2
− G(x, u)

g(x, u)u
.

Hence (N4) holds. �
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It is apparent that if g(x, u) satisfies (6.2)-(6.3) than it satisfies (1◦)−(2◦), hence

(N3) − (N4). This fact, together with the examples Ex3 and Ex4, shows that the

superlinear assumptions of Theorem 6.2 are indeed more general than (6.2)-(6.3).

6.2 Preliminaries

Assume that (V0) holds and let as before A = −∆ + V , the selfadjoint operator

acting on L2(RN ,R) with domain D(A) = H2(RN ,R). Then (NS) can be rewritten

as an equation in L2(RN ,R)

Au = g(x, u). (6.5)

In virtue of (V0) we have the orthogonal decomposition

L2 = L2(RN ,R) = L− ⊕ L+, u = u− + u+

such that A is negative (resp., positive) in L− (resp., in L+).

Let E = D(|A|1/2) be equipped with the inner product

(u, v) = (|A|1/2u, |A|1/2v)L2

and norm ‖u‖ = ||A|1/2u|2 where (·, ·)L2 denotes the inner product of L2. By (V0),

E = H1(RN ,R) with equivalent norms. Therefore E embeds continuously in Lp for

all p ≥ 2 with p ≤ 2∗ if N ≥ 3, and compactly in Lploc for all p ∈ [1, 2∗). In addition

we have the decomposition

E = E− ⊕E+ where E± = E ∩ L±,

orthogonal with respect to both (·, ·)L2 and (·, ·).
On E we define the functional

Φ(u) :=
1

2
‖u+‖2 − 1

2
‖u−‖2 − Ψ(u) where Ψ(u) =

∫

RN

G(x, u).

Note that

−Λ|u|22 ≤ ‖u‖2 for u ∈ E− and Λ|u|22 ≤ ‖u‖2 for u ∈ E+ (6.6)

(see (6.4)). The hypotheses on g imply that Φ ∈ C1(E,R) and a standard argument

invoking the representation (6.5) shows that critical points of Φ are solutions of

(NS). We are seeking for critical points of Φ.

Observe that, assuming (N0) holds and (N1) or (N4) is satisfied, given ε > 0,

there is Cε > 0 such that

|g(x, u)| ≤ ε|u| + Cε|u|p−1 (6.7)

and

|G(x, u)| ≤ ε|u|2 + Cε|u|p (6.8)

for all (x, u), where p > 2 in case (N1), and p ≥ 2σ/(σ − 1) in case (N4). Remark

that in case (N4), 2σ/(σ − 1) < 2∗. Using this fact and the Sobolev embedding

theorem one checks easily the following

Lemma 6.2. Let (V0) and (N0) be satisfied, and assume moreover (N1) − (N2)

or (N3) − (N4) hold. Then Ψ is non-negative, weakly sequentially lower semi-

continuous, and Ψ′ is weakly sequentially continuous.
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6.3 The linking structure

In this section we discuss the linking structure of the functional Φ. Firstly we have

the following lemma.

Lemma 6.3. Under the assumptions of Lemma 6.2, there is r > 0 such that κ :=

inf Φ(S+
ρ ) > 0 where S+

r = ∂Br ∩ E+.

Proof. It follows from (6.8) and the Sobolev embedding theorem that, for any

ε > 0, there is Cε > 0 such that

Ψ(u) ≤ ε|u|22 + Cε|u|pp ≤ C(ε‖u‖2 + Cε‖u‖p)
for all u ∈ E. This, jointly with the form of Φ, implies the lemma. �

In the following, for the asymptotically quadratic case we set ω = inf V∞, and

for the superquadratic case we choose ω = 2Λ. Take a number µ̄ satisfying

Λ < µ̄ < ω. (6.9)

Since σ(A) is absolutely continuous (cf. [Reed and Simon (1978)]), the subspace

Y0 := (Pµ̄ − P0)L
2 is infinite dimensional, where (Pλ)λ∈R denotes the spectrum

family of A. Note that by definition and (6.6)

Y0 ⊂ E+ and Λ|w|22 ≤ ‖w‖2 ≤ µ̄|w|22 for all w ∈ Y0. (6.10)

For any finite dimensional subspace Y of Y0 set EY = E− ⊕ Y .

Lemma 6.4. Let the assumptions of Lemma 6.2 be satisfied. Then for any finite

dimensional subspace Y of Y0, sup Φ(EY ) < ∞, and there is RY > r such that

Φ(u) < inf Φ(Br) for all u ∈ EY with ‖u‖ ≥ RY .

Proof. It is sufficient to show that Φ(u) → −∞ as u ∈ EY , ‖u‖ → ∞. Arguing

indirectly, assume that for some sequence uj ∈ EY with ‖uj‖ → ∞, there is M > 0

such that Φ(uj) ≥ −M for all j. Then, setting wj = uj/‖uj‖, we have ‖wj‖ = 1,

wj ⇀ w, w−
j ⇀ w−, w+

j → w+ ∈ Y and

− M

‖uj‖2
≤ Φ(uj)

‖uj‖2
=

1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫

RN

G(x, uj)

‖uj‖2
. (6.11)

Remark that w+ 6= 0. Indeed, if not then it follows from (6.11) that

0 ≤ 1

2
‖w−

j ‖2 +

∫

RN

G(x, uj)

‖uj‖2
≤ 1

2
‖w+

j ‖2 +
M

‖uj‖2
→ 0,

in particular, ‖w−
j ‖ → 0, hence 1 = ‖wj‖ → 0, a contradiction.

First, consider the asymptotically linear case and assume (N1) holds. By (6.9)-

(6.10) again,

‖w+‖2 − ‖w−‖2 −
∫

RN

V∞(x)w2 ≤ ‖w+‖2 − ‖w−‖2 − ω|w|22

≤ −
(
(ω − µ̄)|w+|22 + ‖w−‖2

)
< 0,
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hence, there is a bounded domain Ω ⊂ R
N such that

‖w+‖2 − ‖w−‖2 −
∫

Ω

V∞(x)w2 < 0. (6.12)

Let

f(x, u) := g(x, u) − V∞(x)u and F (x, u) =

∫ u

0

f(x, s)ds. (6.13)

By (N1), |F (x, u)| ≤ Cu2 and F (x, u)/u2 → 0 as |u| → ∞ uniformly in x. It follows

from Lebesgue’s dominated convergence theorem and the fact |wj − w|L2(Ω) → 0

that

lim
j→∞

∫

Ω

F (x, uj)

‖uj‖2
= lim

j→∞

∫

Ω

F (x, uj)|wj |2
|uj |2

= 0.

Thus (6.11) and (6.12) imply that

0 ≤ lim
j→∞

(
1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫

Ω

G(x, uj)

‖uj‖2

)

≤ 1

2

(
‖w+‖2 − ‖w−‖2 −

∫

Ω

V∞(x)w2

)
< 0,

a contradiction.

Next consider the superlinear case and so suppose (N3)− (N4) hold. Then there

is r > 0 such that G(x, u) ≥ ω|u|2 if |u| ≥ r. Using (6.9)-(6.10),

‖w+‖2 − ‖w−‖2 − ω

∫

RN

w2 ≤ µ̄|w+|22 − ‖w−‖2 − ω|w+|22 − ω|w−|22

≤ −
(
(ω − µ̄)|w+|22 + ‖w−‖2

)
< 0,

hence, there is a bounded domain Ω ⊂ RN such that

‖w+‖2 − ‖w−‖2 − ω

∫

Ω

w2 < 0. (6.14)

Note that
Φ(uj)

‖uj‖2
≤1

2

(
‖w+

j ‖2 − ‖w−
j ‖2

)
−
∫

Ω

G(x, uj)

‖uj‖2

=
1

2

(
‖w+

j ‖2 − ‖w−
j ‖2 − ω

∫

Ω

|wj |2
)
−
∫

Ω

G(x, uj) − ω
2 |uj |2

‖uj‖2

≤ 1

2

(
‖w+

j ‖2 − ‖w−
j ‖2 − ω

∫

Ω

|wj |2
)

+
ωr2|Ω|
2‖uj‖2

(|Ω| denotes the Lebesgue measure of Ω). Thus (6.11) and (6.14) imply that

0 ≤ lim
j→∞

(
1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫

Ω

G(x, uj)

‖uj‖2

)

≤ 1

2

(
‖w+‖2 − ‖w−‖2 − ω

∫

Ω

w2

)
< 0,

a contradiction. �

As a special case we have

Lemma 6.5. Under the assumptions of Lemma 6.2, letting e ∈ Y0 with ‖e‖ = 1,

there is r0 > 0 such that sup Φ(∂Q) = 0 where Q := {u = u− + se : u− ∈ E−, s ≥
0, ‖u‖ ≤ r0}.
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6.4 The (C) sequences

In this section we consider the boundedness of (C)c-sequences. Firstly, we have

Lemma 6.6. Under the assumptions of Lemma 6.2, any (C)c-sequence is bounded.

Proof. Let (uj) ⊂ E be such that

Φ(uj) → c and (1 + ‖uj‖)Φ′(uj) → 0. (6.15)

Observe that for j large

C0 ≥ Φ(uj) −
1

2
Φ′(uj)uj =

∫

RN

G̃(x, uj) . (6.16)

Arguing indirectly, assume by contradiction that ‖uj‖ → ∞. Set vj = uj/‖uj‖.
Then ‖vj‖ = 1 and |vj |s ≤ γs‖vj‖ = γs for s ∈ [2, 2∗). Observe that, from (6.15)

and

Φ′(uj)(u
+
j − u−j ) = ‖uj‖2

(
1−

∫

RN

g(x, uj)(v
+
j − v−j )

‖uj‖

)
,

it follows that
∫

RN

g(x, uj)(v
+
j − v−j )

‖uj‖
→ 1. (6.17)

First we consider the asymptotically linear case, hence assume (N1) − (N2) are

satisfied. By Lions’ concentration compactness principle [Lions (1984)], either (vj)

is vanishing (in this case |vj |s → 0 for all s ∈ (2, 2∗)), or it is nonvanishing, that is,

there are r, η > 0 and (aj) ⊂ ZN such that lim supj→∞
∫
B(aj ,r)

|vj |2 ≥ η. We show

that (vj) is neither vanishing nor nonvanishing.

Assume (vj) is vanishing. Set, in virtue of (N2),

Ωj :=

{
x ∈ R

N :
g(x, uj(x))

uj(x)
≤ λ0 − δ0

}
.

Then λ0|vj |22 ≤ ‖vj‖2 = 1 and we have
∣∣∣∣∣

∫

Ωj

g(x, uj)(v
+
j − v−j )

‖uj‖

∣∣∣∣∣ =
∣∣∣∣∣

∫

Ωj

g(x, uj)(v
+
j − v−j )|vj |
|uj |

∣∣∣∣∣

≤ (λ0 − δ0)|vj |22 ≤ λ0 − δ0
λ0

< 1

for all j. This, jointly with (6.17), implies that for Ωcj := RN \ Ωj

lim
j→∞

∫

Ωc
j

g(x, uj)(v
+
j − v−j )

‖uj‖
> 1 − λ0 − δ0

λ0
=
δ0
λ0

.

Recalling that by (N0) and (N1)

|g(x, u)| ≤ C|u| for all (x, u), (6.18)
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there holds for an arbitrarily fixed s ∈ (2, 2∗)
∫

Ωc
j

g(x, uj)(v
+
j − v−j )

‖uj‖
≤ C

∫

Ωc
j

|v+
j − v−j ||vj |

≤ C|vj |2|Ωcj |(s−2)/2s|vj |s ≤ Cγ2|Ωcj |(s−2)/2s|vj |s.

Since |vj |s → 0, one gets |Ωcj | → ∞. By (N2), G̃(x, uj) ≥ δ0 on Ωcj , hence
∫

RN

G̃(x, uj) ≥
∫

Ωc
j

G̃(x, uj) ≥ δ0|Ωcj | → ∞,

contrary to (6.16).

Assume (vj) is nonvanishing. Setting ũj(x) = uj(x + aj), ṽj(x) = vj(x + aj)

and ϕj(x) = ϕ(x − aj) for any ϕ ∈ C∞
0 we have by (N1) (see (6.13) for f(x, u))

Φ′(uj)ϕj = (u+
j − u−j , ϕj) − (V∞uj , ϕj)L2 −

∫

RN

f(x, uj)ϕj

= ‖uj‖
(

(v+
j − v−j , ϕj) − (V∞vj , ϕj)L2 −

∫

RN

f(x, uj)ϕj
|vj |
|uj |

)

= ‖uj‖
(

(ṽ+
j − ṽ−j , ϕ) − (V∞ṽj , ϕ)L2 −

∫

RN

f(x, ũj)ϕ
|ṽj |
|ũj |

)
.

This results

(ṽ+
j − ṽ−j , ϕ) − (V∞ṽj , ϕ)L2 −

∫

RN

f(x, ũj)ϕ
|ṽj |
|ũj |

→ 0.

Since ‖ṽj‖ = ‖vj‖ = 1, we can assume that ṽj ⇀ ṽ in E, ṽj → ṽ in L2
loc and

ṽj(x) → ṽ(x) a.e. in RN . Since limj→∞
∫
B(0,r)

|ṽj |2 ≥ η, ṽ 6= 0. By (6.18)
∣∣∣∣f(x, ũj)ϕ

|ṽj |
|ũj |

∣∣∣∣ ≤ C|ϕ||ṽj |,

it follows from (N1) and the dominated convergence theorem that
∫

RN

f(x, ũj)ϕ
|ṽj |
|ũj |

→ 0,

hence

(ṽ+ − ṽ−, ϕ) − (V∞ṽ, ϕ)L2 = 0.

Thus ṽ is an eigenfunction of the operator Ã := −∆+ (V −V∞) contradicting with

the fact that Ã has only continuous spectrum.

Next we consider the superlinear case and suppose (N3) − (N4) hold. Set for

r ≥ 0

h(r) := inf
{
G̃(x, u) : x ∈ R

N and u ∈ R with |u| ≥ r
}

By (N4), h(r) > 0 for all r > 0, and h(r) → ∞ as r → ∞. For 0 ≤ a < b let

Ωj(a, b) =
{
x ∈ R

N : a ≤ |uj(x)| < b
}
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and

cba := inf

{
G̃(x, u)

u2
: x ∈ R

N and u ∈ R with a ≤ |u| ≤ b

}
.

Since G(x, u) depends periodically on x and G̃(x, u) > 0 if u 6= 0, one has cba > 0

and

G̃(x, uj(x)) ≥ cba|uj(x)|2 for all x ∈ Ωj(a, b).

It follows from (6.16) that

C0 ≥
∫

Ωj(0,a)

G̃(x, uj) +

∫

Ωj (a,b)

G̃(x, uj) +

∫

Ωj(b,∞)

G̃(x, uj)

≥
∫

Ωj(0,a)

G̃(x, uj) + cba

∫

Ωj (a,b)

|uj |2 + h(b)|Ωj(b,∞)|.
(6.19)

Invoking (N4), set τ := 2σ/(σ − 1) and σ′ = τ/2. Since σ > max{1, N/2} one sees

τ ∈ (2, 2∗). Fix arbitrarily τ̂ ∈ (τ, 2∗). Using (6.19),

|Ωj(b,∞)| ≤ C0

h(b)
→ 0

as b→ ∞ uniformly in j, which implies by Hölder inequality that∫

Ωj (b,∞)

|vj |τ ≤ γττ̂ |Ωj(b,∞)|1−τ/τ̂ → 0 (6.20)

as b→ ∞ uniformly in j. Using (6.19) again, for any fixed 0 < a < b,
∫

Ωj(a,b)

|vj |2 =
1

‖uj‖2

∫

Ωj(a,b)

|uj |2 ≤ C0

cba‖uj‖2
→ 0 (6.21)

as j → ∞.

Let 0 < ε < 1/3. By (N0) there is aε > 0 such that |g(x, u)| < ε
γ2
|u| for all

|u| ≤ aε, consequently,
∫

Ωj(0,aε)

g(x, uj)

|uj |
|vj | |v+

j − v−j |

≤
∫

Ωj(0,aε)

ε

γ2
|v+
j − v−j | |vj | ≤

ε

γ2
|vj |22 ≤ ε

(6.22)

for all j. By (N4) and (6.20) we can take bε ≥ r0 large so that
∫

Ωj(bε,∞)

g(x, uj)

|uj |
(v+
j − v−j )|vj |

≤
(∫

Ωj(bε,∞)

|g(x, uj)|σ
|uj |σ

)1/σ (∫

Ωj (bε,∞)

(
|v+
j − v−j | |vj |

)σ′

)1/σ′

≤
(∫

RN

c0G̃(x, uj)

)1/σ (∫

RN

|v+
j − v−j |τ

)1/τ
(∫

Ωj (bε,∞)

|vj |τ
)1/τ

<ε

(6.23)
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for all j. Note that there is γ = γ(ε) > 0 independent of j such that |g(x, uj)| ≤ γ|uj |
for x ∈ Ωj(aε, bε). By (6.21) there is j0 such that

∫

Ωj (aε,bε)

g(x, uj)

|uj |
|vj | |v+

j − v−j |

≤ γ

∫

Ωj(aε,bε)

|v+
j − v−j | |vj |

≤ γ|vj |2
(∫

Ωj (aε,bε)

|vj |2
)1/2

< ε

(6.24)

for all j ≥ j0. Now the combination of (6.22)-(6.24) implies that for j ≥ j0
∫

RN

g(x, uj) (u+
j − u−j )

‖uj‖2
< 3ε < 1

which contradicts (6.17). �

In the following lemma we discuss further the (C)c-sequence (uj) ⊂ E. By

Lemma 6.6 it is bounded, hence, without loss of generality, we may assume that

uj ⇀ u. Plainly u is a critical point of Φ. Set u1
j = uj − u.

Lemma 6.7. Under the assumptions of Lemma 6.2, one has, as j → ∞,

1) Φ(u1
j ) → c− Φ(u);

2) Φ′(u1
j ) → 0.

Proof. If g ∈ C1 with |gu(x, u)| ≤ c1(1 + |u|p−2) for all (x, u) ∈ RN × R, some

c1 > 0 and p ∈ (2, 2∗), then this lemma follows easily from a standard argument,

see e.g. [Coti-Zelati and Rabinowitz (1992)]. However, in our case such a regularity

condition is not available and we hence need to provide another argument. The

verification of 1) is similar to and simpler than that of 2), so we only check the

latter.

Observe that, for any ϕ ∈ E,

Φ′(u1
j )ϕ = Φ′(uj)ϕ+

∫

RN

(
g(x, uj) − g(x, u1

j ) − g(x, u)
)
ϕ.

Since Φ′(uj) → 0, it suffices to show that

sup
‖ϕ‖≤1

∣∣∣∣
∫

RN

(
g(x, uj) − g(x, u1

j ) − g(x, u)
)
ϕ

∣∣∣∣ → 0. (6.25)

We argue as in the proof of Lemma 5.8. By (6.7) we choose p ≥ 2 such that

|g(x, u)| ≤ |u| + C1|u|p−1 for all (x, u), and let q stand for either 2 or p. Set

Ba := {x ∈ RN : |x| ≤ a} for a > 0. We have similarly to (5.29) that there is a

subsequence (ujn) such that, for any ε > 0 there exists rε > 0 satisfying

lim sup
n→∞

∫

Bn\Br

|ujn |q ≤ ε (6.26)
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for all r ≥ rε. Let η : [0,∞) → [0, 1] be a smooth function satisfying η(t) = 1 if

t ≤ 1, η(t) = 0 if t ≥ 2. Define ũn(x) = η(2|x|/n)u(x) and set hn := u− ũn. Then

hn ∈ H2 and

‖hn‖ → 0 and |hn|q → 0 as n→ ∞. (6.27)

Observe that for any ϕ ∈ E
∫

RN

(
g(x, ujn) − g(x, u1

jn) − g(x, u)
)
ϕ

=

∫

RN

(g(x, ujn) − g(x, ujn − ũn) − g(x, ũn))ϕ

+

∫

RN

(
g(x, u1

jn + hn) − g(x, u1
jn)
)
ϕ

+

∫

RN

(g(x, ũn) − g(x, u))ϕ

and, by (6.27),

lim
n→∞

∣∣∣∣
∫

RN

(g(x, ũn) − g(x, u))ϕ

∣∣∣∣ = 0

uniformly in ‖ϕ‖ ≤ 1. In order to check (6.25) it remains to show that

lim
n→∞

∣∣∣∣
∫

RN

(g(x, ujn) − g(x, ujn − ũn) − g(x, ũn))ϕ

∣∣∣∣ = 0 (6.28)

and

lim
n→∞

∣∣∣∣
∫

RN

(
g(x, u1

jn + hn) − g(x, u1
jn)
)
ϕ

∣∣∣∣ = 0 (6.29)

uniformly in ‖ϕ‖ ≤ 1. This can be done along the same lines of (5.32) and (5.33).

Here, for the reader’s convenience we repeat the arguments for (6.29). Define

f(x, 0) = 0 and

f(x, u) =
g(x, u)

|u| if u 6= 0.

f is continuous and 1-periodic in xj . This implies that f is uniformly continuous

in RN × Ia for any a > 0 where Ia := {u ∈ R : |u| ≤ a}. Moreover, |f(x, u)| ≤
c1(1 + |u|p−2) for all (x, u). Set

Can := {x ∈ R
N : |u1

jn(x)| ≤ a} and Da
n := R

N \ Can.

Since (u1
j ) is bounded, |u1

j |22 ≤ C, the Lebesgue measure

|Da
n| ≤

1

ap

∫

Da
n

|u1
jn |p ≤

C

ap
→ 0 as a→ ∞.
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By Hölder inequality∣∣∣∣∣

∫

Da
n

(
g(x, u1

jn + hn) − g(x, u1
jn)
)
ϕ

∣∣∣∣∣

≤ c1

∫

Da
n

(
|u1
jn | + |u1

jn |p−1 + |hn| + |hn|p−1
)
|ϕ|

≤ c1

(
|Da

n|(2
∗−2)/2∗ |u1

jn |2∗ |ϕ|2∗ + |Da
n|(2

∗−p)/2∗ |u1
jn |

p−1
2∗ |ϕ|2∗

)

+ c1

(
|Da

n|(2
∗−2)/2∗ |hn|2∗ |ϕ|2∗ + |Da

n|(2
∗−p)/2∗ |hn|p−1

2∗ |ϕ|2∗

)

≤ c2

(
|Da

n|(2
∗−2)/2∗

+ |Da
n|(2

∗−p)/2∗

)
‖ϕ‖ ,

it follows that, for any ε > 0, there is â > 0 such that∣∣∣∣∣

∫

Da
n

(
g(x, u1

jn + hn) − g(x, u1
jn)
)
ϕ

∣∣∣∣∣ ≤ ε (6.30)

uniformly in ‖ϕ‖ ≤ 1 and n ∈ N. By the uniformly continuity of f on R
N × Iâ,

there is δ > 0 satisfying

|f(x, u+ h) − f(x, u)| < ε for all (x, u) ∈ RN × Iâ and |h| ≤ δ,

Set

V δn := {x ∈ R
N : |hn(x)| ≤ δ} and W δ

n := R
N \ V δn .

Clearly, the Lebesgue measure

|W δ
n | ≤

1

δ2

∫

W δ
n

|hn|2 ≤ 1

δ2
|hn|22 → 0 as n→ ∞.

Since |C ân ∩W δ
n | ≤ |W δ

n | → 0, as before, it follows from the Hölder inequality that

there is n0 such that∣∣∣∣∣

∫

Câ
n∩W δ

n

(
g(x, u1

jn + hn) − g(x, u1
jn)
)
ϕ

∣∣∣∣∣ ≤ ε for all n ≥ n0

uniformly in ‖ϕ‖ ≤ 1 (see the proof of (6.30)). Moreover,

|f(x, u1
jn + hn) − f(x, u1

jn)| < ε for all x ∈ C ân ∩ V δn .
Note that(

g(x, u1
jn + hn) − g(x, u1

jn)
)
ϕ = f(x, u1

jn + hn)
(
|u1
jn + hn| − |u1

jn |
)
ϕ

+
(
f(x, u1

jn + hn) − f(x, u1
jn)
)
|u1
jn |ϕ

and, by (6.27), |hn|2 < ε, |hn|p < ε for all n ≥ n1, some n1 ≥ n0. Thus, for all

‖ϕ‖ ≤ 1 and n ≥ n1,∣∣∣∣∣

∫

Câ
n∩V δ

n

(
g(x, u1

jn + hn) − g(x, u1
jn)
)
ϕ

∣∣∣∣∣

≤
∫

Câ
n∩V δ

n

c1
(
1 + |u1

jn + hn|p−2
)
|hn| |ϕ| + ε

∫

Câ
n∩V δ

n

|u1
jn | |ϕ|

≤ c2|hn|2|ϕ|2 + c2|u1
jn + hn|p−2

p |hn|p|ϕ|p + ε|u1
jn |2|ϕ|2

≤ c3ε.
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Since C ân =
(
C ân ∩ V δn

)
∪
(
C ân ∩W δ

n

)
, the above estimates imply that

∣∣∣∣∣

∫

Câ
n

(
g(x, u1

jn + hn) − g(x, u1
jn)
)
ϕ

∣∣∣∣∣ ≤ (c3 + 1)ε for all n ≥ n1

uniformly in ‖ϕ‖ ≤ 1, which, together with (6.30), implies that

sup
‖ϕ‖≤1

∣∣∣∣
∫

RN

(
g(x, u1

jn + hn) − g(x, u1
jn)
)
ϕ

∣∣∣∣ ≤ c4ε for all n ≥ n1,

and the proof of (6.29) is complete. �

Let K := {u ∈ E : Φ′(u) = 0}, the critical set of Φ.

Lemma 6.8. Under the assumptions of Lemma 6.2, there hold

a) ν := inf{‖u‖ : u ∈ K \ {0}} > 0;

b) θ := inf{Φ(u) : u ∈ K \ {0}} > 0 provided, in the asymptotically linear case,

for some δ > 0, G̃(x, u) > 0 whenever 0 < |u| ≤ δ.

Proof. a) Assume there is a sequence (uj) ⊂ K \ {0} with uj → 0. Then

0 = ‖uj‖2 −
∫

RN

g(x, uj)(u
+
j − u−j ).

Using (6.7), for p > 2 and ε > 0 small,

‖uj‖2 ≤ ε|uj |22 + Cε|uj |pp
which implies ‖uj‖2 ≤ c1Cε‖uj‖p or equivalently ‖uj‖2−p ≤ c1Cε, a contradiction.

b) Assume there is a sequence (uj) ⊂ K \ {0} such that Φ(uj) → 0. Then

‖uj‖2 =

∫

RN

g(x, uj)(u
+
j − u−j ). (6.31)

and

o(1) = Φ(uj) = Φ(uj) −
1

2
Φ′(uj)uj =

∫

RN

G̃(x, uj) (6.32)

Clearly (uj) is a (C)c=0 sequence, hence is bounded by Lemma 6.6. By a), ‖uj‖ ≥ ν.

First consider the asymptotically linear case. It follows from (6.31) and (6.7)

that (uj) is nonvanishing. Since Φ is ZN -invariant, up to a translation, we can

assume uj ⇀ u ∈ K\{0}. Since, by assumptions on g, G(x, u) ≥ 0 and G̃(x, u) ≥ 0,

one has g(x, u) = 0. This implies that u is an eigenfunction of the operator A

contrary to that σ(A) is absolutely continuous.

Next consider the superlinear case. Using (6.32) and the notations introduced

in the proof of Lemma 6.6, we see that, for any 0 < a < b and s ∈ (2, 2∗),∫
Ωj (a,b) |uj |2 → 0 and

∫
Ωj(b,∞) |uj |s → 0 as j → ∞. Therefore, it follows from

(6.7) and (6.31) that for any ε > 0

lim sup
j→∞

‖uj‖2 ≤ ε,

contradicting to a). �
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Let [r] denote the integer part of r ∈ R. As a consequence of Lemmas 6.6-6.8,

we have the following result (see [Coti-Zelati and Rabinowitz (1992); Kryszewski

and Szulkin (1998)]).

Lemma 6.9. Under the assumptions of Lemma 6.2, let (uj) be a (C)c-sequence.

Then either

(i) uj → 0 (and hence c = 0), or

(ii) c ≥ θ and there exist a positive integer ` ≤
[
c
θ

]
, points u1, · · · , u` ∈ K \ {0}, a

subsequence denoted again by (uj), and sequences (aij) ⊂ ZN such that
∥∥∥∥∥uj −

∑̀

i=1

(aij ∗ ui)
∥∥∥∥∥ → 0 as j → ∞

|aij − akj | → ∞ for i 6= k as j → ∞
and

∑̀

i=1

Φ(ui) = c.

6.5 Proofs of the existence and multiplicity

We are now in a position to establish the main results. In order to apply the abstract

Theorems 4.5 and 4.7 to Φ, we choose in the following X = E− and Y = E+. Since

X is separable and reflexive, we choose S to be a countable dense subset of X∗.

Proof. [Proof of Theorems 6.1 and 6.2] (Existence). With X = E− and Y = E+

the condition (Φ0) (see Chapter 4) holds by Lemma 6.2 together with an application

of Theorem 4.1. The condition (Φ+) follows obviously from the form of Φ. The

combination of Lemmas 6.3 and 6.5 shows that the linking condition of Theorem 4.5

is satisfied. Therefore, Φ has a (C)c-sequence (un)n with κ ≤ c ≤ sup Φ(Q) < ∞
where Q is defined by Lemma 6.5. By virtue of Lemma 6.6 the sequence (un)n is

bounded. Consequently, Φ′(un) → 0. A standard argument shows that (zn) is a

non-vanishing sequence [Lions (1984)], that is, for some r, η > 0, there is (an) ⊂ ZN

such that lim supn→∞
∫
D(an,r)

|zn|2 ≥ η where D(an, r) denotes the ball in RN

with center an and radius r. Set wn := an ∗ un. It follows from the invariance

of the norm and of the functional under the ∗-action that ‖wn‖ = ‖un‖ ≤ C and

Φ(wn) → c ≥ κ,Φ′(wn) → 0. Therefore wn ⇀ w in E with w 6= 0 and Φ′(w) = 0,

that is, w is a nontrivial solution of (NS), and the existence part of Theorems 6.1

and 6.2 is proved.

(Multiplicity). We now establish the multiplicity. The proof will be completed

in an indirect way. Namely, assuming

K/ZN is a finite set, (†)
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we prove that Φ possesses an unbounded sequence of critical values, which is a

contradiction.

Assume that g(x,−u) = −g(x, u) for all (x, u) ∈ RN × R. Then Φ(0) = 0 and

Φ is even, that is, (Φ1) is satisfied (see Chapter 4). (Φ2) is clear by Lemma 6.3.

Recall that dim(Y0) = ∞. Let (fk) be a base of Y0 and set Yn := span{f1, ..., fn}
and En := E− ⊕ Yn. The condition (Φ4) follows from Lemma 6.4.

Given ` ∈ N and a finite set B ⊂ E, let

[B, `] :=

{
j∑

i=1

(ai ∗ ui) : 1 ≤ j ≤ `, ai ∈ Z
N , ui ∈ B

}
.

Following an argument of [Coti-Zelati and Rabinowitz (1992)] one sees that

inf{‖u− u′‖ : u, u′ ∈ [B, `], u 6= u′} > 0. (6.33)

Let F be a set consisting of arbitrarily chosen representatives of the orbits of K\{0}.
Then (†) implies that F is a finite set and, since Φ′ is odd, we may assume F is

symmetric. Observe that the points ūi’s in Lemma 6.9 can be chosen to lie in F . For

any compact interval I ⊂ (0,∞) with b := max I , set ` = [b/θ] and take A = [F , `].
Then P+A = [P+F , `]. Clearly, P+F is a finite set and

‖u‖ ≤ ` max{‖ū‖ : ū ∈ F}
for all u ∈ A , i.e., A is bounded. In addition, by Lemma 6.9, A is a (C)I -attractor,

and using (6.33),

inf{‖u+
1 − u+

2 ‖ : u1, u2 ∈ A , u+
1 6= u+

2 }
= inf{‖u− u′‖ : u, u′ ∈ P+A , u 6= u′} > 0.

This argument shows that Φ possesses the following property: If (†) is true, then

for any compact interval I ⊂ (0, ∞), there is a (C)I -attractor A with P+(A )

bounded and inf{‖u+
1 − u+

2 ‖ : u1, u2 ∈ A , u+
1 6= u+

2 } > 0. Therefore, the condition

(ΦI) is verified. Now Theorem 4.7 applies. �

6.6 Semiclassical states of a system of Schödinger equations

The results of this section are chosen from [Ding and Lin (2006)]. We investigate

the existence and multiplicity of semiclassical solutions of the following Hamiltonian

system of perturbed Schrödinger equations




− ε2∆ϕ+ α(x)ϕ = β(x)ψ + Fψ(x, ϕ, ψ)

− ε2∆ψ + α(x)ψ = β(x)ϕ + Fϕ(x, ϕ, ψ)

w := (ϕ, ψ) ∈ H1(RN ,R2)

where α and β are continuous real functions on RN , and F : RN × R2 → R is of

class C1. Setting

J =

(
0 1

1 0

)
and F̃ (x,w) =

1

2
β(x)|w|2 + F (x,w),
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the system presents the form

−ε2∆w + α(x)w = J F̃w(x,w), w ∈ H1(RN ,R2)

which can be regarded as the stationary system of the nonlinear vector Schrödinger

equation

i~
∂φ

∂t
= − ~2

2m
∆φ+ γ(x)φ− J f(x, |φ|)φ

with φ(x, t) = w(x)e−
iEt

~ , α(x) = γ(x) −E, ε2 = ~
2

2m and F̃w(x,w) = f(x, |w|)w.

We assume that α(x) and β(x) satisfy the following condition

(A0) |β(x)| ≤ α(x) for all x ∈ RN , α(x0) = β(x0) for some x0, and there is b > 0

such that the set {x ∈ RN : α(x) − |β(x)| < b} has finite Lebesgue measure.

Concerning the nonlinearities we will consider two cases: subcritical and critical

superlinearities.

First we consider the subcritical problem. For notational unification we write

G(x,w) instead of F (x,w), and read the system as:





− ε2∆ϕ+ α(x)ϕ − β(x)ψ = Gψ(x,w)

− ε2∆ψ + α(x)ψ − β(x)ϕ = Gϕ(x,w)

w = (ϕ, ψ) ∈ H1(RN ,R2).

(Pε)

We assume

(G0) g1) G ∈ C1(RN×R2) and Gw(x,w) = o(|w|) uniformly in x as w → 0;

g2) there are c0 > 0 and ν > 2N/(N + 2) such that |Gw(x,w)|ν ≤
c0 (1 +Gw(x,w)w)) for all (x,w);

g3) there are a0 > 0, p > 2 and µ > 2 such that G(x,w) ≥ a0|w|p and

µG(x,w) ≤ Gw(x,w)w for all (x,w).

Remark that, setting q := ν
ν−1 , one has by (g2) that q < 2∗ and |Gw(x,w)| ≤

c1(1+ |w|q−1), hence G(x,w) is subcritical. For a solution wε = (ϕε, ψε) of (Pε) we

denote its energy by

E(wε) :=

∫

RN

(
ε2∇ϕε∇ψε + α(x)ϕεψε

)
−
∫

RN

(1

2
β(x)|wε |2 +G(x,wε)

)
.

Theorem 6.3 ([Ding and Lin (2006)]). Let (A0) and (G0) be satisfied.

(1) For any σ > 0 there is Eσ > 0 such that if ε ≤ Eσ, (Pε) has at least one

nontrivial solution wε satisfying (i)
∫

RN G(x,wε) ≤ 2σ
µ−2 ε

N and (ii) 0 < E(wε) ≤
σ εN .

(2) Assuming additionally that G(x,w) is even in w, for any m ∈ N and σ > 0

there is Emσ > 0 such that if ε ≤ Emσ, (Pε) has at least m pairs solutions wε which

satisfy the estimates (i) and (ii).
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Next we consider the critical problem:



− ε2∆ϕ+ α(x)ϕ − β(x)ψ = Gψ(x,w) +K(x)|w|2∗−2ψ

− ε2∆ψ + α(x)ψ − β(x)ϕ = Gϕ(x,w) +K(x)|w|2∗−2ϕ

w = (ϕ, ψ) ∈ H1(RN ,R2)

(Qε)

(where N ≥ 3). Assume K(x) is bounded, that is,

(K0) K ∈ C(RN ), 0 < inf K ≤ supK <∞.

Denote the energy of a solution wε = (ϕε, ψε) of (Q)ε by

E(wε) :=

∫

RN

(
ε2∇ϕε∇ψε + α(x)ϕεψε

)

−
∫

RN

(1

2
β(x)|wε|2 +G(x,wε) +

1

2∗
K(x)|wε|2

∗

)
.

We have

Theorem 6.4 ([Ding and Lin (2006)]). Let (A0), (K0) and (G0) be satisfied.

Then both the conclusions (1) and (2) of Theorem 6.3 are true with (Pε) replaced

by (Qε) and (i) by

µ− 2

2

∫

RN

G(x,wε) +
1

N

∫

RN

K(x)|wε|2
∗ ≤ σ εN .

6.6.1 An equivalent variational problem

Let

u =
ϕ+ ψ

2
, v =

ϕ− ψ

2
, z = (u, v),

V (x) = α(x) − β(x), W (x) = α(x) + β(x)

and

H(x, z) = H(x, u, v) =
1

2
G

(
x,
u+ v

2
,
u− v

2

)
.

Then (Pε) reads as




− ε2∆u+ V (x)u = Hu(x, z)

− ε2∆v +W (x)v = −Hv(x, z)

z = (u, v) ∈ H1(RN ,R2)

(P̃ε)

and (Qε) as




− ε2∆u+ V (x)u = Hu(x, z) +K(x)|z|2∗−2u

− ε2∆v +W (x)v = −
(
Hv(x, z) +K(x)|z|2∗−2v

)

z = (u, v) ∈ H1(RN ,R2).

(Q̃ε)

The assumption (A0) implies that V and W satisfy
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(V0) V (x0) = minV = 0; and the set {x ∈ R
N : V (x) < b} has finite Lebesgue

measure.

(W0) W ≥ 0; and the set {x ∈ RN : W (x) < b} has finite Lebesgue measure.

And (G0) implies that H(x, z) satisfies

(H0) h1) Hz(x, z) = o(|z|) uniformly in x as z → 0;

h2) there are c0 > 0 and ν > 2N/(N + 2) such that |Hz(x, z)|ν ≤
c0 (1 +Hz(x, z)z)) for all (x, z);

g3) there are a0 > 0, p > 2 and µ > 2 such that H(x, z) ≥ a0|z|p and

µH(x, z) ≤ Hz(x, z)z for all (x, z).

Setting λ = ε−2, (P̃ε) is equivalent to




− ∆u+ λV (x)u = λHu(x, z)

− ∆v + λW (x)v = −λHv(x, z)

z = (u, v) ∈ H1(RN ,R2)

(Pλ)

and (Q̃ε) equivalent to




− ∆u+ λV (x)u = λ(Hu(x, z) +K(x)|z|2∗−2u)

− ∆v + λW (x)v = −λ(Hv(x, z)v +K(x)|z|2∗−2v)

z = (u, v) ∈ H1(RN ,R2).

(Qλ)

Letting

E(zλ) =
1

2

∫

RN

(
|∇uλ|2 + λV (x)|uλ|2

)
−
(
|∇vλ|2 + λW (x)|vλ|2

)

− λ

∫

RN

H(x, zλ)

denote the energy of the solution zλ = (uλ, vλ) of (Pλ), and similarly

E(zλ) =
1

2

∫

RN

(
|∇uλ|2 + λV (x)|uλ|2

)
−
(
|∇vλ|2 + λW (x)|vλ|2

)

− λ

∫

RN

(
H(x, zλ) +

1

2∗
K(x)|zλ|2

∗

)

for the solution zλ = (uλ, vλ) of (Qλ), we are led to prove

Theorem 6.5. Let (V0), (W0) and (H0) be satisfied.

(1) For any σ > 0 there is Λσ > 0 such that if λ ≥ Λσ, (Pλ) has at least one

nontrivial solution zλ satisfying (i)
∫

RN H(x, zλ) ≤ 2σ
µ−2 λ

− N
2 and (ii) 0 < E(zλ) ≤

σ λ1− N
2 .

(2) Assuming additionally that H(x, z) is even in z, for any m ∈ N and σ > 0

there is Λmσ > 0 such that if λ ≥ Λmσ, (Pλ) has at least m pairs solutions zλ
which satisfy the estimates (i) and (ii).
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Theorem 6.6. Let (V0), (W0), (H0) and (K0) be satisfied. Then both the conclu-

sions (1) and (2) of Theorem 6.5 hold with (Pλ) replaced (Qλ) and (i) by

µ− 2

2

∫

RN

H(x, zλ) +
1

N

∫

RN

K(x)|zλ|2
∗ ≤ σ λ−

N
2 .

In order to prove the above theorems we introduce the space

E+ :=

{
u ∈ H1(RN ) :

∫

RN

V (x)u2 <∞
}

which is a Hilbert space equipped with the inner product

(u1, u2)+ :=

∫

RN

(∇u1∇u2 + V (x)u1u2)

and the associated norm ‖u‖2
+ = (u, u)+. It follows from (V0) that E+ embeds

continuously in H1(RN ). Note that the norm ‖ · ‖+ is equivalent to the one ‖ · ‖+λ

deduced by the inner product

(u1, u2)+λ :=

∫

RN

(∇u1∇u2 + λV (x)u1u2)

for each λ > 0. It thus is clear that, for each s ∈ [2, 2∗], there is γs > 0 (independent

of λ) such that if λ ≥ 1

|u|s ≤ γs‖u‖+ ≤ γs‖u‖+λ for all u ∈ E+.

For convenience we will use certain direct sum decompositions of E+ described

below.

Let Aλ := −∆ + λV denote the selfadjoint operator in L2(RN ). By σ(Aλ),

σe(Aλ) and σd(Aλ) we denote the spectrum, the essential spectrum and the eigen-

values of Aλ below λe := inf σe(Aλ), respectively. Note that it is possible that

λe = ∞ (hence σ(Aλ) = σd(Aλ)), for example, this is the case if V (x) → ∞ as

|x| → ∞.

Lemma 6.10. Suppose (V0) holds. Then λe ≥ λb.

Proof. Set Vλ(x) = λ(V (x) − b), V ±
λ = max{±Vλ, 0} and Dλ = −∆ + λb+ V +

λ .

By (V0), the multiplicity operator V −
λ is compact relative to Dλ, hence

σe(Aλ) ⊂ σe(Dλ) ⊂ [λb,∞)

as required. �

Let kλ be the number of the eigenvalues below λb. We write ηλi and fλi (1 ≤
i ≤ kλ) for the eigenvalues and eigenfunctions. Setting

Ldλ := span{fλ1, · · · , fλkλ
},

we have the orthogonal decomposition

L2(RN ) = Ldλ ⊕ Leλ, u = ud + ue.
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Correspondingly, E+ has the decomposition:

E+ = Ed+λ ⊕Ee+λ with Ed+λ = Ldλ and Ee+λ = E+ ∩ Leλ,
orthogonal with respect to both the inner products (·, ·)L2 and (·, ·)+λ.

Letting S denote the best Sobolev constant: S|u|22∗ ≤
∫

RN |∇u|2, it is clear that

S|u|22∗ ≤ ‖u‖2
+λ for all u ∈ E.

It follows from Lemma 6.10 that

|u|22 ≤ 1

bλ
‖u‖2

+λ for all u ∈ Ee+λ,

which, together with interpolation, shows that for each s ∈ [2, 2∗],

|u|ss ≤ asλ
−(2∗−s)/(2∗−2)‖u‖s+λ for all u ∈ Ee+λ (6.34)

where as is a constant independent of λ.

Similarly, with replacing V (x) by W (x), we define the Hilbert space E−, the

inner products (·, ·)− and (·, ·)−λ, and the decomposition E− = Ed−λ ⊕Ee−λ.
Let

E := E+ ×E−

and write for z = (u, v) ∈ E, z+ = (u, 0) or simply denote (u, 0) by u, and similarly,

z− = (0, v) or simply (0, v) by v. We denote the inner product on E by

(z1, z2) = (u1, u2)+ + (v1, v2)−

and the induced norm by

‖z‖2 = ‖u‖2
+ + ‖v‖2

−.

On E there are the equivalent norms

‖z‖2
λ = ‖u‖2

+λ + ‖v‖2
−λ.

E has the orthogonal decomposition

E = Edλ ⊕Eeλ where Edλ = Ed+λ ×Ed−λ and Eeλ = Ee+λ ×Ee−λ.

Accordingly, we write z = zd + ze for z = (u, v) ∈ E with zd = (ud, vd) and

ze = (ue, ve). Note that dimEdλ <∞. It follows from (6.34) that for each s ∈ [2, 2∗],

|z|22 ≤ 1

bλ
‖z‖2

λ and |z|ss ≤ asλ
−(2∗−s)/(2∗−2)‖z‖sλ (6.35)

for all z ∈ Eeλ where as is a constant independent of λ.

Define the functional for z = (u, v) ∈ E

Φλ(z) =
1

2

∫

RN

((
|∇u|2 + λV (x)u2

)
−
(
|∇v|2 + λW (x)v2

))

− λ

∫

RN

H(x, z)

=
1

2
‖u‖2

+λ −
1

2
‖v‖2

−λ − λ

∫

RN

H(x, z).
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Under the assumptions (A0) and (H0), Φλ ∈ C1(E,R) and its critical points are

solutions of (Pλ).
Similarly, consider the functional

Ψλ(z) =
1

2

∫

RN

((
|∇u|2 + λV (x)u2

)
−
(
|∇v|2 + λW (x)v2

))

− λ

∫

RN

(
H(x, z) +

K(x)

2∗
|z|2∗

)

=
1

2
‖u‖2

+λ −
1

2
‖v‖2

−λ − λ

∫

RN

(
H(x, z) +

K(x)

2∗
|z|2∗

)
.

Then Ψλ ∈ C1(E,R) and critical points of Ψλ correspond to solutions of (Qλ).

First of all we have plainly the following

Lemma 6.11. Let fλ stand for either Φλ or Ψλ.

(1◦) fλ is weakly sequentially upper semicontinuous, and f ′
λ is weakly sequentially

continuous. Moreover, there is ζ > 0 such that for any c > 0, ‖z‖λ < ζ‖u‖λ for all

z ∈ (fλ)c.

(2◦) For each λ ≥ 1, there exists ρλ > 0 such that κλ := inf Ψλ(Sρλ
E+) > 0

where Sρλ
= {z ∈ E+ : ‖z‖λ = ρλ}.

(3◦) For any e ∈ E+ there is R > ρλ such that (Ψλ)|∂Q ≤ 0 where Q := {z =

(se1, v) : v ∈ E−, s ≥ 0, ‖z‖λ ≤ R}.
(4◦) For any finite dimensional subspace F ⊂ E+, there is RF > ρλ such that

Ψλ(u) < inf Ψλ(Bρλ
∩ E+) for all u ∈ F ×E− \BRF .

(5◦) Any (C)c-sequence for fλ is bounded and c ≥ 0.

6.6.2 Proofs of Theorem 6.5

In this sub-section we treat the subcritical problem (Pλ), thus consider the func-

tional Φλ.

Observe that, by (H0), c1|z|p ≤ H(x, z) ≤ c2|z|q for all |z| large where q =

ν/(ν − 1). Hence ν ≤ p/(p− 1) < 2 since p > 2. Set τ = ν/(2 − ν). Then for any

δ > 0 there are ρδ > 0 and cδ > 0 such that

|Hz(x, z)|
|z| ≤ δ if |z| ≤ ρδ,

|Hz(x, z)|τ
|z|τ ≤ cδHz(x, z)z if |z| ≥ ρδ. (6.36)

Indeed, for |z| ≥ ρδ there holds |Hz(x, z)|ν ≤ aδHz(x, z)z and

|Hz(x, z)|τ = |Hz(x, z)|τ−ν |Hz(x, z)|ν ≤ a′δ |z|(τ−ν)/(ν−1)Hz(x, z)z

= a′δ|z|τHz(x, z)z.

In addition, setting

H̃(x, z) :=
1

2
Hz(x, z)z −H(x, z).

we have

H̃(x, z) ≥ µ− 2

2µ
Hz(x, z)z ≥ µ− 2

2
H(x, z) ≥ a0(µ− 2)

2
|z|p. (6.37)
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In the following, let (zj) denote a (C)c-sequence. By the above Lemma

6.11−(5◦), it is bounded, hence, without loss of generality, we may assume zj ⇀ z

in E, zj → z in Lsloc for 1 ≤ s < 2∗, and zj(x) → z(x) a.e. for x ∈ RN . Plainly, z

is a critical point of Φλ.

Similarly to (6.26), along a subsequence, for any ε > 0, there exists rε > 0 with

lim sup
n→∞

∫

Bjn\Br

|zjn |s ≤ ε (6.38)

for all r ≥ rε and s ∈ [2, 2∗). Let η : [0,∞) → [0, 1] be a smooth function satisfying

η(t) = 1 if t ≤ 1, η(t) = 0 if t ≥ 2. Define z̃n(x) = η(2|x|/n)z(x). Clearly,

‖z − z̃n‖ → 0 as n→ ∞. (6.39)

Additionally, we have similarly to (6.28)

lim
n→∞

∣∣∣∣
∫

RN

(Hz(x, zjn) −Hz(x, zjn − z̃n) −Hz(x, z̃n))ϕ

∣∣∣∣ = 0

uniformly in ϕ ∈ E with ‖ϕ‖ ≤ 1. Then repeating the relative argument of the

proof of Lemma 6.7 (see also Lemma 5.17) yields the following

Lemma 6.12. One has:

1) Φλ(zjn − z̃n) → c− Φλ(z);

2) Φ′
λ(zjn − z̃n) → 0.

We now utilize the decomposition E = Edλ ⊕ Eeλ. Recall that dim(Edλ) < ∞.

Write

yn := zjn − z̃n = ydn + yen.

Then ydn = (zdjn − zd) + (zd − z̃dn) → 0 and, by Lemma 6.12, Φλ(yn) →
c− Φλ(z), Φ′

λ(yn) → 0. It follows from

Φλ(yn) −
1

2
Φ′
λ(yn)yn = λ

∫

RN

H̃(x, yn)

that

λ

∫

RN

H̃(x, yn) → c− Φλ(z).

Noting that yn = (ujn − ũn, vjn − ṽn) we set ȳn = (ujn − ũn,−vjn + ṽn). We have

|yn| = |ȳn| and

o(1) = Φ′
λ(yn)ȳn = ‖yn‖2

λ − λ

∫

RN

Hz(x, yn)ȳn

= o(1) + ‖yen‖2
λ − λ

∫

RN

Hz(x, yn)ȳn.
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By (6.35), (6.36) and (6.37), we have for any δ > 0,

‖yen‖2
λ + o(1)

= λ

∫

RN

Hz(x, yn)ȳn

≤ λ

∫

RN

|Hz(x, yn)|
|yn|

|ȳn|2

≤ o(1) + λδ|yn|22 + λc′δ

(∫

|yn|≥ρδ

( |Hz(x, yn)|
|yn|

)τ)1/τ

|yn|2q

≤ o(1) + λδ|yen|22 + λc′′δ

(
c− Φλ(z) + o(1)

λ

)1/τ

|yen|2q

≤ o(1) +
δ

b
‖yen‖2

λ + Cδλ
1− 1

τ − 2(2∗−q)
q(2∗−2) (c− Φλ(z))

1/τ ‖yen‖2
λ

= o(1) +
δ

b
‖yen‖2

λ + Cδλ
(N−2)(q−2)

2q (c− Φλ(z))
1/τ ‖yen‖2

λ.

(6.40)

Remark that zjn − z = yn + (z̃n − z), hence by (6.39)

zjn − z → 0 if and only if yen → 0.

Lemma 6.13. There is a constant α0 > 0 independent of λ such that, for any

(C)c-sequence (zj) for Φλ with zj ⇀ z, either zj → z along a subsequence or

c− Φλ(z) ≥ α0λ
1−N

2 .

Proof. Assume zj has no convergence. Then using the above notations

lim infn→∞ ‖yen‖λ > 0 and c − Φλ(z) > 0. Choosing δ = b/4, it follows from

(6.40) that

3

4
‖yen‖2

λ ≤ o(1) + c1λ
(N−2)(q−2)

2q (c− Φλ(z))
1/τ ‖yen‖2

λ.

This implies that

1 ≤ c2λ
N
2 −1 (c− Φλ(z))

which proves the lemma. �

In particular, we obtain the following

Lemma 6.14. Φλ satisfies the (C)c condition for all c < α0λ
1− N

2 .

Observe that (H0) implies

Φλ(z) ≤
1

2
‖u‖2

+λ −
1

2
‖v‖2

−λ − a0λ

∫

RN

|z|p

≤ 1

2
‖u‖2

+λ −
1

2
‖v‖2

−λ − a0λ

∫

RN

|u|p.
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We define the functional Jλ ∈ C1(E+,R) by setting

Jλ(u) =
1

2

∫

RN

(
|∇u|2 + λV (x)u2

)
− a0λ

∫

RN

|u|p.

Then

Φλ(z) ≤ Jλ(u) −
1

2
‖v‖2

−λ for all z ∈ E. (6.41)

Recall that the assumption (V0) implies that there is x0 ∈ RN such that V (x0) =

minx∈RN V (x) = 0. Without loss of generality we assume from now on that x0 = 0.

It is known that

inf

{∫

RN

|∇ϕ|2 : ϕ ∈ C∞
0 (RN ), |ϕ|p = 1

}
= 0.

For any δ > 0 one can choose ϕδ ∈ C∞
0 (RN ) with |ϕδ |p = 1 and suppϕδ ⊂ Brδ

(0)

so that |∇ϕδ |22 < δ. Set

eλ(x) := ϕδ(λ
1/2x). (6.42)

Then

supp eλ ⊂ Bλ−1/2rδ
(0).

Remark that for t ≥ 0,

Jλ(teλ) =
t2

2

∫

RN

|∇eλ|2 + λV (x)|eλ|2 − a0λt
p

∫

RN

|eλ|p

= λ1−N
2

(
t2

2

∫

RN

|∇ϕδ |2 + V
(
λ−1/2x

)
|ϕδ |2 − a0t

p

∫

RN

|ϕδ |p
)

= λ1−N
2 Iλ(tϕδ)

where Iλ ∈ C1(E+,R) defined by

Iλ(u) :=
1

2

∫

RN

|∇u|2 + V
(
λ−1/2x

)
|u|2 − a0

∫

RN

|u|p.

Plainly,

max
t≥0

Iλ(tϕδ) =
p− 2

2p(pa0)2/(p−2)

(∫

RN

|∇ϕδ |2 + V (λ−1/2x)|ϕδ |2
)p/(p−2)

.

Since V (0) = 0 and note that suppϕδ ⊂ Brδ
(0), there is Λ̂δ > 0 such that

V (λ−1/2x) ≤ δ

|ϕδ|22
for all |x| ≤ rδ and λ ≥ Λ̂δ .

This implies that

max
t≥0

Iλ(tϕδ) ≤
p− 2

2p(pa0)2/(p−2)
(2δ)

p/(p−2)
.

Since Iλ(u) is even, we obtain that, for all λ ≥ Λ̂δ,

max
t∈R

Jλ(teλ) ≤
p− 2

2p(pa0)2/(p−2)
(2δ)

p/(p−2)
λ1−N

2 . (6.43)
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Therefore, we have

Lemma 6.15. For any σ > 0 there exists Λσ > 0, such that, for each λ ≥ Λσ,

there is eλ ∈ E+ \ {0} such that

max
z∈Fσλ

Φλ(z) ≤ σ λ1− N
2 ,

where Fσλ := Reλ ×E−.

Proof. Choose δ > 0 so small that
p− 2

2p(pa0)2/(p−2)
(2δ)

p/(p−2) ≤ σ,

and let eλ ∈ E+λ be the function defined by (6.42). Take Λσ = Λ̂δ. Then by (6.43),

for any z ∈ Fσλ,

Φλ(z) ≤ Jλ(reλ) −
1

2
‖v‖2

−λ ≤ σλ1−N
2

which ends the proof. �

In general, for any m ∈ N, one can choose m functions ϕjδ ∈ C∞
0 (RN ) such that

suppϕiδ ∩ suppϕkδ = ∅ if i 6= k, |ϕjδ |p = 1 and |∇ϕjδ |22 < δ. Let rmδ > 0 be such that

suppϕjδ ⊂ Brm
δ

(0) for j = 1, ...,m. Set

ejλ(x) = ϕjδ(λ
1/2x) for j = 1, ...,m

and

Hm
λδ = span{e1λ, ..., emλ }.

Observe that for each u =
∑m

j=1 cje
j
λ ∈ Hm

λδ ,

Jλ(u) =

m∑

j=1

Jλ(cje
j
λ)

= λ1−N
2

m∑

j=1

Iλ(|cj |ejλ).

Set

βδ := max{|ϕjδ|22 : j = 1, ...,m},
and choose Λ̂mδ so that

V (λ−1/2x) ≤ δ

βδ
for all |x| ≤ rmδ and λ ≥ Λ̂mδ.

As before, one obtains easily the following

sup
u∈Hm

λδ

Jλ(u) ≤
m(p− 2)

2p(pa0)2/(p−2)
(2δ)

p/(p−2)
λ1−N

2 (6.44)

for all λ ≥ Λ̂mδ .

Using this estimate we can prove easily the following

Lemma 6.16. For any m ∈ N and σ > 0 there exist Λmσ > 0, such that, for each

λ ≥ Λmσ, there exists an m-dimensional subspace Fλm ⊂ E+ satisfying

sup
z∈Fλm×E−

Φλ(z) ≤ σ λ1−N
2 .



June 21, 2007 11:27 World Scientific Book - 9.75in x 6.5in VariationalMethods

Standing waves of nonlinear Schrödinger equations 93

Proof. Choose δ > 0 small so that

m(p− 2)

2p(pa0)2/(p−2)
(2δ)

p/(p−2) ≤ σ,

and take Fλm = Hm
λδ . Then (6.44) yields the conclusion as required. �

Proof. [Proof of Theorem 6.5] First we prove the existence. With Y = E+ and

X = E− the conditions (Φ0) and (Φ+) hold and Φλ possesses the linking structure

of Theorem 4.5 by Lemma 6.11. This, together with Lemma 6.15, shows that for

any σ ∈ (0, α0) there is Λσ > 0 so that, if λ ≥ Λσ, Φλ has a (C)cλ
sequence with

κλ ≤ cλ ≤ σλ1− N
2 . Hence, by Lemma 6.14, there exists a critical point zλ satisfying

κλ ≤ Φλ(zλ) ≤ σλ1− N
2 . (6.45)

Since E(zλ) = Φλ(zλ), (6.45) implies the estimate (ii). Moreover, by (H0)

σλ1− N
2 ≥Φλ(zλ) = Φλ(zλ) −

1

2
Φ′
λ(zλ)zλ ≥ λ

(µ
2
− 1
)∫

RN

H(x, zλ)

and we obtain (i).

We now turn to the multiplicity. Assume H(x, z) is even in z. Then Φλ is even

hence (Φ1) holds. (Φ2) follows from Lemma 6.11. By virtue of Lemma 6.16, for

any m ∈ N and σ ∈ (0, α0) there is Λmσ such that for each λ ≥ Λmσ, we can choose

a m-dimensional subspace Fλm ⊂ E+ with b := maxΦλ(Fλm × E−) < σλ1− N
2 .

Hence, Φλ verifies (Φ3) with b < σλ1−N
2 for all λ ≥ Λmσ. It follows from Lemma

6.14 that Φλ checks the (C)c condition for all c ∈ [0, b]. Now Theorem 4.6 applies.

�

6.6.3 Proof of Theorem 6.6

We now turn to the critical case, that is, to prove Theorem 2.2 hence Theorem 1.2.

We will consider the functional Ψλ along the way as before.

In the following set

Q(x, z) = H(x, z) +
1

2∗
K(x)|z|2∗

and

Q̃(x, z) =
1

2
Qz(x, z)z −Q(x, z).

It follows from (H0) and (K0) that, for any δ > 0 there are ρδ > 0 and cδ > 0 such

that

|Qz(x, z)|
|z| ≤ δ if |z| ≤ ρδ,

|Qz(x, z)|N/2
|z|N/2 ≤ cδQ̃(x, z) if |z| ≥ ρδ. (6.46)

Lemma 6.17. There is α0 > 0 independent of λ such that any (C)c sequence with

c < α0λ
1−N

2 contains a convergent subsequence.
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Proof. Let zj = (uj , vj) be a (C)c sequence: Ψλ(zj) → c and (1+‖zj‖λ)Ψ′
λ(zj) →

0. Plainly

Ψλ(zj) −
1

2
Ψ′
λ(zj)zj = λ

∫

RN

Q̃(x, zj), (6.47)

and, by Lemma 6.11, c ≥ 0 and (zj) is bounded. We can assume without loss of

generality that zj ⇀ z with z solving (Qλ). In addition, there is a subsequence

(zjn) such that (6.38) holds. Define z̃n(x) = η(2|x|/n)z(x) where η : [0,∞) → [0, 1]

be a smooth function satisfying η(t) = 1 if t ≤ 1, η(t) = 0 if t ≥ 2. As before it is

not difficult to check that

Ψλ(zjn − z̃n) → c− Ψλ(z) and Ψ′
λ(zjn − z̃n) → 0. (6.48)

Claim: There is a constant α0 > 0 independent of λ such that either zj → z or

c− Ψλ(z) ≥ α0λ
1− N

2 .

Write yn := zjn − z̃n = ydn + yen ∈ Edλ ⊕ Eeλ. Then Ψλ(yn) → c − Ψλ(z) and

Ψ′
λ(yn) → 0 by (6.48). Similarly to (6.47), it follows from (6.48) that

λ

∫

RN

Q̃(x, yn) → c− Ψλ(z). (6.49)

Noting that yn = (ujn − ũn, vjn − ṽn) we set ȳn = (ujn − ũn,−vjn + ṽn). We have

|yn| = |ȳn| and, using one after the other the fact ydn → 0, (6.46), Hölder inequality,

(6.49) and (6.35), we get for any δ > 0,

‖yen‖2
λ + o(1) = λ

∫

RN

Qz(x, yn)ȳn ≤ λ

∫

RN

|Qz(x, yn)|
|yn|

|ȳn||yn|

≤ o(1) + λδ|yn|22

+ λc′δ

(∫

|yn|≥ρδ

( |Qz(x, yn)|
|yn|

)N/2)2/N

|yn|22∗

≤ o(1) + λδ|yen|22 + λc′′δ

(
c− Ψλ(z)

λ

)2/N

|yen|22∗

≤ o(1) +
δ

b
‖yen‖2

λ + Cδλ
1− 2

N (c− Ψλ(z))
2/N ‖yen‖2

λ.

(6.50)

Remark that zjn−z = yn+(z̃n−z), hence zjn−z → 0 if and only if yen → 0. Assume

zj has no convergent subsequence. Then lim infn→∞ ‖yen‖λ > 0 and c− Φλ(z) > 0.

Choosing δ = b/4, it follows from (6.50) that

3

4
‖yen‖2

λ ≤ o(1) + c1λ
1− 2

N (c− Ψλ(z))
2/N ‖yen‖2

λ.

This implies that

1 ≤ c2λ
N
2 −1 (c− Ψλ(z)) . �

Lemma 6.18. For any σ > 0 there exists Λσ > 0, such that, for each λ ≥ Λσ,

there is eλ ∈ E+ \ {0} such that

max
z∈Fσλ

Ψλ(z) ≤ σ λ1−N
2 ,

where Fσλ := Reλ ×E−.
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Proof. This follows from (6.43) and that

Ψλ(z) ≤ Jλ(u) −
1

2
‖v‖2

λ (6.51)

for all z = (u, v). �

Lemma 6.19. For any m ∈ N and σ > 0 there exist Λmσ > 0, such that, for each

λ ≥ Λmσ, there exists an m-dimensional subspace Fλm ⊂ E+ satisfying

sup
z∈Fλm×E−

Ψλ(z) ≤ σ λ1− N
2 .

Proof. It follows from (6.44) and (6.51). �

Proof. [Proof of Theorem 6.6] Repeating the arguments of the proof of Theorem

6.5 with Lemmas 6.14, 6.15 and 6.16 replaced respectively by Lemmas 6.17, 6.18

and 6.19 yields the desired results. �
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Chapter 7

Solutions of nonlinear Dirac equations

In this chapter we study nonlinear Dirac equations in external fields and obtain

existence and multiplicity results of stationary solutions for several classes of non-

linearities modelling various types of interaction. A typical result states that if the

nonlinearity is even and depends periodically on the spacial variable, the problem

has infinitely many geometrically different localized solutions.

The chapter is organized as follows. In the first five sections we deal with the

equations with scale potentials which are either periodic or of harmonic oscillator

type. In Section 7.2 we first state the hypotheses and our main results, then for-

mulate the variational setting and provide basic estimates on the spectrum of the

linearization, and lastly prove the theorems for asymptotically quadratic nonlin-

earity and for superquadratic nonlinearity respectively. Section 7.6 is devoted to

handle more general vector potentials. In the last section we consider existence and

multiplicity of semiclassical solutions.

7.1 Relative studies

Nonlinear Dirac equations occur in the attempt to model extended relativistic par-

ticles with external fields, see [Bjorken and Drell (1965)], [Ranada (1982)], [Esteban

and Séré (2002)]. In a general form, such equations are given by

−i~∂tψ = ic~
3∑

k=1

αk∂kψ −mc2βψ −M(x)ψ +Gψ(x, ψ) ; (7.1)

here x = (x1, x2, x3) ∈ R3, ∂k = ∂
∂xk

, c denotes the speed of light, m > 0 the mass

of the electron, and ~ denotes Planck’s constant. Furthermore, α1, α2, α3 and β are

4 × 4 complex matrices whose standard form (in 2 × 2 blocks) is

β =

(
I 0

0 −I

)
, αk =

(
0 σk
σk 0

)
, k = 1, 2, 3

with

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

97



June 21, 2007 11:27 World Scientific Book - 9.75in x 6.5in VariationalMethods

98 Variational Methods for Strongly Indefinite Problems

One verifies that β = β∗, αk = α∗
k, αkαl + αlαk = 2δkl and αkβ + βαk = 0; due to

these relations, the linear operator H0 = −ic~∑3
k=1 αk∂kψ+mc2βψ is a symmetric

operator, such that

H 2
0 = −c2~

2∆ +m2c4 .

A solution ψ : R×R3 → C4 of (7.1), with Ψ(t, ·) ∈ L2(R3,C4), is a wave function

which represents the state of a relativistic electron.

The external fields are given by the matrix potential M(x), and the nonlinearity

G : R3 × C4 → R represents a nonlinear self-coupling. We assume throughout the

chapter that G satisfies G(x, eiθψ) = G(x, ψ), for all θ ∈ [0, 2π]. We are looking

for stationary solutions of (7.1) which may be regarded as “particle-like solutions”

(see [Ranada (1982)]): they propagate without changing their shape and thus have

a soliton-like behavior.

The stationary solutions of equation (7.1) are found by the Ansatz

ψ(t, x) = e
iθt
~ u(x) ;

then u : R3 → C4 satisfies the equation

−ic~
3∑

k=1

αk∂ku+mc2β u+M(x)u = Gu(x, u) − θu . (7.2)

Dividing equation (7.2) by ~ c, we are led to study equations of the form

−i
3∑

k=1

αk ∂ku+ a β u+ ω u+M(x)u = Gu(x, u) , (7.3)

where a > 0 and ω ∈ R. We look for weak solutions which are localized in space;

more precisely, the solution we find satisfy u ∈ ⋂ 2≤q<∞W 1,q(R3,C4).

First we consider (7.3) in the form

−i
3∑

k=1

αk∂ku+ aβu+ ωu = Fu(x, u) (7.4)

where a > 0 and ω ∈ R. In [Ranada (1982)] one can find a discussion of functions

F which have been used to model various types of self-coupling. In recent years a

number of papers appeared dealing with the existence and multiplicity of stationary

solutions. In [Balabane, Cazenave, Douady and Merle (1988); Balabane, Cazenave

and Vazquez (1990); Cazenave and Vazquez (1986); Merle (1988)] the model

F (u) =
1

2
H(ũu), H ∈ C2(R,R), H(0) = 0 where ũu := (βu, u)C4 (7.5)

was investigated. In these papers the authors obtained for ω ∈ (−a, 0) solutions of

(7.4) of the type

u(x) =




v(r)

(
1

0

)

iw(r)

(
cos θ

sin θeiφ

)


 . (7.6)
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This ansatz leads to a system of ODEs for v(r), w(r), r = |x|, which can be solved

using the shooting method. Of course, suitable hypotheses on H were required,

and the approach depends heavily on the special form of F and the ansatz (7.6).

Another model nonlinearity studied in [Finkelstein, Lelevier and Ruderman (1951);

Ranada (1982)] is

F (u) =
1

2
|ũu|2 + b|ũαu|2 where ũαu := (βu, αu)C4 , α := α1α2α3

with b > 0. In [Esteban and Séré (1995)] variational methods are used for the model

(7.5) provided the main additional assumption

H ′(s) · s ≥ θH(s) for all s ∈ R, some θ > 1

holds. The authors obtain infinitely many solutions for the model (7.5) exploiting

the inherent symmetry F (u) = F (−u). They work on the space Es ⊂ H1/2(R3,C4)

of functions of the form (7.6) and perturb the function F appropriately so that

the perturbed variational integral satisfies the Palais-Smale condition. Then they

apply well known variational methods to the perturbed functional on Es. Solutions

of (7.4) are obtained by carefully controlling the passage to the limit from the

perturbed functionals to the unperturbed one.

The paper [Esteban and Séré (1995)] also deals with more general nonlinearities

F (u) where (7.5) does not hold and the ansatz (7.6) does not apply. The authors

show the existence of one (nontrivial) solution provided F ∈ C2(C4,R) satisfies

various growth and sign conditions. An example of such a general nonlinearity is

the function

F (u) = µ (|uũ|τ1 + b|ũαu|τ2) , τ1, τ2 ∈ (1, 3/2), µ, b > 0.

Here one cannot work on the space Es and the Palais-Smale condition does not

hold even for the perturbations, due to the invariance of (7.4) under translations.

The idea of [Esteban and Séré (1995)] is to produce a Palais-Smale sequence by a

linking argument and then to use concentration compactness arguments in order to

obtain a solution. [Esteban and Séré (1995)] does not contain a multiplicity result

in the general case. The problem here is that the solutions are not obtained as

strong limits from the Palais-Smale sequence but only as weak limits (after suitable

translations). Thus even when one has different linkings producing different Palais-

Smale sequences it is not clear how to distinguish the weak limits.

Motivated by [Esteban and Séré (1995)] we investigate the Dirac equation by

using some of the critical point theorems from Chapter 4. The class of nonlinear-

ities which we treat differs in two ways from those in the other paper mentioned

above. First, F = F (x, u) may depend on x and is periodic in each of the variables

x1, x2, x3. Second, F (x, u) is asymptotically quadratic or superquadratic in u as

|u| → ∞. Consequently, F (x, u) → ∞ as |u| → ∞ which excludes the Lorentz

invariant nonlinearities mentioned above. There F (u) may vanish even for large

values of |u|.
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We obtain infinitely many solutions if F is even, not only for superquadratic

F but also in the asymptotically quadratic case. We only require |ω| < a, not

−a < ω < 0 as in the other papers. The multiplicity result has to be interpreted

carefully. As a consequence of the periodicity of F (x, u) in x1, x2, x3, given a solution

u any translation k ∗ u = u(· + k), k ∈ Z
3, is also a solution. Thus there exists a

Z3-orbit of solutions. The infinitely many solutions which we obtain correspond to

different Z3-orbits. Observe that, when F is independent of x then one solution u

generates a 3-dimensional manifold of solutions y ∗ u = u(· + y), y ∈ R3, consisting

of infinitely many Z3-orbits. In this case we do not obtain any additional solutions.

The Z3-periodicity has another effect: the functional associated to the prob-

lem does not satisfy the Palais-Smale condition. In [Coti-Zelati, Ekeland and Séré

(1990)] a weaker version of the Palais-Smale condition was introduced for a Z-period

problem; see also [Séré (1992)]. It was shown that this condition suffices to yield a

deformation lemma. However, in these paper the functionals are of mountain pass

type which is not the case here. In fact, our functionals are of strongly indefinite.

The above mentioned results also apply to the more general equation

−i
3∑

k=1

αk∂ku+ (V (x) + a)βu+ ωu = Fu(x, u) (7.7)

with a potential V periodic in the xk-variable. We also have results if neither V nor

F are periodic provided there is some control on V (x) as |x| → ∞ which excludes

the case that V is constant. Here we obtain infinitely many solutions even if F is

independent of x.

7.2 Existence results for scalar potentials

We rewrite the equation (7.4) as

−i
3∑

k=1

αk∂ku+ aβu+ ωu = Fu(x, u) (D)

with a > 0 and shall always assume

(ω) ω ∈ (−a, a).
(F0) F ∈ C1(R3 × C4, [0,∞))

(F1) F (x, u) is 1-periodic in xk, k = 1, 2, 3.

This includes the case where F ∈ C1(C4, [0,∞)) does not depend on x. For our

first results we also require

(F2) Fu(x, u) = o(|u|) as u→ 0 uniformly in x ∈ R3.

Concerning the behavior of F as |u| → ∞ we begin with the asymptotically

quadratic case. Setting

ω0 := min{a+ ω, a− ω} and F̂ (x, u) :=
1

2
Fu(x, u) · u− F (x, u).
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we require:

(F3) There exists b > a + ω such that |Fu(x, u) − bu| · |u|−1 → 0 as |u| → ∞
uniformly in x.

(F4) F̂ (x, u) ≥ 0, and there exists δ1 ∈ (0, ω0) such that F̂ (x, u) ≥ δ1 whenever

|Fu(x, u)| ≥ (ω0 − δ1)|u|.

Theorem 7.1 ([Bartsch and Ding (2006II)]). Let (ω) and (F0) − (F4) be sat-

isfied. Then (D) has at least one nontrivial solution u ∈ ⋂τ≥2W
1,τ (R3,C4). (D)

has infinitely many geometrically distinct solutions u ∈ ⋂
τ≥2W

1,τ (R3,C4) if in

addition to the above assumptions F is even in u.

Here two solutions u1 and u2 are said to be geometrically distinct if k ∗ u1 6= u2

for all k ∈ Z
3 where (k ∗ u)(x) = u(x+ k).

Next we consider the super-quadratic case where we assume:

(F5) F (x, u)|u|−2 → ∞ as |u| → ∞ uniformly in x.

(F6) F̂ (x, u) > 0 if u 6= 0, F̂ (x, u) → ∞ as |u| → ∞ uniformly in x, and there are

σ > 3 and r, c1 > 0 such that, |Fu(x, u)|σ ≤ c1F̂ (x, u)|u|σ if |u| ≥ r.

Theorem 7.2 ([Bartsch and Ding (2006II)]). Let (ω), (F0) − (F2) and (F5),

(F6) be satisfied. Then (D) has at least one nontrivial solution u ∈⋂
τ≥2W

1,τ (R3,C4). If moreover F is even in u, then (D) has infinitely many

geometrically distinct solutions u ∈ ⋂τ≥2W
1,τ (R3,C4).

Now we re-denote the equation (7.7) by:

−i
3∑

k=1

αk∂ku+ (V (x) + a)βu+ ωu = Fu(x, u). (DV )

We are interested in the influence of the potential V : R3 → R on the existence of

solutions. First we consider periodic potentials.

(V1) V ∈ C1(R3, [0,∞)), and V (x) is 1-periodic in xk for k = 1, 2, 3.

The hypotheses (F3) and (F4) will be replaced by

(F ′
3) There exists b ∈ C1(R3,R) with |Fu(x, u) − b(x)u| |u|−1 → 0 as |u| → ∞

uniformly in x, and inf b(R3) > supV (R3) + a+ ω .

(F ′
4) F̂ (x, u) > 0 if u 6= 0, and F̂ (x, u) → ∞ as |u| → ∞ uniformly in x.

Theorem 7.3 ([Bartsch and Ding (2006II)]). Let (ω), (V1) and (F0) − (F2),

(F ′
3), (F ′

4) be satisfied. Then (DV ) has at least one nontrivial solution u ∈⋂
τ≥2W

1,τ (R3,C4). If in addition F is even with respect to u then (DV ) has in-

finitely many geometrically distinct solutions u ∈ ⋂τ≥2W
1,τ (R3,C4).
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Here are some examples where the assumptions apply.

Example 7.1. a) F (x, u) = 1
2 b(x)|u|2

(
1 − 1

ln(e+|u|)

)
.

b) F (x, u) = b(x)ϕ( 1
2 |u|2) where ϕ : [0,∞) → [0,∞) is of class C2 with ϕ(0) =

ϕ′(0) = 0, and ϕ′(s) → 1 as s→ ∞, ϕ′′(s) ≥ 0.

c) Fu(x, u) = f(x, |u|)u, where f(x, s) is even in s; f(x, s) → 0 as s → 0

uniformly in x; f(x, s) is non-decreasing for s ∈ [0,∞); and f(x, s) → b(x) as

s→ ∞.

Theorem 7.4 ([Bartsch and Ding (2006II)]). Let (ω), (V1) and (F0) − (F2),

(F5), (F6) be satisfied. Then (DV ) has at least one nontrivial solution u ∈⋂
τ≥2W

1,τ (R3,C4). If F is even in u then (DV ) has infinitely many geometrically

distinct solutions u ∈ ⋂τ≥2W
1,τ (R3,C4).

Theorem 7.2 is a special case of Theorem 7.4. Comparing Theorem 7.1 and

Theorem 7.3 one sees that assumption (F ′
4) is somewhat stronger than (F4). We

also have some explicit examples of possible nonlinearities.

Example 7.2. a) F (x, u) = a(x)
(
|u|2 ln(1 + |u|) − 1

2 |u|2 + |u| − ln(1 + |u|)
)
.

b) F (x, u) = a(x)
(
|u|µ + (µ− 2)|u|µ−ε sin2

( |u|ε
ε

))
where µ ∈ (2, 3) and 0 < ε <

µ− 2.

c) (F5) and (F6) hold if there are q > 2 and κ > 3/2 such that 0 < qF (x, u) ≤
Fu(x, u) · u if u 6= 0, and |Fu(x, u)|κ ≤ c1 (1 + Fu(x, u) · u).

Next we consider potentials of the harmonic oscillator type:

(V2) V ∈ C1(R3,R); for each b > 0 the set V b := {x ∈ R
3 : V (x) ≤ b} has finite

Lebesgue measure.

This hypothesis is satisfied if V (x) → ∞ as |x| → ∞, for instance.

Theorem 7.5 ([Bartsch and Ding (2006II)]). Let (V2), (F0) and (F5), (F6) be

satisfied. Then (DV ) has at least one nontrivial solution u ∈ ⋂τ≥2W
1,τ (R3,C4).

If moreover F is also even in u then (DV ) has infinitely many solutions u ∈⋂
τ≥2W

1,τ (R3,C4).

Remark 7.1. In Theorem 7.5 we only considered superquadratic nonlinearities.

With the methods developed in this chapter it is easily possible to consider asymp-

totically quadratic nonlinearities, and to obtain multiple solutions if the asymptotic

term b(x) is large enough. Observe that in Theorem 7.5 we do not make any re-

striction on the number ω, and we do not need assumptions like (F4) except for

F being even. Moreover, the proof will show that in the even case there exists a

sequence of solutions having the energy unbounded.
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7.3 Variational setting

For V ∈ L2
loc(R

3,R) the operator A := −i∑3
k=1 αk∂k+(V (x) + a)β is a selfadjoint

operator in L2 = L2(R3,C4) (cf. [Dautray and Lions (1990)]). It is unbounded from

above and from below. In order to investigate the spectrum of A we consider

A2 = −∆ + (V + a)2 + i

3∑

k=1

βαk∂kV.

Let σ(S), σd(S), σe(S) and σc(S) denote, respectively, the spectrum, the discrete

spectrum (i. e. the set of eigenvalues of finite multiplicity), the essential spectrum

and the continuous spectrum of a self-adjoint operator S on L2.

Lemma 7.1. a) If V ≡ 0, then σ(A2) = [a2,∞).

b) If (V1) holds then σ(A2) ⊂ [a2,∞).

c) If (V2) holds then σ(A2) = σd(A
2) = {µn : n ∈ N} with 0 ≤ µ1 ≤ µ2 ≤ µ3 ≤

· · · and µn → ∞.

Proof. a) is obvious. b) follows from the inequality

(A2u, u)L2 =

((
− i

3∑

k=1

αk∂k + V β
)
u,
(
− i

3∑

k=1

αk∂k + V β
)
u

)

L2

+ a2(u, u)L2 + 2a(V u, u)L2

≥ a2(u, u)L2 + 2a(V u, u)L2 .

c) Suppose (V2) holds and define

W (x) := (V (x) + a)2 + i

3∑

k=1

βαk∂kV (x).

Then we have for any b > 0

Cb :=
{
x ∈ R

3 : sup
|ξ|=1

(W (x)ξ, ξ̄)C4 < b
}

⊂ V b.

Setting Wb := W − b, W+
b = max{0,Wb}, W−

b = min{0,Wb} and Sb = −∆ + (a2 +

b) + W+
b we have A2 = Sb + W−

b . Using Cb ⊂ V b it is easy to check that W−
b

is compact relative to Sb (cf. [Bartsch, Pankov and Wang (2001)]). Hence, by a

theorem of Weyl

σe(A
2) = σe(Sb) ⊂ σ(Sb) ⊂ [a2 + b, ∞).

Since b > 0 is arbitrary it follows that σ(A2) = σd(A
2). Finally, since A2 is

unbounded from above, µn → ∞. �

The domain D = D(A) of A is a Hilbert space with inner product

(u, v)D = (Au,Av)L2 + (u, v)L2 .

Lemma 7.2. a) If (V1) is satisfied, then D = H1(R3,C4) with equivalent norms.

b) If (V2) is satisfied, then D embeds continuously into H1(R3,C4) and com-

pactly into Lτ (R3,C4) for all τ ∈ [2, 6).
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Proof. a) is clear. For b) it suffices to prove D ↪→ L2(R3,C4) compactly. Let

(en)n∈N be an orthornormal basis of eigenfunctions of A2 associated to the eigen-

values µn, n ∈ N, and set Lk = span{e1, · · · , ek}. Let Pk : D → Lk denote the

orthogonal projection. Consider a weakly converging sequence un ⇀ u in D , and

define wn = un − u and C := supn ‖wn‖2
D

. Given ε > 0 we choose k ∈ N so that

C/µk < ε/2. Since Pkwn → 0 as n→ ∞ there exists n0 ∈ N so that ‖Pkwn‖2
D
< ε/2

for n ≥ n0. Therefore we have

|wn|22 = |Pkwn|22 + |(I − Pk)wn|22 <
ε

2
+
ε

2
= ε

for n ≥ n0. This proves that un → u in L2. �

Now we consider the operator A. Let (Eγ)γ∈R and (Fγ)γ≥0 denote the spectral

families of A and A2, respectively. Recall that

Fγ = Eγ1/2 −E−γ1/2−0 = E[−γ1/2,γ1/2] for all γ ≥ 0; (7.8)

see (3.96) in Chapter VIII of [Dautray and Lions (1990)].

Lemma 7.3. a) If V ≡ 0 then σ(A) = (−∞,−a] ∪ [a,∞).

b) If (V1) holds, then σ(A) = σc(A) ⊂ (−∞,−a] ∪ [a,∞) and inf σ(|A|) ≤
a+ sup V (R3).

c) If (V2) holds then σ(A) = σd(A) =
{
±µ1/2

n : n ∈ N

}
.

Proof. a) can be obtained directly by Fourier analysis (cf. [Esteban and Séré

(1995)]).

b) Assume (V1) holds. Using (7.8) and Lemma 7.1b) we obtain

dim (E[−γ1/2, γ1/2]L
2) = dim (FγL

2) = 0 for 0 ≤ γ < a2,

hence σ(A) ⊂ R \ (−a, a). If A has an eigenvalue η with eigenfunction u 6= 0

then A2u = η2u, so η2 is an eigenvalue of A2 contradicting the well-known fact

that σ(A2) = σc(A
2) (cf. [Reed and Simon (1978)]). It follows that A has only

continuous spectrum. Finally, since σ
(
− i
∑3
k=1 αk∂k

)
= R there exists a sequence

un ∈ H1 with |un|2 = 1 and
∣∣∣−i

∑3
k=1 αk∂kun

∣∣∣
2
→ 0. This implies

|Aun|2 ≤
∣∣∣∣∣−i

3∑

k=1

αk∂kun

∣∣∣∣∣
2

+ |(V + a)un|2 ≤ o(1) + a+ sup V (R3)

and b) follows.

c) By Lemma 7.1c), for all γ ≥ 0 we have

dim(E[−γ1/2,γ1/2]L
2) = dim(FγL

2) <∞,

hence σ(A) = σd(A) ⊂
{
±µ1/2

n : n ∈ N

}
. For γ = µn we have

0 6= Fγ − Fγ−0 = (Eγ1/2 −Eγ1/2−0) + (E−γ1/2 −E−γ1/2−0).
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Assume γ1/2 is an eigenvalue of A, so Eγ1/2−Eγ1/2−0 6= 0. Let u be a corresponding

eigenfunction and set

J :=

(
0 I2

−I2 0

)

where I2 is the unit matrix in C
2. Then

αkJ = −J αk for k = 1, 2, 3 and βJ = −J β.

Setting v = J u one has

Av = AJ u = −JAu = −J γ1/2u = −γ1/2v,

so −γ1/2 is also an eigenvalue of A. Similarly, if −γ1/2 is an eigenvalue of A then

γ1/2 is an eigenvalue of A. �

Observe that we have an orthogonal decomposition

L2 = L− ⊕ L0 ⊕ L+, u = u− + u0 + u+,

such that A is negative definite on L−, positive definite on L+, and vanishes on L0.

Clearly, L0 = {0} if V (x) ≡ 0 or if (V1) holds.

Let E = D(|A|1/2) be the Hilbert space equipped with the inner product

(u, v) = (|A|1/2u, |A|1/2v)L2 + (u0, v0)L2

and norm ‖u‖ = (u, u)1/2. There is an induced decomposition

E = E− ⊕E0 ⊕E+ where E± = E ∩ L±, E0 = E ∩ L0,

which is orthogonal with respect to both (·, ·)L2 and (·, ·).

Lemma 7.4. a) If (V1) holds then E = H1/2(R3,C4) with equivalent norms, and

a|u|22 ≤ ‖u‖2;

b) If (V2) holds then E ↪→ H1/2(R3,C4), and E embeds compactly into

Lτ (R3,C4) for all τ ∈ [2, 3).

Proof. The lemma follows easily from Lemma 7.2 and an analysis of interpola-

tion spaces. In fact, using the (complex) interpolation [·, ·]θ (see [Reed and Simon

(1978)]) we have E = [D , L2]1/2. By Lemma 7.2, if (V1) holds then

[D , L2]1/2 ∼= [H1, L2]1/2 = H1/2,

and if (V2) holds then the embedding

[D , L2]1/2 ↪→ [H1, L2]1/2 = H1/2

is continuous. Moreover in the case of (V2), using Lemma 7.3c) and the proof of

Lemma 7.2b) one sees that E embeds compactly into Lτ for τ ∈ [2, 3). �
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The solutions of the equations (D) and (DV ) will be obtained as critical points

of the functional

Φ(u) =
1

2

(
‖u+‖2 − ‖u−‖2 + ω|u|22

)
−
∫

R3

F (x, u), (7.9)

defined on E. Indeed, let A = U |A| denote the polar decomposition of A where

U = (1 −E0) −E−0 . If u ∈ E is a critical point of Φ then for all ϕ ∈ C∞
0

0 = (u+ − u−, ϕ) + ω(u, ϕ)L2 −
∫

R3

Fu(x, u)ϕ

= (u,Aϕ)L2 + ω(u, ϕ)L2 −
∫

R3

Fu(x, u)ϕ

= (u, (A+ ω)ϕ)L2 −
∫

R3

Fu(x, u)ϕ,

hence u is a weak solution of (D) or (DV ). Now a bootstrap argument (see [Esteban

and Séré (1995)]) yields u ∈ W 1,τ (R3,C4) for all τ ≥ 2.

7.4 The asymptotically quadratic case

In this section we prove Theorem 7.1 and Theorem 7.3. We begin with the proof of

Theorem 7.3. Recall that the functional Φ defined on the space E = H1/2(R3,C4) =

E− ⊕E+, given by (7.9):

Φ(u) =
1

2

(
‖u+‖2 − ‖u−‖2 + ω|u|22

)
− Ψ(u) where Ψ(u) =

∫

R3

F (x, u).

In order to apply the critical point theorems from Chapter 4 we set X = E−,

Y = E+, and S = X∗.
First we observe that by (ω) and Lemma 7.4

a− |ω|
a

‖u+‖2 ≤
(
‖u+‖2 ± ω|u+|22

)
≤ a+ |ω|

a
‖u+‖2 (7.10)

and
a− |ω|
a

‖u−‖2 ≤
(
‖u−‖2 ± ω|u−|22

)
≤ a+ |ω|

a
‖u−‖2. (7.11)

Lemma 7.5. Ψ is weakly sequentially lower semicontinuous and Φ′ is weakly se-

quentially continuous. Moreover, there is ζ > 0 such that for any c > 0:

‖u‖ < ζ‖u+‖ for all u ∈ Φc.

Proof. The first conclusion follows easily because E = H1/2(R3,C4) with equiv-

alent norms, so E embeds continuously into Lq(R3,C4) for q ∈ [2, 3] and compactly

into Lqloc(R
3,C4) for q ∈ [1, 3). Since F ≥ 0, (7.10) and (7.11) imply

c ≤ a+ |ω|
2a

‖u+‖2 − a− |ω|
2a

‖u−‖2,

if Φ(u) ≥ c. This yields

a− |ω|
2a

‖u‖2 <
a+ |ω|
a

‖u+‖2,

and we obtain the second conclusion. �
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Lemma 7.6. There is ρ > 0 such that κ := inf Φ(∂Bρ ∩E+) > 0.

Proof. Choosing q ∈ (2, 3), it follows from the assumptions that for any ε > 0

there is Cε > 0 such that F (x, u) ≤ ε|u|2 + Cε|u|q for all (x, u). Therefore,

Ψ(u) ≤ ε|u|22 + Cε|u|qq ≤ C(ε‖u‖2 + Cε‖u‖q)

for all u ∈ E. The desired conclusion now follows easily from (7.10) and (7.11). �

As a consequence of Lemma 7.3 we have

a ≤ inf σ(A) ∩ [0,∞) ≤ a+ supV (R3).

We choose a number γ such that

a+ supV (R3) < γ < inf b(R3) − ω. (7.12)

Since A is invariant under the action of Z3 by (V1), the subspace Y0 := (Eγ−E0)L
2

is infinite-dimensional, and

(a+ ω)|u|22 ≤ ‖u‖2 + ω|u|22 ≤ (γ + ω)|u|22 for all u ∈ Y0. (7.13)

Let (γn)n∈N ⊂ σ(A) satisfy γ0 := a < γ1 < γ2 < · · · ≤ γ. For each n ∈ N, take an

element en ∈ (Eγn − Eγn−1)L
2 with ‖en‖ = 1 and define Yn := span{e1, . . . , en},

En := E− ⊕ Yn.

Lemma 7.7. sup Φ(En) <∞ for each n ∈ N, and there is a sequence Rn > 0 such

that sup Φ(En \Bn) < inf Φ(Bρ) where Bn = {u ∈ En : ‖u‖ ≤ Rn}.

Proof. By (7.13) and the form of Φ it is obvious that sup Φ(En) < ∞. For

n ∈ N fixed we now show that Φ(u) → −∞ as ‖u‖ → ∞, u ∈ En. Suppose to

the contrary that there exists M > 0 and a sequence uj ∈ En with ‖uj‖ → ∞ and

Φ(uj) ≥ −M for all j. Then the normalized sequence vj := uj/‖uj‖ satisfies (up to

a subsequence) vj ⇀ v, v−j ⇀ v−, v+
j → v+ ∈ Yn and

Φ(uj)

‖uj‖2
=

1

2

(
‖v+
j ‖2 − ‖v−j ‖2 + ω|vj |22

)
−
∫

R3

F (x, uj)

‖uj‖2
≥ −M

‖uj‖2
= o(1) . (7.14)

Using (7.11) we obtain as j → ∞:

o(1) = − M

‖uj‖2
≤ 1

2

(
‖v+
j ‖2 − ‖v−j ‖2 + ω|vj |22

)

= ‖v+
j ‖2 − 1

2
‖vj‖2 +

ω

2
|vj |22

≤ ‖v+
j ‖2 +

1

2

|ω| − a

a
‖v−j ‖2.

Thus v+
j is bounded away from 0 and therefore v+ 6= 0. We define

R(x, u) := F (x, u) − 1

2
b(x)u · u and b0 := inf b(R3)



June 21, 2007 11:27 World Scientific Book - 9.75in x 6.5in VariationalMethods

108 Variational Methods for Strongly Indefinite Problems

where b : R3 → R is from (F ′
3). Then we have F (x, u) ≤ c|u|2, R(x, u) |u|−2 → 0 as

|u| → ∞, and

Φ(u) =
1

2

(
‖u+‖2 − ‖u−‖2 + ω|u|22 −

∫

R3

b(x)|u|2
)
−
∫

R3

R(x, u)

≤ 1

2

(
‖u+‖2 + ω|u+|22

)
− a− |ω|

2a
‖u−‖2 − b0

2
|u|22 −

∫

R3

R(x, u)

(7.15)

for u ∈ E. By (7.13), (7.12) and v+ 6= 0 there holds

(
‖v+‖2 + ω|v+|22

)
− a− |ω|

a
‖v−‖2 − b0|v|22

≤ − (b0 − γ − ω)|v+|22 −
a− |ω|
a

‖v−‖2

< 0,

hence, there is a bounded domain Ω ⊂ R3 such that

(
‖v+‖2 + ω|v+|22

)
− a− |ω|

a
‖v−‖2 − b0

∫

Ω

|v|2 < 0. (7.16)

It follows from Lebesgue’s dominated convergence theorem that

lim
j→∞

∫

Ω

R(x, uj)

‖uj‖2
= lim
j→∞

∫

Ω

R(x, uj)|vj |2
|uj |2

= 0.

Thus, using (7.14)–(7.16) we obtain

0 ≤ lim inf
j→∞

(
1

2

(
‖v+
j ‖2 − ‖v−j ‖2 + ω|vj |22

)
−
∫

Ω

F (x, uj)

‖uj‖2

)

≤ 1

2

(
‖v+‖2 + ω|v+|22

)
− a− |ω|

2a
‖v−‖2 − b0

2

∫

Ω

|v|2

< 0 ,

a contradiction. �

As a consequence, we have

Lemma 7.8. Φ|∂Q ≤ 0 where Q := {u = u− + se1 : u− ∈ E−, s ≥ 0, ‖u‖ ≤ R1}.

Proof. By our assumptions we have Ψ(u) ≥ 0. Thus

Φ(u−) = −1

2

(
‖u−‖2 − ω|u−|22

)
− Ψ(u−) ≤ −1

2
(a− ω)|u−|22 − Ψ(u−) ≤ 0

which, together with Lemma 7.7, implies the lemma. �

Lemma 7.9. If (ω), (F0) − (F2), (F ′
3), and (F ′

4) hold then any (C)c-sequence is

bounded.
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Proof. Let (uj) ⊂ E be a (C)c-sequence:

Φ(uj) → c and (1 + ‖uj‖)Φ′(uj) → 0.

It follows from (F ′
3), (F ′

4) that for j large

C0 ≥ Φ(uj) −
1

2
Φ′(uj)uj =

∫

R3

F̂ (x, uj). (7.17)

Assume by contradiction that ‖uj‖ → ∞ and set vj = uj/‖uj‖. Then |vj |s ≤ γs
for all s ∈ [2, 3]. It follows from (7.10) – (7.11) that

Φ′(uj)(u
+
j − u−j ) = ‖uj‖2

(
‖vj‖2 − ω|vj |22 −

∫

R3

Fu(x, uj)(v
+
j − v−j )

‖uj‖

)

≥ ‖uj‖2

(
a− |ω|
a

−
∫

R3

Fu(x, uj)(v
+
j − v−j )

‖uj‖

)
.

Thus

lim inf
j→∞

∫

R3

Fu(x, uj)(v
+
j − v−j )

‖uj‖
≥ ` :=

a− |ω|
a

. (7.18)

As before we set

h(r) := inf
{
F̂ (x, u) : x ∈ R

3 and u ∈ C
4 with |u| ≥ r

}
,

Ωj(ρ, r) =
{
x ∈ R

3 : ρ ≤ |uj(x)| < r
}

and

crρ := inf

{
F̂ (x, u)

|u|2 : x ∈ R
3 and u ∈ C

4 with ρ ≤ |u| ≤ r

}
.

By (F ′
4), h(r) → ∞ as r → ∞ and by definition

F̂ (x, uj(x)) ≥ crρ|uj(x)|2 for all x ∈ Ωj(ρ, r).

It follows from (7.17) that

C0 ≥
∫

Ωj(0,ρ)

F̂ (x, uj) + crρ

∫

Ωj (ρ,r)

|uj |2 + h(r)|Ωj(r,∞)|.

Observe that |Ωj(b,∞)| ≤ C0/h(r) → 0 as r → ∞ uniformly in j, and, for any fixed

0 < ρ < r,
∫

Ωj(ρ,r)

|vj |2 =
1

‖uj‖2

∫

Ωj(ρ,r)

|uj |2 ≤ C0

crρ‖uj‖2
→ 0

as j → ∞.

Let 0 < ε < `/3. By (F2) there is ρε > 0 such that |Fu(x, u)| < ε
γ2
|u| for all

|u| ≤ ρε, consequently,
∫

Ωj(0,ρε)

|Fu(x, uj)|
|uj |

|vj | |v+
j − v−j | ≤

ε

γ2
|vj |22 ≤ ε
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for all j. Recall that, by (F ′
3) − (F ′

4), |Fu(x, u)| ≤ c1|u| for all (x, u). Using Hölder

inequality we can take rε large so that∫

Ωj (rε,∞)

|Fu(x, uj)|
|uj |

|v+
j − v−j | |vj | ≤ c1

∫

Ωj(rε,∞)

|v+
j − v−j | |vj |

≤ c1|Ωj(rε,∞)|1/6|v+
j − v−j |2|vj |3

≤ c1|Ωj(rε,∞)|1/6γ2γ3

< ε

for all j. Moreover, there is j0 such that∫

Ωj(ρε,rε)

|Fu(x, uj)|
|uj |

|vj | |v+
j − v−j | ≤ c1

∫

Ωj(ρε,rε)

|v+
j − v−j | |vj |

≤ c1|vj |2
(∫

Ωj(ρε,rε)

|vj |2
)1/2

< ε

for all j ≥ j0. Therefore, for j ≥ j0,
∫

RN

|Fu(x, uj) (v+
j − v−j )

‖uj‖
< 3ε < `

which contradicts (7.18). �

Proof. [Proof of Theorem 7.3 (Existence)] With X = E− and Y = E+ the condi-

tions (Φ0), (Φ+) hold by Lemma 7.5. Together with Lemma 7.6 and Lemma 7.8 we

have all the assumptions of Theorem 4.5 verified. Therefore, there exists a sequence

(um) satisfying Φ(um) → c ≥ κ and (1+‖um‖)Φ′(um) → 0. By Lemma 7.9, (um) is

bounded, hence Φ′(um) → 0. Now by the concentration compactness principle (cf.

[Lions (1984)]) and the Z3-invariance of Φ, a standard argument shows that there

is u 6= 0 such that Φ′(u) = 0. �

Now we turn to the multiplicity. We start with to discuss further the (C)c-

sequence (uj) ⊂ E. By Lemma 7.9 it is bounded, hence, without loss of generality,

we may assume that uj ⇀ u. Plainly u is a critical point of Φ. Set u1
j = uj − u.

We have similarly to Lemma 6.7 the following

Lemma 7.10. Under the assumptions of Lemma 7.9, one has, along a subsequence

as j → ∞,

1) Φ(u1
j ) → c− Φ(u);

2) Φ′(u1
j ) → 0.

Proof. The verification of 1) is similar to and simpler than that of 2), so we only

check the latter.

Observe that, for any ϕ ∈ E,

Φ′(u1
j )ϕ = Φ′(uj)ϕ+

∫

R3

(
Fu(x, uj) − Fu(x, u

1
j ) − Fu(x, u)

)
ϕ.
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Since Φ′(uj) → 0, it suffices to show that along a subsequence

sup
‖ϕ‖≤1

∣∣∣∣
∫

R3

(
Fu(x, uj) − Fu(x, u

1
j ) − Fu(x, u)

)
ϕ

∣∣∣∣ → 0. (7.19)

We argue as in the proof of Lemma 6.7. Set Bd := {x ∈ RN : |x| ≤ d} for d > 0.

We have similarly to (6.26) that there is a subsequence (ujn) such that, for any

ε > 0 there exists rε > 0 satisfying

lim sup
n→∞

∫

Bn\Br

|ujn |q ≤ ε (7.20)

for all r ≥ rε. Let η : [0,∞) → [0, 1] be a smooth function satisfying η(t) = 1 if

t ≤ 1, η(t) = 0 if t ≥ 2. Define ũn(x) = η(2|x|/n)u(x) and set hn := u− ũn. Then

‖hn‖ → 0 as n→ ∞. Observe that for any ϕ ∈ E∫

R3

(
Fu(x, ujn) − Fu(x, u

1
jn) − Fu(x, u)

)
ϕ

=

∫

R3

(Fu(x, ujn) − Fu(x, ujn − ũn) − Fu(x, ũn))ϕ

+

∫

R3

(
Fu(x, u

1
jn + hn) − Fu(x, u

1
jn)
)
ϕ

+

∫

R3

(Fu(x, ũn) − Fu(x, u))ϕ.

Since ‖hn‖ → 0 it is easy to see that

lim
n→∞

∣∣∣∣
∫

R3

(Fu(x, ũn) − Fu(x, u))ϕ

∣∣∣∣ = 0

uniformly in ‖ϕ‖ ≤ 1. Recalling that the Sobolev embedding is locally compact and

using (7.20) one gets, for any ε > 0 and r ≥ rε,

lim sup
n→∞

∣∣∣∣
∫

R3

(Fu(x, ujn) − Fu(x, ujn − ũn) − Fu(x, ũn))ϕ

∣∣∣∣

= lim sup
n→∞

∣∣∣∣∣

∫

Bn\Br

(Fu(x, ujn) − Fu(x, ujn − ũn) − Fu(x, ũn))ϕ

∣∣∣∣∣

≤ c1 lim sup
n→∞

∫

Bn\Br

(|ujn | + |ũn|) |ϕ|

≤ c2ε
1/2,

consequently,

lim
n→∞

∣∣∣∣
∫

R3

(Fu(x, ujn) − Fu(x, ujn − ũn) − Fu(x, ũn))ϕ

∣∣∣∣ = 0

uniformly in ‖ϕ‖ ≤ 1. Finally, along the same lines of (6.29) it is not difficult to

show that

lim
n→∞

∣∣∣∣
∫

R3

(
Fu(x, u

1
jn + hn) − Fu(x, u

1
jn)
)
ϕ

∣∣∣∣ = 0

uniformly in ‖ϕ‖ ≤ 1. (7.19) is hereby verified. �
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Let K := {u ∈ E : Φ′(u) = 0}, the critical set of Φ.

Lemma 7.11. Under the assumptions of Lemma 7.9, there hold

a) ν := inf{‖u‖ : u ∈ K \ {0}} > 0;

b) θ := inf{Φ(u) : u ∈ K \ {0}} > 0.

Proof. See the proof of Lemma 6.8. �

Let F be a set consisting of arbitrarily chosen representatives of the Z3-orbits

of K. When Φ′ is odd we may assume F = −F . Let [r] denote the integer part of

r ∈ R.

Lemma 7.12. Let the assumptions of Lemma 7.9 be satisfied and let (um) be a

(C)c-sequence. Then either

(i) um → 0 and c = 0, or

(ii) c ≥ θ and there exist a positive integer ` ≤ [c/θ], points u1, · · · , u` ∈ F , a

subsequence denoted again by (um), and sequences (aim) ⊂ Z3, i = 1, . . . , `,

such that ∥∥∥∥∥um −
∑̀

i=1

(aim ∗ ui)
∥∥∥∥∥ → 0

and

∑̀

i=1

Φ(ui) = c.

Proof. The argument proceeds as in the proof of Lemma 5.9, so we only give a

sketch of it. First of all, (um) is bounded by Lemma 7.9. It follows that Φ′(um) → 0

and

0 ≤
∫

R3

F̂ (x, um) = Φ(um) − 1

2
Φ′(um)um → c,

thus c ≥ 0. Assume now that (um) does not converge to 0. As before, the concen-

tration compactness principle implies that either (um) is vanishing in which case

|um|p → 0 for all p ∈ (2, 3), or it is nonvanishing. Fixing a p ∈ (2, 3), by (F2) and

(F ′
3), for any ε > 0 there is Cε > 0 such that

|Fu(x, u)| ≤ ε|u| + Cε|u|p−1 for all (x, u). (7.21)

If (um) is vanishing one checks easily with the help of (7.21) that

‖u+
m‖2 = Φ′(um)u+

m +

∫

R3

Fu(x, um)u+
m → 0

and similarly ‖u−m‖ → 0, so ‖um‖ → 0. Therefore (um) must be nonvanishing. Now

since Φ is invariant under the Z3-action, a standard argument enables us to choose

a sequence (am) ⊂ Z3 such that the sequence vm := am ∗ um converges to v ∈ K
weakly in E and strongly in Lploc for all p ∈ [1, 3). Note that Φ(vm) = Φ(um),



June 21, 2007 11:27 World Scientific Book - 9.75in x 6.5in VariationalMethods

Solutions of nonlinear Dirac equations 113

‖Φ′(vm)‖ = ‖Φ′(um)‖ and ‖vm‖ = ‖um‖. Setting wm = vm − v it follows from

Lemma 7.10 that

Φ(wm) → c− Φ(v) and Φ′(wm) → 0. (7.22)

Lemma 7.11 and (7.22) imply θ ≤ Φ(v) ≤ c. There are two possibilities: c = Φ(v)

or c > Φ(v). If c = Φ(v) then wm → 0. If c > Φ(v), then arguing as above with

(um) and c replaced by (wm) and c′ = c−Φ(v), respectively, we obtain v′ ∈ K with

θ ≤ Φ(v′) ≤ c− θ. After at most
[
c
θ

]
steps we obtain the conclusion. �

The proof of Theorem 7.3 will be completed in an indirect way. Namely, we

show that if

K/Z3 is a finite set (7.23)

then condition (ΦI) is satisfied. Then we apply Theorem 4.7 and obtain an un-

bounded sequence of critical values which contradicts (7.23). So we now assume

(7.23). Then F is a finite set by (7.23), and since Φ′ is odd we may assume F = −F .

For ` ∈ N and a finite set B ⊂ E we define

[B, `] :=

{
j∑

i=1

(ai ∗ ui) : 1 ≤ j ≤ `, ai ∈ Z
3, ui ∈ B

}
.

An argument similar to one from [Coti-Zelati, Ekeland and Séré (1990)] or [Coti-

Zelati and Rabinowitz (1992)] shows

inf{‖u− u′‖ : u, u′ ∈ [B, `], u 6= u′} > 0. (7.24)

As a consequence of Lemma 7.12 we have the following

Lemma 7.13. Assume (7.23). Then Φ satisfies (ΦI).

Proof. Given a compact interval I ⊂ (0, ∞) with d := max I we set ` := [d/θ]

and A = [F , `]. Clearly E± are Z3-invariant because A is Z3-invariant. We have

PY [F , `] = [PY F , `]. Thus it follows from (7.24) that

inf{‖u+
1 − u+

2 ‖ : u1, u2 ∈ A , u+
1 6= u+

2 } > 0.

In addition, A is a (C)I -attractor by Lemma 7.12, and A is bounded because

‖u‖ ≤ ` max{‖ū‖ : ū ∈ F} for all u ∈ A . �

Proof. [Proof of Theorem 7.3 (Multiplicity)] Assume by contradiction that (DV )

has only finitely many geometrically distinct solutions, that is, (7.23) holds. Then

Φ satisfies (Φ0)–(ΦI) by Lemmas 7.5–7.7 and 7.13. Therefore Theorem 4.7 yields an

unbounded sequence of critical values for Φ which contradicts (7.23). This proves

that (DV ) has infinitely many geometrically distinct solutions. �
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Now we turn to the

Proof. [Proof of Theorem 7.1] The main difference to the proof of Theorem 7.3

lies in the boundedness of the (C)c-sequences. We choose γ such that a < γ < b−ω
where b is from (F3), and define the finite dimensional subspace Yn ⊂ E+ as before.

We assume that (ω) and (F0) − (F4) are satisfied.

Claim 1. The conclusions of Lemmas 7.5–7.8 are true.

This can be proved as before. Next we obtain

Claim 2. Any (C)c-sequence is bounded.

In order to see this we introduce the following norm on E:

‖u‖ω =
(
‖u‖2 + ω(|u+|22 − |u−|22)

)1/2
.

With ω0 = min{a− ω, a+ ω} and using (7.10), (7.11) we have

ω0|u|22 ≤ ‖u‖2
ω and

a− |ω|
a

‖u‖2 ≤ ‖u‖2
ω ≤ a+ |ω|

a
‖u‖2 . (7.25)

Consider a (C)c-sequence (un) ⊂ E:

Φ(un) → c and (1 + ‖un‖)Φ′(un) → 0. (7.26)

It suffices to show that (‖un‖ω) is bounded. Arguing indirectly we assume that

‖un‖ω → ∞ and set vn = un/‖un‖ω. Then by the concentration compactness

principle [Lions (1984)], (vn) is either vanishing which implies |vn|p → 0 for all

p ∈ (2, 3), or it is nonvanishing. Recall that a sequence (wn) ⊂ E is vanishing if,

for each r > 0, lim
n→∞

sup
a∈R3

∫
Br(a)

|wn|2 = 0. It is nonvanishing if there are r, η > 0

and (an) ⊂ R3 such that lim sup
n→∞

∫
Br(an)

|wn|2 ≥ η. Clearly, in the nonvanishing case

we may assume (an) ⊂ Z3 by enlarging r if necessary. Therefore the proof of Claim

2 will be completed if we show that (vn) is neither vanishing nor nonvanishing.

Assume (vn) is vanishing. By definition

Φ′(un)(u
+
n − u−n ) = ‖un‖2 + ω(|u+

n |22 − |u−n |22) −
∫

R3

Fu(x, un)(u
+
n − u−n )

= ‖un‖2
ω

(
1 −

∫

R3

Fu(x, un)(v+
n − v−n )

‖un‖ω

)
,

hence by (7.26):
∫

R3

Fu(x, un)(v+
n − v−n )

‖un‖ω
→ 1.

We set

Ωn :=

{
x ∈ R

3 :
|Fu(x, un(x))|

|un(x)|
≤ ω0 − δ1

}

where δ1 is the constant from (F4). By (F4) and (7.25)∣∣∣∣
∫

Ωn

Fu(x, un)(v
+
n − v−n )

‖un‖ω

∣∣∣∣ =
∣∣∣∣
∫

Ωn

Fu(x, un)(v
+
n − v−n )|vn|

|un|

∣∣∣∣

≤ (ω0 − δ1)|vn|22 ≤ 1 − δ1
ω0

< 1
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for all n. Thus, setting Ωcn := R3 \ Ωn we obtain

lim
n→∞

∫

Ωc
n

Fu(x, un)(v
+
n − v−n )

‖un‖ω
= 1 − lim

n→∞

∫

Ωn

Fu(x, un)(v
+
n − v−n )

‖un‖ω
≥ δ1
ω0
.

By (F2) we have |Fu(x, u)| ≤ C|u| for all (x, u), so for p ∈ (2, 3):
∫

Ωc
n

Fu(x, un)(v
+
n − v−n )

‖un‖ω
≤ C

∫

Ωc
n

|vn|2 ≤ C|Ωcn|(p−2)/p|vn|2/pp .

Since |vn|p → 0, one gets |Ωcn| → ∞. Recall that F̂ (x, un) ≥ δ1 on Ωcn by (F4),

hence ∫

R3

F̂ (x, un) ≥
∫

Ωc
n

F̂ (x, un) ≥ δ1|Ωcn| → ∞.

However, it follows from (7.26) that
∫

R3 F̂ (x, un) = Φ(un)− 1
2Φ′(un)un → c, yielding

a contradiction.

Assume (vn) is nonvanishing and set ũn(x) = un(x + an), ṽn(x) = vn(x + an),

ϕn(x) = ϕ(x−an) for any ϕ ∈ C∞
0 . We then have with R(x, u) := F (x, u)− 1

2b|u|2:
Φ′(un)ϕn

= (u+
n − u−n , ϕn) + (ω − b)(un, ϕn)L2 −

∫

R3

Ru(x, un)ϕn

= ‖un‖ω
(

(v+
n − v−n , ϕn) + (ω − b)(vn, ϕn)L2 −

∫

R3

Ru(x, un)ϕn
|vn|
|un|

)

= ‖un‖ω
(
ṽ+
n − ṽ−n , ϕ) + (ω − b)(ṽn, ϕ)L2 −

∫

R3

Ru(x, ũn)ϕ
|ṽn|
|ũn|

)
.

This yields

(ṽ+
n − ṽ−n , ϕ) + (ω − b)(ṽn, ϕ)L2 −

∫

R3

Ru(x, ũn)ϕ
|ṽn|
|ũn|

→ 0.

Since ‖ṽn‖ω = ‖vn‖ω = 1, we can assume that ṽn ⇀ ṽ in E, ṽn → ṽ in L2
loc and

ṽn(x) → ṽ(x) a.e. in R3. Observe that ṽ 6= 0 because limn→∞
∫
B(0,r)

|ṽn|2 ≥ η.

Next |Ru(x, u)| ≤ C|u| implies
∣∣∣∣Ru(x, ũn)ϕ

|ṽn|
|ũn|

∣∣∣∣ ≤ C|ϕ||ṽn|,

so it follows from (F3) and the dominated convergence theorem that

(ṽ= − ṽ−, ϕ) + (ω − b)(ṽ, ϕ)L2 = 0.

This implies that Aṽ = (b− ω)ṽ, hence

−∆ṽ + a2ṽ = A2ṽ = (b− ω)2ṽ,

that is, ṽ is an eigenfunction of the operator A2 = −∆ + a2 contradicting the fact

that A2 has only continuous spectrum.

Finally, repeating the arguments of the proof of Theorem 7.3, we obtain the

desired results. �
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7.5 Super-quadratic case

In this section we prove Theorems 7.2, 7.4, and 7.5. Obviously Theorem 7.2 is a

special case of Theorem 7.4 corresponding to V (x) ≡ 0. For the proof of Theorem 7.4

we consider as before the functionals

Ψ(u) =

∫

R3

F (x, u) and Φ(u) =
1

2

(
‖u+‖2 − ‖u−‖2 + ω|u|22

)
− Ψ(u)

on E = H1/2(R3,C4) from (7.9). We choose γ > γ0 := a + |ω| + supV (R3), and

set Y0 := (Eγ − E0)L
2. We also choose a strictly increasing sequence (γn)n∈N

in σ(A) ∩ (γ0, γ) and elements en ∈ (Eγn − Eγn−1)L
2 with ‖en‖ = 1, and define

Yn := span{e1, . . . , en} and En = E−⊕Yn. Then (Yn)n∈N is an increasing sequence

of finite dimensional subspaces of E+ and

γ0|u|22 ≤ ‖u‖2 ≤ γ|u|22 for all u ∈ Y0. (7.27)

Lemma 7.14. Under (ω), (F0) − (F2) and (F5) − (F6), the following conclusions

hold:

a) Ψ is weakly sequentially lower-semicontinuous and Φ′ is weakly sequentially

continuous. For c > 0 there exists ζ > 0 such that ‖u‖ < ζ‖u+‖ for all u ∈ Φc.

b) There exists ρ > 0 such that κ := inf Φ(∂Bρ ∩ E+) > 0.

c) sup Φ(En) <∞, and there is a sequence Rn > 0 such that sup Φ(En \Bn) ≤
inf Φ(Bρ), where Bn = {u ∈ En : ‖u‖ ≤ Rn}.

Proof. a) is clear because ‖ ·‖ is equivalent to ‖ ·‖H1/2 , and H1/2(R3,C4) embeds

continuously into Lp(R3,C4) for p ∈ [2, 3], compactly into Lploc(R
3,C4) for p ∈ [1, 3).

Hypothesis (F6) yields

|Fu(x, u)| ≤ a1|u|p−1 for all |u| ≥ r,

where p := 2σ/(σ − 1) ∈ (2, 3). This together with (F2) implies that, for any ε > 0

there is Cε > 0 satisfying

F (x, u) ≤ ε|u|2 + Cε|u|p for all (x, u).

Therefore Ψ(u) ≤ ε|u|22 +Cε|u|pp ≤ C(ε‖u‖2 +Cε‖u‖p) for all u ∈ E. b) follows now

easily from

Φ(u) ≥ a− |ω|
2a

‖u‖2 − Cε‖u‖2 − CCε‖u‖p

for all u ∈ E+ and ε small.

It remains to check c). Note that, as a consequence of (F5) there is R > 0

such that F (x, u) ≥ γ|u|2 if |u| ≥ R. It is clear that sup Φ(En) < ∞. We show

that Φ(u) → −∞ as ‖u‖ → ∞, u ∈ En. Assume by contradiction that there is a

sequence (uj) in En and M > 0 satisfying ‖uj‖ → ∞ and Φ(uj) > −M . Setting
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vj = uj/‖uj‖ we have (along a subsequence) v+
j → v+ and v−j ⇀ v−. Then v+ 6= 0

because otherwise, ‖v+
j ‖ → 0 and by (7.10)

o(1) ≤ Φ(uj)

‖uj‖2
≤ 1

2

(
‖v+
j ‖2 − ‖v−j ‖2 + ω|vj |22

)

≤ a+ |ω|
2a

‖v+
j ‖2 − a− |ω|

2a
‖v−j ‖2,

which implies

a− |ω|
2a

lim sup
j→∞

‖v−j ‖2 ≤ 0,

hence 1 = ‖vj‖ → 0, a contradiction. Observe that by (7.27)

1

2

(
‖v+‖2 − ‖v−‖2 + (ω − 2γ)|v|22

)

≤ 1

2

(
‖v+‖2 − ‖v−‖2 −

(
2 − |ω|

γ

)
‖v+‖2

)

= − 1

2

(
1 +

|ω|
γ

)
‖v+‖2 − 1

2
‖v−‖2

≤ − 1

2
‖v‖2,

hence, there is a bounded domain Ω ⊂ R3 such that

1

2

(
‖v+‖2 − ‖v−‖2 + ω|v|22 − 2γ

∫

Ω

|v|2
)

≤ −1

4
‖v‖2.

It follows that
Φ(uj)

‖uj‖2
≤ 1

2

(
‖v+
j ‖2 − ‖v−j ‖2 + ω|vj |22

)
−
∫

Ω

F (x, uj)

‖uj‖2

=
1

2

(
‖v+
j ‖2 − ‖v−j ‖2 + ω|vj |22 − 2γ

∫

Ω

|vj |2
)
−
∫

Ω

F (x, uj) − γ|uj |2
‖uj‖2

≤ 1

2

(
‖v+
j ‖2 − ‖v−j ‖2 + ω|vj |22 − 2γ

∫

Ω

|vj |2
)

−
∫

Ω∩{|uj |≤R}

F (x, uj) − γ|uj |2
‖uj‖2

≤ 1

2

(
‖v+
j ‖2 − ‖v−j ‖2 + ω|vj |22 − 2γ

∫

Ω

|vj |2
)

+
CR|Ω|
‖uj‖2

,

where CR = max{F (x, u) : x ∈ Ω, |u| ≤ R}. Consequently,

0 ≤ −1

4
‖v‖2 − lim inf

j→∞
CR|Ω|
‖uj‖2

= −1

4
‖v‖2,

a contradiction. �

As a consequence of Lemma 7.14 c) we have

Lemma 7.15. Under the assumptions of Lemma 7.14, Φ|∂Q ≤ 0 where Q := {u =

u− + se1 : ‖u‖ ≤ R1, s ≥ 0}.
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Lemma 7.16. Under the assumptions of Lemma 7.14, (C)c-sequences are bounded.

Proof. See the proof of Lemma 7.9. Let (uj) ⊂ E be such that Φ(uj) → c and

(1 + ‖uj‖)Φ′(uj) → 0. We then have

C0 ≥ Φ(uj) −
1

2
Φ′(uj)uj =

∫

R3

F̂ (x, uj). (7.28)

Assume by contradiction that ‖uj‖ → ∞ and set vj = uj/‖uj‖. Then |vj |s ≤ γs
for all s ∈ [2, 3]. By definition

Φ′(uj)(u
+
j − u−j ) ≥ ‖uj‖2

(
a− |ω|
a

−
∫

R3

Fu(x, uj)(v
+
j − v−j )

‖uj‖

)
,

hence,

lim inf
j→∞

∫

R3

Fu(x, uj)(v
+
j − v−j )

‖uj‖
≥ ` :=

a− |ω|
a

. (7.29)

Let h(r), Ωj(ρ, r) and crρ be as before. Then h(r) → ∞ as r → ∞ and

F̂ (x, uj(x)) ≥ crρ|uj(x)|2 for all x ∈ Ωj(ρ, r).

It follows from (7.28) that |Ωj(b,∞)| ≤ C0/h(r) → 0 as r → ∞ uniformly in j, and,

for any fixed 0 < ρ < r,∫

Ωj(ρ,r)

|vj |2 =
1

‖uj‖2

∫

Ωj(ρ,r)

|uj |2 ≤ C0

crρ‖uj‖2
→ 0

as j → ∞.

Let 0 < ε < `/3. Firstly by (F2) take ρε > 0 small such that∫

Ωj(0,ρε)

|Fu(x, uj)|
|uj |

|vj | |v+
j − v−j | ≤ ε,

then by (F6) and Hölder inequality take rε large so that∫

Ωj (rε,∞)

|Fu(x, uj)|
|uj |

|v+
j − v−j | |vj |

≤
(∫

Ωj(rε,∞)

|Fu(x, uj)|σ
|uj |σ

)1/σ (∫

Ωj (rε,∞)

(
|v+
j − v−j | |vj |

)3/2
)2/3

|Ωj(rε,∞)|(σ−3)/3σ

≤
(∫

R3

c1F̂ (x, uj)

)1/σ (∫

R3

(
|v+
j − v−j | |vj |

)3/2
)2/3

|Ωj(rε,∞)|(σ−3)/3σ

<ε

uniformly in j. Finally choose j0 so that∫

Ωj (ρε,rε)

|Fu(x, uj)|
|uj |

|v+
j − v−j | |vj | < ε

for all j ≥ j0. Thus

lim inf
j→∞

∫

R3

Fu(x, uj)(v
+
j − v−j )

‖uj‖
< 3ε < `,

which however, contradicts (7.29). �
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Repeating the arguments of Lemmas 7.10, 7.11, 7.12 and 7.13 gives the following

Lemma 7.17. Let (ω), (F0)−(F2) and (F5)−(F6) be satisfied. Assume Φ has only

finitely many geometrically distinct critical points. Then for any interval I = [c, d] ⊂
(0,∞), Φ has a (C)I -attractor A with P+A ⊂ E+ bounded and inf {‖u+ − v+‖ :

u, v ∈ A , u+ 6= v+} > 0.

Proof. [Proof of Theorem 7.4] With X = E− and Y = E+ all conditions of

Theorem 4.3 are satisfied as a consequence of Lemmas 7.14–7.16. Therefore Φ

possesses a (C)c-sequence (um) with κ ≤ c ≤ sup Φ(Q). Using the concentration

compactness principle the invariance of Φ with respect to the Z
3-action yields a

critical point u 6= 0.

Furthermore, assume F (x, u) is also even in u. If (DV ) has only finitely many

geometrically distinct solutions, then with Lemma 7.17 we see that Φ satisfies all

hypotheses of Theorem 4.7, hence it has an unbounded sequence of positive critical

values. �

Next we turn to the

Proof. [Proof of Theorem 7.5] As before we look for critical points of the func-

tional Φ on E. According to Lemma 7.3c) the spectrum of A is purely discrete:

σ(A) = σd(A) = {±µ1/2
n : n ∈ N}. We arrange the eigenvalues of A less than −ω as

−∞ < · · · ≤ η−2 ≤ η−1 < −ω with eigenfunctions e−j : Ae−j = η−j e
−
j ,

and those larger than −ω as

−ω < η+
1 ≤ η+

2 ≤ · · · with eigenfunctions e+j : Ae+j = η+
j e

+
j .

Setting

E±
ω = clos span{e±j : j ∈ N} and E0

ω = ker(A+ ω)

we then have the decomposition

E = E−
ω ⊕E0

ω ⊕E+
ω , u = u− + u0 + u+.

We define a new inner product on E by

(u, v)ω = (|A+ ω|1/2u, |A+ ω|1/2v)L2 + (u0, v0)L2

with associated norm ‖u‖ω. Note that ‖ · ‖ω is equivalent to ‖ · ‖. It is obvious that

ω0|u|22 ≤ ‖u‖2
ω for u ∈ E−

ω ⊕E+
ω , ω0 := min{η+

1 + ω, −(η−1 + ω)} (7.30)

and that the functional Φ can be written as

Φ(u) =
1

2

(
‖u+‖2

ω − ‖u−‖2
ω

)
− Ψ(u) with Ψ(u) =

∫

R3

F (x, u).

For u =
∑

j∈N
(c−j e

−
j + c+j e

−
j ) + u0 ∈ E we have:

‖u‖2
ω =

∑

j∈N

((
η+
j + ω

)
|c+j |2 −

(
η−j + ω

)
|c−j |2

)
+ |u0|22.
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In order to apply Theorems 4.3 and 4.7 we set X = E−
ω ⊕E0

ω and Y = E+
ω .

Claim 1. Φ satisfies (Φ0), (Φ+) and (Φ2).

(Φ0) follows easily from the continuity of embedding E ↪→ H1/2(R3,C4), (Φ+)

from the form of Φ, and (Φ2) from Lemma 7.6.

Claim 2. Φ verifies (Φ4).

For n ∈ N, we define Yn := span{e+1 , . . . , e+n }. Then (7.30) implies

ω0|u|22 ≤ ‖u‖2
ω ≤ η+

n |u|22 for u ∈ Yn.

Repeating the argument of the proof of Lemma 7.14c) yields (Φ4).

Claim 3. Φ satisfies the (C)c condition for all c ≥ 0.

Let (uj) ⊂ E be a (C)c-sequence. Then (7.28) remains true in the present

case. We first verify the boundedness of (‖uj‖ω). Assume by contradiction that

‖uj‖ω → ∞ and set vj = uj/‖uj‖2
ω as before. After passing to a subsequence we

have: vj ⇀ v, v0
j → v0, ℘ := limj→∞ ‖v−j + v+

j ‖ω exists. We distinguish the two

cases: ℘ = 0 or ℘ > 0, and we write ũj = u−j + u+
j , ṽj = v−j + v+

j . If ℘ = 0 then

‖v0
j ‖ω = |v0

j |2 → 1 = |v0|2. For δ > 0 we consider the sets Ωδ = {x ∈ R3 : |v0(x)| ≥
2δ} and Ωjδ = {x ∈ R3 : |ṽj(x)| ≥ δ}. Since v0 ∈ C(R3) and |v0|2 = 1, |Ωδ| > 0

for all δ small. By (7.30)

|Ωjδ | ≤
1

δ2

∫

R3

|ṽj |2 ≤ 1

δ2ω0
‖ṽj‖2

ω → 0,

hence, |Ωδ \Ωjδ | → |Ωδ | as j → ∞. Now for x ∈ Ωδ \Ωjδ there holds |vj(x)| ≥ δ/2,

hence |uj(x)| ≥ δ
2‖uj‖ω for j ≥ jδ . From this and the definition of h(r) we obtain

∫

R3

F̂ (x, uj) ≥
∫

Ωδ\Ωjδ

F̂ (x, uj)

≥ h
(δ

2
‖uj‖ω

)
|Ωδ \Ωjδ |

→ ∞
contradicting (7.28). Next assume ℘ > 0 and observe that

Φ′(uj)(u
+
j − u−j ) = ‖uj‖2

ω

(
‖ṽj‖2

ω −
∫

R3

Fu(x, uj)(v
+
j − v−j )|vj |

|uj |2

)
,

hence
∫

R3

Fu(x, uj)(v
+
j − v−j )|vj |

|uj |
→ ℘2.

Set

Qj :=

{
x ∈ R

3 :
|Fu(x, uj(x))|

|uj(x)|
≤ ω0℘

2

2

}
and Qcj := R

3 \Qj .

Then we have ∣∣∣∣∣

∫

Qj

Fu(x, uj)(v
+
j − v−j )|vj |

|uj |

∣∣∣∣∣ ≤
℘2ω0

2
|vj |22 ≤ ℘2

2
,
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and therefore

lim
j→∞

∫

Qc
j

Fu(x, uj)(v
+
j − v−j )|vj |

|uj |
≥ ℘2

2
. (7.31)

Now repeating the arguments of the last part of the proof of Lemma 7.16 it is not

difficult to see that

lim
j→∞

∫

Qc
j

Fu(x, uj)(v
+
j − v−j )|vj |

|uj |
= 0,

contradicting (7.31). Therefore, (uj) must be bounded in E, and a standard argu-

ment (using the fact that E ↪→ Lτ (R3,C4) embeds compactly for τ ∈ [2, 3)) shows

that (uj) has a convergent subsequence in E.

In conclusion, Φ satisfies the conditions of Theorem 4.3. If F is even in u ∈
C4 then it satisfies the conditions of Theorem 4.7. This completes the proof of

Theorem 7.5. �

7.6 More general external fields

The contents of this and the next section are chosen from the work of [Ding and Ruf

(2006)]. In the present section we consider the equation (7.3) with more general

vector potentials. We rewrite for convenience (7.3) in the form

−i
3∑

k=1

αk∂ku+ aβu+M(x)u = Ru(x, u), (P)

where a = mc > 0 and M(x) =
(
mjk(x)

)
is a 4× 4 symmetric real matrix function

defined almost everywhere on R3, that is, mjk(x) = mkj(x) ∈ R for j, k = 1, 2, 3, 4

and a.e. x ∈ R3, such that

A := H0 +M with H0 := −i
3∑

k=1

αk∂k + aβ

is a selfadjoint operator in L2(R3,C4).

To treat the nonlinear problem, it is crucial to have information about the

spectrum of the linearized operator A in the origin. Our assumptions will guarantee

that A has a spectral gap around the origin, and that there exist a finite number

(or infinitely many) eigenvalues in the spectral gap. We are mainly interested in the

potentials M(x) which either are of Coulomb-type, i.e. tend to 0 as |x| → ∞ and

are singular at the origin (e.g. the Coulomb potential κ/|x|), or have the property

that for some b > 0 the measure of the sublevel set Ωb of βM(x) is finite (i.e

|Ωb| = |{x ∈ R3 : βM(x) < b}| <∞).

We will consider nonlinearities Ru(x, u) which are asymptotically linear, i.e.

Ru(x, u) = Q(x)u+ o(|u|) for |u| → ∞, where Q(x) is a continuous and symmetric

4 × 4-matrix-function. We assume that q0 := infxQmin(x) > 0 where Qmin(x)
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denotes the minimal eigenvalue of Q(x). Furthermore, we assume that Ru(x, u) =

o(|u|) for u near 0, that q∞ := lim sup|x|→∞Qmax(x) lies in the spectral gap where

Qmax(x) denotes the maximal eigenvalue ofQ(x), and that between 0 and q0 lie some

eigenvalues of A. We recall that such type of nonlinearities have been introduced

by [Amann and Zehnder (1980)] in other contexts.

7.6.1 Main results

Precisely we suppose that R(x, u) satisfies

(R1) R(x, u) ≥ 0 and Ru(x, u) = o(|u|) as u→ 0 uniformly in x;

(R2) Ru(x, u)−Q(x)u = o(|u|) uniformly in x as |u| → ∞, where Q is a continuous

symmetric 4 × 4 real matrix function;

(R3) Either (i) 0 6∈ σ(A − Q), or (ii) R̃(x, u) ≥ 0 and there exist δ0, ν0 > 0 such

that R̃(x, u) ≥ δ0 if |u| ≥ ν0;

(R4) q0 := inf Qmin(x) > inf σ(A) ∩ (0,∞).

Here (and below) we denote by σ(B) the spectrum of an operator B, and we write

R̃(x, u) :=
1

2
Ru(x, u) · u− R(x, u)

(u · v or uv denotes the scalar product of C4). For convenience any real function

U(x) will be regarded as the symmetric matrix U(x)I4 where I4 denotes the 4 × 4

identity matrix. For two given symmetric 4 × 4 real matrix functions L1(x) and

L2(x), we write that L1(x) ≤ L2(x) if and only if

max
ξ∈C4,|ξ|=1

(L1(x) − L2(x)) ξ · ξ̄ ≤ 0.

Set

q∞ := lim sup
|x|→∞

(
sup
u

|Ru(x, u)|
|u|

)
.

First we consider the Coulomb type potential

(M1) M is a continuous symmetric real 4×4-matrix function on R3 \ {0}, and 0 ≥
M(x) ≥ − κ

|x| where κ <
√

3
2 .

It is known that the corresponding operator A is selfadjoint with domain D(A) =

H1(R3,C4) and σe(A) = R \ (−a, a), σd(A) ∩ (0, a) 6= ∅ where σe(A) denotes the

essential spectrum and σd(A) the eigenvalues of finite multiplicity (cf. [Griesemer

and Siedentop (1999)], [Thaller (1992)]). We assume in addition to (R1)−(R4) that

(R5) q∞ < a.

Involving (R4) let ` be the number of elements of (0, q0) ∩ σ(A). We are going to

prove the following result.
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Theorem 7.6 ([Ding and Ruf (2006)]). Assume that (M1) and (R1)-(R5) hold.

Then (P) has at least one solution. If additionally Ru(x, u) is odd in u ∈ C4 then

(P) has ` pairs of solutions.

Next we consider the problem (P) with the matrix potential M(x) satisfying

(M2) M ∈ L∞(R3,R4×4), and there is b > 0 such that |Ωb| < ∞ where Ωb := {x ∈
R3 : βM(x) < b}.

Here we write |S| for the Lebesgue measure of S ⊂ R
3. We define the number

bmax := sup{b : |Ωb| <∞}. Assume instead of (R5) that

(R̂5) q∞ < a+ bmax.

Theorem 7.7 ([Ding and Ruf (2006)]). Assume that (M2), (R1)-(R4) and

(R̂5) hold. Then (P) has at least one solution. If additionally Ru(x, u) is odd

in u ∈ C4 then (P) has ` pairs of solutions.

7.6.2 Variational arguments

We begin with a slight general situation. Throughout the subsection we always

assume that the matrix M(x) is such that A = H0 +M is a self-adjoint operator on

L2(R3,C4) with domain D(A) ⊂ H1(R3,C4), and consider the equation (P) with

R(x, u) satisfying (R1)-(R4).

Let

µ−
e := sup (σe(A) ∩ (−∞, 0)) , µ+

e := inf (σe(A) ∩ (0,∞)) ,

and µe := min{−µ−
e , µ

+
e }. We assume

(A0) µ
−
e < 0 < µ+

e ;

(R0) q∞ < µe.

We are going to prove the following result.

Theorem 7.8. Assume that (R1)-(R4), (A0) and (R0) hold. Then (P) has at least

one solution. If additionally Ru(x, u) is odd in u ∈ C4 then (P) has ` pairs of

solutions.

The assumption (A0) induces an orthogonal decomposition of L2(R3,C4):

L2 = L− ⊕ L0 ⊕ L+, u = u− + u0 + u+

so that A is negative definite (resp. positive definite) in L− (resp. L+) and L0 =

kerA. Let P± : L2 → L± and P 0 : L2 → L0 denote the associated projectors.

Let E := D(|A|1/2) be the domain of the self-adjoint operator |A|1/2 which is a

Hilbert space equipped with the inner product

(u, v) := (|A|1/2u, |A|1/2v)L2 + (P 0u, P 0v)L2
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and the induced norm ‖u‖ = (u, u)1/2. E possesses the following decomposition

E = E− ⊕E0 ⊕E+ with E± = E ∩ L± and E0 = L0,

orthogonal with respect to both (·, ·)L2 and (·, ·) inner products.

Lemma 7.18. E embeds continuously in H1/2(R3,C4), hence it embeds continu-

ously in Lp(R3,C4) for all p ∈ [2, 3] and compactly in Lploc(R
3,C4) for all p ∈ [1, 3).

Proof. See the proof of Lemma 5.11. Observe that the norm ‖u‖H1 of H1 is

equivalent to the one given by ||H0|u|2 where as usual |H0| denotes the absolute

value of H0. Hence by interpolation theory the norm ‖u‖H1/2 of H1/2 is equivalent

to the one given by ||H0|1/2u|2.
Remark that the assumption (A0) implies that 0 is at most an isolate eigenvalue

of finite multiplicity of A. Define the (strictly) positive selfadjoint operator acting

in L2:

Ã = |A| + P 0 with D(Ã) = D(A).

D(A) is a Hilbert space with the norm

‖u‖A := |Ãu|2 =
(
||A|u|22 + |P 0u|22

)1/2

and, as in the proof of Lemma 5.10 it is easy to check that, since D(A) ⊂ H1,

‖u‖H1 ≤ c1‖u‖A for all u ∈ D(A).

Therefore, by interpolation theory (cf. [Triebel (1978)]),

‖u‖1/2 ≤ c2||H0|1/2u|2 ≤ c3|Ã1/2u|2 = c3‖u‖
for all u ∈ E. �

For further requirements we fix arbitrarily a positive number γ with

q∞ < γ < µe. (7.32)

Let n be the number of the eigenvalues in the interval [−γ, γ]. We write ηj and

fj (1 ≤ i ≤ n) for the eigenvalues and eigenfunctions. Setting

Ld := span{f1, · · · , fn},
we have another orthogonal decomposition

L2 = Ld ⊕ Le, u = ud + ue.

Correspondingly, E has the decomposition:

E = Ed ⊕Ee with Ed = Ld and Ee = E ∩ Le,
orthogonal with respect to both the inner products (·, ·)L2 and (·, ·).

We define on E the following functional

Φ(u) :=
1

2

(
‖u+‖2 − ‖u−‖2

)
− Ψ(u) with Ψ(u) :=

∫

R3

R(x, u).
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Remark that by assumptions (R1)-(R2) and (R0), given p ∈ (2, 3], for any ε > 0,

there is Cε > 0 such that

|Ru(x, u)| ≤ ε|u| + Cε|u|p−1 (7.33)

and

R(x, u) ≤ ε|u|2 + Cε|u|p (7.34)

for all (x, u). Thus Φ ∈ C1(E,R) and a standard argument shows that critical

points of Φ are weak solutions of (P). Moreover, by [Esteban and Séré (1995)], such

solutions are in W 1,s(R3,C4) for all s ≥ 2 (see also [Bartsch and Ding (2006II)]).

Lemma 7.19. Let (R1)-(R2), (A0) and (R0) be satisfied. Then Ψ is weakly sequen-

tially lower semicontinuous and Φ′ is weakly sequentially continuous. Moreover,

there is ζ > 0 such that for any c > 0:

‖u‖ < ζ‖u+‖ for all u ∈ Φc. (7.35)

Proof. The first conclusion follows easily because E ↪→ H1/2(R3,C4), so E em-

beds continuously into Lq(R3,C4) for q ∈ [2, 3] and compactly into Lqloc(R
3,C4) for

q ∈ [1, 3). For showing (7.35) we adopt an argument of [Ding and Jeanjean (2007)].

Arguing indirectly assume by contradiction that for some c > 0 there is a sequence

un ∈ Φc and ‖un‖2 ≥ n‖u+‖2. This, jointly with the form of Φ, yields that

‖u−n + u0
n‖2 ≥ (n− 1)‖u+‖2 ≥ (n− 1)

(
2c+ ‖u−n ‖2 + 2

∫

R3

R(x, un)

)
,

or

‖u0
n‖2 ≥ (n− 1)2c+ (n− 2)‖u−n ‖2 + 2(n− 1)

∫

R3

R(x, un).

Since c > 0 and R(x, u) ≥ 0, it follows that ‖u0
n‖ → ∞, hence ‖un‖ → ∞. Set

wn = un/‖un‖. We have ‖w+
n ‖2 ≤ 1/n→ 0. By

1 ≥ ‖w0
n‖2 ≥ (n− 1)2c

‖un‖2
+ (n− 2)‖w−

n ‖2 + 2(n− 1)

∫

R3

R(x, un)

‖un‖2
,

we also have ‖w−
n ‖2 ≤ 1/(n−2) → 0. Therefore, wn → w = w0 in E and ‖w0‖ = 1.

By (R2) we set

r(x, u) := R(x, u) − 1

2
Q(x)u · u. (7.36)

Then |r(x, u)|/|u|2 → 0 as |u| → ∞ uniformly in x. Particularly |r(x, u)| ≤ c1|u|2.
Observe that |un(x)| → ∞ for w(x) 6= 0. Therefore,∫

R3

r(x, un)

‖un‖2
=

∫

w(x)6=0

r(x, un)

|un|2
|wn|2 +

∫

w(x)=0

r(x, un)

|un|2
|wn − w|2

≤ 2

∫

w(x)6=0

|r(x, un)|
|un|2

|w|2 + 2c1|wn − w|22 → 0.

This implies
1

2(n− 1)
≥
∫

R3

R(x, un)

‖un‖2
=

1

2

∫

R3

Q(x)wn · wn +

∫

R3

r(x, un)

‖un‖2

≥ q0
2
|wn|22 + o(1),

consequently, w0 = 0, a contradiction. �
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Lemma 7.20. Under the assumptions of Lemma 7.19, there is ρ > 0 such that

κ := inf Φ(∂Bρ ∩ E+) > 0.

Proof. Choosing p ∈ (2, 3), it follows from (7.34),

Ψ(u) ≤ ε|u|22 + Cε|u|pp ≤ C(ε‖u‖2 + Cε‖u‖p)
for all u ∈ E. The desired conclusion now follows easily. �

In the following, we arrange all the eigenvalues (counted in multiplicity) of A

in (0, q0) by 0 < µ1 ≤ µ2 ≤ ... ≤ µ` < q0 and let ej denote the corresponding

eigenfunctions: Aej = µjej for j = 1, ..., `. Set Y0 := span{e1, ..., e`}. Note that

µ1|w|22 ≤ ‖w‖2 ≤ µ`|w|22 for all w ∈ Y0. (7.37)

For any subspace F of Y0 set EF = E− ⊕E0 ⊕ F .

Lemma 7.21. Let (R1), (R2), (R4), (A0) and (R0) be satisfied. Then for any

subspace F of Y0, supΦ(EF ) <∞, and there is RF > 0 such that Φ(u) < inf Φ(Bρ)

for all u ∈ EF with ‖u‖ ≥ RF .

Proof. Clearly, it is sufficient to check that Φ(u) → −∞ as u ∈ EF , ‖u‖ → ∞.

Arguing indirectly, assume that for some sequence uj ∈ EF with ‖uj‖ → ∞, there

is c > 0 such that Φ(uj) ≥ −c for all j. Then, setting wj = uj/‖uj‖, we have

‖wj‖ = 1, wj ⇀ w, w−
j ⇀ w−, w0

j → w0, w+
j → w+ ∈ Y0 and

− c

‖uj‖2
≤ Φ(uj)

‖uj‖2
=

1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫

R3

R(x, uj)

‖uj‖2
. (7.38)

Remark that w+ 6= 0. Indeed, if not then it follows from (7.38) that

0 ≤ 1

2
‖w−

j ‖2 +

∫

R3

R(x, uj)

‖uj‖2
≤ 1

2
‖w+

j ‖2 +
c

‖uj‖2
→ 0,

in particular, ‖w−
j ‖ → 0, hence wj → w = w0. Since r(x, u)/|u|2 → 0 uniformly in

x as |u| → ∞ and |uj(x)| → ∞ if w(x) 6= 0, we have∫

R3

r(x, uj)

‖uj‖2
=

∫

R3

r(x, uj)

|uj |2
|wj |2

≤ 2

∫

R3

|r(x, uj)|
|uj |2

|wj − w|2 + 2

∫

R3

|r(x, uj)|
|uj |2

|w|2

= o(1) + 2

∫

w(x)6=0

|r(x, uj)|
|uj |2

|w|2 = o(1)

and
1

2

∫

R3

Q(x)uj · uj
‖uj‖2

=
1

2

∫

R3

Q(x)uj · uj
|uj |2

|wj |2 ≥ q0
2
|wj |22

It then follows from
∫

R3

R(x,uj)
‖uj‖2 → 0 that |wj |2 → 0, consequently 1 = ‖wj‖ → 0, a

contradiction. Now since

‖w+‖2 − ‖w−‖2 −
∫

R3

Q(x)w · w ≤ ‖w+‖2 − ‖w−‖2 − q0|w|22

≤ −
(
(q0 − µ`)|w+|22 + ‖w−‖2 + q0|w0|22

)
< 0,
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there is d > 0 such that

‖w+‖2 − ‖w−‖2 −
∫

Bd

Q(x)w · w < 0. (7.39)

Since |r(x, u)| ≤ c1|u|2 it follows from the fact |wj − w|L2(Bd) → 0 that

lim
j→∞

∫

Bd

r(x, uj)

‖uj‖2
= lim

j→∞

∫

Bd

r(x, uj)|wj |2
|uj |2

= 0.

Thus (7.38) and (7.39) imply that

0 ≤ lim
j→∞

(
1

2
‖w+

j ‖2 − 1

2
‖w−

j ‖2 −
∫

Bd

R(x, uj)

‖uj‖2

)

≤ 1

2

(
‖w+‖2 − ‖w−‖2 −

∫

Bd

Q(x)w · w
)
< 0,

a contradiction. �

As a special case we have

Lemma 7.22. Under the conditions of Lemma 7.21, letting e ∈ Y0 with ‖e‖ = 1,

there is r0 > 0 such that supΦ(∂Q) = 0 where Q := {u = u− +u0 + se : u− +u0 ∈
E− ⊕E0, s ≥ 0, ‖u‖ ≤ r0}.

We now discuss the Cerami condition. We adapt an argument of [Ding and

Jeanjean (2007)] (see also [Ding and Szulkin (2007)]). Remark that by (R0) and

(7.36), given γ0 ∈ (q∞, γ), there exists t0 > 0 large so that

sup
u

|Ru(x, u)|
|u| < γ0 if |x| ≥ t0. (7.40)

Set

I0 := {x ∈ R
3 : |x| < t0} and Ic0 := R

3 \ I0.

Lemma 7.23. Let (R1)-(R4), (R0) and (A0) be satisfied. Then any (C)c-sequence

is bounded.

Proof. Let (uj) ⊂ E be such that

Φ(uj) → c and (1 + ‖uj‖)Φ′(uj) → 0.

Then

C0 ≥ Φ(uj) −
1

2
Φ′(uj)uj =

∫

R3

R̃(x, uj) . (7.41)

Arguing indirectly we assume that, up to a subsequence, ‖uj‖ → ∞ and set

vj = uj/‖uj‖. Then ‖vj‖ = 1, |vj |s ≤ Cs‖vj‖ = Cs for all s ∈ [2, 3], and passing

to a subsequence if necessary, vj ⇀ v in E, vj → v in Lsloc for all s ∈ [1, 3),

vj(x) → v(x) for a.e. x ∈ R3. Since, by (R2), |Ru(x, u)| ≤ c1|u| and |uj(x)| → ∞ if

v(x) 6= 0, it is easy to see that
∫

R3

Ru(x, uj(x))vjϕ(x)

|uj(x)|
→
∫

R3

Q(x)vϕ
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for all ϕ ∈ C∞
0 (R3,C4), hence

Av = Q(x)v. (7.42)

We claim that v 6= 0. Arguing by contradiction assume v = 0. Then vdj → 0 in

E and vj → 0 in Lsloc. Observe that

Φ′(uj)(u
e+
j − ue−j )

‖uj‖2
= ‖vej‖2 −

∫

R3

Ru(x, uj)

|uj |
(ve+j − ve−j )|vj |. (7.43)

It follows from (7.43) and (7.40) that

‖vej‖2 =

∫

I0

Ru(x, uj)

|uj |
(ve+j − ve−j )|vj |

+

∫

Ic
0

Ru(x, uj)

|uj |
(ve+j − ve−j )|vj | + o(1)

≤ c1

∫

I0

|vj ||ve+j − ve−j | + γ0

∫

Ic

|vj ||ve+j − ve−j | + o(1)

≤ o(1) + γ0|vej |22
≤ o(1) +

γ0

γ
‖vej‖2

hence
(
1 − γ0

γ

)
‖vej‖2 → 0, which implies that 1 = ‖vj‖2 = ‖vdj ‖2 + ‖vej‖2 → 0, a

contradiction.

Therefore, v 6= 0, This is a contradiction if (i) of (R4) is satisfied.

Assume (ii) of (R4) is satisfied. Set Ωj(r,∞) := {x ∈ R
3 : |uj(x)| ≥ r} for

r ≥ 0. By assumption R̃(x, u) ≥ δ0 if |u| ≥ ν0, hence, |Ωj(ν0,∞)| ≤ C0/δ0 by

(7.41). Note that v is a solution of (7.42). Set Ω := {x : v(x) 6= 0}. By the

weak unique continuation property for Dirac operator one has |Ω| = ∞ (cf. [Booss-

Bavnbej (2000)]). There exist ε > 0 and ω ⊂ Ω such that |v(x)| ≥ 2ε for x ∈ ω

and 2C0/δ0 ≤ |ω| < ∞. By an Egoroff’s theorem we can find a set ω′ ⊂ ω with

|ω′| > C0/δ0 such that vj → v uniformly on ω′. So for almost all j, |vj(x)| ≥ ε and

|uj(x)| ≥ ν0 in ω′. Then

C0

ν0
< |ω′| ≤ |Ωj(ν0,∞)| ≤ C0

ν0
,

a contradiction. The proof hereby is completed. �

In the following lemma we discuss further the (C)c-sequence (uj) ⊂ E. By

Lemma 7.22 it is bounded, hence, we may assume without loss of generality that

uj ⇀ u in E, uj → u in Lqloc for q ∈ [1, 3) and uj(x) → u(x) a.e. in x. Plainly u is

a critical point of Φ.

Choose p ∈ (2, 3) such that |Ru(x, u)| ≤ |u| + C1|u|p−1 for all (x, u), and let q

stands for either 2 or p. Set Bd := {x ∈ R3 : |x| ≤ d} for d > 0. As (7.20) we have:

along a subsequence, for any ε > 0, there exists rε > 0 such that

lim sup
n→∞

∫

Bn\Br

|ujn |q ≤ ε (7.44)
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for all r ≥ rε. Let η : [0,∞) → [0, 1] be a smooth function satisfying η(s) = 1 if

s ≤ 1, η(s) = 0 if s ≥ 2. Define ũn(x) = η(2|x|/n)u(x) and set hn := u− ũn. Since

u solves (P), we have by definition that hn ∈ H1 and

‖hn‖ → 0 and |hn|p → 0 as n→ ∞ (7.45)

for p ∈ [2, 3]. In addition we have

Lemma 7.24. Under the conditions of Lemma 7.23 we have

lim
n→∞

∣∣∣∣
∫

R3

(Ru(x, ujn) −Ru(x, ujn − ũn) −Ru(x, ũn))ϕ

∣∣∣∣ = 0

uniformly in ϕ ∈ E with ‖ϕ‖ ≤ 1.

Proof. Note that (7.44), (7.45) and the compactness of Sobolev embeddings imply

that, for any r > 0,

lim
n→∞

∣∣∣∣
∫

Br

(Ru(x, ujn) −Ru(x, ujn − ũn) −Ru(x, ũn))ϕ

∣∣∣∣ = 0

uniformly in ‖ϕ‖ ≤ 1. For any ε > 0 let rε > 0 so large that (7.44) holds. Then

lim sup
n→∞

∫

Bn\Br

|ũn|q ≤
∫

R3\Br

|u|q ≤ ε

for all r ≥ rε. Using (7.44) for q = 2, p we have

lim sup
n→∞

∣∣∣∣
∫

R3

(Ru(x, ujn) −Ru(x, ujn − ũn) −Ru(x, ũn))ϕ

∣∣∣∣

= lim sup
n→∞

∣∣∣∣∣

∫

Bn\Br

(Ru(x, ujn) −Ru(x, ujn − ũn) −Ru(x, ũn))ϕ

∣∣∣∣∣

≤ c1 lim sup
n→∞

∫

Bn\Br

(|ujn | + |ũn|) |ϕ|

+ c2 lim sup
n→∞

∫

Bn\Br

(
|ujn |p−1 + |ũn|p−1

)
|ϕ|

≤ c1 lim sup
n→∞

(
|ujn |L2(Bn\Br) + |ũn|L2(Bn\Br)

)
|ϕ|2

+ c2 lim sup
n→∞

(
|ujn |p−1

Lp(Bn\Br) + |ũn|p−1
Lp(Bn\Br)

)
|ϕ|p

≤ c3ε
1/2 + c4ε

(p−1)/p,

which implies the conclusion as required. �

Lemma 7.25. Under the conditions of Lemma 7.23, one has along a subsequence:

1) Φ(ujn − ũn) → c− Φ(u);

2) Φ′(ujn − ũn) → 0.
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Proof. One has

Φ(ujn − ũn) = Φ(ujn) − Φ(ũn)

+

∫

R3

(R(x, ujn) −R(x, ujn − ũn) −R(x, ũn)) .

Using (7.44) it is not difficult to check that

∫

R3

(R(x, ujn) −R(x, ujn − ũn) −R(x, ũn)) → 0.

This, together with the facts Φ(ujn) → c and Φ(ũn) → Φ(u), gives 1).

To verify 2), observe that, for any ϕ ∈ E,

Φ′(ujn − ũn)ϕ = Φ′(ujn)ϕ− Φ′(ũn)ϕ

+

∫

R3

(
Ru(x, ujn) −Ru(x, ujn − ũn) −Ru(x, ũn)

)
ϕ.

By Lemma 7.24 we get

lim
n→∞

∫

R3

(
Ru(x, ujn) −Ru(x, ujn − ũn) −Ru(x, ũn)

)
ϕ = 0

uniformly in ‖ϕ‖ ≤ 1, proving 2). �

Lemma 7.26. Under the conditions of Lemma 7.23, Φ satisfies the (C)c condition.

Proof. In the following we will utilize the decomposition E = Ed ⊕ Ee. Recall

that dim(Ed) <∞. Write

yn := ujn − ũn = ydn + yen.

Then ydn = (udjn − ud) + (ud − ũdn) → 0 and, by Lemma 7.25, Φ(yn) → c −
Φ(u), Φ′(yn) → 0. Set ȳen = ye+n − ye−. Observe that

o(1) = Φ′(yn)ȳen = ‖yen‖2 −
∫

R3

Ru(x, yn)ȳen. (7.46)

It follows from (7.46) that

‖yen‖2 ≤ o(1) +

∫

I0

|Ru(x, yn)|
|yn|

|yn||ȳen| +
∫

Ic
0

|Ru(x, yn)|
|yn|

|yn||ȳen|

≤ o(1) + c1

∫

I0

|yn||ȳen| + γ0

∫

Ic
0

|yn||ȳen|

≤ o(1) + γ0|yen|22 ≤ o(1) +
γ0

γ
‖yen‖2,

hence (1 − γ0/γ)‖yn‖ ≤ o(1), i.e., yn → 0, finishing the proof. �
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7.6.3 Proof of Theorem 7.8

In order to prove Theorem 7.8 we apply Theorems 4.5 and 4.6. Set X = E− ⊕ E0

and Y = E+ with u = x + y, x = u− + u0, y = u+ for u ∈ E. Then X is

separable and reflexive and so is X∗. We may assume S is countable and dense

in X∗. Therefore, TS is metrizable so its convergence is equivalent to sequentially

convergence.

Proof. [Proof of Theorem 7.8] (Existence). Observe that if c > 0 and un ∈ Φc
with un = xn + yn → u = x + y in TS then yn → y in norm. (7.35) then implies

‖un‖ is bounded, consequently, un ⇀ u. Thus by Lemma 7.19

c ≤ lim
n→∞

Φ(un) ≤
1

2
‖y‖2 − 1

2
‖u−‖2 − Ψ(u) = Φ(u)

which proves that Φc is TS closed. Lemma 7.19 implies also that Φ′(un)v → Φ′(u)v
for all v ∈ E, that is, Φ′ : (Φc, TS) → (E∗, w∗) is continuous. Thus Φ verifies (Φ0).

Lemma 7.19 implies also (Φ+). Lemmas 7.20 and 7.21 show that Φ possesses the

linking structure of Theorem 4.5. Final, Φ satisfies the (C)c-condition by virtue of

Lemma 7.26. Therefore, Φ has at least one critical point u with Φ(u) ≥ κ > 0.

(Multiplicity). Assume moreover R(x, u) is even in u. Then Φ is even, hence

satisfies (Φ1). Lemma 7.20 is nothing but (Φ2). Lemma 7.21 says that Φ satisfies

(Φ3) with dimY0 = `. Therefore, Φ has at least ` pairs of nontrivial critical points

by Theorem 4.6. �

7.6.4 Proofs of Theorems 7.6 and 7.7

We now turn to the proofs of Theorems 7.6 and 7.7.

Proof. [Proof of Theorem 7.6] Assume (M1) holds. Then one has µ−
e = −a and

µ+
e = a. Now Theorem 7.8 applies. �

Remark 7.2. Similarly, one can get existence and multiplicity results of solutions

to (P) if the Coulomb potential is replaced by the electrostatic potential M(x) =

γφelI4 where γ is a positive constant and φel is a real function satisfying, e.g.,

(M̂1) φel ∈ L3(R3) ∩ L3/2(R3), φel(x) ≤ 0,

see [Thaller (1992)]. Another typical example is

H = H0 +
γ

1 + |x|2
which has finitely many eigenvalues in (−mc2,mc2) if γ < 1/8m and infinitely many

eigenvalues for γ > 1/8m.

For proving Theorem 7.7 we first establish the following result.

Lemma 7.27. Assume that (M2) is satisfied. Then

σe(A) ⊂ R \ (−(a+ bmax), (a+ bmax)),

that is, µ−
e ≤ −(a+ bmax) and µ+

e ≥ (a+ bmax).
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Proof. Let b > 0 be such that |Ωb| <∞. Set

(βM(x) − b)+ :=

{
βM(x) − b if βM(x) − b ≥ 0

0 if βM(x) − b < 0

and (βM(x)−b)− := (βM(x)−b)−(βM(x)−b)+. We have A = A1+β(βM(x)−b)−
where

A1 = −i
3∑

k=1

αk∂k + (a+ b)β + β(βM(x) − b)+.

Since β2 = I and βαj = −αjβ, we have, for u ∈ D(A),

(A1u,A1u)L2

=
∣∣∣
(
−i
∑

αk∂k + β(βM − b)+ + (a+ b)β
)
u
∣∣∣
2

2

=
∣∣∣
(
−i
∑

αk∂k + β(βM − b)+
)
u
∣∣∣
2

2
+ (a+ b)2|u|22

+
(
−i
∑

αk∂ku, (a+ b)βu
)
L2

+
(
(a+ b)βu, −i

∑
αk∂ku

)
L2

+
(
β(βM − b)+u, (a+ b)βu

)
L2 +

(
(a+ b)βu, β(βM − b)+u

)
L2

=
∣∣∣
(
−i
∑

αk∂k + β(βM − b)+)u
)
u
∣∣∣
2

2
+ (a+ b)2|u|22

+ 2(a+ b)
(
(βM − b)+u, u

)
L2

≥ (a+ b)2|u|22 .
Thus σ(A1) ⊂ R \ (−(a+ b), (a+ b)).

We claim that σe(A) ∩ (−(a + b), (a + b)) = ∅. Assume by contradiction that

there is µ ∈ σe(A) with |µ| < a + b. Let un ∈ D(A) with |un|2 = 1, un ⇀ 0 in L2

and |(A− µ)un|2 → 0. Then ‖un‖H1 is bounded and hence |β(βM − b)−un|2 → 0.

We get

o(1) = |(A− µ)un|2 = |A1un − µun + β(βM − b)−un|2
≥ |A1un|2 − |µ| − o(1)

≥ (a+ b) − |µ| − o(1)

which implies that 0 < (a+ b) − |µ| ≤ 0, a contradiction.

Since the claim keeps true for any b > 0 with |Ωb| < ∞, one sees that σe(A) ⊂
R \ (−(a+ bmax), (a+ bmax)). �

Remark 7.3. Form the proof of Lemma 7.27 one sees that if (M2) is replaced by

the stronger one

(M̂2) |Ωb| <∞ for any b > 0,

then σ(A) = σd(A), that is, the Dirac operator A has only eigenvalues of finite

multiplicity.
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It follows from Lemma 7.27 that 0 is at most an isolated eigenvalue of finite

multiplicity of A. Letting Ã = |A| + P 0 as before one sees that |u|2 ≤ c1|Ãu|2,
consequently, jointly with the assumption that M ∈ L∞ by (M2),

|H0u|2 ≤ |Au|2 + |Mu|2 ≤ |Au|2 + |M |∞|u|2 ≤ |Ãu|2.
This implies that D(A) ⊂ H1. On the other hand, it follows from

|Ãu|2 ≤ |H0u|2 + |Mu|2 + |P 0u|2 ≤ c2|H0u|2
that H1 ⊂ D(A). Therefore, D(A) = H1.

We now can give the following

Proof. [Proof of Theorem 7.7] Lemma 7.27 implies (A0), hence Theorem 7.8

applies and yields the desired conclusions. �

7.7 Semiclassical solutions

Finally we consider the Dirac equation (7.2). A family u~, ~ → 0, of solutions

of (7.2) will be called semiclassical solutions. The semiclassical point of view is

important for studying Dirac operators and the semiclassical methods are employed

in treating Dirac equation problems, see p. 308 in [Thaller (1992)] and the references

therein. We are interested in the potential of the typeM(x) = V (x)β (i.e., the scalar

potential, cf. [Thaller (1992)]). For convenience we rewrite the equation in the form

−ε2
3∑

k=1

iαk∂ku+ (a+ V (x))βu = Ru(x, u) (Pε)

(ε2 := ~) where V is a real function satisfying

(V ) V ∈ L2
loc(R

3,R), and there are x0 ∈ R3 and b > 0 such that V (x0) ≤ 0 and

|Ωb| <∞ where Ωb := {x ∈ R3 : V (x) < b}.

Assume the nonlinearity R(x, u) satisfies (R1)-(R3) and (R̂5). We are going to

establish the following result:

Theorem 7.9 ([Ding and Ruf (2006)]). Let (V ), (R1)-(R3) and (R̂5) be satis-

fied. Assume q0 > a. Then there is E0 > 0 such that (Pε) has at least one solution

for each ε ∈ (0, E0). If additionally Ru(x, u) is odd in u ∈ C4 then for each m ∈ N

there is Em > 0 such that (Pε) has m solutions for each ε ∈ (0, Em).

We note that in this theorem we assume only that q0 > a which is weaker than

(R4).

Obverse that, by dividing ε2 and setting λ = 1/ε2 in the equation (Pε), we have

the following equivalent problem:

−i
3∑

k=1

αk∂ku+ λ(a+ V (x))βu = λRu(x, u). (Pλ)
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We are led to study the existence and multiplicity of solutions of (Pλ) for λ → ∞.

Therefore, we will prove the following theorem.

Theorem 7.10. Let (V ), (R1)-(R3) and (R̂5) be satisfied. Assume q0 > a. Then

there is Λ0 > 0 such that (Pλ) has at least one solution for each λ ≥ Λ0. If

additionally Ru(x, u) is odd in u ∈ C4 then for each m ∈ N there is Λm > 0 such

that (Pλ) has m solutions for each λ ≥ Λm.

For getting this result we will apply Theorem 7.8. For distinguishability we

write Aλ = −i∑3
k=1 αk∂k +λ(a+V )β instead of A. Note that the assumption (V )

implies that the matrix λβV satisfies (M2). Therefore by Lemma 7.27 we have the

following result.

Lemma 7.28. Assume that (V ) holds. Then

σe(Aλ) ⊂ R \ (−λ(a+ bmax), λ(a+ bmax)) .

By virtue of this lemma the space L2 has the orthogonal decomposition: L2 =

L−
λ ⊕ L0

λ ⊕ L+
λ such that Aλ is negative (resp. positive) definite on L−

λ (resp. on

L+
λ ), and L0

λ = kerAλ. We can define Eλ = D(|Aλ|1/2) equipped with the inner

product

(u, v)λ := (|A|1/2λ u, |A|1/2λ v)L2 + (P 0
λu, P

0
λv)L2

and the induced norm ‖u‖λ = (u, u)
1/2
λ , where P 0

λ : L2 → L0
λ denotes the orthogonal

projector. Eλ embeds continuously into H1/2(R3,C4). Hence Eλ embeds continu-

ously into Lp for all p ∈ [2, 3] and compactly into Lploc for all p ∈ [1, 3). Moreover,

Eλ possesses the following decomposition

Eλ = E−
λ ⊕E0

λ ⊕E+
λ ,

orthogonal with respect to both (·, ·)L2 and (·, ·)λ inner products. On Eλ we define

the functional

Φλ(u) :=
1

2
‖u+‖2

λ −
1

2
‖u−‖2

λ − λ

∫

R3

R(x, u).

Then Φλ ∈ C1(Eλ,R) and its critical points are solutions of (Pλ).
We now prove

Lemma 7.29. Assume that (V ) holds. Then for any m ∈ N there is Λm > 0 such

that Aλ has at least m eigenvalues (counted in multiplicity) lying in (0, λq0) for each

λ ∈ [Λm, ∞).

We will establish this lemma constructively. Observe that since σe(Aλ) ⊂ R \
(−λ(a + bmax), λ(a + bmax)), it is sufficient to show that there exist m linearly

independent elements ϕ ∈ E+
λ with |ϕ|2 = 1 and ‖ϕ‖λ < λq0. By assumption,

q0 > a. Given

0 < θ < min

{
q0 − a

2q0
,

1

2

}
,
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set

Dθ := {x ∈ R
3 :

θq0
2

≤ V (x) ≤ θq0} and Ωθ := int Dθ.

For each m ∈ N, we choose m real functions ωj ∈ C∞
0 (Ωθ,R), j = 1, . . . ,m,

satisfying

|ωj |2 = 1 and supp ωj ∩ supp ωk = ∅ if j 6= k.

Set

ϕj = (ωj , 0, 0, 0) ∈ C∞
0 (Ωθ,C

4) for j = 1, . . . . ,m.

Clearly ϕ1, . . . , ϕm are linearly independent,

Aλϕj = (0, 0,−i∂3ω
j ,−i∂1ω

j + ∂2ω
j) + (λ(a+ V )ωj , 0, 0, 0)

= (λ(a + V )ωj , 0,−i∂3ω
j ,−i∂1ω

j + ∂2ω
j),

(
− i

3∑

k=1

αk∂kϕj , ϕj

)
L2

= 0,

and

λ

(
a+

θq0
2

)
≤ (Aλϕj , ϕj)L2 = λ

∫

R3

(a+ V )|ωj |2 ≤ λ (a+ θq0) , (7.47)

|Aλϕj |22 = (A2
λϕj , ϕj)L2 = |∇ωj |22 + λ2

∫

R3

(a+ V )2|ωj |2,
so

|∇ωj |22 + λ2

(
a+

θq0
2

)2

≤ |Aλϕj |22 ≤ |∇ωj |22 + λ2 (a+ θq0)
2
.

For each λ > 0 we have the representation ϕj = ϕ−
λj +ϕ0

λj +ϕ+
λj (j = 1, . . . ,m).

Set

Zm := span{ϕ1, . . . , ϕm}, Zλm := span{ϕ+
λ1, . . . , ϕ

+
λm}.

Lemma 7.30. For each λ > 0 and m ∈ N, dim(Zλm) = m.

Proof. It suffices to show that ϕ+
λ1, . . . , ϕ

+
λm are linearly independent. Suppose

that
∑m

j=1 ajϕ
+
λj = 0 with aj ∈ R, j = 1, . . . ,m. Then
m∑

j=1

ajϕj =

m∑

j=1

ajϕ
−
λj +

m∑

j=1

ajϕ
+
λj =

m∑

j=1

ajϕ
−
λj ∈ E−

λ ,

so

−

∥∥∥∥∥∥

m∑

j=1

ajϕ
−
λj

∥∥∥∥∥∥

2

λ

=


Aλ




m∑

j=1

ajϕ
−
λj


 ,

m∑

j=1

ajϕ
−
λj



L2

=


Aλ




m∑

j=1

ajϕj


 ,

m∑

j=1

ajϕj



L2

=

m∑

j=1

|aj |2(Aλϕj , ϕj)L2 .

This implies aj = 0 for j = 1, . . . ,m because (Aλϕj , ϕj)L2 > 0 by (7.47). �
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In the following we set

α := max
{
|∇ωj |22 : j = 1, . . . ,m

}

which depends on m and the choice of ωj , but is independent of λ. Denote

û :=

m∑

j=1

cjϕj ∈ Zm for u =

m∑

j=1

cjϕ
+
λj ∈ Zλm.

It is clear that

û+ = u and |û|22 =

m∑

j=1

c2j .

Lemma 7.31. We have:

i) for each λ ≥ 1, ζ|û|2 ≤ |u|2 ≤ |û|2 for all u ∈ Zλm, where ζ > 0 is independent

of λ;

ii) for each λ ≥ 1 and all u ∈ Zλm,

λ

(
a+

θq0
2

)
|û|22 ≤ ‖u‖2

λ ≤ λ
( α
λ2

+ (a+ θq0)
2
)1/2

|û|2|u|2 ;

(iii) there is Λm > 0 such that for each λ ≥ Λm and all u ∈ Zλm,

‖u‖2
λ − λq0|u|22 ≤ −λq0ξθ|û|2|u|2

where

ξθ =
2a (q0 − a− 2θq0) + (1 − 2θ)θq20

4q0(a+ θq0)
.

Proof. Let u ∈ Zλm. Observe that

‖u‖2
λ − ‖û−‖2

λ = (Aλû, û)L2 =

m∑

j=1

|cj |2(Aλϕj , ϕj)L2

≥ λ

(
a+

θq0
2

)
|û|22,

|Aλû|22 =

m∑

j=1

|cj |2|Aλϕj |22 ≤
m∑

j=1

|cj |2
(
|∇ωj |22 + λ2 (a+ θq0)

2
)

≤
(
α+ λ2 (a+ θq0)

2
)
|û|22,

‖u‖2
λ = (Aλû, u)L2 ≤ |Aλû|2|u|2 ≤

(
α+ λ2 (a+ θq0)

2
)1/2

|û|2|u|2.

Hence

λ

(
a+

θq0
2

)
|û|22 ≤ ‖u‖2

λ ≤ λ
( α
λ2

+ (a+ θq0)
2
)1/2

|û|2|u|2 (7.48)

which is the ii).



June 21, 2007 11:27 World Scientific Book - 9.75in x 6.5in VariationalMethods

Solutions of nonlinear Dirac equations 137

Obviously, |u|2 ≤ |û|2. In order to check the first inequality of i), we note that

by (7.48)

|u|2 ≥ f(λ)|û|2 where f(λ) :=
λ(2a+ θq0)

2 (λ2(a+ θq0)2 + α)
1/2

. (7.49)

It is clear that f(λ) is strictly increasing and

lim
λ→∞

f(λ) =
2a+ θq0

2(a+ θq0)
.

Hence

2a+ θq0

2 (α+ (a+ θq0)2)
1/2

≤ f(λ) <
2a+ θq0

2(a+ θq0)
for all λ ≥ 1

and i) follows.

Using (7.48) and (7.49) one sees

‖u‖2
λ − λq0|u|22 = (Aλû, u)L2 − λq0|u|22 ≤ (|Aλû|2 − λq0|u|2) |u|2

≤
(
(
α+ λ2(a+ θq0)

2
)1/2 − λq0

λ(2a+ θq0)

2 (λ2(a+ θq0)2 + α)
1/2

)
|û|2|u|2

= − λq0h(λ)|û|2|u|2

(7.50)

where

h(λ) =
2a+ θq0

2
(
α
λ2 + (a+ θq0)2

)1/2 −
(
α
λ2 + (a+ θq0)

2
)1/2

q0
.

Note that

lim
λ→∞

h(λ) =
2a+ θq0

2(a+ θq0)
− a+ θq0

q0

=
2a (q0 − a− 2θq0) + (1 − 2θ)θq20

2q0(a+ θq0)

= 2ξθ .

(7.51)

Now iii) follows from (7.50) and (7.51). �

Proof. [Proof of Lemma 7.29] From (iii) of Lemma 5.4 we obtain for λ ≥ Λm

µm

(
Aλ|L+

λ

)
: = inf

F⊂E+
λ

dim(F )=m

sup
ϕ∈E−

λ ⊕F
|ϕ|2=1

(Aλϕ, ϕ)L2

≤ sup
u∈Zλm

|u|2=1

(Aλu, u)L2

≤ sup
u∈Zλm

|u|2=1

λq0 (1 − ξθ|û|2)

< λq0

as required. �
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Proof. [Proof of Theorem 7.10] By Lemma 7.28, we see that (A0) is satisfied, and

we have additionally µe ≥ λ(a+ bmax) which, jointly with (R̂5), implies λq∞ < µe,

i.e., (R0) holds. By Lemma 7.29, for any m ∈ N, there is Λm > 0 such that the

number #[(0, λq0)∩σ(Aλ)] ≥ m for all λ ≥ Λm. This implies particularly that (R4)

holds, therefore, Theorem 7.8 applies. �

Remark 7.4. Let γ > 0 be a parameter and consider the supersymmetric Dirac

operator Hγ := H0 + γV β where H0 is the free Dirac operator and the scalar field

γV (x)β satisfies the condition (V ). Checking the proof of Lemma 7.29, we have,

as a by-product, the following asymptotic estimate on the number of eigenvalues of

Hγ .

Lemma 7.32. Let (V ) be satisfied. Then

σe(Hγ) ⊂ R \
(
− (a+ γbmax), a+ γbmax

)

and the number N (γ) := #[(0, a+ γbmax) ∩ σd(Hγ)] → ∞ as γ → ∞.
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Chapter 8

Solutions of a system of

diffusion equations

In this chapter we consider the system
{

∂tu− ∆xu+ b(t, x)·∇xu+ V (x)u = Hv(t, x, u, v)

−∂tv − ∆xv − b(t, x)·∇xv + V (x)v = Hu(t, x, u, v)

for (t, x) ∈ R × Ω, where Ω = RN or Ω ⊂ RN is a bounded domain with smooth

boundary ∂Ω, z = (u, v) : R × Ω → RM × RM , b ∈ C1(R × Ω,RN), V ∈ C(Ω,R)

and H ∈ C1(R × Ω × R2M ,R) depending periodically on t and x. We assume that

H(t, x, 0) ≡ 0 and look for solutions homoclinic to z = 0. We deal with the case of

b = 0 in the first five sections and the general case in the last section.

8.1 Reviews

We consider firstly the following system:
{

∂tu− ∆xu+ V (x)u = Hv(t, x, u, v)

−∂tv − ∆xv + V (x)v = Hu(t, x, u, v)
for (t, x) ∈ R × Ω. (FS)

Setting

J =

(
0 −I
I 0

)
, J0 =

(
0 I

I 0

)
and A = J0(−∆x + V ),

(FS) reads as

J ∂tz = −Az +Hz(t, x, z).

Thus (FS) can be regarded as an unbounded infinite-dimensional Hamiltonian sys-

tem in L2(Ω,R2M ). Our hypotheses on V : Ω → R and H : R × Ω × R2M → R

will be stated below. It follows from these assumptions that Hu(t, x, 0, 0) = 0 =

Hv(t, x, 0, 0) for all (t, x) ∈ R × Ω. So the constant function (u0, v0) ≡ (0, 0) is a

stationary solution of (FS). We seek solutions z = (u, v) : R × Ω → R2M of (FS)

satisfying the boundary conditions

z(t, x) → 0 as |t| + |x| → ∞

139
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if Ω = R
N or

z(t, x) = 0 for (t, x) ∈ R × ∂Ω and z(t, x) → 0 as |t| → ∞

when Ω is a bounded smooth domain. So these solutions are homoclinic to the

stationary solution (0, 0).

For finite-dimensional Hamiltonian systems there are many papers concerning

the existence of homoclinic solutions and the dynamics around them. The clas-

sical Poincaré-Melnikov method (see [Melnikov (1963)]) is of a perturbative na-

ture. It consists of investigating the intersection of the stable and unstable mani-

folds of the equilibrium. A bifurcation approach can be found in [Stuart (1989)],

for instance. Dynamical systems methods have been extended to deal with vari-

ous infinite-dimensional Hamiltonian systems, e. g. the KdV-equation (cf. [Kuksin

(1993)]). These methods are however not applicable to (FS) simply because the

initial value problem for (FS) is not well posed. In the 1990s a variational approach

to the existence of homoclinics in finite-dimensional Hamiltonian systems was de-

veloped and successfully applied; see [Ambrosetti and Badiale (1998)], [Ambrosetti

and Badiale (1998)], [Coti-Zelati, Ekeland and Séré (1990)], [Coti-Zelati and Ra-

binowitz (1991)], [Ding and Girardi (1999)], [Ding and Willem (1999)], [Hofer and

Wysocki (1990)], [Rabinowitz (1990)], [Séré (1992)], [Séré (1993)], [Tanaka (1991)].

With the variational methods it became possible to obtain homoclinics under quite

general assumptions on the Hamiltonian. The main technical difficulty is the lack of

compactness due to the fact that one has to work on H1(R,R2M ), and there are no

compact embeddings into Lp-spaces. This problem is of course also present when

dealing with (FS).

If Ω is a smoothly bounded domain and H is independent of t with H(x, eθJ z) =

H(x, z) for all θ ∈ R, there is a lot of recent work on standing wave solutions to

(FS), i. e. solutions of the form z(t, x) = e−tλJw(x) with w solving the associated

stationary Hamiltonian type system of elliptic equations:
{
Aw + λw = Hw(x,w) in Ω,

w = 0 on ∂Ω;

see [Bartsch and de Figueiredo (1999)], [de Figueiredo (1998)] and the references

there. In [Bartsch and de Figueiredo (1999)] the case Ω = RN was also treated

although only in a setting where −∆x + V has pure point spectrum if restricted to

a certain space of symmetric functions.

There is not much work on nonstationary solutions of systems like (FS). Brézis

and Nirenberg [Brézis and Nirenberg (1978)] considered the system
{

∂tu− ∆xu = −v5 + f

−∂tv − ∆xv = u3 + g
in (0, T )× Ω

on a bounded domain where f, g ∈ L∞(Ω), subject to the boundary conditions

u = v = 0 on (0, T ) × ∂Ω and u(0, x) = v(T, x) = 0 on Ω. Using Schauder’s fixed
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point theorem they obtained a (generalized) solution (u, v) with u ∈ L4 and v ∈ L6

(Theorem V.4 of [Brézis and Nirenberg (1978)]).

In their paper [Clément, Felmer and Mitidieri (1997)] Clément, Felmer and

Mitidieri considered the problem
{

∂tu− ∆xu = |v|q−2v

−∂tv − ∆xv = |u|p−2u
in (−T, T ) × Ω (8.1)

where Ω is a smoothly bounded domain in RN , and

N

N + 2
<

1

p
+

1

q
< 1. (8.2)

They proved that there exists T0 > 0 such that for each T > T0, (8.1) has at least

one positive solution satisfying the boundary condition

u(t, ·)|∂Ω = 0 = v(t, ·)|∂Ω for all t ∈ (−T, T ) (8.3)

and the periodicity condition

u(−T, ·) = u(T, ·) and v(−T, ·) = v(T, ·).
Using the special structure of (8.1) Clément et al. were able to obtain this solution

via the mountain pass theorem. Moreover, by passing to the limit as T → ∞, they

showed that (8.1) has at least one positive solution defined on R×Ω satisfying (8.3)

for all t ∈ R, and

lim
|t|→∞

u(t, x) = 0 = lim
|t|→∞

v(t, x) uniformly in x ∈ Ω.

Our study of (FS) is motivated by [Clément, Felmer and Mitidieri (1997)]. One

of our goals is to develop a variational setting in order to obtain a homoclinic

solution of (FS) directly. In addition we can treat nonlinearities depending on

both time and space variables. Finally, we are also able to treat the case where

−∆x +V has essential spectrum below and above 0. The associated functional will

be strongly indefinite and a reduction to the mountain pass theorem is not possible.

Moreover, the Palais-Smale condition does not hold. The proof is based on critical

point theorems of linking type for strongly indefinite functionals stated previously.

The difficulty in applying these theorems to (FS) is to find the proper functional

analytic setting. We use the concentration-compactness method in order to control

weak limits of Palais-Smale sequences. Applied to the explicit system (8.1) our

result is weaker than the one in [Clément, Felmer and Mitidieri (1997)] in the sense

that we require 2 < p, q < 2(N + 2)/N instead of (8.2). On the other hand, we

obtain even infinitely many geometrically distinct homoclinic solutions in this case.

The remainder of the chapter is organized as follows. The main results are formu-

lated in the next section. In Section 8.3 we discuss the operators A = J0(−∆x+V ),

JA and J ∂t + A. This will be done in an abstract setting which can also be ap-

plied to prove the existence of periodic or heteroclinic solutions of (FS). Moreover,

it seems to be applicable to other infinite-dimensional Hamiltonian systems. In
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Section 8.4 we establish the functional setting for the variational approach to (FS),

including, in particular, embedding properties between certain function spaces and

the regularity theory which we need. These results are also useful when one wants

to treat other types of functions H . Then, in Section 8.5, we prove the main results.

Finally, in the last section we discuss some extensions of the results.

8.2 Main results

We treat the two cases where Ω = RN , or Ω ⊂ RN is a bounded smooth domain

simultaneously. First we formulate the hypotheses on the potential V .

(V1) V ∈ C(Ω,R); if Ω = R
N then V is Tj-periodic in xj for j = 1, · · · , N .

As a consequence of (V1) the operator S = −∆x + V is a selfadjoint operator on

L2(Ω). The domain of S is D(S) = W 2,2 ∩W 1,2
0 (Ω,R2M ). By σ(S) we denote the

spectrum of S. Our second assumption on V is

(V2) 0 6∈ σ(S)

Observe that σ(S) ⊂ R is bounded below. If Ω = RN then σ(S) is purely continuous.

It is allowed that S has essential spectrum below 0.

The general assumptions on the Hamiltonian H are:

(H1) H ∈ C1(R ×Ω× R2M ,R) is T0-periodic in t; if Ω = RN then H is Tj-periodic

in xj for j = 1, · · · , N ;

(H2) there is β > 2 such that

0 < βH(t, x, z) ≤ Hz(t, x, z)z for all t ∈ R, x ∈ Ω, z 6= 0;

(H3) there are α ∈ (2, 2(N + 2)/N) and a1 > 0 such that

|Hz(t, x, z)|α
′ ≤ a1Hz(t, x, z)z for all t ∈ R, x ∈ Ω, |z| ≥ 1;

where α′ := α/(α− 1) is the dual exponent;

(H4) Hz(t, x, z) = o(|z|) as z → 0 uniformly in t and x.

The model nonlinearity is

H(t, x, u, v) = a(t, x)|u|p + b(t, x)|v|q (8.4)

with 2 < p, q < 2(N + 2)/N ; a, b : R×Ω → (0,∞) are required to be T0-periodic in

the t-variable, and Tj-periodic in xj if Ω = RN .

In order to state our results we introduce for r ≥ 1 the Banach space

Br = Br(R × Ω,R2M )

:= W 1,r
(
R, Lr(Ω,R2M )

)
∩ Lr

(
R,W 2,r ∩W 1,r

0 (Ω,R2M )
)

equipped with the norm

‖z‖Br =

(∫

R×Ω

(
|z|r + |∂tz|r +

N∑

j=1

∣∣∣∂2
xj
z
∣∣∣
r
))1/r

.

Br is sometimes called anisotropic space. Clearly B2 is a Hilbert space.
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Theorem 8.1 ([Bartsch and Ding (2002)]). Suppose (V1), (V2) and (H1) −
(H4) hold. Then (FS) has at least one nontrivial solution z which lies in

Br(R × Ω,R2M ) for 2 ≤ r <∞.

In order to state a multiplicity result we require moreover the following assump-

tions:

(H5) there are p ∈ (2, 2(N + 2)/N) and δ, a2 > 0 such that

|Hz(t, x, z + w) −Hz(t, x, z)| ≤ a2(1 + |z|p−1)|w|

for all (t, x, z) ∈ R × Ω × R2M and |w| ≤ δ;

(H6) H is even in z: H(t, x,−z) = H(t, x, z) for all (t, x, z) ∈ R × Ω × R2M .

The model nonlinearity (8.4) satisfies (H1) − (H6).

In the case Ω = RN two solutions z1 and z2 of (FS) are said to be geometrically

distinct if z1 6= k ∗ z2 for all 0 6= k = (k0, k1, · · · , kN ) ∈ Z
1+N ; here

k ∗ z(t, x) := z(t+ k0T0, x1 + k1T1, · · · , xN + kNTN ).

For Ω bounded, two solutions z1 and z2 of (FS) are said to be geometrically distinct

if z1 6= k ∗ z0 for all 0 6= k ∈ Z where

k ∗ z(t, x) := z(t+ kT0, x).

Theorem 8.2 ([Bartsch and Ding (2002)]). Suppose (V1), (V2) and (H1) −
(H6) hold. Then (FS) has infinitely many geometrically distinct solutions z which

lie in Br(R × Ω,R2M ) for 2 ≤ r <∞.

We shall only give the details of the proofs in the case Ω = RN . If Ω ⊂ RN is

bounded the theorems can be proved similarly and are somewhat easier.

8.3 Linear preliminaries

In this section we discuss the operators A = J0(−∆x + V ), JA and J ∂t + A in

a more general abstract setting. Let H0 be e (strong) symplectic Hilbert space

with the inner product (·, ·)H0 , the norm ‖ · ‖H0 and the symplectic form ω(·, ·).
This induces the symplectic structure J ∈ L(H0) in the usual way defined by:

ω(w, z) = (Jw, z)H0 for all w, z ∈ H0. It follows that J ∗ = −J but not necessarily

J 2 = −I . In order to achieve this we replace the inner product 〈w, z〉 on H0 by the

(equivalent) one 〈|J |1/2w, |J |1/2z〉 where |J | =
√
J ∗J =

√
−J 2. Thus we may

assume that J satisfies J ∗ = −J and J 2 = −J ∗J = −I . Now we consider an

operator A defined on D(A) ⊂ H0 and such that

(A1) A is selfadjoint and 0 6∈ σ(A);

(A2) JA+AJ = 0.
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By (A1)− (A2), the operator JA with D(JA) = D(A) is also selfadjoint such that

0 6∈ σ(JA), and thus there are α < 0 < β with (α, β) ∩ σ(JA) = ∅. Therefore we

have an orthogonal decomposition

H0 = H−
0 ⊕H+

0 , z = z− + z+

corresponding to the negative and the positive spectrum of JA. Let P± : H0 → H±
0

denote the orthogonal projections, and {E(λ) : λ ∈ R} the spectral family of JA.

We have

JA =

∫ ∞

−∞
λ dE(λ) =

∫ α

−∞
λ dE(λ) +

∫ ∞

β

λdE(λ)

and

P− =

∫ α

−∞
dE(λ) and P+ =

∫ ∞

β

dE(λ).

Setting

U(t) = etJA =

∫ ∞

−∞
etλdE(λ)

we obtain
{
‖U(t)P−U(s)−1‖H0 ≤ e−a(t−s) if t ≥ s;

‖U(t)P+U(s)−1‖H0 ≤ e−a(s−t) if t ≤ s;
(8.5)

here a = min{−α, β} > 0. Set H := L2(R,H0) with the inner product and norm

denoted by (·, ·)H and ‖ · ‖H respectively. Let L := (J ∂t +A) be the selfadjoint

operator acting in H with domain

D(L) =

{
z ∈ W 1,2(R,H0) : z(t) ∈ D(A) a. e.,

∫

R

‖Az(t)‖2
H0
dt <∞

}
.

Proposition 8.1. If (A1) − (A2) hold then 0 6∈ σ(L).

Proof. Arguing indirectly we assume 0 ∈ σ(L). Then there exists a sequence

(zn) in D(L) with ‖zn‖H = 1 and ‖Lzn‖H → 0. Setting wn := Lzn ∈ L2(R,H0) we

observe that ∂tzn = JAzn −Jwn and

zn(t) = −
∫ t

−∞
U(t)P−U(s)−1Jwn(s)ds+

∫ ∞

t

U(t)P+U(s)−1Jwn(s)ds.

Let χ± : R → R be the characteristic function of R
±
0 where R

−
0 := (−∞, 0] and

R
+
0 := [0,∞). Then we have

zn(t) = −
∫

R

U(t)P−U(s)−1χ+(t− s)Jwn(s)ds

+

∫

R

U(t)P+U(s)−1χ−(t− s)Jwn(s)ds

=: z−n (t) + z+
n (t)
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Now (8.5) implies

‖z−n (t)‖H0 ≤
∫

R

e−a(t−s)χ+(t− s)‖wn(s)‖H0ds

and

‖z+
n (t)‖H0 ≤

∫

R

e−a(s−t)χ−(t− s)‖wn(s)‖H0ds.

Setting g+(τ) = e−aτχ+(τ) and g−(τ) = eaτχ−(τ) we obtain

‖z−n (t)‖H0 ≤ (g+ ∗ ‖wn‖H0)(t)

and

‖z+
n (t)‖H0 ≤ (g− ∗ ‖wn‖H0)(t)

where ∗ denotes the convolution. Observe that
∫

R

g+ =

∫

R

g− =
1

a
.

By the convolution inequality

‖z±n ‖H ≤ 1

a
‖wn‖H → 0 as n→ ∞,

a contradiction. �

By Proposition 8.1 there is an orthogonal decomposition

H = L2(R,H0) = H− ⊕H+, z = z− + z+,

such that L is negative in H− and positive in H+. Let E = D(|L|1/2) be the Hilbert

space with the inner product

(w, z)E = (|L|1/2w, |L|1/2z)H

and the norm

‖z‖E = (z, z)
1/2
E .

Then we have

E = E− ⊕E+ with E± = E ∩ H±.

Remark 8.1. We point out that the conclusion of Proposition 8.1 remains true if

the conditions (A1) and (A2) are replaced by

(A3) A is a bounded and selfadjoint operator with σ(JA) ∩ iR = ∅.
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If A is a bounded selfadjoint operator then the selfadjoint operator L acting on

L2(R,H0) has purely continuous spectrum. Indeed, if there is λ ∈ R and 0 6=
z ∈ L2(R,H0) satisfying Lz = λz, then z(t) = etJ (A−λ)z(0) for all t ∈ R. Since

z ∈ L2(R,H0) this yields z(0) = 0 and therefore z = 0, a contradiction. If in

addition σ(JA) ∩ iR = ∅ then it is not difficult to verify that 0 6∈ σ(L) via an

analysis of dichotomy.

More generally, consider a continuous and T -periodic map A : R → L (H0,H0)

with A(t) selfadjoint for t ∈ R. The monodromy operator U(T ) associated to the

differential equation ż(t) = JA(t)z(t) is by definition the value at t = T of the

solution of the Cauchy problem

U̇(t) = JA(t)U(t), U(0) = I.

If U(T ) has a logarithm (this is the case, in particular, if σ(U(T )) does not contain

a closed curve surrounding the origin), then σ(L) consists of continuous spectrum.

If, in addition, the mean value A := T−1
∫ T
0 A(t)dt satisfies σ(JA) ∩ iR = ∅, then

0 6∈ σ(L). For details we refer to [Ding and Willem (1999)].

8.4 Functional setting

We return to the system (FS) and observe that both operators A = J0S = J0(−∆+

V ) and JA acting on H0 = L2(Ω,R2M ) are selfadjoint with domains D(A) =

D(JA) = W 2,2 ∩W 1,2
0 (Ω,R2M ).

Lemma 8.1. If 0 6∈ σ(S) then 0 6∈ σ(A) ∪ σ(JA).

Proof. We only show that 0 6∈ σ(JA) since 0 6∈ σ(A) can be proved similarly.

Arguing indirectly assume 0 ∈ σ(JA). Then there exist elements zn = (un, vn) ∈
D(JA) with |zn|22 = |un|22 + |vn|22 = 1 and |JAzn|22 = |Sun|22 + |Svn|22 → 0. Without

loss of generality we may assume that |un|2 ≥ δ (where δ > 0 is a constant). Then,

setting ũn := un/|un|2 we have ũn ∈ D(S), |ũn|2 = 1 and |Sũn|2 = |Sun|2/|un|2 ≤
|Sun|2/δ → 0 as n→ ∞. This implies 0 ∈ σ(S), a contradiction. �

As a consequence of Lemma 8.1, we have

d1‖z‖2
W 2,2 ≤ |Az|22 =

∫

Ω

|Az|2 ≤ d2‖z‖2
W 2,2 (8.6)

for all z ∈W 2,2 ∩W 1,2(Ω,R2M ), where d1, d0 denote generic positive constants.

As in Section 8.3 let H := L2(R,H0) with its inner product denoted again by

(·, ·)L2 . Then

H ∼= L2(R × Ω,R2M ) ∼=
[
L2(R × Ω)

]2M ∼=
[
L2(R) ⊗ L2(Ω)

]2M

with equivalent norms, where ⊗ is the tensor product. Recall that the set

C∞
0 (R) ⊗ C∞

0 (Ω,R2M )

=

{
n∑

i=1

figi : n ∈ N, fi ∈ C∞
0 (R), gi ∈ C∞

0 (Ω,R2M )

}
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is dense in both H and Br(R × Ω,R2M ) for all r ≥ 1. Let L := J ∂t + A be the

selfadjoint operator acting in H with D(L) = B2(R × Ω,R2M ). That the norms in

D(L) and B2 are equivalent is a consequence of Lemma 8.3 below. It is clear that

the assumption (A2) of the previous section holds. In addition, Lemma 8.1 implies

that (A1) is also satisfied provided 0 6∈ σ(S). Therefore Proposition 8.1 yields the

following lemma.

Lemma 8.2. If 0 6∈ σ(S) then 0 6∈ σ(L).

Now we consider the operator L0 := J ∂t+J0(−∆+1). This is a selfadjoint operator

in H with domain D(L0) = D(L). Since −∆+1 ≥ 1 Lemma 8.2 implies 0 6∈ σ(L0).

Note that L = L0 + J0(V − 1).

Lemma 8.3. For every r ≥ 1 there exist constants d1, d2 > 0 such that

d1‖z‖rBr
≤ |L0z|rr =

∫

R×Ω

|L0z|r ≤ d2‖z‖rBr
for all z ∈ Br.

Consequently, L0 : Br → Lr is an isomorphism, r ≥ 1.

Proof. We consider first the case Ω = RN . Let Ft and Fx be the Fourier trans-

forms in t and x respectively, and F := Ft◦Fx the Fourier transform in (t, x). Recall

that z ∈ Br(R×RN ,R2M ) if and only if (1+τ2 + |y|4)1/2|(Fz)(τ, y)| ∈ Lr(R×RN).

This in turn is equivalent to the statement that both (1 + τ 2)1/2|(Ftz)(τ, x)| and

|(1 + |y|4)1/2|(Fxz)(t, y)| are in Lr(R × RN ). Next we observe that the following

norms are equivalent:

‖z‖Br ∼
∣∣∣
(
1 + τ2 + |y|4

)1/2
(Fz)(τ, y)

∣∣∣
r

∼
∣∣∣
(
1 + τ2

)1/2
(Ftz)(τ, x)

∣∣∣
r

+
∣∣∣
(
1 + |y|4

)1/2
(Fxz)(t, y)

∣∣∣
r

By a direct calculation we get

|(F(L0z))(τ, y)| =
(
τ2 + (1 + |y|2)2

)1/2|(Fz)(τ, y)|
and the desired result for Ω = RN follows. The case that Ω is bounded can be

dealt with similarly by noting that z ∈ Br(R ×Ω,R2M ) if and only if φz ∈ Br(R ×
RN ,R2M ) for all φ ∈ C∞

0 (R × Ω,R). �

Now we turn to the selfadjoint operator L. By Lemma 8.2 there exists b > 0

such that [−b, b] ∩ σ(L) = ∅. Let {F (λ) : λ ∈ R} be the spectral family of L and

U = 1 − 2F (0). Then U is a unitary isomorphism of H and L = U |L| = |L|U .

There is an associated orthogonal decomposition

H = H− ⊕H+, z = z− + z+,

where H± = {z ∈ H : Uz = ±z}. From

|Lz|22 =

∫ −b

−∞
λ2d(F (λ)z, z)L2 +

∫ ∞

b

λ2d(F (λ)z, z)L2 ≥ b2|z|22
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it follows that

|Lz|22 ≤ |z|22 + |Lz|22 ≤ (1 + b−2)|Lz|22. (8.7)

Therefore D(L) equipped with the the inner product

(z1, z2)L = (Lz1, Lz2)L2

is a Hilbert space.

Lemma 8.4. If 0 6∈ σ(S) then for all z ∈ D(L)

d1‖z‖B2 ≤ ‖z‖L ≤ d2‖z‖B2 .

Proof. Given f1, f2 ∈ C∞
0 (R) and g1, g2 ∈ C∞

0 (Ω,R2M ) integration by parts

yields ∫

R×Ω

(
〈(∂tf1)Jg1, f2 · Ag2〉 + 〈f1 · Ag1, (∂tf2)Jg2〉

)

=

(∫

R

(∂tf1)f2

)
·
(∫

Ω

〈Jg1, Ag2〉
)

+

(∫

R

f1∂tf2

)
·
(∫

Ω

〈Ag1, Jg2〉
)

= −
(∫

R

f1∂tf2

)
·
(∫

Ω

〈Jg1, Ag2〉
)

+

(∫

R

f1∂tf2

)
·
(∫

Ω

〈Jg1, Ag2〉
)

= 0.

Here we also used that JTA = ATJ . It follows that we have for z =
∑n

i=1 figi ∈
C∞

0 (R) ⊗ C∞
0 (Ω,R2M ):

‖z‖2
L =

∫

R×Ω

|Lz|2

=

∫

R×Ω

∣∣∣∣∣
n∑

i=1

(J∂t(figi) +A(figi))

∣∣∣∣∣

2

=

∫

R×Ω

(
|∂tz|2 + |Az|2

)

= |∂tz|22 + |Az|22.
Since C∞

0 (R) ⊗ C∞
0 (Ω,R2M ) is dense in D(L) = B2(R × Ω,R2M ) the equality

‖z‖2
L = |∂tz|22 + |Az|22 holds for all z ∈ D(L). The lemma follows. �

Remark 8.2. For Ω = RN Lemma 8.4 implies that D(L) is continuously embedded

in Lr(R×RN ,R2M ) for r satisfying 2 ≤ r <∞ if N = 1, and 0 ≤
(

1
2− 1

r

)(
1+N

2

)
≤ 1

if N ≥ 2. D(L) embeds compactly in Lrloc(R × Ω,R2M ) for all r ≥ 2 if N = 1, and

if N ≥ 2 for all r ≥ 2 satisfying
(

1
2 − 1

r

)(
1+ N

2

)
< 1 (see [Besov, Il’in and Nikol’skii

(1975)]). In the case where Ω is smoothly bounded recall that

‖u‖W s,r(Ω,R2M ) = inf
g∈Wk,r(RN ,R2M )

g|Ω=u

‖g‖Wk,r(RN ,R2M ) (8.8)

(see [Triebel (1978)], for instance). It follows that the above embedding results also

hold when Ω is bounded. Here “compactly in Lrloc” means that the embedding

D(L) → Lr((a, b)×Ω,R2M ) is compact for all −∞ < a < b <∞ (see also the proof

of Lemma A.1 in [Clément, Felmer and Mitidieri (1997)]).
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In the following let E = D(|L|1/2) be equipped with the inner product

(z1, z2) = (|L|1/2z1, |L|1/2z2)L2

and the norm ‖z‖ = (z, z)1/2 as in Section 8.3. We have the decomposition

E = E− ⊕E+, where E± = E ∩ H±

which is orthogonal with respect to both (·, ·)L2 and (·, ·). We write z = z− + z+

for z ∈ E according to this decomposition.

Lemma 8.5. E is continuously embedded in Lr(R×Ω,R2M ) for any r ≥ 2 if N = 1,

and for r ∈ [2, 2(N+2)/N ] if N ≥ 2. E is compactly embedded in Lrloc(R×Ω,R2M )

for any r ≥ 2 if N = 1, and for r ∈ [2, 2(N + 2)/N) if N ≥ 2.

Proof. We only consider the case N ≥ 2 and Ω = R
N since the other cases can

be handled similarly. Going to the complexification H×H ∼= H+ iH and using the

(complex) interpolation [·, ·]θ (see [Triebel (1978)]) one sees that

E = D(|L|1/2) ∼= [D(L), L2]1/2

(see also example 3 in Appendix IX.4 of [Reed and Simon (1978)]). By Remark 8.2,

the embeddings

E ∼= [D(L), L2]1/2 ↪→ [Lr, L2]1/2 ↪→ Lq

are continuous for r = ∞ if N = 2, and r = 2(N + 2)/(N − 2) if N ≥ 3, and if

q satisfies 1
q = 1

2

(
1
2 + 1

r

)
, that is, if q = 2(N + 2)/N . For r ∈ (2, q), the Hölder

inequality implies

|z|r ≤ |z|1−θ2 |z|θq with θ =
q(r − 2)

r(q − 2)
.

Therefore E is continuously embedded in Lr for r ∈ [2, 2(N + 2)/N ]. Similarly,

using again Remark 8.2 we see that E is compactly embedded in Lrloc for r ∈
[1, 2(N + 2)/N). �

Lemma 8.6. Under the assumptions of Theorem 8.1 the functional Φ : E → R

defined by

Φ(z) =
1

2

(
‖z+‖2 − ‖z−‖2

)
−
∫

R×Ω

H(t, x, z)

lies in C1(E,R). Critical points of Φ are weak solutions of (FS) and are elements

of Br(R × Ω,R2M ) for 2 ≤ r <∞.

Proof. From (H3) and (H4) it follows that

|Hz(t, x, z)| ≤ |z| + c|z|α−1 (8.9)

with 2 < α < 2(N + 2)/N . Using Lemma 8.5 this implies Φ ∈ C1(E,R) in a

standard way.
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In order to prove the regularity result we need the following embedding theorem

from [Besov, Il’in and Nikol’skii (1975)]:

Bq ↪→ Lr is continuous for q > 1, 0 ≤ 1

q
− 1

r
≤ 2

N + 2
. (8.10)

Set

ϕ(q) :=

{
(N + 2)q

/
(N + 2 − 2q) if 0 < q < (N + 2)/2;

∞ if q ≥ (N + 2)/2.

So Bq ↪→ Lr is continuous for 1 < q ≤ r < ϕ(q) and also for r = ϕ(q) if ϕ(q) <∞.

Now let z ∈ E be a weak solution of (FS). We set w = J0(1−V )z+Hz( . , . , z)

so that z is a weak solution of L0z = w, hence

z = L−1
0 w = L−1

0

(
J0(1 − V )z +Hz( . , . , z)

)
.

Now we define χz : R × Ω → R by

χz(t, x) =

{
1 if |z(t, x)| < 1,

0 if |z(t, x)| ≥ 1,

and set

w1(t, x) = J0

(
1 − V (x)

)
z(t, x) +Hz(t, x, χz(t, x)z(t, x))

and

w2(t, x) = Hz(t, x, (1 − χz(t, x))z(t, x)).

Then we have w(t, x) = w1(t, x) + w2(t, x). From our assumptions on V and H it

follows that

|w1(t, x)| ≤ d|z(t, x)| (8.11)

and

|w2(t, x)| ≤
{

0 if |z(t, x)| < 1;

d|z(t, x)|α−1 if |z(t, x)| ≥ 1.
(8.12)

Thus w1 ∈ Lr for r ∈ [2, r1] where r1 := 2(N + 2)/N , and w2 ∈ Lr for r ∈ [1, q1]

where q1 = r1/(α− 1). Here we used that

meas({(t, x) ∈ R × Ω : |z(t, x)| ≥ 1}) ≤
∫

R×Ω

|z|2 <∞.

Now we obtain

z1 := A−1
0 w1 ∈ Br for r ∈ [2, r1] (8.13)

and

z2 = L−1
0 w2 ∈ Br for r ∈ [1, q1]. (8.14)

We distinguish two cases.
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Case 1: q1 ≥ (N + 2)/2.

Then z2 ∈ Lr for all r ∈ [q1,∞) as a consequence of (8.13). By interpolation we get

z2 ∈ Lr for r ≥ 2. Since r1 > q1 ≥ (N + 2)/2 we similarly obtain z1 ∈ Lr for r ≥ 2.

Case 2: q1 < (N + 2)/2.

In this case we define inductively rk+1 := ϕ(qk) and qk+1 := rk+1/(α − 1) < rk+1.

Suppose z1 ∈ Br for r ∈ [2, rk], and z2 ∈ Br for r ∈ [2, qk]. Then z1 ∈ Lr for

r ∈ [2, ϕ(rk)], and z2 ∈ Lr for r ∈ [2, ϕ(qk)], so z ∈ Lr for r ∈ [2, rk+1] because

ϕ(rk) > rk+1. This implies w1 ∈ Lr for r ∈ [2, rk+1], and w2 ∈ Lr for r ∈ [2, qk+1].

We claim that there exists k0 ≥ 1 with qk0 ≥ (N + 2)/2. Then we are back in case

1 and therefore done.

By induction one proves that

rk =
2(N + 2)

N(α− 1)k−1 − 4
∑k−2
i=1 (α− 1)i

=
2(N + 2)(α− 2)

(α − 1)k(N(α− 2) − 4) + 4
.

Since 2 < α < 2(N + 2)/N = 2 + 4/N we see that ϕ(qk−1) < 0 for k large enough.

This implies qk−1 ≥ (N + 2)/2 as required. �

8.5 Solutions to (FS)

As a consequence of Lemma 8.6 it suffices to show the existence of critical points of

Φ defined on E = X ⊕ Y with X = E− and Y = E+. Theorem 8.1 will be proved

with the help of the critical point Theorem 4.4.

Proof. [Proof of Theorem 8.1] First we verify that the conditions of Theorem 4.4

are satisfied for our functional Φ from Section 8.4 on E.

Since H(t, x, z) ≥ 0 the functional Ψ(z) =
∫

R×ΩH(t, x, z) is bounded from

below. Let zn ⇀ z. Then Lemma 8.5 implies zn → z in L2
loc, hence zn → z for a.e.

(t, x) ∈ R × Ω. By Fatou’s lemma we obtain

lim inf
n→∞

∫

R×Ω

H(t, x, zn) ≥
∫

R×Ω

lim
n→∞

H(t, x, zn) =

∫

R×Ω

H(t, x, z)

which proves the lower semicontinuity of Ψ. For any w ∈ C∞
0 the dominated

convergence theorem yields

Ψ′(zn)w =

∫

R×Ω

Hz(t, x, zn)w → Ψ′(z)w as n→ ∞.

This, together with (8.10) implies that Ψ′ is weakly sequentially continuous. An

application of Theorem 4.1 shows that Φ verifies (Φ0).

Observe that (H3) and (H4) imply that for any ε > 0 there is cε > 0 with

H(t, x, z) ≤ ε|z|2 + cε|z|α for all (t, x, z). (8.15)

Thus we have

Φ(z) ≥ 1

2
‖z‖2 − ε|z|23 − cε|z|αα for every z ∈ E+.
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Now because α > 2 it is easy to see that Φ checks (Φ2): there exists r > 0 with

κ := inf Φ(SrY ) > Φ(0) = 0.

Consider e ∈ E+ with ‖e‖ = 1. (H2) and (H3) yield that for any ε > 0 there is

cε > 0 such that

H(t, x, z) ≥ cε|z|β − ε|z|2 for all (t, x, z). (8.16)

Therefore, for z = z− + ζe we have

Φ(z) ≤ 1

2

(
ζ2 − ‖z−‖2

)
+ ε|z|22 − cε|z|ββ

hence there is R > r such that sup Φ(∂Q) = 0 where Q := {z + ζe : z ∈ E−, ‖z‖ <
R, 0 < ζ < R}.

Now Theorem 4.4 yields a sequence (zk)k such that Φ′(zk) → 0 and Φ(zk) → c

with κ ≤ c ≤ sup Φ(Q). A standard computation using (H2) − (H4) shows that

(zk)k is bounded. We claim that there exist a > 0 and a sequence (yk)k in R × Ω

such that (possibly after passing to a subsequence)

lim
k→∞

∫

B(yk,1)

|zk|2 ≥ a. (8.17)

Indeed, if not, then by a variation of Lions’ concentration compactness lemma [Lions

(1984)] we have zk → 0 in Ls for any s ∈ (2, (2N + 4)/N). Now from (H3) and

(H4) it follows that for any ε > 0 there is cε > 0 such that

|Hz(t, x, z)| ≤ ε|z| + cε|z|α−1 for all (t, x, z).

Therefore, using the Hölder inequality we obtain

lim
k→∞

∫

R1+N

Hz(t, x, zk)z
±
k = 0

which yields

‖z+
k ‖2 = Φ′(zk)z

+
k +

∫

R×Ω

Hz(t, x, zk)z
+
k → 0.

This implies limk→∞ Φ(zk) ≤ 0, a contradiction. Now by (8.17) we may assume

that there exist ρ > 0 independent of k and y′k ∈ T0Z if Ω is bounded, y′k ∈
T0Z × · · · × TNZ if Ω = RN satisfying

∫

B(y′k,ρ)

|zk|2 > a/2. (8.18)

We shift zk by y′k and obtain z̄k(t, x) := y′k ∗ zk. Clearly ‖z̄k‖ = ‖zk‖ and we may

suppose that z̄k → z weakly in E and strongly in L2
loc(R ×Ω,R2M ). By (8.18) and

the periodicity of H we obtain z 6= 0 and Φ′(z) = 0. �

We now turn to the multiplicity result Theorem 8.2.

Proof. [Proof of Theorem 8.2] We will apply Theorem 4.7. (Φ0) and (Φ2) have

already been verified above. Clearly (Φ1) is satisfied since H is even in z and

H(t, x, 0) = 0. (Φ4) can be shown as the verification of linking structure in the
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proof of Theorem 8.1. The proof will be completed in an indirect way. Namely, we

show that if

(FS) has only finitely many geometrically distinct solutions (8.19)

then condition (ΦI) is satisfied. Then we apply Theorem 4.7 and obtain an un-

bounded sequence of critical values which contradicts (8.19). Consequently, (8.19)

is wrong and (FS) has infinitely many geometrically distinct solutions. It does not

follow that these solutions have unbounded energy. A similar argument has been

used in [Bartsch and Ding (1999)], [Séré (1992)]. So we assume (8.19). There is

α > 0 satisfying

inf Φ (K \ {0}) > α

where K := {z ∈ E : Φ′(z) = 0}. Let F ⊂ K consist of arbitrarily chosen

representatives of the orbits of K under the action of Z1+N . By the evenness of H

with respect to z we may assume that F = −F . Let [r] denote the integer part of r

for any r ∈ R. A standard concentration-compactness argument as, for example, in

[Coti-Zelati and Rabinowitz (1992)] or [Kryszewski and Szulkin (1998)] yields the

following claim:

(?) Let (zn)n be a (PS)c-sequence for Φ. Then c ≥ 0, (zn) is bounded, and either

zn → 0 (corresponding to c = 0); or c ≥ α and there are ` ≤ [c/α], wi ∈ F\{0},
i = 1, ..., `, a subsequence denoted again by (zn), and ` sequences (ain)n ⊂ Z

if Ω is bounded, (ain)n ⊂ Z1+N if Ω = RN , i = 1, · · · , ` such that

∥∥∥zn −
∑̀

i=1

ain ∗ wi
∥∥∥→ 0 as n→ ∞,

|ain − ajn| → ∞ as n→ ∞, if i 6= j,

and
∑̀

i=1

Φ(wi) = c.

It is only in the proof of (?) that the hypothesis (H5) is being used.

Given a compact interval J ⊂ (0,∞) with d := maxJ we set ` := [d/α] and

[F , `] :=

{
j∑

i=1

ki ∗ wi : 1 ≤ j ≤ `, ki ∈ Z, wi ∈ F
}

if Ω is bounded,

[F , `] :=

{
j∑

i=1

ki ∗wi : 1 ≤ j ≤ `, ki ∈ Z
1+N , wi ∈ F

}

if Ω = RN . As a consequence of (?) we see that [F , `] is a (PS)J -attractor. It is

not difficult to check that

inf
{
‖u+ − v+‖ : u, v ∈ [F , `], u+ 6= v+

}
> 0

(see e.g. [Coti-Zelati and Rabinowitz (1992)]). Therefore (ΦI) is satisfied and The-

orem 8.2 is proved. �
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8.6 Some extensions

In this section we present some extensions which are motivated by earlier work on

Schrödinger equations or on homoclinic solutions of finite-dimensional Hamiltonian

systems.

8.6.1 0 is a boundary point of σ(S)

Recall that since the potential V depends periodically on x the spectrum of S is

purely continuous and a union of disjoint closed intervals. Thus we are interested in

the case where 0 is a boundary point of σess(S). For notational convenience assume

the Hamiltonian H(t, x, z), z := (u, v) is of the form

(h0) H(t, x, z) = h(t, x)|z|p where p ∈ (2, 2(N+2)/N), h ∈ C(R×Ω,R), h(t, x) > 0

and is T0-periodic in t, Tj-periodic in xj , j = 1, ..., N .

Theorem 8.3. Assume (V1) and 0 ∈ σ(S) with (0, a) ∩ σ(S) = ∅ for some a > 0.

Let H(t, x, z) satisfy (h0). Then (FS) has infinitely many geometrically distinct

solutions which lie in Br(R × Ω,R2M ) for any r ∈ [p,∞).

The proof of this theorem proceeds along the way of the argument of Theorem

1.2 of [Bartsch and Ding (1999)] where we considered the equation
{
−∆u+ V (x)u = f(x, u) x ∈ R

N ,

u(x) → 0 as |x| → ∞.

Let E be the space of B2 under the norm

‖z‖p := (||L|1/2z|22 + |z|2p)1/2.
The space L2 has the orthogonal decomposition

L2 = L− ⊕ L+, z = z− + z+

such that L is negative (resp. positive) definite on L− (resp. on L+). This deduces

the direct sum

E = E− ⊕E+

with E+ = L+∩B2 and E− being the completion of L−∩B2 under the norm ‖ · ‖p.
Define on E the functional

Φ(z) :=
1

2
||L|1/2z+|22 −

1

2
||L|1/2z−|22 −

∫

R×Ω

h(t, x)|z|p.

Then Φ ∈ C1(E,R) and critical points of Φ are weak solutions of (FS). The regu-

larity of the solutions may be established similarly to the proof of Lemma 8.6. Now

one checks that Φ verifies the assumptions of Theorem 4.7 and completes the proof.

It would be interesting to investigate whether the solutions from Theorem 8.3

are limits of solutions uλ of (FS) with V replaced by V + λ, λ → 0.
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8.6.2 More general symmetries

The multiplicity result of Theorem 8.2 remains true if the evenness (H5) is replaced

by more general symmetries. Let ρ : G → GL(2M,R) be a symplectic represen-

tation of the compact Lie group G on V = R2M . Thus ρ(g)∗J ρ(g) = J and

ρ(g)∗J0ρ(g) = J0 for all g ∈ G. For example, letting ρ0 : G → O(M) be an

orthogonal representation of G on RM , the representation

ρ(g) :=

(
ρ0(g) 0

0 ρ0(g)

)

is a symplectic representation of G on R
2M .

The representation ρ is said to be admissible if every continuous equivariant

map ∂O → V k−1, where O is an open bounded invariant neighbourhood of 0

in V k, k ≥ 2, has a zero; see [Bartsch (1993)] for an investigation of admissible

representations.

Theorem 8.4. Suppose (V1), (V2) and (H1)−(H5) are satisfied. Suppose moreover

that ρ is an admissible symplectic representation of a compact Lie group G on R2M

such that H(t, x, ρ(g)z) = H(t, x, z) for all (t, x, z) and g ∈ G. Then (FS) has

infinitely many geometrically distinct solutions z which lie in Br(R
1+N ,R2M ) for

any r ∈ [2,∞).

For the proof one proceeds as in the proof of Theorem 8.2. Instead of considering

an even functional Φ one has to deal with a functional which is invariant with respect

to the induced action of G on D(L) ⊂ L2
(
R, L2

(
R,R2M

))
. Checking the proof of

Theorem 5.2 in [Bartsch and Ding (1999)] one sees that the admissibility condition

is precisely the version of the Borsuk-Ulam theorem which is needed; cf. also [Arioli

and Szulkin (1999)].

The extension also holds in the case where Ω is a smoothly bounded domain in

RN .

8.6.3 More general nonlinearities

The results of Theorems 8.1 and 8.2 remain true if the Hamiltonian satisfies more

general nonlinear assumptions. For simplicity we only consider the situation where

Ω = RN . Setting

H̃(t, x, z) :=
1

2
Hz(t, x, z)z −H(t, x, z),

the conditions (H2) and (H3) can be replaced by the following asymptotically lin-

earities

(A1) Hz(t, x, z) − V∞(t, x)z = o(|z|) uniformly in (t, x) as |z| → ∞ with inf V∞ >

supV ;

(A2) H̃(t, x, z) > 0 if z 6= 0, and H̃(t, x, z) → ∞ uniformly in (t, x) as |z| → ∞;
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or by the more general super linearities

(S1) H(t, x, z)/|z|2 → ∞ uniformly in (t, x) as |z| → ∞;

(S2) H̃(t, x, z) > 0 if z 6= 0, and there exist r > 0 and σ > 1 if N = 1, σ > 1 + N
2 if

N ≥ 2 such that |Hz(t, x, z)|σ ≤ c1H̃(t, x, z)|z|σ for |z| ≥ r.

Theorem 8.5. Let (V1), (V2), (H1) and (H4) be satisfied. Assume either (A1) −
(A2) or (S1) − (S2) hold. Then (FS) has at least one nontrivial solution z ∈ Br
for all r ≥ 2. If moreover H(t, x, z) is even in z, then (FS) has infinitely many

geometrically distinct solutions z ∈ Br for all r ≥ 2.

The main difference to the proof of Theorems 8.1 and 8.2 lies in the study on

(PS)c-sequences replaced by (C)c-sequences. However, this can be carried out along

the lines of Chapter 6 for the Schrödinger equations.

8.6.4 More general systems

We consider existence and multiplicity of homoclinic type solutions of the following

system of diffusion equations on R × RN

{
∂tu− ∆xu+ b(t, x)·∇xu+ V (x)u = Hv(t, x, u, v)

−∂tv − ∆xv − b(t, x)·∇xv + V (x)v = Hu(t, x, u, v)
(F̂S)

where b ∈ C1(R × RN ,RN), V ∈ C(RN ,R) and H ∈ C1(R × RN × R2M ,R). We

make the following assumptions on V and b:

(V0) a := min V > 0, and V is Tj-periodic in xj for j = 1, · · · , N ;

(B0) b ∈ C1(R × R
N ,RN ), div b(t, x) = 0 and b is T0-periodic in t and Tj-periodic

in xj for j = 1, · · · , N .

The assumption (B0) is a gauge condition which according to [Nagasawa (1993)] is

harmless but technically necessary. The following result is from [Ding, Luan and

Willem (2007)].

Theorem 8.6 ([Ding, Luan and Willem (2007)]). Let (V0), (B0), (H1) and

(H4) be satisfied. Assume either (A1) − (A2) or (S1) − (S2) hold. Then (F̂S)

has at least one nontrivial solution z ∈ Br for all r ≥ 2. If moreover H(t, x, z) is

even in z, then (F̂S) has infinitely many geometrically distinct solutions z ∈ Br for

all r ≥ 2.

The main difference between the proofs of Theorem 8.5 and Theorem 8.6 lies in

the establishment of variational frameworks. We outline this as follows.

Let L := J (∂t+b ·∇x)+A. With the condition (B0), L is a selfadjoint operator

acting in L2(R × RN ,R2M ) with domain D(L) = B2(R × RN ,R2M ). Let σ(L)

and σe(L) denote respectively the spectrum and essential spectrum of L. Let

λ := inf (σ(L) ∩ (0,∞)).
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Recall that the operator S = −∆x + V is self-adjoint on L2(RN ,R). It follows

from (V0) that σ(S) ⊂ [a,∞).

Lemma 8.7. Let (V0) and (B0) be satisfied. Then

1◦ σ(L) = σe(L), i.e., L has only essential spectrum;

2◦ σ(L) ⊂ R \ (−a, a);
3◦ σ(L) is symmetric with respect to 0, that is, σ(L)∩ (−∞, 0) = −σ(L)∩ (0,∞);

4◦ a ≤ λ ≤ maxV .

Proof. Since, by (V0) and (B0), L commutes with the Z-action ∗, it is evident

that σ(L) = σe(L), hence 1◦ is true.

In order to show 2◦, assume by contradiction that there is µ ∈ (−a, a) ∩ σ(L).

Let zn = (un, vn) ∈ D(L) with |zn|2 = 1 such that |(L− µ)zn|2 → 0. Denoting

z̄n = J0zn = (vn, un)

we get

((L− µ)zn, z̄n)L2 = (J (∂t + b·∇x)zn, z̄n)L2 + (Szn, zn)L2 − µ(zn, z̄n)L2

= (Szn, zn)L2 − µ(zn, z̄n)L2 ≥ a− |µ|,
that is, a− |µ| → 0 which is a contradiction. 2◦ is proved.

In order to check 3◦ let λ ∈ σ(L) ∩ (0,∞) and zn ∈ D(L) with |zn|2 = 1 and

zn ⇀ 0 in L2 such that |(L − λ)zn|2 → 0. We will show that −λ ∈ σ(L). Define

ẑn = J1zn where

J1 =

(−I 0

0 I

)
.

Then |ẑn|2 = 1 and ẑn ⇀ 0 in L2. Observe that J1J = −JJ1, J1J0 = −J0J
and

Lẑn = −J1Lzn.

We get

|(L− (−λ))ẑn|2 = |J1(L− λ)zn|2 = |(L− λ)zn|2 → 0.

This implies that −λ ∈ σ(L). Similarly, it is easy to show that if λ ∈ σ(L)∩(−∞, 0)

then −λ ∈ σ(L). This proves 3◦.
By 2◦, λ ≥ a. For further discussion, we regard J ∂t as a self-adjoint operator

on L2(R,R2m), and similarly −∆x as a self-adjoint operator on L2(RN ,R). By

the Fourier transform, one sees σ(J ∂t) = R. Take fn ∈ D(J ∂t) with |fn|22 =∫
R
|fn|2dt = 1 and |J ∂tfn|2 → 0. Since σ(−∆x) = [0,∞) we can choose gn ∈

D(−∆x) with |gn|22 =
∫

RN |gn|2dx = 1 and |∆xgn|2 → 0. Set zn = fngn. Then

|zn|2 = 1 and

|Lzn|2 ≤ |J ∂tfn|2 + |b|∞|∇xgn|2 + |∆xgn|2 + maxV → maxV.

This implies that there is λ ∈ σ(L) with a ≤ |λ| ≤ maxV . By 3◦ one has ±λ ∈ σ(L).

Hence λ ≤ max V , ending the proof of 4◦. �
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Recall that L0 := J ∂t + J0(−∆x + 1) and

d1‖z‖rBr
≤ |L0z|rr ≤ d2‖z‖rBr

(8.20)

for all z ∈ Br (see Lemma 8.3).

Lemma 8.8. Assume that (V0) and (B0) are satisfied. Then

c1|L0z|22 ≤ |Lz|22 ≤ c2|L0z|22
for all z ∈ B2. Consequently,

c′1‖z‖2
B2

≤ |Lz|22 ≤ c′2‖z‖2
B2

for all z ∈ B2.

Proof. The right inequality follows from (8.20) and the relationship

Lz = L0z + J0(V − 1)z + J b·∇xz

which implies

|Lz|22 ≤ |L0z|22 + d3(|z|22 + |∇xz|22) ≤ c2|L0z|22.
We now prove the left inequality. Assume by contradiction that there is a sequence

(zn)n ⊂ B2 with |L0zn|2 = 1 and |Lzn|2 → 0. Then as before, setting z̄n = J0zn
one has

(Lzn, z̄n)L2 = (Szn, zn)L2 =

∫

R×RN

(|∇xzn|2 + V |zn|2),

hence
∫

R×RN (|∇xzn|2+V |zn|2) ≤ |Lzn|2|z̄n|2 = |Lzn|2 → 0. In particular, |zn|2 → 0

and |J b·∇xzn|2 → 0. Observe that

(J0Szn,J ∂tzn)L2 = (J ∂tJ0Szn, zn)L2 = −(J0SJ ∂tzn, zn)L2

= −(J ∂tzn,J0Szn)L2 .

Consequently,

|Lzn|22 = |(J (∂t + b·∇x)zn + J0Szn|22
= |(∂t + b·∇x)zn|22 + |Szn|22

+ (J (∂t + b·∇x)zn, J0Szn)L2 + (J0Szn, J (∂t + b·∇x)zn)L2

= |∂tzn|22 + |Szn|22 + (J ∂tzn, J0Szn)L2 + (J0Szn, J ∂tzn)L2 + o(1)

= |L0zn|22 + o(1),

that is, 1 = |L0zn|22 = |Lzn|22 + o(1) → 0, a contradiction. Therefore, c1|L0z|22 ≤
|Lz|22 for all z ∈ B2. �

It follows from Lemma 8.7, that L2 = L2(R×RN ,R2M ) possesses the orthogonal

decomposition

L2 = L− ⊕ L+, z = z− + z+

such that L is negative (resp. positive) definite in L− (resp. L+).
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Let E := D(|L|1/2), the Hilbert space with the inner product

(z1, z2) =
(
|L|1/2z1, |L|1/2z2

)
L2

and the norm ‖z‖ = (z, z)1/2. E has the orthogonal decomposition

E = E− ⊕E+ where E± = E ∩ L±.

It is clear that ‖z‖2 ≥ a|z|22 for all z ∈ E.

Let below N∗ := ∞ if N = 1 and N∗ := 2(N+2)/N if N ≥ 2. As a consequence

of Lemma 8.8 we have

Lemma 8.9. E is continuously embedded in Lr for any r ≥ 2 if N = 1, and for

r ∈ [2, N∗] if N ≥ 2. E is compactly embedded in Lrloc for all r ∈ [1, N∗).

Proof. See Lemma 8.5. �

On E we define the functional

Φ(z) :=
1

2
‖z+‖2 − 1

2
‖z−‖2 − Ψ(z) where

∫

R×RN

H(t, x, z).

By assumptions Φ ∈ C1(E,R) and its critical points give rise to solutions of (F̂S).
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Séré, E. (1993). Looking for the Bernoulli shift, Ann. Inst. H. Poincar Anal. Non Linaire
10, pp. 561–590.

Schechter, M. (1999). Linking Methods in Critical Point Theory (Birkhäuser Boston, Inc.,
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