

Lecture Notes in Computer Science 2635
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Olaf Owe Stein Krogdahl Tom Lyche (Eds.)

From
Object-Orientation
to Formal Methods

Essays in Memory of Ole-Johan Dahl

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Olaf Owe
Stein Krogdahl
University of Oslo
Department of Informatics
P.O. Box 1080, 0316 Oslo, Norway
E-mail: {olaf,stein.krogdahl}@ifi.uio.no

Tom Lyche
University of Oslo
Institute of Informatics and CMA
P.O. Box 1053, Blindern, 0316 Oslo, Norway
E-mail: tom@ifi.uio.no

The illustration appearing on the cover of this book is the work of Daniel Rozenberg
(DADARA).

Library of Congress Control Number: 2004103001

CR Subject Classification (1998): D.2, D.3, D.1, F.3, F.4

ISSN 0302-9743
ISBN 3-540-21366-X Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media

springeronline.com

c© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 10992401 06/3142 5 4 3 2 1 0

Ole-Johan Dahl

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Preface

After Ole-Johan’s retirement at the beginning of the new millennium, some of
us had thought and talked about making a “Festschrift” in his honor. When
Donald Knuth took the initiative by sending us the first contribution, the pro-
cess began to roll! In early 2002 an editing group was formed, including Kristen
Nygaard, who had known Ole-Johan since their student days, and with whom
he had developed the Simula language. Then we invited a number of prominent
researchers familiar with Ole-Johan to submit contributions for a book honor-
ing Ole-Johan on the occasion of his 70th birthday. Invitees included several
members of the IFIP 2.3 working group, a forum that Ole-Johan treasured and
enjoyed participating in throughout his career. In spite of the short deadline, the
response to the invitations was overwhelmingly positive.

The original idea was to complete the book rather quickly to make it a gift
he could read and enjoy, because by then he had had cancer for three years,
and his health was gradually deteriorating. Kristen had been regularly visiting
Ole-Johan, who was in the hospital at that time, and they were working on their
Turing award speech. Ole-Johan was gratified to hear about the contributions
to this book, but modestly expressed the feeling that there was no special need
to undertake a book project on his behalf. Peacefully accepting his destiny, Ole-
Johan died on June 29, 2002. Kristen, who was 5 years older than Ole-Johan,
was still very active. Quite surprisingly, he died 6 weeks later of a sudden heart
attack. During this short period, Norway lost its two greatest computer scientists.

We are grateful to all who helped with the book, especially all the contrib-
utors and the anonymous referees. Credit is due to Ellef Gjelstad, who helped
with the preparation of the manuscript.

University of Oslo Olaf Owe,
December 2003 Stein Krogdahl,

Tom Lyche

Table of Contents

A Biography of Ole-Johan Dahl . 1
Olaf Owe, Stein Krogdahl, and Tom Lyche

A Bibliography of Ole-Johan Dahl . 8
Olaf Owe, Stein Krogdahl, and Tom Lyche

The Birth of Object Orientation: the Simula Languages 15
Ole-Johan Dahl

An Algebraic Theory of Actors and Its Application to a Simple
Object-Based Language . 26

Gul Agha and Prasanna Thati

Towards Posit & Prove Calculi for Requirements Engineering and
Software Design . 58

Dines Bjørner

Distributed Concurrent Object-Oriented Software . 83
Manfred Broy

Composing Hidden Information Modules over Inclusive Institutions 96
Joseph Goguen and Grigore Roşu

Towards the Verifying Compiler . 124
Tony Hoare

Object-Oriented Specification and Open Distributed Systems 137
Einar Broch Johnsen and Olaf Owe

SIMULA and Super-Object-Oriented Programming 165
Eugene Kindler

Efficient Coroutine Generation of Constrained Gray Sequences 183
Donald E. Knuth and Frank Ruskey

Consistency of Inheritance in Object-Oriented Languages and of Static,
ALGOL-like Binding . 209

Hans Langmaack

The Power of Abstraction, Reuse, and Simplicity: An Object-Oriented
Library for Event-Driven Design . 236

Bertrand Meyer

X Table of Contents

Iterative Synthesis of Control Guards Ensuring Invariance and
Inevitability in Discrete-Decision Games . 272

Michel Sintzoff

Incremental Reasoning for Object Oriented Systems 302
Neelam Soundarajan and Stephen Fridella

Pure Type Systems in Rewriting Logic: Specifying Typed Higher-Order
Languages in a First-Order Logical Framework . 334

Mark-Oliver Stehr and José Meseguer

Building Optimal Binary Search Trees from Sorted Values in
O(N) Time . 376

Jean G. Vaucher

Author Index . 389

A Biography of Ole-Johan Dahl

Olaf Owe, Stein Krogdahl, and Tom Lyche

Department of Informatics, University of Oslo

On 12 October 1931, Ole-Johan Dahl was born to the family of a ship captain in
Mandal, the southernmost city of Norway. In 1952, three years after beginning
his studies at the University of Oslo, he was introduced to computers at the Nor-
wegian Defense Research Establishment (NDRE) where he fulfilled his military
service obligation. Jan V. Garwick was responsible for the field of mathematical
analysis and calculations, and Ole-Johan was placed in the “computing room”
led by Garwick’s assistant, Kristen Nygaard. It is quite likely that, in this set-
ting, Garwick, Nygaard and Dahl were the first in Norway to develop programs
on “large” digital computers. In the years to come, NDRE cultivated a scientific
collaboration with the pioneering computer group at the University of Manch-
ester and the electronics company Ferranti. As a result of this tie, NDRE got
the first version of Ferranti’s Mercury computer in 1957.

Ole-Johan’s next project was to develop and implement a “high level” lan-
guage for numerical computation, called MAC (Mercury Automatic Coding).
While Kristen changed focus to the area of operations research in the mid-1950s,
Ole-Johan became Garwick’s main collaborator. Together they formed the first
real programming group in Norway.

In 1958, Ole-Johan completed the Candidatus Realium degree at the Uni-
versity of Oslo in mathematics. His thesis entitled “Multiple Index Countings
on the Ferranti Mercury Computer” [94], was formally in the area of numerical
analysis, but actually in computer science and programming, a field that had
not yet emerged. In fact, he was one of the first to acquire a relevant and modern
education in computer science.

In 1960 Kristen had become research director at the Norwegian Computing
Center (NCC). He decided to make an attempt solve two main problems in
operations research, namely, the lack of concepts and language for description
and communication about large and complex systems, and the lack of a specialized
programming language for simulation tasks. Realizing that he could not do this
by himself, he looked to Ole-Johan, a specialist in programming language, as the
obvious collaborator.

They started working together in 1961, and in 1963 Ole-Johan joined Kris-
ten full-time at NCC. Together they created the Simula 1 language (1961-1965)
and Simula 67 (1965-1968), introducing the concepts of class, subclass and in-
heritance, virtual binding of operations, and dynamic creation of objects. The
Simula concept of quasi-parallelism reflected that objects may in principle be
independent processes running in parallel. Implicit forms of information hiding,
through the subclass mechanism, were later also complemented by explicit forms
of information hiding.

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 1–7, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

2 Olaf Owe, Stein Krogdahl, and Tom Lyche

These concepts, which constitute what today is called object-orientation,
have greatly influenced modern programming languages, programming method-
ology and modeling languages, including UML. The class related concepts in
Simula were clearly ahead of their time; it took some 20 years until they gained
understanding and popularity. Languages such as Smalltalk, Beta, C++, Eiffel,
Java, and C#, have directly adopted Simula’s fundamental concepts about ob-
jects and classes. Object-orientation is today the dominant style of programming,
description, and modeling.

To quote Bjarne Stoustrup: “Simula isn’t just an innovative programming
language. From the beginning it came with a philosophy of design based on
modeling that has had impact far beyond the realm of programming and pro-
gramming languages.” The object-oriented philosophy also underlies the modern
use of windows and the graphical interfaces that we all use.

How could Ole-Johan and Kristen, at such an early stage, design a language
with all the mechanisms that today form the “object-oriented” paradigm for
system development? An important part of the answer is obviously that they
were extraordinary talented researchers in the field, and with rather different
perspectives and personalities, which frequently led to confrontations and heated
discussions. There is a famous story illustrating their style of working: A new
employee at NCC came worriedly running down to the receptionist and cried
out: “We must do something! There are two men fighting upstairs in front of
the blackboard.” The receptionist listened for a moment, and replied: “No don’t
worry. It is just Kristen and Ole-Johan discussing Simula!”

In addition, it was probably very fortunate that they first designed a lan-
guage for simulation (Simula 1), and later generalized the concepts in a general
purpose language (Simula 67). Ole-Johan has expressed it this way: “A reason
for this may be that in developing a complicated simulation model it is useful
to decompose it in terms of ‘objects’, and to have an explicit mapping from ex-
ternal objects to program constructs. A natural way of developing real systems
is not much different.” Kristen emphasized that an essential motivation behind
Simula was system description, and the need for a language to model real world
concepts.

The final recognition of Ole-Johan and Kristen as the founders of object ori-
entation has been established through two prestigious awards, both given during
their last year of life: In November 2001, they were awarded the IEEE John von
Neumann Medal “for the introduction of the concepts underlying object-oriented
programming through the design and implementation of Simula 67,” and in
February 2002, they were given the A. M. Turing Award by the ACM “for ideas
fundamental to the emergence of object-oriented programming, through their
design of the programming languages Simula 1 and Simula 67” [tribute].

Earlier, in June 2000, they were awarded Honorary Fellowships for “their
originating of object technology concepts” by the Object Management Group,
the main international standardization organization within object-orientation.
In August 2000 they were appointed Commanders of the Order of Saint Olav
by the King of Norway (one of the highest national awards), and in 1999 they

A Biography of Ole-Johan Dahl 3

became the first to receive the Rosing Honorary Prize, awarded by the Norwegian
Data Association for exceptional professional achievements. Both were elected
members of the Norwegian Academy of Science. Ole-Johan was also a member
of IFIP Working Group 2.3 and of Academia Europaea, and he received an
honorary doctorate from the University of Lund, Sweden.

A characteristic of Ole-Johan as a researcher was his quest for simplicity,
elegance, and purity rather than ad hoc solutions with their associated exceptions
and compromises. This is reflected in the class concept of Simula. From an
educational point of view, its elegance, generality and simplicity make Simula
well suited for teaching object orientation.

We include below a version of the last paper Ole-Johan wrote [36]1, which
provides a detailed summary of the research leading up to Simula, as well as
afterthoughts and viewpoints of its cultural impact. Other sources of information
on the development of Simula are [23], and more recently [Hol94,Kro03,Bös03].

Research at the University of Oslo

In 1968 Ole-Johan was invited to be a full professor to create the discipline of
computer science at the University of Oslo. He spent enormous efforts building
up a curriculum in computer science in the late 1960s, writing textbooks at night
while teaching during the day, and supervising up to 20 graduate students at
a time. For 10 years from 1968 he was the only professor in computer science
in Oslo. For many years, he had only one lecturer and a few research assistants
helping him. The courses he designed met the highest international standards
of the time and for many years to come. Most of the courses were offered for 20
years or more with only minor changes; some are still being taught.

After beginning his career at the university, Ole-Johan deliberately stopped
working on further development of Simula as such. In his new position he felt
that it was essential to build up computer science to be an accepted academic
discipline, and establish a theoretical foundation for basic concepts of computer
science and programming languages. He made important advances in program-
ming methodology, introducing techniques for program structuring and concep-
tual modeling, based on the experiences of the design and implementation of
Simula. Early works in this direction include the papers [1, 4, 10, 13, 14, 16, 17,
63] with his work on Hierarchical Program Structures as the best known and
most influential.

Inspired by Tony Hoare’s logic for program reasoning [Hoa69], he contin-
ued research in the area of program architecture, programming and specification
languages, as well as verification methods and techniques. Most of this work is
related to the area of formal methods, where the idea is to use mathematical
methods to specify, develop and reason about programs. Because of his computer
science background and education, his theoretical work was accompanied by con-
cern for practical relevance and usefulness. Exploiting the advantages of both, he
advocated combined use of top-down development and bottom-up development.

1 References labeled with numbers refer to the bibliography of Ole-Johan.

4 Olaf Owe, Stein Krogdahl, and Tom Lyche

This led to research on abstract data types, a concept inspired by the class
concept of Simula and Tony Hoare’s paper entitled Proof of correctness of data
representation [Hoa72]. In particular, Ole-Johan focused on generator induc-
tion, inspired by the work of John Guttag and Jim Horning, subtyping, inspired
by Simula’s subclass mechanism and by the work on order sorted algebra, and
integration of applicative and imperative class-based reasoning. Based on mecha-
nizable evaluation and reasoning, he developed a theory for “constructive” types
and subtypes centered around a long term project, called Abstraction Building,
Education Language (ABEL), which served as a research testbed and source
of student projects [5, 21, 25, 26, 33, 34, 43, 44, 46, 53], and resulted in several dr.
scient theses supervised by Ole-Johan [Owe80,Nos84,Mel86,Lys91].

Ole-Johan was teaching formal methods, and their practical use for 30 years.
He believed that computer science students should know the principles of pro-
gram reasoning, and that this would make them better programmers even with-
out performing detailed verification. The course work has resulted in the book,
Verifiable Programming [5], which includes much of his own research and re-
sults. He supervised a large number of students, ten of whom became university
professors.

Formal Methods, Object-Orientation, and Concurrency

Work towards the understanding and formalization of what is now called object-
orientation, was carried out already in the early 1970s [15, 18], and with the thesis
of Arne Wang, one of Ole-Johan’s first students [Wan74].

Ole-Johan’s early approach to reasoning about object-oriented systems builds
on the idea of limiting direct access to attributes of an object from outside, either
disallowing all remote variable access or allowing access to some variables (seen as
an abbreviation for implicit read and write operations). This means that one can
give local invariants in a class and prove that the class invariant is established
and maintained by looking at the text of the class itself and possibly super-
classes. When subclassing is restricted so that super-invariants are respected,
reasoning about objects can be done without looking at the global state space:
Hoare style reasoning can be done locally in each class.

Early on it was recognized that this kind of class-based reasoning was fruitful
for the Monitor concept of Hoare [Hoa74] and for aspects of operating systems
concerning process control. The co-routine and monitor papers were part of this
research direction [15, 18, 19, 20, 21, 29, 35, 64] and the thesis of Stein Gjessing,
who had been supervised by Ole-Johan [Gje83].

In contrast to those object-oriented approaches where “everything is an ob-
ject”, Ole-Johan believed in object classes side by side with data types. Ole-
Johan’s view was that objects should reflect mutable data structures, handled
by references, and data types should reflect immutable, but copyable, data [28].
This called for user defined data types. In ABEL, a functional sublanguage was
defined for definition of abstract data types, whereas classes were defined in
an imperative style. Thus Ole-Johan considered functional programming as a
complement to object-oriented programming rather than a competitor.

A Biography of Ole-Johan Dahl 5

According to the original ideas of Simula, an object would in general have
its own activity, as well as data and procedures. Objects with activity were
reflecting “independent processes”, and objects without activity (but still with
data and procedures) were called passive. In Simula 67 these ideas were realized
by allowing objects to be co-routines, the natural way at that time to imitate
concurrent processes and a useful simulation mechanism. In today’s world a
natural adaptation would be to let objects be concurrent processes, and one
would obtain a distributed system by a set of objects running in parallel and
interacting by remote method calls (only). This is the approach taken in Ole-
Johan’s later works. See for instance [26, 36].

Ole-Johan’s work on abstract specification of concurrent objects by means of
histories presents a techniques for “black box” interface specification of process
classes. The abstract state of a concurrent object is represented by its com-
munication history, i.e., the trace of all visible communication events involving
the object, such as method calls. As the abstract state at any given time is re-
flected by a finite history, Ole-Johan developed specification techniques based
on finite traces, and a central idea was to use right-append as a trace gener-
ator in order to describe new actions in terms of the current history, thereby
avoiding recursive process definitions as found e.g. in CSP. Reasoning about
concurrent objects in terms of such histories is compositional and integrates
well with object-orientation. Ole-Johan developed a style of history specification
where specifications of a certain form can easily be refined into an imperative
object-oriented implementation. The use of histories was initiated in the early
1970s and remained an important research topic for him throughout the 1990s
[21, 22, 26, 41, 58]. When he retired, Ole-Johan was writing a book on concur-
rency based on research in connection with a course on concurrency and process
control [69, 54].

The above principles for object-oriented programming, specification, and rea-
soning, constitute what we may call “the Dahl School.” A further introduction
is given in the paper by Johnsen and Owe in this volume.

International Visits

Due to Ole-Johan, several prominent researchers visited Oslo. In particular we
mention the one year stay of Donald Knuth from Stanford University in 1972 to
1973. Knuth had a great impact on the computer science development in Oslo
at an early and crucial period in time.

Knuth, who immediately understood the benefits of the Simula ideas, gave
up work on his own simulation language (SOL), and became a supporter of Sim-
ula. He could have made Simula quite well-known by teaching it at Stanford, but
when asking for a inexpensive compiler for academic use at Stanford, he was un-
fortunately turned down by NCC (despite the strong arguments of both Kristen
and Ole-Johan, who fully understood the importance of this opportunity).

In the late 1970s Reiji Nakajima, a post doc at that time, made a one year
visit to Oslo, which led to a number of interesting discussions around abstract
data types and ABEL. In the early 80s, Neelam Soundarajan visited Oslo for

6 Olaf Owe, Stein Krogdahl, and Tom Lyche

a year, working together with Ole-Johan on reasoning with histories. Ole-Johan
enjoyed this cooperation very much, appreciating Neelam’s clarity. Neelam came
for a second year in the early 1990s. Zhenjia Lei, University of Xi’an also visited
Ole-Johan, which resulted in a return visit by Ole-Johan in Xi’an in the mid-
1990s. Apart from this visit, Ole-Johan had only one sabbatical leave during his
career, which was spent at Stanford University in the late 1970s.

Ole-Johan also enjoyed the many shorter visits by a large number of scientists,
including Tony Hoare, Hans Langmaack, Dines Bjørner, Eugene Kindler, Cliff
Jones, Manfred Broy, David Luckham, Jean-Pierre Jouannaud, Pierre Lescanne,
and Willem-Paul de Roever, most of whom also enjoyed music evenings and
dinners in Ole-Johan’s home.

Personal Interests

Ole-Johan was a music lover and an excellent amateur pianist. In fact, he was
one of the best “prima vista” amateur pianists in Norway. He knew the world
of classical music well, and that of chamber music in particular. Much of his
free time was filled by music, and he was a central member of the Board of Oslo
Quartet Association and a driving force behind the yearly chamber music courses
at the Nansen School in Lillehammer. He regularly arranged house concerts
at the department, often playing together with visitors who happened to be
musicians, or with his wife or daughter.

In addition he enjoyed and excelled in many kinds of games including chess
and bridge, and spent much time as a student pursuing these interests. At con-
ferences he was known for his skills in classical billiards (3 balls) in addition to
the piano. A personal bibliography is written by his wife [Dah03].

References

[Bös03] Laszlo Böszörmenyi, Stefan Podlipnig: People behind Informatics: In
memory of Ole-Johan Dahl, Edsger W. Dijkstra and Kristen Ny-
gaard. Book written for the memorial exhibition at the international
conferences JMLC 2003 and EuroPar 2003, Institute of Information
Technology, University of Klagenfurt, Austria, August 2003. http://

www-itec.uni-klu.ac.at/~laszlo/Memorial/memorial exhibition.htm

[Dah03] Tove Dahl: A brief biography of Ole-Johan Dahl. 2003. In [Bös03].
[Gje83] Stein Gjessing: Aspects of Semantics and Verification of Monitors, dr. philos.

thesis, Department of Informatics, University of Oslo, 1983.

[Hoa69] C. A. R. Hoare: An axiomatic basis for computer programming. Comm. ACM
12 (1969), pp. 576–580.

[Hoa72] C. A. R. Hoare: Proof of the Correctness of Data Representations. Acta In-
formatica, vol. 1, 1972, pp. 271–281.

[Hoa74] C. A. R. Hoare: Monitors: an Operating System Structuring Concept.
Comm. ACM 17(10)(1974), pp. 549-557.

[Hol94] Jan Rune Holmevik: Compiling Simula: A Historical Study of Technological
Genesis. IEEE Annals of the History of Computing, Vol. 16 no. 4, 1994.

A Biography of Ole-Johan Dahl 7

[Kro03] Stein Krogdahl: The birth of Simula. In the final proceedings of HiNC 1,
Trondheim, June 2003. IFIP. To appear.

[Lys91] Olav Lysne: term rewriting. dr. scient. thesis, Department of Informatics,
University of Oslo, 1991.

[Mel86] Sigurd Meldal: On Hierarchical Abstraction and Partial Correctness of Con-
current Structures. dr. scient. thesis, Department of Informatics, University
of Oslo, 1986.

[Nos84] Decision Algorithms for Program Verification. Dr. scient. thesis, Department
of Informatics, University of Oslo, 1984.

[Owe80] Olaf Owe: A specification technique with idealization. Dr. scient. thesis, De-
partment of Informatics, University of Oslo, 1980.

[Wan74] Arne Wang: Generalized Types in High-Level Programming Languages. Re-
search Report in Informatics no. 1, 1974, cand. real. thesis. Department of
Mathematics, University of Oslo.

[tribute] The Department’s page of tribute: http://www.ifi.uio.no/adminf/tribute.html
with links to Ole-Johan’s and Kristen’s own homepages (Kris-
ten’s is more rich on information). For Kristen there is a memo-
rial page at http://www.ifi.uio.no/in memoriam kristen/ See also
http://www.jot.fm/issues/issue 2002 09/eulogy

http://www.ifi.uio.no/adminf/tribute.html

A Bibliography of Ole-Johan Dahl

Olaf Owe, Stein Krogdahl, and Tom Lyche

Department of Informatics, University of Oslo

This bibliography is based on information collected by Berit Strange, from the
Library of the Department of Informatics, University of Oslo. Ole-Johan’s home-
page www.ifi.uio.no/˜olejohan/ contains links to some papers.

Books

1. Structured Programming. O.-J. Dahl, E.W. Dijkstra, C.A.R. Hoare. Aca-
demic Press, London, 1972. (220 pages). Also as: A.P.I.C. Studies in Data
Processing no. 8. ISBN 0-12-200550-3, 0-12-200556-2

2. SIMULA begin. G.M. Birtwistle, O.-J. Dahl, B. Myhrhaug and K. Ny-
gaard. Auerbach Publishers Inc, 1973 (391 pages) ISBN 91-44-06211-7. 2.
edition published by Studentlitteratur, Stockholm & Chartwell-Bratt Ltd,
England, 1973

3. Syntaks og semantikk i programmeringssprk (Syntax and Semantics in
Programming Languages). O.-J. Dahl. Studentlitteratur, Lund, Sweden,
1972 (103 pages) ISBN 91-44-07111-6 (In Norwegian)

4. Algoritmer og datastrukturer (Algorithms and Data Structures). O.-J. Dahl
and Dag Belsnes. Studentlitteratur, Lund, Sweden, 1973 (170 pages)
ISBN 91-44-06991-x (In Norwegian)

5. Verifiable Programming. O.-J. Dahl. Prentice Hall (International series
in computer science), New York, 1992, revised edition 1993 (269 pages)
ISBN 0-13-951062-1

Papers in Proceedings, Journals, and Books

6. Automatisk koding – et prosjekt ved forsvarets forskningsinstitutt [En-
glish: Automatic coding – a project at the Norwegian Research Defense
Establishment]. O.-J. Dahl. (In Norwegian) In: Proceedings of NordSAM,
May 1959, Karlskrona. (The Nordic Symposium on Application of Mathe-
matical Machines) Carl-Erik Frberg and Yngve Rollof (eds.), 1959, pages
135-141.

7. Litt om symbolbruken i Algol [English: A Note on the Use of Symbols
in Algol]. O.-J. Dahl. In: BIT (Nordic Journal of Information Processing)
2(1962) no. 1, pages 7-8. (In Norwegian)

8. SIMULA – a Language for Describing Discrete Event Systems. K. Nygaard
and O.-J. Dahl. In: Proceedings of the IFIP Conference, 1965. Vol. 2, Spar-
tan Books, Washington, D.C.; Macmillan, New York, pages 554-555.

9. SIMULA – an ALGOL-Based Simulation Language. O.-J. Dahl and K. Ny-
gaard. In: Communications of the ACM 9(1966), pages 671-682.

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 8–14, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

file:www.ifi
Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

A Bibliography of Ole-Johan Dahl 9

10. Discrete Event Simulation Languages. O.-J. Dahl. In: Programming Lan-
guages. G. Genuys (ed). NATO Advanced Study Department. Academic
Press, 1968, pages 349-395.

11. Class and Subclass Declarations. O.-J. Dahl and K. Nygaard. In: Simula-
tion Programming Languages, J.N. Buxton (ed.), Proceedings of the IFIP
working conference on simulation programming languages, Oslo, May 1967,
North-Holland, Amsterdam, 1968, pages 158-174.

12. Some Features of the SIMULA 67 Language. O.-J. Dahl, B. Myhrhaug
and K. Nygaard. In: Digest of the Second Conference on Application of
Simulation, Dec. 1968, New York, IEEE (cat no. 68C60-SIM) pages 29-32.

13. Decomposition and Classification in Programming Languages. O.-J. Dahl.
In: Linguaggi nella societ e nella tecnica, Convegno promosso dalla Ing.
C. Olivetti & C., S. p. A. per il centenario della nascita di Camillo Olivetti,
Milano, 1970. (Saggi di cultura contemporanea 87) pages 371-383.

14. Programming Languages as Tools for the Formulation of Concepts.
O.-J. Dahl. In: Proceedings of the 15th Scandinavian Congress, Oslo 1968,
K.E. Aubert and W. Ljunggren (eds.). Lecture notes in Mathematics no.
118, Springer, 1970, pages 18-29.

15. Coroutine Sequencing in a Block Structured Environment. Arne Wang and
O.-J. Dahl. In: BIT 11(1971) pages 425-449.

16. Hierarchical Program Structures. O.-J. Dahl and C.A.R. Hoare. In: Struc-
tured Programming. Academic Press, 1972, pages 175-220 (see [1] above)

17. Programming Discipline. O.-J. Dahl. In: Proceedings of the 1974 CERN
School of Computing, Godysund, Aug. 1974. CERN Report 74-23, Geneva,
pages 426-435.

18. An Approach to Correctness Proofs of Semicoroutines. O.-J. Dahl. In:
Mathematical Foundations of Computer Science, 3rd Symposium, Jadwisin
near Warsaw, 17-22 jun, 1974. LNCS no. 28, Springer, 1975, pages 157-174.

19. Analysis of an Algorithm for Priority Queue Administration. A. Jonassen
and O.-J. Dahl. In: BIT 15(1975) no. 4, pages 409-422.

20. A Model for Controlling a Network of Processors and Storage Units.
O.-J. Dahl. In: Thorie des algorithmes, des langages et de la pro-
grammation: Textes des exposs du sminaire organis par l’Institut du
Recherche d’Informatique et d’Automatique (IRIA), Rocquencourt, Octo-
bre 1974. M. Nivat (ed.). IRIA, Rocquencour, France, 1975, pages 83-94.
ISBN 2-7261-0120-8

21. Can program proving be made practical? O.-J. Dahl. In: Les fondements
de la programmation, M. Amirchahy and D. Nel (eds.). IRIA, Le Chesnay,
France (Text in English.) pages 57-114. ISBN 2726101844

22. Time Sequences as a Tool for Describing Program Behaviour. O.-J. Dahl.
In: Abstract Software Specifications, January 22–February 2, 1979, Copen-
hagen Winter School, D. Bjrner (ed.). LNCS no. 86, Springer 1979,
pages 274-290.

23. The Development of the Simula Languages (Chapter IX: SIMULA Ses-
sion). K. Nygaard and O.-J. Dahl. In: History of Programming Languages.

10 Olaf Owe, Stein Krogdahl, and Tom Lyche

Richard L. Wexelblat (ed.), Academic Press, New York, 1981, pages 439-
493.
Also in: ACM Sigplan History of Programming Languages Conference,
June, 1978. ACM Sigplan Notices 13(1978) no. 8, pages 245-272.

24. Object Oriented Specification. O.-J. Dahl. In: Research Directions in
Object-Oriented Programming, Bruce Shriver and Peter Wegner (eds.),
MIT Press, Cambridge, 1987, pages 561-576.
(Presented at the Object-Oriented Programming Workshop, June, 1986.)

25. Generator induction in order sorted algebra. O. Owe & O.-J. Dahl. In: For-
mal Aspects of Computing 3(1991) pages 2-20.

26. Formal Development with ABEL. O.-J. Dahl and O. Owe. In: Proceedings
of Formal Software Development Methods. VDM ’91, Oct. 1991. LNCS
no. 552, Springer, 1991, pages 320-362.

27. Object Orientation and Formal Techniques (extended abstract). O.-J.
Dahl. In: VDM ’90 VDM and Z – Formal Methods in Software Devel-
opment. LNCS no. 428, Springer, 1992, pages 1-11.

28. Value Types and Object Classes. O.-J. Dahl. In: ASU Newsletter 20(1992)
no. 1, pages 8-20.

29. Monitors Revisited. O.-J. Dahl. In: A classical Mind: Essays in Honour of
C.A.R. Hoare. A.W. Roscoe (ed.). Prentice Hall, 1994, pages 93-103.

30. Relating a Simulation Model to an Applicative Specification. O.-J. Dahl.
In: Modelling and Simulation: Proceedings ESM, Praha, 1995, M. Snorek,
M. Sujansky, A. Verbraeck (eds.) Society for Computer Simulation Inter-
national, 1995, pages 633-638.

31. Recent Trends in Data Type Specification: 11th Workshop on Specifica-
tion of Abstract Data Types jointly with the 8th COMPASS Workshop,
Oslo, Norway, September 19-23, 1995, Selected papers. Magne Haveraaen,
O. Owe, O.-J. Dahl (eds.). LNCS no. 1130, Springer, 1996, (550 pages)
ISBN 3-540-61629-2

32. Data Access Safety and Storage Economy in Programming Languages.
O.-J. Dahl. (8 pages) 23rd ASU Conference, August 1997, Stara Lesna,
Slovakia. ASU Newsletter vol. 24, no. 2, Feb. 1998.

33. On Introducing Higher Order Functions in ABEL. O.-J. Dahl and Bjrn
Kristoffersen. In: Nordic Journal of Computing 5(1998) pages 50-69.

34. Subtyping and Constructive Specification. O.-J. Dahl, O. Owe, Tore J.
Bastiansen. In: Nordic Journal of Computing 5(1998) pages 19-49.

35. A Note on Monitor Versions: an Essay in the Honour of C.A.R. Hoare.
O.-J. Dahl. In: Millennial Perspectives in Computer Science (Proceeding
of the 1999 Oxford-Microsoft Symposium in Honour of Sir Tony Hoare).
Jim Davis, Bill Roscoe and Jim Woodcock (eds.). PALGRAVE, in the series
Cornerstones of Computing, 2000, pages 91-98.

36. The Roots of Object Orientation: the Simula Language. O.-J. Dahl. In:
Software Pioneers: Contribution to Software Engineering. Manfred Broy,
Ernst Denert (eds.), Springer Verlag, 2002. pages 78-90. (Talk given at
conference in Bonn, June 2001) ISBN 3-540-43081-4

A Bibliography of Ole-Johan Dahl 11

Reports from University of Oslo

Early reports are from Department of Mathematics, section D (for numer-
ical analysis and computer science). Later reports are from Department of
Informatics (IFI), which was formed in 1978. Reports marked by a star (∗)
represent early versions or revisions of papers mentioned above.

Research Reports

37. Analysis of an Algorithm for Priority Queue Administration. Arne Jonassen
and O.-J. Dahl. Research Report in Informatics no. 3, 1975 (68 pages)
ISBN 82-553-0203-4 ∗

38. An Approach to Correctness Proofs of Semicoroutines. O.-J. Dahl. Re-
search Report in Informatics no. 13, 1977 (20 pages) ISBN 82-90230-00-1 ∗

39. Can Program Proving be Made Practical? O.-J. Dahl. Research Report in
Informatics no. 33, 1978 (57 pages) Lectures presented at the EEC-CREST
course on Programming Foundations, Toulouse 1977 (revised May 1978).
ISBN 82-90230-26-5 ∗

40. Time Sequences as a Tool for Describing Program Behaviour. O.-J. Dahl.
Research Report no. 48, 1979 (17 pages) ISBN 82-90230-43-5 ∗

41. Partial Correctness Semantics of Communicating Sequential Processes.
Neelam Soundararajan and O.-J. Dahl. Research Report no. 66, 1982
(29 pages) ISBN 82-90230-62-1

42. Notes on a LIFO Disciplined Simplex Algorithm. O.-J. Dahl. Research
Report no. 79, 1984 (7 pages) ISBN 82-90230-76-1

43. Logic of Programming and Specification. O.-J. Dahl. Research Report
no. 84, 1984 (48 pages) ISBN 82-90230-83-4

44. A Presentation of the Specification and Verification Project ABEL.
O.-J. Dahl and O. Owe. Research Report no. 90, 1984 (9 pages)
ISBN 82-90230-89-3. Also in the proceedings of the 3. Verification Work-
shop, Watsonville, CA, Feb. 1985.

45. Specification and Reasoning about Discrete Simulation Models: A
Case Study. O.-J. Dahl. Research Report no. 94, 1985 (10 pages)
ISBN 82-90230-93-1. Lecure at the IMACS World Congress on System Sim-
ulation and Scientific Computation, Oslo, Aug. 1985.

46. Preliminary Report on the Specification and Programming Language
ABEL. O.-J. Dahl, Dag F. Langmyhr, O. Owe. Research Report no. 106,
1986 (86 pages) ISBN 82-7368-006-1

47. Object Oriented Specification. O.-J. Dahl. Research Report no. 108, 1987
(18 pages) ISBN 82-7368-009-6 ∗

48. Generator Induction in Order Sorted Algebras. O.-J. Dahl and O. Owe.
Research Report no. 122, 1989 (17 pages) ISBN 82-7368-027-4 ∗

49. Object Orientation and Formal Techniques (extended abstracts). O.-J.
Dahl. Research Report no. 138, 1990 (11 pages) ISBN 82-7368-044-4 ∗

50. Formal Development with ABEL. O.-J. Dahl and O. Owe. Research Report
no. 159, 1991 (43 pages) ISBN 82-7368-066-5 ∗

12 Olaf Owe, Stein Krogdahl, and Tom Lyche

51. Value Types and Object Classes. O.-J. Dahl. Talk presented at the
25 years SIMULA 67 Anniversary Conferences, Nordwijkerhout 11-12
June, 1992 and Oslo 22 June. Research Report no. 170, 1992 (13 pages)
ISBN 82-7368-079-7 ∗

52. Monitors Revisited. O.-J. Dahl. Research Report no. 175, 1993 (12 pages)
ISBN 82-7368-084-3 ∗

53. Co- and Contravariance in Functional Subtypes: Contribution to IFIP
WG 2.3, June 1994. O.-J. Dahl. Research Report no. 191, 1994 (7 pages)
ISBN 82-7368-101-7

54. Hoare-style Parallel Programming: Foils for a student course, IN305.
O.-J. Dahl. Research Report no. 192, 1994 ISBN 82-7368-102-5

55. On the Use of Subtypes in ABEL. O.-J. Dahl and O. Owe. Revised version.
Research Report no. 206, 1995 (20 pages) ISBN 82-7368-117-3 ∗

56. On Introducing Higher Order Functions in ABEL. O.-J. Dahl
and Bjrn Kristoffersen. Research Report no. 210, 1995 (18 pages)
ISBN 82-7368-123-8 ∗

57. Subtyping and Constructive Specification. O.-J. Dahl, O. Owe and
Tore J. Bastiansen. Research Report no. 228, 1996 (38 pages)
ISBN 82-7368-142-4 ∗

58. Formal Methods and the RM-ODP. O.-J. Dahl and O. Owe. Research Re-
port no. 261, 1998 (17 pages) ISBN 82-7368-192-0

Compendiums and Lecture Notes

59. Kompendium til DB-2 (maskinsprk og operasjonssytem). O.-J. Dahl.
Dept. of Mathematics, 1969 (48 pages) (In Norwegian).

60. Listestrukturer: Ch. 7 from Compendium Ikke-numeriske metoder.
O.-J. Dahl. Dept. of Mathematics, 1970 (46 pages) (In Norwegian).

61. Forelesninger i DB 2. O.-J. Dahl & co. 2. edition, Dept. of Mathematics,
1971 (171 pages) (In Norwegian).

62. Top-Down Parsers Expressed in a High-Level Language. O.-J. Dahl. Dept.
of Mathematics, 1972 (12 pages).

63. Hierarchical Program Structures. O.-J. Dahl. Lecture Note no. 6, Dept. of
Mathematics, 1973 (57 pages). The predecessor of [1].

64. Two Lectures for the Graduate Course: Parallel Programming and Oper-
ating Systems. O.-J. Dahl and C.A.R. Hoare. Lecture Note no. 7, Dept. of
Mathematics, 1973 (15 pages).

65. Runtime organisasjon for SIMULA/ALGOL. O.-J. Dahl. Compendium 11.
Dept. of Informatics, 1980 (36 pages) (In Norwegian).

66. Stochastiske simuleringsmodeller. O.-J. Dahl. (36 pages) Compendium 13,
Dept. of Informatics (In Norwegian).

67. Program Specification and Verification Techniques. O.-J. Dahl. Part I,
1988, Part II and III 1990. Compendium 42, Dept. of Informatics (153
pages).

68. Substitusjonssystemer. O.-J. Dahl. Lecture notes (12 pages) Aug. 1989 (In
Norwegian)

A Bibliography of Ole-Johan Dahl 13

69. Parallell programmering (Parallel Programming). O.-J. Dahl. Com-
pendium 45, Dept. of Informatics (69 pages), Revised Aug. 1995 (In Nor-
wegian). Kompendium 46, Aug. 1996 (In Norwegian).

70. Stochastic Simulation Modelling. O.-J. Dahl. Compendium 69, Dept. of
Informatics, April 1996 (36 pages).

Reports from the Norwegian Computing Center (NCC), Oslo

71. Preliminary Presentation of the Simula Language and some Exam-
ples of Network Descriptions. O.-J. Dahl and K. Nygaard. NCC Doc.,
May 18th 1963.

72. SIMSCRIPT Implementation. Vic Bell and O.-J. Dahl. NCC Doc. (31
pages), Nov. 1963.

73. The SIMULA Storage Allocation Scheme. O.-J. Dahl. NCC Doc. 162, Nov.
1963 (9 pages)

74. SIMULA Status Report. O.-J. Dahl. NCC Doc. 1.1, 1964 (10 pages)
75. The SIMULA Data Structures. O.-J. Dahl. NCC Doc. March 1964

(23 pages)
76. The SIMULA Language: Specifications 17 March 1964. O.-J. Dahl and

K. Nygaard. NCC Doc. March, 1964 (30 pages)
77. The SIMULA Project: Technical Progress Report 1. O.-J. Dahl and K. Ny-

gaard. NCC Doc. July 1, 1964 (7 pages)
78. SIMULA status report. O.-J. Dahl. NCC Doc. 1.10, 1964 (24 pages)
79. SIMULA – A Language for Programming and Description of Discrete Event

Systems: Introduction and User’s Manual. O.-J. Dahl and K. Nygaard.
NCC Publ. no. 11, May 1965 (103 pages). Revised versions: 1966. III, 108
pages. 5th ed. NCC, 1967 (124 pages)

80. Basic Concepts of SIMULA – an ALGOL Based Simulation Language.
O.-J. Dahl and K. Nygaard. NCC Doc., 1965 (17 pages)

81. SIMULA, an ALGOL Based Simulation Language. O.-J. Dahl and K. Ny-
gaard. NCC Doc., April 1966 (26 pages) ∗

82. Discrete Event Simulation Languages: Lectures Delivered at the NATO
Summer School, Villard-de-Lans, Sept. 1966. O.-J. Dahl. NCC Doc., 1966
(63 pages) ∗

83. SIMULA: Simula Tracing System. O.-J. Dahl, B. Myhrhaug and K. Ny-
gaard. NCC Doc., 1966.

84. Class and Subclass Declarations. O.-J. Dahl and K. Nygaard. NCC Publ.
no. 93, (Presented at IFIP Working Conference on Simulation Languages,
Lysebu, Oslo, May 1967). March 1967 (17 pages) ∗

85. SIMULA 67 Common Base Proposal. O.-J. Dahl and K. Nygaard. NCC
Doc., May 1967 (10 pages)

86. Proposals for Consideration by the SIMULA 67 Common Base Conference.
O.-J. Dahl and K. Nygaard. NCC Doc., June 1967.

87. SIMULA 67 Common Base Definition. O.-J. Dahl and K. Nygaard. NCC
Doc., June 1967 (31 pages).

14 Olaf Owe, Stein Krogdahl, and Tom Lyche

88. SIMULA 67 Common Base Language. O.-J. Dahl, B. Myhrhaug, K. Ny-
gaard. NCC Publ. S-2, 1968 (141 pages).
Revised editions: (1970, 145 pages, SIMULA information: NCC Publ. S-
22). (1982, 127 pages, NCC Publ. no. 725). (1984, 172 pages, NCC Publ.
no. 743). ISBN 82-539-0225-5 1

89. Some Uses of the External Class Concept in SIMULA 67. O.-J. Dahl,
B. Myhrhaug, K. Nygaard. NCC Doc., 1968. (Presented at the NATO
sponsored conference on Software Engineering, Garmisch, Germany, Octo-
ber 1968)

90. SIMULA 67 – Basic Information. O.-J. Dahl and K. Nygaard. NCC Publ.
no. S-3, 1968 (12 pages).

91. SIMULA 67 – Implementation Guide. O.-J. Dahl, B. Myhrhaug. NCC Publ.
no. S-9, 1969. Rev. March 1973, NCC Publ. no. S-47 (146 pages).

92. The Development of the SIMULA Languages. K. Nygaard and O.-J. Dahl.
NCC Doc. (Publication 603), 1978 (28 pages) ISBN 82-539-0072-4 (Note:
includes a bibliography.) ∗

Reports from the Norwegian Defense Research Establishment
(NDRE), Kjeller, Norway

93. An Automatic Coding Scheme for the Ferranti MERCURY Computer.
O.-J. Dahl. NDRE Report IR-F-286, 1956.

94. Multiple Index Countings on the Ferranti MERCURY Computer. O.-J.
Dahl. Norwegian Defense Research Establishment, 1957. (NDRE Report
23) & Cand real thesis, University of Oslo, Dept. of Mathematics, 1957.

95. Programmer’s Handbook for the Ferranti MERCURY Computer Frederic
at the Norwegian Defense Research Establishment. O.-J. Dahl, Jan V. Gar-
wick. NDRE. 2. edition published by Merkantile Trykkeri, Oslo, 1958. 3.
edition, NDRE, 1962 (117 pages).

96. Mac Bulletin I. O.-J. Dahl. NDRE report (S-15), 1960 (10 pages)2
97. Mac Bulletin II. O.-J. Dahl. NDRE report (S-17), 1960 (3 pages)
98. Mac Bulletin V: Macros. O.-J. Dahl NDRE report (S-57), 1963 (13 pages)

Video Recorded Talks

99. ACM SIGPLAN History of Programming Languages Conference, January
1978, Los Angeles. SIMULA Session. Speakers: Nygaard and Dahl. 1 video-
tape (VHS) (60 min), ACM, 1980.

100. The talk given at Software Pioneers Conference, Bonn, June 2001 (supplied
with the book [36] above).

101. Introduction to SIMULA (talk given in Norwegian), to be available through
the department homepage: http://www.ifi.uio.no/.

1 All versions of the common base language definition assume knowledge of Algol 60.
A final and complete version of the SIMULA 67 language definition without this
assumption is found in: Standard SIMULA, as approved by the SIMULA Standards
Group Aug. 26, 1986. (176 pages) ISBN 91-7162-234-9.

2 MAC was an acronym for MERCURY Automatic Coding, a high level programming
language for the MERCURY computer, and a compiler.

http://www.ifi.uio.no/

The Birth of Object Orientation: the Simula

Languages�

Ole-Johan Dahl

Abstract. The development of the programming languages Simula I
and Simula 67 is briefly described. An attempt is made also to explain
the cultural impact of the languages, in particular the object oriented
aspects.

1 Introduction

In 1962 Kristen Nygaard, KN, initiated a project for the development of a
discrete event simulation language, to be called Simula. At the time KN was
the director of research at the Norwegian Computing Center, NCC, (a semi-
governmental institution). KN also served as the administrative leader for the
duration of the project. This required much creative manipulation in an envi-
ronment that outside the NCC was largely hostile. The language development
proper was a result of a close cooperation between KN and the author, OJD,
whereas implementation considerations were mainly the responsibility of the lat-
ter.

We were both fostered at the Norwegian Defence Research Establishment in
the pioneering group headed by Jan V. Garwick, the father of Computer Science
in Norway. But our backgrounds were nevertheless quite different. KN had done
Monte Carlo computations calibrating uranium rods for a nuclear reactor and
later operations research on military systems. OJD had developed basic software
together with Garwick and designed and implemented a high level programming
language. Our difference in background probably accounts for some of the success
of the Simula project.

The present paper mainly deals with language issues, including some thoughts
on their possible cultural impact, especially on later programming languages. For
other aspects of the project the reader is referred to [30].

Two language versions were defined and implemented. The first one, later
called Simula I, was developed under a contract by UNIVAC. (UNIVAC wanted
us to provide also a Fortran-based version, but that was abandoned because
the block structure turned out to be essential to our approach.) It was up and
running by the end of 1964. The second version, Simula 67, was sponsored
by the NCC itself. It is a generalization and refinement of the former, fairly
ambitious, intended mainly as a general purpose programming language, but
with simulation capabilities.
� An almost identical version of this paper has been published in Software pioneers,

Springer, 2002.

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 15–25, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

16 Ole-Johan Dahl

2 Simula I

It was decided at an early stage that our language should be based on a well
known one. Algol 60 was chosen for the following main reasons:

– the block structure,
– good programming security,
– European patriotism.

We realised that in order to profit from block structure in simulation models it
would be necessary to break out of the strict LIFO regime of block instances in
Algol. Thus, a new storage management system was developed based on a list
structured free store, [3]. Then a useful simulation language could be defined by
adding a few special purpose mechanisms to Algol 60:

– A procedure-like activity declaration giving rise to so called “processes”.
Processes could range from record-like data structures to block structured
programs executing in a coroutine-like fashion, [35], [9], over a simulated
system time.

– Explicit process pointers for dynamic naming and referencing. (The pointers
were indirect through list forming “element” records.)

– A mechanism for accessing, from the outside, quantities local to the outer-
most block level of processes, designed so that the access security inherent
in Algol would be maintained (the inspect construct).

– A few run time mechanisms for the scheduling and sequencing of processes in
system time, such as hold(. . .), suspending the calling process for a specified
amount of system time.

The following skeleton example could be a small fragment of a road traffic
simulation. It is taken from the Simula I manual, [4], but slightly extended.
It may serve to indicate the flavour of the language.

SIMULA begin activity Car;
begin real X0, T 0, V ;

real procedure X ; X := X0+V ∗(time−T 0);
procedure newV (V new); real V new;

begin X0 := X ; T 0 := time; V := V new end;
Car behaviour: ; hold(<travel time>);

end of Car;
activityPolice;
begin ; inspect <process> when Car do

if X <is within city> and V >50 then
begin newV (50); <give fine> end;

end of Police;
main program: <initialise>; hold(<simulation period>)

end of simulation model;

The Birth of Object Orientation: the Simula Languages 17

The example shows that the idea of data objects with associated operators was
under way already in 1965. According to a comment in [4] it was a pity that the
variable attributes of a Car process could not be hidden away in a subblock. It
would have required the accessing procedures to be hidden similarly.

New processes would be generated explicitly. For programming security
reasons, however, process deletions had to be implicit, in our implementation
through reference counts and a last resort garbage collector. The bulk of the
implementation effort therefore consisted in writing a new run time system
for the Algol system provided by UNIVAC; the compiler extensions, on the
other hand, were minimal. The “block prefix” SIMULA served to introduce
the Simula I additions to Algol. Consequently any Algol program not containing
that keyword would execute normally on our compiler. That was an important
consideration in those days.

A paper on Simula I was published in CACM 1966, [5]. It was also the main
topic of lectures given by OJD at the NATO Summer School at Vilard-de-Lans
the same year. The lectures were written up and published as a chapter of [6].

The language was used for simulation purposes as well as for teaching at
several locations at home and abroad, also within the UNIVAC organization.
A modified version was used for Burroughs computers. This was through the
advocacy of Don Knuth and J. McNeley, the authors of SOL, another Algol-like
simulation language.

3 Simula 67

In spite of the success of Simula I as a practical tool it became increasingly clear
that the activity/process concepts, if stripped from all references to simulated
time, would be useful for programming and system design in general. If possible
the special purpose simulation facilities should be definable within the new
language. Also the list processing facilities of Simula I would be useful, although
we felt that the referencing mechanism should be simplified.

At the Vilard-de-Lans Summer School Tony Hoare had put forth a proposal
for “record handling” with record classes and subclasses, as well as record
references restricted to, or “qualified by”, a given class or subclass by declaration.
Attribute accessing was by dot notation, see [19], as well as [17] and [18].

We chose the terms “class” and “objects” of classes for our new Simula. The
notion of subclass was especially appealing to us, since we had seen many cases
of objects belonging to different classes having common properties. It would
be useful to collect the common properties in a separate class, say C to be
specialised differently for different purposes, possibly in different programs. The
solution came with the idea of class prefixing: using C as a prefix to another
class, the latter would be taken to be a subclass of C inheriting all properties
of C.

Technically the subclass would be seen as “concatenated” class in which the
parameter parts, the block heads, and the block tails of the two classes were
juxtaposed (The block tail of the prefixing class could be separated into initial

18 Ole-Johan Dahl

actions and final actions, that of the prefixed class sandwiched between them.)
The attributes of a compound object would be accessible by dot notation down
to the prefix level of the qualifying class of the reference used. Access to deeper
levels could be achieved by class discrimination as in Simula I.

The breakthrough happened in January of 1967. An IFIP sponsored working
conference on simulation languages had been approved to take place in Oslo in
May. There followed some hectic winter months during which our new concepts
were explored and tested. A paper was ready just in time for advance distribution
to the invitees, [7]. The new language was to be called Simula 67, [8]. The
paper occurring in the proceedings was mended by the addition of “virtual”
specifications, see below.

One way of using a class, which appeared important to us, was to collect
concepts in the form of classes, procedures, etc under a single hat. The resulting
construct could be understood as a kind of “application language” defined on
top of the basic one. It would typically be used as a prefix to an in-line block
making up the application program.

We illustrate this idea by showing a simplified version of a SIMULATION
class defining the simulation oriented mechanisms used in our Simula I example.

class SIMULATION ;
begin class process;

begin real EventT ime, NextEvent; end;
ref(process) current;
comment current points to the currently operating process.

It is the head of the “time list” of scheduled ones,
sorted with respect to nondecreasing EventT imes;

real procedure time; time := current.EventT ime;
procedure hold(deltaT); real deltaT ;
begin current.EventT ime := time+deltaT ;

if time ≥ current.NextEvent.EventT ime then
begin ref(process)P ; P :− current; current :−P.NextEvent;

<move P to the right position in the time list>;
resume(current) end end of hold;

.
end of SIMULATION ;

SIMULATION begin
process class Car;
begin real X0, T 0, V ;

real procedure X ; X := X0+V ∗(time−T 0);
procedure newV (V new); real V new;

begin X0 := X ; T 0 := time; V := V new end;
Car behaviour: ; hold(<travel time>);

end of Car;

The Birth of Object Orientation: the Simula Languages 19

process Police;
begin ; inspect <process> when Car do

if X <is within city> and V >50 then
begin newV (50); <give fine> end;

end of Police;
main program: <initialise>; hold(<simulation period>)

end of simulation model;

Thus, the “block prefix” of Simula I is now an ordinary class declared within
the new language, and the special purpose activity declarator is replaced by
process class.

We chose to introduce a special set of operators for references, in order to
make it clear that the item in question is a reference, not (the contents of) the
referenced object. The resume operator is a basic coroutine call, defined for the
whole language.

Notice that the class SIMULATION is completely self-contained. If some
necessary initializing operations were added, it could be separately compiled
and then used repeatedly in later programs. In actual fact a somewhat more
elaborate class is predefined in Simula 67, providing an application language for
simulation modelling. That class is itself prefixed by one containing mechanisms
for the management of circular lists.

It is fair to say that Simula 67 invites to bottom up program design, especially
through the possibility of separate compilation of classes. As a last minute
extension, however, we introduced a top down oriented mechanism through a
concept of “virtual procedures”.

In general attribute identifiers may be redeclared in subclasses, as is the case
of inner blocks. The identity of an attribute is determined by the prefix level of
the accessing occurrence, or, if the access is remote, by the class qualifying the
object reference in question. In this way any ambiguity of identifier binding is
resolved textually, i.e at compile time; we call it static binding.

On the other hand, if a procedure P is specified as virtual in a class C
the binding scheme is semi-dynamic. Any call for P occurring in C or in any
subclass of C will bind to that declaration of P which occurs at the innermost
prefix level of the actual object containing such a declaration (and similarly for
remote accesses). Thus, the body of the procedure P may, at the prefix level of
C, be postponed to occur in any subclass of C. It may even be replaced by more
appropriate ones in further subclasses.

This binding scheme is dynamic in the sense that it depends on the class
membership of the actual object. But there is nevertheless a degree of compiler
control; the access can be implemented as indirect through a table produced by
the compiler for C and for each of its subclasses.

As a concrete example the “fine giving” operation of the above example could
be formalised as a virtual procedure, as follows: Redefine the head of the prefixed
block as a subclass RoadTraffic of SIMULATION . In addition to the classes
Car and Police declarations introduce the following specification:

virtual procedure Fine(cr); ref(Car)cr;

20 Ole-Johan Dahl

If appropriate the RoadTraffic class may be separately compiled. Using that
class as a block prefix at some later time, a suitable fining procedure can be
defined in that block head.

There is an alternative more implementation oriented view of virtual pro-
cedures. As mentioned in connection with Simula I, deletion of objects would
have to be implicit (in Simula 67 by garbage collector alone). But then there is a
danger of flooding the memory with useless data, especially if there are implicit
pointers between block instances. In Algol 60 there must be a pointer from a
procedure activation back to its caller in order to implement procedure parame-
ters and parameters “called by name”. Such pointers from objects back to their
generating block instance would have been destructive. So, it was decided that
parameters to objects must be called by “value” (including object references).
The absence of procedure parameters, however, was felt to be a nuisance. For-
tunately the virtual procedure mechanism provided a solution to the dilemma:
a virtual procedure can be seen as a parameter, where the actual parameter
is a procedure residing safely within the object itself, at an appropriate prefix
level. There is the additional advantage that the procedure has direct access to
attributes of the object containing it.

Similar considerations led to forbidding class prefixing across block levels.
Fortunately this would not prevent the use of separately compiled, “external”
classes. Since there is no reference to nonlocal quantities in such a class, it can
be called in as an external one at any block level of a user program.

4 Language Finalisation and Distribution

A couple of weeks after the IFIP Conference a private “Simula Common Base
Conference” was organised, attended by several interested persons. The objective
was to agree on the definition of a common core language. We made a proposal to
the CBC to extend the language by “class-like” types giving rise to permanently
named objects, directly accessed, thus extending the Algol variable concept. The
proposal was prudently voted down, as not sufficiently worked through. However,
a Pascal-like while statement was added, and the virtual mechanism was slightly
revised.

A “Simula Standards Group”, SSG, was established, to consist of represen-
tatives from the NCC and various implementation groups. 5 compilers were
implemented initially. It was decided that the NCC would propose mechanisms
for text handling, I/O, and file handling. Our good colleague Bjørn Myhrhaug
of the NCC gave three alternatives for text handling and I/O. The ones chosen
by the SSG would have required class-like types in order to be definable within
the Common Base.

The class concept as it was formulated originally, was too permissive for
the purpose of developing large systems. There was no means of enforcing a
programming discipline protecting local class invariants (such as those expressed
verbally for the Simulation class example). This was pointed out by Jacob Palme
of the Swedish defence research institute. He proposed hiding mechanisms for

The Birth of Object Orientation: the Simula Languages 21

protecting variable attributes from unauthorised updating. The proposal was
approved by the SSG as the last addition ever to the language. The authors toyed
with the idea of class-like types for some time, but it was never implemented.

The first compilers were operative already in 1969, three for Control Data
computers. Then came implementations for UNIVAC and IBM machines. The
general distribution of the compilers was, however, greatly hampered by the
high prices asked for the compilers by the NCC, very unwisely enforced by the
NTNF (Norwegian Council for Scientific and Technical Research) stating that
programming languages only had a 3-5 years lifetime and thus had to provide
profits within this time span. However, a nice compiler for the DEC 10 system,
implemented by a Swedish team in the early 1970’s, contributed considerably
to the spreading of the language. Lectures by OJD at NATO Summer Schools,
as well as a chapter in [9] must have made the new concepts better known in
academic circles.

The most important new concept of Simula 67 is surely the idea of data
structures with associated operators (and with or without own actions), called
objects. There is an important difference, except in trivial cases, between
– the inside view of an object, understood in terms of local variables, possibly

initialising operations establishing an invariant, and implemented procedures
operating on the variables maintaining the invariant, and

– the outside view, as presented by the remotely accessible procedures, includ-
ing some generating mechanism, dealing with more “abstract” entities.
This difference, as indicated by the Car example in Simula I, and the

associated comments, underlies much of our program designs from an early
time on, although not usually conscious and certainly not explicitly formulated.
(There is e.g an intended invariant of any Car object vaguely stating that its
current position X is the right one in view of the past history of the object.)

It was Tony Hoare who finally expressed mathematically the relationship of
the two views in terms of an “abstraction function”, see [20]. He also expressed
requirements for the concrete operations to correctly represent the corresponding
abstract ones. Clearly, in order to enforce the use of abstract object views, read
access to variable attributes would also have to be prevented.

5 Cultural Impact

The main impact of Simula 67 has turned out to be the very wide acceptance
of many of its basic concepts: objects, but usually without own actions, classes,
inheritance, and virtuals, often the default or only way of binding “methods”,
(as well as pointers and dynamic object generation).

There is universal use of the term “object orientation”, OO. Although
no standard definition exists, some or all of the above ideas enter into the
OO paradigm of system development. There is a large flora of OO languages
around for programming and system specification. Conferences on the theory
and practice of OO are held regularly. The importance of the OO paradigm
today is such that one must assume something similar would have come about

22 Ole-Johan Dahl

also without the Simula effort. The fact remains, however, that the OO principle
was introduced in the mid 60’s through these languages.

Simula 67 had an immediate success as a simulation language, and was,
for instance extensively used in the design of VLSI chips, e.g. at INTEL. As a
general programming language, its impact was enhanced by lectures at NATO
Summer Schools given by OJD, materialized as a chapter in a book on structured
programming, [9]. The latter has influenced research on the use of abstract data
types, e.g., the CLU language, [29], as well as research on monitors and operating
system design, [21].

A major new impact area opened with the introduction of workstations
and personal computers. Alan Kay and his team at Xerox PARC developed
Smalltalk, [15], an interactive language building upon Simula’s objects, classes
and inheritance. It is oriented towards organising the cooperation between a user
and her/his personal computer.

An important step was the integration of OO with a graphical user interfaces,
leading the way to the Macintosh Operating System, and then to Windows.

In the larger workstation field, Lisp was (and in some places still is) an
important language, spawning dialects such as MACLISP, [16], at MIT, and
InterLisp at Xerox PARC. Both got OO facilities, MACLISP through ZetaLisp
introducing also multiple inheritance, [2], and InterLisp through LOOPS (Lisp
Object-Oriented Programming System). The object-oriented component of the
merged effort, CommonLisp, is called CLOS (Common Lisp Object System), [24].

With the general acceptance of object-orientation, object-oriented databases
started to appear in the 1980’s. The demand for software reuse also pushed OO
tools, and in the 1990’s OO tools for system design and development became
dominant in that field. UML (Unified Modeling Language), [1], is very much
used, and CORBA (Common Object Request Broker Architecture), is a widely
accepted tool for interfacing OO systems. The Microsoft Component Object
Model, COM, [27], is an important common basis for programming languages
such as C�, as well as other tools.

A large number of OO programming languages have appeared. We list below
some of the more interesting or better known languages, in addition to those
mentioned above.
– BETA is a compilable language built around a single abstraction mechanism,

that of patterns, which can be specialised to classes, singular objects, types,
as well as procedures. It was developed from the later 1970’s by KN and
colleagues in Denmark, [25], [26].

– Bjarne Stroustrup extended the Unix-related language C with several
Simula-inspired mechanisms. The language, called C++, has been much used
and has contributed importantly to the dissemination of the OO ideas, [33].
Since C is fairly close to machine code, security aspects are not the best. As
a result, complex systems may be difficult to implement correctly. C++ has
been revised and extended, e.g. by multiple inheritance.

– Eiffel, [28], is an OO programming language designed by Bertrand Meyer in
the 1980’s, well known and quite widely used. It has pre- and post-conditions
and invariants.

The Birth of Object Orientation: the Simula Languages 23

– SELF, [34], is an OO language exploring and using object cloning instead of
object generation from a class declaration.

– JAVA, [22], is a recent Simula-, Beta-, and C++-inspired language, owing
much of its popularity to its integration with the Internet. Its syntax is
unfortunately rather close to that of C++ and thus C (but with secure
pointers). It contains Beta-like singular objects and nested classes, but not
general block structure. Parallel, “multi-threaded”, execution is introduced,
but outside compiler control. As a result, much of the programming security
otherwise inherent in the language is lost. The synchronisation mechanisms
invite to inefficient programming and do not facilitate good control of process
sequencing, see [14].

The authors believed that the use of class declarations for the definition of
“application languages” as natural extensions of a basic one would be of special
importance in practice. However, although various kinds of packages or modules
are defined for many languages, they are not consequences of a general class
declaration as in Simula 67.

The coroutine-like sequencing of Simula has not caught on as a general
purpose programming tool. A natural development, however, would have been
objects as concurrent processes, e.g. as in COM.

One may fairly ask how it could happen that a team of two working in the
periphery of Europe could hit on programming principles of lasting importance.
No doubt a bit of good luck was involved. We were designing a language for
simulation modelling, and such models are most easily conceived of in terms of
cooperating objects. Our approach, however, was general enough to be applicable
to many aspects of system development.

KN oriented his activities for some years to trade union work, as well
as system development and description, see [23]. In 1976 he turned back to
programming language design, see BETA above. In [32] he introduced new
constructs for OO layered distributed systems.

OJD has been professor of Informatics at Oslo University for the period 1968–
1999, developing curricula including OO programming. He has explored the
concept of time sequences to reason about concurrent systems, [10], [11]. In [13]
he applies techniques, such as Hoare logic and Guttag-Horning axiomatisation
of types and subtypes, [31], to the specification and proof of programs, including
OO ones. See also [12].

Of the Simula authors especially KN has been consistently promoting the
OO paradigm for system development.

Acknowledgments

The author is greatly indebted to Kristen Nygaard for helping to explain the
impact of object orientation in various areas of programming and system work.
Also Olaf Owe has contributed.

24 Ole-Johan Dahl

References

1. G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language User
Guide. Addison-Wesley, 1998.

2. H. Cannon: Flavors, A Non-Hierarchical Approach to Object-Oriented Pro-
gramming. Draft 1982.

3. O.-J. Dahl: The Simula Storage Allocation Scheme. NCC Doc. 162, 1963.
4. O.-J. Dahl, K. Nygaard: SIMULA – A language for programming and de-

scription of discrete event systems. Introduction and user’s manual. NCC
Publ. no. 11, 1965.

5. O.-J. Dahl, K. Nygaard: SIMULA – an ALGOL-based Simulation Language.
CACM 9(9), 671–678, 1966.

6. O.-J. Dahl: Discrete Event Simulation Languages. In F. Genuys, ed.: Program-
ming Languages. Academic Press, pp 349–394, 1968.

7. O.-J. Dahl, K. Nygaard: Class and Subclass Declarations. In J. Buxton,
ed.: Simulation Programming Languages. Proceedings from the IFIP Working
Conference in Oslo, May 1967. North Holland, 1968.

8. O.-J. Dahl, B. Myhrhaug, K. Nygaard: SIMULA 67 Common Base Language.
Norwegian Computing Center 1968.

9. O.-J. Dahl, C.A.R. Hoare: Hierarchical Program Structures. In O.-J. Dahl,
E.W. Dijkstra, C.A.R. Hoare: Structured Programming. Academic Press 1972,
pp. 175–220.

10. O.-J. Dahl: Can Program Proving be Made Practical? In M. Amirchahy,
D. Neel: Les Fondements de la Programmation. IRIA 1977, pp. 57–114.

11. O.-J. Dahl: Time Sequences as a Tool for Describing Process Behaviour.
In D. Bjørner, ed.: Abstract Software Specifications, LNCS 86, pp. 273-290.

12. O.-J. Dahl, O. Owe: Formal Development with ABEL. In VDM91, LNCS 552,
pp. 320–363.

13. O.-J. Dahl: Verifiable Programming, Hoare Series, Prentice Hall 1992.
14. O.-J. Dahl: A Note on Monitor Versions. In Proceedings of Symposium in the

Honour of C.A.R. Hoare at his resignation from the University of Oxford. Ox-
ford University 1999. Also available at www.ifi.uio.no/˜olejohan. (Department
of Informatics, University of Oslo).

15. A. Goldberg, D. Robson: Smalltalk-80: The Language and its Implementation.
Addison Wesley, 1984.

16. B.S. Greenberg: The Multics MACLISP Compiler. The Basic Hackery – a
Tutorial. MIT Press 1977, 1988, 1996.

17. C.A.R. Hoare: Record Handling. In ALGOL Bulletin no. 21. 1965.
18. C.A.R. Hoare: Further Thoughts on Record Handling. In ALGOL Bulletin

no. 23. 1966.
19. C.A.R. Hoare: Record Handling. In F. Genuys, ed.: Programming Languages.

Academic Press, pp 291–346, 1968.
20. C.A.R. Hoare: Proof of the Correctness of Data Representations. Acta Infor-

matica, vol. 1, 1972.
21. C.A.R. Hoare: Monitors: an Operating System Structuring Concept.

Comm. ACM 17(10)(1974), pp. 549-557.
22. J. Gosling, Bill Joy, G. Steele: The Java Language Specification. Java(tm)

Series, Addison-Wesley 1989.
23. P. H̊andlykken, K. Nygaard: The DELTA System Description Language:

Motivation, Main Concepts and Experience from use. In: Software Engineering
Environments (ed. H. Hünke), GMD, North-Holland, 1981.

file:www.ifi

The Birth of Object Orientation: the Simula Languages 25

24. S.E. Keene: Object-Oriented Programming in COMMON LISP-A Program-
mer’s Guide to CLOS. Addison-Wesley 1989.

25. B.B. Kristensen, O.L. Madsen, B. Møller-Pedersen, K. Nygaard: Abstraction
Mechanisms in the BETA Programming Language. Proceedings of the Tenth
ACM Symposium on Principles of Programming Languages. Austin, Texas,
1983.

26. O.L. Madsen, B. Møller-Pedersen, K. Nygaard: Object Oriented Programming
in the BETA Programming Language. Addison-Wesley/ACM Press 1993.

27. R.C. Martin: Design Principles and Design Patterns. Microsoft,
http://www.objectmentor.com/.

28. B. Meyer: Eiffel: The Language. Prentice Hall 1992.
29. B. Liskov, A. Snyder, R. Atkinson, C. Schaffert: Abstraction Mechanisms in

CLU. Comm. ACM 20:8 (1977), PP. 564-576.
30. K. Nygaard, O.-J. Dahl: SIMULA Session. In R. Wexelblatt, ed.: History of

Programming Languages. ACM 1981.
31. O. Owe, O.-J. Dahl: Generator Induction in Order Sorted Algebras. Formal

Aspects of Computing (1991), 3:2–20.
32. K. Nygaard: GOODS to Appear on the Stage. Proceedings of the 11th European

Conference on Object-Oriented Programming. Springer 1997
33. B. Stroustrup: The C++ Programming Language. Addison-Wesley 1986.
34. D. Ungar, R.B. Smith: SELF: The Power of Simplicity. In SIGPLAN Notices

22(12), 1987.
35. A. Wang, O.-J. Dahl: Coroutine Sequencing in a Block Structured Environ-

ment. In BIT 11 425–449, 1971.

http://www.objectmentor.com/

An Algebraic Theory of Actors and Its

Application to a Simple Object-Based Language

Gul Agha and Prasanna Thati

University of Illinois at Urbana-Champaign, USA
{agha,thati}@cs.uiuc.edu

http://osl.cs.uiuc.edu/

1 Introduction

The development of Simula by Ole-Johan Dahl and Kristen Nygaard introduced
a number of important programming language concepts – object which supports
modularity in programming through encapsulation of data and procedures, the
concept of class which organizes behavior and supports Abstract Data Types,
and the concept inheritance which provides subtyping relations and reuse [6].
Peter Wegner terms programming languages which use objects as object-based
languages, and reserves the term object-oriented languages for languages which
also support classes and inheritance [58].

Concurrency provides a natural model for the execution of objects: in fact,
Simula uses co-routines to simulate a simple form of concurrency in a sequen-
tial execution environment. The resulting execution is tightly synchronized and,
while this execution model is appropriate for simulations which use a global
virtual clock, it is not an adequate model for distributed systems. The Actor
Model unifies the notion of objects with concurrency; an actor is a concurrent
object which operates asynchronously and interacts with other actors by sending
asynchronous messages [2].

Many models for concurrent and distributed computation have been devel-
oped. An early and influential model is Petri Nets developed by Carl Adam Petri
[44]. In the Petri Net model, there are two kinds of elements – nodes and tokens.
Nodes are connected to other nodes by fixed (static) links. Tokens are passed be-
tween nodes using these links. The behavior of each node is governed by reactive
rules which are triggered based on the presence of tokens at the nodes.

Another popular model of concurrency is based on communicating processes.
Two exponents of this sort of model are Robin Milner who defined the Calculus
of Communicating Systems (CCS) [38], and Tony Hoare who defined the pro-
gramming language, Communicating Sequential Processes (CSP) [20]. In both
these systems, asynchronous processes have a fixed communication topology
(processes which can communicate with each other are statically determined)
and the communication is synchronous – i.e. a message exchange involves an
explicit handshake between the sender and the receiver.

In contrast to these models, the notion of actors is very flexible. In the earliest
formulation of the Actor Model, an actor was defined by Carl Hewitt as an

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 26–57, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

http://osl.cs.uiuc.edu/
Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

An Algebraic Theory of Actors 27

autonomous agent which has intentions, resources, contain message monitors
and a scheduler [19]. Later work by Hewitt and his associates developed a more
abstract model of parallelism based on causal relations between asynchronous
events at different actors – where an event represents the sending or receiving of
a message [10, 16]. The formulation of the Actor Model that most people refer
to is based on the transition system in Agha [1]. In particular, this formulation
provides a basis for the operational semantics developed in [3].

The Actor Model is more flexible than Petri Nets, CCS or CSP. Petri Nets
have been generalized to Colored Petri Nets which allow tokens to carry data. It is
possible to encode actor computations in this more general model by interpreting
actor behaviors although it is not clear how useful such an encoding is [42].

In fact, the work on actors inspired Robin Milner to develop the π-calculus
[41], a model which is more general than CCS. As Milner reports: “. . . the pure λ-
calculus is built with just two kinds of things: terms and variables. Can we achieve
the same economy for a process calculus? Carl Hewitt, with his Actor Model,
responded to this challenge a long ago; he declared that a value, an operator on
values, and a process should all be the same kind of thing: an actor. This goal
impressed me, because it implies a homogeneity and completeness of expression
. . . . But it was long before I could see how to attain the goal in terms of an
algebraic calculus So, in the spirit of Hewitt, our first step is to demand that
all things denoted by terms or accessed by names–values, registers, operators,
processes, objects–are all the same kind of thing; they should all be processes.
Thereafter we regard access-by-name as the raw material of computation”
[39].

The π-calculus allows names to be communicable – thus capturing an essen-
tial aspect of actors which provides it greater flexibility. However, there are num-
ber of differences between the two models that are caused by differing goals and
ontological commitments. The goal of explicitly modeling distributed systems
has motivated the development of actors, while the goal of providing an alge-
braic formulation has been central to work on π-calculus. As a consequence, the
Actor Model uses asynchronous communication which is natural in distributed
systems, while the π-calculus uses synchronous communication which results in
a simpler algebra. As in object-based systems, each actor has a distinct identity
which is bound to a unique name which does not change. By contrast, in the
π-calculus, different processes can have the same name, and these names can
disappear.

This paper develops a formal calculus for actors by imposing suitable type
restrictions on the π-calculus. Our aim is to gain a better understanding of the
implications of the different ontological commitments of the Actor Model. We
present a typed variant of π-calculus, called Aπ, which is an accurate representa-
tion of the Actor Model, and we investigate a basic theory of process equivalence
in Aπ. We then illustrate how Aπ can be used to provide formal semantics for
actor-based concurrent programming languages. The Actor Model has served
as the basis of a number of object-based languages [4, 59]. Since our aim is to
investigate the effects of only the basic ontological commitments of the Actor

28 Gul Agha and Prasanna Thati

Model, we focus our presentation on a simple actor-based language which was
first defined in [1].

Following is the layout of the rest of this paper. In Section 2, we give a brief
and informal description of the Actor Model, and in Section 3, we describe a
simple actor language (SAL). In Section 4, we present the calculus Aπ, and in
Section 5, we investigate a basic theory of process equivalence in Aπ. In Section
6, we provide a formal semantics for SAL by translating its programs to Aπ.
In Section 7, we conclude the paper with an overview of several other research
directions that have been pursued on the basic Actor Model over the last two
decades.

2 The Actor Model

A computational system in the Actor Model, called a configuration, consists of a
collection of concurrently executing actors and a collection of messages in transit
[1]. Each actor has a unique name (the uniqueness property) and a behavior, and
communicates with other actors via asynchronous messages. Actors are reactive
in nature, i.e. they execute only in response to messages received. An actor’s
behavior is deterministic in that its response to a message is uniquely determined
by the message contents. Message delivery in the Actor Model is fair [10]. The
delivery of a message can only be delayed for a finite but unbounded amount of
time.

An actor can perform three basic actions on receiving a message (see Fig-
ure 1): (a) create a finite number of actors with universally fresh names, (b) send
a finite number of messages, and (c) assume a new behavior. Furthermore, all
actions performed on receiving a message are concurrent; there is no ordering
between any two of them. The following observations are in order here. First,
actors are persistent in that they do not disappear after processing a message
(the persistence property). Second, actors cannot be created with well known
names or names received in a message (the freshness property).

The description of a configuration also defines an interface between the con-
figuration and its environment, which constrains interactions between the two.
An interface is a set of names ρ, called the receptionist set, that contains names
of all the actors in the configuration that are visible to the environment. The
only way an environment can effect the actors in a configuration is by sending
messages to the receptionists of the configuration; the non-receptionist actors
are all hidden from the environment. Note that uniqueness of actor names au-
tomatically prevents the environment from receiving messages in configuration
that are targeted to the receptionists, because to receive such messages the en-
vironment should have an actor with the same name as that of a receptionist.
The receptionist set may evolve during interactions, as the messages that the
configuration sends to the environment may contain names of actors are not
currently in the receptionist set.

An Algebraic Theory of Actors 29

Xn Xn+1

Y1

Zm

behavior

assume new

send messages

create actors

mail queue

mail queue

21 n n+1

m

1

Actor

Actor

. . . .

.

. . . .

. . .

Fig. 1. A diagram illustrating computation in an actor system.

3 A Simple Actor Language (SAL)

A SAL program consists of a sequence of behavior definitions followed by a single
(top level) command.

Pgm ::= BDef1 ... BDefn Com

The behavior definitions are templates for actor behaviors. The top level com-
mand creates an initial collection of actors and messages, and specifies the in-
terface of the configuration to its environment.

3.1 Expressions

Three types of primitive values - booleans, integers and names - are presumed.
There are literals for boolean and integer constants, but none for names. Primi-
tive operations include ∧,∨,¬ on booleans, +,−, ∗, = on integers. Expressions
always evaluate to values of one of the primitive types. An expression may con-
tain identifiers which may be bound by formal parameters of the behavior def-
inition in which the expression occurs (see behavior definitions in Section 3.3).
Identifiers are lexically scoped in SAL. We let e range over the syntactic domain
of expressions, and u, v, w, x, y, z over actor names.

30 Gul Agha and Prasanna Thati

3.2 Commands

Following is the syntax for SAL commands.

Com ::= send [e1, ..., en] to x (message send)
become B(e1, ..., en) (new behavior)
let x1 = [recep] new B1(e1, ..., ei1),
. . . xk = [recep] new Bk(e1, ..., eik

)
in Com (actor creations)

if e then Com1 else Com2 (conditional)
case x of (y1 : Com1 , . . . , yn : Comn) (name matching)
Com1 || Com2 (composition)

Message send: Expressions e1 to en are evaluated, and a message containing
the resulting tuple of values is sent to actor x. A message send is asynchronous:
execution of the command does not involve actual delivery of the message.

New behavior: This specifies a new behavior for the actor which is executing
the command. The identifier B should be bound by a behavior definition (see
behavior definitions in Section 3.3). Expressions e1 to en are evaluated and the
results are bound to the parameters in the acquaintance list of B. The resulting
closure is the new behavior of the actor. A become command cannot occur in
the top level command of an actor program, because the top level command
specifies the initial system configuration and not the behavior of a single actor.

Actor creations: Actors with the specified behaviors are created. The identifiers
x1, . . . , xn, which are all required to be distinct, denote names of the actors, and
the command Com is executed under the scope of these identifiers. In the top
level command of a program, the identifiers can be optionally tagged with the
qualifier recep. The corresponding actors will be receptionists of the program
configuration, and can thus receive messages from the environment; all the other
actors are (at least initially) private to the configuration. The set of receptionists
can of course expand during the execution, as messages containing the names of
non-receptionists are sent to the environment.

While the scope of the identifiers declared as receptionists is the entire top
level command, the scope of the others is only the let command. Because actor
names are unique, a name can not be declared as a receptionist more than once
in the entire top level command. An actor creates new actors with universally
fresh names, and these names must be communicated before they can be used
by any actor other than the creator. This freshness property would be violated if
any of the new actors is declared as a receptionist. Therefore, the recep qualifier
can not be used in behavior definitions.

Conditional: The expression e should evaluate to a boolean. If the result is true,
command Com1 is executed, else Com2 is executed.

An Algebraic Theory of Actors 31

Name matching: The name x is matched against the names y1, . . . , yn. If there is
a match, the command corresponding to one of the matches is non-deterministic-
ally chosen and executed. If there is no match, then there is no further execution
of the command. Note that the mismatch capability on names is not available,
i.e. it is not possible to take an action based on the failure of a match.

Composition: The two composed commands are executed concurrently.
A couple of observations are in order here. First, there is no notion of sequen-

tial composition of commands. This is because all the actions an actor performs
on receiving a message, other than the evaluation order dependencies imposed
by the semantics, are concurrent. Second, message passing in SAL is analogous
to call-by-value parameter passing; expressions in a send command are first eval-
uated and a message is created with the resulting values. Alternately, we can
think of a call-by-need message passing scheme. But both the mechanisms are
semantically equivalent because expressions do not involve recursions and hence
their evaluations always terminate.

3.3 Behavior Definitions

The syntax of behavior definitions is as follows.

BDef ::= def 〈beh name〉(〈acquaintence list〉)[〈input list〉]
Com

end def

The identifier 〈beh name〉 is bound to an abstraction and the scope of this
binding is the entire program. The identifiers in acquaintance list are formal pa-
rameters of this abstraction, and their scope is the body Com. These parameters
are bound during a behavior instantiation, and the resulting closure is an actor
behavior. The identifiers in input list are formal parameters of this behavior,
and their scope is the body Com. They are bound at the receipt of a message.
The acquaintance and input lists contain all the free identifiers in Com. The
reserved identifier self can be used in Com as a reference to the actor which
has (an instance of) the behavior being defined. The execution of Com should
always result in the execution of at most a single become command, else the be-
havior definition is said to be erroneous. This property is guaranteed statically
by requiring that in any concurrent composition of commands, at most one of
the commands contains a become. If the execution of Com does not result in
the execution of a become, then the corresponding actor is assumed to take on
a ‘sink’ behavior that simply ignores all the messages it receives.

3.4 An Example

SAL is not equipped with high-level control flow structures such as recursion
and iteration. However, such structures can be encoded as patterns of message
passing [18]. The following implementation of the factorial function (adapted
from [1]) shows how recursion can be encoded. The example also illustrates
continuation passing style of programming common in actor systems.

32 Gul Agha and Prasanna Thati

 (a,Factorial(a))

[3,c]

[2,c1]

[1,c2]

[0,c3]

(c1,FactorialCont(3,c))

(c2,FactorialCont(2,c1))

(c3,FactorialCont(1,c2))

[1]

[1]

[2]

{cust,6}

Fig. 2. A diagram illustrating computation of factorial 3, whose result is to be
sent back to the actor c. The vertical lines denote time lines of actors. An arrow
to the top of a time line denotes an actor creation. Other arrows denote messages.

def Factorial ()[val,cust]
become Factorial () ||
if val = 0

then send [1] to cust
else let cont = new FactorialCont (val,cust)

in send [val − 1, cont] to self
end def

def FactorialCont (val,cust)[arg]
send [val ∗ arg] to cust

end def

A request to factorial actor includes a positive integer n and the actor name
cust to which the result has to be sent. On receiving a message the actor creates
a continuation actor cont and sends itself a message with contents n − 1 and
cont. The continuation actor has n and cust as its acquaintances. Eventually a
chain of continuation actors will be created each knowing the name of the next
in the chain (see Figure 2). On receiving a message with an integer, the behavior
of each continuation actor is to multiply the integer with the one it remembers
and send the reply to its customer. The program can be proved correct by a
simple induction on n. Note that since the factorial actor is stateless, it can

An Algebraic Theory of Actors 33

process different factorial requests concurrently, without affecting the result of
a factorial evaluation.

Following is a top level command that creates a factorial actor that is also a
receptionist and sends a message with value 5 to it.

let x = [recep] new Factorial()
in send [5] to x

4 The Calculus Aπ

The Actor Model and π-calculus have served as the basis of a large body of
research on concurrency. In this section, we represent the Actor Model as a typed
asynchronous π-calculus [7, 21], called Aπ. The type system imposes a certain
discipline on the use of names to capture actor properties such as uniqueness,
freshness and persistence. This embedding of the Actor Model in π-calculus not
only provides a direct basis for comparison between the two models, but also
enables us to apply concepts and techniques developed for π-calculus to the
Actor Model. As an illustration of how the theory of behavioral equivalences
for π-calculus can be adapted to the Actor Model, we develop a theory of may
testing for Aπ in Section 5. In the interest of space and simplicity, we skip the
proofs of all the propositions we state. In fact, the proofs are variations of the
ones presented in [53, 54].

4.1 Syntax

We assume an infinite set of names N , and let u, v, w, x, y, z, . . . range over N .
The set of configurations, ranged over by P, Q, R, is defined by the following
grammar.

P := 0 | x(y).P | xy | (νx)P | P1|P2

| case x of (y1 : P1, . . . , yn : Pn) | B〈x̃; ỹ〉
The order of precedence among the constructs is the order in which they are
listed. The reader may note that, as in the π-calculus, only names are assumed
to be primitive in Aπ. As we will see in Section 6, datatypes such as booleans
and integers, and operations on them, can be encoded as Aπ processes. These
encodings are similar to those for π-calculus [40]; the differences arise mainly
due to the typing constraints imposed by Aπ.

Following is the intended interpretation of Aπ terms as actor configurations.
The nil term 0, represents an empty configuration. The output term xy, repre-
sents a configuration with a single message targeted to x and with contents y. We
call x the subject of the output term. Note that unlike in SAL, where tuples of
arbitrary length can be communicated, only a single name can be communicated
per message in Aπ. As we will explain in Section 4.3, polyadic communication
(communication of tuples of arbitrary length) can be encoded in Aπ, although
only after relaxing the persistence property. The input term x(y).P represents

34 Gul Agha and Prasanna Thati

z(v).Q
2

y(v).Q
1

x(u).P 1

xy

zy
x(u).P 2

wx

Fig. 3. A visualization of the Aπ term R = (νx)(x(u).P1 |y(v).Q1|xy|zy) |
(νx)(x(u).P2 |z(v).Q2|wx). A box around subterms indicates a restriction op-
erator. An outlet next to an actor inside the box indicates that the actor is a
receptionist for the configuration.

a configuration with an actor x whose behavior is (y)P . The parameter y con-
stitutes the formal parameter list of the behavior (y)P , and binds all the free
occurrences of y in P . The actor x can receive an arbitrary name z and substi-
tute it for y in the definition of P , and then behave like P{z/y} (see below for
the definition of substitution). We call x the subject of the input term.

The restricted process (νx)P is the same as P , except that x is no longer a
receptionist of P . All free occurrence of x in P are bound by the restriction. Thus,
the receptionists of a configuration P , are simply those actors whose names are
not bound by a restriction. The composition P1|P2 is a configuration containing
all the actors and messages in P1 and P2. The configuration case x of (y1 :
P1, . . . , yn : Pn) behaves like Pi if x = yi, and like 0 if x �= yi for 1 ≤ i ≤ n.
If more than one branch is true, one of them is non-deterministically chosen.
Note that this construct does not provide mismatch capability on names, i.e. it
does not allow us to take an action based on the failure of a match. Thus, this
construct is much like the case construct of SAL.

The term B〈ũ; ṽ〉 is a behavior instantiation. The identifier B has a single

defining equation of the form B
def
= (x̃; ỹ)x1(z).P , where x̃ is a tuple of distinct

names of length 1 or 2, and x1 denotes the first component of x̃. This definition,
like a behavior definition in SAL, provides a template for an actor behavior.
The tuples x̃ and ỹ together contain exactly the free names in x1(z).P , and
constitute the acquaintance list of the behavior definition. The reason behind
the constraint on length of x̃ will be clear in Section 4.2. For an instantiation
B〈ũ; ṽ〉, we assume len(ũ) = len(x̃), and len(ṽ) = len(ỹ). In the case where ṽ is
the empty tuple, we write B〈ũ〉 as a shorthand for B〈ũ; 〉.

For example, the configuration

R = (νx)(x(u).P1 |y(v).Q1|xy|zy) | (νx)(x(u).P2|z(v).Q2|wx)

is a composition of two sub-configurations (see Figure 3). The first consists of
two actors x and y, a message targeted to x, and a message targeted to an actor

An Algebraic Theory of Actors 35

z that is external to the sub-configuration. The actor y is a receptionist, while x
is hidden. The second sub-configuration, also contains two actors x and z, and
a message targeted to an external actor w. Note that although the name x is
used to denote two different actors, the uniqueness property of actor names is
not violated in R because the scopes of the two restrictions of x do not intersect.
The actors y and z are receptionists of the configuration R.

The reader may note that we use the case construct and recursive defini-
tions instead of the standard match ([x = y]P) and replication (!P) operators
of π-calculus. We have chosen these constructs mainly because they are more
convenient in expressing actor systems. However, both these constructs can be
encoded using the match and replication operators. For instance, the reader can
find an encoding of recursive definitions using the standard π-calculus constructs
in [40].

Before presenting the type system, a few notational conventions are in order.
For a tuple x̃, we denote the set of names occurring in x̃ by {x̃}. We denote the
result of appending ỹ to x̃ by x̃, ỹ. We assume the variable ẑ ranges over {∅, {z}}.
By x̃, ẑ we mean x̃, z if ẑ = {z}, and x̃ otherwise. By (νẑ)P we mean (νz)P if
ẑ = {z}, and P otherwise. We define the functions for free names, bound names
and names, fn(.), bn(.) and n(.), of a process as expected. As usual, we do not
distinguish between alpha-equivalent processes, i.e. between processes that differ
only in the use of bound names. A name substitution is a function on names that
is almost always the identity. We write {ỹ/x̃} to denote a substitution that maps
xi to yi and is identity on all other names, and let σ range over substitutions. We
denote the result of simultaneous substitution of yi for xi in P by P{ỹ/x̃}. As
usual, we define substitution on processes only modulo alpha-equivalence, with
the usual renaming of bound names to avoid captures.

4.2 Type System

Not all terms represent actor configurations. For example, the term
x(u).P |x(v).Q violates the uniqueness property of actor names, as it contains
two actors with name x. The term x(u).(u(v).P |x(v).Q) violates the freshness
property because it creates an actor with name u that is received in a message.
Uniqueness of actor names and freshness of names of newly created actors, cap-
ture essential aspects of object identity. We enforce such constraints by imposing
a type system.

Enforcing all actor properties directly in Aπ results in a language that is
too weak to express certain communication patterns. For example, consider ex-
pressing polyadic communication in Aπ, where tuples of arbitrary length can be
communicated. Since communication in Aπ is monadic, both the sending and
receiving actors have to exchange each component of the tuple one at a time, and
delay the processing of other messages until all the arguments are transfered.
But on the other hand, the persistence property implies that both the actors are
always ready to process any message targeted to them. We therefore relax the
persistence requirement, so that instead of assuming a new behavior immedi-
ately after receiving a message, an actor can wait until certain synchronization

36 Gul Agha and Prasanna Thati

conditions are met before processing the next message. Specifically, we allow an
actor to assume a series of fresh names, one at a time, and resume the old name
at a later point. Basically, the synchronization task is delegated from one new
name to another until the last one releases the actor after the synchronization
conditions are met.

We assume ⊥, ∗ /∈ N , and for X ⊂ N define X∗ = X ∪ {⊥, ∗}. For f : X →
X∗, we define f∗ : X∗ → X∗ as f∗(x) = f(x) for x ∈ X and f∗(⊥) = f∗(∗) = ⊥.
A typing judgment is of the form ρ; f � P , where ρ is the receptionist set of P ,
and f : ρ → ρ∗ is a temporary name mapping function that relates actors in P
to the temporary names they have currently assumes. Specifically

– f(x) = ⊥ means that x is a regular actor name and not a temporary one,
– f(x) = ∗ means x is the temporary name of an actor with a private name

(bound by a restriction), and
– f(x) = y /∈ {⊥, ∗} means that actor y has assumed the temporary name x.

The function f has the following properties. For all x, y ∈ ρ,

– f(x) �= x: This holds for obvious reasons.
– f(x) = f(y) /∈ {⊥, ∗} implies x = y: This holds because an actor cannot

assume more than one temporary name at the same time.
– f∗(f(x)) = ⊥: This holds because temporary names are not like regular

actor names in that they themselves cannot temporarily assume new names,
but can only delegate their capability of releasing the original actor to new
names.

We define a few functions and relations on the temporary name mapping func-
tions, that will be useful in defining the type rules.

Definition 1. Let f1 : ρ1 → ρ∗1 and f2 : ρ2 → ρ∗2.

1. We define f1 ⊕ f2 : ρ1 ∪ ρ2 → (ρ1 ∪ ρ2)∗ as

(f1 ⊕ f2)(x) =
{

f1(x) if x ∈ ρ1, and f1(x) �= ⊥ or x /∈ ρ2

f2(x) otherwise

Note that ⊕ is associative.
2. If ρ ⊂ ρ1 we define f |ρ : ρ→ ρ∗ as

(f |ρ)(x) =
{∗ if f(x) ∈ ρ1 − ρ

f(x) otherwise

3. We say f1 and f2 are compatible if f = f1 ⊕ f2 has following properties:
f = f2 ⊕ f1, and for all x, y ∈ ρ1 ∪ ρ2, f(x) �= x, f∗(f(x)) = ⊥, and
f(x) = f(y) /∈ {⊥, ∗} implies x = y. �

Definition 2. For a tuple x̃, we define ch(x̃) : {x̃} → {x̃}∗ as ch(ε) = {}, and
if len(x̃) = n, ch(x̃)(xi) = xi+1 for 1 ≤ i < n and ch(x̃)(xn) = ⊥. �

An Algebraic Theory of Actors 37

NIL: ∅; {} � 0 MSG: ∅; {} � xy

ACT:
ρ; f � P

{x} ∪ ẑ; ch(x, ẑ) � x(y).P
if

ρ− {x} = ẑ, y /∈ ρ, and

f =

{
ch(x, ẑ) if x ∈ ρ
ch(ε, ẑ) otherwise

CASE:
∀1 ≤ i ≤ n ρi; fi � Pi

(∪iρi); (f1 ⊕ f2 ⊕ . . .⊕ fn) � case x of (y1 : P1, . . . , yn : Pn)

if fi are mutually compatible

COMP:
ρ1; f1 � P1 ρ2; f2 � P2

ρ1 ∪ ρ2; f1 ⊕ f2 � P1|P2
if ρ1 ∩ ρ2 = φ

RES:
ρ; f � P

ρ− {x}; f |(ρ− {x}) � (νx)P

INST: {x̃}; ch(x̃) � B〈x̃; ỹ〉 if len(x̃) = 2 implies x1 �= x2

Table 1. Type rules for Aπ.

The type rules are shown in Table 1. Rules NIL and MSG are obvious. In
the ACT rule, if ẑ = {z} then actor z has assumed temporary name x. The
condition y /∈ ρ ensures that actors are not created with names received in a
message. This is what is commonly referred to as the locality property in the π-
calculus literature [35] 1. The conditions y /∈ ρ and ρ−{x} = ẑ together guarantee
the freshness property by ensuring that new actors are created with fresh names.
Note that it is possible for x to be a regular name, i.e. ρ−{x} = ∅, and disappear
after receiving some message, i.e. x /∈ ρ. We interpret this as the actor x having
assumed a sink behavior, i.e. that it simply consumes all the messages that it
now receives. With this interpretation the intended persistence property is not
violated. Note that a similar interpretation was adopted to account for the case
where the body of a SAL behavior definition does not execute a become command
(see Section 3.3).

The compatibility check in CASE rule prevents errors such as: two actors,
each in a different branch, assuming the same temporary name; or, the same
actor assumes different temporary names in different branches. The COMP rule
guarantees the uniqueness property by ensuring that the two composed con-
figurations do not contain actors with the same name. In the RES rule, f is
updated so that if x has assumed a temporary name y in P , then y’s role as a
temporary name is remembered but x is forgotten. The INST rule states that
if len(x̃) = 2, then B〈x̃; ỹ〉 denotes a configuration containing a single actor x2

that has assumed temporary name x1.

1 In the context of π-calculus, the locality constraint stipulates that a processes can
not receive a name and listen to it; the constraint is enforced by the simple syntactic
rule that in a term x(y).P , the name y can not occur as the subject of an input.

38 Gul Agha and Prasanna Thati

Type checking a term involves checking the accompanying behavior defi-
nitions. For INST rule to be sound, for every definition B

def
= (x̃; ỹ)x1(z).P

and substitution σ = {ũ, ṽ/x̃, ỹ} that is one-to-one on {x̃}, the judgment
{ũ}; ch(ũ) � (x1(z).P)σ should be derivable. From Lemma 1, it follows that
this constraint is satisfied if {x̃}; ch(x̃) � x1(z).P is derivable. Thus, a term is

well-typed only if for each accompanying behavior definition B
def
= (x̃; ỹ)x1(z).P ,

the judgment {x̃}; ch(x̃) � x1(z).P is derivable.
The following theorem states a soundness property of the type system.

Theorem 1. If ρ; f � P then ρ ⊂ fn(P), and for all x, y ∈ ρ, f(x) �= x,
f∗(f(x)) = ⊥, and f(x) = f(y) /∈ {⊥, ∗} implies x = y. Furthermore, if ρ′; f ′ �
P then ρ = ρ′ and f = f ′. �

Not all substitutions on a term P yield terms. A substitution σ may identify
distinct actor names in P , and therefore violate the uniqueness property. But, if
σ renames different actors in P to different names, then Pσ will be well typed.
This is formally stated in Lemma 1, where we have used the following notation.
For a set of names X , σ(X) denotes the set obtained by applying the substitution
σ to each element of X . Further, if σ is a substitution which is one-to-one on
X , fσ : σ(X)→ σ(X)∗ is defined as fσ(σ(x)) = σ(f(x)), where σ(⊥) = ⊥ and
σ(∗) = ∗.
Lemma 1. If ρ; f � P and σ is one-to-one on ρ then σ(ρ); fσ � Pσ. �

A consequence of Lemma 1 is that the type system respects alpha-equivalence,
i.e. if P1 and P2 are alpha-equivalent, then ρ; f � P1 if and only if ρ; f � P2. For
a well-typed term P , we define rcp(P) = ρ if ρ; f � P for some f .

4.3 Operational Semantics

We specify the operational semantics of Aπ using a labeled transition system
(see Table 2). The rules are obtained by simple modifications to the usual rules
for asynchronous π-calculus [7]. The modifications simply account for the use
of case construct and recursive definitions instead of the standard match and
replication operators.

The transition system is defined modulo alpha-equivalence on processes, i.e.
alpha-equivalent processes are declared to the same transitions. The symmetric
versions of COM, CLOSE, and PAR, where the roles of P1 and P2 are inter-
changed, are not shown. Transition labels, which are also called actions, can be
of five forms: τ (a silent action), xy (free output of a message with target x and
content y), x(y) (bound output), xy (free input of a message), and x(y) (bound
input). We denote the set of all visible (non-τ) actions by L, let α range over L,
and let β range over all the actions.

The interpretation of these rules in terms of the Actor Model, is as follows.
The INP rule represents the receipt of a message by an actor, and the OUT
rule represents the emission of a message. The BINP rule is used to infer bound

An Algebraic Theory of Actors 39

INP x(y).P
xz−→ P{z/y}

OUT xy
xy−→ 0

BINP
P

xy−→ P ′

P
x(y)−→ P ′ y /∈ fn(P)

RES
P

α−→ P ′

(νy)P
α−→ (νy)P ′ y /∈ n(α) OPEN

P
xy−→ P ′

(νy)P
x(y)−→ P ′

x �= y

PAR
P1

α−→ P ′
1

P1|P2
α−→ P ′

1|P2

bn(α) ∩ fn(P2) = ∅ COM
P1

xy−→ P ′
1 P2

xy−→ P ′
2

P1|P2
τ−→ P ′

1|P ′
2

CLOSE P1
x(y)−→ P ′

1 P2
xy−→ P ′

2

P1|P2
τ−→ (νy)(P ′

1|P ′
2)

y /∈ fn(P2)

BRNCH case x of (y1 : P1, . . . , yn : Pn)
τ−→ Pi if x = yi

BEHV
(x1(z).P){(ũ, ṽ)/(x̃, ỹ)} α−→ P ′

B〈ũ; ṽ〉 α−→ P ′ B
def
= (x̃; ỹ)x1(z).P

Table 2. A labeled transition system for Aπ.

inputs, i.e. receipt of messages that contain actor names that were previously
unknown to the receiving configuration. The RES rule states that an action α
performed by P can also be performed by (νx)P , provided x does not occur in α.
This condition disallows the emission of a message which contains the name of
a hidden actor in the configuration (a non-receptionist), and prevents confusing
a received name with the name of a hidden actor. The OPEN rule accounts for
the former type of actions, while the latter can be accounted for by an alpha-
conversion of the recepient (νx)P to a term (νy)P{y/x}, where y does not occur
in α, and then applying the RES rule. Note that in the OPEN rule, the hidden
actor name that is being emitted is bound in the output action, but is no longer
bound by a restriction in the transition target. Thus, the actor which was hidden
in the transition source, becomes a receptionist in the target. The side condition
of the OPEN rule prevents the emission of messages that are targeted to the
hidden actor.

The PAR rule captures the concurrent composition of configurations. The
side condition of the rule prevents erroneous inferences of bound inputs and
outputs. For example, if P1 performs a bound input x(y), and y ∈ fn(P2), then
the entire configuration P1|P2 can not perform the bound input x(y) as it already
‘knows’ the name y. Similarly, it would be erroneous to allow bound outputs of
P1 with the output argument occuring free in P2; such behavior would confuse
the name of a previously hidden actor with the name of another actor.

The COM rule is used to infer the communication of a receptionist name
between two composed configurations. The CLOSE rule is used to infer the
communication of non-receptionist names between the configurations. The side
condition prevents confusion of the private name that is communicated, with

40 Gul Agha and Prasanna Thati

other names in the recipient P2. Note that the transition target has a top-level
restriction of the communicated name; thus the actor whose name is communi-
cated (internally) is still a non-receptionist in the transition target.

The BRNCH and BEHV rules are self explanatory. The following theorem
states that the type system respects the transition rules.

Theorem 2. If P is well-typed and P
α−→ P ′ then P ′ is well-typed.

Since well-typed terms are closed under transitions, it follows that actor prop-
erties are preserved during a computation. However, note that the source and
the target of a transition need not have the same typing judgment. Specifically,
both the receptionist set and the function that relates actors to the temporary
names they have assumed, may change. For instance the receptionist set changes
when the name of a hidden actor is emitted to the environment, or an actor dis-
appears after receiving a message. (The reader may recall that the latter case
is interpreted as the actor assuming a sink behavior.) Similarly, the temporary
name map function changes when an actor with a temporary name re-assumes
its original name.

Example 1 (polyadic communication). We show how the ability to temporarily
assume a fresh name can be used to encode polyadic communication in Aπ.
Suppose that the subject of a polyadic receive is not a temporary name. In
particular, in the encoding below, x cannot be a temporary name. The idea
behind translation is to let x temporarily assume a fresh name z which is used
to receive all the arguments without any interference from other messages, and
re-assume x after the receipt. For fresh u, z we have

[|x〈y1, . . . , yn〉|] = (νu)(xu | S1〈u; y1, . . . , yn〉)
Si

def
= (u; yi, . . . , yn)u(z).(zyi | Si+1〈u; yi+1, . . . , yn〉) 1 ≤ i < n

Sn
def
= (u; yn)u(z).zyn

[|x(y1, . . . , yn).P |] = x(u).(νz)(uz | R1〈z, x̂; u, ã〉)
Ri

def
= (z, x̂; u, ã)z(yi).(uz | Ri+1〈z, x̂; u, ã〉) 1 ≤ i < n

Rn
def
= (z, x̂; u, ã)z(yn).(uz | [|P |])

where ã = fn(x(y1, . . . , yn).P) − {x}, and x̂ = {x} if for some ρ, f , we have
ρ ∪ {x}; f � [|P |], and x̂ = ∅ otherwise. �

Before we proceed any further, a few definitions and notational conventions
are in order. The functions fn(.), bn(.) and n(.) are defined on L as expected. As
a uniform notation for free and bound actions we adopt the following convention
from [7]: (∅)xy = xy, ({y})xy = x(y), and similarly for input actions. We define
a complementation function on L as (ŷ)xy = (ŷ)xy, (ŷ)xy = (ŷ)xy. The vari-
ables s, r, t are assumed to range over L∗. The functions fn(.), bn(.), n(.), and
complementation on L are extended to L∗ the obvious way. Elements in L∗ are

An Algebraic Theory of Actors 41

called traces. Alpha-equivalence over traces is defined as expected, and alpha-
equivalent traces are not distinguished. The relation =⇒ denotes the reflexive

transitive closure of τ−→, and
β

=⇒ denotes =⇒ β−→=⇒. For s = l.s′, P
l−→ s′−→ Q

is compactly written as P
s−→ Q, and similarly P

l=⇒ s′
=⇒ Q as P

s=⇒ Q. The
assertion, P

s=⇒ P ′ for some P ′, is written as P
s=⇒, and similarly P

s−→ and
P

τ−→.
Not every trace produced by the transition system corresponds to an actor

computation. For instance, we have

(νx)(x(u).P |xx|yx)
y(x)−→ x(u).P |xx

xx−→

But the message xx is not observable; due to the uniqueness property of actor
names, there can never be an actor named x in the environment. To account for
this, we define for any set of names ρ, the notion of a ρ-well-formed trace such
that only ρ-well-formed traces can be exhibited by an actor configuration with
ρ as its initial receptionist set.

Definition 3. For a set of names ρ and trace s we define rcp(ρ, s) inductively
as

rcp(ρ, ε) = ρ rcp(ρ, s.(ŷ)xy) = rcp(ρ, s) rcp(ρ, s.(ŷ)xy) = rcp(ρ, s) ∪ ŷ

We say s is ρ-well-formed if s = s1.(ŷ)xy.s2 implies x /∈ rcp(ρ, s1). We say s is
well-formed if it is ∅-well-formed. ��

The following lemma captures our intuition.

Lemma 2. Let P |Q be a well-typed Aπ term with rcp(P) = ρ1 and rcp(Q) = ρ2.
Then P |Q =⇒ can be unzipped into P

s=⇒ and Q
s=⇒ such that s is ρ1-well-

formed and s is ρ2-well-formed. ��
For convenience, since we work only modulo alpha-equivalence on traces, we

adopt the following hygiene condition. Whenever we are interested in ρ-well-
formed traces, we will only consider traces s such that if s = s1.α.s2, then
(ρ ∪ n(s1) ∪ fn(α)) ∩ bn(α.s2) = ∅.

The transition sequences are further constrained by a fairness requirement
which requires messages to be eventually delivered, if they can be. For example,
the following transition sequences are unfair.

Diverge〈x〉|xu|y(v).vv|yv
τ−→ Diverge〈x〉|xu|y(v).vv|yv
τ−→ Diverge〈x〉|xu|y(v).vv|yv
τ−→ · · ·

where Diverge
def
= (x)x(u).(xu | Diverge〈x〉)

In every transition above, the message xy is delivered to its target; but the
message yv is never delivered.

42 Gul Agha and Prasanna Thati

Fairness in actors requires that the delivery of a message is not delayed in-
finitely long; but it can be delayed for any finite number of steps. Thus, only
infinite transition sequences can be unfair. However, note that our fairness con-
straint does not require that every message is eventually delivered to its target.
Because we have relaxed the persistence property, an actor may disappear during
a computation, after which all the message targeted to it become permanently
disabled. Thus, the fairness criteria only requires that there is no message that is
infinitely often enabled, but not delivered. This is consistent with our convention
that an actor that disappears is assumed to take on a sink behavior.

The fairness requirement can be enforced by defining a predicate on sequences
of transitions as described in [48] such that only fair sequences satisfy the pred-
icate. However, we do not pursue this any further in this paper, as fairness does
not effect the theory we are concerned with. The reader is referred to Section 5.4
for further discussion.

4.4 Discussion

There has been considerable research on actor semantics in the past two decades.
We set Aπ in the context of some of the salient work. A significant fraction of
the research has been in formal semantics for high level concurrent programming
languages based on the Actor Model, e.g. [3, 13] where a core functional language
is extended with actor coordination primitives. The main aim of these works has
been to design concurrent languages that could be useful in practice. Accordingly,
the languages assume high-level computational notions as primitives, and are
embellished with type systems that guarantee useful properties in object-based
settings. In contrast, Aπ is a basic calculus that makes only the ontological
commitments inherent in the Actor Model, thus giving us a simpler framework
for further theoretical investigations. In Section 6, we show how Aπ can be used
to give a translational semantics for SAL.

In [48, 49], actors are modeled in rewriting logic which is often considered as a
universal model of concurrency [33, 36]. An actor system is modeled as a specific
rewrite theory, and established techniques are used to derive the semantics of
the specification and prove its properties. In a larger context, this effort belongs
to a collection of works that have demonstrated that rewriting logic provides
a good basis to unify many different concurrency theories. For example, we
have also a rewrite theory formulation of the π-calculus [52]. In comparison,
Aπ establishes a connection between two models of concurrency that is deeper
than is immediately available from representing the two models in a unified basis.
Specifically, the theory that we have developed in Section 5, can be seen as a more
elaborate investigation of the relationship between two specific rewrite theories,
and provides a formal connection that helps in adapting and transferring results
in one theory to the other.

There are several calculi that are inspired by the Actor Model and the π-
calculus [15, 22, 45]. But these are neither entirely faithful to the Actor Model,
nor directly comparable to the π-calculus. For example, they are either equipped
with primitives intrinsic to neither of the models [15, 22], or they ignore actor

An Algebraic Theory of Actors 43

properties such as uniqueness and persistence [45]. These works are primarily
intended for investigation of object-oriented concepts.

5 A Theory of May Testing for Aπ

Central to any process calculus is the notion of behavioral equivalence which is
concerned with the question of when two processes are equal. Typically, a notion
of success is defined, and two processes are considered equivalent if they have
the same success properties in all contexts. Depending on the chosen notion of
context and success one gets a variety of equivalences [8, 12, 46].

The may testing equivalence is one such instance [17, 12], where the con-
text consists of an observing process that runs in parallel and interacts with the
process being tested, and success is defined as the observer signaling a special
event. The possible non-determinism in execution leads to at least two possibil-
ities for the definition of equivalence. In may testing, a process is said to pass
a test proposed by an observer, if there exists at least one run that leads to
a success. By viewing a success as something bad happening, may testing can
be used for reasoning about safety properties. An alternate definition, where a
process is said to pass a test if every run leads to a success, is called the must
testing equivalence. By viewing a success as something good happening, must
testing can be used for reasoning about liveness properties. In this paper, we
will be develop only with the theory may testing for Aπ.

Context-based behavioral equalities like may testing suffer from the need for
universal quantification over all possible contexts; such quantification makes it
very hard to prove equalities directly from the definition. One solution is to find
an alternate characterization of the equivalence which involves only the processes
being compared. We provide an alternate characterization of may testing in
Aπ that is trace based and directly builds on the known characterization for
asynchronous π-calculus.

5.1 A Generalized May Preorder

As in any typed calculus, may testing in Aπ takes typing into account; an ob-
server O can be used to test a configuration P only if P |O is well-typed. Note
that P |O is well-typed only if rcp(P)∩ rcp(O) = ∅. Thus, O can be used to test
the equivalence between P and Q only if rcp(O) ∩ (rcp(P) ∪ rcp(Q)) = ∅.

The uniqueness property of actor names naturally leads to a generalized
version of may testing, where the equivalence �ρ is tagged with a parameter ρ.
All possible observers O that do not listen on names in ρ, i.e. rcp(O) ∩ ρ = ∅,
are used for deciding �ρ. Of course, for processes P and Q to be compared with
�ρ, it has to be the case that rcp(P), rcp(Q) ⊂ ρ.

Definition 4 (may testing). Observers are processes that can emit a special
message µµ. We let O range over the set of observers. We say O accepts a
trace s if O

s.µµ
=⇒. For P, O, we say P may O if P |O µµ

=⇒. For ρ such that

44 Gul Agha and Prasanna Thati

(L1) s1.(ŷ)s2 ≺ s1.(ŷ)xy.s2 if (ŷ)s2 �= ⊥
(L2) s1.(ŷ)(α.xy.s2) ≺ s1.(ŷ)xy.α.s2 if (ŷ)(α.xy.s2) �= ⊥
(L3) s1.(ŷ)s2 ≺ s1.(ŷ)xy.xy.s2 if (ŷ)s2 �= ⊥
(L4) s1.xw.(s2{w/y}) ≺ s1.x(y).s2

Table 3. A preorder relation on traces.

rcp(P), rcp(Q) ⊂ ρ, we say P
�∼ρ Q, if for every O such that rcp(O) ∩ ρ = ∅,

P may O implies Q may O. We say P �ρ Q if P
�∼ρ Q and Q

�∼ρ P . ��

The relation �∼ρ is a preorder, i.e. reflexive and transitive, and �ρ is an
equivalence relation. Further, note that the larger the parameter ρ, the smaller
the observer set that is used to decide �∼ρ. Hence if ρ1 ⊂ ρ2, we have P

�∼ρ1 Q

implies P
�∼ρ2 Q. However, P

�∼ρ2 Q need not imply P
�∼ρ1 Q. For instance,

0 �{x} xx, but only 0 �∼∅ xx and xx /
�∼∅ 0. Similarly, xx �{x,y} yy, but xx /

�∼∅ yy

and yy /
�∼∅ xx. However, P

�∼ρ2 Q implies P
�∼ρ1 Q if fn(P) ∪ fn(Q) ⊂ ρ1.

Theorem 3. Let ρ1 ⊂ ρ2. Then P
�∼ρ1 Q implies P

�∼ρ2 Q. Furthermore, if
fn(P) ∪ fn(Q) ⊂ ρ1 then P

�∼ρ2 Q implies P
�∼ρ1 Q. ��

5.2 An Alternate Characterization of May Testing

We now build on the trace-based characterization of may testing for asyn-
chronous π-calculus presented in [7] to obtain a characterization of may testing
in Aπ. Following is a summary of the alternate characterization of may testing
in asynchronous π-calculus. To account for asynchrony, the trace semantics is
modified using a trace preorder � that is defined as the reflexive transitive clo-
sure of the laws shown in Table 3, where the notation (ŷ)· is extended to traces
as follows.

(ŷ)s =

s if ŷ = ∅ or y �∈ fn(s)
s1.x(y).s2 if ŷ = {y} and there are s1, s2, x s.t.

s = s1.xy.s2 and y �∈ fn(s1) ∪ {x}
⊥ otherwise

The expression (ŷ)s returns ⊥, if ŷ = {y} and y is used in s before it is received
for the first time, i.e. the first free occurrence of y in s is not as the argument
of an input. Otherwise, the expression returns the trace s with the first such
free input changed to a bound input. The (unparameterized) may preorder �∼
in asynchronous π-calculus (which corresponds to �∼∅ in our setting) is then
characterized as: P

�∼ Q if and only if P
s=⇒ implies Q

r=⇒ for some r � s.
The intuition behind the preorder is that if an observer accepts a trace s,

then it also accepts any trace r � s. Laws L1-L3 capture asynchrony, and L4

An Algebraic Theory of Actors 45

captures the inability to mismatch names. Laws L1 and L2 state that an observer
cannot force inputs on the process being tested. Since outputs are asynchronous,
the actions following an output in a trace exhibited by an observer need not be
causally dependent on the output. Hence the observer’s outputs can be delayed
until a causally dependent action (L2), or dropped if there are no such actions
(L1). Law L3 states that an observer can consume its own outputs unless there
are subsequent actions that depend on the output. Law L4 states that without
mismatch an observer cannot discriminate bound names from free names, and
hence can receive any name in place of a bound name. The intuition behind
the trace preorder is formalized in the following lemma that is proved in [7] for
asynchronous π-calculus.

Lemma 3. If P
s=⇒, then r � s implies P

r=⇒. ��
We note that, the lemma above also holds for Aπ with very simple modifications
to the proof.

Actor properties such as uniqueness and freshness “weaken” may equivalence
in Aπ, in comparison to asynchronous π-calculus. Specifically, the type system of
Aπ reduces the number of observers that can be used to test actor configurations.
For example, the following two processes are distinguishable in asynchronous π-
calculus, but equivalent in Aπ:

P = (νx)(x(z).0|xx|yx) Q = (νx)(x(z).0|yx)

The observer O = y(z).z(w).µµ can distinguish P and Q in asynchronous π-
calculus, but is not a valid Aπ term as it violates the freshness property (ACT
rule of Table 1). In fact, no Aπ term can distinguish P and Q, because the
message xx is not observable.

The following alternate preorder on configurations characterizes the may pre-
order in Aπ.

Definition 5. We say P �ρ Q, if for every ρ-well-formed trace s, P
s=⇒ im-

plies there is r � s such that Q
r=⇒. ��

To prove the characterization, we define an observer O(s) for a well-formed
trace s, such that P may O(s) implies P

r=⇒ for some r � s.

Definition 6 (canonical observer). For a well-formed trace s, we define an
observer

O(s) = (νx̃, z)(|yi∈χProxy(s, yi, z) | O′(s, z)), where z fresh

{x̃} = set of names occurring as argument of bound input actions in s
χ = set of names occuring as subject of output actions in s

O′(ε, z)
�
= µµ

O′((v̂)uv.s, z)
�
= uv|O′(s, z)

46 Gul Agha and Prasanna Thati

O′(uv.s, z)
�
= z(w1, w2).case w1 of (u : case w2 of (v : O′(s, z))) w1, w2 fresh

O′(u(v).s, z)
�
= z(w, v).case w of (u : O′(s, z)) w fresh

Proxy(ε, y, z)
�
= 0

Proxy((v̂)uv.s, y, z)
�
= Proxy(s, y, z)

Proxy((v̂)uv.s, y, z)
�
=

{
y(w).(z〈y, w〉 | Proxy(s, y, z)) w fresh if u = y
Proxy(s, y, z) otherwise

In the above,
�
= is used for macro definitions. The reader may verify that χ −

{x̃}; f � O(s) where f maps every name in its domain to ⊥. Further, if s is
ρ-well-formed we have rcp(O(s)) ∩ ρ = ∅, because the set of names occurring as
subject of output actions in a ρ-well-formed trace is disjoint from ρ. �

The observer O(s) consists of a collection of proxies and a central matcher.
There is one forwarding proxy for each external name that a configuration sends
a message to while exhibiting s. The proxies forward messages to the matcher
which analyzes the contents. This forwarding mechanism (which is not nec-
essary for the construction of canonical observers in the corresponding proof
for asynchronous π-calculus), is essential for Aπ because of uniqueness of actor
names. Further, note that the forwarding mechanism uses polyadic communica-
tion, whose encoding was shown in Section 4.3. The following lemma formalizes
our intention behind the construction of O(s).

Lemma 4. For a well-formed trace s, O(s)
r.µµ
=⇒ implies r � s. ��

The following theorem, which establishes the alternate characterization of
may preorder in Aπ, can be proved easily using Lemmas 2, 3, and 4.

Theorem 4. P
�∼ρ Q if and only if P �ρ Q. ��

5.3 Some Axioms for May Testing

Table 4 lists some inference rules besides the reflexivity and transitivity rules,
and some axioms for �∼ρ. For an index set I = {1, . . . , n}, we use the macro∑

i∈I Pi to denote, (νu)(case u of (u : P1, . . . , u : Pn)) for u fresh if I �= ∅, and
0 otherwise. For an index set that is a singleton, we omit I and simply write

∑
P

instead of
∑

i∈I P . We let the variable G range over processes of form
∑

i∈I Pi.
We write

∑
i∈I Pi +

∑
j∈J Pj to denote

∑
k∈I�J Pk. We write � as a shorthand

for �∅ , and = for =∅ .
Axioms A1 to A17 are self explanatory. We note that they also hold in

asynchronous π-calculus [7]. But axiom A18 is unique to Aπ. It captures the fact
that a message targeted to an internal actor in a configuration, cannot escape to
the environment. The axiom states that there are only two ways such a message
can be handled in the next transition step: it can be consumed internally or de-
layed for later. The axiom also allows for dropping of the message permanently,
which is useful when the message target no longer exists (it may have disappeared

An Algebraic Theory of Actors 47

I1 if P �ρ Q and rcp(R) ∩ ρ = ∅, then (νx)P �ρ−{x} (νx)Q, P |R �ρ Q|R.
I2 if for each z ∈ fn(P, Q) P{z/y} �ρ Q{z/y} then x(y).P �ρ x(y).Q
I3 if for each i ∈ I Pi �ρ

∑
j∈J

Qij then
∑

i∈I
Pi �ρ

∑
i∈I,j∈J

Qij

I4 if ρ1 ⊂ ρ2 and P �ρ1 Q then P �ρ2 Q.

A1 G + G = G A3 P |0 = P A5 (P |Q)|R = P |(Q|R)
A2 G � G + G′ A4 P |Q = Q|P

A6 (νx)(
∑

i∈I
Pi) =

∑
i∈I

(νx)Pi

A7 (νx)(P |Q) = P |(νx)Q x /∈ n(P)
A8 (νx)(xy|α.P) = α.(νx)(xy|P) x /∈ n(α)
A9 (νx)(xy|x(z).P) = (νx)(P{y/z})
A10 (νx)(y(z).P) =

{
y(z).(νx)P if x �= y, x �= z
0 if x = y

A11 xy|∑
i∈I

Pi =
∑

i∈I
(xy|Pi) I �= ∅

A12 α.
∑

i∈I
Pi =

∑
i∈I

α.Pi I �= ∅
A13 P =

∑
P

A14 x(y).(uv|P) � uv|x(y).P y �= u, y �= v
A15 P{y/z} � xy|x(z).P
A16 x(y).(xy|P) � P y /∈ n(P)

A17 (νx)P � P{y/x}

A18 If x ∈ ρ, w �= x and w �= y, then

xy|z(w).P �ρ

∑
z(w).(xy|P) +

∑
z(w).P +

∑
Q

where Q =

{
P{y/w} if x = z
0 otherwise

Table 4. Inference rules and axioms for �∼ρ in Aπ.

during the computation). As an application of this axiom, if x ∈ ρ, we can prove
xy �ρ 0 as follows. For w fresh,

xy �ρ xy|(νw)(w(w).0) (A3 , A10 , I1)
�ρ (νw)(xy|w(w).0) (A7)
�ρ (νw)(

∑
w(w).0 +

∑
w(w).xy +

∑
0) (A18 , I1)

�ρ

∑
(νw)(w(w).0) +

∑
(νw)w(w).xy +

∑
(νw)0 (A6)

�ρ 0 (A1 , A10 , A13 , I3)

Inference rules I1 and I3 are self explanatory, while I4 is motivated by The-
orem 3. We illustrate I1 through some examples. First, using xy �{x} 0 (proved
above) and I1, we get (νx)xy � (νx)0, and by axiom A17 we have (νx)0 � 0.

48 Gul Agha and Prasanna Thati

Therefore, (νx)xy � 0. Note the use of the ability to contract the parameter ρ
of the may preorder after applying a restriction. Second, the following example
illustrates the necessity of the side condition rcp(R) ∩ ρ = ∅ for composition:
xy

�∼{x} 0 but not xy|x(y).yy
�∼{x} x(y).yy, for the LHS can satisfy the observer

y(u).µµ and the RHS can not.
Note that the inference rules are generalizations of rules for asynchronous π-

calculus presented in [7], in order to handle parameterization of the may preorder.
In fact, the rules for asynchronous π-calculus can be obtained by setting ρ = ∅
in I1, I2 and I3. Rule I4 is unique to the parameterized may preorder.

The soundness of rules I1-I4 can be easily proved directly from Definition 4.
Soundness of the axioms is easy to check. For A1-A17, whenever P � Q, we have
P

s=⇒, implies Q
r=⇒ such that r � s. For A18 , both LHS and RHS exhibit the

same ρ-well-formed traces. The reader can verify that A18 would also be sound
as an equality.

5.4 Discussion

The alternate characterization of may testing for Aπ turns out to be the same
as that for Lπ= which we presented in [54]. Lπ= is a version of asynchronous
π-calculus with match operator and the locality constraint (see Section 4.2 for
a discussion on locality). This shows that of all the constraints enforced by the
type system of Aπ, only locality and uniqueness (which is taken care of by
parameterization of the may preorder) has an effect on may testing.

In Section, 4.3, we claimed that the fairness property of the Actor Model does
not affect the theory we have presented. The justification is simple. May testing
is concerned only with the occurrence of an event after a finite computation,
while fairness affects only infinite computations. An interesting consequence of
fairness, however, is that must equivalence [17] implies may equivalence, which
was shown for a specific actor-based language in [3]. It can be shown by a similar
argument that this result holds in Aπ also.

There has been a significant amount of research on notions of equivalence and
semantic models for actors, including asynchronous bisimulation [15], testing
equivalences [3], event diagrams [10], and interaction paths [50]. We have not
only related may testing [3] to the interaction paths model [50], but also related
our characterizations to that of asynchronous π-calculus and its variants.

6 Formal Semantics of SAL

Aπ can serve as the basis for actor based concurrent programming languages.
As an illustration, we give a formal semantics for SAL by translating its pro-
grams into Aπ. The translation can be exploited to apply the characterizations
established in Section 5 to reason about programs in SAL.

In Sections 6.1 and 6.2, we show how booleans, natural numbers and oper-
ations on them can be represented as processes in Aπ. These data types, along
with names, are assumed as primitive in SAL. Of course, this exercise is not

An Algebraic Theory of Actors 49

entirely necessary, and in fact, a better strategy may be to directly consider an
extended version of Aπ with basic data types. The characterizations for Aπ can
be adapted in a straightforward manner to the extended calculus. We have cho-
sen the other approach here, mainly to illustrate that the type system of Aπ does
not reduce the expressive power of the calculus. In Sections 6.3-6.5, we present
the translation of SAL expressions, commands and behavior definitions. SAL
expressions and commands are translated into Aπ terms, and their evaluation is
modeled as computation in these terms. SAL behavior definitions are translated
into recursive definitions in Aπ.

6.1 Booleans

Booleans are encoded as configurations with a single actor that is also a recep-
tionist. In the following, T defines the receptionist behavior for true, and F for
false.

T
def
= (x)x(u, v, c).cu

F
def
= (x)x(u, v, c).cv

The behaviors accept messages containing three names, of which the last name
is assumed to be the customer name (see Section 4.3 for an encoding of polyadic
communication). The behavior T replies back to the customer with the first
name, while F replies back with the second name.

The negation function can be encoded as follows

Not
def
= (x)x(u, c).(νv, y, z)(u〈y, z, v〉 | v(w).case w of(y : F 〈v〉, z : T 〈v〉))

Not(x) can be thought of as the function not available at name x. Evaluation of
the function is initiated by sending a message containing a value and a customer
name, to x. The customer eventually receives the negation of the value sent. The
reader may verify that

Not〈x〉 | F 〈u〉 | x〈u, c〉 c(v)
=⇒ T 〈v〉

Following is the encoding of boolean and

And
def
= (x)x(u, v, c).(νy, z1, z2)(u〈z1, z2, y〉 | v〈z1, z2, y〉 |

y(w1).y(w2).(cy |
case w1 of (

z1 : case w2 of (z1 : T 〈y〉, z2 : F 〈y〉),
z2 : F 〈y〉)))

The reader may verify the following

And〈x〉 | T 〈u〉 | F 〈v〉 | x〈u, v, c〉 c(y)
=⇒ F 〈y〉

The reader may also verify that for each behavior B defined above {x}; {x �→
⊥} � B〈x〉.

50 Gul Agha and Prasanna Thati

6.2 Natural Numbers

Natural numbers are built from the constructors 0 and S. Accordingly, we define
the following two behaviors.

Zero
def
= (x)x(u, v, c).c〈u, x〉

Succ
def
= (x, y)x(u, v, c).c〈v, y〉

With these, natural numbers can be encoded as follows.

0(x)
�
= Zero〈x〉

Sn+10(x)
�
= (νy)(Succ〈x, y〉 | Sn0(y))

The number Sn0 is encoded as a sequence of n + 1 actors each pointing to the
next, and the last one pointing to itself. The first n actors have the behavior
Succ and the last has behavior Zero. Only the first actor is the receptionist to
the entire configuration. As in our encoding for booleans, both the behaviors
accept messages with three names, the last of which is assumed to denote the
customer. The behavior Succ replies back to the customer with the second name
and the name of next actor in the sequence, while Zero replies back with the
first name and its own name.

We only show the encoding of the addition operation, and hope the reader is
convinced that it is possible to encode the others. Our aim is to define a behavior
Add such that

Add〈x〉 | Sn0(u) | Sm0(v) | x〈u, v, c〉 c(w)
=⇒ Sn+m0(w)

We first define a behavior AddTo such that

AddTo〈x〉 | (νu)(Sn0(u) | x〈u, v, c〉) | Sm0(v) =⇒ (νu)(Sn+m0(u) | cu)

We will then use AddTo to define Add.

AddTo
def
= (x)x(u1, u2, c).(νy1, y2, w)(u2〈y1, y2, w〉 |

w(z1,z2).case z1 of (
y1 : cu1,
y2 : (νv)(Succ〈v, u1〉 | x〈v, z2, c〉 | AddTo〈x〉)))

We are now ready to define Add.

Add
def
= (x)x(u, v, c).(νy, z, w)(AddTo〈y〉 | 0(w) | y〈w, u, z〉 |

z(w).(νy)(AddTo〈y〉 | y〈w, v, c〉))

Lemma 5. Add〈x〉 | Sn0(u) | Sm0(v) | x〈u, v, c〉 c(w)
=⇒ Sn+m0(w)

The reader may verify that for a natural number N , and each behavior B
defined above, {x}; {x �→ ⊥} � N(x), and {x}; {x �→ ⊥} � B〈x〉. This encoding
of natural numbers can be extended to integers in a fairly straightforward manner
(for example, by using tags to indicate the sign).

An Algebraic Theory of Actors 51

6.3 Expressions

Now that we have a representation of the basic constituents of expressions -
namely, booleans, integers, and names - what remains is the representation of
dependencies between the evaluation of subexpressions of an expression.

The translation of an expression takes as an argument, the name of a cus-
tomer to which the result of the expression’s evaluation is to be sent. An identifier
expression x is translated as

[|x|]c = cx

A constant (boolean or integer) expression e is translated as

[|e|]c = (νy)(e〈y〉 | cy)

where e is the encoding of the constant e. For an n−ary operator Op, the ex-
pression Op(e1, ..., en) is encoded as

[|Op(e1, . . . , en)|]c = (νy1, . . . , yn+1, z)(Marshal (y1, . . . , yn+1, z) |
[|e1|]y1 | . . . | [|en|]yn | yn+1c | Op〈z〉)

where Op is the encoding of operator Op, and z, yi are fresh. The expressions
e1 to en are concurrently evaluated. The configuration Marshal (y1, . . . , yn+1, z)
marshals their results and the customer name into a single tuple, and forwards it
to an internal actor that implements Op. The marshaling configuration is defined
as

Marshal(y1, . . . , yn, c) = (νu)(R〈y1, u〉 | . . . | R〈yn, u〉 | S1〈u, y1, . . . , yn, c〉)
where

R
def
= (x, y) x(u).y〈u, x〉

Si
def
= (x, yi, . . . , yn, v1, . . . , vi−1, c)

x(vi, w).case w of (
yi : Si+1〈x, yi+1, . . . , yn, v1, . . . , vi, c〉
yi+1 . . . yn : Si〈x, yi, . . . , yn, v1, . . . , vi−1, c〉 | x〈vi, w〉)

for 1 ≤ i < n

Sn
def
= (x, v1, . . . , vn−1, c) x(vn, w).c〈v1, . . . , vn〉
By structural induction on an expression e and name x, it is easy to show

that ∅; {} � [|e|]x.

6.4 Commands

Although the Actor Model stipulates that the actions an actor performs on re-
ceiving a message are all concurrent, execution of SAL commands may involve
sequentiality. For example, expressions need to be evaluated before the results
are used to send messages or instantiate a behavior. This sequentiality is rep-
resented as communication patterns in the Aπ configurations that encode these
commands. The translation of a command takes as an argument, the name of
the SAL actor which executes the command. In the following, we assume that
the names introduced during the translation are all fresh.

52 Gul Agha and Prasanna Thati

Message send: We use the Marshal configuration to marshal the results of ex-
pression evaluations into a polyadic message to the target.

[|send [e1, . . . , en] to z|]x = (νy1, . . . , yn)(Marshal(y1, . . . , yn, z) |
[|e1|]y1 | . . . | [|en|]yn)

New behavior: We use an actor’s ability to temporarily assume a new name to
wait for the results of expression evaluations before assuming the new behavior.

[|become B(e1, . . . , en)|]x = (νy1, . . . , yn, z)([|e1|]y1 | . . . | [|en|]yn |
Marshal 〈y1, . . . , yn, z〉 |
z(u1, . . . , un).B〈x, u1, . . . , un〉)

where B is the Aπ behavior definition that is the translation of the SAL behavior
definition B (see Section 6.5).

Actor creation: The identifiers in the let command are used as names for the
new actors. If not tagged by the recep qualifier, these names are bound by a
restriction. The actors are created at the beginning of command execution, but
they assume a temporary name until their behavior is determined.

[|let y1 = [recep] new B1(e1, . . . , ei1),
. . . yk = [recep] new Bk(e1, . . . , eik

) in Com|]x =
(νỹ)([|become B1(e1, . . . , ei1)|]y1 | . . . |

[|become Bk(e1, . . . , eik
)|]yk | [|Com|]x)

where ỹ consists of all yi which have not been qualified with recep.

Conditional: We use a temporary actor that waits for the outcome of the test
before executing the appropriate command.

[|if e then Com1 else Com2|]x =
(νu)([|e|]u | u(z).(νv1, v2)(z〈v1, v2, u〉 |

u(w).case w of (v1 : [|Com |]x, v2 : [|Com |]x))

Name matching: The translation simply uses the case construct of Aπ.

[|case z of(y1 : Com1 , . . . , yn : Comn)|]x =
case z of (y1 : [|Com1 |]x, . . . , yn : [|Comn |]x)

Concurrent Composition: The translation of a concurrent composition is just
the composition of individual translations.

[|Com1 || Com2|]x = [|Com1|]x | [|Com2|]x
This completes the translation of commands. Let Com be a command such

that in any of its subcommands that is a concurrent composition, at most one
of the composed commands contains a become. Further, assume that a name is
declared as a receptionist at most once, and that let constructs with receptionist

An Algebraic Theory of Actors 53

declarations are not nested under other let or conditional constructs. Let x be a
fresh name. Then by structural induction on Com, we can show that {x, ỹ}; f �
[|Com |]x if Com contains a become, and {ỹ}; f � [|Com |]x otherwise, where ỹ is
the set of all names declared as receptionists in Com, and f is a function that
maps all names in its domain to ⊥.

6.5 Behavior Definitions

Behavior definitions in SAL are translated to behavior definitions in Aπ as fol-
lows

[|def B(ũ)[ṽ] Com end def |] = B
def
= (self ; ũ)self (ṽ).[|Com |]self

Note that the implicitly available reference self in a SAL behavior definition
becomes explicit in the acquaintance list after translation. Since the body of
a behavior definition does not contain receptionist declarations, it follows that
{self }; {self �→ ⊥} � self (ṽ).[|Com|]self . So the RHS is well-typed.

We have completed the translation of various syntactic domains in SAL, and
are ready to present the overall translation of a SAL program. Recall that a
SAL program consists of a sequence of behavior definitions and a single top level
command. Following is the translation.

[|BDef 1 ... BDef n Com |] = [|BDef 1|] . . . [|BDef n|] [|Com |]x

where x is fresh. Since the top level command cannot contain a become, its
translation does not use the argument x supplied. Indeed, {ỹ}; f � [|Com|]x,
where {ỹ} is the set of all names declared as receptionists in Com, and f maps
all names in {ỹ} to ⊥.

6.6 Discussion

The translation we have given, can in principle be exploited to use the testing
theory developed for Aπ, to reason about SAL programs. Note that the char-
acterization of may-testing for Aπ applies unchanged to SAL. This is because
the set of experiments possible in SAL have the same distinguishing power as
the experiments in Aπ. Specifically, the canonical observers constructed for Aπ
in Section 5, are also expressible in SAL. Further, it follows immediately from
Lemma 4 and Theorem 4 that these observers have all the distinguishing power,
i.e. are sufficient to decide �∼ρ in Aπ.

Although, SAL is a very simple language, it can be enriched with higher level
programming constructs without altering the characterization. This is corrobo-
rated by the work in [34], where a high level actor language is translated to a
more basic kernel language (similar to SAL) in such a way that the source and
its translation exhibit the same set of traces.

Translational semantics for actor languages similar to SAL has been previ-
ously attempted. In [11] a simple actor language is translated into linear logic

54 Gul Agha and Prasanna Thati

formulae, and computations are modeled as deductions in the logic. In [29] an
actor-based object-oriented language is translated into HACL extended with
records [28]. These translations provide a firm foundation for further semantic
investigations. However, to reap the benefits of these translations, one still has
to explicitly characterize actor properties such as locality and uniqueness in the
underlying formal system, and identify the changes to the theory due to them.
For instance, the asynchronous π-calculus can be seen as the underlying sys-
tem of our translation, whereas only Aπ terms correspond to SAL programs,
and the characterization of may testing for Aπ is very different from that for
asynchronous π-calculus.

7 Research Directions

In this paper, we have focused only on the semantic aspects of the Actor Model,
while much of the actor research over the last two decades has been on languages
and systems.

Actor programming has been effective in combining benefits of object style
encapsulation with the concurrency of real-world systems. The autonomy of ac-
tors frees a programmer from the burden of explicitly managing threads and syn-
chronizing them. In fact, the autonomy of actors also facilitates mobility. Over
the years, many implementations of the Actor Model have been done [9, 55, 59].
In fact, the numerous agent languages currently being developed typically fol-
low the Actor Model [32, 23]. The Actor Model has also been used for efficient
parallel computation [24, 26, 27, 51]. Actor languages and systems currently be-
ing developed include SALSA for web computing [56], Ptolemy II for embedded
systems [30], and ActorFoundry for distributed computing [43].

An important area of active research in the Actor Model is the use of compu-
tational reflection [31]. The execution environment of an actor application can
be represented as a collection of actors called meta-actors. These meta-actors
constitute the middleware which mediates the interaction of the actor applica-
tion and the underlying operating systems and networks. In order to customize
fault-tolerance, security, synchronization and other types of interaction proper-
ties, meta-actors may be customized (see, for example, [5, 47]). Moreover, the
meta-actor model supports the ability to express dynamic coordination policies
as executable synchronization constraints between actors: the constraints may be
enforced by customizing the meta-actors during execution [14]. An operational
semantics of such reflective systems is developed in [57] and a rewriting model
has been proposed in [37].

The use of meta-actors supports a separation of design concerns which is
now popularly known as aspect-oriented programming [25]. The development of
aspect-oriented programming will enable the reuse of interaction protocols and
functional behavior of an object. The separation of the concurrent interaction
protocols from the sequential behavior of actors is another step in the revolution
in programming that was instigated by Dahl and Nygaard when they developed
the idea of separating the interface of an object from its representation.

An Algebraic Theory of Actors 55

8 Acknowledgments

The research described in here has been supported in part by DARPA under
contracts F33615-01-C-1907 and F30602-00-2-0586, and by ONR under contract
N00014-02-1-0715. Part of the work described in here is a sequel to the research
done in collaboration with Reza Ziaei, whom we would like to thank. We also
thank Carolyn Talcott for useful discussions and comments.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

[2] G. Agha. Concurrent Object-Oriented Programming. Communications of the
ACM, 33(9):125–141, September 1990.

[3] G. Agha, I. Mason, S. Smith, and C. Talcott. A Foundation for Actor Computa-
tion. Journal of Functional Programming, 1996.

[4] G. Agha, P. Wegner, and A. Yonezawa (editors). Proceedings of the ACM SIG-
PLAN workshop on object-based concurrent programming. Special issue of SIG-
PLAN Notices.

[5] M. Astley, D. Sturman, and G. Agha. Customizable middleware for modular
distributed software. CACM, 44(5):99–107, 2001.

[6] G.M. Birtwistle, O-J. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin. Van
Nostrand Reinhold, New York, 1973.

[7] M. Boreale, R. de Nicola, and R. Pugliese. Trace and testing equivalence on
asynchronous processes. Information and Computation, 172(2):139–164, 2002.

[8] M. Boreale and D. Sangiorgi. Some congruence properties for π-calculus bisimi-
larities. In Theoretical Computer Science 198, 1998.

[9] J. P. Briot. Acttalk: A framework for object-oriented concurrent programming
- design and experience. In Object-based parallel and distributed computing II -
Proceedings of the 2nd France-Japan workshop, 1999.

[10] W.D. Clinger. Foundations of Actor Semantics. PhD thesis, Massachusetts Insti-
tute of Technology, AI Laboratory, 1981.

[11] J. Darlington and Y. K. Guo. Formalizing actors in linear logic. In In-
ternational Conference on Object-Oriented Information Systems, pages 37–53.
Springer-Verlag, 1994.

[12] R. de Nicola and M. Hennesy. Testing equivalence for processes. Theoretical
Computer Science, 34:83–133, 1984.

[13] F.Dagnat, M.Pantel, M.Colin, and P.Sall. Typing concurrent objects and actors.
In L’Objet – Mthodes formelles pour les objets (L’OBJET), volume 6, pages 83–
106, 2000.

[14] S. Frolund. Coordinating Distributed Objects: An Actor-Based Approach for Syn-
chronization. MIT Press, November 1996.

[15] M. Gaspari and G. Zavattaro. An Algebra of Actors. In Formal Methods for Open
Object Based Systems, 1999.

[16] I. Greif. Semantics of communicating parallel processes. Technical Report 154,
MIT, Project MAC, 1975.

[17] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
[18] C. Hewitt. Viewing Control Structures as Patterns of Message Passing. Journal

of Artificial Intelligence, 8(3):323–364, September 1977.

56 Gul Agha and Prasanna Thati

[19] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular Actor Formalism for
Artificial Intelligence. In International Joint Conference on Artificial Intelligence,
pages 235–245, 1973.

[20] C.A.R. Hoare. Communication Sequential Processes. Prentice Hall, 1985.
[21] K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communication.

In Fifth European Conference on Object-Oriented Programming, July 1991. LNCS
512, 1991.

[22] J-L.Colao, M.Pantel, and P.Sall. Analyse de linarit par typage dans un calcul
d’acteurs primitifs. In Actes des Journes Francophones des Langages Applicatifs
(JFLA), 1997.

[23] N. Jamali, P. Thati, and G. Agha. An actor based architecture for customizing
and controlling agent ensembles. IEEE Intelligent Systems, 14(2), 1999.

[24] L.V. Kale and S. Krishnan. CHARM++: A portable concurrent object oriented
system based on C++. In Proceedings of the Conference on Object Oriented
Programming Systems, Languages and Applications, 1993.

[25] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M. Loingtier,
and J. Irwin. Aspect oriented programming. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP). Springer Verlag, 1997.
LNCS 1241.

[26] W. Kim. ThAL: An Actor System for Efficient and Scalable Concurrent Comput-
ing. PhD thesis, University of Illinois at Urbana Champaign, 1997.

[27] W. Kim and G. Agha. Efficient support of location transparency in concurrent
object-oriented programming languages. In Proceedings of SuperComputing, 1995.

[28] N. Kobayashi and A. Yonezawa. Higher-order concurrent linear logic program-
ming. In Theory and Practice of Parallel Programming, pages 137–166, 1994.

[29] N. Kobayashi and A. Yonezawa. Towards foundations of concurrent object-
oriented programming – types and language design. Theory and Practice of Object
Systems, 1(4), 1995.

[30] E. Lee, S. Neuendorffer, and M. Wirthlin. Actor-oriented design of embedded
hardware and software systems. In Journal of circuits, systems, and computers,
2002.

[31] P. Maes. Computational Reflection. PhD thesis, Vrije University, Brussels, Bel-
gium, 1987. Technical Report 87-2.

[32] P. Maes. Intelligent software: Easing the burdens that computers put on people.
In IEEE Expert, special issue on intelligent agents, 1996.

[33] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work, 1993.

[34] I.A. Mason and C.Talcott. A semantically sound actor translation. In ICALP 97,
pages 369–378, 1997. LNCS 1256.

[35] M. Merro and D. Sangiorgi. On Asynchrony in Name-Passing Calculi. In Pro-
ceeding of ICALP ’98. Springer-Verlag, 1998. LNCS 1443.

[36] J. Meseguer. Rewriting Logic as a Unified Model of Concurrency. Technical Re-
port SRI-CSI-90-02, SRI International, Computer Science Laboratory, February
1990.

[37] J. Meseguer and C. Talcott. Semantic models for distributed object reflection. In
Proceedings of the European Conference on Object-Oriented Programming, pages
1–36, 2002.

[38] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[39] R. Milner. Interactions, turing award lecture. Communications of the ACM,

36(1):79–97, January 1993.

An Algebraic Theory of Actors 57

[40] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, 1999.

[41] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (Parts I and
II). Information and Computation, 100:1–77, 1992.

[42] S. Miriyala, G. Agha, and Y.Sami. Visulatizing actor programs using predicate
transition nets. Journal of Visual Programming, 1992.

[43] Open Systems Laboratory. The Actor Foundry: A Java based actor programming
language. Available for download at http://www-osl.cs.uiuc.edu/foundry.

[44] J.L. Peterson. Petri nets. Comput. Survey, Sept. 1977.
[45] A. Ravara and V. Vasconcelos. Typing non-uniform concurrent objects. In CON-

CUR, pages 474–488, 2000. LNCS 1877.
[46] R.Milner and D. Sangiorgi. Barbed bisimulation. In Proceedings of 19th Inter-

national Colloquium on Automata, Languages and Programming (ICALP ’92).
Springer Verlag, 1992. LNCS 623.

[47] D. Sturman and G. Agha. A protocol description language for cutomizing seman-
tics. In Proceedings of symposium on reliable distributed systems, pages 148–157,
1994.

[48] C. Talcott. An Actor Rewriting Theory. In Electronic Notes in Theoretical Com-
puter Science 5, 1996.

[49] C. Talcott. Interaction Semantics for Components of Distributed Systems. In
E.Najm and J.B. Stefani, editors, Formal Methods for Open Object Based Dis-
tributed Systems. Chapman & Hall, 1996.

[50] C. Talcott. Composable semantic models for actor theories. Higher-Order and
Symbolic Computation, 11(3), 1998.

[51] K. Taura, S. Matsuoka, and A. Yonezawa. An efficient implementation scheme of
concurrent object-oriented languages on stock multicomputers. In Symposium on
principles and practice of parallel programming (PPOPP), pages 218–228, 1993.

[52] P. Thati, K. Sen, and N. Mart́ı-Oliet. An executable specification of asynchronous
pi-calculus semantics and may testing in maude 2.0. In 4th International Work-
shop on Rewriting Logic and its Applications, September 2002.

[53] P. Thati, R. Ziaei, and G. Agha. A theory of may testing for actors. In Formal
Methods for Open Object-based Distributed Systems, March 2002.

[54] P. Thati, R. Ziaei, and G. Agha. A theory of may testing for asynchronous calculi
with locality and no name matching. In Proceedings of the 9th International
Conference on Algebraic Methodology and Software Technology. Springer Verlag,
September 2002. LNCS 2422.

[55] C. Tomlinson, W. Kim, M. Schevel, V. Singh, B. Will, and G. Agha. Rosette:
An object-oriented concurrent system architecture. Sigplan Notices, 24(4):91–93,
1989.

[56] C. Varela and G. Agha. Programming dynamically reconfigurable open systems
with SALSA. SIGPLAN Notices, 36(12):20–34, 2001.

[57] N. Venkatasubramanian, C. Talcott, and G. Agha. A formal model for reasoning
about adaptive QoS-enabled middleware. In Formal Methods Europe (FME),
2001.

[58] P. Wegner. Dimensions of object-based language design. In Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 168–182, 1987.

[59] A. Yonezawa. ABCL: An Object-Oriented Concurrent System. MIT Press, 1990.

Towards Posit & Prove Calculi for

Requirements Engineering and Software Design

In Honour of the Memory of Professor Ole–Johan Dahl

Dines Bjørner

Computer Science and Engineering (CSE)
Informatics and Mathematical Modelling (IMM)

Building 322, Richard Petersens Plads
Technical University of Denmark (DTU)

DK–2800 Kgs.Lyngby, Denmark
db@imm.dtu.dk

http://www.imm.dtu.dk/˜db/

Abstract. Some facts: Before software and computing systems can be
developed, their requirements must be reasonably well understood. Be-
fore requirements can be finalised the application domain, as it is, must
be fairly well understood. Some opinions: In today’s software and com-
puting systems development very little, if anything is done, we claim, to
establish fair understandings of the domain. It simply does not suffice, we
further claim, to record assumptions about the domain when recording
requirements. Far more radical theories of application domains must be
at hand before requirements development is even attempted. In another
(“earlier”) paper [6] we advocate(d) a strong rôle for domain engineering.
We there argued that domain descriptions are far more stable than are
requirements prescriptions for support of one or another set of domain
activities. In the present paper we shall argue, that once, given extensive
domain descriptions, it is comparatively faster to establish trustworthy
and stable requirements than it is today. And we shall further, presently,
argue that once we have a sufficient (varietal) collection of domain spe-
cific, ie. related, albeit distinct, requirements, we can develop far more
reusable software components than using current approaches. In this con-
tribution we shall thus reason, at a meta-level, about two major phases of
software engineering: Requirements engineering, and software design. We
shall suggest a number of requirements engineering and software design
concerns, stages and steps
The paper represents work in progress. It is based on presentations of
“topics for discussion” at the IFIP Working Group 2.3. Such presenta-
tions are necessarily of “work in progress” — with the aim of the pre-
sentation being to solicit comments. Hence the paper (“necessarily”) is
not presenting “final” results.

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 58–82, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Towards Posit & Prove Calculi 59

1 Introduction

Our concern, in the present and in most of our work in the last almost 30 years,
has been that of trying to come to grips with principles and techniques for
software development.

The present paper sketches some such principles and techniques for some of
the stages within the phases of requirements engineering and software design.

Our lecture notes, [7], the reader will find a rather comprehensive treatment
of these and “most other related” software engineering issues !

1.1 Itemised Summary

Some facts:

– Before software and computing systems can be developed, their requirements
must be reasonably well understood.

– Before requirements can be finalised the application domain, as it is, must
be fairly well understood.

Some opinions:

– In today’s software and computing systems development very little, if any-
thing is done, we claim, to establish fair understandings of the domain.

– It simply does not suffice, we further claim, to record assumptions about the
domain when recording requirements.

– Far more radical theories of application domains must be at hand before
requirements development is even attempted.

In another (“earlier”) paper [6] we advocate(d) a strong rôle for domain engi-
neering.

– We there argued that domain descriptions are far more stable than are re-
quirements prescriptions for support of one or another set of domain activi-
ties.

– In the present paper we shall argue, that once, given extensive domain de-
scriptions, it is comparatively faster to establish trustworthy and stable re-
quirements than it is today.

– And we shall further, presently, argue that once we have a sufficient (vari-
etal) collection of domain specific, ie. related, albeit distinct, requirements,
we can develop far more reusable software components than using current
approaches.

In this contribution we shall thus reason, at a meta-level, about two major phases
of software engineering:

– Requirements engineering, and
– software design.

60 Dines Bjørner

We shall suggest a number of requirements engineering and software design
concerns, stages and steps, notably, for

– requirements:
• Domain requirements,
• interface requirements, and
• machine requirements.

– Specifically:
• Domain requirements projection,
• determination,
• extension, and
• initialisation.

– And Software Design:
• Architecture design, and
• component determination and design.

1.2 Claimed, ‘Preliminary’ Contributions

We claim that this paper reports on two kinds of methodological contributions:
The “posit & prove calculation” principles of projection, determination, exten-
sion and initialisation; and the principle of the stepwise “posit & prove calcula-
tion” of software architecture design.

2 Requirements Engineering

2.1 Delineation of Requirements

From [23] we quote: “Requirements engineering must address the contextual
goals why a software is needed, the functionalities the software has to accom-
plish to achieve those goals, and the constraints restricting how the software
accomplishing those functions is to be designed and implemented. Such goals,
functions and constraints have to be mapped to precise specifications of software
behaviour; their evolution over time and across software families has to be coped
with as well [29].”

We shall, in this paper, not cover the pragmatics of why software is needed,
and we shall, in this paper, exclude “the mapping to precise software specifica-
tions” as we believe this is a task of the first stages of software design — as will
be illustrated in this paper.

2.2 Requirements Acquisition

The process of requirements acquisition will also not be dealt with here. We
assume that proper such techniques, if available, will be used. For example [16,
8, 18, 9, 15, 28, 20, 14, 10, 17, 25, 24, 26, 19, 27]. That is: We assume that somehow
or other we have some, however roughly, but consistently expressed itemised set
of requirements. We admit, readily, that to achieve this is a major feat. The
domain requirements techniques soon to be outlined in this paper may help
“parameterise” the referenced requirements acquisition techniques.

Towards Posit & Prove Calculi 61

2.3 On the Avaliability of Domain Models

It is a thesis of this paper that it makes only very little sense to embark on
requirements engineering before one has a fair bit of understanding of the appli-
cation domain. Granted that one may feel compelled to develop both “simulta-
neously”, or that one ought expect that others have developed the domain de-
scriptions (including formal theories) “long time beforehand.” Yes, indeed, just
as control engineers can rely on Newton’s laws and more than three hundred
years of creating improved understanding of the domain of Newtonian physics:
The “mechanical” world as we see it daily, so software engineers ought be able,
sooner or later, to rely on elsewhere developed models of — usually man–made
— application domains. Since that is not yet the situation we shall in software
engineering have to make the first attempts at creating such domain–wide de-
scriptions — hoping that eventually the domain specific professions will have
reseachers with sufficient computing science education to hone and further de-
velop such models.

2.4 Domain Requirements

It is also a thesis of this paper that a major, perhaps the most important aspects
of requirements be systematically developed on the basis of domain descrip-
tions. This ‘thesis’ thus undercuts much of current requirements engineerings’
paradigms, it seems.

By a domain requirements we shall understand those requirements (for a
computing system) which are expressed solely by using terms of the application
domain (in addition to ordinary language terms). Thus a domain requirements
must not contain terms that designate the machine, the computing system, the
hardware + software to be deviced.

How do we go about doing this ?
There seems to be two orthogonal approaches. In one we follow the domain

facets outlined above. In the other we apply a number of “operators”, to wit:

– projection, determination, extension, and initialisation,

to domain required facets. We treat the latter first:

Facet-Neutral Domain Requirements:

– Projections:
Well, first we ask for which parts of the domain we, the client, wish computing
support. Usually we must rely on our domain model to cover far more than
just those parts. Hence we establish the first bits of domain requirements by
projecting those parts of both the informal and the formal descriptions onto
— ie., to become — the domain requirements.

– Determinations:
Then we look at those projected parts: If they contain undesired looseness
or non–determinism, or if parts, like types, are just sorts for which we now

62 Dines Bjørner

wish to state more — not implementation, but “contents” — details, then
we remove such looseness, such non–determinacy, such sorts, etc. This we
call determination.

– Extensions:
Certain functionalities can be spoken of in the domain but to carry them
out by humans have either been too dangerous, too tedious, uneconomical,
or otherwise infeasible. With computing these functionalities may now be
feasible. And, although they, in a sense “belong” to the domain, we first
introduce them while creating the domain requirements. We call this domain
extension. The distinction, thus is purely pragmatic.

– Initialisations:
In describing a domain, such as we for example described the “space” of all
time tables, we must, for each specific time table, designate the “space” of
all its points of departures and arrivals. If our requirements involve these de-
parture and arrival points (airports, railway stations, bus depots, harbours),
then sooner or later one has to initialise the computing system (database)
to reflect all these many entities. Hence we need to establish requirements
for how to initialise the computing system, how to maintain and update it,
how to vet (ie., contextually check) the input data, etc.

There may be other domain–to–requirements “conversion” steps. We shall, in
this paper, only speak of these.

In doing the above we may iterate between the four (or more) domain–to–
requirements “conversion” steps.

We now illustrate what may be going on here. But first we need to tak an
aside: To bring “an entire” domain model” ! That is, the next section (“A Do-
main Intrinsics Model”) does not belong to the requirements modelling phase of
development, but to the domain modelling phase of development.

A Domain Intrinsics Model: We wish to illustrate the concepts of projection,
determination, extension and initialisation of a domain requirements from a
domain. We will therefore postulate a domain. We choose a very simple domain.
That of a traffic time table, say flight time table. In the domain you could, in
“ye olde days” hold such a time table in your hand, you could browse it, you
could look up a special flight, you could tear pages out of it, etc. There is no end
as to what you can do to such a time table. So we will just postulate a sort, TT,
of time tables. Airline customers, in general only wish to inquire a time table
(so we will here omit treatment of more or less “malicious” or destructive acts).
But you could still count the number of digits “7” in the time table, and other
such ridiculous things. So we postulate a broadest variety of inquiry functions
that apply to time tables and yield values. Specifically designated airline staff
may, however, in addition to what a client can do, update the time table, but,
recalling human behaviours, all we can ascertain for sure is that update functions
apply to time tables and yield two things: Another, replacement time table and
a result such as: “your update succeeded”, or “your update did not succeed”,
etc. In essence this is all we can say for sure about the domain of time table
creations and uses.

Towards Posit & Prove Calculi 63

scheme TI TBL 0 =
class

type
TT, VAL, RES
QU = TT → VAL
UP = TT → TT × RES

value
client 0: TT → VAL, client(tt) ≡ let q:QU in q(tt) end
staff 0: TT → TT × RES, staff(tt) ≡ let u:UP in u(tt) end
timtbl 0: TT → Unit
timtbl(tt) ≡

(let v = client 0(tt) in timtbl 0(tt) end)
��
(let (tt′,r) = staff 0(tt) in timtbl 0(tt′) end)

end

The system function is here seen as a never ending process, hence the type Unit.
It internal non–deterministically alternates between “serving” the clients and the
staff. Either of these two internal non–deterministically chooses from a possibly
very large set of queries, respectively updates.

We now return from our domain modelling detour. In the next four sections
we illustrate a number of domain requirements steps. There are other such steps
(‘fitting’, etc.) which we will leave un–explained.

Projections: In this case we have defined such a simple, ie., small domain, so we
decide to project all of it onto the domain requirements:

scheme TI TBL 1 = TI TBL 0

Determinations: Now we make more explicit a number of things: Time tables
record, for each flight number, a journey: a sequence of two or more airport visits,
each designated by a time of arrival, the airport name and a time of departure.

scheme TI TBL 2 =
extend TI TBL 1 with

class
type

Fn, T, An
JR′ = (T × An × T)∗

JR = {| jr:JR′ • len jr ≥ 2 ∧ ... |}
TT = Fn →m JR

end

where we omit (...) to express further wellformedness constraints on journies.

64 Dines Bjørner

Then we determine the kinds of queries and updates that may take place:

scheme TI TBL 3 =
extend TI TBL 2 with

class
type

Query == mk brow() | mk jour(fn:Fn)
Update == mk inst(fn:Fn,jr:JR) | mk delt(fn:Fn)
VAL = TT
RES == ok | not ok

value
Mq: Query → QU
Mq(qu) ≡

case qu of
mk brow() →

λtt:TT•tt,
mk jour(fn)

→ λtt:TT • if fn ∈ dom tt then [fn �→tt(fn)] else [] end
end

Mu: Update → UP
Mu(up) ≡

case qu of
mk inst(fn,jr) →

λtt:TT • if fn ∈ dom tt then (tt,not ok) else (tt ∪ [fn �→jr],ok) end,
mk delt(fn) →

λtt:TT • if fn ∈ dom tt then (tt \ {fn},ok) else (tt,not ok) end
end

end

And finally we redefine the client and staff functions:

scheme TI TBL 4 =
extend TI TBL 3 with

class
value

client 4: TT → VAL, client 4(tt) ≡ let q:Query in (Mq(q))(tt) end
staff 4: TT → TT×RES, staff 4(tt) ≡ let u:Update in (Mu(u))(tt) end

end

The timtbl function remains “basically” unchanged !

scheme TI TBL 5 =
extend TI TBL 4 with

class
value

timtbl 5: TT → Unit
timtbl 5(tt) ≡

(let v = client 4(tt) in timtbl 5(tt) end)
��
(let (tt′,r) = staff 4(tt) in timtbl 5(tt′) end)

end

Towards Posit & Prove Calculi 65

Extensions: Suppose a client wishes, querying the time table, to find a connection
betwen two airports with no more than n shift of aircrafts. For n = 0, n = 1 or
n = 2 this may not be difficult to do “in the domain”: A few 3M Post it’s a human
can perhaps do it in some reasonable time for n = 1 or n = 2. But what about
for n = 5. Exponential growth in possibilities makes this an infeasible query “in
the domain”. But perhaps not using computers. (The example is, perhaps a bit
contrived.)

scheme TI TBL 6 =
extend TI TBL 5 with

class
type

Query == ... | mk conn(fa:An,ta:An,n:Nat)
VAL = TT | CNS
CNS = (JR∗)-set

value
Mq(q) ≡

case q of
...
mk conn(fa,ta,n) → λtt:TT • ...

end
end

where we leave it to the reader to define the “connections” function !

Initialisations: We remind the reader that this and the immediate three
Initialisation here means: From a given input of flight journies to create an

initial time table (ie., an initial database). Ongoing changes to time tables have
been provided for through the insert and delete operations — already defined.
In their definition, however, we skirted an issue which is paramount also in
initialisation: Namely that of vetting the data: That is, checking that a journey
flies non–cyclically between existing airports, that flight times are commensurate
with flight distances and type of aircraft (jet, supersonic or turbo–prop), that
at all airports planes touch down and take off at most every n minutes, where n
could be 2, but is otherwise an airport parameter. To check some of these things
information about airports and air space is required.

scheme TI TBL 7 =
extend TI TBL 6 with

class
type

Init inp = (Fn × JR)-set
AP = An →m Airport
AS = (An × An) →m AirCorridor-set
Number, Length

66 Dines Bjørner

value
obs RunWays: Airport → Number
obs Distance: AirCorridor → Length
...

end

We leave it to the imagination, skills and stamina of the reader to complete the
details ! Our points has been made: ‘Initialisation’, suddenly uncovers a need
for enlarging the domain descriptions, and “there is much more to initialisation
than meets the eye.”1

Facet-Oriented Domain Requirements: We may be able to make a dis-
tinction between “intended” and un–intended inconsistencies and “intended”
and unintended conflicts. The “intended” ones are due to inherent properties of
the domain. The un–intended ones are due to misinterpretations by the domain
recorders or, are “real enough,” but can be resolved through negotiation be-
tween stake–holders — thus entailing aspects of business process re–engineering
— before requirements capture has started.

We thus assume, for brevity of exposition, that un–intended inconsistencies
and un–intended conflicts have been thus resolved, and that otherwise “sepa-
rately” expressed perspectives have been properly integrated (ie. ameliorated).

A major aspect of domain requirements is that of establishing contractual re-
lationships between the human or support technology ‘agents’ in the environment
of the “software, ie., the system–to–be”, and the software ‘agents’. As a result
of a properly completed and integrated domain modelling of support technolo-
gies, management & organisation, rules & regulations, and human behaviour, we
have thus identified domain inherent inconsistencies and conflicts. They appear
as a form of non–determinism. These forms of non–determinism typically need
either be made deterministic, as in domain requirements determination, or be
made part of a contract assumed to be enforced by the environment: Namely
a contract that says: “The environment will promise (cum guarantee) that the
inconsistency or the conflict will not ‘show up’ !”

These contractual relationships express assumptions about the interaction
behaviour — to be further explored as part of the next topic: ‘Interface Re-
quirements’. If the environment side of the combined system of the “software,
ie., the system–to–be” does not honour these contractual relationships, then the
“software, ie., the system–to–be” cannot be guaranteed to act as intended !

We thus relegate treatment of some facet–oriented domain requirements to
the requirements capture and modelling stage of interface requirements.

Towards a Calculus of Domain Requirements: We have sketched a “posit
& prove calculus” for deriving domain requirements. So far we have identified

1 Reasonable C code for the input of directed graphs is usually twice the “size” of
similarly reasonable C code for their topological sorting !

Towards Posit & Prove Calculi 67

four operations in this “posit & prove calculus”: Projection, determination, ex-
tension and initialisation. In each derivation step the operation takes two argu-
ments. One argument is the domain requirements developed so far. The other
argument is the concerns of that step of derivation: What is, and what is not
to be projected, what is and what is not to be determined, what is and what
is not to be extended, respectively what is and what is not to be initialised,
etc. The “proof” part of the “posit & prove calculus” is a conventional proof of
correctness between the two arguments.

We have still to further develop: Identify possibly additional domain require-
ments derivation operators, and to research and provide further principles and
detailed techniques also for already identified derivation operations.

It seems that the sequence of applying these derivators is as suggested above,
but is that “for sure ?”.

2.5 Interface Requirements

By an interface requirements we shall understand those requirements (for a com-
puting system) which concern very explicitly the “things” ‘shared’ between the
domain and the machine: In the domain we say that these “things” are the ob-
servable phenomena: the information, the functions, and/or the events of, or in,
the domain, In the machine we say that they are the data, the actions, and/or
the interrupts and/or the occurrence of inputs and outputs of the machine.
By ‘sharing’ we mean that the latter shall model, or be harmonised with, the
former. There are other interface aspects — such as “translates” into “bulk”
input/output, etc.

But we shall thus illustrate just the first two aspects of ‘sharing’.

External Vs. Internal ‘Agent’ Behaviours: The objectives of this step of
requirements development is the harmonisation of external and internal ‘agent’
behaviours.

One the side of the environment there are the ‘agents’, say the human users,
of the “software–to–be”. On the side of the “software–to–be” there is, say, the
software ‘agents’ (ie. the processes) that interact with environment ‘agents’. Har-
monisation is now the act of securing, through proper requirements capture nego-
tiations, as well as through proper interaction dialogue and “vetting” protocols,
that the two kinds of ‘agents’ live up to mutually agreed expectations.

Other than this brief explication we shall not treat this area of requirements
engineering further in the present paper.

GUIs and Databases: Assume that a database records the data which reflects
the topology of some air traffic net, or that records the contents of a time table,
and assume that some graphical user interface (GUI) windows represent the
interface between man and machine such that items (fields) of the GUI are
indeed “windows” into the underlying database. We prescribe and model, as

68 Dines Bjørner

an interface requirements, such GUIs and databases, the latter in terms of a
relational, say an SQL, database.

type
Nm, Rn, An, Txt
GUI = Nm →m Item
Item = Txt × Imag
Imag = Icon | Curt | Tabl | Wind
Icon == mk Icon(val:Val)
Curt == mk Curt(vall:Val∗)
Tabl == mk Tabl(rn:Rn,tbl:TPL-set)
Wind == mk Wind(gui:GUI)

Observe how the “content” values of icons and curtains are allowed to be any
values, as now defined:

Val = VAL | REF | GUI
VAL = mk Intg(i:Intg) | mk Bool(b:Bool) | mk Text(txt:Text) | mk Char(c:Char)

RDB = Rn →m TPL-set
TPL = An →m VAL
REF == mk Ref(rn:Rn,an:An,sel:(An →m OVL))
OVL == nil | mk Val(val:VAL)

Icons effectively designate a system operator or user definable constant or vari-
able value, or a value that “mirrors” that found in a relation column satisfying
an optional value (OVL). Similar for curtains and tables. Tables more directly
reflect relation tuples (TPL). GUIs (Windows) are defined recursively.

If, for example, the names space values of Nm, Rn, and An, and the chosen
constant texts Txt, suitably mirror names and phenomena of the domain, then
we may be on our way to satisfying a “classical” user interface requirement,
namely that “the system should be user friendly”.

For a specific interface requirements there now remains the task of relating
all shared phenomena and data to one another via the GUI. In a sense this
amounts to mapping concrete types onto primarily relations, and entities of
these (phenomena and data) onto the icons, curtains, and tables.

2.6 Machine Requirements

By machine requirements we understand those requirements which are exclu-
sively related to characteristics of the hardware to be deployed (and, in cases
even designed) and the evolving software. That is, machine requirements are,
in a sense, independent of the specific “details” of the domain and interface
requirements, ie., “considers” these only with a “large grained” view.

Towards Posit & Prove Calculi 69

Performance Issues: Performance has to do with consumption of computing
system resources:. Besides time and (storage) space, there are such things as
number of terminals, the choice of the right kind of processeing units, data
communication bandwidth, etc.

Time and Space: Time and (storage) space usually are singled out for particular
treatment. Designated functions of the domain and interface requirements are
mandated to execute, when applied, within stated time (usually upper) bounds.
This includes reaction times to user interaction. And designated domain infor-
mation are likewise mandated to occupy, when stored, given (stated) quantities
of locations.

Dependabilities: Dependability is an “ility” “defined” in terms of many other
“ilities”. We single out a few as we shall later demonstrate their possible dis-
charge in the component software system design.

Availability: There might be situations where a domain description or a domain
(or interface) requirements prescription define a function whose execution, on
behalf of a user, when applied, is of such long duration that the system, to other
users, appear unavailable.

In the examle of the time table system, such may be the case when the air
travel connections function searchers for connections: The computation, with
possible “zillions” of database (cum disk) accesses, “grinds” on “forever”.

Accessability: There might be situations where a domain description or a domain
(or interface) requirements prescription may give the impression that certain
users are potentially denied access to the system.

In the example of the time table system, such may be the case when the
time table process non–deterministically chooses between “listening” to requests
(queries) from clients and (updates) from staff. The semantics of both the in-
ternal (��) and the external (����) non–deterministic operators are such as to not
guarantee fair treatment.

Other Dependabilities: We omit treatment of the reliability, fault tolerance, ro-
bustness, safety, and security “ilities”.

Discussion: We refrain from attempting to formalise the machine requirements
of availablity and accessability — for the simple reason that whichever way we
today may know how to formalise them, we do not yet know of a systematic way
of transforming these requirements into, ie., of “posit & prove calculating” their
implementations.

This is clearly an area for much research.

Maintainabilities: Computing systems have to be maintained: For a number
of reasons. We single out one and characterise this and other maintenance issues.

70 Dines Bjørner

Adaptability: We say that a computing system is adaptable (not adaptive), wrt.
change of “soft” and “hard” functionalities, when change of software or hardware
“parts” only involves “local” adaptations.

“Locality”, obviously, is our hedge. Not having defined it we have said little,
if anything. The idea is that whatever changes have to be made in order to
accomodate replacement hardware or replacement software, such changes are to
be made in one place: One is able, a priori, to designate these places to within,
say, a line, a paragraph, or, at most, a page of documentation.

We shall discuss adaptability further when we later tackle component soft-
ware design issues.

Performability: A computing system satisfies a performability requirements, wrt.
change (usually improvement) of “soft” and “hard” performance issues [time,
space], when such change only involves “local” changes.

Correctability: A computing system is correctable (not necessarily correct), wrt.
debugging “soft” and “hard” bugs, when such change only involves “local” cor-
rections.

Preventability: A computing system has its failure modes being preventable
(not necessarily prevented), wrt. “soft” and “hard” bugs, when regular tests can
forestall error modes. For hardware, preventive maintenance is an old “profes-
sion”. Rerunning standard, accumulative test suites, whenever other forms of
maintenance has been carried out, may be one way of carrying out preventive
maintenance ?

Portabilities: By portability we understand the ability of software to be de-
ployed on different computing systems platforms: From legacy operating systems
to, and between such systems as (Microsoft’s) Windows, Unix and Linux.

One can distinguish between the computing systems platform on which it
may be requirements mandated that development shall take place — in contrast
to the computing systems platforms on which it may be requirements mandated
that execution and maintenance shall take place. Etcetera.

2.7 Feature Interaction Inconsistency and Conflict Analysis

One thing is to “dream” up “zillions” of “exciting” requirements, whether do-
main, interface, or machine requirements. Another thing is to ensure that these
many individually conceived requirements “harmonise”: “Fit together”, ie., do
not create inconsistencies or conflicts when the “software–to–be” is the basis
of computations. Proper formal requirements models allow systematic, formal
search for such anomalies [30, 31, 29]. Other than mentioning this ‘feature in-
teraction’ problem, we shall not cover the problem further. But a treatment of
some aspects of requirements engineering would not be satisfying if it completely
omitted any reference to the problem.

Towards Posit & Prove Calculi 71

2.8 Discussion

We have attempted a near–exhaustive listing and partial survey of as complete a
bouquet of requirements prescription issues as possible. We have done so in order
to delineate the scope and span of formal techniques, as well as the relations,
“backward”, to domain descriptions, and, as we shall later see, “forward” to
software design.

A major thesis of our treatment, maybe not so fully convincingly demon-
strated here, but then perhaps more so in our lecture notes [7], is to demon-
strate these relationships, to demonstrate that requirements, certainly domain
requirements, can be formalised, and to provide sufficiently refined requirements
prescription techniques — especially for domain requirements.

We have tried, in contrast to todays software engineering (including require-
ment engineering) text books, to provide some principles and techniques for
structuring the requirements documents to be constructed by requirements en-
gineers.

3 Software Design

Requirements prescriptions do not specify software designs. Where a require-
ments prescription is allowed to leave open may ways of implementing some
entities (ie., data) and functions, a software design, initially an abstract one, in
the form of an architecture design, makes the first important design decisions.
Incrementally, in stages, from architecture, via program organisation based on
identified components, to module design and code, these stages of software design
concretises previously abstract entities and functions.

Where requirements selected parts of a domain for computerisation by only
stating such requirements for which a computable representation can be found,
software design, one–by–one selects these representations.

3.1 Architectures

By an architecture design we understand a software specification that impleme-
nents the domain and, maybe, some of the interface requirements. The domain
requirements of client 4, staff 4, and timtbl 5, are first transformed, and this
is just a proposal, as a system of three parallel processes client arch, staff arch,
and timtbl arch. Where client 4 and staff 4, embedded within timtbl 5, we now
“factor” them out of timtbl 5, and hence we must provide channels that al-
low client arch and staff arch to communicate with timtbl arch. The communi-
cated values are the denotations, cf. aplets, of query and update commands.
Whereever client arch and staff arch had time tables as arguments they must now
communicate the function denotations, that were before applied to time tables,
to the timtbl arch process.

72 Dines Bjørner

scheme ARCH =
extend ... with

class
channel

ctt QU, ttc VAL, stt UP, tts RES
value

system arch: TT → Unit, system arch(tt) ≡
client arch() ‖ staff arch() ‖ timtbl arch(tt)

client arch: Unit → out ctt in ttc Unit
client arch() ≡ let q:Query in ctt ! Mq(q) ; ttc ? ; client arch() end

staff arch: Unit → out stt in tts Unit
staff arch() ≡ let u:Update in stt ! Mu(u) ; tts ? ; staff arch() end

timtbl arch: TT → in ctt,stt out ttc,tts Unit
timtbl arch(tt) ≡

(let q = ctt ? in ttc ! q(tt) end timtbl arch(tt))
��	

(let u = stt ? in let (tt′,r) = u(tt) in tts ! r ; timtbl arch(tt′) end end)

end

Notice how we have changed the non–deterministic behaviour from being internal
�� for timtbl 5 to becoming external ���� for timtbl arch. One needs to argue some
notion of correctness of this.

An interface requirements was not stated above, so we do it here, namely
there shall be a number of separate client arch 1 processes, each having its iden-
tity as a constant parameter. Figure 12 illustrates the idea.

ctt[1]
ttc[1]

stt

tts

Architecture: A Time−table with Clients and Sta

Client

Client

Client

Timetable Staff

Fig. 1.

2 Figures 1–5 also illustrates the use of a diagrammatic language. It is very closely
related to the CSP subset of RSL. Other than showing both scheme ARCH and
Figure 1 we shall not “explain” this diagrammatic language — but it appears to be
straightforward. We shall hence ‘reason’ over constructs (complete diagrams) of this
diagrammatic language.

Towards Posit & Prove Calculi 73

The system arch 1 now consists of n client arch 1 parallel processes in par-
allel with a basically unchanged staff arch 1 process and a slightly modified
timtbl arch 1 process. The slightly modified timtbl arch 1 process expresses will-
ingness to input from any client arch 1 process, in an external non–deterministic
manner. Etcetera:

value
n:Nat

type
CIdx = {| 1..n |}

channel
ctt[1..CIdx] QU, ttc[1..CIdx] VAL, stt UP, tts RES

value
system arch 1: TT → Unit
system arch 1(tt) ≡‖{ client arch 1(i) | i:CIdx } ‖ staff arch 1() ‖ timtbl arch 1(tt)

client arch 1: CIdx → out ctt in ttc Unit
client arch 1(i) ≡ let q:Query in ctt[i] ! Mq(q) ; ttc[i] ? ; client arch 1(i) end

staff arch 1: Unit → out stt in tts Unit
staff arch 1() ≡ let u:Update in stt ! Mu(u) ; tts ? ; staff arch 1() end

timtbl arch 1: TT → in { ctt[i],stt[i] i:CIdx } out ttc,tts Unit
timtbl arch 1(tt) ≡

��	
 { let q = ctt[i] ? in ttc[i] ! q(tt) end timtbl (tt) | i:CIdx }
��	
 (let u = stt ? in let (tt′,r) = u(tt) in tts ! r ; timtbl arch 1(tt′) end end)

3.2 Component Design

By a component design (as action) we understand a set of transformations,
from a software architecture design, that implements the remaining interface
requirements and major machine requirements, to the component design (as
document). Whereas a software architecture design may have been expressed in
terms of rather comprehensive processes, component design, as the name inti-
mates, seeks to further decompose the architecture design into more manageable
parts. Object modularisation (ie., module design) goes hand-in-hand with com-
ponent design, but takes a more fine-grained approach. We are not yet ready, in
our research, to relate these “posit & prove transformations” to the refinement
calculus of for example Ralph Johan Back [21]. There are (at least) points: First
there are too many issues predicating which refinements to choose. These issues
represent the judicious prioritisation between a multitude of domain, interface
and machine requirements: Which to consider and implement before others ?
Secondly the “refinement steps” illustrated next seem rather large. Hence for a
proper refinement calculus to be proposed we need express the “large” steps, it
seems, in terms of sequences of “smaller” steps. We are far from ready to embark
on such an endeavour.

74 Dines Bjørner

This is why we have used the phrase: Posit & Prove Calculus in the title of
this communication.

One may say, colloquially speaking, that where component design decom-
poses a software design (and as guided by (remaining interface and by) machine
requirements) into successively smaller parts, module design composes these
parts from initially smallest modules. The former is, so-to-speak “top–down”,
where the latter seems more “bottom–up”3.

At this stage we will just sketch the introduction of new processes that handle
the machine requirements of accessability, availability and adaptability. But, as
it turns out, it is convenient to first tackle an issue of many users versus just one
interface.

Multiplexing: Instead of designing a time table subsystem that must cater to
n + 1 users we design one that caters to just two users. Hence we must provide
a multiplexor, a component which provides for a more–or–less generic interface
between, “to one side” n identical (or at least similar) processes, and, “to the
other side” one process.

Figure 2 illustrates the idea.

...

...

...
...

client

staff

client

client

client

mpx

c_m[i]
m_c[i]

m_tt

tt_m s_tt

tt_s

Program Organisation with Clients, Multiplexor, Staff, Timetable, and Channels

timetable

component

application

Fig. 2.

What we have done is to factor out the external non–deterministic choice
amongst client process interactions, as documented in timtbl 4 by the distributed
choice:

3 But we normally refrain from these “figurations” as they depend on how one visu-
alises matters: As a root of further roots, or as a tree of branches.

Towards Posit & Prove Calculi 75

���� { let q = ctt[i] ? in ... end | i:CIdx }
from that function into the mpx function. The external non–deterministic choice
(remaining) among the one “bundled” client input and the staff will, see next,
below, later be “moved” to an arbiter function.

We call such a component a multiplexor and leave its definition to the reader.

Accessability: To “divide & conquer” between requests for interaction with
the time table process from either the (“bundled”) clients (via the multiplexor)
or the staff, we insert an arbiter component.

Figure 3 illustrates the idea.

...

...

...
...

client

arbiter staff

client

client

client

mpx

c_m[i]
m_c[i]

m_a

a_m

a_s

a_a

a_tt tt_a

timetable

component

application

Program Organisation with Clients, Multiplexor, Arbiter, Staff, Timetable, and Channels

Fig. 3.

Its purpose is to create some illusion of fairness in handling non–determinism.
If the arbiter ensures to “listen fairly” to the (“bundled”) client and the staff
“sides”, for example for every f times it handles requests from the client side to
then switch to handling one from the staff side, then perhaps some such fairness
is achieved. The determination of f , or, for that matter, the arbiter algorithm, is
subject to statistical knowledge about the traffic from either side and the service
times for respective updates.

This issue of requiring ‘fairness’ also “spills” over to the multiplexor function.
Letting the arbiter also handle urgency of requests is natural. It would, in

our view, be a further ‘accessability’ requirements.
We leave further specification to the reader.

Availability: The only component (ie., process) that may give rise to “loss of
availability” is the time table process. Computing, for example the “at most n

76 Dines Bjørner

change of flight” connections may take several orders of magnitude more time
than to compute any other query or update. The idea is therefore to time–
share the time table process, and, as a means of exploiting this time–sharing, to
redesign (also) the multiplexor component and add a queue component.

Figure 4 illustrates the idea.

...

...

...
...

client

staff

client

client

client

mpx

c_m[i]
m_c[i]

a_s

a_tt tt_a

queue

m_q

q_m

q_a

a_q s_a

arbiter

Program Organisation with Clients, Multiplexor, Queue, Arbiter, Staff, time−shared Timetable, and Channels

time−shared

timetable

component

application

Fig. 4.

The multiplexor is now to accept successive requests for interaction from
multiple clients (or even the same client). And the queueing component is to
queue outstanding requests that are, at the same time sent to the time table
process. It may respond to previously received requests, “out–of–order”. The
queueing component will track “back to which clients” request–responses shall
be returned.

We leave further specification to the reader.

Adaptability: We have seen how the software design has evolved, on paper,
in steps of component design development, into successively more components.
Each of these, including those of the client, time table and staff processes may
need be replaced. The client and staff components in response to new terminal
(ie., PC) equipment, and the time table process in response, say to either new
database management systems or new disks, or “both and all” !

If each of these components were developed with an intimate knowledge of
(and hence dependency on) the special interfaces that these components may
offer, then we may find that adaptability is being compromised. Hence we may
decide to insert between neighbouring components so–called connectors. These
are in fact motivated last, as in this “example sample development”, but are suit-
ably abstractly developed first. They “set standards” for exchange of information

Towards Posit & Prove Calculi 77

and control between components. That is, they define abstract, simple protocols.
Once all components have been “inserted” one may refine the protocols to suit
these compponents.

Figure 5 illustrates the idea.

...

...

...
...

client

arbiter staff

client

client

client

mpx queue

mocq comq

qocmcoqm

qoca

coaq

coqa

aocq socacosa

aocs

aoctt

coas

cotta

ttocattoca

cokm[i], komc[i]

kocm[i], mokc[i]

Program Organisation with Clients, Multiplexor, Queue, Arbiter, Staff, Timetable, Connectors and Channels

timeshared

timetable

connector

connector

application

component

Fig. 5.

We leave further specification to the reader.

Architecture Vs. ‘Componentry’: We refer to work by David Garlan and
his colleagues, work that relate very specifically to the above [3, 1, 13, 4, 22, 2, 12,
5]. What Garlan et al. call software architecture is not what we call software
architecture. Ours is more abstract. Theirs is more at the level of interfacing
components, that is of the connectors mentioned above under Adaptability. The
CMU (ie., the Garlan et al.) work is much appreciated.

3.3 Towards “Posit & Prove Calculi” for Architecture and
Component Structure Derivation

We have sketched a “posit & prove calculus” for deriving component structures.
In each step of derivation the “operations” of the “component structure calculus”
takes two “arguments”. One “argument” is a specific machine (or interface)
requirement. The other “argument” is a component structure (or, for the first
step, the software architecture). The result of applying the “operation” is a new
component structure.

We have still to develop: Identify, research and provide principles and more
detailed techniques for when and how to deploy which machine (or interface) re-
qirements to which component structures. To wit: “Should one apply the ‘avail-

78 Dines Bjørner

ability’ requirements before or after the ‘accessability’ requirements, etc. It is not
yet clear whether the adaptability (and other maintenance “ility”) requirements
should be discharged, before, in step with, or after the discharge of each of the
dependability “ilities”. Etcetera.

We have not covered in this paper any “posit & prove calculus” aspects of
deriving architectures from domain requirements.

4 Conclusion

4.1 Summary

We have completed a “tour de force” of example developments. Stepwise ‘refine-
ments’ of domain descriptions, here for time tables, and phasewise transforma-
tion of domain descriptions into requirements prescriptions and the latter into
stages of software designs: Architecture and component designs. It is soon time
to conclude and to review our claims.

4.2 Validation and Verification

We have presented aspects of an almost “complete” chain of phases, stages and
steps of development, from domains via requirements and software architecture
to program organsation in terms of components and connectors. In all of this
we have skirted the issues of validation and verification: Validating whether
we are developing the right “product”, and veryfying whether we develop that
“product” right.

An issue that ought be mentioned, in passing, is that of some requirements,
typically machine requirements, only being implementable in an approximate
manner. One may, for example, have to check with runtime behaviour as to the
approximation with which such machine requirements have been implemented
[11].

Obviously more than 30 years of program correctness have not gone behind
our back: With formalisations of many, if not most, phases, stages and steps
it is now easier to state lemmas and theorems of properties and correctness.
Properties of individual descriptions, prescriptions and specifications; correctness
of one phase of development wrt. to the previous phase, respectively the same
for stages and steps.

We have shown how to develop software “light”. That is: Formally specify-
ing phases, stages and steps, and, in a few, crucial cases, formulating lemmas
and theorems (concerning “this and that”). We have found that developing soft-
ware “light” seems to capture “most” development mistakes. In any case it is
appropriate to end this, the ‘triptych’ section with the following:

Let D, R and S stand for related Domain descriptions, Requirements pre-
scriptions, repectively Software specifications. Correctnes of the Software with
respect to its Requirements can then be expressed as:

D,S |= R

Towards Posit & Prove Calculi 79

which, in words, imply: Proofs of correctness of S with respect to R typically
require assumptions about the domain D.

What could those assumptions be ? Are they not already part of the require-
ments ? To the latter the answer could be no, in which case it seems that we may
have projected those assumptions “away” ! And then these assumptions could be
expressed, in the domain descriptions, in the form, for example, of constrained
human or support technology behaviours, or of management behaviours, or they
could be in the form of script languages in which to express rules & regulations,
or they may be properties of the Domain that can be proved in D.

In [23] van Lamsweerde complements the above approximately as follows (our
interpretation4):

Let A stand for a notion of ‘Accuracy’: Non–functional goals requiring that
the state of the input and output software objects accurately reflect the state
of the corresponding monitored, respectively controlled objects they represent,
and let G stand for the set of goals:

A,S |= R with: A,S 	|= false and D,R |= G with: D,R 	|= false

We find this a worthwhile “twist”, and expect more work done to fully under-
stand and exploit the above.

4.3 Proper Identification of Components

“Varieties of requirements prescriptions lead to more stable identification of
proper components”: We hope that the development of components and con-
nectors for the, albeit simple minded time table system of Section 3’s subsection
on ‘Component and Object Design’, “visualised” in Figures 2–5, can illustrate
this claim: Each of the components — other than the client, time table and staff
components, are components that relate primarily to machine (or, not shown,
interface) requirements. Machine requirements are usually almost identical from
application to application, and hence their components are “usually” reusable.
But also the domain requirements components of clients, staff and time–shared
time table, “cleaned” for all concerns of interface and machinerequirements, now
appear in a form that is easier to parameterise and thus make reusable.

4.4 A Programme of Current Research

We briefly recall that there seems to be interesting research issues in better un-
derstanding and providing methodological support for the derivation of domain
requirements and the derivation of component structures.

4 As there are unexplained occurrence of D in van Lamsweerde formula: He addition-
ally uses As where we use D

80 Dines Bjørner

4.5 Acknowledgements

The author is tremendously grateful for a very careful review of a referee. I wish
to state that many of the very reasonable concerns of the referee are indeed very
valid concerns also of mine. Space, however, did not permit me, in a paper as
“far sweeping” as this has become, to address each and all of these concerns.

4.6 A Caveat

This paper represents work in progress. It is based on presentations of topics for
discussion at the IFIP Working Group 2.3. Such presentations are necessarily of
“work in progress” — with the aim of the presentation being to solicit comments.
As just said above, the anonymous referee has just done that. Thanks.

References

1. G. Abowd, R. Allen, and D. Garlan. Using style to understand descriptions of soft-
ware architecture. SIGSOFT Software Engineering Notes, 18(5):9–20, December
1993.

2. G.D. Abowd, R. Allen, and D. Garlan. Formalizing style to understand descrip-
tions of software architecture. ACM Transactions on Software Engineering and
Methodology, 4(4):319–364, Oct 1995.

3. R. Allen and D. Garlan. A formal approach to software architectures. In
IFIP Transactions A (Computer Science and Technology); IFIP Wordl Congress;
Madrid, Spain, volume vol.A-12, pages 134–141, Amsterdam, Netherlands, 1992.
IFIP, North Holland.

4. R. Allen and D. Garlan. Formalizing architectural connection. In 16th International
Conference on Software Engineering (Cat. No.94CH3409-0); Sorrento, Italy, pages
71–80, Los Alamitos, CA, USA, 1994. IEEE Comput. Soc. Press.

5. R. Allen and D. Garlan. A case study in architectural modeling: the AEGIS system.
In 8th International Workshop on Software Specification and Design; Schloss Velen,
Germany, pages 6–15, Los Alamitos, CA, USA, 1996. IEEE Comput. Soc. Press.

6. Dines Bjørner. Domain Engineering: A “Radical Innovation” for Systems and
Software Engineering ? In Verification: Theory and Practice, volume 2772 of Lec-
ture Notes in Computer Science, page 54 pages, Heidelberg, October 7–11 2003.
Springer–Verlag. The Zohar Manna International Conference, Taormina, Sicily 29
June – 4 July 2003.

7. Dines Bjørner. The SE Book: Principles and Techniques of Software Engineering,
volume I: Abstraction & Modelling (750 pages), II: Descriptions and Domains (est.:
500 pages), III: Requirements, Software Design and Management (est. 450 pages).
[Publisher currently (March 2003) being negotiated], I: Fall 2003, II: Spring 2004,
III: Summer/Fall 2004 2003–2004.

8. A. Dardenne, S. Fikas, and Axel van Lamsweerde. Goal–Directed Concept Ac-
quisition in Requirements Elicitation. In Proc. IWSSD–6, 6th Intl. Workshop on
Software Specification and Design, pages 14–21, Como, Italy, 1991. IEEE Computer
Society Press.

9. A. Dardenne, Axel van Lamsweerde, and S. Fikas. Goal–Directed Requirements
Acquisition. Science of Computer Programming, 20:3–50, 1993.

Towards Posit & Prove Calculi 81

10. R. Darimont and Axel van Lamsweerde. Formal Refinement Patterns for Goal–
Driven Requirements Elaboration. In Proc. FSE’4, Fourth ACM SIGSOFT Symp.
on the Foundations of Software Enginering, pages 179–190. ACM, October 1996.

11. M. Feather, S. Fikas, Axel van Lamsweerde, and C. Ponsard. Reconciling System
Requirements and Runtime Behaviours. In Proc. IWSSD’98, 9th Intl. Workshop
on Software Specification and Design, Isobe, Japan, April 1998. IEEE Computer
Society Press.

12. D. Garlan. Formal approaches to software architecture. In Studies of Software
Design. ICSE ‘93 Workshop. Selected Papers, pages 64–76, Berlin, Germany, 1996.
Springer-Verlag.

13. D. Garlan and M. Shaw. An introduction to software architecture, pages 1–39.
World Scientific, Singapore, 1993.

14. Joseph A. Goguen and M. Girotka, editors. Requirements Engineering: Social and
Technical Issues. Academic Press, 1994.

15. Joseph A. Goguen and C. Linde. Techniques for Requirements Elicitation. In Proc.
RE’93, First IEEE Symposium on Requirements Engineering, pages 152–164, San
Diego, Calif., USA, 1993. IEEE Computer Society Press.

16. S. J. Greenspan, John Mylopoulos, and A. Borgida. A Requirements Modelling
Language. Information Systems, 11(1):9–23, 1986. (About RML).

17. A. Hunter and B. Nuseibeh. Managing Inconsistent Specifications: Reasoning,
Analysis and Action. ACM Transactions on Software Engineering and Methodol-
ogy, 7(4):335–367, October 1998.

18. John Mylopoulos, L. Chung, and B. Nixon. Representing and Using Non–
Functional Requirements: A Process–oriented Approach. IEEE Trans. on Software
Engineering, 18(6):483–497, June 1992.

19. John Mylopoulos, L. Chung, and E. Yu. From Object–Oriented to Goal–Oriented
Requirements Analysis. CACM: Communications of the ACM, 42(1):31–37, Jan-
uary 1999.

20. B. Nuseibeh, J. Kramer, and A. Finkelstein. A Framework for Expressing the Re-
lationships between Multiple Views in Requirements Specifications. IEEE Trans-
actions on Software Engineering, 20(10):760–773, October 1994.

21. Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Graduate Texts in Computer Science. Springer-Verlag, Heidelberg,
Germany, 1998.

22. C. Shekaran, D. Garlan, and et al. The role of software architecture in requirements
engineering. In First International Conference on Requirements Engineering (Cat.
No.94TH0613-0); Colorado Springs, CO, USA, pages 239–245, Los Alamitos, CA,
USA, 1994. IEEE Comput. Soc. Press.

23. Axel van Lamsweerde. Requirements Engineering in the Year 00: A Research Per-
spective. In Proceedings 22nd International Conference on Software Engineering,
ICSE’2000. IEEE Computer Society Press, 2000.

24. Axel van Lamsweerde, R. Darimont, and E. Letier. Managing Conflicts in Goal-
–Driven Requirements Engineering. IEEE Transaction on Software Engineering,
1998. Special Issue on Inconsistency Management in Software Development.

25. Axel van Lamsweerde and E. Letier. Integrating Obstacles in Goal–Driven Require-
ments Engineering. In Proc. ICSE–98: 20th International Conference on Software
Enginereering, Kyoto, Japan, April 1998. IEEE Computer Society Press.

26. Axel van Lamsweerde and L. Willemet. Inferring Declarative Requirements Spec-
ification from Operational Scenarios. IEEE Transaction on Software Engineering,
pages 1089–1114, 1998. Special Issue on Scenario Management.

82 Dines Bjørner

27. Axel van Lamsweerde and L. Willemet. Handling Obstacles in Goal–Driven Re-
quirements Engineering. IEEE Transaction on Software Engineering, 2000. Special
Issue on Exception Handling.

28. E. Yu and John Mylopoulos. Understanding ”why” in Software Process Modelling,
Analysis and Design. In Proc. 16th ICSE: Intl. Conf. on Software Engineering,
Sorrento, Italy, 1994. IEEE Press.

29. Pamela Zave. Classification of Research Efforts in Requirements Engineering. ACM
Computing Surveys, 29(4):315–321, 1997.

30. Pamela Zave and Michael A. Jackson. Techniques for partial specification and spec-
ification of switching systems. In S. Prehn and W.J. Toetenel, editors, VDM’91:
Formal Software Development Methods, volume 551 of LNCS, pages 511–525.
Springer-Verlag, 1991.

31. Pamela Zave and Michael A. Jackson. Requirements for telecommunications ser-
vices: an attack on complexity. In Proceedings of the Third IEEE International
Symposium on Requirements Engineering (Cat. No.97TB100086), pages 106–117.
IEEE Comput. Soc. Press, 1997.

Distributed Concurrent Object-Oriented

Software�

Manfred Broy

Institut für Informatik
Technische Universität München

D-80290 München, Germany
broy@in.tum.de

Abstract. In software engineering object-oriented development is to-
day the most popular programming and design approach. However, in
contrast to Dahl’s original ideas object-orientation of today does not
manage to address the needs of today’s software construction in such a
radical and fundamental way as needed in highly distributed interoperat-
ing software applications. In the following, we extend object-orientation
to asynchrony and distribution for engineering large distributed software
systems. We show how object-oriented techniques can be extended to a
programming methodology and software engineering for concurrent dis-
tributed systems. This is strictly in the spirit of Ole-Johan Dahl.

1 Introduction

Object-orientation was fundamentally invented by Ole-Johan Dahl and Kristen
Nygaard by their design of the programming language Simula 67 (see [Sim-
ula 67]). Before that, most programming languages were mainly influenced ei-
ther by the commands of machine languages or by the logical foundations of
computability such as λ-calculus. Only gradually programming languages were
gaining step by step more abstract views of data and control structures. How-
ever, also these languages were mainly devoted to concepts of programming in
the small and sequential, noninteractive programs. Typically, I/O, for instance,
was considered a minor issue and therefore not part of the programming language
definition for instance in ALGOL.

Simula 67 introduced radically new ideas by its concepts of co-routines and
classes. Such an approach to programming and software development was badly
needed to master the requirements of the development of large complex software
systems, distributed over many computers connected by high-speed networks
and thus operating concurrently and interacting asynchronously. These issues
are addressed by the idea of distributed object-orientation as formulated for the
first time in Simula 67.

Of course, in Simula 67 these ideas were realized by allowing objects to be
co-routines, which was the best way at that time to imitate concurrent processes.
� Dedicated to Prof. Ole-Johan Dahl

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 83–95, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

84 Manfred Broy

Once you think of the objects as being independent of each other, concurrency
among the actions performed by these objects is natural and almost inevitable.
In today’s world the obvious way would be to let (active) objects be concurrent
processes, and one would obtain a distributed system by a set of objects running
in parallel, interacting by remote method calls. Thus, the concepts of threads of
Java (sharing the same object attributes) is not following the original OO ideas.

In the last three decades of software engineering object-orientation developed
into the most popular programming and design approach. Object-orientation, it
is claimed, offers better structuring features and more flexible concepts than
conventional imperative, functional, or logical programming styles — especially
for structuring programs as well as development and programming in the large.

Software development techniques and methods of today have to cope with a
number of difficulties such as

– the growing complexity and size of software applications,
– interoperability demands,
– applications that are executed on large distributed networks,
– the long term perspective of legacy software systems being in operation over

30 years or more in a still quickly developing technology with rapidly chang-
ing requirements.

Therefore development in the large, management of change, and interoper-
ability are key issues in software development and programming.

Unfortunately, object-orientation as mostly applied in practice today does
not manage to address these needs of software construction of today in such
a radical and fundamental way as intended by Ole-Johan Dahl. In many re-
spects, object-orientation stays within the conventional approach to program-
ming, mainly influenced by the sequential stand-alone machines of the early
sixties.

One might object to those claims by saying that, for instance, Java as a recent
object-orientated programming language is a modern programming language
that addresses all the needs of today. However, being certainly an advantage over
some of the programming languages available so far, Java is in many respects
a rather conventional language. Moreover, the success of Java is not only due
to its object-orientation. It is also due to its concept of portability and code
mobility guaranteed by the idea of byte code, which is quite independent of
object-orientation.

In the following we concentrate our discussion onto the following aspects of
software development:

(1) interface abstraction and interaction
(2) concurrency and distribution

In particular, we discuss which interface abstractions are possible for object-
oriented programs and how that relates to concurrency and distribution.

Why is the issue of distribution and concurrency so important? If we assume
that a software is executed on a large network of computers where response

Distributed Concurrent Object-Oriented Software 85

times and transmission time is unpredictable a sequential execution model is
not appropriate.

2 Object-Orientation in Practice Today —
Its Characteristics

Let us begin our discussion by shortly rephrasing the main characteristics of
object-orientation. Object-orientation is based on the following major concepts
and principles:

– classes with attributes and methods as the major units for describing and
structuring programs,

– access interfaces in terms of methods of objects and their attributes described
by classes,

– creating objects as instances of classes,
– encapsulation of data and state represented by programming variables called

attributes in classes and objects,
– persistence, meaning the durable storage of local attribute values within

objects between method invocations,
– data abstraction and implementation hiding,
– identifying and addressing objects by object identifiers,
– inheritance and polymorphism.

One of the main claims of object-orientation is to provide the capabilities
and potentials to support the following recognized design principles

– modularity of interfaces by state encapsulation,
– data abstraction,
– information hiding,
– dynamics and flexibility by object instantiation,
– reusability by inheritance and aggregation,
– well-specified interfaces.

Object-orientation is advocated both as a programming paradigm supported
by a number of object-oriented programming languages and as a software de-
velopment method supporting the entire spectrum of analysis, design, and im-
plementation. In particular, in network applications such as the Internet or
client/server systems object-orientation is claimed to be the better program-
ming technique, superior to other programming styles.

In fact, object-oriented programming languages dominate these application
areas. Java, for instance, provides the idea of portability and code mobility as a
decisive feature in Internet applications.

In spite of the claims and the popularity of object-orientation in practice,
there are severe shortcomings in object-orientation as it is used in practice today.
These are in particular the limitations of object-oriented programming to:

86 Manfred Broy

– intrinsically sequential execution models following the paradigm of sequential
control flow of procedural programs,

– code inheritance with a danger of violating the principle of information hid-
ing and data abstraction,

– missing interface specification techniques for classes,
– missing concept of composition of classes into composite classes,
– instantiation of objects via references,
– missing concept of a component as a basis for software architectures.

Thus object-oriented programming languages of today miss some of the essen-
tial points of Simula 67. In fact, recent object-oriented programming languages
offer a number of extensions to classical object-orientation to overcome some of
these shortcomings. For instance, the syntactic interfaces of classes provide a
useful concept for interface description. However, for most object-oriented lan-
guages abstract semantic interface description concepts do not exist. They only
offer syntactic notions of interfaces. In fact, experiments and experiences with
object-oriented frameworks show crucially the weakness of current practice of
object-orientation in that respect.

The object-oriented paradigm as it is found in many object-oriented pro-
gramming languages of today is inherently sequential. The reason lies in the
interaction mechanism between objects, called method invocations, which are
nothing but procedure calls. This way object-oriented programs have to be seen
as operating on a large state space for which — according to encapsulation —
only special scopes are introduced such that the access to attributes is only
possible inside of the bodies of the respective classes. The effect of a method
invocation including all the subinvocations of methods during the execution of
the call has to be described as one state change on this global state space. This
concept makes the execution model inherently sequential since all calls have to
be seen as atomic actions.

The introduction of parallelism and concurrency brings in all the classical
difficulties and complexities of shared memory parallelism such as the question
which actions are indivisible, how to co-ordinate and synchronize and how to
express waiting. The classical ways to introduce concurrency into state based
systems do not lead to the high level abstract models of the real world as advo-
cated and claimed by the basic philosophy of object-orientation.

However, most applications of today run in a highly concurrent distributed
environment in networks of computers. Therefore, object-oriented programs have
to interact and react to many concurrent activities. As a result, we want to model
explicitly concurrent activities in object-oriented programs.

In the original work on Simula, it was clearly stated that an object would in
general have its own activity, as well as data and procedure (methods). Objects
with activity were referred to as “independent processes”, and objects without
activity were called passive. “Simula I” used the keyword activity (see [Sim-
ula 67]).

Distributed Concurrent Object-Oriented Software 87

3 Concurrent Open Systems — Their Characteristics

Concurrent distributed systems show a number of characteristics that make them
complex, and at the same time, flexible. These characteristics include the fol-
lowing notions:

– interaction
– distribution and structure
– concurrency

Nonconcurrent, noninteractive programs — sometimes called transforma-
tional programs — support powerful abstractions. They can be seen as functions,
in functional programming between arbitrary types, in state-based programs as
functions between states. In concurrent systems, interaction means that a sys-
tem does not get all its input initially at the beginning of the computation and
also that it does not produce all its output only at the end of a computation.
Input is given step by step to the system, output is generated in response to
portions of the input step by step. In fact, some of the input may depend on the
output produced so far if a system runs in a feedback loop. Therefore to model
the behavior of an interactive system we have to model it as a state transition
system, or as a function or, relation on streams.

In the presence of concurrency, it is crucial to fix the granularity of a system
because this determines for the state transition system at which intermediate
state some interaction can take place such that input is accepted and output is
produced. This is closely related to the issue of abstraction. In a noninteractive
program we may abstract fully from the computation meaning the intermediate
states generated in the course of the computation. In a concurrent, interactive
program we have to represent all the intermediate states in which interaction can
take place and this way may chance the course of the computation. Therefore
the granularity of the state transition is essential. It determines which states are
relevant for the interaction.

4 Object-Oriented Programming and Concurrency

In this section we argue about the question whether object-oriented programs
differ from concurrent interactive programs or not. We argue that object-oriented
programs show all the characteristics of interactive programs, but do not address
concurrency properly. In that respect we conclude that although object-oriented
programs do not support better abstractions than interactive concurrent pro-
grams they do not exploit all possibilities of concurrency, hierarchy, asynchronous
communication, and composition.

We see this as severe shortcomings of today’s practice object-oriented pro-
gramming. In particular, we argue that according to these deficiencies object-
orientation fails to address some of the requirements for a programming language
and technique needed for writing large distributed software systems running on
networks with long communication delays.

88 Manfred Broy

4.1 Classes as State Machine Descriptions

A class manifests the basic idea of a module in object-orientation. Classes are
the fundamental building blocks in object-oriented programs. In some sense they
are the only structuring means in object-orientation. They have to play the role
of components although they are too fine grained for that.

For an interface specification we have to be able to describe the behavior of
a component in an interface view. This means that we describe the observable
behavior of a class. This is a description that identifies under what circumstances
two different classes can be used in the same environment without any observable
difference in their behavior. Such a notion is mandatory for a top down as well
as for a bottom up specification and design approach.

For classes and objects, however, a simple description of their observable be-
havior is surprisingly complicated. The reason lies in the interaction mechanism
between objects, called method invocations, which are, of course, nothing but
procedure calls. Method invocations may change the state, given by values of
the attributes of objects. They may also result in further invocations of methods
and, therefore, change not only the state of the object addressed by the method
invocation but, in addition, the state of other objects. This way method invoca-
tions in object-oriented programs have to be seen as operations on a large state
space — the global program state. In contrast to the principle of state encap-
sulation, by object-orientation only special scopes are introduced such that the
access to attributes is only possible inside of the bodies of the respective classes
or name space. The effect of a method invocation including all the subinvoca-
tions of methods during the execution of the call has to be described as one state
change on the global state space.

The specification of the observable behavior of classes and objects runs into
all the difficulties of the description of distributed interactive systems — ex-
cept issues of concurrency and action granularity (see below). In fact, object-
orientation introduces by its concept of a class nearly everything needed and
typical for concurrent interactive program execution, however, without being
brave enough to carry out the final step into concurrency.

Ole-Johan Dahl’s work on abstract specification of concurrent objects by
means of histories, has to be mentioned as a possible solution towards “missing
interface techniques for classes”, and gives an abstract “interface view” as there
is no other abstract state than that captured by the history. As the abstract state
at any given time is reflected by a finite history, Ole-Johan Dahl was building
up specification techniques around finite traces, and a central idea was to use
right-append as a generator (in contrast to CSP) in order to describe new actions
in terms of the history (thereby avoiding recursive definition of processes). For
reasoning about calls that trigger other calls, Ole-Johan Dahl would separate
initiation of a method call from its termination into two separate events. The
semantics and rules for parallel composition in this setting has been described
and pursued by several groups. Ole-Johan Dahl himself was mostly concerned
with safety reasoning, using the concept of quiescence to deal with liveness, but
others have done more general work towards liveness.

Distributed Concurrent Object-Oriented Software 89

4.2 Interface Views onto Objects

Basically, there are two interface abstractions for object-oriented programs:

(1) Closed view : each method call is seen as one indivisible step defining a state
transition for the object and all the objects changed by submethod calls.

(2) Open view : each method call consists of a sequence of steps, consisting of
submethod calls and the state changes between the submethod calls.

In the presence of concurrency and distribution the closed view is not appro-
priate.

The early “Dahl School” on reasoning about OO systems builds on the idea
of limiting direct access to attributes of an object from outside, either disallowing
all remote variable access or allowing access to a some (seen as an abbreviation
for implicit read and write operations). Keywords were also added to the Simula
standard in order to control this. This means that one may give local invariants in
a class and prove that a class invariant is established and maintained, by looking
at the text of the class itself (and super-classes). When subclassing is restricted
so that super-invariants are respected, reasoning about concurrent objects may
be done without looking at the global state space: Hoare reasoning can be done
locally in each class (implementation), and reasoning about a (sub)system of
concurrent objects can be done by means of sets of possible traces (consisting
of events reflecting the methods calls up to certain point in time). In particular,
for concurrent objects there is no need for a reasoning about the global state.

4.3 Interaction Patterns

A typical property of most approaches to object-oriented programming is the
use of methods (like procedures in conventional programming languages) with
their method call and method return pattern of interaction. As long as there
is no concurrency this pattern is sufficient, and at the same time simple and
well-structured. Fig. 1 gives an idea of a simple method call hierarchy.

We get a slightly more complex call cascade if a call leads to a call of a
method of the initially calling object.

In interactions by method calls, every call is eventually preceded by a return
(we exclude for the moment the possibility of nontermination of method calls).
In the presence of concurrency and distribution of the computing entities of net-
works with larger communication delays we immediately run into troubles. Since
the computing entities may run concurrently and communication and calculation
may take some time, a scheme as in Fig. 1 may no longer be acceptable. Keeping
the idea of method calls we have to work differently. Fig. 3 shows method calls
that mimic asynchronous communications.

But Fig. 3 is no longer a pattern of sequential method calls. In sequential
method calls exactly one entity is active at a time and control is passed by
the method calls and the return messages. Now several components are active
concurrently. This leads to the question, what it means if an object, that is active

90 Manfred Broy

Fig. 1. Typical Method Call Cascade

Fig. 2. Method call cascade with recursive subcalls

Fig. 3. Method call cascade to mimic asynchronous interaction

Distributed Concurrent Object-Oriented Software 91

receives another method call. The sequential execution model for object-oriented
systems is simple and clear. Each computing entity, and each object, is inactive,
until a method call activates it. Then it calculates until it either returns from
the method call or issues a method call itself, named a subcall. Then it stays
inactive until it is called again or the submethod call returns.

In the presence of concurrency this simple idea is no longer sufficient, because
a method call may arrive while an object is active. Also in Dahl’s later work
on specification of OO-systems, it is suggested that objects may be concurrent
processes, interacting by method calls (with protected variables), see for instance
the lift example [Dahl, Owe 91].

This leads to the question when and how an object accepts the method call.
Basically, there are three possible answers:

(1) interrupt: the object immediately stops its current calculation and works
on the incoming method calls;

(2) the method call is accepted as soon as the current activity is finished, for
instance, if by the current activity a submethod call is issued;

(3) the method call is accepted only if the currently executed method call is
completely finished.

We do not consider explicit concurrency within an object, i.e. the execution
of two threads in an object simultaneously. Clearly (1) leads to an execution
model where any concept of interface abstraction breaks down. Badly enough,
solution (1) is not far from the concept of concurrent threads in Java where the
interrupt can be explicitly controlled. Solution (3) is very coarse grain and forces
to work with rather fine grain method calls. Solution (2) leads to several pending
threads in objects and thus to a rather scattered execution model.

In concurrent systems we may also be interested in other patterns of inter-
action such as those given in Figs. 4 and 5.

Fig. 4. Communication cascade for a pipeline

Figure 4 shows the fundamental interaction pattern of pipeline communication.

92 Manfred Broy

Fig. 5. Coordination by message exchange

There are two fundamental paradigms in programming: stacks and queues. Stacks
are the fundamental idea of sequential programming while queues are the fun-
damental concept of distributed concurrent programming. Method calls are es-
sentially based on the stack paradigm, which is not appropriate for distributed
concurrent systems such as the Internet. There we need a concept based on the
queue paradigm (see [Dahl, Owe 91]).

4.4 Software Architectures and Component Concept

The dominant concept in object-orientation is that of a class. From a method-
ological point of view the notion of a module or a component has to fulfill certain
principles in the development of large software systems such as

– hierarchical composition/decomposition,
– interface specification,
– appropriate scaling up.

All these three requirements are not sufficiently well addressed and satisfied
by the class concept in today’s object-oriented programming languages.

Class Composition In object-orientation there is no explicit operator to com-
pose several classes into another, composite class. There is no common concept of
class composition. Note that the idea of multiple inheritance may look similar to
class composition but it is, in fact, a completely different concept. Consequently
there is no way in object-orientation to form larger subsystems structured in
appropriate subunits. This is a serious flaw of object-orientation since a sup-
port for a hierarchical structuring of systems is badly needed for a programming
language for large scale software systems.

Distributed Concurrent Object-Oriented Software 93

In fact, it is rather surprising that the concept of class composition does not
exist explicitly in object-orientation. It can and should be introduced into object-
orientation without much overhead. The idea of an assembly of new classes by
instantiations of old classes does not lead to a transparent structure.

Component Concept and Interfaces One of the severe drawbacks of object-
orientation is a missing notion of component complementary to that of a class.
Classes are certainly a too small, too fine grained concept. They rather are imple-
mentation units (such as modules) and therefore not appropriate for structuring
large scale systems.

In fact, component notions are a prerequisite for software architectures. Com-
ponents are larger grain units that should be hierarchically composable (again)
from several components.

Software Architecture For the design of large software systems the notion of
a software architecture is decisive. A software architecture is the structuring of a
software system into components and their principles and forms of co-operation
and interaction.

For small software systems, classes may be appropriate to form the structure
of the software architecture. For large systems, however, in object-orientation we
find hundreds or even thousands of classes. Then classes cannot be any longer
the appropriate basis and level of granularity for a software architecture.

5 Concluding Remarks

Are we able to create an approach to software system design and to programming
that does not show the weaknesses of object-orientation of today and neverthe-
less still manages to maintain most of its advantages? We think yes! There are
approaches to the programming of distributed systems based on state machines
(such as statecharts) that support asynchronous models of concurrent execution.
An interesting approach in that direction is ROOM (see [Room 94]) that in a
very consequent way introduces the required techniques.

A generalization of this model along the lines of Focus (see [Broy 98]) and
the prototype CASE tool AutoFocus (see [AutoFocus 00]) shows many of the
features described above. The introduction of the classical concepts of object-
orientation into this model is an interesting exercise.

Ole-Johan Dahl in his original work was much closer to the idea of concurrent
distributed systems as most of the so — called object — oriented programming
languages of today.

6 Acknowledgement

I am grateful to remarks and hints by the referees on Ole-Johan Dahl’s work on
concurrency.

94 Manfred Broy

7 References

[AutoFocus 00] P. Braun, H. Lötzbeyer, B. Schätz, O. Slotosch: Consistent Inte-
gration of Formal Methods. In: Proc. 6th Intl. Conf on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’00), 2000,

[Beeck 94] M. v. d. Beeck: A Comparison of Statecharts Variants. In: H. Langmaack,
W.-P. de Roever, J. Vytopil (eds): Formal Techniques in Real Time and Fault-Tolerant
Systems. Lecture Notes in Computer Science 863, Berlin: Springer 1994, 128-148

[Booch 91] G. Booch: Object Oriented Design with Applications. Benjamin Cum-
mings, Redwood City, CA, 1991

[Broy 91a] M. Broy: Towards a Formal Foundation of the Specification and De-
scription Language SDL. Formal Aspects of Computing 3, 21-57 (1991)

[Broy 92] M. Broy: Compositional Refinement of Interactive Systems. Journal of
the ACM, Volume 44, No. 6 (Nov. 1997), 850-891. Also in: DIGITAL Systems Research
Center, SRC 89, 1992.

[Broy 93] M. Broy: (Inter-)Action Refinement: The Easy Way. In: Broy, M. (ed.):
Program Design Calculi. Springer NATO ASI Series, Series F: Computer and System
Sciences, Vol. 118, pp. 121-158, Berlin, Heidelberg, New York: Springer 1993

[Broy 95b] M. Broy: Advanced Component Interface Specification. In: Takayasu Ito,
Akinori Yonezawa (Eds.). Theory and Practice of Parallel Programming, International
Workshop TPPP’94, Sendai, Japan, November 7-9, 1994, Proceedings, Lecture Notes
in Computer Science 907, Berlin: Springer 1995

[Broy 98] M. Broy: Compositional Refinement of Interactive Systems Modeled by
Relations. In: W.-P. de Roever, H. Langmaack, A. Pnueli (eds.): Compositionality:
The Significant Difference. LNCS State of the Art Survey, Lecture Notes in Computer
Science 1536, 1998, 130-149

[Dahl et al 72] O. Dahl, E.W. Dijkstra, C.A.R. Hoare (eds.): Structured Program-
ming. Academic Press 1971

[Dahl, Owe 91] O.-J. Dahl, O. Owe: Formal development with ABEL. In: S. Prehn,
W. J. Toetenel (eds.): VDM ’91: formal software development methods: 4th Interna-
tional Symposium of VDM Europe. Noordwijkerhout, the Netherlands, October 21-25,
1991 proceedings. — Vol. 2, Tutorials. Lecture Notes in Computer Science 552, Berlin:
Springer 1991, 320-362

[Dahl 92] O.-J. Dahl: Verifiable programming. Prentice Hall International Series in
Computer Science. New York : Prentice Hall, 1992

[Grapes 90] GRAPES-Referenzmanual, DOMINO, Integrierte Verfahrenstechnik.
Siemens AG, Bereich Daten- und Informationstechnik 1990

[Grosu 94] R. Grosu: A Formal Foundation for Concurrent Object-Oriented Pro-
gramming. Dissertation, Fakultät für Informatik, Technische Universität München, De-
cember 94

[Harel 87] D. Harel: Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming 8, 1987, 231 - 274

[Jacobson 92] I. Jacobsen: Object-Oriented Software Engineering. Addison-Wesley,
ACM Press 1992

[Milner et al. 92] R. Milner, J. Parrow, D. Walker: A calculus of mobile processes.
Part i + ii, Information and Computation, 100:1 (1992) 1-40, 41-77

[Rumbaugh 91] J. Rumbaugh: Object-Oriented Modelling and Design. Prentice
Hall, Englewood Cliffs: New Jersey 1991

Distributed Concurrent Object-Oriented Software 95

[Philipps, Scholz 95] J. Philipps, P. Scholz: Compositional Specification of Em-
bedded Systems with Statecharts. In: Theory and Practice of Software Development
TAPSOFT’97, Lille, Lecture Notes in Computer Science 1214, Berlin: Springer 1995

[Room 94] B. Selic, G. Gullekson. P.T. Ward: Real-time Object Oriented Modeling.
Wiley, New York 1994

[SDL 88] Specification and Description Language (SDL), Recommendation Z.100.
Technical report, CCITT, 1988

[Simula 67] Dahl, O.-J., B. Myrhaug, K. Nygaard: Simula 67 - common base lan-
guage. Technical Report N. S-22, Norsk Regnesentral (Norwegian Computing Center),
Oslo.

[UML 97] G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language
for Object-Oriented Development, Version 1.0, RATIONAL Software Cooperation

[Wirsing 90] M. Wirsing: Algebraic Specification. Handbook of Theoretical Com-
puter Science, Vol. B, Amsterdam: North Holland 1990, 675-788 14

Composing Hidden Information

Modules over Inclusive Institutions

Joseph Goguen1 and Grigore Roşu2

1 Dept. Computer Science & Engineering, Univ. California, San Diego
goguen@cs.ucsd.edu

2 Dept. Computer Science, Univ. Illinois, Urbana-Champaign
grosu@cs.uiuc.edu

Abstract. This paper studies the composition of modules that can hide
information, over a very general class of logical systems called inclusive
institutions. Two semantics are given for the composition of such modules
using five familiar operations, and a property called conservativity is
shown necessary and sufficient for these semantics to agree. The first
semantics extracts the visible properties of the result of composing both
the visible and hidden parts of modules, while the second uses only the
visible properties of the components; the two semantics agree when the
visible consequences of hidden information are enough to determine the
result of the composition. A number of “laws of software composition”
are proved relating the five composition operations. Inclusive institutions
simplify many of the proofs. The approach has application to module
composition technology, for both programs and specifications.

1 Introduction

Modularization reduces the complexity of large systems by breaking them into
more comprehensible parts; this eases both initial construction and later modi-
fication, and it also facilitates reuse. Parameterized programming3 significantly
further enhances flexibility and reusability of modules, by providing parameter-
ized modules along with views, also called fitting morphisms, which say how to fit
the syntax of a formal parameter to an actual parameter in a convenient, flexible
way, including defaults when there is only one reasonable choice; moreover, views
can be parameterized, dependent types are supported through formal parameters
that are parameterized by previously introduced formal parameters, and module
expressions compose modules into systems [18,19]. We use essentially the same
module composition operations as in the original Clear language [7], for aggre-
gating, renaming, enriching, hiding, and instantiating parameterized modules.
Module expressions are terms built from basic modules, parameterized modules,
and views, using these five operations; we believe that making views first class
citizens is key to realizing the full practical potential of modularization.

3 As in [18,19], this term should be understood as applying to both specifications and
programs, as well as to their combination.

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 96–123, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Composing Hidden Information Modules over Inclusive Institutions 97

The approach of this paper is by no means limited to specification languages,
let alone to equational specification languages. In particular, the lileanna sys-
tem has significantly extended the power and the efficiency of Ada generics
by applying these ideas; lileanna module expressions are “executed” by com-
bining the code in their modules, resulting in optimized, executable programs
[42,26]. lileanna has been used in industry to build navigation system software
for helicopters, and the original Clear and OBJ languages inspired aspects of
parameterization in the module systems of Ada, ML, and C++.

There are many good reasons to hide information in modules. First, following
Parnas [34], information hiding supports data abstraction, and more practically,
allows replacing one module by another having the same semantics for its vis-
ible signature, but a different implementation, without having to worry that
other modules might have used details of the implementation. Second, a classic
result of Bergstra and Tucker [3] says that every computable algebra has a fi-
nite equational specification with some hidden operations, and examples show
that the hidden operations are sometimes necessary (see [32] for a survey of this
area). Third, [23] shows that every [finite] behavioral (also called observational,
or hidden) algebraic specification [20,22,38,35] has an equivalent [finite] informa-
tion hiding specification with the same models, but using ordinary satisfaction.
However, the translation of finite behavioral specifications to hidden informa-
tion modules in [23] does not explain context induction [28], and hence does not
support behavioral proofs by induction. To overcome this, [36] gave an improved
translation, that takes account of experiments and their recursive evaluation
in a bottom-up fashion. This new translation justifies behavioral proofs by in-
duction, even though neither induction nor equational reasoning are in general
sound for behavioral equivalence. Some of the same ideas seem to have more
recently appeared in [5], using a different notation.

Category theory and institutions are heavily used in this paper. Institutions
(see Section 2.3) formalize the informal notion of logical system, with a balanced
interplay of syntax and semantics, to support research that is independent of the
underlying logic. An institution consists of: a category of signatures; a functor
from signatures Σ to classes of Σ-sentences; a contravariant functor from sig-
natures Σ to categories of Σ-models; and for every signature Σ, a relation of
satisfaction |=Σ between Σ-sentences and Σ-models, such that M ′ |=Σ′ ϕ(f) iff
ϕ(M ′) |=Σ f , for every signature morphism ϕ : Σ → Σ′, every Σ′-model M ′,
and every Σ-sentence f , where ϕ(f) is the translation of f according to ϕ and
ϕ(M ′) is the reduct of M according to ϕ. Given a class A of Σ-sentences, let
A∗ denote the class of Σ-models that satisfy every sentence in A, and given a
class V of Σ-models, let V ∗ denote the class of Σ-sentences that are satisfied by
all models in V . Modularization has been one of the most important applications
of institutions. Many logical systems have been shown to be institutions, and
most recent algebraic specification languages have an institution-based seman-
tics, e.g., CASL [9], CafeOBJ [14], OBJ3 [27], and BOBJ [25]. Other applications
include translating between logics (see [24] for a survey), and database integra-
tion using meta-data expressed as theories in a suitable institution [1] (this work
actually has further ambitions to meta-data management and integration for
any kind of data [4]).

98 Joseph Goguen and Grigore Roşu

Defining and proving properties of module systems can be greatly simplified
when the institution involved is inclusive, in the sense that its category of signa-
tures satisfies certain natural conditions that axiomatize the notion of inclusion.
(Our inclusive institutions are simpler than the original ones in [15] because we
use the inclusive categories of [24]; see Section 2.2.) It appears that all institu-
tions proposed for specification or programming are inclusive. Many properties
of inclusive institutions are proved here, including a generalization of the Closure
Lemma of classical institution theory.

Let I be a fixed inclusive institution. In this paper, we let the term module
refer to a triple (Φ, Σ, A) where Φ is a subsignature of Σ, and A is a set of Σ-
sentences, all from I. Σ is called the working signature, and it includes both the
public and the private operations of the module; Φ is called the visible signature,
which defines the public interface; elements of A are called axioms. The visible
theorems of M = (Φ, Σ, A), denoted Vth(M), are the Φ-sentences in the “double
star closure” A∗∗ of A. A model of M is a Φ-model satisfying all its visible
theorems. A transparent module has Φ = Σ; these correspond to specifications
without information hiding.

In the first semantics, the meaning of a module expression is the visible
theory of the result of evaluating the module expression compositionally (i.e.,
recursively) over the five operations. For example, if M = (Φ, Σ, A) then [[M]]1 =
Vth(M), and given also M ′ = (Φ′, Σ′, A′), then [[M + M ′]]1 = Vth(Φ ∪ Φ′, Σ ∪
Σ′, A ∪ A′). This semantics is the same as that in [26], except that signature
union comes from inclusive categories rather than the extended set theory used
in [26]. In the second semantics, following [37], meaning is directly compositional
over visible theories. As before, [[M]]2 = Vth(M), but now [[M + M ′]]2 = ([[M]]2∪
[[M ′]]2)

∗∗, where this closure is relative to the signature Φ∪Φ′. Meanings in this
semantics for the other module composition operations are similar, and do not
use the hidden parts of component modules. Semantics similar to these have
been given in the tradition of [39], but are defined as classes of models rather
than as theories.

The first semantics is more comprehensive because it uses more information;
it is a non-trivial theorem that the two semantics agree when all modules involved
are conservative, where a module (Φ, Σ, A) is conservative iff every Φ-model of
its visible theorems can be extended to a Σ-model of A. Transparent modules are
obviously conservative, but in general, testing for conservativity depends on the
institution involved, and can be difficult. The modules that arise in practice for
equational institutions are conservative. One approach for showing conservativity
in equational institutions is to show that every Φ-algebra can be enriched with
hidden carriers and operations, such that it satisfies the axioms. Since each
semantics gives a theory, each has an associated class of models, and these two
classes also agree under conservativity. Example 2 shows that conservativity is
necessary as well as sufficient, even for the equational institution.

This paper also proves a number of identities that hold among the meanings
of simple module expressions. These can be considered “basic laws of software
engineering” (though they are mostly very simple); such laws are used in the

Composing Hidden Information Modules over Inclusive Institutions 99

lileanna system [42,26] to simplify module expressions before handing them
over to the backend of the Ada compiler for optimization, and result in more
efficient code than composing the same system in raw Ada. Example laws are
E + E′ ≡ E′ + E and E + (E′ + E′′) ≡ (E + E′) + E′′, where E ≡ E′ indicates
that [[E]]1 = [[E′]]1 for module expressions E, E′. Of course, these are very simple
examples, the most interesting identities involve instantiation of parameterized
modules. We have found that inclusive institutions significantly simplify the
proofs of such laws.

1.1 Related Work

We mainly discuss work that directly influenced this paper; readers wanting
more background or historical information should consult references in the cited
papers. The most influential works for us were [26] and [15]. Many results of the
present paper appear in a slightly more concrete form in [26], which considered
the same module system as this paper, using a version of institutions in which
signatures are structured set/tuple hierarchies, so that inclusions are directly
available and need not be axiomatized. This approach is less general than that
of the present paper4, but has the advantage of making the techniques for im-
plementing the module system more explicit. On the other hand, proofs are less
elegant, and more difficult to discover, and the present paper supplies proofs
that are missing from [26].

Modularization over inclusive institutions is studied in [15], but its modules
do not hide information, and its notion of inclusion system is less general then the
present one. [2] axiomatizes operations on modules and proves certain properties,
including a normalization theorem; unfortunately, first order logic is built into
their formalism for sentences, which limits the application of their results. When
the institution is first order logic, the results in this paper prove from more basic
principles all of the axioms in [2] that concern our operations.

Generalizing prior work of Cengarle for first order logic [8], Borzyszkowski
[6] gives a nice proof that under certain sufficient conditions (semantic forms
of amalgamation and interpolation are the main ones) the two semantics agree;
however, [6] does not treat parameterized modules, uses a different notation in
which one semantics is formulated as a deductive system, and uses a different
notion of institution that seems unnecessarily complex. Since the assumptions of
the present paper are necessary and sufficient, it would be interesting to see how
they relate to those of [6], despite the different notions of institution employed;
the relation between interpolation and conservativity seems worthy of further
investigation.

Inclusive institutions seem an attractive alternative to approaches like “insti-
tutions with symbols” [33], which assign sets of symbols to signatures, because
inclusions automatically keep track of shared symbols in subsignatures, while
allowing the usual operations on modules to be easily and naturally expressed;
the approach of [33] was developed for the semantics of the European casl

4 Although it seems to include all the standard examples.

100 Joseph Goguen and Grigore Roşu

[9] specification language. Diaconescu [12] studies modules without information
hiding for equational-like logics, using category-based equational logic (CBEL).
We believe that under some mild conditions, CBEL is an inclusive institution,
so that results in this paper would apply.

In contrast5 to [40,39], it is our view that parameterized programs can be
considered parameterized theories, by using an appropriate institution, having
programs as sentences and executions as models (though it would of course be a
substantial task to write out all the details of such an institution, e.g., for the C
language). We also disagree with the view expressed forcefully in [40,39] that it is
necessary to hybridize algebraic specification with type theory in order to address
concerns that blend specification and programming. In particular, we disagree
with their claim that colimits are not adequate for parameterized programs,
which should instead be treated using dependent types. Indeed, lileanna, which
is an implemented programming and specification system based on the same ap-
proach as this paper, shows that this claim is false [42,26]. lileanna module
expressions tell the system how to combine the Ada intermediate compiled code
for components, which is then passed to the compiler backend, resulting in ef-
ficient executable composed programs. The Specware system takes a somewhat
different approach to generating code, but still uses colimits for composition
[30]. The existence of institutions with programs as sentences explains why col-
imit constructions work for module composition at the code level, not just at
the specification level. Some confusion perhaps arises because of the familiarity
of institutions from mathematical logic, such as the lambda calculus and equa-
tional logic, which have been applied to certain classes of functional programs.
Moreover, the relation between the Ada programs and the Anna specifications
of lileanna is given by an institution of this more traditional kind.

Section 2 of this paper reviews notation and concepts from category theory,
inclusive categories and institutions, while inclusive institutions are presented in
Section 3, and Section 4 introduces modules. Section 5 is the heart of the paper,
giving the five module operations with their semantics and the basic laws, while
Section 6 gives some conclusions and future directions. We consider this paper
a natural next step in the research on parameterized programming begun in
[18,19] for the OBJ specification and term rewriting language [27], inspired by
the Clear module system [7], and further developed in [26] and [15].

2 Preliminaries

Categories, inclusions and institutions are heavily used in this paper, and this
section briefly introduces our notation and terminology for these concepts.

5 This paragraph and some related footnotes were written reluctantly, at the request
of a referee, and many details are omitted, because we feel that such discussions tend
to distract from technical content.

Composing Hidden Information Modules over Inclusive Institutions 101

2.1 Categories

The reader is assumed to be familiar with basics of category theory, including
limits, colimits, functors, and adjoints [31,29]. |C| denotes the class of objects
of a category C, and C(A, B) denotes the set of morphisms in C from object A
to object B. The composition of morphisms is written in diagrammatic order,
that is, f ; g : A → C is the composition of f : A → B with g : B → C. Let
Cat denote the (quasi-)category with locally small categories as objects and
with functors as morphisms. A family of morphisms {ei : Ai → B | i ∈ I} is
epimorphic iff for any two morphisms f, g : B → C, if ei; f = ei; g for each
i ∈ I then f = g.

A functor F : C → D is full (faithful) if its restrictions F : C(A, B) →
D(F(A),F(B)) are surjective (injective) for all objects A, B in C. F is dense
provided that for each D ∈ |D| there is some C ∈ |C| such that F(C) is isomor-
phic to D. A full subcategory is a subcategory such that the inclusion functor
is full. A category is skeletal iff isomorphic objects are identical. A skeleton of
a category C is a maximal full skeletal subcategory of C; it can be shown that any
two skeletons of a category are isomorphic in Cat. A category C is equivalent
to a category D iff C and D have isomorphic skeletons. It is known [31] that two
categories C and D are equivalent iff there exists a functor F : C → D which is
full, faithful and dense.

Pullbacks in Cat have the following special property: if a pair of functors
F1 : P → C1 and F2 : P → C2 is a pullback in Cat of G1 : C1 → D and
G2 : C2 → D, and if C1 ∈ |C1| and C2 ∈ |C2| are such that G1(C1) = G2(C2), then
there is a unique object P in P such that F1(P) = C1 and F2(P) = C2.

2.2 Inclusive Categories

Many categories have certain morphisms which are intuitively inclusions. The
problem of characterizing such morphisms was raised in [21], first solved in [15]
with the notion of inclusion system, and further developed and simplified in
[10,11,37,24]. The simplest version occurs in [24]: An inclusive category C is
a category having a broad subcategory6 I which is a poclass (i.e., its objects are
a class such that each I(A, B) has at most one element, and if both I(A, B) and
I(B, A) are non-empty, then A = B) with finite products and coproducts, called
intersection (denoted ∩) and union (denoted ∪ or possibly +), respectively,
such that for every pair A, B of objects, A ∪ B is a pushout of A ∩ B in C;
morphisms in I are written ↪→ and called inclusions. In particular, C and
I have an initial object, which we denote ∅, and A1, ..., An are disjoint iff
Ai ∩ Aj = ∅ for i �= j. C is distributive iff I is distributive, in the sense that
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (which, as in lattice theory, is equivalent to
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)) in I.

6 In the sense that it has the same objects as C.

102 Joseph Goguen and Grigore Roşu

Proposition 1. In any inclusive category C:
1. The family of inclusions Ai ↪→ ⋃n

j=1 Aj for i = 1, ..., n is epimorphic.
2.

⋃n
j=1 Aj is a colimit in C of the diagram given by the pairs of inclusions

Ai ∩Aj ↪→ Ai and Ai ∩Aj ↪→ Aj for i, j = 1, ..., n.

The proof is elementary and fun, but a bit tedious. We leave its proof as an
exercise for the tenacious reader, emphasizing that distributivity of C is indeed
not necessary.

We say that morphisms hi : Ai → Bi in C for i = 1, ..., n have a union,
written

⋃n
j=1 hj , iff there is a morphism h :

⋃n
j=1 Aj →

⋃n
j=1 Bj such that

(Ai ↪→ ⋃n
j=1Aj); h = hi; (Bi ↪→ ⋃n

j=1Bj) for i = 1, ..., n. Such a morphism h is
unique if it exists, and h1, ..., hn have a union whenever A1, ..., An are disjoint.
C has pushouts which preserve inclusions iff for any pair of arrows (A ↪→
B, A → A′) there are pushouts of the form (A′ ↪→ B′, B → B′). A functor
between two inclusive categories is inclusive (or preserves inclusions) iff it
takes inclusions in the source category to inclusions in the target category.

2.3 Institutions

Institutions were introduced by Goguen and Burstall [21] to formalize the intu-
itive notion of logical system. An institution consists of a category Sign whose
objects are called signatures, a functor Sen : Sign→ Set giving for each sig-
nature a set whose elements are called Σ-sentences, a functor Mod : Sign→
Catop giving for each signature Σ a category of Σ-models, and a signature-
indexed relation called satisfaction, |= = {|=Σ | Σ ∈ Sign}, where |=Σ ⊆
|Mod(Σ)| × Sen(Σ), such that for each signature morphism h : Σ → Σ′, the
satisfaction condition, m′ |=Σ′ Sen(h)(a) iff Mod(h)(m′) |=Σ a, holds for
all m′ ∈ |Mod(Σ′)| and a ∈ Sen(Σ). We may write h for Sen(h) and �h for
Mod(h); m�h is called the h-reduct of m. The satisfaction condition then takes
the simpler form m′ |=Σ′ h(a) iff m′�h |=Σ a. We may omit the subscript Σ
when it can be inferred from context. Given a set A of Σ-sentences, let

A∗ = {m ∈Mod(Σ) | m |=Σ a for all a ∈ A} ,

and given a class V of Σ-models, let

V ∗ = {a ∈ Sen(Σ) | m |=Σ a for all m ∈ V } .

Then the closure of a set of Σ-sentences A is A• = A∗∗, and • is a closure
operator, i.e., it is extensive, monotonic and idempotent; the sentences in A• are
called the theorems of A.

A specification or presentation is a pair (Σ, A) where Σ is a signature and
A is a set of Σ-sentences. A specification morphism from (Σ, A) to (Σ′, A′)
is a signature morphism h : Σ → Σ′ such that h(A) ⊆ A′•. Specifications and
specification morphisms form a category denoted Spec. A theory (Σ, A) is a
specification with A = A•; the full subcategory of theories in Spec is denoted
Th. Given a specification (Σ, A), Mod(Σ, A) denotes the full subcategory of
Mod(Σ) of models that satisfy A; given a morphism h : (Σ, A) → (Σ′, A′),

Composing Hidden Information Modules over Inclusive Institutions 103

�h takes models of A′ to models of A. We will also write A |=Σ B when
Mod(Σ, A) ⊆ Mod(Σ, B). Th and Spec are equivalent categories, where the
equivalence functor is just the inclusion U : Th → Spec. This functor has a
left-adjoint-left-inverse F : Spec→ Th, given by F(Σ, A) = (Σ, A•) on objects
and the identity on morphisms; note that F is also right adjoint to U , so that
Th is a reflective and coreflective subcategory of Spec.

A theory morphism h : (Σ, A)→ (Σ′, A′) is conservative iff for any (Σ, A)-
model m there is a (Σ′, A′)-model m′ such that m′ �h= m, i.e., iff its retract
map �h : Mod(Σ′, A′) → Mod(Σ, A) is surjective. A signature morphism
h : Σ → Σ′ is conservative iff it is conservative as a morphism of void theories,
i.e., iff h : (Σ, ∅•)→ (Σ′, ∅′•) is conservative. An important result of [21] is that
Th has whatever colimits Sign has; in particular, Th has pushouts whenever
Sign does, and if h1 : (Σ, A)→ (Σ1, A1) and h2 : (Σ, A)→ (Σ2, A2) are theory
morphisms, and if (h′

1 : Σ1 → Σ′, h′
2 : Σ2 → Σ′) is a pushout of (h1, h2) in

Sign, then (h′
1 : (Σ1, A1) → (Σ′, A′), h′

2 : (Σ2, A2) → (Σ′, A′)) is a pushout
of h1, h2 in Th, where A′ = (h′

1(A1) ∪ h′
2(A2))•. Moreover,

Proposition 2. Given h : Σ → Σ′, A, A′ ⊆ Sen(Σ), and a ∈ Sen(Σ), then:

1. Closure Lemma: h(A•) ⊆ h(A)•, i.e., A |=Σ a implies h(A) |=Σ′ h(a).
2. If h is conservative, then A |=Σ a iff h(A) |=Σ′ h(a).
3. h(A•)• = h(A)•.
4. (A• ∪A′)• = (A ∪A′)•.

If any reader is disturbed by the size of the categories involved in the no-
tion of institution, it may be reassuring that, for the purposes of this paper at
least, little is lost by restricting categories of signatures to be small categories.
Indeed, if signatures are finite constructions using symbols drawn from a fixed
countable set, as is usual in computer science, then we could even assume that
signature categories have only a countable number of objects. Similar restric-
tions could be given for the values of the sentence and model functors; although
this entails weaker completeness properties, the practical applications to module
composition only require finite colimits of theories.

3 Inclusive Institutions

The semantics of module systems over an institution is much simplified when
signature inclusions are available, in the following sense:

Definition 1. An institution is inclusive iff Sign is inclusive and has pushouts
which preserve inclusions, Sen is inclusive, and Mod preserves pushouts which
preserve inclusions, i.e., takes them to pullbacks in Cat. An inclusive institution
is distributive iff its category of signatures is distributive.

We now fix an inclusive institution and refer to it as the “given institution.”
Many natural properties can be expressed intuitively in inclusive institutions,
for example, if A and A′ are sets of Σ- and Σ′-sentences, respectively, then

104 Joseph Goguen and Grigore Roşu

(A•∪A′•)• = (A∪A′)•, where the outermost closures are over Σ∪Σ′-sentences;
also, if Φ ↪→ Σ, a ∈ Sen(Φ), and A ⊆ Sen(Φ), then A |=Φ a implies A |=Σ a,
with equivalence when Φ ↪→ Σ is conservative. The category Th tends to have
the same properties as Sign. In particular,

Proposition 3. For any inclusive institution, Th is inclusive and has pushouts
that preserve inclusions, where the inclusions ITh in Th are morphisms (Σ, A) ↪→
(Σ′, A′) where Σ ↪→ Σ′ is an inclusion in Sign and A ⊆ A′.

Proof: It is easy to check that ITh is a poclass with the same objects as Th.
Define the union of theories (Σ, A), (Σ′, A′) by (Σ, A)∪ (Σ′, A′) = (Σ∪Σ′, (A∪
A′)•) where the closure is over (Σ∪Σ′)-sentences, and define their intersection by
(Σ, A)∩(Σ ′, A′) = (Σ∩Σ′, A∩A′). We now show correctness of these definitions.
That union is a pushout of an intersection in ITh follows from the construction
of pushouts in Th. Now consider an inclusion (Σ, A) ↪→ (Σ1, A1) in Th and a
morphism h : (Σ, A) → (Σ2, A2) in Th. Let (Σ2 ↪→ Σ′, hΣ′ : Σ1 → Σ′) be a
pushout of (Σ ↪→ Σ1, h : Σ → Σ2) in Sign which preserves the inclusion. Then
((Σ2, A2) ↪→ (Σ′, A′), hΣ′ : (Σ1, A1) → (Σ′, A′)) is the desired pushout in Th,
where A′ = (A2 ∪ hΣ′(A1))•, again by the construction of pushouts in Th. �

Convention 1 We do not assume any particular way to calculate pushouts of
signatures, nor do we require these pushouts to have any special properties, but
for notational convenience, we assume fixed pushouts that preserve the inclu-
sions; let (Φ′ ↪→ Σh, hΣ : Σ → Σh) denote this pushout for (Φ ↪→ Σ, h : Φ →
Φ′). We say that a choice of such pushouts is closed under horizontal and/or
vertical composition iff for any (Φ ↪→ Σ, h : Φ → Φ′), Σ′

(hΣ) = Σ′
h and

Σ ↪→ Σ′ and/or iff (Σh)g = Σh;g for any signature morphism g with source Φ′.
Also, we may say theory extension for theory inclusion.

Open Problem It would be useful to have an algorithm for pushouts of the
usual signatures, that is closed under horizontal and/or vertical composition,
i.e., such that Σ′

(hΣ) = Σ′
h for any (Φ ↪→ Σ, h : Φ→ Φ′) and Σ ↪→ Σ′, and such

that (Σh)g = Σh;g for any signature morphism g with source Φ′.

Definition 2. Given ı : Φ ↪→ Σ in Sign and A ⊆ Sen(Σ), let ThΣ
Φ (A) denote

ı−1(A•) ⊆ Sen(Φ), called the Φ-visible theorems of A (over Σ).

ThΣ
Φ (A) contains all the Φ-sentences that are consequences of A. When ı is an

identity, then ThΣ
Σ(A) = A•.

Example 1 Assume a logic where equational reasoning and induction are sound,
and let LIST be a specification of lists containing at least the sorts Elt and List ,
a constant nil of sort List , and a constructor cons : Elt × List → List . Let Φ
extend this signature by a reverse operation rev : List → List , let Σ extend Φ
by a private operation aux : List ×List → List , and let A contain the equations

Composing Hidden Information Modules over Inclusive Institutions 105

(∀L : List) rev(L) = aux (L, nil).
(∀P : List) aux (nil , P) = P .
(∀E : Elt ; L, P : List) aux (cons(E, L), P) = aux (L, cons(E, P)).

Then the following are two Φ-visible theorems of A over Σ:

rev(nil) = nil ,
(∀L : List) rev(rev (L)) = L .

The proof of the second requires induction and two lemmas. �

The following properties are familiar for many particular logics, because they
hold in any inclusive institution:

Proposition 4. If Ψ ↪→ Φ ↪→ Σ, A ⊆ A′ ⊆ Sen(Σ), and B ⊆ Sen(Φ), then:

1. B ⊆ ThΣ
Φ (B).

2. ThΦ
Ψ (B) ⊆ ThΣ

Ψ (B).

3. ThΦ
Ψ (B) = ThΣ

Ψ (B) if Φ ↪→ Σ is conservative.

4. ThΣ
Ψ (A) ⊆ ThΣ

Φ (A).

5. ThΣ
Φ (A) ⊆ ThΣ

Φ (A′).

6. ThΣ
Ψ (A) ⊆ ThΣ

Φ (ThΣ
Ψ (A)).

7. ThΣ
Ψ (ThΣ

Φ (A)) ⊆ ThΣ
Ψ (A).

8. ThΣ
Φ (ThΣ

Φ (A)) = ThΣ
Φ (A).

9. ThΦ
Φ(ThΣ

Φ (A)) = ThΣ
Φ (A).

10. ThΦ
Ψ (ThΣ

Φ (A)) = ThΣ
Ψ (A).

Proof: Let ı′ : Ψ → Φ and ı : Φ→ Σ be the two inclusions.

1. If b ∈ B then B |=Σ b, i.e., b ∈ ThΣ
Φ (B).

2. By 1. of Proposition 2.
3. This is exactly 2. in Proposition 2.
4. Since Sen is a morphism of inclusion systems, a is in Sen(Φ) whenever a is

in Sen(Ψ).
5. This is equivalent to ı−1(A•) ⊆ ı−1(A′•), which holds because A• ⊆ A′•.
6. This follows from 1. with ThΣ

Ψ (A) for B.
7. This is equivalent to (ı′; ı)−1(ı−1(A•)) ⊆ (ı′; ı)−1(A•), which is true because

ı−1(A•) ⊆ A•.
8. This follows from 6. and 7., with Ψ = Φ.
9. By 1., ThΣ

Φ (A) ⊆ ThΦ
Φ(ThΣ

Φ (A)). On the other hand, ThΦ
Φ(ThΣ

Φ (A)) ⊆
ThΣ

Φ (ThΣ
Φ (A)) by 2., and also ThΦ

Φ(ThΣ
Φ (A)) ⊆ ThΣ

Φ (A) by 8.
10. This is equivalent to ı′−1(ı−1(A•)) = (ı′; ı)−1(A•), which is true.

�

106 Joseph Goguen and Grigore Roşu

Lemma 1. Generalized Closure Lemma: Given A ⊆ Sen(Σ), inclusions
ı : Φ ↪→ Σ, ı′ : Φ′ ↪→ Σ′, and morphisms h : Φ→ Φ′ and g : Σ → Σ′ such that

Φ
� � ı ��

h ��

Σ
g

��
Φ′ � �

ı′
�� Σ′

commutes, then h(ThΣ
Φ (A)) ⊆ ThΣ′

Φ′ (g(A)).

Proof: Let a be a Φ-sentence in ThΣ
Φ (A), so that A |=Σ a. Then g(A) |=Σ′ g(a)

by the classic Closure Lemma (1. of Proposition 2). But g(a) = h(a) because
Sen preserves inclusions, and so h(a) is in ThΣ′

Φ′ (g(A)). �

The classic Closure Lemma is the special case of the above where ı, ı′ are iden-
tities, that is, where nothing is hidden.

4 Modules

Our modules, like those in [26], extend the usual algebraic specifications by
allowing them to hide some information, which however may be used in defining
their visible features.

Definition 3. A module is a triple (Φ, Σ, A), where Φ ↪→ Σ are signatures and
A is a set of Σ-sentences; Φ is called the visible signature, Σ the working
signature, Th(M) = ThΣ

Σ(A) the working theorems, and Vth(M) = ThΣ
Φ (A)

the visible theorems. A morphism h : M → M ′ of modules is a morphism
of their visible signatures such that h(Vth(M)) ⊆ Vth(M ′).

Modules together with module morphisms form a category MSpec. The func-
tor M from Th to MSpec defined by M(Σ, A) = (Σ, Σ, A) and M(h) = h,
is full, faithful and dense, i.e., is an equivalence of categories. Further (by The-
orem 1, page 91 of [31]), M is part of an adjoint equivalence, with left ad-
joint T : MSpec → Th defined by T (Φ, Σ, A) = (Φ, ThΣ

Φ (A)) on objects,
and the identity on morphisms; the unit of this adjunction is 1Φ : (Φ, Σ, A) →
(Φ, Φ, ThΣ

Φ (A)). We let U : MSpec → MSpec denote the functor T ;M, tak-
ing modules (Φ, Σ, A) to modules (Φ, Φ, ThΣ

Φ (A)). Notice that T is also a right
adjoint of M, so that Th is (modulo isomorphism) a reflective and coreflective
subcategory of MSpec. Since the two categories are equivalent, every categor-
ical property [29] of Th is also a property of MSpec. In particular, pushouts
are preserved and reflected by M and T , and MSpec is cocomplete whenever
Sign is cocomplete, since Th is cocomplete (by [21]).

Definition 4. A Φ-model m satisfies M = (Φ, Σ, A) iff m |=Φ Vth(M); in this
case, we write m |= M .

If h : M →M ′ is a module morphism and m′ |= M ′, then m′�h |= M . Therefore
in any inclusive institution, the functor Mod extends to MSpec by mapping

Composing Hidden Information Modules over Inclusive Institutions 107

a module M to the full subcategory Mod(M) of Mod(Φ) with the Φ-models
satisfying M as its objects.

It is common to call a theory extension (Σ, A) ↪→ (Σ, A′) conservative when
A = A′ ∩ Sen(Σ); we call this notion syntactic conservativity to distinguish
it from the semantic version. Notice that for any module M = (Φ, Σ, A), the the-
ory inclusion (Φ, Vth(M)) ↪→ (Σ, Th(M)) is syntactically conservative, because
Vth(M) = ThΣ

Φ (A) = {a ∈ Sen(Φ) | A |=Σ a} = {a ∈ Sen(Φ) | a ∈ Th(M)} =
Th(M) ∩ Sen(Φ). As shown in [15], syntactic conservativity is a necessary but
insufficient condition for semantic conservativity. So it is not surprising that we
also need a stronger conservativity for modules:

Definition 5. A module M is conservative if and only if the theory inclusion
(Φ, Vth(M)) ↪→ (Σ, Th(M)) is conservative.

Transparent modules, with Φ = Σ, are always conservative. But there are sim-
ple non-conservative modules, even for unsorted equational logic, such as the
following (after [15]):

Example 2 Let Φ contain a constant a and a unary operation −, let Σ addi-
tionally contain a constant c, and let A contain the equation c = −c. Then the
visible theorems of this module form an empty theory, but there are Φ-models
that cannot be extended to Σ-models satisfying A, such as m = {1,−1} with
ma = 1, m−(1) = −1 and m−(−1) = 1. �

5 Module Composition Operations

We give two semantics and a definition, for five module composition operations
from original Clear paper [7], over any inclusive institution. These are functions
defined on module expressions, i.e., terms involving basic modules, parameter-
ized modules, and the five operations. The definition follows [26], and is module
valued, saying what must be implemented, e.g., in lileanna, is denoted |E|
where E is a module expression. The first semantics (also from [26]), denoted
[[E]]1, takes the visible theorems of the combined module, while the second se-
mantics (from [37]), denoted [[E]]2, combines the visible theorems of the com-
ponent modules. Thus the first semantics uses the definitions of the module
combination operations, including renamings to avoid name conflicts, while the
second semantics directly combines their visible theorems. The first semantics
is more comprehensive because it makes use of more information, and the two
agree only under special conditions, when interactions among hidden informa-
tion can safely be ignored. A major result is that conservativity is a necessary
and sufficient condition for the two semantics to agree; this characterizes when
it is safe to ignore interactions among hidden parts. All five module operations
preserve conservativity under natural conditions. When proving theorems about
composed systems, it is often easier to use hidden information than to use only
its consequences; for example, the former may be finite while the latter is infinite.
Therefore a theorem prover should have access to all of the hidden information,

108 Joseph Goguen and Grigore Roşu

e.g., the combined module given by the definitions, or the module expression
itself, which provides additional structuring information.

5.1 Aggregation

The aggregation of modules is essentially the componentwise union of their parts.
However, this simple view is complicated by the need to handle symbols hav-
ing the same name but defined in different modules, and symbols coming from
shared submodules. A standard way to prevent such name clashes is to tag sym-
bols with the name of the module where they are defined; symbols defined in
shared submodules are then tagged just once. Some languages with overloaded
operators have complex symbol resolution algorithms, while others take the sim-
ple union of all symbols, leaving the name collision problem to the user. The
latter approach is actually quite appropriate for investigating the role of hid-
den symbols in the semantics of aggregation, and of module composition more
generally. Moreover, if symbols are already tagged with their originating mod-
ule when they are declared, with their untagged name available as a convenient
abbreviation when it is unambiguous (as is done in implementations of the OBJ
systems [27,25]), then this approach is actually equivalent to the standard one.

We will show that the two semantics for aggregation agree when the compo-
nent modules are conservative and all the symbols that they share are visible,
and we will give counterexamples showing that both of these requirements are
necessary. We will also give some simple “laws of software composition” for ag-
gregation, and prove some other basic properties of aggregation.

Definition 6. Given modules M = (Φ, Σ, A) and M ′ = (Φ′, Σ′, A′), their ag-
gregation is defined to be (Φ∪Φ′, Σ∪Σ′, A∪A′), or more formally, |M +M ′| =
(Φ∪Φ′, Σ∪Σ′, A∪A′). Moreover, we let [[M + M ′]]1 = Vth(Φ∪Φ′, Σ∪Σ′, A∪A′),
and [[M + M ′]]2 = (Vth(M) ∪ Vth(M ′))•, where the closure is with respect to
Φ ∪ Φ′.

This makes sense because Φ∪Φ′ ↪→ Σ∪Σ′ and A∪A′ is a set of (Σ∪Σ′)-sentences,
since Sen preserves inclusions. Because M + M ′ is a formal expression, it is an
abuse of notation to write M + M ′ = (Φ ∪ Φ′, Σ ∪ Σ′, A ∪ A′), but it is often
convenient, and we will use this convention for the other module combination
operations, as well as for aggregation. In particular, we may write E = M for
the more precise |E| = M where E is a module expression and M is a module.
Note that |M | = M , and that7 here and hereafter, [[M]]1 = Vth(|M |). Since each
of the three formal semantic definitions extends recursively over the module
combination operations to all module expressions, it also makes sense to write
E = E′ for |E| = |E′| where E, E′ are both module expressions, as is (implicitly)
done in the following:

Fact 1 Aggregation is commutative, associative and idempotent.
7 For some reason, the expression Vth(E′) where E′ = |E| is called the normal form

of E in the tradition of [40,39,6].

Composing Hidden Information Modules over Inclusive Institutions 109

A precise form of the first assertion is |M + M ′| = |M ′ + M |. The proof of this
fact uses that union has the three corresponding properties. It also follows that
[[M + M ′]]1 = [[M ′ + M]]1 and that [[M + M ′]]2 = [[M ′ + M]]2. Hereafter, we will
systematically employ the abuse of notation discussed above.

Proposition 5. If ı and ı′ denote the inclusions Φ ↪→ Φ ∪ Φ′ and Φ′ ↪→ Φ ∪ Φ′,
respectively, then ı : M →M+M ′ and ı′ : M ′ →M+M ′ are module morphisms.
Therefore m |= M + M ′ implies m�Φ |= M and m�Φ′ |= M ′ for any (Φ ∪ Φ′)-
model m.

Proof: This is immediate, noting that M +M ′ denotes the module |M +M ′|.
�

The following technically important result informally says that if all common
symbols of two conservative modules are visible, then any model of both sets of
visible theorems extends to a model of both sets of working theorems:

Theorem 1. If modules M = (Φ, Σ, A) and M ′ = (Φ′, Σ′, A′) are conservative
and if Φ ∩ Φ′ = Σ ∩ Σ′, then for any (Φ ∪ Φ′)-model m such that m |=Φ∪Φ′

Vth(M) ∪ Vth(M ′) there is a (Σ ∪ Σ′)-model m′ such that m′ �Φ∪Φ′= m and
m′ |=Σ∪Σ′ Th(M) ∪ Th(M ′).

Proof: By the Satisfaction Condition, m�Φ |=Φ ThΣ
Φ (A) and m�Φ′ |=Φ′ ThΣ′

Φ′ (A′).
Since (Φ, Σ, A) and (Φ′, Σ′, A′) are conservative, there exist a Σ-model mΣ of
A and a Σ′-model mΣ′ of A′ such that mΣ�Φ= m�Φ and mΣ′�Φ′= m�Φ′ .

Φ
� � ��
��

����
��

��
��

� Σ � �

������������

Σ ∩Σ′ = Φ ∩ Φ′
� �

�����������

��

����
��

��
��

� Φ ∪ Φ′ � � �� Σ ∪Σ′

Φ′
� �

�����������
�� �� Σ′ 	

������������

Then by the functoriality of reducts, mΣ �Φ∩Φ′= (mΣ�Φ)�Φ∩Φ′= (m�Φ)�Φ∩Φ′=
m�Φ∩Φ′= (m�Φ′)�Φ∩Φ′= (mΣ′�Φ′)�Φ∩Φ′= mΣ′�Φ∩Φ′ . Since Σ ∩Σ′ = Φ ∩ Φ′, and
Mod preserves intersection-union pushouts, and by the construction of pullbacks
in Cat, there is a (unique) (Σ∪Σ′)-model m′ such that m′�Σ= mΣ and m′�Σ′=
mΣ′ ; thus m′�Σ |=Σ A and m′�Σ′ |=Σ′ A′. Therefore the Satisfaction Condition
gives m′ |=Σ∪Σ′ A ∪A′. The reader may check that this essentially says that
m′ is a model of both Th(M) and Th(M ′), and that (m′�Φ∪Φ′)�Φ= m�Φ and
(m′�Φ∪Φ′)�Φ′= m�Φ′ . Therefore m′�Φ∪Φ′ satisfies the conditions that are uniquely
satisfied by m (because the union of Φ and Φ′ is a pushout of their intersection,
because Mod preserves it, and because of the way pullbacks are built in Cat).
Therefore m′�Φ∪Φ′= m. �

110 Joseph Goguen and Grigore Roşu

Proposition 6. If M and M ′ are modules as in Theorem 1, then

1. [[M + M ′]]1 = [[M + M ′]]2.
2. m |= M + M ′ iff m�Φ |= M and m�Φ′ |= M ′ for any (Φ ∪ Φ′)-model m.
3. M + M ′ is conservative.

Proof: 1. is equivalent to ThΣ∪Σ′
Φ∪Φ′ (A∪A′) = ThΦ∪Φ′

Φ∪Φ′(ThΣ
Φ (A)∪ThΣ′

Φ′ (A′)). By
Proposition 4, ThΣ

Φ (A) ⊆ ThΣ∪Σ′
Φ∪Φ′ (A ∪ B) and ThΣ′

Φ′ (B) ⊆ ThΣ∪Σ′
Φ∪Φ′ (A ∪ B), so

ThΦ∪Φ′
Φ∪Φ′(ThΣ

Φ (A) ∪ThΣ′
Φ′ (B)) ⊆ ThΣ∪Σ′

Φ∪Φ′ (A∪B). Conversely, consider a (Φ ∪Φ′)-
sentence a such that A ∪A′ |=Σ∪Σ′ a, and let m be a (Φ∪Φ′)-model for ThΣ

Φ (A)
and ThΣ′

Φ′ (A′). By Theorem 1, there exists a (Σ ∪Σ′)-model m′ of A ∪A′ such
that m′ �Φ∪Φ′= m. Then m′ |=Σ∪Σ′ a, and so by the Satisfaction Condition,
m′�Φ∪Φ′ |=Φ∪Φ′ a, that is, m |=Φ∪Φ′ a. Consequently, a is in ThΦ∪Φ′

Φ∪Φ′(ThΣ
Φ (A) ∪

ThΣ′
Φ′ (A′)). This shows that ThΣ∪Σ′

Φ∪Φ′ (A ∪A′) ⊆ ThΦ∪Φ′
Φ∪Φ′(ThΣ

Φ (A) ∪ ThΣ′
Φ′ (A′)).

2. follows from the equivalences:

m |= M + M ′ iff
m |=Φ∪Φ′ V th(M + M ′) iff (by 1.)
m |=Φ∪Φ′ (V th(M) ∪ V th(M ′))• iff
m |=Φ∪Φ′ V th(M) ∪ V th(M ′) iff
m |=Φ∪Φ′ V th(M) and m |=Φ∪Φ′ V th(M ′) iff
m�Φ |=Φ V th(M) and m�Φ′ |=Φ′ V th(M ′) iff
m�Φ |= M and m�Φ′ |= M ′ .

Only the right to left implication is interesting, since the other direction needs
neither conservativity nor that Φ ∩ Φ′ = Σ ∩Σ′.

For 3., take a (Φ ∪ Φ′)-model m of ThΣ∪Σ′
Φ∪Φ′ (A ∪A′). Then m is also a (Φ ∪ Φ′)-

model of ThΣ
Φ (A) and ThΣ′

Φ′ (A′), and by Theorem 1 there is a (Σ ∪ Σ′)-model
m′ of A ∪ A′ such that m′ �Φ∪Φ′= m. Therefore, m′ is a (Σ ∪ Σ′)-model of
ThΣ∪Σ′

Σ∪Σ′(A ∪A′); this shows that (Φ, Σ, A) + (Φ′, Σ′, A′) is conservative. �

Despite its somewhat complex proof, this result looks so natural that one might
be tempted to think its hypothesis too strong. But visibility of shared symbols
really is needed, as shown by the following:

Example 3 Let M have a visible constant 0, a hidden constant c and the sen-
tence 0 = c, while M ′ has a constant 1, the same hidden c, and the sentence
1 = c. Then (Vth(M)∪Vth(M ′))• is empty while Vth(M + M ′) contains 0 = 1.
This suggests that an implementation of aggregation should rename all shared
private symbols even if they occurred as a consequence of enriching a shared
module. �

Example 4 Conservativity of M and M ′ is also needed. Let Φ be the signature
with constants 0, 1 and a binary operation +, let Σ add to Φ a hidden constant
c, let A have the equation 0 + c = 1 + c, let Σ′ = Φ′ = Φ, and let A′ have the

Composing Hidden Information Modules over Inclusive Institutions 111

equations (∀X) X + X = 0 and (∀X, Y, Z) X + (Y + Z) = (X + Y) + Z. Then
the equation 0 = 1 + 0 is in Vth(M + M ′) but not in (Vth(M)∪Vth(M ′))•, and
this occurs because M is not conservative. �

The two semantics naturally extend to an arbitrary number of modules:
[[M1 + · · ·+ Mn]]1 = Vth(M1 + · · ·+ Mn), and [[M1 + · · ·+ Mn]]2 = (Vth(M1) ∪
... ∪Vth(Mn))•, where the closure is over Φ1 ∪ ... ∪ Φn. We then have

Corollary 1. If the given institution is distributive and if Mj = (Φj , Σj, Aj)
for j = 1, ..., n are conservative such that Σi ∩ Σj = Φi ∩ Φj for i, j = 1, ..., n
with Mi �= Mj, then:

1. [[M1 + · · ·+ Mn]]1 = [[M1 + · · ·+ Mn]]2 .
2. m |= M1 + · · ·+ Mn iff m�Φj |= Mj for j = 1, ..., n, where m is a (Φ1 ∪ ... ∪

Φn)-model.
3. M1 + · · ·+ Mn is conservative.

5.2 Renaming

Renaming is straightforward for transparent algebraic specifications: given a
specification (Σ, A) and a morphism h : Σ → Σ′, the renaming of (Σ, A) by h,
denoted (Σ, A)�h, is obtained by renaming each Σ-sentence in A, i.e., (Σ, A)�h =
(Σ′, h(A)). The situation is more complex for modules with hiding, because only
the visible symbols are renamed, and because renamed symbols could clash with
private names. These problems are handled abstractly by signature pushouts.

Definition 7. Given M = (Φ, Σ, A) and h : Φ→ Φ′, the renaming of M by
h, written M � h, is the module (Φ′, Σh, hΣ(A)) (see Convention 1). Moreover,
[[M � h]]1 = Vth(Φ′, Σh, hΣ(A)), and [[M � h]]2 = h(Vth(M))•, where the closure
is over Φ′.

The morphism h is first extended to the morphism hΣ on the whole working
signature, and then A is renamed by hΣ . This is well defined because Φ′ ↪→ Σh

and hΣ(A) is a set of Σh-sentences. Notice that h : M → M � h is a module
morphism by the Generalized Closure Lemma (Lemma 1), so m |= M � h implies
m�h |= M for any Φh-model m.

The next result says that, assuming conservativity, the two semantics coin-
cide: the visible theorems of a renamed module are exactly those generated by
the renamed visible theorems of the initial module, i.e., the models of the re-
named module are exactly those whose reducts are models of the initial module;
moreover, conservativity is preserved under renaming.

Proposition 7. If M = (Φ, Σ, A) is a conservative module, then

1. [[M � h]]1 = [[M � h]]2 .
2. m |= M � h iff m�h |= M for any Φ′-model m.
3. M � h is conservative.

112 Joseph Goguen and Grigore Roşu

Proof: For 1., we need ThΦ′
Φ′(h(ThΣ

Φ (A))) = ThΣh

Φ′ (hΣ(A)). Lemma 1 implies
h(ThΣ

Φ (A))) ⊆ ThΣh

Φ′ (hΣ(A)); applying ThΦ′
Φ′ to this inclusion, Proposition 4

gives ThΦ′
Φ′(h(ThΣ

Φ (A))) ⊆ ThΣh

Φ′ (hΣ(A)). Conversely, let a ∈ Sen(Φ′) such that
hΣ(A) |=Σh

a and let m′ be a Φ′-model such that m′ |=Φ′ h(ThΣ
Φ (A)). We

need to show m′ |=Φ′ a. By the Satisfaction Condition, m′�h |=Φ ThΣ
Φ (A). Since

(Φ, Σ, A) is conservative, there is a Σ-model m such that m �Φ= m′ �h and
m |=Σ ThΣ

Σ(A). By the construction of pullbacks in Cat (Section 2.1), and since
Mod preserves intersection-union pushouts (Definition 1), there is a Σh-model,
say mh, such that mh�hΣ = m and mh�Φ′= m′. Then mh�hΣ |=Σ A (because
m |=Σ ThΣ

Σ(A) and A ⊆ ThΣ
Σ(A)), and so mh |=Σh

hΣ(A). Further, mh |=Σh
a

because hΣ(A) |=Σh
a. Finally, if ı′ is the inclusion Φ′ ↪→ Σh then mh |=Σh

ı′(a),
so mh�ı′ |=Φ′ a; therefore m′ |=Φ′ a.

2. follows since m�h |= M iff m�h |=Φ V th(M) iff m |=Φ′ h(V th(M)) (Satisfaction
Condition) iff m |=Φ′ h(V th(M))• iff m |=Φ′ V th(M � h) (by 1.) iff m |= M � h.

For 3., let m be a Φ′-model of ThΣh

Φ′ (hΣ(A)), that is, m |= M � h. By 2., m�h is
a Φ-model of ThΣ

Φ (A). Then by conservativity of (Φ, Σ, A), there is a Σ-model
mΣ of A such that mΣ�Φ= m�h. But the pair of morphisms hΣ and Φ′ ↪→ Σh

is a pushout of h and Φ ↪→ Σ; therefore, since Mod preserves these pushouts
(see Definition 1), by the construction of pullbacks in Cat, there is a Σh-model
m′ such that m′�(hΣ)= mΣ and m′�Φ′= m. Then by the Satisfaction Condition,
m′ |=Σh

hΣ(A), that is m′ is a Σh-model of ThΣh

Σh
(hΣ(A)). Therefore, for a Φ′-

model m of Vth(M �h) we have a Σh-model m′ of Th(M �h) such that m′�Φ′= m.
This shows that M � h is conservative. �

The following shows that conservativity is necessary here:

Example 5 Consider the unsorted equational logic module M = (Φ, Σ, A)
where Φ contains constants a, b and a binary operation f , Σ adds one more
constant c, and A contains the equations f(a, c) = a and f(b, c) = f(a, a); sup-
pose also that Φ′ consists of only one constant d and that h takes both a and
b to d. Then h(Vth(M))• is an empty theory because Vth(M) is empty, while
Vth(M �h) contains the equation f(d, d) = d. Notice that M is not conservative.
�

A desirable property of renamings is that they can be composed, in the sense
that (M � h)�g = M �(h; g) for any appropriate h and g. This is straightforward
for transparent specifications, but it can be hard to insure when hiding is allowed
because of the variety of conventions for renaming hidden symbols to prevent
name clashes with the visible symbols in the result (this is similar to the variety
of choices for hΣ discussed in Convention 1).

Proposition 8. If pushouts of inclusions in Sign are chosen such that they
can be composed vertically (in the sense of Convention 1), then (M � h) � g =
M � (h; g) for any module M = (Φ, Σ, A) and any morphisms h : Φ → Φ′ and
g : Φ′ → Φ′′.

Composing Hidden Information Modules over Inclusive Institutions 113

Proof: We calculate as follows:

((Φ, Σ, A) � h) � g = (Φ′, Σh, hΣ(A)) � g by Definition 7
= Φ′′, (Σh)g, g(Σh)(hΣ(A))) also by Definition 7
= (Φ′′, Σh;g, (h; g)Σ(A)) by hypothesis
= (Φ, Σ, A) � (h; g) again by Definition 7.

�

5.3 Enrichment

A common way to reuse software and specification is through enrichment, which
adds functionality to an existing module. For example, lileanna [42] imple-
ments enrichment by adding a partial signature to the given signature and then
adding code over the resulting signature. However, it is simpler to use extensions
of total signatures.

Definition 8. Given modules M = (Φ, Σ, A) and (Φ′, Σ′, A′) with Φ ↪→ Φ′ and
Σ ↪→ Σ′, the enrichment of M by (Φ′, Σ′, A′), written M@(Φ′, Σ′, A′), is
the module (Φ′, Σ′, A ∪ A′), and [[M@(Φ′, Σ′, A′)]]1 = Vth(Φ′, Σ′, A ∪ A′) and
[[M@(Φ′, Σ′, A′)]]2 = Vth(Φ′, Φ′ ∪Σ, A ∪Vth(Φ′ ∪Σ, Σ′, A′)).

Both visible (Φ′) and private (Σ′) symbols can be added, as well as new sentences
(in A′) involving all these symbols. Note that if ı is the inclusion Φ ↪→ Φ′ then
ı : M → M@(Φ′, Σ′, A′) is a morphism of modules, so m |= M@(Φ′, Σ′, A′)
implies m�Φ |= M for any Φ′-model m.

The first semantics is straightforward, but the second requires some expla-
nation. The key is to take a working-in-M perspective, similar to the intuition
for module enrichment in software engineering, and to consider how the newly
added features affect the semantics of the current working environment, regarded
as visible. Since new visible symbols are added to M , those symbols extend the
working signature to Φ′ ∪Σ, and their effect on the working environment is the
visible theorems of the module (Φ′ ∪Σ, Σ′, A′). We first prove the following:

Lemma 2. In the context of Definition 8, if Σ ↪→ Ψ ↪→ Σ′ is such that (Ψ, Σ′, A′)
is conservative, then ThΣ′

Ψ (A ∪A′) = ThΨ
Ψ (A ∪ ThΣ′

Ψ (A′)).

Proof: Since A ⊆ ThΣ
Ψ (A ∪ A′) and ThΣ

Ψ (A′) ⊆ ThΣ′
Ψ (A ∪ A′), it follows by

Proposition 4 that ThΨ
Ψ (A ∪ ThΣ′

Ψ (A′)) ⊆ ThΣ′
Ψ (A ∪ A′). Conversely, let a be a

Ψ -sentence in ThΣ′
Ψ (A ∪ A′). In order to prove that a is in ThΨ

Ψ (A ∪ ThΣ′
Ψ (A′)),

take a Ψ -model m of A ∪ ThΣ′
Ψ (A′). Since (Ψ, Σ′, A′) is conservative, there is

a Σ′-model m′ of A′ such that m′ �Ψ= m. But m |=Ψ A, that is, m′�Ψ |=Ψ

A; then by the satisfaction condition we get m′ |=Σ′ A. Therefore m′ |=Σ′

A ∪A′, and so m′ |=Σ′ a, because we supposed that A ∪A′ |=Σ′ a. Consequently,
the satisfaction condition implies m′�Ψ |=Ψ a, i.e., m |=Ψ a. Therefore, a is in
ThΨ

Ψ(A ∪ ThΣ′
Ψ (A′)). �

114 Joseph Goguen and Grigore Roşu

Proposition 9. In the context of Definition 8, if (Φ′∪Σ, Σ′, A′) is conservative
then

1. [[M@(Φ′, Σ′, A′)]]1 = [[M@(Φ′, Σ′, A′)]]2 ,
2. M@(Φ′, Σ′, A′) is conservative if (Φ′, Φ′ ∪Σ, A∪Vth(Φ′ ∪Σ, Σ′, A′)) is con-

servative.

Proof: Replacing Ψ by Φ′ ∪Σ and then taking the Φ′-visible theorems of the
two sides in the equality given by Lemma 2, we get ThΣ′

Φ′ (A∪A′) = ThΦ′∪Σ
Φ′ (A∪

ThΣ′
Φ′∪Σ(A′)). Equation 1. now follows from the calculation

[[M@(Φ′, Σ′, A′)]]1 = Vth(Φ′, Σ′, A ∪A′)
= ThΣ′

Φ′ (A ∪A′)
= ThΦ′∪Σ

Φ′ (A ∪ThΣ′
Φ∪Σ(A′))

= Vth(Φ′, Φ′ ∪Σ, A ∪Vth(Φ′ ∪Σ, Σ′, A′))
= [[M@(Φ′, Σ′, A′)]]2 .

For 2., let m be a Φ′-model of Vth(M@(Φ′, Σ′, A′)). Then by Proposition
4, m is also a Φ′-model of Vth(Φ′, Φ′ ∪ Σ, A ∪ Vth(Φ′ ∪ Σ, Σ′, A′)) and so by
conservativity, there is a (Φ′ ∪Σ)-model m′′ of A∪Vth(Φ′ ∪Σ, Σ′, A′) such that
m′′�Φ′= m. Now, since (Φ′ ∪Σ, Σ′, A′) is conservative, there is a Σ′-model m′ of
A′ such that m′�Φ′∪Σ= m′′. By the Satisfaction Condition, m′ |=Σ′ A, so that
m′ |=Σ′ A ∪A′ and, of course, m′�Φ′= m. �

One can enrich an imported module with essentially anything, including in-
consistent sentences. But an important special case is when no new visible sym-
bols are added. This is useful when refining an incomplete module that declares
an interface, or when one wants to further constrain an existing module in order
to change its intended semantics (for example, adding the equation 10 = 0 to
the module that specifies integers to get integers modulo 10).

Corollary 2. If M ′ = (Σ, Σ′, A′) is a conservative module, then

1. Vth(M@(Φ, Σ′, A′)) = Vth(Φ, Σ, A ∪ Vth(M ′)), and
2. M@(Φ, Σ′, A′) is conservative if (Φ, Σ, A ∪Vth(M ′)) is conservative.

Proof: This follows by Proposition 9, replacing Φ′ by Φ. �

Technically, enriching is a special case of aggregation in our approach, because
M@(Φ′, Σ′, A′) = M +(Φ′, Σ′, A′). However, the results that were developed for
aggregation assumed that the aggregated modules did not have common private
symbols, which fails for enrichment, where all the private symbols of the enriched
module are available.

5.4 Hiding

Hiding information is very natural in our approach; it just restricts visibility to
a deeper subsignature.

Composing Hidden Information Modules over Inclusive Institutions 115

Definition 9. If M = (Φ, Σ, A) is a module and Ψ is a subsignature of Φ, then
Ψ�M is the module (Ψ, Σ, A); also [[Ψ�M]]1 = Vth(Ψ, Σ, A), and [[Ψ�M]]2 =
(Ψ, Φ, Vth(M)). We call � the information hiding operator.

Fewer theorems remain visible after an information hiding operation. The term
“export operator” is used for � in [2], but we prefer the more explicit term,
after [15]; this operation is essentially the same as the “derive” operation of
Clear [7]. If ı : Ψ ↪→ Φ, then ı : Ψ�M → M is a module morphism, so m |= M
implies m�Ψ |= Ψ�M for any Φ-model m. The following shows the relationship
between the visible theorems of Ψ�M and the visible theorems of M , that is, a
relationship between the two semantics, and it also gives a sufficient condition
under which hiding preserves conservativity.

Proposition 10. If M = (Φ, Σ, A) is a module and Ψ ↪→ Φ is a signature
inclusion, then

1. [[Ψ�M]]1 = [[Ψ�M]]2 and
2. Ψ�M is conservative if M and (Ψ, Φ, Vth(M)) are conservative.

Proof: 1. is equivalent to ThΣ
Ψ (A)) = ThΦ

Ψ(ThΣ
Φ (A)), which is 10. of Propo-

sition 4. For 2., let m be a Ψ -model of ThΣ
Ψ (A)). Since ThΣ

Ψ (A)) = ThΦ
Ψ (ThΣ

Φ (A)),
by the conservativity of (Ψ, Φ, ThΣ

Φ (A)), there is a Φ-model m′ of ThΦ
Φ(ThΣ

Φ (A)) =
ThΣ

Φ (A) such that m′�Ψ= m. Then by the conservativity of (Φ, Σ, A) there is a
Σ-model m′′ of ThΣ

Σ(A) with m′′�Φ= m′. Therefore m′′�Ψ= m, and so (Φ, Σ, A)
is conservative. �

Although conservativity is not needed to show equivalence of the two se-
mantics for hiding, it is needed for equivalence of the semantics for the other
operations. This is why we always give sufficient conditions for conservativity of
resulting modules. Notice that conservativity of M does not guarantee conserva-
tivity of Ψ�M : for example, for M a transparent module (which is automatically
conservative) and Ψ such that Ψ�M is not conservative, as in Example 4.

Testing conservativity of a module (Ψ, Σ, A) can be difficult, and depends on
the underlying logic. In many sorted equational logics, one can enrich a Ψ -algebra
with new carriers for private sorts (in Σ − Ψ), and with new private operations,
and then show that the new Σ-algebra satisfies A. Of course, the fewer private
symbols, the easier this is. For this reason, we prefer to reduce showing the
conservativity of a module with visible signature Ψ and working signature Σ,
to the conservativity of other two modules: one with visible signature Ψ and
working signature Φ, for Ψ ↪→ Φ ↪→ Σ, and the other with visible signature Φ
and working signature Σ, as in the above proposition.

5.5 Parameterization

One of the most effective supports for software reuse is parameterization. Many
expositions only treat the one parameter case, saying that it generalizes to many
parameters in an obvious way. Since one of our goals is conditions for the cor-
rectness of logic-independent algorithms to flatten complex module structures,

116 Joseph Goguen and Grigore Roşu

and since shared features of parameters are important in this, we treat multiple
parameterization explicitly, and prove that it is a colimit.

Definition 10. A parameterized module M [α1 :: P1, ..., αn :: Pn] is a set of
module morphisms αj ; ıj : Pj →M , where M = (Φ, Σ, A) and Pj = (Φ′

j , Σ
′
j , Bj)

for j = 1, ..., n, such that:
1. αj : Φ′

j → Φj are isomorphisms of signatures,
2. ıj : Φj ↪→ Φ are inclusions of signatures, and
3. Φ1, ..., Φn are disjoint.

We say that M is parameterized by α1, ..., αn. P1, ..., Pn are called the inter-
faces and M the body. Given a parameterized module M [α1 :: P1, ..., αn :: Pn]
and morphisms hj : Pj → Mj with Mj = (Ψj , Ωj , Aj) for j = 1, ..., n, the in-
stantiation of M by h1, ..., hn, written M [h1, ..., hn], is the module

(Φh, Σ(hΦ) ∪
n⋃

j=1

Ωj , (hΦ)Σ(A) ∪
n⋃

j=1

Aj) ,

where h =
n⋃

j=1

α−1
j ; hj (see Section 2.2 and Convention 1).

Φi
� � ��

α−1
i ;hi

��

n⋃
j=1

Φj
� � ��

h��

Φ
� � ��

hΦ

��

Σ

(hΦ)Σ

��
Ψi

� � ��
n⋃

j=1

Ψj
� � �� Φh

� � �� Σ(hΦ)

This complex looking definition has a natural interpretation. First, it says that
parameters have disjoint interface signatures in the parameterized module; this
condition, called non-shared parameterization in CafeOBJ [14], avoids obvious
name clashes, and is easily achieved in practice by tagging parameter signa-
tures with their parameter names. Second, informally speaking, it says that the
instantiation of a module is computed as follows:

1. Calculate α−1
i ; hi, which gives for each symbol in M belonging to a parameter

Pi its actual instance symbol;
2. store all these mappings in a table h;
3. Calculate h’s pushout hΦ, which “knows” how to avoid name clashes between

visible symbols defined in M and visible symbols that may accidentally occur
in some of the actual parameters;

4. Calculate hΦ’s pushout (hΦ)Σ , which solves further name conflicts with M ’s
private symbols; and

5. Rename all sentences declared in M accordingly.

Notice that all these steps are purely textual and can be efficiently implemented.

Proposition 11. In the context of Definition 10,
1. hΦ : M →M [h1, ..., hn] is a module morphism,
2.

⋃n
j=1 Ψj ↪→ Φh : M1 + · · ·+ Mn →M [h1, ..., hn] is also a morphism, and

3. M [h1, ..., hn] = M � hΦ + M1 + · · ·+ Mn .

Composing Hidden Information Modules over Inclusive Institutions 117

Proof: For 1., hϕ : M →M [h1, ..., hn] is a morphism because:
hΦ(Vth(M)) = hΦ(ThΣ

Φ (A))
⊆ Th

Σ(hΦ)

Φh
((hΦ)Σ(A)) (Lemma 1)

⊆ Th
Σ(hΦ)∪

⋃n
j=1 Ωj

Φh
((hΦ)Σ(A) ∪⋃n

j=1 Aj) (Proposition 4)
= Vth(M [h1, ..., hn]) .

2. is straightforward, because by Proposition 4,

Th
⋃n

j=1 Ωj⋃
n
j=1 Ψj

(
n⋃

j=1

Aj) ⊆ Th
Σ(hΦ)∪

⋃n
j=1 Ωj

Φh
((hΦ)Σ(A) ∪

n⋃
j=1

Aj) .

3. follows from the equalities
M � hΦ + M1 + · · ·+ Mn

= (Φ, Σ, A) � hΦ + (Ψ1, Ω1, A1) + · · ·+ (Ψn, Ωn, An)
= (Φh, Σ(hΦ), (hΦ)Σ(A)) + (Ψ1, Ω1, A1) + · · ·+ (Ψn, Ωn, An) (Def. 7)
= (Φh ∪

⋃n
j=1 Ψj , Σ(hΦ) ∪

⋃n
j=1 Ωj , (hΦ)Σ(A) ∪⋃n

j=1 Aj) (Def. 6)
= (Φh, Σ(hΦ) ∪

⋃n
j=1 Ωj , (hΦ)Σ(A) ∪⋃n

j=1 Aj)
= M [h1, ..., hn] , (Def. 10)

using Proposition 4. �

This proposition suggests the following for the two semantics of instantiating
a parameterized module:
Definition 11. Using the same context and notation as in Definition 10, let
[[M [h1, ..., hn]]]1 = Vth(Φh, Σ(hΦ) ∪

⋃n
j=1Ωj , (hΦ)Σ(A) ∪ ⋃n

j=1Aj) and also let
[[M [h1, ..., hn]]]2 = (hΦ(Vth(M)) ∪⋃n

j=1 Vth(Mj))•, where closure is over Φh.

The following gives sufficient and necessary conditions under which the two
semantics for the result module coincide, and shows that conservativity of the
result module does not depend on conservativity of its original interface:
Proposition 12. In the context of Definition 10, if the given institution is dis-
tributive and if
1. M, M1, ..., Mn are conservative,
2. Σ(hΦ) ∩Ωj = Ψj for j = 1, ..., n, and
3. Ωi ∩Ωj = Ψi ∩ Ψj for i, j = 1, ..., n, with Mi �= Mj,

then
1. [[M [h1, ..., hn]]]1 = [[M [h1, ..., hn]]]2 ,
2. m |= M [h1, ..., hn] iff m�hΦ |= M and m�Φj |= Mj for any Φh-model m,
3. M [h1, ..., hn] is conservative.

Proof: By Propositions 11 and 7, V th(M � hΦ) = hΦ(V th(M))• and M � hΦ

is conservative, where the closure is over Φh-sentences. Since M [h1, ..., hn] =
M � hΦ + M1 + · · · + Mn, iteratively applying Propositions 11 and 6 we get
that V th(M [h1, ..., hn]) = (hΦ(V th(M))• ∪⋃n

j=1 V th(Mj))• and M [h1, ..., hn] is
conservative, where the closures are over Φh-sentences. �

The conservativity of M, M1, ..., Mn and the equalities Ωi ∩Ωj = Ψi ∩Ψj are
needed because of 3. in Proposition 11 and because of their necessity in Proposi-
tions 6 and 7. The condition Σ(hΦ)∩Ωj = Ψj may look restrictive, but in practice

118 Joseph Goguen and Grigore Roşu

it is not, since informally, it says that an implementation should either rename
some private symbols in M in the instantiated module to avoid conflicts with
private symbols in Mj , or else rename some symbols in Mj before the instantia-
tion is done. This assumption is needed because Proposition 6 requires that the
modules involved in a sum have pairwise disjoint private symbols; condition 2.
concerns the pairs involving the module M � hΦ, while condition 3. concerns the
remaining pairs.

An important general property of parameterization is that the instantiated
module is a colimit. This can be proved in a logic independent framework for
modules which respect the above natural requirements:

Theorem 2. In the context of Proposition 12, if Sij are (Ψi∩Ψj)-modules8 such
that Vth(Sij) ⊆ Vth(Mi) ∩ Vth(Mj), then M [h1, ..., hn] is a colimit of

M1 P1
h1��

α1;ı1
��

��
��

�

���
��

��
��Mi Pi

hi��

αi;ıi

��
�

		�
���

Sij

� �

ıi
ij

��������

�

ıj
ij ���

��
��

��
� M

Mj Pj
hj��

αj ;ıj			

��				

Mn Pn
hn��

αn;ın

where ıiij is the inclusion Ψi ∩ Ψj ↪→ Ψi, for i, j = 1, ..., n.

Proof: Notice that ıiij : Sij → Mi are module morphisms, and that giving a
cocone of the diagram above is equivalent to giving a module C, a morphism
f : M → C, and morphisms gj : Mj → C such that
1. hi; gi = αi; ıi; f for i = 1, ..., n, and
2. ıiij ; gi = ıjij ; gj for i, j = 1, ..., n.

The diagram below may help the reader follow the rest of this proof.

Φi
� � ��

α−1
i ;hi

��

⋃n
j=1 Φj

h

��

� � �� Φ

hΦ

��
f

���
��

��
��

��
��

��
��

�

Ψi
� � ��

gi

������������������������������
⋃n

j=1 Ψj
� � ��

g

��

Φh

r

��
Ψ

8 Think of Sij as the shared modules of Mi and Mj .

Composing Hidden Information Modules over Inclusive Institutions 119

First we show that hΦ : M → M [h1, ..., hn] with Ψi ↪→ Φh : Mi → M [h1, ..., hn]
for i = 1, ..., n is a cocone:

hi; (Ψi ↪→ Φh) = (αi; α−1
i); hi; ((Ψi ↪→ ⋃n

j=1 Ψj); (
⋃n

j=1 Ψj ↪→ Φh))
= αi; ((α−1

i ; hi); (Ψi ↪→ ⋃n
j=1 Ψj)); (

⋃n
j=1 Ψj ↪→ Φh)

= αi; ((Φi ↪→ ⋃n
j=1 Φj); h); (

⋃n
j=1 Ψj ↪→ Φh)

= αi; (Φi ↪→ ⋃n
j=1 Φj); (h; (

⋃n
j=1 Ψj ↪→ Φh))

= αi; (Φi ↪→ ⋃n
j=1 Φj); ((

⋃n
j=1 Φj ↪→ Φ); hΦ)

= αi; ((Φi ↪→ ⋃n
j=1 Φj); (

⋃n
j=1 Φj ↪→ Φ)); hΦ

= αi; ıi; hΦ .

Also, it is straightforward that ıiij ; (Ψi ↪→ Φh) = ıjij ; (Ψj ↪→ Φh), because there is
only one inclusion Ψi ∩ Ψj ↪→ Φh.

Now let f : M → C and gi : Mi → C for i = 1, ..., n be another cocone, with
C = (Ψ, Ω, B). Then Ψ with the signature morphisms gi : Ψi → Ψ for i = 1, ..., n
form a cocone in Sign for the diagram given by the pairs of inclusions

Ψi Ψi ∩ Ψj
� � ��� ��� Ψj

for i, j = 1, ..., n, so by 2. of Proposition 1, there is a unique signature morphism,
let us call it g :

⋃n
j=1 Ψj → Ψ , such that (Ψi ↪→ ⋃n

j=1 Ψj); g = gi. Since

(Φi ↪→ ⋃n
j=1 Φj); ((

⋃n
j=1 Φj ↪→ Φ); f) = ((Φi ↪→ ⋃n

j=1 Φj); (
⋃n

j=1 Φj ↪→ Φ)); f
= ıi; f
= (α−1

i ; αi); ıi; f
= α−1

i ; (αi; ıi; f)
= α−1

i ; (hi; gi)
= (α−1

i ; hi); gi

= (α−1
i ; hi); ((Ψi ↪→ ⋃n

j=1 Ψj); g)
= ((α−1

i ; hi); (Ψi ↪→ ⋃n
j=1 Ψj)); g

= ((Φi ↪→ ⋃n
j=1 Φj); h); g

= (Φi ↪→ ⋃n
j=1 Φj); (h; g) ,

by 1. of Proposition 1, we get (
⋃n

j=1 Φj ↪→ Φ); f = h; g. But the rightmost square
in the diagram at the beginning of this proof is a pushout, so there is a unique
r : Φh → Ψ such that hΦ; r = f and (

⋃n
j=1 Ψj ↪→ Φh); r = g.

We claim that r is a module morphism, from M [h1, ..., hn] to C. Indeed,

r(V th(M [h1, ..., hn])) = r((hΦ(V th(M)) ∪⋃n
j=1 V th(Mj))•)

⊆ r(hΦ(V th(M)) ∪⋃n
j=1 V th(Mj))•

= (r(hΦ(V th(M))) ∪⋃n
j=1 r(V th(Mj)))•

= (f(V th(M)) ∪⋃n
j=1 gj(V th(Mj)))•

⊆ V th(C)•

= V th(C) .

The first line above follows by 1. of Proposition 12, and the second by the Closure
Lemma. The uniqueness of r : M [h1, ..., hn] → C follows from the uniqueness
of r : Φh → Φ as a signature morphism. Let r′ : M [h1, ..., hn] → C be another

120 Joseph Goguen and Grigore Roşu

morphism such that hΦ; r′ = f and (Ψi ↪→ Φh); r′ = gi for i = 1, ..., n. Since the
inclusions Ψi ↪→ ⋃n

j=1 Ψj are an epimorphic family and

(Ψi ↪→ ⋃n
j=1 Ψj); ((

⋃n
j=1 Ψj ↪→ Φh); r′) = ((Ψi ↪→ ⋃n

j=1 Ψj); (
⋃n

j=1 Ψj ↪→ Φh)); r′

= (Ψi ↪→ Φh); r′

= gi

= (Ψi ↪→ ⋃n
j=1 Ψj); g ,

by 1. of Proposition 1, (
⋃n

j=1 Ψj ↪→ Φh); r′ = g. By the uniqueness of r : Φh → Ψ

with hΦ; r = f and (
⋃n

j=1 Ψj ↪→ Φh); r = g, it follows that r′ = r. �

Many practical modules have just one parameter, in which case sharing between
actual parameters is not a problem, and a simpler result can be stated:

Corollary 3. In the context of Proposition 12, if M [α1 :: P1] is a parameterized
module and if h1 : P1 →M1 is a module morphism, then the square

P1
α1;ı1 ��

h1

��

M

hΦ

��
M1 ı

�� M [h1]

is a pushout in MSpec, where h = α−1; h1 and ı : Ψ1 ↪→ Φh.

Proof: By Theorem 2 with S11 = M1. �

6 Conclusions and Future Research

This paper studies the composition of modules that can hide information, over
inclusive institutions, a class which appears to include all logical systems of
practical interest. Two different semantics for composed modules were defined,
and it was shown that they agree if all the modules involved are conservative. In
addition, a number of basic “laws of software composition” were proved; these
assert that two different module compositions have the same semantics, for all
instances of their variables that range over modules. An important conclusion
is that inclusive institutions can greatly simplify the kind of proofs done in
this paper. This setting also allows algorithms for flattening compositions to
be presented as mainly based on signatures pushouts, which is a purely textual
operation for concrete institutions. In addition, we have given a brief institutional
explanation for why our approach applies to programs as well as to specifications.

In addition to the applications discussed in the introduction to powerful
module systems for programming and specification languages, and its emerging
applications to database and meta-data integration, the ideas of parameterized
programming, as refined and extended in this paper, seem promising for many
other areas involving knowledge representation, as was already suggested in the
original paper on Clear [7]. Examples of such promising areas include the se-
mantic web [16], ontologies for scientific research, cognitive linguistics [17], and
business workflow models.

Composing Hidden Information Modules over Inclusive Institutions 121

Some interesting directions for future theoretical research include the follow-
ing: extend the results of this paper to a multi-institutional framework (e.g., see
[13,41]) to accommodate multi-paradigm specification languages; prove further
laws, such as distributivity (see [2,15]); and adapt the normalization theorem
of [2] to our setting. It would also be interesting to develop an algorithm for
pushouts of the usual signatures, that is closed under horizontal and/or vertical
composition in the sense of Convention 1; an implementation (e.g., in Perl) of
the composition operations using this algorithm could be useful for a wide range
of applications.

Acknowledgements. The authors thank Virgil Emil Căzănescu for his ongo-
ing collaboration on inclusion systems, and Răzvan Diaconescu for stimulating
debates on institution-based modularization.

Dedication. This paper is dedicated to Ole-Johan Dahl, a gentleman of the
old school, and a pioneer in language design, whose work always exhibited the
good taste and elegance of its author. He will be sorely missed.

References

1. Suad Alagic and Philip Bernstein. A model theory for generic schema management.
In Giorgio Ghelli and Gösta Grahne, editors, Proceedings, Database Programming
Languages 2001, pages 228–246. Springer, 2002. Lecture Notes in Computer Sci-
ence, volume 2397.

2. Jan Bergstra, Jan Heering, and Paul Klint. Module algebra. Journal of the Asso-
ciation for Computing Machinery, 37(2):335–372, 1990.

3. Jan Bergstra and John Tucker. Equational specifications, complete term rewriting
systems, and computable and semicomputable algebras. Journal of the Association
for Computing Machinery, 42(6):1194–1230, 1995.

4. Philip Bernstein. Applying model management to classical meta data problems.
In Proceedings, Conf. on Innovative Database Research, pages 209–220, 2003.

5. Michel Bidoit and Rolf Hennicker. Constructor-based observational logic. Techni-
cal Report LSV–03–9, Laboratoire Spcification et Verification, CNRS de Cachan,
March 2003.

6. Tomasz Borzyszkowski. Completeness of a logical system for structured specifica-
tions (wadr’97). In Francesco Parisi Presicce, editor, Recent Trends in Algebraic
Development Techniques, pages 107–121. Springer, 1997. Notes in Theoretical
Computer Science, volume 1376.

7. Rod Burstall and Joseph Goguen. Putting theories together to make specifications.
In Raj Reddy, editor, Proceedings, Fifth International Joint Conference on Arti-
ficial Intelligence, pages 1045–1058. Department of Computer Science, Carnegie-
Mellon University, 1977.

8. Maŕıa Victoria Cengarle and Martin Wirsing. A calculus of higher order param-
eterization for algebraic specification. Bulletin of the Interest Group in Pure and
Applied Logics, 3(4):615–641, 1995.

9. CoFI. casl summary, 2002. www.cofi.info.
10. Virgil Emil Căzănescu and Grigore Roşu. Weak inclusion systems. Mathematical

Structures in Computer Science, 7(2):195–206, 1997.

122 Joseph Goguen and Grigore Roşu

11. Virgil Emil Căzănescu and Grigore Roşu. Weak inclusion systems; part 2. Journal
of Universal Computer Science, 6(1):5–21, 2000.

12. Răzvan Diaconescu. Category-based modularization for equational logic program-
ming. Acta Informatica, 33(5):477–510, 1996.

13. Răzvan Diaconescu. Extra theory morphisms in institutions: logical semantics for
multi-paradigm languages. Applied Categorical Structures, 6(4):427–453, 1998.

14. Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification. World
Scientific, 1998. AMAST Series in Computing, volume 6.

15. Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for
modularization. In Gerard Huet and Gordon Plotkin, editors, Logical Environ-
ments, pages 83–130. Cambridge, 1993.

16. Tim Berners-Lee et al. Semantic web, 2003. www.w3.org/sw/.
17. Gilles Fauconnier and Mark Turner. The Way We Think. Basic, 2002.
18. Joseph Goguen. Parameterized programming. Transactions on Software Engineer-

ing, SE–10(5):528–543, September 1984.
19. Joseph Goguen. Principles of parameterized programming. In Ted Biggerstaff and

Alan Perlis, editors, Software Reusability, Volume I: Concepts and Models, pages
159–225. Addison Wesley, 1989.

20. Joseph Goguen. Types as theories. In George Michael Reed, Andrew William
Roscoe, and Ralph F. Wachter, editors, Topology and Category Theory in Computer
Science, pages 357–390. Oxford, 1991. Proceedings of a Conference held at Oxford,
June 1989.

21. Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39(1):95–146, January 1992.

22. Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer
Science, 245(1):55–101, August 2000.

23. Joseph Goguen and Grigore Roşu. Hiding more of hidden algebra. In Formal
Methods 1999 (FM’99), volume 1709 of Lecture Notes in Computer Sciences, pages
1704–1719. Springer-Verlag, 1999.

24. Joseph Goguen and Grigore Roşu. Institution morphisms. Formal Aspects of
Computing, 13:274–307, 2002.

25. Joseph Goguen, Grigore Roşu, and Kai Lin. Conditional circular coinductive
rewriting. In Recent Trends in Algebraic Development Techniques, 16th Inter-
national Workshop, WADT’02. Springer, Lecture Notes in Computer Science, to
appear 2003. Selected papers from a workshop held in Frauenchiemsee, Germany,
24–27 October 2002.

26. Joseph Goguen and William Tracz. An implementation-oriented semantics for
module composition. In Gary Leavens and Murali Sitaraman, editors, Foundations
of Component-based Systems, pages 231–263. Cambridge, 2000.

27. Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-
Pierre Jouannaud. Introducing OBJ. In Joseph Goguen and Grant Malcolm,
editors, Software Engineering with OBJ: algebraic specification in action, pages
3–167. Kluwer, 2000.

28. Rolf Hennicker. Context induction: a proof principle for behavioral abstractions.
Formal Aspects of Computing, 3(4):326–345, 1991.

29. Horst Herrlich and George Strecker. Category Theory. Allyn and Bacon, 1973.
30. Kestrel Institute. SpecWare language manual, version 4.0, 2003.

www.specware.org/doc.html.

Composing Hidden Information Modules over Inclusive Institutions 123

31. Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
32. José Meseguer and Joseph Goguen. Initiality, induction and computability. In

Maurice Nivat and John Reynolds, editors, Algebraic Methods in Semantics, pages
459–541. Cambridge, 1985.

33. Till Mossakowski. Specifications in an arbitrary institution with symbols. In
Proceedings, WADT’99, volume 1827 of Lecture Notes in Computer Science, pages
252–270. Springer, 2000.

34. David Parnas. Information distribution aspects of design methodology. Informa-
tion Processing ’72, 71:339–344, 1972. Proceedings of 1972 IFIP Congress.

35. Grigore Roşu. Hidden Logic. PhD thesis, University of California at San Diego,
2000. http://ase.arc.nasa.gov/grosu/phd-thesis.ps.

36. Grigore Roşu. Inductive behavioral proofs by unhiding. In Proceedings of Coalge-
braic Methods in Computer Science (CMCS’03), volume 82 of Electronic Notes in
Theoretical Computer Science. Elsevier Science, 2003.

37. Grigore Roşu. Abstract semantics for module composition. Technical Report
CSE2000–0653, University of California at San Diego, May 2000.

38. Grigore Roşu and Joseph Goguen. Hidden congruent deduction. In Ricardo Caferra
and Gernot Salzer, editors, Automated Deduction in Classical and Non-Classical
Logics, volume 1761 of Lecture Notes in Artificial Intelligence, pages 252–267.
Springer, 2000. Papers from First Order Theorem Proving ’98 (FTP’98).

39. Donald Sannella, Stefan Sokolowski, and Andrzej Tarlecki. Toward formal devel-
opment of programs from algebraic specifications: parameterisation revisited. Acta
Informatica, 29:689–736, 1992.

40. Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution.
Information and Control, 76:165–210, 1988.

41. Andrzej Tarlecki. Moving between logical systems. In Magne Haveraaen, Olaf Owe,
and Ole-Johan Dahl, editors, Recent Trends in Data Type Specification, volume
1130 of Lecture Notes in Computer Science, pages 478–502. Springer, 1996.

42. William Tracz. lileanna: a parameterized programming language. In Proceed-
ings, Second International Workshop on Software Reuse, pages 66–78, March 1993.
Lucca, Italy.

Towards the Verifying Compiler

Tony Hoare

Microsoft Research Ltd.
Cambridge

UK

Abstract. A verifying compiler is one that proves mechanically that a
program is correct before allowing it to be run. Correctness of a pro-
gram is defined by placing assertions at strategic points in the program
text, particularly at the interfaces between its components. From re-
cent enquiries among software developers at Microsoft, I have discovered
that assertions are already used widely in program development prac-
tice. Their main rôle is as test oracles, to detect programming errors as
close as possible to their place of occurrence. Further progress in reliable
software engineering is currently supported by programmer productiv-
ity tools. I conjecture that these will be developed to exploit assertions
of various kinds in various ways at all stages in program development.
Eventually assertions will be used more widely for their original purpose
of establishing important aspects of the correctness of large programs.
However, the construction of a fully verifying compiler remains as a long-
term challenge for twenty-first century Computing Science.

1 Historical Introduction

An assertion in its most familiar form is a Boolean expression that is written as
an executable statement at any point in the program text. It can in principle
or in practice be evaluated by the computer, whenever control reaches that
point in the program. If an assertion ever evaluates to false, the program is by
definition incorrect. But if all assertions always evaluate to true, then at least no
program defect has ever been detected. But best of all, if it can be proved that
the assertion will always evaluate to true on every possible execution, then the
program is certainly correct, at least insofar as correctness has been captured by
the assertions embedded in it. The construction and validation of such proofs
are the goal of the verifying compiler.

An understanding of the rôle of assertions in Checking a Large Routine [Tur-
ing] goes back to Alan Turing in 1949. The idea of a verifying compiler, which
uses automatic theorem proving to guarantee the correctness of the assertions,
goes back to Bob Floyd [Floyd]. And the idea of writing the assertions even
before writing the program was propounded in 1968 by Edsger Dijkstra in an
article on a Constructive Approach to the Problem of Program Correctness [Di-
jkstra]. Dijkstra’s insight has been the inspiration of much of the research in
formal methods of software engineering conducted in University Computing De-
partments over the last thirty years.

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 124–136, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Towards the Verifying Compiler 125

Ole-Johan Dahl has made many contributions to research on program correct-
ness. He began by extending program correctness reasoning to semicoroutines
[Dahl1], a disciplined structure for quasi-parallel programming which had been
introduced in Simula. In [Dahl2] he discussed a question that still deserves an
answer today: can program proving be made practical? In [Dahl3] and [Dahl4]
he began to extend specification and verification technology to object-oriented
programming. In [Dahl,Owe] and [Dahl5] he applied formal analytic techniques
based on assertions to the design of new programming language features, particu-
larly those that are relevant for reliable exploitation of concurrency. Correctness
of concurrent object-oriented programs is of increasing concern in the present
day. Finally, a complete treatment of verifiable programming is the topic of his
major textbook [Dahl6].

([Dahl5] reports a presentation that Ole-Johan gave at a symposium to mark
my retirement from Oxford University in 1999. During his presentation, all
the lights in the building went out. He was able to complete his presentation in
darkness, maintaining the rapt attention of his audience. None of the subsequent
speakers were prepared to match this achievement, so the symposium adjourned
until the electricians could restore power.)

Early attempts to implement a verifying compiler were frustrated by the
inherent difficulties of mechanical theorem proving. These difficulties have in-
spired productive research in a number of directions, and with the aid of massive
increases in computer power and capacity considerable progress has been made.
I suggest that an intensification of cooperative research efforts will result in the
emergence of a workable verifying compiler some time in the current century.

A second problem has been that meaningful assertions are notoriously dif-
ficult to write. Computers are most widely applied in areas such as commerce
and in social interactions, where there is no generally accepted framework of sci-
entific concepts to help in the formulation of specifications and the elucidation
of assumptions and preconditions for the successful use of a software service.
Much of the code in use today contains very few assertions. Few of the inter-
nal interfaces have any sort of formal specification. This means that there is
no body of test material against which progress in program verification can be
assessed. A third problem has been that the benefits of assertions have been
insufficiently recognised to motivate their wider use by programmers. Many
graduates of reputable Computing Science degrees never encounter assertions in
their entire university education. Assertions are not adequately supported by
current programming languages, and they are not widely exploited in current
program development environments. But these negative factors are gradually
being overcome. In sections 2 and 3, I will present evidence for the increasing
rôle of assertions in todays programming practice.

But by far the greatest problem for program verification has always been lack
of market demand. For many years, my friends in the software industry have told
me that in all surveys of customer requirements the top two priorities have always
been firstly an increase in features, and secondly an increase in performance.
Reliability takes only the third place. But now it seems that widely available

126 Tony Hoare

software already provides enough features to satisfy nearly all demands, and
widely available hardware already satisfies most demands for performance and
capacity. The main remaining obstacle to the full integration of computers into
industry and commerce and into the life of society as a whole is a wide-spread
and well-justified reluctance to trust the software. A recent email [Gates] by
Bill Gates to Microsoft and all its subsidiaries has put trustworthy computing
at the head of the policy agenda. This policy has already been put into force
by devoting the efforts of the entire Microsoft Windows team during the whole
month of February 2002 to a software security drive. Expensive it has been, but
not as expensive as some recent viruses like Code Red, which have led to world-
wide losses estimated at over a billion dollars. In the long run, it is satisfaction of
market demand for software reliability, and reduction in the high cost of program
testing, that will motivate adoption of a verifying compiler in normal program
development practice.

2 Assertions in Program Testing

In my thirty years as an academic scientist, I pursued the traditional academic
ideals of rigour and precision in scientific research. I sought to enlarge our un-
derstanding of the theory of programming to show that large-scale programs can
be fully specified and proved to be correct with absolute mathematical certainty.
I hoped that increased rigour in top-down program development would signifi-
cantly reduce if not eliminate the burden of program testing and debugging. I
would quote with approval the famous dictum of Dijkstra, that program testing
can prove the existence of program bugs, but never their absence.

A very similar remark was made by the famous philosopher Karl Popper.
His Philosophy of Science is based on the principle of falsification, namely that
a scientific theory can never be verified by scientific experiment; it can only be
falsified. I accept his view that a scientific advance starts with a theory that
has some a priori grounds for credibility, for example, by deduction from the
principle that a force has an effect that is inversely proportional to the square
of the distance at which it acts. A new theory that applies such a principle to
a new phenomenon is subjected to a battery of tests that have been specifically
designed, not to support the theory, but rather to refute it. If the theory passes
all the tests, it will be used with confidence to help in the formulation and test of
further and more advanced theories, and in the design of experiments to refute
them.

Extending this analogy to computer software, we can see clearly why pro-
gram testing is in practice such a good assurance of the reliability of software.
A competent programmer always has a prior understanding, perhaps quite in-
tuitive, of the reasons why the program is going to work. If this hypothesis
survives a rigorous testing regime, the software has proved itself worthy of deliv-
ery to a customer. If a few small changes are needed to correct minor anomalies
in the program, they are quickly made — unfortunate perhaps, but that hap-
pens to scientific theories too. In Microsoft, every project has assigned to it a

Towards the Verifying Compiler 127

team of testers, recruited specially for their skill as experimental scientists; they
constitute about a half of the entire program development staff on each project.

This account of the vital rôle of testing in the progress of science is rein-
forced by consideration of the rôle of test in engineering. In all its branches,
rigorous product test is an essential prerequisite before shipping a new or im-
proved product to the customer. For example, in the development of a new aero
jet engine, an early working model is installed on an engineering test bench for
exhaustive trials. This model engine will first be thoroughly instrumented by
insertion of test probes at every accessible internal and external interface. An
exhaustive test schedule is designed to exercise the engine at all the extremes
of its intended operating range. By continuously checking tolerances at all the
crucial internal interfaces, the engineer detects incipient errors immediately, and
never needs to test the assembly as a whole to destruction. By continuously
striving to improve the set points and tighten the tolerances at each interface,
the quality of the whole product can be gradually raised. That is the essence
of the six sigma quality improvement philosophy, which has been widely ap-
plied in manufacturing industry to increase profits at the same time as customer
satisfaction.

In the engineering of software, assertions at the interfaces between modules
of the program play the same rôle as test probes in engine design. This ana-
logy with engineering instrumentation suggests that programmers should devote
effort to increase in the number and strength of assertions in their code. This
will make their system more likely to fail under test; but the reward is that it is
subsequently much less likely to fail in the field.

In the three years since I retired from academic life, I have been working in
the software industry. This has enabled me to balance the idealism that inspires
academic research with the practical compromises that are essential to industrial
engineering. In particular, I have radically changed my attitude towards program
testing, which I now understand to be entirely complementary to scientific design
and verification methods; testing makes an equally essential contribution to the
development of reliable software on an industrial scale. It is no accident that
program testing exploits the same kind of specifications by assertions that form
the basis of program verification.

3 Assertions in Current Microsoft Development Practice

In this section I will describe some of the ways in which I have found that asser-
tions are already exploited by program developers in Microsoft Corporation. I
have grounds for believing that many other Companies find them just as useful.
Their main use is not for program verification but as a test oracle during the de-
bugging phase of development. The fact that they are useful for many purposes
besides verification is encouraging, because it shows that programmers can al-
ready be persuaded to annotate their programs with reliable assertions. Indeed,
because they are so thoroughly tested every time the program is changed, they
are widely regarded as the only reliable form of program documentation.

128 Tony Hoare

The defining characteristic of an engineering test probe is that it is removed
from the engine before manufacture and delivery to the customer. In computer
programs, this effect is achieved by means of a conditionally defined macro. The
macro is resolved at compile time in one of two ways, depending on a compile-
time switch called DEBUG, set for a debugging run, and unset when compiling
code that will be shipped to the retail customer. An assertion may be placed
anywhere in the middle of executable code by means of this ASSERT macro, which
is typically declared

#ifdef DEBUG
#define ASSERT(b,str)
if (b)
else report (str); assert (false)

#else #define ASSERT(b,str)
#endif

In addition to their rôle in product test, assertions are widely recommended
as a form of program documentation. This is of vital concern to major soft-
ware suppliers today, because their main development activity is the continuous
evolution and improvement of old code to meet new market needs. Even quite
trivial assertions, like the following, give added value when the code is modified
for a subsequent release of the product.

if (a >= b) ... a++ ; ... ;
...

ASSERT(a != b, ?a has just been incremented to avoid equality’) ;
x = c/(a - b)

One development manager in Microsoft recommends that for every bug cor-
rected in test, an assertion should be added to the code which will fire if that
bug ever occurs again. Ideally, there should be enough assertions in a program
that nearly all bugs are caught by assertion failure, because that is much easier
to diagnose than other forms of failure, for example, a crash. Some developers
are willing to spend a whole day to design precautions that will avoid a week’s
work tracing an error that may be introduced later, when the code is modified
by a less experienced programmer. Success in such documentation by assertions
depends on long experience and careful judgment in predicting the most likely
errors a year or more from now. Not everyone can spare the time to do this un-
der pressure of tight delivery schedules. But it is likely that a liberal sprinkling
of assertions in the code would increase the accumulated value of legacy, when
the time comes to develop a new release of the software.

In the early testing of a prototype program, the developer wants to check
out the main paths in the code before dealing with all the exceptional conditions
that may occur in practice. In order to document such a development plan, some
developers have introduced a variety of assertion which is called a simplifying
assumption.

Towards the Verifying Compiler 129

SIMPLIFYING_ASSUMPTION
(strlen(input) < MAX_PATH, ’not yet checking for overflow’)

The assumption documents exactly the cases which the developer is not yet
ready to treat, and it also serves as a reminder of what remains to do later.
Violation of such assumptions in test will simply cause a test case to be ignored,
and should not be treated as an error. Of course, in compiling retail code for
delivery to the customer, the debug flag is not set; and then the macro will give
rise to a compile-time error; it will not just be ignored like an ordinary assertion.
This gives a guarantee against the risk incurred by more informal comments and
messages about known bugs and work that is still TO DO; such comments have
occasionally and embarrassingly found their way into code shipped by Microsoft.

All the best fault diagnoses are those given at compile time, since that is
much cheaper than diagnosis of errors by test. In one product team in Microsoft,
a special class of assertion has been implemented called a compile-time check,
because its value, true or false, can be computed at compile time.

COMPILE_TIME_CHECK (sizeof(x)==sizeof(y),
’addition is undefined for arrays of different sizes’)

The compile time error message is generated by a macro that expands to an
invalid declaration (negative array bound) in C when the condition evaluates
to false; of course, each use of the compile time assertion must be restricted to
use only values and functions computable by the compiler. (The compiler will
complain if not.) The example above shows a test of conformity of the size of
two array parameters for a method. Of course, as we make progress towards a
verifying compiler, the aim will be to increase the proportion of assertions whose
potential violation will be detected at compile time.

Assertions can help a compiler produce better code. For example, in a C-
style case statement, a default clause that cannot be reached can be marked
with an UNREACHABLE assertion, and a compiler (for example Visual C) avoids
emission of unnecessary code for this case.

switch (condition)
case 0: ... ; break;
case 1: ... ; break;
default: UNREACHABLE(’condition is really a boolean’);

In future, perhaps assertions will give further help in optimisation, for exam-
ple by asserting that pointers or references do not point to the same location.
Of course, if such an assertion were false, the effect of the optimisation could
be awful. But fortunately assertions which have been frequently tested are re-
markably reliable; indeed, they are widely believed to be the only believable
form of program documentation. When assertions are automatically proved by
a verifying compiler, they will be even more believable.

A global program analysis tool called PREfix [Bush] is now widely used by
Microsoft development teams. Like Lint [Johnson], its rôle is to detect pro-
gram defects at the earliest possible stage, even before the program is compiled.

130 Tony Hoare

Typical defects are a NULL pointer reference, an array subscript out of bound,
a variable not initialised. PREfix works by analysing all paths through each
method body, and it gives a report for each path on which there may be a de-
fect. The trouble is that most of the paths can never in fact be activated. The
resulting false positive messages are called noise, and they still require consider-
able human effort to analyse and reject; and the rejection of noise is itself highly
prone to error. It is rumoured that the recent Code Red virus gained access
through a loophole that had been detected by PREfix and deliberately ignored.

Assertions can help the PREfix anomaly checker to avoid unnecessary noise.
If something has only just three lines ago been inserted in a table, it is annoying
to be told that it might not be there. A special ASSUME macro allows the pro-
grammer to tell PREfix relevant information about the program that cannot at
present be automatically deduced.

pointer = find (something);
PREFIX_ASSUME (pointer != NULL,

’see the insertion three lines back’);
pointer ->mumble = blat ;

Assertions feature strongly in the code for Microsoft Office — around a quar-
ter of a million of them. They are automatically given unique tags, so that
they can be tracked in successive tests, builds and releases of the product, even
though their line-number changes with the program code. Assertion violations
are recorded in RAID, the standard data base of unresolved issues. When the
same fault is detected by two different test cases, it is twice as easy to diag-
nose, and twice as valuable to correct. This kind of fault classification defines
an important part of the team’s programming process.

In Microsoft, over half the effort devoted to program development is at-
tributed to test. For legacy code, there is an accumulation of regression tests
that are run for many weeks before each new release. It is therefore very impor-
tant to select tests that are exceptionally rigorous, so as to increase the chance
of catching bugs before delivery. Obviously, tests that have in the past violated
assertions are the most important to run again. Violation of a simplifying as-
sumption is a particular reason for increasing the priority of a test, because it is
likely to exercise a rare and difficult case.

The original purpose of assertions was to ensure that program defects are
detected as early as possible in test, rather than after delivery. But the power of
the customer’s processor is constantly increasing, and the frequency of delivery
of software upgrades is also increasing. It is therefore more and more cost-
effective to leave a moderate proportion of the assertions in shipped code; when
they fire they generate an exception, and the choice is offered to the customer of
sending a bug report to Microsoft. The report includes a dump of the stack of
the running program. About a million such reports arrive in Redmond every day
for statistical assessment, and the more frequent ones are corrected in service
packs. A controlled restart resulting from assertion failure is much better than
a crash, which is otherwise a likely result of entry into a region of code that has
never been encountered in test.

Towards the Verifying Compiler 131

4 Assertions in Programming Languages

The examples of the previous section have all been implemented as macro def-
initions by various teams in Microsoft, and each of them is used only by the
team which implemented them. In the code for Microsoft Windows, we have
found over a thousand different assertion macro declarations. This constitutes a
serious impediment to the deployment of a standard programming analysis tool
to exploit assertions. The best way of solving this problem in the long term is
to include an adequate range of assertions into the basic programming language.
A standard notation is likely to be more widely accepted, more widely taught,
and more widely used than a macro devised by an individual programmer or
programming team. Furthermore, inclusion of assertions in the language would
remind the language designer of the desirability of helping programmers in their
most difficult task, namely that of establishing confidence in the correctness
of their programs. As I suggested when I first started research on assertions
[Hoare1], provision of support for sound reasoning about program correctness is
a suitably objective and scientific criterion for judging the quality of a program-
ming language design.

Significant progress towards this goal has been made by Bertrand Meyer in
his design of the Eiffel programming language [Meyer]. Assertions are recom-
mended as a sort of contract between the implementers and the users of a library
of classes; each side undertakes certain obligations in return for corresponding
guarantees from the other. The same ideas are incorporated in draft proposals
for assertion conventions adapted for specifying Java programs. Two examples
are the Java modelling language JML [Leavens et al.] and the Extended Static
Checker ESC for Modula 3 and Java [Leino et al.]. ESC is already an educational
prototype of a verifying compiler.

Assertions at interfaces presented by a library give exceptionally good value.
Firstly, they are exploited at least twice, once by the implementer of the interface
and possibly many times by all its users. Secondly, interfaces are usually more
stable than code, so the assertions that define an interface are used repeatedly
whenever library code or user code is enhanced for a later release. Interface
assertions permit unit testing of each module separately from the programs that
use it; and they give guidance in the design of rigorous test cases. Finally, they
enable the analysis and proof of a large system to be split into smaller parts,
designed and checked separately for each module. This is absolutely critical.
Even with fully modular checking, the first application of PREfix to a twenty
million line product took three weeks of machine time to complete the analysis;
and even after a series of optimisations and compromises, it still takes three
days. A faster analysis tool is now available for more frequent modular use.

Three useful kinds of assertions at interfaces are preconditions, postcondi-
tions and invariants. A precondition is defined as an assertion made at the
beginning of a method body. It is the caller of the method rather than the
implementer who is responsible for the validity of the precondition on entry;
the implementer of the body of the method can just take it as an assumption.
Recognition of this division of responsibility protects the virtuous writer of a

132 Tony Hoare

precondition from having to inspect faults which have been caused by a careless
caller of the method. In the design of test cases for unit test, each case must be
generated or designed to satisfy the precondition, preferably at the edges of its
range of validity.

A post-condition is an assertion which describes (at least partially) the pur-
pose of a method call. The caller of a method is allowed to assume its validity.
The obligation is on the writer of the method to ensure that the post-condition is
always satisfied. Test cases for unit test must be generated or designed with the
best possible chance of falsifying the postcondition. In fact, postconditions and
other assertions should be so strong that they are almost certain to find any de-
fect in the program. As with a scientific theory, it should be almost inconceivable
that an incorrect program will escape detection by one of the tests.

In object oriented programs, preconditions and post-conditions document the
contract between the implementer and the user of the methods of a class. The
interface between successive calls of different methods of an object of the class is
specified by means of an invariant. An invariant is defined as an assertion that
is intended to be true of every object of a class at all times except while the code
of the class is executing. It can be specified as a suitably named boolean method
of the same class. An invariant does not usually feature as part of the external
specification of a class; but rather describes the strategy of the implementation
of the individual methods. For example, in a class that maintains a private list
of objects, the invariant could state the implementer’s intention that the list
should always be circular. While the program is under test, the invariant can
be retested after each method call, or even before as well.

Invariants are widely used today in software engineering practice, though
not under the same name. For example, every time a PC is switched on, or
a new application is launched, invariants are used to check the integrity of the
current environment and of the stored data base. In the Microsoft Office project,
invariants on the structure of the heap are used to help diagnose storage leaks.
In the telephone industry, they have been used by a software auditing process,
which runs concurrently with the switching software in an electronic exchange.
Any call records that are found to violate the invariant are just re-initialised or
deleted. It is rumoured that this technique once raised the reliability of a newly
developed telephone switching system from undeliverable to irreproachable.

In Microsoft, I see a future rôle for invariants in post-mortem dump-cracking,
to check whether a failure was caused perhaps by some incident long ago that
corrupted data on the heap. This test has to be made on the customer machine,
because the heap is too voluminous to communicate in totality to a central
server. There is a prospect that the code to conduct the tests will be injected
into the customer’s software as the occasion demands.

In summary, the primary use of assertions today is for program instrumen-
tation; they are inserted as probes in program testing, and they serve as a test
oracle to give early warning of program defects, close to the place that they
occur. They are also used for program documentation, to assist later developers
to evolve the product to meet new market needs. In particular, they specify

Towards the Verifying Compiler 133

interfaces between major software components, such as libraries and applica-
tion programs. Assertions are just beginning to be used by the C compiler in
code optimisation. They are used to classify and track defects between customer
sites, between test cases, and between code changes. Assertions are being intro-
duced into program analysis tools like PREfix, to raise the precision of analysis
and reduce the noise of false positives. Increasingly, assertions are shipped to
the customer to make a program more rugged, by forestalling errors that might
otherwise lead to a crash.

At present, Microsoft programmers find it profitable to formulate assertions
that achieve each of these benefits separately. Even more profitable would be to
obtain all these benefits together, by reusing the same assertion again and again
for different purposes at different stages in the progress of a project. In this way,
programmers will be encouraged to introduce assertions as early as possible
into the development process. They can then play a guiding rôle in a top-
down process of program design, as suggested in Dijkstra’s original constructive
approach to correctness.

5 The Future

I expect that assertions will bring even greater benefits in the future, when they
are fully supported by a range of programmer productivity tools. They will help
in deep diagnosis of post-mortem dumps. They will serve as a guide in test case
generation and prioritisation. They will help to make code concurrency-safe, and
to reduce security loop-holes. In dealing with concurrency and security, there is
still plenty of scope for fundamental research in the theory of programming.

In conclusion, I would like to re-iterate the research goal which I put forward
[Hoare1] when I first embarked on research into program correctness based on
assertions. It was to enable future programming languages and features to be
designed from the beginning to support reasoning about the correctness of pro-
grams. In this way, I hoped to establish an objective criterion for evaluating the
quality of the language design. I believe that modern language designers, includ-
ing the designers of Java and C#, are beginning to recognise this as a valuable
goal, though they have not yet had the idea of using assertions to help them
achieve it. As a result, these languages still include a number of fashionable
features, and low-level constructions which are often motivated by the desire to
contribute to efficiency. Unfortunately, these features can make it difficult or
impossible to use local reasoning about the correctness of a component, in the
assurance that correctness will be preserved when the components are assembled
into a large system.

Fortunately, these problems are soluble even without a switch to a more
disciplined programming language. Program analysis tools like PREfix show
the way [Bush, Evans]. By conducting an analysis of the source code for the
entire system, it is possible to identify the use of the more dangerous features of a
programming language, which can be objectively identified as those which violate
modularity and invalidate normal correctness reasoning. A notorious example is

134 Tony Hoare

the introduction of aliasing by passing the same (or overlapping) parameter more
than once by reference to the same procedure call. Such violations are flagged by
a warning message. Of course, the warnings can be ignored. But in Microsoft,
at least, there is a growing reluctance to ignore warning messages. It is a brave
programmer who has the confidence to guarantee program correctness in the
face of such a warning, when the penalty for incorrectness is the introduction
of a virus that causes a billion dollars of damage. And when all programmers
rewrite their code to eliminate all such warnings, they are effectively already
using a much improved programming language, essentially a safe subset of the
original legacy language.

A second promising development for users of legacy languages is the design
pattern [Gamma et al.]. A design pattern is based on some coherent program
structuring concept, whose purpose is carefully explained. It consists of a collec-
tion of code fragments that can be inserted into the users own program, together
with a set of protocols and design disciplines to be observed in the rest of the
program, to ensure the integrity of the program structure. It is likely that pro-
gram analysis tools will evolve to police the observance of such disciplines. In
effect, an advanced program analyser will come to resemble a compiler for an im-
proved language, with new and potentially verifiable features included as design
patterns, and known defects of existing languages removed. And these benefits
are obtained effectively without any abrupt change of notation for writing the
code.

These are the reasons for optimism that professional programmers in the
software industry will be ready to accept and use a verifying compiler, when
it becomes available. In industry, work towards the evolution of a verifying
compiler will progress gradually by increasing the sophistication of program
analysis tools. But there is a splendid opportunity for academic research to lead
the way towards the longer term future. I have already mentioned the verifying
compiler as one of the major challenges of Computing Science in the twenty first
century. To meet the challenge we will need to draw on contributions from all the
different technologies relevant to mechanised proof. Like the Human Genome
project, or the launch of a new scientific satellite, or the design of a sub-atomic
particle accelerator, progress on such a vast project will depend on a degree of
collaboration among scientists that is so far unprecedented in Computer Science.

There is now a great mass of legacy software available as test material for
evaluating progress towards software verification. Work can start by annotating
and improving the quality of the interfaces to the base class libraries, which
come with the major object oriented languages. The work will be meticulous,
exhausting and like most of scientific research, it will include a large element of
routine. It will require deep commitment, and wide collaboration, and certainly
the occasional breakthrough. Fortunately, the goal of the project is closely
aligned with the ideals of the open source movement, which seeks to improve
quality by contributions from many workers in the field.

We will also need to recognise the complementary rôle of rigorous program
testing; we must integrate verification with all the other productivity tools that
are aimed at facilitating the program development process, including the main-

Towards the Verifying Compiler 135

tenance and enhancement of legacy code. I expect that the use of full program
verification will always be expensive; and the experienced software engineer will
always have to use good engineering judgement in selecting a combination of
verification and validation techniques to achieve confidence in correctness, relia-
bility and serviceability of software. For safety critical software, the case for full
verification is strongest. For operating system kernels and security protocols,
it is already known that there is no viable alternative. For assurance of the
structural integrity of a large software system, proof of avoidance of overflows
and interference is extremely valuable. There will also be many cases where
even a partial verification will permit a significant reduction in the volume and
the cost of testing, which at present accounts for more than half the total cost
of software development. Reduction in the high cost of testing and reduction
in the interval to delivery of new releases will be major commercial incentives
for the expansion of the rôle of verification; they will be just as persuasive as
the pursuit of an ideal of absolute correctness, which has been the inspiration of
scientific research in the area. In this respect, software engineering is no different
from other branches of engineering, where well-judged compromises in the light
of costs and timescales are just as important as an understanding of the relevant
scientific principles, and skill in the application of the various tools. For further
details about prospects for fulfilling the challenge of a Verifying Compiler, see
[Hoare2].

The fact that formal software verification will not by itself solve all the prob-
lems of software reliability should not discourage the scientific community from
taking up the challenge. Like other major scientific challenges, the appeal of
the project must be actually increased by its inherent difficulty. But the pri-
mary motivation must be scientific: the pursuit of the old academic ideals of
purity and integrity, and the enlargement of understanding by the discovery and
exploitation of scientific truth.

6 Acknowledgements

My thanks to all my new colleagues in Microsoft Research and Development, who
have told me about their current use of assertions in programming and testing.
Their names include Rick Andrews, Chris Antos, Tom Ball, Pete Collins, Terry
Crowley, Mike Daly, Robert Deline, John Douceur, Sean Edmison, Kirk Glerum,
David Greenspoon, Yuri Gurevich, Martyn Lovell, Bertrand Meyer, Jon Pincus,
Harry Robinson, Hannes Ruescher, Marc Shapiro, Kevin Schofield, Wolfram
Schulte, David Schwartz, Amitabh Srivastava, David Stutz, James Tierney.

Acknowledgments also to all my colleagues in Oxford and many other Univer-
sities, who have explored with me the theory of programming and the practice of
software engineering. In my present rôle as Senior Researcher in Microsoft Re-
search, I have the extraordinary privilege of witnessing and maybe even slightly
contributing to the convergence of academic and industrial research, and I have
good hope of seeing results that contribute back to the development of the theory
and also to the practice of programming.

136 Tony Hoare

7 References

[Bush et al] W.R. Bush, J.D. Pincus, and D.J. Sielaff: A static analyzer for find-
ing dynamic programming errors, Software — Practice and Experience 2000 (30)
775–802.

[Dahl1] O.-J. Dahl: An approach to correctness proofs of semicoroutines, Mathemat-
ical Foundations of Computer Science, 3rd Symposium, Springer LNCS 28, (1975)
157–174.

[Dahl2] O.-J. Dahl: Can program proving be made practical? In Les fondements de la
programmation, Institut de recherch dinformatique et dautomatique 57–114. (In
English: ISBN 2726101844).

[Dahl3] O.-J. Dahl: Time sequences as a tool for describing program behaviour. In
Abstract Software Specifications, Springer LNCS 86 (1979), 274–290.

[Dahl4] O.-J. Dahl: Object-orientation and formal techniques. In VDM 90, Formal
methods in Software Development, Springer LNCS 428 (1992), 1–11.

[Dahl5] O.-J. Dahl: A note on monitor versions. In Millennial Perspectives in Com-
puter Science, Palgrave (2000), 91–98.

[Dahl6] O.-J. Dahl: Verifiable programming, Prentice Hall (1992), 269 pages.
[Dahl,Owe] O.-J. Dahl and O. Owe: Formal development with ABEL. In Proceedings

of Formal Software Development Methods, VDM 91, Springer LNCS 552 (1991),
320–362.

[Dijkstra] E.W. Dijkstra: A Constructive Approach to the problem of Program Cor-
rectness. In BIT 8 (1968) 174–186

[Evans, Larochelle] D. Evans and D. Larochelle: Improving Security Using Extensible
Lightweight Static Analysis, IEEE Software, Jan/Feb 2002.

[Floyd] R.W. Floyd: Assigning meanings to programs, Proc. Amer. Soc. Symp. Appl.
Math. 19, (1967) 19–31

[Gamma et al.] E. Gamma, R. Helm, R. Johnson and J. Vlissides: Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Gates] W.H. Gates: internal communication, Microsoft Corporation, 2002
[Hoare1] C.A.R. Hoare: An Axiomatic Basis for Computer Programming, Comm.

ACM, 12(10) Oct 1969, 576–580, 583.
[Hoare2] C.A.R. Hoare: The Verifying Compiler: a Grand Challenge for Computer

Research, JACM (50) 1, (2003) 63–69
[Johnson] S.C. Johnson: Lint, a C program Checker. In UNIX Programmers Manual,

vol 2A, 292–303.
[Leavens et al.] G.T. Leavens, A.L. Baker and C. Ruby: Preliminary design of JML:

a behavioural interface specification language for Java, Technical Report 98-060,
Iowa State University, Department of Computer Science, August 2001.

[Leino et al.] K.R.M. Leino, G. Nelson and J.B. Saxe: ESC/Java users manual. Tech
note 2002.002, Compaq SRC, Oct. 2000.

[McCarthy] J. McCarthy: Towards a mathematical theory of computation, Proc. IFIP
Cong. 1962, North Holland, (1963)

[Meyer] B. Meyer: Object-Oriented Software Constrcution, 2nd edition, Prentice Hall,
(1997)

[Turing] A.M. Turing: Checking a large routine, Report on a Conference on High
Speed Automatic Calculating machines, Cambridge University Math. Lab. (1949)
67–69

Object-Oriented Specification and

Open Distributed Systems

Einar Broch Johnsen1,2 and Olaf Owe2

1 BISS, FB3, University of Bremen, Germany
2 Dept. of Informatics, University of Oslo, Norway

{einarj, olaf}@ifi.uio.no

Abstract. An object-oriented approach to program specification and
verification was developed by Ole-Johan Dahl with the long-term Abel
project. Essential here was the idea of reasoning about an object in terms
of its observable behavior, where the specification of an object’s present
behavior is given by means of its past interactions with the environment.
In this paper, we review some of the ideas behind this approach and
show how they can be fruitfully extended for reasoning about black-box
components in open object-oriented distributed systems.

1 Introduction

Object-orientation was introduced by Ole-Johan Dahl and Kristen Nygaard with
the programming language Simula [14, 15, 41, 13] in 1966. Since then, object-
oriented programming (OOP) has become an increasingly widespread and popu-
lar programming paradigm, lately with Java. Also for system specification, many
formalisms have adapted ideas from OOP to better organize specifications; for
example, Actors [2], Maude [9], Object-Z [46], UML [7], and the π-calculus [38]
all support some object-oriented concepts. The term object-based has emerged to
describe formalisms that support objects, i.e., that incorporate notions of object
identity and encapsulation in the language [40]. To be fully object-oriented, a
formalism should also have an inheritance mechanism reminiscent of OOP. We
will now explain what we mean by the central object-oriented concepts of object
identity, encapsulation, and inheritance in the context of specification notations:

Identity. Objects have explicit identifiers. When communication occurs between
named objects, an object knows which objects it addresses with a given
communication. Object identifiers can be transmitted from one object to
another during such communication. An object’s awareness of other objects
in its environment can thus increase over time.

Encapsulation and information hiding. An object encapsulates its internal vari-
ables (attributes), so these are not directly perceived from outside the object.
This has some noteworthy consequences. Internally, we gain control of how
the object’s variables are manipulated. Variables can only be manipulated by
operations (methods) that the object offers to its environment, so the state
space of an object resembles an abstract data type. Externally, an object

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 137–164, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

138 Einar Broch Johnsen and Olaf Owe

appears as a black box that reacts in a (more or less) predictable manner
to impulses from its environment. To use an object, knowledge of its im-
plementation is not needed, only of the available methods. (Explicit hiding
mechanisms were not present in the first version of Simula.)

Inheritance. A subclass inherits a superclass by adding attributes and modify-
ing or extending its methods. Class inheritance, introduced in Simula, is a
powerful structuring mechanism for developing large systems. However, to
really be of value, inheritance should not only allow reuse of code, but also
of the reasoning done for the superclass [48]. A similar notion of inheritance
or reuse at the level of reasoning can be found in behavioral (or predicate)
subtyping [35]. In principle, these two notions of inheritance are not directly
related, but when class inheritance is restricted to behavioral subtyping, we
get substitutability, by which we mean that an object of a class C can be
replaced by an object of a subclass of C at the level of reasoning.3

Restricting class inheritance to ensure behavioral subtyping comes at the
expense of free code reuse and may seem too limiting in the eyes of many
programmers. Also, combining these notions lead to the so-called inheritance
anomalies [37]. In contrast, in the Abel project [10, 11, 16, 12], Dahl takes the
approach that reasoning is done at the specification level, and code is shown to
implement specifications, for instance by means of type simulation. Hence, in
Abel, a class can simulate a type. Requirement specification of a concurrent
object is in terms of its observable behavior and may be implemented using (in-
ternal) state transitions. The observable behavior of an object up to some point
in time is recorded in its communication history (or finite trace), which gives us
an abstract view of the object’s state, and present behavior can be specified as a
function on the history. Traces are well-known from process algebra, for example
CSP [25]. However, generator inductive specifications of the permissible traces
as suggested by Dahl [10], where fix-points are not needed in the underlying
semantics, are different from the process algebraic approach (as explained in
Section 2.2). In contrast to approaches based on streams [33, 8], specifications
can be expressed by finite traces since the history at any given time is finite.

In this paper, our focus is on formal reasoning and specification of open dis-
tributed systems (ODS). These systems are subject to change at runtime, so we
consider concurrent objects, and more generally components, that exist in an
evolving environment. For instance, new objects can be introduced into the sys-
tem and old objects can be upgraded or replaced. Objects will often be supplied
by third party manufacturers and we cannot generally expect to have knowledge
of implementation details concerning objects in the environment. Instead, the
behavior of an object can be locally determined by its interaction with other
objects in the environment [2], i.e. by its observable behavior. Due to the com-
plexity of ODS, it is often advocated that system descriptions be aspectwise, in
so-called viewpoints [26]. In this paper, we address the issue of specifying ODS
3 An early work on substitutability in the setting of class invariants, pre- and postcon-

ditions on methods, and related requirements on method redefinition and external
attribute access, is the thesis of Wang [50], supervised by Dahl.

Object-Oriented Specification and Open Distributed Systems 139

by viewpoints of observable object behavior, based on the tradition in object-
oriented specification from Abel.

The paper is structured as follows. In the next section, we give a brief
overview of some important principles of object-oriented specification in Abel
and suggest extensions towards ODS. Section 3 considers openness within the
object-oriented framework. Section 4 introduces object viewpoints and behav-
ioral interfaces in an assumption guarantee specification style [32], inspired by
these principles. Section 5 illustrates the use of this formalism by a specification
of a software bus, i.e. an open communication infrastructure. Section 6 discusses
composition of assumption guarantee specifications in this setting and Section 7
relates this work to other formalisms for specifying ODS and outlines future
research issues before we conclude in Section 8.

2 Object-Oriented Specification

The Abstraction Building, Experimental Language (Abel) is a long-term re-
search project at the University of Oslo, centered around a student course in
formal methods and the development of a theorem prover. Abel is a wide spec-
trum language, expressing requirement specifications, constructive specifications
(models), and classes. The most important sources of ideas for Abel are object-
orientation, especially the notions of class and subclass, which originated from
the work on Simula; generator induction, from the work on Larch [23]; and
order-sorted algebras, from the work on OBJ [22]. Program development in Abel
consists of three steps:

Applicative level. Specification in terms of observable behavior uses abstract
data types, generator induction, and the local communication history. Sub-
types are either syntactical (cf. examples) or predicative. Abel supports
partial functions with partial logic [42].

Imperative level. Class implementation is state-based, establishing invariants
by means of Hoare logic [24, 12], with the history as a mythical variable.

Integration. The two levels are integrated by means of weak or strong simula-
tion. A type can be simulated by a class.

We will now consider each of the three steps and develop a brief example.

2.1 The Applicative Level of Abel

At an applicative level, specifications of concurrent objects are expressed by
permissible observable behavior, i.e. by the time sequence of input and output to
the program. This fits well with the object-oriented notion of encapsulation; only
visible operations are considered at the applicative level and the realization of the
object by means of internal data structures and implementation of operations
is postponed to the imperative level. An execution can be represented by a
sequence of communication events. In the case of non-terminating executions,
the sequences are infinite. However, infinite sequences are not easy to reason

140 Einar Broch Johnsen and Olaf Owe

about. In order to avoid infinite sequences, specifications are expressed in terms
of the finite initial segments of the executions, which express the abstract states
of the object. These sequences are commonly referred to as histories [10] or
traces [25]. An invariant on the history defines a set of traces by the prefix-
closure of the set of executions, so history invariants express safety properties in
the sense of Alpern and Schneider [3].

Dahl remarks that specifications in a generator inductive style closely resem-
ble programs in an applicative programming language [12]. The values of an ab-
stract data type are completely defined by its set of generator functions (or con-
structors) in the sense that all inhabitants of the type can be generated by suc-
cessive applications of the constructors. The definition f(x1, . . . , xn) == RHS
is terminating and generator inductive (TGI) if the right hand side RHS of the
equation uses the variables x1, . . . , xn, the constructors, case constructs, f itself,
and other TGI defined function symbols. In case of direct or indirect recursion,
syntactic requirements guarantee termination. Specifications where all expres-
sions are well-defined and only use TGI defined functions, can be evaluated in
a convergent term rewrite system. Furthermore, for TGI defined functions, in-
ductive arguments can be used in proofs; to each constructor corresponds one
hypothesis in the proof rule. Such proofs can also to a large extent be mechanized
by term rewrite systems.

Finite sequences. We present an abstract data type specification in the Abel
style for finite sequences parameterized over some type T . The type (schema)
Seq[T] is defined as the union of two subtypes, Eseq, which is the type of the
empty sequence over type T , and Seq1[T], which is the type of non-empty se-
quences over type T .

typeSeq[T] by Eseq, Seq1[T] ==
module

func ε :→ Eseq
func ˆ� ˆ : Seq[T]× T → Seq1[T]
genbas ε, ˆ� ˆ

endmodule

where ˆ denotes argument positions of functions with mixfix notation. Here, the
keyword genbas is used to indicate the functions used as a generator basis for
the type, so the finite sequences are constructed from two generator functions;
ε generates an empty sequence and s � x generates a non-empty sequence from
a sequence s and en element x of type T . In Abel, finite sequences are defined
by means of right append (suffix) rather than left append (prefix).

Using TGI definitions, several functions can be constructively defined on
the type of finite sequences Seq[T]. For instance, we can define left append
ˆ � ˆ : T × Seq[T] → Seq1[T], concatenation ˆ �� ˆ : Seq[T] × Seq[T] → Seq[T],
and length �ˆ : Seq[T]→ Nat by (case-free) equations:

x � ε = ε � x s �� ε = s �ε = 0
x � (s � y) = (x � s) � y s �� (t � x) = (s �� t) � x �(s � x) = �s + 1

Object-Oriented Specification and Open Distributed Systems 141

In these function definitions, the free variables in each equation have an implicit
universal quantifier, reminiscent of for instance ML, and each line corresponds
to a possible generator case.

Many useful functions are only partially defined on Seq[T], but TGI defined
and total on the subtype Seq1[T], which has only one generator (�). For instance,
we can define selector functions: right rest rr(̂) : Seq1[T]→ Seq[T] and left term
lt(̂) : Seq1[T]→ T by

rr(ε � x) = ε lt(ε � x) = x
rr((s � y) � x = rr(s � y) � x lt((s � y) � x) = lt(s � y)

The type of finite sequences and the functions we have defined above will now
be used in an example specification.

Example 1: We illustrate the applicative level of the Abel language by the
specification of an unbounded buffer object. The buffer receives input by means
of a get operation and transmits output by a put operation. The history of
the buffer is a sequence of operation calls, conventionally denoted H, and new
method invocations are recorded in the history by suffixing. Hence, the history
until present time is always available for reasoning, and present behavior of
the buffer is specified in terms of preceding activity. If we represent by a type
Calls the put and get operations ranging over the values of a given type T ,
then H : Seq[Calls]. Given a history sequence, we define a function cnt that
computes the implicit content of the buffer, cnt : Seq[Calls]→ Seq[T]. Thus, the
history gives us an abstract view of the state. The invariant of the specification
is defined as a predicate on the history, which is updated after every method call.
It follows that the history invariant is implicitly both pre- and postcondition of
every operation in the interface.

interface BufferSpec [T : Type]
begin

opr put(in x : T)
opr get(out x : T)

inv I(H)
where

I(ε) = ε
I(H � put(x)) = I(H)
I(H � get(x)) = I(H) ∧ if cnt(H) �= ε then x = lt(cnt(H)) else false fi

cnt(ε) = ε
cnt(H � put(x)) = cnt(H) � x
cnt(H � get(x)) = rr(cnt(H))

end

Both the invariant and the auxiliary function cnt are defined by terminat-
ing generator induction. An invocation get(x) updates the mythical variable:
H := H � get(x). As new values are added to the right of the content sequence

142 Einar Broch Johnsen and Olaf Owe

(calculated by cnt(H)), the first value is retrieved by the left term function
lt(cnt(H)) and the remaining content by the right rest function rr(cnt(H)). �

2.2 The Imperative Level of Abel

For the implementation of specifications in program code, a state-based guarded
command language is suggested. The invocation of an operation implemented
by G −→ S, where G is a guard and S is a program statement, must wait
until G holds and results in the execution of S. The communication history
is available at the implementation level as a “mythical” variable [12], which is
implicitly updated with a new event representing the invocation of an operation
after evaluation of the operation body. For verifying operations, Abel relies on
Hoare-logic. Given a history invariant, verifying an operation call op(x) consists
of establishing the validity of the formula {G ∧ I(H)} S {I(H � op(x))}.

Example 2: In this example, we propose a program code for the unbounded buffer
specified in Example 2.1. The content of the buffer is stored in an internal variable
cont : Seq[T]. The program invariant is given by the relationship between the
implicit content of the buffer, as extracted from the history, and the actual
content which is stored in cont.

class BufferClass [T : Type]
implements BufferSpec [T]

begin
var cont : Seq[T]

opr put(in x : T) == cont := cont � x
opr get(out x : T) == cont �= ε −→ [x := lt(cont); cont := rr(cont)]

inv cont = cnt(H)
end �

The constructive nature of this form of applicative specifications is close
to implementation, as illustrated by this program code for the specification of
Example 2.1. In fact, this class implementation can be derived directly from
the specification and the class invariant. (To obtain single transition systems,
program statements can be restricted to multiple assignment operations although
this is not done here.)

In Abel, the history is constructed by sequence suffixing, using right append
as the constructor in contrast to prefixing by means of left append. The history
is always available for reasoning, as an abstract representation of the state, from
which we can extract information. Consequently, the correct behavior of the
specified object can be determined by a predicate. Choosing the prefix construc-
tor instead would bring us to a recursive setting, similar to process algebras such
as CSP. In this case, the history is not available for reasoning and information
concerning the state must be passed along in process parameters that reveal
parts of the internal structure of the program. An illustrative example here is
the formalism CSP-OZ [20], which combines CSP with Object-Z. In this formal-
ism, objects specified in Object-Z are represented as CSP processes by including

Object-Oriented Specification and Open Distributed Systems 143

all attributes as process parameters. Abel specifications do not need to reveal
the internal structure of the program, so they are in this sense more abstract
than the corresponding process algebraic specifications. In particular, recursive
definition of processes and the resulting fix-point semantics are avoided.

Type simulation. In order to show that program code implements the intended
specification, Abel uses type simulation techniques [12]. An abstract type sim-
ulates a concrete type by means of an abstraction function. There are many
techniques for type simulation. In Abel, focus has been on both strong simu-
lation, where every function, and thereby every value, on the abstract type is
simulated by a function on the concrete type, and on weak simulation, where
concrete values at best approximate an abstract value, for instance giving room
for capacity constraints at the concrete level. Type approximation corresponds
to one possible method of data refinement. There is a rich literature on data
refinement; for a recent overview, the reader may consult de Roever and Engel-
hardt [18]. Although less standard, Abel’s refinement by type approximation
reflects a profound concern for the practical applicability of formal methods.

2.3 Explicit Object Identities

In this section, we show how the formalism presented above can be extended
in order to capture object interaction in systems with many objects. When we
consider concurrent objects that communicate in parallel systems, an object
may talk to several other objects. In this setting it is therefore not satisfactory
to model the object’s behavior by its interaction with an implicit environment
that consists of a single entity, as we did in the previous examples. Instead,
we now consider the environment of an object as an unbounded set of other
objects. When we specify an object in such a system, we will refer to this set
as the object’s (communication) environment. For object systems, the history
records communication between objects in the form of remote method calls.
Therefore, we introduce object identifiers in the events that are recorded in the
communication traces, so that every communication event contains the identity
of the transmitting object. This lets us express properties that should hold for
a single calling object, a particular calling object, or for all calling objects by
projections on the history. Also, we can specify how calls from different objects in
the environment are interleaved. We illustrate specifications with implicit object
identities in communication events by an example, following [17].

Example 3: Consider an object controlling write access to some shared data
resource. All objects in its environment are allowed to perform write operations
on the shared data, but only one object at a time; we want to specify that write
access is sequential. Assume that every event has an implicit sender identifier.
Now, we can project traces on an object identifier to express projection on the
set of all events associated with that identifier (ranging over operations) or on
the name of an operation to express projection on the set of events associated
with that operation (ranging over object identifiers).

144 Einar Broch Johnsen and Olaf Owe

Let OW represent (the completion of) an open write operation, W a write
operation, and CW a close write operation. Let the predicate t prs Reg express
that a trace t is a prefix of a trace in the regular language Reg. The prs predicate
will be used to express invariant properties on the history. As before, H denotes
the history of communication events involving the current object. We denote by
E the current environment of the object we are specifying.

interface SeqWrite [T : Type]
begin

opr OW
opr W
opr CW

inv H prs [OW W ∗ CW]∗ ∧ ∀o ∈ E : (H/o) prs [OW W ∗ CW]∗

lemma ∀H : 0 ≤ �(H/OW)− �(H/CW) ≤ 1
end

The regular expression ensures that write operations W are performed between
an open write operation OW and a close write operation CW . We want the reg-
ular expression to hold for every object in the environment so we quantify over
object identifiers. The predicate ∀o ∈ E : (H/o) prs [OW W ∗ CW]∗ quantifies
over objects in the environment. By projecting the history on events associated
with every calling object, we consider the (pointwize) communication between
the objects of the environment and the object of the interface. The predicate
above therefore states that every object in the environment adheres to this be-
havior. The other conjunct H prs [OW W ∗ CW]∗ states that the full history
of the object adheres to this behavior as well. This means that write operations
only occur when �(H/OW)−�(H/CW) = 1, for every object in the environment,
and the lemma follows. Therefore, at most one object in the environment can
perform write operations with the given invariant. �

Observe that in this example, the specified object is passive because it only
receives and never transmits calls. In order to specify objects that are active
as well, we need to reason about events that are transmitted from the object
(output) to different objects in the environment, so communication events need
to be equipped with the object identities of both the sender and receiver.

3 Object-Orientation and Openness

In open systems software may be changed, interchanged, and updated. This
makes program reasoning more difficult as old invariants can be violated by new
software, and also static typing can be too restrictive. Although there are appli-
cations where this does not seem to be a problem, it is interesting to see how and
to what extent strong typing and incremental, textual, and compositional rea-
soning can be combined with openness. Strong typing alone can ensure essential
safety properties, such as providing limited access rights. We will here explore
some possibilities for controlled openness within the object-oriented framework.

Object-Oriented Specification and Open Distributed Systems 145

In order to solve the conflict between unrestricted reuse of code in subclasses,
and behavioral subtyping and incremental reasoning control, we suggest to use
behavioral interfaces as presented in the previous section to type object variables,
and consider multiple inheritance at the interface level as well as at the class
level. Interface inheritance is restricted to a form of behavioral subtyping [35],
whereas class inheritance may be used freely. Inherited class (re)declarations are
resolved by disjoint union. A class may implement several interfaces, provided
that it satisfies the syntactic and semantic requirements stated in the interfaces.
An object of class C supports an interface I if the class C implements I.

Reasoning control is ensured by substitutability at the level of interfaces: an
object supporting an interface I may be replaced by another object supporting I
or a subinterface of I. Subclassing is unrestricted with the consequence that
interface implementation claims are not preserved by subclassing. If a class C
implements an interface I, this property is not always guaranteed by a subclass
of C, as a method redefinition may violate semantic requirements of I. Therefore,
implementation claims (as well as class invariants) are not in general inherited.

Strong typing. We consider typing where two kinds of variables are declared; an
object variable by an interface and an ordinary variable by a data type. Strong
typing ensures that for each method invocation o.m(inputs ; outputs), where I is
the declared interface of o, the actual object o (if not nil) will support I and the
method m will be understood, with argument types “including” the types of the
actual ones. Inclusion is defined as the pointwise extension of the subtype and
subinterface relation, using co- and contravariance for in- and out-parameters, re-
spectively. Explicit hiding of class attributes and methods is not needed, because
typing of object variables is based on interfaces and only methods mentioned in
the interface (or its super-interfaces) are visible.

Modifiability. An obvious way to provide some openness is to allow addition of
new (sub)classes and new (sub)interfaces. In our setting, this mechanism in itself
does not violate reasoning control, in the sense that old proven results still hold.
Also, additional implementation claims may be stated and proved. However, old
objects may not use new interfaces that require new methods.

A natural way to overcome this limitation is through a dynamic class con-
struct, allowing a class to be replaced by a subclass. Thus a class C may be mod-
ified by adding attributes (with initialization) and methods, redefining methods,
as well as extending the inheritance and implements lists. (In order to avoid
circular inheritance graphs, C may not inherit from a subclass of C.) Unlike
addition of a subclass of C, all existing objects of class C or a subclass be-
come renewed in this case and support the new interfaces. Reasoning control is
maintained when the dynamic class construct is restricted to behavioral subtyp-
ing, which can be ensured by verification conditions associated with the class
modification [43]. Unrestricted use of the dynamic class construct, which may
sometimes be needed, has the impact that objects of class C may violate behav-
ior specified earlier, and constraints on compositions involving objects of class
C must be reproved (or weakened).

146 Einar Broch Johnsen and Olaf Owe

Notice that as a special case of class modification, one may posteriorly add
super-classes to an established class hierarchy. This would be an answer to a ma-
jor criticism against object-oriented design [21], namely that the class hierarchy
severely limits restructuring the system design.

The run-time implementation of dynamic class constructs is non-trivial [36],
even typing and virtual binding need special considerations:

– The removal of a method or attribute from a class C violates strong typing,
since such a method or attribute may be used in an old subclass of C and
by strong typing the method or attribute must exist. This indicates that
removal of methods or attributes should not be allowed.

– A modified class C may add an attribute or a method m and thereby an
old subclass D inherits m. The subclass may also inherit m (with the same
parameter types) from another superclass of D. An implication is that the
virtual binding mechanism must give priority to the old m, otherwise objects
of class D will behave unpredictably and reasoning control is clearly lost.
This can be implemented by a table associated with each class at run-time,
updated whenever a superclass is modified.

– The typing and well-formedness of a modification of a class C should not
depend on any existing subclass of C. Consider the case where a new method
m is added to a class C. This should be legal even if a subclass D already
has a method m. The parameter types may well be the same, and this case
predicts that we must accept unrestricted method redefinition in a subclass!

– Parameter types may be only slightly changed in class C (say, only for the
out-parameters of a method m), in which case we must tolerate arbitrary
overloading in a subclass. Invocations of m on objects of a subclass D must
respect old behavior, otherwise these objects will behave unpredictably and
reasoning control is lost. An implication is that the virtual binding mecha-
nism must give priority to local methods (that include the actual parameter
types) over inherited ones.

These implications give independent justification for declaring interfaces for ob-
ject variables, while allowing unrestricted subclassing. In the next section, we
consider specification and reasoning with behavioral interfaces more closely.

4 Viewpoints to ODS

In ODS, we can represent components by (collections of) objects that run in
parallel and communicate asynchronously by means of remote method calls with
input and output parameters. Often, such objects are supplied by third-party
manufacturers unwilling to reveal the implementation details of their design.
Therefore, reasoning about such systems must be done relying on abstract spec-
ifications of the system’s components. We find specification in terms of observ-
able behavior particularly attractive in this setting and imagine that components
come equipped with behavioral interfaces that instruct us on how to use them.
Furthermore, as a component may be used for multiple purposes, it can come

Object-Oriented Specification and Open Distributed Systems 147

equipped with multiple specifications. This section presents a formalism for rea-
soning about object viewpoints in the setting of ODS, extending the formalism
of Section 2. Further details about this work can be found in [29, 28, 43].

4.1 Semantics

We now propose a formalization of viewpoint specifications for objects commu-
nicating asynchronously by means of remote method calls, restricting ourselves
to safety aspects. Let Objects and Mtd be unbounded sets of object identifiers
and method names, respectively, and let Data be a set of data values including
Objects. Denote by List[T] the lists over a type T (and by [] the empty list).

Definition 1 (Communication events). A communication event is a tuple
〈o1, o2, m, t, inputs, outputs〉 such that o1, o2 ∈ Objects, o1 �= o2, m ∈ Mtd,
t ∈ {i, c}, inputs, outputs ∈ List[Data], and t = i⇒ outputs = [].

Intuitively, we can think of these events as initiations and completions of
calls to a method m provided by an object o2 by another object o1. Initiation
events have no output. Communication is asynchronous as other events can be
observed in between the initiation and completion of any given call. (We here
assume strong typing, so the number and types of input and output parameters
are correct by assumption in the events.)

Definition 2 (Alphabet). An alphabet for a set of objects O is a set S of com-
munication events such that 〈o1, o2, m, c, ins, outs〉 ∈ S ⇒ 〈o1, o2, m, i, ins, []〉 ∈
S and 〈o1, o2, . . .〉 ∈ S ⇒ (o1 ∈ O ∧ o2 �∈ O) ∨ (o2 ∈ O ∧ o1 �∈ O).

At the specification level, the alphabet of an object supporting an interface
is statically given by the interface. Denote by h/S and h \ S the restrictions of
a sequence h to elements of the set S and to the complement of S, respectively.

Definition 3 (Trace set). A trace set over an alphabet α is a prefix-closed
set of sequences t ∈ Seq[α] such that, for every sequence t in the set and every
completion event 〈o1, o2, m, c, inputs, outputs〉 ∈ α,

�(t/〈o1, o2, m, i, inputs, []〉) ≥ �(t/〈o1, o2, m, c, inputs, outputs〉.

Definition 4 (Specification). A specification Γ is a triple 〈O, α, T 〉 where (1)
O is a set of object identities, O ⊆ Objects, (2) α is an infinite alphabet for O,
and (3) T is a prefix-closed subset of Seq[α].

We call O the object set of the specification Γ , α the alphabet of Γ , and
T the trace set of Γ . In shorthand, these are denoted O(Γ), α(Γ), and T (Γ),
respectively. For a specification Γ , we can derive a communication environment
E(Γ) of objects communicating with the objects of Γ , from O(Γ) and α(Γ).
In an ODS setting, we generally think of the communication environment as
unbounded. If the object set of a specification Γ is a singleton {o}, we say that

148 Einar Broch Johnsen and Olaf Owe

Γ is an interface specification (of o). A component specification may comprise
several objects.

In order to increase readability, we will henceforth represent an initiation
event 〈o1, o2, m, i, [i1, . . . , in], []〉 visually by o1→o2.m(i1, . . . , in) and a comple-
tion event 〈o1, o2, m, i, [i1, . . . , in], [v1, . . . , vp]〉 by o1←o2.m(i1, . . . , in; v1, . . . , vp).

Example 4: Consider the specification SeqWrite from Example 2.3, which we
now reformulate as an interface specification of an object o. Let E = {x ∈
Objects |x �= o} and let Data be a set of data values. The specification only
considers one object, so O(SeqWrite) = {o}. The write method W has an input
parameter ranging over Data. The alphabet of SeqWrite is now

α(SeqWrite) � {x→o.OW (), x←o.OW (), x→o.CW (), x←o.CW () |x ∈ E}
∪{x→o.W (d), x←o.W (d) |x ∈ E ∧ d ∈ Data}.

Controlled write access is obtained by restricting the possible traces of SeqWrite.
For this purpose, we use patterns, i.e. regular expressions extended with a bind-
ing operator •, and extend the prs predicate accordingly. Define a pattern
Wcycle by

[[x→o.OW () x←o.OW ()
[[x→o.W (d) x←o.W (d)] • d ∈ Data]∗

x→o.CW () x←o.CW ()] • x ∈ E].
The trace set is now specified by a prefix of the pattern:

T (SeqWrite) � {h : Seq[α(SeqWrite)] |h prs Wcycle∗}.

Here, x is bound for each traversal of the loop and this binding operator on calling
objects ensures sequential write access. A caller may perform multiple write
operations once it has access. Note that a set defined by a predicate h prs R is
always prefix-closed and that T (SeqWrite) is a trace set. �

Refinement. Refinement describes a correct transformation step from specifica-
tions to programs, usually by making the specification more deterministic in the
sense of model-inclusion. In our setting of partial specifications, a step towards
realization of the specification may involve considering additional communica-
tion events, suggesting that refinement in our case must be after projection.

Definition 5 (Refinement). A specification Γ ′ refines another specification
Γ , denoted Γ ′ � Γ , if (1) O(Γ) ⊆ O(Γ ′), (2) α(Γ) ⊆ α(Γ′), and (3) ∀t ∈
T (Γ ′) : t/α(Γ) ∈ T (Γ).

Using projection as suggested here, dynamic class extension (Section 3) is
well-behaved with respect to refinement: the new extended class refines the old
class. When considering liveness, the refinement relation must be extended to
exclude additional deadlocks in a refinement step (cf. Section 7).

Object-Oriented Specification and Open Distributed Systems 149

Composition. When two viewpoint specifications are composed, they synchro-
nize on common events. However, as our focus is on the observable behavior of
the specifications, internal communication between the objects of the composed
specification is hidden.

Definition 6. The internal events of a set S of objects are all communication
events between objects of the set, I(S) �

⋃
o1,o2∈S{〈o1, o2, . . .〉, 〈o2, o1, . . .〉}.

We will write I(Γ) instead of I(O(Γ)). As we consider component viewpoints
here, events that are internal in one specification may be observable in another.
We say that two specifications are composable if this is not the case [29, 28].

Definition 7 (Composition). Let Γ and ∆ be composable component specifi-
cations. Then Γ ||∆ is the specification 〈O, α, T 〉 where (1) O � O(Γ)∪O(∆), (2)
α � α(Γ)∪α(∆)−I(O), and (3) T � {h/α |h/α(Γ) ∈ T (Γ) ∧ h/α(∆) ∈ T (∆)}.

4.2 Behavioral Interfaces

Clearly, the specifications of Section 4.1 can be given a syntax à la Abel. In this
section, we consider such a treatment for interface specifications in a generic
manner. These specifications are behavioral interfaces; they can be supported
by different objects. An interface can be implemented by different classes and a
class can implement different interfaces. An interface has the following syntax:

interface F [〈type parameters〉] (〈context parameters〉)
inherits F1, F2, . . . , Fm

begin
with G

opr m1(. . .)
...

opr mn(. . .)
asm ¡formula on local trace restricted to one calling object¿
inv ¡formula on local trace¿

where ¡auxiliary function definitions¿
end

Interfaces can have both type and context parameters, the latter typically
describes the minimal environment representing static links needed by objects
that support the interface. An initiation and a completion event is associated
with each method declaration (ranging over method parameters). In the inter-
faces, we use the keyword “this” to denote the object supporting the interface
and “caller” to denote an object in the environment. We shall now briefly con-
sider the remaining parts of the syntax, for technical details and discussion the
reader is referred to [29, 43]. The use of interfaces for specification purposes is
illustrated by way of examples in Section 5.

150 Einar Broch Johnsen and Olaf Owe

Assumption guarantee predicates. In ODS, the environment in which an object
exists is subject to change and specifications are relative to an assumed behav-
ior of the environment. Hence, we use the assumption guarantee specification
style [32], but we adapt it to our setting of observable behavior. Assumptions
are the responsibility of the objects of the environment; therefore, assumption
predicates consider traces that end with input to the current interface and only
communication with a single object in the environment. An assumption predicate
A(x, y, h) ranges over objects x in the environment, supporting objects y, and
traces h. Let in(h, o) and out(h, o) denote functions that return the longest pre-
fix of a trace h ending with an input or output event to an object o, respectively.
If A is an assumption predicate, define Ain(x, h) � ∀o ∈ E : A(o, x, in(h, x))
and Aout(x, h) � ∀o ∈ E : A(o, x,out(h, x)). Invariants are the responsibility of
the object supporting the interface; they are guaranteed when the assumption
holds and consider traces that end with output from the current interface. If
I(x, h) is an invariant predicate ranging over supporting objects x and traces h,
define Iout(x, h) � I(x,out(h, x)) ∧Aout(x, h). The trace set T (Γ) of a specifi-
cation Γ with assumption predicate AΓ and invariant predicate IΓ is the largest
prefix-closed subset of {h ∈ Seq[α(Γ)] |Ain

Γ (this, h)⇒ Iout
Γ (this, h)}.

Inheritance. Multiple inheritance is allowed for interfaces, but cyclic inheritance
graphs are not allowed. If an interface F is declared with an inheritance clause,
the alphabets of the super-interfaces are included in the alphabet of F and the
traces of F must be in the trace sets of the super-interfaces when restricted to
the relevant alphabets. In the subinterfaces, we can declare additional methods
and behavioral constraints. An interface will always refine its super-interfaces.

Mutual dependency. Because objects are typed by interface, we can specify that
only objects of a particular interface (a cointerface) may invoke the methods of
the current interface, using the keyword with. Furthermore, the current inter-
face knows the methods of the caller visible through the cointerface. This gives
strong typing in an asynchronous setting. Semantically, a cointerface declaration
changes the alphabet of the current interface as the communication environment
is reduced whereas new methods of the caller are added.

5 Case Study: the Software Bus

In this section, we illustrate the use of interface specifications to capture view-
points concerning the dynamic nature of a software bus, a communication plat-
form to which processes may register in order to share data and resources. (This
is a stripped version of an actual system used for monitoring nuclear power
plants, more details on the software bus and its specification can be found in [31].)
We consider a distributed architecture for the software bus, with a portmapper
and a collection of data servers. The general lay-out of the software bus is shown
in Figure 1. Processes may connect (and disconnect) to any data server. The
task of the portmapper is to manage registration of processes, and communi-
cate information about processes to other processes, via their data servers. Data

Object-Oriented Specification and Open Distributed Systems 151

User
Application 1

User
Application i

User
Application j

User
Application n

Data Server Data Server1 n

Portmapper
SoftwareBus

Fig. 1. Decomposition of SoftwareBus. Data servers have an interface
SB Data available to other data servers and an interface SB Connections
available to the portmapper. The portmapper offers an interface
SB Portmapper to data servers.

servers communicate with each other in order to share data processing tasks,
on behalf of their processes. These tasks include the creation of variables, the
assignment of values to variables, accessing the values of variables, and destroy-
ing variables. The software bus system is object-oriented: classes, functions, and
variables are treated as software bus objects, i.e. as manipulatable data in the
software bus system. An object in the system is identified either by reference or
by a name and a reference to its parent. For specification purposes, we identify
two types; Name for object names and Ref for object references. The latter
will have subtypes, among them we find ParentRef for parent objects and
AppRef for application processes. We shall now specify a data server interface
SB Data for manipulation of data, a data server interface SB Connections
for updating information on remote applications, and a portmapper interface
SB Portmapper.

5.1 Communication between Data Servers

The interface SB Data considers methods for object manipulation between data
servers in the SoftwareBus. For brevity, we will here only consider two such
methods:

opr id (in name: Name , parent ref: ParentRef ; out obj ref: Ref)
opr del obj (in obj ref: Ref)

Intuitively, the method id obtains the reference to an object at a remote server
and del obj deletes an object at a remote server. It is assumed that a data server
only attempts to delete an object to which it has obtained a reference (via id).
If the object is already deleted by another remote server, the method call will
not be completed (until the reference has been recreated). We here denote by

152 Einar Broch Johnsen and Olaf Owe

Sr the set of events that can be associated with a given reference r, Sr = {x←
y.id(, ; r), x→y.del obj(r), x←y.del obj(r) |x, y ∈ Objects}, ignoring irrelevant
parameters by underscore. The assumption can be formalized as follows:

Ad(x, y, h) = ∀r ∈ Ref :
h/Sr prs [[x←y.id(, ; r)]+

x→y.del obj(r) x←y.del obj(r)]∗

The invariant is concerned with output from the current object, in this case
completion events to the methods id and del obj. The assumption above states
that a data server will wait for the completion of a call to the current data
server before making new calls to this server. We check if there is a pending call
to del obj(r), using a predicate pending:

pending(mtd, x, y, h) = h/{x→y.mtd(. . .), x←y.mtd(. . .)}
∈ [x→y.mtd(. . .), x←y.mtd(. . .)]∗x→y.mtd(. . .)

As we ignore object creation in this example, we assume that an object exists
once it has been assigned a reference in a call to id. Considering the entire history
of a data server (seen through the SB Data interface), we can identify traces
after which we believe that a reference is to an existing object:

¬ exists(r, ε)
¬ exists(r, h � x←y.del obj(r))

exists(r, h � x←y.id(, ; r))
exists(r, h � others) = exists(r, h)

In this definition, cases are in the considered order and ‘h � others’ handles the
remaining cases. The invariant Id(h, x) expresses that pending calls to del obj(r)
are only completed when the object with reference r is known to exist:

Id(x, ε) = true
Id(x, h � y←x.del obj(r)) = pending(del obj, y, x, h) ∧ exists(r, h)
Id(x, h � others) = true

Remark how the case distinction with ‘others’ allows us to ignore irrelevant
events in the above predicates. This way, the predicates can be given in a com-
pact, readable format when only a few events of an alphabet need to be consid-
ered. Also, this predicate format facilitates reuse of the predicates in interfaces
with extended alphabets, typically in subinterfaces.

We now define the interface SB Data (types for method parameters are as
given above).

interface SB Data
begin

opr id (in name, parent ref; out obj ref)
opr del obj (in obj ref)

asm Ad(caller, this, h)
inv Id(this, h)

end

Object-Oriented Specification and Open Distributed Systems 153

This interface does not consider calls to other servers. The next step is to
let SB Data be inherited by a new interface SB DataAct, which includes
SB DataAct as a cointerface and ∀o ∈ E : Ad(this, o, h) as invariant.

5.2 Communication with the Portmapper

In this section, we consider communication between the portmapper and the
data servers. First, we specify an interface of the data server, which offers a
method going down to portmappers:

interface SB Connections
begin

with SB Portmapper
opr going down(in ref: AppRef)

asm true
inv true

end

By declaring SB Connections to be a cointerface of SB Portmapper, the
interface of the portmapper, the events associated with going down are included
in the alphabet of SB Portmapper and we can specify the actual use of the
method there. The method will be used to signal that applications in the envi-
ronment are about to leave the SoftwareBus. When an application enters the
software bus, its (current) data server will register it with the portmapper, and
when it exits, likewise. Furthermore, a data server may contact the portmap-
per in order to know if (and where) an application is currently registered. The
associated methods are

opr init (in name: Name)
opr exit (in name: Name)
opr conn app (in appl name: Name ; out appl ref: AppRef)
opr disc app (in appl ref: AppRef)

Intuitively, init signals that an application enters the system, exit signals that
an application leaves the system, conn app establishes a logical connection to
appl name, and disc app disconnects the logical connection to appl ref . Obvi-
ously, logical connections should only be disconnected after having been estab-
lished, which we formalize by the predicate

conns(x, y, h) = ∀r ∈ AppRef : h/r prs [x←y.conn app(; r)
x→y.disc app(r) x←y.disc app(r)]∗

Furthermore, logical connections and disconnections from an application x may
only occur when x is registered with the portmapper y.

is reg(x, y, h) =
h/x prs x→y.init(x) x←y.init(x)

[x→y.conn app() | x←y.conn app(;)
| x→y.disc app() | x←y.disc app()]∗

x→y.exit(x) x←y.exit(x)

154 Einar Broch Johnsen and Olaf Owe

The portmapper assumes that all data servers adhere to this behavior, so define
its assumption by the formula

Apm(x, y, h) = is reg(x, y, h) ∧ conns(x, y, h).

The invariant of SB Portmapper considers when output from the portmap-
per should occur. For this purpose, we determine if an application is currently
registered in the system by a predicate up on the history:

¬up(x, y, ε)
up(x, y, h � z←y.init(x))
up(x, y, h � others) = up(x, y, h)

Similarly, we determine if an application a1 has an established logical connection
to another application a2 via the portmapper p after history h by the predicate
conn up(a1, a2, p, h):

¬ conn up(a1, a2, p, ε)
conn up(a1, a2, p, h � a1←p.conn app(a2))
¬ conn up(a1, a2, p, h � a1←p.disc app(a2))
¬ conn up(a1, a2, p, h � p←a1.going down(a2))

conn up(a1, a2, p, h � others) = conn up(a1, a2, p, h)

We consider a logical connection closed (or broken) if a1 gets a notification from
the portmapper that going down(a2). (The events associated with this method
come from the cointerface.) We use the abbreviation notified(n, p, h) below for
the the predicate ∀a ∈ AppRef : ¬ conn up(a, n, p, h) and define the invariant
of SB Portmapper as follows:

Ipm(p, ε)
Ipm(p, h � a←p.init(n)) =

¬up(n, , h) ∧ pending(init(n), p, a, h)∧ Ipm(p, h)
Ipm(p, h � p→a.going down(n)) =

conn up(a, n, p, h) ∧ pending(exit(n), p, , h) ∧ Ipm(p, h)
Ipm(p, h � a←p.exit(n)) =

up(n, , h) ∧ notified(n, p, h) ∧ pending(exit(n), p, a, h) ∧ Ipm(p, h)
Ipm(p, h � a←p.conn app(n, r)) =

¬ conn up(a, n, p, h) ∧ pending(conn app(n), p, a, h) ∧ Ipm(p, h)
Ipm(p, h � a←p.disc app(n)) =

conn up(a, n, p, h) ∧ pending(disc app(n), p, a, h) ∧ Ipm(p, h)
Ipm(p, h � others) = Ipm(p, h)

The invariant allows for asynchronous calls to the portmapper, as other events
may occur between the initiation and completion of any given call. In particu-
lar, the invocation of exit explicitly results in calls from the portmapper. The
SB Portmapper interface is now specified (types for method parameters are
as given above).

Object-Oriented Specification and Open Distributed Systems 155

interface SB Portmapper
begin

with SB Connections
opr init(in n)
opr exit(in n)
opr conn app(in n; out r)
opr disc app(in r)

asm Apm(caller, this, h)
inv Ipm(this, h)

end

5.3 Internal Behavior of the Data Server

In this section, we consider how the two interfaces of the data servers can be
combined in order to give a more complete specification of the data server in an
interface SB DataServer. In particular, we want to express that a data server
can only make calls to another data server when it has an established logical
connection to that data server. For convenience, we inherit auxiliary predicates
as well as the semantics through interface inheritance.

This interface considers calls made by the current object, so we will strengthen
the invariant of the data server (which we presently perceive as the conjunction
of its two interface invariants, restricted to appropriate projections on traces).
Define

Ids(x, ε)
Ids(x, h � x→y.id()) = conn up(x, y, p, h) ∧ Ids(x, h)
Ids(x, h � x→y.del obj()) = conn up(x, y, p, h) ∧ Ids(x, h)
Ids(x, h � others) = Ids(x, h)

The interface SB DataServer can now be specified by

interface SB DataServer
inherits SB Connections, SB Data

begin
inv Ids(this, h)

end

By definition, any data server with the SB DataServer interface will also
support the two super-interfaces SB Data and SB Portmapper. At the se-
mantic level, super-interfaces are always refined by their subinterfaces.

6 Composing Assumption Guarantee Specifications

Just as multiple inheritance lets us combine interfaces that are supported by the
same objects, we can compose specifications where this need not be the case.
Definition 7 of Section 4.1 defined composition semantically. In this section we
consider a composition rule for specifications made in the assumption guarantee
style of interfaces, thus a specification Γ is on the form

〈O(Γ), α(Γ), {h ∈ Seq[α(Γ)]|Ain
Γ (h)⇒ Iout

Γ (h)}〉,

156 Einar Broch Johnsen and Olaf Owe

where AΓ and IΓ are the assumption and invariant predicates associated with
Γ . The supporting objects are here given by O(Γ), the functions in(h) and
out(h) return the longest prefix of h that ends with input or output to any
object in O(Γ), respectively. Let Γ +∆ denote the syntactic composition of two
specifications Γ and ∆. We want to derive an assumption A and an invariant I
that describe the traces of Γ + ∆ from the predicates of Γ and ∆.

Composition should encapsulate internal communication, so the commu-
nication environment E(Γ + ∆) excludes objects from the object sets O(Γ)
and O(∆). Therefore, for the object set, communication environment, alpha-
bet, and internal event set, we follow the semantics (Definition 7) and de-
fine O(Γ + ∆) � O(Γ ||∆), E(Γ + ∆) � E(Γ ||∆), α(Γ + ∆) � α(Γ||∆), and
I(Γ + ∆) � I(Γ ||∆). Let h ∈ Seq[α(Γ + ∆)]. Now, define an assumption predi-
cate for Γ + ∆ by

Ain(h) � Ain
Γ (h/α(Γ)) ∧Ain

∆ (h/α(∆))
= ∀o′ ∈ E : AΓ (o, in(h/o)) ∧A∆(o, in(h/o)).

Due to the quantification over objects in the environment, we have that AΓ (h)⇒
AΓ (h \ I(Γ + ∆)). However, the assumption Ain(h) above is not strong enough
to guarantee either of the invariants IΓ and I∆, because nothing has been as-
sumed with regard to the internal communication between objects of the two
specifications. This leads to the proof conditions (1) and (2) below.

In contrast to the assumption, the invariant does not quantify over the objects
of the environment. Therefore, we cannot derive an invariant I directly from the
invariants of Γ and ∆ by removing internal communication; we need to consider
the full alphabet. Let h ∈ Seq[α(Γ) ∪ α(∆)]. We first define the basic invariant
I of the composition by

Ibasic(h) � IΓ (out(h/α(Γ))) ∧ I∆(out(h/α(∆))) ∧Aout(h).

However, the basic invariant predicate takes internal events into account. It is
well-known that hiding corresponds to the introduction of existential quanti-
fiers [1]. For the invariant, we extend the alphabet of Γ + ∆ with the hidden
internal events, and hide the extension inside an existential quantifier. Without
inherited specifications, the derived invariant is

Iout(h) � ∃h′ ∈ Seq[α(Γ) ∪ α(∆)] : h = h′ \ I(Γ + ∆) ∧ Ibasic(h′).

Inheritance. We will assume that specifications can inherit other specifications
like the interfaces of Section 4. Say that a specification Γ inherits another spec-
ification Σ. At the semantic level, inheritance is interpreted as refinement: for
all traces h ∈ T (Γ), we have that h/α(Σ) ∈ T (Σ). At the syntactic level, inheri-
tance restricts the set of possible traces h defined by the assumption and invari-
ant predicates by additional conjuncts of the form Ain

Σ (h/α(Σ))⇒ IΣ(h/α(Σ)).
However, in the composition Γ + ∆, these additional conjuncts are only valid
for the extended trace, so they must be placed inside the existential quantifier
of the invariant. (Due to hiding, it is not the case that Γ + ∆ directly inherits

Object-Oriented Specification and Open Distributed Systems 157

the super-interfaces of Γ and ∆.) Therefore, considering inheritance, we define
the invariant of a composition as follows.

Definition 8. For any specification S, we denote by AS and IS its assumption
and invariant predicate, respectively. Consider two specifications Γ and ∆ and
denote by Σ1, . . . , Σn the specifications inherited by either Γ or ∆. The invariant
of the composition Γ + ∆ is defined as

Iout(h) � ∃h′ ∈ Seq[α(Γ) ∪ α(∆)] : h = h′ \ I(Γ + ∆) ∧
(∀i ∈ {1, . . . , n} : Ain

Σi
(h′/α(Σi))⇒ Iout

Σi
(h′/α(Σi))) ∧ Ibasic(h′),

with the associated proof conditions

∀h ∈ Seq[α(Γ)] : (Ain
Γ (h) ∧ Iout

Γ (h))⇒ Ain
∆ (h/I(Γ + ∆)) and (1)

∀h ∈ Seq[α(∆)] : (Ain
∆ (h) ∧ Iout

∆ (h))⇒ Ain
Γ (h/I(Γ + ∆)). (2)

In order to maintain reasoning control for Γ + ∆, output from Γ should not
break the assumption of ∆ and vice versa. The proof conditions (1) and (2) en-
sure that the internal communications of Γ +∆ respect the assumptions AΓ and
A∆ of the two component specifications Γ and ∆. Circularity in compositional
proofs is avoided because assumption predicates concern traces that end with
input whereas invariants concern traces that end with output.

With the assumption and invariant predicates derived for Γ + ∆, we define
the trace set T (Γ + ∆) as the largest prefix-closed subset of

{h ∈ Seq[α(Γ + ∆)] |Ain(h, o)⇒ Iout(h)}.

6.1 Soundness of the Composition Rule

In this section, the proof rule for composition is shown to be semantically sound,
i.e. that any trace in the semantically defined composed specification is included
in the trace set obtained through the proof rule: T (Γ ||∆) ⊆ T (Γ + ∆). This
corresponds to the notion of soundness for regular verification systems, see for
instance Apt and Olderog [4]. Here, the soundness proof relies on the distinction
between input and output events; when we consider communication between
two objects, input to one is output from the other, so we can reason inductively
about the communication traces between the two objects. The proof extends a
proof made by Dahl and Owe [17] for a somewhat simpler formalism.

Proof. Let Γ, ∆, Σ1, . . . , Σn (where n ≥ 0) be (component) specifications such
that every Σi is inherited by either Γ or ∆. Assuming that the proof conditions
(1) and (2) hold, we now show that T (Γ ||∆) ⊆ T (Γ + ∆). Observe that, for
any h ∈ T (Γ + ∆), if one of Ain

Γ (h/α(Γ)) and Ain
∆ (h/α(∆)) does not hold,

neither does Ain(h). Now, consider a trace h ∈ Seq[α(Γ) ∪ α(∆)] such that
h \ I(Γ + ∆) ∈ T (Γ + ∆). By assumption, for any such trace h, we have that

Ain
Γ (h/α(Γ))⇒ Iout

Γ (h/α(Γ)), and (3)
Ain

∆ (h/α(∆))⇒ Iout
∆ (h/α(∆)). (4)

158 Einar Broch Johnsen and Olaf Owe

We must show that if Ain(h\I(Γ +∆)) holds, then I(h\I(Γ +∆)) also holds. The
proof is by induction over h, but we show a somewhat stronger result, namely

∀h : Seq[α(Γ) ∪ α(∆)] :
∀i ∈ {1, . . . , n} : Ain

Σi
(h/α(Σi))⇒ Iout

Σi
(h/α(Σi))

∧Iout
Γ (h/α(Γ)) ∧ Iout

∆ (h/α(∆))
∧AΓ (in(h/I(Γ + ∆))) ∧A∆(in(h/I(Γ + ∆))),

(5)

from which the invariant follows. Two observations are in order at this point.
First, due to quantification over the objects of the communication environment
in assumptions, Ain(h \ I(Γ + ∆)) entails

Ain
Γ (h \ I(Γ + ∆)/α(Γ)) ∧Ain

∆ (h \ I(Γ + ∆)/α(∆)). (6)

Second, inheritance graphs are acyclic, so we can inductively assume soundness
for inherited specifications. Once we have established Ain

Γ and Ain
∆ , we get

Ain
Σi

(h/α(Σi))⇒ Iout
Σi

(h/α(Σi)) for 0 < i ≤ n. (7)

We now proceed with the proof. As we are dealing with safety properties,
the formula (5) holds for the empty trace ε. Next, consider the induction step.
We assume that (5) holds for a trace h and show that it holds for h � m, where
m ∈ α(Γ) ∪ α(∆). Assume first that m ∈ α(Γ + ∆), such that Ain(h � m). The
induction hypothesis gives us

AΓ (in(h � m/I(Γ + ∆))) = AΓ (in(h/I(Γ + ∆))) and
A∆(in(h � m/I(Γ + ∆))) = A∆(in(h/I(Γ + ∆))),

so by observation (6), both Ain
Γ (h � m) and Ain

∆ (h � m) hold. Then, by obser-
vations (3) and (4), the invariants

Iout
Γ ((h � m)/α(Γ)) and

Iout
∆ ((h � m)/α(∆))

hold and by (1), (2), and (7), we can conclude that (5) holds for h � m. Now,
assume that m ∈ I(Γ +∆). We have four possibilities. If we consider two object
identifiers o1 and o2 such that o1 ∈ O(Γ) and o2 ∈ O(∆), these possibilities are
o1→o2.m(. . .), o1←o2.m(. . .), o2→o1.m(. . .), and o2←o1.m(. . .). In the first case,
m is the initiation of a method m in o2 by o1. But then the event is an output
event for Γ and hence, the assumption of Γ holds by the induction hypothesis:

AΓ (in((h � m)/I(Γ + ∆)))=AΓ (in(h/I(Γ + ∆) � m))
=AΓ (in(h/I(Γ + ∆))).

Consequently, by observation (6), the assumption Ain
Γ (h � m) of specification Γ

holds. Therefore, by assumption (3), the invariant Iout
Γ (h � m) of specification

Γ holds. Now we know that both the assumption and invariant of Γ hold, so
by proof condition (1), the assumption A∆(in(h � m/I(Γ + ∆))) holds. Then,

Object-Oriented Specification and Open Distributed Systems 159

by (6), we get the assumption of ∆ and finally, by observation (4), the invariant
Iout
∆ (h � m) holds. As we have established the invariants of Γ and ∆, observation

(7) lets us conclude.
In the next case, m = o1←o2.m(. . .) is an output event from specification ∆.

Here, we first consider the assumption A∆ of ∆, which gives us:

A∆(in(h � m/I(Γ + ∆))) = A∆(in(h/I(Γ + ∆))),

as m disappears by projection. The predicate holds by the induction hypothesis.
By similar reasoning to the previous case, we can now establish the invariants
of Γ and ∆, and (7) gives us the result. The two last cases are similar to these.

7 Discussion

The main objective of this paper has been to show how Dahl’s notion of object-
oriented specification can be extended for reasoning about open distributed sys-
tems, as object-orientation is a natural paradigm for ODS [26,17]. In this section,
we draw some lines to related work and suggest some future extensions to the
work we have presented in this paper.

Our approach is based on trace descriptions of (aspects of) the observable
behavior of objects and components. Traces are well-known from the literature
on processes, data flow networks, and modules [8,25,33,39,45]. These formalisms
do not claim to be object-oriented and tend to be based on synchronous com-
munication along channels, fix-point reasoning, and possibly infinite traces, in
contrast to Abel’s approach. Object reference passing can be simulated using
named channels instead of named objects, for example in the π-calculus [49], but
using explicit object identifiers in the communication events allow a more natu-
ral representation. Explicit object identifiers may be found in languages such as
Actors [2] and Maude [9]. Both these formalisms also allow asynchronous com-
munication, exchange of object identities, and a large degree of modifiability.
However, they are specialized towards system modeling rather than develop-
ment and reasoning control, lacking for instance refinement notions that capture
correctness for system development and modification.

We find specification in terms of observable behavior particularly attrac-
tive for reasoning about open distributed systems, where implementation detail
need not be available for (client) objects in the environment. On the contrary,
such detail can be intentionally hidden, being the intellectual property of some
third-party manufacturer. In this respect, our approach is related to coalgebraic
formulations of object-orientation such as [27], in which a class specification has
assertions that equate sequences of observations on objects of the class. In gen-
eral these assertions consider the entire history of the object and the conjunction
of assertions thus resembles Abel’s history invariant. However, the coalgebraic
approach does not seem to allow the kind of dynamic class extensions we have
considered here, as the objects are semantically defined in terms of their stat-
ically given classes. Of course, state-based approaches may equally well supply

160 Einar Broch Johnsen and Olaf Owe

a specification of an abstract state that does not directly reflect the implemen-
tation of a component. However, refinement becomes complicated when data
structures change, in particular for aspects, described using different data struc-
tures, and dynamic extensions, captured in our formalism using projection on
traces.

The idea of separation of concerns in specification seems to have originated
with Parnas [44]. Partial specifications are perhaps best known for describ-
ing typical case-scenarios in specification notations such as Message Sequence
Charts and UML. However, it is unclear how different cases relate to each other
through composition and refinement in these notations. The use of interrelated
viewpoints is recommended for ODS by the ITU [26] and work on combining
viewpoints in this setting has been based on e.g. Object-Z [19, 6] and timed au-
tomata [5]. Two major differences between these approaches and ours are, first,
that they are state-based whereas we prefer to model objects at an early stage by
observations and, second, they are synchronous whereas we find asynchronous
communication natural for distributed systems. Viewpoints as presented in this
paper resemble aspects of aspect-oriented programming [34], describing aspects
by their observable behavior as system services cross-cutting an object grid.
Composition in our formalism corresponds to synchronization of aspects, which
suggests a formalism for specification and reasoning about the development of
aspect-oriented programs. Further investigation in this context is future work.

Specifications using observable behavior let us describe objects in an abstract
way, describing properties by extracting information from the history. Further-
more, we can model object behavior in a constructive graphical way with trace
patterns. From such graphical specifications, the step to implementation in a
state-based guarded command language is straightforward. Much work has been
done on developing useful graphical specification notations, for instance with
Statecharts, Petri nets, and UML, and on their formalization. Interestingly, there
is also work on graphical representations of formal notations, an example being
Actor specification diagrams [47]. Our trace patterns try to visualize behavior
and could perhaps be expressed graphically in a similar way.

Finally, the formalism as presented here only considers safety specifications.
In the context of open asynchronously communicating systems, liveness prop-
erties are largely dependent on the environment, which we do not control. A
weak form of liveness is to identify deadlock deterministic objects, i.e. objects
where deadlock is not due to internal non-determinism. For deadlock determin-
istic objects, we can to some extent reason about liveness properties by means
of prefix-closed trace sets, without having to resort to a stronger apparatus in-
cluding infinite traces, temporal logic, etc. We propose an incremental approach
by including exceptions in the reasoning formalism through refinement, and in
particular timeouts. Thus, we can reason about liveness properties of our own
objects even when the environment is unstable. Initial research in this direction
has been done in the context of fault tolerance [30], but more work remains.

Object-Oriented Specification and Open Distributed Systems 161

8 Conclusion

The term “object-oriented specification” was coined by O.-J. Dahl for a specifica-
tion style where the internal implementation details of objects are encapsulated
and behavior is expressed in terms of permissible observable communication.
An object’s observable communication history represents an abstract view of its
state, readily available for reasoning about past and present behavior. Using a
(mythical) history variable, the behavior of an object is determined by its com-
munication history up to present time. The approach emphasizes mathematically
easy-to-understand concepts such as generator inductive function definitions and
finite sequences, avoiding fix-point semantics and infinite traces.

In this paper, we have shown how this approach can be extended in order to
reason about open distributed systems. In particular, we consider objects run-
ning in parallel, communicating by means of asynchronous remote method calls
by which object identifiers can be exchanged. In accordance with the ITU [26],
the approach supports partial specification by viewpoints, representing object
behavior in behavioral interfaces. Openness appears in the formalism by allow-
ing new (sub)classes, new interfaces for old classes, and a restricted form of
dynamic class extension, while maintaining reasoning control.

Acknowledgments

In developing the ideas for this paper, the authors have benefited from collab-
oration with the members of the Adapt-FT project, and in particular with
Ole-Johan Dahl and Isabelle Ryl.

References

1. M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems, 17(3):507–534, May 1995.

2. G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor
computation. Journal of Functional Programming, 7(1):1–72, Jan. 1997.

3. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21(4):181–185, Oct. 1985.

4. K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Systems.
Texts and Monographs in Computer Science. Springer-Verlag, Berlin, 1991.

5. L. Blair and G. Blair. Composition in multi-paradigm specification techniques.
In R. Ciancarini, A. Fantechi, and R. Gorrieri, editors, Proc. 3rd Interna-
tional Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’99), pages 401–418. Kluwer Academic Publishers, Feb. 1999.

6. E. Boiten, J. Derrick, H. Bowman, and M. Steen. Constructive consistency checking
for partial specification in Z. Science of Computer Programming, 35(1):29–75, Sept.
1999.

7. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, Reading, Mass., 1999.

8. M. Broy and K. Stølen. Specification and Development of Interactive Systems.
Monographs in Computer Science. Springer-Verlag, 2001.

162 Einar Broch Johnsen and Olaf Owe

9. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
J. F. Quesada. Maude: Specification and programming in rewriting logic. Theo-
retical Computer Science, 285:187–243, Aug. 2002.

10. O.-J. Dahl. Can program proving be made practical? In M. Amirchahy and D. Néel,
editors, Les Fondements de la Programmation, pages 57–114. Institut de Recherche
d’Informatique et d’Automatique, Toulouse, France, Dec. 1977.

11. O.-J. Dahl. Object-oriented specification. In B. Shriver and P. Wegner, editors,
Research Directions in Object-Oriented Programming, Series in Computer Systems,
pages 561–576. The MIT Press, 1987.

12. O.-J. Dahl. Verifiable Programming. International Series in Computer Science.
Prentice Hall, New York, N.Y., 1992.

13. O.-J. Dahl. The roots of object orientation: the Simula language. In M. Broy
and E. Denert, editors, Software Pioneers: Contributions to Software Engineering.
Springer-Verlag, June 2002.

14. O.-J. Dahl and K. Nygaard. SIMULA, an ALGOL-based simulation language.
Communications of the ACM, 9(9):671–678, Sept. 1966.

15. O.-J. Dahl, B. Myhrhaug, and K. Nygaard. (Simula 67) Common Base Language.
Technical Report S-2, Norsk Regnesentral (Norwegian Computing Center), Oslo,
Norway, May 1968.

16. O.-J. Dahl and O. Owe. Formal development with ABEL. In S. Prehn and
H. Toetenel, editors, Formal Software Development Methods (VDM’91), volume
552 of Lecture Notes in Computer Science, pages 320–362. Springer-Verlag, Oct.
1991.

17. O.-J. Dahl and O. Owe. Formal methods and the RM-ODP. Research Report 261,
Department of informatics, University of Oslo, Norway, May 1998.

18. W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Meth-
ods and their Comparison, volume 47 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, New York, NY, 1998.

19. J. Derrick, H. Bowman, and M. Steen. Viewpoints and objects. In J. P. Bowen
and M. G. Hinchey, editors, The Z Formal Specification Notation, 9th Interna-
tional Conference of Z Users (ZUM’95), volume 967 of Lecture Notes in Computer
Science, pages 449–468. Springer-Verlag, Sept. 1995.

20. C. Fischer. CSP-OZ: a combination of Object-Z and CSP. In H. Bowman and
J. Derrick, editors, Proc. 2nd IFIP Workshop on Formal Methods for Open Object-
Based Distributed Systems (FMOODS), pages 423–438. Chapman and Hall, Lon-
don, 1997.

21. C. Ghezzi and M. Jazayeri. Programming Language Concepts. John Wiley & Sons,
3rd edition, 1998.

22. J. Goguen and J. Tardo. An introduction to OBJ: A language for writing and
testing formal algebraic program specifications. In N. Gehani and A. McGettrick,
editors, Software Specification Techniques. Addison-Wesley, 1986.

23. J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet, and J. M. Wing.
Larch: Languages and Tools for Formal Specification. Texts and Monographs in
Computer Science. Springer-Verlag, 1993.

24. C. A. R. Hoare. An Axiomatic Basis of Computer Programming. Communications
of the ACM, 12:576–580, 1969.

25. C. A. R. Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice Hall, Englewood Cliffs, NJ., 1985.

26. International Telecommunication Union. Open Distributed Processing — Refer-
ence Model parts 1–4. Technical report, ISO/IEC, Geneva, July 1995.

Object-Oriented Specification and Open Distributed Systems 163

27. B. Jacobs. Inheritance and cofree constructions. In P. Cointe, editor, 10th European
Conference on Object-Oriented Programming (ECOOP’96), volume 1098 of Lecture
Notes in Computer Science, pages 210–231. Springer-Verlag, July 1996.

28. E. B. Johnsen and O. Owe. Composition and refinement for partial object specifi-
cations. In Proc. 16th International Parallel & Distributed Processing Symposium
(IPDPS’02), Workshop on Formal Methods for Parallel Programming: Theory and
Applications (FMPPTA’02). IEEE Computer Society Press, Apr. 2002.

29. E. B. Johnsen and O. Owe. A compositional formalism for object viewpoints. In
B. Jacobs and A. Rensink, editors, Proc. 5th International Conference on Formal
Methods for Open Object-Based Distributed Systems (FMOODS’02), pages 45–60.
Kluwer Academic Publishers, Mar. 2002.

30. E. B. Johnsen, O. Owe, E. Munthe-Kaas, and J. Vain. Incremental fault-tolerant
design in an object-oriented setting. In Proc. Asian Pacific Conference on Quality
Software (APAQS’01), pages 223–230. IEEE Computer Society Press, Dec. 2001.

31. E. B. Johnsen, W. Zhang, O. Owe, and D. B. Aredo. Combining graphical and
formal development of open distributed systems. In M. Butler, L. Petre, and
K. Sere, editors, Proc. Third International Conference on Integrated Formal Meth-
ods (IFM’02), volume 2335 of Lecture Notes in Computer Science, pages 319–338,
Turku, Finland, May 2002. Springer-Verlag.

32. C. B. Jones. Development Methods for Computer Programmes Including a Notion
of Interference. PhD thesis, Oxford University, UK, June l981.

33. G. Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information Processing 74: Proc. IFIP Congress 74, pages 471–
475. IFIP, North-Holland Publishing Co., Aug. 1974.

34. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Akşit and S. Matsuoka, editors,
Proc. 11th European Conference on Object-Oriented Programming (ECOOP’97),
volume 1241 of Lecture Notes in Computer Science, pages 220–242. Springer-
Verlag, June 1997.

35. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811–1841, Nov. 1994.

36. S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Runtime support
for type-safe dynamic Java classes. In E. Bertino, editor, 14th European Conference
on Object-Oriented Programming (ECOOP’00), volume 1850 of Lecture Notes in
Computer Science, pages 337–361. Springer-Verlag, June 2000.

37. S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. In G. Agha, P. Wegner, and A. Yonezawa,
editors, Research Directions in Concurrent Object-Oriented Programming, pages
107–150. The MIT Press, Cambridge, Mass., 1993.

38. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, May 1999.

39. J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Transactions
on Software Engineering, 7(4):417–426, July 1981.

40. O. Nierstrasz. A survey of object-oriented concepts. In W. Kim and F. Lochovsky,
editors, Object-Oriented Concepts, Databases and Applications, pages 3–21. ACM
Press and Addison-Wesley, Reading, Mass., 1989.

41. K. Nygaard and O.-J. Dahl. Simula 67. In R. W. Wexelblat, editor, History of
Programming Languages. ACM Press, 1981.

42. O. Owe. Partial logics reconsidered: A conservative approach. Formal Aspects of
Computing, 5:208–223, 1993.

164 Einar Broch Johnsen and Olaf Owe

43. O. Owe and I. Ryl. A notation for combining formal reasoning, object orientation
and openness. Research Report 278, Department of informatics, University of Oslo,
Norway, Nov. 1999.

44. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, Dec. 1972.

45. D. L. Parnas and Y. Wang. The trace assertion method of module interface spec-
ification. Technical Report 89-261, Department of Computing and Information
Science, Queen’s University at Kingston, Kingston, Ontario, Canada, Oct. 1989.

46. G. Smith. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers, 2000.

47. S. F. Smith and C. Talcott. Modular reasoning for actor specification dia-
grams. In R. Ciancarini, A. Fantechi, and R. Gorrieri, editors, Proc. 3rd Interna-
tional Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’99), pages 401–418. Kluwer Academic Publishers, Feb. 1999.

48. N. Soundarajan and S. Fridella. Inheritance: From code reuse to reasoning reuse.
In P. Devanbu and J. Poulin, editors, Proc. Fifth International Conference on
Software Reuse (ICSR5), pages 206–215. IEEE Computer Society Press, 1998.

49. D. Walker. Objects in the π-calculus. Information and Computation, 116(2):253–
271, Feb. 1995.

50. A. Wang. Generalized types in high-level programming languages. Research Report
in Informatics 1, Institute of Mathematics, University of Oslo, Jan. 1974. Cand.
Real thesis.

SIMULA and Super-Object-Oriented

Programming�

Eugene Kindler

Ostrava University,
Faculty of Sciences,

Dvorakova 7, CZ-70103 Ostrava,
Czech Republic

Kindler@ksi.mff.cuni.cz

Abstract. Although SIMULA was proposed in 1967 and in details de-
scribed in 1968, it offers more than object-oriented programming. To-
gether with object orientation, its process orientation and block orien-
tation offers to model systems containing modeling elements. The devel-
opment of this direction of application is described, concluding by the
simulation of systems in that there are simulating computers that influ-
ence those systems. The development goes through the nested modeling
to the reflective modeling. Nested modeling uses models of the systems
that contain elements using other models, while reflective modeling is
a special case of nesting modeling, in which the elements of the mod-
eled system use models of the system in which they occur. Simulation
modeling appears the most important factor in that domain.

1 Preface — Historical Introduction and Personal
Reminiscence

The 60-ies of the 20th century were the second entire decade when Czechoslo-
vakia was a part of the Soviet block, i.e. when its life was in a totalitarian way
governed from Kremlin. The instructions came in the Russian language. Only
a few people know that it was the only one of the cultural languages, which
had no term for computer simulation. A certain Russian term, which was in-
tended to mean computer simulation and which could be translated into English
as imitation modeling, was introduced not sooner than in the late 70-ies and
came into common use only in the late 80-ies. In the 60-ies the governing forces
seating in Kremlin were still under influence of the Stalinist ideology of refus-
ing computers and although they did no more use slogans like “Cybernetic —
pseudoscience of the obscurians” they understood the computing technique as
an only auxiliary tool of mathematics, i.e. a tool for final (numerical) solution of
mathematical entities that arose after a conventional analysis performed by pre-
computer mathematicians. An iterative communication between a human and
� In honor of Ole-Johan Dahl, a genial scientist, an excellent musician and a very good

person

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 165–182, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

166 Eugene Kindler

a computer, which admitted a human to view the computer behavior as that
of an experiment, and the human governing the computer as a deep rational
mans reaction to the behavior of the computer, was behind the horizons of the
totalitarian leaders of the East European science. Moreover, for the leading case
of that attempt, i.e. for computer simulation, the same leaders of science met
another drawback, namely the above mentioned absence of the term that could
be applied in the centralized instructing in the East European science. Even in
case the Kremlin bureaucrats had wanted to instruct the leaders of science in
the satellite countries about the importance of computer simulation they would
not be able to tell that. The persons in Czechoslovakia who were delegated by
Kremlin to lead the development of science were old men without any contacts
with the contemporary state of the sciences, they obeyed the Kremlin directives
and were allusive and mistrust against the term (computer) simulation, consid-
ering it with a suspicion that it could be something of ideological diversion, i.e.
of the highly punished behavior in the totalitarian society. Computer simulation
was far from being mentioned at the University courses and a small number of
persons who had recognized its importance had to grow it almost illegally.

In 1966 I entered the Faculty of General Medicine of Charles University in
Prague to build there a computer laboratory in a department oriented to bio-
physics and nuclear medicine. The specialists in medicine and biology, whom I
met there, were at a high level of their profession and wanted to apply computers
but they were perplexed by them, by algorithmization and by transforming their
questions and problems into the physics of computing technique. But after a few
weeks I watched them to have used a rather exact tool, namely compartmen-
tal systems, i.e. systems composed of well stirred volumes of matter, connected
by idealized channels able to let non-zero volume through, contrary to the fact
that their volume is zero [1], [2]. I prepared (and during the following months
implemented) a programming language that enabled the non-computer-oriented
specialists to describe compartmental systems: the description used terms fa-
miliar to the common terminology of the compartmental systems practice and
a compiler processed it to a computer program that generated data similar to
those that could be measured at a real compartmental system [3].

Charles University printed a booklet [4] on the mentioned software prod-
uct and distributed it abroad. The coming political relaxation of the so called
Prague Spring caused a short independence of the Czechoslovak science on the
control from Kremlin and that situation enabled such international activities
and the events that followed: the booklet came also to Ole-Johan Dahls hands,
who prepared the famous IFIP Working Conference on Simulation Program-
ming Languages (May 1967 in Oslo). The conference must be really understood
as famous, because O.-J. Dahl and K. Nygaard presented there the principles
of language SIMULA 67, i.e. the principles that were many years later recog-
nized as leading principles of the development of programming and knowledge
representation and called object-oriented programming. O.-J. Dahl invited me to
come to the conference and to present there my software product. So I learned

SIMULA and Super-Object-Oriented Programming 167

that I practiced simulation and that I designed and implemented a simulation
language.

I returned from the conference with a joyful intention to throw out my soft-
ware product and to use SIMULA 67: in my consideration it appeared as an
ideal tool for solving not only high problems of programming, modeling, simu-
lation and knowledge representation, but also everyday obstacles, rooting in the
general phenomenon that making a program in a certain professional domain
stimulated immediate demands for its author to make further programs belong-
ing to the same domain or to a kindred one. My information about SIMULA
principles were positively accepted by some Czechoslovak specialists and several
years later SIMULA implementations appeared at certain main frame comput-
ers like CDC Cyber, IBM 370 and its East European copy called JSEP 1040.
The mentioned specialists met at seminars organized under the Czechoslovak
Cybernetic Society in its Working Group of SIMULA Users. I informed about
SIMULA also during my lectures taken at Charles University in Prague and
later at new Czech Universities established in Ostrava and in Pilsen.

2 First Directions in SIMULA Applications in
Czechoslovakia

In the seventies, the Czechoslovak specialists applied SIMULA as a powerful
simulation tool in some domains like steel metallurgy, machine production, agri-
culture, services, computer design, nuclear power plants, internal logistic of fac-
tories, medicine and ecology. In a smaller extent, SIMULA was also used outside
simulation, like in musical science (analysis and synthesis of melodies and poly-
phonies, dodecaphonic music theory), in airplane production scheduling and in
system optimization.

All those applications did not overpass the conventional view to general sys-
tems, that was interpreted by the habitual scheme of class nesting used by every
SIMULA user: one class (called main class), representing a certain world viewing
(or a problem oriented language fully defined in SIMULA, or a formal theory de-
fined in SIMULA) contained other classes (let us call them elementary classes),
representing the concepts applied in that world viewing (or in that problem ori-
ented language or in that formal theory). A block prefixed by the main class
represented a pattern of a model: when the computing process entered into such
a block a new model arose and when the computing process left the block the
model disappeared. If the main class introduced a simulated time axis the time
flow arose and disappeared together with the model. A cycle containing such a
block represented a simulation study, i.e. a sequence of simulation experiments
so that each of them had its own time flow, which was not bound with those of
the other experiments.

Already in that phase of SIMULA applications we realize that the block ori-
entation of SIMULA allows class nesting: inside the main class (for example class
geometry on page 168) other classes were nested (for example classes point,
line, circle etc.).

168 Eugene Kindler

class geometry;
begin class point(x,y); real x,y;... ;

class circle(center, radius);
ref(point)center; real radius; ... ;

class line(...); ... ;
ref(point)O; ref(line)x_axe,y_axe;
O:-new point(0,0);
x_axe:-new line(...); y_axe:-new line(...);
...

end of geometry;

We did not met anything similar later, when we studied other object-oriented
programming languages (C++, SmallTalk, Eiffel etc.), which were presented
to the world professional community. Main class seemed being nearer to the
modeled world than “class libraries” or “class packages” that were offered by
those languages and that were too distant from the real world and too fixed
with the computers: one cannot forget that one of the principal advantages of
the object-oriented programming was that the programmer was not forced to
formulate what should happen in the computer and instead of it he was led to
describe directly the thing to be modeled.

During our studying of SIMULA (and during university lectures on it) we
have been meeting the fact that class nesting can be iterated. For example, a
main class can contain classes that are also main classes and contain other classes.
Or a main class can contain a process with its own statements (we call them “life
rules”), and among these statements there is a block containing formulations of
classes, or even a block prefixed by a main class.

Moreover, SIMULA introduced quasi-parallel systems that allowed switching
the life rules of different objects. A new quasi-parallel system should rise when
the computing process enters a block containing formulations of classes: the
instances of these classes can enter the corresponding quasi-parallel system (as a
more suitable, this rule replaced the original rule existing in the first definition of
SIMULA, according to which a quasi-parallel system arose when the computing
process entered a prefixed block). As the blocks can be nested the quasi-parallel
systems can be also nested, i.e. an element of a quasi-parallel system can enter a
phase (a subblock of its life rules) deepened by its own quasi-parallel system. We
slowly penetrated to the meaning of the nesting of classes and of quasi-parallel
systems, and namely to their importance.

3 Semantics of Nesting Main Classes and Quasi-Parallel
Systems

Later it appeared to us why the mentioned penetrating was so difficult. The
reason rooted in the fact that one could not support his consideration by means
of a result or an analogy discovered in another exact science like mathematics,
logic or even physics or chemistry. If we view a main class as a computer image

SIMULA and Super-Object-Oriented Programming 169

of a formal theory (or a world viewing or a language), the nesting of the main
classes has to be viewed as a formal theory the entities of that are able viewing
to other (“their proper, private”) formal theories (and — analogously — as a
world viewing which admits that the viewed components of the world have their
own world viewings, or as a language that allows its words to manipulate with
their own “internal” languages).

Naturally, such attempt is not habitual and was not exactly studied by sci-
ences. Nevertheless, in case of the interpretations by means of the formal theories
and/or of the world viewings, certain analogies in the real world exist; we dis-
covered some of them and then we included them into our work to implement
computer models. This will be described in the next sections. The interpretation
in case main class = language seems to fail any suitable application.

A more difficult interpretation expected us in case of nested quasi-parallel
systems but the first steps in mental governing the class nesting enabled to
understand also the nesting of the quasi-parallel systems.

4 First Steps in Nesting Modeling-Theory

The basic scheme of main class nesting in SIMULA can be outlined by means of
the following block:

begin class main1;
begin class concept1; ... ;

class concept2; ... ;
... etc. other declarations;

class internal_modeller;
begin class main2;
begin class conceptA; ... ;

class conceptB; ... ;
... etc. other declarations;
possibly: statements of main2 ...

end of class main2;
possibly: statements of

internal_modeller;
end of internal_modeller;
possibly: statements of main1;

end of main1; possibly: statements of the block
end of the block;

One can see that in the block a certain world viewing called main1 is in-
troduced so that it contains some concepts called concept1, concept2, ...,
which are “habitual and conventional” for that world viewing, and a concept
called internal modeller that has his own world viewing called main2 and us-
ing concepts called conceptA, conceptB, ... What happens in the “mind” of
that modeler can be independent of what happens in the “world” composed of
the instances of concepts belonging to main1, but can interact with them. Note

170 Eugene Kindler

that among the instances, those of the “habitual and conventional” concepts can
occur and those of the internal modeller as well. Let us present an example.

The block is a model of dining mathematicians. concept1, concept2 etc.
are dishes, plates, knives, forks, serving persons, tables, chairs etc., while the
class internal modeller is a concept of dining mathematician who cannot eat
without thinking on geometry; in case he is eating together with other similar
mathematicians he wishes to discuss with them about the professional questions
he is having in his mind. The classes conceptA, conceptB etc. occurring in class
main2 are e.g. classes point, line, circle etc., occurring in class geometry
mentioned in Section 2.

In place of dining mathematicians we can consider dining staff officers who do
not thing on a static world of geometry but who imagine the battle that expects
them: each of them has his own vision, he controls it by the rules of causality,
probability and time flow and exchanges information on the imaginary battle
with his staff colleagues. Note that two sorts of time occur in such a metaphor:
the time during that the officers are eating and discussing, and the imagined time
of the future battle. That natural metaphor leads us to attempt to quasi-parallel
system nesting and to nesting of simulation models.

Although both the examples can seem rather strange, they led to modifica-
tions that could be applied in practice, even in industrial domain. The dining
mathematicians should be replaced by working persons, because the persons can
mutually interact not only during eating but during working, too, and they can
govern not only things serving for eating but also components of the production
and/or logistic systems in which they are working. The session of dining officers
can be replaced by that of discussing experts who should decide of a certain —
hopefully optimal — variant of a system that they have to design.

And — moreover — the thinking human can be replaced by a computer or
by a human with his own computer that helps him to make decisions; namely
a simulating computer can help a person to improve his imagining, which could
be viewed as imperfect and poor “mental simulation”. Such a transformation
appears to be useful in case one should automate a system and tries to transfer
the humans mental processes to those of computing automatons.

In the community of SIMULA users a habitude started in 1993: the object-
oriented programming admitting the objects to have their “private” classes and
thus enabling them to use these classes for to model “thinking”, imagining,
simulation and in general modeling was called super-object-oriented programming
[5], [6].

5 Further Steps in Nesting Modeling — Pseudosimulation

The roots of the first real experiences with application of nesting modelling arose
in use of a so called pseudosimulation or fictitious simulation [7]. The contents
of those terms can be explained as follows:

Simulation programming tools were designed to make easier the implementa-
tion of simulation models: using these languages, a simulationist does not need

SIMULA and Super-Object-Oriented Programming 171

to describe what should happen in the computer (i.e. an algorithm) but what
happens (or should happen) in the simulated system. The automatic scheduling
of events (and — for some simulation languages — of processes) at a common
simulation time axis is one of the most impressive helping aspects of the discrete
event simulation languages. Besides describing real systems or systems that are
considered as possible real things in a future, one can use the simulation lan-
guages to describe systems that are evidently fictitious. Ole-Johan Dahl shown
already in 1966 that such an affair can be used to make easier an implementation
of certain algorithms [8]: instead to describe them in a traditional programming
language one imagines a system that could produce the same data as the desired
algorithm, and describes it in a simulation language. Dahl presented two exam-
ples, namely Eratosthenes sieve to compute prime numbers, and determining
the shortest path in a graph. The last example was implemented as a simulation
model of the following fictitious system.

Certain “pulses” leave the start node along all possible connections leading
out from it. The rates of movement are the same. Any branching of the graph is
in one of two following states: marked or free; at the beginning, every branching
is free. When a pulse enters a free branching it marks it and then it multiplies
(similarly as microorganisms and — in general — cells do) so that its “descen-
dants” occupy all connections leading from the branching. When a pulse enters
a marked branching it disappears. Each of the pulses carries information on its
“ancestor” and on the connection along it moved. When a pulse enters the tar-
get point, it and its “genealogy” determine the shortest path. It is evident that
a good discrete event simulation language makes easy not only scheduling the
pulses marking of nodes and their multiplying, but also enables to formulate only
one class of pulses with its life rules for a general concept of pulse. Naturally,
something like the multiplying pulses is a fictitious affair.

The shortest path is often determined in the production and logistic systems,
and nesting a subroutine for it is often necessary in simulation models of such
systems. We mapped that subroutine to a simulation model of the system of
pulses presented above. Its nesting in a simulation model of a real systems was
described in SIMULA according to the following principles:

real_system_model: SIMULATION
begin class node; begin ref(head)environment; ... ;

class connection(start_node, end_node); ... ;
process class fixed_machine; ... ;
process class conveyor;
begin ref(node)present_place;

procedure give_the_shortest_path_to(target);
begin fictitious_system_model: SIMULATION

begin process class pulse
(start_place, father, way); ... ;
activate new pulse
(present_place, none,...);
...

172 Eugene Kindler

end of the fictitious system model;
end of the shortest path routine;
... life rules of conveyor (sometimes calling
the procedure give_the_shortest_path_to) ...

end of class conveyor;
... forming the structure of real system model,
activating conveyors, etc.

end of the real system model;

In 1990, we started with using that principle in simulation of machinery
production systems using induction carriages for its operation logistics [10], and
then we proceed by a lot of other applications (see e.g. a detailed description of
many SIMULA texts at pages 175–278 of [11]).

In the SIMULA text there are two occurrences of SIMULATION applied as
prefixes at different block levels. This phenomenon is not in a contradiction to
SIMULA principle forbidding subclassing across block levels, because each of the
occurrences is considered as an identifier completely different from the other one.
According our experience, every SIMULA compiler for PC compatible machines
behaves in that manner.

6 Other Applications of Pseudosimulation

A description of application of pseudosimulation using other fictitious models
than that of the pulses and applied for other reasons that the shortest paths
computing, can be seen in [7]. In a greater part, they applied pseudosimulation
nesting in a simulation model. But the nesting can be realized inversely, namely
so that a simulation was nested in a model of a fictitious system that governed
a simulation study (a sequence of simulation experiments controlled to lead to
some target).

An excellent example was presented in [12] and [13]. It roots in the metaphor
of the dining mathematicians presented in Section 4. Let us describe it.

The fictitious system is a session of several experts (may be from 5 to 10),
each of them having a computer. The task of the session is to get a proposal of
a (sub)optimal variant of a certain dynamic system.

At the beginning, each of the experts simulates the system from (simulated)
time equal zero so that he respects his own opinion on the optimum variant. The
experts simulate contemporarily and interrupt the simulation experiments when
accessing a certain (simulated) time T .

Then they observe the results — often time integrals of some variables (e.g.
of queue lengths, waiting times, income or expenditure) — and exchange infor-
mation about that. One of the experts — let us call him W — recognizes his
variant having led to the worst results; inspired by the variants of his colleagues,
he processes the parameters of their variants to form a new variant for himself.

Then his colleagues continue their simulation experimenting from to T + D.
SIMULA allows to model the experts so that they can simply proceed the simu-
lation computing from (simulated) time T . Only W has to start the simulation

SIMULA and Super-Object-Oriented Programming 173

of his new variant from the beginning, i.e. from time equal to zero, but he leads
the simulation until the same time as his colleagues do, i.e. to T + D. Then the
information exchange among the experts, leading to a new refusing of a variant
and replacing it by that with — hopefully — better behavior takes place.

The experts simulate until time T +2D, and the cycle <simulation — commu-
nication — formulation of a new variant> is repeated until a certain (simulated)
time T + KD (where K uses to be from 100 to 500). In that state the experts
come near to the optimum variant and in commercial applications the best vari-
ant being handled by them is sufficient. The theory says that such a way to
the optimum realized during the simulation experimenting should take 50% of
the computing time necessary for the conventional optimizing, which tests any
variant by a simulation from zero until T +KD. Nevertheless commercial appli-
cations in steel metallurgy, machine production, neurophysiology, services and
other branches demonstrated that the described method needs less computing
time than about 15 percent of the time necessary for the conventional optimizing.

A natural question exists whether it would be necessary to apply conventional
optimizing with simulation up to T + KD. There is a simple positive answer to
such a question, which is supported by the following fact.

Simulation is applied for getting information on complex systems. For such
systems it is difficult to determine the duration of the initial transitive phase
during which the behavior of the system is exceptional and cannot be used for
any decision concerning the optimum; the optimum design of a system should
be designed according to its behavior in its steady state, which takes place after
the initial phase. The information on the important behavior of the system (and
therefore its optimizing, too) should be based at simulation experiments that
map the system behavior during a certain duration TS of its steady state. Nev-
ertheless — because of the complexity of the simulated system — the duration
of the initial phase is not known and one can formulate an extreme optimistic
hypothesis TOPT or an extreme pessimistic hypothesis TPES about it, accepting
that the true value TX is somewhere between them. But it is just the method
described above that enables to use the true duration for the optimizing: T is
taken as TOPT + TS and T + KD as TPES + TS , which imply D = TP ES−TOP T

K .

7 Reflective Simulation

When a system S is to be designed simulation is often used to give data that
tell the designers about the behavior of various variants that they think on.
Simulation models for that purpose can be called external. S can use simulation
when it will operate: such a simulation can for instance test possible consequences
of the decisions made during the operating of S. Let the simulation models used
during the real existence of S and existing as its components be called internal
ones. It is evident that both the internal models and the external ones concern
the same thing and that it would be dummy to describe the external model in
a language different from that applied for describing the internal ones.

174 Eugene Kindler

The simulationists often say with humor that simulation is the worst way to
get data about a system and that it should be replaced by a better way in case
such a way exists (e.g. an analytical method, a direct experiment, a heuristic
technique, or a search in a data base). They can say it, because they know
that in case of complex systems there is no way to get data on them, excepting
simulation. When the designers think about a system to contain a simulating
computer, they have to accept that simulation is quite necessary, otherwise they
would demonstrate their low professional level.

The consequence is that the external model should reflect not only “hard
elements” of the designed system (machines, buildings, storages, . . .) but also
“soft elements”, namely computers that exist contemporaneously with the hard
elements and that sometimes simulate. To neglect the simulating computers
in the external model would be a demonstration of one of two errors of the
designers: if in such a state the external model gives good information the internal
models can be rejected from the real system, too, and — oppositely — if the
internal models are necessary to serve to the operation of the designed system,
the external model without them would give false data about the studied system.

Therefore the external model of S has to contain the images of its simulating
soft elements, i.e. the internal models should be nested in the external model. The
phenomenon that it is not practiced roots in the fact that with use of common
simulation tools (simulation languages, packages and object-oriented program-
ming systems) it is too difficult to implement such an external model. Never-
theless SIMULA allows it; in principle the internal models can be nested in the
external model similarly as outlined at the end of Section 5: real system model
corresponds to the external model while fictitious system model represents
the internal one.

There is a special property in the case presented in this Section: as it was
mentioned, both the models concern the same thing and therefore what is for-
mulated in real system model should be almost the same as what is declared
in fictitious system model, which — of course — cease being a model of a
fictitious system. In such a case we speak on reflective simulation, because the
internal model should reflect what exists (or may exist) in the external one.

The practice of the reflective simulation carries some obstacles that were
already overcome (see e.g. exhausting recommendations in manuals [14] and
[15]). But there is a special aspect of the reflective simulation that has to be
analyzed in some details. In concerns a programming error that can come just
in case of reflective simulation and that is called transplantation. Let us describe
that error and its possible consequences.

We already wrote that in case of the reflective simulation the language used
for the description of the internal model should be almost the same as that used
for the description of the external model. Suppose Q to be a name of a storage
and R a name of an element that can enter Q. What can happen in the external
model must be admitted for being mapped in the internal one and therefore the
fact that R enters Q can occur in both the models. But what happens when one

SIMULA and Super-Object-Oriented Programming 175

makes an error and writes in his model that R of the internal model enters Q of
the external one?

Such an event has no analogy in the real world, because it means that some-
thing represented by means of electronic phenomena inside a computer existing
in the real world enters into a storage that exists in the same real way as the
computer. Nevertheless, one could say transplantation to be a certain analogy
of the non-Euclidean geometries, about which 200 years ago one thought to be
without sense and then their meaning and even their importance was discov-
ered: although they seemed dummy they contain no internal contradiction. But
it cannot be said about the transplantation [16]. If R enters Q it is handled
as a component of the external model. It can have a neighbor P in Q, which
belongs to the external model similarly as Q. But R can have a relation to
another element M , which was introduced in an ordinary way before the trans-
plantation; therefore M should belong to the internal model. Then, through the
way M–R–neighbor of R, the computing process can handle P as if it would
be an element of the internal model. An equivalent event can be accessed by
the way M–R–storage of R: Q will be handled as a component of the internal
model. Similar steps can be repeated, until both the external and internal models
are hopelessly intermixed, and then the computing process fail into a collapse,
emitting a message like “non-existing address”. A reverse reconstruction of the
steps from the message to the first erroneous step is impossible and therefore
the place of the real programmer’s error cannot be determined and repaired.
Detailed experimenting leading to the collapses were presented in [16].

The ways of making the users safe against transplantation can be built in
the run time phase or in the compiling one. The run time phase ways against
transplantation do not limit the user’s freedom but lead to an enormous prolon-
gation of the run: every assignment must be tested whether it does not perform
a transplantation. The security built in a compiler does not enlarge the run of
the compiled program but implies restrictions of the language. Especially in case
of SIMULA, we thought during 25 years it being secure against transplantation
so strongly that it did not allow any communication between the external and
internal models. Not sooner than in 1993 (therefore 26 years after the first pro-
posal of the SIMULA principles and 25 years after the exact definition of its
syntax and semantics) we discovered how to overcome the limitations (it is a
splendid property of SIMULA that the tricky ways of the overcoming did not
lead to any violation of its security!).

The SIMULA security roots in two syntactical restrictions: one of them as-
serts that a quasi-parallel system exists only contemporary with a subblock,
while the second one states that the subblocks cannot get names (identifiers).
As the simulation needs quasi-parallel systems, the internal and external mod-
els must be programmed as subblocks, but the consequence is that neither the
external model nor the internal one cannot get names. Therefore one cannot
express whether a name of an element (e.g. M , P , Q and R used in the example
presented above) concerns the internal model or the external one, and the only
“common rule of nesting blocks” is applicable: inside the block corresponding to

176 Eugene Kindler

the internal model such names point to its elements while the elements of the
external model having the same names are not accessible there, and outside this
block the names point to the elements of the external model while those of the
internal one are inaccessible.

After the mentioned long period of 25 years, we discovered a trick, that will
be demonstrated at the example of the name Q. Let us start from the exam-
ple presented at the end of Section 5, and modify it slightly: let us introduce
external model in place of real system model and internal model in place
of fictitious system model, let us change the classes reflecting the simulated
object (we are no oriented to the conveyor and its shortest path treatments
more), and let us make a rather poetical (or dadaistic?) step by using name
world for the class of computers that use the internal models. Let us introduce
class helping force and a name assistant for one of its instances; it reflects
no real entity of the simulated system but will help to overcome the barriers
given by SIMULA: when the assistant is demanded to give Q it turns to what
is called Q and presents it as Q . As the assistant exists in the external model
and out of the internal model, it handles Q belonging to the external model.

Now let us turn to class world. It contains a subblock internal model. Outside
this block, world contains function called Q, which is defined so that it delegates
the assistant to give its Q ; the assistant gives Q of the external model and
therefore — according to the rules of SIMULA — when this world.Q is met inside
world, it points to Q of the external model. It holds also inside the internal model
but if in that model an isolated text Q is met, the SIMULA rules determine that
it is Q of the internal model. Therefore in the internal model one can distinguish
between the both storages by using Q and this world.Q: Q points to Q of the
internal model while this world.Q points to Q of the external one. Thus — for
example — Q.capacity:=this world.Q.capacity expresses copying the value
of attribute capacity of the storage Q existing in the external model, as the
value of attribute capacity of the image of Q in the internal model. In SIMULA,
this world.Q is to be read as “Q of this world”, which illustrates the reason of
the strange name given to the computer.

external_model: SIMULATION
begin class storage; ... ;

ref(storage)Q;
process class conveyor; ... ;
class helping_force;
begin ref(storage)procedure Q_; Q_:-Q;
...
end of class helping_force;
ref(helping_force)assistant;
process class world;
begin ref(storage)procedure Q; Q:-assistant.Q_;

procedure simulate(...);
begin internal_model: SIMULATION

begin class storage; ... ;

SIMULA and Super-Object-Oriented Programming 177

ref(storage)Q;
...

end of the internal model;
end of procedure simulate;
... life rules of class world ...

end of class world;
assistant:-new helping_force;
... forming the structure of real system model ...,
activating its components ... ;
activate new world;
...

end of the external model;

At the present time, a software system is implemented to translate a con-
ventional simulation model written in SIMULA into an (external) model with
computers that are able to observe the state of the system in that they occur, to
generate a simulation model according it and to use it as internal model [17], [18].
Naturally, both the purpose of the internal model and the moments when it is to
be applied depend on the users wishes and cannot be automatically generated.
The software was made under the Barrande programme (bilateral cooperation
between French and Czech universities, namely between the University of Os-
trava and Blaise Pascal University in Clermont-Ferrand) and also supported by
the institutional research scheme of the University of Ostrava.

8 An Example

During 1995–2000 the author of this paper was a member of an international
consortium working under support of the European Commission at two Coperni-
cus projects oriented to modernization of sea harbors by means of using modern
information technologies [11], [19], [20]. Among the necessary tasks of the consor-
tium work, an implementation of programming tools for simulation of container
yards appeared. The tools had to be as general as possible, reflecting the wide
spectrum of the container yards over the world.

The author of this paper oriented his work to that subject and used SIMULA
to implement the mentioned tools: the subclassing, enabled by this language, ap-
peared very suitable to realize the task (note that it was not only the subclassing
of elementary classes like those of containers, transport tools etc. but also sub-
classing of main classes, i.e. in case of different “world viewings” to the container
yards).

Using SIMULA there were no essential problems [21]. For computing the
path of the ground-moving transport tools (further: GMTT, e.g. forklifts), the
pseudosimulation of distributed pulses was applied similarly as it was presented
in Section 5. Therefore the elaborated simulation models of the container yards
contained nested simulation models of fictitious systems [22].

When a transport tool gets an instruction to move to a certain place a path
is computed for its moving. In case of a GMTT the path must be composed of

178 Eugene Kindler

free places of the labyrinth among the stored containers, i.e. of places at which
there is no container and no GMTT. The path is computed immediately when
the instruction for moving is emitted and the computation is based on using
the places that are free at the moment of the computing (the duration of the
computing is neglected). But the computed path is then used during a certain
non-zero time and during it the configuration of the free places can change:
moving along the computed path, the GMTT can face to a barrier formed by a
(temporarily) stored container or by another GMTT. Note that such barriers can
arise only in case that more than one GMTT can contemporaneously operate in
a container yard, but so it is just in many real situations.

A lot of control algorithms were proposed for what a GMTT should do when
meeting a barrier. Hundreds of simulation experiments shown that any proposed
algorithm led the system to deadlocks that stepwise cumulated in time until a
complete collapse of moving in the whole yard. The solution was found in testing
the computed path by simulation, in the following way.

Suppose at time t a GMTT F gets an instruction to move. We will say F
to be semiactive. There may be other GMTTs that are already moving; their
ways were already computed, tested and fixed at a time less than t and cannot
be changed. Let us call them active GMTT. The other GMTT — in case they
exist — are not moving, i.e. they have no path and a path can be assigned
them later, at a time greater than t. A path P is computed for F and then a
certain future of the container yard is simulated, supposing that P is accepted.
The simulation experiment reflects also all moves of the active GMTT and is
concluded by one of the following two events: the happy end is the event when
F accesses the end of P , and the bad end is a conflict between F and a barrier.
In case of the happy end the path P is accepted and F moves along it. In case
of the bad end the place of the barrier is marked by a fictitious container and
the process is repeated: a new path is computed for F and tested by simulation;
because of the fictitious container, it will differ from P . So the process of two
nested simulations — that of system of fictitious pulses and that of the future
of the container yard — is repeated until a safe path is got. Many simulation
experiments shown that in a realistic situation a safe path is always accessed [23],
[24]; only in case the external simulation experiment is started so that more (e.g.
four) GMTTs are cumulated around the first manipulated container, a deadlock
comes immediately at the start, but no practiced worker of a container yard
begins with such a bizarre decision step.

9 New Horizons

As we already mentioned, the simulation models of container yards, organized
according to the described structure are external models containing two different
internal ones so that one of them causes their use to be reflective simulation.
Nowadays, the classification of the simulation models to those of real systems
and those of fictitious systems seems to be clear and useful, and therefore a
classification of the nested models seems to be almost clear; we wrote “almost”,

SIMULA and Super-Object-Oriented Programming 179

because beside the reflective simulation and the simulation using nested pseu-
dosimulation, the third sort can be taken into account, characterized so that in
a model of a real system S there is another model nested, simulating a system
that is real but very different from S. Although the idea is natural and SIMULA
allows applying it, its real application does not exist (it offers to be applied in
concurrent engineering [25]).

But SIMULA opens other horizons, the substance of which is in mixing prop-
erties of real and fictitious systems. Although it may seem crazy, such systems
can be simulated, their models can be nested into those of “uncrazy” systems and
may be applied. An impressive example presented Novak (a student of Charles
University in Prague) in his master thesis (the substance was published in En-
glish in [26]).

Computing a path of a GMTT, we try to get it as short as possible. The
consequence of this intention is, that we automatically exclude the variants in
which the GMTT should wait or even return. In Section 5 it was shown that the
fictitious system of pulses produces only paths without waiting and without re-
turn, because when a pulse returns to a marked place it disappears. Nevertheless
the idea to exclude the waiting and returns is not good in case the configuration
of free places can change. In general, a GMTT can move near to a barrier, then
it can wait there some time and then it can continue to move when the barrier
disappears, and the time necessary for accessing the target can be smaller than
that necessary for a moving along a rather long path without waiting. Moreover,
even the following situation can exist without implying a deadlock:

There is a narrow way W between two walls formed by stored containers; the
end places of W are Y and Z. Between them, but near to Y , there is a place A
at W and beside it there is a place C in one of the walls, where occasionally
no container is placed; C forms a certain alcove of W . At a place B between A
and Z, there is a GMTT called G moving to the end Y , while near Y there
is another GMTT called F . Its task is to move behind place Z. If the return
and waiting is not accepted F should use another path than that through W ;
such a deviation could take much time. If a possibility to return and to wait
exists F can move to A and then to C, there it can wait until G moves to a place
between A and Y . Then F can return from C to A and to continue to Z.

Novak included an ability to generate such decisions so that he united both
the internal models into a certain mix in which the images of real (active)
GMTTs and fictitious pulses exist in a common simulated time and mutually
interact: when the shortest path for a GMTT has to be determined the fictitious
pulses are interpreted as all logically possible future moves of the semiactive
GMTT and the moves are faced to meet with those moves and barriers that
were already determined before and are caused by the active GMTT. If a pulse
meets a barrier it does not disappear but it waits and when an image of an active
GMTT moves along marked places it liquidates their marks so that the waiting
pulses can continue to move through them.

180 Eugene Kindler

10 Conclusion

Computer models penetrate more and more into the world in that we exist.
The models reflect components of this world and — if using the terms hard and
soft, introduced in Section 7 — we can classify the models into two different
groups: the models of the hard components (production/logistic systems, living
organisms, their organs and their communities, physical systems, buildings and
their complexes etc.) and those of the soft components (e.g. data bases, com-
puter networks and operation systems). The number of the models of the hard
components is much grater because our world was originally composed of such
components. Contemporarily with the computerization and informatization of
the human society, the models will have to reflect penetrating of the computer
models into the systems composed of hard components, i.e. have to map that
the hard components are more and more bound by the soft ones, or — more
precisely — by the models the soft components carry. The nesting of models will
reflect the fact that the modeled hard components of the world develop to be
less and less autonomous, influenced by soft ones.

This historical process leads to a certain task, namely to the necessity of
studying the models of systems using models or — equivalently — to study
theories concerning entities that carry theories. But — as we already wrote in
Section 3 — the sciences give no support for it (the genial contribution given
to mathematical logic and to our civilization by Kurt Gdel is too elementary
than to be used as an effective aid). SIMULA surprises not only because it is a
very effective stimulus for the mentioned task but also because of applications
it offers. Already 35 years ago, the authors of SIMULA contributed not only by
their ideas but also by their hard work that led the ideas until implementation
functioning independently of the human thinking.

References

1. Rescigno, A., Segre, G.: La Cinetica dei Farmaci e dei Traccianti Radioattivi. Bor-
inghieri, Torino (1961)

2. Sheppard, C. W.: Basic Principles of the Tracer Method — Introduction to Math-
ematical Tracer Kinetics. Wiley New York London (1962)

3. Kindler, E.: Simulation System COSMO, its Language and Compiler. Kybernetika
5 (1969) 201-211

4. Kindler, E.: COSMO (Compartmental system modelling) — Description of Pro-
gramming System. Charles University, Prague (1967)

5. Kindler, E.: SIMULA Above and Beyond the Object-Oriented Programming. ASU
Newsletter 21 (1993) No. 1, 41-44

6. Islo, H. E.: SOOP Corner. ASU Newsletter 22 (1994) No. 2, 22-26
7. Kindler, E.: Simulation of Systems Containing Simulating Elements. In: Snorek,

M., Sujansky, M. Verbraeck, A. (eds.): Modelling and Simulation — ESM95, The
Socienty for Computer Simulation International, San Diego, 1995, 609-613

8. Dahl, O.-J.: Discrete Event Simulation Languages. Norsk Regnesentral, Oslo (1966).
Reprinted in [9]

SIMULA and Super-Object-Oriented Programming 181

9. Genuys, F. (ed.): Programming Languages. Academic Press, London New York
(1968)

10. Kindler, E., Brejcha, M.: An Application of Main Class Nesting — Lee’s Algorithm.
SIMULA Newsletter 13 (1990) No.3, 24-26

11. Blumel, E. et al.: Managing and Controlling Growing Harbour Terminals. The
Society for Computer Simulation International, San Diego Erlangen Ghent Budapest
(1997)

12. Weinberger, J.: Extremization of Vector Criteria of Simulation Models by
Means of Quasi-Parallel Handling. Computers and Artificial Intelligence 1 (1987)
pp. 71-79

13. Weinberger, J.: Evolutionary Approach to Extremization of Vector Criteria of Sim-
ulation Models. Acta Universitatis Carolinae Medica 34 (1988) No. 3/4, 249-257

14. Kindler, E.: Chance for SIMULA. In: Islo, H. E. (ed.): Proceedings of the 25th
Conference of the ASU — System Modelling Using Object-Oriented Simulation
and Analysis. ASU, Kisten, Sweden (1999) 29-53. Reprinted as [15]

15. Kindler, E.: Chance for SIMULA. ASU Newsletter, 26 (2000) No. 1, 2-26
16. Kindler, E.: Transplantation — what Causes it in MS-DOS SIMULA? In: Breck-

ling, B., Islo, H. E. (eds.): Object Oriented Modelling and Simulation of Environ-
mental, Human and Technical Systems Ecology Center, Kiel (1998) 155-164

17. Kindler, E., Krivy, I., Tanguy, A.: Tentative de simulation rflective des systmes de
production et logistiques. In: Dolgui A., Vernadat, F. (eds.): MOSIM’01, Actes de la
troisime confrence francophone de MOdlisation et SIMulation “Conception, analyse
et gestion des systmes industriels”. Society for Computer Simulation International,
San Diego Erlangen Ghent Delft (2001) Volume 1, 427-434

18. Kindler, E., Krivy, I., Tanguy, A.: Towards Automatic Generating of Reflective
Simulation Models. In: Stefan, J. (ed.): Proceedings of 36th International Conference
MOSIS ’02 Modelling and Simulation of Systems, MARQ, Ostrava (2002) Vol. I,
13-19

19. Novitski, L., Bluemel, E., Merkuryev, Y., Tolujev, J., Ginters, E., Lorenz, P.,
Kindler, E., Slagter, D., Viktorova, E.: Simulation and Modelling in Managing and
Controlling of Container Harbours. In: Kaylan, A. R., Lehmann, A. (eds.): Pro-
ceedings of the 1997 European Simulation Multiconference, Society for Computer
Simulation International, San Diego (1997) 600-604

20. Bluemel, E., Novitsky, L. (eds.): Simulation and Information Systems Design: Ap-
plications in Latvian Ports. JUMI Ltd., Riga (2000)

21. Kindler, E.: Object-Oriented Simulation of Container Yards. In: Deussen, O.,
Lorenz, P. (eds.): Simulation und Animation ’97. Society for Computer Simulation
International, Erlangen Ghent Budapest San Diego (1997) 111-122

22. Kindler, E.: Nested Simulation Models Inside Simulation of Container Terminal.
In: Bruzzone, A. G., Kerkhoffs E. J. K. (eds.): Simulation in Industry, 8th European
Simulation Symposium (ESS 96). Society for Computer Simulation International,
San Diego (1966) Vol. I, 653–657

23. Kindler, E.: Simulation Model of a Container Yard Containing a Simulating Com-
puter. In: Bruzzone, A. G. (ed.): Harbour, Maritime & Industrial Logistics Mod-
elling and Simulation HMS. The Society for Computer Simulation International,
San Diego (1999) 3–8

24. Kindler, E.: Nesting Simulation of a Container Terminal Operating with its own
Simulation Model. JORBEL (Journal of the Belgian Operation Research Society)
Special Issue on Operation Research Models in a Harbour and Maritime Environ-
ment (2002) in print

182 Eugene Kindler

25. Kindler, E.: SIMULA and Concurrent Engineering. ASU Newsletter, 21, (1993) No
3, 1-16

26. Novak, P.: Reflective Simulation with Simula and Java. In: Schulze, T., Hinz, V.,
Lorenz, P. (eds.): Simulation und Visualisation 2000. The Society for Computer
Simulation International European Publishing House, Ghent (2000) 183-196

Efficient Coroutine Generation of Constrained

Gray Sequences�

Donald E. Knuth1 and Frank Ruskey2

1 Computer Science Department
Stanford University

Stanford, CA 94305-9045 USA
http://www-cs-faculty.stanford.edu/˜knuth/

2 Department of Computer Science
University of Victoria

Victoria, B.C. V8W 3P6 Canada
http://www.cs.uvic.ca/˜fruskey/

fruskey@cs.uvic.ca

Abstract. We study an interesting family of cooperating coroutines,
which is able to generate all patterns of bits that satisfy certain fairly
general ordering constraints, changing only one bit at a time. (More pre-
cisely, the directed graph of constraints is required to be cycle-free when
it is regarded as an undirected graph.) If the coroutines are implemented
carefully, they yield an algorithm that needs only a bounded amount of
computation per bit change, thereby solving an open problem in the field
of combinatorial pattern generation.

Much has been written about the transformation of procedures from recursive to
iterative form, but little is known about the more general problem of transform-
ing coroutines into equivalent programs that avoid unnecessary overhead. The
present paper attempts to take a step in that direction by focusing on a reason-
ably simple yet nontrivial family of cooperating coroutines for which significant
improvements in efficiency are possible when appropriate transformations are
applied. The authors hope that this example will inspire other researchers to
develop and explore the potentially rich field of coroutine transformation.

Coroutines, originally introduced by M. E. Conway [2], are analogous to
subroutines, but they are symmetrical with respect to caller and callee: When
coroutine A invokes coroutine B, the action of A is temporarily suspended and
the action of B resumes where B had most recently left off. Coroutines arise
naturally in producer/consumer situations or multipass processes, analogous to
the “pipes” of UNIX, when each coroutine transforms an input stream to an
output stream; a sequence of such processes can be controlled in such a way that
their intermediate data files need not be written in memory. (See, for example,
Section 1.4.2 of [9].)

The programming language SIMULA 67 [3] introduced support for co-
routines in terms of fundamental operations named call, detach, and resume.
� dedicated to the memory of Ole-Johan Dahl

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 183–208, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

http://www-cs-faculty.stanford.edu/~{}knuth/
http://www.cs.uvic.ca/~{}fruskey/
Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

184 Donald E. Knuth and Frank Ruskey

Arne Wang and Ole-Johan Dahl subsequently discovered [20] that an extremely
simple computational model is able to accommodate these primitive operations.
Dahl published several examples to demonstrate their usefulness in his chapter
of the book Structured Programming [4]; then M. Clint [1] and O.-J. Dahl [6]
began to develop theoretical tools for formal proofs of coroutine correctness.

Another significant early work appeared in R. W. Floyd’s general top-down
parsing algorithm for context-free languages [8], an algorithm that involved
“imaginary men who are assumed to automatically appear when hired, disap-
pear when fired, remember the names of their subordinates and superiors, and
so on.” Floyd’s imaginary men were essentially carrying out coroutines, but
their actions could not be described naturally in any programming languages
that were available to Floyd when he wrote about the subject in 1964, so he
presented the algorithm as a flow chart. Ole-Johan Dahl later gave an elegant
implementation of Floyd’s algorithm using the features of SIMULA 67, in §2.1.2
of [5].

The coroutine concept was refined further during the 1970s; see, for example,
[19] and the references cited therein. But today’s programming languages have
replaced those ideas with more modern notions such as “threads” and “closures,”
which (while admirable in themselves) support coroutines only in a rather awk-
ward and cumbersome manner. The simple principles of old-style coroutines,
which Dahl called quasi-parallel processes, deserve to be resurrected again and
given better treatment by the programming languages of tomorrow.

In this paper we will study examples for which a well-designed compiler could
transform certain families of coroutines into optimized code, just as compilers
can often transform recursive procedures into iterative routines that require less
space and/or time.

The ideas presented below were motivated by applications to the exhaus-
tive generation of combinatorial objects. For example, consider a coroutine that
wants to look at all permutations of n elements; it can call repeatedly on a
permutation-generation coroutine to produce the successive arrangements. The
latter coroutine repeatedly forms a new permutation and calls on the former
coroutine to inspect the result. The permutation coroutine has its own internal
state — its own local variables and its current location in an ongoing computa-
tional process— so it does not consider itself to be a “subroutine” of the inspec-
tion coroutine. The permutation coroutine might also invoke other coroutines,
which in turn are computational objects with their own internal states.

We shall consider the problem of generating all n-tuples a1a2 . . . an of 0s
and 1s with the property that aj ≤ ak whenever j → k is an arc in a given
directed graph. Thus aj = 1 implies that ak must also be 1; if ak = 0, so is aj .
These n-tuples are supposed to form a “Gray path,” in the sense that only one
bit aj should change at each step. For example, if n = 3 and if we require
a1 ≤ a3 and a2 ≤ a3, five binary strings a1a2a3 satisfy the inequalities, and one
such Gray path is

000, 001, 011, 111, 101.

Efficient Coroutine Generation of Constrained Gray Sequences 185

The general problem just stated does not always have a solution. For exam-
ple, suppose the given digraph is

1 2

so that the inequalities are a1 ≤ a2 and a2 ≤ a1; then we are asking for a way
to generate the tuples 00 and 11 by changing only one bit at a time, and this is
clearly impossible. Even if we stipulate that the digraph of inequalities should
contain no directed cycles, we might encounter an example like

1
2

3
4

in which the Gray constraint cannot be achieved; here the corresponding 4-tuples

0000, 0001, 0011, 0101, 0111, 1111

include four of even weight and two of odd weight, but a Gray path must al-
ternate between even and odd. Reasonably efficient methods for solving the
problem without Grayness are known [17, 18], but we want to insist on single-
bit changes.

We will prove constructively that Gray paths always do exist if we restrict
consideration to directed graphs that are totally acyclic, in the sense that they
contain no cycles even if the directions of the arcs are ignored. Every component
of such a graph is a free tree in which a direction has been assigned to each
branch between two vertices. Such digraphs are called spiders, because of their
resemblance to arachnids:

(In this diagram, as in others below, we assume that all arcs are directed up-
wards. More complicated graph-theoretical spiders have legs that change direc-
tions many more times than real spider legs do.) The general problem of finding
all a1 . . . an such that aj ≤ ak when j → k in such a digraph is formally called
the task of “generating the order ideals of an acyclic poset”; it also is called,
informally, “spider squishing.”

186 Donald E. Knuth and Frank Ruskey

Sections 1–3 of this paper discuss simple examples of the problem in prepara-
tion for Section 4, which presents a constructive proof that suitable Gray paths
always exist. The proof of Section 4 is implemented with coroutines in Section 5,
and Section 6 discusses the nontrivial task of getting all the coroutines properly
launched.

Section 7 describes a simple technique that is often able to improve the
running time. A generalization of that technique leads in Section 8 to an efficient
coroutine-free implementation. Additional optimizations, which can be used to
construct an algorithm for the spider-squishing problem that is actually loopless,
are discussed in Section 9. (A loopless algorithm needs only constant time to
change each n-tuple to its successor.)

Section 10 concludes the paper and mentions several open problems con-
nected to related work.

1 The Unrestricted Case

Let’s begin by imagining an array of friendly trolls called T1, T2, . . . , Tn. Each
troll carries a lamp that is either off or on; he also can be either awake or asleep.
Initially all the trolls are awake, and all their lamps are off.

Changes occur to the system when a troll is “poked,” according to the fol-
lowing simple rules: If Tk is poked when he is awake, he changes the state of his
lamp from off to on or vice versa; then he becomes tired and goes to sleep. Later,
when the sleeping Tk is poked again, he wakes up and pokes his left neighbor
Tk−1, without making any change to his own lamp. (The leftmost troll T1 has
no left neighbor, so he simply awakens when poked.)

At periodic intervals an external driving force D pokes the rightmost troll Tn,
initiating a chain of events that culminates in one lamp changing its state. The
process begins as follows, if we use the digits 0 and 1 to represent lamps that
are respectively off or on, and if we underline the digit of a sleeping troll:

. . . 0000 Initial state

. . . 0001
¯

D pokes Tn

. . . 001
¯
1 D pokes Tn, who wakes up and pokes Tn−1

. . . 001
¯
0
¯

D pokes Tn

. . . 01
¯
10 D pokes Tn, who pokes Tn−1, who pokes Tn−2

. . . 01
¯
11
¯

D pokes Tn

. . . 01
¯
0
¯
1 D pokes Tn, who pokes Tn−1

The sequence of underlined versus not-underlined digits acts essentially as a
binary counter. And the sequence of digit patterns, in which exactly one bit
changes at each step, is a Gray binary counter, which follows the well-known
Gray binary code; it also corresponds to the process of replacing rings in the
classic Chinese ring puzzle [12]. Therefore the array of trolls solves our problem
of generating all n-tuples a1a2 . . . an, in the special case when the spider digraph
has no arcs. (This troll-oriented way to generate Gray binary code was presented
by the first author in a lecture at the University of Oslo in October, 1972 [10].)

Efficient Coroutine Generation of Constrained Gray Sequences 187

During the first 2n steps of the process just described, troll Tn is poked 2n

times, troll Tn−1 is poked 2n−1 times, . . . , and troll T1 is poked twice. The last
step is special because T1 has no left neighbor; when he is poked the second
time, all the trolls wake up, but no lamps change. The driver D would like to
know about this exceptional case, so we will assume that Tn sends a message
to D after being poked, saying ‘true ’ if one of the lamps has changed, otherwise
saying ‘false ’. Similarly, if 1 ≤ k < n, Tk will send a message to Tk+1 after being
poked, saying ‘true ’ if and only if one of the first k lamps has just changed state.

These hypothetical trolls T1, . . . , Tn correspond to n almost-identical co-
routines poke [1], . . . , poke [n], whose actions can be expressed in an ad hoc
Algol-like language as follows:

Boolean coroutine poke [k];
while true do begin
awake: a[k] := 1 − a[k];

return true;
asleep: if k > 1 then

return poke [k − 1]
else

return false;
end.

Coroutine poke [k] describes the action of Tk, implicitly retaining its own state of
wakefulness: When poke [k] is next activated after having executed the statement
‘return true ’ it will resume its program at label ‘asleep’; and it will resume at
label ‘awake’ when it is next activated after ‘return poke [k − 1]’ or ‘return
false ’.

In this example and in all the coroutine programs below, the enclosing ‘while
true do begin 〈P 〉 end’ merely says that program 〈P 〉 should be repeated end-
lessly; all coroutines that we shall encounter in this paper are immortal. (This
is fortunate, because Dahl [6] has observed that proofs of correctness tend to be
much simpler in such cases.)

Our coroutines will also always be “ultra-lightweight” processes, in the sense
that they need no internal stack. They need only remember their current posi-
tions within their respective programs, along with a few local variables in some
cases, together with the global “lamp” variables a[1], . . . , a[n]. We can imple-
ment them using a single stack, essentially as if we were implementing recursive
procedures in the normal way, pushing the address of a return point within A
onto the stack when coroutine A invokes coroutine B, and resuming A after B
executes a return. (Wang and Dahl [20] used the term “semicoroutine” for this
special case. We are, however, using return statements to return a value, in-
stead of using global variables for communication and saying ‘detach’ as Wang
and Dahl did.) The only difference between our coroutine conventions and ordi-
nary subroutine actions is that a newly invoked coroutine always begins at the
point following its most recent return, regardless of who had previously invoked
it. No coroutine will appear on the execution stack more than once at any time.

188 Donald E. Knuth and Frank Ruskey

Thus, for example, the coroutines poke [1] and poke [2] behave as follows when
n = 2:

00 Initial state
01
¯

poke [2] = true
1
¯
1 poke [2] = poke [1] = true

1
¯
0
¯

poke [2] = true
10 poke [2] = poke [1] = false
11
¯

poke [2] = true
0
¯
1 poke [2] = poke [1] = true

0
¯
0
¯

poke [2] = true
00 poke [2] = poke [1] = false

The same cycle will repeat indefinitely, because everything has returned to its
initial state.

Notice that the repeating cycle in this example consists of two distinct parts.
The first half cycle, before false is returned, generates all two-bit patterns in
Gray binary order (00, 01, 11, 10); the other half generates those patterns again,
but in the reverse order (10, 11, 01, 00). Such behavior will be characteristic of
all the coroutines that we shall consider for the spider-squishing problem: Their
task will be to run through all n-tuples a1 . . . an such that aj ≤ ak for certain
given pairs (j, k), always returning true until all permissible patterns have been
generated; then they are supposed to run through those n-tuples again in reverse
order, and to repeat the process ad infinitum.

Under these conventions, a driver program of the following form will cycle
through the answers, printing a line of dashes between each complete listing:

〈Create all the coroutines 〉;
〈Put each lamp and each coroutine into the proper initial state 〉;
while true do begin
for k := 1 step 1 until n do write (a[k]);
write (newline);
if not root then write ("-----", newline);

end.

Here root denotes a coroutine that can potentially activate all the others; for
example, root is poke [n] in the particular case that we’ve been considering. In
practice, of course, the driver would normally carry out some interesting process
on the bits a1 . . . an, instead of merely outputting them to a file.

The fact that coroutines poke [1], . . . , poke [n] do indeed generate Gray binary
code is easy to verify by induction on n. The case n = 1 is trivial, because the
outputs will clearly be

0
1

1
0

Efficient Coroutine Generation of Constrained Gray Sequences 189

and so on. On the other hand if n > 1, assume that the successive contents of
a1 . . . an−1 are α0, α1, α2, . . . when we repeatedly invoke poke [n− 1], assuming
that α0 = 0 . . . 0 and that all coroutines are initially at the label ‘awake’; assume
further that false is returned just before αm when m is a multiple of 2n−1,
otherwise the returned value is true . Then repeated invocations of poke [n] will
lead to the successive lamp patterns

α00, α01, α11, α10, α20, α21, . . . ,

and false will be returned after every sequence of 2n outputs. These are precisely
the patterns of n-bit Gray binary code, alternately in forward order and reverse
order.

2 Chains

Now let’s go to the opposite extreme and suppose that the digraph of constraints
is an oriented path or chain,

1→ 2→ · · · → n.

In other words, we want now to generate all n-tuples a1a2 . . . an such that

0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ 1,

proceeding alternately forward and backward in Gray order. Of course this
problem is trivial, but we want to do it with coroutines so that we’ll be able to
tackle more difficult problems later.

Here are some coroutines that do the new job, if the driver program initiates
action by invoking the root coroutine bump [1]:

Boolean coroutine bump [k];
while true do begin

awake0: if k < n then while bump [k + 1] do return true;
a[k] := 1; return true;

asleep1: return false; comment ak . . . an = 1 . . . 1;
awake1: a[k] := 0; return true;
asleep0: if k < n then while bump [k + 1] do return true;

return false; comment ak . . . an = 0 . . . 0;
end.

For example, the process plays out as follows when n = 3:

000 Initial state 123
001

¯
bump [1] = bump [2] = bump [3] = true 123

¯01
¯
1 bump [1] = bump [2] = true , bump [3] = false 12

¯1
¯
11 bump [1] = true , bump [2] = false 1

¯111 bump [1] = false 1
0
¯
11 bump [1] = true 1

¯
2

0
¯
0
¯
1 bump [1] = bump [2] = true 1

¯
2
¯
3

0
¯
0
¯
0
¯

bump [1] = bump [2] = bump [3] = true 1
¯
2
¯
3
¯000 bump [1] = bump [2] = bump [3] = false 123

190 Donald E. Knuth and Frank Ruskey

Each troll’s action now depends on whether his lamp is lit as well as on his state
of wakefulness. A troll with an unlighted lamp always passes each bump to the
right, without taking any notice unless a false reply comes back. In the latter
case, he acts as if his lamp had been lit— namely, he either returns false (if just
awakened), or he changes the lamp, returns true , and nods off. The Boolean
value returned in each case is true if and only if a lamp has changed its state
during the current invocation of bump [k].

(Note: The numbers ‘123’, ‘123
¯
’, . . . at the right of this example correspond

to an encoding that will be explained in Section 8 below. A similar column of
somewhat inscrutable figures will be given with other examples we will see later,
so that the principles of Section 8 will be easier to understand when we reach
that part of the story. There is no need to decipher such notations until then;
all will be revealed eventually.)

The dual situation, in which all inequalities are reversed so that we generate
all a1a2 . . . an with

1 ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ 0,

can be implemented by interchanging the roles of 0 and 1 and starting the
previous sequence in the midpoint of its period:

Boolean coroutine cobump [k];
while true do begin
awake0: a[k] := 1; return true;
asleep1: if k < n then

while cobump [k + 1] do return true;
return false; comment ak . . . an = 1 . . . 1;

awake1: if k < n then
while cobump [k + 1] do return true;

a[k] := 0; return true;
asleep0: return false; comment ak . . . an = 0 . . . 0;

end.

A mixed situation in which the constraints are

0 ≤ an ≤ an−1 ≤ · · · ≤ am+1 ≤ a1 ≤ a2 ≤ · · · ≤ am ≤ 1

is also worthy of note. Again the underlying digraph is a chain, and the driver
repeatedly bumps troll T1; but when 1 < m < n, the coroutines are a mixture
of those we’ve just seen:

Boolean coroutine mbump [k];
while true do begin

awake0: if k < m then
while mbump [k + 1] do return true;

a[k] := 1; return true;
asleep1: if m < k ∧ k < n then

while mbump [k + 1] do return true;

Efficient Coroutine Generation of Constrained Gray Sequences 191

if k = 1 ∧ m < n then
while mbump [m + 1] do return true;

return false;
awake1: if m < k ∧ k < n then

while mbump [k + 1] do return true;
if k = 1 ∧ m < n then

while mbump [m + 1] do return true;
a[k] := 0; return true;

asleep0: if k < m then
while mbump [k + 1] do return true;

return false;
end.

The reader is encouraged to simulate the mbump coroutines by hand when, say,
m = 2 and n = 4, in order to develop a better intuition about coroutine behavior.
Notice that when m ≈ 1

2n, signals need to propagate only about half as far as
they do when m = 1 or m = n.

Still another simple but significant variant arises when several separate chains
are present. The digraph might, for example, be

1

2

3 4

5

6

,

in which case we want all 6-tuples of bits a1 . . . a6 with a1 ≤ a2 and a4 ≤ a5 ≤ a6.
In general, suppose there is a set of endpoints E = {e1, . . . , em} such that

1 = e1 < · · · < em ≤ n,

and we want

ak ∈ {0, 1} for 1 ≤ k ≤ n; ak−1 ≤ ak for k /∈ E.

(The set E is {1, 3, 4} in the example shown.) The following coroutines ebump [k],
for 1 ≤ k ≤ n, generate all such n-tuples if the driver invokes ebump [em]:

Boolean coroutine ebump [k];
while true do begin
awake0: if k+1 /∈E∪{n+1} then while ebump [k+1] do return true;

a[k] := 1; return true;
asleep1: if k ∈ E \ {1} then return ebump [k′]

else return false;
awake1: a[k] := 0; return true;
asleep0: if k+1 /∈E∪{n+1} then while ebump [k+1] do return true;

if k ∈ E \ {1} then return ebump [k′]
else return false;

end.

192 Donald E. Knuth and Frank Ruskey

Here k′ stands for ej−1 when k = ej and j > 1. These routines reduce to poke
when E = {1, 2, . . . , n} and to bump when E = {1}. If E = {1, 3, 4}, they will
generate all 24 bit patterns such that a1 ≤ a2 and a4 ≤ a5 ≤ a6 in the order

000000, 000001
¯
, 00001

¯
1, 0001

¯
11, 001

¯
111, 001

¯
0
¯
11, 001

¯
0
¯
0
¯
1, 001

¯
0
¯
0
¯
0
¯
,

01
¯
1000, 01

¯
1001

¯
, 01

¯
101

¯
1, 01

¯
11
¯
11, 01

¯
0
¯
111, 01

¯
0
¯
0
¯
11, 01

¯
0
¯
0
¯
0
¯
1, 01

¯
0
¯
0
¯
0
¯
0
¯
,

1
¯
10000, 1

¯
10001

¯
, 1
¯
1001

¯
1, 1

¯
101

¯
11, 1

¯
11
¯
111, 1

¯
11
¯
0
¯
11, 1

¯
11
¯
0
¯
0
¯
1, 1

¯
11
¯
0
¯
0
¯
0
¯
;

then the sequence will reverse itself:

111000, 111001
¯
, 11101

¯
1, 1111

¯
11, 110

¯
111, 110

¯
0
¯
11, 110

¯
0
¯
0
¯
1, 110

¯
0
¯
0
¯
0
¯
,

0
¯
10000, 0

¯
10001

¯
, 0
¯
1001

¯
1, 0

¯
101

¯
11, 0

¯
11
¯
111, 0

¯
11
¯
0
¯
11, 0

¯
11
¯
0
¯
0
¯
1, 0

¯
11
¯
0
¯
0
¯
0
¯
,

0
¯
0
¯
1000, 0

¯
0
¯
1001

¯
, 0
¯
0
¯
101

¯
1, 0

¯
0
¯
11
¯
11, 0

¯
0
¯
0
¯
111, 0

¯
0
¯
0
¯
0
¯
11, 0

¯
0
¯
0
¯
0
¯
0
¯
1, 0

¯
0
¯
0
¯
0
¯
0
¯
0
¯
.

In our examples so far we have discussed several families of cooperating co-
routines and claimed that they generate certain n-tuples, but we haven’t proved
anything rigorously. A formal theory of coroutine semantics is beyond the scope
of this paper, but we should at least try to construct a semi-formal demonstration
that ebump is correct.

The proof is by induction on |E|, the number of chains. If |E| = 1, ebump [k]
reduces to bump [k], and we can argue by induction on n. The result is obvious
when n = 1. If n > 1, suppose repeated calls on bump [2] cause a2 . . . an to
run through the (n − 1)-tuples α0, α1, α2, . . . , where bump [2] is false when it
produces αt = αt−1. Such a repetition will occur if and only if t is a multiple
of n, because n is the number of distinct (n− 1)-tuples with a2 ≤ · · · ≤ an. We
know by induction that the sequence has reflective symmetry: αj = α2n−1−j for
0 ≤ j < n. Furthermore, αj+2n = αj for all j ≥ 0. To complete the proof we
observe that repeated calls on bump [1] will produce the n-tuples

0α0, 0α1, . . . , 0αn−1, 1
¯
αn,

1αn, 0
¯
αn, 0

¯
αn+1, . . . , 0

¯
α2n−1,

0α2n, 0α2n+1, . . . , 0α3n−1, 1
¯
α3n,

and so on, returning false every (n + 1)st step as desired.
If |E| > 1, let E = {e1, . . . , em}, so that e′m = em−1, and suppose that

repeated calls on ebump [em−1] produce the (em−1)-tuples α0, α1, α2, Also
suppose that calls on ebump [em] would set the remaining bits aem . . . an to the
(n + 1− em)-tuples β0, β1, β2, . . . , if E were empty instead of {e1, . . . , em}; this
sequence β0, β1, β2, . . . is like the output of bump . The α and β sequences are
periodic, with respective periods of length 2M and 2N for some M and N ; they
also have reflective symmetry αj = α2M−1−j , βk = β2N−1−k. It follows that
ebump [em] is correct, because it produces the sequence

Efficient Coroutine Generation of Constrained Gray Sequences 193

γ0, γ1, γ2, . . . = α0β0, α0β1, . . . , α0βN−1,
α1βN , α1βN+1, . . . , α1β2N−1,

...
αM−1β(M−1)N , αM−1β(M−1)N+1, . . . , αM−1βMN−1,
αMβMN , αMβMN+1, . . . , αMβ(M+1)N−1,

...
α2M−1β(2M−1)N , α2M−1β(2M−1)N+1, . . . , α2M−1β2MN−1, . . .

which has period length 2MN and satisfies

γNj+k = αjβNj+k = α2M−1−jβ2MN−1−Nj−k = γ2MN−1−Nj−k

for 0 ≤ j < M and 0 ≤ k < N .
The patterns output by ebump are therefore easily seen to be essentially the

same as the so-called reflected Gray paths for radices e2+1−e1, . . . , em+1−em−1,
n + 2− em (see [12]); the total number of outputs is

(e2 + 1− e1) . . . (em + 1− em−1)(n + 2− em).

3 Ups and Downs

Now let’s consider a “fence” digraph

1

2

3

4

. . . ,

which leads to n-tuples that satisfy the up-down constraints

a1 ≤ a2 ≥ a3 ≤ a4 ≥ · · · .

A reasonably simple set of coroutines can be shown to handle this case, rooted
at nudge [1]:

Boolean coroutine nudge [k];
while true do begin
awake0: if k′ ≤ n then while nudge [k′] do return true;

a[k] := 1; return true;
asleep1: if k′′ ≤ n then while nudge [k′′] do return true;

return false;
awake1: if k′′ ≤ n then while nudge [k′′] do return true;

a[k] := 0; return true;
asleep0: if k′ ≤ n then while nudge [k′] do return true;

return false;
end.

194 Donald E. Knuth and Frank Ruskey

Here (k′, k′′) = (k + 1, k + 2) when k is odd, (k + 2, k + 1) when k is
even. But these coroutines do not work when they all begin at ‘awake0’ with
a1a2 . . . an = 00 . . .0; they need to be initialized carefully. For example, when
n = 6 it turns out that exactly eleven patterns of odd weight need to be gener-
ated, and exactly ten patterns of even weight, so a Gray path cannot begin or
end with an even-weight pattern such as 000000 or 111111. One proper starting
configuration is obtained if we set a1 . . . an to the first n bits of the infinite string
000111000111 . . . , and if we start coroutine nudge [k] at ‘awake0’ if ak = 0, at
‘awake1’ if ak = 1. For example, the sequence of results when n = 4 is

0001 Initial configuration 124
0000

¯
nudge [1] = nudge [2] = nudge [4] = true 124

¯01
¯
00 nudge [1] = nudge [2] = true , nudge [4] = false 12

¯
34

01
¯
01
¯

nudge [1] = nudge [2] = nudge [3] = nudge [4] = true 12
¯
34
¯01

¯
1
¯
1 nudge [1] = nudge [2] = nudge [3] = true , nudge [4] = false 12

¯
3
¯1

¯
111 nudge [1] = true , nudge [2] = nudge [3] = false 1

¯
3

1
¯
10
¯
1 nudge [1] = nudge [3] = true 1

¯
3
¯
4

1
¯
10
¯
0
¯

nudge [1] = nudge [3] = nudge [4] = true 1
¯
3
¯
4
¯1100 nudge [1] = nudge [3] = nudge [4] = false 134

1101
¯

nudge [1] = nudge [3] = nudge [4] = true 134
¯111

¯
1 nudge [1] = nudge [3] = true , nudge [4] = false 13

¯0
¯
111 nudge [1] = true , nudge [3] = false 1

¯
23

0
¯
10
¯
1 nudge [1] = nudge [2] = nudge [3] = true 1

¯
23
¯
4

0
¯
10
¯
0
¯

nudge [1] = nudge [2] = nudge [3] = nudge [4] = true 1
¯
23
¯
4
¯0

¯
0
¯
00 nudge [1] = nudge [2] = true , nudge [3] = nudge [4] = false 1

¯
2
¯
4

0
¯
0
¯
01
¯

nudge [1] = nudge [2] = nudge [4] = true 1
¯
2
¯
4
¯0001 nudge [1] = nudge [2] = nudge [4] = false 124

Again the cycle repeats with reflective symmetry; and again, some cryptic nota-
tions appear that will be explained in Section 8. The correctness of nudge will
follow from results we shall prove later.

4 The General Case

We have seen that cleverly constructed coroutines are able to generate Gray
paths for several rather different special cases of the spider-squishing problem;
thus it is natural to hope that similar techniques will work in the general case
when an arbitrary totally acyclic digraph is given. The spider

1

2

3

4

5

6

7

8

9

Efficient Coroutine Generation of Constrained Gray Sequences 195

illustrates most of the complications that might face us, so we shall use it as a
running example. In general we shall assume that the vertices have been num-
bered in preorder, as defined in [9, Section 2.3.2], when the digraph is considered
to be a forest (ignoring the arc directions). This means that the smallest vertex
in each component is the root of that component, and that all vertex numbers
of a component are consecutive. Furthermore, the children of each node are
immediately followed in the ordering by their descendants. The descendants of
each node k form a subspider consisting of nodes k through scope(k), inclusive;
we shall call this “spider k.” For example, spider 2 consists of nodes {2, 3, 4, 5},
and scope(2) = 5. Our sample spider has indeed been numbered in preorder,
because it can be drawn as a properly numbered tree with directed branches:

1

2

3

4

5

6

7

8

9

The same spider could also have been numbered in many other ways, because
any vertex of the digraph could have been chosen to be the root, and because
the resulting trees can be embedded several ways into the plane by permuting
the children of each family.

Assume for the moment that the digraph is connected; thus it is a tree with
root 1. A nonroot vertex x is called positive if the path from 1 to x ends with
an arc directed towards x, negative if that path ends with an arc directed away
from x. Thus the example spider has positive vertices {2, 3, 5, 6, 9} and negative
vertices {4, 7, 8}.

Let us write x →∗ y if there is a directed path from x to y in the digraph.
Removing all vertices x such that x →∗ 1 disconnects the graph into a number
of pieces having positive roots; in our example, the removal of {1, 8} leaves
three components rooted at {2, 6, 9}. We call these roots the positive vertices
near 1, and we denote that set by U1. Similarly, the negative vertices near 1 are
obtained when we remove all vertices y such that 1 →∗ y; the set of resulting
roots, denoted by V1, is {4, 7, 8} in our example, because we remove {1, 2, 3, 5, 6}.

The relevant bit patterns a1 . . . an for which a1 = 0 are precisely those that
we obtain if we set aj = 0 whenever j →∗ 1 and if we supply bit patterns for
each subspider rooted at a vertex of U1. Similarly, the bit patterns for which
a1 = 1 are precisely those we obtain by setting ak = 1 whenever 1 →∗ k and
by supplying patterns for each subspider rooted at a vertex of V1. Thus if nk

denotes the number of bit patterns for spider k, the total number of suitable
patterns a1 . . . an is

∏
u∈U1

nu +
∏

v∈V1
nv.

The sets Uk and Vk of positive and negative vertices near k are defined in
the same way for each spider k.

196 Donald E. Knuth and Frank Ruskey

Every positive child of k appears in Uk, and every negative child appears
in Vk. These are called the principal elements of Uk and Vk. Every nonprincipal
member of Uk is a member of Uv for some unique principal vertex v of Vk.
Similarly, every nonprincipal member of Vk is a member of Vu for some unique
principal vertex u of Uk. For example, the principal members of U1 are 2 and 6;
the other member, 9, belongs to U8, where 8 is a principal member of V1.

We will prove that the bit patterns a1 . . . an can always be arranged in a
Gray path such that bit a1 begins at 0 and ends at 1, changing exactly once.
By induction, such paths exist for the nu patterns in each spider u for u ∈ U1.
And we can combine such paths into a single path that passes through all of the∏

u∈U1
nu ways to combine those patterns, using a reflected Gray code analogous

to the output of ebump in Section 3 above. Thus, if we set ak = 0 for all k such
that k →∗ 1, we get a Gray path P1 for all suitable patterns with a1 = 0.
Similarly we can construct a Gray path Q1 for the

∏
v∈V1

nv suitable patterns
with a1 = 1. Thus, all we need to do is prove that it is possible to construct P1

and Q1 in such a way that the last pattern in P1 differs from the first pattern
of Q1 only in bit a1. Then G1 = (P1, Q1) will be a suitable Gray path that
solves our problem.

For example, consider the subspiders for U1 = {2, 6, 9} in the example spi-
der. An inductive construction shows that they have respectively (n2, n6, n9) =
(8, 3, 2) patterns, with corresponding Gray paths

G2 = 0000, 0001, 0101, 0100, 0110, 0111, 1111, 1101;
G6 = 00, 10, 11;
G9 = 0, 1.

We obtain 48 patterns P1 by setting a1 = a8 = 0 and using G2 for a2a3a4a5,
G6 for a6a7, and G9 for a9, taking care to end with a2 = a6 = 1. Similarly, the
subspiders for V1 = {4, 7, 8} have (n4, n7, n8) = (2, 2, 3) patterns, and paths

G4 = 0, 1;
G7 = 0, 1;
G8 = 00, 01, 11.

We obtain 12 patterns Q1 by setting a1 = a2 = a3 = a5 = a6 = 1 and
using G4 for a4, G7 for a7, and G8 for a8a9, taking care to begin with a8 = 0.
Combining these observations, we see that P1 should end with 011011100, and
Q1 should begin with 111011100.

In general, the last element of Pk and the first element of Qk can be deter-
mined as follows: For all children j of k, set aj . . . ascope(j) to the last element
of the previously computed Gray path Gj if j is positive, or to the first element
of Gj if j is negative. Then set ak = 0 in Pk, ak = 1 in Qk. It is easy to
verify that these rules make aj = 0 whenever j →∗ k, and aj = 1 whenever
k →∗ j, for all j such that k < j ≤ scope(k). A reflected Gray code based on
the paths Gu for u ∈ Uk can be used to construct Pk ending at the transition
values, having ak = 0; and Qk can be constructed from those starting values
based on the paths Gv for v ∈ Vk, having ak = 1. Thus we obtain a Gray path
Gk = (Pk, Qk).

Efficient Coroutine Generation of Constrained Gray Sequences 197

We have therefore constructed a Gray path for spider 1, proving that the
spider-squishing problem has a solution when the underlying digraph is con-
nected. To complete the construction for the general case, we can artificially
ensure that the graph is connected by introducing a new vertex 0, with arcs
from 0 to the roots of the components. Then P0 will be the desired Gray path,
if we suppress bit a0 (which is zero throughout P0).

5 Implementation via Coroutines

By constructing families of sets Uk and Vk and identifying principal vertices in
those sets, we have shown the existence of a Gray path for any given spider-
squishing problem. Now let’s make the proof explicit by constructing a family
of coroutines that will generate the successive patterns a1 . . . an dynamically, as
in the examples worked out in Sections 1–3 above.

First let’s consider a basic substitution or “plug-in” operation that applies to
coroutines of the type we are using. Consider the following coroutines X and Y :

Boolean coroutine X;
while true do begin
while A do return true;
return false;
while B do return false;
if C then return true;
end;

Boolean coroutine Y ;
while true do begin
while X do return true;
return Z;
end.

Here X is a more-or-less random coroutine that invokes three coroutines A, B,
C; coroutine Y has a special structure that invokes X and an arbitrary coroutine
Z
= X, Y . Clearly Y carries out essentially the same actions as the slightly faster
coroutine XZ that we get from X by substituting Z wherever X returns false :

Boolean coroutine XZ ;
while true do begin
while A do return true;
return Z;
while B do return Z;
if C then return true;
end.

This plug-in principle applies in the same way whenever all return state-
ments of X are either ‘return true ’ or ‘return false ’. And we could cast XZ into

198 Donald E. Knuth and Frank Ruskey

this same mold, if desired, by writing ‘if Z then return true else return
false ’ in place of ‘return Z’.

In general we want to work with coroutines whose actions produce infinite
sequences α1, α2, . . . of period length 2M , where (αM , . . . , α2M−1) is the reverse
of (α0, . . . , αM−1), and where the coroutine returns false after producing αt if
and only if t is a multiple of M . The proof at the end of Section 2 shows that a
construction like coroutine Y above, namely

Boolean coroutine AtimesB;
while true do begin
while B do return true;
return A;
end

yields a coroutine that produces such sequences of period length 2MN from
coroutines A and B of period lengths 2M and 2N , when A and B affect disjoint
bit positions of the output sequences.

The following somewhat analogous coroutine produces such sequences of pe-
riod length 2(M + N):

Boolean coroutine AplusB;
while true do begin
while A do return true;
a[1] := 1; return true;
while B do return true;
return false;
while B do return true;
a[1] := 0; return true;
while A do return true;
return false;
end.

This construction assumes that A and B individually generate reflective periodic
sequences α and β on bits a2 . . . an, and that αM = β0. The first half of AplusB
produces

0α0, . . . , 0αM−1, 1β0, . . . , 1βN−1,

and returns false after forming 1βN (which equals 1βN−1). The second half
produces the n-tuples

1βN , . . . , 1β2N−1, 0αM , . . . , 0α2M−1,

which are the first M +N outputs in reverse; then it returns false , after forming
0α2M (which equals 0α0).

The coroutines that we need to implement spider squishing can be built up
from variants of the primitive constructions for product and sum just mentioned.
Consider the following coroutines gen[1], . . . , gen[n], each of which receives an
integer parameter l whenever being invoked:

Efficient Coroutine Generation of Constrained Gray Sequences 199

Boolean coroutine gen [k](l); integer l;
while true do begin
awake0:if maxu [k]
=0 then while gen [maxu [k]](k) do return true;

a[k] := 1; return true;
asleep1:if maxv [k]
=0 then while gen [maxv [k]](k) do return true;

if prev [k] > l then return gen [prev [k]](l) else return false;
awake1:if maxv [k]
=0 then while gen [maxv [k]](k) do return true;

a[k] := 0; return true;
asleep0:if maxu [k]
=0 then while gen [maxu [k]](k) do return true;

if prev [k] > l then return gen [prev [k]](l) else return false;
end.

Here maxu [k] denotes the largest element of Uk ∪ {0}, and prev [k] is a function
that we shall define momentarily. This function, like the sets Uk and Vk, is
statically determined from the given totally acyclic digraph.

The idea of ‘prev ’ is that all elements of Ul can be listed as u, prev [u],
prev

[
prev [u]

]
, . . . , until reaching an element ≤ l, if we start with u = maxu [l].

Similarly, all elements of Vl can be listed as v, prev [v], prev
[
prev [v]

]
, . . . , while

those elements exceed l, starting with v = maxv [l]. The basic meaning of gen [k]
with parameter l is to run through all bit patterns for the spiders u ≤ k in Ul,
if k is a positive vertex, or for the spiders v ≤ k in Vl, if vertex k is negative.

The example spider of Section 4 will help clarify the situation. The following
table shows the sets Uk, Vk, and a suitable function prev [k], together with some
auxiliary functions by which prev [k] can be determined in general:

k scope(k) Uk Vk prev [k] ppro(k) npro(k)
1 9 {2, 6, 9} {4, 7, 8} 0 1 0
2 5 {3, 5} {4} 0 2 0
3 4 ∅ {4} 0 3 0
4 4 ∅ ∅ 0 3 4
5 5 ∅ ∅ 3 5 0
6 7 ∅ {7} 2 6 0
7 7 ∅ ∅ 4 6 7
8 9 {9} ∅ 7 1 8
9 9 ∅ ∅ 6 9 8

If u is a positive vertex, not a root, let v1 be the parent of u. Then if v1 is
negative, let v2 be the parent of v1, and continue in this manner until reaching
a positive vertex vt, the nearest positive ancestor of v1. We call vt the positive
progenitor of v1, denoted ppro(v1). The main point of this construction is that
u ∈ Uk if and only if k is one of the vertices {v1, v2, . . . , vt}. Consequently

Uk = Ul ∩ {k, k + 1, . . . , scope(k)}
if l is the positive progenitor of k. Furthermore Uk and Uk′ are disjoint whenever
k and k′ are distinct positive vertices. Therefore we can define prev [u] for all
positive nonroots u as the largest element less than u in the set Uk ∪ {0}, where
k = ppro(parent(u)) is the positive progenitor of u’s parent.

200 Donald E. Knuth and Frank Ruskey

Every element also has a negative progenitor, if we regard the dummy vertex
0 as a negative vertex that is parent to all the roots of the digraph. Thus
we define prev [v] for all negative v as the largest element less than v in the
set Vk ∪ {0}, where k = npro(parent(v)).

Notice that 9 is an element of both U1 and U8 in the example spider, so both
gen [9](1) and gen [9](8) will be invoked at various times. The former will invoke
gen [6](1), which will invoke gen [2](1); the latter, however, will merely flip bit a9

on and off, because prev [9] does not exceed 8. There is only one coroutine gen [9];
its parameter l is reassigned each time gen [9] is invoked. (The two usages do not
conflict, because gen [9](1) is invoked only when a1 = 0, in which case a8 = 0
and gen [8] cannot be active.) Similarly, gen [4] can be invoked with l = 1, 2, or
3; but in this case there is no difference in behavior because prev [4] = 0.

In order to see why gen [k] works, let’s consider first what would happen if its
parameter l were∞, so that the test ‘prev [k] > l’ would always be false. In such
a case gen [k] is simply the AplusB construction applied to A = gen [maxu [k]](k)
and B = gen [maxv [k]](k).

On the other hand when l is set to a number such that k ∈ Ul or k ∈ Vl,
the coroutine gen [k] is essentially the AtimesB construction, because it results
when Z = gen [prev [k]](l) is plugged in to the instance of AplusB that we’ve
just discussed. The effect is to obtain the Cartesian product of the sequence
generated with l =∞ and the sequence generated by gen [prev [k]](l).

Thus we see that ‘if maxu [k]
= 0 then while gen [maxu [k]](k) do return
true ’ generates the sequence Pk described in Section 4, and ‘if maxv [k]
= 0
then while gen [maxv [k]](k) do return true ’ generates Qk. It follows that
gen [k](∞) generates the Gray path Gk. And we get the overall solution to our
problem, path P0, by invoking the root coroutine gen [maxu [0]](0).

Well, there is one hitch: Every time the AplusB construction is used, we
must be sure that coroutines A and B have been set up so that the last pattern
of A equals the first pattern of B. We shall deal with that problem in Section 6.

In the unconstrained case, when the given digraph has no arcs whatsoever, we
have U0 = {1, . . . , n} and all other U ’s and V ’s are empty. Thus prev [k] = k− 1
for 1 ≤ k ≤ n, and gen [k](0) reduces to the coroutine poke [k] of Section 1.

If the given digraph is the chain 1 → 2 → · · · → n, the nonempty U ’s and
V ’s are Uk = {k + 1} for 0 ≤ k < n. Thus prev [k] = 0 for all k, and gen [k](l)
reduces to the coroutine bump [k] of Section 2. Similar remarks apply to cobump ,
mbump , and ebump .

If the given digraph is the fence 1 → 2 ← 3 → 4 ← · · · , we have Uk = {k′}
and Vk = {k′′} for 1 ≤ k < n, where (k′, k′′) = (k + 1, k + 2) if k is odd,
(k + 2, k + 1) if k is even, except that Un−1 = ∅ if n is odd, Vn−1 = ∅ if n is
even. Also U0 = {1}. Therefore prev [k] = 0 for all k, and gen [k](l) reduces to
the coroutine nudge [k] of Section 3.

6 Launching

Ever since 1968, Section 1.4.2 of The Art of Computer Programming [9] has
contained the following remark: “Initialization of coroutines tends to be a lit-

Efficient Coroutine Generation of Constrained Gray Sequences 201

tle tricky, although not really difficult.” Perhaps that statement needs to be
amended, from the standpoint of the coroutines considered here. We need to
decide at which label each coroutine gen [k] should begin execution when it is
first invoked: awake0, asleep1, awake1, or asleep0. And our discussion in Sec-
tions 3 and 4 shows that we also need to choose the initial setting of a1 . . . an

very carefully.
Let’s consider the initialization of a1 . . . an first. The reflected Gray path

mechanism that we use to construct the paths Pk and Qk, as explained in Sec-
tion 4, complements some of the bits. If, for example, Uk = {u1, u2, . . . , um},
where u1 < u2 < · · · < um, path Pk will contain nu1nu2 . . . num bit patterns, and
the value of bit aui at the end of Pk will equal the value it had at the beginning if
and only if nu1nu2 . . . nui−1 is even. The reason is that subpath Gui is traversed
nu1nu2 . . . nui−1 times, alternately forward and backward.

In general, let

δjk =
∏

u<j
u∈Uk

nu, if j ∈ Uk; δjk =
∏

v<j
v∈Vk

nv, if j ∈ Vk.

Let αjk and ωjk be the initial and final values of bit aj in the Gray path Gk for
spider k, and let τjk be the value of aj at the transition point (the end of Pk and
the beginning of Qk). Then αkk = 0, ωkk = 1, and the construction in Section 4
defines the values of αik, τik, and ωik for k < i ≤ scope(k) as follows: Suppose i
belongs to spider j, where j is a child of k.

– If j is positive, so that j is a principal element of Uk, we have τik = ωij ,
since Pk ends with aj = 1. Also αik = ωij if δjk is even, αik = αij if
δjk is odd. If k →∗ i we have ωik = 1; otherwise i belongs to spider j′,
where j′ is a nonprincipal element of Vk. In the latter case ωik = αij′ if
ωj′j + δj′k is even, otherwise ωik = ωij′ . (This follows because ωj′j = τj′k
and ωj′k = (τj′k + δj′k) mod 2.)

– If j is negative, so that j is a principal element of Vk, we have τik = αij ,
since Qk begins with aj = 0. Also ωik = αij if δjk is even, ωik = ωij if δjk

is odd. If i→∗ k we have αik = 0; otherwise i belongs to spider j′, where j′

is a nonprincipal element of Uk. In the latter case αik = αij′ if αj′j + δj′k is
even, otherwise aik = ωij′ .

For example, when the digraph is the spider of Section 4, these formulas yield

k nk Initial bits αjk Transition bits τjk Final bits ωjk

9 2 a9 = 0 ∗ 1
8 3 a8a9 = 00 ∗1 11
7 2 a7 = 0 ∗ 1
6 3 a6a7 = 00 ∗0 11
5 2 a5 = 0 ∗ 1
4 2 a4 = 0 ∗ 1
3 3 a3a4 = 00 ∗0 11
2 8 a2a3a4a5 = 0000 ∗111 1101
1 60 a1a2 . . . a9 = 000001100 ∗11011100 111111100

202 Donald E. Knuth and Frank Ruskey

Suppose j is a negative child of k. If nu is odd for all elements u of Uk that
are less than j, then δij + δik is even for all i ∈ Uj, and it follows that αik = τij

for j < i ≤ scope(j). (If i is in spider j′, where j′ ∈ Uj ⊆ Uk, then αik is αij′ or
ωij′ according as αj′j + δj′k is even or odd, and τij is αij′ or ωij′ according as
αj′j + δj′j is even or odd; and we have δj′k ≡ δj′j mod 2.) On the other hand,
if nu is even for some u ∈ Uk with u < j, then δik is even for all i ∈ Uj, and
we have αik = αij for j < i ≤ scope(j). This observation makes it possible to
compute the initial bits a1 . . . an in O(n) steps (see [13]).

The special nature of vertex 0 suggests that we define δj0 = 1 for 1 ≤ j ≤ n,
because we use path P0 but not Q0. This convention makes each component of
the digraph essentially independent. (Otherwise, for example, the initial setting
of a1 . . . an would be 01 . . .1 in the trivial “poke” case when the digraph has no
arcs.)

Once we know the initial bits, we start gen [k] at label awake0 if ak = 0, at
label awake1 if ak = 1.

7 Optimization

The coroutines gen [1], . . . , gen [n] solve the general spider-squishing problem,
but they might not run very fast. For example, the bump routine in Section 2
takes an average of about n/2 steps to decide which bit should be changed. We
would much prefer to use only a bounded amount of time per bit change, on the
average, and this goal turns out to be achievable if we optimize the coroutine
implementation.

A brute-force implementation of the gen coroutines, using only standard
features of Algol, can readily be written down based on an explicit stack and a
switch declaration:

Boolean val ; comment the current value being returned;
integer array stack [0 : 2 ∗ n]; comment saved values of k and l;
integer k, l; comment the current coroutine and parameter;
integer s; comment the current stack height;
switch sw := p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11;
integer array pos [0 : n]; comment coroutine positions;

〈 Initialize everything 〉;
p1: if maxu [k]
= 0 then begin

invoke (maxu [k], k, 2);
p2: if val then ret (1);

end;
a[k] := 1; val := true; ret (3);

p3: if maxv [k]
= 0 then begin
invoke (maxv [k], k, 4);
p4: if val then ret (3);

end;

Efficient Coroutine Generation of Constrained Gray Sequences 203

if prev [k] > l then begin
invoke (prev [k], l, 5);
p5: ret (6);

end
else begin val := false; ret (6); end;

p6: if maxv [k]
= 0 then begin
invoke (maxv [k], k, 7);
p7: if val then ret (6);

end;
a[k] := 0; val := true; ret (8);

p8: if maxu [k]
= 0 then begin
invoke (maxu [k], k, 9);
p9: if val then ret (8);

end;
if prev [k] > l then begin

invoke (prev [k], l, 10);
p10: ret (1);

end
else begin val := false; ret (1); end;

p11: 〈Actions of the driver program when k = 0 〉;

Here invoke (newk , newl , j) is an abbreviation for

pos [k] := j; stack [s] := k; stack [s + 1] := l; s := s + 2;
k := newk; l := newl; go to sw [pos [k]]

and ret (j) is an abbreviation for

pos [k] := j; s := s− 2;
l := stack [s + 1]; k := stack [s]; go to sw [pos [k]].

We can streamline the brute-force implementation in several straightforward
ways. First we can use a well-known technique to simplify the “tail recursion”
that occurs when invoke is immediately followed by ret (see [11, example 6a]):
The statements ‘invoke (prev [k], l, 5); p5: ret (6)’ can, for example, be replaced
by

pos [k] := 6; k := prev [k]; go to sw [pos [k]].

An analogous simplification is possible for the constructions of the form
‘while A do return true ’ that occur in gen [k]. For example, we could set
things up so that coroutine A removes two pairs of items from the stack when it
returns with val = true , if we first set pos [k] to the index of a label that follows
the while statement. More generally, if coroutine A itself is also performing
such a while statement, we could allow return statements to remove even more
than two pairs of stack items at a time. Details are left to the reader.

204 Donald E. Knuth and Frank Ruskey

8 The Active List

The gen coroutines of Section 5 perform O(n) operations per bit change, as they
pass signals back and forth, because each coroutine carries out at most two lines
of its program. This upper bound on the running time cannot be substantially
improved, in general. For example, the bump coroutines of Section 2 typically
need to interrogate about 1

2n trolls per step; and it can be shown that the nudge
coroutines of Section 3 typically involve action by about cn trolls per step, where
c = (5 +

√
5)/10 ≈ 0.724. (See [9, exercise 1.2.8–12].)

Using techniques like those of Section 7, however, the gen coroutines can
always be transformed into a procedure that performs only O(1) operations
per bit change, amortized over all the changes. A formal derivation of such a
transformation is beyond the scope of the present paper, but we will be able to
envision it by considering an informal description of the algorithm that results.

The key idea is the concept of an active list, which encapsulates a given stage
of the computation. The active list is a sequence of nodes that are either awake
or asleep. If j is a positive child of k, node j is in the active list if and only if
k = 0 or ak = 0; if j is a negative child of k, it is in the active list if and only if
ak = 1.

Examples of the active list in special cases have appeared in the tables illus-
trating bump in Section 2 and nudge in Section 3. Readers who wish to review
those examples will find that the numbers listed there do indeed satisfy these
criteria. Furthermore, a node number has been underlined when that node is
asleep; bit aj has been underlined if and only if j is asleep and in the active list.

Initially a1 . . . an is set to its starting pattern as defined in Section 6, and
all elements of the corresponding active list are awake. To get to the next bit
pattern, we perform the following actions:

1. Let k be the largest nonsleeping node on the active list, and wake up all
nodes that are larger. (If all elements of the active list are asleep, they all
wake up and no bit change is made; this case corresponds to gen [maxu [0]](0)
returning false .)

2. If ak = 0, set ak to 1, delete k’s positive children from the active list,
and insert k’s negative children. Otherwise set ak to 0, insert the positive
children, and delete the negative ones. (Newly inserted nodes are awake.)

3. Put node k to sleep.

Again the reader will find that the bump and nudge examples adhere to this
discipline.

If we maintain the active list in order of its nodes, the amortized cost of these
three operations is O(1), because we can charge the cost of inserting, deleting,
and awakening node k to the time when bit ak changes. Steps (1) and (2) might
occasionally need to do a lot of work, but this argument proves that such difficult
transitions must be rare.

Let’s consider the spider of Section 4 one last time. The 60 bit patterns that
satisfy its constraints are generated by starting with a1 . . . a9 = 000001100, as

Efficient Coroutine Generation of Constrained Gray Sequences 205

we observed in Section 6, and the Gray path G1 begins as follows according to
the active list protocol:

000001100 1235679
000001101

¯
1235679

¯0000010
¯
01 123567

¯
9

0000010
¯
00
¯

123567
¯
9
¯000000

¯
000 12356

¯
9

000000
¯
001

¯
12356

¯
9
¯00001

¯
0001 1235

¯
69

00001
¯
0000

¯
1235

¯
69
¯00001

¯
1
¯
000 1235

¯
6
¯
79

(Notice how node 7 becomes temporarily inactive when a6 becomes 0.) The

most dramatic change will occur after the first n2n6n9 = 48 patterns, when bit
a1 changes as we proceed from path P1 to path Q1:

01
¯
10
¯
11
¯
1
¯
00
¯

12
¯
4
¯
6
¯
7
¯
9
¯1

¯
11011100 1

¯
4789

(The positive children 2 and 6 have been replaced by the negative child 8.)

Finally, after all 60 patterns have been generated, the active list will be 1
¯
4
¯
7
¯
8
¯
9
¯and a1 . . . a9 will be 1

¯
111

¯
111

¯
0
¯
0
¯
. All active nodes will be napping, but when we

wake them up they will be ready to regenerate the 60 patterns in reverse order.
It should be clear from these examples, and from a careful examination of the

gen coroutines, that steps (1), (2), and (3) faithfully implement those coroutines
in an efficient iterative manner.

9 Additional Optimizations

The algorithm of Section 8 can often be streamlined further. For example, if j
and j′ are consecutive positive children of k and if Vj is empty, then j and j′

will be adjacent in the active list whenever they are inserted or deleted. We can
therefore insert or delete an entire family en masse, in the special case that all
nodes are positive, if the active list is doubly linked. This important special case
was first considered by Koda and Ruskey [14]; see also [12, Algorithm 7.2.1.1K].

Further tricks can in fact be employed to make the active list algorithm
entirely loopless, in the sense that O(1) operations are performed between suc-
cessive bit changes in all cases— not only in an average, amortized sense. One
idea, used by Koda and Ruskey in the special case just mentioned, is to use
“focus pointers” to identify the largest nonsleeping node (see [7] and [12, Algo-
rithm 7.2.1.1L]). Another idea, which appears to be necessary when both positive
and negative nodes appear in a complex family, is to perform lazy updates to the
active list, changing links only gradually but before they are actually needed.
Such a loopless implementation, which moreover needs only O(n) steps to initial-
ize all the data structures, is described fully in [13]. It does not necessarily run

206 Donald E. Knuth and Frank Ruskey

faster than a more straightforward amortized O(1) algorithm, from the stand-
point of total time on a sequential computer; but it does prove that a strong
performance guarantee is achievable, given any totally acyclic digraph.

10 Conclusions and Acknowledgements

We have seen that a systematic use of cooperating coroutines leads to a general-
ized Gray code for generating all bit patterns that satisfy the ordering constraints
of any totally acyclic digraph. Furthermore those coroutines can be implemented
efficiently, yielding an algorithm that is faster than previously known methods
for that problem. Indeed, the algorithm is optimum, in the sense that its running
time is linear in the number of outputs.

Further work is clearly suggested in the heretofore neglected area of corou-
tine transformation. For example, we have not discussed the implementation of
coroutines such as

Boolean coroutine copoke [k];
while true do begin
if k < n then while copoke [k + 1] do return true;
a[k] := 1− a[k]; return true;
if k < n then while copoke [k + 1] do return true;
return false;
end.

These coroutines, which are to be driven by repeatedly calling copoke [1],
generate Gray binary code, so their effect is identical to repeated calls on the
coroutine poke [n] in Section 2. But copoke is much less efficient, since copoke [1]
always invokes copoke [2], . . . , copoke [n] before returning a result. Although
these copoke coroutines look superficially similar to gen , they are not actually a
special case of that construction. A rather large family of coroutine optimizations
seems to be waiting to be discovered and to be treated formally.

Another important open problem is to discover a method that generates the
bit patterns corresponding to an arbitrary acyclic digraph, with an amortized
cost of only O(1) per pattern. The best currently known bound is O(log n), due
to M. B. Squire [17]; see also [16, Section 4.11.2]. There is always a listing of
the relevant bit patterns in which at most two bits change from one pattern to
the next [15, Corollary 1].

The first author thanks Ole-Johan Dahl for fruitful collaboration at the
University of Oslo during 1972–1973 and at Stanford University during 1977–
1978; also for sharing profound insights into the science of programming and
for countless hours of delightful four-hands piano music over a period of more
than 30 years. The second author thanks Malcolm Smith and Gang (Kenny) Li
for their help in devising early versions of algorithms for spider-squishing during
1991 and 1995, respectively. Both authors are grateful to Stein Krogdahl and to
an anonymous referee, whose comments on a previous draft of this paper have
led to substantial improvements.

Efficient Coroutine Generation of Constrained Gray Sequences 207

References

[1] M. Clint, “Program proving: Coroutines,” Acta Informatica 2 (1977), 50–63.

[2] Melvin E. Conway, “Design of a separable transition-diagram compiler,” Commu-
nications of the ACM 6 (1963), 396–408.

[3] Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard, SIMULA-67 Common
Base Language, Publication S-2 (Oslo: Norwegian Computing Center, 1968), 141
pages. Revised edition, Publication S-22 (1970), 145 pages. Third revised edition,
Report number 725 (1982), 127 pages.

[4] Ole-Johan Dahl and C. A. R. Hoare, “Hierarchical program structures,” in Struc-
tured Programming (Academic Press, 1972), 175–220.

[5] Ole-Johan Dahl, Syntaks og Semantikk i Programmeringsspr̊ak (Lund: Student-
litteratur, 1972), 103 pages.

[6] Ole-Johan Dahl, “An approach to correctness proofs of semicoroutines,” Research
Report in Informatics, Number 13 (Blindern, Norway: University of Oslo, 1977),
20 pages.

[7] Gideon Ehrlich, “Loopless algorithms for generating permutations, combinations
and other combinatorial configurations,” Journal of the Association for Comput-
ing Machinery 20 (1973), 500–513.

[8] Robert W. Floyd, “The syntax of programming languages — A survey,” IEEE
Transactions on Electronic Computers EC-13 (1964), 346–353.

[9] Donald E. Knuth, Fundamental Algorithms, Volume 1 of The Art of Computer
Programming (Reading, Massachusetts: Addison–Wesley, 1968). Third edition,
1997.

[10] Donald E. Knuth, Selected Topics in Computer Science, Part II, Lecture Note
Series, Number 2 (Blindern, Norway: University of Oslo, Institute of Mathemat-
ics, August 1973). See page 3 of the notes entitled “Generation of combinatorial
patterns: Gray codes.”

[11] Donald E. Knuth, “Structured programming with go to statements,” Computing
Surveys 6 (December 1974), 261–301. Reprinted with revisions as Chapter 2 of
Literate Programming (Stanford, California: Center for the Study of Language
and Information, 1992).

[12] Donald E. Knuth, “Generating all n-tuples,” Section 7.2.1.1 of The Art of Com-
puter Programming, Volume 4 (Addison–Wesley), in preparation. Preliminary
excerpts of this material are available at http://www-cs-faculty.stanford.

edu/~knuth/news01.html.

[13] Donald E. Knuth, SPIDERS, a program downloadable from the website
http://www-cs-faculty.stanford.edu/~knuth/programs.html.

[14] Yasunori Koda and Frank Ruskey, “A Gray code for the ideals of a forest poset,”
Journal of Algorithms 15 (1993), 324–340.

[15] Gara Pruesse and Frank Ruskey, “Gray codes from antimatroids,” Order 10
(1993), 239–252.

[16] Frank Ruskey, Combinatorial Generation [preliminary working draft]. Department
of Computer Science, University of Victoria, Victoria B.C., Canada (1996).

[17] Matthew Blaze Squire, Gray Codes and Efficient Generation of Combinatorial
Structures. Ph.D. dissertation, North Carolina State University (1995), x + 145
pages.

[18] George Steiner, “An algorithm to generate the ideals of a partial order,” Opera-
tions Research Letters 5 (1986), 317–320.

208 Donald E. Knuth and Frank Ruskey

[19] Leonard I. Vanek and Rudolf Marty, “Hierarchical coroutines: A method for
improved program structure,” Proceedings of the 4th International Conference
on Software Engineering (Munich, 1979), 274–285.

[20] Arne Wang and Ole-Johan Dahl, “Coroutine sequencing in a block-structured
environment,” BIT 11 (1971), 425–449.

Consistency of Inheritance in Object-Oriented

Languages and of Static, ALGOL-like Binding

Hans Langmaack

Institut für Informatik und Praktische Mathematik der
Christian-Albrechts-Universität zu Kiel

hl@informatik.uni-kiel.de

Abstract. ALGOL60 introduced the block level structure with its char-
acteristic static binding and visibility scopes of identifiers, phenomena
known before in predicate logics and λ-calculi outside programming.
Misinterpretations and misimplementations of originally intended static
scope semantics of ALGOL60 and Lisp have seduced language designers
and practitioners to a notion of dynamic scope semantics which sup-
presses identifier renamings during program execution. Dynamic scoping
has become popular above all in object-oriented programming, although
the inventors of the latter and authors of Simula 67, O.-J. Dahl and
K. Nygaard, explicitly based their ideas on ALGOL60 and static scop-
ing. And there are follower languages which successfully combine object-
orientation and static binding. The present article demonstrates that the
implementation problems around the especially flexible and useful con-
cept of many level or skew prefixing (inheritance) can well be solved,
shown by LOGLAN’88, an extension of Simula 67.

1 Introduction: Origins of Static and Dynamic
Identifier Binding

The higher programming language ALGOL60 introduced several remarkable
software concepts. One is the block concept, essentially advocated by K. Samelson
who was a member of the international ALGOL58- and ALGOL60-committees
[PeS58, Nau60]. The block level structure and its characteristic storage allo-
cation scheme are most important contributions of Samelson to programming
science and technology [Sam55]. ALGOL58 [PeS58] and FORTRAN [Bac57] did
not yet speak about binding and visibility scopes of identifiers, although these
phenomena were known in predicate logics and λ-calculi since the 1930s [Her61].

ALGOL60’s block concept has brought an essential syntactical and seman-
tical clarification of the procedure concept. ALGOL60-procedures evolved from
ALGOL58’s notions procedure and do-statement. ALGOL-like, static binding
of identifiers in ALGOL60’s operational copy rule semantics was expressed by
the requirement that procedure body and parameter replacements had to avoid
binding violations (identifier clashes) by appropriate bound identifier renam-
ings. The ALGOL60-report’s formulations for language semantics, especially for
semantics of procedures (function procedures and resultless procedures) would

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 209–235, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

210 Hans Langmaack

have become much clearer to programmers and compiler constructors if the re-
port had explicitly hinted at the α- and β-reductions in λ-calculi known already
at that time. Such a hint would have helped to avoid many unfortunate devel-
opments of language definitions, of compilers and of run time systems, not only
for ALGOL60, but also for many successor languages.

Samelson pointed out the idea of blocks and their characteristic data stor-
age behaviour already in [Sam55]. He spoke about partial programs as open
subprograms and library programs as closed subprograms. On the one hand
he described how, during translation and evaluation of arithmetic formulas, in-
termediate results had to be stored in auxiliary storage cells where last stored
results became available again first. The ground for that phenomenon was the
left to right break down of formulas; the leftmost break down feasibilities were
to be envisaged again and again; such proceeding is justified because evalua-
tion of arithmetic formulas, also those known from school with their infix no-
tations, bracket savings and priority rules, is confluent. The notation number
cellar (“Bauer-Samelsonscher Zahlkeller”) for pulsating of intermediate results
appeared in the patent specification [BaS57] for the first time and afterwards in
the article “Sequential Formula Translation” [SaB59]. On the other hand, also
in 1955, Samelson described how run time pulsating of intermediate results ex-
tended to data storage cells for open and closed subprograms what was justified
for confluence reasons as well. Subprograms had to cooperate with an indica-
tion of momentarily free storage entered in a fixed variable named beginning free
storage.

With explicit references to [SaB59] E. W. Dijkstra described in ”Recursive
Programming“ [Dij60] how the Bauer-Samelson-number cellar was to be ex-
tended towards a run time stack for blocks and procedures of ALGOL60. The
variable beginning free storage was now named stack pointer, every procedure call
generated a procedure incarnation for which an information unit with places for
procedure link, local parameters, local variables and intermediate results was en-
tered in the run time stack. In the procedure link Dijkstra established the return
address of the procedure P called, the dynamic pointer pointing at the youngest
preceding, not yet completed, incarnation (of that procedure Q wherein the call
of P occured) and – what is crucial – the so called static pointer pointing at the
most recent, not yet completed, incarnation of that first (i.e. smallest) procedure
R lexicographically enclosing P . The static pointer is the instrument to access
informations about global procedure parameters of P .

Unfortunately, Dijkstra’s most-recent-prescription for static pointers does
not fit ALGOL60’s copy rule semantics and static binding: We can construct
ALGOL60-programs which do not satisfy the so called most-recent-property,
which means, there is a static pointer in a (corrected) run time system which
does not point to the most recent incarnation of procedure R, but to one fur-
ther down towards the stack bottom [GHL67]. There are astonishingly short
programs with just two nested procedures, with procedure identifiers as formal
and actual parameters and with formal procedure calls violating the most-recent-
property as P. Kandzia demonstrated [Kan74]. Dijkstra’s implementation causes

Consistency of Inheritance in Object-Oriented Languages 211

unexpected changes of identifier meanings during execution, changes which the
programmer is hardly able to pursue and understand so that she/he is surprised
by curious final program results. If such changes of meaning are desired by lan-
guage semantics definition then we speak of dynamic binding or dynamic scope
semantics. Even the involved program example GPS (General Problem Solver)
worked out in [RaR64] to demonstrate name parameter passing is not involved
enough: GPS satisfies the most-recent-property.

Dijkstra’s most-recent-prescription how to deal with static pointers has been
used in implementations and in compiler building text books for ALGOL-like
programming languages still in more recent years [WiM92]. This has led to dis-
crepancies between originally intended language semantics and actual program
executions. In order to avoid disappointments language Ada [Ich80] excluded
procedures as arguments of procedure calls and language C [KeR78] disallowed
any procedure nestings. Under these language restrictions static resp. dynamic
scoping lead to equivalent program computations if the executed wellformed
programs are distinguished, i.e. different defining identifier occurrences are de-
noted by different identifiers which, above that, must be different from standard
ones (Defining occurrences are those places of identifiers in a program where
their kinds, types etc. are introduced, all other identifiers occurrences are ap-
plied ones. An occurrence of a free identifier is an applied occurrence not bound
to any defining occurrence. In a wellformed program every free identifier is to
be standard).

There was a further influential publication which involuntarily brought dy-
namic binding to the attention of programmers. In “Lisp 1.5 Programmer’s Man-
ual” [McC65] J. McCarthy et al. published two Lisp-written interpreters in order
to define an operational copy rule semantics of the functional language Lisp. Mc-
Carthy draw up Lisp as a user friendly setting of A. Church’s (applied) λ-calculus
with its static binding. But programming errors in the interpreters established
a Lisp-semantics with dynamic binding such that even simple bound renamings
showed different program results [Hoa90]. Langmaack found the programming
errors in [McC65] during courses on compiler and run time system construc-
tion at the University of the Saarland 1970/71. He briefly repaired the Lisp-
interpreters towards static binding and spoke of natural Lisp-semantics. Later
the Lisp-community with CommonLisp [Ste84] has acknowledged the virtue of
ALGOL-like, static binding.

The wording ”dynamic binding“ does not mean that this kind of binding
offers clear advantages or higher potentials over static binding. At run time dy-
namic binding requires searching processes down the run time stack in order
to load and store program variables resp. to load static pointers and display
registers whereas static binding allows direct loadings. Dynamic binding leads
to regular procedure call trees of programs and so to provable existence of rela-
tively complete Hoare proof calculi [Old81] whereas static binding may generate
irregular procedure call trees such that there are no good Hoare proof calculi
for full ALGOL60 nor ALGOL68 [Wij+69] nor Pascal [JeW75] [Cla79, LaO80].
In spite of these good news about dynamic binding program understanding and

212 Hans Langmaack

formulation of procedure pre- and postconditions is more difficult because for
dynamic scope semantics there do not hold so mature substitution and bound
renaming theorems as for static scope semantics.

2 Object-Orientation and Identifier Binding

Dynamic binding became popular above all in object-oriented programming al-
though dynamic binding began from misinterpretations and misimplementations
of originally intended language semantics and although O.-J. Dahl and K. Ny-
gaard, the creators of the notions object, class, inheritance and of the language
Simula67, explicitly based their ideas upon ALGOL60 with its block struc-
ture and static binding [DaN67, Dah01a]. Also follower languages like BETA
[MMPN93] and LOGLAN’88 [KSW88] successfully combine object-orientation
and static binding in a consistent manner. Comparatively old languages like AL-
GOL60 or Pascal allowed already that program parts, which were developed in
parallel by separated software engineering groups, could be combined by pro-
cedure encapsulation without any problems. A dynamic binding regime would
not so easily allow such software engineering practice because it is error prone
or even impossible without full knowledge of local names in the other groups’
program parts.

As mentioned before, Simula67 already had the inheritance idea incorpo-
rated, but demanded, for pragmatic reasons, same level inheritance, i.e. every
inherited class must have the same module nesting level as the inheriting mod-
ule. LOGLAN as well as BETA strived for many level (skew) inheritance so that
programmers were not forced to write unnecessary class copies by hand and were
enabled to install class libraries more flexibly. The serious problems how to de-
fine clear language semantics for many level inheritance under a static binding
regime and how to establish efficient implementations were not yet foreseen in
1967 [Dah01b].

Goal of the present article is to show that these problems can well be solved.
As a demonstration instrument we take LOGLAN’88, which extends Simula67
by prefixing at many levels, by inheriting in procedures, functions, processess, by
concurrency, exceptions and signals and has been developed and implemented
by the informatics research group around A. Kreczmar (†) and A. Salwicki at
the University of Warsaw who are wellknown for their foundational work on
algorithmic logic. LOGLAN’s development began in the later 1970s and took
its way via forerunners LOGLAN-77 and LOGLAN-82. We would like to give
an informal description of the following more detailed sections 3 to 6 on how
LOGLAN has solved the addressed problems:

For LOGLAN we may define an operational copy rule semantics – which is
a variant of structural operational semantics – with static binding (scoping) as
for other ALGOL-like languages. Not only procedure calls and object genera-
tions invoke copy rule applications, elimination of inheritances (prefixings) does
so as well with which modules (units) like classes, blocks and procedures may be
adhered with. This style of semantics definition is plainly at the high program-

Consistency of Inheritance in Object-Oriented Languages 213

ming language level without any references to implementations nor processors
[KKSL84].

The guiding idea for efficient implementation is that inheritance elimination
may be imagined in a different semantics preserving way: Classes are transformed
to procedures and inheriting modules are attached by new local procedures whose
formal parameters are exactly those identifiers which can be reached via the
inheritance (prefix) chain of the inheriting module. I.o.w.: Object orientation by
classes and inheritances offers both a great structuring method and a pleasant
shorthand (parameters saving) notation for ALGOL-programs.

Java’s way how to define and treat semantics of inner classes and their many
level prefixings by converting inner classes to toplevel ones is a different proceed-
ing. The relations to static resp. dynamic scoping philosophies are to be clarified
[Sun97, SaW02]. [SSB01] says explicitly that nested and inner classes are not
treated.

Due to [Dij60] efficient block and procedure implementation for ALGOL can
be done by the help of static pointer chains and display registers. All applied
identifier occurrences which are bound to the same defining occurrence and,
under static scoping, mean the same thing are coupled to the same register
which is fixed by the module nesting level of the defining occurrence. Because
of Simula67’s same level inheritance regime ALGOL’s display register allocation
scheme is holding for Simula67 as well. The most pleasant and important impli-
cation is that no display register reloadings are necessary as long as a run time
computation procedes from member to member of a whole prefix chain and does
not leave that chain.

This ALGOL-Simula67-display register allocation scheme gets inadequate
as soon as many level inheritance comes into scene. But the efficiency gaining
Simula67-no-reloading property should urgently pertain for many level prefix-
ing. There might be more display registers necessary than the maximal level of
module nestings . So S. Krogdahl [Kro79] has proposed to optimize the BETA-
codegenerator so that the minimal possible display register number is determined
at translation time. [KKSL84] prove by systematic display register permuta-
tions that this minimal number is exactly the maximal module nesting level
of the given program as we know from ALGOL60 or Simula67. A. Kreczmar
and M. Warpechowski [KLKW85, KKLSW87] developed an elegant theory of
L-algebras and their implementations for which LOGLAN-programs are mod-
els. Theory and implementation may be viewed as results of deliberations about
what program language semantics with static scoping truly means.

3 Syntax and Static Semantics of MiniLOGLAN

In order to demonstrate proper specification of syntax, static semantics (context
conditions) and dynamic semantics of programming languages with classes, in-
heritance (prefixing) and static scoping we present in appendix A a contextfree-
like grammar for MiniLOGLAN which is a sublanguage of LOGLAN. So an
implementation of the latter is also one of MiniLOGLAN. Its purpose is to ab-

214 Hans Langmaack

stract from less important details and to concentrate on the problem of meaning
of identifiers in languages that have classes, objects, nesting of classes and inher-
itance without Simula 67’s restrictions. So insights in MiniLOGLAN will show
up ways which developments of other languages like Java can take.

Modules are blocks, procedures and classes. A module can be prefixed by at
most one class; so we have inheritance or prefix chains. Procedures need not nec-
essarily be prefixed. Their prefixing could be modeled by prefixing their bodies
written as blocks if many level prefixing and static scoping with its bound iden-
tifier renamings are envisaged. A class initialization new ξ can be implemented
by a simple prefixed block

inh ξ block end

with empty declaration and statement lists. The statement list Σ of a class
body has to contain exactly one control statement inner with its prologue Σ1

and epilogue Σ2 :
Σ = Σ1 inner Σ2.

Should there be no explicit inner then inner is imagined to be the final state-
ment of Σ with an empty epilogue Σ2 .

There is a conceptual difference between a substring σ of a program π (π =
α σ ω) and of a substring occurrence iσ in π , a pair of σ and i with i = |α|+1. The
same substring σ may occur several times. That is especially true for identifiers.
Structured substring occurrences are those which reduce to non-terminal symbols
in the unambigously associated structure tree of π. Two structured substring
occurrences are either disjoint or contained in each other.

Modules iM in π form a tree. They have nesting levels νiM ≥ 1. The program
itself is the largest module, a block module of level ν1π = 1. Every module iM has
an associated binding range rR , the largest substring of iM which reaches from
the keyword block resp. class resp. proc to the matching end and which, by
definition, has the same nesting level νrR = νiM as the module. Every structured
substring jσ and especially every defining occurrence jξ of an identifier inside
the largest binding range (the associated binding range of π) has a so called
environment range rR = env(jσ) = env(jξ) = env(j) which is the smallest range
which encloses jσ resp. jξ resp. position j. If program π is named by ξ then the
defining occurrence 1ξ is defined to have level 0, the level of any other defining
occurrence jξ is that of env(jξ) which is ≥ 1. The associated local identifier
list locidl (rR) of a binding range is the ordered list of all defining identifier
occurrences jξ with env(jξ) = rR .

In a wellformed program π every identifier occurrence must be bound to at
most one defining occurrence of that same identifier; all freely occurring identi-
fiers must be standard with a predefined meaning; and all identifier applications
have to be in type accordance with their associated definitions. So we have to
establish a partially defined binding function bdfct(i, ξ) which determines the as-
sociated defining occurrence jξ of an identifier ξ if the searching process starts
from position i (mostly ξ’s applied position) :

Consistency of Inheritance in Object-Oriented Languages 215

bdfct(i, ξ) :=
if i is outside the largest binding range of π
then if π is a block named by ξ

then 1ξ
else undefined fi

else if ξ occurs in locidl(env(i))
then the rightmost entry jξ in that local identifier list
else if env(i) = rR has an applied prefix class identifier

occurrence lη with l = r − 1
then bdfctpref (l , ξ, lη)
else bdfct (l , ξ) fi fi fi

The auxiliary binding function bdfctpref (i , ξ, lη) determines the associated
defining occurrence jξ of identifier ξ inside a so called prefix chain starting with
class identifier occurrence lη . i is the original starting point of the searching
process for ξ, i is needed in case a defining occurrence of ξ cannot be found in
the present prefix chain. Furtheron we see: Searching along a prefix chain has
priority over searching through enclosing binding ranges. Be aware that prefix
chains can be determined only in connection with the binding function bdfct, not
in an independent manner.

bdfctpref (i, ξ,l η) :=
if bdfct (l, η) yields a defining class identifier occurrence kη

with its class module k−1M and associated binding range rR
then if ξ occurs in locidl(rR)

then the rightmost entry jξ in this local identifier list
else if k−1M has an applied prefix class identifier occurrence

r−1ζ
then bdfctpref (i, ξ, r−1ζ)
else bdfct (i , ξ) fi fi

else undefined fi
If lη is prefixing the module jM and iη =bdfct(l, η) is identifying class j ′M ′

then this is called the direct prefix module pref(jM). In a wellformed program
all prefix chains, i.e. successive applications of function pref, must be acyclic.
This additional demand for wellformedness cannot be concluded from existence
of reasonable identifier binding.

If bdfct(i, ξ) = jξ with j �= 1 then there is the smallest module kM enclosing
position i resp. occurrence iξ such that jξ is occuring in the local identifier list
of a module k′

M ′ = prefn(kM), n ≥ 0 .We call k′
M ′ the declaring module and

kM the vertex module of iξ .

Wellformed MiniLOGLAN-programs π open up an important algebraic view,
it will later help to create display register allocation for efficient static scope
implementation. LetM be the set of all module occurrences jM in π. We have a
partial nesting function encl :M→M which makesM a finite tree and a partial
prefixing function pref : M→M which makesM a finite forest of finite trees.
The definition is due to Kreczmar and Warpechowski [KLKW85, KKLSW87] :

216 Hans Langmaack

Definition 3.1: An L-algebra is an algebra L =<M, encl, pref, π > where M
is a non-empty finite set, encl and pref are partial functions defined on M into
M , π is an element ofM , and the following axioms are satisfied:
(A1) encl(π) is undefined, and for every a ∈ M is encl∗(a) = π

(i.e. π is the root of the encl-treeM);
(A2) for every a ∈ M pref+(a) is undefined (i.e. prefixing is acyclic);
(A3) for every a ∈ M if pref(a) is defined then encl pref (a) is defined and

pref∗encl+(a) = encl pref (a) holds (i.e. if a diagram

a
pref

c

b
encl

holds then it can be complemented

+

a b

cd ∗

e.g. by vertex module d of identifier iξ which prefixes module a ; c is
the declaring module of iξ ; vertex module d is the smallest module
fulfilling the above diagram).

Theorem 3.2: L =<M, encl, pref, π > is an L-algebra.

In appendix B we present a wellformed program π1 which shows many level
prefixing. The L-algebra looks as follows

1

nesting level

M

bdfct
B x appliedL3

C x

A x definingL1

applied

2

3

4

Consistency of Inheritance in Object-Oriented Languages 217

π1 is not distinguished because there are two defining occurrences of x in the
main parts (i.e. inside the binding ranges, but outside inner ones) of M and of
A and two defining occurrences of y in the main parts of L1 and of L3.

A most important notion in L-algebras is that of the uniquely determined
complement module d = comp(a, b, c) for a triple of modules with b = pref*(a)
and c = encl*(b) such that diagram

∗

a ∗ b

d

∗
c

∗

holds. The existence of d is resulting from a unique normal form theorem basing
on axiom (A3). In case c = b then d = a, in case a = b then d = c, in case
b = pref(a) and c = encl(a) then d = comp(a, b, c) is the smallest module
satisfying diagram

+
+ +
a b

d ∗ c

But be aware that this smallest module property does not hold for comple-
ment modules in general for b = pref+(a) and c = encl+(b), see a counterexample
in appendix H of [KKSL84]. For implementation of static scoping with many level
prefixing the following composition theorem is important:

Theorem 3.3: Complement module diagrams can be composed horizontally and
vertically.

Be aware again: This theorem would not hold if we would have based the defini-
tion of complement modules on the above mentioned smallest module property.

4 Semantics of MiniLOGLAN

The (dynamic) semantics of programs with prefixing is based on the idea of prefix
elimination which makes prefix chains shorter. We call this process original prefix
elimination because in Section 5 we shall discuss a different elimination method.

Let π be a wellformed program. Let in π a class declaration

(1) unit η : inh ξ class ∆ Σ end η

218 Hans Langmaack

or a block

(2) η : inh ξ class ∆ Σ end η

be given, prefixed by ξ which identifies a class

(3) unit ξ : inh ξ′ class ∆′ Σ′
1 inner Σ′

2 end ξ

We have assumed that this class is again prefixed by ξ′ what is not necessarily
the case.

Prefix elimination replaces class (1) or block (2) by a class (1’) or block (2’)
in the following way:

(1’) unit η : inh ξ′ class ∆′ Σ′
1 gbegin ∆ Σ end Σ′

2 end η

or
(2’) η : inh ξ′ block ∆′ Σ′

1 gbegin ∆ Σ end Σ′
2 end η

If inh ξ′ is not existent in (3) then inh ξ′ is not existent in (1’) nor (2’).
Elimination of prefixes of procedures is done in an analogous way. We see espe-
cially that replaced modules remain modules of the same kind, namely classes,
blocks or procedures.

Lemma 4.1: Original prefix elimination yields a new wellformed program π′

π|
orig pref elim

π′

if π is distinguished. Otherwise π′ does not necessarily result to be wellformed,
not even closed, i.e. π′ shows up free non-standard identifiers. If bound renam-
ings are allowed and identifier clashes are avoided, e.g. by systematic renaming
of programs in distinguished ones, then successive prefix elimination preserves
wellformedness and is confluent.

If successive original prefix elimination under identifier clash avoidance, i.e. un-
der static scoping regime, is applied to every prefixed module then (perhaps
after infinitely many steps) the process ends up with an essentially uniquely de-
termined (perhaps infinite) program π′′ which has only redundant prefixing and
redundant classes. It is actually sufficing to apply prefix elimination to every
outermost prefixed module, i.e. outside any other prefixed module (and conse-
quently outside class ξ itself if ξ is prefixed).

In appendix C we present a wellformed program π2 with a structure of class
and block modules

Consistency of Inheritance in Object-Oriented Languages 219

B N

C

A

M

which has so called recursive prefixing without recursive procedures declared in
π2. Recursive prefixing is impossible in Simula67-like programs with their same
level prefixing.

If we erase all classes in π′′ (because they have got redundant) we have
a wellformed ALGOL-program. It has a well defined operational resp. deno-
tational semantics. This is defined to be the (dynamic) semantics of the given
MiniLOGLAN-program π. Semantics definition is not hindered by infinity of π′′.

In case we do dynamic scoping, i.e. disallow bound renamings of identifiers,
and start from wellformed programs π (which are not distinguished in general)
then we cannot preserve wellformedness nor achieve confluence. In order to pre-
serve at least closedness of resulting programs π′, every prefixing class ξ to be
eliminated must have no prefix itself. Further on, in order to enforce confluence,
prefix elimination must be applied to outermost prefixed modules only. These
demands indicate , so to speak, that dynamic scoping leads to less robust seman-
tics than static scoping does. And both semantics are differing as our program
example π1 in appendix B demonstrates:

Complete elimination of all prefixing in π1 and of all classes A, B and C
yields a program π′′

1 in appendix D. Static scoping requires some renamings: Of
x in class M to x , of y in block L3 to y , and of x, newly introduced in block
L3 by prefix B elimination, to x’. Static scope semantics output of π′′

1 and so by
definition of π1 is

2.0, 2.0, 3.0.

For dynamic scoping simply forget renamings in π′′
1 . Dynamic scope semantics

output of π1
′′ dyn and so by definition of π1 is

2.0, 4.0, 4.0.

Even if you turn π1 to a distinguished program π1
dist (i.e. x in M to x and y in

L3 to y) and do prefix elimination under dynamic scoping you do not arrive at
the static (nor the dynamic) scope semantics, but to the output

2.0, 2.0, 2.0,

see quasi static scope semantics in Section 6.1.

220 Hans Langmaack

5 Prefix Elimination by Transforming to Procedures

As indicated already: If we deal within MiniLOGLAN only with Simula67-like
programs π with their same level prefixing and static scoping regime then succes-
sive original prefix elimination needs only finitely many steps to reach a program
π′′ where all prefixings, class initializations and class declarations are redundant.
So the resulting programs π′′ may be called truly ALGOL-like.

Finitely many steps are not sufficing in general MiniLOGLAN. But in any
case, a “final” π′′ may be considered to be an ALGOL-like program, be it finite
or infinite, it is established with a welldefined semantics.

But there is a different (new) prefix elimination process by transforming
classes and prefixed blocks to procedures. This process is always finite. Let π
be a distinguished wellformed program. We are allowed to assume there are no
class initializations nor prefixed procedures in π.

Let a non-prefixed class declaration

unit η : class ∆ Σ1 inner Σ2 end η

in π be given which defines a module jM in π . Let

i1ξ1 . . .in ξn

be the local identifier list locidl(jM). inner indicates the only inner-statement
in the main part of class η . Then the module above is transformed to

unit η : proc (ηf)
∆
Σ1 call ηf (ξ1 · · · ξn) Σ2

end η
where ηf is a new formal procedure identifier with an appropriate specification
which we have deleted. It is induced by the declarations of ξ1 . . . ξn in π in a well
known way.

Now we consider a prefixed class declaration

unit η : inh ξ class ∆ Σ1 inner Σ2 end η

in π which defines a module jM in π with its finite prefix chain

pref l−1(jM)← −− · · · ← −− pref0(jM) , l > 1,

and its local identifier lists

j1ξ1 . . .jn ξn = locidl(pref0(jM)),

i1ζ1 . . .im ζm = locidl(pref l−1(jM)) · · · locidl(pref1(jM)).

Then the above module is transformed to
unit η : proc (ηf)

unit ηg : proc (ζ1 · · · ζm)
∆

Consistency of Inheritance in Object-Oriented Languages 221

Σ1 call ηf (ζ1 · · · ζm ξ1 · · · ξn) Σ2

end ηg

call ξ (ηg)
end η

where ηf and ηg are new procedure identifiers with appropriate specifications
which we have deleted. The specifications of ηf and ηg and ζ1 · · · ζm in the
resulting program are induced by the declarations of ζ1 · · · ζm and ξ1 · · · ξn in π.

A prefixed block is treated similarly: Let

η : inh ξ block ∆ Σ end η

be such a block in π which defines a module jM in π. This block is transformed
to

η : block
unit ηg : proc (ζ1 · · · ζm)

∆
Σ

end ηg

call ξ (ηg)
end η .

The symbols have the same meanings as before.
Now we should like to sketch a proof why the given MiniLOGLAN-program

π and its transformed ALGOL-like program π̃ are semantically equivalent. Let
us look at a non-prefixed class

(1) unit ξ : class ∆′ Σ′
1 inner Σ′

2 end ξ
which is prefix of a block

(2) η : inh ξ block ∆ Σ end η
in π or in any program at any stage of the successive original prefix elimination
process. We may assume that program to be distinguished. Let

i1ζ1 . . .in ζn

be the local identifier list of class ξ. The translated class and block look as follows
(1̃) unit ξ : proc (ξf)

∆′

Σ′
1 call ξf (ζ1 . . . ζn) Σ′

2

end ξ

(2̃) η : block
unit ηg : proc (ζ1 . . . ζn)

∆
Σ

end ηg

call ξ(ηg)
end η .

Now we compare original prefix elimination in (1), (2) and copy rule appli-
cations in (1̃), (2̃) . Prefix elimination gives

η : block
∆′

Σ′
1

gblock
∆

222 Hans Langmaack

Σ
end
Σ′

2

end η
and copy rule applications give,

first step:
η : block

unit ηg : proc (ζ1 . . . ζn)
∆
Σ

end ηg

gbegin
∆′

Σ′
1 call ηg(ζ1, . . . , ζn) Σ′

2

end
end η ,

second step:
η : block

unit ηg : proc (ζ1 . . . ζn)
∆
Σ

end ηg

gbegin
∆′

Σ′
1

gbegin
∆
Σ

end
Σ′

2

end
end η .

We see: Prefix elimination and associated procedure call call ξ(ηg) lead to equiv-
alent program expansions since procedure ηg has become redundant. The other
three cases

a block η prefixed by a prefixed class ξ,
a class η prefixed by a non-prefixed class ξ,
a class η prefixed by a prefixed class ξ

lead to analogous results.

Theorem 5.1: A given wellformed MiniLOGLAN-program π and its effectively
transformed ALGOL-like program where all classes and prefixings have been
eliminated and replaced by procedure declarations and calls are semantically
equivalent.

Let us draw some conclusions from Section 5: By object-orientation via
classes and inheritances Dahl and Nygaard have created a great program struc-
turing method. This structuring can be achieved also by a systematic exploita-
tion of ALGOL-procedure parameter transmission. But object-orientation offers
a very pleasant shorthand notation for ALGOL-programs which comes along
with drastic parameter savings.

Since many level prefixing is no hindrance the new prefix elimination tech-
nique in Section 5 is suggesting a program implementation method by use of
display registers which is as efficient as for Simula67 or ALGOL60. It turns out
that appropriate display register permutations can be determined at compile

Consistency of Inheritance in Object-Oriented Languages 223

time what does not diminish run time efficiency. Section 6 shows the essential
ideas.

Remark concerning Java: Both methods in sections 4 and 5 eliminate pre-
fixing and so reduce semantics definition to programs without inheritances, but
with nestings. Java’s method removes class nestings and reduces semantics defi-
nition to flat programs with toplevel inheritances only. The connections between
the methods are to be clarified [SaW02].

6 Implementation of MiniLOGLAN

6.1 Problem Review

Design of an efficient implementation for LOGLAN with many level prefixing
and pure static scope semantics is a problem more severe than for ALGOL60 or
Simula67. The idea to start with is Dijkstra’s [Dij60], namely to enter activa-
tion records or incarnations in a run time stack when modules are activated and
to use compile time determinable display (index) registers and offsets (relative
addresses) for fast access to contents of variable and parameter places. As for
Simula67, incarnations of modules in one prefix chain shall be grouped as one so
called object instance or object in one activation record and no display register
reloadings shall be needed as long as a computation is running through main
parts of modules in a prefix chain. As an illustration look at the run time stack
content (pure static scoping) of program π1 in appendix E (with its environmen-
tal and prefix structure in Section 3) just before class C is terminating.

In Simula67 as in ALGOL60 or Pascal it is correct to associate every module
M of level νM straight forwardly with a list of display registers numbered from
1 to νM , to associate every applied occurrence iξ of a variable with a display
register numbered νbdfct(iξ) and, at run time, to load register νM to register 1
with pointers by going down the static pointers chain of the activated module
M.

But this proceeding does no longer work out for many level prefixing. Krog-
dahl [Kro79] discusses this problem; he recommends to look for compile time
optimization procedures to minimize display register loadings and reloadings at
run time.

The first implementation of LOGLAN-77/82 used a 1-1-association of mod-
ules and display registers in order to avoid reloadings as long as a computation
is residing in a prefix chain of a module. A total of 6 registers were needed for
π1 . But that implementation did not fit static scoping, output of π1 showed

2.0, 2.0, 2.0 instead of the expected 2.0, 2.0, 3.0 .

That phenomenon was observed 1983. So the implemented semantics was called
quasi static scope.

The articles [KKSL84, KLKW85, KKLSW87] and Krause’s dissertation
[Kra86] prove that appropriate compile time determined display register permu-
tations get along with a number νmax of display registers which is the maximum

224 Hans Langmaack

module nesting level in a program. This works successfully for pure static scop-
ing and many level prefixing, no reloadings inside prefix chains take place. Since
ALGOL60- or Simula67-like programs already require this number νmax we may
state: The compile time determined display register permutations are a solution
of Krogdahl’s optimization problem. The fact that MiniLOGLAN is only a re-
stricted LOGLAN and does not yet allow object reference storing nor remote
(indirect) identifier access nor virtual procedures is no point against display
register permutation. The missing language constructs can be added without
problems, they do not overthrow the implementation idea.

Our program examples π1 and π2 in appendices B and C show the following
permuted display register lists associated to modules.

M

A

B

1,2

1,2,3

C

1

1,2,3

M

N

C

B

A

1

1,2

1,3,2

L1

L31,3,2

1,2,4,3 1,4,2,3

1,2

π2:π1:

We see very clearly that many level prefixing induces non-trivial permuta-
tions.

Display register permutations for efficient implementation of MiniLOGLAN-
programs (and LOGLAN-programs in general) are a result of viewing programs
as L-algebras.

Static scoping is enabling that not only the set of modules in a wellformed
program π may be seen as an L-algebra M. This holds also for sets of the
module instances in expanded programs π̄ generated by successive prefix elim-
inations, class instantiations and copy rule applications. π̄’s L-algebra M is a
so called implementation of π’s L-algebra M with a characteristic embedding
homomorphism h fromM intoM: The pref-trees inM are linear paths (object
instances). If M = h(M), then any path of pref- and encl-applications starting
from M can be lifted to an analogous path starting from M (the other way round
is clear by the notion homomorphism). Similarly for complement diagrams: If
M = h(M), M ′ = h(M

′
), M ′′ = h(M

′′
), M

′
= pref∗(M), M

′′
= encl∗(M

′
)

then comp(M, M ′, M ′′) = h(comp(M, M
′
, M

′′
).

We define display register association and present a correctness proof basing
on L-algebras and their implementations.

6.2 Association of Lists of Display Registers to Modules and Its
Correctness

At compile time every module M of level νM ≥ 1 of program π shall be associated
with νM display registers numbered

dM (1), . . . , dM (νM)

Consistency of Inheritance in Object-Oriented Languages 225

with 1 ≤ dM (µ) ≤ νM for µ = 1, . . . , νM . So dM is a permutation of the numbers
1, . . . , νM . Main purpose of M ’s display registers is to have fast access to a local
or global variable or parameter iξ of M with its defining occurrence jξ in its
declaring module k′

M ′ which is in the prefix chain of the vertex module kM of
iξ.

But our wishes go further. Display register association shall be so intelligent
that no display register reloadings are necessary as long as a computation is
running in the main parts of M ’s prefix chain

M = pref0(M)−− → pref1(M)−− → · · · − − → pref lM−1(M)

where pref lM (M) is undefined and lM ≥ 1 is the length of M ’s prefix chain.
This requires a uniformity condition to be fulfilled which bases on the notion of
a complement modules chain.

Module M has its enclosing modules chain

M = MνM = encl0(M)→MνM−1 = encl1(M)→ . . .

→M1 = enclνM−1(M) = π

Let M ′ = pref l(M), 0 ≤ l ≤ lM − 1 , be any module in the prefix chain of
module M and let

M ′ = M ′
νM′ →M ′

νM′−1 → . . .→M ′
1 = π

be M ′ ’s enclosing modules. This chain has a complement modules chain

M = Mλ(νM′)
+→Mλ(νM′−1)

+→ · · · +→Mλ(1) = π

of length νM ′ inside M ’s enclosing modules chain such that

νM = λ(νM ′) ≤ λ(νM ′ − 1) ≤ . . . ≤ λ(1) = 1 .

λ(µ′) is the level νMλ(µ′) of the complement module Mλ(µ′) of M, M ′, M ′
µ′ for

1 ≤ µ′ ≤ νM ′ . The decisive uniformity condition to be fulfilled is:

Condition 6.2.1:
dM (λ(µ′)) = dM ′(µ′) resp. λ(µ′) = d−1

M ◦ dM ′ (µ′)
for all µ′ with 1 ≤ µ′ ≤ νM ′ .

Is such an association dM of lists of display register numbers to modules M
possible? Yes. We define dM by induction over the lexicographical ordering of
couples (νM , lM) of levels νM and prefix chain lengths lM .

Induction beginning (νM , lM) = (1, 1) :
dM (1) := 1

is the only choice possible.
Induction step (νM , lM) �= (1, 1), first case lM = 1 : Then νM > 1 and there is
an M ′ with

226 Hans Langmaack

M →M ′ ,
νM ′ = νM − 1 , and (νM ′ , lM ′) precedes (νM ′ , lM) lexicographically. So dM ′ may
be assumed to be defined.

dM (µ) :=
{

dM ′(µ) for µ = 1, . . . , νM ′

νM for µ = νM .

Second case lM > 1 : Then there is an M ′ with
M −− →M ′ ,

νM ′ ≤ νM , lM ′ = lM − 1 , and (νM ′ , lM ′) precedes (νM , lM) lexicographically.
So dM ′ may be assumed to be defined.

dM (µ) :=

dM ′ (µ′) if Mµ and M ′
µ′ are in the enclosing modules chains

of M and M ′ and Mµ = comp(M, M ′, M ′
µ′), µ = λ(µ′)

νM ′ + δ if Mµ is in the enclosing modules chain of M, but
outside the complement modules chain of M ′, and
Mµ is the δ-largest module of that kind,
1 ≤ δ ≤ νM − νM ′

In case we have same level prefixing as in Simula67 then case dM (µ) = νM ′ +δ
never applies and all dM are identical mappings. Due to definition of the notion
complement module and due to composition theorem 3.3 the following holds:

Lemma 6.2.2 : Our defined display register permutations dM satisfy the unifor-
mity condition 6.2.1.

For a correctness proof of our definition of dM we have to explain beforehand
what is to be proved: In practice the contents of display registers Dr[dM (µ)]
are linkage addresses of object instances (prefix chains of module incarnations).
Since we would like to base our proof on L-algebra implementation

h :M−→M
we take object instances themselves, i.e. maximal prefix paths inM, as contents
of display registers. Every module instance M εM is an element of exactly one
maximal prefix path, these paths define a partition of M and an equivalence
relation ≈ in M.

Let module M εM be activated at runtime by instance M εM with h(M) =
M . So the runtime system loads display register Dr[dM (νM)] with M ’s maximal
prefix chain

M = pref0(M)−− → . . .−− → pref l
M

−1(M) , lM = lM ,

which is the equivalence class [M]≈ of M . Every display register Dr[dM (µ)],
1 ≤ µ < νM , is loaded with [Mµ]≈ where Mµ is that instance of level µ in the
enclosing chain

M = Mν
M
→Mν

M
−1 → . . .→Mµ → . . .→M1 = π̄ , νM = νM .

Consistency of Inheritance in Object-Oriented Languages 227

This same loading is done when at run time after an interruption the computa-
tion is returning to or is resumed by object instance [M]≈ .

Now let M ′ be in the prefix chain of M , i.e. M
∗−− →M ′ and correspond-

ingly M
�−− → M

′
with h(M

′
) = M ′ . Let iξ′ be a local or global variable

or parameter occurrence in the main part of M ′ with its defining occurrence jξ′

in its declaring module k′
M ′′ which is in the prefix chain of the vertex module

kM ′ of iξ′. To have a fast access to the storage place of iξ′ resp. jξ′ we cou-
ple (in fact, the compiler generated target code couples) the applied occurrence
iξ′ with display register Dr[dM ′ (µ′)] where µ′ is the level of the vertex module
kM ′ = M ′

µ′ in M ′’s enclosing chain

M ′ = M ′
νM′ → . . .→M ′

µ′ → . . .→M ′
1 = π , νM ′ ≤ νM .

Our claim is: As long as computation is running in object instance [M]≈ dis-
play register Dr[dM ′ (µ′)] is already correctly loaded at object activation resp.
resumption time. Bare transitions between module instances inside [M]≈ need
no reloading. This means more precisely: Consider the enclosing chain

M
′
= M

′
ν

M
′ → . . .→M

′
µ′ → . . .→M

′
1 = π̄ , ν

M
′ = νM ′ ,

for M
′
. M ′ ’s display registers are said to be correctly loaded if

M
′
ν

M
′ ε Dr[dM ′ (ν

M
′)], ..., M

′
µ′ ε Dr[dM ′ (µ′)], ..., M

′
1 ε Dr[dM ′ (1)] .

We have a diagram

* *

hh

M
′

= Mλ(µ′)

∗ ∗

∗∗

hh

M ′
µ′

M ′

∗ ∗

comp(M, M ′, M ′
µ′)M

′
µ′comp(M, M

′
, M

′
µ′)

M M

So comp(M, M
′
, M

′
µ′) is Mλ(µ′) which is ε Dr[dM (λ(µ′))] by explicit

loading and ε Dr[dM ′ (µ′)] due to uniformity guaranteed by lemma 6.2.2. So
M

′
µ′ ε Dr[dM ′ (µ′)] because display registers of M are loaded with maximal pre-

fix chains in M and M
′
µ′ with h(M

′
µ′) = M ′

µ′ = kM ′ is a prefix of Mλ(µ′). We
see: M ′’s display registers are correctly loaded in the sense above.

Why does this guarantee the right access to iξ′’s storage place? Remem-
ber that the declaring module k′

M ′′ is in the prefix chain of vertex module
kM ′ = M ′

µ′ . So the defining occurrence jξ′ has a storage place in a correspond-

ing instance M
′′

with h(M
′′
) = k′

M ′′ which is in the prefix chain of M
′
µ′ . So

228 Hans Langmaack

M
′′
ε Dr[dM ′ (µ′)] , and this demonstrates the coupling of applied occurrence iξ′

with display register Dr[dM ′ (µ′)] is correct. This proves the correctness theorem:

Theorem 6.2.3: The display register associations dM are correct. A module
needs only νM registers. The associations are efficient in the sense that no reload-
ings are needed as long as a computation does not leave a prefix chain.

Important remark: It is well possible that different applied occurrences of the
same variable in one prefix chain must be coupled to different display registers.
So it is with x in class B and x in class C of program π1 which are coupled with
display register 2 resp. 4. See appendix D and E.

7 Conclusion

We would like this partly historical essay to be viewed as our high appreciation
of O.-J. Dahl’s and K. Nygaard’s software engineering research on object orien-
tation and its persistent combination with static binding which ALGOL60 has
introduced in programming theory and practice and which has been known ear-
lier in predicate logic and λ-calculus. Influential publications have unvoluntarily
brought dynamic binding to the attention of programming practice. Dynamic
binding became especially popular in object oriented programming although the
inventors had a different view.

The Warsaw algorithmic logic and programming research group around A.
Kreczmar and A.Salwicki has worked on object orientation in quite the same
sense as the inventors. The Warsaw group defined and implemented several Sim-
ula 67-extensions, named LOGLAN77/82/88. One new language feature which
Simula 67 excluded was many level (skew) prefixing. It was interesting to find
out that the first many level prefixing implementation had deficiencies w.r.t.
static binding. It proved to be a challenge to find a good efficient solution and a
convincing justification. The problems that have come up were not foreseen in
1967 [Dah01b].

Our view of many level prefixed programs as classical ALGOL-programs with
appropriate nested procedures and parameter transmissions have guided us to
implement many level prefixing with the same display registers quantity and
run time efficiency as same level prefixing, e.g. Simula 67. A right notion of
complement module has given us the idea of display register permutation.

In order to prove the idea correct we view both original programs and their ex-
pansions and run time stack contents more abstractly as L-algebras. Expansions
and stack contents, so called implementing L-algebras, are homomorphically em-
bedded in the original programs. This L-algebraic view, enabled by static scop-
ing, is sufficiently abstract such that typical object oriented language constructs
like remote (indirect) addressing, object reference storing or virtual procedures
are in concordance with the display register permutation idea.

I would like to thank my colleagues Grazyna Mirkowska, E. Börger, O.-J.
Dahl, W. Goerigk, C.A.R. Hoare and A. Salwicki very heartily for many discus-

Consistency of Inheritance in Object-Oriented Languages 229

sions around object orientation and static binding. Thanks also to an anonymous
reviewer for his good suggestions. My conversations with O.-J. Dahl around the
sd&m software pioneers conference at Bonn [Dah01a] have especially encour-
aged me to lecture anew on consistency of object inheritance and static bind-
ing [Lan01]. I am grateful to the editors who have invited me to contribute to
the Festschrift in honour of our dear respected colleagues Ole-Johan Dahl and
Kristen Nygaard. I thank Annemarie Langmaack and Moritz Zahorsky for type-
setting the manuscript. Ole-Johan was a wonderful pianist; he together with
Annemarie as a violinist enjoyed the participants of many informatics confer-
ences since 1972.

References

[Bac57] J.W.Backus et al.. The FORTRAN Automatic Coding System. Proc.
Western Joint Computing Conf. 11, 188-198, 1957

[BaS57] F.L.Bauer, K.Samelson. Verfahren zu automatischen Verarbeitung von
kodierten Daten und Rechenmaschinen zur Ausübung des Verfahrens.
Patentanmeldung Deutsches Patentamt, 1957

[Cla79] E.M. Clarke. Programming language constructs for which it is impossi-
ble to obtain good Hoare axiom systems. JACM 26:1, 129-147, 1979

[Dah01a] O.-J.Dahl. The Roots of Object Orientation: The Simula Language. In:
M.Broy, E.Denert (Eds.). Software Pioneers, Contributions to Software
Engineering. sd & m Conf. on Software Pioneers, Bonn 2001, Springer-
Verlag, Berlin, Heidelberg, New York, 79-90, 2002

[Dah01b] O.-J.Dahl. Personal correspondence. Asker 2001
[DaN67] O.-J.Dahl, K.Nygaard. Class and Subclass Declarations. In: J.N.Buxton

(ed.). Simulation Programming Languages. Proc. IFIP Work. Conf.
Oslo 1967, North Holland, Amsterdam, 158-174, 1968

[Dij60] E.W.Dijkstra. Recursive Programming. Num. Math. 2, 312-318, 1960
[GHL67] A.A.Grau, U.Hill, H.Langmaack. Translation of ALGOL60. Handbook

for Automatic Computation Ib, chief ed. K.Samelson. Springer-Verlag,
Berlin, Heidelberg, New York 1967

[Her61] H.Hermes. Aufzählbarkeit, Entscheidbarkeit, Berechenbarkeit.
Springer-Verlag, Berlin, Göttingen, Heidelberg 1961

[Hoa90] C.A.R.Hoare. Personal communications. EU-ESPRIT-BRA-Projekt
“Provably Correct Systems - ProCoS”, Oxford 1990, Cambridge 2001

[Ich80] J.D.Ichbiah. Ada Reference Manual. LNCS 106, Springer-Verlag, Berlin,
Heidelberg, New York 1980

[JeW75] K.Jensen, N.Wirth. PASCAL-User Manual and Report, 2nd ed..
Springer Verlag, New York, Heidelberg, Berlin 1975

[Kan74] P.Kandzia. On the most-recent-property of ALGOL-like preograms.
In: J.Loeckx (ed.). Automata, Languages and Programming. 2nd Coll.
Univ. Saarbrücken 1974, LNCS14, Springer Verlag, Berlin, Heidelberg,
New York, 97-111, 1974

[KeR78] B.W.Kernighan, D.M.Ritchie. The C Programming Language. Prentice
Hall, Englewood Cliffs N.Y. 1978

[KKLSW87] M. Krause, A. Kreczmar, H. Langmaack, A. Salwicki, M. Warpechowski.
Concatenation of Program Modules. Bericht 8701, Inst. f. Informatik u.
Prakt. Math. Univ. Kiel, 1987

230 Hans Langmaack

[KKSL84] A.Kreczmar, M.Krause, A.Salwicki, H.Langmaack. Specification and
Implementation Problems of Programming Languages Proper for Hier-
archical Data Types. Bericht 8410, Inst.Informatik Prakt. Math. CAU
Kiel, 1984

[KLKW85] M.Krause, H.Langmaack, A.Kreczmar, M.Warpechowski. Concatena-
tion of Program Modules, an Algebraic Approach to Semantic and
Implementation Problems. In: A.Skowron (ed.). Computation Theory.
Proc. 5th Symp. Zaborow 1984, LNCS 208, Springer Verlag, Berlin,
Heidelberg, New York, 134-156, 1985

[Kra86] M. Krause. Die Korrektheit einer Implementation der Mod-
ulpräfidierung mit reiner Static-scope-Semantik, Bericht 8616, Inst. f.
Informatik u. Prakt. Math. Univ. Kiel, 1986

[Kro79] S.Krogdahl. On the Implementation of BETA. Norwegian Comp. Cen-
tre, 1979

[KSW88] A.Kreczmar, A.Salwicki, M.Warpechowski. LOGLAN’88-Report on the
Programming Language. LNCS 414, Springer-Verlag, Berlin, Heidel-
berg, New York 1990

[Lan01] H. Langmaack. Konsistenz von Vererbung in objektorientierten
Sprachen und von statischer, ALGOL-artiger Bindung. In: K. Inder-
mark, Thomas Noll (Hrsg.). Kolloquium Programmiersprachen und
Grundlagen der Programmierung, Rurberg 2001. Aachener Informatik
Berichte AIB-2001-11, RWTH Aachen, 47-52, 2001

[LaO80] H. Langmaack, E.-R. Olderog. Present day Hoare-like systems for pro-
gramming languages with procedures: Power, limits, and most likely
extensions. In: J.W. de Bakker, J. van Leeuwen. Proc. 7th Conf. Au-
tomata, Languages and Programming 1980, LNCS 25, Springer Verlag,
Berlin, Heidelberg, New York, 363-373, 1980

[McC65] J.McCarthy et al.. Lisp 1.5 Programmer’s Manual. The M.I.T. Press,
Cambridge Mas. 1965

[MMPN93] O.L.Madsen, B.Møller-Pedersen, K.Nygaard. Object Oriented Pro-
gramming in the BETA Programming Language. Addison Wesley /
ACM Press, 1993

[Nau60] P.Naur (ed.) et al.. Report on the Algorithmic Language ALGOL60.
Num. Math. 2, 106-136, 1960

[Old81] E.-R.Olderog. Sound and complete Hoare-like calculi based on copy
rules. Acta Informatica, 16, 161-197, 1981

[PeS58] ACM Committee on Programming Languages and GAMM Committee
on Programming, ed. by A.J.Perlis, K.Samelson. Report on the Algo-
rithmic Language ALGOL. Num. Math. 1, 41-60, 1959

[RaR64] B.Randell, L.J.Russell. ALGOL60 Implementation. Academic Press,
London, New York 1964

[SaB59] K.Samelson, F.L.Bauer. Sequentielle Formelübersetzung. Elektr.
Rechenanl. 1, 4, 176-182, 1959

[Sam55] K.Samelson. Probleme der Programmierungstechnik. Intern. Koll. über
Probleme der Rechentechnik, Dresden 1955, VEB Deutscher Verlag der
Wissenschaften, Berlin, 61-68, 1957

[SaW02] A.Salwicki, M.Warpechowski. Combining Inheritance and Nesting To-
gether: Advantages and Problems. Workshop Concurrency Specification
and Programming CS&P ’2002, 12 pp, Berlin 2002

Consistency of Inheritance in Object-Oriented Languages 231

[SSB01] R.F.Stärk, J.Schmid, E.Börger. Java and the Java Virtual Machine –
Definition, Verification, Validation. Springer-Verlag, Berlin, Heidelberg,
NewYork, 2001

[Ste84] G.L.Steele jr.. CommonLisp: The Language. Digital Press, 1984
[Sun97] Sun Microsystems. Inner Classes Specification. http://java.sun.com/

products/jdk/1.1/guide/innerclasses/, 1997
[Wij+69] A.van Wijngaarden (ed.), B.J. Mailloux, J.E.L. Peck, C.H.A. Koster.

Report on the Algorithmic Language ALGOL68. Num. Math. 14, 79-
218, 1969

[WiM92] R.Wilhelm, D.Maurer. Übersetzerbau – Theorie, Konstruktion, Gener-
ierung. Springer-Verlag, Berlin, Heidelberg, NewYork, 1992

232 Hans Langmaack

Appendix A : A contextfree-like grammar for MiniLOGLAN

The grammar is an adapted extraction from [KSW88]. “Contextfree-like”, as op-
posed to “contextfree”, means that the productions are contextfree, but there
may be infinitely many productions, terminal and non-terminal symbols. Termi-
nal symbols or lexical entities are identifiers, literals, keywords and delimiters.
Non-terminal symbols are written in angle brackets < > . Axiom is <program>.
The production system is not complete. The reader is urged to add missing
productions appropriately.

< program > ::= < block >
< block > ::= [< block idf. >:][inh < class idf. >]block < body >

[< block idf. >]
< body > ::= < decl. >∗< stm. >∗ end
< decl. > ::= < var. decl. >

| < class decl. >
| < proc. decl. >

< var. decl. > ::= var < var. spec. >
< class decl. > ::= unit < class idf. >: [inh < class idf. >]class < body >

[< class idf. >]
< proc. decl. > ::= unit < proc. idf. >: [inh < class idf. >]proc

(< form. par. spec. >∗) < body > [< proc. idf. >]
< var. spec. > ::= < var. idf. >:< var. type def. >
< var. type def. > ::= < prim. type idf. >

| < class idf. >
< form. par. spec. > ::= < form. par. idf. >:< par. transm. mode >

{< type name > | < type >}
< type name > ::= < prim. type idf. >

| < class idf. >
| < proc. idf. >

< stm. > ::= < empty stm. >
| < assignm. stm. >
| call < proc. idf. > (< act. par. >∗)
|new < class idf. >
| inner
| < block >
| < compound stm. > like loop, conditional,

case statement
< act. par. > ::= < var. idf. >

| < proc. idf. >
| < class idf. >
| < form. par. idf. >

Defining identifier occurrences are indicated by immediately following
colons : , all other identifier occurrences are applied ones. Conditions for well-
formedness (correct static semantics) of programs are formulated in Section 3.
In order to handle prefix elimination and program semantics by copy rule
applications and program expansions it is advisable to have an extra production

< stm.> ::= gbegin <body>

Consistency of Inheritance in Object-Oriented Languages 233

which introduces so called generated statements or instances of modules. For
later treatment of indirect (remote) identifier access productions like

<var. type def.> ::= <class idf.> . <var. type def.>
<type name> ::= <class idf.> . <type name>
<var. name> ::= <var idf.>

| <class idf.> . <var idf.>

ought to be added. For object generation (class instantiation) and storing object
references a special assignment statement is needed

<assignm. stm.> ::= <var. name> := new<class idf.>.

Appendix B:

Program example π1

M: block

var x: real;

unit A: class

var x: real;

x:=3;

inner

end A;

L1: inh A block

var y: real;

unit B: class

x:=y; print(x);

inner

end B;

y:=2;

L2: new B;

L3: inh A block

var y: real;

unit C: inh B class

y:=x; print(y);

inner

end C;

y:=4;

L4: new C

end L3

end L1

end M

L2 and L4 are redundant

statement labels.

Appendix C:

Program example π2 with recursive

prefixing. The original prefix elimi-

nation process is infinite.

M: block

var y: real;

unit A: class

var x: real;

unit B: class

x:=y;

inner

end B;

L1: new B;

inner;

unit N : inh A block

var y: real;

unit C : inh B class

y:=x;

inner

end C;

L2: new C;

end N

end A;

L3: new A

end M

L1, L2, L3 are redundant statement

labels.

234 Hans Langmaack

Appendix D: Elimination of all prefixes in program π1 yields π′′
1 :

M: block

var x: real;

(∗ class A deleted ∗)
L1: block

var x: real;

x := 3;

gbegin

var y: real;

(∗ class B deleted ∗)
y := 2;

L2: block

x := y; print(x); (∗ see comment 1 ∗)
gbegin

end

end L2;

L3: block

var x′: real;

x′ := 3;

gbegin

var y: real;

(∗ class C deleted ∗)
y := 4 ;

L4: block

x := y ; print(x); (∗ see comments 2 and 3 ∗)
gbegin

y := x′ ; print(y);

gbegin

end

end

end L4

end

end L3

end

end L1

end M

Comment 1: The first output is 2.0, no matter whether static scoping, dynamic
scoping or quasi static scoping (i.e. dynamic scoping starting from a distinguished
program, renaming of x in M to x , of y in L3 to y), is done.

Comment 2: y is the first variable access where static scoping violates dynamic
scoping because y does not access the most recent defining occurrence y. The
second output is 2.0 whereas dynamic scoping would yield 4.0. Quasi static
scoping would still behave as static scoping and so yield the same second output
2.0 .

Consistency of Inheritance in Object-Oriented Languages 235

Comment 3: x is the first variable access where static scoping violates quasi
static scoping because x does not access the most recent defining occurrence
x′ . The third output is 3.0 whereas quasi static scoping would yield again
2.0. Here static scoping deviates from Dijkstra’s most-recent-behaviour in
the same way as in the short ALGOL60-program examples of [GHL67] and
[Kan74]. When class C, prefixed by B, is initialized then B does not store
value 2.0 in that place reserved for B’s global variable x within the most recent
incarnation of class A, but within the older one. Observe that this deviation
from most-recent-behaviour is generated by block enterings, class initializations
and many level prefixing without any help of nested procedures with formal
procedure identifiers as parameters.

Appendix E : Runtime stack of program π1 just before class initalization
new C terminates.

static
pointers
chain

beginning free storage:

fixed storage C
fixed storage B
linkage class C

fixed storage L3
most recent fixed storage A
linkage block L3

fixed storage L1
older fixed storage A
linkage block L1

fixed storage M
linkage block M :

:

:

:
:
:

C’s list
1 2 4 3

of display registers
and their pointings
into the static
pointers chain

2.0
2.0

3.0x’:

y:
x:

3.0

x:

y:

Both the block and class instances in the expanded program π′′
1 and the

incarnations in the run time stack above are L-algebras. Specific homomorphisms
h from them into π1’s L-algebra make the L-algebras so called implementations
of π1’s L-algebra. The static pointers of the object instances in the run time
stack allow to determine the enclosing function encl of all incarnations implicitly.
Observe: The applied occurrences of one and the same global variable x in class
B and class C (the prefix chain of C) are coupled with different display registers
2 and 4.

The Power of Abstraction, Reuse, and Simplicity:
An Object-Oriented Library for Event-Driven Design

Bertrand Meyer

ETH Zürich, Chair of Software Engineering
http://se.inf.ethz.ch

(also Eiffel Software, Santa Barbara, and Monash University)

Abstract. A new library for event-driven design, defining a general and
extendible scheme yet easy to learn and use on both the publisher and subscriber
sides, provides an opportunity to analyze such other approaches as the “Observer
Pattern”, the event-delegate mechanism of .NET and its “Web Forms”, then to
draw some general software engineering lessons.

1 Overview

Event-driven software design avoids any direct connection, in a system’s architecture,
between the unit in charge of executing an operation and those in charge of deciding
when to execute it.

Event-driven techniques have gained growing usage because of their flexibility.
They are particularly common for Graphical User Interface applications, where the
operations come from an application layer and the decision to execute them comes from
a GUI layer in response to events caused by human users. An event-driven scheme can
shield the design of the application layer from concerns related to the user interface.
Many application areas other than GUI design have used these ideas.

Closely related techniques have been proposed under such names as Publish-
Subscribe and Observer Pattern.

This article describes the Event Library, a reusable component solution of broad
applicability, covering all these variants. Intended to be easy to learn, the library
consists in its basic form of one class with two features, one for the production of events
and one for their consumption.

The discussion will compare this solution to the Observer Pattern and mechanisms
recently introduced by .NET. It will expand on this analysis to examine more general
issues of software engineering, including the role of abstraction, the transition from
design patterns to reusable components, the concern for simplicity, and the contribution
of object technology.

Section 2 quickly presents the essentials of the Event Library. Section 3 explains
event-driven design and what makes it attractive. Sections 4, 5 and 6 analyze other
solutions: the Observer Pattern, the .NET event handling mechanism, the Web Forms
library of ASP.NET. Section 7 gives the remaining details of the Event Library.
Section 8 examines the software engineering issues that led to this work and draws
general conclusions.
O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 236-271, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [1200 1200] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Hoch Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Hoch Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 1200 dpi Downsampling für Bilder über: 1800 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Ja Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alles für Farbverwaltung kennzeichnen (keine Konvertierung) Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: None RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Beibehalten Rastereinstellungen beibehalten: NeinERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Ja Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Ja Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (None) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket true /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.4 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.4 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /UseDeviceIndependentColor /PreserveOPIComments true /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Preserve /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 1200 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts true /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo false /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [1200 1200]>> setpagedevice

The Power of Abstraction, Reuse, and Simplicity 237
2 Event Library Essentials

The Event Library consists at its core of one class, EVENT_TYPE with a feature publish
for publishers and a feature subscribe for subscribers. The library is written in Eiffel; so
are the usage examples in this section.

First the subscriber side. Assume you want to ensure that any future mouse click
will cause execution of a certain procedure of your application

passing to it the mouse coordinates as values for a and b. To obtain this effect, simply
subscribe the desired procedure to the event type mouse_click:

The argument to subscribe is an “agent” expression; an agent in Eiffel is an object
representing a routine, here your_procedure.

In most cases this is all one needs to know on the subscriber side, for example to
produce a graphical application using a GUI library. An advantage of the scheme is that
it lets you start from an existing system and add an event-driven scheme such as a GUI
without writing any connecting code. You’ll just reuse the existing routines directly,
linking them to event types through agent expressions as above. This extends to routines
with extra arguments: assuming

you can still subscribe the procedure without any “glue code” through

where the question marks indicate the values to be filled in by the event. (The agent in
form /1/ can be written more explicitly as agent your_procedure (?, ?).)

So much for subscribers. The basic scheme for publishers is also straightforward.
To trigger a mouse click event, all the GUI library will do is

It is also the publisher’s responsibility to declare mouse_click and create the
corresponding object. It can take care of both through

your_procedure (a, b: INTEGER)

mouse_click.subscribe (agent your_procedure) /1/

other_procedure (a, b: INTEGER;)

mouse_click.subscribe (agent other_procedure ("TEXT ", ?, ?, Today) /2/

mouse_click.publish ([x_position, y_position]) /3/

mouse_click: EVENT_TYPE [TUPLE [INTEGER, INTEGER]] is
once

create Result
end /4/

text: STRING; date: DATE

238 Bertrand Meyer
Class EVENT_TYPE is generic; the parameter TUPLE [INTEGER, INTEGER] indicates
that a mouse click produces event data consisting of two integers, representing the
mouse coordinates, collected into a two-element “tuple”.

Since mouse_click just represents an ordinary object — an instance of class
EVENT_TYPE — the instruction that creates it could appear anywhere. One possibility,
as shown, is to put it in a “once function” defining mouse_click. A once function is
executed the first time it’s called, whenever that is, the same result being returned by
every subsequent call. This language mechanism addresses the issue of providing
initialization operations without breaking the decentralized architecture of well-
designed O-O systems. Here it creates the mouse click object when first needed, and
retains it for the rest of the execution.

The scheme as described covers global events: the subscriber call /1/ subscribes
your_procedure to any mouse click anywhere. Instead we may want to let subscribers
select events in a given graphical element such as a button. We simply turn mouse_click
into a feature of class BUTTON, so that subscriber calls will be

perhaps clearer as your_button_click.subscribe (agent your_procedure), retaining the
original form /1/ with your_button_click set to your_button.mouse_click.

What we have just seen defines, for the majority of applications, the user’s manual
of the Event Library:

• On the publisher side, declare and create the event type object; trigger a
corresponding event, when desired, by calling publish.

• On the subscriber side, call subscribe with an agent for the desired routine.

Only one class is involved, EVENT_TYPE; there is no need to define specific classes
for each event type (mouse click, mouse movement etc.) as, for example, in the .NET
model studied below — although you can do so if you wish by introducing descendants
of EVENT_TYPE that specialize the event data. There is also no need for the publishers
or the subscribers to inherit from any particular classes, such as the abstract classes
SUBJECT and OBSERVER of the Observer Pattern, also studied below.

Section 7 will describe some of the more specialized features of the library. As is
often the case when the basic design of a library uses a small number of abstractions
tailored to the problem, it is possible to add special-purpose facilities without disturbing
users who need only the basics.

To understand the rationale behind this design, we will now step back to examine the
general issues of event-driven computation, and some previously proposed solutions.

mouse_click.subscribe (agent your_procedure) /5/your_button.

The Power of Abstraction, Reuse, and Simplicity 239
3 Event-Driven Design

Event-driven design offers interesting architectural solutions when execution must
respond to events whose order is hard to predict in the program text.

Putting the User in Control

GUI and WUI (Web User Interfaces) provide the most immediately visible illustration
of why an event-driven scheme may be useful.

Consider this piece of WUI built with ASP.NET (the Web library for .NET):

Figure 1: A Web User Interface under ASP.NET

The interface that we show to our user includes a text field and a button. There might
be many more such “controls” (the Windows term for graphical elements, called
“widgets” in the X Window system). We expect that the user will perform some input
action, and we want to process it appropriately in our program. The action might be
typing characters into the text field, clicking the button, or any other, such as menu
selection, using controls not shown above.

But which of these will happen first? Indeed, will any happen at all?
We don’t know.
In the early days, the problem didn’t exist. Programs would just read user input,

using for example a loop to consume successive lines, as in

This was good enough when we had a single sequential input medium and the program
was in charge of deciding when, where and how to enjoin the user to enter some input,
for example on a teletype console.

from
read_line
count := 0

until
last_line.is_empty

loop
count := count + 1

-- Store last_line at position count in Result:
Result.put (last_line, count)
read_line

end

240 Bertrand Meyer
With current input techniques, a user sitting at a graphics workstation is free at
any time to go to the text field, the button or any other control. He, not the program,
is in control.

To support such modes of interaction, event-driven programming replaces a control
structure by a data structure. A control structure means that the program decides when
to execute things. Instead we want to let the user decide what to do next. We’ll call these
user decisions events. The system will use a data structure — let’s call it the event-
action table — to record in advance the actions that it has to execute when events of
specific types occur. After that it relies on the event handling machinery to watch for
events of recognized types and, when detecting one of them, trigger the corresponding
action as found in the event-action table.

A role remains for control structures: each operation, while it executes, defines the scheduling of

its own operations, using a control structure that can be arbitrarily complex. But when the operation

terminates the event-driven scheme takes over again.

Overall, it’s a major change. The program has relinquished direct control of global
execution scheduling to a generic table-driven mechanism. For best results that
mechanism should be a library, for example a GUI or WUI library, or — more generic
yet — the Event Library, not tied to any specific application area.

This yields a clear division of tasks between such a general-purpose library and any
particular application. The application is in charge of recording event-action
associations; when the true show begins, the library is in charge of catching and
processing events.

Application authors have their say, since what gets executed in the end are the
actions — taken from the program — that they have planted in the table. But they do
not directly control the scheduling of steps.

The library owns the event-action table, so that application programmers should not
need to know anything about its implementation. With the Event Library they simply
record event-action associations, through calls to subscribe; the library takes care of
maintaining these associations in the appropriate data structure. We’ll see that in some
other frameworks, such as .NET, programmers work at a lower level of abstraction,
closer to the internal representation of the event-action table.

The Power of Abstraction, Reuse, and Simplicity 241
Publishers and Subscribers

The overall scheme of programming in an event-driven style is this:

1 • Some part of the system is able to trigger events. We call it a publisher.

2 • Some part of the system wants to react to these events. We call it a subscriber.
(“Observer” would also do, as in the “Observer Pattern”, where the publisher is
called a “subject”.)

3 • The subscriber specifies actions that it wants to execute in connection with events
of specified types. We’ll say that the subscriber registers an action for an event
type. The effect of registration is to record an association between an event type and
a subscriber into the event-action table. Registrations usually happen during
initialization, but subscribers can continue to register, or de-register, at any time of
the execution; that’s one of the advantages of using a table-driven scheme, since the
table can be modified at any time.

4 • At any time during execution proper, after initialization, the publisher can trigger
an event. This will cause execution of the routines that any registered subscribers
have associated with the event’s type.

For this discussion we must be careful about distinguishing between events and event types. The
notion of mouse click is an event type; a user clicking his mouse will cause an event. Although the
data structure is called the event-action table for brevity, its definition clearly specified that it
records information about event types. Publishers, on the other hand, trigger events, each of a
certain type.

Healthy skepticism should lead us to ask why we need all this. Instead of an indirect
relationship through an event-action table, couldn’t we just skip step 3 and let, in step
4, the subscriber call the publisher, or conversely?

A subscriber can indeed call its publishers directly through a generalization of the
earlier sequential reading scheme: it will listen to events of several possible types rather
than just one, pick up the first one that happens, select the appropriate action, and repeat.
This has, however, two limitations. One is that you need to put the subscriber in charge
of the application’s control structure; that is not always appropriate. Another, more
serious, is that it is not easy with this scheme to ensure that events raised by a publisher
trigger actions in several subscribers.

Alternatively, the publisher could call the subscriber’s routine directly

using the standard object-oriented call mechanism. This works as long as the whole
scheme is static: the publishers know their subscribers, and this information is defined
once and for all so that publishers’ code can include calls such as the above for each
subscriber to each event type.

The limitations of both solutions indicate where event-driven programming
becomes interesting. We may picture the general situation as one of those quantum
physics experiments that bombard, with electrons or other projectiles, some screen with
a little hole:

my_subscriber.routine (my_arguments)

242 Bertrand Meyer
Figure 2: Triggering and handling events

The event-driven scheme decouples the subscribers from the publishers and may be
attractive if one or more of the following conditions hold:

• Publishers can’t be required to know who the subscribers are: they trigger events,
but do not know who is going to process those events. This is typically the case if
the publisher is a GUI or WUI library: the routines of the library know how to detect
a user event such as a mouse click, but they should not have to know about any
particular application that reacts to these events, or how it reacts. To an application,
a button click may signal a request to start a compilation, run the payroll, or shut
down the factory. To the GUI library, a click is just a click.

• Subscribers may register and deregister while the application is running: this
generalizes the previous case by making the set of subscribers not only unknown to
publishers but also variable during execution.

• Any event triggered by one publisher may be consumed by several subscribers. For
example the event is the change of a certain value, say a temperature in a factory
control system; then the change must be reflected in many different places that
“observe” it, for example an alphanumeric display, a graphical display, and a
database that records all historical values. Without an event mechanism the
publisher would have to call routines in every one of these subscribers, causing too
much coupling between different parts of the system. This would mean, in fact, that
the publisher must know about all its subscribers, so this case also implies the first
one.

• The subscribers shouldn’t need to know about the publishers: this is less commonly
required, but leads to the same conclusions.

In all such cases the event-driven style allows you to build a more flexible architecture
by keeping publishers and subscribers at bay.

EVENTS

ROUTINE

ROUTINE

ROUTINE

PUBLISHERS SUBSCRIBERS
trigger events handle events

The Power of Abstraction, Reuse, and Simplicity 243
There is a downside: if you are trying to follow the exact sequence of run-time
operations — for example when debugging an application — you may find the task
harder, precisely because of the indirection. A plain call x.f (…) tells you exactly what
happens: after the preceding instruction, control transfers to f, until f’s execution
terminates, and then comes back to the instruction following the call. With an
instruction that triggers an event, all you know is that some subscribers may have
registered some routines to handle events of that kind, and if so they will execute these
routines. But you don’t immediately know who they are; indeed they may vary from
execution to execution. So it is more delicate to track what’s going on. One should
weigh this objection — which some authors have proposed to address by replacing
event-driven design with techniques inspired by parallel programming [18] — before
deciding to embark on an event-driven architecture.

Controls

In cases such as GUI and WUI programming, the event-action table will generally
contain not mere pairs — actions coupled with event types — but triples: we don’t just
specify “for events of this type, execute that action”, but “for events of this type
occurring in this control, execute that action”, as in:
• “If the user clicks the EXIT button, exit the application”.
• “If the mouse enters this window, change the border color to red ”.
• “If this sensor reports a temperature above 40o C, ring the alarm”.
In the first case the control is a button and the event type is “mouse click”; in the second,
they are a window and “mouse enter”; in the third, a temperature sensor and a
measurement report.

A “control” is usually just a user interface element. As the last example indicates,
the concept also applies outside of the UI world.

A common library interface to let subscribers deposit triples into the event-action
table (we’ll continue to call it that way) uses calls of the conceptual form

and leaves the rest to the underlying GUI or WUI machinery. That’s the essence of
event-driven programming as supported by many modern graphics toolkits, from
Smalltalk to EiffelVision to the Windows graphical API and the Web Forms of .NET.
The most common variant is actually

which adds some_action to the actions associated with some_event_type and
some_control, so that you can specify executing several actions for a given event-
control pair. We’ll retain the first form /6/ since it corresponds to the most frequent need;
it includes the second one as a special case if we assume a provision for composite
actions.

The Event Library seemed at first not to support controls since the basic mechanism
mouse_click.subscribe (...) /1/ did not make them explicit; but we saw that it’s just a matter of
making an event type belong to a control object, then use your_button.mouse_click.subscribe (...)
/5/, which directly provides the general scheme /6/.

record_association (some_control, some_event_type, some_action) /6/

add_association (some_control, some_event_type, some_action)

244 Bertrand Meyer
Actions as Objects

In a classical O-O language, we have a problem. Even though we don’t need to
manipulate the event-action table directly, we know it will exist somewhere, managed
by a graphical library, and that it’s a data structure — a structure made of objects, or
(more realistically) references to objects. In each entry we expect to find a triple
containing references to:

• One control.

• One event type.

• One action — or, as a result of the last observation, one list of actions.

Are these things objects? Controls, definitely. Any graphical O-O library provides
classes such as WINDOW and BUTTON whose instances are objects representing
controls — windows, buttons and so on. Event types too can be defined as objects in an
O-O language; we saw how the Event Library does it. But what about actions?

Actions are given by our program’s code. In an O-O program, the natural unit for
an action is a routine of a class. But a routine is not an object.

This won’t be too much of a concern for a C++ programmer, who may just use a
function pointer: an integer denoting the address where a routine’s code is stored,
providing a way to execute the routine. But that’s not type-safe, since one can do too
many other things with the pointer. As a consequence, O-O languages intent on
providing the benefits of static typing do not provide function pointers.

The notion of agent used in the Event Library is an object-oriented mechanism that
addresses the issue within the constraints of type checking. An Eiffel agent is an object
that represents a routine ready to be called.

Some of its operands (target and arguments) can be fixed, or closed, at the time the agent is defined;
the others, called open operands and expressed — when needed — as question marks ? in earlier
examples, must be provided at the time of each call. In agent some_routine all arguments are open; in
agent some_routine (1, ?, ?, "SOME TEXT") the first and last arguments are closed, the others open.
You can also make the target open, as in agent {TARGET_TYPE}.some_routine (1, ?, ?, "SOME TEXT").

Some languages provide comparable mechanisms under the name “block” or “closure”.
The “delegates” of .NET and C# are a limited form of agent where arguments are
always open and the target is always closed.

Java doesn’t have such notion, meaning that to represent an action as object you
have to create a little class that includes the corresponding routine. The availability of
“nested classes” limits the amount of code that must be written for such classes, but the
solution lacks extendibility and scalability.

The Power of Abstraction, Reuse, and Simplicity 245
Avoiding Glue

When building an event-driven application, you will need at some stage to connect the
subscribers with the publishers. One of the guiding concerns — reflected in the design
of the Event Library — must be to keep such connections as light as possible.

This goal is particularly relevant to the common case of restructuring an existing
application to give it an event-driven architecture. The application may provide many
functions, perhaps developed over a long period and embodying a sophisticated
“business model” for a certain domain. The purpose of going event-driven might be to
make these functions available through a graphical or Web interface, taking advantage
of an event-driven GUI or WUI library. In this case both the business model and the
library predate the new architecture.

Figure 3: Connecting publishers and subscribers

Common names for the three parts appearing on the figure follow from the Smalltalk
“MVC” scheme that inspired many event-driven GUI designs: Model for the existing
application logic, View for the user interface, and Controller for the connection between
the two.

With such terminology the above goal is easily stated: we seek to get rid of the
Controller part, or reduce it to the conceptually inevitable minimum.

The Event Library offers two complementary styles to achieve this. In the first
style, we let the application consume events by becoming a subscriber through calls of
the form seen earlier

explicitly making the consumer application event-driven.
In many cases this is appropriate. But what if you want to reuse both the event

producer and the event consumer (the application) exactly as they are? The Event
Library and the agent mechanism allow this too. You’ll leave both the producer and the
consuming application alone, connecting application routines to producer events
through a simple intermediary. Just add an explicit target to the agent expression:
instead of agent some_routine as used above, which denotes the routine ready to be
applied to the current object, you may select any other object as target of the future call:

some_event_type.subscribe (agent some_routine) /7/

some_event_type.subscribe (agent some_routine) /8/

Business model (application logic)

Event producer
(e.g. GUI)

“Glue code”

other_object.

246 Bertrand Meyer
By using either form, you can select the style that you prefer:

Figure 4: Two connection styles

Either may be appropriate depending on the context:

• Scheme /7/ adds event-driven scheduling to an existing application by plugging in
routines of that application directly.

• Scheme /8/ lets you reuse both pre-existing event producers (publishers) and pre-
existing event consumers (subscribers), unchanged. By definition, you’ll need
some glue code then. Scheme /8/ reduces it to the minimum possible: calls to
subscribe using agents with explicit targets. One of the benefits of this style is that
it lets you provide several interfaces to a given application, even within a single
program.

To reduce the need for glue code even further, you may take advantage of the agent
mechanism’s support for combining closed and open arguments. Assume that an
existing meteorological application includes a routine

You build a graphical interface that shows a map with many cities, and want to ensure
that once a user has chosen a starting and ending dates Initial and Final moving the
mouse across the map will at each step display the rainfall at the corresponding map
position. This means that when calling the procedure show_rainfall for each
mouse_move event we should treat its first two arguments differently from the other
two:

• The application sets start and end from Initial and Final.

• The GUI library mechanism will fill in a fresh x and y — event data — each time
it triggers the event.

show_rainfall (x, y: INTEGER; start, end : DATE): REAL

-- Display amount of rain recorded between start and end at coords x, y.

Business model

Event producer

Direct subscription
(Scheme /7/)

(Scheme /8/)

Connection
object

The Power of Abstraction, Reuse, and Simplicity 247
To achieve this effect, simply subscribe an agent that uses open arguments for the first
set and closed arguments for the second set, as in /2/:

(This could also use an explicit target as in /8/; the target could be closed or itself open.)
The generality of this mechanism lets you tweak an existing routine to fit a new context:
the subscriber freezes certain operands at subscription time, and leaves the others for
the publisher to provide, as event data, at the time of event publication.

The benefit here is that the agent lets us reuse an existing four-argument routine,
show_rainfall, at a place were we need a routine with only two arguments.

With other mechanisms such as the ones studied later in this chapter we would have
to use two variables and write an explicit wrapper routine:

For a few routines and event types this approach is acceptable. When scaled up to real
applications, it generates noise code that pollutes the architecture, making the program
harder to understand, maintain and extend.

Agents and the Event Library help avoid these pitfalls and build stable solutions on
both the publisher and subscriber sides, with minimum connection code between the two.

4 The Observer Pattern

To provide more perspective on event-driven architectures and the design of the Event
Library, this section and the next two examine other approaches.

First, the “Observer Pattern”. As presented in the book Design Patterns [6], it was
one of the first descriptions of a general event-driven scheme.

The following figure illustrates the general structure of that solution. For ease of
comparison with the rest of this article the names Observer and Subject used in the
original have been changed to SUBSCRIBER and PUBLISHER. APPCLASS and
LIBCLASS denote typical examples of effective (concrete) classes, one describing a
typical subscriber and the other a typical publisher.

mouse_move.subscribe (agent show_rainfall () /9/

Initial, Final: DATE
-- Start and end of rainfall data collection period

show_rainfall_at_initial_and_final (x, y: INTEGER) is /10/
-- Display amount of rain recorded at x, y between Initial and Final.

do
show_rainfall (Initial, Final, x, y)

end

?, ?, Initial, Final

248 Bertrand Meyer
Figure 5: Observer Pattern architecture

Surprisingly, in the basic design it’s the publishers that know about their observers, as
shown by the direction of the client links on the figure: a publisher gets a new observer
through the procedure attach and can remove it through detach. There is no equivalent
to register on the subscriber side; in the primary example illustrating the pattern [6] —
a clock that publishes ticks and two subscribers, both of them clock displays, one analog
and the other digital — the subscriber objects get created with respect to a publisher,
through a constructor (creation procedure) of the form

(where Current is the current object (also called self, this, Me in various O-O
languages), so that the digital clock display gets created as

(in C++/Java/C# style: digitalDisplay = new DigitalDisplay (clock)).
An immediately visible limitation of the pattern is that it lacks a general solution

for the publisher to pass information to the subscriber. That doesn’t matter if all that
characterizes an event is that it occurs. But many events will also need, as we have seen,
to transmit event data, such as the mouse position for a mouse click. The Patterns book
notes this issue (([6], page 298) and mentions two models for passing information,
“push” and “pull”, each implying even more coupling between the publisher and the
subscriber. Each requires extra coding on both sides, taking into account the specific
type of information being passed.

make (p: PUBLISHER) is

-- Initialize this object as a subscriber to subject.
do

p.attach (Current)
end

create digital_display.make (clock)

SUBSCRIBER*

APPCLASS

attach

Deferred (abstract) class

Effective (concrete) class

Inherits
from

*

PUBLISHER*

LIBCLASS

detach

Client

update*

update+

f + Effective
(implemented)
feature

f * Deferred feature

(uses)

The Power of Abstraction, Reuse, and Simplicity 249
No reusable solution seems possible here — short of an explosion of the number of
classes, as will be seen in the .NET model’s approach in the next section — without both
genericity and a tuple type mechanism as used by the Event Library. The Event Library
represents event data through the generic parameter to EVENT_TYPE: when you
introduce a new event type that generates, say, three pieces of information of types A, B
and C, you will declare it of type EVENT_TYPE [TUPLE [A, B, C]]. Then the routine that
you subscribe must take arguments of types A, B, C. This takes care of the connection,
but is not possible in the C++/Java framework, used in most published discussions of
patterns with the exception of the work of Jézéquel, Train and Mingins [8].

The Observer Pattern design raises two other immediate objections:

• The creation procedure — make or the corresponding C++ constructor — must be
written anew for each subscriber class, leading to useless repetition of code, the
reverse of object technology principles.

• It’s too restrictive to force subscribers to register themselves with publishers at
creation time, not only because subscriber classes may already exist and have
other creation requirements, but also because the subscribers should be able to
subscribe later.

We can alleviate both criticisms, at least in part, by adding to the class SUBSCRIBER a
procedure subscribe which, on the subscriber side, mirrors what attach provides on the
publisher side, and uses attach in its implementation:

This extension explicitly makes subscribers clients of their publishers. But other
problems remain.

One is that a publisher sends notification of an event by calling a procedure update
in each subscriber. The procedure is declared as deferred (abstract) in class SUBSCRIBER
and effected (implemented) in each specific observer class such as APPCLASS to describe
the subscriber’s specific reaction to the event. Each publisher keeps a list of its subscribers,
updated by attach and detach; when it triggers an event, it traverses this list and calls
update on each element in turn, relying on dynamic binding to ensure that each subscriber
uses its own version. But this means that altogether a subscriber may register only one
action! As a consequence, it may subscribe to only one type of event, except for the trivial
case of handling several event types in the same way. This is severely restrictive. An
application component should be able to register various operations to various publishers.
The Event Library places no limit, for a subscriber, on the number of calls of the form
some_control.some_event_type.subscribe (agent some_routine).

subscribe (p: PUBLISHER) is

-- Attach current subscriber to p.
do

p.attach (Current)
end

250 Bertrand Meyer
The discussion in the Patterns book acknowledges the issue and proposes a solution
([6], page 297): add one argument to update to represent the publisher, which will pass
Current when calling update to let the subscriber discriminate between publishers. But
this is not satisfactory. Since there is still just one update procedure in each subscriber,
that procedure will have to know about all relevant publishers and discriminate between
them — a step back to the kind of know-them-all, consider-each-case-in-turn decision
schemes from which object technology tries to free software architectures. Worse, this
means a new form for procedure update, with one extra argument, invalidating the
preceding class design for PUBLISHER and implying that we can’t have a single
reusable class for this concept. Reusability concerns yield to general guidelines that
have to be programmed again, in subtly different ways, for each new application.

More generally the need for the subscribers to know the publishers is detrimental
to the flexibility of the architecture. The direction of this knowledge relation is not
completely obvious, since the last figure, drawn before we added subscribe to the
pattern, only showed (like the corresponding UML diagram in the original Observer
Pattern presentation) a client link from the publisher to the subscriber. That link indicates
that each publisher object keeps a list of its subscribers. It has no harmful effect on the
architecture since the text of publisher classes will, properly, not list subscribers.

Subscriber classes, however, do mention the publisher explicitly. In the pattern’s
original version, that’s because the constructor of a subscriber uses the publisher as
argument; our addition of subscribe as an explicit procedure made this requirement
clearer. It causes undesirable coupling between subscribers and publishers. Subscribers
shouldn’t need to know which part of an application or library triggers certain events.

Yet another consequence is that the Observer Pattern’s design doesn’t cover the
case of a single event type that any number of publishers may trigger. You subscribe to
one event type from one publisher, which the subscriber’s text must name explicitly.

It is also not clear with the Observer Pattern how we could — as discussed under
“Avoiding glue” in section 3 — connect without glue code an existing business model
and an existing event-driven interface library.

The Event Library overcomes all these limitations: publishers publish events of a
certain event type; subscribers subscribe to such event types, not to specific publishers.
The two sides are decoupled. All the specific schemes discussed in the Observer Pattern
presentation are still possible as special cases. For all this extra generality, the interface
is considerably simpler; it involves no abstract class and no inheritance relationship; it
places no particular requirement on either subscriber or publisher classes, which can be
arbitrary application or library elements. All a class must do to become a publisher or
subscriber is to create objects of the appropriate type and call the desired features on
them. In addition the solution is based on a reusable class, not on a design pattern,
meaning that it does not require programmers to code a certain scheme from a textbook
and change some aspects (such as the arguments to update) for each new application;
instead they just rely on ready-to-use components.

The Power of Abstraction, Reuse, and Simplicity 251
It is legitimate to ask what caused the design of the Observer Pattern to miss the
solution described here in favor of one that appears to be harder to learn, harder to use,
less powerful, less reusable, and less general. Some of the reasons seem clear:

• Although solutions had been published before, the Design Patterns book was one
of the first times the problem was approached in its generality, so it’s not surprising
that it didn’t produce the last word. The simplest solution doesn’t always come first,
and it is easier to improve an original idea than to come up with it in the first place.
This observation is also an opportunity to note that this article’s technical criticism
of the Observer Pattern and other existing designs only make sense when
accompanied by the obvious acknowledgment of the pioneering insights of the
patterns work and other more recent developments.

• The simpler and more advanced solution is only possible, as we have already noted
in the case of event data representation, because of advanced language features:
genericity, tuples, agents. The work on design patterns has been constrained by its
close connection with C++ and then Java, both of which lack some of these features
while sometimes adding their own obstacles. Take this comment in the presentation
of the Observer Pattern: “Deleting a [publisher object] should not produce dangling
references in its [subscribers]” ([6], page 297), followed by suggestions on how to
avoid this pitfall. This reflects a problem of C++ (lack of standard garbage
collection support) and has an adverse effect on the pattern.

• The Patterns work endeavors to teach programmers useful schemes. This is far
from the goal of object technology, the Eiffel method in particular, which seeks to
build reusable components so that programmers do not have to repeat a pattern that
has been identified as useful.

We may also see another reason as possibly even more fundamental. The Observer
Pattern design uses the wrong abstractions and in the process misses the right
abstraction. Talk of right and wrong may sound arrogant, but seems justified here in
light of the results. The abstractions “Subscriber” and “Publisher” (Subject and
Observer in the original), although attractive at first, turn out to be too low-level, and
force application designers to make relevant classes inherit from either SUBSCRIBER
or PUBLISHER, hampering the reuse of existing software elements in new subscribing
or publishing roles. Choosing instead Event type as the key abstraction — the only one
introduced so far for the Event Library — leads to a completely different design.

With all the attraction of new development tools, concepts and buzzwords, it is easy
to forget that the key to good software, at least in an object-oriented style (but is there
really any other path?), is a task that requires insight and sweat: the discovery of good
abstractions. The best hope for dramatically decreasing the difficulty and cost of
software development is to capture enough of these abstractions in reusable
components. Design patterns are a useful and sometimes required first step of this
effort, but are not sufficient since they still require each developer to learn the patterns
and reimplement them. Once we have spotted a promising pattern, we shouldn’t stop,
but continue to refine the pattern until we are able to turn it into a library ready for off-
the-shelf reuse.

252 Bertrand Meyer
5 The .NET Event-Delegate Model

Probably inspired by the Observer Pattern but very different in its details, an interesting
recent development for the spread of event-driven design is the Microsoft .NET object
model, which natively supports two concepts directly related to event-driven design:
delegates, a way to encapsulate routines into objects, and event types. The presence of
these mechanisms is one of the principal differences between the .NET model and its
most direct predecessor, the Java language; delegates, introduced in Microsoft’s Visual
J++ product, were at the center of Sun’s criticism of that product [19].

We will examine how events and delegates address the needs of event-driven design.

The technology under discussion is not a programming language but the “.NET
object model” providing a common substrate for many different languages. (Another
article [14] discusses how the common object model and the programming languages
manage to support different languages with their own diverse object models.)

The .NET delegate-event model is quite complex, as we found out in surveying it
for a book on .NET [15]. The present description is partial; for a complete picture see
the book.

C# and Visual Basic .NET, the two main languages directly provided by
Microsoft to program .NET, have different syntax generally covering similar
semantics — the semantics of the .NET object model. Event-delegate programming
is one of the areas where the two languages show some significant differences; we’ll
stay closer to the C# variant.

The Basis for Delegates

The .NET documentation presents delegates as a type-safe alternative to function
pointers. More generally, a delegate is an object defined from a routine; the principal
operation applicable to such an object is one that calls the routine, with arguments
provided for the occasion. That operation — corresponding to the feature call applicable
to Eiffel agents — is called DynamicInvoke in the basic .NET object model.

The notion is easy to express in terms of the more general agent concept introduced
earlier. Assuming, in a class C, a routine of the form

with some argument signature, chosen here — just as an example — to include two
argument types A and B, .NET delegates correspond to agents of the form

or

r (a1: A; b1: B)

agent r /11/

agent x.r /12/

The Power of Abstraction, Reuse, and Simplicity 253
for x of type C. In either case, the delegate denotes a wrapper object for r: an object
representing r ready to be called with the appropriate arguments. You would write such
a call (still in Eiffel syntax for the moment) as

where your_delegate is either of the above agents. /13/ has exactly the same effect as a
direct call to r:

and hence is not interesting if it’s next to the definition of your_delegate. The interest
comes if the unit that defines your_delegate passes it to other modules, which will then
execute /13/ when they feel it’s appropriate, without knowing the particular routine r
that the delegate represents.

The uncoupling will often go further, in line with the earlier discussion: the defining
unit inserts your_delegate into an event-action table; the executing unit retrieves it from
there, usually not knowing who deposited it, and executes call — DynamicInvoke in
.NET — on it.

So far things are very simple. A delegate is like a restricted form of agent with all
arguments open. There is no way to specify some arguments as “closed” by setting them
at agent definition time, and leave some others open for filling in at agent call time, as
in our earlier example mouse_move.subscribe (agent show_rainfall (?, ?, Initial, Final)
/9/. To achieve that effect you would have to write a special wrapper routine that
includes the open arguments only and fills in the closed arguments to call the original,
in the style of show_rainfall_at_initial_and_final /10/.

The only difference between the delegate form without an explicit target, /11/, and
the form with x as a target, /12/, is that the first is only valid in the class C that defines
r and will use the current object as target of future calls, whereas the second, valid
anywhere, uses x as target. The direct call equivalent is /14/ in the first case and /15/ in
the second. There is no way with delegates to keep the target open, as in the Eiffel
notation agent {TARGET_TYPE}.r; to achieve such an effect you have again to write a
special wrapper routine, this time with an extra argument representing the target.

In the examples so far the underlying routine r was a procedure, but the same
mechanisms apply to a delegate built from a function. Then calling the delegate will
return a result, as would a direct call to r.

So the basic idea is easy to explain: a delegate is an object representing a routine
ready to be called on a target set at the time of the delegate’s definition and arguments
set at the time of the call.

your_delegate.call ([some_A_value, some_B_value]) /13/

r (some_A_value, some_B_value) /14/
x.r (some_A_value, some_B_value) /15/

254 Bertrand Meyer
The practical setup is more complicated. A delegate in .NET is an instance of a
class that must be a descendant of a library class, Delegate, or its heir MulticastDelegate,
which introduces the feature DynamicInvoke. We won’t go into the details — see [15]
— because these classes and features are not for direct use. They have a special status
in the .NET runtime; programmers may not write classes that inherit from Delegate. It’s
a kind of magic class reserved for use by compiler writers so that they can provide the
corresponding mechanisms as language constructs. In Eiffel, the agent mechanism (not
.NET-specific) readily plays that role. C# with the keyword delegate and Visual Basic
.NET with Delegate provide constructs closely mapped to the semantics of the
underlying .NET classes.

Here is how it works in C#. You can’t directly define the equivalent of agent r but
must first define the corresponding delegate type:

In spite of what the keyword delegate suggests, the declaration introduces a delegate
type, not a delegate.

The .NET documentation cheerfully mixes the two throughout, stating in places [16] that a
delegate “is a data structure that refers to a static method or to a class instance and an instance
method of that class”, which defines a delegate as an object, and in others [17] that “Delegates are
a reference type that refers to a Shared method of a type or to an instance method of an object”
which, even understood as “A delegate is…”, says that a delegate is a type. We’ll stick to the
simpler definition, that a delegate wraps a routine, and talk of delegate type for the second notion.

A delegate type declaration resembles a routine definition — listing a return type, here
void, and argument types — with the extra keyword delegate.

Armed with this definition you can, from a routine r of a matching signature, define
an actual delegate that wraps r:

The argument we pass to the constructor is the name of a routine, r. This particular
instruction is type-wise valid since the signatures declared for the delegate and the
routine match. Otherwise it would be rejected. A delegate constructor as used here is
the only context in which C#, and more generally the .NET model, allow the use of a
routine as argument to a call.

Instead of new AB_delegate (r) you can choose a specific call target x by writing
new AB_delegate (r); or, if r is a static routine of class C, you can use new
AB_delegate (r). (A static routine in C++ and successors is an operation that doesn’t
take a target.)

All we have achieved so far is the equivalent of defining the agent expression agent
r or agent x.r. Because of typing constraints this requires defining a specific delegate
type and explicitly creating the corresponding objects. The noise is due to the desire to
maintain type safety in a framework that doesn’t support genericity: you must define a
delegate type for every single routine signature used in event handling.

public void AB_delegate (A x, B y); /16/

AB_delegate = new AB_delegate (); /17/

delegate

r_delegate r

x.
C.

The Power of Abstraction, Reuse, and Simplicity 255
Equipped with a delegate, you’ll want to call the associated routine (see /13/). This is
achieved, in C#, through an instruction that has the same syntactic form as a routine call:

Visual Basic .NET offers corresponding facilities. To define a delegate type as in /16/
you will write:

To create a delegate of that type and associate it with a routine as in /17/:

The operator AddressOf is required since — unlike in C# — you can’t directly use the
routine name as argument.

Events

Along with delegates, .NET offers a notion of event. Unlike the Event Library’s
approach, the model doesn’t use ordinary objects for that purpose, but a special built-in
concept of “event”. It’s a primitive of the object model, supported by language
keywords: event in C#, Event in Visual Basic .NET, which you may use to declare
special features (members) in a class.

What such a declaration introduces is actually not an event but an event type. Here
too the .NET documentation doesn’t try very hard to distinguish between types and
instances, but for this discussion we have to be careful. When a .NET class Button in a
GUI or WUI library declares a feature Click as event or Event it’s because the feature
represents the event type “mouse click”, not a case of a user clicking a particular button.

In the basic event handling scheme, the declaration of any event type specifies an
associated delegate type. That’s how .NET enforces type checking for event handling.
It all comes together in a type-safe way:

1 • A delegate represents a routine.

2 • That routine has a certain signature (number and types of arguments, and result if a
function).

3 • That signature determines a delegate type.

4 • To define an event type, you associate it with such a delegate type.

5 • Given the event type, any software element may trigger a corresponding event,
passing to it a set of “event arguments” which must match the signature of the
delegate. This matching is statically checkable; compilers for statically typed
languages, and otherwise the type verifier of the .NET runtime, will reject the code
if there is a discrepancy.

AB_delegate (some_A_value, some_B_value); /18/

Delegate Sub AB_delegate (x As A, y As B);

Dim r_delegate As New AB_delegate (AddressOf r);

256 Bertrand Meyer
For step 4, Visual Basic .NET lets you specify a routine signature without explicitly
introducing a delegate type as you must do in C#. Internally the VB.NET compiler will
generate a delegate type anyway. We’ll restrict ourselves to the C# style, also possible
in VB.NET. You can declare an event type as

where the last item is what’s being declared; the delegate type that precedes, here
AB_delegate, is an extra qualifier like public and event.

What this defines is a new event type such that triggering an event of type
Your_event_type will produce event data of a type compatible with the signature of
AB_delegate; in this example, the event will produce a value of type A and a value of
type B. As another example you might declare

to declare an event type Click whose triggering will produce two integers corresponding
to the mouse coordinates. This assumes (compare /16/):

Note again that a particular mouse click is an event, but Click itself denotes the general
notion of a user clicking the mouse.

Such event type definitions are the counterpart of the declarations of instances of
EVENT_TYPE in the Event Library. Here, however, we have to introduce a new type
declaration, referring to a delegate type, in each case. The reason is clear: the .NET model
has neither tuples nor genericity. In the Event Library we could declare for example

always using the same generic base class, EVENT_TYPE, and varying the generic
parameter as needed. The equivalent of Your_event_type /19/ would use
EVENT_TYPE [TUPLE [A, B]]. In .NET, we have to introduce a new delegate type each
time, and refer to it in declaring the event type.

Connecting Delegates to Event Types

We can now declare a delegate type corresponding to a certain routine signature;
declare and create a delegate of that type, associated with a particular routine of
matching signature; and define an event type that will generate event data also
matching the delegate’s type, so that the data can be processed by the routine. We
need a facility enabling a subscriber to connect a certain delegate with a certain event
type for a certain control.

public event AB_delegate ; /19/

public event Two_coordinate_delegate ;

public void delegate Two_coordinate_delegate (int x, int y); /20/

mouse_click: EVENT_TYPE [TUPLE [INTEGER, INTEGER]]

Your_event_type

Click

The Power of Abstraction, Reuse, and Simplicity 257
We know the general idea: record a triple — control, event type, delegate — into
an event-action table. In the .NET model and especially C#, however, the mechanism is
expressed at a lower level. You will write

for example

where the highlighted += operator means “append to the end of a list”. This appends the
delegate to the list associated with the target and the event type. Such a list
automatically exists whenever some_target is of a type that, among its features, has an
event type Some_event_type. Then if a publisher triggers an event, the underlying
.NET mechanisms will traverse all the lists associated with the event’s type, and execute
their delegates in sequence.

Collectively, the set of all such lists constitutes the equivalent of the event-action
table. The subscriber, however, will have to know about the individual lists and manage
them individually. The only operations permitted are += and its inverse – = which
removes a delegate.

The introductory discussion of event-driven design pointed out that in the general
case each association we record is not just a pair (event type, action) but a triple,
involving a control. The .NET model’s basic association mechanism
this_control.this_event_type += this_action directly enforces this style. But then it
doesn’t cover the simpler case of subscribing to events that may occur anywhere,
independent of any control. The Event Library gave us that flexibility: since an event
type is just an object, you may create it at the level of the application /1/, or local to a
particular control object such as a button /5/. You can achieve the former effect in .NET
too, but this will require defining and creating a pseudo-control object and attach the
event type to it, another source of extra code.

Raising Events

We haven’t yet seen the publisher side. To raise an event of a type such as
Your_event_type or Click you will, in C#, use the event type name as if it were a
procedure name, passing the event data as arguments. Unfortunately, it is not enough to
write Click (x_coordinate, y_coordinate) or, in the other example, Your_event_type
(some_A_value, some_B_value). The proper idiom is

The check for null is compulsory but can only be justified in reference to
implementation internals. The name of the event type, here Click, denotes an internal
list of delegates, to which you don’t have access. (You can apply += and – =, but not
to the whole list, only to the list for one control, such as your_button.Click.) If it’s null
because no delegate has been registered, trying to raise the event would cause an
incorrect attempt to access a non-existent data structure.

some_target.Some_event_type some_delegate;

your_button.Click Two_coordinate_delegate;

if (Click != null)
{Click (this, x_mouse_coordinate, y_mouse_coordinate);} /21/

+=

+=

258 Bertrand Meyer
It is incomprehensible that the mechanism puts the responsibility for this check to
the publisher, for every triggering of any event. In the design of an API, one should
avoid requiring client programmers to include an operation that’s tedious to code and
easy to forget, raising the risk that applications will experience intermittent failures.
Probably because of that risk, the documentation for .NET recommends never writing
the above code /21/ to raise an event directly, but encapsulating it instead in a routine

then calling that routine to publish the event. The documentation actually says that you
“must” use this style, including naming the routine OnEventType, although in reality it’s
only a style recommendation. The strength of the advice indicates, however, the risks
of not doing things right.

In comparing the .NET approach with the Event Library, we should also note that .NET’s triggering
of events requires some underlying magic. In the Event Library, the consequence of
mouse_click.publish (x, y) is to execute the procedure publish of class EVENT_TYPE. That
procedure looks up the event-action table to find all agents that have been associated with the
mouse_click event type, an ordinary object. The table implementation is a plain HASH_TABLE from
the standard EiffelBase library. You can see the whole implementation (only if you want to, of
course) by looking up the source code of EVENT_TYPE. If you are not happy with the
implementation you can write a descendant of EVENT_TYPE that will use different data structures
and algorithms. In .NET, however, you have to accept that the instruction to register an event type,
such as your_button.Click += your_delegate, somehow updates not only the list Click attached to
your_button but also the mysterious global list Click which you can’t manipulate directly, and in fact
shouldn’t have to know about except that you must test it against null anyway. So you have to trust
the .NET runtime to perform some of the essential operations for you. Of course the runtime
probably deserves to be trusted on that count, but there is really no reason for such mysteries.
Implementing the action-event table is plain application-level programming that doesn’t involve
any system-level secrets and should have been done in a library, not in the built-in mechanisms of
the virtual machine.

Event Argument Classes

If you have been monitoring the amount of extra code that various rules successively
add to the basic ideas, you have one more step to go. For simplicity, our example event
types, Click and Your_event_type, have relied on delegate types by specifying
signatures directly: two integer arguments for Click /20/, arguments of types A and B in
the other case /16/.

The recommended style is different. (Here too, the documentation suggests that this
style is required, whereas it’s in fact just a possible methodological convention.) It
requires any delegate type used with events — meaning, really, any delegate type — to
have exactly two arguments, the first one an Object representing the target and the
second a descendant of the library class System.EventArgs. In our examples, you
would declare

protected void OnClick (int x, int y)
{if (Click != null)

Click (this, x, y);
}

The Power of Abstraction, Reuse, and Simplicity 259
with special classes ABEventArgs, describing pairs of elements of types A and B, and
TwoCoordinateEventArgs describing pairs of integer elements representing mouse
coordinates. For an event that doesn’t generate event data, you would use the most
general class System.EventArgs.

The reason for this rule seems to be a desire to institute a fixed style for all event
handling, where events take exactly two arguments, the details of the event data being
encapsulated into a specific class.

The consequence, however, is an explosion of small classes with no interesting
features other than their fields, such as mouse coordinates x and y. In ordinary object-
oriented methodology, the proliferation of such classes — really record types in O-O
clothing — is often a sign of trouble with the design. It is ironic that mechanisms such
as delegates succeed in countering a similar proliferation, arising from the presence of
many “command classes”, used for example in the Undo-Redo pattern [10].
Reintroducing numerous System.EventArgs classes, one per applicable signature, is a
step backwards.

The resulting style is particularly heavy in the case of events with no data: instead
of omitting arguments altogether, you must still pass this (the current object) as Sender,
and a useless object of type System.EventArgs — an event data object containing no
event data. Such overkill is hard to justify.

In the absence of compelling arguments for the System.EventArgs style, it would seem appropriate
to advise .NET event programmers to disregard the official methodological rule. The style,
however, is used heavily in the event-driven libraries of .NET, especially Windows Forms for GUI
design and Web Forms for WUI design, so it’s probably there to stay.

An Assessment of the .NET Form of Event-Driven Design

The event-delegate mechanism of .NET clearly permits an event-driven style of design.
It lies at the basis of Windows Forms and Web Forms, both important and attractive
libraries in the .NET framework. We must keep this in mind when assessing the details;
in particular, none of the limitations and complications encountered justifies returning
to a Java approach where the absence of a mechanism to wrap routines in objects causes
even more heaviness.

The amount of noise code is, however, regrettable. Let’s recapitulate it by restarting
from the Event Library model, which seems to yield the necessary functionality with
the conceptually minimal notational baggage. On the publisher side we must, returning
to the mouse click example:
E1 •Declare an event type click: EVENT_TYPE [TUPLE [INTEGER, INTEGER]]

typically as a once function that creates the object.
E2 •For every occurrence of the event, publish it: click.publish (x, y).
On the subscriber side, to subscribe a routine r, we execute, once:
E3 •your_button.click.subscribe (agent r)

// Compare with /16/:
public void delegate AB_delegate (Object sender, e)

// Compare with /20/:
public void delegate Two_coordinate_delegate (Object sender,

 e)

ABEventArgs

TwoCoordinateEventArgs

260 Bertrand Meyer
Here is the equivalent in .NET, again using C#. Some element of the system (it can be
the publisher or the subscriber) must:

D1 •Introduce a new descendant ClickArgs of EventArgs repeating the types of
arguments of r. This adds a class to the system.

D2 •Declare a delegate type ClickDelegate based on that class. This adds a type.

Then the publisher must:

D3 •Declare a new event type ClickEvent based on the type ClickDelegate. This adds a
type.

D4 •Introduce a procedure OnClick able to trigger a Click event, but protecting it against
the null case. The scheme for this is always the same, but must be repeated for every
event type.

D5 •For every occurrence of the event, create an instance of the ClickArgs class, passing
x and y to its constructor. This adds a run-time object.

D6 •Also for every occurrence of the event, call Click with the newly created object as
argument.

The subscriber must, to subscribe a routine r:

D7 •Declare a delegate rDelegate of type ClickDelegate.

D8 •Instantiate that delegate with r as argument to the constructor (this step can, in C#,
be included with the previous step as a single declaration-initialization, see /17/).

D9 •Add it to the delegate list for the event type, through an instruction of the form
your_button.Click += rDelegate.

In the case of an event type that is not specific to a control, it is also necessary, as we
have seen, to add a class describing an artificial control. (With the Event Library you
just remove the control, your_button, from E3.)

To all this encumbrance one must add the consequences of the delegate
mechanism’s lack of support for closed arguments and open targets, as permitted by
agents. These limitations mean that it is less frequently possible, starting from an
existing application, to reuse one of its routines directly (“without glue”) and plug it into
an event-driven scheme, for example a GUI or WUI. If the argument signature is just a
little different, you will need to write new wrapper routines simply to rearrange the
arguments. More glue code.

The combination of these observations explains why examples of typical event-
driven code that would use a few lines with the Event Library can extend across many
pages in .NET and C# books.

This does not refute the observation that .NET essentially provides the needed
support for event-driven design. The final assessment, however, is that the practical use
of these mechanisms is more complicated and confusing than it should be.

The Power of Abstraction, Reuse, and Simplicity 261
6 Events for Web Interfaces in ASP.NET

As a complement to the preceding discussion of .NET delegates and events it is
interesting to note that the .NET framework does offer a simple and easy-to-learn
mechanism for building event-driven applications. It’s not part of the basic Common
Language Runtime capabilities, but rather belongs to the application side, in the Web
Forms mechanism of ASP.NET. Internally, it relies on the more complex facilities that
we have just reviewed, but it provides a simpler set of user facilities. The “users” here
are not necessarily programmers but possibly Web designers who will, from Web pages,
provide connections to an underlying application. So the scope is far more limited —
ASP.NET is a web development platform, not a general programming model — but still
interesting for this discussion.

ASP.NET is a set of server-side tools to build “smart” Web pages, which provide
not only presentation (graphics, HTML) but also a direct connection to computational
facilities implemented on the Web server. Because ASP.NET is closely integrated with
the rest of the .NET framework, these facilities can involve any software implemented
on .NET, from database operations to arbitrarily complex programs written in any
.NET-supported language such as C#, Visual Basic or Eiffel.

An event-driven model presents itself naturally to execute such server operations in
response to choices — button click, menu entry selection… — executed by a visitor to
the Web page. The screen shown at the beginning of this article was indeed extracted
from an ASP.NET application:

Figure 6: A Web User Interface under ASP.NET

If the visitor clicks What time is it?, the current time of day appears in the adjacent text field.

The code to achieve this is, even using C#, about as simple as might be hoped. The
whole text reads:

262 Bertrand Meyer
The first part, the <body>, describes the layout of the page and the second part, <script>,
provides the associated program elements, here in C#.

The <body> describes two ASP.NET controls: a button, and a text box called
Output. ASP.NET requires making them part of a <form> to be runat the server side.
The first highlighted directive sets the OnClick attribute of the button to display_time,
the name of a procedure that appears in the <script> part. That’s enough to establish the
connection: when a Click event occurs, the procedure display_time will be executed.

The <script> part is C# code consisting of a single procedure, display_time, which
computes the current time and uses it to set the Text property of the Output box.

This does what we want: a Click event occurring in the button causes execution of
display_time, which displays the current time in the Output box.

The time computation uses class DateTime, where feature Now gives the current date and time, of
type Date; feature TimeOfDay, in Date, extracts the current time; and ToString produces a string
representation of that time, so that we can assign it to the Text feature of the TextBox.

Such simplicity is possible because ASP.NET takes care of the details. Since ASP.NET
knows about the Click event type, controls such as asp:Button include an OnClick
property, which you can set to refer to a particular procedure, here display_time. As a
result, we don’t see any explicit delegate in the above code; .NET finds the name of the
procedure display_time, and takes care of generating the corresponding delegates.

The only hint that this involves delegates is in the signature of display_time,
which involves two arguments: sender, of type object, and e, of type EventArgs. In the
recommended style, as we have seen, they are the arguments representing event data,
which delegate methods are expected to handle. Someone who just learns ASP.NET
without getting the big picture will be told that (object sender, EventArgs e) is a magic
formula to be recited at the right time so that things will work.

Clearly, the .NET machinery translates all this into the standard event-delegate
mechanism discussed in the previous section. But it is interesting to note that, when the
target audience is presumed less technical — Web designers rather than hard-core
programmers — .NET can offer a simple and clear API.

The Event Library provides similar simplicity in a more general programming model.

<html>
<body>

<form runat="server">

Text = "What time is it?" runat = server/>

<asp:TextBox id = "Output" runat=server/>

</form>
</body>

<script language="C#" runat=server>

</script>
</html>

<asp:Button OnClick = "display_time"

private void display_time (Object sender, EventArgs e)
{Output.Text= DateTime.Now.TimeOfDay.ToString();}

The Power of Abstraction, Reuse, and Simplicity 263
7 Event Library Complements

The essential properties of the Event Library were given at the beginning of this
discussion (section 2). Here are a few complementary aspects, to indicate perspectives
for more specialized uses.

The library is available for free download, in source form, from se.inf.ethz.ch. Another reference
[2] provides more details.

Basic Features

First let’s examine some uses of the class and of the two features already introduced.
The class is declared as

meaning that the generic parameter represents an arbitrary tuple type. The two basic
features, as we have seen, are publish and subscribe.

To introduce an event type you simply declare an entity, say your_event_type, with the
type EVENT_TYPE [TUPLE [A, B, …]] for some types A, B, …, indicating that each
occurrence will produce event data containing a value of type A, a value of type B and
so on. If there is no event data use an empty tuple type as parameter:
EVENT_TYPE [TUPLE []].

your_event_type will denote an ordinary object — an instance of EVENT_TYPE —
and you may declare it using any of the generally available techniques. One possibility,
as we have seen, is to make it a “once function” so that it will denote a single run-time
object, created the first time any part of the software requests it. You may also attach it
to every instance of a certain class representing a control, for example as a “once per
object” function. Many other variants are possible.

The two basic procedures have the signatures

The type PROCEDURE [G, H], from the Kernel Library, describes agents built from any
procedure declared in a descendant class of G and taking arguments conforming —
when grouped into a tuple — to H, a tuple type. Here this means that for EVENT_TYPE
[TUPLE [A, B, …]] you may subscribe any procedure, from any class, that takes
arguments of types A, B, …. (For details of agents see [4] or [11].)

The procedure publish takes an argument of type TUPLE [A, B, …] — a sequence
of values such as [some_a_value, some_b_value] denoting a tuple — enabling a
publisher to trigger an event with appropriate event data through

as in the earlier example /3/.

EVENT_TYPE [EVENT_DATA –> TUPLE]

subscribe (action: PROCEDURE [ANY, EVENT_DATA])

publish (args: EVENT_DATA)

your_event_type.publish ([some_a_value, some_b_value])

http://se.inf.ethz.ch

264 Bertrand Meyer
Introducing Specific Event Types

If for a certain event type you know the exact event data constituents, you can avoid
using tuples by defining a specific heir of EVENT_TYPE. You might use this technique
to cover a category of mouse events including left click, mouse click, right click,
control-right-click, mouse movement etc. which all produce event data of a type
MOUSE_POSITION represented by an existing class such as

Publishers of mouse events might have access to an object current_position of type
MOUSE_POSITION representing the current mouse coordinates. By default they would
trigger an event through calls such as

But it may be more convenient to let them use the object current_position directly.
If you define

you can use this class rather than EVENT_TYPE to declare the relevant event types such
as control_right_click, left_click, mouse_movement and so on, then publish mouse
events, instead of /22/, through

class

MOUSE_POSITION
feature -- Access

x: INTEGER
-- Horizontal position

y: INTEGER
-- Vertical position

… Other features (procedures in particular) …
end

control_right_click.publish ([current_position.x, current_position.y]) /22/

class

MOUSE_EVENT_TYPE
inherit

EVENT_TYPE [TUPLE [INTEGER, INTEGER])

feature -- Basic operations

publish_position (p: MOUSE_POSITION) is

-- Trigger event with coordinates of p.
do

publish ([p.x, p.y])

end

end

The Power of Abstraction, Reuse, and Simplicity 265
or even, if you give class MOUSE_EVENT_TYPE access to current_position, enabling
it to include a procedure publish_current_position with no argument, through just

Classes such as MOUSE_EVENT_TYPE correspond, in the .NET model, to specific
descendants of System.EventArgs. The difference is that you are not required to
define such classes; you’ll introduce one only if you identify an important category
of event types with a specific form of event data, globally captured by an existing
class, and — as a convenience — want to publish the event data as a single object
rather than as a tuple. In all other cases you’ll just use EVENT_TYPE directly, with
tuples. So you avoid the proliferation of useless little classes, observing instead the
object technology principle that enjoins to add a class to a system only if it
represents a significant new abstraction.

Subscriber Precedence

If several agents are subscribed to an event type, the associated routines will by default
be executed, when events occur, in the order of their subscription. To change this policy
you may directly access the list of subscribers and change the order of its elements. To
facilitate this, class EVENT_TYPE is a descendant of LIST [ROUTINE [ANY, TUPLE[]],
so that all the operations of the EiffelBase class LIST are applicable.

Although such uses of inheritance are appropriate — see the detailed discussion in [10] — they
 run contrary to some commonly held views on O-O design methodology. It would be possible to
make EVENT_TYPE a client rather than heir of LIST by including a feature subscribers of type
LIST [ROUTINE [ANY, TUPLE[]]; although making the class less easy to use, this change would not
affect the rest of this discussion.

The principal factor in this decision to provide access to the list of subscribers was
successful user experience with the EiffelVision 2 multi-platform GUI library [5],
which follows the same convention. Reusing the EiffelBase list structures gives clients
a whole wealth of list operations; the default subscribe is an extend, the operation that
adds an element at the end of a list, but you can also use all the traversal operations,
replace to replace a particular element, put_front to add an element at the beginning, the
list deletion operations and others. This differs from .NET approach:

• In .NET, you have to consider an event type as a list. Here you can just use
subscribe without bothering or knowing about lists. Only for advanced uses that
need fine control over the subscriber list will you start manipulating it directly.

• In .NET, as noted, the list is always local to a control. Here it’s just a standard list
object and may appear anywhere in the software structure, at the level of the
application or local to another object.

• The delegate lists associated with .NET events are very special structures, with only
two applicable operations, += and –=. Here, they are general lists, to which you can
apply all the EiffelBase list features.

control_right_click.publish_position (current_position)

control_right_click.publish_current_position

266 Bertrand Meyer
Ignoring Some Publishers

Subscribers can be selective about an event’s originating publisher. By default an event
will cause the execution of subscribed routines regardless of the publisher. Call
ignore_publisher (p: ANY) to exclude from consideration any event triggered by p. To
ignore events except if they come from specific publishers, use consider_only (p:
ARRAY [ANY]). To include a specific publisher explicitly, use consider_publisher (p:
ANY). To cancel all subscriptions, use ignore_all_publishers; to reset to the default
policy, use consider_all_publishers. These procedures are cumulative: a call to any of
them complements or overrides the policy set by previous calls. To find out the resulting
status you may use ignored_publishers and considered_publishers, both queries
returning an ARRAY [ANY], the later meaningful only if the boolean query
specific_publishers_only returns True.

To ignore all events temporarily and start considering them again, use
suspend_subscription and restore_subscription. Unlike the ignore and consider variants
these do not make any permanent change to the set of considered publishers.

This last set of facilities lends itself to criticism of pointless “featurism”. As noted,
however, such extra functionality does not harm simple uses of the library. It may have
to be adapted or removed in the future.

8 Software Engineering Lessons

The first goal of this presentation has been immediate and pragmatic: to present the
Event Library as a general tool for building event-driven software solutions. We may
also draw some more general observations.

Limitations

The Event Library — like the other approaches surveyed — has so far been typically
used for sequential or quasi-sequential applications, such as GUI development.
Although its default ordering semantics is clear (procedures subscribed to the same
event type will be executed, when an event occurs, in the order in which they have been
subscribed), a generalization to full parallel computation would require precise rules on
synchronization in the case of concurrent events.

In addition, the presentation of the mechanisms has not included any discussion of
correctness; such a discussion should be based on the contracts associated with the
routines that we encapsulate in agents.

Concurrency and correctness issues are clear candidates for further extensions of
this work.

The Virtue of Simplicity

The word “simple” has occurred more than a few times in this presentation. Although
claiming that something is simple doesn’t make it so, we hope that the reader will have
noticed the small number of concepts involved in using the Event Library.

This concern for simplicity applies not only to the library but also to the underlying
language design, which attempts to maximize the “signal-to-noise ratio” both by
providing powerful constructs, such as agents, and minimizing the noise by avoiding
the provision of two solutions wherever one will do.

The Power of Abstraction, Reuse, and Simplicity 267
Although it may be tempting to dismiss the search for simplicity as a purely esthetic
concern, the results seem clear when we compare the effort it takes for an ordinary user
— an application builder who wants to use an event-driven library — to implement the
Observer Pattern or use the .NET mechanisms (as discussed in the “assessment” at the
end of section 5) rather than relying on the Event Library.

The Search for Abstractions

The key to the Event Library’s simplicity is in the choice of its basic abstraction.
Previous solutions used different ones:

• The Observer Pattern relies on abstractions “Subject” and “Observer” which,
however intuitive, are not particularly useful since they have no relevant features.

• The .NET model produces complicated programs because it insists on defining a
new delegate type — a new abstraction — for every routine signature to be used in
handling events, and a new event type — again a new abstraction, with its own
name — for every kind of event that a system may have to process. In the example
discussed, it requires a new delegate type for procedures that take two integer
arguments (where the Event Library simply uses an Eiffel agent expression, relying
on genericity to ensure typing) and a new class to describe the mouse click event
type. This leads to name and code explosion.

Both cases seem to result from what has been called “taxomania” [10]: overuse of
inheritance and introduction of useless classes.

The Event Library identifies, as its key abstraction, the single notion of event type,
characterized — as any proper abstraction in the abstract-data-type view at the basis of
object technology — by relevant features: a subscriber can subscribe to be notified of
events of a given type, and a publisher can publish an event of a given type. This choice
of abstraction makes all the difference.

Lines of Research

This discussion has emphasized a certain path to software construction where the main
task is to search for the right abstractions.

Such emphasis may seem remote from the concepts that seem currently to dominate
discussions of design methodology, from UML and Aspect-Oriented Programming to
Extreme Programming and Agile Methods. Indeed there is nothing new in the idea of
identifying the problem’s abstractions. But in light of the tendency to take object
technology for granted [12], it is useful to note that resolving design problems may
follow not just from new techniques but from the creative application of known
principles. Good O-O design requires going back repeatedly to the basic question:
“What are the main data abstractions behind this problem?”.

268 Bertrand Meyer
From Patterns to Components

One of the design concepts that has amply proved its usefulness is the idea of design
patterns. The patterns work has been instrumental in helping to identify and classify
important algorithmic and architectural schemes.

When assessed against reuse goals, however, design patterns seem to go the other
way, possibly contradicting some of the ideas that have made object technology
attractive. Patterns are techniques that developers must learn and implement, like
repertoires of traditional algorithms and data structures that one learns as a student and
applies as a programmer. Coming after object and component technology, patterns seem
to imply a return to recipes which, however elegant, must be applied afresh by every
developer in every project.

This view that reusing packaged components is preferable to repeatedly
handcrafting specific solutions leads to what we may call the Pattern Elimination
Conjecture: that in the long term any useful pattern should be discarded as a pattern, and
replaced by reusable components with a clear, simple, directly usable interface. Here
the originators of the pattern idea would respond that typical patterns are too
sophisticated to be encapsulated into components; but then the conjecture would assert
that this difficulty of going from patterns to components is due to two factors:
• The limitations of the programming languages that served to describe the original

patterns. (The “Prototype” pattern, for example, disappears as a pattern in Eiffel to
become a direct application of the Kernel Library’s built-in cloning mechanism.)

• Possibly insufficient effort or insight in previous attempts to turn patterns into
components.

The Pattern Elimination Conjecture implies no criticism of the pattern idea; to the
contrary, its recognizes the essential contribution of patterns to identifying the right
components, part of what the reuse literature calls “domain analysis”. It states that the
natural goal for a pattern, once identified, is to cease being a pattern and become
packaged as a component. As noted in [10], it’s a natural ambition for object technology
to make any statement of the form “X considered harmful” self-fulfilling — as soon as
X, whatever it is, has been proved useful — by the simple observation that if it’s useful
it should be componentized.

This article’s analysis of the Observer pattern and its introduction of the Event
Library confirm the Pattern Elimination Conjecture in one case, since it’s easier to use
the library than to learn the architecture of the Observer pattern and apply it to a new
program. This is of course just one example. Work by Karine Arnout and the author (see
[1]) is currently exploring whether this partial result can be generalized to other
important design patterns as described in the literature.

Types and Instances

It has been noted [10] [13] that publications on object technology too often use the terms
“class” and “object” for one another. The prevalence of this confusion is surprising, as
there is nothing difficult here: a class is a model, an object is an instance of such a
model; classes exist in the software text, objects existing in memory at execution time.
Yet one continues to come across design documents that state proudly that a program
will include “an Employee object”.

The Power of Abstraction, Reuse, and Simplicity 269
Some would argue that insisting on the distinction is just being fussy, and that
readers understand what is meant in each case. Without having an absolute way to
know, we may recall the lack of any attempt, in the .NET documentation, to distinguish
between event types and events, or between delegate types and delegates, and
conjecture that a more careful approach might have led to a different choice of basic
abstraction and to a mechanism easier to understand and use.

Programming Language Constructs

Our final observation addresses the role of programming languages. The solution
applied by the Event Library is made possible by the combination of a number of
language features beyond the basic object-oriented concepts:
• Genericity (the key to avoiding a proliferation of little event and delegate classes),

which a satisfactory object model should include in addition to inheritance [9].
• Tuple types (also important for this purpose, thanks to their support for variable-

length sequences).
• Constrained genericity (used in the notation EVENT_DATA –> TUPLE in the

declaration of EVENT_TYPE) to ensure that certain generic arguments can only
represent tuples).

• Agents (and their typing properties).
• The possibility of using open as well as closed arguments in an agent, and of

keeping the target open if desired (the key to avoiding a proliferation of glue code).
• Once functions (taking care of the problems of object initialization and sharing

without breaking the decentralization of object-oriented architectures).
• Multiple inheritance (essential in particular to the structure of the underlying

EiffelBase library).
• Covariance (for the needed type flexibility, in spite of the associated type checking

issues).
With the growing acceptance of object-oriented ideas as a basis for new languages,
there may be a tendency to assume that all O-O models are essentially equivalent. They
are not. The features listed, many of them not supported by most O-O languages, make
the difference in the ease of use, extendibility and reusability of the solutions
encountered in this discussion.

Scope

Event-driven design is attractive in a number of situations illustrated by the examples
of this article. It would be useful to conclude with a precise analysis of how it relates to
other design styles, and how wide a range of applications it encompasses. We can,
however, offer no firm answer on either count.

The most natural comparison is with concurrent computation mechanisms. Event-
driven design indeed assumes some concurrency between the publishers and the
subscribers, but that concurrency remains implicit in the model. Analogies that come to
mind are with CSP [7], with its input and output events, and with the Linda approach to
concurrent computation [3] whose general scheme involves clients depositing
computational requests into a general “tuple space” which suppliers then retrieve and
process based on pattern matching. We have not, however, explored such analogies
further. Some work, already noted [18], is intended to replace event-driven design by
concurrent computation mechanisms.

270 Bertrand Meyer
We are also not able to provide a clear assessment of the scope of the design style
presented in this discussion. It undoubtedly works well in its usual areas of application,
mainly GUI and now WUI building. How general is the idea, illustrated in figure 3, of
publishers throwing events like bottled messages into the ocean, with the hope that
some subscriber will pick them up? It may be a powerful paradigm that can affect the
structure of many systems, not just their relation to their user interfaces; or maybe not.

On one issue, language-related, we now have unambiguous evidence: the
usefulness of equipping an object-oriented language with a way to encapsulate routines
into objects, such as Eiffel’s agents or the delegate facility of .NET. The introduction of
agents initially raised concern that they might in certain cases compete with the more
traditional O-O constructs. Extensive experience with the mechanism has dispelled this
concern; agents have a precise place in the object-oriented scheme, and in practice there
is no ambiguity as to where they should be used and where not. The library-based
scheme of event-driven computation described in this article is a clear example of when
agents can provide an indispensable service.

Acknowledgments

This article rests on the work of the people who designed the agent mechanism: Paul
Dubois, Mark Howard, Emmanuel Stapf and Michael Schweitzer. It also benefits from
the design of the EiffelVision 2 library and its use of agents and event-driven
mechanisms, due among others to Sam O’Connor, Emmanuel Stapf, Julian Rogers and
Ian King. It takes advantage of comments from Karine Arnout and Volkan Arslan. It is
indebted to the other designs discussed, especially Smalltalk’s MVC, the Observer
Pattern, the .NET event model, and its realization in C# and VB.NET. Without implying
endorsement of the ideas expressed I gratefully acknowledge the comments received on
earlier versions of this work from Éric Bezault, Jean-Marc Jézéquel, Piotr
Nienaltowski, Claude Petitpierre and a referee who, when my request was granted to lift
anonymity in light of the value of his criticism, turned out to be Tony Hoare.

References

[1] Karine Arnout, Contracts and Tests, research plan at se.inf.ethz.ch/people/arnout/
phd_research_plan.pdf, consulted June 2003.
[2] Volkan Arslan, Piotr Nienaltowski and Karine Arnout. Event library: an object-
oriented library for event-driven design, to appear in JMLC 2003, Proceedings of Joint
Modular Languages Conference, Klagenfurt (Austria), August 2003, ed. Laszlo
Böszörmenyi, Springer-Verlag, 2003.
[3] Nicholas Carriero and David Gelernter: How to Write Parallel Programs, MIT
Press, 1990. More recent (2000) Linda tutorial at lindaspaces.com/downloads/
lindamanual.pdf, consulted June 2003.
[4] Paul Dubois, Mark Howard, Bertrand Meyer, Michael Schweitzer and Emmanuel
Stapf: From Calls to Agents, in Journal of Object-Oriented Programming, vol. 6, no.
12, September 1999.
[5] Eiffel Software: Online EiffelVision2 documentation at docs.eiffel.com/libraries/
vision2/, consulted June 2003.
[6] Erich GammaRichard Helm, Ralph Johnson and John Vlissides: Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.
[7] C.A.R. Hoare: Communicating Sequential Processes, Prentice Hall, 1985.

http://se.inf.ethz.ch/people/arnout/phd_research_plan.pdf
http://se.inf.ethz.ch/people/arnout/phd_research_plan.pdf
http://lindaspaces.com/downloads/lindamanual.pdf
http://lindaspaces.com/downloads/lindamanual.pdf
http://docs.eiffel.com/libraries/vision2/
http://docs.eiffel.com/libraries/vision2/

The Power of Abstraction, Reuse, and Simplicity 271
[8] Jean-Marc Jézéquel, Michel Train and Christine Mingins: Design Patterns and
Contracts, Addison-Wesley, 1999.
[9] Bertrand Meyer: Genericity versus Inheritance, in Norman K. Meyrowitz (Ed.):
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’86), Portland, Oregon, Proceedings. SIGPLAN Notices 21(11), November
1986, pages 391-405. Updated version in appendix B of [10].

[10] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice
Hall, 1997.
[11] Bertrand Meyer, Agent chapter in Eiffel: The Language, 3rd edition, in preparation,
chapter text online at www.inf.ethz.ch/personal/meyer/publications/, consulted June
2003.
[12] Bertrand Meyer: A Really Good Idea (final installment of Object Technology
column), IEEE Computer, vol. 32, no. 12, December 1999, pages 144-147. Also online
at www.inf.ethz.ch/personal/meyer/publications/, consulted June 2003.
[13] Bertrand Meyer: Assessing a C++ Text (review of Programming C# by Jesse
Liberty), IEEE Computer, vol. 35, no. 4, April 2002, pages 86-88. Also online at
www.inf.ethz.ch/personal/meyer/publications/, consulted June 2003.
[14] Bertrand Meyer: Multi-Language Programming; How .NET Does It, published in three
parts in Software Development Magazine, “Beyond Objects” column, May-July 2002. Also
online at www.inf.ethz.ch/personal/meyer/publications/, consulted June 2003.
[15] Bertrand Meyer, Raphaël Simon, Emmanuel Stapf: Instant .NET, Prentice Hall,
2004, in preparation.
[16] .NET Framework Class Library: Delegate Class, part of Microsoft .NET
documentation included with the .NET framework, also online at msdn.microsoft.com/
library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDelegateClassTopic.asp,
consulted June 2003.
[17] Visual Basic Language Reference: Delegate Statement, part of Microsoft .NET
documentation included with the .NET framework, also online at msdn.microsoft.com/
library/default.asp?url=/library/en-us/vblr7/html/vastmDelegate.asp, consulted June 2003.
[18] Claude Petitpierre, A Design Pattern for Interactive Applications, École
Polytechnique Fédérale de Lausanne, 2002.
[19] Sun Microsystems: About Microsoft’s “Delegates”, 1997 white paper online at
java.sun.com/docs/white/delegates.html, consulted June 2003.

http://www.inf.ethz.ch/personal/meyer/publications/
http://www.inf.ethz.ch/personal/meyer/publications/
http://www.inf.ethz.ch/personal/meyer/publications/
http://www.inf.ethz.ch/personal/meyer/publications/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDelegateClassTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDelegateClassTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/html/vastmDelegate.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/html/vastmDelegate.asp
http://java.sun.com/docs/white/delegates.html

Iterative Synthesis of Control Guards

Ensuring Invariance and Inevitability
in Discrete-Decision Games

Michel Sintzoff

Department of Computing Science and Engineering
Université catholique de Louvain

Place Sainte-Barbe 2, B-1348 Louvain-la-Neuve, Belgium
ms@info.ucl.ac.be

Abstract. Reactive and hybrid systems are modeled by games where
players make strategic decisions in a temporally discrete manner. The
dynamics of players use dense or discrete time. In order to guarantee in-
variance and inevitability properties, the proponent moves are restricted
by “winning guards”. The winning strategy determined by these guards
does not exclude any initial state from which a winning strategy exists.
Sets of such initial states constitute winning regions and are defined by
fixed points. The iterates which yield winning regions are structured as
unions of iterates which yield winning guards.

1 Introduction

The theory of games deals with interaction between dynamics. This is why it
helps in understanding control systems, hybrid ones and reactive ones. For ex-
ample, a control system can be presented as a noncooperative game where the
controlling and controlled components are respectively the proponent and the
opponent [Isa65]. There are various kinds of games [BaO98, Tho95]: plays may
have a finite or infinite duration; time may be discrete or dense; players may co-
operate or not; their strategic decisions may be taken continuously or discretely;
each one may involve a finite or infinite set of choices; moves may be carried out
in sequence or in parallel; they may be atomic, in one step, or durative, in any
number of steps; goals may be qualitative or quantitative; informations on states
may be perfect or imperfect; winning strategies may use additional memory or
not.

A (strategic) decision is the selection of a move according to the strategy
of a player. In “discrete-decision games”, these decisions are separated by non-
infinitesimal time-intervals. Hybrid systems can be modeled by discrete-decision
games where the control moves by the proponent are atomic transitions [TLS00].
In general, the temporal discreteness of decisions is compatible with dense-time
dynamics for proponents as well as for opponents; thus, the granularity of dy-
namics can be adapted and the roles of players can be exchanged. For the limited

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 272–301, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Iterative Synthesis of Control Guards 273

problems tackled in this paper, it suffices to consider discrete-decisions games re-
stricted as follows: the goals are qualitative; the information on states is perfect;
the choice sets are finite; the winning strategies do not use additional memory.

Games are characterized by the dynamics of players, their roles and the win-
ning conditions. Dynamics are expressed here by “processes”, i.e. sets of trajecto-
ries. Roles determine cooperation or non-cooperation of players and are expressed
by “pre-maps” associated with disjunctive or conjunctive decision modes. Pre-
maps generalize predicate transformers [Dij76] and yield “preconditions”, viz.
sets of adequate initial states for given decision modes, processes and winning
conditions. Winning conditions express goals for players and are represented by
distinctive processes called “specifications”. The binding of roles of players to
their dynamics, viz. of pre-maps to processes, results in alternating, interacting
processes called “coprocesses”. A game thus consists of a coprocess and a spec-
ification. These components correspond to a graph-based arena and a winning
set in the case of a discrete-time finite-state game [GTW02 (§ 2)].

The goal of the present work is the iterative synthesis of winning strategies for
discrete-decision games. Iterative methods provide a structured framework for
the systematic development of effective algorithms and they scale up well from
finite domains to infinite ones. They can be used here thanks to the discreteness
of decisions and the finiteness of choice sets. Game analysis follows iterative
methods as a rule, especially for the generation of winning regions. Classical
methods of game synthesis are based on the extraction of strategy functions
from winning regions and are partially iterative [BaO98, Tho95].

In order to elaborate iterative synthesis techniques, we represent winning
strategies by “winning guards” which restrict the domains of proponent moves.
These guards ensure that all permitted plays satisfy the winning conditions; they
do not need additional memory; their union includes each state in the winning
region of the proponent. Thus, they determine a complete, finite-memory, win-
ning strategy for the latter. We tackle the two primitive properties of dynamics,
namely invariance and inevitability; they constitute the first level in the Borel
hierarchy [Tho95]. The winning guards are synthesized iteratively on the basis
of fixed-point definitions of winning regions: the iterates which generate winning
regions are structured as unions of iterates which generate winning guards. This
approach follows a method developed for the synthesis of correct guards in ac-
tion systems, which amount to cooperative games with atomic moves defined by
predicate transformers [vLS79].

The paper is organized as follows. Processes, specifications and preconditions
are defined in Section 2. Coprocesses, their preconditions and discrete-decision
games are presented in Section 3. Iterative synthesis techniques for winning
strategies are developed in Section 4. Section 5 discusses related, current and
further work, and concludes with some reflections.

The mathematical basis of the paper consists of a few results about lattices.
Some developments are merely outlined. General formulations of definitions and
properties may be replaced by typical instances. Proofs which are similar to pre-

274 Michel Sintzoff

vious ones may be summarized. The references indicate original, representative
or recent works.

Notational conventions The set of functions from A to B is denoted by A→ B.
A function application f(u) may be written f.u or fu when no ambiguity arises.
Given a binary relation r, its converse {(x, y) | (y, x) ∈ r} is denoted by r .̆ The
set of subsets of a set V is denoted by 2V . A Cartesian product V × V may
be denoted by V 2. An interval {c | a ≤ c ≤ b} is denoted by (a : b). The set
of integers is denoted by IN, and IR+ is the set of nonnegative real numbers.
The symbol ∞ stands for ∗ or ω. For a set B and a predicate E, we abbreviate
(B �= ∅) ∧ (∀x ∈ B : E) by ∀+x ∈ B : E.

We write µX : [f.X] for the least fixed-point of a monotone function f in a
complete lattice, and νX : [f.X] for the greatest one. The abbreviation A =µ f.A
stands for the equation A = µX : [f.X], and similarly for =ν. Given the classical
Knaster-Tarski Theorem, these fixed points are computable by transfinite itera-
tions [Cou78, DN00, GTW02 (§ 20)]. In a finite lattice, finite iterations suffice. If
f is continuous, e.g. f.∪i∈I xi = ∪i∈If.xi for any increasing chain (xi)i∈IN , then
it suffices to use infinite iterations on the form X(0) = a, X(n+1) = f.X(n). For
simplicity, iterative computations of fixed points are presented in terms of infi-
nite iterations; versions using transfinite iterations can be obtained by systematic
adaptations.

2 Processes, Specifications, and Their Preconditions

We present a compositional framework for processes a.k.a. behaviours, viz. sets
of trajectories [Si96]. It allows for dense and discrete time and for temporal
variants of classical operations of program composition.

Specifications are distinguished processes. They may represent winning con-
ditions.

Pre-maps express selection modes. They yield preconditions which character-
ize the begin-points of trajectories matching a given specification and selected
according to a given mode. These preconditions are analogous to starting basins
for dynamics, to preconditions for programs and to winning regions for games.

2.1 Basic Processes and Operations

Let V be a non-empty set of points, viz. values or states. Let T be a set of
times, with a total order, a minimum element 0, a commutative and associative
addition with 0 as identity, and possibly an infinite element ωT . We may write
ω for ωT if no ambiguity arises, and we may use an identifier Tω for a time set
containing an infinite element. Examples of time sets are {0, 1}, INω, IR+, or
INω × IR+

ω with vector addition, lexicographic ordering and the infinite element
(ωIN , ωIR+). An element of a Cartesian product T is finite iff all its components
are finite.

Iterative Synthesis of Control Guards 275

A trajectory b is a pair (d, g) where Dur.b = d ∈ T is the duration and
g ∈ (0 : d)→ V is the graph; its begin- and end-point are respectively Beg.b = g.0
and End.b = g.d. A process B is a set of trajectories, and a B-trajectory is an
element of B. The duration of a process B is finite iff the duration of each B-
trajectory is finite.

Given d ∈ T, P ⊂ V, the process [d]P is the set of trajectories with duration
d and range P : [d]P = {(d, g) | g ∈ (0 : d) → P}. We may write [d]T P to recall
the time set T of interest. The universal process over P is []P =

⋃
d∈T [d]P,

where T may include ω. The process [∗]P is []P\[ω]P . The universal process is
[]V . The identity process IdP over P is [0]P. The identity process Id is IdV .

The following set-operations can be used for processes: union ∪, intersection
∩, finite union

⋃
i∈I , finite intersection

⋂
i∈I for a finite set I, and complemen-

tation \. We write −B for ([]V)\B if B ⊂ []V , and −P for V \P if P ⊂ V.
A cone is a process where all trajectories begin with the same point. For

B ∈ []V, x ∈ V, the process B(x) is the cone {b | b ∈ B ∧ (Beg.b = x)}. A
process B is deterministic iff, for each x ∈ V , the cone B(x) contains at most
one trajectory.

Let be c, d ∈ T, c ≤ d. The prefix b(0 : c) of a trajectory b = (d, g) is the
trajectory (c, h) such that ∀t ∈ (0 : c) : h.t = g.t. For B ⊂ [d]V, B(0 : c) is
{b(0 : c) | b ∈ B}.

For a relation r ⊂ V 2, an r-based process R is {(1, g) | (g.0, g.1) ∈ r} ⊂ [1]INV.
It is called a relational process. Similarly if R = {(1, g) | (g.(0, 0), g.(1, 0)) ∈ r} ⊂
[(1, 0)]IN×IR+V .

Assume a dense-time process B ⊂ [d]IR+V where d ∈ IN, d ≥ 1. Then the
discrete-time sampling of B is the discrete-time process BIN ⊂ [d]INV defined by

BIN = {(d, h) | ∃g : [(d, g) ∈ B ∧ ∀i ∈ (0 : d) ∩ IN : h(i) = g(i)] }.
Similarly for time sets such as IR+

ω , IN × IR+ or INω × IR+
ω .

Notes

1. Relational processes allow to integrate the relation-based view of dynamics,
as used for automata and programs, into the process-based one. The Carte-
sian product P × P is isomorphic to the process [1]{0,1}P containing all the
two-points trajectories with range P ⊂ V . The set P is isomorphic to the
identity process IdP over P .

2. The most abstract time-set is the singleton {0}. The abstract, binary time-
set {0, 1} consists of begin- and end-times only and may be used for atomic
moves. Time sets such as IN and IR+

ω refine {0, 1} and may be used for
durative dynamics. The time set INω × IR+

ω is super-dense.
3. The infinite time ω can be excluded by using [∗]P or T \{ω}. When presenting

a list of time sets which may include it, we often just give a few typical cases.

2.2 Temporal Composition of Processes

Basic operations for process composition are given in § 2.1. Processes may also
be composed by means of temporal forms of sequential, concurrent and iterative
composition.

276 Michel Sintzoff

2.2.1 Temporal Composition Operations
(a) Sequential composition The sequential composition of two processes
B1 ⊂ [∗]V and B2 ⊂ []V is

B1; B2 = { b1; b2 | b1 ∈ B1 ∧ b2 ∈ B2 ∧ (End.b1 = Beg.b2)},
where (d1, g1); (d2, g2) is (d1 + d2, g)
such that g(0 : d1) = g1(0 : d1) and ∀t ∈ (0 : d2) : g.(d1 + t) = g2.t.

The sequential composition of processes is fusion based: in the trajectory (b1; b2),
b1 and b2 share the point End.b1 = Beg.b2. This is also the case for sequential
composition of relations and programs.

Given a process B ⊂ [∗]V, the repetition Bn is defined as follows, where
n, m ∈ IN, m < n:

B0 = Id, Bm+1 = Bm; B.

The pre-restriction of a process B ⊂ []V by a guard P ⊂ V is
P ⇀ B = IdP ; B.

Thus, P ⇀ B = {b | Beg.b ∈ P ∧ b ∈ B}, the cone B(x) equals {x} ⇀ B, and
B = V ⇀ B. By convention,

⋃
i∈I Pi ⇀ Bi =

⋃
i∈I(Pi ⇀ Bi).

(b) Concurrent composition Let V1, V2, V1 × V2 ⊂ V. The local concurrent
composition of B1 ⊂ []V1, B

′
2 ⊂ []V2 is

B1 ⊗B′
2 = { b1 ⊗ b′2 | b1 ∈ B1 ∧ b′2 ∈ B′

2 ∧ (Dur.b1 = Dur.b′2)},
where (d, g1)⊗(d, g′2) is (d, g) such that ∀t ∈ (0 : d) : g.t = (g1.t, g

′
2.t).

The process B1 ⊗ B′
2 ⊂ [](V1 × V2) is a Cartesian, isochronous composition of

the local processes B1, B
′
2, called local branches. This composition is not com-

mutative. The operator ⊗ has priority over ⇀,∈ and ⊂.
Let us now assume, for i ∈ I, j ∈ J : Gi, G

′
j ⊂ V1 × V2, Bi ⊂ []V1, B′

j ⊂
[]V2, B =

⋃
i∈I Gi ⇀ Bi ⊗ []V2, and B′ =

⋃
j∈J G′

j ⇀ []V1 ⊗ B′
j . Then, the

(global) concurrent composition of B, B′ ⊂ [](V1 × V2) is
B‖B′ =

⋃
i∈I,j∈J Gi ∩G′

j ⇀ Bi ⊗ B′
j .

It is not commutative by definition of B, B′. In the (left) branch B, local processes
Bi ⊂ []V1 are concurrent with universal local ones []V2 and are restricted by
global guards Gi. Note (Bi ⊗ []V2) ∩ ([]V1 ⊗ B′

j) = Bi ⊗ B′
j . Branches are

processes and can be composed, for instance sequentially. The branch B may be
written

⋃
i∈I Gi ⇀ Bi, and similarly for the (right) branch B′.

We have B1⊗B′
2 = V1×V2 ⇀ B1 ⊗ B′

2 = (V1×V2 ⇀ B1 ‖ V1×V2 ⇀ B′
2).

Local concurrency is introduced for presentation purposes.
(c) Iterative composition Let B ⊂ [∗]V . The finite and infinite iteration of
the process B are respectively

B∗ = µX : [Id ∪ (X ; B)] and Bω = νY : [B; Y],
defined in the complete lattice 2[]V of processes. The fixed point B∗ is the limit
of the iteration X(0) = ∅, X(n+1) = Id ∪ (X(n); B). The map X �→ Id ∪ (X ; B)
is continuous, hence monotone, because ((

⋃
i∈IN Bi); B) =

⋃
i∈IN (Bi; B). As a

consequence, B∗ =
⋃

n∈IN Bn.

Similarly, Bω is the limit of Y (0) = []V, Y (n+1) = (B; Y (n)). We have
Y (n+1) = Bn+1; []V = Bn; (B; []V) ⊂ Bn; []V = Y (n).

Iterative Synthesis of Control Guards 277

Notes
1. To sum up, processes B ⊂ []T V are mainly generated by the following rules:

B ::= Ba | [d]P | [∗]P | []P |
B ∪B | B ∩B | ⋃

i∈I Bi |
⋂

i∈I Bi | −B |
B; B | B‖B | B�

where Ba ⊂ []T V, d ∈ T, P ⊂ V, I is a finite set, the Bi’s generate processes
and � ∈ IN ∪ {∗, ω}. Primary processes Ba are constructed for example by
automata, programs, or differential equations or inclusions. Accordingly, the
composition operations on processes can be expressed by corresponding ones
on transition systems or differential ones.

2. Discrete-time processes resemble temporal programs in a discrete-time,
interval-based temporal logic with sequential and iterative composition
[Mos98]. They are related to processes in the semantics of communicating
concurrent programs [Hoa85]. Communications are represented here by con-
current readings in global states, viz. by global guards.

3. For all P ⊂ V and d1, d2 ∈ T, the process H = [d1 + d2]P verifies the
closure property H = H(0 : d1); H(0 : d2). Thus, the H-trajectories have
no memory: any suffix of any trajectory is the prefix of another one. So to
speak, H is full. This is akin to the semi-group axiom fd1+d2 = fd2 ◦ fd1

for flows generated by differential equations [BaC97]. In general, processes
contain trajectories with memory. For instance, if B ⊂ [2]V contains a single
trajectory, then B does not necessarily include B(0 : 1); B(0 : 1).

4. Classical relational approaches use a binary time-set and abstract from the
intermediate points appearing in compositions [Abr96, BaW98].

2.2.2 Non-Zeno Assumption In this paper, we assume the following:

The time set contains a finite number of distinguished elements differ-
ent from 0 and called non-Zeno times. The duration of each considered
trajectory is bounded below by a non-Zeno time.

This is a sufficient condition for excluding Zeno trajectories [DN00, Lyg03].

Notes Let B→ω be limn→ω Bn in an ultrametric structure [Ros 98].

1. Given the Non-Zeno assumption, each limit B→ω is the fixed point of a
contracting map, using a prefix-based ultrametric distance du. Hence B→ω =
B→ω ; []V = Bω. For example, du(([1]V)→ω , (([1]V)→ω ; []V)) = 0, hence
([1]V)→ω = ([1]V)→ω ; []V = ([1]V)ω .

2. Consider processes R0 ⊂ [(1, 0)]T V and B1 ⊂
⋃

d∈IR+ [(0, d)]T V, where
T = INω × IR+

ω . These processes may respectively model atomic control-
transitions and durative plant-dynamics in hybrid systems [Lyg03]. To guar-
antee the Non-Zeno assumption, the non-Zeno times (1, 0) and (0, 2−100)
may for instance be used.
In this case, the duration of each trajectory in the limit (R0; B1)→ω is
the infinite time (ωIN , ωIR+). Hence, the duration of each trajectory in
(R0; B1)∗∪(R0; B1)ω is either finite or infinite: heterogeneous durations such
as (ωIN , 5.03) are excluded.

278 Michel Sintzoff

2.2.3 Properties

(a) Sequential composition of processes is monotone and associative.

(b) Concurrent and iterative compositions of processes are monotone.

(c) For P, Q ⊂ V and B ⊂ []V, P ⇀ (Q ⇀ B) = (P ∩Q) ⇀ B.

(d) For V1, V2, V1 × V2 ⊂ V , []V1 ⊗ []V2 = [](V1 × V2).

(e) Assume B1 ⊂ [c]V, B2 ⊂ []V are left branches, and B′
1 ⊂ [c]V, B′

2 ⊂ []V
are right branches, for c ∈ T \{ω}. Then

(B1; B2)‖(B′
1; B

′
2) = (B1‖B′

1); (B2‖B′
2),

(B1
�‖B′

1
�) = (B1‖B′

1)�, where � ∈ IN ∪ {∗, ω}.

(f) Assume r1 ⊂ V 2
1 , r2 ⊂ V 2

2 , r = { ((x1, x2), (y1, y2)) | (x1, y1) ∈ r1 ∧
(x2, y2) ∈ r2} ⊂ (V1 × V2)2. Let R1, R2, R be the r1-, r2-, r-based process,
respectively. Then

R1 ⊗R2 = R.

2.3 Specifications

Specifications are distinguished processes which express desired dynamical pat-
terns. They result from a restricted family of composition operations which ab-
stract from time. In this paper, we focus on an operation serving to display
sequential patterns of process ranges and called “chop” [Mos98]. Specifications
are usually identified by W, to remind of winning processes.

2.3.1 Definitions The chop of two sets P, Q ⊂ V is the specification P�Q =
[∗]P ; []Q. The chop of two specifications W, W ′ ⊂ []V is the specification
W�W ′ = (W ∩ [∗]V); W ′.

The other composition operations for specifications are union, opposite, rep-
etition and iteration; for � ∈ IN ∪ {∗, ω}, the definition of W� is (W ∩ [∗]V)�.
Specifications W ⊂ []V are thus generated as follows:

W ::= P�Q |W�W |W ∪W | −W |W� (P, Q ⊂ V).

Notations Given a trajectory b = (d, g), times t, t′ ∈ T such that t ≤ t′ ≤ d, and
P, Q ⊂ V,

b(t : t′) ∈ P�P iff ∀s ∈ (t : t′) : g.s ∈ P,

b(t : t′) ∈ P�Q iff ∃s ∈ (t : t′)\{ω} : b(t : s) ∈ P�P ∧ b(s : t′) ∈ Q�Q.

Iterative Synthesis of Control Guards 279

2.3.2 Properties Assume P, Q ⊂ V.

(a) P ∩Q = ∅ ⇒ P�Q = ∅.
(b) Given b1, b2 ∈ []V and End.b1 = Beg.b2,

b1; b2 ∈ P�Q
≡ (b1 ∈ P�Q ∧ b2 ∈ Q�Q) ∨ (b1 ∈ P�P ∧ b2 ∈ P�Q) in general,
≡ b1 ∈ P�P ∧ b2 ∈ P�Q if Q ⊂ P.

For b = (1, g) ∈ [1]INV , we simply have
b ∈ P�Q ≡ (g.0, g.1) ∈ (P ∩Q)×Q ∪ P × (P ∩Q).

(c) Let r ⊂ P ×Q. Assume R ⊂ [1]INV is r-based (§ 2.1). Then:
R ⊂ P�(P ∪Q)�Q in general;
R ⊂ P�Q if P ⊂ Q ∨Q ⊂ P ; R ⊂ P�P if P = Q.

Proof: Let T = IN. For each b = (1, g) ∈ R, we have
b ∈ R ⊂ [1]V by assumption on R. Hence
b ∈ [1](P ∪Q) since r ∈ P ×Q ⊂ (P ∪Q)× (P ∪Q). Hence
b ∈ IdP ; [1](P ∪Q); IdQ since g.0 ∈ P, g.1 ∈ Q. Hence
b ∈ P�(P ∪Q)�Q by § 2.3.1. Hence
R ⊂ P�(P ∪Q)�Q given b ∈ R.

(d) Chop is associative and monotone.

2.3.3 Discrete Observability Assume P, Q ⊂ V, d ∈ IN, d ≥ 1. Then, the
chop P�Q is discretely observable in a trajectory b = (d, g) ∈ []IR+V iff the
following holds, for A = P or A = Q and for all n ∈ IN ∩ (0 : d− 1) :

(g(n), g(n + 1)) ∈ A×A ⇒ b(n : n + 1) ∈ A�A,
(g(n), g(n + 1)) ∈ P ×Q⇒ b(n : n + 1) ∈ P�Q.

The chop P�Q is discretely observable in a process B ⊂ []IR+V iff it is discretely
observable in each B-trajectory. Similarly for time sets such as IR+

ω and IN×IR+.

2.3.4 Remarks

Chop and temporal logic The following equalities illustrate the use of chop in
temporal specifications [Mos98], and thus in the present ones: �P = P�P,
�P = V �P�V, PUQ = P�(P ∪ Q)�Q�V . The characteristic predicate of
a set P is also denoted by P . Unlike chop, the until-operator U is not fusion-
based; hence, P and Q can be disjoint. This explains the presence of P ∪Q on
the right-hand side (§ 2.3.2.c). The last occurrence of V is needed in case PUQ
is followed by ¬Q. The discrete-time next-operator ©P is not expressible using
chops, which permit dense time.

Processes and specifications A process B satisfies a specification W iff B ⊂ W,
viz. B conforms to the pattern defined by W . For example, B ⊂ P�P and
B′ ⊂ Q�Q entail B; B′ ⊂ P�Q. The choice of composition operations for
specifications could be adapted without changing the main results; a relevant
criterion could be the decidability of B ⊂W .

280 Michel Sintzoff

2.4 Pre-maps and Preconditions for Processes

A pre-map ξ is a pre-image operator; it maps processes to functions from spec-
ifications to subsets of V called preconditions: ξ ∈ 2[]V → (2[]V → 2V). The
precondition ξB.W is the set M such that W contains the B-trajectories which
begin with points in M and which are selected according to the decision mode
associated with ξ. We say precondition for a set by abuse of language.

As classical, we consider three decision modes for trajectory selection
[BaW98, DN00]: the disjunctive mode expressing existence, the conjunctive one
expressing universality or inexistence, and the combined one expressing univer-
sality and existence. They are respectively associated with the three pre-maps
E,A and Æ, which are defined below and may be read pre-exists, pre-all and
pre-all-exists.

The pre-map of a sequential composition of processes equals a nested com-
position of pre-maps of these processes. This allows to decompose a given chop
into smaller ones.

Notations
Logical quantifiers: LE = ∃, LA = ∀, LÆ = ∀+ (§ 1).
Dualities: E∼ = A, A∼ = E.
Meta-variables: ξ, ξi ∈ {E,A,Æ}, ζ, ζi ∈ {E,Æ}, η, ηi ∈ {E,A}, where

i ∈ IN. Thus we use ζ for a pre-map expressing at least existence, and η for one
of the dual pre-maps.

2.4.1 Definitions Given a process B and a specification W,

EB.W = {x | ∃b ∈ B(x) : b ∈W} = {x | B(x) ∩W �= ∅},
AB.W = {x | ∀b ∈ B(x) : b ∈ W} = {x | B(x) ⊂W},
ÆB.W = {x | ∀+b ∈ B(x) : b ∈W} = (AB.W) ∩ (EB.W).

In short, ξB.W = {x | Lξb ∈ B(x) : b ∈W}.
The cone B(x) is defined in § 2.1. The pre-map A allows blocking, viz. inex-

istence of trajectories, but E and Æ forbid it: for instance, we have A∅.W = V
whereas E ∅.W = ∅ and Æ ∅.W = V ∩ ∅ = ∅. Both A and Æ can be defined
from E since AB.W = −EB.−W.

Note There is an alternative way to define preconditions, in terms of sets of cones
associated with a process B. Each set represents the selection mode defined by
a pre-map; each selected cone is a subset of B:

EB = {{b} | b ∈ B},
AB = {B},
ÆB = {B | B �= ∅}.

Here, ξ ∈ 2[]V → 22[]V
maps processes to sets of cones and ξB ∈ 22[]V

is a set
of cones for any B ∈ 2[]V .

The precondition of ξB wrt. a specification W is then obtained as follows,
where Pre ∈ 22[]V → (2[]V → 2V) is a generic pre-map:

Pre.ξB.W = {x | ∃B0 ∈ ξ(B(x)) : B0 ⊂W}.

Iterative Synthesis of Control Guards 281

2.4.2 Remarks

Predicate transformers The pre-map Æ is a temporal generalization of the
predicate-transformer wp [Dij76]. For a given program, wp transforms a post-
condition into a precondition, viz. a set of points into a set of points. For a given
process, Æ transforms a specification into a precondition, viz. a process into a
set of points. Both wp and Æ express universality and existence.

Path quantifiers The pre-maps E and A are analogous to the path quantifiers
in branching-time temporal logics [CGP99, DN00]. The pre-map Æ corresponds
to no specific path-quantifier.

Operational interpretation From any x in the precondition EB.W, there exists
some B(x)-trajectory which belongs to W . To find one often requires a sys-
tematic search among the B(x)-trajectories. On the other hand, from any x in
ÆB.W, each B(x)-trajectory belongs to W and at least one exists. Exhaustive
exploration is then not needed. It is thus worthwhile to replace the process B
by B′ ⊂ B such that the precondition ÆB′.W is as large as possible.

2.4.3 Properties Assume P, Q ⊂ V, B, B′ ⊂ []V, and specifications W, W ′.

(a) Begin set: ζB.P�Q ⊂ P.

(b) Duality: −EB.W = AB.−W .
(c) Monotonicity: ζB.W ⊂ ζB.(W ∪W ′).
(d) Chop decomposition for processes: given B ⊂ [∗]V,

E(B; B′).P�Q
= EB.P�Q�(EB′.Q�Q) ∪ EB.P�(EB′.P�Q) in general,
= EB.P�(EB′.P�Q) if Q ⊂ P .
Proof: by §§ 2.2.1.a, 2.3.2.b and the equality (P�P)�Q = P�Q.
Similarly for Æ instead of E :

Æ(B; B′).P�Q = ÆB.P�(ÆB′.P�Q) if Q ⊂ P.

(e) For a deterministic process B (§ 2.1), EB.W = AB.W = ÆB.W. Moreover,
EId.P�P = AId.P�P = ÆId.P�P = P.

(f) Case of pre-restrictions: by § 2.4.1, given Pi ⊂ V, Bi ⊂ []V for i ∈ I,

E
⋃

i∈I(Pi ⇀ Bi).W =
⋃

i∈I Pi ∩ (EBi.W)
A

⋃
i∈I(Pi ⇀ Bi).W =

⋂
i∈I(−Pi ∪ABi.W).

In particular, A
⋃

i∈I Bi.W =
⋂

i∈I ABi.W.

Note Chop decomposition (d) allows to decompose a proof into sub-proofs. It
is thus similar to compositional proof rules in interval temporal logic [Mos98,
Eqn (1)]. In general, it does not hold for the pre-map A which permits blocking;
for instance, A(B; ∅).P�Q = A∅.P�Q = V whereas AB.P�(A∅.P�Q) =
AB.P�V.

282 Michel Sintzoff

2.4.4 Three Classical Properties of Dynamics Fundamental properties of
dynamics can be expressed in terms of preconditions.

Let P ⊂ V. A trajectory b stays in P iff b ∈ P�P . It reaches P iff b ∈ V �P .

(a) Invariance without Termination, a.k.a. Safety For each x in the precondition
ÆBω.P�P, each Bω-trajectory beginning with x stays in P and does not ter-
minate, and at least one such trajectory exists. Given the Non-Zeno assumption
(§ 2.2.2), non termination implies infinite duration.

Similarly, for each x in EBω.P�P, there exists at least one Bω-trajectory
which stays in P and never terminates. This precondition is akin to a viability
domain [Aub91].

(b) Inevitability with Invariance, a.k.a. Safe Reachability Assume Q ⊂ P. For
each x in the precondition ÆB∗.P�Q, all trajectories in the non-empty cone
B∗(x) stay in P and reach Q.

The precondition ÆBω .P�Q = ÆB∗.P�(ÆBω.Q�Q) contains the points
x such that all trajectories in the non-empty cone Bω(x) stay in P for a finite
duration and afterwards stay in Q for an infinite duration. This is a persistence
property and can be expressed in terms of (a), (b) and chop decomposition.

(c) Liveness, a.k.a. Recurrence The precondition ÆBω.(V �P)ω contains the
points x such that all trajectories in the non-empty cone Bω(x) do, from each
time value, reach P .

Thus, the Bω-trajectories beginning in this precondition verify the temporal-
logic formula ��P.

2.5 Computation of Preconditions for Processes

We present a procedure for computing preconditions ζB.W . This procedure
is not always effective because it does not treat all dense-time processes, and
because limits of infinite or transfinite iterations may be needed. The procedure
is effective at least in the case of discrete T and finite V .

The computation of ζB.W follows the structure of B. The specification W is
restricted to P�Q where P, Q ⊂ V . We first detail the computation of EB.P�Q.
The computation of ÆB.P�Q is similar and summarized in a last case.

2.5.1 Case of Relational Processes If r ⊂ V 2 and R is the r-based process,
then ER.P�Q results from elementary relational computations:

ER.P�Q
= (P ∩Q) ∩ r˘(Q) ∪ P ∩ r˘(P ∩Q) in general, or
= P ∩ r˘(P ∩Q) if r ⊂ (−Q)× V,
= P ∩ r˘(Q) if P ⊂ Q ∨Q ⊂ P,
= P ∩ r˘(P) if P = Q.

Iterative Synthesis of Control Guards 283

Proof: Let T = IN. For each b = (1, g) ∈ R :

(1, g) ∈ P�Q

≡ g.0 ∈ P ∧ {g.0, g.1} ⊂ Q ∨ {g.0, g.1} ⊂ P ∧ g.1 ∈ Q by § 2.3.2.b,
≡ g.0 ∈ P ∩Q ∧ g.1 ∈ Q ∨ g.0 ∈ P ∧ g.1 ∈ P ∩Q.

Hence,
ER.P�Q

= {x0 | ∃(x0, x1) ∈ r : x0 ∈ P ∩Q ∧ x1 ∈ Q ∨ x0 ∈ P ∧ x1 ∈ P ∩Q}
by § 2.4.1,

= (P ∩Q) ∩ r˘(Q) ∪ P ∩ r˘(P ∩Q).

2.5.2 Case of Sequential and Repeated Processes We repeatedly decom-
pose chops (§ 2.4.3.d).

2.5.3 Case of Concurrent Processes They are reduced to relational, se-
quential or iterative processes, by distributivity and relational simplification
(§ 2.2.3.e,f).

2.5.4 Case of Iterative Processes Fixed points are defined and computed as
follows. We assume Q ⊂ P ⊂ V, B ⊂ [∗]V .

(a) Preconditions for finitely iterated processes

EB∗.P�Q = µY : [Q ∪EB.P�Y]

This least fixed-point is defined in the complete lattice 2V of subsets of V, and
it is computed by the iteration

Y (0) = ∅, Y (n+1) = Q ∪EB.P�Y (n).

The function Y �→ Q ∪ EB.P�Y transforms a set of points into a set of
points since the precondition EB.P�Y is a set of points. Monotonicity follows
from §§ 2.3.2.d, 2.4.3.c. Hence

Y (n+1) = Y (n) ∪X(n), where X(0) = Q, X(n+1) = EB.P�X(n).

The property X(n) = EBn.P�Q is verified by induction as follows, for n ≥ 0.

Basis: X(0) = EId.P�Q = P ∩Q = Q by defns §§ 2.1, 2.4.1.

Induction step: assume X(n) = EBn.P�Q; then,

X(n+1)

= EB.P�(EBn.P�Q)
by the defn of X(n+1) and the induction hypothesis,

= E(B; Bn).P�Q by chop decomposition (§ 2.4.3.d),
= EBn+1.P�Q by defn of repetition (§ 2.2.1.a).

284 Michel Sintzoff

(b) Preconditions for infinitely iterated processes
EBω .P�P = νZ : [EB.P�Z].

This greatest fixed-point is defined in the complete lattice 2P , and is computed
by the iteration

Z(0) = P, Z(n+1) = EB.P�Z(n).

Given § 2.4.3.a,c,d, Z(n+1) = EBn.P�(EB.P�P) ⊂ Z(n).
The property Z(n) = EBn.P�P is proven by induction, as in (a).

Notes

1. For a repetition Bn, we clearly have EBn.P�Q = X(n) : this is the inductive
property verified in (a).

2. The simplifying assumption Q ⊂ P is not essential (§ 2.4.3.d).
3. The term P�Y is similar to the constructs using Uq and Reach in [Asa00,

TLS00]; cf. § 2.3.4.
4. The fixed point νZ : [EB.P�Z] in 2P equals νZ : [EB.P�(Z ∩ P)] in 2V .

We use the first expression for simplicity.

2.5.5 Case of Dense-Time Processes Assume P�Q is discretely observable
(§ 2.3.3) in a dense-time process B, and BIN is the discrete-time sampling (§ 2.1)
of B. Then ζB.P�Q = ζBIN .P�Q which is computable by § 2.5.1-4.

The duration of the discrete steps depends on the regularity of the B-
trajectories. By a suitable time re-scaling, any time quantum in B can match
the time unit in BIN .

2.5.6 Case of Æ-preconditions The computation of ÆB.P�Q is defined
by a systematic adaptation of §§ 2.5.1-5, using chop decomposition (§ 2.4.3.d).
In particular,

ÆB∗.P�Q = µY : [Q ∪ÆB.P�Y],
computed in 2V by

Y (0) = Q,

Y (n+1) = Y (n) ∪X(n), where X(0) = Q, X(n+1) = ÆB.P�X(n).

The property X(n) = ÆBn.P�Q, for n ≥ 0, is verified as in § 2.5.4.a.

3 Coprocesses and Their Preconditions

Introduction In order to express different interaction patterns, e.g. cooperation
vs competition, we introduce “coprocesses” composed of applications of pre-maps
to processes. That term hints at the interaction between processes bound to
alternative decision-modes. The coprocesses EB0 and AB1 can be respectively
seen as the proponent and the opponent in a finite, sequential, noncooperative
game with two players. The max-min dynamics of this game can be defined by the
iterative coprocess (EB0;AB1)∗. The specification could be (−Win1)�Win0,

Iterative Synthesis of Control Guards 285

where Win0 and Win1 are the winning sets of states for the proponent and the
opponent, respectively.

Game dynamics can thus be described by coprocesses using A and E; sim-
ilarly, game trees can be generated by and/or-programs [Har80]. Coprocesses
may also model reactive or hybrid systems, contracts [BaW98] or alternating
transition systems [Hen00]. The interplay between the pre-maps E and A is
characterized by that between ∃ and ∀ (§ 2.4.1). So, the interaction pattern in a
coprocess is determined by the structure of pre-map alternations in it.

Coprocesses and their preconditions are defined in the following Sections.
These preconditions can also be understood in terms of associated cones we
introduce informally. Given a coprocess S, an S-cone is a cone generated as
follows: the components of its trajectories belong to component processes of S
and are collected according to the corresponding pre-maps (§ 2.4.1-Note). As an
example, let S be (EB1;ÆB2); then there exists one distinct S-cone ({b1}; B2)
for each trajectory b1 ∈ B1 such that B2(End.b1) �= ∅. The set of S-cones is
equivalent to the game-tree for S. The precondition S.W is the set of points each
of which begins at least one S-cone contained in W : from each such point, a
winning strategy exists.

Given a coprocess S, an S-trajectory is an element of an S-cone, i.e. a BS-
trajectory where the process BS is obtained by removing the pre-maps from S.
The duration of S is finite iff the duration of each S-trajectory is finite.

Specifications and coprocesses respectively correspond to temporal formulae
and their models [CGP99]; pre-maps are similar to path quantifiers (§ 2.4.2). We
do not use path quantifiers in specifications given the limited problems consid-
ered in this paper. We use pre-maps in coprocesses in order to express different
roles for players in games.

3.1 Structure of Coprocesses

A basic coprocess ξB is the application of a pre-map ξ to a process B; it trans-
forms a specification into a precondition, viz. ξB ∈ 2[]V → 2V . A concurrent
coprocess is a concurrent composition of basic or concurrent coprocesses. A se-
quential coprocess is a sequential composition of basic, concurrent or sequential
coprocesses. An iterative coprocess is an iterative composition of basic, concur-
rent or sequential coprocesses. A coprocess S ∈ 2[]V → 2V is a basic, concurrent,
sequential or iterative coprocess.

This stratified structure is restrictive: for instance, concurrent composition of
sequential coprocesses is excluded. The resulting coprocesses are more tractable,
and yet not trivial.

The preconditions for basic and composed coprocesses are respectively de-
fined in § 2.4.1 and in the Sections below. Symbols for coprocess compositions
are the same as for process compositions.

3.2 Sequential Composition of Basic Coprocesses

We define preconditions for sequential compositions of basic coprocesses only, in
order to begin with a simple presentation of typical definitions and properties.

286 Michel Sintzoff

We assume B, B′, Bi are processes (i ∈ IN), W, W ′ are specifications, and
P, Q ⊂ V.

3.2.1 Definition We first give a simple case, where B1 ⊂ [∗]V, and then the
m-ary one :

(EB1;ÆB2).W = {x | ∃b1 ∈ B1(x) : ∀+b2 ∈ B2(End.b1) : (b1; b2) ∈W},

(ξ1B1; · · · ; ξiBi; · · · ; ξmBm).W
= {x | Lξ1b1 ∈ B1(x) : · · · : Lξibi ∈ Bi(End.bi−1) :

· · · : Lξmbm ∈ Bm(End.bm−1) : (b1; · · · ; bi; · · · ; bm) ∈ W}.

Note This precondition may be defined in terms of sets of cones; see the introduc-
tion above and the note in § 2.4.1. Assume S = (EB1;ÆB2). Let S(x) ∈ 22[]V

be the set of S-cones beginning with x ∈ V :
S(x) = {{b1}; B2 | b1 ∈ B1(x) ∧ (B2(End.b1) �= ∅)}.

Then the precondition of S wrt. a specification W is
Pre.S.W = {x | ∃B ∈ S(x) : B ⊂W}.

3.2.2 Properties We assume B1 ⊂ [∗]V, B2 ⊂ []V.

(a) Duality: −(η1B1; η2B2).W = (η∼
1 B1; η∼

2 B2).−W.

(b) Monotonicity: (ζ1B1; ζ2B2).W ⊂ (ζ1B1; ζ2B2).(W ∪W ′),
(c) Chop decomposition for basic coprocesses:

(EB1;ÆB2).P�Q
= EB1.P

�Q�(ÆB2.Q
�Q) ∪EB1.P

�(ÆB2.P
�Q) in general,

= EB1.P
�(ÆB2.P

�Q) if Q ⊂ P .
Proof: by § 2.3.2.b, as for § 2.4.3.d.
Similarly,

(ζ1B1; ζ2B2).P�Q = ζ1B1.P
�(ζ2B2.P

�Q) if Q ⊂ P.

(d) Case of pre-restrictions: assume Q ⊂ P ⊂ V, B ⊂ []V, Pi ⊂ V, Bi ⊂ [∗]V,
for i ∈ I. By § 3.2.1, as in § 2.4.3.f,

(E
⋃

i∈I(Pi ⇀ Bi); ζB).P�Q =
⋃

i∈I Pi ∩ (EBi; ζB).P�Q,

(A
⋃

i∈I(Pi ⇀ Bi); ζB).P�Q =
⋂

i∈I(−Pi ∪ (ABi; ζB).P�Q).

Hence (Æ
⋃

i∈I(Pi ⇀ Bi); ζB).P�Q equals the conjunction of these two
preconditions, since (∀+b ∈ B : E) ≡ (∃b ∈ B : E) ∧ (∀b ∈ B : E).

3.3 Concurrent Composition of Basic Coprocesses

We need to express a logical ordering between quantifiers, viz. between the pre-
maps of branches, without introducing additional constraints on the dynamics.

Assume B1 ⊂ []V1, B2 ⊂ []V2 are processes, and W, W ′ ⊂ [](V1 × V2) are
specifications.

Iterative Synthesis of Control Guards 287

3.3.1 Definition In the case of a local concurrent composition, we have

(ξ1B1 ⊗ ξ2B2).W

= {(x1, x2) | Lξ1b1 ∈ B1(x1) : Lξ2b2 ∈ B2(x2) : b1 ⊗ b2 ∈W}.
E.g., (EB1 ⊗AB2).W = {(x1, x2) | ∃b1 ∈ B1(x1) : ∀b2 ∈ B2(x2) : b1 ⊗ b2 ∈W}.
In the case of a global concurrent composition, where Gi, Gj ⊂ V1 × V2, Bi ⊂
[]V1, B′

j ⊂ []V2, we have for instance

(E
⋃

i∈I Gi ⇀ Bi ‖Æ
⋃

j∈J G′
j ⇀ B′

j).W

= {(x1, x2) | ∃i ∈ I : [(x1, x2) ∈ Gi ∧ ∃b ∈ Bi(x1) :
[∀j ∈ J : ((x1, x2) ∈ G′

j ⇒ ∀+b′ ∈ B′
j(x2) : b⊗ b′ ∈ W)

∧ ∃j ∈ J : ((x1, x2) ∈ G′
j ∧ ∀+b′ ∈ B′

j(x2) : b⊗ b′ ∈W)]]}.

3.3.2 Properties Assume B1, B2 are concurrent branches.

(a) Duality: −(η1B1‖η2B2).W = (η∼
1 B1‖η∼

2 B2).−W.

(b) Monotonicity: (ζ1B1‖ζ2B2).W ⊂ (ζ1B1‖ζ2B2).(W ∪W ′).

3.4 Sequential Composition with Concurrent Coprocesses

Let be processes B1 ⊂ [∗]V1, B2 ⊂ [∗]V2, B3 ⊂ [∗]V3, B ⊂ [](V1 × V2), and
specifications W, W ′ ⊂ [](V1 × V2), W ′′ ⊂ []((V1 × V2)× V3).

3.4.1 Definition We give a typical case:

((ξ1B1 ⊗ ξ2B2); ξB).W = {(x1, x2) | Lξ1b1 ∈ B1(x1) : Lξ2b2 ∈ B2(x2) :

Lξb ∈ B(End.(b1 ⊗ b2)) : ((b1 ⊗ b2); b) ∈W}.
Cases with global concurrency are obtained by systematic adaptations (§ 3.3.1).
The general definition of preconditions for sequential coprocesses is obtained by
combining the definitions given here and in § 3.2.1. The case of m-ary concurrent
coprocesses is similar: e.g.,

((ξ1B1 ⊗ ξ2B2)⊗ ξ3B3).W ′′

= {((x1, x2), x3) | Lξ1b1 ∈ B1(x1) : Lξ2b2 ∈ B2(x2) :

Lξ3b3 ∈ B3(x3) : (b1 ⊗ b2)⊗ b3 ∈W ′′}.
Given a basic, concurrent or sequential coprocess S, the repetition Sn is

defined as follows, for n, m ∈ IN and m < n:

S0 = Æ Id, Sm+1 = Sm; S.

288 Michel Sintzoff

3.4.2 Properties

(a) Duality: −((η1B1‖η2B2); ηB).W = ((η∼
1 B1‖η∼

2 B2); η∼B).−W.

(b) Monotonicity: ((ζ1B1‖ζ2B2); ζB).W ⊂ ((ζ1B1‖ζ2B2); ζB).(W ∪W ′).

(c) Chop decomposition for coprocesses: assume Q ⊂ P ⊂ V, S is a basic,
concurrent or sequential coprocess, S′ is a basic or concurrent one, and both
have a finite duration and only use the non-blocking pre-maps E or Æ; then

(S; S′).P�Q = S.P�(S′.P�Q).

This property generalizes § 3.2.2.c. Here is the proof for a typical case:

((ζ1B1 ⊗ ζ2B2); ζB).P�Q
= {(x1, x2) | Lζ1b1 ∈ B1(x1) : Lζ2b2 ∈ B2(x2) :

Lζb ∈ B(End.(b1⊗b2)) : ((b1⊗b2); b) ∈ P�Q} by defn § 3.4.1,
= {(x1, x2) | Lζ1b1 ∈ B1(x1) : Lζ2b2 ∈ B2(x2) :

(b1 ⊗ b2) ∈ P�(ζB.P�Q)} by § 2.3.2.b,
= (ζ1B1 ⊗ ζ2B2).P�(ζB.P�Q) by defn § 3.3.1.

3.5 Iterative Composition of Coprocesses

3.5.1 Assumptions The fixed-point definitions of preconditions for iterative
processes (§ 2.5.4) depend on chop decomposition for processes (§ 2.4.3.d). The
same holds for iterative coprocesses wrt. § 3.4.2.c. A coprocess S to be iterated
must thus verify the following conditions:

(i) S is a basic, concurrent or sequential coprocess with pre-maps E or Æ only,
(ii) the duration S is finite.

The Non-Zeno assumption (§ 2.2.2) also concerns coprocesses: for each considered
coprocess S, the duration of each S-trajectory is bounded below by a non-Zeno
time.

The least and greatest fixed-points below generalize those defining precondi-
tions for iterative processes. The structure of these fixed-point definitions match
that of iterative coprocesses.

3.5.2 Preconditions for Finitely Iterated Coprocesses

S∗.P�Q = µY : [Q ∪ S.P�Y].

This fixed point is defined in the complete lattice 2V and is computed by

Y (0) = ∅, Y (n+1) = Q ∪ S.P�Y (n).

Thanks to monotonicity (§§ 2.3.2.d, 3.2.2.b),

Y (n+1) = Y (n) ∪X(n), where X(0) = Q, X(n+1) = S.P�X(n).

The property X(n) = Sn.P�Q is proven as in § 2.5.4, using §§ 3.4.2.c, 3.5.1.

Iterative Synthesis of Control Guards 289

3.5.3 Preconditions for Infinitely Iterated Coprocesses

Sω.P�P = νZ : [S.P�Z].

This fixed point is defined in the complete lattice 2P and is computed by

Z(0) = P, Z(n+1) = S.P�Z(n).

The property Z(n) = Sn.P�P is proven as in § 2.5.4, using §§ 3.4.2.c, 3.5.1.
Given §§ 3.2.1, 3.4.1, the set Z(ωIN) is thus characterized by an ωIN -length

∀/∃ formula.

3.6 Computation of Preconditions for Coprocesses

The procedure for computing preconditions for coprocesses follows the stratified
structure of coprocesses. It is not always effective (§ 2.5). We only tackle speci-
fications on the form P�Q for Q ⊂ P ⊂ V. If Q ⊂ P does not hold, the general
cases in §§ 2.3.2.b,c, 3.4.2.c should be used.

Case of basic coprocesses See § 2.5.

Case of concurrent coprocesses See § 3.3.1. As an example, we detail the case of
local relational branches. Assume, for i = 1, 2 : ri ⊂ Vi × Vi, Ri is ri-based, and
Q ⊂ P ⊂ V1 × V2. Then, by §§ 2.2.3.f, 2.3.2.b,

(ζ1R1 ⊗ ζ2R2).P�Q
= {(x1, x2) | Lζ1(x1, y1) ∈ r1 : Lζ2(x2, y2) ∈ r2 : ((x1, x2), (y1, y2)) ∈ P ×Q}

which is a relational computation.
To reduce the duration of concurrent coprocesses, one may reduce that of

concurrent processes by using distributivity properties (§ 2.2.3.e).

Case of sequential and repeated coprocesses Their preconditions are decomposed
into preconditions for basic or concurrent coprocesses, by repeatedly decompos-
ing chops (§§ 3.2.2.d, 3.4.2.c).

Case of iterative coprocesses The fixed points in § 3.5 are computed by iterations.
Each iterate is computed using the previous cases since S is a basic, concurrent
or sequential coprocess.

3.7 Discrete-Decision Games and Winning Regions

Games are pairs of coprocesses and specifications. Winning regions are their
preconditions. The definitions are detailed hereafter.

A (noncooperative, iterative) game coprocess is a coprocess S∞ where the
proponent is a distinguished coprocess occurring in S and using the pre-map E
or Æ; the opponent is the remainder of S. A game is a pair (S∞, W) consisting
of a game coprocess S∞ and a specification W . The winning region of a game
(S∞, W) is the precondition S∞.W. Moves and plays are S- and S∞-trajectories,

290 Michel Sintzoff

respectively. The game is finite, resp. infinite, if the duration of the plays is finite,
resp. infinite.

Strategic decisions are made by players when their moves are selected, viz.
when their pre-maps are elaborated. Given the stratification of coprocesses
(§ 3.1), any two decisions generated by a coprocess S are generated either by
a concurrent composition of coprocesses in S or by a sequential or iterative one;
they are then said to be concurrent or sequential, respectively. A coprocess S is
a discrete-decision coprocess iff any two sequential decisions generated by S are
separated by a time interval bounded below by a non-Zeno time.

A discrete-decision game is a game (S∞, W) where S∞ is a discrete-decision
game-coprocess verifying two additional assumptions. Firstly, the proponent co-
process ζB occurs at the left-most position in S, like a dominating existential
quantifier: we seek a winning strategy for the proponent. Secondly, the choice set
of the proponent is finite, namely B is a finite union

⋃
i∈I Bi or

⋃
i∈I Gi ⇀ Bi

(§ 2.2.1.b) where each Bi is deterministic. We could thus use the more complete
expression “discrete-decision, finite-choice, dynamical game”, where “dynami-
cal” refers to dense- or discrete-time dynamics.

The Non-Zeno assumption entails each coprocess is a discrete-decision one.
Let us check this. For any two sequential decisions in any coprocess S, the first
one is generated by a basic coprocess S0 in S. Hence their occurrence times are
separated by at least the duration of an S0-trajectory, which is bounded below
by a non-Zeno time (§ 3.5.1). Hence S is a discrete-decision coprocess.

3.8 Related Work on Discrete-Decision Coprocesses

We briefly discuss related work on discrete-decision coprocesses such as reactive
and hybrid systems. The time set is INω× IR+

ω (§ 2.2.2); the time set INω may be
represented by INω × {0}. We use relational processes R, R′, Ri ⊂ [(1, 0)]V and
durative ones B, Bi ⊂

⋃
d∈IR+ [(0, d)]V , for i = 1, 2. In discussions such as the

present one, we do not consider the difference between A and Æ (§ 2.4.1).
Coprocesses (ER;AR′)ω on a finite state-space, e.g. in the case of Büchi

automata, are treated in [BüL69, TB70, RW89]. Simple cooperative coprocesses
(ER)ω on infinite state-spaces are considered in [vLS79]. Noncooperative copro-
cesses (ER;AR′)ω on infinite state-spaces are studied in [MP95, BaW98]. The
local concurrent case Sω = (ER1‖AR2)ω is investigated in [AMP95, Hen 00];
the precondition S.V �Q is analogous to the set ΨCPre1

S (Q) in [Hen00].
Coprocesses (ER;AB)ω model the hybrid systems considered in [AMP95,

Asa00]. Richer coprocesses such as ((ER1‖AR2);A(B1‖B2))ω model two con-
current hybrid systems, with control transitions in R1, R2 and plant trajectories
in B1, B2, respectively [TLS00]. Variant or dual forms of the until-operator are
introduced in [Asa00, TLS00] to take the durative B-trajectories into account
(§ 2.5.4-Note.3).

Quasi-discrete games and games with K-strategies [Isa65] are discrete-
decision games; they serve to approximate continuous-decision ones.

Iterative Synthesis of Control Guards 291

4 Iterative Synthesis of Winning Strategies

4.1 Preliminaries

4.1.1 Winning Transforms of Discrete-Decision Games Consider a
discrete-decision game (S∞, W) where the proponent is EB (§ 3.7). The win-
ning plays for the proponent result from the search-based selection-mode E.
This mode is to be strengthened into the search-free one Æ (§ 2.4.2).

As a consequence, we aim at restricting the proponent process B =
⋃

i∈I Bi

by the addition of guards Ci ⊂ V which exclude B-moves steering plays outside
of W . Let Bc be the union of pre-restrictions of the Bi’s, i.e. Bc =

⋃
i∈I Ci ⇀ Bi.

If the Ci’s only permit B-moves which steer plays inside the winning process W,
they are winning guards. In this case, the proponent EB can be replaced in S by
ÆBc. A winning transform of the discrete-decision game (S∞, W) is (S∞

c , W)
where Sc is the result of such a replacement. The winning transform represents a
finite-memory strategy since the winning guards do not need additional memory.
This winning strategy must be complete in the sense that S∞.W = S∞

c .W : the
reduction of B to Bc may not reduce the winning region.

The goal is to construct such winning guards iteratively, given a discrete-
decision game (S∞, W) and a proponent E

⋃
i∈I Bi, or E

⋃
i∈I Gi ⇀ Bi in a

concurrent coprocess.

4.1.2 Synthesis Problems We consider two basic properties of dynamics
(§ 2.4.4.a,b). Let P, Q ⊂ V.

(I) Invariance without Termination Given a discrete-decision game (Sω, P�P),
to find a winning transform (Sω

c , P�P) with the same winning region.

(II) Inevitability with Invariance Given a discrete-decision game (S∗, P�Q), to
find a winning transform (S∗

c , P�Q) with the same winning region.

4.1.3 Solution Method We extend to coprocesses the method used for action
systems [vLS79]. In the latter work, an action system amounts to an iteration
(ER)∞ of a basic, cooperative, relational coprocess on a finite or infinite state-
space. The idea is simple: the iterates C(n) which yield a winning region C

are structured as unions of iterates C
(n)
i which yield winning guards Ci. The

iteration function for C(n) is then refined into iteration functions for C
(n)
i .

We reuse the fixed-point definitions of winning regions (§§ 3.5, 3.7). Thus, the
chop decomposition (§ 3.4.2.c) is as useful for iterative synthesis as for iterative
analysis (§ 3.6). Following §§ 2 and 3, the synthesis methods below are defined
for dense and discrete time. However, as in §§ 2.5, 3.6, the iterative techniques
we propose are discrete or use discretization. Again, these techniques in general
require induction, and thus give rise to procedures which are not always effective.

292 Michel Sintzoff

4.1.4 Assumptions In the considered synthesis problems, we assume the fol-
lowing:

(a) S = (EB;AB′) where B =
⋃

i∈I Bi, , or S = ((EB‖AB′);AB′′) where
B is a left branch

⋃
i∈I Gi ⇀ Bi. The proponent is EB.

(b) Each process Bi is deterministic. Hence EBi = ÆBi = ABi (§ 2.4.3.e).
(c) The opponent coprocess does not block, viz. AB = ÆB (§ 2.4.1).

The assumption (a) may thus be replaced by S = (EB;ÆB′) or S =
((EB‖ÆB′);ÆB′′).

(d) S has a finite duration.
(e) Q ⊂ P ⊂ V .

Notes

1. The coprocesses EB and (EB‖AB′) are respectively equal to (EB;AId)
and ((EB‖AB′);AId), which are instances of (a).

2. By assumption (b), the non-determinism of B is entirely expressed by the
finite union

⋃
i∈I Bi (§ 2.1). The choice set in EB is thus finite. We do not

use the more general assumption B =
⋃

i∈I ÆBi because the composition of
coprocesses is restricted (§ 3.1).

3. Assumption (c) can be ensured by taking B ⊂ [d]V where d is sufficiently
small so that blocking B-trajectories are excluded in the time interval (0 : d).

4. Condition (i) in § 3.5.1 results from (c). Condition (ii) is (d).
5. The simplifying assumption (e) is not essential (§ 2.4.3.d).

4.2 Invariance without Termination

A point is loosing if it begins a play which leaves the set P or terminates. Loosing
points are iteratively removed from the initially given domains of proponent
moves. The set of remaining, winning points is a greatest fixed-point, as classical
for invariance during infinite time.

4.2.1 Sequential Proponent Let S = (EB;ÆB′); cf. § 4.1.4.c.

Problem To derive winning guards Ci ⊂ V such that

Sω.P�P = Sω
c .P�P, where Sc = (ÆBc;ÆB′) and Bc =

⋃
i∈I Ci ⇀ Bi.

Solution Let C be the winning region Sω.P�P (§ 3.5.3):

C =ν S.P�C.

The winning region C and the winning guards Ci are computed in the complete
lattice 2P by the following iterations, where Si = (EBi;ÆB′), i ∈ I and n ∈ IN :

C(n) =
⋃

i∈I C
(n)
i ,

C
(0)
i = P, C

(n+1)
i = Si.P

�C(n).

Iterative Synthesis of Control Guards 293

Proof The iterates C
(n)
i and C(n) have limits, by monotonicity: C

(n+1)
i ⊂ C

(n)
i

and C(n+1) ⊂ C(n). The limit of C(n) is the fixed point C because
C(0) = P, C(n+1) =

⋃
i∈I Si.P

�C(n) = S.P�C(n).

Since Bc ⊂ B, we have Sω
c .P�P ⊂ Sω.P�P . Given C = Sω.P�P , the require-

ment Sω
c .P�P = Sω.P�P is thus implied by C ⊂ Sω

c .P�P .
To prove the latter inclusion, let us verify that each S∞-trajectory beginning

in C =
⋃

i∈I Ci belongs to P�P and does not terminate. For each i, given
§ 4.1.4.b and the definition of C

(n)
i , we have Ci ⊂ (ÆBi;ÆB′).P�C. Thus,

each point in Ci begins (Bi; B′)-trajectories which all stay in P and reach some
Cj ⊂ C again. Hence P is invariant and termination is excluded. Hence C =⋃

i∈I Ci ⊂ Sω
c .P�P .

4.2.2. Concurrent Proponent Assume S =((EB‖ÆB′);ÆB′′) ⊂[∗](V1×V2),
where B =

⋃
i∈I Gi ⇀ Bi is a left branch, and Gi ⊂ V1 × V2, Bi ⊂ [∗]V1, for

i ∈ I.

Problem To derive winning global guards Ci ⊂ V1 × V2 such that
Sω.P�P = Sω

c .P�P,
where Sc = ((ÆBc‖ÆB′);ÆB′′) and Bc =

⋃
i∈I(Ci ∩Gi) ⇀ Bi.

Solution As in § 4.2.1, for Si = ((E(Gi ⇀ Bi)‖ÆB′);ÆB′′).

Proof Similar to the proof in § 4.2.1. In particular:
We have Ci ⊂ Gi∩((ÆBi‖ÆB′);ÆB′′).P�C. Thus, each point in Ci begins

((Bi‖B′); B′′)-trajectories all of which stay in P and reach C again. Hence P is
invariant and termination is excluded.

4.3 Inevitability with Invariance

A point is winning if it begins plays all of which stay in P and inevitably reach
Q. Winning points are iteratively added to the initially empty domains of pro-
ponent moves. The set of winning points is a least fixed-point, as classical for
inevitability.

4.3.1. Sequential Proponent Let S = (ER;ÆB).

Problem To derive winning guards Ci ⊂ V such that
S∗.P�Q = S∗

c .P�Q, where Sc = (ÆBc;ÆB′) and Bc =
⋃

i∈I Ci ⇀ Bi.

Solution Let C be such that Q ∪C is the winning region S∗.P�Q (§ 3.5.2):
C =µ S.P�Q ∪ S.P�C.

The set C and the winning guards Ci are computed in the complete lattice 2V

by the following iterations, where Si = (EBi;ÆB′), i ∈ I and n ≥ 1 :
C(n) =

⋃
i∈I C

(n)
i ,

C
(1)
i = Si.P

�Q, C
(n+1)
i = C

(n)
i ∪ (Si.P

�C(n))\C(n).

294 Michel Sintzoff

Proof Thanks to § 4.1.4.b, we have Si = (ÆBi;ÆB′). W.l.o.g., we assume Bi is
not applicable in Q, viz. Bi = (−Q ⇀ Bi).

The iterates C
(n)
i and C(n) have limits, by monotonicity (§ 3.5.2). The limit

of C(n) is the fixed point C because

C(0) =
⋃

i∈I Si.P
�Q = S.P�Q,

C(n+1) = (
⋃

i∈I C
(n)
i) ∪⋃

i∈I(Si.P
�C(n))\C(n) = C(n) ∪⋃

i∈I Si.P
�C(n).

Since Bc ⊂ B, we have S∗
c .P�Q ⊂ S∗.P�Q. Given Q ∪ C = S∗.P�Q, the

requirement S∗
c .P�Q = S∗.P�Q is thus implied by Q ∪ C ⊂ S∗

c .P�Q.
To prove the latter inclusion, let us verify that each S∞-trajectory beginning

in C belongs to P�Q. Assume, for i ∈ I and n ≥ 1,

D(n) =
⋃

i∈I D
(n)
i ,

D
(1)
i = C

(1)
i , D

(n+1)
i = C

(n+1)
i \C(n) = (Si.P

�C(n))\C(n).

Thus, C
(n+1)
i = C

(n)
i ∪ D

(n+1)
i and C =

⋃
n≥1 D(n). The difference sets D(n)

stratify C : for each x ∈ C, there is a unique n such that x ∈ D(n), because
D(n) ∩D(m) = ∅ if n �= m.

For all n ≥ 1, each S∞-trajectory beginning in D(n) is an Sn
c -trajectory

which has a finite duration, stays in P and ends in Q. This property is verified
by induction as follows.

Basis: Let be any x ∈ D(1) =
⋃

i∈I C
(1)
i =

⋃
i∈I Si.P

�Q. Hence each S∞-
trajectory b beginning with x begins in C

(1)
j and is an Sj-trajectory, for some

j ∈ I; it is then an S1
c -trajectory by definition of Bc. Since C

(1)
j = Sj .P

�Q,

the S1
c -trajectory b has a finite duration, stays in P and ends in Q. No

Sk-trajectory continues b since Bk = (−Q ⇀ Bk).
Induction step: Assume the thesis holds for n. Then:

Let be any x ∈ D(n+1) =
⋃

i∈I D
(n+1)
i ⊂ ⋃

i∈I Si.P
�C(n). Hence each S∞-

trajectory beginning with x has a prefix b1 which is an Sj-trajectory for some
j ∈ I. Each such b1 begins in D

(n+1)
j ⊂ Cj and is thus an S1

c -trajectory. It
has a finite duration, stays in P and ends with y ∈ C(n). Hence y ∈ D(n),
since x �∈ C(n).
Given the induction hypothesis, each S∞-trajectory beginning with y ∈ D(n)

is an Sn
c -trajectory bn which has a finite duration, stays in P and ends in Q.

By sequential composition of the S1
c -trajectory b1 and the Sn

c -trajectory bn,
each S∞-trajectory beginning with x ∈ D(n+1) is an Sn+1

c -trajectory (b1; bn)
which has a finite duration, stays in P and ends in Q.

Thus, for each n ≥ 1 and each x ∈ D(n), x ∈ S∗
c .P�Q. Hence Q ∪ C =

Q ∪⋃
n≥1 D(n) ⊂ S∗

c .P�Q.

4.3.2. Concurrent Proponent We merely summarize the results; the details
and proofs integrate §§ 4.2.2, 4.3.1.

Iterative Synthesis of Control Guards 295

Problem As in § 4.2.2, using the requirement S∗.P�Q = S∗
c .P�Q.

Solution As in § 4.3.1, for Si = (E(Gi ⇀ Bi)‖ÆB′);ÆB′′).

4.3.3 Remarks

Construction of a well-ordering The difference sets D(n) are well ordered by
their rank n, and the latter is decremented by each Sc-trajectory. This ranking
is related to value functions [BaO98, TLS00] and to minimum time-to-reach
functions [BCT02]. Value functions are defined by difference equations in the
discrete-time case and by differential equations in the dense-time case.

Consider classical synthesis methods for discrete-time games: iterations gen-
erate a winning region, an explicit well-ordering is found for the latter, and a
strategy function is then elaborated [GTW02 (§ 2.5.1), Tho95]. Here, iterations
directly generate winning guards while the well-ordering appears only in the
proof. Strategy functions are not used since strategies are represented by pro-
cess guards; this representation depends on the finiteness of choice sets (§ 3.7).

Simplification and deduction of winning guards If the considered game always
begins in the winning region C, then each winning guard Ci can be simplified
into C′

i such that C′
i ∩ C = Ci.

In Problem (I), the Ci’s can be deduced from the winning region C by means
of Ci = Si.P

�C. Here, the winning guards and the winning region are generated
in a common iteration (§ 4.2). This illustrates the approach can be used uniformly
for different properties of dynamics.

Synthesis vs. analysis The coprocess S may happen to be correct, in the sense
that the proponent EB may be replaced by ÆB, viz. Bc = B. To verify S
amounts thus to synthesize winning guards Ci such that (Ci ⇀ Bi) = Bi; no
restriction on B =

⋃
i∈I Bi is needed. This iterative verification is comparable

to a model-checking procedure in the case it finds no errors [CGP99].
The present approach is also related to a method developed in the context

of model checking [Cha00]. The latter considers temporal-logic queries about
finite-state, discrete-time systems, and presents a procedure for computing the
answers. This may be used for specification improvement and system inspection.

Non-deterministic strategies The proposed techniques generate winning guards
which may well have non-empty intersections. It is thus possible to obtain non-
deterministic winning strategies.

Alternative complete strategies The iteration scheme in § 4.3.1 is synchronous: it
increments the rank n of each iterate C

(n)
i at each iteration step. This iteration

scheme may well become asynchronous, provided it remains fair: some iterates
may progress more slowly than other ones, but none is left out forever [Cou78,
Ber00 (Vol. II, § 1.3.2)].

296 Michel Sintzoff

The winning guards generated by asynchronous iterations determine alter-
native winning strategies where moves may receive other priorities. These al-
ternative strategies are complete because fair asynchronous iterations preserve
the equality C =

⋃
i∈I Ci. Complete, alternative strategies determine different

coprocesses Sc.

Liveness The liveness problem (§ 2.4.4.c) could be tackled by using nested fixed-
points since Sω.(V �Q)ω = νX : [S∗.V �Q�X]; this is classical for finite-state
games [BüL69, Tho95]. Winning guards which ensure liveness would then be
synthesized by nested iterations.

Continuous-decision games If the strategic decisions in a game are continuous,
then the time set is dense. In continuous-decision coprocesses, the closest se-
quential decisions are separated by an infinitesimal time-interval. Accordingly,
iterative techniques (§§ 3, 4) should be replaced by differential ones [BaO98,
Vin00].

Discretizations Dense-time processes can be tackled by discrete-time sampling
(§ 2.5.5), and time-to-reach functions for dense time can be computed through
numerical discretization [BCT02]. Such discretizations may be organized in two
levels:

(i) The abstraction (or approximation) of dense-time processes by discrete-time
ones results in small-step iterations (§ 2.5).

(ii) The abstraction of continuous-decision coprocesses by discrete-decision ones
results in big-step iterations (§ 3.6).

Discrete-time dynamics (i) induce discrete-decision interactions (ii), but not
conversely: discrete-decision interactions in coprocesses may involve dense-time
dynamics in processes.

5 Discussions and Conclusions

We briefly review related work on synthesis, summarize the present contribu-
tions, discuss further work and conclude with a few observations.

5.1 Related Work on Synthesis of Strategies

For related work on discrete-decision coprocesses, see § 3.8. The two synthesis
problems discussed here are defined in § 4.1.2. Simple discrete-decision copro-
cesses are considered in § 4.1.4-Note.1. We use R, R′ for relational processes and
B, B′ for general ones. The proponent is ER.

Iterative Synthesis of Control Guards 297

Problem (I): Invariance without termination The classical solution for finite-
state games is semi-iterative [BüL69, TB70, RW89]: relational coprocesses
(ER;AR′)ω are considered; winning regions are synthesized iteratively; winning-
strategy functions are then extracted from these. Problem (I) is solved iteratively
for the cooperative coprocesses (ER)ω [vLS79]. In [AMP95, MPS95, Tho95,
BaW98, Hen00], it is solved by a semi-iterative method for systems on the form
(ER;AR′)ω or (ER‖AR′)ω. A similar approach is used in [AMP95, Asa00,
TLS00] for hybrid systems like (ER;AB)ω or ((ER‖AR′);AB)ω.

For Problem (I), there is not much difference between iterative techniques
and semi-iterative ones: the winning guards can be deduced from the winning
region (§ 4.3.3) [Asa00]. More significant problems, e.g. liveness, have been solved
by semi-iterative methods [Tho95]; they are not treated in this paper.

Problem (II): Inevitability with invariance Usually, the winning region of a finite-
state game ((ER;AR′)∗, P�Q) is generated iteratively, but not the winning
strategy: each state is given a rank during the computation of the iterates,
and the strategy function decreases this rank [BüL69, TB70, MPS95, Tho95,
BaW98]; see also § 4.3.3. An iterative method is available for the cooperative
coprocesses (ER)∗ [vLS79]. In [BKS98], the problem is solved by a systematic
elimination of cycles in trajectories. In [HLM01], control guards are derived it-
eratively in an approach related to § 4.3. The algorithms elaborated in the latter
two papers are respectively based on a graph model of discrete-event systems
and on an automata model of hybrid systems.

Regarding Problem (II), iterative techniques compare as follows with semi-
iterative ones. The winning guards generated by iterations directly determine a
winning strategy, whereas the explicit elaboration of a well-ordering and of an
associated strategy-function is less immediate, especially in the case of infinite
state-spaces. On the other hand, the proposed iterative techniques yield strate-
gies which are equivalent to those obtained by semi-iterative methods, at least in
the case of finite-state, discrete-time games and synchronous iterations (§ 4.3.3).

Computations for dense-time dynamics Qualitative problems can be reduced
to quantitative ones by using a binary set of quantities. Let us then look at
optimization problems.

Dense-time optimization problems can often be expressed by Hamilton-
Jacobi(-Bellman) differential equations based on a dense-time form of Bellman’s
principle of dynamic programming. These equations may be solved following
Bellman’s principle, as precised in viscosity solutions, or Pontryagin’s princi-
ple of optimality [BaC97, Ber00, Vin00, AgS02]. It could prove fruitful to use
such methods for computing preconditions for dense-time processes, in particular
when discontinuities render sampling inadequate.

Similar observations apply to continuous-decision games. The max-min ver-
sions of the optimization problems yield the Hamilton-Jacobi(-Bellman)-Isaacs
equations [Isa65, Lew94, BaC97, BaO98]. These can be solved by max-min vari-
ants of dense-time optimization methods. The iterative techniques used here
present a similar structure (§ 4.3.3). In the case of continuous-decision games,

298 Michel Sintzoff

the differential equations assume properties such as lower semicontinuity; in the
case of discrete-decision games, the iterations assume monotonicity properties.

5.2 Contributions

In the proposed framework, coprocesses integrate atomic moves with durative
ones, discrete-time dynamics with dense-time ones, and dynamics with their
selection modes. As to constructive design, iterative techniques serve to syn-
thesize guards which ensure basic dynamical properties. These techniques are
based on fixed points as also used in game analysis. Complete, finite-memory
winning-strategies can thus be generated iteratively for discrete-decision games
with finite choice-sets and dense- or discrete-time dynamics.

The present results combine known ones, are not very original, treat limited
problems so far, but may help to understand related approaches (§ 5.1). Note
that a paper on the synthesis of correct guards for cooperative action-systems
[vLS79] overlooks relevant previous work on the synthesis of winning strategies
for noncooperative games [BüL69, TB70].

5.3 Further Work

Case studies A few examples were investigated while elaborating the framework
and the synthesis techniques; they served both as guidelines and as test beds.
Substantial case-studies should be developed too. They would foster a better
grasp of the various approaches and improvements to methods of solution.

Framework It could prove fruitful to define coprocesses and specifications on
the basis of temporal µ-calculi and ω-regular algebras [DN00, GTW02]. More
properties of coprocesses should be established. Preconditions for processes and
coprocesses could be defined in terms of sets of cones for coprocesses; such sets
should then be given a general definition, after the example in § 3.2.1. The com-
putation of preconditions S.W should follow on an equal footing the structure
of the coprocess S and that of the specification W . The relationships between
discrete- and continuous-decision games should be analyzed thoroughly.

Unification We use one model, viz. that of discrete-decision coprocesses, two
properties, viz. safety and reachability, and two forms of coprocesses to be iter-
ated, viz. the sequential and concurrent ones. This yields two fixed-point equa-
tions and four solution techniques (§ 4), which have much in common. We may
think of an integrated compositional method for a wider class of discrete-decision
games. Other challenges exist: for instance, the use of stochastic processes; the
unification and elaboration of analytical and computational methods for solving
dense- and discrete-time problems efficiently; the synthesis of optimal strategies
for quantitative games.

Iterative Synthesis of Control Guards 299

Time refinement The synthesis of winning moves is no less important than that
of winning guards. The problem could be attacked by stepwise refinement as
follows. Firstly, an abstract game is designed using a simple time-set. Secondly,
a winning transform is synthesized. Thirdly, the winning transform is refined
into a concrete game using a more detailed time-set. Process-based versions of
refinement calculi should then be used [Lam94].

5.4 Conclusions

Discrete-decision games are characterized by the discreteness of strategic deci-
sions made by players. The difference between discrete- and dense-time dynamics
for players is secondary. In processes, time domains should thus be definable to-
gether with data domains.

Iterative approaches prove helpful: fixed-point definitions exhibit essential
patterns and iterations provide a clear basis for effective procedures. Iterative
schemes abstract differential ones; they should thus be investigated together.

Distinct frameworks are characterized by dense or discrete domains and by
infinite or finite ones. Discrete-decision, finite-choice, dynamical games form just
one class among many. This space should be explored systematically.

It is good to verify systems. It is better to verify systems or else to exhibit
errors, as in model checking. It is still better to verify systems or else to remove
errors, as in correctness-improving transformations. This is especially true if the
thinking effort and computing cost appear comparable for these three modes of
reasoning in system design.

Abstraction allows to analyze detailed, concrete systems in terms of simpler,
qualitative ones [Bro03, CoC00, Hen00]. However, abstraction amounts to reverse
refinement, the discovery of good abstractions appears as difficult as that of good
refinements, and the techniques often prove related. It seems thus reasonable to
consider synthesis and stepwise refinement on a par with analysis and stepwise
abstraction.

The classical theory of interaction in systems is game theory. It is well-advised
to take advantage of results in this field when developing models for cooperation
and interaction. An example is the game-based approach for security problems.
Clearly, the same holds wrt. control and optimization theory.

Dynamics of various kinds take part in the interactions between computing
systems and their environments. Computing science should thus cooperate with
mathematical analysis as actively as with algebra and logic. This would help
to establish a scientific basis which can be shared by software engineering and
classical engineering.

Acknowledgments

We gratefully acknowledge helpful comments by members of IFIP Working
Group 2.3 on Programming Methodology, Jean-Raymond Abrial, a referee and
Christophe Depasse.

300 Michel Sintzoff

References

[Abr96] Abrial, J.-R., The B-Book , Camdridge Univ. Press, Cambridge, 1996.
[AgS02] Agrachev, A.A., and Yu.L. Sachkov, Control Theory from the Geometric View-

point , Lecture Notes, Intern. School Advanced Studies, Trieste, 2002.
[AMP95] Asarin, E., O. Maler and A. Pnueli, Symbolic controller synthesis for discrete

and timed systems, in: Proc. 2nd Workshop Hybrid Systems, LNCS 999, pp.1-20,
Springer, Berlin, 1995.

[Asa00] Asarin, E., O. Bournez, T. Dang, O. Maler and A. Pnueli, Effective synthesis
of switching controllers for linear systems, Proc. IEEE 88 (7):1011-1025, 2000.

[Aub91] Aubin, J.-P., Viability Theory , Birkhaüser, Boston, 1991.
[BaC97] Bardi, M., and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions

of Hamilton-Jacobi-Bellman Equations, Birkhaüser, Boston, 1997.
[BaO98] Başar, T., and G.J. Olsder, Dynamic Noncooperative Game Theory , Soc.

Industr. and Appl. Math., Philadelphia, 1998.
[BaW98] Back, R.-J., and J. von Wright, Refinement Calculus: A Systematic Intro-

duction, Springer, Berlin, 1998.
[BCT02] Bayen, A.M., E. Crück and C.J. Tomlin, Guaranteed overapproximations

of unsafe sets for continuous and hybrid systems: solving the Hamilton-Jacobi
equation using viability techniques, in: Proc. 5th Workshop Hybrid Systems, LNCS
2289, pp. 90-104, Springer, Berlin, 2002.

[Ber00] Berstekas, D.P., Dynamic Programming and Optimal Control, Athena Scien-
tific, Belmont, Mass., 2nd ed., Vol.I, 2000, and Vol. II, 2001.

[BKS98] Barbeau, M., F. Kabanza, and R. St-Denis, A method for the synthesis
of controllers to handle safety, liveness, and real-time constraints, IEEE Trans.
Automatic Control 43 (11): 1543-1559, 1998.

[Bro03] Broy, M., Abstractions from time, in: A. McIver and C. Morgan (eds.), Pro-
gramming Methodology, pp. 95-107, Springer, Berlin, 2003.

[BüL69] Büchi, J.R., and L.H. Landweber, Solving sequential conditions for finite-state
operators, Trans. AMS 138 :259-311, 1969.

[CGP99] Clarke, E.M., O. Grumberg and D.A. Peled, Model Checking, MIT Press,
Cambridge, 1999.

[Cha00] Chan, W., Temporal-logic queries, in: Proc. 12th Conf. Computer-Aided Ver-
ification , LNCS 1855, pp.450-463, Springer, Berlin, 2000.

[CoC00] Cousot, P., and R. Cousot, Temporal abstract interpretation, in: Proc. 25th
Symp. Principles Programming Lang., pp.12-25, ACM, New-York, 2000.

[Cou78] Cousot, P., Méthodes Itératives de Construction et d’Approximation de
Points Fixes d’Opérateurs Monotones sur un Treillis, Analyse Sémantique des Pro-
grammes, Thèse de Doctorat Sci. Math., Univ. Sci. et Médicale de Grenoble, 1978.

[Dij76] Dijkstra, E.W., A Discipline of Programming , Prentice Hall, Englewood Cliffs,
1976.

[DN00] Davoren, J.M., and A. Nerode, Logics for hybrid systems, Proc. IEEE
88 (7):985-1010, 2000.

[GTW02] Grädel, E., W. Thomas, and Th. Wilke (eds), Automata, Logics, and Infinite
Games, LNCS 2500, Springer, Berlin, 2002.

[Har80] Harel, D., And/or programs: a new approach to structured programming,
ACM TOPLAS 2 (1):1-17, 1980.

[Hen00] Henzinger, Th.A., R. Majumdar, F. Mang and J.-F. Raskin, Abstract inter-
pretation of game properties, in: Proc. 7th Static Analysis Symp., LNCS 1824,
pp.220-239, Springer, Berlin, 2000.

Iterative Synthesis of Control Guards 301

[HLM01] Heymann, M., F. Lin, and G. Meyer, Control of rate-bounded hybrid systems
with liveness constraints, in: F. Colonius et al. (eds), Advances in Mathematical
Systems Theory, pp.151-168, Birkhaüser, Boston, 2001.

[Hoa85] Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall, Englewood
Cliffs, 1985.

[Isa65] Isaacs, R., Differential Games, Wiley, New-York, 1965. Republished: Dover,
New-York, 1999.

[Lam94] Lamport, L., The temporal logic of actions, ACM Trans. Programming Lan-
guages and Systems 16(3): 872-923, 1994.

[Lew94] Lewin, J., Differential Games, Springer, London, 1994.
[Lyg03] Lygeros, J., K.H. Johansson, S.N. Simić, J. Zhang and S.S. Sastry, Dynamical

properties of hybrid automata, IEEE Trans. Automatic Control 48(1): 2-18, 2003.
[Mos98] Moszkowski, B., Compositional reasoning using interval temporal logic and

Tempura, in: Compositionality: The Significant Difference, LNCS 1536, pp. 439-
464, Springer, Berlin, 1998.

[MPS95] Maler, O., A. Pnueli, and J. Sifakis, On the synthesis of discrete controllers
for timed systems, in: Proc. 12th Symp. Theor. Aspects of Comput. Sci., LNCS
900, pp.229-242, Springer, Berlin, 1995.

[Ros98] Roscoe, A. W., The Theory and Practice of Concurrency, Prentice Hall, Lon-
don, 1998.

[RW89] Ramadge, P.J., and W.M. Wonham, The control of discrete-event systems,
Proc. IEEE 77 : 81-98, 1989.

[Si96] Sintzoff, M., Abstract verification of structured dynamical systems, in: Proc. 3rd
Workshop Hybrid Systems, LNCS 1066, pp.126-137, Springer, Berlin, 1996.

[TB70] Trakhtenbrot, B.A, and Ya. M. Barzdin, Konechnye Avtomaty (Povedenie
i Sintez), Nauka, Moscow, 1970. Engl. transl. by D. Louvish, ed. by E. Shamir
and L.H. Landweber: Finite Automata: Behaviour and Synthesis, North-Holland,
Amsterdam, 1973.

[Tho95] Thomas, W., On the synthesis of strategies in infinite games, in Proc. 12th
Symp. Theoret. Aspects Comput. Sci., LNCS 900, pp. 1-13, Springer, Berlin, 1995.

[TLS00] Tomlin, C.J., J. Lygeros and S.S. Sastry, A game-theoretic approach to con-
troller design for hybrid systems, Proc. IEEE 88 (7):949-970, 2000.

[vLS79] van Lamsweerde, A., and M. Sintzoff, Formal derivation of strongly correct
concurrent programs, Acta Informatica 12 : 1-31, 1979.

[Vin00] Vinter, R., Optimal Control , Birkhaüser, Boston, 2000.

Incremental Reasoning for Object Oriented

Systems

Neelam Soundarajan and Stephen Fridella

Computer and Information Science
Ohio State University
Columbus, OH 43210

neelam@cis.ohio-state.edu and sfridell@emc.com

Abstract. Inheritance and polymorphism are key mechanisms of the
object-oriented approach that enable designers to develop systems in an
incremental manner. In this paper, we develop techniques for reasoning
incrementally about the behavior of such systems. A derived class de-
signer will be able, using the proposed approach, to arrive at the richer
behavior that polymorphic methods inherited from the base class will
exhibit in the derived class, without reanalyzing the code bodies of these
methods. The approach is illustrated by applying it to a simple case
study.
Keywords and phrases: Incremental design, Incremental reasoning, Be-
havior of polymorphic methods.

1 Introduction and Motivation

Much of the power of the OO approach derives from the key notions of in-
heritance and polymorphism. Given an existing base class B, a designer can
use inheritance to build a new derived class D that extends B. Some of the
methods of B are redefined in D while others are inherited unchanged; some
methods may be abstract, i.e., have no associated definition, in B, and defined
in D. Polymorphism1 ensures that not just the methods redefined in D, but also
other methods, these being the polymorphic methods, that invoke the redefined
methods exhibit enriched behavior even though the polymorphic methods them-
selves are inherited unchanged from B. Inheritance and polymorphism were two
of Simula’s [DN66, DMN68] fundamental contributions that have revolutionized
software design. But if we are to be able to exploit the full potential of inheritance
and polymorphism, we must not only be able to build systems incrementally, but
also to reason about their behavior incrementally. Our goal in this paper is to
investigate the problems involved in such incremental reasoning and to develop
techniques to address them.

What information about the base class B does the designer of the derived
class D need in order to reason incrementally about the behavior of D? Suppose
1 In this paper, by polymorphism we will mean the subtype polymorphism of [CW85],

implemented using run-time dispatch in standard OO languages.

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 302–333, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Incremental Reasoning for Object Oriented Systems 303

t() is a method of B and that it invokes another method h() of B, and suppose
h() is redefined in the derived class D. If t() is applied to an object of type D,
the h() that will be invoked during this execution of t() will be the one defined
in D (rather than the one in B). In a sense, the polymorphic method provides
the pattern, or template, of the calls to the methods that are intended to be
redefined as needed in the derived class, while the template itself is inherited
unchanged. It is for this reason that polymorphic methods are called template
methods in the design patterns literature [GHJV95], the methods they invoke
being called hook methods, and we will use this terminology in the rest of the
paper. If B includes polymorphic methods2 such as t(), the designer of D not
only needs to reason about the behavior of the methods she defines or redefines
in D, but also about the modified behavior of the polymorphic methods of B
resulting from redefinitions of methods that they invoke. One possibility would
be for this designer to reanalyze the behavior of the body of t() appealing, during
this reanalysis, to the modified behavior of the redefined methods. While this
would work, it is clearly not an incremental approach. Thus the central question
we are interested in is the following:

What information should we include in the (base-class) specification of
the template method so that a derived class designer can, in a sense,
“plug-into” this specification, the behaviors of the hook methods as de-
fined in the derived class, to arrive at the enriched behavior that the
template method would exhibit (when applied to instances of the derived
class), without having to reanalyze the body of the template method?

Note that reanalysis of the template method bodies is not only undesirable,
it may even be impossible if, for example, the template method is part of a base
class that was purchased from a software vendor who, for proprietary reasons,
did not provide access to the source code.

We will see the full details of our answer to this question later, but the key
is to include, in its specification, information about which hook methods t()
invokes, the order it invokes them in, the arguments passed to the hook methods
in these calls, etc. In order to provide this type of information, we will make use
of a trace, denoted by the symbol τ (or sometimes τt), to record the hook method
calls that t() makes. The specification of t(), in particular its post-condition, will
give us information not only about the final values of the member variables when
t() finishes but also about the value of τ , i.e., information about the identity of
the hook methods t() invoked during its execution, the values of the arguments
it passed in these calls, etc. As we will see, the derived class designer can then
plug into this specification, the behavior of the redefined hook methods to arrive
at the corresponding new behavior of t().

2 In Simula and C++, h() must have been flagged as virtual, else the h() that is invoked
during the execution of t() would be the one defined in B. In languages like Java
and Eiffel, all methods are virtual unless explicitly declared final. For concreteness,
we occasionally use language-specific terminology but our approach is not language-
specific. Note also that we use the terms ‘method’ and ‘function’ interchangeably.

304 Neelam Soundarajan and Stephen Fridella

There is one important requirement that these redefinitions must satisfy.
Suppose that h() is one of the hook methods t() invokes. In arriving at the spec-
ification of t() by analyzing its code in the base class, we would have made some
assumptions about the effects of the call(s) to h() contained in the body of t().
Typically, these would correspond to the behaviors exhibited by h() as defined
in the base class and (presumably) specified in the base class specification of h().
Unless the redefinition of h() in the derived class satisfies its base class specifi-
cation, this analysis of t() may no longer be valid, and we would be forced to
reanalyze the body of t(). Since we want to avoid such reanalysis, we will require
the redefinition of h() in the derived class to satisfy its base class specification.

Such a requirement is, in fact, not new to our work. It is the essential idea
underlying the work on behavioral subtyping [Ame91, LW94, DL95]. Informally,
a class A is a behavioral subtype3 of another class B if the behavior exhibited
by objects that are instances of A is in some sense consistent with behaviors
allowed by the specification of class B, in other words, if the methods of class A
satisfy the specifications of the corresponding methods of B. If A is a behavioral
subtype of B, then any reasoning that we may have performed on a piece of code
that includes calls to methods of B will continue to be valid if these calls are
instead dispatched to the corresponding methods defined in A since in any such
reasoning, we could only have appealed to the specifications of the methods in B
and the methods defined in A satisfy these specifications. In our case, we want
to be sure that whatever conclusions we have arrived at about the behavior of
the template method t(), on the basis of the base class specifications of the hook
method h(), continue to be valid in the derived class, so we must require that
the derived class definition of h() satisfy its base class specification.

What is new about our work is that, if this requirement is satisfied, then
the “plugging-in” process we outlined above will allow us to arrive at the richer
behavior that t() acquires as a result of the redefinition of h(). Thus our work
is in a sense a key extension of the behavioral subtyping approach: behavioral
subtyping ensures that what we have already concluded (from the analysis of
t() in the base class) continues to hold following the redefinition of the hook
methods in the derived class; our work allows us to reason about the richer
behavior of t() resulting from this redefinition. Since the very raison d’être of
polymorphism is the ability to enrich the behavior of the polymorphic methods
by suitable redefinitions of the hook methods, it is essential that the reasoning
system enable us to reason about this enriched behavior. In Section 6, we will
consider other related work in some detail.

3 Although from a formal point of view class and type are distinct notions, in most
standard OO languages, as well as in much of standard OO practice, the two notions
are identified. Hence in this paper we will use the two terms interchangeably. More
importantly, we will only be interested in the notions of behavioral subtype/subclass
based on the behaviors of the methods of the classes in question, not in syntactic
notions of subtype/subclass based on the signatures of the methods.

Incremental Reasoning for Object Oriented Systems 305

The main contributions of this paper may be summarized as follows:

– It identifies the key problems involved in specifying precisely the behavior
of template methods and hook methods and in arriving at the derived-class
behavior of a template method on the basis of its base class specification.

– It develops an incremental reasoning technique to allow the base class de-
signer to specify the behavior of the methods of her class, and to allow the
derived class designer to plug-in information about the hook methods re-
defined in the derived class into the bass-class-specifications of the template
methods, to arrive at the derived-class behavior of these methods.

– It illustrates the reasoning technique by applying it to a simple case study.

The rest of the paper is organized as follows: In the next section, we introduce
a simple OO language fragment focused on polymorphism. In the third and
fourth sections, we develop our incremental reasoning systems for specifying and
verifying the behaviors of programs written in this language. The fifth section
presents a simple case study to illustrate our reasoning technique. The sixth
section summarizes related work. The seventh section reiterates the importance
of an incremental reasoning system for dealing with polymorphism, summarizes
our approach to such a system, and discusses possible extensions.

2 Language and System Model

The qualification of a method as virtual in Simula or C++, and the complemen-
tary qualification of a method as final in Java or Eiffel, allow the compiler to
determine whether or not run-time dispatching must be used in dealing with that
method. For reasoning about the behavior of the methods, a more useful charac-
terization is in terms of hook methods and template methods. Given that these
notions were introduced in order to talk about the designs underlying particular
OO systems, it should not be surprising that they are also useful in reasoning
about the behavior of such systems. In this section we introduce a simple lan-
guage notation and model that characterize methods in these terms; in the next
two sections we will present our reasoning technique in terms of this model. The
(partial) BNF grammar for our simple language appears in Figure 1; ε in these
productions denotes the empty string; note also that the symbols “{” and “}”
that appear in the productions are terminal symbols (rather than extended BNF
symbols indicating repetition of the enclosed constructs).

The following points should be noted:

1. A base class definition specifies the name of the class, the member variables
of the class, the constructor function, and the methods of the class. A derived
class definition, in addition to the above, also specifies the name of the class
it inherits from; note that we consider only single inheritance.

2. We assume that all member variables are protected, i.e., accessible to the
derived class but not to client code; we also assume that all methods are
public. Hence there are no keywords such as private or protected.

306 Neelam Soundarajan and Stephen Fridella

〈class〉 ::= class 〈id〉 { 〈variables〉 〈constructor〉 〈methods〉 }
| class 〈id〉 : 〈id〉 { 〈variables〉 〈constructor〉 〈methods〉 }

〈variables〉 ::= ε | 〈variable〉 〈variables〉
〈variable〉 ::= 〈simple type〉 〈id〉;

〈constructor〉 ::= 〈id〉 (〈parlist〉) {〈stmts〉}
〈methods〉 ::= ε | 〈method〉 〈methods〉
〈method〉 ::= 〈method kind〉 〈id〉 (〈parlist〉) {〈stmts〉}

〈method kind〉 ::= h-method | t-method | ht-method | nht-method

Fig. 1. (Partial) Grammar for simple OO language

3. Each class has a (single) constructor. The name of the constructor will, as
usual, be the same as the name of the class. When an instance of a derived
class is constructed, the base class constructor is executed first, then the
derived class constructor. Classes do not have destructors.

4. A method may be a hook method (h-method), a template method (t-method),
a hook-template method (ht-method), or a non-hook-template method (nht-
method). Run-time dispatching is done for h-methods and ht-methods but not
for t-methods or nht-methods. h-methods and nht-methods may invoke only
nht-methods; t-methods and ht-methods may invoke h-methods, ht-methods,
and nht-methods.

5. Only h-methods and ht-methods may be redefined in a derived class; t- and
nht-methods must be inherited unchanged. When a method is redefined, no
changes may be made in the number and types of parameters it expects.

6. All member variables of a class are of simple types such as integer, boolean,
etc. So an object will not contain references to other objects. The problem
with allowing references to other objects is that this can lead to aliasing
which presents some well-known problems when reasoning about behavior;
since these problems are not directly related to inheritance and polymor-
phism which is the focus of our work, we feel it is appropriate to eliminate
aliasing from the picture.

7. The parameters (other than the self object) to a method are of simple
types and are all passed by-value-result. Here again allowing for passing
by-reference could lead to aliasing which we wish to avoid.

Our h- and ht-methods are like the virtual / non-final / non-frozen methods
of Simula, C++, Java or Eiffel respectively, while the t- and nht-methods are
like non-virtual / final / frozen methods. Simula and C++ allow non-virtual
methods to be redefined in the derived class but such redefinitions have no effect
on base class (template) methods that invoke them; we could have similarly
allowed our nht-methods to be redefined without this having an effect on the t-
and ht-methods that invoke them; the changes in our reasoning technique to deal
with this would be straightforward. Alternately, and more importantly, we could
have treated all methods as ht-methods. While this would be general, it would
also make the reasoning task unnecessarily complex since ht-methods are the
most difficult to reason about. This is similar to a base class designer flagging

Incremental Reasoning for Object Oriented Systems 307

appropriate methods as final, rather than leaving, in the name of generality, every
method open to redefinition in the derived classes. One point of terminology:
henceforth, we will use the term ‘hook method’ to mean ‘h-method or ht-method’,
since these are the two kinds of methods in our language that can be used to
serve the role that hook methods are intended to serve; similarly, we will use
‘template method’ to mean ‘t-method or ht-method’.

Most OO languages allow the hook methods to be abstract in the base class;
indeed, in Simula, a method that is defined in the class cannot be flagged as vir-
tual. For simplicity, we do not allow such methods in our language fragment but
our reasoning technique can deal with such methods, as well as with Java-type
interfaces where all the methods are abstract, in a natural manner. One other
point worth noting is that a compiler for the language could easily ensure that
the conditions on which types of methods may be invoked by a method of a given
type are indeed satisfied (or, if not, produce appropriate error messages), and
ensure, in the object code, that run-time dispatching is used for the appropriate
types of methods; this is no different than a Simula or C++ compiler ensuring
that run-time dispatching is used for virtual methods but not for non-virtual
methods.

We conclude this section with an Account class written in our language no-
tation. This class, in Figure 2, will serve as the base class for our case study
later in the paper where we will demonstrate the application of our reasoning
technique. Account has a single member variable balance that maintains the cur-
rent balance in the account; the derived classes we define later will introduce
additional variables. The deposit() and withdraw() operations update balance in
the expected manner; these are h-methods and will be redefined in the derived
class(es) to provide richer behavior. The getInfo() operation returns, as a string,
the current balance in the account; note that string() returns the string repre-
sentation of the value of its (integer) argument. getInfo() is also an h-method and
will be redefined in the derived class; in fact, it is via this redefinition that we
will be able to see, so to speak, the enriched behaviors of the other operations.
It is with an eye toward this redefinition that we have defined getInfo() to return
a result of type string (rather than int).

The template method that will invoke these h-methods is processTransSeq().
This method will allow us (i.e., the client code) to process a sequence of trans-
action requests, each request being for one of deposit, withdraw, or printInfo
transactions. processTransSeq() has two string arguments, transs which will con-
tain all the transaction requests, and results via which the method will return
the result. processTransSeq() repeatedly reads the next transaction request from
transs and processes it. In order to avoid getting involved with issues of string
manipulation, we make use of a set of functions (whose definitions we omit)
that allow us to extract individual transaction requests and conveniently ma-
nipulate them; thus NextTrans(transs) is the first transaction in transs; Rest-
Trans(transs) is the string consisting of all the remaining transactions (beyond
the first one); TransName(nextReq), where nextReq is a single transaction re-
quest, is the name of the transaction (“deposit”, “withdraw”, or “printInfo”); and

308 Neelam Soundarajan and Stephen Fridella

class Account {
int balance; // current balance

Account(int b) { balance := b; }
h-method deposit(int amt) { balance := balance + amt; }
h-method withdraw(int amt) { balance := balance − amt; }
h-method string getInfo() { return string(balance); }
t-method processTransSeq(string transs, string results) {

results := 〈〉;
while(transs �= 〈〉)
{ nextReq := NextTrans(transs); transs := RestTrans(transs);

trans := TransName(nextReq); amount := Amount(nextReq);
if(trans == “deposit”) { deposit(amount); }
if(trans == “withdraw”) { withdraw(amount); }
if(trans == “printInfo”) { results += “<”;

results +=getInfo(); results += “>”; } }
}

}

Fig. 2. Class Account

Amount(nextReq), is the amount involved in the transaction (0 if the type of
transaction is “getInfo”)4.

If the next transaction requested is “deposit” or “withdraw”, processTransSeq()
invokes the corresponding operation. If the transaction requested is “printInfo”,
processTransSeq() calls getInfo() and appends the returned result to results (en-
closing this inside a pair of angle brackets, “¡” and “¿” to separate this result
from the previous result in results); note that “+=” is the string append operator.
This means that depending on the derived class design, when this transaction is
processed, appropriate information about that particular type of account, as im-
plemented in the (re-)definition of getInfo() in the derived class, will be appended
to results. The key reasoning questions are, what information do we include in
the base class specification of processTransSeq(), and how, from this specification
and the derived class behaviors of the h-methods, can the derived class designer
arrive at this richer behavior of processTransSeq(), as exhibited in the value it
returns in results? We will see the answers to these questions in the case study
section.

3 Reasoning About the Base Class

Consider a base class B. The specification of B will consist of an invariant Ib

and specifications for each of its methods. Ib, an assertion over the state, i.e.,

4 Good OO design principles suggest that it would probably make sense to introduce an
auxiliary class, Transaction, into which methods such as NextTrans() can be collected
but in the interest of space, we will not do so. Note also that we have omitted the
declarations of local variables, nextReq, trans, and amount, in processTransSeq().

Incremental Reasoning for Object Oriented Systems 309

the member variables of B, will be satisfied at the start and end of execution
of each method. Next, consider the various kinds of methods. Suppose n() is an
nht-method. Its specification will be of the usual form:

〈pre.n(), post.n()〉 (1)

where the pre-condition pre.n() is an assertion over the state, and the parame-
ters passed to n() at the time that n() starts execution, and the post-condition
post.n() is an assertion over the state and the parameters to n() at the time it
starts execution and at the time it finishes execution. In the post-condition, we
will use the OCL [WK99] notation x@pre to refer to the value of the variable x
at the time n() starts, and x to refer to its value when n() finishes execution.

The specification of h-methods is similar. The difference between these two
types of methods will show up when we consider derived classes in the next
section. For nht-methods, we will essentially inherit the specification from the
base class since these methods cannot be redefined in the derived class; for h-
methods, we will either inherit the base class specification if the method is not
redefined, or come up with an appropriate new specification if the method is
redefined.

Next consider a t-method t(). We will associate two specifications with t().
The first, its functional- or f-specification, will be similar to (1) and will specify
the effect of of t() on member variables of B and the parameters of t(). The
second, its enrichment- or e-specification, will be for use by the derived class
designer and will include information about invocations of hook methods. We will
use τ , the trace (or sequence), to record this information, and the e-specification
will give us information about the value of τ :

F-specification: 〈pre.t(), vbpost.t()〉
E-specification: 〈epre.t(), epost.t()〉 (2)

At its start, t() has not yet invoked any h- methods so τ at that point will
be the empty sequence ε. epost.t() will give us information about the values of
the member variables of B, of t()’s parameters, and of course about the value
of τ when t() finishes execution. Thus the relation that must hold between the
assertions of the f- and e-specifications is as follows:

epre.t() ≡ (pre.t() ∧ (τ = ε))

epost.t() ⇒ post.t() (3)

What information concerning calls to hook methods (i.e., h- and ht- methods)
that t() makes should we include in τ? A few examples will help us answer this
question. Suppose B consists of just two methods, t() and an h-method h1().
Suppose h1(), as defined in B, makes no changes to the values of any of the
member variables of B. Suppose in a derived class D we introduce a new (integer)
variable i and redefine h1() to increment i by 1 (and leave the other member
variables, inherited from B, unchanged). If t() is applied to an instance of D,
during this execution of t(), calls to h1() will be dispatched to the one defined in
D, and hence this call to t() will increment i (which is a component of the object

310 Neelam Soundarajan and Stephen Fridella

t() is applied to since this object is an instance of D) by an amount equal to the
number of times t() invokes h1(). In order to enable the derived class designer
to arrive at the value that i will be incremented by during such an execution of
t() without reanalyzing the body of t(), the base class specification of t() would
therefore have to include information about how many times t() invokes hook
methods.

It is easy to see that this alone is not sufficient in general. Suppose in this
example that there were two h-methods h1() and h2(), and that t() invokes each
of them several times. Suppose h1() is redefined in D to increment i by 1 as
before, and h2() is redefined to increment i by 2. Then, in order to know what
effect an execution of t() (applied to an instance of D) will have on i, we need
to know how many times t() invokes h1() and how many times it invokes h2(),
rather than just the combined total of the two. But this is also insufficient in
general. Suppose that two variables i, j are introduced in D and that while h1(),
as before, increments i by 1 each time it is invoked, h2() does not change i but
increments j by the current value of i, i.e., the value that i had at the time of
this invocation of h2(). Then the effect that an execution of t() has on j will
depend not only on how many times h1() and h2() are invoked but also on how
these invocations are interleaved; for example, if t() were to invoke h1() twice
and h2() once during its execution, then during this execution the value of j
would increase by i@pre, or i@pre+1, or i@pre+2, where as noted earlier i@pre
denotes the value of i at the start of this execution of t(), depending respectively
on whether t() invokes h2() before calling h1(), or after the first call to h1(), or
after the second call to h1().

Hence we need to be able to provide information about the order of the calls
t() makes to the hook methods. This is still insufficient. Suppose, we revise the
example so that h2() (as defined in D) increments j not by i but by (i + k)
where k is a member variable of B. Now it is quite possible that t() has changed
the value of k before calling h2() and that it will change it further once the call
from h2() returns. In this case, to arrive at the effect that t() will have on j
without reanalyzing its body, we will need to know what value t() has left in k
immediately before the call to h2(). In general, we would need to know the entire
‘state’, i.e., the values of all member variables of B, before each call t() makes
to a hook method, and this information will have to be recorded in τ . It turns
out that we also need to record the state immediately following the return from
each call to a hook method; this is because it is possible that the hook method
might, according to its specification, assign one of two different values to one of
the member variables (of B) and what t() does following the return from the
hook method, including what other hook methods it calls, might depend on this
value; so in order to be able to relate the values in these variables to what these
later calls might do (including, in particular, assigning values to other member
variables, some of which might be introduced in the derived class), we need to
record in τ the state following each hook method call. Finally, if the hook method
receives any additional parameters, we also need to record the values of these
arguments and the results returned by the hook method since, as in the case of

Incremental Reasoning for Object Oriented Systems 311

the values of member variables of B, what t() does following the return will, in
general, depend on these results.

To record all this information, we will use the following structure for the
sequence τ . Each element of τ will represent one call to a hook method and
the corresponding return. As noted earlier, at the start of the execution of t(),
τ will be the empty sequence ε. Suppose at some point in this execution the
current state, i.e., the values of all member variables of B, is σ′, and t() invokes
an h-method h(), the values of the additional arguments passed to h() being aa′;
and suppose that the state when h() returns is σ, and the result values of the
additional parameters are aa. Then this call-return will be recorded in τ as the
element:

(h, σ′, aa′, σ, aa) (4)

If h() were an ht- rather than an h-method, we would again record the same
information in τ about a call from t() to h(). Note that in this case, during its
execution, h() may in turn invoke another h-method (or ht-method), call it g().
Although this call to g() did arise as a result of the original call that t() made to
h(), the call to g() will not be recorded in the trace of t() (it will, of course, be
recorded in the trace of h()). If g() were to be redefined in the derived class, the
derived class designer would be able, as we will see in detail in the next section,
to arrive incrementally at the resulting enriched behavior of h() on the basis of
the e-specification of h() (and the information that specification provides about
the calls to g() that h() makes), and then arrive at the enriched behavior of t()
on the basis of the e-specification of t() and the information it provides about
the calls that t() makes to h(). Thus the enrichment in the behavior of t() arises
because of the enrichment in the behavior of h(); whether that latter enrichment
is due to a redefinition of h() in the derived class or due to a redefinition of
an h-method that h() invokes is not relevant when reasoning about the enriched
behavior of t(). In other words, the functioning of t() depends only on what the
call to h() does and what enrichment is done to this behavior of h(), not how
that enrichment is achieved, so we only need record the call to h() in the trace
of t(), not the calls to h-methods that h() in turn may make.

So much for the structure of τ . In what form should information about τ be
included in epost.t(), the e-post-condition of t()? One extreme approach would be
to explicitly list, in epost.t(), all the possible values τ could have when t() finishes,
i.e., list all the different sequences of hook method calls that t() could have
gone through during its execution, and for each, provide complete information
about each component of each element of τ . While this would work, doing it
naively would generally be far too tedious. A better approach is to define suitable
functions, the details of which may depend on the particular application, on τ ,
and write the specification in terms of these functions; we will see in our case
study.

Further, it is usually not necessary to provide complete information about
τ . This depends in part upon the kind of enrichments the base class designer
expects will be made in the derived classes. If, for example, in the case of the
Account class defined in the last section, we do not expect the hook methods

312 Neelam Soundarajan and Stephen Fridella

to be redefined in such a way as to depend on the value of balance at the time
that the hook method is invoked, then there is no need to include information
about this in specifying the t-method processTransSeq(). On the flip-side, if the
derived class designer does redefine a hook method in such a way that its enriched
behavior critically depends on the value of balance, she would be unable to reason
incrementally about the corresponding enriched behavior of processTransSeq().
We will return to this point later.

How do we show that t() meets its specifications? The main problem has to
do with showing that the body of t() meets its e-specification because once we
do that, we simply need to check that the relation specified in (3) holds in order
to conclude that t() meets its f-specification as well. When reasoning about
the body of t(), we use standard axioms and rules for dealing with standard
statements such as assignment and if-else. The one statement for which we need
a new rule is call to h-method (or ht-method), to account for recording on τ ,
information about the call.

R1. h/ht- Method Call

p⇒ (Ib ∧ pre.h(x)[x← aa])
[(∃σ′, aa′).[p[τ ← abl(τ), σ ← σ′, aa← aa′]

∧ post.h(x)[σ@pre← σ′, x@pre← aa′, x← aa] ∧ Ib

∧ last(τ) = (h, σ′, aa′, σ, aa)]] ⇒ q

{ p } h(aa); { q }

h() is the method being called, aa being the (additional) arguments for this
call. The first antecedent of R1 requires us to show that if the assertion p which
is the pre-condition of the call is satisfied, then Ib, the invariant of B is satisfied;
and the pre-condition pre.h() of the (f-)specification of the method5 is satisfied
with the actual arguments (aa) substituting for the formal parameters (x); “←”
denotes (simultaneous) substitution of all occurrences, in the given assertion, of
the variable(s) on the left side of the “←” by the expression(s) on the right.
The second antecedent requires us to show that we have added a new element
to τ corresponding to this call and that the state at this point (and the returned
values of the arguments) satisfy the post-condition of the call to h(). last(τ), as
the name suggests, is the last, i.e. the rightmost, element of τ ; abl(τ) stands for
“all but the last element of τ” and is the sequence obtained from τ by omitting
its last element. In more detail, in this antecedent, σ′ denotes the state that
existed immediately before the call to h() and aa′ the values of the arguments
at that point; so this antecedent requires us to show that: if the state (and
argument values) that existed immediately before the call and the trace, less

5 If h() is an ht-method, it will have, as we will see shortly, both an f- and an e-
specification in the same manner as t-methods. But as far as t() is concerned, only
the functional effect of h() is relevant; thus the pre- and post- assertions referred to
in the antecedents of R1 are from h()’s f-specification.

Incremental Reasoning for Object Oriented Systems 313

its last element, satisfy the assertion that is the pre-condition of the call; and
if the post-condition of the f-specification of h() is satisfied with appropriate
substitutions for the before- and after-states and argument values; and if the
class invariant is satisfied; and if the (newly added) last element of τ consists of
the name of the called method (h), the state (σ′) immediately before the call, the
initial value (aa′) of the arguments, the state (σ) immediately after the return
from h, and the final values of the arguments (aa); Then it must be the case
that the specified post-condition q of this call to h() is also satisfied. If these
two antecedents can be shown then, by appealing to the rule, we may derive the
specified conclusion.

Although the rule looks rather involved, the complexity is mostly notational.
It just captures the fact that the effect of the call to h() is to modify the values
of the member variables of B and the arguments passed to h() as specified in
the (functional) post-condition of h(), and to append an appropriate element to
τ to represent the call/return. In practice, in reasoning about the body of t(),
we encounter such a call we would typically simply write appropriate pre- and
post-conditions for the call statement and check semi-formally that what these
assertions say about the changes in the values of the member variables of B, the
values of the arguments to h(), and the value of τ , are consistent with what the
f-specification of h() says will be the effect of the method on the members of B
and the parameters to h(), and with recording this call/return on τ .

The final type of method is the ht-method. Suppose ht() is such a method. Its
specification will be similar to that of a t-method. In other words, ht() will have
f- and e-specifications. The former specifies the effect of an execution of ht() on
the member variables of B and the parameters of ht(), and the latter provides
information also about the calls that ht() makes to hook methods during its
execution. The key difference with t-methods will show up when we consider
derived classes. For t-methods, we will use the e-specification from the base class
and arrive at its enriched behavior (and the corresponding f-specification) by
appealing to the richer behavior of the hook methods it invokes. We will do the
same also for ht-methods that are inherited unchanged from the base class. But if
an ht-method is redefined in the derived class, we will come up with appropriate
new f- and e-specifications.

Let us now briefly turn to invariants. In our system, when reasoning about
the base class B, we use a standard approach to dealing with invariants. In other
words, for each method f(), the result we establish for S, the body of f() is:

{ Ib ∧ pre.f() } S { Ib ∧ post.f() } (5)

where Ib is the invariant for B. Further, when establishing this result, for dealing
with calls in S to other methods (either nht-methods or hook methods) of B, we
must check that not only is the pre-condition of the method being called satisfied
but also the invariant; and, conversely, we may assume, when the method call
returns, that not only will the method’s post-condition be satisfied but also the
invariant. Any functions redefined in a derived class D of B will also have to
maintain this invariant (since otherwise, if f() were a t-method and one of the
calls in S is dispatched to such a redefined method, the assumption made in

314 Neelam Soundarajan and Stephen Fridella

establishing (5) that Ib will hold when this call returns will no longer be valid);
we will formalize this requirement in the next section. One type of method we
have not considered so far is constructors. Clearly, we must check that each
constructor c() of B is such that when it finishes execution, Ib is satisfied. The
final step in reasoning about B is to ensure that it meets its abstract specification,
intended for use by clients of B. This can be done in a standard fashion, see for
example [Jon90]; inheritance and polymorphism do not add any complexity to
these issues, so we will not discuss them further.

We conclude this section with a comment about our trace τ . τ is like an
auxiliary variable of Owicki and Gries [OG76], but there are some differences.
In systems such as those of [OG76], we are allowed, when reasoning about the
behavior of a piece of code, to introduce as many auxiliary variables of whatever
types as we wish; we also have to introduce suitable assignment statements (into
the code whose behavior we are reasoning about) to update the values of the
auxiliary variables at appropriate points as we wish. By contrast, in our system,
τ is the only additional variable; its structure is fixed, as specified in (4); the
updates to τ take place automatically with each call that t() makes to a hook
method; this is represented in our system by the rule R1. Note also that τ is
not a member variable of the class; it only records the calls that this method
t() makes to h- and ht- methods during one particular execution; thus, τ is
like a local variable of t(), initialized, as specified in (3), to ε at the start of
this execution. Its purpose is not so much to help reason about the behavior
of the base class B as to provide more information in the e-specification of t()
than can be provided using just the member variables of B. And the purpose of
providing this extra information is to enable us to arrive at the richer behavior
of t() that results from redefinitions, in a derived class of B, of one or more of
the methods that t() invokes, without having to reanalyze the body of t(). Thus
while Owicki-Gries type auxiliary variables are introduced to help in reasoning
about the behavior of the piece of code under consideration, we have introduced
τ to help the derived class designer to reason incrementally about the behavior
of her derived class.

4 Incremental Reasoning About the Derived Class

Let D be a derived class of B. In our skeletal language, as in most standard
OO languages, the designer of D may introduce new member variables in D,
define entirely new methods, or redefine hook methods inherited from the base
class; nht-methods and t-methods must be inherited unchanged. For methods
that are newly defined in D, we use the same approach as in B. From the point
of view of incremental reasoning, the key question is how to arrive at the richer
behavior of inherited template methods without reanalyzing the body of the
template method. This question will be the main focus of this section but we
start our discussion with the relation between the invariants for B and D and
then consider ways to reason about each type of method.

Incremental Reasoning for Object Oriented Systems 315

Let Ib, Id be the invariants for B, D. Since some of the methods will be
inherited unchanged from B, and since these methods require Ib to be satisfied
before they start execution, we will require the following:

Id ⇒ Ib (6)

And in order to ensure that each method in D, including the inherited ones, leave
Id satisfied when they finish execution, we will have to impose further conditions
on the specifications for the individual methods as we will see below. (6) will be
part of the behavioral subclassing relation to be defined shortly.

Suppose n() is an nht-method inherited from B. The (concrete) specification
of n(), as a method of D, will be in terms of the overall state, i.e., the values of the
member variables defined in D as well as those inherited from B. For convenience,
in our discussion below, we will use σ to denote the overall state, σ↓b to denote
the portion of the state inherited from B, and σ ↓ d the portion defined in D.
Let 〈pre.B.n(), post.B.n()〉 be the specification of n() in the base class B. Since
the method is inherited unchanged by D, execution of n() cannot change the
value of any variable introduced in D, i.e., the value of σ ↓ d when n() finishes
execution will be the same as when it started. Hence, 〈pre.D.n(), post.D.n()〉, the
specification of n() in D, follows from its base class specification if the following
conditions are satisfied:

(pre.D.n() ∧ Id) ⇒ pre.B.n()

(post.B.n() ∧ Ib ∧ (pre.D.n() ∧ Id)[σ ← σ@pre] ∧ (σ↓d = σ↓d@pre))
⇒ (post.D.n() ∧ Id) (7)

If pre.D.n() is satisfied when n() is invoked, the relation between the pre-
conditions ensures that pre.B.n() will be satisfied at that point. Hence, given
that we have checked (when reasoning about the base class) that the body of
n() satisfies its base class specification, the assertion post.B.n() (and Ib) will be
satisfied when n() finishes execution. In addition, the clause (σ ↓d = σ ↓d@pre)
which is essentially an abbreviation for a set of clauses that assert, for each
member variable introduced in D, that its value is unchanged from its value
at the start of n(), will also be satisfied since these variables are unaffected by
n(). The clause (pre.D.n() ∧ Id)[σ ← σ@pre] asserts that the state, including
the values of the variables introduced in D, at the time n() started execution
satisfies the (new) pre-condition and invariant. Note that pre.D.n() may include
conditions on the values of the variables introduced in D. In that case, the as-
sertion (σ ↓ d = σ ↓ d@pre) will allow us to carry these conditions forward to
post.D.n(). This may be of help in showing, as required by (7), that Id will hold
at that point.

Next consider h(), an h-method. If h() is inherited unchanged, we treat it in
the same way as an nht-method. If h() is redefined in D, the derived class designer
will have to come up with a new specification, 〈pre.D.h(), post.D.h()〉, and check
(or formally verify) that the redefined method satisfies this specification (as well
as Id, as required by (5)). In either case, we also need to impose a requirement
of behavioral consistency with the base class specification 〈pre.B.h(), post.B.h()〉

316 Neelam Soundarajan and Stephen Fridella

of h() since otherwise any reasoning that we have done (concerning the behavior
template methods that invoke h()) on the basis of that specification may no
longer be valid.

Definition: The derived class D is a behavioral subclass of its base class B if
the following conditions are satisfied:

Id ⇒ Ib

If h() is an h-method or an ht-method, then
(pre.B.h() ∧ Ib)⇒ (pre.D.h() ∧ Id)
(post.D.h() ∧ Id)⇒ post.B.h() (8)

We require, as part of our reasoning system, that D be a behavioral subclass6

of B.
Consider a call to h() in a t-method, t(). In D, this call will be dispatched to

the h() defined in D; so when the call returns, (post.D.h()∧ Id) will be satisfied
and hence, by the relation between post-conditions and invariants required by
(8), so will (post.B.h() ∧ Ib) which is what we must have assumed when rea-
soning about t() in the base class. Thus behavioral subclassing ensures that the
reasoning we have performed in the base class about a method that calls h()
continues to be valid although h() has been redefined in the derived class. Note
also that in order for post.D.h() to be satisfied when D.h() finishes execution,
(pre.D.h() ∧ Id) must have been satisfied at the time of the call to h(); the
relation required by (8) between the pre-conditions and invariants, given that
when reasoning in the base class about the calls in t() to h() we must have
checked that (pre.B.h()∧ Ib) is satisfied immediately prior to each of these calls,
ensures this. It is worth noting that (8) imposes severe constraints on the de-
rived class. In particular, the relation that (8) requires between the base class
pre-condition & invariant and the derived class pre-condition & invariant means
that the derived-class pre-condition of h() cannot impose any requirements on
the values of member variables that may be introduced in D. Nevertheless, by
using the @pre notation to refer to the values of variables at the start of h(), we
will be able, in post.D.h(), to specify how D.h() changes the values of variables
introduced in D; and the rule R2 will allow us to appeal to this information to
arrive at the effect that t() has on these variables. In more detail, we will look
at each element in the trace τ of t(), and add, to the base-class specification of
t(), the assertion that the states and argument values recorded in this particular
element of τ satisfies the derived class post-condition of the h-method invoked.
Suppose the kth element of τ is (h, σ1, aa1, σ2, aa2), then:

a. We can assert post.D.h() with σ1 and σ2 playing the roles respectively of the
state immediately before the call and the state immediately after the call,
and aa1 and aa2 being the argument values before and after the call.

6 (8) is very similar to behavioral subtyping [LW93, LW94]; nevertheless we use a
different term since behavioral subtyping is a relation that involves the abstract
specifications of two classes while ours is a relation between the concrete specifica-
tions of a base class and its derived class.

Incremental Reasoning for Object Oriented Systems 317

b. We can assert that the D-portion of the state can change only due to calls
to h/ht-methods since t() was defined as part of the base class so its code
cannot refer to this portion of the state. Thus if σp is the ‘final state’ of the
previous element of τ , i.e., is the fourth component of the (k−1)th element of
τ , then we must have (σp↓d = σ1↓d); similarly if σn is the ‘initial state’ of
the next element of τ , i.e., is the second component of the (k + 1)st element
of τ , then (σ2↓d = σn↓d).

Rule R2 below formalizes these ideas. The following functions and predicates
on traces, trace elements and their components, etc., will be useful in expressing
this formalization:

|τ |: Length of τ , i.e., number of elements in τ .
τ [k]: The kth element of τ .
τ [k].hm: The identity of the hook method called in the kth element of τ .
τ [k].is: The initial state, i.e., the state just before this call.
τ [k].fs: The final state, i.e., the state just after the method returns.
τ [k].ia: The values of the arguments passed in this call.
τ [k].fa: The values of the arguments when the method returns.
τ ↓b: Same as τ except that in each ‘state’ component of each element of τ , we

only retain the base-class portion of the state; similarly τ ↓ d is obtained
from τ by retaining, in each ‘state’ component of each element of τ , only the
portion of the state introduced in the derived class. Naturally, ↓ b and ↓ d
operations are applicable only to traces at the derived class level.

ncbc(σi, τ, σf): ncbc() denotes “no change between calls”; i.e., the D-portion
of the state does not change between calls to hook methods. σi is the initial
state, i.e., the state at the start of t(), and σf the final state, i.e., the state
at the end of t(). More formally:
ncbc(σi, τ, σf) ≡

((|τ | = 0)⇒ (σi↓d = σf ↓d))
∧ ((|τ | > 0)⇒ ((σi↓d = τ [1].is↓d) ∧ (σf ↓d = τ [|τ |].fs↓d) ∧

(∀j : (1 ≤ j < |τ |) :: (τ [j].fs↓d = τ [j + 1].is↓d))))
Since σi is the state that t() starts in, the ↓d portion of the state just before
the first call recorded in τ will be same as the σi↓d since the portion of t()
that precedes this call cannot have modified it. Similarly, the ↓d portion of
the state when t() finishes execution will be same as the ↓ d portion of the
state immediately after the last call recorded in τ . This explains the first
two clauses in the case that (|τ | > 0). The third clause states that the ↓ d
portion of the ‘initial state’ recorded in the (j + 1)st call is the same as the
↓d of the ‘final state’ recorded in the jth call. If (|τ | = 0), the ↓d portion of
the final state when t() finishes is the same as ↓d of the state at the start of
t() since no hook methods are invoked.

ccds(τ, k): ccds() denotes “change (in state) recorded in the kth element of τ
is consistent with derived-class specification (of the hook method)”; i.e., the
states and argument values recorded in the kth element of τ is consistent
with the f-specification, in the derived class, of the hook method invoked in
this element. More formally:

318 Neelam Soundarajan and Stephen Fridella

ccds(τ, k) ≡ (post.D.τ [k].hm()[xx@pre← τ [k].ia, σ@pre← τ [k].is,
xx← τ [k].fa, σ ← τ [k].fs]

∧ Id[σ ← τ [k].fs])
ccds() asserts that the initial and final values of the arguments and initial
and final states recorded in τ [k] satisfy the conditions that the derived class
f-post-condition imposes on the initial and final values of its parameters
and the initial and final states when the method begins and ends. This is
what will allow us to arrive at the richer behavior of t() by appealing to
the richer behavior of the redefined τ [k].hm as expressed in its derived class
f-post-condition.

With these preliminaries out of the way, we can present the main rule R2 that
makes it possible to reason incrementally in our system. The rule requires us

R2. Enrichment Rule

(epre.D.t() ∧ Id)⇒ epre.B.t()

[epost.B.t()[τ ← τ ↓b, σ ← σ↓b, σ@pre← σ@pre↓b]
∧ (pre.D.t() ∧ Id)[σ ← σ@pre]
∧ ncbc(σ@pre, τ, σ) ∧ (∀k : (1 ≤ k ≤ |τ |) :: ccds(τ, k))] ⇒ (Id ∧ epost.D.t())

〈epre.D.t(), epost.D.t()〉

to establish the specified antecedents in order to conclude the derived-class e-
specification for t(). The first antecedent requires us to show that if a state
satisfies the derived-class pre-condition of t(), it also satisfies the base-class pre-
condition. This is needed because when reasoning, in the base class, about what
t() does when it starts, we had assumed that the state satisfies the base-class
pre-condition; so unless this is true, that reasoning may no longer be valid. In
the base class reasoning, we also assumed that the initial state satisfies Ib; this
will still be the case because in the derived class we may assume that the state
will satisfy Id at the start of t(), and hence, given the requirement of behavioral
subclassing, the state will also satisfy Ib.

In the second antecedent, σ@pre and σ denote the complete (i.e., both base-
and derived-class portions) initial and final states when t() begins and ends
execution. Since epost.B.t() refers only to the base class portion of the state, we
replace σ and σ@pre in epost.B.t() by the ↓b portion of these states. Similarly, we
replace τ in epost.B.t() by τ ↓ b. In practice, these substitutions tend to require
no real effort. Thus, for example, suppose x is a member variable of B and that
epost.B.t() contains a clause (x = x@pre + 10); since x is a component of both
σ and σ ↓b (and x@pre a component of σ@pre and σ@pre↓b), nothing needs to
be done, as far as this clause is concerned, to effect the substitutions. We will
see this in practice in the case study later in the paper.

Thus this antecedent requires us, given the base class e-post-condition of t(),
given that the derived class portion of the state doesn’t change between calls to
hook methods, and given that following each call recorded on τ , the state and

Incremental Reasoning for Object Oriented Systems 319

argument values satisfy the derived class post-condition of the method called,
to show that the derived-class invariant and the derived class e-post-condition
of t() are satisfied. As explained earlier, it is the assumption that the state and
argument values following calls to the h/ht-methods satisfy the richer derived
class specification of these methods, that allows us to arrive at a correspondingly
richer post-condition epost.D.t() for t() without having to re-analyze its body.

It maybe useful to summarize our approach for reasoning about the derived
class D: We first come up with the invariant Id for the class, the e-specification
and f-specification for each t-method and each ht-method of the class, and the
specification for each h-method and each nht-method. Next we check that D is
a behavioral subclass of B, i.e., the requirements specified in (8) are satisfied.
Next, we have to verify that each method satisfies its specification(s). For each
method that is newly defined or is redefined in D, we use the same approach
as in the base class; for the redefined methods, we also check (or have checked)
that the relation, imposed by the behavioural subclassing requirement, between
the method’s derived class specification and its base class specification. For non-
template methods inherited from the base class, as we saw in (7), the specification
is the same as in the base class with the addition, in the post-condition of the
method, that the method does not change the values of member variables newly
introduced in D. For template methods, and this is the focus of our paper,
we use the rule R2 to (arrive at and) justify the richer e-specification for the
method, and in turn use this richer e-specification to justify a correspondingly
richer f-specification (as required by (3)).

One point is worth stressing: if h() is an ht-method that is redefined in D, the
behavioral subclassing requirement has to do with its f-specification, not its e-
specification. This is because, so long as the (functional) behavior of the redefined
h() is consistent with its base class f-specification, the reasoning that we have
done in the base class about the behavior of any (template) methods that invoke
h() will remain valid. The point is that the e-specification for h() in the base
class would have allowed us to arrive (using rule R2) at its richer behavior if
we had inherited h() unchanged but had redefined some of the hook methods it
invokes; if instead we redefine h() in D, then its base class e-specification is of
no particular relevance in the derived class.

One important question that any axiomatic system has to address is that of
soundness and (relative) completeness with respect to the operational model of
the programming language/system. Because of space limitations, we will con-
sider this question only briefly. The main question concerns the behavior of
template methods since our approach to the other methods is standard. And
here, one problem in establishing soundness and completeness of our system is
that the trace τ that plays a central role in our axiomatic system is not part of
standard operational models of OO languages; as a result, we cannot talk about
the validity of our e-specifications with respect to our model.

This may seem an advantage since we would then have to worry only about
the f-specifications. But the problem is that in our approach, we first establish
the e-specification (with rules R1, R2 being the key ones for dealing with the

320 Neelam Soundarajan and Stephen Fridella

trace information), and then establish the f-specification by showing that the
conditions specified in (3) are satisfied. Hence we cannot establish the validity
of an f-specification without first showing the validity of the e-specification that
the f-specification is based on. The solution is to introduce traces also into the
operational model7. As in the axiomatic system, the trace in the model would
record calls to and returns from hook methods; each such call-return would
record the name of the method called, the argument values and state at the
time of the call, and the argument values and state at the time of the return.
With this change, it is straightforward to show that results established using our
reasoning system in particular using rule R1, about a base class are valid in the
model.

Results about a derived class, in particular those established using R2, are
more difficult. One possible approach would be as follows: Consider the proof
outline (in the base class) that established the original e-specification of the
template method in question. Treat the method as a member of the derived
class and develop a new proof outline; this new outline is obtained by adding,
to each assertion in the original proof outline, the clauses ncbc() and ccds() (for
all k < |τ |). These clauses must hold at all points in this method (considered
as a member of the derived class) for the same reason as before, that is, the
member variables introduced in the derived class can change only due to the
calls to the hook methods. Thus this new proof outline justifies the enriched
e-post-condition that appears in R2, and hence shows that any result derived
by using that rule8 must be valid in the model.

So much for soundness. Now consider (relative) completeness. To show com-
pleteness, we have to show that the strongest post-condition for any method, i.e.,
the assertion that is satisfied only by states that can operationally arise when
method finishes execution, can be established. Here again the argument is best
presented in terms of proof outlines. Consider the base class. For each statement
in the method, we simply use the strongest post-condition corresponding to the
statement and its pre-condition. Then we can inductively argue that the result-
ing post-condition is indeed the strongest possible one for the entire method.
Consider now a template method and its proof outline in the base class. From
this, derive a new proof outline for the method in the derived class by adding
the ncbc() and ccds() (for all k < |τ |) clauses as before to each assertion in the
base-class proof outline. Again we can argue inductively that the assertion spec-
ified in this proof outline at each point in the method is indeed the strongest
possible assertion at that point; and hence that, using R2, we will be able to
7 This is not to suggest that anything is to be gained by introducing traces into

actual implementations of OO languages. Our only purpose in introducing traces
into the operational model is to bring the model closer to the reasoning system so
that soundness and completeness arguments can be more easily developed. When
defining a new model in this manner, we must of course ensure that as far as possible
values that variables that already exist in the original model are concerned, the new
model agrees with the original model.

8 We have ignored invariants in this argument but they can be added in a straight-
forward manner.

Incremental Reasoning for Object Oriented Systems 321

establish the strongest possible post-condition that applies, in the derived class,
to this method.

5 Case Study

The base class for our case study is the Account class defined in Section 2, and
we will consider two derived classes of Account. We start with, in Figure 3,
the specifications for the constructor and the hook methods of Account. The

pre.Account(b) ≡ (b > 0)
post.Account(b) ≡ (balance = b)

pre.Account.deposit(x) ≡ (x > 0)
post.Account.deposit(x) ≡ ((x = x@pre) ∧ (balance = balance@pre + x))

pre.Account.withdraw(x) ≡ (x > 0)
post.Account.withdraw(x) ≡ ((x = x@pre) ∧ (balance = balance@pre− x))

pre.Account.getInfo() ≡ (true)
post.Account.getInfo() ≡ ((balance = balance@pre) ∧ (string(balance) � result)) (9)

Fig. 3. Specification of Account class

specification of the constructor states that the balance in the constructed account
is initialized to the given value. The specifications for deposit() and withdraw()
tell us that these methods do not change the value of the parameter x, and that
they update balance appropriately.

The specification of getInfo() is more interesting. Note first that in this post-
condition we use result to refer to the value returned by this function [Mey97].
Also we assume that the string(x) represents the string version of x; and “
”
is the prefix relation over strings. Thus this specification tells us that getInfo()
leaves balance unchanged, and that the string representation of the balance is
a prefix of the result returned. The result returned by Account.getInfo() is in
fact equal to this string, but the specification allows the derived class designer
to redefine getInfo() to return additional information beyond the balance in the
account (while still satisfying the behavioral subclassing requirement). If our
specification instead stated that the result returned by getInfo() was equal to
balance, the derived class designer would be prevented, by behavioral subclassing,
from implementing such enrichments. By the same token, the specifications of
deposit() and withdraw() forbid the redefinition of these methods to, say, impose
a transaction fee by deducting an additional amount from the balance. It is
straightforward to show that the bodies of the hook methods of the Account
class, as defined in Fig. 2, do satisfy the specifications in (9).

Next consider the template method processTransSeq(). It may be useful to
briefly summarize the operational behavior of the code, which appears in Fig-
ure 2, of this method: The method receives a sequence of transaction requests in
its first parameter transs; it extracts each transaction from transs, and invokes

322 Neelam Soundarajan and Stephen Fridella

the corresponding method; if the transaction is printInfo, it appends to its second
parameter results (whose initial value is the empty string) the result returned by
the call to getInfo; and terminates after processing all the transactions in transs.

In the e-specification of this method in Fig. 4, we use a number of auxiliary
functions and predicates; we start by defining these and then will discuss the
specification. In the definitions below, we use tr to denote a transaction request
and trs a sequence of such requests; ai will denote a string consisting of account
information in the format used by processTrans() for outputting, and ais will
denote a sequence of such strings. τ , as usual, will denote the trace of hook-
method calls:

IsTransReq(tr): This predicate is true if tr is a ‘legitimate’ transaction request,
i.e., specifies a transaction (deposit, withdraw, or printInfo), and if the trans-
action is deposit or withdraw, specifies a positive amount.

IsTransReqSeq(trs): true if trs is a sequence of legitimate transaction requests.
|trs|: The length of, i.e. the number of, requests in trs.
trs[j]: The jth request in trs.
trs[i :j]: The subsequence of trs from the ith request to the jth.
Trans(tr): The operation (deposit, withdraw, or getInfo) involved in this request;

note that if the request is for printInfo, the corresponding operation is get-
Info().

trs\{deposit}: The subsequence of trs that includes only those transaction re-
quests for which the transaction involved in the request is deposit; similarly
for other transactions.

Amts(trs): The sequence consisting of just the amounts involved in the transac-
tions in trs (the amount in the case of a printInfo request being taken to be
0). We will find it useful to refer to the sequence of amounts involved in, say,
just the deposit transactions; this may be written as Amts(trs\{deposit}).

IRNo(trs, k): This value is k′ if Trans(trs[k′]) is getInfo, and |trs[1 :k′]\{getInfo}|
is k; in other words, trs[k′] is a printInfo request and is the kth such request.

AccInfo(ai): This predicate is true if ai is a legitimate account-information
string; i.e., it consists of the character “<”, followed by the balance in the ac-
count, additional information (this will depend on how getInfo() is redefined
in the derived class), and finally “>”.

AccInfoSeq(ais): This predicate is true if ais is a sequence of legitimate account-
information strings.

ais[k]: The kth account-information string in ais.
Balance(ai): The balance information in the account-info string ai.
Info(ai): The entire information, including balance, in the account-info string ai.

In the case of the base class, this will be identical to Balance(ai).

We should also note that when discussing our reasoning system in the preced-
ing sections, we did not consider the case of a hook method such as getInfo()
returning an explicit result. The record, in the trace, of a call to such a method
will have to include the result returned by the method. If the kth element of τ
records such a call/return, we will use the notation τ [k].re to refer to the result
returned by this call.

Incremental Reasoning for Object Oriented Systems 323

In the specification (10), we have numbered some of the lines individually as
(10.1), (10.2), etc., for easy reference in the discussion. The pre-condition asserts
that the hook method call trace is empty, as is results, and that transs is a legiti-
mate sequence of transaction requests. Let us now consider the e-post-condition.

epre.Account.processTransSeq(transs, results) ≡ (10)
[(τ = ε) ∧ (results = ε) ∧ (IsTransReqSeq(transs))]

epost.Account.processTransSeq(transs, results) ≡
[(transs = ε) ∧ (10.1)

(balance = (balance@pre +∑
Amts(transs@pre\{deposit})−∑
Amts(transs@pre\{withdraw}))) ∧ (10.2)

(|τ | = |transs@pre|) ∧
(∀k : (1 ≤ k ≤ |τ |) :: (τ [k].hm = Trans(transs@pre[k]))) ∧ (10.3)
(|results| = |transs@pre\{printInfo}|) ∧ AccInfoSeq(results) ∧ (10.4)
(∀k : (1 ≤ k ≤ |results|) : (k′ = IRNo(transs@pre, k)) ::

(Info(results[k]) = τ [k′].re) ∧ (10.5)
(Balance(results[k]) = (balance@pre +∑

Amts(transs@pre[1 :k′ − 1]\{deposit})−∑
Amts(transs@pre[1 :k′ − 1]\{withdraw})))) (10.6)

]

Fig. 4. Specification of Account.processTransSeq()

(10.1) asserts that the value of transs is empty, i.e., when processTransSeq() fin-
ishes, all the transaction requests have been processed. (10.2) asserts that the
final balance in the account is equal to the starting balance, plus the amounts
deposited into the account, less the sum of the amounts withdrawn, in the var-
ious transactions. This follows from the fact that the starting balance in the
account is balance@pre, and from the fact that when processing a deposit/ with-
draw/ printInfo transaction, processTransSeq() invokes the deposit()/ withdraw()/
getInfo() method which means, given the specification (9) that the deposit() and
withdraw() methods update the balance by the amount deposited or withdrawn
and getInfo() leaves the balance unchanged, that the final balance will be as
specified in (10.2).

The next few clauses concern the trace; they assert that the length of τ ,
i.e., the number of hook-method-calls is equal to the number of transactions
requested; and that the particular hook method called (τ [k].hm) is the one ap-
propriate for the transaction. Note, however, that no information is provided
about the value of the argument passed in the hook method calls (in the calls
to deposit() and withdraw()). This information could have been provided by in-
cluding the clause:

((τ [k].hm = deposit) ∨ (τ [k].hm = withdraw))⇒ (τ [k].ia = Amts(transs@pre)[k])

324 Neelam Soundarajan and Stephen Fridella

This simply asserts that if the hook method whose call is recorded in the kth

element of τ is deposit() or withdraw(), the value of the argument passed to the
method is the same as the value supplied in the corresponding element of the
(initial) sequence of transaction requests. In addition, information about the
state (the value of balance) at the time of these calls is also not provided in
(10); again, this information could have been provided with a similar clause.
The fact that these items of information about these hook method calls are not
included means that the base class designer does not expect enrichments that
would depend on the values of the arguments passed to the hook methods or on
the (base class) state at the time of the calls to the hook methods.

The remaining clauses of (10) give us information about the output that
processTransSeq() will produce. (10.4) says that there will be as many elements
in the final value of results as the number of printInfo transaction requests, and
that each of these elements will be an account-information string. The remain-
ing clauses are concerned with the individual elements of results; since the kth

element of results depends upon the portion of transs@pre that precedes the kth

printInfo request in transs@pre, i.e., on transs@pre[1 : (IRNo(transs@pre, k)− 1)],
we have introduced k′ as an abbreviation for IRNo(transs@pre, k). (10.5) asserts
that the information in this element of results is equal to the result returned by
the corresponding call to getInfo() recorded in τ ; this clause is important since
it will allow the derived class designer to establish the enriched behavior of pro-
cessTransSeq() in the derived class, in particular the enriched output that will
result from a redefinition of getInfo(). The final clause (10.6) asserts that the
balance information in the elements of results correspond to the actual balance
in the account at the time that the information was added to results.

Showing that the body of processTransSeq() satisfies this specification is, of
course, more involved than showing that methods like deposit() satisfy their spec-
ifications. This is partly due to the fact that we have to reason about the trace
and partly due to the complexity of processTransSeq(). Thus, for example, deal-
ing with the loop in processTransSeq() would require us to introduce a suitable
invariant (which would be very similar to the e-post-condition). We leave the
formal statement of the loop invariant and the derivation of the e-post-condition
to the interested reader.

The f-specification of processTransSeq() is easily stated:

pre.Account.processTransSeq(transs, results) ≡ (11)
[(results = ε) ∧ (IsTransReqSeq(transs))]

post.Account.processTransSeq(transs, results) ≡
[(transs = ε) ∧ (11.1)
(|results| = |transs@pre\{printInfo}|) ∧AccInfoSeq(results) ∧ (11.2)
(∀k : (1 ≤ k ≤ |results|) : (k′ = IRNo(transs@pre, k)) ::

(Balance(results[k]) = (balance@pre
+

∑
Amts(transs@pre[1 :k′ − 1]\{deposit})

−∑
Amts(transs@pre[1 :k′ − 1]\{withdraw}))) ∧ (11.3)

(balance = (balance@pre +
∑

Amts(transs@pre\{deposit})−∑
Amts(transs@pre\{withdraw})))] (11.4)

Incremental Reasoning for Object Oriented Systems 325

This states that the balance is appropriately updated corresponding to the
transactions specified in transs@pre and the balance values in the results recorded
in results represent the balance in the account following the completion of all
earlier transactions. It is straightforward to check that the required relation, (2),
between the e- and f-specifications is satisfied.

Now consider a derived class. TCAccount in Figure 5 enriches the behavior
of the Account class by maintaining a count of the transactions, i.e., the number
of deposits and withdrawals made on the account; the count is maintained in
the variable tCount. tCount is initialized to 0 in the constructor. deposit() and

class TCAccount extends Account {
protected int tCount;

// current transaction count
TCAccount(int b) { tCount := 0; }
public void deposit(int amt)
{ balance := balance + amt; tCount++;}

public void withdraw(int amt)
{ balance := balance − amt; tCount++;}

public string getInfo()
{res := string(balance); res += “trans count: ”;

res += string(tCount); return(res);}
}

Fig. 5. Derived class TCAccount

withdraw() have been redefined to increment tCount in addition to updating
balance appropriately. getInfo() has been redefined so that the result it returns
contains not only the balance in the account, but also the tCount.

pre.TCAccount(b) ≡ (b > 0)
post.TCAccount(b) ≡ ((balance = b) ∧ (tCount = 0))

pre.TCAccount.deposit(x) ≡ (x > 0)
post.TCAccount.deposit(x) ≡ ((x = x@pre) ∧ (balance = balance@pre + x) ∧

(tCount = tCount@pre + 1))

pre.TCAccount.withdraw(x) ≡ (x > 0)
post.TCAccount.withdraw(x) ≡ ((x = x@pre) ∧ (balance = balance@pre− x) ∧

(tCount = tCount@pre + 1))

pre.TCAccount.getInfo() ≡ (true)
post.TCAccount.getInfo() ≡ ((balance = balance@pre) ∧ (tCount = tCount@pre) ∧

(result = (string(balance)ˆ“trans count: ”ˆstring(tCount)))) (12)

Fig. 6. Specification of TCAccount class

The specifications for these redefined methods appear in Figure 6. These are
similar to those in Figure 3; the only changes are that in the post-conditions

326 Neelam Soundarajan and Stephen Fridella

of deposit() and withdraw(), we specify how they increment tCount, and in the
post-condition of getInfo(), we specify that the result returned consists of the
(string representation of the) balance in the account, followed by the string
“trans count: ”, followed by (the string representation of the) transaction count;
note that “ˆ” in the last line of (12) denotes string concatenation. It is easy
to check that the methods defined in Figure 5 satisfy these specifications and
to check that the specifications in (12) and (9) meet the behavioral subclassing
requirements since the pre-conditions in (12) are identical to those in (9) and
the post-conditions in (12) imply the corresponding post-conditions in (9)9.

Let us now turn to the essential point of our reasoning task, that of incre-
mentally arriving at the richer behavior of TCAccount.processTransSeq() due to
the richer behavior of the methods it invokes. The key clause in the base class
(e-)specification of processTransSeq() that allows such enrichment is (10.5):

(Info(results[k]) = τ [k′].re)

First recall, according to the relation between k and k′ in (10), that τ [k′] records
the kth call to getInfo(). Now, post.TCAccount.getInfo() specified in (12) gives us
more information about the result returned by this call, in other words about
the value of τ [k′].re, than does post.Account.getInfo() specified in (9). Specifically,
whereas (9) states that the result returned by getInfo() will include the string
representation of the balance in the account as a prefix, (12) states what the
rest of the result returned by (TCAccount.)getInfo() consists of: the string ”trans
count:” followed by the string representation of the value of tCount in the account.

What will this value be? According to the specfication (12), TCAccount.-
deposit() and TCAccount.withdraw() both increment tCount by 1. So the value
that (TCAccount.)getInfo() reports for tCount in the result it returns will depend
on the number of calls made so far to these methods. And since these are all
hook methods, calls to these methods are all recorded on τ . We first introduce
a couple of additional auxiliary functions and predicates which will be of use in
stating the richer behavior of processTransSeq():

TCAccInfo(ai): This predicate is true if ai is a legitimate TCAccount-inform-
ation string; i.e., it consists of “<”, the balance in the account, the string
“trans count: ”, an integer (being the value of the transaction count in the
account), and finally, “>”.

TCAccInfoSeq(ais): This is true if ais is a sequence of legitimate TCAccount-
information strings.

TransCount(tcai): The trans count value recorded in the TCAccount-information
string ai.

The specification of TCAccount.processTransSeq() appears in Figure 7. The
pre-condition is the same as in the base class-specification. (13.1) is simply the
post-condition from the base class-specification; (13.2) and (13.3) specify the
enrichment. (13.2) should be compared with the (second conjunct of) (10.4);

9 The invariants for both Account and TCAccount are true.

Incremental Reasoning for Object Oriented Systems 327

epre.TCAccount.processTransSeq(transs, results) ≡
[(τ = ε) ∧ (results = ε) ∧ (IsTransReqSeq(transs))] (13)

epost.TCAccount.processTransSeq(transs, results) ≡
[post.Account.processTransSeq(transs, results) ∧ (13.1)
TCAccInfoSeq(results) ∧ (13.2)
(∀k : (1 ≤ k ≤ |results|) : (k′ = IRNo(transs@pre, k)) ::

(TransCount(results[k]) =
(tCount@pre+ |transs@pre[1 :k′−1]\{deposit, withdraw}|)))(13.3)

]

Fig. 7. Specification of TCAccount.processTransSeq()

whereas the latter tells us that results is a sequence of strings each of which con-
sists of “<”, followed by the balance in the account, followed (possibly) by some
additional information, followed by “>”, (13.2) also tells us that this additional
information will be the string “trans count:” followed by (the string representa-
tion of) the value of tCount in the account at the time this was added to results.
And (13.3) tells us that this value will be equal to the value of tCount at the
start of TCAccount.processTransSeq(), plus the number of deposit and withdraw
transaction requests preceding the printInfo request that led to this TCAccount-
information string being added to results.

Let us now see how we can, by using our Enrichment Rule R2, establish (13),
given the base class e-specification (10) and the derived class behaviors of the
hook methods specified in (12). The first antecedent of R2 is immediate since the
e-pre-conditions for the base and derived classes are identical. Now consider the
second antecedent. Note first that the various clauses ((10.1) through (10.6)) in
epost.Account.processTransSeq(transs, results) are such that the substitutions –τ
by τ ↓b, etc.– specified in the first clause of the left side of this antecedent have
no effect since balance is a member of the base class (hence also of the derived
class), transs and results are arguments of the method (hence are the same in
the base and derived classes), and τ [k].hm (the identity of the hook method
invoked in the kth element of τ) and τ [k].re (the result returned by this call)
are the same in the base and derived classes. Therefore, (13.1) will be satisfied
(given the first clause of the left side of the second antecedent of R2). (13.2) may
be established as follows: From the second clause of (10.4) we know that each
element of results is an account-information string; and from (10.5) we know that
the information in the kth element of results is the same as the result returned
by kth call to getInfo(); (13.2) then follows from what post.TCAccount.getInfo()
(defined in (12)) tells us about the result returned by TCAccount.getInfo().

Next consider (13.3). Appealing again to (10.5), we can conclude that
TransCount(results[k]) is equal to TransCount(τ [k′].re)
where k′ is IRNo(transs@pre, k). The specification (12) of TCAccount.getInfo()
tells us that the transaction count in the result returned by this method is
the same as the value of tCount at the time the method was called; i.e., equal
to the value of tCount in the state τ [k′].is. The clause ncbc() in the left side

328 Neelam Soundarajan and Stephen Fridella

of the second antecedent of R2 tells us, given that tCount is introduced in the
derived class TCAccount, that the value of this variable as recorded in the “initial
state” (the .is component) of each element of τ is the same as its value in
the “final state” (the .fs component) of the previous element; the clause ccds()
in the same antecedent tells us that the states as recorded in the .is and .fs
components of each element of τ satisfy the post-condition, specified in (12), of
the corresponding hook method. Since, according to (12), TCAccount.deposit()
and TCAccount.withdraw() each increment tCount by 1, and TCAccount.getInfo()
leaves it unchanged, we can then conclude that the transaction count in the result
returned by the call to getInfo() recorded in the k′th element of τ is equal to the
value of tCount at the start of processTransSeq() plus the number of calls to
deposit()/withdraw() recorded in the first (k′−1) elements of τ . This, combined
with (10.3), lets us conclude that (13.3) must be satisfied.

And finally, consider the f-specification of TCAccount.processTransSeq(); we
express this in terms of the pre- and post-conditions of the f-specification of
Account.processTransSeq(), spelling out only the additional clauses:

pre.TCAccount.processTransSeq(transs, results) ≡ (14)
pre.Account.processTransSeq(transs, results)

post.TCAccount.processTransSeq(transs, results) ≡
[post.Account.processTransSeq(transs, results) ∧ (14.1)

TCAccInfoSeq(results) ∧ (14.2)
(∀k : (1 ≤ k ≤ |results|) : (k′ = IRNo(transs@pre, k)) ::

(TransCount(results[k]) =
(tCount@pre + |transs@pre[1 :k′ − 1]\{deposit, withdraw}|)))] (14.3)

Again it is straightforward to check that the relation (2) holds between the
e-specification (13) and the f-specification.

Note that the clause (14.1) follows from behavioral subclassing considera-
tions, given that (12) is consistent with (9) If all we were interested in was to
show that TCAccount.processTransSeq() behaves in a way consistent with the
(f-)specification of Account.processTransSeq(), we would not need the formalism
developed in this paper. But, of course, the whole point of defining the derived
class, in particular of redefining the hook methods in the TCAccount class, was
to enrich the behavior of the template method processTransSeq() as specified in
(14.2) and (14.3). And it is this enriched behavior that our formalism allows us
to establish. And in establishing this enriched behavior, we did not have to rean-
alyze the behavior of the code of this method; instead, we plugged in the richer
behavior of the derived class hook methods into the e-specification, established
during the base-class analysis, of the template method.

We will conclude this section with two remarks. First, suppose we defined
a variation of TCAccount in which only large transactions, i.e., those in which
the amount involved is greater than 5000 are counted. Then we cannot rea-
son about the resulting richer behavior of processTransSeq() on the basis of the
specification (10) since that specification does not tell us what argument values
processTransSeq() passes to the hook methods it calls. It would have been easy
enough to include this information in (10); it is up to the base class designer

Incremental Reasoning for Object Oriented Systems 329

to anticipate what kinds of enrichments might be implemented in the derived
classes and include the appropriate information in the e-specifications. Being
too liberal here, that is allowing for all kinds of enrichments, would lead to very
complex e-specifications; being too conservative will make it impossible to reason
incrementally about enrichments that were not anticipated. This is a trade-off
between flexibility of design versus complexity of specs.

Our second observation has to do with the nature of our e-specifications.
E-specifications are most conveniently expressed, as in the case of
Account.processTransSeq(), by first defining some useful functions on traces that,
in a sense, mimic the behavioral pattern exhibited by the template method, and
then writing down the e-specification of the method in terms of these functions.
For more complex situations, we believe it would be useful to introduce spe-
cialized notation for use in writing such specifications, perhaps using constructs
similar to those of regular expressions; we plan to investigate such notations in
future work.

6 Related Work

A number of authors have addressed questions relating to reasoning about be-
havioral issues in OO systems. Lamping [Lam93] proposes specifying, for each
polymorphic function of a class, the set of virtual functions that it invokes. This
will allow a derived class designer to know whether a given polymorphic func-
tion might be affected –enriched in our terminology– by redefinitions of specific
virtual functions. The idea seems to be that the designer can then go back and
study the code of the polymorphic function in the base class to see how it is af-
fected; our goal of course is to try to avoid such reanalysis. Kiczales and Lamping
[KL92] propose providing information not just about which virtual functions the
polymorphic function will call but also the order in which it will call them. But
they don’t talk about establishing behavioral specifications or about arriving at
the enriched behavior of the polymorphic method in the derived class by plug-
ging in, into the base class specification, information about the behavior of the
redefined virtual methods.

Behavioral problems arising from careless use of inheritance have been dis-
cussed by a number of authors, see for example [Sak89]. It is, as we noted earlier,
to address this problem that the notion of behavioral subtyping was developed;
our work extends this since our goal is not just to guarantee that the base-class-
level analysis of the template method remains valid in the derived class but also
to reason about the richer behavior of the template method in the derived class.
We should also note that a class A may be a behavioral subtype of a class B
independently of whether or not A is defined as a derived class of B. Dhara and
Leavens [DL96] focus on the conditions that will ensure that a derived class will
be a behavioral subtype of its base class so there is a natural connection to our
work since the primary focus of this paper is the relation between the behaviors
of derived and base class. But note that Dhara and Leavens, like other authors
who deal with behavioral subtyping, do not address the question of the enriched

330 Neelam Soundarajan and Stephen Fridella

behavior resulting from the redefinition of methods in the derived class which is
our main concern. Stata and Guttag’s [SG95] interest is somewhat similar to that
of [DL96]. They extend the notion of behavioral subtyping to deal with redefi-
nitions of groups of virtual methods in the derived class, but again the question
of reasoning about the richer behavior in the derived class is not addressed. Ed-
wards [Edw97] considers the reasoning reuse that may be achieved if the derived
class is not necessarily a behavioral subtype of the base class but certain other
conditions, such as the invariant for the derived class being the same as that for
the base class, are satisfied. But as we just saw, if we want to be able to reason
incrementally about the behavior of template methods, behavioral subtyping (or
rather behavioral subclassing) is essential.

Abadi and Leino [AL97] propose a logic for reasoning about OO programs
expressed in a simple language that they define. They do not have classes in their
language; each object, in the logic, ‘carries’ with it the specifications of its various
methods. In addition, the logic takes explicit account of object creation via the
alloc() function; this allows them to deal with aliasing between objects. But
[AL97] does not address the question of reasoning about polymorphic methods;
in particular it is not clear that we would be able to reason incrementally about
the behavior of the polymorphic method from its specification in the base class
(or object); instead, it seems likely that one would have to re-reason about the
(body of the) polymorphic method in the context of the new class to arrive at
its derived-class behavior.

Buchi and Weck’s [BW99] work is closer to our approach. They note that
pre- and post-conditions on just the values of member variables are inadequate
when dealing with template methods and that one must also make use of traces.
They introduce a formalism and a programming language-like notation using
which some information about the trace of hook method calls can be specified.
Although their use of traces is similar to ours, Buchi and Weck focus only on
specifying conditions that the trace must satisfy, not the question of how to
use such specifications to arrive at the richer behavior that results from the
redefinitions of the hook methods in the application. It is also worth noting
that traces have been used extensively [Dah92, Hoa85, MC81] for reasoning
about communicating processes. The soundness and completeness arguments
we sketched are quite similar to the proofs of soundness and completeness of a
trace-based CSP proof system in [SD82].

Keidar et al. [KKLS00] present a formal system for arriving at specifications
and proofs incrementally. But the kind of inheritance they use is not related to
inheritance (of code) from base to derived classes in standard OO languages;
rather, their ‘inheritance’ has to do with starting with the specification for an
automaton and arriving at the specification for another automaton that exhibits
additional behavior. In particular, [KKLS00] does not deal with incremental
reasoning about the behavior of template methods.

Garlan et al. [GJND98] develop a temporal-logic based approach to reasoning
about implicit invocation. Calls to hook methods from template methods can
be considered implicit invocations since the actual method invoked cannot be

Incremental Reasoning for Object Oriented Systems 331

determined from just the body of the template method but also depends on the
derived class under consideration. While there are some similarities with our
work, a key difference is that whereas we first reason about the base class and
then arrive incrementally at the behavior of the derived class, [GJND98] takes a
very different approach: Given a system S (consisting of all the methods defined
in all the classes) and a specification for S, partition S into a number of groups,
arrive at a suitable specification for each group, show that each group satisfies its
specification, and show that together the specifications of the individual groups
imply the original specification of S.

7 Discussion

One of the most important ideas introduced by Simula was the notion of poly-
morphism. Polymorphism allows a derived class designer to enrich the behavior
of the template methods of the base class by redefining one or more of the hook
methods that the template methods invoke. If the base class has been designed
carefully and includes the right hooks and the template methods invoke these
at the right points, different derived class designers can achieve different enrich-
ments, appropriate to their particular applications, with relatively little effort;
much has been written about the central role that polymorphism plays in build-
ing flexible, extensible OO systems see, for example, [Mey97]. The work reported
in this paper has been motivated by the belief that the techniques that we use to
reason about the behaviors exhibited by such systems must similarly be incre-
mental, in other words, that we must provide suitable characterizations of the
behaviors of the base class template methods so that we can arrive at the richer
behaviors they exhibit in the derived class by simply plugging-in appropriate
information about the redefined hook methods. Although much work has been
done in the past few years in developing reasoning systems for dealing with OO
systems, most of this work, in particular the work on behavioral subtyping (and
subclassing), has focused on ensuring that base class specifications of template
methods continue to be satisfied even with the derived class redefinitions of the
hook methods. Our main contribution has been to extend this to allow us to
reason also about the richer behavior that the template methods exhibit as a
result of these redefinitions of the hook methods.

The key component of our approach that makes it possible to reason about
this richer behavior without having to reanalyze the code of the template method
is what we called the e-specification of a template method. The e-specification
gives us information about the trace of hook method calls that the template
method in question makes and its relation to the behavior the template method
exhibits. Although the e-specification is more complex than the standard (f-)
specification that only specifies information about the values of the member
variables of the class, it is clear that an incremental reasoning system must
include information about the trace of hook method calls since that is the source
of the power of polymorphism.

332 Neelam Soundarajan and Stephen Fridella

In this paper, we have considered only a single base class and the derived
classes that might be defined from it. In a complex OO system, there will of
course be many objects that are instances of a variety of classes. Indeed, this
corresponds naturally to a distributed system with the individual objects cor-
responding to the processes of the distributed system. There are of course ad-
ditional issues to be considered in such a system such as synchronization. It
has been observed that this can introduce additional new problems such as the
inheritance anomaly [MY93]. In future work, we hope to extend our reasoning
system to deal with behavioral issues in such systems. The fact that traces which
play such a key role in our system also occur naturally when dealing with the
behavior of distributed systems [Hoa85, MC81] suggests that such an approach
is indeed reasonable.

References

[AL97] M. Abadi and K. Leino. A logic of oo programs. In Proceedings of TAP-
SOFT ’97, pages 682–696. Springer-Verlag, 1997.

[Ame91] P. America. Designing an object oriented programming language with
behavioral subtyping. In Foundations of Object-Oriented Languages, REX
School/Workshop, LNCS 489, pages 69–90. Springer-Verlag, 1991.

[BW99] M. Buchi and W. Weck. The greybox approach: when blackbox specifica-
tions hide too much. Technical Report TUCS TR No. 297, Turku Centre
for Computer Science, 1999. available at http://www.tucs.abo.fi/.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys, 1985.

[Dah92] O.J. Dahl. Verifiable Programming. Prentice-Hall, 1992.

[DL95] K.K. Dhara and G.T. Leavens. Weak behavioral subtyping for types with
mutable objects. In S. Brookes, M. Main, A. Melton, and M. Mislove,
editors, Proc. of 11th Annual Conf. on Math. Found. of Programming,
Elec Notes in Theoretical Computer Sc., pages 269–290. Elsevier, 1995.

[DL96] K.K. Dhara and G.T. Leavens. Forcing behavioral subtyping through spec-
ification inheritance. In Proc. of 18th Int. Conf. on Softw. Eng., pages
258–267. IEEE Computer Soc., 1996.

[DMN68] O-J Dahl, B Myhrhaug, and K Nygaard. Simula 67 common base language.
Technical Report S-2, Norwegian Computing Center, Oslo, 1968.

[DN66] O.J. Dahl and K. Nygaard. Simula - an algol-based simulation language.
Communications of the ACM, 9(9):671–678, Sept 1966.

[Edw97] S. Edwards. Representation inheritance: A safe form of ‘white box’ code
inheritance. IEEE TSE, 23, 83-92, 1997.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable OO Software. Addison-Wesley, 1995.

[GJND98] D. Garlan, S. Jha, D. Notkin, and J. Dingel. Reasoning about implicit
invocation. In Proceedings of Foundations of Software Engineering (FSE-
6), pages 209–221. ACM Press, 1998.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Jon90] C. Jones. Systematic Software Development Using VDM. Prentice-Hall,
1990.

Incremental Reasoning for Object Oriented Systems 333

[KKLS00] I. Keidar, R. Khazan, N. Lynch, and A. Shvartsman. Inheritance-based
technique for building simulation proofs incrementally. In M. Harrold,
editor, 22nd Int. Conf. of Software Eng., pages 478–487. ACM, 2000.

[KL92] G. Kiczales and J. Lamping. Issues in the design and specification of class
libraries. In OOPSLA ’92, pages 435–451, 1992.

[Lam93] J. Lamping. Typing the specialization interface. In OOPSLA, pages 201–
214, 1993.

[LW93] B. Liskov and J. Wing. A new definition of the subtype relation. In
ECOOP, 1993.

[LW94] B. Liskov and J. Wing. A behavioral notion of subtyping. ACM Trans. on
Prog. Lang. and Systems, 16:1811–1841, 1994.

[MC81] J. Misra and K. Chandy. Proofs of networks of processes. IEEE Trans. on
Software Eng., 7:417–426, 1981.

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.
[MY93] S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in oo con-

current languages. In Agha, Wegner, and Yonezawa, editors, Research di-
rections in concurrent OO programming, pages 107–150. MIT Press, 1993.

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel pro-
grams. Acta Informatica, 6(1):319–340, 1976.

[Sak89] M. Sakkinen. Disciplined inheritance. In S. Cook, editor, Proceedings of
ECOOP ’89, pages 39–56. British Computer Workshop Series, 1989.

[SD82] N. Soundarajan and O.-J. Dahl. Partial correctness semantics of CSP.
Technical Report 66, Institute of Informatics, Oslo University, 1982.

[SG95] R. Stata and J.V. Guttag. Modular reasoning in the presence of subclass-
ing. In OOPSLA, pages 200–214. ACM Press, 1995.

[WK99] J. Warmer and A. Kleppe. The Object Constraint Langauge. Addison-
Wesley, 1999.

Pure Type Systems in Rewriting Logic:

Specifying Typed Higher-Order Languages
in a First-Order Logical Framework

Mark-Oliver Stehr1� and José Meseguer2

1 Universität Hamburg
Fachbereich Informatik - TGI

22527 Hamburg, Germany
stehr@informatik.uni-hamburg.de

2 University of Illinois at Urbana-Champaign
Computer Science Department

Urbana, IL 61801, USA
meseguer@cs.uiuc.edu

Dedicated to the memory of Ole-Johan Dahl

Abstract. The logical and operational aspects of rewriting logic as a
logical framework are tested and illustrated in detail by representing
pure type systems as object logics. More precisely, we apply membership
equational logic, the equational sublogic of rewriting logic, to specify pure
type systems as they can be found in the literature and also a new variant
of pure type systems with explicit names that solves the problems with
closure under α-conversion in a very satisfactory way. Furthermore, we
use rewriting logic itself to give a formal operational description of type
checking, that directly serves as an efficient type checking algorithm. The
work reported here is part of a more ambitious project concerned with
the development of the open calculus of constructions, an equational
extension of the calculus of constructions that incorporates rewriting
logic as a computational sublanguage.

This paper is a detailed study on the ease and naturalness with which a family
of higher-order formal systems, namely pure type systems (PTSs) [6,50], can
be represented in the first-order logical framework of rewriting logic [36]. PTSs
generalize the λ-cube [1], which already contains important calculi like λ→ [12],
the systems F [23,43] and Fω [23], a system λP close to the logical framework
LF [24], and their combination, the calculus of constructions CC [16]. PTSs
are considered to be of key importance, since their generality and simplicity
makes them an ideal basis for representing higher-order logics, either via the
propositions-as-types interpretation [21], or via their use as a higher-order logical
framework in the spirit of LF [24,20] or Isabelle [39].

� Currently visiting University of Illinois at Urbana-Champaign, Computer Science
Department Urbana, IL 61801, USA, e-mail: stehr@cs.uiuc.edu

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 334–375, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Pure Type Systems in Rewriting Logic 335

Exploiting the fact that rewriting logic (RWL) and its membership equational
sublogic (MEL) [10] have initial and free models, we can define the representa-
tion of PTSs as a parameterized theory in the framework logic; that is, we define
in a single parametric way all the representations for the infinite family of PTSs.
Furthermore, the representational versatility of RWL, and of MEL, are also ex-
ercised by considering four different representations of PTSs at different levels
of abstraction, from a more abstract textbook version in which terms are iden-
tified up to α-conversion, to a more concrete version with a calculus of names
and explicit substitutions, and with a type checking inference system that can
in fact be used as a reasonably efficient implementation of PTSs by executing
the representation in the Maude language [13,14].

This case study complements earlier work [31,32], showing that rewriting
logic has good properties as a logical framework to represent a wide range of
logics, including linear logic, Horn logic with equality, first-order logic, modal
logics, sequent-based presentations of logics, and so on. In particular, represen-
tations for the λ-calculus, and for binders and quantifiers have already been
studied in [32], but this is the first systematic study on the representation of
typed higher-order systems. One property shared by all the above representa-
tions, including all those discussed in this paper, is that what might be called
the representational distance between the logic being formalized and its rewriting
logic representation is virtually zero. That is, both the syntax and the inference
system of the object logic are directly and faithfully mirrored by the represen-
tation. This is an important advantage both in terms of understandability of
the representations, and in making the use of encoding and decoding functions
unnecessary in a so-called adequacy proof.

Besides the directness and naturalness with which logics can be represented in
a framework logic, another important quality of a logical framework is the scope
of its applicability; that is, the class of logics for which faithful representations
preserving relevant structure can be defined. Typically, we want representations
that both preserve and reflect provability; that is, something is a theorem in
the original logic if and only if its translation can be proved in the framework’s
representation of the logic. Such mappings go under different names and differ in
their generality; in higher-order logical frameworks representations are typically
required to be adequate mappings [20], and in the theory of general logics more
liberal, namely conservative mappings of entailment systems [35], are studied.
In this paper, we we further generalize conservative mappings to the notion of
a sound and complete full correspondence of sentences between two entailment
systems. In fact, all the representations of PTSs that we consider are correspon-
dences of this kind. Sound and complete full correspondences are systematically
used not only to state the correctness of the representations of PTSs at differ-
ent levels of abstraction, but also to relate those different levels of abstraction,
showing that the more concrete representations correctly implement their more
abstract counterparts.

A systematic way of comparing the scopes of two logical frameworks F and
G is to exhibit a sound and complete full correspondence F � G, representing

336 Mark-Oliver Stehr and José Meseguer

F in G. In view of this quite general concept, it is important to add that the
representational distance, which we informally define as the complexity of this
correspondence, is an important measure of the quality of the representation.
Since such correspondences form a category, and therefore compose, this then
shows that the scope of G is at least as general as that of F . Since PTSs include
the system λP, close to the logical framework LF, and the calculus of construc-
tions CC, the results in this paper indicate that the scope of rewriting logic is at
least as general as that of those logics. Furthermore, since there are no adequate
mappings from linear logic to LF in the sense of [20], but there is a conservative
mapping of logics from linear logic to rewriting logic [32], this seems to indicate
that the LF methodology together with its rather restrictive notion of adequate
mapping is more specialized than the rewriting logic approach.

In this paper we will be concerned with PTSs as formal systems represented
inside informal set theory, or inside another formal system such as rewriting
logic or its membership equational sublogic. For formal systems in general, and
for PTSs in particular, there is not a single canonical presentation. Instead each
presentation is tailored for specific purposes. For example, there are different for-
mulations of PTSs with different sets of rules, but the same sets, or related sets,
of derivable sentences. Furthermore, presentations can be more or less abstract,
e.g. concerning the treatment of names, or concerning the degree of operational-
ity. It is needless to say that the use of some general terminology is highly
desirable in this situation to deal with these issues in a systematic way. To this
end, we follow the general logics methodology [35] to use an abstract logical
metatheory, which is concerned with formal systems and their relationships, to-
gether with a particular formal system as a logical framework, namely rewriting
logic. Regarding general logics terminology, we furthermore found that the no-
tion of correspondences between sentences that generalizes the idea of maps of
entailment systems is a simple a useful tool to structure our results.

In summary, we think that, besides the more technical contributions to PTSs
discussed in Section 5, the key contributions of this paper are threefold. First,
as already mentioned, the expressiveness of RWL and its MEL sublogic as log-
ical frameworks is tested and demonstrated by showing how a well-known fam-
ily of typed higher-order logics, that are themselves frequently used for logical
framework purposes, are naturally represented. But this brings along with it
a second important consequence: our representation maps suggest fruitful gen-
eralizations of PTSs, in which higher-order reasoning is seamlessly integrated
with equational and rewriting logic reasoning. The need for such multiparadigm
integrations of equational logic and type theory is clearly recognized by many
researchers, because of the restrictive notions of equality and computation in tra-
ditional λ-calculi. Specifically, as further explained in Section 5.1, an integration
of a typed higher-order λ-calculus with MEL and RWL, namely the open calculus
of constructions (OCC) [48], has been developed by the first author as a natural
extension and generalization of the ideas presented here. It is worth pointing out
that the executability of the representation maps has made possible the devel-
opment of a prototype for OCC in Maude which has been used in a wide range

Pure Type Systems in Rewriting Logic 337

of examples concerned with programming, specification and interactive theorem
proving [48]. A third and final consideration is that our representation maps
have another important advantage: since MEL and RWL theories have initial
models, theories with initial semantics can be endowed with inductive reasoning
principles. It is indeed such an initial (or free extension) semantics that is used
in all our representations of PTSs. This means that we can not only simulate
PTSs in MEL or RWL using our representations, but we can also reason about
the metalogical properties of such systems using induction. Different approaches
to metalogical reasoning are touched upon in Section 5.2. These include the use
of a higher-order logic such as OCC as a metalogic to reason about formalisms
represented in its MEL or RWL sublogic, and the use of a reflective metalogical
framework such as RWL, which is discussed at greater length in [4].

1 Preliminaries

1.1 Entailment Systems

In the following sections we are concerned with a variety of different interrelated
formal systems that can all be viewed as entailment systems, a notion defined in
[35] as a main component of general logics. Since the notion of entailment system
is more general than what is needed for the purposes of the present paper, we
work with unary entailment systems over a fixed signature. A unary entailment
system (Sen,�) is a set of sentences Sen, together with a unary entailment
predicate �⊆ Sen.

In [35] maps between sentences are used to relate different logics. Here we
introduce a more general notion of morphism, namely a correspondence between
sentences of different entailment systems. Let (Sen,�), (Sen′,�′) be unary en-
tailment systems. A correspondence of sentences between (Sen,�) and (Sen′,�′)
is a relation � ⊆ Sen × Sen′. Given such a correspondence �, we say that
� is sound iff for all φ � φ′, �′ φ′ implies � φ. Similarly, we say that � is
complete iff for all φ � φ′, � φ implies �′ φ′. Moreover, � is called total iff for
each φ′ ∈ Sen′ there is a φ such that φ � φ′. Correspondences compose in the
obvious relational way, giving rise to a category CEnt. Often a correspondence
of sentences � ⊆ Sen × Sen′ takes the form of a function α : Sen −→ Sen′,
but in principle it can also take the form of a function α : Sen′ −→ Sen in the
opposite direction. Indeed, a map of entailment systems α : Sen′ −→ Sen in the
sense of [35] gives rise to a sound correspondence α−1 ⊆ Sen×Sen′, and if α is
a conservative map then α−1 is a sound and complete correspondence.

1.2 Rewriting Logic and Membership Equational Logic

A rewrite theory is a triple R = (Σ, E, R), with Σ a signature of function sym-
bols, E a set of equations, and R a set of (possibly conditional) rewrite rules of
the form t −→ t′ (with t and t′ Σ-terms) which are applied modulo the equa-
tions E. Rewriting logic (RWL) has then a deductive system to infer all possible

338 Mark-Oliver Stehr and José Meseguer

rewrites provable in a given rewrite theory [36]. Since an equational theory (Σ, E)
can be regarded as a rewrite theory (Σ, E, ∅) with no rules, equational logic is a
sublogic of rewriting logic. In fact, rewriting logic is parameterized by the choice
of its underlying equational logic, which can be unsorted, many-sorted, and so
on.

In this paper, and in the design of the Maude language, we have chosen
membership equational logic (MEL) [37,11] as the underlying equational logic.
Membership equational logic is quite expressive. It has sorts, subsorts, over-
loading of function symbols, and can express partiality very directly by defining
membership in a sort by means of equational conditions. The atomic sentences
are equalities t = t′ and memberships t : s, with s a sort, and general sentences
are Horn clauses on the atoms. Both membership equational logic and rewrit-
ing logic have initial and free models [36,37]. We denote by MEL ⊆ RWL the
sublogic inclusion from membership equational logic into rewriting logic.

Logics can be naturally represented as rewrite theories by defining the for-
mulas, or other proof-theoretic structures such as sequents, as elements of appro-
priate sorts in an abstract data type specified by an equational theory (Σ, E).
Then, each inference rule in the logic can be axiomatized as a, possibly condi-
tional, rewrite rule, giving rise to a representation as a rewrite theory (Σ, E, R).
Alternatively, we can exploit the rich sort structure of membership equational
logic to represent the inference rules of a logic not as rewrite rules, but as Horn
clauses H expressing membership in an adequate sort of derivable sentences,
leading to a membership equational logic representation of the form (Σ, E ∪H).
In this paper we will use both forms of representations for different versions of
PTSs.

2 Overview and Main Results

In Section 3 we show how the definition of PTSs can be formalized in MEL. The
approach we use is not only less specialized than the one used in a higher-order
logical framework like LF [24] or Isabelle [39], but it has also more explanatory
power, since we explain higher-order calculi in terms of a first-order system with
a simpler semantics, and our representations have initial (or, more generally, free
extension) models supporting metalogical inductive reasoning about the PTSs
thus represented.

In order to make the specification of PTSs more concrete, we introduce in
Section 3.5 the notion of uniform pure type systems (UPTSs) [46,49,48], that
do not abstract from the treatment of names but use CINNI [47,48], a generic
the first-order calculus of names and substitutions. UPTSs solve the problem
of closure under α-conversion, that has been discussed by Pollack in [40], in
a simple and elegant way. Again, a MEL specification of UPTSs is given that
directly formalizes the informal definition.

As an intermediate step we employ optimized UPTSs (OUPTSs) which are
introduced in Section 3.6. OUPTSs have an explicit judgement for well-typed
contexts, and can be seen as a refinement of UPTSs towards a more efficient
implementation of type checking.

Pure Type Systems in Rewriting Logic 339

Last but not least, we describe how the meta-operational view of an im-
portant class of OUPTSs, namely type checking and type inference, can be ex-
pressed as a transition system and can likewise be formalized in rewriting logic.
The result of this formalization is an executable specification of rewriting-based
OUPTSs (ROUPTSs) that is sound w.r.t. the logical specification given before
in a very obvious way.

Formally, these different presentations of PTSs are families of unary entail-
ment systems parameterized by PTS signatures. We use the notation PTSS ,
UPTSS , OUPTSS and ROUPTSS to denote the entailment systems of PTSs,
UPTSs, OUPTSs, and ROUPTSs, respectively, associated with a PTS signature
S .

For appropriate PTS signatures S we obtain a chain of sound and complete
total correspondences

PTSS � UPTSS � OUPTSS � ROUPTSS .

Actually, we have two different kinds of connections between the first two en-
tailment systems, leading to two different correspondences of the form PTSS �

UPTSS . By composing three correspondences of the form above we finally arrive
at a sound and complete total correspondence

PTSS � ROUPTSS

which shows the equivalence of the high-level specification of PTSs with the
implementation of a type checker.

The deductive system of RWL induces a unary entailment system RWL with
sentences of the form R � φ, where R is a rewrite theory and φ is an equation,
a membership or a rewrite. In this chapter we abstract from rewrite proofs, so
that we use the term rewrite to refer to a sentence of the form M → M ′ and
we define R � M → M ′ to be derivable iff R � P : M → M ′ is derivable for
some rewrite proof P in the deductive system of RWL. Likewise, MEL induces a
unary entailment system MEL obtained by restricting R to MEL theories and
φ to equations or memberships.

The entailment systems PTSS , UPTSS , OUPTSS and ROUPTSS can be
easily specified in membership equational logic or in rewriting logic. Specifically,
we have the following sound and complete total correspondences:

PTSS � MEL

UPTSS � MEL

OUPTSS � MEL

ROUPTSS � RWL

In all cases the representational distance between the formal system and its
representation is practically zero, that is, both the syntax and the inference
system of each version of PTSs have direct and faithful representations in the
framework logic.

340 Mark-Oliver Stehr and José Meseguer

The first correspondence is the representation of PTSs in MEL given in Sec-
tion 3. Let PTSS be the MEL specification of PTSS . Then, for all PTS judge-
ments φ of PTSS and possible representations φ′ of φ in MEL, the sentence
PTSS � φ′ is derivable in MEL iff the judgement φ is derivable in PTSS . This
defines a sound and complete total correspondence of the form PTSS � MEL.
We are concerned with a correspondence rather than a function, due to the
fact that PTSs abstract from names, but in the MEL representation names are
part of the description of terms, although by adding appropriate equations an
equivalent abstraction can be achieved in MEL at the semantic level.

In the remaining three systems UPTSS , OUPTSS , and ROUPTSS we
do not abstract from names. Hence, the three associated representational corre-
spondences actually take the form of functions, i.e., with each judgement of the
type system we can associate a unique sentence in MEL or RWL, respectively.
For the presentation of PTSs we follow [52], which can be seen as an informal
presentation of the machine-checked formalization [34].

3 The Metalogical View of PTSs

A PTS signature is a triple (S,A,R) where S is a set of sorts, A ⊆ S ×S is the
set of axioms, and R ⊆ S×S×S is the set of rules. The sorts of a PTS signature
are used as types of types and are therefore often referred to as universes. We
use S to range over PTS signatures, and for the following we fix an arbitrary
PTS signature S .

In PTSs there is no a priori distinction between terms and types. PTS terms
are defined by the following syntax with binders:

X | (M N) | [X : A]M | {X : A}M | s

Here, and in the following, s ranges over S; M, N, A, B, T range over terms; and
X ranges over names. We should add that in [X : A]M and {X : A}M the name
X is bound in M , and we assume that α-convertible terms, i.e. terms that are
equal up to renaming of bound variables, are identified.

Formally this identification can be achieved by different means: the definition
of PTS terms as equivalence classes modulo α-equivalence, or a representation
based on de Bruijn indices are two possibilities. For the following it is important
to keep in mind that the choice of particular names for bound variables is part
of the informal notation (for readability) but is not reflected in PTS terms.

A PTS context is a list of declarations, each of the form X : A. A declaration
X : A declares a name X of type A. A context is simple if it declares each
identifier at most once. In the following, Γ ranges over PTS contexts.

PTS typing judgements are of the form Γ � M : T , and derivability, i.e. the
set of derivable typing judgements, is defined by the formal system given by the
following inference rules:

Pure Type Systems in Rewriting Logic 341

[] � s1 : s2
(s1, s2) ∈ A (Ax)

Γ � A : s

Γ, X : A � X : A
X /∈ Γ (Start)

Γ �M : A Γ � B : s

Γ, X : B �M : A
X /∈ Γ (Weak)

Γ � A : s1 Γ, X : A � B : s2

Γ � {X : A}B : s3
(s1, s2, s3) ∈ R (Pi)

Γ � A : s1 Γ, X : A �M : B Γ, X : A � B : s2

Γ � [X : A]M : {X : A}B (s1, s2, s3) ∈ R (Lda)

Γ �M : {X : A}B Γ � N : A

Γ � (M N) : [X :=A]B
(App)

Γ �M : A Γ � B : s

Γ �M : B
A ≡β B (Conv)

Here we write X /∈ Γ iff there is no X : A ∈ Γ for any A, and we denote by
[X := N]M the standard (capture-free) substitution of all free occurrences of
X in M by N . In the last rule, ≡β is the usual notion of β-convertibility, which
contains α-convertibility (this is trivially satisfied in this presentation). Observe
that the side conditions ensure that we can only derive simple judgements, i.e.
judgements with simple contexts. We say that T is a type in the context Γ iff
T ∈ S or Γ � T : s for some s ∈ S. Furthermore, M is said to be an element
of type T in the context Γ iff Γ � M : T , in which case we also say that M is
well-typed in Γ .

As an example, we can instantiate PTSs by

S = {Prop, Type},
A = {(Prop, Type)},
R = {(Prop, Prop, Prop),

(Prop, Type, Type),
(Type, Prop, Prop),
(Type, Type, Type)}

to obtain the calculus of constructions.
This presentation of PTSs is rather abstract for two reasons: firstly, we are

working modulo α-conversion, i.e., we identify α-convertible terms, and secondly,
we are concerned with an inductive definition of a set of derivable judgements,
but not with an algorithm to verify derivability of a given judgement.

Mathematically the abstract presentation has an important benefit: It allows
us to reason about PTSs metalogically, without assuming anything about the
concrete realization of names. This leads to very general results [1,51] and frees
proofs from unnecessary technical details.

342 Mark-Oliver Stehr and José Meseguer

Closure under α-conversion is the property that derivability of Γ � M : A
and M ≡α M ′ implies derivability of Γ � M ′ : A. Of course, this property
trivially holds for PTSs as presented above, since ≡α is the identity. To state
a stronger property we extend α-conversion ≡α from terms to judgements such
that Γ �M : A ≡α Γ ′ �M ′ : A′ iff Γ ′ �M ′ : A′ and Γ �M : A are equal up to
consistent renaming of variables. Then we have the following

Lemma 31 (Strong Closure under α-Conversion for PTSs)
Let M , A, M ′, A′ be PTS terms and Γ , Γ ′ be PTS contexts. If the PTS judge-
ment Γ � M : A is derivable in PTSS and Γ � M : A ≡α Γ ′ � M ′ : A′, then
Γ ′ �M ′ : A′ is derivable in PTSS .
Proof Sketch. By induction over derivations of Γ �M : A. �

The previous Lemma is equivalent to the statement that the following rule
is admissible in PTSs:

Γ �M : A

Γ ′ �M ′ : A′ if Γ �M : A ≡α Γ ′ �M ′ : A′ (Rename)

3.1 PTSs in Membership Equational Logic

In the following specifications, given in Maude syntax, we use the algebraic se-
mantics of MEL for representing PTSs exactly as given above; a more operational
version suited for use as an implementation is discussed in Section 4.2.

First, notice that we plan to describe not a single type system but the infinite
family of PTSs parameterized by PTS signatures which define sorts, axioms and
rules. All such PTS signatures can be formalized as models of a single parameter
theory that can be specified in Maude as follows:

fth PTS-SIG is
sorts Sorts Axioms Axioms? Rules Rules? .
subsort Axioms < Axioms? .
subsort Rules < Rules? .
op (_,_) : Sorts Sorts -> Axioms? .
op (_,_,_) : Sorts Sorts Sorts -> Rules? .
endfth

As an example, the PTS signature of CC is given by the following functional
module:

fmod CC-SIG is

sorts Sorts Axioms Axioms? Rules Rules? .
subsort Axioms < Axioms? .
subsort Rules < Rules? .
op (_,_) : Sorts Sorts -> Axioms? .
op (_,_,_) : Sorts Sorts Sorts -> Rules? .

Pure Type Systems in Rewriting Logic 343

op Prop : -> Sorts .
op Type : -> Sorts .

mb (Prop,Type) : Axioms .
mb (Prop,Prop,Prop) : Rules .
mb (Prop,Type,Type) : Rules .
mb (Type,Prop,Prop) : Rules .
mb (Type,Type,Type) : Rules .

endfm

PTSs can then be specified as a functional module parameterized by the the-
ory PTS-SIG. Since functional modules have an initial (in this case free) model
semantics, this formalization of PTSs is in fact a parameterized inductive defi-
nition that captures in a precise model-theoretic way the inductive character of
PTS rules.

fmod PTS[S :: PTS-SIG] is

First we define the sort Trm of terms as an algebraic data type. Notice that
we distinguish between a sort of names Qid, that are used in places where a
variable is declared, and a sort of variables Var, that are used to refer to an
already declared variable.

sorts Var Trm .
subsort Qid < Var .
subsort Var < Trm .
subsort Sorts < Trm .
op __ : Trm Trm -> Trm .
op [_:_]_ : Qid Trm Trm -> Trm .
op {_:_}_ : Qid Trm Trm -> Trm .

vars s s1 s2 s3 : Sorts .
vars X Y Z : Qid .
vars A B M N O P Q R T A’ B’ M’ N’ T’ : Trm .

The usual deterministic version of capture-free substitution can be naturally
defined in MEL as demonstrated in [32]. An important point is that we do
not want to restrict ourselves to a particular choice of fresh names, since this
would make the specification overly concrete. This can be accomplished by leav-
ing unspecified the deterministic function for choosing fresh variables such that
the actual function varies with the choice of the model; for details we refer to
[32]. Here we only give the signature for set membership, free variables and the
substitution function:

op _in_ : Qid QidSet -> Bool .
op FV : Trm -> QidSet .
op [_:=_]_ : Qid Trm Trm -> Trm .

344 Mark-Oliver Stehr and José Meseguer

We can use the substitution operator [_:=_]_ to semantically identify terms
that are α-convertible (we refer to the induced equality as α-equality) by means
of the following equations.

ceq [X : A] M = [Y : A] ([X := Y] M) if not(Y in FV(M)) .
ceq {X : A} M = {Y : A} ([X := Y] M) if not(Y in FV(M)) .

We next define the binary relation of β-convertibility, which is used in the
Conv rule of PTSs. The following (conditional) memberships, together with the
initiality condition, define β-conversion as the smallest congruence (w.r.t. the
term constructors) containing β-reduction.

sorts Convertible Convertible? .
subsort Convertible < Convertible? .

op _<->_ : Trm Trm -> Convertible? .

mb M <-> M : Convertible .

cmb M <-> N : Convertible
if N <-> M : Convertible .

cmb P <-> R : Convertible if
P <-> Q : Convertible and Q <-> R : Convertible .

cmb (M N) <-> (M’ N’) : Convertible if
M <-> M’ : Convertible and N <-> N’ : Convertible .

cmb ([X : A] M) <-> ([X : A’] M’) : Convertible if
A <-> A’ : Convertible and M <-> M’ : Convertible .

cmb ({X : A} B) <-> ({X : A’} B’) : Convertible if
A <-> A’ : Convertible and B <-> B’ : Convertible .

mb (([X : A] M) N) <-> ([X := N] M) : Convertible .

The judgements of PTSs are of the form Γ � M : A. We next define the
syntax of contexts and judgements. Also, we define the function _in_ used in
the side conditions of some PTS rules.

sorts Context Judgement .
op emptyContext : -> Context .
op _:_ : Qid Trm -> Context .
op _,_ : Context Context -> Context [assoc id : emptyContext] .

var G : Context .

Pure Type Systems in Rewriting Logic 345

op _|-_:_ : Context Trm Trm -> Judgement .

op _in_ : Qid Context -> Bool .
eq X in emptyContext = false .
eq X in (G,(Y : A)) = (X in G) or (X == Y) .

We are now ready to define the inference rules. Semantically, the inference
rules define an inductive subset of derivable judgements. The derivability predi-
cate is usually implicit in informal reasoning, where Γ � M : A refers either to
the judgement itself or to the fact that it is derivable.

sort Derivable .
subsort Derivable < Judgement .

cmb (emptyContext |- s1 : s2) : Derivable if (s1,s2) : Axioms .

cmb (G,(X : A) |- X : A) : Derivable if
(G |- A : s) : Derivable /\ not(X in G) .

cmb (G,(X : B) |- M : A) : Derivable if
(G |- M : A) : Derivable /\
(G |- B : s) : Derivable /\ not(X in G) .

cmb (G |- {X : A} B : s3) : Derivable if
(G |- A : s1) : Derivable /\
(G,(X : A) |- B : s2) : Derivable /\ (s1,s2,s3) : Rules .

cmb (G |- [X : A] M : {X : A} B) : Derivable if
(G |- A : s1) : Derivable /\
(G,(X : A) |- M : B) : Derivable /\
(G,(X : A) |- B : s2) : Derivable /\ (s1,s2,s3) : Rules .

cmb (G |- (M N) : [X := A] B) : Derivable if
(G |- M : {X : A} B) : Derivable /\
(G |- N : A) : Derivable .

cmb (G |- M : B) : Derivable if
(G |- M : A) : Derivable /\
(G |- B : s) : Derivable /\ A <-> B : Convertible .

endfm

In this formalization we have avoided any arbitrary encoding of syntax with
binders that would require nontrivial justifications. Also, we have seen that the
first-order framework is sufficiently powerful to represent PTSs without making
any commitments. In particular, there was no need to change the syntax nor the
rules of PTSs to obtain a faithful representation.

346 Mark-Oliver Stehr and José Meseguer

3.2 Taking Names Seriously

Although the abstract treatment of names in PTSs leads to a general metatheory
that can be used as a high-level theoretical basis for quite different implementa-
tions of PTSs, there is a price to pay, in that an abstract view necessarily limits
the expressivity of the theory. In the case of PTSs, properties involving names
cannot be expressed. Indeed, we often need a more concrete representation with
more specialized results to deal, for example, with the implementation of a formal
system, or with tools that use the formal system in an essential way. Also in the
context of reasoning about a formal system, a more concrete specification that
is computationally meaningful can have considerable advantages for the partial
automation of metatheoretic proofs in logics with computational sublanguages.

However, as soon as we take names seriously, i.e., we give up the identification
of α-convertible terms, and interpret the inference rules literally, we encounter
at least two problems first discussed in [40] under the title “closure under α-
conversion”.3

The first problem is that the set of derivable judgements is not closed under
α-conversion. For instance, adapting an example given for λ→ in [40], we cannot
derive a judgement of the form

A : Prop, P : {Z : A}Prop � [X : A][X : P X]A : {X : A}{X : P X}Prop,
say in CC, although the α-equivalent version

A : Prop, P : {Z : A}Prop � [X : A][Y : P X]A : {X : A}{Y : P X}Prop,
where some bound variables are distinct can be derived.

A second difficulty pointed out in [40] is that we want to derive

A : Prop, P : {Z : A}Prop � [X : A][X : P X]X : {X : A}{Y : P X}(P X),

but we should not be able to derive

A : Prop, P : {Z : A}Prop � [X : A][X : P X]X : {X : A}{X : P X}(P X).

However, we cannot derive the first judgement, since the name X in the
conclusion of the Lda rule is the same on both sides of the colon.

To tackle the first problem, Pollack proposed a type system �lt, a variation
of λ→. It uses a more liberal notion of context that allows multiple declarations
of the same name, the one most recently introduced being visible inside the
judgement. Unfortunately, he did not pursue this direction further because of
the second difficulty, which appears in the context of PTSs with dependent types
but is not present in λ→. Concerning �lt, he remarks “I don’t think we can do
the same for PTS.”

The solution finally discussed in [40] is the solution employed in the construc-
tive engine [25] used in proof assistants such as LEGO [41] and COQ [2]. The
3 The problem with closure under α-conversion also remains unsolved in [30], where

a system with dependent types is presented that does not enjoy this property.

Pure Type Systems in Rewriting Logic 347

idea is to use a hybrid naming scheme which employs distinct names for global
variables declared in the context of a judgement, and a de Bruijn representation
of terms with bound local variables. Clearly, PTSs based on such a hybrid nam-
ing scheme are a correct implementation of (abstract) PTSs as described above.
More precisely, PTSs using the hybrid naming scheme can be seen as particular
models of the MEL specification of PTSs in the sense that the corresponding
model is isomorphic to the one given by the appropriately instantiated functional
module PTS. Nevertheless, an approach which maintains a distinction between
global and local variables appears not to be very uniform, complicating formal
metatheoretic proofs and type checking. Of course, scaling up Pollack’s �lt to
PTSs would be much more satisfying, and this is the direction we pursue in the
following.

3.3 Indexed Names and Named Indices

We believe that the root of the second difficulty discussed above is that the tradi-
tional notion of binding used in logic and in programming reveals an undesirable
property, which may be called accidental hiding, if the language is refined in the
most direct way, i.e., by just giving up identification by α-conversion.

Consider for instance the formula

∀X . (A ∧ ∀Y . (B ⇒ ∀X . C(X)))

with distinct names X and Y , where C(X) is a formula that contains X free.
Each occurrence of X in C(X) is captured by the inner ∀ quantifier, so that the
outermost ∀ quantifier is hidden from the viewpoint of C(X). Indeed there is no
way to refer to the outermost ∀ quantifier within C(X).

Hence, we are faced with the following problem: a calculus without α-equality
is not only less abstract, which is an unavoidable consequence of giving up identi-
fication by α-conversion, but also, depending on the (accidental) choice of names,
visibility of (bound) variables may be restricted. It is important to emphasize
that visibility is not restricted in the original calculus with α-equality, since
renaming can be performed tacitly at any time.

Clearly, this phenomenon of hiding that occurs in the example above is
undesirable4, because it is not present in the original calculus with α-equality. It
is merely an accident caused by giving up identification by α-conversion without
adding a compensating flexibility to the language.

This suggests tackling this general problem by migrating to a more flexible
syntax, where we express a binding constraint by annotating each name X with
an index i ∈ �, written Xi, that indicates how many X-binders should be
skipped before we reach the one that Xi refers to. For instance we write

∀X . (A ∧ ∀Y . (B ⇒ ∀X.C(X0)))

to express that X0 is bound by the inner ∀, and

∀X . (A ∧ ∀Y . (B ⇒ ∀X.C(X1)))

4 Of course, in general hiding is important but it is not an issue of binding; it should
be treated independently.

348 Mark-Oliver Stehr and José Meseguer

meaning that X1 is bound by the outermost ∀. To make the language a conser-
vative extension of the traditional notation, we can identify X and X0.

In fact, the use of indexed names is equivalent to a representation introduced
by Berkling [7,8] in the context of λ-calculus5 which is why we refer to the
notation based on indexed names also as Berkling’s notation. As indicated by
the example above we use Berkling’s representation not (only) for λ-calculus but
as the core syntax of CINNI, the Calculus of Indexed Names and Named Indices
which is generic in the sense that it can be instantiated for a wide range of object
languages with different binding constructs. For a detailed treatment of CINNI,
its metatheoretic properties, and its relation to other calculi we refer to [47,48].

Obviously, there is some similarity to a notation based on de Bruijn indices
[18]. But notice that there is an essential difference: the index m in the occurrence
Xm is not the number of binders to be skipped; it states that we have to skip m
binders for the particular name X , not counting binders for other names. Still
a formal relationship to de Bruijn’s notation can be established: if we restrict
ourselves to terms that contain only a single name X , then we can replace each
Xi by the index i without loss of information and we arrive at de Bruijn’s purely
indexed notation.6 In other words, if we restrict the available names to a single
one, we obtain de Bruijn’s notation as a very special case. In this sense, Berkling’s
representation can be formally seen as a proper generalization of de Bruijn’s
notation. Pragmatically, however, the relationship to de Bruijn’s syntax plays
only a minor role, since a typical user will exploit the dimension of names much
more than the dimension of indices. Hence, in practice the notation can be used
as a standard named notation, with the additional advantage that accidental
hiding and weird renaming7 are avoided.

The pragmatic advantage of Berkling’s notation is that it can be used to
reduce the distance between the formal system and its implementation: it can
be directly employed by the user who wants to think in terms of names, so
that the need for a translation between an internal representation (e.g. using
de Bruijn indices) and a user-friendly syntax (e.g. using ordinary names) dis-
appears completely. As far as we know the CINNI substitution calculus is the
first calculus of explicit substitutions which combines named and index-based
representations and hence provides a link between these two worlds of explicit
substitution calculi.

Usually, this translation is not considered to be a problem, and indeed in the
case of terms, where all parts are known or accessible, solutions are straightfor-
ward. However, it is clear that this gap is not desirable: consider, for example, a
tactic-based theorem prover where the user is confronted with an internal rep-
resentation which reflects the theory only in a very indirect way. More seriously,
the translation between internal and external representations becomes unwork-
able, or at least requires certain restrictions, as soon as we use terms containing

5 An indexed variable Xi is represented in Berkling’s representation as #iX where #
is the so-called unbinding operation.

6 With the slight difference that de Bruijn’s indices start at 1 instead of 0.
7 See the discussion on weird renaming in the next section.

Pure Type Systems in Rewriting Logic 349

metavariables, holes or placeholders, which are useful for many applications in-
cluding unification algorithms and representation of incomplete proofs.

3.4 Explicit Substitutions

In the previous section we discussed Berkling’s first-order representation for ex-
pressions, which contains the conventional named notation as well as de Bruijn’s
indexed notation as special cases. The most important operation to be performed
on such terms represented in this way is capture-free substitution. Therefore, we
now present the CINNI substitution calculus, a first-order calculus that can be
seen as an (operational) refinement of an external (i.e. metalevel) substitution
function such as the one given in [8].

Strictly speaking, CINNI is a family of explicit substitution calculi, parame-
terized by the syntax (including information about binding) of the language we
want to represent. Here we present the instantiation of this substitution calculus
for the untyped λ-calculus. λ-terms in CINNI syntax are:

Xm | (M N) | [X]M

As a motivation for the substitution calculus given below, consider the fol-
lowing example of a β-reduction step in the traditional λ-calculus with distinct
names X and Y , again taking names literally, i.e. not presupposing identification
by α-conversion:

(([X][Y]X)Y)→ [Z]Y

Clearly, Z must be a name different from Y to avoid capturing. Unfortunately,
there is no canonical choice if all names should be treated as being equal. We call
this phenomenon weird renaming of bound variables. It is actually a combination
of two undesirable effects: (1) names that have been carefully chosen by the user
have to be changed, and (2) the enforced choice of a new name collides with the
right of names to be treated as equal citizens.

These effects are avoided in the CINNI calculus, when instantiated to the
λ-calculus. CINNI is specified by the first-order equational theory given below.
Indeed, the only operation assumed on names is equality. CINNI has also an
operational semantics viewing equations as rewrite rules. Apart from the two
basic kinds of substitutions, namely simple substitutions [X :=M], and shift sub-
stitutions ↑X, substitutions can be lifted using ⇑XS, where the variable S ranges
over substitutions.

[X :=M] X0 = M

[X :=M] Xm+1 = Xm

[X :=M] Yn = Yn if X = Y

↑XXm = Xm+1

↑XYn = Yn if X = Y

⇑XS X0 = X0

⇑XS Xm+1 = ↑X (S Xm)
⇑XS Yn = ↑X (S Yn) if X = Y

S (MN) = (SM)(SN)
S ([X]M) = [X](⇑XS M)

350 Mark-Oliver Stehr and José Meseguer

The CINNI calculus can be instantiated to various object languages with
different binding operators to give a more concrete treatment of their associated
formal systems. The only equations specific to the syntax of the language are
the structural equations. Here, the last two equations in the right column are
the structural equations for the λ-calculus. In a similar way, CINNI can be
instantiated to other object languages such as Abadi and Cardelli’s ς-calculus
or Milner’s π-calculus [47,48].

Now we can define β-reduction by the rule

([X]N)M →β [X :=M]N.

Notice that weird renaming of bound variables as in the previous example is
avoided with the new notion of β-reduction which yields8

(([X][Y]X0)Y0)→β ([Y]Y1)

As another application of substitution, consider renaming of a bound variable
X by • as in the following rule of α-reduction:

([X]N)→α ([•][X :=•] ↑•N) if X = •
where • is an arbitrary but fixed name. Using this rule every CINNI term can
be reduced to a nameless α-normal form which is essentially its de Bruijn index
representation. For terms M ,N we use M ≡α N to denote that M and N are
equal up to renaming of bound variables.

Just as Berkling’s notation contains de Bruijn’s indexed notation as a very
special case, the instantiation of CINNI for the λ-calculus reduces to the calculus
λυ of explicit substitutions proposed by Pierre Lescanne [27,28,5], but only in
the degenerate case where we only use a single name. It is noteworthy that
λυ is the smallest known indexed substitution calculus enjoying good theoretic
properties like confluence9 and preservation of strong normalization. It seems
that its simplicity is inherited by CINNI although in practice the dimension of
names will be much more important than the dimension of indices. Hence, we
tend to think of CINNI more as a substitution calculus with names than as one
with indices.

3.5 Uniform Pure Type Systems

The application of CINNI to PTSs can be seen as Pollack’s �lt scaled up to PTSs.
In contrast to the hybrid approach to PTSs adopted in the constructive engine
[25] and in the PTS formalization given in [34] based on an idea from [15], both
8 One might argue that even the change of variable indices constitutes a form of

renaming, but an important point is that only references to previously introduced
names are affected rather than the binding occurrences themselves.

9 In fact, we have confluence on terms without metavariables [47,48], but this is suf-
ficient for the approach to type checking/inference presented in this paper, since all
metavariables will eventually become instantiated.

Pure Type Systems in Rewriting Logic 351

distinguishing between global and local variables, we use indexed names uni-
formly. This suggests defining uniform pure type systems (UPTSs) by modifying
PTSs in three steps:

First, PTS terms are generalized to UPTS terms in the way explained before,
i.e., UPTS terms are defined by the first-order CINNI syntax:

Xm | (M N) | [X : A]M | {X : A}M | s

As a second step, we adapt the syntax-dependent part of the CINNI calculus
to UPTS terms:

S s = s

S (MN) = (SM)(SN)
S ([X : A]M) = [X : (S A)](⇑XS M)
S ({X : A}M) = {X : (S A)}(⇑XS M)

The third and final step is to define the derivable typing judgements. Since
we do not want to identify α-convertible terms, this is a fundamental change
in the formal system. However, a careful inspection of the typing rules under
the new reading shows that only minor changes in the rules Start and Weak are
needed. The new rules are:

Γ � A : s

Γ, X : A � X0 : ↑XA
(Start)

Γ �M : A Γ � B : s

Γ, X : B � ↑XM : ↑XA
(Weak)

It might appear that the UPTSs we have defined above are a specialization
of PTSs, since we have committed ourselves to a particular representation of
names. But this is not the full truth, because on the other hand we have de-
scribed a generalization of PTSs where multiple declarations of the same name
are admitted in a well-typed context. Notice that in both rules above we have
dropped the side condition X /∈ Γ , which means that we have completely elimi-
nated the need for these side conditions in UPTSs. We would also like to point
out, that, in particular, we have not touched the Lda rule: the only place where
α-conversion comes into play is in the Conv rule, where ≡β subsumes α- and
β-conversion, just as in the original PTSs.

Finally, we describe how these changes are reflected in the MEL specification,
that is how UPTSs can be represented by modifying the previous specification.

First, instead of using names as variables we use indexed names. So we replace
subsort Qid < Var by

op _{_} : Qid Nat -> Var .

Second, instead of conventional substitution [:=] , we use CINNI for UPTS
terms:

352 Mark-Oliver Stehr and José Meseguer

sort Subst .

op [_:=_] : Qid Trm -> Subst .
op [shift_] : Qid -> Subst .
op [lift__] : Qid Subst -> Subst .
op __ : Subst Trm -> Trm .

var S : Subst .
vars n m : Nat .

eq ([X := M] (X{0})) = M .
eq ([X := M] (X{suc(m)})) = (X{m}) .
ceq ([X := M] (Y{n})) = (Y{n}) if X =/= Y .

eq ([shift X] (X{m})) = (X{suc(m)}) .
ceq ([shift X] (Y{n})) = (Y{n}) if X =/= Y .

eq ([lift X S] (X{0})) = (X{0}) .
eq ([lift X S] (X{suc(m)})) = [shift X] (S (X{m})) .
ceq ([lift X S] (Y{m})) = [shift X] (S (Y{m})) if X =/= Y .

eq (S s) = s .
eq (S (M N)) = ((S M) (S N)) .
eq S ([X : A] M) = [X : (S A)] ([lift X S] M) .
eq S ({X : A} M) = {X : (S A)} ([lift X S] M) .

Third, conversion now explicitly contains α-conversion, something that was
implicit in the equality of the previous specification:

mb [X : A] M <->
[Y : A] ([X := Y{0}] [shift Y] M) : Convertible .

mb {X : A} M <->
{Y : A} ([X := Y{0}] [shift Y] M) : Convertible .

Finally, the new versions of Start and Weak are:

cmb (G,(X : A) |- X{0} : [shift X] A) : Derivable if
(G |- A : s) : Derivable .

cmb (G,(X : B) |- [shift X] M : [shift X] A) : Derivable if
(G |- M : A) : Derivable /\
(G |- B : s) : Derivable .

Again, we can see that the representational distance between the mathemat-
ical presentation of UPTSs and their MEL specification is practically zero. In
particular, the equational nature of the CINNI substitution calculus is directly
captured by the MEL specification.

Pure Type Systems in Rewriting Logic 353

UPTSs are more liberal than PTS, since a derivable judgement Γ � M : A
may contain multiple declarations of the same name in Γ . However, the set of
derivable judgements Γ �M : A of PTS can be recovered as the set of derivable
UPTS judgements Γ �1 M : A generated by adding the following rule:

Γ �M : A

Γ �1 M : A
if Γ is simple (Simple)

The representation of judgements Γ �1 M : A together with this rule in MEL
is straightforward, and we omit it here and in all the following formalizations
for the sake of brevity.

To state the following results we proceed as for PTSs: We extend α-conversion
≡α from terms to judgements, so that Γ � M : A ≡α Γ ′ � M ′ : A′ iff Γ ′ �M ′ :
A′ and Γ � M : A are equal up to consistent renaming of declared and bound
variables. Then we have the following

Lemma 32 (Strong Closure under α-Conversion for UPTSs)
Let M , A, M ′, A′ be UPTS terms and Γ , Γ ′ be UPTS contexts. If the UPTS
judgement Γ � M : A is derivable in UPTSS and Γ � M : A ≡α Γ ′ � M ′ : A′,
then Γ ′ �M ′ : A′ is derivable in UPTSS .
Proof Sketch. By induction over derivations of Γ �M : A. �

It is noteworthy that a weak form of this lemma using α-conversion on terms
instead of judgements, i.e. the special case where Γ = Γ ′, cannot be proved
directly by induction. The induction would fail for the rules Pi and Lda, since a
declared variable X becomes a local variable.

As for PTSs the previous lemma is equivalent to the admissibility of the
following rule in UPTSs:

Γ �M : A

Γ ′ �M ′ : A′ if Γ �M : A ≡α Γ ′ �M ′ : A′ (Rename)

Using the terminology introduced in Section 1.1 for entailment systems, each
of the following two propositions establishes a sound and complete total corre-
spondence of the form PTSS � UPTSS , where S is an arbitrary PTS signature.

Proposition 33 (Soundness and Completeness of UPTSs I)
For all PTS terms M ,A and PTS contexts Γ , if the PTS judgement Γ �1 M : A
is derivable in UPTSS then Γ �M : A is derivable in PTSS and vice versa.10

Proof Sketch.
First observe that each PTS rule is a UPTS rule if we restrict ourselves to

simple judgements. In particular, the side conditions X ∈ Γ in the PTS rules
Start and Weak imply that the shift substitution in the corresponding UPTS
rules can be eliminated.

(⇒) Given a UPTS derivation of a simple judgement Γ � M : A, each
occurrence of a UPTS inference rule can be replaced as follows: First the original
10 Here we make use of the convention, introduced in Section 3.3, that ordinary terms

(here PTS terms) can be seen as CINNI terms (here UPTS terms).

354 Mark-Oliver Stehr and José Meseguer

premises are converted into suitable simple PTS form by virtue of Rename. Then
the corresponding inference rule for PTSs is applied (which is also a UPTS
rule according to the observation above). Finally, the conclusion in simple PTS
form is converted back to the original conclusion in UPTS form, again using
Rename. After transforming the entire derivation in this way all intermediate
UPTS judgements which are not PTS judgements, i.e. the original premises and
original conclusions, can be removed, and the result is still a UPTS derivation.
Also, the resulting derivation corresponds to a derivation in PTSs extended by
the admissible rule Rename.

(⇐) According to the observation above, each application of a PTS rule can
be seen as an application of the corresponding UPTS rule. Furthermore, each
implicit α-conversion step that is possible in PTSs can be simulated by Rename,
which is an admissible rule in UPTSs.

�
In other words, UPTSs are conservative over PTSs. A slightly weaker but

more comprehensive correspondence of the form PTSS � UPTSS can be given
modulo renaming of variables:

Proposition 34 (Soundness and Completeness of UPTSs II)
For all UPTS terms M ,A, PTS terms M ′,A′, UPTS contexts Γ and simple PTS
contexts Γ ′ with Γ � M : A ≡α Γ ′ � M ′ : A′, if the UPTS judgement Γ �
M : A is derivable in UPTSS then Γ ′ �M ′ : A′ is derivable in PTSS and vice
versa.
Proof Sketch.

(⇒) Let Γ � M : A be derivable in UPTSS and let Γ � M : A ≡α Γ ′ �
M ′ : A′. By Proposition 32 (strong α-closure) Γ ′ � M ′ : A′ and therefore Γ ′ �1

M ′ : A′ are derivable in UPTSS . So by Proposition 33 Γ ′ �M ′ : A′ is derivable
in PTSS .

(⇐) Let Γ ′ �M ′ : A′ be derivable in PTSS and let Γ ′ �M ′ : A′ ≡α Γ �M :
A. By Proposition 33, Γ ′ �M ′ : A′ is derivable in UPTSS , and by Proposition
32 (strong α-closure) Γ �M : A is derivable in UPTSS too.

�
The last proposition implies that, concerning judgements of the form Γ �M :

A, PTSs and UPTSs are equivalent modulo α-conversion. Hence all (metatheo-
retic) results about PTSs [22] apply to UPTSs after appropriate renaming.

Another consequence of the last proposition is that the new form of judge-
ment Γ �1 M : A is not necessary to ensure soundness, and could therefore be
dropped. Sometimes, however, focusing on judgements of the form Γ �1 M : A
instead of the more general form Γ �M : A is more convenient, e.g. to formulate
the weakening/thinning lemma [22,52], since simple contexts can be treated as
sets of declarations.

3.6 A Conservative Optimization

The presentations of PTSs and UPTSs given above maintain a good economy in
the number of rules and are therefore well-suited for metatheoretic (inductive)

Pure Type Systems in Rewriting Logic 355

reasoning. The judgement Γ � M : A implicitly subsumes another judgement
Γ �, stating that Γ is a well-typed context. Since in practice checking contexts is
as important as checking types, we switch to a conservative extension of UPTSs
(similar to an optimization for PTSs mentioned in [52]) that is not biased towards
any of the two forms of judgement. From a practical point of view, the addition
of a separate judgement for well-typed contexts can be seen as an optimization
which avoids rechecking contexts in each subderivation. We will refer to this
optimized version as optimized UPTSs (OUPTSs) and the entailment system
will be denoted by OUPTS. The only modifications we need are described
below. In addition to the main typing judgement, which is written now as Γ �
M : A (stating that M is an element of the type T in Γ), we use context typing
judgements of the form Γ � meaning that Γ is a well-typed context, and relative
typing judgements of the form Γ �M : A meaning that M is an element of type
A if Γ is well-typed. Furthermore, we add the following rules:

[] � (Ctxt1)

Γ � Γ � A : s

Γ, X : A � (Ctxt2)

Γ � Xm : lookup(Γ, Xm)
if lookup(Γ, Xm) is defined (Lookup)

Γ � Γ �M : A

Γ � M : A
(Main)

where lookup(Γ, Xm) is a partial function defined by:

lookup((Γ, X : A), X0) = ↑XA

lookup((Γ, X : A), Xm+1) = ↑X lookup(Γ, Xm)
lookup((Γ, X : A), Ym) = ↑X lookup(Γ, Ym) if X = Y

Then we replace Ax and Simple by:

Γ � s1 : s2
(s1, s2) ∈ A (Ax)

Γ � M : A

Γ �1 M : A
if no variable is declared in Γ more than once. (Simple)

respectively, and we remove the rules Start and Weak, since they are admis-
sible rules in the new system. The system we have just obtained is similar to the
system �vtyp, �vcxt presented in [52], but here we are concerned with UPTSs
instead of PTSs. Another minor difference is that we make use of an explicit
lookup function. As before, we do not need any freshness side conditions thanks
to CINNI.

Again, the representation in MEL is quite direct. It nicely illustrates the
mixed specification style using equations and memberships, and also the repre-
sentation of partial functions such as lookup.

356 Mark-Oliver Stehr and José Meseguer

sort Trm? .
subsort Trm < Trm? .

op lookup : Context Var -> Trm? .
eq lookup(G,(X : A), X{0}) = [shift X] A .
eq lookup(G,(X : A), X{suc(m)}) = [shift X] lookup(G,X{m}) .
ceq lookup(G,(X : A), Y{m}) = lookup(G,Y{m}) if (X =/= Y) .

op _||- : Context -> Judgement .
op _|-_:_ : Context Trm Trm -> Judgement .
op _||-_:_ : Context Trm Trm -> Judgement .

mb (emptyContext ||-) : Derivable .

cmb (G,(X : A) ||-) : Derivable if
(G ||-) : Derivable /\ (G |- A : s) : Derivable .

cmb (G |- X{m} : lookup(G,X{m})) : Derivable if
lookup(G,X{m}) : Trm .

cmb (G ||- M : A) : Derivable if
(G ||-) : Derivable /\ (G |- M : A) : Derivable .

cmb (G |- s1 : s2) : Derivable if (s1,s2) : Axioms .

OUPTSs are equivalent to UPTSs, i.e., there is a sound and complete total
correspondence of the kind UPTSS � OUPTSS for arbitrary PTS signatures
S , in the following sense:

Proposition 35 (Soundness and Completeness of OUPTSs)
Let M ,A be UPTS terms, and let Γ be a UPTS context. If the judgement Γ �
M : A (Γ �1 M : A) is derivable in OUPTSS , then Γ �M : A (Γ �1 M : A) is
derivable in UPTSS and vice versa.

Proof Sketch. It is easy to adopt the proof of the similar lemma 23 in [52] to
our setting. The main change is that we are using UPTSs instead of PTSs here.
A minor point is that we are using an explicit lookup function. �

4 The Meta-operational View of PTSs

PTSs can not only be equipped with a logical semantics, e.g. via the proposition-
as-types interpretation, but, more fundamentally, PTSs are usually equipped
with an operational semantics, defined by an internal notion of functional com-
putation, such as β-reduction. The operational view of PTSs is concerned with
their internal notion of computation, but here we are interested in the meta-
operational view, which deals with the question of how to embed PTSs in a formal

Pure Type Systems in Rewriting Logic 357

system with an operational semantics, so that typical computational tasks like
type checking and type inference become possible by exploiting the operational
semantics of the metalanguage. In the following we employ for this purpose the
efficiently executable sublanguage of rewriting logic that is supported by the
Maude engine.

First, we introduce several well-known classes of PTS signatures, giving rise
to corresponding PTSs that are practically interesting and enjoy particularly
good properties.

Definition 41 A PTS signature S is decidable iff: (1) S is denumerable, (2) A
and R are decidable, and (3) for all s1, s2 ∈ S the predicates ∃s′2 : (s1, s

′
2) ∈ A

and ∃s′3 : (s1, s2, s
′
3) ∈ R are decidable.

Decidability is a reasonable requirement to ensure that type inference and
type checking do not become undecidable because of a too complex PTS signa-
ture.

Definition 42 A PTS signature S is functional iff (1) (s1, s2) ∈ A and
(s1, s

′
2) ∈ A implies s2 = s′2, and (2) (s1, s2, s3) ∈ R and (s1, s2, s

′
3) ∈ R implies

s3 = s′3.

In functional PTS signatures, the relations A and R can be viewed as partial
functions A : S � S and R : S × S � S. Functionality ensures that every term
has a unique type modulo ≡β [22]. The class of functional PTSs11 includes, for
example, all systems of the λ-cube.

Definition 43 A PTS signature S is full iff for all s1, s2 ∈ S there is an s3 such
that (s1, s2, s3) ∈ R. A PTS signature S is semi-full iff (s1, s2, s3) ∈ R implies
that for each s′2 there is an s′3 such that (s1, s

′
2, s

′
3) ∈ R.

Full PTSs allow us to form dependent types {X : A}B very liberally, by
avoiding those restrictions on the sorts of A and B that are imposed by the side
condition (s1, s2, s3) ∈ R of the Pi rule. As an example, CC is a full PTS.

Definition 44 Given a PTS signature S , a top sort is a sort s such that there
is no sort s′ with (s, s′) ∈ A. The set of top sorts is denoted by Stop.

To avoid inessential technicalities in our presentation, we will later focus on
PTS signatures without top sorts, which introduce some kind of nonuniformity
in the set of sorts. Just as R can be seen as a function R : S × S → S in full
PTS signatures, A can be viewed as a function A : S → S in functional PTS
signatures without top sorts.

Semi-full PTSs have the nice property that we can get rid of the third premise
in Lda by replacing it with the following rule:

Γ � A : s1 Γ, X : A �M : B

Γ � [X : A]M : {X : A}B (s1, s2, s3) ∈ R and B /∈ Stop (Lda’)

11 The attributes for PTS signatures are naturally lifted to the corresponding PTSs.

358 Mark-Oliver Stehr and José Meseguer

The premises together with the side conditions in Lda’ imply that {X : A}B is
a type (cf. rule Pi). Indeed, as explained in [52] in the context of PTSs, replacing
Lda by Lda’ does not change the set of derivable judgements in semi-full UPTSs.

For full UPTSs without top sorts we can completely eliminate the side condi-
tions in the rule Lda’, and we obtain Lda” without changing the set of derivable
judgements:

Γ � A : s Γ, X : A �M : B

Γ � [X : A]M : {X : A}B (Lda”)

Our example PTS signature of CC at the beginning of Section 3 has Type as
a top sort. However, it is straightforward to extend CC by an infinite universe
hierarchy yielding a PTS without top sorts. Our example PTS signature of CC
has Type as a top sort. However, it is straightforward to extend CC by an infinite
universe hierarchy yielding a PTS without top sorts.

Together with the introduction of UPTSs in the previous section, we have
now (following the corresponding arguments for PTSs in [52]) three families of
inference systems which only differ in the choice of the rule Lda. For a full PTS
signature S without top sorts all of them define the same unary entailment
system, which is denoted by UPTSS .

In the remainder of this paper we will present a standard type checking
algorithm for a class of UPTSs using rewriting logic as a formal specification
language. In spite of some unsolved theoretical questions such as the expansion
postponement problem, efficient algorithms for the important classes of func-
tional PTSs and semi-full PTSs (satisfying appropriate decidability and nor-
malization properties) have been presented in [52]. In order to avoid excessive
technical details and to make clear the general way we use rewriting logic to rep-
resent type checking algorithms, we restrict ourselves in the following to UPTSs
that are decidable, normalizing (w.r.t. β-reduction), functional, full, and with-
out top sorts. The class of UPTSs that are decidable, normalizing, functional
and semi-full can be treated along the same lines (using the rule Lda’ instead of
Lda”).

The use of UPTSs instead of PTSs is motivated by our desire to obtain
a formal executable representation that takes names seriously and makes type
checking simpler and more uniform. The approach is different from the construc-
tive engine [25] and its presentation in [40] that employs named global variables
and a de Bruijn representation for local variables. It is also different from [15],
[52] and the formalization [34] that distinguish between two unrelated sets of
global names and local names.

4.1 Uniform PTSs in Membership Equational Logic

The standard way to implement type checking, which goes back to [33] and
[25], is to cast the inference rules into an equivalent syntax-directed inductive
definition, and to define a type-inference function on the basis of this new system.
Formally and technically this could be done in the executable sublanguage of
MEL or in any other functional programming language, but the use of MEL is

Pure Type Systems in Rewriting Logic 359

attractive, since it allows us to formulate the logical and operational versions of
PTSs in a single uniform language with a simple semantics, which in particular
does not presuppose higher-order constructs, but is used to explain them in more
elementary terms. Also, data structures and functions of the specification can
be directly used in the implementation.

In our setting there is another reason why MEL is more natural than the
use of a (higher-order) functional programming language: the equational spec-
ification of the calculus of substitutions presented above is naturally equipped
with an operational semantics just by viewing the equations as rewrite rules. By
contrast, in a functional programming language that is not based on equational
rewriting, the substitution calculus has to be encoded, which essentially means
that a (specialized) rewrite engine for this calculus has to be implemented in the
functional language itself and, what is even more cumbersome, this engine has
to be explicitly invoked when needed. In this sense, a specification/programming
style based on rewriting is more abstract and closer to mathematical practice
for applications of this kind than a (higher-order) functional programming ap-
proach.

Using the specification of the above substitution calculus, a purely equational
executable specification of a type checker for UPTSs with decidable type check-
ing can be written in MEL using standard equational/functional programming
techniques. The core of this specification consists of a type-inference function

op type : Context Trm -> Trm? .

that computes a type for each term which is well-typed in the given context.
The function can be defined in a way similar to the one given in [45], but using
CINNI, instead of abstracting from the treatment of names.

Thanks to CINNI, freshness conditions are avoided. Therefore, an implemen-
tation based on this specification appears to be more elegant than that of the
constructive engine with its hybrid treatment of names. As an additional advan-
tage, multiple declarations of the same name are naturally admitted in contexts
if we use judgements Γ � M : A. However, it is also easy to disallow these more
general contexts if desired by implementing simple judgements Γ �1 M : A.

Instead of discussing this purely equational approach in more detail, we
present an alternative approach in the following section that exploits features
of rewriting logic that are beyond equational and functional languages. Our ex-
perience shows that this alternative approach scales up well to more complex
type theories, e.g. extensions of UPTSs such as OCC (see Section 5.1) in a more
satisfactory way than the purely functional and equational approaches to type
checking.

4.2 Uniform PTSs in Rewriting Logic

As shown by an extensive collection of examples in [31,32], rewriting logic can
be used as a logical framework that can naturally represent inference systems
of different kinds in a logically and operationally satisfying way. In the present

360 Mark-Oliver Stehr and José Meseguer

section we view a type checker as a particular inference system. In contrast to
a (higher-order) functional programming approach that would require us to en-
code the inference system in terms of a type checking function, the rewriting
logic approach offers the advantage that inference rules can be expressed di-
rectly, namely, as rewrite rules. We will in fact make use of a type inference
system expressed as a collection of rewrite rules that transform a conjunction
of judgements into a simplified form, in the style of constraint solving systems.
This yields a rewrite system that is efficiently executable, while still maintaining
a close correspondence to the logical specification of UPTSs.

The rewriting logic specification represents rewriting-based OUPTSs
(ROUPTSs) and is able to perform type checking, i.e. to decide derivability of
judgements of the form Γ �, Γ � M : A, and Γ � M : A, for the class of
decidable, normalizing, functional, full and PTS signatures without top sorts
discussed before. As in PTSs, type checking is reduced to type inference, that
is, to solving incomplete queries of the form Γ �M ->: ?.

Instead of giving an informal account we directly discuss the formal specifi-
cation in rewriting logic.

First, we exploit our assumption that the PTS signature is decidable, func-
tional, full and without top sorts, which means that the relations A and R can
be specified by equationally-defined functions Axioms and Rules:

fth FPTS-SIG is
sort Sorts .
op Axioms : Sorts -> Sorts .
op Rules : Sorts Sorts -> Sorts .
endfth

As usual for syntax-directed approaches following the ideas of [33] and [25] we
“invert” the inference rules in order to obtain a goal-directed algorithm from the
inductive definition. In contrast to a purely equational and functional approach,
the rewriting logic specification we aim at has a rewrite transition system as a
model, and can therefore be seen as an operational generalization of the equa-
tional and functional paradigms. In contrast to [52] and [40], the type-checking
algorithm itself receives a direct formal status as a transition system, which is
a good basis for reasoning formally about operational properties and especially
about its correctness.

The inductive definition of UPTSs can be seen as a static description of a
set of judgements that we would like to equip with a dynamic structure. More
precisely, a (static) logical implication

A1 ∧ . . . ∧ An ⇒ B

can be seen as an inference rule or (dynamic) state transition refining a goal B
into subgoals A1, . . . , An, and can be directly represented as a rewrite rule

B → A1 ∧ . . . ∧ An

Pure Type Systems in Rewriting Logic 361

in rewriting logic. Each state consists of a finite set of subgoals that remain to
be solved.

The static description can be seen as inducing the following invariant that
our dynamic system should always satisfy: for each state, the empty set of goals
is reachable iff the logical interpretation of the state is true.

Although the inference rules of a formal system typically take the form of
Horn clauses that can be operationally refined to rewrite rules, there may be
functional and equational parts (e.g. auxiliary functions or substitution calculi)
that are more naturally expressed in the MEL fragment. It is this mix of different
paradigms that allows us to express the type-checking algorithm in a way that
is very close to the logical specification.

We discuss below the rewriting logic specification of the UPTS type checker in
some detail. Instead of an equational theory introduced by the fmod keyword, the
specification takes the form of a rewrite theory, introduced by the mod keyword,
that has a transition system as its initial semantics:

mod PTS[S :: FPTS-SIG] is

We reuse most components of the functional module defined before, but in
addition to the typing judgement

op _|-_:_ : Context Trm Trm -> Judgement .

we add the following auxiliary judgements:

op _Sort : Trm -> Judgement .
op (_,_,_)Rule : Trm Trm Trm -> Judgement .
op _=_ : Trm Trm -> Judgement .
op _<->_ : Trm Trm -> Judgement .
op _|-_->:_ : Context Trm Trm -> Judgement .
op _|-(_->:_)(_->:_)->:_ : Context Trm Trm Trm Trm Trm ->

Judgement .

Recall that, in our setting of PTS signatures without top sorts, T is a type
in Γ iff Γ � T : s. Presupposing that Γ is a well-typed context and A,B are
types in Γ , the meaning of the auxiliary judgements is the following: The judge-
ment A Sort means that there is an s ∈ S such that A ≡β s. The judgement
(A, B, s) Rule means that there are s1, s2 ∈ S such that A ≡β s1, B ≡β s2 and
(s1, s2, s) ∈ R. The judgement A <-> B just means that A ≡β B. The judge-
ment Γ � M ->: T means that M has an inferred type T in Γ . Regarding this
refinement of typing judgements we only assume that Γ �M ->: T implies Γ �
M : T , and conversely that Γ �M : T implies that T ≡β T ′ and Γ �M ->: T ′

for some T ′. Furthermore, the judgement Γ � ((M ->: S)(N ->: T)) ->: U
abbreviates Γ � M ->: S, Γ � N ->: T , and Γ � (M N) ->: U . Finally, the
judgement M = N just means that M and N are equal terms.

In order to express intermediate goals or queries, like Γ �M ->: ?, that are
present in the operational refinement but not in the abstract presentation, we
extend terms by explicit metavariables:

362 Mark-Oliver Stehr and José Meseguer

sort MetaVar .
subsort MetaVar < Trm .
op ? : Qid -> MetaVar .
var MV : MetaVar .

In ROUPTSs we use the weak head normal form, calculated by the following
function whnf, to check if two terms are convertible, and in particular if a term is
convertible to the form s or {X : A}M . We also use sorts WhNf and WhReducible
containing terms in weak head normal form and weak head reducible terms,
respectively.

sort WhNf WhReducible .
subsort WhNf < Trm .

subsort Sorts < WhNf .
subsort Var < WhNf .
mb ([X : A] M) : WhNf .
mb ({X : A} B) : WhNf .
mb (s N) : WhNf .
mb (X{m} N) : WhNf .
cmb ((P Q) N) : WhNf if (P Q) : WhNf .
mb (({X : A} M) N) : WhNf .

subsort WhReducible < Trm .

mb (([X : A] M) N) : WhReducible .
cmb (M N) : WhReducible if M : WhReducible .

op whnf : Trm -> Trm? .

ceq whnf(M) = M if M : WhNf .
eq whnf(([X : A] M) N) = whnf([X := N] M) .
ceq whnf(M N) = whnf(whnf(M) N) if M : WhReducible .

A configuration is a conjunctive set of judgements that have to be solved or
verified by the type checker. We represent a set of judgements as a list. This
allows us to solve goals in a well-defined order, a fact that we exploit later in
this section.

sort JudgementList .

op emptyJudgementList : -> JudgementList .
subsort Judgement < JudgementList .
op __ : JudgementList JudgementList -> JudgementList

[assoc id: emptyJudgementList] .

var JS : JudgementList .

Pure Type Systems in Rewriting Logic 363

sort Configuration .

op {{_}} : JudgementList -> Configuration .

Replacement of metavariables by terms (that is, textual replacement) has the
obvious definition, not spelled out here, except for its syntax:

op <_:=_>_ : MetaVar Trm Trm -> Trm .
op <_:=_>_ : MetaVar Trm Subst -> Subst .
op <_:=_>_ : MetaVar Trm Context -> Context .
op <_:=_>_ : MetaVar Trm Judgement -> Judgement .
op <_:=_>_ : MetaVar Trm JudgementList -> JudgementList .

It is used only in the following equality elimination rule, that instantiates a
metavariable throughout the entire configuration if it is uniquely determined by
an equality:

rl [Subst] : {{ (MV = A) JS }} => {{ < MV := A > JS }} .

A rule like this is typical of a constraint-based programming approach, and
indeed the configuration can be seen as a set of constraints that should be
simplified using the subsequent rules [32].

In addition to simplification of constraints by rewrite rules, simplification by
equational rewriting also plays a major role in our approach. As an example,
the judgement of convertibility between normalizing terms can be checked using
whnf as follows. In order to avoid redundant reductions we reduce the general
problem to a check of convertibility between weak head normal forms (which are
treated by the first five rules below). In the case of binders we perform renaming
to equalize names.

rl [Conv1] : {{ (s <-> s) JS }} => {{ JS }} .

rl [Conv2] : {{ (X{m} <-> X{m}) JS }} => {{ JS }} .

crl [Conv3] : {{ ((M N) <-> (M’ N’)) JS }} =>
{{ (M <-> M’) (N <-> N’) JS }}
if (M N) : WhNf /\ (M’ N’) : WhNf .

rl [Conv4] : {{ ({X : A} T <-> {Y : A’} T’) JS }} =>
{{ (A <-> A’)

([X := Y{0}] [shift Y] T <-> T’) JS }} .

rl [Conv5] : {{ ([X : A] M <-> [Y : A’] M’) JS }} =>
{{ (A <-> A’)

([X := Y{0}] [shift Y] M <-> M’) JS }} .

364 Mark-Oliver Stehr and José Meseguer

crl [Conv6] : {{ (M <-> N) JS }} =>
{{ (whnf(M) <-> N) JS }}
if M : WhReducible .

crl [Conv7] : {{ (M <-> N) JS }} =>
{{ (M <-> whnf(N)) JS }}
if N : WhReducible .

We use two auxiliary judgements to formalize side conditions:

rl [Sort] : {{ (s Sort) JS }} => {{ JS }} .

rl [Rule] : {{ ((s1,s2,MV) Rule) JS }} =>
{{ (MV = Rules(s1,s2)) JS }} .

Each inference rule of OUPTSs gives rise to a rewrite rule obtained by re-
versing the direction of inference:

rl [Ax] : {{ (G |- s ->: MV) JS }} =>
{{ (MV = Axioms(s)) JS }} .

crl [Lookup] : {{ (G |- X{m} ->: MV) JS }} =>
{{ (MV = lookup(G,X{m})) JS }}
if lookup(G,X{m}) .

rl [Pi] : {{ (G |- {X : A} B ->: MV) JS }} =>
{{ (G |- A ->: ?(NEW1)) (?(NEW1) Sort)

(G,(X : A) |- B ->: ?(NEW2))
((?(NEW1), ?(NEW2), MV) Rule) JS }} .

rl [Lda] : {{ (G |- [X : A] M ->: MV) JS }} =>
{{ (G |- A ->: ?(NEW1)) (?(NEW1) Sort)

(G,(X : A) |- M ->: ?(NEW2))
(MV = {X : A} ?(NEW2)) JS }} .

rl [App1] : {{ (G |- (M N) ->: MV) JS }} =>
{{ (G |- M ->: ?(NEW1)) (G |- N ->: ?(NEW2))

(G |- (M ->: ?(NEW1))(N ->: ?(NEW2)) ->: MV)
JS }} .

rl [App2] : {{ (G |- (M ->: {X : A} B)(N ->: A’) ->: MV)
JS }} =>

{{ (A <-> A’) (MV = [X := N] B) JS }} .

The terms ?(NEW1) and ?(NEW2) above denote fresh metavariables. Hence
rewriting has to be controlled by a simple strategy, that constraints the possible

Pure Type Systems in Rewriting Logic 365

rewrites by instantiating the variables NEW1 and NEW2 only with fresh names each
time a rule is applied. Notice that, in contrast to ordinary variables, where names
are taken seriously, we abstract from (i.e. we do not care about) metavariable
names, since they do not have a formal status inside UPTSs, but belong instead
to the metalevel which is partially made explict in the operational refinement.12

According to the explanations given before, the new judgements have certain
closure properties w.r.t. ≡β . The following simplification rules allow us to work
with (partially) normalized judgements in the inference rules:

crl [Norm1] : {{ (T Sort) JS }} =>
{{ (whnf(T) Sort) JS }}
if T : WhReducible .

crl [Norm2] : {{ ((A,B,T) Rule) JS }} =>
{{ ((whnf(A),B,T) Rule) JS }}
if A : WhReducible .

crl [Norm3] : {{ ((A,B,T) Rule) JS }} =>
{{ ((A,whnf(B),T) Rule) JS }}
if B : WhReducible .

crl [Norm4] : {{ (G |- (M ->: A)(N ->: B) ->: T) JS }} =>
{{ (G |- (M ->: whnf(A))(N ->: B) ->: T) JS }}
if A : WhReducible .

This completes the definition of the type-inference system for judgements
of the form Γ � M ->: A. Type checking is reduced to type inference in the
standard way, that is, Γ � M : A is verified by first checking if A is a type
in Γ , and if this is the case we then check if A and the inferred type of M
are convertible. Exploiting the fact that in PTSs without top sorts each type is
contained in some sort, this can be specified by the rule

rl [Aux] : {{ (G |- M : A) JS }} =>
{{ (G |- A ->: ?(NEW1)) (?(NEW1) Sort)

(G |- M ->: ?(NEW2)) (?(NEW2) <-> A) JS }} .

This rule can be slightly optimized by using an adaption of Lemma 3 from
[42], which allows us to omit the goal (?(NEW1) Sort) on the right hand side,
since it is implied by the remaining goals.

Finally, we add rules to check the context typing judgement and the main
typing judgement:

12 By a further refinement of the present specification we can obtain a system with
takes even metavariables seriously, but this is not necessary for the purposes of this
paper.

366 Mark-Oliver Stehr and José Meseguer

rl [Ctxt1] : {{ (emptyContext ||-) JS }} => {{ JS }} .

rl [Ctxt2] : {{ (G,(X : A) ||-) JS }} =>
{{ (G ||-) (G |- A ->: ?(NEW))

(?(NEW) Sort) JS }} .

rl [Main] : {{ (G ||- M : A) JS }} =>
{{ (G ||-) (G |- M : A) JS }} .

endm

Again we have omitted the straightforward rule corresponding to Simple,
which allows us to check derivability of typing judgements Γ �1 M : A that
disallow multiple occurrences of the same variable in Γ .

To verify a judgement J we start with an initial configuration {{J}}. Either
this configuration can be reduced to {{emptyJudgementList}}, meaning that
the judgement has been proved, or the final configuration contains unsolved goals
giving an informative indication of an error.

Notice that we have not only used inductive definitions to specify PTSs and
UPTSs logically, but that, in addition, the operational version of UPTSs given
by the rewrite rules above is an inductive definition of a labeled transition system
which gives us a more refined view of the type-checking process.

The most important property of a type checker is soundness, i.e., each judge-
ment that has been verified should be derivable in the type system. In fact the
formal system has been defined in such a way that the soundness of each of the
rewrite rules above relative to OUPTSs can be verified by straightforward in-
spection of the rules using the meaning of all auxiliary judgements given earlier.

More precisely, let S range over decidable, normalizing, functional, full PTS
signatures without top sorts. We denote by ROUPTSS the entailment system in
which sentences are rewrites of the form {{JS}} −→ {{JS′}} and such a rewrite
is derivable iff it is derivable in the rewrite theory that has been presented above.
Then the next proposition gives a sound and complete total correspondence
OUPTSS � ROUPTSS .

Proposition 45 (Soundness and Completeness of ROUPTSs)
Let M ,A be UPTS terms, let Γ be a UPTS context, and let J be one of the
judgements Γ �, Γ � M : A, or Γ �1 M : A. If the rewrite {{J}} −→
{{emptyJudgement
List}} is derivable in ROUPTSS , then J is derivable in OUPTSS and vice
versa.

Proof Sketch. The soundness part follows from the simple observation that
for each ROUPTS rewrite rule the right hand side together with its possible
condition implies the left hand side under the intended logical interpretation
given earlier. The completeness part can be obtained by adapting the inductive
proof of Lemma 29 in [52]: Instead of the conventional notion of terms and
substitution we have to use CINNI syntax with explicit substitutions, and instead
of of PTSs we have to use OUPTSs. �

Pure Type Systems in Rewriting Logic 367

Executability in the following proposition means that the structural equa-
tions are implementable and the remaining equations and membership axioms
satisfy the standard variable restriction [13,14]. Since we are interested in com-
pleteness of the operational semantics of rewriting logic for the specific goals
relevant in our application, we also verify a number of sufficient conditions that
are further explained in [37,11,13].

Proposition 46 (Executability of ROUPTSs)
The ROUPTS specification is executable, sort-preserving, equationally conflu-
ent, and coherent. Furthermore, the underlying membership equational theory
is partially terminating in the sense that all membership, equational, and reduc-
tion goals, satisfying the condition that whnf is applied only to representations
of weak head normalizing UPTS terms, are terminating.
Proof Sketch. Sort-preservation can be easily checked by inspection of each
equation. To verify confluence observe that the entire equational specification
is orthogonal and has three subspecifications: (1) the specification of explicit
substitutions [_:=_], [shift_], [lift__], and their application __, (2) the
specification of metavariable substitution <_:=_>_, (3) the specification of whnf,
and (4) the specification of lookup. Orthogonality of (2) and (4) is obvious,
because there are no critical pairs, and orthogonality of (1) and (3) follows
from the fact that critical pairs can be eliminated by a simple transformation,
because their conditions are unsatisfiable. Furthermore, there are no critical pairs
between (1), (2), (3), and (4), so that we can conclude that the membership
equational theory is orthogonal and hence confluent. Similarly, coherence of the
entire rewrite theory follows from the absence of critical pairs between equations
and rules.

Finally, we show partial termination of the membership equational theory,
that is termination of all membership and reduction goals under the condition of
the proposition. Termination of membership goals M : WhNf and M : WhRedu-
cible follows by structural induction over the terms M . For the remaining ter-
mination proof we again exploit orthogonality of our specification, which implies
that it is sufficient to prove termination under an innermost reduction strategy
[38]. We use the following strategy: Given a reduction goal M or G, we repeat
the following two steps as long as applicable: (a) We reduce it to normal form
w.r.t. (1) if this form has not been reached yet, and then (b) we select an arbi-
trary innermost occurrence of whnf or lookup and apply one the equations from
(3) or (4), respectively. Termination of this strategy follows from termination of
Step (a), which holds according to the strong normalization property of CINNI
proved in [47,48], and from the fact that whnf and lookup are either eliminated
in Step (b) or replaced by corresponding occurrences with smaller measures. For
whnf(M) the measure is the minimal number of β-reduction steps necessary to
reach the weak head normal form from M , and for lookup(G, X{m}) the mea-
sure is the length of the context G. �

A remarkable property of our specification is that it can be executed effi-
ciently in the sense that we do not need an exhaustive search to verify whether
{{J}} −→ {{emptyJudgementList}} is derivable in ROUPTSS . Instead, we

368 Mark-Oliver Stehr and José Meseguer

can use a simple execution strategy, i.e. a strategy without backtracking, and
there is no additional restriction on the strategy beyond the freshness require-
ment for metavariables mentioned before. In fact, this is a consequence of con-
fluence and partial termination of the rewrite part of our specification, which is
stated in the following proposition.13

Proposition 47 (Confluence and Termination of ROUPTSs)
The ROUPTS specification is rewrite-confluent and partially terminating in the
sense that all rewrite goals {{J}} → ?, where J is one of the judgements Γ �,
Γ � M : A, or Γ �1 M : A with UPTS terms M ,A and a UPTS context Γ , are
terminating.
Proof Sketch. Confluence of rewrite rules follows from an analysis of (condi-
tional) critical pairs. In fact, there is only a single nontrivial critical pair gen-
erated by the overlapping rules Conv6 and Conv7. Termination follows from
structural induction over terms using the fact that whnf is only applied to terms
M for which the goals

(G ||-) (G |- M : ?(NEW)) (?(NEW) Sort)

have been already verified for some context G. As a consequence, M is well-typed
in ROUPTSS , and by the chain of soundness results given in Propositions 45,
35, and 34, we conclude that M is α-equivalent to a well-typed term in PTSS ,
and hence strongly normalizing. �

5 Final Remarks

In this paper we have given presentations of PTSs at different levels of abstrac-
tion. Moreover, we have discussed very natural representations of these systems
in MEL or RWL. Both, abstractions and representations are uniformly captured
by the general notion of correspondence between entailment systems. Our treat-
ment is guided by the general logics methodology, which explores the space of
formal systems by using a particular formal system, in this case rewriting logic,
as a logical framework. Our representations of PTSs range from an abstract
textbook representation in membership equational logic to a more refined oper-
ational representation for a subclass of PTSs in the executable sublanguage of
rewriting logic.

Apart from its methodological aspect concerned with the use of rewriting
logic as a logical framework to represent higher-order languages, this paper con-
tains a more technical contribution, namely uniform pure type systems, a new
variant of PTSs that provides a solution to the known problem with closure
under α-conversion in systems with dependent types. Our solution is inspired
by earlier work of Pollack, who first pointed out the difficulty to obtain closure
13 Confluence modulo renaming of metavariables would be sufficient in practice, but it

happens that, due to the deterministic nature of our specification, we have confluence
here in the strongest sense.

Pure Type Systems in Rewriting Logic 369

under α-conversion if names are taken seriously. By instantiating our operational
representation of PTSs, our approach directly leads to an executable prototype
of the type theory in Maude. In our view the potential of this approach is by no
means confined to formal representations and prototyping, but we think that it
provides an interesting alternative to the implementation of type theories and
typed higher-order logics, which are traditionally conducted using functional
programming languages such as ML.

5.1 The Open Calculus of Constructions

We furthermore would like to point out that the techniques presented in this
paper have been applied in the development of the open calculus of construc-
tions (OCC) [48], an extension of the calculus of constructions that incorporates
rewriting logic and its membership equational logic as a computational sub-
language. Although OCC deviates quite considerably from the prevailing, more
conservative line of research in the context of the calculus of constructions, it
can be seen as a possible realization of the early ideas in [26] on a marriage of
these different paradigms.

OCC is a monomorphic type theory with dependent types and universes
that is considerably more liberal than the calculus of constructions and several
extensions such as the extended calculus of constructions [29] and the calculus of
inductive constructions [17], or the calculus of algebraic constructions [9], but it
maintains its core feature, which is also shared by all the remaining PTSs, namely
that type checking is ultimately based on a notion of computation. Similar to
PTSs, OCC is a family of type theories parameterized by a universe hierarchy,
but we have imposed the requirement that impredicative universes can only
appear at the bottom of this hierarchy. All other universes are predicative and
hence form a monomorphic Martin-Löf-style type theory.

Different from the calculus of constructions, OCC is an open type theory in
the sense that it is based on an open computational system, which can be specified
by the user within the bounds provided by its logic. The computational system is
of similar flexibility as that of membership equational and rewriting logic, which
means in particular that restrictive operational properties, such as confluence
and normalization, are in general not enforced by syntactic means. General-
izing the operational semantics of membership equational logic and rewriting
logic, OCC supports conditional equations, conditional assertions, and condi-
tional rewrite rules together with an operational semantics based on a com-
bination of conditional rewriting modulo structural equations and exhaustive
goal-oriented proof search.

Since OCC contains a higher-order equational programming/specification
language with dependent types, and simultaneously a higher-order logic with de-
pendent types by virtue of the propositions-as-types interpretation, our approach
can be regarded as a marriage between the first-order paradigm of executable
specification languages, such as equational and rewriting logic, and the higher-
order paradigm, used in functional programming languages and higher-order
logic proof assistants. Without excluding alternative models, we have equipped

370 Mark-Oliver Stehr and José Meseguer

OCC with a classical set-theoretic semantics, because it best reflects the pre-
vailing practice in mathematics and computer science and also facilitates formal
interoperability with many existing classical logic theorem provers.

It is remarkable that in spite of its logical and computational expressiveness,
OCC is a rather minimalistic system based on the combination of only two key
features: dependent types, and a computational system based on conditional
rewriting modulo equations. Therefore, it can also be regarded as a natural
higher-order generalization of rewriting logic. A key rationale behind the design
of OCC is that an underlying computationally powerful system, like that of MEL
and RWL, can increase the degree of automation in theorem proving already at
the level of the formal system, rather than delegating the issue of automation
entirely to the metalevel by means of tactics. This point is especially important
for type theories in the line of PTSs, where type checking does not involve the
use of tactics, but is based on the operational semantics of the type theory itself.

Using the techniques developed in this paper we have mapped the higher-
order case to the first-order case, and, not surprisingly, we have employed the
Maude rewriting engine and its reflective capabilities, to develop an experimen-
tal prototype of OCC based on this mapping. The prototype, which can be used
as a programming/specification language and as a interactive proof assistant,
has been a valuable tool to explore the applications of OCC already in the early
phase of its development, and has made possible the study of a wide range of
very different examples in various application domains [48]. In summary, our ex-
perience indicates that OCC opens a promising new research direction, which we
hope will contribute to the long-term goal of a unified language for programming,
specification and interactive theorem proving.

5.2 Conclusions

To sum up the main points of this paper, we have shown how a given first-order
framework can very naturally and directly express powerful higher-order frame-
works and how binders and substitution can be handled in a fully satisfactory
way by purely algebraic means. We have also indicated that all this is not only
of theoretical interest, but that as a fruit of this study, a proof assistant based on
a new framework like OCC that combines the best of higher-order frameworks
with the computational flexibility of MEL and RWL has been obtained.

Although we are interested in more complex applications such as OCC and
its meta-theoretic properties, in this paper we have focused mainly on PTSs and
have emphasized the representational aspects. We believe that choices of formal
representation are important in their own right, and a major issue in applying
a framework logic like MEL and RWL and in ascertaining the practical value of
a logical framework. Apart from the benefit of executability that our last spec-
ification of UPTSs enjoys, a formal specification provides the basis for formal
metatheoretic proofs. Indeed, MEL and RWL together with their initial model
semantics provide a very general notion of equational inductive definitions, a
fact that we exploited for representing several formal systems in this paper. We
feel that our work is very much in the spirit of Feferman’s first-order approach

Pure Type Systems in Rewriting Logic 371

of finitary inductive systems [19], but by using equational and rewriting logic
our approach puts a particular emphasis on executability. In fact, an impor-
tant benefit of our use of rewriting logic, compared with informal presentations
of algorithms by means of (possibly formal) inductive definitions of derivable
judgements, is that the algorithms receive a clear formal status as (labeled)
transition systems, which is the basis to express and reason about operational
properties such as confluence and termination in a formally rigorous way.

The general problem of carrying out metatheoretic proofs, soundness and
completeness proofs being typical examples, often involves the development of
useful induction principles on the basis of possibly different but related presen-
tations of the formal system. Such induction principles can be formulated either
using an internal approach, e.g. by using a formal system such as OCC, which
contains the framework logic as a sublogic in a suitable sense, or using an exter-
nal approach, such as the one adopted in Twelf [44], where an external first-order
logic is added on top of a higher-order logical framework for inductive reasoning
about the representations. In a certain sense similar to the latter, but avoiding
its hybrid character, one can instead use a reflective approach (cf. the approach
to reflective metalogical frameworks presented in [3,4]), which introduces induc-
tion principles at the metalevel of the representation in a reflective framework
such as rewriting logic.

6 Acknowledgements

Support for this work by DARPA and NASA (Contract NAS2-98073), by Office
of Naval Research (Contract N00014-96-C-0114), by National Science Founda-
tion Grant (CCR-9633363), and by a DAAD grant in the scope of HSP-III is
gratefully acknowledged. We also would like to thank Steven Eker for his help
concerning the efficient use of Maude, and furthermore Manuel Clavel, Narciso
Mart́ı-Oliet and the anonymous referees of our paper [49] for their useful com-
ments, and, last but not least, Cesar Muñoz for many discussions on calculi
of explicit substitutions and on the difficulties caused by α-conversion in type
theories with explicit names.

References

1. H. P. Barendregt. Lambda-calculi with types. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Background: Computational Structures, volume 2
of Handbook of Logic in Computer Science. Claredon Press, Oxford, 1992.

2. B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye,
D. de Rauglaudre, J. C . Filliatre, E. Giménez, H. Herbelin, G. Huet, H. Laulhère,
C. Muñoz, C. Murthy, C. Parent-Vigouroux, P. Loiseleur, C. Paulin, A. Säıbi, and
B. Werner. The Coq Proof Assistent Reference Manual, Version 6.3.1, Coq Project.
Technical report, INRIA, 1999. http://logical.inria.fr/.

http://logical.inria.fr/

372 Mark-Oliver Stehr and José Meseguer

3. D. Basin, M. Clavel, and J. Meseguer. Reflective metalogical frameworks. In
LFM’99: Workshop on Logical Frameworks and Meta-languages, Paris, France,
September 28, 1999, Proceedings, 1999.
http://plan9.bell-labs.com/who/felty/LFM99/.

4. D. Basin, M. Clavel, and J. Meseguer. Rewriting logic as a metalogical framework.
In S. Kapoor and S. Prasad, editors, Twentieth Conference on the Foundations of
Software Technology and Theoretical Computer Science, New Delhi, India, Decem-
ber 13–15, 2000, Proceedings, volume 1974 of Lecture Notes in Computer Science,
pages 55–80. Springer-Verlag, 2000.

5. Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of ex-
plicit substitutions which preserves strong normalisation. Journal of Functional
Programming, 6(5):699–722, September 1996.

6. S. Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of
constructions and other systems in Barendregt’s cube. Technical report, Carnegie
Mellon University and Universita di Torino, 1988.

7. K. J. Berkling. A symmetric complement to the lambda-calulus. Interner Bericht
ISF-76-7, GMD, St. Augustin, Germany, 1976.

8. K. J. Berkling and E. Fehr. A consistent extension of the lambda-calculus as a
base for functional programming languages. Information and Control, 55:89–101,
1982.

9. F. Blanqui, J.-P. Jouannaud, and M. Okada. The calculus of algebraic construc-
tions. In Rewriting Techniques and Applications, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1999.

10. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. In M. Bidoit and M. Dauchet, editors, TAPSOFT’97:
Theory and Practice of Software Development, 7th International Joint Conference
CAAP/FASE, Lille, Frace, April 1997, Proceedings, volume 1214 of Lecture Notes
in Computer Science. Springer-Verlag, 1997.

11. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236:35–132, 2000.

12. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5(1), 1940.

13. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: Specification and Programming in Rewriting Logic. SRI International,
January 1999. http://maude.csl.sri.com.

14. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. A tutorial on maude. http://maude.csl.sri.com, March 2000.

15. T. Coquand. An algorithm for testing conversion in type theory. In G. Huet and
G. D. Plotkin, editors, Logical Frameworks. Cambridge University Press, 1991.

16. T. Coquand and G. Huet. The calculus of constructions. Information and Com-
putation, 76(2/3):95–120, 1988.

17. T. Coquand and C. Paulin-Mohring. Inductively defined types. In COLOG-88,
International Conference on Computer Logic, Tallinn, USSR, December 1988, Pro-
ceedings, volume 417 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

18. N. G. de Bruijn. Lambda calculus with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. In Proceed-
ings Kninkl. Nederl. Akademie van Wetenschappen, volume 75(5), pages 381–392,
1972.

19. S. Feferman. Finitary inductive systems. In R. Ferro, editor, Proceedings of Logic
Colloquium ’88, Padova, Italy, August 1988, pages 191–220. North-Holland, 1988.

http://plan9.bell-labs.com/who/felty/LFM99/
http://maude.csl.sri.com
http://maude.csl.sri.com

Pure Type Systems in Rewriting Logic 373

20. P. Gardner. Representing Logics in Type Theory. PhD thesis, University of Edin-
burgh, 1992.

21. H. Geuvers. Logics and Type Systems. PhD thesis, University of Nijmegen, 1993.
22. H. Geuvers and M.-J. Nederhof. A modular proof of strong normalization for the

calculus of constructions. Journal of Functional Programming, 1(2):155–189, April
1991.

23. J. Y. Girard. Interpretation fonctionelle et elimination des coupures dans
l’arithmetique d’ordre superieur. PhD thesis, Université Paris VII, 1972.

24. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Second
Annual Symposium on Logic in Computer Science, Ithaca, New York, 22–25 June
1987, Proceedings, pages 193–204. IEEE, 1987.

25. G. Huet. The constructive engine. In R. Narasimhan, editor, A Perspective in
Theoretical Computer Science. World Scientific, 1989.

26. J.-P. Jouannaud. Membership equational logic, calculus of inductive construc-
tions, and rewrite logic. In International Workshop on Rewriting Logic and its
Applications Abbaye des Prémontrés at Pont-à-Mousson, France, September 1998,
Proceedings, volume 15 of Electronic Notes in Theoretical Computer Science. Else-
vier, 1998. http://www.elsevier.nl/locate/entcs/volume15.html.

27. P. Lescanne. From λσ to λυ, a journey through calculi of explicit substitutions.
In Hans Boehm, editor, Conference Record of POPL’94: 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Portland, Oregon,
January 17–21, 1994, pages 60–69. ACM, 1994.

28. P. Lescanne and J. Rouyer-Degli. The calculus of explicit substitutions λυ. Tech-
nical Report RR-2222, INRIA-Lorraine, January 1994.

29. Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. In-
ternational Series of Monographs on Computer Science. Oxford University Press,
1994.

30. L. Magnussen. The Implementation of ALF – A Proof Editor based on Martin-Löf ’s
Monomorphic Type Theory with Explicit Substitutions. PhD thesis, University of
Göteborg, Department of Computer Science, 1994.

31. N. Mart́ı-Oliet and J. Meseguer. General logics and logical frameworks. In D. Gab-
bay, editor, What is a Logical System?, pages 355–392. Oxford University Press,
1994.

32. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In RWLW’96, First International Workshop on Rewriting Logic and its Ap-
plications Asilomar Conference Center, Pacific Grove, CA, USA, September 3-6,
1996, Proceedings, volume 4 of Electronic Notes in Theoretical Computer Science.
Elsevier, 1996. http://www.elsevier.nl/locate/entcs/volume4.html. To appear in
D. M. Gabbay, F. Guenthner, (eds.), Handbook of Philosophical Logic (2nd edi-
tion), Kluwer Academic Publishers.

33. P. Martin-Löf. An intuitionistic theory of types. Technical report, University of
Stockholm, 1972.

34. J. McKinna and R. Pollack. Pure type systems formalized. In M. Bezem and J. F.
Groote, editors, Typed Lambda Calculi and Applications, International Conference
on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands,
March 16–18, 1993, Proceedings, volume 664 of Lecture Notes in Computer Science.
Springer-Verlag, 1993.

35. J. Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Logic Collo-
quium’87, Granada, Spain, July 1987, Proceedings, pages 275–329. North-Holland,
1989.

http://www.elsevier.nl/locate/entcs/volume15.html
http://www.elsevier.nl/locate/entcs/volume4.html

374 Mark-Oliver Stehr and José Meseguer

36. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73–155, 1992.

37. J. Meseguer. Membership algebra as a logical framework for equational speci-
fication. In F. Parisi-Presicce, editor, Recent Trends in Algebraic Development
Techniques, 12th International Workshop, WADT’97, Tarquinia, Italy, June 3–7,
1997, Selected Papers, volume 1376 of Lecture Notes in Computer Science, pages
18 – 61. Springer-Verlag, 1998.

38. M. J. O’Donnell. Computing in systems descibed by equations. In Fundamentals of
Computation Theory, International Conference, Poznañ-Kornik, Poland Septem-
ber 19–23, 1977, Proceedings, volume 58 of Lecture Notes in Computer Science.
Springer-Verlag, 1977.

39. L. C. Paulson. Isabelle, volume 828 of Lecture Notes in Computer Science. Springer
Verlag, 1994.

40. R. Pollack. Closure under alpha-conversion. In H. Barendregt and T. Nipkow,
editors, Types for Proofs and Programs: International Workshop TYPES’93, Ni-
jmegen, May 1993, Selected Papers, volume 806 of Lecture Notes in Computer
Science, pages 313–332. Springer-Verlag, 1993.

41. R. Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus of
Constructions. PhD thesis, University of Edinburgh, 1994.

42. R. Pollack. A verified typechecker. In M. Dezani-Ciancaglini and G. D. Plotkin,
editors, Second International Conference on Typed Lambda Calculi and Applica-
tions, Edinburgh, UK, April 10–12, 1995, volume 902 of Lecture Notes in Computer
Science. Springer-Verlag, 1995.

43. J. Reynolds. Towards a theory of type structure. In Programming Symposium,
Paris, volume 19 of Lecture Notes in Computer Science. Springer-Verlag, 1974.

44. C. Schürmann and F. Pfenning. Automated theorem proving in a simple meta-logic
for LF. In C. Kirchner and H. Kirchner, editors, Automated Deduction – CADE-15,
15th International Conference on Automated Deduction, Lindau, Germany, July
5–10, 1998, Proceedings, volume 1421 of Lecture Notes in Artificial Intelligence,
pages 286–300. Springer-Verlag, 1998.

45. P. G. Severi. Normalization in Lambda Calculus and its relation to Type Inference.
PhD thesis, Eindhoven University of Technology, 1996.

46. M.-O. Stehr. CINNI - A New Calculus of Explicit Substitutions and its Application
to Pure Type Systems. Manuscript, CSL, SRI-International, Menlo Park, CA,
USA, 1999.

47. M.-O. Stehr. CINNI – A Generic Calculus of Explicit Substitutions and its
Application to λ-, σ- and π-calculi. In K. Futatsugi, editor, The 3rd In-
ternational Workshop on Rewriting Logic and its Applications Kanazawa City
Cultural Hall, Kanzawa Japan, September 18–20, 2000, Proceedings, volume 36
of Electronic Notes in Theoretical Computer Science, pages 71 – 92. Elsevier,
2000. http://www.elsevier.nl/locate/entcs/volume36.html. Extended version at
http://www.csl.sri.com/˜stehr.

48. M.-O. Stehr. Programming, Specification, and Interactive Theorem Proving —
Towards a Unified Language based on Equational Logic, Rewriting Logic, and Type
Theory. Doctoral Thesis, Universität Hamburg, Fachbereich Informatik, Germany,
2002. http://www.sub.uni-hamburg.de/disse/810/.

49. M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic. In LFM’99:
Workshop on Logical Frameworks and Meta-languages, Paris, France, September
28, 1999, Proceedings, 1999. http://plan9.bell-labs.com/who/felty/LFM99/.

50. J. Terlouw. Een nadere bewijstheoretische analyse van GSTTs. Manuscript, Uni-
versity of Nijmegen, The Netherlands, 1989.

http://www.elsevier.nl/locate/entcs/volume36.html
http://www.csl.sri.com/~stehr
http://www.sub.uni-hamburg.de/disse/810/
http://plan9.bell-labs.com/who/felty/LFM99/

Pure Type Systems in Rewriting Logic 375

51. L. S. van Benthem Jutting. Typing in pure type systems. Information and Com-
putation, 105:30–41, 1993.

52. L. S. van Benthem Jutting, J. McKinna, and R. Pollack. Checking algorithms for
pure type systems. In H. Barendregt and T. Nipkow, editors, Types for Proofs
and Programs: International Workshop TYPES’93, Nijmegen, May 1993, Selected
Papers, volume 806 of Lecture Notes in Computer Science, pages 19–61. Springer-
Verlag, 1993.

Building Optimal Binary Search Trees from

Sorted Values in O(N) Time

Jean G. Vaucher, professeur titulaire

Departement d’informatique et de recherche opérationnelle,
Université de Montréal,

C.P. 6128, Succursale Centre-Ville, Montréal, Canada, H3C 3J7
vaucher@iro.umontreal.ca

Abstract. First, we present a simple algorithm which, given a sorted
sequence of node values, can build a binary search tree of minimum
height in O(N) time. The algorithm works with sequences whose length
is, a priori, unknown. Previous algorithms [1–3] required the number of
elements to be known in advance. Although the produced trees are of
minimum height, they are generally unbalanced. We then show how to
convert them into optimal trees with a minimum internal path length in
O(log N) time. The trees produced, both minimum height and optimal,
have characteristic shapes which can easily be predicted from the binary
representation of tree size.
Key Words: binary search tree, balanced trees, data structures

1 Introduction

The binary search tree (BST) is a well known data structure: it is a binary tree
with the property that the value of any given node is larger than the node values
in its left sub-tree and smaller than the values in its right sub-tree. Figure 1 on
page 377 shows two such trees. In this figure and in what follows, we assume
integer values for the nodes.

The height of the tree is an important factor in the analysis of tree algorithms.
In this paper the height, h, is defined to be the number of nodes on the longest
path from the root to a leaf. The height of the tree on the left of Figure 1 is 3
and the height of the tree on the right is 4. The tree on the left with all the leaves
on the bottom level is said to be perfect. It contains exactly 2h− 1 nodes. More
generally, the minimum height for a tree containing N nodes is |log2(N + 1)|.
Conversely, the maximum height is N if the tree has degenerated into a list.

Any modern text on data structures describes the properties of BSTs and
gives the basic algorithms to find, add or remove an element. Given random
values, the time complexity of these basic operations is O(log n); furthermore,
the values from a binary search tree can be output in sorted order in O(n) time
by a simple recursive algorithm shown on page 377.

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 376–388, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Building Optimal Binary Search Trees from Sorted Values in O(N) Time 377

2

1 3 5 7

6

4

2

1

6

5 10

8

4

Fig. 1. Binary Search trees

class Node {
vType value;
Node left, right;

}

void printTree (Node p)
{ if p != null then
{ printTree (p.left) ;
print (p.value) ;
printTree (p.right) ;

}
}

Now consider the inverse operation, namely: building a tree given a sequence
of sorted values such as produced by printTree. Of course, this can be accom-
plished by successive INSERT operations but the complexity of this approach
is O(N log N) at best. Actually, if the basic insertion algorithm is used with a
sorted set of values, the tree degenerates into a list and the complexity is O(N2).

In 1976, Wirth [1, p. 195] gave an efficient algorithm to construct a tree of
N nodes. The algorithm is recursive: a tree of N nodes is built by reading a node
value and doing recursive calls to build two sub-trees of (N − 1)/2 nodes. The
resulting tree is perfectly balanced and the running time is O(N), but the value
of N must be known before hand. Wirth was not concerned with node order and
the tree was arbitrarily read in pre-order. More recently, Carrano [2, p. 480, 3,
p. 545], gives a similar algorithm which works with sorted values but again N
must be known beforehand. The method is shown below.

Node buildTree (int N)
{ if N = 0 then

return null ;
else

378 Jean G. Vaucher

{ Node left := readTree (N / 2) ;
vType value := nextValue () ;
Node right := readTree ((N-1) / 2) ;
return new Node(value, left, right) ;

}
}

In what follows, we develop an algorithm which does the same thing as Car-
rano’s but does not require prior knowledge of N . This algorithm is presented in
four steps. First, we start with a simple function which works for perfect trees
such as shown at the left of Figure 1. This function needs a parameter: h, the
height of the tree. Second we note, that with a test for end of file, the simple
function still builds a minimum height tree for any value h greater or equal to the
correct value. Thirdly, we add a driver routine which builds successively bigger
perfect trees until the end of data is reached. This driver function requires no
height parameter and works in O(N) time. The tree that is built is of minimum
height and supports the usual operations in logarithmic time but it may not have
an optimal shape. Finally, we show how to modify the tree to achieve minimum
internal path length with O(log N) rotation operations.

The pseudo-code used for the programming examples is based on Java with
some Simula (Algol) notation for clarity. The Simula influence can be seen in the
use of ”=” for equality and ”:=” for assignment and the if...then...else...
syntax. As in C and Java, we assume that parameters are passed by value and
that return exits immediately. Finally, in order to make the algorithms match
the text and easy to follow, we have used more variables and code than strictly
necessary.

2 Reading a Perfect Tree

Given 2h − 1 ordered nodes values, the function readTree1 — shown below —
builds a perfect tree of height h. It assumes that the input contains exactly the
right number of values and does not check for premature end of data.

Node readTree1 (int h)
{ if h < 1 then

return null ;
else
{ Node left := readTree1 (h-1) ;

vType value := nextValue () ;
Node right := readTree1 (h-1) ;
return new Node(value, left, right) ;

}
}

Building Optimal Binary Search Trees from Sorted Values in O(N) Time 379

3 Handling Premature End of Data

The next version of the input function, readTree2, is identical to the first except
that we add a test to stop construction when there is no more data to read. We
assume that the end of data test comes before reading and that the test can be
repeated without error even after it has returned true. The algorithm still needs
the expected tree height, h, as a parameter but it stops creating nodes as soon
as the input values are all read.

Node readTree2 (int h)
{ if h < 1 then

return null ;
else
{ Node left := readTree2 (h-1) ;

if end_of_data() then return left ;
vType value := nextValue () ;
Node right := readTree2 (h-1) ;
return new Node(value, left, right) ;

}
}

As long as the data is not exhausted, all trees returned by readTree2 will be
perfect. Since the algorithm proceeds in order building the left sub-tree before
the node, the fact that we are able to read a node value implies that end of data
was not encountered during the construction of the left sub-tree/ it is therefore
perfect; but the same cannot be said for right sub-trees.

Figure 2 shows what happens, when the initial value of h is correct or larger
than strictly necessary but there are fewer than 2h − 1 nodes and end of data
is encountered while building the tree. In the example, there are only 5 node
values but the function is called with an expected height h = 4. The shaded
part shows the virtual perfect tree of height 4 (with 15 nodes) which could have
been returned by the read function. When there are fewer nodes, the algorithm
traverses this virtual tree in the usual order building nodes with successive input
value until the end of data is reached. Essentially, it fills in the bottom left-hand
corner of the virtual tree. In terms of execution time, overestimating the tree
height means that we visit the extra virtual nodes between the root and the
actual nodes built.

Essentially, the algorithm tries to build successively taller perfect trees until
all node values have been read. As long as the initial value of h ≥ log2(N + 1)
all nodes will be read and the returned tree will be of minimum height but it
may be unbalanced. The left sub-tree of the root — being perfect — contains
exactly 2h′−1 − 1 nodes (where h′ is the actual height of the tree) but the right
sub-tree, which contains the remaining nodes, may contain anywhere from 0 to
2h′−1 − 1 nodes.

380 Jean G. Vaucher

9

Tree

3

1 8 11

Fig. 2. Tree returned by readTree2(4) from values 1, 3, 8, 9 and 11

4 Dispensing with the Estimated Height Parameter

To avoid specifying an initial value for the tree height, h, we use a loop which
calls readTree2 with successively larger values of h to build trees of increasing
size until the end of data is reached.

Node readMinTree ()
{

int h := 0;
Node tree := null;
while not end_of_data() do
{

Node left := tree;
vType root_value := nextValue () ;
Node right := readTree2 (h) ;
tree := new Node(root_value, left, right) ;
h++ ;

}
return tree ;

}

In the function tree is the last tree that was built and its height is h. While
there are nodes to read, tree is a perfect tree containing exactly 2h − 1 nodes.
The next larger tree (of height h + 1) uses the old tree as its left sub-tree. The
next node value is read for the root and we call readTree2 to build a new right
sub-tree of the same height as the left. If data is still not exhausted, the resulting
tree is again perfect and we repeat the process until end of data is reached.

Initially, we start with h = 0 and an empty tree. When the loop terminates,
the tree built by this function has the same shape as described for readTree2:
minimum height and a full left sub-tree but a right sub-tree containing anywhere
from zero to 2h−1 − 1 nodes.

Building Optimal Binary Search Trees from Sorted Values in O(N) Time 381

Essentially the algorithm does a recursive traversal of the tree that it builds
and its time complexity is O(N).

5 The Shape of Returned Trees

The trees returned by readMinTree have a definite characteristic shape. While
the left sub-tree of the root is perfect, the right sub-tree contains at most the
same number of nodes as the left and generally fewer so the right half of the
tree is generally not as deep as the left. The same reasoning applies to right
sub-trees, which will either be balanced or skewed to the left. Overall, the tree
shape, as shown on page 381, could be characterized as a staircase.

Fig. 3. Characteristic shape of the trees constructed by readMinTree

We can get a more precise idea of the tree topology by noting that our tree
is composed of a succession of perfect trees that decrease in size as they are
built from left to right and we can think of the nodes on the right edge of the
tree as a list connecting these perfect trees together. This view will make it easy
to determine the shape of the tree from the binary coding of N , the tree size.
Consider the perfect tree of height h shown in Figure 4.It contains 2h− 1 nodes
but, if we add the extra link node at the top, the structure accounts for 2h nodes.

Thus there is a direct correspondence between the perfect trees in our struc-
ture and the ones in the binary representation of the tree size. For example,
consider a tree of 37 nodes: “1001012” in binary. This corresponds to a tree
shown below with 3 linked perfect trees whose sizes correspond to the powers of
2 that add up to 37: 32 + 4 + 1. The shape is shown in Figure 5.

382 Jean G. Vaucher

2h-1

h

31
3

Fig. 4. Perfect tree component Fig. 5. Staircase of size 37

6 Improving the Tree

The time complexity of traditional search tree algorithms is strongly dependent
on the tree height. In the case of our staircase trees, the height is a minimum
and equal to |log2(N + 1)| so that standard operations can be done in O(logN)
time. This height is indicative of worst case operation and compares favorably
to balanced AVL trees where the height in the worst case is 1.44log(N + 2) [5,
p.118].

However, for complexity in the average case, the staircase shape is not opti-
mal. Consider the extreme case when the number of nodes is a power of 2. The
tree that we return is shown on the left in Figure 6 on page 382. In such a case,
the right sub-tree is empty and all nodes are in a perfect tree on the left. A
better disposition of the nodes is shown on the right where all nodes in the left
sub-tree have been moved up by one level and the root has been moved to the
bottom.

Fig. 6. Optimizing a staircase tree

The tree on the right is an example of an optimal search tree: one in which
all levels, except possibly for the bottom one, are completely filled. In such a

Building Optimal Binary Search Trees from Sorted Values in O(N) Time 383

tree, there is no empty slot closer to the root into which a node from the bottom
could be moved up and the total path length, the sum of the distances between
each node and the root, is minimized. Note that the improvement in average
path length to be gained from modifying our trees will be marginal — at most
one level — as shown in Figure 6. This is because staircase trees are already of
minimum height and represent intermediate stages between perfect trees whose
heights differ by one.

In what follows, we will show how to modify our staircase tree into an optimal
shape in h steps, where h is the tree height. To do this we will use rotations —
operations commonly used in AVL trees [4–6] — which move one sub-tree up
closer to the root while moving another sub-tree down; all the while keeping the
tree height constant. If the number of nodes going up is greater than the number
going down, the rotation improves the average path length.

In Figure 7 on page 383, the tree on the left is typical of the staircase trees
that we produce. Here X is the root with a perfect sub-tree to its left and a
smaller tree (R) to its right. The root Y of the left sub-tree has two equal size
(perfect) sub-trees labeled L (left) and M (middle). As a result of a rotation,
the old root X and its imperfect right sub-tree R are moved down one level.
Y and its sub-tree L move up one level. Y becomes the new root. The middle
tree, M , is now tied to X instead of Y , but in terms of distances of its nodes
to the (new) root, nothing has changed and it can be thought of as a fixed
pivot upon which the other sub-trees balance. Note that the rotation does not
change the tree height and it maintains the order between nodes and sub-trees:
L < Y < M < X < R. The important effect is that L moves up whereas the
smaller R moves down.

a) before rotation b) after rotation

Y

L M

X

R

Y

L
M

X

R

Fig. 7. Effect of a rotation

Another way to consider the effect of the rotations is to note that they modify
the tree towards the optimal shape by bringing down the smaller imperfect sub-
tree (R) on the right until its bottom layer lines up with the bottom of the
tree. One rotation may not be enough. In the example of Figure 7, after the first
rotation, R could still move down and we would do further rotations on X . With
each rotation, R is attached to a lower point in the main (left) tree. When R

384 Jean G. Vaucher

reaches the bottom, we can start applying rotations to R itself with a view of
bringing its right half in line with its left. Now for every tree on the right that
goes down, a tree on the left must go up but you will note in what follows that
the trees that move up (like L) start on the bottom and go up by only one level.
Thus these promotions do not destroy the optimal shape.

Knowing N , the number of nodes in the tree1, we can compute the number
of nodes in the various sub-trees and decide if a rotation is warranted:

– nodes in the whole tree: N
– height of the tree: h = �log2(N + 1)�
– height of tree rooted at Y : hL = h− 1
– size of tree rooted at Y : 2h−1 − 1
– size of R : nR = N − (2h−1 − 1)− 1 = N − 2h−1

– height of R: hR = �log2(nR + 1)�

An example will clarify the situation. In Figure 8 on page 385, we consider the
optimization of the staircase tree shown previously. Here, in the initial situation
(a), N = 37 and h = 6, the heights of the trees on the left and right are 5
and 3 respectively. A rotation is warranted and the original root along with
the right sub-tree moves down one level as shown in (b) [the arrow always the
shows the tree under consideration]. Now, hR remains at 3 but hL = 4 and a
further rotation brings us to (c). At this point, the right sub-tree is level with
the bottom of the tree and further rotation of the original right sub-tree is no
longer beneficial.

At this point, we skip the rotation but still go down a level to the right to
see if rotations within the original right sub-tree could be beneficial. Now we
have N = 5, hL = 2, nR = hR = 1. A final rotation brings us to (d) where
the rightmost leaf being on the bottom, the work is finished. At each step in
the optimization process we go down one level, thus the complexity is O(h) =
O(log N).

Going a step further, we can understand the shape of the final tree obtained
in (d) above by considering that a perfect tree of the same height would have
contained 26 more nodes than our 37-node tree. In an optimal tree, the missing
nodes must come from the bottom layer: they are the nodes that would have
been leaves below our promoted trees. The way we promoted trees was to start
with the largest on the left, reducing the size by a factor of two at each step.
Therefore, the gaps from right to left in the bottom layer correspond to the
binary representation of the missing nodes. In our case: 16+8+2 = 26 as shown
in Figure 9. When comparing figures 8 and 9, remember that the bottom layer
of a perfect tree with 2h − 1 nodes contains 2h−1 nodes and that the (missing)
layer below that would contain 2h nodes.

1 These should be counted by the input function nextValue and made available in a
global variable.

Building Optimal Binary Search Trees from Sorted Values in O(N) Time 385

7

7

1 5

3 1

a) b)

c) d)

1 5

1 5

7

7

1 5

Fig. 8. Optimizing a staircase tree

8 4 2 116

Fig. 9. Layout of an optimized tree

7 The Optimizing Algorithm

The code below implements the technique that we have outlined with a slight
improvement. In the example of Figure 8, we showed how a sub-tree several levels
above the bottom could be moved down with a sequence of rotations; however,
it is more efficient to find the node on the right edge below which the sub-tree
will eventually be placed and do a single rotation at that point.

386 Jean G. Vaucher

1 Node optimize (Node root, int N, int h)
2 {
3 if N <= 1 then return root;
4
5 int hL = h-1 ;
6 int nR = N - 2**(h-1);
7 int hR = ceiling(log(nR+1));
8
9 Node newRoot = root;
10 if hL > hR then
11 {
12 Node leftTree = newRoot = root.left;
13 hL = hL-1;
14 while hL > hR do
15 {
16 leftTree = leftTree.right;
17 hL = hL-1;
18 }
19 root.left = leftTree.right;
20 leftTree.right = root;
21 }
22 root.right = optimize (root.right, nR, hR);
23 return newRoot;
24 }

The method takes 3 parameters: root, a pointer to the root of the staircase
tree to be optimized; N, the tree size, and h, the tree height. It works recursively:
on each call, it optimizes a tree by deciding if the right sub-tree should be moved
down and if so does the demotion; it then proceeds to optimize the right sub-
tree. The algorithm terminates when the tree has shrunk down to a single node
(line 3). In the code, we use more significant names, root and leftTree, to
denote the X and Y nodes of Figure 7. Initially (lines 5–6), we compute the
size of the right sub-tree, nR, as well as the heights of both sub-trees, hL and
hR. newRoot represents the root of the optimized tree; it is initialized to root,
the value that will be returned if no rotation is done. If the right tree is shorter
than the left (line 10), then the right tree will be moved down and lines 12–18
determine where it will be inserted. At the same time the value of newRoot is
changed. The rotation to insert the right sub-tree lower in the left Tree is done
in lines 19–20. Whether, the right sub-tree has been moved or not, we optimize
it (line 22) and return the optimized tree (line 23).

We show below the final version of readTree which combines the optimiza-
tion with the initial tree building to meet the stated objective: constructing an
optimal search tree from a sorted set of values.

Building Optimal Binary Search Trees from Sorted Values in O(N) Time 387

int N; // number of nodes - incremented by nextValue

Node readTree () // final version
{
int h := 0;
Node tree := null;
while not end_of_data() do
{
Node left := tree;
vType root_value := nextValue () ;
Node right := readTree2 (h) ;
tree := new Node(root_value, left, right) ;
h ++ ;

}
return optimize(tree, N, h);

}

A Java test version of this algorithm is available on the Internet at the
following URL: http://www.iro.umontreal.ca/˜vaucher/Pubs/BST.java

8 Conclusions

We have developed a simple algorithm which, given a sorted sequence of node
values, can build a balanced binary search tree in O(N) time, without requiring
a priori knowledge of the number of elements, N . The novel idea is that a
minimum height tree can be constructed by trying to build successively deeper
perfect trees, using the tree from the last step as the left sub-tree of the new one.
It is then a simple — though tricky — matter to reshape the tree with rotations
to minimize internal path length. We also showed that the shape of the trees
had a simple one-to-one correspondence to the binary representation of the tree
size.

This algorithm could also be used to re-balance an arbitrary tree. Given a
language with coroutines (like Simula [7]), we could emulate Ole-Johan Dahl’s
technique from his classic 1972 paper with Tony Hoare [8]: using one coroutine
object to recursively traverse the old tree and provide input for another coroutine
using our algorithm to build a better tree. With a current language like Java,
rebalancing could still be done but would be less elegant.

I met Ole-Johan Dahl along with his colleague Kristen Nygaard in the early
1970s on a visit to Oslo to learn more about Simula. The concern with rigor
and clarity as well as innovation evident in their work over the years has been a
continuing source of inspiration and I grieve their passing.

9 Acknowledgements

I wish to thank the anonymous referee whose comments contributed to a sig-
nificant improvement in the original paper. In particular, he prodded me into

http://www.iro.umontreal.ca/~vaucher/Pubs/BST.java

388 Jean G. Vaucher

further reflection into the optimization phase of the algorithm leading to the dis-
covery of the simple relations that determine tree shapes. Finally, the referee‘s
suggestion of using tree height instead of size to control the optimization lead
to simplification in both the code and the explanation.

References

1. N. Wirth, Algorithms + data structures=programs. Englewood Cliffs, N.J.:
Prentice-Hall, 1976.

2. F. M. Carrano and J. J. Prichard, Data abstraction and problem solving with Java:
walls and mirrors, 1st ed. Boston: Addison-Wesley, 2001.

3. F. M. Carrano, P. Helman, and R. Veroff, Data structures and problem solving
with Turbo Pascal: walls and mirrors. Redwood City, Calif. ; Don Mills, Ont.:
Benjamin/Cummings Pub. Co., 1993.

4. G. M. Adelson-Velskii and E. M. Landis, An Algorithm for the Organization of In-
formation, Soviet Mathematics (translated from Doklady Akademii Nauk, SSSR),
vol. 3, pp. 1259-1263, 1962.

5. M. A. Weiss, Data Structures and Algorithm Analysis in Java: Addison-Wesley,
1999.

6. D. E. Knuth, The art of computer programming: Sorting and searching., vol. 3.
Reading, Mass.,: Addison-Wesley Pub. Co., 1973.

7. O.-J. Dahl, B. Myhrhaug, and K. Nygaard, SIMULA-67 Common Base Language,
Norwegian Computer Centre, Oslo, Norway, Technical Report 1970.

8. O.-J. Dahl and C. A. R. Hoare, Hierarchical Program Structures, in Structured Pro-
gramming, vol. 8, A.P.I.C. Studies in Data Processing. London: Academic Press,
1972, pp. 175-220.

Author Index

Agha, Gul, 26

Bjørner, Dines, 58
Broy, Manfred, 83

Dahl, Ole-Johan, 15

Fridella, Stephen, 302

Goguen, Joseph, 96

Hoare, Tony, 124

Johnsen, Einar Broch, 137

Kindler, Eugene, 165
Knuth, Donald E., 183
Krogdahl, Stein, 1, 8

Langmaack, Hans, 209
Lyche, Tom, 1, 8

Meseguer, José, 334
Meyer, Bertrand, 236

Owe, Olaf, 1, 8, 137

Roşu, Grigore, 96
Ruskey, Frank, 183

Sintzoff, Michel, 272
Soundarajan, Neelam, 302
Stehr, Mark-Oliver, 334

Thati, Prasanna, 26

Vaucher, Jean G., 376

	412JMFB9VHL.jpg
	front-matter.pdf
	Preface
	Table of Contents

	fulltext.pdf
	fulltext_2.pdf
	fulltext_3.pdf
	Introduction
	Simula I
	Simula 67
	Language Finalisation and Distribution
	Cultural Impact

	fulltext_4.pdf
	Introduction
	The Actor Model
	A Simple Actor Language (SAL)
	The Calculus A$pi $
	A Theory of May Testing for A$pi $
	Formal Semantics of SAL
	Research Directions
	Acknowledgments

	fulltext_5.pdf
	1 Introduction
	2 Requirements Engineering
	3 SoftwareDesign
	4 Conclusion

	fulltext_6.pdf
	Introduction
	Object-Orientation in Practice Today --- Its Characteristics
	Concurrent Open Systems --- Their Characteristics
	Object-Oriented Programming and Concurrency
	Concluding Remarks
	Acknowledgement
	References

	fulltext_7.pdf
	Introduction
	Preliminaries
	Inclusive Institutions
	Modules
	Module Composition Operations
	Conclusions and Future Research

	fulltext_8.pdf
	Historical Introduction
	Assertions in Program Testing
	Assertions in Current Microsoft Development Practice
	Assertions in Programming Languages
	The Future
	Acknowledgements
	References

	fulltext_9.pdf
	Introduction
	Object-Oriented Specification
	Object-Orientation and Openness
	Viewpoints to ODS
	Case Study: the Software Bus
	Composing Assumption Guarantee Specifications
	Discussion
	Conclusion

	fulltext_10.pdf
	Preface --- Historical Introduction and Personal Reminiscence
	First Directions in SIMULA Applications in Czechoslovakia
	Semantics of Nesting Main Classes and Quasi-Parallel Systems
	First Steps in Nesting Modeling-Theory
	Further Steps in Nesting Modeling --- Pseudosimulation
	Other Applications of Pseudosimulation
	Reflective Simulation
	An Example
	New Horizons
	Conclusion

	fulltext_11.pdf
	The Unrestricted Case
	Chains
	Ups and Downs
	The General Case
	Implementation via Coroutines
	Launching
	Optimization
	The Active List
	Additional Optimizations
	Conclusions and Acknowledgements

	fulltext_12.pdf
	Introduction: Origins of Static and Dynamic Identifier Binding
	Object-Orientation and Identifier Binding
	Syntax and Static Semantics of MiniLOGLAN
	Semantics of MiniLOGLAN
	Prefix Elimination by Transforming to Procedures
	Implementation of MiniLOGLAN
	Conclusion

	fulltext_13.pdf
	1 Overview
	2 Event Library Essentials
	3 Event-Driven Design
	4 The Observer Pattern
	5 The .NET Event-Delegate Model
	6 Events for Web Interfaces in ASP.NET
	7 Event Library Complements
	8 Software Engineering Lessons

	fulltext_14.pdf
	Introduction
	Processes, Specifications, and Their Preconditions
	Coprocesses and Their Preconditions
	Iterative Synthesis of Winning Strategies
	Discussions and Conclusions

	fulltext_15.pdf
	Introduction and Motivation
	Language and System Model
	Reasoning About the Base Class
	Incremental Reasoning About the Derived Class
	Case Study
	Related Work
	Discussion

	fulltext_16.pdf
	Preliminaries
	Overview and Main Results
	The Metalogical View of PTSs
	The Meta-operational View of PTSs
	Final Remarks
	Acknowledgements

	fulltext_17.pdf
	Introduction
	Reading a Perfect Tree
	Handling Premature End of Data
	Dispensing with the Estimated Height Parameter
	The Shape of Returned Trees
	Improving the Tree
	The Optimizing Algorithm
	Conclusions
	Acknowledgements

	back-matter.pdf

