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Preface

The first edition of this book was published in 1993 by Kluwer Academic Publishers
and the Science Press of China. In the preface of the first edition, we briefly intro-
duced the history, main results and new developments of the Lurie control system,
as well as the well-known Lurie problem. We also pointed out the importance of
studying Lurie control systems in both theoretical development and applications. The
materials presented in the first edition were chosen mainly from the author’s results
on the necessary and sufficient conditions, as well as simple, practically useful alge-
braic sufficient conditions for the absolute stability of various Lurie control systems.
The characteristics of these results are: theoretically, to give many possible necessary
and sufficient conditions of absolute stability of various nonlinear control systems; in
applications, to derive simple enough and even constructive algebraic sufficient con-
ditions from these theoretical necessary and sufficient conditions for use in practical
work and in methodology. Whilst promoting the extensive use of modern methods
and tools such as M-matrices, K-class functions, Dini-derivatives, partial stability,
and set stability, we have not neglected traditional methods and results. Related
works produced by other researchers have also been introduced.

In the ten years that have passed since the first edition of the book was published,
new theories and methodologies have developed rapidly, and many new results have
been obtained in this area. Also, applications have been extended to many frontier
areas such as neural networks, chaos control, and chaos synchronization, etc. These
developments have been the driving motivation behind the substantial revision and
update this book has received for its second edition.

Since 1944, the study of the absolute stability of Lurie control systems, and its
applications, has attracted many researchers. The well-known Lurie problem and the
concept of absolute stability are presented, which is of universal significance both in
theory and practice. The field of absolute stability was, until the end of the 1950s,
monopolized mainly by Russian scholars such as A.I. Lurie, M.A. Aizeman, A.M.
Letov, and others. Then, at the beginning of the 1960s, American mathematicians,
such as J.P. LaSalle, S. Lefschetz, and R.E. Kalman, engaged themselves in this
field. Meanwhile, the Romanian scholar Popov presented a well-known frequency
criterion and consequently made a decisive breakthrough in the study of absolute
stability. Since then, V.A. Yacobovich, R.E. Kalman, K.R. Meyer, and others have
devoted themselves to the study of equivalent relations between Lurie’s method (inte-
gral term and quadratic Lyapunov function method) and Popov’s frequency method.
In the first 30 years, this greatly stimulated the development of Lyapunov stability
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theory, and the importance of Lyapunov theory was finally recognized by the control
society and mathematicians. The study of the Lurie problem has led to the develop-
ment of new mathematical methods and techniques, such as Lurie–Lyapunov type
V function, S program, the well-known Popov frequency method, and positive real
function theory. It has also established various relations between complex function,
linear algebra, calculus, and linear matrix inequality. The study of the Lurie con-
trol system has not only resulted in new mathematical theory and methodology, but
also laid the foundations for the development of the modern control theory (mainly
based on nonlinear controls) from the classical control theory (mainly based on time-
invariant linear controls) leading to, in particular, the development of a new and
important control area; robust control.

During the past two decades, more and more evidences have been found revealing
the close relation between the absolute stability of the Lurie system and chaos con-
trol, chaos synchronization and the stability of neural networks. This has poured new
vigor into this classical research area. In the early 1990s, Pecoron and Carroll were
the first to use the chaos synchronization principal to design two chaotic circuits that
could be synchronized, an accomplishment which was than applied to secure com-
munications. This development was able to change opinion that chaos cannot be con-
trolled, nor synchronized. This finding has, in turn, attracted many more researchers
in to this challenging research area. Since then, despite more results being produced,
a general theory of chaos synchronization has not been completely established. Cur-
ran and Chua were the first ones to suggest employing absolute stability to develop
a more general theory and methodology for chaos synchronization, as the study of
absolute stability has proved useful in providing new information and ideas.

Across the world, an increase in the study of neural networks began when a new
neural model, now called Hopfield neural network, was proposed by Hopfield and
Tank. They used electronic circuit simulations to solve nonlinear algebraic or tran-
scendental equations, with automated process. This new method, due to its novel
advantage, was immediately applied to many areas such as optimal computation,
signal processing, and pattern recognition. The demanding of optimal computation
has made it possible to relate it to the idea of the absolute stability of the Lurie
control system. Following this, a new concept of the absolute stability of neural net-
works was proposed, establishing the relation between the existence and uniqueness
of equilibrium points and the Lyapunov local stability and global attractive. Such
properties are not dependent on the particular form of activation functions, or the
strength of currents in circuits. This is indeed an extension of the absolute stability
of the Lurie system to neural networks.

The developments in Chaos theory and neural networks have promoted new stud-
ies on absolute stability. In the last two decades, we have continuously studied the
absolute stability of the Lurie system and obtained some new results. Therefore, we
believed it necessary to revise the book and publish a second edition to catch up with
the new developments in this area. Based on the six chapters of the first edition, the
second edition has been expanded to 13 chapters. Amongst these, five chapters are
completely new, and two chapters have been expanded by adding new results. We
have also added an introductory chapter (Chap. 1) to give the reader a brief guide to
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the book. The new chapters are chapters 1, 8, 10, 12, and 13. On the following two
pages, we have briefly described each chapter for you.

Chapter 1 is an introduction, presenting the Lurie problem, the relation between
the Lyapunov stability and the absolute stability of the Lurie control system, as well
as the recent developments in this area.

Chapter 2 describes the main tools and principal results, which play fundamental
roles throughout the book.

Chapter 3 has been revised and expanded from the first edition. In particular, we
describe the Lurie problem and Lurie system, and present three classical methods for
studying absolute stability; the Lurie–Lyapunov V -function method (quadratic form
plus integral terms); the Lurie method based on V function and S-program; and the
classical Popov frequency criterion and the simplified Popov criterion.

Chapter 4 is devoted to the Lurie control systems described by ordinary differen-
tial equations. We obtain the necessary and sufficient conditions for absolute stability
of various Lurie control systems. The absolute stability of these systems is equivalent
to that of partial variables and the matrix Hurwitz stability.

Chapter 5 presents some necessary and sufficient algebraic conditions for the
absolute stability of several special classes of Lurie-type control systems.

Non-autonomous systems are considered in Chapter 6.
In Chapter 7, we discuss the absolute stability of control systems with multiple

nonlinear control terms.
The material presented in Chapters 2–7 and 11 are mainly taken from the first

edition of the book, but have been improved and expanded by the addition of new
results.

Chapter 8 presents the results for the robust absolute stability of interval control
systems including the Lurie system and the Yocubovich system. Strictly speaking,
for a control system, the form of feedback control function is not known exactly, but
is known to belong to certain types of functions. Also, the information on the system
coefficients is usually given in upper and lower bounds, not exact values. In the past
two decades, the stability study for linear control systems with parameters varied
within a finite closed interval has been a hot topic in control society. However, there
has been a lack of results obtained on the stability of nonlinear control systems with
varied parameters in an interval. Thus, we have added this chapter in order to present
the new results obtained in this direction.

In Chapter 9, the theory and methodology for continuous Lurie control systems
are generalized to study discrete Lurie control systems described by difference equa-
tions. This topic was only discussed in one section of the first edition. Due to the wide
applications of discrete Lurie control systems in real applications, such as chaotic
systems and neural networks, it became necessary to expand this into a chapter of
its own. Moreover, the first edition only discussed the direct Lurie control system.
In this new edition, we have added the results for Lurie control systems with loop
feedback.

The absolute stability of the time-delayed and neutral Lurie control system is
considered in Chapter 10. The first edition did not include the absolute stability of
Lurie control systems, described by differential and difference equations, but instead
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jumped from ordinary differential equations straight to functional equations (FDE).
Though FDE has general theoretical foundations, most practical problems and appli-
cations are based on differential and difference equations. Thus, we have added this
chapter to introduce the results we recently obtained in this direction.

Chapter 11 considers the Lurie control systems described by functional differen-
tial equations. The results obtained by applying the ideas and methods described in
Chapter 4 to abstract functional differential equations are presented here. Also, new
results on control systems with multiple nonlinear feedback controls are given.

Chapter 12 introduces the concept of absolute stability for neural networks, and
particular attention is given to the Hopfield neural network. The inherent relation
between neural networks and Lurie control systems is discussed.

Finally, the theory of absolute stability is applied to consider the new area of
chaos control and chaos synchronization in Chapter 13. The main attention is focused
on the use of absolute stability of Lurie control systems to consider the synchroniza-
tion of two Chua circuits. New concepts are proposed for the absolutely exponential
stability of error systems, and the absolutely exponential stabilization using feedback
controls when the error system is not absolutely stable.

The remaining four chapters of the first edition have also been modified, with
new results added or new formulas used. We have omitted some parts of the old
edition which are no longer useful in applications. Also, we corrected a few minor
typographical errors from the first edition.

Finally, we would like to thank Mr. Z. Chen and Mr. F. Xu for their patience
in typing a partial manuscript of the book, and we thank the support received from
NNSF (No. 60274007, 60474011), NSERC (No. R2686A02), and PREA. Also our
thanks go to the Department of Applied Mathematics, The University of Western
Ontario, for hosting the visit of one of the authors (X.X. Liao) whilst the book was
under preparation.

London, Canada, Xiaoxin Liao
November 2005 Pei Yu
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Introduction

As we know, the stability is the most fundamental problem in the design of automatic
control systems, since only a stable system can keep working properly under distur-
bances [3, 4, 6, 8–10]. In fact, automatic control theory began from Maxwell’s study
on the stability of Watt centrifugal governor. When one designs a control system, one
first needs to consider some type of stability for the system and then investigate other
problems.

Among various stability theories, the Lyapunov stability is still the most impor-
tant one [56–63, 101–109, 128, 164, 186, 187]. However, the main difficulty in
analyzing Lyapunov stability is how to determine a Lyapunov function for a given
system. There does not exist general rules for constructing Lyapunov functions, but
are merely based on a researcher or designer’s experience and some particular tech-
niques. The first-order approximation method and many results obtained for the first
and second critical cases demand very restrictive requirements on nonlinear terms,
which cause difficulties in applications. Moreover, it should be pointed out that
the Lyapunov stability theory is mainly applicable for local stability, while many
practical problems need to consider globally asymptotic stability or even globally
exponential stability.

1.1 Lurie Control System

To solve the stability problem, in 1944, the former Soviet Union’s scholar and control
expert, A. I. Lurie, based on the study of many practical control systems includ-
ing aircraft automatic control, proposed the following well-known Lurie nonlinear
control system [10, 12, 13, 16–18, 100, 116]:

dx
dt

= Ax+ b f (σ),

σ = cTx,
(1.1)

where x ∈ Rn, b, c ∈ Rn, A ∈ Rn×n, and σ f (σ) > 0 when σ �= 0. Lurie developed
a new method to deal with the stability of nonlinear control system (1.1), which is
now called nonlinear isolation method in the literature, that is, the nonlinear part
of the system is isolated so that the system becomes one with closed-loop form. The
principal of the isolation method is illustrated in Fig. 1.1, where the box containing L

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, Second Edition.
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2 1 Introduction

Fig. 1.1 Nonlinear isolation
method

NL = b f(σ)

L = A x

Fig. 1.2 Nonlinear part

NLσ f (σ)

denotes the linear part of the system, and the box having NL represents the nonlinear
part of the system. Note that the L and NL parts in Fig. 1.1 do not necessarily corre-
spond to the open-loop part and the closed-loop part of a real control system. In the
early studies, the NL part was usually assumed to be a simple nonlinear function, but
was later quickly extended to more complicated nonlinear cases [159].

Lurie et al. raised the following question: when the nonlinear part of a control
system is isolated, but without having much information about the nonlinear charac-
teristics, how to choose the parameters of the nonlinear part such that the system is
globally asymptotically stable?

Let us consider a simple case [159]. Suppose that the NL in Fig. 1.1 represents
a single-input single-output time-invariant nonlinear part. Let the input be σ and
output f (σ), and both σ and f are scalars (see Fig. 1.2). All we know about f is
that f (σ) is a continuous function, located in a sectional region in the first and third
quadrants of the σ - f plane.

In many practical problems, the nonlinearity of a system is not exactly known
or there exist many nondeterministic elements or disturbances, or the form of f is
known but is very difficult to apply. In all these situations, the nonlinear isolation
method is a useful approach.

1.2 Lurie Absolute Stability and Lyapunov Stability

With many research works, the isolation method became an important and particu-
larly useful tool for the study of absolute stability [16–18,48]. Later, the well-known
control expert, V. M. Popov [120–123], developed a frequency criterion for absolute
stability theory, which is a natural extension of the stability of linear feedback sys-
tems. Since then, the absolute stability theory played the main role in the stability
analysis of nonlinear control systems.

Lurie control system or Lurie control problem not only plays an important role
in nonlinear control systems, but also greatly influences other research areas. From
the applied mathematics point of view, the Lurie system has proposed the important
concept for the family of differential equations (containing an infinite number of
equations), or multivalued differential equations, or nondeterministic systems. Many
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new mathematical methodologies and techniques have been generated from the study
of absolute stability [2, 49, 62, 63, 69, 99,105,137,138,140,144–146, 149–151, 159].
For instance, the positive real function theory and the Fourier transform are success-
fully employed in Popov principal; various methods and techniques of constructing
Lyapunov functions promoted the development of matrix theory, leading to the most
practically useful linear matrix inequality. General speaking, the study of absolute
stability has greatly promoted the development of applied mathematics.

On the other hand, from the control theory point of view, the Lurie control sys-
tem actually proposed the concept of robust control of nondeterministic systems,
which is the pioneer work of robust stability. Moreover, many practical nonlinear
control systems can be transformed to a unified Lurie control system to deal with. In
the monograph [159], many applications using Lurie absolute stability have been
discussed, such as transient stability of electrical network, stability of computer
network, nonlinear capacity limit problem of optimal regulator, theory of nuclear
reaction, etc.

The development of Lurie absolute stability also motivated the further devel-
opment of the Lyapunov theory [97, 155–157]. As mentioned above, the Lyapunov
stability is usually restricted to local behavior of a system, while the Lurie control
system studies the globally asymptotic stability of equilibrium points, which is not
for single equation, but for a family of differential equations consisting an infinite
number of differential equations. This certainly poses new difficulty and challenges.
Though still based on the Lyapunov function, the study of absolute stability has been
greatly generalized. Because of the demanding of practical applications, the classical
Lyapunov theory, which was developed 50 years earlier than the Lurie absolute sta-
bility theory, has reattracted many researchers’ attention. In the 1960s, an American
mathematician LaSalle pointed out that the stability theory is attracting the atten-
tion of mathematicians in the world, the Lyapunov direct method is widely used by
engineers, and the stability theory has become a standard part in training control
engineers. The stability theory started from the research of former Soviet Union’s
scholars finally became an area attracting all researchers in the world.

1.3 Recent Development of Absolute Stability Theory
in New Areas

With the development of modern science and technology, the stability theory still
plays very important and fundamental roles. For example, since 1990s, Pecoron
et al. [117, 118] discovered that under certain conditions two chaotic systems can be
synchronized, which changed the long time viewpoint: chaos cannot be controlled,
nor can be synchronized. However, though many results for chaos control and chaos
synchronization have been obtained, the general theory of chaos synchronization is
still under development. Therefore, Curran and Chua have proposed [20, 141] that
the general theory of chaos synchronization should be established under the frame
of Lurie absolute stability. Chua and his coworkers did many pioneer work in this
direction [142, 143]. We have also spent years in research in this direction [81–84].
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This has made it possible for the Lurie absolute stability theory to be applied to a
new research area.

Another new research area, which has been very active in the past two decades,
is the study of dynamics of neural networks, which has resulted in new idea and
methods for the development of optimal computation, connective memory, pattern
recognition, signal processing, etc. To solve the optimal computation problem, many
researchers have proposed the concept and methodology for the absolute stability of
neural networks, which is basically motivated from the idea of the absolute stability
of Lurie control systems.

From the above discussions, we have seen that the Lurie absolute stability is
indeed important for further researches from both theoretical and application aspects.

1.4 The Lurie Problem

The basic Lurie problem is [62] What is the necessary and sufficient condition for the
equilibrium point of system (1.1) to be globally asymptotically stable (i.e., absolutely
stable)? There are many publications (papers, monographs, reports, etc.) appearing
in the literature considering the absolute stability of the Lurie system and various
generalized Lurie control systems. Recent results may be found in, for example,
monographs [2, 62, 63, 99, 105, 159] and papers [31–36]. People hoped to obtain
the necessary and sufficient condition to answer the well-known Lurie problem in
the form of a, b, c in finite conditions. However, for a long time, whether Lurie or
Popov, all were able to obtain only the sufficient condition for the absolute stability of
single-valued nonlinear Lurie systems, yet these sufficient conditions depend upon
the existence of unknown Lyapunov matrix solutions (satisfying Lyapunov matrix
equation) and unknown parameters (satisfying some rational inequality).

The main difficulty of the Lurie problem is due to that the system has an infinite
number of equations. Using a, b, c finite form to find the necessary and sufficient
condition may not be possible (might be only possible for very specific systems).

The authors have been studying the absolute stability of Lurie control system for
many years, and have found that the partial variable stability, which was developed
by the former Soviet Union’s mechanist, is useful in the study of the stability of Lurie
systems. Also, many modern mathematical tools such as Dini derivative, K-function,
M-matrix, linear matrix inequality [68], etc. can be efficiently applied to investigate
the absolute stability of Lurie control systems. Most results of this book are based on
the authors’ research work in the past two decades.

1.5 The Aizerman Problem and Aizerman Conjecture

To this end, we would like to briefly introduce the Aizerman problem [2] (or the
Aizerman conjecture), which made an important contribution in the study of global
stability of nonlinear control systems and absolute stability of Lurie control systems.
In 1949, the former Soviet Union control expert, M. A. Aizerman, proposed the
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global stability problem for the following nonlinear control system with separable
variables:

dxi

dt
=

n

∑
j=1

fi j(x j), fi j(0) = 0, i = 1,2, . . . ,n. (1.2)

This type of control systems has particular meaning in control systems, since a Lurie
control system in the form of (1.1) can be transformed into (1.2) via a proper topo-
logical transform (or a full-rank linear transform). Further, system (1.2) is a natural
generalization of linear systems, since a linear control system with some linear part
replaced by nonlinear part becomes the system (1.2).

In early stage of stability study, when people encountered the difficulty in ana-
lyzing the global stability of nonlinear control systems, Aizerman proposed the
following method for the global stability of system (1.2): rewrite (1.2) as

dxi

dt
=

n

∑
j=1

fi j(x j) =
n

∑
j=1

fi j(x j)
x j

x j :=
n

∑
j=1

ai j(x j)x j , (1.3)

and consider the formal “characteristic equation”:

det(λ I−A(ai j(xi))n×n) = an(x)λ n +an−1(x)λ n−1 + · · ·+a1(x)λ +a0(x) = 0, (1.4)

where (−1)iai(x) is the summation of all the principal minor determinants of the
function matrix A(ai j(x j))n×n (which is the function of x = (x1,x2, . . . , xn)T). Denote
the generalized Hurwitz determinants by

an(x) = 1, D1(x) := a1(x), . . . ,

Dk(x) := det

⎡
⎢⎢⎢⎢⎣

a1(x) a3(x) · · · a2k−1(x)
a0(x) a2(x) · · · a2k−2(x)

0 a1(x) · · · a2k−3(x)
...

...
...

0 0 · · · ak(x)

⎤
⎥⎥⎥⎥⎦ , k = 1, 2, . . . , n,

where a j(x) = 0 if j > k. Then Aizrman conjecture is as follows [1,2]: the necessary
and sufficient conditions for the zero solution of (1.2) being globally stable are

Dk(x) > 0, 1 ≤ k ≤ n,
n

∏
i=1

xi �= 0. (1.5)

When (1.2) is a linear system, the Aizrman conjecture is the Hurwitz crite-
rion [37]; when (1.2) is a nonlinear system but n = 1, the conjecture is true. However,
when n = 2, mathematician Krossovskii found a counter example, and thus dis-
proved the conjecture. However, in the earlier studies, because of very few methods
that could be used, there were many scholars who investigated under what extra con-
ditions added to (1.5) would the zero solution of system (1.2) became globally stable
but restricted to cases n = 2, 3. Very little has been achieved for n ≥ 4. Now, almost
nobody continues to follow the Aizrman conjecture to study the global stability of the
zero solution of system (1.2), but the proposal of the Aizrman conjecture had made
an important contribution in putting forward the research of the stability problem.
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1.6 Modern Mathematical Tools for Absolute Stability

In 1964, when most people were not familiar with M-matrix and Dini derivative,
Li [64,65] broke the limit of the Aizrman conjecture, and creatively constructed gen-
eral nonsmooth linear type of Lyapunov function to obtain the sufficient condition
for the equilibrium point of system (1.2), with arbitrary dimension n being globally
stable. The results can be found in the papers [64, 65] and the monograph [127].

In 1979, the author [70,71] further constructed general, variable-separable, radi-
ally unbounded, and positive definite function and obtained a series of constructive
sufficient conditions for the equilibrium points of system (1.2) being globally stable.
This has resulted in the development of many methods and techniques for studying
the global stability and instability of system (1.2) which, used as the tools for this
book, will be introduced in the next chapter.

The systems with separable variables, first proposed by Aizerman, not only have
generality in control systems, but also are applicable to recently developed biomath
models (e.g., Volterra model, Gilpin-Ayala model), neural network model (e.g.,
Cohen-Grossheig model), which can all be considered as the special cases of (1.2),
but with new contents. Therefore, the tools described in Chap. 2 can also be used by
the researchers who are working in the areas of biomath and neural networks.
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Principal Theorems on Global Stability

In this chapter, we introduce the main tools and principal results that play funda-
mental roles for the whole book, such as Lyapunov function, K-class function (or
wedge function), Dini-derivative, M-matrix, Hurwitz matrix, positive (negative) def-
inite matrix; and the principal theorems on global stability, partial global stability,
and global stability of sets.

Partial materials presented in this chapter are due to Lyapunov [97], Hahn [38],
Malkin [102] (Sect. 2.1), Yoshizawa [170] (Sect. 2.2), Rumyantsev [133, 134]
(Sect. 2.4.2), Liao [68, 69] (Sect. 2.3–2.6), and Liao [69, 70] (Sect. 2.7 and 2.8).

2.1 Lyapunov Function and K-Class Function

Suppose that W (x) ∈C[Rn,R1], that is, W : Rn →R is continuous, W (0) = 0; V (t,x)∈
C[I×Rn,R1], V (t,0) ≡ 0, where I = [t0, +∞).

Definition 2.1. The function W (x) is said to be positive (negative) definite if W (x) ≥
0 (−W (x) ≥ 0) and W (x) = 0 if and only if x = 0. The function W (x) is said to be
positive (negative) semi-definite if W(x) ≥ 0 (−W (x) ≥ 0). [41]

Definition 2.2. The function W (x) is said to be radially unbounded, positive definite
if W (x) is positive definite and W (x) → +∞ as ‖x‖→ +∞.

Definition 2.3. The function V (t,x) is said to be positive definite if there is a positive
function W (x) such that V (t,x) ≥ W (x). The function V (t,x) is said to be negative
definite if −V (t,x) is positive definite.

Definition 2.4. The function V (t,x) is said to have infinitesimal upper bound if there
exists a positive definite function W1(x) such that ‖V (t,x)‖ ≤ W1(x). The function
V (t,x) is said to be radially unbounded, positive definite if there exists a radially
unbounded, positive definite function W2(x) such that V (t,x) ≥W2(x).

The positive or negative definite functions are usually called Lyapunov functions.
In the following, we introduce K-class function.
If a function ϕ ∈ [R+,R+] (where R+ := [0, +∞)), ϕ is continuous, strictly

monotone increasing, and ϕ(0) = 0, we call ϕ a K-class function, denoted by ϕ ∈ K.
If ϕ ∈ K and limr→+∞ ϕ(r) = +∞, then ϕ(r) is called a radially unbounded,

K-class function, denoted by ϕ ∈ KR.

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, Second Edition.
c© Springer Science + Business Media B.V. 2008
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Among the positive definite functions and the K-class functions, some essential
equivalence relations hold.

Lemma 2.5. Given a positive definite function W (x), there exist two functions, ϕ1,
ϕ2 ∈ K such that

ϕ1(‖x‖) ≤W (x) ≤ ϕ2(‖x‖). (2.1)

Proof. For any R > 0, we prove that (2.1) holds on ‖x‖ ≤ R. Let ϕ(r) =
infr≤‖x‖≤≤RW (x). Evidently, we have ϕ(0) = 0, ϕ(r) > 0 for r > 0, and ϕ(r) is
a monotone nondecreasing function on [0, R]. (It may not be strictly monotonic.)
Now, we proceed to prove that ϕ(r) is continuous. Since W (x) is continuous, for any
ε > 0, there exists δ (ε) > 0 such that

ϕ(r2)−ϕ(r1) = inf
r2≤‖x‖≤R

W (x)− inf
r1≤‖x‖≤R

W (x)

:= inf
r2≤‖x‖≤R

W (x)−W(x0)

≤ W (x1)−W(x0)
< ε (when ‖x1 − x0‖ ≤ r2 − r1 < δ ),

we take x1 = x0 for x0 ∈ D2 = {x|r2 ≤ ‖x‖ ≤ R} and x1 is an intersection point of the
ray Ox0 and ‖x‖ = r2 for x0 ∈ D1 = {x|r1 ≤ ‖x‖ ≤ R}.

Let ϕ1(r) := rϕ(r)
R ≤ ϕ(r). Evidently, we have ϕ1(0) = 0 and further if 0 ≤ r1 <

r2 ≤ R we get

ϕ1(r1) =
r1ϕ(r1)

R
≤ r1ϕ(r2)

R
<

r2ϕ(r2)
R

= ϕ1(r2).

Thus ϕ1(r) is strictly monotone increasing and hence ϕ1 ∈ K. If ψ(r) :=
max‖x‖≤r W (x), then it follows that ψ(0) = 0. By the same argument, we can prove
that ψ is a monotone nondecreasing and continuous function. Choosing ϕ2(r) :=
ψ(r)+ k r (k > 0) we have

ϕ2(r1) = ψ(r1)+ k r1 ≤ ψ(r2)+ k r1 < ψ(r2)+ k r2 = ϕ2(r2).

Hence, ϕ2(r) is strictly monotone increasing and ϕ2(r) ∈ K. From above, it is
inferred that

ϕ1(‖x‖) ≤ ϕ(‖x‖) := inf
‖x‖≤‖ξ‖≤R

W (ξ ) ≤W (x) < max
‖ξ‖≤‖x‖

W (ξ )

:= ψ(‖x‖) < ϕ2(r2).

Thus,
ϕ1(‖x‖) ≤W (x) ≤ ϕ2(‖x‖).

This completes the proof of Lemma 2.5. �
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Lemma 2.6. For a given radially unbounded, positive definite function W (x), there
must exist two functions ϕ1(r), ϕ2(r) ∈ KR such that

ϕ1(‖x‖) ≤W (x) ≤ ϕ2(‖x‖).

Consequently, without loss of generality, the positive definite functions and the
radially unbounded, positive definite functions can be replaced, respectively, by
K-class functions and radially unbounded K-class functions.

2.2 Dini Derivative

Suppose f (t) ∈C[I, R1], I = [t0,+∞). For any t ∈ I, the following four derivatives

D+ f (t) := lim
h→0+

1
h

(
f (t + h)− f (t)

)
,

D+ f (t) := lim
h→0+

1
h

(
f (t + h)− f (t)

)
,

D− f (t) := lim
h→0−

1
h

(
f (t + h)− f (t)

)
,

D− f (t) := lim
h→0−

1
h

(
f (t + h)− f (t)

)
are called right upper derivative, right lower derivative, left upper derivative, and left
lower derivative of f (t) at t, respectively. They are all called Dini-derivative [170].

Sometimes the Dini-derivative may be ±∞, otherwise there always exists Dini-
derivative. In particular, when f (t) satisfies local Lipschitz condition, the four Dini-
derivatives are finite. Moreover, the derivative of f (t) exists if and only if the four
derivatives are equal.

For a continuous function, the relation between the monotonicity and the definite
sign of the Dini-derivative is as follows.

Theorem 2.7. If f (t) ∈ C[I, R1], then f (t) is monotone nondecreasing on I if and
only if D+ f (t) ≥ 0 for t ∈ I.

Proof. The necessity is obvious.
Sufficiency. First, we suppose D+ f (t) > 0 on I. If there are two points α, β ∈ I

andα < β , f (α) > f (β ), then there exist µ satisfying f (α) > µ > f (β ) and some
point t ∈ [α, β ] such that f (t) > µ .

Let ξ be the supreme of those points. Then ξ ∈ (α, β ), and the continuity of f (t)
leads to f (ξ ) = µ . Therefore, for t ∈ [ξ , β ], it follows

f (t)− f (ξ )
t − ξ

< 0.
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Hence, we obtain D+ f (ξ ) ≤ 0, which contradicts the hypothesis. Thus, f (t) is
monotone nondecreasing.

Next, assume that D+ f (t) ≥ 0. For any ε > 0 we have

D+
(

f (t)+ ε t
)

= D+ f (t)+ ε ≥ ε > 0.

As a consequence, f (t)+ ε t is monotone nondecreasing on I. Since ε is arbitrary,
f (t) is monotone nondecreasing on I. �
Remark 2.8. If D+ f (t) ≥ 0 is replaced by D+ f (t) ≥ 0, the sufficient condition of
Theorem 1.2.1 still holds because the latter implies the former.

Similarly, if we replace D+ f (t) ≥ 0 byD− f (t) ≥ 0, it suffices to change the
supreme of the points satisfying f (t) > µ to the infirm of the points satisfying
f (t) < µ . We may further intensify D− f (t) ≥ 0 to be D− f (t) ≥ 0, and thus any of
the four derivatives is not less than zero, each of which implies that f (t) is monotone
nondecreasing.

In the following, we consider the Dini-derivative of a function along the solution
of a differential equation.

Let a system of differential equations be given by

ẋ = f (t,x), (2.2)

where the dot denotes differentiation with respect to time t, and f (t,x) ∈ C[I ×
Rn,Rn].

Theorem 2.9. [170] Suppose that V (t,x) ∈ C[I ×Ω ,R1], where Ω ⊂ Rn, Ω is a
neighborhood containing the origin, and V (t,x) satisfies local Lipschitz condition in
x for t (expressed by V (t,x) ∈C0(x)), that is,

|V (t,x)−V(t,y)| ≤ L‖x− y‖.
Then the right upper derivative and the right lower derivative of V (t,x) along the
solution x(t) of (2.2) have the forms

D+V (t,x(t)) = lim
h→0+

1
h

[
V (t + h,x + h f (t,x))−V(t,x)

]
, (2.3)

D+V (t,x(t)) = lim
h→0+

1
h

[
V (t + h,x + h f (t,x))−V(t,x)

]
. (2.4)

Proof. Assume that x(t) is the solution in the region I ×Ω . For (t,x) ∈ I ×Ω and
0 < h 	 1, there exists a neighborhood U of (t,x) such that U ⊂ I ×Ω , (t + h,
x+h f (t,x))∈U , and (t +h,x(t,x))∈U . Let L be the Lipschitz constant of V (t,x) in
x on U . Making use of the Taylor expansion and the Lipschitz condition we arrive at

V (t + h,x(t,x))−V(t,x(t))

= V (t + h,x + h f (t,x)+ hε)−V(t,x)

< V (t + h,x + h f (t,x))+ Lh|ε|−V(t,x),
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where ε → 0 as h → 0. Hence,

D+V (t,x(t)) := lim
h→0+

1
h

[V (t + h,x(t,x))−V(t,x(t)) ]

≤ lim
h→0+

1
h

[V (t + h,x + h f (t,x))+ Lh|ε|−V(t,x) ]

= lim
h→0+

1
h

[V (t + h,x + h f (t,x))−V(t,x) ] . (2.5)

On the other hand,

V (t + h,x(t,x + h))−V(t,x(t))

= V (t + h,x + h f (t,x)+ hε)−V(t,x)

≥ V (t + h,x + h f (t,x))−Lh|ε|−V(t,x).

Thus,

D+V (t,x(t)) := lim
h→0+

1
h

[V (t + h,x(t,x + h))−V(t,x(t)) ]

≥ lim
h→0+

1
h

[V (t + h,x + h f (t,x))−V(t,x) ] . (2.6)

Combining (2.5) and (2.6), we find that

D+V (t,x(t)) = lim
h→0+

1
h

[V (t + h,x + h f (t,x))−V(t,x) ] .

Thus, (2.3) is true. The proof of (2.4) goes along the same line. �

If V (t,x) has a continuous partial derivative of the first order, then along the
solution x(t) of (2.2)

dV
dt

∣∣∣∣
(2.2)

=
∂V
∂ t

+
∂V
∂x

· f (t,x) =
∂V
∂ t

+ gradV · f (t,x)

and

D+V (t,x(t)) = D+V (t,x(t)) = D−V (t,x(t)) = D−V (t,x(t)) =
dV(t,x(t))

dt
.

By Theorem 2.7, V (t,x(t)) is nondecreasing (nonincreasing) along the solution
of (2.2) if and only if

D+V (t,x(t)) ≥ 0 (D+V (t,x(t)) ≤ 0).

The significance of Theorem 2.9 lies in the fact that one does not need to know the
solution when calculating the Dini-derivative of V (t,x(t)) along the solution of (2.2).
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2.3 M-Matrix, Hurwitz Matrix, Positive (Negative) Definite
Matrix

In this section, we introduce several useful matrices, including M matrix, Hurwitz
matrix, and positive (negative) definite matrix. First we discuss M matrix, which
is a practically applicable mathematical tool in the study of discrete or continuous
dynamical systems, computational mathematics, and statistics. M matrix has many
equivalent conditions. Here, we present only some of them which will be used in
this book. More details about M matrix can be found in the book of Ortega and
Rheinhold [113].

Definition 2.10. A real symmetric matrix A(ai j)n×n is called a nonsingular M matrix
(simply M matrix) if the following conditions are satisfied:

1. aii > 0 (i = 1, 2, . . . , n), ai j ≤ 0 (i �= j, i, j = 1, 2, . . . , n).
2. The following n determinants are greater than zero:

det

⎡
⎢⎣ a11 · · · a1i

... · · · ...
ai1 · · · aii

⎤
⎥⎦> 0 i = 1, 2, . . . , n.

There are many equivalent conditions for M matrix, among them frequently used
conditions are listed below.

I. aii > 0 (i = 1, 2, . . . , n), ai j ≤ 0 (i �= j, i, j = 1, 2, . . . , n), and A−1 ≥ 0, that
is, A−1 is a nonnegative matrix.

II. aii > 0 (i = 1, 2, . . . , n), ai j ≤ 0 (i �= j, i, j = 1, 2, . . . , n), and there exist
constants ci > 0 such that ∑n

j=1 c j ai j > 0, i = 1, 2, . . . , n.
III. aii > 0, ai j ≤ 0, i, j = 1, 2, . . . , n, and there exist constants d j > 0 such that

∑n
i=1 di ai j > 0, j = 1, 2, . . . , n.

IV. aii > 0 (i = 1, 2, . . . , n), ai j ≤ 0 (i �= j, i, j = 1, 2, . . . , n), and for any positive
real numbers ξξξ =(ξ1, ξ2, . . . , ξn)T, the algebraic equations Axxx = ξξξ has positive
solution ηηη = (η1, η2, . . . , ηn)T.

V. aii > 0, ai j ≤ 0, i, j = 1, 2, . . . , n, i �= j, and there exists a positive diagonal
matrix P = diag(p1, p2, . . . , pn), such that PA + ATP is positive definite.

VI. aii > 0, ai j ≤ 0 (i �= j, i, j = 1, 2, . . . , n), and −A is a Hurwitz matrix, that is,
all eigenvalues of A have negative real parts.

VII. aii > 0 (i = 1, 2, . . . , n), ai j ≤ 0 (i �= j, i, j = 1, 2, . . . , n), and the spectral
radius of the matrix G := (I −D−1A), ρ(G) < 1 (i.e., all the eigenvalues of G
are located inside the unit circle on the complex plane, which is said that G is
Schur stable [77]). Here, D = diag(a11, a22, . . . , ann), D−1 denotes the inverse
of D.

The conditions I given in Definition 2.10 are relatively easy to verify since it has
constructive computing program.
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Next, we briefly discuss Hurwitz matrix. If all eigenvalues of A(ai j)n×n have
negative real parts, then A is called a Hurwitz matrix [68]. Let

det(λ I−A) = an λ n + an−1 λ n−1 + · · ·+ a1 λ + a0 (an = 1).

Then the criterion for A being a Hurwitz matrix is the well-known Hurwitz criterion:
If ai > 0, i = 0, 1, . . . , n, then A is a Hurwitz matrix if and only if ∆i > 0, i =
1, 2, . . . , n, where

∆1 := a1, ∆2 :=
[

a1 a0
a3 a2

]
, · · · , ∆n :=

⎡
⎢⎢⎢⎢⎢⎣

a1 a0 0 · · · 0
a3 a2 a1 · · · 0
... · · · · · · · · · ...

an−1 an−2
a2n−1 · · · an

⎤
⎥⎥⎥⎥⎥⎦= ∆n−1 an,

in which as = 0 for s < 0 or s > n.
Finally, we introduce the Sylvester condition for a matrix to be positive (or

negative) definite. Let the corresponding quadratic form of the real symmetric matrix

A =

⎡
⎢⎣ a11 · · · a1n

... · · · ...
an1 · · · ann

⎤
⎥⎦

be V (xxx) = xxxTAxxx. Then the positive definite (negative definite), sign change, etc. can
be determined by the Sylvester condition, simply called A positive (negative) definite,
or positive semi-definite (negative semi-definite). Let

∆i =

⎡
⎢⎣ a11 · · · a1i

... · · · ...
ai1 · · · aii

⎤
⎥⎦ .

The well-known Sylvester criterion can be stated as follows.
A is positive definite if and only if ∆i > 0, i = 1, 2, . . . , n.
A is positive semi-definite if and only if ∆i ≥ 0, i = 1, 2, . . . , n.
A is negative definite if and only if (−1)i∆i > 0, i = 1, 2, . . . , n.
A is semi-negative definite if and only if (−1)i∆i ≥ 0, i = 1, 2, . . . , n.
The above criteria or conditions show that when one wants to verify whether a

matrix is an M matrix, or sign definite or Hurwitz matrix, one has to check all the
signs of n determinants. This is certainly very tedious and time consuming. Now
we introduce a method that needs only to check the last one of the n determinants.
The calculations of the other determinants can be obtained in the process of com-
puting the last determinant, implying that the first n−1 determinants are completely
dependent upon the last determinant.

Now present a simple method [68, 69].
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Definition 2.11. The change of a determinant caused by multiplying a positive num-
ber to a row (column), or a row (column) multiplied by an arbitrary number and
added to another row (column) is called a sign-invariant transform (SIT). The trans-
formations keeping every sub-principal determinant invariant is called a series of
sign-invariant transformations (SSIT).

It is easy to see that a determinant can be always transformed to a triangle
determinant via sign-invariant transform, that is,

|A| :=

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
(SSIT)−→

∣∣∣∣∣∣∣∣∣
b11 b12 · · · b1n
0 b22 · · · b2n
...

. . .
0 · · · · · · bnn

∣∣∣∣∣∣∣∣∣
:= |B|

or

(SSIT)−→

∣∣∣∣∣∣∣∣∣
c11 0 · · · 0
c21 0 · · · 0
...

. . .
c21 · · · · · · cnn

∣∣∣∣∣∣∣∣∣
:= |C|.

Theorem 2.12. (1) Suppose A = AT. If |A| can be transformed to |B| or |C| via a
series of sign-invariant transformations, then A > 0 (A ≥ 0) if and only if bii > 0 or
cii > 0 (bii ≥ 0 or cii ≥ 0); A < 0 (A ≤ 0) if and only if bii < 0 or cii < 0 (bii ≤ 0 or
cii ≤ 0) i = 1, 2, . . . , n.

(2) If aii > 0, ai j ≤ 0 i �= j, i, j = 1, 2, . . . , n, A is an M matrix if and only if bii > 0
(or cii > 0), i = 1, 2, . . . , n.

(3) When ai > 0 (i = 0, 1, . . . , n− 1), f (λ ) = λ n + an−1λ n−1 + · · ·+ a1λ + a0 is a
Hurwitz polynomial if and only if

∆n−1 =

∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 · · · 0
a3 a2 · · · · · · · · ·
...

...
an−3

a2n−3 · · · · · · · · · an−1

∣∣∣∣∣∣∣∣∣∣∣
(SSIT)−→

∣∣∣∣∣∣∣∣∣
b11 b12 · · · b1(n−1)
0 b22 · · ·
...

. . .
...

0 · · · 0 b(n−1)(n−1)

∣∣∣∣∣∣∣∣∣
or

(SSIT)−→

∣∣∣∣∣∣∣∣∣∣

c11 0 · · · 0 0

c21 c22
...

...
. . .

...
c(n−1)1 · · · · · · · · · c(n−1)(n−1)

∣∣∣∣∣∣∣∣∣∣
,

where bii > 0 (rcii > 0), i = 1, 2, . . . , n−1.
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Proof. We prove only the case when A is a symmetric, positive definite matrix. Other
cases can be similarly proved and thus not repeated. Since

A > 0 ⇐⇒ a11 > 0,

∣∣∣∣a11 a12
a21 a22

∣∣∣∣> 0, · · ·

∣∣∣∣∣∣∣
a11 · · · a1n

...
...

an1 · · · ann

∣∣∣∣∣∣∣> 0.

So from a11 > 0, we know b11 > 0. Then it follows from
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ > 0 that∣∣∣∣b11 b12
0 b22

∣∣∣∣>0. Hence, from a11 >0, b11 >0, and
∣∣∣∣b11 b12

0 b22

∣∣∣∣>0 we know that b22 > 0.

Continuing this procedure shows that bii > 0 (i = 1, 2, . . . , n).
On the other hand, suppose bii > 0 (i = 1, 2, . . . , n), we can deduce that

∆̃1 := b11 > 0, ∆̃2 :=
∣∣∣∣b11 b12

0 b22

∣∣∣∣> 0, · · · ∆̃n :=

∣∣∣∣∣∣∣
b11 · · · b1n

...
...

0 · · · bnn

∣∣∣∣∣∣∣> 0,

and then we can further prove that

∆1 := a11 > 0, ∆2 :=
∣∣∣∣a11 a12
a21 a22

∣∣∣∣> 0, · · · ∆n :=

∣∣∣∣∣∣∣
a11 · · · a1n

...
...

an1 · · · ann

∣∣∣∣∣∣∣> 0.

The proof is complete. �

Example 2.13. Verify if the following matrix is an M matrix:

A =

⎡
⎢⎢⎢⎣

4 −1 −2 −3
−1 3 −2 −1
− 1

2 −1 4 0
0 −1 −1 5

⎤
⎥⎥⎥⎦ .

It is easy to see from the matrix that aii > 0, ai j ≤ 0, i �= j, but the diagonal elements
are not dominating. We can apply the above method to verify that A is an M matrix.

A =

⎡
⎢⎢⎢⎣

4 −1 −2 −3
−1 3 −2 −1
− 1

2 −1 4 0
0 −1 −1 5

⎤
⎥⎥⎥⎦ (2nd row−4throw×2; 1st row+ 2nd row×4)

=⇒

⎡
⎢⎢⎣

4 ∗ ∗ ∗
0 11 −10 −7
0 −5 10 1
0 −1 −1 5

⎤
⎥⎥⎦ (3rd row−3rdrow×5; 2nd row+ 4th row×11)
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=⇒

⎡
⎢⎢⎣

4 ∗ ∗ ∗
0 11 ∗ ∗
0 0 15 −24
0 0 −21 48

⎤
⎥⎥⎦ (3rd column× 1

3
; 4th column× 1

24
)

=⇒

⎡
⎢⎢⎣

4 ∗ ∗ ∗
0 11 ∗ ∗
0 0 5 −1
0 0 −7 2

⎤
⎥⎥⎦ (3rd column+ 4th column× 7

2
)

=⇒

⎡
⎢⎢⎢⎣

4 ∗ ∗ ∗
0 11 ∗ ∗
0 0 3

2 ∗
0 0 0 2

⎤
⎥⎥⎥⎦ := |B|,

which clearly shows that all the diagonal elements of the above matrix are positive,
implying that A is an M matrix.

Remark 2.14. The elements marked by ∗ in the above procedure of calculation are
not explicitly expressed since they do not affect the result. That is, they do not influ-
ence the calculation in the next step. When all ai j (i > j) are transformed to zero, ai j
no longer play any role and can be ignored.

2.4 Principal Theorems on Global Stability

In this section, we first introduce global stability with respect to all the variables
of a system, and then partial global stability with respect to partial variables of the
system.

2.4.1 Global Stability

Consider an n-dimensional autonomous system:

ẋ = f (x), f (0) = 0, (2.7)

where x ∈ Rn, f ∈ C[Rn,Rn]. Suppose that the solution x(t,t0;x0) of the initial value
problem (2.7) is unique.

Definition 2.15. The zero solution of (2.7) is globally asymptotically stable (globally
stable for short) if for any ε > 0, there exists δ (ε) > 0 such that

‖x(t,t0;x0)‖ < ε for all t ≥ t0 if ‖x0‖ < δ (ε),

and for any x0 ∈ Rn,
lim

t→+∞
x(t,t0;x0) = 0.
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Definition 2.16. The set E = {x|x(t,t0;x0),t ≥ t0} is called a positive semi-trajectory
of (2.7) through x0 at t = t0; if x0 �= 0, then E is a nontrivial positive semi-trajectory.
x∗ is called an ω-limiting point of x(t,t0;x0) if there is a sequence {tk} with tk →+∞
as k → +∞ such that x∗ = limtk→+∞ x(tk,t0;x0).

Note that Ω(x0) is the set of ω-limiting points of the trajectory through x0.

Lemma 2.17. Suppose that x∗ is an ω-limiting point of x(t,t0;x0). Then the points on
the positive semi-trajectory of x(t,t0;x∗) are all the ω-limiting points of x(t,t0;x0).

Proof. From the hypothesis, there exists a sequence {tn} with tn → +∞ as n → +∞
such that

x∗ = lim
n→+∞

x(tn,t0;x0) = 0.

For an arbitrary point x(t,t0;x0) on the trajectory through x∗, the property of the
group for the solutions of autonomous systems and the relationship of continuous
dependence of the solution on the initial value lead to

lim
tn→+∞

x(tn + t,t0;x0) = lim
n→+∞

x(t,t0,x(tn,t0;x0)) = x(t,t0;x∗).

In other words, x(t,t0;x∗) is an ω-limiting point of x(t,t0;x0). �

Theorem 2.18. [5] If there exists a radially unbounded, positive definite differen-
tiable function V (x) ∈C[Rn,R] such that

dV
dt

∣∣∣∣
(2.7)

≤ 0, (2.8)

and the set M := {x : dV
dt = 0} does not contain any entire semi-trajectory of nonzero

solutions of (2.7) except x = 0, then the zero solution of (2.7) is globally stable.

Proof. Since V (x) is a radially unbounded, positive definite function, there exists
ϕ ∈ KR such that

V (x) ≥ ϕ(‖x‖).
From the continuity of V (x) and V (0) = 0, V (x) ≥ 0, so for any ε > 0, there exists
δ (ε) > 0 such that

V (x0) < ϕ(ε) if ‖x0‖ < δ (ε).

It follows from (2.8) that

ϕ(‖x(t,t0;x0)‖) ≤V (x(t,t0;x0)) ≤V (x0) < ϕ(ε) (2.9)

for all t ≥ t0. Since ϕ ∈ KR, (2.9) implies that

‖x(t,t0;x0)‖ < ε.

Therefore, the zero solution of (2.7) is stable.
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Similar to (2.9), for any x0 ∈ Rn, we get

ϕ(‖x(t,t0;x0)‖) ≤V (x(t,t0;x0)) ≤V (x0),

thus
‖x(t,t0;x0)‖ ≤ ϕ−1(V (x0)) := M.

Hence, according to the Weierstrass’s accumulation principle, we see that the set
Ω(x0) is nonempty and bounded.

Now we proceed to prove that Ω(x0) = {0}. If this is not true, then there is a
sequence {tn} satisfying tn → +∞ as n → +∞ such that

lim
n→+∞

x(tn,t0;x0) = x∗ �= 0.

In virtue of the positive definiteness of V (x) and dV (x(t))
dt ≤ 0, we know that

V (x(t,t0;x0)) is monotone nonincreasing, continuous, and nonnegative. In our case,
this gives

lim
t→+∞

V (x(t),t0;x0)) = V (x∗) > 0. (2.10)

Consider the trajectory x(t,t0;x∗) through x∗. Since

dV
dt

∣∣∣∣
(2.7)

≤ 0,

it follows that
V (x(t,t0;x∗)) ≤V (x∗).

If for every t ≥ t0, V (x(t,t0;x∗)) = V (x∗), then there exists

dV
dt

∣∣∣∣
(2.7)

≡ 0.

Thus the set M contains the entire positive semi-trajectory of the nonzero solution
x(t,t0;x∗), which is inconsistent with the hypothesis. Then there exists t1 ≥ t0 such
that

V (x(t1,t0;x∗)) < V (x∗).
By Lemma 2.17, we find that x(t1,t0;x∗) is an ω-limiting point of x(t,t0;x∗). Thus
there exist a sequence {tn} with {t∗n}→ +∞ such that

lim
n→+∞

x(t∗n ,t0;x∗) = x(t1,t0;x∗).

Hence, we obtain

lim
n→+∞

x(t∗n ,t0;x∗) = V (x(t1,t0;x∗)) < V (x∗),

which leads to a contradiction with (2.10), and therefore, Ω = {0}, that is,

lim
t→+∞

x(t,t0;x0) = lim
t→+∞

x(t,t0;x0) = 0 = lim
t→+∞

x(t,t0;x0). �

Corollary 2.19. If there exists a radially unbounded positive definite function V (x)∈
[Rn,R] such that dV

dt

∣∣
(2.7) is negative definite, then the zero solution of (2.7) is globally

stable.
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2.4.2 Partial Global Stability

In the following, a notion of partly global stability of zero solution for (2.7) will be
introduced [133, 134].

Let x = (y,z)T, y = (x1, x2, . . . , xm)T, z = (xm+1, xm+2, . . . , xn)T.

Definition 2.20. The zero solution of (2.7) is said to be globally stable with respect
to (w.r.t.) the partial variable y if for any ε > 0, there exists δ (ε) > 0 such that

‖y(t,t0;y0)‖ < ε for all t ≥ t0 if ‖x0‖ < δ (ε),

and for any x0 ∈ Rn, there exists

lim
t→+∞

‖y(t,t0;x0)‖ = 0.

Definition 2.21. A function V (x) ∈ C[Rn,R1] is said to be radially unbounded pos-
itive definite w.r.t y if there exists a function ϕ ∈ KR such that V (x) ≥ ϕ(‖y‖). A
function V (x) ∈ C[Rn,R1] is negative definite w.r.t. y if there exists a function ϕ ∈ K
such that V (x) ≤−ϕ(‖y‖).
Theorem 2.22. If there is a function V (x) ∈C[Rn,R1] satisfying

ϕ1(‖y‖)≤V (x) ≤ ϕ2

(( k

∑
i=1

x2
i

)1/2)
, m ≤ k ≤ n (2.11)

with ϕ1, ϕ2 ∈ KR; and

dV
dt

∣∣∣∣
(2.7)

≤−ψ
(( k

∑
i=1

x2
i

)1/2)
, ψ ∈ K, (2.12)

then the zero solution of (2.7) is globally stable w.r.t. the partial variable y.

Proof. Since V (x) is continuous and V (0) = 0, for given ε > 0, there exists δ (ε) > 0
such that

V (x0) < ϕ1(ε) if ‖x0‖ < δ (ε).

Equations (2.11) and (2.12) yield

ϕ1(‖y(t,t0;x0)‖) ≤V (x(t,t0;x0)) ≤V (x0) < ϕ1(ε).

Thus we have
‖y(t,t0;x0)‖ < ε,

implying that the zero solution of (2.7) is stable w.r.t. the partial variable y.
Next, we prove that

lim
t→+∞

V (x(t,t0;x0)) = 0 for any x0 ∈ Rn;
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thus the expression

ϕ1(‖y(t,t0;x0)‖) ≤V (x(t,t0;x0)) → 0 as t → +∞

implies
‖y(t,t0;x0)‖→ 0 as t → +∞.

If this is not true, then there exists x0 ∈ Rn such that

V (x(t,t0;x0)) /→ 0 as t → +∞.

Using (2.12) we derive
lim

t→+∞
V (x(t,t0;x0)) = V+∞,

then
V (x(t,t0;x0)) ≥V+∞ > 0.

It follows from (2.11) that( k

∑
i=1

x2
i (t,t0;x0)

)1/2 ≥ ϕ−1
2 (V∞). (2.13)

Applying the expressions (2.12) and (2.13), we write

0 ≤V (x(t,t0;x0)) ≤V (x(t0))−ψ(ϕ−1(V∞))(t − t0). (2.14)

However, when t 
 t0, the expression (2.14) does not hold; thus

lim
t→+∞

V (x(t,t0;x0)) = 0

and
lim

t→+∞
‖y(t,t0;x0)‖ = 0.

The proof is complete. �

2.5 Global Stability of Sets

Let M ⊂ Rn be a manifold or an arbitrary set of points.
For convenience, we define

d(x,M) := inf
y∈M

‖x− y‖,

that is, d(x,M) is the distance from x to M.

Definition 2.23. The solution of (2.7) is said to be globally stable w.r.t. the set M if
for any ε > 0, there exists δ (ε) such that d(x0,M) < δ (ε) implies

d(x(t,t0;x0),M) < ε for all t ≥ t0,

and for any x0 ∈ Rn,
lim

t→+∞
d(x(t,t0;x0),M) = 0.
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Theorem 2.24. Suppose that V (x) ∈C[Rn,R1] and that V (x) satisfies

ϕ1(d(x,M)) ≤V (x) ≤ ϕ2(d(x,M)), ϕ1, ϕ2 ∈ KR,

dV
dt

∣∣∣∣
(2.7)

≤−ψ(d(x,M)), ψ ∈ K.

Then the solution of (2.7) is globally stable w.r.t. the set M.

Proof. For any ε > 0, choosing δ (ε) := ϕ−1
2 (ϕ1(ε)), we write

ϕ1(d(x(t,t0;x0),M)) ≤V (x(t,t0;x0)) ≤V (x0) ≤ ϕ2(d(x0,M)) < ϕ2(δ (ε))

if d(x0,M) < δ (ε). Thus

d(x(t,t0;x0),M)) ≤ ϕ−1
1 (ϕ2(∂ (ε))) = ε for all t ≥ t0.

In the following, we prove the validity of

d(x(t,t0;x0),M)) := d(x(t),M) → 0 as t → +∞.

For any ε > 0, any x0 ∈ Rn, and any η > 0, since

dV(x(t))
dt

≤−ψ(d(x(t),M)),

and
ϕ1(d(x(t),M)) ≤V (x(t)) ≤ ϕ2(d(x(t),M)),

we have
dV (x(t))

dt
≤−ψ(ϕ−1

2 (V (x(t)))) ≤ 0,

that is,
dV (x(t))

ψ(ϕ−1
2 (V (x(t))))

≤−dt. (2.15)

Therefore, (2.15) yields ∫ V (x(t))

V (x0)

dV
ψ(ϕ−1

2 (V ))
≤−(t − t0),

or ∫ V (x0)

V (x(t))

dV
ψ(ϕ−1

2 (V ))
≥ t − t0.

Suppose V (x0) ≤ ϕ2(d(x0,M)) ≤ ϕ2(η), then

t − t0 ≤
∫ V (x0)

V (x(t))

dV
ψ(ϕ−1

2 (V ))
≤
∫ ϕ2(η)

ϕ1(d(x(t),M))

dV
ψ(ϕ−1

2 (V ))

=
∫ ϕ1(ε)

ϕ1(d(x(t),M))

dV
ψ(ϕ−1

2 (V ))
+
∫ ϕ2(η)

ϕ1(ε)

dV
ψ(ϕ−1

2 (V ))
.
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Defining

T = T (ε,η) >

∫ ϕ2(η)

ϕ1(ε)

dV
ψ(ϕ−1

2 (V ))
,

it is easy to see that∫ ϕ1(ε)

ϕ1(d(x(t),M))

dV
ψ(ϕ−1

2 (V ))
≥ t − t0 −

∫ ϕ2(η)

ϕ1(ε)

dV
ψ(ϕ−1

2 (V ))
> t − t0 −T ≥ 0

if t ≥ t0 + T . Hence,
ϕ1(ε) > ϕ1(d(x(t),M)),

that is,
d(x(t),M) < ε if t ≥ t0 + T (ε,η).

The proof is complete. �

2.6 Nonautonomous Systems

Consider an n-dimensional nonautonomous system [68]:

ẋ = f (t,x), f (t,0) = 0, (2.16)

where x = (x1, x2, . . . , xn)T, f ∈C[I×Rn,Rn], I = [t0,+∞). Suppose that the solution
of the initial value problem (2.16) is unique, and let y = (x1, x2, . . . , xm)T and z =
(xm+1, xm+2, . . . , xn)T.

In analogy with Definition 2.20 and 2.23, we can formulate the definition of
globally uniform stability of the zero solution of (2.16) (see [68]).

Theorem 2.25. If there exists a function V (t,x) ∈C[I×Rn,Rn], satisfying

ϕ1(‖x‖) ≤V (t,x) ≤ ϕ2(‖x‖), ϕ1, ϕ2 ∈ KR

and
dV
dt

∣∣∣∣
(2.16)

≤−ψ(‖x‖), ψ ∈ K,

then the zero solution of (2.16) is globally uniformly stable.

We can follow the proof of Theorem 2.22 to prove Theorem 2.25.

Theorem 2.26. If there exists a function V (t,x) ∈C[I×Rn,R] satisfying

ϕ1(‖y‖) ≤V (t,x) ≤ ϕ2

(( k

∑
i=1

x2
i

)1/2)
, m ≤ k ≤ n

and

dV
dt

∣∣∣∣
(2.16)

≤−ψ
(( k

∑
i=1

x2
i

)1/2)
, ψ ∈ K,

then the zero solution of (2.16) is globally uniformly stable w.r.t. the partial vari-
able y.

The proof of this theorem goes along the same line as in Theorem 2.22.
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2.7 Systems with Separable Variables

It will be shown later that by topological transformations a number of automatic
control systems of different forms can be reduced to systems with separable variables
or to systems with generalized separable variables. In this section, we discuss the
systems with separable variables in detail.

Consider a nonlinear system with separable variables [68]:

ẋ =
( n

∑
j=1

f1 j(x j), . . . ,
n

∑
j=1

fn j(x j)
)T

, (2.17)

where the dot denotes differentiation with respect to time t, fi j(x j) ∈ C[R1,R1],
fi j(0) = 0, i, j = 1, 2, . . . , n. Suppose that the solution of the initial value problem
(2.17) is unique.

Let y = (x1, x2, . . . , xm)T and z = (xm+1, xm+2, . . . , xn)T. Then (2.17) can be
written as

ẏ =
( n

∑
j=1

f1 j(x j), . . . ,
n

∑
j=1

fm j(x j)
)T

,

ż =
( n

∑
j=1

f(m+1) j(x j), . . . ,
n

∑
j=1

fn j(x j)
)T

. (2.18)

Similar to the Sylvester’s condition, we first establish a criterion of positive
definiteness and negative definiteness of quadratic forms w.r.t. partial variables [68].

Let us assume that A(ai j)n×n =
[

A11 A12
A21 A22

]
is symmetric, where A11, A12, A21,

and A22 are m×m, m× p, p×m, and p× p matrices, respectively, and m+ p = n.

Definition 2.27. The quadratic form(
y
z

)T[A11 A12
A21 A22

](
y
z

)
is said to be positive (negative) definite w.r.t. y if there are constants εi > 0 (i =
1, 2, . . . , m) such that

xTAx ≥
m

∑
i=1

εi x2
i

(
xTAx ≤−

m

∑
i=1

εi x2
i

)
.

Lemma 2.28. The quadratic form
(

y
z

)T [A11 A12
A21 A22

](
y
z

)
is positive (negative) def-

inite w.r.t. y if and only if there exists a constant ε > 0 such that
[

A11 − εIm×m A12
A21 A22

]
is

positive semi-definite
([A11 + εIm×m A12

A21 A22

]
is negative semi-definite

)
, where Im×m is

an m×m matrix.
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Proof. For illustration we prove the positive semi-definite case. The proof of the
negative semi-definite is similar and omitted.

Necessity. Since
(

y
z

)T [A11 A12
A21 A22

](
y
z

)
is positive definite w.r.t. y, there exist

some constants εi > 0 (i = 1, 2, . . . , n) such that(
y
z

)T[A11 A12
A21 A22

](
y
z

)
≥

m

∑
i=1

εi x2
i .

Let ε = min1≤i≤n εi. Then we can find(
y
z

)T [A11 A12
A21 A22

](
y
z

)
≥

m

∑
i=1

εi x2
i ≥ ε

m

∑
i=1

x2
i =
(

y
z

)T [ ε Im×m 0
0 0

](
y
z

)
.

Thus (
y
z

)T[A11 − εIm×m A12
A21 A22

](
y
z

)
≥ 0,

which indicates that
[

A11 − εIm×m A12
A21 A22

]
is positive semi-definite. In particular, A11

is positive definite.
Sufficiency. The assumptions can be reduced to(

y
z

)T[A11 − εIm×m A12
A21 A22

](
y
z

)
≥ 0.

Thus we have (
y
z

)T [A11 A12
A21 A22

](
y
z

)
≥

m

∑
i=1

ε x2
i .

This implies our claim. �

Lemma 2.29. If there exist functions ϕi(xi) on (−∞,+∞) (i = 1, 2, . . . , n), which are
continuous or have only finite discontinuous points of the first or third kind (i.e., at
the discontinuous points, the left- and right-hand limits of ϕ(xi) exist) such that

1. ϕi(xi)xi > 0 for xi �= 0, i = 1, 2, . . . , m; ϕ(xi)xi ≥ 0, i = m+ 1, . . . , n;
2.
∫ ±∞

0 ϕi(xi)dxi = +∞, i = 1, 2, . . . , m;
3. There is a positive definite function ψ(y) satisfying

G(x) :=
m

∑
i=1

ϕi(xi ±0)
m

∑
i=1

fi j(x j) ≤−ψ(y),

then the zero solution of (2.18) is globally stable w.r.t. the partial variable y.
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Proof. First of all, we construct the Lyapunov function

V (x) =
n

∑
i=1

∫ xi

0
ϕi(xi)dxi.

Obviously, conditions (1) and (2) imply that

V (x) ≥
m

∑
i=1

∫ xi

0
ϕi(xi)dxi := ϕ(y) → +∞ as ‖y‖ → +∞.

Hence, V (x) is radially unbounded, positive definite w.r.t. y, and along the solution
of (2.18), the Dini-derivative of V (x) is given by

D+V (x)
∣∣
(2.18) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n

∑
i=1

ϕi(xi)
m

∑
j=1

fi j(x j) at the continuous points of ϕi(xi),
i = 1, . . . ,n;

max
{ n

∑
i=1

ϕi(xi+0)
m

∑
j=1

fi j(x j),
n

∑
i=1

ϕi(xi−0)
m

∑
j=1

fi j(x j)
}

at the discontinuous points of ϕi(xi), i = 1, . . . ,n.

Therefore, the condition (3) implies that

D+V (x)
∣∣
(2.18) ≤−ψ(y).

As a result, the zero solution of (2.18) is globally stable w.r.t. the partial vari-
able y. �

Remark 2.30. When m = n, the conditions of Lemma 2.29 imply that the zero solu-
tion of (2.17) is globally stable w.r.t. all variables. In Theorem 2.31 given below, for
m = n, the statement follows from the global stability of all variables.

Theorem 2.31. If system (2.18) satisfies

1. fii(xi)xi < 0 for xi �= 0, i = 1, 2, . . . , m; fii(xi)xi ≤ 0, i = m+ 1, . . . , n;

2.
∫ ±∞

0 fii(xi)dxi = −∞, i = 1, 2, . . . , m;

3. There are constants ci > 0 (i = 1, 2, . . . , m), c j ≥ 0 ( j = m+1, . . . , n), ε > 0 such
that

A(ai j)n×n +
[

ε Im×m 0
0 0

]
n×n

is negative semi−definite,

where

ai j(x) =

⎧⎨
⎩−1

2

(ci fi j(x j)
f j j(x j)

+
c j f ji(xi)

fii(xi)

)
, xi x j �= 0,

0, xi x j = 0,
i, j = 1, 2, . . . , n,

then the zero solution of (2.18) is globally stable w.r.t. the partial variable y.
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Proof. We construct the Lyapunov function

V (x) = −
n

∑
i=1

∫ xi

0
ci fii(xi)dxi.

Clearly, V (x) is radially unbounded, positive definite w.r.t. y. This is because

V (x) ≥−
m

∑
i=1

∫ xi

0
ci fii(xi)dxi := ϕ(y) → +∞ as ‖y‖ → +∞.

Now we prove that

dV
dt

∣∣∣∣
(2.18)

:= G(x) = −
n

∑
i=1

ci fii(xi)
n

∑
j=1

fi j(x j)

is negative definite w.r.t. y.
For any x = ξ ∈ Rn, without loss of generality we can assume that

k

∏
i=1

ξi �= 0,
n

∑
i=k+1

ξ 2
i = 0, m ≤ k ≤ n.

Then, we obtain

G(ξ ) = −
k

∑
i=1

ci fii(ξi)
k

∑
j=1

fi j(ξ j),

= −1
2

k

∑
i, j=1,i�= j

[
ci fii(ξi) fi j(ξ j)+ c j f j j(ξ j) f ji(ξi)

]
,

= −
k

∑
i, j=1

ci f 2
ii (ξi)−

k

∑
i, j=1,i�= j

1
2

[ci fi j(x j)
f j j(x j)

+
c j f ji(xi)

fii(xi)

]
fii(ξi) f j j(ξ j),

=
k

∑
i=1

aii(ξ ) f 2
ii (ξi)+

m

∑
i=1

ε f 2
ii (ξi)+

k

∑
i, j=1

ai j(ξ ) fii(ξi) f j j(ξ j)−
m

∑
i=1

ε f 2
ii (ξi)

≤ −
m

∑
i=1

ε f 2
ii (ξi) < 0.

Since ξ is arbitrary, we obtain that G(x) is negative definite w.r.t. the partial variable
y. Then the zero solution of (2.18) is globally stable w.r.t. the partial variable y. �

Theorem 2.32. If system (2.18) satisfies the following conditions:

1. The condition (1) of Theorem 2.31;
2. There exist n functions ci(xi) (i = 1, 2, . . . , n), which are continuous or have only

finite discontinuous points of the first or third kind, and satisfy
ci(xi) > 0 for xi �= 0 and

∫ ±∞
0 ci(xi)dxi = +∞, i = 1, 2, . . . , m;

ci(xi) ≥ 0, i = m+ 1, . . . , n;
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3. There exist functions εi(xi) > 0 (i = 1, 2, . . . , n) such that

Ã(ãi j)n×n +
[

diag(ε1(x1) · · · εm(xm)) 0
0 0

]
n×n

is negative semi-definite, where

ãi j(x) =

⎧⎨
⎩

ci(xi) fi j(x j)+ c j(x j) f ji(xi)
2
√| fii(xi) f j j(x j)|

, xi x j �= 0,

0, xi x j = 0,

i, j = 1, 2, . . . , n,

then the zero solution of (2.18) is globally stable w.r.t. the partial variable y.

Proof. We can set

V (x) =
n

∑
i=1

∫ xi

0
ci(xi)dxi,

and then proceed along the line of Theorem 2.26 to complete the proof. �
Theorem 2.33. If system (2.18) satisfies

1. The condition (1) of Theorem 2.31;
2. There exist n functions ci > 0 (i = 1, 2, . . . , m) and c j ≥ 0 ( j = m+1, . . . , n) such

that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−c j| f j j(x j)|+
n

∑
i=1,i�= j

ci| f j j(x j)| < 0 for x j �= 0, j = 1, . . . , m,

−c j| f j j(x j)|+
n

∑
i=1,i�= j

ci| f j j(x j)| ≤ 0, j = m+1, . . . , n,

then the zero solution of (2.18) is globally stable w.r.t. the partial variable y.

Proof. We construct the Lyapunov function

V (x) =
n

∑
i=1

ci|xi|.

Clearly,

V (x) ≥
m

∑
i=1

ci|xi| := ϕ(y) → +∞ as ‖y‖ → +∞,

and ϕ(y) is positive definite. On the other hand, we have

D+V (x)
∣∣
(2.18) ≤

n

∑
j=1

[
− c j| f j j(x j)|+

n

∑
i=1,i�= j

ci| fi j(x j)|
]

≤
m

∑
j=1

[
− c j| f j j(x j)|+

n

∑
i=1,i�= j

ci| fi j(x j)|
]

< 0 if y �= 0.

Therefore, the zero solution of (2.18) is globally stable w.r.t. the partial vari-
able y. �
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Theorem 2.34. Suppose that system (2.18) satisfies the following conditions:

1. The condition (1) of Theorem 2.31;
2.
∣∣∣ fi j(x j)

f j j(x j)

∣∣∣≤ bi j = const., i �= j, i, j = 1, . . . , n;
3.

Ã :=

⎡
⎢⎢⎢⎣

1 −b21 · · · −bn1
−b21 1 · · · −bn2

...
...

...
−b1n −b2n · · · 1

⎤
⎥⎥⎥⎦ :=

[
Ã11 Ã12
Ã21 Ã22

]
,

where Ã11, Ã12, Ã21, and Ã22 are m × m, m × p, p × m, and p × p matrices,
respectively, and Ã11, Ã22, I − Ã−1

11 Ã12Ã−1
22 Ã21 are all M matrices.

Then the zero solution of (2.18) is globally stable w.r.t. the partial variable y.

Proof. For any ξ = (ξ1, . . . ,ξm)T > 0, η = (η1, . . . ,ηp)T ≥ 0, and m+ p = n, we
consider the linear algebraic equations w.r.t. c = (c1, . . . ,cm)T and c̃ = (c̃1, . . . , c̃p)T:

Ã11 c + Ã12 c̃ = ξ ,

Ã21 c + Ã22 c̃ = η ,

or the equivalent ones:

c̃ = −Ã−1
22 Ã21 c + Ã−1

22 η ,

c = Ã−1
11 Ã12Ã−1

22 Ã21 c− Ã−1
11 Ã12Ã−1

22 η + Ã−1
11 ξ .

(2.19)

Since Ã11, Ã22 are M matrices, we have Ã−1
11 ≥ 0, Ã−1

22 ≥ 0. But Ã12 ≤ 0 and ξ > 0,
η ≥ 0; therefore, there exist

−Ã−1
11 Ã12Ã−1

22 η ≥ 0 and Ã−1
11 ξ > 0.

Since I − Ã−1
11 Ã12Ã−1

22 Ã21 is an M matrix, the second equation in (2.19) has a posi-
tive solution w.r.t. c, and the first one in (2.19) has a nonnegative solution w.r.t. c̃.
Thus, the conditions in Theorem 2.33 are satisfied. Therefore, we conclude that the
zero solution of (2.18) is globally stable w.r.t. the partial variable y. �

In the following, we consider a more specific system given by

ẏ =
( n

∑
j=1

a1 j f j(x j), . . . ,
n

∑
j=1

am j f j(x j)
)T

,

ż =
( n

∑
j=1

a(m+1) j f j(x j), . . . ,
n

∑
j=1

an j f j(x j)
)T

, (2.20)

where f j(x j)∈C[R,R], f j(0)= 0, j = 1, . . . , n. Suppose that the solution of the initial
value problem (2.20) is unique.
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Theorem 2.35. Suppose system (2.18) satisfies the following conditions:

1. fi(xi)xi > 0 for xi �= 0 and
∫ ±∞

0 fi(xi)dxi = +∞, aii < 0, i = 1, 2, . . . , m,
fi(xi)xi ≥ 0, i = m+ 1, . . . , n;

2. There exist constants ci > 0 (i = 1, 2, . . . , m), c j ≥ 0 ( j = m + 1, . . . , n), ε > 0
such that

B(bi j)n×n +
[

ε Im×m 0
0 0

]
n×n

is negative semi-definite, where

bi j =

⎧⎨
⎩

−ci |aii|, i = j = 1, 2, . . . , m;

−1
2

(ci ai j + c j a ji), i �= j, i, j = 1, 2, . . . , n.

Then the zero solution of (2.20) is globally stable w.r.t. the partial variable y.

Proof. First we construct the radially unbounded, positive definite Lyapunov func-
tion w.r.t. the partial variable y:

V (x) =
n

∑
i=1

ci

∫ xi

0
fi(xi)dxi.

Then the proof is analogous to that of Theorem 2.31, and is thus omitted. �
Theorem 2.36. Let system (2.18) satisfy the following conditions:

1. fi(xi)xi < 0 for xi �= 0 aii > 0, i = m + 1, m + 2, . . . , n, and fi(xi)xi ≤ 0, aii ≥ 0,
i = 1, 2, . . . , n;

2. There exist n functions ci(xi) (i = 1, 2, . . . , n), which are continuous or have only
finite discontinuous points of the first or third kind, and satisfy
ci(xi)xi > 0 for xi �= 0 and

∫ ±∞
0 ci(xi)dxi = +∞, i = 1, 2, . . . , m;

ci(xi)xi ≥ 0, i = m+ 1, . . . , n;
3. There exist functions εi(xi) > 0 (i = 1, 2, . . . , m) such that

B̃(b̃i j)n×n +
[

diag(ε1(x1) · · · εm(xm)) 0
0 0

]
n×n

is negative semi-definite, where

b̃i j(x) =

⎧⎨
⎩

ci(xi)ai j fi j(x j)+c j(x j)a ji f ji(xi)
2
√| fi(xi) f j(x j)|

, xi x j �= 0,

0, xi x j = 0,

i, j = 1, . . . ,n,

then the zero solution of (2.20) is globally stable w.r.t. the partial variable y.

Proof. Construct the Lyapunov function

V (x) =
n

∑
i=1

∫ xi

0
ci(xi)dxi

which is radially unbounded, positive definite w.r.t. the partial variable y. The proof
can be completed as in the case of Theorem 2.33. �
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Theorem 2.37. If system (2.18) satisfies

1. fi(xi)xi > 0 for xi �= 0 aii < 0, i = m + 1, . . . , n, and fi(xi)xi ≥ 0, aii ≤ 0,
i = 1, 2, . . . , n;

2. There exist constants ci > 0 (i = 1, 2, . . . , m), c j ≥ 0 ( j = m+1, . . . , n) such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−c j|a j j|+
n

∑
i=1,i�= j

ci|ai j| < 0, j = 1, . . . , m,

−c j|a j j|+
n

∑
i=1,i�= j

ci|ai j| ≤ 0, j = m+ 1, . . . , n,

then the zero solution of (2.20) is globally stable w.r.t. the partial variable y.

Proof. We construct the Lyapunov function

V (x) =
n

∑
i=1

ci |xi|.

Obviously, V (x) is radially unbounded, positive definite w.r.t. y. Then the proof
follows that of Theorem 2.34. �

Theorem 2.38. Suppose system (2.20) satisfies the following conditions:

1. fi(xi)xi > 0 for xi �= 0, aii < 0, i = 1, 2, . . . , n, and fi(xi)xi ≥ 0, i = m+ 1, . . . , n;
2.

Ã :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −a21

a11
· · · −an1

a11

−a21

a22
1 · · · −an2

a22
...

...
...

−a1n

ann
−a2n

ann
· · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

:=
[

Ã11 Ã12
Ã21 Ã22

]
,

where Ã11, Ã12, Ã21, and Ã22 are m × m, m × p, p × m, and p × p matrices,
respectively, and Ã11, Ã22, I − Ã−1

11 Ã12Ã−1
22 Ã21 are all M matrices. Then the zero

solution of (2.20) is globally stable w.r.t. the partial variable y.

Proof. It follows the same idea applied in the proof of Theorem 2.35. �

2.8 Autonomous Systems with Generalized Separable Variables

Consider the system with generalized separable variables:

ẋi =
n

∑
i=1

Fi j(x) fi j(x j), i = 1, 2, . . . , n, (2.21)

where x = (x1, x2, . . . , xn)T, Fi j ∈C[Rn,R], fi j ∈C[R,R], fi j(0)= 0, i, j = 1, 2, . . . , n.
Suppose that the solution of the initial value problem (2.21) is unique.
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Clearly, (2.18) is a special case of (2.21) with Fi j(x) ≡ 1.
In fact, we see in what follows that both the Lurie direct control system and the

Lurie indirect one can be reduced to system (2.21).
We still let y = (x1, x2, . . . , xm)T and z = (xm+1, xm+2, . . . , xn)T, and rewrite

(2.21) as

ẏ =
( n

∑
j=1

F1 j(x) f1 j(x j), . . . ,
n

∑
j=1

Fm j(x) fm j(x j)
)T

,

ż =
( n

∑
j=1

F(m+1) j(x) f(m+1) j(x j), . . . ,
n

∑
j=1

Fn j(x) fn j(x j)
)T

. (2.22)

Theorem 2.39. If system (2.22) satisfies the following conditions:

1. fii(xi)xi > 0 for xi �= 0 and
∫ ±∞

0 fii(xi)dxi = +∞, i = 1, 2, . . . , m, fii(xi)xi ≥ 0,
i = m+ 1, . . . , n;

2. There exist constants ci > 0 (i = 1, 2, . . . , m), c j ≥ 0 ( j = m + 1, . . . , n), ε > 0
such that

B(bi j)n×n +
[

ε Im×m 0
0 0

]
n×n

is negative semi-definite,

where

bi j(x) =

⎧⎨
⎩

1
2

(Fi j(x) fi j(x j)
f j j(x j)

+
Fji(x) f ji(xi)

fii(xi)

)
, xi x j �= 0,

0, xi x j = 0,
i, j = 1, . . . ,n,

then the zero solution of (2.22) is globally stable w.r.t. the partial variable y.

Proof. Let

V (x) =
n

∑
i=1

∫ xi

0
fii(xi)dxi.

Clearly,

V (x) ≥
m

∑
i=1

∫ xi

0
fii(xi)dxi := ϕ(y) → +∞ as ‖y‖ → +∞.

Hence, V (x) is radially unbounded, positive definite w.r.t. the partial variable y.
Now we proceed to prove that

dV
dt

∣∣∣∣
(2.22)

:= G(x) =
n

∑
i=1

fii(xi)
n

∑
j=1

Fi j(x) fi j(x j)

is negative definite w.r.t. y.
For any x = ξ ∈ Rn, without loss of generality we can assume that

k

∏
i=1

ξi �= 0,
n

∑
i=k+1

ξ 2
i = 0, m ≤ k ≤ n.
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Then, we obtain

G(ξ ) =
k

∑
i=1

fii(ξi)
k

∑
j=1

Fi j(ξ ) fi j(ξ j),

=
k

∑
i=1

Fii(x) f 2
ii (ξi)+

1
2

k

∑
i, j=1,i�= j

[
fii(ξi)Fi j(ξ ) fi j(ξ j)+ f j j(ξ j)Fji(ξ ) f ji(ξi)

]
,

=
k

∑
i=1

bii(ξ ) f 2
ii (ξi)+

m

∑
i=1

ε f 2
ii (ξi)+

k

∑
i, j=1,i�= j

bi j(ξ ) fii(ξi) f j j(x j)−
m

∑
i=1

ε f 2
ii (ξi)

≤ −
m

∑
i=1

ε f 2
ii (ξi) < 0.

Since ξ is arbitrary, we have shown that dV
dt

∣∣
(2.22) is negative definite w.r.t. the partial

variable y. Hence the proof is finished. �

Theorem 2.40. If system (2.22) satisfies the following conditions:

1. Fii(x) fii(xi)xi < 0 for xi �= 0 i = 1, 2, . . . , m, and Fii(x) fii(xi)xi ≤ 0, i = m +
1, 2, . . . , n;

2. There exist constants ci > 0 (i = 1, 2, . . . , m), c j ≥ 0 ( j = m+1, . . . , n) such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−c j|Fj j(x) f j j(x j)|+

n

∑
i=1,i�= j

ci|Fi j(x) fi j(x j)| < 0, for x j �= 0, j = 1, . . . ,m,

−c j|Fj j(x) f j j(x j)|+
n

∑
i=1,i�= j

ci|Fi j(x) fi j(x j)| ≤ 0, j = m+ 1, . . . , n,

then the zero solution of (2.22) is globally stable w.r.t. the partial variable y.

Proof. We construct the radially unbounded, positive definite Lyapunov function
w.r.t. y:

V (x) =
n

∑
i=1

ci |xi|,

and complete the proof using a similar procedure as in Theorem 2.33. �

2.9 Nonautonomous Systems with Separable Variables

Consider the nonautonomous system with separable variables [71]:

ẏ =
( n

∑
j=1

f1 j(t,x j), . . . ,
n

∑
j=1

fm j(t,x j)
)T

,

ż =
( n

∑
j=1

f(m+1) j(t,x j), . . . ,
n

∑
j=1

fn j(t,x j)
)T

, (2.23)
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where y = (x1, x2, . . . , xm)T, z = (xm+1, xm+2, . . . , xn)T, fi j(t,x j) ∈ C[I × R,R],
fi j(0) = 0, i, j = 1, 2, . . . , n. Suppose that the solution of the initial value problem
(2.16) is unique.

Lemma 2.41. If there exist functions ϕi(xi) on (−∞,+∞) (i = 1, 2, . . . , n), which are
continuous or have only finite discontinuous points of the first or third kind (i.e., at
the discontinuous points, the left- and right-hand limits of ϕ(xi) exist) such that

1. ϕi(xi)xi > 0 for xi �= 0, i = 1, 2, . . . , m; ϕ(xi)xi ≥ 0, i = m+ 1, . . . , n;
2.
∫ ±∞

0 ϕi(xi)dxi = +∞, i = 1, 2, . . . , m;
3. There is a positive definite function ψ(y) satisfying

G(x) :=
m

∑
i=1

ϕi(xi ±0)
m

∑
i=1

fi j(x j) ≤−ψ(y),

then the zero solution of (2.23) is globally stable w.r.t. the partial variable y.

Proof. The proof repeats the one for Lemma 2.29 and is omitted. �

Theorem 2.42. Let system (2.23) satisfy the following conditions:

1. fii(t,xi)xi < 0 for xi �= 0, i = 1, 2, . . . , m, and fii(t,xi)xi ≤ 0, i = m+ 1, 2, . . . , n;
2. There exist functions Fii(xi) on (−∞,+∞) (i = 1, 2, . . . , n), which are continuous

or have only finite discontinuous points of the first or third kind such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fii(xi)xi > 0 f or xi �= 0, i = 1, 2, . . . , m,

Fii(xi)xi ≥ 0, i = m+ 1, m+ 2, . . . , n,∫±∞
0 Fii(xi)dxi = +∞, i = 1, 2, . . . , m,

|Fii(xi)| ≤ | fii(t,xi)|, i = 1, 2, . . . , n;

3. The matrix A(ai j(t,x))n×n +
[

ε Im×m 0
0 0

]
n×n

is negative semi-definite, where

0 < ε 	 1, and

ai j(t,x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1, i = j = 1, 2, . . . , n,

1
2

( fi j(t,x j)
Fj j(x j)

+
f ji(t,xi)
Fii(xi)

)
, xi x j �= 0, i, j = 1, 2, . . . , n,

0, xi x j = 0, i, j = 1, 2, . . . , n.

Then the zero solution of (2.23) is globally stable w.r.t. the partial variable y.

Proof. Consider the radially unbounded, positive definite Lyapunov function
w.r.t. y:

V (x) =
n

∑
i=1

∫ xi

0
Fii(xi)dxi.
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Then

V (x) ≥
m

∑
i=1

∫ xi

0
Fii(xi)dxi := ϕ(y).

Clearly we have ϕ(y) → +∞ as ‖y‖→ +∞.
We further prove that

dV
dt

∣∣∣∣
(2.23)

:= G(t,x) =
n

∑
i=1

Fii(xi)
n

∑
j=1

fi j(t,x j)

is negative definite w.r.t. y.
For any x = ξ ∈ Rn, without of loss of generality we can assume that

k

∏
i=1

ξi �= 0,
n

∑
i=k+1

ξ 2
i = 0, m ≤ k ≤ n.

Then, it follows that

G(t,ξ ) =
k

∑
i=1

Fii(ξi)
k

∑
j=1

Fi j(t,ξ j)

≤
k

∑
i=1

aii(t,ξ )F2
ii (ξi)+

m

∑
i=1

ε F2
ii (ξi)

+
k

∑
i, j=1,i�= j

ai j(t,ξ )Fii(ξi)Fj j(x j)−
m

∑
i=1

εF2
ii (ξi)

≤ −
m

∑
i=1

ε F2
ii (ξi) < 0.

Since ξ is arbitrary, we have derived that dV
dt

∣∣
(2.23) is negative definite w.r.t. the par-

tial variable y. Hence the zero solution of (2.23) is globally stable w.r.t. the partial
variable y. �

Theorem 2.43. If system (2.23) satisfies the following conditions:

1. fii(xi) xi < 0 for xi �= 0, i = 1, 2, . . . , m, and fii(xi) xi ≤ 0, i = m+ 1, 2, . . . , n;
2. There exist constants ci > 0 (i = 1, 2, . . . , m), c j ≥ 0 ( j = m+1, . . . , n) such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−c j| f j j|+

n

∑
i=1,i�= j

ci| fi j(t,x j)| < 0, j = 1, . . . , m,

−c j|a j j|+
n

∑
i=1,i�= j

ci| fi j(t,x j)| ≤ 0, j = 1, . . . , m,

then the zero solution of (2.23) is globally stable w.r.t. the partial variable y.
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Proof. Let us choose

V (x) =
n

∑
i=1

ci |xi|,

which is radially unbounded, positive definite w.r.t. y. Analogous to the proof of
Theorem 2.33, we can verify the validity of this theorem. �

Theorem 2.44. Let system (2.23) satisfy the following conditions:

1. There exist functions ϕi(xi) on (−∞,+∞) (i = 1, 2, . . . , n), which are continu-
ous or have only finite discontinuous points of the first or third kind (i.e., at the
discontinuous points, the left- and right-hand limits of ϕ(xi) exist) such that
ϕi(xi)xi > 0 for xi �= 0, and

∫ ±∞
0 ϕi(xi)dxi = +∞, i = 1, 2, . . . , m,

ϕi(xi)xi ≥ 0, i = m+ 1, m+ 2, . . . , n;
2. There are functions ai(xi) > 0 with ai(xi) > 0 for xi �= 0 (i = 1, 2, . . . , m) such that⎧⎪⎪⎨

⎪⎪⎩
n

∑
i=1

ϕi fi j(x j) ≤−a j(x j), j = 1, . . . , m,

n

∑
i=1

ϕi fi j(x j) ≤ 0, j = m+ 1, . . . , n,

then the zero solution of (2.23) is globally stable w.r.t. the partial variable y.

Proof. We construct the Lyapunov function

V (x) =
n

∑
i=1

∫ xi

0
ϕi(xi)dxi,

which is radially unbounded, positive definite w.r.t. y. Then we have

dV
dt

∣∣∣∣
(2.23)

≤
n

∑
i=1

ϕi(xi)
n

∑
j=1

fi j(t,x j) ≤
m

∑
j=1

n

∑
i=1

ϕi(xi) fi j(t,x j) ≤−
m

∑
j=1

a j(x j).

Thus dV
dt

∣∣
(2.23) is negative definite w.r.t. y. Therefore, we conclude that the zero

solution of (2.23) is globally stable w.r.t. the partial variable y. �
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Sufficient Conditions of Absolute Stability:
Classical Methods

The development of control theory began from Maxwell’s study on the stability of
Watt centrifugal governor. In early 1940s, the former Soviet Union scholars Lurie,
Postnikov, and others developed a method to deal with a class of nonlinear systems,
now called nonlinear isolate method. Lurie and his coworkers studied many real con-
trol systems, including the Bulgakov problem of aircraft automatic control. They first
isolated the nonlinear part from the system and considered it as a feedback control
of the system so that the system has a closed-loop form. This problem is the well-
known Lurie problem [99, 100]. The research on Lurie’s problem has so far resulted
in a number of monographs and several hundred of scientific publications. In fact,
the pose of the Lurie problem actually initiated the research on the robust control and
robust stability for nondeterministic systems or multivalued differential equations. It
promoted the application and development of stability theory. In recent years, the
developments in chaos control and chaos synchronization, neural networks, electri-
cal systems have revealed that these research areas are closely related to Lurie control
systems. Thus, it is useful and important to further study Lurie control systems, in
particular, from the point of control theory and stability theory. [164, 173–179]

In this chapter, we briefly introduce the background of Lurie problem, the mathe-
matical methodology for solving Lurie problem, and consider three classical methods
for studying absolute stability: the Lyapunov–Lurie V -function method (having inte-
grals and quadratic form), S-program, and Popov frequency-domain criterion and
simplified Popov method. We also consider some equivalent conditions at which the
derivative of the Lyapunov-Lurie V -function is negative definite.

Some materials are based on the results of Liao [68] (Sects. 3.1 and 3.2), Lurie
[99, 100] (Sect. 3.3), Zhu [184] and Zhao [180] (Sect. 3.4), as well as Popov [120–
123] and Zhang [178] (Sect. 3.5).

3.1 Absolute Stability of Lurie Control System

We first introduce the centrifugal governor as the earliest example of Lurie control
system. As shown in Fig. 3.1, the angular velocity of the generator, ω , is measured
by the centrifugal governor. The centrifugal governor is connected to the server 4
through the level 2 and the sliding valve 3. The server 4 makes the regulator 5 move

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, Second Edition.
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Fig. 3.1 Working principal
of centrifugal governor

Z∆ L∆
s∆

ω+∆ω

1

3

2

4

5
generator

such that the generator rotates with a constant speed. When the load of the gen-
erator is reducing and thus the speed of the generator is increasing, the governor
sleeve moves up to raise the sliding valve via the level. Thus high pressure gasoline
enters the upper part of the server cylinder, and the gasoline left in the lower part of
the cylinder is drained off through the lower narrow passage. Therefore, the piston
descends to move the regulator to reduce the amount of gasoline so that the angu-
lar velocity of the generator is reduced. On the other hand, when the speed of the
generator is below the normal speed, the server moves up to adjust the regulator to
increase the amount of gasoline. Thus, the speed of the generator increases. Because
of the negative feedback of the centrifugal governor, the generator’s angular velocity
can be kept a constant. As we know, a generator usually works in an environment
where the end-users’ loads are frequently varying. If the generator is not kept at a
constant angular velocity, the users will not have a constant currency, which could
cause disaster.

Now we consider the mathematical model of the centrifugal governor. The
differential equation of the generator is given by

J
d∆ω

dt
= k1∆ω + k2∆L,

where J is the angular inertia, ∆ω is the increment of the angular velocity, ∆L is
the position increment of the regulator, k1 and k2 are the rates of the changes of the
moments per unit.

The dynamic equation for the centrifugal governor is

M
d2∆Z
dt2 +C

d∆Z
dt

= F1 ∆ω + F2 ∆Z,

where M is the generalized mass, C is the damping coefficient, ∆Z is the mea-
surement of the position change of the governor sleeve, F1 and F2 represent the
generalized forces per unit, respectively, for ω and Z.
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The equation for the server is given by

A
d∆L
dt

= f (∆s),

where A is the cross-area of the governor cylinder, ∆s is the amount of change of
the sliding valve, f (∆s) is the amount of gasoline entering the cylinder per unit time.
The nonlinearity of f is determined by the shape of the sliding valve. In general, it is
difficulty to know the exact form of f .

The kinematics of the feedback level is

∆s = a∆Z−b∆L,

where a and b are constants.
The above four equations can be transformed to the following dimensionless

equations:
a1 ϕ̇ + a2 ϕ = −µ ,

b1 η̈ + b2 η̇ + b3 η = ϕ ,

µ̇ = f (σ),

σ = c1 η − c2 µ ,

where ϕ , η , µ , σ are, respectively, variables proportional to ∆ω , ∆Z, ∆L, ∆s, while
σ is the control signal, which determines the amount of the gasoline entering into
the cylinder.

Let ϕ = x1, η = x2, η̇ = x3, µ = x4. Then the above equations take the following
standard form:

ẋ1 = − a2

a1
x1 − 1

a1
x4,

ẋ2 = x3,

ẋ3 =
1
b1

x1 − b3

b1
x2 − b2

b1
x3,

ẋ4 = f (σ),
σ = c1 x1 − c2 x4.

(3.1)

When the generator is working in normal condition, we have

x1 = x2 = x3 = x4 = 0,

which is the equilibrium position of the system. It is required that the equilibrium
point is globally stable.

Next, we introduce the Lurie-type nonlinear control system, that is, the so
called Lurie problem and its mathematical description. Around 1944, the former
Soviet Union mathematical control scholar A.I. Lurie, based on the study of air-
craft automatic control system, proposed a control model described by the following
general differential equations [99, 100]:

ẋ = Ax + b f (σ),

σ = cT x =
n

∑
i=1

ci xi ,
(3.2)
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ẋ x
cT

A

Ax

+

σ = cTx

f(σ)

Fig. 3.2 Lurie control system

where x ∈ Rn is the state variable, b, c ∈ Rn are known constant vectors, σ is the
feedback control variable, f (σ) is a nonlinear function. System (3.2) is shown in
Fig. 3.2.

The form of f is not specified, but it is known that it belongs to some type of
functions F[0,k], F[0,k), F[k1,k2) or F∞. Here,

F[0,k] :=
{

f | f (0) = 0, 0 < σ f (σ) ≤ k σ2, σ �= 0, f continues
}

;

F[0,k) :=
{

f | f (0) = 0, 0 < σ f (σ) < k σ2, σ �= 0, f continues
}

;

F[k1,k2] :=
{

f | f (0) = 0, k1 σ2 ≤ σ f (σ) ≤ k2 σ2, σ �= 0, f continues
}

;

F∞ := { f | f (0) = 0, σ f (σ) > 0, σ �= 0, f continues} .

The above functions are demonstrated in Fig. 3.3.
Many practical nonlinear feedback control problems can be described by system

(3.2), but the form of f is usually not known. Partial information about f may be
obtained from experiments. However, experiments can only be carried out under
specific loads, and thus f depends upon the leads. Usually one only knows that f
belongs to F[0,k], F[0,k], or F[k1,k2). Any other information is not available in practice.
For example, for the above centrifugal governor, the control signal σ of the governor
is proportional to the change of the sliding valve’s position, ∆s. f (σ) measures the
amount of the gasoline entering into the server, which is a nonlinear function of
the open degree of the sliding valve. Besides knowing that when σ > 0, f (σ) > 0
(which means a increase of the gasoline in the upper part of the server cylinder),
when σ < 0, f (σ) < 0 (implying the reduction of the gasoline in the upper part of
the server cylinder), and f (0) = 0, very little is known about the function f (σ).

Therefore, the Lurie control system (3.2) is actually a multivalued differential
equations, also called differential involving or nondeterministic system.

In general, Lurie systems can be divided into three types [2, 159]:

1. Direct control system when A of system (3.2) is a Hurwitz matrix;
2. Indirect control system when A of system (3.2) has an eigenvalues with zero real

part and remains have negative real parts;
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f(σ)

F∞

σ0

(c)

f(σ) k2σ

k1σ

f(σ) kσ
F[0, k] F[k1, k2]
F[0, k)

σ0σ0

(a) (b)

Fig. 3.3 Different types of f (σ ): (a) F[0,k] and F(0,k); (b) F[k1,,k2]; and (c) F∞

3. Critical control system when no eigenvalues of A of system (3.2) have positive
real parts.

Definition 3.1. The zero solution of system (3.2) is absolutely stable if ∀ f (σ) ∈ F∞,
the zero solution of system (3.2) is globally stable. The zero solution of system (3.2)
is absolutely stable in the Hurwitz angle region [0,k] ([0,k), [k1,k2]) if ∀ f (σ) ∈ F[0,k]
(∀ f (σ) ∈ F[0,k), ∀ f (σ) ∈ F[k1,k2]), the zero solution of system (3.2) is globally stable.

The well-known American mathematician Lefschetz gave the precise mathemati-
cal description for the Lurie problem [62]: The Lurie problem is to find the sufficient
and necessary conditions of absolute stability for the equilibrium points of system
(3.2). Therefore, as long as a sufficient and necessary condition is obtained, it is con-
sidered as a solution to the Lurie problem. The particular form of the condition is not
a concern here. However, certainly, the simpler the condition, the better it is.

We now first discuss the necessary conditions for the absolute stability of system
(3.2) when f ∈ F∞.
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Theorem 3.2. The following conditions are all the necessary conditions for the
absolute stability of system (3.2) [68, 159]:

(1) ∀ε > 0, (0 < ε ≤ k), the matrix A + ε bcT is a Hurwitz matrix;
(2) Reλ (A) ≤ 0, i.e., all eigenvalues of A are located in the closed left half of the

complex plane;
(3) cTb ≤ 0.

Proof. 1. Let f (σ) = ε σ = ε cTx. Then system (3.2) becomes

ẋ = (A + ε bcT)x.

Since the zero solution of (3.2) is asymptotically stable, A + ε bcT is a Hurwitz
matrix.

2. Suppose at least one of eigenvalues of A has positive real part, say, Reλ0(A) >
0. Because of the the continuous dependence of the eigenvalue on the elements
of the matrix, we can always choose 0 < ε 	 1 such that at least one of the
eigenvalues of A + ε bcT has Reλ0(A + ε bcr) > 0, leading to a contradiction
with absolute stability. Thus Re(A) ≤ 0.

3. Suppose cTb > 0. Let f (σ) = hσ . Then system (3.2) can be written as

ẋ = (A + hbcT)x.

Since tr(bcT) = cTb, when cTb > 0, h 
 1,

tr(A + hbcT) = trA + h trbcT = trA + hcTb > 0.

Thus the zero solution of system (3.2) is unstable, a contradiction, implying that
cTb ≤ 0. �

3.2 Lyapunov–Lurie Function Method

We first consider system (3.2) being a direct control system, that is, A is a Hurwitz
matrix, and introduce the sufficient condition that was first derived by Lurie [99,100]
for the absolute stability of the zero solution of system (3.2). Since A is a Hurwitz
matrix, for a given arbitrary symmetric, negative definite matrix −B, the Lyapunov
matrix equation,

ATP+ PA = −B, (3.3)

has symmetric positive definite matrix solution.

Theorem 3.3. [99, 100] If there exists a symmetric, positive definite matrix P such
that the derivative of the radially unbounded, positive definite Lyapunov function

V (x) = xTPx +
∫ σ

0
f (σ)dσ , (3.4)

evaluated along the trajectories of system (3.2), given by
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dV
dt

∣∣∣∣
(3.2)

= −xTBx +(cTA + 2bTP)x f (σ)+ cTb f 2(σ), (3.5)

is negative definite. Then the zero solution of the system (3.2) is absolutely stable.

The conclusion of Theorem 3.3 is correct, which was the earliest original method
used to study the absolute stability of Lurie controls systems. However, it is difficult
to verify the negativity of (3.5). Researchers once considered equation (3.5) as a
quadratic form with respect to (w.r.t.) (x, f (σ)) , and hoped to find the condition of
(x, f (σ)) satisfying Sylvester condition to overcome the difficulty. However, this
failed. This idea is equivalent to add a differential equation to system (3.2) to obtain

ẋ = Ax + b f (σ),

σ̇ = cTAx + cTb f (σ).
(3.6)

We only need to consider a special case by choosing f (σ) = σ from which the
failure can be seen immediately. Thus, (3.6) becomes

ẋ = Ax + bσ ,

σ̇ = cTAx + cTbσ .
(3.7)

The last equation of (3.7) is actually not independent, but a linear combination of
the previous n equations. If formally considering this equation as an independent
equation, we may construct the following Lyapunov function:

V = xTPx +
1
2

σ2.

Then if dV
dt

∣∣
(3.2) is negative definite, it implies that system (3.7) treats σ as an inde-

pendent variable and so the zero solution of the system is also asymptotically stable.
Thus the matrix [

A b
cTA cTb

]
is Hurwitz stable. However,

det
[

A b
cTA cTb

]
= 0

indicates that [
A b

cTA cTb

]
is not a Hurwitz matrix, a contradiction, showing the failure of this method.

However, the Lyapunov function given in the form of

V (x) = cTPx +
∫ σ

0
f (σ)dσ

can still be used as a valid V function to study the absolute stability. To obtain
the absolute stability, one only needs to show that dV

dt

∣∣
(3.2) is negative w.r.t. x, not
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necessarily for (x, f (σ)). Nevertheless, even considering the negativity of V w.r.t.
x is still difficult. This is the main source causing the mistakes made by the early
researchers who tried to get rid of the difficulty. This is also the motivation for the
latter researchers to develop new methodology and new techniques to overcome the
difficulty of verifying dV

dt

∣∣
(3.2) being negative definite w.r.t. x.

3.3 Lyapunov–Lurie Type VVV -Function Method Plus SSS-Program

In this section, we introduce the S-program, which was developed by Lurie to verify
the negativity of dV

dt

∣∣
(3.2) w.r.t. to x. This is a very efficient classical method to verify

dV
dt

∣∣
(3.2) being negative definite w.r.t. x, and widely used.
We first point out that the use of the following two Lurie types of V functions are

equivalent:

V (x) = xTPx + β
∫ σ

0
f (σ)dσ (β > 0, P = PT, P > 0) (3.8)

and
W (x) = xTQx +

∫ σ

0
f (σ) (Q = QT, Q > 0). (3.9)

That is, the result of application is same. Obviously, the latter is a special case of
the former. In fact, let Q = P

β . Then W (x) = V (x)
β , and the latter becomes the former.

Therefore, we use the latter to reduce a variable, and assume β = 1 hereafter.
If f (σ) ∈ F∞, we can add and subtract the same term 2τ cTx (where τ > 0 to be

determined) to rewrite system (3.5) as

− dV
dt

∣∣∣∣
(3.2)

= xTBx−2
(1

2
cTA+bTP+τcT

)
x f (σ)−cTb f 2(σ)+2τcTx f (σ)

:= S(x, f )+ 2τ σ f (σ). (3.10)

Obviously, because of 2τσ f (σ) ≥ 0, if

S(x, f ) := xTBx− 2
(1

2
cTA + bTP+ τ cT

)
x f (σ)− cTb f 2(σ)

is positive definite w.r.t. x, f (σ), then dV
dt

∣∣
(3.2) is negative definite w.r.t. x. The

Sylvester condition for S(x, f ) being positive definite w.r.t. (x, f (σ)) can usually
be realized by choosing appropriate τ > 0.

Since B is positive definite, ∀x �= 0, let y = Bx. We then have yTB−1y =
xTBTB−1Bx = xTBB−1Bx = xTBx > 0 (x �= 0), and thus B−1 is positive definite.

Because of B being positive definite, the condition for S(x, f ) being positive
definite w.r.t. (x, f (σ)) is

det

⎡
⎢⎣ B −

(1
2

ATc + Pb + τ c
)

−
(1

2
ATc + Pb + τ c

)T −cTb

⎤
⎥⎦> 0,
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which is equivalent to

det
[

B−1 0
0 1

]
det

⎡
⎢⎣ B −

(1
2

ATc + Pb + τ c
)

−
(1

2
ATc + Pb + τ c

)T −cTb

⎤
⎥⎦

= det

⎡
⎢⎣ I −B−1

(1
2

ATc + Pb + τ c
)

−
(1

2
ATc + Pb + τ c

)T −cTb

⎤
⎥⎦

= −cTb−
(1

2
ATc + Pb + τ c

)T
B−1
(1

2
ATc + Pb + τ c

)
> 0.

Hence, the following Lurie theorem (also called Lurie S-program) is obtained.

Theorem 3.4. If there exist a symmetric positive definite matrix B and a positive
number τ > 0 such that

−cTb >
(1

2
ATc + Pb + τ c

)T
B−1
(1

2
ATc + Pb + τ c

)
,

then the zero solution of (3.2) is absolutely stable, where P is the solution of the
matrix equation (3.3).

Corollary 3.5. If there exists a symmetric positive definite matrix B such that

−cTb >
(1

2
ATc + Pb + c

)T
B−1
(1

2
ATc + Pb + c

)
,

then the zero solution of (3.2) is absolutely stable.

Corollary 3.5 is special case of Theorem 3.4 when τ = 1.
If f (σ) ∈ F[0,k), in (3.5) add and subtract the same term

2 f (σ)
(

σ − 1
k

f (σ)
)

(τ > 0 to be determined),

then (3.5) becomes

dV
dt

∣∣∣∣
(3.2)

= −xTBx + 2
(1

2
cTA + bTP+ τ cT

)
x f (σ)

+
(

cTb− 2τ
k

)
f 2(σ)−2τ f (σ)

(
σ − 1

k
f (σ)
)

:= −S1(x, f (σ))−2τ f (σ)
(

σ − 1
k

f (σ)
)
. (3.11)

Since f (σ)
(

σ − 1
k

f (σ)
)

> 0 (∀σ �= 0),

S(x, f ) := xTBx− 2
(1

2
cTA + bTP + τ cT

)
x f (σ)−

(
cTb− 2τ

k

)
f 2(σ)

is positive definite w.r.t. (x, f (σ)), then dV
dt

∣∣
(3.2) is negative definite w.r.t. x. It leads

to a similar theorem.
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Theorem 3.6. If there exist a symmetric positive definite matrix B and a positive
number ε > 0 such that

−
(

cTb− 2τ
k

)
>
(1

2
ATc + Pb + τ c

)T
B−1
(1

2
ATc + Pb + τ c

)
,

then the zero solution of (3.2) is absolutely stable in the Hurwitz region [0,k).

The above method is called S-program [159].
It should be noted that S(x, f ) being positive definite w.r.t. (x, f ) is only a suffi-

cient condition for dV
dt

∣∣
(3.2) being negative definite w.r.t. x, not a necessary condition.

Does there exist a system such that dV
dt

∣∣
(3.2) is negative definite w.r.t. x, but no

τ > 0 exists for S(x, f ) being positive definite. If this is true, then S-program is
called defective, otherwise, it is called nondefective. A counter example has been
found by Zhao [182] indicating that S-program is defective. This shows that the
S-method gives only a sufficient condition for the derivative of the Lyapunov–Lurie
type V function being negative, not a necessary condition. However, S-method first
solved the difficulty in verifying the negativity of V̇ . It is convenient in applica-
tions and widely used. Furthermore, we show that the S-method is equivalent to the
well-known Popov method.

3.4 Several Equivalent SANC for Negative Definite Derivatives

Now we turn to introduce several sufficient and necessary conditions (SANC) for
determining the negativity of the derivative of the Lurie type V function, dV

dt , given
in (3.5) along the trajectories of (3.2).

Zhao [180] obtained the following result.

Theorem 3.7. [180] Assume that system (3.2) is a direct control system, then the
sufficient and necessary conditions for V given by (3.4) such that its derivative

dV
dt

∣∣∣∣
(3.2)

= −xTBx +(cTA + 2bTP)x f (σ)+ cTb f 2(σ)

is negative definite with respect to x are the following:

(1) U(x) := xTBx− (cTA + 2bTP)x− cTb ≥ 0 (when cTx = 0, i.e., U(x) is positive
semi-definite on the hyperplane σ = 0);

(2) cTH HT(ATc + 2PTb) ≤ 0 (where HTBH = I).

The proof of Theorem 3.7 is quite lengthy (see [180]), yet the condition (2) is still
not easy to verify. If one can determine the lowest bound of U(x) on σ = cTx = 0,
then one can use infx∈{x|σ=0}U(x) ≥ 0 to replace the condition (1).
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Based on this idea with the principle of Theorem 3.7, Zhu [184] proved the
following theorem.

Theorem 3.8. [184] Suppose A is a Hurwitz matrix. For a given symmetric positive
definite matrix B, ∀ f (σ) ⊂ F[0,k], choose (3.4),

V (x) = xTPx +
∫ σ

0
f (σ)dσ ,

then the sufficient and necessary conditions for

dV
dt

∣∣∣∣
(3.2)

= −xTBx + 2xT
(

Pb +
1
2

ATc
)

f (σ)+ cTb f 2(σ) (3.12)

being negative definite w.r.t. x are

1
k
− cTB−1d > 0,

1
cTB−1c

(1
k
− cTB−1d

)2 −dTB−1d− cTb > 0,

(3.13)

where d = Pb + 1
2 ATc.

Proof. Since B is a symmetric positive definite, so is B−1, and there exists matrix
H such that

B = HTH, B−1 = H−1(H−1)T.

Rewrite (3.12) as

− dV
dt

∣∣∣∣
(3.2)

= xTBx− 2xT
(

Pb +
1
2

ATc
)

f (σ)− cTb f 2(σ)

= xTHTH x− 2xTd f (σ)− cTb f 2(σ)

= (H x)T(H x)− 2(H x)T(H−1)Td f (σ)− cTd f 2(σ)

=
[
Hx−(H−1)Td f (σ)

]T[
Hx−(H−1)Td f (σ)

]−(dTB−1d+cTb) f 2(σ)

=

⎧⎪⎨
⎪⎩

0 when x = 0,

(H x)T(H x) = xTBx > 0 when f (σ) > 0, x �= 0,

U f 2(σ) when f (σ) �= 0,

(3.14)

where

U =
[

H
x

f (σ)
− (H−1)d

]T[
H

x
f (σ)

− (H−1)d
]
− (dTB−1d + cTb). (3.15)

Since
cTx
f (σ)

=
σ

f (σ)
≥ 1

k
,
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we only need to prove that for any cTx ≥ 1
k

, we have U > 0. To achieve this,
introduce the nonsingular transform

y = H x− (H−1)Td

under which U becomes
U = yTy−ρ ,

where
ρ = dTB−1d + cTb.

Then the condition cTx ≥ 1
k is now equivalent to

cTH−1 [y +(H−1)Td
]≥ 1

k
. (3.16)

Therefore, we need and only need to prove that U > 0 on the half closed space Rn
y ,

defined by (3.16).
It is easy to show that ρ ≥ 0. So when y = 0, U ≤ 0. Thus y = 0 is not on the

half closed space (3.16), implying that

cTH−1 [0 +(H−1)Td
]
= cTH−1(H−1)Td = cTB−1d <

1
k
, (3.17)

which is the first equation of (3.13).
It is easy to see that on the half closed space Rn

y , U reaches its minimum at the
intersection point, y = y∗, of the hyperplane:

cTH−1 [y +(H−1)Td
]
=

1
k

and its normal line n passing through y = 0, as shown in Fig. 3.4.

n (cT H−1)T

cT H−1[y + (H−1)T d] =
1
k

hyperplane

0

Half space Rn
y : cT H−1[y + (H−1)T d] ≥ 1

k

Fig. 3.4 Hyperplane and the half space Rn
y
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Let
y∗ = λ (cTH−1)T (λ to be determined).

Then solve for λ from the equation

cTH−1 [λ (cTH−1)T +(H−1)Td
]
=

1
k

to obtain

λ =
1
k − cTB−1d

cTB−1c
.

Hence,
U(Y ∗) = (y∗T )y∗ −ρ > 0

is equivalent to U > 0 on the half closed plane Rn
y (3.16). That is,

U(y∗) =
[

λ (cTH−1)T ]T [λ (cTH−1)T ]−ρ ,

= λ 2cTB−1c− (dTB−1d + cTb),

=
1

cTB−1c

(1
k
− cTB−1d

)2 −dTB−1d− cTb > 0. (3.18)

(3.18) is the condition (3.13) and thus the proof is complete. �

Following Theorem 3.7, we can prove the following results [184].

Corollary 3.9. Take the V function in the form (3.4), where f (σ) ∈ F[0,k), then the
sufficient and necessary conditions for dV

dt

∣∣
(3.2) being negative definite w.r.t. x are

⎧⎪⎨
⎪⎩

1
k
− cTB−1d ≥ 0,

1
cTB−1c

(1
k
− cTB−1d

)2 −dTB−1d− cTb ≥ 0.

Letting k → ∞ in the above condition yields

Corollary 3.10. Choose the V function in the form (3.4), where f (σ) ∈ F∞, then the
sufficient and necessary conditions for dV

dt

∣∣
(3.2) being negative definite w.r.t. x are

⎧⎨
⎩

cTB−1d ≤ 0,

1
cTB−1c

(cTB−1d)2 −dTB−1d− cTb ≥ 0.

Peng [119] used the V function given in (3.4) to prove the following equivalent
result.

Theorem 3.11. [119] The following three conditions are equivalent, any of them
gives a sufficient and necessary condition for dV

dt

∣∣
(3.2) being negative definite w.r.t. x.
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1.

{
(1) U(x) = xTBx− 2dTx− cTb ≥ 0 (cTx = 0),

(2) cTB−1d ≤ 0,

which is the condition given in Theorem 3.7;

2. cTB−1d +
√

cTB−1c(dTB−1d + cTb) ≤ 0;

3.

⎧⎨
⎩ (1) cTb + ηTB−1d− (cTB−1d)2

cTB−1c
≤ 0,

(2) cTB−1d ≤ 0,

where d = 1
2 (ATc + 2Pb).

To prove Theorem 3.11, we need the following lemma.

Lemma 3.12. For any symmetric matrix B, we have

cTb + dTB−1d ≥ 0,
where

d =
1
2

(ATc + 2Pb), PA + ATP = −B.

Proof. Let V (x) = xTPx +
∫ σ

0 f (σ)dσ . Then we have

− dV
dt

∣∣
(3.2) =

(
x

f (σ)

)T [ B −d
−dT −cTb

](
x

f (σ)

)
. (3.19)

Since B is positive definite, det B > 0. Then,

det
[

B−1 0
0T 1

]
= detB−1 = (detB)−1 > 0,

and

det
{[

B−1 0
0T 1

][
B −d

−dT −cTb

]}
= det

[
I −B−1d

−dT −cTb

]
= −cTb−dTB−1d.

Thus,

det
[

B −d
−dT −cTb

]
= (−cTb−dTB−1d) detB. (3.20)

(3.20) is an important formula and has many applications.
If cTb + dTB−1d < 0, then (3.19) is positive definite w.r.t. (x, f (σ)), which is,

however, impossible as shown above. Therefore,

cTb + dTB−1d ≥ 0. �
Now we prove Theorem 3.11 following the order (1) =⇒ (2) =⇒ (3) =⇒ (1).

Proof. Suppose condition (1) of Theorem 3.11 holds. It readily follows from (3.15)
that ∀x0 �= 0, U(x0) > 0 when cTx0 > 0. Let

x̄ = B−1d− cTB−1d −m
cTB−1c

B−1c,
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where m is a constant. Thus,

cTx̄ = cTB−1d− cTB−1d−m
cTB−1c

cTB−1c = m.

So for all m ∈ (0,+∞), U(x̄) > 0. However, on the other hand,

U(x̄) = x̄TBx̄−2dTx̄− cTb,

=
[
dT(B−1)T − cTB−1d −m

cTB−1c
cT(B−1)T

]
× B
[
B−1d − cTB−1d−m

cTB−1c
B−1c

]
− 2dT

[
(B−1)Td− cTB−1d −m

cTB−1c
B−1c

]
− cTb. (3.21)

Because B is a symmetric positive definite matrix, so is B−1, and (B−1)T = B−1.
Hence,

U(x̄) =
[
dT − cTB−1d−m

cTB−1c
cT
][

B−1d− cTB−1d−m
cTB−1c

B−1c
]

− 2dT
[
B−1d− cTB−1d−m

cTB−1c
B−1c

]
− cTb,

=
(cTB−1d−m)2

cTB−1c
−dTB−1d− cTb,

=
1

cTB−1c
m2 −2

cTB−1d
cTB−1c

m+
(cTB−1d)2

cTB−1c
−dTB−1d − cTb,

which is quadratic polynomial of m, and the coefficient of m2 is

1
cTB−1c

> 0.

The discriminant of U(x̄) = 0 is

∆ = 4
(cTB−1c)2

(cTB−1c)2 −4
1

cTB−1c

[
(cTB−1d)2

cTB−1c
−dTB−1d − cTb

]
=

4
cTB−1c

(dTB−1d + cTb).

By Lemma 3.12, we know that ∆ ≥ 0, so the equation U(x̄) = 0 has two real roots:

m± = cTB−1d±
√

cTB−1c(dTB−1d + cTb).

From the second condition of condition (1), we know m− ≤ 0. If m+ > 0, then
∀m ∈ (0,m+), we obtain U(x̄) < 0, a contradiction to the fact that U(x̄) > 0 for
m ∈ (0,+∞). Thus,
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m+ = cTB−1d +
√

cTB−1c(dTB−1d + cTb) ≤ 0,

which is the condition (2), and the proof from (1) to (2) is finished.
Next proof (2) =⇒ (3). Suppose condition (2) holds, that is,

cTB−1d +
√

cTB−1c(dTB−1d + cTb) ≤ 0,

so cTB−1d ≤ 0, which is the second condition of (3). Thus we have

−cTB−1d ≥
√

cTB−1c(dTB−1d + cTb),

that is,
(cTB−1d)2 ≥ cTB−1c(dTB−1d + cTb),

or

cTb + dTB−1d− (cTB−1d)2

cTB−1c
≤ 0,

which is the first condition of (3).
Finally we want to prove (3) =⇒ (1). We only need to prove that the first

condition of (1) is true under the condition (3). Since B is positive definite, there
exists a nonsingular matrix H such that HTBH = I, and so B−1 = H HT. Take the
nonsingular transform

x = H
[
y +

1
2

HT(ATc + 2Pb)
]

= H(y + HTd).

Let the vector y0 correspond to x0, then from cTx0 = 0, we have

cTH y0 + cTH HTd = cTH y0 + cTB−1d = 0,

and thus
(cTB−1d)2 = (cTH y0)2.

From the Cauchy inequality:

(cTB−1d)2 ≤ ‖cTH‖2‖y0‖2,

we obtain

yT
0 y0 ≥ (cTB−1d)2

(cTH)(HTc)
=

(cTB−1d)2

cTB−1c
.

Therefore, from the first condition of (3), we know that when cTx0 = 0,

U(x0) = yT
0 y0 −dTB−1d−bTc ≥ (cTB−1d)2

cTB−1c
−dTB−1d−bTc ≥ 0.

This indicates that the first condition of (1) is true. The proof of Theorem 3.11 is
complete. �
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3.5 Popov Frequency Criterion

In this section, we briefly introduce the Popov frequency method and the simplified
Popov criterion.

3.5.1 The Classical Popov Criterion

In the late 1950s, Popov developed the popov frequency criterion [120–123]. First,
we give three Lemmas.

Lemma 3.13. Suppose the function f (t) is defined for t ≥ 0, and is continuous
and piecewise continuously differentiable. Further assume that f (t) and f ′(t) are
bounded. The function G(x) is defined for all x, and is continuous, positive definite
for all x. If ∫ ∞

0
G( f (t))dt = g < ∞, (3.22)

then we have
lim
t→∞

f (t) = 0. (3.23)

Proof. Let | f (t)| ≤ α (t ≥ 0), | f ′(t)| ≤ α ′, where α and α ′ are positive constants.
Suppose (3.23) is not true. Then there exist an ε > 0 and a monotone increasing

infinite divergent series {tk} such that

| f (tk)| ≥ 2ε.

Without loss of generality, assume t1 > δ , and tk+1 − tk ≥ 2δ , where δ is an
appropriately chosen positive number.

Since when tk − δ ≤ tk + δ ,

| f (t)− f (tk)| ≤ | f ′(ξ )| |t − tk| ≤ α ′ δ .

From ∫ ∞

0
G( f (t))dt ≥

∞

∑
k=1

∫ tk+δ

tk−δ
G( f (t))dt,

we can derive

| f (t)| ≥ | f (tk)|− | f (t)− f (tk)| ≥ 2ε − δ α ′ = ε

by taking δ = ε
α ′ . Let η = infε≤|x|≤α G(x) > 0. Then

g =
∫ ∞

0
G( f (t))dt > k δ η (k = 1, 2, . . .) → ∞ as k → ∞,

a contradiction. This finishes the proof of Lemma 3.13. �



54 3 Sufficient Conditions of Absolute Stability: Classical Methods

Lemma 3.14. Let the functions fk (k = 1, 2, 3) be defined for t ≥ 0 and continuous.
Further suppose that there exist constants ak such that

| fk(t)|eαkt ≤ ck (for g ≥ 0),

then their Fourier transforms

Fk(iω) =
∫ ∞

0
fk(t)e−iωt dt (k = 1, 2, 3) (3.24)

exist. Let
F1(iω) = H(iω)F3(iω)+ F2(iω),

where
H(iω) =

∫ ∞

0
h(t)e−iωt dt, ω ≥ 0, ReH(iω) ≥ δ > 0.

Then we have∫ ∞

0
f1(t) f3(t)dt ≥−γ := − 1

8πδ

∫ +∞

−∞
|F2(iω)|2 dω =

1
4δ

∫ ∞

0
f 2
2 (t)dt. (3.25)

Proof. The existence of the Fourier transforms is obvious. To prove (3.25), we use
the Parseval formula, the fact that |F3(iω)|2 is even function, and that

1
2π

∫ +∞

−∞

(∫ ∞

0
h(t) i sin(ωt)dt

)
dω = 0

(due to
∫ ∞

0
h(t) i sin(ωt)dt being odd) to obtain

∫ ∞

0
f1(t) f3(t)dt =

1
2π

∫ +∞

−∞
F̄1(iω)F3(iω)dω (Parseval formula),

=
1

2π

∫ +∞

−∞

{
H̄(iω) F̄3(iω)+ F̄2(iω)

}
F3(iω)dω ,

=
1

2π

∫ +∞

−∞

{
ReH̄(iω) |F3(iω)|2

+
1
2

[
F̄2(iω) F̄3(iω)+ F2(iω) F̄3(iω)

]}
dω ,

=
1

2π

∫ +∞

−∞

∣∣∣(ReH̄(iω))1/2F3(iω)+
F2(iω)

2(ReH̄(iω))1/2

∣∣∣2 dω

− 1
8π

∫ +∞

−∞

|F2(iω)|2
ReH̄

dω ,

≥ − 1
8π

∫ +∞

−∞
|F2(iω)|2 dω .

This shows that (3.25) is true. �
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Lemma 3.15. If A = (ai j)n×n is Hurwitz stable, and f (t) is a continuous function
defined for t ≥ t0, and limt→+∞ f (t) = 0, then every solution of the nonhomogeneous
equation

ẋ = Ax + b f (t) (3.26)

holds and x(t) → 0 as t → +∞, where

x = (x1, x2, . . . , xn)T, b = (b1, b2, . . . , bn)T.

Proof. By the method of constant variation, the solution of system (3.26) can be
expressed as

x(t) = eA(t−t0)x0 +
∫ t

t0
eA(t−τ)b f (τ)dτ.

Since A is Hurwitz stable, there exist M > 1 and α > 0 such that

‖eA(t−t0)‖ ≤ M e−α(t−t0).

so the first term of x(t) goes to zero as t → +∞. For the second term of x, we have∥∥∥∫ t

t0
eA(t−τ)b f (τ)dτ

∥∥∥ ≤ M
∫ t

t0
e−α(t−t0) ‖b‖| f (τ)|dτ (t ≥ t0)

= M ‖b‖
∫ t

t0 eατ | f (τ)|dτ
eαt .

Then by L’Hospital Rule we obtain

lim
t→+∞

∫ t
t0 eατ | f (τ)|dτ

eαt = lim
t→+∞

eαt | f (t)|
α eαt = lim

t→+∞

| f (t)|
α

= 0,

which implies that
lim

t→+∞
x(t) = 0.

This proves Lemma 3.15. �

Theorem 3.16. [120, 122] If there exists a real number q such that

Re
[
(1 + i qω)W (iω)

]
+

1
k

> 0 for ω ≥ 0, (3.27)

where

W (iω) =
K(iω)
D(iω)

=
det
[

iωI−A b
cT 0

]
det(iωI −A)

,

then the zero solution of (3.2) is absolutely stable in the Hurwitz angle region [0,k].
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Because the proof is very lengthy and many people are familiar with the result
of this classical method, we will not give the detailed proof here (interested readers
can find the complete proof in [127]), but give some geometrical explanation, and
outline the proof.

Let

X(ω) = ReW (iω) =
Re{K(iω)D̄(iω)}

|D(iω)|2 (3.28)

and

Y (ω) = ωImW (iω) = ω
Im{K(iω)D̄(iω)}

|D(iω)|2 . (3.29)

Then the condition of theorem (3.27) is equivalent to

X(ω)−qY(ω)+
1
k

> 0 (ω ≥ 0). (3.30)

Thus, on the complex plane X + iY , for all ω , the graph of the characteristic curve

W ∗(ω) = X(ω)+ iY(ω) (W ∗(−ω) = W ∗(ω)) (3.31)

is located on the right side of the line l∗, which passes the point (−1/k,0) with the
slope 1/q (see Figs. 3.5–3.7).

The following is the outline of the proof for Popov theorem.
(1) First prove that the solution of (3.2), x(t), is defined for t ≥ 0. Consider an

arbitrary solution of (3.2), x(t,t0,x0) := x(t), which can be written as

x(t) = eAtx0 +
∫ T

0
f (cTx(τ))eA(t−τ)bdτ. (3.32)

Since A is stable, there exists α > 1, M > 0 such that

‖x(t)‖ ≤ M e−αt‖x0‖+
∫ t

0
M K ‖b‖‖c‖‖x(τ)‖e−α(t−τ) dτ.

Fig. 3.5 The characteristic
frequency curve W (iω) with
slope 1/q > 0

l*

W(iω)

X

Y

(−1/k, 0)

0
W=0
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Fig. 3.6 The characteristic
frequency curve W (iω) with
slope 1/q < 0

l*

0(−1/k,0)
x

y

W(iω)

Fig. 3.7 The characteristic
frequency curve W (iω) with
slope 1/q = +∞

l*

0(−1/k,0) x

y

W(iω)

Then from the Gronwall–Bellman inequality we obtain

‖x(t)‖ ≤ M ‖x0‖e(MK ‖b‖‖c‖−α)t (3.33)

from which we know that x(t) globally exists for all t ≥ 0.
(2) Suppose in (3.27) q > 0. Take 0 < h 	 1 and rewrite (3.2) as

ẋ = Ax +( f (σ)−hσ )b. (3.34)

Further let

f̄ (σ) = hσ + f (σ)
(

h ≤ f (σ)
σ

≤ k + h, σ �= 0
)
.

Then (3.34) can be rewritten as

ẋ = A−hx + f̄ (σ)b (A−h = A−hbcT ). (3.35)
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For any L > 0, we have

ξT (t) =

{
ξ (t) = f̄ (σ(t)) = f̄ (cTx(t,t0,x0)) (0 ≤ t ≤ L),

0 (t > L).

Repeatedly apply Lemma 3.14 to prove
∫+∞

0 f̄ (σ(t))dt < ∞. Then apply Lemma 3.13
to show that σ(t) → 0 as t → 0. Finally use Lemma 3.15 to obtain x(t) → 0 as
t →+∞. This shows that the zero solution of (3.2) is absolutely stable in the Hurwitz
angle region [0,k].

Definition 3.17. Suppose A has eigenvalues with zero real parts, but no eigenvalues
with positive real parts. Then ∀ε > 0, when f (σ) = ε σ , the zero solution of (3.2) is
globally stable, and we say that the zero solution of (3.2) is limit (or ε) stable.

Theorem 3.18. Suppose the following system

ẋ = Ax + b f (σ),

σ = cTx
(3.36)

satisfies the limit stability in the singular situation, and

Re [ (1 + iqω)W(iω) ]+
1
k

> 0, ω ≥ 0 (q is a constant), (3.37)

then for each continuous function satisfying

0 < ε ≤ f (σ)
σ

≤ k (σ �= 0),

the zero solution of (3.36) is globally asymptotically stable, that is, the zero solution
of (3.36) is absolutely stable in the Hurwitz angle region [ε,k].

The proof can be found in [127] and omitted here.

3.5.2 The Simplified Popov Criterion

Popov frequency criterion is actually a generalization of the Nyquist frequency crite-
rion. Since the domain of the characteristic curve can be infinite, it is not convenient
in applications. In the following, we introduce a simplified Popov criterion, due to
Zhang [178]. The result obtained in [178] applied the idea of Wang [152, 153] to
change the domain of frequency characteristic curve from an infinite interval [0,∞]
to a finite interval [0,ρ ] (ρ > 0), which improves the Popov criterion from both
theoretical and application aspects.

Again consider system (3.2). Let

W (iω) = −cT(iωI −A)−1b =
K(iω)
D(iω)

,

where D(iω) = det(iωI−A), and
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X(ω) = ReW (iω) =
Re{K(iω)D̄(iω)}

|D(iω)|2 ,

Y (ω) = ω ImW (iω) = ω
Im{K(iω)D̄(iω)}

|D(iω)|2 :=
H(ω)

|D(iω)|2 .

Suppose the real polynomial H(ω) is in the form of

H(ω) = h2n + h2n−1 ω + · · ·+ h1 ω2n−1. (3.38)

Further let
ρ = 1 + max

2≤i≤2n

{∣∣∣ hi

h1

∣∣∣}. (3.39)

Then we have

Lemma 3.19. In system (3.2) let f (σ) = ε σ (0 ≤ ε ≤ k). Then the sufficient and
necessary condition for the asymptotic stability of the corresponding linear system
is that the frequency characteristic curve W (iω) (0 ≤ ω ≤ ρ) does not intersect the
part of the real axis (−∞, −1/k).

Proof. When 0 ≤ ε ≤ k, the sufficient and necessary condition for the asymptotic
stability of the corresponding linear system is that the characteristic frequency curve
W (iω) (−∞ ≤ ω ≤+∞) does not intersect the part of the real axis (−∞, −1/k). So
the necessity of Lemma 3.19 is obvious.

For sufficiency, since W (iω) = X(ω)+ iY (ω), from the bounded value theorem
of zero point for polynomials, we know that all zeros of H(ω) = 0 satisfy |ω j| <
ρ (1 ≤ j ≤ 2n−1). Thus, H(ω) �= 0 for |ω | > ρ , that is, Y (ω) �= 0 when |ω | > ρ ,
for which W (iω) does not intersect the real axis. From

X(ω) =
K(iω)D(−iω)+ K(−iω)D(iω)

2D(iω)D(−iω)

we obtain
X(−ω) = X(ω).

Hence, if W (iω) (0 ≤ ω ≤ ρ) does not intersect the part of the real axis
(−∞, −1/k), then W (iω) (−ρ ≤ ω ≤ 0) also does not intersect the part of the
real axis (−∞, −1/k). Therefore, W (iω) (−∞ ≤ ω ≤ +∞) does not intersect the
part of the real axis (−∞, −1/k). The sufficiency is proved. �

Lemma 3.19 actually provides the necessary condition for system (3.2) being
absolutely stable in the Hurwitz angle region [0,k].

Before discussing the absolute stability of system (3.2), we introduce the follow-
ing notations:

X∗(ω) = ReW (iω) =
Re{K(iω)D̄(iω)}

|D(iω)|2 :=
A(ω)
E(ω)

,

Y ∗(ω) = ImW (iω) =
Im{K(iω)D̄(iω)}

|D(iω)|2 :=
B(ω)
E(ω)

.
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Theorem 3.20. [178] If there exists a real number, q, such that

Re [(1 + iqω)W(iω) ]+
1
k

> 0, ω ∈ [0,ρ ], (3.40)

then the zero solution of system (3.2) is absolutely stable in the Hurwitz angle region
[0,k], where

ρ = 1 + max
2≤i≤2n+1

∣∣∣ ρi

ρ1

∣∣∣,
in which ρi (i = 1,2, . . . , 2n + 1) are the coefficients of the polynomial:

ρ(ω) = A(ω)−qB(ω)+
1
k

E(ω).

Proof. The condition (3.40) is equivalent to

X∗(ω)−qY∗(ω)+
1
k

> 0, ω ∈ [0,ρ ], (3.41)

that is,
A(ω)
E(ω)

−q
B(ω)
E(ω)

+
1
k

> 0, ω ∈ [0,ρ ],

or
A(ω)−qB(ω)+ 1

k E(ω)
E(ω)

=
ρ(ω)
E(ω)

> 0, ω ∈ [0,ρ ].

From the definition of ρ and the intermediate value theorem, we have ρ(ω) �= 0.
When ω > ρ , ρ(ω) > 0. Thus when ω > ρ , ρ(ω) > 0, that is,

X∗(ω)−qY∗(ω)+
1
k

=
ρ(ω)
E(ω)

> 0, (ω > ρ).

Combining the above result with (3.41) yields

Re [(1 + iqω)W(iω) ]+
1
k

> 0, (ω ≥ 0).

Therefore, the zero solution of (3.2) is absolutely stable in the Hurwitz angle region
[0,k]. �

By Theorem 3.20 it makes possible to use a finite part of the characteristic
frequency curve to determine the absolute stability of nonlinear control systems.
Comparing with the Popov criterion, it greatly reduces computational demanding.
From the geometrical point of view, the zero solution of (3.2) is absolutely stable
provided that for ω ∈ [0,ρ), the graph of the characteristic curve

W ∗(ω) = X(ω)+ iY(ω) (3.42)

is located on the right side of the line that passes through the point [−1/k,0] having
the slope 1/q.
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However, the parameter ρ in Theorem 3.20 still depends upon q and k, where
q is an existence parameter. Thus, it is still difficult to determine ρ , and needs to
further overcome this obstacle.

For a given k > 0, let

G(ω) = A(ω)+
1
k

E(ω) = c2n + c2n−1 ω + · · ·+ c0 ω2n,

B(ω) = b2n + b2n−1 ω + · · ·+ b0 ω2n,

ρ1 = 1 + max
1≤i≤2n

∣∣∣ ci

c0

∣∣∣,
ρ2 = 1 + max

1≤i≤2n

∣∣∣ bi

c0

∣∣∣.
Theorem 3.21. [178] If one of the following two conditions holds, then the zero
solution of system (3.2) is absolutely stable in the Hurwitz angle region [0,k]:

(1) b0 < 0 (or b0 = 0, b1 < 0), and there exits q ≥ 0 such that

Re [(1 + iqω)W(iω)]+
1
k

> 0, for ω ∈ [0,ρ ]; (3.43)

(2) b0 > 0 (or b0 = 0, b1 > 0), and there exits q ≤ 0 such that

Re [(1 + iqω)W(iω)]+
1
k

> 0, for ω ∈ [0,ρ ]. (3.44)

Here ρ = max(ρ1, ρ2).

Proof. Since (3.41) is equivalent to

A(ω)−qB(ω)+ 1
k E(ω)

E(ω)
> 0, ω ∈ [0,ρ ],

we only need to prove

A(ω)−qB(ω)+
1
k

E(ω) = G(ω)−qB(ω) > 0 (ω > ρ). (3.45)

If condition (1) holds, then from the definition of ρ , we know that when ω > ρ ,
G(ω) �= 0 and B(ω) �= 0. Further from b0 > 0 ( or b0 = 0, b1 < 0), B(ω) < 0
for enough large ω . Noticing that the degree of A(ω) is at least one less than that
of E(ω), the coefficient of the highest order term is 1/k. Therefore, when ω 
 1,
G(ω) > 0. This implies that when ω > ρ , G(ω) > 0 and B(ω) < 0, and so (3.43)
holds.

A similar proof can be given to condition (2). �

Finally, to end this section, we establish a criterion that ρ is independent of q
and k. Let

A(ω) = a2n−1 + a2n−2 ω + · · ·+ a1 ω2n−2 + a0 ω2n−1,

where at least one of a0 and a1 is nonzero, and ρ3 = 1 + max0≤i≤2n−1 | ai
a0
|.
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Theorem 3.22. [178] If one of the following two conditions holds, then the zero
solution of system (3.2) is absolutely stable in the Hurwitz angle region [0,k]:

(1) a0 > 0 (or a0 = 0, a1 < 0), b0 < 0 (or b0 = 0, b1 > 0), and there exists q ≥ 0
such that

Re [(1 + iqω)W(iω)]+
1
k

> 0, for ω ∈ [0,ρ ]; (3.46)

(2) a0 < 0 (or a0 = 0, a1 < 0), b0 > 0 (or b0 = 0, b1 > 0), and there exists q ≤ 0
such that

Re [(1 + iqω)W(iω)]+
1
k

> 0, for ω ∈ [0,ρ ]. (3.47)

Here ρ = max(ρ2, ρ3).

Proof. If condition (1) holds, (3.46) is equivalent to

X∗(ω)−qY∗(ω)+
1
k

=
A(ω)
E(ω)

−q
B(ω)
E(ω)

+
1
k

> 0 for ω ∈ [0,ρ ]. (3.48)

From the definition of ρ , we know that when ω > ρ , A(ω) �= 0 and B(ω) �= 0.
Further it follows from condition (1) that when ω > ρ , A(ω) > 0 and B(ω) < 0.
Thus when ω > ρ ,

A(ω)−qB(ω) > 0,

which implies that
A(ω)
E(ω)

−q
B(ω)
E(ω)

+
1
k

> 0.

Combining this with (3.46) results in

Re [(1 + iqω)W(iω)]+
1
k

> 0, for ω ≥ 0.

Hence, the zero solution of system (3.2) is absolutely stable. Similarly, we can prove
condition (2). �

By the improved Popov criterion, one only needs to obtain the characteristic
frequency curve for ω ∈ [0,ρ ], and the verification of Theorem 3.21 can be easily
carried out by a digital computer. The condition given in Theorem 3.22 is a lit-
tle bit stronger than that of the standard Popov criterion, but much convenient in
applications.

In this chapter, we have discussed three classical methods: Lurie-type V -function
method, Lurie-type V -function combined with the S-program, and the Popov fre-
quency approach. Naturally a question is raised: How are the three methods related?
This has been discussed in detail in [159]. A simple relationship is given
below.
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Lurie Method ⊃ S-program ⇐⇒ Popov Criterion ⇐⇒ Simplified Popov
Criterion

Thm 3.3 ⊃ Thm 3.4 Thm 3.16 Thm 3.20
� Thm 3.6

Thm 3.7
�

Thm 3.8
�

Thm 3.11

The condition of Popov method is merely sufficient condition, which guarantees
σ(t) → 0 as t → +∞. Are there any other conditions different from that of Popov’s
method that also guarantees σ(t)→ 0 as t →+∞? Is the condition that σ(t)→ 0 as
t → +∞ still a necessary condition for absolute stability? These questions motivate
us to find sufficient and necessary conditions for the absolute stability, which will be
discussed in the next chapter.



4

Necessary and Sufficient Conditions
for Absolute Stability

In this chapter, we discuss the necessary and sufficient conditions for absolute sta-
bility of various Lurie control systems described by ordinary differential equations.
The absolute stability for all the system’s variables will be equivalently transformed
into that of a single variable or partial variables, and that of the Hurwitz stabil-
ity for matrix, which is easy to be verified. Based on obtained theoretical results,
some practically useful algebraic sufficient conditions will be derived, which pro-
vide guidelines for designers and engineers. The material given in 4.1 and 4.3 is
chosen from [78, 80] and that presented in 4.2 and 4.4 is based on [67, 76, 77]. The
results given in 4.5 are mainly taken from [89].

4.1 Necessary and Sufficient Conditions for Absolute Stability

Consider the general Lurie control system:

ẋ = Ax + b f (σ),

σ = cTx =
n

∑
i=1

cixi,
(4.1)

where f (σ) ∈ F∞, f (σ) ∈ F[0,k) f (σ) ∈ F[0,k], or f (σ) ∈ F[k1,k2].

Definition 4.1. The zero solution of (4.1) is said to be absolutely stable for the set
Ω = {x : σ = 0} (absolutely stable for Ω in [0,k), or [0,k], [k1,k2]) if for every ε > 0,
there exists δ (ε) > 0 such that for any f (σ) ∈ F∞ (for any f (σ) ∈ F[0,k) or F[0,k],
F[k1,k2]), the solution x(t) = x(t,t0,x0) of (4.1) satisfies

|σ(t,t0,x0)| = |cTx(t,t0,x0)| < ε for all t ≥ t0

if ‖x0‖ < δ (ε), and for any x0 ∈Rn,

lim
t→+∞

σ(t,t0,x0) = lim
t→+∞

cTx(t,t0,x0) = 0.

Definition 4.2. A function V (x) ∈ C[Rn,R1] is said to be positive definite for the set
Ω if

V (x)
{

=0 when x ∈ Ω ,
>0 when x /∈ Ω .

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, Second Edition.
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V (x) ∈C[Rn,R1] is negative definite for Ω if −V (x) is positive definite for Ω . V (x) ∈
C[Rn,R1] is radially unbounded, positive definite for Ω if V (x) is positive definite for
Ω and V (x) → +∞ as |σ | = |cTx| → +∞.

Theorem 4.3. The necessary and sufficient conditions for the zero solution of (4.1)
to be absolutely stable (absolutely stable in [0,k), [0,k], [k1,k2]) are the following:

(1) The matrix A + bcTθ := B is Hurwitz stable, where θ = 0 or θ = 1 (θ = 0 or
θ = 1

2 k, or θ = 1
2 (k2 − k1));

(2) The zero solution of (4.1) is absolutely stable for Ω (absolutely stable in [0,k) or
[0,k] or F[k1,k2] for Ω ).

Proof. Necessity. (1) When Reλ (A) < 0, we choose θ = 0; when Reλ (A) ≤ 0, we
take θ = 1

(
θ = 1

2 k or θ = 1
2 (k2 − k1)

)
. By putting f (σ) = σ = cTx ( f (σ) = 1

2 kσ =
1
2 kcTx) in (4.1) it follows that the matrix B = A + bcTθ is Hurwitz stable.

(2) For any ε > 0, we take ε̃ = ε max1≤i≤n |ci|. Then there exists δ (ε) > 0 such
that for any f ∈ F∞ (for any f ∈ F[0,k), F[0,k] or F[k1,k2]), ‖x0‖ < δ (ε) implies that

‖x(t,t0,x0)‖ := ‖x(t)‖ =
n

∑
i=1

|xi(t)| < ε̃ for all t ≥ t0,

and further

|σ(t,t0,x0) := |σ(t)| =
n

∑
i=1

|cixi(t)|

≤ max
1≤i≤n

|ci|
n

∑
i=1

|xi(t)| < max
1≤i≤n

|ci| ε̃ = ε.

Clearly, we have

lim
t→+∞

|σ(t)| ≤ lim
t→+∞

max
1≤i≤n

|ci|
n

∑
i=1

|xi(t)| = 0

for any x0 ∈ Rn.
Sufficiency. For any f ∈ F∞

(
for any f ∈ F[0,k), F[0,k] or F[k1,k2]

)
, the solution of

(4.1) can be expressed as

x(t) = eB(t−t0)x0 +
∫ t

t0
eB(t−τ)[b f (σ(τ))−θbσ(τ)]dτ.

Since B is Hurwitz stable, there exist constants M ≥ 1 and α > 0 such that

‖eB(t−t0)‖ ≤ M e−α(t−t0) for all t ≥ t0.

Since σ(t) → 0 as t → +∞, σ(t) continuously depends on x0, and f (σ(t)) is a con-
tinuous function of x0 and f (σ(t))→ 0 as t →+∞, for any ε > 0, there exit δ1(ε) > 0
and t1 > t0 such that
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t0
M e−α(t−τ)

[
‖b f (σ(τ))‖+‖bθσ(τ)‖

]
dτ <

ε
3

for t1 ≥ t0,∫ t

t1
M e−α(t−τ)

[
‖b f (σ(τ))‖+‖bθσ(τ)‖

]
dτ <

ε
3

for all t ≥ t1,

‖eB(t−t0)x0‖ ≤ M e−α(t−τ)‖x0‖ <
ε
3

for all t ≥ t0

if
‖x0‖ < δ1(ε).

Thus, it follows

‖x(t)‖ ≤ ‖eB(t−t0)x0‖+
∫ t1

t0
M e−α(t−τ)

[
‖b f (σ(τ))‖+‖θbσ(τ)‖

]
dτ

+
∫ t

t1
M e−α(t−τ)[‖b f (σ(τ))‖+‖θbσ(τ)‖ ]dτ

<
ε
3

+
ε
3

+
ε
3

= ε for all t ≥ t0.

∀x0 ∈Rn, by using the L’Hospital rule we have

0 ≤ lim
t→+∞

‖x(t)‖
≤ lim

t→+∞
M e−α(t−t0)‖x0‖

+ lim
t→+∞

∫ t

t0
M e−α(t−τ)

[
‖b f (σ(τ))‖+‖θbσ(τ)‖

]
dτ = 0.

Therefore, the zero solution of (4.1) is absolutely stable (absolutely stable in [0,k)
[0,k], or k1,k2]). �

Theorem 4.4. The necessary and sufficient conditions for the zero solution of (4.1)
to be absolutely stable (absolutely stable in [0,k), [0,k] or [k1,k2]) are the following:

(1) The condition (1) of Theorem 4.3 is true;
(2) There exists a differentiable function Vf (x) ∈C[Rn,R1] such that Vf (0) = 0, and

Vf (x) ≥ ϕ f (|σ |), ϕ f ∈ KR, (4.2)

dVf

dt

∣∣∣
(4.1)

≤−ψ̃ f (|σ |), ψ̃ f ∈ K. (4.3)

Proof. Sufficiency. It suffices to prove that condition (2) implies that the zero
solution of (4.1) is absolutely stable for Ω .

Since Vf (0) = 0 (0 ∈ Ω ) and Vf (x) is continuous, for any ε > 0, there exists
δ (ε) > 0 such that

Vf (x0) < ϕ f (ε) for ‖x0‖ < δ (ε).
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From (4.2) and (4.3), it follows

ϕ f (|σ(t)|) ≤Vf (x(t)) ≤Vf (x0) < ϕ f (ε).

Hence, we deduce that |σ(t)|< ε , that is, the zero solution of (4.1) is Hurwitz stable
for Ω .

Next, we prove that lim
t→+∞

σ(t) = 0.

For any x0 ∈Rn it follows from (4.3) that Vf (x(t)) is monotone decreasing and
has a lower bound. Thus there exists

inf
t≥t0

Vf (x(t)) = lim
t→+∞

Vf (x(t)) := α ≥ 0,

and α can only be reached on Ω . If α is reached outside Ω , then there must exist
a constant β > 0 such that |σ(t)| ≥ β > 0 for all t ≥ t0. Otherwise, there exists a
sequence {tk} with tk → +∞ as k → +∞ such that lim

tk→+∞
σ(tk) = 0. Thus

α = inf
t≥t0

Vf (x(t)) = lim
t→+∞

Vf (x(t)) = lim
tk→+∞

Vf (x(tk)) = lim
σ(tk)→0

Vf (x(tk)),

namely, α is reached on Ω , a contradiction with that α is reached outside Ω .
For any x0 ∈Rn, from (4.3), it follows that

|σ(t)| ≤ |cTx(t0)| := h < +∞.

If lim
t→+∞

σ(t) �= 0, then according to the uniform continuity of σ(t), there exist

constants β > 0, η > 0 and a sequence {t j} such that

|σ(t)| ≥ β for t ∈ [t j −η ,t j + η ].

We fix r f = inf
β≤|σ |≤h

ψ̃ f (|σ |) > 0, then

Vf (x(t)) = Vf (x(t0))+
∫ t

t0

dVf

dt
dt

≤ Vf (x(t0))−
∫ t

t0
ψ̃ f (|σ(τ)|)dτ

≤ Vf (x(t0))−
n

∑
j=1

∫ t j+η

t j−η
ψ̃ f (|σ(τ)|)dτ

≤ Vf (x(t0))−2ηnr f →−∞ as n → +∞.

This is in contradiction with Vf (x(t)) ≥ 0, and so lim
t→+∞

σ(t) = 0. Then the zero solu-

tion of (4.1) is absolutely stable for Ω (absolutely stable in [0,k), [0,k] or [k1,k2] for
Ω ). The sufficiency follows directly from Theorem 4.3.

Necessity. Since the zero solution of (4.1) is absolutely stable, Rn is a region of
attraction. For any x0 ∈Rn, let

ϕ f (x) = sup
t≥0

‖x(t,0,x)‖2.
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Obviously, ϕ f (x) possesses the following properties:

1. ϕ f (x) ≥ 0, where the equality holds if and only if x = 0, and ϕ(x) is radially
unbounded, positive definite;

2. ϕ f (x(η)) = sup
t≥η

‖x(t)‖2 is monotone decreasing;

3. ϕ f (x) is continuous on Rn.

Again we define

Vf (x) =
∫ +∞

0
ϕ f (x(η ,0,x))e−η dη ,

then we get

Vf (x(t)) =
∫ +∞

0
ϕ(x(t + η))e−η dη .

Denoting

Φ(t + η) =
∫ t+η

0
ϕ f (x(ξ ))dξ ,

we obtain
Φ ′

η = Φ ′
t = ϕ f (x(t + η)).

Using integration by parts, we obtain

Vf (x(t)) =
∫ +∞

0
e−η dΦ

= e−η
∫ t+η

0
ϕ f (x(ξ ))dξ

∣∣∣+∞

0
+
∫ +∞

0
Φ(t + η)e−η dη

= −
∫ t

0
ϕ f (x(ξ ))dξ +

∫ +∞

0
Φ(t + η)e−η dη .

Since ϕ(x(ξ )) is monotone decreasing, it is bounded. Thus

lim
t→+∞

e−η
∫ t+η

0
ϕ f (x(ξ ))dξ = 0.

Now we take the derivative of Vf along the solution of (4.1). Clearly,

dVf (x(t))
dt

∣∣∣
(4.1)

= −ϕ f (x(t))+
∫ +∞

0
Φ ′

t e−η dη

= −ϕ f (x(t))+
∫ +∞

0
ϕ f (x(t + η))e−η dη

=
∫ +∞

0
[ϕ f (x(t + η))−ϕ f (x(t))]e−η dη .

Since ϕ f (x(t)) is monotone decreasing, we have

ϕ f (x(t)) ≥ ϕ f (x(t + η)) for η ≥ 0.



70 4 Necessary and Sufficient Conditions for Absolute Stability

In particular, if x(t) is not the zero solution, then there exists

ϕ f (x(t)) ≡/ ϕ f (x(t + η)).

Otherwise, we have

ϕ f (x(t)) ≡ ϕ f (x(t + η)) → 0 as η → +∞,

that is, ϕ f (x(t)) ≡ 0, which is a contradiction. Thus if x(t) �= 0, we have∫ +∞

0
[ϕ(x(t + η))−ϕ(x(t))]e−η dη < 0,

that is,
dVf

dt

∣∣∣
(4.1)

< 0 for x �= 0.

Therefore, we see that
dVf

dt

∣∣∣
(4.1)

≤−Wf (x),

where Wf (x) is a positive definite function. From the equivalence relation between
the positive definite function and the K-class function, it follows that there exist
ϕ̃ f (r) ∈ KR and ψ̃(r) ∈ K such that

ϕ̃(‖x‖) ≤Vf (x) and −Wf (x) ≤−ψ̃ f (‖x‖).
Therefore, we write

Vf (x) ≥ ϕ̃ f (‖x‖) := ϕ̃ f

( n

∑
i=1

|xi|
)

≥ ϕ̃ f

( 1
max

1≤i≤n
|ci|

n

∑
i=1

|cixi|
)

= ϕ̃ f

( 1
max

1≤i≤n
|ci| |σ |

)
:= ϕ f (|σ |) ∈ KR,

and confirm that Vf (x) is positive definite for Ω . Moreover, we have

dVf

dt

∣∣∣
(4.1)

≤ −Wf (x) ≤−ψ̃ f (‖x‖)

≤ −ψ̃ f

( 1
max

1≤i≤n
|ci|

n

∑
i=1

|cixi|
)

= −ψ̃ f

( 1
max

1≤i≤n
|ci| |σ |

)
:= −ϕ f (|σ |) ∈ K.

The condition (2) of Theorem 4.4 is satisfied.
The proof of condition (1) of Theorem 4.4 is trivial. �
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By imitating Theorem 4.3 and 4.4 we formulate

Theorem 4.5. The necessary and sufficient conditions for the zero solution of (4.1)
to be absolutely stable (absolutely stable in [0,k), [0,k] or [k1,k2]) are given below:

(1) There exists b̃ ∈ Rn such that A + b̃cT is Hurwitz stable;
(2) The condition (2) of Theorem 4.3 is satisfied.

Theorem 4.6. The necessary and sufficient conditions for the zero solution of (4.1)
to be absolutely stable (absolutely stable in [0,k), [0,k], or [k1,k2]) are given by the
following:

(1) The condition (1) of Theorem 4.5 is satisfied;
(2) The condition (2) of Theorem 4.4 is satisfied.

Theorems 4.5 and 4.6 are useful because sometime it is more convenient to verify
the stability of A + b̃cT than that of A + bcTθ .

Theorem 4.7. Suppose the following conditions are satisfied:

(1) A + θbcT is Hurwitz stable, where θ = 0 or θ = 1;
(2) There exists a symmetric matrix Pn×n such that{

xTPx ≥ ασ2, α > 0,

xT(PA + ATP)x +(2Pb + β ATc)Tx f (σ)+ β cTb f 2(σ) ≤−ετ, β ≥ 0,

or {
xTPx ≥ 0,

∫ ±∞
0 f (σ)dσ = +∞,

xT(PA + ATP)x +(2Pb + β ATc)Tx f (σ)+ β cTb f 2(σ) ≤−ετ, β > 0,

where τ ∈ {σ2,σ f (σ), f 2(σ)}, 0 < ε 	 1, α, β , ε are constants.
Then the zero solution of (4.1) is absolutely stable.

Proof. It suffices to prove that the condition (2) of Theorem 4.7 implies the condition
(2) of Theorem 4.4.

In fact, we can construct the Lyapunov function

V (x) = xTPx+ β
∫ σ

0
f (σ)dσ .

By condition (2), it bears

V (x) ≥ ασ2 ≥ ϕ(|σ |), ϕ ∈ KR

or
V (x) ≥ β

∫ σ

0
f (σ)dσ ≥ ϕ(|σ |), ϕ ∈ KR,
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and
dV
dt

∣∣∣
(4.1)

= xT(PA + ATP)x +(2Pb + β ATc)Tx f (σ)+ β cTb f 2(σ)

≤ −ετ ≤−ψ(|σ |), ϕ ∈ K.

Thus, all the conditions of Theorem 4.4 are satisfied, and the desired conclusion of
the theorem holds. �

As a special case, Theorem 4.7 can contain all the criteria of absolute stability
obtained by the Lyapunov function

V (x) = xTPx+ β
∫ σ

0
f (σ)dσ ,

which makes dV
dt

∣∣∣
(4.1)

negative definite for positive definite P.

Corollary 4.8. If A is a Hurwitz matrix and there exists a constant β > 0 and a
symmetric positive definite matrix P such that

xT(PA + ATP)x + 2(Pb +
1
2

β ATc)Tx f (σ)+ β cTb f 2(σ)

is negative definite, then the zero solution of (4.1) is absolutely stable.

Proof. It suffices to prove that the conditions of Theorem 4.7 are satisfied. In fact,
since A is Hurwitz stable, the condition (1) of Theorem 4.7 holds.

Now we construct the positive definite and radially unbounded Lyapunov function

V (x) = xTPx+ β
∫ σ

0
f (σ)dσ .

Obviously, V (0) = 0 and

V (x) ≥ λ1xTx ≥ λ1

n
n

∑
i=1

|cixi|2

n max
1≤i≤n

|ci|2
≥ λ1

( n

∑
i=1

ci xi

)2

n max
1≤i≤n

|ci|2

= λ1
σ2

n max
1≤i≤n

|ci|2
:= ϕ(|σ |) ∈ KR.

Here, λ1 refers to the smallest eigenvalue of P. Thus, V (x) is radially unbounded,
positive definite for Ω . Again, we have

dV
dt

∣∣∣
(4.1)

≤ −ϕ(‖x‖) ≤−ϕ
( 1

max
1≤i≤n

|ci|
n

∑
i=1

|cixi|
)

= −ϕ
( 1

max
1≤i≤n

|ci| |σ |
)

:= −ϕ1(|σ |),

where ϕ1, ϕ ∈ K. Therefore, all the conditions of Theorem 4.7 are satisfied and the
corollary follows. �
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Now we turn to the Lurie indirect control system:

ẋ = Ax+ b f (σ),

σ̇ = cTx−ρ f (σ),
(4.4)

where A ∈Rn×n, b ∈Rn, c ∈Rn, f (σ) ∈ F .

Corollary 4.9. If A and
[

A b
cT −ρ

]
are Hurwitz stable, and there exist a symmetric

positive semi-definite matrix G and a positive constant p such that

W (x) = −xTGx + f (σ){2uTx + pcTA−1x}−ρ f 2(σ)

is negative semi-definite, where u = Pb+
c
2

, P is the solution of the Lyapunov matrix
equation

PA + ATP = −G,

then the zero solution of (4.4) is absolutely stable.

Proof. We construct the Lyapunov function

V (x,σ) = xTPx+
∫ σ

0
f (σ)dσ +

p
2(ρ + cTA−1b)

(cTA−1x−σ)2.

It is obvious that V (x,σ) is radially unbounded, positive definite with respect to σ .
Then,

dV
dt

∣∣∣
(4.4)

= −xTGx + 2 f (σ)
(

Pb +
1
2

c
)T

x−ρ f 2(σ)

+
p

(ρ + cTA−1b)
(cTA−1x−σ)(ρ + cTA−1b) f (σ)

= −xTGx + f (σ){2uTx + pcTA−1x}
−ρ f 2(σ)− pσ f (σ)

= W (x)− pσ f (σ)
≤ −pσ f (σ) < 0 if σ �= 0.

Thus, the zero solution of (4.4) is absolutely stable w.r.t. the single variable σ . �

Example 4.10. Discuss the absolute stability of the zero solution of the following
system:

ẋ1 = x2 − f (x1 − x2),

ẋ2 = −x1 + f (x1 − x2),
(4.5)

where f ∈ F∞, and the coefficient matrix A =
[

0 1
−1 0

]
has a pair of purely imagi-

nary eigenvalues. Thus, Example 4.10 is neither a Lurie direct control system, nor
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a Lurie indirect control system, but a more complicated critical case. Therefore, the
Lyapunov matrix equation

AP+ ATP = −G

has no solution P of symmetric positive definite matrix for any positive definite
matrix G. Thus, the traditional Lurie method, that is, the method of using the
Lyapunov function

V (x) = xTPx+ β
∫ σ

0
f (σ)dσ (P being positive definite),

which makes dV
dt

∣∣∣
(4.5)

negative definite, cannot be applied. The traditional Popov

method cannot be applied either. Instead we can use Theorem 4.7.

(i) Let f (x1 − x2) = x1 − x2. Then system (4.5) changes to

ẋ1 = −x1 + 2x2,

ẋ2 = −x2.
(4.6)

Obviously, the coefficient matrix B =
[−1 2

0 −1

]
is Hurwitz stable.

(ii) Construct the Lyapunov function:

V (x) =
1
2
(x2

1 + x2
2).

Then,

dV
dt

∣∣∣
(4.5)

= −x1 f (x1 − x2)+ x2 f (x1 − x2)

= −(x1 − x2) f (x1 − x2)

is negative definite for Ω = {x : σ = x1 − x2 = 0}. Thus, all the conditions of
Theorem 4.7 are satisfied. The zero solution of (4.5) is absolutely stable.

Example 4.11. Consider the three-dimensional system:

ẋ1 = −3x1 + x2 + x3 − f (x1 + 2x2 + x3),

ẋ2 = x1 −2x2 + x3 + f (x1 + 2x2 + x3),

ẋ3 = x1 + 3x2 −3x3 −2 f (x1 + 2x2 + x3).

(4.7)

It is easy to verify that

A =

⎡
⎣−3 1 1

1 −2 1
1 3 −3

⎤
⎦

is not Hurwitz stable matrix. We construct the positive semi-definite Lyapunov
function
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V = (x1 + 2x2 + x3)2.

Then,

dV
dt

∣∣∣
(4.7)

= 2(x1 + 2x2 + x3)(ẋ1 + 2 ẋ2 + ẋ3)

= −2(x1 + 2x2 + x3) f (x1 + 2x2 + x3).

Consequently, dV
dt

∣∣∣
(4.7)

is negative definite for Ω = {x : σ = x1 + 2x2 + x3 = 0}.

Clearly, V is radially unbounded, positive definite for Ω = {x : σ = x1 + 2x2 + x3 =
0}. We conclude that the zero solution of (4.7) is absolutely stable.

Example 4.12. Consider the indirect control system:

ẋ1 = x2 − f (σ),

ẋ2 = −x1 + f (σ),

σ̇ = x1 − x2 −ρ f (σ),

(4.8)

where σ = x1 − x2, ρ > 0, f (σ) ∈ F∞, and
∫ ±∞

0 f (σ)dσ = +∞.

Since A =
[

0 1
−1 0

]
is not Hurwitz stable, the Lyapunov matrix equation

ATP+ PA = −G

has no positive definite matrix solution for any positive definite matrix G. So the
traditional Lurie method and Popov method cannot be applied. Instead, we can use
Theorem 4.7.

(i) Let f (σ) = σ . Then (4.8) changes into

ẋ1 = x2 −σ ,

ẋ2 = −x1 + σ ,

σ̇ = x1 − x2 −ρσ .

(4.9)

Since

det |λ I3 −B|=
∣∣∣∣∣∣

λ −1 1
1 λ −1

−1 1 λ + ρ

∣∣∣∣∣∣= λ 3 + ρλ 2 + 3λ + ρ ,

the necessary and sufficient conditions for the characteristic polynomial to be
Hurwitz are given by

ρ > 0, ∆1 := 3 > 0, ∆1 :=
∣∣∣∣3 ρ
1 ρ

∣∣∣∣= 2ρ > 0.

Thus

B =

⎡
⎣ 0 1 −1
−1 0 1

1 −1 −ρ

⎤
⎦

is Hurwitz stable.
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(ii) Construct the Lyapunov function:

V (x,σ) =
1
2
(x2

1 + x2
2)+

∫ σ

0
f (σ)dσ ,

then dV
dt

∣∣∣
(4.8)

= −ρ f 2(σ) < 0 when σ �= 0. Therefore, the zero solution of (4.8)

is absolutely stable.

4.2 Lurie Direct Control Systems

In this section, we first transform the n-dimensional direct control system to a
variable-separated nonlinear system with full rank linear transformation. The feed-
back control variable σ is changed into a state variable. It will be shown that the
absolute stability of the Lurie direct control system is equivalent to the absolute
stability of this new state variable. Also, some algebraic sufficient conditions for
absolute stability will be obtained.

The conditions for all the results in this section are based on the systems’ param-
eters, which are independent of the unknown function V , or the solutions of the
Lyapunov matrix equation. Thus, the conditions are easily verified.

Consider the n-dimensional Lurie direct control system [76, 77]:

ξ̇i =
n

∑
j=1

ãi jξ j + hi f (σ) i = 1, . . . ,n,

σ =
n

∑
i=1

ciξi,

(4.10)

where ãi j, hi, ci (i, j = 1, . . . ,n) are all constants. Ã = (ãi j)n×n is a Hurwitz matrix
and f ∈ F∞. The description of the control system (4.10) is shown in Fig. 4.1.

˙
cT

Ã

Ãξ f(σ)

+ h

ξξ σ= cTx

Fig. 4.1 Lurie direct control system
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Without loss of generality, we assume cn �= 0 (otherwise, we can adjust the orders
of the state variables and the equations to make cn �= 0). With the full rank linear
transformation x = Ωξ , that is,⎛

⎜⎜⎜⎝
x1
...

xn−1
xn

⎞
⎟⎟⎟⎠=

⎡
⎢⎢⎢⎣

1 0 · · · 0
...

. . .
...

0 · · · 1 0
c1 · · · cn−1 cn

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎜⎝

ξ1
...

ξn−1
ξn

⎞
⎟⎟⎟⎠ . (4.11)

Equation (4.10) then changes into

ẋi =
n

∑
j=1

ai jx j + bi f (xn) (i = 1, . . . ,n−1),

ẋn =
n

∑
j=1

an jx j + bn f (xn),
(4.12)

where xn = σ is an independent state variable, and

ai j =
(

ãi j − ãi j

cn
c j

)
(i, j = 1, . . . ,n−1),

ain =
ãin

cn
(i = 1, . . . ,n− 1),

an j =
n

∑
i=1

ciãi j −
n

∑
i=1

ci
ãin

cn
c j ( j = 1, . . . ,n−1),

ann =
1
cn

n

∑
i=1

ciãin,

bi = hi (i = 1, . . . ,n− 1),

bn =
n

∑
i=1

cihi.

It is easy to prove that if f ∈ F∞, the necessary and sufficient condition for the zero
solution of (4.12) to be absolutely stable is hn ≤ 0. It is obvious that the absolute sta-
bility of (4.10) and that of (4.12) are equivalent, and A(ai j)n×n in (4.12) is a Hurwitz
matrix.

Definition 4.13. The zero solution of (4.12) is absolutely stable w.r.t. the partial vari-

able xn if ∀ f ∈ F∞, ∀ε > 0, ∃δ (ε) > 0, when
n

∑
i=1

x2
i (t0) < δ (ε), the component of the

solution x(t,t0,x(t0)) of equation (4.12) satisfies

x2
n(t,t0,x(t0)) < ε, if t ≥ t0

and
lim

t→+∞
xn(t,t0,x(t0)) = 0 ∀x(t0) ∈ Rn.
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Theorem 4.14. The necessary and sufficient condition for the zero solution of the
direct control system (4.10) to be absolutely stable is that the zero solution of (4.12)
is absolutely stable w.r.t. the single variable xn.

Proof. Necessity. If the zero solution of (4.10) is absolutely stable, for any ε > 0,
there exists δ (ε) > 0 such that

‖ξ (t,t0,ξ0)‖ ≤ ε
‖c‖ if ‖ξ0‖ < δ . (4.13)

Also, we have the condition
x0 = Ωξ0. (4.14)

Let Rn
ξ and Rn

x be the n-dimensional linear spaces having the components ξ and x,
respectively, Ω :Rn

ξ →Rn
x is a nonsingular linear transformation. From the uniqueness

of the solution, we can establish the one to one map between the solution of (4.10)
and that of (4.12) using (4.14). Assume the initial conditions of (4.10) and (4.12)
satisfy (4.14), we have

‖ξ0‖ ≤ ‖Ω−1‖ · ‖x0‖ < δ , if ‖x0‖ <
δ

‖Ω−1‖ .

Thus,

‖xn(t,t0,x0)‖ = ‖cTξ (t,t0,ξ0)‖ ≤ ‖cT‖ · ‖ξ (t,t0,ξ0)‖ ≤ ε
‖c‖ · ‖c‖ = ε.

For all x0 ∈Rn, we have

lim
t→+∞

xn(t,t0,x0) = lim
t→+∞

cTξ (t,t0,ξ0) = 0,

as lim
t→+∞

ξ (t,t0,ξ0) = 0. The necessity is proved.

Sufficiency. Express the solution of (4.12) x(t) := x(t,t0,x0) as

x(t) = eA(t−t0)x(t0)+
∫ t

t0
eA(t−τ)b f (xn(t,t0,x0))dτ. (4.15)

Using the Hurwitz stability of matrix A, we can complete the proof by imitating
Theorem 4.3. �

Definition 4.15. The zero solution of (4.12) is absolutely stable w.r.t. the partial vari-

ables x j, x j+1, . . . ,xn if ∀ f (xn) ∈ F∞, ∀ε > 0, ∃δ (ε) > 0, when
n

∑
i=1

x2
i (t0) < δ (ε), we

have
n

∑
i= j

x2
i (t,t0,x(t0)) < ε if t ≥ t0

and

lim
t→+∞

n

∑
i= j

x2
i (t,t0,x(t0)) = 0 for x0 ∈ Rn.
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Theorem 4.16. The zero solution of (4.10) is absolutely stable if and only if the zero
solution of (4.12) is absolutely stable w.r.t. x j, . . . ,xn.

Proof. If the zero solution of (4.12) is absolutely stable w.r.t. x j, . . . ,xn (1 < j ≤ n),
especially it is absolutely stable w.r.t. xn, the conditions of Theorem 4.14 are satisfied.
The sufficiency holds.

On the other hand, assume that the zero solution of (4.10) is absolutely stable,
especially it is absolutely stable w.r.t. ξ j, . . . ,ξn. We have the equation x = Ωξ (i.e.,

xi = ξi, (i = j, j + 1, . . . ,n− 1), xn =
n

∑
i=1

ciξi) between (4.10) and (4.12). Thus, the

zero solution of (4.12) is absolutely stable w.r.t. x j, . . . ,xn. �

In the above proof, we have changed the feedback control variable σ to a state
variable, which not only avoids the difficulty in discussing the absolute stability, but
also shows that the absolute stability with respect to all variables is equivalent to that
with respect to a single variable in Lurie direct control system.

The conditions of Theorem 4.16 seem stronger than that of Theorem 4.14, but
we can see from the following theorem that the requirement for the conditions of
Theorem 4.16 can be reduced.

Theorem 4.17. For a given symmetric positive definite matrix Gn×n, there exists
ε > 0 such that the following matrix⎡

⎢⎣ −Gn×n Pb +
1
2

An + εen(
Pb +

1
2

An + εen

)T

bn

⎤
⎥⎦

is negative semi-definite, where AT
n = (an1, . . . ,ann), en = (

n−1︷ ︸︸ ︷
0, . . . ,0,1), P is the sym-

metric positive definite solution of the Lyapunov matrix equation:

PA + ATP = −Gn×n,

then the zero solution of (4.12) is absolutely stable.

Proof. Construct the radially unbounded, positive definite Lyapunov function:

V (x) = xTPx+
∫ xn

0
f (xn)dxn. (4.16)

Then,

dV
dt

∣∣∣
(4.12)

= ẋTPx+ xTPẋ+[AT
n x + bn f (xn)] f (xn),

= [Ax+ b f (xn)]
T Px+ xTP [Ax+ b f (xn)]+

[
AT

n x + bn f (xn)
]

f (xn),

= xTATPx+ xTPAx +
[
bTPx+ xTPb +

(
AT

n x + bn f (xn)
)]

f (xn),
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= xTATPx+ xTPAx +
[
bTPx+ xTPb + AT

nx
]

f (xn)+ bn f 2(xn),

=

⎛
⎜⎜⎜⎝

x1
...

xn
f (xn)

⎞
⎟⎟⎟⎠

T⎡
⎢⎣ −Gn×n Pb +

1
2

An + εen(
Pb +

1
2

An + εen

)T

bn

⎤
⎥⎦
⎛
⎜⎜⎜⎝

x1
...

xn
f (xn)

⎞
⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎝

x1
...

xn
f (xn)

⎞
⎟⎟⎟⎠

T[
0 εen

(εen)T 0

]⎛⎜⎜⎜⎝
x1
...

xn
f (xn)

⎞
⎟⎟⎟⎠ ,

≤ −2εxn f (xn) < 0 for xn �= 0.

Thus, we know that the zero solution of (4.12) is absolutely stable from Theorem
4.14. �

If f ∈ F∞, the necessary and sufficient condition for the absolute stability of the
zero solution of (4.12) is bn ≤ 0. In the following, we assume bn < 0. With the full
rank linear transformation

y =

⎛
⎜⎜⎜⎝

y1
...

yn−1
yn

⎞
⎟⎟⎟⎠=

⎡
⎢⎢⎢⎢⎣

1 · · · − b1
bn

0 1 · · · ...
...

. . . − bn−1
bn

0 · · · 1

⎤
⎥⎥⎥⎥⎦
⎛
⎜⎜⎜⎝

x1
...

xn−1
xn

⎞
⎟⎟⎟⎠ := Hx, (4.17)

(4.12) changes into the following system having the same absolute stability,

ẏi =
n

∑
j=1

ri jy j i = 1, . . . ,n−1,

ẏn =
n

∑
j=1

rn jy j + bn f (yn),
(4.18)

where R(ri j)n×n = HAH−1 and h = Hb = (

n−1︷ ︸︸ ︷
0, . . . ,0,bn)T.

Theorem 4.18. There exists a symmetric positive semi-definite matrix given by

P =

⎡
⎢⎢⎢⎣

p11 · · · p1,n−1 0
...

...
pn−1,1 · · · pn−1,n−1 0

0 · · · 0 pnn

⎤
⎥⎥⎥⎦ , pnn > 0,

such that
PR + RTP

is negative semi-definite, then the zero solution of (4.12) is absolutely stable.
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Proof. Construct V = yTPy, then V is a radially unbounded, positive definite
Lyapunov function w.r.t. yn.

dV
dt

∣∣∣
(4.18)

= ẏTPy+ yTPẏ = (Ry+ h f (yn))TPy+ yTP(Ry+ b f (yn)),

= yT(RTP+ PR)y + 2pnnbnyn f (yn),

< 0 for yn �= 0.

Thus, the zero solution of (4.18) is absolutely stable w.r.t. yn. The zero solution
of (4.12) is absolutely stable as xn = yn. From Theorem 4.14, the conclusion holds.

�

Theorem 4.19. There exist constants c j ≥ 0 ( j = 1, . . . ,n−1), cn > 0 such that one
of the following inequalities

−c ja j j ≥
n

∑
i=1,i�= j

ci|ai j|, j = 1, . . . ,n−1,

−cnann ≥
n−1

∑
i=1

ci|ain|,

−cnbn ≥
n−1

∑
i=1

ci|bi|,

holds, and at least one of the last two inequalities is a strict inequality, then the zero
solution of (4.12) is absolutely stable.

Proof. Construct a radially unbounded, positive definite Lyapunov function w.r.t. xn:

V =
n

∑
i=1

ci|xi|.

Then we have

D+V |(4.12) ≤
n−1

∑
j=1

[
c ja j j +

n

∑
i=1,i�= j

ci|ai j|
]
|x j|

+
[

cnann +
n−1

∑
i=1

ci|ain|
]
|xn|+

[
cnbn +

n−1

∑
i=1

ci|bi|
]
| f (xn)|,

< 0 if xn �= 0.

From Theorems 2.33, the conclusion holds. �

According to Theorem 2.33 and (4.11), some useful algebraic sufficient condi-
tions for absolute stability are given in the following.



82 4 Necessary and Sufficient Conditions for Absolute Stability

Corollary 4.20. If one of the following conditions is satisfied,

(1)
n−1

∑
j=1

a2
n j = 0, and

{
ann ≤ 0,

bn < 0,

(2)
n−1

∑
j=1

a2
n j = 0, and

{
ann < 0,

bn ≤ 0,

the zero solution of (4.12) is absolutely stable.

Proof. Construct a radially unbounded, positive definite Lyapunov function V (x) =
x2

n w.r.t. xn. Then,

dV
dt

∣∣∣
(4.12)

= 2annx2
n + 2bnxn f (xn) < 0 if xn �= 0.

The condition of Theorem 4.14 is satisfied. The conclusion holds. �
Next, we generalize the results of Corollary 4.20 to more general cases. To do

this, let the variables and matrices in system (4.12) be

x(m) = (x1, . . . ,xm)T, x(n−m) = (xm+1, . . . ,xn)T,

b(m) = (b1, . . . ,bm)T, b(n−m) = (bm+1, . . . ,bn)T

An×n =
[

A11 A12
A21 A22

]
, where

A11 =

⎡
⎢⎣ a11 · · · a1m

... · · · ...
am1 · · · amm

⎤
⎥⎦

m×m

A12 =

⎡
⎢⎣

a1 (m+1) · · · a1n
... · · · ...

am(m+1) · · · amn

⎤
⎥⎦

m×(n−m)

A21 = [O](n−m)×m A22 =

⎡
⎢⎣

a(m+1)(m+1) · · · a(m+1)n
... · · · ...

an(m+1) · · · ann

⎤
⎥⎦

(n−m)×(n−m)

.

Then system (4.12) can be rewritten as

ẋ(m) = A11 x(m) + A12 x(n−m) + b(m) f (xn),

ẋ(n−m) = Ox(m) + A22 x(n−m) + b(n−m) f (xn).
(4.12)′

For system (4.12)′, we have the following result.

Corollary 4.21. If A11 is a Hurwitz matrix, then the zero solution of the following
(n−m)-dimensional system

ẋ(n−m) = A22 x(n−m) + b(n−m) f (xn) (4.19)

is absolutely stable, implying that the zero solution of system (4.12)′ is absolutely
stable.
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Proof. Since the zero solution of system (4.19) is abosultely stable, the zero solution
of system (4.12)′ is absolutely stable with respect to the partial variable x(n−m). The
solution for the first m variables of system (4.12)′ can be expressed as

x(m) = eA11(t−t0)x(m)(t0)+
∫ t

t0
eA11(t−τ)

[
A12 x(n−m)(τ)+ b(m) f (xn(τ))

]
τ.

The rest can follow the part of the proof for the sufficient condition of Theorem 4.3,
and thus omitted here. �

In the following, we discuss the absolute stability in the Hurwitz angle [0,k] when
f ∈ F[0,k] in (4.12).

Theorem 4.22. Suppose that the following conditions hold:

(1) A has stability degree at least α > 0, that is, there exists M ≥ 1 such that

‖eA(t−t0)‖ ≤ M e−α(t−t0);

(2) 0 ≤ f (σ) ≤ F[0,k].

Then the zero solution of (4.12) is absolutely stable in the Hurwitz angle [0,k] if
Mk‖b‖ < α .

Proof. Expressing the solution of (4.12) as

x(t) := x(t,t0,x0) = eA(t−t0)x0 +
∫ t

t0
b f (xn(τ))dτ (4.20)

yields

|xn(t)| ≤ ‖x(t)‖ ≤ M‖x0‖e−α(t−t0) +
∫ t

t0
M e−α(t−τ)k‖b‖ · |xn(τ)|dτ,

that is,

eα(t−t0)|xn(t)| ≤ M‖x0‖+
∫ t

t0
Mk‖b‖eα(τ−t0)|xn(τ)|dτ.

Applying the Gronwall–Bellman inequality yields

eα(t−t0)|xn(t)| ≤ M‖x0‖eMk‖b‖(t−t0),

that is,
|xn(t)| ≤ M‖x0‖e(−α+Mk‖b‖)(t−t0) → 0 as t → +∞. (4.21)

Thus, the conditions of Theorem 4.14 are satisfied, the zero solution of (4.12) is
absolutely stable in the Hurwitz angle [0,k]. �
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Rewrite (4.12) as

ẋi =
n−1

∑
j=1

ai jx j +[ain + big(xn)]xn (i = 1, . . . ,m−1), (4.22)

where

g(xn) =

⎧⎨
⎩

0 if xn = 0,

f (xn)
xn

if xn �= 0,
(0 ≤ g(xn) ≤ k).

It is obvious that if m = n, (4.22) is exactly (4.12), and if m < n, (4.22) has the same
form as (4.19).

Note that f (0)∈F[0,k], bm ≤ 0 may not be the necessary condition for the absolute
stability of the zero solution of (4.22).

We denote

qi j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai j 1 ≤ i, j ≤ n−1,

|ain + bik| if biain ≥ 0, i = 1, . . . ,n−1, j = n,

max{|ain|,k|bi|} if biain ≤ 0, i = 1, . . . ,n−1, j = n,

|an j| i = n, 1 ≤ j ≤ n−1,

ann if bn ≤ 0, i, j = n,

an−1 −bnk if bn > 0, i, j = n.

Theorem 4.23. If the following conditions are satisfied:

(1) qii < 0, i = 1, . . . ,m;
(2) −Q(qi j)m×m is an M-matrix;

then the zero solution of (4.22) is absolutely stable in the Hurwitz angle [0,k].

Proof. If −Q(qi j)m×m is an M-matrix, there exists ηi > 0 (i = 1, . . . ,m) such that

q j jη j +
n

∑
i=1,i�= j

ηiqi j < 0.

Construct a radially unbounded, positive definite Lyapunov function for (4.22):

V =
n

∑
i=1

ηi|xi|.

Then

D+V(4.22) ≤
n−1

∑
i=1

ηi

[
ai jx j +(ain + big(xn))xn

]
signxi

+ηn

[ n−1

∑
i=1

an jx j +(ann + bng(xn))xn

]
signxn,

≤
n

∑
j=1

[
η jq j j +

n

∑
i=1,i�= j

ηiqi j

]
|x j| < 0 when x �= 0.

Thus, the conclusion is true. �
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4.3 The S-Method and Modified S-Method

If the system (4.10) is a direct control system, the Lyapunov function consists of an
integral term and a quadratic form:

V (x) = xTPx+ β
∫ σ

0
f (σ)dσ ,

where P denotes the solution of the Lyapunov matrix equation

PA + ATP = −R,

R stands for a given n×n symmetric positive definite matrix and β > 0 is a constant.
Provided that

dV
dt

∣∣∣
(4.10)

= xT(PA+ATP)x + 2
(

Pb +
1
2

β ATc
)T

x f (σ)+β cTb f 2(σ) (4.23)

is negative definite, the zero solution of (4.10) is absolutely stable. One can consider
(4.23) as a quadratic form in x and f (σ), and estimate its sign by means of the
Sylvester condition. Thus, (4.23) is negative definite in x and f (σ) if and only if

det

⎡
⎢⎢⎣

R −
(

1
2

β ATc + Pb
)

−
(

1
2

β ATc + Pb
)T

−β cTb

⎤
⎥⎥⎦> 0. (4.24)

But the condition (4.24) can never be satisfied. It can be shown that

det

⎡
⎢⎢⎣

R −
(

1
2

β ATc + Pb
)

−
(

1
2

β ATc + Pb
)T

−β cTb

⎤
⎥⎥⎦≤ 0. (4.25)

Hence, it is impossible to use Sylvester condition to find the sign of (4.23) regarded
as a quadratic form in x and f (σ). This was pointed out by Xie [159].

4.3.1 The S-Method
To overcome this difficulty, consider f (·) ∈ F[0,k]). A new method called S-method or
S-process was developed.

By adding and subtracting α f (σ)
(

σ − 1
k

f (σ)
)

in (4.23) with constant α > 0,

we deduce
dV
dt

∣∣∣
(4.10)

= xT(PA + ATP)x + 2
(

Pb +
1
2

β ATc
)T

x f (σ)

+ β cTb f 2(σ)+ α f (σ)
(

σ − 1
k

f (σ)
)
−α f (σ)

(
σ − 1

k
f (σ)
)

:= −S(x,σ)−α f (σ)
(

σ − 1
k

f (σ)
)
,
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where

S(x,σ) = xTRx+ 2dTx f (σ)+ r f 2(σ),

R = −PA−ATP,

d = −
[
Pb +

1
2
(αc + β ATc)

]
,

r = −β cTb +
α
k

.

If S(x,σ) is positive definite in x and σ , then
dV
dt

∣∣∣
(4.10)

is negative definite. The

Sylvester condition for S(x,σ) to be positive definite in x and σ is usually satisfied.
Then the following result is valid.

Theorem 4.24. (S-process) Let A be stable and suppose there exist constants
α > 0, β > 0, and a real symmetric positive definite matrix P such that

r > 0, R− 1
r

ddT > 0

or

R > 0, r−dTR−1d > 0.

Then (4.23) is negative definite, and the zero solution of (4.10) is absolutely stable in
the Hurwitz angle [0,k].

Proof. It suffices to prove that

S(x,σ) = xTRx+ 2dTx f (σ)+ r f 2(σ)

is positive definite, that is,

det
[

R d
dT r

]
> 0.

Using linear algebra, we reach the conclusion from the following two relations:[
I −d/r
0 1

][
R d
dT r

][
I 0

−dT/r 1

]
=
[

R−ddT/r 0
0 r

]
,

[
I 0

−dTR−1 1

][
R d
dT r

][
I −R−1d
0 1

]
=
[

R 0
0 r−dTR−1d

]
. �

Naturally, readers can easily see that positive definiteness of S(x,σ) is only the
sufficient condition for dV

dt

∣∣∣
(4.10)

to be negative definite. If this condition is not nec-

essary, we say that the S-method is defect. Aizeman and Gantmather [1] (p.119)
presented two problems. The second one is whether there is an example in which
the S-method cannot be applied but one can judge if dV

dt

∣∣∣
(4.10)

is negative definite by

other methods.
In [182] Zhao presented the following example.
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Example 4.25. Consider the system

ẋ1 = −2x1 + f (x2),

ẋ2 = x1 − x2 − 1
2

f (x2),
k = +∞, (4.26)

where A =
[−2 0

1 −1

]
is stable; b = (1,−1/2)T; c = (0,1)T, and take

V =
1
2

x2
1 + x2

2 +
∫ x2

0
f (x2)dx2.

Then we arrive at

dV
dt

∣∣∣
(4.26)

= −2x2
1 + 2x1x2 −2x2

2 + 2x1 f (x2)−2x2 f (x2)− 1
2

f 2(x2),

=

⎛
⎝ x1

x2
f (x2)

⎞
⎠T⎡⎣−2 1 1

1 −2 −1 + α
1 −1 + α −1/2

⎤
⎦
⎛
⎝ x1

x2
f (x2)

⎞
⎠−2αx2 f (x2).

It is not difficult to verify that there is no α > 0 such that

det

⎡
⎣−2 1 1

1 −2 −1 + α
1 −1 + α −1/2

⎤
⎦< 0.

However, Zhao [182] proved that dV
dt

∣∣∣
(4.26)

is negative definite by another method.

4.3.2 The Modified S-Method

When we verify if the derivative, V̇ , of the function V with the Lurie form is negative
definite, the original S-method is the most useful one and is used extensively. This
method is also widely used for nonautonomous systems, multiple adjusted systems,
etc. However, the original S-method requires that S(x,σ) is negative definite in x and
σ . If it requires only negative semi-definite, one can apply Barbashin–Krasovskii’s
theorem [5, 53] or LaSalle’s invariance principle [61]. But it is rather troublesome.
Our goal is to improve the S-method such that it can be widely used [78].

Theorem 4.26. Assume that A is stable. If there exists constants α > 0, β ≥ 0, and
a real symmetric positive definite matrix P such that

r > 0, R− 1
r

ddT ≥ 0 (4.27)

or
R > 0, r−dTR−1d ≥ 0, (4.28)
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then the zero solution of (4.10) is absolutely stable in the Hurwitz angle [0,k], where

R = −PA−ATP,

d = −
[

Pb +
1
2
(αc + β ATc)

]
,

r = −β cTb +
α
k

,

0 ≤ f (σ)
σ

< k ≤ +∞.

Proof. We construct the Lyapunov function

V (x) = xTPx+ β
∫ σ

0
f (σ)dσ .

Then we have

dV
dt

∣∣∣
(4.10)

= xT(PA + ATP)x + 2
(

Pb +
1
2

β ATc
)T

x f (σ)

+ β cTb f 2(σ).

By using the S-method, we rearrange − dV
dt

∣∣∣
(4.10)

as follows

−dV
dt

∣∣∣
(4.10)

= xTRx+ 2dTx f (σ)+ r f 2(σ)+ α f (σ)
(

σ − 1
k

f (σ)
)

:= S(x,σ)+ α f (σ)
(

σ − 1
k

f (σ)
)
,

where
S(x,σ) = xTRx+ 2dTx f (σ)+ r f 2(σ).

When k → +∞, the condition (4.27) or (4.28) implies that S(x,σ) ≥ 0. Thus,

dV
dt

∣∣∣
(4.10)

≤−α f (σ)σ

is negative definite for Ω . Therefore, from Theorem 4.14 it follows that the conclu-
sion is true. �

Corollary 4.27. Suppose k → +∞ and one of the following conditions holds:

(1)
(β ATc

2
+ Pb

)T
R−1
(β ATc

2
+ Pb

)
+ β cTb < 0;

(2)
(β ATc

2
+ Pb

)T
R−1c < 0 and

[(β ATc
2

+Pb
)T

R−1c
]2−(cTR−1c)

[(β ATc
2

+Pb
)T

R−1
(β ATc

2
+Pb
)
+β cTb

]
≥0;
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(3)
(β ATc

2
+ Pb

)T
R−1c ≤ 0 and

[(β ATc
2

+Pb
)T

R−1c
]2−(cTR−1c)

[(β ATc
2

+Pb
)T

R−1
(β ATc

2
+Pb
)
+β cTb

]
>0.

Then there exists α > 0 such that S(x,σ) ≥ 0. Therefore, the zero solution of (4.10)
is absolutely stable.

Proof. We have R > 0. Let dTR−1d− r = 0, that is,

(β ATc
2

+ Pb +
αc
2

)T
R−1
(β ATc

2
+ Pb +

αc
2

)
+ β cTb = 0,

or

cT

2
R−1 c

2
α2 +

[(β ATc
2

+ Pb
)T

R−1 c
2

+
cT

2
R−1
(β ATc

2
+ Pb

)]
α

+
(β ATc

2
+ Pb

)T
R−1
(β ATc

2
+ Pb

)
+ β cTb = 0. (4.29)

Equation (4.29) has the positive solution α if and only if one of the conditions (1),
(2) and (3) holds. In this case, the condition of Theorem 4.26 is satisfied, so the
conclusion is clear. �

Corollary 4.28. If k < +∞ and the following conditions hold:

1
k
− cTR−1d > 0,(1
k
− cTR−1d

)2 − cTR−1c(dTR−1d + β cTb) > 0,

then the derivative of V (x) = xTPx + β
∫ σ

0 f (σ)dσ along the solution of (4.10) is
negative definite for Ω . Thus, the zero solution of (4.10) is absolutely stable in the
Hurwitz angle [0,k].

Proof. The conditions imply that there exists ε with 0 < ε 	 1 such that

1
k + ε

− cTR−1d > 0, (4.30)( 1
k + ε

− cTR−1d
)2 − cTR−1c(dTR−1d + β cTb) > 0. (4.31)

Consequently, we derive

−dV
dt

∣∣∣
(4.10)

= xTRx+ 2dTx f (σ)+ r̃ f 2(σ)+ α f (σ)
(

σ − 1
k + ε

f (σ)
)

:= S̃(x,σ)+ α f (σ)
(

σ − 1
k + ε

f (σ)
)
,
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where

d = −
[
Pb +

1
2
(αc + β ATc)

]
,

r̃ = −
(

β cTb− α
k + ε

)
.

Obviously, R is positive definite. Thus, the conditions (4.30) and (4.31) guarantee
that the equation

det
∣∣∣∣ R d
dT r̃

∣∣∣∣= 0

has positive solution for α , implying that S̃(x,α) ≥ 0. Therefore, the zero solution
of (4.10) is absolutely stable in the Hurwitz angle [0,k]. �

Example 4.25 indicates that the original S-method is not efficient. In the follow-
ing, we again adopt this example to illustrate that the modified S-method can be used
to easily verify the absolute stability.

Taking

V =
1
2

x2
1 + x2

2 +
∫ x2

0
f (x2)dx2,

we derive

dV
dt

∣∣∣
(4.26)

= −2x2
1 + 2x1x2 −2x2

2 + 2x1 f (x2)−2x2 f (x2)− 1
2

f 2(x2),

=

⎛
⎝ x1

x2
f (x2)

⎞
⎠T⎡⎣−2 1 1

1 −2 −1 + α
1 −1 + α −1/2

⎤
⎦
⎛
⎝ x1

x2
f (x2)

⎞
⎠−2αx2 f (x2).

Choosing α = 1/2, we get

det

⎡
⎣−2 1 1

1 −2 −1 + α
1 −1 + α −1/2

⎤
⎦= 0.

Thus, dV
dt

∣∣∣
(4.26)

≤ −x2 f (x2). That is, dV
dt

∣∣∣
(2.20)

is negative definite for Ω = {x : σ =

x2 = 0}. Therefore, the zero solution of (4.26) is absolutely stable. Obviously, the
modified S-method is more general than the standard one.

4.4 Lurie Indirect Control System

Consider the Lurie indirect control system

ẏ = Dy + sξ ,

ξ̇ = f (σ),

σ = cTy−ρξ ,

(4.32)
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˙

D

+

cT

s

˙
−ρ +

σ

f(σ)

ξ ξ

yy

Fig. 4.2 Lurie indirect control system

where D = (di j)n×n ∈ Rn×n, s ∈ Rn, y ∈ Rn, ξ ∈ R, ρ ∈ R, and f (σ) ∈ F∞. The
indirect Lurie control system descried by (4.32) is depicted in Fig. 4.2.

It can be easily proved that the necessary conditions for absolute stability of the

zero solution of (4.32) are that ρ ≥ 0 and
[

D s
cT −ρ

]
is Hurwitz stable.

If ρ �= 0, introduce the n-dimensional full-rank linear transformation:

xi = yi, i = 1, . . . ,n,

xn+1 = σ =
n

∑
i=1

ciyi −ρξ .
(4.33)

Then (4.33) is transformed into the following system with separable variables

ẋi =
n+1

∑
j=1

ai jx j, i = 1, . . . ,n,

ẋn+1 =
n+1

∑
j=1

an+1, jx j −ρ f (xn+1),
(4.34)

where

ai j = di j +
si

ρ
c j, i, j = 1, . . . ,n,

ai,n+1 = − si

ρ
, i = 1, . . . ,n,
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an+1, j =
n

∑
i=1

ciai j =
n

∑
i=1

ci

(
di j +

sic j

ρ

)
, j = 1, . . . ,n,

an+1,n+1 =
n

∑
i=1

ciai,n+1 =
n

∑
i=1

ci

(
− si

ρ

)
.

Since the necessary condition for absolute stability of the zero solution of (4.32) is[
D s
cT −ρ

]
being stable, we take

[
D s
cT −ρ

]
nonsingular.

Again, by the nonsingular linear transformation

z = Dy + sξ ,

zn+1 = cTy−ρξ ,
z,y ∈ Rn, (4.35)

(4.34) can be rewritten as

ż = Bz+ h f (zn+1),

żn+1 = cTz− ρ̃ f (zn+1),
(4.36)

where [
B h
cT −ρ̃

]
=
[

D s
cT −ρ

][
D s
0 0

][
D s
cT −ρ

]−1

,

(
h

−ρ̃

)
=
[

D s
cT −ρ

](
s
1

)
.

Obviously, under the condition that ρ �= 0 and
[

D s
cT −ρ

]
is nonsingular, the stabilities

of (4.32), (4.34), and (4.35) are equivalent. In analogy with Theorems 4.3–4.4, we
formulate [75] the following:

Theorem 4.29. The zero solution of (4.34) is absolutely stable if and only if

(1) The zero solution of (4.34) is absolutely stable for xn+1;
(2) The matrix G(gi j)(n+1)×(n+1) is Hurwitz stable, where

gi j =

{
an+1,n+1−ρ , i = j = n + 1,

ai j, otherwise.

Theorem 4.30. The zero solution of (4.34) is absolutely stable if and only if

(1) The zero solution of (4.34) is absolutely stable for the partial variables x j, . . . ,
xn+1 (i < j ≤ n + 1);

(2) The condition (2) of Theorem 4.29 holds.

Theorem 4.31. The zero solution of (4.36) is absolutely stable if and only if

(1) The zero solution of (4.36) is absolutely stable for zn+1;

(2)
[

B h
cT −ρ̃

]
is Hurwitz stable.
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Theorem 4.32. The zero solution of (4.36) is absolutely stable if and only if

(1) The zero solution of (4.36) is absolutely stable for the partial variables z j, . . . ,
zn+1 (1 < j ≤ n + 1);

(2)
[

B h
cT −ρ̃

]
is Hurwitz stable.

The proofs for Theorems 4.29–4.32 can be completed similarly to that of Theo-
rem 4.3, and are omitted.

In the following, we derive a series of practical sufficient conditions from the
above theorems. Henceforth, we assume ρ > 0 (ρ̃ > 0).

Theorem 4.33. If aii < 0, i = 1, . . . ,n + 1, and

Ga := −((−1)δi j |ai j|)(n+1)×(n+1) is an M-matrix,

the zero solution of (4.34) is absolutely stable.

Proof. Since Ga is an M-matrix and aii < 0 (i = 1, . . . ,n + 1), there exists n + 1
positive constants ri > 0 (i = 1, . . . ,n + 1) such that

−r ja j j >
n+1

∑
i=1,i�= j

ri|ai j|, j = 1, . . . ,n + 1.

We construct the radially unbounded, positive definite Lyapunov function

V (x) =
n+1

∑
i=1

ri|xi|.

Then, we obtain

D+V (x)|(4.34) ≤
n+1

∑
j=1

[
r ja j j +

n+1

∑
i=1,i�= j

ri|ai j|
]
|x j|−ρrn+1| f (xn+1)|

< 0 for x �= 0.

Consequently, the zero solution of (4.34) is absolutely stable. �

Theorem 4.34. Suppose that

(1) The matrix A or the matrix A+
[

0n×n 0n×1
01×n −ρ

]
is Hurwitz stable;

(2) There exists constants ri ≥ 0 (i = 1, . . . ,n), rn+1 > 0 such that

−r ja j j ≥
n+1

∑
i=1,i�= j

ri|ai j|, j = 1, . . . ,n + 1.

Then the zero solution of (4.34) is absolutely stable.
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Proof. We construct the radially unbounded, positive definite Lyapunov function
for xn:

V (x) =
n+1

∑
i=1

ri|xi|.

The argument used in the proof of Theorem 4.33 works, and

D+V (x)|(4.34) ≤
n+1

∑
j=1

[
r ja j j +

n+1

∑
i=1,i�= j

ri|ai j|
]
|x j|−ρrn+1| f (xn+1)|

≤ −ρ rn+1| f (xn+1)| < 0 for xn+1 �= 0.

Thus, the zero solution of (4.34) is absolutely stable for xn+1. According to Theo-
rem 4.29 the assertion holds. �

Theorem 4.35. If bii < 0, i = 1, . . . ,n, ρ̃ > 0, and

Ω :=

⎡
⎢⎢⎢⎢⎢⎣

|b11| −|b12| · · · −|b1n| −|h1|
−|b21| |b22| · · · −|b2n| −|h2|

...
...

...
...

−|bn1| −|bn2| · · · |bnn| −|hn|
−|c1| −|c2| · · · −|cn| ρ̃

⎤
⎥⎥⎥⎥⎥⎦ is an M-matrix,

then the zero solution of (4.36) is absolutely stable.

Proof. Since Ω is an M-matrix, there exist constants ri > 0 (i = 1, . . . ,n + 1) such
that

r j|b j j| >
n

∑
i=1,i�= j

ri|bi j|+ rn+1|c j|, j = 1, . . . ,n,

rn+1ρ̃ >
n

∑
i=1

ri|hi|.

We construct the radially unbounded and positive definite Lyapunov function

V (z) =
n+1

∑
i=1

ri|zi|.

As in Theorem 4.33, we obtain

D+V (z)|(4.36) ≤
n

∑
j=1

[
r j b j j +

n

∑
i=1,i�= j

ri |bi j|+ rn+1|c j|
]
|z j|

+
[
− ρ̃rn+1 +

n

∑
i=1

ri|hi|
]
| f (zn+1)|

< 0 for z �= 0.

Thus, the zero solution of (4.36) is absolutely stable. �
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Theorem 4.36. (1) Let the matrix
[

B h
cT −ρ̃

]
be Hurwitz stable;

(2) Suppose that there exist constants ri ≥ 0 (i = 1, . . . ,n), rn+1 > 0 such that

r j|b j j| ≥
n

∑
i=1,i�= j

ri|bi j|+ rn+1|c j|, j = 1, . . . ,n,

rn+1ρ̃ >
n

∑
i=1

ri|hi|.

Then the zero solution of (4.36) is absolutely stable.

Proof. We construct the radially unbounded, positive definite Lyapunov function for
zn+1:

V (z) =
n+1

∑
i=1

ri|zi|.

Then,

D+V (z)|(4.36) ≤
n

∑
j=1

[
r jb j j +

n

∑
i=1,i�= j

ri|bi j|+ rn+1|c j|
]
|z j|

+
[
− ρ̃rn+1 +

n

∑
i=1

ri|hi|
]
| f (zn+1)|

≤
[
− ρ̃rn+1 +

n

∑
i=1

ri|hi|
]
| f (zn+1)|

< 0 for zn+1 �= 0.

Accordingly, D+V (z)|(4.36) is negative definite for zn+1, and it follows from condition
(1) that the conditions of Theorem 4.31 are satisfied. Hence, the conclusion of this
theorem holds. �

In the following, we take

A( j0) =

⎡
⎢⎣ a11 · · · a1 j0

...
...

a j01 · · · a j0 j0

⎤
⎥⎦ , A(n+1− j0) =

⎡
⎢⎣ a1, j0+1 · · · a1,n+1

...
...

a j0, j0+1 · · · a j0,n+1

⎤
⎥⎦ ,

B( j0) =

⎡
⎢⎣ b11 · · · b1 j0

...
...

b j01 · · · b j0 j0

⎤
⎥⎦ , B(n+1− j0) =

⎡
⎢⎣ b1, j0+1 · · · b1n h1

...
...

...
b j0, j0+1 · · · b j0n h j0

⎤
⎥⎦ ,

x( j0) = (x1, . . . ,x j0)
T, x(n+1− j0) = (x j0+1, . . . ,xn+1)T,

z( j0) = (z1, . . . ,z j0)
T, z(n+1− j0) = (z j0+1, . . . ,zn, f (zn+1))T,

f (n+1− j0) = (

n+1− j0︷ ︸︸ ︷
0, . . . ,0, −ρ f (xn+1)).
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Theorem 4.37. Suppose that

(1) The matrix A( j0) is Hurwitz stable;
(2) There exist constants ri ≥ 0 (i = 1, . . . , j0), r j > 0 ( j = j0 +1, . . . ,n+1) such that

−r ja j j ≥
n+1

∑
i=1,i�= j

ri|ai j|, j = 1, . . . , j0,

−r ja j j >
n+1

∑
i=1,i�= j

ri|ai j|, j = j0 + 1, . . . ,n + 1.

Then the zero solution of (4.34) is absolutely stable.

Proof. We construct the radially unbounded, positive definite Lyapunov function
w.r.t. the partial variables x j0+1, . . . ,xn+1:

V (z) =
n+1

∑
i=1

ri|xi|.

Then,

D+V |(4.34) ≤
j0

∑
j=1

[
r ja j j +

n+1

∑
i=1,i�= j

ri|ai j|
]
|x j|−ρrn+1| f (xn+1)|,

≤
n+1

∑
j= j0+1

[
r ja j j +

n+1

∑
i=1,i�= j

ri|ai j|
]
|x j|−ρ rn+1| f (xn+1)|,

< 0 for
n+1

∑
j= j0+1

x2
j �= 0.

Thus, the zero solution of (4.34) is absolutely stable w.r.t. the partial variables
x j0+1, . . . ,xn+1.

The first j0 components of the solution of (4.34) can be expressed as

x( j0)(t,t0,x0) = eA( j0)(t−t0) x( j0)(t0)

+
∫ t

t0

[
eA( j0)(t−τ)A(n+1− j0)x(n+1− j0)(τ)+ f (n+1− j0)(xnn(τ))

]
dτ.

Following the proof of the sufficiency in Theorem 4.3, we can complete the rest of
the proof. �

Similarly, we have the following theorems.

Theorem 4.38. Suppose that

(1) The matrix B( j0) is Hurwitz stable;
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(2) There exist constants ri ≥ 0 (i = 1, . . . , j0), r j > 0 ( j = j0 +1, . . . ,n+1) such that

−r jb j j ≥
n+1

∑
i=1,i�= j

ri|bi j|+ rn+1|c j|, j = 1, . . . , j0,

−r jb j j >
n+1

∑
i=1,i�= j

ri|bi j|+ rn+1|c j|, j = j0 + 1, . . . ,n + 1,

rn+1ρ̃ >
n

∑
i=1

ri|hi|.

Then the zero solution of (4.36) is absolutely stable.

Theorem 4.39. Assume that

(1) A(ai j)(n+1)×(n+1) or A +
[

0 0
0 −ρ

]
is Hurwitz stable;

(2) There exist a symmetric positive semi-definite matrix of the form

P =

⎡
⎢⎢⎢⎣

p11 · · · p1n 0
...

...
...

pn1 · · · pnn 0
0 · · · 0 pn+1,n+1

⎤
⎥⎥⎥⎦ (pn+1,n+1 > 0)

such that ATP + PA is negative semi-definite.

Then the zero solution of (4.34) is absolutely stable.

Proof. Obviously, the condition (1) is the same as the condition (2) in Theorem 4.29.
We construct the radially unbounded, positive definite Lyapunov function w.r.t.

xn+1:
V (x) = xTPx.

We fix l = (

n︷ ︸︸ ︷
0, . . . ,0,−ρ)T, then

dV
dt

∣∣∣
(4.34)

= xT(ATP+ PA)x +(lTPx+ xTPl) f (xn+1),

= xT(ATP+ PA)x−2ρ pn+1,n+1xn+1 f (xn+1),

≤ −2ρ pn+1,n+1xn+1 f (xn+1),

< 0 for xn+1 �= 0.

Thus, the condition (1) of Theorem 4.29 is satisfied and the conclusion of this
theorem is true. �

Theorem 4.40. Assume that

(1) The condition (1) of Theorem 4.39 holds;
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(2) There exist a constant ε > 0 and an (n + 1)× (n + 1) symmetric, positive semi-
definite matrix P such that⎡

⎢⎣ ATP+ PA Pl +
1
2

An+1 + εen+1

(Pl +
1
2

An+1 + εen+1)T −ρ

⎤
⎥⎦

is negative semi-definite, where

An+1 = (an+1,1, . . . ,an+1,n+1)T, � = (

n︷ ︸︸ ︷
0, . . . ,0,−ρ)T,

en+1 = (

n︷ ︸︸ ︷
0, . . . ,0,1)T;

(3)
∫ ±∞

0 f (xn+1)dxn+1 = +∞.

Then the zero solution of (4.34) is absolutely stable.

Proof. We construct the Lyapunov function

V (x) = xTPx+
∫ xn+1

0
f (xn+1)dxn+1.

Obviously,

V (x) ≥
∫ xn+1

0
f (xn+1)dxn+1 > 0 for xn+1 �= 0,

and V (x) → +∞ as |xn+1| → +∞. Moreover, we have

dV
dt

∣∣∣
(4.34)

= ẋPx + xTPẋ+[AT
n+1x−ρ f (xn+1)] f (xn+1),

= xT(ATP+ PA)x +[lTPx+ xTPl + AT
n+1x] f (xn+1)−ρ f 2(xn+1),

=
(

x
f (xn+1)

)T

⎡
⎢⎣ ATP+ PA Pl+

An+1

2
+εen+1

(Pl+
An+1

2
+εen+1)T −ρ

⎤
⎥⎦( x

f (xn+1)

)

−
(

x
f (xn+1)

)T
[

0(n+1)×(n+1) εen+1

(εen+1)T 0

](
x

f (xn+1)

)
,

≤ −2εxn+1 f (xn+1) < 0 as xn+1 �= 0.

Thus, the zero solution of (4.34) is absolutely stable. �

Remark 4.41. Suppose that the condition for the matrix P being positive semi-
definite is replaced by the condition for the matrix P being positive definite, or that
there exists a constant ε > 0 satisfying

xTPx ≥ εx2
n+1.

Then the condition (3) of Theorem 4.40 can be dropped.
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Theorem 4.42. (1) Let the condition (1) of Theorem 4.40 be satisfied.
(2) Suppose that there exists an n×n symmetric, positive semi-definite matrix P such

that BTP + PB := −Q is negative semi-definite, and that there exists a constant
ε > 0 such that

det

⎡
⎣ Q −(Ph +

c
2
)

−(Ph +
c
2
)T ρ̃ − ε

⎤
⎦≥ 0

and ∫ ±∞

0
f (zn+1)dzn+1 = +∞.

Then the zero solution of (4.36) is absolutely stable.

Proof. We construct the Lyapunov function

V (z) = zTPz+
∫ zn+1

0
f (zn+1)dzn+1

with z = (z1, . . . ,zn)T. Obviously, V (z) is radially unbounded, positive definite for
zn+1, and

dV
dt

∣∣∣
(4.36)

= zT(BTP + PB)z+(hTPz+ zTPh + cTz) f (zn+1)− ρ̃ f 2(zn+1),

= −zTQz+ 2 f (zn+1)(Ph +
c
2
)Tz− ρ̃ f 2(zn+1),

=
(

z
f (zn+1)

)T
⎡
⎣ −Q Ph +

c
2

(Ph +
c
2
)T −ρ̃ + ε

⎤
⎦( z

f (zn+1)

)
− ε f 2(zn+1),

≤ −ε f 2(zn+1) < 0 for zn+1 �= 0.

In this case, the zero solution of (4.36) is absolutely stable for zn+1. Hence, all the
conditions of Theorem 4.31 are satisfied; thus the conclusion of this theorem is valid.

�

Theorem 4.43. Suppose the following conditions are satisfied:

(1) A( j0) is stable;
(2) There exist an n× n matrix P and a constant ε > 0 (ε 	 1) such that

xTPx ≥ ε
n+1

∑
j= j0+1

x2
j

and

(
x

f (xn+1)

)T

⎡
⎢⎣ ATP+ PA Ph +

1
2

An+1

(Ph +
1
2

An+1)T −ρ

⎤
⎥⎦( x

f (xn+1)

)
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≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε
n

∑
i= j0+1

x2
i − ε f 2(xn+1), or

−ε
n+1

∑
i= j0+1

x2
i , or

−ε
[ n

∑
i= j0+1

x2
i + xn+1 f (xn+1)

]
,

where An+1 = (an+1,1, . . . ,an+1,n+1)T.

Then the zero solution of (4.34) is absolutely stable.

Proof. We construct the Lyapunov function

V = xTPx+
∫ xn+1

0
f (xn+1)dxn+1.

The condition (2) asserts that V (x) is radially unbounded and positive definite w.r.t.

the partial variables x j0+1, . . . ,xn+1, and that
dV
dt

∣∣∣
(4.34)

is negative definite w.r.t.
x j0+1, . . . ,xn+1.

In addition, the first j0 components of the solution of (4.34) can be expressed as

x( j0)(t,t0,x0) = eA( j0)(t−t0) x( j0)(t0)

+
∫ t

t0

[
eA( j0)(t−τ) A(n+1− j0)x(n+1− j0)(τ)+ f n+1− j0(τ)

]
dτ.

The rest of the proof can be completed as in Theorem 4.3. �

Similarly, we formulate

Theorem 4.44. (1) Let B( j0) be stable;
(2) Suppose that there exist an n×n matrix P and a constant ε > 0 such that

zTBz ≥ ε
n+1

∑
i= j0+1

z2
i

and

(
z

f (zn+1)

)T
⎡
⎣ BTP+PB Ph +

c
2

(Ph +
c
2
)T −ρ̃

⎤
⎦( z

f (zn+1)

)
≤−ε

n+1

∑
i= j0+1

z2
i − ε f 2(zn+1);

(3)
∫ ±∞

0 f (zn+1)dzn+1 = +∞.
Then the zero solution of (4.36) is absolutely stable.
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4.5 Lurie Systems with Loop Feedbacks

The result presented in this section is new and is in press [89].
Consider the more general Lurie control system with loop feedbacks:

ẋ = Ax+ bξ + d f (σ),

ξ̇ = f (σ),

σ = cTx− rξ −N f (σ),

(4.37)

where x ∈ Rn, A ∈ Rn×n, b,c,d ∈ Rn, N,r ∈ R1, f ∈ Fk. When N = 0, d = 0, (4.37) is
a standard Lurie indirect control system. If the second scalar equation does not exist,
and N = ξ = 0, b = 0, A is a Hurwitz matrix. Then (4.37) is a standard Lurie direct
control system. If the second scalar equation does not exist, and N = ξ = 0, b = 0,
Reλ (A)≤ 0, A has only one zero eigenvalue, and all other eigenvalues have negative
real parts, then (4.37) is a Lurie critical control system. The system (4.37) describing
the Lurie system with loop feedback is shown in Fig. 4.3.

In the above three control systems, we have N = 0, that is, the feedback control
variable σ is a linear combination of state variables. When N �= 0 in (4.37), the feed-
back variable σ and the state variables are in an implicit relation. To consider the
effect of delay, we can further see that the feedback control variable and the feed-
back function f (σ) have a recursive relation. This is more complicated, but better
describes practical control process.

˙

A

+ d

cT

b

f(σ) σ

−N

˙
−r +

xx

ξ ξ

Fig. 4.3 Lurie system with loop feedback
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Let Ω̄ = {‖cTx−rξ‖= 0}. Similar to Definition 4.13, we can define the absolute
stability of the zero solution of (4.37) w.r.t. Ω̄ . Similar to Definition 4.15, we can also
define the Lyapunov function V (x,ξ )∈C[Rn+1,R1], which is radially unbounded and
positive definite w.r.t. the set Ω̄ .

Definition 4.45. V (x,ξ ) is positive definite (negative definite) w.r.t. σ = 0 if

V (x,ξ ) =
{

> 0 if σ �= 0,
= 0 if σ = 0.

(
V (x,ξ ) =

{
< 0 if σ �= 0,
= 0 if σ = 0.

)

V (x,ξ ) is radially unbounded w.r.t. σ if V (x,ξ ) → +∞ as σ → ∞.

Note that σ is not a state variable. Its relation with x and ξ is not explicit. Thus,
it is difficult to check if the above conditions are satisfied.

In the following, we assume that |σ +N f (σ)| is positive definite. |σ +N f (σ)| is
obviously positive definite as N ≥ 0. If N < 0, and | f (σ)| < 1

N |σ | or | f (σ)| > 1
N |σ |,

we can also make |σ + N f (σ)| positive definite.

Lemma 4.46. The zero solution of (4.37) is absolutely stable with respect to the set
Ω̄ if and only if it is absolutely stable with respect to σ = 0.

Proof. The conclusion is obvious if N = 0. In this case, σ is explicitly expressed by
the linear combination of the state variables as σ = cTx− rξ = 0.

Next, consider the case N �= 0.
Sufficiency. Assume that the zero solution of (4.37) is absolutely stable w.r.t.

σ = 0. Since f (0) = 0 and f (σ) is continuous, ∀ε > 0, there exists δ (ε) > 0 such
that |σ(t,t0,σ0)| < ε

2 and |N f (σ(t,t0,σ0))| < ε
2 when |σ0| < δ . Thus,

|cTx(t)− rξ (t)| ≤ |σ(t,t0,σ0)|+ |N f (σ(t,t0,σ0))| < ε
2

+
ε
2

= ε.

For all (x0,ξ0) ∈Rn+1,

lim
t→+∞

|cTx(t)− rξ (t)| ≤ lim
t→+∞

|σ(t)|+ lim
t→+∞

|N f (σ(t))| = 0.

Thus, the zero solution of (4.37) is absolutely stable with respect to Ω̄ .
Necessity. Assume that the zero solution of (4.37) is absolutely stable w.r.t. Ω̄ ,

and |σ + N f (σ)| is positive definite w.r.t. σ . From Lemmas 2.5 and 2.6, we know
that there exists kth order function ϕ(σ) such that

ϕ(|σ |) ≤ |σ(t)+ N f (σ(t))| = |cTx(t)− rξ (t)|.
From the characteristics of the K-class function, we have

|σ | ≤ ϕ−1|cTx(t)− rξ (t)|.
∀ε > 0, there exists δ (ε) > 0 such that

|σ(t)| ≤ ϕ−1(|cTx(t)− rξ (t)|) < ε,
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if ‖x0‖+ |ξ0| < δ . Also, ∀(x0,ξ0) ∈ Rn+1,

|σ(t) ≤ ϕ−1(|cTx(t)− rξ (t)|)→ 0, as t → +∞.

Thus, the zero solution of (4.37) is absolutely stable w.r.t. σ = 0. The proof is
complete. �

Theorem 4.47. The zero solution of (4.37) is absolutely stable if and only if the
following two conditions are satisfied:

(1) B1, B2, and B3 are all Hurwitz matrices, where

B1 =

[
A + dcT b−dr

cT −r

]
, if N = 0,

B2 =

⎡
⎢⎢⎣A +

dcT

1 + N
b− dr

1 + N
cT

1 + N
− r

1 + N

⎤
⎥⎥⎦ , if N > 0,

B3 =

⎡
⎢⎢⎣A− dcT

N
b +

dr
N

−cT

N
r
N

⎤
⎥⎥⎦ , if N < 0;

(2) The zero solution of (4.37) is absolutely stable w.r.t. the set Ω̄ .

Proof. Necessity. If N = 0, f (σ) = cTx− rξ = σ . Then (4.37) becomes(
ẋ(t)
ξ̇ (t)

)
=
[

A + dcT b−dr
cT −r

](
x(t)
ξ (t)

)
= B1

(
x(t)
ξ (t)

)
. (4.38)

If N �= 0, we have f (σ) = cTx−rξ−σ
N . Then (4.37) can be rewritten as

(
ẋ(t)
ξ̇ (t)

)
=

⎡
⎣ A b

cT

N
− r

N

⎤
⎦( x(t)

ξ (t)

)
+

(
d f (σ)

−σ
N

)
. (4.39)

If N > 0, let f (σ) = σ . It is obvious that |σ +N f (σ)| is positive definite. Substituting
σ = cTx−rξ

1+N in (4.39) yields

(
ẋ(t)
ξ̇ (t)

)
=

⎡
⎣ A b

cT

N
− r

N

⎤
⎦( x(t)

ξ (t)

)
+

⎛
⎜⎜⎝

d(cTx− rξ )
1 + N

− cTx− rξ
N(1 + N)

⎞
⎟⎟⎠ ,

=

⎡
⎢⎢⎣A +

dcT

1 + N
b− dr

1 + N
cT

1 + N
− r

1 + N

⎤
⎥⎥⎦
(

x(t)
ξ (t)

)
= B2

(
x(t)
ξ (t)

)
. (4.40)
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If N < 0, let f (σ) = − σ
2N . It is clear that |σ + N f (σ)| = 1

2 |σ | is positive definite.
Substituting σ = 2(cTx− rξ ) in (4.39) results in

(
ẋ(t)
ξ̇ (t)

)
=

⎡
⎣ A b

cT

N
− r

N

⎤
⎦( x(t)

ξ (t)

)
+

⎛
⎜⎜⎝−d(cTx− rξ )

N
−2(cTx− rξ )

N

⎞
⎟⎟⎠ ,

=

⎡
⎢⎢⎣A− dcT

N
b +

dr
N

−cT

N
r
N

⎤
⎥⎥⎦
(

x(t)
ξ (t)

)
= B3

(
x(t)
ξ (t)

)
. (4.41)

Thus, B1, B2, and B3 are all Hurwitz matrices, and the condition (1) holds.
∀ f (·) ∈ F[0,k], let max[ max

1≤i≤n
(|ci|), |r|] = r. ∀ε > 0, there exists δ (ε) > 0 such that

n

∑
i=1

|xi(t)|+ |ξ (t)|< ε
r
.

Thus,
n

∑
i=1

|cixi(t)|+ |rξ (t)| ≤ r · ε
r

= ε.

∀(x0,ξ0) ∈ Rn+1, we have

0 ≤ lim
t→+∞

|cTx(t)− rξ (t)| ≤ lim
t→+∞

[ n

∑
i=1

|cixi(t)|+ |rξ (t)|
]

= 0.

Thus, the zero solution of (4.37) is absolutely stable w.r.t. Ω̄ . The condition (2) holds,
and the necessity is proved.

Sufficiency. Using (4.38), (4.40), and (4.41), we can rewrite (4.37) as the follow-
ing three equations:
When N = 0, (

ẋ(t)
ξ̇ (t)

)
= B1

(
x(t)
ξ (t)

)
+
(

d( f (σ(t)))−σ(t)
f (σ(t))−σ(t)

)
; (4.42)

When N > 0, (
ẋ(t)
ξ̇ (t)

)
= B2

(
x(t)
ξ (t)

)
+
(

d( f (σ(t)))−σ(t)
f (σ(t))−σ(t)

)
; (4.43)

When N < 0,

(
ẋ(t)
ξ̇ (t)

)
= B3

(
x(t)
ξ (t)

)
+

⎛
⎝d( f (σ(t)))−σ(t)

f (σ(t))+
σ(t)
2N

⎞
⎠ . (4.44)
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In the following, we first prove the absolute stability of the zero solution of (4.42).
With the formula of variation of constants, the solution of (4.42) can be expressed as(

x(t)
ξ (t)

)
= eB1(t−t0)

(
x(t0)
ξ (t0)

)
+
∫ t

t0
eB1(t−τ)

(
d ( f (σ(τ))−σ(τ))

f (σ(τ))−σ(τ)

)
dτ. (4.45)

Since B1 is a Hurwitz matrix, there exist ξ > 0 and M ≥ 1 such that∥∥∥eB1(t−t0)
∥∥∥≤ M e−ξ (t−t0).

Further, because of that continuity of f (σ)−σ , ∀ε > 0, there exists δ1 > 0 such that

| f (σ)−σ | < ξ ε

2
∥∥∥∥ d

1

∥∥∥∥
M

when |σ |< δ1. The absolute stability of the zero solution of (4.42) w.r.t. the set Ω̄ is
equivalent to that w.r.t. σ = 0. Thus, for δ1 > 0, there exists δ > 0 such that (4.42)
satisfies ∥∥∥∥∫ t

t0
eB1(t−τ)

[
d ( f (σ(τ))−σ(τ))
( f (σ(τ))−σ(τ)

]
dτ
∥∥∥∥

≤
∫ t

t0

∥∥∥eB1(t−τ)
∥∥∥ ∥∥∥∥d ( f (σ(τ))−σ(τ))

f (σ(τ))−σ(τ)

∥∥∥∥ dτ

≤
∫ t

t0
M e−ξ (t−τ)

∥∥∥∥ d
1

∥∥∥∥ ‖ f (σ(τ))−σ(τ)‖dτ

≤ ξ ε
∫ t

t0
e−ξ (t−τ) dτ ≤ ε

2

when
∣∣∣∣
∣∣∣∣ x(t0)
ξ (t0)

∣∣∣∣
∣∣∣∣< δ and ‖σ(t)‖ ≤ δ1.

Let δ2 = min
{ ε

2M
,δ
}

. For the above ε , we have

∥∥∥∥ x(t)
ξ (t)

∥∥∥∥ ≤ ‖eB1(t−t0)‖
∥∥∥∥ x(t0)

ξ (t0)

∥∥∥∥+∫ t

t0

∥∥∥eB1(t−τ)
∥∥∥ ∥∥∥∥ d ( f (σ(τ))−σ(τ))

f (σ(τ))−σ(τ)

∥∥∥∥ dτ

≤ M e−ξ (t−t0)
∥∥∥∥ x(t0)

ξ (t0)

∥∥∥∥+
∥∥∥∥d

1

∥∥∥∥M
∫ t

t0
e−ξ (t−τ)‖ f (σ(τ)−σ(τ)‖dτ

≤ ε
2

+
ε
2

= ε (4.46)

when
∥∥∥∥ e(t0)

ξ (t0)

∥∥∥∥< δ2. Thus, the zero solution of (4.42) is stable.
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The first term in (4.45) → 0 as t → +∞ due to Re[λ (B1)] < 0. Since
lim

t→+∞
σ(t) = 0, f (σ)−σ is continuous, and f (0) = 0, we have

lim
t→+∞

| f (σ(t))−σ(t)| = 0.

Now we derive∫ t

t0
eB1(t−τ)

(
d( f (σ(τ))−σ(τ))

f (σ(τ))−σ(τ)

)
dτ ≤ M

∫ t

t0
e−ξ (t−τ)

∥∥∥∥ d( f (σ(τ))−σ(τ))
f (σ(τ))−σ(τ)

∥∥∥∥ dτ

≤ M

∫ t
t0e

ξ τ
∥∥∥∥d( f (σ(τ))−σ(τ))

f (σ(τ))−σ(τ)

∥∥∥∥ dτ

eξ t
.

Using the L’Hospital rule, we have

lim
t→+∞

∫ t
t0

∥∥∥∥d( f (σ(τ))−σ(τ))
f (σ(τ))−σ(τ)

∥∥∥∥ dτ

eξ t
=

1
ξ

lim
t→+∞

∥∥∥∥ d( f (σ(t))−σ(t))
f (σ(t))−σ(t)

∥∥∥∥= 0.

Thus, lim
t→+∞

∥∥∥∥ x(t)
ξ (t)

∥∥∥∥= 0. The zero solution of (4.42) is absolutely stable.

Since (4.43) has the same nonlinear terms as that of (4.42), B1, B2 have the same
Hurwitz’s characteristics. Thus, the proof of the absolute stability of the zero solution
of (4.43) is same as that of (4.42).

Although the nonlinear terms of (4.44) are different from that of (4.42), we have
the following estimation:∥∥∥∥d f (σ)−σ

σ
2N + σ

∥∥∥∥≤
∥∥∥∥ d

max[ 1
2N ,1]

∥∥∥∥(| f (σ)|+ |σ |). (4.47)

From Lemma 4.46, we know that ∀ε > 0, there exists δ3 > 0 such that

| f (σ)|+ |σ | < ηε

2
∥∥∥∥ d

max
[ 1

2N ,1
] ∥∥∥∥

(4.48)

when |σ | < δ3. Also, lim
t→+∞

σ(t) = 0 implies

lim
t→+∞

| f (σ(t))+ σ(t) | = 0. (4.49)

With (4.47), (4.48), and (4.49), the proof of the absolute stability of the zero solution
of (4.44) is similar to that of (4.42). The proof is completed. �

Theorem 4.48. The zero solution of (4.37) is absolutely stable if and only if

(1) The condition (1) of Theorem 4.47 holds;
(2) There exists radially unbounded positive definite Lyapunov function V (x,ξ ) ∈

C[Rn+1,R1] w.r.t. Ω̄ such that D+V (x,ξ )|(4.37) is negative definite w.r.t. Ω̄ .
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Proof. Sufficiency. From condition (2), we know that there exist ϕ(|cTx−rξ |)∈ KR
and ψ(|cTx− rξ |) ∈ K such that

ϕ
(
|cTx− rξ |

)
≤V (x,ξ ) (4.50)

and
D+V (x,ξ )

∣∣
(4.37) ≤−ψ

(
|cTx− rξ |

)
. (4.51)

Thus the zero solution of (4.37) is absolutely stable w.r.t. Ω̄ .
Necessity. (4.37) is an autonomous system. The globally and uniformly asymp-

totic stability is equivalent to the globally and asymptotic stability. The Lyapunov
theorem for globally and uniformly asymptotic stability is invertible, that is, the nec-
essary and sufficient condition for the zero solution of a system to be globally and
uniformly asymptotically stable is that there exists a radially unbounded, positive
definite Lyapunov function, whose derivative evaluated on the solution of the system
is negative definite. Thus, ∀ f (σ) ∈ F[0,k], there exists a radially unbounded, posi-
tive definite Lyapunov function V (x,ξ ) ∈ C[Rn+1,R1], ϕ(∑n

i=1 |xi|+ |ξ |) ∈ KR, and
ψ(∑n

i=1 |xi|+ |ξ |) ∈ K such that

ϕ
( n

∑
i=1

|xi|+ |ξ |
)
≤V (x,ξ ) (4.52)

and

D+V (x,ξ ) ≤−ψ
( n

∑
i=1

|xi|+ |ξ |
)
. (4.53)

Let µ = max[ max
1≤i≤n

|ci|, |ri|], we have

ϕ̃
(
|cTx− rξ |

)
:= ϕ

(
1
µ
|cTx− rξ |

)
≤ ϕ
(

∑n
i=1 |cixi|+ |rξ |

µ

)

≤ ϕ
( n

∑
i=1

|xi|+ |ξ |
)
≤V (x,ξ ) (4.54)

and

D+V (x,ξ )|(4.37) ≤ −ψ
( n

∑
i=1

|xi|+ |ξ |
)
≤−ψ

(
∑n

i=1 |cixi|+ |rξ |
µ

)

≤ −ψ
(‖cTx− rξ‖

µ

)
:= −ψ̃

(‖cTx− rξ‖) ,
where ϕ̃ ∈ KR and ψ̃ ∈ K. Thus, the condition (2) holds. The proof is complete. �

In the following, we further discuss how to change the absolute stability of the
zero solution of (4.37) to the Hurwitz stability of a matrix, and the absolute stability
with respect to Ω̄ or σ = 0.
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For N = 0, system (4.37) is the Lurie indirect control system, which has been
discussed earlier in detail. Thus, we only consider the case N �= 0.

Assume f ∈ C1, and ω(σ) = 1 + N d f
dσ > 0. From σ = cTx− rξ −N f (σ), we

have ξ = r−1(cTx−σ −N f (σ)). Thus, system (4.37) can be written as

ẋ = Ãx + b̃σ + d̃ f (σ),

ω(σ)σ̇ = c̃Tx− r̃σ − Ñ f (σ),
(4.55)

where
Ã = A + br−1cT, b̃ = −r−1b, d̃ = d− r−1bN,

c̃T = cÃ, r̃ = −cTb̃, Ñ = −cTd̃ + r.

In (4.55), σ is a state variable and ξ is replaced by σ , but the derivative of f (σ)
appears on the left-hand side of (4.55).

System (4.37) can be further rewritten as

ẋ = Ax+ bξ + d f (σ),

ξ̇ =
cT

N
x− rξ

N
− σ

N
.

(4.56)

Therefore, we use (4.55) to obtain the absolute stability of the zero solution of (4.37)
with respect to σ , and use the fact that the coefficient matrix of the linear part of

(4.56) W :=
[

A b
cT

N − r
N

]
is a Hurwitz matrix to show that the zero solution of (4.37)

is absolutely stable.

Theorem 4.49. Suppose that

(1) ω(σ) > 0 and
∫±∞

0 ω(σ)dσ = ±∞;

(2) W :=
[

A b
cT

N − r
N

]
is a Hurwitz matrix;

(3) There exist constants ηi ≥ 0, (i = 1, . . . ,n), ηn+1 > 0 such that

−η j ã j j ≥
n

∑
i=1,i�= j

ηi|ãi j|+ ηn+1|c̃ j| ( j = 1, . . . ,n),

and

ηn+1r̃ ≥
n

∑
i=1

|b̃i|ηi,

ηn+1Ñ ≥
n

∑
i=1

ηi|d̃i|,

where at least one of the last two inequalities strictly holds. Then the zero solution of
(4.37) is absolutely stable.

Proof. Construct the radially unbounded, positive definite Lyapunov function
w.r.t. σ :
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V (x,σ) =
n

∑
i=1

ηi|xi|+ ηn+1

∫ σ

0
(signσ)ω(σ)dσ ≥ ηn+1

∫ σ

0
(signσ)ω(σ)dσ ∈ KR.

Then we obtain

D+V (x,σ)|(4.55) ≤
n

∑
j=1

[
η j ã j j +

n

∑
i=1,i�= j

ηi|ãi j|+ ηn+1|c̃ j|
]
|x j|

+
[
−ηn+1r̃ +

n

∑
i=1

|b̃i|ηi

]
|σ(t)|

+
[
−ηn+1Ñ +

n

∑
i=1

ηi|d̃i|
]
| f (σ(t))|

≤
⎧⎨
⎩
[−ηn+1Ñ + ∑n

i=1 ηi|d̃i|
] | f (σ(t))| < 0, σ �= 0,

or[−ηn+1r̃ + ∑n
i=1 |b̃i|ηi

] |σ(t)|, σ �= 0.
(4.57)

Thus, the zero solution of (4.55) is absolutely stable w.r.t. σ = 0.
The general solution of (4.56) can be expressed as(

x(t)
ξ (t)

)
= eW (t−t0)

(
x(t0)
ξ (t0)

)
+
∫ t

t0
eW(t−τ)

(
d f (σ(τ))
−σ(τ)

N

)
dτ,

and the remaining proof is similar to that of Theorem 4.47. �

Theorem 4.50. Suppose that the following conditions are satisfied:

(1) ω(σ) > 0 and
∫±∞

0 ω(σ)σ dσ = +∞;
(2) ã j j < 0, r̃ > 0, Ñ > 0 ( j = 1, . . . ,n);

(3) (a) G1 :=

⎡
⎢⎢⎢⎢⎢⎣

|ã11| −|ã12| · · · −|ã1n| −|b̃1|
−|ã21| |ã22| · · · −|ã2n| −|b̃2|

...
...

. . .
...

...
−|ãn1| −|ãn2| · · · |ãnn| −|b̃n|
−|c̃1| −|c̃2| · · · −|c̃n| r̃

⎤
⎥⎥⎥⎥⎥⎦

is an M-matrix and |b̃i| ≥ |d̃i| (i = 1, . . . ,n), r̃ ≤ Ñ, or

(b) G2 :=

⎡
⎢⎢⎢⎢⎢⎣

|ã11| −|ã12| · · · −|ã1n| −|d̃1|
−|ã21| |ã22| · · · −|ã2n| −|d̃2|

...
...

. . .
...

...
−|ãn1| −|ãn2| · · · |ãnn| −|d̃n|
−|c̃1| −|c̃2| · · · −|c̃n| Ñ

⎤
⎥⎥⎥⎥⎥⎦

is an M-matrix and Ñ ≤ r̃.

Then the zero solution of (4.55) is absolutely stable.

Proof. If conditions (1), (2), and (3)(a) are all satisfied, there exist constants
ηi > 0, (i = 1, . . . ,n− 1) such that
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η j ã j j +
n

∑
i=1,i�= j

ηi|ãi j|+ ηn+1|c̃ j| < 0,

−ηn+1r̃ +
n

∑
i=1,i�= j

ηi|b̃i| < 0.

Construct the radially unbounded, positive definite Lyapunov function

V (x,σ) =
n

∑
i=1

ηi|xi|+ ηn+1

∫ σ

0
ω(σ)signσ dσ . (4.58)

Using |b̃i| ≥ |d̃i|, (i = 1, . . . ,n), r̃ ≤ Ñ, and

−ηn+1r̃ +
n

∑
i=1,i�= j

ηi|b̃i| < 0,

we have

−ηn+1Ñ +
n

∑
i=1

ηi|d̃i| < 0.

Thus,

D+V (x,σ)|(4.55) ≤
n

∑
j=1

[
η j ã j j +

n

∑
i=1,i�= j

ηi|ãi j|+ ηn+1|c̃ j|
]
|x j|

+
[
−ηn+1r̃ +

n

∑
i=1

ηi|b̃i|
]
|σ |

+
[
−ηn+1Ñ +

n

∑
i=1

ηi|d̃i|
]
| f (σ)|

< 0, when |x|+ |σ | �= 0.

Thus, the zero solution of (4.55) is absolutely stable. Similarly, we can prove that
the conditions (1), (2), and (3)(b) imply that the zero solution of (4.55) is absolutely
stable. The theorem is proved. �
Theorem 4.51. Suppose that

pi =
(

b̃i + d̃i
f (σ)

σ

)
, (i = 1, . . . ,n), pn+1 =

(
−r̃− Ñ

f (σ)
σ

)
,

and the following conditions are satisfied

(1) ω(σ) > 0,
∫ ±∞

0 ω(σ)dσ = ±∞;
(2) There exist constants ηi > 0, (i = 1, . . . ,n + 1) such that the matrix H =

(hi j)(n+1)×(n+1) is negative definite, where

hi j = h ji =

⎧⎪⎨
⎪⎩

η j ãi j + η jãii 1 ≤ i, j ≤ n,

ηi pi + ηn+1ci 1 ≤ i ≤ n, j = n + 1,

2ηn+1 pn+1 i = j = n + 1.

Then the zero solution of (4.55) is absolutely stable.
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Proof. Construct the radially unbounded, positive definite Lyapunov function

V (x,σ) =
n

∑
i=1

ηix2
i + 2ηn+1

∫ σ

0
ω(σ)σ dσ . (4.59)

Then,

dV
dt

∣∣∣
(4.55)

=

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xn
σ

⎞
⎟⎟⎟⎟⎟⎠

T⎡
⎢⎣ h11 · · · h1,n+1

...
. . .

...
hn+1,1 · · · hn+1,n+1

⎤
⎥⎦
⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xn
σ

⎞
⎟⎟⎟⎟⎟⎠< 0 when |x|+ |σ | �= 0.

Thus, the zero solution of (4.55) is absolutely stable. �

Theorem 4.52. Suppose that the following conditions are satisfied:

(1) ω(σ) > 0,
∫ ±∞

0 ω(σ)σ dσ = +∞, and
∫±∞

0 ω(σ) f (σ)dσ = +∞;
(2) There exist a symmetric positive definite matrix P = (pi j)n×n and α > 0, β > 0

such that

G =

⎡
⎣ PÃ+ ÃTP Pb̃+ α c̃ pd̃ + β c̃

(Pb̃+ α c̃)T −2α r̃ 0
(pd̃ + β c̃)T 0 −2β Ñ

⎤
⎦

is negative definite.

Then the zero solution of (4.55) is absolutely stable.

Proof. Construct the radially unbounded, positive definite Lyapunov function

V (x,σ) = xTPx+ 2α
∫ σ

0
ω(σ)σ dσ + 2β

∫ σ

0
ω(σ) f (σ)dσ . (4.60)

Then we obtain

D+V (x,σ)|(4.55) = ẋTPx+ xTPẋ + 2αω(σ)σσ̇ + 2β ω(σ) f (σ)σ̇ ,

= xT(PÃ+ ÃTP)x + 2xTPb̃σ + 2xTPd̃ f (σ)

+2α c̃Txσ −2α r̃σ2 −2αÑσ f (σ)

+2β c̃Tx f (σ)−2β r̃σ f (σ)−2β Ñ f 2(σ),

=

⎛
⎝ x

σ
f (σ)

⎞
⎠T⎡⎣ PÃ+ ÃTP Pb̃+ α c̃ pd̃ + β c̃

(Pb̃+ α c̃)T −2α r̃ 0
(pd̃ + β c̃)T 0 −2β Ñ

⎤
⎦
⎛
⎝ x

σ
f (σ)

⎞
⎠

−(2αÑ + 2β r̃)σ f (σ)
< 0, when |x|+ |σ | �= 0, (4.61)

indicating that the conclusion of the theorem is true. �
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Theorem 4.53. Suppose that

(1) The condition (1) of Theorem 4.52 is satisfied;
(2) G is negative definite in the condition (2) of Theorem 4.52,
(3) Ã is a Hurwitz matrix.

Then the zero solution of (4.55) is absolutely stable.

Proof. Use the same Lyapunov function as that in Theorem 4.53. Applying (4.61)
and condition (2) yields

dV
dt

∣∣∣
(4.55)

≤ −(2αÑ + 2β r̃)σ f (σ) < 0 when σ �= 0.

Thus, the zero solution of (4.55) is absolutely stable w.r.t. σ .
Then, using

x(t) = eÃ(t−t0)x(t0)+
∫ t

t0
eÃ(t−τ)(b̃σ(τ)+ d̃ f (σ(τ))dτ,

we can prove that the zero solution of (4.55) is absolutely stable w.r.t. x(t). The proof
is complete. �

Example 4.54. Consider a system in the form of (4.45):⎛
⎜⎜⎝

ẋ1
ẋ2
ẋ3

ω(σ)σ̇

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

ã11 ã12 ã13 b̃1 d̃1
ã21 ã22 ã23 b̃2 d̃2
ã31 ã32 ã33 b̃3 d̃3
c̃1 c̃2 c̃3 −r̃ −Ñ

⎤
⎥⎥⎦
⎛
⎜⎜⎝

x1
x2
x3

f (σ)

⎞
⎟⎟⎠ ,

=

⎡
⎢⎢⎢⎣
−4 1 1 2 −3

2−1 −4 1 1 −1
1 2 −3 −1 1
1 2 1 −4 −4

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎝

x1
x2
x3

f (σ)

⎞
⎟⎟⎠ . (4.62)

Assume that ω(σ) > 0, f (σ) ∈ F[0,k], and
∫±∞

0 ω(σ)σ dσ = +∞. It is obvious that
|b̃i| ≥ |di|, (i = 1,2,3), and r = N = 4.

It is easy to show that

G1 =

⎡
⎢⎢⎣

|ã11| −|ã12| −|ã13| −|b̃1|
−|ã21| |ã22| −|ã23| −|b̃2|
−|ã31| −|ã32| |ã33| −|b̃3|
−|c̃1| −|c̃2| −|c̃3| |r̃|

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

4 −1 −1 −2
−1 4 −1 −1
−1 −2 3 −1
−1 −2 −1 4

⎤
⎥⎥⎦

is an M-matrix. Thus, the conditions of Theorem 4.50 are all satisfied. The zero
solution of (4.62) is absolutely stable.
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Special Lurie-Type Control Systems

In this chapter, we present some necessary and sufficient algebraic conditions for the
absolute stability of several special classes of Lurie-type control systems. Moreover,
the algebraic sufficient conditions for absolute stability of other systems are obtained.
All conditions are convenient in applications, in particular, for designing absolute
stable control systems, or for stabilizing nonabsolute stable control systems.

Part of this chapter is based on the results of Ye [163], Xie [158], and Zhang [177]
(Sect. 5.1); Liao [72, 78] (Sects. 5.3–5.5); Letov [63] (Sects. 5.2 and 5.4); and Shu
et al. [136] (Sect. 5.6).

5.1 Three Special Order Control Systems

In this section, we present results for second-order direct control system, a class of
third-order control system, and special nth-order direct control systems.

5.1.1 The Second-Order Direct Control Systems

We consider the second-order Lurie-type direct control system:

ẋ1 = a11x1 + a12x2 + b1 f (c1x1 + c2x2),

ẋ2 = a21x1 + a22x2 + b2 f (c1x1 + c2x2),
(5.1)

where f (σ) ∈ F∞, σ = cTx = c1x1 + c2x2. Let

A =
[

a11 a12
a21 a22

]
, x =

(
x1
x2

)
, b =

(
b1
b2

)
, c =

(
c1
c2

)
. (5.2)

Ye [163] obtained the necessary and sufficient conditions for the absolute stability of
the zero solution of system (5.1).

Theorem 5.1. If the matrix A is a Hurwitz matrix, then the necessary and sufficient
conditions for the absolute stability of the zero solution of (5.1) are

cTb ≤ 0 and cTA−1b ≥ 0.

To prove the theorem, a theorem by Krasovaskii [53] must be used and the following
lemma is needed.

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, Second Edition.
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Lemma 5.2. For the second order nonlinear system,

ẋ = f1(x)+ by,

ẏ = f2(x)+ d y,
f1(0) = f2(0) = 0, (5.3)

if the following conditions are satisfied:

(1) [b f2(x)−d f1(x)]x < 0 for x �= 0;

(2) f1(x)
x + d < 0 for x �= 0;

(3) lim|x|→+∞

{
( f1(x)+ dx)sgnx− ∫ x

0 [d f1(x)−b f2(x)]dx
}

= −∞.

Then the zero solution of system (5.3) is globally stable.

Now we turn to prove Theorem 5.1.

Proof. Necessity. This is a special case of Theorem 3.2 proved in Chap. 3.
Sufficiency. Without loss of generality, let c1 �= 0, and we introduce the transfor-

mation (
x1
x2

)
=

[
1
c1

− c2
c1

0 1

](
y1
y2

)
, (5.4)

which reduces the system (5.1) to{
ẏ1 = f1(y1)+ by2,

ẏ2 = f2(y1)+ dy2,
(5.5)

where

f1(y1) =
(

a11 +
c2

c1
a21

)
y1 +(c1b1 + c2b2) f (y1),

f2(y1) =
a21

c1
y1 + b2 f (y1),

b = −c2a11 − c2
2

c1
a21 + c1a12 + c2a22,

d = −c2

c1
a21 + a22,

y1 f (y1) > 0 if y1 �= 0, f (0) = 0.

Now we prove that the conditions of Theorem 5.1 imply the condition of Lemma 5.2.
We observe that[

b f2(y1)−d f1(y1)
]
y1 = −

∣∣∣∣a11 a12
a21 a22

∣∣∣∣y2
1 −
(

c1
c2

)T[ a22 −a12
−a21 a11

](
b1
b2

)
y1 f (y1)

< 0 if y1 �= 0, (5.6)

f1(y1)
y1

+ d = (a11 + a22)+ (c1b1 + c2b2)
f (y1)

y1

< 0 if y1 �= 0. (5.7)
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Obviously, (5.6) yields

−
∫ y1

0

[
d f1(y1)−b f2(y1)

]
dy1 →−∞ as |y1| → +∞,

and (5.7) gives
lim

|y1|→+∞
( f1(y1)+ dy1)sgny1 = −∞.

So, the condition (3) of Lemma 5.2 is satisfied.
As a result, the zero solution of the system (5.1) is absolutely stable. �
The conclusion can be proved in the case of c2 �= 0 as well.

Theorem 5.3. If the two eigenvalues of the matrix A =
[

a11 a12
a21 a22

]
are pure imaginary

numbers, then the zero solution of system (5.1) is absolutely stable if and only if

cTb < 0 and cTA−1b ≥ 0.

Theorem 5.4. If A =
[

a11 a12
a21 a22

]
has two real eigenvalues, namely, one equals zero

and the other is negative, then the zero solution of the system (5.1) is absolutely
stable if and only if

cTb ≤ 0 and cT(adj A)b ≥ 0,

where adj A is the adjoint matrix of A, that is,

adj A =
[

a22 −a21
−a12 a11

]
.

We can prove Theorems 5.3 and 5.4 similar to that for Theorem 5.1, and
therefore, omit the proofs.

Example 5.5. Discuss the absolute stability of the zero solution of the system:

ẋ1 = −2x1 + x2 −2 f (x1 − x2),

ẋ2 = −x1 − x2 + f (x1 − x2),
(5.8)

where

A =
[−2 1
−1 −1

]
, b =

(−2
1

)
, c =

(
1

−1

)
.

Since

cTb = (1 −1)
(−2

1

)
= −3 < 0,

cTA−1b =
(

1
−1

)T [−1 1
−1 −2

](−2
1

)
= 3 > 0.

A has two eigenvalues with negative real parts, and thus, the zero solution of (5.8) is
absolutely stable on the basis of Theorem 5.1.
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5.1.2 A Class of the Third-Order Control Systems

Consider the third-order control system:

ẋ = Ax + b f (σ),

σ = cTx,
(5.9)

where x ∈ R3, A ∈ R3×3, c ∈ R3, f (0) = 0, and

0 < f (σ)σ < kσ2 (k ≤ +∞) for all σ �= 0.

Xie [159] has proved that for a class of the third-order control systems including the
third-order indirect control systems, the conditions of Popov’s frequency criterion are
not only sufficient but also necessary for absolute stability. Then the Lurie problem
of this class of control systems has been solved completely.

Theorem 5.6. In system (5.9), suppose that A has at least one eigenvalue with zero
real part and no eigenvalues with positive real parts. If there exist two constants
p ≥ 0 and q, both of which are not zero, such that

Re{(p + iωq)cT(A− iωT )−1b}+
p
k
≥ 0 for ω ∈ (−∞,+∞), (5.10)

then (5.10) is the necessary and sufficient condition for the absolute stability of the
zero solution to the system (5.9) in the Hurwitz angle [0,k].

Popov’s criterion implies sufficiency, while the proof of necessity is too lengthy
to be quoted in detail; the reader is referred to Xie [159].

5.1.3 Special nnnth-Order Direct Control Systems

Consider a special Lurie direct control system [177]:

ẋ = Ax + b f (σ),

σ = cTx,
(5.11)

where A ∈ Rn×n, c,b ∈ Rn and f (σ) ∈ F[0,k].

Theorem 5.7. Let the matrix A of the system (5.11) be of the form

A =

⎡
⎢⎢⎢⎢⎣
−λ 1 · · · 0

−λ · · · ...
...

. . .
0 · · · −λ

⎤
⎥⎥⎥⎥⎦ , λ > 0.

Then the necessary and sufficient conditions for the absolute stability of the zero
solution of system (5.11) are

cTb ≤ 0 and cTA−1b ≥ 0.
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Proof. Necessity. It has been proved in Chap. 3 (see Theorem 3.2).
Sufficiency. By virtue of Popov’s criterion, if there exists a real number q ≥ 0

such that
Re{(1 + iωq)W(iω)} ≥ 0 for all ω ≥ 0, (5.12)

where W (z) = −cT(zI−A)−1b, then the zero solution of system (5.11) is absolutely
stable.

The condition (5.12) can be equivalently rewritten as

Re{(1 + iωq)cTA−1
iω b} ≤ 0 for ω ≥ 0,

where Aiω = iωI−A. In this case, we have

Aiω =

⎡
⎢⎢⎢⎢⎣

iω + λ −1 0 · · · 0

0 iω + λ · · · ...
...

. . . −1
0 · · · iω + λ

⎤
⎥⎥⎥⎥⎦ ,

A−1
iω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
iω + λ

1
(iω + λ )2 · · · 0

0
1

iω + λ
· · · ...

...
. . . 1

(iω + λ )2

0 · · · 1
iω + λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

thus

cTA−1
iω b = (c1,c2, . . . ,cn)A−1

iω (b1,b2, . . . ,bn)T

=
n

∑
j=1

b jc j

iω + λ
+

c1b2

(iω + λ )2 ,

=
cTb(λ − iω)

λ 2 + ω2 +
c1b2(λ 2 −ω2)− c1b2 ·2ωiλ

(λ 2 −ω2)2 + 4ω2λ 2 .

We conclude

Re{(1 + iωq)cTA−1
iω b}

=
cTbλ

λ 2 + ω2 +
c1b2(λ 2 −ω2)

(λ 2 −ω2)2 + 4ω2λ 2 +
qω2(cTb)
λ 2 + ω2

+
2qω2c1b2λ

(λ 2 −ω2)2 + 4ω2λ 2

:=
F(ω2)

(λ 2 + ω2)[(λ 2 −ω2)2 + 4λ 2ω2]
,
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where

F(ω2) =
[
(λ 2 −ω2)+ 4ω2λ 2

][
(cTb)λ + qω2(cTb)

]
+
[
λ 2 + ω2

][
c1b2(λ 2 −ω2)+ 2qω2c1b2λ

]
,

= (cTb)
[
λ 4 + 2ω2λ 2 + ω4

][
λ + qω2

]
+c1b2(λ 4 −ω4)+ 2qλ 3ω2c1b2 + 2qω4c1b2λ ,

= q(cTb)ω6 +
[
(cTb)λ + 2(cTb)λ 2q− c1b2 + 2qc1b2λ

]
ω4

+
[
(cTb)λ 4q + 2(cTb)λ 3 + 2qλ 3c1b2

]
ω2

+
[
(cTb)λ 5 + c1b2λ 4

]
.

The conditions

cTb ≤ 0 and − cTA−1b =
1

λ 2

[
(cTb)λ + c1b2

]
≤ 0

indicate that the coefficient of the ω6 term and the constant term of F(ω2) are not
positive. Now we discuss the coefficients of ω4 and ω2 terms.

1. If c1b2 ≤ 0, then, obviously, for any q ≥ 0

(cTb)λ 4q + 2(cTb)λ 3 + 2qλ 3c1b2 ≤ 0.

Choosing q > 1
2λ , it follows that

(cTb)λ + 2(cTb)λ 2q− c1b2 + 2qc1c2

= (cTb)λ + 2(cTb)λ 2q + c1b2(2qλ −1)≤ 0.

Therefore, the coefficients of ω4 and ω2 terms are not positive.
2. If c1b2 > 0, we choose q = 0. Then the coefficient of ω4 term is (cTb)λ −c1b2 ≤ 0

and the coefficient of ω2 term is 2(cTb)λ 3 ≤ 0.

In any case, we can choose q ≥ 0 such that F(ω2) ≤ 0; therefore, the zero solution
of system (5.11) is absolutely stable by Popov’s criterion (5.12). �
Corollary 5.8. If there exists a real similarity transformation that transforms the
matrix A of the system (5.11) into the form presented in Theorem 5.7, then the neces-
sary and sufficient conditions for the absolute stability of the zero solution of system
(5.11) are cTb ≤ 0 and cTA−1b ≥ 0.

Proof. It is suffices to prove that cTb and cTA−1b are not changed by similarity
transformation.

By the nonsingular transformation x = By, B ∈ Rn×n, system (5.11) is trans-
formed into

ẏ = B−1ABy + B−1b f (cTBy) := Ãy + b̃ f (c̃Ty),
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where Ã = B−1AB, b̃ = B−1b, c̃ = BTc. Thus,

c̃Tb̃ = cTBB−1b = cTb,

c̃TÃ−1b̃ = cTBB−1A−1BB−1b = cTA−1b.

The corollary follows. �

Theorem 5.9. In system (5.11), we assume that

A =
[

A1 0
0 A2

]
=
[−λ I1 0

0 −ρI2

]
,

where λ > 0,ρ > 0, I1 ∈ Rn1×n1 , I2 ∈ Rn2×n2 are identity matrices and n1 + n2 = n.
Then the necessary and sufficient conditions for the absolute stability of the zero
solution of system (5.11) amount to cTb ≤ 0, cTA−1b ≥ 0.

Proof. The conditions are obviously necessary.
Now we prove that they are also sufficient. From

Aiω =
[

(iω + λ )I1 0
0 (iω + ρ)I2

]
, A−1

iω =

⎡
⎢⎣

1
iω + λ

I1 0

0
1

iω + ρ
I2

⎤
⎥⎦ ,

taking

c̃1 =
[

I1 0
0 0

]
n×n

c, c̃2 =
[

0 0
0 I2

]
n×n

c,

b̃1 =
[

I1 0
0 0

]
b, b̃2 =

[
0 0
0 I2

]
b,

we observe

cTA−1
iω b =

c̃T
1 b̃1

iω + λ
+

c̃T
2 b̃2

iω + ρ
,

=
c̃T

1 b̃1λ − ic̃T
1 b̃1ω

ω2 + λ 2 +
c̃T

2 b̃2ρ − ic̃T
2 b̃2ω

ω2 + ρ2 .

Then,

Re{(1 + iωq)cTA−1
iω b} =

c̃T
1 b̃1λ + qω2c̃T

1 b̃1

ω2 + λ 2 +
c̃T

2 b̃2ρ + qω2c̃T
2 b̃2

ω2 + ρ2 ,

=
F(ω2)

(ω2 + λ 2)(ω2 + ρ2)
,



120 5 Special Lurie-Type Control Systems

where

F(ω2) = q(c̃T
1 b̃1 + c̃T

2 b̃2)ω4 +[c̃T
1 b̃1λ + c̃T

2 b̃2ρ

+ q(c̃T
1 b̃1ρ2 + c̃T

2 b̃2λ 2)]ω2 +
( c̃T

1 b̃1

λ
+

c̃T
2 b̃2

ρ

)
λ 2ρ2.

The conditions of Theorem 5.9 give

cTb = c̃T
1 b̃1 + c̃T

2 b̃2 ≤ 0,

−cTA−1b =
c̃T

1 b̃1

λ
+

c̃T
2 b̃2

ρ
≤ 0.

It is easy to prove that there exists q ≥ 0 such that

c̃T
1 b̃1λ + c̃T

2 b̃2ρ + q(c̃T
1 b̃1ρ2 + c̃T

2 b̃2λ 2) ≤ 0,

that is, there exists q ≥ 0 satisfying F(ω2) ≤ 0. Then, the zero solution of system
(5.11) is absolutely stable. �

Corollary 5.10. Assume that in system (5.11) A = AT and that A has at most two
different real eigenvalues and simple elementary divisor. Then the necessary and
sufficient condition for the absolute stability of the zero solution of system (5.11) are
cTb ≤ 0 and cTA−1b ≥ 0.

Corollary 5.11. Suppose that in system (5.11) A = AT, while A has only one real
eigenvalue and corresponds to the simple elementary divisor. Then the necessary
and sufficient condition for the absolute stability of the zero solution of system (5.11)
is cTb ≤ 0.

Theorem 5.12. Suppose that in system (5.11) the vector b is an eigenvector of A, or
the vector c is an eigenvector of AT. Then the zero solution of the system (5.11) is
absolutely stable if and only if cTb ≤ 0.

Proof. The necessity is trivial. We prove the sufficiency only. First, suppose Ab =
−λ b (λ > 0). Then,

(iωI −A)b = [λ + iω ]b, ω ≥ 0, (iωI−A)−1 =
1

λ + iω
b.

Thus,

cT(iωI−A)−1b =
cTb

iω + λ
.

It follows from the condition cTb ≤ 0 that

Re{cT(iωI −A)−1b} =
λ cTb

λ 2 + ω2 ≤ 0.

This shows that the zero solution of system (5.11) is absolutely stable.
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Next, suppose that ATc = −λ c(λ > 0). Then we obtain

(iωI−AT)−1c =
1

iω + λ
c.

Thus,

cT(iωI−A)−1b =
cTb

iω + λ
.

We also have
Re{cT(iωI −A)−1b} ≤ 0.

Consequently, the zero solution of system (5.11) is absolutely stable. �
Theorem 5.13. Suppose that in system (5.11) A is a quasi-diagonal matrix:

A = diag(A1,A2, . . . ,Am),

where Ar (r = 1, . . . ,m) are square submatrices. If b̃r is an eigenvector of Ar for r =
1, . . . ,m, or c̃r is an eigenvector of AT

r , then c̃T
r b̃r ≤ 0 (r = 1, . . . ,m) imply the absolute

stability of the zero solution of system (5.11), where c̃r, b̃r refer to column vectors
corresponding to Ar, b = (b̃1, . . . , b̃m)T, c = (c̃1, . . . , c̃m)T, and Ir is the identity matrix
corresponding to Ar.

Proof. If Arb̃r = −λ b̃r, since

c̃T
r (iωIr −Ar)−1b̃r =

c̃T
r b̃r

λ + iω
,

we get

Re{c̃T
r (iωIr −Ar)−1b̃r} =

λ c̃T
r b̃r

λ 2 + ω2 ≤ 0, r = 1, . . . ,m.

When AT
r c̃r = −λ c̃r, it gives rise to

c̃T
r (iωIr −Ar)−1b̃r =

λ c̃T
r b̃r

iω + λ
,

Re{c̃T
r (iωIr −Ar)−1b̃r} ≤ 0, r = 1, . . . ,m.

Now we proceed to prove that the expressions Re{c̃T
r (iωIr − Ar)−1b̃r} ≤ 0 (r =

1, . . . ,m) imply the absolute stability of the zero solution of system (5.11). Since

A = diag(A1,A2, . . . ,Am),
Aıω = diag(iωI1 −A1, . . . , iωIm −Am),

cTA−1
ıω b = (c̃1, . . . , c̃m)diag((iωI1 −A1)−1, . . . ,(iωIm −Am)−1)(b̃T

1 , . . . , b̃T
m)T

=
m

∑
r=1

c̃T
r (iωIr −Ar)−1b̃r,

it follows that

Re(cTA−1
ıω b) =

m

∑
r=1

Re c̃T
r (iωIr −Ar)−1b̃r ≤ 0.

Therefore, the zero solution of system (5.11) is absolutely stable. �
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Example 5.14. Consider the three-dimensional control system:

ẋ1 = −x1 + x2 − x3 + f (x1 − x2 − x3),

ẋ2 = x1 − x2 − x3 + f (x1 − x2 − x3),

ẋ3 = x1 + x2 −3x3 + f (x1 − x2 − x3),

where

A =

⎡
⎣−1 1 −1

1 −1 −1
1 1 −3

⎤
⎦ , b =

⎛
⎝1

1
1

⎞
⎠ , c =

⎛
⎝ 1

−1
−1

⎞
⎠ , f ∈ F[0,k].

It is clear that A is a stable matrix and b is an eigenvector of A associated with the
eigenvalue λ = −1. Moreover

cTb = −1 < 0.

Thus, the system is absolutely stable by Theorem 5.12.

5.2 The First Canonical Form of Control Systems

Letov [63] has considered a class of control systems called the first canonical form
in which A is diagonal:

ẋ j = −λ jx j + f (σ), λ j > 0, j = 1, . . . ,n,

σ = cTx =
n

∑
i=1

cixi.
(5.13)

We discuss the absolute stability of system (5.13).
For a real number q ≥ 0, let

a j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c jq if c j(qλ j −1) > 0,

c j/λ j if c j(qλ j −1) < 0,

c j/λ j if c j(qλ j −1) = 0, c j �= 0,

0 if c j(qλ j −1) = 0, c j = 0.

Theorem 5.15. [177] If there exists q ≥ 0 such that ∑n
j=1 a j < 1

k , then the zero
solution of system (5.13) is absolutely stable in the Hurwitz angle [0,k].

Proof. Since

A =

⎡
⎢⎢⎢⎢⎣
−λ1 · · · 0

... −λ2
. . .

...
0 · · · −λn

⎤
⎥⎥⎥⎥⎦ , A−1

iω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
iω + λ1

0 · · · 0

0
1

iω + λ2
...

. . .
...

0 · · · 1
iω + λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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it follows that

cTA−1
iω b =

n

∑
j=1

c j

iω + λ j
,

Re{(1 + iωq)cTA−1
iω b} =

n

∑
j=1

c j(λ j + qω2)
ω2 + λ 2

j
.

Let f j(ω) = c j(λ j+qω2)
ω2+λ 2

j
. We compute the derivative of f j(ω):

f ′j(ω) =
2c jqω(ω2 + λ 2

j )− (c jλ j + c jqω2)2ω
(ω2 + λ 2

j )2 =
2c jλ j(qλ j −1)ω

(ω2 + λ 2
j )2 .

We see that f ′j(ω) = 0 only if ω = 0. The function f j(ω) is monotone increasing
on [0,∞) when c j(qλ j − 1) > 0, thus f j(ω) ≤ f j(∞) = c jq; f j(ω) is monotone
decreasing on [0,∞) when c j(qλ j − 1) < 0, thus f j(ω) ≤ f j(0) = c j/λ j. Since
f ′j(ω) = 0, q = 1/λ j, when c j(qλ j −1) = 0, c j �= 0, we have

f j(ω) =
c j(λ j + ω2/λ j)

ω2 + λ 2
j

=
c j

λ j
.

When c j(qλ j −1) = 0, c j = 0, it obviously follows that f j(ω) = 0. Choosing appro-
priate a j, we always have f j(ω) ≤ a j. From the hypothesis of the theorem, we can
deduce that

Re{(1 + iωq)cTA−1
iω b} =

n

∑
j=1

c j(λ j + qω2)
ω2 + λ 2

j
=

n

∑
j=1

f j(ω) ≤
n

∑
j=1

a j <
1
k
,

that is,

Re{(1 + iωq)cTA−1
iω b}− 1

k
< 0.

Thus, the zero solution of system (5.13) is absolutely stable in the Hurwitz angle
[0,k] by Popov’s criterion. �

We can always rearrange the equations in (5.13) and the unknown functions x j
such that

c j

⎧⎪⎨
⎪⎩

<0, j = 1, . . . , j1,

=0, j = j1 + 1, . . . , j2,

>0, j = j2 + 1, . . . ,n.

Corollary 5.16. If ∑n
j= j2+1

c j
λ j

< 1
k , then the zero solution of system (5.13) is abso-

lutely stable in the Hurwitz angle [0,k].

The conclusion may be easily derived by choosing q = 0 in Theorem 4.4.1.
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Corollary 5.17. If λ j > 2k(n− j2)c j ( j = j2 + 1, . . . ,n), then the zero solution of
system (5.13) is absolutely stable in the Hurwitz angle [0,k].

Proof. From λ j > 2k(n− j2)c j ( j = j2 + 1, . . . ,n),

n

∑
j= j2+1

c j

λ j
<

n

∑
j= j2+1

1
2k(n− j2)

=
1
2k

<
1
k
.

The condition of Corollary 5.16 is satisfied, and so Corollary 5.17 is proved. �

Theorem 5.18. If there exists q ≥ 0 such that ∑n
j=1 a j ≤ 0, then the zero solution of

system (5.13) is absolutely stable.

Proof. Repeating the proof of Theorem 5.15, we have f j(ω) ≤ a j. From

Re{(1 + iωq)cTA−1
iω b} =

n

∑
j=1

f j(ω) ≤
n

∑
j=1

a j ≤ 0,

the conclusion is valid by Popov’s criterion. �

5.3 Critical Systems

Theorem 5.19. [72] In system (5.13), assume that λi > 0 (i = 1, . . . ,n−1), λn = 0,
cn < 0, ci < λi

2k(n−1) (i = 1, . . . ,n− 1). Then the zero solution of system (5.13) is
absolutely stable in [0,k].

Proof. It is clear that the quadratic inequalities for ξi

k(n−1)ξ 2
i + 2

[
k(n− 1)ci−λi

]
ξi + k(n− 1)c2

i < 0, i = 1, . . . ,n−1 (5.14)

have positive solutions if and only if

ci <
λi

2k(n−1)
, i = 1, . . . ,n−1.

Suppose that ξi = ri (i = 1, . . . ,n− 1) is a positive solution of (5.14). Let

ϕi(xi) =

{
2rixi, i = 1, . . . ,n−1,

−2cixi, i = n.

Choose the radially unbounded, positive definite Lyapunov function

V (x) =
n

∑
i=1

∫ xi

0
ϕi(xi)dxi.
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Then,

dV
dt

∣∣∣∣
(5.13)

:= G(x) =
n

∑
i=1

ϕi(xi)
dxi

dt
,

= −2
n−1

∑
i=1

riλix2
i + 2

n−1

∑
i=1

rixi f (σ)−2cnxn f (σ),

= −2
n−1

∑
i=1

riλix2
i + 2

n−1

∑
i=1

(ri + ci)xi f (σ)−2
n

∑
i=1

cixi f (σ),

≤ −2
n−1

∑
i=1

riλix2
i + 2

∣∣∣∣∣√k
n−1

∑
i=1

(ri + ci)xi

∣∣∣∣∣
∣∣∣∣ f (σ)√

k

∣∣∣∣−2σ f (σ),

≤ −2
n−1

∑
i=1

riλix2
i + k(n−1)

n−1

∑
i=1

(ri + ci)2x2
i + σ f (σ)−2σ f (σ),

≤ −
n−1

∑
i=1

[k(n− 1)(ri + ci)2 −2riλi]x2
i −σ f (σ),

= −
n−1

∑
i=1

{k(n−1)r2
i +2 [k(n−1)ci−λi]ri+k(n−1)c2

i }x2
i −σ f (σ),

:= W (x).

Now we have
G(x) ≤W (x) ≤ 0.

If W (x̃) = 0, since σ f (σ) > 0 for σ �= 0, we have ∑n−1
i=1 x̃2

i = 0, and therefore,
cnx̃n f (cnx̃n) = 0. This implies cnx̃n = 0. From cn < 0, we have x̃n = 0; thus x̃ = 0. It
follows that W (x) is negative definite. Therefore, the zero solution of system (5.13)
is absolutely stable in the Hurwitz angle [0,k]. �

Corollary 5.20. If λi > 0(i = 1, . . . ,n−1), λn = 0, cn < 0, ci ≤ 0, (i = 1, . . . ,n−1).
Then the zero solution of system (5.13) is absolutely stable in the Hurwitz angle [0,k].

Corollary 5.21. Provided that λi > 0(i = 1, . . . ,n−1), λn = 0, ci < 0(i = 1, . . . ,n),
the zero solution of system (5.13) is absolutely stable.

Proof. Let ϕi(xi) = −cixi (i = 1, . . . ,n). We still use the same Lyapunov function
V (x) = ∑n

i=1
∫ xi

0 ϕi(xi)dxi. Then

G(x) :=
dV
dt

∣∣∣∣
(5.13)

=
n

∑
i=1

ϕi(xi)
dxi

dt
=

n−1

∑
i=1

ciλix2
i −

n

∑
i=1

cixi f (σ)

=
n−1

∑
i=1

ciλix2
i −σ f (σ).

Thus, G(x) is negative definite and the zero solution of system (5.13) is absolutely
stable. �
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Theorem 5.22. If the following conditions are satisfied:

(1) λi > 0(i = 1, . . . ,r), λ j = 0( j = r + 1, . . . ,n), ci ≤ λi
2kr (i = 1, . . . ,r), c j < 0( j =

r + 1, . . . ,n);
(2) the matrix diag(−λ1, . . . ,−λn)+bcT is Hurwitz stable with b = (1, . . . ,1)T, then

the zero solution of system (5.13) is absolutely stable.

Proof. The condition ci ≤ λi
2kr implies that the equations for ηi

krη2
i + 2(krci −λi)ηi + krc2

i = 0, i = 1, . . . ,r

have positive solutions ηi = ξi > 0, i = 1, . . . ,r. Let

ϕi(xi) =

{
2ξixi, i = 1, . . . ,r,

−2c jx j, j = r + 1, . . . ,n.

We again employ the same Lyapunov function V (x) = ∑n
i=1
∫ xi

0 ϕi(xi)dxi to obtain

dV
dt

∣∣∣∣
(5.13)

:= G(x) =
n

∑
i=1

ϕi(xi)
dxi

dt
,

= −2
r

∑
i=1

ξiλix2
i + 2

r

∑
i=1

ξixi f (σ)−2
n

∑
j=r+1

c jx j f (σ),

= −2
r

∑
i=1

ξiλix2
i + 2

r

∑
i=1

(ξi + ci)xi f (σ)−2
n

∑
i=1

cixi f (σ),

≤ −2
r

∑
i=1

ξiλix2
i + 2

√
k

r

∑
i=1

(ξi + ci) |xi| f (σ)
|k| −2σ f (σ),

≤ −2
r

∑
i=1

ξiλix2
i + kr

r

∑
i=1

(ξi + ci)2x2
i + σ f (σ)−2σ f (σ),

≤ −
r

∑
i=1

[kr(ξi + ci)2 −2ξiλi]x2
i −σ f (σ),

≤ −σ f (σ).

Hence, G(x) is negative definite w.r.t. σ . The conclusion follows. �
Corollary 5.23. If the condition (2) in Theorem 5.22 is satisfied, and

λi > 0 (i = 1, . . . ,r), ci ≤ 0 (i = 1, . . . ,r),

λ j = 0 ( j = r + 1, . . . ,n), c j < 0 ( j = r + 1, . . . ,n),

then the zero solution of system (5.13) is absolutely stable in the Hurwitz angle [0,k].

Corollary 5.24. If the condition (1) in Theorem 5.22 is satisfied, and

λi > 0 (i = 1, . . . ,r), λ j = 0 ( j = r + 1, . . . ,n),

ci < 0 (i = 1, . . . ,n),

then the zero solution of the system (5.13) is absolutely stable.
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5.4 The Second Canonical Form of Control Systems

Consider the second canonical form of the control system [63]:

ẋi = −ρixi + σ , i = 1, . . . ,n,

σ̇ =
n

∑
i=1

βixi − pσ − r f (σ),
(5.15)

where p > 0, r > 0, ρi > 0 are constants.

Theorem 5.25. [78] Suppose

p ≥
n

∑
i=1

(
1 + signβi

2

)
βi

ρi
.

Then the zero solution of system (5.15) is absolutely stable.

Proof. We construct the Lyapunov function:

V (x,σ) =
n

∑
i=1

cix2
i + σ2.

Obviously, V (x,σ) is radially unbounded and positive definite for

ci =

⎧⎪⎨
⎪⎩

−βi if βi < 0,

εi (0 < εi 	 1) if βi = 0,

βi if βi > 0.

Then,

dV
dt

∣∣∣∣
(5.15)

=

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xn
σ

⎞
⎟⎟⎟⎟⎟⎠

T⎡⎢⎢⎢⎢⎢⎣
−2c1ρ1 0 · · · 0 c1 + β1

0 −2c2ρ2 · · · 0 c2 + β2
...

...
...

...
0 0 · · · −2cnρn cn + βn

c1 + β1 c2 + β2 · · · cn + βn −2p

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xn
σ

⎞
⎟⎟⎟⎟⎟⎠−2rσ f (σ).

Now we prove

(−1)n+1Dn+1 :=
(−1)n+1

2n−1

∣∣∣∣∣∣∣∣∣∣∣

−2c1ρ1 0 · · · 0 c1 + β1
0 −2c2ρ2 · · · 0 c2 + β2
...

...
...

...
0 0 · · · −2cnρn cn + βn

c1 + β1 c2 + β2 · · · cn + βn −2p

∣∣∣∣∣∣∣∣∣∣∣
≥ 0.
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By induction it can be verified that

Dn+1 = (−1)n+14
n

∏
i=1

ciρi p +(−1)n
n

∑
j=1

n

∏
i=1
i�= j

ciρi(c j + β j)2. (5.16)

For n + 1 = 2,

D2 =
∣∣∣∣−2c1ρ1 c1 + β1

c1 + β1 −2p

∣∣∣∣= 4c1ρ1 p(−1)2 +(−1)(c1 + β1)2.

Assume that when n + 1 = k

Dk =
1

2k−2

∣∣∣∣∣∣∣∣∣∣∣

−2c2ρ2 0 · · · 0 c1 + β1
0 −2c3ρ3 · · · 0 c2 + β2
...

...
...

...
0 0 · · · −2ckρk ck + βk

c2 + β2 c3 + β3 · · · ck + βk −2p

∣∣∣∣∣∣∣∣∣∣∣
,

= (−1)k4
k

∏
i=2

ciρi p +(−1)k−1
k

∑
j=2

k

∏
i=2
i�= j

ciρi(c j + β j)2.

Then, for n + 1 = k + 1, we have

Dk+1 =
1

2k−1

∣∣∣∣∣∣∣∣∣∣∣

−2c1ρ1 0 · · · 0 c1 + β1
0 −2c2ρ2 · · · 0 c2 + β2
...

...
...

...
0 0 · · · −2ckρk ck + βk

c1 + β1 c2 + β2 · · · ck + βk −2p

∣∣∣∣∣∣∣∣∣∣∣
,

=
1

2k−1

[
−2c1ρ12k−2Dk +(−1)k+2(c1 + β1)2(−1)k+1

k

∏
i=2

(−2ciρi)

]
,

= (−1)k+14
k

∏
i=1

ciρi p +(−1)k
n

∑
j=2

k

∏
i=1
i�= j

ciρi(c j + β j)2

+ (−1)k+2(−1)k+1(−1)k−1
k

∏
i=2

ciρi(c1 + β1)2,

= (−1)k+14
k

∏
i=1

ciρi p +(−1)k
k

∑
j=1

k

∏
i=1
i�= j

ciρi(c j + β j)2.

Therefore, for any natural number n, the expression (5.16) holds. Since,

p−
n

∑
i=1

(
1 + signβi

2

)
βi

ρi
≥ 0
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we write

−4p−
n

∑
i=1

(ci + βi)2

ciρi
=

n

∑
i=1

(
4p
n

− (ci + βi)2

ciρi

)
≥ 0.

Consequently,
(−1)n+1Dn+1 ≥ 0

and

dV
dt

∣∣∣∣
(5.15)

≤−2rσ f (σ) < 0 when σ �= 0.

Thus, the zero solution of system (5.15) is absolutely stable w.r.t. σ .
On the other hand, take f (σ) = σ in (5.15). Then system (5.15) is turned to be a

linear system

ẋi = −ρixi + σ ,

σ̇ =
n

∑
i=1

βixi − (p + r)σ .
(5.17)

For system (5.17), using the Lyapunov function discussed above, we can prove that

dV
dt

∣∣∣∣
(5.17)

=

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xn
σ

⎞
⎟⎟⎟⎟⎟⎠

T⎡⎢⎢⎢⎢⎢⎣
−2c1ρ1 0 · · · 0 c1 + β1

0 −2c2ρ2 · · · 0 c2 + β2
...

...
...

...
0 0 · · · −2cnρn cn + βn

c1 + β1 c2 + β2 · · · cn + βn −2p−2r

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xn
σ

⎞
⎟⎟⎟⎟⎟⎠

is negative definite. Then the zero solution of system (5.17) is globally stable and
thus the coefficient matrix is stable. This completes the proof. �

Example 5.26. Consider the equations of longitudinal motion of a plane

ẋi = −ρixi + σ , i = 1,2,3,4,

σ̇ =
4

∑
j=1

β jx j − rp2σ − f (σ),
(5.18)

where rp2 > 0, ρi > 0 (i = 1,2,3,4), f (σ) ∈ F∞.
System (5.18) is clearly a particular case of (5.15) for n = 4.

For the above system (5.18), we have the following result.

Corollary 5.27. [78] If rp2 ≥∑4
i=1

1+signβi
2

βi
ρi

, then the zero solution of system (5.18)
is absolutely stable.

It is of great interest in estimating the parameter values for the stability of air-
crafts in the vertical direction. The larger the stable parameter regimes, the better
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βi

βi

βiβi

βj

βj βj βj

R/4 R/4

R/2

R

(d)

R/4

R/2

(a) (b) (c)

Fig. 5.1 Stable parameter regimes for (a) ∑4
i=1 β 2

i < R
4 ; (b) max1≤i≤4 |βi| < R

4 ; (c) max1≤i≤4 |βi| <
R
2 ; and (d) rp2 ≥ ∑4

i=1
1+signβi

2
βi
ρi

the designing technical characteristics. The typical stable parameter regimes in the
literature are given below:

(a) min
1≤i≤4

ρ2
i r2 p2

2 −16
4

∑
i=1

β 2
i > 0;

(b) min
1≤i≤4

ρi r p2 −4 max
1≤i≤4

|βi| > 0;

(c) min
1≤i≤4

ρ2
i r2 p2

2 −4
4

∑
i=1

β 2
i > 0.

Let R = min1≤i≤4 ρi r p2. Then the geometrical meaning of the above cases are
demonstrated in Fig. 5.1a–c. The result given in Corollary 5.27 substantially increases
the stable parameter regimes, as shown in Fig. 5.1d. Note that Fig. 5.1a–c are all
compact set, but Fig. 5.1d is unbounded set.

5.5 Two Special Systems

Consider the following special Lurie system [78]:

ẋ = Ax+ h f (xn), (5.19)

where f ∈ F∞, A ∈ Rn×n, h = (h1, . . . ,hn)T ∈ Rn.
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Theorem 5.28. If aii < 0 (i = 1,2, . . . ,n), ai j ≥ 0 (i �= j, i, j = 1, . . . ,n), hn < 0, hi ≥
0 (i = 1,2, . . . ,n−1), and

(a1n,a2n, . . . ,ann) = λ (h1, . . . ,hn), λ > 0,

then the zero solution of system (5.19) is absolutely stable if and only if A is a Hurwitz
matrix.

Proof. Necessity. Let f (xn) = xn, system (5.19) becomes

ẋ = Ax+ hxn =
[
A +(On×(n−1),h)

]
x, (5.20)

where

(On×(n−1),h) =

⎡
⎢⎣ 0 . . . 0 h1

...
...

...
...

0 . . . 0 hn

⎤
⎥⎦

n×n

.

Since the zero solution of (S−Zo) is asymptotically stable.
Thus, [A +(On×(n−1),h)] is a Hurwitz matrix, which is equivalent to that −[A +

(On×(n−1),h)] is an M matrix because aii < 0 (i = 1,2, . . . ,n), ai j ≥ 0 (i �= j, i, j =
1, . . . ,n), hn < 0, hi ≥ 0 (i = 1,2, . . . ,n−1). Thus, there exist constants ri > 0 (i =
1, . . . ,n) such that

−r ja j j >
n

∑
i=1,i�= j

riai j, j = 1, . . . ,n−1,

−rn[ann + hn] >
n−1

∑
i=1

ri (ain + hi ).
(5.21)

Rewriting the last inequality in equation (5.21) yields

−rn

(
1 +

1
λ

)
ann >

n−1

∑
i=1

ri

(
1 +

1
λ

)
ain,

that is,

−rnann >
n−1

∑
i=1

riain. (5.22)

It is obvious that −A is an M matrix, that is, A is a Hurwitz matrix, followed from
the first n−1 inequalities in equation (5.21) and equation (5.22).

Sufficiency. Since the condition implies that there exist constants ri > 0, i =
1,2, . . . ,n such that

r j a j j +
n

∑
i=1,i�= j

rk|aii| < 0, i = 1, 2 . . . , n,
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we construct the radially unbounded, a positive definite Lyapunov function

V (x) =
n

∑
i=1

ri|xi|.

From the conditions

λ hi = ain (i = 1,2, . . . ,n), and − rnann >
n−1

∑
i=1,i�= j

ri|ain|,

we have

−rn
ann

λ
>

n−1

∑
i=1

ri
|ain|

λ
,

that is,

−rnhn >
n−1

∑
i=1

ri|hi|.

Thus,

D+V (x)
∣∣
(5.19) ≤

n

∑
j=1

[
r ja j j +

n

∑
i=1,i�= j

ri|ai j|
]
|x j|+

[
rnhn +

n−1

∑
i=1

ri |hi|
]
| f (xn)|

< 0, if x �= 0,

which indicates that the zero solution of (5.19) is absolutely stable. �
Equation (5.19) can be transformed into

ξ̇ = HAH−1ξ + Hh f (xn) := Pξ + q f (ξn), (5.23)

with a nonsingular linear transformation

ξ =

⎛
⎜⎜⎜⎝

ξ1
ξ2
...

ξn

⎞
⎟⎟⎟⎠=

⎡
⎢⎢⎢⎢⎣

1 0 · · · − h1
h

0 1 · · · ...
...

. . . − hn−1
h

0 0 · · · 1

⎤
⎥⎥⎥⎥⎦
⎛
⎜⎜⎜⎝

x1
x2
...

xn

⎞
⎟⎟⎟⎠ := Hx.

Rewrite equation (5.23) as

ξ̇(n−1) = P(n−1)ξ(n−1) + Kξn,

ξ̇n = Lξ(n−1) + pnnξn + hn f (ξn),
(5.24)

where

ξ(n−1) = (ξ1, . . . ,ξn−1)T, P(n−1) =

⎡
⎢⎣ p11 · · · p1,n−1

...
. . .

...
pn−11 · · · pn−1,n−1

⎤
⎥⎦ ,

K = (p1n, . . . , pn−1,n), L = (pn,1, . . . , pn,n−1).
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Theorem 5.29. (1) If L = 0, the zero solution of system (5.24) is absolutely stable if
and only if (i) pnn < 0 and (ii) P(n−1) is a Hurwitz matrix.

(2) If K = 0 and
∫ ±∞

0 f (ξn)dξn = +∞, the zero solution of system (5.24) is absolutely
stable if and only if pnn ≤ 0 and P(n−1) is a Hurwitz matrix.

(3) If K = 0 and pnn < 0, the zero solution of system (5.24) is absolutely stable if and
only if P(n−1) is a Hurwitz matrix.

Proof. Sufficiency.

(1) If L = 0, pnn < 0, Pn−1 is a Hurwitz matrix. Choosing the radially unbounded,
positive definite Lyapunov function w.r.t. ξn: V (ξ ) = ξ 2

n , we have

dV
dt

∣∣∣∣
(5.24)

= 2pnnξ 2
n + 2hnξn f (ξn) < 0, if ξn �= 0. (5.25)

Thus, the zero solution of system (5.24) is absolutely stable w.r.t. ξn.
ξ(n−1)(t) can be expressed as

ξ(n−1)(t) = eP(n−1)(t−t0)ξ(n−1)(t0)+
∫ t

t0
eP(n−1)(t−τ)Kξn(τ)dτ. (5.26)

It follows from equation (5.26) that the zero solution of system (5.24) is also
absolutely stable w.r.t. ξ(n−1).

(2) Suppose K = 0 and
∫±∞

0 f (ξn)dξn = +∞, then pnn ≤ 0, P(n−1) is a Hurwitz
matrix.

Choose the radially unbounded, positive definite Lyapunov function:

V (ξ ) = ξ T
(n−1)B(n−1)ξ(n−1) + ε

∫ ξn

0
f (ξn)dξn, ε = const.,

where B(n−1) is the solution of the Lyapunov matrix equation

B(n−1)P(n−1) + PT
(n−1)B(n−1) = −I(n−1). (5.27)

Then we have

dV
dt

∣∣∣∣
(5.24)

= ξ̇ T
(n−1)B(n−1)ξ(n−1) + ξ T

(n−1)B(n−1)ξ̇(n−1) + εξ̇(n) f (ξn)

≤
(

ξ T
(n−1)

f (ξn)

)T
⎡
⎢⎣−E(n−1)

1
2

εLT

1
2

εL εhn

⎤
⎥⎦
(

ξ T
(n−1)

f (ξn)

)

< 0, if ξ �= 0, 0 < ε 	 1.

Thus, the zero solution of system (5.24) is absolutely stable.
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(3) If K = 0, pnn < 0, we construct the radially unbounded, positive definite
Lyapunov function:

V (ξ ) = ξ T
(n−1)B(n−1)ξ(n−1) + εξ 2

n ,

where ε = const., 0 < ε 	 1, and B(n−1) satisfies the Lyapunov matrix equa-
tion (5.27). Thus,

dV (ξ )
dt

∣∣∣∣
(5.24)

≤ ξ T
[−E εKT

εK 2ε pnn

]
ξ < 0, if ξ �= 0 (0 < ε 	 1),

from which it is easy to see that the zero solution of system (5.24) is absolutely
stable.
Necessity. Let f (ξn) = εξn (0 < ε 	 1). Then (5.24) becomes

ξ̇(n−1) = P(n−1)ξ(n−1) + Kξn,

ξ̇n = Lξ(n−1) + (pnn + εhn)ξn.
(5.28)

When K = 0 or L = 0, the Hurwitz stability of the matrix[
P(n−1) KT

L pnn + εhn

]
implies that the matrix P(n−1) is Hurwitz stable and pnn +εhn < 0. Thus, pnn ≤ 0
due to 0 < ε 	 1 and hn < 0. �

5.6 The Systems with ATA = AAT, AT = A, or A + AT = –2ρρρ E

In this section, we consider the absolute stability for the following nonlinear direct
control system [136]:

ẋ = Ax + b f (σ),
σ = cTx, (5.29)

where

x =

⎛
⎜⎝ x1

...
xn

⎞
⎟⎠ , A =

⎡
⎢⎣ a11 · · · a1n

...
...

...
an1 · · · ann

⎤
⎥⎦ , b =

⎛
⎜⎝b1

...
bn

⎞
⎟⎠ , c =

⎛
⎜⎝ c1

...
cn

⎞
⎟⎠ ,

f (σ) is an arbitrary continuous function of σ , satisfying the condition f (0) = 0,
σ f (σ) > 0 (σ �= 0).

In [102], Malkin gave a criterion for the absolute stability of system (5.29),
but this criterion can not be realized [179]. Later in 1979, using different methods,
Zhang [179] and Zhao [183] established a criterion for the absolute stability of sys-
tem (5.29), in which A is stable, that is, A has only characteristic roots with negative
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real parts. However, this criterion is not an explicit criterion depending only on the
system parameters A, b, c, and so it is inconvenient to use. Now, we propose some
explicit criteria for the absolute stability of several classes of systems (5.29) in which
A is stable and ATA = AAT, especially AT = A or A + AT = −2ρ E .

Theorem 5.30. Assume in system (5.29) that ATA = AAT and A is stable. If there
exist two integers � and m such that⎧⎪⎪⎨

⎪⎪⎩
∆3 = 0, ∆0 ≤ 0 when ∆2 < 0,

∆3 = 0, ∆0 ∆1 ≥ 0 when ∆2 = 0,

∆ 2
2 −∆1 ∆3 ≥ 0, ∆2 +

√
∆ 2

2 −∆1 ∆3 ≥−∆0 ∆1 when ∆2 > 0,

where

∆0 = 2(−1)mcT(A + AT)−1b/cT(AAT)−�(A + AT)−m+1c,

∆1 =
1
4

[
cT(AAT)−�(A + AT)−m+1c

]2
−cT(AAT)−�(A + AT)−mccT(AAT)−�+1(A + AT)−mc,

∆2 =
1
2
(−1)m+1cT(A + AT)−1bcT(AAT)−�+1(A + AT)−m+1c

+(−1)mcT(AAT)−�(A + AT)−mc
[

bT(A + AT)−�ATc−bTc
]
,

∆3 =
[
cT(A + AT)−1b

]2 − cT(AAT)−�(A + AT)−mcbT(AAT)�(A + AT)m−2b, (5.30)

then the zero solution of (5.29) is absolutely stable.

Proof. We give a brief proof. Let Ao = E and A−k = (A−1)k (k > 0). If A is stable and
ATA = AAT, then A+AT is negative definite and (−1)m(A+AT)m is positive definite
for any integer m, and A�(A + AT)m = (A + AT)mA� and (−1)m(AAT)�(A + AT)m are
positive definite for any integers � and m. Using these facts, we obtain ∆1 ≤ 0 and
∆3 ≤ 0 in Theorem 5.30. From the results in [183] we know that when A is stable, the
zero solution of (5.29) is absolutely stable if and only if there exist a positive definite
matrix B and a nonnegative number β (noting that in [183], β > 0 is assumed, but
the relevant proof in [183] also holds for β = 0) such that

(i) cTB−1d ≤ 0, (5.31)

(ii) (cTB−1d)2 − (cTB−1c)(dTB−1d + 2β cTb) ≥ 0, (5.32)

where d = Gb + β ATc and G is determined by equation ATG + GA = −B. Now
we take B = (−1)m(AAT)�(A + AT)m, then B is positive definite. Next, we take G =
(−1)m−1(AAT)�(A + AT)m−1, then B and G satisfy the equation ATG + GA = −B.
Substituting the expressions of B, G, and d in the left-hand sides of the inequalities
(5.31) and (5.32) and writing them in the form of a polynomial of β , we have

cTB−1d =
1
2

(−1)m+1cT(AAT)−�(A + AT)−m+1c(∆0 −β ),

(cTB−1d)2 − (cTB−1c)(dTB−1d + 2β cTd) = ∆1β 2 + 2∆2β + ∆3.
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Since

(−1)m+1(AAT)−�(A + AT)−m+1 = (−1)−m+1(AAT)�(A + AT)−m+1,

which is positive definite, we know that

1
2

(−1)m+1cT(AAT)−�(A + AT)−m+1c > 0.

Hence, the inequalities (5.31) and (5.32) are equivalent to

∆0 −β ≤ 0, ∆1β 2 + 2∆2β + ∆3 ≥ 0. (5.33)

Because ∆1 ≤ 0 and ∆3 ≤ 0, we know that the inequalities given in (5.33) have
nonnegative solution of β if and only if the conditions of Theorem 5.30 hold. The
proof is complete. �

Theorem 5.31. Assume in system (5.29) that AT = A, A is stable, cTb ≤ 0, and
cTA−1b ≥ 0. If there exists an integer m such that{

δ3 = 0 when δ2 = 0,

δ 2
2 − δ1δ3 ≥ 0 when δ2 > 0,

where

δ1 = (cTA−m+1c)2 − cTA−mccTA−m+2c,

δ2 = (−1)m+1cTA−1bcTA−m+1c +(−1)m+1cTA−mccTb,

δ3 = (cTA−1b)2 − cTA−mcbTAm−2b,

(5.34)

then the zero solution of system (5.29) is absolutely stable.

When AT +A =−2ρ E , we still have ATA = AAT. Let � = m = 0 and −2ρ R take the
place of A + AT in Theorem 5.30, we obtain the following theorem.

Theorem 5.32. Assume in (5.29) that AT + A = −2ρ R, A is stable, and cTb ≤ 0. If⎧⎪⎨
⎪⎩

(cTb)2 − cTcbTb = 0 when bTATc + 3cTbρ ≥ 0,

cTc(bTATc + 3cTbρ)2

−(cTcρ2 − cTATAc)
[
(cTb)2 − cTcbTb

]≥ 0 when bTATc + 3cTbρ < 0,

then the zero solution of system (5.29) is absolutely stable.

Theorems 5.31 and 5.32 include the corresponding results given in [148, 150].
Applying Theorem 5.31 to the following second-order first canonical form of

control system:
xi = −ρixi + f (σ), ρi > 0, i = 1,2,
σ = r1x1 + r2x2

(5.35)
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yields the necessary and sufficient conditions for the absolute stability of the sys-
tem as

r1 + r2 ≤ 0 and
r1

ρ1
+

r2

ρ2
≤ 0.

Note that employing the criteria given in [148, 150] to system (5.35) can give only
sufficient conditions. This shows that Theorems 5.30 and 5.31 are better than the
results in [148, 150].



6

Nonautonomous Systems

In this chapter, we consider nonautonomous systems. Lurie control systems are
mainly autonomous systems. Thus, the Lurie method or Popov method was devel-
oped for single-variable autonomous systems, which are very difficult to be used
to study nonautonomous systems. However, many practical systems contain time-
variant parameters though they usually vary slowly. Stability of time-variant systems
has been a relatively difficult problem in control systems and dynamical systems,
and has less results compared to that of autonomous systems. The results presented
in this chapter are mainly taken from [67, 86] for Sects. 6.1–6.4, and from [67, 105]
for Sect. 6.5.

6.1 Nonautonomous Systems

Consider the nonlinear nonautonomous control system:

ẋ(t) = A(t)x(t)+ b f (σ ,t),

σ = cTx =
n

∑
i=1

cixi,
(6.1)

where A(t) ∈C[ [0,+∞),Rn×n], b ∈ Rn, c ∈ Rn, x ∈ Rn, and

f ∈ F[0,k] := { f : f (t,0) ≡ 0, 0 ≤ f (σ ,t)/σ ≤ k < +∞,

f ∈C[ [0,+∞)×Rn,R1]}.
If for any f ∈ F[0,k], the zero solution of (6.1) is globally stable, we say that the zero
solution of (6.1) to be absolutely stable in [0,k].

Definition 6.1. We say that the zero solution of (6.1) is absolutely stable w.r.t. the set
Ω = {x : σ = cTx = 0} in the Hurwitz angle [0,k], if for any f ∈ F[0,k] and any ε > 0
there exists δ (ε) > 0 such that the solution x(t,t0,x0) of (6.1) satisfies

∣∣cTx(t,t0,x0)
∣∣= ∣∣∣ n

∑
i=1

cixi(t,t0,x0)
∣∣∣< ε for all t ≥ t0

if ‖x0‖ < δ (ε), and for any x0 ∈ Rn,

lim
t→+∞

σ(t,t0,x0) = lim
t→+∞

cTx(t,t0,x0) = 0.

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, Second Edition.
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Definition 6.2. A function V (x) ∈ C[Rn,R1] is said to be positive definite (negative
definite) w.r.t. the set Ω := {x|σ = 0} if

V (x)
{

=0 for x ∈ Ω ,

>0 for x∈Ω .

(
V (x)

{
=0 for x ∈ Ω ,

<0 for x∈Ω .

)
The function V (x) is said to be radially unbounded positive definite for Ω if V (x) is
positive definite for Ω , and V (x) → +∞ as |σ | → +∞.

Theorem 6.3. Suppose that the following conditions are satisfied:

(1) The zero solution of the following linear system

ẋ = A(t)x (6.2)

is uniformly asymptotically stable;
(2) The zero solution of (6.1) is absolutely stable for the set Ω in [0,k].

Then the zero solution of (6.1) is absolutely stable in [0,k].

Proof. According to the formula of variation of constants, the solutions of (6.1) can
be expressed as

x(t) := x(t,t0,x0) = K(t,t0)x0 +
∫ t

t0
K(t,τ)b f (σ(τ),τ)dτ, (6.3)

where K(t,t0) is the Cauchy matrix solution of (6.2), that is,

dK(t,t0)
dt

= A(t)K(t,t0),

K(t0,t0) = In.

Since the condition (1) is satisfied if and only if the zero solution of (6.2) is
exponentially stable, there exist constants α > 0 and M ≥ 1 such that

‖K(t,t0)‖ ≤ M e−α(t−t0).

Since σ(t,t0,x0) → 0 as t → +∞, and σ(t,t0,x0) continuously depends on x0,
f (σ(t,t0,x0),t) is a continuous function of x0, and | f (σ(t,t0,σ0),t)| ≤ k|σ(t,t0,σ0)|,
which implies that

f (σ(t,t0,x0),t) → 0 as t → +∞.

Thus, ∀ε > 0, there exist δ1(ε) > 0 and t1 > t0 such that

M e−α(t−t0)‖x0‖ <
ε
3

for all t ≥ t0, (6.4)∫ t1

t0
M e−α(t−τ)‖b f (σ(τ),τ)‖dτ <

ε
3
, (6.5)∫ t

t1
M e−α(t−τ)‖b f (σ(τ),τ)‖dτ <

ε
3

for all t ≥ t1 (6.6)

if ‖x0‖ < δ1(ε).
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Let us take δ2(ε) = ε
3M , δ (ε) = min(δ1(ε),δ2(ε)). From (6.3), (6.4), (6.5), and

(6.6), we have

‖x(t,t0,x0)‖ ≤ ‖K(t,t0)‖‖x0‖+
∫ t1

t0
‖K(t,τ)‖‖b f (σ(τ),τ)‖dτ

+
∫ t

t1
‖K(t,τ)‖‖b f (σ(τ),τ)‖dτ,

≤ M e−α(t−t0)‖x0‖+
∫ t1

t0
M e−α(t−τ)‖b f (σ(τ),τ)‖dτ

+
∫ t

t1
M e−α(t−τ)‖b f (σ(τ),τ)‖dτ

<
ε
3

+
ε
3

+
ε
3

= ε for all t ≥ t0 if ‖x0‖ < δ (ε).

Therefore, the zero solution of (6.1) is stable.
For any x0 ∈ Rn, by using the L’Hospital rule, we deduce

0 ≤ lim
t→+∞

‖x(t)‖ ≤ lim
t→+∞

M e−α(t−t0) + lim
t→+∞

∫ t

t0
M e−α(t−τ)‖b f (σ(τ),τ)‖dτ

= 0 + lim
t→+∞

1
eαt

∫ t

t0
M eατ‖b f (σ(τ),τ)‖dτ = 0.

Therefore, the zero solution of (6.1) is absolutely stable in [0,k]. The proof of the
theorem is completed. �

Theorem 6.4. If there exists a function V (x) ∈ [Rn,R1] such that

V (0) = 0, V (x) ≥ ϕ(|σ |), ϕ ∈ KR,

D+V (x)|(6.1) ≤−ψ(|σ |), ψ ∈ K,
(6.7)

then the zero solution of (6.1) is absolutely stable for the set Ω in [0,k].

Proof. Since V (0) = 0 (0 ∈ Ω ) and V (x) ∈ C[Rn,R1], ∀ε > 0, there exists δ (ε) > 0
such that V (x0) < ϕ(ε) for ‖x0‖ < δ (ε). According to (6.7), it yields

ϕ(|σ(t,t0,x0)|) ≤V (x(t,t0,x0)) ≤V (x0) ≤ ϕ(ε) for all t ≥ t0,

which implies
|σ(t,t0,x0)| < ε for all t ≥ t0.

Now, we prove that

lim
t→+∞

σ(t,t0,x0) = 0, for all x0 ∈ Rn.
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Expression (6.7) gives

inf
t≥t0

V (x(t)) = lim
t→+∞

V (x(t)) := α ≥ 0.

We can easily check that the function V (x(t)) can reach its inferior limit only in Ω .
For any x0 ∈ Rn, it follows from (6.7) that

|σ(t)| ≤ |cTx(t0)| := h < H < +∞.

Assuming that limt→∞ σ(t) �= 0, from the uniform continuity of σ(t), there exist
constants β > 0, η > 0 and a sequence {t j} such that

|σ(t)| ≥ β for t ∈ [t j −η ,t j + η ].

Let r = infβ≤|σ |≤h ϕ(|σ |) > 0. We have

0 ≤V (t) ≤ V (t0)+
∫ t

t0
D+V (t)dt,

≤ V (t0)−
∫ t

t0
ψ(|σ(τ)|)dτ,

≤ V (t0)−
n

∑
j=1

∫ t j+η

t j−η
ψ(|σ(τ)|)dτ,

≤ V (t0)−2nηr →−∞ as n → +∞,

leading to a contradiction. Thus

lim
t→+∞

σ(t,t0,x0) = 0.

The theorem is proved. �

Theorem 6.5. (1) Let the condition (1) of Theorem 6.3 be satisfied, and | f (σ ,t)| ≥
ϕ(|σ |) ∈ K;

(2) Suppose that there exist a symmetric matrix B(t)n×n and constants α > 0, β >
0, ε > 0 such that xTB(t)x ≥ β |σ |2, and the matrix[

G(t) g(t)
gT(t) −α/(k + ε)

]
,

is negative semi-definite, where

G(t) = AT(t)B(t)+ B(t)A(t)+ Ḃ(t),

g(t) = B(t)b +
α
2

c.
(6.8)

Then the zero solution of (6.1) is absolutely stable in [0,k].
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Proof. We choose the Lyapunov function:

V (t,x) = xTB(t)x.

Then V (t,x) is radially unbounded, positive definite for the set Ω . Using the fact that

dV
dt

∣∣∣∣
(6.1)

= xT(AT(t)B(t)+ Ḃ(t)+ B(t)A(t))x + 2xTB(t)b f (σ ,t),

= xT(AT(t)B(t)+ Ḃ(t)+ B(t)A(t))x + 2xTB(t)b f (σ ,t)

+αcTx f (σ ,t)− α
k + ε

f 2(σ ,t)

−α
(

σ − f (σ ,t)
k + ε

)
f (σ ,t),

=
(

x
f (σ ,t)

)T [ G(t) g(t)
gT(t) − α

(k+ε)

](
x

f (σ ,t)

)
,

≤ −α
(

σ − f (σ ,t)
k + ε

)
f (σ ,t),

≤ − α
k + ε

εσ f (σ ,t),

≤ − αε
k + ε

|σ |ϕ(|σ |).

We see that dV
dt

∣∣
(6.1) is negative definite for the set Ω . The conditions of Theorem 6.4

are satisfied, and therefore the zero solution of (6.1) is absolutely stable in [0,k]. �

6.2 Systems with Separable Variables

In this section, we study the absolute stability for the set Ω by turning this stability
into the absolute stability for one state variable.

Without loss of generality, we assume that cn �= 0. Let

yi = xi, i = 1, . . . ,n−1,

yn = cTx =
n

∑
i=1

cixi.

System (6.1) is then transformed into

ẏi =
n

∑
j=1

ãi j(t)y j + b̃i f (yn,t), i = 1, . . . ,n, (6.9)

where

ãi j(t) = ai j(t)− ai jci

cn
, i, j = 1, . . . ,n−1,

ãin(t) =
ai j(t)

cn
, i = 1, . . . ,n− 1,
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ãnn(t) =
1
cn

n

∑
i=1

ci ain(t),

ãn j(t) =
n

∑
i=1

ci ai j(t)−
n

∑
i=1

ci ain(t)
c j

cn
, j = 1, . . . ,n−1,

b̃i = bi, i = 1, . . . ,n− 1,

b̃n =
n

∑
i=1

cibi.

Obviously, the stability of the zero solution of (6.1) is equivalent to that of (6.9).

Definition 6.6. The zero solution of (6.9) is said to be absolutely stable in [0,k] w.r.t.
partial variables y j, . . . ,yn if for any f ∈ F[0,k] and any ε > 0, there exists δ (ε) > 0
such that

‖y j(t,t0,y0) · · ·yn(t,t0,y0)‖ < ε for all t ≥ t0

when ‖y0‖ < δ (ε), and for any y0 ∈ Rn,

lim
t→+∞

‖y j(t,t0,y0) · · ·yn(t,t0,y0)‖ = 0.

Theorem 6.7. Suppose that

(1) The zero solution of the following linear system

ẏ = Ã(t)y

be uniformly asymptotically stable;
(2) There exist constants ri ≥ 0 (i = 1, . . . ,n−1), rn > 0, and δ > 0 such that

−r jã j j(t) ≥
n

∑
i=1,i�= j

ri|ãi j(t)|, j = 1, . . . ,n−1, (6.10)

−rnãnn(t) ≥
n−1

∑
i=1

ri|ãin(t)|+ δ , (6.11)

−rnb̃n ≥
n−1

∑
i=1

ri|b̃i|, (6.12)

or

−r jã j j(t) ≥
n

∑
i=1,i�= j

ri|ãi j(t)|, j = 1, . . . ,n−1,

−rnãnn(t) ≥
n−1

∑
i=1

ri|ãin(t)|, (6.13)

−rnb̃n >
n−1

∑
i=1

ri|b̃i|. (6.14)
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(3) | f (σ ,t)| ≥ ϕ(|σ |) ∈ K.
In other words, either (6.10), (6.11), and (6.12), or (6.10), (6.13), and (6.14) are
simultaneously valid.

Then the zero solution of (6.9) is absolutely stable in [0,k].

Proof. We construct the Lyapunov function:

V (y) =
n

∑
i=1

ri|yi|.

V (y)≥ rn|yn| →+∞ as yn →+∞ and, as a consequence, V (y) is radially unbounded,
positive definite for yn. In addition, there exists

D+V (y)|(6.9) ≤
n

∑
j=1

[
r jã j j(t)+

n−1

∑
i=1,i�= j

ri|ãi j(t)|
]
|y j|+

[
rnbn+

n−1

∑
j=1

r jb j

]
| f (yn,t)|,

≤
[
rnãnn(t)+

n−1

∑
i=1

ri|ain(t)|
]
|yn|+

[
rnb̃n +

n−1

∑
i=1

ri|b̃i|
]
| f (yn,t)|,

≤
[
rnãnn(t)+

n−1

∑
i=1

ri|ain(t)|
]
|yn|+

[
rnb̃n +

n−1

∑
j=1

r j|b̃ j j|
]
|ϕ(yn)|,

thus D+V (y)|(6.9) is negative definite for yn. According to Theorem 6.5, the conclu-
sion of this theorem is valid. �

Theorem 6.8. (1) Let the condition (1) of Theorem 6.7 hold;
(2) Suppose there exist a symmetric matrix B(t)n×n and constants α > 0, β > 0, ε >

0 such that
yTB(t)y ≥ β y2

n,

and either(
y

f (yn(t),t)

)T [ G(t) g(t)
gT(t) −α/(k + ε)

](
y

f (yn(t),t)

)
≤−εy2

n,

or the matrix
[

G(t) g(t)
gT(t) − α

(k+ε)

]
is negative semi-definite, where

G(t) = AT(t)B(t)+ B(t)A(t)+ Ḃ(t),

g(t) = B(t)b̃+
α
2

c,

and | f (yn,t)| ≥ ϕ(|yn|) ∈ K.
Then the zero solution of (6.9) is absolutely stable in [0,k].
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Proof. We choose the Lyapunov function:

V (t,y) = yTB(t)y.

According to the hypothesis, we know that V (t,y) is radially unbounded and positive
definite, and

dV
dt

∣∣∣∣
(6.9)

= yT(ÃT(t)B(t)+ Ḃ(t)+ B(t)Ã(t))y + 2yTB(t)b̃ f (yn(t),t),

= yT(ÃT(t)B(t)+ Ḃ(t)+ B(t)Ã(t))y + 2yTB(t)b̃ f (yn(t),t)

+αyn(t) f (yn(t),t)− α
k + ε

f 2(yn(t),t)

−
(

αyn(t)− α
k + ε

f (yn(t),t)
)

f (yn(t),t),

≤
⎧⎨
⎩− αε

k + ε
|yn(t)| · |ϕ(yn(t))|, or

−εy2
n(t),

< 0 for y2
n �= 0.

As a result, the zero solution of (6.9) is absolutely stable in [0,k]. �
Assume bn < 0. By the topological transformation

z =

⎛
⎜⎜⎜⎜⎜⎝

z1
z2
...

zn−1
zn

⎞
⎟⎟⎟⎟⎟⎠=

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0 −b1/bn
0 1 · · · 0 −b2/bn
...

...
...

...
0 0 · · · 1 −bn−1/bn
0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

y1
y2
...

yn−1
yn

⎞
⎟⎟⎟⎟⎟⎠ := Hy,

the system (6.9) becomes

żi =
n

∑
j=1

pi j(t)z j, i = 1, . . . ,n−1,

żn =
n

∑
j=1

pn j(t)z j + h̃n f (zn(t),t),
(6.15)

where P(t) = (pi j(t))n×n = HÃ(t)H−1.

Theorem 6.9. Assume that

(1) The condition (1) of Theorem 6.7 be satisfied;
(2) There exists a symmetric positive semi-definite matrix

B =

⎡
⎢⎢⎢⎢⎣

b11 · · · b1,n−1 0
...

...
...

bn−1,1 · · · bn−1,n−1 0

0
... 0 bnn

⎤
⎥⎥⎥⎥⎦ (bnn > 0),



6.3 Direct Control Systems 147

such that either
zT(PT(t)B + BP(t))z ≤−εzn

or

zT(PT(t)B + BP(t))z ≤ 0 and zn f (zn,t) is positive definite.

Then the zero solution of (6.15) is absolutely stable in [0,k].

Proof. We choose the Lyapunov function:

V (z) = zTBz+ bnnz2
n,

which is radially bounded, positive definite w.r.t. zn. Then,

dV
dt

∣∣∣∣
(6.15)

= zT(PT(t)B + BP(t))z+ 2h̃nzn fn(zn,t),

≤
{−εz2

n, or
< 0 when Zn �= 0

2h̃nzn f (zn,t).

Consequently, the zero solution of (6.15) is absolutely stable in [0,k]. �

6.3 Direct Control Systems

Consider the general nonautonomous direct control system

ẋ = A(t)x + b(t) f (σ ,t), σ = cTx, (6.16)

where x ∈ Rn, A(t) is an n× n continuous matrix, c(t) and b(t) are n-dimensional
continuous vectors, which are bounded and differentiable, and

f ∈ F[0,k] := { f : f (0,t) ≡ 0,0 ≤ σ f (σ ,t) ≤ kσ2,0 < k < +∞,

f ∈C[ [0,+∞)×Rn,R1]}.
Theorem 6.10. Suppose that there exists a symmetric, differentiable, and bounded
n× n matrix B(t) such that xTB(t)x is radially unbounded, positive definite, and
there exists a constant α > 0 such that(

x
ξ

)T [−G(t) g(t)
gT(t) −α/k

](
x
ξ

)
is negative definite, where

−G(t) = AT(t)B(t)+ B(t)A(t)+ Ḃ(t),

g(t) = B(t)b(t)+
α
2

c(t).

Then the zero solution of (6.16) is absolutely stable in [0,k].
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Proof. We construct the radially unbounded, positive definite Lyapunov function
V = xTB(t)x. Using the S-method, we deduce

dV
dt

∣∣∣∣
(6.16)

= xT(AT(t)B(t)+ B(t)A(t)+ Ḃ(t))x + 2bT(t)B(t)x(t) f (σ(t),t),

= −xTG(t)x + 2bT(t)B(t)x(t) f (σ(t),t)+ ασ(t) f (σ(t),t)

−α
1
k

f 2(σ(t),t)−α
(

σ(t)− 1
k

f (σ(t),t)
)

f (σ(t),t),

≤
(

x
f (σ(t),t)

)T[−G(t) g(t)
gT(t) −α/k

](
x

f (σ(t),t)

)
,

< 0 for x �= 0.

Thus, the zero solution of (6.16) is absolutely stable in [0,k]. �

6.4 Indirect Control Systems

Consider the nonautonomous indirect control system

ẋ = A(t)x + b(t)ξ + d(t) f (σ ,t),

ξ̇ = f (σ ,t), σ = cT(t)x− r(t)ξ ,
(6.17)

where x ∈ Rn, b(t), d(t), c(t) are n-dimensional continuous differentiable vectors;
ξ , σ are scalars; and r(t) �= 0 is a scalar continuously differentiable function.
Suppose that the coefficients in system (6.17) are continuously differentiable, and

∆(t) := det
∣∣∣∣ A(t) b(t)
−cT(t) r(t)

∣∣∣∣ �= 0 for all t ∈ [0,+∞),

f ∈ F[k1,k2] = { f : f (0,t) ≡ 0,k1σ2 ≤ σ f (σ ,t) < k2σ2 for σ �= 0,

f ∈C[ [0,+∞)×Rn,R]}.
We set

σ = cT(t)x− r(t)ξ , that is, ξ (t) = r−1(t)(cT(t)x−σ).

Then (6.17) can be reduced to

ẋ = Ã(t)x + b̃(t)σ + d(t) f (σ ,t),

σ̇ = c̃T(t)x−ρ(t)σ − γ(t) f (σ ,t),
(6.18)

where

Ã(t) = A(t)+ b(t)r−1(t)cT(t),

b̃(t) = −b(t)r−1(t),
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c̃T(t) = cT(t)Ã(t)+ ċT(t)− ṙ(t)r−1(t)cT(t),

ρ(t) = −cT(t)b̃(t)+ ṙ(t)r−1(t),

γ(t) = −cT(t)d(t)+ r(t).

Let

P(t) =

[
Ã(t) b̃(t)
c̃T(t) −ρ(t)

]
, z =

(
x
σ

)
, l(t) =

(
d(t)
−γ(t)

)
.

Then system (6.18) can be written as

ż = P(t)z+ l(t) f (σ ,t). (6.19)

Theorem 6.11. Suppose that there exists an n× n symmetric differentiable matrix
H(t) such that xTH(t)x is radially unbounded, positive definite, and xT(G(t) +
k1S(t)ST(t))x is positive definite, where

G(t) = PT(t)H(t)+ H(t)P(t)+ Ḣ(t),

σ = ST(t)z,

S(t) = 2H(t)l(t).

Then the solution of (6.19) is absolutely stable in [k1,k2].

Proof. We construct the radially unbounded, positive definite Lyapunov function
V (t,x) = xTH(t)x. It follows that

−dV
dt

∣∣∣∣
(6.19)

= zTG(t)z+ σ f (σ ,t).

Since k1σ2 < σ f (σ) < k2σ2 for σ �= 0, we deduce

zT(G(t)+ k1S(t)ST(t))z ≤ −dV
dt

∣∣∣∣
(6.19)

≤ zT(G(t)+ k2S(t)ST(t))z.

Furthermore, there exists

dV
dt

∣∣∣∣
(6.19)

≤−zT(G(t)+ k1S(t)ST(t))z < 0 for z �= 0.

This completes the proof. �

In the following, we use the method of absolute stability for partial variables to
determine the absolute stability of the zero solution of (6.18).

Suppose that all the coefficients in (6.19) are bounded, and that

f ∈ F[0,k] := { f : f (0,t) ≡ 0,0 < σ f (σ ,t) ≤ k2σ2(k2 < +∞) for σ �= 0,

f ∈C[ [0,+∞)×Rn,R1]}.
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For the coefficients of (6.19), we adopt the following notations:

P(t) =

⎡
⎢⎣ p11(t) · · · p1,n+1(t)

...
...

pn+1,1(t) · · · pn+1,n+1(t)

⎤
⎥⎦,

P( j0)(t) =

⎡
⎢⎣ p11(t) · · · p1 j0(t)

...
...

p j01(t) · · · p j0 j0(t)

⎤
⎥⎦,

P(n+1− j0) =

⎡
⎢⎣ p1, j0+1(t) · · · p1,n+1(t)

...
...

p j0, j0+1(t) . . . p j0,n+1(t)

⎤
⎥⎦,

l(t) = (l1(t), . . . , ln+1(t))T,

l( j0)(t) = (l1(t), . . . , l j0(t))
T,

z( j0)(t) = (x1(t), . . . ,x j0(t))
T,

z(n− j0)(t) = (x j0+1(t), . . . ,xn(t),σ)T.

Theorem 6.12. Assume that the following conditions are satisfied:

(1) The zero solution of the system

ż( j0) = A j0(t)z j0 (6.20)

is uniformly asymptotically stable;
(2) There exist constants ri ≥ 0 (i = 1, . . . , j0), r j > 0 ( j = j0 + 1, . . . ,n + 1), ε > 0

such that

−r j p j j(t) ≥
n+1

∑
i=1,i�= j

ri|pi j(t)|, j = 1, . . . , j0,

−r ja j j(t) ≥
n+1

∑
i=1,i�= j

ri|pi j(t)|+ ε, j = j0 + 1, . . . ,n + 1,

−ln+1(t)rn+1 ≥
n

∑
i=1

rili(t).

Then the zero solution of (6.19) is absolutely stable in [0,k2].

Proof. We construct the radially unbounded, positive definite Lyapunov function for
z j0+1, . . . ,zn+1:

V (z) =
n+1

∑
i=1

ri|zi|.
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Then,

D+V (z)|(6.19) ≤
n+1

∑
j=1

[
r j p j j(t)+

n+1

∑
i=1,i�= j

ri|pi j(t)|
]
|z j|

+
[

rn+1 ln+1(t)+
n

∑
i=1

ri|li(t)|
]
| f (σ ,t)|

≤
n+1

∑
j= j0+1

[
r j p j j(t)+

n+1

∑
i=1
i�= j

ri|pi j(t)|
]
|z j|

≤ −ε
n+1

∑
j= j0+1

|z j|

< 0 for
n+1

∑
j= j0+1

z2
j �= 0.

As a result, the zero solution of (6.19) is absolutely stable w.r.t. the variables
z j0+1, . . . ,zn+1.

Assume that the Cauchy matrix solution of (6.20) is K(t,t0). The condition (1)
indicates that there exist two constants M ≥ 1 and α > 0 such that

‖K(t,t0)‖ ≤ M e−α(t−t0). (6.21)

The first j0 components of the solution of (6.19) can be expressed as

z( j0)(t,t0,z0) = K(t,t0)z( j0)(t0)+
∫ t

t0
K(t,τ)P(n+1− j0)(τ)z(n+1− j0)(τ)dτ

+
∫ t

t0
K(t,τ)l( j0)(τ) f (σ(τ),τ)dτ.

Using (6.21) and the method used in proving Theorem 4.3, we can easily prove that
the zero solution of (6.19) is absolutely stable w.r.t z j0+1, . . . ,zn, as well. The proof
is complete. �

We can also prove the following corollary, along the same line.

Corollary 6.13. (1) Let the zero solution of the system dz
dt = P(t)z be uniformly

asymptotically stable;
(2) Suppose that there exist constants ri ≥ 0 (i = 1, . . . ,n), rn+1 > 0, ε > 0 such that

−r j p j j(t) ≥
n+1

∑
i=1,i�= j

ri|pi j(t)|, j = 1, . . . ,n + 1,

−ln+1(t)rn+1 ≥
n

∑
i=1

ri|li(t)|+ ε, 0 < ε 	 1.

Then the zero solution of (6.19) is absolutely stable in [0,k2].
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Theorem 6.14. (1) Let the condition (1) of Corollary 6.13 be satisfied;
(2) Suppose that there exists a symmetric differentiable bounded (n + 1)× (n + 1)

matrix B(t) such that

zTB(t)z ≥ εzTz, 0 < ε 	 1;

(3) Suppose that there exists a constant α > 0 such that(
z

f (σ ,t)

)T [−G̃(t) g̃(t)
g̃T(t) −α/k

](
z

f (σ ,t)

)
≤−δτ, 0 < δ 	 1,

where

−G̃(t) = PT(t)B(t)+ B(t)P(t)+ Ḃ(t),

g̃(t) = B(t)l(t)+
α
2

c̃(t),

τ ∈ {σ2,σ f (σ ,t), f 2(σ ,t)}.
Then the zero solution of (6.19) is absolutely stable in [0,k2].

Proof. We construct the radially unbounded positive definite Lyapunov function
V (z) = zTB(t)z. Differentiating V w.r.t. time t along the solution of (6.19), making
use of the S-method and the proof of Theorem 6.10, we get

dV
dt

∣∣∣∣
(6.19)

≤
(

z
f (σ ,t)

)T [−G̃(t) g̃(t)
g̃T(t) −α/k

](
z

f (σ ,t)

)

−α
(

σ(t)− 1
k

f (σ(t),t)
)

f (σ(t),t),

≤
(

z
f (σ ,t)

)T [−G̃(t) g̃(t)
g̃T(t) −α/k

](
z

f (σ ,t)

)
≤−δτ.

Therefore, the zero solution of (6.19) is absolutely stable for σ in [0,k].
Suppose that the Cauchy matrix solution of the system ż = P(t)z is K(t,t0). Using

the method of variation of constants, we can express the solution of (6.19) as

z(t,t0,z0) = K(t,t0)z0 +
∫ t

t0
K(t,τ)l(τ) f (σ(τ),τ)dτ.

A similar reasoning to that used in the proof of Theorem 4.3 can be applied here. �

6.5 Systems with Loop Revolving Feedbacks

Consider the control systems with loop revolving feedbacks [67, 105]:

ẋ = A(t)x + b(t)ξ + d(t) f (σ),

ξ̇ = f (σ), σ = cT(t)x− r(t)ξ −N f (σ).
(6.22)
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Again we adopt the notations used in (6.17). However, note that here the control
function f (σ) is assumed to be differentiable and satisfy

−v1 ≤ ∂ f (σ)
∂σ

≤ v2,

where v1, v2 are some positive constants.
Suppose that r(t) �= 0. Using (6.22), we can write

ξ (t) = r−1(t)(cT(t)x−σ −N f (σ)). (6.23)

Then substituting (6.23) into (6.22) yields

ẋ = Ã(t)x + b̃(t)σ + d̃(t) f (σ),

w(σ)σ̇ = c̃Tx−ρ(t)σ − Ñ f (σ),
(6.24)

where

Ã(t) = A(t)+ b(t)r−1(t)cT(t),

b̃(t) = b(t)r−1(t),

d̃(t) = d(t)− r−1(t)b(t)N,

ρ(t) = −cT(t)b̃(t)− ṙ(t)r−1(t),

c̃T(t) = cT(t)Ã(t)+ ċT(t)− ṙ(t)r−1(t)cT(t),

ω(σ) = 1 + N
∂ f
∂σ

,

Ñ = r(t)− ṙ(t)r−1(t)N − cT(t)d(t).

Theorem 6.15. Suppose that

(1) ω(σ) does not change its sign for any f ∈ F[k1,k2];
(2) There exists an (n + 1)× (n + 1) symmetric matrix H(t) such that xTH(t)x is

radially unbounded, positive definite;
(3) ⎛

⎝ x
σ
f

⎞
⎠T⎡⎣ G(t) −H(t)b̃(t) −α c̃(t)−H(t)d̃(t)

−b̃T(t)H(t) 2αρ(t)k1 αρ(t)
−α c̃T(t)− (H(t)d̃(t))T αρT(t) 2αÑ

⎤
⎦
⎛
⎝ x

σ
f

⎞
⎠

is positive definite, where α is a constant with the same sign as ω(σ), and H(t)
is solution of the Lyapunov matrix equation:

ÃT(t)H(t)+ H(t)Ã(t)+ Ḣ(t) = −G(t),

in which G(t) is a given positive definite matrix.

Then the zero solution of (6.22) is absolutely stable in [k1,k2].
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Proof. We take the Lyapunov function

V (x,σ) = xTH(t)x + 2α
∫ σ

0
f (σ)ω(σ)dσ ,

where α is a constant having the same sign as ω(σ). Obviously, V (x,σ) is radially
unbounded, positive definite. DifferentiatingV along the solution of (6.22), we obtain

−dV
dt

∣∣∣∣
(6.22)

= xTG(t)x− 2xTH(t)b̃(t)σ −2xTH(t)d̃(t) f (σ)

−2αxTc(t) f (σ)+ 2αρ(t)σ f (σ)+ 2αÑ f 2(σ), (6.25)

where −G(t) = ÃT(t)H(t)+ H(t)Ã(t)+ Ḣ(t).
We introduce the following notations: y = (x, σ , t)T and

Gi =

⎡
⎣ G(t) −H(t)b̃(t) −α c̃(t)−H(t)d̃(t)

−b̃T(t)H(t) 2αρ(t)ki αρ(t)
−α c̃T(t)− (H(t)d̃(t))T αρT(t) 2αÑ

⎤
⎦, i = 1,2.

Using the facts that f (0) = 0 and k1σ2 < σ f (σ) < k2σ2, the expression (6.25)
becomes

yTG1(t)y ≤ −dV
dt

∣∣∣∣
(6.24)

≤ yTG2(t)y.

From (6.25) we find that dV
dt

∣∣
(6.24) is negative definite. Thus, the zero solution

of (6.24) is absolutely stable in [k1,k2]. �

Theorem 6.16. Assume that

(1) The condition (1) of Theorem 6.15 is satisfied;
(2) The zero solution of the system ẋ = Ã(t)x is uniformly asymptotically stable;
(3) There exist constants ri ≥ 0 (i = 1, . . . ,n), rn+1 > 0 such that

−r jã j j(t) ≥
n

∑
i=1,i�= j

ri|ãi j(t)|+ r j|c̃ j(t)|, j = 1, . . . ,n, (6.26)

rn+1ρ(t) ≥
n

∑
i=1

|b̃i(t)|ri + ε, (6.27)

rn+1Ñ ≥
n

∑
i=1

ri|d̃i(t)|, (6.28)

where ε is a constant with 0 < ε 	 1;
(4)
∫ +∞

0 |ω(σ)|dσ = +∞.

Then the zero solution of (6.24) is absolutely stable in [k1,k2].

Proof. We construct the Lyapunov function

V =
n

∑
i=1

ri|xi|+ rn+1

∫ σ

0
signσ |ω(σ)|dσ .
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V is radially unbounded, positive definite for σ , and thus

D+V |(6.24) ≤
n

∑
j=1

[
r jã j j(t)+

n

∑
i=1,i�= j

ri|ãi j(t)|+ r j|c̃ j(t)|
]
|x j|

+
[
− rn+1ρ(t)+

n

∑
i=1

|b̃i(t)|ri

]
|σ |

+
[
− Ñrn+1 +

n

∑
i=1

ri|d̃i(t)|
]
| f (σ)|,

≤ −ε | f (σ)|,
< 0 for σ �= 0.

In this case, D+V |(6.24) is negative definite in σ . Therefore, the zero solution of (6.24)
is absolutely stable in [k1,k2] for partial variabel σ .

Let the Cauchy matrix solution of the following system be K(t,t0):

ẋ = Ã(t)x.

From the condition (2), we know that there exist constants M ≥ 1, α > 0 such that

‖K(t,t0)‖ ≤ M e−α(t−t0).

The first equations in (6.24) gives

x(t,t0,x0) = K(t,t0)x0 +
∫ t

t0
K(t,τ)[b̃(τ)σ(τ)+ d̃(τ) f (σ(τ))]dτ.

The proof can be completed along the lines of the proof for the sufficiency of
Theorem 4.3. This proves the theorem. �

Theorem 6.17. If the conditions (1) and (2) of Theorem 6.16 hold, and (6.26) holds
as well, while (6.27) and (6.28) are replaced by

rn+1ρ(t) ≥
n

∑
i=1

ri|b̃i(t)|,

rn+1Ñ ≥
n

∑
i=1

ri|d̃i(t)|+ ε, 0 < ε 	 1,

then the zero solution of (6.24) is absolutely stable in [k1,k2].

Proof. We construct the radially unbounded, positive definite Lyapunov function:

V =
n

∑
i=1

ri|xi|+ rn+1

∫ σ

0
signσ |ω(σ)|dσ ,
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then we have

D+V |(6.24) ≤
n

∑
j=1

[
r jã j j(t)+

n

∑
i=1,i�= j

ri|ãi j(t)|+ r j|c̃ j(t)|
]
|x j|

+
[
− rn+1ρ(t)+

n

∑
i=1

|b̃i(t)|ri

]
|σ |

+
[
− Ñrn+1 +

n

∑
i=1

ri|d̃i(t)|
]
| f (σ)|,

≤ −ε| f (σ)|,
< 0 for σ �= 0.

Thus, the zero solution of (6.24) is absolutely stable for σ in [k1,k2]. The rest of the
proof is identical to that of Theorem 6.16. �



7

Systems with Multiple Nonlinear Feedback
Controls

As a result of the fast development of science and technology, control systems have
become more and more complex. Usually, single feedback control is not enough
to finish a complicated task and needs multiple feedbacks. In 1988, SIAM pub-
lished a research report “The Future Development of Control Theory – Mathematical
Prospect.” It was indicated in this report that though the stability of nonlinear con-
trol systems had been paid much attention and many mathematical results had been
found, the results are still mainly on single-variable nonlinear control systems such
as Popov’s principal and Lyapunov method. Multivariable nonlinear control systems
are not yet well generalized. It is still difficult to extend the single-variable case to
the multivariable case.

In this chapter, we will discuss the absolute stability of control systems with
multiple nonlinear control terms. The results given in Sects. 7.1–7.4 are taken from
Liao et al. [91, 92], and that presented in Sect. 7.5 are from Gan and Ge [29].

7.1 Necessary and Sufficient Conditions for Absolute Stability

Consider the following control system with m nonlinear control terms [91]:

ẋ = Ax+
m

∑
j=1

b j f j(σ j),

σ j = cT
j x =

n

∑
i=1

ci jxi, j = 1, . . . ,m,

(7.1)

where A ∈ Rn×n, x = (x1, . . . ,xn)T, b j = (b1 j, . . . ,bn j)T, c j = (c1 j, . . . ,cn j)T,

f j ∈ F∞ :=
{

f : f (0) = 0, f (σ)σ > 0, σ �= 0, f (σ) ∈C[(−∞, +∞), R1]
}
,

j = 1, . . . ,m,

Reλ (A) ≤ 0. Let

Ω j =
{

x : σ j = cT
j x = 0

}
, j = 1, . . . ,m,

Ω =

{
x : ‖σ‖ =

m

∑
j=1

|σ j| =
m

∑
j=1

|cT
j x| = 0

}
.

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, Second Edition.
c© Springer Science + Business Media B.V. 2008
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Definition 7.1. The zero solution of (7.1) is said to be absolutely stable for the set
Ω [Ωi] if for any f j(σ j) ∈ F∞( j = 1, . . . ,m) and any ε > 0, there exits δ (ε) > 0 such
that for ‖x0‖< δ (ε) the distance from the solution x(t) := x(t,t0,x0) to the set Ω [Ω j]
satisfies

ρ(x,Ω) :=
m

∑
j=1

|cT
j x(t)| < ε

(
ρ(x,Ω j) := |cT

j x(t)| < ε
)
,

and

lim
t→+∞

m

∑
j=1

|cT
j x(t)| = 0

(
lim

t→+∞
|cT

j x(t)| = 0
)

for every x0 ∈ Rn.

Definition 7.2. A function V (x)∈C[Rn,R1] is said to be positive definite w.r.t. the set
Ω [Ω j] if

V (x)

{
=0 for x ∈ Ω ,

>0 for x ∈ Ω .

(
V (x)

{
=0 for x ∈ Ω j,

>0 for x ∈ Ω j.

)

The function V (x) ∈ C[Rn,R1] is said to be negative definite w.r.t. the set Ω (Ω j) if
−V (x) is positive definite for Ω (Ω j).

Definition 7.3. A function V (x) ∈ C[Rn,R1] is said to be radially unbounded, posi-
tive definite for Ω (Ω j) if V (x) is positive definite for Ω (Ω j) and V (x) → +∞ as
∑m

j=1 |σ j| → +∞ ( |σ j| → +∞).

Theorem 7.4. The necessary and sufficient conditions for the absolute stability of
the zero solution of (7.1) are given by

1. B := A+∑m
j=1 θ jb jcT

j is Hurwitz stable with θ j = 1 or θ j = 0, j = 1, . . . ,m;
2. The zero solution of (7.1) is absolutely stable for Ω .

Proof. Necessity. (1) In the case Reλ (A) < 0, we take θ j = 0, j = 1, . . . ,m, and then
B = A. B is obviously Hurwitz stable. In the case Reλ (A)≤ 0, we take some θ j = 1.
Let in (7.1) f j(σ j) = σ j = cT

j x( j = 1, . . . ,m). Then (7.1) can be transformed into

ẋ =

(
A +

m

∑
j=1

θ jb jcT
j

)
x.

Therefore, B = A + ∑m
j=1 θ jb jcT

j is Hurwitz stable.
(2) ∀ε > 0, taking

ε̃ =
ε

∑m
j=1 ‖cT

j ‖
,
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there exits δ (ε̃) > 0 such that for ‖x0‖ < δ (ε̃),

‖x(t)‖ := ‖x(t,t0,x0)‖ :=
n

∑
j=1

|x j(t)| < ε̃ for all t ≥ t0.

This implies that
m

∑
j=1

‖cT
j x(t)‖ ≤

m

∑
j=1

‖cT
j ‖‖x(t)‖ ≤

m

∑
j=1

‖cT
j ‖ε̃ = ε

for all t ≥ t0.
Furthermore, since lim

t→+∞
‖x(t)‖ = 0 for every x0 ∈ Rn, we have

0 ≤ lim
t→+∞

m

∑
j=1

‖cT
j x(t)‖ ≤

m

∑
j=1

‖cT
j ‖ lim

t→+∞
‖x(t)‖ = 0.

Consequently, the zero solution of (7.1) is absolutely stable for Ω . The necessity is
proved.

Sufficiency. In accordance with the formula of variation of constants, the solution
x(t) := x(t,t0,x0) of (7.1) satisfies

x(t) = eB(t−t0)x0 +
∫ t

t0
eB(t−τ)

m

∑
j=1

[b j f j(σ j(τ))−θ jb jσ j(τ) ] dτ.

Since B is Hurwitz stable, there exist constants M ≥ 1 and α > 0 such that∥∥∥eB(t−t0)
∥∥∥≤ Me−α(t−t0), t ≥ t0.

We define σ j(t) = σ j(t,t0,x0). Since σ = ∑m
j=1 |σ j(t)| → 0 as t → +∞, we have

limt→+∞ σ j(t) = 0. Because σ j(t) continuously depends on the initial value x0, and
f j(σ j(t)) is a composite continuous function of x0 and f j(σ j(t)) → +∞ as t → +∞
∀ε > 0 there exits δ (ε) > 0 and t1 > t0 such that ‖x0‖ < δ (ε) implies∥∥∥eB(t−t0)x0

∥∥∥≤ ∥∥∥eB(t−t0)
∥∥∥ ‖x0‖ <

ε
3

for t ≥ t0,∫ t1

t0
Me−α(t−τ)

[
m

∑
j=1

‖b j f j(σ j(τ))‖+
m

∑
j=1

θ j‖b jσ j(τ)‖
]

dτ <
ε
3

for t0 ≤ t1 < t,

∫ t

t1
Me−α(t−τ)

[
m

∑
j=1

‖b j f j(σ j(τ))‖+
m

∑
j=1

θ j‖b jσ j(τ)‖
]

dτ <
ε
3

for t ≥ t1.

Thus, we have

‖x(t)‖ ≤ ‖eB(t−t)x0‖+
∫ t1

t0
Me−α(t−τ)

[
m

∑
j=1

‖b j f j(σ j(τ))‖+
m

∑
j=1

θ j‖b jσ j(τ)‖
]

dτ

+
∫ t

t1
Me−α(t−τ)

[
m

∑
j=1

‖b j f j(σ j(τ))‖+
m

∑
j=1

θ j‖b jσ j(τ)‖
]

dτ

<
ε
3

+
ε
3

+
ε
3

= ε.
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For any x0 ∈ Rn, by the L’Hospital rule, we get

0 ≤ lim
t→+∞

‖x(t)‖
≤ lim

t→+∞
Me−α(t−t0)

+ lim
t→+∞

∫ t

t0
Me−α(t−τ)

[
m

∑
j=1

‖b j f j(σ j(τ))‖+
m

∑
j=1

θ j‖b jσ j(τ)‖
]

dτ

= 0.

Thus the zero solution of (7.1) is absolutely stable. The proof of the theorem is
complete. �

Theorem 7.5. The zero solution of (7.1) is absolutely stable if and only if

1. A +
m

∑
j=1

θ jb jcT
j := B is a Hurwitz matrix, where θ j = 0 or θ j = 1, j = 1, . . . ,m

2. There exists a differential Lyapunov function Vf ∈ [Rn,R1], where Vf (x) is radially
unbounded, positive definite for Ω , i.e., there exist ϕ f ∈ KR and ψ f ∈ K such that

Vf (x) ≥ ϕ f (|σ |),
dV
dt

∣∣∣∣
(7.1)

≤−ψ f (|σ |). (7.2)

Proof. Sufficiency. It is suffice to prove that the condition (2) implies that the zero
solution of (7.1) is absolutely stable for Ω .

Since Vf (0) = 0, 0 ∈ Ω , and Vf (x) is a continuous function of x ∀ε > 0 there
exists δ (ε) > 0 such that

Vf (x0) < ϕ f (ε) for ‖x0‖ < δ (ε).

If follows from (7.2) that:

ϕ f (|σ |) ≤Vf (x(t)) ≤Vf (x0) ≤ ϕ f (ε),

and therefore, |σ(t)| < ε . Thus, the zero solution of (7.1) is stable for Ω . Now we
prove that limt→+∞ σ(t,t0,x0) = 0 for any x0 ∈ Rn.

Since Vf (x(t)) := Vf (t) is a monotone decreasing and bounded function,

inf
t≥t0

Vf (x(t)) := lim
t→+∞

Vf (x(t)) := α ≥ 0.

We want to show that α can be reached only in Ω . If it can be reached outside Ω , then
there must exist a sequence tk with tk →+∞ as k →+∞ such that limtk→+∞ σ(tk) = 0.
As a result,

α = lim
tk→+∞

Vf (tk) = lim
tk→+∞

σ(tk)→0

Vf (tk).
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In other words, α can be reached in Ω , a contradiction with the pre-assumption that
α can be reached outside Ω .

For any x0 ∈ Rn, the expression (7.1) gives

|σ(t)| ≤ |σ(t0)| := h < H < +∞.

Now, let us prove that limt→+∞ σ(t) = 0. Assume that limt→+∞ σ(t) �= 0. Since σ(t)
is uniformly continuous, there exist constants β > 0, η > 0 and point sequence t j
such that |σ(t)| ≥ β for t ∈ [t j −η , t j + η ], j = 1,2, . . . .

Setting γ f = limβ≤σ≤h ψ f (σ), we deduce

0 ≤Vf (t) ≤ Vf (t0)+
∫ t

t0

dVf

dt
dt

≤ Vf (t0)−
∫ t

t0
ψ f (|σ(τ)|)dτ

≤ Vf (t0)−
n

∑
j=1

∫ t j+η

t j−η
ψ f (|σ(τ)|)dτ

≤ Vf (t0)−2nη γ f →−∞ as n → ∞.

This yields a contradiction; thus limt→+∞ σ(t) = 0. This proves that the zero solution
of (7.1) is absolutely stable for Ω . The sufficiency is proved.

Necessity. Since the zero solution of (7.1) is absolutely stable, Rn is an attractive
space. for any fi ∈ F( j = 1, . . . ,m) and any x ∈ Rn, let

Wf (x) := sup‖x f (t,0,x)‖2, t ≥ 0,

where x f (t) denotes a solution of (7.1). From Theorem 3.2 of Bhatia and Szegö [7],
we know that Wf (x) has the following properties:

1. Wf (x) ≥ 0 and Wf (x) = 0 if and only if x = 0, Wf (x) is radially unbounded,
positive definite

2. Wf (x) is monotone decreasing function
3. Wf (x) is continuous in Rn

Furthermore, we define

Vf (x) :=
∫ +∞

0
Wf (x f (η ,0,x))e−η dη .

Obviously, Vf (x) is radially unbounded, positive definite. Thus, there exists ϕ̃ f ∈ KR
such that

Vf (x) ≥ ϕ̃ f (‖x‖).
Let

Φ =
∫ t+η

0
Wf (x f (ξ ))dξ .
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If follows that:
Φ ′

η = Φ ′
t = Wf (x f (t + η)).

Integrating by parts yields

Vf (x f (t)) =
∫ +∞

0
e−ηdΦ = e−η

∫ t+η

0
Wf (x f (ξ ))dξ |+∞

0 +
∫ +∞

0
Φ(t + η)e−ηdη

= −
∫ t

0
Wf (x f (ξ ))dξ +

∫ +∞

0
Φ(t + η)e−ηdη .

Since Wf (x f (t)) is a monotone nonincreasing function, Wf (x f (t)) is bounded. Fur-
thermore, we note that

lim
η→+∞

e−η
∫ t+η

0
Wf (x f (ξ ))dξ = 0

and

dVf

dt
|(7.1) = −Wf (x f (t))+

∫ +∞

0
Φ ′

t e−ηdη

= −Wf (x f (t))+
∫ +∞

0
Wf (x f (t + η))e−ηdη

=
∫ +∞

0

[
Wf (x f (t + η))−Wf (x f (t))

]
dη .

Since Wf (x f (t)) is a monotone nonincreasing function, we obtain

Wf (x f (t + η)) ≥Wf (x f (t)), η ≥ 0.

In particular, if x(t) is a nonzero solution of (7.1),

Wf (x f (t + η)) �= Wf (x f (t))

or
Wf (x f (t + η)) ≡Wf (x f (t)) → 0 as η → +∞.

Thus, Wf (x f (t + η)) ≡ 0 that fact

Wf (x) = sup
{
‖x f (t,0,x)‖2, t ≥ 0

}
≡/ 0.

Therefore, if x f (t) ≡/ 0, then
∫ +∞

0
[Wf (x f (t + η))−Wf (x f (t))]e−η dη ,

i.e.
dVf

dt

∣∣∣∣
(7.1)

< 0 for x �= 0.
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Therefore, we conclude

dVf

dt

∣∣∣∣
(7.1)

≤−u f (x) for x �= 0

with u f (x) being a positive definite function. Thus, we have

u f (x) ≥ ϕ̃ f (‖x‖) := ϕ̃ f

(
n

∑
i=1

|xi|
)

≥ ϕ̃ f

⎛
⎝ 1

m

n

∑
i=1

1
max

1≤i≤n,1≤ j≤m
|ci j| ∑

i, j=1
|ci jxi|

⎞
⎠

≥ ϕ̃ f

⎛
⎝ 1

m
1

max
1≤i≤n,1≤ j≤m

|ci j|
m

∑
j=1

|ci jxi|
⎞
⎠

:= ϕ f (σ) ∈ KR.

Hence, u f (x) is radially unbounded, positive definite for Ω . Further, we have

dVf

dt

∣∣∣∣
(7.1)

≤−u f (x) ≤−ϕ̃ f (‖x‖) ≤−ϕ f (σ), ϕ f ∈ K.

The condition (2) of Theorem 7.5 is satisfied; the condition (2) of this theorem is
trivial. The necessity is proved. �
Theorem 7.6. The zero solution of (7.1) is absolutely stable if and only if

1. The condition (1) of Theorem 7.5 is satisfied
2. For any f j ∈ F ( j = 1, . . . ,m), there exist m Lyapunov fictions V ( j)

f (x) ∈ [Rn,R1]
( j = 1, . . . ,m) such that

V ( j)
f (x) ≥ ϕ( j)

f (|σ j|), ϕ( j)
f ∈ KR, j = 1, . . . ,m,

dV ( j)
f

dt

∣∣∣
(7.1)

≤−ψ( j)
f (|σ j|), ψ( j)

f ∈ K, j = 1, . . . ,m.

Proof. Necessity. Theorem 7.5 guarantees that the condition (1) is satisfied, and that
there exists Vf (x) ≥ ϕ f (σ) ∈ KR such that

dVf (x)
dt

∣∣∣∣
(7.1)

≤−ψ f (σ), ϕ f ∈ K.

Take V ( j)
f = Vf (x), j = 1, . . . ,m. Due to

V ( j)
f = Vf (x) ≥ ϕ f (σ) = ϕ f

( m

∑
j=1

|cT
j x|
)
≥ ϕ f (|cT

j x|)

= ϕ f (|σ j|) ∈ KR, j = 1, . . . ,m,
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we have

dV ( j)
f

dt

∣∣∣∣∣∣
(7.1)

=
dVf

dt

∣∣∣∣
(7.1)

≤−ψ f (σ) = −ψ f

(
m

∑
j=1

|cT
j x|
)

≤ −ψ f
(|cT

j x|)= ψ j(σ j), ψ j ∈ K, j = 1, . . . ,m.

This verifies the necessity.
Sufficiency. Similar to the proof of sufficiency for Theorem 7.5, the condition

(2) can be proved to imply that the zero solution of (7.1) is absolutely stable for
Ω j, j = 1, . . . ,m. Thus, as in Theorem 7.4 one can show that the zero solution of
(7.1) is absolutely stable. This verifies the sufficiency. �

Theorem 7.7. Let the following conditions be satisfied:

1. The condition (1) of Theorem 7.4 holds.
2. There exist an n × n real symmetric matrix B and constants βi ≥ 0

(i = 1, . . . ,m), α > 0 such that

V (x) = xTBx+
m

∑
j=1

βi

∫ σ j

0
f j(σ j )dσ j

with

xTBx ≥ α
m

∑
i=1

σ2
i

or

V (x) =
m

∑
j=1

βi

∫ σ j

0
f j(σ j )dσ j, β j > 0,

∫ +∞

0
f (σ j)dσ j = +∞, j = 1, . . . ,m.

3. dV
dt |(7.1) ≤−ετ, τ ∈

{
σ2,

m

∑
j=1

σ j f j(σ j),
m

∑
j=1

f 2
j (σ j)

}
.

Then the zero solution of (7.1) is absolutely stable.

Proof. It is suffice to prove that the conditions (2) and (3) of this theorem imply
Theorem 7.5.

In fact, by the Lyapunov function

V (x) = xTBx+
m

∑
j=1

βi

∫ σ j

0
f j(σ j )dσ j,

the condition (2) implies that

V (x) ≥ α
m

∑
j=1

σ2
j +

m

∑
j=1

βi

∫ σ j

0
f j(σ j )dσ j = ϕ(σ) ∈ KR
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or

V (x) ≥
m

∑
j=1

βi

∫ σ j

0
f j(σ j )dσ j := ϕ(σ) ∈ KR,

and

dV
dt

|(7.1) = −ετ := −ψ(σ), ψ ∈ K.

Therefore the conditions of Theorem 7.5 are satisfied. Theorem 7.7 is proved. �

Corollary 7.8. Suppose that there exit constant β j ≥ 0 ( j = 1, . . . ,m) and a symmet-
ric positive matrix P such that the function:

V (x) = xTPx+
n

∑
j=1

β j

∫ σi

0
f j(σ j)dσ j

satisfies dV
dt

∣∣
(7.1) < 0 for x �= 0. Then the zero solution of (7.1) is absolutely stable.

Proof. It is suffice to prove that V (x) is radially unbounded, positive definite for Ω ,
while dV

dt |(7.1) is negative definite for Ω .
Let c̄ = max

1≤i≤n,1≤i≤n
|ci j|, λ = min

1≤i≤n
λi(P), and λi be eigenvalues of P. Then

V (x) ≥ xTPx ≥ λ xTx ≥ λ
∑m

j=1 n∑n
i=1 |ci jxi|

mnc̄
≥ λ

∑m
j=1 σ2

i

mnc̄
:= ϕ(|σ |) ∈ KR.

Therefore, V (x) is radially unbounded, positive definite for Ω , and

dV
dt

|(7.1) ≤−ψ(‖x‖)≤−ψ
( 1

mc

m

∑
j=1

|σ j|
)

:= −ψ1(σ), ψ1 ∈ K.

Thus dV
dt |(7.1) is negative definite for Ω . The conditions of Theorem 7.7 are satisfied.

The proof of Corollary 7.8 is complete. �

7.2 Some Simple Sufficient Conditions for Absolute Stability

Without loss of generality, we assume that ci = (ci1, . . . ,cim)T (i = 1, . . . ,m) are lin-
early independent. by an n-dimensional full-rank linear transformation, (7.1) can be
transformed into the following form:

ẋ = Ax+
n

∑
j=m+1

b j f j(x j), (7.3)

or into the vector component form:

ẋi =
n

∑
j=1

ai jx j +
n

∑
j=m+1

b j f j(x j). (7.4)
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Theorem 7.9. Suppose that

1. A = (ai j)n×n is a Hurwitz matrix,
2. There exist constant r j ≥ 0 ( j = 1, . . . ,m), r j > 0 ( j = m+ 1, . . . ,n) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−r ja j j +
n

∑
i=1,i�= j

ri|ai j| ≤ 0, j = 1, . . . ,m,

−r ja j j +
n

∑
i=1,i�= j

ri|ai j| < 0, j = m+ 1, . . . ,n,

−r jb j j +
n

∑
i=1,i�= j

ri|bi j| ≤ 0, j = m+ 1, . . . ,n;

or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−r ja j j +
n

∑
i=1,i�= j

ri|ai j| ≤ 0, j = 1, . . . ,m,

−r ja j j +
n

∑
i=1,i�= j

ri|ai j| ≤ 0, j = m+ 1, . . . ,n,

−r jb j j +
n

∑
i=1,i�= j

ri|bi j| < 0, j = m+ 1, . . . ,n.

Then the zero solution of the system (7.3) is absolutely stable.

Proof. We construct the Lyapunov function:

V =
n

∑
i=1

ri|xi|.

Obviously, we have

V =
n

∑
i=1

ri|xi| ≥
n

∑
i=m+1

ri|xi| → +∞ as
n

∑
i=m+1

|xi| → +∞.

Thus, V is radially unbounded, positive definite for xn−m+1, . . . ,xn. Since

D+V (x)|(7.3) ≤
n

∑
j=1

[
r ja j j +

n

∑
i=1,i�= j

ri|ai j|
]
|x j|

+
n

∑
l=m+1

[
rlbll +

n

∑
i=1,i�=l

|ribil|
]
| fl(xl)|

< 0 for
n

∑
j=m+1

|x j| �= 0,

the zero solution of (7.3) is absolutely stable w.r.t. xm+1, . . . ,xn. Since the matrix A is
Hurwitz stable, there exit M ≥ 1 and α > 0 such that

‖eA(t−t0)‖ ≤ Me−α(t−t0).
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The solution of (7.3) can be expressed in the following form:

x(t, t0, x0) = eA(t−t0)x0 +
∫ t

t0
eA(t−τ)

n

∑
j=m+1

b j f j(x j(τ))dτ.

Following the proof of sufficiency for Theorem 7.4, we can prove that the zero
solution of (7.3) is absolutely stable. �

Let us denote

ãi j =

{
ai j, i = 1, . . . ,n, j = 1, . . . ,m,

bi j, i = 1, . . . ,n, j = m+ 1, . . . ,n.

Theorem 7.10. The zero solution of (7.3) is absolutely stable if either of the follow-
ing two sets of conditions is satisfied:

1. aii < 0, i = 1, . . . ,n, the matrix((−1)δi j |ai j|)n×n is Hurwitz stable
2. There exits a constant k > 0 such that{

kbll < all, l = m+ 1, . . . ,n,

k|bil| ≤ ail, i = 1, . . . ,n, i �= l, l = m+ 1, . . . ,n.

Proof. Since the condition (1) implies that −((−1)δi j |ai j|)n×n is an M-matrix, there
exist constant ri > 0, ( j = 1, . . . ,n) such that

r ja j j +
n

∑
i=1,i�= j

|riai j| < 0, j = 1, . . . ,n.

Condition 2 implies that

rlbll +
n

∑
i=1,i�=l

|ribil| ≤ 1
k

(
rlall +

n

∑
i=1

ri|ail|
)

< 0 l = m+ 1, . . . , n.

We construct the radially unbounded, positive definite Lyapunov function:

V =
n

∑
i=1

ri|xi|

and we deduce that

D+V |(7.3) ≤
n

∑
j=1

[
r ja j j +

n

∑
i=1,i�= j

ri|ai j|
]
|x j|

+
n

∑
l=m+1

[
rlbll +

n

∑
i=1,i�=l

|ribil|
]
| fl(xl)|

< 0 for x �= 0,

Consequently, the zero solution of (7.3) is absolutely stable. �
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Example 7.11. Consider the absolute stability of the following system:

ẋ1 = −x1 −2 f1(x1)+ 2 f2(x2),

ẋ2 = −x2 + 2 f1(x1)−2 f2(x2),
f1, f2, ∈ F∞. (7.5)

We choose the radially unbounded, positive definite Lyapunov function:

V = |x1|+ |x2|.
Thus,

D+V |(7.5) ≤ −|x1|− |x2|+[−2 + 2]| f1(x1)|
+(−2 + 2) | f2(x2)|

≤ −|x1|− |x2| < 0 for x �= 0

and the zero solution of (7.5) is absolutely stable.

Example 7.12. Consider the absolute stability of the system:

ẋ1 = −4x1 + 2x2 + x3 + 2 f2(x2)+ 2 f3(x3),

ẋ2 = 2x1 −3x2 + x3 −4 f2(x2)−2 f3(x3),

ẋ3 = −2x1 + x2 −3x3 + f2(x2)−7 f3(x3),

(7.6)

where f1, f2 ∈ F∞, and⎡
⎣ a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦=

⎡
⎣ −4 2 1

2 −3 1
−2 1 −3

⎤
⎦ ,

⎡
⎣ b12 b13

b22 b23
b32 b33

⎤
⎦=

⎡
⎣ 2 2

−4 −2
1 −7

⎤
⎦ .

It is easy to prove that the matrix ((−1)δi j |ai j|) is stable. Furthermore, notice that

0 > a22 > b22, |ai2| = |bi2|, i = 1,3,

|ai3| = 1
2
|bi3|, i = 1,2, by taking k =

1
2
.

Thus, the condition of Theorem 7.10 are satisfied. The zero solution of (7.6) is
absolutely stable.

Let

f̃i j(x j) =

{
ai jx j + bi j f (x j), i = 1, . . . ,n, j = m+ 1, . . . ,n

ai jx j, i = 1, . . . ,n, j = 1, . . . ,m

System (7.4) can be written as

ẋi =
n

∑
j=1

f̃i j(x j), i = 1, . . . ,n. (7.7)
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Theorem 7.13. Let the following conditions be satisfied:

1. A = (ai j)n×n is Hurwitz stable
2.
∫ ±∞

0 f̃ii(xi)dxi = −∞, f̃ii(xi)xi < 0 f or xi �= 0, i = 1, . . . ,n
3. There exist constants ci ≥ 0 (i = 1, . . . ,m), ci > 0 (i = m+ 1, . . . ,n), ε > 0, such

that the matrix

G(gi j)n×n +
[

0 0
0 εE(n−m)×(n−m)

]
is negative semi-definite, where

gi j(x) =

⎧⎪⎨
⎪⎩

−1
2

(ci j f̃i j(x j)
f̃ j j(x j)

+
c j f̃ ji(xi)

f̃ii(xi)

)
, xix j �= 0,

0, xix j = 0,

i, j = 1, . . . ,n

Then the zero solution of (7.7) is absolutely stable.

Proof. We construct the radially unbounded, positive definite Lyapunov function

V (x) = −
n

∑
i=1

∫ xi

0
ci f̃ii(xi)dxi.

Following the proof of Theorem 7.4, we can show that dV
dt |(7.7) is negative definite for

xm+1, . . . ,xn. Thus, the zero solution of (7.7) is absolutely stable w.r.t. xm+1, . . . ,xn,
i.e., the zero solution of (7.3) is absolutely stable for xm+1, . . . ,xn.

Using the fact that the matrix A is Hurwitz stable, the solution of (7.3) can be
expressed as

x(t,t0,x0) = eA(t−t0)x0 +
∫ t

t0
eA(t−τ)

n

∑
j=m+1

b j f j(x j(τ))dτ.

As in the proof of Theorem 7.4, we can prove that the zero solution of (7.3) is
absolutely stable. Consequently, the zero solution of (7.7) is absolutely stable. �
Theorem 7.14. Let the following conditions be satisfied:

1. The conditions (1) and (2) of Theorem 7.5 are satisfied

2.
∣∣∣ f̃i j(x j)

f̃ j j(x j)

∣∣∣≤ bi j

3.

B̃ =

⎡
⎢⎢⎣

1 −b21 · · · −bn1
−b12 1 · · · −bn2

...
...

...
...

−b1n −b2n · · · 1

⎤
⎥⎥⎦ :=

[
B̃11 B̃12
B̃21 B̃22

]

with B̃11, B̃22, and I − B̃−1
11 B̃12B̃−1

22 B̃21 being M-matrices, where B̃11, B̃12, B̃21,
and B̃22 are m×m, m× (n−m), (n−m)×m and (n−m)× (n−m) matrices,
respectively.

Then the zero solution of (7.7) is absolutely stable.
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Proof. For any ξ = (ξ1, . . . ,ξm)T ≥ 0 and any η = (η1, . . . ,ηn−m)T > 0, we consider
the following equations:

B̃11c + B̃12c̃ = ξ ,

B̃21c + B̃22c̃ = η .
(7.8)

Obviously, (7.8) is equivalent to

c̃ = −B̃−1
22 B̃21c + B̃−1

22 η , (7.9)

c = B̃−1
11 ξ + B̃−1

11 B̃12B̃−1
22 B̃21c− B̃−1

11 B̃12B̃−1
22 η . (7.10)

Since η ≥ 0, B̃11, and B̃22 are M-matrices, we have B̃−1
11 ≥ 0, B̃−1

22 ≥ 0, B̃12 ≤ 0, and

− B̃−1
11 B̃12B̃−1

22 η ≥ 0, B̃−1
11 ξ > 0.

Recalling that I− B̃−1
11 B̃12B̃−1

22 B̃21 is an M-matrix, we know that there exist a positive
solution of (7.10) for c̃ and a nonnegative solution of (7.9) for c.

We choose the Lyapunov function

V =
n

∑
i=1

ci|xi| ≥
n

∑
i=m+1

ci|xi|.

Then

D+V |(7.7) ≤
n

∑
j=1

[
−c j| f̃ j j(x j)|+

n

∑
i=1,i�= j

ci| f̃i j|
]
|x j|

≤
n

∑
j=m+1

[
−c j| f̃ j j(x j)|+

n

∑
i=1,i�= j

ci| f̃i j|
]
|x j|

≤
n

∑
j=m+1

[
−c j +

n

∑
i=1,i�= j

cibi j]|x j|
]
| f̃ j j(x j)|

< 0 for
n

∑
j=n−m+1

| f j j(x j)| �= 0.

Therefore, the zero solution of system (7.7) is absolutely stale w.r.t. xn−m+ j ( j =
1, . . . ,m), i.e., the zero solution of system (7.3) is absolutely stable w.r.t. xn−m+ j ( j =
1, . . . ,m). Following the proof of Theorem 7.5, we can complete the proof of the
remaining part of this theorem. �

Example 7.15. We examine the absolute stability of the following system:

ẋ1 = −x1 − 1
2

x2 − f1(x1)− 1
2

f2(x2),

ẋ2 =
1
2

x1 − x2 +
1
2

f1(x1)− f2(x2),
(7.11)

where f1, f2 ∈ F∞.
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Let

f̃11(x1) = −x1 − f1(x1), f12(x2) = − 1
2

x2 − 1
2

f2(x2),

f̃21(x1) =
1
2
(x1 + f1(x1)), f22(x2) = −x2 − f2(x2).

We choose the positive definite and radially unbounded Lyapunov function

V (x) = −
∫ x1

0
f̃11(x1)dx1 −

∫ x2

0
f̃22(x2)dx2.

It follows that:

dV
dt

∣∣∣∣
(7.11)

= − f̃ 2
11(x1)− f̃ 2

22(x2) < 0 for x2
1 + x2

2 �= 0.

Therefore, the zero solution of (7.11) is absolutely stable.

7.3 Special Systems

Consider the following special system:

ẋ = Ax+ B f (σ),

σ = CTx,
(7.12)

where A ∈ Rn×n, x ∈ Rn, B and C are n × m constant matrices, σ and f are
m-dimensional vectors, and f (σ) satisfies:

f (0) = 0 and σTK1σ ≤ σTK3 f (σ) ≤ σTK2σ , (7.13)

where K1, K2, and K3 are m×m symmetric positive definite constant matrices.

Remark 7.16.

1. Let ϕ(σ) = K3 f (σ)−K1σ , K = K2 −K1, then (7.13) becomes

ϕ(0) = 0, 0 < σTϕ(σ) ≤ σTKσ .

2. If K3 is a nonsingular matrix, then using the transformation, we have

f (σ) = K−1
3 K1σ + K−1

3 ϕ(σ).

System (7.12) is then transformed into

ẋ = Ãx+ B̃ f (σ),

σ = CTx,
(7.14)

where Ã = A + BK−1
3 K1CT and B̃ = BK−1

3 .
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Theorem 7.17. Assume that

1. The matrix Ã is stable;
2. There exists a positive definite matrix G̃ such that the solution of the Lyapunov

matrix equation:
ÃTH̃ + H̃Ã = −2G̃ (7.15)

satisfies
C = −H̃B̃ (7.16)

Then the zero solution of (7.14) is absolutely stable.

Proof. Since Ã is stable, the Lyapunov matrix equation (7.15) has only a symmetric
and positive definite solution H̃.

Constructing the Lyapunov function:

V (x) = xTH̃x

which is radically unbounded, positive definite. We deduce

dV
dt

∣∣∣∣
(7.14)

= −2xTG̃x + 2xTH̃B̃ϕ(σ) = −2xTG̃x−2σTϕ(σ) < 0 for x �= 0.

Therefore, the zero solution of (7.14) is absolutely stable. �

The significance of Theorem 7.4 lies in the fact that when Ã is Hurwitz stable,
we can first construct a positive definite matrix H̃, by choosing the control matrix C
such that H̃ satisfies (7.16). This makes an easy design for stable systems.

Theorem 7.18. Assume that

1. The matrix Ã is stable
2. ϕTK−1ϕ ≤ ϕTσ
3. There exists a constant τ > 0 such that[

2G̃ −Q
−QT τK−1

]

is positive definite, where G̃ is a positive definite matrix defined by (7.15), and
Q = H̃B̃ + 1

2 τC.

Then the zero solution of system (7.15) is absolutely stable.

Proof. We construct the Lyapunov function in the positive definite quadratic form:

V (x) = xTH̃x,

where H̃ denotes a solution of (7.15). Then

dV
dt

∣∣∣
(7.14)

= −2xTG̃x + 2xTH̃B̃ϕ(σ).
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Using the S-process, we obtain

dV
dt

∣∣∣
(7.14)

= −2xTG̃x + 2xTQϕ − τϕTK−1ϕ

= −
(

x
ϕ

)T [ 2G̃ −Q
−QT τK−1

](
x
ϕ

)

< 0 for x �= 0.

This completes the proof of Theorem 6.3.2. �

7.4 Nonautonomous Systems

Consider the m-dimensional nonautonomous and nonlinear control system:

ẏ = Ã(t)y +
n

∑
j=m+1

b̃ j(t) f j(σ j,t), 1 ≤ m < n,

σ j = cT
j y,

(7.17)

where

f j ∈ F[0,k j ] :=
{

f
∣∣∣ f (0) = 0, 0 ≤ σ j f (σ j,t) ≤ k jσ2

j , k j < +∞,

f ∈C[(−∞, +∞)× [0, +∞),R ]
}

, j = m+ 1, . . . ,n,

A(t) = (ai j(t))n×n is continuous matrix function matrix on [0,+∞), and

b j(t) = (b j1(t), . . . ,b jn(t)) ∈C[0,+∞)T,Rn],

Cj(t) = (c j1(t), . . . ,c jn(t))T is a constant vector. Suppose that c j ( j = m + 1, . . . ,n)
are linearly independent. Without loss of generality, we assume that

det

⎡
⎢⎣ cm+1,m+1 · · · cm+1,n

...
...

cm,m+1 · · · cnn

⎤
⎥⎦ �= 0.

By the following nonsingular linear transformation:

x = Qy,

i.e.,

xi = yi, i = 1, . . . ,m,

xi = σi, i = m+ 1, . . . ,n.
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System (7.17) can be transformed into

ẋ = A(t)x +
n

∑
j=m+1

b j(t) f j(x j,t),

where
A(t) = Q−1Ã(t)Q, B j(t) = Q−1b̃ j(t),

or, in the vector component form

ẋi =
n

∑
j=1

ai j(t)x j +
n

∑
j=m+1

bi j(t) f j(x j,t), i = 1, . . . ,n (7.18)

Theorem 7.19. Assume that there exist constant ri ≥ 0 (i = 1, . . . ,m) and ri > 0 (i =
m+ 1, . . . ,n), δ > 0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−r ja j j(t)+
n

∑
i=1, j �=i

ri|ai j(t)| ≤ 0, j = 1, . . . ,m,

−r ja j j(t)+
n

∑
i=1, j �= j

ri|ai j(t)| ≤ −δ < 0, j = m+ 1, . . . ,n,

−r jb j j(t)+
n

∑
i=1, j �=i

ri|bi j(t)| ≤ 0, j = m+ 1, . . . ,n.

Let the zero solution of the linear system

ẋi =
m

∑
j=1

ai j(t)x j, i = 1, . . . ,m (7.19)

be uniformly asymptotically stable.
Then the zero solution of system (7.18) is absolutely stable in

K = diag
(
[0,k1], . . . , [0,km]

)
.

Proof. We choose the Lyapunov function:

V (x) =
n

∑
i=1

ci|xi|,

which is radially unbounded, positive definite w.r.t. xm+1, . . . ,xn. Then

D+V (x)|(7.18) ≤
n

∑
j=1

[
r ja j j(t)+

n

∑
i=1,i�= j

ri|ai j(t)|
]
|x j|

+
n

∑
j=m+1

[
r jb j j(t)+

n

∑
i=1,i�= j

ri|bi j(t)|
]
| f j(x j,t)|

≤
n

∑
j=m+1

[
r ja j j(t)+

n

∑
i=1,i�= j

ri|ai j(t)|
]
|x j|

≤ −δ
n

∑
j=m+1

|x j|.
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Thus, D+V |(7.18) is negative definite w.r.t. xm+1, . . . ,xn, and the zero solution of
(7.18) is absolutely stable w.r.t. xm+1, . . . ,xn in K = diag([0,k1], . . ., [0,km]).

The Cauchy matrix solution K(t,t0) of (7.19) satisfies

‖K(t,t0)‖ ≤ Me−α(t−t0).

Let

x(n−m) = (xm+1, . . . ,xn)T,

A(n−m)(t) = (ai j(t))(m)×(n−m),

b(n−m)
j (t) = (bm+1, j(t), . . . ,bn, j(t))T.

Then, the first n−m components of the solution of (7.18) can be written as

x(n−m)(t,t0,x0) = K(t,t0)x
(n−m)
0 +

∫ t

t0
K(t,τ)A(n−m)(τ)x(n−m)(τ)dτ

+
∫ t

t0
K(t,τ)

n

∑
j=m+1

b(n−m)
j (τ) f j(x j(τ),τ)dτ.

Since 0 ≤ f j(x j,t)x j ≤ kx2, we have f j(x j(t),t) → 0 as x j → 0 uniformly in t.
Following the proof of Theorem 4.3, we can prove that the zero solution of (7.18)

is absolutely stable w.r.t. x(n−m) in K = diag([0,k1], . . . , [0,km]). Theorem 7.19 is
proved. �

Theorem 7.20. 1. Suppose that there exist constants ri ≥ (i = 1, . . . ,m), ri > 0 (i =
m+ 1, . . . ,n) δ > 0 such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−r ja j j(t)+

n

∑
i=1,i�= j

ri|ai j(t)| ≤ 0, j = 1, . . . ,m,

−r jb j j(t)+
n

∑
i=1
i�= j

ri|bi j(t)| ≤ −δ < 0, j = m+ 1, . . . ,n,
f1, f2 ∈ F∞

2. Let the condition (2) of Theorem 7.19 be satisfied
3. Let | fi(xi,t)| be positive definite, j = 1, . . . ,m.

Then the zero solution of the system (7.18) is absolutely stable in

K = diag
(
[0,k1], . . . , [0,km]

)
.

Proof. We choose the Lyapunov function:

V (x) =
n

∑
i=1

ri|xi|,
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which is radially unbounded, positive definite for xn−m+1, . . . ,xn. We find

D+V (x)|(7.18) ≤
n

∑
j=m+1

[
r jb j j(t)+

n

∑
i=1,i�= j

ri|bi j(t)|
]
| fi(σ j,t)|

< 0 for x(n−m) �= 0.

Thus, the zero solution of (7.18) is absolutely stable w.r.t. xn−m. The rest of the proof
is exactly the same as in Theorem 7.19 and we do not repeat it here. �
Example 7.21. Examine the absolute stability of the following system:

ẋ1 = (−4 + sint)x1 +(sint)x2 +(
1
2

cost)x3 + f2(x2)+ (1 + sint) f3(x3),

ẋ2 = (2cost)x1 −3x2 − t
1 + t2 x3 −2 f2(x2)+ 2 f3(x3),

ẋ3 =
t

1 + t2 x1 − (cost)x2 −2x3 − f2(x2)−4 f3(x3),

(7.20)

where f2 ∈ F[0,k2], f3 ∈ F[0,k3].

Proof. Choosing the radially unbounded and positive definite Lyapunov function:

V = |x1|+ |x2|+ |x3|,
we deduce that

D+V (x)|(7.20) ≤
[
(−4 + sint)+ |2cost|+ 1

1 + t2

]
|x1|

+ [−3 + |sint|+ |cost| ] |x2|

+
[
−2 +

1
1 + t2 +

1
2
|cos t|

]
|x3|+(−2 + 1 + 1) | f2(x2)|

+(−4 + 2 + 1 + |sint|) | f3(x3)|

≤ −1
2
|x1|− |x2|− |x3| for t2 ≥ 1,

implying that the zero solution of system (7.20) is absolutely stable in

K = diag
(
[0,k1], [0,k2]

)
. �

Next, take

f̃i j(x j,t) =

{
ai j(t)x j + bi j(t) f j(t,x j), i = 1, . . . ,n, j = n−m+ 1, . . .,n,

ai j(t)x j, i = 1, . . . ,n, j = 1, . . . ,n−m.

Then system (7.18) can be rewritten as

ẋi =
n

∑
j=1

f̃i j(x j,t), (7.21)

where f j ∈ Fkj , j = 1, . . . ,n.
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Theorem 7.22. Let the following conditions be satisfied:

1. f̃ j j(x j,t)x j < 0, j = 1, . . . ,n,x j �= 0
2. There exist function Fj j(x j) defined on (−∞,+∞), j = 1, . . . ,m, which are con-

tinuous or have only finite discontinuous points of the first or third kind such
that

Fj j(x j)x j < 0 f or x j �= 0, |Fj j(x j)| ≤ | f j j(x j,t)|,∫ ±∞

0
Fj j(x j)dx j = −∞, j = 1, . . . ,m;

3. The matrix G(gi j)n×n is negative definite, where

gi j

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

=−1, i = 1, . . . ,n,

≥1
2

∣∣∣∣ f̃i j(x j,t)
Fj j(x j)

+
f̃ ji(xi,t)
Fii(xi)

∣∣∣∣ , i �= j, xix j �= 0, i, j,= 1, . . . ,n,

=0, i �= j, xix j = 0, i, j,= 1, . . . ,n.

Then the zero solution of system (7.21) is absolutely stable in

K = diag([0,k1], . . . , [0,km]) .

Proof. We choose the Lyapunov function

V (x) = −
n

∑
i=1

∫ xi

0
Fii(xi)dxi.

Obviously, it is radically unbounded, positive definite.
Following the proof of Theorem 7.19, we can prove that D+V |(7.21) is neg-

ative definite. Therefore, the zero solution of (7.21) is absolutely stable in K =
diag([1,k1], . . . , [0,km]). �

Theorem 7.23. 1. The condition (1) of Theorem 7.22 is satisfied
2. | f̃ j j(x j,t)| is positive definite, j = 1, . . . ,m

3. h
∣∣∣ f̃i j(x j ,t)

f̃ j j(x j ,t)

∣∣∣≤ g̃i j, i �= j, i, j = 1, . . . ,n and

G =

⎡
⎢⎢⎣

1 −g̃12 · · · −g̃1n
−g̃21 1 · · · −g̃2n

...
...

...
−g̃n1 −g̃n2 · · · 1

⎤
⎥⎥⎦

is an M-matrix.
Then the zero solution of the system (7.21) is absolutely stable in

K = diag([0,k1], . . . , [0,km]).
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Proof. Since G is an M-matrix, for any ξ = (ξ1, . . . ,ξn)T > 0, the algebraic equation
GTη = ξ has a positive solution:

r = η = (GT)−1ξ > 0.

Constructing the Lyapunov function

V (x) = −
n

∑
1

[
sgn f̃ii(xi,t)

]
ri|xi|,

we find

D+V (x)|(7.21) ≤
n

∑
j=1

[
−r j| f̃ j j(x j,t)|+

n

∑
i=1,i�= j

ri | f̃i j(x j,t)|
]

≤
n

∑
j=1

[
−r j +

n

∑
i=1,i�= j

rig̃i j

]
| f̃ j j(x j,t)|

≤ 0 for x �= 0.

Therefore, the zero solution of the system (7.21) is absolutely stable in K =
diag([1,k1], . . . , [0,km]). The theorem is proved. �

7.5 Lurie Systems with Multiple Nonlinear Loop Feedbacks

Consider a Lurie system with multiple nonlinear loop feedbacks:

ẋ = Ax+
m

∑
j=1

b j f j(σ j),

σ j = cT
j x + d j fi(σ j),

(7.22)

where A ∈ Rn×n, Reλ (A) ≤ 0, x, b j, c j ∈ Rn, d j ≤ 0, j = 1, . . .m, and f j(·) ∈ F∞.
Similar to Sect. 7.1, we can define Ω1, . . . ,Ω j, ( j = 1, . . . ,m) and its correspond-

ing Lyapunov functions. Ω1, . . . ,Ω j are radially unbounded, positive definite.
Similarly, as in Sect. 7.1, we can define the absolute stability of the zero solution

of (7.22) w.r.t. Ω , Ω j. Here, we will give the absolute stability for the zero solution
of (7.22) w.r.t. σ .

Definition 7.24. The zero solution of (7.22) is said to be absolutely stable if ∀ f j(·)∈
F∞ ( j = 1, . . . ,m) ∀ε > 0, there exists δ (ε) > 0 such that when ‖x0‖ < δ (ε),
‖σ(δ (ε))‖ < ε , and ∀x0 ∈ Rn, limt→∞ δ (t,t0,x0) = 0, where σ0 depends on x0.

Since in (7.22), σ j’s are no longer given in explicit linear combinations of the
state variables, but implicitly depend on the state variables, the positive definite, neg-
ative definite, and radially unboundedness for the corresponding Lyapunov functions
can only be formally defined. They are not easy to verify. Noticing the property of
f j(σ) and di ≤ 0, we have the following important property:
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σ j and cT
j x have the same sign, and σ j → 0 if and only if cT

j x → 0. Thus, do not
need to distinguish the absolute stabilities w.r.t. the set Ω j, σ = 0, or σ j = 0. They
can be employed and replaced with each other.

When we determine the sign and radial unboundedness of a Lyapunov function,
we need the explicit of the state variables Ω , Ω j. We also need the property that
σ → 0 as t → +∞ in proofs.

Theorem 7.25. The necessary and sufficient conditions for the zero solution of
system (7.22) being absolutely stable are given by

1. B = A + ∑m
j=1

θ jb jcT
j

1−d j
is a Hurwitz matrix, where θ j = 1 or θ j = 0, j = 1,2, . . . ,m;

2. The zero solution of (7.22) is absolutely stable w.r.t. Ω .

Theorem 7.26. The necessary and sufficient conditions for the zero solution of the
system (7.22) being absolutely stable are:

1. The condition (1) of Theorem 7.25 is satisfied
2. There exits a differentiable function V ∈ [Rn,R1] which is positive definite and

radially unbounded w.r.t. Ω satisfying

V ≥ ϕ(‖cTx‖), ϕ ∈ KR,

dV
dt

≤ −ψ(‖cTx‖), ψ ∈ K.

Theorem 7.27. The necessary and sufficient conditions for system (7.22) being
absolutely stable are:

1. The condition (1) of Theorem 7.25 is satisfied
2. The zero solution of (7.22) is absolutely stable w.r.t. σ .

Theorem 7.28. The necessary and sufficient condition for system (7.22) being abso-
lutely stable are:

1. The condition (1) of Theorem 7.25 is satisfied
2. There exits a differentiable function V ∈ [Rn,R1] satisfies:

V ≥ ϕ
(‖cTx‖) , ϕ ∈ KR,

dV
dt

∣∣∣∣
(7.22)

≤−ψ
(‖cTx‖) , ψ ∈ K.

The proofs for the above four theorems are almost exactly same as those in proving
the theorems in Sects. 7.1 and 7.2, and thus omitted here. Note that the relationship
between the variable σ and the state variable x is not clear in (7.22). Although the
first condition in Theorems 7.25 and 7.28 is algebraic and easy to verify, verifying
second condition is quite difficult. However, we may, in addition, assume that f is
continuously differentiable, then we have the following practically useful corollary.
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Corollary 7.29. Assume the following conditions are satisfied:

1. The condition (1) in Theorem 7.25 is satisfied
2. There exists an n× n symmetric matrix B and constant β j > 0, j = 1, . . . ,n such

that B is positive definite or positive semi-definite and
∫ ±∞

0 fi(σi)dσi = +∞ or
lim

σ→∞
f 2

j (σ) = +∞

3. f j ∈C1 and

V (x,σ) = xTBx+
m

∑
j=1

βi

∫ σ j

0
f (σ j)d j− 1

2

m

∑
j=1

β jd j f 2
j (σ j)

satisfying
dV(x,σ)

dt
|(7.22) ≤−ετ,

where

τ ∈
{

σTσ ,
m

∑
j=1

σ j f j(σ j),
n

∑
j=1

f 2
j (σ j), xTx

}
.

Then the zero solution of system (7.22) is absolutely stable.

Proof. We only need to prove that the zero solution of (7.22) is absolutely stable
w.r.t. σ under the conditions (1) and (2).

1. When B is positive definite, if τ = xTx, dV (x,σ)
dt |(7.22) ≤ −εxTx. Thus, the zero

solution of (7.22) is absolutely stable.
If

τ ∈ {σTσ ,
n

∑
j=1

σ j f j(σ j),
n

∑
j=1

f 2
j (σ j)},

then the zero solution of (7.22) is absolutely stable w.r.t. σ .
2. When B is positive semi-definite, if

τ ∈
{

σTσ ,
n

∑
j=1

σ j f j(σ j),
n

∑
j=1

f 2
j (σ j)

}
,

dV (x,σ)
dt |(7.22) is negative definite w.r.t. σ .

If τ = xTx, since ‖cx‖2

‖c‖2 ≤ ‖c‖2‖x‖2

‖c‖2 = xTx, dV
dt |(7.22) ≤ −τ xTx ≤ −τ ‖cx‖2

‖c‖2 < 0. When

x ∈̄ Ω , dV
dt is negative w.r.t. Ω . Thus, the zero solution of (7.22) is absolutely stable

w.r.t. σ .
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Example 7.30. Consider a two-dimensional system with two loop feedback nonlinear
terms: (

ẋ1
ẋ2

)
=
(−1 0

0 −1

)(
x1
x2

)
+
(−1

0

)
f (σ1)+

(
0
−1

)
f2(σ2),

σ1 = (1, 0)
(

x1
x2

)
− 0.5 f1(σ1),

σ2 = (0, 1)
(

x1
x2

)
− 0.3 f2(σ2). (7.23)

(1) A =
[−1 0

0 −1

]
is a Hurwitz matrix.

(2) Assume fi ∈ F∞ where fi is differentiable, and
∫ ±∞

0 f (σ j)d j = +∞ or f 2
j (σ j) →

+∞ when σ j → ∞. Let

V (σ) =
∫ σ1

0
f1(σ1)dσ1 +

∫ σ2

0
f2(σ2)dσ2 +

1
4

f 2
1 (σ1)+

3
20

f 2
2 (σ2),

and thus,

dV
dt

∣∣∣∣
(7.23)

= f1(σ1)
dσ1

dt
+ f2(σ2)

dσ2

dt
+

1
2

f1(σ1)
d f
dσ1

dσ1

dt
+

3
10

f2(σ2)
d f
dσ2

dσ2

dt

= f1(σ1)
[

1 +
1
2

d f1

dσ1

]
dσ1

dt
+ f2(σ2)

[
1 +

3
10

d f2

dσ2

]
dσ2

dt

= f1(σ1)
dx1

dt
+ f2(σ2)

dx2

dt

= f1(σ1) [−x1 − f1(σ1) ]+ f2(σ2) [−x2 − f2(σ2) ]

= f1(σ1)
[
−σ1 − 3

2
f1(σ1)

]
+ f2(σ2)

[
−σ2 − 13

10
f2(σ2)

]
= −σ1 f1(σ1)− 3

2
f 2
1 (σ1)−σ1 f2(σ2)− 13

10
f 2
2 (σ2)

< 0 when σ2
1 + σ2

2 �= 0.

This indicates that the conditions in Corollary 7.29 are satisfied, and the proof is
complete. �
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Robust Absolute Stability of Interval Control
Systems

Strictly speaking, a mathematical model is only an approximate description of a real
system since the information of the system coefficients are usually the upper and
lower bounds, not the exact values [44]. In the past two decades, the stability study
for linear control systems with parameters varied in a finite closed interval has been
a hot topic in control society. However, not many results have been obtained for
stability of nonlinear control systems with varied parameters in an interval. In this
chapter, we will systematically introduce robust stability of control systems with
interval varied parameters. In fact, such idea and methodology can be generalized
to consider other Lurie control systems. The materials presented in this chapter are
chosen from Liao et al. [85] (Sects. 8.1–8.4), and from Yu and Liao [172] (Sects. 8.5–
8.9) and Liao [79].

8.1 Interval Lurie Control Systems

In Sect. 2.4, we have used a linear transform to change a general Lurie control system
(including direct, indirect, and critical control systems) into two types of nonlinear
control systems with separable variables in which feedback states become part of the
state variables. Therefore, without loss of generality, here we assume the system is
given in the transformed standard form.

Consider the following Lurie interval control system:

ẋ = AI x + hI f (xn), (8.1)

and a simpler system:
ẏ = BI y + rI f (yn), (8.2)

where

f (·) ∈ F := {xn|0 < xn f (xn) ≤ +∞, xn �= 0, f (xn) ∈C[(−∞, +∞),R1],

AI := {A(ai j)n×n : A ≤ A ≤ A, i.e.,ai j ≤ ai j ≤ ai j, i, j = 1, 2, . . . , n},
hI := {h : h ≤ h ≤ h, i.e.,hi ≤ hi ≤ hi, i = 1, 2, . . . , n},
BI := {B(bi j)n×n : B ≤ B ≤ B, i.e.,bi j ≤ bi j ≤ bi j, i, j = 1, 2, . . . , n},
rI := {r : r ≤ r ≤ r, i.e.,ri ≤ ri ≤ ri, ri =ri =0, i=1, . . . ,n−1,rn <rn}

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, Second Edition.
c© Springer Science + Business Media B.V. 2008
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in which A, A, B, B are known n× n matrices, h, h, r, r are known n-dimensional
vectors, while A, B, h and r are not precisely known.

∀A ∈ AI ∀h ∈ hI (∀B ∈ BI, ∀r ∈ rI), the corresponding Lurie systems of (8.1) and
(8.2) are given, respectively, by

ẋ = Ax + h f (xn), (8.1)′

ẏ = Ay + r f (xn). (8.2)′

Definition 8.1. If ∀A ∈ AI, ∀h ∈ hI (∀B ∈ BI, ∀r ∈ rI), the zero solutions of the cor-
responding systems (8.1)′ and (8.2)′ are absolutely stable, then it is said the the zero
solutions of the Lurie interval control systems (8.1) and (8.2) are robustly absolutely
stable.

Definition 8.2. If ∀A ∈ AI, ∀h ∈ hI (∀B ∈ BI, ∀r ∈ rI), the zero solutions of the cor-
responding systems (8.1)′ and (8.2)′ are absolutely stable w.r.t. the partial variables
x j+1, x j+2, . . . , xn (y j+1, y j+2, . . . , yn), then it is said the the zero solutions of the
Lurie interval control systems (8.1) and (8.2) are robustly absolutely stable w.r.t. the
partial variables x j+1, x j+2, . . . , xn, (y j+1, y j+2, . . . , yn).

Definition 8.3. If ∀A ∈ AI, (∀B ∈ BI), A (B) is a Hurwitz matrix, then AI (BI) is
called an interval Hurwitz matrix.

8.2 Sufficient and Necessary Conditions for Robust Absolute
Stability

Since system (8.2) is a special case of system (8.1), we only discuss system (8.1),
and the results for system (8.2) can be directly obtained from the results of system
(8.1), as corollaries of the theorems obtained for system (8.1).

Theorem 8.4. The sufficient and necessary conditions for the robust absolute stabil-
ity of the zero solution of the Lurie interval control system (8.1) are:

1. AI +(On×(n−1) hIθ ) is an interval Hurwitz matrix, where θ = 0 or 1, and On×(n−1)
is an n× (n−1) zero matrix, i.e.,

(On×(n−1), hIθ ) =

⎡
⎢⎣ 0 · · · 0 h1θ

...
...

...
0 · · · 0 hnθ

⎤
⎥⎦

n×n

, hi ∈ [hi, hi], i = 1, 2, . . . , n.

2. The zero solution of system (8.1) is robustly absolutely stable w.r.t. the partial
variable xn.

Proof. Necessity. When the Lurie interval control system (8.1) is a direct control
system, i.e., AI is a Hurwitz matrix, then take θ = 0; otherwise, choosing f (xn) =
xn, θ = 1, we know that AI +(On×(n−1) hIθ ) is a Hurwitz matrix. Thus condition (1)
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holds. Condition 2 is obvious since the robust absolute stability of the zero solution of
system (8.1) implies that the zero solution is robustly absolutely stable with respect
to (w.r.t.) the partial variable xn.

Sufficiency. Let W = A+(On×(n−1), hθ ). Then the zero solution of (8.1)′ can be
expressed as

x(t,t0;x0) = eW(t−t0)x(t0)+
∫ t

t0
eW(t−τ)h [ f (xn(τ))−θ xn(τ) ]dτ. (8.3)

Then, we can follow Theorem 4.3 to prove that ∀ε > 0, there exists δ (ε) such that
when ‖x0‖ < δ , we have ‖x(t,t0;x0)‖ < ε , and ∀x0 ∈ Rn, lim

t→+∞
x(t,t0;x0) = 0. This

completes the proof. �

Corollary 8.5. The sufficient and necessary conditions for the robust absolute sta-
bility of the zero solution of the Lurie interval control system (8.2) are:

1. BI +(On×(n−1)rIθ ) is a interval Hurwitz matrix, where θ = 0 or 1
2. The zero solution of system (8.2) is robustly absolutely stable w.r.t. the partial

variable yn.

Since in (8.2), ri = ri = 0 (i = 1, . . . ,n−1), which is a special case of (8.1).

Theorem 8.6. The sufficient and necessary conditions for the robust absolute stabil-
ity of the zero solution of the Lurie interval control system (8.1) are:

1. There exists an n-dimensional interval vector ηI such that AI +(On×(n−1),ηI) is
an interval Hurwitz matrix.

2. The zero solution of system (8.1) is robustly absolutely stable w.r.t. the partial
variable xn.

Proof. Necessity. The existence of condition (1) is obvious. When AI is a Hurwitz
matrix, we can choose ηI = (0, 0, . . . , 0)T; otherwise, take ηI = hI , f (xn) = xn. It
is easy to verify under these choices, condition (1) holds. Condition 2 is obviously
true.

Sufficiency. ∀A ∈ AI , let W̃ = A +(On×(n−1), η). Then rewrite (8.1) as

ẋ = W̃ x + h f (xn)−η xn. (8.4)

Now for system (8.4), applying the method of constant variation yields

x(t,t0;x0) = eW̃ (t−t0)x(t0)+
∫ t

t0
eW̃ (t−τ) [h f (xn(t))−η xn(τ) ]dτ.

The remaining proof can follow Theorem 8.4. This completes the proof. �

Corollary 8.7. The zero solution of the Lurie interval control system (8.2) is robustly
absolutely stable if and only if the following conditions are satisfied:

1. There exists an n-dimensional interval vector ηI such that BI +(On×(n−1)ηI) is
an interval Hurwitz matrix
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2. The zero solution of system (8.2) is robustly absolutely stable w.r.t. the partial
variable yn.

Remark 8.8. Compared to the constructive conditions given in Theorem 8.4 and
Corollary 8.5, the existence conditions in Theorem 8.6 and Corollary 8.7 are not
so convenient. However, if they are chosen properly, sometimes the verification of
the conditions can be simplified.

Similar to Theorems 8.4 and 8.6, we can prove the following theorem and
corollary.

Theorem 8.9. The zero solution of the Lurie interval control system (8.1) is robustly
absolutely stable if and only if

1. The condition (1) in Theorem 8.4 or condition (1) in Theorem 8.6 holds.
2. The zero solution of system (8.1) is robustly absolutely stable w.r.t. the partial

variables x j+1, x j+2, . . . , xn.

Corollary 8.10. The zero solution of the Lurie interval control system (8.2) is robustly
absolutely stable if and only if

1. The condition (1) in Corollary 8.5 or condition (1) in Corollary 8.7 holds.
2. The zero solution of system (8.2) is robustly absolutely stable w.r.t. partial vari-

ables y j+1, y j+2, . . . , yn.

8.3 Sufficient Conditions for Robust Absolute Stability

First we introduce the following notations:

A( j0)
I =

⎡
⎢⎣ a11 · · · a1 j0

...
...

a j01 · · · a j0 j0

⎤
⎥⎦ , A( j0)C

I =

⎡
⎢⎣

a1( j0+1) · · · a1n
...

...
a j0( j0+1) · · · a j0n

⎤
⎥⎦ , i ≤ j0 ≤ n.

Similarly, we define B( j0)
I and B( j0)C

I , ai j ≤ ai j ≤ ai j, 1 ≤ i ≤ j0, 1 ≤ j ≤ n.

Theorem 8.11. If the following conditions are satisfied:

1. A( j0)
I is an interval Hurwitz matrix.

2. The zero solution of system (8.1) is robustly absolutely stable w.r.t. the partial
variables x j0+1, x j0+2, . . . , xn.

Then the zero solution of system (8.1) is robustly absolutely stable w.r.t. all the state
variables.
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Proof. ∀A ∈ AI , h ∈ hI , let x( j0)(t) := x( j0)(t,t0;x0) = (x1(t,t0;x0), . . .x j0(t,t0;x0))T,
x( j0)C(t) := (x j0+1(t,t0;x0), . . . , xn(t,t0;x0))T, h( j0)(t) := (h1(t), . . . , h j0(t))

T. Thus,
the first j0 solutions, x( j0)(t), of system (8.1) can be expressed as

x( j0)(t) = eA( j0)(t−t0)x( j0)(t0)+
∫ t

t0
eA( j0)(t−τ)A( j0)Cx( j0)C(τ)dτ

+
∫ t

t0
eA( j0)(t−τ)h( j0) f (xn(τ))dτ. (8.5)

Since ‖x( j0)(t0)‖ ≤ ‖x(t0)‖, the zero solution of (8.1)’ is robustly absolutely stable
w.r.t. x( j0). Then we may follow the proof of the sufficiency of Theorem 8.4 to show
that ∀ε > 0, there exists δ (ε) such that when ‖x( j0)(t0)‖ < ‖x(t0)‖ < δ , we have
‖x( j0)(t)‖ < ε , and ∀x0 ∈ Rn, lim

t→+∞
x( j0)(t) = 0. Thus the zero solution of system

(8.1) is robustly absolutely stable w.r.t. x( j0)(t), and thus also robustly absolutely
stable w.r.t. all the state variables. �

Corollary 8.12. If the following conditions hold:

1. B( j0)
I is an interval Hurwitz matrix

2. The zero solution of system (8.2) is robustly absolutely stable w.r.t. partial vari-
ables y j0+1, y j0+2, . . . , yn

the zero solution of system (8.2) is robustly absolutely stable w.r.t. all the state
variables.

Theorem 8.13. If there exist constants ci > 0 (i = 1, 2, . . . , n) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−c j a j j >
n

∑
i=1,i�= j

ci a(m)
j j j = 1, 2, . . . , n−1,

−cn ann ≥
n−1

∑
i=1

ci a(m)
in ,

−cn hn ≥
n−1

∑
i=1

ci h(m)
i ,

(8.6)

and at least one of the last two inequalities in (8.6) is a strict inequality. Then
the zero solution of system (8.1) is robustly absolutely stable. Here, a(m)

i j :=

maxi, j=1,2,...,n

{
|ai j|, |ai j|

}
, and h(m)

i := maxi=1,2,...,n−1
{|hi|, |hi|

}
.

Proof. ∀A∈ AI , h∈ hI , construct the radially unbounded, positive definite Lyapunov
function:

V =
n

∑
i=1

ci |xi|.
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Thus,

D+V
∣∣
(8.1) ≤

n

∑
j=1

[
c j a j j +

n

∑
i=1,i�= j

ci |ai j|
]
|x j(t)|+

[
cn hn+

n−1

∑
j=1

ci |hi|
]
| f (xn(t))|

≤
n

∑
j=1

[
c j a j j +

n

∑
i=1,i�= j

ci a(m)
i j

]
|x j(t)|+

[
cn hn+

n−1

∑
j=1

ci h(m)
i

]
| f (xn(t))|

< 0 when x �= 0.

Therefore, the zero solution of system (8.1)′ is robustly absolutely stable. �

Corollary 8.14. When rn < 0, if there exist constants ci > 0 (i = 1, 2, . . . , n) such
that

−c j b j j >
n

∑
i=1,i�= j

ci b(m)
i j j = 1, 2, . . . , n−1,

−cn bnn >
n−1

∑
i=1

ci b(m)
in ,

(8.7)

while when rn ≤ 0, the the last inequality in (8.7) is a strict inequality, then the zero
solution of system (8.2) is robustly absolutely stable.

Example 8.15. Consider the robust absolute stability of the zero solution of the
following Lurie interval control system:(

ẋ1

ẋ2

)
=

[
[−1.2,−1] [− 1

2 , 3
2 ]

[−2, 2] [−5, −4]

](
x1
x2

)
+

(
[−2, 2]

[−4.5,−4.2]

)
f (x2), (8.8)

where f (·) ∈ F∞.

It is easy to verify that the conditions in Theorem 8.13 are satisfied: a11 = −1,
a22 =−4, a(m)

12 = 3
2 , a(m)

21 = 2, b(m)
1 = 2, b2 =−4.2. Take c1 = 2.1 and c2 = 1. Then

construct the radially unbounded, positive definite Lyapunov function:

V = c1 |x1|+ c2 |x2|
and find that

D+V
∣∣
(8.8) ≤

(
c1 a11 + c2 a(m)

21

)
|x1|+

(
c2 a22 + c1 a(m)

12

)
|x2|

+
(

c2 b2 + c1 b(m)
1

)
| f (x2)|

= (−2.1 + 2) |x1|+
(−4 + 2.1× 3

2

) |x2|+(−4.2 + 4.2) | f (x2)|
≤ −0.1×|x1|−0.85×|x2|
< 0, when |x1|+ |x2| �= 0.

Thus, all the conditions in Theorem 8.13 are satisfied. Hence, the zero solution of
system (8.8) is robustly absolutely stable.
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Theorem 8.16. If the following conditions are satisfied:

1. A( j0)
I is an interval Hurwitz matrix

2. If there exist constants ci ≥ 0 (i = 1, 2, . . . , j0), c j > 0, j = j0 + 1, . . . , n, ε > 0
such that

⎛
⎜⎜⎝

|x1|
...

|xn|
| f (xn)|

⎞
⎟⎟⎠

T
⎡
⎢⎢⎢⎢⎢⎣

2c1a11 m12 · · · m1(n+1)
m21 2c2a22 · · · m2(n+1)

...
...

. . .
...

mn1 · · · 2cnann mn(n+1)
m(n+1)1 · · · m(n+1)n 2hn

⎤
⎥⎥⎥⎥⎥⎦
⎛
⎜⎜⎝

|x1|
...

|xn|
| f (xn)|

⎞
⎟⎟⎠≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε
n

∑
i= j0+1

x2
i or

−ε
n−1

∑
i= j0+1

x2
i −ε f (xn) or

−ε
n−1

∑
i= j0+1

x2
i −εxn f 2(xn),

where

mi j = m ji = max
ai j≤ai j≤ai j

[ |ci ai j + c j a ji| ] , i �= j, 1 ≤ i, j ≤ n,

m(n+1)i = mi(n+1) = max
ani ≤ ani ≤ ani

hi ≤ hi ≤ hi

[ |ci hi + ani| ] , 1 ≤ i ≤ n,

then the zero solution of the Lurie interval control system (8.1) is robustly
absolutely stable.

Proof. For the variables x j0+1, . . . , xn, construct the radially unbounded, positive
definite Lyapunov function:

V (x) =
n

∑
i=1

ci x2
i + 2

∫ xn

0
f (xn)dxn.

Then

dV
dt

∣∣∣∣
(8.1)′

=

⎛
⎜⎜⎜⎝

x1
...

xn
f (xn)

⎞
⎟⎟⎟⎠

T⎡⎢⎢⎢⎣
2c1a11 (c1a12+c2a21) · · ·(c1b1+an1)

(c1a12+c2a21) 2c2a22 · · ·(c1b2+an2)
...

...
(c1b1 + an1) · · · · · · 2hn

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎜⎝

x1
...

xn
f (xn)

⎞
⎟⎟⎟⎠

≤

⎛
⎜⎜⎜⎝

|x1|
...

|xn|
| f (xn)|

⎞
⎟⎟⎟⎠

T
⎡
⎢⎢⎢⎢⎢⎣

2c1a11 m12 · · · m1(n+1)
m21 2c2a22 · · · m2(n+1)

...
...

. . .
...

mn1 · · · 2cnann mn(n+1)
m(n+1)1 · · · m(n+1)n 2hn

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

|x1|
...

|xn|
| f (xn)|

⎞
⎟⎟⎟⎠
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≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε
n

∑
i= j0+1

x2
i or

−ε
n−1

∑
i= j0+1

x2
i − ε f 2(xn) or

−ε
n−1

∑
i= j0+1

x2
i − εxn f (xn).

(8.9)

Therefore, the zero solution of (8.1)′ is robustly absolutely stable w.r.t. the partial
variables x j0+1, . . . , xn. Further, due to the condition (1) and Theorem 8.13, we know
that the conclusion of Theorem 8.16 is true. �

Theorem 8.17. If the following conditions are satisfied: when rn ≤ 0 and

1. B( j0)
I is an interval Hurwitz matrix

2. If there exist constants ci ≥ 0 i = 1, 2, . . . , j0, c j > 0, j = j0 +1, . . . , n, and ε > 0
such that

⎛
⎜⎝ |y1|

...
|yn|

⎞
⎟⎠

T
⎡
⎢⎢⎢⎣

2c1b11 m12 · · · m1n
m21 2c2b22 · · · m2n

...
...

. . .
...

mn1 · · · mn(n−1) 2cnbnn

⎤
⎥⎥⎥⎦
⎛
⎜⎝ |y1|

...
|yn|

⎞
⎟⎠≤−ε

n

∑
i= j0+1

y2
i ,

or when rn < 0 and

1. BI is an interval Hurwitz matrix
2. If there exist constants ci ≥ 0 i = 1, 2, . . . , n−1, and cn > 0 such that⎡

⎢⎢⎢⎣
2c1b11 m12 · · · m1n

m21 2c2b22 · · · m2n
...

...
. . .

...
mn1 · · · mn(n−1) 2cnbnn

⎤
⎥⎥⎥⎦≤ 0,

then the zero solution of system (8.2) is robustly absolutely stable. Here mi j = m ji =
max

bi j≤bi j≤bi j

[ |ci bi j + c j b ji| ] , i �= j, 1 ≤ i, j ≤ n.

Proof. When rn ≤ 0, for the variables y j0+1, . . . , yn, construct the radially
unbounded, positive definite Lyapunov function:

V (y) =
n

∑
i=1

ci y2
i .



8.4 Algebraic Sufficient and Necessary Conditions 191

Then,

dV
dt

∣∣∣∣
(8.2)′

≤

⎛
⎜⎜⎜⎝
|y1|
|y2|

...
|yn|

⎞
⎟⎟⎟⎠

T⎡⎢⎢⎢⎣
2c1b11 m12 · · · m1n

m21 2c2b22 · · · m2n
...

...
. . .

...
mn1 · · · mn(n−1) 2cnbnn

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎜⎝
|y1|
|y2|

...
|yn|

⎞
⎟⎟⎟⎠

+ 2cn rn yn f (yn)

≤ −ε
n

∑
i= j0+1

y2
i . (8.10)

Equation (8.10) indicates that the zero solution of (8.2)′ is robustly absolutely stable
w.r.t. the partial variables y j0+1, . . . , yn. Further, following the proof of Theorem 8.13
for the robust absolute stability w.r.t. x( j0), we can show that the zero solution of
(8.2)′ is also absolutely stable w.r.t. the partial variables y1, . . . ,y j0 .

Next, consider rn < 0. For the variable yn, construct the radially unbounded,
positive definite Lyapunov function:

V (y) =
n

∑
i=1

ci y2
i .

Then differentiating V w.r.t. time t along the trajectory of system (8.2)′ yields

dV
dt

∣∣∣∣
(8.2)′

≤

⎛
⎜⎜⎜⎝
|y1|
|y2|

...
|yn|

⎞
⎟⎟⎟⎠

T⎡⎢⎢⎢⎣
2c1b11 m12 · · · m1n

m21 2c2b22 · · · m2n
...

...
. . .

...
mn1 · · · mn(n−1) 2cnbnn

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎜⎝
|y1|
|y2|

...
|yn|

⎞
⎟⎟⎟⎠+2cnrnyn f (yn)

≤ 2cnrnyn f (yn) < 0 when yn �= 0. (8.11)

Further, use the method of constant variation to express y(t) as

y(t,t0;y0) = eB(t−t0)y0 +
∫ t

t0
eB(t−τ)r f (yn(τ))dτ,

and follow Theorem 8.4 to finish the proof. �

8.4 Algebraic Sufficient and Necessary Conditions

For an interval matrix, it is difficult to verify if it is a Hurwitz matrix. Although
we have applied finite cover theorem to show that the Hurwitz stability of an infinite
number of interval matrices can be found from the Hurwitz stability of its finite
number of interval matrices. However, to find these finite number of matrices are very
difficult.
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In this section, we will consider some special Lurie interval control systems
and derive very simple algebraic sufficient and necessary conditions for the robust
absolute stability of these systems.

Again consider system (8.1), but now assume that −ai j = ai j, i �= j, i, j =
1, 2, . . . , n, aii < 0, i = 1, 2, . . . , n; hn < 0, −hi = hi, i = 1, 2, . . . , n − 1 and
λ hi = ain, i = 1, 2, . . . , n, λ > 0. Then we have the following theorem.

Theorem 8.18. The sufficient and necessary condition for the zero solution of the
Lurie interval control system (8.1) being robustly absolutely stable is that −A is an
M matrix.

Proof. Necessity. Take A ∈ AI , h ∈ hI , f (xn) = xn. Substituting these expressions
into system (8.1)′ yields

ẋ = Ax + hxn = (A+ On×(n−1), h)x. (8.12)

So (A+On×(n−1), h) must be a Hurwitz matrix. The diagonal elements of this matrix
are negative, and non-negative elements are non-negative. Thus, the matrix −(A +
On×(n−1), h) is an M matrix. Hence, there exist constants ci > 0, i = 1, 2, . . . , n
such that

−c j ai j >
n

∑
i=1,i�= j

ci ai j j = 1, 2, . . . , n−1 (8.13)

and

−cn (ann + hn) >
n−1

∑
i=1

ci (ain + hi). (8.14)

Equation (8.14) can be rewritten as −cn
(
1 + 1

λ
)

ann > ∑n−1
i=1 ci

(
1 + 1

λ

)
ain, i.e.,

−cnann >
n−1

∑
i=1

ci ain. (8.15)

Equations (8.14) and (8.15) imply that −A is an M matrix.
Sufficiency. For system (8.1)′ choose the radially unbounded, positive definite

Lyapunov function:

V (x) =
n

∑
i=1

ci |xi|,

where ci are determined by (8.13) and (8.14). It follows from λ hi = ain (i =

1, 2, . . . , n) and −cnann > limn−1
j=1 ciain that −cn λ hn >

n−1

∑
i=1

λ ci hi, i.e., −cnhn >
n−1

∑
i=1

ci hi. Thus, by (8.13) and (8.14) we have
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D+V (x)
∣∣
(8.1)′ ≤

n

∑
j=1

[
c j a j j +

n

∑
i=1,i�= j

ci |ai j|
]
|x j|+

[
cn hn +

n−1

∑
i=1

ci |hi|
]
| f (xn)|

≤
n

∑
j=1

[
c j a j j +

n

∑
i=1,i�= j

ci ai j

]
|x j|+

[
cn hn +

n−1

∑
i=1

ci hi

]
| f (xn)|

< 0 when x �= 0. (8.16)

Therefore, the zero solution of system (8.1) is robustly absolutely stable. The proof
is complete. �

Next, consider system (8.2). Assume that bii < 0, i = 1, 2, . . . , n, −bi j = bi j, i �=
j, i, j = 1, 2, . . . , n; −ri = ri, i = 1, 2, . . . , n− 1 and rn < 0.

Theorem 8.19. The sufficient and necessary conditions for the zero solution of the
Lurie interval control system (8.2) being robustly absolutely stable are:

1. The zero solution of system (8.2) is robustly absolutely stable w.r.t. yn.

2. B(n−1) :=

⎡
⎢⎣

b11 · · · b1(n−1)
... · · · ...

b(n−1)1 · · · b(n−1)(n−1)

⎤
⎥⎦ is a Hurwitz matrix.

Proof. Necessity. (1) The robust absolute stability w.r.t. yn is obvious. For 2,
substituting f (yn) = yn into (8.2) results in an interval system:

ẏ =
(

BI +(On×(n−1) rI

)
y.

So (BI +(On×(n−1) rI)) is an interval Hurwitz matrix. Thus, (B +(On×(n−1) r)) is
a Hurwitz matrix. In particular, B(n−1) is a Hurwitz matrix.

Sufficiency. Let

B(n−1) :=

⎡
⎢⎣

b11 · · · b1(n−1)
...

...
b(n−1)1 · · · b(n−1)(n−1)

⎤
⎥⎦ , B(n−1)C := (b1n, b2n, . . . , b(n−1)n)

T,

and y(n−1) := (y1(t), y2(t), . . . , yn−1(t))T. Then, the first n− 1 solutions of system
(8.2)′ can be expressed as

y(n−1)(t) = eB(n−1)(t−t0)y(n−1)(t0)+
∫ t

t0
eB(n−1)(t−τ)B(n−1)Cyn(τ)dτ

maxReλ (B(n−1)) ≤ maxReλ (B(n−1)). (8.17)

There exist constants M ≥ 1 and α > 0 such that

‖eB(n−1)(t−t0)‖ ≤ ‖e(B(n−1))(t−t0)‖ ≤ M emaxReλ (B(n−1))(t−t0) ≤ M e−α(t−t0).
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Hence,

‖y(n−1)(t)‖ ≤ MemaxReλ (B(n−1))(t−t0)‖y(n−1)(t0)‖
+
∫ t

t0
MemaxReλ (B(n−1))(t−τ)|yn(τ)|dτ

≤ Me−α(t−t0)‖yn−1(t0)‖
+
∫ t

t0
Me−α(t−τ)‖B−(n−1)C‖|yn(τ)|dτ,

where M 
 1. Due to yn(t)→ 0 as t →+∞, we can follow the proof of Theorem 8.4
to prove that the zero solution of (8.2) is robustly absolutely stable w.r.t. the partial
variable y(n−1)(t). �

Remark 8.20. Although the conditions given in Theorems 8.18 and 8.19 are obtained
for special cases, they are quite useful in realizing robust absolute stability via
feedback controls.

Example 8.21. Analyze the stability of the zero solution of the following Lurie
interval control system:(

ẋ1

ẋ2

)
=
[

[−5, −4] [−3, 3]
[−2, 2] [−4,−3]

](
x1
x2

)
+
(

[−2, 2]
[−3,−2]

)
f (x2), (8.18)

where f (x2) ∈ F .

Since A =
[−4 3

2 −3

]
, it is obvious to see that A is a Hurwitz matrix. Further,

from h1 = 2, h2 = −2, a12 = 3, a22 = −3, and taking λ = 3
2 yields λ hi = ai2,

i = 1, 2, all the conditions in Theorem 8.18 are satisfied. Thus, the zero solution of
system (8.18) is robustly absolutely stable.

8.5 Interval Yocubovich Control Systems

In this section, we consider the robust absolute stability of interval Yocubovich con-
trol systems [172], including the famous Lurie indirect control system [96], the
well-known Popov indirect control system [119] and the Yocubovich indirect control
system [163] as particular cases.

Now, we consider the following interval Yocubovich control system:

(ẋ1, ẋ2, . . . , ẋn, σ̇ )T = AI(ai j)(n+1)×(n+1)(x1,x2, . . . ,xn, f (σ))T, (8.19)

which can be written in the vector form:(
ẋ
σ̇

)
= AI(ai j)(n+1)×(n+1)

(
x

f (σ)

)
. (8.19)′
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Here, x ∈ Rn, σ ∈ R1, σ = cTx−ρ ξ , ρ , ξ ∈ R1, ρ > 0, and

AI(ai j)(n+1)×(n+1)

:=
{

A
∣∣∣ A ≤ A ≤ A, i.e., ai j ≤ ai j ≤ ai j, i, j = 1,2, . . . ,(n + 1)

}
in which A and A are known, but A is not known.

f (·)∈F :=
{

f (·) |0 <σ f (σ) ≤ +∞, σ �=0, f (0)=0, f (·) ∈C[(−∞,+∞),R1]
}

Therefore, system (8.19) (or (8.19)′) is an uncertain system.
∀A ∈ AI , the corresponding certain Yocubovich control system is given by(

ẋ
σ̇

)
= A(ai j)(n+1)×(n+1)

(
x

f (σ)

)
. (8.20)

Now, we show that the Yocubovich control system (8.20) includes the Lurie
indirect control system [96], and the Popov control system [119], as special cases.

1. The famous Lurie indirect control system [96] is given by{
ẏ = Dy + S ξ ,

ξ̇ = f (σ),
(8.21)

where y ∈ Rn, ξ ∈ R1, D = D(di j)n×n ∈ Rn×n, c ∈ Rn, S ∈ Rn, σ = cTy− ρ ξ ,
ρ ∈ R1, ρ > 0. When the necessary condition of absolute stability for the zero
solution of system (8.21) is satisfied, the matrix[

D S
cT −ρ

]

must be Hurwitz matrix, implying that det
[

D S
cT −ρ

]
�= 0. Then, introducing the

following full-rank transformation:{
x = Dy + S ξ ,

σ = cTy−ρ ξ ,

we obtain dy
dt = x, and(

ẋ
σ̇

)
=
[

D S
cT −ρ

](
x

f (σ)

)
:= A(1)(ai j)(n+1)×(n+1)

(
x

f (σ)

)
, (8.22)

which is in the form of (8.20).
2. The well-known Popov indirect control system [119] is described by⎧⎪⎨

⎪⎩
ẋ = Dx + S f (σ),

ξ̇ = f (σ),
σ = cTx−ρ ξ ,

(8.23)
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where x ∈ Rn, ξ ∈ R1, and D ∈ Rn×n, S ∈ Rn, c ∈ Rn, ρ > 0, ρ ∈ R1 are fixed
coefficients. Since

dσ
dt

= cT dx
dt

−ρ
dξ
dt

= cT(Dx + S f (σ))−ρ f (σ) = cTDx− (ρ − cT S) f (σ),

we have (
ẋ
σ̇

)
=
[

D S
cTD −(ρ − cTS)

](
x

f (σ)

)

: = A(2)(ai j)(n+1)×(n+1)

(
x

f (σ)

)
, (8.24)

which is also in the form of (8.20).
3. Finally, the Yocubovich indirect control system [163] is(

ẋ
σ̇

)
=
(

Dx−S f (σ)
cTx−ρ f (σ)

)
=
[

D −S
cT −ρ

](
x

f (σ)

)

: = A(3)(ai j)(n+1)×(n+1)

(
x

f (σ)

)
, (8.25)

where x ∈ Rn, σ ∈ R1, c,S ∈ Rn, ρ ∈ R1, ρ > 0. Equation (8.25) is again in the
form of (8.20).

Therefore, we only need to study control system (8.20).
Following Definitions 8.1–8.3, it is not difficulty for readers to define the robust

absolute stability as well as the robust absolute stability with respect to partial
variables for the zero solution of system (8.19).

8.6 SANC for the Robust Absolute Stability of the Interval
Yocubovich System (8.19)

In this section, we present several sufficient and necessary conditions (SANC) for
the robust absolute stability of the zero solution of the interval Yocubovich control
system (8.19) [165–168].

Theorem 8.22. The SANC for the robust absolute stability of the zero solution of
system (8.19) are:

1. AI(ai j)(n+1)×(n+1) is a interval Hurwitz matrix
2. The zero solution of system (8.19) is robustly absolutely stable w.r.t. one vari-

able σ .
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Proof. Necessity. Let f (σ) = σ . Then system (8.19) becomes an interval linear
systems: ⎛

⎜⎜⎝
dx
dt

dσ
dt

⎞
⎟⎟⎠= AI(ai j)(n+1)×(n+1)

(
x
σ

)
. (8.26)

Since the zero solution of system (8.26) is robustly globally asymptotically stable,
AI(ai j)(n+1)×(n+1) is an interval Hurwitz matrix, i.e., condition (1) of Theorem 8.22
holds. Condition 2 is obvious, since the robustly absolute stability of the zero solution
of (8.19) w.r.t. all variables x1, x2, . . . , σ , and particularly, w.r.t. one variable σ .

Sufficiency. ∀A ∈ AI , let f (σ) = σ + [ f (σ)−σ ]. Simply noting that A =
A(n+1)×(n+1), A(n+1)×1 = (a1(n+1),a2(n+1), . . . ,a(n+1)(n+1))T, any solution of (8.20)
can be expressed by(

x(t)
σ(t)

)
= eA(t−t0)

(
x(t0)
σ(t0)

)
+
∫ t

t0
eA(t−τ)A(n+1)×1 [ f (σ(τ))−σ(τ)]dτ. (8.27)

Since A is a Hurwitz matrix, there exist M ≥ 1 and α > 0 such that

‖eA(t−t0)‖ ≤ M e−α(t−t0).

In addition, f (σ(t)) → 0 as t → +∞, σ(t) continuously depends on (x0,σ0) and
f (σ(t)) is a continuous function of x0. Thus, ∀ε > 0, there exist δ (ε) > 0 and
t1 > t0 such that for all t ≥ t1 > t0,∫ t1

t0
M e−α(t−τ) [‖A(n+1)×1 f (σ(τ))‖+‖A(n+1)×1σ(τ)‖]dτ <

ε
3

for t0,� t1 < t,

∫ t

t1
M e−α(t−τ) [‖A(n+1)×1 f (σ(τ))‖+ A(n+1)×1σ(τ)‖]dτ <

ε
3

for t ≥ t1,

‖eA(t−t0)‖ ≤ M e−α(t−t0) <
ε

3δ (ε)
.

Thus, when
∥∥∥∥ x0

σ0

∥∥∥∥≤ δ (ε), we have

∥∥∥∥ x(t)
σ(t)

∥∥∥∥ ≤ ‖eA(t−t0)‖
∥∥∥∥ x0

σ0

∥∥∥∥+
∫ t

t0
‖eA(t−τ)A(n+1)×1 [ f (σ(τ))−σ(τ)]‖dτ

≤ M e−α(t−t0)
∥∥∥∥ x0

σ0

∥∥∥∥
+
∫ t1

t0
M e−α(t−τ) [‖A(n+1)×1 f (σ(τ))‖+‖A(n+1)×1 σ(τ)‖] dτ

+
∫ t

t1
M e−α(t−τ) [‖A(n+1)×1 f (σ(τ))‖+‖A(n+1)×1 σ(τ)‖]dτ

≤ ε
3

+
ε
3

+
ε
3

= ε for all t ≥ t0. (8.28)
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Further, for any (x0,σ0) ∈ Rn+1, applying the L’Hospital rule to the above inequality
yields:

0 ≤ lim
t→+∞

∥∥∥∥ x(t)
σ(t)

∥∥∥∥
≤ lim

t→+∞
M‖φ‖e−α(t−t0)

∥∥∥∥x0
σ0

∥∥∥∥
+ lim

t→+∞

∫ t

t0
Me−α(t−τ) [‖A(n+1)×1 f (σ(τ))‖+‖A(n+1)×1σ(τ)‖]dτ

= 0 + M lim
t→+∞

∫ t
t0 eατ [‖A(n+1)×1 f (σ(τ))‖+‖A(n+1)×1σ(τ)‖]dτ

eαt

=
M
α

lim
t→+∞

[‖A(n+1)×1 f (σ(t))‖+‖A(n+1)×1σ(t)‖]
= 0. (8.29)

This implies that the zero solution of system (8.20) is globally asymptotically stable.
Thus, due to arbitrary f (σ) ∈ F∞, the zero solution of system (8.19) is robustly
absolutely stable.

The proof is complete. �

Let

AI(ai j)(n+1)×n =

⎡
⎢⎣

a11 · · · a1n
...

...
...

a(n+1)1 · · · a(n+1)n

⎤
⎥⎦ ,

ai j ≤ ai j ≤ ai j, 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n,

η(n+1)×1 = (η1, . . . ,ηn+1)T,

AI(ai j)(n+1)×1 = (a1(n+1), a2(n+1), . . . , a(n+1)(n+1))
T,

ai(n+1) ≤ ai(n+1) ≤ ai(n+1), 1 ≤ i ≤ n+1.

Theorem 8.23. The zero solution of the interval Yocubovich control system (8.19) is
robustly absolutely stable if and only if:

1. The zero solution of (8.19) is robustly absolutely stable w.r.t. one variable σ
2. There exists a constant vector η(n+1)×1 such that

(
AI(ai j)(n+1)×n, η(n+1)×1

)
:=

⎡
⎢⎣

a11 · · · a1n η1
...

...
...

...
a(n+1)1 · · · a(n+1)n ηn+1

⎤
⎥⎦

is an interval Hurwitz matrix.
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Proof. Necessity. Condition 1 of Theorem 8.23 is obvious. Condition 2 holds,
implying the existence of η(n+1)×1. For example, we can take η(n+1)×1 =
(a1(n+1), . . . , a(n+1)(n+1))T. When we choose η(n+1)×1 = (0, . . . ,0, −1)T, the Hur-
witz property of [

AI(ai j)(n+1)×n, η(n+1)×1
]

is equivalent to the Hurwitz property of

AI(ai j)n×n =

⎡
⎢⎣ a11 · · · a1n

... · · · ...
an1 · · · ann

⎤
⎥⎦ ,

which has 1 less dimension and so is more convenient to verify.
Sufficiency. Since any solution of (8.20) can be expressed by(

x(t)
σ(t)

)
= e(AI(ai j)(n+1)×n,η(n+1)×1)(t−t0)

+
∫ t

t0
e(AI(ai j)(n+1)×n,η(n+1)×1)(t−τ)AI(ai j)(n+1)×1 (8.30)

×[ f (σ(τ))−η(n+1)×1σ(τ)
]
dτ, (8.31)

we can complete the proof by following the proof of Theorem 8.22. �

Based on Theorems 8.22 and 8.23, we can prove the following theorem.

Theorem 8.24. The zero solution of the interval indirect control system (8.19) is
robustly absolutely stable if and only if

1. Condition 1 in Theorem 8.22 (or the condition (2) in Theorem 8.23) holds.
2. The zero solution of system (8.19) is robustly absolutely stable w.r.t. the partial

variable x j+1, . . . , xn, σ .

8.7 Sufficient Conditions for the Robust Absolute Stability
of System (8.19)

For the convenience of verifying the conditions in the results given in Sect. 8.6,
in this section, we give some sufficient conditions for the robust absolute stability
of the interval Yocubovich control system (8.19). First, we introduce the following
notation:

a(m)
i j = max

{|ai j|, |ai j|
}
, 1 ≤ i, j ≤ n + 1, i �= j; a(m)

ii = aii, i = 1,2, . . . ,n + 1.
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Let

A( j0)
I : =

⎡
⎢⎣ a11 · · · a1 j0

...
...

...
a j01 · · · a j0 j0

⎤
⎥⎦

j0× j0

A( j0)C
I : =

⎡
⎢⎣

a1( j0+1) · · · a1(n+1)
...

...
...

a j0( j0+1) · · · a j0(n+1)

⎤
⎥⎦

( j0+1)×(n+1− j0)

x( j0) : = (x1, . . . , x j0)
T.

Theorem 8.25. If the following conditions are satisfied:

1. A( j0)
I is an interval Hurwitz matrix

2. There exist constants ci ≥ 0, i = 1,2, . . . , j0, ci > 0, i = j0 + 1, . . . , n such that

−c ja j j ≥
n+1

∑
i=1,i�= j

ci a(m)
i j , j = 1,2, . . . , j0;

−c ja j j >
n+1

∑
i=1,i�= j

ci a(m)
i j , j = j0 + 1, j0 + 2, . . . ,n + 1,

Then the zero solution of system (8.19) is robustly absolutely stable.

Proof. ∀A ∈ AI , construct the positive definite and radially unbounded Lyapunov
function:

V (x) =
n+1

∑
i=1

ci|xi|.

Then the derivation of V (x) along the solution of (8.20) is given by

D+V (t)
∣∣
(8.20) ≤

n

∑
j=1

[
c j a j j +

n

∑
j=1, j �=i

ci a(m)
i j

]
|x j|

+

[
cn+1a(n+1)(n+1) +

n

∑
i=1

ci |ai(n+1)|
]
| f (xn+1)|

≤
n

∑
j= j0+1

[
c ja j j +

n+1

∑
i=1,i�= j

cia
(m)
i j

]
|x j|

+

[
cn+1a(n+1)(n+1) +

n

∑
j=1

ci a(m)
i(n+1)

]
| f (xn+1)|

< 0 when
n+1

∑
j= j0+1

x2
j �= 0.
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So the zero solution of (8.19) is robustly absolutely stable w.r.t. x j0+1, . . . ,xn,σ . Then
the first j0 solutions: x( j0)(t) := (x1(t), . . . ,x j0(t))

T of (8.20) can be expressed as

x( j0)(t) = eA( j0)(t−t0)x( j0)(t0)

+
∫ t

t0
eA( j0)(t−τ)A( j0)C

(
x j0+1(τ), . . . ,xn(τ), f (σ(τ)

)T
dτ. (8.32)

Then we can follow part of proving the sufficiency of Theorem 8.22 to show
that the zero solution of (8.19) is robustly absolutely stable for the partial vari-
ables x1, . . . ,x j0 . With the result of robust absolute stability w.r.t. x j0+1, . . . ,xn+1,
we know that the robust absolute stability is w.r.t. all stable variables. The proof of
Theorem 8.25 is complete. �

Example 8.26. Consider the absolute stability of the zero solution of the following
four-dimensional deterministic Yocubovich control system (i.e., ai j = ai j = ai j):⎛

⎜⎜⎝
ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎠=

⎡
⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥⎥⎦
⎛
⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎠ , (8.33)

where

A = (ai j)4×4 =

⎡
⎢⎢⎣
−1 −1 4 7

1 −1 −5 2
0 0 −2 1
0 0 1 −2

⎤
⎥⎥⎦ , f (x4) =∈ F∞.

It is obvious that

−A =

⎡
⎢⎢⎣

1 1 −4 −7
−1 1 5 −2

0 0 2 −1
0 0 −1 2

⎤
⎥⎥⎦

is not an M matrix. So there does not exist ci > 0, i = 1, 2, 3, 4 such that

c j a j j +
4

∑
i=1,i�= j

c j ai j < 0, i = 1, 2, 3, 4;

but there exist ci ≥ 0, i = 1, 2, ci > 0, i = 3, 4 such that

c j a j j +
4

∑
i=1

c j ai j ≤ 0, j = 1, 2

c j a j j +
4

∑
i=1

c j ai j < 0, j = 3, 4.
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In fact, choosing c1 = c2 = 0, c3 = c4 = 1, we have

c1 a11 + c2 a21 + c3 a31 + c4 a41 = 0−0 = 0,

c2 a22 + c1 a12 + c3 a32 + c4 a42 = 0−0 = 0,

c3 a33 + c1 a13 + c2 a23 + c4 a43 = −2 + 1 = −1 < 0,

c4 a44 + c1 a41 + c2 a24 + c3 a34 = −2 + 1 = −1 < 0.

Thus, for this example, we do not require
∫ ±∞

0 f (x4) dx4 = +∞, but
∫ ±∞

0 f (x4) dx4 <
+∞.

Now, for the variables x3 and x4, we construct the positive definite and radially
unbounded Lyapunov function:

V =
4

∑
i

ci |xi| = 1
5

(|x1|+ |x2|)+ |x3|+ |x4|,

and thus

D+V
∣∣
(8.33) ≤− 4

5
(|x3|+ |x4|) ∀ x2

3 + x2
4 �= 0.

Therefore, the zero solution of (8.33) is absolutely stable with respect to the partial
variables x3 and x4.

Let

A11 =
[−1 −1

1 −1

]
, A12 =

[
4 7

−5 2

]
, A21 =

[
0 0
0 0

]
, A22 =

[−2 1
−1 2

]
.

It is easy to see that A11 is a Hurwitz matrix. The solution for the first two variables
of (8.33) can be expressed as(

x1(t)
x2(t)

)
= eA11(t−t0)

(
x1(t0)
x2(t0)

)
+
∫ t

t0
eA11(t−τ) A12

(
x3(τ)

f (x4(τ))

)
dτ

from which we know that the zero solution of (8.33) is also absolutely stable with
respect to the variables x1 and x2. Summarizing the above results we have shown
that the zero solution of (8.33) is absolutely stable for all its variables.

Corollary 8.27. Assume that

1. There exist constants c̃i > 0, i = 1,2, . . . , j0 such that

− c̃ j ā j j >
j0

∑
i=1,i�= j

ci a(m)
i j , j = 1,2, . . . , j0;
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2. The condition (2) of Theorem 8.25 is satisfied

then the zero solution of (8.19) is robustly absolutely stable.

Proof. Since condition (1) implies that AI(ai j) j0× j0 is a Hurwitz interval matrix,
the conditions of Theorem 8.25 hold. This implies that the conclusion of Corollary
is true. �

Theorem 8.28. Suppose that the following conditions are satisfied:

1. A( j0)
I is a Hurwitz interval matrix, and

∫ +∞
0 f (σ)dσ = +∞;

2. There exists constants ci > 0, i = 1,2, . . . ,n + 1 and 0 < ε 	 1 such that the
matrix:

H :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2c1a11 m12 · · · m1 j0 m1( j0+1) · · · m1(n+1)
m12 2c2a22 · · · m2 j0 m2( j0+1) · · · m2(n+1)

...
...

. . .
...

...
...

...
m1 j0 m2 j0 · · · 2c j0 a j0 j0 m j0( j0+1) · · · m j0(n+1)

m1( j0+1) m2( j0+1) · · · m j0( j0+1) 2c j0+1a( j0+1)( j0+1)+ε · · · m( j0+1)(n+1)
...

...
...

...
...

. . .
...

m1(n+1) m2(n+1) · · · m j0(n+1) m( j0+1)(n+1) · · · 2cn+1a(n+1)(n+1)+ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0,

(8.34)
where

mi j = max
ai j≤ai j≤ai j

[|ciai j + c ja ji|] , i �= j, 1 ≤ i, j ≤ n + 1

then the zero solution of system (8.19) is robustly absolutely stable.

Proof. First, we construct the positive definite and radially unbounded Lyapunov
function:

V =
n

∑
i=1

ci x2
i + 2cn+1

∫ σ

0
f (s)ds

from which we obtain

dV
dt

∣∣∣∣
(8.20)

= 2
n

∑
i=1

ci xi ẋi + 2cn+1 f (σ) σ̇

≤

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xn
f (σ)

⎞
⎟⎟⎟⎟⎟⎠

T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2c1a11 m12 · · · m1 j0 · · · m1(n+1)
m12 2c2a22 · · · m2 j0 · · · m2(n+1)

...
...

. . .
...

...
...

m1 j0 m2 j0 · · · 2c j0a j0 j0 · · · m j0(n+1)
...

...
...

...
. . .

...
m1(n+1) m2(n+1) · · · m j0(n+1) · · · 2cna(n+1)(n+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xn
f (σ)

⎞
⎟⎟⎟⎟⎟⎠
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≤

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xn
f (σ)

⎞
⎟⎟⎟⎟⎟⎠

T

H

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xn
f (σ)

⎞
⎟⎟⎟⎟⎟⎠−

n

∑
j= j0+1

ε x2
i − ε f 2(σ)

≤ −ε

[
n

∑
j= j0+1

x2
i + f 2(σ)

]
< 0 when

n

∑
j= j0+1

x2
i + f 2(σ) �= 0. (8.35)

Thus, the zero solution of system (8.19) is robustly absolutely stable w.r.t. the partial
variables x j0+1, . . . ,xn,σ .

Next, note that the first j0 component solutions x( j0) := (x1(t), . . . ,x j0(t))
T of

(8.20) can be expressed by (8.32). This shows that the zero solution of (8.19) is
robustly absolutely stable w.r.t. x( j0). The proof is complete. �

Corollary 8.29. If

1. There exist constants c̃i > 0, i = 1,2, . . . , j0 such that⎡
⎢⎢⎢⎣

2c̃1a11 m̃12 · · · m̃1 j0
m̃12 2c̃2ã22 · · · ˜2 j0

...
...

...
...

m̃1 j0 m̃2 j0 · · · 2c̃ j0a j0 j0

⎤
⎥⎥⎥⎦< 0,

where

m̃i j = max
ai j≤ai j≤ai j

[|c̃iai j + c̃ ja ji|] , i �= j, 1 ≤ i, j ≤ j0 + 1.

2. Condition (2) of Theorem 8.28 holds.

Then the zero solution of (8.19) is robustly absolutely stable.

Proof. Because condition (1) implies that AI(ai j) j0× j0 is a Hurwitz interval matrix,
so the conclusion is true. �
Example 8.30. Consider the absolute stability of the zero solution of the following
four-dimensional deterministic Yocubovich control system (i.e., ai j = ai j = ai j):⎛

⎜⎜⎝
ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎠=

⎡
⎢⎢⎣

0 3 −1 0
−6 −1 4 −5

2 −4 −2 1
0 5 −1 −3

⎤
⎥⎥⎦
⎛
⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎠ (8.36)

where f (x4) ∈ F∞ satisfying
∫±∞

0 f (x4)dx4 = +∞.
With the positive definite and radially unbounded Lyapunov function

V (x) = x2
1 +

1
2

(x2
2 + x2

3)+
∫ x4

0
f (x4)dx4,
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we obtain

dV(x)
dt

∣∣∣∣
(8.36)

= 2x1 (3x2 − x3)+ x2 [−6x1 − x2 + 4x3 −5 f (x4)]

+x3 [2x1 −4x2 −2x3 + f (x4)]+ f (x4) [5x2 − x3 −3 f (x4)]

−x2
2 −2x2

3 −3 f 2(x4)

< 0 when x2
2 + x2

3 + x2
4 �= 0. (8.37)

Thus, the zero solution of (8.36) is absolutely stable about the variables x2, x3, and
x4, and in particular, with respect to the variables x3, and x4.

Now let

A11 =
[

0 3
−6 −1

]
, A12 =

[−1 0
4 −5

]
, A21 =

[
2 −4
0 5

]
, A22 =

[−2 −1
−1 −3

]
.

Obviously, A11 is a Hurwitz matrix. Expressing the solution of the first two equations
of (8.36) as(

x1(t)
x2(t)

)
= eA11(t−t0)

(
x1(t0)
x2(t0)

)
+
∫ t

t0
eA11(t−τ) A12

(
x3(τ)

f (x4(τ))

)
dτ,

we know that the zero solution of (8.36) is also absolutely stable about variables x1
and x2.

Alternatively, let

Ã11 =

⎡
⎣ 0 3 −1
−6 −1 4

2 −4 −2

⎤
⎦ , Ã12 =

⎛
⎝ 0

−5
1

⎞
⎠ , Ã21 = (0 5 1), Ã22 = (−3).

It is easy to verify that Ã11 is a Hurwitz matrix. The solution of the first three
equations of (8.36) can be written as⎛

⎝ x1(t)
x2(t)
x3(t)

⎞
⎠= eÃ11(t−t0)

⎛
⎝ x1(t0)

x2(t0)
x3(t0)

⎞
⎠+

∫ t

t0
eÃ11(t−τ) Ã12 f (x4(τ)) dτ

from which we can conclude that the zero solution of (8.36) is also stable with respect
to the variables x1, x2 and x3.

In a summary for this example, the zero solution of (8.36) is absolutely stable
about all of its variables.

Remark 8.31. It is easy to see that for system (8.36) one cannot use the approach
of the so-called diagonal stability, i.e., the following positive definite and radially
unbounded Lyapunov function:

V = c1 x2
1 + c2 x2

2 + c3 x2
3 + c4

∫ x4

0
f (x4)dx4 (ci > 0, i = 1,2,3,4)
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cannot be applied just in one step to prove the absolute stability of the zero solution
of system (8.36) about all of its variables. This is because the necessary condition
for applying the above Lyapunov function to get negative definite of dV

dt is aii < 0.
However, for this example, a11 = 0.

For a similar reason, one cannot use the following form of Lyapunov function:

V =
4

∑
i=1

ci |xi|

to prove the absolute stability of the zero solution of (8.36) about all of its variables.
However, for such a system, with the theory and method of absolute stability

about partial variables, we have very high flexibility to choose Lyapunov functions,
and use different methods to deal with the absolute stability of partial variables, and
thus obtain the absolute stability for all variables. For example, in Example 8.30,
to obtain the absolute stability of the zero solution of system (8.36) about all its
variables, we first used the direct Lyapunov method to prove that the zero solu-
tion is absolutely stable about the partial variables x3 and x4, then we apply the
Lagrange constant variation approach and L’Hospital rule to that the zero solution is
also absolutely stable with respect to the variables x1 and x2.

In the following, we show that there exists a full-rank linear transformation
between systems (8.19) and (8.20) [93].

Since a(n+1)(n+1) ≤ 0 is a necessary condition for the robust absolute stability of
the zero solution of (8.19), we only consider the case of a(n+1)(n+1) < 0. To achieve
this, we introduce the following nonsingular linear transformation:

y =

⎛
⎜⎜⎜⎜⎜⎝

y1
y2
...

yn
yn+1

⎞
⎟⎟⎟⎟⎟⎠

T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 − a1(n+1)

a(n+1)(n+1)

0 1 · · · 0 − a2(n+1)

a(n+1)(n+1)
...

...
. . .

...
...

0 0 · · · 1 − an(n+1)

a(n+1)(n+1)
0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xn
σ

⎞
⎟⎟⎟⎟⎟⎠ := H

(
x(n)

σ

)
(8.38)

into (8.20) yields

ẏ = H ẋ = H A
(

x
f (σ)

)
= H A

[(
x
σ

)
+
(

0
f (σ)−σ

)]

= H A
(

x
σ

)
+ H A

(
0

f (σ)

)
−H A

(
0
σ

)

= H AH−1y−H A
(

0
yn+1

)
+ H A

(
0

f (σ)

)
:= By + h f (σ), (8.39)
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where x(n) = (x1, . . . ,xn)T and x = (x(n),σ). The corresponding interval indirect
control system of (8.39) is given by

ẏ = BIy + hI f (yn+1), (8.40)

where

BI =
{

B : B ≤ B ≤ B, i.e., bi j ≤ bi j ≤ bi j, i, j = 1,2, . . . ,n + 1
}
,

hI =
{

h : h ≤ h ≤ h, i.e., hi ≤ hi ≤ hi, i = 1,2, . . . ,n
}

,

a(n+1)(n+1) = hn+1 ≤ hn+1 ≤ hn+1 = a(n+1)(n+1) < 0.

System (8.40) is the same as system (2) of [93], except for that (8.40) here has n+1
dimension, while that in [93] has n dimension. Therefore, the conclusions obtained
for system (2) of [93] can be directly applied here, and the details are not repeated
here.

Thus, in the following, we will only present two new results.

Theorem 8.32. If the zero solution of system (8.40) is robustly absolutely stable
w.r.t. y1,y2, . . . ,yn, and b(n+1)(n+1) < 0, then the zero solution of (8.40) is robustly
absolutely stable w.r.t. all state variables.

Proof. We employ the following positive definite and radially unbounded Lyapunov
function:

V = y2
n+1.

Take ε satisfying 0 < nε ≤−b(n+1)(n+1), and let

(max{|b(n+1) j|, |b(n+1) j|})2

ε
= ξ j.

Then differentiating V w.r.t. time t along the solution trajectory of system (8.40)
results in

dV
dt

∣∣∣∣
(8.40)

= 2
n

∑
j=1

bn+1, j y j yn+1 + 2b(n+1)(n+1)y2
n+1 + 2h(n+1)yn+1 f (yn+1)

≤ 2
n

∑
j=1

(max{|b(n+1) j|, |b(n+1) j|})√
ε

|y j|
√

ε |yn+1|+ 2b(n+1)(n+1)y
2
n+1

≤ b(n+1)(n+1)y
2
n+1 +

n

∑
j=1

ξ jy2
j

= b(n+1)(n+1)V +
n

∑
j=1

ξ jy2
j .
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Thus,

y2
n+1(t) ≤ eb(n+1)(n+1)(t−t0)y2

n+1(t0)+
∫ t

t0
eb(n+1)(n+1)(t−τ)

n

∑
j=1

ξ jy2
j(τ)dτ. (8.41)

Now following the proof for the sufficiency of Theorem 8.22, we can show that the
zero solution of system (8.40) is robustly absolutely stable w.r.t. yn+1, and therefore,
Theorem 8.32 is proved. �

Theorem 8.33. If the interval indirect control system (8.40) satisfies one of the
following conditions:

1. BI is an interval Hurwitz matrix, and there exist constants c j > 0, j = 1,2, . . . ,
n + 1 such that

c j b j j +
n+1

∑
i=1,i�= j

ci max{|bi j|, |bi j|} ≤ 0, j = 1,2, . . . ,n + 1 (8.42)

2. There exist constants c j > 0, j = 1,2, . . . ,n + 1 such that (8.42) holds and

max{|b(n+1) j|, |b(n+1) j|} �= 0, j = 1,2, . . . ,n;

then the zero solution of system (8.40) is robustly absolutely stable.

Proof. First consider when condition (1) is satisfied. For this case, we can construct
the positive definite and radially unbounded Lyapunov function:

V =
n+1

∑
i=1

ci |yi|,

and thus obtain

D+V
∣∣
(8.40) ≤

n+1

∑
i=1

ci ẏi sign(yi)

≤
n+1

∑
j=1

[
c jb j j +

n+1

∑
i=1,i�= j

ci max{|bi j|, |bi j|}
]
|y j|+ cn+1hn+1| f (yn+1)|

≤ cn+1hn+1| f (yn+1)| < 0 when yn+1 �= 0. (8.43)

Therefore, the zero solution of (8.40) is robustly absolutely stable w.r.t. yn+1.
Since any solution y(t) of (8.40) can be expressed as

y(t) = eBI(t−t0)y(t0)+
∫ t

t0
eBI(t−τ)hI f (yn+1(τ))dτ, (8.44)

it is easy to follow the proof of Theorem 8.22 to show that the zero solution of (8.40)
is robustly absolutely stable w.r.t. all state variables.
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Now, consider condition (2). We rewrite (8.40) as

ẏ = BIy + hIyn+1 + hI

(
f (yn+1)− yn+1

)
. (8.45)

Let

c̃n+1 =
cn+1(b(n+1)(n+1) +

1
2 hn+1)

b(n+1)(n+1) + hn+1
.

Then c̃n+1 < cn+1. We construct the positive definite and radially unbounded Lya-
punov function:

V =
n

∑
i=1

ci |yi|+ c̃n+1|yn+1|.

Due to max{|b(n+1) j|, |b(n+1) j|} �= 0, we consider the linear part of (8.45):

ẏ = BIy + hIyn+1, (8.46)

and then obtain

D+V
∣∣
(8.46) ≤

n

∑
j=1

[
c jb j j +

n

∑
i=1,i�= j

ci max
(|bi j|, |bi j|

)

+ c̃n+1 max
(
|b(n+1) j|, |b(n+1) j|

)]
|y j(t)|

+
[

c̃n+1(b(n+1)(n+1) + hn+1)

+
n

∑
i=1

ci max
(
|bi(n+1)|, |bi(n+1)|

)]
|yn+1(t)|

: =
n

∑
j=1

−ξ j|y j|+
[

cn+1b(n+1)(n+1)

+
n

∑
i=1

ci max
(
|bi(n+1)|, |bi(n+1)|

)
+

1
2

cn+1hn+1

]
|yn+1(t)|

≤
n

∑
j=1

−ξ j|yi|+ 1
2

cn+1hn+1|yn+1| < 0 when
n+1

∑
i=1

|yi| �= 0.

So the coefficient matrix of (8.46) is an interval Hurwitz matrix.
The general solution of (8.45) can be expressed as

y(t) = e[BI+(O(n+1)×nhI)](t−t0)

+
∫ t

t0
e[BI+(O(n+1)×nhI)](t−τ)

[
hI

(
f (yn+1(τ))− yn+1(τ)

)]
dτ. (8.47)

Then, similarly following the proof of Theorem 8.22, we can show that the zero
solution of (8.45) (i.e., (8.40)) is robustly absolutely stable.

The proof of Theorem 8.33 is complete. �
To end this section, we give an example to demonstrate the applicability of the

theoretical results obtained in this section.
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8.8 Numerical Examples and Simulation Results

In this section, we present several numerical examples to demonstrate the applicabil-
ity of theorems given in the previous two sections. Numerical simulation is employed
to verify the analytical predictions.

Example 8.34. Consider the robust absolute stability of the zero solution of the
following interval indirect control system:(

ẋ
σ̇

)
=
[

[−2,0] [−2,−1]
[3,4] [−2,−1]

](
x

f (σ)

)
:= AI

(
x

f (σ)

)
, f (σ) ∈ F. (8.48)

∀a11 ∈ [−2,0], a12 ∈ [−2,−1], a21 ∈ [3,4], a22 ∈ [−2,−1], the corresponding
system can be written as

ẋ = a11 x + a12 f (σ),
σ̇ = a21 x + a22 f (σ).

(8.49)

Construct the positive definite and radially unbounded Lyapunov function:

V =
x2

|a12| +
2
∫ σ

0 f (s)ds
a21

.

Thus,

dV
dt

∣∣∣∣
(8.49)

=
2a11

|a12| x2 −2x f (σ)+ 2x f (σ)+
2a22

a21
f 2(σ)

≤ 2a22

a21
f 2(σ) ≤ −2 f 2(σ)

a21
< 0 when σ �= 0. (8.50)

Thus, the zero solution of (8.48) is robustly absolutely stable w.r.t. σ .
Now, we verify that AI is an interval Hurwitz matrix. In fact, ∀a11 ∈ [−2,0], a12 ∈

[−2,−1], a21 ∈ [3,4], a22 ∈ [−2,−1], since a11 ≤ 0, a22 < 0, a12 < 0, a21 > 0,

a11 +a22 < 0, a11 a22 +a12 a21 ≥ 0+a12 a21 > 3 > 0,
[

a11 a12
a21 a22

]
is a Hurwitz matrix.

Due to arbitrary of
[

a11 a12
a21 a22

]
∈ AI , so AI is an interval Hurwitz matrix. Thus,

according to Theorem 8.22, the zero solution of (8.48) is robustly absolutely stable.

Example 8.35. Consider the robust absolute stability of the zero solution of a three-
dimensional interval indirect control system:

⎛
⎝ẋ1

ẋ2
σ̇

⎞
⎠=

⎡
⎣ a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦
⎛
⎝ x1

x2
f (σ)

⎞
⎠=

⎡
⎢⎣ [−4,−3] [3,4] [−4,−3]

[−3,−2] [−3,−2] [−1,1]
[1,2] [−1,1] [−4,−3]

⎤
⎥⎦
⎛
⎝ x1

x2
f (σ)

⎞
⎠

(8.51)
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Construct the positive definite and radially unbounded Lyapunov function:

V =
x2

1
2a12

− x2
2

2a21
+
∫ σ

0
f (s)ds.

Then,

dV
dt

∣∣∣∣
(8.51)

=
a11

a12
x2

1 + x1 x2 +
a13

a12
x1 f (σ )− x1 x2 − a22

a21
x2

2 −
a23

a21
x2 f (σ )

+a31 x1 f (σ )+a32 x2 f (σ )+a33 f 2(σ )

≤ −3
4

x2
1 +
(a13

a12
+a31

)
x1 f (σ )− 2

3
x2

2 +
∣∣∣− a23

a21
+a32

∣∣∣ |x2 f (σ )|−3 f 2(σ )

≤ −3
4

x2
1 −

2
3

x2
2 +
∣∣∣a13

a12
+a31

∣∣∣ |x1 f (σ )|+ 3
2
|x2 f (σ )|−3 f 2(σ )

≤
⎛
⎝ |x1|

|x2|
| f (σ )|

⎞
⎠T

⎡
⎢⎢⎢⎣

− 3
4 0 1

2

∣∣∣ a13
a12

+a31

∣∣∣
0 − 2

3
1
2

∣∣∣− a23
a21

+a32

∣∣∣
1
2

∣∣∣ a13
a12

+a31

∣∣∣ 1
2

∣∣∣− a23
a21

+a32

∣∣∣ −3

⎤
⎥⎥⎥⎦
⎛
⎝ |x1|

|x2|
| f (σ )|

⎞
⎠

< 0 for x2
1 + x2

2 + f 2(σ ) �= 0. (8.52)

Thus, the zero solution of (8.48) is robustly absolutely stable.
For simulation of this example, we take the upper bounds of the system coeffi-

cients and f (σ) = σ3 to obtain the system:⎛
⎝ẋ1

ẋ2
σ̇

⎞
⎠=

⎡
⎣−3 4 −3
−2 −2 1
2 1 −3

⎤
⎦
⎛
⎝ x1

x2
σ3

⎞
⎠ . (8.53)

The simulation result is shown in Fig. 8.1, where the initial point is taken as
(x1,x2,σ) = (8,−6,4). It is seen that all the three components converge to the origin
– the equilibrium point.

Example 8.36. Analyze the robust absolute stability of the zero solution of the
following interval indirect control system:

⎛
⎝ẏ1

ẏ2
σ̇

⎞
⎠=

⎡
⎢⎣ [b11, b11] [b12, b12] [b13, b13]

[b21, b21] [b22, b22] [b23, b23]
[b31, b31] [b32, b32] [b33, b33]

⎤
⎥⎦
⎛
⎝ y1

y2
σ

⎞
⎠+

⎡
⎣ 0

0
[h3, h3]

⎤
⎦ f (σ)

=

⎡
⎢⎣ [−1.1,−1] [−0.5,0.5] [−0.5,0.5]

[−1,0] [−3.5,−3] [−1,1]
[0,1] [−2,2] [−2.5,−2]

⎤
⎥⎦
⎛
⎝ y1

y2
σ

⎞
⎠+

⎡
⎣ 0

0
[−1.1,−1]

⎤
⎦ f (σ). (8.54)
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Fig. 8.1 Simulated solution
of system (8.53) for Exam-
ple 8.35 converging to the
origin, from the initial point:
(x1, x2, σ ) = (8, −6, 4)

x
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t

Taking c1 = 2, c2 = c3 = 1, we obtain

c1b11 + c2 max[|b21|, |b21|]+ c3 max[|b31|, |b31|] = −2 + 1 + 1 = 0,

c2b22 + c1 max[|b12|, |b12|]+ c3 max[|b32|, |b32|] = −3 + 1 + 2 = 0,

c3b33 + c1 max[|b13|, |b13|]+ c2 max[|b23|, |b23|] = −2 + 1 + 1 = 0,

h3 = −1,

and b13 b32 b33 �= 0. Thus, condition (2) Theorem 8.33 is satisfied. Therefore, the
zero solution of (8.54) is robustly absolutely stable.

For this example, we take bi j ≤ bi j ≤ bi j, h3 = h3 and f (σ) = σ5, giving the
following system:⎛

⎝ẏ1
ẏ2
σ̇

⎞
⎠=

⎡
⎣−1 0.5 0.5
−1 −3 1

1 2 −2

⎤
⎦
⎛
⎝ y1

y2
σ

⎞
⎠+

⎛
⎝ 0

0
−1

⎞
⎠ σ5. (8.55)

The simulated result is depicted in Fig. 8.2, which again shows that all solution
components converge to the origin, as expected. The initial point is taken as the same
as that for Example 8.35: (y1,y2,σ) = (8,−6,4).

Example 8.37. The final example is to consider the robust absolute stability of the
zero solution of a four-dimensional interval indirect control system:⎛
⎜⎜⎝

ẋ1
ẋ2
ẋ3
σ̇

⎞
⎟⎟⎠ =

⎡
⎢⎢⎢⎣

[a11, a11] [a12, a12] [a13, a13] [a14, a14]
[a21, a21] [a22, a22] [a23, a23] [a24, a24]
[a31, a31] [a32, a32] [a33, a33] [a34, a34]
[a41, a41] [a42, a42] [a43, a43] [a44, a44]

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎝

x1
x2
x3

f (σ)

⎞
⎟⎟⎠

=

⎡
⎢⎢⎢⎣

[−3.1,−3] [−2,2] [0,1] [−0.9,0.9]
[−1,1] [−4.5,−4] [−1,1] [0,1]
[−1,0] [−1,1] [−3.5,−3] [−1,1]
[0,1] [0,1] [−1,0] [−4,−3]

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎝

x1
x2
x3

f (σ)

⎞
⎟⎟⎠ . (8.56)
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Fig. 8.2 Simulated solution
of system (8.55) for Exam-
ple 8.36 converging to the
origin, from the initial point:
(y1, y2, σ ) = (8, −6, 4)

−6

−4

−2

 0

 2

 4

 6

 8

 10  2  3  4  5

x

t

We take c1 = c2 = c3 = c4 = 1. Then

−c ja j j =
4

∑
i=1,i�= j

ci a(m)
i j , j = 1,2,3, and − c4a44 >

3

∑
i=1

cia
(m)
i j , (8.57)

where a(m)
i j = max{|ai j|, |ai j|}. So the zero solution of (8.56) is robustly absolutely

stable w.r.t. σ . But since

−c j a j j >
3

∑
i=1, i�= j

ci a(m)
i j , j = 1,2,3, (8.58)

implies that A( j0)(ai j) j0× j0 = A(3)(ai j)3×3 is an interval Hurwitz matrix, by Theo-
rem 8.25 we know that the zero solution of (8.56) is robustly absolutely stable.

To simulate this example, we similarly choose a definite system as the follows:⎛
⎜⎜⎝

ẋ1
ẋ2
ẋ3
σ̇

⎞
⎟⎟⎠=

⎡
⎢⎢⎣
−3 2 1 0.9
1 −4 1 1
−1 1 −3 1
1 1 −1 −3

⎤
⎥⎥⎦
⎛
⎜⎜⎝

x1
x2
x3
σ7

⎞
⎟⎟⎠ . (8.59)

where f (σ) has been taken as f (σ) = σ7.
The simulation result, as shown in Fig. 8.3, again confirms the analytical predic-

tion: all the four state components converge to the origin. Here the initial point is
chosen as (x1,x2,x3,σ) = (8,−6,6,1). It is seen that all the three components con-
verge to the origin. However, note that the convergence of the variable σ is slow due
to the nonlinear term σ7 and the relatively large initial condition.

8.9 More General Interval Systems [171, 172]

In this section, we consider more general systems, which include interval Yocubovich
control system as a special case, described by

ẋi =
n

∑
j=1

ai j fi j(x j), j = 1, 2, . . . , n, (8.60)



214 8 Robust Absolute Stability of Interval Control Systems

Fig. 8.3 Simulated solu-
tion of system (8.53) for
Example converging to the
origin, from the initial point:
(x1, x2, x3, σ ) = (8, −6, 6, 1)

x

−6

−4

−2

 0

 2

 4

 6

 8

0 1 2 3 4 5
t

where ai j ∈ [ai j, ai j], aii < 0, i = 1, 2, . . . , n.
Without loss of generality, we may assume that −ai j = ai j, i �= j, i, j =

1, 2, . . . , n, since if −ai j �= ai j, we can consider ai j = max[|ai j|, |ai j|], −ai j =
ai j. The larger interval [−ai j, ai j] is symmetric. Further, assume that | fi j(x j)| ≤
| f j j(x j)| fi j(x j) ∈ F∞, i, j = 1,2, . . . ,n.

Theorem 8.38. The sufficient condition for the zero solution of the interval nonlinear
control system (8.60) being absolutely stable is −A = (−ai j)n×n is an M matrix
(i.e., A = (ai j)n×n is a Hurwitz matrix).

Proof. Necessity. Take fi j(x j) = x j, then system (8.60) becomes an interval linear
system:

ẋi =
n

∑
j=1

ai j x j, i = 1, 2, . . . , n. (8.61)

Since the zero solution of (8.60) is robust absolutely stable, the zero solution of
(8.61) is robust globally and asymptotically stable. In particular, choose A ∈ AI ={

A, A ≤ A ≤ A
}

. Then the zero solution of the system

ẋi =
n

∑
j=1

ai j x j, i = 1, 2, . . . , n

is globally and asymptotically stable. From the assumption: aii < 0, ai j ≥ 0, we
know that A = (ai j)n×n is a Hurwitz matrix (or −A is an M matrix). The necessity
is proved.

Sufficiency. Since A = (ai j)n×n is an M matrix, based on the definition of M
matrix, there exist positive constants ci > 0, i = 1, 2, . . . , n such that

c j a j j +
n

∑
i=1,i�= j

ci ai j < 0, j = 1, 2, . . . , n. (8.62)
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Constructing the positive definite and radially unbounded Lyapunov function:

V =
n

∑
i

ci |xi|,

we have

D+V
∣∣
(8.60) =

n

∑
i=1

ci ẋi sign(xi)

=
n

∑
i=1

ci

( n

∑
j

ai j fi j(x j)
)

sign(xi)

≤
n

∑
i=1

ci

(
aii | fii(xi)|+

n

∑
j=1, j �=i

ai j | fi j(x j)|
)

=
n

∑
j=1

c j a j j | f j j(x j)|+
n

∑
j=1

n

∑
i=1
i�= j

ci ai j | fi j(x j)|

≤
n

∑
j=1

c j a j j | f j j(x j)|+
n

∑
j=1

n

∑
i=1
i�= j

ci ai j | f j j(x j)|

=
n

∑
j=1

(
c j a j j +

n

∑
i=1,i�= j

ci ai j

)
| f j j(x j)|

< 0 when ‖x‖ �= 0.

Hence, the zero solution of (8.60) is robust absolutely stable. �
Remark 8.39. Consider the absolute stability of the zero solution of the following
deterministic separate variable control system (i.e., not interval system):

ẋi =
n

∑
j=1

pi j f j(x j), i = 1, 2, . . . , n, (8.63)

where f j(x j) ∈ F∞, and pi j are fixed constants. Consider the absolute stability of the
zero solution of the comparison system:

ẋi =
n

∑
j=1

pi j f j(x j), i = 1, 2, . . . , n, (8.64)

implies the absolute stability of the zero solution of system (8.62). Here,

pii = pii < 0, pi j = |pi j|, i �= j.

It was also proved that the necessary and sufficient condition for the zero solution of
system (8.64) being absolute stable is that there exist constants ci > 0 such that

n

∑
j

pi j ci < 0, i = 1, 2, . . . , n, (8.65)

i.e., −− P = (−pi j)n×n is an M matrix.
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Obviously, ai j = ai j = ai j = pi j, aii = aii = aii = pii < 0, the condition (8.65)
is equivalent to (8.62), and thus the result can be directly obtained from our above
theorem as special case.

However, in general, fi j(x j) �= f j(x j), i.e., for different 1 ≤ k, l ≤ n, there may
exist fk j(x j) �= fl j(x j). Thus, if we suppose fi j(x j) ≡ f j(x j), then one cannot con-
sider any deterministic system in the form of (8.1)′ as a particular case of (8.1). This
is because though the last two terms on the right-hand side of (8.1)′ contain the same
xn, they can only be written as

fin(xn) = ain xn + hi f (xn), i = 1, 2, . . . , n.

In general fin(xn) �= f jn(xn) �= fnn(xn).

Remark 8.40. For the interval Yocubovich control system (considered in Sects. 8.5–
8.8), formally it is a particular case of system (8.60) when fi j(x j)≡ f j(x j). However,
because every term in (8.60) is nonlinear, the necessary and sufficient condition of the
absolute stability, (8.62) or (8.65) is very strong. (In fact, the necessary and sufficient
condition has restriction, or more precisely, it is a sufficient condition.) In Sects. 8.5–
8.8), we made well use of the property of the linear part of the nonlinear systems,
and thus we transformed the complex stability problem of a nonlinear system to study
the property of interval matrix and the absolute stability of the system about partial
variables (in particular one variable). This is the basic idea of reducing the dimension
of given system and thus solving the original problem becomes easier. Moreover,
there are many existing theories and methods we can use to consider the absolute
stability about partial variables. As a matter of fact, some examples we presented in
Sects. 8.5–8.7) cannot be considered using the M matrix method described in this
section.

Remark 8.41. It is seen from the proof for the sufficiency of Theorem 8.38 that if
the condition

| fi j(x j)| ≤ | f j j(x j)|, f j j(x j) ∈ F∞ j = 1, 2, . . . , n

is satisfied and allows fi j(x j)∈F∞, i �= j, then the sufficiency of Theorem 8.38 still
holds. So we have the following result.

Corollary 8.42. If | fi j(x j)| ≤ | fi j(x j)|, fi j(x j) ∈ F∞, i �= j, and −A is an M matrix,
then the zero solution of system (8.60) is robust absolutely stable.

Example 8.43. Consider the interval control system:

ẋ1 = a11 x1 + a12 sin(x3
2)+ a13 sin(x5

3),
ẋ2 = a21 sin(x1)+ a22 x3

2 + a23 sin(x5
3),

ẋ3 = a31 sin(x1)+ a32 sin(x3
2)+ a33 sin(x5

3),
(8.66)

where ai j ∈ [−ai j, ai j], −ai j = ai j, i �= j, aii < 0.
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Obviously,

f11(x1) = x1 ∈ F∞, f22(x2) = x3 ∈ F∞, f33(x3) = x5
3 ∈ F∞,

| f21(x1)| = | f31(x1)| = |sin(x1)| ≤ |x1| = | f11(x1)|,
| f12(x2)| = | f32(x2)| = |sin(x3

2)| ≤ |x3
2| = | f22(x2)|,

| f13(x3)| = | f23(x3)| = |sin(x5
3)| ≤ |x5

3| = | f33(x3)|.

Thus, if −(A(ai j)n×n is an M matrix, then the zero solution of the interval system
(8.66) is robust stable.

In [68, 71], we constructed a separate variable positive definite and radially
unbounded Lyapunov function to study the global stability of the zero solution for
the general high dimensional nonlinear autonomous system:

ẋ = f (x), x ∈ Rn, f (0) = 0, f ∈C[Rn, R1] (8.67)

and the separate variable high dimensional nonlinear autonomous system:

ẋi =
n

∑
j=1

fi j (x j), j = 1, 2, . . . , n, fi j(0) = 0, f j j(x j) ∈C[R1, R1]. (8.68)

Here, we shall generalize the method and results to consider the robust stability
of system (8.60).

Theorem 8.44. Suppose

1. aii < 0, fii(xi) ∈ F∞, i = 1, 2, . . . , n, and
∫±∞

0 fii(xi)dxi = +∞.
2. There exist continuous functions ci(xi) ≥ δ > 0 (in particular, ci are constants),

i = 1, 2, . . . , n such that the interval matrix function B(bi j(x j))n×n is negative
definite.

Then the zero solution of the interval control system (8.60) is robust absolutely stable.
Here,

bi j(x j) =

⎧⎪⎨
⎪⎩

ci(xi)aii, when i = j, i, j = 1, . . . , n,

1
2

[
ci(x j)ai j fi j(x j)

f j j(x j)
+

c j(x j)a ji f ji(xi)
fii(xi)

]
,

when i �= j, xi x j �= 0,
i, j = 1, . . . ,n.

Proof. We construct the following positive definite and radially unbounded Lya-
punov function

V (x) =
n

∑
i=1

∫ xi

0
ci(xi) fii(xi) dxi, (8.69)
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and then evaluate the derivative of dV
dt along the solution of (8.60) to obtain

dV(x)
dt

∣∣∣∣
(8.60)

=
n

∑
i=1

ci(xi) fii(xi)

[
n

∑
j=1

ai j fi j(x j)

]

=
n

∑
i=1

ci(xi)aii f 2
ii (xi)

+
1
2

n

∑
i=1,i�= j

n

∑
j=1

[ci(xi)ai j fii(xi) fi j(x j)+ c j(x j)a ji f j j(x j) f ji(xi)] .

For x = ξ ∈ Rn, without loss of generality, we may assume Π k
i=1ξi �= 0, ∑n

i=k+1 ξ 2
i =

0 (0 ≤ k < n), then

dV(ξ )
dt

∣∣∣∣
(8.60)

=
k

∑
i=1

ci(ξi)aii f 2
ii (ξi)

+
1
2

k

∑
i=1,i�= j

k

∑
j=1

[ci(ξi)ai j fii(ξi) fi j(ξ j)+ c j(ξ j)a ji f j j(ξ j) f ji(ξi)]

=
k

∑
i=1

ci(ξi)aii f 2
ii (ξi)

+
1
2

k

∑
i=1,i�= j

k

∑
j=1

[
ci(ξi)ai j fii(ξi)

f j j(ξ j)
+

c j(ξ j)a ji f j j(ξ j)
fii(ξi)

]
f ji(ξi) f j j(x j)

=

⎛
⎜⎝ f11(ξ1)

...
fkk(ξk)

⎞
⎟⎠

T

B(bi j(x j))k×k

⎛
⎜⎝ f11(ξ1)

...
fkk(ξk)

⎞
⎟⎠

:= W ( f11, . . . , fkk) ≤ 0. (8.70)

From the conditions of the theorem, we know that the generalized quadratic form
W ( f11, . . . , fkk) is negative definite about f11, . . . , fkk. However, due to fii(xi) ∈ F∞,
we have

W (0) = 0 ⇐⇒
k

∑
i=1

f 2
ii = 0 ⇐⇒

k

∑
i=1

ξ 2
i = 0,

W ( f11, . . . , fkk) < 0 ⇐⇒
k

∑
i=1

f 2
ii �= 0 ⇐⇒

k

∑
i=1

ξ 2
i �= 0.

Thus, dV (ξ )
dt

∣∣∣
(8.60)

is negative definite about ξ . Due to arbitrary of ξ , we have proved

that dV (ξ )
dt

∣∣∣
(8.60)

is negative definite about x. Therefore, the zero solution of the

interval control system (8.60) is robustly absolutely stable. �
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Corollary 8.45. If there exist constants ci > 0, i = 1, 2, . . . , n such that the matrix
B(bi j)n×n is negative definite, where

bi j

⎧⎪⎨
⎪⎩

= ci aii, when i = j, i, j = 1, . . . , n,

≥ 1
2

max
ai j∈[aii,ai j ]

[
ci ai j f ji(xi)

fii(xi)
+

c j a ji fi j(x j)
f j j(x j)

]
,

when i �= j, xi x j �= 0,
i, j = 1, . . . ,n,

then the zero solution of system (8.60) is robust absolutely stable.

Proof. Obviously, the condition of the corollary implies the condition of Theo-
rem 8.44, so the conclusion is true. �

Corollary 8.46. Assume condition (1) in Theorem 8.44 holds, and condition
is changed to that there exist continuous functions ci(xi) ≥ δ > 0, and
M( j)

i (xi, x j)M(i)
j (x j, xi) ≥ 0 satisfying

1
2

[
ci aii fi j(x j)

f j j(x j)
+

c j a ji f ji(xi)
fii(xi)

]
≤ M( j)

i (xi, x j)M(i)
j (x j, xi),

and
n

∑
j=1, j �=i

(
M( j)

i (xi, x j)
)2

< −ci(xi)aii (i = 1,2, . . . ,n),
(8.71)

then the zero solution of the interval control system (8.60) is robust absolutely stable.

Proof. Again take the same Lyapunov function used in Theorem 8.44. For x = ξ ∈
Rn, Π k

i=1ξi �= 0, and ∑n
i=k+1 ξ 2

i = 0. Then following the derivation in (8.69)–(8.70),
we have

dV (ξ )
dt

∣∣∣∣
(8.60)

=
k

∑
i=1

ci aii f 2
ii (ξi)

+
1
2

k

∑
i=1,i�= j

k

∑
j=1

[
ci(ξi)ai j fi j(ξ j)

f j j(x j)
+

c j(ξ j)a ji f ji(xi)
fii(xi)

]
fii(ξi) f j j(x j)

≤
k

∑
i=1

ci aii f 2
ii (ξi)

+ 2
k

∑
i=1,i�= j

k

∑
j=1

M( j)
i (ξi, ξ j)M( j)

i (ξi, ξ j) | fii(ξi) f j j(x j)|

≤
k

∑
i=1

ci aii f 2
ii (ξi)+

k

∑
i=1,i�= j

k

∑
j=1

(
M( j)

i (ξi, ξ j)
)2

f 2
ii (ξi)

=
k

∑
i=1

[
ci aii +

k

∑
i=1,i�= j

(
M( j)

i (ξi, ξ j)
)2
]

f 2
ii (ξi)

	 0.

Thus, the conclusion of the corollary is true. �
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Particularly, if ci(xi), M( j)
i (ξi, ξ j) and M(i)

j (ξ j, ξi) can be taken as constants, for
example,

ci(xi) ≡ 1, M( j)
i (ξi, ξ j) = M(i)

j (ξ j, ξi) =
[

1
2

(ai j fi j(x j)
f j j(x j)

+
a ji f ji(xi)

fii(xi)

)]1/2

,

then the conditions in Corollary 8.46 become

aii < 0 and
n

∑
j=1, j �=i

∣∣∣ai j fi j(x j)
f j j(x j)

+
a ji f ji(xi)

fii(xi)

∣∣∣< −2aii, (8.72)

which are easy to verify.

Example 8.47. Consider the interval control system:

ẋi =
n

∑
j=1

ai j f j(x j), i = 1,2, ·, n, (8.73)

where ai j ∈ [ai j, ai j], f j(x j) ∈ F∞.
If aii < 0 and

n

∑
j=1, j �=i

max
ai j∈[ai j ,ai j ]

a ji∈[a ji ,a ji ]

[|ai j + a ji|] < −2aii,

then the zero solution of (8.73) is robust absolutely stable.

Remark 8.48.

max ai j∈[ai j ,ai j]

a ji∈[a ji ,a ji]

[|ai j + a ji|]

= max
[[
|ai j + a ji|

]
,
[
|ai j + a ji|

]
, [|ai j + a ji|] ,

[
|ai j + a ji|

]]
.
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Discrete Control Systems

The Lurie control system and the well-known Lurie problem were originally devel-
oped for solving the nonlinear systems described by ordinary differential equations
(ODE), and the most research interest and results in this area were focused on ODE
systems. With the very fast development of computer systems and technology, the
dynamics and asymptotic behavior of discrete systems described by difference equa-
tions (DE) play more important roles in solving practical problems [115], attracting
more and more researchers [47]. The absolute stability of discrete Lurie control sys-
tems is naturally raised. However, the results obtained so far for such systems are
relatively less than that of continuous Lurie control systems.

In this chapter, we will generalize the recently developed theory and method-
ology for continuous Lurie control systems to study discrete Lurie control systems
described by difference equations. We will mainly discuss the sufficient and nec-
essary conditions of absolute stability, and some practically useful algebraic suffi-
cient conditions of absolute stability. The material of this chapter is mainly chosen
from [77, 84].

9.1 Sufficient and Necessary Conditions for the Absolute Stability

We examine the following discrete Lurie control system:

x(tk+1) = Ax(tk)+ h f (σ(tk)),

σ = cTx =
n

∑
i=1

ci xi ,
(9.1)

where x ∈ Rn, A ∈ Rn×n, b ∈ Rn, c ∈ Rn, f ∈ F∞, or

f ∈ F[k1,k2] := { f | f (0) = 0, 0 ≤ k1 ≤ f (σ)/σ ≤ k2, σ �= 0, f ∈C[(−∞,+∞),R1]}.

We choose J = {tk : t0 < t1 < · · · < tk < · · · }, N := {0, 1, 2, . . .}.

Definition 9.1. The zero solution of (9.1) is said to be absolutely stable (absolutely
stable in Hurwitz angle [k1,k2]) if for any f ∈ F∞ ( f ∈ F[k1,k2]), the zero solution
of (9.1) is globally asymptotically stable (globally asymptotically stable in Hurwitz
angle [k1,k2]).

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, Second Edition.
c© Springer Science + Business Media B.V. 2008
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Definition 9.2. The zero solution of (9.1) is said to be absolutely stable for the set
Ω = {x |cTx = 0} (absolutely stable for Ω in [k1,k2]) if for any f ∈ F∞ ( f ∈ F[k1,k2]),
the zero solution of (9.1) is globally asymptotically stable w.r.t. Ω .

Lemma 9.3. Let x(tk+1) be the solution of the following system:

x(tk+1) = Ax(tk)+ F(tk,x(tk)),

x(t0) = x0.

Then for any natural number k, the following formula of variation of constants holds:

x(tk+1) = Ak+1x0 +
k

∑
l=0

Ak−lF(tl ,x(tl)).

Proof. The lemma can be easily verified by the method of mathematical induction,
and the proof is omitted. �
Corollary 9.4. The solution x(tk+1) := x(tk+1,t0;x0) of (9.1) can be written as

x(tk+1) = Ak+1x0 +
k

∑
l=0

Ak−lh f (σ(tl)).

Corollary 9.5. Suppose that f (σ) ∈ F∞ (F[k1,k2]). For arbitrary fixed m, the solution
of (9.1) depends continuously on the initial value x0.

Proof. Obviously, when m = 0, the following expression:

x(t1) = x0 + h f (σ(t0)), σ(t0) = cTx0

is a continuous function of x0. Suppose that

x(tk) = Akx0 +
k−1

∑
l=0

Ak−lh f (σ(tl))

depends continuously on x0. Since

x(tk+1) = Ax(tk)+ h f (σ(tk))

is a continuous function of x(tk), thus x(tk+1) depends continuously on x0. �
Theorem 9.6. The zero solution of (9.1) is absolutely stable (absolutely stable in
[k1,k2]) if and only if

1. ρ(B) < 1 (ρ(B∗) < 1), where ρ(B) and ρ(B∗) are the respectively, spectral
radius of B and B∗

2. The zero solution of (9.1) is absolutely stable for the set Ω = {x : cTx = 0}
(absolutely stable for Ω in [k1,k2]). Here

B = (bi j)n×n = A + hcTθ , θ = 0 or θ = 1,(
B∗ = (b∗i j)n×n = A + hcT(

k2 − k1

2
)
)
.
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Proof. It is suffice to prove the necessary and sufficient conditions (NASC) of the
absolute stability because the proof of NASC of absolute stability in [k1,k2] is the
same.

Necessity. Since the zero solution of (9.1) is absolutely stable, for any ε > 0,
there exists δ (ε) > 0 such that the solution of (9.1) satisfies

|x(tk)| < ε
max1≤i≤n |ci| for ‖x0‖ < δ (ε).

Further, we have

|σ(tk)| = |
n

∑
i=1

ci xi(tk)| ≤ max
1≤i≤n

|ci|
n

∑
i=1

|xi(tk)| := max
1≤i≤n

|ci| ‖x(tk)‖ < ε.

Obviously, lim
k→+∞

x(tk) = 0 implies lim
k→+∞

σ(tk) = 0, which leads to the conclusion

that the zero solution of (9.1) is absolutely stable w.r.t. the set Ω .
If f (σ) = σ , then (9.1) is transformed into

x(tk) = Bx(tk−1).

Since the zero solution of (9.1) is globally asymptotically stable, it can be shown that
ρ(B) < 1. Necessity is proved.

Sufficiency. The solution x(tk+1) of (9.1) can be written as

x(tk+1) = Bk+1x0 +
k

∑
l=0

Bk−l(h f (σ(tl))−hθ σ(tl)).

Since ρ(B) < 1, Bm is bounded, we can define

‖Bk+1‖ ≤ M = const. for all k ∈ N.

For any ε > 0, we take δ (ε) = ε
3M . Since lim

k→+∞
σ(tk) = 0 and lim

k→+∞
f (σ(tk)) = 0,

there exists a constant k1 > k0 such that the following estimation holds:

∥∥∥ k

∑
i=k1+1

Bk−1(h f (σ(tl))−hθ σ(tl))
∥∥∥<

ε
3
.

By virtue of the facts that limk→+∞ σ(tk,t0;x0) = 0, σ(tk,t0;x0) depends contin-
uously on the initial value x0 and f (σ(tk)) is continuous, there exists a constant
δ2(ε) > 0 such that∥∥∥∥∥

k1

∑
l=0

Bk−l(h f (σ(tl))−hθ σ(tl))

∥∥∥∥∥<
ε
3

for ‖x0‖ < δ2(ε).
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Let δ (ε) = min(δ1(ε),δ2(ε)). Then, we obtain

‖x(tk+1)‖ ≤ ‖Bk+1x(t0)‖+

∥∥∥∥∥
k1

∑
l=0

Bk−l(h f (σ(tl))−hθ σ(tl))

∥∥∥∥∥
+

∥∥∥∥∥
k

∑
l=k1+1

Bk−l(h f (σ(tl))−hθ σ(tl))

∥∥∥∥∥
< 0 for ‖x0‖ < δ (ε).

Therefore, the zero solution of (9.1) is stable.
Since limk→+∞ f (σ(tk)) = 0 and limk→+∞ σ(tk) = 0 for any x0 ∈Rn, there exists

a constant M1 > 0 such that

‖h f (σ(tl))−hθ σ(tl)‖ ≤ M1.

Taking into account that ρ(B) < 1, we have ∑∞
l=1 ‖Bl‖ < +∞. We know that there

exists a constant M2 > 0 such that

k

∑
l=[ k

2 ]
‖Bk−l‖ ≤ M2.

Therefore,

0 ≤ lim
k→+∞

‖x(t0)‖

≤ lim
k→+∞

‖Bkx0‖+ lim
k→+∞

[ k
2 ]

∑
l=0

‖Bk−l‖ ‖h f (σ(tl))−hθ σ(tl)‖

+ lim
k→+∞

k

∑
l=[ k

2 ]+ 1
‖Bk−l‖ ‖h f (σ(tl))−hθ σ(tl)‖

= 0 + M1 lim
k→+∞

[ k
2 ]

∑
l=0

‖Bk−l‖+ M2 lim
k→+∞

max
[ k
2 ]≤ l≤ k

‖h f (σ(tl))−hθσ(tl)‖

= 0. �

Theorem 9.7. The zero solution of (9.1) is absolutely stable (absolutely stable in
[k1,k2]) if and only if

1. The condition (1) of Theorem 9.6 is satisfied
2. For any f ∈ F ( f ∈ F[k1,k2]), there exists a Lyapunov function Vf (x) which is

radially unbounded positive definite w.r.t Ω such that

∆Vf = Vf (x(tk+1))−Vf (x(tk))

is negative definite for Ω .
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Proof. It is suffice to prove the NASC for absolute stability, because the NASC of
absolute stability in [k1,k2] can be proved along the same lines.

Sufficiency. On the basis of Theorem 9.6, what we need is to prove that the
condition (2) implies that the zero solution of (9.1) is absolutely stable w.r.t. σ .

Since Vf (x(tk+1))−Vf (x(tk)) is negative definite w.r.t. σ , we find that

Vf (x(tk+1))−Vf (x(tk)) ≤−ψ f (|σ(tk)|), ψ f ∈ K.

It can be deduced that there exists ϕ ∈ KR such that

0 ≤ ϕ f (|σ(tk−1)|) ≤Vf (x(tk+1)) ≤ Vf (x(tk))−ψ f (|σ(tk)|)
≤ Vf (x(tk−1))−ψ f (|σ(tk)|)−ψ f (|σ(tk−1)|)
≤ Vf (x(t0))−ψ f (|σ(tk)|)−·· ·−ψ f (|σ(t0)|).

Consequently,

ϕ f (|σ(tk−1)|) ≤ Vf (x(tk+1)) ≤Vf (x(t0)),

|σ(tk+1)| ≤ ψ−1
f (Vf (x(t0))) 	 1 for ‖x0‖	 1.

Now we show that
lim

k→+∞
σ(tk+1) = 0 ∀ x0 ∈ Rn.

If there exists some x0 ∈ Rn satisfying limk→+∞ σ(tk+1) �= 0, then there exist ε > 0
and a sequence {k j} such that

σ(tki) ≥ ε, i = 1, 2, . . .

Provided k1 < k2 < · · · < k j < k +1, k being a sufficiently large constant, we derive

0 ≤ ϕ f (|σ(tk+1)|) ≤ Vf (x(tk+1))

≤ Vf (x(t0))−ψ f (|σ(tk)|)−·· ·−ψ f (|σ(t0)|)
≤ Vf (x(t0))− ε · · ·− ε →−∞ as k → +∞,

which yields a contradiction. Hence, we have limk→+∞ σ(tk+1) = 0, i.e., the zero
solution of (9.1) is absolutely stable w.r.t. Ω .

Necessity. Since the zero solution of (9.1) is absolutely stable, one can prove that
for any f ∈ F∞ (F[k1,k2]), there exists a radially unbounded, positive definite function
Vf (x) such that

Vf (x(k + 1))−Vf (x(0)) < 0 (i.e., negative definite).

Accordingly, there exist two functions, namely ϕ ∈ KR, ψ ∈ KR such that

Vf (x) ≥ ϕ(‖x‖)
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and
Vf (x(tk+1))−Vf (x(tk)) ≤−ψ(‖x(tk)‖).

By virtue of

|σ | =
∣∣∣∣∣

n

∑
i=1

ci xi

∣∣∣∣∣≤
n

∑
i=1

|ci| |xi| ≤ max
1≤i≤n

|ci

∣∣∣∣∣
n

∑
i=1

|xi

∣∣∣∣∣ := max
1≤i≤n

|ci| ‖x‖,

we obtain

Vf (x) ≥ ϕ f (‖x‖) ≥ ϕ f

( |σ |
max1≤i≤n |ci|

)
:= ϕ̃ f (|σ |),

where ϕ1 ∈ KR, and

Vf (x(tk+1))−Vf (x(tk)) ≤−ψ f (‖x(tk)‖) ≤−ψ f

( |σ |
max1≤i≤n |ci|

)
:= − ψ̃ f (|σ |).

The condition (2) is satisfied, the condition (1) holds trivially and the conclusion
follows. �

Theorem 9.8. The zero solution of (9.1) is absolutely stable (absolutely stable in
[k1,k2]) if and only if

1. There exists a constant vector η = (η1, . . . , ηn)T such that ρ(B1(bi j)) < 1, where
B1 = A + η cT.

2. The condition (2) of Theorem 9.6 holds.

Proof. Necessity. The existence of η = (η1, . . . , ηn)T is obvious. For example, we
may take ηi = hi

[
ηi = k2−k1

2 hi

]
, and the condition (1) is satisfied. The necessity of

the condition (2) has been proved in Theorem 9.6.
Sufficiency. For any f ∈ F∞ ( f ∈ F[k1,k2]), we rewrite (9.1) as

x(tk+1) = B1 x(tk)+ h f (x(tk))−η σ(tk).

In accordance with Lemma 9.3, we deduce that

x(tk+1) = Bk+1
1 x(t0)+

k

∑
l=0

Bk−l
1 (h f (σ(tl))−η σ(tk).

The proof of the remaining part is similar to that of Theorem 9.7. �

Similarly, we can prove the following theorem.

Theorem 9.9. The zero solution of (9.1) is absolutely stable (absolutely stable in
[k1,k2]) if and only if both the condition (1) of Theorem 9.7 and the condition (2) of
Theorem 9.6 hold.
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9.2 Sufficient Algebraic Conditions for the Absolute Stability

In this section, we present some useful sufficient algebraic conditions for absolute
stability.

Without loss of generality, we may assume that cn �= 0. Let

Q =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0
c1 c2 · · · cn−1 cn

⎤
⎥⎥⎥⎥⎥⎦ .

A full rank linear transformation, given by

ξ = Qx,

transforms system (9.1) into

ξ (tk+1) = QAQ−1ξ (tk)+ Qh f (ξn(tk)) := Ãξ (tk)+ h̃ f (ξn(tk)), (9.2)

where Ã = QAQ−1, h̃ = Qh.
Obviously, the absolute stability of the zero solution of (9.1) and (9.2) are equiv-

alent. However, all the variables of (9.2) are separated. The definition of the absolute
stability of the zero solution for the variable ξn can be stated as in Definition 9.2.

Let
f (ξn)

ξn
=

{
g(ξn), when ξn �= 0,

0, when ξn = 0.
(9.3)

Accordingly, (9.2) can be rewritten as

ξi(tk+1) =
n

∑
j=1

ãi j ξ j(tk)+ h̃i g(ξn(tk))ξn(tk)

=
n−1

∑
j=1

ãi j ξ j(tk)+ (ãin + b̃i g(ξn(tk)))ξn(tk). (9.4)

Theorem 9.10. 1. Let the condition (1) of Theorem 9.6 be satisfied.
2. Suppose that for any f ∈ F∞ ( f ∈ F[k1,k2]), there exist positive constants ri (i =

1, 2, . . . , n) which are independent of f such that

max
1≤ j≤n−1

{
n

∑
i=1

ri

r j
|ãi j|
}

≤ 1,

n

∑
i=1

ri

rn

∣∣ ãin + h̃i g(ξn)
∣∣ ≤ ρ < 1.

Then the zero solution of (9.4) is absolutely stable (absolutely stable in [k1,k2]).
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Proof. We take the radially unbounded, positive definite Lyapunov function

V (ξ ) =
n

∑
i=1

ri |ξi|

and obtain

V (ξ (tk+1))−V(ξ (tk)) =
n

∑
i=1

ri

∣∣∣ n

∑
j=1

ãi j ξ j(tk)+ h̃i f (ξn(tk))
∣∣∣− n

∑
i=1

ri |ξi(tk)|

≤
n−1

∑
j=1

n

∑
i=1

ri

r j
|ãi j| |r j| |ξ j(tk)|

+
n

∑
i=1

ri

rn
|ãin ξn(tk)+ h̃ig(ξn(tk))|rn−

n

∑
j=1

r j|ξ j(tk)|

=
n−1

∑
j=1

[
n

∑
i=1

ri

r j
|ãi j|−1

]
r j |ξ j(tk)|

+

[
n

∑
i=1

ri

rn
|ãin + h̃ig(ξn(tk))|−1

]
rn|ξn(tk)|

≤ (ρ −1)rn |ξn(tk)|
:= −δ rn |ξn(tk)|. (9.5)

Thus, it follows that:

rn |ξn(tk+1)| ≤V (tk+1) < V (tk) < V (tk−1) < · · · < V (t0). (9.6)

The expression (9.6) shows that the zero solution of (9.4) is stable w.r.t. the partial
variable ξn, and (9.5) gives

rn |ξn(tk+1)| ≤ V (tk+1) < V (tk)− δ rn |ξn(tk)|
≤ V (t0)− δ rn |ξn(tk)|− δ rn |ξn(tk−1)|− · · ·−δ rn |ξn(t0)|.

Now we will prove that limk→+∞ ξn(tk+1) = 0. If limk→+∞ ξn(tk+1) �= 0, then there
exist a constant ε > 0 and a sequence {ki} such that

|ξn(tki)| ≥ ε, i = 1, 2, . . .

Assume that k1 < k2 < · · · < k j < L + 1, where the constant L is large enough. In
this case,

0 ≤ rn |ξ (tk+1)| ≤ V (t0)− δ rn |ξn(tk)|− δ rn|ξn(tk−1)|− · · ·−δ rn |ξn(t0)|
→ −∞ as k → +∞,

which leads to a contradiction. Thus, we have limk→+∞ ξ (tk+1) = 0. Following the
same idea used in proving Theorem 9.6 we see that the conclusion of Theorem 9.10
holds. �
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Corollary 9.11. 1. Let the condition (1) of Theorem 9.6 be satisfied

2. Let max
1≤i≤n

{
n

∑
j=1

|ãi j|
}
≤ 1 and

n

∑
i=1

‖ãin + h̃ig(ξn)‖≤ ρ < 1 hold for any f (σ)∈F∞

( f ∈ F[k1,k2]). Then the zero solution of (9.4) is absolutely stable (absolutely stable
in [k1,k2]).

Proof. Taking ri = 1 (i = 1, 2, . . . , n) in Theorem 9.10, we see that all the conditions
of Theorem 9.10 are satisfied. The conclusion of Corollary 9.11 is true. �

In the following, we will use another Lyapunov function to consider absolute
stability.

For any ε > 0, let

D = (di j)n×n, Gε :=

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0
0 0 · · · 0 ε

⎤
⎥⎥⎥⎥⎥⎦

n×n

,

where

di j :=

{
ãi j, 1 ≤ i, j ≤ n−1,

ãin + h̃i g(ξn), i = 1, 2, . . . , n.

Theorem 9.12. 1. Let the condition (1) of Theorem 9.6 be satisfied
2. Suppose that there exists a symmetric, positive definite matrix B(bi j)n×n such that

the matrix DTBD−B+Gε is negative semi-definite for any f ∈ F∞ ( f ∈ F[k1,k2]).
Then the zero solution of (9.4) is absolutely stable (absolutely stable in [k1,k2]).

Proof. Choosing the Lyapunov function V = ξ TBξ , we get

V (tk+1)− (tk) = ξ T(tk+1)Bξ (tk+1)− ξ T(tk)Bξ (tk)

= (Dξ (tk)TBDξ (tk))− ξ T(tk)Bξ (tk)

= ξ T(tk)(DTBD−B + Gε)ξ (tk)− ε ξ 2
n (tk)

≤ −ε ξ 2
n (tk).

Then there exists a constant α > 0 such that

ξ 2
n (tk) ≤ α V (tk) ≤ α V (tk−1)−α ε ξ 2

n (tk−1)

≤ α V (t0)−α ε ξ 2
n (tk−1)−α ε ξ 2

n (tk−2)−·· ·−α ε ξ 2
n (t0).

The rest of the proof can be completed similarly to the proof of Theorem 9.6. �

In the case B = I, we have the following result.
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Corollary 9.13. 1. Let the condition (1) of Theorem 9.6 be satisfied
2. Suppose that there exists a symmetric, positive definite matrix DTD− I + Gε is

negative semi-definite for any f ∈ F∞ ( f ∈ F[k1,k2]). Then the zero solution of (9.4)
is absolutely stable (absolutely stable in [k1,k2]).

Example 9.14. Consider the two-dimensional discrete control system:

x1(tk) =
2
5

x1(tk−1)− 1
5

x2(tk−1)+
3

10
f (x2(tk−1)),

x2(tk) =
3

10
x1(tk−1)− 3

10
x2(tk−1)+

2
5

f (x2(tk−1)),
(9.7)

where f (x2)∈F[0,2]={ f (x2)| f (0)=0, 0 ≤ f (x2)/x2 ≤ 2, f (x2)∈C[(−∞,+∞),R1]}.

1. Let f (x2) = x2. Then (9.7) is transformed into

x1(tk) =
2
5

x1(tk−1)+
1

10
x2(tk−1),

x2(tk) =
3

10
x1(tk−1)+

1
10

x2(tk−1),

where B :=

[
2
5

1
10

3
10

1
10

]
and ρ(B) ≤ ‖B‖ < 1. The condition (1) of Theorem 9.6

holds true.
2. We choose the radially unbounded, positive definite Lyapunov function V (x) =

|x1|+ |x2|. By virtue of

|ã11|+ |ã21| =
2
5

+
3

10
=

7
10

< 1,

|ã21+h̃1 g(x2)|+|ã22+h̃2 g(x2)| =
∣∣∣∣−1

5
+

3
10

f (x2)
x2

∣∣∣∣+
∣∣∣∣− 3

10
+

2
5

f (x2)
x2

∣∣∣∣
≤
∣∣∣∣− 1

5
+

3
5

∣∣∣∣+
∣∣∣∣− 3

10
+

4
5

∣∣∣∣
=

2
5

+
1
2

=
9

10
,

the condition of Corollary 9.13 are satisfied.

Thus, the zero solution of (9.7) is absolutely stable in the Hurwitz angle [0, 2].

Example 9.15. Consider the system:

x1(tk+1) =
1√
2

x1(tk)− 1
2

x2(tk)+
1
3

f (x2(tk)),

x2(tk+1) =
1√
2

x1(tk)+
1
2

x2(tk)− 1
3

f (x2(tk)),
(9.8)

where f (x2) ∈ F[0,7/2] = { f (x2)| f (0) = 0, 0 ≤ f (x2)/x2 ≤ 7/2, f (x2) ∈ C[(−∞,

+∞),R1]}.
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Let us discuss the absolute stability of this system.

1. We fix f (x2(tk)) = x2(tk). The system (9.8) is changed into

x1(tk+1) =
1√
2

x1(tk)− 1
6

x2(tk),

x2(tk+1) =
1√
2

x1(tk)+
1
6

x2(tk),

where B1 :=

[
− 1√

2
− 1

6
1√
2

1
6

]
and ρ(B1) ≤ ‖B1‖ = 1√

2
+ 1

6 < 1. We see that the

condition (1) of Theorem 9.6 is satisfied.
2. We take the radially unbounded, positive definite Lyapunov function

V (x) = x2
1 + x2

2, Gε =
[

0 0
0 1

10

]
.

By virtue of

− 1
2

+
[

2
9

g2(x2)− 2
3

g(x2)
]
+

1
10

≤ − 1
2

+

[
2
9
×
(

7
2

)2

− 2
3
× 7

2

]
+

1
10

≤ − 1
2

+
2
5

+
1

10
< 1,

it follows that

DTD− I2 + Gε =

[
1√
2

1√
2

− 1
2 + 1

3 g(x2) 1
2 − 1

3 g(x2)

][ 1√
2

− 1
2 + 1

3 g(x2)
1√
2

1
2 − 1

3 g(x2)

]

−
[

1 0
0 1

]
+
[

0 0
0 1

10

]

=

[
0 0

0 − 1
2 + 1

10 + 2
9 g2(x2)− 2

3 g(x2)

]

is negative semi-definite.

In accordance with Corollary 9.13, the zero solution of (9.8) is absolutely stable in
[0, 7

2 ].

9.3 Discrete Lurie Control Systems with Multiple Loops
Feedback

In this section, we will generalize the results obtained in Sect. 9.1 to discrete Lurie
control systems with multiple loops feedback [84]. First, we introduce the sufficient
and necessary conditions for the explicit systems in which feedback control variables
are no longer state variables.
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Consider the following more general discrete Lurie control systems with loops
feedback:

x(k + 1) = Ax(k)+ B f (σ(k)),

σ(k) = CTx(k)−D f (σ(k)),
(9.9)

where
A ∈ Rn×n, B, C ∈ Rn×m, D ∈ Rm×m, m ≤ n,

σ = (σ1, σ2, . . . , σm)T, σi(k) = σi(x(k)),

f = ( f1(σ1)), f2(σ2)), . . . , fm(σm)))T ∈C[Rm,Rm],

0 ≤ fi(σi)
σi

≤ βi < +∞, j = 1, 2, . . . , m.

Let set Ω = {x|CTx = 0}, Ωi{x|CTx = 0}, i = 1, 2, . . . , n, where Ci is the ith-column
vector of C (1 ≤ i ≤ m).

Similar to Sect. 9.1, we can define the absolute stability of the zero solution
of system (9.9) w.r.t. Ω , Ωi, σ = 0, σi = 0, and positive definite and radially
unbounded Lyapunov function w.r.t. Ω , Ωi.

Since in (9.9) the feedback control variable σ(k) is given implicitly, not in
explicit form of state variables, it is not convenient to use σ to measure the positivity
or negativity of the Lyapunov function w.r.t. the state variables.

To obtain general conclusion of absolute stability, we need the following basic
hypothesis: ‖σ + D f (σ)‖ is positive definite w.r.t. σ , i.e.,

‖σ + D f (σ)‖
{

> 0 when σ �= 0,

= 0 when σ = 0.

It is obvious that the hypothesis is true when D is a positive definite matrix. When
‖σ‖ �= ‖D f (σ)‖, if σ �= 0, the hypothesis is also true. In fact,

‖σ + D f (σ)‖ ≥ ‖σ‖−‖D f (σ)‖> 0, when ‖σ‖ > ‖D f (σ)‖, σ �= 0,

‖σ + D f (σ)‖ ≥ ‖D f (σ)‖−‖σ‖> 0, when ‖D f (σ)‖ > ‖σ‖, σ �= 0.

Lemma 9.16. When ‖σ + D f (σ)‖ is positive definite, the zero solution of (9.9) is
absolutely stable w.r.t. the set Ω (Ωi) if and only if the zero solution of (9.9) is
absolutely stable w.r.t. σ = 0 (σi = 0).

Proof. We only prove for the set Ω and σ = 0. The cases for the set Ωi and σi = 0
are similar and omitted.

Sufficiency. Suppose that the zero solution of (9.9) is absolutely stable w.r.t.
σ = 0. Then ∀ε > 0, there exists δ (ε) > 0 such that when |σ0| < δ , we have
|σ(t,t0;σ0)| < ε

2 , and |D f (σ(t,t0;σ0)| < ε
2 . Further, since f (σ) is continuous and

f (0) = 0, we obtain

‖CTx(t,t0;x0)‖ ≤ ‖σ(t,t0;σ0)‖+‖D f (σ(t,t0;σ0)‖ <
ε
2

+
ε
2

= ε.
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Then ∀x0 ∈ Rn, one has

lim
t→+∞

‖CTx(t,t0;x0)‖ ≤ lim
t→+∞

‖σ(t,t0;σ0)‖+ lim
t→+∞

‖D f (σ(t,t0;σ0)‖ = 0.

which indicates that the zero solution of (9.9) is absolute stable w.r.t. the set Ω .
Necessity. From the relation of the positive definite function and the R-type

function (see Lemmas 2.5 and 2.6) we know that there exists ϕ(‖σ‖) ∈ R such
that

ϕ(‖σ‖)≤ ‖σ + D f (σ)‖ = ‖CTx‖.
Thus,

‖σ(t,t0;σ0)‖ ≤ ϕ−1(‖CTx(t,t0;x0)‖).
Now ∀ε > 0, there exists δ (ε) > 0, for ‖x0‖ < δ (ε), we have

ϕ−1(‖CTx(t,t0;x0)‖) < ε.

Therefore, ∀x0 ∈ Rn,

lim
t→+∞

‖σ(t,t0;σ0)‖ ≤ lim
t→+∞

ϕ−1(‖CTx(t,t0;x0)‖) = 0.

This indicates that the zero solution of (9.9) is absolutely stable w.r.t. σ = 0. �

Theorem 9.17. The sufficient and necessary conditions for the zero solution of (9.9)
being absolutely stable are:

1. The spectral radius of the matrix G := A + Dθ CT is less than 1, i.e., ρ(G) < 1.
Here,

θ =

⎧⎨
⎩

Im when D = 0,

1
2‖D‖

(
Im +

D
2‖D‖

)−1
when D �= 0;

2. The zero solution of (9.9) is absolutely stable w.r.t. Ω .

Proof. Sufficiency. When D = 0, take f (σ) = CTx. When D �= 0, choose f (σ) =
σ

2‖D‖ . Obviously one can obtain

‖σ + D f (σ)‖

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= ‖σ‖ > 0, when σ �= 0, D = 0,

≥ ‖σ‖−
∥∥∥D σ

2‖D‖
∥∥∥≥ ‖σ‖−‖D‖ ‖σ‖

2‖D‖ =
1
2
‖σ‖ > 0,

when σ �= 0, D �= 0.

Thus, ‖σ + D f (σ)‖ is positive definite w.r.t. σ .
Rewrite (9.9) as

x(k + 1) = (A + Bθ CT)x(k)+ B f (σ(k))−Bθ σ(k),

σ(k) = CTx(k)−D f (σ(k)).
(9.10)
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Applying the constant variation formulas obtained in Corollaries 9.4 and 9.5 for
discrete Lurie control systems into (9.10) yields

x(k + 1) = Gk+1x0 +
k

∑
i=0

Gk−iB [ f (σ(i,0;σ0)−θ (i,0;σ0))] ,

where x0 = x(0), σ0 = σ(0). ∀ε > 0, since ρ(G) < 1, Gk+1 is bounded. Hence,
there exists M > 0 such that ‖Gk+1‖ ≤ M = const. Take δ1(ε) = ε

3M , then when
‖x0‖ < δ1, we obtain ‖Gk+1x0‖ ≤ M δ1 = ε

3 . Further, from Lemma 9.16 and the
condition (2) in Theorem 9.17 we have

CTx(k) → 0 ⇐⇒ σ(k) → 0 and f (σ(k)) → 0 as k → +∞.

Now, take enough large k > 0 such that∥∥∥∥∥
k

∑
i=[k/2]+1

Gk−iB [ f (σ(i,0;σ0)−θ (i,0;σ0))]

∥∥∥∥∥<
ε
3
.

Since the zero solution of (9.9) is absolutely stable w.r.t. Ω , it follows from
Lemma 9.16 that it is absolutely stable w.r.t. the set σ = 0. x(k,0;x0) depends con-
tinuously on x0, and f (σ) is continuous, thus there exists δ2(ε) > 0 such that for
any ‖x0‖ < δ2, we have∥∥∥∥∥

[k/2]

∑
i=0

G[k/2]−iB [ f (σ(i,0;σ0)−θ (i,0;σ0))]

∥∥∥∥∥<
ε
3
. (9.11)

By taking δ = min(δ1,δ2), it follows from (9.9) and (9.11) that when ‖x0‖ < δ ,

‖x(k + 1)‖ ≤
∥∥∥Gk+1x0

∥∥∥+

∥∥∥∥∥
[k/2]

∑
i=0

G[k/2]−iB [ f (σ(i,0;σ0)−θ (i,0;σ0))]

∥∥∥∥∥
+

∥∥∥∥∥
k

∑
i=[k/2]+1

Gk−iB [ f (σ(i,0;σ0)−θ (i,0;σ0))]

∥∥∥∥∥
<

ε
3

+
ε
3

+
ε
3

= ε. (9.12)

Equation (9.12) indicates that the zero solution of (9.9) is stable.
Since f (σ(k)) → 0 as k → +∞, there exists constant M1 > 0 such that

‖B f (σ(i, i;σ0)−θ σ(i,0;σ0))‖ ≤ M1.

From ρ(G) < 1, there exists constant M2 > 0 such that

k

∑
i=[ k

2 ]+ 1
‖Gk−1−i‖‖B‖ ≤ M2.
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Finally, ∀x0 ∈ Rn, we obtain

0 ≤ lim
k→+∞

‖x(k+1)‖ ≤ lim
k→+∞

‖Gk+1x0‖

+ lim
k→+∞

k

∑
i=[ k

2 ]+1
‖Gk−i‖‖B‖‖ f (σ(i, i;σ0))−θ (σ(i,0;σ0))‖

+ lim
k→+∞

[ k
2 ]

∑
i=0

‖Gk−i‖ ‖B‖ ‖ f (σ(i, i;σ0))−θ (σ(i,0;σ0))‖

= 0.

Therefore, the zero solution of (9.9) is absolutely stable.
Necessity. One can apply Lemma 9.16 to prove the necessity. The detail is

omitted here. �

Remark 9.18. The condition (1) in Theorem 9.17 is a constructive algebraic condi-
tion, which is easy to verify in applications, while the condition (2) of Theorem 9.17
is difficult to verify. Thus, we pay particular attention to the absolute stability of the
zero solution of (9.9) w.r.t. to the set Ω .

Theorem 9.19. If there exists a radially unbounded, positive definite Lyapunov func-
tion w.r.t. the set Ω such that ∆V |(9.9) is negative definite w.r.t. Ω , then the zero
solution of (9.9) is absolutely stable w.r.t. the set Ω .

Proof. The condition of the theorem implies that there exists ϕ1(‖CTx‖) ∈ KR,
ϕ2(‖CTx‖) ∈ KR and ψ(‖CTx‖) ∈ K such that

ϕ1(‖CTx‖) ≤V (x) ≤ ϕ2(‖CTx‖) (9.13)

and
∆V |(9.9) = V (x(k + 1))−V(x(k)) ≤−ψ(‖CTx(k)‖). (9.14)

Now ∀ε > 0, take δ = ϕ−1
2 (ϕ1(ε)). Then when ‖CTx0‖ < δ , we have

ϕ1(‖CTx(k)‖) ≤V (x(k)) ≤V (x(0)) ≤ ϕ2(‖CTx0‖) ≤ ϕ2(δ ) = ϕ1(ε),

i.e., ‖CTx(k)‖ ≤ ε , implying that the zero solution of (9.9) is stable.
It follows from (9.14) that:

V (x(k + 1))−V(x(0))

= V (x(k+1))−V(x(k))+V (x(k))−V(x(k−1))+ · · ·−V(x(0))

≤−
k

∑
j=1

ψ(‖CTx( j)‖), (9.15)

which, in turn, yields
∞

∑
j=1

ψ(‖CTx( j)‖) ≤ V (x(0)) and thus ψ(‖CTx( j)‖) → 0 as

j → +∞. This implies that
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‖CTx( j)‖ → 0 as j → +∞. (9.16)

Equation (9.16) clearly shows that the zero solution of (9.9) is absolutely stable w.r.t.
the set Ω . �

Corollary 9.20. If D = DT, and there exists constant ξ > 0 such that the following
matrix: ⎡

⎢⎣ ATCCTA−CCT ATCCTB +
1
2

ξ C

BTCCTB +
1
2

ξ CT BTCCTB− ξ D

⎤
⎥⎦

is negative semi-definite, then the zero solution of (9.9) is absolutely stably w.r.t. the
set Ω .

Proof. Choose the radially unbounded, positive definite Lyapunov function w.r.t. the
set Ω as

V (x) = (CTx)T(CTx) = xTCCTx.

Then we have

∆V(x(k))|(9.9) = xT(k + 1)CCTx(k + 1)− xT(k)CCTx(k)

=
[
xT(k)(ATC + f T(σ(k))BTC

][
CTAx(k)+CTB f (σ(k))

]
− xT(k)CCTx(k)+ ξ f T(σ(k))CTx(k)

− ξ f T(σ(k))σ(x(k))− ξ f T(σ(k))D f (σ(k))

=
(

x(k)
f (σ(k))

)T

⎡
⎢⎣ ATCCTA−CCT ATCCTB+

1
2

ξC

BTCCTB+
1
2

ξCT BTCCTB−ξ D

⎤
⎥⎦( x(k)

f (σ(k))

)

− ξ f (σ(k))σ(k)

< 0 when σ �= 0. (9.17)

Thus, the zero solution of (9.9) is absolutely stable w.r.t. the set Ω . �

Corollary 9.21. If D = DT, and there exist ξ > 0 and a symmetric matrix P
satisfying xTP x ≥ (CTx)2 such that the matrix⎡

⎢⎣ ATPA−P ATPB +
1
2

ξ C

BTPA +
1
2

ξ CT BTC B− ξ D

⎤
⎥⎦

is negative semi-definite, then the zero solution of (9.9) is absolutely stably w.r.t. the
set Ω .
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Proof. Construct the radially unbounded, positive definite Lyapunov function w.r.t.
Ω as V (x) = xTPx. Then we obtain

∆V (x(k))|(9.9) = xT(k + 1)PAx(k + 1)− xT(k)Px(k)

= xT(k)ATPx(k)+ f T(σ(k))BTPAx(k)

+ xT(k)ATPB f (σ(k))+ f T(σ(k))BTPB f (σ(k))

− xT(k)Px(k)+ ξ f T(σ(k))CTx(k)

− ξ f T(σ(k))σ(x(k))− ξ f T(σ(k))D f (σ(k))

=
(

x(k)
f (σ(k))

)T

⎡
⎢⎣ ATPA−P ATPB +

1
2

ξ C

BTPA +
1
2

ξ CT BTPA− ξ D

⎤
⎥⎦( x(k)

f (σ(k))

)

− ξ f (σ(k))σ(k),

≤ −ξ f (σ(k))σ(k) < 0 when σ �= 0. (9.18)

Thus, ∆V (x(k))|(9.9) is negative definite w.r.t. Ω . Then it follows from Lemma 9.16
that the zero solution of (9.9) is absolutely stable w.r.t. the set Ω . �

9.4 Sufficient Conditions for Discrete Control Systems
with Loops Feedback

In the following, suppose m = n. Let CTx = σ +D f (σ) = σ +DJ σ = (In +DJ)σ ,
where J = ( ∂ fi

∂σ j
)n×n is the Jacobian matrix of f , but it is not a constant matrix.

Theorem 9.22. Suppose that one of the following conditions is satisfied:

1. CT is a full-rank matrix, satisfying

‖CTA(CT)−1‖+‖CTB‖ ‖J‖ ‖(In + DJ)−1‖ = h1 < 1

or
2. CTA = ACT is a full-rank matrix, satisfying

‖A‖+ ‖CTB‖ ‖J‖+‖(In + DJ)−1‖ = h2 < 1.

Then the zero solution of (9.9) is absolutely stable.
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Proof. If the condition (1) holds, we have

‖CTx(k + 1)‖ ≤ ‖CTA(CT)−1CTx(k)‖+‖CTB‖ ‖J‖ ‖σ(k)‖
≤ ‖CTA(CT)−1‖ ‖CTx(k)‖+ ‖CTB‖ ‖J‖ ‖σ(k)‖
≤ ‖CTA(CT)−1‖ ‖CTx(k)‖+‖CTB‖‖J‖‖(Im+DJ)−1‖ ‖CTx(k)‖
=
[‖CTA(CT)−1‖+‖CTB‖ ‖ ‖J‖ ‖(Im + DJ)−1‖]‖CTx(k)‖

= h1 ‖CTx(k)‖ ≤ h2
1‖CTx(k−1)‖· · · ≤ hk

1‖CTx(0)‖
→ 0 as k → +∞. (9.19)

If the condition (2) is satisfied, we obtain

‖CTx(k + 1)‖ ≤ ‖CTPAx(k)‖+ ‖CTB‖ ‖J‖ ‖(Im+DJ)−1‖ ‖CTx(k)‖
≤ ‖A‖ ‖CTx(k)‖+ ‖CTB‖ ‖J‖ ‖(Im + DJ)−1‖ ‖CTx(k)‖

=
(
‖A‖+‖CTB‖ ‖ ‖J‖ ‖(Im + DJ)−1‖

)
‖CTx(k)‖

= h2‖CTx(k)‖ ≤ h2
2 ‖CTx(k−1)‖· · · ≤ hk

2‖CTx(0)‖
→ 0 as k → +∞. (9.20)

Therefore, the zero solution of (9.9) is absolutely stable w.r.t. the set Ω . �

In the following, we rewrite system (9.9) into a more detailed form:

x(k + 1) = Ax(k)+
m

∑
j=1

b j f j(σ j(k)),

σ j(k) = CT
j x(k)−d j f j(σ j(k)), j = 1, 2, . . . , m, (9.21)

where x∈Rn, A∈Rn×n, fi ∈F[0,k], CT
j = (C1 j, C2 j, . . . , Cn j), bT

j = (b1 j, b2 j, . . . , bn j),
j = 1, 2, . . . , m, m ≤ n; Ci j, bi j are column vectors, and C1, . . . , Cm are linearly
independent.

We assume that |σ j + d j f j(σ)| is positive definite for j = 1, 2, . . . , m. Without
loss of generality, suppose

det

⎡
⎢⎣ c11 · · · c1m

... · · · ...
cm1 · · · cmm

⎤
⎥⎦ �= 0.

Introducing the following linear nonsingular transformation:

y = Gx = (gi j)n×nx where gi j =

⎧⎪⎨
⎪⎩

ci j 1 ≤ i ≤ m, 1 ≤ j ≤ n,

1 i = j = m+ 1, m+ 2, . . . , n,

0 otherwise

(9.22)
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into system (9.21) yields

y(k + 1) = Ãy(k)+
m

∑
j=1

b̃ j f j(δ j(k)),

δ j(k) = y j(k)− d j f j(δ j(k)).
(9.23)

Since G is non-singular, the absolute stabilities of the zero solutions of systems
(9.21) and (9.23) are equivalent. More precisely, the zero solution of system (9.21)
is absolutely stable w.r.t. the set Ωi = {x|CT

i x = 0} (i = 1, 2, . . . , m) is equivalent to
the absolute stability of the zero solution of system (9.23) w.r.t. the partial variables
η1, η2, . . . , ηm; and also equivalent to the absolute stability of the zero solution of
system (9.23) w.r.t. δ j = 0 ( j = 1, 2, . . . , m). Thus, similar to Theorems 9.19 and
9.22 we have the following results.

Theorem 9.23. The zero solution of system (9.23) is absolutely stable if and only if
the following conditions are satisfied:

1. B = Ã + ∑m
i=1 θi b̃i cT

i is a Schur matrix, i.e., the spectral radius of B is less then
1, ρ(B) < 1, where

θi =

⎧⎪⎪⎨
⎪⎪⎩

1
2
, when di = 0 i = 1, 2, . . . , m,

1
3di

when di �= 0 i = 1, 2, . . . , m;

2. The zero solution of system (9.23) is absolutely stable w.r.t. the partial variables
η1, η2, . . . ηm.

Proof. When d j = 0, take f j(σ j) = 1
2 δ j; while if d j �= 0, choose f j(σ j) = 1

2δ j
δ j.

Then from δ j = η j −d j f j(σ j), we have δ j = 2
3 η j, and then simple calculations lead

to Qi given above.
Rewrite system (9.23) as

y(k + 1) = Ãy(k)+
m

∑
j=1

θ j b̃ j cT
j (y(k))+

m

∑
j=1

b̃ j f j(δ j(k))−
m

∑
j=1

θ j b̃ j cT
j (y(k)),

δ j(k) = y j(k)−d j f j(δ j(k)).

The remaining of the proof can follow the proof of Theorem 9.22. �

Next, we discuss the case di = 0, i = 1, 2, . . . , m. To obtain some applicable
criteria, we further rewrite (9.23) as

yi(k + 1) =
n

∑
j=1

ãi j y j(k)+
m

∑
j=1

b̃i j f j(y j(k)),

=
n

∑
j=1

ãi j y j(k)+
m

∑
j=1

b̃i j g j(y j(k))y j(k), (9.24)
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where
f j(y j)

y j
=

{
y j(y j) when y j �= 0,

0 when y j = 0.

Theorem 9.24. If system (9.24) satisfies the following conditions:

1. The condition (1) in Theorem 9.23 holds.
2. There exist constants ci > 0, i = 1, 2, . . . , n such that

max
1≤ j≤m

n

∑
i=1

[
ci

c j

∣∣∣∣ãi j +
cib̃i j

c j
g j(η j)

∣∣∣∣
]
≤ ξ < 1 and max

m+1≤ j≤n

n

∑
i=1

[
ci

c j
|ãi j|
]
≤ 1,

where ξ is a constant.

Then the zero solution of system (9.24) is absolutely stable.

Proof. Construct the radially unbounded, positive definite Lyapunov function

V (y) =
n

∑
i=1

ci |yi|.

Then we have

∆(y(k))|(9.24) = V (y(k + 1))−V(y(k))

=
n

∑
i=1

ci

[∣∣∣∣∣
n

∑
j=1

ãi jy j(k)+
m

∑
j=1

b̃i j(y j(k))y j(k)

∣∣∣∣∣
]
−

n

∑
j=1

c j|y j(k)|

≤
m

∑
j=1

∣∣∣∣∣
n

∑
i=1

ci
(|ãi j|+ |b̃i jg j(y j(k))|

)∣∣∣∣∣ |y j(k)|+
n

∑
j=m+1

n

∑
i=1

ci |āi j| |y j(k)|

−
n

∑
j=1

c j |yi j(k)|

=
m

∑
j=1

[
n

∑
i=1

ci

c j

(|ãi j|+ |b̃i jg j(y j(k))|
)]

c j|y j(k)|

+
n

∑
j=m+1

n

∑
i=1

ci|ãi j

c j
|c j| |(y j(k))|−

n

∑
j=1

c j |yi j(k)|

=
m

∑
j=1

[
n

∑
i=1

ci

c j

(
|ãi j|+ |b̃i jg j(y j(k))|

)
−1

]
c j|y j(k)|

+
n

∑
j=m+1

[
n

∑
i=1

ci|ãi j

c j
−1

]
c j |y j(k)|

≤
m

∑
j=1

[
n

∑
i=1

ci

c j

(
|ãi j|+ |b̃i jg j(y j(k))|

)
−1

]
c j|y j(k)|

< 0, when
m

∑
j=1

|y j| �= 0.
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Therefore, the zero solution of system (9.24) is absolutely stable w.r.t. the partial
variables y1, y2, . . . , ym. Then the conclusion of this theorem follows the condition
(1) of this theorem and Theorem 9.23. �

In particular, in Theorem 9.24 take ci = 1, i = 1, 2 . . . , n, the condition (2) of
Theorem 9.24 becomes a form which is easier to verify:

max
1≤ j≤m

n

∑
i=1

[|ãi j|+ |b̃i j| |g j(yi j)|
]≤ ξ < 1 and max

m+1≤ j≤n

n

∑
i=1

|ãi j| ≤ 1.

In the following, let U = (ui j)n×n, Ũ =
[

Im 0
0 0

]
, where

ui j =

{
|ãi j|+ |b̃i j| |g j(yi j)|, i = 1, 2, . . . , n, j = 1, 2, . . . , m,

|ãi j|, i = 1, 2, . . . , n, j = m+ 1, m+ 2, . . . , n.

Theorem 9.25. If the following conditions are satisfied:

1. The condition (1) in Theorem 9.23 holds.
2. There exist n×n positive definite matrix W = W T and constant ε > 0 such that

UTW U −W + ε Ũ is negative semi-definite.

Then the zero solution of system (9.24) is absolutely stable.

Proof. Choose the positive definite radially unbounded Lyapunov function:

V (y) = yTW y.

Thus, we obtain

∆V (y(k))|(9.24) = V (y(k + 1))−V(y(k))

= yT(k + 1)W y(k + 1)− yT(k)W y(k)

= (U y(k))TW (Uy(k))− yT(k)W y(k)

= yT(k)UTW U y(k)− yT(k)W y(k)

= yT(k)(UTW U −W + ε Ũ)y(k)− yT(k)W y(k)

≤ −ε
m

∑
i=1

y2
i (k) < 0 when

m

∑
i=1

y2
i �= 0.

The above result shows that the zero solution of system (9.24) is absolutely stable
w.r.t. the partial variables y1, y2, . . . , ym. Then it follows from the condition (1) of
this theorem and the proof of Theorem 9.23 that the conclusion of this theorem is
true. �

In particular, if take W = In, then the condition (2) of Theorem 9.23 becomes
simpler and easier to verify.
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Time-Delayed and Neutral Lurie Control
Systems

In modeling natural and social phenomena, the dynamic behavior of many systems
depends upon not only the current state, but also the system’s history, which is called
time-delayed phenomenon. Mathematical models arising from the areas of engineer-
ing, physics, mechanics, control system, chemical reaction, biological, and medical
systems always involve time delay. In particular, time delay often appears in control
systems. Any system with a feedback control involves unavoidable time delay since
time is needed for the system to appropriately react to the input. Therefore, study-
ing the absolute stability of time-delayed Lurie systems is naturally important and
necessary [51, 66].

In Chap. 3, we have obtained absolute stability conditions for the direct, indirect,
and general controls of Lurie systems without time delay. However, not much atten-
tion has been paid to time-delayed Lurie systems (i.e., the Lurie systems described
by differential difference equations (DDE)). Although many researchers are, with the
aid of the Matlab software LMI, still investigating the stability of Lurie systems with
or without time delay, the conditions they obtained are only sufficient.

In this chapter, based on the results we obtained in Chap. 3, we will continue
to consider the absolute stability of Lurie systems with time delay. Some materials
presented in this chapter are based on the results of [94] (Sects. 10.1 and 10.2), [160,
161] (Sect. 10.3), and Nain [110–112] (Sects. 10.4 and 10.5).

10.1 Lurie Systems with Constant Time Delays

In this section, we consider Lurie system with constant delays. We first derive suf-
ficient and necessary conditions for absolute stability of Lurie systems, and then
present some simple and easy-applicable algebraic sufficient conditions for such
systems.

10.1.1 Sufficient and Necessary Conditions for Absolute Stability
Consider the following Lurie system with constant time delays [94]:

dz
dt

= Ã z(t)+ B̃z(t − τ1)+ h̃ f (σ(t − τ2)), h̃ = (h̃1, h̃2, . . . , h̃n)T,

σ = cT z =
n

∑
i=1

ci zi, (10.1)

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, Second Edition.
c© Springer Science + Business Media B.V. 2008
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where c, h̃ ∈ Rn are constant vectors, z ∈ Rn is the state vector, and Ã, B̃ ∈ Rn×n

are real matrices; the time delays τ1 > 0 and τ2 > 0 are constants; the function f is
defined as

f (·) ∈ F∞ :=
{

f | f (0) = 0, σ f (σ) > 0, σ �= 0, f ∈C[(−∞, +∞),R1]
}

or

f (·) ∈ F[0,k] :=
{

f | f (0) = 0, 0 < σ f (σ) ≤ kσ2, σ �= 0, f ∈C[(−∞,+∞),R1]
}
,

where k is a positive real number. Let τ = max{τ1, τ2}, then C [[−τ, 0], Rn] repre-
sents a Banach space with uniformly continuous topological structure.

Definition 10.1. If ∀ f (·) ∈ F∞ (or ∀ f (·) ∈ F[0,k] ), the zero solution of system (10.1)
is globally, asymptotically stable for any values of τ1, τ2 ≥ 0, then the zero solution
of system (10.1) is said to be time-delay independent absolutely stable (or time-delay
independent, absolutely stable in the Hurwitz angle [0, k]).

It is easy to show that the necessary condition for system (10.1) to be time-delay
independent absolutely stable is cTh̃ ≤ 0; and the necessary condition for system
(10.1) to be time-delay independent absolutely stable in the Hurwitz angle [0, k] is
that ∀µ ∈ [0, k], the matrix Ã+ B̃+ µ h̃ cT is a Hurwitz matrix.

In fact, let

f (σ(t − τ2)) = µ σ(t − τ2) =
n

∑
i=1

µ ci zi(t − τ2).

Then system (10.1) becomes

dz
dt

= Ã z(t)+ B̃z(t − τ1)+ µ h̃cTz(σ(t − τ2)). (10.2)

In particular, when τ1 = τ2 = 0, for an arbitrary µ ∈ [0, +∞), the matrix Ã+B̃+µ h̃ cT

is a Hurwitz matrix. Thus we have

tr(Ã+ B̃+ µ h̃cT) = trÃ+ trB̃+ µ tr(h̃ cT) = trÃ+ trB̃+ µcTh̃ < 0.

The above inequality holds for µ 
 1, implying that cTh̃ ≤ 0.
Next, take µ ∈ [0,k], f (σ(t − τ2)) = µ σ(t − τ2), τ1 = τ2 = 0. Then it is easy to

see that Ã+ B̃+ µ h̃ cT must be a Hurwitz matrix.
In the following, we use two nonsingular linear transformations to change system

(10.1) into a nonlinear system with separable variables. There are two cases.

1. When cTh̃ ≤ 0. Without loss of generality, suppose cn �= 0. Let

x = Ω z, (10.3)
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where

Ω =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0
0 1 · · · 0 0
...

... · · · ...
...

0 0 0 1 0
c1 c2 · · · cn−1 cn

⎤
⎥⎥⎥⎥⎥⎦ .

Then system (10.1) becomes

dx
dt

= Ω ÃΩ−1x(t)+ Ω B̃Ω−1x(t − τ1)+ Ω h̃ f (xn(t − τ2))

:= Ax(t)+ Bx(t − τ1)+ h f (xn(t − τ2)), (10.4)

where A = Ω ÃΩ−1, B = Ω B̃Ω−1, and h = Ω h̃. Since (10.3) is a nonsingular
linear transformation, the time-delay independent absolute stabilities of the zero
solutions of systems (10.1) and (10.4) are equivalent.

2. When cTh̃ < 0. Without loss of generality, assume h̃n cn �= 0. Let

y = Gz,

where

G =

⎡
⎢⎢⎢⎢⎢⎣

h̃n 0 · · · 0 − h̃1
0 h̃n · · · 0 − h̃2
...

... · · · ...
...

0 0 0 h̃n − h̃n−1
c1 c2 · · · cn−1 cn

⎤
⎥⎥⎥⎥⎥⎦ .

Then system (10.1) can be rewritten as

dy
dt

= GÃG−1y(t)+ GB̃G−1y(t − τ1)+ Gh̃ f (yn(t − τ2))

:= Py(t)+ Qy(t− τ1)+ b f (yn(t − τ2)), (10.5)

where P = GÃG−1, Q = GB̃G−1, and b = Gh̃ = (

n−1︷ ︸︸ ︷
0, 0, . . . , 0, cTh̃)T. Similarly,

due to the nonsingularity of G, the time-delay independent absolute stabilities of
the zero solutions of systems (10.1) and (10.5) are equivalent.

Definition 10.2. The zero solution of system (10.4) is said to be time-delay indepen-
dent absolutely stable (or time-delay independent absolutely stable in the Hurwitz
angle [0,k]) w.r.t. the partial variable xn of the system, if ∀ f (·) ∈ F∞ (or ∀ f (·) ∈
F[0,k]), the zero solution of system (10.4) is globally asymptotically time-delay inde-
pendent stable (or globally asymptotically time-delay independent stable in the
Hurwitz angle [0, k]) w.r.t. the partial variable xn.

Similarly, we can define the time-delay independent stability for the zero solution
of system (10.5) w.r.t. the partial variable yn.
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Theorem 10.3. The sufficient and necessary conditions for the zero solution of
system (10.4) to be time-delay independent stable are:

1. the matrix A+B+(On×(n−1), hθ ) is a Hurwitz matrix, where θ = 0 or θ = 1, and

(On×(n−1), hθ ) =

⎡
⎢⎣0 · · · 0 h1θ

...
...

...
...

0 · · · 0 hnθ

⎤
⎥⎦

n×n

.

2. det
(
iσ −A−Be−iστ1 − (On×(n−1), hθ )e−iστ2

) �= 0 ∀σ ∈ R, ∀τ1, τ2 ≥ 0.
3. The zero solution of system (10.4) is time-delay independent absolutely stable

w.r.t. the partial variable xn.

Proof. Necessity. Suppose that the zero solution of system (10.4) is time-delay inde-
pendent, absolutely stable. When A+B is a Hurwitz matrix, we can choose θ = 0 and
thus A + B +(On×(n−1), hθ ) = A + B is a Hurwitz matrix. When A + B is not a Hur-
witz matrix, we take f (xn) = xn. Then system (10.4) becomes a linear time-delayed
system:

dx
dt

= Ax(t)+ Bx(t − τ1)+ hxn(t − τ2). (10.6)

From the sufficient and necessary conditions of global time-delay independent abso-
lute stability for constant time-delayed systems with constant coefficients [40], we
know that all the eigenvalues of the characteristic equation of system (10.6), given by

det
(

λ I −A−Be−iλ τ1 − (On×(n−1), hθ )e−iλ τ2
)

= 0, (10.7)

must have negative real parts. This is equivalent to the conditions (1) and (2) in The-
orem 10.3 (θ = 1) [40]. The condition (3) of Theorem 10.3 is obvious. The necessity
is proved.

Sufficiency. Rewrite system (10.4) as

dx
dt

= Ax(t)+ Bx(t − τ1)+ hθ xn(t − τ2)+ h f (xn(t − τ2)−θ hxn(t − τ2)). (10.8)

Let x∗(t) = x(t0,ϕ)(t) be the solution of the following system:

dx
dt

= Ax(t)+ Bx(t − τ1)+ hθ xn(t − τ2),

x(t) = ϕ(t) t0 − τ ≤ t ≤ t0, τ = max[τ1, τ2]. (10.9)

Then from the method of constant variation, we know that the solution of (10.8)
passing through the initial point (t0,ϕ) can be expressed as

x(t) = x∗(t)+
∫ t

t0
U(t,s) [h f (xn(s− τ2)−θ hxn(t − τ2)) ]ds, (10.10)
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where U(t,s) is the fundamental matrix solution, satisfying

∂U(t,s)
∂ t

= AU(t,s)+ BU(t − τ1,s)+
(
On×(n−1), hθ

)
U(t − τ2,s),

U(t,s) =

{
0 when τ − s ≤ t ≤ s,

I when t = s.

From the conditions given in Theorem 10.3, it is known that there exist constants
M ≥ 1, N ≥ 1, and α > 0 such that

‖x∗(t)(t0,ϕ)(t)‖ ≤ M‖ϕ‖e−α(t−t0) when t ≥ t0, (10.11)

‖U(t,s)‖ ≤ N e−α(t−s) when t ≥ s. (10.12)

Therefore, we have

‖x(t)‖ ≤ M‖ϕ‖e−α(t−t0) + N
∫ t

t0
e−α(t−s) [‖h f (xn(t − τ1)‖+‖θ hxn(s− τ2)‖]ds

(10.13)
for t ≥ t0. ∀ε > 0, since xn(t)→ 0 as t →+∞ and f (·) is a continuous function of x0,
there exists δ1(ε) > 0 such that when ‖ϕ‖ < δ1(ε), the following inequalities hold:

N
∫ t1

t0 e−α(t−s) [‖h f (xn(t − τ1)‖+‖θ hxn(s− τ2)‖]ds <
ε
3

when t0 < t1 < t,

N
∫ t

t1 e−α(t−s) [‖h f (xn(t − τ1)‖+‖θ hxn(s− τ2)‖]ds <
ε
3

when t > t1.
(10.14)

Further let δ2 = ε
3M , and M‖ϕ‖e−α(t−t0) ≤ ε

3 when ‖ϕ‖ ≤ δ2. Then define

δ (ε) = min(δ1(ε),δ2(ε)) . (10.15)

Now combining (10.13), (10.14) and (10.15) yields ‖x(t)‖ < ε when t ≥ t0 and
‖ϕ‖ < δ (ε). Hence, the zero solution of system (10.8) is stable in the sense of
Lyapunov.

Further, it can be shown by applying the L’Hospital rule to (10.13) that ∀x0 ∈ Rn,

lim
t→+∞

‖x(t)‖ ≤ lim
t→+∞

M‖ϕ‖e−α(t−t0)

+ lim
t→+∞

1
eα t

∫ t

t0
eα s [‖h f (xn(s− τ1))‖+‖θ hxn(s− τ2)‖]dτ

= 0 +
1
α

[
lim

t→+∞
‖h f (xn(t − τ1))‖+‖θ hxn(t − τ2)‖

]
= 0,

which implies that the zero solution of system (10.8) is globally asymptotically sta-
ble. Due to the arbitrary of f (·) ∈ F , the zero solution of system (10.4) is time-delay
independent absolutely stable. The sufficiency is also proved. �
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Theorem 10.4. The sufficient and necessary conditions for system (10.4) to be time-
delay independent absolutely stable are:

1. There exists non-negative vector η = (η1, . . . , ηn)T such that the matrix A + B +
(On×(n−1), η) is a Hurwitz matrix.

2. det
(
iσ −A−Be−iστ1 − (On×(n−1), η)e−iστ2

) �= 0 ∀σ ∈ R.
3. The zero solution of system (10.4) is time-delay independent absolutely stable

w.r.t. the partial variable xn.

The proof of Theorem 10.4 is similar to that of Theorem 10.3, and thus omitted.

Remark 10.5. The existence of the vector η = (η1, . . . , ηn)T is obvious. For exam-
ple, η = θ h is defined in condition (1) of Theorem 10.3, which is a constructive
condition, while condition (1) in Theorem 10.4 is an existence condition, which is
certainly not as good as condition (1) of Theorem 10.3. The condition (1) of Theo-
rem 10.3 is easy to verify. However, if an appropriate η is chosen, it may simplify
the validation of other conditions in the theorem.

Similar to Theorems 10.3 and 10.4, we have the following theorems.

Theorem 10.6. The sufficient and necessary conditions for system (10.5) to be time-
delay independent absolutely stable are:

1. the matrix P+ Q+(On×(n−1), θ b) is a Hurwitz matrix, where

(On×(n−1), θ b) =

⎡
⎢⎣ 0 · · · 0 θ b1

...
...

...
...

0 · · · 0 θ bn

⎤
⎥⎦

n×n

:= (θi j)n×n, θ = 0 or θ = 1.

2. det
(
iσ −P−Qe−iστ1 − (On×(n−1), θ b)e−iστ2

) �= 0 ∀σ ∈ R.
3. The zero solution of system (10.5) is time-delay independent, absolutely stable

w.r.t. the partial variable yn.

Theorem 10.7. The sufficient and necessary conditions for system (10.5) to be time-
delay independent absolutely stable are:

1. There exists non-negative vector η = (η1, · · · , ηn)T such that the matrix P+ Q+
(On×(n−1), η) is a Hurwitz matrix

2. det
(
iσ −P−Qe−iστ1 − (On×(n−1), η)e−iστ2

) �= 0 ∀σ ∈ R;
3. The zero solution of system (10.5) is time-delay independent absolutely stable

w.r.t. the partial variable yn.

10.1.2 Algebraic Sufficient Conditions

The sufficient and necessary conditions obtained above are sometimes not easy
to verify in practice. Therefore, it is necessary to obtain some simple and practi-
cally useful, algebraic criteria. Again, we consider time-delay independent absolute
stability of constant time-delayed Lurie control systems in the Hurwitz angle [0,k].
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Thus, in system (10.4), assume that

f (·) ∈ F[0,k] :=
{

f | f (0) = 0, 0 ≤ xn f (xn) ≤ k x2
n
}

and f is continuous. Then we have the following theorem.

Theorem 10.8. If system (10.4) satisfies the following conditions:

1. aii < 0, i = 1,2, . . . ,n.
2. G =

[
−(−1)δi j |ai j|− |bi j|−θi j|hi|k

]
n×n

is an M matrix, where

θi j =

{
1 when i = 1, . . . ,n, j = n,

0 when i = 1, . . . ,n, j = 1, 2, . . . , n−1,
δi j =

{
1, when i = j,

0, when i �= j.

Then the zero solution of system (10.4) is time-delay independent absolute stable in
the Hurwitz angle [0,k].

Proof. Since G is an M matrix, it is known from the property of M matrix that
∀β = (β1, . . . , βn)T > 0 (i.e., βi > 0, i = 1, 2, . . . , n), there exist constants ci > 0, i =
1, 2, . . . , n such that c = (GT)−1β , c = (c1, . . . , cn)T, i.e.,

−c j a j j −
(

n

∑
i=1,i�= j

|ai j|ci +
n

∑
i=1

|bi j|ci +
n

∑
i=1

ci θi j ‖hi‖k

)
= β j, j = 1, 2, . . . , n.

Consider the radially unbounded, positive definite Lyapunov functional:

V (t) =
n

∑
i=1

ci

[
|xi(t)|+

n

∑
j=1

|bi j|
∫ t

t−τ1

|x j(s)|ds+
n

∑
i=1

θi j|hi|k
∫ t

t−τ2

|xi(s)|ds

]
.

Suppose that the initial condition for the solution of system (10.4) is given by x(t) =
ϕ(t), −τ ≤ t ≤ 0. Then we have

V (t0) ≤
n

∑
i=1

ci

[
|xi(t0)|+

n

∑
j=1

|bi j|‖ϕ‖τ +
n

∑
j=1

θi j|hi|k‖ϕ‖τ2

]
:= M < +∞

and V (t) ≥
n

∑
i=1

ci |xi(t)|. Thus, along the trajectory of system (10.4) differentiating V

w.r.t. time yields

D+V (t)
∣∣
(10.4) ≤

n

∑
i=1

ci

[
dxi

dt
sign(xi)+

n

∑
j=1

|bi j| |x j(t)|−
n

∑
j=1

|bi j| |x j(t − τ1)|

+
n

∑
j=1

θi j|hi| |x j(t)|−
n

∑
j=1

θi j|h j| |x j(t − τ2)|
]
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≤
n

∑
i=1

ci

{[
n

∑
j=1

ai j x j(t)+
n

∑
j=1

bi j x j(t − τ1)

+
n

∑
j=1

θi j hi f (xn(t − τ2))

]
sign(xi)

+
n

∑
j=1

|bi j| |x j(t)|−
n

∑
j=1

|bi j| |x j(t − τ1)|

+
n

∑
j=1

θi j|hi| |x j(t)|−
n

∑
j=1

θi j|hi| |x j(t − τ2)|
}

≤
n

∑
j=1

[
c j a j j +

n

∑
i=1,i�= j

ci |ai j|+
n

∑
i=1

ci |bi j|+
n

∑
i=1

θi j|hi|k
]
|x j(t)|

≤ −
n

∑
j=1

β j |x j(t)|. (10.16)

Hence,

0 ≤V (t) ≤V (t0)−
∫ t

t0

n

∑
j=1

β j x j(τ)|dτ ≤V (t0). (10.17)

Equation (10.17) clearly indicates that the zero solution of system (10.4) is time-
delay independent stable in the Hurwitz angle [0,k].

Next, we show that the zero solution of system (10.4) is time-delay independent
attractive in the Hurwitz angle [0,k].

Because

0 ≤ min
1≤i≤n

ci ∑n
i=1 |xi(t)| ≤V (t) ≤V (t0) < +∞,

∑n
i=1 |xi(t)| is bounded, and thus ∑n

i=1 | dxi
dt | is bounded in [t0,+∞). This implies

that ∑n
i=1 |xi(t)| is uniformly continuous in [t0,+∞). On the other hand, it fol-

lows from (10.17) that
∫ t

t0 ∑n
j=1 β j|x j(t)|dt ≤ V (t0), which, in turn, results in

∑n
i=1 |xi(t)| ∈ L1[0,+∞). Therefore, it follows from calculus that ∀ϕ ∈C[[−τ,0],Rn],

limt→+∞ ∑n
i=1 |xi(t)| = 0, which implies that the zero solution of system (10.4)

is time-delay independent attractive in the Hurwitz angle [0,k]. The proof of
Theorem 10.8 is complete. �

Corollary 10.9. If one of the following conditions is satisfied:

1. −a j j >
n

∑
i=1,i�= j

|ai j|+
n

∑
i=1

|bi j|+
n

∑
i=1

θi j |hi|k, j = 1, 2, . . . , n.

2. −aii >
n

∑
j=1, j �=i

|ai j|+
n

∑
j=1

|bi j|+
n

∑
j=1

θi j |hi|k, i = 1, 2, . . . , n.

3. −aii >
1
2

n

∑
j=1, j �=i

(|ai j|+ |a ji|)+
1
2

n

∑
j=1

(|bi j|+ |b ji|)+
1
2

n

∑
j=1

(θi j|hi|k + θ ji|h j|k).
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Then the zero solution of system (10.4) is time-delay independent attractive in the
Hurwitz angle [0,k].

This is simply because that any of the above conditions implies that aii < 0 (i =
1, 2, . . . , n) and G is an M matrix.

Similar to Theorem 10.8 and Corollary 10.9, we have the following theorem and
corollary.

Theorem 10.10. If system (10.5) satisfies the following conditions:

1. pii < 0, i = 1, 2, . . . , n.
2. G̃ =

[
−(−1)δi j |pi j|− |qi j|−θi j|bi|k

]
n×n

is an M matrix, where θi j and δi j are

defined in Theorem 10.3.

Then the zero solution of system (10.4) is time-delay independent absolutely stable
in the Hurwitz angle [0,k].

Corollary 10.11. If one of the following conditions is satisfied:

1. − p j j >
n

∑
i=1,i�= j

|pi j|+
n

∑
i=1

|qi j|+
n

∑
i=1

θi j |hi|k, j = 1, 2, . . . , n.

2. − pii >
n

∑
j=1, j �=i

|pi j|+
n

∑
j=1

|qi j|+
n

∑
j=1

θi j |hi|k, i = 1, 2, . . . , n.

3. − pii >
1
2

n

∑
j=1, j �=i

(|pi j|+ |p ji|)+
1
2

n

∑
j=1

(|qi j|+ |q ji|)

+
1
2

n

∑
j=1

(θi j |bi|k + θ ji |b j|k).

Then the zero solution of system (10.5) is time-delay independent attractive in the
Hurwitz angle [0,k].

Further, we have the following result.

Theorem 10.12. If system (10.4) satisfies the following conditions:

1. There exist constants ci, i = 1, 2, . . . , n such that

c j a j j +
n

∑
i=1,i�= j

ci |pi j|+
n

∑
i=1,i�= j

ci |qi j| ≤ 0, j = 1, 2, . . . , n−1

and

cn ann +
n−1

∑
i=1

ci |ain|+
n

∑
i=1

ci |bin|+
n

∑
i=1

ci θin |hi|k ≤−δ < 0.

2. All eigenvalues of det
(

λ In −A−Be−iλ τ1 − (On×(n−1), θh)e−iλ τ2
)
= 0 have neg-

ative real parts.

Then the zero solution of system (10.4) is time-delay independent absolutely stable
in the Hurwitz angle [0,k].
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Proof. Construct the radially unbounded, positive definite Lyapunov functional as
follows:

V (t) =
n

∑
i=1

ci

[
|xi(t)|+

n

∑
j=1

|bi j|
∫ t

t−τ1

|x j(s)|ds+
n

∑
j=1

θi j|hi|k
∫ t

t−τ2

|x j(s)|ds

]
.

(10.18)
Following the proof of Theorem 10.3, we obtain

D+V (t)
∣∣
(10.4) ≤

n

∑
j=1

[
c j a j j +

n

∑
i=1,i�= j

ci |ai j|+
n

∑
i=1

ci |bi j|
]
|x j(t)|

≤
[

cn ann +
n−1

∑
i=1

ci |ain|+
n

∑
i=1

ci |bin|+
n

∑
j=1

ci θi j|hi|k
]
|xn(t)|

≤ − δ |xn(t)|. (10.19)

Hence, we have

0 ≤V (t) ≤V (t0)− δ
∫ t

t0
|xn(s)|ds ≤V (t0), (10.20)

which indicates that the zero solution of system (10.4) is time-delay independent
stable.

Again, similar to Theorem 10.3, we can prove that
∫ t

t0 δ |xn(s)|ds ≤ V (t0) and
|xn(t)| ∈ L1[0,+∞). Therefore, limt→+∞ |xn(t)|= 0, which implies that the zero solu-
tion of system (10.4) is time-delay independent attractive w.r.t. the partial variable xn
in the Hurwitz angle [0,k].

Following the proof of Theorem 10.3, we can express the solution of system
(10.4) as

x(t) = x∗(t)+
∫ t

t0
U(t,s) [h f (xn(s− τ) ]ds,

where U(t,s) satisfies the following system:

∂U(t,s)
∂ t

= AU(t,s)+ BU(t − τ,s)+
(
On×(n−1), hθ

)
U(t − τ2,s),

U(t,s) =

{
0 when τ − s0 ≤ t ≤ s0,

I when t = s0,
(10.21)

and x∗(t) = x(t0,ϕ) is the solution of the following equations:

dx
dt

= Ax(t)+ Bx(t − τ1)+ hθ x(t − τ2),

x(t) = ϕ(t), −τ ≤ t ≤ t0. (10.22)

The remaining part of the proof can follow the proof of Theorem 10.3 based
on (10.11)–(10.15). The details are omitted here. This completes the proof of
Theorem 10.12. �
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Similar to Theorem 10.12, we have

Theorem 10.13. If system (10.5) satisfies the following conditions:

1. There exist constants ci, i = 1,2, . . . ,n such that

c j p j j +
n

∑
i=1,i�= j

ci|pi j|+
n

∑
i=1,i�= j

ci|qi j| ≤ 0, j = 1,2, . . . ,n−1,

and

cn pnn +
n−1

∑
i=1

ci |pin|+
n

∑
i=1

ci |qin|+
n

∑
i=1

ci θin |hi|k ≤−δ < 0.

2. All eigenvalues of det
(

λ In −P−Qe−iλ τ1
)

= 0 have negative real parts.

Then the zero solution of system (10.5) is time-delay independent absolutely stable
in the Hurwitz angle [0,k].

To end this section, we give an example to demonstrate the applicability of the
theoretical results obtained in this section.

Example 10.14. Consider a three-dimensional Lurie control system in the form of
(10.4), given by⎛
⎜⎜⎝

dx1
dt

dx2
dt

dx3
dt

⎞
⎟⎟⎠=

⎡
⎢⎣
−4 0 3

4
3
2 −4 5

4
1
2 1 −6

⎤
⎥⎦
⎛
⎜⎝

x1(t)

x2(t)

x3(t)

⎞
⎟⎠+

⎡
⎢⎣

1 − 1
2 0

1
2

2
3

1
4

1
2 − 1

3
1
4

⎤
⎥⎦
⎛
⎜⎝

x1(t − τ1)

x2(t − τ1)

x3(t − τ1)

⎞
⎟⎠+

⎛
⎜⎝

2

3

1

⎞
⎟⎠ f (x3(t−τ2)),

where f (·) ∈ F[0,1/2].

It is seen that a11 = −4 < 0, a22 = −4 < 0 and a33 = −6 < 0, and easy to verify
that

G =

⎡
⎢⎣

4−1 − 1
2 − 3

4 −0−1

− 3
2 − 1

2 4− 2
3 − 5

4 − 1
4 − 3

2

− 1
2 − 1

2 −1− 1
3 6− 1

4 − 1
2

⎤
⎥⎦=

⎡
⎢⎣

3 − 1
2 − 7

4

−2 10
3 −3

−1 − 4
3

21
4

⎤
⎥⎦

is an M matrix. Thus the conditions given in Theorem 10.8 are satisfied, and the zero
solution of this example is time-delay independent absolutely stable in the Hurwitz
angel [0, 1

2 ].

10.2 Absolute Stability Based on Partial Variables

In this section, we turn to apply a decomposition method to obtain the absolute sta-
bility of the whole system’s states, based on a lower dimensional linear system whose
all eigenvalues have negative real parts and on that partial variables of the system are
stable.
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Let

A :=
[

Am×m Am×(n−m)
A(n−m)×m A(n−m)×(n−m)

]
,

B :=
[

Bm×m Bm×(n−m)
B(n−m)×m B(n−m)×(n−m)

]
,

[
On×(n−1), hθ

]
:= D =

[
Dm×m Dm×(n−m)

D(n−m)×m D(n−m)×(n−m)

]
,

h(m) := (h1, h2, . . . , hm)T, h(n−m) := (hm+1, hm+2, . . . , hn)T,

x(m) := (x1, x2, . . . , xm)T, x(n−m) := (xm+1, xm+2, . . . , xn)T.

Then system (10.4) can be rewritten as

dx(m)

dt
= Am×mx(m)(t)+ Bm×mx(m)(t − τ1)+ Dm×mx(m)(t − τ2)

+ Am×(n−m)x(n−m)(t)+ Bm×(n−m)x(n−m)(t − τ1)

+ Dm×(n−m)x(n−m)(t − τ2)
+ k(m) [ f (xn(t − τ2))−θ xn(t − τ2) ] , (10.23)

dx(n−m)

dt
= A(n−m)×mx(m)(t)+ B(n−m)×mx(m)(t − τ1)+ D(n−m)×mx(m)(t − τ2)

+ A(n−m)×(n−m)x(n−m)(t)+ B(n−m)×(n−m)x(n−m)(t − τ1)

+ D(n−m)×(n−m)x(n−m)(t − τ2)
+ k(n−m) [ f (xn(t − τ2)−θ xn(t − τ2) ] . (10.24)

It is obvious that the solutions of system (10.4) are equivalent to that of (10.23) and
(10.24).

Theorem 10.15. If the following conditions are satisfied:

1. All the eigenvalues of det
(

λ Im −Am×m−Bm×m e−iλ τ1 −Dm×m e−iλ τ2
)

= 0 have
negative real parts.

2. There exist constants ci ≥ 0, i = 1, 2, . . . , m and ci > 0, j = m + 1, m + 2, . . . , n
such that

c j a j j +

(
n

∑
i=1,i�= j

ci |ai j|+
n

∑
i=1

ci |bi j|
)

≤ 0, j = 1, 2, . . . , m;

c j a j j +

(
n

∑
i=1,i�= j

ci |ai j|+
n

∑
i=1

ci |bi j|
)

< 0, j = m+ 1, m+ 2, . . . , n−1;

cn ann +

(
n

∑
i=1,i�= j

ci |ain|+
n

∑
i=1

ci |bin|+
n

∑
i=1

ci |hi|k
)

< 0.
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Then the zero solution of system (10.23) and (10.24) is time-delay independent
absolutely stable in the Hurwitz angle [0,k].

Proof. For the partial variables of the system: xm+1, xm+2, . . . , xn, construct the
radially unbounded, positive definite Lyapunov functional:

V (x,t) =
n

∑
i=1

ci |xi|+
n

∑
i=1

n

∑
j=1

∫ t

t−τ1

ci |bi j| |x j(s)|ds+
n

∑
i=1

ci |hi|
∫ t

t−τ2

k |xn(s)|ds.

Then

D+V (x,t)
∣∣
(10.4) ≤

n

∑
i=1

ci
dxi

dt
sign(xi)+

n

∑
i=1

n

∑
j=1

ci |bi j| |x j(t)|

−
n

∑
i=1

n

∑
j=1

ci |bi j| |x j(t − τ1)|

+
n

∑
i=1

ci |hi|k |xn(t)|−
n

∑
i=1

ci |hi|k |xn(t − τ2)|

≤
n−1

∑
j=1

[
c j a j j +

(
n

∑
i=1,i�= j

ci |ai j|+
n

∑
i=1

ci |bi j|
)]

|x j(t)|

+

[
cnann +

(
n−1

∑
i=1

ci|ain|+
n

∑
i=1

ci|bin|+
n

∑
i=1

ci|hi|k
)]

|xn(t)|

≤
n−1

∑
j=m+1

[
c j a j j +

(
n

∑
i=1,i�= j

ci |ai j|+
n

∑
i=1

ci |bi j|
)]

x j(t)|

+

[
cnann +

(
n−1

∑
i=1

ci|ain|+
n

∑
i=1

ci|bin|+
n

∑
i=1

ci|hi|k
)]

|xn(t)|

< 0 when ‖x(n−m)‖ �= 0.

Therefore, the complete solution of system (10.23) and (10.24), namely the com-
plete solution of system (10.4), is absolutely stable w.r.t. the partial variables xm+1,
xm+2, . . . ,xn.

Now let x∗(m)(t) = xm(t0,ϕm)(t) be the solution of the homogeneous part of
(10.23):

dx(m)

dt
= Am×mx(m)(t)+ Bm×mx(m)(t − τ1)+ Dm×mx(m)(t − τ2),

xm(t) = ϕm(t), −τ ≤ t ≤ 0.

Then we may follow the proof of Theorem 10.3 to write the solution of (10.23) as

xm(t) = x∗(m)(t)+
∫ t

t0
U(m)(t,s)

{
Am×(n−m)x(n−m)(s)+ Bm×(n−m)x(n−m)(s− τ1)

+ Dm×(n−m)x(n−m)(s− τ2)+ k(n−m) [ f (xn(s− τ2))−θ xn(s− τ2) ]
}

ds,
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where U(m)(t,s) is the fundamental matrix solution of the system:

∂U(m)(t,s)
∂ t

= Am×mU(m)(t,s)+ Bm×mU(m)(t − τ1,s)+ Dm×mU(m)(t − τ2,s),

U(m)(t,s) =

{
0 when τ − s ≤ t ≤ s0,

Im when t = s0.

Finally, we can follow the last part of the proof of Theorem 10.3 to show that the
zero solution of system (10.4) is also time-delay independent absolutely stable w.r.t.
x(m). This completes the proof of Theorem 10.15. �

Similarly, let

P :=
[

Pm×m Pm×(n−m)
P(n−m)×m P(n−m)×(n−m)

]
,

Q :=
[

Qm×m Qm×(n−m)
Q(n−m)×m Q(n−m)×(n−m)

]
,

[
On×(n−1) bθ

]
:= D =

[
Dm×m Dm×(n−m)

D(n−m)×m D(n−m)×(n−m)

]
,

b(m) := (b1, b2, · · · , bm)T, b(n−m) := (bm+1, bm+2, . . . , bn)T,

y(m) := (y1, y2, · · · , ym)T, y(n−m) := (ym+1, ym+2, · · · , yn)T.

Then system (10.5) can be equivalently written as

dy(m)

dt
= Pm×my(m)(t)+ Pm×(n−m)y(n−m)(t)

+Qm×my(m)(t − τ1)+ Qm×(n−m)y(n−m)(t − τ1)

+ Dm×my(m)(t − τ2)+ Dm×(n−m)y(n−m)(t − τ2)
+ b(m) [ f (yn(t − τ2))−θ yn(t − τ2) ] , (10.25)

dy(n−m)

dt
= P(n−m)×my(m)(t)+ P(n−m)×(n−m)y(n−m)(t)

+Q(n−m)×my(m)(t − τ1)+ Q(n−m)×(n−m)y(n−m)(t − τ1)

+ D(n−m)×my(m)(t − τ2)+ D(n−m)×(n−m)y(n−m)(t − τ2)
+ b(n−m) [ f (yn(t − τ2))−θ yn(t − τ2) ] . (10.26)

Thus we have a similar theorem, as given below.

Theorem 10.16. If the following conditions are satisfied:

1. All the eigenvalues of det
(

λ Im −Pm×m −Qm×m e−iλ τ1 −Dm×m e−iλ τ2
)

= 0 have
negative real parts.
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2. There exist constants ci ≥ 0, i = 1, 2, . . . , m and ci > 0, j = m + 1,m + 2, . . . ,n
such that

c j p j j +

(
n

∑
i=1,i�= j

ci |pi j|+
n

∑
i=1

ci |qi j|
)

≤ 0, j = 1,2, . . . ,m;

c j p j j +

(
n

∑
i=1,i�= j

ci |pi j|+
n

∑
i=1

ci |qi j|
)

< 0, j = m+ 1,m+ 2, . . .,n−1;

cn pnn +

(
n

∑
i=1,i�= j

ci |pin|+
n

∑
i=1

ci |qin|+
n

∑
j=1

ci |hi|k
)

< 0.

Then the zero solution of system (10.25) and (10.26), namely the zero solution of
system (10.5), is time-delay independent absolutely stable in the Hurwitz angle [0,k].

The proof of Theorem 10.16 is similar to Theorem 10.15 and thus omitted.

10.3 Lurie Systems with Multiple Time Delays

In this section, we will use modern mathematical tools: linear matrix inequality
(LMI) and Lyapunov functional to study the absolute stability of Lurie systems with
multiple time delays involved in state variables and feedback controls.

Consider the following Lurie system with multiple time delays involved in state
variables and feedback controls:

dx
dt

= A0 x(t)+
l

∑
i=1

Ai x(t −hi(t))+ b0 f0(σ0(t))+
m

∑
i=1

bi fi(σi(t −hi+l(t))),

σi(t) = cT
i x(t), i = 0, 1, . . . , m,

x(t) = ϕ(t), t ∈ [−H, 0], (10.27)

where x(t) ∈ Rn is the state variable, Ai ∈ Rn×n, i = 0, 1, . . . , l are the real matrices,
bi, ci ∈ Rn, i = 0, 1, . . . , m are real vectors; the time-variant time delays hi(t) satisfy
0 < hi(t) ≤ hi < +∞ and ḣi(t) ≤ di < 1, i = 1, 2, . . . , m + l; H = max1≤i≤m+l{hi},
and

fi(·) ∈ F[0,k] =
{

fi(σi)| fi(0) = 0 0 < σi fi(σi) ≤ ki σ2
i , σi �= 0

}
for i = 0, 1, . . . , m, where fi(·)’s are continuous, and ϕ(t) is the continuous, initial
vector function.

Here, we assume use U < 0 to denote that U is a negative definite matrix, and
‖ · ‖ represents the Euclidean norm in Rn:

‖ϕ‖C([−H,0]) = sup
θ∈[−H,0]

‖ϕ(θ )‖.

Lemma 10.17. Let a(s)∈Rnx , b(s)∈ Rny , s∈Ω , then for any positive definite matrix
X ∈ Rnx×nx , and any matrix M ∈ Rny×ny , the following inequality holds:

−2
∫

Ω
bT(s)a(s)ds ≤

∫
Ω

(
a(s)
b(s)

)T[ X X M
MTX (MTX + I)X−1(XM + I)

](
a(s)
b(s)

)
ds.
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Theorem 10.18. If there exist constants ε > 0, αi > 0, i = 1, 2, . . . , l, β j > 0, j =
1, 2, . . . , m, and symmetric matrix P > 0 such that⎡
⎢⎢⎢⎣

AT
0 P+ PA0 +

[
l

∑
i=1

αi +
m

∑
i=1

βi k2
i cT

i ci + ε bT
0 b0 k2

0cT
0 c0

]
In P LT

P − ε In 0
L 0 −R

⎤
⎥⎥⎥⎦< 0,

(10.28)
then the zero solution of system (10.27) is time-delay independent, absolutely stable.
Here,

LT = [PA1 · · · PA1 Pb1 · · · Pbm] ,
R = diag(α1(1−d1) In · · · αl(1−dl) In S) ,
S = diag(β1(1−dl+1) · · · βm(1−dl+m)) .

Proof. Construct the radially unbounded, positive definite Lyapunov functional:

V = xT(t)Px(t)+
l

∑
i=1

αi

∫ t

−hi(t)
xT(s)x(s) ds+

m

∑
i=1

βi

∫ t

−hi+l(t)
f 2
i (s) ds.

There exist constants a1 > 0, a2 > 0 such that

a1 ‖ϕ(0)‖2 ≤V ≤ a2‖ϕ(0)‖2
C[c+1,0].

From the vector inequality:

2uTv ≤ ε uTu +
1
ε

vTv, (10.29)

where u ∈ Rn, v ∈ Rn and ε > 0 is an arbitrary real number, we have

dV
dt

∣∣∣∣
(10.27)

≤ xT(t)

{
AT

0 P+ PA0

+

[
l

∑
i=1

αi +
m

∑
i=1

βi k2
i cT

i ci + ε bT
0 b0 k2

0cT
0 c0

]
In +

1
ε

P2

}
x(t)

+2
l

∑
i=1

xT(t)PAix(t −hi(t))+ 2
m

∑
i=1

xT(t)Pbi fi(σi(t −hi+l(t)))

−
l

∑
i=1

αi(1−di)xT(t −hi(t))x(t −hi(t))

−
m

∑
i=1

βi(1−di+l) f 2
i (σi(t −hi+l(t)))

:= yT(t)Φ y(t),
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where

Φ :=
[

B LT

L −R

]
,

B := AT
0 P+ PA0 +

1
ε

P2 +

[
l

∑
i=1

αi +
m

∑
i=1

βi k2
i cT

i ci + ε bT
0 b0 k2

0cT
0 c0

]
In,

y(t) :=
[

xT(t) xT(x−h1(t)) · · · xT(t −hl(t)) f (t)
]
,

f (t) := [ f1(σ1(t −hl+1(t))) · · · fm(σm(t −hl+m(t))) ] .

From Theorems 4.24 and 4.26, it is known that Φ < 0 is equivalent to the LMI
(10.28). Thus when the inequality holds, there exists a constant a > 0 such that
dV
dt

∣∣
(10.27) ≤ −a‖x(t)‖2. Hence, the zero solution of (10.27) is time-delay indepen-

dent absolutely stable. �
Theorem 10.19. For a given H > 0, if there exist constants α > 0, αi > 0, i =
1, 2, . . . , m, and n × n symmetric matrices P > 0, U > 0, Qi > 0, i = 1, 2, . . . , l,
and matrix W such that⎡

⎢⎢⎢⎢⎢⎣
B0 BT

1 BT
2 · · · BT

l
B1 (d1 −1)Λ
B2 (d2 −1)Λ
...

. . .
Bl (dl −1)Λ

⎤
⎥⎥⎥⎥⎥⎦< 0, (10.30)

then when H ≤ H, the zero solution of system (10.27) is absolutely stable. Here,

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A −W TA1 · · · −W TAl Pb0 Pb1 · · · Pbm
−AT

1W (d1 −1)Q1
...

. . .
−AT

l W (dl −1)Ql
bT

0 P −α
bT

1 P α1(dl+1 −1)
...

. . .
bT

mP αm(dl+m −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A = ATP+ PA +
l

∑
i=1

Qi +WT
l

∑
i=1

Ai +
l

∑
i=1

AiW +
m

∑
i=1

αik2
i cT

i ciIn + αcT
0 c0In,

A =
l

∑
i=0

Ai,

Bi =
[

UAiA0 U AiA1 · · · UAiAl UAib0 UAib1 · · · UAibm
θ H(W + P) 0 · · · 0 0 0 · · · 0

]
, i = 1, · · · , l,

Λ = diag(U U), θ =

[
1
l

l

∑
i=1

1
1−di

]−1/2

.
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Proof. Let ϕ(t) = ϕ(−H), t ∈ [−2H,−H]. From t ≥ hi(t), we have

x(t −hi(t)) = x(t)−
∫ t

−hi(t)
ẋ(s)ds, i = 1, 2, . . . , l.

Thus, (10.27) can be rewritten as

dx
dt

= Ax(t)−
l

∑
i=1

Ai

∫ t

−hi(t)
ẋ(s)ds+ b0 f0(σ0(t))+

m

∑
i=1

bi fi(σi(t −hi+l(t))), (10.31a)

x(t) = ϕ(t), t ∈ [−2H, 0]. (10.31b)

Thus, we only need to consider the absolute stability of the above system.
Let V1 = xT(t)Px(t). Then

dV1

dt

∣∣∣∣
(10.31a)

= xT(t)(ATP+ PA)x(t)+ 2
m

∑
i=1

xT(t)Pbi fi(σi(t −hi+l(t)))

+2xT(t)Pb0 f0(σ0(t))− 2
l

∑
i=1

xT(t)PAi

∫ t

−hi(t)
ẋ(s)ds.

From Lemma 10.17 we know that

−2
l

∑
i=1

xT(t)PAi

∫ t

−hi(t)
ẋ(s)ds

≤
l

∑
i=1

hi xT(t)P(MTX + I)X−1(X M + I)Px(t)

+2
l

∑
i=1

xT(t)PMTX Ai

∫ t

−hi(t)
ẋ(s)ds+

l

∑
i=1

∫ t

−hi(t)
ẋT(s)AT

i xAiẋ(s)ds.

Let W = X M P, U = H X . Then dV1
dt

∣∣∣
(10.31a)

becomes

dV1

dt

∣∣∣∣
(10.31a)

≤ xT(t)
[

ATP+ PA + l H2(W T + P)U−1(W + P)
]

x(t)

+2
l

∑
i=1

xT(t)W TAi

∫ t

−hi(t)
ẋ(s)ds

+
1
H

l

∑
i=1

∫ t

−hi(t)
ẋT(s)AT

i U Aiẋ(s)ds

+2
m

∑
i=1

xT(t)Pbi fi(σi(t −hi+l(t)))+ 2xT(t)Pb0 f0(σ0(t)).

Further, let

V2 =
1
H

l

∑
i=1

1
1−di

∫ hi(t)

0

∫ t

−s
ẋT(τ)AT

i U Aiẋ(τ)dτ ds,

V3 =
l

∑
i=1

∫ t

−hi(t)
xT(s)Qix(s)ds+

m

∑
i=1

αi

∫ t

−hi+l(t)
f 2
i (σi(s))ds.
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Then

dV2

dt

∣∣∣∣
(10.31a)

≤
l

∑
i=1

1
1−di

ẋT(t)AT
i U Aiẋ(t)− 1

H

l

∑
i=1

∫ t

−hi(t)
ẋT(s)AT

i U Aiẋ(s)ds,

dV3

dt

∣∣∣∣
(10.31a)

≤ xT(s)
l

∑
i=1

Qix(t)−
l

∑
i=1

(1−di)xT(t −hi(t))Qix(t −hi(t))

+
m

∑
i=1

αik2
i cT

i ci xT(t)x(t)−
m

∑
i=1

αi(1−di+l) f 2
i (σi(t −hi+l(t)))

+α cT
0 c0 xT(t)x(t)−α f 2

0 (σ0(t)).

Now take the functional V = V1 +V2 +V3. Then there exist constants α3 > 0,
α4 > 0 such that α3‖ϕ(0)‖2 ≤V ≤ α4‖ϕ‖2

C[−2H,0]. When H ≤ H, we obtain

dV
dt

∣∣∣∣
(10.31a)

≤ xT(t)
[
A+ l H2(W T+ P)U−1(W + P)

]
x(t)

+ 2
m

∑
i=1

xT(t)Pbi fi(σi(t −hi+l(t)))

+ 2xT(t)Pb0 f0(σ0(t))− 2
l

∑
i=1

xT(t)W TAix(t −hi(t))

+
l

∑
i=1

1
1−di

ẋT(t)AT
i U Aiẋ(t)

−
l

∑
i=1

(1−di)xT(t −hi(t))Qix(t −hi(t))

−
m

∑
i=1

αi(1−di+l) f 2
i (σi(t −hi+l(t)))−α f 2

0 (σ0(t))

:= yT(t)Ω y(t),

where

y(t) :=
[
xT(t) xT(t −h1(t)) · · · xT(t −hl(t)) f (T )

]T
,

f (t) := [ f0(σ0(t)) f1(σ1(t −hl+1))) · · · fm(σm(t −hl+m)))] ,

Ω := B0 +
l

∑
i=1

1
1−di

BT
i Λ−1Bi.

Thus, when H ≤ H, if (10.30) holds, then there exists constant b > 0 such that
dV
dt

∣∣
(10.31a) ≤ b‖x(t)‖2. Therefore, the zero solution of system (10.27) is time-delay

independent absolutely stable. �

Theorem 10.20. For a given H > 0, if there exist constants ε > 0, λ j > 0, j =
1, 2, . . . , m, αi > 0, βi > 0, γi > 0, δi > 0, i = 1, 2, . . . , l, and symmetric matrix P > 0
such that
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⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ P Γ Π Π Π Π
P −ε In

Γ T −Θ1
Π T −Θ2
Π T −Θ3
Π T −Θ4
Π T −Θ5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (10.32)

then when H ≤ H, the zero solution of system (10.27) is time-delay independent
absolutely stable. Here,

Σ = ATP+ PA + A+ µ In, A =
l

∑
i=0

Ai,

A =
l

∑
i=1

αiAT
0 AT

i AiA0 +
l

∑
i=1

l

∑
j=1

βi

1−d j
AT

j AT
i AiA j,

Γ = [P P · · · P] , Π =
[
H P H P · · · H P

]
,

Θ1 = diag(λ1In λ2In · · · λmIn),

Θ2 = diag((1− d1)α1In (1−d2)α2In · · · (1−dl)αl In) ,

Θ3 = diag
(

1−d1

l
β1In

1−d2

l
β2In · · · 1−dl

l
βl In

)
,

Θ4 = diag((1− d1)γ1In (1−d2)γ2In · · · (1−dl)γl In) ,

Θ5 = diag
(

1−d1

m
δ1In

1−d2

m
δ2In · · · 1−dl

m
δl In

)
,

µ =
m

∑
i=1

λi

1−di+l
k2

i bT
i bi cT

i ci +
l

∑
i=1

m

∑
j=1

δi

1−d j+l
b2

jA
T
i Aib j k2

j c
T
j c j

+
l

∑
i=1

γik2
0bT

0 AT
i Aib0cT

0 c0 + ε bT
0 b0k2

0cT
0 c0.

Proof. Let ϕ(t) = ϕ(−H), t ∈ [−2H,−H], V1 = xT(t)Px(t), and

V2 =
1
H

l

∑
i=1

αi

∫ hi(t)

0

∫ t

−s
xT(τ)A0AT

i AiA0 x(τ)dτ ds

+
1
H

l

∑
i=1

l

∑
j=1

βi

∫ hi(t)

0

∫ t

−s
xT(τ −h j(τ))AT

j AT
i AiA j x(τ −h j(τ))dτ ds

+
1
H

l

∑
i=1

γik2
0bT

0 AT
i Aib0cT

0 c0

∫ hi(t)

0

∫ t

−s
xT(τ)x(τ)dτ ds

+
1
H

l

∑
i=1

m

∑
j=1

δibT
jA

T
i Aib jk2

j c
T
j c j

∫ hi(t)

0

∫ t

−s
xT(τ −h j+l(τ))x(τ −h j+l(τ))dτds,
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V3 =
l

∑
i=1

l

∑
j=1

βi

1−d j

∫ t

−hi(t)
xT(s)AT

j AT
i AiA j x(s)ds

+
l

∑
i=1

m

∑
j=1

δi

1−d j+l
bT

j AT
i Aib jk2

j c
T
j c j

∫ t

−hi+l(t)
xT(s)x(s)ds

+
m

∑
j=1

λi

1−di+l
k2

i bT
i bicT

i ci

∫ t

−hi+l(t)
xT(s)x(s)ds.

Choose the functional V = V1 +V2 +V3. Then there exist constants α5 > 0, α6 > 0
such that α5‖ϕ(0)‖2 ≤ V ≤ α6‖ϕ‖2

C[−2H,0]. Similar to the proof of Theorem 10.19,
it is easy to show that

dV
dt

∣∣∣∣
(10.31a)

≤ xT(t)

[
ATP+ PA +

(
1
ε

+
m

∑
j=1

1
λi

)
P2

+
l

∑
i=1

(
1
αi

+
1
βi

+
1
γi

+
m
δi

)
H2

1−di
P2

]
x(t)

+xT(t)

[
l

∑
j=1

αiAT
0 AT

i AiA0 +
l

∑
i=1

l

∑
j=1

βi

1−d j
AT

j AT
i AiA j

]
x(t)

+

[
m

∑
i=1

λi

1−di+l
k2

i bT
i bicT

i ci

+
l

∑
i=1

m

∑
j=1

δi

1−d j+l
bT

j AT
i Aib jk2

j c
T
j c j

]
xT(t)x(t)

+

[
l

∑
i=1

γik2
0bT

0 AT
i Aib0cT

0 c0 + ε bT
0 b0k2

0cT
0 c0

]
xT(t)x(t)

:= xT(t)
[
ATP+ PA + A+ µ In + ξ P2 + H2η P2]x(t),

where

ξ =
1
ε

+
m

∑
j=1

1
λi

,

η =
l

∑
i=1

[
1
αi

+
1
βi

+
1
γi

+
m
δi

]
1

1−di
.

When H ≤ H, we have

dV
dt

∣∣
(10.31a) ≤ xT(t)

[
ATP+ PA + A+ µ In + ξ P2 + H2η P2]x(t).

Thus, we know that ATP + PA + A + µ In + ξ P2 + H2η P2 < 0 is equivalent to the
linear matrix inequality (10.32). Thus, when H ≤ H, if (10.32) is satisfied, then there
exists constant θ > 0 such that dV

dt

∣∣
(10.31a) ≤−θ ‖x(t)‖2. Therefore, the zero solution

of system (10.27) is time-delay independent absolutely stable. �
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To end this section, we give a numerical example below.

Example 10.21. Consider the following time-delayed system:

ẋ(t) = A0 x(t)+ A1 x(t − τ)+ b1 f (σ1(t − τ)), f ∈ F[0,0.5],

σ1(t) = cT
1 x(t),

x(t) = ϕ(t), t ∈ [−H, 0], (10.33)

where

A0 =
[−2 0

0 −1

]
, A1 =

[
0.0 0.5
0.5 0.0

]
, b1 =

(
0.5
0.5

)
, c1 =

(
1

−1

)
.

There exist α = β = 1, and

P =
[

2.1821 0
0 1.7813

]

such that the LMI (10.28) holds. Therefore, it follows from Theorem 10.18 that
system (10.33) is time-delay independent absolutely stable. One can apply Theo-
rems 10.19 and 10.20 to verify that when H ≤ 0.69, the system (10.33) is time-delay
independent absolutely stable.

10.4 Time-Delay Dependent Absolute Stability of Lurie Systems

In the previous sections, we have considered time-delay independent absolute sta-
bility of Lurie systems. The conditions obtained for absolute stability are not related
to time delay, and so information of time delay is missed. Thus, these conditions
are conservative. In this section, we discuss the absolute stability of Lurie systems
depending upon time delay, which is called time-delay dependent absolute stability.

Consider the following Lurie system with multiple time delays:

dx
dt

= Ax(t)+
m

∑
i=1

Bix(t − τi(t))+ b f (σ(t)),

σ(t) = cTx(t), (10.34)

where x ∈ Rn, A, Bi ∈ Rn×n, i = 1, 2, . . . , m, h, c ∈ Rn; 0 < τi(t)≤ τ, i = 1, 2, . . . , m,
are time delays; f (·) ∈ F[0,k]. Let ‖A‖ =

√
λmax(ATA). λmax(P) and λmin(P) denote

the maximum and minimum eigenvalues of P, respectively. For any vector y, ‖y‖ =√
yTy.

Theorem 10.22. If the following conditions are satisfied:

1. The matrix A0 = A + ∑m
i=1 Bi is a Hurwitz matrix.
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2. There exist positive definite matrices P, Q satisfy the Lyapunov matrix equation:

AT
0 P + PA0 = −Q. (10.35)

3. The time delay τ satisfies the inequality:

τ <
λmin(Q− ε P2)− 1

ε ‖b‖2‖c‖2k2

ε (m+ 2)∑m
i=1 ‖PBi‖2 + mα2

ε (‖A‖2 + ∑m
i=1 ‖Bi‖2 +‖b‖‖c‖2k2)

, (10.36)

where
1−√1−β
2‖Q−1/2P‖2 < ε <

1 +
√

1−β
2‖Q−1/2P‖2 , (10.37)

and

α =

√
λmax(P)
λmin(P)

, β =
4‖Q−1/2P‖2‖b‖‖c‖2k2

λmin(Q)
, (10.38)

then the zero solution of system (10.34) is time-delay dependent, absolutely stable.

Proof. Rewrite (10.34) as

dx
dt

= A0x(t)−
m

∑
i=1

Bi

∫ t

t−τi(t)

[
Ax(t)+

m

∑
j=1

B jx(s− τ j(s))+ b f (σ(s))

]
ds+ b f (σ(t)).

(10.39)
Construct the radially unbounded, positive definite Lyapunov function:

V (x(t)) = xT(t)Px(t). (10.40)

Then differentiating V w.r.t. time t along the solution of system (10.34) yields

dV
dt

∣∣∣∣
(10.34)

= −2xT(t)Qx(t)+ 2xT(t)Pb f (σ(t))

−2
m

∑
i=1

∫ t

t−τi(t)

[
xT(t)PBiAx(s)+

m

∑
j=1

xT(t)PBiB jAx(s− τ j(s))

+ xT(t)PBi b f (σ(s))

]
ds. (10.41)

Based on (10.40) and Razumikhin theorem [126], if for any real number q > 1,
V (x(ξ )) < q2V (x(t)), t − 2τ ≤ ξ ≤ t, then ‖(x(ξ ))‖ ≤ qα ‖x(t)‖. Then using the
vector inequality

2uTv ≤ ε uTu + 1
ε vTv, u, v ∈ Rn (ε > 0 is an arbitrary real number),

we can obtain

2xT(t)Pb f (σ(t)) ≤ ε xT(t)PPx(t)+
1
ε

bTb f 2(σ(t))

≤ ε xT(t)P2x(t)+
1
ε
‖b‖2‖c‖2k2‖x(t)‖2, (10.42)
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and

−2
m

∑
i=1

∫ t

t−τi(t)

[
xT (t)PBiAx(s)+

m

∑
j=1

xT(t)PBiB jA(x(s− τ j(s)))

+ xT (t)PBib f (σ(s))

]
ds

≤
m

∑
i=1

∫ t

t−τi(t)

{
2ε xT(t)PBi(PBi)Tx(t)+

1
ε

xT(s)ATAx(s)+
1
ε

bTb f 2(σ(t))

+
m

∑
j=1

[
ε xT(t)PBi(PBi)Tx(t)+

1
ε

xT(s− τ j(s))BT
j B jx(t − τ j(s))

]}
ds

≤
m

∑
j=1

τ

[
ε(m+ 2)‖PBi‖2‖x(t)‖2

+
q2α2

ε

(
‖A‖2 +‖b‖2‖c‖2k2 +

m

∑
j=1

‖B j‖2

)
‖x(t)‖2

]

= τ

[
ε(m+ 2)

m

∑
i=1

‖PBi‖2

+
mq2α2

ε

(
‖A‖2 +‖b‖2‖c‖2k2 +

m

∑
j=1

‖B j‖2

)]
‖x(t)‖2. (10.43)

Substituting (10.42) and (10.43) into (10.41) yields

dV
dt

∣∣∣∣
(10.34)

≤ −
[

λmin(Q− ε P2)− 1
ε
‖b‖2‖c‖2k2

]
‖x(t)‖2

+τ

[
ε(m+ 2)

m

∑
i=1

‖PBi‖2

+
mq2α2

ε

(
‖A‖2 +‖b‖2‖c‖2k2 +

m

∑
j=1

‖B j‖2

)]
‖x(t)‖2

:= −w‖x(t)‖2, (10.44)

where

w := λmin(Q− ε P2)− 1
ε
‖b‖2‖c‖2k2

−τ

[
ε(m+ 2)

m

∑
i=1

‖PBi‖2 +
mq2α2

ε

(
‖A‖2 +‖b‖2‖c‖2k2 +

m

∑
j=1

‖B j‖2

)]
.

If the condition (10.36) is satisfied, then there exists constant q > 1 such that w > 0.
Therefore, the system (10.34) is time-delay dependent absolutely stable. �
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Theorem 10.23. If the following conditions are satisfied:

1. The matrix A0 = A + ∑m
i=1 Bi is a Hurwitz matrix.

2. There exist positive definite matrices P, Q satisfy the Lyapunov matrix equation:

AT
0 P + PA0 = −Q. (10.45)

3. The time delay τ satisfies the inequality:

τ < T :=
λ 2

min(Q)Mρ −2‖P‖2[(LM −N‖P‖2)(LM−N‖P‖2 + ρ)+ MNλ 2
min(Q)

]
2M
[
(LM −N‖P‖2)(LM −N‖P‖2 + ρ)+ MNλ 2

min(Q)
] ,

(10.46)
where

L = ‖b‖2‖c‖2k2, M = (m+ 2)
m

∑
i=1

‖PBi‖2, (10.47)

N = mα2

(
‖A‖2 +

m

∑
i=1

‖Bi‖2 +‖b‖2‖c‖2k2

)
, (10.48)

and

ρ =
√

(LM −N‖P‖2 + MNλ 2
min(Q)), (10.49)

then the zero solution of system (10.34) is time-delay dependent, absolutely stable.

Proof. Let

g(ε) =
λmin(Q)− ε ‖P‖2 − 1

ε ‖b‖2‖c‖2k2

ε (m+ 2)
m

∑
i=1

‖PBi‖2 + mα2

ε

(
‖A‖2 +

m

∑
i=1

‖Bi‖2 +‖b‖2‖c‖2k2

) ,

T (ε) =
λmin(Q− ε P2)− 1

ε ‖b‖2‖c‖2k2

ε (m+ 2)
m

∑
i=1

‖PBi‖2 + mα2

ε

(
‖A‖2 +

m

∑
i=1

‖Bi‖2 +‖b‖2‖c‖2k2

) ,

then g(ε) ≤ T (ε). Thus, it follows Theorem 10.22 that system (10.34) is time-delay
dependent, absolutely stable when τ < g(ε).

Setting g′(ε) = 0 results in ε0 = LM−N‖P‖2+ρ
Mλmin(Q) and g′′(ε0) < 0, we can conclude

that g(ε) reaches its maximum value: g(ε0) = T at ε = ε0. The proof is complete. �

Example 10.24. Consider the following time-delayed Lurie system:(
ẋ1(t)
ẋ2(t)

)
=
[−2 0
−1 −2

](
x1(t)
x2(t)

)
+
[−0.2 −0.5

0.5 −0.2

](
x1(t − τ)
x2(t − τ)

)
+
(−0.2
−0.3

)
f (σ(t)),

σ(t) = 0.6x1(t)+0.8x2(t), f (·) ∈ F[0,0.5].



268 10 Time-Delayed and Neutral Lurie Control Systems

Take P = I, then α = 1, and Q =
[

4.4 1
1 4.4

]
, so λmin(Q) = 3.4. From Theo-

rem 10.22 we can find 0.0096 < ε < 3.3904. Choosing ε = 1.33 yields τ = 0.3230.
Thus, it follows from Theorem 10.23 that τ < 3.3230.

If choose Q = I, then α = 1.5880, and P =
[

0.23965 −0.05446
−0.05445 0.23965

]
,

so λmin(Q) = 1. From Theorem 10.22 one can obtain 0.0326 < ε < 11.5281.
Choosing ε = 4.8 gives τ = 0.2190. Thus, by Theorem 10.23 we have τ < 0.2191.

10.5 Neutral Lurie Control Systems

Although some results have been achieved for the absolute stability of Lurie control
systems described by time-delay difference equations or time-delayed functional dif-
ferential equations, not much work has been done on Lurie control systems based on
neutral differential difference equations.

In this section, we introduce the results obtained for the earliest developed
neutral Lurie control systems described by differential difference equations. We
first consider the time-delay independent absolute stability, and then the time-delay
dependent absolute stability.

10.5.1 Time-Delay Independent Absolute Stability

First, consider the first type of neutral Lurie control systems, given by

dx(t)
dt

= Ax(t)+ Bx(t − τ)+C ẋ(t − τ)+ b f (σ(t)),

σ̇(t) = cT x(t)−ρ f (σ(t)), (10.50)

where τ > 0 is a constant time delay, f (·) ∈ F∞, A, B, C ∈ Rn×n, x, b, c ∈ Rn and
ρ ∈ R+. Suppose A is a Hurwitz matrix, then for any symmetric positive definite
matrix W , the following Lyapunov matrix equation:

ATP+ PA = −W (10.51)

has the symmetric positive matrix solution A.

Theorem 10.25. If there exist positive real numbers α, β and γ such that the
following matrix:

U =

⎡
⎢⎢⎣

W −αI + β ATA −(PB + β ATB) −(PC + β ATC) −(Pb + β ATb + 1
2 γc)

−(PB + β ATB)T α I −β BTB −β BTc −β BTb
−(PC + β ATC)T −(β BTc)T β I −β cTc −β cTb

−(P+ β ATb + 1
2 γc)T −(β BTb)T −(β cTb)T γ ρ −β bTb

⎤
⎥⎥⎦

is positive definite, then the zero solution of system (10.50) is time-delay dependent
absolutely stable.
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Proof. Construct the radially unbounded, positive definite Lyapunov functional:

V (t) = xT(t)Px(t)+ α
∫ t

t−τ
xT(θ )x(θ )dθ + β

∫ t

t−τ
ẋT(θ ) ẋ(θ )dθ + γ

∫ σ(t)

0
f (σ)dσ .

(10.52)
Then

dV(t)
dt

∣∣∣∣
(10.50)

= ẋT(t)Px(t)+ xT(t)Pẋ(t)+ α
[

xT(t)x(t)− xT(t − τ)x(t − τ)
]

+ β
[

ẋT(t) ẋ(t)− ẋT(t − τ) ẋ(t − τ)
]
+ γ σ̇ f (σ)

= xT(t)
(−W + α I + β ATA

)
x(t)+ xT(t)

(
PB + β ATB

)
x(t − τ)

+ xT(t)
(
PC + β ATC

)
ẋ(t − τ)+ xT(t)

(
Pb + β ATb +

1
2

γc
)

f (σ)

+ xT(t − τ)
(
BTP + β BTA

)
x(t)+ xT(t − τ)

(−αI + β BTB
)

x(t − τ)

+ xT(t − τ)β BTCẋ(t − τ)+ ẋT(t − τ)(β BTb) f (σ)

+ ẋT(t − τ)(cTP+ β cTA)x(t)+ ẋT(t − τ)β cTBx(t − τ)

+ ẋT(t − τ)(−β I + β cTc) ẋ(t − τ)+ ẋT(t − τ)(β cTb) f (σ)

+
(

bTP+ β bTA +
1
2

γ cT
)

f (σ)+ (β bTB)x(t − τ) f (σ)

(β bTC) ẋ(t − τ) f (σ)+ (−γ ρ + β bTb) f 2(σ)

:= −ZTU Z, (10.53)

where Z := (x(t) x(t − τ) ẋ(t − τ) f (σ))T. Thus, the condition given in this theorem
implies that there exists u > 0 such that

dV(t)
dt

∣∣∣∣
(10.50)

≤−uxT(t)x(t) < 0, when x �= 0.

This indicates that the zero solution of system (10.50) is time-delay independent
absolutely stable. �

Corollary 10.26. Let A be a Hurwitz matrix, and there exist constants α > 0, β > 0,
and γ > 0 such that

U =

⎡
⎢⎢⎢⎢⎢⎣

2−α −β‖ATA‖ ‖PB + β ATB‖ ‖PC + β ATC‖ ‖Pb + β ATb +
1
2

γc‖
‖PB + β ATB‖ α −β ‖BTB‖ β ‖BTc‖ β ‖BTb‖
‖PC + β ATC‖ β ‖BTc‖ β −β ‖cTc‖ β ‖cTb‖

‖Pb + β ATb +
1
2

γc‖ β ‖BTb‖ β ‖cTb‖ γ ρ −β bTb

⎤
⎥⎥⎥⎥⎥⎦

is positive definite, then the zero solution of system (10.50) is time-delay independent
absolutely stable.



270 10 Time-Delayed and Neutral Lurie Control Systems

Proof. In Theorem 10.25, let W = 2 I, then the matrix equation

PA + ATP = −2 I

has the symmetric positive definite matrix solution P. Following Theorem 10.25 one
can prove that there exists u > 0 such that

dV(t)
dt

∣∣∣∣
(10.50)

≤−ZT(t)U Z(t) ≤−uxT(t)x(t) < 0 when x �= 0,

where Z := (‖x(t)‖ ‖x(t − τ)‖ ‖ẋ(t − τ)‖ | f (σ)|)T. The above result implies that
the conclusion of Lemma 10.26 is true. �

Now we turn to the second type of neutral Lurie indirect control system, described
by

dx(t)
dt

= Ax(t)+ Bx(t − τ)+C ẋ(t − τ)+ b f (σ(t − τ)),

σ̇(t) = cT x(t)−ρ f (σ(t)). (10.54)

The coefficients of (10.54) are exactly the same as that of (10.50). The only differ-
ence in (10.54) is that its feedback term involves time delay, but not in (10.50).

Theorem 10.27. If there exist positive real numbers α, β , γ and η such that the
following matrix:

U∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−W + αI + β ATA PB + β ATB PC + β ATC
1
2

γc Pb + β ATb

(PB + β ATB)T −α I + β BTB β BTc 0 β BTb
(PC + β ATC)T (β BTc)T −β I + β cTc 0 β cTb

(
1
2

γc)T 0 0 −γρ + η 0

(Pb + β ATb)T (β BTb)T (β cTb)T 0 −η + β bTb

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is negative definite, then the zero solution of system (10.54) is time-delay indepen-
dent absolutely stable. Here, P is the symmetric positive definite matrix solution of
(10.51).

Proof. Construct the radially unbounded, positive definite Lyapunov functional as
follows:

V (t) = xT(t)Px(t)+ α
∫ t

t−τ
xT(θ )x(θ )dθ + β

∫ t

t−τ
ẋT(θ ) ẋ(θ )dθ

+ γ
∫ σ(t)

0
f (σ(θ )) dθ + η

∫ t

t−τ
f 2(σ(θ ))dθ . (10.55)

Then similar to Theorem 10.25 we can show that there exists u > 0 such that
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dV (t)
dt

∣∣∣∣
(10.54)

= ẋT(t)Px(t)+ xT(t)Pẋ(t)+ α
[
xT(t)x(t)− xT(t − τ)x(t − τ)

]
+β
[

ẋT(t) ẋ(t)− ẋT(t − τ) ẋ(t − τ)
]

+γ σ̇ f (σ)+ η( f 2(σ(t))− f 2(σ(t − τ)))

:= Y TU∗Y ≤−uxT(t)x(t) < 0, when x �= 0, (10.56)

where Y :=(x(t) x(t − τ) ẋ(t − τ) f (σ(t)) f (σ(t − τ)))T. Thus, the condition of the
Theorem is true, i.e., the zero solution of system (10.54) is time-delay independent
absolutely stable. �

Similar to the proof of Lemma 10.26 we can prove the following lemma.

Lemma 10.28. If there exist positive constants α, β , γ and η such that

U∗=

⎡
⎢⎢⎢⎢⎢⎣

−2 + α + β‖ATA‖ ‖PB + β ATB‖ ‖PC + β ATC‖ 1
2 γ‖c‖ ‖Pb + β ATb‖

‖PB + β ATB‖ −α + β ‖BTB‖ β ‖BTc‖ 0 β ‖BTb‖
‖PC + β ATC‖ β ‖BTc‖ −β + β ‖cTc‖ 0 β ‖cTb‖

1
2 γ‖c‖ 0 0 −γρ + η 0

‖P+ β ATb‖ β ‖BTb‖ β ‖cTb‖ 0 −η + β‖bTc‖

⎤
⎥⎥⎥⎥⎥⎦

is negative definite, then the zero solution of system (10.54) is time-delay indepen-
dent, absolutely stable. Here, P is the symmetric positive definite matrix solution of
equation ATP+ PA = −2 I.

Example 10.29. Consider the following neutral Lurie indirect control system:

dx
dt

= Ax(t)+ Bx(t − τ)+C ẋ(t − τ)+ b f (σ(t)),

σ̇(t) = cT x(t)−ρ f (σ(t)), (10.57)

where

A =
[−1.1 0.2

0.1−1.0

]
, B =

[
0.3 0.3
0.3 0.2

]
, C =

[
0.3 0.2
0.2 0.1

]
, b =

(
1
1

)
, c =

(−1
−1

)
, ρ =10.

Let W = 2 I, α = β = γ = 0.5, the a direct calculation shows that:

P =
[

0.9215 0.1368
0.1368 1.0273

]
,

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.6015 0.0800 −0.1675 −0.1488 −0.1488 −0.0930 −0.3082
0.0800 1.7400 0.2292 −0.1765 −0.1765 −0.1001 −0.5140

−0.1675 −0.0092 0.4100 −0.0750 −0.0750 −0.0450 −0.3000
−0.1488 −0.1765 −0.0750 0.4350 −0.0650 −0.0400 −0.2500
−0.1488 −0.1765 −0.0750 −0.0065 0.4350 −0.0400 −0.2500
−0.0930 −0.1001 −0.0450 −0.0400 −0.0400 0.4750 −0.1500
−0.3082 −0.5140 −0.3000 −0.2500 −0.2500 −0.1500 4.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Since the smallest eigenvalue of U is λmin(U) = 0.0331 > 0, so U is positive def-
inite, indicating that the conditions of Theorem 10.25 are satisfied. Hence, the zero
solution of the neutral type of Lurie control system (10.57) is time-delay independent
absolutely stable.

10.5.2 Time-Delay Dependent Absolute Stability

Finally, we consider more general neutral Lurie control system, described by

dx
dt

= Ax(t)+ Bx(t − τ)+ Dẋ(t − τ)+ F f (σ(t))+ G f (σ(t − τ)),

σ(t) = C x(t),

x(θ ) = ϕ(θ ), θ ∈ [−τ, 0], (10.58)

where x ∈ Rn, A, B, D ∈ Rn×n, C ∈ Rm×n, F, G ∈ Rn×m. All the matrices are real
constant matrices, and

C = [CT
1 CT

2 · · · CT
m]T,

σ(t) = [σ1(t) σ2(t) · · · σm(t)]T,

f (σ(t)) = [ f1(σ1(t)) f1(σ2(t)) · · · fm(σm(t))]T,

fi(·) ∈ FRi =
{

fi(0) = 0 < σi fi(σ) ≤ ki σ2
i σi �= 0

}
, ki > 0 (i = 1,2, . . . , n),

and τ > 0 denotes a constant time delay. ρ(A) = max1≤i≤n{|λi(A)|}. If A is a sym-
metric matrix, then A > 0 (A < 0) means that A is positive (negative) definite.
C([−τ, 0], Rn) denotes that the continuous function ϕ : [−τ, 0] → Rn has the norm
defined by

‖ϕ‖([−τ,0],Rn) = sup
θ∈[−τ,0]

‖ϕ(θ )‖ for all t ≥ t0.

xt ∈ ([−τ, 0], Rn) is defined by

xt(θ ) := x(t + θ ) (−τ ≤ θ < 0)

and
‖xt‖C1 = sup

θ∈[−τ,0]
{‖(t + θ )‖, ‖ẋ|(t + θ )‖} .

Theorem 10.30. If ρ(D) < 1, and there exist n× n matrices, P > 0, Q > 0, R > 0,
S > 0 and diagonal matrix α = diag(α1 α2 · · · αm) > 0, β = diag(β1 β2 · · · βm) >
0 such that

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ11 θ12 θ13 θ14 θ15 θ16
∗ θ22 θ23 θ24 θ25 θ26
∗ ∗ θ33 θ34 θ35 θ36
∗ ∗ ∗ θ44 θ45 θ46
∗ ∗ ∗ ∗ θ55 θ56
∗ ∗ ∗ ∗ ∗ θ66

⎤
⎥⎥⎥⎥⎥⎥⎦< 0, (10.59)
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then the zero solution of the neutral Lurie control system is time-delay dependent
absolutely stable. Here, ∗ denotes the corresponding symmetric part, and

θ11 = P(A + B)+ (A + B)TP+ R + AT(τQ+ S)A +CTαKCA + ATCTKα C,

θ12 = −(A + B)TPD+ AT(τ Q+ S)B +CTαKCB,

θ13 = AT(τ Q+ S)D+CTαKCD,

θ14 = −τ PB,

θ15 = PF + AT(τ Q+ S)F +CTα KCF −ATCTα,

θ16 = PG+ AT(τ Q+ S)G+CTα KCG,

θ22 = −R + BT(τ Q+ S)B,

θ23 = BT(τ Q+ S)D,

θ24 = τ DT PB,

θ25 = −DTPF + BT(τ Q+ S)F −BTCTα,

θ26 = −DTPG+ BT(τ Q+ S)G,

θ33 = DT(τ Q+ S)D−S,

θ34 = 0,

θ35 = DT(τ Q+ S)F −DTCTα,

θ36 = DT(τ Q+ S)G,

θ44 = −τ Q,

θ45 = 0,

θ46 = 0,

θ55 = FT(τ Q+ S)F + β −2α C F,

θ56 = −α CG+ FT(τ Q+ S)G,

θ66 = GT(τ Q+ S)G−β .

Proof. Let ϕ(t) = ϕ(t − τ). Then for t ∈ [−2τ, −τ], we can equivalently rewrite
system (10.58) as

dx
dt

−Dẋ(t − τ) = (A + B)x(t)−B
∫ t

t−τ
ẋ(ξ )dξ + F f (σ(t))+ G f (σ(t − τ)),

σ(t) = C x(t),

x(θ ) = ϕ(θ ), θ ∈ [−2τ, 0]. (10.60)

We construct the radially unbounded positive definite Lyapunov functional: V =
∑6

i=1 Vi, where

V1 = [x(t)−Dx(t − τ)]T P [x(t)−Dx(t − τ)] ,

V2 =
∫ 0

−τ

∫ t

t+η
ẋT(ξ )Qẋ(ξ )dξ dη ,

V3 =
∫ t

t−τ
xT(ξ )Rx(ξ )dξ ,
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V4 =
∫ t

t−τ
ẋT(ξ )S ẋ(ξ )dξ ,

V5 = 2
m

∑
i=1

αi

∫ cix(t)

0
[ki σi − fi(σi)]dσi,

V6 =
m

∑
i=1

βi

∫ t

t−τ
f 2
i (σi(ξ ))dξ .

It is easy to verify that there exists δ > 0 such that

λmin(P)‖x(t)−Dx(t − τ)‖2 ≤V ≤ δ ‖xt‖2
C1

.

It is obvious that the absolute stability of the zero solution of system (10.58) is equiv-
alent to that of the zero solution of system (10.60). Calculating the derivatives w.r.t.
time t along the solution of system (10.60) yields

dV1

dt

∣∣∣∣
(10.60)

= 2 [x(t)−Dx(t − τ)]TP

×
[
(A + B)x(t)−B

∫ t

t−τ
ẋ(ξ )dξ + F f (σ(t))+ G f (σ(t − τ))

]
,

dV2

dt

∣∣∣∣
(10.60)

= τ ẋT(t)Qx(t)−
∫ t

t−τ
ẋT(ξ )Qẋ(ξ )dξ

dV3

dt

∣∣∣∣
(10.60)

= xT(t)Rx(t)− xT(t − τ)Rx(t − τ),

dV4

dt

∣∣∣∣
(10.60)

= ẋT(t)S ẋ(t)− ẋT(t − τ)S ẋ(t − τ),

dV5

dt

∣∣∣∣
(10.60)

= 2
m

∑
i=1

αi [kiCi x(t)− fi(σi(t))Ci] ẋ(t)

= 2
[
xT(t)CTα KC− f T(σ(t))α C

]T
ẋ(t)

=
[
xT(t)CTα KC− f T(σ(t))α C

]T
× [Ax(t)+ Bx(t − τ)+ Dẋ(t − τ)+ F f (σ(t))+ G f (σ(t − τ))] ,

dV6

dt

∣∣∣∣
(10.60)

=
m

∑
i=1

βi
[

f 2
i (σi(t))− f 2

i (σi(t − τ))
]

= f T(σ(t))β f (σ(t))− f T(σ(t − τ))β f (σ(t − τ)).

In the following, we first use Lemma 10.26 to obtain that for any constant matrix
M ∈ Rn×n, scalar γ > 0, vector function g : [0,γ] → Rm, the integral inequality

γ
∫ γ

0
gT(s)M g(s)ds ≥

(∫ γ

0
g(s)ds

)T

M
(∫ γ

0
g(s)ds

)
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holds. Then we have

dV2

dt

∣∣∣∣
(10.60)

≤ τ ẋ(t)Qẋ(t)−
(

1
τ

∫ t

t−τ
ẋ(ξ )dξ

)T

(τ Q)
(

1
τ

∫ t

t−τ
ẋ(ξ )dξ

)
,

and due to negative definiteness of Φ , we finally obtain that there exists ε > 0 such
that

dV
dt

∣∣∣∣
(10.60)

=
6

∑
i=1

dVi

dt

∣∣∣∣
(10.60)

≤ yT Φ y ≤−ε ‖x(t)‖2 < 0 when ‖x‖ �= 0,

where

y(t) :=
[
xT(t) xT(t − τ) ẋT(t − τ)

( 1
τ
∫ t

t−τ ẋ(ξ )dξ
)T

f T(σ(t)) f T(σ(t − τ))
]T
.

Therefore, the zero solution of the Lurie system (10.58) is time-delay dependent
absolutely stable. �

Theorem 10.31. If ‖D‖+ τ ‖B‖ < 1, and there exist n× n matrices, P > 0, Q >
0, R > 0, S > 0 and diagonal matrices α = diag(α1 α2 · · · αm) > 0, β =
diag(β1 β2 · · · βm) > 0 such that

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ11 θ 12 θ 13 θ 14 θ 15 θ 16
∗ θ 22 θ 23 θ 24 θ 25 θ 26
∗ ∗ θ 33 θ 34 θ 35 θ 36
∗ ∗ ∗ θ 44 θ 45 θ 46
∗ ∗ ∗ ∗ θ 55 θ 56
∗ ∗ ∗ ∗ ∗ θ 66

⎤
⎥⎥⎥⎥⎥⎥⎦< 0, (10.61)

then the zero solution of the neutral Lurie control system (10.58) is time-delay
dependent absolutely stable. Here,

θ 11 = P(A + B)+ (A + B)TP + R + τQ+ ATSA +CTαKCA + ATCTKαC,

θ 12 = −(A + B)TPD+ AT S B +CTαKCB,

θ 13 = ATS D+CTαKCD,

θ 14 = τ (A + B)PB,

θ 15 = PF + AT S F +CTα KCF −ATCTα,

θ 16 = PG+ AT S G+CTα KCG,

θ 22 = −R + BT S B,

θ 23 = BT S D,

θ 24 = 0,

θ 25 = −DTPF + BT S F −BTCTα,

θ 26 = −DTPG+ BT S G,

θ 33 = DT S D− S,
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θ 34 = 0,

θ 35 = DT S F −DTCTα,

θ 36 = DT S G,

θ 44 = −τ Q,

θ 45 = τ BTPF,

θ 46 = τ BTPG,

θ 55 = FT S F + β −2α C F,

θ 56 = −α CG+ FT S G,

θ 66 = GT S G−β .

Proof. Rewrite system (10.58) as

d
dt

[
x(t)−Dẋ(t − τ)+ B

∫ t

t−τ
x(ξ )dξ

]
= (A + B)x(t)+ F f (σ(t))+ G f (σ(t − τ)),

σ(t) = C x(t),

x(θ ) = ϕ(θ ), θ ∈ [−r, 0]. (10.62)

Choose the radially unbounded positive definite Lyapunov functional: V = ∑6
i=1 Vi,

where

V1 =
[

x(t)−Dx(t − τ)+ B
∫ t

t−τ
x(ξ )dξ

]T

P
[

x(t)−Dx(t − τ)+ B
∫ t

t−τ
x(ξ )dξ

]
,

V2 =
∫ 0

−τ

∫ t

t+η
xT(ξ )QxT(ξ )dξ dη ,

and the remaining Vi’s (i = 3,4,5,6) are the same as that defined in Theorem 10.30.
It is easy to verify that there exists γ > 0 such that

λmin(P)‖x(t)−Dx(t − τ)+ B
∫ t

t−τ
x(ξ )dξ‖2 ≤V ≤ γ ‖xt‖2

C1
.

Since

dV1

dt

∣∣∣∣
(10.62)

= 2
[

x(t)−Dx(t − τ)+ B
∫ t

t−τ
x(ξ )dξ

]T

P

× [(A + B)x(t)+ F f (σ(t))+ G f (σ(t − τ))] ,

and by Lemma 10.28, we obtain that for any constant matrix M ∈ Rn×n, scalar γ > 0,
vector function g : [0,γ] → Rm, the integral inequality

dV2

dt

∣∣∣∣
(10.62)

= τ x(t)Qx(t)−
∫ t

t−τ
xT(ξ )Qx(ξ )dξ

≤ τ x(t)Qx(t)−
(

1
τ

∫ t

t−τ
x(ξ )dξ

)T

(τ Q)
(

1
τ

∫ t

t−τ
x(ξ )dξ

)
.
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Then, we can similarly prove that there exists 0 < u 	 0 such that

dV
dt

∣∣∣∣
(10.62)

≤ yTΨ y ≤−u‖x(t)‖2 < 0 when ‖x‖ �= 0.

Hence, the zero solution of the Lurie system (10.58) is time-delay dependent abso-
lutely stable. �

Remark 10.32. The conditions given in Theorems 10.30 and 10.31 look quite in-
volved, but can be easily implemented on a computer system using existing software
such as Matlab.



11

Control Systems Described by Functional
Differential Equations

Control systems described by ordinary differential equations have been thoroughly
studied, and the stability theory of such systems has been developed very rapidly [52].
In practice, in particular, for any automatic control problems with feedbacks, time-
delay always appears in such systems. This is because the system needs time to
process the information and make decision to react. Such time-delays are usually
ignored in classical control theory. However, modern control theory has been paid
attention to the effect of the time-delay in control systems, and some results have
been obtained. Thus, in this second edition, we add the study of Lurie control sys-
tems described by differential and difference equations. From the development of
mathematical theory, since differential and difference equations are special case
of functional differential equations, it is natural to consider Lurie control systems
described by functional differential equations [129–131]. In this chapter, we will
present the results concerning such systems.

This chapter is mainly due to Somolinos [139] (Sect. 11.1), Zhao [181]
(Sect. 11.2), Ruan and Wu [132] (Sect. 11.3), Chukwu [14] (for Sects. 11.4 and 11.5),
and He [42] (Sect. 11.6).

11.1 The Systems Described by RFDE

Consider the Lurie indirect control system described by retarded functional differen-
tial equations (RFDE):

dx
dt

= g(t,xt)+ b f (σ),
dσ
dt

= q(t,xt)−ρ f (σ),
(11.1)

where g(t,ψ) ∈ C[ [0,+∞]×Cn[−r,0],Rn], r is a positive constant, Cn[−r,0] is an
n-dimensional vector space of continuous functions defined on [−r,0], g(t,0) ≡ 0,
q(t,ψ)∈C[ [0,+∞]×Cn[−r,0],R1], x ∈ Rn, b ∈ Rn, σ ∈ R, ρ is a constant and ρ > 0.
We denote

|ψ(t)| :=
[

∑n
i=1 ψ2

i (t)
]1/2

(the norm of an n-dimensional vector ψ(t)),
‖ψ(t)‖ := sup

t∈[−r,0]
|ψ(t)| (the norm of Cn[−r,0], where ψ ∈Cn[−r,0]),

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, Second Edition.
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g(t,ψ) is Lipschitzian for ψ , i.e., for given ψ1, ψ2 ∈Cn[−r,0], we have

|g(t,ψ1)−g(t,ψ2)| ≤ L‖ψ1 −ψ2‖, L = constant. (11.2)

We also let xt ∈Cn[−r,0], xt(θ ) := x(t + θ ), −r ≤ θ ≤ 0.

|g(t,ψ)| ≤ c‖ψ‖, c = constant, (11.3)

f ∈ F[i,k] :=
{

f | f (0) = 0, 0 < σ f (σ) ≤ k σ2,
σ �= 0, k > 0, f ∈C[(−∞,+∞),R1]

}
.

Somolinos [139] was the first person who discussed the absolutely stability of
the system (11.1).

Concerning the absolute stability of the zero solution, one can establish that for
any given f ∈ F[0,k], the zero solution of (11.1) is globally asymptotically stable. We
know that the phase equations of system (11.1) can be written as

dx
dt

= g(t,xt),

x(t) = ψ(t), t ∈ [−r,0].
(11.4)

Assume that the solution of its Cauchy problem satisfies:

‖x(t,t0, ;x0)‖ ≤ De−α(t−t0)‖ψ‖, α > 0, D > 0. (11.5)

Using Lemma 2.1 in [40], we obtain that for system (11.1) with the condition (11.3)
given any q ∈ (0,1), there exists a functional V (t,ψ) ∈ C[ [0,+∞]×Cn[−r,0],R1]
satisfying

‖ψ‖ ≤V (t,ψ) ≤ D‖ψ‖, (11.6)

‖V (t,ψ1)−V(t,ψ2)‖ ≤ M ‖ψ1 −ψ2‖, (11.7)

and
dV
dt

∣∣∣∣
(11.4)

≤−γ2V (t,ψ), (11.8)

where γ2 = (1−q)α , and M = D
1

qα (L+(1− q)α) are constants.

Theorem 11.1. Suppose that (11.2), (11.3), and (11.4) hold and if∫ ±∞

0
f (s)ds = +∞, 4ρ γ2 > (M|b|+ c)2. (11.9)

Then the zero solution of system (11.1) is absolutely stable in the Hurwitz angle [0,k].

Proof. Assume that V (t,ψ) is a functional, which satisfies (11.5)–(11.9). Then
V (t,ψ) is positive definite and radially unbounded, with infinitesimal upper bound.
Along the solution of (11.1) the derivative of V satisfies
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dV
dt

∣∣∣∣
(11.1)

≤−γ2V + M |b f (σ)|,

and thus

V
dV
dt

∣∣∣∣
(11.1)

≤−γ2V 2 + MV |b f (σ)|.

Let
W (t,t0;σ) =

1
2

V 2(t,ψ)+
∫ σ

0
f (σ)dσ .

It is easy to prove that there are two increasing continuous functions h1 and h2 such
that

h1(‖ψ ,σ‖) ≤W (t,ψ ;σ) ≤ h2(‖ψ ,σ‖),
and ‖ψ ,σ‖→ +∞ , as h1 → +∞.

If (11.9) holds, then we deduce that

dW
dt

∣∣∣∣
(11.1)

≤−γ2V 2 +V (M |b|+ c) | f (σ)|−ρ | f (σ)|2,

and there is η > 0 such that

dW
dt

∣∣∣∣
(11.1)

≤−η (V 2 + | f (σ)|2) ≤−η(‖xt‖2 + f (σ)|2) := −h3(‖xt ,σ‖),

where h3 refers to a positive definite continuous function in the norm ‖xt ,σ‖ of
(xt ,σ).

From Theorem 11.1 of [40], we know that the conclusion of Theorem 11.1 is
true. �

Somolinos [139] also considered the following direct control system:

dx
dt

= g(t,xt)+ b f (σ),

σ = cTx,
(11.10)

where cTb = −ρ < 0, and the meaning of g(t,xt) and f (σ) is similar to that of
g(t,xt), f (σ) in (11.1).

Theorem 11.2. If the conditions (11.2) and (11.3) hold, and

f (σ)
σ

<
γ2

M |b| |c| ,

then the zero solution of the system (11.1) is absolutely stable in Hurwitz angle [0,k].
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Proof. Suppose that V is a Lyapunov functional satisfying (11.6)–(11.8). Similar to
the proof of Theorem 11.1, we find

dV
dt

∣∣∣∣
(11.10)

≤−γ2V + M |b| | f (σ)| ≤ −γ2‖xt‖+ M |b| | f (σ)|. (11.11)

For σ = 0, we deduce
dV
dt

∣∣∣∣
(11.10)

≤−γ2‖xt‖;

for σ �= 0, the last term on the right-hand side in (11.11) is multiplied by |c| ‖xt‖
cTxt

.
From σ = cTx, it follows that

dV
dt

∣∣∣∣
(11.10)

≤−‖xt‖
(

γ2 −M |b| |c| f (σ)
σ

)
.

Hence, if f (σ)
σ < γ2

M |b| |c| , then dV
dt

∣∣
(11.10) is negative definite. The proof is complete.

�

Zhu [185] also studied the absolute stability of the zero solution of system (11.10)
in [0,k].

Theorem 11.3. [185] Suppose that the conditions (11.2), (11.3), (11.6)–(11.8) hold
and that there is a real number β such that

k |c|(M |b|+ |β |L |c|) < γ, (11.12)

2k |c|
[
M |b|+ |c|(|β |L+ β cTb)

]
< γ. (11.13)

Moreover, let
1 + β k |c|2 > 0 f or β < 0.

Then the zero solution of system (11.10) is absolutely stable in the Hurwitz angle
[0,k].

Proof. Let us set
u(t,ψ) =

1
2

V 2(t,ψ)+ β
∫ σ

0
f (σ)dσ ,

where V is a functional satisfying (11.6)–(11.8). Thus, V is positive definite, radially
unbounded and has infinitesimal upper bound. It follows from 0 < σ f (σ) ≤ k σ2

that
0 ≤
∫ σ

0
f (σ)dσ ≤ 1

2
k σ2,

hence, by (11.6) we have[1
2

+(1− signβ )
1
4

kβ |c|2
]
‖ψ‖2 ≤ u(t,ψ) ≤

[D2

2
+(1 + signβ )

1
2

kβ |c|2
]
‖ψ‖2.

(11.14)
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It then follows form the conditions that u(t,ψ) is a radially unbounded positive
definite functional of ψ .

In contrast, we have

du
dt

∣∣∣∣
(11.10)

≤−γ2V 2 +(M |b|+ L |β | |c|)V | f (σ)|+ β cTb f 2(σ).

Choosing a constant τ > 0, and taking

N =
1

2γ

(
M |b|+ L |β | |c|+ τ |c|

)
,

we deduce that

du
dt

∣∣∣∣
(11.10)

≤−(γV −N| f (σ)|)2 +
[
N2−

(τ
k
−β cTb

)]
| f (σ)|2 +τ

[ f (σ)
k

−σ
]

f (σ).

(11.15)
Clearly, when f = 0, the above form is reduced to

du
dt

∣∣∣∣
(11.10)

≤−γ2V 2 ≤−γ2‖xt‖2.

However, when f �= 0, it follows from q(t,ψ) ∈C[ [0,+∞]×Cn[−r,0],R1] that

[ f (σ)
k

−σ
]

f (σ) = f 2(σ)
[1

k
− σ

f (σ)

]
≤ 0.

Therefore, only if
N2 <

τ
k
−β cTb, (11.16)

can we obtain from (11.15) that du
dt

∣∣
(11.10) is a negative definite functional of ψ .

To decide the conditions satisfying (11.16), we substitute the representation of N to
(11.16), which can be further reduced to

|c|2
[

τ2 + 2
(M |b|

|c| − γ
k |c|2 + |β |L

)
τ +
(M |b|

|c| + |β |L
)2 −2γ β

cTb
|c|2
]

< 0.

Let

λ =
M |b|
|c| − γ

k |c|2 + |β |L,

p =
(M |b|

|c| + |β |L
)2 −2γ β

cTb
|c|2 .

Then the above formula is reduced to

|c|2(τ2 + 2λ τ + p) = |c|2(τ + λ −
√

λ 2 − p2)(τ + λ +
√

λ 2 − p2) < 0.
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Clearly, when λ < 0, λ 2 > p, we can find a range of τ such that the above inequality
is satisfied, viz.

0 < −λ −
√

λ 2 − p2 < τ < −λ +
√

λ 2 − p2.

From λ < 0 it follows that k L |β | |k|2 < γ − k M |b| |c|. This is the condition (11.12).
Further, from λ 2 > ρ , we obtain

−2
(M |b|

|c| + |β |L
) γ

k |c|2 +
γ2

k2 |c|4 > −2β
cTb
|c|2 .

Using the above expression we obtain the condition (11.13).
Till now we proved that when (11.13) is satisfied, du

dt

∣∣
(11.10) is a negative definite

functional.
Finally, it follows from the inequality (11.14) that u(t,ψ) is a positive definite

functional with an infinitesimal small upper bound and radially unbounded.
Therefore, the zero solution of system (11.10) is absolutely stable in the Hurwitz

angle [0,k]. �

The consequences of Theorems 11.2 and 11.3 exclude each other. Ruan [130]
generalized Theorem 11.2 to obtain the following result.

Theorem 11.4. [130] Suppose that the conditions (11.2), (11.3), and (11.3) hold.
Let

α∗ =
k M |b| |c|

γ2 , β ∗ = L− k ρ , ρ = −cTb.

If one of the following four conditions holds:

1. 0 < α∗ < 1
2. α∗ = 1 and ‖ρ | > L

k
3. 2− L

k ρ
< α∗ < 2 and |ρ | > L

k
> 0

4. 1 < α∗ < 2 +
L

k ρ
and ρ < − L

k
< 0

then the zero solution of system (11.10) is absolutely stable in the Hurwitz angle
[0,k].

Proof. First, for the system (11.1), the criterion of absolute stability is that there
exists a real number β such that

γ2 >
1
2

k |c|(M |b|+ L |β | |c|), (11.17)

γ2 > k |c|(M |b|+ L |β | |c|+ k |c|β cTb), (11.18)

and such that in case of β < 0, there exists

1 + β k |c|2 > 0 (11.19)
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or
4γ2ρ β > (M |b|+ L |β | |c|). (11.20)

However, the condition (11.20) makes G a positive definite quadratic form (G will
be given below.) This leads to a contradiction.

Second, we prove that when the conditions of Theorem 11.3 are satisfied there
exists a real number β satisfying (11.17) and (11.20), and thus the theorem is proved.

For the system (11.10), let us set

W (t,ψ) =
1
2

V 2(t,ψ)+ β
∫ cTψ(0)

0
f (s)ds,

where V stands for a functional satisfying (11.6)–(11.8). Then we deduce

[1
2

+(1− signβ )
1
4

kβ |c|2
]
‖ψ‖2 ≤W (t,ψ) ≤

[D2

2
+(1 + signβ )

1
2

kβ |c|2
]
‖ψ‖2.

From the hypothesis of the theorem, we find that W is radially unbounded and have
an infinitesimal small upper bound. Below we only find a criterion which W satisfies:

dW
dt

∣∣∣∣
(11.10)

≤−h3(|ϕ(0)|)

with h3 being a positive definite continuous nondecreasing function.
Following this line of reasoning, we have

dW
dt

∣∣∣∣
(11.10)

≤ −γ2V 2 + MV |b f (σ)|+ β f (σ)[cTg(t,xt)−ρ f (σ)]

≤ −γ2V 2 + M|b|V | f (σ)|+ |β |L|c|V | f (σ)|− β ρ | f (σ)|2

= −γ2[V 2 −2pV | f (σ)|+ q| f (σ)|2],

where ρ = −cTb > 0, 2p = M|b|+L|β | |c|
γ2 , and q = β ρ

γ2 . Furthermore, it follows from

q(t,ϕ) ∈C[ [0,+∞)×Cn[−r,0],R1] that

V (t,xt)
| f (cTxt(0)| ≥

‖xt‖
f (cTx(t))

≥ 1
k|c|

and
dW
dt

∣∣∣∣
(11.10)

≤−γ2G,

where

G = [V − (p + τ)| f (σ)|]2 + N| f (σ)|2 + 2τ
[
V − 1

k|c| | f (σ)|
]
| f (σ)|,
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and τ > 0 is yet undetermined constant such that N > 0,

N =
2τ
k|c| − p2 −2pτ − τ2 + q.

If τ > 0 exists, it follows from the condition f (0) = 0, 0 < σ f (σ) ≤ kσ2, σ �= 0 that

G ≥ [V − (p + τ)| f (σ)|]2 + N| f (σ)|2

≥ η [V 2(t,xt)+ f 2(cTx(t))]

≥ η(‖xt‖2 + | f (cTx(t))|2)
≥ η‖xt‖2 ≥ η |x(t)|2,

where [V − (p + τ)| f (σ)|]2 + N| f (σ)|2 is a positive definite quadratic form in V ,
| f (σ), viz. h3(|ϕ(0)|) = γ2η |ϕ(0)|2 (η > 0) can hold. Therefore, from Theorem 2.1
in [40], we conclude that the zero solution of system (11.10) is absolutely stable in
the Hurwitz angle [0,k].

Now we are in position to verify that τ (τ > 0) exist. We note that

f (τ) = τ2 + 2λ ∗τ + ρ2 = −N,

where λ ∗ = p− 1
k|c| and p∗ = p2−q. The conditions of existence of τ with τ > 0 and

f (τ) < 0 are p∗ < 0 or λ ∗2 > p∗ > 0 and λ ∗ < 0. Expanding them, we obtain (11.17)
or (11.18) and (11.19). The first part is completed.

Note the criterion condition for G > 0. It can be directly obtained from xt >
1

k|c| | f (σ)|, instead of the existence of τ > 0. If ψ = 0, then G = 0; if ψ �= 0 but
cTψ(0) = 0, then G is a positive definite function ‖ψ‖2. Furthermore, if ψ �= 0 and
cTψ(0) �= 0, then the sufficient conditions for G > 0 are

1
k|c| > p +

√
p2 −q2, p2 −q > 0.

Using these conditions, we obtain (11.17) and (11.18) which in combination with
(11.19) give rise to the following: dW

dt

∣∣
(11.10) is a criterion for a negative definite

function to be smaller than |ϕ(0)|.
Let us turn to the second part of the proof.
First, we analyse the necessary and sufficient conditions for existence of a real

number β , which satisfies (11.17), (11.18), and (11.19).

1. The case of β > 0 satisfying (11.17) and (11.18).
It follows from (11.17) that

0 < β <
2γ2 − kM|c|b

kL|c|2 .

From (11.18), we deduce
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γ2 − kM|c| |b| > β k|c|2(L− kρ).

Hence it can be shown that if

γ2 − k|c|M |b| (11.21)

or if
γ2 = k|c|M b, L− kρ < 0 (11.22)

there exists β with β > 0, which satisfies (11.17) and (11.18). However, if

2− L
kρ

= 1− β ∗

kβ
< α∗ < 2, (11.23)

the existence of β (> 0) implies

L− kρ < 0 (11.24)

and

β >
γ2 − k|c|M |b|
k|c|2(L− kρ)

> 0,

0 < β <
2γ2 − k|c|M |b|

kL|c|2 .

Since
2γ2 − k|c|M |b|

kL|c|2 >
γ2 − k|c|M |b|
k|c|2(L− kρ)

,

we know that there exists a positive number β satisfying (11.17) and (11.18).
If (11.17) and (11.18) are satisfied, (11.21) and (11.22) or (11.23) and (11.24)
holds definitely.

2. The case when β with β > 0 satisfies (11.17), (11.18), and (11.19).

(11.19) is just 0 > β > − 1
k|c|2 . The form (11.17) implies

0 > β >
2γ2 − k|c|M |b|

−kL|c|2 ,

and (11.18) implies

γ2 − k|c|M |b| > −β k|c|2(ρk + L).

In the case of α∗ = 1, there exists β with β > 0 satisfying (11.17), (11.18), and
(11.19) only if kρ + L < 0. Under the condition (4) of the theorem, we can also
verify the existence of β with β < 0 by the same argument.
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3. The case with β = 0 satisfies (11.17) and (11.18).
From (11.17) and (11.18), we have the following independent inequalities

γ2 >
1
2

k|c|M |b|

and
γ2 > k|c|M |b|.

Hence, if γ2 > k|c|M |b|, there exists β = 0, which satisfies (11.17) and (11.18),
and vice versa.

To summarize the above three cases, we know that if one of the four conditions
is satisfied, the zero solution of the system (11.10) is absolutely stable in the Hurwitz
angle [0,k]. �

11.2 FDE Lurie Systems with Multiple Feedback Controls

In 1988, SIAM published a research report – “The Future Development of Con-
trol Theory: Mathematical Prospect.” It was indicated in the report that though the
stability of nonlinear control systems had been paid much attention to, and many
mathematical results had been found, the results are still mainly on single-variable
nonlinear control systems, such as Popov’s principal and Lyapunov method. For mul-
tivariable nonlinear control systems, they are not well understood. It is still difficult
to extend the single-variable case to multivariable case.

In this section, we will introduce a sufficient condition for the absolutely stability
of Lurie systems described by the FDE with multiple feedback controls.

Consider the Lurie functional system with multiple feedback controls:

dx
dt

= g(t,xt)+ ∑m
j=1 b j f j(σ j),

σ j = cT
j x,

(11.25)

where

x, b j, c j ∈ Rn ( j = 1, · · · ,m ≤ n) ρ j = cT
j b j ≥ 0,

ϕ j(0) = 0, 0 ≤ f j(σ j) ≤ k jσ2
j , k j > 0 ( j = 1, · · · ,m),

(11.26)

g(x,xt) satisfies the condition given in Sect. 10.1.
Assume the phase equation of (11.25), given by

dx
dt

= g(t,xt),

x(t) = ψ(t),
(11.27)

satisfies the conditions (11.4)–(11.8) in Sect. 10.1.



11.2 FDE Lurie Systems with Multiple Feedback Controls 289

From condition (11.26), there exists a functional V (t,xt), which satisfies the
conditions (11.6)–(11.8), satisfying:

V (t,xt)
| fi(σi)| ≥

‖xt‖
| fi(σi)| ≥

‖xt‖
ki|ci|‖xt‖ =

1
ki‖ci‖ ,

i.e. | fi(σi)|
V (t,xt)

≤ ki‖ci‖. (11.28)

Thus, ξi = fi(σi)
V ∈ [0,ki‖ci‖], | fi(σi)| = ξV(t,xt), ξi ∈ [0,ki|ci|], ξi is not a constant.

Theorem 11.5. If there exist constants βi i = 1, · · · ,m (1 + βiki‖ci‖2 > 0 when
βi < 0), satisfying that ∀ξ ∈ [0,ki|ci|], the following condition holds

r2 >
m

∑
i=1

(M|bi|ξi + |βi|L|ci|ξi + βicT
i biξ 2

i )+
m

∑
i=1
i�= j

|βicT
i b j|ξiξ j.

Then the zero solution of (11.25) is absolutely stable in the Hurwitz angle [0,ki].

Proof. Use the following Lyapunov functional for (11.25):

W (t,ψ) =
1
2

V 2(t,ψ)+
m

∑
i=1

βi

∫ σi

0
fi(σi)dσi. (11.29)

From the condition (11.26), the following inequality holds:[
1
2

+
m

∑
i=1

(1− sgnβi)
1
4

βiki‖ci‖2

]
‖ψ‖2

≤W (t,ψ) ≤
[

D2

2
+

m

∑
i=1

(1 + sgnβi)
1
2

βiki‖ci‖2

]
‖ψ‖2. (11.30)

We know from (11.30) that the Lyapunov functional (11.29) has infinitely small
upper bound, and it is radially unbounded and positive definite.

From the proof of Theorem 11.1, we have

D+V |(11.25) ≤−γ2V + M‖b f (σ)‖ = −γ2V + M
m

∑
i=1

‖bi‖| fi(σi)‖,

VD+V |(11.25) ≤−γ2V 2 + MV‖b f (σ)‖ = −γ2V 2 + MV
m

∑
i=1

‖bi‖| fi(σi)‖.

Thus,

D+W |(11.25) ≤ V (x,ψ)Vψ ψ ′ +
m

∑
i=1

βi fi(σi)cT
i

[
g(t,xt)+

m

∑
j=1

b j f j(σ j)
]



290 11 Control Systems Described by Functional Differential Equations

≤ −γ2V 2 + MV
( m

∑
i=1

‖bi‖| fi(σi)|
)

+
m

∑
i=1

[
|βi|L‖ci‖V | fi(σi)|+

m

∑
j=1

βicT
i b j f j(σ j) fi(σi)

]

≤ −γ2V 2 +
m

∑
i=1

[
MV‖bi‖| fi(σi)|+ |βi|L‖ci‖V | fi(σi)|

+βicT
i bi f 2

i (σi)+
n

∑
j=1
j �=i

|βicT
i b j‖ fi(σi) f j(σ j)|

]

≤ −V 2
[
γ2 −

m

∑
i=1

(
M‖bi‖ fi(σi)

V(t,ψ)
+ |βi‖|ci‖L

| fi(σi)|
V (t,ψ)

+βicT
i bi

(
fi(σi)

V (t,ψ)

)2

+
n

∑
j=1, j �=i

|βicT
i b j| | fi(σi)|

V (t,ψ)
| f j(σ j)|
V (t,ψ)

)]

≤ −V 2
[
γ2 −

m

∑
i=1

(
M‖bi‖ξi + |βi|L‖ci‖ξi

+βicT
i biξ 2

i +
n

∑
j=1, j �=i

|βicT
i b j|ξiξ j

)]
< 0, if ξ �= 0. (11.31)

Thus, the zero solution of system (11.25) is absolutely stable in the Hurwitz angles
[0,k1], · · · , [0,km]. �

In the following, on the basis of Theorem 11.5, we give two two corollaries,
which are convenient to use in applications.

Corollary 11.6. If βi in Theorem 11.5 satisfies that the matrix

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1cT
1 b1

1
2
|β1cT

1 b2| · · · 1
2
|β1cT

1 bm|
1
2
|β1cT

1 b2| β2cT
2 b2 · · · 1

2
|β2cT

2 bm|
...

. . .
...

1
2
|β1cT

1 bm| · · · βmcT
mbm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is seminegative definite and

n

∑
i=1

(M‖bi‖ki‖ci‖+ |βi|L‖ci‖2ki) < γ2,

then the zero solution of (11.25) is absolutely stable in the above Hurwitz angles
[0,k1], · · · , [0,km].
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Proof. The following conditions are satisfied:

γ2 >
n

∑
i=1

(Mki‖bi‖‖ci‖+ Lki|βi|‖ci‖2)

≥
n

∑
i=1

(M‖bi‖ξi + L|βi|‖ci‖ξi)

≥
n

∑
i=1

(M‖bi‖ξi + L|βi|‖ci‖ξi)+

⎛
⎜⎝ ξ1

...
ξm

⎞
⎟⎠

T

G

⎛
⎜⎝ ξ1

...
ξm

⎞
⎟⎠

=
n

∑
i=1

(M‖bi‖ξi + L|βi|‖ci‖ξi + βicT
i biξ 2

i +
n

∑
j=1, j �=i

|βi|cT
i b j|ξiξ j|.

Thus, the conditions in Theorem 11.5 are satisfied. The proof is complete. �

Let λmax(G) be the largest eigenvalue of matrix G, and li = M‖bi‖+ L|βi|‖ci‖.

Corollary 11.7. Assume βi in Theorem 11.5 satisfies the following conditions:

1. If λmax(G) > 0, γ >
m

∑
i=1

λmax(G)
[
ki‖ci‖+

li
2λmax(G)

]2
2. If λmax(G) < 0, γ > −

m

∑
i=1

l2
i

4λmax(G)

Then, the conclusion in Theorem 11.25 holds.

Proof.
n

∑
i=1

(M‖bi‖ξi + L|βi|‖ci‖ξi + βicT
i biξ 2

i +
n

∑
j=1, j �=i

|βi|cT
i b j|ξiξ j|

=
m

∑
i=1

liξi +

⎛
⎜⎝ ξ1

...
ξm

⎞
⎟⎠

T

G

⎛
⎜⎝ ξ1

...
ξm

⎞
⎟⎠≤

m

∑
i=1

liξi + λmax(G)
m

∑
i=1

ξ 2
i

=
m

∑
i=1

λmax(G)
[
ξi +

li
2λmax(G)

]2 − m

∑
i=1

l2
i

4λmax(G)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m

∑
i=1

λmax(G)
[
ki‖ci‖+

li
2λmax(G)

]2
< γ, λmax(G) > 0,

−
m

∑
i=1

l2
i

4λmax(G)
< γ, λmax(G) < 0.

Thus, the conditions in Theorem 11.5 are satisfied. The proof is finished. �
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11.3 Large-Scale Control Systems Described by RFDE

In this section, we will introduce a notion of the absolute stability of Lurie large-scale
systems described by retarded functional differential equations.

Let xT = ((x(1))T, · · · ,(x(m))T) ∈ Rn, x(i) ∈ Rni , ∑m
i=1 ni = n, J = [0,+∞).

Assume that r > 0, Hi > 0 are constants. Let Cni := C[ [−r,0],Rni ]. For ϕ(i) ∈Cni ,
we define

‖ϕ(i)‖ = sup
−r≤θ≤0

|ϕ(i)(θ )|.

Let CHi
ni = {ϕ(i) ∈Cni : ‖ϕ(i)‖ < Hi}. Then it follows CH

n ⊂CH1
n1 ×·· ·×CHm

nm .
Consider a Lurie direct control large-scale system, which is described by retarded

functional differential equations:

dx(i)

dt
= gi(t,x

(i)
t )−bi fi(σi),

y(i) = cT
i x(i),

σi := dT
i y = ∑m

j=1 di jy( j), i = 1, · · · ,m,

(11.32)

where y ∈ Rm, x(i) ∈ Rni , bi ∈ Rni , ci ∈ Rni , dT
i ∈ Rm, σi ∈ R, gi ∈C[J ×CHi

ni ,Rni ],
gi(t,0) ≡ 0. Moreover, gi(t,ϕ(i)) is Lipschitzian in ϕ(i), namely for give ϕ(i)

1 ,ϕ(i)
2 ∈

CHi
ni , we have

|gi(t,ϕ
(i)
1 )−gi(t,ϕ

(i)
2 )| ≤ Li‖ϕ(i)

1 −ϕ(i)
2 ‖. (11.33)

fi(σi) denotes a scalar continuous function satisfying

fi(0) = 0, 0 < fi(σi)σi ≤ kiσ2
i (σi �= 0), ki > 0, i = 1, · · · ,m.

Suppose that the phase equations are

dx(i)

dt
= gi(t,x

(i)
t ),

x(i)(t) = ϕ(i), τ ≤ t ≤ 0
. (11.34)

We assume that the solution of (11.34) satisfies

|x(i)(t,t0,ϕ(i))| ≤ Die−λi(t−t0)‖ϕ(i)‖, i = 1, · · · ,m, (11.35)

where λi is a positive constant. For any i there exists a functional Vi(t,ϕ(i)) such that

‖ϕ(i)‖ ≤Vi(t,ϕ(i)) ≤ Di‖ϕ(i)‖,
|V1(t,ϕ

(i)
1 )−V2(t,ϕ

(i)
2 )| ≤ Mi‖ϕ(i)

1 −ϕ(i)
2 ‖,

D+Vi(t,ϕ(i))|(11.34) ≤−γ2
i ‖ϕ(i)‖,

(11.36)

where Di,Mi are positive constants, and γ2
i := (1−qi)λi,

Mi := D[λi+(1−qi)λi]/qiλi
i , 0 ≤ qi < 1, i = 1, · · · ,m.
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Theorem 11.8. Suppose that the system (11.32) satisfies (11.33), the system (11.34)
satisfies (11.35), and there are m constants βi i = 1, · · · ,m, such that the matrix Vm×m

is positive definite and
(

C S
ST R

)
2m×2m

is negative definite. Here, V = (v jl)m×m, C =

(ci j)m×m, S = (si j)m×m, R = (ri j)m×m, where

v jl =

⎧⎪⎪⎨
⎪⎪⎩

1
2

α j +
m

∑
i=1

1
4
(1− sgnβi)βiαiki|c jdT

i jc
T
l |, j = l,

m

∑
i=1

1
4
(1− sgnβi)βiαiki|cidT

i jdilcT
l |, j �= l;

ci j =
{−αiγ2

i , i = j,
0, i �= j;

si j =

⎧⎪⎨
⎪⎩

1
2

Licidii|βi|αi +
1
2

cidiiαi +
1
2

Miαi|bi|Di, i = j,

1
2

Li|cid ji|αi |β j|+ 1
2
|cid ji|αi, i �= j;

ri j =

⎧⎪⎨
⎪⎩

αi|βi| |diicT
i bi|−αi/ki, i = j,

1
2
(αi|βi| |di jcT

j b j|+ α j|β j| |d jicT
i bi|), i �= j.

Then the zero solution of the Lurie-type system (11.32) is absolutely stable.

Proof. Let us choose radially unbounded, positive definite Lyapunov functional

u(t,ϕ) =
m

∑
i=1

αiui(t,ϕ(i)),

where

ui(t,ϕ(i)) =
1
2

V T
i (t,ϕ(i))Vi(t,ϕ(i))+ βi

∫ σi

0
fi(s)ds, i = 1, · · · ,m, (11.37)

Vi(t,ϕ(i)) being given by (11.36). It follows from the properties of fi(s) that

0 ≤
∫ σi

0
fi(s)ds ≤ 1

2
kiσ2

i .

Combining the first form of (11.36) with (11.37), we deduce

0 ≤
∫ σi

0
fi(s)ds ≤ 1

2
ki

[ m

∑
j=1

(y(i))TdT
i j

][ m

∑
j=1

di jy(i)
]

=
1
2

ki

m

∑
j, l=1

(y( j))dT
i jd

T
il (y

(l)) =
1
2

ki

m

∑
j, l=1

(x( j))TcidT
i jdilcT

l (x(l)),
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hence

u(t,ϕ) ≤
m

∑
i=1

αiD2
i ‖ϕ(i)‖2 +

m

∑
i=1

1
4
(1 + sgnβi)αiβiki

×
m

∑
j, l=1

|c jdT
i jdilcT

l |‖ϕ( j)‖‖ϕ(l)‖,

u(t,ϕ) ≥
m

∑
i=1

1
2

αi‖ϕ(i)‖2 +
m

∑
i=1

1
4
(1− sgnβi)αiβiki

×
m

∑
j, l=1

|c jdT
i jdilcT

l |‖ϕ( j)‖‖ϕ(l)‖

= (‖ϕ(1)‖, · · · ,‖ϕ(m)‖)V(‖ϕ(1)‖, · · · ,‖ϕ(m)‖)T

≥ λmin(V )
m

∑
i=1

‖ϕ(i)‖2,

where λmin is the minimum eigenvalue of V .
In addition, along the solution of the system (11.32) we have

D+u|(11.32) ≤
m

∑
i=1

[−αiγ2
i ‖ϕ(i)‖2 + αiMi|bi|Di‖ϕ(i)‖| fi(σi)|]

+
m

∑
i=1

αi|βi| | fi(σi)|
m

∑
j=1

|di jcT
j b j| | f j(σ j)|

+
m

∑
i=1

αi|βi| | fi(σi)|
m

∑
j=1

|di jcT
j L j|‖ϕ( j)‖

+
m

∑
i=1

αi

(
σi − fi(σi)

σi

)
fi(σi)

−
m

∑
i=1

αi

(
σi − fi(σi)

ki

)
fi(σi)

≤ wT
(

C S
ST R

)
w−

m

∑
i=1

αi

(
σi − fi(σi)

ki

)
fi(σi),

where wT = (‖ϕ(1)‖, · · · ,‖ϕ(m)‖), C = (ci j)m×m, S = (si j)m×m and R = (ri j)m×m are

the matrices given in the theorem. Since the matrix
(

C S
ST R

)
is negative definite, we

conclude that the zero solution of (11.32) is absolutely stable in the Hurwitz angles
[0,k1], . . . , [0,km]. �
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11.4 Systems Described by NFDE

Consider a Lurie indirect control system described by neutral functional differential
equations:

d
dt

(D(t)xt) = A(t,xt)+ b f (σ),

dξ
dt

= f (σ),

σ(t) = B(t,xt)− rξ ,

xt0 = ϕ , t0 ∈ I, ϕ ∈Cn[−h,0],

(11.38)

where I = [t0,+∞), Cn[−h,0] is a set of continuous functions mapping [−h,0] to Rn,
D(·) : [t0,+∞)×Cn[−h,0]→ Rn, and

D(t)ϕ = ϕ(0)−g(t,ϕ).

Let ‖ϕ‖ := sup−h≤θ≤0 |ϕ(θ )|, xt ∈Cn[−h,0] and xt(θ ) := x(t + θ ),−h ≤ θ ≤ 0.
Suppose that g(t,ϕ) is linear in ϕ . Using Stieltjes integral, we get

g(t,ϕ) =
∫ 0

−h
[dsu(t,s)]ϕ(s),

where u(t,s) is an n× n matrix, t ∈ I, s ∈ [−h,0], satisfying∣∣∣∣∫ 0

−θ
[dsu(t,s)]ϕ(s)

∣∣∣∣≤ l(θ ) sup
−θ≤ξ≤0

|ϕ(ξ )|,

and l(θ ) is a nondecreasing continuous function with θ ∈ [0,h] and l(0) = 0.
We assume that A : I ×Cn[−h,0] → Rn is continuous, b, c ∈ Rn and f (σ) is a

continuous function.
Consider the phase equations:

d
dt

(D(t)x(t)) = A(t,xt),

xt0 = ϕ , t0 ∈ I, ϕ ∈Cn[−h,0].
(11.39)

Definition 11.9. An operator D is said to be uniformly stable if there exist two con-
stants α > 0 and β > 0 such that the solution of difference equations D(t)xt = 0, xt0 =
ϕ , D(t0)ϕ = 0 satisfies

‖xt‖ ≤ β e−α(t−t0)‖ϕ‖, t ≥ t0.

In the following, we use the existence theorem of neutral functional differential
equations, which is uniformly asymptotic stable. This theorem is due to [19].
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Lemma 11.10. Suppose that D(t) and A(t, ·) in system (11.39) are linear bounded
operators mapping Cn[−h,0] to Rn and there exists L1 > 0 such that for t ≥ t0, ϕ ∈
Cn[−h,0],

|D(t)ϕ | ≤ L1‖ϕ‖.
If the zero solution of system (11.39) is uniformly asymptotically stable, then there
exist constants M, γ2, K, and a continuous scalar function V (t,ϕ) on I ×Cn[−h,0]
such that for t ≥ t0, ϕ , ϕ ∈Cn[−h,0]

|D(t)ϕ | ≤V (t,ϕ) ≤ M‖ϕ‖,
d+V
dt

∣∣∣∣
(11.39)

≤−γ2V (t,ϕ),

|V (t,ϕ)−V(t,ϕ)| ≤ K(ϕ −ϕ),

where d+V
dt

∣∣∣
(11.39)

represents the upper right derivative of V along the solution

of (11.39).

Lemma 11.11. Suppose that A(t,0) = 0, and A(t,ϕ) in system (11.39) is locally
Lipschitzian in ϕ (the Lipschitz constant is N, which is uniform in t.) Assume that

|D(t)ϕ | ≤ L1‖ϕ‖, t ≥ t0,

|g(t,ϕ)| ≤ l(h)‖ϕ‖, t ≥ t0.

If the zero solution of (11.39) is uniformly asymptotically stable, then there exist δ0 >
0, M = M(δ0) > 0 together with two positive definite function b(u), c(u)(0≤ u≤ δ0)
and a continuous scalar function V (t,ϕ)(t ∈ I, ϕ ∈ Cn[−h,0]) such that for t ≥ t0,
ϕ1, ϕ2 ∈Cn[−h,0] with ‖ϕi‖ ≤ δ0 (i = 1,2)

|D(t)ϕ | ≤V (t,ϕ) ≤ b(‖ϕ‖),
d+V (t,ϕ)

dt

∣∣∣∣
(11.39)

≤−c(|D(t)ϕ |),

|V (t,ϕ1)−V(t,ϕ2)| ≤ M(ϕ1 −ϕ2).

Lemma 11.12. If D(t) in system (11.39) satisfies the conditions of Lemma 11.11,
then for arbitrary r0 > 0, there exists a constant L = L(r0) such that for ϕ1, ϕ2 ∈
Cn[−h,0] with ‖xt(t0,ϕ1)‖ < r0 and ‖xt(t0,ϕ2)‖ < r0 and for all t ≥ t0

‖xt(t0,ϕ1)− xt(t0,ϕ2)‖ ≤ eL(t−t0)‖ϕ1 −ϕ2‖.
Chukwu [14] generalized the result of [139] to the system of neutral functional

differential equations.

Theorem 11.13. Suppose that the zero solution of system (11.39) is uniformly asymp-
totically stable. Let γ2 and K be defined as in Lemma (11.39). Further, let us assume
that
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1. D(t), A(t, ·), and B(t, ·) are bounded linear operators mapping Cn[−h,0] to Rn

and
|D(t)ϕ | ≤ K‖ϕ‖, t ≥ t0, ϕ ∈Cn[−h,0],

|A(t,ϕ)| ≤ L|D(t)ϕ |, t ≥ t0, ϕ ∈Cn[−h,0],

|B(t,ϕ)| ≤ c|D(t)ϕ |, t ∈ I;

2. f ∈ Fk = { f : f (0) = 0, 0 < σ f (σ) ≤ kσ2, f ∈C(−∞,+∞)} and∫ ±∞

0
f (s)ds = +∞;

3. For θ ∈ [0,h] and a function l(θ ), there exists

4γ2r >

(
c +

K|b|
1− l(θ )

)2

;

4. The operator D is uniformly stable

Then the zero solution of the system (11.38) is absolutely stable in the Hurwitz angle
[0,k].

Proof.

1. From the hypothesis, the conditions of Lemma 11.10 are satisfied. Hence, we
use the same Lyapunov functional V (t,ϕ) as in Lemma 11.10. Suppose that x =
x(t0,ϕ) is the solution of (11.39) and that y = y(t0,ϕ) is the solution of (11.38).
We write D+V |(11.38) as the upper right derivative of V ( f ,ϕ) along the solution
of (11.38). Then we deduce

D+V |(11.38) = lim
r→0+

1
τ
[V (t + τ,yt+h(t,ϕ))−V(t,ϕ)]

≤ lim
r→0+

1
τ
[V (t + τ,yt+h(t,ϕ))−V(t + τ,xt+τ(t,ϕ))]

+ lim
r→0+

1
τ
[V (t + τ,xt+τ(t,ϕ))−V(t,ϕ)],

where x(t,ϕ) is a solution of (11.39) through (t,ϕ), i.e., xt = ϕ .
Clearly, the second part of above inequality is equal to D+V |(11.39).
In the following, we estimate the first part. Noting that

D(t + τ)(yt+τ(t,ϕ)− xt+τ(t,ϕ))

= D(t + τ)(yt+τ (t,ϕ)−D(t)yt(t,ϕ)+ D(t)xt(t,ϕ)−D(t + τ)(xt+τ(t,ϕ)

=
∫ t+τ

t
[A(ξ ,yξ )+ b f (σ(ξ ))]dξ −

∫ t+τ

t
A(ξ ,xξ )dξ

=
∫ t+τ

t
[A(ξ ,yξ )−A(ξ ,xξ )]dξ +

∫ t+τ

t
b f (σ(ξ ))dξ ,
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and that

D(t + τ)(yt+τ (t,ϕ)− xt+τ(t,ϕ))

= [y(t + τ)− x(t + τ)]− [g(t + τ,yt+τ)−g(t + τ,xt+τ)],

we find

|y(t + τ)− x(t + τ)| ≤ |D(t + τ)(yt+τ − xt+τ)|+ l(h)‖yt+τ − xt+τ‖
≤ KL

∫ t+τ

t
‖yξ − xξ‖dξ +

∫ t+τ

t
|b f (σ(ξ ))|dξ

+ l(h)‖yt+τ − xt+τ)‖.
In fact, there exists

sup
−r≤θ≤0

|y(t + τ + θ )− x(t + τ + θ )|= ‖yt+τ − xt+τ‖

≤ sup
−r≤θ≤0

[
KL
∫ t+τ+θ

t
‖yξ − xξ‖dξ + l(h)‖yt+τ+θ − xt+τ+θ‖

+
∫ t+τ+θ

t
|b f (σ(ξ ))|dξ

]

≤ KL
∫ t+τ+θ

t
‖yξ − xξ‖dξ + l(h)‖yt+τ − xt+τ‖

+
∫ t+τ+θ∗

t
|b f (σ(ξ ))|dξ , −τ ≤ θ ∗ ≤ 0.

Hence,

‖yt+τ − xt+τ‖ ≤ 1
1− l(h)

[
KL
∫ t+τ

t
‖yξ − xξ‖dξ +

∫ t+τ

t
|b f (σ(ξ ))|dξ

]
and

lim
τ→0+

1
τ
‖yt+τ − xt+τ‖ ≤ |b f (σ(t))|

1− l(h)
.

Therefore,

D+V |(11.38) ≤−γ2V +
K

1− l(h)
|b f (σ(t))|.

2. Defining

W =
1
2

V 2 +
∫ σ

0
f (s)ds,

we have

D+W |(11.38) ≤−γ2V 2 − r| f (σ)|2 +V
(

K|b|
1− l(h)

+ c
)
| f (σ)|.

The right-hand side of the above expression is a quadratic form with respect to V
and | f (σ)|. From the condition (3), we know that it is negative definite.
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Then, there exists a constant m with m > 0 such that

D+W |(11.38) ≤−m(V 2 + | f (σ)|2) ≤−m|D(t)ϕ |2.
Finally, using Theorem 4.1 from [19], we conclude that Theorem 11.13 is true. �

Ruan [131] studied the absolute stability of the Lurie direct control system of
neutral type:

d
dt

[D(t)xt ] = A(t,xt)+ b f (σ(t)), t ≥ t0,

σ(t) = cTD(t)xt ,

xt0 = ϕ , t0 ∈ I, ϕ ∈Cn[−h,0].

(11.40)

Theorem 11.14. Let the following conditions hold:

1. D(t) and A(t, ·) are linear bounded operator mapping Cn[−h,0] to Rn such that

|D(t)ϕ | ≤ L1‖ϕ‖, |A(t,ϕ)| ≤ L|D(t)ϕ |
for all t ≥ t0.

2. The zero solution of the phase equation (11.39) is globally and uniformly asymp-
totically stable;

3. f ∈ Fk = { f : f (0) = 0, 0 < σ f (σ) ≤ kσ2, f ∈C(−∞,+∞)},∫ ±∞

0
f (s)ds = +∞;

4. The operator D is uniformly stable and it is atomic at 0.
In addition, let l(h) < 1. Then the zero solution of system (11.40) is absolutely
stable in [0,k] if one of the following four conditions is satisfied:
1) 0 < α∗ < 1

2) α∗ = 1 and |ρ | > L
k

> 0

3) 2− L
kρ

< α∗ < 2 and ρ >
L
k

> 0

4) 1 < α∗ < 2 +
L

kρ
and ρ < −L

k
(< 0),

where α∗ = kM|b| |c|/[1− l(h)]γ2, γ2 and M are the same as in Lemma 11.10,
and ρ = −cTb.

Proof.

1. As in Theorem 11.13, we obtain

D+V |(11.40) ≤−γ2V +
M

1− l(h)
|b f (σ(t))|.

2. Let
W =

1
2

V 2 + β
∫ σ

0
f (s)ds,
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where β is the undetermined constant. We get

D+W |(11.40) ≤ −γ2V 2 +V
M|b| | f (σ)|

1− l(h)
+ β f (σ)σ

≤ −γ2V 2 −ρβ | f (σ)|2 +
[

M|b|
1− l(h)

+ |β |L |c|
]

V | f (σ)|

= −γ2[V 2 −2pV | f (σ)|+ q| f (σ)|2],
where

2p =
[

M|b|
1− l(h)

+ |β | |c|L
]
/γ2, q =

β ρ
γ2 .

In the remainder of this proof, we proceed along the line of Theorem 11.4
with M replaced by M/[1− l(h)]. We obtain that if one of the four conditions is
satisfied, then we can choose β such that

D+W |(11.40) ≤−m|D(t)ϕ |2, m > 0.

The proof of the theorem is completed. �

11.5 Control Systems in Hilbert Spaces

In this section, we introduce a notion of the absolute stability of the Lurie control
system in Hilbert space [15].

Consider the Lurie indirect control system:

dx
dt

= Ax+ bu,

du
dt

= ϕ(σ),

σ = (c,x)−ρu,

(11.41)

where the operator A is either bounded, or is assumed to generate C0 strongly contin-
uous group T (t), t ∈ (−∞,+∞) = R. On a real Hilbert space X , we denote an inner
product by (·, ·) and a norm by | · |. Above, b,c ∈ X , u,ρ ∈ R, and ϕ : R → R is a
continuously uniformly Lipschitzan nonlinear function which satisfies the following
properties:

σϕ(σ) > 0 for σ �= 0, ϕ(0) = 0,

|ϕ(σ)| ≤ K(|σ |) for all σ ∈ R,

where K(s) are some monotonically nondecreasing function, s ∈ R+ = (0,+∞).
Assume that the linear phase equation

dx
dt

= Ax (11.42)



11.5 Control Systems in Hilbert Spaces 301

is exponentially stable, i.e., that there exist constants M ≥ 1 and α > 0 such that

|T (t)|L(x) ≤ Me−αt , t ≥ 0, (11.43)

where L(x) is the Banach space of bounded linear operator from X to X . Because
of the condition (11.43), it follows from Theorem 2.1 and Theorem 2.2 in [114] that
there is an unique symmetric positive definite bounded operator P on X such that

(PAx,x)+ (x,PAx) = −(x,x), (11.44)

where T (t) is a strongly continuous group satisfying

(A∗Px,x)+ (PAx,x)≤−λ‖x‖2 (11.45)

for any λ with 0 < λ < 1. If T (t) is a strongly continuous semigroup and A is
bounded, a similar result is given by Walker [147]. When A satisfies

(x,(A−wI)x)X ≤ 0

for real w ∈ R and for all x in the domain of A, it is clear that (11.41) can be regarded
as equations in the Hilbert space H = X× R with the inner product (·, ·) defined by

((x1,r1),(x2,r2)) = (x1,x2)+ r1r2.

Theorem 11.15. [15]

1. Let the origin be the only singular point of (11.41)
2. Let P be a unique symmetric positive definite bounded operator on H given

by (11.45)
3. Let λ in (11.45) satisfy

λ ρ >
∣∣∣Pb +

c
2

∣∣∣2
4.
∫ σ

0 ϕ(s)ds → +∞ as σ → +∞

Then the zero solution of (11.41) is absolutely stable.

Proof. Since (11.42) is uniformly exponentially stable, there exists an unique sym-
metric positive definite bounded operator on H such that

(A∗Px,x)+ (PAx,x)≤−λ |x|2

for some λ (0 < λ ≤ 1). We use P to define the functional on H:

V (x,µ) = (Ax+ bµ ,P(Ax+ bµ)).

Let

U(x,µ) =
∫ σ

0
ϕ(s)ds, σ = (c,x)−ρµ ,
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and
W = V +U.

It is easy to prove that W is positive definite. Since P is symmetric and positive
definite if and only if

δ |x|2 ≤ |(x,Px)| ≤ l|x|2,
where |P| ≤ l, we have the estimate

δ |Ax+ bµ |2 +
∫ σ

0
ϕ(s)ds

≤W (x,µ) ≤ l|Ax+ bµ |2 +
∫ σ

0
ϕ(s)ds,

so that

dV
dt

∣∣∣∣
(11.41)

=
( d

dt
(Ax+ bµ),P(Ax+ bµ)

)
+
(

Ax+ bµ ,
d
dt

(Ax+ bµ)
)

= (A(Ax+ bµ)+ bϕ(σ),P(Ax+ bµ))

+(Ax+ bµ ,P(A(Ax+ bµ)+ bϕ(σ)))

= (Ax+ bµ ,PA(Ax+ bµ))+ (PA(Ax+bµ),Ax+bµ)

+(Ax+ bµ ,Pbϕ(σ))+ (Pbϕ(σ),Ax+ bµ), (11.46)

dU
dt

∣∣∣∣
(11.41)

= ϕ(σ)σ̇ = [(c,Ax+ bµ)−ρϕ(σ)]ϕ(σ)

= (Ax+ bµ ,c)ϕ(σ)−ρϕ2(σ). (11.47)

Hence, using (11.46), (11.47), (11.44), we deduce

dW
dt

∣∣∣∣
(11.41)

= (A∗P(Ax+ bµ),Ax+ bµ)+ (PA(Ax+bµ),Ax+bµ)

+(Ax+ bµ ,Pbϕ(σ))+ (Pbϕ(σ),Ax+ bµ)

+(Ax+ bµ ,c)ϕ(σ)−ρϕ2(σ)

≤ −λ |Ax+ bµ |2 + 2
(

Ax+ bµ ,Pb +
c
2

)
ϕ(σ)−ρϕ2(σ).

Therefore,the condition λ ρ >
∣∣Pb + c

2

∣∣2 leads to

dW
dt

∣∣∣∣
(11.41)

≤ −λ
[
|Ax+ bµ |2 + 2

∣∣∣Ax+
c
2

∣∣∣ϕ(σ)−ρϕ2(σ)
]

≤ −k[|Ax+ bµ |2 + ρϕ2(σ)] ≤ 0, 0 < k 	 1,

and
dW
dt

∣∣∣∣
(11.41)

= 0 if and only if x = 0 and µ = 0. As a result, we write
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S :=
{
(x,µ) ∈ H :

dW
dt

∣∣∣∣
(11.41)

= 0
}

= {0,0},

W (x(t),µ(t)) ≤W (x(0),µ(0)), t ≥ 0.

Therefore, every solution (x,µ) ∈ H is bounded. The orbits of (11.41) form a pre-
compact subset of H. The invariance principle of Hale [40] (p. 50) yields (x(t),
µ(t)) → 0 as t → +∞. This concludes the proof. �

In the following, we will apply the idea of Ladas and Lakshmikantham [54] to
generalize the results to the system with nonlinear phase equation:

ẋ = f (x)+ bµ ,

µ̇ = ϕ(σ),

σ = (c,x)−ρµ ,

(11.48)

where b, c, µ are defined as in (11.41) and f : X → X is a continuous Frechet differ-
entiable function whose Frechet derivative at x is A(x). To ensure that the solution
of (11.48) exists, we shall always assume, for example, that ϕ : R → R is contin-
uous, uniformly Lipschitzian and that − f is a monotone function. In other words,
there exists a constant M such that

( f (u)− f (v),u− v)≤ M|u− v|2, u,v ∈ X .

We now state a basic stability comparison theorem for the system

dx
dt

= l(t,x), (11.49)

where l : R+ ×X → X is continuous.

Lemma 11.16. Assume that the following conditions hold:

1. V ∈ (R+ ×X ,R+) and for (t,x1) and (t,x2) ∈ R+ ×X, there exists

|V (t,x1)−V(t,x2)| ≤ L(t)|x1 − x2|,
where L(t) ≥ 0 and is continuous on R+

2. There exists a function g ∈C[R+×R+, R] such that for each (t,x) ∈ R+×R,

D+V (t,x) := lim
h→0+

1
h
[V (t + h,x + hl(t,x))−V(t,x)]

≤ g(t,V (t,x))

3. For each (t0,r0) ∈ R+×R+, the maximal solution r(t,t0,r0) of the scalar initial
value problem

dr
dt

= g(t,r),

r(t0) = r0

(11.50)

exists for t > t0
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4. f (t,0) ≡ 0,g(t,0) ≡ 0 and V (t,0) ≡ 0, t ∈R+

5. There exist functions a(r) and b(r) ∈ K such that

b(‖x‖)≤V (t,x) ≤ a(‖x‖) for (t,x) ∈ R+×X

Then if the zero solution of (11.50) is uniformly asymptotically stable in the large
then the zero solution of (11.49) has the same property.

Theorem 11.17. Let in (11.48) f (0) = 0 and ϕ(0) = 0. Again let A(x) be the Frechet
derivative of f (x) at x. Suppose that

1. There exists a symmetric positive definite operator P such that

((PA(x)+ A∗(x)P)y,y) ≤−λ |y|2

for all x and y in X and some λ > 0, where A∗ is the adjoint of A
2. ϕ(s)sgn(s) > 0, ϕ(s)sgn(s) → +∞ as |s| → +∞,

ϕ ′(s) ≥ 1
2

λ1 for some λ1 ≥ |P|

3. | f (x)+ bµ | → +∞ as |x|+ |µ | → +∞
4. λ ρ >

∣∣Pb + c
2

∣∣2
Then the zero solution of system (11.48) is absolutely stable.

Proof. Let H = X×R be equipped with the inner product (·, ·) defined by

((x1,r1),(x2,r2))H = (x1,x2)+ r1r2.

Let V : H → R be defined by
V = W +U,

where

W = ( f (x)+ bµ , p( f (x)+ bµ)),

U =
∫ σ

0
ϕ(s)ds.

Since P is positive definite and symmetric, there exist positive constants λ1 and λ2
such that

λ2| f (x)+ bµ | ≤ λ1| f (x)+ bµ |2,
with λ1 ≥ |P|. Hence

λ2| f (x)+ bµ |2 +
∫ σ

0
ϕ(s)ds

≤V (x,µ) ≤ λ1| f (x)+ bµ |2 +
∫ σ

0
ϕ(s)ds. (11.51)
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It follows from the condition (2) that
∫ σ

0 ϕ(s)ds →+∞ as σ →+∞. Thus, by (3) and
(11.51), we find that the condition (5) of Lemma 11.16 is satisfied. Noting

dW
dt

∣∣∣∣
(11.48)

=
( d

dt
( f (x)+ bµ),P( f (x)+ bµ)

)
+
(

f (x)+ bµ ,P
d
dt

( f (x)+ bµ)
)

= (A(x)[ f (x)+ bµ ]+ bϕ(σ),P[ f (x)+ bµ ])

+( f (x)+ bµ ,P{A(x)[ f (x)+ bµ ]+ bϕ(σ)})
= (PA(x))[ f (x)+ bµ ], f (x)+ bµ)

+(A∗(x)P[ f (x)+ bµ ], f (x)+ bµ)

+2(Pbϕ(σ), f (x)+ bµ)

≤ −λ | f (x)+ bµ |2 + 2(Pbϕ(σ), f (x)+ bµ),

and
dU
dt

∣∣∣∣
(11.48)

= ϕ(σ)σ̇ = ϕ(σ)(c, f (x)+ bµ)−ρϕ2(σ),

we obtain

dV
dt

∣∣∣∣
(11.48)

≤ dW
dt

∣∣∣∣
(11.48)

+
dU
dt

∣∣∣∣
(11.48)

≤ −λ | f (x)+ bµ |2 + 2ϕ(σ)
(

Pb +
c
2
,b(x)+ bµ

)
−ρϕ2(σ)

≤ −λ | f (x)+ bµ |2 + 2|ϕ(σ)|
∣∣∣Pb +

c
2

∣∣∣ | f (x)+ bµ |−ρϕ2(σ).

The condition λ ρ >
∣∣Pb + c

2

∣∣2 implies that there exists 0 < λ2 	 1 such that

dV
dt

∣∣∣∣
(11.48)

≤−λ3[| f (x)+ bµ |2 + ϕ2(σ)].

By virtue of (11.51), we have the inequality{
V (x,u)−

∫ σ

0
ϕ(s)ds

} 1
λ1

≤ | f (x)+ bµ |2,

and thus
dV
dt

∣∣∣∣
(11.48)

≤−λ3

{
V
λ1

− 1
λ1

∫ σ

0
ϕ(s)ds+ ϕ2(σ)

}
.

Since ϕ2(0) = 0, it follows that

ϕ2(σ) = 2
∫ σ

0
ϕ ′(s)ϕ(s)ds.
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Consequently,

1
λ1

∫ σ

0
ϕ(s)ds−ϕ2(s) =

∫ σ

0

[
1
λ1

−2ϕ ′(s)
]

ϕ(s)ds ≤ 0.

Using ϕ(s)sgn(s) > 0 and 1
2 λ1−ϕ ′(s)≤ 0, the condition (2), and the above remarks,

we obtain the final inequality

dV
dt

∣∣∣∣
(11.48)

≤−λ3

λ1
V (x,u).

Thus, the comparison equation takes the form

dr
dt

= −λ3

λ1
r(t),

r(t0) = r0.

(11.52)

It is easy to prove that the solution

r(t) = r0 exp
[
− λ3

λ1
(t − t0)

]
, t ≥ t0

of (11.52) is uniformly asymptotically stable. Theorem 3.1 in [54] yields the absolute
stability of the zero solution of (11.48). �

11.6 Lurie Systems Described by PFDE

In this section, the necessary and sufficient condition for absolute stability of Lurie
control system is extended to a more general Lurie system described by abstract
functional differential equation, which is also called partial functional differential
equation [42].

Let X be a real Banach space, Xn =

n︷ ︸︸ ︷
X ×·· ·×X , Xm =

m︷ ︸︸ ︷
X ×·· ·×X , X p =

p︷ ︸︸ ︷
X ×·· ·×X , m + p = n, C = C([−r,0],X), Ck = C([−r,0],Xk)k = m, p,n, ϕ ∈ Cn,
ψ ∈ Cm, η ∈ Cp. Denote ‖ϕ‖Cn = sup

−r≤θ≤0
|ϕ |Xn , ‖ψ‖Cm = sup

−r≤θ≤0
|ψ |Xm , ‖η‖Cm =

sup
−r≤θ≤0

|η |X p .

Consider the initial value problem of the following abstract functional differential
equation:

du
dt

= Au + L(t,ut)+ f (t,ut), t ≥ t0 > 0,

u = ϕ(t), t ∈ [t0 − r,t0],
(11.53)

where u = (u1, · · · ,un)T ∈ Xn, x = (u1, · · · ,um)T ∈ Xm, y = (um+1, · · · ,un) ∈ X p,
L = (L1, · · · ,Lm)T, ϕ =(ϕ1, · · · ,ϕn)T = (ψ1, · · · ,ψm,ηm+1, · · · ,ηn)T = (ψ ,η)T, ut =
u(t + θ ) θ ∈ [t0 − r,t0], A is a linear operator on Xn.

Assume equation (11.53) satisfies the global existence condition of the solution
of Cauchy problem, we have the following two lemmas.
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Lemma 11.18. If the partial variable solution of following linear partial function
differential equation

dv
dt

= Av + L(t,vt), t ≥ t0 > 0,

v = ϕ(t), t ∈ [t0 − r,t0],
(11.54)

satisfies the following inequality:

‖xt(t0,ϕ)‖Cm ≤ K(t0)‖ϕ‖Cme−
∫ t
t0

ε(s)ds
, (11.55)

where ε(t) ∈C[R+,R], K(t) ∈C[R+,R+], then there exists a Lyapunov function

V (t,ϕ) ∈C[R+×Cn,R+],

satisfying the following conditions:

1. ‖ψ‖Cm ≤V (t,ϕ) ≤ K(t)(‖ψ‖Cm +‖η‖Cp)
2. ‖V (t,ϕ)−V(t, ϕ̃)‖ ≤ K(t)(‖ψ − ψ̃‖Cm +‖η − η̃‖Cp)
3. D+V |(11.53) ≤−ε(t)V (t,ϕ)

Proof. Construct the following Lyapunov function

V (t,ϕ) = sup
τ≥0

‖xt+τ(t,ϕ)‖Cm e
∫ t+τ
t ε(s)ds.

It is obvious that the condition (1) is satisfied. We then have

‖V (t,ϕ)−V(t, ϕ̃)‖ = sup
τ≥0

‖xt+τ(t,ϕ)‖Cm e
∫ t+τ

t ε(s)ds

− sup
τ≥0

‖xt+τ(t, ϕ̃)‖Cm e
∫ t+τ

t ε(s)ds

≤ sup
τ≥0

‖xt+τ(t,ϕ − ϕ̃))‖Cme
∫ t+τ

t ε(s)ds

≤ K(t)‖ϕ − ϕ̃‖Cn ≤ K(‖ψ − ψ̃‖Cm +‖η − η̃‖Cp).

Thus, the condition (2) is satisfied. Further, we obtain

D+V |(11.53) = lim
h→0+

1
h
(V (t + h,Vt+h(t,ϕ)−V(t,ϕ))

= lim
h→0+

1
h

[
sup
τ≥0

‖xt+h+τ(t + h,Vt+h(t,ϕ))‖Cm e
∫ t+h+τ

t+h ε(s)ds

− sup
τ≥0

‖xt+h(t,ϕ)‖Cme
∫ t+τ

t ε(s)ds
]

= lim
h→0+

1
h

[
sup
τ≥h

‖xt+τ(t,ϕ)‖Cm e
∫ t+h+ε

t+h ε(s)ds

− sup
τ≥0

‖xt+h(t,ϕ)‖Cme
∫ t+τ

t ε(s)ds
]
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≤ lim
h→0+

1
h
(sup

τ≥0
‖xt+τ(t,ϕ)‖)Cm e

∫ t+τ
t ε(s)ds

(
e−
∫ t+h

t ε(s)ds −1
)

≤ −ε(t)V (t,ϕ).

Thus, the condition (3) is satisfied. �

Lemma 11.19. Suppose that the following conditions are satisfied:

1. The partial variable solution xt(t0,ϕ) satisfies equation (11.55) and there exists
W (t,r)∈C[R+×R+,R+], which is monotonically nondecreasing w.r.t. r, satisfying

| f (t,ϕ)|Xn ≤W (t,‖ψ‖Cm)

2. The initial value problem of the following system

dz
dt

= −ε(t)z+ K(t)W(t,z),

z(t0) = z0 ≥V (t0,ϕ),
(11.56)

has a maximum right solution Zm(t,t0,z0) in R+.

Then there exists the following estimation for the partial variable solution xt(t0,ϕ)
of system (11.53):

‖xt(t0,ϕ)‖Cm ≤ Zm(t,t0,z0), t ≥ t0. (11.57)

Proof. From Lemma 11.18, we know that there exists a Lyapunov function V (t,ϕ)
satisfying the conditions (1), (2), and (3). Then,

D+V(11.53) ≤ lim
h→0+

1
h
(V (t + h,Vt+h(t,ϕ))−V (t,ϕ))

+ lim
h→0+

1
h
(V (t + h,ut+h(t,ϕ)−V(t + h,Vt+h(t,ϕ))

≤ −ε(t)V (t,ϕ)−V lim
h→0+

‖ut+h −Vt+h‖Cm

h
. (11.58)

From the formula of variation of constants, we have

ut+h −Vt+h =
∫ t+h

t
U(t + h,x) f (s,us)ds.

Thus,

lim
h→0+

‖ut+h −Vt+h‖Cm

h
≤ | f (t,ϕ)|Xn . (11.59)

Substituting equation (11.59) into (11.58) yields

D+V(11.53) ≤ −ε(t)V (t,ϕ)+ K(t)| f (t,ϕ)|Xn

≤ −ε(t)V (t,ϕ)+ K(t)W(t,‖ψ‖Cn)

≤ −ε(t)V (t,ϕ)+ K(t)W(t,V (t,ϕ)).
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Noting that ϕ ∈Cn is arbitrary, we have

D+V (t,ut(t0,ϕ)) ≤−ε(t)V (t,ut(t0,ϕ))+ K(t)W(t,V (t,ut(t0,ϕ)).

From comparison principle and the condition (1) of Lemma 11.18 it is easy to obtain
that

‖xt(t0,ϕ)‖Cm ≤V (t,ut(t0,ϕ)) ≤ Zm(t,t0,z0). �

Defining the inner product (x,x) in Banach space X results in a Hilbert space.
Now consider the following Lurie control system described by the abstract

functional differential equation:

du
dt

= Au + L(t,ut)+ b f (t,σt), t ≥ t0 ≥ 0,

u = ϕ , t ∈ [t0 − r,t0], σt0 = cTu,

(11.60)

where L =
∫ 0
−r dη(t,θ )ϕ(θ ) is a Stieltjes integral, f ∈C[I×Cn,X ], 0 < (σt , f (t,σt)≤

k(σt ,σt) when σt �= 0, u = (u1, · · · ,un)T, b = (b1, · · · ,bn)T, c = (c1, · · · ,cn)T.

Definition 11.20. If for any f (·) satisfying ( f (t,σt ),σt) > 0, σt �= 0, then the zero
solution of system (11.60) is globally asymptotically stable, the zero solution of
equation (11.60) is absolutely stable.

Suppose Cn �= 0. Under the transformation

W = G(gi j)u,

where

gi j =

⎧⎪⎨
⎪⎩

1 i = j = 1, · · · ,n− 1,

0 i �= j, i = 1, · · · ,n− 1, j = 1, · · · ,n,

c j j = 1, · · · ,n, i = n,

then system (11.60) is transformed into

dw
dt

= Ãw+ L̃(t,wt )+ b̃ f (t,wn,t ), t ≥ t0,

w = ϕ̃ , t ∈ [t0 − r,t0],
(11.61)

where w = (w1, · · · ,wn)T = (u1, · · · ,un−1,σ)T, Ã and L̃ have the same properties as
A and L, respectively. Then the zero solution of system (11.60) is absolutely stable if
and only if the zero solution of system (11.61) is absolutely stable.

Theorem 11.21. If the solution vt(t0,ϕ) of the following linear system

dv
dt

= Av + L(t,vt), t ≥ t0,

v(t) = ϕ , t ∈ [t0 − τ,t0],
(11.62)
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satisfies the following inequality

‖vt(t0,ϕ)‖Cn ≤ K‖ϕ‖Cne−α(t−t0), α > 0,

then the zero solution of (11.60) is absolutely stable if and only if the zero solution
of (11.61) is absolutely stable w.r.t. the single variable Wnt(t0,ϕ).

Proof. Necessity. Assume that the zero solution of (11.60) is absolutely stable and
‖c‖ = M, ∀ε > 0, then there exists δ (ε) > 0 satisfying

‖ut(t,ϕ)‖Cn < ε/M, if t ≥ t0, ‖ϕ‖Cn < δ .

Since W = Gu, ϕ̃ = Gϕ , or ϕ = c−1
T ϕ̃ , we have

‖Ŵnt(t0, ϕ̃)‖C ≤ ‖C‖‖ut(t0,ϕ)‖Cn < ε, t ≥ t0, if ‖ϕ̃‖Cn < δ/‖G−1‖.

For any ϕ ∈Cn, from the condition lim
t→+∞

‖ut(t0,ϕ)‖Cn = 0, we have

lim
t→+∞

‖Wnt(t0, ϕ̃)‖C ≤ M lim
t→+∞

‖ut(t0,ϕ)‖Cn = 0.

The necessity is proved.
Sufficiency. Suppose that the zero solution of (11.61) is absolutely stable w.r.t.

Wnt(t, ϕ̃). According to the formula of variation of constants [42], any non-zero
solution of (11.60) can be expressed as

ut(t0,ϕ) = u(t,t0)ϕ +
∫ t

t0
u(t,s)X0 b f (s,σs)ds

= u(t,t0)ϕ +
∫ t

t0
u(t,t0)X0 b f (s,Wns(t0, ϕ̃)ds, (11.63)

where X0 : [−r,0] → B(x,x) is given by X0(0) = 0, and X0(θ ) = Id for −r ≤ θ ≤ 0,
where Id is a unit matrix. Thus,

‖ut(t0,ϕ)‖Cn ≤ Ke−α(t−t0)‖ϕ‖Cn +
∫ t

t0
Ke−α(t−s)‖b‖| f (s,Wns(t0, ϕ̃)|X ds.

∀ε > 0, due to Wnt(t0, ϕ̂) → 0 as t → +∞, there exists t∗ > t0 satisfying∫ t

t∗
Ke−α(t−s)‖b‖| f (s,Wns(t0, ϕ̃)|X ds < ε/3.

Furthermore, we know that f is continuous, the solution of (11.60) is continuous
w.r.t. the initial conditions, and its zero solution is absolutely stable w.r.t. Wns(t0, ϕ̃),
then there exists δ1(ε) > 0 satisfying

∫ t∗

t
Ke−α(t−s)‖b‖| f (s,Wns(t0, ϕ̂)|X ds < ε/3,
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if ‖ϕ‖Cn < δ1(ε) and ‖ϕ̃‖Cn is sufficiently small. Let δ2(ε) < ε/3k, and δ (ε) =
min(δ1(ε),δ2(ε)), we have

‖ut(t0,ϕ)‖ <
ε
3

+
ε
3

+
ε
3

= ε, if ‖ϕ‖Cn < δ (ε).

Thus, the zero solution of system (11.60) is stable.
To prove the zero solution of equation (11.60) being absolutely stable, we need

to show
‖ut(t0,ϕ)‖Cn → 0, as t → +∞.

From the condition

ut(t0,ϕ) = u(t,t0)ϕ +
∫ t

t0
u(t,s)X0 b f (s,σs)ds

= u(t,t0)ϕ +
∫ t

t0
u(t,s)X0 b f (s,Wns(t0, ϕ̃))ds,

we have

‖ut(t0,ϕ)‖Cn ≤ Ke−α(t−t0)‖ϕ‖+
∫ t

t0
Ke−α(t−s)‖b‖| f (s,Wns(t0, ϕ̃))|X ds

= Ke−α(t−t0)‖ϕ‖Cn +

∫ t
t0 Keαs‖b‖| f (s,Wns(t0, ϕ̃))|X ds

eαt .

Applying the L’Hospital’s rule yields

0 ≤ lim
t→+∞

‖ut(t0,ϕ)‖

≤ lim
t→+∞

Ke−α(t−t0)‖ϕ‖Cn + lim
t→+∞

‖b‖k
‖ f (t,Wnt(t0, ϕ̂))|

α
= 0.

Thus, the zero solution of (11.60) is absolutely stable. �
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Absolute Stability of Hopfield Neural Network

In this chapter, we first discuss the relationship between the stability of Hopfield neu-
ral network, Lyapunov stability, and the invariant principle in the sense of LaSalle.
Next, we describe the connection and difference between the Hopfield neural net-
work and the Lurie control systems with multiple nonlinear controllers. Then, we
introduce the concept of absolute stability for neural networks, and present the
sufficient and necessary conditions for two types of neural networks. Finally, we
discuss various sufficient conditions for the absolute stability of Hopfield neural net-
work. Partial materials are chosen Forti et al. [27, 28] and Kaskurewicz et al. [50]
(Sects. 12.3 and 12.4), Liao et al. [87, 88, 90] (Sect. 12.5), and Liu [98] (Sect. 12.6).

12.1 Hopfield Neural Network

Recently, the study of neural networks and applications has attracted many
researchers from different disciplines. Neural networks have special nonlinear struc-
ture and method of information processing, in analogy of human being’s brain. Great
success has been achieved in many different areas and may solve some difficult prob-
lems, which are difficult to be solved by conventional methods. In particular, the
development of Hopfield neural network has motivated a new high tide in the study
of neural network.

In the 1980s of last century, Hopfield and Tank [43] developed a new continuous
neural network model – the Hopfield model, described by the differential equations:

Ciu̇i = − ui

Ri
+

n

∑
j=1

Ti jVj + Ii ,

Vi = gi(ui),
(12.1)

where Ti j = Tji (i, j = 1,2, . . . , n), the resister Ri and the capacitor Ci are paral-
lel connected, simulating the output time constant of the ith biological neuron, the
conductor T (Ti j)n×n is an n×n matrix, called weight matrix or connection matrix,
describing the strength of connections between neurons; ui is the input voltage to the
ith neuron, and Vi is the output; and

Vi = gi(ui), i = 1, 2, . . . , n,

is the ith nonlinear, continuously differentiable and monotone increasing function,
i.e., g′i(ui) > 0.

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, Second Edition.
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Under the symmetry Ti j = Tji (i, j = 1,2, . . . , n), Hopfield constructed the fol-
lowing so-called computational energy function:

E(V ) = − 1
2

n

∑
i=1

n

∑
j=1

Ti jViVj −
n

∑
i=1

ViIi +
n

∑
i=1

1
Ri

∫ Vi

0
g−1

i (s) ds. (12.2)

Differentiating E with respect to time t along the trajectory of (12.1) yields

dE
dt

∣∣∣∣
(12.1)

=
n

∑
i=1

∂E
∂Vi

dVi

dt

=
n

∑
i=1

[
− 1

2

n

∑
j=1

Ti jVj − 1
2

n

∑
j=1

TjiVj +
ui

Ri
− Ii

] dVi

dt

=
n

∑
i=1

[
− 1

2

n

∑
j=1

(Ti j −Tji)Vj −
( n

∑
j=1

Ti jVj − ui

Ri
+ Ii

)] dVi

dt

=
n

∑
i=1

−Ci
dui

dt
dVi

dt

= −
n

∑
i=1

Ci (gi(ui))′
(dui

dt

)2 ≤ 0.

Thus,

dE
dt

∣∣∣∣
(12.1)

= 0 ⇐⇒ dui

dt
= 0 (i = 1,2, . . . , n)

⇐⇒ − ui

Ri
+

n

∑
j=1

Ti jVj + Ii = 0 (i = 1,2, . . . , n). (12.3)

According to (12.3), we still cannot assure that the equilibirum point u = u∗ is
stable in the sense of Lyapunov, as different solutions starting from different initial
points may converge to different equilibrium point u∗. Also, we cannot conclude that
u∗ must be the minimal point of E(v). It might be a reflection point since first-order
derivative being zero is only the necessary (not sufficient) condition to have minimal
value.

It should be noted that Hopfield’s stability means “movements go to equilibrium,”
or “the attraction of the set for equilibrium points.” It is different from Lyapunov
stability. In Lyapunov stability theory, the equilibrium point is known, and the Lya-
punov function and its derivative take opposite signs in the neighborhood of the
equilibrium point, while the equilibrium point of Hopfield network is unknown, and
it is not required that E and dE

dt should have opposite signs.
LaSalle first proposed the LaSalle’s invariant principle [58] that a solution

x(t,t0,x0) starting from some bounded region in Rn is kept bounded in this region,
and one then constructs a Lyapunov function V such V̇ ≤ 0 to show that this solu-
tion is asymptotically approaches a large object (the largest invariant set). However,
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the LaSalle’s principle does not mention stability. Therefore, it is necessary to distin-
guish the difference between the Hopfield stability, Lyapunov stability, and LaSalle
invariant principle.

The advantage of Hopfield’s method is based on the attraction of electronic net-
work and dynamical systems and simulation of differential equations to quickly,
automatically find the fixed points (or equilibrium points) of system (12.1). This
provides new ideas in developing NN computers, which is the most difficult part
encountered using other methodologies, and this is perhaps most attractive part of
neural networks. More precisely, the stability of Hopfiled neural network is to use the
interaction of equilibrium points to find the equilibrium points, rather than studying
the stability of equilibrium points.

The stability of neural networks is one of the fundamental problems in both the-
oretical development and practical applications. It not only provides the theoretical
basis for optimal computations, but is also fundamental in studying convergence of
most learning and training methods, as these problems are finally transformed to
ones of considering stability and attractive property.

12.2 Relation and Difference of Hopfield Neural Network
and Lurie System

For convenience in comparison of Hopfield neural network and Lurie systems with
multiple nonlinear controls, we introduce some transformations to system (12.1). Let

di =
1

CiRi
, bi j =

Ti j

Ci
,

then the Hopfield neural network (12.1) becomes

u̇i = −diui +
n

∑
i=1

bi jg j(u j)+
Ii

Ci
. (12.4)

The original network defines the function g j(u j) as Sigmoidal type of function, i.e.,
D+gi(ui) > 0 and |gi(ui)| ≤ K. Now we consider a more general class function.

gi ∈ F[0,k] =
{

gi|0 < uigi(ui) < kiu2
i , gi is continuous and gi(0) = 0

}
.

Therefore, the nonlinear functions in neural networks and Lurie control systems are
basically same. More precisely, a nonlinear function in neural network requires that
the function is monotone increasing and has its maximum slope at the origin. So
strictly speaking, the nonlinear functions in neural networks belong to a subset of the
nonlinear functions of Lurie control systems.

Let ui = u∗i be an equilibrium point of (12.4), and

f (xi) = gi(ui)−gi(u∗i ) = gi(xi + u∗i )−gi(u∗i ),
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then (12.4) can be rewritten as

ẋi = −dixi +
n

∑
j=1

bi j f j(x j). (12.5)

Since fi(0) = gi(u∗i )−gi(u∗i ) = 0 and f ′i = g′i > 0 (i = 1,2, . . . ,n), we have

fi ∈ F[0,k] =
{

fi|0 < xi fi ≤ kix2
i , fi(0) = 0, f is continuous

}
.

The above discussions give the following results.

1. Hopfield neural network is actually a special case of the more general Lurie
systems with multiple nonlinear controls, described by

ẋi =
n

∑
j=1

ai jx j +
n

∑
j=1

bi j f j(σ j),

σ j =
n

∑
i=1

ci xi,

(12.6)

in which letting ai j = 0, i �= j, aii = −di < 0, and σ j = x j, c j = 1, ci = 0, i �= j
yields the Hopfield neural network (12.5).

2. The Lurie control system (12.6) does not require aii < 0 for all i, nor does the
nonlinear function f j(σ j) have to be monotone. It only requires σi f (σi) > 0,
σ �= 0 (i.e., the function is located in the first and third quadrants of the σ - f (σ)
plane), and is thus more general than the neural network (12.4).

3. However, the study of the Lurie systems with multiple nonlinear controls is far
behind that with single control. As pointed out in a SIAM research report (1988)
The Future of Control Theory – Mathematical Prospect that although the study
on the stability of nonlinear control systems has received considerable attentions
and many results have been obtained, most of achievements are limited to the
systems with single control, such as Popov criterion, Lyapunov method, etc. The
problem for the Lurie systems with multiple controls has not been solved with
satisfactory. This indicates the difficulty in generalizing the study from the case
of single control to multiple controls.

4. Note that the Hopfield neural network (12.4) contains an input Ii, while the input
in the Lurie system (12.5) is zero. However, this input can be removed by a sim-
ple translation, and thus (12.4) becomes (12.5). Since the activation functions
gi(ui) and fi(xi) are the same type of functions, the absolute stabilities of the
equilibrium point u = u∗ of (12.4) and x = 0 of (12.5) are not different.

5. The development of neural network (12.5) provides a useful practical model for
the study of Lurie systems with multiple controls, and will greatly promote the
study of Lurie systems with multiple controls.

The study of the global stability of the neural network (12.5) has opened a new area
for optimal computations. Therefore, it is natural to combine studies on the stability
of neural networks and the absolute stability of Lurie control systems.
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12.3 Sufficient and Necessary Conditions for Hopfield
Neural Network

In this section, we introduce the definition of absolute stability of neural network and
the sufficient and necessary conditions for the absolute stability of one type of most
original Hopfield neural network [27, 28, 50].

The neural approach for solving optimization problems has attracted consider-
able attention in recent years. Some crucial drawbacks have seriously limited its
applicability. one main drawback is that spurious suboptimal responses, because of
the existence of many stable equilibrium points.

The main features that a neural optimizer of the Hopfield type should posses are
as follows.

1. The interconnection matrix should be symmetric. The property of symmetry is
indeed inherently related to the optimization capabilities.

2. There should be an unique equilibrium point, which is globally asymptotically
stable (GAS), i.e., locally stable and attracting all trajectories of motion. GAS is
a necessary property to avoid the presence of spurious responses and to guarantee
convergence toward the global optimal solution.

3. The neural network should be absolutely stable (ABST).

By ABST, it is meant that there is a GAS equilibrium point for every neuron acti-
vation function belonging to the class S of Sigmoidal (i.e., bounded increasing)
functions and for every constant input vector to the neural network. ABST is impor-
tant because in practical problems the neuron activation is known to belong to the
class S, but its shape is not specified exactly. ABST neural networks are best suited
for optimization problems, being devoid of spurious responses for every choice of
the activation function and of the input vector.

Consider the neural networks, described by the system of differential equations:

ẋ = −Dx + T g(x)+ I, (12.7)

where x = (x1,x2, . . . , xn)T ∈ Rn is the state variable, D = diag(d1, d2, . . . , dn) is
an n×n matrix with diagonal entries di > 0, i = 1,2, . . . , n, T = [Ti j] is an n×n
constant matrix, g(x) = (g1(x), g2(x), . . . , gn(x))T : Rn → Rn is a nonlinear diagonal
mapping and I = (I1, I2, . . . , In)T ∈ Rn is a constant vector.

According to the usual assumption on the neuron activations, we require that g
belongs to the class S of Sigmoidal functions, defined by the property that g ∈ S
if for i = 1, 2, . . . , n, gi(R) ≡ (ai,bi), ai ∈ R, bi ∈ R, ai < bi, or expressed as gi ∈
C[R,(ai,bi)].

We will analyze the properties of global asymptotic stability and absolute stabil-
ity, as defined below. An equilibrium point is a constant solution of (12.7) and hence
satisfies the algebraic equation:

H(x) = −Dx + T g(x)+ I = 0. (12.8)

For a given g ∈ S, let x(t;t0,x0) denote the solution, which is uniquely deter-
mined by the initial condition x0 ∈ Rn at t = t0. Under the hypothesis g ∈ S,
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any solution of (12.7) is ultimately bounded and hence defined for all t ≥ t0
(Lemma 12.3). Consider an equilibrium point x∗ for (12.7).

Definition 12.1. The equilibrium x∗ is said to be GAS if it is locally stable in
the sense of Lyapunov and globally attractive, where global attractive means that
limt→∞ x(t;t0,x0) = x∗, for every initial condition x0 ∈ Rn.

Definition 12.2. System (12.7) is said to be ABST if it possesses a GAS equilibrium
point for every function g ∈ S and for every input vector I ∈ Rn. When system (12.7)
is ABST, then the vector field defined by the right-hand side of system (12.7) is said
to be structurally stable.

The concept of GAS (and that of ABST) involves a static aspect (i.e., the unique-
ness of the equilibrium point, which is a necessary condition for GAS) and a dynamic
aspect (i.e., local stability and global interactivity of the unique equilibrium).

We find it convenient to analyze the problem of uniqueness of the equilibrium
point in the general case of both symmetric and nonsymmetric connection matrices.

We recall that P0 denotes the class of square matrices A defined by one of the
following equivalent properties:

(P0-(i)) All principal minors of A are nonnegative
(P0-(ii)) Every real eigenvalues of A as well as of each principal submatrix of A is

nonnegative
(P0-(iii)) det(K +A) �= 0 for every diagonal matrix K = diag(K1, . . . ,Kn) with Ki >

0, i = 1,2, . . . , n

Lemma 12.3. If g ∈ S and −T ∈ P0, then the function H defined in (12.8) is diffeo-
morphism of Rn onto Rn, i.e., H is globally one to one onto and the inverse function
H−1 is C1(Rn).

Proof. We state that a C1 function H = (H1, . . . ,Hn)T is a diffeomorphism of
Rn onto Rn if and only if: (1) detJH(x) �= 0 for all x ∈ Rn (JH is the Jaco-
bian of H) and: (2) lim‖x‖→∞ ‖H(x)‖ = +∞. The Jacobian of H is given by
JH(x) = −D + T diag(g′1(x1), . . . ,g′n(xn)). Since −T ∈ P0, from P0-(i), it easily
follows that −T diag(g′1(x1), . . . ,g′n(xn)) ∈ P0 for all x ∈ Rn. In fact g′i(xi) > 0
and the multiplication of −T by a diagonal matrix with positive diagonal entries
does not alter the sign of the principal minors of −T . Denote with P the class
of matrices defined by the property that all of their principal minors are posi-
tive. Then we can obtain D − T diag(g′1(x1), . . . ,g′n(xn)) ∈ P. This implies that
det(D−T diag(g′1(x1), . . . ,g′n(xn)) = − detJH(x) > 0 for all x ∈ Rn and conclusion
(1) holds.

Note that since g ∈ S, then g is a bounded function and so is the function
T g + I. Therefore, there exists m > 0 such that ‖T g(x)+ I‖ < m, for all x ∈ Rn.
Being D a diagonal matrix with positive diagonal entries, we have lim‖x‖→∞ ‖−
Dx‖ = +∞. Then, ‖H(x)‖ = ‖ − Dx + T g(x) + I‖ ≥ ‖− Dx‖ − m, from which
lim‖x‖→∞ ‖H(x)‖ = +∞ and hence also conclusion 2) is true. �
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Theorem 12.4. System (12.7) has an unique equilibrium point for each g ∈ S and
for each I ∈ Rn if and only if the connection matrix −T ∈ P0.

Proof. Sufficiency. From Lemma 12.3 the function H in (12.8) is globally one-to-
one and onto. Then (12.8), H(x) = 0, has an unique solution and hence (12.7) has
unique equilibrium point.

Necessity. Suppose now that −T /∈ P0. We show that we can find a g ∈ S and a
vector I for which (12.8) has more than one solution. If −T /∈ P0, from P0-(i) also
matrix −D−1T /∈ P0, since D−1 is a diagonal matrix with positive diagonal entries.
Hence, from P0-(iii), there exists a diagonal matrix K̃ = diag(K̃1, . . . , K̃n) with K̃i >
0, i = 1,2, . . . ,n, for which det(K̃−D−1T ) = 0. Since K̃−D−1T = D−1(DK̃−T ) =
D−1(D−T K̃−1) K̃, it results in det(K̃ −D−1T ) = det(D−1) det(D−T K̃−1) det(K̃).
Being det(D−1) �= 0 and also det(K̃) �= 0, we therefore obtain det(D−T K̃−1) = 0.

Now consider a function g̃(x) = ( g̃1(x), . . . , g̃n(x))T , which belongs to S and is
such that g̃(x) = K̃−1x, for ‖x‖ ≤ 1. If we choose I = 0, the solutions of (12.8) in
the set ‖x‖ ≤ 1 are solutions of the linear system −(D−TK̃−1)x = 0. However, as
det(D−T K̃−1) = 0, we get that for these choices of g and I, (12.8) has infinitely
many solutions for ‖x‖ ≤ 1. �

To prove the following Theorem 12.6, we need the following lemma.

Lemma 12.5. Let g∈ S; then any solution x(t;t0,x0) of (12.7) is bounded and hence
defined for t ≥ t0. It results in

‖x(t;t0,x0)‖ ≤
√

n
(
‖x0‖+

k‖T‖
dmin

)
f or t ≥ t0,

where k is such that ‖g(x)‖< k for all x∈Rn and dmin > 0, dmin = min{d1, . . . ,dn}.

Proof. Let x(t) = x(t;t0,x0) be solution of (12.7). By the variation of constants
formula, x(t) satisfies

x(t) = Y (t)Y−1(t0)x0 +
∫ t

t0
Y (t)Y−1(s)T g(x(s))ds, (12.9)

where Y (t) is any fundamental matrix of ẏ = −Dy. We can choose Y (t) =
diag(e−d1t , . . . , e−dnt). For g ∈ S, there exists k > 0 such that ‖g(x)‖ ≤ k for all
x ∈ Rn. Therefore, from (12.9), and for t > t0:

‖x(t)‖ ≤ ‖Y (t)Y−1(t0)‖‖x0‖+ k‖T‖
∫ t

t0
‖Y (t)Y−1(s)‖ds.

We have

‖Y (t)Y−1(t0)‖ =
( n

∑
i=1

e−2di(t−t0)
)1/2 ≤

(
n

n

∑
i=1

e−2dmin(t−t0)
)1/2

=
√

ne−dmin(t−t0)
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for all t ≥ t0, where dmin = min{d1, . . . ,dn} > 0. Similarly, we obtain

‖Y (t)Y−1(s)‖ ≤ √
ne−dmin(t−s)

for t ≥ s. Therefore, for t ≥ t0,

‖x(t)‖ ≤ √
ne−dmin(t−t0)‖x0‖+

√
nk‖T‖

∫ t

t0
e−dmin(t−s) ds,

which by integration yields the desired result, ‖x(t)‖ ≤ √
n
(
‖x0‖ + k‖T‖

dmin

)
, for

t ≥ t0. �
Theorem 12.6. For a symmetric connection matrix T , system (12.7) is ABST if and
only if −T ∈ P0, i.e., if and only if T is negative semidefinite. When these conditions
are satisfied, the Hopfield-Tank vector field defined by the right-hand side of (12.7)
is structurally stable.

Proof. Sufficiency. Suppose T is negative semidefinite. Fix g∈ S and I ∈Rn and let
xe be the unique equilibrium point of (12.7) on the basis of Theorem 12.4. With the
coordinate change z = x− xe, (12.7) can be transformed into the following system,
having an unique equilibrium point at z = 0,

ż = −Dz+ T G(x), (12.10)

where G(z) = (G1(z1), . . . ,Gn(zn))T = g(z+ x)−g(x) := g∗(z) and g∗(0) = g(x)−
g(x) = 0. The function G ∈ S and also G(0) = 0. Thus for (12.10) we can construct
radially unbounded, positive definite Lyapunov function:

V =
n

∑
i=1

∫ zi

0
Gi(ξ )dξ .

Then we have

dV
dt

∣∣∣∣
(12.10)

= −
n

∑
i=1

di zi Gi(ξ )+ GT(z)T G(z) ≤−
n

∑
i=1

di zi Gi(zi) < 0

when ‖z‖ �= 0. Thus, the zero solution of (12.10) is absolutely stable, and so the
equilibrium point x = x∗ of (12.7) is absolutely stable.

Necessity. Since a necessary condition for ABST is that there is an unique equi-
librium point for every g ∈ S and for every I ∈ Rn, the necessity part is a direct
consequence of Theorem 12.4. The proof is completed. �

Since a necessary condition for GAS is that there is an unique equilibrium point,
it readily follows from Theorem 12.4 that a necessary condition for ABST (valid
both for symmetric and nonsymmetric connection matrices) is that −T ∈ P0. The
question arises whether −T ∈ P0 is also sufficient for ABST.

For nonsymmetric matrices T , the condition −T ∈ P0 is not in general sufficient
for ABST, as the following example of a 3-neuron network shows. The example is
relative to a case where for a given network with −T ∈ P0, the unique equilibrium
of (12.7) is unstable, so that ABST does not hold.
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Example 12.7. Consider the third-order neural system of the type (12.7):⎛
⎝ ẋ1

ẋ2
ẋ3

⎞
⎠= −d

⎛
⎝ x1

x2
x3

⎞
⎠+

⎡
⎣0 −α 0

0 0 β
γ 0 0

⎤
⎦
⎛
⎝g1(x1)

g2(x2)
g3(x3)

⎞
⎠ , (12.11)

where it is assumed that D = diag(d,d,d) with d > 0 and I = 0. Furthermore,
g(x) ∈ S and is such that gi(0) = 0, g′i(0) = 1, i = 1,2,3. Also assume that α, β , γ
are positive constants. It can be verified that −T ∈ P0, so that from Theorem 12.4,
(12.11) has the origin x = 0 as its unique equilibrium.

Let us prove that for sufficiently small d > 0, x = 0 is unstable. In our hypothesis,
the Jacobian at x = 0 is JH(0) =−D+T . The matrix T has two complex conjugate
eigenvalues with a positive real part (α β γ)1/3/2. Since the diagonal matrix −D =
−diag(d,d,d) in JH(0) translates the eigenvalues of T by the negative quantity −d,
we obtain that for 0 < d < (α β γ)1/3/2, JH(0) has two complex eigenvalues with
positive real part. Hence x = 0 is unstable and (12.11) is not ABST.

Different from the nonsymmetric case, for symmetric matrices T , the fact that
−T ∈ P0 (which is equivalent on the basis of P0-(iii) to the fact that T is negative
semidefinite) characterizes both the static and dynamical property of ABST, as the
following result shows.

Since the above argument is true for any choices of g ∈ S and for any vector
I ∈ Rn, we have proved that (12.10) is ABST.

In the following, we introduce a sufficient condition, obtained by Kaskurewicz
and Bhaya [50], for the absolute stability, which is an improved proof for Theo-
rem 12.8.

Theorem 12.8. [50] If T ∈ D0, i.e., there exists a positive diagonal matrix Q =
diga(q1, · · · ,qn) satisfying QT + T TQ ≤ 0, then system (12.7) is ABST w.r.t. g ∈ S.
Furthermore, the Hopfield-Tank vector filed, defined by the right-hand side of (12.7)
is structurally stable.

Proof. Since T ∈ D0 implies −T ∈ P0, it follows that x∗ is the unique equilib-
rium point of (12.7). We now use the radially unbounded, positive definite Lyapunov
function:

V (z) = 2
n

∑
i=1

qi

∫ zi

0
Gi(ξ )dξ .

Along the trajectories of (12.7), the time derivative of V (z) is given by

dV(z)
dt

= G(z)(QT + T TQ)G(z)−G(z)QDz. (12.12)

Since T ∈ D0, there exists a positive diagonal matrix Q = diag(q1,q2, . . . ,qn) such
that the first term on the right-hand side of (12.12) is negative semidefinite and
G(z)QDz is negative definite for all G ∈ S. This ensures that system (12.7) is ABST
w.r.t. g ∈ S, and the Hopfield-Tank Vector field defined by the right-hand side of
(12.7) is structurally stable. �
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12.4 Absolute Stability of Cooperative Hopfield Neural Network

In Sect. 12.3, we have introduced the sufficient and necessary conditions for the
absolute stability of a special type of Hopfield neural network with weighted matri-
ces [28]. More precisely, these conditions are sufficient conditions as additional
constraints are posed. Therefore, we should look for other sufficient and necessary
conditions without these constraints, but under some other different constraints.

According to the definition of absolute stability, we first need to prove the exis-
tence and uniqueness of equilibrium point for any gi ∈ S and any input Ii, and then
prove that it is globally asymptotically stable. Proving the existence and uniqueness
of the equilibrium point belongs to functional analysis and computational math-
ematics, and is usually difficult. However, because of the special property of the
Sigmoidal function, the existence of the equilibrium point can be shown using the
Brown fixed point theory, while the uniqueness of the equilibrium point is the neces-
sary condition for the global asymptotic stability. Thus, once the global asymptotic
stability is asserted, the uniqueness of the equilibrium point is also proved. When
non-Sigmoidal functions are used as activation, the situation is different. Therefore,
next we will consider new sufficient and necessary conditions for Hopfield neural
network.

In the previous section, the weight matrix T is assumed symmetric. In this sec-
tion, we introduce the sufficient and necessary conditions for the absolute stability
of cooperative Hopfield neural network. Again, consider system (12.7):

ẋ = −Dx + T g(x)+ I, (12.13)

where the definitions for D, g , and I are the same as that defined in the previous
section. The only different is for T , which now has different constraints, defined
below.

Definition 12.9. If in the Hopfield neural network (12.13), the off-diagonal elements
of the weighted matrix T are nonnegative, i.e., Ti j ≥ 0, i �= j, then system (12.13) is
called cooperative neural network.

Note that T defined above can be either symmetric or nonsymmetric. Thus what
to be discussed in this section is not covered in the previous section. Cooperative neu-
ral networks are widely employed for cooperative learning and other computational
tasks.

Let g ∈ S and |g(x)| ≤ k |x|, k > 0.

Theorem 12.10. For a cooperative Hopfield neural network (12.13) to be ABST if
and only if −T ∈ K0, where K0 denotes the class of (symmetric or nonsymmet-
ric) matrices with nonpositive off-diagonal entries and with nonnegative principal
minors.

Proof. Sufficiency. Assume −T ∈ K0. Fix any function g∈ S and any vector I ∈ Rn.
Since −T ∈ K0 implies −T ∈ P0, system (12.13) has a unique equilibrium point x∗.
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By means of the coordinate change z = x− x∗, system (12.13) can be transformed
into the following system, having an unique equilibrium at z = 0,

ż = −Dz+ T G(z), (12.14)

where (G(z) = (G1(z1), . . . ,Gn(zn))T = g(z + x∗) − g(x∗) := g∗(z) and g∗(0) =
g(x∗)−g(x∗) = 0. The function G ∈ S and also G(0) = 0.

For G ∈ S, there exist ki, 0 < ki < ∞, i = 1, . . . ,n, such that |Gi(zi)| ≤ kizi.
Choose a positive ε satisfying ε < di/ki and consider the functions

Di(zi) = di zi − ε Gi(zi) i = 1, . . . ,n.

Now rewrite system (12.13) by adding and subtracting the same term ε G(z) to
obtain (In is the identity matrix)

ż = −(Dz− ε G(z))+ (T − ε In)G(z) = −D(z)+ (T − ε In)G(z). (12.15)

Since −T ∈K0, then −T +ε In ∈K. From these we get that z = 0 is GAS for (12.15)
and hence that x∗ is GAS for (12.13).

Necessity. Since a necessary condition for ABST is that there exists a unique
equilibrium point for all g ∈ S and for all I ∈ Rn, the necessity part is an immediate
consequence of Theorem 12.6 and the fact that for a cooperative neural network,
−T ∈ K0 is equivalent to −T ∈ P0. �

12.5 Sufficient Conditions for Absolutely Exponential Stability

In this section, we turn to investigate the sufficient conditions for the absolutely expo-
nential stability of Hopfield neural networks [87]. First, we consider the Hopfield
neural networks with finite gains, and then that with finite gains.

12.5.1 Hopfield Neural Networks with Finite Gains

Consider a model of Hopfield neural networks, given by

Ci u̇i =
n

∑
j=1

Ti jg j(u j)− ui

Ri
+ Ii, (12.16)

where Ci, Ti j, Ri, Ii are the physical parameters depicted in [43]. The circuit scheme
of the neural networks is omitted here. For the system (12.16), we merely assume
that the activation function gi(ui) belong to class S of sigmoidal function, defined by
the property that gi(R) ≡ (ai,bi), ai ∈ R, bi ∈ R, ai < bi, but suppose that the gains
are finite, i.e., supD+gi(ui) := Mi < +∞. The matrix T = (Ti j)n×n needs not to be
symmetric. Here, we assume that system (12.16) has a finite equilibrium point u = u∗.

Let u = (u1, · · · ,un)T and the equilibrium be u∗ = (u∗1, · · · ,u∗n)T, and SB = {g ∈
S, 0 ≤ D+gi(ui) ≤ M}. It is obvious that SB ⊂ S.
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Definition 12.11. If ∀Ii, ∀gi ∈ SB, i = 1, · · · ,n, the equilibrium solution of (12.16)
is globally exponentially stable, then (12.16) is said to be absolutely exponentially
stable w.r.t. SB.

In the following, we assume

Ω1 = diag
(

1
R1

−T11M1, · · · , 1
Rn

−TnnMn

)
n×n

− (σi j|Ti j|Mj)n×n

Ω2 = diag
( −1

R1M1
, · · · , −1

RnMn

)
+(Ti j)n×n,

where σi j = 1− δi j, δi j denotes the Kronecker operator.

Theorem 12.12. If the matrix Ω1 is an M-matrix, then (12.16) is absolutely expo-
nentially stable.

Proof. Since the Sigmoidal function is bounded, thus we can apply the Brouwer
fixed point theorem to prove that for any I and g ∈ SB, the equilibrium solution of
(12.16) exists.

Assume u∗ = (u∗1, · · · ,u∗n)T is the equilibrium point of (12.16) and x =
(x1, · · · ,xn)T = (u1 − u∗1, · · · ,un − u∗n)T, f (xi) = gi(ui) − gi(u∗i ) = gi(xi + u∗i ) −
gi(u∗i ), i = 1,2, . . . ,n, then (12.16) changes into

Ci ẋi =
n

∑
j=1

Ti j f j(x j)− xi

Ri
, (i = 1, · · · ,n). (12.17)

Since Ω1 is an M-matrix, there exists a group of constants ξ = (ξ1, · · · ,ξn)T > 0,
such that

ξ j

(−1
R j

+ Tj jMj

)
+

n

∑
i=1

ξiσi j|Ti j|Mj < 0, j = 1, · · · ,n.

Without loss of generality, we assume

ξ jTj j +
n

∑
i=1

ξiσi j|Ti j| ≤ 0, j = 1, · · · ,n0, 1 <≤ n0 < n,

ξ jTj j +
n

∑
i=1

ξiσi j|Ti j| > 0, j = n0 + 1, · · · ,n.

Let λ = min
1≤k≤n0,n0+1≤ j≤n

[
1

RkCk
,
(

ξ j
R j

− ξ jTj jMj −∑n
i=1 ξiσi j|Ti j|Mj

)
1

ξ jCj

]
.

Constructing the radically unbounded, positive definite Lyapunov function V (x) =
∑n

i=1 ξiCi|xi|, we find that the right upper Dini derivative of V along the solution to
system (12.17) satisfies
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D+V (x)|(12.17) =
n

∑
i=1

ξiCiẋi sgnxi

≤
n

∑
i=1

ξi

[
− 1

Ri
|xi|+ Tii| fi(xi)|+

n

∑
j=1

σi j|Ti j|| f j(x j)|
]

≤
n0

∑
j=1

(
− ξ j

R j

)
|x j|+

n0

∑
j=1

(
ξ jTj j +

n

∑
i=1

σi j|Ti j|
)
| f j(x j)|

+
n

∑
j=n0+1

(
− ξ j

R j

)
|x j|+

n

∑
j=n0+1

(
ξ jTj j +

n

∑
i=1

σi j|Ti j|
)
Mj|x j|

≤
n0

∑
j=1

(
− ξ j

R j

)
|x j|+

n

∑
j=n0+1

[
− ξ j

R j
+ξ jTj jMj +

n

∑
i=1

σi jξiMj

]
|x j|

≤ −λV (x). (12.18)

Then, 0 ≤V (x(t)) ≤V1(x(0))e−εt , and furthermore, we have

|xi| ≤ 1
min

1≤i≤n
ξiCi

V (x(0))e−λ t .

It implies that the equilibrium of system (12.17) is globally exponentially stable with
Lyapunov exponent −λ , i.e., system (12.17) is absolutely exponentially stable w.r.t.
SB with Lyapunov exponent −λ . �

Theorem 12.13. If the matrix Ω2 is Lyapunov-Volterra stable or called diagonal
stable, then system (12.16) is absolutely exponentially stable.

Proof. The Lyapunov-Volterra stability of matrix Ω2 implies that there exists a pos-
itive definite diagonal matrix H =diag(h1, · · · ,hn) such that Q = 1

2(HΩ2 + Ω T
2 H) is

negative definite, (Ω T
2 denotes the transpose of Ω2). Let λ ∈

(
0, min

1≤i≤n
1

RiCi

)
be the

maximum positive solution to the following problem:

Q+ λ diag
(C1h1

M1
, · · · , Cnhn

Mn

)
is negative semidefinite.

Construct Lyapunov function

V (x) =
n

∑
i=1

Cihi

∫ xi

0
fi(xi)dxi. (12.19)

Obviously, V (x) is positive definite. Now we verify its radical unboundedness.
Let mi = min

|x|≤1
| f ′i (x)|, mi = min[ fi(1), fi(−1)]. For arbitrary x ∈Rn, without loss of

generality, we assume that

|xi| ≤ 1, i = 1, · · · , l0, |xi| > 1, i = l0 + 1, · · · ,n
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It follows from the monotone property of fi(xi) that

V (x) =
n

∑
i=1

Cihi

∫ xi

0
fi(xi)dxi ≥

l0

∑
i=1

1
2

Cihimix
2
i +

n

∑
l0=1

Cihimi|xi| → +∞

as |x| → +∞, indicating that V is radially unbounded.
Also from the monotone property of the function fi(xi), we obtain an estimation

of the derivative of the Lyapunov function eλ tV along the solution to system (12.16),
given below:

deλ tV
dt

= λ eλ t
n

∑
i=1

Cihi

∫ xi

0
fi(xi)dxi + eλ t

n

∑
i=1

Cihi fi(xi)
dxi

dt

≤ eλ t
[
λ

n

∑
i=1

Cihixi fi(xi)−
n

∑
i=1

hi

Ri
xi fi(xi)+

n

∑
i=1

n

∑
j=1

hi fi(xi)Ti j f j(x j)
]

= eλ t
[
−

n

∑
i=1

(
hi

Ri
−Cihiλ )xi fi(xi)+

n

∑
i=1

n

∑
j=1

hi fi(xi)Ti j f j(x j)
]

= eλ t
[
−

n

∑
i=1

(
hi

RiMi
− Cihiλ

Mi
) f 2

i (xi)+
n

∑
i=1

n

∑
j=1

hi fi(xi)Ti j f j(x j)
]

= eλ t

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝ f1(x1)

...
fn(xn)

⎞
⎟⎠

T[
1
2
(HΩ2 + Ω T

2 H)+ λ diag
(

C1h1

M1
, · · · , Cnhn

Mn

)]

×

⎛
⎜⎝ f1(x1)

...
fn(xn)

⎞
⎟⎠
⎫⎪⎬
⎪⎭

= eλ t

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝ f1(x1)

...
fn(xn)

⎞
⎟⎠

T[
Q+ λ diag

(
C1h1

M1
, · · · , Cnhn

Mn

)]⎛⎜⎝ f1(x1)
...

fn(xn)

⎞
⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

≤ 0. (12.20)

Integrating the inequality (12.20) from 0 to t, we have

V (x(t)) ≤ e−λ tV (x(0)) := e−λ tV0.

That is,
l0

∑
i=1

Cihimix
2
i +

n

∑
i=l0+1

1
2

Ci hi mi|xi| ≤ e−λ tV0. (12.21)
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It follows from (12.21) that

|xi(t)| ≤
√

2
Ciξimi

√
V0e−

λ
2 t , 1 ≤ i ≤ l0,

|xi(t)| ≤ 1
Ciξimi

V0e−λ t ≤ 1
Ciξimi

V0e
−

λ
2

t
, l0 + 1 ≤ i ≤ n.

Setting

K = max
1≤i≤l0

l0+1≤ j≤n

[√
2

Ciξimi
V0,

1
Cjξ jm j

V0

]
,

we obtain |xi(t)| ≤ ke−
λ
2 t , i = 1, · · · ,n, implying that the equilibrium u = u∗ is

absolutely exponentially stable. The proof is complete. �

12.5.2 Hopfield Neural Networks with Infinite Gains

Now, we consider the sufficient conditions for the absolutely exponential stability
of Hopfield neural networks with a class of sigmoidal nonlinear activation function
(i.e., the activation function with unbounded gains).

Let SUB := {g(x)|g(x)∈C[R,R], D+gi(ui)≥ 0, i = 1, · · · ,n}, i.e., supD+gi(ui)≤
+∞. Consider (12.16) with gi(ui) ∈ SUB, it is obvious that SB ⊂ SUB. If we still use
the definition 12.11, ∀gi ∈ SUB, ∀Ii ∈ R, if the equilibrium of (12.16) is globally
exponentially stable, then (12.16) is absolutely exponentially stable w.r.t. SUB.

Theorem 12.14. If there exist two groups of constants ξi > 0, ηi > 0, i = 1, · · · ,n
such that the matrix A is negative definite, then the following conclusions hold:

1. System (12.16) is absolutely exponentially stable

2. The Lyapunov exponent is −λ
µ

where

A =

[
A11 A12

AT
12 A22

]
2n×2n

,

A11 = diag(− ξ1

R1
, · · · ,− ξn

Rn
),

A12 = diag(− η1

2R1
, · · · ,− ηn

2Rn
)n×n +(

ξiTi j + ξ jTji

2
)n×n, i, j = 1,2, . . . ,n,

A22 = (
ηiTi j + η jTji

2
)n×n, i, j = 1,2, . . . ,n,

B =

[
B11 B12

BT
12 B22

]
2n×2n

,
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B11 = diag(
C1ξ1

2
, · · · , Cnξn

2
)n×n,

B12 = BT
12 = diag(

C1η1

2
, · · · , Cnηn

2
)n×n,

B22 = On×n.

Here, −λ denotes the maximum eigenvalue of matrix A and µ is the maximum
eigenvalue of matrix B, the superscript T represents transpose.

Proof.

1. Let x = (x1, · · · ,xn)T = (u1 −u∗1, · · · ,un −u∗n)T. Then,

fi(xi) = gi(xi + u∗i )−gi(u∗i ).

and system (12.16) can be rewritten as

Ci
dxi

dt
=

n

∑
j=1

Ti j f j(x j)− xi

Ri
(i = 1, · · · ,n). (12.22)

The global stability of the equilibrium u = u∗ of system (12.16) is equivalent to
that of the equilibrium x = 0 of system (12.22).

Construct the radially unbounded Lyapunov function:

V (x) =
n

∑
i=1

Ciξi

2
x2

i +
n

∑
i=1

ηiCi

∫ xi

0
fi(xi)dxi. (12.23)

It is obvious to see that V (0) = 0, V (x) > 0, for x �= 0, and

V (x) ≥
n

∑
i=1

Ciξi

2
x2

i → +∞ as |x| → +∞.

Thus, V (x) is radially unbounded and positive definite.
The derivative of V (x) along the solution of system (12.22) is

dV
dt

∣∣∣
(12.22)

= −
n

∑
i=1

ξi

Ri
x2

i +
n

∑
i=1

ξixi

n

∑
j=1

Ti j f j(x j)

−
n

∑
i=1

ηixi

Ri
fi(xi)+

n

∑
i=1

ηi

n

∑
j=1

Ti j f j(x j) fi(xi)

=
(

x
f (x)

)T [A11 A12
AT

12 A22

](
x

f (x)

)
. (12.24)

2. Set V ∗ = eεtV, ε > 0 is a sufficiently small constant. Then we obtain

dV ∗

dt

∣∣∣
(12.22)

= εeεtV + eεt dV
dt

∣∣∣
(12.22)

= eεt

{
εV +

(
x

f (x)

)T [A11 A12
AT

12 A22

](
x

f (x)

)}
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= eεt

{
ε

(
n

∑
i=1

Ciξi

2
x2

i +
n

∑
i=1

ηiCi

∫ xi

0
fi(xi)dxi

)

+
(

x
f (x)

)T [A11 A12
AT

12 A22

](
x

f (x)

)}

≤ eεt

{
ε

(
n

∑
i=1

Ciξi

2
x2

i +
n

∑
i=1

ηiCixi fi(xi)

)

+
(

x
f (x)

)T(A11 A12
AT

12 A22

)(
x

f (x)

)}

= eεt

{(
x

f (x)

)T[A11 + B11ε A12 + B12ε
AT

12 + BT
12ε A22 + B22ε

](
x

f (x)

)}
. (12.25)

Since the eigenvalues continuously depend on the elements of a matrix, the

negative definite property of matrix
[

A11 A12
AT

12 A22

]
implies the same property of[

A11 + B11ε A12 + B12ε
AT

12 + BT
12ε A22 + B22ε

]
when 0 < ε 	 1. It follows that

dV ∗

dt

∣∣∣
(12.22)

≤ 0 for 0 < ε 	 1. (12.26)

Integrating (12.26) from 0 to arbitrary t yields

eεtV (x(t)) = V ∗(x(t)) ≤V ∗(x(0)) := V ∗
0 .

Hence, we have
n

∑
i=1

Ciξi

2
x2

i ≤V (x(t)) ≤ e−εtV ∗
0 , (12.27)

and then
n

∑
i=1

x2
i ≤

V ∗
0 e−εt

min
1≤i≤n

Ciξi
2

(ε > 0). (12.28)

Inequality (12.28) implies that the equilibrium x = 0 of system (12.22) (or the
equilibrium point u = u∗ of system (12.16)) is globally exponentially stable, i.e.,
system (12.16)) is absolutely exponentially stable. Also, the positive constant ε
can be considered as a Lyapunov exponent.

3. Let −λ and µ be the maximum eigenvalues of matrices A and B, respectively.
From the argument of inequality (12.25), we have

dV∗

dt

∣∣∣
(12.22)

≤ eεt

{(
x

f (x)

)T [A11 A12
AT

12 A22

](
x

f (x)

)}

+eεt

{
ε

(
n

∑
i=1

Ciξi

2
x2

i +
n

∑
i=1

ηiCixi fi(xi)

)}
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≤ eεt

{
−λ

(
n

∑
i=1

x2
i +

n

∑
i=1

f 2
i (xi)

)}

+ eεt

{
ε
(

x
f (x)

)T [B11 B12
BT

12 0

](
x

f (x)

)}

≤ eεt [−λ + εµ ]

(
n

∑
i=1

x2
i +

n

∑
i=1

f 2
i (xi)

)
≤ 0. (12.29)

Thus, the inequality (12.27) holds and ε =
λ
µ

is an estimation of the Lyapunov

exponent.
The proof is complete. �

Set
◦
A =

[ ◦
A11

◦
A12◦

A21
◦
A22

]
, where

◦
A11 = −diag

( 1
R1

, · · · , 1
Rn

)
,

◦
A12 = −diag

( 1
2R1

, · · · , 1
2Rn

)
n×n

+
(Ti j + Tji

2

)
n×n

,

◦
A22 =

(Ti j + Tji

2

)
n×n

,

and set
◦
B =

[ ◦
B11

◦
B12◦

B21
◦
B22

]
2n×2n

,

◦
B11 = = diag

(C1

2
, · · · , Cn

2

)
n×n

,

◦
B12 =

◦
B

T

12 = diag
(C1

2
, · · · , Cn

2

)
n×n

,
◦
B22 = On×n.

Corollary 12.15. If the matrix
◦
A is negative definite, then the equilibrium u = u∗ of

system (12.16) is unique and globally exponentially stable, and the Lyapunov expo-
nent can be chosen as ε = λ̃

µ̃ , where −λ̃ and µ̃ are the maximum eigenvalues of the

matrices
◦
A and

◦
B, respectively.

Proof. Taking ξi = ηi = 1, i = 1, · · · ,n in Theorem 12.14 proves this corollary. �

Theorem 12.16. If there exist two groups of constants ξi > 0, ηi > 0, i = 1, · · · ,n
such that the matrix G is negative definite, then the conclusion of theorem 12.14
holds, where
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G =
[

G11 G12
GT

12 G22

]
2n×2n

, G11 = −diag
( ξ1

R1
, · · · , ξn

Rn

)
,

G12 = GT
12 =

(
(1− δi j)

ξiTi j + ξ jTji

2

)
n×n

, G22 =
(ηiTi j + η jTji

2

)
n×n

,

δi j =
{

1 when i = j,
0 when i �= j.

The estimation (12.28) is also satisfied, where ε = min
[

min
1≤i≤n

ηi
Ri
− ξiTii
ηiCi

,
λ ∗

µ∗
]
, −λ ∗

is the maximum eigenvalue of the matrix G, and µ∗ = max
1≤i≤n

Ciξi
2 .

Proof. From the negative definite property of the matrix G, we know that Tii <
0, i = 1, · · · ,n. Using the Lyapunov function (12.23), analogous to the argument
for equation (12.25), we have

dV
dt

∣∣∣
(12.22)

=
(

x
f (x)

)T[G11 G12
GT

12 G22

](
x

f (x)

)
+

n

∑
i=1

ξiTiixi fi(xi)−
n

∑
i=1

ηi

Ri
xi fi(xi).

(12.30)
Let V ∗ = eεtV , analogous to the argument for the inequality (12.25), we obtain

dV
dt

∣∣∣
(12.22)

= eεt

[(
x

f (x)

)T [G11 G12
GT

12 G22

](
x

f (x)

)
+ ε

n

∑
i=1

ξiCi

2
x2

i

+
n

∑
i=1

(
εηiCi + ξiTii − ηi

Ri

)
xi fi(xi)

]

≤ eεt

[
−λ ∗
(

n

∑
i=1

x2
i +

n

∑
i=1

f 2
i (xi)

)
+ µ∗ε

n

∑
i=1

x2
i

]

+eεt
n

∑
i=1

(
εηiCi + ξiTii − ηi

Ri

)
xi fi(xi). (12.31)

Similar to the proof of Theorem 12.14, the proof of this theorem can be completed.
�

12.6 Absolute Stability of Lurie Discrete Delay Neural Networks

In this section, we consider the following Lurie-type neural network model with
discrete time delays:

x(k) = Ax(k)+ B1 f (σ(k))+ B2 f (σ(k− τ(k)),

σ(k) = Cx(k)+ D1 f (σ(k))+ D2 f (σ(k− τ(k)),
(12.32)

where A ∈Rn×n, B1, B2 ∈Rn×�, C ∈Rl×n, D1, D2 ∈R�×�, x ∈Rn, f ∈Rl , � ≤ n. L is
the number of nonlinear activation functions (i.e., the total number of neurons in the
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implication layers and output layers of the neural network), the delay τ(k) ≤ h, is a
positive integer.

Assume that the only equilibrium of (12.32) is x = 0, and the nonlinear activation
function satisfies

f ∈ F[qi,ki ] = { f | fi(0) = 0, qi ≤ fi(σi)
σi

≤ ui}, fi is continuous.

Thus [ fi(σi)−qiσi][ fi(σi)−uiσi] ≤ 0.
In the following, we will discuss the absolute stability of (12.32) in the Lurie

sense.

Theorem 12.17. If the following any one condition is satisfied:

1. There exist positive definite symmetric matrices P, Γ , and positive semidefinite
diagonal matrices Λ , S such that the following linear matrix inequality (LMI)
holds

H =

⎡
⎣H11 H12 H13

H21 H22 H23
H31 H32 H33

⎤
⎦< 0, i.e., Hisnegativede f inite,

or
2. There exist positive definite symmetric matrices P, Γ , and positive semidefinite

diagonal matrices Λ , S such that the following LMI holds

G =

⎡
⎣G11 G12 G13

G21 G22 G23
G31 G32 G33

⎤
⎦< 0,

where

H11 = ATPA−P, H12 = ATPB1 +CTΛ , H13 = ATPB2,

H21 = BT
1 PA +ΛC, H22 = BT

1 PB1 + 2ΛD1 +Γ , H23 = BT
1 PB2 +ΛD2,

H31 = BT
2 PA, H32 = BT

2 PB1 + DT
2Λ , H33 = BT

2 PB2 −Γ ,

G11 = ATPA−P− 2CTSQUC,

G12 = ATPB1 +CTΛ −2CTSQUD1 +CT(Q+U)S,

G13 = ATPB2 −2CTSQUD2,

G22 = BT
1 PB1+2ΛD1+Γ −2DT

1 SQUD1−2S+DT
1(Q+U)S + S(Q+U)D1,

G23 = BT
1 PB2 +ΛD2 −2DT

1 SQUD2 + S(Q+U)D2,

G33 = BT
2 PB2 −Γ −2DT

2 SQUD2, G21 = GT
12, G31 = GT

13, G32 = GT
23,

Q = diag(q1, · · · ,qn), U = diag(u1, · · · ,u�),

λ = diag(λ1, · · · ,λn), S = diag(s1, · · · ,s�).

Then the zero solution of (12.32) is absolutely stable in the sense of Lurie.



12.6 Absolute Stability of Lurie Discrete Delay Neural Networks 333

Proof. Construct the following radially unbounded, positive definite Lyapunov
function

V (xk) = xT
k Pxk +

k−1

∑
i=k−h

f T(σ(i))F f (σ(i))+ 2
�

∑
i=1

λi

k−1

∑
j=0

fi(σi( j))σi( j).

Then,

∆V (xk) = xT
k+1Pxk+1 − xT

k Pxk + 2
n

∑
i=1

λi fi(σi(k))σi(k)+ f T(σ(k))Γ f (σ(h))

− f T(σ(k−h))Γ f (σ(k−h))

=
[

Axk + B1 f (σ(k))+ B2 f T(σ(k−h))
]

P

×
[

Axk + B1 f (σ(k))+ B2 f (σ(k−h))
]

−xT
k Pxk + 2

�

∑
i=1

λi fi(σi(k)) [Cixk + D1i f (σ(k))+ D2i f (σ(k−h))]

+ f T(σ(k))Γ f (σ(k))− f T(σ(k−h))Γ f (σ(k−h))

=

⎛
⎝ xk

f (σ(k))
f (σ(k−h))

⎞
⎠T⎡⎣ ATPA−P ATPB1 +CTΛ ATPB2

BT
1PA+ΛC BT

1PB1+2ΛD1+Γ BT
1PB2+ΛD2

BT
2 PA BT

2 PB1 + DT
2Λ BT

2 PB2 −Γ

⎤
⎦

×
⎛
⎝ xk

f (σ(k))
f (σ(k−h))

⎞
⎠ .

(12.33)

Thus, when H < 0, the conditions of Theorem 12.17 imply that the conclusion is
true. Otherwise, from

[ fi(σ(k))−qiσi(k)][ fi(σ(k))−uiσi(k)] ≤ 0,

we have [
fi(σ(k))−qiCixk −qiD1i f (σ(k))−qiD2i f (σ(k−h))

]
×
[

fi(σ(k))−uiCixk −uiD1i f (σ(k))−uiD2i f (σ(k−h))
]
≤ 0.

Applying the S-method, we can rewrite (12.33) as

∆V (xk) =

⎛
⎝ xk

f (σ(k))
f (σ(k−h))

⎞
⎠T⎡⎣ ATPA−P ATPB1 +CTΛ ATPB2

BT
1PA+ΛC BT

1PB1+2ΛD1+Γ BT
1PB2+ΛD2

BT
2 PA BT

2 PB1 + DT
2Λ BT

2 PB2 −Γ

⎤
⎦

×
⎛
⎝ xk

f (σ(k))
f (σ(k−h))

⎞
⎠



334 12 Absolute Stability of Hopfield Neural Network

−
⎛
⎝ xk

f (σ(k))
f (σ(k−h))

⎞
⎠T⎡⎣W11 W12 W13

W21 W23 W23
W31 W32 W33

⎤
⎦
⎛
⎝ xk

f (σ(k))
f (σ(k−h))

⎞
⎠

≤
⎛
⎝ xk

f (σ(k))
f (σ(k−h))

⎞
⎠T

G

⎛
⎝ xk

f (σ(k))
f (σ(k−h))

⎞
⎠< 0 when G < 0, (12.34)

where

W11 = 2CTSQUC,

W22 = 2DT
1 SQUD1 + 2S−DT

1(Q+U)S−S(Q+U)D1,

W33 = 2DT
2 SQUD2,

W12 = W T
21 = 2CTSQUD1 −CT(Q+U)T,

W13 = W T
31 = 2CTT QUD2,

W23 = W T
32 = 2DT

1 SQUD2 −S(Q+U)D2.

Thus, the conditions implied by the theorem are true. The theorem is proved. �

When B1 = 0, D1 = 0, (12.32) is reduced to the common neural network:{
x(k + 1) = Ax(k)+ B2 f (σ(k− τ(k))),

σ(k) = Cx(k)+ D21 f (σ(k− τ(k))),
(12.35)

where qi ≤ fi(σi(k))
σi(k)

≤ ui.

Corollary 12.18. If there exist symmetric positive definite matrices P, Γ , and positive
semidefinite diagonal matrices Λ ,S such that the following LMI holds⎡
⎣ ATPA−P−2CTSQUC CTA+CT(Q+U)S ATPB2−2CTSQUD2

(CAT +CT(Q+U)S)T Γ −2S ΛD2 + S(Q+U)D2
(ATPB2−2CTSQUD2)T (ΛD2+S(Q+U)D2)T B2PB2−Γ−2D2SQUD2

⎤
⎦<0,

then the zero solution of (12.35) is absolutely stable.

Example 12.19. Consider the absolute stability of the zero solution of the following
discrete time delay neural network:

x(k + 1) = Ax(k)+ B1 f (xk))+ B2 f (x(k−2)), (12.36)

where

fi(xi) = 1
2 (|xi + 1|− |xi−1|), i = 1,2,

A =
[−0.9 0.0

0.0 −0.75

]
, B =

[
0.1 0.1
1.0 −0.1

]
, U = diag(1,1),

ϕ = 0, C = I2, D1 = D2 = 0, L = 2.
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With the helped of Matlab, we obtain the solution:

P =
[

489.6145 39.7324
39.7324 57.6801

]
, Γ =

[
236.9766 25.6638
25.6638 34.3699

]
,

Λ = diag(9.9645,1.4662), T = diag(233.1834,66.4001).

P and Γ are positive definite matrices, and Λ and T are positive diagonal matrices.
The conditions of Theorem 12.17 are satisfied. Thus, the zero solution of (12.36) is
absolutely stable in the sense of Lurie.



13

Application to Chaos Control
and Chaos Synchronization

Since Pecora and Carroll [117,118] first designed an analog electrical circuit to real-
ize chaos synchronization, many researchers have extensively studied the property
of chaos synchronization and possible applications in practice. This has changed a
long time viewpoint: chaos cannot be controlled, nor synchronized.

Although many results about chaos synchronization have been obtained on the
basis of stability theory, general mathematical theory and methodology are still under
development. Recently, Curran and Chua [20] suggested that different chaos syn-
chronization methods should be unified to establish a fundamental mathematical
theory on the basis of the absolute stability theory of Lurie control systems. The
authors and their coworkers have also studied chaos synchronization following Cur-
ran and Chua’s idea [81, 82, 154]. For the Chua’s chaotic circuit, we have recently
found that it could be transformed into a type of Lurie system, and thus the theory and
methodology developed by Liao [72–77] can be used to study the synchronization
of two Chua’s circuits. Chua’s circuit is the first electrical circuit to realize chaos in
experiment, which exhibits very rich complex dynamical behavior, and yet has very
high potential in real applications.

In this chapter, as an application, we will apply the absolute stability of Lurie
control systems developed in previous chapters to study the globally exponential
synchronization of two Chua’s chaotic circuits [95]. Also we propose and develop
the theory and methodology of absolutely exponential stability, and investigate the
global synchronization of two chaotic systems with feedback controls [81, 82, 89].
The materials presented in this chapter are mainly chosen from Liao and Yu [95]
(Sects. 13.1–13.5), Liao et al. [89] (Sect. 13.6.1), and Liao et al. [84] (Sect. 13.6.2).

13.1 The Relation of Chua’s Circuit and Lurie System

Consider the following general Lurie control system in which the feedback state σ
has been changed to the state viable x1:

ẋ = Ax + b f (x1), x ∈ Rn, A ∈ Rn×n, b ∈ Rn, x1 ∈ R1, (13.1)

where the dot denotes differentiation w.r.t. time t,

f (x1) ∈ F[0,L]
�
=
{

x1| 0 < x1 f (x1) ≤ Lx2
1, f (0) = 0, L < +∞

}
,

f (x1) is a scalar, continuous function of x1.

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, Second Edition.
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Definition 13.1. ∀ f (x1) ∈ F[0,L], if the zero solution of (13.1) (i.e., x = 0, x1 = 0) is
globally exponentially stable (globally asymptotically stable), then the zero solution
is called absolutely exponentially stable (absolutely stable) in Hurwitz angle [0,L].

Definition 13.2. ∀ f (x1) ∈ F[0,L], if the zero solution of (13.1) is globally exponen-
tially stable (globally asymptotically stable) with respect to (w.r.t.) the variable x1,
then the zero solution is called absolutely exponentially stable (absolutely stable)
w.r.t. x1 in Hurwitz angle [0,L].

Lemma 13.3. If A is a Hurwitz matrix, then the zero solution of (13.1) is absolutely
exponentially stable w.r.t. all state variables if and only if the zero solution of (13.1)
is absolutely exponentially stable w.r.t. x1 in Hurwitz angle [0,L].

Proof. Necessity. Necessity is obvious, since ∑n
i=1 x2

i (t, t0, x0) ≤ M(x0)e−α (t−t0),
and thus particularly, x2

1(t, t0, x0) ≤ M(x0)e−α (t−t0).
For sufficiency, from the given condition, we know that there exist constants

M ≥ 1 and α > 0 such that

‖eA(t−t0) ‖≤ M e−α (t−t0) and |x1(t)| ≤ he−α̃ (t−t0),

where x1(t) = x1(t, t0, x0) and α̃ > 0 is a constant. Without loss of generality, we may
assume α̃ �= α . (Otherwise, if α̃ = α , one can always change it to, say, α̃ = 1

2 α , such
that the second inequality still holds.)

Since the general solution of (13.1) can be written as

x(t) = x(t, t0, x0) = eA(t−t0)x0 +
∫ t

t0
eA(t−τ)b f (x1(τ))dτ,

we obtain

‖x(t)‖ = ‖x(t, t0, x0)‖ ≤ M e−α (t−t0)‖x0‖
+
∫ t

t0
M ‖b‖Lhe−α(t−τ)e−α̃(τ−t0) dτ. (13.2)

It is seen that the first term in (13.2) has a negative exponential estimation, thus we
only need to prove that the second term in (13.2) also has a negative exponential
estimation. To achieve this, let M ‖ b ‖ Lh := c, then∫ t

t0
ce−α(t−τ)e−α̃(τ−t0) dτ = ce−α t

∫ t

t0
e(α−α̃)τ eα̃ t0 dτ

= ce−α t

[
e(α−α̃)t − e(α−α̃)t0

α − α̃

]
eα̃ t0

=
c

α − α̃

[
e−α̃(t−t0)− e−α(t−t0)

]

≤

⎧⎪⎨
⎪⎩

c
α − α̃

e−α̃(t−t0) for α > α̃ ,

−c
α − α̃

e−α(t−t0) for α < α̃ .
(13.3)
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Equation (13.3) indicates that the second term in (13.2) indeed has a negative
exponential estimation, and therefore, the zero solution of (13.1) is absolutely
exponentially stable in Hurwitz angle [0,L]. This finishes the proof of Lemma 13.3. �

Next, we establish the relation between Chua’s circuit and Lurie system. Chua’s
circuit is described by the following differential equations [11, 20]:

ẋ = p [−x + y− f (x) ],

ẏ = x− y + z,

ż = −qy, (13.4)

where
f (x) = bx+

1
2

(a−b)(|x + E|− |x−E|),
and p = 10.0, q = 14.87, a = −1.27, b = −0.68, E is a positive constant.

On the basis of (13.4), consider the synchronization of Chua’s circuits, which
consist of two chaotic systems: One is the drive system, given by

ẋd = p [−xd + yd − f (xd) ] ,

ẏd = xd − yd + zd,

żd = −qyd, (13.5)

where the subscript d denotes the drive system; and the other one is the response
system, described by

ẋr = p [−xr + yr − f (xr) ]+ u1(xd − xr,yd − yr,zd − zr),

ẏr = xr − yr + zr + u2(xd − xr,yd − yr,zd − zr),

żr = −qyr + u3(xd − xr,yd − yr,zd − zr), (13.6)

where the subscript r indicates the response system, u1, u2, and u3 represent feedback
controls to be determined.

Letting
ex = xd − xr, ey = yd − yr, ez = zd − zr

yields the following error system:

ėx = −pex + pey − p [ f (xd)− f (xr) ]−u1(xd − xr,yd − yr,zd − zr),

ėy = ex − ey + ez −u2(xd − xr,yd − yr,zd − zr),

ėz = −qey −u3(xd − xr,yd − yr,zd − zr). (13.7)

The basic idea here is to choose simple feedback controls u1, u2, and u3 such
that the zero solution of the error system (13.7) is globally exponentially stable in
Hurwitz angle [0,L], and therefore the two systems (13.5) and (13.6) are globally
exponentially synchronized in Hurwitz angle [0,L].
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Definition 13.4. If ∀ xd(0), yd(0), zd(0) ∈ R3, and the corresponding xr(0), yr(0),
zr(0) ∈ R3, the zero solution of the error system (13.7) is absolutely exponen-
tially stable, then the two systems (13.5) and (13.6) are globally exponentially
synchronized.

Next, we shall show that the error system (13.7) can be considered as a standard
Lurie system. In fact, on the one hand, if all controls u1, u2, and u3 are merely linear
functions of ex, ey, and ez, then these controls can be included in the linear part A of
the Lurie system. On the other hand, if u1 contains f (xd)− f (xr), then

f (xd)− f (xr) = k(xd, xr)(xd − xr) = k(xd, xr)ex.

Since a ≤ k(xd, xr) ≤ b < 0, we have

a ≤ f (xd)− f (xr)
xd − xr

=
k(xd, xr)ex

xd − xr
≤ b < 0,

which does not satisfy the condition of Lurie function. However, because

0 ≤−b ≤ − [ f (xd)− f (xr) ]
xd − xr

=
−k(xd, xr)ex

xd − xr
≤−a := L < +∞,

we can define
g(ex) := − [ f (xd)− f (xr) ] ∈ F[0,L],

which satisfies the condition of Lurie function. Therefore, the error system (13.7)
can be always transformed into a standard Lurie system, given by

ėx = −pex + pey + pg(ex)−u1(xd − xr,yd − yr,zd − zr),

ėy = ex − ey + ez−u2(xd − xr,yd − yr,zd − zr),

ėz = −qey −u3(xd − xr,yd − yr,zd − zr). (13.8)

13.2 Globally Exponent Synchronization of Two Chua’s
Chaotic Circuits

In this section, we shall show how to choose the feedback controls u1, u2, and u3 such
that the drive-response systems (13.5) and (13.6) are globally exponentially synchro-
nized. We first consider linear feedback control laws, and then nonlinear feedback
control laws.

13.2.1 Linear Feedback Control
Theorem 13.5. In the response system (13.6), take the following feedback controls:

u1 = pδx (xd − xr)+ p(yd − yr) (δx > −(1 + a)), u2 = u3 = 0. (13.9)

Then, the zero solution of (13.7) is globally exponentially stable in Hurwitz angle
[0,L], and thus the two systems (13.5) and (13.6) are absolutely exponentially
synchronized in Hurwitz angle [0,L].
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Proof. Let δ̃x = δx +(1 + a), i.e., δx = δ̃x − (1 + a). Consider the first equation of
(13.7) and construct the radially unbounded, positive definite Lyapunov function for
this equation: V = 1

2 e2
x , then we have

dV
dt

∣∣∣∣
(13.7)

= ex ėx = −pe2
x + pex ey − pex ey − ex p [ f (xd)− f (xr) ]− pδx e2

x

= −pe2
x − pk(xd, xr)e2

x − pδx e2
x

≤ (−p− pa)e2
x − p

[
δ̃x − (1 + a)

]
e2

x

= −p δ̃x e2
x

= −2 p δ̃xV,

which implies that 1
2 e2

x(t) = V (t) ≤V (0)e−2 p δ̃x t , i.e.,

e2
x(t) = 2V (t) ≤ 2V(0)e−2 p δ̃x t . (13.10)

Equation (13.10) indicates that the zero solution of the error system (13.7) is abso-
lutely exponentially stable in Hurwitz angle [0,L] w.r.t. partial variable ex (i.e., for
any k(xd,xr)δx).

Next, consider the following matrix:

A =

⎡
⎢⎣−p− pδx 0 0

1 −1 1
0 −q 0

⎤
⎥⎦

which gives the characteristic polynomial:

det(λ I−A) =

⎡
⎢⎣λ + p + pδx 0 0

−1 λ + 1 −1
0 q λ

⎤
⎥⎦

= λ 3 +(p+pδx+1)λ 2 +(p+pδx+q)λ +(p+pδx)q. (13.11)

According to the well-known Hurwitz criterion [68], the sufficient and necessary
conditions for matrix A being a Hurwitz matrix (i.e., all eigenvalues of A have
negative real parts) are

0 < (p + pδx)q < (p + pδx + 1)(p + pδx + q).

Obviously, the above inequalities hold under the given conditions. Hence, by Lemma
13.3, the zero solution of system (13.7) is absolutely, exponentially stable in Hurwitz
angle [0,L] (i.e., for any k(xd,xr)δx), and therefore, the drive-response systems (13.5)
and (13.6) are globally exponentially synchronized in Hurwitz angle [0,L]. The proof
of Theorem 13.5 is complete. �
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Theorem 13.6. In the response system (13.6), choose the following feedback
controls:

u1 = pδx(xd − xr)+ p̃(yd − yr) (δx >−(1 + a), p̃ > p),

u2 = zd − zr,

u3 = δz(zd − zr), (13.12)

where δz > 0 is an arbitrary real number. Then, the zero solution of (13.7) is abso-
lutely exponentially stable in Hurwitz angle [0,L], and thus the two systems (13.5)
and (13.6) are globally exponentially synchronized in Hurwitz angle [0,L].

Proof. Under the controls given in (13.12), the error system (13.7) becomes

ėx = −p(ex − ey)− p̃ey − pδx ex − p [ f (xd)− f (xr) ] ,

ėy = ex − ey

ėz = −qey − δz ez . (13.13)

Let p̃ − p = r > 0, δ̃x = δx + (1 + a). Then, consider the first two equations of
(13.13) and construct the radially unbounded, positive definite Lyapunov function
for (ex,eθ ):

V =
1
2

(e2
x + r e2

y),

from which we obtain

dV
dt

∣∣∣∣
(13.13)

≤ −(p + pδx + pa)e2
x − r ex ey + r ex ey − r e2

y

≤ −p
[

1 + a +(δ̃x− (1 + a)
]

e2
x − r e2

y

= −p δ̃x e2
x − r e2

y

≤
{−e2

x − r e2
y = −2V for p δ̃x ≥ 1,

−p δ̃x (e2
x + r e2

y) = −2 p δ̃xV for p δ̃x < 1.

Thus,

V (t) ≤
{

V (t0)e−2 (t−t0) for p δ̃x ≥ 1,

V (t0)e−2 p δ̃x(t−t0) for p δ̃x < 1,

which, in turn, results in

e2
x(t) ≤ 2V (t) ≤

{
2V (t0)e−2 (t−t0) for p δ̃x ≥ 1,

2V (t0)e−2 p δ̃x(t−t0) for p δ̃x < 1.

Therefore, the zero solution of system (13.13) is absolutely exponentially stable w.r.t.
partial variables ex and ey in Hurwitz angle [0,L].
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Next, from the linear part of system (13.13), we have the matrix:

A =

⎡
⎢⎣−p− pδx −r 0

1 −1 0
0 −q −δz

⎤
⎥⎦ ,

which yields the characteristic polynomial:

det(λ I−A) =

⎡
⎢⎣λ + p + pδx r 0

−1 λ + 1 0
0 q λ + δz

⎤
⎥⎦

= (λ + δz)
[

λ 2 +(p + pδx + 1)λ + p + pδx + r
]

It follows from the given conditions: δz > 0, p + pδx + 1 > 0 and p + pδx + r > 0
that A is a Hurwitz matrix. Thus, by Lemma 13.3, the conclusion of Theorem 13.6 is
true. �

Theorem 13.7. In the response system (13.6), take the following feedback controls:

u1 = pδx(xd − xr) (δx > −(1 + a)),

u2 = l (xd − xr)+ (zd − zr), (l > 1),

u3 = δz (zd − zr) (δz > 0). (13.14)

Then, the zero solution of (13.7) is absolutely exponentially stable in Hurwitz
angle [0,L], and thus the two systems (13.5) and (13.6) are globally exponentially
synchronized in Hurwitz angle [0,L].

Proof. Under the controls given in (13.14), the error system (13.7) can be rewritten
as

ėx = −p(ex − ey)− pδx ex − p [ f (xd)− f (xr) ] ,

ėy = (1− l)ex − ey ,

ėz = −qey − δz ez . (13.15)

Let δ̃x = δx +(1+a). Then, consider the first two equations of (13.15) and construct
the Lyapunov function for these two equations:

V =
1

2 p
e2

x +
1

2(l−1)
e2

y ,

which is radially unbounded, positive definite for (ex,ey). It is easy to show that

dV
dt

∣∣∣∣
(13.15)

≤−(1 + a + δx)e2
x + ex ey − ex ey − e2

y = − δ̃x e2
x − e2

y.
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Similar to the proof of Theorem 13.6, a simple algebraic manipulation leads to the
conclusion: the zero solution of system (13.15) is absolutely exponentially stable
w.r.t. partial variables ex and ey in Hurwitz angle [0,L].

Next, similarly, the linear matrix of (13.15):

A =

⎡
⎢⎣−p− pδx p 0

1− l −1 0
0 −q −δz

⎤
⎥⎦

yields the characteristic polynomial:

det(λ I−A) =

⎡
⎢⎣λ + p + pδx −p 0

l − 1 λ + 1 0
0 q λ + δz

⎤
⎥⎦

= (λ + δz)
[

λ 2 +(p + pδx + 1)λ + p + pδx + p(l−1)
]
.

It is obvious that A is a Hurwitz matrix. Thus, by Lemma 13.3, the zero solution of
system (13.15) is absolutely exponentially stable in Hurwitz angle [0,L], and there-
fore, the two systems (13.5) and (13.6) are globally exponentially synchronized in
Hurwitz angle [0,L]. �

Theorem 13.8. In the response system (13.6), take the following feedback controls:

u1 = pδx(xd − xr) (δx > −(1 + a)),

u2 = δy(xd − xr)+ (zd − zr) (δy >
p

p + pa + pδx
−1),

u3 = δz (zd − zr) (δz > 0).

(13.16)

Then, the zero solution of (13.7) is absolutely exponentially stable in Hurwitz
angle [0,L], and thus the two systems (13.5) and (13.6) are globally exponentially
synchronized in Hurwitz angle [0,L].

Proof. Under the controls given in (13.16), the error system (13.7) becomes

ėx = −p(ex − ey)− pδx ex − p [ f (xd)− f (xr) ] ,

ėy = ex − ey − δy ey ,

ėz = −qey − δz ez . (13.17)

From the given conditions: − p− pa− pδx < 0, −1− δy < 0, δy > p
p+pa+pδx

− 1,
we have (p + pa + pδx)(1 + δy) > p. Further, using the sufficient and necessary
conditions for a second-order real matrix to be Lyapunov-Voltlor stable, one can
conclude that there exists ξ > 0 such that

Ω =
[−2(p + pa + pδx) p + ξ

p + ξ −2ξ (1 + δy)

]
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is negative definite. Let λmax(Ω) denote the largest eigenvalue of Ω . Then, similarly,
consider the first two equations of (13.17) and construct the Lyapunov function for
these two equations: V = (e2

x + ξ e2
y). Thus, we have

dV
dt

= 2ex ėx + 2ey ėy

≤
(

ex
ey

)T [−2(p + pa + pδx) p + ξ
p + ξ −2ξ (1 + δy)

](
ex
ey

)

≤ λmax(Ω)(e2
x + e2

y),

which implies that the zero solution of system (13.17) is absolutely exponentially
stable in Hurwitz angle [0,L] w.r.t. partial variables ex and ey. In particular, it is
absolutely exponentially stable w.r.t. ex in Hurwitz angle [0,L].

By considering the linear matrix of system (13.17):

A =

⎡
⎢⎣−p− pδx p 0

1 −1− δy 0
0 −q −δz

⎤
⎥⎦ ,

we can similarly prove that A is a Hurwitz matrix. Therefore, by Lemma 13.3, the
conclusion of Theorem 13.8 is true. �

In the following, we give another theorem, which is completely different from
Theorems 13.5–13.8.

Theorem 13.9. In the response system (13.6), choose the following feedback con-
trols:

u1 = pδx(xd − xr) (δx > −(1 + a)), u2 = xd − xr, u3 = 0. (13.18)

Then, the zero solution of (13.7) is absolutely exponentially stable in Hurwitz
angle [0,L], and thus the two systems (13.5) and (13.6) are globally exponentially
synchronized in Hurwitz angle [0,L].

Proof. Under the controls given in (13.18), the error system (13.7) becomes

ėx = −p(ex − ey)− pδx e2
x − p [ f (xd)− f (xr) ] ,

ėy = −ey + ez ,

ėz = −qey . (13.19)

Consider the second and third equations of (13.19) and construct the Lyapunov
function for these two equations:

V = e2
y + 1

q e2
z − ε ey ez =

(
ey
ez

)T

⎡
⎢⎣ 1 −1

2
ε

−1
2

ε
1
q

⎤
⎥⎦( ey

ez

)
:=
(

ey
ez

)T

W
(

ey
ez

)
.
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It is easy to see that V is positive definite when 0 < ε 	 1. Further, we have

dV
dt

∣∣∣∣
(13.19)

= −2e2
y + 2ey ez −2ey ez − ε ėy ez − ε ey ėz

= −2e2
y − ε (−ey + ez)ez + ε qe2

y

=
(

ey
ez

)T

⎡
⎢⎣−2 + ε q

1
2

ε

1
2

ε −ε

⎤
⎥⎦( ey

ez

)

:=
(

ey
ez

)T

Q
(

ey
ez

)
< 0 (when e2

y + e2
z �= 0 and 0 < ε 	 1).

Thus,
dV
dt

≤ λmax(Q)(e2
y + e2

z ) ≤
λmax(Q)
λmax(W )

V,

and so V (t)≤V (t0)e
λmax(Q)
λmax(W) (t − t0). Also note that V ≥ λmin(W )(e2

y +e2
z ). Combin-

ing these results yields

λmin(W )(e2
y + e2

z ) ≤V (t) ≤V (t0)e
λmax(Q)
λmax(W ) (t − t0),

where λmin(W ) and λmax(Q) denote, respectively, the minimum eigenvalue of W and
the maximum eigenvalue of Q. This shows that the zero solution of system (13.19)
is absolutely exponentially stable w.r.t. ey and ez in Hurwitz angle [0,L].

Next, consider the first equation of (13.19) and construct the Lyapunov function
V = 1

2 e2
x , and choose 0 < ε 	 1 such that ( ε

2 )2 < 1 + a + δx, then

dV
dt

∣∣∣∣
(13.19)

≤ −(p + pa + pδx)e2
x + pex ey

≤ −(p + pa + pδx)e2
x + p

(ε
2

)2
e2

x + p
(

1
ε

)2

e2
y

= −
[

p + pa + pδx− p
(ε

2

)2
]

e2
x + p

1
ε2 e2

y

= −2
[

p + pa + pδx− p
(ε

2

)2
]

V + p
(

1
ε

)2

e2
y . (13.20)

Let V (t0) = V0, Consider the following initial value problem:

dU
dt

= −2
[

p + pa + pδx− p
(ε

2

)2
]

U + p
(

1
ε

)2

e2
y with U(t0) = V0,

(13.21)
which is used for comparison with (13.20). So V (t) ≤U(t). Following the proof of
Lemma 13.3, one can show that U(t) has a negative exponential estimation since
e2

y has a negative exponential estimation. Therefore, V (t) and e2
x(t) have negative
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exponential estimations. This implies that the zero solution of system (13.19) is also
absolutely exponentially stable w.r.t. ex in Hurwitz angle [0,L], and thus the zero
solution of system (13.19) is absolutely exponentially stable in Hurwitz angle [0,L].
Therefore, the drive-response systems (13.5) and (13.6) are globally exponentially
synchronized in Hurwitz angle [0,L]. �

To end this section, we present a general result for existence, and then apply it to
find some useful conditions for practical applications.

In the response system (13.6), take the following feedback controls:

u1 = pδx (xd − xr) (δx > 0),

u2 = δy (yd − yr) (δy > 0),

u3 = qδz (zd − zr) (δz > 0). (13.22)

Then, the error system (13.7) becomes

ėx = p [ey − ex − ( f (xd)− f (xr)) ]− pδx ex ,

ėy = ex − ey + ez − δy ey ,

ėz = −qey −qδz ez . (13.23)

Theorem 13.10. There always exist δx ≥ 0, δy ≥ 0, δz ≥ 0, such that the zero solu-
tion of (13.23) is absolutely exponentially stable in Hurwitz angle [0,L], and thus the
two systems (13.5) and (13.6) are globally exponentially synchronized in Hurwitz
angle [0,L].

Proof. Let the radially unbounded, positive definite Lyapunov function be: V =
1
p e2

x + e2
y + 1

q e2
z , then

dV
dt

∣∣∣∣
(13.23)

= 2ex [ey − ex − k(xd,xr)ex − δx ex ]

+ 2ey (ex − ey + ez− δy ey)−2ez (−ey − δz ez)

= − 2e2
x −2k(xd,xr)e2

x −2δx e2
x + 4ex ey −2e2

y

− 2δy e2
y + 2ey ez −2ey ez −2δz e2

z

=

⎛
⎝ ex

ey
ez

⎞
⎠T
⎡
⎢⎣−2(1 + k(xd,xr)+ δx) 2 0

2 −2(1 + δy) 0
0 0 −2δz

⎤
⎥⎦
⎛
⎝ ex

ey
ez

⎞
⎠

≤
⎛
⎝ ex

ey
ez

⎞
⎠T
⎡
⎢⎣−2(1 + a + δx) 2 0

2 −2(1 + δy) 0
0 0 −2δz

⎤
⎥⎦
⎛
⎝ ex

ey
ez

⎞
⎠. (13.24)

Thus, when e2
x +e2

y +e2
z �= 0, as long as the parameters are chosen to satisfy (1+δy) >

0, (1+a+δx)> 0 and (1+δy)(1+a+δx) > 1, i.e., a+δx+δy+aδy+δx δy > 0, then
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dV
dt < 0. For example, when a + δx > 0, δy = 0, δz > 0, or −1 < a + δx < 0, δy >

1
1+a+δx

+ 1, δz > 0, we have dV
dt < 0. Thus, the zero solution of system (13.23) is

absolutely exponentially stable in Hurwitz angle [0,L], and so the two systems (13.5)
and (13.6) are globally exponentially synchronized in Hurwitz angle [0,L]. �

13.2.2 Nonlinear Feedback Control

Now, we turn to apply nonlinear feedback controls to obtain globally exponential
synchronization. To achieve this, in the response system (13.6), let

u1 = −l [ f (xd)− f (xr) ] := l g(ex) (l > p), u2 = u3 = 0, (13.25)

where g(ex) = − [ f (xd)− f (xr) ] = −k(xd,xr)ex, satisfying 0 < −h ≤ g(ex)
ex

≤−a :=
L < +∞. Then, system (13.7) becomes

ėx = −p(ex − ey)− (l− p)g(ex),

ėy = ex − ey − ez ,

ėz = −qey . (13.26)

Further, we can rewrite (13.26) as a standard Lurie direct control system:⎛
⎝ ėx

ėy
ėz

⎞
⎠ =

⎡
⎢⎣−p p 0

1 −1 1
0 −q 0

⎤
⎥⎦
⎛
⎝ ex

ey
ez

⎞
⎠+

⎛
⎝−δ

0
0

⎞
⎠g(ex) := Ae + hg(ex),

σ := cT e, (13.27)

where δ = l − p, and

A =

⎡
⎣−p p 0

1 −1 1
0 −q 0

⎤
⎦ , h =

⎛
⎝−δ

0
0

⎞
⎠ , c =

⎛
⎝1

0
0

⎞
⎠ , e =

⎛
⎝ ex

ey
ez

⎞
⎠ .

The characteristic polynomial is

det(λ I −A) = λ 3 +(p + 1)λ 2 + qλ + pq = 0. (13.28)

According to Hurwitz criterion, the sufficient and necessary conditions for (13.28)
being a Hurwitz polynomial are

q > 0, 0 < pq < (p + 1)q = pq + q.

Since p > 0, q > 0, the above conditions obviously hold, indicating that A is a Hur-
witz matrix. Thus, by Lemma 13.3, the sufficient and necessary conditions for the
zero solution of system (13.27) being absolutely exponentially stable are that the zero
solution of system (13.27) is absolutely exponentially stable w.r.t. partial variable ex.
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Theorem 13.11. If there exist τ > 0 and ε > 0 such that

H(τ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R11 δ − p
2

+ τ

RA + ATR −R21 δ +
p
2

−R31 δ

−R11 δ − p
2

+ τ −R21 δ +
p
2

−R31 δ −δ +
1

|a|+ ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is negative definite, then the zero solution of system (13.27) is absolutely exponen-
tially stable in Hurwitz angle [0,L], and thus the two systems (13.5) and (13.6) are
globally exponentially synchronized in Hurwitz angle [0,L]. Here, R is the symmetric,
positive definite solution of the Lyapunov matrix equation:

RA + ATR = B, (13.29)

where B is a symmetric, negative definite matrix. R11, R21, and R31 are the first row
elements of R.

Proof. Construct the Lurie-Lyapunov function: V = eTRe +
∫ ex

0 g(ex)dex, and then
differentiate V along the solution of system (13.27) with the aid of S programming
to obtain

dV
dt

= eT (RA + ATR)e + 2(Rh +
1
2

ATC)Teg(ex)− δ g2(ex)

= eT (RA + ATR)e +

⎡
⎢⎣2

⎛
⎝−R11 δ

−R21 δ
−R31 δ

⎞
⎠T

+

⎛
⎝−p

0
0

⎞
⎠T
⎤
⎥⎦eg(ex)− δ g2(ex)

=

⎛
⎜⎜⎝

ex
ey
ez

g(ex)

⎞
⎟⎟⎠

T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R11δ− p
2

+τ

RA + ATR −R21 δ +
p
2

−R31 δ

−R11δ− p
2

+τ −R21δ +
p
2

−R31 δ −δ +
1

|a|+ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎝

ex
ey
ez

g(ex)

⎞
⎟⎟⎠

−τ g(ex)
[

ex − 1
|a|+ ε

g(ex)
]

≤ λmax(H)(ex, ey, ez, g(ex))(ex, ey, ez, g(ex))T

−τ g(ex)
(

ex − |a|ex

|a|+ ε

)

≤ λmax(H)eT e− τ g(ex)
(

ε
|a|+ ε

ex

)

≤ λmax(H)
λmax(R)

eTRe− τ ε
|a|+ ε

ex g(ex). (13.30)
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One may choose ξ > 0 such that 1
2 ξ |a| ≤ |b|. Then ex g(ex)≥ ξ

∫ ex
0 g(ex)dex. In fact,

since |b|e2
x ≤ ex g(ex) ≤ |a|e2

x , we have

ξ
|b|
2

e2
x ≤
∫ ex

0
ξ g(ex)dex ≤ ξ

|a|
2

e2
x ≤ |b|e2

x ≤ ex g(ex).

Thus, inequality (13.30) can be rewritten as

dV
dt

=
λmax(H)
λmax(R)

eTRe− τ ε ξ
|a|+ ε

∫ ex

0
g(ex)dex

≤ max
[

λmax(H)
λmax(R)

, − τ ε ξ
|a|+ ε

][
eTRe +

∫ ex

0
g(ex)dex

]

≤ max
[

λmax(H)
λmax(R)

, − τ ε ξ
|a|+ ε

]
V.

Hence,

V (t) ≤V (t0)e
max
[

λmax(H)
λmax(R) , − τ ε ξ

|a|+ε

]
(t−t0)

,

which, in turn, results in

eT(t)e(t) ≤ 1
λmim(R)

V (t) ≤ 1
λmim(R)

V (t0)e
max
[

λmax(H)
λmax(R) , − τ ε ξ

|a|+ε

]
(t−t0)

. (13.31)

Equation (13.31) implies that the zero solution of (13.27) is absolutely exponentially
stable. �

Because A is a Hurwitz matrix, the Lyapunov matrix equation (13.29) always has
symmetric, positive definite matrix solution. Thus, to apply Theorem 13.11, one only
needs to verify if there exist τ > 0 and ε > 0 such that H is negative definite. In the
following, we derive an explicit condition for proving the existence of such τ and ε .

Theorem 13.12. Let

α = −
[

R11 δ +
p + τ

2
, R21 δ − p

2
, R31 δ

]T
=
(ATc

2
+ Rh +

τ c
2

)T
.

If there exist τ > 0 and ε > 0 such that

dTB−1d + δ +
1

|a|+ ε
< 0, (13.32)

then the zero solution of system (13.27) is absolutely exponentially stable, and thus
the two systems (13.5) and (13.6) are globally exponentially synchronized.

Proof. Because the H(τ) given in Theorem 13.11 is negative definite, this implies
that the condition (13.32) is satisfied. �
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Now we expand the inequality (13.32) as a quadratic polynomial of τ:(ATc
2

+ Rh +
τ c
2

)T
B−1
(ATc

2
+ Rh +

τ c
2

)
+ δ +

τ
|a|+ ε

< 0,

which can be rewritten as( c
2

)T
B−1
( c

2

)
τ2 +
[(ATc

2
+Rh

)T
B−1 c

2
+

cT

2
B−1
(ATc

2
+Rh

)
+

1
|a|+ε

]
τ

+
(ATc

2
+ Rh

)T
B−1
(ATc

2
+ Rh

)
+ δ < 0, (13.33)

from which we can obtain simpler conditions for the existence of τ as follows.

Corollary 13.13. If one of the following conditions is satisfied, then the quadratic
inequality (13.32) has positive solutions for τ:

(1)
(ATc

2
+ Rh

)T
B−1
(ATc

2
+ Rh

)
+ δ < 0

(2) 2
(ATc

2
+ Rh

)T
B−1 c

2
+

1
|a|+ ε

< 0

[
2
(ATc

2
+ Rh

)T
B−1 c

2
+

1
|a|+ ε

]2

−cTB−1c
[

2
(ATc

2
+ Rh

)T
B−1
(ATc

2
+ Rh

)
+ δ
]
≥ 0.

The above conditions indicate that the inequality (13.33) has positive solutions
for τ . Thus, the zero solution of (13.27) is absolutely exponentially stable in Hurwitz
angle [0,L], and so the two systems (13.5) and (13.6) are globally exponentially
synchronized in Hurwitz angle [0,L].

13.3 Globally Exponential Synchronization w.r.t. Partial State
Variables

Chua’s circuits are perhaps the earliest developed system from which chaos synchro-
nization was observed [117], via a state signal taken from the transmitter system to
drive the response system. In other words, some of the states of the response system
are exactly same as that of the drive system. For example, let xd = xr. Then, consider
the synchronizations between the two pairs of (yd, yr) and (zd, zr). In this section,
we use partial states stability theory and methodology [68, 95] to study the globally
exponential synchronization w.r.t. partial state variables.

(1) For xr = xd, system (13.7) becomes

ėy = −ey + ez−u2(yd − yr, zd − zr),

ėz = −qey −u3(yd − yr, zd − zr). (13.34)
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Theorem 13.14. In (13.34), let u2 = u3 = 0. Then, the zero solution of system (13.34)
is absolutely exponentially stable in Hurwitz angle [0,L], and thus when xr = xd
(i.e., without feedback control), the two systems (13.5) and (13.6) are globally expo-
nentially synchronized in Hurwitz angle [0,L] between the two pairs of (yd, yr) and
(zd, zr).

Proof. Construct the radially unbounded, positive definite Lyapunov function for
system (13.34) as follows:

V = e2
y +

1
q

e2
z − ε ey ez =

(
ey
ez

)T

⎡
⎢⎣ 1 −ε

2

−ε
2

1
q

⎤
⎥⎦(ey

ez

)
(for 0 < ε 	 1).

Then,

dV
dt

= −2e2
y + 2ey ez −2ey ez − ε ez (−ey + ez)− ε (−qey)ey

=
(

ey
ez

)T
⎡
⎣−2 + ε q −ε

2
−ε

2
−ε

⎤
⎦(ey

ez

)
< 0 (when e2

y + e2
z �= 0 for 0 < ε 	 1).

It is easy to see that one can choose an ε = ε0 such that V is positive definite while
dV
dt is negative definite. Thus, the zero solution of system (13.34) is absolutely expo-

nentially stable, implying that when xr = xd (i.e., without feedback control), the two
systems (13.5) and (13.6) are globally exponentially synchronized between the two
pairs of (yd, yr) and (zd, zr). �
(2) For yr = yd, system (13.7) becomes

ėx = − pex − p [ f (xd)− f (xr) ]−u1(xd − xr, zd − zr),

ėz = −u3(xd − xr, zd − zr). (13.35)

Theorem 13.15. In (13.35), choose

u1 = pδx (xd − xr) (δx > −(1 + a), u3 = −δz (zd − zr) (δz > 0). (13.36)

Then, the zero solution of system (13.35) is absolutely exponentially stable, and
thus when yr = yd, the two systems (13.5) and (13.6) are globally exponentially
synchronized between the two pairs of (xd, xr) and (zd, zr).

Proof. Construct the radially unbounded, positive definite Lyapunov function:

V =
1
2

e2
x +

1
2

e2
z ,

which yields

dV
dt

= ex ėx + ez ėz ≤−pe2
x − pae2

x − pδx e2
x − δz e2

z := − p δ̃x e2
x − δz e2

z ,

where δ̃x = (δx + 1 + a). Obviously, the conclusion is true. �
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(3) For zr = zd, system (13.7) becomes

ėx = − pex + pey − p [ f (xd)− f (xr) ]−u1(xd − xr, yd − yr),

ėy = ex − ey −u2(xd − xr, yd − yr). (13.37)

Theorem 13.16. In (13.37), take either

(i) u1 = pδx (xd − xr) (δx > |a|), u2 = 0; or

(ii) u1 = pδx (xd − xr) (δx > −(1 + a)),

u2 = δy (yd − yr) (δy >
1

1+a+δx
−1). (13.38)

Then, the zero solution of system (13.37) is absolutely exponentially stable in Hurwitz
angle [0,L], and thus when zr = zd, the two systems (13.5) and (13.6) are globally
exponentially synchronized in Hurwitz angle [0,L] between the two pairs of (xd, xr)
and (yd, yr).

Proof. Construct the radially unbounded, positive definite Lyapunov function:

V =
1
p

e2
x + e2

y.

Then, for Case (i):

dV
dt

≤ −2e2
x + 2ex ey + 2 |a|e2

x −2δx e2
x + 2ex ey −2e2

y

≤
(

ex
ey

)T
[
−2(1 + δ̃x) 2

2 −2

](
ex
ey

)
< 0 (for e2

x + e2
y �= 0),

where δ̃x = δx −|a|> 0. For Case (ii):

dV
dt

≤
(

ex
ey

)T
[−2(1 + a + δx) 2

2 −2(1 + δy)

](
ex
ey

)
< 0 (for e2

x + e2
y �= 0).

Hence, the conclusion of Theorem 13.16 is true. �

13.4 Remarks on Nonsynchronization

If no feedback control is applied to the drive-response systems (13.5) and (13.6),
or even with a driving signal but without feedback control, then it may fail to
synchronize the two systems.

(1) Part of variables are not synchronized. Suppose yr = yd, and take u1 = u3 = 0
(i.e., without feedback). Then, obviously the zero solution of system (13.35) can-
not be asymptotically stable. This is because ez(t) ≡ ez(t0) �= 0, implying that
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lim
t→+∞

ez(t) �= 0, and therefore when xd(0) > E and xr(0) > E (E > 0), lim
t→+∞

ex(t) =

+∞; when xd(0) < −E and xr(0) < −E , lim
t→+∞

ex(t) = −∞. This indicates that

although yd is used as the driving signal, xd and xr (zd and zr) cannot be synchronized.
Let zr = zd and take u1 = u2 = 0 in (13.37). Then, when |xr| < E and |xd| < E ,

(xd, yd) = (0, 0) is an equilibrium point of the system:

ẋd = − pxd − paxd = −(1 + a) pxd ,

ẏd = xd − yd .

However, obviously, A =
[
−(1 + a) p 0

1 −1

]
is not a Hurwitz matrix. Thus,

lim
t→+∞

(x2
r (t)+ y2

r (t)) �= 0, implying that xd and xr (yd and yr) cannot be synchronized,

though zd is used as the driving signal.
(2) All variables are not synchronized. In (13.6) take u1 = u2 = u3 = 0. Then,

(0, 0, 0) is an equilibrium point of system (13.5). However, when |xr| ≤ E , the trace
of the matrix

A =

⎡
⎣ −(1 + a) p p 0

1 −1 0
0 −q 0

⎤
⎦

is −p − pa − 1 > 0, so A is not a Hurwitz matrix. Thus, lim
t→+∞

(x2
r (t) + y2

r (t) +

z2
r (t)) �=0.

The above discussions may explain why for a long time people believe that
chaotic systems cannot be synchronized. It actually means that chaotic systems can-
not be synchronized without feedback control or with an improper feedback control.
The first observed chaos synchronization [11] was actually obtained using one vari-
able as a driving signal, while the other two variables can be synchronized. Therefore,
chaos synchronization can occur only if certain conditions are satisfied.

13.5 Numerical Simulation Results

In this section, we present several examples using numerical simulations to illustrate
the theoretical predictions. The fourth-order Runge-Kutta method is used to obtain
the results. As the problem of nonsynchronization, discussed in the previous section,
is obvious, we thus only consider synchronization with feedback controls. Further,
for definite, choose E = 1 for the function f (x) in (13.4).

The second example, depicted in Fig. 13.2, uses the control (13.14) with δx =
2.5, l = 1.5, and δz = 0.5. The initial conditions are given in (13.39). It is seen that
the error, ex, quickly, exponentially converges to zero.

The first example takes the control given in (13.9) and choose δx = 2.5 > −(1+
a) = 2.27. The simulation results are shown in Fig. 13.1. Note that Chua’s circuit
exhibits chaos only for the initial values bounded in certain region. For example, the
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Fig. 13.1 Phase portrait (xd, zd) (shown in (a) and (c)) and error time history ex (shown in (b) and
(d)) of systems (13.5) and (13.6) using the control (13.9) for δx = 2.5, with the initial conditions:
xd(0) = −1.2, yd(0) = −0.5, xd(0) = 1.0; xr(0) = 1.0, yr(0) = 0.2, zr(0) = −1.1 for (a) and (b);
and the initial conditions: xd(0) = 1.2, yd(0) =−0.5, xd(0) = 1.0; xr(0) = 0.2, yr(0) = 0.2, xd(0) =
−1.1 for (c) and (d)

Fig. 13.2 Convergence of
ex of system (13.15) using
the control (13.14) for δx =
2.5, l = 1.5, δz = 0.5 with
the initial conditions: xd(0) =
−1.2, yd(0) = −0.5, xd(0) =
1.0; xr(0) = 1.0, yr(0) =
0.2, zr(0) = −1.1
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results given in Figs. 13.1a, b use the following initial values:

xd(0) = −1.2, yd(0) = −0.5, zd(0) = 1.0;

xr(0) = 1.0, yr(0) = 0.2, zr(0) = −1.1,
(13.39)

showing a chaotic attractor. When the initial conditions are chosen as:

xd(0) = 1.2, yd(0) = −0.5, xd(0) = 1.0;

xr(0) = 0.2, yr(0) = 0.2, zr(0) = −1.1,
(13.40)

the trajectory diverges to infinity. However, both two cases show that the error ex is
exponentially converges to zero within a short transient period. (ey and ez, not shown
in the paper, are also convergent to zero.)

The third example applies the control (13.18) with δx = 2.5. The initial conditions
are given by

xd(0) = 1.2, yd(0) = −0.5, zd(0) = −1.0;

xr(0) = −1.0, yr(0) = 0.2, zr(0) = 1.1.
(13.41)

The results are shown in Fig. 13.3. Again, it can be seen that the error exponentially
converges to zero. But unlike the previous two examples, it dies out with normal
oscillations.

The next example applies the control (13.22) with the same initial values, given in
(13.41), where the control coefficients are chosen as δx = 0.1, δy = 0.2, and δz = 0.3.
The error, shown in Fig. 13.4, exponentially converges to zero with some irregular
oscillations. It is seen from the above examples that the convergent rate depends
upon the initial values. The first two examples converge fast than the third and fourth
examples.

The above four examples use linear controls. The next example employs the non-
linear control (13.25) in which l = 11 (>p = 10). The error ex is depicted in Fig. 13.5,
again confirming that the error exponentially converges to zero, but for this example,
the convergent rate is very slow, compared with the previous examples.

The sixth example is to demonstrate synchronization with respect to partial sys-
tem variables. It assumes zr = zd, i.e., zd is used as the driving signal. The control

Fig. 13.3 Convergence of ex
of system (13.19) using the
control (13.18) for δx = 2.5
with the initial conditions:
xd(0) = 1.2, yd(0) = −0.5,
xd(0) = −1.0; xr(0) = −1.0,
yr(0) = 0.2, zr(0) = 1.1
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t

−0.4

 0

 0.4
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Fig. 13.4 Convergence of ex
of system (13.23) using the
control (13.22) for δx = 0.1
δy = 0.2, δz = 0.3 with the
initial conditions: xd(0) = 1.2,
yd(0) = −0.5, xd(0) = −1.0;
xr(0) = −1.0, yr(0) = 0.2,
zr(0) = 1.1
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Fig. 13.5 Convergence of ex
of system (13.26) using the
control (13.25) for l = 11.9
with the initial conditions:
xd(0) = 1.2, yd(0) = −0.5,
xd(0) = −1.0; xr(0) = −1.0,
yr(0) = 0.2, zr(0) = 1.1
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Fig. 13.6 Convergence of the error system (13.37) using control (ii) of (13.16) with δx = 2.5, δy =
−0.2: (a) for ex; and (b) for ey, with the initial conditions: xd(0) = 1.2, yd(0) =−0.5, xd(0) =−1.0;
xr(0) = −1.0, yr(0) = 0.2, zr(0) = 1.1

given in case (ii) of (13.16) is used, where δx = 2.5, δy =−0.2. There is no feedback
control for the equation ż (or ėz). The initial condition is given in (13.41). The time
histories of the error variables ex and ey are shown in Fig. 13.6, indicating that the
error exponentially converges to zero.



358 13 Application to Chaos Control and Chaos Synchronization

0 2 4

e_x

t

(a)

0 0.5 1 1.5 2

e_x

t

(b)

−2.5

−2

−1.5

−1

−0.5

 0

−60

−40

−20

 0

Fig. 13.7 Error time history ex of systems (13.5) and (13.6) using the control (13.9): (a) δx = 0.1,
convergent; and (b) δx = −0.4, divergent, for the initial conditions: xd(0) = −1.2, yd(0) = −0.5,
xd(0) = 1.0; xr(0) = 1.0, yr(0) = 0.2, zr(0) = −1.1

Finally, we give one more example to show that the conditions given in this paper
are sufficient, but not necessary. We use the control (13.9) (which has been used in
Example 1, see Fig. 13.1) with different values of δx. By Theorem 13.5, it is sufficient
to obtain global exponential synchronization if δx > −(1 + a) = 0.27. In Fig. 13.7,
we present two cases: (a) δx = 0.1 and (b) δx = −0.4. It is seen from Fig. 13.7 that
the error still quickly converges to zero when δx = 0.1 < 0.27, while it diverges to
infinity when δx = −0.4. This suggests that the sufficient conditions obtained in this
paper might be further improved.

13.6 Master-Slave Synchronization of Two General Lurie
Systems

In this section, we study global synchronization of two general Lurie systems. First,
we consider the Lurie systems with indirect feedback control [89], and the the Lurie
systems with time-delayed feedback control [84].

13.6.1 Indirect Feedback Control

Consider two general Lurie systems with indirect control [89]:

Master :

⎧⎪⎨
⎪⎩

ẋ = Ax + bξ1 + d f (σ1),
ξ̇1 = f (σ1),

σ1 = cT x− γ ξ1;

(13.42)

Slave :

⎧⎪⎨
⎪⎩

ẏ = Ay + bξ2 + d f (σ2),

ξ̇2 = f (σ2),

σ2 = cT y− γ ξ2.

(13.43)

Here A ∈ Rn, x, y ∈ Rn, b, c, d ∈ Rn, γ, α ∈ R, and f (σ) ∈ F[0,k].
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Let e(t) = x(t)− y(t), η(t) = ξ1(t)− ξ2(t), σ(t) = σ1(t)− σ2(t). Then from
(13.42) and (13.43) we have

ė = Ae(t)+ bη(t)+ d F(σ),

η̇ = F(σ),

σ = cT e(t)− γ η(t),

(13.44)

where

0 ≤ F(σ)
σ

=
f (σ1)− f (σ2)

σ1 −σ2
=

f (σ + σ2)− f (σ2)
σ1 −σ2

≤ k.

From the third equation of (13.44) we have

η =
cTe−σ

γ
and

dσ
dt

= cT de
dt

− γ
dη
dt

= cT de
dt

− γ F(σ).

Then system (13.44) can be equivalently written as

ė =
(

A +
1
γ

bcT
)

e(t)− b
γ

σ + d F(σ),

σ̇ = cT
(

A +
1
γ

bcT
)

e(t)− cTb
γ

σ +(cTd− γ)F(σ). (13.45)

Thus, if the zero solution of the system (13.44) or (13.45) is absolutely stable, then
the systems (13.42) and (13.43) are globally synchronized.

In general, two chaotic systems are not possible to be synchronized without feed-
back controls. Thus, how to design a feedback control for system (13.45) such that
the zero solution of the system (13.44) or (13.45) becomes absolutely stable is a
new concept in absolutely stabilizing the Lurie systems, which are not absolutely
stable. A simple and easy-applicable feedback control law should be based on some
simple algebraic sufficient conditions of absolute stability. Otherwise, even for a gen-
eral non-Hurwitz matrix, how to choose possible nonconservative feedback control
matrix K such that A+K becomes Hurwitz is not easy to verify in practice. Although
many computer software like those for solving linear matrix inequality (Matlab) can
be used to help solve such kind of problems, only that with all definite parameter val-
ues can be considered. For other design purpose such as parameter study (in which
may parameters are represented by symbolic notations), computer software cannot
provide useful criteria.

In the following, we consider adding as simple feedback controls as possible
to system (13.45) to obtain absolute stability. To achieve this, adding −α In e and
−β1σ , −β2F(σ), respectively, to the first and second equations of (13.45) yields the
controlled system as follows:

ė =
(

A +
1
γ

bcT −α In

)
e(t)− b

γ
σ + d F(σ),

σ̇ = cT
(

A +
1
γ

bcT
)

e(t)− cTb
γ

σ −β1σ +(cTd − γ −β2)F(σ), (13.46)

where e and σ are state variables.
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Theorem 13.17. The sufficient and necessary conditions for the zero solution of sys-
tem (13.45) being absolutely stable, i.e., the two systems (13.42) and (13.43) are
globally synchronized, are given by

1. The matrix H =

⎡
⎢⎢⎣A +

1
γ

bcT −α In −b
γ

σ + d

cT
(

A +
1
γ

bcT
)

−cTb
γ

−β1 −β2 + cTd− γ

⎤
⎥⎥⎦ is a Hurwitz

matrix
2. The zero solution of the system (13.45) is absolutely stable w.r.t. σ

Proof. Necessity. For (1) we let f (σ) = σ . Then system (13.45) becomes linear and
thus H must be a Hurwitz matrix. For (2) it is obvious.

Sufficiency. let the solution of (13.45) be expressed as

(
ė(t)

σ̇(t)

)
=

⎡
⎢⎢⎣A +

1
γ

bcT −α In −b
γ

σ + d

cT
(

A +
1
γ

bcT
)

−cTb
γ

−β1 −β2 + cTd− γ

⎤
⎥⎥⎦
(

e(t)
σ(t)

)

+
(

d
cTd− γ −β2

)
F(σ(t))−

(
d

cTd − γ −β2

)
σ(t). (13.47)

Then following Theorem 4.3 we know that the conclusion of the theorem is true. The
proof is complete. �

Lemma 13.18. If appropriate values of α, β1, β2 can be chosen such that

1. The matrix H1 =
(

A +
1
γ

bcT −α In

)
is a Hurwitz matrix

2. The zero solution of the system (13.45) is absolutely stable w.r.t. σ

Then the conclusion of Theorem 13.17 holds.

Rewrite the H in Theorem 13.17 as

H =
[

Hm×m Hm×(n+1−m)
H(n+1−m)×m H(n+1−m)×(n+1−m)

]
.

Then we have

Theorem 13.19. If appropriate values of α, β1, β2 can be chosen such that

1. The matrix Hm×m is a Hurwitz matrix
2. The zero solution of the system (13.46) is absolutely stable w.r.t. the partial

variables em+1, em+2, · · · , en, σ

Then the zero solution of system (13.46) is absolutely stable, i.e., the two systems
(13.42) and (13.43) are globally synchronized.
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Proof. Let
eI = (e1, e2, . . . , em)T, eII = (em+1, em+2, . . . , en, σ)T,

dI = (d1, d2, . . . , dm)T, dII = (dm+1, dm+2, . . . , dn, cTd− γ −β2)T,

Rewrite system (13.45) as

ėI = Hm×m eI + Hm×(n+1−m) eII + dI F(σ),

ėII = H(n+1−m)×m eI + H(n+1−m)×(n+1−m)eII + dII F(σ). (13.48)

We can use the method of constant variation to express the solution of the first
equation of (13.48) as

eI(t) = eHm×m(t−t0)eI(t0)+
∫ t

t0
eHm×m(t−τ)

[
Hm×(n+1−m)eII + dIF(σ(τ))

]
dτ.

One can use the absolute stability of the zero solution of (13.48) w.r.t. eII to complete
the proof. �
Corollary 13.20. If the following conditions are satisfied:

1. The condition (1) of Theorem 13.17 holds
2. There exist positive definite, radially unbounded Lyapunov function V (eII) w.r.t.

the partial variables σm+1, σm+1, . . . , σm+1, σ such that dV
dt

∣∣
(13.46) is negative

definite w.r.t. eII .

Then the zero solution of system (13.46) is absolutely stable, i.e., the two systems
(13.42) and (13.43) are globally synchronized.

The conclusion of Corollary 13.20 is true simply because the condition (2) of the
Lemma 13.18 implies the condition (2) of Theorem 13.19.

Corollary 13.21. If the following conditions are satisfied:

1. The condition (1) of Theorem 13.19 hold
2. There exist constants ηi ≥ 0, i = 1, 2, . . . , m and η j > 0, j = m+ 1, m+ 2, . . . , n

such that

η j h j j +
n+1

∑
i=1,i�= j

ηi‖hi j‖ ≤ 0, j = 1, 2, . . . , m,

η j h j j +
n+1

∑
i=1,i�= j

ηi‖hi j‖ < 0, j = m+ 1, m+ 2, . . . , n,

and

ηn+1 h(n+1)(n+1) +
n

∑
i=1

ηi‖hi(n+1)‖ ≤ 0,

ηn+1 h(n+1)(n+1) +
n

∑
i=1

ηi‖di‖ ≤ 0,

where at least one of the two inequalities is a strict inequality.
Then the conclusion of Corollary 13.20 holds.
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Proof. Construct radially unbounded, positive definite Lyapunov function:

V =
n

∑
i=1

ηi |ei|+ ηn+1 |σ |

w.r.t. em+1, em+2, . . . , en, σ . Then we have

D+V
∣∣
(13.45) ≤

m

∑
j=1

(
η jh j j +

n+1

∑
i=1,i�= j

ηi|hii|
)
|e j|+

n

∑
j=m+1

(
η jh j j +

n+1

∑
i=1,i�= j

ηi|hii|
)
|e j|

+ηn+1h(n+1)(n+1) +
n

∑
i=1

ηi hi(n+1) + ηn+1(cTd− γ)+
n

∑
i=1

ηi|di|

< 0 when
n+1

∑
j=m+1

|ei|+ |σ | �= 0.

Therefore, the conclusion of Corollary 13.20 is true. �

13.6.2 Time-Delayed Feedback Control

Finally, we consider more general two master-slave Lurie systems, given by

Master :

{
ẋ = Ax(t)+ B f (Cx(t)),

p(t) = H x(t);
(13.49)

Slave :

{
ẏ = Ay + B f (Cy(t))+ u(t),

q(t) = H y(t).
(13.50)

Here the control is given by

u(t) = −K (x(t)− y(t))+ M (p(t − τ)−q(t− τ)) ,

τ is a constant time delay, x, y ∈ Rn, A, B, C, H, K, M ∈ Rn×n, and f (·) =
( f1, f2, . . . , fn)T, fi ∈ F[0,k].

Let e(t) = x(t)− y(t). We then obtain the following error system:

ė(t) = (A + K)e(t)+ B f̃ (Ce(t),y(t))+ F(e(t − τ)), (13.51)

where

F = −M H,

f̃ (Ce,y)
�
= f (C e +C y)− f (C y),

C = (c1, c2, . . . , cn) ci ∈ Rn,
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and

0 ≤ f̃ (cT
i e,y)

cT
i e

=
fi(cT

i e + cT
i y)− fi(cT

i y)
cT

i e
≤ k < +∞, (13.52)

for i = 1, 2, . . . , n, ∀e, y ∈ Rn.
From (13.52) we have

f̃ (cT
i e,y)( f̃ (cT

i e,y)− k cT
i e) ≤ 0, i = 1,2, . . . ,n. (13.53)

Here, we allow K �= 0, which is more useful in using feedback control to reach
synchronization.

Theorem 13.22. If there exist n× n constant matrices: P = PT > 0, Q = QT > 0,
Λ = diag(λ1, . . . , λn) > 0 and positive number ε, 0 < ε 	 1, such that the following
matrix is negative definite:⎡

⎢⎣
P(A + K)+ (A + K)TP+ Q+ ε In PB + kCTΛ PF

BTP+ kΛ C −2Λ 0

FTP 0 −Q

⎤
⎥⎦≤ 0,

then the zero solution of system (13.51) is absolutely stable, i.e., the two systems
(13.49) and (13.50) are globally synchronized.

Proof. Construct the radially unbounded, positive definite Lyapunov function:

V (e) = eTPe +
∫ t

t−τ
eT(τ)Qe(τ)dτ. (13.54)

Then, we have

dV
dt

∣∣∣∣
(13.51)

= ėT(t)Pe(t)+ eT(t)Pė(t)+ eT(t)Qe(t)− eT(t − τ)Qe(t − τ)

≤ eT(t)
[
P(A + K)+ (A + KT)P)

]
e(t)+ f̃ (CTe,y)BTPe(t)

+ eT(t)PB f̃ (CTe,y(t))+ eT(t − τ)FTPe(t)+ eT(t)PF e(t − τ)

+ eT(t)Qe(t)− eT(t − τ)Qe(t − τ)

−
n

∑
i=1

λi f̃ (CTe,y(t))
[

f̃ (CTe,y(t))− kCT
i e
]

=

⎛
⎝ e(t)

f̃ (CTe,y)
e(t − τ)

⎞
⎠T ⎡⎣P(A + K)+ (A + K)TP + Q+ εIn PB + kCTΛ PF

BTP + kΛ C −2Λ 0
FTP 0 −Q

⎤
⎦

×
⎛
⎝ e(t)

f̃ (CTe,y)
e(t − τ)

⎞
⎠

≤ −ε eT(t)e(t) < 0 when e(t) �= 0.

This completes the proof. �
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In Theorem 13.22 taking Q = In yields

Corollary 13.23. If there exist n × n constant matrices: P = PT > 0, Λ =
diag(λ1, . . . ,λn) > 0 and 0 < ε 	 1 such that⎡

⎢⎣
P(A + K)+ (A + K)TP+(1 + ε) In PB + kCTΛ PF

BTP+ kΛ C −2Λ 0

FTP 0 −In

⎤
⎥⎦≤ 0,

then the zero solution of system (13.51) is absolutely stable, i.e., the two systems
(13.49) and (13.50) are globally synchronized.

Assume that C ∈ Rn×n is a nonsingular matrix. Introduce the transform ξ (t) =
CTe(t) into (13.51) to obtain

ξ̇ (t) = C(A + K)C−1ξ (t)+CB f̃ (ξ (t),y)+CFC−1ξ (t − τ),

:= Ãξ (t)+ B̃ f̃ ξ (t),y)+ F̃ξ (t − τ). (13.55)

Theorem 13.24. If there exist n× n constant matrices: P = PT > 0, and a constant
ε, 0 < ε 	 1, such that[

PÃ+ ÃP+ G+(1 + ε) In PF̃

F̃TP −In

]
≤ 0, (13.56)

where H := 2PB̃ = (hi j)n×n, G := (gi j)n×n, in which

gi j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k hi j when hi j ξi f̃ j ≥ 0, i �= j,

−k hi j when hi j ξi f̃ j < 0, i �= j,

k hii when hii ξi f̃i > 0,

0 when hii ξi f̃i ≤ 0,

i, j = 1, 2, . . . , n. Then the zero solution of system (13.55) is absolutely stable, i.e.,
the two systems (13.49) and (13.50) are globally synchronized.

Proof. Construct the radially unbounded, positive definite Lyapunov function:

V (e,ξ ) = ξ TPξ +
∫ t

t−τ
ξ T(s)ξ (s)ds. (13.57)

Differentiating V w.r.t. time t along the trajectory of system (13.55) yields

dV
dt

∣∣∣∣
(13.55)

= ξ T(t)(PÃ+ ÃTP)ξ (t)+ 2ξ T(t)PB̃ f̃ (ξ (t),y)

+ ξ T(t−τ)F̃TPξ (t)+ ξ T(t)PF̃ξ (t−τ)ξ T(t)ξ (t)−ξ T(t − τ)ξ (t−τ)

≤ξ T(t)(PÃ + ÃTP)ξ (t)+ ξ T(t)Gξ (t)+ ξ T(t − τ)F̃TPξ (t)
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+ ξ T(t)PF̃ξ (t − τ)+ ξ T(t)ξ (t)− ξ T(t − τ)ξ (t − τ)

≤ξ T(t)(PÃ+ ÃTP)ξ (t)+ ξ T(t)Gξ (t)+ ξ T(t − τ)F̃TPξ (t)

+ ξ T(t)PF̃Tξ (t − τ)+ ε ξ T(t)ξ (t)− ε ξ T(t)ξ (t)

≤
(

ξ (t)
e(t−τ)

)T[PÃ+ÃP+G+(1+ε)In PF̃
F̃TP − In

](
ξ (t)

ξ (t−τ)

)
− ε ξ T(t)ξ (t)

≤−ε ξ T(t)ξ (t) < 0 when ξ (t) �= 0, t ≥ t0.

Thus the conclusion of Theorem 13.24 is true. �

Define

G̃ = (g̃i j)n×n, where g̃i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2k b̃i j when b̃i j ξi f̃ j ≥ 0, i �= j,

−2k b̃i j when b̃i j ξi f̃ j < 0, i �= j,

2k b̃ii when b̃ii ξi f̃i > 0,

0 when b̃ii ξi f̃i ≤ 0,

i, j = 1, 2, . . . , n. Then in Theorem 13.24 taking P = In gives

Corollary 13.25. If there exists 0 < ε 	 1 such that[
Ã+ ÃT +(1 + ε) In + G̃ F̃

F̃T −In

]
≤ 0,

then the zero solution of system (13.55) is absolutely stable, i.e., the two systems
(13.49) and (13.50) are globally synchronized.

In the following, define W = (wi j)n×n, where

wi j =

⎧⎪⎨
⎪⎩

ãii + |F̃ii| when b̃ii ≤ 0,

ãii + k b̃ii + |F̃ii| when b̃ii > 0,

|ãii|+ k |b̃i j|+ |F̃ii| i �= j,

i, j = 1,2, . . . ,n.

Theorem 13.26. If −W is an M matrix, then the zero solution of system (13.55) is
absolutely stable, i.e., the two systems (13.49) and (13.50) are globally synchronized.

Proof. Since −W is an M matrix, there exists constant ξ1 > 0 such that ∑n
i=1 ξi wi j <

0, i, j = 1, 2, . . . , n. Construct the radially unbounded, positive definite Lyapunov
function:

V =
n

∑
i=1

ξi |ξ (t)|+
n

∑
i, j=1

∫ t

t−τ
|F̃i j(ξ j(s))|ds.
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Further let

|vi j| =

⎧⎪⎨
⎪⎩

0 if b̃ii ≤ 0,

k b̃ii if b̃ii > 0,

k b̃i j i �= j,

i, j = 1, 2, . . . , n.

Then we have

D+V
∣∣
(13.55) =

n

∑
i=1

ξiD+|ξi(t)|+
n

∑
i, j=1

|F̃i j(ξ j(t))|

+
n

∑
i, j=1

|F̃i j(ξ j(t))|−
n

∑
i, j=1

|F̃i j(ξ j(t − τ))|

≤
n

∑
i=1

ξi

[
ãii|ξi(t)|+

n

∑
j=1, j �=i

q̃i j|ξ j(t)|

+
n

∑
j=1

|vi j||ξ j(t)|+
n

∑
j=1

|F̃i j(ξ j(t − τ))|
]

+
n

∑
i, j=1

|F̃i j(ξ j(t))|−
n

∑
j=1

|F̃i j(ξ j(t − τ))|

≤
n

∑
j=1

[ n

∑
j=1

ξi wi j|ξ j(t)|
]

< 0 when ξ (t) �= 0, t ≥ t0.

The proof is complete. �

Theorem 13.27. If there exists a constant matrix P = PT > 0 such that

PÃ+ ÃP+ PB̃B̃TP +(k2 + 1) In < 0,

then the zero solution of system (13.55) is absolutely stable, i.e., the two systems
(13.49) and (13.50) are globally synchronized.

Proof. Choose the radially unbounded, positive definite Lyapunov function as

V = ξ T(t)Pξ (t)+
n

∑
i=1

∫ t

t−τ
ξ 2

j (s)ds.

Then we obtain

dV
dt

∣∣∣∣
(13.51)

= ξ̇ T(t)Pξ (t)+ ξ T(t)Pξ̇ (t)+ ξ T(t)Qξ (t)− ξ T(t − τ)Qξ (t − τ)

= ξ T(t)(PÃ+ ÃP)ξ (t)+ 2ξ T(t)PB̃ f̃ (ξ (t),y(t))

+ 2ξ T(t)PF̃(t − τ)+ ξ T(t)ξ (t)− ξ T(t − τ)ξ (t − τ)

= ξ T(t)(PÃ+ ÃTP+ In)ξ (t)+ ξ T(t)PB̃B̃TPξ (t)

−
[
B̃TPξ (t)− f̃ (ξ (t),y(t)

]T[
B̃TPξ (t)− f̃ (ξ (t),y(t)

]
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+ f̃ T(ξ (t),y(t)) f (ξ (t),y(t))+ ξ T(t)PF̃F̃TPξ (t)

−
[
F̃TPξ (t)− ξ (t− τ)

]T[
F̃TPξ (t)− ξ (t− τ)

]
≤ ξ T(t)

[
PÃ+ ÃTP+(1 + k2) In + PB̃B̃TP+ PF̃F̃TP

]
ξ (t)

< 0 when ξ (t) �= 0, t ≥ t0,

which shows that the conclusion of Theorem 13.27 is true. �

In Theorem 13.27, taking P = In yields more practically useful result.

Corollary 13.28. For any given F̃, let umax denote the maximum eigenvalue of the
following matrix:

CAC−1 +(C−1)TATCT + B̃B̃T + F̃F̃T +(1 + k2) In,

and let λ > umax. Then if choosing K = −diag(λ
2 · · · λ

2 ), we obtain Ã + ÃT + B̃B̃T +
F̃F̃T +(1 + k2) In < 0, and the conclusion of Theorem 13.27 is true.

Proof. For any given ξ ∈ Rn, ξ �= 0, we have

ξ T
[
Ã+ ÃT + B̃B̃T + F̃F̃T +(1 + k2) In

]
ξ

= ξ T
[
CAC−1 +(C−1)TATCT + B̃B̃T + F̃F̃T

+(1 + k2)In +CKC−1 +(C−1)TKCT
]
ξ

≤ −λ ξ Tξ + umaxξ Tξ < 0 when ξ �= 0.

This completes the proof. �

Example 13.29. Consider the following 2D error system in the form of (13.55):

(
ξ̇1(t)
ξ̇2(t)

)
=

[
−4 −1

3
2 −6

](
ξ1(t)
ξ2(t)

)
+

[
−3 1

2
3
2 1

](
f1(ξ (t),y(t))
f2(ξ (t),y(t))

)

+

[
1 3

2

− 1
2 − 6

5

](
ξ1(t − τ)
ξ2(t − τ)

)
, (13.58)

where the three matrices correspond to Ã, B̃, and F̃ , respectively. Then −W =[
3 −3

−7/2 19/5

]
is an M matrix. The conditions of Theorem 13.24 are satisfied. Hence,

the zero solution of system (13.58) is absolutely stable.
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Example 13.30. Again consider a 2D error system in the form of (13.55), given by(
ξ̇1(t)
ξ̇2(t)

)
=
[ −4 8
−16 −4

](
ξ1(t)
ξ2(t)

)
+
[

1 −1
1 1

](
f1(ξ (t),y(t))
f2(ξ (t),y(t))

)

+

[
1 1

2

− 1
2

1
2

](
ξ1(t − τ)
ξ2(t − τ)

)
, (13.59)

where the three matrices correspond to Ã, B̃, and F̃ , respectively. Taking k =
√

3/2

and
[

1 0
0 1

]
, we have

PÃ+ ÃP + PB̃B̃TP+ PF̃F̃TP+(1 + k2) I2 =

[
− 1

2 −1
−1 − 13

4

]
< 0,

which indicates that the conditions of Theorem 13.24 are satisfied. Thus, the zero
solution of system (13.59) is absolutely stable.

To end this section, we use an example to demonstrate that linear feedback con-
trol without time delay plays more important role in the study of stability than the
linear feedback with time delay.

Example 13.31. Consider a system in the form of (13.55):(
ė1(t)
ẋ2(t)

)
=
[

1 1
2 2

](
e1(t)
e2(t)

)
+
[

3 −2
1 −2

](
f1(e1(t)− e2(t),y(t))
f2(e1(t)− e2(t),y(t))

)

+
[−1 1

1 −1

](
e1(t − τ)
e2(t − τ)

)
−
[ λ

2 0
0 λ

2

](
e1(t)
e2(t)

)
, (13.60)

where k = 2 while λ is to be determined. If choose λ = 0, namely without linear
state feedback, then this system cannot satisfy the conditions given in [162]. That is,
no matter what time-delayed linear feedback control is applied, the zero solution of
system (13.60) cannot be absolutely stabilized.

In fact, if there exist P = PT > 0 and Q = QT > 0 such that PA+ATP+Q < 0, then

we must have PA+ATP < 0. Thus, A is a Hurwitz matrix. However, here A =
[

1 1
2 2

]
is not a Hurwitz matrix. Since

B =
[

3 −2
1 −2

]
, C =

[−1 1
1 −1

]
, F =

[ λ
2 0
0 λ

2

]
,

C is nonsingular, we have

CAC−1 +(C−1)TATCT + B̃B̃T + F̃F̃T +(1 + k2) I2 =
[

31 8
8 35

]
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which has the maximum eigenvalue umax = 35 + 3
√

2. Therefore, as long as one
chooses λ > umax = 35 + 3

√
2 and k = λ/2, the conditions in Corollary 13.28 are

satisfied, i.e.,
Ã+ ÃT + B̃B̃T + F̃F̃T +(1 + k2) I2 < 0.

Therefore, the zero solution of system (13.60) is absolutely stable.
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122. Popov, V. M.: Absolute stability of nonlinear systems of automatic control, Automat. i
Telemeh., 22, 961–979 (1961).

123. Popov, V. M.: On a certain critical case in absolute stability, Automat. i Telemeh., 23,
4–24 (1962).

124. Qian, X. S., Song, J.: Control Theorem in Engineering, Vol. 1 and 2, Chinese Science
Publishing, Beijing (1980, 1981).

125. Qiu, X. G., Shu, Z. Z.: Several criterions of absolute stability for the second canonical
form of control system, Appl. Math. Mech., 7, 785–800 (1986) (in Chinese).

126. Razumikhin, B. S.: Application of Lyapunov’s method to problems in the stability of
systems with a delay, Automat. Telemeb., 21, 740–749 (1960) (Translated into English
in Automat. Remote Contr., 21, 515–520 (1960)).

127. Reissig, R., Sansone, G., Conti, R.: Nonlinear Differential Equations of Higher Order,
Noordhoff International Publishing, Leyden (1974).

128. Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method,
Springer, Berlin Heidelberg New York (1977).

129. Ruan, J.: Absolute stability of linear functional regulated system with m nonlinear
regulators, Chin. Ann. Math., 3, 261–271 (1982).

130. Ruan, J.: Absolute stability of the Lurie functional differential equations, Chin. Ann.
Math., 4A, 47–55 (1983) (in Chinese).

131. Ruan, J.: Absolute stability of a neutral functional differential equation of Lurie type,
Found. J. (Nat. Sci.), 23, 95–102 (1984) (in Chinese).

132. Ruan, S. G., Wu, J. H.: Stability of large scale systems of Lurie type described
by functional differential equations, J. Centr. China Norm. Univ., 23, 10–14 (1989)
(in Chinese).

133. Rumyantsev, V. V.: On the stability with respect to a part of varibles, in Symp. Math., 6
(Meccanica Non-lineare Stabilite), 23–26 (1970).

134. Rumyantsev, V. V., Oziraner, A. S.: Motion Stability and Stability with Respect to Partial
Variables, Nauka, Moscow (1987) (in Russian).

135. Savikin, A. V., Petersen, I. R.: Structed dissipativeness and absolute stability of nonlinear
systems, Int. J. Control, 62, 443–460 (1995).

136. Shu, Z. Z., Qiu, X. G.: The criteria for the absolute stability of several classes of non-
linear direct control systems, Proceedings of International Conference on Nonlinear
Mechanics (Shanghai, 1985), Chinese Science Press, Beijing, pp. 1103–1107 (1985).
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