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involution: anything internally complex or intricate

Oxford Advanced Learner’s Dictionary of Current English

inuoluere, ML involvere, to envelop, roll up, wrap up, whence ‘to involve’; pp inuo-
lutus, ML involutus, yields both the tech adj, Geom n, involute and the L inuolutio,
ML o/s involution whence E involution

Eric Partridge: Origins: an etymological dictionary of modern English



Preface

As long as algebra and geometry proceeded along separate paths,
their advance was slow and their applications limited. But when
these sciences joined company they drew from each other fresh
vitality and thenceforward marched on at rapid pace towards
perfection

Joseph L. Lagrange

The theory of differential equations is one of the largest fields within mathematics
and probably most graduates in mathematics have attended at least one course on
differential equations. But differential equations are also of fundamental importance
in most applied sciences; whenever a continuous process is modelled mathemat-
ically, chances are high that differential equations appear. So it does not surprise
that many textbooks exist on both ordinary and partial differential equations. But
the huge majority of these books makes an implicit assumption on the structure of
the equations: either one deals with scalar equations or with normal systems, i. e.
with systems in Cauchy–Kovalevskaya form. The main topic of this book is what
happens, if this popular assumption is dropped.

This is not just an academic exercise; non-normal systems are ubiquitous in ap-
plications. Classical examples include the incompressible Navier–Stokes equations
of fluid dynamics, Maxwell’s equations of electrodynamics, the Yang–Mills equa-
tions of the fundamental gauge theories in modern particle physics or Einstein’s
equations of general relativity. But also the simulation and control of multibody
systems, electrical circuits or chemical reactions lead to non-normal systems of or-
dinary differential equations, often called differential algebraic equations. In fact,
most of the differential equations nowadays encountered by engineers and scientists
are probably not normal.

In view of this great importance of non-normal systems, the relative lack of liter-
ature on their general theory is all the more surprising. Specific (classes of) systems
like the Navier–Stokes equations have been studied in great depth, but the existence
of general approaches to non-normal systems seems to be hardly known, although
some of them were developed about a century ago! In fact, again and again new
attempts have been started for such general theories, in particular for ordinary dif-
ferential equations where the situation is comparatively straightforward. Classical
examples are the Dirac theory of mechanical systems with constraints and the cur-
rently fairly popular numerical analysis of differential algebraic equations. How-
ever, in both cases researchers have had to learn (sometimes the hard way) that the
generalisation to partial differential equations is far from trivial, as new phenomena
emerge requiring new techniques.

IX



X Preface

There are probably many reasons for this rather unfortunate situation. One is
surely that the treatment of general systems requires fairly sophisticated tools from
differential geometry and algebra which at least practitioners in differential equa-
tions are usually not familiar with. Another serious problem is the available litera-
ture. Many of the (few) authors in this domain seem to be determined to found a
“school.” They go to great length to reinvent any piece of mathematics they use and
thus effectively create their own language with the result that their works are more
or less unreadable for most mathematicians. Furthermore, as in many other fields of
science, there is a certain tendency to “religious wars” between the different schools.

While writing this book, I tried to refrain from such ambitions and not to take
sides (although experts will easily notice a strong influence by the work of Pom-
maret which is not surprising, as I made my first steps in this domain under the
guidance of his books and lectures). I believe that all approaches contain useful
ideas and on closer inspection I have found that the similarities between the vari-
ous theories are usually much greater than the differences. One of my central goals
was to build a coherent framework using only standard notations and terminology
in order to make this book as accessible as possible. The general theory of differen-
tial equations requires sufficiently much digestion time even without being hidden
behind bizarre non-standard constructions.

Another important goal of mine was to strike a reasonable balance between elu-
cidating the underlying theoretical structures and the development of effective al-
gorithms for concrete computations. More applied mathematicians may find some
chapters overly abstract. However, over the years I have made the experience that it
is highly rewarding and fruitful to study even purely computational problems from
a higher theoretical level. One gains sometimes surprising insights opening com-
pletely new solution paths.

The main topic of this book is usually called the formal theory of differential
equations. It combines geometric and algebraic structures into a powerful frame-
work useful not only for theoretical analysis but also for concrete applications. In
this context, the adjective “formal” has at least two different meanings. A simple
one is that the origin of the theory was the problem of determining formal power
series solutions for general systems of differential equations, i. e. of proving the for-
mal integrability. In a broader sense, the word “formal” refers to the fact that we
nowhere work with explicit solutions; all analysis is solely based on manipulations
of the equations themselves.

Oversimplifying, one could say that most of the works on differential equations
up to the early 20th century are of a more formal nature, whereas currently the
functional analytic approach dominates the literature. It is often overlooked that in
fact formal and functional analytic methods are complementary to each other and
that an in-depth treatment of a general system of differential equations will need
both. Typically, one starts with a formal analysis, in particular one will first assert
the existence of formal solutions, as otherwise there is no point in proceeding any
further. Only for normal systems one can skip this step, as it is trivial.

An important part of the formal analysis consists of completing the system to
an involutive one. This includes in particular the addition of all hidden integrability
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conditions. Only after the completion one has a well defined starting point for func-
tional analytic or numerical methods; thus one may consider the formal analysis as
a “preconditioning” for the latter. As the title clearly indicates, the notion of involu-
tion takes a central place in the book. Indeed, in my opinion involution is the central
principle in the theory of under- or overdetermined systems.

One may compare the completion to involution of a differential equation with
rendering a linear system of equations triangular, say by Gaussian elimination. Most
properties of the system, like for example its solvability and the dimension of its so-
lution space, become apparent only after such a transformation. The same is true for
differential equations: only after a completion one can decide about the consistency
of the system and make statements about the size of the formal solution space.

Purely formal methods will not lead much further; under certain assumptions
one can proceed to prove the convergence of the formal solutions and thus obtains
an analytic solution theory. However, an applied mathematician will immediately
object that such a theory is not nearly sufficient for any practical purposes. Thus
the addition of other methods, in particular from functional analysis, is required for
further progress. Nevertheless, in this book we will almost exclusively be concerned
with the formal analysis of differential equations. One reason is that this alone rep-
resents already a fairly demanding task. Another point is the fact that the connection
of formal and functional analytic or numerical methods has not been much studied
yet. Even many fairly fundamental questions are still unanswered so that aspiring
graduate students can find here a wide open field.

As already mentioned, the formal theory relies mainly on a combination of alge-
braic and geometric techniques. A geometric formalism, the jet bundles, form the
foundation. It leads in a natural manner to questions in commutative (not differen-
tial!) algebra. Actually, a deeper understanding of involutive systems can be only
obtained by taking a closer look at the arising algebraic structures. While the im-
portance of abstract algebra has been evident at the latest since the seminal work
of Spencer in 1960s, the formal theory has developed completely independently of
commutative algebra. For example, the almost trivial fact that the notion of (the de-
gree of) involution of a differential equation is equivalent to the algebraic notion
of Castelnuovo–Mumford regularity of an associated polynomial module has been
overlooked until fairly recently.

It is another goal of this book to clarify these relations between differential equa-
tions and commutative algebra. For this reason the book contains several chapters
dealing exclusively with commutative algebra. These chapters should also be of in-
dependent interest to (computer) algebraists, as some of ideas originally developed
for the formal analysis of differential equations are quite powerful and considerably
simplify many computations with arbitrary polynomial modules.

Unfortunately, the term “involution” is used in different approaches with some-
what different meanings. In fact, even within this book I will use it sometimes in
a broader and sometimes in a narrower meaning. In the algebraic theory a fairly
general notion of involutive bases of polynomial ideals will be introduced; but later
only the special case of Pommaret bases will be used. In the context of differential
equations involution is often confused with formal integrability, i. e. with the mere
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absence of integrability conditions. But while formal integrability is a necessary
condition for involution, the latter requires more and I will stress at a number of
occasions the importance of this “more”.

The book is divided into ten chapters the contents of which I now briefly describe.
The first chapter is a short general introduction into the kind of problems treated in
the book. It demonstrates the need for treating more general types of differential
equations and explains the relationship to some classical algebraic problems.

The second chapter is concerned with the geometry behind the formal theory.
It introduces the jet bundle formalism as the geometric foundation of differential
equations. In fact, it contains two different introductions of jet bundles. The “pedes-
trian” one is based on Taylor series and puts more emphasis on local coordinates.
The “intrinsic” one uses an abstract construction stressing the affine structure of jet
bundles; it does not often appear in the literature but turns out to be rather natural
for the formal theory. Then differential equations are intrinsically defined as fibred
submanifolds of jet bundles and the basic geometric operations with them, prolonga-
tion and projection, are introduced. This leads to an intrinsic picture of integrability
conditions and the notion of formal integrability.

While formal integrability is a very natural and intuitive concept, it turns out
that for many purposes it does not suffice. The first problem is already to decide
effectively whether or not a given differential equation is formally integrable. But it
will become evident at several places that it has further shortcomings; for example
even in the analytic category an existence and uniqueness theorem can be proven
only for involutive equations.

In order to resolve these difficulties one must resort to algebraic methods. So the
third chapter introduces our main theme—involution—in a purely algebraic frame-
work which, at first sight, is not at all related to differential equations. Involutive
bases are introduced for the Abelian monoid �n

0 and then extended to a fairly gen-
eral class of rings: the polynomial algebras of solvable type. This approach has the
advantage that it does not only allow us to extract the simple combinatorial idea
underlying involution in a very clear form, it may also be applied without modifica-
tions to many different situations: the classical polynomial ring, rings of differential
operators, universal enveloping algebras of Lie algebras, quantum algebras,. . . In-
volutive bases are a special form of the familiar Gröbner bases which have become
a central algorithmic tool in computer algebra and therefore much of their theory is
modelled on the theory of Gröbner bases.

As a kind of interlude, the fourth chapter discusses the computational side of
involutive bases. It presents concrete algorithms for their determination. As any in-
volutive basis is simultaneously a Gröbner basis, we obtain here alternatives to the
famous Buchberger algorithm and its variants. Benchmarks have shown that the in-
volutive approach is often highly competitive in terms of the computation times.
Compared with the classical Gröbner basis theory, the question of termination be-
comes much more subtle. This is in particular true for the bases of greatest interest
to us, the Pommaret bases which will later be used for a constructive definition of
involution for differential equations.
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This problem of the existence of a Pommaret basis (or more generally of effec-
tively deciding involution) is known under the name δ -regularity and appears in
many different disguises in any coordinate based approach to involution. It is often
considered as a purely technical nuisance and thus a reason to use other types of
involutive bases instead of Pommaret bases. However, later results will show that
the “problem” of δ -regularity is in fact a highly useful feature of Pommaret bases
and, for example, related to Noether normalisation or characteristics in the context
of differential equations. Furthermore, a simple and effective solution based on a
cheap criterion for δ -singular coordinates exists and can be easily incorporated into
completion algorithms.

Instead of an immediate application of the developed algebraic tools to differ-
ential equations, the fifth chapter probes deeper into the theory of involutive bases
and shows that the fundamental idea behind them consists of the determination of
combinatorial decompositions for polynomial modules. Involutive bases unite these
decompositions with Gröbner bases. Although quite obvious, this point of view is
still fairly new (in commutative algebra, for differential equations it was already
exploited by Riquier and Janet at the beginning of the 20th century).

Pommaret bases are not only important for differential equations, but also define
a special type of decomposition, a Rees decomposition. The main topic of the fifth
chapter is to show that this fact makes them a very powerful tool for computational
algebraic geometry. Most of these applications exploit that Pommaret bases possess
a highly interesting syzygy theory. For example, they allow for directly reading off
the depth, the projective dimension and the Castelnuovo–Mumford regularity of a
module and thus for simple constructive proofs of both Hilbert’s Syzygy Theorem
and the Auslander–Buchsbaum Formula. In addition, they provide a simple realisa-
tion of Hironaka’s criterion for Cohen-Macaulay modules.

Of course, these results makes one wonder why Pommaret bases are so special
compared with other involutive bases. It seems that the answer lies in homological
algebra. All invariants that are easy to read off a Pommaret basis are of a homolog-
ical origin. Hence it is not surprising that Pommaret bases possess a homological
interpretation which is the theme of the sixth chapter. It starts with studying the
Spencer cohomology and the dual Koszul homology. Then algebraic versions of the
classical Cartan test for involution from the theory of exterior differential systems
are given. Finally, the relationship between Pommaret bases and these homological
constructions is studied in detail.

The seventh chapter returns to differential equations and applies the developed
algebraic theory to the analysis of symbols. The (geometric) symbol induces at
each point of the differential equation a polynomial (co)module and one may now
use either the Spencer cohomology or, in local coordinates, Pommaret bases for
defining involutive differential equations. An important structural property of such
equations is the existence of a Cartan normal form for local representations. As a
first simple application of involution, a rigorous definition of under- and overdeter-
mined equations is given with the help of the principal symbol. This classification
makes sense only for involutive equations and it turns out that the classical count-
ing rules comparing the number of equations and unknowns may be misleading.
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Rather surprisingly, it seems to be difficult to find a satisfactory treatment of this
elementary and natural question in the literature.

We also discuss now the question of rendering an arbitrary differential equation
involutive. For ordinary differential equations it is answered by a simple geometric
procedure which has been rediscovered many times in different fields; for partial
differential equation an answer is provided by the Cartan–Kuranishi completion. In
principle, we cover in both cases equations with arbitrary nonlinearities. However,
in practice certain steps are hard to perform effectively. In the case of polynomial
nonlinearities one can always resort to Gröbner bases techniques, though possibly
at the cost of a prohibitively high complexity. Furthermore, in nonlinear equations
one must always expect the emergence of singularities, a problem which requires
expensive case distinctions and which we will mostly ignore.

The eighth chapter is devoted to some “combinatorial games”: abstract measures
for the size of the formal solution space like the Hilbert polynomial or the Cartan
characters. One may argue about their usefulness, but some classical notions like
the number of degrees of freedom of a physical system are in fact based on such
“games.” The concept of a differential relation between two differential equations
generalising Bäcklund transformations is introduced and the induced relation be-
tween the respective Hilbert polynomials is studied. For applications in physics, it
is often of interest to formally subtract the effect of gauge symmetries. Within the
framework of the formal theory, a fairly simple pseudogroup approach to this ques-
tion exists. Einstein introduced for similar purposes the strength of a differential
equation which can be easily related to the formal theory.

A central question in the theory of differential equations is of course the existence
and uniqueness of solutions. Since jets may be understood as an intrinsic version of
Taylor series, it does not surprise that the simplest results are obtained for analytic
solutions. The ninth chapter starts by recalling the Cauchy–Kovalevskaya Theorem
as the most general (with respect to the structure of the equation) existence and
uniqueness result for analytic solutions of analytic normal systems.

One could try to directly extend its proof to involutive systems. Indeed, this ap-
proach is taken in the Janet–Riquier Theory leading to Riquier’s theorem on the exis-
tence and uniqueness of analytic solutions of involutive1 systems (here involution is
understood in the broader sense of involutive bases). A more flexible approach leads
to the Cartan–Kähler Theorem for arbitrary involutive differential equations. Its
proof is based on considering a sequence of normal systems to which the Cauchy–
Kovalevskaya Theorem is applied; thus power series appear only implicitly in con-
trast to the proof of Riquier’s theorem. The proof also clearly demonstrates why
formal integrability is not sufficient for the analysis of differential equations but the
crucial tool of the Cartan normal form of an involutive equation is necessary.

Because of the use of the Cauchy–Kovalevskaya Theorem, the Cartan–Kähler
Theorem inherits the restriction to the analytic category and this fact seriously lim-
its its practical value. However, if more is known about the structure of the equa-
tion, then the presented technique of proof can sometimes be used for obtaining

1 In the Janet–Riquier Theory one usually speaks of passive systems instead of involutive ones.
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stronger existence and/or uniqueness results in function spaces of relevance for ap-
plied mathematics. This will be the case, if it is possible to substitute the Cauchy–
Kovalevskaya Theorem by other results from the extensive literature on existence
and uniqueness for normal systems. Two examples of such generalisations concern-
ing linear systems of differential equations will appear in the tenth chapter.

Vessiot developed a dual version of Cartan’s theory of exterior differential sys-
tems based on a distribution defined over the differential equation. Unfortunately, it
has been largely ignored in the literature so far, although it appears to be highly use-
ful for the geometric analysis of differential equations. The remainder of the ninth
chapter is devoted to a new presentation of his approach. First of all, it is better em-
bedded into the geometry of jet bundles (in particular the contact structure) which
leads to some simplifications. Then it is shown that Vessiot’s construction succeeds
only for involutive equations (again formal integrability is not sufficient).

The tenth chapter specialises to linear systems of differential equations. It starts
with some elementary geometric aspects of the linearity. After studying an exten-
sion of the Holmgren Theorem to arbitrary involutive equations and overdetermined
elliptic and hyperbolic systems, we consider linear systems from a more algebraic
point of view. Firstly, an introduction to basic algebraic analysis is given. Then it
is shown how the Cartan–Kuranishi and the involutive completion algorithm may
be merged into a new algebraic algorithm that is able to deliver intrinsic geometric
results. Compared with straightforward realisations of the Cartan–Kuranishi com-
pletion, it is much faster, as due to a clever book-keeping much less prolongations
must be computed. Finally, the inverse syzygy problem and the integration of linear
systems with constant coefficients of finite type are studied.

As one can see, the book jumps between geometric and algebraic approaches
treating quite diverse topics. Somebody reading the whole text will therefore need a
certain familiarity with jet bundles and differential geometry on one side and com-
mutative and homological algebra on the other side. Not all readers will have the
necessary background or actually be interested in all these topics. This fact has been
taken into account in a two-fold way.

Two fairly long appendices collect some basic results from algebra and differen-
tial geometry that are used in the main text; in particular, an introduction into the
theory of Gröbner bases is given. These appendices try to make the book to a rea-
sonable degree self-contained, but of course they cannot substitute real introductions
into the subjects involved. Therefore additional references to standard textbooks are
given. I have also included proofs for some of the mentioned results—either because
the used techniques also appear elsewhere in the main text or for a comparison with
alternative approaches developed in this book.

Many chapters and sections are rather independent of each other. Depending on
the interests of a reader many parts may be safely ignored. For example, some-
body interested exclusively in the algebraic theory of involutive bases needs only
Chapters 3–6. On the other hand, somebody who does not like commutative algebra
may ignore precisely these parts, as the most important results needed for the anal-
ysis of differential equations reappear in Chapter 7 in an alternative formulation.
For the benefit of readers not so familiar with differential geometry most geometric
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constructions are described both in an intrinsic manner and in local coordinates. Fur-
thermore, many concrete examples are included to illustrate the theoretical results.

Each chapter ends with a brief section called Notes. It usually gives some pointers
to the literature and to alternative approaches. I have also tried to trace a bit the
history of the main ideas. But as I am not a historian of science, the results should
be more taken as rough indications than as a definite answer. Furthermore, in several
places I rely on other sources and I have not always checked the correctness of the
references. A valuable source of information on the state of the art of the theory of
differential equations at the end of the 19th century is the article of von Weber [475]
in the Enzyklopädie der Mathematischen Wissenschaften.

This book evolved out of my Habilitation thesis [406] admitted by Universität
Mannheim in 2002. It is, however, not identical with it; in fact, the book has about
twice the size of the thesis. Once I had started with some “minor” changes for the
publication of the thesis, I could not resist the temptation to include all the things I
left out of the thesis for lack of time (on the other hand I excluded the chapter on
numerical analysis, as I am not yet satisfied with the status of this part of the theory).
In particular, the material on the Vessiot theory and on the homological theory of
involutive bases are completely new. In the end, these “minor” changes lead to a
delay of several years in the publication and I am very glad that Springer–Verlag,
in particular in the person of Ruth Allewelt and Martin Peters, accepted this delay
without complaints.

Finally, I would like to thank some people who either helped me to get a deeper
understanding of involution and its applications or who read some version of the
manuscript and gave me valuable comments. This list includes in particular (in al-
phabetic order) Ernst Binz, Dirk Fesser, Vladimir P. Gerdt, Ulrich Oberst, Peter
J. Olver, Jean-François Pommaret, Alban Quadrat, Julio Rubio, Robin W. Tucker,
Jukka Tuomela, Peter J. Vassiliou and Eva Zerz. Furthermore, the editors of the Al-
gorithms and Computation in Mathematics series gave me useful feedback. Special
thanks are deserved by Marcus Hausdorf who has been my collaborator on most of
the topics covered here and who has implemented large parts of the MuPAD code
used in concrete computations. Concerning this last point it is also a pleasure to ac-
knowledge the cooperation of Benno Fuchssteiner and the whole MuPAD group in
Paderborn over many years.

Over the years, much of my work has been financially supported by Deutsche
Forschungsgemeinschaft under various grants. Additional financial support was
obtained by two European projects: INTAS grant 99-01222 (Involutive Systems
of Differential and Algebraic Equations) and NEST-Adventure grant 5006 (Global
Integrability of Field Theories).

But my deepest gratitude goes to my wife Marion, patiently bearing the life with
a scientist. Only her love and support has made it all possible.

Karlsruhe/Kassel, June 2009 Werner M. Seiler
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Chapter 1
Introduction

One should always generalise.
Carl Jacobi

In this book we will be mainly concerned with the analysis of “general” systems of
differential equations. As there are many ways how one might interpret this “gen-
erality”, we should start by clarifying what we mean by this term. The first dif-
ferential equation any student of mathematics (or of some natural or engineering
sciences) encounters is most probably a scalar ordinary differential equation of the
form u′ = φ(x,u) where u = u(x) is the unknown function to be determined.

Entering the theory of such equations, one rapidly notices that the restriction to
scalar equations is unnecessary at most places. Almost all proofs remain valid, if
we generalise to systems of the form u′ = φ(x,u) where now u = (u1, . . . ,um) is a
vector of unknown functions.1 A crucial implication of the assumed form is that our
system contains as many equations as unknowns. Under rather modest assumptions
on the function φ (e. g. Lipschitz continuity), the classical existence and uniqueness
theorems assert that such systems are—at least locally—uniquely solvable for arbi-
trary choices of the initial data u(0) = u0 with a constant vector u0 ∈�m. Extending
a terminology usually only applied to partial differential equations, we call systems
of the above form normal.

While the majority of analytical or numerical approaches to differential equa-
tions is exclusively concerned with normal systems, many applications lead to a
more general form, namely implicit systems Φ(x,u,u′) = 0. If we assume that the
Jacobian ∂Φ/∂u′ is everywhere regular, then the Implicit Function Theorem tells
us that any such system is at least locally equivalent to a normal one (whether one
can effectively transform it into solved form is a very different question, but theoret-
ically it is always possible). Obviously, a necessary condition for regularity is that
the Jacobian is a square matrix, i. e. that there are as many equations as unknown
functions contained in the system. After the transformation we can again apply the
familiar existence and uniqueness theorems.

If either the Jacobian is no longer a square matrix or its rank is not equal to the
number of equations, then our system cannot even theoretically be transformed into

1 We follow throughout this book the convention in differential geometry that vector components
are indexed by a superscript.
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2 1 Introduction

a normal one and new phenomena appear. For example, the question of solvability
becomes less trivial. In an attempt to move as closely as possible to a normal system,
we partition the unknown functions into two subsets u = (v,w) such that already the
partial Jacobian ∂Φ/∂v′ has the same rank as the full one. Applying the Implicit
Function Theorem leads now to the semi-explicit form

v′ = φ(x,v,w,w′) , (1.1a)

0 = ψ(x,v,w) . (1.1b)

Here we separated the system into a differential part (1.1a) and a purely algebraic
part (1.1b) where no derivatives appear. For this reason, the term differential alge-
braic equation (DAE for short) has become popular for such general systems of
ordinary differential equations.

Note that while the differential part (1.1a) obviously consists of as many equa-
tions as there are unknowns v, we cannot generally require that similarly the size
of the algebraic part (1.1b) is given by the number of unknowns w. If this is the
case and additionally the Jacobian ∂ψ/∂w is regular, then (again by the Implicit
Function Theorem) we may solve (1.1b) for w and enter the result into (1.1a). This
yields a normal system for v alone.

However, it is also possible that the algebraic part is empty. In this case we are
dealing with an underdetermined system, as obviously the functions w may be cho-
sen arbitrarily in the solution. Alternatively, one may interpret w now as parameters
and considers then again (1.1a) as a normal system for v alone.

In between these two extremal cases many different possibilities exist. We will
see in Section 7.3 that—under some regularity assumptions—any system of ordi-
nary differential equations can ultimately be reduced to a combination of these two
cases or the system is inconsistent (and thus has no solution at all). The basis for
this reduction is a process called completion to involution.

The main purpose of the completion of a differential system is to exhibit all
hidden integrability conditions. Indeed, differentiating (1.1b) yields

∂ψ
∂x

+
∂ψ
∂v

v′ +
∂ψ
∂w

w′ = 0 . (1.2)

These equations may still be simplified modulo the original ones (1.1), in particular
we can eliminate v′ using (1.1a), and it could happen that they vanish identically.
However, in general we obtain additional equations. Depending on the properties
of the Jacobian ∂ψ/∂w, these are either algebraic or differential equations. In the
former case differentiation of the new algebraic equations may lead to further inte-
grability conditions and so on.

The terminology “integrability conditions” is sometimes misinterpreted: these
equations are not additional conditions imposed on solutions and do not restrict the
solution space, as they are automatically satisfied by any solution of (1.1). Their
importance stems from the following fact: before we have constructed all integra-
bility conditions, we cannot make any statements about the existence of solutions,
as it is always possible that we obtain during some completion step an equation of
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the form 1 = 0 implying that the original system is inconsistent. Furthermore, we
need the integrability conditions in order to be able to choose consistent initial data.
Suppose that we want to have v(0) = v0 and w(0) = w0. Then an obvious necessary
condition for the existence of a solution is ψ(0,v0,w0) = 0. But this condition is
not sufficient, if (algebraic) integrability conditions are hidden in (1.1).

The completion process should be seen in analogy to the transformation of a lin-
ear system of equations into triangular form, say by Gaussian elimination. Given
some linear system, it is a priori not possible to make any statements about the exis-
tence of solutions or the dimension of the solution space. Only after we have given
the system a better behaved form by eliminating redundant equations and checking
for inconsistencies, we can read off such properties. In the case of differential equa-
tions we may not only perform algebraic operations but also differentiate equations.
Therefore the situation becomes more complicated, as new equations may show up.
But the basic idea that the system must be first brought into a form more amenable
to analysis remains the same.

For partial differential equations the situation is similar. Much of the classical
theory is concerned with scalar equations, as here the extension to systems is more
difficult. Traditionally, one only considers systems where a distinguished indepen-
dent variable t (the remaining independent variables are collectively denoted by x)
exists such that the system may be written in the form

ut = φ(t,x,u,ux) . (1.3)

As this form is crucial for the famous existence and uniqueness theorem of Cauchy–
Kovalevskaya which we will discuss in Section 9.2, one speaks of systems in
Cauchy–Kovalevskaya form or more briefly of normal systems. It is now easy to
see why we extended the terminology “normal” to ordinary differential equations
in solved form: as the choice of the letter t for the distinguished variable already
indicates, one may consider (1.3) as an evolution problem2 and thus as a kind of
abstract ordinary differential equation living on an infinite-dimensional space. This
point of view is e. g. the foundation of the semigroup theory of evolution equations.

Of course, the Cauchy–Kovalevskaya form (1.3) does not represent the most gen-
eral form of a first-order system of partial differential equations: again we must ad-
mit implicit systemsΦ(t,x,u,ut ,ux) = 0 and these are equivalent to a normal one, if
and only if—possibly after a transformation of the independent variables (t,x)—the
Jacobian ∂Φ/∂ut is regular. Above we saw that (under some regularity assump-
tions) every system of ordinary differential equations can be transformed into the
semi-explicit form (1.1). If we neglect the special case of an empty algebraic part
(1.1b), we may say that the characteristic feature of non-normal ordinary differen-
tial systems is the presence of equations of differing order. For partial differential

2 Note that even if a system is in Cauchy–Kovalevskaya form, this fact does not automatically
imply that it actually makes sense to treat it as an evolution equation and thus to study its initial
value problem. The Laplace equation is as a scalar equation for one unknown function trivially
normal, but the initial value problem for it is not well-posed (see Remark 9.3.2). All considerations
here are of a purely formal nature.
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systems we can similarly deviate from the normal form (1.3) by adding equations
of lower order. However, further possibilities exist and are in fact more common.

A straightforward generalisation of the semi-explicit form (1.1) to partial differ-
ential equations is a system of the form

vt = φ(t,x,v,w,vx,wx,wt) , (1.4a)

0 = ψ(t,x,v,w,vx,wx) . (1.4b)

Note that in general the equations in (1.4b) are still first-order partial differential
equations and not algebraic equations. But they are of lower order with respect to
t-derivatives. We will later formalise this idea by saying that the equations in (1.4b)
are of lower class than those in (1.4a). One sometimes calls such non-normal sys-
tems partial differential algebraic equations (PDAE), but while such a terminology
surely makes sense in the ordinary case (1.1), it seems inappropriate for (1.4), as in
general no algebraic equations are present.

If the vector x contains more than one variable, the game does not end with the
form (1.4). We may now distinguish a further independent variable, say y, and de-
note the remaining ones by z. Then we solve as many equations as possible in (1.4b)
for y-derivatives and so on. This process leads to a kind of echelon form of the orig-
inal system where each “step” consists of equations which are solved for deriva-
tives of one particular independent variables. One speaks of a Cartan normal form.
A rigorous description of it is rather messy and we defer this topic to Chapter 7.

Above we have seen how for a non-normal system of ordinary differential equa-
tions in the form (1.1) the differentiation of the algebraic equations (1.1b) may
lead to integrability conditions. Similarly, if a system of partial differential equa-
tions contains lower-order equations, then differentiations of these with respect to
all independent variables may lead to new equations. However, it is well-known
that a second mechanism for the generation of integrability conditions exists: cross-
differentiations. Looking at the “semi-explicit” form (1.4), it is obvious that differ-
entiating (1.4b) with respect to t may yield new equations even if the right hand side
is of first order. In contrast to the situation by ordinary differential equations, the
construction of these new equations takes place in higher order and also the arising
integrability conditions can be of higher order than the original system.

In Chapters 4 and 7 we will discuss the explicit construction of integrability
conditions in detail. For the moment it suffices to say that for systems of partial
differential equations the problem consists not so much of finding some integrability
condition but of checking whether one has already obtained all. It is a priori not even
clear that the completion process terminates after a finite number of steps. We will
need an algebraic (Noetherian) argument for proving that this is indeed always the
case. A system without hidden integrability conditions is called formally integrable.
As we will see in Section 2.3, this terminology refers to the fact that for such systems
it is always possible to construct formal power series solutions in a systematic order-
by-order manner (statements about strong solutions are more difficult and will be the
topic of Chapter 9).
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In order to avoid the explicit use of power series, we will use a geometric ap-
proach to differential equations detailed in the next chapter and define them as sub-
spaces in jet bundles. At first sight this may appear as an unnecessary abstraction,
but it will turn out that this point of view has many advantages. The intrinsic struc-
tures present in jet bundles make many constructions very natural and transparent.
Furthermore, badly chosen coordinates may lead to artefacts like apparent singular-
ities. One should also note that obviously the properties of any mathematical model
of a physical system should be independent of the used coordinates; hence using an
intrinsic coordinate-free language for the model is only natural—even if in the end
one may resort to local coordinates for concrete computations.

While completion is a comparatively straightforward process for ordinary differ-
ential equations requiring only some simple geometric considerations, the situation
becomes much more involved for partial differential equations. One basic problem
is that integrability conditions may arise in higher order and a priori we do not
know a bound (at least not a reasonable one) for the order up to which we have
to go. In particular, purely geometric reasoning will not suffice; we must add quite
some algebraic theory. In fact, it will be a central theme of this book to explain why
the very intuitive notion of formal integrability is often not sufficient and we must
introduce the stronger but more abstract concept of involution.

Involution is basically a purely algebraic notion. We will see that a natural poly-
nomial structure lies hidden in the inner geometry of the jet bundle. It allows us
to associate with any system of differential equation a module, its symbol module,
over a polynomial ring in as many variables as there are independent variables. The
intuitive idea of constructing integrability conditions by taking cross-derivatives can
then be formalised via the syzygies of this module. Thus we are automatically lead
to classical questions in commutative algebra and algebraic geometry which are of
independent interest.

Effective computations with polynomials modules are nowadays almost always
done with Gröbner bases (see Appendix B.4 for a brief introduction). However,
instead of simply applying such techniques to the symbol module, we will first ex-
ploit ideas originating from the Janet–Riquier Theory (one of the oldest approaches
to the completion of general systems of partial differential equations) for developing
in Chapter 3 a refined version of Gröbner bases: the involutive bases possessing ad-
ditional combinatorial properties. A special kind of them, the Pommaret bases, turns
out to be particularly useful for many computational tasks in commutative algebra
and algebraic geometry; such computations will be the topic of Chapter 5.

One may summarise the main difference between Pommaret bases and arbitrary
Gröbner bases that the latter ones take into account only the first syzygy module
(most clearly visible in the Schreyer Theorem) whereas the former ones contain
information about the full syzygy resolution of the given polynomial module. In fact
we will see that while different Gröbner bases for the same module may look very
different, the Pommaret basis is to a high degree determined by structural properties
of the module.

A simple computational definition of involution based on Pommaret bases suffers
from an unpleasant defect. Although we mentioned above, how important it is to
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work in an intrinsic manner, the construction of the symbol module as a polynomial
module requires the introduction of local coordinates and it turns out that in certain
“bad” coordinates no finite Pommaret basis exists. This phenomenon is known as
the problem of δ -regularity; it will appear repeatedly in this book and we will also
discuss several possible solutions for it in concrete computations.

For a fully intrinsic definition of involution we will apply homological algebra in
Chapter 6. The symbol of a differential equation induces a restriction of the poly-
nomial de Rham complex which leads in general to a non-trivial cohomology, the
Spencer cohomology of the differential equation. One can then relate involution to
the finiteness of this cohomology. This approach is dual to a very classical construc-
tion in commutative algebra, namely the Koszul homology. For some reasons, the
differential equations community seems to prefer the Spencer cohomology. But at
least for computational purposes it is often better and easier to work with the Koszul
homology. In particular, this allows us to make contact with results in commutative
algebra. As a trivial by-product we will for example see that the degree of involu-
tion is nothing but the Castelnuovo–Mumford regularity, a well-known homological
invariant in commutative algebra.

Of course, it is legitimate to ask whether one really has to deal with non-normal
systems. It emerged already from our superficial discussion so far that we must
be prepared to face quite some new phenomena and problems compared with nor-
mal systems and we will need a considerable amount of non-trivial algebraic and
geometric theory in order to overcome these. Thus the question arises whether non-
normal systems are only studied for the sake of generalisation or whether they really
appear in applications?

The answer is that in fact the importance of such systems in applications can-
not be overestimated. Arguably non-normal systems are even more common than
normal ones. Modern approaches to the mathematical modelling of all kinds of en-
gineering problems are usually modular due to the complexity of the systems to be
analysed. The interconnection between the different submodels is then realised by
constraints. These additional equations lead automatically to an overdetermination
and thus to non-normal systems.

Mechanical systems are probably one of the largest sources of differential alge-
braic equations. Traditionally, one tried to explicitly solve the constraints in order
to reduce to a normal system (the state space form). One reason was the lack of
reliable numerical methods for differential algebraic equations. In the last years not
only such methods but also ready-to-use software packages have been developed, so
that it is now much more common to treat directly the original differential algebraic
equations; in particular, because this approach is often more efficient even if one
can explicitly solve the constraints, as the arising state space form may contain very
complicated expressions.

Similarly, the simulation of electrical networks and many control problems like
prescribed path problems lead naturally to differential algebraic equations. Another
source is the semi-discretisation of partial differential equations by the method of
lines which also often yields differential algebraic equations. The textbook [53] con-
tains many concrete examples (with references).
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For partial differential equations the situation is not so easy to survey, as in this
field it is still much more common to treat specific equations than to design general
theories. Nevertheless, non-normal systems abound here, too. For example, all fun-
damental interactions in physics are nowadays described by gauge theories. As we
will see in Chapter 8, due to the existence of a gauge symmetry, the field equations
of such a theory are always non-normal.

Because of this great importance of non-normal systems in fundamental physics,
theoretical physicists have even developed their own theory of such systems—the
(Bergmann-)Dirac theory of constrained Hamiltonian systems. By an unfortunate
tradition founded already by Dirac himself, this theory is often developed only
for finite-dimensional systems, i. e. ordinary differential equations, but then applied
without modifications to field theories. It is not difficult to produce examples where
such approaches fail or at the very least run into trouble.

Gauge theories also nicely demonstrate that (although one can find them at many
places in the literature) the simple counting rules of linear algebra—a system is well-
determined, if it has as many equations as unknowns—are not true for differential
equations: in a gauge theory one has as many equations as unknown functions, nev-
ertheless the system is underdetermined. This has nothing to do with dependencies
between the equations but is directly related to the symmetry which allows that at
least one field component can be chosen arbitrarily and thus is not restricted by the
field equations. A rigorous definition of under- and overdeterminacy for differential
equations will be the topic of Section 7.5.

In continuum mechanics one often considers incompressible media; the incom-
pressibility condition makes the field equations non-normal. The incompressible
Navier–Stokes equations describing fluid motion are an example of a system which
is not even formally integrable; cross-derivatives lead to a Poisson equation for the
pressure. This integrability condition is of great importance for the numerical in-
tegration of the Navier–Stokes equations in their standard form: without it neither
finite elements nor finite differences (or any other approach) lead to a closed system
of equations. In fact, a huge part of the computing time required by a numerical
integration is usually spent on the solution of this Poisson equation!

In Section 2.4 we will briefly discuss a number of fundamental differential sys-
tems from physics and engineering that are not normal. This list includes in partic-
ular Maxwell’s equations underlying all electromagnetic processes and the already
mentioned incompressible Navier–Stokes equations. These examples will be taken
up repeatedly throughout the book in order to demonstrate the concrete application
of the developed theory.

Historically, one of the most important sources of overdetermined systems within
mathematics itself has been differential geometry. Names like Darboux and Goursat
are even today often mentioned in the context of differential equations (in particular
of completely integrable systems), but they were actually studying purely geometric
problems that in local coordinates could be described by overdetermined systems of
partial differential equations.

Thus we may conclude that it is indeed important to be able to handle non-normal
systems of differential equations. While huge (and often very sophisticated) theories
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for specific systems like the Navier–Stokes equations or Maxwell’s equations of
electromagnetism have been developed, the knowledge about general systems is not
so good. More precisely, although a considerable body of literature exists, most
people working with differential equations are not aware of it. We hope that this
book may help to change this unfortunate situation.



Chapter 2
Formal Geometry of Differential Equations

He who can digest a second or third fluxion, a second or third
difference, need not, we think, be squeamish about any point of
divinity.

George Berkeley

In this chapter we lay the geometric foundations of the formal theory of differential
equations. The name “formal theory” stems from the fact that it is, at least indirectly,
concerned with the analysis of formal power series solutions, i. e. one ignores the
question whether the series actually converge. Another interpretation of the name
is that one tries to extract as much information as possible on the solution space
by purely formal operations like algebraic manipulations of the equations or their
differentiations without actually solving the given equation.

The basic tool for a geometric approach to differential equations is the jet bundle
formalism and the first two sections give an introduction to it. We do this first in a
more pedestrian way considering jets as a differential geometric approach to (trun-
cated) power series. For most computational purposes this simple point of view is
sufficient. In order to obtain a deeper understanding of certain structural properties
which will later be of importance, we redevelop the theory in the second section
in a more abstract but intrinsic way which does not require power series. In both
approaches, special emphasis is put on the contact structure as the key to the geom-
etry of jet bundles. Because of its great importance, we consider different geometric
realisations of it, each having its advantages in certain applications.

The third section starts with the geometric definition of (systems of) differential
equations as fibred submanifolds of jet bundles and introduces the two basic opera-
tions of prolongation to higher order and projection to lower order. They lead almost
immediately to the notion of formal integrability. From a more computational point
of view, it is related to the problem of constructing order by order formal power
series solutions for a given differential equation. For a formally integrable equation
such a construction is always possible, as no obstructions in the form of integrabil-
ity conditions exist. However, the question of effectively deciding whether or not
a given equation is formally integrable cannot be answered by purely geometric
means but requires the algebraic theory developed in the next chapters.

In the final section we introduce some classical differential equations of mathe-
matical physics like the Einstein or the Navier–Stokes equations. In the subsequent
chapters, they will reappear as examples demonstrating that the theory can indeed
be effectively used in realistic applications and not only in toy problems.

W.M. Seiler, Involution, Algorithms and Computation in Mathematics 24,
DOI 10.1007/978-3-642-01287-7 2, c© Springer-Verlag Berlin Heidelberg 2010
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2.1 A Pedestrian Approach to Jet Bundles

Let X and U be two (finite-dimensional) manifolds, for example two open subsets
of�n and�m, respectively. Let furthermore φ : X →U be a smooth, i. e. infinitely
differentiable, map between these two manifolds. In order to simplify the notation
we always pretend that the map φ is globally defined, i. e. on the whole manifoldX .
Actually, we always study the map around some point x0 ∈ X and thus it suffices
that the map is defined in some neighbourhood Ω ⊆ X of this point x0 which we
never mention explicitly.

If we take some charts on the manifolds X and U with corresponding local coor-
dinates x = (x1, . . . ,xn) and u = (u1, . . . ,um), respectively, then we can locally write
the map φ in the form uα = φα(x1, . . . ,xn) for 1 ≤ α ≤ m. In the context of differ-
ential equations, the coordinates x are often called independent variables, whereas
the coordinates u represent the dependent variables.

According to Taylor’s Theorem, we can expand the components φα of the map φ
in a neighbourhood of an arbitrary but fixed point x0 ∈ X :

φα (x) = ∑
0≤|μ|≤q

uαμ
μ!

(x−x0)μ + Rαq (x,x0) . (2.1)

Here q≥ 0 is an arbitrary integer, the order of the expansion, and we use the standard
multi index notation of multivariate analysis (see Appendix A.1). It is well-known
that the Taylor coefficients uαμ ∈� appearing in the expansion (2.1) are the deriva-
tives of the components φα evaluated at x0,

uαμ =
∂ |μ|φα

∂xμ
(x0) , (2.2)

and that in the Lagrange representation the remainder term takes the form

Rαq (x,x0) = ∑
|μ|=q+1

∂ q+1φα

∂xμ
(
x0 +θ (x−x0)

) (x−x0)μ

μ!
(2.3)

for some θ ∈ [0,1[. In the sequel the following notations will be convenient: we
write u(q) for all coefficients uαμ with |μ | = q (with the convention u(0) = u) and

u(q) for {u(0), . . . ,u(q)}, i. e. for all coefficients uαμ with 0≤ |μ | ≤ q.
We introduce an equivalence relation on the set of smooth maps X → U . Two

maps φ andψ are equivalent to order q at x0 ∈X , written φ ∼q ψ , if their expansions
up to order q at x0 are identical. Geometrically, this condition means that the graphs
of the two maps have at x0 a contact of order q. Thus if φ is given by (2.1) and ψ
by a similar expansion with coefficients ūαμ , then φ ∼q ψ implies that u(q) = ū(q). A
q-jet at x0 is defined as an equivalence class

[φ ](q)
x0 =
{
ψ ∈ C∞(X ,U) | ψ ∼q φ at x0

}
. (2.4)
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Loosely speaking, the jet bundle of order q is the space of all power series truncated

at order q, i. e. a point in it is such an equivalence class [φ ](q)
x0 . As we always con-

sider only a finite part of the series, it does not matter whether the series actually
converges and we do not have to restrict to analytic functions.

Definition 2.1.1. The jet bundle of order q over the manifoldsX and U is the space

Jq(X ,U) of all q-jets [φ ](q)
x with x ∈ X and φ a smooth map X → U .

This definition is very similar to the introduction of the tangent bundle TM of
a manifold M in Appendix C.1. A point in it, i. e. a tangent vector, is also defined
as an equivalence class of functions (more precisely, of curves). As for the tangent
bundle, it is not difficult to show that Jq(X ,U) is a manifold, too. In fact, it is obvious
what one may use as local coordinates: given the coordinates x onX and u on U , we

take as coordinates for the q-jet [φ ](q)
x0 the tuple (x,u(q)). The jet bundle of order 0

is the product X ×U , since a 0-jet tells us only the result φ(x0) of evaluating any
map φ contained in it at the point x0. In concrete calculations one often ignores that
points in Jq(X ,U) are actually equivalence classes of functions. One simply thinks
of Jq(X ,U) as a space whose coordinates are besides the independent variables x
and dependent variables u all derivatives u(p) with 1≤ p≤ q.

Jq(X ,U) is not just any manifold but possesses a rich internal structure. In par-
ticular, jet bundles form a natural hierarchy. If r < q, we have an obvious projection
πq

r : Jq(X ,U)→ Jr(X ,U) defined by forgetting the higher-order terms of the Taylor
expansion. We can project even further by forgetting everything but the expansion
point and obtain then maps πq : Jq(X ,U)→X . All these projections are surjective
submersions, so that Jq(X ,U) may be endowed in many different ways with the
structure of a fibred manifold (cf. Appendix C.1). Furthermore, one trivially sees
that our coordinates (x,u(q)) are automatically adapted to all these fibrations.

The dimension of a jet bundle is easily calculated by some elementary combina-
torics. As dimX = n, dimU = m, we get dimJ0(X ,U) = n+m. If we proceed from
Jq−1(X ,U) to Jq(X ,U), we add one new coordinate for each derivative of order q
of m functions of n variables. Thus, we must count the multi indices of length q and
obtain by (A.4a) that

dimJq(X ,U)−dimJq−1(X ,U) = m

(
n + q−1

q

)
. (2.5)

By (A.4c), this result implies that

dimJq(X ,U) = n + m

(
n + q

q

)
. (2.6)

In practice, one usually considers the fibre dimension over the base space X , i. e.
only the number of variables in u(q), and omits the summand n.

Example 2.1.2. Assume that X is a two-dimensional manifold with coordinates
(x1,x2) and U a one-dimensional manifold with coordinate u1. The jet bundle
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J0(X ,U) = X ×U is then three-dimensional with coordinates (x1,x2;u1). The first-
order jet bundle J1(X ,U) is five-dimensional with coordinates (x1,x2;u1,u1

[1,0],u
1
[0,1])

and for the eight-dimensional second-order jet bundle J2(X ,U) we use the coordi-
nates (x1,x2;u1,u1

[1,0],u
1
[0,1],u

1
[2,0],u

1
[1,1],u

1
[0,2]) and so on.

Obviously, the multi index notation is rather cumbersome in such concrete ex-
amples. For this reason, we restrict its use to theoretical parts and use more natural
variable names in examples. Thus we may take variables (x,y) for X and u for U .
The coordinates in J2(X ,U) are then denoted by (x,y;u;ux,uy,uxx,uxy,uyy) which
brings us back to standard notations in textbooks on differential equations. �

Any smooth map φ : X → U can be prolonged to a smooth map

jqφ :

{
X −→ Jq(X ,U)

x 	−→ [φ ](q)
x =
(

x, ∂
|μ|φα
∂xμ (x)

) (2.7)

where μ runs over all multi indices with 0 ≤ |μ | ≤ q. Note that jqφ obviously sat-
isfies πq ◦ jqφ = idX . Of course, not all smooth maps Φ : X → Jq(X ,U) are of the
special form Φ = jqφ for some map φ : X → U , but prolonged maps are particu-
larly important. In local coordinates, any map Φ with πq ◦Φ = idX has the form
Φ(x) =

(
xi,φαμ (x)

)
, however without any particular relationship between the com-

ponent functions φαμ .
Those maps Φ that come from a prolongation can be characterised with the help

of the contact structure of the jet bundle Jq(X ,U). The name refers to the fact that
the equivalence relation underlying our definition of the jet bundle identifies maps
whose graphs have a contact of order q. The contact structure is a central property of
jet bundles the importance of which cannot be overestimated; it encodes in particular
the meaning of the local coordinates (x,u(q)), i. e. that some variables are supposed
to be derivatives of other ones. There are many ways to introduce this structure; the
simplest one is via certain differential one-forms on Jq(X ,U).

Definition 2.1.3. A one-form ω ∈ Ω 1(Jq(X ,U)) on the jet bundle Jq(X ,U) of or-
der q is a contact form, if for any smooth map φ : X →U its pull-back on the image
of the prolonged map im ( jqφ) ⊆ Jq(X ,U) vanishes. In other words, if we denote
by ι : im( jqφ) ↪→ Jq(X ,U) the natural inclusion map, then ι∗ω = 0. The contact
forms span the contact codistribution C0

q ⊂ T∗(Jq(X ,U)
)
.

Proposition 2.1.4. Let q ∈� be some fixed order. For every 1 ≤ α ≤ m and every
multi index μ with 0≤ |μ |< q the one-form1

ωαμ = duαμ −uαμ+1i
dxi (2.8)

1 Here we use in the second summand on the right hand side the summation or Einstein convention
that a summation is understood over repeated indices, i. e. in this case over i. The range of the
summation should always be clear from the context; here it is obviously 1≤ i≤ n. We will follow
this convention for most sums in this book.
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is a contact form on Jq(X ,U). The contact codistribution C0
q is locally generated by

all these forms and hence dimC0
q = m

(n+q−1
q−1

)
. A map Φ : X → Jq(X ,U) satisfying

πq ◦Φ = idX is of the special form Φ = jqφ for some map φ : X → U , if and only
if its image imΦ ⊆ Jq(X ,U) is an integral manifold of C0

q .

Proof. A general element of Ω 1(Jq(X ,U)) is of the form ω = aidxi +bνβduβν where
the summation in ν is over all multi indices with 0 ≤ |ν| ≤ q. Let φ : X → U be a
smooth map and ι : im( jqφ) ↪→ Jq(X ,U) the corresponding natural inclusion. Then
the pull-back of ω on im( jqφ) is of the form

ι∗ω =

(

ai + bνβ
∂ |ν|+1φβ

∂xν+1i

)

dxi . (2.9)

Now it is straightforward to verify that ωαμ is a contact form. For it ai = −uαμ+1i
,

bμα = 1 and all other coefficients vanish. Since uαμ+1i
= ∂ |μ|+1φα/∂xμ+1i at any

point on im( jqφ), we find indeed ι∗ωαμ = 0.

Let ρ = [φ ](q)
x0 be an arbitrary point on the submanifold im( jqφ). All maps con-

tained in the equivalence class ρ have identical derivatives in x0 up to order q, but
by (2.9) the form ι∗ω also depends on derivatives of order q + 1. Thus we may
choose another representative φ̄ ∈ ρ which has in x0 exactly one different derivative
of degree q + 1, say c = ∂ q+1φβ/∂xν(x0) �= ∂ q+1φ̄ β/∂xν (x0) = c̄ for some multi
index ν with |ν|= q + 1.

By construction, the two submanifolds im( jqφ) and im( jqφ̄ ) intersect in ρ ; let
ῑ denote the natural inclusion map for the latter one. If ω is a contact form, then
ι∗ω = ῑ∗ω = 0. The difference of these two equations evaluated at the point ρ
yields (c− c̄)bν−1i

β (ρ)dxi = 0 where the summation is over all i such that νi > 0.

Since c �= c̄ and the forms dxi are linearly independent, we must have bν−1i
β (ρ) = 0.

As ρ was an arbitrary point and ν an arbitrary multi index, we can show in this
manner that all coefficients bμβ with |μ |= q must vanish for a contact form.

It is easy to see that a non-vanishing one-form aidxi cannot be a contact form.
Hence the subspace of Ω 1(Jq(X ,U)) generated by the forms dxi and by the forms
duαμ with |μ |= q has zero intersection with C0

q . Now it follows simply from count-
ing dimensions that the contact codistribution C0

q is generated by the forms (2.8).

Furthermore, these considerations imply by (A.4c) that dimC0
q =
(n+q−1

q−1

)
.

For the last assertion let the map Φ : X → Jq(X ,U) take in local coordinates the
form Φ(x) =

(
xi,φαμ (x)

)
. If imΦ is an integral manifold of the contact codistribu-

tion C0
q , then we must have

φ∗ωαμ =
(∂φαμ
∂xi −φ

α
μ+1i

)
dxi = 0 (2.10)

for all one-forms (2.8). But this equality immediately implies that φαμ = ∂ |μ|φα0 /∂xμ

for all multi indices μ with 0 < |μ | ≤ q and hence Φ = jqφ0 is a prolongation. �
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Note that the contact codistribution possesses further integral manifolds besides
the images of prolonged maps. These are of importance for the description of more
general types of solutions exhibiting for example singularities. We will restrict our
attention mainly to the regular case; a few examples of singular behaviour will be
discussed in Section 9.1. An alternative description of the contact structure uses
vector fields instead of differential forms: we simply consider the annihilator of C0

q .

Definition 2.1.5. The contact distribution Cq ⊂ T Jq(X ,U) consists of all vectors
that are annihilated by the contact forms. A vector field contained in Cq is called a
contact vector field.

Proposition 2.1.6. The contact distribution Cq is locally spanned by the fields

C(q)
i = ∂xi +

m

∑
α=1

∑
0≤|μ|<q

uαμ+1i
∂uαμ , 1≤ i≤ n (2.11a)

and
Cμα = ∂uαμ , 1≤ α ≤ m , |μ |= q . (2.11b)

Hence dimCq = n + m
(n+q−1

q

)
. A map Φ : X → Jq(X ,U) with πq ◦Φ = idX is a

prolongationΦ = jqφ , if and only if T (imΦ)⊂ Cq imΦ, i. e. if and only if its image
imΦ is an integral manifold of the contact distribution Cq.

Proof. The basis (2.11) of the contact distribution Cq is trivially obtained from the
basis forms (2.8) of the dual contact codistribution C0

q and the claim about the di-
mension follows from (A.4a). The final assertion can be proved in the same manner
as the integrable case of Proposition C.3.5. �

Remark 2.1.7. Let us take a quick look at the structure equations of the contact
(co)distribution. For C0

q this requires to determine the exterior derivative of the con-
tact forms ωαμ defined in (2.8). One readily computes

dωαμ =−duαμ+1i
∧dxi . (2.12)

If |μ |< q−1, then we may equivalently write dωαμ =−ωαμ+1i
∧dxi and the exterior

derivative vanishes modulo C0
q . But if |μ | takes the maximal value q− 1, such a

reformulation is not possible and the exterior derivative does not vanish modulo C0
q .

Hence C0
q is not an involutive codistribution for any finite order q ∈�.

Dually, we must compute the Lie brackets between the generators of the contact
distribution Cq defined by (2.11). One easily sees that all of them vanish except for

[
Cν+1i
α ,C(q)

i

]
= ∂uαν (2.13)

where ν is an arbitrary multi index of length q− 1. As the right hand side is not a
contact field, Cq is not involutive either (this fact follows of course also trivially from
Proposition C.3.5). Note that (2.13) together with (2.11a) entails that the derived
contact distribution satisfies Tπq

q−1(C′q) = Cq−1. �
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For another kind of prolongation we need the formal or total derivatives. They
take as argument a smooth function Φ ∈ F

(
Jq(X ,U)

)
and return a function in

F
(
Jq+1(X ,U)

)
. In local coordinates, the formal derivative Di with respect to the

independent variable xi is defined as

DiΦ
(
x,u(q+1))=

∂Φ
∂xi

(
x,u(q))+

m

∑
α=1

∑
0≤|μ|≤q

∂Φ
∂uαμ

(
x,u(q))uαμ+1i

. (2.14)

Note that the function DiΦ is always quasi-linear, i. e. linear in the derivatives of
maximal order: as Φ depends only on u(q), derivatives u(q+1) appear in (2.14) only
in the terms uαμ+1i

with |μ |= q.
In a more intrinsic manner we may introduce the formal derivatives as follows.

Let Φ ∈ F
(
Jq(X ,U)

)
be an arbitrary smooth function on the jet bundle of order q.

The concatenation Φ ◦πq+1
q ∈ F

(
Jq+1(X ,U)

)
defines a smooth function on the jet

bundle of order q + 1 and thus a natural inclusion F
(
Jq(X ,U)

)
↪→F
(
Jq+1(X ,U)

)

exists. Now the formal derivatives can be uniquely defined by the following congru-
ence of one-forms over Jq+1(X ,U):

d
(
Φ ◦πq+1

q

)
≡ (DiΦ)dxi mod C0

q+1 . (2.15)

Indeed, the left hand side is given by (∂Φ/∂xi)dxi + (∂Φ/∂uαμ )duαμ . Since mod-
ulo the contact codistribution C0

q+1 we may substitute duαμ = uαμ+1i
dxi by (2.8), this

expression is equivalent to the right hand side.

Remark 2.1.8. Linear first-order differential operators are closely related to vector
fields (see Appendix C.2). However, in the case of the formal derivative it is not
possible to consider Di as a vector field in X(Jq(X ,U))—for the simple reason that
the coefficients are not contained in F

(
Jq(X ,U)

)
. In the context of Lie symmetry

theory, Johnson [240, 241] introduced a generalisation of vector fields as sections of
a pull-back bundle (see Appendix C.1 for an explanation of these concepts related
to fibred manifolds). The formal derivative may be interpreted as such a generalised
vector field: Di ∈ Γloc

(
(πq+1

q )∗T (Jq(X ,U))
)
. �

Eq. (2.14) represents the well-known chain rule of calculus within the jet bun-
dle formalism. Indeed, suppose that we consider the function Φ ∈ F

(
Jq(X ,U)

)

restricted to the graph of a map jqφ : X → Jq(X ,U). Then we can substitute the
variables uαμ by ∂ |μ|φα/∂xμ and obtain the function Φ ◦ jqφ : X → �. Its partial
derivatives ∂ (Φ ◦ jqφ)/∂xi must be computed by the chain rule. Exactly the same
result is reached, if we perform the corresponding substitutions in the function DiΦ .
In other words, we have for all maps φ the equality

∂ (Φ ◦ jqφ)
∂xi = (DiΦ)◦ jq+1φ . (2.16)

Example 2.1.9. Let (x,y) be coordinates on X and u on U . We consider the func-
tion Φ(x,y,u,ux,uy) = (uy)2−xux defined on the first-order jet bundle J1(X ,U). Its
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formal derivatives with respect to x and y, respectively, are given by the following
two functions defined on the second-order jet bundle J2(X ,U):

DxΦ(x,y,u,ux,uy,uxx,uxy,uyy) = 2uyuxy− xuxx−ux , (2.17a)

DyΦ(x,y,u,ux,uy,uxx,uxy,uyy) = 2uyuyy− xuxy . (2.17b)

These are indeed quasi-linear functions, i. e. linear in all second-order derivatives,
althoughΦ is quadratic in uy.

If we substitute the dependent variable u by some function ψ(x,y) in Φ , then we
obtain a function Φ̃(x,y) = Φ

(
x,y,ψ(x,y),ψx(x,y),ψy(x,y)

)
. Differentiating this

function with respect to x yields according to the chain rule

∂Φ̃
∂x

(x,y) = 2ψy(x,y)ψxy(x,y)− xψxx(x,y)−ψx(x,y) (2.18)

and correspondingly for ∂Φ̃/∂y. The back substitutionsψ→ u, ψx→ ux, ψxx→ uxx

etc. lead exactly to the above formal derivatives. �
Remark 2.1.10. Note the close relationship between the formal derivative Di and

the contact vector field C(q)
i . The only difference is that in the definition of C(q)

i
the summation does not include the multi indices of length q. Indeed, the corre-
sponding coefficient would be a derivative of order q + 1 and thus not defined on
the jet bundle Jq(X ,U) of order q. If we use the above mentioned natural inclusion
F
(
Jq(X ,U)

)
↪→F
(
Jq+1(X ,U)

)
, then we obtain for any functionΦ ∈F

(
Jq(X ,U)

)

the equality DiΦ = C(q+1)
i

(
Φ ◦πq+1

q
)
. �

We mentioned above that the jet bundles of different order form a hierarchy via
the projections πq

r : Jq(X ,U)→ Jr(X ,U) for q > r. The case r = q− 1, where the
order is reduced only by one, is of particular interest, as it leads to a special and very
important structure.

Proposition 2.1.11. The jet bundle Jq(X ,U) of order q is affine over the jet bundle
Jq−1(X ,U) of order q−1.

Before we prove this proposition, we discuss what it means. Recall that a function
is affine, if it is of the form x 	→ ax + b for constants a, b. Proposition 2.1.11 claims
that the highest-order derivatives u(q) transform under a change of coordinates in X
and U as affine functions with coefficients a, b depending on the derivatives u(q−1).
A rigorous definition of an affine bundle is given in Appendix C.1.

Proof. We study changes of coordinates x̄ = x̄(x) and ū = ū(u) in the manifolds
X and U , respectively. They induce a change of coordinates ū(q) = ū(q)(x,u(q))

in the jet bundle Jq(X ,U). It can be determined either by using the chain rule or,
equivalently, by requiring that the contact forms (2.8) remain invariant. In either
case the result is that in repeated index notation

ūαj1··· jq =
(
∂ ūα

∂uβ
∂xi1

∂ x̄ j1
· · · ∂xiq

∂ x̄ jq

)
uβi1···iq + · · · (2.19)
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where the dots represent a complicated expression in the variables u(q−1) and where
∂x/∂ x̄ denotes the inverse of the Jacobian ∂ x̄/∂x. But this observation implies that
(2.19) is indeed affine in u(q) as claimed. �

At first sight, Proposition 2.1.11 may appear rather abstract, but it has very im-
portant consequences which will be crucial for the application of algebraic methods
in the analysis of differential equations. The key is the so-called fundamental identi-
fication which we will now discuss. It leads to a natural polynomial structure hidden
in the jet bundle hierarchy.

An affine space is always modelled on a vector space: the difference between two
points may be interpreted as a vector. In our case it is easy to identify this vector

space. Let [φ ](q)
x and [ψ ](q)

x be two points in Jq(X ,U) such that

[φ ](q−1)
x = πq

q−1

(
[φ ](q)

x
)

= πq
q−1

(
[ψ ](q)

x
)

= [ψ ](q−1)
x , (2.20)

i. e. the two points belong to the same fibre with respect to the fibration given by the

projection πq
q−1 : Jq(X ,U)→ Jq−1(X ,U). Thus [φ ](q)

x and [ψ ](q)
x correspond to two

Taylor series truncated at degree q which coincide up to degree q−1. Obviously, this
observation implies that their difference consists of one homogeneous polynomial
of degree q for each dependent variable uα .

In a more intrinsic language, we formulate this result as follows. Let ρ = [φ ](q)
x

be a point in Jq(X ,U) with u = φ(x) and ρ̄ = [φ ](q−1)
x = πq

q−1(ρ). Then according

to Proposition 2.1.11, the fibre (πq
q−1)

−1(ρ̄) is an affine space modelled on the vec-
tor space Sq(T ∗

x X )⊗TuU where Sq denotes the q-fold symmetric product. Indeed,
this fact follows immediately from our discussion so far. The symmetric algebra
is a coordinate-free form of the polynomial ring and thus elements of its compo-
nents correspond to homogeneous polynomials. Furthermore, one easily verifies
that the homogeneous part of (2.19) obtained by dropping the terms represented
by the dots describes the behaviour of the coefficients of elements of the vector
space Sq(T∗

x X )⊗TuU under coordinate transformations (note that we must use the
cotangent space T∗

x X , as the coefficients of tangent vectors would transform with
the Jacobian ∂ x̄/∂x and not with its inverse).

By Proposition 2.1.11, the qth-order jet bundle Jq(X ,U) is an affine bundle over
Jq−1(X ,U). According to Lemma C.4.3, this fact implies (keeping the notations of
the discussion above) that the tangent space to the affine space (πq

q−1)
−1(ρ̄) at the

point ρ ∈ Jq(X ,U) is canonically isomorphic to the corresponding vector space, i. e.
to Sq(T ∗

x X )⊗TuU . This isomorphism is called the fundamental identification.
Lemma C.4.3 provides us only with an abstract definition of this isomorphism;

for concrete computations we need a local coordinate expression. On one side we
consider the tangent space to the fibre (πq

q−1)
−1(ρ̄) at the point ρ , i. e. the vertical

space Vρπq
q−1 defined as the kernel of the tangent map Tρπq

q−1. Obviously, it is
spanned by all the vectors ∂uαμ with |μ | = q. Let us take one of these vectors; it is
tangent to the curve γ : t 	→ ρ(t) where ρ(0) = ρ and all coordinates of an arbitrary
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point ρ(t) coincide with those of ρ except for the one coordinate uαμ corresponding
to the chosen vector which is increased by t.

On the other side, we may compute the difference quotient (ρ(t)− ρ)/t ∈ �m

interpreting the points as above as truncated Taylor series. The αth component of
the result is the polynomial xμ/μ!. Hence the fundamental identification is the map
εq : Vρπq

q−1 → Sq(T ∗
x X )⊗TuU given by

εq(∂uαμ ) =
1
μ!

dxμ ⊗ ∂uα . (2.21)

It is important to note here the combinatorial factor 1
μ! having its origin in Taylor’s

formula (2.1). Later we will use εq for the identification of geometric quantities,
namely vertical vectors in Vρπq

q−1, with algebraic quantities, namely homogeneous
polynomials, which we can study with methods from commutative algebra.

2.2 An Intrinsic Approach to Jet Bundles

In the sequel we will always consider a slightly more general situation: instead of
jets of maps X → U between two manifolds X , U we will take jets of sections of
a fibred manifold π : E → X (see Appendix C.1 for some basic material on fibred
manifolds). Note that this generalisation affects only global properties; locally it
makes no real difference. The situation of the last section is recovered, if we take
the trivial fibration pr1 : E = X ×U → X with the canonical projection pr1 on the
first factor (recall from (C.5) that every fibred manifold looks in the neighbourhood
of any point ξ ∈ E like a trivial one). A section σ : X → E is then locally always of
the form σ(x) =

(
x,s(x)

)
with a function s : X → U .

For all computational purposes, the introduction of jet bundles via truncated
power series presented in the previous section is completely sufficient. For obtaining
a deeper understanding of the geometry of jet bundles a more intrinsic approach is
of advantage and will be our next topic. Thus this section requires some familiarity
with coordinate-free differential geometry. However, readers not so much interested
in geometry may safely skip it.

Remark 2.2.1. Before we move on to a completely different way to define jet bun-
dles, we briefly show how the approach of the last section can be formulated in this
more general setting without the explicit use of coordinates.

We must now define an equivalence relation on the space Γloc(π) of all local
sections of the fibred manifold π : E →X . Let σ1, σ2 be two sections defined in the
neighbourhood of some point x∈X . We consider them as equivalent to first order at
x, again written σ1∼1 σ2, if σ1(x) =σ2(x) and Txσ1 = Txσ2. If s1,s2 :X →U are the
local functions corresponding to σ1, σ2, then the local representation of the tangent
map Txσk is essentially given by the Jacobian of the function sk. Hence we trivially
find that σ1 ∼1 σ2, if and only if s1 ∼1 s2 in the sense of the previous section.
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For the definition of higher-order equivalence we use a recursive approach. Any
fibred manifold π : E →X trivially induces a fibration of the corresponding tangent
bundles, Tπ : TE → TX , and each section σ : X → E induces via its tangent map
Tσ : TX → TE a section of the new fibration. Fixing a concrete point x ∈ X , we
may also consider the induced restriction Tσ(x)π : Tσ(x)E → TxX as a fibred manifold
and Txσ as a section of it. Now we define σ1 ∼q σ2, if and only if Txσ1 ∼q−1 Txσ2.
Again it is trivial to verify that σ1 ∼q σ2 holds, if and only if s1 ∼q s2, as the iterated
tangent maps require higher and higher derivatives of the local functions sk :X →U
at the point x. Once this equivalence relation is obtained, we proceed as before: a
point in the qth order jet bundle over the fibred manifold π : E →X is an equivalence

class [σ ](q)
x of local sections with respect to the relation ∼q. �

We describe now an alternative construction of the first-order jet bundle based on
Proposition 2.1.11. It does not seem to be widely known in the literature, but it is
very convenient for our purposes. Strictly speaking, we do not construct the jet bun-
dle J1π as introduced in Remark 2.2.1 above but a bundle canonically diffeomorphic
to it. However, we will always identify the two bundles.

Definition 2.2.2. Let π : E →X be a fibred manifold. The first-order jet bundle over
π is the affine bundle π1

0 : J1π →E whose fibre at a point ξ ∈ E is the affine space

(J1π)ξ =Aξ =
{
γ ∈ T ∗

x X ⊗TξE | Tξ π ◦ γ = idTxX
}

(2.22)

(where x = π(ξ ) ∈ X ) modelled on the vector space

Vξ = T ∗
x X ⊗Vξπ . (2.23)

Thus any point ρ ∈ J1π may be considered as a tuple ρ = (ξ ,γξ ) consisting of a
point ξ ∈ E and a linear map γξ ∈ Aξ .

If we consider two maps γ1,γ2 ∈ Aξ , then their difference γ1− γ2 satisfies

Tξ π ◦ (γ1− γ2) = idTxX − idTxX = 0 . (2.24)

Hence γ1− γ2 maps any vector in TxX into a vertical vector and γ1− γ2 ∈ V(1)
ξ . So

Aξ is indeed an affine space modelled on the vector space Vξ . Any element of Aξ
has the form γ(v) =

(
v,B(v)

)
with some linear map B. The whole affine bundle J1π

is modelled on the vector bundle π∗(T ∗X )⊗Vπ → E . Here the first factor is the
pull-back of τ∗X : T ∗X → X over π : E → X . As the pull-back notation is rather
cumbersome, we will write this bundle in the sequel briefly as T∗X ⊗

E
Vπ . The

subscript E signals that both factors are to be considered as bundles over E using, if
necessary, appropriate pull-backs which are usually obvious from the context.

At first sight, Definition 2.2.2 of the jet bundle seems to be completely unrelated
to our previous Definition 2.1.1. So we show next that points in J1π may be inter-
preted as equivalence classes of sections σ ∈ Γloc(π). Noting that the bundle J1π is
obviously fibred over X with the projection π1 = π ◦π1

0 : J1π →X , we define for
such a section its (first) prolongation j1σ ∈ Γloc(π1) by
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j1σ :

{
X −→ J1π
x 	−→ (σ(x),Txσ) . (2.25)

The tangent map Txσ indeed belongs to the spaceAξ with ξ = σ(x). As σ is a map
from X to E , its tangent map Txσ is a linear map TxX → TξE and thus an element
of T∗

x X ⊗TξE . Furthermore, by definition of a section, σ satisfies π ◦σ = idX and
hence by the chain rule Tξ π ◦ Txσ = idTxX (obviously, the condition imposed in
(2.22) is motivated by this observation).

Conversely, given an arbitrary element γ ∈ Aξ , it is trivial to see that many sec-
tions σ ∈ Γloc(π) exist such that σ(x) = ξ and Txσ = γ , since the last condition
refers only to a single point x ∈ X . The bijection

γ ∈ Aξ ←→ [σ ](1)
x =
{
σ ∈ Γloc(π) | σ(x) = ξ , Txσ = γ

}
(2.26)

provides us thus with a canonical identification between the jet bundles introduced
in the last section and those of Definition 2.2.2.

In adapted coordinates (x,u) on E , we may locally write σ(x) =
(
x,s(x)

)
. For

the tangent map Txσ we obtain then the local expression (x, ẋ) 	→
(
σ(x),dσ(x) · ẋ

)

with the matrix

dσ(x) =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 0
. . .

0 0 · · · 0 1

∂ s1

∂x1 (x) · · · ∂ s1

∂xn (x)
...

...

∂ sm

∂x1 (x) · · · ∂ sm

∂xn (x)

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

. (2.27)

It consists of the n× n identity matrix stacked over the Jacobian of the function s
evaluated at the fixed point x ∈ X . Conversely, the matrix of any linear map con-
tained in Aξ has the form (2.27), i. e. the n× n identity matrix stacked over an

arbitrary m×n matrix. Recall that our local coordinates for [σ ](1)
x ∈ J1π are (x,u(1))

with uαi = ∂ sα

∂xi (x). Hence we may identify the entries of this m×n matrix with the
first-order derivatives uαi .

Remark 2.2.3. A point (ξ ,γξ ) ∈ J1π induces a direct decomposition of the tangent
space TξE . By definition, the fibre component γξ represents an element of the affine
space Aξ , i. e. a linear map TxX → TξE (where again x = π(ξ )). Because of the
condition Tξ π ◦γξ = idTxX , the intersection imγξ ∩Vξ π contains only the zero vector
(the vertical bundle Vξ π is of course just Vξ ) and TξE = imγξ ⊕Vξ π . Hence a global
section γ of the bundle π1

0 : J1π → E such that γ(ξ ) = (ξ ,γξ ) may be interpreted
as a connection on the fibred manifold π : E → X (see Appendix C.4) where the
horizontal space Hξ π at the point ξ ∈ E is given by imγξ .2

2 Saunders [393] calls such a section a jet field.
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In fact, every connection on the fibred manifold π : E →X can be generated this
way. More precisely, there is a bijection between the space of all connections and
Γ (π1

0 ), the space of global sections E → J1π . Given such a section γ ∈Γ (π1
0 ), we de-

fine the corresponding connection via its horizontal lift A[γ] : E ×
X

TX → TE by set-

ting A[γ](ξ ,vx) =
(
ξ ,γξ (vx)

)
. Conversely, given the horizontal lift A of an arbitrary

connection on the fibred manifold π , we define the associated section γ[A] ∈ Γ (π1
0 )

by setting (γ[A])ξ (vx) = A(ξ ,vx). �

The geometry of the jet bundle is to a large extent determined by its contact struc-
ture. In the previous section we introduced it in terms of the contact codistribution
locally spanned by the one-formsωαμ defined by (2.8). Their definition is obviously
not intrinsic, although our characterisation of contact forms via pull-backs is.

Now we take a rather different approach to the contact structure which will si-
multaneously clarify the relation between the jet and the tangent bundle. It is based
on the contact map: using Definition 2.2.2 of the first-order jet bundle, it becomes
the simple evaluation map:

Γ1 :

{
J1π×

X
TX −→ TE

(ξ ,γξ ,vx) 	−→
(
ξ ,γξ (vx)

) . (2.28)

If we consider this map not pointwise but along the image of some global section
γ : E → J1π , then a comparison with Remark 2.2.3 shows that the contact map is
essentially a slight reformulation of the horizontal lift of the connection defined by
the section γ , as we may now express the lift as A[γ](ξ ,vx) = Γ1

(
γ(ξ ),vx

)
.

More abstractly, we may consider the contact map Γ1 as the unique map such that
the diagram

J1π×
X

TX Γ1
TE

TX
(( j1σ)◦τX )×idTX Tσ

(2.29)

commutes for any section σ ∈ Γloc(π).
The complementary contact map is defined by

θ1 :

{
J1π×

E
TE −→ Vπ

(ξ ,γξ ,wξ ) 	−→ wξ −Γ1
(
ξ ,γξ ,Tξ π(wξ )

) . (2.30)

Comparing again with Remark 2.2.3, we see that the complementary contact map
corresponds to the vertical projector of a connection induced by a global section
γ : E → J1π , namely PV [γ](ξ ,wξ ) = θ1

(
γ(ξ ),wξ

)
.

As the contact map Γ1 is obviously linear in its last argument, we may inter-
pret it alternatively as a map J1π → T ∗X ⊗

E
TE . Then in local coordinates we

have Γ1 : (xi,uα ,uαi ) 	→
(
xi,uα ,dxi⊗ (∂xi +uαi ∂uα )

)
. Similarly, we may interpret the
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complementary contact map θ1 as a map J1π→ T∗E⊗
E

Vπ given in local coordinates

by θ1 : (xi,uα ,uαi ) 	→
(
xi,uα ,(duα −uαi dxi)⊗ ∂uα

)
.

A central task of the contact structure is to characterise prolonged sections. If
we continue to treat Γ1 as a map J1π → T∗X ⊗

E
TE , then the value Γ1(ρ) of the

contact map at a point ρ ∈ J1π may be considered as a linear map TxX → TξE
where x = π1(ρ) and ξ = π1

0 (ρ) and thus we may speak of the image of Γ1(ρ).
Using this point of view, we achieve our goal as follows.

Proposition 2.2.4. A section γ ∈ Γloc(π1) is of the form γ = j1σ for some section
σ ∈ Γloc(π), if and only if imΓ1

(
γ(x)
)

= Tγ(x)π1
0

(
Tγ(x) imγ

)
for all points x ∈ X

where the section γ is defined.

Proof. Any section γ ∈ Γloc(π1) induces a section σ = π1
0 ◦ γ ∈ Γloc(π) and obvi-

ously, by the chain rule, Tγ(x)π1
0

(
Tγ(x) imγ

)
= Tσ(x) imσ = imTxσ . Furthermore, we

may write γ(x) =
(
σ(x),γσ(x)

)
with γσ(x) ∈ T∗

x X ⊗ Tσ(x)E and we thus find that
imΓ1
(
γ(x)
)

= imγσ(x). If we now assume that γ = j1σ , then, by our considerations
above about the equivalence of the two approaches to jet bundles, γσ(x) = Txσ and
thus one direction of our claim is proven.

In the opposite direction our assumption implies that imγσ(x) = imTxσ . Fur-
thermore, a section σ̂ ∈ Γloc(π) exists such that at the given point x ∈ X both

σ̂(x) = σ(x) and Txσ̂ = γσ(x) (in other words, γ(x) = [σ̂ ](1)
x ). Thus we have two

sections σ , σ̂ ∈ Γloc(π) with the same value at x and for which imTxσ = imTxσ̂ .
It follows trivially from the properties of a section that this implies Txσ = Txσ̂ and

thus γ(x) = [σ ](1)
x . As the point x was arbitrary, we therefore find γ = j1σ . �

Thus we find for any section σ ∈ Γloc(E) that imΓ1
(

j1σ(x)
)

= imTxσ . Looking
at the coordinate expressions of Txσ and Γ1, respectively, this observation provides
another simple proof of the equivalence of our two approaches to the jet bundle J1π .
Furthermore, as it is easy to see that Γ1, still considered as a map J1π→ T ∗X ⊗

E
TE ,

is injective, it follows that we may identify J1π with an affine subbundle of the
vector bundle T ∗X ⊗

E
TE → E .

Remark 2.2.5. Yet another way to introduce the first-order jet bundle uses Grass-
mannians. It is sometimes useful for comparing constructions based on exterior
differential systems with computations within the formal theory of differential equa-
tions. Recall that the k-Grassmannian of a manifold E is the bundle Gk(E) over E
whose fibre at a point ξ ∈ E is given by Gk(E)ξ = {V ⊆ TξE | dimV = k}, i. e. the
space of all k-planes in the tangent space.

If π : E → X is a fibred manifold with dimX = n, then we may consider the
distinguished subbundle G(π) = Gtrans

n (E) ⊂ Gn(E) consisting of all transversal n-
planes, i. e. G(π)ξ =

{
V ∈Gn(E)ξ | Tξ π(V) = Tπ(ξ )X

}
. As obviously the elements

of G(π)ξ represent all possible horizontal spaces of a connection at the point ξ ∈ E ,
it follows from Remark 2.2.3 that we may identify G(π) and J1π . In fact, as a trivial
consequence of these elementary considerations, we see that the contact map Γ1
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induces an explicit isomorphism between J1π and G(π): we map a point ρ ∈ J1π to
the point

(
π1

0 (ρ), imΓ1(ρ)
)
∈ G(π). �

It seems that there is no similarly elegant direct definition of a higher-order jet
bundle Jqπ as an affine bundle over Jq−1π , as the conditions describing the corre-
sponding affine spaces are very cumbersome (this becomes immediately evident, if
one starts to write out higher-order tangent maps in components). Thus the simplest
approach for an intrinsic introduction of Jqπ is probably given by the coordinate-free
version of the definition from the last section detailed in Remark 2.2.1. However,
many aspects of higher-order jet bundles may be discussed in a first-order setting
via the following iterative approach.

As each jet bundle Jqπ is also a fibred manifold over the base space X via the
projection πq : Jqπ → X , we may construct iterated jet bundles Jrπq over this fi-
bration. The jet bundle Jq+1π of order q + 1 over E is then identified with a sub-
manifold of the first-order jet bundle J1πq over the qth order one. The mapping
ιq,1 : Jq+1π → J1πq describing this identification is intrinsically defined as the pro-
longation of the identity map on Jqπ , i. e. as the unique mapping satisfying for any
section σ ∈ Γloc(π) the condition ιq,1 ◦ jq+1σ = j1( jqσ).

If we take on Jqπ our usual local coordinates (x,u(q)), then local coordinates on
J1πq are

(
x,(u(q))(1)

)
, i. e. all derivatives uαμ are considered as dependent variables

and all their first-order derivatives uαμ,i are introduced. The submanifold of J1πq with
which we identify Jq+1π is described by the local equations uαμ,i = uαν, j whenever
μ+ 1i = ν+ 1 j. Obviously, they simply express that partial derivatives commute.

Similarly, we may introduce mappings ιq,r : Jq+rπ → Jrπq by the requirement
that ιq,r ◦ jq+rσ = jr( jqσ) for any section σ ∈ Γloc(π). Local coordinates on Jrπq

are of the form uαμ,ν with 0 ≤ |μ | ≤ q and 0 ≤ |ν| ≤ r. The image of Jq+rπ in Jrπq

is then described by the equations uαμ,ν = uαμ̄,ν̄ whenever μ+ν = μ̄+ ν̄.
More generally, we define the prolongation of any map Φ : Jqπ → E ′ where

π ′ : E ′→X is another fibred manifold overX andΦ is fibred over the identity idX .
The r-fold prolongation jrΦ is a map Jq+rπ → Jrπ ′ such that the diagram

X
jqσ

jq+rσ

Jqπ

Φ

πq
0

Jq+rπ
πq+r

q

jrΦ

X
σ ′

jrσ ′

E ′π′
Jrπ ′

(π′)r
0

(2.31)

commutes for any section σ ∈ Γloc(π), i. e. if we set σ ′ = Φ ◦ jqσ ∈ Γloc(π ′), then
the prolonged map satisfies ( jrΦ)◦ ( jq+rσ) = jrσ ′.

In adapted coordinates (x,u) on E and (x,v) on E ′, the map Φ is locally of the
form vτ = Φτ (x,u(q)). The prolongation jrΦ has then the local coordinate form
vτσ = DσΦτ (x,u(q+r)) with 0 ≤ |σ | ≤ r. Here Dσ = Dσ1

1 · · ·Dσn
n where Di is the
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formal derivative defined by (2.14). Thus the diagram (2.31) is just an abstract rep-
resentation of the chain rule.

By definition, (πq)1
0 : J1πq → Jqπ is an affine bundle. It is not difficult to see that

that Jq+1π ⊂ J1πq represents an affine subbundle modelled on a vector subbundle
of T ∗X ⊗

Jqπ
Vπq. However, for our purposes this vector subbundle is not so useful.

Adapting Proposition 2.1.11 and the subsequent discussion of the affine structure
from maps to sections, we immediately obtain the following result.

Proposition 2.2.6. The jet bundle Jqπ of order q is an affine bundle over Jq−1π
modelled on the vector bundle Sq(T ∗X ) ⊗

Jq−1π
Vπ .

It follows from (2.5) (or (A.4a), respectively) that the fibre dimension of this
vector bundle is given by

dim
(
Sq(T ∗X ) ⊗

Jq−1π
Vπ
)

= m

(
n + q−1

q

)
. (2.32)

The contact structure of the higher-order jet bundles may be introduced in a man-
ner similar to the first-order case. Generalising (2.29), we define the q-contact map
as the uniquely determined map Γq : Jqπ×

X
TX → T (Jq−1π) such that the diagram

Jqπ×
X

TX
Γq

T (Jq−1π)

TX
(( jqσ)◦τX )×idTX T ( jq−1σ)

(2.33)

commutes for any section σ ∈Γloc(π). For q > 1 no straightforward interpretation of
Γq as an evaluation map exists. However, using iterated jet bundles, we can reduce to
the first-order case: consider the contact map Γ̃1 : J1πq−1×

X
TX → T (Jq−1π); then

Γq = Γ̃1 ◦ (ιq−1,1× idTX ).
It is easy to see that Γq is a linear fibred morphism over πq

q−1 which can be
expressed as the fact that the diagram

Jqπ×
X

TX
Γq

pr1

T (Jq−1π)

τJq−1π

Jqπ
πq

q−1

Jq−1π

(2.34)

commutes. Here pr1 is the projection to the first factor and τ the tangent bundle pro-
jection. The linearity allows us to consider Γq as a map Jqπ→ T∗X ⊗

Jq−1π
T (Jq−1π)

given in local coordinates by
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Γq : (x,u(q)) 	→
(
x,u(q−1),dxi⊗ (∂xi + uαμ+1i

∂uαμ )
)

. (2.35)

Note that we sum here only over those multi indices μ with 0≤ |μ |< q.
The complementary contact map of the qth order jet bundle is now the map-

ping θq : Jqπ ×
Jq−1π

T (Jq−1π)→Vπq−1 defined by θq(ρ ,w) = w−Γq
(
ρ ,Tρ̄πq−1(w)

)

where ρ̄ = πq
q−1ρ . Interpreting it as a map Jqπ → T∗Jq−1π ⊗

Jq−1π
Vπq−1, it takes in

adapted coordinates on the jet bundle Jqπ the form

θq : (x,u(q)) 	→
(
x,u(q−1),(duαμ −uαμ+1i

dxi)⊗ ∂uαμ

)
(2.36)

where again the summation is only over those multi indices μ with 0 ≤ |μ | < q.
For a global section Jq−1π → Jqπ defining a connection on πq−1 : Jq−1π →X , we
get the same relation between Γq and the horizontal lift on one hand and θq and the
vertical projector on the other hand as in the first-order case.

Proposition 2.2.7. A section γ ∈ Γloc(πq) is of the form γ = jqσ for some section
σ ∈ Γloc(π), if and only if imΓq

(
γ(x)
)

= Tγ(x)π
q
q−1

(
Tγ(x) imγ

)
for all points x ∈ X

where γ is defined.

The proof is as in the first-order case (Proposition 2.2.4), though notationally
much more messy. Therefore we omit it.

Remark 2.2.8. Again we observe that for any local section σ ∈ Γloc(π) the equality
imΓq+1

(
jq+1σ(x)

)
= imTx( jqσ) holds. Thus we may say that knowing the (q+1)-

jet [σ ](q+1)
x of a section σ at some x∈X is equivalent to knowing its q-jet ρ = [σ ](q)

x

at x plus the tangent space Tρ im jqσ at this point. �

There remains to study the relation between the (complementary) contact map
and the contact (co)distribution introduced in the last section. Looking at its ex-

pression (2.35) in local coordinates, one already recognises the contact fields C(q)
i

introduced in (2.11a). However, one must be careful: in (2.35) one is dealing with

vectors in T (Jq−1π) whereas the fields C(q)
i live in T (Jqπ). Hence the rigorous state-

ment is that Γq(ρ ,∂xi) = Tρπq
q−1(C

(q)
i ρ). Since kerTπq

q−1 = Vπq
q−1 is spanned by

the contact fields Cμα defined in (2.11b), we therefore find

(Cq)ρ = (Tρπq
q−1)

−1(imΓq(ρ)
)

. (2.37)

Similarly, in the local form (2.36) of the complementary contact map the contact
forms ωαμ introduced in (2.8) appear. But again the same problem as above shows
up: in (2.36) the forms live on Jq−1π , in (2.8) on Jqπ . This time the solution consists
of a simple pull-back. Canonically identifying the vertical bundle Vπq−1 of the fi-
bration πq−1 : Jq−1π→X with its bidual V∗∗πq−1 (cf. Remark B.1.7), we may con-
sider the complementary contact map θq as a map Jqπ ×

Jq−1π
V∗πq−1 → T ∗(Jq−1π)

and find then that (πq
q−1)

∗(θq(ρ ,duαμ)) = ωαμ ρ. In other words,
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(C0
q)ρ = (πq

q−1)
∗(imθq(ρ)

)
. (2.38)

Remark 2.2.9. In the last section, the contact distribution Cq was generated by two

types of vector fields: C(q)
i and Cμα defined by (2.11). As these fields depend on

the chosen local coordinates, they have of course no intrinsic meaning; however,
the splitting into two types has. Obviously, the fields Cμα form a basis of the vertical
bundle Vπq

q−1. Thus we may decompose Cq =Hq⊕Vπq
q−1 where the n-dimensional

complement Hq is not uniquely defined. It follows from the local form (2.11a) of

the contact fields C(q)
i that any such distributionHq defines the horizontal bundle of

a connection of the fibred manifold πq : Jqπ→X .

The local form (2.11a) of the fields C(q)
i also trivially implies the following rela-

tion between the contact distributions at different orders:

Cq = Tπq+r
q (Cq+r)+Vπq

q−1 . (2.39)

Note that this decomposition is not a direct sum, as the fields C(q)
i are not projectable.

Given a global section γ ∈ Γ (πq+r
q ) of the fibration πq+r

q : Jq+rπ→ Jqπ , we find for
any point ρ ∈ Jqπ the direct decomposition

Cq ρ = Tγ(ρ)
(
Cq+r γ(ρ)

)
⊕Vπq

q−1 . (2.40)

Note, however, that not every possible complement Hq can be produced that way,
as a simple dimensional argument shows. �

Remark 2.2.10. As in the first-order case, any global section Jq−1π → Jqπ defines
a connection on the fibred manifold πq−1 : Jq−1π →X . We do not show here how
the splitting of the tangent bundle into a horizontal and a vertical subbundle is per-
formed, as this is fairly obvious from the relation to iterated jet bundles. �

Remark 2.2.11. If we consider—following Remark 2.2.5 on the definition of J1π via
Grassmannians—the projection π1

0 : J1π → E as a map G(π)→ E , then it follows
from the above discussion of the relation between the contact mapΓ1 and the contact
distribution C1 on one side and between the complementary contact map θ1 and the
contact codistribution C0

1 on the other side that at a point ρ = (ξ ,V)∈G(π) we have
(C1)ρ = (Tρπ1

0 )−1(V) (i. e. (C1)ρ is the preimage of V under the tangent map of the
projection π1

0 : J1π →E) and (C0
1)ρ = (π1

0 )∗(V0) (i. e. (C0
1)ρ is the pull-back of the

annihilator of the n-plane V). �

The contact map provides us with yet another point of view of the fundamental
identification. Take some point ρ ∈ Jq−1π and choose an arbitrary “reference point”
ρ̂ ∈ (Jqπ)ρ in the fibre over it. Then we define on the fibre (Jqπ)ρ a map χq[ρ̂ ]
mapping the point ρ̄ ∈ (Jqπ)ρ to Γq(ρ̄)−Γq(ρ̂). Here we consider Γq again as a map
Jqπ → T∗X ⊗

Jq−1π
T (Jq−1π). By our considerations above, one easily sees that ac-

tually χq[ρ̂] : (Jqπ)ρ → T ∗
x X ⊗Vρπq−1

q−2 where as usual x = πq−1(ρ): the difference
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between two images of Γq for arguments that lie in the same fibre over Jq−1π is al-

ways vertical with respect to πq−1
q−2 . Since the tangent space to a vector space may be

identified with the vector space itself, the tangent map Tρ̄ χq[ρ̂ ] is a homomorphism

Tρ̄
(
(Jqπ)ρ

)
= Vρ̄πq

q−1 → T∗
x X ⊗Vρπq−1

q−2 which is injective and independent of the
chosen “reference point” ρ̂ .

In a local chart we get the following picture: let (x, û(q)) and (x, ū(q)) be the
coordinates of ρ̂ and ρ̄ , respectively; then the value of the map χ [ρ̂] at ρ̄ is

χq[ρ̂ ](ρ̄) = ∑
|μ|=q−1

(ūαμ+1i
− ûαμ+1i

)dxi⊗ ∂uαμ (2.41)

and the value of its tangent map is

Tρ̄ χq[ρ̂ ] = ∑
|μ|=q−1

duαμ+1i
⊗dxi⊗ ∂uαμ . (2.42)

This local form shows explicitly that the latter one is indeed independent of the
“reference point” ρ̂ as remarked above.

For an order q > 1 we iterate, i. e. we apply on the right hand side the map
χq−1[ρ ] to the vertical component. After q−1 iterations we obtain this way a map

Vρ̄π
q
q−1 → T∗

x X ⊗ ·· · ⊗ T ∗
x X ⊗Vξ π where ξ = πq−1

0 (ρ). It is not difficult to see
(for example from the expressions in local coordinates) that its image actually lies
in Sq(T ∗

x X )⊗Vξπ and hence it represents the fundamental identification εq.
In local coordinates, one easily recovers the expression (2.21) for εq by explic-

itly going through the iteration. The combinatorial factor 1
μ! arises now from the

canonical projection
⊗q T ∗

x X → Sq(T ∗
x X ).

Addendum: The Contact Structure à la Gardner–Shadwick

Gardner and Shadwick [149] proposed an intrinsic version of the “pedestrian” ap-

proach to define the contact codistribution. Let ρ = [σ ](q)
x ∈ Jqπ be an arbitrary point

in the qth-order jet bundle and ρ̄ = πq
q−1(ρ) its projection to order q− 1. Then we

may define

(C0
q)ρ =

(
(πq

q−1)
∗− ( jq−1σ ◦πq)∗

)
Tρ̄(Jq−1π) . (2.43)

As we operate only at a fixed point ρ , this definition is independent of the section σ
chosen to represent ρ : the pull-back ( jq−1σ)∗ depends only on the derivatives of σ
of order less than or equal to q (the pull-back requires the Jacobian of jq−1σ ); but
these possess identical values at x for all sections in the equivalence class ρ .

In local coordinates, it is easy to see that this definition is equivalent to the one
given in the last section. We must only determine what the pull-backs do with the ba-
sis forms dxi and duαμ . The former ones are annihilated, as all pull-backs are the
identity for them. The same happens with the forms duαμ with |μ |= q; for them the
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pull-backs vanish. For the remaining ones we find
(
(πq

q−1)
∗− ( jq−1σ ◦πq)∗

)
duαμ = ωαμ . (2.44)

Proposition 2.1.4 characterising the contact codistribution may now be reformu-
lated as follows: a section γ ∈Γloc(πq) satisfies γ∗(C0) = 0 if and only if γ = jqσ for
a section σ ∈ Γloc(π). One direction is proved by simple pull-back computations:

(
( jqσ)∗C0

q

)

x
=
(
(πq

q−1 ◦ jqσ)∗− ( jq−1σ ◦πq ◦ jqσ)∗
)

Tρ̄(Jq−1π)

=
(
( jq−1σ)∗− ( jq−1σ)∗

)
Tρ̄(Jq−1π) = 0 .

(2.45)

For the converse we use an induction over the order q of the jet bundle. For q = 1

we set σ = π1
0 ◦γ ∈Γloc(π) and choose an arbitrary point x0 ∈X . Then γ(x) = [σ̂ ](1)

x0

for some section σ̂ ∈Γloc(π) and, by construction, σ(x0) = σ̂(x0). Now we evaluate
our assumption:

(
γ∗C0

1

)
x0

=
(
(π1

0 ◦ γ)∗− (σ̂ ◦π1 ◦ γ)∗
)

Tσ(x0)E

=
(
σ∗− σ̂∗)Tσ(x0)E = 0 .

(2.46)

But the last equation can only be satisfied, if Tx0σ = Tx0 σ̂ and hence we must have
γ(x0) = j1σ(x0). As x0 was arbitrary, this proves our claim for q = 1.

For the induction step we first note that (πq
q−1)

∗C0
q−1 ⊂ C0

q . Indeed, let ρ ∈ Jqπ ,
ρ̄ = πq

q−1(ρ) and ¯̄ρ = πq
q−2(ρ). Then

(
(πq

q−1)
∗C0

q−1

)

ρ
=
(
(πq−1

q−2 ◦π
q
q−1)

∗− ( jq−2σ ◦πq−1 ◦πq
q−1)

∗
)

T ¯̄ρE

=
(
(πq

q−1)
∗− ( jq−1σ ◦πq)∗

)
(πq−1

q−2 )∗T ¯̄ρE

⊂
(
(πq

q−1)
∗− ( jq−1σ ◦πq)∗

)
Tρ̄E .

(2.47)

Now we set again σ = πq
0 ◦ γ and consider the point ρ = γ(x0) = [σ̂ ](q)

x0 . Since
γ∗
(
(πq

q−1)
∗C0

q−1

)
= (πq

q−1 ◦ γ)∗C0
q−1 = 0, it follows already from our induction hy-

pothesis that πq
q−1 ◦ γ = jq−1σ . Hence in particular jq−1σ(x0) = jq−1σ̂(x0). Fi-

nally, by a similar computation as in the case q = 1 we obtain that furthermore
( jq−1σ)∗ = (πq

q−1 ◦ γ)∗ = ( jq−1σ̂)∗ and hence we may conclude by the same argu-
ment as above that jqσ(x0) = jqσ̂(x0). Thus γ = jqσ as claimed.

A dual formulation of this approach was proposed already earlier by Goldschmidt
and Sternberg [169]. They proved the existence of a unique vector valued one-form
ω ∈ Ω 1(Jqπ ,T (Jq−1π)) with the property that ( jqσ)∗ω = 0 for all local sections
σ ∈ Γloc(π) and ω(v) = Tπq

q−1(v) for all vertical vectors v ∈Vπq. It is not difficult

to show that these conditions imply at the point ρ = [σ ](q)
x ∈ Jqπ that the form ω is

defined by
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ω(v) =
(
Tρπq

q−1−Tρ( jqσ ◦πq)
)
v . (2.48)

In local coordinates, this leads to the familiar expression

ω = (duαμ −uαμ+1i
dxi)⊗ ∂uαμ (2.49)

where the summation is over all multi indices with 0≤ |μ |< q. Thus in the chosen
coordinates the components of the intrinsically defined form ω are just the contact
forms ωαμ spanning the contact codistribution C0

q .

2.3 Differential Equations

With jet bundles at our hands, we give a geometric definition of (systems of) dif-
ferential equations. It does not require coordinates or local equations but defines a
differential equation as an intrinsic geometric object, namely a fibred submanifold.

Definition 2.3.1. A (non-linear) differential equation of order q is a fibred subman-
ifoldRq of the jet bundle Jqπ .

Since submanifold means for us always regular submanifold (see Appendix C.1
for more details), locally, i. e. within some open subset Vq ⊆ Jqπ , we may always
assume that a fibred map

Φ :

⎧
⎨

⎩
Vq ⊆ Jqπ −→ E ′

(x,u(q)) 	−→ Φ(x,u(q))
(2.50)

exists taking values in a vector bundle π ′ : E ′→X over the same base space X such
that Rq ∩Vq is the zero set of Φ . Thus locally Rq can be described by a system
of equations Φτ (x,u(q)) = 0 with 1 ≤ τ ≤ t = dimE ′ which brings us back to the
traditional picture of a system of differential equations.

Remark 2.3.2. In the sequel we will mostly assume the existence of a global mor-
phism Φ : Jqπ →E ′ such that the submanifoldRq is its zero set, i. e. that our equa-
tion is defined by the (non-linear) differential operator Δ [Φ] : Γloc(π)→ Γloc(π ′)
where Δ [Φ](σ) = (Φ ◦ jq)σ . As we have mainly local applications in mind, this
assumption is not a serious restriction but simplifies the notation at some places.
Note that in Appendix C.1 we have defined sections as smooth maps, but obviously
the notion of a differential operator makes sense in other function spaces, too. �

Definition 2.3.1 does not distinguish between scalar equations and systems. We
use the following convention. When we speak of a differential equation, we always
think of it as the geometric object Rq. When we speak of a system, we think of
a local representation of the submanifold Rq given by a map of the form (2.50).
As such a system consists again of equations Φ(x,u(q)) = 0, it becomes of course
sometimes a bit difficult to strictly maintain this distinction. . .
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Fig. 2.1 An ordinary differential equation and some of its solutions

Definition 2.3.1 requiresRq to be a fibred submanifold (with respect to the fibra-
tion πq : Jqπ→X ). This condition implies that πq(Rq) =X . If it were violated, the
independent variables might not be really independent, as the differential equation
might impose relations between them. More precisely, local representations of Rq

might contain equationsΦ(x) = 0 which obviously should not happen.
We need of course also the notion of a solution. Classically, solutions are func-

tions that entered into a given system let it vanish identically. In our geometric
framework, functions are substituted by sections.

Definition 2.3.3. LetRq ⊆ Jqπ be a differential equation of order q. A (local) solu-
tion is a smooth section σ ∈ Γloc(π) such that im jqσ ⊆Rq.

In local coordinates, a section σ : X → E is written as a map x 	→
(
x,s(x)

)
. Its

prolongation jqσ : X → Jqπ has then the local form x 	→
(
x,∂ |μ|s(x)/∂xμ

)
where

μ runs over all multi indices with 0 ≤ |μ | ≤ q. If the given differential equation
Rq ⊆ Jqπ is locally represented by the system Φ(x,u(q)) = 0, then the condition
im jqσ ⊆Rq requires thatΦ(x,∂ |μ|s(x)/∂xμ) = 0 for all x where σ is defined, i. e.
the smooth function s(x) is a local solution in the conventional sense.

Example 2.3.4. As the dimension of the jet bundles Jqπ is rapidly growing with the
order q and with the number n of independent variables, it is difficult to represent
differential equations graphically. Only if we restrict to a first-order ordinary differ-
ential equation in one unknown function, then J1π ∼=�3 is three-dimensional and
we can easily plot the equation and some of its solutions.

Figure 2.1 shows the differential equationR1 globally defined as the zero set of
the function (x,u,u′) 	→ u′ + xu2 as a surface in J1π . It is not difficult to integrate
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this separable equation and its solution space consists of the one-parameter fam-
ily of global sections σc : x 	→ (x, 2c

2+cx2 ) with a real parameter c. The red plane in
Figure 2.1 represents the x-u plane (for better visibility it is drawn at the bottom of
the picture) and the curves on it are the graphs of sections σc for some values of the
parameter c. As one can see, the graphs of the corresponding 1-jets j1σc lie indeed
completely on the submanifoldR1. �

Remark 2.3.5. It is instructive to compare our definition of a differential equation
with the situation in algebraic geometry. There a variety is the zero set of some
polynomials, i. e. every point on the variety represents a solution of the algebraic
equations defined by the polynomials. Let the differential equationRq ⊆ Jqπ be lo-
cally represented by the system Φ(x,u(q)) = 0. It may be understood as a system
of algebraic equations on Jqπ and the points onRq are the solutions of these equa-
tions. As in algebraic geometry, the individual functionsΦτ do not really matter but
only the ideal in the ring F(Jqπ) generated by them.

Recall that a point of the jet bundle Jqπ is defined as an equivalence class of

sections. Let the class [σ ](q)
x be a point in Jqπ and V ⊆ X a neighbourhood of x

such that σ is defined on V . If the section σ is a solution of Rq in the sense of

Definition 2.3.3, the points [σ ](q)
x (for all x ∈ V) must lie on the submanifold Rq.

However, the converse does not necessarily hold and the equivalence classes [σ ](q)
x

in general contain many sections that are not solutions ofRq.
This effect is easy to understand, as by definition the underlying equivalence

relation ∼q takes into account only the values of the derivatives of σ up to order q

at a single point x ∈ X . Thus [σ ](q)
x ∈ Rq only implies that at the considered point

x the section σ satisfies the differential equationRq up to order q but no statements
about higher orders or other points are possible.

As a trivial example consider the ordinary differential equation R2 defined by

u′′ = 0. An equivalence class [σ ](2)
x is contained inR2 whenever the second deriva-

tive of σ vanishes at the point x. Thus for the section σ defined by σ(x) = (x,x3)
the class [σ ](2)

0 lies in R2, although σ is obviously not a solution. Note, however,

that for any other value of x the class [σ ](2)
x is not contained in R2. If [σ ](2)

x ∈ R2

for all points x in some open set V ⊆ X , then the section σ defines at least on V a
local solution of the differential equationR2. �

Remark 2.3.6. First-order ordinary differential equations R1 ⊂ J1π possess a spe-
cial geometric structure. IfR1 is the image of a global section γ : E → J1π , we may
interpret it according to Remark 2.2.3 as a connection on π : E → X . Locally, such
equations correspond to systems of the form u′ = φ(x,u), i. e. we are dealing with
a pure differential equation in solved form without algebraic constraints. If such

constraints are present, then they determine a fibred submanifoldR(1)
0 ⊂ E and we

consider equations defined by sections γ :R(1)
0 → J1π corresponding to connections

onR(1)
0 . This observation extends straightforwardly to an identification of qth-order

ordinary differential equations with connections on πq−1 : Jq−1π →X .
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In the case of partial differential equations, the situation is different; only very
special equations correspond to connections. Let γ : E → J1π be a global section.
Then R1 = imγ defines an equation of finite type, also called a maximally overde-
termined equation (see Remarks 7.1.2 and 8.2.4 for an explanation of this terminol-
ogy). Locally, it can be represented by a system of the form u(1) = φ(x,u), i. e. the
system contains one equation for every first-order derivative uαi .

The corresponding connection form is simply ω = (duα − φαi dxi)⊗ ∂uα , i. e.
the horizontal bundle is spanned by the vector fields Xi = ∂xi + φαi ∂uα . Indeed, if
we interpret as in Section 2.2 the fibre component of each point (x,u(1)) ∈ R1 as
a linear map TxX → T(x,u)E , then in our local coordinates its matrix is given by
stacking the n× n identity matrix over the m× n matrix defined by φαi and the
horizontal lift of the vector field ∂xi ∈ X(X ) yields the field Xi ∈ X(E). Assuming
that π : E →X is a vector bundle and considering the covariant derivative associated
with the connection as a map∇ :Γloc(π)→Ω 1(X ,E), we may identifyR1 with the

system∇σ = 0. The inclusion of constraints defining a fibred submanifoldR(1)
0 ⊂E

is again trivial.
In Example 2.3.17, we will see that a section σ ∈ Γloc(π) is a solution of the

differential equationR1, if and only if its prolonged graph im j1σ defines an integral
manifold of the horizontal bundle of the corresponding connection. There we will
also discuss when solutions exist. �

Two natural geometric operations with differential equations exist: prolongation
and projection. The former one lifts an equation to higher order; the latter one lowers
the order. Both operations are of central importance for everything that we will do
with differential equations.

Prolonging a differential equation is easy to perform effectively, once a local
representation is given. Its intrinsic geometric description is a bit more involved.
We need again the embeddings ιq,r : Jq+rπ ↪→ Jrπq. As Rq ⊆ Jqπ is also a fibred
manifold over X with the restriction π̂q of πq toRq as projection, we can construct
jet bundles over it, for example Jrπ̂q. It may be considered in a natural way as a
submanifold of the iterated jet bundle Jrπq. We denote the corresponding embedding
by ι̂q,r. Then we define the rth prolongationRq+r ⊆ Jq+rπ through

Rq+r = ι−1
q,r

(
ι̂q,r(Jrπ̂q)∩ ιq,r(Jq+rπ)

)
⊆ Jq+rπ . (2.51)

In words, this somewhat awkward construction has a fairly simple explanation. We
consider both Jrπ̂q and Jq+rπ as submanifolds of Jrπq using the corresponding em-
beddings. Then we take their intersection and consider the result via the inverse
embedding as a submanifold of Jq+rπ . Thus starting with a differential equation of
order q, we have obtained an equation of order q + r.

In the sequel, we will follow the usual simplification to identify the image of an
inclusion map with the source space and to skip the explicit mentioning of all these
maps. Hence from now on we will write (2.51) concisely as

Rq+r = Jrπ̂q∩ Jq+rπ . (2.52)



2.3 Differential Equations 33

If our differential equation Rq comes from a differential operator, its prolonga-
tion can be expressed via the prolongation of the corresponding global map Φ . We
get the following commuting diagram

0 Rq+r

π̂q+r
q

Jq+rπ
ρrΦ

πq+r
q

Jrπ ′

(π′)r
0

0 Rq Jqπ Φ E ′

(2.53)

and the prolonged equationRq+r is the zero set of the prolonged map ρrΦ .
In local coordinates, the prolongation is computed with the help of the formal

derivative (2.14). If Φ(x,u(q)) = 0 is a local representation of Rq ⊆ Jqπ , then its
prolongationRq+r ⊆ Jq+rπ is described locally by the system

Rq+r :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Φτ (x,u(q)) = 0 , 1≤ τ ≤ t ,

D jΦτ (x,u(q+1)) = 0 , 1≤ j ≤ n ,

...

DνΦτ (x,u(q+r)) = 0 , |ν|= r .

(2.54)

Indeed, the left hand sides are just the coordinate expressions of ρrΦ .
By contrast, projections are easily described geometrically but difficult to per-

form effectively in local coordinates. Geometrically, we simply apply the natural
projections πq

q−r : Jqπ → Jq−rπ and define for 0 < r ≤ q

R(r)
q−r = πq

q−r(Rq)⊆ Jq−rπ . (2.55)

Thus we have obtained a differential equation of order q− r from an equation of

order q. In order to construct a local representation of R(r)
q−r, one takes a local rep-

resentation of Rq, say Φ(x,u(q)) = 0, and tries to eliminate by purely algebraic
operations the derivatives of order greater than q− r in as many equations as possi-
ble. If we cannot find any equation depending only on lower-order derivatives, then

R(r)
q−r = Jq−rπ . Otherwise it is a proper submanifold of Jq−rπ locally described by

all such equations. We will see later many examples of such computations. Fortu-
nately, we mostly project differential equations generated by prolongations. In this
case, the elimination of the higher-order derivatives requires only linear algebra, as
the formal derivatives always yield quasi-linear equations.

A slight complication arises from the fact that the prolongation or the projection
of a given differential equation Rq is not necessarily a (fibred) submanifold any-
more. Indeed, it is rather obvious that the projection of a manifold leads in general
to singularities (some concrete examples with curves may be found in Section 9.1).

Example 2.3.7. It is perhaps less evident that prolongations also do not always yield
manifolds. We consider the non-linear second-order equation
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R2 :

{
uyy− 1

2(uxx)2 = 0 ,

uxy− x
y uxx = 0 .

(2.56)

Adding the formal x- and y-derivative of the second equation and subtracting the
formal x-derivative of the first one yields (uxx − x2/y2)uxxx = 0. Thus R3 lies in
the union of the two hypersurfaces uxx = x2/y2 and uxxx = 0. Such a union is not a
submanifold, as in the neighbourhood of the intersection it is not homeomorphic to
an open subset of some�k. We must distinguish two cases in which the differential
equation may show quite different behaviour; in particular, the solution spaces will
generally differ. In our example we have uxxx = 2x/y2 in the first case and uxxx = 0
in the second one. �

For simplicity, we will make the following blanket assumption (almost) through-
out the book. It means that we consider only what is called regular equations. Reg-
ularity can always be achieved by restricting to some submanifold of Rq, but is
difficult to check effectively for non-linear equations.

Blanket Assumption 2.3.8. All performed projections and prolongations lead
again to fibred submanifolds.

One could be tempted to think that prolongation and projection are some kind of
inverse operations: if one first prolongs r times a differential equationRq ⊆ Jqπ in
order to obtainRq+r ⊆ Jq+rπ for some r > 0 and subsequently projects back to Jqπ
with πq+r

q : Jq+rπ → Jqπ , then one might naively expect that the obtained equation

R(r)
q is identical with the original one Rq. However, in general this will not be the

case, as integrability conditions may arise: we only get that alwaysR(r)
q ⊆Rq.

Example 2.3.9. A trivial example may explain this phenomenon and also demon-
strate explicitly the operations of prolongation and projection. We consider the first-
order equationR1 defined by the linear system

R1 :

{
uz + yux = 0 ,
uy = 0 .

(2.57)

In order to obtain the system for the prolonged equationR2, we formally differ-
entiate every equation in (2.57) with respect to all three independent variables x, y,
and z. The arising equations are then added to the original system and we get

R2 :

⎧
⎪⎪⎨

⎪⎪⎩

uz + yux = 0 , uy = 0 ,
uxz + yuxx = 0 , uxy = 0 ,
uyz + yuxy + ux = 0 , uyy = 0 ,
uzz + yuxz = 0 , uyz = 0 .

(2.58)

In order to compute the projection to J1π of the prolongationR2 we must try to
obtain by algebraic manipulations as many first-order equations as possible. Since
we are dealing with a linear system, this is not very difficult. The first two equations
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are obviously first order, as they stem from the original system. In the first equation
of the third row we can eliminate both terms containing second-order derivatives
using equations of the second column; no other eliminations are possible.

So we find the potential integrability condition ux = 0. In order to verify whether
it actually is an integrability condition, we must check its restriction to R1. If the

function ux vanished on R1, then we would have R(1)
1 = R1. However, according

to Hadamard’s Lemma C.1.5, this would require that ux is a linear combination of

the functions describingR1 which obviously is not the case. HenceR(1)
1 �R1 and

a local representation of it is given by

R(1)
1 :

⎧
⎨

⎩

uz = 0 ,
uy = 0 ,
ux = 0 .

(2.59)

It is easy to see that further prolongations and subsequent projections do not yield

any additional conditions and thusR(1)
1 =R(2)

1 =R(3)
1 = · · · . �

It is important to note that in Example 2.3.9 it is not possible to construct the
integrability condition by purely algebraic operations without differentiations. This
property may serve as an informal definition of integrability conditions: they are al-
gebraically independent of the original system but can be generated using formally
differentiated equations. Obviously, any sufficiently smooth solution of the system
automatically satisfies all its integrability conditions; they do not represent addi-
tional restrictions to the solution space but are equations that have been “hidden” in
the structure of the original system.

In Example 2.3.9 we see the classical form of an integrability condition. It arises
as a generalised cross-derivative: a linear combination of differentiated equations
that yields a lower-order equation. Obviously, cross-derivatives make sense only for
partial differential equations. However, a second mechanism for the generation of
integrability conditions exists which also works for ordinary differential equations:
if the original system contains equations of differing orders, the formal differen-
tiation of a lower-order equation may generate an integrability condition; we call
these integrability conditions of the second kind in order to distinguish them from
generalised cross-derivatives.

Example 2.3.10. We consider the trivial second-order equationR2 with independent
variables x, y and dependent variable u described by the linear system

R2 :

{
uyy = 0 ,
ux = 0 .

(2.60)

Prolongation to third order yields a system that contains—among others—the
second-order equations uxy = uxx = 0 obtained by formally differentiating the sec-
ond equation in (2.60). Thus the projection back toR2 is not surjective and we must
add these two integrability conditions to the system (2.60) in order to obtain a local

representation of the second-order equationR(1)
2 .
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Classically, this type of integrability conditions is usually ignored, as one consid-
ers the equation uxx = 0 as an obvious consequence of the equation ux = 0. However,
in our geometric approach it is very important to include it explicitly, as otherwise

one works with a too large submanifold of J2π : dimR2 = dimR(1)
2 + 2. In particu-

lar, we will see below that the inclusion of these integrability conditions is crucial
for the construction of formal power series solutions. �

Geometrically, it makes no sense to speak of individual integrability condi-
tions or to distinguish between cross-derivatives and the prolongation of lower-
order equations. Instead both kinds of integrability conditions have the same effect,
namely that, given a differential equation Rq ⊆ Jqπ , for some values of r and s the

equationR(s)
q+r⊆ Jq+rπ obtained by r+s prolongations and s subsequent projections

is a proper subset of the equation Rq+r ⊆ Jq+rπ obtained by only r prolongations

without any projections. More precisely,R(s)
q+r is a lower-dimensional submanifold

of Rq+r. In Example 2.3.9 R1 is two-dimensional3 (dimJ1π = 4 and we have two

independent equations), whereas dimR(1)
1 = 1 because of the integrability condi-

tion.

Remark 2.3.11. Sometimes it is useful to formulate prolongations in terms of Grass-
mannians; in fact, in the theory of exterior differential systems this represents the
standard approach. Given a differential equationRq ⊆ Jqπ , we consider the restric-
tion π̂q :Rq →X of the projection πq : Jqπ→X . Then, according to Remark 2.2.5,
we may identify G(π̂q) and J1π̂q and we define

Rq+1 =
{
(ρ ,V ) ∈ G(π̂q) | ∃σ ∈ ρ : V = Tρ(im jqσ)

}
. (2.61)

The essence of (2.61) is to require that the point ρ ∈ Rq, considered as an equiva-
lence class of sections, contains a section σ ∈ Γloc(π) such that the tangent space at
ρ of the prolonged section jqσ is tangential to the submanifoldRq (the assumption
(ρ ,V ) ∈ G(π̂q) trivially implies that V ⊆ TρRq). The existence of such a section

σ ∈ Γloc(π) is not automatic, as it implies that actually ρ ∈ R(1)
q ⊆ Rq, since then

[σ ](q+1)
x ∈ (πq+1

q )−1(ρ)∩Rq+1 for x = πq(ρ), i. e. the point ρ also satisfies all in-
tegrability conditions hidden in the prolongation toRq+1.

The equivalence of this alternative definition of the prolongationRq+1 with the
one given above is easily understood via the contact map, as it relies on the obser-

vation made in Remark 2.2.8. Let ρ̂ = [σ ](q+1)
x be an arbitrary point on the pro-

longed equation Rq+1 and ρ = πq+1
q (ρ̂) the corresponding projected point on the

original differential equation Rq. For any representative σ ∈ Γloc(π) of the equiva-
lence class ρ̂ we find that imΓq+1(ρ̂) = Tρ(im jqσ). Since ρ̂ ∈Rq+1 is equivalent to
imΓq+1(ρ̂) ⊆ TρRq (this fact follows for example easily from the local coordinate
form of Γq+1), we may identify ρ̂ with the pair

(
ρ , imΓq+1(ρ̂)

)
∈ G(π̂q).

3 When we speak about the dimension of a differential equation, we will almost always consider its
fibre dimension. As differential equations are by definition fibred submanifolds, this is more natural
and we will see later that these fibre dimensions are related to the size of the formal solution space.
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Conversely, assume ρ = [σ ](q)
x ∈ Rq and V = Tρ(im jqσ). Then on one hand

we trivially have ρ̂ = [σ ](q+1)
x ∈ Jq+1π and imΓq+1(ρ̂) = V . On the other hand,

(ρ ,V ) ∈ G(π̂q) ∼= J1π̂q, so that indeed ρ̂ ∈ J1π̂q∩ Jq+1π =Rq+1 according to our
original definition of the prolongation. Thus, although (2.61) defines the prolonged
equationRq+1 as a submanifold of G(π̂q)∼= J1π̂q, i. e. of an iterated jet bundle, the
condition imposed on the vector space V ensures that any point on it also lies in
Jq+1π and the two definitions are equivalent.

Eq. (2.61) is only of theoretical interest, as it cannot be used for explicit compu-
tations. Below we will provide an effective version of it based on the notion of an
integral element and ideas from the theory of exterior differential systems. �

Example 2.3.12. For first-order differential equations with only one dependent vari-
able u, it is possible to give a closed form expression for the integrability conditions.
Let Φ andΨ be two functions defined on the jet bundle J1π where the fibre dimen-
sion m of E is one. We study the equationR1 given byΦ =Ψ = 0. For the prolonged
equationR2 we need in addition the formal derivatives

DiΦ =
∂Φ
∂xi + ui

∂Φ
∂u

+ ui j
∂Φ
∂u j

, (2.62a)

DiΨ =
∂Ψ
∂xi + ui

∂Ψ
∂u

+ ui j
∂Ψ
∂u j

. (2.62b)

It is possible to eliminate all second-order derivatives ui j by taking the following
linear combination of these equations:

∂Φ
∂ui

DiΨ −
∂Ψ
∂ui

DiΨ =
∂Φ
∂ui

(
∂Ψ
∂xi + ui

∂Ψ
∂u

)
− ∂Ψ
∂ui

(
∂Φ
∂xi + ui

∂Φ
∂u

)
. (2.63)

As one can see from the right hand side, it defines a function on J1π which is usually

denoted by [Φ,Ψ ]. Thus the projected equation R(1)
1 is described by the system

Φ =Ψ = [Φ,Ψ ] = 0 and it is identical with R1, if and only if the function [Φ,Ψ ]
vanishes onR1. By Hadamard’s Lemma C.1.5, this vanishing requires the existence
of smooth functions a,b ∈ F(J1π) such that [Φ,Ψ ] = aΦ+ bΨ .

The extension to more than two equations is straightforward. If the differential
equation R1 is described by the system Φτ = 0 with 1 ≤ τ ≤ t, then we obtain a

local representation of R(1)
1 by adding all equations [Φσ ,Φτ ] = 0. R1 is formally

integrable, if and only if all these brackets vanish onR1.
To some extent we may generalise these considerations to higher-order equa-

tions. Let now Φ andΨ be two functions defined on Jqπ and Jrπ , respectively. We
assume without loss of generality that q≥ r. Then the two functions define a differ-
ential equationRq ⊆ Jqπ . As in Example 2.3.10, we obtain for q > r trivial integra-
bility conditions by prolonging the lower-order equation Ψ = 0. More interesting
is the question whether or not cross-differentiation yields an additional integrability
condition. This cross-derivative takes place at an order less than or equal to q + r
depending on the precise form of Φ and Ψ . Generalising (2.63), we consider the
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linear combination

[Φ,Ψ ] = ∑
|μ|=q

∂Φ
∂uμ

DμΨ − ∑
|ν|=r

∂Ψ
∂uν

DνΦ . (2.64)

Again the highest-order derivatives cancel, as in each sum the coefficient of the
derivative uμ+ν with |μ |= q and |ν|= r is the same:ΦuμΨuν . Thus [Φ,Ψ ] defines a
function on Jq+r−1π and if it does not vanish onRq+r−1, it represents a non-trivial
integrability condition.

However, in contrast to the first-order case, we cannot use here the bracket for
deciding the absence of integrability conditions. If the bracket does not vanish, the
equationRq surely possesses a non-trivial integrability condition. But the converse
is not true, as the bracket is not necessarily part of the local representation of suitable
projected equations. More precisely, the problem is that (2.64) always computes a
cross-derivative in order q+ r, although it may be possible to form cross-derivatives
already at lower orders. Hence it may happen that [Φ,Ψ ] is the formal derivative
of some lower order integrability condition and its vanishing is only due to the
additional differentiations.

As a concrete example consider the third-order differential equation R3 in two
independent variables x, y defined by Φ = uxxx− u and Ψ = uxyy. Obviously, the
“true” integrability condition arises from the cross-derivative DyyΦ −DxxΨ = uyy,
but (2.64) yields [Φ,Ψ ] = uxyy = −Dx(uyy) and thus the bracket vanishes on R3

although the equation has an integrability condition. This effect has its origin in the
simple fact that we have an “overlap” in the leading derivatives uxxx and uxyy and
therefore an integrability condition arises already at a lower order than the bracket
(2.64) considers. In first order this problem cannot occur.

The expression [Φ,Ψ ] is very classical in the first-order case and goes back
at least to the 19th century. It appears in the literature under various names like
Mayer bracket, Jacobi bracket, or simply square bracket [68, §§57/58] and pos-
sesses similar properties as the Poisson bracket in symplectic geometry (cf. Ap-
pendix C.6) except that it does not satisfy the Jacobi identity (respectively only
a modified form). In fact, restricted to functions Φ , Ψ independent of u, the
bracket [Φ,Ψ ] coincides with the Poisson bracket, as one can easily see by com-
paring (2.63) with (C.48). Restricting even further to functions which are semi-
linear in the derivatives, i. e. Φ(x,u,u(1)) = ai(x)ui,Ψ (x,u,u(1)) = bi(x)ui, we find
that [Φ,Ψ ] may be identified with the Lie bracket of the associated vector fields
XΦ = ai∂xi ,XΨ = bi∂xi ∈ X(X ): [Φ,Ψ ] = [XΦ ,XΨ ]u (this special case will be study
in more detail in Example 7.2.12). A modern theory relating the Mayer bracket
(2.64) to (co)homological constructions was recently developed by Kruglikov and
Lychagin [269, 270]. �

We have seen that in general integrability conditions arise, if we prolong and
project a differential equation. We now show that such conditions are obstructions
for the construction of power series solutions. Obviously, such a computation can
only be performed in local coordinates. Thus we assume that we are given a dif-
ferential equation Rq described in some neighbourhood of the point x0 ∈ X by the
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system Φ(x,u(q)) = 0 and make the usual ansatz for a power series solution

uα(x) =
∞
∑

|μ|=0

aαμ
(x−x0)μ

μ!
(2.65)

with real coefficients aαμ ∈�. Note that we are only dealing with formal series, as
we do not discuss their convergence (but see Chapter 9).

Of course, without initial or boundary conditions the equation possesses in gen-
eral many solutions and we cannot determine uniquely all coefficients in (2.65). But
we can at least exhibit some relations between them. We enter the ansatz (2.65) into
the system describing Rq and evaluate the arising expressions at the point x = x0.
One easily checks that this yields the following algebraic equations for the coeffi-
cients a(q) (we use here the same notations as for derivatives):

Φτ (x0,a(q)) = 0 , 1≤ τ ≤ t , (2.66)

i. e. in the functionsΦτ we simply substitute every derivative uαμ by the correspond-
ing Taylor coefficient aαμ of the ansatz (2.65).

Remark 2.3.13. In general, (2.66) represent a non-linear system of equations. It is
well-known that the solution space of such a system might have a very complicated
structure; for example, it could consist of disjoint parts of different dimensions.
From a theoretical point of view we may now argue that we defined a differential
equation as a submanifold of the jet bundle Jqπ and as in fact Rq is nothing but
the solution space of the algebraic system (2.66), this solution space must be well-
behaved by definition. In many practical examples, the situation is unfortunately
less nice: the differential equation is given as a system of equations and this system
does not describe a submanifold but some space with singular points (e. g. a variety,
if the non-linearity is of a polynomial nature). In such a case we must restrict to
some smooth subset which is a submanifold. Thus in general we have to make case
distinctions, as different smooth subsets with possibly different dimensions may be
possible, and in the different cases the differential equation may show very differ-
ent behaviour. In the sequel we will ignore this problem and follow the theoretical
point of view by assuming that Rq is indeed a submanifold in the strict differential
geometric meaning of this term. �

Now we turn our attention to the prolonged equationRq+1. According to (2.54),
it is described in a neighbourhood of the expansion point x0 by the original equations
Φ(x,u(q)) = 0 and in addition by the equations DiΦ(x,u(q+1)) = 0 for 1 ≤ i ≤ n.
Again we enter our ansatz into this system and evaluate at x = x0. The first part of
the arising algebraic system for the coefficients a(q+1) has already been handled in
the previous step. The only new equations are

DiΦτ (x0,a(q+1)) = 0 ,

{
1≤τ≤t ,

1≤i≤n .
(2.67)
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If we assume that all relations between the coefficients up to order q have already
been taken into account with (2.66), then (2.67) represents an inhomogeneous lin-
ear system for the coefficients a(q+1) of order q + 1. Its matrix and right hand side

depends on the coefficients a(q) of lower order. The linearity of the system stems
from the quasi-linearity of the formal derivative (2.14).

In this manner we proceed order by order. At order q + r we get from the local
representation ofRq+r as only new equations

DνΦτ (x0,a
(q+r)) = 0 ,

{
1≤τ≤t ,

|ν|=r .
(2.68)

Assuming again that all relations between the Taylor coefficients a(q+r−1) of or-
der less than q + r have already been taken into account in the previous steps, we
may say that these new equations form an inhomogeneous linear system for the co-
efficients a(q+r) of order q + r whose matrix and right hand side depends on the

lower-order coefficients a(q+r−1).
In the end we obtain a system of infinitely many equations for the infinitely many

coefficients of the ansatz (2.65). Each solution of this system defines a formal power
series solution. Except (2.66) all subsystems are linear and their solution spaces have
a very simple structure. But if we choose different solutions of (2.66), the solution
spaces of the linear systems (2.68) may change their dimension, as their matrices
depend on the coefficients of lower order. In line with our above made blanket reg-
ularity assumption, we will ignore this possibility (recall also Remark 2.3.13).

Eliminating dependent equations, each of the remaining (infinitely many) equa-
tions can be solved for a different coefficient aαμ of our ansatz. These coefficients
are called principal, all the other ones are the parametric coefficients. Of course,
this distinction is not uniquely defined; in general, there are many different ways to
solve the equations for some coefficients. The parametric coefficients may be chosen
completely arbitrarily; they parametrise the formal solution space of the differential
equation Rq. Once they are fixed, the principal coefficients are determined by the
equationRq and its prolongationsRq+r.

In a concrete computation we can perform only a finite number of prolongations.
Thus we must stop the above construction at some order r≥ q. Of course, we expect
that with the help of the so far found equations for the coefficients a(r) we have
at least obtained a correct truncation of the power series solutions. However, this
hope is only satisfied, if no integrability conditions of order less than or equal to r
are hidden in the system describing Rr, as otherwise some further conditions on
the Taylor coefficients a(r) exist which we have not taken into account, i. e. if the
assumptions we made above are justified.

Example 2.3.14. Recall that in Example 2.3.9 we found that R(1)
1 �= R1. Entering

a power series ansatz into the local representation (2.57) of R1 and evaluating at a
point (x0,y0,z0) yields for the first-order Taylor coefficients the homogeneous linear
system a[0,0,1]+y0a[1,0,0] = a[0,1,0] = 0 possessing a one-dimensional solution. Using
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the local representation (2.59) of R(1)
1 we find that in fact also a[0,0,1] = a[1,0,0] = 0

for any power series solution of our differential equation.
Alternatively, this additional condition may be derived using the local rep-

resentation (2.58) of the prolonged equation R2. Entering again a power series
ansatz and evaluating at (x0,y0,z0) yields besides the already familiar equations
a[0,0,1] + y0a[1,0,0] = a[0,1,0] = 0 for the first-order Taylor coefficients the following
inhomogeneous linear system for the second-order coefficients:

a[1,0,1] + y0a[2,0,0] = 0 , a[1,1,0] = 0 ,

a[0,1,1] + y0a[1,1,0] =−a[1,0,0] , a[0,2,0] = 0 ,

a[2,0,0] + y0a[1,0,1] = 0 , a[0,1,1] = 0 .

(2.69)

Performing standard Gaussian elimination leads to the equation 0 = a[1,0,0]. Thus
a necessary condition for the solvability of our linear system for the second-order
coefficients is that this equation is satisfied by our chosen solution of the first-order
coefficients. However, we would not have seen this equation, if we had stopped
our calculations after the first step, and hence would have worked with an incorrect
truncation of the true power series solution possessing too many degrees of freedom.

The same argument explains why it was so important to include in Exam-
ple 2.3.10 the integrability conditions obtained by differentiating the first-order
equation: otherwise we would ignore two conditions on the second-order coeffi-
cients and the arising power series would generally not be a solution of the given
differential equation. �

As this example demonstrates, one should always remember that integrability
conditions are not additional restrictions of the solution space; any solution of the
original system automatically satisfies them. They represent conditions implicitly
contained in the original system and which can be made visible by performing a
suitable sequence of prolongations and projections. As we will see throughout the
book, it is for many purposes important to exhibit explicitly all hidden integrability
conditions. The simplest point is to verify whether the given differential equation
is consistent, i. e. whether it possesses at all any formal solution. This will only be
the case, if no integrability condition of the form 1 = 0 arises, as such a condition

trivially implies that some equationR(s)
q+r is actually the empty set.

Definition 2.3.15. The differential equation Rq is called formally integrable, if for

all r ≥ 0 the equalityR(1)
q+r =Rq+r holds.

Thus a differential equation is formally integrable, if at no order of prolongation
integrability conditions arise. For such equations the above made assumptions in
the construction of formal power series solutions are always satisfied and thus such
solutions indeed exist which explains the name “formal integrability”. Furthermore,
we can be sure that we will not overlook any hidden conditions on the lower-order
coefficients, if we build only a truncated series. In Example 2.3.9, the equation R1

is obviously not formally integrable, but one easily shows thatR(1)
1 is.
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In practice, Definition 2.3.15 is rather problematic, as it consists of infinitely
many conditions. In order to be able to check effectively whether or not a given
differential equation is formally integrable, we need a finite criterion. Such criteria
exist (and will be the topic of Section 7.2); however, they are not of a geometric but
an algebraic nature and we must first develop the necessary algebraic concepts.

Our discussion above leads straightforwardly to Algorithm 2.1 for the construc-
tion of the formal power series solution of a formally integrable equationRq up to
a given order r≥ q. In Line /1/ it performs the non-linear first step of computing the
Taylor coefficients up to order q. Note again that, in line with the discussion above,
the formulation of the algorithm ignores the possibility that the solution space of the
arising non-linear system may may have a non-trivial structure.

Algorithm 2.1 Power series solution of formally integrable differential equation

Input: local representation Φ(x,u(q)) of formally integrable differential equation Rq, expansion
point x0 ∈ X , truncation order r ≥ q

Output: power series solution ofRq up to order r
1: compute parametric representation of solution of algebraic system Φ(x0,a(q)) = 0 for coeffi-

cients of order up to q
2: for s from q to r−1 do
3: determine t = rank (∂Φ/∂uαμ ) with |μ |= s
4: choose equations Φ1 = · · · =Φt = 0 such that corresponding minor has rank t
5: add equations DiΦ j = 0 for 1≤ i≤ n and 1≤ j≤ t
6: compute parametric solution of linear system of equations for coefficients of order s+1

∑m
α=1∑|μ|=q Cμα (Φ j)(x0,a(s))aαμ+1i

=−C(q)
i (Φ j)(x0,a(s))

7: end for
8: return a(r)

The Lines /3-5/ determine a local representation of the prolonged equationRs+1.
Here we explicitly exploit the assumption that the original equation Rq (and thus
trivially also any of its prolongations) is formally integrable. As in such a system
no integrability conditions are hidden, it suffices to choose a maximal set of alge-
braically independent equations of order s and to differentiate formally each of them
with respect to all independent variables.4 In general, the arising equations will not
all be algebraically independent, so that the linear system in Line /6/ will contain
some spurious equations. We will see later in Section 7.2 how one can avoid this
inefficency, if one is actually dealing with an involutive and not merely a formally
integrable equation.

In the formulation of the linear system in Line /6/ we exploited the fact that
the formal derivative may be expressed with the help of the contact vector fields
introduced in (2.11): ifΦ ∈F(Jqπ) lives on the jet bundle of order q, then its formal
derivative with respect to xi is given by

4 Note that here it is also quite important that a local representation of a formally integrable equa-
tion always comprises all integrability conditions of the second kind, as these are necessary for
computing all principal coefficients.
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DiΦ = C(q)
i (Φ)+

m

∑
α=1
∑

|μ|=q

uαμ+1i
Cμα (Φ) . (2.70)

This formulation allows us to rewrite (2.67) explicitly as an inhomogeneous system
for the coefficients of highest order.

Remark 2.3.16. Closely related to formal integrability is the notion of local solv-
ability. Given a differential equation Rq ⊆ Jqπ , we call it locally solvable, if for
every point ρ ∈ Rq a local solution σ exists such that ρ ∈ im jqσ . Note that no
uniqueness of this solution is required. Indeed, as we will see later in much more
detail, for partial differential equations the data provided by a single point ρ is by
far not sufficient for obtaining a unique solution.

Strictly speaking, this notion depends on the considered function space, i. e. what
kind of regularity assumptions are made for solutions. If we restrict to formal so-
lutions, then the considerations above imply that local solvability and formal inte-
grability are equivalent. In other function spaces, local solvability may be a stricter
condition: in the case of smooth solutions local solvability trivially implies formal
integrability but not vice versa (cf. Example 9.2.2 and Corollary 9.4.3). �
Example 2.3.17. In Remark 2.3.6 we introduced differential equations of finite type
and saw that we may interpret them as connections. Now we exploit this observation
for the integration of such equations. For simplicity of notation, we restrict to first-
order equationsR1 ⊂ J1π which are the image of a section γ : E → J1π . Locally, we
choose a representation of the form

R1 :
{

u(1) = φ(x,u) . (2.71)

A natural question is when such an equation is formally integrable. As (2.71)
contains no equations of lower order, the only possibility for integrability conditions
are cross-derivatives

0 = uαi j−uαji = Diφαj −D jφαi = Δαi j . (2.72)

Evaluation of these on the submanifoldR1 yields the integrability conditions

Δαi j R1
=
∂φαj
∂xi +

∂φαj
∂uβ

φβi −
∂φαi
∂x j −

∂φαi
∂uβ

φβj = 0 . (2.73)

Obviously, the satisfaction of these equations is a necessary condition for the formal
integrability of R1. In our particular case of a maximally overdetermined equation,
it is not difficult to see that this is also a sufficient condition: any cross-derivative in
a prolonged equation R1+r is a prolongation of one of the conditions Δαi j R1

= 0.
We do not demonstrate this fact here in detail, as we will prove a much more general
result in Section 7.2.

A more geometric way to view these integrability conditions starts with the
introduction of the vector fields Xi ∈ X(E) locally defined by

Xi (x,u) = ∂xi +φαi (x,u)∂uα , 1≤ i≤ n . (2.74)
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As discussed in Remark 2.3.6, they span the horizontal bundle of the connection on
the fibred manifold π : E → X defined by the section γ .

The integrability conditions (2.73) are equivalent to the vanishing of all Lie
brackets [Xi,Xj] between these fields. In other words, the differential equation R1

is formally integrable, if and only if the section γ defines a flat connection where
the horizontal bundle is involutive. By the Frobenius Theorem C.3.3, any involutive
distribution is integrable and thus the horizontal distributionH= 〈X1, . . . ,Xn〉 ⊂ TE
possesses n-dimensional integral manifoldsN ⊂ E .

We claim that these integral manifolds are images of solutions ofR1. Indeed, let
σ : V ⊆ X → E be a (local) solution defined in some open set V . In our case this
implies that γ(σ(x)) = j1σ(x) for all x ∈ V . According to our intrinsic approach to
jet bundles, we can write j1σ(x) =

(
σ(x),Txσ

)
and obtain imTxσ = Hσ(x). This

equality entails that imσ is an integral manifold of the horizontal distributionH.
Conversely, let N ⊂ E be an n-dimensional integral manifold of the horizontal

distributionH. Obviously, it is transversal to the fibration π : E →X and hence the
image of a (local) section σ : V ⊆X →E . By definition of an integral manifold, this
implies that imTxσ =Hσ(x) or, equivalently, γ(σ(x)) = j1σ(x) for all x ∈ V . Thus
im j1σ ⊂R1 and σ is a solution.

Here we are speaking about smooth solutions, as the Frobenius Theorem is con-
cerned with the existence of smooth integral manifold. Hence we have obtained an
existence theorem for smooth solutions of differential equations of finite type (the
extension to a uniqueness theorem is trivial, as each integral manifoldN is uniquely
determined by the choice of one point ρ ∈ R1). As we will see later in Chapter 9,
for more general differential equations we are only able to deduce the existence of
analytic solutions.

This result also has practical implications: the concrete determination of integral
manifolds of an involutive distribution requires only the solution of ordinary differ-
ential equations, although we are dealing with a partial differential equation. This
was already shown by Lie [292] interpreting the vector fields Xi as generators of Lie
point symmetries of R1. Indeed, let an n-dimensional integral manifoldN of H be
locally described by the m equations ψα(x,u) = 0. As the vector fields Xi span the
tangent space of N , we must have dψα(Xi) = Xiψα = 0 (cf. Appendix C.2). Thus
it suffices to determine all solutions of the overdetermined linear first-order sys-
tem Xiv = 0 for one unknown v(x,u). Such systems are studied in Example 7.2.12
where it will be explicitly shown that their resolution requires only the integration
of ordinary differential equations. �

The basic idea of the construction in the last example was to reduce the problem
of solving a differential equation of finite type to an application of the Frobenius
Theorem. As we will see in Sections 9.5 and 9.6, this idea can be generalised to
arbitrary involutive equations. However, then we will have to consider infinitely
many distributions instead of only one as above.

The key for this reduction is to consider integral elements or infinitesimal so-
lutions. As we will see below, their construction requires essentially only linear
algebra. Informally, an integral element at a point ρ ∈Rq is a subspace Uρ ⊆ TρRq
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which is potentially part of the tangent space of a prolonged solution jqσ . The tra-
ditional way to define them is based on a treatment of the differential equation as
an exterior differential system; we propose here an alternative direct approach using
the contact map.

Definition 2.3.18. LetRq⊆ Jqπ be a differential equation. We call a linear subspace
Uρ ⊆ TρRq an integral element at the point ρ ∈Rq, if a point ρ̂ ∈Rq+1 exists such

that πq+1
q (ρ̂) = ρ and Uρ ⊆ imΓq+1(ρ̂).

The motivation for this definition is the following observation. Recall from
Remark 2.2.8 that if σ ∈ Γloc(π) is an arbitrary section with ρ = jqσ(x), then
Tρ(im jqσ) = imΓq+1(ρ̂) for ρ̂ = jq+1σ(x). Now assume that σ is a solution ofRq

and thus im jqσ ⊆ Rq. Obviously, this implies Tρ(im jqσ) ⊆ TρRq and hence this
subspace is an n-dimensional integral element. This observation also explains the al-
ternative name “infinitesimal solution”. Note that the converse is not true: given an
integral element Uρ ⊆ TρRq, there does not necessarily exist a solution σ ∈ Γloc(π)
such that Uρ ⊆ Tρ(im jqσ).

It follows immediately from Definition 2.3.18 that integral elements only occur

at points ρ ∈ R(1)
q , as otherwise no ρ̂ ∈ Rq+1 with πq+1

q (ρ̂) = ρ exists. Another
obvious consequence of the definition is that any integral element lies transversal to
the fibration πq and is thus at most n-dimensional where again n = dimX , as any
image of the contact map Γq has this property.

Our next result demonstrates that our definition of an integral element is equiv-
alent to the traditional one. Let ι :Rq ↪→ Jqπ be the inclusion map. Then we may
consider the pull-back ι∗C0

q of the contact codistribution or more precisely the dif-
ferential ideal I[Rq] = 〈ι∗C0

q〉diff ⊆Ω (Rq) generated by it (recall that algebraically
I[Rq] is thus spanned by a basis of ι∗C0

q and its exterior derivatives).
So far we have always implicitly identified the tangent space TρRq with the sub-

space Tρ ι(TρRq)⊆ Tρ(Jqπ)—as it is costumary in differential geometry. For a few
calculations in the proof of the following proposition it is important to explicitly
write the tangent map, so that we will now be a bit more pedantic with our nota-
tions. Note that T ι is trivially injective, since ι itself is injective.5 Thus a vector
v ∈ TρRq is uniquely defined, as soon as Tρ ι(v) is given.

Proposition 2.3.19. LetRq be a differential equation such thatR(1)
q =Rq. A linear

subspace Uρ ⊆ TρRq is an integral element at the point ρ ∈ Rq, if and only if
Tρ ι(Uρ) lies transversal to the fibration πq and every differential form ω ∈ I[Rq]
vanishes on Uρ .

Proof. Assume first that the subspace Uρ is an integral element. Thus there exists

a point ρ̂ ∈ Rq+1 such that πq+1
q (ρ̂) = ρ and Tρ ι(Uρ ) ⊆ imΓq+1(ρ̂). This implies

firstly that Tρι(Uρ ) is transversal to πq and secondly that every one-form ω ∈ ι∗C0
q

5 Recall from Remark C.2.2 that by a slight abuse of notation we call the tangent map T ι of an
injective map ι push-forward ι∗ when applied to a vector field.
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vanishes on Uρ , as imΓq+1(ρ̂) ⊂ (Cq)ρ . Thus there only remains to show that the
same is true for every two-form ω ∈ ι∗(dC0

q).
Choose a (local) section γ : Rq →Rq+1 with γ(ρ) = ρ̂ (such a section always

exists, as by assumption the restricted projection π̂q+1
q : Rq+1 →Rq is surjective

and the imposed condition refers only to a single point). We introduce on Rq a
distribution D of rank n by requiring that Tρ̃ ι(Dρ̃ ) = imΓq+1

(
γ(ρ̃)
)

for any point
ρ̃ ∈ Rq. Obviously, by construction Uρ ⊆ Dρ . It follows from the coordinate form
(2.35) of the contact map that in local coordinates the distribution D is spanned by
n vector fields Xi such that

ι∗Xi = C(q)
i +

m

∑
α=1
∑

|μ|=q

γαμ+1i
Cμα (2.75)

where C(q)
i and Cμα are the contact fields defined by (2.11) and the coefficients γαν

the highest-order components of the section γ . Using (C.9), the commutator of two
such vector fields evaluates to

ι∗
(
[Xi,Xj]

)
=
(
C(q)

i (γαμ+1 j
)−C(q)

j (γαμ+1i
)
)
Cμα

+ γαμ+1 j
[C(q)

i ,Cμα ]− γαμ+1i
[C(q)

j ,Cμα ] .
(2.76)

By the commutation relation (2.13), the commutators in the second line vanish
whenever μi = 0 or μ j = 0, respectively. Otherwise we obtain−∂uαμ−1i

and−∂uαμ−1 j
,

respectively. But this implies that the two sums in the second line cancel each other
and we find that ι∗

(
[Xi,Xj]

)
∈ Cq. Applying formula (C.22) yields for any contact

form ω ∈ C0
q that

ι∗(dω)(Xi,Xj) = dω(ι∗Xi, ι∗Xj)

= ι∗Xi
(
ω(ι∗Xj)

)
− ι∗Xj

(
ω(ι∗Xi)

)
+ω
(
ι∗([Xi,Xj])

)
.

(2.77)

Each summand in the last expression vanishes, as all appearing fields are contact
fields. Hence we conclude that any form ω ∈ ι∗(dC0

q) vanishes on D and hence in
particular on Uρ ⊆Dρ .

For the converse note that any subspace Uρ ⊆ TρRq satisfying the imposed con-
ditions is spanned by some linear combinations of vectors vi such that Tρ ι(vi) =
C(q)

i ρ+ γαμ,iC
μ
α ρ where γαμ,i are real coefficients and consider a contact form ωαν de-

fined by (2.8) with |ν| = q−1. Then dωαν = dxi∧duαν+1i
. Evaluating the condition

ι∗(dωαν ) ρ(vi,v j) = dωαν
(
Tρι(vi),Tρ ι(v j)

)
= 0 yields the equation γαν+1i, j = γ

α
ν+1 j ,i

.

Hence the coefficients are actually of the form γαμ,i = γ
α
μ+1i

and a section σ ∈Γloc(π)

exists such that ρ = [σ ](q)
x and Tρ(im jqσ) is spanned by the vectors Tρι(vi). But this

observation implies that Uρ is an integral element. �

It is important for this result that we take the full differential ideal generated by
the codistribution ι∗C0

q , i. e. that we also consider the two-forms ι∗(dC0
q). As one
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can see in the proof, only the additional conditions imposed by them ensure that Uρ
can indeed be a part of the tangent space to a prolonged section.

Based on this proposition, it is now possible to determine effectively integral
elements at a given point ρ on a differential equation Rq. One first computes
the pull-back ι∗ωαμ of the basic contact forms (2.8) and their exterior deriva-
tives. For the construction of a k-dimensional integral element one makes then

the ansatz Tρ ι(v j) = α i
jC

(q)
i ρ + γαμ, jC

μ
α ρ with 1 ≤ j ≤ k. The yet unknown coef-

ficients α i
j , γαμ, j must satisfy the linear system of equations arising from the condi-

tions ι∗ωαμ ρ(v j) = 0 and ι∗(dωαμ ) ρ(vi,v j) = 0 for all 1 ≤ i, j ≤ k. Thus once the
pull-back has been performed explicitly (which is easily possible only, if the dif-
ferential equation is given in solved form), the computation reduces to elementary
linear algebra. An alternative ansatz avoiding the need to compute a pull-back will
be discussed extensively in Section 9.5.

Example 2.3.20. We demonstrate Proposition 2.3.19 for a first-order evolution equa-
tion in 1 + 1 dimensions:

R1 : {ut = φ(x,t,u,ux) . (2.78)

Let ρ = (x,t,u,ux,ut) ∈ R1 be a point on the equation (i. e. ut has the appropriate
value) and ρ̂ = (x,t,u,ux,uy,uxx,uxt ,utt) ∈ R2 a point in the fibre over ρ . All such
points are characterised by their uxx-value, as this is the only parametric derivative.
Indeed, a local representation ofR2 is obtained by adding the equations

uxt = Dxφ = C(1)
1 (φ)+ uxxφux ,

utt = Dtφ = C(1)
2 (φ)+ uxtφux = C(1)

2 (φ)+φux

(
C(1)

1 (φ)+ uxxφux

)
.

(2.79)

Thus the values of the principle derivatives utt , uxt are determined, as soon as a value
for uxx has been chosen.

According to Definition 2.3.18, any two-dimensional integral element Uρ of the
differential equationRq at the point ρ is generated by vectors

v1 = ∂x + ux∂u + uxx∂ux + uxt∂ut ,

v2 = ∂t + ut∂u + uxt∂ux + utt∂ut ,
(2.80)

as these vectors will span imΓ2(ρ̂), if we substitute the principal derivatives uxt

and utt by the expressions (2.79). Thus we find a one-parameter family of integral
elements at ρ parametrised by the value of uxx.

Now we use the alternative approach via the contact codistribution. In the first-
order jet bundle, every contact form is a multiple of ω = du− uxdx− utdt. Hence
the differential ideal I[R1]⊆Ω (R1) is generated by the two forms

ω1 = du−uxdx−φdt ,

ω2 = dux∧dx−φxdx∧dt−φudu∧dt−φuxdux∧dt .
(2.81)
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Here we use (x,t,u,ux) as coordinates on the manifold R1. Any two-dimensional
transversal subspace Uρ ⊆ TρR1 satisfying ω1 ρ(Uρ) = 0 is generated by two con-
tact vectors w1, w2 of the form

Tρ ι(w1) = C(1)
1 + a1C

[1,0] + b1C[0,1] = ∂x + ux∂u + a1∂ux + b1∂ut ,

Tρ ι(w2) = C(1)
2 + a2C

[1,0] + b2C[0,1] = ∂t + ut∂u + a2∂ux + b2∂ut .
(2.82)

We must now first impose the tangency condition that the one-form d(ut −φ) van-
ishes on these vectors and then the condition ω2 ρ(w1,w2) = 0. Together they lead
to the following inhomogeneous linear system of equations for the unknown coeffi-
cients a1, a2, b1, b2:

b1−φux(ρ)a1 =−C(1)
1 (φ)(ρ) ,

b2−φux(ρ)a2 =−C(1)
2 (φ)(ρ) ,

b1−a2 = 0 .

(2.83)

Obviously, the solution space of this system can be parametrised by a single pa-
rameter, say a1. Taking (2.79) into account and identifying a1 = uxx, we find that
v1 = Tρι(w1) and v2 = Tρ ι(w2) as predicted by Proposition 2.3.19. Note how the
last line of (2.83) stemming from the vanishing of the two-form ω2 = ι∗(dω) en-
forces that the ut-component of Tρ ι(w1) and the ux-component of Tρ ι(w2) coincide,
as it is automatically the case for the vectors v1, v2 because of the commutativity of
partial derivatives. �

2.4 Some Examples

In this section we briefly discuss some classical differential equations which will be
used as examples at many places later on. They stem from physics and are of great
importance in applications. Most of them are already formally integrable, however,
we have not yet the necessary tools to prove this fact.

Example 2.4.1. Maxwell’s equations form the foundations of electrodynamics. They
describe the evolution of the electric and magnetic fields and fluxes in a four-
dimensional space-time. Their most general (differential) form is

Dt =∇×H−Je , Bt =−∇×E−Jm , (2.84a)

0 =∇·D−ρe , 0 =∇·B−ρm . (2.84b)

Here ∇ denotes the gradient with respect to the spatial variables only; · and × rep-
resent the scalar and the vector product, respectively. E and H are the electric and
magnetic field, respectively, D and B the corresponding fluxes, Je and Jm are cur-
rents and finally, ρe and ρm charge densities. In physics, Jm and ρm are usually set
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to zero, as nobody has ever observed experimentally magnetic charges or currents.
However, there is no mathematical reason for not adding such terms (at the level of
(2.84); in gauge theory the situation changes). In particular, in the context of pertur-
bation calculations it makes sense to analyse the effect of these “source” terms.

The system (2.84) is yet underdetermined. In a simple medium, we have the
constitutive relations D = εE, B = μH and Je = σE where ε , μ and σ are the
permittivity, the permeability and the conductivity, respectively. If the medium is
isotropic and homogeneous, these quantities are constant scalars. In general, they are
tensor valued functions of space-time. We will mainly study Maxwell’s equations in
vacuum. There σ = 0 and εμ = 1/c2 where c is the speed of light. In natural units
c = 1 and we obtain the following system:

Et =∇×B , Bt =−∇×E , (2.85a)

0 =∇·E , 0 =∇·B . (2.85b)

The equations in (2.85a) describe the time evolution of the fields. The equations
in (2.85b) are often called the Gauss or divergence laws; they render (2.85) overde-
termined, as we have eight equations for six field components. Because of the well-
known identity ∇· (∇×X) = 0 for any vector field X, we obtain no integrability
conditions, if we first prolong (2.85) and then project back. Indeed,

∂t(∇·E) =∇·Et =∇· (∇×B) = 0 (2.86)

and similarly for B. Note that the same is true for the general form (2.84), if we
ignore the currents and charges. We will see later that these considerations suffice
to prove that (2.85) is a formally integrable system.

This identity also implies another interesting property. Let us take only the evo-
lutionary part (2.85a); it forms a hyperbolic (in t-direction) system in Cauchy–
Kovalevskaya form. So we may consider the initial value problem for it. Assume
that we prescribe for t = 0 fields E0(x) and B0(x) satisfying the divergence laws
(2.85b). Then it follows from (2.86) that the solution E(x,t), B(x,t) of (2.85a) for
these initial data satisfy (2.85b) for all times t, i. e. it is a solution of the full Maxwell
equations (2.85). In Section 9.4 we will see that this is not accidental but in fact a
characteristic and very important property of all involutive equations (it will turn
out that this is exactly the decisive property that distinguishes merely formally inte-
grable equations from involutive ones).

Sometimes, the Gauss laws are considered “redundant” because of this obser-
vation in order to avoid the discussion of an overdetermined problem (which is of
course nonsense). As a consequence in the numerical integration of Maxwell’s equa-
tions the constraints (2.85b) are often ignored. However, the identity (2.86) holds
only for true solutions and not necessarily for approximations and indeed numeri-
cal solutions often significantly violate the Gauss laws (see Example 10.4.14 for a
slightly more extensive discussion).

If we include the currents Je and Jm and the charge densities ρe and ρm, we see
that they must satisfy the continuity equations
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(ρe)t +∇·Je = 0 , (ρm)t +∇·Jm = 0 . (2.87)

Otherwise the equations become inconsistent and do not admit any solutions. This is
a prototypical example of a compatibility condition, a concept which we will discuss
in more details in Remark 7.1.7 and Section 10.5. �

Example 2.4.2. The fundamental equations governing the flow of fluids and gas are
the Navier–Stokes equations. We are mainly interested in incompressible flows. The
flow lives in some domain Ω ⊆ �3; for simplicity we assume it to be open. The
base manifoldX is given by the productΩ ×� where the factor� represents time.
The dependent variables are the velocity of the flow and the pressure. Thus we use
as total space E = TΩ ×�2 with local coordinates (x,t,u, p): x represents a point
in Ω , t the time, u are coordinates of a tangent vector in TxΩ and p is the pressure.

The incompressible Navier–Stokes equations are

ut +(u ·∇)u = ν�u−∇p , (2.88a)

∇·u = 0 . (2.88b)

Here we use again notations from vector analysis: ∇ is the gradient with respect to
the spatial variables x and thus the scalar product∇·u corresponds to the divergence
of the velocity field u. The left hand side of (2.88a) represents the convective deriva-
tive of u expressing that our coordinate system moves with the flow; in components
it is given by ∂ui/∂ t + u j∂ui/∂x j. Physically speaking, (2.88a) represents a mo-
mentum balance, while (2.88b) stems from the conservation of mass and expresses
the incompressibility of the flow.

The coefficient ν describes the viscosity of the flow. If it is zero, we obtain Euler’s
equations of inviscid flow. They can be described in a much more geometric way
as a geodesic flow on the group of volume preserving diffeomorphisms [26]. While
analytically quite different, the Euler and the Navier–Stokes equations behave fairly
similar with respect to their formal properties.

Eq. (2.88) describes a submanifoldR2⊂ J2π . As the incompressibility constraint
(2.88b) is of first order,R2 is not formally integrable; trivial integrability conditions

are given by the prolongations of (2.88b) to second order. ThusR(1)
2 is described by

(2.88) plus the equations

∇·ut = 0 , ∇(∇·u) = 0 . (2.89)

The equationR(1)
2 is still not formally integrable, as we find in the next prolongation

a non-trivial integrability condition: if we take the divergence of (2.88a), we can
eliminate the third-order term�(∇·u) by the divergence of the second equation in
(2.89). There remains the second-order equation

�p =−∇·
(
(u ·∇)u

)
, (2.90)

i. e. a Poisson equation for the pressure. One can show that the equationR(2)
2 defined

by (2.88), (2.89), and (2.90) is formally integrable.
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The pressure p is at the origin of many of the problems appearing in the theoret-
ical or numerical analysis of the incompressible Navier–Stokes equations. To some
extent, it may be considered as a kind of Lagrange multiplier; without it the incom-
pressibility constraint (2.88b) would not be consistent with the evolution equation
(2.88a). Via (2.90) the pressure automatically adapts its value in such a manner that
the flow remains incompressible. In the numerical integration of (2.88), often most
of the computation time is spent in solving (2.90). One fundamental problem con-
sists of selecting appropriate boundary conditions for this equation, as there seems
to be no natural choice.

Note that although the original system (2.88) comprises as many equations as
unknown functions, we are actually dealing with an overdetermined system. This is
due to the fact that (2.88) is not in Cauchy–Kovalevskaya form. As a consequence
besides the less interesting equations (2.89) the non-trivial integrability condition
(2.90) arises. This example demonstrates that the classification into under-, well- or
overdetermined equations makes sense only after all integrability conditions have
been added. We will discuss a rigorous definition of these terms in Section 7.5. �

The following two examples are actually of a very geometric nature. Neverthe-
less, we describe them mainly in local coordinates. There are two reasons for this.
First of all, we do not want to introduce all the necessary differential geometry. Sec-
ondly, we will take at many places a more applied point of view: in order to be able
to demonstrate our computational techniques with the help of these examples, we
must write them down in local coordinates.

Example 2.4.3. In modern elementary particle physics three of the four fundamen-
tal interactions are described by Yang–Mills theories. The proper geometric frame-
work for their formulation are principal fibre bundles, but here we take a simplified
approach. Underlying the theory is the space-time, an n-dimensional manifold M
equipped with a Lorentzian metric. Again for simplicity we restrict here to the case
of a flat space-time with the Minkowski metric ηi j defined by ηii = 1 for 1≤ i < n,
ηnn =−1 and ηi j = 0 in all other cases.

Assume we are given a d-dimensional Lie group G. The basic field of the corre-
sponding Yang–Mills theory, the vector potential, is a one-form A∈Ω1(M,g) over
space-time taking values in the Lie algebra g of G (from a geometric point of view A
is considered as the connection form of a connection on a G-principal fibre bundle).
If a basis of g is given by the elements Ta with 1 ≤ a ≤ d, such a one-form has the
local form A = Aa

i Tadxi. Thus we are dealing with a fibre bundle over space-time
whose fibre dimension is dn.

The Yang–Mills field strength is the two-form F = dA+ 1
2 A∧A = Fa

i jTadxi∧dx j

(according to the Maurer–Cartan formula (C.37), it represents just the curvature of
the connection defined by A). If the structure constants of the Lie algebra g are Cc

ab
(i. e. if [Ta,Tb] = Cc

abTc), then the coefficients Fa
i j are given by

Fa
i j = ∂xi Aa

j − ∂x j Aa
i +

1
2

Ca
bcAb

i Ac
j . (2.91)
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This geometric language allows us to write the Yang–Mills field equations in a
very concise form:

DF = 0 , D*F = 0 . (2.92)

where D denotes the exterior covariant derivative for the connection A defined by
DF = dF + A∧F and ∗ the Hodge operator associated with the metric on space-
time. The first equation is called Bianchi identity and follows immediately from the
definition of the field strength (using the Jacobi identity for the structure constants).
The second equation are the true field equations; in local coordinates they read

Φa
�

(
Ab

i ,∂x j Ab
i ,∂x jxk Ab

i

)
= η i j

(
∂xiFa

j� +Ca
bcAb

i Fc
j�

)
= 0 (2.93)

where η i j denote the components of the inverse matrix to (ηi j) (i. e. η i jη jk = δ i
k).

Substituting (2.91) for the field strength, (2.93) is a semi-linear system of dn
second-order equations for the components Aa

i of the vector potential. The non-
linearity is introduced by the last term in the definition of the field strength which
is quadratic in the vector potential. It disappears for an Abelian Lie algebra g where
all structure constants vanish. Thus in this case one obtains linear field equations.

In a rather lengthy computation one can show that the differential equation R2

defined locally by (2.93) is formally integrable. The key is the Noether identity

η i j
(

DiΦa
j +Ca

bcAb
iΦ

c
j

)
≡ 0 (2.94)

stemming from the properties of the structure constants Ca
bc due to the Jacobi iden-

tity. It implies the equality R(1)
2 = R2 and, as we will see later, this observation

suffices to prove formal integrability.
Again it is tempting to classify (2.93) as a well-determined system, as it consists

of dn equationsΦa
i = 0 for the dn unknowns Aa

i . However, we will see in Section 7.5
that we are in fact dealing with an underdetermined system. From a physical point
of view this was to be expected, as Yang–Mills theories are the prototype of gauge
theories: the underdeterminacy is a simple consequence of the presence of a gauge
symmetry. We will discuss this aspect in more detail in Section 8.3.

The Yang–Mills equations for the Lie groupU(1) are closely related to Maxwell’s
equations. As we are dealing with a one-dimensional group, we skip the upper in-
dex on the coefficients of the potential A and the field strength F . The coefficients
of the latter define thus in four dimensions a 4× 4 antisymmetric matrix related to
the electric and magnetic field:

F =

⎛

⎜
⎜
⎝

0 B(z) −B(y) −E(x)

−B(z) 0 B(x) −E(y)

B(y) −B(x) 0 −E(z)

E(x) E(y) E(z) 0

⎞

⎟
⎟
⎠ . (2.95)

In other words, if we build the three-dimensional vector A consisting of the first
three coefficients of A, then B = ∇×A and E = −∂tA−∇ ·A4. Note that these
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relations automatically imply half of the equations in (2.85), namely ∇·B = 0 and
Bt =−∇×E (the Bianchi identity dF = 0). The remaining four equations are equiv-
alent to the four Yang–Mills equations (2.93).

In this case the above mentioned gauge symmetry takes a particularly simple
form: the field strength F = dA (and hence our field equations) remains invariant,
if we add to A a term of the form dΛ with a smooth function Λ . This observation
implies that one component of the vector potential A may be chosen arbitrarily.

This geometric view of Maxwell’s equations also “explains” why there should
appear no magnetic charges: only if dF = 0, i. e. if ∇ ·B = 0 and Bt = −∇×E
without additional charges or currents, a vector potential A with F = dA can exist
by Poincaré’s Lemma (cf. Remark C.2.9). �

Example 2.4.4. General relativity describes the fourth fundamental interaction, grav-
ity; Einstein’s equations are a cornerstone of the theory. The basic idea is that gravity
manifests itself in the geometry of space-time. We consider here only the vacuum
case without any matter fields but in arbitrary dimensions.6 Space-time is modelled
again as an n-dimensional Lorentzian manifold, i. e. as a manifold M equipped
with a metric gi j that has the same signature as the Minkowski metric ηi j. This
manifold M is our base space X . The dependent variables are the components gi j

of the metric g. Thus π : E → X is here the vector bundle of symmetric bilinear
forms; its fibre dimension is m = n(n + 1)/2.

Geometrically, the vacuum Einstein equations express the fact that the Ricci ten-
sor Ri j of the Levi–Civita connection for the metric g vanishes:

Ri j[g] = 0 . (2.96)

As the Ricci tensor is symmetric and depends on the second-order derivatives of the
metric, (2.96) is a system of n(n+1)/2 equations defining a submanifoldR2 ⊂ J2π .
Note that we have again as many equations as unknown functions.

Einstein’s equations describe the evolution of the Lorentzian structure ofM and
thus how space-time is “curved.” If matter is present, it leads to source terms on the
right hand side of (2.96) and thus changes the metric. The motion of a particle is
always on a geodesic and its interaction with the gravitational field is encoded in
these changes of g.

Writing out the components Ri j of the Ricci tensor in terms of the metric g and its
derivatives leads to rather complicated non-linear expressions which can be found
in any textbook on either Riemannian geometry or general relativity. We omit them
here and use instead a trick for simplifying the coordinate form of (2.96): we take
locally geodesic coordinates. Such coordinates exist for every point x0 ∈M and are
characterised by two properties: (i) the metric becomes the Minkowski metric at the
point x0, gi j(x0) = ηi j, and (ii) the Christoffel symbols vanish at x0. At x0, (2.96)
takes in these coordinates the following simple linear form

6 Strictly speaking, we assume that the dimension is at least four; for topological reasons two and
three dimensions are special cases where different equations have to be used [105].
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Ri j(x0) =
1
2
ηk�
[
∂xixk g j�(x0)+ ∂x jx�gik(x0)−

∂xix j gk�(x0)− ∂xkx�gi j(x0)
]

= 0 .
(2.97)

Note that the defining properties of a locally geodesic coordinate system hold only at
the single point x0 and generally not even in a small neighbourhood of it. Thus (2.97)
should not be considered as a differential equation but only as a relation between the
fibre coordinates of J2π in the fibre over the point x0 ∈M. In particular, we cannot
expect that local representations of prolongations R2+r ⊂ J2+rπ are obtained by
formally differentiating (2.97). However, this holds for the first prolongation ofR2,
as ∂xk gi j(x0) = 0 because of the metricity of the Levi–Civita connection. In further
prolongations, lower-order terms appear. Fortunately, it turns out that R3 suffices
for the formal analysis of the Einstein equations.

Because of the contracted Bianchi identity (a formal analogue to the Noether
identity (2.94) of the Yang–Mills equations)

gki∂xk Ri j− ∂x j (gkiRki) = Γ k
i j gi�Rk�−Γ �

�kgikRi j (2.98)

(here gi j denote the components of the inverse g−1 of the metric tensor g), we find

thatR(1)
2 =R2. We will see later that the equality (2.98) suffices to prove the formal

integrability of Einstein’s equations. �

Example 2.4.5. With the exception of the Navier–Stokes equations all these exam-
ples are of a variational origin. Let as usual π : E → X be a fibred manifold with
an n-dimensional basis X and m-dimensional fibres. Assume that we are given an
n-form λ ∈ Ω n(Jqπ) such that ιXλ = 0 for all vector fields X ∈ X(Jqπ) which are
vertical for the fibration πq : Jqπ →X . This form is called the Lagrangian and we
would like to determine sections σ :Ω →E such that the action

I[σ ] =
∫

Ω
( jqσ)∗λ (2.99)

becomes minimal. Here Ω ⊆ X is assumed to be an open connected submanifold
with a smooth boundary ∂Ω and the integrand ( jqσ)∗λ is the pull-back of the
Lagrangian n-form λ along the prolonged section jqσ :Ω → Jqπ . Usually, the vari-
ation is subject to some boundary conditions, e. g. that the values of the section σ
on ∂Ω are prescribed.

In local coordinates, such a Lagrangian is of the form λ = L(x,u(q))dx with a
Lagrangian density L ∈ F(Jqπ). If σ(x) =

(
x,s(x)

)
, then (2.99) becomes

I[s] =
∫

Ω
L
(

x,s(x),
∂ s(x)
∂x

, . . .
)

dx . (2.100)

A necessary condition for this integral to be minimal for σ is that the variational
derivative δL of the Lagrangian density vanishes. Recall that δL is defined by the
condition that for all sections η(x) =

(
x,h(x)

)
with compact support (so that σ and

σ + εη for ε ∈� satisfy the same boundary conditions)
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d
dε ε=0

I[s+ εh] =
∫

Ω
δL
(

x,s(x),
∂ s(x)
∂x

, . . .
)
·h(x) dx = 0 . (2.101)

By a straightforward computation involving only some partial integrations (see e. g.
[342, Sect. 4.1]), one finds for the components of the variational derivative

(δL)α = ∑
0≤|μ|≤q

(−1)|μ|Dμ
∂L
∂uαμ

. (2.102)

The condition δL = 0 is known as the Euler–Lagrange equation. It represents a
system of m equations of order 2q.

If we consider the special case n = q = 1 and interpret the independent variable
as time t, then L = L(t,uα , u̇α). Now the Euler–Lagrange equations are

d
dt

( ∂L
∂ u̇α

)
− ∂L
∂uα

=
∂ 2L

∂ u̇α∂ u̇β
üβ +

∂ 2L

∂ u̇α∂uβ
u̇β +

∂ 2L
∂ u̇α∂ t

− ∂L
∂uα

= 0 . (2.103)

In physics the most common situation is that the Lagrangian is of the special form
L = 1

2 mαβ (u)u̇α u̇β −V (u) where the coefficients mαβ form the positive definite
mass matrix M and V is a potential. If M is constant, then we obtain as Euler–
Lagrange equations the classical Newtonian equations

Mü =−∇V (2.104)

or in words: mass times acceleration equals force. In the general case, additional
velocity depending terms appear. As we assume that the mass matrix M is positive
definite, it is in particular invertible and we may always bring the Euler–Lagrange
equations into the normal form ü = f(u, u̇).

It is easy to see that Euler–Lagrange equations are always linear in the highest-
order derivatives. If we assume for simplicity that q = 1 (which is almost al-
ways the case in physics), then the Euler–Lagrange equations can be brought into
Cauchy–Kovalevskaya form, if and only if (possibly after a coordinate transforma-
tion) an independent variable xk exists (preferably the time t) such that the Hessian
∂ 2L/∂uαk ∂uβk is invertible.

Otherwise one speaks of a singular Lagrangian. In this case one must gener-
ally expect that integrability conditions are hidden in the Euler–Lagrange equations.
If for example in (2.103) the Hessian ∂ 2L/∂ u̇α∂ u̇β is singular, then contraction
of (2.103) with any zero eigenvector of it yields an equation of lower order. Such
equations are usually called constraints and their prolongation may lead to an in-
tegrability condition (and potentially to further constraints). In Section 7.3 we will
study extensively how to proceed in such a situation. �

Finally, we consider a class of ordinary differential equations, namely Hamil-
tonian systems. They are ubiquitous in physics but also appear in other fields of
science like economics. Here they serve us mainly as an illustration how natural
the more abstract geometric approach to jet bundles presented in Section 2.2 is.
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Therefore we only consider the regular case without constraints (the general case
will be treated in an Addendum to Section 7.3).

Example 2.4.6. Hamiltonian systems are a cornerstone of classical mechanics. In the
last decades, a geometric approach to mechanics has dominated the mathematical
research in this field so much that one now often speaks of geometric mechanics. It
is based on symplectic geometry and its generalisations (see Appendix C.6).

The classical picture starts with a symplectic manifold (M,ω), the phase space,
and a Hamiltonian H ∈ F(M). In concrete applications,M is usually a cotangent
bundle T ∗Q where Q is the configuration space of the system. If we take adapted
coordinates (q,p) on T ∗Q, then q represents the position and p the momentum
variables. The symplectic two-form takes now the simple form ω = dq∧dp.

The Hamiltonian H describes the total energy of the system. The evolution of
the system is governed by the corresponding Hamiltonian vector field intrinsically
defined through the equation

ιXHω = dH (2.105)

(cf. Definition C.6.3). Although (2.105) is often called the Hamiltonian equation
of motion, this is not really correct. Equations of motion are differential equations,
whereas (2.105) represents a set of algebraic equations on TM.

The proper equations of motion are the ordinary differential equation correspond-
ing to the vector field XH . Using canonical or Darboux coordinates onM, they take
the familiar form (C.42)

q̇ =
∂H
∂p

, ṗ =−∂H
∂q

(2.106)

where the dot denotes the differentiation with respect to a parameter t which is
usually identified with the time. In our context an obvious question is now how
these equations can be naturally interpreted as a fibred submanifoldR1 of some jet
bundle, i. e. as a differential equation in the sense of Definition 2.3.1? It seems that
this problem of relating the intrinsic definition (2.105) of a Hamiltonian vector field
with an intrinsic formulation of the Hamiltonian equations of motion (2.106) has
not attracted much interest so far and it was solved only recently [134].

It is probably impossible to find a reasonable solution within the framework of
symplectic geometry. In the jet bundle formalism the independent variable t plays
a more distinguished role than just that of a mere curve parameter and must be
included from the very beginning. Therefore we need an approach which does not
distinguish between autonomous and explicitly time-dependent systems.

Such an approach is naturally provided by cosymplectic geometry. We assume
now that (E ,ω ,η) is a cosymplectic manifold (cf. Definition C.6.6) which is si-
multaneously a fibred manifold π : E → X . Furthermore, we assume that the Reeb
vector field on E is transversal to the fibration, i. e. at no point ξ ∈ E the projec-
tion Tξ π(Rξ ) ∈ Tπ(ξ )X vanishes. The manifold E is often called the extended phase
space. In the simplest cases, it is of the form E =M×X where (M, ω̄) is a sym-
plectic manifold and X = � models the time t. A cosymplectic structure on E is
then given by ω = pr∗1 ω̄ and η = pr∗2(dt) (cf. Example C.6.7).
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If the Reeb vector field R is projectable, it provides us with an intrinsic clock,
namely the vector field Tπ(R). Given a Hamiltonian H ∈ F(E), it serves as refer-
ence for the evolution of the system determined by the evolution vector field EH .
Trajectories of the system correspond thus to integral curves of EH . Recall from
Appendix C.6 that in Darboux coordinates R = ∂t and EH = ∂t + Hpi∂qi −Hqi∂pi .
Thus we obtain as local coordinate form of the equations of motion

q̇ =
∂H
∂p

, ṗ =−∂H
∂q

, ṫ = 1 (2.107)

(note that in contrast to the classical equations (2.106) the Hamiltonian H may now
depend explicitly on the time t).

It is straightforward to give (2.107) an intrinsic description as submanifold of
the jet bundle J1π . By assumption, the Reeb vector field R and thus also EH for
arbitrary Hamiltonians H is transversal. Since the base space X is one-dimensional,
such a vector field spans the horizontal bundle of a connection on E . According to
Remark 2.2.3, any such connection corresponds to a section γ : E → J1π and (2.107)
is just a local representation ofR1 = imγ .

We may also study the inverse problem: decide whether a given differential equa-
tionR1 ⊆ J1π is Hamiltonian and if yes, construct the corresponding evolution vec-
tor field EH . For simplicity, we assume that we are dealing with an unconstrained
system, i. e. R1 = imγ for some section γ : E → J1π . The extension to systems
subject to constraints will be discussed in an Addendum to Section 7.3.

The basic idea is to compare the connections defined by the section γ and the
Reeb vector field R, respectively. One way to do this is to pick vectors on the base
manifold X and to lift them with the respective horizontal lifts. The difference be-
tween the two thus obtained vectors is obviously vertical. Recall that in our situation
the vertical bundle Vπ is spanned by the Hamiltonian vector fields. We call the given
differential equationR1 Hamiltonian, if and only if the difference is of the form XH

for some function H ∈ F(E).
An obvious choice for vectors at x ∈ X are the projections Tξ π(Rξ ) for some

points ξ ∈ π−1(x). Thus we may formalise the considerations above by introducing
the vector field X = −PV [γ](R) where PV [γ] denotes the vertical projector of the
connection defined by γ . Obviously, if we lift Tξ π(Rξ ) with the connection associ-
ated to the Reeb vector field R, then we obtain just Rξ . By applying PV [γ] to it, we
effectively compute the difference between the vectors obtained by lifting Tξ π(Rξ )
with the connection defined by γ and R.

With the help of the contact map Γ1 on J1π , we may alternatively describe the
above constructed vector field X at a given point ξ ∈ E as follows

Xξ = PV [R]
(
Γ1
(
γ(ξ ),Tξ π(Rξ )

))
. (2.108)

Indeed, the argument of PV [R] is nothing but an explicit expression for the horizontal
lift of Tπ(R) for the connection associated with γ . Independent of which description
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of X we use, the differential equation R1 is Hamiltonian, if and only if a function
H ∈ F(E) exists such that X = XH .

Finally, we compare the two different notions of a solution. As already mentioned
above, in the traditional approach one considers the integral curves of the evolution
vector field EH ; whereas for differential equations we use Definition 2.3.3. But again
it is straightforward to show the equivalence of these two points of view.

Indeed, it follows from (2.108) that (EH)ξ =Γ1
(
γ(ξ ),Tξ π(Rξ )

)
. If the section σ

is a solution, then γ ◦σ = j1σ . Thus, by definition of the contact map, we get at the
point ξ = σ(x) that (EH)ξ = Txσ ·Tξπ(Rξ )∈ Tξ (imσ) and imσ is an integral curve
of EH . Conversely, it follows from the transversality of EH that every integral curve
is (at least locally) the image of a section σ : X → E . Applying the same argument
backwards, we see that γ ◦σ = j1σ . �

2.5 Notes

Implicitly, jet bundles have been used for a long time. They were formally intro-
duced by Ehresmann in a series of papers [120, 121] (see also [122]). They have
become a standard tool for the geometric analysis of differential equations. By now,
many approaches to jet bundles exist with various degrees of abstraction and sophis-
tication. The book by Saunders [394] serves as a standard reference; useful intro-
ductions are also contained in [170, 342]. In particular, the intrinsic formulation of
our “pedestrian” approach to jet bundles (Remark 2.2.1) can be found in [170].

Another approach to jet bundles is discussed by Palais [347, Ch. IV]. It requires
that U is a real vector space, which is the case in most applications. We define for
any point x0 ∈ X the ideal Ix0(X ) ⊂ F(X ) of all smooth functions φ : X → �

satisfying φ(x0) = 0. Then we introduce the spaces

Z(q)
x0 (X ,U) =

[
Ix0(X )

]q · C∞(X ,U) . (2.109)

All functions in Z(q)
x0 (X ,U) possess at x0 an at least q-fold zero and thus all their

derivatives up to order q−1 vanish at this point. Finally, we identify q-jets at x0 with

the elements of the quotient space C∞(X ,U)/Z(q+1)
x0 (X ,U).

Some of the more geometric aspects of jet bundles have been described following
the presentation by Lychagin [296]. This concerns in particular the decomposition
of the contact distribution into the vertical bundle and the horizontal space of a
connection discussed in Remark 2.2.9. The term fundamental identification seems
to have been coined by Kuranishi [275]. Our intrinsic description of it in Section 2.2
follows ideas of Ruiz [389], although he does not explicitly use the contact map.

Throughout this book, we will always assume that we start with a fibred manifold
π : E → X , i. e. that from the beginning we have a clear distinction between inde-
pendent and dependent variables. This is a natural assumption for most problems
in physics (and many other fields of science using differential equations as models)
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where X is usually space-time and E some fibre bundle. However, for many
problems in differential geometry this assumption is somewhat artificial, as here
one often deals with manifolds E without any natural fibration. For such problems
an approach via exterior differential systems (see below) is often better suited.

There also exist generalisations of jet bundles applicable in such situations. The
basic idea in our approach is that each section σ ∈ Γloc(E) defines an n-dimensional
submanifold of E , namely imσ (here as usual n = dimX ). However, not every
n-dimensional submanifold of E is of this particular form but only those that are
transversal to the fibration π : E → X . If E is not a fibred manifold, this restriction
makes no sense and we simply drop it. Thus one considers equivalence classes of
arbitrary n-dimensional submanifolds7 and builds jet bundles in a similar manner,
as we have done it; for more information see e. g. [163, Sect. 5.3] and references
therein. Basically the same construction is described by Olver [342, Sect. 3.5] as
“extended” jet bundle and used for a rigorous formulation of symmetry reductions.

Even if one starts with a fibred manifold, there are situations where our concept
that a solution is a section and thus transversal is too restrictive. It is well-known that
solutions of hyperbolic equations can be highly irregular. For example, it is not un-
common that a shock forms where some derivatives become unbounded; sometimes
one even has multivalued solutions (just think of a breaking wave at the beach).
In the sense of Definition 2.3.3 these are not solutions. However, if one drops the
transversality condition, such phenomena can still be described geometrically with
jets, as the solutions define submanifolds (for ordinary differential equations such a
generalised notion of solution is briefly discussed in Section 9.1).

Our “pedestrian” treatment of the contact structure is inspired by Johnson [239].
The intrinsic approach to first-order jet bundles J1π presented in Section 2.2 does
not seem to be very popular. It is rarely found in the literature, although it possesses
a number of advantages for studying the geometry of jet bundles. Recently, it has
gained some importance in the context of multisymplectic geometry, as the affine
dual of J1π carries a natural multisymplectic structure [174]. The corresponding
intrinsic description of the contact structure on J1π via the contact map is taken
from Modugno [325]; a similar discussion is contained in [163, Sect. 5.1].

We assume throughout this book that we are always dealing with real manifolds.
In some examples this assumption leads to problems with Definition 2.3.1 of a dif-
ferential equation. Take for example the equation (u′)2 +u2 + x2 = 1 describing the
unit sphere in J1π where we take E =�2 and X = �. Obviously, the unit sphere
is not a fibred submanifold over X , as the projection to X is not surjective.8 This
problem disappears, if one considers the problem over the complex numbers �, as
now for any value x∈� a point on the unit sphere exists (� is algebraically closed).

For a satisfactory complex theory it is important to restrict to analytic mani-
folds and to consider only holomorphic sections. Only under these assumptions our

7 Using the approach via Grassmannians described in Remark 2.2.5, this generalisation is equiva-
lent to consider the full Grassmannian Gn(E) (which is independent of any fibration) instead of its
transversal subspace G(π) = Gtrans

n (E).
8 This is not the only problem: at the two points (±1,0,0) the projection is not a submersion—a
fact which is independent of the used ground field.
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treatment of the contact structure can be kept without modification considering now
all variables as complex valued. Otherwise, we would have to consider not only
derivatives ∂/∂xi, say, but also derivatives ∂/∂xi with respect to the complex con-
jugate variables, as only for holomorphic sections the latter ones always vanish.

One of the earliest geometric approach to differential equations, the Cartan–
Kähler Theory [58, 74, 231, 248, 326], is not based on jet bundles but represents the
equations with differential forms. More precisely, instead of differential equations
one considers here a differential ideal in the algebra of differential forms over some
manifoldM. Solutions are represented by integral manifolds of this ideal. We will
study in Section 9.5 a dual version of this approach due to Vessiot in more detail.

Given a differential equation Rq ⊆ Jqπ , there exist in general many ways to
produce a corresponding differential ideal. The simplest—and in particular always
applicable—method consists of using the ideal I[Rq] generated by the pull-back
of the contact codistribution C0

q to the submanifold Rq (we used this ideal already
for the characterisation of integral elements in Proposition 2.3.19). In order to re-
cover our notion of a solution, we must in addition impose independence forms
corresponding to our transversality conditions naturally induced by the underlying
fibration π : E → X : if the forms θ1, . . . ,θn span the cotangent bundle T ∗X , then
we consider only those integral manifolds such that the pull-backs of the forms
(πq)∗(θi) on them do not vanish.

We have seen that there are some analogies between our geometric view of dif-
ferential equations and the situation in algebraic geometry. However, one should
note that there are also some apparent differences. In particular, not every section

contained in an equivalence class [σ ](q)
x ∈ Rq is a solution of the differential equa-

tionRq. If one wants such a one-to-one relation between points and solutions, then
one must take all prolongations of Rq into account. This point of view leads nat-
urally to the introduction of the jet bundle J∞π of infinite order a point of which
defines a unique formal power series.

The proper definition of J∞π as a manifold requires some mathematical care,
as it is an infinite-dimensional space and it is not obvious how to equip it with the
necessary topological and differentiable structure. One can show that this goal can
be rigorously achieved using the notions of projective and injective limits in directed
systems of sets [42]. As the jet bundles of different orders are related by the natural
projections π r

q, we may define

J∞π = proj lim
r→∞

Jrπ . (2.110)

In order to introduce smooth functions on the manifold J∞π , we exploit the natural
inclusions F

(
Jqπ
)

↪→F
(
Jrπ
)

for r > q and set

F
(
J∞π
)

= inj lim
r→∞

F
(
Jrπ
)

. (2.111)

Note that the definition of an injective limit implies that any function in F
(
J∞π
)

is
an element of at least one space F

(
Jqπ
)
. Thus although these functions are defined
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on an infinite-dimensional manifold, they always depend only on a finite number of
variables. In a similar, though slightly more complicated manner, one constructs the
tangent and the cotangent bundle of J∞π [42].

Then we introduce the infinite prolongationR∞⊆ J∞π of a differential equation
Rq ⊆ Jqπ by simply replacing in (2.110) Jrπ by its submanifoldRr. As each point
on the submanifold R∞ corresponds to one formal power series solution of the
given equation Rq and vice versa, R∞ may indeed be identified with the formal
solution space of Rq. Thus, at least at the formal level, we have now arrived in the
same situation as in algebraic geometry. This point of view is much used by the
school of Vinogradov (see e. g. [12, 84, 263, 461]) who calls such a submanifold
R∞ ⊆ J∞π a differential variety or diffiety for short.

An interesting aspect of the infinite-order jet bundle J∞π is that its contact codis-
tribution C0

∞ is involutive. As discussed in Remark 2.1.7, this is never the case in a
jet bundle Jqπ of finite order q due to the obstructions obtained by taking the exterior
derivative of a contact form ωαμ with a multi index μ of maximal length |μ |= q−1.
In C0

∞ no maximal value for |μ | exists and thus it is involutive.
Dually, we obtain the same picture for the contact distribution. Whereas Cq can-

not be involutive for any finite order q, since the commutators between the transver-

sal vector fields C(q)
i and the vertical fields Cμα do not lie in Cq according to (2.13),

the contact distribution C∞ does not contain any vertical fields. Note furthermore

that the n vector fields C(∞)
i forming a basis of it may be identified with the formal

derivatives Di. As the formal derivatives commute like ordinary partial derivatives,

we find trivially [C(∞)
i ,C(∞)

j ] = 0 for all 1 ≤ i, j ≤ n and thus the contact distribu-
tion C∞ is indeed involutive.

The material on Hamiltonian systems in Example 2.4.6 first appeared in [134].
Rather surprisingly, we have not been able to find an intrinsic definition of a Hamil-
tonian differential equation in the literature. Lately, jet bundles have become fairly
popular in geometric mechanics, not only for the treatment of time-dependent sys-
tems but also as a basis of the multisymplectic formalism for field theories [67, 174].
But the mechanics is studied in the conventional way via vector fields and forms
living on the jet bundle. Thus one may say that these works study mechanics on jet
bundles, whereas our approach lives in jet bundles.

The main motivation for our formulation lies in the theoretical unification of
differential equations theory and geometric mechanics. For the finite-dimensional
systems we have studied here, this can, of course, also be achieved in the classi-
cal approach, since dynamical systems theory can be intrinsically formulated via
vector fields. However, we believe that our approach provides a better basis for the
extension to field theories. This aspect becomes even more evident for systems with
constraints, where the traditional vector field approach runs into trouble for infinite-
dimensional systems (see [134] for concrete examples).



Chapter 3
Involution I: Algebraic Theory

Algebra is generous: she often gives more than is asked for.
Jean d’Alembert

The first chapter was mainly concerned with the geometry behind the formal theory.
For many problems a purely geometric approach is not sufficient (a concrete ex-
ample is the question of proving the formal integrability of a differential equation)
and additional algebraic ingredients are needed. These lead us to the title concept
of this book: involution. Its algebraic theory will be the topic of the next four chap-
ters. We will start in the current chapter with a more combinatorial approach leading
to a special kind of Gröbner bases, the involutive bases; its algorithmic realisation
is the topic of Chapter 4. In Chapter 5 we will show that the structure analysis of
polynomial modules becomes significantly easier with the help of such bases. Fi-
nally, Chapter 6 will provide us with a homological explanation of the remarkable
properties of (some) involutive bases. In Chapter 7 we will then return to differen-
tial equations and see how these algebraic ingredients appear there naturally in the
analysis of the symbol of a differential equation.

In the first section we introduce the notion of an involutive division, a restric-
tion of the usual divisibility relation of power products. As we are interested in
applications beyond the classical commutative case, i. e. also in situations where the
variables do not commute with each others, we introduce the theory for the monoid
of multi indices and not for terms. Here we will already meet most of the key ideas
about involution, as the later extension to polynomials will be fairly straightforward.

The next section introduces a rather general class of rings: the polynomials of
solvable type. It comprises many classical algebras which are important for appli-
cations like rings of linear differential or difference operators or universal envelop-
ing algebras of Lie algebras. Obviously, most of these rings are not commutative.
The defining property of solvable polynomial rings is the existence of an associated
term order such that the leading terms behave under multiplication like in the famil-
iar commutative case. As most of the theory of Gröbner bases relies solely on an
analysis of leading terms and some normal form considerations, this class of rings
represents probably the most natural setting for the definition of involutive bases.

Although we are mainly interested in polynomials with coefficients in a field, we
define polynomials of solvable type over rings. In this case one of the most impor-
tant results for a constructive theory, Hilbert’s Basis Theorem, becomes non-trivial
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and the whole Section 3.3 is devoted to this question. We will see four different
proofs, each making different assumptions on the polynomials and each using dif-
ferent techniques. Two of them will simultaneously give us the existence of Gröbner
bases for ideals in solvable polynomial rings.

In the last section we finally define involutive bases in arbitrary polynomials
algebras of solvable type; it turns out that they represent a special kind of Gröbner
bases with additional combinatorial properties. Our introduction of involutive bases
is closely modelled on a classical approach to Gröbner bases and thus assumes some
familiarity with their theory. A brief review of the most important points in the form
we need is contained in Appendix B.

The question of the existence and the effective construction of involutive bases
is postponed to Chapter 4; here we are only concerned with some elementary con-
sequences of the definition. In particular, we will show that, in contrast to ordinary
Gröbner bases, involutive bases lead to unique standard representations, a property
that will later be the key to their application in commutative algebra in Chapter 5.

3.1 Involutive Divisions

As the concept of involution appears in different contexts, we need a fairly general
and flexible approach for its introduction. For this reason we do not define it in
terms of power products or differential operators or something similar but in terms
of multi indices (introduced in Appendix A.1). Thus we work now in the Abelian
monoid (�n

0,+) with the addition defined componentwise. The multi indices may
be identified in a natural way with the vertices of an n-dimensional integer lattice,
so that we can easily visualise subsets of �n

0 (at least for n ≤ 3). Choosing an ar-
bitrary field �, we may of course also identify any multi index μ ∈ �n

0 with the
corresponding monomial xμ ∈ P = �[x1, . . . ,xn].

For any multi index ν ∈�n
0 we introduce its cone C(ν) = ν+�n

0, i. e. the set of
all multi indices that can be reached from ν by adding another multi index. We say
that ν divides μ , written ν | μ , if μ ∈ C(ν). It might appear strange to speak here of
a “division”, since the operation in the monoid�n

0 is an addition, but if we think of
the power products xν ,xμ ∈ P , then μ ∈ C(ν) is equivalent to xν | xμ .

It is obvious that cones are the simplest examples of monoid ideals (i. e. subsets
I ⊆ �n

0 which are “multiplicatively” closed: I +�n
0 = I) and that any monoid

ideal may be considered as the union of cones (by Dickson’s Lemma A.1.2 a finite
number of cones always suffices). Given a finite subset B ⊂�n

0, we define its span
as the monoid ideal generated by B:

〈B〉=
⋃

ν∈B
C(ν) . (3.1)

Again this definition is easy to interpret for power products: the set {xν | ν ∈ B}
generates a monomial ideal J ⊂ P and we have μ ∈ 〈B〉, if and only if xμ ∈ J .



3.1 Involutive Divisions 65

The basic idea underlying the definition of an involutive division consists of in-
troducing a restriction of the cone of a multi index, the involutive cone, where it is
only allowed to add multi indices certain entries of which vanish. Alternatively, we
may speak of a restriction of the above defined divisibility relation. The final goal
will be to obtain a disjoint union in (3.1) by using only these involutive cones on the
right hand side. This idea will naturally lead to the combinatorial decompositions of
algebrasA= P/J discussed in Section 5.1.

Definition 3.1.1. An involutive division L is defined on the monoid (�n
0,+), if for

any finite subset B ⊂ �n
0 a set NL,B(ν) ⊆ {1, . . . ,n} of multiplicative indices, and

consequently a submonoid L(ν,B) =
{
μ ∈ �n

0 | ∀ j /∈ NL,B(ν) : μ j = 0
}

, is asso-
ciated to every multi index ν ∈ B such that the following two conditions on the
involutive cones CL,B(ν) = ν+ L(ν,B)⊆�n

0 are satisfied.

(i) If there exist two elements μ ,ν ∈ B with CL,B(μ) ∩ CL,B(ν) �= ∅, either
CL,B(μ)⊆ CL,B(ν) or CL,B(ν)⊆ CL,B(μ) holds.

(ii) If B′ ⊂ B, then NL,B(ν)⊆ NL,B′(ν) for all ν ∈ B′.

An arbitrary multi index μ ∈�n
0 is involutively divisible by ν ∈ B, written ν |L,B μ ,

if μ ∈ CL,B(ν). In this case ν is called an involutive divisor of μ .

Before discussing the precise meaning of this definition and in particular of the
two conditions contained in it, we should stress the following important point: as
clearly indicated by the notation, involutive divisibility is defined with respect to
both an involutive division L and a fixed finite set B ⊂ �n

0; only elements of B
can appear as involutive divisors. Obviously, involutive divisibility ν |L,B μ implies
ordinary divisibility ν | μ .

The involutive cone CL,B(ν) of an element ν ∈ B is generally only a subset of
the full cone C(ν): we are not allowed to add arbitrary multi indices to ν but may
increase only certain entries of ν determined by the multiplicative indices. The first
condition in the above definition says that involutive cones can intersect only triv-
ially: if two intersect, then one must be a subset of the other.

The non-multiplicative indices form the complement of NL,B(ν) in N and are
denoted by NL,B(ν). If we remove some elements from the set B and determine the
multiplicative indices of the remaining elements with respect to the subset B′, then
we will obtain in general a different result than before. The second condition for an
involutive division (sometimes called the filter axiom) says now that while it may
happen that a non-multiplicative index becomes multiplicative for some ν ∈ B′, the
converse cannot happen.

Remark 3.1.2. Alternatively, we may define axiomatically the notion of involutive
divisibility as follows. For every finite subset B ⊂ �n

0 a relation |L,B on B×�n
0

is given such that for all multi indices μ ,ν ∈ B and ρ ,σ ∈ �n
0 the following six

conditions are satisfied:

1. ν |L,B ρ implies that ν | ρ .
2. ν |L,B ν .
3. ν |L,B (ν+ρ) and ν |L,B (ν+σ), if and only if ν |L,B (ν+ρ+σ).
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4. If ν |L,B ρ and μ |L,B ρ , then either ν |L,B μ or μ |L,B ν .
5. If ν |L,B μ and μ |L,B ρ , then also ν |L,B ρ holds.
6. If B′ ⊂ B and ν |L,B μ for some multi indices ν ∈ B′ and μ ∈ �n

0, then also
ν |L,B′ μ .

The equivalence of this approach to Definition 3.1.1 is easily seen. If we define
CL,B(ν) = {μ ∈ �n

0 | ν |L,B μ}, then the first three conditions ensure firstly that
CL,B(ν) ⊆ C(ν) and secondly that CL,B(ν) is of the form ν + L(ν,B) for a sub-
monoid L(ν,B) ⊆�n

0 which is defined by some set of multiplicative indices (note
the “if and only if” in the third condition). The next two conditions require that the
intersection of two involutive cones is trivial and the last one is a verbatim transla-
tion of the filter axiom. �

Example 3.1.3. A simple example of an involutive division is the Thomas division T .
It is defined as follows: let B ⊂�n

0 be a finite set and μ ∈ B an arbitrary element;
then i ∈NT,B(μ), if and only if μi = maxν∈B νi. One easily verifies that both condi-
tions in Definition 3.1.1 are satisfied. �

Example 3.1.4. The Janet division J may be considered as a kind of refinement of
the Thomas division. In order to define it, we must introduce certain subsets of the
given set B ⊂�n

0:

(dk, . . . ,dn) =
{
ν ∈ B | νi = di , k ≤ i≤ n

}
. (3.2)

Thus all multi indices in (dk, . . . ,dn) share the same “k-tail”. The index n is mul-
tiplicative for ν ∈ B, if νn = maxμ∈B {μn}, and k < n is multiplicative for ν , if
νk = maxμ∈(νk+1,...,νn) {μk}. Obviously, in contrast to the Thomas division, this def-
inition depends on the order in which we process the entries of the multi indices
(i. e. on the ordering of the variables x1, . . . ,xn in polynomial computations) and we
obtain simple variants, if we first apply an arbitrary but fixed permutation π ∈ Sn to
each multi index.

Consider for n = 2 the set B =
{
ν(1) = [2,0],ν(2) = [0,2]

}
. As ν(2)

2 > ν(1)
2 , the

index 2 is multiplicative only for ν(2). In order to decide whether 1 is multiplica-
tive, we must look at the subsets (0) and (2), respectively. As each of them con-
sists of only one element, the index 1 is multiplicative for both multi indices and
we obtain that NJ,B(ν(1)) = {1} and NJ,B(ν(2)) = {1,2}. Thus the involutive cone
CT,B(ν(1)) =

{
[k,0] | k ≥ 2

}
is a proper subset of the full cone C(ν(1)). If we con-

sider the subset B′ ⊂ B consisting only of ν(1), then 2 becomes multiplicative for
the multi index ν(1), too, so that now CT,B′(ν(1)) = C(ν(1)). �

Lemma 3.1.5. The Janet division is an involutive division.

Proof. The second condition of Definition 3.1.1 is easy to verify. If k is a multi-
plicative index for ν ∈ B, then νk is maximal in a certain subset (dk+1, . . . ,dn)⊆ B.
If we remove some elements of the set B in order to obtain a subset B′ ⊂ B, then
this maximality is unchanged, as the corresponding subset (dk+1, . . . ,dn)⊆ B′ may
only have become smaller. Thus all multiplicative indices remain multiplicative. It
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may of course happen that some non-multiplicative indices become multiplicative
as in Example 3.1.4 above, but this is allowed for an involutive division.

Concerning the first condition in Definition 3.1.1, we will prove an even stronger
result: if CJ,B(μ)∩CJ,B(ν) �= ∅ for two multi indices μ ,ν ∈ B, then μ and ν must
in fact be identical. So assume there exists a multi index ρ ∈ CJ,B(μ)∩CJ,B(ν).
Then there must exist two multi indices μ̄ ∈ �n

NJ,B(μ) and ν̄ ∈ �n
NJ,B(ν) such that

ρ = μ+ μ̄ = ν+ ν̄ . We look first at ρn. If μ̄n > 0 and ν̄n > 0, n is multiplicative for
both μ and ν . But by the definition of the Janet division this requires μn = νn. It is
not possible that μ̄n > 0 and ν̄n = 0, as then μn < νn and nevertheless n ∈ NJ,B(μ)
contradicting the definition of the Janet division. The same holds for μ̄n = 0 and
ν̄n > 0. Thus we may conclude that μn = νn.

We proceed now to ρn−1. By the considerations above we know already that
μ ,ν ∈ (μn). But this observation implies that we can repeat the same reasoning
for the next entry. For n− 1 to be a multiplicative index for μ , we must have
μn−1 ≥ νn−1 and vice versa. Hence μn−1 = νn−1 and μ ,ν ∈ (μn−1,μn). Iterating
this argument, we get that μ = ν . �

We have stressed above that involutive divisibility is always defined with respect
to a given set B. However, involutive divisions exist where the assignment of the
multiplicative variables is independent of B. Such divisions are very convenient in
concrete computations and have a special name.

Definition 3.1.6. An involutive division L is globally defined, if the assignment of
the multiplicative indices to a multi index ν ∈ B is independent of the set B. In this
case we simply write NL(ν).

Example 3.1.7. The most important division for our purposes is the Pommaret divi-
sion P. It is a global division and assigns the multiplicative indices according to a
simple rule: if k = clsν (see Appendix A.1 for the definition of the class of a multi
index), then we set NP(ν) = {1, . . . ,k}. Thus, like for the Janet division, the position
of the entries of the multi indices are relevant and one can introduce simple variants
by first applying a permutation to every multi index. �

Lemma 3.1.8. The Pommaret division is an involutive division.

Proof. The second condition of Definition 3.1.1 obviously holds for any globally
defined division, as the set B does not influence the multiplicative indices. Concern-
ing the first condition, assume that a multi index ρ ∈ CP(μ)∩CP(ν) exists. As in the
proof of Lemma 3.1.5, we write ρ = μ+ μ̄ = ν+ ν̄ with multi indices μ̄ ∈�n

NP(μ)
and ν̄ ∈�n

NP(ν). Without loss of generality, we may assume that clsμ ≤ clsν = k.
By definition of the Pommaret division, this assumption implies ρi = μi = νi for all
i > k. We must distinguish two cases. If clsμ = k, too, then either νk ≤ μk and con-
sequently μ ∈ CP(ν) or νk > μk and ν ∈ CP(μ). If clsμ < k and νk ≤ μk, then again
μ ∈ CP(ν). This observation finishes the proof, as it is not possible that clsμ < k
and νk > μk: because of ρk ≥ νk, the index k would then have to be multiplicative
for μ contradicting clsμ < k. �
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Above we introduced the span of a set B ⊂ �n
0 as the union of the cones of its

elements. Given an involutive division it appears natural to consider also the union
of the involutive cones. Obviously, this construction yields in general only a subset
(without any algebraic structure) of the monoid ideal 〈B〉.

Definition 3.1.9. The involutive span of a finite set B ⊂�n
0 is

〈B〉L =
⋃

ν∈B
CL,B(ν) . (3.3)

The set B is called weakly involutive for the division L or a weak involutive basis
of the monoid ideal 〈B〉, if 〈B〉L = 〈B〉. The set B is a strong involutive basis or for
short an involutive basis, if the union in (3.3) is disjoint, i. e. the intersections of the
involutive cones are empty. We call any finite set B ⊆ B̄ ⊂�n

0 such that 〈B̄〉L = 〈B〉
a (weak) involutive completion of B. An obstruction to involution for the set B is a
multi index ν ∈ 〈B〉\ 〈B〉L.

[0,2]

[2,0]

[0,2]

[2,0]

[2,1]

Fig. 3.1 Left: intersecting cones. Right: involutive cones.

Example 3.1.10. Figure 3.1 demonstrates the geometric interpretation of involutive
divisions for n = 2. In both diagrams one can see the monoid ideal generated by
the set B =

{
[0,2], [2,0]

}
; the vertices belonging to it are marked by dark points.

The arrows represent the multiplicative indices, i. e. the “allowed directions”, for
both the Janet and the Pommaret division, as they coincide for the set B. The left
diagram shows that the full cones of the two elements of B intersect in the darkly
shaded area and that B is not (weakly) involutive, as the multi indices [k,1] with
k ≥ 2 are obstructions to involution. The right diagram shows a strong involutive
basis of 〈B〉 for both the Janet and the Pommaret division. We must add to B the
multi index [2,1] and both for it and for [2,0] only the index 1 is multiplicative. One
clearly sees how the span 〈B〉 is decomposed into three disjoint involutive cones:
one of dimension 2, two of dimension 1. �
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Example 3.1.11. As the monoid�n
0 possesses a natural grading by the length |μ | of

the multi indices, we may consider for any monoid ideal I ⊆�n
0 the homogeneous

component Iq of all multi indices in I of length q. The ideal I is called (reverse)
lexicographic, if for each length q a number rq ≥ 0 exists such that Iq consists of
the rq greatest multi indices of length q with respect to the (reverse) lexicographic
order. Any basis of such an ideal is a weak Pommaret basis, although we have not
yet the necessary tools for proving this fact (see Proposition 5.5.6 below). But we
may already note the crucial step in the proof.

Let us assume for simplicity that our ideal possesses a basis B where all genera-
tors are of the same length. If ν ∈ B is a generator of class k, then a necessary con-
dition for B being a Pommaret basis is that each multi index ν+1 j where k < j ≤ n
(i. e. where j is non-multiplicative for ν) is contained in some involutive cone. By
our definition of the (reverse) lexicographic order (cf. Example A.1.7), we have
ν ≺lex μ = ν + 1 j− 1k (and ν ≺revlex μ). Thus the multi index μ must also be an
element of the basis and, since obviously clsμ ≥ clsν , the index k is multiplicative
for it with respect to the Pommaret division implying that ν+ 1 j ∈ CP(μ). �

We are particularly interested in strong involutive bases, as only these lead to
disjoint decompositions. The following result shows that in the “monomial” case
any weak involutive basis can be reduced to a strong one by simply eliminating
some redundant elements. Its proof provides a nice motivation for the two conditions
imposed in Definition 3.1.1 of an involutive division.

Proposition 3.1.12. If B is a weakly involutive set, then a subset B′ ⊆B exists such
that B′ is a strong involutive basis of 〈B〉.

Proof. If B is not yet a strong involutive basis, then the union in (3.3) cannot be dis-
joint. Thus intersection involutive cones must exist. By the first condition, this fact
implies that some cones are contained in other ones; no other form of intersection is
possible. If we eliminate the corresponding elements of B, we get a subset B′ ⊂ B
which has by the second condition the same involutive span, as the remaining ele-
ments may only gain additional multiplicative indices. Thus after a finite number of
such eliminations of elements of B we arrive at a strong involutive basis. �

Remark 3.1.13. Let I1, I2 be two monoid ideals in�n
0 and B1, B2 (weak) involutive

bases of them for some division L. In general, we cannot expect that B1 ∪B2 is
again a weak involutive basis of the ideal I1 + I2, as the involutive cones of the
generators may shrink when taken with respect to the larger set B1∪B2. Only for a
global division we always obtain at least a weak involutive basis (which may then
be reduced to a strong basis according to Proposition 3.1.12). �

An obvious necessary condition for a set B to be strongly involutive for the di-
vision L is that no element of it involutively divides another one. Sets with this
property have a special name.

Definition 3.1.14. A finite subset B ⊂�n
0 which does not contain two distinct multi

indices μ �= ν such that μ |L,B ν is called involutively autoreduced with respect to
the involutive division L.
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Remark 3.1.15. In the proof of Lemma 3.1.5 we showed that with respect to the
Janet division two involutive cones can only intersect, if they are identical. Thus for
this division any set B is involutively autoreduced and any weakly involutive set is
automatically strongly involutive. This property is surely convenient for computa-
tions, but it has the disadvantage that in general it leads to unnecessary large bases.
As a simple example consider for n = 1 the set B =

{
[1], [2]

}
. For most involutive

divisions B would not be involutively autoreduced and the only strong involutive
basis of 〈B〉 would be

{
[1]
}

. Not so for the Janet division where the presence of the
multi index [2] entails that no index is multiplicative for [1]. �

The explicit algorithmic construction of (strong) involutive completions for a
given set B ⊂�n

0 will be discussed in detail in Section 4.2. For the moment we only
note that we cannot expect that for an arbitrary set B and an arbitrary involutive
division L an involutive basis B′ of 〈B〉 exists.

Example 3.1.16. We take the Pommaret division and the set B =
{
[1,1]
}

. As
cls [1,1] = 1, we get NP([1,1]) = {1}. So CP([1,1]) � C([1,1]) and the set B is
not involutive. But any multi index contained in 〈B〉 has also class 1 and hence it is
easy to see that even by adding finitely many of them we cannot obtain an involutive
basis of 〈B〉 for the Pommaret division. We can generate 〈B〉 involutively only with
the infinite set

{
[1,k] | k ∈�

}
. �

Remark 3.1.17. Since by definition an involutive basis is always finite, it does not
really make sense to say that an infinite set involutively generates some monoid
ideal. Ignoring this inconsistency for a moment, we now show that even if a monoid
ideal does not possess a finite Pommaret basis, it has at least an infinite Pommaret
basis with so much structure that it admits a simple finite description generalising
the one found in the example above.

In order to see this fact, we consider first the case of an irreducible monoid
ideal I ⊂ �n

0. It is well-known that any such I has a minimal basis of the form
{(�1)i1 , . . . ,(�r)ir} with 1≤ r ≤ n, � j > 0 and 1≤ i1 < · · · < ir ≤ n. Here (� j)i j de-
notes the multi index where all entries are zero except of the i jth one which takes
the value � j (see (A.2)). Such an irreducible ideal possesses a Pommaret basis, if
and only if there are no “gaps” in the sequence i1 < · · · < ir ≤ n, i. e. ir = n and
i1 = n− r +1. Indeed, in order to generate involutively I, we need all multi indices
of the form [0, . . . ,0, �i j ,μi j+1, . . . ,μn] where 1≤ j ≤ r and where the possibles val-
ues of μk are bounded by �i j′ , if and only if i j′ = k for some j′ > j; otherwise we
must admit all μk ≥ 0. Hence only if no gaps appear, the arising set is finite.

For a general monoid ideal I, we exploit that any monoid ideal in �n
0 possesses

a unique irreducible decomposition [322, Thm. 5.27], i. e. we can always express I
as the intersection of finitely many irreducible ideals. In Remark 4.1.6 we will show
how a Pommaret basis of the intersection of two (monoid) ideals can be obtained
from Pommaret bases of the ideals by simply taking least common multiples.

As a simple corollary of these considerations we find that any Artinian (or zero-
dimensional) monoid ideal I has a Pommaret basis. Indeed it is well-known that I
is Artinian, if and only if it contains an irreducible ideal J with a minimal basis
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{(�1)1, . . . ,(�n)n}. As no gaps appear, J possesses a finite Pommaret basis B′. Now
the finite set B = B′∪ (I \J ) is trivially a weak Pommaret basis of I. �

Some involutive divisions have the property that with respect to them any monoid
ideal I ⊆�n

0 possesses an involutive basis. Of course, this property plays an impor-
tant role in algorithmic considerations and we provide a special name for it.

Definition 3.1.18. An involutive division L is called Noetherian, if any finite subset
B ⊂�n

0 possesses a finite involutive completion with respect to L.

It follows trivially from Example 3.1.16 that the Pommaret division is not
Noetherian. For the Janet division the situation is different.

Lemma 3.1.19. The Janet division is Noetherian.

Proof. Let B ⊂ �n
0 be an arbitrary finite set of multi indices. We will explicitly

construct a Janet basis for 〈B〉. Let μ be the multi index defined by μi = maxν∈B νi

(i. e. xμ = lcmB). We claim that the set

B̄ =
{
ν̄ ∈�n

0∩〈B〉 | μ ∈ C(ν̄)
}

(3.4)

is an involutive completion of B with respect to the Janet division. Obviously, we
haveB⊆ B̄ and B̄ ⊂ 〈B〉. Let ρ ∈ 〈B〉 be an arbitrary element. If ρ ∈ B̄, then trivially
ρ ∈ 〈B̄〉J . Otherwise we set I = {i | ρi > μi} and consider the multi index ρ̄ defined
by ρ̄k = min{ρk,μk} for 1 ≤ k ≤ n. By the definition of the set B̄ and of the multi
index μ , we have that ρ̄ ∈ B̄ and that I ⊆NJ,B̄(ρ̄). This fact implies that ρ ∈ CJ,B̄(ρ̄)
and thus B̄ is a finite Janet basis for 〈B〉. �

Recall that a basis B of a monoid ideal is called minimal, if it is not possible to
remove an element of B without losing the property that we have a basis. A similar
notion can naturally be introduced for involutive bases.

Definition 3.1.20. Let I ⊆ �n
0 be a monoid ideal and L an involutive division. An

involutive basis B of I with respect to L is called minimal, if any other involutive
basis B′ of I with respect to L satisfies B ⊆ B′.

Any monomial ideal has a unique minimal monomial basis: take an arbitrary
monomial basis and eliminate all terms having a divisor in the basis. Obviously,
these eliminations do not change the span and the result is a minimal basis. We will
see later in Section 4.2 that the minimal involutive basis of any monoid ideal is also
unique (if it exists). For globally defined divisions, any involutive basis is unique.

Proposition 3.1.21. Let L be a globally defined involutive division and I ⊆�n
0 a

monoid ideal. If I possesses an involutive basis for the division L, then it is unique
and thus minimal.

Proof. Let B1, B2 be two distinct involutive bases of the monoid ideal I. Then both
B1 \B2 and B2 \ B1 must be non-empty, as otherwise one basis was contained in
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the other one and thus the larger basis could not be involutively autoreduced with
respect to the global division L. Consider an arbitrary multi index ν ∈ B1 \B2. The
basis B2 must contain a unique multi index μ with μ |L ν . It cannot be an element of
B1, as B1 is involutively autoreduced. Thus a unique multi index λ ∈ B1 must exist
with λ |L μ . As L is globally defined, this implies that λ |L ν , a contradiction. �

Addendum: Some Algorithmic Considerations

In any concrete computation with involutive bases two operations appear repeat-
edly: the determination of the multiplicative indices for an element of a given subset
B ⊂�n

0 and the search for an involutive divisor ν ∈ B of an arbitrary multi index μ .
In this Addendum we briefly discuss how these operations may be efficiently per-
formed for the special cases of the Janet and the Pommaret division, respectively,
as these are the most important divisions in applications. Readers only interested in
the theory may safely omit this material.

We begin with the Janet division. Its definition is based on the subsets (dk, . . . ,dn)
introduced in (3.2). Via their inclusion relations these sets induce in a natural manner
a tree structure for every finite set B ⊂�n

0: the root is () = B and the children of a
node (dk, . . . ,dn) are the non-empty subsets (dk−1,dk, . . . ,dn). Obviously, the leaves
correspond to the individual multi indices contained in B. We call this tree the Janet
tree J (B) of the set B.

For any set B ⊂�n
0 the depth of J (B) is always n+1 and the number of children

of the node (dk, . . . ,dn) is bounded by the maximal value of νk−1 for the multi
indices ν ∈ (dk, . . . ,dn). If we sort the children of each node such that smaller values
of dk−1 appear to the left of higher values, then the leaves appear in lexicographic
order (according to our definition in Appendix A.1).

As a first application of this idea we discuss the construction of the sets NJ,B(ν)
for all multi indices ν in a given finite set B ⊂�n

0. In Algorithm 3.1 the use of the
Janet tree J (B) may not become apparent at first sight, but effectively the algorithm
traverses the tree from the right to the left. It runs two pointers p1 and p2 over the
multi indices: in the kth iteration p1 marks the first entry from the right where the
multi indices ν(k−2) and ν(k−1) differ and similarly p2 the first entry from the right
where ν(k−1) and ν(k) differ. Counting from the leaves, these pointers correspond to
the currently considered level in the tree; when their values increase then we climb
up until we reach the next node where a branching occurs.

The correctness of Algorithm 3.1 is implied by the following considerations.
After the sorting, the multi index ν(1) is maximal with respect to the lexicographic
order hence and thus all indices are multiplicative for it with respect to the Janet
division. By the definition of the pointers p1 and p2, both multi indices ν(k−1) and

ν(k) are contained in the subset
(
ν(k)

p2+1, . . . ,ν
(k)
n
)
.

Because of the lexicographic ordering, we have ν(k)
p2 < ν(k−1)

p2 and hence p2

is not multiplicative for ν(k). Concerning the multiplicity of the indices i > p2,
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Algorithm 3.1 Janet multiplicative indices

Input: finite list B =
[
ν (1), . . . ,ν (r)

]
of pairwise different multi indices from�n

0

Output: listM =
[
NJ,B(ν (1)), . . . ,NJ,B(ν (k))

]
with multiplicative variables

1: B ← sort(B,≺lex); ν ←B[1]
2: p1← n; I← {1, . . . ,n}; M[1]← I
3: for k from 2 to r do
4: p2← max

{
i | (ν−B[k])i �= 0

}
; I← I \{p2}

5: if p1 < p2 then
6: I← I∪{p1 , . . . , p2−1}
7: end if
8: M[k]← I; ν ←B[k]; p1← p2
9: end for

10: return M

we simply keep the previous values, as they are identical for all multi indices in(
ν(k)

p2+1, . . . ,ν
(k)
n
)
. Note that all indices i < min{p1, p2} are always included in the

current set I.
If the pointers coincide, p1 = p2, then we have completed one branch starting

from the node
(
ν(k)

p2+1, . . . ,ν
(k)
n
)

and continue with the next one. In this case obvi-
ously nothing happens except that p2 cannot be multiplicative as explained above.
If p1 > p2, we follow one branch further down until the next branching takes place.
Again this only affects the multiplicity of p2.

Finally, if p1 < p2, then we are finished with the analysis of all children of(
ν(k−1)

p1+1 , . . . ,ν(k−1)
n
)

and we climb up in the tree until we reach the next node where

a branching occur: this is
(
ν(k)

p2+1, . . . ,ν
(k)
n
)
. As we have now a new value at the

position p2, all considerations about the indices between p1 and p2 are obsolete

and within the child
(
ν(k)

p2 , . . . ,ν(k)
n
)

the multi index ν(k) has the highest entry at the
position p2. Hence the indices p1, . . . , p2−1 become multiplicative for it.

Example 3.1.22. We demonstrate Algorithm 3.1 for the (already lexicographically
sorted) set

B =
{
[2,3,3], [1,3,3], [0,3,3], [1,0,3], [1,2,1],

[4,2,0], [2,2,0], [0,2,0]
}

.
(3.5)

Figure 3.2 shows the corresponding Janet tree.
The greatest multi index is [2,3,3] and hence all indices are multiplicative for it.

At the beginning we have p1 = 3 and comparing [2,3,3] and [1,3,3] yields p2 = 1.
Hence for [1,3,3] only 2 and 3 are multiplicative. Now p1 is reset to 1 and the next
comparison yields again p2 = 1. Thus [0,3,3] has the same multiplicative indices
as [1,3,3]. In the next iteration we find p2 = 2 > p1 = 1 and the new multiplicative
indices are 1 and 3. So we encounter already in the first three iterations all cases for
the relation between p1 and p2. �

Our next task consists of searching in a given set B for a Janet divisor of an
arbitrary multi index μ ∈�n

0, i. e. to check whether B contains a multi index ν such
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()

(0)

(2,0)

(0,2,0) (2,2,0) (4,2,0)

(1)

(2,1)

(1,2,1)

(3)

(0,3)

(1,0,3)

(3,3)

(0,3,3) (1,3,3) (2,3,3)

Fig. 3.2 Janet tree for Example 3.1.22

that ν |J,B μ . Note that ν is uniquely determined, if it exists, as by Remark 3.1.15
any set B is involutively autoreduced for the Janet division. Given the Janet tree
J (B) our task may be solved very efficiently with Algorithm 3.2.

We start at the root of J (B) and descend level by level. At step i we check
whether the current node S = (di+1, . . . ,dn) either has a child (di, . . . ,dn) such that
di = μi or whether μi is greater than the maximal value di of any child. If this
condition is satisfied, we may continue, as in the latter case i is multiplicative for
all multi indices contained in di .S = (di, . . . ,dn). Otherwise the set B contains no
Janet divisor of μ . If the algorithm arrives in Line /12/, then the subset S consists
of precisely one multi index ν ∈ B which is the Janet divisor of μ . Indeed, at each
position i we have either νi = μi or νi < μi and the index i is multiplicative for ν .

Algorithm 3.2 Janet divisor
Input: Janet tree J (B) and multi index μ ∈�n

0
Output: Element ν ∈ B with ν |J,B μ or FAIL
1: S ← (); i← n
2: while i > 0 do
3: if μi ≥ di = maxν∈S νi then
4: S ← di .S
5: else if S has child μi .S then
6: S ← μi .S
7: else
8: return FAIL
9: end if

10: i← i−1
11: end while
12: return S

In Chapter 4 we will discuss algorithms for the construction of involutive com-
pletions. Thus we do not always work with a fixed set B but multi indices may be
added to or removed from B. Of course it would be inefficient to rebuild the com-
plete Janet tree J (B) each time this happened. However, it is trivial to efficiently
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insert or delete leaves from J (B). The corresponding algorithms are so simple that
we omit their pseudo code.

For the insertion of a new leaf μ we descend the Janet tree, as long as nodes
(μi, . . . ,μn) already exist, then we add new nodes for the not yet existing subsets.
For the deletion of a leave ν ∈ B we follow the branch ending in ν from the bottom
upwards until we find a parent node possessing more than one children; all nodes
below this one are eliminated. Thus in a concrete implementation the deletion algo-
rithm requires additional pointers to all leaves and from each child to its parent.

For the Pommaret division the determination of the multiplicative indices is of
course trivial. For the determination of a Pommaret divisor we may follow a similar
approach as for the Janet division. In fact, it is convenient to express (a part of) the
search for a Pommaret divisor in the set B with the help of the Janet tree J (B). The
relation ν |P μ holds, if and only if νi = μi for all i > k = clsν and νk ≤ μk. Note that
a Pommaret divisor ν is uniquely determined, only if the set B is involutively au-
toreduced. If several divisors exist, Algorithm 3.3 returns the one with the minimal
value of the entry νk.

Algorithm 3.3 Pommaret divisor
Input: Janet tree J (B) and multi index μ ∈�n

0
Output: Element ν ∈ B with ν |P μ or FAIL
1: S ← (); i← n
2: while (S has child μi .S) and (i > 0) do
3: S ← μi .S; i← i−1
4: end while
5: if i = 0 then
6: return μ {We even have μ ∈ B.}
7: end if
8: for d from 0 to μi−1 do
9: if ν = [0, . . . ,0,d,μi+1, . . . ,μn] ∈ B then

10: return ν
11: end if
12: end for
13: return FAIL

The algorithm descends the Janet tree J (B), as long as nodes corresponding to
subsets (μi, . . . ,μn) exist. Then it simply checks whetherB contains a multi index of
the form [0, . . . ,0,d,μi+1, . . . ,μn] with d < μi. If this is not the case, then the given
set B does not contain a Pommaret divisor of μ .

The complexity of all these algorithms depends on how a concrete implementa-
tion realises the Janet tree, as typically we must search whether a node has a certain
child. A simple approach would consist of having in each node a sorted list of the
pointers to its children. Then Algorithm 3.2 will require at a node S on level i at
most maxν∈S νi comparisons and the total number of comparisons is bounded by
d = maxν∈B |ν|. Thus all our algorithms can easily be realised in O(n + d).

A straightforward optimisation would be to replace the list in node S by an array
of length maxν∈S νi. The dth entry of the array would either be a pointer to the
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child d .S, if it exists, or an empty pointer otherwise. Assuming that the access to an
array element is possible in constant time, this even leads to a complexity O(n) for
our algorithms. However, in the case of the insertion and deletion algorithm some
additional overhead occurs, as it now may happen that an array must be replaced by
a larger or a smaller one.

3.2 Polynomial Algebras of Solvable Type

We introduced in the last section involutive bases in�n
0. We could now interpret the

multi indices as monomials and proceed to define involutive bases for polynomial
ideals. But we are also interested in other rings containing, say, linear differential or
difference operators. As the basic ideas remain unchanged in many different situa-
tions, we need a class of rings within which all interesting cases can be handled in a
unified manner: the polynomial algebras of solvable type.

Let P =R[x1, . . . ,xn] be a polynomial ring over a ring R. If R is commutative,
then P is a commutative ring with respect to the usual multiplication. We want
to equip the R-module P with alternative multiplications, in particular with non-
commutative ones, where it is allowed that both the variables xi do not commute any
more and that they operate on the coefficients. We will denote in the sequel the usual
multiplication either by a dot · or by no symbol at all and alternative multiplications
P×P →P by f � g.

Like Gröbner bases, involutive bases are defined with respect to a term order ≺
(cf. Definition A.1.1). It selects in each polynomial f ∈P a leading term lt≺ f = xμ

with leading exponent le≺ f = μ ; the coefficient r ∈ R of xμ in f is the leading
coefficient lc≺ f and the product rxμ is the leading monomial lm≺ f (see also Ap-
pendix B.4). Based on the leading exponents, we can associate to each finite set
F ⊂ P a finite set le≺F ⊂ �n

0 to which we may apply the theory developed in
the last section. But in order for this approach to make sense, we need a kind of
compatibility between the multiplication � and the chosen term order≺. These con-
siderations naturally lead to the following definition.

Definition 3.2.1. The triple
(
P = R[x1, . . . ,xn],�,≺

)
is a polynomial algebra

of solvable type over the coefficient ring R for the term order ≺, if the multipli-
cation � : P×P →P satisfies the following three axioms.

(i) (P ,�) is a ring with neutral element 1.
(ii) ∀r ∈R, f ∈ P : r � f = r f .
(iii) ∀μ ,ν ∈�n

0, r ∈R\{0} : le≺ (xμ � xν) = μ+ν ∧ le≺ (xμ � r) = μ .

Condition (i) ensures that the arithmetics in (P ,�) obeys the usual associative
and distributive laws. Because of Condition (ii), the algebra (P ,�) may be con-
sidered as a left R-module. We do not assume that it is also a right R-module,
as this requirement would exclude the possibility that the variables xi operate non-
trivially on R. Condition (iii) ensures the compatibility of the new multiplication �
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and the term order≺; we say that � is an order respecting multiplication. This prop-
erty implies the existence of injective maps ρμ : R→R, maps hμ : R→ P with
le≺
(
hμ(r)

)
≺ μ for all r ∈R, coefficients rμν ∈R\{0} and polynomials hμν ∈ P

with le≺ (hμν)≺ μ+ν such that

xμ � r = ρμ(r)xμ + hμ(r) , (3.6a)

xμ � xν = rμνxμ+ν + hμν . (3.6b)

Lemma 3.2.2. The maps ρμ and the coefficients rμν satisfy for arbitrary multi in-
dices μ ,ν,λ ∈�n

0 and for arbitrary ring elements r ∈R

ρμ
(
ρν(r)

)
rμν = rμνρμ+ν(r) , (3.7a)

ρμ(rνλ )rμ,ν+λ = rμνrμ+ν,λ . (3.7b)

Furthermore, all maps ρμ are ring endomorphisms.

Proof. The first assertion is a trivial consequence of the associativity of the mul-
tiplication �. The equations correspond to the leading coefficients of the equalities
xμ � (xν � r) = (xμ � xν)� r and xμ � (xν � xλ ) = (xμ � xν)� xλ , respectively. The sec-
ond assertion follows mainly from Condition (i). �

If the coefficient ringR is a (skew) field, then for arbitrary polynomials f ,g ∈ P
an element r ∈R\{0} and a polynomial h∈ P satisfying le≺ (h)≺ le≺ ( f ·g) exist
such that the new and the usual multiplication on P are related by

f � g = r ( f ·g)+ h . (3.8)

Indeed, if lm≺ f = axμ and lm≺ g = bxν , then a simple computation yields that r
is the (unique) solution of the equation aρμ(b)rμν = rab in R and h is the differ-
ence f � g− r( f ·g). Thus under this assumption on the coefficient ring R we may
reformulate Condition (iii) in Definition 3.2.1 more concisely as

(iii)’ ∀ f ,g ∈ P : le≺ ( f � g) = le≺ ( f ·g) = le≺ f + le≺ g.

Proposition 3.2.3. The product � is fixed, as soon as the following data are given:
constants ri j ∈R\{0}, polynomials hi j ∈P and maps ρi :R→R, hi :R→P such
that for 1≤ i≤ n

xi � r = ρi(r)xi + hi(r) , ∀r ∈R , (3.9a)

xi � x j = ri jx
j � xi + hi j , ∀1≤ j < i . (3.9b)

Proof. The set of all “terms” xi1 � xi2 � · · · � xiq with i1 ≤ i2 ≤ ·· · ≤ iq forms a basis
of P , as because of Condition (iii) the map xi1 � xi2 � · · · � xiq 	→ xi1 · xi2 · · ·xiq is an
R-module automorphism mapping the new basis into the standard basis. Obviously,
it is possible to evaluate any product f � g by repeated applications of the rewrite
rules (3.9) provided f and g are expressed in the new basis. �
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Note that this proof is non-constructive in the sense that we are not able to deter-
mine the multiplication in terms of the standard basis, as we do not know explicitly
the transformation between the new and the standard basis. The advantage of this
proof is that it is valid for arbitrary coefficient rings R. Making some assumptions
on the ring R (the simplest possibility is to require that it is a field), one could
use Lemma 3.2.2 to express the coefficients rμν and ρμ in (3.6) by the data in the
commutation relations (3.9). This would yield a constructive proof.

Of course, the data in Proposition 3.2.3 cannot be chosen arbitrarily. Besides the
obvious restrictions for the leading exponents of the polynomials hi j and hi(r) im-
posed by Condition (iii), each map ρi must be an injective R-endomorphism and
each map hi must satisfy hi(r + s) = hi(r)+hi(s) and a kind of pseudo-Leibniz rule
hi(rs) = ρi(r)hi(s)+ hi(r)∗ s. The associativity of � imposes further rather compli-
cated conditions. For the case of a multiplication defined by commutation rules (i. e.
when Proposition 3.2.3 can be made effective) they have been explicitly determined
by Levandovskyy [285, 286] who called them non-degeneracy conditions (see also
the extensive discussion by Kredel [264, Sect. 3.3]).

Before we continue to study some elementary properties of polynomial algebras
of solvable type, we consider a number of examples in order to demonstrate that this
concept appears in fact in many different applications. Thus although the motivation
for the conditions in Definition 3.2.1 is mainly of an algorithmic nature (see the
discussion after Definition 3.3.12 below), it turns out that they are fairly natural in
many contexts.

Example 3.2.4. Obviously, the most trivial example of an algebra of solvable type is
the usual polynomial ring P , i. e. the case f �g = f g. Its multiplication respects any
term order, as—by definition—a term order is compatible with the monoid structure
of the set � of terms.

A non-commutative example is provided by rings of linear differential operators
(with variable coefficients). We take for the coefficients some ring � of functions in
x1, . . . ,xn, say the rational functions�(x1, . . . ,xn), and consider the polynomial ring
D = �[∂1, . . . ,∂n] where ∂i = ∂/∂xi. More generally, we may take any differential
ring� with commuting derivations ∂i. According to the Leibniz rule, the product of
two monomial operators a∂ μ and b∂ν with a,b ∈� is

a∂ μ � b∂ν = ∑
σ+ρ=μ

(
μ
σ

)
a
∂ |σ |b
∂xσ

∂ρ+ν (3.10)

where
(μ
σ
)

is shorthand for∏n
i=1

(μi
σi

)
. By the properties of a term order

le≺
(
a∂ μ � b∂ν

)
= μ+ν = le≺

(
a∂ μ
)
+ le≺

(
b∂ν
)

, (3.11)

as any term ∂ρ+ν appearing on the right hand side of (3.10) divides ∂ μ+ν and thus
∂ρ+ν � ∂ μ+ν for any term order ≺. Hence D is a polynomial algebra of solvable
type for all term orders. �
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This example can be considerably extended to a fairly large class of non-
commutative polynomial algebras originally introduced by Noether and Schmeidler
[336] and later systematically studied by Ore [344]; our exposition follows [54].

Example 3.2.5. LetR be an arbitrary commutative ring and σ :R→R an injective
endomorphism. A pseudo-derivation with respect to σ is a map δ :R→R such that
(i) δ ( f +g) = δ ( f )+δ (g) and (ii) δ ( f ·g) = σ( f ) ·δ (g)+δ ( f ) ·g for all f ,g ∈R.
If σ = idR, the identity map, (ii) is the standard Leibniz rule for derivations. Ore
[344] called σ( f ) the conjugate and δ ( f ) the derivative of f .

If the coefficient ring R is even a field, then the conjugate and the derivative are
actually closely related or trivial. Applying the generalised Leibniz rule (ii) to the
obvious identity δ ( f ·g) = δ (g · f ) yields the equation

(
σ( f )− f

)
·δ (g) =

(
σ(g)−g

)
·δ ( f ) . (3.12)

Assume that σ �= idR. Then there exists an element f ∈Rwith σ( f ) �= f and we set
f̃ = δ ( f )/

(
σ( f )− f

)
. Now (3.12) implies that δ (g) = f̃

(
σ(g)−g

)
for any g ∈R

and hence δ = f̃ · (σ − idR). Conversely assume that δ �= 0. Then there exists an
f ∈ R with δ ( f ) �= 0 and we set f̃ =

(
σ( f )− f

)
/δ ( f ). This time (3.12) implies

that σ(g) = f̃ ·δ (g)+ g for any g ∈R and hence σ = f̃ ·δ + idR.
Given the maps σ and δ , the ringR[∂ ;σ ,δ ] of univariate Ore polynomials con-

sists of all formal polynomials in ∂ with coefficients inR, i. e. of expressions of the
form θ = ∑q

i=0 fi∂ i with fi ∈ R and q ∈�0. The addition is defined as usual. The
“variable” ∂ operates on an element f ∈R according to the rule

∂ � f = σ( f )∂ + δ ( f ) (3.13)

which is extended associatively and distributively to define the multiplication in
the ring R[∂ ;σ ,δ ]: given two elements θ1,θ2 ∈ R[∂ ;σ ,δ ], we can transform the
product θ1 �θ2 to the above normal form by repeatedly applying (3.13). The product
of two linear polynomials evaluates then to

( f1 + f2∂ )� (g1 + g2∂ ) = f1g1 + f2δ (g1)+
[

f1g2 + f2σ(g1)+ f2δ (g2)
]
∂ + f2σ(g2)∂ 2 .

(3.14)

The condition that σ is injective ensures that deg(θ1 �θ2) = degθ1 +degθ2. We call
R[∂ ;σ ,δ ] the Ore algebra generated by σ and δ .

A simple familiar example is given by R=�(x), δ = d
dx and σ = idR yielding

linear ordinary differential operators with rational functions as coefficients. Sim-
ilarly, we can obtain recurrence and difference operators. We set R = �(n), the
field of sequences (sn)n∈� with complex elements sn ∈ �, and take for σ the shift
operator, i. e. the automorphism mapping sn to sn+1. Then Δ = σ− idR is a pseudo-
derivation.R[E;σ ,0] consists of linear ordinary recurrence operators,R[E;σ ,Δ ] of
linear ordinary difference operators.

Note that so far it is not yet clear why we call the elements of these classical
examples “operators.” In fact, the elements of any Ore algebra R[∂ ;σ ,δ ] may be
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interpreted as operators onR-modules. Let V be anR-module and A anR-pseudo-
linear map A : V → V , i. e. A(u+ v) = A(u)+A(v) and A( f u) = σ( f )A(u)+δ ( f )u
for all f ∈R and u,v∈V . Then we introduce an actionα :R×V→V mapping (θ =
∑ fi∂ i,u) to Aθu = ∑ fiAi(u). For V =Rm a natural choice for A is A(v1, . . . ,vm) =(
δ (v1), . . . ,δ (vm)

)
. If δ = 0 as for the recurrence operators, then we may also take

A(v1, . . . ,vm) =
(
σ(v1), . . . ,σ(vm)

)
. With these definitions the above mentioned Ore

algebras contain linear operators in the familiar sense.
For multivariate Ore polynomials we take a set Σ = {σ1, . . . ,σn} of injective

R-endomorphisms and a set Δ = {δ1, . . . ,δn} where each δi is a pseudo-derivation
with respect to σi. For each pair (σi,δi) we introduce a “variable” ∂i satisfying a
commutation rule of the form (3.13). If we require that all the maps σi,δ j commute
with each other, i. e. σi ◦σ j = σ j ◦σi, δi ◦ δ j = δ j ◦ δi and σi ◦ δ j = δ j ◦σi for all
i �= j, one easily checks that ∂i � ∂ j = ∂ j � ∂i, i. e. the “variables” ∂i commute.

Setting D = {∂1, . . . ,∂n}, we denote by R[D;Σ ,Δ ] the ring of multivariate Ore
polynomials. Because of the commutativity of the variables ∂i, we may write the
terms as ∂ μ with multi indices μ ∈ �n

0, so that it indeed makes sense to speak of
a polynomial ring. The proof that

(
R[D;Σ ,Δ ],�

)
is an algebra of solvable type

for any term order goes completely analogously to the case of linear differential
operators treated explicitly in Example 3.2.4 because of the great similarity of (3.13)
and (3.10) (for μ = 1 j and ν = 0). �

Ore algebras represent the special case where in Proposition 3.2.3 the maps hi

take their values in R and not in P and where the variables commute. We consider
now an example with non-commutative variables. By the same construction princi-
ple, factorisation of a free tensor algebra by a suitable quadratic ideal, one can also
generate many other interesting algebras like Clifford algebras.

Example 3.2.6. Let A be a finite-dimensional Lie algebra over a field �. As usual,
we denote the product in A by brackets: [X ,Y ]. Readers unfamiliar with Lie algebras
should think of a subalgebra of gl(m,�), the algebra of all m×m matrices with
entries from �. The bracket is then the well-known commutator [X ,Y ] = XY −YX .
Note that here the commutator is considered as the multiplication in the algebra and
not the ordinary matrix product!

As an algebra over a field �, A is in particular a vector space and thus we can
choose a basis {X1, . . . ,Xn}. The structure of the Lie algebra is defined by the com-
mutation relations of the generators Xi:

[Xi,Xj] = Ck
i jXk (3.15)

where the Ck
i j ∈ � are the structure constants of the algebra A.

We construct now the universal enveloping algebra of A, a very important tool
in the representation theory of Lie algebras (see e. g. [467, Chapt. 3]). We start
with the tensor algebra T(A) over A; a basis of it is given by all formal tensor
products Xi1⊗Xi2⊗·· ·⊗Xiq with q ∈�0. As Xi⊗Xj �= Xj⊗Xi, we cannot identify
such “terms” with multi indices in �n

0. We must first factor by the two-sided ideal
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generated by all quadratic elements Xi⊗Xj−Xj⊗Xi− [Xi,Xj] in order to obtain the
universal enveloping algebra U(A).

One can show that U(A) is an associative algebra and has the following universal
property. Let π : A→ U(A) be the canonical linear map defined by Xi 	→ [Xi], i. e.
each generator Xi is mapped on its equivalence class in the factor algebra U(A).
The map π satisfies π([X ,Y ]) = [π(X),π(Y)] for all X ,Y ∈ A. Let B be another
associative algebra with a linear map φ : A→B such that φ([X ,Y ]) = [φ(X),φ(Y )]
for all X ,Y ∈ A. Then there exists a unique algebra homomorphism φ̃ : U(A)→B
such that φ = φ̃ ◦π .

In each equivalence class there is exactly one representative containing only
terms of the form Xi1⊗Xi2⊗·· ·⊗Xiq where the indices form an ascending sequence
i1 ≤ i2 ≤ ·· · ≤ iq. Given an arbitrary element t ∈ T(A), this representative can be
constructed by substituting each product Xi⊗Xj with i > j by Xj⊗Xi +[Xi,Xj] until
no more such products appear. This leads to a normal form which can be identi-
fied with an element of �[x1, . . . ,xn] where we have written xi for the equivalence
class [Xi] in order to return to our usual notation. Thus as vector spaces U(A) and
�[x1, . . . ,xn] are isomorphic (this is the Poincaré–Birkhoff–Witt Theorem [467]).

As the right hand side of (3.15) is of lower degree than the left hand side, U(A) is
a polynomial algebra of solvable type for any degree compatible term order. Kandry-
Rody and Weispfenning [249] showed that if A is a solvable Lie algebra, one can
find bases {X1, . . . ,Xn} such that U(A) is also of solvable type with respect to the
lexicographic order.

As a concrete example we study the three-dimensional Lie algebra so(3). Its
commutation relations are [Xi,Xj] = εi jkXk where εi jk is the totally antisymmetric
tensor and thus the multiplication in U

(
so(3)
)

is defined by the equations

x1 � x2 = x1x2 , x2 � x1 = x1x2− x3 ,

x1 � x3 = x1x3 , x3 � x1 = x1x3 + x2 ,

x2 � x3 = x2x3 , x3 � x2 = x2x3− x1 .

(3.16)

It is obvious that while the multiplication respects any degree compatible term order,
it does not respect the lexicographic order.

Bell and Goodearl [38] introduced the concept of a Poincaré–Birkhoff–Witt ex-
tension1 (PBW extension for short) of a ringR as a ring extensionP ⊇R containing
a finite number of elements x1, . . . ,xn ∈ P such that (i) P is freely generated as a
leftR-module by the monomials xμ with μ ∈�n

0, (ii) xi � r− r�xi ∈R for all r ∈R
and (iii) xi � x j − x j � xi ∈ R+Rx1 + · · ·Rxn. Obviously, any such extension is a
polynomial algebra of solvable type in the sense of Definition 3.2.1 for any degree
compatible term order. Other term orders generally do not respect the multiplication
in P . Concrete examples of such extensions are a generalisation of the universal
enveloping algebras, namely the skew enveloping algebras R#U(A) where R is a
�-algebra on which the elements of A act as derivations [319, Sect. 1.7.10]. �

1 One also finds the terminology almost normalising extension [319, Sect. 1.6.10].
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Example 3.2.7. Non-commuting variables also occur in the Weyl algebra consisting
of linear differential operators with polynomial coefficients. We may consider it
as a polynomial ring Wn = �[x1, . . . ,xn,∂1, . . . ,∂n] where the unknowns satisfy the
commutation rules

[xi,x j] = 0 , [∂i,∂ j] = 0 , [xi,∂ j] = δ i
j . (3.17)

Wn is not an enveloping algebra, as it is simple (see Proposition 3.2.12 below) and
one can show that an enveloping algebra is never simple [319, Cor. 1.7.5]. However,
Wn is the quotient of an enveloping algebra. Indeed, adding a further variable z com-
muting which all other ones and writing the right hand side of the last commutator
in (3.17) as δ i

jz, we recognise that (3.17) defines a (2n+1)-dimensional Lie algebra,
the Heisenberg algebra h being the core of much of quantum mechanics. Now we
have the isomorphismWn

∼= U(h)/〈z−1〉.
Modules over the Weyl algebra, often called D-modules, are used in many dif-

ferent fields, in particular in singularity theory and in the representation theory of
algebraic groups. An introduction into their theory may be found in [97]; more ad-
vanced material is contained in [46, 50]. Gröbner bases in the Weyl algebra are for
example discussed in [391].

With respect to solvability the Weyl algebra behaves like a ring of differential
operators with polynomial coefficients. By the same argument as in Example 3.2.4
one can show that it is an algebra of solvable type for any term order. The difference
to the there studied rings of differential operators lies in the different definition of
terms. A term in the Weyl algebra has the form xμ∂ν where μ ,ν ∈ �n

0. Thus the
leading exponent of an element of Wn is a multi index with 2n entries. Terms in D
are of the form ∂ μ with μ ∈�n

0 so that exponents have only n entries. �

Example 3.2.8. The quantisation of a mechanical system represents a classical prob-
lem in theoretical physics for which many approaches have already been suggested.
One of them, the deformation quantisation [110, 472], is based on the idea to deform
the classical commutative product into a new one, the Moyal star product �. Gener-
ally, a Gerstenhaber deformation of a �-algebra A is defined as a �[[λ ]]-algebra Ã
such that Ã/〈λ 〉 ∼=A.

We consider here only the simplest case, namely polynomial observables over
the symplectic manifold T ∗�∼=�2. Thus we have the polynomial ringP =�[q, p].
Via the identification p = λ∂/∂q with a parameter λ , we may map P to the Weyl
algebra W1 (in physics λ = −ih̄ with the Planck constant h̄). However, in order to
obtain a well-defined isomorphism ρ : P →W1, we must specify an ordering, as
obviously the terms qp and pq are mapped into different elements ofW1 (this is the
famous ordering problem of quantum mechanics). Given such an isomorphism ρ ,
we may introduce as Moyal star product

f � g = ρ−1(ρ( f )ρ(g)
)

. (3.18)

Two simple orderings are the standard ordering S where q is always written to the
left of p and the Weyl ordering W using a total symmetrisation. The corresponding
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Moyal star products are

f �S g =
∞
∑
r=0

λ r

r!
∂ r f
∂ pr

∂ rg
∂qr , (3.19)

f �W g =
∞
∑
r=0

λ r

2rr!

r

∑
s=0

(
r
s

)
(−1)r−s ∂ r f

∂qs∂ pr−s

∂ rg
∂qr−s∂ ps . (3.20)

In both cases it is obvious that we obtain a solvable algebra with respect to any
degree compatible term order. �

Example 3.2.9. In all these examples, the coefficients rμν appearing in (3.6) are one;
thus (3.9b) are classical commutation relations. This is no longer true in the quan-
tised enveloping algebras Uh(A) introduced by Drinfeld [113] and Jimbo [237]. For
these algebra it is non-trivial that a Poincaré–Birkhoff–Witt Theorem holds; it was
shown for general Lie algebras A by Lusztig [295]. Berger [39] generalised this
result later to a larger class of associative algebras, the q-algebras. They are char-
acterised by the fact that the polynomials hi j in (3.9b) are at most quadratic with
the additional restriction that hi j may contain only those quadratic terms xkx� that
satisfy i < k≤ � < j and k− i = j−�. Thus any such algebra is a polynomial algebra
of solvable type for any degree compatible term order.

A simple concrete example is the q-Heisenberg algebra for a real q > 0 (and
q �= 1). Let f be a function of a real variable x lying in some appropriate function
space. Then we introduce the operators

δq f (x) =
f (x)− f (qx)

(1−q)x
, τq f (x) = f (qx) , x̂ f (x) = x f (x) . (3.21)

It is straightforward to verify that these three operators satisfy the following q-
deformed form of the classical Heisenberg commutation rules

δq � x̂ = x̂� δq + τq , δq � τq = qτq � δq , τq � x̂ = qx̂ � τq . (3.22)

Hence the algebra�[δq,τq, x̂] is a polynomial algebra of solvable type for any degree
compatible term order (but also for any lexicographic order where the variables are
ordered such that τq ≺ δq and τq ≺ x̂). �

Provided that the coefficient ring R of the polynomial algebra P is a left Ore
domain (so that it possesses a left quotient skew field—cf. Appendix B.1), we may
also introduce “left rational functions”, i. e. left fractions of the elements of P .

Proposition 3.2.10. If the coefficient ring R is a domain, then any polynomial al-
gebra (P ,�,≺) of solvable type over it is a domain, too. If R is even a left Ore
domain, then so is P .

Proof. The first assertion is a trivial consequence of (3.8): ifR has no zero divisors,
then f ·g �= 0 implies f � g �= 0 and P cannot contain zero divisors.
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For the second one we must verify the left Ore condition (see Appendix B.1):
we must show that one can find for any two polynomials f ,g ∈ P with f � g �= 0
two further polynomials φ ,ψ ∈ P \{0} such that φ � f = ψ � g. We describe now a
concrete algorithmic solution of this problem.

We set F0 = { f ,g} and choose coefficients r0,s0 ∈R such that in the difference
r0g � f − s0 f � g = h̄1 the leading terms of the two summands cancel (this is always
possible, since R itself satisfies the left Ore condition). Then we perform a (left)
pseudo-reduction of h̄1 with respect to F0. It leads with an appropriately chosen
coefficient t0 ∈R to an equation of the form

t0h̄1 = φ0 � f +ψ0 � g + h1 (3.23)

where the remainder h1 satisfies le≺ h1 /∈ 〈le≺F0〉. If h1 = 0, we are done and the
polynomials φ = t0r0g−φ0 and ψ = t0s0 f +ψ0 form a solution of our problem. By
Part (iii) of Definition 3.2.1 we have le≺ h̄1 ≺ le≺ f + le≺ g. This estimate implies
by the monotonicity of term orders that le≺ φ0 ≺ le≺ g and le≺ψ0 ≺ le≺ f . Thus we
have found a non-trivial solution: φ ,ψ �= 0.

Otherwise we set F1 = F0 ∪{h1} and choose coefficients r1,s1 ∈ R such that
in the difference r1 f � h1− s1h1 � f = h̄2 the leading terms of the two summands
cancel. Then we perform a (left) pseudo-reduction of h̄2 with respect to F1. This
computation yields a coefficient t1 ∈R and polynomials φ1,ψ1,ρ1 ∈ P such that

t1h̄2 = φ1 � f +ψ1 � g +ρ1 � h1 + h2 (3.24)

where the remainder h2 satisfies le≺ h2 /∈ 〈le≺F1〉. If h2 = 0, then we are done, as
we can substitute h1 from (3.23) and obtain thus for our problem the solution

φ = (t1r1 f −ρ1)� (t0r0g−φ0)− t1s1h1−φ1 ,

ψ = (t1r1 f −ρ1)� (t0s0 f +ψ0)+ψ1 .
(3.25)

By the same reasoning on the leading exponents as above, it is a non-trivial one.
Otherwise we iterate: we set F2 =F1∪{h2}, choose coefficients r2,s2 ∈R such

that in the difference r2 f �h2−s2h2 � f = h̄3 the leading terms of the two summands
cancel, compute the remainder h3 of a (left) pseudo-reduction of h̄3 with respect to
the set F2 and so on. If the iteration stops, i. e. if the remainder hN vanishes for some
value N ∈�, then we can construct non-zero polynomials φ , ψ with φ � f =ψ �g by
substituting all remainders hi by their defining equations. The iteration terminates
by a simple Noetherian argument: 〈le≺F0〉 ⊂ 〈le≺F1〉 ⊂ 〈le≺F2〉 ⊂ · · · is a strictly
ascending chain of monoid ideals in �n

0 and thus cannot be infinite. �

We gave here a direct and in particular constructive proof that P satisfies the left
Ore condition. One can show [319, Theorem 2.1.15] that any left/right Noetherian
domain is also a left/right Ore domain. However, as we will see in the next section,
proving that a polynomial algebra of solvable type over a coefficient ring is left or
right Noetherian can be quite subtle.
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Expressed in a more formal language, the construction in the proof above leads to
Algorithm 3.4. In Line /5/ the subalgorithm PseudoReducedetermines for the input
h̄i andH= {h1, . . . ,hi−1} a coefficient t ∈R, polynomials ρ = (ρ1, . . . ,ρi−1) and a
remainder hi ∈P such that th̄i =∑i−1

j=1ρ j �h j +hi and le≺ hi is not divisible by le≺ h j

for any 1 ≤ j < i. In the Lines /6/ and /7/ we compute from these data polynomials
φi,ψi ∈P such that hi = φi � f +ψi �g. Thus once the remainder vanishes, i. e. hi = 0,
Line /12/ returns correct left Ore multipliers.

The left Ore multipliers φ , ψ are not uniquely determined, as we could equally
well multiply at each step with g or alternate between f and g etc. In Algorithm 3.4
this observation concerns mainly the Lines /3/ and /4/ where we could use h2 instead
of h1 (but then we must also move the term tshi−1 from Line /6/ to Line /7/ and re-
place in both lines h1 by h2). After some obvious modifications, a similar algorithm
allows for the computation of right Ore multipliers.

Algorithm 3.4 Left Ore multipliers
Input: polynomials f ,g ∈ P
Output: polynomials φ ,ψ ∈ P such that φ � f = ψ �g
1: h1← f ; h2← g;H←{ f ,g}; i← 3; φ1← 1; ψ1← 0; φ2← 0; ψ2← 1
2: repeat
3: choose r, s ∈R such that le≺ (rh1 �hi−1− shi−1 �h1)≺ le≺ (h1 �hi−1)
4: h̄i← rh1 �hi−1− shi−1 �h1
5: (hi, t,ρ)← PseudoReduce(h̄i,H)
6: φi← trh1 �φi−1−∑i−1

j=1 ρ j �φ j− tshi−1

7: ψi← trh1 �ψi−1−∑i−1
j=1 ρ j �ψ j

8: if hi �= 0 then
9: H←H∪{hi}; i← i +1

10: end if
11: until hi = 0
12: return (φi,−ψi)

Example 3.2.11. In the commutative polynomial ring one has always the trivial so-
lution φ = g and ψ = f . One might expect that in the non-commutative case one
only has to add some lower terms to it. However, this is not the case. Consider the
universal enveloping algebra of the Lie algebra so(3) introduced above. Its mul-
tiplication (3.16) obviously respects any degree compatible term order but not the
lexicographic order. Choosing f = x1 and g = x2, possible solutions for φ � f =ψ �g
are φ = (x2)2−1 and ψ = x1x2−2x3 or φ = x1x2 + x3 and ψ = (x1)2−1. They are
easily constructed using Algorithm 3.4 once in the given form and once with h1 re-
placed by h2 in Line /4/. Here we must use polynomials of degree 2; it is not possible
to find a solution of degree 1. �

In most what we will be doing in the sequel there is no real difference between
the usual polynomial ring and arbitrary polynomial algebras of solvable type. The
non-commutativity has hardly any effect on the theory of Gröbner and involutive
bases, respectively, in these algebras. In order to show that this similarity rapidly
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ends, if one proceeds beyond such purely computational aspects, we close this sec-
tion by listing three results for the Weyl algebra which are in marked contrast to
properties of the commutative polynomial ring. These results are not used later and
only mentioned for demonstration purposes; more details can be found in [45].

Proposition 3.2.12. The Weyl algebra Wn is simple, i. e. the only two-sided ideals
inWn are the trivial ones: {0} and Wn.

Proof. We proceed by induction. The case n = 0 is trivial, as � is a field. Now
assume that we know already that Wn−1 is simple and let I ⊆Wn be a two-sided
ideal containing an element f �= 0. In order to prove that I =Wn, it suffices to show
that I ∩Wn−1 �= {0}, as then by assumption 1 ∈ I.

We write f = d0 +d1∂n + · · ·+dq∂ q
n with di ∈Wn−1[xn] and dq �= 0. If q = 0, let

f0 = f = d0. Otherwise one easily computes that

f1 = f � xn− xn � f = d1 + 2d2∂n + · · ·+ qdq∂ q−1
n . (3.26)

Since f1 ∈ I, we can iterate until we find fq = q!dq ∈ I ∩Wn−1[xn]. Note that by
assumption fq �= 0.

Now we write fq = g0 + g1xn + · · ·+ gr(xn)r with gi ∈ Wn−1 and gr �= 0. For
r = 0 we are done. Otherwise we compute

fq,1 = ∂n � fq− fq � ∂n = g1 + 2g2xn + · · ·+ rgr(xn)r−1 . (3.27)

Again we can iterate until we find fq,r = r!gr ∈ I ∩Wn−1. As by assumption this
element does not vanish, we are done. �

Example 3.2.13. By the Quillen-Suslin Theorem B.2.13 every projective polyno-
mial module is free. Stafford [429] showed that in the Weyl algebra W1 the ideal
I = 〈∂ 2,x∂ −1〉 is projective but not free. Thus we cannot expect to extend this
theorem to arbitrary polynomial algebras of solvable type. �

The following rather surprising result is also due to Stafford [430]. Its proof is
too long and too technical to be presented here; it can be found in [45, Chap. 1,
§7]. Leykin [289] provided an alternative constructive proof permitting the explicit
construction of the generators. However, typically they are far too lengthy to be of
any practical value for computations.

Theorem 3.2.14. Every left ideal in Wn may be generated by two elements.

3.3 Hilbert’s Basis Theorem and Gröbner Bases

A classical property of the ordinary polynomial ring P = R[x1, . . . ,xn], which is
crucial in the theory of Gröbner bases, is Hilbert’s Basis Theorem B.1.13 stating
that P is a Noetherian ring, if its coefficient ringR is. For our more general class of
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polynomial algebras, this property remains true only under additional assumptions.
As we are generally dealing with a non-commutative ring, we must furthermore
distinguish left, right and two-sided ideals and thus also study separately whetherP
is left or right Noetherian.

With the exception of an Addendum to Section 4.2, we will exclusively work with
left ideals and thus do not introduce special notations for distinguishing the different
types of ideal. The restriction to left ideals is not just for convenience but stems from
the fundamental left-right asymmetry of Definition 3.2.1 of a polynomial algebra of
solvable type where products r�xμ and xμ � r are treated completely differently. For
this reason we will concentrate on the question when P is left Noetherian where it
is possible to provide comparatively comprehensive answers (see also the remarks
in Example 3.3.14 below).

Most standard proofs of Hilbert’s Basis Theorem consider only the univariate
case and then extend inductively to an arbitrary (but finite) number of variables.
However, this inductive approach is not possible for arbitrary polynomial algebras
of solvable type, as the multiplication � does not necessarily restrict to a subalgebra
with fewer variables. A simple counterexample is provided by the universal envelop-
ing algebra U

(
so(3)
)

introduced in Example 3.2.6 where � cannot be restricted to
the subspace �[x1,x2] since x2 � x1 = x1x2− x3.

In this section we will study four different situations where it is possible to prove
a basis theorem for left ideals. The first one deals with iterated polynomial algebras
where the inductive reduction to the univariate case is still feasible. For univariate
polynomials we then adapt a simple classical proof by contradiction. As second case
we consider a class of polynomial algebras where the commutation relations (3.6)
are assumed to be of a special form (which will reappear in Section 4.6). The made
assumptions permit us to generalise the previous proof for univariate polynomials
directly to multivariate polynomial algebras. In the third proof we assume the exis-
tence of a filtration Σ on the ring P . A very general argument (which does not even
require P to be a polynomial algebra) shows then that P is left Noetherian, if its
associated graded ring grΣP is left Noetherian. Finally, we treat the by far simplest
situation that the coefficient ring R is a (skew) field. Here, one can show by a stan-
dard argument not only that P is left Noetherian but simultaneously the existence
of Gröbner bases for left ideals.

Iterated Polynomial Algebras of Solvable Type

The key to the inductive approach to proving Hilbert’s Basis Theorem is the natural
iterative structure of the ordinary polynomial ring. It requires in particular that the
multiplication � restricts to subrings in a lower number of variables; iterated Ore
algebras provide a standard example where such a restriction is possible. Within
our fairly general class of non-commutative polynomial rings we must furthermore
impose conditions on the coefficients appearing in the commutation relations (3.6).
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Definition 3.3.1. The polynomial algebra of solvable type (P ,�,≺) is called iter-
ated, if it satisfies the following three conditions.

(i) P can be written in the form P =R[x1][x2] · · · [xn] where each intermediate
ring P(k) = R[x1][x2] · · · [xk] is again solvable for the corresponding restric-
tions of the multiplication � and the term order≺.

(ii) The equality xk �P(k−1) +P(k−1) =P(k−1) �xk +P(k−1) holds for 1≤ k≤ n.
(iii) In (3.6b) the coefficients rμν are units whenever the multi indices are of the

form μ = �i, ν = mi for 1≤ i≤ n and arbitrary values �,m ∈�.

The first condition just encodes the iterative structure of P . The other two, more
technical conditions are needed in the next proof. Assume that we are given a “uni-
variate” polynomial f = ∑q

�=1 a�(xk)� ∈ P(k) = P(k−1)[xk] of degree q; Condition
(ii) allows us to rewrite it in the “reverse” form f = ∑q

�=1(x
k)� � ā� with uniquely

determined coefficients ā� ∈ P(k−1). Assume furthermore that we multiply in this
reverse form with the power (xk)m from the left. Then the result contains terms of
the form r�k,mk(x

k)�+m � a�, i. e. with coefficients on both sides of the power. Ac-
cording to Condition (iii), the coefficients on the left side are units and we can avoid
such a coefficient at least for the leading term in the result by multiplying with the
monomial r−1

qk,mk
(xk)m instead of the pure power product (xk)m.

These two observations allow us now to adapt a classical proof of Hilbert’s Basis
Theorem in the commutative case. The basic idea consists of moving to the reverse
form of univariate polynomials so that when we multiply with powers from the
left (we are interested only in left ideals!), we can at the relevant places ignore the
operation of the variables on the coefficients.

Theorem 3.3.2. If (P ,�,≺) is an iterated polynomial algebra of solvable type over
a left Noetherian ringR, then P is a left Noetherian ring, too.

Proof. By the considerations above, it suffices to consider only the univariate case.
Thus let P =R[x]. Let furthermore I(0) ⊆ I(1) ⊆ I(2) ⊆ ·· · ⊆ P be an ascending
chain of left ideals. As discussed above, Condition (ii)—which now takes the form
x �R+R = R � x +R—allows us to rewrite any polynomial in the reverse form
f = ∑� x� � r� and from now on we assume that all polynomials are written in this
form. We introduce the following sets:

J (�,q) =
{

r ∈R | ∃ f ∈ I(�) : deg f ≤ q∧ lc≺ f = r
}

. (3.28)

The condition lc≺ f = r refers here to the leading coefficient in the reverse repre-
sentation of f . Conditions (ii) and (iii) imply that these sets are left(!) ideals in R.
Indeed, because of Condition (ii) we can find for any r ∈ R coefficients s,t ∈ R
such that s� x = x � r + t. Hence we can produce at the expense of some additional
lower-order terms arbitrary coefficients to the right of x—without leaving the given
ideal I(�)—and by Condition (iii) this property extends to higher powers of x.

If the equality J (�,q) = J (�′,q) holds for all q ≥ 0, then we have I(�) = I(�′).
This fact can be seen as follows. Assume that � < �′ and I(�) � I(�′). We consider
a polynomial f ′ ∈ I(�′) \I(�) of minimal degree, say deg f ′ = d′. Thus f ′ is of the
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form f ′ = xd′ � r + · · · where the dots represents terms of lower order. Because of
J (�,d′) = J (�′,d′), the ideal I(�) contains a polynomial f = xd � r + · · · with d ≤ d′.
Since we assume that the coefficient rd′−d,d is a unit, we can invert it and obtain that

f ′− r−1
d′−d,dxd′−d � f ∈ I(�′) is a polynomial of degree less than d. Hence it must in

fact be contained in I(�). But this immediately implies f ′ ∈ I(�), a contradiction.
The definition of these R-ideals trivially implies that J (�,q) ⊆ J (�′,q′) when-

ever � ≤ �′ and q ≤ q′. Thus we have constructed an ascending chain of left
ideals: J (0,0) ⊆ J (1,1) ⊆ J (2,2) ⊆ ·· · ⊆ R. Since by assumption R is left Noethe-
rian, the chain becomes stationary at some index �∞. Next we consider for 0 ≤
q < �∞ the ascending chain of left ideals J (0,q) ⊆ J (1,q) ⊆ J (2,q) ⊆ ·· · . Again
the chain becomes stationary at some index �q, since R is left Noetherian. We set
� = max{�∞, �0, �1, . . . , ��∞−1}. Then by construction we have J (k,q) = J (�,q) for
all k≥ � and all q≥ 0 implying that I(k) = I(�) for all k≥ �. Thus the chain becomes
stationary and P is left Noetherian. �

Example 3.3.3. The additional conditions in Definition 3.3.1 cannot be omitted. If
they are violated, P may be non-Noetherian, as the following concrete counterex-
ample demonstrates. Let R = �[t] be the ordinary polynomial ring and consider
P =R[x] with the multiplication defined by x � x = x2 and x � t = t2x. Note that we
do not considerP as a bivariate polynomial ring; as such it is obviously not solvable.
P is here a univariate polynomial algebra of solvable type over the ringR.

It is easy to see that the second condition in Definition 3.3.1 is violated here, as
it is not possible to express tx ∈R� x as an element of x�R+R. Now we consider
the left ideals Ik = 〈tx,tx2, . . . ,txk〉. Since x � txk = t2xk+1 etc, txk+1 /∈ Ik and we
have found an infinite strictly ascending sequence of ideals I1 � I2 � · · · , so that P
is not left Noetherian also R obviously is. �

Polynomial Algebras with Centred Commutation Relations

With some complications the central (univariate) arguments in the proof of Theo-
rem 3.3.2 can be directly generalised to multivariate polynomial rings. However,
this approach requires again certain assumptions on the commutation relations (3.6)
in order to ensure that all necessary computations are possible.

Definition 3.3.4. The polynomial algebra of solvable type (P ,�,≺) has centred
commutation relations, if the following conditions are satisfied.

(i) There exists a subfield �⊆R lying in the centre of the coefficient ringR.
(ii) The functions ρμ appearing in (3.6a) are of the form ρμ(r) = ρ̄μ(r)r with

functions ρ̄μ :R→ �.
(iii) We have rμν ∈ � in (3.6b).

As in the proof of Theorem 3.3.2, we proceed by deriving certain ideals in the
coefficient ring R from a given polynomial ideal I ⊆ P . Then we will show with
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the help of König’s Lemma A.1.3 that if P is not left Noetherian, then R cannot
be left Noetherian either. The key is the following observation the proof of which
partially explains the second condition in Definition 3.3.4.

Lemma 3.3.5. Let I ⊆P be a left ideal in a solvable algebra (P ,�,≺) with centred
commutation relations and μ ∈�n

0 an arbitrary multi index. Then

JI,μ = {lc≺ f | f ∈ I ∧ le≺ f = μ}∪{0} (3.29)

is a left ideal in R. Furthermore, for all multi indices μ ,ν ∈ �n
0 with μ | ν the

inclusion JI,μ ⊆ JI,ν holds.

Proof. Let 0 �= s,t ∈ JI,μ be arbitrary elements and choose polynomials f ,g ∈ I
with lm≺ f = sxμ and lm≺ g = txμ . For s = t, we have trivially s− t = 0 ∈ JI,μ .
Otherwise, f �= g and their difference h = f −g ∈ I satisfies le≺ h = μ . This entails
s− t = lc≺ h ∈ JI,μ . For any ring element r ∈ R, we have either rs = 0 ∈ JI,μ or
0 �= rs = lc≺ (r f ). Since in the second case le≺ (r f ) = μ , we find again rs ∈ JI,μ
and JI,μ is indeed an ideal.

If μ | ν and μ �= ν , then we set λ = ν − μ . By our assumptions, the ring ele-
ment ρ̄λ (s)rλμ is invertible and srλμ = rλμs. An easy computation yields then that
lm≺
(
(ρ̄λ (s)rλμ)−1xλ � f

)
= sxν and thus any s ∈ JI,μ is contained in JI,ν . �

Lemma 3.3.6. Let I ⊆ P be a left ideal. Then SI = {JI,μ | μ ∈ le≺I} has the
König property for the partial order induced by set inclusion.

Proof. By Dickson’s Lemma A.1.2, the monoid le≺ I ⊆�n
0 possesses a finite Dick-

son basis BI . It follows from Lemma 3.3.5 that any minimal element of SI must be
a set JI,ν for a multi index ν ∈ BI . Hence there can be only finitely many minimal
elements in the set SI itself.

EachJI,ν ∈SI has an upper set SI,ν = {JI,μ ∈SI | JI,ν ⊂JI,μ}. Introducing
the corresponding subset NI,ν ⊆ le≺I and applying the same argument as above
shows that each set SI,ν has only finitely many minimal elements, too. Thus SI has
indeed the König property. �

Recall from Remark A.1.4 that ifR is a (left) Noetherian ring and S a set of (left)
ideals ofR, then, by König’s Lemma A.1.3, S can possess the König property only,
if it is finite. Since we assume that the coefficient ring R of our solvable algebra P
is left Noetherian, Lemma 3.3.6 entails that for each ideal I ⊆ P the set SI defined
in Lemma 3.3.6 is finite.

Theorem 3.3.7. Let (P ,�,≺) be a polynomial algebra of solvable type with centred
commutation relations over a left Noetherian ringR. Then P is left Noetherian.

Proof. Consider for a left ideal I ⊆ P the set SI defined in Lemma 3.3.6. We may
then introduce for each ideal J ∈ SI contained in it the following set of multi
indices: NJ = {ν ∈ le≺I | JI,ν = J}. By Dickson’s Lemma A.1.2, each set NJ
has a finite Dickson basis BJ and we define BI =

⋃
J∈SI BJ . According to our

considerations above, the set SI is finite implying that BI is finite, too.
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Since the ring R is assumed to be left Noetherian, we can choose for each
multi index ν ∈ BI a finite number of ideal elements gν,1, . . . ,gν,kν ∈ I such that
le≺ gν, j = ν for 1 ≤ j ≤ kν and JI,ν = 〈lc≺ gν,1, . . . , lc≺ gν,kν 〉. We claim that the
finite set GI =

⋃
ν∈BI {gν,1, . . . ,gν,kν} generates the ideal I.

Obviously, 〈GI〉 ⊆ I. Assume now that 〈GI〉 � I and choose some polynomial
f ∈ I \ 〈GI〉 with minimal leading exponent μ = le≺ f . Let r = lc≺ f . By con-
struction, a multi index ν ∈ BI exists such that ν | μ and JI,μ = JI,ν . If we write

r j = lc≺ gν, j for 1 ≤ j ≤ kν , then r has a representation r = ∑kν
j=1 s jr j with some

coefficients s j ∈ R. Let λ = μ − ν . Exploiting that ρ̄λ : R→ � and rλν ∈ �, we

consider the polynomial f ′ = f −∑kν
j=1 s j
(
ρ̄λ (r j)rλν

)−1
xλ � gν, j. One easily ver-

ifies that le≺ f ′ ≺ le≺ f and thus f ′ ∈ 〈GI〉 by our choice of f . But this implies
f ∈ 〈GI〉, a contradiction. Hence 〈GI〉= I. �

Filtered Algebras

Our third approach to prove that P is left Noetherian assumes that P possesses a
filtration Σ and thus is a filtered ring (see Definition B.1.20). This is in particular
always the case, if P is solvable with respect to a degree compatible term order ≺,
as then we may use the total degree filtration defined by Σk =

⊕k
i=0Pi. Note that

if ≺ is not degree compatible, it may well happen that deg( f � g) > deg( f ·g) and
then Σ does not define a filtration.

It is straightforward to verify that for the total degree filtration the associated
graded ring grΣP is again a polynomial algebra of solvable type. If in the commuta-
tion relation (3.9) deghi(r) = 0, deghi j ≤ 1, ρi = idR and ri j = 1 (which is for exam-
ple the case for all Poincaré–Birkhoff–Witt extensions), then in fact grΣP = (P , ·),
the commutative polynomial ring. Such algebras are sometimes called almost com-
mutative [319, Sect. 8.4.2].

Our goal is now to show that P is left Noetherian, if grΣP is. As preparation we
formulate some results on filtered P-modulesM, although we will later apply them
only to ideals in P . In fact, this whole approach remains valid for arbitrary filtered
rings P , as we make nowhere use of the polynomial nature of P . The key is the
following lemma relating finite bases in M and grΓM via the Γ -symbol (cf. the
discussion after Definition B.1.20).

Lemma 3.3.8. Let M be a left P-module with a filtration Γ and let furthermore
{m1, . . . ,mr} ⊂ M be a finite subset such that

{
σΓ (m1), . . . ,σΓ (mr)

}
generates

grΓM as a left grΣP-module. Then {m1, . . . ,mr} generatesM.

Proof. We show by an induction on i that each componentΓi is contained in the span
〈m1, . . . ,mr〉. For i = 0 this is trivial, as by definition Γ̄0 = Γ0 and hence σΓ (m) = m
for all elements m ∈ Γ0.

Assume that Γi−1 ⊂ 〈m1, . . . ,mr〉 and consider an arbitrary element m ∈ Γi \Γi−1.
Since

{
σΓ (m1), . . . ,σΓ (mr)

}
generates grΓM, there exist elements f̄k ∈ grΣP such
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that σΓ (m) = ∑r
k=1 f̄k � σΓ (mk). More precisely, f̄k ∈ Σ̄�k with �k + degΓmk = i

(obviously, f̄k = 0 for degΓmk > i). If we now choose representatives fk ∈ Σ�k of
the equivalence classes f̄k , then by construction m−∑r

k=1 fk � mk ∈ Γi−1 and thus
m ∈ 〈m1, . . . ,mr〉. �

Definition 3.3.9. A filtration Γ on a left P-moduleM is good, if grΓM is a finitely
generated left grΣP-module.

Lemma 3.3.10. The leftP-moduleM is finitely generated, if and only if it possesses
a good filtration.

Proof. Let {m1, . . . ,mr} be a finite generating set for the module M. Then we
define Γi = ∑r

k=1Σi � mk. It is trivial to verify that this yields a filtration. Since{
σΓ (m1), . . . ,σΓ (mr)

}
⊂ Γ0 generates grΓM, we even have a good filtration.

For the converse, letΓ be a good filtration and let { f̄1, . . . , f̄r} generate the associ-
ated graded module grΓM. We decompose each generator into its Γ -homogeneous
parts, i. e. we write f̄i = ∑ki

j=1 f̄i j with f̄i j ∈ Γ̄j. Then we choose elements mi j ∈M
such that σΓ (mi j) = f̄i j . Obviously, these elements σΓ (mi j) generate grΓM and
hence, by Lemma 3.3.8, the elements mi j form a finite generating set ofM. �

Theorem 3.3.11. Let Σ be a filtration on the ring P . If the associated graded ring
grΣP is left Noetherian, then P is left Noetherian, too.

Proof. Let I be an arbitrary left ideal in P . This implies trivially that I is a left
P-module and Σ induces a filtration Γ on it via Γi = I ∩Σi. Furthermore, grΓ I is
a left ideal in grΣP . Since by assumption the latter ring is left Noetherian, grΓ I is
finitely generated and Γ is a good filtration. By Lemma 3.3.10, the ideal I is thus
finitely generated. �

Polynomial Algebras over Fields

Because of Condition (iii) in Definition 3.2.1 of a polynomial algebra of solvable
type, we can define Gröbner bases for ideals in such algebras. If the coefficient ring
R is a (skew) field �, this is straightforward. In this book we will almost exclusively
restrict to this case. A more general situation will be discussed only in Section 4.6.

Definition 3.3.12. Let (P ,�,≺) be a polynomial algebra of solvable type over a
(skew) field � and I ⊆ P a left ideal. A finite set G ⊂ P is a Gröbner basis of the
ideal I (for the term order≺), if 〈le≺G〉= le≺I.

For the ordinary multiplication this definition reduces to the classical Defini-
tion B.4.1 of Gröbner bases. The decisive point, explaining the conditions imposed
in Definition 3.2.1, is that normal forms with respect to a finite set F ⊂ P can be
computed in algebras of solvable type in precisely the same way as in the ordinary
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polynomial ring. Assume we are given a polynomial f ∈ P such that le≺ g | le≺ f
for some g ∈ G and set μ = le≺ f − le≺ g. If we consider gμ = xμ � g, then by Con-
dition (iii) le≺ gμ = le≺ f . Setting d = (lc≺ f )(lc≺ gμ)−1, we find by Condition (ii)
that le≺ ( f − dgμ) ≺ le≺ f . Hence we may use the simple Algorithm B.1 for com-
puting normal forms; in particular, it always terminates by the same argument as in
the ordinary case. Note that in general d �= (lc≺ f )(lc≺ g)−1, if r �= 1 in (3.8), and
that normal form computations are typically more expensive due to the appearance
of the additional polynomial h in (3.8).

The Gröbner basis theory of Appendix B.4 can be straightforwardly extended to
arbitrary polynomial algebras of solvable type over (skew) fields, as most proofs
are based on the computation of normal forms. The remaining arguments mostly
take place in �n

0 and thus can be applied without changes. As one typical example
we present yet another proof of Hilbert’s Basis Theorem that gives us as additional
benefit the existence of Gröbner bases.

Theorem 3.3.13. Let (P ,�,≺) be a polynomial algebra of solvable type over a
(skew) field R. Then P is a left Noetherian ring and every left ideal I ⊆ P pos-
sesses a Gröbner basis with respect to ≺.

Proof. By Dickson’s Lemma A.1.2, the monoid ideal le≺I has a finite basisN . Let
G ⊂ I be a finite set with le≺G =N . By definition, such a set G is a Gröbner basis
of I. The ring P is left Noetherian, if we can show that G is also a generating set of
the ideal I. This is done by a simple normal form argument.

As we are working over a (skew) field, we may assume without loss of gen-
erality that G is a monic basis, i. e. that lc≺ g = 1 for all g ∈ G. Let f ∈ I be
an arbitrary element of the given ideal with lm≺ f = rxμ . Then the Gröbner ba-
sis G contains a generator g such that ν = le≺ g divides μ . Consider the polynomial
f̄ = f −rr−1

μ−ν,νxμ−ν �g. Obviously, le≺ f̄ ≺ le≺ f by construction and, since f̄ ∈ I,
we may iterate. As ≺ is a well-order, we must reach 0 after a finite number of such
reduction steps and hence any element of I is expressible as a linear combination
of the elements in G.

This proves that I ⊆ 〈G〉. Since G ⊂ I, it is not possible that G generates a larger
ideal than I and hence G is indeed a basis of I. �
Example 3.3.14. Even in the case of a coefficient field we cannot generally expectP
to be a right Noetherian ring, as the following extension of Example 3.3.3 demon-
strates. We take this timeR= �(t), the field of rational functions in t, and consider
again P =R[x] with x � x = x2 and x � r(t) = r(t2)x for any r ∈ R. If r = p/q ∈R
with two polynomials p,q ∈ �[t], then we set degr = deg p−degq.

If we write any polynomial f contained in x �P in the usual form f = ∑n
i=1 aixi,

then all coefficients ai are of even degree in t. This simple observation implies
that (tx �P)∩ (x �P) = 0. Consider the right ideals Ik = 〈tx,x � tx, . . . ,xk � tx〉. We
claim that they form an infinite strictly ascending sequence, so that P is not right
Noetherian. Assume to the contrary that there were integers m < n and polynomials
fi ∈ P such that xm � tx� fm + · · ·+ xn � tx� fn = 0 with fm, fn �= 0. This implies that
tx � fm =−(x � tx � fm+1 + · · ·+ xn−m � tx � fn) ∈ tx �P ∩ x �P = 0 and thus fm = 0
contradicting our assumptions.
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In the proof of Theorem 3.3.13 we essentially use that in normal form com-
putations we multiply with elements of P from the left. Because of the already
mentioned left-right asymmetry of Definition 3.2.1, right ideals show in general a
completely different behaviour. In order to obtain right Noetherian rings we must ei-
ther adapt correspondingly our definition of a solvable algebra or impose additional
conditions on the commutation relations (3.6).

The simplest possibility is to require that all the maps ρμ in (3.6) are automor-
phisms (by Proposition 3.2.3 it suffices, if the maps ρi in (3.9a) satisfy this condi-
tion). In this case we have ��xi +�= xi ��+� for all variables xi implying that we
can rewrite any polynomial f =∑μ cμxμ in the reverse form f =∑μ xμ � c̃μ . Now a
straightforward adaption of the above proof shows that P is also right Noetherian.
Obviously, our example does not satisfy this condition, as the map r(t) 	→ r(t2) is
of course not an automorphism. �

We stop here and do not give more details on extending the Gröbner basis the-
ory to polynomial algebras of solvable type, as we will use in the next section a
completely different approach leading to involutive bases.

3.4 Involutive Bases

We proceed to define involutive bases for left ideals in polynomial algebras of solv-
able type. Our approach closely follows the introduction of Gröbner bases in Ap-
pendix B.4. We could at once consider submodules of free modules over such an
algebra. But this only complicates the notation. So we start with the ideal case and
the extension to submodules goes as for Gröbner bases.

Definition 3.4.1. Let (P ,�,≺) be a polynomial algebra of solvable type over a coef-
ficient field � and I ⊆P a non-zero left ideal. A finite setH⊂I is a weak involutive
basis of I for an involutive division L on �n

0, if le≺H is a weak involutive basis of
the monoid ideal le≺I. The set H is a (strong) involutive basis of I, if le≺H is a
strong involutive basis of le≺ I and two distinct elements of H never possess the
same leading exponents.

This definition represents a natural extension of our Definition 3.3.12 of a
Gröbner basis in P . In particular, it implies immediately that any weak involutive
basis is a Gröbner basis. As in Section 3.1, we call any finite set F ⊂ P (weakly)
involutive, if it is a (weak) involutive basis of the ideal 〈F〉 generated by it.

Definition 3.4.2. Let F ⊂ P \{0} be a finite set of polynomials and L an involutive
division on�n

0. We assign to each element f ∈ F a set of multiplicative variables

XL,F ,≺( f ) =
{

xi | i ∈ NL,le≺F (le≺ f )
}

. (3.30)

The involutive span of F is then the set
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〈F〉L,≺ = ∑
f∈F

�
[
XL,F ,≺( f )

]
� f ⊆ 〈F〉 . (3.31)

Remark 3.4.3. The involutive span of a set F depends decisively on both the involu-
tive division L and the term order≺. Choosing a different term order will generally
lead to different leading terms in le≺F and thus we may obtain very different mul-
tiplicative variables for each generator f ∈ F . In particular, the total number of
multiplicative variables for F , which we may consider as a rough indicator of the
“size” of the involutive span 〈F〉L,≺, may change drastically.

For example, the Pommaret division has a special relationship to class respecting
term orders (recall that according to Lemma A.1.8 any class respecting order coin-
cides on terms of the same degree with the degree reverse lexicographic order). For
homogeneous polynomials such orders always lead to maximal sets of multiplica-
tive indices and thus generally to smaller bases. We will see in Chapter 5 that also
from a theoretical point of view Pommaret bases with respect to such an order are
particularly useful. �

An important aspect of Gröbner bases is the existence of standard representa-
tions for any ideal element (Proposition B.4.8). For (weak) involutive bases a sim-
ilar characterisation exists and in the case of strong bases we even obtain unique
representations, a crucial improvement to the classical theory.

Theorem 3.4.4. Let I ⊆ P be a non-zero ideal, H ⊂ I \{0} a finite set and L an
involutive division on�n

0. Then the following two statements are equivalent.

(i) The set H⊂ I is a weak involutive basis of I with respect to L and ≺.
(ii) Every polynomial f ∈ I can be written in the form

f = ∑
h∈H

Ph � h (3.32)

with coefficients Ph ∈ �[XL,H,≺(h)] satisfying lt≺ (Ph � h)� lt≺ f for all poly-
nomials h ∈H such that Ph �= 0.

H is a strong involutive basis, if and only if the representation (3.32) is unique.

Proof. Let us first assume thatH is a weak involutive basis and consider an arbitrary
polynomial f ∈ I. According to Definition 3.4.1, its leading exponent le≺ f lies in
the involutive cone CL,le≺H(le≺ h) of the leading exponent of at least one generator
h ∈ H. Let μ = le≺ f − le≺ h and set f1 = f − cxμ � h where the coefficient c ∈ �
is chosen such that the leading terms cancel. Obviously, f1 ∈ I and lt≺ f1 ≺ lt≺ f .
Iteration yields a sequence of polynomials fi ∈ I. After a finite number of steps we
must reach fN = 0, as the leading terms are always decreasing and by assumption the
leading exponent of any polynomial in I possesses an involutive divisor in le≺H.
But this observation implies the existence of a representation of the form (3.32).

Now assume thatH is even a strong involutive basis and take an involutive stan-
dard representation (3.32). By definition of a strong basis, there exists one and only
one generator h ∈ H such that lt≺ (Ph � h) = lt≺ f . This fact determines uniquely
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lt≺ Ph. Applying the same argument to f − (lt≺ Ph) � h shows by recursion that the
representation (3.32) is indeed unique.

For the converse note that (ii) trivially implies that le≺ f ∈ 〈le≺H〉L,≺ for any
polynomial f ∈ I. Thus le≺ I ⊆ 〈le≺H〉L,≺. As the converse inclusion is obvious,
we have in fact an equality andH is a weak involutive basis.

Now let us assume that the set H is only a weak but not a strong involu-
tive basis of I. This implies the existence of two generators h1,h2 ∈ H such that
CL,le≺H(le≺ h2) ⊆ CL,le≺H(le≺ h1). Hence we have lm≺ h2 = lm≺ (cxμ � h1) for
suitably chosen c ∈ � and μ ∈ �n

0. Consider the polynomial h2 − cxμ � h1 ∈ I.
If it vanishes, we have found a non-trivial involutive standard representation of 0.
Otherwise an involutive standard representation h2− cxμ � h1 = ∑h∈HPh � h with
Ph ∈ �[XL,H,≺(h)] exists. Setting now P′

h = Ph for all generators h �= h1,h2 and
P′

h1
= Ph1 + cxμ , P′

h2
= Ph2 − 1 yields again a non-trivial involutive standard rep-

resentation 0 = ∑h∈H P′
h � h. The existence of such a non-trivial representation of 0

immediately implies that (3.32) cannot be unique. Thus only for a strong involutive
basis the involutive standard representation is always unique. �

Corollary 3.4.5. Let H be a weak involutive basis of the left ideal I ⊆ P . Then
〈H〉L,≺ = I. If H is even a strong involutive basis of I, then I considered as a
�-linear space possesses a direct sum decomposition I =

⊕
h∈H�[XL,H,≺(h)]� h.

Proof. It follows immediately from Theorem 3.4.4 that I ⊆ 〈H〉L,≺. But asH is also
a Gröbner basis of I, we have in fact equality. The direct sum decomposition for a
strong involutive basis is a trivial consequence of the uniqueness of the involutive
standard representation in this case. �

Example 3.4.6. It is not true that any finite set F with 〈F〉L,≺ = I is a weak involu-
tive basis of the ideal I. Consider in the ordinary polynomial ring �[x,y] the ideal I
generated by the two polynomials f1 = y2 and f2 = y2 +x2. If we order the variables
as x1 = x and x2 = y, then the set F = { f1, f2} trivially satisfies 〈F〉J,≺ = I, as with
respect to the Janet division all variables are multiplicative for each generator. How-
ever, le≺F = {[0,2]} does not generate le≺I, as obviously [2,0]∈ le≺I\〈{[0,2]}〉.
Thus F is not a weak Janet basis (neither is the autoreduced set F ′ = {y2,x2}, as
x2y /∈ 〈F ′〉J,≺). �

By a generalisation of Proposition 3.1.12, any weak involutive basis H contains
a strong involutive basis as subset. We will see later why it is nevertheless useful to
introduce weak bases for some applications.

Proposition 3.4.7. Let I ⊆ P be an ideal and H ⊂ I a weak involutive basis of it
for the involutive division L. Then there exists a subset H′ ⊆ H which is a strong
involutive basis of I.

Proof. If the set le≺H is already a strong involutive basis of le≺I, we are done.
Otherwise H contains polynomials h1, h2 such that le≺ h1 |L,le≺H le≺ h2. Consider
the subset H′ =H\{h2}. As in the proof of Proposition 3.1.12, one easily shows
that le≺H′ = le≺H\{le≺ h2} is still a weak involutive basis of le≺I and thus H′
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is still a weak involutive basis of I. After a finite number of such eliminations we
must reach a strong involutive basis. �

In order to proceed, we must adapt some further notions familiar from the theory
of Gröbner bases to involutive bases (see Appendix B.4 for the classical versions).

Definition 3.4.8. Let F ⊂ P be a finite set and L an involutive division. A poly-
nomial g ∈ P is involutively reducible with respect to F , if it contains a term
xμ ∈ suppg such that le≺ f |L,le≺F μ for some f ∈ F . The polynomial g is in in-
volutive normal form with respect to F , if it is not involutively reducible. The set F
is involutively autoreduced, if no polynomial f ∈ F contains a term xμ ∈ supp f
such that another polynomial f ′ ∈ F \{ f} exists with le≺ f ′ |L,le≺F μ .

Remark 3.4.9. The definition of an involutively autoreduced set cannot be formu-
lated more concisely by saying that each f ∈ F is in involutive normal form with
respect to F \{ f}. If we are not dealing with a global division, the removal of f
from F will generally change the assignment of the multiplicative indices and thus
affect the involutive divisibility. �

An obstruction to involution is a polynomial g∈ 〈F〉\〈F〉L,≺ possessing an ordi-
nary standard representation (B.73) with respect to F but not an involutive one; i. e.
we can write g =∑ f∈F Pf � f with coefficients Pf ∈P satisfying le≺ (Pf � f )� le≺ g
whenever Pf �= 0 but at least one coefficient Pf depends on a variable x j ∈XL,F ,≺( f )
which is non-multiplicative for the associated generator f ∈F . We will later see that
these elements make the difference between an involutive and a Gröbner basis.

Remark 3.4.10. If P =�[∂1, . . . ,∂n] is actually a ring of linear differential operators
over a differential field � and ≺ a degree compatible term order, then the question
whether or not an element f ∈ 〈F〉 possesses a standard representation is related to
the existence of integrability conditions. Indeed, if in any representation of f in the
form of (3.32) the leading terms on the right hand side are of higher degree (order)
than f , then we are dealing with an integrability condition in the sense of the in-
formal definition used in Section 2.3 (in the form of a generalised cross-derivative).
Note, however, that lt≺ (Ph � h) lt≺ f is possible even if both terms are of the same
degree. Thus while a Gröbner basis of 〈F〉 always induces a formally integrable sys-
tem,2 the converse is not necessarily true. �

Example 3.4.11. Consider the set F = { f1, f2, f3} ⊂ �[x,y,z] with the polynomials
f1 = z2− xy, f2 = yz− x and f3 = y2− z. For any degree compatible term order, the
leading terms of f2 and f3 are unique. For f1 we have two possibilities: if we use
the degree lexicographic order (i. e. for x ≺ y ≺ z), it is z2, for the degree inverse
lexicographic order (i. e. for x  y  z) the leading term is xy. In the first case, we

2 Generally, a Gröbner basis becomes a formally integrable system in the sense of Section 2.3
only after all integrability conditions of the second kind have been taken into account, too. But
this is easily done: if q is the maximal degree of a generator in F , then we must augment F by
all operators of the form ∂ μ f with f ∈ F and |μ |+ deg f = q where ∂ μ contains only derivatives
multiplicative for f .
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find for the Janet division that 〈F〉J,≺deglex = 〈F〉, so that for this term order F is a
Janet basis, i. e. an involutive basis with respect to the Janet division, although we
do not have yet the necessary tools to prove this fact. Thus, upon the identification
x→ ∂x etc, the system F defines a formally integrable differential equation.

In the second case, f4 = z3−x2 = z f1 +x f2 does not possess a standard represen-
tation although it is not an “integrability condition.” Adding this polynomial to F
yields a Gröbner basis G of 〈F〉, as one can easily check using Theorem B.4.14. But
now f5 = z f2 is an obstruction to involution of G, as it is not involutively reducible
with respect to the Janet division. Thus G is not yet a Janet basis, but one can show
that adding f5 yields one. �

Remark 3.4.12. If G is a Gröbner basis of the ideal I, then any element of I has
a standard representation by Proposition B.4.8. But this does not imply that for a
given division L the ideal I is free of obstructions to involution. In order to ob-
tain at least a weak involutive basis, we must add further elements of I to G until
〈le≺G〉L = le≺I. Obviously, this observation allows us to reduce the construction
of a polynomial involutive basis to a Gröbner basis computation plus a monomial
completion. But we will see in Section 4.2 that better possibilities exist.

It follows immediately from these considerations that in general involutive bases
are not reduced Gröbner bases, as we already observed in Example 3.4.11. For the
term order≺deglex the set F was simultaneously a Janet basis and a reduced Gröbner
basis. But for the order ≺deginvlex the reduced Gröbner basis is F ∪{ f4}, whereas a
Janet basis requires in addition the polynomial f5. We will see later in Chapter 5 that
this “redundancy” in involutive bases is the key for their use in the structure analysis
of polynomial ideals and modules. �

It often suffices, if one does not consider all terms in suppg but only the leading
term lt≺ g: the polynomial g is involutively head reducible, if le≺ f |L,le≺F le≺ g for
some f ∈ F . Similarly, the set F is involutively head autoreduced, if no leading
exponent of an element f ∈ F is involutively divisible by the leading exponent of
another element f ′ ∈ F \{ f}. Note that the definition of a strong involutive basis
immediately implies that it is involutively head autoreduced.

Example 3.4.13. In the case of the Janet division, a set F is involutively head au-
toreduced as soon as all elements have different leading terms. Indeed, we have seen
in the proof of Lemma 3.1.5 that with respect to the Janet division two involutive
cones only intersect, if they are identical. �

As involutive reducibility is a restriction of ordinary reducibility, involutive nor-
mal forms can be determined with trivial adaptions of the familiar algorithms like
for example Algorithm B.1. The termination follows by the same argument as usual,
namely that ≺ is a well-order. If g′ is an involutive normal form of the polynomial
g ∈ P with respect to the set F for the division L, then we write g′ = NFF ,L,≺(g),
although involutive normal forms are in general not unique (like ordinary normal
forms—see Example B.4.6). Depending on the order in which reductions are ap-
plied different results are generally obtained.
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The ordinary normal form is unique, if and only if it is computed with respect
to a Gröbner basis (Proposition B.4.8). In fact, this property is often used to define
Gröbner bases. For the involutive normal form, the situation is somewhat different.

Lemma 3.4.14. The sum in the definition (3.31) of the involutive span 〈F〉L,≺ is
direct, if and only if the finite set F ⊂P \{0} is involutively head autoreduced with
respect to the involutive division L.

Proof. One direction is obvious. For the converse, let f1, f2 be two distinct ele-
ments of F and Xi = XL,F ,≺( fi) their respective sets of multiplicative variables
for L. Assume that two polynomials Pi ∈ �[Xi] exist with P1 � f1 = P2 � f2 and
hence le≺ (P1 � f1) = le≺ (P2 � f2). As the multiplication � respects the order≺, this
fact implies that CL,le≺F (le≺ f1)∩CL,le≺F (le≺ f2) �= ∅. Thus one of the involutive
cones is completely contained in the other one and either le≺ f1 |L,le≺F le≺ f2 or
le≺ f2 |L,le≺F le≺ f1 contradicting that F is involutively head autoreduced. �

Proposition 3.4.15. If the finite set F ⊂ P \{0} is involutively head autoreduced,
each polynomial g ∈ P has a unique involutive normal form NFF ,L,≺(g).

Proof. If 0 is an involutive normal form of g, then obviously g ∈ 〈F〉L,≺. Con-
versely, assume that g ∈ 〈F〉L,≺, i. e. the polynomial g can be written in the form
g =∑ f∈F Pf � f with Pf ∈ �[XL,F ,≺( f )]. AsF is involutively head autoreduced, the
leading terms of the summands can never cancel (see the proof of Lemma 3.4.14).
Thus lt≺ g = lt≺ (Pf � f ) for some f ∈ F and any polynomial g ∈ 〈F〉L,≺ is involu-
tively head reducible with respect to F . Each reduction step in an involutive normal
form algorithm leads to a new polynomial g′ ∈ 〈F〉L,≺ with lt≺ g′ � lt≺ g. If the
leading term is reduced, we even get lt≺ g′ ≺ lt≺ g. As each terminating normal
form algorithm must sooner or later reduce the leading term, we eventually obtain 0
as unique involutive normal form of any g ∈ 〈F〉L,≺.

Let g1 and g2 be two involutive normal forms of the polynomial g. Obviously,
g1− g2 ∈ 〈F〉L,≺. By definition of a normal form both suppg1 and suppg2 do not
contain any term involutively reducible with respect to F and the same holds for
supp(g1−g2)⊆ suppg1∪suppg2. Hence the difference g1−g2 is also in involutive
normal form and by our considerations above we must have g1−g2 = 0. �

Proposition 3.4.16. The ordinary and the involutive normal form of any polynomial
g ∈ P with respect to a weakly involutive set F ⊂ P \{0} are identical.

Proof. Recalling the proof of the previous proposition, we see that we used the
assumption that F was involutively head autoreduced only for proving the existence
of a generator f ∈ F such that lt≺ f |L,le≺F lt≺ g for every polynomial g ∈ 〈F〉L,≺.
But it follows immediately from Theorem 3.4.4 that this property also holds for any
weak involutive basis. Thus, by the same argument as above, we may conclude that
the involutive normal form with respect to a weakly involutive set is unique. For
Gröbner bases the uniqueness of the ordinary normal form is a classical property
and any weak involutive basis is also a Gröbner basis. As a polynomial in ordinary
normal form with respect to F is trivially in involutive normal form with respect to
F , too, the two normal forms must coincide. �



100 3 Involution I: Algebraic Theory

Finally, we extend the notion of a minimal involutive basis from �n
0 to P . This

is done in close analogy to Definition B.4.11 of a minimal Gröbner basis.

Definition 3.4.17. Let I ⊆ P be a non-zero ideal and L an involutive division. An
involutive basisH of I with respect to L is minimal, if le≺H is the minimal involu-
tive basis of the monoid ideal le≺ I for the division L.

By Proposition 3.1.21, any involutive basis for a globally defined division like
the Pommaret division is minimal. Uniqueness requires two further assumptions.
First of all, we obviously need a full involutive autoreduction instead of only a head
autoreduction. Secondly, we must normalise the leading coefficients to one, i. e. we
must take a monic basis.

Proposition 3.4.18. Let I ⊆ P be a non-zero ideal and L an involutive division.
Then I possesses at most one monic, involutively autoreduced, minimal involutive
basis for the division L.

Proof. Assume that H1 and H2 are two different monic, involutively autoreduced,
minimal involutive bases of I with respect to L and ≺. By definition of a minimal
involutive bases, this implies that lt≺H1 = lt≺H2. AsH1 andH2 are not identical,
we must have two polynomials h1 ∈ H1 and h2 ∈ H2 such that lt≺ h1 = lt≺ h2 but
h1 �= h2. Now consider the polynomial h = h1− h2 ∈ I. Its leading exponent must
lie in the involutive span of the set le≺H1 = le≺H2. On the other hand, the term
lt≺ h must be contained in either supph1 or supph2. But this observation implies
that eitherH1 orH2 is not involutively autoreduced. �

3.5 Notes

Involutive divisions were introduced by Gerdt and Blinkov [156] generalising ideas
used already by Janet [235] (extending earlier works by Riquier [381]) in the con-
text of differential equations. All divisions introduced so far are also much older
than the theory of involutive bases; their modern names were coined by Gerdt and
Blinkov [156]. One should note a difference in conventions: in the case of a division
depending on the ordering of the variables, we always analyse multi indices from
the right, i. e. we start with the last entry μn and not with the first entry μ1. Thus for
the Janet division we first check whether n is multiplicative and then continue with
the lower values;3 for the Pommaret division multi indices of the form [0, . . . ,0,μn]
possess the most multiplicative indices. In [156], it is the other way round: they
start the analysis of a multi index with μ1 and not μn; for the Janet division they
first check whether 1 is multiplicative and for the Pommaret division multi indices
[μ1,0, . . . ,0] possess the most multiplicative indices. Obviously, the two conventions
become identical, if one simply inverts the ordering of the variables.

3 In fact, this is the way the division was introduced by Janet [235, pp. 16–17].
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The terminology Pommaret division is historically not correct, as this division
was already introduced by Janet. He used it mainly in [234, pp. 30–31], probably
influenced by Cartan’s work on exterior differential systems, but also in the earlier
article [233, p. 30]. As we will see in Section 4.3, both divisions are in fact more
closely related than their apparently very different definitions indicate. The Thomas
division appeared first in [454].

A weaker notion of an involutive division was introduced by Apel [20]. One
could say that he uses a “local” approach whereas ours is “global.” He defines an
involutive division only with respect to a single set N ⊆ �n

0 and hence does not
need the second condition in Definition 3.1.1, the filter axiom relating the set of
multiplicative indices for subsets. We will discuss the effect of this modification in
more detail in the Notes of Chapter 4 in the context of completion algorithms.

Janet trees were introduced by Gerdt et al [159], though not in the form presented
here.4 We use the natural tree defined by the inclusion relations between the subsets
(dk, . . . ,dn) and thus obtain a tree with fixed depth n + 1 where each node may
possess several children. As already mentioned, as simple concrete realisation would
consist of using a list of pointers in each node. The trees of Gerdt et al [159] may
be interpreted as a special realisation of our trees. Instead of using such a list, each
node is resolved into a binary tree.

This choice does not lead automatically to a particularly good (nor to a particu-
larly bad) realisation. From a conceptual point of view, however, it is much better to
use our simpler trees. One has a clear separation between the underlying ideas and
details of implementation (compare the simple nature of our algorithms with the
algorithms presented in [159]). One also has more freedom in the implementation
where one may exploit special features of the used programming environment.5

The notion of an involutive basis is due to Gerdt and Blinkov [156]; the special
case of a Pommaret basis was earlier introduced by Zharkov and Blinkov [489].
As already mentioned, such bases are implicitly contained in many articles, even in
rather old ones. The main credit of these three authors is that, inspired by the work of
Janet, they provided a rigorous algebraic formulation in terms of the modern theory
of Gröbner bases. In particular, they introduced involutive reductions and normal
forms, two important concepts missing in the classical Janet–Riquier Theory.

It should be pointed out that already several years before these works Wu [483]
showed how ideas from the Janet–Riquier theory may be exploited for the con-
struction of a special type of Gröbner bases. In our terminology, his “well-behaved
bases” are Thomas bases, i. e. involutive bases with respect to the Thomas division.
As already mentioned, the Janet division may be considered as a refinement or opti-
misation of the Thomas division, as the involutive cones of the latter one are always
contained in those of the former one. Hence for computational purposes the Thomas
division is of no interest, but it is sometimes useful in theoretical considerations.

4 Blinkov [47] discusses similar tree structures also for other divisions.
5 For example MuPAD has no pointer types but a list type that behaves like an array with access
to the elements in constant time independent of the length of the list. In such a language the use of
a binary trees offers no advantages but will actually lead to a higher complexity.
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Pommaret bases (for ideals in power series rings) appeared implicitly in the fa-
mous work of Hironaka [218] on the resolution of singularities. Much later, Amasaki
[14, 15] followed up this idea and explicitly introduced them (for polynomial ide-
als) under the name Weierstraß bases because of their connection to the Weierstraß
Preparation Theorem. In his study of their properties, Amasaki obtained results sim-
ilar to the ones we will present in Chapter 5, however in a fairly different way.

Our Definition 3.4.1 of an involutive basis is not the same as the one given by
Gerdt and Blinkov [156]. First of all, they considered only strong bases; the notation
of a weak basis was introduced in [409]. Secondly, their approach is based on the
involutive normal form (thus mimicking the classical definition of Gröbner bases by
Buchberger) and their definition requires always a full involutive autoreduction of
the basis. Ignoring such minor differences, the basic equivalence of their and our
approach is ensured by Corollary 3.4.5.

One may wonder why we have introduced weak involutive bases. Only strong
involutive bases possess the interesting additional combinatorial properties that will
be discussed in Chapter 5. One (rather weak) answer is that they arise naturally in
our approach to the definition of involutive bases and that is sometimes convenient
in proofs to show first that some basis is weakly involutive and then afterwards that
it is in fact strongly involutive.

The real answer will become apparent in Sections 4.5 and 4.6 where we will
discuss two generalisations of the theory, namely the extension to semigroup orders
and solvable algebras over rings. In both cases, generally no strong involutive bases
exist but it is still possible to construct weak bases and thus Gröbner bases. From a
theoretical point of view that makes involutive bases somewhat uninteresting in such
situations. However, the completion algorithms of Chapter 4 may still be used as an
alternative to the classical Buchberger algorithm for the construction of Gröbner
bases. As discussed there in more detail, from a computational point of view this
new algorithm is highly attractive, as it is often faster.

The term “algebra of solvable type” was coined by Kandry-Rody and Weispfen-
ning [249], when they studied Gröbner bases for non-commutative rings. Their def-
inition is more restrictive than ours, as it does not allow that the terms operate on
the coefficients and requires a stronger form of compatibility between the multipli-
cation � and the term order ≺. It automatically implies that � respects ≺. For our
purposes this is the decisive property and thus we have used it for Definition 3.2.1
instead of the more technical axioms in [249].

Kredel [264] generalised the work of Kandry-Rody and Weispfenning [249] and
considered essentially the same class of algebras as here. Various variants of it have
appeared under different names in the literature. Popular is in particular the approach
to consider the algebras as the quotient of a free tensor algebra by an appropriate
quadratic ideal [18, 286]; one speaks then of G-algebras. In most cases the authors
restrict to the case of a (skew) coefficient field and do not allow that the variables
operate on the coefficients. The corresponding theory of Gröbner bases has been
treated at many places in the literature; besides the already cited works we men-
tion in particular [61, 62, 63, 165] where the terminology PBW algebra is used
(PBW is here an acronym for Poincaré–Birkhoff–Witt, as in the case of universal
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enveloping algebras the theorem with this name ensures that we may consider the al-
gebra as a polynomial ring). Somewhat surprisingly, a complexity theory of Gröbner
bases in polynomial algebras of solvable type was developed only very recently:
Aschenbrenner and Leykin [29] establish degree bounds similar to the commutative
case. Solvable algebras over rings are less frequently studied; our main source was
here the thesis of Kredel [264].

The main motivation for our use of solvable algebras was simply that they pro-
vide a very natural framework for discussing Gröbner or involutive bases and allow
us to give a unified treatment of polynomials and linear differential operators: the
key Condition (iii) in Definition 3.2.1 ensures that we can work with the leading
ideal just as in the commutative case and then apply simple normal form arguments.
Nevertheless, the examples given in Section 3.2 demonstrate that this class of alge-
bras is also of great practical interest. Many further examples and references can be
found in the recent thesis of Levandovskyy [286].

From the point of view of the theory of non-commutative rings polynomial alge-
bras of solvable type are fairly close to the commutative theory. There exists a theory
of Gröbner bases also for more general types of non-commutative rings, see for ex-
ample [40, 180, 290, 329, 330, 465]. An extension to involutive bases was recently
presented by Evans [129]. However, here it is much less clear how one should define
an involutive division and what are useful divisions. The divisions used in [129] are
rather different from the ones appearing in the commutative theory.

Our proof of Hilbert’s Basis Theorem for iterated polynomial algebras of solv-
able type (Theorem 3.3.2) is a straightforward adaption of a similar proof in [319,
Theorem 1.2.9] for Ore algebras where the conjugate σ is an automorphism. The
only novel aspect consists of the third condition in Definition 3.3.1 taking care of
the coefficients potentially appearing when multiplying two powers of the same
variables (these coefficients are always 1 in the case of an Ore algebra). The basic
underlying idea is rather simple but even in the case of the ordinary commutative
polynomial ring it was discovered only comparatively recently by Sarges [392] (it
has since become the standard approach to demonstrating the basis theorem in text-
books on commutative algebra). The extension of this proof to solvable algebra with
centred commutation relations (Theorem 3.3.7) is due to [264, Sect. 3.5] (“algebras
satisfying the extended axioms” in his terminology).

The treatment of filtered algebras via the associated graded algebra (Theo-
rem 3.3.11) is taken from [45, Chapt. I, §2]. There only the special case of the Weyl
algebra is treated, but the adaption to more general solvable algebras is trivial (see
also [319, Theorem 1.6.9]). A more comprehensive discussion of this technique in
the context of Gröbner bases is contained in the book of Li [290].

The counterexamples of non-Noetherian rings stem from [319, Example 1.2.11].
[264, Sect. 3.5] considered also the question when a polynomial algebra P of solv-
able type is right Noetherian. An essential condition is here that the maps ρμ ap-
pearing in the commutation relations (3.6a) are automorphisms, i. e. invertible. In
the case that P has centred commutation relations, this additional assumption suf-
fices already to show (with minor additions to our proof of Theorem 3.3.7) that the
algebra P is both left and right Noetherian.
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The basic idea of the proof in the case of a coefficient field (Theorem 3.3.13)
goes back to Gordan [172]; it was his answer to Hilbert’s original non-constructive
proof in his two famous papers on invariant theory [213, 214] which also contained
the proofs of the Nullstellensatz, of the rationality of the Hilbert series and of the
Syzygy Theorem. As additional benefit, we obtain for free the probably simplest
proof of the existence of Gröbner bases for arbitrary (left) ideals in P . The original
proof via the termination of the Buchberger Algorithm B.3 (cf. Theorem B.4.15) is
much longer (and much more technical), as it requires first a proof of the Buchberger
criterion for a Gröbner basis (Theorem B.4.14).



Chapter 4
Completion to Involution

I wish to God these calculations had been executed by steam.
Charles Babbage

In the previous chapter we only defined the notion of an involutive basis but we did
not consider the question of the existence of such bases. Recall from Section 3.3 that
(in the case of a coefficient field) the existence proof for Gröbner bases is straightfor-
ward. For involutive bases the situation is considerably more complicated. Indeed,
we have already seen in Example 3.1.16 an (even monomial) ideal not possessing
a finite Pommaret basis. Thus we surely cannot expect that an arbitrary polynomial
ideal has for every involutive division a finite involutive basis.

In Section 4.1 we introduce a special class of involutive divisions, the construc-
tive divisions, which is naturally related to an algorithm for computing involutive
bases (contained in Section 4.2). If such a division is in addition Noetherian, then
the algorithm will always terminate with an involutive basis and thus provides us
with a proof of the existence of such bases for many divisions (including in partic-
ular the Janet division). Unfortunately, both the definition of constructive divisions
and the termination proof are highly technical and not very intuitive.

As a reward the underlying algorithm turns out to be surprisingly efficient de-
spite its simplicity. However, in general, it does not produce a minimal basis and
furthermore still contains some redundancies. In Section 4.4 we show how it can
be modified such that the output is always minimal and simultaneously introduce a
number of optimisations. This optimised algorithm underlies most implementations
of involutive bases in computer algebra systems.

Section 4.3 considers in detail the special case of the Pommaret division. As it is
not Noetherian, our completion algorithm does not necessarily always terminate for
it. However, it turns out that it does so generically; more precisely, the whole prob-
lem (known under the name of δ -regularity) is only a matter of the chosen variables
and in a generic coordinate system the algorithm terminates. Because of its great im-
portance, both from a theoretical point of view and for concrete computations, this
topic will reappear at a number of places in later chapters. We will prove that every
ideal possesses in suitably chosen coordinates a Pommaret basis and also show how
such coordinates may be constructed effectively using a simple and cheap criterion
for “bad” coordinate systems based on a comparison of the multiplicative variables
obtained by the Pommaret and the Janet division, respectively.
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The next chapter will show that such coordinate questions are common in com-
mutative algebra and thus effective methods for determining “good” coordinates are
of considerable interest. Many statements take a particularly simple form in an ap-
propriately chosen coordinate system. “Good” coordinates are often generic. How-
ever, in general it is firstly not easy to verify whether the currently used variables
are generic in the corresponding sense and secondly non-trivial to construct system-
atically “good” coordinates. Usually, one resorts to probabilistic methods which are
disadvantageous for computations, as they destroy all the sparsity usually present in
polynomial (or differential) systems appearing in practice. For all topics that we will
investigate in the next chapter, δ -regular coordinates represent a “good” choice. Fur-
thermore, our approach for their construction is deterministic and tries to preserve
as much sparsity as possible.

The final two sections discuss two extensions of the theory of involutive bases:
bases with respect to semigroup orders—a wider class of orders which is impor-
tant for local computations (as needed e. g. in singularity theory) but algorithmi-
cally more demanding—and bases in solvable algebras with coefficients from a ring
instead of a field. In both cases, the concept of weak involutive bases becomes im-
portant, as in general strong bases do not exist any more.

4.1 Constructive Divisions

In Chapter 3 we introduced involutive bases. But we postponed the question how
they can actually be constructed. Unfortunately, for arbitrary involutive division no
satisfying solution is known so far. One could follow a brute force approach, namely
performing a breadth first search through the tree of all possible completions. Ob-
viously, it terminates only, if a finite basis exists. But for divisions satisfying some
additional properties one can design a fairly efficient completion algorithm.

The first problem one faces in the search for an involutive completion of a finite
subset B ⊂�n

0 for some division L is to check whether B is already involutive. The
trouble is that we do not know a priori where obstructions to involution might lie.
As these multi indices must somehow be related to the non-multiplicative indices of
the elements of B, the multi indices ν+ 1 j with ν ∈ B and j ∈ NL,B(ν) represent a
natural starting point.

Definition 4.1.1. A finite set B ⊂�n
0 of multi indices is locally involutive for the in-

volutive division L, if ν+1 j ∈ 〈B〉L for every non-multiplicative index j ∈ NL,B(ν)
of every multi index ν ∈ B.

In contrast to involution, local involution can easily be verified effectively, as
it requires only a finite number of checks. However, while involution obviously
implies local involution, the converse does not hold, as the following rather bizarre,
globally defined division due to Gerdt and Blinkov [156, Ex. 4.8] demonstrates.
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Example 4.1.2. We consider in �3
0 the involutive division L defined by the fol-

lowing assignment of multiplicative indices. With the exception of four multi
indices all elements of �3

0 do not have any multiplicative indices. These four ex-
ceptions are: NL([0,0,0]) = {1,2,3}, NL([1,0,0]) = {1,3}, NL([0,1,0]) = {1,2},
and NL([0,0,1]) = {2,3}. It is straightforward to show that this assignment indeed
defines a global involutive division.

Now we take the set B =
{
[1,0,0], [0,1,0], [0,0,1]

}
. It is not involutive, as the

multi index [1,1,1] ∈ 〈B〉 is not contained in the involutive span 〈B〉L. But it is
locally involutive, as the three multi indices [1,1,0], [0,1,1] and [1,0,1] obtained by
taking the elements of B and adding their respective non-multiplicative index are
contained in 〈B〉L. �

Definition 4.1.3. Let L be an involutive division and B ⊂ �n
0 a finite set. Let fur-

thermore (ν(1), . . . ,ν(t)) be a finite sequence of elements of B where every multi
index ν(k) with k < t has a non-multiplicative index jk ∈ NL,B(ν(k)) such that
ν(k+1) |L,B ν(k) + 1 jk . The division L is continuous, if any such sequence consists
only of distinct elements, i. e. if ν(k) �= ν(�) for all k �= �.

It is easy to see that the division of Example 4.1.2 is not continuous. We will show
now that for continuous divisions local involution always implies involution. This
makes these divisions very convenient for concrete computations: if obstructions to
involution exist, some of them must be of the form ν + 1 j with ν ∈ B and index
j ∈ NL,B(ν) and all others are “multiples” of these.

Proposition 4.1.4. If the involutive division L is continuous, then any locally invo-
lutive set B ⊂�n

0 is weakly involutive.

Proof. Let the set Σ contain those obstructions to involution that are of minimal
length. We claim that for a continuous division L all multi indices σ ∈ Σ are of the
form ν + 1 j with ν ∈ B and j ∈ NL,B(ν). This assertion immediately implies our
proposition: since for a locally involutive set all such multi indices are contained in
〈B〉L, we must have Σ = ∅ and thus 〈B〉= 〈B〉L.

In order to prove our claim, we choose a σ ∈ Σ for which no ν ∈ B exists with
σ = ν+1 j. We collect in Bσ all divisors ν ∈ B of σ of maximal length. Let ν(1) be
an element of Bσ ; by assumption, the multi index μ(1) = σ−ν(1) satisfies |μ (1)|> 1

and at least one non-multiplicative index j1 ∈ NL,B(ν(1)) exists with μ (1)
j1

> 0. By

the definition of Σ , we have ν(1) + 1 j1 ∈ 〈B〉L. Thus a multi index ν(2) ∈ B exists
with ν(2) |L,B ν(1) + 1 j1 . This implies ν(2) | σ and we set μ (2) = σ − ν(2). By the
definition of the set Bσ , we have |ν(2)| ≤ |ν(1)|. Hence ν(2) + 1 j ∈ 〈B〉L for all j.

Let us choose a non-multiplicative index j2 ∈ NL,B(ν(2)) with μ (2)
j2

> 0. Such an
index must exist, as otherwise σ ∈ 〈B〉L. By the same arguments as above, a multi
index ν(3) ∈ B exists with ν(3) |L,B ν(2) + 1 j2 and |ν(3)| ≤ |ν(2)|. We can iterate this
process and produce an infinite sequence (ν(1),ν(2), . . . ) where each multi index
satisfies ν(i) ∈ B and ν(i+1) |L,B ν(i) + 1 ji with ji ∈ NL,B(ν(i)). As B is a finite set,
the elements of the sequence cannot be all different. This observation contradicts
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our assumption that L is a continuous division: by taking a sufficiently large part of
this sequence we obtain a finite sequence with all properties mentioned in Defini-
tion 4.1.3 but containing some identical elements. Hence a multi index ν ∈ B must
exist such that σ = ν+ 1 j. �

Continuity is not only sufficient for the equivalence of local involution and invo-
lution but also useful for proving other properties. The main point is that it excludes
the existence of infinite reduction chains. The two involutive divisions introduced in
Examples 3.1.4 and 3.1.7 are both continuous.

Lemma 4.1.5. The Janet and the Pommaret division are continuous.

Proof. Let B ⊆ �n
0 be a finite set and (ν(i), . . . ,ν(t)) a finite sequence where

ν(i+1) |L,B ν(i) + 1 j with j ∈ NL,B(ν(i)) for 1≤ i < t.
We claim that for L = J, the Janet division, ν(i+1)  lex ν(i) implying that the

sequence is strictly ascending and thus cannot contain any identical entries. Let us
set k = max{i | μi �= νi}. Then j≤ k, as otherwise j ∈NJ,B(ν(i+1)) would entail that
also j ∈ NJ,B(ν(i)) contradicting our assumption that j is non-multiplicative for the

multi index ν(i). But j < k is also not possible, as then ν(i+1)
k < ν(i)

k and so k could
not be multiplicative for ν(i+1). There remains as only possibility j = k. In this case

we must have ν(i+1)
j = ν(i)

j + 1 (otherwise j could not be multiplicative for ν(i+1)).

Thus we conclude that ν(i+1)  lex ν(i) and the Janet division is continuous.
The proof for L = P, the Pommaret division, is slightly more subtle.1 The condi-

tion j ∈ NP(ν(i)) implies that cls (ν(i) + 1 j) = clsν(i) and if ν(i+1) |P ν(i) + 1 j, then
clsν(i+1) ≥ clsν(i), i. e. the class of the elements of the sequence is monotonously
increasing. If clsν(i+1) = clsν(i) = k, then the involutive divisibility requires that

ν(i+1)
k ≤ ν(i)

k , i. e. among the elements of the sequence of the same class the cor-

responding entry is monotonously decreasing. And if finally ν(i+1)
k = ν(i)

k , then we
must have ν(i+1) = ν(i) + 1 j, i. e. the length of these elements is strictly increasing.
Hence we may conclude that all elements of the sequence are different and the Pom-
maret division is continuous. �

Remark 4.1.6. In Remark 3.1.13 we discussed that for a global division a weak in-
volutive basis of the sum I1 +I2 of two monoid ideals is obtained by simply taking
the union of (weak) involutive bases of I1 and I2. As a more theoretical applica-
tion of the concept of continuity, we prove now a similar statement for the product
I1 · I2 and the intersection I1 ∩ I2 in the special case of the Pommaret division.
Let N1 be a (weak) Pommaret basis of I1 and N2 of I2. We claim that the set

1 It is tempting to tackle the lemma for the Pommaret division in the same manner as for the
Janet division using ≺revlex instead of ≺lex; in fact, such a “proof” can be found in the literature.
Unfortunately, it is not correct, as ≺revlex is not a term order (see Example A.1.7): if we have
ν (i+1) = ν (i) +1 j , then ν (i+1) ≺revlex ν (i) although the latter multi index is a divisor of the former
one! Thus the sequences considered in Definition 4.1.3 are in general not strictly ascending with
respect to≺revlex.
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N = {μ+ν | μ ∈N1,ν ∈ N2} is a weak Pommaret basis of I1 · I2 and that the set
N̂ = {lcm(μ ,ν) | μ ∈ N1,ν ∈N2} is a weak Pommaret basis of I1∩I2.

By Proposition 4.1.4, it suffices to show that bothN and N̂ are locally involutive
for the Pommaret division. Thus take a generator μ+ν ∈N , assuming for definite-
ness that clsμ ≤ clsν , and a non-multiplicative index j1 > cls(μ+ν) = clsμ of
it. Then j1 is also non-multiplicative for μ ∈ N1 and the Pommaret basis N1 con-
tains a multi index μ (1) which involutively divides μ + 1 j1 . If now the generator
μ (1) +ν ∈N is an involutive divisor of μ+ν+ 1 j1 , then we are done.

Otherwise, an index k1 > clsν exists such that (μ− μ(1))k1 > 0. In this case the
Pommaret basis N2 contains a multi index ν(1) which involutively divides ν+ 1k1 .
Again we are done, if μ (1) + ν(1) ∈ N is now an involutive divisor of μ+ ν+ 1 j1 .
Otherwise, there are two possibilities. An index j2 > clsμ (1) could exist such that
(μ+ν + 1 j1 − μ (1) +ν(1)) j2 > 0 which entails the existence of a further generator
μ (2) ∈N1 which involutively divides the multi index μ(1) +1 j2 . Or there could exist
an index k2 > clsν(1) such that (μ+ν+1 j1−μ (1) +ν(1))k2 > 0 which implies that
there is a multi index ν(2) ∈ N2 involutively dividing ν(1) + 1k2 .

Continuing in this manner, one easily sees that we build up two sequences(
μ ,μ (1),μ (2), . . .

)
⊆N1 and

(
ν,ν(1),ν(2), . . .

)
⊆N2 as in the definition of a contin-

uous division. Since both Pommaret bases are finite by definition and the Pommaret
division is continuous by Lemma 4.1.5, no sequence may become infinite and the
above described process must stop with an involutive divisor of μ+ν+ 1 j1 . Hence
the set N is locally involutive and a weak Pommaret basis of I1 · I2. The proof for
N̂ and I1∩I2 goes completely analogously replacing at appropriate places the sum
of two multi indices by their least common multiple. �

Definition 4.1.7. Let B ⊂ �n
0 be a finite set of multi indices and choose a multi

index ν ∈ B and a non-multiplicative index j ∈ NL,B(ν) such that

(i) ν+ 1 j /∈ 〈B〉L.
(ii) If there exists a multi index μ ∈ B and k ∈ NL,B(μ) such that μ+ 1k | ν + 1 j

but μ+ 1k �= ν+ 1 j, then μ+ 1k ∈ 〈B〉L.

The continuous division L is constructive, if for any such set B and any such multi
index ν+ 1 j no multi index ρ ∈ 〈B〉L with ν+ 1 j ∈ CL,B∪{ρ}(ρ) exists.

In words, constructivity can roughly be explained as follows. The conditions im-
posed on ν and j ensure a kind of minimality: no proper divisor of ν + 1 j is of the
form μ+1k for a μ ∈ B and not contained in the involutive span 〈B〉L. The conclu-
sion implies that it is useless to add multi indices to B that lie in some involutive
cone, as none of them can be an involutive divisor of ν + 1 j. An efficient comple-
tion algorithm for a constructive division should consider only non-multiplicative
indices. Because of the restriction to multi indices of the form ν + 1 j, we require
that a constructive division is also continuous.

Lemma 4.1.8. Any globally defined division (and thus the Pommaret division) is
constructive. The Janet division is constructive, too.
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Proof. For a globally defined division the proof is very simple. For any multi index
ρ ∈ 〈B〉L there exists a multi index μ ∈ B such that ρ ∈ CL(μ). As in the global
case the multiplicative indices are independent of the reference set, we must have
by the definition of an involutive division that CL(ρ)⊆ CL(μ). Hence adding such a
multi index to B cannot change the involutive span and if ν + 1 j /∈ 〈B〉L, then also
ν+ 1 j /∈ 〈B∪{ρ}〉L. But this fact implies the constructivity of L.

The proof of the constructivity of the Janet division is more involved. The basic
idea is to show that if it were not constructive, it also could not be continuous.
Let B, ν , j be as described in Definition 4.1.7. Assume for a contradiction that a
multi index ρ ∈ 〈B〉J exists with ν+1 j ∈ CJ,B∪{ρ}(ρ). We write ρ = ν(1) +μ for a

multi index ν(1) ∈ B with ρ ∈ CJ,B(ν(1)). As ν+ 1 j /∈ 〈B〉J , we must have |μ |> 0.
Consider the multi index λ = ν + 1 j−ρ and let m, l be the maximal indices such
that μm > 0 and λl > 0, respectively.

We claim that j > max{m, l}. Indeed, if j ≤m, then ν(1)
m < νm and, by definition

of the Janet division, this implies that m /∈ NJ,B(ν(1)), a contradiction. Similarly, we
cannot have j < l, as then l /∈ NJ,B∪{ρ}(ρ). Finally, j = l is not possible. As we

know already that j > m, we have in this case that ρi = ν(1)
i = νi for all i > j and

ρ j ≤ ν j. Hence j ∈ NJ,B∪{ρ}(ν) implying j ∈ NJ,B∪{ρ}(ρ), a contradiction.
Now we construct a sequence as in Definition 4.1.3 of a continuous division.

Choose an index j1 ∈ NJ,B(ν(1)) with λ j1 > 0. Such an index exists, as otherwise
ν + 1 j ∈ CJ,B(ν(1)) ⊆ 〈B〉J . So we may write ν + 1 j = (ν(1) + 1 j1)+ μ +λ − 1 j1 .
Because of |μ | > 0, the multi index ν(1) + 1 j1 is a proper divisor of ν + 1 j and
according to our assumptions ν(2) ∈ B exists with ν(1) + 1 j1 ∈ CJ,B(ν(2)).

By the same arguments as above, we can find an index j2 ∈ NJ,B(ν(2)) such that
(μ+λ−1 j1) j2 > 0 and a multi index ν(3) ∈B such that ν(2)+1 j2 ∈CJ,B(ν(3)). Thus
we can iterate this construction and produce an infinite sequence (ν(1),ν(2), . . . )
where ν(i+1) |J,B ν(i) + 1 ji with ji ∈ NJ,B(ν(i)). By the continuity of the Janet divi-
sion all members of the sequence must be different. But every multi index ν(i) is
a divisor of ν + 1 j, so obviously only finitely many of them can be different. Thus
the sequence must terminate which only happens, if ν + 1 j ∈ CJ,B(ν(i)) for some i
contradicting our assumptions. �

4.2 Computation of Involutive Bases

We present now an algorithm for determining involutive bases of left ideals in a
polynomial algebra of solvable type (P ,�,≺). Note that it includes simultaneously
as special cases the completion of polynomial ideals and of linear systems of differ-
ential equations (expressed with linear differential operators). As mentioned above,
for arbitrary involutive divisions, nobody has so far been able to find a reasonable
algorithm. But if we assume that the division is constructive, then a very simple al-
gorithm exists, the basic ideas of which go back to Janet. As in the last chapter, we
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start with the “monomial” case, i. e. we consider the problem how we can complete
a given finite set B ⊂�n

0 of multi indices to an involutive set with respect to some
involutive division L, and extend later to finite polynomial sets F ⊂ P .

Algorithm 4.1 Involutive basis in (�n
0,+)

Input: a finite set B ⊂�n
0, an involutive division L

Output: an involutive completion B̄ of B
1: B̄ ← B
2: loop

3: S ←
{
ν+1 j | ν ∈ B̄, j ∈ NL,B̄(ν), ν+1 j /∈ 〈B̄〉L

}

4: if S = ∅ then
5: return B̄
6: else
7: choose μ ∈ S such that S does not contain a proper divisor of it
8: B̄ ← B̄∪{μ}
9: end if

10: end loop

The strategy behind Algorithm 4.1 is fairly natural given the results of the last
section. It collects in a set S all obstructions to local involution. For a continuous
division L, the basis B is involutive, if and only if this set vanishes. Furthermore, for
a constructive division L it does not make sense to add elements of the involutive
span 〈B〉L to B in order to complete. Thus we add in Line /8/ an element of S which
is minimal in the sense that the set S does not contain a proper divisor of it.

Proposition 4.2.1. Let the finite set B ⊂�n
0 possess an involutive completion with

respect to the constructive division L. Then Algorithm 4.1 terminates with an invo-
lutive completion B̄ of B.

Proof. If Algorithm 4.1 terminates, its correctness is obvious under the made as-
sumptions. The criterion for its termination, S = ∅, is equivalent to local involution
of the set B̄. By Proposition 4.1.4, local involution implies for a continuous division
involution. Thus the result B̄ is an involutive completion of the input set B, as by
construction B ⊆ B̄ ⊂ 〈B〉.

If the set B is already involutive, then Algorithm 4.1 leaves it unchanged and thus
obviously terminates. Let us assume that B is not yet involutive. In the first iteration
of the loop a multi index of the form μ = ν+ 1 j is added to B. It is not contained
in 〈B〉L and S does not contain a proper divisor of it. If BL is an arbitrary involutive
completion of B for the division L, then it must contain a multi index λ /∈ B such
that λ |L,BL μ . We claim that λ = μ .

Assume that λ �= μ . Since BL ⊂ 〈B〉, the multi index λ must lie in the cone
of a generator ν(1) ∈ B. We will show that λ ∈ 〈B〉L because of the continuity
of L, contradicting the constructivity of L. If ν(1) |L,B λ , we are done. Otherwise,
we write λ = ν(1) +ρ (1) for some multi index ρ (1) ∈�n

0. By construction, a non-

multiplicative index j1 ∈ NL,B(ν(1)) with ρ (1)
j1

> 0 must exist. Consider the multi
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index ν(1) + 1 j1 . Because of ν(1) + 1 j1 | λ , the multi index ν(1) + 1 j1 is a proper
divisor of μ . Since the set S does not contain any proper divisor of μ , we must have
ν(1) + 1 j1 ∈ 〈B〉L. Thus a multi index ν(2) ∈ B exists such that ν(2) |L,B ν(1) + 1 j1 .

By iteration of this argument we obtain a sequence
(
ν(1),ν(2), . . .

)
where each

element ν(i) ∈ B is a divisor of λ and where ν(i+1) |L,B ν(i) + 1 ji with a non-
multiplicative index ji ∈ NL,B(ν(i)). This sequence cannot become infinite for a
continuous division, as λ has only finitely many different divisors and all the multi
indices ν(i) in arbitrary finite pieces of the sequence must be different. But the se-
quence will only stop, if some ν(i) ∈ B exists such that ν(i) |L,B λ and hence we
conclude that λ ∈ 〈B〉L.

Thus every involutive completion BL of the set B must contain μ . In the next
iteration of the loop, Algorithm 4.1 treats the enlarged set B1 = B∪{μ}. It follows
from our considerations above that any involutive completion BL of B is also an
involutive completion of B1 and hence we may apply the same argument again. As
an involutive completion BL is by definition a finite set, we must reach after a finite
number k of iterations an involutive basis Bk of 〈B〉. �

Note the crucial difference between this result and Theorem B.4.15 on the ter-
mination of the Buchberger Algorithm B.3. In the latter case, one shows the ter-
mination for arbitrary input, i. e. the theorem provides a constructive proof for the
existence of Gröbner bases. Here we are only able to prove the termination under
the assumption that a finite involutive basis exists; the existence has to be shown
separately. For example, Lemma 3.1.19 guarantees us the existence of a Janet basis
for every monoid ideal.

By Proposition 3.1.12, any weak involutive basis becomes strongly involutive
after a simple elimination of redundant elements. Thus we obtain an algorithm for
constructing a strong involutive basis of 〈B〉 by adding an involutive autoreduction
as last step to Algorithm 4.1. Alternatively, we could perform the autoreduction as
first step. Indeed, if the input set B is involutively autoreduced, then all intermediate
sets B̄ constructed by Algorithm 4.1 are involutively autoreduced, too. This fact
follows from the filter axiom in Definition 3.1.1 of an involutive division requiring
that involutive cones may only shrink, if we add elements to the set B.

Remark 4.2.2. While we just stated that it suffices to perform an involutive autore-
duction as either first or last step in Algorithm 4.1, we now analyse for later use
what happens, if we involutively autoreduce B̄ every time a new element has been
added to it. The termination argument given in the proof of Proposition 4.2.1 does
not remain valid after this modification and we must provide an alternative proof.

Let again BL =
{
μ (1), . . . ,μ (r)

}
be an involutive completion of the input set B. If

we denote by B̄i the value of B̄ after the ith iteration of the loop, then it was shown
in the proof of Proposition 4.2.1 that BL is also a weak involutive completion of any
set B̄i. As by definition BL is finite and each B̄i is a subset of it, the only possibility
for non-termination is the appearance of a cycle, i. e. the existence of values k0, �
such that B̄k+� = B̄k for all k ≥ k0.

Assume that in some iteration of the loop the multi index μ(k) is added to B̄ and
that in the subsequent involutive autoreduction some elements of B̄ are eliminated
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(this is necessary for having a cycle). The first step in the autoreduction must be
that some multi index μ (�) is eliminated, because μ (k) is an involutive divisor of
it. Indeed, by Condition (ii) in Definition 3.1.1, any other reduction would have
been possible already before the insertion of μ(k) and thus the previous involutive
autoreduction would not have been finished.

As μ (k) has been added to B̄, a multi index μ (a1) ∈ B such that μ (k) = μ (a1) +ρ
exists. Furthermore, we know that μ(�) = μ (k) + σ̃ for some multi index σ̃ with
|σ̃ |> 0 and thus μ (�) = μ (a1) +σ with σ = σ̃+ρ and |σ |> 1. As we are in a cycle,
the multi index μ (�) must have been added to B̄ in a previous iteration of the loop,
say when analysing B̄i. Thus μ (�) cannot be involutively divisible by μ(a1) and we
must have σ j1 > 0 for a non-multiplicative index j1 ∈ NL,B̄i

(μ (a1)). As |σ |> 1, we

cannot have μ (a1) + 1 j1 = μ (�) and therefore μ (a1) + 1 j1 is a proper divisor of μ (�).
Hence the set B̄i must contain an involutive divisor μ(a2) of μ (a1) +1 j1 , as otherwise
this multi index would have been added to B̄ instead of μ (�).

Obviously, μ (a2) | μ (k) and, writing μ (k) = μ (a2) +π , we conclude by the same
reasoning as above that π j2 > 0 for a non-multiplicative index j2 ∈ NL,B̄i

(μ (a2)).
Iteration of this argument yields an infinite sequence

(
μ (a1),μ (a2), . . .

)
as in Defini-

tion 4.1.3 of a continuous division. However, since the division L is continuous and
the completionBL a finite set, we arrive at a contradiction. Thus even with additional
involutive autoreductions after each step Algorithm 4.1 terminates. �

In principle, our description of Algorithm 4.1 is not complete, as we did not
specify how one should choose the multi index μ in Line /7/, if several choices are
possible. One would expect that different involutive completions are obtained for
different choices. However, an interesting aspect of our proof of Proposition 4.2.1
is that it shows that this is not the case. The choice affects only the order in which
multi indices are added but not which or how many multi indices are added during
the completion. A simple method for choosing μ consists of taking an arbitrary term
order≺ (which could be changed in each iteration) and setting μ = min≺S.

Corollary 4.2.3. If Algorithm 4.1 terminates, then its output B̄ is independent of
how the multi index μ is chosen in Line /7/. Furthermore, if BL is any involutive
completion of B with respect to the division L, then B̄ ⊆ BL.

Proof. Consider the set L(B) of all involutive completions of B with respect to the
division L and introduce

B̂ =
⋂

BL∈L(B)

BL . (4.1)

We claim that Algorithm 4.1 determines the thus defined set B̂ independent of the
way in which μ is chosen in Line /7/. Obviously, this fact implies our corollary.

Our proof of Proposition 4.2.1 showed that all the multi indices added in the
course of Algorithm 4.1 are contained in every involutive completion of B. Thus all
these multi indices are elements of B̂. As our algorithm terminates with an involutive
completion, its output is an element of L(B), too. Hence the output must be B̂. �
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Corollary 4.2.4. If the monoid ideal I ⊆ �n
0 possesses an involutive basis for the

constructive division L, then I has a unique minimal involutive basis.

Proof. If we apply Algorithm 4.1 to the unique minimal basis B of I in the usual
sense, then it follows trivially from Corollary 4.2.3 that the output is a minimal
involutive basis of I and that no other involutive basis of I can be minimal, as it is
an involutive completion of B. �

An obvious way to compute an involutive basis for an ideal I in a polynomial
algebra (P ,�,≺) of solvable type follows immediately from Remark 3.4.12: we
determine first a Gröbner basis G of I and then with Algorithm 4.1 an involutive
completion of the monomial set le≺G. In fact, a similar method is proposed by
Sturmfels and White [439] for the construction of Stanley decompositions which
implicitly corresponds to the computation of an involutive basis (see Section 5.1).
However, we prefer to extend the ideas behind Algorithm 4.1 to a direct completion
algorithm for polynomial ideals, as we believe that such an approach is more effi-
cient for most ideals. As a first step, we need subalgorithms for two important tasks:
involutive normal forms and involutive head autoreductions.

The design of an algorithm NormalFormL,≺(g,H) determining an involutive nor-
mal form of the polynomial g with respect to the finite setH⊂P is trivial. We may
use the standard Algorithm B.1 for normal forms in the Gröbner theory, if we re-
place in Lines /1/, /5/ and /7/ of it the ordinary divisibility relation by its involutive
version. Obviously, this modification does not affect the termination. Actually, for
our purposes it is not necessary to compute a full normal form; we may stop as soon
as we have obtained a polynomial that is not involutively head reducible.

Algorithm 4.2 Involutive head autoreduction
Input: a finite set F ⊂ P , an involutive division L
Output: an involutively head autoreduced setH with 〈H〉 = 〈F〉
1: H←F
2: while ∃h ∈H, f ∈H\{h} : le≺ f |L,le≺ H le≺ h do
3: choose such a pair (h, f )
4: μ← le≺ h− le≺ f ; c← lc≺ h/ lc≺ (xμ � f )
5: H←H\{h}; h̄← h− cxμ � f
6: if h̄ �= 0 then
7: H←H∪{h̄}
8: end if
9: end while

10: return H

A simple realisation of an algorithm InvHeadAutoReduceL,≺(F) for an invo-
lutive head autoreduction is given by Algorithm 4.2. It uses exactly the same strat-
egy as the autoreduction Algorithm B.2 with obvious adaptions. Its correctness and
its termination follows by the same arguments (any term order is a well-order by
Lemma A.1.6). For a full autoreduction instead of only a head autoreduction, one
must consider in Line /2/ the full support of the polynomial h and not only its
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leading term. In this case it is tempting to replace the second part of Line /5/ by
h̄ ← NormalFormL,≺(h,H̄) in analogy to Algorithm 4.2. However, this is correct
only for global divisions, as then the multiplicative variables are determined with
respect to the smaller set H̄ and not the full basisH (cf. Remark 3.4.9).

Note that in the determination of the coefficient c ∈ � in Line /6/ we must divide
by the leading coefficient of the product xμ � f . In general, it differs from the leading
coefficient of f , as one can see from (3.8). However, for the two cases of greatest
interest for us, ordinary polynomials and linear differential operators, we may take
lc≺ f instead.

We call MonomialCompleteL,≺ the “lift” of the monomial completion Algo-
rithm 4.1 to polynomials obtained by replacing Line /3/ of it by

S ←
{

x � h | h ∈ H̄, x ∈ XL,le≺ H̄,≺(h), le≺ (x � h) /∈ 〈le≺ H̄〉L
}

and adapting all other lines correspondingly. Applying it to a finite involutively head
autoreduced set H⊂ P yields a set H̄ ⊇ H consisting of H and some multiples of
its elements such that le≺ H̄ is an involutive basis of 〈le≺H〉.

Based on these three subalgorithms, we present now the simple Algorithm 4.3
for the computation of involutive bases in P . The current basis is first involutively
head autoreduced in Line /3/ and then its set of leading exponents is completed to an
involutive basis in Line /4/. Finally, we collect all non-vanishing involutive normal
forms of non-multiplicative multiples of our generators in the set S; we stop and
return the current basis as soon as it is empty.

Algorithm 4.3 Involutive basis in (P ,�,≺) (“monomial” form)
Input: a finite set F ⊂ P , an involutive division L
Output: an involutive basisH of I = 〈F〉 with respect to L and ≺
1: H←F ; S ← ∅
2: repeat
3: H← InvHeadAutoReduceL,≺(H∪S)
4: H← MonomialCompleteL,≺(H)
5: S ←

{
NormalFormL,≺(x �h,H) | h ∈H, x ∈ XL,H,≺(h)

}
\{0}

6: until S = ∅
7: return H

In order to prove the termination of Algorithm 4.3, we need an extension of the
notion of local involution and of Proposition 4.1.4 from monomial to polynomial
sets. Since it will allow us to simplify some proofs in Section 4.4, we use this occa-
sion for a slight generalisation.

Definition 4.2.5. A finite set F ⊂ P is called involutive up to the multi index λ (or
partially involutive) for the division L, if for every generator f ∈ F and every term
t ∈ � such that le≺ (t � f ) ≺ λ the involutive normal form of t � f with respect to
F vanishes, i. e. we have t � f ∈ 〈F〉L,≺. The set F is locally involutive (up to the
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multi index λ ∈�n
0) for the division L, if x j � f ∈ 〈F〉L,≺ for any non-multiplicative

variable x j ∈ XL,F ,≺( f ) of any polynomial f ∈ F (such that le≺ (x j � f )≺ λ ).

Lemma 4.2.6. Let the finite set F ⊂ P be involutively head autoreduced and invo-
lutive up to the multi index λ ∈ �n

0. If the polynomial g ∈ 〈F〉 possesses a repre-
sentation of the form g = ∑ f∈F Q f � f where the coefficients Q f ∈ P are such that
le≺ (Q f � f ) ≺ λ for all generators f , then the involutive normal form of g with
respect to F vanishes. Furthermore, for all polynomials g ∈ P such that le≺ g≺ λ
the ordinary and the involutive normal form with respect to F coincide.

Proof. Let the polynomial g ∈ 〈F〉 be expressible as g = ∑ f∈F Q f � f where
le≺ (Q f � f ) ≺ λ for all generators f . The right hand side consists of summands
of the form t � f with t ∈ � and le≺ (t � f ) ≺ λ . By the definition of partial in-
volution, this fact implies that the involutive normal form with respect to F of all
these summands vanishes. Hence a representation g = ∑ f∈F Pf � f exists where
Pf ∈ �[XL,F ,≺( f )], i. e. all coefficients are multiplicative for the respective gener-
ator f . Since the set F is assumed to be involutively head autoreduced, we may
conclude by the same reasoning as in the proof of Lemma 3.4.14 that this is only
possible if le≺ (Pf � f )� le≺ g and hence the involutive normal form of g vanishes.

The proof of the second assertion is similar. The ordinary and the involutive
normal form only differ, if we perform some non-multiplicative reductions during
the computation of the ordinary normal form. But any reduction consists of the
subtraction of a polynomial ct � f where c∈�, t ∈�, f ∈F and le≺ (ct � f )� le≺ g.
By the definition of partial involution, under the made assumptions the same effect
can always be achieved with a sequence of involutive reductions and hence the two
normal forms must coincide (by Proposition 3.4.15 involutive normal forms with
respect to involutively head autoreduced sets are unique and thus the order of the
reductions does not matter). �
Proposition 4.2.7. Given a continuous division L, any finite involutively head au-
toreduced set F ⊂ P that is locally involutive is also involutive.

Proof. For notational simplicity, we consider only the case of “full” local involution,
i. e. without the restriction by some multi index λ . It is trivial that the proof remains
true with such a restriction.

We claim that for any term xμ and for any f1 ∈ F a polynomial h ∈ F exists
such that le≺ (xμ � f1) ∈ CL,le≺F (le≺ h). If this claim is true, we may take arbitrary
linear combinations (with coefficients in �) of such products and the leading terms
cannot cancel, as F is involutively head autoreduced. This property immediately
implies that the leading exponent of any polynomial in 〈F〉 lies in the monoid ideal
〈le≺F〉L and the proposition holds by the definition of an involutive basis.

If xμ contains only variables that are multiplicative for f1, nothing is to be shown.
Otherwise we choose a non-multiplicative index j1 ∈ NL,le≺F (le≺ f1) such that
μ j1 > 0. Because of the assumed local involution of the set F , for each generator

f ∈ F a polynomial P(1)
f ∈ �[XL,F ,≺( f )] exists such that x j1 � f1 = ∑ f∈F P(1)

f � f .

Let the leading term on the right hand side be lt≺ (P(1)
f2

� f2). If the term xμ−1 j1

contains only variables that are multiplicative for le≺ f2, we are done.
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Otherwise we choose a non-multiplicative index j2 ∈ NL,le≺F (le≺ f2) such that
(μ−1 j1) j2 > 0. Applying again the local involution of F , we find for each f ∈ F a

polynomial P(2)
f ∈ �[XL,F ,≺( f )] such that x j2 � f2 = ∑ f∈F P(2)

f � f . Let the leading

term on the right hand side be lt≺ (P(2)
f3

� f3) and introduce the multi index ν =
le≺ (x j1 � f1)− le≺ f2. As the multiplication � in a polynomial algebra of solvable
type respects the term order ≺, we have le≺ (xμ � f1) = le≺ (xμ+ν−1 j1

−1 j2 � f3). If
all variables on the right hand side are multiplicative, we are done.

If this is not the case, we must iterate: we choose a non-multiplicative in-
dex j3 and decompose x j3 � f3 via the local involution into multiplicative prod-
ucts obtaining a new polynomial f4 and so on. This process yields a sequence(
ν(1) = le≺ f1,ν(2) = le≺ f2, . . .

)
where all multi indices ν(k) are elements of the fi-

nite set le≺F and where to each ν(k) a non-multiplicative index jk ∈ NL,le≺F (ν(k))
exists with ν(k+1) |L,le≺F ν(k) + 1 jk . By the definition of a continuous division,
this sequence cannot become infinite and the above described process must termi-
nate. But this observation implies the existence of a polynomial h ∈ F such that
le≺ (xμ � f1) ∈ CL,le≺F (h). �

For proving the termination of Algorithm 4.3, we do not only need to show that
the termination condition of the repeat-loop is satisfied after a finite number of
iterations, but we must also ensure that the monomial completions in Line /4/ al-
ways terminate. Since we do not know much about the monoid ideals 〈le≺H〉 in
intermediate iterations of the loop, the simplest solution consists of assuming that
the chosen division L is Noetherian.

Theorem 4.2.8. Let L be a constructive Noetherian division and (P ,�,≺) a poly-
nomial algebra of solvable type. Then Algorithm 4.3 terminates for any finite input
set F ⊂ P with an involutive basisH of I = 〈F〉.

Proof. The correctness is obvious by Proposition 4.2.7. The termination is also
rather trivial. As the division L is assumed to be Noetherian, in Line /4/ the set
le≺H possesses a finite involutive completion and MonomialCompleteL,≺ termi-
nates by Proposition 4.2.1. Since after Line /4/ this set is furthermore an involutive
basis of the monoid ideal generated by it, the leading exponent of any polynomial
g ∈ S cannot be contained in 〈le≺H〉. Hence these monoid ideals form a strictly
ascending sequence which cannot be infinite by Dickson’s Lemma A.1.2. �

Example 4.2.9. If the division L is not Noetherian, then it may happen that, even
when the ideal I = 〈F〉 does possess a finite involutive basis with respect to L,
Algorithm 4.3 does not terminate for the input F . The problem is that the existence
of an involutive basis for le≺ I does not imply that all subideals of it have also an
involutive basis. In such a case it may happen that at some stage of Algorithm 4.3
we encounter a basis H such that 〈le≺H〉 does not possess an involutive basis and
then the monomial completion in Line /4/ will not terminate.

One of the simplest instance where this termination problem occurs is not for an
ideal but for a submodule of the free �[x,y]-module with basis {e1,e2}. Consider the
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set F = {y2e1,xye1 + e2,xe2} with the Pommaret division and any term order for
which xye1 e2. One easily sees that the monoid module 〈le≺F〉 does not possess a
finite Pommaret basis, as its e2-component contains only elements of class 1. Hence
Algorithm 4.3 will not terminate with F as input. However, adding the generator
ye2 (the S-“polynomial” of the first two generators) makes F to a reduced Gröbner
basis of 〈F〉 which is simultaneously a minimal Pommaret basis.

Another simple example is provided by the set F = {z2−1,yz−1,x}⊂ �[x,y,z]
together with the lexicographic term order≺lex. Algorithm 4.3 will iterate infinitely
adding all monomials of the form xyk with k ≥ 1. Nevertheless, a finite Pommaret
basis of 〈F〉 for ≺lex exists and is given byH = {z− y,y2−1,xy,x}. �

Addendum: Right and Two-Sided Ideals

In this Addendum we briefly discuss the relation between left and right involutive
bases and the computation of bases for two-sided ideals. We use now the following
notations: the left ideal generated by F ⊂ P is denoted by 〈F〉(l), the right ideal
by 〈F〉(r) and the two-sided ideal by 〈〈F〉〉 and corresponding notations for the left,
right and two-sided involutive span.

Recall from Example 3.3.14 that even with a coefficient field � it is not guaran-
teed that the ring P is also right Noetherian and hence generally the existence of
right Gröbner bases for right ideals is not clear. However, we also noted there that
the ring P is always right Noetherian, if we assume that the maps ρi : �→ � in
(3.9a) are automorphisms. In this Addendum we will always make this assumption.

From a computational point of view, the theory of right ideals is almost iden-
tical to the corresponding theory for left ideals. The left-right asymmetry in our
definition of polynomial algebras of solvable type leads only to one complication.
Suppose that we want to perform a right reduction of a term axν with respect to
another term cxμ with μ | ν . This requires to find a coefficient b ∈ � such that
lc≺ (cxμ � bxν−μ) = cρμ(b)rμ,ν−μ = a. Since, according to our assumption, all the
maps ρμ are automorphisms, such a b always exists.

Lemma 4.2.10. Let (P ,�,≺) be an arbitrary polynomial algebra of solvable type
where all the maps ρμ appearing in the commutation relations (3.6a) are automor-
phisms. A polynomial f ∈P is (involutively) left reducible modulo a finite set F ⊂P
(with respect to an involutive division L), if and only if it is (involutively) right re-
ducible (with respect to L).

Proof. Because of the made assumptions on the maps ρμ , reducibility depends
solely on the leading exponents. �

Proposition 4.2.11. Let Hl ⊂ P be a monic, involutively left autoreduced, minimal
left involutive set and Hr ⊂ P a monic, involutively right autoreduced, minimal
right involutive set for an involutive division L. If 〈Hl〉(l) = 〈Hr〉(r) = I, then we
also haveHl =Hr.
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Proof. By definition of a minimal basis, the sets le≺Hl and le≺Hr must both be
minimal involutive bases of the monoid ideal le≺I and thus are identical. Suppose
(Hl \Hr)∪ (Hr \Hl) �= ∅ and let f be an element of this set with minimal leading
exponent with respect to ≺. Without loss of generality, we assume that f ∈Hl \Hr.

Because of the condition 〈Hl〉(l) = 〈Hr〉(r), we have f ∈ 〈Hr〉(r)L,≺. Thus the (by
Proposition 3.4.15 unique) involutive right normal form of f with respect to Hr is
zero. This observation implies in particular that the polynomial f is involutively
right reducible with respect to some generator h ∈Hr with le≺ h� le≺ f .

If le≺ h ≺ le≺ f , then h ∈ Hl , too, as f was chosen as a minimal element of the
symmetric difference of Hl and Hr. Hence, by Lemma 4.2.10, f is also left invo-
lutively reducible with respect to h (because of le≺Hl = le≺Hr the multiplicative
variables of h are the same in both cases). But this fact contradicts the assumption
thatHl is involutively left autoreduced.

If le≺ h = le≺ f = μ , then we consider the difference g = f − h ∈ I: both the
left involutive normal form of g with respect to Hl and the right involutive nor-
mal form with respect to Hr must vanish. By construction, we have le≺ g ≺ μ and
suppg ⊆ (supp f ∪ supph) \ {μ}. Since both Hl and Hr are assumed to be involu-
tively autoreduced, no term in this set is involutively reducible by le≺Hl = le≺Hr

and hence we must have suppg = ∅, i. e. g = 0, a contradiction. �

Directly deriving a theory of two-sided involutive bases along the lines of Sec-
tion 3.4 fails, as two-sided linear combinations are rather unwieldy objects. A gen-
eral polynomial f ∈ 〈〈H〉〉 for some finite setH⊂P is of the form

f = ∑
h∈H

nh

∑
i=1

�i � h � ri (4.2)

with polynomials �i,ri ∈ P . The definition of a unique involutive standard repre-
sentation would require control over the numbers nh which seems rather difficult.
Therefore we will take another approach and construct left involutive bases even for
two-sided ideals.

Example 4.2.12. Consider the universal enveloping algebra U
(
sl(2)
)
. It is isomor-

phic to the polynomial algebra �[x1,x2,x3] where the multiplication is defined by

x1 � x2 = x1x2 , x2 � x1 = x1x2− x3 ,

x1 � x3 = x1x3 , x3 � x1 = x1x3 + 2x1 ,

x2 � x3 = x2x3 , x3 � x2 = x2x3−2x2

(4.3)

and which is of solvable type for any degree compatible order. Consider the two-
sided principal ideal I = 〈〈x2〉〉. We have f = (x3)2 = x1 � x2 � x3− x3 � x2 � x1 ∈ I,
but f is contained neither in the left nor in the right ideal generated by x2 and it is not
possible to write f as a linear combination of x2 with less than two summands (its
leading term is not divisible by x2). In fact, one can show (e. g. with Algorithm 4.4
below) that I = 〈x1,x2,x3〉(l). �
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Proposition 4.2.13. Let H ⊂ (P ,�,≺) be a finite set and L an involutive division.
Then the following five statements are equivalent.

(i) H is a left involutive basis and 〈H〉(l) = 〈〈H〉〉.
(ii) H is a right involutive basis and 〈H〉(r) = 〈〈H〉〉.
(iii) H is a left involutive basis of 〈H〉(l) and h�xi,h�c∈ 〈H〉(l) for all generators

h ∈H, all variables xi and all coefficients c ∈ �.
(iv) H is a right involutive basis of 〈H〉(r) and xi � h,c � h ∈ 〈H〉(r) for all gener-

ators h ∈H, all variables xi and all coefficients c ∈ �.
(v) A unique generator h ∈ H exists for every polynomial f ∈ 〈〈H〉〉 such that

le≺ h |L,le≺H le≺ f .

Proof. We begin with the equivalence of the first two statements. (i) implies that

〈H〉(l)L,≺ = 〈H〉(l) = 〈〈H〉〉 and hence 〈H〉(r) ⊆ 〈H〉(l). The same argument as in the

proof of Proposition 4.2.11 shows that we have in fact an equality and thus 〈H〉(r)L,≺ =
〈H〉(r) = 〈〈H〉〉, i. e. (ii). The converse goes analogously.

Next we consider the equivalence of (i) and (iii); the equivalence of (ii) and (iv)
follows by the same argument. (iii) is a trivial consequence of (i). For the converse,
note that (iii) implies that f � (ct) ∈ 〈H〉(l) for all f ∈ 〈H〉(l), all terms t ∈ � and
all constants c ∈ �. Indeed, as in the proof of Proposition 3.2.3 we may rewrite the
monomial ct as a polynomial in the “terms” xi1 � xi2 � · · ·� xiq with i1 ≤ i2 ≤ ·· · ≤ iq
and then apply repeatedly our assumptions. Obviously, this entails (i).

The equivalence of (i) or (ii), respectively, with (v) is a trivial consequence of the
definition of an involutive basis. �

We would like to exploit Statement (iii) for the construction of a left involutive
basis for the two-sided ideal 〈〈F〉〉. However, if the field � is infinite, then it contains
an infinite number of conditions and thus is not effective. In order to proceed in this
case, we must make one further assumption about our polynomial algebra P . Let
�0 = {c ∈ � | ∀ f ∈ P : c � f = f � c} be the constant part of the centre of P .

Lemma 4.2.14. �0 is a subfield of �.

Proof. It is obvious that �0 is a subring. Thus there only remains to show that with
c∈�×0 we have c−1 ∈�0, too. If c∈�0, then xi �c = cxi, i. e. ρi(c)= c and hi(c) = 0,
for all 1≤ i≤ n. Now on one hand xi � (c−1 � c) = xi and on the other hand

(xi � c−1)� c = ρi(c−1)ρi(c)xi + chi(c−1) (4.4)

(hi(c−1) � c = chi(c−1) since c ∈ �0). The associativity of � implies now that
ρi(c−1) = c−1 and hi(c−1) = 0. Hence c−1 commutes with all variables xi and
it is easy to see that this entails c−1 ∈ �0. �

We make now the assumption that either �× = {c1, . . . ,c�} is finite or that the
extension �/�0 is finite, i. e. that � is a finite-dimensional vector space over �0 with
basis {c1, . . . ,c�}. In the latter case, it is easy to see that it suffices in (iii) to require
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that only all products h� c j lie in 〈H〉(l), as for c =∑�
j=1λ jc j with λ j ∈ �0 we have

h � c = ∑�
j=1λ j(h � c j).

These considerations lead to the simple Algorithm 4.4 below. It first constructs in
Line /1/ a left involutive basis H of the left ideal 〈F〉(l) (using e. g. Algorithm 4.3).
The while loop in Lines /2–19/ extends the set H to a left generating set of the
two-sided ideal 〈〈F〉〉 according to our simplified version of statement (iii) in Propo-
sition 4.2.13. Finally, we complete in Line /20/ this set to an involutive basis. Note
that in Line /1/ it is not really necessary to compute a left involutive basis; any left
Gröbner basis would suffice as well. Similarly, an ordinary left normal form could
be used in Lines /6/ and /12/, respectively; the use of InvLeftNormalFormL,≺ an-
ticipates the final involutive basis computation in Line /20/.

Algorithm 4.4 Left Involutive basis for two-sided ideal
Input: finite set F ⊂ P , involutive division L
Output: left involutive basisH of 〈〈F〉〉
1: H← LeftInvBasisL,≺(F); S ←H
2: while S �= ∅ do
3: T ← ∅
4: for all f ∈ S do
5: for i from 1 to n do
6: h← InvLeftNormalFormL,≺( f � xi,H)
7: if h �= 0 then
8: H←H∪{h}; T ← T ∪{h}
9: end if

10: end for
11: for j from 1 to � do
12: h← InvLeftNormalFormL,≺( f � c j ,H)
13: if h �= 0 then
14: H←H∪{h}; T ← T ∪{h}
15: end if
16: end for
17: end for
18: S ← T
19: end while
20: return LeftInvBasisL,≺(H)

The termination of the while loop follows from the fact that P is Noetherian
and hence a finite generating set of 〈〈F〉〉 exists. In principle, we perform here a sim-
ple breadth-first search for it. The termination of the involutive bases computations
in Lines /1/ and /20/, respectively, depends on the conditions discussed above. Thus
the termination is guaranteed, if the division L is constructive and Noetherian.
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4.3 Pommaret Bases and δ -Regularity

We saw already in Example 3.1.16 that not every monoid ideal in �n
0 possesses

a finite Pommaret basis: the Pommaret division is not Noetherian. Obviously, this
fact also implies that there are polynomial ideals I ⊆ P = �[x1, . . . ,xn] without a
finite Pommaret basis for any given term order. However, we will show that this
problem may be considered as solely a question of choosing “good” variables x and
that generic variables are “good.” For notational simplicity, we will restrict in this
section to the special case of the commutative polynomial ring and to homogeneous
ideals. However, many results remain true in more general situations.

More precisely, assuming that our starting point is not an ideal in the polynomial
ring P but an ideal in the symmetric algebra SV over an n-dimensional �-linear
space V , we will prove that there always exists a basis {x1, . . . ,xn} of V such that
the induced isomorphism to P yields an ideal possessing a Pommaret basis. For this
purpose, we take in the sequel the following point of view: term orders are defined
for exponent vectors, i. e. on the monoid �n

0; choosing a different basis of V , i. e.
performing a linear change of variables x̃ = Ax, leads to new exponent vectors in
each polynomial which are then sorted according to the same term order as before.

Definition 4.3.1. The variables x are called δ -regular for the ideal I ⊆ P and the
term order ≺, if I possesses a finite Pommaret basis for ≺.

Given Definition 3.4.1 of an involutive basis, δ -regularity is obviously concerned
with the existence of a Pommaret basis for the monoid ideal le≺I. A coordinate
transformation generally yields a new leading ideal which may or may not possess
a Pommaret basis. We will show in this section that to every polynomial ideal I
variables x exist such that I has a finite Pommaret basis. It will even turn out that
Pommaret bases exist for almost all possible choices of x. Besides showing the mere
existence of δ -regular variables, we will develop an effective approach to determin-
ing them for any ideal I ⊆ P .

We begin by proving two useful technical lemmata on homogeneous ideals where
we can exploit the natural grading of P by total degree. The number maxh∈H degh
is called the degree of the finite setH⊂P and denoted by degH.

Lemma 4.3.2. Let the finite set H be a homogeneous Pommaret basis of the homo-
geneous ideal I ⊆P . For any degree q≥ degH, a Pommaret basis of the truncation
I≥q =

⊕
p≥qIp is given by

Hq =
{

xμh | h ∈H, |μ |+ degh = q, ∀ j > clsh : μ j = 0
}

. (4.5)

Conversely, if I≥q possesses a Pommaret basis, then so does I.

Proof. By the conditions in the definition of the set Hq, any polynomial h ∈ H is
multiplied by terms xμ containing only variables multiplicative for it. Thus triv-
ially cls(xμh) = clsμ . Furthermore, Hq is involutively head autoreduced, as H
is. Now let f ∈ I≥q be an arbitrary homogeneous polynomial. As H is a Pom-
maret basis of I, it has an involutive standard representation f = ∑h∈HPhh with
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Ph ∈ �[x1, . . . ,xcls h]. Hence f can be written as a linear combination of polynomials
xνh where |ν| = deg f − degh ≥ q− degh and where xν contains only multiplica-
tive variables. We decompose ν = μ + ρ with |μ | = q− degh and ρ j = 0 for all
j > clsμ . Thus we may write xνh = xρ(xμh) where xμh ∈Hq and xρ contains only
variables multiplicative for it. But this observation trivially implies the existence of
an involutive standard representation f = ∑h′∈Hq

Ph′h
′ with Ph′ ∈ �[x1, . . . ,xcls h′ ]

and thusHq is a Pommaret basis of I≥q by Theorem 3.4.4.
The converse is also very simple. Let Hq be a finite Pommaret basis of the trun-

cated ideal I≥q and Hp head autoreduced �-linear bases of the components Ip for
0≤ p < q. If we setH=

⋃q
p=0Hp, then le≺H is obviously a weak Pommaret basis

of the full monoid ideal le≺I and by Proposition 3.4.7 an involutive head autore-
duction yields a strong basis. �

Lemma 4.3.3. Using the same notations as in Lemma 4.3.2, write B = le≺Hq. If
ν ∈B with clsν = k, then ν−1k +1 j ∈B for all j > k. Conversely, let B⊆ (�n

0)q be
a set of multi indices of degree q. If for each element ν ∈ B with clsν = k and each
non-multiplicative index k < j≤ n of it the multi index ν−1k +1 j is also contained
in B, then the set B is involutive for the Pommaret division.

Proof. As B is an involutive basis of le≺ I≥q, it must contain a multi index μ with
μ |P ν+1 j. Obviously, cls(ν+ 1 j) = k and thus clsμ ≥ k. Because of |μ |= |ν|, the
only possibility is μ = ν+1 j−1k. The converse is trivial, as each non-multiplicative
multiple of ν ∈ B is of the form ν+1 j with j > k = clsν and hence has ν−1k +1 j

as an involutive divisor in B. �

As in concrete computations one always represents an ideal I ⊆P by some finite
generating set F ⊂I, we also introduce a notion of regularity for such sets. Assume
that the given set F is involutively head autoreduced with respect to an involutive
division L and a term order ≺. In general, F is not an involutive basis of I, but its
involutive span 〈F〉L,≺ is only a proper subset of I.

Consider now a �-linear change of variables x̃ = Ax defined by a regular matrix
A ∈ �n×n. It transforms each f ∈ P into a polynomial f̃ ∈ P̃ = �[x̃1, . . . , x̃n] of
the same degree. Thus a given set F ⊂ P is transformed into a set F̃ ⊂ P̃ which
generally is no longer involutively head autoreduced. Performing an involutive head
autoreduction yields a set F̃�. Again, F̃� will in general not be an involutive basis
of the transformed ideal Ĩ ⊆ P̃ .

Since we are dealing with homogeneous polynomials, we can use Hilbert func-
tions to measure the size not only of ideals but also of involutive spans. Recall
that the Hilbert function of the ideal I is given by hI(r) = dim� Ir for all inte-
gers r ≥ 0. For a finite, involutively head autoreduced set F we define similarly
hF ,L,≺(r) = dim� (〈F〉L,≺)r. Obviously, we always find hF ,L,≺(r) ≤ hI(r) with
equality holding for all r ≥ 0, if and only if F is an involutive basis. The same is
true for the Hilbert function hF̃�,L,≺ defined by the transformed basis F̃�.

According to Lemma 3.4.14, an involutively head autoreduced set F defines the
direct sum decomposition (3.31) of its involutive span 〈F〉L,≺. This observation
allows us to provide a simple explicit formula for the Hilbert function:
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hF ,L,≺(r) = ∑
f∈F

(
r−q f + k f −1

r−q f

)
(4.6)

where q f = deg f and k f denotes the number of multiplicative variables of f (for
r < q f we understand that the binomial coefficient is zero). Indeed, by (A.4a) the
binomial coefficient in (4.6) gives the number of multiplicative multiples of f of
degree r and thus the contribution of f to the involutive span at this degree.

Obviously, a �-linear change of coordinates does not affect the Hilbert function
of an ideal and thus we find hI = hĨ . However, this is not true for the Hilbert func-
tions of the involutive spans 〈F〉L,≺ and 〈F̃�〉L,≺, respectively. We may now mea-
sure the effect of the made coordinate transformation by comparing the asymptotic
behaviour of hF ,L,≺ and hF̃�,L,≺.

Definition 4.3.4. Let the finite set F ⊂ P of homogeneous polynomials be involu-
tively head autoreduced with respect to the Pommaret division and a term order ≺.
The given coordinates x are called asymptotically regular for F and ≺, if after any
linear change of coordinates x̃ = Ax the inequality hF ,P,≺(r) ≥ hF̃�,P,≺(r) holds
for all sufficiently large values r! 0.

Example 4.3.5. Let us reconsider Example 3.1.16 where F = {xy} ⊂ �[x,y] with
the degree reverse lexicographic order. Independent of how we order the variables,
the class of xy is 1. Hence we have hF ,P,≺(r) = 1 for all r > 1. After the change
of coordinates x = x̃ + ỹ and y = ỹ, we obtain the set F̃ = {ỹ2 + x̃ỹ} ⊂ �[x̃, ỹ]. Its
leading term is ỹ2 which is of class 2 implying that hF̃ ,P,≺(r) =

(r−1
r−2

)
= r− 1 for

r > 1. Thus the original coordinates are not asymptotically regular for F and we
know from Example 3.1.16 that they are also not δ -regular for the ideal I = 〈F〉.�

Note that, given variables x, generally asymptotic regularity for a finite set F
according to Definition 4.3.4 and δ -regularity for the ideal I = 〈F〉 according to
Definition 4.3.1 are independent properties. For a concrete instance where the two
notions differ see Example 4.2.9 where one easily checks that the used coordinates
are δ -regular for the whole submodule but not asymptotically regular for the given
generating set, as any transformation of the form x = x̄+aȳ with a �= 0 will increase
the Hilbert function. The main point is that δ -regularity for the ideal I is concerned
with the monoid ideal le≺I whereas asymptotic regularity for the set F depends on
the ideal 〈le≺F〉 ⊆ le≺I. However, in some cases the two regularity concepts are
related. A simple instance is given by the following result.

Proposition 4.3.6. Let the coordinates x be δ -regular for the ideal I ⊆ P and the
term order ≺. If the set H is a Pommaret basis of I for ≺, then the coordinates x
are asymptotically regular for H and ≺.

Proof. If the setH is a Pommaret basis of the ideal I, then the two Hilbert functions
hI and hH,P,≺ coincide. As for any generating set F of I in any coordinate system
the inequality hF ,P,≺(r) ≤ hI(r) trivially holds for all r ≥ 0, our coordinates are
indeed asymptotically regular. �
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δ -Regularity of the used coordinates x represents a trivial necessary condition for
the existence of Pommaret bases for an ideal I ⊆ P . From an algorithmic point of
view, their asymptotic regularity for the current basisH is equally important for the
effective construction of a Pommaret basis by the completion Algorithm 4.3 (and
its optimised variants which will be discussed in the next section). Even if the used
coordinates x are δ -regular for the ideal I, it may still happen that the algorithm
does not terminate, as it tries to construct an infinite Pommaret basis for the monoid
ideal 〈le≺H〉 (recall again Example 4.2.9).

Remark 4.3.7. For Definition 4.3.4 of asymptotic regularity for a finite setF , the be-
haviour at lower degrees is irrelevant and it suffices to consider the involutive span
of F only for degrees beyond q = degF . Thus we can proceed as in Lemma 4.3.2
and replace F by the set Fq defined in analogy to (4.5), i. e. we consider all multi-
plicative multiples of degree q of elements of F . If we perform a coordinate trans-
formation and a subsequent involutive head autoreduction, then we obtain a set F̃�

q

where again all elements are of degree q.
It is now very easy to decide which Hilbert function becomes asymptotically

larger. Let β (k)
q denote the number of generators in Fq which are of class k and sim-

ilarly β̃ (k)
q for the set F̃�

q . In our special case, it follows immediately from (4.6) that
both Hilbert functions are actually polynomials for r ≥ q. Furthermore, an expan-
sion of the binomial coefficients in (4.6) shows that if we write the Hilbert function
in the form hF ,P,≺(q + r) = ∑n−1

k=0 hiri, then each coefficient hi is determined by

a linear combination of β (i+1)
q , . . . ,β (n)

q with positive coefficients.2 Thus we must

simply compare first β (n)
q and β̃ (n)

q , then β (n−1)
q and β̃ (n−1)

q , and so on, until for the
first time one coordinate system leads to a larger value; the corresponding Hilbert
function is asymptotically larger. �

Choosing an arbitrary reference coordinate system x̂, we may identify every sys-
tem of coordinates x with the unique regular transformation matrix A ∈ �n×n for
which x = Ax̂. The next result says that asymptotic regularity for a given set F of
polynomials is a generic property in the sense of the Zariski topology, i. e. almost
all coordinates are asymptotically regular for F .

Proposition 4.3.8. The coordinate systems x which are asymptotically singular for
a finite involutively head autoreduced set F ⊂P and a term order ≺ form a Zariski
closed proper subset of �n×n.

Proof. By the considerations in Remark 4.3.7, it suffices to treat the case that all
elements of F possess the same degree. Let us perform a coordinate transformation
x̄ = Ax with an undetermined matrix A, i. e. we consider its entries as parameters. It
obviously leads to an asymptotically regular coordinate system, as each polynomial
in F̃� will get its maximally possible class. Asymptotically singular coordinates

2 Exactly the same computation as we will perform in the proof of Proposition 8.2.6 shows that the

precise relation is hi = ∑n−1
k=i β

(k+1)
q s(k)

k−i(0)/k! where the coefficients s(k)
k−i(0) are modified Stirling

numbers (see Appendix A.4).
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are defined by the vanishing of certain (leading) coefficients. These coefficients are
polynomials in the entries of A. Thus the set of all asymptotically singular coordinate
systems corresponds to the zero set of a polynomial ideal. �

Our next goal is an effective criterion for recognising that coordinates are asymp-
totically singular for a given set F and a class respecting term order. The basic idea
consists of comparing the multiplicative variables assigned by the Pommaret and
the Janet division, respectively. The definitions of these two divisions are appar-
ently quite different. Somewhat surprisingly, they nevertheless yield very similar
sets of multiplicative indices.

Proposition 4.3.9. Let the finite set B ⊂�n
0 of multi indices be involutively autore-

duced with respect to the Pommaret division. Then for all multi indices ν ∈ B the
inclusion NP(ν)⊆ NJ,B(ν) holds.

Proof. Let ν ∈ B with clsν = k. Thus ν = [0, . . . ,0,νk, . . . ,νn] with νk > 0 and
NP(ν) = {1, . . . ,k}. We must show that the indices 1, . . . ,k are also multiplicative
for ν with respect to the Janet division. In order to decide whether k ∈ NJ,B(ν), we
study the set (νk+1, . . . ,νn) ⊆ B. If it contained a multi index μ with μk > νk, the
set B would not be involutively autoreduced with respect to the Pommaret division,
as ν |P μ . Thus k is multiplicative for the Janet division, too. The same argument
can be applied for k− 1, . . . ,1 where sets of the form (0, . . . ,0,νk, . . . ,νn) with an
increasing number of zeros are considered. Hence NP(ν)⊆ NJ,B(ν). �

Thus, if F ⊂ P is a finite, Pommaret head autoreduced set of polynomials, then
its involutive spans with respect to the Pommaret and Janet division, respectively,
always satisfy the inclusion 〈F〉P,≺ ⊆ 〈F〉J,≺ ⊆ 〈F〉. For later use, we note two
simple corollaries to Proposition 4.3.9. Recall that by Remark 3.1.15 any finite set
B ⊂�n

0 is involutively autoreduced with respect to the Janet division. We first prove
that an involutive autoreduction of B with respect to the Pommaret division can
make its Janet span only larger but not smaller.

Corollary 4.3.10. Let B ⊂ �n
0 be an arbitrary finite set of multi indices and set

BP = B \
{
ν ∈ B | ∃μ ∈ B : μ |P ν

}
, i. e. we eliminate all multi indices possessing a

Pommaret divisor in B. Then 〈B〉J ⊆ 〈BP〉J .

Proof. If μ (1) |P μ (2) and μ (2) |P ν , then trivially μ (1) |P ν . Thus for each eliminated
multi index ν ∈ B\BP another multi index μ ∈ BP exists with μ |Pν . Let clsμ = k.
By the proposition above {1, . . . ,k} ⊆ NJ,BP(μ). Assume that an index j > k exists
with j ∈ NJ,B(ν). By definition of the Pommaret division, μi = νi for all i > k. Thus
μ ∈ (ν j+1, . . . ,νn) and j ∈ NJ,B(μ). As by the second condition on an involutive
division NJ,B(μ) ⊆ NJ,BP(μ) for all μ ∈ BP, we conclude that j ∈ NJ,BP(μ) and
CJ,B(ν)⊂ CJ,BP(μ). But this immediately implies 〈B〉J ⊆ 〈BP〉J . �

The next corollary implies that any Pommaret basis is also a Janet basis (with
respect to the same term order ≺). Thus if the set H is a Pommaret basis, then
XP,≺(h) = XJ,H,≺(h) for all polynomials h ∈H.
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Corollary 4.3.11. Let the finite set H ⊂ P be involutive with respect to the Pom-
maret division (and some term order). Then H is also involutive with respect to the
Janet division (and the same term order).

Proof. Proposition 4.3.9 trivially implies that H is at least weakly involutive with
respect to the Janet division. For the Janet division any weakly involutive set is
strongly involutive, provided that no two elements have the same leading terms (re-
call Example 3.4.13). But in a Pommaret basis this cannot happen. �

We next show that for an asymptotically regular coordinate system and a class
respecting term order the inclusions in Proposition 4.3.9 must be equalities. In other
words, if a variable x� exists which is multiplicative for an element ofF with respect
to the Janet division but non-multiplicative with respect to the Pommaret division,
then the used coordinates are asymptotically singular for this set F . Our proof is
constructive in the sense that it shows us explicitly how to find coordinates leading
to a larger Hilbert function.

Theorem 4.3.12. Let the finite set F ⊂ P be involutively head autoreduced with
respect to the Pommaret division and a class respecting term order ≺ and let the
coefficient field � be infinite. If the set F possesses more multiplicative variables for
the Janet division than for the Pommaret division, then the used coordinates x are
asymptotically singular for it.

Proof. By the proposition above, we have XP,≺( f ) ⊆ XJ,F ,≺( f ) for all f ∈ F . As-
sume that for a polynomial h ∈ F the strict inclusion XP,≺(h) ⊂ XJ,F ,≺(h) holds.
Thus a variable x� ∈ XJ,F ,≺(h) with � > k = clsh exists. If we define the set Fq

for q = degF as in Remark 4.3.7, then Fq contains in particular the generator
(xk)q−deghh which is still of class k. It is easy to see that the variable x� is also
Janet multiplicative for this generator. Hence we may again assume without loss of
generality that all elements of F are of the same degree q.

We perform now the linear change of variables xi = x̃i for i �= k and xk = x̃k +ax̃�

with a yet arbitrary parameter a ∈ � \ {0}. It induces the following transformation
of the terms xμ ∈�:

xμ =
μk

∑
j=0

(
μk

j

)
a jx̃μ− jk+ j� . (4.7)

Note that x̃μ appears on the right hand side as the only term whose coefficient
does not depend on a and that all other terms are greater with respect to our
class respecting term order (and their coefficients are different powers of a). Let
le≺ h = μ . Thus μ = [0, . . . ,0,μk, . . . ,μn] with μk > 0. Consider the multi index
ν = μ − (μk)k + (μk)�; obviously, clsν > k. Applying our transformation to the
polynomial h leads to a polynomial h̃ containing the term x̃ν . Note that ν cannot
be an element of le≺F . Indeed, if it were, it would be an element of the same set
(μ�+1, . . . ,μn) as μ . But this contradicts our assumption that � is multiplicative for
the multi index μ with respect to the Janet division, as by construction ν� > μ�.

Transforming all polynomials f ∈ F yields the set F̃ on which we perform an
involutive head autoreduction in order to obtain the set F̃�. Under our assumption
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on the size of the ground field �, we can choose the parameter a such that after
the transformation each polynomial f̃ ∈ F̃ has at least the same class as the corre-
sponding polynomial f ∈F , as our term order respects classes. This fact is a simple
consequence of (4.7): cancellations of terms may occur only, if the parameter a is
a zero of some polynomial (possibly one for each member of F ) with a degree not
higher than degF .

We know already that for the polynomial h considered above the transformation
leads to a polynomial h̃ of greater class. We consider now all polynomials f ∈ F
with cls f > k and h. After the change of variables all the transformed polynomials
will thus have a class greater than k. Because of the special form of our transforma-
tion, the old leading exponent always remains in the support of each transformed
polynomial and if exponents appear which are greater for our term order, then they
are always accompanied by a coefficient depending on a. Furthermore, we noted
above that ν was not contained in le≺F . As all our generators are of the same de-
gree q, an involutive head autoreduction amounts to a simple Gaussian elimination.
For a generic choice of the parameter a, it follows from our considerations above
that even after the involutive head autoreduction each generator has at least the same
class as in the original set F (and at least one a higher class).

Taking the remaining members of F into account may only increase the number
of elements in F̃� possessing a class greater than k. But this fact implies that at

least one of the values β̃ (k+1)
q , . . . , β̃ (n)

q is larger than the corresponding value for F .
By Remark 4.3.7, the Hilbert function of F̃� is then asymptotically greater than the
one of F and our coordinates are not asymptotically regular. �

Corollary 4.3.13. If the coordinates x are asymptotically regular for the finite Pom-
maret head autoreduced set F ⊂ P , then with respect to a class respecting term
order ≺ we have XP,≺( f ) = XJ,F ,≺( f ) for all generators f ∈ F .

It is important to note that this corollary provides us only with a necessary but
not with a sufficient criterion for asymptotic regularity of the coordinates x. In other
words, even if the Janet and the Pommaret division yield the same multiplicative
variables for a given Pommaret head autoreduced set F ⊂ P , this fact does not
imply that the used coordinates are asymptotically regular for F .

Example 4.3.14. Let F =
{

z2− y2− 2x2, xz + xy, yz + y2 + x2
}

. The underlined
terms are the leading ones for the degree reverse lexicographic order. One easily
checks that the Janet and the Pommaret division yield the same multiplicative vari-
ables. If we perform the transformation x̃ = z, ỹ = y + z and z̃ = x, then after an
autoreduction we obtain the set F̃� =

{
z̃2− x̃ỹ, ỹz̃, ỹ2

}
. Again the Janet and the

Pommaret division lead to the same multiplicative variables, but the Hilbert func-

tion hF ,P,≺ is asymptotically smaller than hF̃�,P,≺, as we find β (2)
2 = 1 < 2 = β̃ (2)

2 .
Thus the coordinates (x,y,z) are not asymptotically regular for F .

The explanation of this phenomenon is very simple. Obviously our criterion de-
pends only on the leading terms of the set F . In other words, it analyses the mono-
mial ideal 〈lt≺F〉. Here 〈lt≺F〉 = 〈xz,yz,z2〉 and one easily verifies that the used
generating set is already a Pommaret basis. However, for I = 〈F〉 the leading ideal
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is lt≺I = 〈x3,xz,yz,z2〉 (one obtains a Janet basis for I by adding the polynomial
x3 to F ) and obviously it does not possess a finite Pommaret basis, as such a basis
would have to contain all monomials x3yk with k ∈ � (or we exploit our criterion
noting that y is a Janet but not a Pommaret multiplicative variable for x3). Thus
we have the opposite situation compared to Example 4.2.9: there lt≺I had a finite
Pommaret basis but 〈lt≺F〉 not; here it is the other way round. We will show later
(Proposition 5.3.7) that whenever 〈lt≺F〉 does not possess a finite Pommaret basis,
then F possesses more Janet than Pommaret multiplicative variables. �

Eventually, we return to the problem of the existence of a finite Pommaret basis
for every ideal I ⊆ P . As the Pommaret division is not Noetherian, Theorem 4.2.8
cannot be directly applied. However, with a little trick exploiting our above results
on the relationship between the Pommaret and the Janet division we can achieve our
goal at least for infinite fields.

Theorem 4.3.15. Let ≺ be an arbitrary term order and � an infinite field. Then
every polynomial ideal I ⊆ P possesses a finite Pommaret basis for ≺ in suitably
chosen variables x.

Proof. As a first step we show that every ideal has a Pommaret head autoreduced
Janet basis. Indeed, let us apply the completion Algorithm 4.3 for the Janet division
with a slight modification: we perform the involutive head autoreductions in the
Line /3/ with respect to the Pommaret instead of the Janet division. It is obvious that
if the algorithm terminates, the result is a basis with the wanted properties.

The Janet division is Noetherian by Lemma 3.1.19. Thus without our modifi-
cation the termination is obvious. With respect to the Janet division every set of
multi indices is involutively autoreduced. Hence a Janet head autoreduction only
takes care that no two elements of a set have the same leading exponents (recall
Example 3.4.13). But when we form the union H∪S in Line /3/, we add to H
only polynomials that are in involutive normal form with respect to H so that no
involutive head reductions are possible. As the Pommaret head autoreduction may
only lead to a larger monoid ideal 〈le≺H〉, the Noetherian argument in the proof of
Theorem 4.2.8 remains valid even after our modification.

According to Corollary 4.3.10, the Pommaret head autoreductions may only in-
crease the Janet spans 〈le≺H〉J . Thus the termination of Algorithm 4.1 invoked in
Line /4/ is not affected by our modification and the modified algorithm still termi-
nates for arbitrary input.

Let us now work in an undetermined coordinate system; i. e. we perform a co-
ordinate transformation x̄ = Ax with an undetermined matrix A as in the proof of
Proposition 4.3.8. By the considerations above, the modified algorithm will termi-
nate and thus treats only a finite number of basesHi. According to Proposition 4.3.8,
the coordinate systems that are asymptotically singular for at least one of them form
a Zariski closed set. Thus generic coordinates are asymptotically regular for all sets
lt≺Hi and by Corollary 4.3.133 their Janet and their Pommaret spans coincide. But

3 Note that it is not relevant here that the corollary assumes the use of a class respecting term order,
since our argument deals only with monomial sets.
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this observation implies that the result of the modified algorithm is not only a Janet
but also a Pommaret basis. �

The argument at the end of this proof immediately implies the following analogue
to Proposition 4.3.8.

Corollary 4.3.16. The coordinate systems x which are δ -singular for a given ideal
I ⊆ P and a term order ≺ form a Zariski closed proper subset of �n×n.

Remark 4.3.17. Combining our completion Algorithm 4.3 and the criterion for
asymptotic singularity provided by Theorem 4.3.12, we can effectively determine
δ -regular coordinates for any ideal I ⊆ P . Our approach is based on the observa-
tion that if our given coordinate system x is not δ -regular for I, then any attempt
to compute a Pommaret basis of I with Algorithm 4.3 will sooner or later lead to
a basis H of I for which the coordinates x are not asymptotically regular. Indeed,
by the considerations in the proof of Theorem 4.3.15, the completion with respect
to the Janet division (using Pommaret head autoreductions) terminates. Thus either
the result is simultaneously a Pommaret basis of I (and the given coordinates x are
already δ -regular for I) or at some stage we encounter a basis H of I possessing
more Janet than Pommaret multiplicative variables implying by Theorem 4.3.12 that
the coordinates x are not asymptotically regular forH.

There are (at least) two possibilities to exploit this observation in concrete com-
putations. The first one consists of following Algorithm 4.3 with the Pommaret divi-
sion and checking before each iteration in the subalgorithm MonomialComplete
whether there are more Janet than Pommaret multiplicative variables. If this is the
case, then we perform coordinate transformations of the form used in the proof of
Theorem 4.3.12 until the Janet and the Pommaret division yield the same multiplica-
tive variables. Then we continue with the completion. Alternatively, we compute a
Pommaret head autoreduced Janet basis (which always exists by the considerations
above) and check whether it is simultaneously a Pommaret basis. If this is the case,
we again conclude that our coordinates x are δ -regular. Otherwise, we perform co-
ordinate transformations as above and start again.

It is easy to provide for each approach examples where it fares better than the
other one. The main disadvantage of the first approach is that it may perform trans-
formations even if the coordinates x are δ -regular for the ideal I. Such redundant
transformations will always occur, if we encounter during the completion a basisH
such that the coordinates x are not δ -regular for the monoid ideal 〈le≺H〉 (this as-
sertion follows from Proposition 5.3.7). As one can see from Example 4.2.9, some-
times the transformations are indeed necessary for the termination of the completion
but sometimes they just make the computations more expensive.

In the second approach this problem does not appear, as we only check at the
very end whether we actually have got a Pommaret basis. Thus we consider only
le≺I and not already some subideal contained in it. If the original coordinates x are
δ -regular, then no transformation at all will be performed and we clearly fare better
than with the first approach. On the other hand, if the coordinates x are not δ -regular,
then we will not notice this fact before the end of the Janet completion. It will follow
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from our results in the next chapter that in such a situation, a Janet basis of I will
typically be larger than a Pommaret basis in δ -regular coordinates; in particular,
generally the Janet basis will contain elements of unnecessary high degree. Thus in
such situations the first approach will typically fare better, as it avoids a number of
unnecessary normal form computations.

Note that at this point we are not able to prove that either strategy will lead to a
Pommaret basis after a finite number of coordinate transformations. With the help
of the theory developed in the next chapter, we will be able to provide a proof at
least for the most important case of a class respecting order (Remark 5.5.25). The
basic problem is that we do not know a bound for the degree of either a Janet or
a Pommaret basis. It is clear that both every completion step and every coordinate
transformation asymptotically increase the Hilbert function hH,P,≺ of the current
basis H. However, without a bound on the degree of the appearing bases, this in-
formation is not sufficient to conclude that either approach terminates in a finite
number of steps. �
Example 4.3.18. Let us apply Algorithm 4.5 to the Pommaret completion of the
set F =

{
z2− y2− 2x2, xz + xy, yz + y2 + x2

}
(with respect to the degree reverse

lexicographic order). We have seen in Example 4.3.14 that the coordinates are not δ -
regular for I, although the Janet and the Pommaret span ofF coincide. According to
our algorithm we must first analyse the polynomial y(xz+ xy). Its involutive normal
form with respect to F is −x3. If we determine the multiplicative variables for the
enlarged set, they do not change for the old elements. For the new polynomial the
Janet division yields {x,y}. As y is obviously not multiplicative for the Pommaret
division, our criterion tells us that the coordinates are not asymptotically regular for
the enlarged basis and that the Pommaret completion may not terminate. Indeed,
here it is easy to see that no polynomial of the form x3yk with k > 0 is involutively
reducible and thus no finite Pommaret basis can exist for 〈F〉.

In this example, the Janet completion (with or without Pommaret autoreductions)
ends with the addition of this single obstruction to involution and we obtain as Janet
basis of 〈F〉 the set

FJ =
{

z2− y2−2x2, xz+ xy, yz+ y2 + x2, x3} . (4.8)

In Example 4.3.14 we showed that the transformation x̃ = z, ỹ = y+z and z̃ = x yields
after an autoreduction the set F̃� =

{
z̃2− x̃ỹ, ỹz̃− x̃, ỹ2− z̃

}
. One easily checks that

it is a Pommaret and thus also a Janet basis. This example clearly demonstrates that
the Janet division also “feels” δ -singularity in the sense that in such coordinates it
typically leads to larger bases of higher degree. �
Remark 4.3.19. In Theorems 4.3.12 and 4.3.15 we assumed that we are working
over an infinite field. A closer look at the proofs reveals that we could relax this
assumption to “sufficiently large” where the required size of � is essentially deter-
mined by the degree and the size of the considered set F . Thus in the case of a
finite field, it may be necessary to enlarge � in order to guarantee the existence of
a Pommaret basis. This problem is similar to the situation when one tries to put a
zero-dimensional ideal in normal xn-position [267]. �
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4.4 Construction of Minimal Bases and Optimisations

Algorithm 4.3 is simple and easy to analyse theoretically. However, in general it is
not particularly efficient. As a first improvement, we present now an algorithm that
merges the computations in Lines /4/ and /5/ of Algorithm 4.3 and thus requires in
general less normal form computations. The new Algorithm 4.5 directly generalises
the strategy of the monomial Algorithm 4.1. We multiply each element of the current
basis by its non-multiplicative variables. Then we look whether the result is already
contained in the involutive span of the basis; if not, it is added. The check whether
an element lies in the involutive span is performed via an involutive normal form
computation: since we are always dealing with an involutively head autoreduced
basis, the involutive normal form of a member of the ideal vanishes, if and only if it
is an element of the involutive span.

Algorithm 4.5 Involutive basis in (P ,�,≺) (improved form)
Input: a finite set F ⊂ P , an involutive division L
Output: an involutive basisH of I = 〈F〉 with respect to L and ≺
1: H← InvHeadAutoReduceL,≺(F)
2: loop
3: S ←

{
x j �h | h ∈H, x j ∈ XL,H,≺(h), x j �h /∈ 〈H〉L,≺

}

4: if S = ∅ then
5: return H
6: else
7: choose ḡ ∈ S such that le≺ ḡ = min≺S
8: g← NormalFormL,≺(ḡ,H)
9: H← InvHeadAutoReduceL,≺(H∪{g})

10: end if
11: end loop

The manner in which we choose in Line /7/ the next polynomial ḡ to be treated
(we briefly write min≺S for the minimal leading exponent of an element of S)
corresponds to what is called the normal selection strategy in the theory of Gröbner
bases. There, this strategy is known to work very well with degree compatible term
orders but not so well for other orders like the purely lexicographic one. Whereas
for Gröbner bases the selection strategy concerns only the efficiency, we will see
below that here the use of this strategy is important for our termination proof.

Theorem 4.4.1. Let L be a constructive Noetherian division and (P ,�,≺) a poly-
nomial algebra of solvable type. Then Algorithm 4.5 terminates for any finite input
set F ⊂ P with an involutive basisH of I = 〈F〉.

Proof. We begin by proving the correctness of the algorithm under the assump-
tion that it terminates. The relation I = 〈H〉 remains valid throughout, althoughH
changes. But the only changes are the addition of further elements of I and invo-
lutive head autoreductions; both operations do not affect the ideal generated by H.
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When the algorithm terminates, we have S = ∅ and thus the output H is locally
involutive and by Proposition 4.2.7 involutive.

There remains the problem of termination. Algorithm 4.5 produces a sequence
(H1,H2, . . . ) with 〈Hi〉 = I. The set Hi+1 is determined from Hi in Line /9/. We
distinguish two cases, namely whether or not during the computation of the invo-
lutive normal form in Line /8/ the leading exponent changes. If le≺ ḡ = le≺ g, then
trivially 〈le≺Hi〉 = 〈le≺Hi+1〉, as le≺ g = le≺ h + 1 j for some h ∈ Hi. Otherwise
we claim that 〈le≺Hi〉� 〈le≺Hi+1〉.

Because of the normal selection strategy, the basisHi is involutive up to the lead-
ing exponent μ of the polynomial min≺S. If le≺ g ≺ μ , then Lemma 4.2.6 asserts
that the ordinary and the involutive normal form of g with respect toHi coincide. By
construction, g is in involutive normal form, hence we must have le≺ g /∈ 〈le≺Hi〉
and consequently 〈le≺Hi〉� 〈le≺Hi+1〉, as otherwise g would be reducible.

So the loop in Algorithm 4.5 generates an ascending chain of monoid ideals
〈le≺H1〉 ⊆ 〈le≺H2〉 ⊆ · · · ⊆ le≺I. As �n

0 is Noetherian, the chain must become
stationary at some index N. It follows from the considerations above that in all iter-
ations of the loop after the Nth one we find le≺ ḡ = le≺ g in Line /8/. At this stage
Algorithm 4.5 reduces to an involutive completion of the exponent set le≺HN using
Algorithm 4.1—but with additional involutive autoreductions after each appearance
of a new element. Indeed, we choose the polynomial ḡ in Line /7/ such that le≺ ḡ
is a possible choice for the multi index μ Algorithm 4.1 adds in Line /8/. Since we
assume that our division is Noetherian, this modified algorithm terminates by Re-
mark 4.2.2 with an involutive basis of 〈le≺HN〉. Hence Algorithm 4.5 terminates,
too, and our correctness proof above implies that in fact 〈le≺HN〉= le≺ I. �

Remark 4.4.2. The problem of non-termination even if a finite involutive basis exists
remains unchanged by the above optimisation of Algorithm 4.3. However, variations
of Theorem 4.4.1 hold also for divisions which are not Noetherian. For example, we
could assume that all subideals of le≺I possess an involutive basis. Alternatively,
we could restrict to term orders of type ω . Then it suffices to assume that le≺I
has an involutive basis. Indeed, now it is not possible that Algorithm 4.5 iterates
endlessly within le≺Hi, as sooner or later an element ḡ must be selected in Line /7/
such that le≺ g /∈ le≺Hi. �

Next, we consider the special case of term orders of type ω and show that for
them our algorithm always determines in a finite number of steps a Gröbner basis
of the given ideal, even if it does not terminate.

Proposition 4.4.3. Let the term order ≺ be of type ω . Then Algorithm 4.5 deter-
mines for any finite input set F ⊂ P in a finite number of steps a Gröbner basis of
the ideal I = 〈F〉.

Proof. In the proof of Theorem 4.4.1 we introduced the intermediate set HN such
that 〈HN+�〉= 〈HN〉 for all � > 0. We claim thatHN is a Gröbner basis of I.

Let f ∈ I be an arbitrary element of the ideal. AsHN is a basis of I, we find for
each h ∈HN a polynomial gh ∈ P such that
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f = ∑
h∈HN

gh � h . (4.9)

By Proposition B.4.8, HN is a Gröbner basis, if and only if we can choose the
non-vanishing coefficients gh so that lt≺ (gh � h) � lt≺ f , i. e. if and only if (4.9)
is a standard representation. Assume that for f no standard representation exists
and let μ = maxh∈HN

{
le≺ gh + le≺ h

}
 lt≺ f . If we denote by H̄N the subset

of all generators h̄ ∈ HN for which we have le≺ gh̄ + le≺ h̄ = μ , then the identity
∑h̄∈H̄N

lm≺ (gh̄ � h̄) = 0 must hold. This obviously requires that the set H̄N has more
than one element. As we are dealing with an involutively head autoreduced set, the
involutive cones CL,le≺HN (le≺ h̄) are disjoint and at least one polynomial h̄ ∈ H̄N

exists such that some non-multiplicative variable x j ∈ XL,HN (h̄) divides lt≺ gh̄.
As ≺ is of type ω , after a finite number of steps the non-multiplicative prod-

uct x j � h̄ is analysed in Algorithm 4.5. We know already that at this stage of the
algorithm the leading term does not change during the involutive normal form
computation. Thus for some n1 ≥ 0 the set HN+n1 contains an element h̄′ with
le≺ h̄′ = le≺ (x j � h̄). Let ν = le≺ gh̄, xν−1 j � x j = cxν + r1 and h̄′ = dx j � h̄ + r2.
Then we may rewrite

gh̄ � h̄ =
lc≺ gh̄

cd

[
xν−1 j � (h̄′− r2)−dr1 � h̄

]
+
(
gh̄− lm≺ gh̄

)
� h̄ . (4.10)

The leading term on the right hand side is lt≺ (xν−1 j � h̄′). If suppxν−1 j contains
a non-multiplicative variable xk ∈ XL,HN+n1

(h̄′), then we can repeat the argument

obtaining an element h̄′′ ∈HN+n1+n2 such that le≺ h̄′′ = le≺ (xk � h̄′) and so on.
Obviously, this process terminates after a finite number of steps—even if we do

it for each h̄ ∈ H̄N . Thus after � further iterations (for some finite number �≥ 0) we
obtain a setHN+� such that, after applying all the found relations (4.10), f can be ex-
pressed in the form f =∑h∈HN+�

g̃h �h where still μ = maxh∈HN+�

{
le≺ g̃h + le≺ h

}
.

Denote again by H̄N+� ⊆ HN+� the set of all those polynomials h̄ for which this
maximum is achieved.

By construction, no term lt≺ ḡh̄ with h̄ ∈ H̄N+� contains a non-multiplicative
variable for h̄. Hence, |H̄N+�|= 1, sinceHN+� is also involutively head autoreduced.
But this fact contradicts our assumption that μ  lt≺ f . Thus every polynomial f ∈I
possesses a standard representation already with respect to HN and this set is a
Gröbner basis implying that 〈le≺HN〉= le≺I. �

Algorithm 4.5 will in general not produce a minimal involutive basis. As a triv-
ial counterexample consider the monomial ideal generated by F = {x,x2} ⊂ �[x].
Obviously, the generator x2 is here redundant. But with respect to the Janet division
F is involutively autoreduced and thus Algorithm 4.5 will return F unchanged as
Janet basis of I = 〈F〉 whereas the minimal Janet basis is of course {x}.

In contrast to the monomial case, now it does not suffice to make some minor
changes in order to reach a minimal involutive basis. In particular, it does not suffice
to simply apply Algorithm 4.5 to a minimal basis in the ordinary sense. The probably
simplest method is given by Algorithm 4.6.
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Algorithm 4.6 Minimal involutive basis in (P ,�,≺)
Input: a finite set F ⊂ P , an involutive division L
Output: a minimal involutive basisH of I = 〈F〉 with respect to L and ≺
1: H←∅; Q←F
2: repeat
3: g← 0
4: while (Q �= ∅)∧ (g = 0) do
5: choose f ∈ Q such that le≺ f = min≺ Q
6: Q←Q\{ f }; g← NormalFormL,≺( f ,H)
7: end while
8: if g �= 0 then
9: H′← {h ∈H | le≺ g≺ le≺ h}; H←

(
H∪{g}

)
\H′

10: Q←Q∪H′ ∪
{

x �g | x ∈ XL,H,≺(g)
}

11: end if
12: untilQ = ∅
13: return H

The basic idea of this algorithm is fairly simple. We now work with two sets
H and Q which together always define a basis of the given ideal I = 〈F〉 and for
which always max≺H�min≺Q holds (when both sets are non-empty). The setH
will eventually be the minimal involutive basis of I. The elements ofQ are potential
members of this basis (including in particular all non-multiplicative multiples of the
generators h ∈H) which still must be checked for involutive reducibility. The deci-
sive difference to Algorithm 4.5 is that the check in Line /6/ is done with respect to
the setH only. Furthermore,H is built up in such a way that no “internal reduction”
can be overlooked: whenever a new element is added to it in Line /9/, all previous
elements which have a greater leading exponent are moved back to the set Q and
thus later again checked for involutive reducibility. Following our usual strategy of
checking for local involution, we also augment in Line /10/ the setQ by all products
of the new basis member g with its non-multiplicative variables.

This modification has the effect that now input sets like F = {x,x2} for the Janet
division can be reduced to a minimal involutive basis, although they define already
an involutive basis. Indeed, after one iteration we have H = {x} and Q = {x2}. If
we now compute in Line /6/ the involutive normal form of f = x2 with respect toH,
then it trivially vanishes and the output is the minimal involutive basis {x}.

Theorem 4.4.4. Under the assumptions of Theorem 4.4.1, Algorithm 4.6 terminates
with a minimal involutive basis of I = 〈F〉.

Proof. It is trivial to see that upon termination of the algorithm the set H is lo-
cally involutive and generates the whole ideal I. Hence it is an involutive basis of
I. Thus there only remains to show that the algorithm terminates under the made
assumptions and that the output is a minimal involutive basis.

The proof of the termination of Algorithm 4.6 requires only slight variations of
the arguments given in the proof of Theorem 4.4.1. We consider now the monoid
ideals Ji = 〈le≺Hi〉+ 〈le≺Qi〉 where again the index i refers to the value after the
ith iteration of the repeat-loop. If we have le≺ g = le≺ f in Line /6/, then trivially
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Ji = Ji+1. Otherwise, le≺ g is not divisible by the leading exponent of any element
of Qi by the choice of f and it follows again from our use of the normal selection
strategy and from Lemma 4.2.6 that le≺ g /∈ 〈le≺Hi〉. Thus in this case Ji � Ji+1.

As the ascending chain J0 ⊆ J1 ⊆ J2 ⊆ ·· · of monoid ideals must become sta-
tionary, after a finite number N of iterations we always have le≺ g = le≺ f . No sub-
sequent iteration removes an element from the set H. Thus now even the monoid
ideals 〈le≺Hi〉 with i > N define an ascending chain and as soon as it becomes sta-
tionary, Algorithm 4.6 reduces to the monomial completion Algorithm 4.1 which
terminates under the made assumptions.

For proving the minimality of H, let us assume that H was not a minimal basis.
By definition, this means that le≺H is not the unique minimal involutive basis BL

of le≺I but that BL � le≺H. Hence the set le≺H contains multi indices which
are not in BL; among these let le≺ h be the minimal one. We introduce the two sets
B′ = {ν ∈ BL | ν ≺ le≺ h} andH′ = {h′ ∈H | le≺ h′ ∈ B′}.

Consider the moment when h was finally entered into H (h might have already
been entered at earlier times but was removed again, when polynomials with smaller
leading exponents appeared). Obviously, at this time we had H = H′ in the algo-
rithm. The second condition in Definition 3.1.1 of an involutive division implies that
NL,BL(le≺ h′)⊆ NL,B′(le≺ h′) for all h′ ∈H′. As BL is the minimal involutive basis
of le≺ I, the multi index le≺ h has an involutive divisor in BL. The above inclusion
implies that le≺ h must also have an involutive divisor in le≺H′ contradicting that
the polynomial h was in involutive normal form with respect to H′ when it was
added. HenceH is a minimal basis. �

Algorithm 4.6 allows us in principle the construction of a minimal involutive ba-
sis for any ideal and division satisfying the made assumptions. While it surely fares
better than similarly simple versions of Buchberger’s Algorithm B.3 for Gröbner
bases, it still will fail on larger examples for complexity reasons. Although this
problem is not a central topic of this book, we discuss at least a few optimisations
omitting some redundant computations.

Example 4.4.5. Let us consider in �[x,y,z] the ideal generated by the three polyno-
mials f1 = x+ p1, f2 = y2 + p2 and f3 = z2 + p3. Here p1, p2, p3 are some polyno-
mials subject to the sole constraint that the underlined terms are indeed the leading
terms for the chosen term order, say the degree reverse lexicographic order. For both
the Pommaret and the Janet division the first steps in the completion will be to add
the involutive normal forms of the generators f4 = xy+yp1 and f5 = xz+zp1. Obvi-
ously, no involutive head reductions can be performed and for simplicity we assume
that involutive reductions of lower terms are not possible either.

For the Pommaret division, z is non-multiplicative for f4 and y is non-multiplica-
tive for f5. Obviously z f4 = y f5 = yz f1 and one of these non-multiplicative products
is redundant, as it completely suffices to compute the involutive normal form of
only one. For the Janet division, y is multiplicative for f5. Our algorithm computes
z f4 and then notices that its involutive normal form vanishes due to the involu-
tive reduction with y f5. Thus for both divisions the algorithm performs unnecessary
computations the outcome of which we can predict in advance. �
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This example presented two trivial cases of redundant computations. In the the-
ory of Gröbner bases more complex situations are covered by the second Buchberger
criterion (Proposition B.4.19). In the next chapter the proof of Theorem 5.4.4 will
show that many instances of it are automatically taken into account by our strategy
of considering only products with non-multiplicative variables in the completion.
For this reason, the importance of criteria for detecting unnecessary reductions is
much less pronounced as in the classical theory of Gröbner bases. Small to medium
size examples can be reasonably handled with the simple Algorithm 4.5; only larger
problems require further optimisations.

In Line /3/ of Algorithm 4.5 we multiply each generator in the current basis with
all its non-multiplicative variables and compute the involutive normal form of the
result in order to determine the set S. Of course, in a concrete implementation one
would not explicitly determine the full set S. Instead one would first perform the
multiplication that yields a minimal leading term, then the one that yields the second
smallest leading term, and so on until we encounter a product with a non-vanishing
involutive normal form. Nevertheless, the same product (and its involutive normal
form) may still be computed repeatedly which is often quite expensive.

A simple strategy allows us to avoid these redundant computations. We store for
each generator h ∈H a set Y of all variables with which we have already multiplied
it. In later iterations of the main loop of our algorithm we ignore these variables,
even if they are still non-multiplicative for h. While this optimisation is trivially
permitted for global divisions, its correctness is less clear for general divisions.
Basically, it is again a consequence of our use of the normal selection strategy to
analyse always the non-multiplicative product with the smallest leading term that
renders this optimisation correct.

Assume that we analysed at some stage the non-multiplicative product x j � h.
Thus we determined its involutive normal form. In general, this computation entails
that we performed some involutive reductions. Now it may happen for a not globally
defined division that at a later stage of the algorithm, these reductions are no longer
involutive, as some multiplicative variables have become non-multiplicative. Hence,
if we analysed the product again, we would get a different result.

However, under such circumstances our selection strategy will never choose this
particular non-multiplicative product x j � h. Indeed, the leading exponents of all
polynomials subtracted from x j � h during the involutive normal form computation
are trivially less than or at most equal to le≺ (x j � h). Hence, if one of the reduc-
tions has become non-multiplicative, this fact entails that we have now at least one
further non-multiplicative product xk � g such that le≺ (xk � g)� le≺ (x j � h) which
should be analysed first. At the time the polynomial x j �h possesses again the small-
est leading exponent among all non-multiplicative products, we can redo all former
involutive reductions (or perform equivalent ones), as all possible obstructions have
already been removed in the meantime. This follows from the same kind of conti-
nuity argument that was used for proving Theorem 4.4.1.

In order to avoid such repeated non-multiplicative products, we work in Algo-
rithm 4.7 below with triples ( f ,μ ,Y ): f ∈ P is a polynomial; the multi index μ
satisfies μ � le≺ f ; the set Y contains all variables with which the polynomial f (or
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some predecessor of it) has already been multiplied. The multi index μ obtains a
value which is less than le≺ f , if f arises as a non-multiplicative product and if in
the subsequent normal form computation the leading exponent is not changed (see
Line /32/). In this case μ is set equal to the multi index contained in the predecessor
triple; thus one might say that it encodes the “history” of the generator f . Given a
set S of such triples, we write briefly le≺S for the set of the leading exponents of
the polynomials f appearing in triples ( f ,μ ,Y ) ∈ S and min≺S for the minimal
exponent among these.

Next we discuss the involutive form of Buchberger’s second criterion. As usu-
ally, it states that certain normal form computations can be avoided, as we can be
predict that they yield zero. In order to formulate it in precisely the form in which
we apply it, we must already refer to our final completion Algorithm 4.7. There
the criterion is realised by the subalgorithm Criterion(g,ν,H) which takes as ar-
gument a polynomial g, a multi index ν and a set H of triples ( f ,μ ,Y ). It returns
True, ifH contains a triple (h,μ ,Y ) such that le≺ h is an involutive divisor of le≺ g
with respect to le≺H and lcm(ν,μ)≺ le≺ g. Note that the design of Algorithm 4.7
ensures that the occurring sets H are always locally involutive up to a sufficiently
large multi index so that the following proposition guarantees the correctness of the
criterion.

Proposition 4.4.6. Assume that we obtain in the course of the Algorithm 4.7 within
our current basis F a triple (g,ν,Z) and a subset H⊆F satisfying:

(i) The set H is involutively head autoreduced and locally involutive up to le≺ g.
(ii) There is a triple (h,μ ,Y ) ∈H with le≺ h |L,le≺H le≺ g and lcm(μ ,ν)≺ le≺ g.

Then the involutive normal form of g with respect to H vanishes.

Proof. We prove this proposition by reducing it to the standard form of Buch-
berger’s second criterion.4 Note that the assumption on lcm(μ ,ν) implies that ei-
ther h or g (or both) arose during the algorithm as the non-multiplicative product of
some other member of a previous basis. Let us assume for simplicity that h comes
from some polynomial h0; the other case goes completely analogously. We con-
sider now the S-polynomials S≺(h0,h) and S≺(h0,g). Since le≺ h0 | le≺ h, it also
divides lcm(le≺ h, le≺ g) = le≺ g. It follows that both S-polynomials have a leading
exponent which is less than le≺ g.

The key for proving our claim is the following observation. Within our com-
pletion algorithms we compute repeatedly the involutive normal form of a non-
multiplicative product x� f . Let us assume that in the first step we reduce involutively
its leading term with respect to some polynomial f̄ . Then we obtain as interme-
diate result the S-polynomial S≺( f , f̄ ). Thus in a somewhat hidden manner our

4 In Appendix B.4 Buchberger’s second criterion is discussed only for the commutative polynomial
ring. Kredel [264, Lemma 4.5.8] showed that it remains valid for arbitrary polynomial algebras of
solvable type. Note that this is not the case for Buchberger’s first criterion: consider for example in
the Weyl algebraW1 = �[x,∂ ] the two polynomials f = x and g = ∂ [264, Ex. 4.5.11]; obviously,
their leading exponents are coprime, but their S-polynomial S≺( f ,g) = −1 is not reducible by
either f or g.
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Algorithm 4.7 Minimal involutive basis in (P ,�,≺) (optimised form)
Input: a finite set F ⊂ P , an involutive division L
Output: a minimal involutive basisH of I = 〈F〉 with respect to L and ≺
1: F ← InvHeadAutoReduceL,≺(F)
2: Q←

{
( f , le≺ f ,∅) | f ∈ F

}
; H← ∅

3: repeat
4: g← 0
5: while (Q �= ∅)∧ (g = 0) do
6: choose ( f ,μ ,Y) ∈Q such that le≺ f = min≺Q; Q←Q\

{
( f ,μ ,Y)

}

7: if ¬Criterion( f ,μ ,H) then
8: g← NormalFormL,≺( f ,H)
9: end if

10: end while
11: if g �= 0 then
12: if le≺ g = le≺ f then
13: H←H∪

{
(g,μ ,Y )

}

14: else
15: H′←

{
(h,μ ,Y ) ∈H | le≺ h� le≺ g

}

16: H←
(
H∪
{
(g, le≺ g,∅)

})
\H′; Q←Q∪H′

17: end if
18: end if
19: repeat
20: S ←

{
x �h | (h,μ ,Y ) ∈H, x ∈ XL,H,≺(h)\Y

}

21: ifQ �= ∅ then
22: S ← { f ∈ S | le≺ f ≺ min≺Q}
23: end if
24: g← 0
25: while (S �= ∅)∧ (g = 0) do
26: choose (h,μ ,Y ) ∈H, x ∈ XL,H,≺(h)\Y such that le≺ (x �h) = min≺S
27: H←

(
H\
{
(h,μ ,Y )

})
∪
{
(h,μ ,Y ∪{x})

}
; S ← S \{x �h}

28: if ¬Criterion(x �h,μ ,H) then
29: g← NormalFormL,≺(x �h,H)
30: if g �= 0 then
31: if le≺ g = le≺ (x �h) then
32: H←H∪

{
(g,μ ,∅)

}

33: else
34: H←H∪

{
(g, le≺ g,∅)

}

35: end if
36: H′←

{
(h,μ ,Y ) ∈H | le≺ h� le≺ g

}

37: H←H\H′; Q←Q∪H′

38: end if
39: end if
40: end while
41: until S = ∅
42: untilQ = ∅
43: return

{
h | (h,μ ,Y ) ∈H

}
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algorithms also proceed by analysing some S-polynomials—just like the familiar
Buchberger Algorithm B.3. Our proof of Theorem 5.4.4 in the next chapter shows
that it suffices to consider this particular subset of all S-polynomials, as all other
S-polynomials are then automatically covered by Buchberger’s second criterion.

According to our first assumption, the setH is involutively head autoreduced and
locally involutive up to le≺ g. It follows then from Proposition 3.4.16 that for all
polynomials f with le≺ f ≺ le≺ g the involutive and the ordinary normal form with
respect toH coincide. Thus by construction both S≺(h0,h) and S≺(h0,g) and hence
again by Buchberger’s second criterion also S≺(h,g) have a vanishing involutive
normal form. But since le≺ h is an involutive divisor of le≺ g, the involutive normal
forms of S≺(h,g) and g are identical. �
Theorem 4.4.7. Under the assumptions of Theorem 4.4.1, Algorithm 4.7 terminates
with a minimal involutive basis of I = 〈F〉.
Proof. As Algorithm 4.7 follows the same basic strategy as Algorithm 4.6, we can
take over many parts of the proof of Theorem 4.4.4. This includes in particular the
proof of the minimality of the computed basis. The correctness of the criterion for
avoiding the treatment of certain non-multiplicative products is asserted by Propo-
sition 4.4.6 and we also showed that it is not necessary to repeat non-multiplicative
prolongations. Thus the correctness of the algorithm is immediate.

For proving the termination we must only show that the arguments given in the
proof of Theorem 4.4.4 remain valid, although there exists now a second place
where the sets H and Q are modified, namely in Lines /30–38/. Again it is obvi-
ous that the ideal Ji remains unchanged, if le≺ g = le≺ (x � h) in Line /29/. Other-
wise, le≺ g /∈ 〈le≺Qi〉 by construction and le≺ g /∈ 〈le≺Hi〉 by Lemma 4.2.6, so that
Ji � Ji+1 and we obtain as before an ascending chain of monoid ideals. �

Algorithm 4.7 can be used as starting point for concrete implementations. Tests
have demonstrated that it exhibits a quite good behaviour in practice and in particu-
lar that it is highly competitive to traditional Gröbner bases implementations based
on variants of the classical Buchberger Algorithm B.3. Hence even if one is not in-
terested in an involutive basis but only in the reduced Gröbner basis of the given
ideal, it can be useful to apply Algorithm 4.7. In this case, the output as described
above is not really the result one wants, as it still has to be autoreduced. However,
with the help of the information contained in the triples ( f ,μ ,Y ), this problem can
be solved very elegantly.

So far we have used the multi indices μ only for applying the involutive form
of Buchberger’s second criterion. If one takes a closer look at the assignment of
this entry, one sees that μ �= le≺ f , if and only if f arises as a non-multiplicative
multiple of another generator and if during the subsequent involutive normal form
computation the leading exponent does not change. Thus even after dropping all
such polynomials, we still have a Gröbner basis. In fact, because of our use of the
normal selection strategy it will even be the reduced Gröbner basis of I (after a
normalisation of the leading coefficients).

In order to prove this assertion we must show that the remaining leading expo-
nents form the minimal basis of le≺ I. Whenever a new polynomial g is added to
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the set H and its leading exponent has changed in the preceeding involutive normal
form computation, then le≺ g does not possess an involutive divisor in le≺H. We
claim now that in fact it has no divisor at all. The key observation is that we always
check all “small” non-multiplicative multiples of the elements of H before we look
at the next member of Q (the outer appearance of Algorithm 4.7 seems to indicate
the opposite, but note that in Line /2/ we initialiseH with the empty set).

Assume that in the involutive normal form computation in Line /8/ or /29/, re-
spectively, the leading coefficient has changed but nevertheless a generator h(1) ∈H
exists with μ (1) = le≺ h(1) | ν = le≺ g. Since μ (1) obviously cannot be an involu-
tive divisor, there must be a non-multiplicative variable x(1) ∈ XL,H,≺(h(1)) such
that le≺ (x(1) � h(1)) = μ (1) + 1 j(1) still divides ν . But this fact implies that the non-

multiplicative multiple x(1) � h(1) was previously checked and its involutive nor-
mal form turned out to vanish. Hence H must contain a generator h(2) such that
μ (2) = le≺ h(2) is an involutive divisor of μ(1) + 1 j(1) | ν . As μ (2) cannot be an in-
volutive divisor of ν either, we can continue in this manner and obtain as result a
sequence (μ (1),μ (2), . . . ) as in Definition 4.1.3 of a continuous division. Thus the
assumption that ν ∈ 〈le≺H〉 contradicts the continuity of the division L.

Remark 4.4.8. In the last section we discussed in Remark 4.3.17 the construction of
δ -regular coordinates x for an ideal I ⊆ P (and thus of a Pommaret basis for I)
in the context of the “monomial” completion Algorithm 4.3. It is, however, trivial
to see that the discussion applies with obvious adaptions to any of the improved
algorithms derived in this section. �

4.5 Semigroup Orders

For a number of applications it is of interest to compute involutive or Gröbner bases
not only with respect to monoid orders but also for semigroup orders (cf. Defi-
nition A.1.1); these applications include in particular computations in local rings
which are often needed in algebraic geometry. According to Lemma A.1.6, a semi-
group order is a well-order, if and only if it is a monoid order. Hence for semigroup
orders which are not a monoid order, infinite strictly descending sequences exist and
our argument that the normal form Algorithm B.1 (or its involutive variant, respec-
tively) always terminates breaks down. Indeed, it is easy to provide an example of a
non-terminating normal form computation: take the univariate polynomial ring �[x]
with the unique semigroup order satisfying x ≺ 1; if we try to compute the normal
form of g = x with respect to f = 1− x, then we obtain as intermediate results the
infinite sequence x, x2, x3,. . . Thus all arguments and proofs based on the termina-
tion of normal form computations become invalid. In particular, we can no longer
guarantee the termination of Algorithm 4.5 or one of its optimised variants.

Example 4.5.1. Let us consider the Weyl algebra Wn. The only difference to the
ordinary commutative polynomial ring is the commutation relation ∂i � xi = xi∂i +1
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for all 1 ≤ i ≤ n. While Wn is trivially of solvable type for any monoid order, a
semigroup order respects the multiplication �, if and only if 1≺ xi∂i for all 1≤ i≤ n.
Saito et al [391] call such orders multiplicative monomial orders.

An important class of semigroup orders is defined via real weight vectors. Let
(ξ ,ζ ) ∈ �2n be such that all entries of the vector ξ + ζ ∈ �n are non-negative
and let ≺ be an arbitrary monoid order. Then we set xμ∂ν ≺(ξ ,ζ ) xσ∂ τ , if either
μ · ξ + ν · ζ < σ · ξ + τ · ζ or μ · ξ + ν · ζ = σ · ξ + τ · ζ and xμ∂ν ≺ xσ∂ τ where
the dot denotes the standard scalar product in�n. It is easy to see that this definition
yields a monoid order, if and only if both ξ and ζ contain only non-negative entries.
A special case are the orders with weight vectors (ξ ,−ξ ) arising from the action of
the algebraic torus (�×)n onWn. They have numerous applications in the theory of
D-modules [391] and obviously such an order is never a monoid order. �

Because of the weaker properties of semigroup orders, we must slightly modify
our definitions of (weak) involutive or Gröbner bases. The proof of Theorem 3.4.4
(and consequently also the one of Corollary 3.4.5 showing that a weak involutive
basis of an ideal I is indeed a basis of I) requires normal form computations and
thus is no longer valid. In fact, it is not difficult to provide counterexamples. The
same problem occurs for Gröbner bases. Therefore we must explicitly include the
basis property as a further condition in our definition.

Definition 4.5.2. Let (P ,�,≺) be a polynomial algebra of solvable type where ≺
is a semigroup order and I ⊆ P a left ideal. A Gröbner basis of I is a finite set G
such that 〈G〉= I and 〈le≺G〉= le≺ I. The set G is a weak involutive basis of I for
the involutive division L, if in addition the leading exponents le≺G form a weakly
involutive set for the division L. It is a (strong) involutive basis, if le≺G is even an
involutively head autoreduced involutive set.

In the case of Gröbner bases, a classical trick to circumvent the problem of non-
termination of normal form computations consists of homogenising the input. Thus
let (P ,�,≺) be a polynomial algebra of solvable type for a semigroup order ≺. We
set P̃ = �[x1, . . . ,xn+1]; for convenience we often write t instead of xn+1. We extend
the multiplication � of P to P̃ by defining that t commutes with all other variables
and the elements of �. The homogenisation of a polynomial f = ∑cμxμ ∈ P of
degree q is defined as f (h) = ∑cμxμtq−|μ|. Conversely, for a polynomial f̃ ∈ P̃ we
denote its projection to the original algebra P as f = f̃ |t=1.

We denote by �̃ the set of terms in P̃ ; obviously, it is in one-to-one correspon-
dence to the multi indices in �n+1

0 . We use in the sequel the following convention.
Multi indices in�n+1

0 always carry a tilde: μ̃ = [μ1, . . . ,μn+1]. The projection from
�n+1

0 to�n
0 defined by dropping the last entry (i. e. the exponent of the homogenisa-

tion variable t) is signalled by omitting the tilde; thus μ = [μ1, . . . ,μn]. For subsets
B̃ ⊂�n+1

0 we also simply writeB= {ν | ν̃ ∈ B̃}⊂�n
0. Note that generally |B|≤ |B̃|,

as some multi indices in B̃ may differ only in their last entry.
We start by lifting the semigroup order ≺ on � to a monoid order ≺h on �̃

defined by setting xμ̃ ≺h xν̃ , if either |μ̃ | < |ν̃| or both |μ̃| = |ν̃| and xμ ≺ xν . As a
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degree compatible order, ≺h is trivially a monoid order and one easily verifies that
(P̃ ,�,≺h) is again a polynomial algebra of solvable type.

Let F ⊂ P be a finite set and I = 〈F〉 the ideal generated by it. We first note
that generally the ideal Ĩ = 〈F (h)〉 ⊆ P̃ generated by the homogenisation F (h) =
{ f (h) | f ∈ F} of F is only a subset of the homogenised ideal I(h) = 〈 f (h) | f ∈ I〉.
Indeed, if g =∑ f∈F Pf � f is an arbitrary element of I, then a homogenisation leads

to a relation of the form tkg(h) = ∑ f∈F P(h)
f � f (h) for some k ≥ 0, and we can only

conclude that tkg(h) ∈ Ĩ but no statement about g(h) itself is possible. Since ≺h is a
term order, it is possible to apply the Buchberger Algorithm B.3 to the homogenised
set F (h) for the construction of a Gröbner basis G̃ of the ideal Ĩ with respect to the
lifted order≺h.

Lemma 4.5.3. The dehomogenisation G ⊂ P of G̃ ⊂ P̃ is a Gröbner basis of the
ideal I with respect to the semigroup order ≺.

Proof. Let G̃ = {g̃1, . . . , g̃r} and let f ∈ I be an arbitrary element. By the consider-
ations above, f̃ = (xn+1)k f (h) ∈ Ĩ for some k ≥ 0. As the set G̃ is assumed to be a
Gröbner basis of Ĩ, there exists a standard representation f̃ =∑r

i=1 P̃i � g̃i with coef-
ficients P̃i ∈ P̃ such that lt≺h (P̃i � g̃i)�h lt≺h f̃ . Dehomogenisation leads to an equa-
tion f = ∑r

i=1 Pi � gi (note that generally some polynomials gi may coincide!) and
hence 〈G〉 = I. Since all appearing polynomials in P̃ are homogeneous, it follows
from the definition of ≺h that the inequality lt≺ (Pi � gi) � lt≺ f holds. Thus there
must exist a generator gi ∈G such that lt≺ gi | lt≺ f , i. e. we also have 〈lt≺G〉= lt≺I
and G is a Gröbner basis of I. �

While this simple approach yields thus indeed a Gröbner basis G with respect
to the semigroup order ≺, we cannot expect that G is reduced. Furthermore, a sub-
sequent autoreduction of G is generally not possible, as the reduction process re-
quires possibly infinite normal form computations. Hence the existence of a reduced
Gröbner basis of I cannot be guaranteed.

We extend now this approach to involutive bases. Here we encounter the addi-
tional difficulty that we must lift not only the order ≺ but also the used involutive
division L and we must show that properties like being Noetherian or continuous
are preserved by the lift which is non-trivial. For lifting the involutive division L, we
proceed somewhat similarly to the definition of the Janet division: the homogeni-
sation variable t is multiplicative only for terms which have maximal degree in t
(which also explains why we number the homogenisation variable xn+1 instead of
the more common x0).

Proposition 4.5.4. Let L be an involutive division on �n
0. For a finite set B̃ ⊂�n+1

0
and a multi index μ̃ ∈ B̃, we define NL̃,B̃(μ̃) by saying that (i) n + 1 ∈ NL̃,B̃(μ̃), if
and only if μn+1 = maxν̃∈B̃{νn+1} and (ii) i ∈ NL̃,B̃(μ̃) for 1≤ i≤ n, if and only if

i ∈ NL,B(μ). This determines an involutive division L̃ on�n+1
0 .

Proof. Both conditions for an involutive division are easily verified. For the first
one, let ρ̃ ∈ CL̃,B̃(μ̃)∩CL̃,B̃(ν̃) with μ̃ , ν̃ ∈ B̃. If ρn+1 = μn+1 = νn+1, the last en-
try can be ignored, and the properties of the division L imply the desired result.
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If ρn+1 = μn+1 > νn+1, the index n + 1 must be multiplicative for ν̃ contradicting
μn+1 > νn+1. If ρn+1 is greater than both μn+1 and νn+1, the index 0 must be mul-
tiplicative for both implying μn+1 = νn+1. In this case we may again ignore the last
entry and invoke the properties of L.

For the second condition we note that whether a multiplicative index i ≤ n be-
comes non-multiplicative for some element ν̃ ∈ B̃ after adding a new multi index
to B̃ is independent of the last entry and thus only determined by the involutive di-
vision L. If the new multi index has a higher last entry than all elements of B̃, then
n + 1 becomes non-multiplicative for all elements in B̃ but this is permitted. �

Next we check to what extent the properties of L are inherited by the lifted di-
vision L̃. Given the similarity of the definition of L̃ and the Janet division, it is not
surprising that we may reuse many ideas from proofs for the latter one.

Proposition 4.5.5. If L is a Noetherian division, then so is L̃.

Proof. Let B̃ ⊂�n+1
0 be an arbitrary finite subset. In order to prove the existence of

a finite L̃-completion of B̃, we first take a finite L-completion B̂ ⊂�n
0 of B which

always exists, as by assumption the division L is Noetherian. Next, we define a finite
subset B̃′ ⊂ 〈B̃〉 by setting

B̃′ =
{
μ̃ ∈�n+1

0 | μ ∈ B̂∧μn+1 ≤max
ν̃∈B̃

νn+1

}
∩〈B̃〉 . (4.11)

We claim that this set B̃′ is an L̃-completion of B̃. By construction, we have both
B̃′ ⊂ 〈B̃〉 and B̃ ⊆ B̃′, so that we must only show that B̃′ is involutive.

Let μ̃ ∈ 〈B̃′〉 be arbitrary. By construction of B̃′, we can find ν̃ ∈ B̃′ with ν |L,B̂ μ .

Moreover, the definition of B̃′ guarantees that we can choose ν̃ in such a way that
either νn+1 = μn+1 or νn+1 = maxρ̃∈B̃′ ρn+1 < μn+1 holds. In the former case, we
trivially have ν̃ |L̃,B̃′ μ̃ ; in the latter case we have n + 1 ∈ NL̃,B̃(ν̃) (see the proof of

Proposition 4.5.4). Thus in either case μ̃ ∈ 〈B̃′〉L̃. �

Proposition 4.5.6. If L is a continuous division, then so is L̃.

Proof. Let (ν̃(1), . . . , ν̃(r)) with ν̃(i) ∈ B̃ ⊂ �n+1
0 be a finite sequence as described

in Definition 4.1.3 of a continuous division. We first note that the integer sequence

(ν(1)
n+1, . . . ,ν

(r)
n+1) is then monotonically increasing. Indeed, if ν(i)

n+1 is not maximal
among the entries μn+1 for μ̃ ∈ B̃, no multiplicative divisor of ν̃(i) + 1 j in B̃ can

have a smaller last entry: if ν(i)
n+1 is maximal, the index n + 1 is multiplicative for

ν̃(i) and any involutive divisor in B̃ must also be maximal in the last entry. Thus
it suffices to look at those parts of the sequence where equality in the last entries
holds. But there the inequality of the multi indices ν̃(i) follows from the continuity
of the underlying division L. �

Unfortunately, it is much harder to show that constructivity is preserved. So far,
a proof is known only for globally defined divisions (and thus in particular for the
Pommaret division) and the Janet division.
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Proposition 4.5.7. If the continuous division L is either globally defined or the Janet
division J, then the lifted division L̃ is constructive.

Proof. We select a finite set B̃ ⊂�n+1
0 , a multi index ν̃ ∈ B̃ and a non-multiplicative

index j of ν̃ such that the conditions in Definition 4.1.7 of a constructive division
are satisfied. Assume that a multi index ρ̃ ∈ B̃ exists such that ν̃+ 1 j = ρ̃ + σ̃ + τ̃
with ρ̃+ σ̃ ∈ CL̃,B̃(ρ̃) and ρ̃+ σ̃ + τ̃ ∈ CL̃,B̃∪{ρ̃+σ̃}(ρ̃+ σ̃). If such a ρ̃ existed, the

division L̃ would not be constructive.
Let L be a globally defined division. If j = n + 1, then the equality νn+1 + 1 =

ρn+1 +σn+1 + τn+1 implies that σn+1 = τn+1 = 0. Indeed, σn+1 > 0 entails ρn+1 ≥
νn+1 ≥ ρn+1 + σn+1 > ρn+1, as then n + 1 must be multiplicative for ρ̃ , and the
assumption σn+1 = 0 and τn+1 > 0 leads to a similar contradiction. If j ≤ n, the
argumentation is simple. A global division is always constructive, as adding further
elements to B does not change the multiplicative indices. But the same holds for the
indices k≤ n in the lifted division L̃. Thus under the above conditions ν̃+1 j ∈ 〈B̃〉L̃
contradicting the made assumptions.

For L the Janet division J, we construct a sequence (ρ̃ (1), ρ̃ (2), . . . ) of elements
ρ̃ (k) ∈ B̃ as follows. We start with ρ̃ (1) = ρ̃ and φ̃ (1) = σ̃+ τ̃ . In each step, we select

first a non-multiplicative index jk for ρ̃ (k) such that φ̃ (k)
jk

> 0 and then a multiplicative

divisor ρ̃ (k+1) ∈ B̃ of ρ̃ (k) + 1 jk :

ν̃+ 1 j = ρ̃ (k) + φ̃ (k) = ρ̃ (k) + 1 jk + φ̃ (k)−1 jk

= ρ̃ (k+1) + σ̃ (k+1) + φ̃ (k)−1 jk︸ ︷︷ ︸
=φ̃ (k+1)

(4.12)

If for some k all indices jk such that φ̃ (k)
jk

> 0 were multiplicative for ρ̃ (k), we would

have obviously a contradiction, as then ν̃+1 j ∈ 〈B̃〉L̃. There remains to show that an
involutive divisor ρ̃ (k+1) ∈ B̃ of ρ̃ (k) +1 jk always exists. By the second condition in
the definition of constructivity, this will be the case, if ρ̃ (k) + 1 jk is a proper divisor
of ν̃ + 1 j. Thus we must show that in each step |φ̃ (k)| is greater than one (note that
|σ̃ | and |τ̃| cannot be zero).

For this purpose, we next prove some inequalities between the elements of our
sequence for the lexicographic order on�n+1

0 .

μ̃≺lex ρ̃
(1) = ρ̃: Let s and t, respectively, be the position of the last non-vanishing

entry in the multi indices σ̃ and τ̃ . Assume first that j = n + 1. Then μn+1 + 1 =
ρn+1 +σn+1 + τn+1 entails that for s = n + 1 we have ρn+1 ≤ μn+1 and that for
s ≤ n, t = n + 1 we have ρn+1 +σn+1 ≤ μn+1. Both possibilities contradict the
definition of the lifted division L̃, as then n + 1 cannot be multiplicative for ρ̃
or ρ̃ + σ̃ , respectively. If j = n + 1 and s ≤ n, t ≤ n, then ρn+1 = μn+1 + 1 and
thus μ̃ ≺lex ρ̃ . For j ≤ n, we claim that j > max{s,t}, from which the inequality
immediately follows. But this relation in turn follows from the properties of the
Janet division in the same manner as in the proof of Lemma 4.1.8.
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ρ̃(k) ≺lex ρ̃
(k+1): According to (4.12), we have ρ̃ (k) + 1 jk = ρ̃ (k+1) + σ̃ (k+1). If

jk ≤ n, then ρ̃ (k+1)
n+1 = ρ̃ (k)

n+1 and the claimed inequality follows by the same con-
siderations as in the proof of Lemma 4.1.5. For jk = n + 1, we first consider the

case where σ̃ (k+1)
n+1 �= 0. This means that n + 1 is multiplicative for ρ̃ (k+1) but

non-multiplicative for ρ̃ (k), although ρ̃ (k)
n+1 ≥ ρ̃

(k+1)
n+1 which is not possible. Thus

σ̃ (k+1)
n+1 = 0, ρ̃ (k+1)

n+1 > ρ̃ (k)
n+1 and therefore ρ̃ (k) ≺lex ρ̃ (k+1).

Now suppose that ν̃ + 1 j = ρ̃ (k) + φ̃ (k) with |φ̃ (k)|= 1. We may assume without
loss of generality that we have chosen ν̃ maximal among all multi indices μ̃ with
ν̃ + 1 j = μ̃ + 1� where � is non-multiplicative for μ̃ . This yields the contradiction
ν̃ ≺lex ρ̃ (1) ≺lex · · · ≺lex ρ̃ (k) �lex ν̃ .

Hence we always find an involutive divisor ρ̃ (k+1) allowing us to extend the se-
quence. But if the sequence (ρ̃ (1), ρ̃ (2), . . . ) is infinite, its elements cannot be all
distinct, as ν̃ + 1 j has only finitely many divisors, and this observation contradicts
the continuity of the lifted Janet division J̃. �

Based on these results, Algorithm 4.3 (or the improved form, Algorithm 4.5)
can be extended to semigroup orders. Given a finite set F ∈ P , we first determine
its homogenisation F (h) ∈ P̃ and then compute an involutive basis of 〈F (h)〉 with
respect to L̃ and ≺h. What remains to be done is first to show that the existence
of a finite involutive basis is preserved under the lifting to P̃ and then to study the
properties of the dehomogenised basis.

Proposition 4.5.8. If the left ideal I = 〈F〉 ⊆ P possesses an involutive basis with
respect to the Noetherian division L and the semigroup order ≺, then the lifted left
ideal Ĩ = 〈F (h)〉 ⊆ P̃ generated by the homogenisations of the elements in the finite
set F possesses an involutive basis with respect to the lifted division L̃ and the lifted
monoid order ≺h.

Proof. By Theorem 3.3.13, the ideal Ĩ ⊆ P̃ possesses a Gröbner basis G̃ with re-
spect to the monoid order ≺h. By Proposition 4.5.5, a finite L̃-completion B̃ of the
set le≺h G̃ exists. Moreover, by Definition 3.3.12 of a Gröbner basis, the monoid
ideals 〈le≺h G̃〉 and le≺h Ĩ coincide. Thus B̃ is an involutive basis of le≺h Ĩ with
respect to the lifted division L̃ and an involutive basis H̃ of the ideal Ĩ with respect
to L̃ is given by

H̃=
{

xμ̃ � g̃ | g̃ ∈ G̃ ∧ le≺h (xμ̃ � g̃) ∈ B̃
}

. (4.13)

This set is obviously finite. �

Hence the lifting leads to a situation where we can apply Theorem 4.4.1 about the
correctness and the termination of our basic completion Algorithm 4.5. However, the
dehomogenisation of the strong involutive basis computed in P̃ does not necessarily
lead to a strong involutive basis in P . But we will always obtain at least a weak
involutive basis and thus in particular a Gröbner basis.
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Theorem 4.5.9. Let H̃ be a strong involutive basis of the left ideal Ĩ ⊆ P̃ with
respect to L̃ and≺h. Then its dehomogenisation5H is a weak involutive basis of the
left ideal I ⊆ P with respect to L and ≺.

Proof. For any f ∈ I an integer k ≥ 0 exists such that f̃ = tk f (h) ∈ Ĩ. The polyno-
mial f̃ possesses a unique involutive standard representation

f̃ = ∑
h̃∈H̃

P̃h̃ � h̃ (4.14)

with P̃h̃ ∈ �
[
XL̃,le≺h H̃

(h̃)
]

and le≺h (P̃h̃ � h̃)�h le≺h f̃ . Setting t = 1 in (4.14) yields

a representation of the polynomial f with respect to the dehomogenised basis H of
the form f = ∑h∈HPh � h where Ph ∈ �

[
XL,le≺H(h)

]
by the definition of the lifted

division L̃. This fact obviously implies that 〈H〉 = I. By the definition of the lifted
order ≺h and the homogeneity of the lifted polynomials, we have furthermore that
le≺ (Ph � h) � le≺ f and hence that le≺H is a weak involutive basis of le≺ I by
Theorem 3.4.4 (note that in the proof of the direction we are using here no normal
form arguments are required and it hence remains valid). Since all conditions of
Definition 4.5.2 are satisfied, the set H is therefore indeed a weak involutive basis
of the ideal I for the division L and the semigroup order≺. �

Example 4.5.10. An important class of left ideals in the Weyl algebra Wn are the
Gelfand–Kapranov–Zelevinsky (GKZ) systems describing hypergeometric func-
tions [152]. Any such system can be described by a d×n integer matrix A of rank d
and a vector β ∈ �d . Its generators are

fi =
n

∑
j=1

Ai jx
j∂ j−βi , for i = 1, . . . ,d

and in addition for every pair of multi indices μ ,ν ∈ �n
0 such that Aμ = Aν the

generator fμν = ∂ μ − ∂ν . The generators fi express certain homogeneity relations
of the solutions of the corresponding linear system of partial differential equations;
the operators fμν generate the toric ideal associated with A (Sturmfels [437] gives
concrete algorithms for their construction).

If we take as a concrete example

A =
(

2 1 0
0 1 2

)
, β =

(
−1
1

)
, (4.15)

then the corresponding GKZ system in W3 = �[x,y,z,∂x,∂y,∂z] is generated by the
three operators

f1 = 2x∂x + y∂y + 1 , f2 = 2z∂z + y∂y−1 , f = ∂x∂z− ∂ 2
y . (4.16)

5 Note that the dehomogenised basis H is in general smaller than H̃, as some elements of H̃ may
differ only in powers of the homogenisation variable t .
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The solution space of the induced linear system of partial differential equations is
spanned by the two familiar expressions (−y±

√
y2−4xz)/2x, i. e. the solutions of

the quadratic equation xλ 2 + yλ + z = 0.
The construction of formal series solutions of such hypergeometric systems re-

quires Gröbner bases with respect to non-term orders defined by weight vectors of
the form (−ξ ,ξ )∈�2n [391]. We take ξ = (1,0,0) and refine by the degree reverse
lexicographic term order with y ≺ x ≺ z ≺ ∂y ≺ ∂x ≺ ∂z (note the permutation of x
and y). As involutive division we use the Janet division corresponding to the permu-
tation of the variables used in the term order. The involutive completion algorithm
yields then the following basis with eight generators:

H =
{

2x∂x + y∂y + 1, 2z∂z + y∂y−1, ∂x∂z− ∂ 2
y ,

y∂y∂z + ∂z + 2x∂ 2
y , 2z∂y∂z + y∂ 2

y , y∂x∂y− ∂x + 2z∂ 2
y ,

2x∂x∂y + y∂ 2
y + 2∂y, y2∂ 2

y + y∂y−1−4xz∂ 2
y

}
.

(4.17)

As one can see from the underlined leading terms, we have actually obtained a
strong Janet basis. In this case, a reduced Gröbner basis exists and consists of six
generators, namely one can drop the fifth and the seventh generator in the basis
above which are just ∂y times the first and the second generator, respectively. �

Remark 4.5.11. For the Pommaret division P the situation is considerably simpler.
There is no need to define a lifted division P̃ according to Proposition 4.5.4. Instead
we simply use the standard Pommaret division on �n+1

0 . This approach implies
that for all multi indices μ̃ ∈�n+1

0 with μ �= 0 the equality NP(μ̃) = NP(μ) holds,
as obviously n + 1 is multiplicative only for multi indices of the form μ̃ = �n+1,
i. e. for which μ = 0. One easily sees that the above proof of Theorem 4.5.9 is not
affected by this change of the division used in�n+1

0 and hence remains true. �

It is not a shortcoming of our proof that in general we do not get a strong in-
volutive basis, but actually some ideals do not possess strong involutive bases. In
particular, there is no point in invoking Proposition 3.4.7 for obtaining a strong ba-
sis. While we may surely obtain by elimination a subsetH′ ⊆H such that le≺H is
a strong involutive basis of le≺H, in general 〈H′〉� I.

Example 4.5.12. Consider in the Weyl algebra W2 = �[x,y,∂x,∂y] the left ideal
generated by the set F = {1 + x + y,∂y − ∂x}. We take the semigroup order in-
duced by the weight vector (−1,−1,1,1) and refined by a term order for which
∂y  ∂x  y x. Then the underlined terms are the leading ones. One easily checks
that F is a Gröbner basis for this order. Furthermore, all variables are multiplica-
tive for each generator with respect to the Pommaret division and thus F is a weak
Pommaret basis, too.

Obviously, the set F is neither a reduced Gröbner basis nor a strong Pommaret
basis, as 1 is a (multiplicative) divisor of ∂y. However, it is easy to see that the left
ideal I = 〈F〉 does not possess a reduced Gröbner basis or a strong Pommaret basis.
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Indeed, we have le≺I = �4
0 and thus such a basis had to consist of only a single

generator; but I is not a principal ideal. �

A special situation arises for the Janet division. Recall from Remark 3.1.15 that
any finite set B ⊂�n

0 is automatically involutively autoreduced with respect to the
Janet division. Thus any weak Janet basis is a strong basis, if all generators have
different leading exponents. If we follow the above outlined strategy of applying Al-
gorithm 4.5 to a homogenised basis and then dehomogenising the result, we cannot
generally expect this condition to be satisfied. However, with only a minor modifi-
cation of the algorithm we can achieve this goal.

Theorem 4.5.13. Let (P ,�,≺) be a polynomial algebra of solvable type where ≺ is
an arbitrary semigroup order. Then every left ideal I ⊆ P possesses a strong Janet
basis for ≺.

Proof. Assume that at some stage of Algorithm 4.5 the basis H̃ contains two poly-
nomials f̃ and g̃ such that le≺h (g̃) = le≺h ( f̃ )+1n+1, i. e. the two leading exponents
differ only in the last entry. If g̃ = t f̃ , we will find f = g after dehomogenisation and
no obstruction to a strong basis appears. Otherwise, the homogenisation variable t
is non-multiplicative for f̃ by definition of the lifted Janet division J̃. Thus at some
later stage the algorithm must consider the non-multiplicative product t f̃ (if it were
already treated, H̃ would not be involutively head autoreduced).

In the usual algorithm, we then determine the involutive normal form of the poly-
nomial t f̃ ; the first step of this computation is to replace t f̃ by t f̃ − g̃. Alternatively,
we may proceed as follows. The polynomial g̃ is removed from the basis H̃ and
replaced by t f̃ . Then we continue by analysing the involutive normal form of g̃ with
respect to the new basis. Note that this modification concerns only the situation that
a multiplication by t has been performed and that the basis H̃ contains already an
element with the same leading exponent as the obtained polynomial.

If the final output H̃ of the thus modified completion algorithm contains two
polynomials f̃ and g̃ such that le≺h g̃ and le≺h f̃ differ only in the last entry, then ei-
ther g̃ = tk f̃ or f̃ = tkg̃ for some exponent k ∈�. Thus the dehomogenisation yields
a basisH where all elements possess different leading terms andH is a strong Janet
basis. Looking at the proof of Theorem 4.4.1, it is easy to see that this modification
does not affect the correctness and the termination of the algorithm. As the Janet
division is Noetherian, these considerations prove together with Proposition 4.5.5
the assertion. �

Note that our modification only achieves its goal, if we really restrict in Algo-
rithm 4.5 to head reductions. Otherwise some other terms than the leading term in
t f̃ might be reducible but not the corresponding terms in f̃ . Then we could still find
after dehomogenisation two generators with the same leading term.

Example 4.5.14. Let us consider in the Weyl algebraW3 =�[x,y,z,∂x,∂y,∂z] the left
ideal generated by the set F = {∂z− y∂x, ∂y} corresponding to the partial differen-
tial equation (2.57) considered in Example 2.3.9. If we apply the usual involutive
completion Algorithm 4.5 (to the homogenisation F (h)), we obtain for the weight
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vector (−1,0,0,1,0,0) refined by the degree reverse lexicographic order and the
Janet division a weak basis with nine generators:

H1 =
{
∂x, ∂y, ∂z, ∂x∂z, ∂y∂z, y∂x, y∂x + ∂z, y∂x∂z, y∂x∂z + ∂ 2

z

}
. (4.18)

As one easily sees from the last four generators, it is not a strong basis.
Applying the modified algorithm for the Janet division yields the following basis

with only seven generators:

H2 =
{
∂x + ∂y∂z, ∂y, ∂z, ∂x∂z, ∂y∂z, y∂x + ∂z, y∂x∂z + ∂ 2

z

}
. (4.19)

Obviously, we now have a strong basis, as all leading terms are different.
This example also demonstrates the profound effect of the homogenisation. It

follows from the results in Example 2.3.9 that a strong Janet or Pommaret basis of
〈F〉 is simply given byH= {∂x, ∂y, ∂z}which is simultaneously a reduced Gröbner
basis. In the homogeneous ideal 〈F (h)〉many reductions are not possible because the
terms contain different powers of t. However, this effect is a general problem of all
approaches to Gröbner bases for semigroup orders using homogenisation and not
specific for the involutive approach.

In this particular case, one could have applied the involutive completion algo-
rithm directly to the original set F and it would have terminated with the minimal
basis H, although we are not using a monoid order. Unfortunately, it is not clear
how to predict when infinite reduction chains appear in normal form computations
with respect to such orders, so that one does not know in advance whether one may
dispense with the homogenisation. �

One computational disadvantage of the outlined approach is that the intermediate
basis H̃ in the homogenised algebra P̃ is often much larger than the final basisH in
the original algebraP , as upon dehomogenisation generators may become identical.
Furthermore, we have seen that it is quite difficult to prove the constructivity of the
lifted involutive division Lh which limits the applicability of this technique. Finally,
for most divisions we are not able to determine strong involutive bases. There exists
an alternative approach which simultaneously avoids all these problems. It is based
on two key ideas: we modify the normal form algorithm and we work over a ring of
fractions of P .

The source of all problems in computations with semigroup orders which are
not monoid orders is that they are no longer well-orders (cf. Lemma A.1.6) and
hence normal form computations with the classical algorithms do not necessarily
terminate. We introduce now an alternative normal form algorithm which always
terminates with a Mora normal form. For technical reasons, we do this first in a
non-involutive, homogenised form.

Algorithm 4.8 differs from a standard normal form algorithm applied to the ho-
mogenised input in two respects. We are allowed to reduce with respect to interme-
diate results (see Line /5/) and the output is only a “weak” normal form in a sense
made precise by the following result.
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Algorithm 4.8 Homogenised Mora normal form
Input: polynomial f ∈ P , finite set G ⊂ P
Output: Mora normal form h of f with respect to G
1: h̃← f (h); G̃ ← G(h)

2: while (h̃ �= 0)∧ (Sh = {g̃ ∈ G̃ | ∃k ∈�0 : le≺h g̃ | le≺h (tkh̃)} �= ∅) do
3: choose g̃ ∈ Sh with minimal k
4: if k > 0 then
5: G̃ ← G̃ ∪{h̃}
6: end if

7: μ← le≺h (tkh̃)− le≺h g̃; h̃← tkh̃− lc≺h
(tkh̃)

lc≺h
(xμ �g̃) xμ � g̃

8: choose maximal � such that t� | h̃
9: h̃← h̃/t�

10: end while
11: return h

Proposition 4.5.15. Algorithm 4.8 always terminates. The output h for the input f
and G satisfies the following two properties: (i) there exists a polynomial u ∈ P
with le≺ u = 0 such that the difference u� f −h possesses a standard representation
u� f −h = ∑g∈G Pg �g and (ii) none of the leading exponents le≺ g divides le≺ h. If
≺ is a monoid order, then u = 1 and h is a normal form in the usual sense.

Proof. Denote by h̃i the value of h̃ after the ith iteration of the while-loop and
similarly for all other variables in Algorithm 4.8. We show by an induction the
existence of polynomials u j with le≺ u j = 0 such that after dehomogenisation we
always have a standard representation

u j � f −h j = ∑
g∈G

P( j)
g � g . (4.20)

The case j = 0 is trivial: u0 = 1 and P(0)
g = 0 for all g ∈ G.

Assume that i > 0 and that (4.20) holds for all 0≤ j < i. The values hi and hi−1

are related by
hi = hi−1−mi � gi (4.21)

for some monomial mi. We furthermore have le≺h (t�i h̃i)≺h le≺h (tki h̃i−1) and since
all occurring polynomials are homogeneous, this estimate implies by the definition
of the lifted order ≺h that le≺ hi ≺ le≺ hi−1.

We solve (4.21) of hi−1 and enter the result into the standard representation (4.20)
evaluated for j = i−1 leading to

ui−1 � f −hi = ∑
g∈G

P(i−1)
g � g + mi � gi . (4.22)

We distinguish now two cases: gi ∈ G and gi ∈ Gi−1 \G. In the first case, gi = g′ ∈ G
and we simply set ui = ui−1 and P(i)

g = P(i−1)
g + δgg′mi. In the second case, gi = hr

for some 0≤ r < i−1. We evaluate (4.20) for j = r and solve it for hr. Entering the
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result into (4.22) and sorting yields for j = i a standard representation (4.20) with

ui = ui−1−mi � ur and P(i)
g = P(i−1)

g −mi � P(r)
g .

Since by construction le≺h (tki h̃i−1) = le≺h (m̃i � h̃r), we obtain the inequality
le≺ hr  le≺ hi−1 = le≺ (mi � hr) which obviously implies le≺ mi ≺ 0. Hence in the
second case we still have le≺ ui = le≺ ui−1 = 0 as required. This observations com-
pletes the induction.

By Lemma A.1.6, a monoid order refines the natural partial order by divisibility.
Thus xμ | xν implies xμ ≺ xν and we always have Sh ⊆ G(h). Thus Algorithm 4.8
becomes a standard normal form algorithm and above we are always in the first case
so that indeed u = 1.

Finally, we consider the question of termination. By construction, the monomial
ideals 〈le≺h G̃i〉 with i ≥ 0 form an ascending chain. Since �n+1

0 is a Noetherian
monoid, an integer I ≥ 0 exists such that 〈le≺h G̃i〉 = 〈le≺h G̃I〉 for all i ≥ I. Hence
after the Ith iteration the set G̃ does not change anymore and we always find ki = 0.
This implies furthermore that for i ≥ I we always have le≺h h̃i+1 ≺h le≺h h̃i and
since the lifted order ≺h is a well-order, the computation must terminate after a
finite number of iterations. �

Remark 4.5.16. The homogenised version of the Mora normal form algorithm makes
the termination proof easier. It is possible to formulate the algorithm completely
within the original polynomial ring P . We will do so below, when we adapt it to
involutive normal form computations. �

So far it has remained unclear why we call the output h of Algorithm 4.8 a weak
normal form of f , as obviously it presents only a normal form of the product u � f .
As we will show now, we can move to a ring of fractions over P where all elements
u with le≺ u = 0 are units. In this larger ring it indeed makes sense to consider h as
a weak normal form.

Proposition 4.5.17. Let (P ,�,≺) be a polynomial algebra of solvable type where
≺ is an arbitrary semigroup order. Then the subset

S≺ = { f ∈ P | le≺ f = 0} (4.23)

is multiplicatively closed and the left localisation P≺ = S−1
≺ �P exists.

Proof. Obviously, 1 ∈ S≺ and each element of S≺ is of the form c(1 + f ) with
c ∈ � and le≺ f ≺ 0. Since we are working over a field, we ignore the constant c
in the sequel. If 1 + f and 1 + g are two elements in S≺, then the compatibility
of the order ≺ with the multiplication � ensures that their product is of the form
(1 + f )� (1 + g)= 1 + h with le≺ h≺ 0. Hence S≺ is multiplicatively closed.

As polynomial algebras of solvable type do not possess zero divisors, the left
Ore condition for the existence of the left localisation S−1

≺ �P requires that for all
f ∈ S≺ and g ∈ P the intersection (P � f )∩ (S≺ �g) is not empty. But this fact can
be shown using minor modifications of our proof of Proposition 3.2.10.

We first choose coefficients r0,s0 ∈ R such that in h̄1 = r0g � f − s0 f � g the
leading terms cancel, i. e. we have le≺ h̄1 ≺ le≺ f + le≺ g = le≺ g. Then we compute
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with Algorithm 4.8 a weak normal form h1 of h̄1 with respect to F0 = { f ,g}. This
yields a standard representation u1 � h̄1− h1 = φ0 � f +ψ0 � g where le≺ u1 = 0 by
Proposition 4.5.15. Assume now that le≺ψ0" 0. Then we arrive at the contradiction
le≺ (ψ0 � g)" le≺ g  le≺ h̄1 = le≺ (u1 � h̄1). Thus we have le≺ψ0 ≺ 0. If h1 = 0,
then (u � r0g− φ0) � f = (u � s0 f +ψ0) � g and by the considerations above on the
leading exponents u � s0 f +ψ0 ∈ S≺ so that indeed (P � f )∩ (S≺ � g) �= ∅.

If h1 �= 0, we proceed as in the proof of Proposition 3.2.10. We introduce
F1 =F0∪{h1} and choose r1,s1 ∈R such that in h̄2 = r1h1 � f−s1 f �h1 the leading
terms cancel. If we compute a weak normal form h2 of h̄2, then we obtain a stan-
dard representation u2 � h̄2−h2 = φ1 � f +ψ1 � g +ρ1 � h1 where again le≺ u2 = 0.
The properties of a standard representation imply that le≺ψ1 + le≺ g � le≺ h̄2 and
le≺ρ1 + le≺ h1 � le≺ h̄2. Together with the inequalities le≺ h̄2 ≺ le≺ f + le≺ h1 =
le≺ h1 ≺ le≺ g this entails that both le≺ψ1 ≺ 0 and le≺ ρ1 ≺ 0. Thus if h2 = 0, then
we have again found φ ∈ P and ψ ∈ S≺ such that φ � f = ψ � g. If h2 �= 0, similar
inequalities in the subsequent iterations ensure that we always find ψ ∈ S≺. �

Remark 4.5.18. Using the geometric series (1− y)−1 = 1 + y + y2 + · · · , one easily
sees that in the commutative case there is a canonical injection P≺ ↪→ �[[x1, . . . ,xn]]
into the ring of formal power series. Hence in this case we may also think of the
elements of the localisation P≺ as such series instead of fractions. �

As any localisation of a Noetherian ring is again Noetherian, the ring P≺ is
Noetherian, if P is so. One sees immediately that the units in P≺ are all those
fractions where not only the denominator but also the numerator is contained in the
set S≺. Given an ideal I ⊆ P≺, we may always assume without loss of generality
that its generated by a set F ⊂ P of polynomials, as multiplication of a generator
by a unit does not change the span. Hence in all computations we will exclusively
work with polynomials and not with fractions.

Since all elements of S≺ are units in P≺, we may extend the notions of leading
term, monomial or exponent: if f ∈ P≺, then we can choose a unit u ∈ S≺ with
lc≺ u = 1 such that u� f ∈P is a polynomial; now we define le≺ f = le≺ (u � f ) etc.
One easily verifies that this definition is independent of the choice of u.

It is straightforward to develop a complete theory of Gröbner bases over P≺.
Definition 4.5.2 of Gröbner (and involutive) bases can be extended without changes
from the ring P to P≺. Furthermore, Theorem 3.3.13 on the existence of Gröbner
bases generalises to P≺, as its proof is only based on the leading exponents and a
simple normal form argument remaining valid due to our considerations above.

However, the design of an involutive version of the Mora normal form faces a
problem. Obviously, we want an analogous result to Proposition 4.5.15—now with
an involutive standard representation for u� f −h. This extension raises the question
how multiplicative variables are assigned to the intermediate results by which the
set Ĝ is augmented in the course of the computation.

If we look at the proof of Proposition 4.5.15, we see that the reduction with re-
spect to such an intermediate result affects the coefficients Pg of the final standard

representation in form of a summand mi �P(r)
g . Thus we must ensure that such terms
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are always multiplicative for the generator g. As such terms are products, it is ob-
vious that for arbitrary polynomial algebras of solvable type this cannot be done:

even if both mi and P(r)
g lie in a subset �[X ′] for some restricted set of variables

X ′ ⊂ X = {x1, . . . ,xn}, due to the non-commutativity their product will generally
contain further variables from X \X ′.

For a general involutive division one way out of this problem is to require that for
any X ′ ⊂ X the subset �[X ′] ⊂ P is actually a subring (which is trivially satisfied
by the ordinary polynomial ring or rings of linear differential operators). If more
is known about the used involutive division one may weaken this condition. For
example, the Pommaret division always yields sets of multiplicative variables of the
form {x1, . . . ,xk} and it suffices to require that P is an iterated solvable algebra in
the sense of Definition 3.3.1.

Assuming that this point is settled, the proof of Proposition 4.5.15 motivates im-
mediately the following strategy for the computation of an involutive Mora normal
form (employed in Algorithm 4.9). To each member g of the set Ĝ with respect to
which we reduce we assign (once and forever) a set N[g] of multiplicative indices.
We write le≺ g |N le≺ h, if the multi index le≺ h lies in the restricted cone of le≺ g
defined by N[g]. The set S collects all generators g ∈ G which have already been
used for reductions and the set N is the intersection of the corresponding sets of
multiplicative indices. If a new element h is added to Ĝ, it is assigned as multiplica-
tive indices the current value of N . It should be stressed that this assignment does
not correspond to some involutive division in the sense of Definition 3.1.1 and in
particular we cannot expect that N[g] = NL,Ĝ,≺(g) for the given division L!

As already mentioned in Remark 4.5.16, it is possible to formulate the Mora
normal form completely without homogenisation. The effect of a homogenisation
can be simulated with the help of the écart of a polynomial: for a given semigroup
order ≺ we set écart f = deg f − deglt≺ f . Obviously, this definition implies that
écart f = degt lt≺h f (h) and therefore the écart allows us to recognise when it is nec-
essary in Algorithm 4.8 to multiply h̃ by a power of t.

Proposition 4.5.19. Algorithm 4.9 always terminates. Let (P = �[X ],�,≺) be a
polynomial algebra of solvable type (for an arbitrary semigroup order ≺) such that
�[X ′] is a subring of P for any subset X ′ ⊂ X. Then the output h is a weak involu-
tive normal form of the input f with respect to the set G in the sense that there exists
a polynomial u ∈ P with le≺ u = 0 such that the difference u � f − h possesses an
involutive standard representation

u � f −h = ∑
g∈G

Pg � g (4.24)

and none of the leading exponents le≺ g involutively divides le≺ h. If ≺ is a monoid
order, then u = 1 and h is an involutive normal form of f in the usual sense.

Proof. Let us first ignore the involutive aspects of Algorithm 4.9 and show that the
reformulation using the écart is correct. The value k appearing in Lines /3/ and /4/
of Algorithm 4.8 is obviously just écartg− écarth, hence the selection of the next
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Algorithm 4.9 Involutive Mora normal form
Input: polynomial f ∈ P , finite set G ⊂ P , involutive division L
Output: involutive Mora normal form h of f with respect to G
1: h← f ; Ĝ ← G
2: for all g ∈ G do
3: N[g]← NL,le≺G(le≺ g)
4: end for
5: N ← {1, . . . ,n}; S ← ∅
6: while (h �= 0)∧ (Sh = {g ∈ Ĝ : le≺ g |N le≺ h} �= ∅) do
7: choose g ∈ Sh with écart g minimal
8: if (g ∈ G)∧ (g /∈ S) then
9: S ← S ∪{g}; N ←N ∩N[g]

10: end if
11: if écart g > écart h then
12: Ĝ ← Ĝ ∪{h}; N[h]←N
13: end if
14: μ← le≺ h− le≺ g; h← h− lc≺ h

lc≺ (xμ �g) xμ �g
15: end while
16: return h

generator with respect to which we reduce and the addition of new elements to Ĝ
are done in both algorithms by the same criteria. The “normalisation” in Line /9/ of
Algorithm 4.8 ensures that this remains true in all iterations of the while loop.

Thus upon dehomogenisation Algorithm 4.8 becomes the non-involutive form
of Algorithm 4.9 and the termination of the latter follows immediately from the
termination of the former. Restricting the reductions to involutive ones obviously
does not affect the termination.

The same arguments as in the proof of Proposition 4.5.15 prove the existence of
a unit u and a standard representation of u � f −h. There only remains to show that
under the made assumption on P the standard representation is an involutive one.
But this is straightforward. We perform the same case distinction as in the proof of

Proposition 4.5.15. If gi ∈ G, then mi is multiplicative for it and all coefficients P(i)
g

remain trivially multiplicative for the corresponding generator g. If gi ∈ Gi−1 \ G,
i. e. gi = hr for some 0 ≤ r < i− 1, the monomial mi is multiplicative for hr. By
our assignment of multiplicative variables, this means that mi is multiplicative for

any g ∈ G with P(r)
g �= 0. Since we assume that computing the product mi � P(r)

g

does not introduce any new variables, we find again that all coefficients P(i)
g remain

multiplicative for the corresponding generator g. Hence in the final step we obtain
indeed an involutive standard representation of u � f −h. �

Even if the set G is involutively head autoreduced, we cannot conclude in analogy
to Proposition 3.4.15 that the involutive Mora normal form is unique, as we only
consider the leading term in Algorithm 4.9 and hence the lower terms in h may
still be involutive divisible by the leading term of some generator g ∈ G. However,
Theorem 3.4.4 on the existence of involutive standard representations remains valid.
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Theorem 4.5.20. Let (P = �[X ],�,≺) be a polynomial algebra of solvable type
(for a semigroup order ≺) such that �[X ′] is a subring of P for any subset X ′ ⊂ X.
Furthermore, let L be a constructive Noetherian division. For a finite set F ⊂ P of
polynomials let I = 〈F〉 be the left ideal generated by it in the localisation P≺. If
we apply Algorithm 4.5 with the involutive Mora normal form instead of the usual
one to the set F , then it terminates with an involutive basis of the ideal I.

Proof. The termination of Algorithm 4.5 under the made assumptions was shown
in Proposition 4.2.7 and Theorem 4.4.1. One easily verifies that their proofs are
not affected by the substitution of the normal form algorithm, as they rely mainly
on Theorem 3.4.4 and on the fact that the leading term of the normal form is not
involutively divisible by the leading term of any generator. Both properties remain
valid for the Mora normal form. �

The adaption of this result to the Pommaret division proceeds along the same
lines as the proof of Theorem 4.3.15. Note again that in this case it suffices to require
that P is an iterated solvable algebra.

Remark 4.5.21. Note that Theorem 4.5.20 guarantees the existence of strong invo-
lutive bases. Due to the extension to P≺, Example 4.5.12 is no longer a valid coun-
terexample. As the first generator in F is now a unit, we find that 〈F〉 = P≺ and
{1} is a trivial strong Pommaret basis. �

Example 4.5.22. We continue Example 4.5.14. Following the approach given by
Theorem 4.5.20, we immediately compute as Janet basis of 〈F〉 (over P≺) the min-
imal basis H3 = {∂x,∂y,∂z}. Obviously, it is considerably smaller than the bases
obtained with the classical homogenisation approach (over P). This effect becomes
even more profound, if we look at the sizes of the bases in the homogenised Weyl
algebra: both H̃1 and H̃2 consist of 21 generators. �

4.6 Involutive Bases over Rings

Finally, we consider the general case that P =R[x1, . . . ,xn] is a polynomial algebra
of solvable type over a Noetherian ring R. We will follow the standard approach
and assume in the sequel that two operations can be effectively performed inR:

(i) Given elements s,r1, . . . ,rk ∈R, we can decide whether s ∈ 〈r1, . . . ,rk〉R (the
left ideal inR generated by r1, . . . ,rk).

(ii) Given elements r1, . . . ,rk ∈ R, we can construct a finite basis of the module
Syz(r1, . . . ,rk) of left syzygies s1r1 + · · ·+ skrk = 0.

In this case one often says that linear equations are solvable inR.
The first operation is obviously necessary for the algorithmic reduction of poly-

nomials with respect to a set F ⊂ P . The necessity of the second operation will
become evident later. Compared with the commutative case, reduction is a more
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complicated process, in particular due to the possibility that in the commutation
relations (3.6) for the multiplication in P the maps ρμ may be different from the
identity onR and the coefficients rμν unequal one.

Let G ⊂ P be a finite set. We introduce for any polynomial f ∈ P the two sets
G f = {g ∈ G | le≺ g | le≺ f} and

Ḡ f =
{

xμ � g | g ∈ G f ∧μ = le≺ f − le≺ g∧ le≺ (xμ � g) = le≺ f
}

(4.25)

The last condition in the definition of the set Ḡ f is redundant only, if the coefficient
ringR is a domain. Otherwise it may happen that |Ḡ f |< |G f |, namely if ρμ(r)rμν =
0 for lm≺ g = rxν . The polynomial f is head reducible with respect to the set G,
if lc≺ g ∈ 〈lc≺ Ḡ f 〉R (note that we use Ḡ f here so that the reduction comes only
from the leading terms and is not due to some zero divisors as leading coefficients).
Involutive head reducibility is defined analogously via two sets G f ,L and Ḡ f ,L where
only involutive divisors with respect to an involutive division L on�n

0 are taken into
account, i. e.

G f ,L = {g ∈ G | le≺ f ∈ CL,le≺G(le≺ g)} . (4.26)

Thus the set G is involutively head autoreduced, if lc≺ g /∈ 〈lc≺ (Ḡg,L \ {g})〉R for
all polynomials g ∈ G. This is now a much weaker notion than before; in particular,
Lemma 3.4.14 is no longer valid.

Definition 4.6.1. Let I ⊆ P be a left ideal in the polynomial algebra (P ,�,≺) of
solvable type over a coefficient ring R in which linear equations can be solved. A
finite set G ⊂P is a Gröbner basis of I, if for every polynomial f ∈ I the condition
lc≺ f ∈ 〈lc≺ Ḡ f 〉 is satisfied. The set G is a weak involutive basis for the involutive
division L, if for every polynomial f ∈ I the condition lc≺ f ∈ 〈lc≺ Ḡ f ,L〉 is satis-
fied. A weak involutive basis is a strong involutive basis, if every set Ḡ f ,L contains
precisely one element.

It is easy to see that the characterisation of (weak) involutive bases via the exis-
tence of involutive standard representations (Theorem 3.4.4) remains valid. Indeed,
only the first part of the proof requires a minor change: the polynomial f1 is now of
the form f1 = f −∑h∈H f ,L

rhh where the coefficients rh ∈ R are chosen such that
the leading monomials cancel, i. e. le≺ f1 ≺ le≺ f .

Clearly, a necessary condition for the existence of Gröbner and thus of (weak)
involutive bases for arbitrary left ideals I ⊂P is that the algebraP is a (left) Noethe-
rian ring. As we have seen in Section 3.3, this assumption becomes non-trivial, if the
coefficient ring R is not a field. In this section, we will assume throughout that P
is a polynomial algebra of solvable type over a left Noetherian ring R with centred
commutation relations (cf. Definition 3.3.4) so that Theorem 3.3.7 asserts that P is
left Noetherian, too.6 A very useful side effect of this assumption is that the scalars
appearing in the commutation relations (3.6) are units and thus not zero divisors
which is important for some arguments.

6 The case of iterated polynomial algebras of solvable type (cf. Definition 3.3.1) will be considered
in an Addendum to Section 5.4, after we have developed a syzygy theory for involutive bases.
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Example 4.6.2. As in the previous section, we cannot generally expect strong invo-
lutive bases to exist. As a simple concrete example, also demonstrating the need
of the second assumption on R, we consider in �[x,y][z] (with the ordinary multi-
plication) the ideal I generated by the set F = {x2z− 1,y2z + 1}. Obviously, both
generators have the same leading exponent [1]; nevertheless none is reducible by the
other one due to the relative primeness of the leading coefficients x2 and y2, respec-
tively. Furthermore, the syzygy S = x2e2− y2e1 ∈ �[x,y]2 connecting the leading
coefficients leads to the polynomial x2 + y2 ∈ I. It is easy to see that a Gröbner and
a weak Janet basis of I is obtained by adding it to F . A strong Janet basis does not
exist, as none of these generators may be removed from the basis. �

This example shows that simply applying our completion Algorithm 4.5 (or some
variant of it) will generally not suffice. Obviously, with respect to the Janet division z
is multiplicative for both elements of F so that no non-multiplicative variables exist
and thus it is not possible to generate the missing generator by multiplication with
a non-multiplicative variable. We must substitute in the completion the involutive
head autoreduction by a more comprehensive operation.7

Definition 4.6.3. Let F ⊂ P be a finite set and L an involutive division. We con-
sider for each polynomial f ∈ F the syzygies ∑ f̄∈F̄ f ,L

s f̄ lc≺ f̄ = 0 connecting the

leading coefficients of the elements of F̄ f ,L. The set F is involutively R-saturated
for the division L, if for any such syzygy S the polynomial ∑ f̄∈F̄ f ,L

s f̄ f̄ possesses
an involutive standard representation with respect to F .

For checking involutive R-saturation, it obviously suffices to consider a finite
basis of each of the finitely many syzygy modules Syz(lc≺ F̄ f ,L) so that such a
check can easily be performed effectively. An element f ∈ F is involutively head
reducible by the other elements of F , if and only if Syz(lc≺ F̄ f ,L) contains a syzygy
with s f = 1. For this reason it is easy to combine an involutiveR-saturation with an
involutive head autoreduction leading to Algorithm 4.10.

The for loop in Lines /5-13/ takes care of the involutive head autoreduction
(HeadReduceL,≺( f ,H) involutively head reduces f with respect to the set H\{ f}
but with multiplicative variables determined with respect to the full set H—cf. Re-
mark 3.4.9). The for loop in Lines /17-22/ checks the involutive R-saturation.
Each iteration of the outer while loop analyses from the remaining polynomials
(collected in S) those with the highest leading exponent. The set S is reset to the
full basis, whenever a new element has been put into H; this ensures that all new

7 In the case of commutative variables over a coefficient field, it is not difficult to show that for any
finite set F the syzygy module Syz(lm≺F) of the leading monomials can be spanned by binomial
generators corresponding to the S-polynomials in the Buchberger Algorithm B.3. In Section 5.4 we
will show that in any such syzygy at least one component contains a non-multiplicative variable,
so that implicitly Algorithm 4.5 also runs over a generating set of this syzygy module. When we
move on to coefficient rings, it is well-known that additional, more complicated syzygies coming
from the coefficients must be considered. For these we can no longer assume that one component
contains a non-multiplicative variable. Hence partially we must follow the same approach as in
the generalisation of the Buchberger algorithm and this leads to the notion ofR-saturation where
some syzygies not reachable via non-multiplicative variables are explicitly considered.
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reduction possibilities are taken into account. In Line /15/ it does not matter which
element f ∈ Sν we choose, as the set H′

f ,L depends only on le≺ f and all elements
of Sν possess by construction the same leading exponent ν .

Algorithm 4.10 InvolutiveR-saturation (and head autoreduction)
Input: finite set F ⊂ P , involutive division L on �n

0
Output: involutivelyR-saturated and head autoreduced setH with 〈H〉 = 〈F〉
1: H←F ; S ←F
2: while S �= ∅ do
3: ν← max≺ le≺S; Sν ←{ f ∈H | le≺ f = ν}
4: S ← S \Sν ; H′←H
5: for all f ∈ Sν do
6: h← HeadReduceL,≺( f ,H)
7: if f �= h then
8: Sν ←Sν \{ f }; H′←H′ \{ f }
9: if h �= 0 then

10: H′←H′∪{h}
11: end if
12: end if
13: end for
14: if Sν �= ∅ then
15: choose f ∈ Sν and determine the set H̄′

f ,L

16: compute basis B of Syz(lc≺ H̄′
f ,L)

17: for all S = ∑ f̄∈H̄′
f ,L

s f̄ e f̄ ∈ B do

18: h← NormalFormL,≺(∑ f̄∈H̄′
f ,L

s f̄ f̄ ,H′)
19: if h �= 0 then
20: H′←H′∪{h}
21: end if
22: end for
23: end if
24: ifH′ �=H then
25: H←H′; S ←H
26: end if
27: end while
28: return H

Proposition 4.6.4. Under the made assumptions about the polynomial algebra P ,
Algorithm 4.10 terminates for any finite input set F ⊂ P with an involutively R-
saturated and head autoreduced set H such that 〈H〉= 〈F〉.

Proof. The correctness of the algorithm is trivial. The termination follows from the
fact that bothR and�n

0 are Noetherian. Whenever we add a new polynomial h to the
set H′, we have either that le≺ h /∈ 〈le≺H′〉�n

0
or lc≺ h /∈ 〈lc≺H′

h,L〉R. As neither
in �n

0 nor in R infinite ascending chains of ideals are possible, the algorithm must
terminate after a finite number of steps. �

An obvious idea is now to substitute in the completion Algorithm 4.5 the involu-
tive head autoreduction by an involutiveR-saturation. Recall that Proposition 4.2.7



160 4 Completion to Involution

was the crucial step for proving the correctness of Algorithm 4.5. Our next goal is
thus to show that under the made assumptions for involutivelyR-saturated sets local
involution implies weak involution.

Proposition 4.6.5. Under the made assumptions about the polynomial algebra P ,
a finite, involutively R-saturated set F ⊂ P is weakly involutive, if and only if it is
locally involutive.

Proof. We first note that Proposition 4.2.7 remains true under the made assump-
tions. Its proof only requires a few trivial modifications, as all appearing coefficients
(for example, when we rewrite xμ → xμ−1 j � x j) are units in the case of centred
commutation relations and thus we may proceed as for a field. Hence if F is lo-
cally involutive, then I = 〈F〉 = 〈F〉L,≺ implying that any polynomial g ∈ I may
be written in the form g =∑ f∈F Pf � f with Pf ∈R[XL,F ,≺( f )]. Furthermore, it fol-
lows from this proof that for centred commutation relations we may assume that the
polynomials Pf satisfy le≺ (Pf � f ) = le≺ Pf + le≺ f . We are done, if we can show
that they can be chosen such that additionally le≺ (Pf � f )� le≺ g, i. e. such that we
obtain an involutive standard representation of g.

If the representation coming out of the proof of Proposition 4.2.7 already satis-
fies this condition on the leading exponents, nothing has to be done. Otherwise we
set ν = max≺

{
le≺ (Pf � f ) | f ∈ F

}
and Fν = { f ∈ F | le≺ (Pf � f ) = ν}. As by

construction ν ∈⋂ f∈Fν CL,le≺F (le≺ f ), the properties of an involutive division im-
ply that we can write Fν = { f1, . . . , fk} with le≺ f1 | le≺ f2 | · · · | le≺ fk and hence
Fν ⊆F fk,L. Since we have assumed that le≺ (Pf � f ) = le≺ Pf + le≺ f , we even find
Fν ⊆ F̄ fk,L.

By construction, the equality ∑ f∈Fν lc≺ (Pf � f ) = 0 holds. If we now write
lm≺ f = r f xν f and lm≺ Pf = s f xμ f , then we obtain under the made assumptions:
lc≺ (Pf � f ) = s f ρμ f (r f )rμ f ν f =

[
s f ρ̄μ f (r f )rμ f ν f

]
r f and hence the above equality

corresponds to a syzygy of the set lc≺F fk,L. As the setF is involutivelyR-saturated,
there exists an involutive standard representation

k

∑
i=1

[
s fi ρ̄μ fi

(r fi)rμ fi
ν fi

]
f̄i = ∑

f∈F
Q f � f (4.27)

with Qf ∈ �[XL,F ,≺( f )] and le≺ (Q f � f ) = le≺ Q f + le≺ f ≺ ν fk .
Introducing now the polynomials Q′

f = Qf −
[
s f ρ̄μ f (r f )rμ f ν f

]
xν fk

−ν f for f ∈Fν
and Q′

f = Q f otherwise, we get the syzygy ∑ f∈F Q′
f � f = 0. If we set furthermore

P′
f = Pf − c−1

f xν−ν fk � Q′
f with c f = ρ̄ν−ν fk

(
s f ρ̄μ f (r f )rμ f ν f

)
ρ̄μ f (r f )rμ f ν f , then, by

construction, g =∑ f∈F P′
f � f is another involutive representation of the polynomial

g with ν ′ = max≺
{

le≺ (P′
f � f ) | f ∈ F

}
≺ ν .

Repeating this procedure for a finite number of times obviously yields an invo-
lutive standard representation of the polynomial g. As g was an arbitrary element of
the ideal I = 〈F〉, this implies that F is indeed weakly involutive. �
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Theorem 4.6.6. Let P be a polynomial algebra of solvable type satisfying the made
assumptions. If the subalgorithm InvHeadAutoReduceL,≺ is substituted in Algo-
rithm 4.5 by Algorithm 4.10, then the completion will terminate with a weak invo-
lutive basis of I = 〈F〉 for any finite input set F ⊂ P such that the monoid ideal
le≺I possesses a weak involutive basis.

Proof. The correctness of the modified algorithm follows immediately from Propo-
sition 4.6.5. For the termination we may use the same argument as in the proof of
Theorem 4.4.1, as it depends only on the leading exponents. �

4.7 Notes

The notions of continuous and constructive divisions were introduced by Gerdt and
Blinkov [156]. Obviously, both are rather technical concepts and especially con-
structivity is often difficult to prove. They are designed exactly in such a way that
our proof of Proposition 4.2.1 works. Combined they ensure that no infinite chains
can appear in Algorithm 4.1. Despite its complicated definition, it is obvious that
constructivity is a necessary property for the correctness of our algorithms. Other-
wise we would be forced to consider also products with multiplicative variables.
Concerning continuity, the situation is less clear. While it is sufficient for Proposi-
tion 4.1.4 on the equivalence of local involution and weak involution to hold, it is
not known whether it is also necessary.

As already mentioned in the Notes of Chapter 3, Apel [20] introduced his own
concept of an involutive division. His divisions are defined with respect to only
one subset N ⊆�n

0. As during the completion the set H is changed in every step,
we always need a new division for the new set le≺H and Apel discusses some
heuristic strategies for choosing the divisions.8 Whether this additional freedom can
be systematically exploited to achieve a higher efficiency is an open question. A
definite advantage of his approach is that it becomes almost trivial to prove the
existence of an involutive basis for arbitrary ideals.

However, one should note the following difference. In Apel’s approach it is not
even possible to formulate the task to determine an involutive basis for a prescribed
involutive division, as we do not know the relevant set le≺H before the completion
is over. Thus this approach is only useful, if the goal is to somehow get some di-
rect sum decomposition or if the involutive theory is only used as an alternative for
Buchberger’s algorithm to compute Gröbner bases; the role of the involutive divi-
sion is then mainly that of a technical trick to improve efficiency. Up to now, this
cannot really be considered as a disadvantage, as not much is known about special
properties of the decompositions obtained for different divisions (with the exception

8 One should note that Apel admits the case N =�n
0, i. e. divisions defined on the set of all multi

indices. For such divisions, there is no need to change the divisions within a computation and in
fact one can formulate the classical involutive divisions like the Pommaret or the Janet division in
his framework. In this case his theory largely coincides with ours.
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of Pommaret bases, as we will see in the next chapter). But one might expect that in
the future involutive divisions will gain a similar importance as term orders and that
for different tasks one is interested in different ones.

The basic ideas underlying the completion Algorithm 4.5 are already contained
in the Janet–Riquier Theory of differential equations from the early 20th century
(compare also the Notes of Chapter 3). Our formulation is essentially due to Blinkov,
Gerdt and Zharkov [156, 157, 489]. The simple completion Algorithm 4.3 has been
“folklore”; it is explicitly spelled out for the Janet division in [354]. The optimised
Algorithm 4.6 is also due to Gerdt and Blinkov [157]. In recent years, they have
spent, together with further collaborators, much effort on making the algorithm more
efficient and on providing fast implementations. Results of extensive benchmarks
are contained in [160] and on their web site http://invo.jinr.ru. The involutive form
of Buchberger’s second criterion was also first given by Gerdt and Blinkov [156,
Thm. 8.1]. We presented a slightly more general formulation with a simpler proof
making use of our results on syzygies in the next chapter.

Our proof of Theorem 4.4.1 asserting the correctness and termination of the im-
proved completion Algorithm 4.5 makes essential use of the normal selection strat-
egy. Since it is well-known that this strategy has problems with some term orders,
one wonders whether this restriction is really necessary and, indeed, one can show
that more refined optimisations can circumvent it [23, 80, 155].

The completion approaches discussed in this chapter are not the only ones. Since
Gröbner bases are by now a standard tool in commutative algebra and algebraic
geometry, a number of algorithms for their construction have been designed and
their improvement is a very active field of research. In a direct comparison of Buch-
berger’s Algorithm B.3 for the construction of Gröbner bases with the involutive
approach (recall that any involutive basis is automatically a Gröbner basis) it turns
out that the latter one is highly competitive as long as the involutive basis is not
considerably larger than the Gröbner basis (see [160] for concrete benchmarks).

Some simple heuristic explanations of this observation are possible (further ar-
guments are given in [20]). The involutive Algorithm 4.5 implicitly also computes
S-polynomials but less than a naive implementation of the Buchberger algorithm, as
Buchberger’s second criterion is not completely but to a large extent automatically
contained in the strategy of multiplying only by non-multiplicative variables. This
fact follows from our proof of Theorem 5.4.4 in the next chapter.

The strategy underlying Algorithm 4.5 also has certain similarities with the
Hilbert driven Buchberger algorithm introduced by Traverso [457]. In this variant
of the Buchberger algorithm one assumes that one knows already the Hilbert func-
tion of the ideal and this knowledge is used to avoid further unnecessary reductions.
In concrete computations, this idea has turned out to be highly effective. Unfortu-
nately, the determination of the Hilbert function requires usually a Gröbner basis.
Thus the main application of this technique consists of transforming a Gröbner basis
with respect to one term order into one with respect to another term order.

In this context, our algorithm can be understood as follows. As we will see in
the next chapter, given an involutively head autoreduced basis of the considered
ideal, we can always make a conjecture about its Hilbert function based on the

http://invo.jinr.ru
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assignment of multiplicative variables (we made this idea explicit in our treatment
of δ -regularity of a finite setF in Section 4.3). The multiplication of the elements by
their non-multiplicative variables checks whether the conjectured function is already
the true Hilbert function or whether it still yields too small values (as the involutive
span of a basis is generally only a subset of the full ideal, we always approach the
true Hilbert function from below). The algorithm stops, as soon as the true Hilbert
function has been reached. Note that in contrast to the Hilbert driven Buchberger
algorithm no a priori knowledge of the Hilbert function is required.

Another interesting aspect about the involutive approach to the determination
of Gröbner bases is the following one. A classical problem in computer algebra
is called intermediate expression swell: often intermediate expressions are much
larger than the final result. In the case of Gröbner bases, this phenomenon concerns
in particular the size of the coefficients of the appearing polynomials.

Arnold [25, Ex. 1.1] provided a particularly striking example. Consider the ideal
I ⊂�[x,y,z] generated by the following four polynomials:9

f1 = 8y2z2 + 5y3z+ 3xz3 + xyz2 ,

f2 = z5 + 2x2y3 + 13x3y2 + 5x4y ,

f3 = 8z3 + 12y3 + x2z+ 3 ,

f4 = 7y4z2 + 18x2y3z+ x3y3 .

(4.28)

The reduced Gröbner basis of I with respect to the degree reverse lexicographic
term order is very small:

g1 = z , g2 = y3 + 1/4 , g3 = x2 . (4.29)

However, Arnold reports that during the determination of this basis with the com-
puter algebra system MACAULAY2 intermediate polynomials appear possessing
coefficients with about 80.000 digits! Obviously, even elementary arithmetic op-
erations with such larger numbers are quite time consuming.

By contrast, Gerdt (private communication) reports the following results for the
involutive approach. The Janet basis for this example is obtained by adding to the
reduced Gröbner basis the two monomials g4 = x2y and g5 = x2y2. The largest co-
efficients of intermediate polynomials appearing during its computation along the
lines of the algorithms discussed in this chapter have roughly 400 digits, i. e. are
smaller by several orders of magnitude compared with the Buchberger algorithm.
Thus, at least for this example, the approach via involutive divisions shows a much
smoother behaviour. So far it is unclear to what extent this represents a general
phenomenon and how it could be explained theoretically.

Proposition 4.4.3 says that even if Algorithm 4.5 does not terminate, it yields
in a finite number of steps a Gröbner basis for term orders of type ω . In the given
form, this result is only of theoretical interest, as it is unclear how one should detect

9 In order to be consistent with our conventions for the standard term orders, x and z are swapped
compared with [25].
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the Gröbner basis. Using standard criteria would destroy all potential advantages of
our algorithm. For the special case of Pommaret bases, Apel [19] found a simple
criterion, so that a variant of Algorithm 4.5 can be used for the construction of
Gröbner bases independent of the existence of a finite involutive basis.
δ -regularity is often considered a purely technical nuisance which, however, is

not true. Its origin are intrinsic algebraic properties of the ideal I considered: as
we will see in Section 5.3 and Chapter 6, it is related to a Noether normalisation
and to the associated prime ideals of P/I. In the theory of differential equations,
we recover here the classical notion of characteristics: if the hyperplane xn = 0 is
a characteristic surface, then the coordinates are δ -singular for the symbol module
(see Section 7.5).

Several solutions to the problem of δ -regularity have been proposed in the lit-
erature, mainly in the context of differential equations. Most of them are based on
the proof of Proposition 4.3.8. Pommaret [356] advocates the brute force method of
computing in a generic coordinate system. As it requires the introduction of n2 addi-
tional parameters which are regarded as algebraically independent transcendentals
over �, this approach is only of theoretical value. Even for small examples computa-
tions in generic coordinates very quickly blow up. An advantage is that one obtains
an explicit characterisation of all δ -singular coordinate systems which is sometimes
of interest (see e. g. [439, Proposition 5.3])

Another possibility consists of relying on Proposition 4.3.8 and performing a
random coordinate transformation. This approach is, for example, used by Hartley
and Tucker [194] in their implementation of the Cartan–Kähler theory (and also by
Sturmfels and White [439] in their above mentioned method for the construction of
Rees decompositions). As we have seen, it leads with probability 1 to a δ -regular
coordinate system. Besides the possibility that we still can get a δ -singular system
and thus have to verify the δ -regularity, the main disadvantage of this approach is
that it destroys any sparsity that might be present in the original basis F . In particu-
lar, in applications to differential equations the elements of F are very often sparse,
i. e. not every derivative uαμ up to a given length q of the multi indices μ does ac-
tually appear. Of course, such sparsity presents a great advantage in any concrete
computations which one would like to preserve.

The approach presented in Section 4.3 was developed in [198] inspired by the
work of Gerdt [154] on the relation between Pommaret and Janet bases (however,
the treatment given there is not completely correct; we followed here the improved
version from [410]). The coordinate transformation indicated by the criterion for δ -
singularity of Theorem 4.3.12 preserves comparatively much of the sparsity of F ,
as it only affects terms containing x�. However, it may of course happen that many
transformations are necessary and then not much has been gained.

The basic idea to compute Gröbner bases with respect to semigroup orders via
homogenisation is due to Lazard [283]. Mora [328] developed the normal form car-
rying now his name in the context of computing tangent cones which requires the
determination of Gröbner bases for a special kind of semigroup orders. He intro-
duced the notion of the écart (French for difference or deviation) of a polynomial f
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as the difference between the lowest and the highest degree of a term in f (or, alter-
natively, we may write écart f = degxn+1

f (h)).
The generalisation of his ideas that we used has been first proposed by Greuel and

Pfister [184] (see also [185, Sect. 1.6]) and later independently by Gräbe [176, 177];
an extensive treatment is contained in the textbook [99, Chapt. 4]. They noticed that
Mora’s approach remains valid for arbitrary semigroup orders, if one modifies the
definition of the écart to écart f = deg f −deglt≺ f .

The extension to involutive bases was first discussed in [199] for the special case
of the Weyl algebra. There only Lazard’s approach via homogenisation was consid-
ered; the more efficient approach via the Mora normal form comes from [409].

The computation of Gröbner bases in polynomial rings over a coefficient ring
have been studied in [164, 459] (see [5, Chapt. 4] for a more extensive textbook
discussion); for PBW extensions (recall Example 3.2.6) a theory of Gröbner bases
was developed by Giesbrecht et al [165]. The extension of involutive bases to this
more general situation was apparently first considered in [409].

The strategy to determine left bases even for two-sided ideals goes back at least
to Kandry-Rody and Weispfenning [249] and is by now fairly standard (see e. g. [63,
264, 286]). An alternative approach via bimodules was recently presented in [148].
The material in the Addendum to Section 4.2 may be considered as an involutive
version of [249, Sects. 4/5] (see also [264, Sect. 4.11]) and comes again from [409].

The extension of the here discussed completion algorithms to nonlinear differen-
tial equations will be discussed in Chapter 7. For the moment we only note that
a special situation arises for quasi-linear equations. Since they are linear in the
derivatives of highest order, all reductions can be performed effectively as linear
operations. However, we cannot expect the equation to remain quasi-linear during
the completion, as some of the arising integrability conditions may be fully non-
linear. Provided all appearing equations are indeed quasi-linear, Algorithm 4.5 can
be used without problems and produces the correct result. A simple example where
this happens are the Navier–Stokes equations.



Chapter 5
Structure Analysis of Polynomial Modules

By the help of God and with His precious assistance, I say that
Algebra is a scientific art.

Omar Khayyam

We now apply the theory of involutive bases developed in Chapter 3 to the structure
analysis of modules over the commutative polynomial ring, i. e. we do some classi-
cal commutative algebra (the question to what extent the results presented here also
hold for more general polynomial rings of solvable type is still open and will not be
discussed here). The basic observation is that the Pommaret basis with respect to the
degree lexicographic term order provides us with an easy access to several interest-
ing invariants; more precisely, this basis is to a considerable extent determined by
the structure of the module. As this particular type of basis will also play an impor-
tant role in the analysis of differential equations, this fact simultaneously allows us
an algebraic interpretation of many aspects of the theory of differential equations.

We start in the first section by analysing combinatorial or Stanley decomposi-
tions: a polynomial module is written as a direct sum of free modules over polyno-
mial rings in a restricted set of variables. It is a natural consequence of our definition
of involutive bases (and in fact the main motivation for it) that any involutive basis
of a submodule of a free polynomial module immediately induces such a decompo-
sition. For more general modules the situation is more complicated. Assuming that
we deal with a finitely generated module, we can present it as the quotient of a free
polynomial module by a submodule and then construct a complementary decompo-
sition to a Gröbner basis of the submodule.

The next section is concerned with the determination of the (Krull) dimension
and the depth. It is a trivial application of arbitrary Stanley decompositions that one
can directly read off the Hilbert series and thus the dimension; this observation is
an immediate consequence of their combinatorial nature. Pommaret bases lead to
a particular type of decompositions named after Rees. With their help also regular
sequences and thus the depth are easily obtained. As a simple corollary, we obtain a
new proof of the Hironaka criterion for Cohen–Macaulay algebras.

In the third section we will relate the question of δ -regularity to the existence
of Noether normalisations. Special emphasis will be put on monomial ideals where
the existence of a Pommaret basis is equivalent to simultaneous Noether normali-
sations of both the ideal itself and all its primary components. Furthermore, in an
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Addendum we will discuss how one can extract the standard pairs of a monomial
ideal from any complementary decomposition of the ideal.

The topic of Section 5.4 is the syzygy theory of involutive bases. We prove an
involutive version of the classical Schreyer Theorem: the syzygies obtained from
analysing the non-multiplicative products of the generators form a Gröbner basis of
the first syzygy module. For certain divisions, including the Janet and the Pommaret
division, one even obtains again an involutive basis. Thus an immediate iteration
allows for the straightforward construction of a whole syzygy resolution.

In the special case of the Pommaret division, the arising free resolution is highly
structured. Large parts of the last two sections are concerned with exploiting these
structures for further statements about the underlying module. For example, we will
see that, albeit the resolution is generally not minimal, it is always of minimal length
so that we can immediately read off the projective dimension of our module. As
a trivial corollary we will recover the Auslander–Buchsbaum formula relating the
projective dimension with the depth. A further, very important result is that the
degree of a Pommaret basis with respect to the degree reverse lexicographic term
order always equals the Castelnuovo–Mumford regularity of the module.

5.1 Combinatorial Decompositions

The distinctive feature underlying the definition of (strong) involutive bases is the
direct sum decomposition induced by them. In this section we study this aspect in
more details. All results apply to arbitrary finitely generated polynomial modules.
But for notational simplicity, we restrict to graded �-algebras A = P/I for some
homogeneous ideal I ⊆ P where P = �[x1, . . . ,xn] is the ordinary polynomial ring.
If we speak of a basis of the ideal I, we always assume that it is homogeneous, too.

Recall that the main motivation of Buchberger for the introduction of Gröbner
bases was to be able to compute effectively in such factor spaces. Indeed given a
Gröbner basis G of the ideal I, the normal form with respect to G distinguishes a
unique representative in each equivalence class. Our goal is to show that Pommaret
bases yield in addition a lot of structural information about the algebra A. More
precisely, we want to compute fundamental invariants like the Hilbert function, the
depth or the minimal resolution. Our basic tools are combinatorial decompositions
of A into a direct sum of polynomial rings with a restricted number of variables.

Definition 5.1.1. A Stanley decomposition of the graded �-algebra A = P/I con-
sists of an isomorphism as graded �-linear spaces

A∼=
⊕

t∈T
�[Xt ] · t (5.1)

with a finite set T ⊂� and sets Xt ⊆ {x1, . . . ,xn}. The elements of Xt are the multi-
plicative variables of the generator t.
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Remark 5.1.2. We may contrast Stanley decompositions with Noether normalisa-
tions (cf. Definition B.1.23). In a Stanley decomposition we want to expressA as a
direct sum of free polynomial modules. The price we have to pay for the directness
is that we must use in general different polynomial rings for the different genera-
tors. In a Noether normalisation we want that all appearing modules are free over
the same polynomial ring R. But the price for this requirement is that we cannot
achieve a direct sum composition. Common to both constructions is that they are
finite: in Definition 5.1.1 the set T of generators must be finite; the crucial property
of a Noether normalisation is that it leads to a finitely generatedR-module. �

Corollary 3.4.5 asserts that given any involutive basis of the ideal I we immedi-
ately obtain a similar decomposition of I itself. Here, however, we are interested in
decomposing the quotient space A= P/I and no obvious way seems to exist how
an involutive basis of the ideal I should yield a complementary decomposition, i. e.
a decomposition of A.

Vasconcelos [468, p. 23] calls Stanley decompositions “an approach that is not
greatly useful computationally but it is often nice theoretically”. One reason for
his assessment is surely that the classical algorithms for their construction work
only for monomial ideals I. Thus for a general ideal I one must first compute a
Gröbner basis of it for some term order ≺ and then, exploiting that as vector spaces
P/I ∼= P/ lt≺I, one determines a Stanley decomposition of the latter algebra. Its
existence is guaranteed by the following result which we formulate again for multi
indices, i. e. the monoid�n

0.

Proposition 5.1.3. Let I ⊆ �n
0 be a monoid ideal and denote by I = �n

0 \ I its
complementary set. Then there exists a finite set B ⊂ I and for each multi index
ν ∈ B a set Nν ⊆ {1, . . . ,n} defining the disjoint decomposition

I =
⊎

ν∈B

(
ν+�n

Nν

)
. (5.2)

Proof. The assertion is trivial for the zero ideal, so we exclude this case and proceed
by an induction on the size n of the multi indices. The case n = 1 is trivial, as any
monoid ideal in �0 is of the form I = 〈[q]〉 for some value q ∈ �0 and hence
I = {[0], [1], . . . , [q− 1]} which is of the form (5.2) with Nν = ∅ for all ν .

Suppose now that the assertion is true for n− 1. We want to show that it holds
for n, too. But before we must introduce some notations. Primed letters always refer
to multi indices ν ′ ∈ �n−1

0 ; unprimed ones to multi indices ν ∈ �n
0. For a given

ν ∈ �n
0, we define ν ′ = [ν1, . . . ,νn−1] ∈�n−1

0 , i. e. we simply drop the last entry.
Finally, we write [ν ′,q] for the multi index [ν1, . . . ,νn−1,q] ∈�n

0.
Given a monoid ideal I ⊆�n

0, we define for all values q ∈�0 the monoid ideals
I′q =
{
ν ′ ∈�n−1

0 | [ν ′,q] ∈ I
}

in�n−1
0 . Thus we slice I by intersecting it with the

hyperplanes νn = Const. Obviously, for q < r we have I′q ⊆ I′r so that these ideals

form an ascending chain. As�n−1
0 is a Noetherian monoid, an integer q0 ∈� exists

such that I′q = I′q0
for all q≥ q0.
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According to our inductive hypothesis, the complements I′q of each of these
monoid ideals for 0≤ q≤ q0 can be disjointly decomposed in the form

I ′q =
⊎

ν′∈B(n−1)
q

(
ν ′ +�n−1

Nν′

)
(5.3)

with some subsets B(n−1)
q ⊂ �n−1

0 and Nν′ ⊆ {1, . . . ,n− 1}. We introduce now

the sets B(n)
q =

{
[ν ′,q] | ν ′ ∈ B(n−1)

q

}
and B =

⋃q0
q=0B

(n)
q . Furthermore, we choose

N[ν′,q] = Nν′ for q < q0 and N[ν′,q] = Nν′ ∪{n} for q = q0.
Setting U =

⋃
ν∈B(ν+�n

Nν ), the union is obviously disjoint. We claim now that
U = I which implies our proposition. Let μ ∈ U , then by construction we have
that μ ′ ∈ I′q for some 0 ≤ q ≤ q0 and hence by definition of the ideals I′q, the
multi index μ cannot be an element of I. Thus U ⊆ I. Conversely, μ ∈ I implies

μ ′ ∈ I ′μn
. If μn ≥ q0, then I′μn

= I′q0
and a multi index ν ′ ∈ B(n−1)

q0
exists such

that μ ′ ∈ ν ′ +�n−1
Nν′

. Thus μ ∈ ν +�n
ν with ν = [ν ′,q0]. If μn < q0, then a multi

index ν ′ ∈ B(n−1)
μn

exists such that μ ′ ∈ ν ′ +�n−1
Nν′

and in this case μ ∈ ν+�n
ν with

ν = [ν ′,μn]. Thus we have I ⊆ U and consequently U = I as claimed. �
This proof is not completely constructive, as the number q0 is defined by a

Noetherian argument. But one easily sees that we may set q0 = maxν∈B νn for the
minimal basis B of the monoid ideal I. Now one straightforwardly transforms our
proof above into the recursive Algorithm 5.1 for the construction of a complemen-
tary decomposition; the only point is to see that the set B′

q constructed in Line /6/ is
indeed a minimal basis of the monoid ideal I′q, but this fact is trivial to verify.

Algorithm 5.1 Complementary decomposition (from minimal basis)
Input: minimal basis B of monoid ideal I ⊂�n

0
Output: finite complementary decomposition B
1: if n=1 then {in this case B = {ν}}
2: q0← ν1; B ←

{(
[0],∅
)
, . . . ,
(
[q0−1],∅

)}

3: else
4: q0← maxν∈B νn; B← ∅
5: for q from 0 to q0 do
6: B′q← {ν ′ ∈�n−1

0 | ν ∈ B, νn ≤ q}
7: B′q← ComplementaryDecomposition(B′q)
8: if q < q0 then
9: B ←B∪

{(
[ν ′,q],Nν′

)
| (ν ′,Nν′ ) ∈ B

′
q

}

10: else
11: B← B∪

{(
[ν ′,q],Nν′ ∪{n}

)
| (ν ′,Nν′ ) ∈ B

′
q

}

12: end if
13: end for
14: end if
15: return B
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The complementary decomposition (5.2) is not unique and different decomposi-
tions may use sets B of different sizes. The elements in the sets Nν are again called
multiplicative indices. If a Janet basis of the monoid ideal I is known, an alterna-
tive, non-recursive algorithm exists. It provides us with a decomposition where the
multiplicative indices are again chosen according to the Janet division.

Proposition 5.1.4. Let BJ be a Janet basis of the monoid ideal I ⊆ �n
0. Then the

set B ⊂ �n
0 in the decomposition (5.2) may be chosen such that for all ν ∈ B the

equality Nν = NJ,BJ∪{ν}(ν) holds.

Proof. We explicitly construct such a set B. Let qn = maxμ∈BJ μn. Then we put into
B all multi indices ν = [0, . . . ,0,q] such that 0 ≤ q < qn and such that BJ does not
contain any multi index μ with μn = q. We set Nν = {1, . . . ,n− 1} which obvi-
ously is just NJ,BJ∪{ν}(ν) according to the definition of the Janet division given in
Example 3.1.4.

Let (dk, . . . ,dn)⊆ BJ be one of the subsets (3.2) considered in the assignment of
the multiplicative variables to the elements of BJ according to the definition of the
Janet division and set qk−1 = maxμ∈(dk,...,dn) μk−1. We enlarge the set B by all those
multi indices ν = [0, . . . ,0,q,dk, . . . ,dn] where 0≤ q < qk−1 and where (dk, . . . ,dn)
does not contain any multi index μ with μk−1 = q. The corresponding sets Nν of
multiplicative indices contain the indices 1, . . . ,k− 2 and all those indices greater
than k that are multiplicative for the elements of (dk, . . . ,dn). Again it is easy to
verify that this entails Nν = NJ,BJ∪{ν}(ν).

We claim that the thus constructed set B (together with the sets Nν ) defines a
disjoint decomposition (5.2) of the complementary set I. Like in the proof of the
previous proposition we proceed by an induction on n and use again the notations
introduced there. The case n = 1 is trivial. Suppose that our assertion is true for
n− 1. Let ρ ∈�n

0 be an arbitrary multi index and let q1 < q2 < · · · < qr represent
all values that occur for the entry μn in the multi indices μ ∈ BJ . We distinguish
three cases depending on the value of ρn: (i) ρn < qr but ρn /∈ {q1, . . . ,qr−1}, (ii)
ρn ∈ {q1, . . . ,qr−1}, and (iii) ρn ≥ qr.

In the first case, the set B contains the multi index ν = [0, . . . ,0,ρn] and, as Nν =
{1, . . . ,n−1}, obviously ρ ∈ ν+�n

Nν . It is easy to see that ρ cannot be an element
of I or of the cone ν̄+�n

Nν̄
of any other multi index ν̄ ∈ B.

In the second case, we proceed by “slicing” both BJ and B at the degree ρn. This
operation leads to the two sets B′

J =
{
μ ′ ∈�n−1

0 | μ ∈ BJ, μn = ρn
}
⊂�n−1

0 and

B′
=
{
ν ′ ∈�n−1

0 | ν ∈ B, νn = ρn
}
⊂�n−1

0 , respectively. If we compute the sets
NJ,B′

J
(μ ′) of multiplicative indices for the elements μ ′ ∈ B′

J , it is straightforward to
verify that they are just NJ,BJ (μ), as μn is not maximal and μ ∈ (ρn), if and only if
μ ′ ∈ B′

J. Furthermore, B′
J is a Janet basis of the monoid ideal I′ρn

. If we apply the

procedure above to this ideal in�n−1
0 , we obtain B′

as complementary basis and the
sets of multiplicative variables remain unchanged.

By our inductive hypothesis, B′
defines a disjoint decomposition of the sought

form of the set I′ρn
. If ρ ∈ I , then ρ ′ ∈ I′ρn

and a multi index ν ′ ∈B′
exists such that



172 5 Structure Analysis of Polynomial Modules

ρ ′ ∈ ν ′ +�n−1
Nν′

. By construction, ν = [ν ′,ρn] ∈ B and ρ ∈ ν+�n
Nν . If ρ ∈ I, then

ρ ′ ∈I′ρn
, and it is not possible to find a multi index ν ′ ∈B′

such that ρ ′ ∈ ν ′+�n−1
Nν′

.

Hence ρ /∈ ν+�n
Nν for any ν ∈ B.

The third case is very similar to the second one. For the definition of B′
J and B′

we consider only multi indices where the value of the last entry is qr. Note that for
all multi indices ν ∈ B that contribute to B′

the index n is multiplicative. If ρ ∈ I,
then ρ ′ ∈ I ′ρn

and a multi index ν ′ ∈ B′
exists such that ρ ′ ∈ ν ′ +�n−1

Nν′
and we

conclude as above that ρ ∈ ν+�n
Nν for ν = [ν ′,qr] ∈ B. Again it is obvious that for

a multi index ρ ∈ I, it is not possible to find such a ν ∈ B. �

In a more formal language this proof leads to Algorithm 5.2. The two outer for-
loops iterate over all non-empty subsets (dk+1, . . . ,dn) ⊆ BJ (recall that () = BJ

for k = n), i. e. they traverse the full Janet tree of BJ with k denoting the current
depth in the tree. Thus in practice one would use a tree algorithm for a breadth-
first transversal and the inner for-loop is an iteration over the “gaps” between the
values at the children of the current node. In Line /4/ it does not matter which multi
index μ ∈ (dk+1, . . . ,dn) one chooses, as we need in Line /5/ only the multiplicative
indices greater than k which are the same for all such μ .

Algorithm 5.2 Complementary decomposition (from Janet basis)
Input: Janet basis BJ of monoid ideal I ⊂�n

0
Output: finite complementary decomposition B
1: B ← ∅
2: for k from n downto 1 do
3: for all ∅ �= (dk+1, . . . ,dn)⊆ BJ do
4: choose arbitrary μ ∈ (dk+1, . . . ,dn)
5: N← {1, . . . ,k−1}∪{i ∈ NJ,BJ (μ) | i > k}
6: for i from 0 to maxμ∈(dk+1 ,...,dn) {μk} do
7: if �μ ∈ (dk+1, . . . ,dn) : μk = i then
8: B ←B∪

{(
[0, . . . ,0, i,dk+1, . . . ,n],N

)}

9: end if
10: end for
11: end for
12: end for
13: return B

We have formulated Proposition 5.1.4 only for the case that the given set BJ is a
Janet basis, but our proof yields an even stronger result. LetBJ be an arbitrary subset
of�n

0 and construct the corresponding set B. Then we may substitute everywhere in
the proof the full ideal I by the involutive span 〈BJ〉J ⊆ I and still obtain that any
multi index ρ ∈�n

0 either lies in 〈BJ〉J or in exactly one of the cones defined by B
and the sets Nν .

Example 5.1.5. Consider the simple example BJ =
{
[1,1]
}

. Our construction yields
the two multi indices ν(1) = [0,0] with Nν(1) = {1} and ν(2) = [0,1] with Nν(2) = {2}.
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Obviously, the corresponding cones disjointly decompose the complementary set
I =
{
[i, j] ∈�2

0 | i j = 0
}

. �
According to Corollary 4.3.11, we may apply the same construction to Pommaret

bases. But as the Pommaret division is globally defined, it is very easy to provide
an alternative decomposition depending only on the degree q of a Pommaret basis
of the ideal I (we will see later in Section 5.5 that this degree is in fact an important
invariant of I, namely its Castelnuovo–Mumford regularity). In general, this decom-
position is larger than the one obtained with the Janet approach, but it is sometimes
useful for theoretical applications.

Proposition 5.1.6. The monoid ideal I ⊆�n
0 has a Pommaret basis of degree q, if

and only if the sets B0 = {ν ∈ Ī | |ν| < q} and B1 = {ν ∈ Ī | |ν| = q} yield the
following disjoint decomposition

Ī = B0#
⊎

ν∈B1

CP(ν) . (5.4)

Proof. The definition of the Pommaret division implies the identity

(�n
0)≥q =

⊎

|ν|=q

CP(ν) (5.5)

from which one direction trivially follows. Here
(
�n

0

)
≥q

denotes the set of all multi
indices of length greater than or equal to q. By Definition 3.1.1 of an involutive
division, the union on the right hand side is disjoint.

For the converse, we claim that if (5.4) holds, then the set H = {μ ∈ Iq} is a
Pommaret basis of the monoid ideal I≥q; our assertion follows then immediately by
Lemma 4.3.2. We choose an arbitrary multi index μ ∈ H and a non-multiplicative
index k = clsμ < j≤ n of it. If we can show that μ+1 j ∈ 〈H〉P, thenH is involutive
by Proposition 4.2.7. But this fact is trivial: we have μ + 1 j ∈ CP(μ −1k + 1 j) and
μ−1k + 1 j ∈ Iq, as otherwise μ+ 1 j /∈ I contradicting (5.4). �
Example 5.1.7. The decomposition (5.4) is usually redundant. Considering for B1

only multi indices of length q makes the formulation much easier but is not opti-
mal. Consider the trivial example BP =

{
[0,1]
}

. According to Proposition 5.1.6,
we should set B0 =

{
[0,0]
}

and B1 =
{
[1,0]
}

. But obviously I = [0,0]+�2
{1}.

Applying Algorithm 5.2 yields directly this more compact form. �
Remark 5.1.8. For monomial ideals a refinement of complementary decompositions
is provided by Stanley filtrations. This notion requires an ordering of the genera-
tors of the decomposition and in our multi index notation we can formulate it as
follows. Assume that we have B = {ν(1), . . . ,ν(r)} in the complementary decom-
position (5.2). Defining Ik = I+ 〈ν(k+1), . . . ,ν(r)〉 for all 0 ≤ k ≤ r, we speak of a
Stanley filtration, if always

Ik =
k⊎

j=1

(
ν( j) +�n

N
ν( j)

)
, (5.6)
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i. e., if we have a filtration

∅= I0 ⊂ I1 ⊂ ·· · ⊂ Ir = I . (5.7)

It is not difficult to find a complementary decomposition not admitting an order-
ing of its generators that makes it to a Stanley filtration. We will now prove that the
decompositions determined by Algorithm 5.2 from a Janet basis always induce a
Stanley filtration, if we order the generators according to the lexicographic order.

Let again BJ be a Janet basis of the monoid ideal I and B the output of Algo-
rithm 5.2. We first note that if we set B′

J = BJ ∪ {μ} and B′ = B \ {μ} for any
multi index μ ∈ B, then applying Algorithm 5.2 to B′

J yields B′ and for no element
of any of these sets the multiplicative variables change. Indeed, it is easy to see
that none of the values qk appearing in the proof of Proposition 5.1.4 changes and
that for μ = [0, . . . ,0,q,dk+1, . . . ,dn] the subset (q,dk+1, . . . ,dn) was empty for BJ;
hence the assignment of multiplicative variables according to the Janet division is
not affected by adding μ to BJ .

Now assume that we choose for μ the maximal element of B with respect
to the lexicographic order. We claim that then for any ν ∈ B′ the intersection
C(μ)∩CJ,B′∪{ν}(ν) is empty: obviously, this observation implies the complemen-
tary decomposition

I+ 〈μ〉=
⊎

ν∈B′

(
ν+�n

Nν

)
(5.8)

(and that B′
J is a Janet basis of I+ 〈μ〉); hence by iteration that we have a Stanley

filtration. Take an arbitrary ν ∈ B′; since ν ≺lex μ , we must have μi > νi, if the last
non-vanishing entry of ν−μ is at position i. As then μ ,ν ∈ (μi+1, . . . ,μn), it follows
that the index i is not Janet multiplicative for ν with respect to the set B′∪{ν}which
implies our claim.

A similar result holds for the decomposition (5.4) obtained via a Pommaret basis.
This time, we get a Stanley filtration, if we order the generators according to the
degree reverse lexicographic order. Thus we first consider the elements of B1 where
one easily sees that for two multi indices μ ,ν ∈ B1 with ν ≺degrevlex μ again the
intersection C(μ)∩CP(ν) is always empty. Since the elements of B0 do not possess
any multiplicative variables in the decomposition (5.4), we may take for them any
order refining the partial order induced by divisibility—a condition satisfied by any
term order according to Lemma A.1.6. �

If J ⊆ P is a polynomial ideal possessing a Pommaret basis for some term or-
der≺, then applying Proposition 5.1.6 to I = le≺J yields a Stanley decomposition
of a special type: all sets Xt are of the form Xt = {x1,x2, . . . ,xcls t} where the number
clst is called the class1 of the generator t. One speaks then of a Rees decomposition
of A = P/J . It is no coincidence that we use here the same terminology as in the
definition of the Pommaret division: if t = xμ with μ ∈ B̄1, then indeed its class is
just clsμ in the usual sense. Given a polynomial f ∈P and a term order≺, we write

1 Some authors prefer the term level.
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in the sequel briefly cls f instead of cls(le≺ f ). Elimination of the redundancy in the
decomposition (5.4) leads to the following result.

Corollary 5.1.9. Let I ⊆ P be a polynomial ideal having for some term order ≺ a
Pommaret basisH where minh∈H clsh = d. Then the factor algebra P/I possesses
a Rees decomposition where the minimal class of a generator is d−1.

Proof. Obviously, it suffices to consider the monomial case and formulate the proof
therefore in the multi index language of Proposition 5.1.6. Furthermore, for d = 1
there is nothing to be shown so that we assume from now on d > 1. Our starting
point is the decomposition (5.4). For each ν ∈ B̄1 with clsν = k < d we introduce
the multi index ν̃ = ν − (νk)k, i. e. ν̃ arises from ν by simply setting the kth entry
to zero. Obviously, the k-dimensional cone Cν = ν̃ +�n

{1,...,k} is still completely

contained in the complement Ī and we have CP(ν)⊂Cν .
Replacing in (5.4) for any such ν the cone CP(ν) by Cν , we still have a decom-

position of Ī, but no longer a disjoint one. We show first that in the thus obtained
decomposition all cones C with 0 < dimC < d − 1 can be dropped without loss.
For k < d − 1 we consider the multi index μ = ν̃ + (νk)k+1. Since |μ | = q and
clsμ = k + 1 by construction, μ ∈ B̄1 under the made assumptions. Furthermore,
μ̃ = μ− (μk+1)k+1 is a divisor of ν̃ (μ̃ and ν̃ differ at most in their (k +1)st entries
and μ̃k+1 = 0) and thus the inclusion Cν ⊂Cμ = μ̃+�n

{1,...,k+1} holds.
The remaining cones with dimC ≥ d−1 are all disjoint. This is trivially true for

all cones with dimC≥ d, as these have not been changed. For the other ones, we note
that if μ and ν are two multi indices with clsμ = clsν = d− 1 and |μ | = |ν| = q,
then they must differ at some position � with � ≥ d. But this fact implies that the
cones Cμ and Cν are disjoint.

Thus there only remains to study the zero-dimensional cones consisting of the
multi indices ν ∈ B̄0. If we set � = q−|ν|, then μ = ν+ �1 ∈ B̄1, since we assumed
d > 1, and trivially ν ∈Cμ = (μ− (μ1)1)+�n

{1}. By our considerations above, the

cone Cμ and thus also the multi index ν is contained in some (d− 1)-dimensional
cone. Therefore we may also drop all zero-dimensional cones and obtain a Rees
decomposition where all cones are at least (d−1)-dimensional. �

Slightly generalising the notion of Rees decompositions, we speak of a quasi-
Rees decomposition, if there exists a term t̄ ∈ T such that

⋃
t∈T Xt = Xt̄ , i. e. there

exists a unique maximal set of multiplicative variables containing all other sets of
multiplicative variables. Obviously, every Rees decomposition is a quasi-Rees de-
composition, but not vice versa. We will see in the next two sections that such de-
compositions possess special properties.

5.2 Dimension and Depth

We have seen that given a Gröbner basis of the homogeneous ideal I, it is possible
to compute a Stanley decomposition of the graded algebraA= P/I. As a first and
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fairly simple application we discuss now the determination of the (Krull) dimension
and the depth as two different measures for the size of an algebra (or more generally
of a module). While for the dimension any Stanley decompositions can be used (in
fact, this question was the original motivation for their introduction), it will turn out
that for the depth we need a Rees decomposition and thus a Pommaret basis of I is
here better than any other Gröbner bases.

Proposition 5.2.1. Let the graded �-algebra A= P/I possess the Stanley decom-
position (5.1). Then its Hilbert series is

HA(λ ) = ∑
t∈T

λ qt

(1−λ )kt
(5.9)

where qt = degt and kt = |Xt |. Thus the (Krull) dimension of the graded algebra A
is given by dimA = D = maxt∈T kt and the multiplicity multA by the number of
terms t ∈ T with kt = D.

Proof. The Hilbert series of a polynomial ring�[y1, . . . ,yd ] in d variables is given by
H(λ ) = 1/(1−λ )d , since both the Taylor coefficient of order q of this function and
the number of monomials of degree q in the ring given by (A.4a) is

(d+q−1
q

)
. If the

generator t has degree qt , we must shift all coefficients by qt which corresponds to
a multiplication with λ qt . Finally, we simply add the contributions of all generators,
as the right hand side of (5.1) is a direct sum, and arrive at (5.9). The statements
about the dimension and the multiplicity are trivial corollaries (see the discussion
following Theorem B.1.22 and in particular (B.10) relating the Hilbert series and
the Hilbert polynomial). �

Given a Pommaret basis of the ideal I, we can provide an alternative character-
isation of dimA which is useful for many applications. It may be considered as a
strengthening of the following observation for arbitrary quasi-Rees decompositions.

Lemma 5.2.2. Let G be a Gröbner basis of the homogeneous ideal I ⊆ P for some
term order ≺ and assume that the finite set T ⊂� defines a quasi-Rees decomposi-
tion of A= P/I with the maximal set Xt̄ of multiplicative variables for some term
t̄ ∈ T . If q = 1 + maxt∈T degt, then 〈G,Xt̄〉q = Pq and no smaller set of variables
or other set of variables of the same size has this property.

Proof. Assume first that the term xμ ∈ Pq \ lt≺ I is not contained in the leading
ideal. By definition of the degree q, we have |μ | > degt for all t ∈ T . Hence xμ

must be properly contained in some cone of the quasi-Rees decomposition and can
be written as a product mt with some t ∈ T and a term m in the variables Xt ⊆ Xt̄

with degm > 0. This presentation implies xμ ∈ 〈Xt̄〉.
If the term xμ ∈ Pq lies in lt≺I, we compute its normal form with respect to the

Gröbner basis G. If this normal form vanishes, then xμ ∈ 〈G〉. Otherwise, it is a �-
linear combination of terms in Pq \ lt≺I and thus lies by the considerations above
in 〈Xt̄〉. Hence we may conclude that all terms of degree q lie in 〈G,Xt̄〉.
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No other set X̄ ⊂ X of variables with X̄ �= Xt and |X̄ | ≤ |Xt̄ | can possess this prop-
erty, as lt≺I ∩�[Xt̄ ] = {0} and hence we can always find a term xμ ∈ (�[Xt̄ ])q not
contained in 〈G, X̄〉. Indeed, assume that a xν ∈ lt≺ I∩�[Xt̄ ] existed. Then obviously
t̄ · xν ∈ lt≺ I, contradicting the fact that T defines a complementary decomposition
with multiplicative variables Xt̄ for t̄. �

Proposition 5.2.3. Let H be a Pommaret basis of the homogeneous ideal I ⊆ P
for some term order ≺. If degH = maxh∈H degh = q, then the dimension D of the
factor algebraA= P/I satisfies

D = min
{

i | 〈H,x1, . . . ,xi〉q = Pq
}

. (5.10)

Proof. The Hilbert polynomials of A and the truncationA≥q coincide. Thus it suf-
fice to consider the latter algebra. By Lemma 4.3.2, a Pommaret basis of I≥q is
given by the set Hq determined in (4.5). If D is the smallest number such that
〈Hq,x1, . . . ,xD〉q = Pq, then all multi indices ν ∈�n

0 with |ν|= q and clsν > D lie
in le≺Hq but a multi index μ ∈�n

0 exists with |μ |= q, clsμ = D and μ �= le≺Hq.
By Proposition 5.1.6, this observation entails that μ is a generator of class D of
the decomposition (5.4) and that the decomposition does not contain a generator of
higher class. Hence dimA= D by Proposition 5.2.1. �

A subset XI ⊆ {x1, . . . ,xn} of variables is called independent modulo a given
ideal I ⊆ P , if I ∩�[XI ] = {0}, i. e. if I does not contain any non-zero polynomial
depending only on the variables in XI .2 A subset XI ⊆ {x1, . . . ,xn} is strongly in-
dependent modulo I for a given term order ≺, if lt≺ I ∩�[XI ] = {0}. Such a set
is automatically also independent modulo I, because for any non-zero polynomial
f ∈I∩�[XI ] in particular the leading term must lie in �[XI ]. However, the converse
is not true, as the following trivial counterexample shows: consider P = �[x,y] and
I = 〈y− x〉 ⊂P for any term order≺ such that x≺ y; then the set {y} is independent
but not strongly independent modulo I.

One can show that dimA is the maximal size of either a strongly independent
or an independent set. It is comparatively easy to establish this fact for independent
sets, but less simple for strongly independent sets, as for them seemingly the maxi-
mal number of elements depends on the chosen term order. A further complication
arises from the fact that in general maximal independent sets of different sizes exist.
As a simple concrete example we consider I = 〈xz+ z,yz+ z〉 ⊂ �[x,y,z]. Here both
{x,y} and {z} are maximal independent sets modulo I.

Strong independence modulo I with respect to a term order ≺ is easy to verify
effectively with the help of a Gröbner basis G of I for ≺: it follows immediately
from Definition B.4.1 of a Gröbner basis that the set XI is strongly independent,
if and only if it satisfies lt≺G ∩ �[XI ] = ∅. It is now a combinatorial (and thus
sometimes quite expensive) exercise to determine effectively all maximal strongly

2 One easily shows that for the special case that I ⊂P is a prime ideal, this notion of independence
coincides with the familiar concept of algebraic independence in field theory: the set XI is inde-
pendent modulo I, if and only if the equivalence classes of its elements in P/I are algebraically
independent over the quotient field of P/I.
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independent sets modulo I and to compute their maximal size and hence dimA. The
situation becomes much simpler, if A = P/I admits a quasi-Rees decomposition,
as we will show now that in this case a unique maximal strongly independent set
modulo I exists. This observation is based on the following result.

Lemma 5.2.4. Let I ⊂ P be an ideal and ≺ a term order. Assume that the finite set
T ⊂� defines a quasi-Rees decomposition of the algebra A′ = P/ lt≺I with the
maximal set Xt̄ of multiplicative variables for some term t̄ ∈ T . Then a variable xi

is not contained in Xt̄ , if and only if the minimal basis of lt≺ I contains an element
of the form (xi)ei for some exponent ei ∈�.

Proof. Assume first that xi /∈ Xt̄ . By definition of a quasi-Rees decomposition, then
xi /∈ Xt for all t ∈ T . Since T is a finite set, only finitely many terms of the form
t = (xi)kt can be contained in it. If we choose k greater than all these values kt , then
(xi)k ∈ lt≺I and the minimal basis of lt≺I must contains an element (xi)ei .

For the converse, assume that (xi)ei lies in the minimal basis of lt≺I. Then for
any t ∈ T the term t · (xi)ei lies in lt≺I and thus xi cannot be an element of Xt by
definition of a complementary decomposition. �

Proposition 5.2.5. Under the assumptions of Lemma 5.2.4, the set Xt̄ is the unique
maximal strongly independent set modulo the ideal I.

Proof. We showed already in the proof of Lemma 5.2.2 that lt≺I ∩�[Xt̄ ] = {0},
i. e. that the set Xt̄ is strongly independent modulo I. It follows from Lemma 5.2.4
that no variable xi /∈ Xt̄ can be contained in a strongly independent set modulo I.
Hence any such set must be a subset of Xt̄ . �

Corollary 5.2.6. Let the chosen coordinates x be δ -regular for the ideal I ⊂ P , i. e.
I possesses a Pommaret basis H. Then {x1, . . . ,xD} with D = dimA is the unique
maximal strongly independent set modulo the ideal I.

Our next application is the construction of regular sequences for a homogeneous
ideal I ⊆ P where it will again turn out that δ -regular coordinates are special.
Recall that the maximal length of such a sequence yields the depth of I (see
Appendix B.1). While the definition allows for arbitrary polynomials in regular se-
quences, it suffices for computing the depth to consider only polynomials fi ∈P1 of
degree 1. This fact follows, for example, from [439, Lemma 4.1]. For this reason,
our proof of the following result restricts to this case.

Proposition 5.2.7. Let I ⊆P be a homogeneous ideal andH a homogeneous Pom-
maret basis of it for a class respecting term order≺ and set d = minh∈H clsh. Then
the monomials (x1, . . . ,xd) form a maximal regular sequence and depthI = d.

Proof. A Pommaret basisH induces a Rees decomposition of I of the form

I =
⊕

h∈H
�[x1, . . . ,xcls h] ·h . (5.11)
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If d = minh∈H clsh denotes the minimal class of a generator in H, then (5.11) triv-
ially implies that the sequence (x1, . . . ,xd) is regular.

Let us try to extend this sequence by a variable xk with k > d. We introduce
the subset Hd = {h ∈ H | clsh = d} and choose an element h̄ ∈ Hd of maximal
degree: according to the characterisation of class respecting term orders given in
Lemma A.1.8, we have h̄ ∈ 〈x1, . . . ,xd〉. Now consider the product xkh̄; by con-
struction, the variable xk is non-multiplicative for h̄. Thus for each generator h ∈H
a coefficient Ph ∈ �[x1, . . . ,xcls h] exists such that xkh̄ = ∑h∈HPhh. No polynomial
h ∈ P with clsh > d can lie in 〈x1, . . . ,xd〉 (obviously lt≺ h /∈ 〈x1, . . . ,xd〉). As the
leading terms cannot cancel in the sum, Ph ∈ 〈x1, . . . ,xd〉 for all h ∈ H\Hd . Thus
xkh̄ =∑h∈Hd

chh+g with ch ∈� and g∈ 〈x1, . . . ,xd〉I. As I is a homogeneous ideal
and as the degree of h̄ is maximal in Hd , all constants ch must vanish.

It is not possible that h̄ ∈ 〈x1, . . . ,xd〉I, as otherwise h̄ would be involutively
head reducible by some other element of H. Hence we have shown that any vari-
able xk with k > d is a zero divisor in I/〈x1, . . . ,xd〉I and the I-regular sequence
(x1, . . . ,xd) cannot be extended by any xk with k > d.

Finally, assume that the forms y1, . . . ,yd+1 ∈ P1 define a regular sequence of
length d +1. We extend them to a basis {y1, . . . ,yn} of P1 and perform a coordinate
transformation x 	→ y. Our basis H transforms into a set Hy and after an involutive

head autoreduction we obtain a set H�
y . In general, the new coordinates y are not

asymptotically regular for the latter set. But there exist coordinates ỹ of the special
form ỹk = yk +∑k−1

i=1 ak
i yi with ak

i ∈ � such that if we transform H to them and
perform afterwards an involutive head autoreduction, then they are asymptotically
regular for the obtained set H̃�

ỹ ⊂ P̃ = �[ỹ].
By Definition 4.3.4 of asymptotic regularity, the involutive spans of the two sets

H and H̃�
ỹ possess asymptotically the same Hilbert function. SinceH is assumed to

be a Pommaret basis of I, this function is also simultaneously the Hilbert function
hI of the ideal I implying that the involutive span of H̃�

ỹ is the full transformed

ideal Ĩ = 〈H̃�
ỹ 〉 ⊆ P̃ , i. e. H̃�

ỹ is a Pommaret basis of Ĩ . Thus min
h̃∈H̃�

ỹ
cls h̃ = d

and, by the same argument as above, ỹd+1 is a zero divisor in Ĩ/〈ỹ1, . . . , ỹd〉Ĩ . Be-
cause of the special form of the transformation y 	→ ỹ, we have—considering every-
thing as forms inP1—the equality 〈ỹ1, . . . , ỹd〉= 〈y1, . . . ,yd〉 and yd+1 must be a zero
divisor in I/〈y1, . . . ,yd〉I. But this contradicts the assumption that (y1, . . . ,yd+1) is
a regular sequence and thus indeed depthI = d. �

With essentially the same arguments, one can directly show that under the as-
sumptions of the proposition (x1, . . . ,xd−1) form a maximal regular sequence for
the algebra A = P/I and hence depthA = depthI − 1 = d− 1. Using a bit more
commutative algebra than we introduced in Appendix B, one may alternatively ex-
ploit the trivial exact sequence 0→I →P →A→ 0 for a proof of these facts.

Remark 5.2.8. One may wonder to what extent this result really requires the Pom-
maret division. Given an arbitrary involutive basis H of I, we may introduce the
set XI =

⋂
h∈HXL,H,≺(h); obviously, for a Pommaret basis XI = {x1, . . . ,xd} with

d = minh∈H clsh. Again it is trivial to conclude from the induced decomposition
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that any sequence formed by elements of XI is regular. But in general we cannot
claim that these are maximal regular sequences. Thus only a lower bound for the
depth is obtained.

As a simple example consider the ideal I ⊂ �[w,x,y,z] generated by the three
polynomials f1 = z2− xy, f2 = yz−wx and f3 = y2−wz. If we set x1 = w, x2 = x,
x3 = y and x4 = z, then it is straightforward to check that the set F = { f1, f2, f3}
is a Pommaret basis of I with respect to the degree reverse lexicographic order. By
Proposition 5.2.7, (w,x,y) is a maximal regular sequence and depthI = 3.

If we set x1 = w, x2 = z, x3 = y and x4 = x, then no finite Pommaret basis exists;
these coordinates are not δ -regular. In order to obtain a Janet basis FJ of I (for the
degree reverse lexicographic order with respect to the new ordering of the variables),
we must enlarge F by f4 = z3−wx2 and f5 = yz3−wx2z. We find XI = {w,x}, as

XJ,FJ ,≺degrevlex( f1) = XJ,FJ ,≺degrevlex( f2) = {w,x} ,

XJ,FJ ,≺degrevlex( f3) = {w,z,y,x} ,

XJ,FJ ,≺degrevlex( f4) = XJ,FJ ,≺degrevlex( f5) = {w,z,x} .

(5.12)

Thus XI can be extended to a maximal regular sequence by adding y. However, the
Janet basis gives no indications, why y should be added. One could also conjecture
that the minimal number of multiplicative variables for a generator gives the depth.
But again this is clearly not correct for the above Janet basis. Thus no obvious way
seems to exist to deduce depthI from FJ . �

Let againH be a Pommaret basis of I for a class respecting term order. It follows
trivially from the Rees decomposition (5.11) that

min
{

i | 〈H,x1, . . . ,xi〉q = Pq
}
≥ d−1 . (5.13)

Thus, as a trivial corollary of Propositions 5.2.3 and 5.2.7, we can conclude that for
any graded algebraA=P/I the inequality depthA≤ dimA holds. In the limit case
depthA= dimA, the algebra is by definition Cohen–Macaulay. Thus we obtain the
following characterisation of algebras of this type.

Theorem 5.2.9. Let the set H be a homogeneous Pommaret basis of the homoge-
neous ideal I ⊆ P for a class respecting term order ≺. The algebra A = P/I is
Cohen–Macaulay, if and only if 〈H,x1, . . . ,xd−1〉q = Pq where d = minh∈H clsh
and q = degH.

Proof. By the results above, depthA= dimA= d−1. �

An alternative characterisation, which is more useful for computations, is based
on the existence of a special kind of Rees decomposition; one sometimes speaks of
a Hironaka decomposition.

Corollary 5.2.10 (Hironaka). The algebra A = P/I is Cohen–Macaulay, if and
only if a Rees decomposition of A exists where all generators have the same class.
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Proof. One direction is trivial. If such a special decomposition exists with d the
common class of all generators, then obviously both the dimension and the depth of
A is d and thus A is Cohen–Macaulay.

For the converse, assume that the algebra A is Cohen–Macaulay and that we
have dimA = depthA = d. According to Theorem 4.3.15, I possesses in suitably
chosen variables x a Pommaret basis H with respect to the degree reverse lexi-
cographic order. By our results above, this implies that minh∈H clsh = d + 1. We
introduce the set B =

{
ν ∈ 〈le≺H〉 | clsν > d} (recall that in Appendix A.1 we

defined cls [0, . . . ,0] = n so that [0, . . . ,0] ∈ B whenever I �= P). The set B is finite,
as all its elements satisfy |ν| < degH by Proposition 5.2.3 (in other words, the set
lt≺H generates an Artinian ideal in the subring �[xd+1, . . . ,xn]). Now we claim that

A∼=
⊕

ν∈B
�[x1, . . . ,xd ] · xν . (5.14)

More precisely, we claim that (5.14) is the result of applying Algorithm 5.2
for the computation of a complementary decomposition from a Janet basis to
the Pommaret basis H (by Corollary 4.3.11 any Pommaret basis is simultane-
ously a Janet basis). Consider an element ν ∈ B; obviously, it is of the form ν =
[0, . . . ,0,νd+1, . . . ,νn] with∑n

i=d+1 νi < q = degH. If we set q′ = q−∑n
i=d+2νi, then

ν+(q′−νd+1)d+1 ∈ 〈le≺H〉 by Theorem 5.2.9 implying the existence of a multi in-
dex ν ′ ∈ le≺H of the form ν ′ = [0, . . . ,0,ν ′d+1,νd+2, . . . ,νn] with νd+1 < ν ′d+1≤ q′.
Hence the set (νd+2, . . . ,νn) is considered in the assignment of multiplicative indices
for the elements of le≺Hwith respect to the Janet division and it consists only of the
multi index ν ′, asH is involutively head autoreduced (with respect to the Pommaret
division). This observation entails that Algorithm 5.2 chooses ν as an element of B
and assigns to it the multiplicative indices 1, . . . ,d.

Algorithm 5.2 cannot lead to a larger set B, as any further multi index would be
of class less than or equal to d and thus contained in �[x1, . . . ,xd ] ·1. But as the sets
are disjoint, this cannot happen and we get the decomposition (5.14). �

Example 5.2.11. Consider the ideal I = 〈z3,yz2− xz2,y2− xy〉 ⊂ �[x,y,z]. A Pom-
maret basis of I for the degree reverse lexicographic order is given by the set
H = {z3,yz2− xz2,y2z− xyz,y2− xy} and thus both the depth and the dimension
of P/I is 1. Applying Algorithm 5.2, we obtain T = {1,y,z,yz,z2} (which is also
the complementary set of 〈z3,yz2,y2z,y2〉 ⊂�[y,z]) and the Hironaka decomposition
of P/I is given by

P/I ∼= �[x]⊕�[x] · y⊕�[x] · z⊕�[x] · yz⊕�[x] · z2 . (5.15)

The term z2 comes from the set (2) =
{
[0,1,2]

}
. The two terms yz and z arise

from (1) =
{
[0,2,1]

}
and finally both 1 and y stem from (0) =

{
[0,2,0]

}
. The set

(3) =
{
[0,0,3]

}
does not contribute to the decomposition. �
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5.3 Noether Normalisation and Primary Decomposition

An important operation in commutative algebra, e. g. in the context of dimension
theory, is the determination of a Noether normalisation for an algebra A = P/I
with an ideal I ⊆P . As a simple consequence of our results in the previous section,
we show now that any complementary quasi-Rees decomposition of I induces a
Noether normalisation ofA.

Proposition 5.3.1. Under the assumptions of Lemma 5.2.4, the restriction of the
canonical projection π : P →A to �[Xt̄ ] defines a Noether normalisation for A.

Proof. By Proposition 5.2.5, the set Xt̄ is strongly independent modulo I and thus
also independent modulo I, i. e. I ∩�[Xt̄ ] = {0} implying that the restriction of π
to �[Xt̄ ] is injective. Furthermore, it follows immediately from the definition of a
complementary quasi-Rees decomposition that the algebra A is finitely generated
as a module over the ring �[Xt̄ ]. �

Remark 5.3.2. Recall from Lemma 5.2.4 that for any variable xi /∈ Xt̄ the minimal
basis of lt≺I contains an element of the form (xi)ei for some exponent ei ∈�. Thus
any Gröbner basis of I for the chosen term order ≺ must contain an element gi ∈ G
with lt≺ gi = (xi)ei . Assume now that ≺ is the lexicographic order. Then gi must be
of the form gi = (xi)ei +∑ei−1

j=0 Pi, j(xi) j with polynomials Pi, j ∈ �[x1, . . . ,xi−1]. Thus
in this case we even obtain a general Noether normalisation. �

Since any Pommaret basis of an ideal I yields even a Rees decomposition, the
existence of a Noether normalisation for every affine algebra A= P/I follows im-
mediately from Theorem 4.3.15 asserting the existence of a Pommaret basis for
every ideal I in appropriately chosen coordinates. Comparing with classical exis-
tence proofs, one sees that using δ -regular coordinates x ensures that the ideal I is
in Noether position. However, the converse is generally not true: even if the vari-
ables x are chosen in such a way that �[x1, . . . ,xD] defines a Noether normalisation
of the algebraA, this fact is not sufficient for concluding that the ideal I possesses a
Pommaret basis. As we will show now, the existence of a Pommaret basis is equiv-
alent to a stronger property. Since a Noether normalisation of P/I automatically
induces one of P/ lt≺ I, it suffices to consider monomial ideals.

Definition 5.3.3. A monomial ideal I ⊆ P is called quasi-stable, if it possesses a
finite monomial Pommaret basis.

It makes indeed sense to provide a special name for this class of monomial ideals
(the reason for the terminology “quasi-stable” will become apparent in the next
section), as in the context of monomial ideals Theorem 4.3.15 is not that useful,
since the transformation to δ -regular coordinates usually yields an ideal which is
no longer monomial. Hence it is something particular, if a monomial ideal has a
monomial Pommaret basis. Recall from Example 3.1.16 that any Artinian monomial
ideal is quasi-stable.
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We now give a number of equivalent characterisations of quasi-stable ideals via
ideal quotients and saturations which are independent of the theory of Pommaret
bases and which demonstrate how natural the notion of quasi-stability is. They will
provide us with a further criterion for δ -regularity and also lead to a simple descrip-
tion of an irredundant primary decomposition of such ideals.

Proposition 5.3.4. Let I ⊆ P be a monomial ideal with dimP/I = D. Then the
following six statements are equivalent.

(i) I is quasi-stable.
(ii) The variable x1 is not a zero divisor for P/Isat and for all 1 ≤ j < D the

variable x j+1 is not a zero divisor for P/〈I,x1, . . . ,x j〉sat.
(iii) We have I : 〈x1〉∞ ⊆ I : 〈x2〉∞ ⊆ ·· · ⊆ I : 〈xD〉∞ and for all D < j ≤ n an

exponent k j ≥ 1 exists such that (x j)k j ∈ I.
(iv) For all 1≤ j ≤ n the equality I : 〈x j〉∞ = I : 〈x j, . . . ,xn〉∞ holds.
(v) For every associated prime ideal p ∈ Ass (P/I) an integer 1 ≤ j ≤ n exists

such that p = 〈x j, . . . ,xn〉.
(vi) If xμ ∈I and μi > 0 for some 1≤ i < n, then for each 0 < r≤ μi and i < j≤ n

an integer s≥ 0 exists such that xμ−ri+s j ∈ I.

Proof. We begin with showing the equivalence of (i) and (iii). Assume first that the
ideal I is quasi-stable with Pommaret basis H. The existence of a term (x j)k j ∈ I
for all D < j ≤ n follows then immediately from Proposition 5.2.3. Now consider
a term xμ ∈ I : 〈xk〉∞ \I for some 1 ≤ k ≤ n. By definition of a colon ideal, there
exists an integer � such that (xk)�xμ ∈ I and hence a generator xν ∈ H such that
xν |P (xk)�xμ . If clsν > k, then ν would also be an involutive divisor of μ contradict-
ing the assumption xμ /∈ I. Thus we find clsν ≤ k and νk > μk.

Next we consider for arbitrary exponents m > 0 the terms (xk+1)mxν ∈ I. For

each m a generator xρ
(m) ∈ H exists which involutively divides (xk+1)mxν . By the

same reasoning as above, clsxρ
(m)

> k +1 is not possible for an involutively autore-

duced basisH yielding the estimate clsν ≤ clsxρ
(m) ≤ k + 1.

We claim now that there exists an integer m0 such that ρ (m) =ρ (m0) for all m≥m0

and clsxρ
(m0)

= k+1. Indeed, if clsxρ
(m)

< k+1, then we must have ρ (m)
k+1 = vk+1 +m,

since xk+1 is not multiplicative for xρ
(m)

. Hence xρ
(m)

cannot be an involutive divisor
of (xk+1)m+1xν and ρ (m+1) /∈ {ρ (1), . . . ,ρ (m)}. As the Pommaret basis H is a finite

set, clsxρ
(m0)

= k +1 for some value m0 > 0. Hence xk+1 is multiplicative for xρ
(m0)

and xρ
(m0)

is an involutive divisor of (xk+1)mxν for all values m≥ m0.

By construction, the generator xρ
(m0)

is also an involutive divisor of (xk+1)m0 xμ ,
as the variable xk is multiplicative for it. Hence this term must lie in I and con-
sequently xμ is contained in I : 〈xk+1〉∞. Thus we can conclude that the inclusion
I : 〈xk〉∞ ⊆ I : 〈xk+1〉∞ holds. This proves (iii).

For the converse assume that (iii) holds and let B be the minimal basis of the
ideal I. Let xμ ∈ B be an arbitrary term of class k. Then xμ/xk ∈ I : 〈xk〉∞. By
assumption, this means that xμ/xk ∈ I : 〈x�〉∞ for any non-multiplicative index �,
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too. Hence for each term xμ ∈ B and for each value cls (xμ) < � ≤ n there exists
an integer qμ,� such that (x�)qμ ,�xμ/xk /∈ I but (x�)qμ ,�+1xμ/xk ∈ I. For the values
1≤ �≤ clsxμ we set qμ,� = 0. Observe that if xν ∈B is a minimal generator dividing
(x�)qμ ,�+1xμ/xk, then xν ≺invlex xμ , since cls (xν)≥ cls (xμ) and νk < μk.

Consider now the set

H=
{

xμ+ρ | xμ ∈ B , ∀1≤ �≤ n : 0≤ ρ� ≤ qμ,�

}
. (5.16)

We claim that it is a weak involutive completion of B and thus a weak Pommaret
basis of I. In order to prove this assertion, we must show that each term xλ ∈ I lies
in the involutive cone of a member ofH.

As the term xλ is assumed to be an element of I, we can factor it in the form
xλ = xσ

(1)
xρ

(1)
xμ

(1)
where xμ

(1) ∈B is a minimal generator, xσ
(1)

contains only multi-

plicative variables for xμ
(1)

and xρ
(1)

only non-multiplicative ones. If xμ
(1)+ρ(1) ∈H,

then we are done, as obviously cls
(
xμ

(1)+ρ(1))
= cls

(
xμ

(1))
and hence all variables

contained in xσ
(1)

are multiplicative for xμ
(1)+ρ(1)

, too.
Otherwise there must exist at least one non-multiplicative variables x� such that

ρ (1)
� > qμ(1),�. Any minimal generator xμ

(2) ∈ B dividing (x�)
q
μ(1) ,�

+1
xμ

(1)
/xk is also

a divisor of xλ and we find a second factorisation xλ = xσ
(2)

xρ
(2)

xμ
(2)

where again

xσ
(2)

consists only of multiplicative and xρ
(2)

only of non-multiplicative variables for

the term xμ
(2)

. If xμ
(2)+ρ(2) ∈ H, then we are done by the same argument as above;

otherwise we iterate.
According to the observation above, the sequence (xμ

(1)
,xμ

(2)
, . . .) of minimal

generators constructed this way is strictly descending with respect to the inverse
lexicographic order. However, the minimal basis B is a finite set and the iteration
cannot go on infinitely. As the iteration only stops, if there exists an involutive cone
containing xλ , the involutive span ofH is indeed I and the ideal I quasi-stable.

Next we consider the implication “(ii)⇒ (iii)”. One easily verifies that (ii) im-
plies Isat∩�[x1, . . . ,xD] = {0} and hence {x1, . . . ,xD} is an independent set modulo
the ideal I (trivially I ⊆ Isat). Since D = dimP/I, it must in fact be a maximal
independent set. Hence dimP/〈I,x1, . . . ,xD〉= 0 which is equivalent to the second
assertion in (iii).

For the first assertion we note that trivially I : 〈xk〉∞ ⊇ Isat for any 1 ≤ k ≤ n.
As by assumption x1 is not a zero divisor on P/Isat, we must have I : 〈x1〉∞ = Isat

and consequently I : 〈x1〉∞ ⊆ I : 〈x2〉∞. Suppose now that we have already shown
I : 〈x1〉∞ ⊆ ·· · ⊆ I : 〈x j〉∞ for some 1 < j < D and that xμ ∈ I : 〈x j〉∞. Ob-
viously, then (x j)�xμ ∈ I ⊆ 〈I,x1, . . . ,x j−1〉 for some � > 0. As x j is by as-
sumption a non zero divisor on P/〈I,x1, . . . ,x j−1〉sat, this observation entails that
xμ ∈ 〈I,x1, . . . ,x j−1〉sat ⊆ I : 〈x j+1〉∞ and we can prove (iii) by induction.

The implication “(iii)⇒ (iv)” is trivial to prove: since by assumption I : 〈x1〉∞⊆
I : 〈x2〉∞ ⊆ ·· · ⊆ I : 〈xD〉∞ ⊆ P = I : 〈xD+1〉∞ = · · · = I : 〈xn〉∞, we have the
inclusion I : 〈x j〉∞ ⊆ I : 〈xk〉∞ whenever j < k entailing our claim.
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Now we claim that (iv) entails 〈I,x1, . . . ,x j−1〉sat = 〈I,x1, . . . ,x j−1〉 : 〈x j〉∞
which in turn immediately implies (ii). If xμ ∈ 〈I,x1, . . . ,x j−1〉 : 〈x j〉∞, then we
have either xμ ∈ 〈I,x1, . . . ,x j−1〉 or xμ ∈ I : 〈x j〉∞. Since we have by assumption
I : 〈x j〉∞ = I : 〈x j, . . . ,xn〉∞ ⊆ 〈I,x1, . . . ,x j−1〉sat, our claim follows (the converse
inclusion is trivial).

The equivalence of (i) and (vi) is a consequence of the Lemmata 4.3.2 and 4.3.3.
Note that it suffices to consider r = 1, as the general case follows by an easy induc-
tion. For the direction “(i)⇒ (vi)” we choose s so large that |μ |+ s = q−1 > degH
where H is as usual the Pommaret basis of I. Now (vi) is obtained by applying
Lemma 4.3.3 to the Pommaret basis Hq of I≥q. For the converse we choose a
value q so large that for each possible choice of μ , i, j and r an s exists such that
μ − ri + s j ∈ Iq. Then the basis Bq of Iq satisfies the assumptions of the reverse
direction of Lemma 4.3.3 implying (i).

Finally, we discuss the equivalence of (iv) and (v). Suppose first that (iv) holds.
Any associated prime p of a monomial ideal I is itself a monomial ideal and thus
minimally generated by variables (see Remark B.1.18). Assume that p = I : f for a
polynomial f ∈P is an associated prime ideal of I and x j ∈ p. Thus f ∈I : 〈x j〉∞ =
I : 〈x j, . . . ,xn〉∞ trivially implying that 〈x j, . . . ,xn〉 ⊆ p and hence (v).

For the converse let I = q1∩·· ·∩qt be an irredundant monomial primary decom-
position (which always exists by Theorem B.1.17 and Remark B.1.18). If J ⊆P is
any ideal, then I : J∞ =

⋂t
k=1 qk : J∞. Hence it suffices to show that (iv) holds

for every primary component qk. By (v), any associated prime ideal pk =
√

qk is
of the form pk = 〈xi, . . . ,xn〉. Thus the ideal qk contains for each i ≤ j ≤ n a term
(x j)� j so that qk : 〈x j〉∞ = qk : 〈x j, . . . ,xn〉∞ = P and for each 1 ≤ j < i we find
qk : 〈x j〉∞ = qk : 〈x j, . . . ,xn〉∞ = qk implying that indeed (iv) holds. �

It is easy to see that quasi-stability is preserved under basic operations with
monomial ideals like taking their sum or product.

Lemma 5.3.5. Let I1,I2 ⊆ P be two quasi-stable ideals. Then their sum I1 + I2,
their product I1 · I2 and their intersection I1 ∩I2 are quasi-stable, too. If I ⊆ P
is a quasi-stable ideal, then the quotient I : J is again quasi-stable for arbitrary
monomial ideals J ⊆ P .

Proof. For the sum I1 + I2 the claim follows immediately from Remark 3.1.13
which asserts that the unionH1∪H2 of (weak) Pommaret basesHk of Ik is a weak
Pommaret basis of the sum I1 +I2. Similarly, the case of both the product I1 · I2

and the intersection I1∩I2 was settled in Remark 4.1.6 where for both ideals weak
Pommaret bases were constructed.

For the last assertion we use Part (vi) of Proposition 5.3.4. If J is minimally
generated by the monomials m1, . . . ,mr, then I : J =

⋂r
k=1I : mk and thus it suffice

to consider the case that J is a principal ideal with a generator xν ∈�. Assume that
xμ ∈ I : xν and that μi > 0. Since xμ+ν lies in the quasi-stable ideal I, we find for
each 0 < r ≤ μi and i < j ≤ n an integer s≥ 0 such that xμ+ν−ri+s j ∈ I. As r ≤ μi,
this observation trivially implies that xμ−ri+s j ∈ I : xν . �
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Remark 5.3.6. Above we actually proved that (iii) may be replaced by the equivalent
statement I : 〈x1〉∞ ⊆ I : 〈x2〉∞ ⊆ ·· · ⊆ I : 〈xn〉∞ which does not require a priori
knowledge of D (the dimension D arises then trivially as the smallest value k such
that I : 〈xk〉∞ = P , i., e, for which I contains a minimal generator (xk)� for some
exponent � > 0). In this formulation it is straightforward to verify (iii) effectively:
bases of the colon ideals I : 〈xk〉∞ are easily obtained by setting xk = 1 in any
basis of I and for monomial ideals it is trivial to check inclusion, as one must only
compare their minimal bases.

We furthermore note that if we have for some value 1 ≤ k ≤ n an ascending
chain I : 〈x1〉∞ ⊆ I : 〈x2〉∞ ⊆ ·· · ⊆ I : 〈xk〉∞, then for each 1 ≤ j ≤ k the min-
imal basis B j of I : 〈x j〉∞ lies in �[x j+1, . . . ,xn]. Indeed, no element of B j can
depend on x j. Now assume that xν ∈ B j satisfies clsν = � < j. Then (x j)mxν is a
minimal generator of I for some suitable exponent m ∈ �0. This in turn implies
that (x j)mxν/(x�)ν� ∈ I : 〈x�〉∞ ⊆ I : 〈x j〉∞ and hence xν/(x�)ν� ∈ I : 〈x j〉∞ which
contradicts our assumption that xν was a minimal generator. �

Part (iii) of Proposition 5.3.4 provides us with a simple effective criterion for
δ -regularity, as it is straightforward to determine the required saturations and verify
wether they form an ascending chain. With its help, we can furthermore show that
δ -singular coordinates for a (polynomial) ideal I ⊆ P cannot be asymptotically
regular for a Pommaret (head)autoreduced Gröbner basis G of I. Since in this case
lt≺I = 〈lt≺G〉 is not quasi-stable, this assertion is an immediate consequence of the
following result and Theorem 4.3.12.

Proposition 5.3.7. Let I ⊆ P be a monomial ideal and the set B ⊂ I a finite mono-
mial basis of it. If I is not quasi-stable, then at least for one generator contained in
the basis B a variable exists which is Janet but not Pommaret multiplicative.

Proof. As the ideal I is not quasi-stable, there exists a minimal value 1 ≤ k < n
such that I : 〈xk〉∞ � I : 〈xk+1〉∞. Let xμ be a minimal generator of I : 〈xk〉∞
which is not contained in I : 〈xk+1〉∞. Then for a suitable exponent m ∈ �0 the
term xμ̄ = (xk)mxμ is a minimal generator of I and hence contained in B.

We claim now that B contains a generator for which xk+1 is Janet but not Pom-
maret multiplicative. If xk+1 ∈ XJ,B(xμ̄), then we are done, as according to Re-
mark 5.3.6 cls μ̄ = k and hence xk+1 /∈ XP(xμ̄). Otherwise B contains a term xν

such that ν� = μ� for k + 1 < �≤ n and νk+1 > μk+1. If several generators with this
property exist in B, we choose one for which νk+1 takes a maximal value so that
we have xk+1 ∈ XJ,B(xν ) by definition of the Janet division. If clsν < k + 1, we are
again done, as then xk+1 /∈ XP(xν ). Now assume that clsν = k + 1 and consider the
term xρ = xν/(xk+1)νk+1 . Obviously, xρ ∈ I : 〈xk+1〉∞ contradicting our assumption
xμ /∈ I : 〈xk+1〉∞ since xρ | xμ . Hence this case cannot arise. �

We mentioned above that while δ -regular coordinates ensure that I is in Noether
position the converse is not true. Based on Condition (v) in Proposition 5.3.4, we
can now formulate a converse for monomial ideals. It shows that a Pommaret basis
of a monomial ideal induces not only a Noether normalisation of the ideal itself but
simultaneously of all its primary components.
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Corollary 5.3.8. Let I ⊆ P be a monomial ideal with dimP/I = D. Furthermore,
let I = q1∩·· · ∩qr be an irredundant monomial primary decomposition with D j =
dimP/q j for 1 ≤ j ≤ r. The ideal I is quasi-stable, if and only if �[x1, . . . ,xD]
defines a Noether normalisation of P/I and �[x1, . . . ,xDj ] one of P/q j for each
primary component q j.

Proof. By assumption, each q j is a monomial primary ideal. This implies that
�[x1, . . . ,xDj ] defines a Noether normalisation of P/q j, if and only if the associ-
ated prime ideal is

√
q j = 〈xDj+1, . . . ,xn〉. Now the assertion follows immediately

from Condition (v) in Proposition 5.3.4. �

We may also exploit Proposition 5.3.4 for actually deriving an irredundant pri-
mary decomposition I = q1 ∩ ·· · ∩ qt with monomial ideals q j for an arbitrary
quasi-stable ideal I. We first note that the proof of the implication “(v) ⇒ (iv)”
in Proposition 5.3.4 has some simple consequences for the form of such a decom-
position I = q1 ∩ ·· · ∩ qt of a quasi-stable ideal I. Let again D = dimP/I. Then
p = 〈xD+1, . . . ,xn〉 is the unique minimal prime ideal associated to I and the corre-
sponding unique primary component is given by I : 〈xD〉∞ (if D = 0, then obviously
I is already a primary ideal). More generally, we find for any 1≤ k ≤ D that

I : 〈xk〉∞ =
⋂

p j⊆〈xk+1,...,xn〉
q j (5.17)

where p j = √
q j is the corresponding associated prime ideal (note that these im-

mediately implies that I : 〈xk〉∞ is quasi-stable, too). Based on these observations,
an irredundant primary decomposition can be constructed by working backwards
through the chain I ⊆ I : 〈x1〉∞ ⊆ I : 〈x2〉∞ ⊆ ·· · ⊆ I : 〈xn〉∞.

Let d = depthP/I, i. e. d + 1 is the minimal class of a generator in the Pom-
maret basis H of I according to Proposition 5.2.7.3 For 1 ≤ k ≤ D we set sk =
min{s | I : 〈xk〉s = I : 〈xk〉s+1}, i. e. sk is the highest xk-degree of a minimal gener-
ator of I. Finally, we introduce the ideals

Jk = I+ 〈(xk+1)sk+1 , . . . ,(xD)sD〉 (5.18)

and their saturations

qk = Jk : 〈xk〉∞ = I : 〈xk〉∞ + 〈(xk+1)sk+1 , . . . ,(xD)sD〉 . (5.19)

It is easy to see that all the ideals Jk are again quasi-stable provided the original
ideal I is quasi-stable (this follows immediately from Proposition 5.3.4 and the fact
that in this case (I : 〈xi〉∞) : 〈x j〉∞ = I : 〈x j〉∞ for i < j). For notational simplicity
we formally define I : 〈x0〉∞ = I and q0 = J0 = I + 〈(x1)s1 , . . . ,(xD)sD〉. Since
obviously dimP/Jk = k for 0≤ k ≤ D, it follows that qk is 〈xk+1, . . . ,xn〉-primary.

3 Note that for determining the depth d in the case of a quasi-stable ideal, it is not necessary to com-
pute the Pommaret basis: since multiplication with a non-multiplicative variable never decreases
the class, d +1 is also the minimal class of a minimal generator.
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Proposition 5.3.9. Let I ⊆ P be a quasi-stable ideal. Then I =
⋂D

k=d qk defines
a primary decomposition of it. Eliminating all those primary ideals qk for which
I : 〈xk〉∞ = I : 〈xk+1〉∞ makes it an irredundant decomposition.

Proof. We first show that the equality I : 〈xk〉∞ =
⋂D

�=k q� holds or equivalently
that I : 〈xk〉∞ = qk ∩ (I : 〈xk+1〉∞) for 0≤ k≤ n; for k = d this represents the first
statement of the proposition, since obviously I : 〈x0〉∞ = · · · = I : 〈xd〉∞ = I. By
definition of the value sk+1, we have that (see e. g. [185, Lemma 3.3.6])

I : 〈xk〉∞ =
(
I : 〈xk〉∞ + 〈(xk+1)sk+1〉

)
∩
(
(I : 〈xk〉∞) : 〈xk+1〉∞

)
. (5.20)

The second factor obviously equals I : 〈xk+1〉∞. To the first one we apply the same
construction and decompose

I : 〈xk〉∞ + 〈(xk+1)sk+1〉=
=
(
I : 〈xk〉∞ + 〈(xk+1)sk+1 ,(xk+2)sk+2〉

)
∩

(
(I : 〈xk〉∞ + 〈(xk+1)sk+1〉) : 〈xk+2〉∞

)

=
(
I : 〈xk〉∞ + 〈(xk+1)sk+1 ,(xk+2)sk+2〉

)
∩

(
I : 〈xk+2〉∞ + 〈(xk+1)sk+1〉

)
.

(5.21)

Continuing in this manner, we arrive at a decomposition

I : 〈xk〉∞ = qk ∩·· ·∩ (I : 〈xk+1〉∞) (5.22)

where the dots on the right hand side represent further ideals which are of the form
I : 〈x�〉∞ + 〈(xk+1)sk+1 , . . . ,(x�−1)s�−1〉 with � ≥ k + 2. Since we assume that I is
quasi-stable, the colon ideal I : 〈xk+1〉∞ is contained in each of them and we may
omit them which proves our claim.

In the thus obtained primary decomposition of I the radicals of all appearing
primary ideals are pairwise different. Furthermore, it is obvious that qk is redundant
whenever I : 〈xk〉∞ = I : 〈xk+1〉∞. Thus there only remains to prove that all the
other primary ideals qk are indeed necessary. Assume that I : 〈xk〉∞ � I : 〈xk+1〉∞
(which is in particular the case for k < d). Then there exists a minimal generator xμ

of I : 〈xk+1〉∞ which is not contained in I : 〈xk〉∞. Consider the monomial (xk)sk xμ .
It cannot lie in I : 〈xk〉∞, as otherwise already xμ ∈I : 〈xk〉∞, and thus it also cannot
be contained in qk (since we showed above that I : 〈xk〉∞ = qk∩(I : 〈xk+1〉∞)). On
the other hand we find that (xk)sk xμ ∈ q� for all � > k since then I : 〈xk+1〉∞ ⊆ q�

and for all � < k since then 〈(xk)sk 〉 ⊆ q�. Hence qk is not redundant. �

We remarked already above that the ideals I : 〈xk〉∞ are again quasi-stable. It is
straightforward to obtain Pommaret bases for them. We disjointly decompose the
monomial Pommaret basis H =H1∪·· · ∪Hn where Hk contains all generators of
class k. Furthermore, we write H′

k for the set obtained by setting xk = 1 in each
generator in Hk.
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Lemma 5.3.10. For any 1≤ k≤ n the setH′ =H′
k∪
⋃n

�=k+1H� is a weak Pommaret
basis of the colon ideal I : 〈xk〉∞.

Proof. We first show thatH′ is an involutive set. By definition of the Pommaret di-
vision, it is obvious that the subset

⋃n
�=k+1H� is involutive. Thus there only remains

to consider the non-multiplicative products of the members of H′
k. Take xμ ∈ H′

k
and let x� be a non-multiplicative variable for it. Obviously, there exists an m > 0
such that (xk)mxμ ∈Hk and hence a generator xν ∈⋃n

�=kH� such that x�(xk)mxμ lies
in the involutive cone CP(xν). Writing x�(xk)mxμ = xρ+ν , we distinguish two cases.
If clsν > k, then ρk = m and we can divide by (xk)m in order to obtain an involutive
standard representation of x�xμ with respect toH′. If clsν = k, then the multi index
ρ is of the form rk, i. e. only the kth entry is different from zero, and we even find
that x�xμ = xν/(xk)r ∈H′

k.
Thus there only remains to prove thatH′ is actually a generating set for I : 〈xk〉∞.

For this we first note that the Pommaret basis of a quasi-stable ideal contains a gener-
ator of class k only, if there is a minimal generator of class k, as applying the mono-
mial completion Algorithm 4.1 to the minimal basis adds only non-multiplicative
multiples of the minimal generators (and these are trivially of the same class). By
Remark 5.3.6, all minimal generators of I : 〈xk〉∞ have at least class k + 1. Thus
setting xk = 1 in any member of

⋃k−1
�=1 H� can never produce a minimal generator

of I : 〈xk〉∞ and thus H′ is a weak involutive completion of the minimal basis of
I : 〈xk〉∞. According to Proposition 3.1.12, an involutive autoreduction yields a
strong basis. �

The ideals 〈(xk+1)sk+1 , . . . ,(xD)sD〉 are trivially irreducible and for k ≥ d exactly
of the form that they possess a Pommaret basis as discussed in Example 3.1.16.
There we also provided an explicit Pommaret basis for such an ideal. Since accord-
ing to Remark 3.1.13 the union of two (weak) Pommaret bases of two monomial
ideals I1, I2 yields a weak Pommaret basis of I1 + I2, we obtain this way easily
weak Pommaret bases for all primary ideals qk appearing in the irredundant decom-
position of Proposition 5.3.9.

Thus the crucial information for obtaining an irredundant primary decomposi-
tion of a quasi-stable ideal I is where “jumps” are located, i. e. where I : 〈xk〉∞ �

I : 〈xk+1〉∞. Since these ideals are quasi-stable, the positions of the jumps are de-
termined by their depths. A chain with all the jumps is obtained by the following
simple recipe: set I0 = I and define Ik+1 = Ik : 〈xdk 〉∞ where dk = depthIk. This
leads to the sequential chain of I:

I0 = I � I1 � · · ·� Ir = P . (5.23)

Remark 5.3.11. With the help of the sequential chain one can easily show that any
quasi-stable ideal is sequentially Cohen–Macaulay (following Stanley [433], the
�-algebra A = P/I is called sequentially Cohen–Macaulay, if a chain of ideals
I0 = I ⊂ I1 ⊂ ·· · ⊂ Ir = P exists such that all quotients Ik+1/Ik are Cohen–
Macaulay and their dimensions are ascending: dim(Ik/Ik−1) < dim(Ik+1/Ik)).

Indeed, consider the elimination ideal Jk = Ik∩�[xdk , . . . ,xn]. By Remark 5.3.6,
Jk has the same minimal generators as Ik; furthermore, by Proposition 5.3.4 (iv)
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J sat
k = Jk : 〈xdk〉∞. Hence, going back to the full polynomial ring P , we find that
Ik+1 = 〈J sat

k 〉P and

Ik+1/Ik
∼= (J sat

k /Jk)[x1, . . . ,xdk−1] . (5.24)

Since the factor ring J sat
k /Jk is trivially finite (as a �-linear space), the quotient

Ik+1/Ik is thus a (dk−1)-dimensional Cohen–Macaulay module.
As another simple application of the sequential chain we characterise those quasi-

stable ideals which have the saturated chain property. An ideal I ⊂ P has the sat-
urated chain property, if to every non-minimal associated prime ideal p ∈ AssI a
further associated prime p′ ⊂ p exists with dimP/p′ = dimP/p+ 1. By Proposi-
tion 5.3.9, this is the case for a quasi-stable ideal, if and only if no jumps occur in
the sequential chain, i. e. if always depthJk+1 = depthJk + 1 for k > 0. �

Addendum: Standard Pairs

Another kind of combinatorial decomposition, albeit not a disjoint one, can be
obtained via the standard pairs. We will now show how they are related to Stan-
ley decompositions. Consider pairs (ν,Nν ) where ν ∈ �n

0 is a multi index and
Nν ⊆ {1, . . . ,n} a set of associated indices. Such a pair is called admissible, if
suppν ∩Nν = ∅, i. e. if νi = 0 for all i ∈ Nν . On the set of admissible pairs one
defines a partial order: (ν,Nν )≤ (μ ,Nμ) if and only if the restricted cone μ+�n

Nμ
is completely contained in ν +�n

Nν . Obviously, this containment is equivalent to
ν | μ and any index i such that either μi > νi or i ∈ Nμ also lies in Nν .

Definition 5.3.12. Let I ⊆ �n
0 be an arbitrary monoid ideal. An admissible pair

(ν,Nν ) is called standard for I, if ν +�n
Nν ∩I = ∅ and (ν,Nν ) is minimal with

respect to ≤ among all admissible pairs with this property. We denote the set of all
standard pairs of the ideal I by SI .

Proposition 5.3.13. Let I ⊆ �n
0 be an arbitrary monoid ideal. Then the comple-

mentary set I of I can be written in the form

I =
⋃

(ν,Nν )∈SI

(
ν+�n

Nν

)
(5.25)

and I can be decomposed as

I =
⋂

(ν,Nν )∈SI

〈
(νi + 1)i | i /∈ Nv

〉
. (5.26)

Proof. For the first assertion assume that μ ∈ I . Then the pair (μ ,∅) is trivially ad-
missible and hence either (μ ,∅) ∈ SI or the set SI contains a standard pair (ν,Nν )
such that (ν,Nν )≤ (μ ,∅). In both cases the multi index μ is part of the union on the
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right hand side of (5.25). The second assertion is a corollary of the first one: a multi
index μ is contained in the ideal I, if and only if it is not contained in any of the re-
stricted cones ν+�n

Nν defined by the standard pairs. But the condition μ /∈ ν+�n
Nν

is obviously equivalent to μ ∈ 〈(νi + 1)i | i /∈ Nv〉. �

The ideals on the right hand side of (5.26) are obviously irreducible and thus
primary (cf. Remark B.1.18), so that (5.26) actually represents a primary decom-
position of the ideal I. In general, this decomposition is highly redundant. Let
N ⊆ {1, . . . ,n} be an arbitrary subset and consider all standard pairs (ν,Nν ) with
Nν = N. Obviously, among these only the ones with multi indices ν which are max-
imal with respect to divisibility are relevant for the decomposition (5.26) and in fact
restricting to the corresponding ideals yields the irredundant irreducible decomposi-
tion of I (which is unique according to [322, Thm. 5.27]). Their intersection defines
a possible choice for the primary component for the prime ideal pN = 〈xi | i /∈ N〉 (as
a trivial corollary of these considerations the standard pairs immediately yield the
set Ass (P/I) of associated prime ideals, as it consists of all prime ideals pN such
that a standard pair (ν,N) exists).

We now show that SI may be extracted from any complementary decomposition
using the simple Algorithm 5.3. Thus once a Janet basis of I is known, we can
immediately use Janet’s Algorithm 5.2 for the construction of a complementary
decomposition and then obtain the standard pairs.

Algorithm 5.3 Standard pairs
Input: finite complementary decomposition TI of monoid ideal I ⊆�n

0
Output: set SI of standard pairs of I
1: SI ←∅
2: for all (ν ,Nν ) ∈ TI do
3: Nν ← suppν ∩Nν
4: if Nν = ∅ then
5: SI ←SI ∪

{
(ν ,Nν )

}

6: else
7: ν← ν−∑i∈Nν

(νi)i

8: SI ←SI ∪
{
(ν ,Nν )

}

9: end if
10: end for
11: return set of minimal elements of SI with respect to≤

Algorithm 5.3 performs the following trivial operation. Let the finite input set
TI =

{
(ν,Nν ) | ν ∈�n

0,Nν ⊆ {1, . . . ,n}
}

define a complementary decomposition
of the monoid ideal I. If the pair (ν,Nν )∈ TI is not admissible, then we substitute it
by the pair (ν̄ ,Nν) where ν̄i = 0 for all i ∈ Nν and ν̄i = νi else. Obviously, this new
pair is admissible and the thus obtained set SI still defines a (no longer disjoint)
decomposition of the complementary set I. Finally, we eliminate all pairs in SI
which are not minimal with respect to the partial order≤.
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Proposition 5.3.14. Let TI be a finite complementary decomposition of the monoid
ideal I ⊆�n

0. Then Algorithm 5.3 correctly computes with TI as input the set SI
of standard pairs of I.

Proof. It is trivial to see that the set SI computed by Algorithm 5.3 contains only
admissible pairs and that ν +�n

Nν ⊆ I for any pair (ν,Nν ) ∈ SI . Thus there only
remains to show that all standard pairs are contained in SI .

Let (μ ,Nμ) be an admissible pair such that μ +�n
Nμ ⊆ I. Since the union of

the cones ν +�n
Nν with (ν,Nν ) ∈ SI still covers I, the finiteness of SI implies

the existence of a multi index μ ∈ μ +�n
Nμ and a pair (ν,Nν ) ∈ SI such that

μ +�n
Nμ ⊆ ν +�n

Nν (obviously, it is not possible to cover μ +�n
Nμ with a finite

number of lower-dimensional cones). As both (μ ,Nμ) and (ν,Nν ) are admissible
pairs, this entails that in fact (ν,Nν ) ≤ (μ ,Nμ). Hence either (μ ,Nμ) ∈ SI or it is
not a standard pair. �
Remark 5.3.15. If we use the decomposition (5.4) derived from a Pommaret basis
of degree q, then the determination of the set SI is completely trivial. For all pairs
(ν,Nν ) ∈ TI with |ν| < q we have Nν = ∅ and hence they are admissible. For all
other pairs we find by definition of the Pommaret division that suppν ∩Nν = {k}
with k = clsν and hence none of them is admissible. In Line /7/ Algorithm 5.3
simply sets the first non-vanishing entry of such multi indices to zero. �
Example 5.3.16. Let us continue with the ideal studied in Example 5.2.11. It follows
from the Hironaka decomposition (5.15) that a complementary decomposition of the
monoid ideal le≺I = 〈[0,0,3], [0,1,2], [0,2,0]〉 is given by

SI =
{(

[0,0,0],{1}
)
,
(
[0,1,0],{1}

)
,
(
[0,0,1],{1}

)
,

(
[0,1,1],{1}

)
,
(
[0,0,2],{1}

)} (5.27)

and one easily verifies that these are all standard pairs.
If we exploit the Pommaret basis given in Example 5.2.11, then the comple-

mentary decomposition constructed via Proposition 5.1.6 is much larger. Besides
many multi indices without any multiplicative indices, we obtain the following
six multi indices for which 1 is the sole multiplicative index: [3,0,0], [2,1,0],
[2,0,1], [1,1,1], [1,2,0] and [1,0,2]. After setting the first entry to zero, we find
precisely the multi indices appearing in (5.27) plus the multi index [0,2,0]. As(
[0,1,0],{1}

)
<
(
[0,2,0],{1}

)
, the latter pair is not minimal. The same holds for

all pairs corresponding to the multi indices without multiplicative indices and hence
we also arrive at (5.27). �
Remark 5.3.17. Our considerations above also provide us with a simple direct proof
of the implication “(i) ⇒ (v)” in Proposition 5.3.4. If the ideal I is quasi-stable,
then I admits a complementary Rees decomposition according to Proposition 5.1.6.
Together with Proposition 5.3.14 this observation trivially implies that all associated
prime ideals are of the form p = 〈x j, . . . ,xn〉. �
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5.4 Syzygies and Free Resolutions

Appendix B.4 shows that Gröbner bases are very useful in syzygy theory: if we
determine a Gröbner basis with the Buchberger Algorithm B.3, then the Schreyer
Theorem B.4.27 gives us directly a Gröbner basis of the first syzygy module (with
respect to a special term order). In this section we consider the use of involutive
bases for syzygy computations. It will turn out that in particular Pommaret bases
allow us to make statements not only about the first syzygy module but about a
whole syzygy resolution.

In this section we cannot avoid the explicit use of (free) P-modules and we
employ the vector notation introduced in Appendix B.4. Let H ⊂ Pm be a fi-
nite subset of the free module Pm for some m ∈ �, ≺ a term order on the set
of vector terms �m and L an involutive division on �n

0. We divide H into the
m disjoint subsets Hα =

{
h ∈ H | lt≺ h = teα , t ∈ �

}
according to the position

of the leading term. This partitioning leads naturally to m sets of multi indices
Bα =

{
μ ∈�n

0 | xμeα ∈ lt≺Hα
}

. If we assign now to each generator h ∈ Hα the
multiplicative variables XL,H,≺(h) =

{
xi | i ∈ NL,Bα (le≺ h)

}
, then an obvious gen-

eralisation of (3.31) defines the involutive span 〈H〉L,≺ of the set H. Thus for the
assignment of the multiplicative variables we compare only those generators which
have their leading terms in the same component. The definition of (weak and strong)
involutive bases for submodules U ⊆ Pm proceeds now in complete analogy to the
ideal case. In particular, all the theoretical results in Section 3.4 and all the algo-
rithms presented in Chapter 4 can be extended in a straightforward manner.

Let U ⊆ Pm be a submodule and H = {h1, . . . ,hs} an involutive basis of U , i. e.
we have 〈H〉L,≺ = U andH is involutively head autoreduced. Take an arbitrary ele-
ment hα ∈H and choose an arbitrary non-multiplicative variable xk ∈ XL,H,≺(hα).
By Theorem 3.4.4, we can determine with an involutive normal form algorithm

for each generator hβ ∈ H a unique polynomial P(α ;k)
β ∈ �[XL,H,≺(hβ )] such that

xkhα = ∑s
β=1 P(α ;k)

β hβ . The corresponding syzygy is

Sα ;k = xkeα −
s

∑
β=1

P(α ;k)
β eβ ∈ P s . (5.28)

We denote the set of all thus obtained syzygies by

HSyz =
{

Sα ;k | 1≤ α ≤ s; xk ∈ XL,H,≺(hα)
}

. (5.29)

Lemma 5.4.1. Let S =∑s
β=1 Sβ eβ ∈ Syz(H) be an arbitrary syzygy of the finite set

H⊂Pm. Then Sβ ∈ �[XL,H,≺(hβ )] for all 1≤ β ≤ s, if and only if S = 0.

Proof. By definition of a syzygy, ∑s
β=1 Sβhβ = 0. As the basis H is involutively

head autoreduced, each element f∈ 〈H〉 possesses a unique involutive standard rep-
resentation by Theorem 3.4.4. In particular, this holds for 0 ∈ 〈H〉. Thus either we
have Sβ /∈ �[XL,H,≺(hβ )] for at least one β or S = 0. �
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We recall from Example B.4.21 the definition of the term order ≺F on �s in-
duced by a finite set F = {f1, . . . , fs} ⊂ Pm and a term order ≺ on �m: given
two terms s = seσ and t = teτ , we set s ≺F t, if either lt≺ (sfσ ) ≺ lt≺ (tfτ) or
lt≺ (sfσ ) = lt≺ (tfτ) and τ < σ .

Corollary 5.4.2. If H ⊂ P is an involutive basis, then the set HSyz generates the
syzygy module Syz(H).

Proof. Let S = ∑s
β=1 Sβeβ by an arbitrary non-vanishing syzygy in Syz(H). By

Lemma 5.4.1, at least one of the coefficients Sβ must contain a term xμ with a
non-multiplicative variable x j ∈ XL,H,≺(hβ ). Let cxμeβ be the maximal such term
with respect to the term order ≺H and j the maximal non-multiplicative index with
μ j > 0. Then we eliminate this term by computing S′ = S− cxμ−1 j Sβ ; j. If S′ �= 0,
we iterate. Since all new terms introduced by the subtraction are smaller than the
eliminated term with respect to ≺H, we must reach zero after a finite number of
steps. Thus this computation leads to a representation of S as a linear combination
of elements ofHSyz. �

Let H = {h1, · · · ,hs} be an involutive basis and thus a Gröbner basis for the
term order ≺. Without loss of generality we may assume that H is a monic basis.
Set tα = lt≺ hα and tαβ = lcm(tα , tβ ). We have for every S-polynomial a standard
representation S≺(hα ,hβ ) = ∑s

γ=1 fαβγhγ where the polynomials fαβγ ∈ P satisfy
lt≺
(
S≺(hα ,hβ )

)
" lt≺ ( fαβγhγ ) for 1 ≤ γ ≤ s. Setting fαβ = ∑s

γ=1 fαβγeγ , we in-
troduce for α �= β the syzygy

Sαβ =
tαβ
tα

eα −
tαβ
tβ

eβ − fαβ . (5.30)

According to the Schreyer Theorem B.4.27, the set

HSchreyer = {Sαβ | 1≤ α < β ≤ s} (5.31)

of all these syzygies is a Gröbner basis of the first syzygy module Syz(H) with
respect to the induced term order ≺H.

We denote by S̃αβ =
tαβ
tα

eα −
tαβ
tβ

eβ the syzygy of the leading terms correspond-

ing to Sαβ and if S ⊆ HSchreyer is a set of syzygies, S̃ contains the corresponding
syzygies of the leading terms.

Lemma 5.4.3. Let the subset S ⊆ HSchreyer be such that S̃ generates Syz(lt≺H).
Then the subset S also generates Syz(H). Assume furthermore that the three pair-
wise distinct indices α , β , γ are such that4 Sαβ ,Sβγ ,Sαγ ∈ S and tγ | tαβ . Then the
smaller set S \{Sαβ} still generates Syz(H).

Proof. It is a classical result in the theory of Gröbner bases that S̃ \{S̃αβ} still gen-
erates Syz(lt≺H). Actually, this fact is the basic property underlying Buchberger’s

4 If α > β , then we understand that Sβα ∈ S etc.
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second criterion (see Proposition B.4.19) for avoiding redundant S-polynomials.
Thus it suffices to show the first assertion; the second one is a simple corollary.

Let R = ∑s
α=1 Rαeα ∈ Syz(H) be an arbitrary syzygy of the full generators and

set tR = max≺
{

lt≺ (Rαhα) | 1≤ α ≤ s
}

. Then

R̃ = ∑
lt≺ (Rαhα )=tR

lt≺ (Rαhα) ∈ Syz(lt≺H) . (5.32)

According to our assumption S̃ is a generating set of Syz(lt≺H), so that we may
write R̃ = ∑S̃∈S̃ PS̃S̃ for some coefficients PS̃ ∈ P . Let us now consider the syzygy
R′ = R−∑S∈S PS̃S. Obviously, tR′ ≺ tR. By iteration, we thus obtain in a finite
number of steps a representation R = ∑S∈S QSS and thus the set S generates the
module Syz(H). �

As a consequence of this simple lemma, we can now show that for each involutive
basisH the setHSyz given by (5.29) defines a Gröbner basis of the first syzygy mod-
ule Syz(H) for the term order ≺H. Note that this basis HSyz arises automatically
as a by-product during the determination of the involutive basis with Algorithm 4.5.
This fact is completely analogously to the automatic determination of the Gröbner
basisHSchreyer with the Buchberger Algorithm B.3.

Theorem 5.4.4. Let H be an involutive basis for the involutive division L and the
term order ≺. Then the set HSyz is a Gröbner basis of the syzygy module Syz(H)
for the term order ≺H.

Proof. Without loss of generality, we may assume that H is a monic basis, i. e. all
leading coefficients are 1. Let Sα ;k ∈ HSyz. As H is an involutive basis, the unique

polynomials P(α ;k)
β in (5.28) satisfy lt≺ (P(α ;k)

β hβ )� lt≺ (xkhα) and there exists only

one index β̄ such that lt≺ (P(α ;k)
β̄ hβ̄ ) = lt≺ (xkhα). It is easy to see that we have

Sα ;k = Sαβ̄ . ThusHSyz ⊆HSchreyer.
Let Sαβ ∈ HSchreyer \HSyz be an arbitrary syzygy. We first prove that the set

HSchreyer \ {Sαβ} still generates Syz(H). Any syzygy in HSchreyer has the form
Sαβ = xμeα − xνeβ + Rαβ . By construction, one of the monomials xμ and xν must
contain a non-multiplicative variable xk for hα or hβ , respectively. Without loss of
generality, we assume that xk ∈ XL,H,≺(hα) and μk > 0. Then HSyz contains the
syzygy Sα ;k and, as shown above, a unique index γ �= β exists such that Sα ;k = Sαγ .

Let Sαγ = xkeα − xρeγ + Rαγ . By construction, xρ tγ = xktα divides xμ tα = tαβ .
Thus tγ | tαβ and by Lemma 5.4.3 the set HSchreyer \ {Sαβ} still generates Syz(H).
If we try to iterate this argument, then we encounter the following problem. In order
to be able to eliminate Sαβ we need both Sαγ and Sβγ in the remaining set. For
Sαγ ∈ HSyz, this is always guaranteed. But we know nothing about Sβγ and, if it is
not an element ofHSyz, it could have been removed in an earlier iteration.

We claim that with respect to the term order ≺H the term lt≺H Sαβ is greater
than both lt≺H Sαγ and lt≺H Sβγ . Without loss of generality, we may assume for
simplicity that α < β < γ , as the syzygies Sαβ and Sβα differ only by a sign. Thus
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lt≺H Sαβ =
tαβ
tα

eα and similarly for Sαγ and Sβγ . Furthermore, tγ | tαβ trivially
implies tαγ | tαβ and hence tαγ ≺ tαβ for any term order ≺. Obviously, the same
holds for tβγ . Now a straightforward application of the definition of the induced
term order ≺H proves our claim.

Thus if in each step we remove the syzygy Sαβ ∈HSchreyer \HSyz whose leading
term is maximal with respect to the term order≺H, then it can never happen that the
syzygy Sβγ required for the application of Lemma 5.4.3 has already been eliminated
at an earlier stage andHSyz is a generating set of Syz(H).

It is a simple corollary of Schreyer’s Theorem B.4.27 thatHSyz is even a Gröbner
basis of Syz(H). Indeed, we know that HSchreyer is a Gröbner basis of Syz(H) for
the term order ≺H and it follows from our considerations above that whenever we
remove a syzygy Sαβ we still have in the remaining set at least one syzygy whose
leading term divides lt≺H Sαβ . Thus we find

〈lt≺H (HSyz)〉= 〈lt≺H (HSchreyer)〉= lt≺H Syz(H) (5.33)

which proves our assertion. �

This result is in so far not completely satisfying, as it only yields a Gröbner and
not an involutive basis of the syzygy module. The latter seems to be hard to achieve
for arbitrary involutive divisions L. However, for some divisions it is possible with
a little effort. The (technical) point is that for the order ≺H the ordering of the
generators in the basisH is important and we must choose the right one.

In order to obtain a good ordering, we associate a directed graph with each invo-
lutive basisH. Its vertices are the generators inH. If x j ∈ XL,H,≺(h) for an element
h∈H, then the involutive basisHmust contain a unique generator h̄ such that le≺ h̄
is an involutive divisor of le≺ (x jh). In this case we include a directed edge from h
to h̄. The thus defined graph is called the L-graph ofH.

Lemma 5.4.5. If the division L is continuous, then the L-graph of any involutive set
H⊂P is acyclic.

Proof. The leading exponents of the vertices of a path in an L-graph define a se-
quence as in Definition 4.1.3 of a continuous division. If the path is a cycle, then the
sequence contains identical elements contradicting the continuity of L. �

We order the elements of H as follows: whenever the L-graph of H contains a
path from hα to hβ , then we must haveα <β . Any ordering satisfying this condition
is called an L-ordering of H. Note that by Lemma 5.4.5 for a continuous division
L-orderings always exist (although they are in general not unique).

For the Pommaret division P it is easy to describe explicitly a P-ordering without
using the P-graph: we require that if either clshα < clshβ or clshα = clshβ = k
and and the last non-vanishing entry of le≺ hα − le≺ hβ is negative, then we must
have α < β . Thus we sort the generators hα first by their class and within each class
lexicographically. It is straightforward to verify that this defines indeed a P-ordering.
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Example 5.4.6. Let us consider the ideal I ⊂ �[x,y,z] generated by the six polyno-
mials h1 = x2, h2 = xy, h3 = xz− y, h4 = y2, h5 = yz− y and h6 = z2− z + x. One
easily verifies that they form a Pommaret basis H for the degree reverse lexico-
graphic order. The corresponding P-graph has the following form

h1

h2 h4

h5

h6

h5

h3

h5

h6

(5.34)

One clearly sees that the generators are already P-ordered, namely according to the
description above. �

The decisive observation about an L-ordering is that we can now easily determine
the leading terms of all syzygies Sα ;k ∈HSyz for the term order≺H.

Lemma 5.4.7. Let the elements of the involutive basisH⊂P be ordered according
to an L-ordering. Then the syzygies Sα ;k satisfy lt≺H Sα ;k = xkeα .

Proof. By the properties of the unique involutive standard representation, we have

in (5.28) lt≺ (P(α ;k)
β hβ )� lt≺ (xkhα) for all β and only one index β̄ exists for which

lt≺ (P(α ;k)
β̄ hβ̄ ) = lt≺ (xkhα). Thus le≺ hβ̄ is an involutive divisor of le≺ (xkhα) and

the L-graph ofH contains an edge from hα to hβ̄ . In an L-ordering, this fact implies

α < β̄ . Now the assertion follows from the definition of the term order≺H. �

There remains the problem of controlling the multiplicative variables associated
to these leading terms by the involutive division L. For arbitrary divisions it does not
seem possible to make any statement. Thus we simply define a class of involutive
divisions with the desired properties.

Definition 5.4.8. An involutive division L is of Schreyer type for the term order≺, if
for any involutive setH⊆P with respect to L and ≺ all sets XL,H,≺(h) with h ∈H
are again involutive.

Lemma 5.4.9. Both the Janet and the Pommaret division are of Schreyer type for
any term order ≺.

Proof. For the Janet division any set of variables, i. e. monomials of degree one, is
involutive. Indeed, let F be such a set and xk ∈ F , then

XJ,F (xk) = {xi | xi /∈ F ∨ i≤ k} (5.35)

which immediately implies the assertion. For the Pommaret division sets of non-
multiplicative variables are always of the form F = {xk,xk+1, . . . ,xn} and such a set
is trivially involutive with respect to the Pommaret division. �
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A simple example of an involutive division which is not of Schreyer type is pro-
vided by the Thomas division (cf. Example 3.1.3), as one easily sees that no set
consisting only of variables can be involutive for it.

Theorem 5.4.10. Let L be a continuous involutive division of Schreyer type for the
term order ≺ and H an L-ordered involutive basis of the polynomial submodule
U ⊆ Pm with respect to L and ≺. Then HSyz is an involutive basis of Syz(H) with
respect to L and the term order ≺H.

Proof. By Lemma 5.4.7, the leading term of Sα ;k ∈ HSyz is xkeα and we have one
such generator for each non-multiplicative variable xk ∈ XL,H,≺(hα). Since we as-
sume that L is of Schreyer type, these leading terms form an involutive set. As we
know already from Theorem 5.4.4 that HSyz is a Gröbner basis of Syz(H), the as-
sertion follows trivially. �

Example 5.4.11. We continue with the Pommaret basis H of Example 5.4.6. Since
all assumptions of Theorem 5.4.10 are satisfied for it, the eight syzygies

S1;3 = ze1− xe3− e2 , S2;3 = ze2− xe5− e2 , (5.36a)

S3;3 = ze3− xe6 + e5− e3 + e1 , S4;3 = ze4− ye5− e4 , (5.36b)

S5;3 = ze5− ye6 + e2 , S1;2 = ye1− xe2 , (5.36c)

S2;2 = ye2− xe4 , S3;2 = ye3− xe5 + e4− e2 (5.36d)

form a Pommaret basis of the syzygy module Syz(H) with respect to the induced
term order ≺H. Indeed, as

zS1;2 = yS1;3− xS2;3 + xS4;2 + S2;2 , (5.37a)

zS2;2 = yS2;3− xS4;3 + S2;2 , (5.37b)

zS3;2 = yS3;3− xS5;3−S2;3 + S4;3 + S3;2−S1;2 , (5.37c)

all products of the generators with their non-multiplicative variables possess an in-
volutive standard representation. �

Since Theorem 5.4.10 yields again an involutive basis, we may iterate its appli-
cation and construct this way a syzygy resolution for any polynomial submodule
U ⊆ Pm given an involutive basis of it for an involutive division of Schreyer type
(obviously, we can thus determine resolutions for arbitrary finitely presented mod-
ules M∼= Pm/U). Note, however, that after the first step this process requires to
compute explicitly involutive standard representations. We specialise now to Pom-
maret bases, as for them one can even make a number of statements about the size
of the resolution without actually performing these computations. In particular, we
immediately obtain a stronger form of Hilbert’s Syzygy Theorem B.4.29.

Theorem 5.4.12. LetH be a Pommaret basis of the polynomial submoduleU ⊆Pm.

Denote by β (k)
0 the number of generators h ∈H such that cls(le≺ h) = k and set as

usual d = min{k | β (k)
0 > 0}. Then U possesses a free resolution
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0 P tn−d · · · P t1 U 0 (5.38)

where the ranks of the free modules are given by

ti =
n−i

∑
k=1

(
n− k

i

)
β (k)

0 . (5.39)

Proof. By Theorem 5.4.10, HSyz is a Pommaret basis of Syz(H). Applying Theo-
rem 5.4.10 again, we can construct a Pommaret basis of the second syzygy module
Syz2(H) and so on. It follows from the definition (5.28) of the generators Sα ;k that
clsSα ;k = k > clshα . If d is the minimal class appearing in H, the minimal class
in HSyz is d + 1. This observation yields the length of the resolution (5.38), as a
Pommaret basis with d = n generates a free module.

The ranks of the modules follow from a rather straightforward combinatorial

calculation. Let β (k)
i denote the number of generators of class k of the ith syzygy

module Syzi(H). By definition of the generators Sα ;k, we find β (k)
i = ∑k−1

j=1 β
( j)
i−1, as

each generator of class less than k in the Pommaret basis of Syzi−1(H) contributes
one generator of class k in the basis of Syzi(H). A simple induction allows us to

express the values β (k)
i in terms of the values β (k)

0 :

β (k)
i =

k−i

∑
j=1

(
k− j−1

i−1

)
β ( j)

0 . (5.40)

The ranks of the modules in (5.38) are given by ti =∑n
k=1β

(k)
i ; entering (5.40) yields

via a classical identity for binomial coefficients (5.39). �

Remark 5.4.13. Theorem 5.4.12 remains valid for any involutive basis H with re-

spect to a continuous division of Schreyer type, if we define β (k)
0 (respectively β (k)

i
in the proof) as the number of generators with k multiplicative variables, since The-
orem 5.4.10 holds for any such basis. Indeed, after the first step we always analyse
monomial sets of the form {xi1 ,xi2 , . . . ,xin−k} (the non-multiplicative variables of a
generator with k multiplicative variables) with i1 < i2 < · · ·< in−k. By assumption,
these sets are involutive and this is only possible, if one of the generators possesses
n multiplicative variables, another one n−1 and so on until the last generator which
has only n− k multiplicative variables (this fact follows for example from Propo-
sition 5.2.1 on the form of the Hilbert series of such an ideal). Hence the basic
recursion relation β (k)

i = ∑k−1
j=1 β

( j)
i−1 and all subsequent combinatorial computations

remain valid for any division of Schreyer type.
For the Janet division one may give a simple direct proof of the corresponding

statement. Indeed, as for the Pommaret division, it is here possible to determine ex-
plicitly the multiplicative variables for any syzygy: if hα is a generator in the Janet
basis H with the non-multiplicative variables XJ,H,≺(hα) = {xi1 ,xi2 , . . . ,xin−k}
where again i1 < i2 < · · · < in−k, then
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XJ,HSyz,≺(Sα ;i j ) = {x1, . . . ,xn} \ {xi j+1,xi j+2 , . . . ,xin−k} , (5.41)

as one readily verifies. �
We may explicitly write the resolution (5.38) as a complex. Let W be a free P-

module with basis {w1, . . . ,ws}, i. e. its rank is given by the size of the Pommaret
basis H. Let V be a further free P-module with basis {v1, . . . ,vn}, i. e. its rank is
determined by the number of variables in the polynomial ring P , and denote by ΛV
the exterior algebra over V . We set Ci =W⊗P Λ iV for 0≤ i≤ n. If k = (k1, . . . ,ki)
is a strictly ascending sequence of integers with 1 ≤ k1 < k2 < · · · < ki ≤ n and vk
denotes the wedge product vk1 ∧·· ·∧vki , then a basis of this free P-module is given
by the set of all tensor products wα ⊗ vk. Finally, we introduce the free submodule
Si ⊂ Ci generated by all those basis elements where k1 > clshα . Note that the rank
of Si is precisely ri as defined by (5.39).

We denote the elements of the Pommaret basis of Syzi(H) by Sα ;k with the
inequalities clshα < k1 < · · · < ki. An involutive normal form computation deter-
mines for every non-multiplicative index n≥ ki+1 > ki = clsSα ;k unique polynomi-

als P(α ;k,ki+1)
β ;� ∈ �[x1, . . . ,x�i ] such that

xki+1Sα ;k =
s

∑
β=1
∑
�

P(α ;k,ki+1)
β ;� Sβ ;� (5.42)

where the second sum is over all integer sequences � = (�1, . . . , �i) satisfying
clshβ < �1 < · · · < �i ≤ n. We define the P-module homomorphisms ε : S0 → U
and δ : Si+1 →Si by ε(wα ) = hα and

δ (wα ⊗ vk,ki+1) = xki+1wα ⊗ vk−∑
β ,�

P(α ;k,ki+1)
β ;� wβ ⊗ v� . (5.43)

We extend the differential δ to a map Ci+1 → Ci as follows. If ki ≤ clshα , then we
set δ (wα ⊗ vk) = 0. Otherwise let j be the smallest value such that k j > clshα and
set (by slight abuse of notation)

δ (wα ⊗ vk1 ∧·· ·∧ vki) = vk1 ∧·· ·∧ vkj−1 ∧δ (wα ⊗ vkj ∧·· ·∧ vki) . (5.44)

Thus the factor vk1 ∧ ·· · ∧ vkj−1 remains unchanged and does not affect the differ-
ential. This definition makes, by construction, (C∗,δ ) to a complex and (S∗,δ ) to
an exact sequence which—augmented by the map ε : S0 →U—is isomorphic to the
syzygy resolution (5.38).

Example 5.4.14. We continue with the ideal of Example 5.4.6 and 5.4.11, respec-
tively. As here d = 1, the resolution has length 2 in this case. Using the notation
introduced above, the module S0 is then generated by {w1, . . . ,w6}, the module S1

by the eight elements {w1⊗v3, . . . ,w5⊗v3,w1⊗v2, . . . ,w3⊗v2} (the first three gen-
erators in the Pommaret basis H are of class 1, the next two of class 2 and the final
one of class 3) and the module S2 by {w1⊗ v2 ∧ v3, . . . ,w3⊗ v2∧ v3} correspond-
ing to the three first syzygies of class 2. It follows from the expressions (5.36) and
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(5.37), respectively, for the first and second syzygies that the differential δ is here
defined by the relations

δ (w1⊗ v3) = zw1− xw3−w2 , (5.45a)

δ (w2⊗ v3) = zw2− xw5−w2 , (5.45b)

δ (w3⊗ v3) = zw3− xw6 + w5−w3 + w1 , (5.45c)

δ (w4⊗ v3) = zw4− yw5−w4 , (5.45d)

δ (w5⊗ v3) = zw5− yw6 + w2 , (5.45e)

δ (w3⊗ v2) = yw3− xw5 + w4−w2 , (5.45f)

δ (w2⊗ v2) = yw2− xw4 , (5.45g)

δ (w1⊗ v2) = yw1− xw2 , (5.45h)

δ (w1⊗ v2∧ v3) = zw1⊗ v2− yw1⊗ v3 + xw2⊗ v3−
xw3⊗ v2−w2⊗ v2 .

(5.45i)

δ (w2⊗ v2∧ v3) = zw2⊗ v2− yw2⊗ v3 + xw4⊗ v3−w2⊗ v2 , (5.45j)

δ (w3⊗ v2∧ v3) = zw3⊗ v2− yw3⊗ v3 + xw5⊗ v3 +
w2⊗ v3−w4⊗ v3−w3⊗ v2 + w1⊗ v2 ,

(5.45k)

It represents a straightforward albeit rather tedious task to verify explicitly the ex-
actness of the thus constructed complex (S∗,δ ). �

In the case that m = 1 and thus U is actually an ideal in P , it is tempting to
try to equip the complex (C∗,δ ) with the structure of a differential ring. We first
introduce a multiplication × onW . If hα and hβ are two elements of the Pommaret
basis H, then their product possesses a unique involutive standard representation
hαhβ = ∑s

γ=1 Pαβγhγ and we define

wα ×wβ =
s

∑
γ=1

Pαβγwγ (5.46)

and continue P-linearly on W . This multiplication can be extended to the whole
complex C∗ by defining for arbitrary elements w, w̄ ∈W and ω , ω̄ ∈ΛV

(w⊗ω)× (w̄⊗ ω̄) = (w× w̄)⊗ (ω ∧ ω̄) . (5.47)

The distributivity of the thus introduced multiplication × is obvious from its
definition. For obtaining a differential ring, the product × must furthermore be as-
sociative and satisfy the graded Leibniz rule δ (a×b) = δ (a)×b+(−1)|a|a×δ (b)
where |a| denotes the form degree of the element a. While in general both condi-
tions are not met, a number of special situations exist where this construction indeed
turns (C∗,δ ) into a differential ring.

Let us first consider the question of the associativity of the product ×. For our
purposes, it suffices to study it at the level of the module W where we obtain the
following two results, if we multiply in different orders:
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wα × (wβ ×wγ) =
s

∑
δ ,ε=1

PβγδPαδεwε , (5.48a)

(wα ×wβ )×wγ =
s

∑
δ ,ε=1

PαβδPγδεwε . (5.48b)

One easily checks that both ∑s
δ ,ε=1 PβγδPαδεhε and ∑s

δ ,ε=1 PαβδPγδεhε are standard
representations of the product hαhβhγ for the Pommaret basisH. However, we can-
not conclude that they are involutive standard representations, as we do not know
whether Pβγδ and Pαβδ , respectively, are multiplicative for hε . If this were the case,
the associativity of × would immediately follow from the uniqueness of involutive
standard representations.

For the graded Leibniz rule the situation is similar but a bit more involved. In
the next section, we will consider it in more details for the monomial case. In the
end, the discussion boils down to analysing standard representations for products of
the form xkhαhβ . Again, we have two different ways for constructing them and a
sufficient condition for the satisfaction of the Leibniz rule is that both approaches
lead always to the unique involutive standard representation.

Example 5.4.15. We consider again the ideal I ⊂ �[x,y,z] generated by h1 = y2− z,
h2 = yz− x and h3 = z2− xy. We showed in Example 3.4.11 that these polynomials
form a Pommaret basis of I for the degree reverse lexicographic term order. The
Pommaret basis of the first syzygy module consists of S1;3 = ze1− ye2 + e3 and
S2;3 = ze2− ye3− xe1. As both generators are of class 3, they span a free module
and the resolution stops here.

In a straightforward calculation one obtains for the multiplication × the follow-
ing defining relations:

w2
1 = w3− yw2 + y2w1 , w1×w2 =−yw3 + y2w2− xw1 , (5.49a)

w1×w3 = (y2− z)w3 , w2
2 = y2w3− xw2 + xyw1 , (5.49b)

w2×w3 = (yz− x)w3 , w2
3 = (z2− xy)w3 . (5.49c)

Note that all coefficients of w1 and w2 are contained in �[x,y] and are thus multi-
plicative for all generators. This fact immediately implies that our multiplication is
associative, as any way to evaluate the product wα ×wβ ×wγ leads to the unique
involutive standard representation of hαhβhγ .

In the only non-multiplicative products zh2 = yh3 + xh1 and zh1 = yh2 + h3 all
coefficients on the right hand sides lie in the subring �[x,y], too, and by the same
line of reasoning δ and× satisfy the graded Leibniz rule so that our complex (C∗,δ )
has indeed become a differential ring. �

The situation is not always as favourable as in this particular example. Already
the next example shows that in general we cannot expect that the above introduced
multiplication × makes the complex (C∗,δ ) to a differential ring (in fact, not even
to an associative ring).
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Example 5.4.16. Let us continue with the ideal of Examples 5.4.6, 5.4.11 and 5.4.14.
Evaluation of the defining relation (5.46) is particularly simple for the products of
the form wi×w6 = hiw6, as all variables are multiplicative for the generator h6. Two
further products are w2

5 = y2w6− yw5− xw4 and w3×w5 = xyw6− yw5− xw2. In a
straightforward computation one finds

(w3×w5)×w5−w3×w2
5 = x2w4− xyw2 , (5.50)

so that the multiplication is not associative. Note that the difference corresponds
to the syzygy x2h4− xyh2 = 0. This is not surprising, as it encodes the difference
between two standard representations of h3h2

5. The reason for the non-associativity
lies in the coefficient y of w5 in the power w2

5; it is non-multiplicative for h2 and the
generator w2 appears in the product w3×w5. Hence computing w3×w2

5 does not
lead to an involutive standard representation of h3h2

5 whereas the alternative product
(w3×w5)×w5 does. �

In the special case of monomial modules, stronger results can be obtained. In
particular, it is possible to obtain a closed form of the differential (5.43) solely by
analysing the Pommaret basisH. However, in order to have a Pommaret basis avail-
able, we must always assume in the sequel that we are dealing with a quasi-stable
submodule U ⊆ Pm. Let H = {h1, . . . ,hs} with hα ∈ �m be its monomial Pom-
maret basis (by Proposition 3.1.21, it is unique). Furthermore, we introduce the
function Δ(α,k) determining the unique generator in the Pommaret basis H such
that xkhα = tα ,khΔ (α ,k) with a term tα ,k ∈ �[XP(hΔ (α ,k))].

Lemma 5.4.17. The function Δ and the terms tα ,k satisfy the following relations.

(i) The inequality clshα ≤ clshΔ (α ,k) ≤ k holds for all non-multiplicative indices
k > clshα .

(ii) Let k2 > k1 > clshα be non-multiplicative indices. If clshΔ (α ,k2) ≥ k1, then
Δ
(
Δ(α,k1),k2

)
= Δ(α,k2) and xk1 tα ,k2 = tα ,k1 tΔ (α ,k1),k2

. Otherwise we have
Δ
(
Δ(α,k1),k2

)
= Δ
(
Δ(α,k2),k1

)
and tα ,k1 tΔ (α ,k1),k2

= tα ,k2tΔ (α ,k2),k1
.

Proof. Part (i) is trivial. The inequality clshα ≤ clshΔ (α ,k) follows from the def-
inition of Δ and the Pommaret division. If clshΔ (α ,k) > k, then hΔ (α ,k) would be
an involutive divisor of hα which contradicts the fact that any involutive basis is
involutively head autoreduced.

For Part (ii) we compute the involutive standard representation of the product
xk1 xk2hα . There are two ways to do it. We may either write

xk1 xk2 hα = xk2 tα ,k1hΔ (α ,k1) = tα ,k1 tΔ (α ,k1),k2
hΔ (Δ (α ,k1),k2) , (5.51)

which is an involutive standard representation by Part (i), or start with

xk1xk2 hα = xk1 tα ,k2hΔ (α ,k2) (5.52)

which requires a case distinction. If clshΔ (α ,k2) ≥ k1, we have already an invo-
lutive standard representation and its uniqueness implies our claim. Otherwise
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multiplicatively rewriting xk1hΔ (α ,k2) = tΔ (α ,k2),k1
hΔ (Δ (α ,k2),k1) yields an involutive

standard representation and our assertion follows from its uniqueness. �

Using this lemma, we can now provide a closed form for the differential δ
which does not require involutive normal form computations in the syzygy mod-
ules Syzi(H) (which are of course expensive to perform) but is solely based on
information already computed during the determination ofH. For its proof we must
introduce some additional notations and conventions. If again k = (k1, . . . ,ki) is an
integer sequence with 1≤ k1 < · · ·< ki ≤ n, then we write k j for the same sequence
of indices but with k j eliminated. Its first entry is denoted by (k j)1; hence (k j)1 = k1

for j > 1 and (k j)1 = k2 for j = 1. The syzygy Sα ;k is only defined for clshα < k1.
We extend this notation by setting Sα ;k = 0 for clshα ≥ k1. This convention will
simplify some sums in the sequel.

Theorem 5.4.18. Let U ⊆ Pm be a quasi-stable submodule and k = (k1, . . . ,ki).
Then the differential δ of the complex C∗ may be written as

δ (wα ⊗ vk) =
i

∑
j=1

(−1)i− j(xkj wα − tα ,k j wΔ (α ,k j)
)
⊗ vk j . (5.53)

Proof. Note that all summands where k j is multiplicative for hα vanish. This ob-
servation implies trivially (5.44), so that we can restrict to the case that clshα < k1.
Then our theorem is equivalent to

Sα ;k =
i

∑
j=1

(−1)i− j(xkj Sα ;k j − tα ,k j SΔ (α ,k j);k j

)
. (5.54)

Some of the terms SΔ (α ,k);k j
might vanish by our above introduced convention. The

equality (5.54) is trivial for i = 1 (with Sα = hα ) and a simple corollary of Part (ii)
of Lemma 5.4.17 for i = 2.

For i > 2 things become messy. We proceed by induction on i. In our approach,
the syzygy Sα ;k arises from the non-multiplicative product xkiSα ;ki . Thus we must
compute now the involutive normal form of this product. By our induction hypoth-
esis we may write

xki Sα ;ki =
i−1

∑
j=1

(−1)i−1− j(xkj xki Sα ;k ji − xkitα ,k j SΔ (α ,k j);k ji

)
. (5.55)

As xki is always non-multiplicative, using again the induction hypothesis, each sum-
mand may be replaced by the corresponding syzygy—but only at the expense of the
introduction of many additional terms. The main task in the proof will be to show
that most of them cancel. However, the cancellations occur in a rather complicated
manner with several cases, so that no simple way for proving (5.54) seems to exist.
We obtain the following lengthy expression:
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xkiSα ;ki =
i−1

∑
j=1

(−1)i−1− j
[
xkj S

�

�

�

�
1

α ;k j
− tα ,k j S

�

�

�

�
2

Δ (α ,k j);k j

]

+
i−1

∑
j=1

xkj

[
j−1

∑
�=1

(−1)�+ j+1xk�S
�

�

�

�
3

α ;k� j
−

i−1

∑
�= j+1

(−1)�+ j+1xk�S
�

�

�

�
4

α ;k j�

]

−
i−1

∑
j=1

[
j−1

∑
�=1

(−1)�+ j+1xkj tα ,k�
S

�

�

�

�
5

Δ (α ,k�);k� j
−

i−1

∑
�= j+1

(−1)�+ j+1xkj tα ,k�
S

�

�

�

�
6

Δ (α ,k�);k j�

]

+
i−2

∑
j=1

(−1)i−1− jxk j tα ,kiS
�

�

�

�
7

Δ (α ,ki);k ji
+ xki−1tα ,kiS

�

�

�

�
8

Δ (α ,ki);ki−1,i

−
i−1

∑
j=1

tα ,k j

[
j−1

∑
�=1

(−1)�+ j+1xk�S
�

�

�

�
9

Δ (α ,k j);k� j
−

i−1

∑
�= j+1

(−1)�+ j+1xk�S
�

�

�

�
10

Δ (α ,k j);k j�

]

+
i−1

∑
j=1

tα ,k j

[
j−1

∑
�=1

(−1)�+ j+1tΔ (α ,k j),k�
S

�

�

�

�
11

Δ (Δ (α ,k j),k�);k� j
−

i−1

∑
�= j+1

(−1)�+ j+1tΔ (α ,k j),k�
S

�

�

�

�
12

Δ (Δ (α ,k j),k�);k j�

]

−
i−1

∑
j=1

(−1)i−1− jtα ,k j tΔ (α ,k j),ki
S

�

�

�

�
13

Δ (Δ (α ,k j),ki);k ji
.

(5.56)

Note that the terms
�

�

�

�
7 ,

�

�

�

�
8 and

�

�

�

�
13 , respectively, correspond to the special case � = i

(and j = i−1) in the sums
�

�

�

�
6 and

�

�

�

�
12 , respectively. We list them separately, as they

must be treated differently. The existence of any summand where the coefficient
contains a term t·,· is bound on conditions.

With the exception of the coefficient xki−1 in the term
�

�

�

�
8 , all coefficients are al-

ready multiplicative. Thus this term must be further expanded using the induction
hypothesis for the last time:

xki−1tα ,ki SΔ (α ,ki);ki−1,i
= tα ,ki S

�

�

�

�
14

Δ (α ,ki);ki

−
i−2

∑
j=1

(−1)i−1− jxk j tα ,ki S
�

�

�

�
15

Δ (α ,ki);k ji

+
i−1

∑
j=1

(−1)i−1− jtα ,kitΔ (α ,ki),k j
S

�

�

�

�
16

Δ (Δ (α ,ki),k j);k ji
.

(5.57)



206 5 Structure Analysis of Polynomial Modules

The left hand side of (5.56) and the terms
�

�

�

�
1 ,

�

�

�

�
2 and

�

�

�

�
14 represent the syzygy Sα ,k

we are looking for. We must thus show that all remaining terms vanish. In order to
simplify the discussion of the double sums, we swap j and � in

�

�

�

�
3 ,

�

�

�

�
5 ,

�

�

�

�
9 and

�

�

�

�11 so
that everywhere j < �. It is now easy to see that

�

�

�

�
3 and

�

�

�

�
4 cancel; each summand of

�

�

�

�
3

also appears in
�

�

�

�
4 but with the opposite sign. Note that the same argument does not

apply to
�

�

�

�
11 and

�

�

�

�
12 , as the existence of these terms is bound to different conditions!

For the other cancellations, we must distinguish several cases depending on the
classes of the generators in the Pommaret basis H. We first study the double sums
and thus assume that 1≤ j < i.

• If clshΔ (α ,k j) < (k j)1, then the terms
�

�

�

�
5 and

�

�

�

�
10 are both present and cancel each

other. We now make a second case distinction on the basis of hΔ (α ,k�).

– If clshΔ (α ,k�) < (k j)1, then the terms
�

�

�

�
6 and

�

�

�

�
9 are also present and cancel each

other. Furthermore, both
�

�

�

�
11 and

�

�

�

�
12 exist and cancel due to the second case

of Part (ii) of Lemma 5.4.17.
– If clshΔ (α ,k�) ≥ (k j)1, then none of the four terms

�

�

�

�
6 ,

�

�

�

�
9 ,

�

�

�

�
11 and

�

�

�

�
12 appears.

For the latter two terms, this fact is a consequence of the first case of Part (ii)
of Lemma 5.4.17.

• If clshΔ (α ,k j) ≥ (k j)1, then neither
�

�

�

�
5 nor

�

�

�

�
10 nor

�

�

�

�
12 exists. For the remaining

double sums, we must again consider the class of hΔ (α ,k�).

– If clshΔ (α ,k�) < (k j)1, then the terms
�

�

�

�
6 and

�

�

�

�
9 exist and cancel each other. By

contrast, the term
�

�

�

�
11 does not exist, as Lemma 5.4.17 implies the inequalities

clshΔ (Δ (α ,k�),k j) = clshΔ (Δ (α ,k j),k�) ≥ clshΔ (α ,k j) ≥ (k j)1.
– If clshΔ (α ,k�)≥ (k j)1, then neither

�

�

�

�
6 nor

�

�

�

�
9 exist and the term

�

�

�

�
11 is not present

either; this time the application of Part (ii) of Lemma 5.4.17 yields the chain
of inequalities clshΔ (Δ (α ,k�),k j) ≥ clshΔ (α ,k�) ≥ (k j)1.

For the remaining terms everything depends on the class of hΔ (α ,ki) controlling
in particular the existence of the term

�

�

�

�
8 .

• If clshΔ (α ,ki) < k1≤ (k j)1, then the term
�

�

�

�
8 exists and generates the terms

�

�

�

�
15 and

�

�

�

�
16 . Under this condition, the term

�

�

�

�
7 is present, too, and because of Part (ii) of

Lemma 5.4.17 it cancels
�

�

�

�
15 . Again by Part (ii) of Lemma 5.4.17, the conditions

for the existence of
�

�

�

�
13 and

�

�

�

�
16 are identical and they cancel each other.

• If clshΔ (α ,ki) ≥ k1, then
�

�

�

�
8 and consequently

�

�

�

�
15 and

�

�

�

�
16 are not present. The

analysis of
�

�

�

�
7 and

�

�

�

�
13 requires a further case distinction.

– Under the made assumption, the case clshΔ (α ,ki) < (k j)1 occurs only for j = 1
as otherwise (k j)1 = k1. Because of Part (ii) of Lemma 5.4.17, the terms

�

�

�

�
7

and
�

�

�

�
13 exist for j = 1 and cancel each other.

– If clshΔ (α ,ki) ≥ (k j)1, then the term
�

�

�

�
7 does not appear. The term

�

�

�

�
13 is also

not present, but there are now two different possibilities: depending on which
case of Part (ii) of Lemma 5.4.17 applies, we either find clshΔ (Δ (α ,k j),ki) =
clshΔ (α ,ki) or clshΔ (Δ (α ,k j),ki) = clshΔ (Δ (α ,ki),k j) ≥ clshΔ (α ,ki); in any case the
class is too high.
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Thus we have shown that indeed all terms vanish with the exception of
�

�

�

�
1 ,

�

�

�

�
2 and

�

�

�

�
14 which are needed for the syzygy Sα ,k. This proves our claim. �

Remark 5.4.19. Above we introduced for any involutive basis H with respect to a
division L its L-graph. We augment now this graph by weights for the edges. Recall
that we have a directed edge from h to h̄, if le≺ h̄ is an involutive divisor of le≺ (xkh)
for some non-multiplicative variable xk ∈ XH,L,≺(h). If le≺ (xkh) = le≺ h̄+μ , then
we assign the weight xμ to this edge. For a monomial Pommaret basis the cor-
responding P-graph has then a directed edge from hα to hΔ (α ,k) with weight tα ,k

for every non-multiplicative variable xk ∈ XP(hα). Thus we may say that by The-
orem 5.4.18 the whole complex (C∗,δ ) (and the isomorphic syzygy resolution of
〈H〉) is encoded in the weighted P-graph ofH. �

As above, we introduce for monomial ideals, i. e. for m = 1, the product ×. The
right hand side of its defining equation (5.46) simplifies for a monomial basisH to

wα ×wβ = mα ,βwΓ (α ,β ) (5.58)

where the function Γ (α,β ) determines the unique generator hΓ (α ,β ) ∈ H such that
we can write hαhβ = mα ,βhΓ (α ,β ) with a term mα ,β ∈ �[XP(hΓ (α ,β ))]. In analogy to
Lemma 5.4.17, we obtain now the following result.

Lemma 5.4.20. The function Γ and the terms mα ,β satisfy the following relations.

(i) clshΓ (α ,β ) ≥max{clshα ,clshβ}.
(ii) Γ

(
Γ (α,β ),γ

)
= Γ
(
α,Γ (β ,γ)

)
and mα ,βmΓ (α ,β ),γ = mβ ,γmΓ (β ,γ),α .

(iii) Γ
(
Δ(α,k),β

)
= Δ
(
Γ (α,β ),k

)
and tα ,kmΔ (α ,k),β = tΓ (α ,β ),kmα ,β .

Proof. Part (i) is obvious from the definition of the function Γ . Part (ii) and (iii),
respectively, follow from the analysis of the two different ways to compute the in-
volutive standard representation of hαhβhγ and xkhαhβ , respectively. We omit the
details, as they are completely analogous to the proof of Lemma 5.4.17. �

Theorem 5.4.21. Let H be the Pommaret basis of the quasi-stable monomial ideal
I ⊆ P . Then the product× defined by (5.58) makes the complex (C∗,δ ) to a graded
differential ring.

Proof. This is a straightforward consequence of Lemma 5.4.20. Writing out the
relations to be checked, one easily finds that Part (ii) ensures the associativity of ×
and Part (iii) the satisfaction of the graded Leibniz rule. �

Addendum: Iterated Polynomial Algebras of Solvable Type

In Section 4.6 we studied involutive bases in polynomial algebras of solvable type
over rings. We had to substitute the notion of an involutively head autoreduced set



208 5 Structure Analysis of Polynomial Modules

by the more comprehensive concept of an involutivelyR-saturated set. In a certain
sense, this approach was not completely satisfying, as we had to resort to classi-
cal Gröbner techniques, namely computing normal forms of ideal elements arising
from syzygies. Using the syzygy theory developed in this section, we provide now
an alternative approach for the special case that the coefficient ring R is again a
polynomial algebra of solvable type (over a field). It is obvious that in this case left
ideal membership in R can be decided algorithmically and by Theorem 5.4.4 it is
also possible to construct algorithmically a basis of the syzygy module.

Remark 5.4.22. Throughout this chapter we have only considered the ordinary com-
mutative polynomial ring, whereas now we return to general polynomial algebras of
solvable type (over a field). However, it is easy to see that all the arguments in the
proof of the involutive Schreyer Theorem 5.4.4 depend only on normal form com-
putations and on considerations concerning the leading exponents. The same holds
for the classical Schreyer theorem, as one may easily check (see also [285, 286] for
a non-commutative version). Thus the in the sequel crucial Theorem 5.4.4 remains
valid in the general case of non-commutative polynomial algebras. �

In this addendum, we use the following notations:R= (�[y1, . . . ,ym],�,≺y) and
P = (R[x1, . . . ,xn],�,≺x). Furthermore, we are given an involutive division Ly on
�m

0 and a division Lx on �n
0. For simplicity, we always assume in the sequel that

at least Ly is Noetherian. In order to obtain a reasonable theory, we make similar
assumptions as in Section 4.6: both R and P are solvable algebras with centred
commutation relations so that both are (left) Noetherian by Theorem 3.3.7.

We now propose an alternative algorithm for the involutive R-saturation.
Until Line /13/ it is identical with Algorithm 4.10; afterwards we perform an in-
volutive completion and multiply in Line /17/ each polynomial in H̄′

f ,Lx
by the non-

multiplicative variables of its leading coefficient. In the determination of involutive
normal forms, we may multiply each polynomial h′ ∈ H′ only by monomials rxμ

such that xμ ∈R[XLx,H′,≺x(h
′)] and r ∈ �

[
YLy,lc≺x (H̄′

h′ ,Lx
),≺y

(lc≺x h′)
]
.

Proposition 5.4.23. Let Ly be a Noetherian constructive division. Algorithm 5.4 ter-
minates for any finite input set F ⊂ P with an involutively R-saturated and head
autoreduced setH such that 〈H〉= 〈F〉. Furthermore, the sets lc≺x H̄h,Lx form weak
Ly-involutive bases of theR-ideals generated by them for each generator h ∈H.

Proof. The termination criterion in Line /26/ is equivalent to local involution of all
the sets lc≺x H̄′

f ,Lx
. Under the made assumptions on the division Ly and because

of the fact that P is Noetherian, the termination of the algorithm and the assertion
about these sets is obvious. In general, we only obtain weak involutive bases, as
no involutive head autoreductions of these sets are performed. The correctness is
a consequence of Theorem 5.4.4: by analysing all non-multiplicative products we
have taken into account a whole basis of the syzygy module Syz(lc≺x H̄′

f ,Lx
). Thus

the outputH is indeed involutivelyR-saturated. �

Theorem 5.4.24. Let the polynomial ring P satisfy the made assumptions and let
Lx be a Noetherian constructive division. If in Algorithm 4.5 the subalgorithm
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Algorithm 5.4 InvolutiveR-saturation (iterated case)
Input: finite set F ⊂ P , involutive divisions Ly on�m

0 and Lx on�n
0

Output: involutivelyR-saturated and head autoreduced setH with 〈H〉 = 〈F〉
1: H←F ; S ←F
2: while S �= ∅ do
3: ν← max≺x le≺x S; Sν ←{ f ∈H | le≺x f = ν}
4: S ← S \Sν ; H′←H
5: for all f ∈ Sν do
6: h← HeadReduceLx,≺x( f ,H)
7: if f �= h then
8: Sν ←Sν \{ f }; H′←H′ \{ f }
9: if h �= 0 then

10: H′←H′∪{h}
11: end if
12: end if
13: end for
14: if Sν �= ∅ then
15: choose f ∈ Sν and determine the set H̄′

f ,Lx
16: repeat
17: T ←

{
y j � f̄ | f̄ ∈ H̄′

f ,Lx
, y j ∈ Y Ly,lc≺x (H̄′

f ,Lx
),≺y

(lc≺x f̄ )
}

18: repeat
19: choose h′ ∈ T such that le≺y (lc≺x h′) is minimal
20: T ← T \{h′}
21: h← NormalFormLx,≺x,Ly,≺y(h

′,H′)
22: if h �= 0 then
23: H′←H′∪{h}
24: end if
25: until T = ∅∨h �= 0
26: until T = ∅∧h = 0
27: end if
28: ifH′ �=H then
29: H←H′; S ←H
30: end if
31: end while
32: return H

InvHeadAutoReduceLx,≺x is substituted by Algorithm 5.4, then the completion will
terminate with a weak involutive basis of I = 〈F〉 for any finite input set F ⊂ P .
Furthermore, the sets lc≺x H̄h,Lx form strong Ly-involutive bases of the R-ideals
generated by them for each h ∈H.

Proof. The proof of the termination and of the correctness of the algorithm is as in
Section 4.6. The only new claim is that the sets lc≺x H̄h,Lx are strongly Ly-involutive.
This is a simple consequence of the fact that under the made assumption on the
product in P the loop in Lines /5-13/ of Algorithm 5.4 leads to an involutive head
autoreduction of these sets. Hence we indeed obtain strong involutive bases. �

Corollary 5.4.25. If Lx is the Janet division, then every polynomial f ∈ I possesses
a unique involutive standard representation f = ∑h∈H Ph � h where the coefficients
satisfy Ph ∈ �[YLy,lc≺x (H̄h,Lx ),≺y

(lc≺x h)][XLx,H,≺x(h)].
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Proof. For the Janet division the only obstruction for H being a strong involutive
basis is that some elements of it may have the same leading exponents. More pre-
cisely, for any h∈H we haveHh,Lx = {h′ ∈H | le≺x h′ = le≺x h}. This immediately
implies furthermore H̄h,Lx = Hh,Lx . By Theorem 5.4.24 the sets lc≺x H̄h,Lx form a
strong Ly-involutive basis of the ideals they generate. Hence the claimed represen-
tation must be unique. �

5.5 Minimal Resolutions and Castelnuovo–Mumford Regularity

Recall that for a graded polynomial moduleM a graded free resolution is minimal,
if all entries of the matrices corresponding to the maps φi : P ri →P ri−1 are of pos-
itive degree, i. e. no constant coefficients appear (cf. Definition B.2.32). If U ⊆ Pm

is a graded submodule, as we will assume throughout this section, then the free res-
olution (5.38) of U , derived in the last section from a Pommaret basis, is obviously
graded, too. However, in general, it is not minimal. In this section we will exploit
the structures present in (5.38) to deduce several statements about the minimal res-
olution of U without explicitly computing it. In particular, we will show that (5.38)
is always of minimal length and that the degree of a Pommaret basis for the de-
gree reverse lexicographic order equals the Castelnuovo–Mumford regularity of U .
But our first goal consists of finding conditions under which the resolution (5.38)
is minimal. A simple criterion for minimality that can be directly checked on the
Pommaret basisH of U is provided by the next result.

Lemma 5.5.1. The resolution (5.38) is minimal, if and only if all first syzygies Sα ;k

are free of constant terms.

Proof. One direction is of course trivial. Since (5.38) was obtained by iterating
Theorem 5.4.10, it suffices for proving the converse to show that under the made
assumption all second syzygies Sα ;k1,k2 are free of constant terms, too. But this is
easy to see: we have Sα ;k1,k2 = xk2eα ;k1 − xk1 eα ;k2 +∑γ,� cγ;�eγ,� where every non-

vanishing coefficient cγ;� is divisible by a coefficient P(α ;k)
β with k = k1 or k = k2

appearing in the first syzygy Sα ;k and thus is of positive degree. �

Theorem 5.5.2. If the resolution (5.38) is minimal, then the submodule U ⊆ Pm is
componentwise linear.5

Proof. Let H be the Pommaret basis of U and d ≥ 0 an arbitrary degree. As in
Lemma 4.3.2 it is easy to see that the set

Gd =
{

xμh | h ∈H, |μ |+ degh = d, ∀ j > clsh : μ j = 0
}

(5.59)

defines a �-linear basis of the homogeneous component Ud and thus generates the
module U〈d〉 = 〈Ud〉. Consider now a product x jḡ for some generator ḡ = xμ h̄ ∈ Gd

5 See Remark B.2.34 for a definition of this notion.
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where j > k = cls ḡ so that x j is non-multiplicative for ḡ. We must distinguish two
cases. If j ≤ cls h̄, then Gd also contains the generator g̃ = xμ−1k+1 j h̄ and we have
x jḡ = xkg̃ where the latter product is multiplicative.

Otherwise, the variable x j is non-multiplicative for the generator h̄, too, and our
resolution contains a first syzygy corresponding to an involutive standard represen-
tation x jh̄ =∑h∈H Phh. If |μ |> 0, then we can lift this equation to a standard repre-
sentation x jḡ = ∑h∈HPhxμh. However, in general it will no longer be an involutive
one, as the term xμ may depend on variables which are non-multiplicative for some
generators h∈H. In this case, we must rewrite the right hand side using further first
syzygies from (5.38). It is not difficult to see that after a finite number of such steps
we also arrive at an involutive standard representation

x jḡ = ∑
h∈H

Phh (5.60)

where for notational simplicity we still denote the coefficients by Ph.
Assume now that the resolution (5.38) is minimal. Obviously, all first syzygies

and thus also the coefficients Ph in (5.60) are then free of constant terms. But this
observation implies that we can transform (5.60) into an involutive standard repre-
sentation x jḡ =∑g∈Gd

Qgg with respect to Gd and hence this set is a Pommaret basis
of the module U〈d〉 by Proposition 4.2.7. As all elements of Gd are of degree d, it
follows immediately from the form of (5.38) evaluated for Gd that U〈d〉 has a linear
resolution and thus U is componentwise linear. �

Example 5.5.3. The converse of Theorem 5.5.2 is not true, as the following trivial
counterexample demonstrates. Consider the monomial ideal I = 〈x,y2〉 ⊂ �[x,y]. It
is componentwise linear: I〈1〉 = 〈x〉 is as principal ideal a free module; all ideals
I〈d〉 for d > 1 are simply generated by all monomials of degree d and thus possess
trivially a linear resolution. For the natural ordering of variables x1 = x and x2 = y,
the Pommaret basis of I is H= {x,xy,y2} and since the arising resolution contains
the first syzygy ye1− e2, it is not minimal. Comparing with the proof above, we see
that G1 = {x} is not a Pommaret basis of I〈1〉 (actually, I〈1〉 does not even possess
a finite Pommaret basis, as it is not quasi-stable).

Note, however, that the situation changes, if we swap the ordering of the variables
to x1 = y and x2 = x. Now the minimal basis H′ = {x,y2} is already a Pommaret
basis of I and the corresponding resolution is trivially minimal, as the only syzygy
is y2e1−xe2. We will see later (Theorem 5.5.26) that this observation is no accident
but that generically the resolution (5.38) is minimal for componentwise linear mod-
ules (and thus generically (5.39) yields an explicit formula for the Betti numbers of
componentwise linear modules). �

For quasi-stable monomial modules U a simple combinatorial characterisation
exists when our resolution is minimal. We will also provide a simple alternative
characterisation via Pommaret bases.

Definition 5.5.4. A (possibly infinite) set N ⊆�n
0 is called stable, if for each multi

index ν ∈ N all multi indices ν−1k + 1 j with k = clsν < j ≤ n are also contained
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in the set N . A monomial submodule U ⊆ Pm is called stable, if each of the sets
Nα =

{
μ | xμeα ∈ U

}
⊆�n

0 with 1≤ α ≤ m is stable.

Remark 5.5.5. The stable modules are of considerable interest, as they contain as
a subset the Borel fixed modules, i. e. modules which remain invariant under linear
coordinate transformations x̃ = Ax with a matrix A contained in the Borel group of
the invertible lower triangular matrices.6 Indeed, one can show that (for a coefficient
field of characteristic 0) a module is Borel fixed, if and only if it can be generated
by a set S of monomials such that whenever xνe j ∈ S then also xν−1k+1 j e j ∈ S for
all clsν ≤ k < j ≤ n [125, Theorem 15.23]. Generically, the leading terms of any
polynomial module form a Borel fixed module [125, Theorem 15.20][146]. Note
that while the definition of stability is obviously independent of the characteristic of
the coefficient field, the same is not true for the notion of a Borel fixed module. �

Every monomial submodule has a unique minimal basis. For stable submodules
it must coincide with the Pommaret basis. This fact represents a very simple and
effective criterion of stability. Furthermore, it shows that any stable submodule is
quasi-stable and thus explains the terminology introduced in Definition 5.3.3.

Proposition 5.5.6. Let U ⊆ Pm be a monomial submodule. Then U is stable, if and
only if its minimal basisH is simultaneously a Pommaret basis.

Proof. Let us assume first that U is stable; we have to show that 〈H〉P =U . For every
term s ∈ U a unique term t1 ∈ H exists such that s = s1t1 for some term s1 ∈�. If
s1 ∈ �[XP(t1)], we are done. Otherwise there exists an index j > k = cls t1 such that
x j | s1 and we rewrite

s =
(

xk

x j
s1

)(
x j

xk
t1

)
. (5.61)

Since, by assumption, U is stable, (x j/xk)t1 ∈U . Thus a term t2 ∈H exists such that
(x j/xk)t1 = s2t2 for some term s2 ∈�. We are done, if t2 |P s. Otherwise we iterate
this construction. By the continuity of the Pommaret division, this process cannot
go on infinitely, i. e. after a finite number of steps we must reach a term tN ∈H such
that tN |P s and thus s ∈ 〈H〉P.

For the converse, assume that the minimal basis H is a Pommaret basis. Then a
unique element t ∈H exists for each s ∈ U such that t |P s. We must show that with
k = clss≤ cls t for all i > k the terms (xi/xk)s are also elements of U . We distinguish
two cases. If s = t, a t̄ ∈ H exists with t̄ |P (xit). As H is a minimal basis, it cannot
be that t̄ = xit. Instead we must have that t̄ | (xi/xk)t = (xi/xk)s and we are done. If
s �= t, we write s = st with s ∈�. If k < cls t, then xk | s which implies that we can
divide by xk and thus (xi/xk)s ∈ U . Otherwise, clss = cls t and we know from the
first case that (xi/xk)t ∈ U . But (xi/xk)s = (xi/xk)st. �

As an immediate corollary, we obtain the following, perhaps surprising result
about the relation between the minimal Pommaret basis and the reduced Gröbner
basis of a polynomial module.

6 Classically, the Borel group consists of upper triangular matrices. In our “inverse” conventions
we must take lower triangular matrices.
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Theorem 5.5.7. Let U ⊆ Pm be a graded submodule in generic position and G the
reduced Gröbner basis of U for an arbitrary term order ≺. If char�= 0, then G is
also the minimal Pommaret basis of I for ≺.

Proof. The generic initial module of any module is Borel fixed which implies in
particular that it is stable for char� = 0 (Remark 5.5.5). By definition of a reduced
Gröbner basis, le≺G is the minimal basis of le≺U . But as le≺U is generically stable,
this fact implies that le≺G is a Pommaret basis of le≺U and thus G is a Pommaret
basis of U . As the Pommaret division is global, the set G is automatically the unique
minimal basis. �

Theorem 5.5.8. Let U ⊆ Pm be a quasi-stable submodule. Then the syzygy resolu-
tion given by (5.38) is minimal, if and only if U is stable. Hence any stable submod-
ule is componentwise linear.

Proof. According to Lemma 5.5.1, the resolution (5.38) is minimal, if and only
if all first syzygies are free of constant terms. For a monomial module this is the
case, if and only if already the minimal basis is the Pommaret basis, since otherwise
the Pommaret basis contains generators h1, h2 related by h2 = x jh1 for some non-
multiplicative variable x j leading to a first syzygy x je1− e2 with a constant term.
Now our claim follows from Proposition 5.5.6. �

Example 5.5.9. One might be tempted to conjecture that this result extended to poly-
nomial modules, i. e. that the resolution (5.38) was minimal for all polynomial mod-
ules U with a stable leading module lt≺U . Unfortunately, this is not true. Con-
sider the homogeneous ideal I ⊂ �[x,y,z] generated by h1 = z2 + xy, h2 = yz− xz,
h3 = y2 + xz, h4 = x2z and h5 = x2y. One easily checks that these elements form a
Pommaret basisH for the degree reverse lexicographic term order and that lt≺U is
a stable ideal. A Pommaret basis of Syz(H) is given by

S2;3 = ze2 +(x− y)e1 + xe3− e4− e5 , (5.62a)

S3;3 = ze3− xe1− (x + y)e2− e4 + e5 , (5.62b)

S4;3 = ze4− x2e1 + xe5 , (5.62c)

S5;3 = ze5− x2e2− xe4 , (5.62d)

S4;2 = (y− x)e4− x2e2 , (5.62e)

S5;2 = ye5− x2e3 + xe4 . (5.62f)

As the first two generators show, the resolution (5.38) is not minimal. �

Remark 5.5.10. It follows from Lemma 4.3.3, that if H is a Pommaret basis of the
submodule U ⊆Pm of degree q, then (lt≺U)≥q is a stable monomial submodule, as
lt≺Hq is obviously its minimal basis and simultaneously a Pommaret basis. �

We return now to general polynomial submodules U ⊆ Pm. Like for any graded
free resolution, it is a standard task to reduce (5.38) to the minimal resolution us-
ing just some linear algebra (see Appendix B.4 for a detailed discussion). However,
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even in the monomial case it seems highly non-trivial to find a closed form descrip-
tion of the outcome of the minimisation process. Nevertheless, certain statements
are possible. In particular, we show now that (5.38) is always of minimal length and
hence we can trivially read off a Pommaret basis the projective dimension of U .

Theorem 5.5.11. Let U ⊆ Pm be a graded submodule and H its Pommaret basis
for a class respecting term order. If we set d = minh∈H clsh, then the projective
dimension of U is projdimU = n−d.

Proof. Consider the resolution (5.38) which is of length n− d. The last map in it
is defined by the syzygies Sα ;(d+1,...,n) originating in the generators hα ∈ H with
clshα = d. Choose now among these generators an element hγ of maximal de-
gree (recall that the same choice was crucial in the proof of Proposition 5.2.7). The
syzygy Sγ;(d+1,...,n) cannot contain a constant coefficient, as the coefficients of all
vectors eβ ;k where the last entry of k is n must be contained in 〈x1, . . . ,xn−1〉 and
the coefficients of the vectors eα ;(d+1,...,n−1) cannot be constant for degree reasons.

If we start now a minimisation process at the end of the resolution, then it will
never introduce a constant term into the syzygy Sγ;(d+1,...,n) and thus it will never
be eliminated. It is also not possible that it is reduced to zero, as the last map in a
free resolution is obviously injective. This observation implies that the last term of
the resolution will not vanish during the minimisation and the length of the minimal
resolution, i. e. projdimU , is still n−d. �

The (graded) Auslander–Buchsbaum formula arises as a trivial corollary of this
theorem and Proposition 5.2.7 on the depth. In contrast to other proofs, our approach
is constructive in the sense that we automatically have an explicit regular sequence
of maximal length and a (partially) explicit free resolution of minimal length.

Corollary 5.5.12 (Auslander–Buchsbaum). If U ⊆ Pm is a graded submodule
with P = �[x1, . . . ,xn], then depthU + projdimU = n.

As for a monomial module we do not need a term order, we obtain as a fur-
ther simple corollary the following relation between the projective dimensions of a
polynomial module U and its leading module lt≺U , respectively.

Corollary 5.5.13. Let U ⊆ Pm be a graded submodule and ≺ any term order for
which U possesses a Pommaret basisH. Then projdimU ≤ projdim(lt≺U). If ≺ is
a class respecting term order, then we even have equality.

Proof. Let H be the Pommaret basis of the polynomial submodule U for the term
order ≺ and set d = minh∈H cls (lt≺ h). Then it follows immediately from Theo-
rem 5.5.11 that projdim(lt≺U) = n− d. On the other hand, Theorem 5.4.12 guar-
antees the existence of the free resolution (5.38) of length n− d for U so that this
value is an upper bound for projdimU . For a class respecting term order we have
equality by Theorem 5.5.11. �

For notational simplicity, we restrict now again to ideals instead of submodules.
In many situations it is of interest to obtain an estimate on the degree of an ideal
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basis, in particular for the complexity analysis of completion algorithms. Up to date,
no simple answer is known to this question. Somewhat surprisingly, the stronger
problem of bounding not only the degree of a basis of I but also of its syzygies can
be treated effectively.

Definition 5.5.14. Let I ⊆P be a homogeneous ideal. I is called q-regular, if its ith
syzygy module Syzi(I) can be generated by elements of degree less than or equal
to q + i. The Castelnuovo–Mumford regularity regI is the least value q for which
the ideal I is q-regular.

As discussed in more detail in Remark B.4.20, among other applications the
Castelnuovo–Mumford regularity regI is an important measure for the complexity
of Gröbner bases computations. We now show that regI is trivially determined by
a Pommaret basis with respect to the degree reverse lexicographic order and then
provide several alternative characterisations of it.

Theorem 5.5.15. Let I ⊆ P be a homogeneous ideal. The Castelnuovo–Mumford
regularity of I is regI = q, if and only if I has in some coordinates a Pommaret
basis of degree q for the degree reverse lexicographic order.

Proof. Let x be some δ -regular coordinates for the ideal I so that it possess a Pom-
maret basis H of degree q with respect to the degree reverse lexicographic order in
these coordinates. Then the ith module of the syzygy resolution (5.38) induced by
the basisH is obviously generated by elements of degree less than or equal to q+ i.
Thus we have the trivial estimate regI ≤ q and there only remains to show that it is
in fact an equality.

For this purpose, consider a generator hγ ∈ H of degree q which is of minimal
class among all elements of this maximal degree q inH. If clshγ = n, then hγ cannot
be removed from H without loosing the basis property, as the leading term of no
other generator of class n can divide lt≺ hγ and, since we are using the degree reverse
lexicographic order, all other generators do not contain any terms of class n. Hence
we trivially find regI = q in this case.

If clshγ = n− i for some i > 0, then the resolution (5.38) contains at the ith
position the syzygy Sγ;(n−i+1,...,n) of degree q+ i. Assume now that we minimise the
resolution step by step starting at the end. We claim that the syzygy Sγ;(n−i+1,...,n) is
not eliminated during this process.

There are two possibilities how Sγ;(n−i+1,...,n) could be removed during the min-
imisation. The first one is that a syzygy at the next level of the resolution con-
tained the term eγ;(n−i+1,...,n) with a constant coefficient. Any such syzygy is of
the form (5.42) with clshα < n− i and clshα < k1 < · · · < ki < n and its lead-
ing term is xki+1eα ;k with ki+1 > ki. However, since cls (xk1 · · ·xki+1hα) < n− i and
cls(xn−i+1 · · ·xnhγ) = n− i, it follows from our use of the degree reverse lexico-
graphic order (since we assume that everything is homogeneous, both polynomials
have the same degree) and the definition of the induced term orders, that the term
eγ;(n−i+1,...,n) is greater than the leading term xki+1eα ;k of any syzygy Sα ;(k1,...,ki+1) at
the level i+ 1 and thus cannot appear.
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The second possibility is that Sγ;(n−i+1,...,n) itself contained a constant coefficient
at some vector eβ ;�. However, this required deghβ = deghγ+1 which is again a con-
tradiction.7 As the minimisation process never introduces new constant coefficients,
the syzygy Sγ;(n−i+1,...,n) may only be modified but not eliminated. Furthermore, the
modifications cannot make Sγ;(n−i+1,...,n) to the zero syzygy, as otherwise a basis
vector of the next level was in the kernel of the differential. However, this is not
possible, as we assume that the tail of the resolution is already minimised and by
the exactness of the sequence any kernel member must be a linear combination of
syzygies. Hence the final minimal resolution will contain at the ith position a gen-
erator of degree q + i and regI = q. �

To some extent this result was to be expected. We know from Theorem 5.5.7 that
generically the reduced Gröbner basis is also a Pommaret basis and, according to
Bayer and Stillman [34], this basis has for the degree reverse lexicographic order
generically the degree regI. Thus the only surprise is that Theorem 5.5.15 does not
require that the leading ideal is stable and the Pommaret basis H is not necessarily
a reduced Gröbner basis (however, if the ideal I has a Pommaret basis of degree q,
then the truncated ideal (le≺I)≥q is stable by Remark 5.5.10 and thus the set Hq

defined by (4.5) is the reduced Gröbner basis of I≥q).
Note furthermore that Theorem 5.5.15 implies a quite remarkable fact: in arbi-

trary coordinates x the ideal I either does not possess a finite Pommaret basis for
the degree reverse lexicographic order or the basis is of degree regI. Hence us-
ing Pommaret bases for this particular order, it becomes trivial to determine the
Castelnuovo–Mumford regularity: it is just the degree of the basis.

Remark 5.5.16. The proof of Theorem 5.5.15 also provides us with information
about the positions at which the maximal degree is attained in the minimal reso-
lution. We only have to look for all elements of maximal degree in the Pommaret
basis; their classes correspond to these positions. �

Remark 5.5.17. Recall from Remark 5.4.13 that Theorem 5.4.12 remains valid for
any involutive basis H with respect to a continuous division of Schreyer type (with

an obvious modification of the definition of the numbers β (k)
0 ) and that it is indepen-

dent of the used term order. It follows immediately from the form of the resolution
(5.38), i. e. from the form of the maps in it given by the respective involutive bases
according to Theorem 5.4.10, that the estimate regI ≤ degH holds and thus any
such basis provides us with a bound for the Castelnuovo–Mumford regularity.

This observation also implies that an involutive basis with respect to a division
of Schreyer type and an arbitrary term order can never be of lower degree than the
Pommaret basis for the degree reverse lexicographic order. The latter one is thus
in this sense optimal. As a concrete example consider again the ideal mentioned in

7 For later use we note the following fact about this argument. If eβ ;� is a constant term in the
syzygy Sγ;(n−i+1,...,n), then it must be smaller than the leading term and hence lt≺ (x�1 · · ·x�i hβ )≺
lt≺ (xk1 · · ·xki+1 hα ) implying that clshβ ≤ clshγ . Thus it suffices, if hγ is of maximal degree among
all generators hβ ∈ H with clshβ ≤ clshγ . For the special case that hγ is of minimal class, we
exploited this observation already in the proof of Theorem 5.5.11.
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Remark 5.2.8: in “good” coordinates a Pommaret basis of degree 2 exists for it and
after a simple permutation of the variables its Janet basis is of degree 4. �

In analogy to the proof of Corollary 5.5.13 comparing the projective dimensions
of a polynomial submodule U ⊆ Pm and of its leading module lt≺U with respect
to an arbitrary term order≺, we may derive a similar estimate for the Castelnuovo–
Mumford regularity.

Corollary 5.5.18. Let I ⊆P be a homogeneous ideal and≺ an arbitrary term order
such that a Pommaret basisH of I exists. Then regI ≤ reg(lt≺I) = degH. If ≺ is
the degree reverse lexicographic order, then even regI = reg(lt≺I).

Proof. It follows from Theorem 5.5.15 that reg(lt≺ I) = degH. On the other hand,
the form of the resolution (5.38) implies trivially that regI ≤ degH. For the degree
reverse lexicographic order Theorem 5.5.15 entails that regI = degH, too. �

Specialising again to monomial ideals, a combination of the above results with
Remark 5.5.10 and Proposition 5.5.6 immediately implies the following result.

Proposition 5.5.19. Let I ⊆ P be a quasi-stable ideal generated in degrees less
than or equal to q. Then I is q-regular, if and only if the truncation I≥q is stable.

Remark 5.5.20. A refinement of the Castelnuovo–Mumford regularity regI is pro-
vided by the extremal Betti numbers. Recall that the (graded) Betti number βi j of
the ideal I is defined as the number of minimal generators of degree i+ j of the ith
module in the minimal free resolution of I (thus regI is the maximal value j such
that βi,i+ j > 0 for some i). A Betti number βi j > 0 is called extremal, if βk� = 0 for
all k≥ i and � > j. There always exists a least one extremal Betti number: if we take
the maximal value i for which βi,i+regI > 0, then βi,i+regI is extremal. In general,
there may exist further extremal Betti numbers. One can show that both their posi-
tions and their values coincide for any ideal and its generic initial ideal with respect
to the degree reverse lexicographic order.

Our proof of Theorem 5.5.15 allows us to make the same statement for the or-
dinary initial ideal for ≺degrevlex—provided the coordinates are δ -regular. Further-
more, it shows that the extremal Betti numbers of I can be immediately read off
the Pommaret basis H of I. Finally, if we introduce “pseudo-Betti numbers” for
the (in general non-minimal) resolution (5.38), then the positions and values of the
extremal ones coincide with the true extremal Betti numbers of I.

Take the generator hγ used in the proof of Theorem 5.5.15. If clshγ = n− i1 and
deghγ = q1, then the considerations in the proof imply immediately that βi1,q1+i1
is an extremal Betti number and its value is given by the number of generators
of degree q1 and class n− i1 in the Pommaret basis H. If i1 = depthI, then this
is the only extremal Betti number. Otherwise, let q2 be the maximal degree of a
generator h ∈ H with clsh < n− i1 and assume that n− i2 is the minimal class of
such a generator. Then the arguments used in the proof of Theorem 5.5.15 show that
βi2,q2+i2 is also an extremal Betti number and that its value is given by the number of
generators of degree q2 and class n− i2 in the Pommaret basisH. Continuing in this
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manner, we obtain all extremal Betti numbers. Since all our considerations depend
only on the leading terms of the generators, we find exactly the same situation for
the leading ideal lt≺I. �

We provide now some alternative characterisations of q-regularity. The first one
may be considered as a more abstract rephrasing of the idea that for every product
of a generator with one of its non-multiplicative variables an involutive standard
representation should exist. In the next chapter we will rediscover this result in yet
another formulation (see Remark 6.3.6).

Theorem 5.5.21. Let I ⊆ P be a homogeneous ideal which can be generated by
elements of degree less than or equal to q. Then I is q-regular, if and only if for
some value 0≤ d ≤ n linear forms y1, . . . ,yd ∈ P1 exist such that

(
〈I,y1, . . . ,y j−1〉 : y j)

q = 〈I,y1, . . . ,y j−1〉q , 1≤ j ≤ d , (5.63a)

〈I,y1, . . . ,yd〉q = Pq . (5.63b)

Proof. Assume first that the conditions (5.63) are satisfied for some linear forms
y1, . . . ,yd ∈ P1 and choose variables x such that xi = yi for 1 ≤ i≤ d. Let the finite
setHq be a basis of Iq as a vector space in triangular form with respect to the degree
reverse lexicographic order, i. e. lt≺ h1 �= lt≺ h2 for all h1,h2 ∈Hq. We claim thatHq

is a Pommaret basis of the truncation I≥q implying that the full ideal I possesses a
Pommaret basis of degree q′ ≤ q and hence by Theorem 5.5.15 that regI ≤ q.

Let us write Hq =
{

hk,� | 1 ≤ k ≤ n, 1 ≤ � ≤ �k
}

where clshk,� = k. A basis of
the vector space 〈I,x1, . . . ,x j〉q is then given by all hk,� with k > j and all terms in
〈x1, . . . ,x j〉q. We will now show that

Hq+1 =
{

x jhk,� | 1≤ j ≤ k, 1≤ k ≤ n, 1≤ �≤ �k
}

(5.64)

is a basis of Iq+1 as a vector space. This implies thatHq is locally involutive for the
Pommaret division and thus involutive by Proposition 4.2.7. Since I is generated in
degrees less than or equal to q, we have furthermore 〈Hq〉= I≥q so that indeedHq

is a Pommaret basis of the ideal I≥q.
Let f ∈ Iq+1 and cls f = j. By the properties of the degree reverse lexico-

graphic order, this implies that f = x j f̂ + g with f̂ ∈
(
�[x j, . . . ,xn] \ {0}

)
q and

g ∈
(
〈x1, . . . ,x j−1〉

)
q+1 (cf. Lemma A.1.8). We distinguish two cases. The con-

dition (5.63b) implies that
(
〈I,x1, . . . ,xd〉

)
q = Pq. Thus if j > d, we may write

f̂ = ∑n
k=d+1∑

�k
�=1 ck,�hk,� + ĝ with ck,� ∈ � and ĝ ∈

(
〈x1, . . . ,xd〉

)
q. We introduce

f̂0 = ∑n
k= j∑

�k
�=1 ck,�hk,� and f̂1 = ∑ j−1

k=d+1∑
�k
�=1 ck,�hk,� + ĝ. Obviously, we have now

f̂ ∈
(
〈I,x1, . . . ,x j−1〉 : x j

)
q. If j ≤ d, then the condition (5.63a) implies that actu-

ally f̂ ∈ 〈I,x1, . . . ,x j−1〉q. Hence in this case we may decompose f̂ = f̂0 + f̂1 with

f̂0 = ∑n
k= j∑

�k
�=1 ck,�hk,� and f̂1 ∈

(
〈x1, . . . ,x j−1〉

)
q.

It is trivial that 〈Hq+1〉�⊆Iq+1 (here the linear span over� is considered and not
overP). We show by an induction over j that Iq+1⊆〈Hq+1〉�. If j = 1, then f = x1 f̂
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with f̂ ∈ Iq. Thus f ∈ 〈Hq+1〉�. If j > 1, then we write f = f0 + f1 with f0 = x j f̂0

and f1 = x j f̂1 + g where the polynomials f̂0 and f̂1 have been defined above. By
construction, f0 ∈ 〈Hq+1〉�, as x j is multiplicative for all generators contained in
f̂0, and f1 ∈ Iq+1 with cls f1 < j. According to our inductive hypothesis this fact
implies that f1 ∈ 〈Hq+1〉�, too. Hence 〈Hq+1〉� = Iq+1.

Assume conversely that the ideal I is q-regular. Then, by Theorem 5.5.15, it
possesses a Pommaret basisH of degree regI ≤ q with respect to the degree reverse
lexicographic order. We claim that by choosing yi = xi for 1≤ i≤ d = dimP/I the
conditions (5.63) are satisfied. For the second equality (5.63b), this fact follows
immediately from Proposition 5.2.3 which shows that it actually holds already at
degree regI ≤ q.

For the equality (5.63a) take a polynomial f ∈
(
〈I,x1, . . . ,x j−1〉 : x j

)
q
. By

definition, we have then x j f ∈ 〈I,x1, . . . ,x j−1〉. If f ∈ 〈x1, . . . ,x j−1〉, then there
is nothing to prove. Otherwise, a polynomial g ∈ 〈x1, . . . ,x j−1〉 exists such that
x j f − g ∈ I and it obviously satisfies cls(x j f −g) = j. If we introduce the set
H≥ j = {h ∈ H | clsh ≥ j}, the involutive standard representation of x j f − g in-
duces an equation x j f = ∑h∈H≥ j

Phh + ḡ where ḡ ∈ x j〈x1, . . . ,x j−1〉 and Ph ∈ 〈x j〉
(this is trivial if clsh > j and follows from degh≤ q if clsh = j). Thus we can divide
by x j and find that already f ∈ 〈I,x1, . . . ,x j−1〉q. �

One can prove that in generic coordinates it is not possible to find a Gröbner basis
of degree less than regI and that this estimate is sharp, as it is realised by bases with
respect to the degree reverse lexicographic order. The restriction to the generic case
is here essential, as for instance most monomial ideals are trivial counterexamples.
Unfortunately, no effective criterion is known for deciding whether or not a given
ideal is in generic position.

Example 5.5.22. Because of the above mentioned non-effective genericity con-
dition, Theorem 5.5.21 is only of limited use for computing the Castelnuovo–
Mumford regularity. Consider the homogeneous ideal

I = 〈z8−wxy6, y7− x6z, yz7−wx7〉 ⊂ �[w,x,y,z] . (5.65)

The given basis of degree 8 is already a reduced Gröbner basis for the degree reverse
lexicographic order. If we perform a simple permutation of the variables and con-
sider I as an ideal in �[w,y,x,z], then we obtain for the same term order a reduced
Gröbner basis of degree 50:

{
y7− x6z, yz7−wx7, z8−wxy6, y8z6−wx13,

y15z5−wx19, y22z4−wx25, y29z3−wx31,

y36z2−wx37, y43z−wx43, y50−wx49} . (5.66)

Unfortunately, neither coordinate system is generic for I: as regI = 13, one yields
a basis of too low degree and the other one of too high degree.

Using Theorem 5.5.15, the determination of the Castelnuovo–Mumford regular-
ity is trivial, as the first coordinate system is δ -regular. A Pommaret basis of I
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for the degree reverse lexicographic order is obtained by adding the polynomials
zk(y7− x6z) with 1≤ k ≤ 6 to the first basis and thus its degree is indeed 13. �

Example 5.5.23. Consider the ideal I = 〈xq,yq〉 for an integer q > 1. Its Pommaret
basis is H = {xqyr | 0≤ r < q}∪{yq} implying that regI = 2q−1. Thus the ideal
is not in general position and one may check that most non-trivial linear coordinate
transformations lead to a basis whose completion yields a Gröbner basis of degree
at least 2q−1. �

Another characterisation of q-regularity is based on the existence of a special
kind of resolution for the truncation I≥q.

Theorem 5.5.24. The homogeneous ideal I ⊆ P is q-regular, if and only if its trun-
cation I≥q admits a linear resolution.

Proof. If the ideal I is q-regular, then by Theorem 5.5.15 it possesses in suitable
coordinates a Pommaret basisH of degree regI ≤ q. The setHq defined by (4.5) is
a Pommaret basis of the truncated ideal I≥q according to Lemma 4.3.2. Now it fol-
lows immediately from Theorem 5.4.10 that I≥q possesses a linear free resolution,
as all syzygies in the resolution (5.38) derived from the basis Hq are necessarily
homogeneous of degree 1.

The converse is trivial. The existence of a linear resolution for I≥q immediately
implies that regI≥q = q. Hence I≥q possesses a Pommaret basis of degree q by
Theorem 5.5.15 entailing the existence of a Pommaret basis for I of degree q′ ≤ q.
Hence, again by Theorem 5.5.15, regI = q′ ≤ q. �

Remark 5.5.25. We are now finally in a position where we can finish the discussion
started in Remark 4.3.17 on the effective construction of Pommaret bases. There we
were not able to prove that after a finite number of coordinate transformations based
on our criterion for asymptotic singularity (Theorem 4.3.12) one always arrives at a
δ -regular coordinate system for a given homogeneous ideal I ⊆ P . Recall that our
main problem in Remark 4.3.17 was that we do not have a bound for the degrees of
either Pommaret or Janet bases of I. Our results above do not provide us with such
a bound, but it still turns out that we can prove the termination of our approach by
studying what happens at the finite degree q = regI.

We assume from now on that we are working with a class respecting order and
with an infinite field �. By the considerations in the proof above, our coordinates x
are δ -regular, if and only if an involutively head autoreduced, �-linear basis of Iq

is also a Pommaret basis of I≥q. Denote, as in Remark 4.3.7, by β (k)
q the number of

elements of class k in such a basis. There we already noted that these numbers are
invariants of I, as they are in a one-to-one correspondence with the coefficients of
the Hilbert polynomial HI .

Consider now some basis H arising during the completion process. It induces a
subset Hq ⊂ Iq by taking all Pommaret multiplicative multiples of elements up to

degree q; let β̃ (k)
q be the number of members of class k in it. If H is not a Pom-

maret basis, then a comparison of the values β (k)
q and β̃ (k)

q starting with k = n will
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sooner or later lead to a smaller value β̃ (k)
q ; more precisely, we have the inequality

∑n
k=1 kβ̃ (k)

q ≤∑n
k=1 kβ (k)

q with equality holding, if and only ifH is a Pommaret basis.
Each completion step which adds an element of degree q or less increases the

value of the sum ∑n
k=1 kβ̃ (k)

q . Consider now the effect of a coordinate transformation
of the form used in the proof of Theorem 4.3.12. All new terms arising on the right
hand side of (4.7) are greater than the original one with respect to any class respect-
ing term order. Thus in general we can expect that after such a transformation at
least some leading terms of the new set Hq are greater than before. In fact, by the
same argument as in the proof of Theorem 4.3.12, we even can be sure that after
a finite number of transformations this will indeed be the case. But this observa-
tion implies that after a finite number of transformations the sum ∑n

k=1 kβ̃ (k)
q must

increase and eventually we must obtain after a finite number of completion steps
and coordinate transformations the right value for this sum implying that we have
obtained δ -regular coordinates and a Pommaret basis. �

As a further corollary to Theorem 5.5.24, we provide a converse to Theorem 5.5.2
generalising Theorem 5.5.8 from the monomial case to polynomial submodules.

Theorem 5.5.26. Let U ⊆Pm be a componentwise linear submodule with Pommaret
basisH. Then generically the resolution (5.38) is minimal. It is minimal, if and only
if H is a minimal basis of U .

Proof. As Example 5.5.3 demonstrated, the problem is that generally the sets Gd de-
fined by (5.59) are not Pommaret bases of the modules U〈d〉 for all d ≥ 0. According
to Theorems 5.5.24 and 5.5.15, this is trivially the case for all degrees d≥ q = degH,
since for them U〈d〉 = U≥d . Thus it suffices to consider the finitely many modules
U〈0〉, . . . ,U〈q〉. By Corollary 4.3.16, generic coordinate systems are simultaneously
δ -regular for all these modules (and then also for the whole submodule U).

LetH be the Pommaret basis of U in such a coordinate system and consider the
corresponding sets Gd for 0≤ d ≤ q. By construction,U〈d〉 = 〈Gd〉. According to our
assumption, all modulesU〈d〉 possess linear resolutions and thus regU〈d〉 = d. Hence
the Pommaret basis ofU〈d〉 is of degree d by Theorem 5.5.15, which is only possible,
if it is already given by Gd . If all sets Gd are involutive, then no first syzygy of the
Pommaret basis H can contain a constant term and it follows from Lemma 5.5.1
that the resolution (5.38) is minimal. Furthermore, in this caseH must be a minimal
generating set of U . Indeed, it is trivial that the elements of H of lowest degree are
minimal generators and since no element of a higher degree d can be contained in a
module U〈d′〉 for any d′ < d, it must also be a minimal generator. �

Remark 5.5.27. These considerations in the proof above can be exploited for effec-
tively deciding whether a given submodule U ⊆ Pm is componentwise linear. We
compute a Pommaret basis H for U , changing to δ -regular coordinates if neces-
sary. If the resolution (5.38) determined byH is minimal, then U is componentwise
linear by Theorem 5.5.2 (the minimality of the resolution is trivial to check with
Lemma 5.5.1). Otherwise, there are first syzygies in (5.38) containing a constant
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term. Let Sα ;� be one of minimal degree. If deghα = d, then obviously all mod-
ules U〈d′〉 for degrees d′ < d possess linear resolutions (coming from their Pom-
maret bases Gd). For analysing the module U〈d〉, we take the corresponding set Gd

and complete it to a Pommaret basis Hd (potentially performing further coordinate
transformation). If degHd = d, then we recompute the Pommaret basis H of U in
the new coordinates, which trivially are still δ -regular for U and all modules U〈d′〉
with d′ < d, and check again for minimality. In the case that obstructions in some
degree d < d̄ < regU appear, we continue in the same manner. After a finite number
of steps we either obtain a minimal resolution and U is componentwise linear or we
find a degree d such that the module U〈d〉 does not possess a linear resolution. �

The Castelnuovo–Mumford regularity is closely related to certain saturations.
Thus we discuss next how one can effectively determine the saturation Isat = I :P∞

+
of a homogeneous ideal I ⊆ P using Pommaret bases.

Proposition 5.5.28. Let H be a Pommaret basis of the homogeneous ideal I for the
degree reverse lexicographic order. We introduce the sets H1 = {h ∈H | clsh = 1}
and H̄1 =

{
h/(x1)degx1 lt≺ h | h∈H1

}
. Then H̄= (H\H1)∪H̄1 is a weak Pommaret

basis of the saturation Isat.

Proof. By the definition of the reverse lexicographic order, the leading term lt≺ h
has the lowest x1-degree of all terms in a generator h ∈ H1. Thus the set H̄1 is
well-defined and does not contain a generator of class 1 anymore.

We first show that indeed H̄1 ⊂ Isat. Introduce d1 = maxh∈H1 {degx1 lt≺ h} and
Δ = d1 + maxh∈H1 {degh}−minh∈H1 {degh}. We claim that h̄ ·PΔ ⊂ I for every
generator h̄ ∈ H̄1. Thus let xμ ∈ PΔ and choose k ∈ �0 such that (x1)kh̄ ∈ H1;
obviously, we have k ≤ d1. Since the polynomial xμ(x1)kh̄ lies in I, it possesses an
involutive standard representation of the form

xμ(x1)kh̄ = ∑
h∈H\H1

Phh + ∑
h∈H1

Qhh (5.67)

with Ph ∈ �[x1, . . . ,xcls h] and Qh ∈ �[x1].
The left hand side of this equation is contained in 〈(x1)k〉 and thus also the right

hand side. Analysing an involutive normal form computation leading to the repre-
sentation (5.67), one immediately sees that this implies that all coefficients Ph (since
here clsh > 1) and all summands Qhh lie in 〈(x1)k〉. As a first consequence of this
representation we observe that for any monomial xμ (not necessarily of degree Δ )
we may divide (5.67) by (x1)k and then obtain an involutive standard representation
of xμ h̄ with respect to the set H̄; hence this set is indeed weakly involutive for the
Pommaret division and the given term order.

If xμ ∈ PΔ , then we find for any h ∈ H1 that |deg h̄− degh| ≤ Δ and hence
degQh = deg

(
xμ(x1)kh̄

)
− degh ≥ k. Since Qh ∈ �[x1], this implies that under the

made assumption on xμ already the coefficient Qh lies in 〈(x1)k〉 so that the product
xμ h̄ possesses an involutive standard representation with respect to H and thus is
contained in the ideal I as claimed.
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Now we show that every polynomial f ∈Isat may be decomposed into an element
of I and a linear combination of elements of H̄1. We may write f = f̃ +g where f̃ is
the involutive normal form of f with respect to H and g ∈ I. If f̃ = 0, then already
f ∈ I and nothing is to be shown. Hence we assume that f̃ �= 0. By definition of
the saturation Isat, there exists a k ∈ �0 such that f̃ · Pk ⊂ I, hence in particular
(x1)k f̃ ∈ I. This implies that lt≺

(
(x1)k f̃

)
∈ 〈lt≺H〉P. Therefore a unique generator

h ∈H exists with lt≺ h |P lt≺
(
(x1)k f̃

)
.

So let lt≺
(
(x1)k f̃

)
= xμ lt≺ h and assume first that clsh > 1. Since the term on

the left hand side is contained in 〈(x1)k〉, we must have μ1 ≥ k so that we can divide
by (x1)k. But this implies that already lt≺ f̃ ∈ 〈lt≺H〉P contradicting our assumption
that f̃ is in involutive normal form. Hence we must have clsh = 1 and by the same
argument as above μ1 < k.

Division by (x1)k shows that lt≺ f̃ ∈ 〈lt≺ H̄1〉P. Performing the corresponding
involutive reduction leads to a new element f1 ∈ Isat. We compute again its involu-
tive normal form f̃1 and apply the same argument as above, if f̃1 �= 0. After a finite
number of such reductions we obtain an involutive standard representation of f with
respect to the set H̄ proving our assertion. �

By Proposition 3.4.7, an involutive head autoreduction of the set H̄ yields a
strong Pommaret basis for the saturation Isat. As a trivial consequence of the con-
siderations in the proof above we find that in δ -regular coordinates Isat is simply
given by the quotient I : 〈x1〉∞. This observation in turn implies immediately that
for degrees q≥ degH1 we have Iq = Isat

q and that degH1 is the lowest value having
this property, i. e. the satiety satI.

Corollary 5.5.29. Let the set H be a Pommaret basis of the homogeneous ideal
I ⊆ P for the degree reverse lexicographic order. Then I is saturated, if and only if
H1 = ∅. If I is not saturated, then satI = degH1. Independent of the existence of a
Pommaret basis, we have for any homogeneous generating set F of the socle I :P+
the equality

satI = 1 + max{deg f | f ∈ F ∧ f /∈ I} . (5.68)

Proof. Except of the last statement, everything has already been proven in the dis-
cussion above. For its proof we may assume without loss of generality that the
coordinates are δ -regular so that a Pommaret basis H of I exists, as all quantities
appearing in (5.68) are invariant under linear coordinate transformations.

Let h̃ be an element of H1 of maximal degree. We claim that h̃/x1 ∈ I : P+.
Indeed, if we analyse for any 1 < � ≤ n the involutive standard representation of
x�h̃, then all coefficients of generators h ∈H\H1 are trivially contained in 〈x1〉 and
for the coefficients of elements h∈H1 the same holds for degree reasons. Hence we
can divide by x1 and find that x�h̃/x1 ∈ I for all 1≤ �≤ n. Since I : P+ ⊆ I : 〈x1〉,
all generators f ∈ F with f /∈ I must be linear combinations of polynomials of the
form h̃/x1 with h̃ ∈H1 and the third statement follows from the second one. �

Remark 5.5.30. Specialising to monomial ideals, Corollary 5.5.29 immediately im-
plies that for ideals with I : P+ = I : 〈x1〉 the satiety satI is the maximal degree
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of a minimal generator of I divisible by x1. If the ideal I possesses a Pommaret
basis H, this statement also follows from the fact that under the made assumption
all elements ofH1 are minimal generators.

Indeed, assume to the contrary that H1 contains two elements h1 �= h2 such that
h1 | h2. Obviously, this implies degx1 h1 = degx1 h2 and a non-multiplicative index
1 < � ≤ n exists such that x�h1 | h2. Without loss of generality, we may assume
that h2 = x�h1. But this immediately entails that x�h1/x1 = h2/x1 /∈ I and hence
h1/x1 ∈ (I : 〈x1〉)\ (I : P+). �

A first trivial consequence of our results is the following well-known formula
relating Castelnuovo-Mumford regularity and saturation.

Corollary 5.5.31. Let I ⊆ P be an ideal. Then regI = max{satI, regIsat}.

Proof. Without loss of generality, we may assume that we use δ -regular coordi-
nates so that the ideal I possesses a Pommaret basis H with respect to the degree
reverse lexicographic order. Now the statement follows immediately from Proposi-
tion 5.5.28 and Corollary 5.5.29. �

For monomial ideals in generic position one can determine regI with the help
of certain evaluations. Let d = dim(P/I). We introduce for j = 0, . . . ,d the poly-
nomial subrings P ( j) = �[x j+1, . . . ,xn] and within them the ideals I( j) = I ∩P( j)

and their saturations Ĩ( j) = I( j) : 〈x j+1〉∞. Obviously, a basis of I( j) is obtained by
setting x1 = · · ·= x j = 0 in a basis of I and for a basis of Ĩ( j) we must additionally
set x j+1 = 1. Now we define the numbers

c j = sup
{

q | (Ĩ( j)/I( j))q �= 0
}

, 0≤ j < D , (5.69a)

cD = sup
{

q | (P (d)/I(d))q �= 0
}

. (5.69b)

One can show that whenever none of these numbers is infinite (which is the case in
generic coordinates), then their maximum is given by regI. We prove now that this
is indeed the case for δ -regular coordinates and express the numbers c j as satieties.

Theorem 5.5.32. The numbers c0, . . . ,cD are all finite, if and only if the monomial
ideal I ⊆ P is quasi-stable. In this case c j = satI( j) for 0≤ j ≤ D and

max{c0, . . . ,cD}= regI . (5.70)

If d = depthI, then it suffices to consider cd , . . . ,cD.

Proof. We assume first that I is quasi-stable and thus possesses a Pommaret ba-
sis which we write H =

{
hk,� | 1 ≤ k ≤ n, 1 ≤ � ≤ �k

}
where clshk,� = k. One

easily verifies that the subset H( j) =
{

hk,� ∈ H | k > j
}

is the Pommaret basis
of the ideal I( j). If we set ak,� = degxk hk,�, then the Pommaret basis of Ĩ( j) is
H̃( j) =H( j+1)∪

{
h j+1,�/(x j+1)a j+1,� | 1≤ �≤ � j+1

}
. This fact immediately implies

that c j = max
{

degh j+1,� | 1≤ �≤ � j+1
}

. By construction, dim(P (D)/I(D)) = 0

and Proposition 5.2.3 entails that for q̂ = degH(D) the equality I(D)
q̂ = P (D)

q̂ holds.
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Hence we find cD = q̂ (it is not possible that cD < q̂, as otherwise the setH was not
involutively autoreduced).

Thus we find that max{c0, . . . ,cD} = degH and Theorem 5.5.15 yields (5.70).
Furthermore, it follows immediately from Corollary 5.5.29 and Proposition 5.2.3,
respectively, that c j = satI( j) for 0 ≤ j ≤ D. Finally, Proposition 5.2.7 entails that
the values c0, . . . ,cd−1 vanish.

Now assume that the ideal I was not quasi-stable. By Part (ii) of Proposi-
tion 5.3.4 this entails that for some 0 ≤ j < D the variable x j+1 is a zero divisor
in the ring P/〈I,x1, . . . ,x j〉sat ∼= P ( j)/(I( j))sat. Thus a polynomial f /∈ (I( j))sat ex-
ists for which x j+1 f ∈ (I( j))sat which means that we can find for any sufficiently
large degree q! 0 a polynomial g ∈P ( j) with degg = q−deg f such that f g /∈ I( j)

but x j+1 f g ∈ I( j). The equivalence class of f g is now a non-vanishing element of
(Ĩ( j)/I( j))q so that for a not quasi-stable ideal I at least one c j is not finite. �

One direction of the proof uses the same idea as the one given above for
Theorem 5.5.15: the Castelnuovo–Mumford regularity is determined by the basis
members of maximal degree and their classes give us the positions in the minimal
resolution where it is attained (recall Remark 5.5.16; here these are just the indices
j for which c j is maximal). However, while Theorem 5.5.15 holds for arbitrary ho-
mogeneous ideals, the evaluation approach can only be applied to monomial ideals.

Proposition 5.5.33. Let I ⊆ P be a quasi-stable ideal and I = J1 ∩ ·· · ∩ Jr

its unique irredundant decomposition into irreducible monomial ideals. Then the
equality regI = max{regJ1, . . . , regJr} holds.

Proof. We first note that the Castelnuovo-Mumford regularity of an irreducible
monomial ideal J = 〈(xi1)�1 , . . . ,(xik )�k〉 is easily determined using the considera-
tions in Example 3.1.16. There we showed that any such ideal becomes quasi-stable
after a simple renumbering of the variables and explicitly gave its Pommaret basis.
Up to the renumbering, the unique element of maximal degree in this Pommaret ba-
sis is the term (xi1)�1(xi2)�2−1 · · · (xik)�k−1 and thus it follows from Theorem 5.5.15
that regJ = ∑k

j=1 � j− k + 1.
Recall from Proposition 5.3.13 that an irreducible decomposition can be con-

structed via standard pairs. As discussed in the Addendum to Section 5.3, the de-
composition (5.26) is in general redundant; among all standard pairs (ν,Nν ) with
Nν = N for a given set N only those exponents ν which are maximal with respect to
divisibility appear in the irredundant decomposition and thus are relevant.

If we now determine the standard pairs of I from a Pommaret basis according to
Remark 5.3.15, then we must distinguish two cases. We have first the standard pairs
coming from the terms xμ of degree q = degH not lying in I. They are of the form(
xν ,{x1, . . . ,xk}

)
where k = clsμ and xν = xμ/(xk)μk . By Proposition 5.3.13, each

such standard pair leads to the irreducible ideal J = 〈(x�)ν�+1 | k < �≤ n〉. By the
remarks above, regJ = |ν|+ 1≤ |μ |= q = regI.

The other standard pairs come from the terms xν /∈ I with |ν| < q. It is easy to
see that among these the relevant ones correspond one-to-one to the “end points”
of the monomial completion process: we call an element of the Pommaret basis H
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of I an end point, if each non-multiplicative multiple of it has a proper involutive
divisor in the basis (and thus one branch of the completion process ends with this
element8). If the generator xμ ∈ H is such an end point, then the corresponding
standard pair consists of the monomial xν = xμ/xk where k = clsμ and the empty
set and it yields the irreducible ideal J = 〈(x�)ν�+1 | 1≤ �≤ n〉. Thus we find again
regJ = |ν|+ 1 = |μ | ≤ q = regI.

These considerations prove the estimate regI ≥ max{regJ1, . . . , regJr}. The
claimed equality follows from the observation that any element of degree q in H
must trivially be an end point of the completion process and the corresponding stan-
dard pair yields an irreducible ideal J with regJ = q. �

Yet another characterisation of regI using the homological nature of this invari-
ant will be given in the next chapter where we will relate it to the Koszul homology
of the factor module P/I.

The question of bounding the Castelnuovo–Mumford regularity of a homoge-
neous ideal I in terms of the degree q of an arbitrary generating set has attracted
quite some interest. It is well-known that a doubly exponential bound exists for regI
and that this bound is indeed sharp (cf. our discussion of the complexity of Gröbner
basis computations in Appendix B.4).

For monomial ideals I the situation is much more favourable. The Taylor res-
olution provides us with an explicit resolution for any such ideal supported by the
lcm-lattice of the given basis (thus the generators in the kth term of the resolution
are determined by the least common multiples of k generators of I).9 It immediately
implies for such ideals the existence of a linear bound

regI ≤ n(q−1)+ 1 (5.71)

where n is again the number of variables. Indeed, the degrees of the generators of
its kth term are trivially bounded by kq and, by Hilbert’s Syzygy Theorem B.4.29,
it suffices to consider the first n terms which yields the above bound. For a quasi-
stable ideal I, a simple corollary of Proposition 5.5.33 yields an improved bound
using the minimal generators.

Corollary 5.5.34. Let the monomials m1, . . . ,mr be the minimal generators of the
quasi-stable ideal I ⊆ �[x1, . . . ,xn]. Setting furthermore xλ = lcm(m1, . . . ,mr) and
d = min{clsm1, . . . ,clsmr} (i. e. depthI = d), the Castelnuovo–Mumford regularity
of I satisfies the estimate

regI ≤ |λ |+ d−n (5.72)

and this bound is sharp.

Proof. Applying repeatedly the rule 〈F ,t1t2〉= 〈F ,t1〉∩〈F ,t2〉 for arbitrary gener-
ating sets F and coprime monomials t1, t2, one determines an irreducible decom-
position of I. Obviously, in the worst case one of the obtained irreducible ideals is

8 Note that an end point may very well be a member of the minimal basis of I!
9 See the Notes at the end of this chapter for more details.
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J = 〈(xd)λd , . . . ,(xn)λn〉. As we already know that regJ = |λ |+ d− n, this value
bounds regI by Proposition 5.5.33. �

Remark 5.5.35. An alternative direct proof of the corollary goes as follows. Let H
be the Pommaret basis of I. We claim that each generator xμ ∈ H with clsμ = k
satisfies μk ≤ λk and μ j < λ j for all j > k. The estimate for μk is obvious, as it fol-
lows immediately from our completion algorithm that there is a minimal generator
xν | xμ with νk = μk.

Assume for a contradiction that the Pommaret basis H contains a generator xμ

where μ j > λ j for some j > clsμ . If several such generators exist for the same
value j, choose one for which μ j is maximal. Obviously, j is non-multiplicative for
the term xμ and hence the multiple x jxμ must contain an involutive divisor xν ∈H.
Because of our maximality assumption ν j ≤ μ j and hence j must be multiplicative
for xν so that clsν ≥ j. But this fact trivially implies that xν |P xμ contradicting that
the basisH is by definition involutively autoreduced.

Now the assertion of the proposition follows immediately: under the made
assumptions we find clsλ = d and in the worst case H contains the generator
(xd)λd (xd+1)λd+1−1 · · · (xn)λn−1 which is of degree |λ |+ d−n. �

Remark 5.5.36. The same arguments together with Proposition 5.5.28 also yield im-
mediately a bound for the satiety of a quasi-stable ideal I. As already mentioned
above, a quasi-stable ideal is not saturated, if and only if d = 1. In this case, we have
trivially satI ≤ |λ |+1−n. Again the bound is sharp, as shown by exactly the same
class of irreducible ideals as considered in the proof above. �

Finally, we recall that, given two quasi-stable ideals I,J ⊆P and their respective
Pommaret bases, we explicitly constructed in Remarks 3.1.13 and 4.1.6, respec-
tively, weak Pommaret bases for the sum I+J , the product I ·J and the intersec-
tion I ∩J . Together with Theorem 5.5.15 the respective form of these weak bases
lead to the following result.

Proposition 5.5.37. Let I,J ⊆ P be two quasi-stable ideals. Then the following
three estimates hold:

reg(I+J ) ≤ max{regI, regJ } , (5.73a)

reg(I ·J ) ≤ regI+ regJ , (5.73b)

reg(I ∩J ) ≤ max{regI, regJ } . (5.73c)

Proof. The first two estimates follow immediately from the weak Pommaret bases
given in the above mentioned remarks and Theorem 5.5.15. The last estimate is a
simple corollary of Proposition 5.5.33. �
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5.6 Notes

Combinatorial decompositions of polynomial modules and involutive bases ap-
peared already in the Janet–Riquier Theory of systems of partial differential equa-
tions developed in the late 19th, early 20th century by a number of authors (see e. g.
[233, 235, 381, 454, 458]). In this theory, the term passive introduced by Méray and
Riquier [321] is more common than involutive; the latter one seems to go back to
Lie. The idea of assigning multiplicative variables is due to Janet.

The results of this theory remained more or less unknown in commutative alge-
bra until fairly recently. Rees [371] introduced much later the special decomposition
now carrying his name. The concept was generalised by Stanley [431, 432] who was
interested in a simple way to determine Hilbert functions; Proposition 5.2.1 is due
to him. In recent years, a number of authors have picked up these ideas and ap-
plied them in various fields; see e. g. [32, 44, 151, 436, 439] and references therein.
In the context of a complexity analysis of Gröbner bases, Dubé [114] reinvented
combinatorial decompositions (apparently unaware of all the previous work on this
topic). Stanley filtrations were introduced by Maclagan and Smith [300]; they also
provide a concrete example [300, Ex. 3.8] of a Stanley decomposition not admitting
an ordering that makes it to a Stanley filtration.

Within an algebraic context, concrete algorithms for the construction of combina-
torial decompositions were proposed by various authors (in the Notes of Chapter 7
one can find some references to implementations of the Janet–Riquier Theory of
partial differential equations which at least implicitly also determine such decom-
positions; complementary decompositions arise here in the context of determining
formally well-posed initial value problems—see Section 9.3). Sturmfels and White
[439] presented a simple recursive algorithm to determine a Stanley decomposi-
tion for arbitrary monomial modules which is essentially equivalent to our proof of
Proposition 5.1.3. Thus its extension to polynomial modules Pm/N requires that
one must first compute a Gröbner basis of N for some term order ≺ in order to
obtain a basis of lt≺N . They further developed a special method for determining
Rees decompositions. However, it is rather expensive, as it needs repeated com-
putations of Gröbner bases. Our approach via Pommaret bases is more direct and
efficient; the precise relation between the two approaches is detailed in [410]. Both
Dubé [114] and Maclagan and Smith [300] mention algorithms for the construction
of combinatorial decompositions for monomial ideals (in the latter case the algo-
rithm even yields Stanley filtrations). Robertz [385] presented an algorithm for the
construction of a quasi-Rees decomposition using Janet bases10 in the context of
determining a Noether normalisation. Its basic idea is very similar to our approach
to the construction of δ -regular coordinates.

Proposition 5.1.3 on the decomposition of the complementary set is a classical
result in commutative algebra [98, pp. 417–418] and is sometimes used to prove the
existence of the Hilbert polynomial. We slightly modified the proof in order to obtain

10 Although this fact is not mentioned in [385], the algorithm works for arbitrary Noetherian invo-
lutive divisions.
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a disjoint decomposition. Gerdt [153, Lemma 24] proposed a version that relates the
form of the cones to an involutive division. However, his proof is not correct, as the
there constructed set U (in the notation of our proof of Proposition 5.1.3) may also
contain elements of I. Indeed, it is trivial to provide examples for this effect using
the Janet division.

Proposition 5.1.4 was already proven by Janet [235, Section 15]—again in the
context of initial value problems for overdetermined differential equations. In fact,
our proof is essentially the one given by him. Complementary decompositions were
constructed already before by Riquier [381], Chapt. V, §§79–88. Janet was the first
to consider disjoint decompositions of both the ideal I and its factor algebra P/I.
Oberst and Pauer [340, Sect. 2.2] provide an algorithm for the simultaneous con-
struction of both decompositions; their determination of the complementary decom-
position is essentially equivalent to our Algorithm 5.1.

The combination of Corollary 5.1.9 and Proposition 5.2.7 allows us to make some
statements about the Stanley conjecture. It concerns the minimal number of multi-
plicative variables for a generator in a Stanley decomposition. Following Apel [21,
Def. 1] and Herzog et al [212] we call this number the Stanley depth of the decom-
position and for an ideal I ⊆ P the Stanley depth of the algebra A= P/I, written
sdepthA, is defined as the maximal Stanley depth of a complementary decomposi-
tion for I. In its simplest form the Stanley conjecture claims that we always have
the inequality sdepthA≥ depthA. Obviously, Corollary 5.1.9 together with Propo-
sition 5.2.7 (plus the existence Theorem 4.3.15 for Pommaret bases) shows that this
inequality holds for arbitrary ideals.

The rigorous formulation of the Stanley conjecture [432, Conj. 5.1] concerns
monomial ideals and requires that all generators in the decomposition are again
monomials. Furthermore, no coordinate transformation is allowed. Then our results
only allow us to conclude that the Stanley conjecture is true for all quasi-stable
ideals. Some further results on this question have been achieved by Apel [21, 22]
with the help of a slightly different notion of involutive bases.11

The notion of a standard pair was introduced by Sturmfels et al [440]. They
used it to derive bounds on the geometric and the arithmetic degree, respectively,
of a homogeneous ideal; in particular, the arithmetic degree is simply given by the
number of standard pairs [440, Lemma 3.3]. We cannot give here an introduction
into these degree concepts; we refer instead to [468, Section 9.1] or [33]. Hoşten
and Smith [219] present two algorithms for the direct construction of the set SI of
all standard pairs given the minimal basis of I.

The concept of an independent set of variables modulo an ideal I goes back to
Gröbner [186, Def. 1] (see also [188, Section 131]). This approach to the dimen-
sion of an ideal has been taken up again by Kredel and Weispfenning [265] using
Gröbner bases (see also [36, Sections 6.3 and 9.3]) who introduced the notion of a
strongly independent set and also provided a recursive algorithm for the effective

11 Apel [21] considers the Stanley conjecture for the ideal I ⊆ P itself instead of the factor alge-
bra A = P/I. Here it follows immediately from the definition of a Pommaret basis and Proposi-
tion 5.2.7 that the Stanley conjecture is true in its weak form for arbitrary polynomial ideals and in
its strong form for all quasi-stable ideals.
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determination of all maximal strongly independent sets and thus the dimension of
A= P/I. The relation to Pommaret bases and the special role of δ -regular coordi-
nates was first exhibited in [410]. The terminology Hironaka decomposition seems
to have been coined by Sturmfels [436, Sect. 2.3].

The last statement in Corollary 5.5.29 relating the satiety of a homogeneous ideal
I ⊆ P to its socle is originally due to Bermejo and Gimenez [41, Prop. 2.1]. They
provided a direct proof without Pommaret bases. The characterisation of satI for
monomial ideals via the equality I : P+ = I : 〈x1〉 also stems from Bermejo and
Gimenez [41, Cor. 2.4]; it generalises a classical result about Borel fixed ideals
[182, Cor. 2.10] where this equality always holds. The here presented approach via
Pommaret bases is taken from [410].

A number of results in Section 5.3 are also due to Bermejo and Gimenez [41].
They introduced the notion of a monomial ideal of nested type defined by Condi-
tion (v) of Proposition 5.3.4 and showed that it is equivalently characterised by the
Conditions (ii), (iii) or (iv) [41, Proposition 3.2]. The proof that every quasi-stable
ideal is of nested type and vice versa, i. e. Condition (i) in Proposition 5.3.4, comes
from [410]. Condition (vi) and the observation that quasi-stable ideals are sequen-
tially Cohen–Macaulay are due to Herzog et al [211, Proposition 2.2, Corollary 2.5]
(these authors call quasi-stable ideals ideals of Borel type; Caviglia and Sbarra [79]
use the terminology weakly stable ideals).

The observation that these conditions are related to the existence of simultaneous
Noether normalisations for all primary components (Corollary 5.3.8) and the impli-
cations of Proposition 5.3.4 on the form of an irredundant primary decomposition
of a quasi-stable ideal are again due to Bermejo and Gimenez [41, Proposition 3.6,
Remark 3.3]. The construction of an irredundant primary decomposition for a quasi-
stable ideal is taken from [200]. That a Pommaret basis induces a Noether normali-
sation for an arbitrary polynomial ideal was first demonstrated in [410].

The classical approach to the construction of Noether normalisations consists
of performing random coordinate transformations (see e. g. [185, Sect. 3.4]) which
is of course very unpleasant for all subsequent computations. Another well-known
method is due to Logar [293]. Recently, two new algorithms were developed by
Hashemi [196] and Robertz [385], respectively. The first one uses implicitly simi-
lar ideas as are underlying Pommaret bases. The second one uses Janet bases and
was already mentioned above. It performs similar coordinate changes as in our ap-
proach to the construction of δ -regular coordinates, but stops as soon as a Noether
normalisation is reached.

The characterisation of stable monomial modules in terms of Pommaret bases is
due to Mall [305] (but see also the remark after Lemma 1.2 in [128]). Eliahou and
Kervaire [128] provide an explicit representation of the minimal free resolution of
such ideals. It is based on some manipulations of a Koszul complex. Unfortunately,
it is not possible to extend their results to the polynomial case. The main reason
is very simple. Assume that we are given a stable monomial module with basis
{t1, . . . , tr}. If we multiply the generator tα with a term s, there exists a unique
generator tβ such that stα ∈ CP(tβ ). The estimate cls tβ ≥ cls tα is completely trivial
but essential for the construction of the differential of Eliahou and Kervaire. In the



5.6 Notes 231

polynomial case with a basis {h1, . . . ,hr} ⊂ Pm, the standard representation of a
product shα consists of a sum involving in general many generators hβ . In particular,
it is no longer possible to provide a lower bound for the classes of the hβ . This
prevents the construction of a complex along the lines of Eliahou and Kervaire.

Based on the Schreyer Theorem B.4.27, any Gröbner basis may be used as start-
ing point for the construction of a syzygy resolution. In many textbooks such a
resolution is used for a proof of Hilbert’s Syzygy Theorem B.4.29. However, the
special structures induced by a Pommaret basis does not only yield a stronger esti-
mate on the length of the minimal resolution (in fact, we have seen that it always
yields a resolution of minimal length) but even a closed formula for the ranks of the
modules contained in the resolution. At the moment, it is still an open question to
what extent this result may be exploited for obtaining tight estimates on the Betti
numbers or even for computing them directly.

Componentwise linear ideals were defined by Herzog and Hibi [210]. An exam-
ple of such ideals are Gotzmann ideals (first introduced in the same article): a ho-
mogeneous ideal I ⊆ P is Gotzmann, if the unique lexicographic ideal I lex which
has the same Hilbert function as I also has the same number of minimal genera-
tors as I (see [334] for more information). The fact that the resolution coming from
a Pommaret basis is minimal only, if the ideal is componentwise linear, and that
generically also the converse is true was first shown in [410].

The involutive Schreyer Theorem also stems from [410] (originally only for Pom-
maret bases, later in the form presented here). The idea of an L-graph is a general-
isation of a construction by Plesken and Robertz [354] for the special case of the
Janet division. This article also contains a Schreyer Theorem for Janet bases.

We used the Taylor resolution for deriving the linear bound (5.71) for the regular-
ity of a monomial ideal. This resolution was the first explicit resolution for arbitrary
monomial ideals and presented by Taylor [452] in her Ph.D. thesis.

Let {m1, . . . ,mr} be the minimal basis of the monomial ideal I and V an arbi-
trary �-linear space of dimension r with basis {v1, . . . ,vr}. If k = (k1, . . . ,kq) is a
sequence of integers with 1≤ k1 < k2 < · · ·< kq≤ r, we set mk = lcm(mk1 , . . . ,mkq)
and vk = vk1 ∧ ·· · ∧ vkq . The P-module Tq = P ⊗ΛqV is then freely generated by
all wedge products vk. Finally, we introduce on the algebra T = P⊗ΛV a P-linear
differential δ by requiring that

δvk =
q

∑
�=1

(−1)�−1 mk

mk�

vk�
, (5.74)

where k� denotes the sequence k with the entry k� removed. One can show that
(T ,δ ) is a complex representing a free resolution of the ideal I. Obviously, the
length of the resolution is given by the number r of monomials. This implies im-
mediately that the resolution is rarely minimal (several characterisations of the case
that T defines a minimal resolution have been given by Fröberg [143]). Note that
the ordering of the monomials mi in the minimal basis has no real influence on the
result: the arising resolutions are trivially isomorphic.
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Lyubeznik [297] proved later in his Ph.D. thesis that in fact already a subcomplex
L⊆ T defines a free resolution of I. Let k again be an integer sequence; we denote
for 1 ≤ i < r by k>i the subsequence of all entries k j > i. If we eliminate from the
basis of the Taylor complex T all generators vk where for at least one 1≤ i < r the
monomial mi divides mk>i , then the remaining part L is still a complex defining a
resolution of I. However, even this smaller resolution is rarely minimal.12

A derivation of the Taylor resolution via the Schreyer Theorem B.4.27 was pre-
sented in [407]. There it is also shown that the Lyubeznik resolution L may be
considered as a simple consequence of Buchberger’s second criterion for the avoid-
ance of redundant S-polynomials (Proposition B.4.19). Furthermore, the explicit
contracting homotopy for the Taylor complex given by Fröberg [143] is related there
to normal form computations with respect to a Gröbner basis.

A number of different approaches to the Castelnuovo–Mumford regularity ex-
ists; a few notes on the history of this concept can be found in [125, pp. 514–515].
Often it is defined using local cohomology; we used the more constructive approach
via syzygies. Characterisations and the effective determination of the Castelnuovo–
Mumford regularity has attracted some interest in recent time starting mainly with
the work of Bayer and Stillman [34]. Theorem 5.5.21 is due to them and they also
emphasised the special role of the degree reverse lexicographic term order by show-
ing that generically no Gröbner basis has a lower degree than the one for this order.
The fact that any Pommaret basis with respect to this order has the Castelnuovo–
Mumford regularity as degree was proven in [410].

Theorem 5.5.24 on the existence of a linear resolution for the truncation of I
was discovered by Eisenbud and Goto [126] (in fact, it was already noted by Serre
in his letter appended to [189] who called it a “curiosité”). Trung [460] introduced
the evaluation based approach to monomial ideals underlying Theorem 5.5.32. The
approach of Bermejo and Gimenez [41] to the computation of regI is essentially
equivalent to this result; they also were the first to prove Proposition 5.5.33 [41,
Cor. 17]. Proposition 5.5.19 was first proven by Eisenbud et al [127, Prop. 10] for
the special case of a Borel fixed ideal. In all cases originally different proofs were
given; the here presented proofs via Pommaret bases are again taken from [410].
The concept of extremal Betti numbers is due to Bayer et al [35]. They also proved
that both their positions and their values coincide for any ideal and its generic initial
ideal with respect to the degree reverse lexicographic order [35, Thm. 1.6].

For a monomial ideal I ⊆ P , Maclagan and Smith [300, Rem. 4.2] deduce a
bound on the Castelnuovo–Mumford regularity reg(P/I) from any Stanley filtra-
tion of P/I, namely the maximal degree of a generator (actually, the main result of
Maclagan and Smith [300, Thm. 4.1] is a bound on a multigraded generalisation of
reg(P/I)). It follows then from Remark 5.1.8 that the maximal degree of any Janet
basis of I provides such a bound. Note, however, that their results do not give any
indications when this bound may be sharp.

A basic reference for the question of bounding the Castelnuovo–Mumford reg-
ularity is the survey article by Bayer and Mumford [33]. The general doubly

12 Explicit minimal resolutions are only known for some special classes of monomial ideals like
stable ideals. Further classes can be found in [322].
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exponential bound was already very early derived by Hermann [204]. Only much
later Mayr and Meyer [318] provided explicit examples that proved that this bound
was sharp. Our proof of the bound (5.72) for the case of quasi-stable ideals comes
from [410]. It also follows immediately from the results of Bermejo and Gimenez
[41]. Yet another proof was given by Hashemi [195]. The estimates in Proposi-
tion 5.5.37 were proven in an alternative way by Cimpoeaş [91, 90].

If one insists on having an estimate involving only the maximal degree q of the
minimal generators and the depth, then Corollary 5.5.34 yields immediately the
following estimate for quasi-stable ideals, variations of which appear in [10, 79, 89]
(as usual, n denotes here the number of variables and d the depth of I):

q≤ regI ≤ (n−d + 1)(q−1)+ 1 . (5.75)

Indeed, under the made assumptions the length of the exponent λ of the least com-
mon multiple of the minimal generators is bounded by |λ | ≤ (n−d +1)q. Note that
both bounds in (5.75) are sharp: the upper bound is realised by the irreducible ideal
I = 〈(x1)q, . . . ,(xn)q〉; the lower bound is attained, if the ideal I is even stable, as
then Proposition 5.5.6 implies that regI = q independent of depthI.

Eisenbud et al [127] presented a variation of the estimate (5.75). They introduced
the notion of s-stability as a generalisation of stability: let s ≥ 1 be an integer; a
monomial ideal I is s-stable, if for every monomial xμ ∈ I and for every index
n ≥ j > clsμ = k an exponent 1 ≤ e ≤ s exists such that xμ−ek+e j ∈ I. Then it is
easy to see that for an s-stable ideal I ⊆ P generated in degrees less than or equal
to q the estimate

regI ≤ q +(n−1)(s−1) (5.76)

holds, as I≥q+(n−1)(s−1) is stable (thus any s-stable ideal is trivially quasi-stable).
However, in general this bound is an overestimate, as it based on the assumption
that the ideal I possesses a minimal generator of class 1 and degree q which must
be multiplied by (x2)s−1(x3)s−1 · · · (xn)s−1 in order to reach a stable set.

The results in this chapter also demonstrate that the notion of δ -regularity is re-
lated to many genericity questions in commutative algebra and algebraic geometry.
Many statements that are only generically true do hold in δ -regular coordinates. In
particular, in δ -regular coordinates many properties of an affine algebra A = P/I
may already be read off the monomial algebraA′ = P/ lt≺ I where≺ is the degree
reverse lexicographic order.

It follows immediately from Proposition 5.2.7 that depthA = depthA′ and that
(x1, . . . ,xd) represents a maximal regular sequence for both algebras. As in the ho-
mogeneous case it is also trivial that dimA = dimA′, we see that the algebra A
is Cohen–Macaulay if and only if A′ is so. Similarly, it is an easy consequence of
Theorem 5.5.11 that the projective dimensions coincide, projdimA = projdimA′,
and of Theorem 5.5.15 that the same holds for the Castelnuovo–Mumford regular-
ity: regA= regA′. An exception are the Betti numbers where Example 5.5.9 shows
that even in δ -regular coordinatesA and A′ may have different ones.

These equalities are of course not new; they can already be found in [34] (some
even in earlier references). However, one should note an important difference:
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Bayer and Stillman [34] work with the generic initial ideal, whereas we assume
δ -regularity of the coordinates. These are two different genericity concepts, as even
in δ -regular coordinates lt≺I is not necessarily the generic initial ideal (in contrast
to the former, the latter is always Borel fixed).

When we proved in Corollary 5.5.13 and 5.5.18, respectively, the two inequalities
projdimA ≤ projdimA′ and regI ≤ reg(lt≺I) for arbitrary term orders ≺, we
had to assume the existence of a Pommaret basis of I for ≺. It is well-known that
these inequalities remain true, even if we drop this assumption (see for example the
discussions in [33, 34, 56]). We presented here alternative proofs because of their
great simplicity and they cover at least the generic case.

In contrast to the two previous chapters, we restricted now in the applications
of Pommaret bases to the ordinary polynomial ring. Indeed, many of the results
presented here do not hold in arbitrary polynomial algebras of solvable type. For
example, in all our proofs concerning the depth or the Castelnuovo–Mumford regu-
larity of a module we implicitly assumed that if f ∈ 〈xi〉, then each term in supp f is
divisible by xi. For the universal enveloping algebra U

(
so(3)
)
, this is obviously not

the case according to (3.16). In fact, we even find that 〈x1,x2〉 = 〈x1,x2,x3〉, since
x3 = x1 � x2− x2 � x1.

The definition of a Stanley decomposition for a module over a polynomial alge-
bra of solvable type is identical to the definition in the case of the ordinary poly-
nomial ring, as it is solely based on an isomorphism as �-linear spaces. Thus the
multiplication does not matter and it is important to note that on the right hand side
of the decomposition (5.1) the · is not replaced by a �. If the multiplication � pre-
serves the natural grading of the polynomial ring, Proposition 5.2.1 remains valid.
Thus involutive bases are a valuable tool for computing Hilbert functions even in
the non-commutative case and therefore allow us to compute the Gelfand–Kirillov
dimension [319, Sect. 8.1.11] of quotient rings as the degree of the Hilbert poly-
nomial. Some examples for such computations in the context of quantum groups
(however, using Gröbner instead of involutive bases) may be found in [61].

For syzygies the situation is more complicated. The proof of Theorem 5.4.4 is
independent of the precise form of the multiplication and thus we may conclude
that we can always construct at least a Gröbner basis of the syzygy module. Our
proof of Theorem 5.4.10 relies mainly on normal form arguments that generalise.
A minimal requirement is that the term order ≺H respects the multiplication �, as
otherwise the theorem does not even make sense. Furthermore, we must be careful
with all arguments involving multiplicative variables. We need that if xi and x j are
both multiplicative for a generator, then xi �x j = ci jxix j +hi j must also contain only
multiplicative variables which will surely happen, if the polynomial hi j depends
only on variables xk with k ≤ max{i, j}. This is for example the case for linear
differential operators (but again not for U

(
so(3)
)
), so that we may conclude that

Theorem 5.4.10 and its consequences remain true for the Weyl algebra and other
rings of differential operators. In particular, this observation implies that the global
dimension of these rings is n, as for the commutative polynomial ring.



Chapter 6
Involution II: Homological Theory

Nothing proves more clearly that the mind seeks truth, and nothing
reflects more glory upon it, than the delight it takes, sometimes in
spite of itself, in the driest and thorniest researches of algebra.

Bernard de Fontenelle

A reader with some experience in commutative algebra has probably noticed that
almost all the invariants of polynomial modules which we computed in the last
chapter with the help of Pommaret bases are actually of a homological origin. Hence
one suspects that this special type of involutive bases must be closely related to some
homological constructions. The main purpose of this chapter is to demonstrate that
such a relationship indeed exists.

The first section introduces the two relevant complexes: the polynomial de Rham
and the Koszul complex, respectively, over a finite-dimensional vector space. In
particular, we study the duality between them and prove that they are exact in pos-
itive degree (and hence define a (co)resolution). Then we restrict these complexes
to certain subcomplexes. In the case of the Koszul complex, this restriction is sim-
ply achieved by tensoring it with some polynomial module leading to the familiar
Koszul homology of the module.

For the polynomial de Rham complex one introduces classically the notion of
a symbolic system. As we will see, such a system is nothing but a polynomial
comodule, if one exploits the fact that the de Rham complex can be equally well
defined over the symmetric coalgebra. Taking this point of view, the Spencer coho-
mology of a symbolic system is obtained completely dually to the Koszul homology
by cotensoring the polynomial de Rham complex with a comodule. Finally, we de-
fine a (co)module to be involutive at a certain degree, if the corresponding bigraded
(co)homology vanishes beyond this degree.

The second section is concerned with the derivation of effective criteria for an
involutive (co)module. This leads to a homological version of the famous Cartan test
used in the theory of exterior differential systems. As this test requires the choice
of a basis for the underlying vector space, we meet again the problem of δ - or
quasiregularity. And again we can show that generic bases are quasiregular, this
time based on a standard theorem about associated prime ideals.

The final section discusses the relation of these homological constructions to
Pommaret bases in a polynomial ring P . We show that if the ideal I ⊆ P has
a Pommaret basis of degree q, then the module P/I becomes involutive at de-
gree q and hence that the notion of involution is essentially the same as the
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notion of Castelnuovo–Mumford regularity. Furthermore, we show that the con-
cept of quasiregularity appearing in the dual Cartan test for P/I is equivalent to
δ -regularity in the sense of existence of a Pommaret basis of I. These results are
basically corollaries to the simple complementary decomposition (5.4) defined by a
Pommaret basis. In the monomial case we will even see that the kernels appearing
in the dual Cartan test induce the complete Pommaret basis so that the latter may be
considered as an intrinsic object.

6.1 Spencer Cohomology and Koszul Homology

Let V be a finite-dimensional vector space (over a field �) with dimV = n. With the
help of the symmetric algebra SV and the exterior algebra ΛV , we introduce two
natural complexes of vector spaces based on the product spaces SqV ⊗ΛpV . Any
element of these spaces may be written as a �-linear sum of separable elements, i. e.
elements of the form w1 · · ·wq⊗v1∧·· ·∧vp with vectors wi,v j ∈ V . By convention,
we set S jV =Λ jV = 0 for values j < 0.

Definition 6.1.1. For any integer r ≥ 0 the cochain complex

0 SrV
δ Sr−1V ⊗V δ Sr−2V ⊗Λ2V δ · · ·

· · · δ Sr−nV ⊗ΛnV 0

(6.1)

where the differential δ is defined by

δ (w1 · · ·wq⊗ v1∧·· ·∧ vp) =
q

∑
i=1

w1 · · · ŵi · · ·wq⊗wi∧ v1∧·· ·∧ vp (6.2)

(the hat ̂ signals that the corresponding factor is omitted) is called the polynomial
de Rham complex Rr(V) at degree r over V . The Koszul complex Kr(V) at degree r
over V is the chain complex

0 Sr−nV ⊗ΛnV ∂ Sr−n+1V ⊗Λn−1V ∂ · · ·

· · · ∂
SrV 0

(6.3)

where now the differential ∂ is defined as

∂ (w1 · · ·wq⊗ v1∧·· ·∧ vp) =
p

∑
i=1

(−1)i+1w1 · · ·wqvi⊗ v1∧·· ·∧ v̂i∧·· ·∧ vp . (6.4)

It is trivial to verify that, due to the skew-symmetry of the wedge product, these
differentials satisfy δ 2 = 0 and ∂ 2 = 0, respectively, so that we are indeed dealing
with complexes.
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Let {x1, . . . ,xn} be a basis of V . Then a basis of the vector space SqV is given by
all terms xμ with μ a multi index of length q. For a basis of the vector space ΛpV
we use the following convention: let I be a sorted repeated index of length p, i. e.
I = (i1, . . . , ip) with 1≤ i1 < i2 < · · ·< ip ≤ n; then we write xI for xi1 ∧·· ·∧xip and
the set of all such “terms” provides a basis of ΛpV . With respect to these bases, we
obtain the following expressions for the above differentials:

δ (xμ ⊗ xI) =
n

∑
i=1

sgn
(
{i}∪ I

)
μix

μ−1i⊗ x{i}∪I (6.5)

and

∂ (xμ ⊗ xI) =
p

∑
j=1

(−1) j+1x
μ+1i j ⊗ xI\{i j} . (6.6)

Formally, (6.5) looks like the exterior derivative applied to a differential p-form
with polynomial coefficients. This observation explains the name “polynomial de
Rham complex” for (6.1) and in principle one should use the usual symbol d for the
differential but the notation δ has become standard.

Remark 6.1.2. While the de Rham differential δ indeed needs the algebra structure
of the exterior algebraΛV , it exploits only the vector space structure of the symmet-
ric algebra SV . Thus we may substitute the symmetric algebra SV by the symmetric
coalgebra SV and define δ on the components of the free SV-comodule SV⊗ΛV ,
since both are identical as vector spaces (cf. Appendix B.3). It is not difficult to ver-
ify that the differential δ is a comodule morphism. In fact, we will see later that in
our context this comodule interpretation is even more natural. For the Koszul differ-
ential ∂ we have the opposite situation: we need the algebra SV but only the vector
space ΛV . However, this fact will not become relevant for us. �

Lemma 6.1.3. We have
(
δ ◦ ∂ + ∂ ◦ δ

)
(ω) = (p + q)ω for all ω ∈ SqV ⊗ΛpV .

Proof. For ω = w1 · · ·wq⊗ v1∧·· ·∧ vp one readily computes that

(∂ ◦δ )(ω) = qω+
q

∑
i=1

p

∑
j=1

(−1) jw1 · · · ŵi · · ·wqv j⊗wi∧v1∧·· ·∧ v̂ j∧·· ·∧vp (6.7)

and similarly

(δ ◦ ∂ )(ω) = pω+
p

∑
j=1

q

∑
i=1

(−1) j+1w1 · · · ŵi · · ·wqv j⊗wi∧ v1∧·· ·∧ v̂ j ∧·· ·∧ vp

(6.8)
which immediately implies our claim. �

Proposition 6.1.4. The two complexes Rq(V) and Kq(V) are exact for all values
q > 0. For q = 0 both complexes are of the form 0→ �→ 0.

Proof. This assertion is an immediate consequence of Lemma 6.1.3. It implies that
for any degree q > 0 the map ∂ induces a contracting homotopy for Rq(V) and
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conversely δ for Kq(V) connecting the respective identity and zero maps. According
to Remark B.2.26, this observation entails exactness. �

We may consider the two complexes Rq(V) and Kq(V) as homogeneous compo-
nents of complexes R(V) and K(V) over the SV-modules SV⊗ΛiV . Because of the
grading of SV , both the cohomology H•(R(V),δ

)
and the homology H•

(
K(V),∂

)

are bigraded; we denote by Hq,p
(
R(V),δ

)
and Hq,p

(
K(V),∂

)
the respective (co)ho-

mology module at SqV ⊗ΛpV . By Proposition 6.1.4, all these modules vanish ex-
cept for H0,0

(
R(V),δ

)∼= H0,0
(
K(V),∂

)∼=� (for the polynomial de Rham complex,
Proposition 6.1.4 is known as the formal Poincaré Lemma, as one may consider it as
a special case of the Poincaré Lemma for general differential forms on a manifold—
cf. Remark C.2.9). This observation implies that the Koszul complex K(V) defines
a free resolution and the polynomial de Rham complex R(V) a free coresolution of
the underlying field �.

The polynomial de Rham and the Koszul complex are related by duality. As
detailed in Appendix B.2, we may introduce for any complex of R-modules its
dual complex by applying the functor HomR(·,R). In the case of finite-dimensional
vector spaces, Proposition B.2.28 asserts that the homology of the dual complex is
the dual space of the cohomology of the original complex.

Remark 6.1.5. We obtain a canonical isomorphism Sq(V∗)∼= (SqV)∗ by interpreting
the separable element φ1 · · ·φq ∈ Sq(V∗) as the linear map on SqV defined by

(φ1 · · ·φq)
(
v1 · · ·vq) = ∑

π∈Sq

q

∏
i=1

φi(vπ(i)) (6.9)

where Sq denotes the symmetric group of all permutations of 1, . . . ,q. The same
construction can be applied to exterior products and thus we can extend to a canon-
ical isomorphism Sq(V∗)⊗Λp(V∗)∼= (SqV ⊗ΛpV)∗.

At the level of bases, this isomorphism takes the following form. We denote
again by {x1, . . . ,xn} a basis of V and by {y1, . . . ,yn} the corresponding dual basis
of V∗. Then the monomials xμ with |μ | = q form a basis of SqV and similarly the
monomials yμ = yμ1

1 · · ·y
μn
n with |μ | = q form a basis of Sq(V∗). However, these

two bases are not dual to each other, since according to (6.9) yμ(xν ) = μ!δνμ . Thus
the dual basis consists of the divided powers

yμ
μ! . For the exterior algebra no such

combinatorial factor arises, as the evaluation of the expression corresponding to the
right hand side of (6.9) on basis vectors yields only one non-vanishing summand.

Another way to see that the dualisation leads to the divided powers is based on the
coalgebra approach of Remark 6.1.2. If we substitute in the definition of the polyno-
mial de Rham complex the symmetric algebra SV by the symmetric coalgebra SV ,
then the dual algebra is S(V∗) and the evaluation of the polynomial convolution
product (B.67) leads to (6.9). �

Proposition 6.1.6.
(
R(V)∗,δ∗

)
is isomorphic to

(
K(V∗),∂

)
.

Proof. There only remains to show that ∂ is indeed the pull-back of δ . Choosing
the above described dual bases, this is a straightforward computation. By definition
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of the pull-back,

δ∗
(yμ

μ!
⊗ yI
)
(xν ⊗ xJ) =

⎧
⎨

⎩
v j sgn

(
{ j}∪ J

)
if ∃ j :

{
μ = ν−1 j

I = { j}∪ J

}
,

0 otherwise .
(6.10)

Note that ν j = ν!
μ! if μ = ν−1 j; hence we find that

δ∗(yμ ⊗ yI) =
p

∑
j=1

(−1) j+1y
μ+1i j ⊗ yI\{i j} . (6.11)

Comparison with (6.6) yields the desired result. �

For reasons that will become apparent in the next chapter when we apply the
here developed theory to differential equations, we prefer to consider the Koszul
complex over V and the polynomial de Rham complex over its dual space V∗. Thus
we will always use R(V∗) and K(V). If U is a further finite-dimensional �-linear
space with dimU = m, then we may extend to the tensor product complex R(V∗)⊗U
and dually to K(V)⊗U∗. Everything we have done so far remains valid with trivial
modifications, as the differentials of the complexes are essentially unaffected by
this operation: one must only add a factor u ∈ U (or ν ∈ U∗, respectively) to each
equation and consider all our computations above as componentwise.

Definition 6.1.7. LetNq ⊆ Sq(V∗)⊗U be a linear subspace. Its prolongation is the
following linear subspace1

Nq,1 =
{

f ∈ Sq+1(V∗)⊗U | δ ( f ) ∈ Nq⊗V∗} . (6.12)

A sequence of linear subspaces
(
Nq ⊆ Sq(V∗)⊗U)q∈�0 is called a symbolic system

over S(V∗), ifNq+1 ⊆Nq,1 for all q ∈�0.

We may equivalently introduce the prolongation as

Nq,1 = (V∗⊗Nq)∩
(
Sq+1(V∗)⊗U

)
(6.13)

where the intersection is understood to take place in V∗ ⊗
(
Sq(V∗)⊗U

)
. This

equivalence follows immediately from the definition of the differential δ . The ex-
tension to higher prolongations Nq,r ⊆ Sq+r(V∗)⊗U proceeds then either by in-
duction, Nq,r+1 = (Nq,r),1 for all r ∈ �, or alternatively by generalising (6.13) to
Nq,r =

(⊗r
i=1V∗⊗Nq

)
∩
(
Sq+r(V∗)⊗U

)
where the intersection is now understood

to take place in
⊗r

i=1V∗⊗
(
Sq(V∗)⊗U

)
.

The notion of a symbolic system is fairly classical in the formal theory of differ-
ential equations (see Proposition 7.1.15). The next result shows, however, that if we

1 In the literature the prolongation is usually denoted by N (1)
q . However, this convention clashes

with our notation for projections and also with a notation introduced in the next section. For this
reason we use the non-standard Nq,1.
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take the coalgebra point of view of the polynomial de Rham complex mentioned in
Remark 6.1.2, then a symbolic system correspond to a simple algebraic structure.

Lemma 6.1.8. Let (Nq)q∈�0 be a symbolic system. ThenN =
⊕∞

q=0Nq is a graded
(right) subcomodule of the free SV-comodule S(V∗)⊗ U . Conversely, the se-
quence (Nq)q∈�0 of the homogeneous components of any graded subcomodule
N ⊆S(V∗)⊗U is a symbolic system.

Proof. Let (Nq)q∈�0 be a symbolic system and f ∈ Nq a homogeneous element
of degree q. Choosing a basis {y1, . . . ,yn} of V∗ and identifying S(V∗) with the
ring P = �[y1, . . . ,yn], we may consider f as polynomial. Now δ f ∈ Nq−1⊗V∗

implies ∂ f/∂yi ∈ Nq−1 for all 1≤ i≤ n, since our differential δ is just the exterior
derivative. Using induction, we thus find that ∂ |μ| f/∂yμ ∈ Nq−r for all μ with
|μ | = r. By the definition (B.65) of the polynomial coproduct Δ , this condition is
equivalent to Δ( f ) ∈N ⊗S(V∗) and henceN is a subcomodule. For the converse,
we must only revert every step of this argument to find that Δ( f ) ∈ N ⊗S(V∗)
implies that Nq ⊆Nq−1,1 for all q > 0. �

The proof above gives yet another description of the prolongation completely
independent of any complex. If P = �[y1, . . . ,yn] is a polynomial ring in n variables
and Nq ⊆ Pq a homogeneous subspace, then its rth prolongation is given by

Nq,r =
{

f ∈ Pq+r | ∀μ ∈ (�n
0)r :

∂ f
∂yμ

∈Nq
}

. (6.14)

Example 6.1.9. Let V be a two-dimensional vector space with basis {x,y} and dual
basis {x̄, ȳ}. The subspaces N0 = �, N1 = V∗ and Nq = 〈x̄q〉 ⊂ Sq(V∗) for q ≥ 2
define a symbolic system whereNq,1 =Nq+1 for all q≥ 2. Indeed, if k +� = q with
� > 0, then δ

(
x̄kȳ�
)

= x̄k−1ȳ�⊗ x̄ + x̄kȳ�−1⊗ ȳ so that the result lies in Nq−1⊗V∗

only for � = 0. We will see later that this symbolic system is associated with partial
differential equations of the form uyy = F(x,u(1)), uxy = G(x,u(1)) for one unknown
function u depending on x = (x,y).

Another simple symbolic system over the same dual space V∗ is obtained by
setting N0 = �, N1 = V∗, N2 = S2(V∗), N3 = 〈x̄2ȳ,xy2〉, N4 = 〈x̄2ȳ2〉 and Nq = 0
for all q ≥ 5. This system is related to partial differential equations of the form
uyyy = F(x,u(2)), uxxx = G(x,u(2)). One can show that any such equation has a
finite-dimensional solution space and this fact is reflected by the vanishing of the
associated symbolic system beyond a certain degree. �

From now on, we will not distinguish between a symbolic system (Nq)q∈�0 and
the corresponding subcomoduleN ⊆S(V∗)⊗U . We are mainly interested in sub-
comodules N where almost all components Nq are different from zero. It follows
immediately from the rule (B.68) for cogeneration in S(V∗) that such comodules
cannot be finitely cogenerated. However, the duality between S(V∗) and SV leads
at least to the following result.

Corollary 6.1.10. Let (Nq)q∈�0 be an arbitrary symbolic system. There exists an
integer q0 ≥ 0 such that Nq+1 =Nq,1 for all q≥ q0.
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Proof. By Proposition B.3.6, the annihilatorN 0 ⊆ SV⊗U∗ is a submodule of a free
module over the symmetric algebra SV . NowNq+1 �Nq,1 implies that any minimal
basis ofN 0 contains at least one generator of degree q+1. Since, by Hilbert’s Basis
Theorem B.1.13, any polynomial ring in a finite number of variables and hence also
the isomorphic symmetric algebra SV is Noetherian, an upper bound q0 for such
values q must exist. �

By this corollary, we may consider any symbolic system N as a kind of finitely
cogenerated “differential comodule”: since the truncated comoduleN≤q0 is a finite-
dimensional vector space, it is obviously finitely cogenerated and by repeated pro-
longations of the componentNq0 we obtain the remainder of the comoduleN . Thus
we may conclude that every symbolic system N is uniquely determined by a finite
number of generators.

Definition 6.1.11. Let N be a (right) graded comodule over the symmetric coalge-
bra C = S(V∗). Its Spencer complex

(
R(N ),δ

)
is the cotensor2 product complex

N �C R(V∗). The Spencer cohomology of N is the corresponding bigraded coho-
mology; the cohomology group at Nq⊗Λp(V∗) is denoted by Hq,p(N ).

Since N �C C ∼= N for any C-comodule N , the components of the complex
N �C R(V∗) are indeed just the vector spaces Nq⊗Λp(V∗). We will be mainly
interested in the special case that N is a subcomodule of a free comodule C ⊗U
and then the differential in the Spencer complex R(N ) is simply the restriction
of the differential δ in the polynomial de Rham complex R(V∗) to the subspaces
Nq⊗Λp(V∗)⊆Sq(V∗)⊗Λp(V∗)⊗U ; this observation explains why we keep the
notation δ for the differential. One can also verify by direct computation that this
restriction makes sense whenever the sequence (Nq)q∈�0 defines a symbolic system
(this requires basically the same computation as the one showing the equivalence of
the two definitions (6.12) and (6.13) of the prolongation); in fact, this restriction is
the classical approach to define the Spencer complex.

Remark 6.1.12. It is important to emphasise here that the Spencer cohomology is
bigraded. Ignoring the polynomial degree and considering only the exterior degree,
we obtain the comodules H p(N ) =

⊕∞
q=0 Hq,p(N ). For these, another point of view

is possible. According to Remark B.3.5 any free comodule is injective and we have
exactly the situation of the definition of cotorsion groups (see Appendix B.3): we
take an injective coresolution (of �) and cotensor it with a comodule N . Thus we
may consider the Spencer cohomology as the right derived functor of N �C · and
identify H p(N ) = Cotorp

C(N ,�).
As discussed in Appendix B.2 for arbitrary derived functors, the definition of the

groups Cotorp
C(N ,�) is independent of the coresolution used for its computation or,

more precisely, the results obtained with different coresolutions are isomorphic to
each other. However, given some other way to explicitly determine Cotorp

C(N ,�),
say via a coresolution of N , it may be a non-trivial task to recover the bigrading of
the Spencer cohomology. �
2 For the definition of the cotensor product see (B.62).
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Lemma 6.1.13. LetN ⊆S(V∗)⊗U be an arbitrary symbolic system. Then we have
Hq,0(N ) = 0 and dimHq−1,1(N ) = dim

(
Nq−1,1/Nq

)
for all q > 0.

Proof. The first claim follows immediately from the formal Poincaré Lemma (i. e.
Proposition 6.1.4). For the second claim we consider a non-vanishing element
f ∈ Nq−1,1 \ Nq. Then g = δ f ∈ kerδ Nq−1⊗V∗ and, again because of the for-

mal Poincaré Lemma, g �= 0. However, by construction, g /∈ imδ Nq
and hence

we find that 0 �= [g] ∈ Hq−1,1(N ). This observation implies immediately the in-
equality dimHq−1,1(N ) ≥ dim

(
Nq−1,1/Nq

)
. Conversely, consider an arbitrary

non-vanishing cohomology class [g] ∈ Hq−1,1(N ). Again by the formal Poincaré
Lemma, an element f ∈ Sq(V∗)⊗U exists such that g = δ f and, by definition
of the prolongation, f ∈ Nq−1,1 \Nq. Thus we also have the opposite inequality
dimHq−1,1(N ) ≤ dim

(
Nq−1,1/Nq

)
. �

Together with Corollary 6.1.10, this result implies that Hq,1(N ) = 0 for a suffi-
ciently high degree q. We will see below that a similar finiteness result holds in fact
for all exterior degrees p. Dualisation of Definition 6.1.11 leads to the following
classical construction in commutative algebra with a polynomial module.

Definition 6.1.14. Let M be a graded module over the algebra P = SV . Its Koszul
complex

(
K(M),∂

)
is the tensor product complex M⊗P K(V). The Koszul ho-

mology of M is the corresponding bigraded homology; the homology group at
Mq⊗ΛpV is denoted by Hq,p(M).

Remark 6.1.15. We observed already above that the Koszul complex defines a free
resolution of the field �. Hence, as for the Spencer cohomology, we may take an-
other point of view and consider the Koszul homology as the right derived functor
of M⊗P ·. According to Definition B.2.36 of the torsion groups, this observation
leads to the identification Hp(M) =

⊕∞
q=0 Hq,p(M) = TorPp (M,�) where we con-

sider � as a P-module as in Remark B.1.9. But again this interpretation ignores the
natural bigrading of the Koszul complex K(M).

An alternative way to compute TorPp (M,�) consists of using a free resolution
of the module M. If C →M→ 0 is such a resolution, then the Koszul homology
H•(M) is isomorphic to the homology of the tensor product complex C⊗P �. Each
component in C is of the form Pm and therefore Pm⊗P � = �m. Now assume that
we actually have a minimal resolution. In this case all differentials in C possess a
positive degree and it follows from the P-action on � that the induced differential
on the complex C ⊗P � is the zero map. Hence we find that H•(M) ∼= C ⊗P �.
Since a minimal resolution is necessarily graded, we even recover the bigrading of
the Koszul complex and find that the dimensions dimHq,p(M) are just the bigraded
Betti numbers βq,pM. In this sense we may say that the Koszul homology corre-
sponds to a minimal free resolution. �

Lemma 6.1.16. Let M be a graded P-module. Then Hq,0(M) =Mq/(V ·Mq−1)
and thus dimHq,0(M) gives the number of generators of degree q in any minimal
basis of M. Furthermore,
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Hq,n(M)∼=
{

m ∈Mq |Ann(m) = S+V
}

. (6.15)

Proof. The first assertion follows trivially from the definition of the Koszul homol-
ogy. Elements of Hq,n(M) are represented by cycles in Mq⊗ΛnV . If {x1, . . . ,xn}
is a basis of V , these are forms ω = m⊗ x1 ∧ ·· · ∧ xn and the condition ∂ω = 0 is
equivalent to xim = 0 for 1≤ i≤ n. �

Lemma 6.1.17. Let M be a graded P-module. Multiplication by an arbitrary ele-
ment of S+V induces the zero map on the Koszul homology H•(M).

Proof. We first observe that if ω ∈Mq⊗ΛpV is a cycle, i. e. ∂ω = 0, then for any
v ∈ V the form vω is a boundary, i. e. vω ∈ im∂ . Indeed,

∂
(
v∧ω
)
=−v∧ (∂ω)+ vω = vω . (6.16)

Since ∂ is SV-linear, this observation remains true, if we take for v an arbitrary
element of S+V , i. e. a polynomial without constant term. �

By Proposition B.3.6, each subcomoduleN ⊆S(V∗)⊗U induces a submodule
M=N 0 ⊆ SV ⊗U∗, its annihilator. Conversely, the annihilator of any submodule
M⊆ SV⊗U∗ defines a subcomoduleN =M0 ∈S(V∗)⊗U . In view of the duality
between the polynomial de Rham and the Koszul complex, we expect a simple re-
lation between the Spencer cohomology H•(N ) of the comoduleN and the Koszul
homology H•(N 0) of its annihilatorN 0.

Such a relation is easily obtained with the help of the SV-moduleN ∗ dual to N .
If we take the dual π∗ :

(
(S(V∗)⊗U)/N

)∗ →
(
S(V∗)⊗U

)∗ = SV ⊗U∗ of the
projection π : S(V∗)⊗U →

(
S(V∗)⊗U

)
/N , then imπ∗ =N 0. Like for any map,

we have for π the canonical isomorphism coker(π∗) ∼= (kerπ)∗ = N ∗ and hence
may identifyN ∗ with the factor module (SV ⊗U∗)/N 0.

Proposition 6.1.18. Let N ⊆S(V∗)⊗U be a symbolic system. Then for all q ≥ 0
and 1≤ p≤ n (

Hq,p(N )
)∗ ∼= Hq,p(N ∗)∼= Hq+1,p−1(N 0) (6.17)

where the second isomorphism is induced by the Koszul differential ∂ .

Proof. The first isomorphism follows from Proposition 6.1.6. For the second one
we note that the considerations above lead to the short exact sequence

0 N 0 ι
SV⊗U∗ π N ∗ 0 (6.18)

where the first map is the natural inclusion and the second one the canonical projec-
tion. Tensoring with the vector space ΛpV is a flat functor (cf. Remark B.2.16) and
hence does not affect the exactness so that we obtain a short exact sequence of the
corresponding Koszul complexes:

0 K(N 0) K(V)⊗U∗ K(N ∗) 0 . (6.19)
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Since K(V)⊗U∗ is exact in positive exterior degree, the long exact homological
sequence (see Appendix B.2 for a discussion) for (6.19) yields an isomorphism
Hp(N ∗)→Hp−1(N 0). Furthermore, as the maps in (6.18) are just the natural inclu-
sion and the restriction to the comoduleN , respectively, it follows straightforwardly
from the construction of the connecting homomorphism that this isomorphism is in-
duced by the Koszul differential ∂ . Hence, taking the bigrading into account, we
obtain an isomorphism Hq,p(N ∗)→ Hq+1,p−1(N 0). �

Remark 6.1.19. From a computational point of view, it is often more convenient
to work with the annihilator N 0 instead of the dual N ∗. Our proof of Proposi-
tion 6.1.18 gave the isomorphism only in one direction. However, Lemma 6.1.3
allows us to derive an explicit expression for the inverse map. Let ω ∈ N ∗

q ⊗ΛpV
be a cycle and ω̃ ∈ SqV ⊗ΛpV ⊗U∗ an arbitrary form such that π(ω̃) = ω . Then
∂ω = 0 implies that ω̄ = ∂ω̃ ∈ N 0

q+1⊗Λp−1V and the isomorphism used in the
proof above maps [ω ] 	→ [ω̄]. By Lemma 6.1.3, δω̄ = (p+q)ω̃−∂ (δω̃) and hence[ 1

p+qδω̄
]

= [ω̃ ]. But this observation implies immediately that the inverse of our

isomorphism is given by the map [ω̄ ] 	→
[

1
p+qπ(δω̄)

]
. �

Remark 6.1.20. It follows from (the proof of) Proposition 6.1.18 and Lemma 6.1.16
that for modules of the form M= (SV ⊗U∗)/N 0 the exterior degree 0 part of the
Koszul homology is given by H0,0(M)∼=�m with m = dimU and Hq,0 = 0 for q > 0.
In exterior degree 1 we have the isomorphism Hq,1(M) ∼= N 0

q /(V ·N 0
q−1) so that

now dimHq,1(M) equals the number of minimal generators ofN 0 of degree q. �
For us, one of the most important properties of the Spencer cohomology is the

following finiteness result which obviously requires the bigrading.

Theorem 6.1.21. LetN ⊆S(V∗)⊗U be a symbolic system. There exists an integer
q0 ≥ 0 such that Hq,p(N ) = 0 for all q ≥ q0 and 0 ≤ p ≤ n. Dually, let M be a
finitely generated graded polynomial module. There exists an integer q0 ≥ 0 such
that Hq,p(M) = 0 for all q≥ q0 and 0≤ p≤ n.

Proof. By the duality of Proposition 6.1.18, it suffices to show the assertion for the
polynomial module M. Here it is a simple consequence of Lemma 6.1.17 above.
The cycles in M⊗ΛpV form a finitely generated SV-module. Thus there exists an
integer q0 ≥ 0 such that the polynomial degree of all elements in a finite generating
set of it is less than q0. All cycles of higher polynomial degree can then be written as
linear combinations of these generating ones with polynomial coefficients without
constant terms. According to Lemma 6.1.17, they are therefore boundaries. Hence
indeed Hq,p(M) = 0 for all q≥ q0. �
Definition 6.1.22. The degree of involution of the S(V∗)-comoduleN is the small-
est value q0 such that Hq,p(N ) = 0 for all q ≥ q0 and 0 ≤ p ≤ n = dimV . More
generally, we say that N is s-acyclic at degree q0 for an integer 0 ≤ s ≤ n, if
Hq,p(N ) = 0 for all q ≥ q0 and 0 ≤ p ≤ s. A comodule N that is n-acyclic at a
degree q0 is called involutive at degree q0. Dually, we call an SV-moduleM involu-
tive at degree q0, if its Koszul homology vanishes beyond degree q0: Hq,p(M) = 0
for all q≥ q0 and 0≤ p≤ n.
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With this terminology we may reformulate Lemma 6.1.13 as follows: if the sym-
bolic system N is such that its annihilator N 0 can be generated in degree less than
or equal to q0, then N is 1-acyclic at degree q0, and if conversely q0 is the smallest
degree at which N is 1-acyclic, then any generating set of N 0 contains an element
of degree q0. We will see later in Section 7.2 that 2-acyclicity is relevant for check-
ing formal integrability. It follows trivially from the definition that ifN is involutive
at some degree q0, then it is also involutive at any higher degree q≥ q0.

Remark 6.1.23. According to Remark 6.1.15, the Koszul homology of a moduleM
is equivalent to its minimal free resolution. This fact implies immediately that the
degree of involution ofM is nothing but regM+1, where regM denotes again the
Castelnuovo–Mumford regularity of the moduleM. In the case that we are dealing
with a factor moduleM= (SV⊗U∗)/N 0, it follows easily from Proposition 6.1.18
that the degree of involution ofM equals regN 0. �

For complexity considerations, it is of interest to bound for a given comoduleN
or module M, respectively, its degree of involution. In our applications to differ-
ential equations we will be mainly concerned with the special case that M is a
submodule of a free SV-module of rank m generated by elements of degree q. For
this situation, a bound q̄ exists depending only on the values of n, m and q. It may
be expressed as a nested recursion relation:

q̄(n,m,q) = q̄
(

n,m

(
q + n−1

n

)
,1
)

,

q̄(n,m,1) = m

(
q̄(n−1,m,1)+ n

n−1

)
+ q̄(n−1,m,1)+ 1 ,

q̄(0,m,1) = 0 .

(6.20)

Table 6.1 shows q̄(n,m,1) for different values of m and n. One sees that the values
rapidly explode, if the dimension n of the underlying vector space V increases. The
situation is still worse for modules generated in higher order. It seems to be an
open question whether this bound is sharp, i. e. whether or not for some modules
the degree of involution is really that high. Fortunately, q̄(n,m,q) yields usually a
coarse over-estimate of the actual degree of involution.

n\m 1 2 3 4

1 2 3 4 5
2 7 14 23 34
3 53 287 999 2.699
4 29.314 8.129.858 503.006.503 13.151.182.504

Table 6.1 q̄(n,m,1) for different values of m and n.
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Example 6.1.24. Consider for m = 1 the monomial ideal I = 〈xq,yq〉 ⊂ P = �[x,y]
in n = 2 variables for some value q > 0. For q = 2 we encountered this ideal
already in Example 3.1.10; for q = 3 it is the annihilator N 0 of the second sym-
bolic system N in Example 6.1.9. A trivial computation yields that the only non-
vanishing Koszul homology modules are Hq,0(I) = 〈[xq], [yq]〉 and H2q−1,1(I) =
〈[xqyq−1⊗ y− xq−1yq⊗ x1]〉. Hence the degree of involution of I is 2q−1. By con-
trast, evaluation of the bound (6.20) yields

q̄(2,1,q) =
1
4

q4 +
1
2

q3 +
9
4

q2 + 2q + 2 , (6.21)

i. e. a polynomial in q of degree 4. �

6.2 Cartan’s Test

In this section we study some explicit criteria for deciding whether or not a given
(co)module is involutive which do not require to determine the full (co)homology of
the (co)module. As such criteria appeared first (though only in an implicit manner)
in Cartan’s theory of exterior differential systems, they are collectively known under
the name Cartan’s test. We start with a symbolic systemN ⊆S(V∗)⊗U . As before,
let {x1, . . . ,xn} be an ordered basis of the underlying vector space V and {y1, . . . ,yn}
the corresponding dual basis of V∗. Then we may introduce for any index 0≤ k≤ n
the following subspaces of the homogeneous componentNq of degree q:

N (k)
q =

{
f ∈ Nq | f (xi,v2, . . . ,vq) = 0 ,

∀1≤ i≤ k , ∀v2, . . . ,vq ∈ V
}

=
{

f ∈ Nq |
∂ f
∂yi

= 0 ∀1≤ i≤ k
}

.

(6.22)

In the first line we interpreted elements of Nq as multilinear maps on V and in the
last line we considered them as polynomials in the dual “variables” y1, . . . ,yn.

Obviously, these subspaces define a filtration

0 =N (n)
q ⊆N (n−1)

q ⊆ ·· · ⊆ N (1)
q ⊆N (0)

q =Nq . (6.23)

Obviously, this filtration (and in particular the dimensions of the involved sub-
spaces) depends on the chosen basis for V∗. It turns out that certain bases are dis-
tinguished, as they show a special behaviour with respect to these dimensions. We
speak here again of δ -regularity; the relationship to the notion of δ -regularity intro-
duced in Section 4.3 will be clarified in the next section.

Definition 6.2.1. Let N ⊆ S(V∗)⊗U be a symbolic system. With respect to a
given basis {y1, . . . ,yn} of the dual space V∗, we define the Cartan characters of
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the homogeneous componentNq as

α(k)
q = dimN (k−1)

q −dimN (k)
q , 1≤ k ≤ n . (6.24)

The basis {y1, . . . ,yn} is called δ -regular for Nq, if the sum ∑n
k=1 kα(k)

q attains a
minimal value.

Because of the coefficient k appearing in the above weighted sum of the Cartan
characters, we may describe δ -regularity in words as follows. We first select all
bases of the dual space V∗ which lead to a minimal value of the highest Cartan

character α(n)
q . Among these we choose those which yield a minimal value for the

second highest Cartan character α(n−1)
q and so on. The bases which remain at the

end of this process are the δ -regular ones.
We know from the proof of Lemma 6.1.8 that the differentiation with respect

to any dual variable yk maps the homogeneous component Nq+1 into the compo-

nent Nq. It follows trivially from the definition of the subspaces N (k)
q that we may

consider the restrictions ∂yk,q :N (k−1)
q+1 →N (k−1)

q .

Proposition 6.2.2. Let N ⊆ S(V∗)⊗U be a symbolic system and {y1, . . . ,yn} a
basis of V∗. Then we have for any degree q≥ 0 the inequality

dimNq+1 ≤
n−1

∑
k=0

dimN (k)
q =

n

∑
k=1

kα(k)
q . (6.25)

Equality holds, if and only if the restricted maps ∂yk,q : N (k−1)
q+1 →N (k−1)

q are sur-
jective for all values 1≤ k ≤ n.

Proof. By definition of the subspacesN (k)
q , we have the exact sequences

0 N (k)
q+1 N (k−1)

q+1

∂yk ,q

N (k−1)
q

(6.26)

implying the inequalities dimN (k−1)
q+1 −dimN (k)

q+1 ≤ dimN (k−1)
q . Summing over all

values 0 ≤ k ≤ n yields immediately the inequality (6.25). Equality in (6.25) is
obtained, if and only if in all these dimension relations equality holds. But this is
the case, if and only if all the maps ∂yk,q are surjective. �

Proposition 6.2.3. The symbolic system N ⊆S(V∗)⊗U is involutive at some de-
gree q0 ≥ 0, if and only if a basis {y1, . . . ,yn} of V∗ can be chosen such that the

maps ∂yk,q :N (k−1)
q+1 →N (k−1)

q are surjective for all q≥ q0 and all 1≤ k ≤ n.

Proof. We prove only one direction; the converse will follow from our subsequent
dual considerations for the Koszul homology of N ∗ (see Remark 6.2.14). Let us
take an arbitrary cycle ω ∈ Nq⊗ΛpV∗ with 1 ≤ p ≤ n; we want to show that if in
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(6.25) equality holds, then a form η ∈Nq+1⊗Λp−1V∗ exists withω = δη implying
that the cohomology group Hq,p(N ) vanishes.

We do this in an iterative process, assuming first that the exterior part of ω de-
pends only on yk,yk+1, . . . ,yn. Then we may decomposeω =ω1 +yk∧ω2 where the
exterior parts of both ω1 and ω2 depend only on yk+1, . . . ,yn. Since ω is a cycle, we
have δω = δω1− yk ∧ δω2 = 0. Consider now in this equation those terms where
the exterior part is of the form y� ∧ yk ∧ ·· · with � < k. Such terms occur only in
the second summand and hence we must have ∂ω2/∂yl = 0 for all 1 ≤ � < k. This

observation implies ω2 ∈N (k−1)
q ⊗Λp−1V∗.

By assumption, ∂yk,q :N (k−1)
q+1 →N (k−1)

q is surjective so that there exists a form

η(k) ∈N (k−1)
q+1 ⊗Λp−1V∗ such that ∂ykη

(k) =ω2. Hence the exterior part of the form

ω(k) = ω − δη(k) depends only on yk+1, . . . ,yn and we can iterate. Thus, starting
with k = 1, we successively obtain ω = δ

(
η(1) + · · ·+η(n−1)). �

While Proposition 6.2.3 is nice from a theoretical point of view, it is not very
useful computationally, as we must check infinitely many conditions, namely one
for each degree q ≥ q0 (thus we are in the same situation as for deciding formal
integrability directly on the basis of Definition 2.3.15). Under modest assumptions
on the symbolic systemN , it suffices to consider only the one degree q0 and then we
obtain an effective criterion for involution representing an algebraic reformulation
of the classical Cartan test in the theory of exterior differential systems. It uses only
linear algebra with the two finite-dimensional components Nq0 and Nq0+1 (note,
however, that the test can only be applied in δ -regular bases). In particular, it is not
necessary to determine explicitly any Spencer cohomology group. In the context of
differential equations, this observation will later translate into the fact that it is easier
to check involution than formal integrability.

Theorem 6.2.4 (Cartan’s Test). Let N ⊆ S(V∗)⊗U be a symbolic system such
that Nq,1 = Nq+1 for all q ≥ q0. Then N is involutive at the degree q0, if and only
if a basis {y1, . . . ,yn} of V∗ exists such that we have equality in (6.25) for q = q0.

Essentially, we will prove this theorem by reducing it to Proposition 4.2.7 assert-
ing that for a continuous division like the Pommaret division local involution implies
involution. In order to make our presentation independent of the rather technical ma-
terial in Chapter 4, we first explicitly formulate the special case of Proposition 4.2.7
that we will need in the sequel and provide a simple direct proof of it.

Proposition 6.2.5. Let Hq ⊂ Pq be a finite triangular set of homogeneous polyno-
mials of degree q which is locally involutive for the Pommaret division and a term
order ≺. Then the set

Hq+1 =
{

xih | h ∈Hq, xi ∈ XP,≺(h)
}
⊂ Pq+1 (6.27)

is also triangular and locally involutive (by induction this assertion obviously im-
plies thatHq is a Pommaret basis of 〈Hq〉 for the term order ≺).
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Proof. It is trivial to see that Hq+1 is again triangular (all leading terms are dif-
ferent). For showing that it is also locally involutive, we consider an element
xih ∈ Hq+1. By construction, cls (xih) = i ≤ clsh. We must show that for any non-
multiplicative index i < j ≤ n the polynomial x j(xih) is expressible as a linear com-
bination of polynomials xkh̄ where h̄ ∈ Hq+1 and xk ∈ XP,≺(h̄). In the case that
i < j ≤ clsh, this is trivial, as we may choose h̄ = x jh and k = i.

Otherwise x j is non-multiplicative for h and since Hq is assumed to be locally
involutive, the polynomial x jh can be written as a �-linear combination of elements
of Hq+1. For exactly one summand h̄ in this linear combination lt h̄ = lt (x jh) and
hence xi ∈XP,≺(h̄). If xi is also multiplicative for all other summands, we are done. If
the variable xi is non-multiplicative for some summand h̄′ ∈Hq+1, then we analyse
the product xih̄′ in the same manner writing h̄′ = xkh′ for some h′ ∈ Hq. Since
lt h̄′ ≺ lt (x jh), this process terminates after a finite number of steps leading to an
involutive standard representation of x j(xih). �

In order to make contact with the Cartan test, we reformulate the condition that
the finite set Hq ⊂ Pq is triangular for the special case that the leading terms are
determined with respect to the degree reverse lexicographic order. If we denote by

β (k)
q the number of generators inHq where the leading exponent is of class k (cf. Re-

mark 4.3.7 and Lemma 8.2.1), then obviously the setHq+1 contains ∑n
k=1 kβ (k)

q ele-
ments. Thus, if we denote the ideal 〈Hq〉 generated byHq byN 0, then the inequality

dimN 0
q+1 ≥

n

∑
k=1

kβ (k)
q (6.28)

always holds and Hq is locally involutive, if and only if we have equality. We will
show now that the similarity between (6.25) and (6.28) is not only formal but that
in fact the two inequalities are equivalent.

Proof (of Theorem 6.2.4). It follows immediately from Proposition 6.1.18 that the
degrees of involution of the given symbolic system N and of the dual factor mod-
ule M = (SV ⊗U∗)/N 0 ∼= N ∗, respectively, coincide and that according to Re-
mark 6.1.23 this degree of involution is the Castelnuovo–Mumford regularity of the
annihilatorN 0 ⊆ SV⊗U∗. As Theorem 5.5.15 asserts that regN 0 equals the degree
of any Pommaret basis of the submoduleN 0 for the degree reverse lexicographic or-
der, it suffices to show that equality in (6.25) for q = q0 is equivalent to the existence
of a Pommaret basis of degree q0 forN 0.

For notational simplicity, we assume in the sequel that dimU = 1 so that we can
ignore U and consider the annihilatorN 0 as an ideal in SV . We first choose a basis
{x1, . . . ,xn} of V that is δ -regular for this ideal in the sense of Definition 4.3.1 and
then a basis Hq0 ⊂ �[x1, . . . ,xn] of the vector space N 0

q0
which is triangular with

respect to the degree reverse lexicographic order ≺. If we set (�n
0)q0 \ le≺Hq0 =

{ν(1), . . . ,ν(s)} where s = codimHq0 = dimNq0 , then by elementary linear algebra
a basis Gq0 = {g1, . . . ,gs} ⊂ �[y1, . . . ,yn] of the vector space Nq0 exists such that

min≺ suppgi = yν
(i)

(here {y1, . . . ,yn} denotes again the dual basis to {x1, . . . ,xn}).
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By the defining property of the degree reverse lexicographic term order (cf.

Lemma A.1.8), this condition implies that the subspace N (k−1)
q0 is generated by all

polynomials gi with clsν(i) ≥ k. Hence the Cartan characters of Nq0 are

α(k)
q0 =

(
n− k + q0−1

q0−1

)
−β (k)

q0 , (6.29)

since by (A.4b) the appearing binomial coefficient gives the number of terms of
degree q0 and class k. A well-known identity for binomial coefficients shows
now that the inequalities (6.25) and (6.28) are equivalent (obviously we have
here dimNq0 + dimN 0

q0
= dimPq0 =

(n+q0−1
q0

)
). In particular, if and only if equal-

ity holds, then Hq0 is a Pommaret basis of N 0
≥q0

by Proposition 6.2.5 and thus

regN 0 ≤ q0 implying our claim. �
Example 6.2.6. Let us consider over a three-dimensional vector space V with basis
{x,y,z} and dual basis {x̄, ȳ, z̄} the symbolic systemN ⊂S(V∗) defined byN0 =�,
N1 = V∗, N2 = 〈x̄2, x̄ȳ, x̄z̄, ȳ2〉 and Nq =Nq−1,1 for q ≥ 3. One easily verifies that

hereN (1)
2 = 〈ȳ2〉 andN (2)

2 =N (3)
2 = 0 and therefore the only non-vanishing Cartan

characters ofN are α(1)
2 = 3 and α(2)

2 = 1. Furthermore,N3 = 〈x̄3, x̄2ȳ, x̄2z̄,xy2, ȳ3〉.
Since α(1)

2 +2α(2)
2 = 5 = dimN3, the symbolic systemN passes the Cartan test and

is involutive at degree q = 2. One also immediately sees that the map ∂x̄,2 :N3→N2

is indeed surjective and that the map ∂ȳ,2 : N (1)
3 = 〈ȳ3〉 → N (1)

2 is even bijective

(there is no need to consider also ∂z̄, since bothN (2)
2 andN (2)

3 vanish). �
Example 6.2.7. For an instance where the Cartan test is not passed, we return to the
second symbolic system N in Example 6.1.9. Since it vanishes from degree 5 on,
it is trivially involutive at degree 5. It is clear that the map ∂x̄,4 : N5 →N4 cannot

be surjective and also α(1)
4 = 1 > dimN5 = 0. Hence the symbolic system N is not

involutive at degree q = 4. �
The essence of the proof of Proposition 6.1.6 is that differentiation with respect

to yk is dual to multiplication with xk. Hence when we now study the dualisation of
the considerations above, it is not surprising that the multiplication with elements
v ∈ V is central. We start with a simple observation extending Lemma 6.1.16.

Lemma 6.2.8. LetM be a finitely generated graded SV-module and q > 0 an arbi-
trary degree. Then the following statements are equivalent.

(i) Hr,n(M) = 0 for all r ≥ q.
(ii) If Ann(m) = S+V for an m ∈M, then m ∈M<q.
(iii) The existence of an element v ∈ V with v ·m = 0 entails m ∈M<q.
(iv) For all v ∈ V except the elements of a finite number of proper subspaces of V

the equation v ·m = 0 entails m ∈M<q.

Proof. The equivalence of (i) and (ii) follows immediately from Lemma 6.1.16.
Furthermore, it is trivial that (iv) implies (iii) implies (ii). Hence there only remains
to show that (iv) is a consequence of (ii).
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Assume that (ii) holds and let A=
{

m ∈M<q | Ann(m) = S+V
}

. We choose a
complement K such that M<q = A⊕K and set M = K⊕⊕r≥qMr. Because of
(ii) no element ofM\{0} is annihilated by S+V and hence S+V is not an associated
prime ideal of the moduleM. By Theorem B.1.15, the set AssM of all associated
prime ideals ofM contains only finitely many elements. The intersection of any of
these with V yields a proper subspace, since we just showed that S+V is not among
them. If we choose v∈V such that it is not contained in any of these subspaces, then
v ·m = 0 entails m ∈M<q. �

The property of v in Part (iii) will become so important in the sequel that we
provide a special name for it. It is closely related to the idea of a regular sequence
except that for the latter it is not permitted that the multiplication with v has a non-
trivial kernel whereas here we only restrict the degree of the kernel.

Definition 6.2.9. A vector v ∈ V is called quasi-regular at degree q for the mod-
uleM, if v ·m = 0 entails m ∈M<q. A finite sequence (v1, . . . ,vk) of elements of V
is quasi-regular at degree q for the moduleM, if each vi is quasi-regular at degree q
for the factor moduleM/〈v1, . . . ,vi−1〉M.

Obviously, if a vector v ∈ V is quasi-regular at degree q, it is also quasi-regular
at any higher degree r > q. Furthermore, the vectors in a quasi-regular sequence
(v1, . . . ,vk) are linearly independent. Thus such a sequence of length n = dimV de-
fines a basis of the vector space V . In the sequel, we will abbreviate the statement
in Part (iv) of Lemma 6.2.8 by saying that a generic vector v ∈ V is quasi-regular;
this is the same notion of genericity (based on the Zariski topology) as in Proposi-
tion 4.3.8 and the subsequent discussion.

Lemma 6.2.10. Let v ∈ V be quasi-regular at degree q. Then for each r ≥ q and
1≤ p≤ n there is a short exact sequence

0 Hr,p(M) α Hr,p(M/vM)
β

Hr,p−1(M) 0 (6.30)

and the multiplication with v is injective onM≥q.

Proof. As above we decompose M = A⊕M. Since A ⊆ M<q, we have the
equality Hr,p(M) = Hr,p(M) for all r ≥ q and, because of v · A = 0, similarly
Hr,p(M/vM) = Hr,p(M/vM) for all r ≥ q.

It follows trivially from the definition of quasi-regularity that multiplication with
v is injective on M≥q. In fact, it is injective on M. Indeed, suppose that v ·m = 0
for some homogeneous element m ∈M. Let us assume first that m ∈Mq−1. Then
v · (w ·m) = 0 for all w ∈ V and since w ·m ∈Mq, this is only possible, if w ·m = 0
and thus Ann(m) = S+V implying m ∈A. Iterating this argument, we conclude that
m cannot be contained inMq−2 either and so on. Hence m ∈ A.

Because of the injectivity, the sequence

0 M v M π M/vM 0 (6.31)
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of graded modules is exact at all degrees r ≥ q. Tensoring (6.31) with the vector
spaceΛV yields a similar sequence for the corresponding Koszul complexes K(M)
and K(M/vM), respectively, with the same exactness properties. Now we consider
the associated long exact homological sequence

· · · Hr−1,p(M)
H(v)

Hr,p(M)
H(π)

Hr,p(M/vM)
β

Hr,p−1(M)
H(v) · · · .

(6.32)

Since, by Lemma 6.1.17, H(v) is the zero map, it decomposes into the desired short
exact sequences with α = H(π) and β

(
[ω ]
)

=
[

1
v ·∂ (ω)

]
. �

Based on these two lemmata, we can relate the notion of quasi-regularity with
the Koszul homology of M. As a corollary we will then obtain the dual form of
Cartan’s test for involution.

Proposition 6.2.11. Let M be a finitely generated graded SV-module and the se-
quence (v1, . . . ,vk) quasi-regular for it at degree q. Then Hr,p(M) = 0 for all r ≥ q
and n− k < p ≤ n. If we set M(i) =M/〈v1, . . . ,vi〉M, then

Hr,n−k(M)∼= Hr,n−k+1
(
M(1))∼= · · · ∼= Hr,n

(
M(k)) (6.33)

for all r ≥ q.

Proof. We proceed by induction over the length k of the sequence. For k = 1, it fol-
lows from Lemma 6.2.8 that Hr,n(M) = 0 for all r ≥ q. Entering this result into the
short exact sequence (6.30) of Lemma 6.2.10 leads immediately to an isomorphism
Hr,n−1(M)∼= Hr,n(M(1)).

Assume that both assertions hold for any quasi-regular sequence with less than k
vectors. Then we know that Hr,p(M) = 0 for all r ≥ q and n− k + 1 < p ≤ n and
that Hr,n−k+1(M) ∼= Hr,n(M(k−1)). Since the vector vk is quasi-regular at degree q
for M(k−1), the latter homology group vanishes by Lemma 6.2.8 proving the first
assertion. Applying the induction hypothesis to M(i−1) and the quasi-regular se-
quence (vi, . . . ,vk) shows that Hr,n−k+i(M(i−1)) = 0. Now we use again the exact
sequence of Lemma 6.2.10 to conclude that Hr,n−k+i(M(i))∼= Hr,n−k+i−1(M(i−1)).
This proves the second assertion. �

Proposition 6.2.12. LetM be a graded SV-module finitely generated in degree less
than q > 0. The moduleM is involutive at degree q, if and only if a basis {x1, . . . ,xn}
of V exists such that the maps

μk,r :Mr/〈x1, . . . ,xk−1〉Mr−1 −→Mr+1/〈x1, . . . ,xk−1〉Mr (6.34)

induced by the multiplication with xk are injective for all r ≥ q and 1≤ k≤ n.

Proof. We first note that the statement that M is generated in degree less than q is
equivalent to Hr,0(M) = 0 for all r ≥ q by Lemma 6.1.16.
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IfM is involutive at degree q, then Hr,n(M) = 0 for all r ≥ q and Lemma 6.2.8
implies that a generic vector x1 ∈ V is quasi-regular at degree q. Now we pro-
ceed by iteration. SettingM(k) =M/〈x1, · · · ,xk〉M, we find by Lemma 6.2.10 that
Hr,n(M(k)) = Hr,n−k(M) = 0 for all r ≥ q. Thus we may again apply Lemma 6.2.8
in order to show that for any 1≤ k < n every sequence (x1, . . . ,xk) which is quasi-
regular at degree q can be further extended by a generic vector xk+1 ∈ V . As already
remarked above, a quasi-regular sequence of length n defines a basis of V . Now the
injectivity of the maps μk,r follows from Lemma 6.2.10.

For the converse, we note that if all the maps μk,r are injective, then obviously
(x1, . . . ,xn) defines an quasi-regular sequence of length n at degree q. Now the van-
ishing of all homology groups Hr,p(M) with r ≥ q and 1 ≤ p ≤ n follows from
Proposition 6.2.11 andM is involutive. �

Again we face the problem that this proposition requires an infinite number of
checks and thus cannot be applied effectively. However, for finitely presented mod-
ules it suffices to consider only the components Mq and Mq+1. This fact leads to
the following dual formulation of the Cartan test (Theorem 6.2.4).

Theorem 6.2.13 (Dual Cartan Test). Let N 0 ⊆ SV ⊗U∗ be a homogeneous sub-
module of the free SV-module SV⊗U∗ finitely generated in degree less than q > 0.
Then the factor moduleM= (SV⊗U∗)/N 0 is involutive at degree q, if and only if
a basis {x1, . . . ,xn} of V exists such that the maps

μk,q :Mq/〈x1, . . . ,xk−1〉Mq−1 −→Mq+1/〈x1, . . . ,xk−1〉Mq (6.35)

induced by the multiplication with xk are injective for all 1≤ k ≤ n.

Remark 6.2.14. Let N ⊆ S(V∗)⊗U be a symbolic system and consider the dual
SV-moduleM=N ∗ ∼=

(
SV⊗U∗)/N 0. Let furthermore {x1, . . . ,xn} be a basis of

V and {y1, . . . ,yn} the dual basis of V∗. Then we find that μ∗
1 = ∂y1 and hence

that
(
N (1))∗ = (ker∂y1)

∗ ∼= cokerμ1 = M(1). Iteration of this argument yields(
N (k))∗ ∼= M(k) for all 1 ≤ k ≤ n (considering always ∂yk as a map on N (k−1)

so that N (k) = ker∂yk and μk as a map on M(k−1) so that M(k) = cokerμk). We
also have μk = ∂∗yk

and hence obtain the isomorphisms (kerμk)∗ ∼= coker∂∗yk
(again

considering the maps on the appropriate domains of definition). Thus injectivity of
all the maps μk is equivalent to surjectivity of all the maps ∂yk . Hence applying
Proposition 6.2.12 toM proves dually Proposition 6.2.3 forN and similarly for the
Theorems 6.2.4 and 6.2.13. Furthermore, it is obvious that if the basis {x1, . . . ,xn}
is quasi-regular at degree q, then the dual basis {y1, . . . ,yn} is δ -regular forNq. The
converse does not necessarily hold, as δ -regularity is a much weaker condition than
quasi-regularity (the latter implies involution via the dual Cartan test; the former is
only a necessary condition for applying the Cartan test). �

Example 6.2.15. For the symbolic system N of Example 6.2.6 the annihilator N 0

is the ideal I ⊂ P = SV generated by the monomials yz and z2. We apply now the
dual Cartan test to the factor module M = P/I. For the two relevant components
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we obtain after a trivial computation that M2
∼= 〈x2,xy,xz,y2〉 ∼= N2 and M3

∼=
〈x3,x2y,x2z,xy2,y3〉 ∼=N3. Similarly, we find that the non-vanishing factor modules

required for the dual Cartan test are given by M(1)
2
∼= 〈y2〉 ∼= N (1)

2 and M(1)
3
∼=

〈y3〉 ∼= N (1)
3 . It is now trivial to see that the map μx : M2 →M3 induced by the

multiplication with x is injective and that the map μy : M(1)
2 →M(1)

3 induced by
the multiplication with y is even bijective. Hence according to the dual Cartan test
the moduleM is involutive at degree 2. �

Remark 6.2.16. Another way to formulate the assumptions of Theorem 6.2.13 is to
require that M is a finitely generated graded SV-module such that the homology
groups Hr,0(M) and Hr,1(M) vanish for all r ≥ q. This fact follows immediately
from Remark 6.1.20 and implies that for submodules of a free submodule, we must
also see in which degrees their minimal syzygies live.

As a concrete example consider the monomial ideal I = 〈x3,y3〉 ⊂ �[x,y] gen-
erated in degree 3, i. e. the annihilator of the second symbolic system N in Exam-
ple 6.1.9. It is trivial that μx : I4 → I5 is injective. For the map μy we note that
I4/xI3

∼= 〈x3y,x4〉 and thus it is again easy to see that μy is injective in degree 4.
If I were a factor module, it would now follow from Theorem 6.2.13 that the

map μy was also injective at all higher degree. However, using the identification
I5/xI4

∼= 〈x3y2,y5〉, we find here for μy : I5/xI4 → I6/xI5 that μy
(
[x3y2]

)
=

[x3y3] = 0 so that the map is not injective at degree 5. This phenomenon is eas-
ily understood by considering the syzygies. Syz(I) ∼= H1(I) is generated by the
single element y3e1− x3e2 of degree 6 (and hence Theorem 6.2.13 holds for I only
from this degree on). As its coefficients are of degree 3, nothing happens with the
map μy before we encounter I6 and then the equation μy

(
[x3y2]

)
= 0 is a trivial

consequence of this syzygy. �

6.3 Pommaret Bases and Homology

Finally, we study the relationship between Pommaret bases and the homological
constructions of the last two sections. We assume throughout that a fixed basis
{x1, . . . ,xn} of V has been chosen so that we may identify SV ∼= �[x1, . . . ,xn] = P .
For simplicity, we restrict to homogeneous ideals I ⊆ P . We only consider Pom-
maret bases for the degree reverse lexicographic term order ≺degrevlex, as Theo-
rem 5.5.15 (together with Remark 5.5.17) implies that for any other term order the
corresponding Pommaret basis (if it exists) cannot be of lower degree.

It turns out that this relationship takes its simplest form, if we compare the Pom-
maret basis of the ideal I and the Koszul homology of its factor algebra P/I. We
have seen in the last chapters that everything relevant for involutive bases can be
read off the leading ideal. Therefore, we show first that at least for our chosen term
order quasi-regularity is also already decided by the leading ideal.
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Lemma 6.3.1. Let I ⊆ P be a homogeneous ideal and ≺ the degree reverse lexico-
graphic order. The sequence (x1, . . . ,xn) is quasi-regular at degree q for the factor
module P/I, if and only if it is quasi-regular at degree q for P/ lt≺I.

Proof. Let G be a Gröbner basis of I for ≺. Recall from Remark B.4.10 that the
normal form with respect to the basis G defines an isomorphism between the vector
spaces M = P/I and M′ = P/ lt≺I. One direction is now trivial, as an obvious
necessary condition for m = [ f ] ∈M to satisfy x1 ·m = 0 is that x1 · [lt≺ f ] = 0 in
the moduleM′. Hence quasi-regularity of x1 forM′ implies quasi-regularity of x1

forM and by iteration the same holds true for the whole sequence (note that so far
we could have used any term order).

For the converse let r ≥ q be an arbitrary degree. Because of the mentioned iso-
morphism, we may choose for the homogeneous component Mr a �-linear basis
where each member is represented by a term (the standard terms of Remark B.4.10),
i. e. the representatives simultaneously induce a basis of the componentM′

r. Let xμ

be one of these terms. As we assume that x1 is quasi-regular at degree q for the
moduleM, we must have x1 · [xμ ] �= 0 in M. Suppose now that x1 · [xμ ] = 0 in M′

so that x1 was not quasi-regular at degree q forM′.
Thus xμ+11 ∈ lt≺I. Since lt≺ I = 〈lt≺G〉 by Definition B.4.1 of a Gröbner basis,

the set G must contain a polynomial g with lt≺ g | xμ+11 . Because of the assumption
xμ /∈ lt≺ I, we must have cls(lt≺ g) = 1. According to Lemma A.1.8, this fact im-
plies that every term in g is of class 1. Iteration of this argument shows that the nor-
mal form of xμ+11 with respect to G can be written as x1 f with f ∈Pr and lt≺ f ≺ xμ .
Consider now the polynomial f̄ = xμ− f ∈Pr \{0}. As it consists entirely of terms
not contained in lt≺I, we have [ f̄ ] �= 0 inMr. However, by construction x1 · [ f̄ ] = 0
contradicting the injectivity of multiplication by x1 onMr.

For the remaining elements of the sequence (x1, . . . ,xn) we note for each value
1 ≤ k < n the trivial isomorphism M(k) = M/〈x1, . . . ,xk〉M ∼= P (k)/I(k) where
P (k) = �[xk+1, . . . ,xn] and I(k) = I ∩P(k). It implies that we may iterate the argu-
ments above so that indeed quasi-regularity of (x1, . . . ,xn) for M′ is equivalent to
quasi-regularity of the sequence forM′. �

The deeper reason that this lemma holds only for the degree reverse lexico-
graphic order is given by Remark 5.5.17. In general, we have only the inequality
reg(lt≺ I) ≥ regI and if it is strict, then a sequence may be quasi-regular for P/I
at any degree regI ≤ q < reg(lt≺I), but it cannot be quasi-regular for P/ lt≺I at
such a degree by the results below.

Theorem 6.3.2. The basis {x1, . . . ,xn} is δ -regular for the homogeneous ideal
I ⊆ P in the sense that I possesses a Pommaret basis H for the degree reverse
lexicographic term order with degH = q, if and only if the sequence (x1, . . . ,xn) is
quasi-regular for the factor module P/I at degree q but not at any lower degree.

Proof. It suffices to consider monomial ideals I: for Pommaret bases it is obvious
from their definition that a basis is δ -regular for I, if and only if it is so for lt≺I;
by Lemma 6.3.1 the same is true for quasi-regularity.
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Let us first assume that the basis {x1, . . . ,xn} is δ -regular in the described sense.
By Proposition 5.1.6, the leading terms lt≺H induce a complementary decompo-
sition of the form (5.4) of M = P/I where all generators are of degree q or less.
Thus, ifMq �= 0 (otherwise there is nothing to show), then we can choose a vector
space basis of it as part of the complementary decomposition and the variable x1

is multiplicative for all its members. But this observation immediately implies that
multiplication with x1 is injective from degree q on, so that x1 is quasi-regular for
the moduleM at degree q.

For the remaining elements of the basis {x1, . . . ,xn} we proceed as in the proof
of Lemma 6.3.1 and use the isomorphisms M(k) ∼= P (k)/I(k). One easily verifies
that a Pommaret basis of I(k) is obtained by setting x1 = · · · = xk = 0 in the partial
basisH(k) = {h ∈H | clsh > k}. Thus we can again iterate for each value 1 < k≤ n
the argument above so that indeed (x1, . . . ,xn) is a quasi-regular sequence for the
moduleM at degree q.

For the converse, we first show that quasi-regularity of the sequence (x1, . . . ,xn)
implies the existence of a Rees decomposition for M. Exploiting again the iso-

morphism M(k) ∼= P (k)/I(k), one easily sees that a vector space basis of M(k)
q is

induced by all terms xμ /∈ I with |μ |= q and clsμ ≥ k. By the definition of quasi-
regularity, multiplication with xk is injective onM(k), hence we take {x1, . . . ,xk} as
multiplicative variables for such a term (which is exactly the assignment used in the
Rees decomposition induced by a Pommaret basis according to Proposition 5.1.6).

We claim now that this assignment yields a Rees decomposition of M≥q (and
hence induces one of M, since we only have to add all terms xμ /∈ I such that
|μ |< q without any multiplicative variables). There only remains to prove that our
decomposition indeed covers all of M≥q. But this fact is trivial. If xμ /∈ I is an
arbitrary term with |μ | = q + 1 and clsμ = k, then we can write xμ = xk · xμ−1k .
Obviously, xμ /∈ I implies xμ−1k /∈ I and cls (μ−1k)≥ k so that xk is multiplicative
for it. Hence all of Mq+1 is covered and an easy induction shows that we have
indeed a decomposition ofM≥q.

Proposition 5.1.6 entails now that the ideal I possesses a weak Pommaret basis
of degree q. As the reduction to a strong basis along the lines of the proof of Proposi-
tion 3.1.12 can only decrease the degree, we conclude that I has a strong Pommaret
basis of degree at most q. If the degree of the basis actually decreased, then, by the
converse statement already proven, (x1, . . . ,xn) would be a quasi-regular sequence
forM at a lower degree than q contradicting our assumptions.

The same “reverse” argument shows that if the ideal I has a Pommaret basis of
degree q, then the sequence (x1, . . . ,xn) cannot be quasi-regular forM at any degree
less than q, as otherwise a Pommaret basis of lower degree would exist which is not
possible by the discussion following Theorem 5.5.15. �

For monomial ideals I ⊆ P a much stronger statement is possible. Using again
the isomorphismsM(k) ∼= P (k)/I(k), we may identify elements ofM(k) with linear
combinations of the terms xν /∈ I satisfying clsxν > k. Finally, if we denote as
before by μk :M(k−1) →M(k−1) the map induced by multiplication with xk, then
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we obtain the following simple relationship between the kernels of the maps μk and
the Pommaret basis of I showing that the latter can in fact be defined intrinsically.

Proposition 6.3.3. Let I ⊆ P be a quasi-stable ideal and H its Pommaret basis. If
we defineHk = {xν ∈H | clsν = k} for any 1≤ k≤ n, then the set {xν−1k | xν ∈Hk}
is a basis of kerμk.

Proof. Assume that xν ∈ Hk. Then xν−1k /∈ I, as otherwise the Pommaret basis H
was not involutively autoreduced, and hence we find xν−1k ∈ kerμk.

Conversely, suppose that xν ∈ kerμk. Obviously, this implies xν+1k ∈ I and the
Pommaret basis H must contain an involutive divisor of xν+1k . If this divisor were
not xν+1k itself, the term xν would have to be an element of I which is obviously
not possible. Since xν ∈ kerμk entails cls(ν+ 1k) = k, we thus find xν+1k ∈Hk. �

We noted already in Remark 6.1.23 that the degree of involution is essentially just
the Castelnuovo–Mumford regularity. There we used the equivalence of the Koszul
homology to the minimal free resolution. Based on Theorems 5.5.15 and 6.3.2, we
can also give a simple direct proof.

Corollary 6.3.4. Let I ⊆ P be a homogeneous ideal. Then the factor module
M = P/I is involutive at degree q but not at any lower degree, if and only if the
Castelnuovo–Mumford regularity of I takes the value regI = q.

Proof. By Theorem 5.5.15, regI = q, if and only if I possesses in suitable variables
x1, . . . ,xn a Pommaret basis H with degH = q. According to Theorem 6.3.2, the
sequence (x1, . . . ,xn) is then quasi-regular for M at degree q but not at any lower
degree, so that by the dual Cartan test (Theorem 6.2.13) the moduleM is involutive
at degree q but not at any lower degree. �

Remark 6.3.5. In fact, the reasoning behind this proof allows us to determine easily
from a Pommaret basisH of I the dimensions of the highest non-vanishing homol-
ogy groups. We follow the ideas used in the proof of Theorem 5.5.24 on the exis-
tence of a linear resolution of the truncated ideal I≥q: if we form the set Hq ⊂ Pq

according to (4.5) by taking the multiplicative multiples of the elements of H of
lower degree, thenHq is a Pommaret basis of the truncated ideal I≥q and applying
Theorem 5.4.12 yields the minimal free resolution of I≥q. Since the Koszul homol-
ogy groups Hq,p(I) depend only on the truncation I≥q, Proposition 6.1.18 and the
equivalence of the minimal free resolution to the Koszul homology entail for any
value 0≤ p≤ n isomorphisms

Hq,p(I)∼= Hq−1,p+1(P/I)∼= Syzp(Hq) . (6.36)

Finally, according to Theorem 5.4.12, (5.39) gives us the dimensions of these vector
spaces, i. e. the corresponding bigraded Betti numbers:

βq,p(I) = βq−1,p+1(P/I) =
n−p

∑
k=1

(
n− k

p

)
β (k)

q , (6.37)
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where β (k)
q denotes the number of elements of class k in the basis Hq. Note that in

the case that I = I≥q, i. e. the whole ideal I is generated in degree q, these vector
spaces are the only non-vanishing homology groups. While from an algebraic point
of view, this situation is very special, it actually is quite common in the context of
differential equations, as we will see in the next chapter. �
Remark 6.3.6. In view of Corollary 6.3.4, it is not so surprising to see that the char-
acterisation of the Castelnuovo–Mumford regularity provided by Theorem 5.5.21
and the dual Cartan test in Theorem 6.2.13 are equivalent. Consider a homogeneous
ideal I ⊆ P for which the basis {x1, . . . ,xn} of V is δ -regular and assume that
for some degree q ≥ 0 the condition (5.63a) of Theorem 5.5.21 is violated for
some 1 ≤ j ≤ D = dim(P/I). Thus there exists a polynomial f ∈ Pq−1 such that
f /∈ 〈I,x1, . . . ,x j−1〉 but x j f is contained in this ideal. If we introduce M( j) =
P/〈I,x1, . . . ,x j〉, then obviously the equivalence class [ f ] lies in the kernel of the
map μ j :M( j−1) →M( j−1) induced by multiplication with the variable x j. Since
forM= P/I we have the trivial isomorphismM( j) ∼=M/〈x1, . . . ,x j〉M, the con-
ditions of Theorem 6.2.13 are not satisfied forM either. Conversely, any represen-
tative of a non-trivial element of kerμ j of degree q provides us with such an f .
There is no need to consider a j > D, since we know from Proposition 5.2.3 that

M(D)
≥regI = 0. �

Remark 6.3.7. The results above also provide us with a simple proof of the char-
acterisation (ii) of a quasi-stable ideal in Proposition 5.3.4. If the ideal I is quasi-
stable, then the coordinates x1, . . . ,xn are δ -regular for it, hence by Theorem 6.3.2
they form a quasi-regular sequence forP/I at a suitably chosen degree. By Proposi-
tion 5.5.28, we have that Isat = I : 〈x1〉∞ and hence multiplication by x1 is injective
onP/Isat. As obviouslyP/〈I,x1, . . . ,x j〉sat ∼=P ( j)/(I( j))sat, we can apply the same
argument also for all 1≤ j < D.

Conversely, if x1 · f ∈ I for a polynomial f ∈ P \I, then f ∈ Isat \I and hence
deg f < satI. Thus x1 is quasi-regular for P/I at the degree satI. Using again the
isomorphismsP/〈I,x1, . . . ,x j〉sat ∼=P ( j)/(I( j))sat, we can apply the same argument
for all 1 ≤ j < D, so that (x1, . . . ,xD) is a quasi-regular sequence for P/I at a
sufficiently high degree.

As already discussed in the proof of Proposition 5.3.4, the characterisation (ii) of
Proposition 5.3.4 implies that the set {x1, . . . ,xD} is maximally independent modulo
the saturation Isat. Hence dimP/〈I,x1, . . . ,xD〉 = 0 entailing that (x1, . . . ,xn) is a
quasi-regular sequence for P/I at a sufficiently high degree. By Theorem 6.3.2, the
ideal I is thus quasi-stable. �

As an application, we finally show that our proof of Proposition 5.2.7 deter-
mining the depth of an ideal or module from its Pommaret basis is actually of a
homological nature. The following theorem provides a characterisation of the depth
via Koszul homology which is sometimes used as definition of depthM (cf. Re-
mark B.2.39). Note that, taking into account the relation between the minimal free
resolution of a module and its Koszul homology discussed in Remark 6.1.15, it also
trivially implies the Auslander–Buchsbaum formula (Corollary 5.5.12).
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Theorem 6.3.8. Let M be a polynomial module. Then depthM= d, if and only if
Hn−d(M) �= 0 and Hn−d+1(M) = · · ·= Hn(M) = 0.

Proof. For notational simplicity, we give the proof only for the case of an ideal
I ⊆ P . The extension to modules is straightforward. We use the same notations as
in the proof of Proposition 5.2.7: H is the Pommaret basis of I with respect to the
degree reverse lexicographic order, d = minh∈H clsh (and thus depthI = d) and
Hd = {h ∈H | clsh = d}. We consider again an element h̄ ∈Hd of maximal degree
and show now that it induces a non-zero element of Hn−d(I).

By Lemma A.1.8, h̄ ∈ 〈x1, . . . ,xd〉 and thus it possesses a unique representation
h̄ = x1h̄(1)+ · · ·+xdh̄(d) with h̄(i) ∈ �[xi, . . . ,xn]. The polynomial h̄(d) cannot lie in I,
as otherwise there must exist an h∈H with lt≺ h |P lt≺ h̄(d) |P lt≺ h̄ contradicting the
fact that any Pommaret basis is involutively autoreduced. We showed already in the
proof of Proposition 5.2.7 that for any d < k≤ n polynomials Ph ∈ 〈x1, . . . ,xd〉 exist
such that xkh̄ =∑h∈HPhh. As above, each of these coefficients may be uniquely de-

composed Ph = x1P(1)
h + · · ·+xdP(d)

h with P(i)
h ∈ �[xi, . . . ,xn]. Because of the unique-

ness of these decompositions we find that xkh̄(i) = ∑h∈HP(i)
h h and thus xkh̄(i) ∈ I

for any d < k ≤ n.
Let I = (i1, . . . , id−1) be a repeated index with i1 < i2 < · · · , id−1. Then its com-

plement Ī = {1, . . . ,n} \ I is a repeated index of length n− d + 1 and we may rep-
resent any element ω̄ ∈ P ⊗Λn−d+1V in the form ω̄ = ∑|I|=d−1 f̄IdxĪ . We consider
now in particular all repeated indices with id−1≤ d. For each of them a unique value
i ∈ {1, . . . ,d} exists such that i /∈ I and we set f̄I = (−1)d−ih̄(i). For all remaining
coefficients we only assume that f̄I ∈ I. Then, by our considerations above, the thus
chosen form ω̄ is not contained in I ⊗Λn−d+1V .

We claim that ω = ∂ω̄ ∈ I ⊗Λn−dV . If we write ω = ∑|I|=d fIdxĪ , then by def-

inition of the Koszul differential fI = ∑d
j=1(−1) jxi j f̄I\{i j}. Let us first assume that

id > d. It follows from our choice of ω̄ that fI\{i j} ∈ I for all j < d and that always

xid fI\{id} ∈ I implying trivially that fI ∈ I. If id = d, one easily verifies that we
have chosen ω̄ precisely such that fI = h̄ ∈ I. Hence our claim is proven.

If we can show that it is not possible to choose a form ω̃ ∈ P ⊗Λn−d+2V
such that ω̄ + ∂ω̃ ∈ I ⊗Λn−d+1V , then we have constructed a non-zero element
[ω ] ∈ Hn−d(I). But this is easy to achieve by considering in particular the coef-
ficient f̄(1,2,...,d−1) = h̄(d) /∈ I. The corresponding coefficient of the form ∂ω̃ is

given by ∑d−1
j=1 (−1) jx j f̃(1,2,...,d−1)\{ j} ∈ 〈x1, . . . ,xd−1〉. As noted above, we have

h̄(d) ∈ �[xd , . . . ,xn] so that it is not possible to eliminate it in this manner and hence
no form ω̄+ ∂ω̃ can be contained in I ⊗Λn−d+1V .

There remains to show that Hn−d+1(I) = · · · = Hn(I) = 0 under our assump-
tions. Hn(I) = 0 follows immediately from Lemma 6.1.16. Consider now a cy-
cle ω ∈ I ⊗Λn−kV with 0 < k < d. Since the Koszul complex K(P) is exact, a
form ω̄ ∈ P ⊗Λn−k+1V exists with ∂ω̄ = ω . For all I we have by assumption
fI = ∑d

j=1(−1) jxi j f̄I\{i j} ∈ I; our goal is to show that (modulo im∂ ) we can al-

ways choose ω̄ such that all coefficients f̄J ∈ I, too.
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Without loss of generality, we may assume that all coefficients f̄J are in normal
form with respect to the Pommaret basis H, as the difference is trivially contained
in I. In addition, we may assume that lt≺ fI = lt≺ (xi j f̄I\{i j}) for some value j.
Indeed, it is easy to see that cancellations between such leading terms can always
be eliminated by subtracting a suitable form ∂ω̃ from ω̄ .

We begin with those repeated indices I = (i1, . . . , ik) for which all indices
i j < d = minh∈H clsh. In this case lt≺ fI ∈ 〈lt≺H〉P = lt≺I implies that already
lt≺ f̄I\{i j} ∈ lt≺I for the above j. But unless f̄I\{i j} = 0, this observation contra-
dicts our assumption that all fJ are in normal form and thus do not contain any terms
from lt≺ I. Therefore all f̄J where all entries of J are less than d must vanish.

We continue with those repeated indices I = (i1, . . . , ik) for which only one in-
dex i� > d. Then, by our considerations above, f̄I\{i�} = 0 and hence lt≺ fI =
lt≺ (xi j f̄I\{i j}) for some value j �= �. Thus i j < d and the same argument as above
implies that all such f̄I\{i j} = 0. A trivial induction proves now that in fact all f̄J = 0
and therefore ω̄ ∈ I ⊗Λn−k+1V . �

6.4 Notes

The cohomological approach to involution was pioneered by Spencer [427] and
collaborators [167, 168, 365]; later discussions can be found e. g. in [58, 84, 246,
302, 304, 307, 115, 263, 356]. One should mention that the Spencer cohomology
appeared first not in the context of differential equations but in deformation theory
[426]. Pommaret [356] explicitly determines at least the size of the cohomology
groups for a number of concrete examples. Although the cohomology appears at
many places, one may probably say that so far it has not been much applied; most
of the references only use it for defining an involutive symbol. The comodule point
of view was developed in [279]; this article also contains a discussion of possible
algorithms for the explicit construction of the Spencer cohomology.

Instead of the direct definition (6.2), the differential δ of the polynomial de Rham
complex may also be introduced as the composition of several natural maps relat-
ing the full tensor algebra with the symmetric and exterior algebra, respectively,
regarded as quotient algebras. More precisely, one defines first the map

Δq,r : Sq+rV ⊗q+rV ∼=
⊗qV ⊗⊗rV SqV ⊗SrV (6.38)

where the first arrow represents the natural inclusion and the second arrow the
canonical projection (alternatively, we may consider Δq,r as the dual map to the sym-
metric multiplication SqV∗⊗SrV∗→ Sq+rV∗ over the dual space V∗). The Spencer
differential δ arises then as the composition

δ : Sq+1V ⊗ΛpV
Δq,1⊗id

SqV ⊗V⊗ΛpV
id⊗∧

SqV ⊗ΛpV . (6.39)
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Obviously, this construction somewhat hides the fact that δ is nothing but the exte-
rior derivative restricted to forms with polynomial coefficients, i. e. the relation to
the classical de Rham complex.

Some of the ideas underlying this construction (and thus the Spencer cohomol-
ogy) already appeared in the work of Johnson [242, 243] on an algebraic formula-
tion of the concept of prolongation in Cartan’s theory of exterior differential systems
where they are also used for giving a new proof of the Cartan–Kuranishi Theorem
asserting that every exterior system is either inconsistent or becomes involutive after
a finite number of prolongations (see Section 7.4 for the partial differential equations
version of this result). The bound (6.20) on the number of prolongations required is
due to Sweeney [447, Corollary 7.7].

While the notion of prolongation (of a symbol) arises naturally in the context
of differential equations, it is also of interest in pure algebra. Sidman and Sulli-
vant [417] recently showed (generalising earlier results by Landsberg and Manivel
[280]) that prolongations provide direct access to the lowest degree part of the ide-
als of secant varieties. As a side product they furthermore proved that already in the
monomial case directly computing prolongations is NP-hard.

Mansfield [306] gives a detailed discussion of the polynomial de Rham com-
plex and various associated constructions in local bases. In particular, she explicitly
proves that the differential ∂ of the Koszul complex provides a contracting homo-
topy. However, she misses the precise formulation of the duality between R(V) and
K(V∗), as she does not perform a proper dualisation. She uses the scalar product
induced by the standard coordinate basis of SqV ⊗ΛpV to introduce an adjoint of δ
differing from the Koszul differential ∂ by combinatorial coefficients. This is solely
due to the fact that she does not go to the dual spaces and thus does not use the dual
bases. The combinatorial factors contained in the definition of the dual bases cancel
the coefficients appearing in her adjoint.

The Koszul complex is a fundamental tool in commutative algebra and discussed
in almost any textbook on this subject. Some discussions of computational aspects
and, in particular, of applications in the geometry of projective varieties are given by
Green [181] (see also [125, Sect. 17.5]). One should note that different conventions
exist, but the arising complexes are trivially isomorphic. The one used here seems
to be the most common one, but see [125, Chapt. 17] for an alternative. Apparently,
the duality between the Spencer cohomology and the Koszul homology was first
noted by Singer and Sternberg [419] who attributed it to private discussions with
Grothendieck and Mumford (see also [365]). An independent proof was later given
by Ruiz [390].

It is also possible to give a more abstract description of the Koszul differential ∂
as the composition of natural maps; the construction proceeds dually to the one for
the Spencer differential δ . We take the map ιp,r :Λp+rV →

⊗p+rV → ΛpV ⊗ΛrV
dual to the wedge product ∧ : ΛpV∗⊗ΛrV∗ → Λp+rV∗ over the dual space V∗.
Denoting the multiplication in the symmetric algebra simply by ·, we obtain now
the Koszul differential ∂ as the composition
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∂ : SqV ⊗ΛpV
id⊗ι1,p−1

SqV ⊗V⊗Λp−1V
·⊗id

Sq+1V ⊗Λp−1V . (6.40)

The fact that this differential defines a complex follows immediately from the obser-
vation that the map (id⊗ ι1,p−2)◦ ι1,p−1 takes its values in S2V⊗Λp−2V and hence
must be the zero map.

The relationship between the Koszul homology and the depth of a module given
in Theorem 6.3.8 is discussed e. g. by Serre [414, Sect. IV.A.2/4] where it is (via
isomorphic extension groups) used to define the notion of depth. Our proof via Pom-
maret bases appeared first in [408].

The Cartan test has its origin in the Cartan–Kähler theory of exterior differential
systems where involution is defined for a subsetNq ⊆ SV∗⊗U as equality in (6.25)
with Nq+1 = Nq,1. In this approach the problem is not obtaining a finite criterion
for involution (as it was for us in Section 6.2), but in proving that ifNq is involutive,
then the same is true for Nq+1. However, basically these two problems are equiva-
lent and our proof of Theorem 6.2.4 is in principle a straightforward adaption of a
classical proof of Janet [234].

The modern homological reformulation of the Cartan test is essentially due to
Matsushima [311, 312]. The infinite form of the dual Cartan test (Proposition 6.2.12)
was developed by Serre in a letter appended to [189]. Quillen [365, App., Prop. 8]
provided a bit later the effective version (Theorem 6.2.13); a slightly different proof
was given by Malgrange [303, Prop. 1.2]. The relation between the two notions of
δ -regularity and quasi-regularity (Theorem 6.3.2) was first exhibited in [408].

Rather surprisingly, the simple fact that the degree of involution and the Castel-
nuovo–Mumford regularity coincide (Remark 6.1.23 or Corollary 6.3.4, respec-
tively) has been overlooked for a long time. It is implicitly contained in [406] and
explicitly mentioned for the first time only fairly recently by Malgrange [303]. It
seems that in the differential equations community almost exclusively the Spencer
cohomology was considered without noticing the extensive theory on Koszul ho-
mology and the Castelnuovo–Mumford regularity developed by algebraists; con-
versely, the concept of involution (in the sense of this book) has remained unknown
to most algebraists. This becomes particulary evident in Remark 6.3.6 showing that
the criterion for q-regularity of Bayer and Stillman [34] (Theorem 5.5.21) is equiv-
alent to the dual Cartan test (Theorem 6.2.13).



Chapter 7
Involution III: Differential Theory

I consider that I understand an equation when I can predict the
properties of its solutions, without actually solving it.

Paul A.M. Dirac

In this chapter we return again to the study of differential equations. We will now
combine the geometric theory introduced in Chapter 2 with the algebraic and homo-
logical constructions of the last four chapters in order to arrive finally at the notion
of an involutive equation. The key is the (geometric) symbol Nq ⊆ Vπq

q−1 of an
equationRq ⊆ Jqπ which we define in the first section. The fundamental identifica-
tion Vπq

q−1
∼= Sq(T ∗X ) ⊗

Jq−1π
Vπ discussed in Section 2.2 builds a bridge between

the geometric and the algebraic side of formal theory.
Intrinsically, the symbol defines via prolongation at each point on Rq a subco-

module of a free comodule over the symmetric coalgebra, i. e. a symbolic system,
to which we may apply the homological theory of Chapter 6. Dually, the symbol
equations generate a submodule of a free module over the symmetric algebra. In lo-
cal coordinates we may identify the symmetric algebra with the polynomial algebra
and thus are exactly in the situation treated in Chapter 5.

Either way, the algebraic theory leads naturally to the notion of an involutive
symbol. For readers not so familiar with abstract algebra, we will repeat some re-
sults from the previous chapters in differential equations terminology. In particular,
we will discuss a concrete criterion for an involutive symbol which is useful in co-
ordinate computations. However, it is valid only in δ -regular coordinates so that it
must be applied with some care.

In the second section we finally define involutive differential equations: formally
integrable equations with an involutive symbol. Somewhat surprisingly, in local
coordinates—assumed to be δ -regular—involution is easier to verify than formal
integrability: a first hint that involution is a stronger notion. We also introduce the
Cartan normal form of an involutive equation, a useful tool in many situations.

Again the natural question arises what we should do, if we encounter an equa-
tion which is not involutive, and again the answer is to complete it to an equivalent
involutive one. In contrast to the algebraic situation of Chapter 4, completion is now
a more complicated operation which, in particular for nonlinear equations, is not al-
ways fully algorithmic. We consider first in Section 7.3 the special case of ordinary
differential equations where the completion process has a very intuitive geometric
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description. In the next section we prove the Cartan–Kuranishi Theorem asserting
the existence of an equivalent involutive equation for any regular partial differential
equation. Although our proof is constructive, it does not provide us with an algo-
rithm in the strict sense. We will show later in Section 10.7 how for linear systems
the Cartan–Kuranishi approach may be combined with the algebraic algorithms of
Chapter 4 in order to obtain an effective algorithm.

As a first application of the notion of involution we revisit in Section 7.5 the
principal symbol and provide a rigorous definition of under- and overdetermined
equations. It turns out that the classical counting rules comparing the number of
equations and unknown functions, respectively, are not always valid. Furthermore,
we indicate how the principal symbol allows us a partial solution of the problem
of δ -regularity (actually, for many systems appearing in applications this partial
solution completely suffices).

A full solution of the question of δ -regularity is possible via a combinatorial
extension of the notion of a principal symbol which we will discuss in the last sec-
tion of this chapter. This is a rather technical matter and in practice the approach of
Section 4.3 is often easier; thus readers not particularly interested in this topic are
advised to skip this section. The main advantage of the new approach is that it does
not require to apply a coordinate transformation, as it determines the correct indices
of a symbol indirectly (by simulating the effect of a partial transformation).

7.1 (Geometric) Symbol and Principal Symbol

In our introduction of the hierarchy of jet bundles over a fibred manifold π : E →X
in Chapter 2 we stressed several times the fact that the qth order jet bundle Jqπ is an
affine bundle over the jet bundle Jq−1π of order q−1 modelled on the vector bundle
Sq(T ∗X )⊗Vπ ; in fact our intrinsic approach to jet bundles in Section 2.2 was built
on this property. The reason for this emphasis will become apparent now. It allows
us to introduce a very useful geometric object, namely the symbol of a differential
equation. Many properties of a differential equation can be read off its symbol and
it effectively reduces some problems to questions in linear algebra.

Definition 7.1.1. LetRq⊆ Jqπ be a differential equation of order q. The (geometric)
symbol Nq of Rq is a distribution over the manifold Rq where the component at a
point ρ ∈Rq is given by

(Nq)ρ = TρRq∩Vρπq
q−1 = Vρ

(
πq

q−1 Rq

)
. (7.1)

Thus the geometric symbol is the vertical part of the tangent space of the subman-
ifold Rq with respect to the fibration πq

q−1 (here we identify TRq with a subspace
of T (Jqπ)). If the equationRq is globally described by a map Φ : Jqπ →E ′ with a
vector bundle π ′ : E ′→X , then we introduce the symbol map σ : Vπq

q−1 → TE ′ as
a restriction of the tangent map, σ = TΦ Vπq

q−1
, and findNq = kerσ .
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Locally, we obtain the following picture. Let (x,u(q)) be local coordinates on Jqπ
in a neighbourhood of ρ . We must first determine TρRq as a subspace of Tρ(Jqπ).
Let (x,u(q); ẋ, u̇(q)) be the induced coordinates on Tρ(Jqπ); then every vector v ∈
Tρ(Jqπ) has the form v = ẋi∂xi + u̇αμ∂uαμ . Assuming that a local representation of

the submanifold Rq is given by the equations Φτ(x,u(q)) = 0 with τ = 1, . . . ,t, its
tangent space TρRq consists of all vectors v∈ Tρ(Jqπ) such that dΦτ(v) = vΦτ = 0
(see Remark C.2.8). This yields the linear system

n

∑
i=1

∂Φτ

∂xi (ρ) ẋi + ∑
1≤α≤m
0≤|μ|≤q

∂Φτ

∂uαμ
(ρ) u̇αμ = 0 (7.2)

for the coefficients ẋi, u̇αμ of the vector v.
The symbol (Nq)ρ is by definition the vertical part of this tangent space with

respect to the fibration πq
q−1. Thus we are only interested in those solutions of (7.2)

where ẋ = u̇(q−1) = 0 and locally (Nq)ρ can be described as the solution space of
the following system of linear equations:

(Nq)ρ :

⎧
⎪⎪⎨

⎪⎪⎩
∑

1≤α≤m
|μ|=q

∂Φτ

∂uαμ
(ρ) u̇αμ = 0 , τ = 1, . . . ,t (7.3)

(note that the summation is now only over the multi indices of length q). Eq. (7.3)
is a linear system with real coefficients, as the derivatives ∂Φτ/∂uαμ are evaluated
at the point ρ ∈ Rq. If there are n independent and m dependent variables, the co-
efficient matrix of (7.3) has t rows (labelled by τ) and m

(n+q−1
n−1

)
columns (labelled

by α and μ). We call it symbol matrix and denote it by Mq(ρ). It also represents the
matrix of the symbol map σ in local coordinates.

Obviously, dim(Nq)ρ—or equivalently rankMq(ρ)—might vary with the point
ρ ∈ Rq, i. e. we cannot generally expect that Nq is a distribution of constant rank.
Only if the dimension remains constant overRq, the symbolNq is actually a vector
subbundle of V

(
πq

q−1 Rq

)
. In particular, Nq is a vector bundle, if Rq is globally

defined as the zero set of a fibred mapΦ : Jqπ→E ′. In line with our usual regularity
assumptions, we avoid a discussion of the problems associated with jumps in the
dimensions dim(Nq)ρ .

The symbol is most easily understood for linear differential equations. The sym-
bol matrix is then simply the highest-order or principal part of the system (consid-
ered as algebraic equations). For non-linear systems we perform via the Jacobian a
brute force linearisation at the point ρ in order to obtain Mq(ρ).

Remark 7.1.2. It is easy to see that a first-order partial differential equation R1 is
of finite type in the sense introduced in Remark 2.3.6, if and only if the dimension
of its symbol N1 is zero. This observation leads to the general definition that any
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differential equation with a vanishing symbol is said to be of finite type (the reason
for this terminology will become apparent in Remark 8.2.4). �

Of course, not only the original equation Rq has a symbol Nq, but also every
prolongation Rq+r ⊆ Jq+rπ of it possesses a symbol Nq+r ⊆ T (Jq+rπ). It follows
easily from the coordinate expression (2.14) of the formal derivative that for ob-
taining a local representation of the prolonged symbol (Nq+r)ρ̂ at a point ρ̂ ∈Rq+r

lying over ρ ∈ Rq, there is no need to explicitly compute a local representation
of the prolonged differential equation Rq+r. We can directly derive it from a local
representation of the symbol (Nq)ρ at order q.

Given the form of the symbol equations (7.3) and the local representation (2.54)
of the prolonged equationRq+r, we need for determining the symbol (Nq+1)ρ̂ only
the partial derivatives ∂DiΦτ/∂uαν (ρ̂) with 1 ≤ i ≤ n and |ν| = q + 1, i. e. the
highest-order part of the formal derivative DiΦτ . According to (2.14), it is given
by ∂DiΦτ/∂uαν (ρ̂) = ∂Φτ/∂uαν−1i

(ρ) and thus depends indeed only on the projec-

tion ρ = πq+1
q (ρ̂) (if νi = 0, the derivative vanishes). Thus a local representation of

the first prolongation (Nq+1)ρ̂ is

(Nq+1)ρ̂ :

⎧
⎪⎪⎨

⎪⎪⎩
∑

1≤α≤m
|μ|=q

∂Φτ

∂uαμ
(ρ) u̇αμ+1i

= 0 ,
τ = 1, . . . ,t ,
i = 1, . . . ,n .

(7.4)

One might be tempted to think that the linear systems (7.3) and (7.4) have the same
coefficient matrices. This is of course not true. The symbol matrix Mq+1(ρ̂) in (7.4)
has nt rows and m

(n+q
n−1

)
columns and is thus much larger.1 Because of the particular

way in which the index i appears in (7.4), one may say that the matrix Mq+1(ρ̂)
emerges from Mq(ρ) by a kind of combinatorial blow up. For each row in Mq(ρ)
we obtain n rows in Mq+1(ρ̂) and similarly for the columns. These n rows contain
exactly the same entries but distributed in different patterns.

Example 7.1.3. We consider a scalar second-order equation in two independent vari-
ables x, y with the local representation

R2 : Φ(x,y,u,ux,uy,uxx,uxy,uyy) = 0 . (7.5)

If we define the three functions a(ρ) = ∂Φ/∂uyy(ρ), b(ρ) = ∂Φ/∂uxy(ρ) and
c(ρ) = ∂Φ/∂uxx(ρ), each R2 → �, then the symbol matrix at a point ρ ∈ R2

contains only a single row:

M2(ρ) =
(
a(ρ) b(ρ) c(ρ)

)
(7.6)

1 Strictly speaking, the matrix Mq+1(ρ̂) has even t rows more, containing only zeros. These cor-
respond to the t equations defining Rq which are of course also part of the local representations
of any prolongation. However, these equations are trivially of lower order and do not affect the
prolonged symbol (Nq+1)ρ̂ . Hence we ignore them.
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(we usually order the columns according to the degree reverse lexicographic order).
Thus (N2)ρ consists of all vertical vectors v = u̇yy∂uyy + u̇xy∂uxy + u̇xx∂uxx ∈ TρRq

with a(ρ)u̇yy + b(ρ)u̇xy + c(ρ)u̇xx = 0. If no point ρ ∈ R2 exists where all three
coefficient functions a, b, c simultaneously vanish, then the symbol N2 defines a
two-dimensional vector bundle overR2.

For the prolonged symbol (N3)ρ̂ at any point ρ̂ ∈ R3 such that π3
2 (ρ̂) = ρ we

obtain the 2×4 symbol matrix

M3(ρ̂) =
(

a(ρ) b(ρ) c(ρ) 0
0 a(ρ) b(ρ) c(ρ)

)
. (7.7)

Thus (N3)ρ̂ consists of all vectors v = u̇yyy∂uyyy + u̇xyy∂uxyy + u̇xxy∂uxxy + u̇xxx∂uxxx

where the coefficients satisfy the equations a(ρ)u̇yyy + b(ρ)u̇xyy + c(ρ)u̇xxy = 0 and
a(ρ)u̇xyy + b(ρ)u̇xxy + c(ρ)u̇xxx = 0. If the symbol N2 is a vector bundle, then the
prolonged symbolN3 is, too. �

The considerations above are straightforwardly extended by iteration to higher
prolongations Rq+r and we obtain as local representation for the symbol at any
point ρ̂ ∈Rq+r lying in the fibre (πq+r

q )−1(ρ) over ρ ∈Rq

(Nq+r)ρ̂ :

⎧
⎪⎪⎨

⎪⎪⎩
∑

1≤α≤m
|μ|=q

∂Φτ

∂uαμ
(ρ) u̇αμ+ν = 0 ,

τ = 1, . . . ,t ,
|ν|= r .

(7.8)

The size of the corresponding symbol matrices Mq+r(ρ̂) grows rapidly. Because of
the formula (2.32) for the dimension of the vertical bundle, one easily calculates
that Mq+r has t

(n+r−1
n−1

)
rows and m

(n+q+r−1
n−1

)
columns (again ignoring all equations

which are trivially of lower order).
We stop now with explicitly mentioning the point ρ at which a symbol is consid-

ered except if it is of importance. In fact, if not explicitly stated otherwise, we make
the following assumption.

Blanket Assumption 7.1.4. All properties of the symbol are independent of the con-
sidered point. In particular, all considered symbols are vector bundles.

Remark 7.1.5. The matrices Mq+r of the prolonged symbols Nq+r implicitly ap-
peared already in Section 2.3 during the construction of a formal power series solu-
tion of the form (2.65). The rank of the symbol matrix Mq tells us how many Taylor
coefficients of order q (nothing is said about the coefficients of lower order!) are de-
termined by (2.66), i. e. are principal. The matrices Mq+r of the prolonged symbols
appear, if we interpret (2.68) as an inhomogeneous linear system for the coefficients
of order q + r: its matrix is precisely Mq+r. Thus the symbol Nq+r is the solution
space of the corresponding homogeneous system and its dimension measures the
number of possible solutions for the coefficients of order q+ r, i. e. equals the num-
ber of parametric coefficients. In Section 8.2 we will exploit this observation for
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showing how the size of the (usually infinite-dimensional) formal solution space
can be measured with some finite quantities. �

In Section 2.3 we saw that this simple algorithm for the construction of formal
power series solutions only works, if we are dealing with a formally integrable equa-
tion. The symbol helps us in deciding whether or not a given equation is formally
integrable. It indicates whether during the prolongation of a differential equation
integrability conditions may have occurred and it allows us to construct them using
only linear algebra. The proof of the next theorem shows this explicitly.

Theorem 7.1.6. LetRq⊆ Jqπ be an arbitrary differential equation. If the prolonged
symbolNq+1 is a vector bundle, then the dimension of the prolonged equationRq+1

and its projectionR(1)
q = πq+1

q (Rq+1s), respectively, are related by

dimR(1)
q = dimRq+1−dimNq+1 . (7.9)

Proof. The dimension of a submanifold can be determined by counting the number
of independent equations needed to describe it locally, i. e. by the rank of a Jacobian.
LetRq have the local representationΦτ (x,u(q)) = 0. The part of the Jacobian of the
corresponding local representation of the prolonged equationRq+1 relevant for the
determination of its fibre dimension can be divided into four blocks:

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

∂DiΦτ

∂uαμ
, |μ |= q + 1

∂DiΦτ

∂uαμ
, 0≤ |μ | ≤ q

0
∂Φτ

∂uαμ
, 0≤ |μ | ≤ q

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

. (7.10)

The lower part stems from the local representation of Rq; its rank is codimRq.
The upper part comes from the prolongation; the left block is just the symbol ma-
trix Mq+1. We must distinguish two cases. If Mq+1 has maximal (row) rank, then it
is not possible to construct by linear operations a row in the upper part with only
zeros in the left block and thus we cannot extract any lower-order equations from

the equations DiΦτ = 0. This observation implies that R(1)
q = Rq, as the restric-

tion of the projection πq+1
q to Rq+1 is surjective. Furthermore, we find in this case

dimRq+1 = dimRq + dimNq+1 and thus our claim holds.
If the matrix Mq+1 does not have maximal rank, then one can construct by linear

operations a row in the upper part with only zeros in the left block. The question is
how this row looks like in the right block. If it is linearly independent of the rows
in the lower part, then we have found an integrability condition. It is constructed
by performing exactly the same linear operations on the full equations DiΦτ = 0.
Otherwise, our local representation ofRq+1 is redundant and this redundancy leads
to identities between the equations of the system. Comparing ranks yields the claim
for one point, but sinceNq+1 is a vector bundle, it holds everywhere. �
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Remark 7.1.7. The above mentioned identities appear naturally in every overdeter-
mined system. In the case of linear equations, they lead to compatibility conditions,
if we add a right hand side: equations that the right hand sides must satisfy, if a solu-
tion is to exist. A simple classical example may explain this phenomenon. Consider
the differential equationR1 locally described by

R1 :

{
φ(x,y,u,ux,uy) = ux = 0 ,
ψ(x,y,u,ux,uy) = uy = 0 ,

(7.11)

(or more generally by ∇u = 0 in arbitrary dimensions). If we differentiate each
equation in the system with respect to both independent variables, we obtain a lo-
cal representation of R2 containing twice the equations uxy = 0 which leads to the
identity Dyφ −Dxψ = 0.

Let us add some right hand sides, i. e. we consider the inhomogeneous system
ux = F(x,y) and uy = G(x,y); a solution u of it is called a potential for the two-
dimensional vector field (F,G)t . The effect of the above identity consists of impos-
ing on the right hand sides F , G the well-known compatibility condition Fy = Gx

which is obviously a necessary (and, as we will later show in Section 10.5, also a
sufficient) condition for the existence of a potential.

The compatibility conditions form again a linear system with the same indepen-
dent variables and the right hand sides as dependent variables.2 If we consider in
the ring of linear differential operators the module M generated by the operators
defining the left hand sides of our linear system, then the compatibility conditions
generate the syzygy module Syz(M). This point of view will be studied in much
more details in Section 10.5.

In some respect the distinction between integrability and compatibility conditions
is artificial and merely a question of the chosen point of view. If we consider in our
example the functions F , G not as some arbitrary right hand sides but as additional
dependent variables in the inhomogeneous system above, then the equation Fy = Gx

becomes an ordinary integrability condition. Indeed, in the literature the terms “in-
tegrability condition” and “compatibility condition” are often used synonymously.
However, in this book the latter one always refers to right hand sides.

The restriction to right hand sides is also important to ensure that the compat-
ibility conditions are again linear. Of course, one could consider a general linear
system depending parametrically on some functions F and then study under which
conditions on F the system is formally integrable. Because of the linearity, these
conditions will always form separate equations (i. e. containing only F as dependent
variables). However, in general, they will cease to form a linear system. Neverthe-
less, such considerations are sometimes very useful. For instance, in the theory of
(completely) integrable systems one has the notion of a Lax pair which corresponds
exactly to such a situation. Consider the linear system

2 In principle, one can add right hand sides also to a nonlinear system. However, then one does not
obtain a separate system for the right hand sides, i. e. the compatibility conditions will depend on
both the old dependent variables and the right hand sides. Therefore the concept of a compatibility
condition is not particularly useful is this case.
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uxx +(λ −F)u = 0 , ut −2(F + 2λ )ux + Fxu = 0 (7.12)

where λ is a real parameter and F a yet arbitrary function of x, t. In a straightforward
computation one can show that the system is (formally) solvable, if and only if the
function F is a solution of the non-linear differential equation

Ft−6FFx + Fxxx = 0 (7.13)

which is nothing but the famous Korteweg–de Vries equation. The fact that it can
be derived from a linear problem is in particular important for its integration by
the inverse scattering method. While it is common in the literature to call (7.13) a
compatibility condition for the Lax pair (7.12), we stress again that this is not correct
in our terminology. �

In the classical theory of partial differential equations a different notion of sym-
bol appears which should not be confused with the geometric symbol introduced
above: the classical symbol is not an intrinsic object. Our notion of symbol is closely
related to what is traditionally called the principal symbol which is again an intrin-
sically defined object.

Assume we are given a one-form χ ∈ T ∗X . For notational simplicity, we write
briefly Vπ instead of the pull-back bundle (πq

0 )∗(τE Vπ) : (πq
0 )∗(Vπ)→ Jqπ where

τE : TE → E is the tangent bundle projection. The fundamental identification εq

allows us to define a map ιχ ,q : Vπ → Vπq
q−1 by setting ιχ ,q(v) = ε−1

q (χq ⊗ v).
Here χq denotes the q-fold symmetric product of χ . In local coordinates, we write
χ = χidxi and obtain ιχ ,q(vα∂uα ) = χμvα∂uαμ where μ runs over all multi indices of

length q and χμ = χμ1
1 · · ·χμn

n . Now we can define the principal symbol in terms of
the symbol map σ .

Definition 7.1.8. Let χ ∈ T∗X be a one-form over X and Rq ⊆ Jqπ a differential
equation globally described by the map Φ : Jqπ →E ′. The principal symbol of Rq

is the linear map τχ : Vπ → TE ′ defined by τχ = σ ◦ ιχ ,q.

Remark 7.1.9. Over a given point x ∈ X , a slightly different point of view will later
be useful for a generalisation. Let Y ⊆ X be a one-dimensional submanifold with
x ∈ Y such that its cotangent bunde T ∗Y ⊆ T ∗X is generated by χ (i. e. Y is an
integal manifold through x for the codistribution generated by χ). Then we may
identify the pull-back bundle (πq

0 )∗(Vπ) with Sq(T ∗Y)⊗Vπ . Now the map ιχ ,q

simply becomes the inverse fundamental identification. �
The one-form χ plays the role of a parameter in the principal symbol τχ . For

many purposes, it is of great importance how the properties of the linear map τχ
change with χ . Locally, we associate a matrix T [χ ] with the linear map τχ :

T τα [χ ] = ∑
|μ|=q

∂Φτ

∂uαμ
χμ . (7.14)

If dimE = m and dimE ′ = t (i. e. for a system of t equations in m dependent vari-
ables), it has t rows and m columns. Its entries are homogeneous polynomials of
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degree q in the coefficients of the one-form χ . We may think of T [χ ] as a kind of
“contraction” of the symbol matrix Mq ofRq. Both matrices have the same number
of rows. The column with index α of T [χ ] is a linear combination of all columns
in Mq corresponding to a variable u̇αμ with the coefficients given by the product χμ .
Hence the principal symbol contains the same information as the geometric symbol,
only encoded in a slightly different way: the role of the many different columns in
Mq is taken over by the dependency on the parameter χ .

Let us assume that the functionsΦτ appearing in the chosen local representation
of our differential equation Rq are elements of some differential field �. Then the
entries of the matrix T [χ ] are polynomials in P = �[χ1, . . . ,χn] and the rows of
T [χ ] may be considered as elements of the free polynomial module Pm. We call
the graded submodule T ⊆ Pm generated by them the principal symbol module of
the differential equation Rq. This submodule contains in some sense the principal
symbols of all prolongations ofRq.

Lemma 7.1.10. If T is the principal symbol module of the differential equationRq,
then for any r ≥ 0 the principal symbol module of the prolonged equation Rq+r is
the truncation T≥q+r.

Proof. Let the equations Φτ = 0 with 1 ≤ τ ≤ t form a local representation of Rq

and tτ ∈ Pm denote the τth row of the matrix T [χ ]. For the principal symbol only
the highest-order part of the given differential equation is relevant. Thus for the
principal symbol of the prolongationRq+r we need to consider only the equations
DνΦτ = 0 with |ν| = r. As one can easily see, such an equation contributes to the
principal symbol module ofRq+r the generator χν tτ . This observation immediately
implies our claim. �

Example 7.1.11. Consider again the second-order equation R2 described by (7.5).
Its symbol matrix is the 1× 3 matrix shown in (7.6). The matrix T [χ ] of its prin-
cipal symbol is 1× 1 with the single entry f = a(ρ)χ2

y + b(ρ)χxχy + c(ρ)χ2
x aris-

ing by adding up the columns of M2 with suitable monomials in the variables χ
as coefficients. Hence the principal symbol module is here the homogeneous ideal
T = 〈 f 〉 ⊂ �[χx,χy]. The principal symbol of the prolonged equation R3 is de-

scribed by the 2× 1 matrix

(
χx f
χy f

)
. Obviously, its two entries form an �-linear

basis of the homogeneous component T3. �

Remark 7.1.12. The principal symbol module T allows us to relate the construc-
tion of integrability conditions to syzygy computations. Let s ∈ Syz(T ) ⊆ P t be a
syzygy of the rows of T [χ ]. The substitution χi →Di (where Di denotes as usual the
formal derivative with respect to xi) transforms each component sτ of s into a linear
differential operator ŝτ . Then the equation Ψ = ŝτΦτ = 0 is a linear combination
of differential consequences of the differential equation Rq in which, by construc-
tion, the highest-order terms cancel (this is just the syzygy property). In fact, this
approach represents nothing but the rigorous mathematical formulation of “taking a
(generalised) cross-derivative.”
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If r is the maximum of the degrees of the components sτ , then generically Ψ
is a function defined on the jet bundle Jq+r−1. Note that the question whether or
not the equationΨ = 0 represents an integrability condition cannot be decided with
the principal symbol. In order to answer it, we must check whether the functionΨ
is algebraically independent of the induced local representation of the prolonged
equation Rq+r−1 and the answer will generally depend on the full equations and
not only on their principal part. Thus one may say that the algebraic theory of the
principal symbol tells us where potentially integrability conditions are hidden, but
the actual verification still requires differential computations.

As a simple concrete example let us take up the linear differential equation R1

of Example 2.3.9. It was locally defined by the system uz + yux = 0 = uy. Because
of the linearity, we may use here as underlying differential field �=�(x,y,z), the
rational functions in the independent variables. Now the principal symbol module
of R1 is the ideal T = 〈χz + yχx,χy〉 ⊂ �[χx,χy,χz]. Its syzygy module Syz(T )
is trivially generated by s = χye1 − (χz + yχx)e2. Hence a potential integrability
condition arises by requiring that the “generalised cross-derivative” corresponding
to s vanishes:

Dy(uz + yux)− (Dz + yDx)uy = 0 . (7.15)

Evaluating the formal derivatives yields the equation ux = 0, i. e. exactly the inte-
grability condition we found in Example 2.3.9.

One should note that this approach gives us only those integrability conditions
that come from cross-derivatives. As lower-order equations do not contribute to the
principal symbol, integrability conditions of the second kind cannot be determined
this way. In our discussion of elliptic systems in Section 10.3 we will introduce
the reduced principal symbol. With its help one can algebraically find all potential
integrability conditions.

Since the polynomial ring P is Noetherian, the syzygy module Syz(T ) ⊆ Pt is
finitely generated. Obviously, it suffices to check the potential integrability condi-
tions coming from an arbitrary generating set of Syz(T ), as all other syzygies lead
trivially to algebraically dependent equations. We will show later in this chapter
that this observation will permit us to derive a finite criterion for formal integrabil-
ity (Theorem 7.2.8). �

The principal symbol also underlies the notion of a characteristic. This concept
is for example crucial for the classification of differential equations into elliptic or
hyperbolic systems. While this topic will not play an important role in this book (see
however Sections 10.3 and 10.4), it will later turn out that characteristics are closely
related to the problem of δ -regularity.

Definition 7.1.13. A non-zero one-form χ ∈ T∗X is characteristic for a differential
equationRq at a given point ρ ∈Rq, if the principal symbol τχ is not injective at ρ .
All characteristic one-forms at ρ form the characteristic variety Cρ ⊆�n.

The set Cρ is indeed a variety in the strict algebraic meaning of the word. The
condition that the principal symbol τχ is not injective at a point ρ can be expressed
as the vanishing of certain subdeterminants of the matrix T [χ ], i. e. as the vanishing



7.1 (Geometric) Symbol and Principal Symbol 273

of (homogeneous) polynomials in the variables χi. For semi-linear equations, where
the symbol (Nq)ρ depends only on x = πq(ρ) ∈ X , one can define characteristic
one-forms over points x ∈ X in the base space.

Example 7.1.14. In many textbooks on differential equations one does not consider
characteristic one-forms but characteristic surfaces. We exhibit now—for nota-
tional simplicity only for linear first-order systems—the relation between the two
approaches. Consider

R1 :

{
m

∑
α=1

n

∑
i=1

Aτi
α (x)uαi +

m

∑
α=1

Bτα(x)uα +Cτ(x) = 0 , 1≤ τ ≤ p (7.16)

and the (n−1)-dimensional hypersurface Σ ⊂X described by the equation

Σ =
{

x ∈ X | xn = φ(x1, . . . , xn−1)
}

(7.17)

(note that we have singled out the independent variable xn). Such a surface is called
characteristic, if prescribing the value of u on Σ does not suffice to compute all first-
order derivatives of u on Σ . Obviously, this condition concerns only the derivatives
(∂u/∂xn) Σ with respect to xn; all other ones follow easily from our “initial values”.

Thus assume that u Σ = f(x1, . . . , xn−1). Using the chain rule we obtain

∂u
∂xi Σ

+
∂φ
∂xi

∂u
∂xn Σ

=
∂ f
∂xi , 1≤ i < n . (7.18)

Substituting these relations into (7.16) and restricting to Σ yields a linear system for
the derivatives (∂u/∂xn) Σ whose matrix T is

T τα = Aτn
α −

n−1

∑
i=1

Aτi
α
∂φ
∂xi . (7.19)

If rankT < m, i. e. if the associated linear map is not injective, then it is not possi-
ble to determine all derivatives on the hypersurface Σ and it is characteristic. The
matrix of the principal symbol of our linear system (7.16) is T τα [χ ] = Aτi

α χi which
coincides with the matrix (7.19) for the special choice χ = χφ = dxn−(∂φ/∂xi)dxi.
Hence the hypersurface Σ is characteristic, if and only if this particular one-form is
characteristic. More abstractly, we may say, using a terminology introduced in Ap-
pendix C.2, that Σ is characteristic, if and only if its conormal space N∗Σ (which
in our particular case is generated by the single one-form χφ ) consists entirely of
characteristic one-forms. �

Now we want to apply the algebraic methods developed in the last four chapters
for the analysis of the (geometric) symbol and in particular for the definition of an
involutive symbol. Thus we must first identify corresponding algebraic structures,
i. e. either a symbolic system or dually a polynomial module. This identification
takes place pointwise; more precisely, we find a symbolic system or a polynomial
module, respectively, at each point ρ ∈Rq.
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Another important point is that while all our definitions are intrinsic, their con-
crete application usually happens in local coordinates. Hence we meet again the
question of δ - or quasi-regularity. As an effective method to deal with it has al-
ready been developed in Section 4.3, we assume throughout this section that our
coordinates are δ -regular.

The intrinsic approach to involutive symbols is based on the Spencer cohomology
introduced in Section 6.1. Because of its coordinate independence it represents the
natural way to introduce the notion of an involutive symbols. Once we have given
this definition, we will show how Pommaret bases provide us with a simple effective
criterion for involution. Afterwards we will present yet another formulation of this
criterion which does not require any algebra (albeit a proper understanding will not
be possible without at least some ideas of the underlying algebraic theory).

Recall that the fundamental identification provides us at each point ρ ∈ Rq

with an isomorphism εq between the vertical space Vρπq
q−1 and the vector space

Sq(T ∗
x X )⊗Vξ π where ξ = πq

0 (ρ) and x = π(ξ ). Hence we may identify (Nq)ρ
with a subspace of the latter vector space.

In local coordinates εq is given by (2.21); hence its main effect is the introduction
of some combinatorial factors which can be absorbed in the choice of an appropri-
ate basis. More precisely, we recover here the discussion in Remark 6.1.5. If we
use as usual {∂x1 , . . . ,∂xn} as basis of the tangent space TxX and the dual basis
{dx1, . . . ,dxn} for the cotangent space T∗

x X , then the “terms” ∂xμ = ∂ μ1
x1 · · ·∂

μn
xn with

|μ |= q form a basis of Sq(TxX ) whereas the dual basis of Sq(T ∗
x X ) is given by the

“divided powers” 1
μ! dxμ . If we express an element f ∈ Sq(T ∗

x X )⊗Vξπ in this basis

as f = 1
μ! f αμ dxμ ⊗ ∂uα where μ runs over all multi indices with |μ | = q, then the

symbol (Nq)ρ consists of all such f satisfying the linear system of equations

∑
1≤α≤m
|μ|=q

∂Φτ

∂uαμ
(ρ) f αμ = 0 , τ = 1, . . . ,t (7.20)

which is the same linear system as (7.3) defining the symbol as subspace of Vρπq
q−1.

Proposition 7.1.15. Let Rq ⊆ Jqπ be a differential equation and
(
ρr ∈ Rr

)
r≥q a

sequence of points such that π r
q(ρr) = ρq. With ξ = πq

0 (ρq) and x = πq(ρq), we set
Nr = Sr(T ∗

x X )⊗Vξπ for 0 ≤ r < q. Then the sequence
(
(Nr)ρr

)
r∈�0

defines a

symbolic system in S(T ∗
x X )⊗Vξπ which satisfies Nr+1 =Nr,1 for all r ≥ q.

Proof. According to Definition 6.1.7 of a symbolic system, we must verify that
Nr+1 ⊆ Nr,1 for all r ≥ q. For notational simplicity, we do this only for r = q.
Thus let f = 1

ν! f αν dxν ⊗ ∂uα where ν runs over all multi indices with |ν| = q + 1
be an arbitrary element of the prolonged space Nq,1. By definition of the prolonga-
tion, this membership is equivalent to δ ( f ) ∈ Nq⊗T∗

x X and hence we must have
νi
ν! f αν dxν−1i ⊗ ∂uα ∈ Nq for every 1 ≤ i ≤ n. In other words, the coefficients f αν
satisfy the linear system of equations
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∑
1≤α≤m

|ν|=q+1, νi>0

∂Φτ

∂uαν−1i

f αν = 0 ,

{
τ = 1, . . . ,t ;
i = 1, . . . ,n .

(7.21)

A comparison with (7.4) shows that these are just the equations describing the pro-
longed symbol Nq+1. Hence we even have Nr+1 = Nr,1 for all r ≥ q (which also
shows why it makes sense to call Nr,1 a prolongation ofNr). �

With the help of this result, one can now easily verify that the symbolic systems
given in Example 6.1.9 are associated to the there mentioned differential equations.
In the formulation of Proposition 7.1.15 we used a sequence of points ρr ∈Rr with
π r

q(ρr) = ρq in order to consider the symbols (Nr)ρr . Obviously, such a sequence
does not necessarily exists (unless we are dealing with a formally integrable equa-
tion). However, the proof shows us that in fact the obtained symbolic system is
independent of the choice of these points, as we may simply set Nr+1 = Nr,1 for
all r ≥ q. Hence at each point ρ ∈ Rq the symbol (Nq)ρ induces a whole symbolic
system which, according to Lemma 6.1.8, we may alternatively consider as a subco-
moduleN [ρ ]⊆S(T ∗

x X )⊗Vξ π which we call the symbol comodule of the differen-
tial equationRq at the point ρ ∈Rq. Following our Blanket Assumption 7.1.4, we
assume that the properties of the symbol comodule are independent of the chosen
point ρ ∈Rq and therefore mostly omit the explicit reference to ρ .

Remark 7.1.16. In Proposition 7.1.15 and consequently in the definition of the sym-
bol comodule N we set the lower-order components Nr for 0 ≤ r < q to the full
degree r component of the free comodule S(T ∗

x X )⊗Vξ π . A more precise approach

would be to consider instead the symbols of the projected equationsR(q−r)
r (in order

to obtain the proper annihilator according to the previous remark, one should then
also add their principal symbols to the generating set of the moduleM). However,
for the subsequent involution analysis it only matters what happens from degree q
on which is not affected by such changes in lower order. Hence we stick to this
simpler approach. �

Definition 7.1.17. The symbol Nq of the differential equation Rq ⊆ Jqπ of order q
is involutive, if the comoduleN is involutive at degree q.

Remark 7.1.18. We can also relate the principal symbol τχ to constructions from the
last chapter. If we evaluate the matrix T [χ ] defined by (7.14) at the point ρ ∈ Rq,
then its entries are homogeneous polynomials of degree q in P =�[χ1, . . . ,χn] and
the rows may be considered as elements of the free polynomial module Pm gener-
ating a submoduleM[ρ ]. It follows immediately from the local coordinate expres-
sions that M[ρ ] is isomorphic to the annihilator N [ρ ]0 of the symbol comodule.
Thus by Proposition 6.1.18 the comoduleN [ρ ] is involutive at degree q, if and only
if the factor module Pm/M[ρ ] is involutive at degree q (the quotient “undoes” the
index shift in (6.17)). �

Choosing local coordinates (x,u(q)) in a neighbourhood of the point ρ ∈Rq, then
we can apply the Cartan test (Theorem 6.2.4) for deciding involution of the symbol
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comodule. Recall that this test requires only linear algebra computations with the
two symbolsNq andNq+1 and thus is easily performed effectively.

In practice, one uses a dual approach with a Pommaret basis. By Proposi-
tion B.3.6, the annihilator N 0 ⊆ S(TxX )⊗Vξ π of the symbol comodule N is an
S(TxX )-submodule, the symbol module. As already mentioned above, by Proposi-
tion 6.1.18, we may equivalently study either the Spencer cohomology of the co-
moduleN or the Koszul homology of the module

(
S(TxX )⊗Vξπ

)
/N 0, as the two

are isomorphic. Computationally, the latter approach is often more convenient.
If in our chosen local coordinates and bases the symbolNq is defined by (7.20),

then the submoduleN 0 is generated by the “polynomials”

∑
1≤α≤m
|μ|=q

∂Φτ

∂uαμ
∂ μx ⊗ ∂uα , τ = 1, . . . ,t , (7.22)

i. e. the left hand sides of the equations in (7.20) or (7.3). Identifying S(TxX ) with
the polynomial ring P =�[∂x1 , . . . ,∂xn ] (perhaps one should emphasise that ∂xi is
here only the name of a variable in P but not a differential operator), one readily
recognises in N 0 the polynomial module generated by the rows of the matrix T [χ ]
of the principal symbol which appeared in Remark 7.1.12. We may now apply the
theory of Pommaret bases to the submoduleN 0. Then the following result follows
immediately from Theorem 6.3.2.

Proposition 7.1.19. The symbol Nq of the differential equation Rq ⊆ Jqπ is invo-
lutive, if and only if in suitable local coordinates an involutive head autoreduction
transforms the generators (7.22) into a Pommaret basis of the symbol module N 0

for a class respecting term order.

Remark 7.1.20. The symbol of an ordinary differential equation is always involu-
tive, as in this case the annihilator N 0 is a module over a polynomial ring in only
one variable and any set of homogeneous elements with the same degree trivially
forms an involutive basis. �

Remark 7.1.21. When constructing a Pommaret basis of the module N 0 we en-
counter the problem of δ -regularity; applying the Cartan test to the factor mod-
ule
(
S(TxX )⊗Vξ π

)
/N 0 is only valid in a quasi-regular basis. According to Theo-

rem 6.3.2, both notions are equivalent, so that also in this respect it does not matter
which approach we take. �

Proposition 7.1.19 transforms the Cartan test into an easily applicable effective
criterion for an involutive symbol. In the remainder of this section, we express the
approach taken so far in a less algebraic language in order to recover some results
frequently mentioned in the literature. For most computational purposes this refor-
mulation is completely sufficient. The main point is that in our special situation
checking whether or not an involutive head autoreduction transforms the generators
(7.22) into a Pommaret basis of the symbol module N 0 for a class respecting term
order amounts to some simple operations on the symbol matrix Mq.
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Recall that the columns of Mq correspond to the unknowns u̇αμ (or alternatively to

the basis vectors 1
μ! dxμ ⊗∂uα of Sq(TxX )⊗Vξ π); we sort them according to a class

respecting term order. In fact, it suffices, if we take care that a column corresponding
to an unknown u̇αμ is always to the left of a column corresponding to the unknown u̇βν ,
if clsμ > clsν . Now an involutive head autoreduction is equivalent to determining a
row echelon form M�

q of Mq using only row operations. We are interested in where

the first non-vanishing entry of each row in M�
q sits; the unknown u̇αμ corresponding

to this column is called the leader of the row.

Definition 7.1.22. Let β (k)
q be the number of leaders that are of class k. These num-

bers are the indices of the symbolNq.

The problem of δ -regularity concerns this definition. The class of a derivative is
not invariant under coordinate transformations. In different coordinate systems we
may thus obtain different values for the indices. δ -regular coordinates are distin-

guished by the fact that the sum ∑n
k=1 kβ (k)

q takes its maximal value. This property
is already familiar in the context of Hilbert regularity, as we also get it, if we apply
Remark 4.3.7 to the set of “polynomials” corresponding to the rows in M�

q with
respect to the Pommaret division and a class respecting term order.

Remark 7.1.23. Obviously, a necessary condition for δ -regularity is that the highest

index β (n)
q takes its maximal value. If we restrict for simplicity to first order, then

a maximal number of equations must be solvable for an xn-derivative. Using the
classical terminology introduced in Example 7.1.14, we may say that in a δ -regular
coordinate system the surface xn = 0 must not be characteristic. This observation
demonstrates again that δ -regularity is not just a technical nuisance, but that it is
related to important intrinsic properties of the differential equation. �

Proposition 7.1.24. The symbol Nq with the indices β (k)
q is involutive, if and only

if the matrix Mq+1 of the prolonged symbolNq+1 satisfies

rankMq+1 =
n

∑
k=1

kβ (k)
q . (7.23)

Proof. We show that the new criterion (7.23) is equivalent to Proposition 7.1.19.
One direction is an immediate consequence of the definition of a Pommaret basis.
If the rows of the matrix M�

q define such a basis, all elements of degree q + 1 in
N 0 are obtained via multiplicative prolongations and their number is given by the
right hand side of (7.23). For the converse, we simply note that the equality (7.23)
implies that the basis defined by the rows of M�

q is locally involutive. Hence, by
Proposition 4.2.7, this basis is in fact a Pommaret basis. �

The leaders of an involutive symbol matrix in row echelon form cannot take
arbitrary values. The following result is a reformulation of Lemma 4.3.3 showing
that the leading exponents define a stable monoid ideal. We therefore omit a proof.
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Lemma 7.1.25. Let Nq be an involutive symbol and M�
q its matrix in row echelon

form where the columns have been ordered according to a class respecting term
order. If u̇αμ is a leader of M�

q of class k, then u̇αμ−1k+1 j
is also a leader for all

values j > k.

Example 7.1.26. We apply our criterion to the analysis of the symbol of the Einstein
equations (2.96). In arbitrary coordinates it is rather unpleasant to write down the
defining equations. So we exploit that involution is a local property: if we want to
check involution at a point ρ ∈R2 in the fibre over x0 ∈ X , we may use the locally
geodesic coordinates mentioned in Example 2.4.4.

The arising form (2.97) of Einstein’s equations permits an easy construction of
the symbol N2 at ρ . As no lower-order terms are present, it makes no difference
whether we consider the symbol equations or the differential equations. Our first
task is to determine the leaders. We distinguish four cases.

i �= n and j �= n: The leader is ∂xnxngi j.
i = n and j < n−1: The leader is ∂xnxn−1gn−1, j.
i = n and j = n−1: The leader is ∂xnxn−1g11.
i = n and j = n: The leader is ∂xn−1xn−1g11.

In the last case several substitutions of other equations are necessary for obtaining
an autoreduced form. The other cases are rather obvious. One easily verifies that the
leaders satisfy Lemma 7.1.25.

The indices of the Einstein equations are therefore

β (n)
2 =

n(n−1)
2

, β (n−1)
2 = n , β (n−k)

2 = 0 for 1 < k < n . (7.24)

We mentioned already in Example 2.4.4 that for the first prolongation one may act
as if (2.97) were indeed a differential equation and not just some relations valid
only in the fibre over x0. So the prolonged symbol is again easily constructed. The

rank of its matrix evaluates to 1
2 n2(n + 1)− n which is just nβ (n)

2 +(n− 1)β (n−1)
2 .

Hence, by Proposition 7.1.24, the Einstein equations have an involutive symbol.
Note that this fact entails that locally geodesic coordinates are δ -regular, as in δ -
singular coordinates the criterion of Proposition 7.1.24 always fails. �

Remark 7.1.27. In cases like the last example, it is in fact trivial to determine the
Spencer cohomology of the symbol comodule N . Assume that all equations in a
local representation of the involutive differential equationRq are of the same order
(which is not uncommon in mathematical physics, as the above example of Ein-
stein’s equations shows). According to Proposition 7.1.19, the principal parts of the
equations define after an involutive head autoreduction a Pommaret basisHq of the
symbol module N 0 (even in the strict sense of Remark 7.1.16). We discussed al-
ready in Remark 6.3.5 how Hq and the corresponding minimal resolution (5.38)
allow us to determine the Koszul homology of N 0; we even obtained an explicit
formula (6.37) for the bigraded Betti numbers. The duality (6.17) thus yields an
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isomorphism for the only non-vanishing groups3 Hq−1,p(N ) ∼= Syzp−1(Hq) where
1≤ p≤ 1 + projdimN 0 and their dimensions are given by

dimHq−1,p(N ) =
n−p+1

∑
k=1

(
n− k
p−1

)
β (k)

q , (7.25)

with the indices β (k)
q of the symbolNq.

The Einstein equations (2.96) contain only equations of class n and n− 1, so
that the projective dimension of its symbol module N 0 is 1 and the only two non-
vanishing Spencer cohomology groups are H1,1(N ) and H1,2(N ). For their dimen-
sions we find from (7.24):

dimH1,1(N ) = β (n)
2 +β (n−1)

2 =
n(n + 1)

2
, (7.26a)

dimH1,2(N ) = β (n−1)
2 = n . (7.26b)

Note that the first dimension is just the number m of dependent variables (expressing
that Einstein’s equations are square) and the second dimension gives us the number
of the contracted Bianchi identities. For testing whether the Einstein equations are
formally integrable, these identities are crucial. We will show in the next section
(Theorem 7.2.8) that not only in this particular case but generally the second Spencer
cohomology groups H•,2(N ) are decisive for deciding formal integrability; more
precisely, their dimensions give the number of identities to be checked. �
Corollary 7.1.28. Let N1 be the involutive symbol of a first-order equation in n in-
dependent and m dependent variables. Then its indices form an ascending sequence

0≤ β (1)
1 ≤ β (2)

1 ≤ ·· · ≤ β (n)
1 ≤ m . (7.27)

Proof. This is an immediate consequence of Lemma 7.1.25. If u̇αk is a leader of class

k, then for any j > k we have a leader u̇αj of class j. Hence β (k)
1 ≤ β ( j)

1 for k < j. �

This corollary is only true for the symbol of a first-order equation. In higher order
we cannot expect a similar result to hold, as the following trivial counterexample
demonstrates: for the symbolN2 of the second-order finite type equationR2 defined

by uyy = uxy = uxx = 0 the indices are β (1)
2 = 2 > β (2)

2 = 1.

Remark 7.1.29. A special situation arises, if m = 1, i. e. if there is only one depen-
dent variable, as then any first-order symbol N1 is involutive. Indeed, the symbol
module N 0 is now an ideal in P generated by linear polynomials. Using some lin-
ear algebra, we may always assume that all generators have different leading terms
(with respect to the degree reverse lexicographic order). Because of the linearity, this
trivially implies that all leading terms are relatively prime. By Buchberger’s first cri-
terion (Proposition B.4.18) all S-polynomials reduce to zero and our generating set

3 We exclude from our discussion the trivially non-vanishing group H0,0(N )∼= Vπ whose dimen-
sion is for any differential equation just the number m of dependent variables.
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is a Gröbner basis. Furthermore, it follows immediately from Lemma 7.1.25 that the
leading terms involutively generate the leading ideal and hence we have a Pommaret
basis ofN 0 or equivalentlyN1 is involutive.

This observation is the deeper reason for a classification suggested by Drach (see
Chapter [435, Chapt. 5]). Using the techniques described in Appendix A.3, we may
transform any differential equationRq into one with only one dependent variable. If
we first rewriteRq as a first-order equation, then the transformed equation will be of
second order. Only in special circumstances one can derive a first-order equation in
one dependent variables. Thus from a theoretical point of view we may distinguish
two basic classes of differential equations: first-order and second-order equations,
respectively, in one dependent variable. The first class is much simpler, as its symbol
is always involutive (like for ordinary differential equations).

A further special property of the idealN 0 is that it is a Cohen–Macaulay module.
This fact follows trivially from Theorem 5.2.9. �

Example 7.1.30. Let us analyse the symbol of Maxwell’s equations (2.85). We order
the independent variables as (x,y,z,t) so that time derivatives have the highest class.
With this ordering (2.85) yields the symbol matrix directly in row echelon form. In
fact, as no lower-order terms are present in the equations, it makes no real difference
whether we study the symbol or the differential equation. Thus we do not introduce
any extra notations for the variables in the symbol equations.

The rows of maximal class, i. e. of class 4, correspond to the six evolution equa-
tions in (2.85a); the remaining two constraint equations (2.85b) are of class 3, as
each can by solved for a z-derivative. Thus we obtain for the indices

β (4)
1 = 6 , β (3)

1 = 2 , β (2)
1 = β (1)

1 = 0 . (7.28)

They form indeed an ascending sequence of the form (7.27). Only for the z-

components of the fields E and B several leaders appear, namely E(z)
z and E(z)

t (and
correspondingly for B(z)). This observation agrees with Lemma 7.1.25.

In order to check whether the symbol is involutive, we must determine what
happens in the non-multiplicative prolongations. In our case, this means that we
must differentiate the constraint equations (2.85b) with respect to t:

∂t(∇·E) =∇·Et =∇· (∇×B) = 0 (7.29)

where in the first step we used multiplicative prolongations of equations in (2.85a)
and the last step is a well-known result in vector analysis. The same result is ob-
tained with the equations for the magnetic field B. Thus we can rewrite any non-
multiplicative prolongation as a linear combination of multiplicative ones and the
symbol is involutive. Following Remark 7.1.27, we obtain for the two non-vanishing
Spencer cohomology groups the following dimensions:

dimH1,1(N ) = β (4)
1 +β (3)

1 = 8 , (7.30a)

dimH1,2(N ) = β (n−1)
2 = 2 . (7.30b)
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Again the first dimension is just the number of differential equations in our system
and the second dimension the number of compatibility conditions (one for each
Gauss law). �

7.2 Involutive Differential Equations

Now we finally introduce the notion of an involutive differential equation. It com-
bines the geometric concept of formal integrability with the algebraic ideas underly-
ing involutive symbols. We will see in the subsequent chapters that this combination
indeed makes sense and provides us with a very powerful framework for analysing
many different aspects of differential equations.

Definition 7.2.1. The differential equation Rq is called involutive, if it is formally
integrable and if its symbolNq is involutive.

In the literature, the term “involution” is often used in a rather imprecise manner.
In particular, involution is sometimes taken as a synonym for formal integrability.
While Definition 7.2.1 obviously implies that an involutive equation is also formally
integrable, the converse is generally not true: involution is a stronger concept than
formal integrability.

Example 7.2.2. The probably simplest example of a differential equation which is
formally integrable but not involutive is the following second-order equation in two
independent and one dependent variable:

R2 :

{
uyy = 0 ,
uxx = 0 .

(7.31)

We showed in Example 7.2.4 that its symbolN2 is not involutive. ButR2 is trivially
formally integrable, as all right hand sides are zero. Since the prolonged symbolN3

is involutive,R3 is an involutive equation. �

Recall that Definition 2.3.15 of formal integrability imposes an infinite number
of conditions (the surjectivity of the induced projections π̂q+r+1

q+r :Rq+r+1 →Rq+r

for all r ≥ 0) and thus cannot be effectively verified. We will expose in the sequel a
finite criterion for an involutive differential equation. It requires some further result
on involutive symbols.

Recall from the last section that the definition of the indices β (k)
q depends on a

row echelon form of the symbol matrix. If we compare with the construction of for-
mal power series solutions in Section 2.3, then the computation of the row echelon
form corresponds to a special choice of the principal derivatives: the derivative uαμ is

principal, if and only if the unknown u̇αμ is a leader. Thus the index β (k)
q determines

the number of principal derivatives of order q and class k.
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Let us consider this observation at the level of the differential equation and not
only the symbol. In the neighbourhood of a point ρ ∈ Rq we solve each equation
in a local representation for a derivative. We can do this in such a way that each
equation is solved for a different derivative and that this derivative is the leading
derivative of the equation with respect to a class respecting term order. If the class
of a leading derivative is k, we assign the multiplicative variables x1, . . . ,xk to the
corresponding equation (just as we are used from the Pommaret division). Taking a
local representation in triangular form of the prolonged equationRq+1 in the neigh-

bourhood of a point in
(
πq+1

q
)−1(ρ), we find of course that all equations of order

q + 1 in it are algebraically dependent of the formal derivatives of the equations of
order q in the representation of Rq. If the symbol is involutive, we do not need all
formal derivatives of these equations.

Proposition 7.2.3. The symbol Nq of the differential equation Rq is involutive,
if and only if all equations of order q + 1 in a local representation of the prolonged
equation Rq+1 are algebraically dependent of the formal derivatives of the equa-
tions of order q in a local representation of Rq with respect to their multiplicative
variables only.

Proof. Obviously, we may prepare our local representation of Rq in such a way
that applying (7.3) yields the symbol directly in row echelon form. All equations
obtained by prolonging each equation only with respect to its multiplicative vari-
ables are independent, as they possess distinct leading derivatives. Since there are

β (k)
q equations of order q and class k in our local representation of Rq, we get this

way at least ∑n
k=1 kβ (k)

q algebraically independent equations of order q + 1 in the
local representation ofRq+1. By assumption, rankNq+1 equals this number. Hence
the local representation of Rq+1 cannot contain more independent equations of or-
der q+1 (it may well contain further independent equations, but of lower order, i. e.
they are integrability conditions—cf. the proof of Theorem 7.1.6). �

Example 7.2.4. We reconsider Example 3.1.10 in form of the second-order differen-
tial equationR2 defined by the system uxx = uyy = 0. Its symbol is

N2 :

{
u̇yy = 0 ,
u̇xx = 0 .

(7.32)

If we order x1 = x and x2 = y, we see that the first equation is of class 2 and the
second one of class 1. The symbol matrix is already in row echelon form and for the
second equation y is a non-multiplicative variable.

For the indices of N2 we find β (2)
2 = β (1)

2 = 1. The prolonged symbol N3 is
defined by the equations

N3 :

{
u̇yyy = 0 , u̇xyy = 0 ,

u̇xxy = 0 , u̇xxx = 0 .
(7.33)
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Thus we get that rankM3 = 4 �= β (1)
2 + 2β (2)

2 = 3 and according to our definition
N2 is not involutive. By contrast, the symbol N3 is involutive, as dimN3 = 0: a
vanishing symbol is trivially involutive.

At the level of the differential equation we get the following picture. Prolonging
the equation uxx = 0 with respect to its non-multiplicative variable yields the equa-
tion uxxy = 0. It is easy to see that this equation is algebraically independent of all
multiplicative prolongations. Note that the equation uxxy = 0 is not an integrability

condition; one easily checks that R(1)
q =Rq for all q ≥ 2. As in Chapter 3 we call

such an equation an obstruction to involution.
It is straightforward to extend this example to higher order. Consider the differ-

ential equation Rq defined by the system ux···x = uy···y = 0 with q ≥ 2. Its symbol
module is the ideal 〈xq,yq〉 already mentioned in Example 6.1.24. One easily verifies
that we obtain only after q− 1 prolongations an involutive symbol, as in all inter-
mediate systems we encounter an obstruction to involution of the form ux···xy···y = 0
containing q differentiations with respect to x and 1 ≤ � < q differentiations with
respect to y. �

Proposition 7.2.3 permits us to make Algorithm 2.1 for the construction of formal
power series solutions more efficient, as it provides us with a simple systematic
method for computing minimal local representations of prolonged equations Rq+r.
Algorithm 7.1 depends on the following assumption: we know a local representation
of Rq where each equation is solved for a different principal derivative (below we
will call such a representation a Cartan normal form). Because of this assumption
we obtain a unique solution, as the arising algebraic equations are all linear in the
principal derivatives.

Algorithm 2.1 gives us the general power series solution depending on some pa-
rameters (note that Algorithm 2.1 does not specify a separation into principal and
parametric coefficients and in fact does not even need one; it just asks for a para-
metric representation of the solution space of the arising algebraic equations). In
Algorithm 7.1 we take now a different approach, as our assumption on the local rep-
resentation of Rq implies a split into a set Π of parametric and a set Δ of principal
derivatives. We “simulate” the solution of an initial value problem by requiring that
a map δ :Π →� is given that provides us with values for any parametric derivative
(we will discuss inSection 9.3 how such a map can be obtained from more common
ways of specifying initial data).

The for loop in Lines /9-13/ computes the equations that must be added to a
local representation of Rs in order to obtain one for Rs+1 and immediately solves
these equations for the principal coefficients of order s + 1. For the prolongation it
suffices by Proposition 7.2.3 to take all equations of maximal order and to differen-
tiate them formally with respect to their multiplicative variables only; this approach
avoids the redundancies of Algorithm 2.1.

Finally, we prove the following two somewhat technical results. Every prolonga-
tion of an involutive symbol is again involutive. In principle, this is obvious from the
properties of a Pommaret basis; however, we give here a direct computational proof.
The second result concerns a kind of commutativity of projection and prolongation
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Algorithm 7.1 Power series solution of involutive differential equation
Input: involutive differential equation Rq defined by a local representation in solved form uαμ =

φαμ (x, ũ(|μ|)), expansion point x0, initial data map δ : Π →�, truncation order t ≥ q
Output: unique power series solution ofRq up to order t
1: for all parametric derivatives uαμ with |μ | ≤ t do
2: aαμ ← δ (uαμ )
3: end for
4: for all principal derivatives uαμ with |μ | ≤ q do

5: aαμ ← φαμ (x0,a(|μ|))
6: end for
7: s← q
8: repeat
9: for all equations uαμ = φαμ with |μ |= s do

10: for i from 1 to clsμ do
11: add equation uαμ+1i

= φαμ+1i
= Diφαμ

12: aαμ+1i
← φαμ+1i

(x0,a(s+1))
13: end for
14: end for
15: s← s+1
16: until s = t
17: return a(t)

for equations with an involutive symbol. Both results will be needed in the next
section for proving a simple criterion for involutive differential equations.

Proposition 7.2.5. Let the symbolNq of the equationRq be involutive.

(i) The prolonged symbolNq+1 is involutive, too.

(ii) The equality (R(1)
q )+1 =R(1)

q+1 holds.

Proof. We start with Part (i); Part (ii) will be a corollary. Without loss of generality,
we assume that the symbol matrix Mq is in row echelon form with the columns
ordered according to a class respecting term order. Let u̇αμ be the leaders of Mq. By
Proposition 7.2.3, the leaders of Mq+1 are u̇αμ+1�

with 1 ≤ � ≤ clsμ . The class of
such a leader is �.

In order to prove Part (i), we must show that prolonging a row in Mq+1 with
respect to a non-multiplicative variable leads to a linearly dependent equation. Thus
set k = clsμ and assume � ≤ k. Prolonging the rows of Mq+1 with respect to all
independent variables leads to rows with leaders of the form u̇αμ+1�+1 j

for 1≤ j≤ n.
Three cases must be distinguished:

j ≤ �: These are the prolongations with respect to multiplicative variables. All
obtained rows are linearly independent, as their leaders are different.

� < j ≤ k: Since j ≤ k, the variable x j is multiplicative for the row in Mq with the
leader u̇αμ . Thus we can first prolong this row with respect to x j and then the result
with respect to x� and obtain the same result. As now each prolongation is only
with respect to a multiplicative variable, the resulting row is already contained in
the rows of the previous case.



7.2 Involutive Differential Equations 285

j > k: Let us denote the row in Mq+2 by r. As in the previous case we interchange
the prolongations, thus prolong first with respect to x j and then with respect to x�

to obtain r. Since j > k, u̇αμ−1k+1 j
is by Lemma 7.1.25 also a leader in Mq. Its class

is greater than or equal k; thus xk is a multiplicative variable for the corresponding
row. By prolonging it with respect to xk, we see that u̇αμ+1 j

is among the leaders

of the matrix Mq+1. Since x� is multiplicative for this equation, we have found a
row contained in the first case with leader u̇αμ+1�+1 j

.

If we compare the two rows with leader u̇αμ+1�+1 j
, we see that they are both

prolongations with respect to x� of rows with the leader u̇αμ+1 j
. One of these

was obtained by prolonging a row of Mq with respect to a non-multiplicative
variable. Since the symbol Nq is involutive, this row is not contained in the set
of independent rows we use for Nq+1 but is a linear combination of those. Thus
r can be written as x�-prolongation of this linear combination. If x� is a non-
multiplicative variable for some of the rows involved, we apply the same analysis
again. Since the considered leaders become smaller and smaller, this process
eventually terminates and then we have expressed r as a linear combination of
rows contained in the first case.

Hence we have shown that all independent rows in Mq+2 can be obtained by
prolonging the rows of Mq+1 only with respect to their multiplicative variables. But
this fact implies that the prolonged symbolNq+1 is involutive.

Part (ii) may look trivial at first sight, but it is not. On the left hand side only the
integrability conditions that arise during the projection from order q + 1 to order q
are taken into account; then one prolongs again to order q + 1. On the right hand
side, however, we project from order q + 2 to order q + 1. Hence we have to show
that all integrability conditions which occur during this projection are prolongations
of integrability conditions of the projection of order q + 1 to q.

In order to achieve this goal we make basically the same considerations as in the
proof of Part (i) but now with the full equations instead of only with their highest-
order part. Let Φτ = 0 be an equation of class k in a local description of Rq. We
have to analyse all equations of the form D�D jΦτ = 0. We distinguish two cases
assuming always �≤ j:

j ≤ k: In this case D�D jΦτ = 0 contains only prolongations with respect to mul-
tiplicative variables. By Proposition 7.2.3, these are the only independent equa-
tions of order q + 2 in our local description ofRq+2.

k < j: This implies that D jΦτ = 0 was a prolongation with respect to a non-
multiplicative variable. By Proposition 7.2.3 we can express it as a linear com-
bination of prolongations of equations of Rq with respect to multiplicative
variables and perhaps some integrability conditions. Following again the argu-
ment of the third case above, we find that D�D jΦτ = 0 is a linear combination of
the equations contained in the first case and of prolonged integrability conditions.

Note that it is not necessary here to distinguish between �≤ k and � > k, as we are

allowed to use all prolongations to construct (R(1)
q )+1. �
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Part (ii) says that for a differential equation with involutive symbol we obtain the
same, if we either first prolong it twice and then project once or alternately prolong,
project and prolong. Denoting prolongations by one order by ρ and projections by
one order by π , this may concisely be written as ρ ◦π ◦ρ = π ◦ρ2 (it is crucial that
we start on both sides with a prolongation; we may not omit the trailing ρ).

Theorem 7.2.6. Rq ⊆ Jqπ is an involutive differential equation, if and only if its

symbolNq is involutive and R(1)
q =Rq.

Proof. The necessity of the two given conditions for involution is obvious from
Definition 7.2.1, as they are weaker than the conditions there. The interesting point
is their sufficiency representing a simple corollary of Proposition 7.2.5, which can
be applied since the symbol Nq is assumed to be involutive. By Part (ii) of it and

our assumption on R(1)
q , we obtain R(1)

q+1 = (R(1)
q )+1 =Rq+1. Part (i) implies that

also all prolonged symbolsNq+r are involutive, so that we can apply this argument

inductively at any order. HenceR(1)
q+r =Rq+r for all r ≥ 0 and the differential equa-

tionRq is formally integrable. �

Now we can understand the deeper meaning of the at first sight rather technical
Proposition 7.2.5. If the symbol Nq is involutive and at some order of prolongation
integrability conditions are hidden, then at least some of these conditions must arise
already during the first prolongation (here we meet again the idea of local involu-
tion discussed in Section 4.1); the remaining ones are prolongations of these. This
observation is obviously a strong result and forms the basis of any concrete compu-
tation with involutive equations. In particular, the Cartan–Kuranishi completion to
involution, which we will discuss in Section 7.4, depends crucially on it.

Recall that checking whether or not the symbol Nq is involutive via the Cartan
test (Theorem 6.2.4 or its alternative formulation Proposition 7.1.24) requires only
(linear) computations in order q and q + 1. Obviously, (except for the linearity) the

same is true for verifying the equality R(1)
q =Rq. Hence Theorem 7.2.6 represents

indeed a finite criterion for involution.

Example 7.2.7. Theorem 7.2.6 permits us to conclude that the Einstein equations

are involutive. We showed already in Example 2.4.4 the equalityR(1)
2 =R2 and in

Example 7.1.26 that the symbolN2 is involutive. Thus all conditions of the theorem
are satisfied. �

A closer look at the homological theory in Chapter 6 yields in fact a finite cri-
terion for formal integrability independent of involution. However, it requires the
computation of certain Spencer cohomology modules (or at least of their dimen-
sions) which is avoided by the Cartan test. Hence in practice it is often easier to
verify involution than formal integrability.

Theorem 7.2.8. Let the symbolic system N induced by the symbol Nq of the differ-
ential equationRq be 2-acyclic at degree q + r for some integer r ≥ 0. Then Rq is

formally integrable, if and only if the equality R(1)
q+r′ = Rq+r′ holds for all values

0≤ r′ ≤max{0,r−1}.
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Proof. One direction is trivial. If the differential equations Rq is formally inte-

grable, then we even have R(1)
q+r′ = Rq+r′ for all r′ ≥ 0. Furthermore, by Theo-

rem 6.1.21 the Spencer cohomology of any symbolic system is finite and hence N
must become 2-acyclic at some degree q + r.

For the converse, we first note that the symbolic systemN is trivially 1-acyclic at
degree q by Lemma 6.1.13. Our assumption says that in addition the Spencer coho-
mology modules Hq+s,2(N ) vanish for all s ≥ r. According to Proposition 6.1.18,
the dual Koszul homology modules Hq+s,1(N 0) of the symbol module N 0 must
then also vanish for all s > r.

Recall from Remark 6.1.15 that the Koszul homology corresponds to a minimal
free resolution of the annihilatorN 0 and hence our assumption tells us that the max-
imal degree of a minimal generator of the first syzygy module Syz(N 0) is q + r. In
Remark 7.1.12 we have seen that the syzygies ofN 0 are related to those integrabil-
ity conditions arising from generalised cross-derivatives between the highest-order

equations. If now the equality R(1)
q+r′ =Rq+r′ holds for all 0 ≤ r′ ≤ max{0,r−1},

then none of these cross-derivatives can produce an integrability condition (for the

computation ofR(1)
q+r−1 we needRq+r, so that indeed all syzygies are covered). Fur-

thermore, no integrability conditions of the second kind can arise from lower-order
equations, as we always consider at least r′ = 0. Hence the differential equationRq

is formally integrable. �
Thus, even for deciding formal integrability, it suffices to check a finite num-

ber of projections πq+r+1
q+r :Rq+r+1 →Rq+r for surjectivity. From a computational

point of view, we have learned even more. The proof above says that a (preferably
minimal) generating set of the Koszul homology module H1(N 0) shows us exactly
which generalised cross-derivatives may produce integrability conditions. Hence in
a concrete computation there is no need to calculate local representations of all pro-
longed equations Rq+r′ but we can directly treat the relevant cross-derivatives. Of
course, it cannot be decided solely on the basis of the symbol Nq whether or not
these integrability conditions vanish modulo the equations describing Rq, as this
depends on lower-order terms.

Remark 7.2.9. For linear differential equations we can directly link involution in
the sense of Definition 7.2.1 with Pommaret bases. Let � be a differential field
containing � as its field of constants. By making an appropriate choice of a fibred
manifold π : E → X (e. g. π : �n×�m → �n), we can identify elements of the
free module Dm where D = �[∂1, . . . ,∂n] with linear differential operators in the
geometric sense of Remark 2.3.2.

Assume now that we know a Pommaret basis H of a submoduleM⊆Dm for a
degree compatible and class respecting term order≺ and let q be the maximal order
of an element of H. In general, the basis H also contains operators of lower order
than q. Hence, if we directly translate H into a differential equation Rq ⊆ Jqπ ,
then Rq will not be formally integrable because of the presence of integrability
conditions of the second kind. But if we first add all multiplicative prolongations
of the generators of H up to order q, then it is trivial to see that the corresponding
equationRq will be involutive in the sense of Definition 7.2.1.
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Conversely, letRq be an involutive differential equation possessing a linear local
representation. Then we can translate this representation into a finite set F ⊂Dm of
linear differential operators. Now it is easy to see that an involutive head autoreduc-
tion with respect to a degree compatible and class respecting term order transforms
the set F into a Pommaret bases of 〈F〉.

It follows from our proof of Theorem 7.2.8 that similar statements hold for
formally integrable equations. They are in the same manner related to Gröbner
bases with respect to degree compatible term orders. Indeed, the S-polynomials of a
Gröbner basis induce a generating set of the first syzygy module by Theorem B.4.26
and according to Theorem 7.2.8 it suffices to analyse such a generating set for prov-
ing formal integrability. �

Involutive differential equations possess local representations of a special form:
the Cartan normal form. In order to avoid excessive notation, we present it only for a
first-order equation R1 (as shown in Appendix A.3, every differential equation can
be transformed into an equivalent first-order one). The two main points about the
Cartan normal form are that it yields the symbol matrix immediately in row echelon
form and that each equation in the system is solved for its principal derivative (which
requires some mild regularity assumptions). Thus it looks as follows:

uαn = φαn (x,u,uγj ,u
δ
n ) ,

⎧
⎨

⎩

1≤α≤β (n)
1 ,

1≤ j<n ,

β (n)
1 <δ≤m ,

(7.34a)

uαn−1 = φαn−1(x,u,uγj ,u
δ
n−1) ,

⎧
⎨

⎩

1≤α≤β (n−1)
1 ,

1≤ j<n−1 ,

β (n−1)
1 <δ≤m ,

(7.34b)

...

uα1 = φα1 (x,u,uδ1 ) ,

{
1≤α≤β (1)

1 ,

β (1)
1 <δ≤m ,

(7.34c)

uα = φα (x,u) ,

{
1≤α≤β0≤m;,

β0<β≤m .
(7.34d)

Important is here the “fine-print,” i. e. the ranges of the indices.4 The first subsys-
tem (7.34a) comprises all equations of class n, the second one (7.34b) all of class
n−1 and so on. The derivatives on the right hand side have at most the same class as
the one on the left hand side. The last subsystem (7.34d) collects all algebraic con-
straints; their number is denoted by β0. In general, the subsystems may be empty

from a certain class on, as 0≤ β (1)
1 ≤ ·· · ≤ β (n)

1 ≤ m by Corollary 7.1.28.

4 Note that e. g. the ranges given in (7.34a) do not imply that always β (n)
1 < m. They should rather

be understood in the sense that if β (n)
1 = m, then no derivatives uδn may appear on the right hand

side and correspondingly for the other subsystems.
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These purely structural aspects of the normal form (7.34) do not yet capture
that our differential equation is involutive; they only express that we have chosen
a local representation in triangular form solved for the leading derivatives. Under
mild regularity assumptions, any differential equation can be brought into such a
form (for fully nonlinear equations one must usually make some case distinctions).
The most important point about the Cartan normal form is that involution implies
a number of relations between prolongations of the individual equations in (7.34).
First of all, involution of the symbolN1 requires by Proposition 7.2.3 that any non-
multiplicative prolongation can be written as a linear combination of multiplica-
tive ones. Thus functions Aβi j(x,u(1)), Bβi (x,u(1)), and Cβ (x,u) must exist such that
whenever 1≤ � < k ≤ n

Dk(uα� −φα� ) =
k

∑
i=1

β (i)
1

∑
β=1

{
i

∑
j=1

Aβi jD j(u
β
i −φ

β
i )+ Bβi (uβi −φ

β
i )

}

+

+
β0

∑
β=1

Cβ (uβ −φβ ) ,

(7.35)

as the variable xk is non-multiplicative for all equations solved for an x�-derivative.
It follows easily from an analysis of the appearing derivatives that no equations of
class higher than k are needed on the right hand side. Strictly speaking, involution of
the symbol N1 requires only that in (7.35) the second-order derivatives cancel, i. e.
that functions Aβi j exist so that the difference of the left and the right hand side is at

most first order. The coefficient functions Bβi and Cβ take already care that the per-
formed non-multiplicative prolongation does not lead to an integrability condition,
i. e. that the difference actually vanishes.

Formal integrability of the differential equationR1 requires furthermore that the
prolongation of the algebraic equations in (7.34d) does not lead to new equations,
i. e. that no integrability conditions of the second kind appear. This requirement will
be satisfied, if functions C̄β (x,u) exist such that for all values 1≤ k ≤ n

φαk −
m

∑
β=β0+1

∂φα

∂uβ
φβk =

∂φα

∂xk +
β0

∑
β=1

C̄β
(

uβ −φβ
)

. (7.36)

Note that involution of the differential equationR1 requires not only that β0 ≤ β (1)
1

but in fact that even on the right hand side of (7.34d) always β ≤ β (1)
1 . Otherwise,

some derivatives in the prolonged algebraic equations could not be eliminated using
the differential equations in (7.34).

Remark 7.2.10. From a computational point of view, we may summarise these con-
siderations as follows. Given a system in the triangular form (7.34), it is straight-
forward to check effectively whether or not it is involutive. We compute of each
equation the formal derivative with respect to each of its non-multiplicative vari-
ables (recall that we defined the class of the zero multi index as zero so that for the
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algebraic equations in (7.34d) all variables are non-multiplicative). Then we reduce
the obtained equations with respect to our system (7.34) and all its multiplicative
prolongations (at least the reductions with respect to the differential equations are
easy to perform effectively, as our system is in solved form and thus we simply sub-
stitute the principal derivatives by the corresponding right hand sides). The system
will be involutive, if and only if every such computation yields zero, as then we have
identities of the form (7.35) and (7.36), respectively.

Note that this recipe does not even require to determine explicitly the symbolN1.
In the case that the system is not involutive, it is still easy to reconstruct whether the
problem comes from the symbol or from the existence of integrability conditions. If
a reduction does not lead to zero, we must only look at the order of the remaining
equation: the existence of a second-order equation indicates by Proposition 7.2.3
that the symbol N1 is not involutive; any remainder of lower order represents a
non-trivial integrability condition.

This observation is the basis of the completion algorithm for linear systems which
we will develop in Section 10.7. For nonlinear systems the problem is less the check
for involution; as we showed above, it can to a large extent be performed effectively
under the made assumptions. The real problem is that if the system is not formally
integrable, then it might be difficult to solve the arising integrability conditions for
their leading derivatives. Thus generally we are not able to analyse effectively the

projected equationsR(1)
1 . �

Remark 7.2.11. Making some further simplifying assumptions, we can even explic-
itly follow the recipe presented in Remark 7.2.10 and determine the conditions for
involution of the symbol N1 and formal integrability of R1 in closed form. We
assume firstly that no algebraic equations (7.34d) are present and secondly that
nowhere on the right hand side a principal derivative appears (thus in the ith sub-
system of the normal form (7.34) on the right hand side only the derivatives uγj with

1 ≤ j ≤ i and β ( j)
1 < γ ≤ m appear). The first assumption essentially requires that

we are able to solve explicitly the present algebraic equations and to use the result
for eliminating some dependent variables. The second assumption can always be
achieved by an autoreduction.

If we set Φαi = uαi − φαi and choose a non-multiplicative index i < j ≤ n, then,

expressing the formal derivative Dj via the contact vector fields C(1)
j and Ck

γ intro-
duced in (2.11), we can write the corresponding prolongation in the form

DjΦαi = uαi j−C(1)
j (φαi )−

i

∑
k=1

m

∑
γ=β (k)

1 +1

uγk jC
k
γ (φ

α
i ) . (7.37)

Each of the arising second-order derivatives can be eliminated using a multiplicative
prolongation. Performing these eliminations leads after a tedious but in principle
straightforward computation to the following lengthy expression (all the gory details
of the required computations for deriving this expression are explicitly derived in the
thesis of Fesser [131]):
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D jΦαi −DiΦαj +
i

∑
k=1

m

∑
γ=β (k)

1 +1

Ck
γ (φ

α
h )DkΦ

γ
j

=C(1)
i (φαj )−C(1)

j (φαi )−
i

∑
k=1

m

∑
γ=β (k)

1 +1

Ck
γ (φαk )C(1)

k (φγj )

−
i−1

∑
k=1

m

∑
δ=β (k)

1 +1

uδkk

[ β ( j)
1

∑
γ=β (k)

1 +1

Ck
γ (φ

α
k )Ck

δ (φ
γ
j )

]

− ∑
1≤k<�<i

{ β (�)
1

∑
δ=β (k)

1 +1

uδk�

[ β ( j)
1

∑
γ=β (�)

1 +1

C�
γ (φ

α
� )Ck

δ (φ
γ
j )

]

+

m

∑
δ=β (�)

1 +1

uδk�

[ β ( j)
1

∑
γ=β (k)

1 +1

Ck
γ (φ

α
k )C�

δ (φ
γ
j )+

β ( j)
1

∑
γ=β (�)

1 +1

C�
γ(φ

α
� )Ck

δ (φ
γ
j )

]}

−
i−1

∑
k=1

{ β (i)
1

∑
δ=β (k)

1 +1

uδki

[

−Ck
δ (φ

α
k )+

β ( j)
1

∑
γ=β (i)

1 +1

Ci
γ (φ

α
i )Ck

δ (φ
γ
j )

]

+

m

∑
δ=β (i)

1 +1

uδki

[

−Ck
δ (φ

α
k )+

β ( j)
1

∑
γ=β (i)

1 +1

Ci
γ (φ

α
i )Ck

δ (φ
γ
j )+

β ( j)
1

∑
γ=β (k)

1 +1

Ck
γ (φ

α
k )Ci

δ (φ
γ
j )

]}

−
i−1

∑
k=1

m

∑
δ=β ( j)

1 +1

uδk j

[

Ck
δ (φ

α
k )+

β ( j)
1

∑
γ=β (k)

1 +1

Ck
γ (φ

α
k )C j

δ (φ
γ
j )

]

−
j−1

∑
k=i

m

∑
δ=β (k)

1 +1

uδik

[

−Ck
δ (φ

α
k )+

β ( j)
1

∑
γ=β (i)

1 +1

Ci
γ (φ

α
i )Ck

δ (φ
γ
j )

]

−
i−1

∑
k=1

i+1≤�< j

m

∑
δ=β (�)

1

uδk�

[ β ( j)
1

∑
γ=β (k)

1 +1

Ck
γ (φ

α
k )C�

δ (φ
γ
j )

]

−
m

∑
δ=β ( j)

1 +1

uδi j

[

Ci
δ (φ

α
i )−C j

δ (φ
α
j )+

β ( j)
1

∑
γ=β (i)

1 +1

Ci
γ (φ

α
i )C j

δ (φ
γ
j )

]

.

(7.38)
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None of the second-order derivatives appearing here can be obtained as a multi-
plicative prolongation of a principal derivative in (7.34). Hence all the expressions
in square brackets represent obstructions to involution and the symbol N1 is invo-
lutive, if and only if they vanish. The terms in the first line of the right hand side
are of first order. Assuming that all the obstructions to involution vanish, their sum
represents the remaining integrability condition. Since no principal derivatives are
contained in it, no further simplification is possible and involution of R1 requires
that it vanishes, too. �

Example 7.2.12. Linear homogeneous first-order equations in one dependent vari-
able represent a classical problem which found much interest in the nineteenth cen-
tury. Most textbooks on differentia l equations from the early twentieth century
discuss it at length (see e. g. [68]). Its solution leads to what is nowadays called
the Frobenius Theorem (Theorem C.3.3) in differential geometry.

In local coordinates we are dealing with the system

R1 :

{
n

∑
i=1

ai
τ(x)ui = 0 , 1≤ τ ≤ t . (7.39)

Note that no terms of order zero appear. We want to study under what conditions
R1 is involutive. In order to facilitate the analysis of the symbol, we transform the
system into a triangular form. By taking appropriate linear combinations we solve
for some derivatives. We assume that these are those of maximal class; otherwise
we renumber the independent variables. So we arrive at a system of the form

R1 :

{

un+1−τ +
n−t

∑
i=1

āi
τ(x)ui = 0 , 1≤ τ ≤ t . (7.40)

If (7.39) is involutive, then this is its Cartan normal form.
Now we must check whether relations of the form (7.35) hold; so we consider

the non-multiplicative prolongations of the equations in (7.40). For the equation
with index τ these are the prolongations with respect to the variables xn+1−σ for
1≤ σ < τ . They lead to second-order equations

un+1−σ ,n+1−τ+
n−t

∑
i=1

āi
τ(x)ui,n+1−σ +

n−t

∑
i=1

∂ āi
τ(x)

∂xn+1−σ ui = 0 . (7.41)

In order forR1 to be involutive, we must be able to express (7.41) as a linear combi-
nation of the remaining prolongations. The first term can be cancelled by subtracting
the prolongation of the equation with index σ with respect to the multiplicative vari-
able xn+1−τ : it is obtained by interchanging σ and τ in (7.41).

Next we study the remaining second-order derivatives in the first sum in (7.41)
(and in the equation with σ and τ interchanged, respectively). Each of them can be
cancelled individually by subtracting (respectively adding) the prolongation of the
equation with index τ (respectively σ ) with respect to the multiplicative variable xi
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multiplied by āi
τ(x) (respectively āi

σ (x)). One easily checks that hereby all appear-
ing derivatives ui j with 1≤ i, j ≤ n− t cancel.

Thus we are able to eliminate all second-order derivatives implying that the sym-
bolN1 is involutive. But if we perform all these eliminations, we obtain as potential
integrability condition for each pair 1≤ σ < τ ≤ t a first-order differential equation:

n−t

∑
i=1

[
∂ āi
τ(x)

∂xn+1−σ −
∂ āi
σ (x)

∂xn+1−τ +

n−t

∑
j=1

ā j
σ (x)

∂ āi
τ(x)
∂x j −

n−t

∑
j=1

ā j
τ(x)

∂ āi
σ (x)
∂x j

]

ui = 0 .

(7.42)

As it does not contain any derivative ui with i > n− t, it cannot be expressed as a
linear combination of equations in (7.40):R1 is formally integrable and thus invo-
lutive, if and only if in (7.42) the coefficients in the bracket vanishes.

This result possesses a simple geometric interpretation. We introduce the follow-
ing set of vector fields

X̄τ = ∂xn+1−τ +
n−t

∑
i=1

āi
τ(x)∂xi , 1≤ τ ≤ t . (7.43)

They allow us to express (7.40) succinctly in the form X̄τu = 0. Comparing with
(C.7), it is not difficult to see that the above integrability conditions are equivalent
to the vanishing of the Lie brackets of the fields X̄τ :

[X̄τ , X̄σ ] = 0 , 1≤ σ < τ ≤ t . (7.44)

Thus we are in the same situation as in Example 2.3.17 where also the integrability
conditions could be expressed as the vanishing of Lie brackets.

We may write the original system (7.39) in terms of the vector fields

Xτ =
n

∑
i=1

ai
τ(x)∂xi , 1≤ τ ≤ t . (7.45)

They are linear combinations of the vector fields X̄τ – but with X(E) considered as
F(E)-module (see Appendix C.2). The Lie bracket (C.7) is bilinear only with re-
spect to linear combinations with real coefficients. Thus we cannot conclude that for
an involutive system (7.39) the vector fields Xτ must commute. But it is easy to see
that the commutator of two of the vector fields must be an F(E)-linear combination
of the Xτ , i. e. functions Cρστ(x) must exist such that

[Xσ ,Xτ ] =
t

∑
ρ=1

Cρστ(x)Xρ , (7.46)
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i. e. the distributionD spanned by these vector fields is closed under the Lie bracket.
Thus the equationR1 is involutive, if and only if the distribution D is involutive.

In the classical language, a linear system (7.39) such that the vector fields Xτ
satisfy (7.46) is called complete or involutive (explaining the origin of this term);
this terminology goes back at least to Clebsch [93]. If the system possesses the
triangular form (7.40), one sometimes speaks of a Jacobian system. A generalisation
of the theory of complete systems to nonlinear equations is possible using the Mayer
bracket (recall Example 2.3.12).

Finally, let us note that any complete system can be integrated solving only or-
dinary differential equations. If it consists of t equations, then it possesses n− t
functionally independent solutions ψk(x) with 1≤ k≤ n− t and its general solution
isΨ
(
ψ1(x), . . . ,ψn−t(x)

)
whereΨ is an arbitrary function.

Indeed, our proof of the Frobenius Theorem C.3.3 is constructive and requires
only the repeated use of the Rectification Lemma C.2.3. The proof of the latter in
turn was based on the solution of a system of ordinary differential equations (for the
exponentiation of the vector field). Explicitly performing these computations thus
requires to solve t systems of ordinary differential equations. Mayer [315] proposed
a more efficient approach where one needs to integrate only one system consisting
of n− t equations (our presentation follows [137, §§34,35,41] to where we also refer
for the proof of the correctness of the method). It assumes that we are dealing with
the Jacobian system defined by the vector fields (7.43).

Consider the one-forms

ωk = dxk−
n

∑
τ=n−t+1

āk
τ(x)dxτ , 1≤ k≤ n− t . (7.47)

They generate a Pfaffian system which is the annihilator D0 of the distribution D
spanned by vector fields (7.43). We may think of it as the (generalised) characteristic
system for our partial differential equation, as at any point x0 ∈ X the forms ωk

x0
generate the characteristic variety Cx0 of our equation.

The direct integration of this Pfaffian system requires the solution of as many sys-
tems of ordinary differential equations as the original linear system. The approach
of Mayer consists of a clever coordinate transformation x 	→ y after which we can
reduce (7.47) immediately to a single system of n−t ordinary differential equations.
The simplest form of the transformation is

xi =

{
yi if 1≤ i≤ n− t or i = n ,

α i +(yn−αn)yi if n− t < i < n .
(7.48)

Here the α i are arbitrary constants.
The transformed system is still in Jacobian form un+1−τ+∑n−t

i=1 bi
τ(y)ui = 0 with

coefficients bi
1 = āi

1 +∑t
τ=2 āi

τy
τ and bi

τ = (yn−αn)āi
τ for τ > 1. The “trick” of

Mayer consists of the observation that essentially it suffices to consider only the
first equation of the system treating the variables yn−t+1, . . . ,yn−1 as constants. Its
characteristic system can be written in the form
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dyi

dyn = bi
1(y) , 1≤ i≤ n− t . (7.49)

Assume that we are able to find n− t first integrals ψ̃k(y) of it (all the time treat-
ing yn−t+1, . . . ,yn−1 as constants). Then reverting the change of coordinates in the
equation ψ̃k(y) = ψ̃k(α) yields n− t first integrals ψk(x) of our original system so
that its general solution is u = F

(
ψ1(x), . . . ,ψn−t(x)

)
. Here αn−t+1, . . . ,αn are the

constants already appearing in (7.48) and the remaining α i are arbitrary.
We demonstrate the procedure for the following Jacobian system

R1 :

⎧
⎪⎨

⎪⎩

u6 =
x5− x3

x5− x4
u1 +

x3− x4

x5− x4
u2 , u5 =

x5− x2

x5− x4
u1 +

x2− x4

x5− x4
u2 ,

u4 =
x5− x1

x5− x4
u1 +

x1− x4

x5− x4
u2 , u3 =

x5− x6

x5− x4
u1 +

x6− x4

x5− x4
u2 .

(7.50)

Application of the Mayer method yields then a system of two ordinary differential
equations, dy1/dy6 = b1

1 and dy2/dy6 = b2
1, which we consider under the assumption

that y3, y4 and y5 are constant. Since b1
1 + b2

1 = −(1 + y3 + y4 + y5) is constant, we
have found a first integral

ψ̃1(y) = y1 + y2 +(1 + y3 + y4 + y5)y6 . (7.51)

Reverting the coordinate transformation in the equation ψ̃1(y) = ψ̃1(α) shows that
a first integral of (7.50) is given by ψ1(x) = x1 +x2 +x3 +x4 +x5 +x6. Some further
computations yield as an additional first integralψ2 = x1x4 +x2x5 +x3x6. Hence the
general solution of the Jacobian system (7.50) is given by

u(x) = F(x1 + x2 + x3 + x4 + x5 + x6,x1x4 + x2x5 + x3x6) (7.52)

with an arbitrary function F of two arguments. �

The final proposition in this section should by now be rather obvious to any
reader who has understood the meaning of involution. We mention it here only
for historical reasons, as it generalises an old result of Finzi [135] (cf. also [342,
Sect. 2.6] for a discussion) on systems which have the same number of equations
and dependent variables.

Proposition 7.2.13. A differential equation Rq possesses identities or integrability

conditions, if and only if either β (n−1)
q > 0 or R(1)

q−1 � Jq−1π .

Proof. The second case,R(1)
q−1 � Jq−1π , is trivial. It means that any local represen-

tation of Rq contains not only equations of order q but also of lower order. Obvi-
ously, this fact implies the existence of either identities or integrability conditions
arising from the prolongation of these lower order equations. Thus we exclude this
possibility and concentrate on the first case.

If we have β (n−1)
q > 0, then any local representation of Rq contains equations

with non-multiplicative variables, as only equations of class n are without. Thus,
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according to Proposition 7.2.3, the system must possess either identities or integra-
bility conditions.

For the converse we note that β (n−1)
q = 0 implies that all indices β (k)

q with k < n
must vanish; this can be shown analogously to Corollary 7.1.28. Thus a local repre-
sentation of Rq exists where all equations are of class n. Hence all their prolonga-
tions are algebraically independent and neither identities nor integrability conditions
can arise from cross-derivatives. �

7.3 Completion of Ordinary Differential Equations

We turn now our attention to the problem of completing a given differential equa-
tion to an equivalent involutive one. We begin with ordinary differential equations;
partial differential equations will be treated in the next section. We first restrict to
autonomous systems where the independent variable x does not occur explicitly.
This restriction is made only for the simplicity of the presentation and to make the
theory more intuitive. The general case will be treated at the end of the section.

Autonomous systems are traditionally described within the tangent bundle (see
Appendix C.1). So let U be an m-dimensional manifold. The right hand side of an
autonomous system in the solved form

u′ = φ(u) (7.53)

is interpreted as a vector field X ∈ X(U). Systems of the more general form

Φ
(
u,u′)= 0 , (7.54)

where the number of equations may differ from dimU , appear in many applications
and are known in the literature under different names. A classical one is implicit
equation; in numerical analysis the name differential algebraic equation has be-
come very popular in recent times; in engineering applications one often speaks of a
descriptor form in contrast to the state space form (7.53). Geometrically, such a sys-
tem corresponds (under some regularity assumptions) to a submanifold S(0) ⊆ TU .

Assuming as usual that Φ is a smooth function and that the rank of the Ja-
cobian ∂Φ/∂u′ is constant, we transform (7.54) into semi-explicit form: we split
the vector u into two parts v and w (in general of different dimensions) such that
rank(∂Φ/∂v′) = rank(∂Φ/∂u′); by the Implicit Function Theorem we can then
solve for the derivative v′ and obtain

v′ = φ(v,w,w′) , (7.55a)

0 = ψ(v,w) . (7.55b)

This form also explains the name differential algebraic equation; in semi-explicit
form such a system comprises a mixture of differential and algebraic equations. The
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algebraic equations are often called constraints. Note that so far we do not assume
that we are dealing with an involutive equation.

U

C(0)
P Q

Fig. 7.1 Vector field pencil and submanifold

Thus we are not given a simple vector field on a manifold but a whole pencil of
vector fields on U and a submanifold C(0) = τU (S(0)) ⊆ U , the constraint manifold
obtained via the tangent bundle projection (see Figure 7.1). In the semi-explicit
form, the submanifold is described by the constraint equations (7.55b) and we have
a pencil P (0) of vector fields (or alternatively a parametrised vector field), as (7.55a)
does not uniquely determine all components of a vector field (the w components
remain arbitrary and may be considered as parameters).

Example 7.3.1. As a trivial example we may consider the following linear system in
semi-explicit form defined over U =�3 with u = (u,v,w):

v′ = u−2 , w′ =−v , v = 3 . (7.56)

Here the constraint manifold C(0) is the plane v = 3 and the pencil P (0) contains all
vector fields Xa ∈ X(U) of the form Xa(u) =

(
a(u),u−2,−v

)t
where a ∈ F(U) is

an arbitrary function. �

A solution of the differential algebraic equation must define an integral curve to
one of the vector fields in the pencil P(0) and this curve must lie in the constraint
manifold C(0). Obviously, these two conditions can be simultaneously satisfied only,
if the vector field is tangential to C(0). As shown in Figure 7.1, two possibilities
arise. It may happen at some points P ∈ C(0) that all vectors contained in P (0) are
transversal to C(0); such points can never lie on a curve defined by a solution of the
differential algebraic equation and must be removed. Such eliminations lead to a
smaller constraint manifold C(1)⊆ C(0) (as usual, we assume here for simplicity that
the remaining points do indeed form a manifold). At all points Q ∈ C(1) the pencil
P (0) contains at least one vector tangential to C(0). Removal of all the transversal
vectors leads to a shrunk pencil P (1) ⊆ P (0).
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If C(1) is a proper submanifold of C(0), we must again check the tangency, as
vectors tangential to C(0) are not necessarily tangential to C(1). Thus we obtain a
decreasing sequence of submanifolds C(0) ⊃ C(1) ⊃ ·· · ⊃ C( f ) and accompanying
vector field pencils P (0) ⊇ P (1) ⊇ ·· · ⊇ P( f ). This completion process stops as
soon as C(i) = C(i+1); depending on whether or not P (i) = P (i+1) we have f = i or
f = i+1. At the end we obtain a final submanifold C( f ) ⊆U and a final pencil P ( f )

of vector fields tangential to it.
In a more constructive manner we describe this process by two sequences of sub-

manifolds C(i) ⊆ U and S(i) ⊆ TU . The constraint manifold C(i) is always obtained
via the tangent bundle projection: C(i) = τU (S(i)). The new differential equation
S(i+1) arises as the intersection of the old one with the tangent space of its con-
straint manifold: S(i+1) = S(i) ∩ TC(i). The vector field pencils P (i) are uniquely
defined only on the constraint manifolds C(i); there they simply span the subman-
ifolds S(i). Off the submanifolds C(i), the vector fields contained in P (i) may be
continued arbitrarily.

U

C(0)C( f )

Fig. 7.2 Completed system

In most applications the final pencil consists of a single vector field (see Fig-
ure 7.2); otherwise we are dealing with an underdetermined system. Such a field
is called an underlying vector field. Note again that it is uniquely determined only
on the final constraint manifold C( f ). If we add to an underlying vector field any
field vanishing on C( f ), we obtain another underlying vector field. It is well possible
that C( f ) is an empty submanifold. In this case the original system was inconsis-
tent: it does not possess any solution, as the conditions it poses cannot be fulfilled
simultaneously.

The final constraint manifold C( f ) is obviously an invariant manifold for any
vector field contained in the final pencil P( f ). Indeed, in dynamical systems theory
an invariant manifold for a vector field has the property that any solution for initial
data on it stays within the manifold for all times and this property was the guiding
principle in our discussion above (we will formulate it later in a more general form
in Proposition 9.1.1).
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Example 7.3.2. We continue Example 7.3.1. As the constraint manifold C(0) is par-
allel to the u-w plane, a vector field is tangential to it, if and only if its v-component
vanishes on C(0). As the parameter a does not appear in this component, the tan-
gency cannot be achieved by shrinking the pencil P (0). Instead, we have to remove
all points P ∈ C(0) which are not simultaneously on the plane u = 2. Thus the man-
ifold C(1) is the straight line u = 2, v = 3. On it all vector fields contained in the
pencil P (0) are tangential to C(0), so that there is no need to shrink the pencil and
we have P (1) = P (0).

As the constraint manifold has become smaller, we have to check again the tan-
gency. Vector fields tangential to C(1) must possess a u-component which vanishes
on C(1). This property can be achieved solely by shrinking the pencil P (1) to those
vector fields Xa where the function a vanishes on C(1). The constraint manifold re-
mains unchanged, so that the completion stops here.

Thus we have f = 2; the final constraint manifold C(2) is the straight line u = 2,
v = 3 and one possible choice for the final pencil P (2) is the underlying vector field
X1(u) = (0,0,−3)t . The field X2(u) = (2−u,v−3,u−v−2)t represents also a valid
choice, as the two fields X1 and X2 coincide on the final constraint manifold C(2). �

The extension of these considerations to non-autonomous systems requires es-
sentially not more than replacing everywhere the tangent by the jet bundle. Thus we
assume now that we are given a fibred manifold π : E → X over a one-dimensional
base spaceX ; for simplicity we takeX =�. Our starting point is a differential equa-

tion R1 ⊆ J1π . Instead of the sequence S(i) we consider the sequence R(i)
1 ⊆ J1π

constructed by R(i+1)
1 = π2

1

(
R(i)

2

)
. The completion stops as soon as the equality

R(i+1)
1 =R(i)

1 holds.
At first sight, this procedure looks very different compared to the completion pro-

cess for autonomous systems. The definition of R(i+1)
1 requires as first step a pro-

longation to second order and then we project back to first order. In the autonomous
case, we reverse the order of the operations: first we project to the constraint mani-
fold, then we “prolong” by considering its tangent space. But for ordinary differen-
tial equations we have the following result.

Proposition 7.3.3. Let Rq ⊆ Jqπ be an ordinary differential equation. If we con-

sider its projectionR(1)
q−1 ⊆ Jq−1π together with the corresponding natural projec-

tion π̂q−1 :R(1)
q−1 → X , then R(1)

q = Rq ∩ J1π̂q−1 (here we consider J1π̂q−1 as a
submanifold of Jqπ).

Proof. For notational simplicity we give the proof for the case of a first-order equa-
tion: q = 1. The extension to the general case is trivial. Let a local representation of
the differential equationR1 be

R1 :

{
v′ = φ(x,v,w,w′) ,
0 = ψ(x,v,w) .

(7.57)

This form represents the obvious generalisation of the semi-explicit form (7.55)

to non-autonomous systems. We need a local description of R(1)
1 . Because of the
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semi-explicit form, it is easy to see that the prolongation of the equations containing
v′ leads to second-order equations solved for the derivatives v′′. Thus no cancella-
tions of second-order derivatives are possible and these equations drop out when we
project back to first order.

A local representation of R(1)
1 is obtained by adding to the equations already

contained in (7.57) the new equations

∂ψ
∂x

+
∂ψ
∂v

v′ +
∂ψ
∂w

w′ = 0 (7.58)

obtained by prolonging the algebraic equations in (7.57). Of course, in general this
approach leads to a redundant description, as these new equations are not necessarily
independent of the original ones. But this fact is of no importance here.

It is trivial to see that the same equations also define a local representation of

R1∩J1π̂1. The constraint manifoldR(1)
0 is locally described by the algebraic equa-

tions in (7.57) and we must simply add their prolongations (7.58) to the original
equations for the intersection. �

Hence we may reverse the order of prolongation and projection for ordinary dif-
ferential equations. Obviously, any smooth solution of the original equation R1 is

also a solution of the completed differential equation R( f )
1 , as it automatically sat-

isfies all the integrability conditions added during the completion process, and vice

versa. There only remains to show that the final equationR( f )
1 is indeed involutive.

Corollary 7.3.4. The final differential equationR( f )
1 is involutive.

Proof. As we are dealing with ordinary differential equations, involution is equiv-
alent to formal integrability. By the previous proposition and our construction it is

obvious that R( f )
1 =R( f+�)

1 for any � > 0. But this fact implies that it is a formally
integrable equation. �

A closer analysis of (7.58) clarifies the two geometric effects described in the au-
tonomous case: shrinking of either the constraint manifold or the vector field pencil.
The derivatives v′ in (7.58) can be eliminated with the help of the differential part
of (7.57) leading to

∂ψ
∂x

+
∂ψ
∂v
φ+

∂ψ
∂w

w′ = 0 . (7.59)

We find additional differential equations, if the Jacobian of this equation with
respect to w′ does not vanish identically on R1; hence the rank of the matrix
(∂ψ/∂v)(∂φ/∂w′) + (∂ψ/∂w) determines their number. Such new differential
equations correspond to a shrinking of the pencil. If the Jacobian does not possess
maximal rank, we can additionally derive some algebraic equations from (7.58). If
they are independent of the constraints in (7.57), we have found further integrability
conditions leading to a smaller constraint manifold.

Obviously, the completion process always terminates, as the proof of Proposi-

tion 7.3.3 shows that dimR(i+1)
1 < dimR(i)

1 until the process stops (we have addi-
tional equations). As J1π is a finite-dimensional manifold, we cannot have an infinite
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decreasing sequence. One should note that the assumption of a regular equation is
crucial for this proof. It is equivalent to the assumption of constant rank of all ap-
pearing Jacobians which is necessary to allow us at each step the distinction into
algebraic and differential equations.

In the geometric language we have used so far in this section, the completion
process appears to be very simple. However, in concrete computations it becomes
notoriously subtle. The considerations in the proof of Proposition 7.3.3 lead imme-
diately to the informal “Algorithm” 7.2.

Algorithm 7.2 Completion of ordinary differential equation
Input: system of ordinary differential equations
Output: involutive completion
1: separate into algebraic and differential equations
2: repeat
3: differentiate (new) algebraic equations
4: remove all functionally dependent equations
5: separate new equations into algebraic and differential ones
6: until no new algebraic equations appear
7: return final system

One great problem for any concrete realisation of this “algorithm” is that we
must check in Line /4/ whether some smooth functions are functionally indepen-
dent. Generally, this question is undecidable. In practice, the problem is less severe,
as explicitly given constraints are usually not only smooth but even analytic. The
real problem is that we must decide the independence not on the full jet bundle J1π
but only on the differential equationR(i)

1 , i. e. modulo a local representation of this
submanifold. Fully effective methods are known only for representations which are
polynomial in all variables. For the special case of the Dirac algorithm for Hamil-
tonian systems discussed below, Gerdt and Gogilidze [158] presented a completely
algorithmic solution based on Gröbner bases for elimination orders.

A further problem arises in the following manner. Assume that we obtained at
some stage a new algebraic equation φ = 0 where the left hand side is of the par-
ticular form φ = ψn for some other function ψ and an exponent n > 1. From a
geometric point of view, this special form makes no difference, as the equations
φ = 0 and ψ = 0 obviously describe the same zero set. But according to (2.15),
prolongations require the differential. As dφ = nψdψ , the differential of φ trivially

vanishes on the constraint manifold R(i)
0 and is useless for prolongations. Thus if

we continue to work with φ , then we might overlook some constraints.5

If all constraints are polynomial, then this question represents a very classical
topic in algebraic geometry: the ideal I generated by the constraints is not radical.
Since by Hilbert’s Nullstellensatz varieties are in a one-to-one correspondence with
radical ideals (and V(I) = V(

√
I)), we must take care to determine at each iteration

of the algorithm a basis of the radical ideal corresponding to the current constraint

5 In the physical literature one sometimes calls constraints like φ ineffective.
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manifold. Again, the theory of Gröbner bases yields an algorithmic solution of this
problem, albeit such computations are often prohibitively expensive.

Addendum: Constrained Hamiltonian Systems

Long before the expression differential algebraic equation was even invented, the-
oretical physicists began already to study such equations under the heading con-
strained dynamics. They have been mainly concerned with the special case of
Hamiltonian systems. As the corresponding theory was initiated by Dirac [107, 108]
(see also [109]), it is often called Dirac theory. An intrinsic geometric version was
developed by Gotay et al [173].

The classical coordinate formulation of the Dirac theory goes as follows. We as-
sume that U is a symplectic manifold with the symplectic two-form ω . The dynam-
ics is described by the Hamiltonian vector field XH for some Hamiltonian H ∈F(U).
In concrete applications, H usually arises from the Legendre transformation of a
Lagrangian L. If L is degenerate, then H is not uniquely defined. In this case, the
Hamiltonian vector field XH may be naturally considered as a vector field pencil, as
in our considerations above. Finally, we assume that the dynamics is constrained to a
submanifold C(0) ⊆U given as the zero set of some primary constraints φτ ∈ F(U)
with 1≤ τ ≤ r.

According to our considerations above, we must study at which points P ∈ C(0)

the condition XH P ∈ TPC(0) is satisfied. This condition may be equivalently formu-
lated as dφτ(XH) = 0 for 1 ≤ τ ≤ r (see Remark C.2.8). It follows from Defini-
tion C.6.3 of a Hamiltonian vector field and from the representation (C.46) of the
Poisson bracket on a symplectic manifold, respectively, that we find for any function
φ ∈ F(U) the equality

dφ(XH) = (ιXφ ω)(XH) = ω(Xφ ,XH) = {φ ,H} . (7.60)

Thus the tangency condition is satisfied at those points P where not only the given
primary constraints φτ but in addition also the secondary constraints ψτ = {φτ ,H}
vanish (if XH is actually a vector field pencil, these conditions may also be satisfied
by a suitable restriction of the pencil) and the latter ones define a new constraint
manifold C(1)⊆C(0). Note that the secondary constraints lead to a smaller constraint
manifold only, if they are algebraically independent of the primary ones.

If C(1) is a proper submanifold of C(0), we must again study the tangency of
the Hamiltonian vector field XH . By the same reasoning as above, this analysis
amounts to requiring that dψτ(XH) = {ψτ ,H} = 0 which may yield new tertiary
constraints. Iteration leads to the famous Dirac algorithm: we always compute the
Poisson brackets of the current constraint generation with the Hamiltonian until no
new constraints arise. As we have seen, there is nothing special behind this algo-
rithm; it is based on a simple reformulation of the tangency condition that is only
possible, if we are working on a symplectic manifold.
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Dirac’s derivation did not use the tangency condition but an equivalent reasoning.
If the dynamics is constrained to the manifold C(0), then the functions φτ must be
constant (actually vanish) along trajectories. This observation obviously entails that
their variation along the trajectories, φ̇ τ , must vanish. By (C.51), this variation is
given by φ̇ τ = {φτ ,H}. Thus we arrive at the same result as above.

The geometric formulation of Gotay et al [173] is obtained by expressing the
tangency conditions in yet another way, namely,

C(i+1) =
{

p ∈ C(i) | dH
(
(TC(i))⊥

)
(p) = 0

}
. (7.61)

Here (TC(i))⊥ denotes the symplectic complement of TC(i) in the full tangent bun-
dle TU C(i). Using the annihilator, the tangency condition may thus be expressed

more concisely as dH ∈
(
(TC(i))⊥

)0
. This fact can be seen as follows. Let us de-

note by (TC(i))� the image of the musical isomorphism � restricted to TC(i), i. e.
(TC(i))� = {ιYω | Y ∈ TC(i)} ⊆ T∗U C(i). Then

(
(TC(i))�

)0 =
{

Z ∈ TU C(i) | ω(Y,Z) = 0 ∀Y ∈ TC(i)}= (TC(i))⊥ (7.62)

implying that
(
(TC(i))⊥

)0 = (TC(i))�. Hence if the one-form dH is contained in
this space, then by the definition of � the corresponding Hamiltonian vector field
is tangential to C(i). Conversely, if the field XH C(i) is tangential to the constraint

manifold, then for all Y ∈ (TC(i))⊥ the equality ω(XH ,Y ) = dH(Y ) = 0 holds and

thus we find dH ∈
(
(TC(i))⊥

)0
.

Example 7.3.5. As a concrete example we consider a rigid rotator in d dimensions.
This is a particle of mass m moving in a d-dimensional Euclidean space Q; it is
not subject to any external forces but constrained to stay on the surface of the unit
sphere. We denote the spatial coordinates inQ by q and the corresponding momenta
in T∗Q by p = mq̇. The Hamiltonian of a free particle is simply H0 = 1

2m p2 and our
primary constraint is given by φ = 1

2 (q2− 1). Thus we start our analysis with the
Hamiltonian H = 1

2 p2 +λφ ; here λ is a yet arbitrary function (a “multiplier”) on our
phase space T∗Q expressing the fact that H is well-defined only on the constraint
surface C described by the equation φ = 0.

According to our discussion above, we must require that the Hamiltonian vector
field XH (note that XH is actually a pencil because of the arbitrariness of λ ) is tangent
to C and this condition is equivalent to {φ ,H} C = 0. As we are using here the
canonical Poisson bracket (C.48), we find that the function 1

m qp + {φ ,λ}φ must
vanish on C. Obviously, we may neglect the last term and take ψ = qp as secondary
constraint. It is trivial to see that it expresses nothing but the fact that the velocity
q̇ = p/m must always be tangential to the unit sphere. Thus C(1) is the submanifold
of T ∗Q described by the equations φ = ψ = 0.

In the next step of the Dirac algorithm we have to evaluate the Poisson bracket
{ψ ,H}= 1

m p2−λq2 +{ψ ,λ}φ . We may again neglect the last term, as it trivially
vanishes on C(1), and find this time that the Hamiltonian vector field XH will be
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tangent to C(1), if we choose λ = 1
m

p
q . As the constraint manifold did not shrink any

further, the Dirac algorithm stops here.
The dynamics of a rigid rotor is therefore described by the Hamiltonian vector

field XHf belonging to the final Hamiltonian Hf = p2

2m(2− 1
q2 ). Note that on the final

constraint manifold C(1) the Hamiltonians H0 and Hf coincide. However, the same
is not true for the corresponding Hamiltonian vector fields, as their computation
requires also normal differentiations. From a physical point of view the additional
terms in XH represent constraint forces, i. e. those forces that ensure that our particle
stays on the constraint manifold. If we assume e. g. that our particle is connected to
the origin by a rod, then these forces correspond to the tension in the rod. �

In Example 2.4.6 we intrinsically formulated non-autonomous Hamiltonian sys-
tems using cosymplectic geometry. Now we present the corresponding modification
of the Dirac theory. We assume again that the total space of our fibred manifold is
a cosymplectic manifold (E ,ω ,η)—the extended phase space—with a transversal
Reeb vector field R.

According to Example 2.4.6, the dynamics of an unconstrained system defined
by a Hamiltonian H is given by the evolution vector field EH . For the analysis
of a constrained system an alternative formulation is often advantageous. We can
combine the cosymplectic structure and the Hamiltonian by introducing the 2-form
ωH = ω+dH ∧η . One easily checks that (E ,ωH ,η) is again a cosymplectic mani-
fold with Reeb vector field RH = EH .

Now we impose on this system some constraints, i. e. we require that the dynam-
ics takes place on a prescribed fibred submanifold C ⊆ E . According to our consid-
erations above, this condition entails that solutions can only exist at points where
the Reeb vector field RH is tangent to C. This leads to a sequence of submanifolds

C(i+1) =
{
ξ ∈ C(i) | Rh ξ ∈ TξC(i)} (7.63)

with C(1) = C. Using the cosymplectic complement, we may reformulate this tan-
gency condition in analogy to (7.61) as

C(i+1) =
{
ξ ∈ C(i) | ηξ

(
(TξC(i))⊥

)
= 0
}

. (7.64)

As the proof of this equality is very similar to the computations above, we skip it
and refer to [83] instead.

As discussed in Example 2.4.6, the contact map allows us to associate with the
Reeb vector field RH a section γ : E → J1π whose image defines a Hamiltonian
differential equation R̄1. The constrained system may then be realised as

R1 =
{
(ξ ,λ ) ∈ R̄1 | ξ ∈ C

}
. (7.65)

Here we use our intrinsic Definition 2.2.2 of the first-order jet bundle J1π and repre-
sent any point ρ ∈ J1π as a pair (ξ ,λ ) with ξ ∈ E and λ ∈ T ∗

x X ⊗TξE . Obviously,

R(1)
0 = C. As above, the completion process leads to a sequence of submanifolds
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R(i)
1 until R(i+1)

1 = R(i)
1 . We claim now that R(i)

0 = C(i), i. e. our two alternative
descriptions of the completion algorithm are equivalent.

Indeed, this equivalence is a simple consequence of Definition 2.2.2. The basic

idea is to describe the constraint manifolds R(i)
0 in a similar manner as (7.63). By

construction, the equality

Γ1
(
γ(ξ ),Tξ π(RH ξ)

)
= RH ξ (7.66)

holds. Thus the differential equation R̄1 defined by the section γ is an underlying
differential equation. In fact, it would suffice, if (7.66) held only for all ξ ∈ C, i. e.
we could take any section such that R1 ⊆ Imγ . It is now easy to see that in close
analogy to (7.63)

R(i+1)
0 =

{
ξ ∈R(i)

0 | γ(ξ ) ∈ J1R(i)
0

}
. (7.67)

Assume that γ(ξ ) = (ξ ,λ ) ∈ J1R(i)
0 which means that λ ∈ T∗

π(ξ )X ⊗TξR
(i)
0 accord-

ing to our definition of the jet bundle. Applying (7.66) shows that this property is

equivalent to RH ξ ∈ TξR
(i)
0 , as for such a λ the contact map Γ1 maps to the tangent

space TξR
(i)
0 . Hence ξ ∈R(i)

0 implies ξ ∈ C(i) and vice versa.

7.4 Cartan–Kuranishi Completion

In the previous section we considered only ordinary differential equations, where
in particular for autonomous system the completion process is very transparent and
intuitive. Now we derive in an intrinsic manner a rather general completion method
that can—in principle—handle any regular system of partial differential equations.
While it is still fairly simple, it is less intuitive. Furthermore, we will see that some
of the required operations cannot always be performed effectively.

Recall from Section 2.3 that a differential equation Rq is regular, if all its pro-
longations and subsequent projections lead to fibred submanifolds. Furthermore, in
accordance with our Blanket Assumption 7.1.4, we assume that the indices of all
symbols are constant. In particular, if integrability conditions arise, it is generally
not possible to check in advance whether a given differential equation satisfies these
assumptions; they can only be verified during the completion. A trivial exception are
linear equations, where only the zeros and singularities of the coefficient functions
must be analysed more closely.

Theorem 7.4.1 (Cartan–Kuranishi). LetRq ⊆ Jqπ be a regular differential equa-

tion. Then two integers r,s≥ 0 exist such thatR(s)
q+r is involutive.

Proof. We give a constructive proof leading directly to the promised general com-
pletion method. It is based on the simple Algorithm 7.3 which consists of two nested
loops: in the inner one we prolong until an involutive symbol is reached; in the outer
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one we check whether one further prolongation and subsequent projection yields in-
tegrability conditions. If we can show that this algorithm always terminates with an

involutive equation of the form R(s)
q+r, we are done. Thus there are two points to

prove: the correctness and the termination.

Algorithm 7.3 Cartan–Kuranishi completion
Input: regular differential equationRq ⊆ Jqπ
Output: equivalent involutive equationR(s)

q+r ⊆ Jq+rπ
1: r← 0; s← 0
2: repeat
3: whileN (s)

q+r not involutive do
4: r← r +1
5: end while
6: intConds←R(s+1)

q+r �R(s)
q+r

7: if intConds then
8: s← s+1
9: end if

10: until ¬intConds
11: return R(s)

q+r

The correctness of Algorithm 7.3 is simple. Assume that it terminates with some

values r and s. By construction, the symbolN (s)
q+r is involutive at the end of the inner

loop. At the end of the outer loop the boolean variable intConds is false implying

that R(s+1)
q+r = R(s)

q+r. Thus both conditions of Theorem 7.2.6 are satisfied and the

differential equationR(s)
q+r is involutive.

For the termination we must consider the two loops in Algorithm 7.3. The inner
loop terminates because of Theorem 6.1.21: if r0, s0 are the values of the counters
at the beginning of the loop and N the symbol comodule of the corresponding dif-

ferential equationR(s0)
q+r0

, then this theorem guarantees the existence of a finite value
r1 ≥ r0 such that the Spencer cohomology H•(N ) vanishes from degree q + r1 on;

but this fact is equivalent to involution of the symbolN (s0)
q+r1

.

Alternatively, we may work in local coordinates. At a point ρ ∈R(s0)
q+r0

the inner
loop corresponds to the determination of a finite Pommaret basis for the symbol
module. According to Theorem 4.4.1 (together with the results of Section 4.3), such
a basis always exists and thus the loop always terminates—provided our chosen
coordinates are δ -regular.

The termination of the outer loop follows from a Noetherian argument. Consider
the polynomial moduleM finitely generated by the symbol modules of Rq and all

its projections R(q−q′)
q′ with 0 ≤ q′ < q, respectively (thus we take the annihilator

of the symbol comodule constructed in the more refined manner of Remark 7.1.16
where also the lower-order equations are taken into account). In local coordinates,
this approach corresponds to choosing a local representation of Rq with a Jacobian
in triangular form and taking the principal part of each equation as a generator.
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If integrability conditions occur at the end of the outer loop, i. e. the correspond-
ing projection is not surjective, then the module M′ correspondingly constructed

for R(s+1)
q+r is larger than M. Indeed, choosing again a local representation in trian-

gular form, the principal parts of the new equations stemming from the integrability
conditions cannot lie in M. Hence adding these new generators leads to a strictly
larger (but still finitely generated) polynomial moduleM′ ⊃M.

Therefore the outer loop of Algorithm 7.3 leads to an ascending chain of sub-
modules of a free polynomial module. As polynomial modules are Noetherian, this
chain must become stationary for some value of s. But this fact implies that in the
iteration of the outer loop corresponding to this value no integrability condition was
found. Hence the algorithm terminates at this iteration. �

If we apply Algorithm 7.3 to a concrete differential equation, then it obviously
will alternate prolongations and projections. Thus, strictly speaking, it works with
differential equations ((((Rq+r1)

(1))+r2)
(1)) · · · )+rs . However, it always projects

equations with an involutive symbol. Thus, by Part (ii) of Proposition 7.2.5, these

equations coincide withR(s)
q+r1+···+rs

.

Remark 7.4.2. The involutive completed equationR(s)
q+r is equivalent to the original

differential equation Rq in the sense that both possess the same formal solution
space. In fact, both equations have even the same smooth solutions. Differences
may show up only for solutions ofRq with a finite differentiability: solutions ofRq

which are only k times differentiable for q≤ k < q+ r cannot be strong solutions of

R(s)
q+r, as they lack sufficiently many derivatives. But we may expect that they are at

least weak solutions in a suitable sense. �

Example 7.4.3. We demonstrate the working of Algorithm 7.3 for a classical linear
second-order equation due to Janet [235, Ex. 47]:

R2 :

{
uzz + yuxx = 0 ,
uyy = 0 .

(7.68)

Thus we have one dependent variable and three independent variables. Obviously,
the system is overdetermined.

According to our algorithm, we prolong until the symbol becomes involutive.

One readily checks that the indices of the symbol N2 are β (3)
2 = β (2)

2 = 1 and

β (1)
2 = 0. The rank of the symbol matrix M3 is 6 > 3β (3)

2 + 2β (2)
2 = 5 (the non-

multiplicative prolongation uyyz = 0 is necessary to generate N3), thus the symbol
N2 is not involutive and we must prolong. In a lengthy computation one shows that
N3 is involutive and the inner loop terminates with r = 1. Now we must check for

the appearance of integrability conditions. One finds dimR(1)
3 = 11 < dimR3 = 12.

ThusR3 is not involutive, as one condition is hidden. Indeed,

Dyy(uzz + yuxx)− (Dzz + yDxx)uyy = uxxy = 0 . (7.69)
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Thus after the first iteration of the outer loop r = s = 1 and we continue with R(1)
3 .

The calculations now become more and more tedious, as the number of equations
needed in local representations of either the differential equations or their symbols
rapidly grows. So we can only sketch the progress of the computation.

N (1)
3 is again not involutive, since setting upN (1)

4 requires the non-multiplicative

prolongation uxxyz = 0. The symbolN (1)
4 is involutive and at the end of the inner loop

r = 2. But again we find an integrability condition,

Dxxy(uzz + yuxx)− (Dzz + yDxx)uxxy = uxxxx = 0 , (7.70)

andR(1)
4 is not involutive. Thus now s = 2 and we continue withR(2)

4 .

Again, the symbol N (2)
4 is not involutive because of the non-multiplicative pro-

longation uxxxxz = 0. Thus we prolong once more in order to obtainR(2)
5 . Finally, the

algorithm terminates with r = 3 and s = 2, as the symbol N (2)
5 is involutive and no

integrability conditions appear during the prolongation so that the differential equa-

tion R(2)
5 is involutive, too. Thus, R(2)

4 is another example of an equation which
is formally integrable but not involutive. However, we can detect this fact only in
hindsight, after the algorithm has terminated.

In fact, involution of the symbolN (2)
5 is trivial, as it vanishes. Thus we are deal-

ing here with an equation of finite type. Its solution space is twelve-dimensional as

dimR(2)
5 = 12. Indeed, a direct integration ofR(2)

5 yields the solution

u(x,y,z) =
1
3

a1x3z−a2xyz2 + a3x3 + a2x2z+ a4xyz−a1yz2 +

a5x2 + a6xy + a7xz+ a8yz+ a9x + a10y + a11z+ a12 .
(7.71)

(Note that this integration is greatly simplified by the knowledge of the hidden in-
tegrability conditions. This effect is typical and explains why completion has found
so much interest in Lie symmetry theory where one often must solve large overde-
termined systems for obtaining the symmetry generators.)

As one can see, the straightforward application of Algorithm 7.3 may become
quite tedious even for such small equations. In our particular example one needs
a total of 132 prolongations in order to get local representations for all appearing
equations. Furthermore, one must compute row echelon forms of symbol matrices
and Jacobians; the largest is an 86× 84 matrix. We will show later in Section 10.7
that by a clever organisation of the computations using ideas from the algebraic the-
ory of involutive bases one can completely avoid the determination of row echelon
forms and reduce the number of prolongations by about 80%. �

Algorithm 7.3 does not really represent an algorithm but only a “method”, i. e. it
is not clear whether all steps can be performed effectively. This question concerns
in particular the test for inequality in Line /6/. To decide whether or not a symbol is
involutive requires basically only some linear algebra and is thus fully algorithmic.
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However, even there it may happen for non-linear systems that not all necessary
operations with the coefficients of the symbol can be performed effectively.

The test in Line /6/ requires to decide whether certain equations are algebraically
independent. Depending on the type of the equation this question can be highly
non-trivial. For linear equations it is again only a matter of some linear algebra. For
polynomial equations it can—at least in principle—be done using Gröbner bases
(see Appendix B.4), although the computations suffer potentially from a very high
complexity. For arbitrary non-linear equations no general criterion is known. De-
pending on the class of functions considered the situation may become even worse.
While analytic functions are either independent or not, smooth functions may be
independent in some domains and dependent in others.

Finally, we compare Algorithm 7.3 with the geometric completion procedure
for ordinary differential equations introduced in the last section. As any ordinary
differential equation has an involutive symbol, the inner loop becomes superfluous.
The algorithm reduces to a simple prolong–project, prolong–project, . . . But we
have seen in the proof of Proposition 7.3.3 that it is possible to swap the operations
and use project–prolong cycles. The result is the same, but the modified algorithm
is computationally more efficient, as less equations must be prolonged.

One should stress that this modification is allowed only for ordinary differential
equations, because for them no integrability conditions arise from cross-derivatives
which always take place in higher order. Even if we are dealing with a first-order
partial differential equation in only one dependent variable, we must use prolong–
project cycles, although such an equation always has an involutive symbol according
to the Drach classification in Remark 7.1.29. Otherwise we risk to overlook hidden
integrability conditions.

Remark 7.4.4. Recall from Remark 7.1.12 that integrability conditions are related
to syzygies of the principal symbol module. Furthermore, by (our proof of) Theo-
rem 7.2.8 we can also use these syzygies for deciding formal integrability. These
considerations lead to a different view of the computations underlying any effec-
tive realisation of Algorithm 7.3 and also highlight some of the differences between
formal integrability and involution.

In Remark 6.1.23 we noted that the degree of involution of a polynomial module
is nothing but its Castelnuovo–Mumford regularity. Thus assume that the polyno-
mial module M which we constructed in the termination proof of Algorithm 7.3
becomes involutive at the degree q + r. Then the truncation M≥q+r is nothing but

the annihilator (N (s)
q+r)0 of the current symbol and, according to Theorem 5.5.24, it

possesses a linear resolution. This observation implies in particular that the first
syzygy module can be generated by syzygies of degree one. Given the connec-
tion between syzygies and integrability conditions, any integrability condition must
therefore show up already in the next prolongation—a fact we proved in a different
manner in Theorem 7.2.6.

Going back to Example 7.4.3, one can easily verify these considerations. The
polynomial module M associated to the original equation R2 is here the ideal
〈χ2

3 + yχ2
1 ,χ2

2 〉. One easily sees that Syz(M) is a principal module with the single
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generator S1 = χ2
2 e1 +(χ2

3 + yχ2
1 )e2. As it is of degree 2, the resolution ofM≥2 =

M is not linear and the symbol N2 cannot be involutive. At the level of the con-
struction of integrability conditions, it is now obvious that we must prolong twice
in Algorithm 7.3 before we can find the first condition uxxy = 0 (one prolongation
is done in the inner loop; the other one is hidden in the computation of the boolean
variable intConds). Note that the construction of this condition in (7.69) follows
immediately from the syzygy above.

Continuing now in the same manner with the differential equationR(1)
3 , we must

now analyse the polynomial moduleM obtained by adding the generator χ2
1χ2. This

leads to two additional minimal generators for Syz(M), namely S2 = χ2
1 e2− χ2e3

and S3 = χ2
1χ2e1− (χ2

3 + yχ2
1 )e3. One easily sees that S2 does not lead to an inte-

grability condition (but to an identity), whereas S3 yields (7.70). Again the minimal
generators are of higher order, so that M≥3 does not possess a linear resolution
and in the execution of Algorithm 7.3 we had again to prolong twice to find this

integrability condition, as N (1)
3 is not involutive.

Thus we are now dealing with the differential equationR(2)
4 and we must add the

minimal generator χ4
1 in order to obtain the modified polynomial module M. For

its syzygy module Syz(M) we need again two further minimal generators, namely
S4 = χ2

1 e3− χ2e4 and S5 = (χ2
3 + yχ2

1 )e4− χ4
1 e1. One easily checks than none of

them leads to a new integrability condition so that R(2)
4 is a formally integrable

equation according to Theorem 7.2.8. Thus, if we are just interested in integrability
conditions, then we can stop the completion process at this stage. But if we go for

involution, then it follows again from the degrees of the syzygies that N (2)
4 cannot

be involutive and that further prolongations are required. The number of prolonga-
tions needed cannot be deduced from the syzygy, as it depends on the full syzygy
resolution (or equivalently the full Koszul homology).

Compared with the direct execution of Algorithm 7.3, one sees that this approach
requires much less computations, as we need only those prolonged equations which
are actually part of a generalised cross-derivative leading to an integrability con-
dition. However, the above description is slightly misleading, as we simply wrote
down the minimal generators of the respective syzygy modules. In practice, these
must be determined using some form of Gröbner basis (for example, an involu-
tive basis). Indeed, the efficient algebraic realisation of the Cartan–Kuranishi Algo-
rithm 7.3 for linear systems which we will present in Section 10.7 implicitly does
exactly this, although there syzygies will not be mentioned explicitly. �

7.5 The Principal Symbol Revisited

In this section we prove a result on the relation of the highest index β (n)
q and the

principal symbol of a differential equation. An extension of this approach to a fully
constructive solution of the problem of δ -regularity will be given in the next section.
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Here we will use the mentioned relation for a rigorous definition of under- and
overdetermined equations.

Theorem 7.5.1. Let Rq be a differential equation in n independent variables with
principal symbol τχ . In different coordinate systems we may obtain different values

for the index β (n)
q of the geometric symbol Nq at the point ρ ∈ Rq with π(ρ) = x;

let β̃ (n)
q be the maximum of these values. Then at the point ρ

max
χ∈T∗

x X
rankτχ = β̃ (n)

q . (7.72)

Proof. By the definition of β̃ (n)
q , we find in a neighbourhood of ρ a local description

ofRq where the first β̃ (n)
q equationsΦτ (x,u(q)) = 0 satisfy

∂Φτ

∂ pα[0,...,0,q]
= δτα . (7.73)

Setting χ = χidxi
x has the following effect on the matrix T [χ ] of the principal

symbol τχ at the point ρ : the diagonal elements of the top left β̃ (n)
q × β̃ (n)

q submatrix
of T [χ ] are of the form (χn)q + . . . and the monomial (χn)q appears nowhere else
in the matrix. If we choose χ = dxn

x, all entries vanish with the exception of these

diagonal elements which become one. Hence the rank of τχ at ρ is β̃ (n)
q for this

particular choice of χ .

Assume that for some one-form χ ∈ T ∗
x X the rank of τχ was greater than β̃ (n)

q .
We choose in a neighbourhood of the point x a new coordinate system x̃ given by
x̃ =ψ(x) where the componentψn satisfies dψn

x = χ . Obviously, such coordinates
always exist, as this is only a condition at the single point x. For the dependency of
the transformed local representation Φ̃τ = 0 on the derivatives of class n we obtain

∂Φ̃τ

∂ p̃α[0,...,0,q]
=
∂Φτ

∂ pαν

n

∏
i=1

(
∂ψn

∂xi

)νi

. (7.74)

At the considered point x we can evaluate the derivatives of ψn and the right hand
side becomes the matrix T [χ ] of the principal symbol τχ . By assumption, its rank is

greater than β̃ (n)
q . Thus we have found a local coordinate system where more than

β̃ (n)
q equations are of class n contradicting the definition of β̃ (n)

q . �

Recall that by definition of δ -regular coordinates, they must always yield the

value β̃ (n)
q for the index β (n)

q . Thus for such coordinates the one-form χ = dxn must
lead to a principal symbol of maximal rank. One-forms that lead to a lower rank are
sometimes called systatic.

Corollary 7.5.2. If a one-form χ ∈ T∗X exists such that the principal symbol τχ of
the differential equationRq is surjective, thenRq is involutive.
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Proof. The principal symbol τχ can only be surjective, if the number t of (indepen-
dent) equations in any local representation of the equation Rq is less than or equal
to the number m of dependent variables and if all the equations are of order q. The
rank of τχ is then t and by Theorem 7.5.1 all equations are of class n. But this ob-
servation trivially implies that Nq is involutive and that no integrability conditions
arise; henceRq is involutive. �

Example 7.5.3. Despite the computational complexity of determining the rank of
parametrised matrices, Theorem 7.5.1 is sometimes quite useful for checking the
δ -regularity of a coordinate system. We demonstrate this fact for the Yang–Mills
equations (2.93). As they are semi-linear, there is no need for a linearisation and
the principal part of the equation Φa

� = 0 is simply η i j(∂xix j Aa
� − ∂xix�Aa

j). Thus we

obtain β (n)
2 = d(n−1), as for all equationsΦa

� = 0 with an index � �= n we may take
∂xnxnAa

� as principal derivative of class n. In the d remaining equations with � = n

we choose ∂xn−1xn Aa
n−1 as principal derivative of class n− 1. Thus β (n−1)

2 = d and
all other indices vanish.

Now the question arises whether some of the equations we have classified as
being of class n−1 could be “promoted” to class n by a coordinate transformation,

i. e. whether our coordinates are δ -regular. As only β (n)
2 and β (n−1)

2 are greater than

zero, we are done once we know whether β (n)
2 = β̃ (n)

2 and by Theorem 7.5.1 this can
be decided with the principal symbol. For the entries of its matrix we obtain

T ak
b� [χ ] = δ a

bη
i jχi

(
δ k

� χ j− δ k
j χ�

)
(7.75)

with 1≤ a,b≤ d and 1≤ k, �≤ n. The indices a, � label the rows (i. e. the equations
Φa

� = 0 in the system) and the indices b,k the columns (i. e. the fields Ab
k).

It is easy to see that these entries satisfy for any one-form χ the d identities
ηm�χmT ak

b� [χ ] = 0, as then the expression in the parentheses vanishes—note that we
have here just the principal parts of the Noether identities (2.94). This observation
implies that the rank of the matrix T [χ ] can never be larger than d(n−1). But from
our analysis above, we already know that for χ = dxn we obtain this value as rank.
Thus d(n−1) is indeed the maximal rank and our coordinates are δ -regular.

The form of these identities immediately implies that the symbolN2 of the Yang–
Mills equations is involutive, as a multiplication with a component of χ corresponds
to a differentiation with respect to the corresponding independent variable. The prin-
cipal part of the prolonged equation DkΦa

� is of the form η i j(∂xix jxk Aa
� − ∂xix�xk Aa

j)
and thus consists of dn2 equations. Contraction with ηk� yields obviously zero and
we have at least d linear dependencies between rows of the symbol matrix M3 (cor-
responding to the d identities above) and its maximal rank is d(n2−1). On the other
hand, the number of multiplicative variables ofN2 is a lower bound for this rank and

in our case nβ (n)
2 +(n−1)β (n−1)

2 = d(n2−1). Hence the symbolN2 is involutive by

Proposition 7.1.24. We already determined in Example 2.4.3 thatR(1)
2 =R2. Hence

the Yang–Mills equations are involutive.
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Note that for this result the concrete form of neither the metric η i j nor the struc-
ture constants Ca

bc plays a role! In particular, it is independent of the signature of the
metric and remains valid in curved space-times. In the analysis of the symbol the
structure constants do not appear at all; the formal integrability requires only that
they satisfy the Jacobi identity. This observation also implies that the dimensions of
the non-vanishing Spencer cohomology groups are independent of both metric and
structure constants. Following Remark 7.1.27 we find:

dimH1,1(N ) = β (n)
2 +β (n−1)

2 = dn , (7.76a)

dimH1,2(N ) = β (n−1)
2 = d . (7.76b)

Again the first dimension is just the number of differential equations in our sys-
tem (which here coincides with the number of dependent variables) and the second
dimension the number of (Noether) identities. �

Example 7.5.4. In the same manner one may analyse the Einstein equations and give
an alternative proof that their symbol is involutive. In locally geodesic coordinates
the matrix of the principal symbol has the entries

T i j
k� [χ ] = χm

[
η jm(δ i

�χk + δ i
kχ�

)
+η im(δ j

� χk + δ j
k χ�

)
−

2η i jχkχ�−ηmnχmχn
(
δ i

kδ
j
� + δ i

�δ
j

k

)]
.

(7.77)

Due to the symmetries of the metric and the Ricci tensor, T is a square matrix with
n(n + 1)/2 rows and columns; the former ones are labelled by the indices k, �, the
latter ones by i, j. One easily verifies the identities

ηm�
(

T i j
km[χ ]χ�−

1
2

T i j
m�[χ ]χk

)
= 0 . (7.78)

They imply that the maximal rank of T cannot exceed n(n− 1)/2. But we know

already from Example 7.1.26 that in locally geodesic coordinates the index β (n)
2 has

this value. Thus no further identities exist and the coordinates are δ -regular.
We may again interpret the identities (7.78) as relations between the rows of the

prolonged symbol matrix and a count similar to the previous example proves involu-
tion of the symbol. Note that this time (7.78) represents the principal symbol of the
contracted Bianchi identity. Thus our calculations in locally geodesic coordinates
yield an indirect proof of them. �

It is really surprising that one has difficulties finding in the literature rigorous
definitions for such basic notions as under- and overdeterminacy. Often one uses the
simple counting familiar from linear algebra: how many equations and how many
unknown functions are there? Unfortunately, this method easily leads to wrong re-
sults, as the next example shows. The main point is that here a definition and a
criterion are confused. In linear algebra, a linear system of equations is called un-
derdetermined, if some components of the solution vector are not restricted by the
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system, i. e. may be chosen arbitrarily. It is trivial to show that this happens, if and
only if the system comprises less independent equations than unknowns. For dif-
ferential equations the situation is more complicated, as the “only if” is no longer
true.

Example 7.5.5. We consider the U(1)-Yang–Mills equations on a two-dimensional
space-time (i. e. electrodynamics in one space dimension):

R2 :

{
utt − vxt = 0 ,
uxt − vxx = 0 .

(7.79)

Obviously, we have a system with two equations and two unknown functions u(x,t)
and v(x,t) (corresponding to A2 and A1). Thus one might expect that it should be
a well-determined system; however, (7.79) is underdetermined! This can be seen
as follows. One easily checks that the system (7.79) is invariant under the trans-
formation6 u → u + ∂xΛ and v→ v + ∂tΛ where Λ is an arbitrary function of the
independent variable x and t. Thus we may choose either u or v arbitrarily and still
find a solution of (7.79). This behaviour represents precisely what we expect of an
under- and not of a well-determined system.

In fact, all Yang–Mills equations in any dimension of space-time are underdeter-
mined, as they remain invariant under the transformation

Āa
i = Aa

i + ∂xiΛa +Ca
bcAb

iΛ
c (7.80)

where the number of arbitrary functions Λa(x) equals the dimension of the under-
lying Lie group G. In differential forms language we may write Ā = A+ dΛ where
the function Λ takes its values in the Lie algebra g of G. �

With the help of the principal symbol we can give rigorous definitions of under-,
over-, and well-determined equations. They reduce the problem to linear algebra.
In concrete computations with local coordinates the classification requires only the
analysis of a parametrised matrix, essentially the determination of its rank.

Definition 7.5.6. We call the involutive differential equationRq ⊆ Jqπ underdeter-
mined at a point ρ ∈ Rq, if no one-form χ ∈ T ∗

πq(ρ)X exists such that the principal
symbol τχ of Rq is injective at ρ . If a one-form χ exists such that τχ is bijective at
the point ρ , the differential equationRq is there well-determined or normal. In any
other caseRq is called overdetermined at ρ .

These definitions are rather abstract, but we will see in Section 8.2 that they
indeed capture the intuitive idea of under- or overdeterminacy, respectively. In par-
ticular, it will turn out that a differential equation is underdetermined, if and only if
some of the unknown functions u appearing in it may be chosen arbitrarily and one
can still find a solution of it (as in Example 7.5.5 above). For practical purposes, we

6 This transformation represents a simple example of a gauge symmetry; more on this topic is
contained in Section 8.3.
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provide now simple criteria in terms of the highest index β (n)
q of the symbolNq (of

course computed in δ -regular coordinates).

Proposition 7.5.7. An involutive differential equation Rq in n independent and m

dependent variables is underdetermined, if and only if β (n)
q < m. It is normal, if and

only if β (n)
q = m, all other indices vanish andR(1)

q−1 = Jq−1π .

Proof. By definition, Rq is underdetermined, if and only if no one-form χ exists

such that rankτχ = m. By Theorem 7.5.1, this happens if and only if β (n)
q < m. Sim-

ilarly, we get the value of β (n)
q for a normal equation. It follows from the bijectivity

of the principal symbol that in this case all other indices vanish, as a local represen-
tation cannot contain any further equations. Indeed, they would be of lower order
and thus contribute zero rows to the matrix of the principal symbol. Conversely, the

condition on the projectionR(1)
q−1 ensures that no lower-order equations are present

and the assumed values of the indices β (k)
q imply that at least for one one-form

χ ∈ T ∗X the matrix T [χ ] is regular. �

Based on this result it is very easy to characterise the local form of normal equa-
tions. In the case of an ordinary differential equation, normality excludes the pres-
ence of lower-order equations. Thus a first-order normal ordinary differential equa-
tion possesses local representations of the form u̇ = f(x,u), i. e. each equation is
solved for a derivative and we have one equation for each derivative. In the case of
a partial differential equation we rename xn as t. Then a normal first-order equa-
tion takes locally the Cauchy–Kovalevskaya form ut = f(x,t,u,ux): each equation
is solved for a t-derivative and we have one equation for each t-derivative. Thus,
as expected, normality requires more than just the same number of equations and
unknown functions; a distinguished independent variable t must exist such that we
can write the system in the above special form.

Recalling Definition 7.1.13 of a characteristic one-form, we see that for underde-
termined equations any one-form χ ∈ T∗X is characteristic. For all other equations
characteristic and systatic are equivalent and we may say that a necessary condi-
tion for a δ -regular coordinate system is that dxn is not characteristic. Indeed, if
δ -singular coordinates appear in applications, the singularity is mostly due to the
use of characteristic coordinates. A trivial example is the wave equation in the form
uxy = 0; it represents just the differential equation version of Example 3.1.16.

Example 7.5.8. We continue with the two-dimensional U(1)-Yang–Mills equations
(Example 7.5.5). The matrix of the principal symbol is

T [χ ] =
(

(χ1)2 −χ1χ2

χ1χ2 −(χ2)2

)
. (7.81)

If we multiply the first row by χ2 and the second by χ1, we obtain the same. Thus
an upper bound for the rank of T is 1 and it takes indeed this value for every non-

vanishing one-form χ . Hence β̃ (2)
2 = 1 and it is not possible to find a coordinate
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system in which both equations of (7.79) are of class 2. The principal symbol is
never injective and every one-form is characteristic. ThusR2 is indeed underdeter-
mined, although there are as many equations as dependent variables. �

Note that Definition 7.5.6 applies only to involutive equations. Otherwise, no
reasonable definitions of under- or overdeterminacy can be given, as hidden integra-
bility conditions may change the character of the equation. We must be sure that all
equations possibly affecting the principal symbol have been exhibited.

Example 7.5.9. We augment (7.79) by the first-order equation vt −ux = 0 (this con-
dition is an example of a gauge fixing—see Section 8.3—and usually called the
Lorenz gauge). The arising equation R̄2 is no longer formally integrable. If we nev-
ertheless applied Definition 7.5.6, it would still classify the equation as underdeter-
mined: the addition of a lower-order equation only adds a row of zeros to the matrix

of the principal symbol. A local representation of R̄(1)
2 is

R̄(1)
2 :

⎧
⎨

⎩

utt −uxx = 0 , uxt − vxx = 0 ,
vtt − vxx = 0 , vxt −uxx = 0 ,

vt −ux = 0 .
(7.82)

It is not difficult to show that this differential equation is involutive. For the matrix
of its principal symbol we obtain

T [χ ] =

⎛

⎜
⎜
⎜
⎜
⎝

(χ1)2− (χ2)2 0
χ1χ2 −(χ2)2

0 (χ1)2− (χ2)2

−(χ2)2 χ1χ2

0 0

⎞

⎟
⎟
⎟
⎟
⎠

(7.83)

and it is obviously injective for any one-form χ with χ1 �= χ2. Furthermore, the
principal symbol cannot be bijective and thus we are dealing with an overdetermined
equation. In fact, the basic idea behind such a gauge fixing consists of reducing the
arbitrariness in the solutions of a differential equation. �
Remark 7.5.10. In the literature one sometimes finds for linear systems another def-
inition of overdeterminacy: the equation locally described as the kernel of the linear
differential operator L0 is overdetermined, if a linear differential operator L1 �= 0
exists such that L1 ·L0 = 0. The underlying idea is that a linear overdetermined sys-
tem always possesses compatibility conditions; this fact follows immediately from
Definition 7.5.6 and Proposition 7.2.13. Nevertheless, the two definitions of overde-
terminacy are not equivalent, as the following trivial example of a linear system with
three unknown functions in three independent variables demonstrates:

R1 :

⎧
⎨

⎩

uz− vz = 0 ,
wz = 0 ,
wy = 0 .

(7.84)

Obviously, this system is underdetermined, as the matrix of its principal symbol



7.6 δ -Regularity and Extended Principal Symbols 317

T [χ ] =

⎛

⎝
χ3 −χ3 0
0 0 χ3

0 0 χ2

⎞

⎠ (7.85)

has at most rank 2. Nevertheless, if we set L1 = (0 ∂y ∂z), then L1 ·L0 = 0 for the
linear differential operator L0 corresponding to our system and thus according to the
mentioned definition the system would be classified as overdetermined.

This discrepancy has a simple resolution. A closer look at (7.84) shows that the
system naturally decouples into a subsystem for u, v and a second one for w. The
first subsystem is trivially underdetermined, as we may for example choose v ar-
bitrarily and still find solutions. It is equally obvious that the second subsystem is
overdetermined in any reasonable sense. The question is now how to classify the
combined system. Our definition gives precedence to underdeterminacy: whenever
we can choose some unknown functions arbitrarily in the solution, we call the dif-
ferential equation underdetermined (which is very natural from an intuitive point of
view). Indeed, according to Definition 7.5.6 an equation is overdetermined only, if
it is neither under- nor well-determined. By contrast, the above mentioned approach
prefers overdeterminacy and classifies an equation as overdetermined as soon as it
possesses compatibility conditions. �

7.6 δ -Regularity and Extended Principal Symbols

In the last section we saw that the principal symbol permits us to determine the high-

est index β (n)
q in an intrinsic manner. Now we want to discuss how this method can

be extended to all indices β (k)
q and thus provide an alternative solution to the prob-

lem of δ -regularity. It should be mentioned that for most concrete computations the
approach of Section 4.3 is probably simpler and more efficient. The main advantage
of the new solution is that it does not require to perform coordinate transformations
on the whole differential equation. Instead we study in an indirect manner the effect
of such a transformation on the symbol.

δ -Regularity concerns Definition 7.1.22 of the indices β (k)
q of a symbol, as it

is obviously coordinate dependent: in different coordinate systems we will gen-
erally obtain different values for them. Following the notation introduced in The-

orem 7.5.1, we denote by β̃ (k)
q those values for which all sums ∑n

k=i β̃
(k)
q with

i = 1, . . . ,n attain their maximum. If we take into account that in a symbol all equa-
tions are of the same order, then by Remark 4.3.7 we are lead to the following
“differential” version of δ -regularity.7

7 If we compare with our discussion in Section 4.3, then we should actually speak here of asymp-
totic and not of δ -regularity, as our approach is closely related to Definition 4.3.4. However, it
is costumary in the literature on differential equations to use the terminology δ -regularity. In the
decisive case of an involutive symbol the two concepts coincide anyway.
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Definition 7.6.1. Let Nq be the symbol of the differential equation Rq and let β (k)
q

be the number of rows of class k in the symbol matrix Mq in a given coordinate

system. Then the coordinate system is called δ -regular forRq, if β (k)
q = β̃ (k)

q .

Note that this definition depends crucially on the equation under consideration.
Especially after a projection, when new equations are added, the coordinate sys-
tem must be checked again, even if it was δ -regular before (prolongations are of
course harmless). We further see that even for differential equations it suffices to
consider only linear changes of the independent variables. For the analysis of the
symbol only one aspect is important: which derivatives of order q do occur after the
transformation. But this question is answered by the Jacobian. Thus the linearised
transformation contains already all relevant information. By the same argument as
in Proposition 4.3.8, generic coordinate systems are δ -regular.

We will now introduce extended principal symbols τ[χ(k),...,χ(n)] depending on up

to n one-forms χ (�) ∈ T ∗X such that for δ -regular coordinates x their matrices have
maximal rank, if we choose χ (�) = dx�, and such that conversely, if χ (1), . . . ,χ (n)

are a set of one-forms which lead to maximal rank of all these matrices, then any
coordinates x̄ satisfying dx̄k = χ (k) are δ -regular. Furthermore, the maximal ranks

will directly determine the indices β̃ (1)
q , . . . , β̃ (n)

q .
We will follow the point of view given in Remark 7.1.9. Let χ (k), . . . ,χ (n) ∈ T∗X

be n− k + 1 linearly independent one-forms. Since we are later only interested in
studying the forms at a single point, we may assume without loss of generality
that they define an integrable codistribution and that through any point x ∈ X an
(n− k + 1)-dimensional integral submanifold Y ⊆ X for this codistribution exists.
Considering Sq(T ∗Y) as a subspace of Sq(T ∗X ), we can now generalise Defini-
tion 7.1.8 of the principal symbol as follows.

Definition 7.6.2. Let Y and χ (k), . . . ,χ (n) be as above. Let furthermore the differ-
ential equation Rq ⊆ Jqπ be globally described by the map Φ : Jqπ → E ′. The
k-extended principal symbol is then the linear map

τ[χ(k),...,χ(n)] = σ ◦ ε−1
q : Sq(T∗Y)⊗Vπ −→ TE ′ . (7.86)

Any vector in Sq(T ∗Y) ⊆ Sq(T ∗X ) can be expressed as a linear combination of
the elements χ (ν) where ν ∈�n

0 is a multi index with |ν|= q and clsν ≥ k and where
χ (ν) = (χ (k))νk · · · (χ (n))νn . If we express these symmetric products with respect to
the standard basis dxμ of Sq(T ∗X ), then we obtain χ (ν) = Cνμdxμ where

Cνμ = ∑
s∈Sν

q

∏
i=1
χ (si)

mi , m = r(μ) . (7.87)

Therefore the matrix of the k-extended principal symbol is

T τνα [χ (k), . . . ,χ (n)] = ∑
|μ|=q

(
∂φτ

∂uαμ

)
Cνμ , with clsν ≥ k , |ν|= q . (7.88)
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It has p rows indexed by τ and mrk columns indexed by α and ν where p is again the
dimension of E ′ and rk = dimSq(T ∗Y)⊗VE =

(n−k+q
n−k

)
. The n-extended principal

symbol is the usual one as defined in Section 7.1. If dimY = n, we may assume that
Y = X and the 1-extended principal symbol as the largest one has the same size
as the geometric symbol. Indeed, we will later see that we can identify it with the
geometric symbol in a generic coordinate system.

Lemma 7.6.3. The matrix of the k-extended principal symbol contains the matrices
of all �-extended symbols with � > k as submatrices.

Proof. We may view the matrix T [χ (k), . . . ,χ (n)] as a horizontal concatenation of
rk matrices with p rows and m columns, each generated in a similar manner as
the principal symbol T [χ ] but with different mappings ιχ . Our claim follows from
the fact that in (7.88) all multi-indices with clsν ≥ k are taken into account. This
includes of course all multi-indices with clsν ≥ � for � > k. The definition (7.87)
of the combinatorial factor Cνμ shows that for such multi-indices the entries of the

k-extended principal symbol do not depend on χ (k), . . . ,χ (�−1). Thus we obtain all
columns of the �-extended principal symbol. �

Theorem 7.6.4. Let Rq be a differential equation with indices β̃ (1)
q , . . . , β̃ (n)

q . Then
for 1≤ k≤ n

max
χ(k),...,χ(n)

rankτ[χ(k),...,χ(n)] =
n

∑
i=k

β̃ (i)
q . (7.89)

Proof. The proof is a straightforward generalisation of the one of Theorem 7.5.1. In
a δ -regular coordinate system there exists a local representation ofRq such that the

first β̃ (n)
q equations are solved for derivatives of class n, the next β̃ (n−1)

q equations
are solved for derivatives of class n− 1 and so on (e. g. the Cartan normal form of
Rq). We order the columns of the k-extended principal symbol in such a way that the
first m columns represent the n-extended principal symbol, the first mrn−1 columns
the (n−1)-extended one and so on. This is always possible by Lemma 7.6.3.

Choosing χ (k) = dxk, . . . ,χ (n) = dxn, we can easily evaluate the factors Cνμ . They
vanish whenever μ �= ν and are one otherwise. Thus we have eliminated all contri-
butions to the k-extended principal symbol by derivatives whose class is less than k.
If the principal derivative of equation τ is uαμ , then in row τ the column indexed by
α and μ contains the first non-vanishing entry. Since our local representation was
chosen in such a way that the symbol is in solved form, all principal derivatives are

different and we have at least ∑n
i=k β̃

(i)
q linearly independent rows.

On the other hand, assume that there are one-forms χ (k), . . . ,χ (n) such that the
rank of the k-extended principal symbol is larger than the claimed value. Then we
apply a coordinate transformation x̄ j = ψ j(x) where the functions ψ j satisfy at an
arbitrary but fixed point x0 ∈ X

∂ψ j

∂xi (x0) = χ ( j)
i , j = k, . . . ,n . (7.90)
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As a maximal rank of the k-extended principal symbol can only be achieved, if
the one-forms χ (k), . . . ,χ (n) are linearly independent, such a transformation always
exists. Its effect on the symbol is determined by the highest-order part of the trans-
formation law for the derivatives of order q. It is given by

uαμ = ∑
|ν|=q

ūαν

(

∑
s∈Sν

g

∏
i=1

∂ψsi

∂xmi

)
, |μ |= |ν|= q, m = r(μ) , (7.91)

where the bar denotes derivatives with respect to the new coordinates x̄. Since we are

interested in the values of the indices β (k)
q , . . . ,β (n)

q in this new coordinate system,
we only consider the following derivatives

∂Φ̄τ

∂ ūαν
= ∑

|μ|=q

(
∂Φτ

∂uαμ

) ∂uαμ
∂ ūαν

, clsν ≥ k . (7.92)

At the chosen point x0 we can evaluate the derivatives of the function ψ j occurring
on the right hand side by plugging in (7.91). Comparing (7.92) and (7.88), we imme-
diately recognise the k-extended principal symbol on the right hand side. Thus we
have found a coordinate system in which we have more equations of class greater

than or equal to k than given by ∑n
i=k β̃

(i)
q . But this fact contradicts the definition of

the indices β̃ (k)
q , . . . , β̃ (n)

q . �

Definition 7.6.5. The linearly independent one-forms χ (1), . . . ,χ (n) ∈ T∗X form a
non-systatic basis of T ∗X for the differential equationRq, if

rankτ[χ(k),...,χ(n)] =
n

∑
i=k

β̃ (i)
q , k = 1, . . . ,n . (7.93)

Coordinates x such that dxi = χ (i) are called an associated coordinate system.

Different associated coordinate systems differ only by constants, namely the

choice of an origin. Note that in this definition only those χ (k) where β̃ (k)
q > 0 really

matter. For the remaining ones one can choose any one-forms which complete to a
basis of T∗X . Theorem 7.6.4 implies now immediately the following result.

Corollary 7.6.6. A local coordinate system on X is δ -regular for the differential
equationRq, if and only if it is associated to a non-systatic basis of T∗X .

From (7.91) and (7.92) we also see that if we write down the symbol in a generic
coordinate system, i.e. in coordinates x̄ j =∑a j

i xi with undetermined coefficients a j
i ,

then we get the 1-extended principal symbol after identifying a j
i with χ ( j)

i . Thus the
extended principal symbols allow us to introduce such generic coordinates step by
step. Since we often must change only some of the coordinates, this observation can
save considerable time in concrete computations, as one rarely has to go until the
1-extended principal symbol. Note furthermore that Lemma 7.6.3 allows us to or-
ganise the computation in an efficient way: if we calculate the rank of the k-extended
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principal symbol as column rank, we can keep the results from the (k +1)-extended
principal symbol as we only add further columns to the matrix.

Example 7.6.7. We demonstrate the use of the extended principal symbol with a
differential equation stemming from a concrete application [247]. The analysis of
moving pseudo-spherical surfaces in�3 leads to the Bianchi equation, a third-order
equation of the form:

uxyt −uytux cotu + uxtuy tanu = 0 , (7.94a)
( uxt

cosu

)

x
−K(K sinu)t −

uytuy

sinu
= 0 , (7.94b)

( uyt

sinu

)

y
+ K(K cosu)t −

uxtux

cosu
= 0 , (7.94c)

where K is a given function of t. Obviously the used coordinate system is δ -singular
no matter how we order the coordinates, for there is no derivative of class 3. We will
use the ordering x1 = t, x2 = x and x3 = y. Since each equation in (7.94) contains
only one third-order derivative, the symbol takes after some trivial manipulations
the simple form

vxyt = 0 , vxxt = 0 , vyyt = 0 . (7.95)

Now the matrix of the 3-extended principal symbol is readily computed:

T [χ (3)] =

⎛

⎜
⎝
χ (3)

1 χ (3)
2 χ (3)

3

χ (3)
1 (χ (3)

2 )2

χ (3)
1 (χ (3)

3 )2

⎞

⎟
⎠ . (7.96)

We find two families of characteristic one-forms

ω1 = α dx1 , ω2 = β dx2 + γ dx3 . (7.97)

This result implies especially that the three coordinate forms dx1, dx2, dx3 are all
characteristic. Thus it is not surprising that the coordinate system is not δ -regular.
The maximal rank of the 3-extended principal symbol is 1 and obtained e. g. with
the choice χ (3) = dx1 + dx3.

Next we compute the 2-extended principal symbol. There exist four third-order
derivatives of class 2, namely [0,0,3], [0,1,2], [0,2,1] and [0,3,0]. Hence its matrix
has four columns:
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T [χ (2),χ (3)] =

⎛

⎜⎜
⎝

χ (3)
1 χ (3)

2 χ (3)
3 χ (2)

1 χ (3)
2 χ (3)

3 + χ (3)
1 χ (2)

2 χ (3)
3 + χ (3)

1 χ (3)
2 χ (2)

3

χ (3)
1 (χ (3)

2 )2 χ (2)
1 (χ (3)

2 )2 + 2χ (3)
1 χ (3)

2 χ (2)
2

χ (3)
1 (χ (3)

3 )2 χ (2)
1 (χ (3)

3 )2 + 2χ (3)
1 χ (3)

3 χ (2)
3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
χ (2)

1 χ (2)
2 χ (3)

3 + χ (2)
1 χ (3)

2 χ (2)
3 + χ (3)

1 χ (2)
2 χ (2)

3 χ (2)
1 χ (2)

2 χ (2)
3

χ (3)
1 (χ (2)

2 )2 + 2χ (2)
1 χ (2)

2 χ (3)
2 χ (2)

1 (χ (2)
2 )2

χ (3)
1 (χ (2)

3 )2 + 2χ (2)
1 χ (2)

3 χ (3)
3 χ (2)

1 (χ (2)
3 )2

⎞

⎟
⎟
⎠ .

(7.98)
One could compute the maximal rank of this matrix using, say, Gaussian elimi-
nation, but it is much easier to substitute the above mentioned non-characteristic
one-form χ (3) = dx1 + dx3. This yields the following, much simpler matrix:

T [χ (2),dx1 +dx3] =

⎛

⎜
⎝

0 χ (2)
2 χ (2)

1 χ (2)
2 + χ (2)

2 χ (2)
3 χ (2)

1 χ (2)
2 χ (2)

3

0 0 (χ (2)
2 )2 χ (2)

1 (χ (2)
2 )2

1 χ (2)
1 + 2χ (2)

2 (χ (2)
3 )2 + 2χ (2)

1 χ (2)
3 χ (2)

1 (χ (2)
3 )2

⎞

⎟
⎠ . (7.99)

One sees at once that the rank of this matrix is 3 whenever χ (2)
2 �= 0. Thus we get

β̃ (3)
3 = 1 and β̃ (2)

3 = 2 and we have also found a non-systatic basis of T∗X

χ (3) = dx1 + dx3 , χ (2) = dx2 , χ (1) = dx1 . (7.100)

An associated δ -regular coordinate system is given by x̄3 = y+ t, x̄2 = x and x̄1 = t.
This yields the following form for the symbol

v̄333 + v̄331 = 0 , v̄332 + v̄321 = 0 , v̄322 + v̄221 = 0 , (7.101)

where one easily can directly read off the indices. �

7.7 Notes

The principal symbol is a very classical and fundamental concept in the theory of
partial differential equations. It is discussed in any advanced textbook. Often it is
introduced via Fourier analysis and forms the basis of the classification into elliptic
and hyperbolic equations. If one computes the Fourier transform of a linear differ-
ential equation, one obtains a polynomial called the symbol of the equation. The
principal symbol is its highest degree part. Note, however, that the full symbol is
not intrinsically defined but only the principal symbol. For this reason the classical
full symbol does not appear in the geometric theory of differential equations.

A classical method to derive the principal symbol in an intrinsic manner goes as
follows [453, Chapt. 2, Sect. 9]. We consider for notational simplicity only a scalar
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linear differential operator L = ∑|μ|≤q Lμ(x)Dμ of order q acting on one unknown
function u. Its principal symbol is in our notation the homogeneous polynomial
T [χ ] = ∑μ=q Lμ(x)χμ parametrised by a one-form χ ∈ T ∗X . Given some real-
valued function ψ ∈ F(X ), we have

T [dψ ]u = lim
λ→∞

λ−qe−iλψL
(
eiλψu

)
. (7.102)

Indeed, L
(
eiλψu

)
=
(
λ qT [dψ ]u + r(x,λ )

)
eiλψ where r is a polynomial in λ of de-

gree less than q, as one easily verifies by a straightforward differentiation.
The geometric symbol is a natural object given the internal structures of the jet

bundles. Its definition is in a certain formal analogy to the definition of the graded
ring associated with a filtered ring. Indeed, thinking of jets as truncated power series,
it becomes obvious that we must find homogeneous polynomials (or in an intrinsic
language the symmetric algebra) within the jet hierarchy.

We remarked already at the end of the last chapter that many of the ideas around
involution have their origin in the theory of differential equations (although we pre-
sented the theory first in algebraic form). But the Janet–Riquier theory mentioned
there was not the only approach to deal with general systems of differential equa-
tions. A completely intrinsic theory based on a representation by an exterior ideal
of differential forms was developed by Cartan [74] and Kähler [248]; a modern pre-
sentation of their work is contained in [58, 231]. The Cartan–Kähler Theory is in
particular very natural for many problems in differential geometry.

Within Cartan–Kähler Theory, the distinction between formally integrable and
involutive equations does not appear so clearly as in our approach. In fact, the term
formal integrability is usually not employed at all. This fact leads sometimes to con-
fusion and one can find in the literature erroneous claims that our notion of formal
integrability was equivalent to Cartan’s notion of an involutive exterior system. We
will see repeatedly in the following chapters that formal integrability is not suffi-
cient for a deeper analysis; for many purposes one really needs the more advanced
concept of an involutive differential equation.

We mentioned in the Notes to Chapter 2 that the theory of exterior differential
systems does not require a fibred manifold as basis, i. e. there is no need for a distinc-
tion into dependent and independent variables. However, the notion of an involutive
exterior system is defined with respect to independence forms, a set of n linearly in-
dependent one-forms. In the case of a fibred manifold π : E →X one simply chooses
a basis of π∗(T ∗X ) as independence forms and then the two notions of involution
become equivalent. But it is worth while noting that the Cartan–Kähler Theory can
handle more general situations.

The finite criterion for formal integrability given by Theorem 7.2.8 is due to
Goldschmidt [168] who gave a direct proof without using the duality between
Spencer cohomology and Koszul homology. Our proof via syzygies is of a more
computational nature. In Example 2.3.17 we saw that for differential equations of
finite type, integrability conditions may be considered as obstructions to the flat-
ness of the underlying connection. Hence they correspond to the curvature of this
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connection. Generalising this idea, Goldschmidt [168] introduced a notion of curva-
ture for arbitrary differential equationsRq; it is also discussed by Pommaret [356].

We described the completion process for ordinary differential equations first in
terms of the tangent bundle, as in this form it has been rediscovered many times;
see e. g. [320, 332, 368, 372, 448]. In some of these works the authors also treat
non-autonomous systems within the tangent bundle. This requires slightly awkward
constructions. Usually, the time variable is included in the configuration space, so
that one deals with the manifold U ×�. Then one defines the “restricted” tangent
bundle as the set of all those vectors in T (U ×�) which have a 1 in the last com-
ponent. The jet bundle offers a much more natural framework for such systems and
the restricted tangent bundle is easily recovered with the contact map. Our intrinsic
proof of the equivalence of the tangent and the jet bundle approach to the completion
of Hamiltonian equations was given in [134].

In our discussion we assumed (as throughout this book) that the differential equa-
tion is indeed represented by a smooth manifold. Already in the case of equations
with polynomial nonlinearities this assumption requires that we exclude all singular-
ities. Pritchard [362] gave a formulation of the completion process for implicit au-
tonomous ordinary differential equations described by polynomial equations based
on ideas from commutative algebra and algebraic geometry. The tangent bundle is
then replaced by the tangent variety, but the basic idea that completion consists of
imposing tangency conditions remains valid.

In the theory of differential algebraic equations, the number of tangency condi-
tions required for the completion is known as the (differentiation) index of the equa-
tion. A discussion of various index concepts (also for partial differential equations)
from the point of view of the formal theory is contained in [402].

In the Addendum to Section 7.3 we discussed only one aspect of the Dirac theory
of constrained Hamiltonian systems, namely the Dirac algorithm, i. e. the reformu-
lation of the geometric completion process in terms of Poisson brackets with the
Hamiltonian. The full Dirac theory goes beyond completion, as it also introduces a
classification of the obtained constraints. Once the completion has been done, one
distinguishes first-class constraints possessing vanishing Poisson brackets with all
other constraints and second-class constraints which are the remaining ones.

From a geometric point of view, this classification has the following meaning.
If we consider the submanifold S of the full phase space U given by the zero set
of the second-class constraints only, then the symplectic two-form ω on U induces
a symplectic two-form on S, i. e. S is again a symplectic manifold. The Poisson
bracket corresponding to the induced symplectic structure is usually called the Dirac
bracket.8 By contrast, the submanifold defined by the first-class constraints does not
carry a symplectic structure, as the two-form induced by ω is always degenerate.
First-class constraints are the infinitesimal generators of gauge symmetries, i. e. they
define transformations of the phase space under which the given Hamiltonian system
remains invariant. A gauge fixing consists of the addition of further constraints that

8 Strictly speaking, the Dirac bracket defines a degenerate Poisson bracket on the full phase space
which coincides on the constraint manifold with the induced bracket. For an intrinsic geometric
discussion see [424]; some numerical applications can be found in [403].
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render the first-class ones second-class; thus they remove the arbitrariness due to the
gauge symmetry.

Dirac’s motivation for the study of constrained Hamiltonian systems was their
quantisation. Most classical field theories like electromagnetism or relativity are
not normal due to the presence of gauge symmetries, so that a priori it is not clear
how their quantisation should proceed. As a discussion of the physical aspects of
constrained systems is outside the scope of this book, we refer for an extensive
treatment to the textbooks [201, 443].

Dirac’s work started also a rather unfortunate “tradition” in the physical literature
on constrained dynamics: very often results are rigorously stated and proved only in
the finite-dimensional case, i. e. for ordinary differential equations, but then applied
without hesitations to field theories. In [134, 411] one can find concrete examples of
the type of problems that may arise in such an approach. In particular, a straightfor-
ward generalisation of Dirac’s approach to field theories leads to an algorithm that
potentially overlooks hidden constraints. Furthermore, we have seen in Section 7.4
that the completion of partial differential equations leads generally to an increase of
the order; but a Hamiltonian formulation should always be of first-order. It is prob-
ably only fair to say that we still have only a moderate understanding of constrained
Hamiltonian field theories.

We considered in the Addendum only constrained Hamiltonian systems. Indeed,
it is common in physics to study constrained systems in the Hamiltonian formalism,
as it forms the starting point for the quantisation of systems. But of course one
may use also other formalisms; e. g. a Lagrangian discussion is given by Sudarshan
and Mukunda [441]. From the point of view of exhibiting all hidden constraints,
one can always resort to the general completion procedure described in Section 7.3
which can be applied independent of any particular formalism used for setting up
the equations of motion.

The Cartan–Kuranishi Theorem has its origin in the work of Cartan on exterior
differential systems. Cartan recognised that in general prolongations are necessary
in the completion; however, he was not able to prove that every consistent exterior
system becomes involutive after a finite number of prolongations. The first com-
plete proof of this fact is due to Kuranishi [274] (again in the language of exterior
systems). Within the formal theory of differential equations one has a stronger sep-
aration between the geometric and the algebraic aspects of the completion and the
question of how many prolongations are needed can be treated completely alge-
braically in the framework of the Spencer cohomology of the symbol comodule. As
shown in Section 6.1, the finiteness becomes then trivial due to the duality to the
Koszul homology.

For many applications one would like to have a simple algorithm to determine
directly all integrability conditions. We saw in Example 7.4.3 that their knowledge
significantly simplifies the explicit integration of the differential equation. In prin-
ciple, one could design such an algorithm on the basis of the second Spencer ho-
mology groups Hr,2(N ). However, to our knowledge nobody has done this so far.
All approaches to the completion of differential equations construct more than just
the integrability conditions (e. g. also all obstructions to involution) and they differ
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in what this “more” is. Most of them have been studied in the context of Lie sym-
metry theory [48, 342] for the treatment of the determining systems, which are typ-
ically large overdetermined linear systems of partial differential equations. Hence a
number of references to theoretical works and implementations can be found in the
review articles of Hereman [202, 203].

We mention here only three approaches popular in computer algebra. The proba-
bly first implementation of the Janet–Riquier Theory in a computer algebra system
is due to Topunov [456]. Reid [373] developed a standard form, also inspired by
the Janet–Riquier Theory, and implemented it in MAPLE. The approach is fully al-
gorithmic only for linear equations, but this suffices for applications in symmetry
theory. In the more recent work [374], he speaks of a “reduced involutive form”
which is not identical with our notion of involution.

Given the importance of Gröbner bases for the study of polynomial ideals, it is
not surprising that similar concepts were developed for differential equations. The
easiest case are obviously linear equations where one can straightforwardly extend
the classical commutative theory as we have seen in Chapter 3. For more general
equations one needs differential algebra, where one studies differential ideals in the
ring of differential polynomials, i. e. ideals which are closed under differentiation. In
this context, Carrà Ferro [69] gave the first definition of a differential Gröbner basis
followed later by Ollivier [341]. Around the same time, Mansfield [306] introduced
an alternative and inequivalent notion of differential Gröbner basis.

However, one must be careful with the terminology “differential Gröbner basis.”
As shown in Appendix B.4, Gröbner bases can be characterised and thus defined
in many equivalent ways. If one tries to extend these alternative definitions to the
differential case, they sometimes become inequivalent. For example, Mansfield’s
bases cannot solve the differential ideal membership problem and thus one may
argue whether they should be called Gröbner bases. A recent survey of the theory
with many references was compiled by Carrà Ferro [70].

One reason for these problems is the fact that while we can still use a term order
(in differential algebra it is more common to speak of a ranking) for selecting in each
equation a leading derivative, it will generally appear in some power so that we must
resort to pseudo-reductions (see e. g. [323]). This effect makes it harder to interpret
the outcome. In particular, it is possible that one leaves the differential ideal spanned
by the original system (one works then in some saturation of it), as equations must
be multiplied with differential polynomials in order to make reductions possible. In
the language of differential algebra one obtains a coherent autoreduced set and the
corresponding form of the Buchberger algorithm is called Kolchin–Ritt algorithm
[258, 383] (it would be straightforward to design an involutive version of it replacing
S-polynomials by non-multiplicative prolongations).

Another reason is that the leading coefficient—the initial in the language of dif-
ferential algebra—is now generally also a non-trivial differential polynomial with a
zero set (the same is true for the separant, i. e. the derivative of a differential polyno-
mial with respect to its leading derivative). On such zero sets our pseudo-reductions
become incorrect so that the algorithms must make case distinctions (the situation
is similar to the analysis of parametric linear systems of equations [420] or the
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theory of comprehensive Gröbner bases [477]). In a less computational language,
this means that we must augment the theory with structural decompositions of the
ideal (or more precisely of its radical): the given ideal is written as the intersection
of finitely many “better behaved” ideals for which then bases are computed (one
often speaks of triangulation-decomposition algorithms). Thus the result of such
a computation is not a single basis but several bases, each consisting of equations
and inequalities. This approach was pioneered by Boulier et al [51]; a more recent
discussion with some improvements can be found in [228, 421].

From a geometric point of view, the need for such decompositions can be un-
derstood as follows. In our discussion of the Cartan–Kuranishi completion we im-
plicitly assumed that many objects behave uniformly over the treated differential
equations. This assumption concerns in particular the ranks of certain Jacobians or
the indices of the corresponding symbols. For a fully non-linear differential equation
such a uniform behaviour is, however, exceptional. Thus one is forced to make case
distinctions depending on whether or not certain expressions vanish. Therefore in
reality the geometric completion process also does not end with a single involutive
equation but with a finite number of involutive equations each locally described by
a system comprising also inequalities.9

Finally, we must mention as third approach the Cartan–Kähler Theory of exte-
rior differential systems [58, 74, 248, 326]. Its first implementation is probably due
to Arajs et al [24]. An extensive implementation of it has later been provided by
Hartley and Tucker [194] (see also [192, 193]).

A high worst case complexity features as a common problem for all these ap-
proaches. As already mentioned, this fact does not come very surprising, as most of
them comprise Gröbner basis computations as a special case. Thus the complexity
results obtained for Gröbner bases (see Appendix B.4) represent a lower bound for
the completion in the differential case. Besides this fairly simple observation not
much is known about the complexity of all the mentioned completion algorithms.

Our definition of an underdetermined equation is more precise than the one given
by Pommaret [356, Definition 6.6]. He defines an equation to be underdetermined,
if a one-form χ exists such that the principal symbol τχ is surjective. While this
condition covers the elementary case that any local representation comprises less
equations than unknown functions, it fails for Example 7.5.5: the rank of the matrix
T [χ ] given by (7.81) is at most one, thus τχ can never be surjective.

Our approach generalises the definitions of Olver [342, Definition 2.86] for sys-
tems with the same number of equations and unknown functions. They are in so far
not satisfactory, as he does not require the equation to be involutive. Thus it may
happen that the addition of an integrability condition renders an underdetermined
equation overdetermined or vice versa. It should be stressed again that this classifi-
cation makes sense only for involutive equations!

9 The same observation underlies the notion of a generically involutive system recently introduced
by Malgrange [304].



Chapter 8
The Size of the Formal Solution Space

Knowing what is big and what is small is more important than being
able to solve partial differential equations.

Stan Ulam

The results in this chapter should be used with some care. We introduce measures for
the size of the formal solution space of a differential equation. First of all, one cannot
stress strongly enough that these considerations only concerns formal solutions, i. e.
formal power series satisfying the given equation. In contrast to Chapter 9, we do not
bother here about the convergence of these series and thus the results do not imply
any statement on the existence of strong solutions. So one might say that we perform
in this chapter only combinatorial games. Nevertheless, there are situations where
the results can be quite useful. This should be evident from the fact that scientists
like Cartan and Einstein actively participated in these “games”.

In the first section we briefly discuss the concept of a “general” solution. This
word is often used but hardly anybody cares to give a rigorous definition. We do not
give one either, as this turns out to be rather difficult and of doubtful value. So we
only discuss some of the arising problems in order to motivate why we afterwards
restrict to the formal solution space where the situation is much simpler.

Section 8.2 introduces the main tools of the formal theory for measuring the size
of the formal solution space: the Cartan characters and the Hilbert function. We
exhibit the connection between them and show how they can be explicitly deter-
mined for an involutive equation. For a classical analyst these concepts may ap-
pear to be rather abstract measures. Therefore we also discuss how—in certain
circumstances—they can be translated into statements about how many functions
are needed for parametrising the solution space.

In applications to physics, one is interested in subtracting the effect of gauge
symmetries, as for a physicist solutions related by a gauge transformation represent
the same physical state. This goal is easily achieved using a pseudogroup approach.
In Section 8.3 we analyse how the Cartan characters and the Hilbert function change
under certain operations on the differential equation. This analysis leads to the rather
general concept of a differential relation. In an Addendum of a more “historical” na-
ture, we show how Einstein’s approach, based on what is called the strength of a dif-
ferential equation, fits into our framework. It turns out that the machinery of formal
theory is more powerful and flexible than his approach, as the strength corresponds
to just one of the Cartan characters.

W.M. Seiler, Involution, Algorithms and Computation in Mathematics 24,
DOI 10.1007/978-3-642-01287-7 8, c© Springer-Verlag Berlin Heidelberg 2010
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8.1 General Solutions

The notion of a “general solution” or a “general integral” is notoriously difficult.
Although it is intuitively clear what it is supposed to mean, it is almost impossi-
ble to give a rigorous definition. From the point of view of the functional analytic
approach that has dominated the theory of partial differential equations for many
decades, this fact is not surprising as obviously the answer decisively depends on
the considered function spaces. The classical idea of a parameter dependent expres-
sion which yields all solutions through suitable specialisations of the parameters
becomes rather meaningless, if one is interested in solutions living in some abstract
function spaces.

Example 8.1.1. If one admits distributions as solutions, already for ordinary differ-
ential equations the classical counting rules fail. As a trivial example we may con-
sider the following first-order equation xu′ = 0 [379]. The classical point of view is
that the solution space of a scalar linear first-order equation is a one-dimensional
vector space. In our case a basis of this space is obviously given by u(x) = 1.
However, because of the singularity of the coefficient at x = 0, the equation ad-
mits besides this strong solution further weak solutions in a distributional sense, for
example u(x) = H(x) where H(x) denotes the Heaviside or step function defined by
H(x) = 0 for x < 0 and H(x) = 1 for x≥ 0. Thus this first-order equation possesses
an at least two-dimensional solution space!1 �

This appearance of additional distributional solutions is easily explicable in terms
of the symbol. In an intrinsic geometric manner, we may characterise the point x = 0
by the fact that there the dimension of the symbol increases. Indeed, for our example
the symbol matrix is simply the scalar x and its rank drops whenever x = 0. At
this point the behaviour of the differential equation changes abruptly, thus it is not
surprising that we also find solutions with abrupt changes.

Another problem with the concept of a general solution is the existence of singu-
lar integrals. They appear only in non-linear equations. The word “singular” does
not refer to singularities in the solution but to the fact that such solutions cannot
be obtained from a general solution; typically they arise as envelopes of families
of solutions. Extensive discussions of the relations between singular and general
integrals are contained in most old textbooks on differential equations. We restrict
ourselves here to give a few examples of ordinary differential equations with singu-
lar solutions. A slightly deeper discussion is contained in Section 9.1.

Example 8.1.2. A Clairaut equation is of the form u = xu′ + f (u′) for some func-
tion f :�→� whose second derivative f ′′ vanishes nowhere. Such equations were
first introduced by Clairaut [92] in the study of the motion of rectangular wedges.
One readily checks that u(x) = cx + f (c) defines a one-parameter family of solu-
tions which one would classically call the general solution. However, in addition
to this one-parameter family, we find a singular integral geometrically represented

1 An algebraic approach to handle such situations will be presented in Section 10.5.
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by the curve x(τ) = − f ′(τ) and u(τ) = −τ f ′(τ)+ f (τ). The parameter τ is here
nothing but the value of the derivative u′. Because of our assumption that the second
derivative f ′′ vanishes nowhere, this curve is indeed the graph of a function u(x).

Fig. 8.1 Singular solution of a Clairaut equation

Figure 8.1 shows the manifold R1 corresponding to the Clairaut equation ob-
tained for the choice f (s) = − 1

4 s2. The singular solution is here a parabola and one
can easily see in the x-u plane that it is indeed the envelope of the straight lines
defined by the general solution. Note that this enveloping property holds only in the
x-u plane; in the jet bundle the prolongation of the singular solution intersects the
prolongation of all other solutions in precisely one point.

Due to the fact that Clairaut equations are generally nonlinear in the derivative u′,
it is not possible to represent the manifoldR1 globally by an equation u′ =Φ(x,u).
In our case, to most points ρ ∈ R(1)

0 ⊂ E there are two points ρ̂ ∈ R1 such that
π1

0 (ρ̂) = ρ : if ρ = (x,u), then u′ = 2(x±
√

x2−u). This is shown in Figure 8.2 for
two choices of ρ . An exception are those points ρ lying on the singular solution; for
them a unique ρ̂ exists (lying on the prolongation of the singular integral). Indeed,
for our choice of the function f , the singular integral is given by u(x) = x2 so that
for those points the square root vanishes and in Figure 8.2 the prolongation of the
singular integral gives the “fold” of the manifoldR1.



332 8 The Size of the Formal Solution Space

Fig. 8.2 Nonuniqueness in a Clairaut equation

It is straightforward to extend this example to a partial differential equation: take
u = xiui + f (u(1)) where we assume that the Hessian determinant of the function
f : �n → � vanishes nowhere. Again the general solution is given by a family
of straight lines, u(x) = cixi + f (c), depending now on n constants c1, . . . ,cn. The
singular integral corresponds to the surface

xi(τ ) =− ∂ f
∂ui

(τ) , u(τ ) =−τi
∂ f
∂ui

(τ )+ f (τ) (8.1)

where again the parameters represent the values of the derivatives, ui(τ ) = τi, and
where our assumption on the Hessian guarantees that we are indeed dealing with
the graph of a function u(x). �

Singular integrals also only arise, if the dimension of the symbol is not constant.
In the case of the Clairaut equations in Example 8.1.2, the symbol matrix is again
scalar and its entry is f ′(u′)+ x. Thus its rank drops at all points ρ̂ ∈R1 where this
expression vanishes. Singular solutions appear, if the augmented system consisting
of the original system plus the conditions for a rank drop of the symbol is consistent.
In our case, we obtain the system u = xu′− 1

4 (u′)2 and u′ = 2x. Obviously, it is
consistent and possess as sole solution our singular integral.



8.1 General Solutions 333

Example 8.1.3. It follows from this observation that in larger systems we may also
find whole families of singular integrals. The general solution of the following first-
order system in two unknown functions u and v [139, p. 159]

(u′)2 + xu′+ v′−u = 0 , (8.2a)

u′v′ + xv′− v = 0 (8.2b)

is the two-parameter family u(x) = ax + a2 + b and v(x) = bx + ab of linear func-
tions. However, there exists an additional one-parameter family of singular integrals,
namely u(x) = − 1

4 (x + c)2 + c2 and v(x) = − 1
4 c(x− c)2. Obviously, it is impossi-

ble to choose the parameters a, b in such a way that these solutions are part of the
general solution.

Again we easily obtain these singular integrals via an analysis of the symbol.
The determinant of the symbol matrix is D = 2(u′)2 + 3xu′− v′ + x2 and one easily
checks that D vanishes on the singular integrals and is different from zero on all
other solutions. �

Within our geometric approach to differential equations one may use a slightly
different ansatz that avoids some of these problems, at least for smooth solutions.
The downside is that we can only define a and not the general solution. Furthermore,
the definition is not very constructive. The basic idea is simple and rather old. Con-
sider the inverse problem: given an expression containing some arbitrary constants
and functions, we wish to determine differential equations for which this expression
is a solution. For the “smallest” such differential equation our expression is a gen-
eral solution. Following Hermann [208] we can make this idea more precise in our
geometric framework.

Definition 8.1.4. A general solution of the differential equationRq⊆ Jqπ is a subset
Θ ⊆ Γloc(π) such that the following two conditions are satisfied.

(i) For all r ≥ 0 we have jq+r(Θ)⊆Rq+r.
(ii) For no r ≥ 0 a submanifold R̄q+r ⊂Rq+r of lower dimension exists such that

jq+r(Θ)⊆ R̄q+r.

Θ is a local general solution at a point x ∈ X , if all sections σ ∈Θ are defined in
neighbourhood of x.

A natural question is how one may describe such subsets Θ ⊆ Γloc(π). The in-
tuitive idea is that they stem from an expression parametrised by some arbitrary
constants and functions. Again Hermann [208] showed how this idea may be for-
mulated more rigorously in a geometric manner. Let Xλ be manifolds and Vλ vector
spaces for 1 ≤ λ ≤ � and let W be a further manifold. All manifolds and spaces
are assumed to be finite-dimensional. Then a (local) closed form representation of
a (local) general solutionΘ is a smooth map

s : C∞(X1,V1)×·· ·×C∞(X�,V�)×W → Γloc(π) (8.3)



334 8 The Size of the Formal Solution Space

such that ims =Θ . Here dimW corresponds to the number of arbitrary constants
in the general solution and each factor C∞(Xλ ,Vλ ) represents dimVλ functions
depending on dimXλ arguments.

Example 8.1.5. We apply these ideas to the wave equation utt − uxx = 0. As it is
linear, no singular integrals appear and it is simple to derive closed form expres-
sions for its general solution. Using e. g. the method of characteristics we obtain the
classical superposition formula

s1 :

⎧
⎪⎨

⎪⎩

C∞(�,�2) −→ Γloc(π)
(

f
g

)
	−→ f (x− t)+ g(x + t)

. (8.4)

Alternatively, we take the D’Alembert solution of the initial value problem

s2 :

⎧
⎪⎨

⎪⎩

C∞(�,�2) −→ Γloc(π)
(

f
g

)
	−→ 1

2

[
f (x− t)+ f (x + t)

]
+

1
2

∫ x+t

x−t
g(τ)dτ

. (8.5)

In both cases, the right hand side is to be interpreted as a section of the trivial fibre
bundle π :�2×�→�2. �

8.2 Cartan Characters and Hilbert Function

We are interested in measuring the size of the formal solution space. In particular,
we would like to be able to compare two differential equations. A simple possibility
would be to count the parametric derivatives. However, for most partial differential
equations the result would be infinity which does not help much in comparing differ-
ent equations. Intuitively it is clear that although most partial differential equations
have an infinite-dimensional solution space, there are differences in the size. Let us
for example assume that we could find a closed form representation like (8.3). Then
for some equations more arbitrary functions or manifolds Yλ of higher dimensions
are needed than for others.

The basic trick to capture these ideas in a rigorous manner consists of exploiting
the natural grading of derivatives. Instead of simply counting all parametric deriva-
tives, we count them order by order, as this yields at each order a finite number.
Just comparing these numbers for one fixed order does not give us much informa-
tion, but studying the asymptotic growth turns out to be very useful. Obviously,
this approach is in complete analogy to the introduction of the Hilbert function in
commutative algebra (Definition B.1.21).

In Section 7.1 we introduced the indices β (k)
q of the symbol Nq of a differential

equation Rq. If the equation Rq is involutive, β (k)
q corresponds to the number of
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principal derivatives of class k and order q. With a simple combinatorial calculation

we can determine from β (k)
q the number of the remaining derivatives of class k and

order q which are of course parametric. It turns out that we have already encountered

these numbers, namely they are the Cartan characters α(k)
q defined in Section 6.2.

Lemma 8.2.1. Let Rq ⊆ Jqπ be a differential equation of order q in n independent

and m dependent variables. Then the Cartan characters α(k)
q and the indices β (k)

q of
its symbolNq are related by

α(k)
q +β (k)

q = m

(
q + n− k−1

q−1

)
, 1≤ k ≤ n . (8.6)

Proof. If we identify a parametric derivative uαμ of order q with the basis vector
1
μ! dxμ⊗∂uα of Sq(T ∗X )⊗Vπ , then it follows from the definition (6.22) of the sub-

spaceN (k)
q that as a vector space it is spanned by all parametric derivatives of order q

and class greater than k. The Cartan character α(k)
q is defined as the difference of the

dimensions of N (k)
q and N (k−1)

q and thus indeed the number of parametric deriva-
tives of order q and class k. By (A.4b), the right hand side of (8.6) simply counts

the total number of derivatives of order q and class k and β (k)
q gives the number of

principal derivatives among these. �

The Cartan characters α(1)
q , . . . ,α(n)

q of an involutive differential equation form

a descending sequence. Note that the corresponding property for the indices β (k)
q ,

Corollary 7.1.28, holds only for first-order equations.

Proposition 8.2.2. The Cartan characters α(1)
q , . . . ,α(n)

q of an involutive differential
equationRq in n independent variables satisfy

α(1)
q ≥ α(2)

q ≥ ·· · ≥ α(n)
q ≥ 0 . (8.7)

Proof. For q = 1 this follows immediately from Corollary 7.1.28, as in this case

α(k)
1 = m−β (k)

1 . For a higher-order equation we simply exploit the fact (shown in
Proposition A.3.1), that it can be transformed into an equivalent involutive first-
order equation with exactly the same Cartan characters. �

One of the key properties of an involutive symbol is that one can compute the
indices and the Cartan characters of its prolongations without explicitly determining
their equations. Taking an algebraic point of view, this fact may be considered as a
simple consequence of our combinatorial interpretation of involutive bases.

Proposition 8.2.3. Let Nq be an involutive symbol with Cartan characters α(k)
q and

indices β (k)
q . Then the Cartan characters α(k)

q+r and indices β (k)
q+r of the prolonged

symbolsNq+r are given by
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α(k)
q+r =

n

∑
i=k

(
r + i− k−1

r−1

)
α(i)

q , (8.8a)

β (k)
q+r =

n

∑
i=k

(
r + i− k−1

r−1

)
β (i)

q . (8.8b)

Proof. It suffices to prove (8.8b), as (8.8a) is then an immediate consequence of
Lemma 8.2.1. We use an induction over the number r of prolongations. Formally
differentiating an equation of class k or higher with respect to xk yields an equation
of class k. By Proposition 7.2.3, the arising equations are the only independent ones
of order q + 1 in the prolongation (and hence the only ones that matter for Nq+1),

as the symbolNq is assumed to be involutive. Thus β (k)
q+1 = β (k)

q + · · ·+β (n)
q and we

have proven (8.8b) for r = 1.
Let us assume that (8.8b) holds for all values 1≤ s < r. Since according to Propo-

sition 7.2.5 the prolongation of an involutive symbol is again involutive, we can ap-

ply the formula for r = 1 to the case s = r−1 and get β (k)
q+r = β (k)

q+r−1 + · · ·+β (n)
q+r−1.

The induction hypothesis yields then

β (k)
q+r =

n

∑
i=k

[
i

∑
l=k

(
r + l− k−2

r−2

)]

β (i)
q =

n

∑
i=k

(
r + i− k−1

r−1

)
β (i)

q , (8.9)

where the last equality follows from an identity for binomial coefficients. �

Remark 8.2.4. Based on this result, we can finally explain the terminology differen-
tial equation of finite type introduced in Remark 7.1.2. By definition, the geometric
symbol Nq of such an equation is zero-dimensional. This fact implies immediately

that all its Cartan characters α(k)
q vanish since dimNq = ∑n

k=1α
(k)
q . By (8.8a) we

find that also any Cartan character α(k)
q+r at higher orders vanish and consequently

all prolonged symbolsNq+r are zero-dimensional, too. Hence such an equation pos-
sesses only a finite number of parametric derivatives and its formal solution space
is finite-dimensional. �

We proceed now in analogy to commutative algebra. Recall that there Hilbert
functions are used to measure the size of graded modules (cf. Definition B.1.21).
The ring of formal power series also possesses a natural grading. Although the for-
mal solution space of a differential equation Rq is in general not a submodule, we
may define in a similar manner a Hilbert function for it. As we have seen in Sec-
tion 2.3, the formal solution space is parametrised by the parametric coefficients;
hence the following definition is very natural.

Definition 8.2.5. The Hilbert function h(r) of a differential equation Rq gives the
number of parametric derivatives of order r.

If the differential equation Rq is involutive, then it is straightforward to express
its Hilbert function in a purely geometric way:
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h(r) =

⎧
⎪⎨

⎪⎩

dimR(q)
0 for r = 0 ,

dimR(q−r)
r −dimR(q−r+1)

r−1 for 0 < r ≤ q ,

dimRr−dimRr−1 for r > q .

(8.10)

But obviously this form is not very satisfactory: neither does it provide any real
insight nor is it useful for an explicit computation of h(r). Again it is necessary to
invoke algebraic tools.

For an involutive equation Rq the Hilbert function h(r) of the differential equa-
tion coincides with the Hilbert function hN (r) of the symbol comodule N for all
r≥ q. Indeed, recall from Remark 7.1.5 that the principal coefficients of order r≥ q
arise as the solutions of an inhomogeneous linear systems of equations and that the
componentNr is nothing but the solution space of the corresponding homogeneous
system. Hence its dimension determines the number of parametric coefficients and
we find h(r) = dimNr for all r≥ q (this fact also follows from Theorem 7.1.6 taking
into account thatRq is assumed to be formally integrable).

If we take for the lower-order components of the comodule N the more precise

approach of Remark 7.1.16, i. e. use the symbols of the projected equationsR(q−r)
r ,

then h(r) is exactly the Hilbert function of N . Thus algebraically it is a standard
task to determine the Hilbert function of differential equation explicitly. In practice,
the easiest approach consists in determining a complementary decomposition of the
symbol module N 0 (using the methods discussed in Section 5.1) from which the
Hilbert function is easy to read off (Proposition 5.2.1).

As it is thus possible to interpret the Hilbert function of a differential equation
as the Hilbert function of a module, we can apply Theorem B.1.22 asserting that it
becomes asymptotically a polynomial and introduce the Hilbert polynomial2 of a
differential equation. As the following result shows, the coefficients of the Hilbert
polynomial are in one-to-one correspondence with the Cartan characters.

Proposition 8.2.6. The Hilbert polynomial H(r) of the involutive differential equa-

tionRq ⊆ Jqπ in n independent variables with Cartan characters α(1)
q , . . . ,α(n)

q can
be written in the form

H(q + r) =
n−1

∑
i=0

(
n−1

∑
k=i

α(k+1)
q

k!
s(k)

k−i(0)

)

ri (8.11)

where the combinatorial coefficients s(k)
k−i(0) are modified Stirling numbers (see Ap-

pendix A.4 for their definition and basic properties).
Conversely, if the Hilbert polynomial of the differential equation Rq ⊆ Jqπ has

the form H(q + r) = ∑n−1
i=0 hiri, then its Cartan characters can be computed recur-

sively starting with k = n by

2 In the context of differential algebra, one often uses the term differential dimension polynomial
[258, Sect. III.5], [259, Sect. 5.2].



338 8 The Size of the Formal Solution Space

α(k)
q = (k−1)!hk−1−

n

∑
i=k+1

(k−1)!
(i−1)!

s(i−1)
i−k (0)α(i)

q . (8.12)

Proof. As mentioned above, H(r) = dimNr for all values r ≥ q. It follows trivially
from the definition of the indices and the Cartan characters, respectively, that we

have dimNq+r =∑n
i=1α

(i)
q+r. Together with (8.8a) this yields

H(q + r) =
n

∑
i=1

n

∑
k=i

(
r + k− i−1

r−1

)
α(k)

q

=
n

∑
k=1

k

∑
i=1

(
r + k− i−1

r−1

)
α(k)

q =
n

∑
k=1

(
r + k−1

r

)
α(k)

q .

(8.13)

Here we used in the last step the identity (A.44). Now we can enter the defining re-
lation (A.39) of the modified Stirling numbers and obtain after a simple index shift
(8.11). It defines obviously a one-to-one correspondence between the coefficients hi

of the Hilbert polynomial and the Cartan characters α(k)
q . A straightforward inver-

sion yields (8.12). �

Of course, this result represents nothing but a reformulation of Proposition 5.2.1
for the special case of a Rees decomposition induced by a Pommaret basis where
all generators are of the same degree. Note that the Hilbert regularity ofRq, i. e. the
order from which on h(r) and H(r) coincide, is generally less than q, but the simple
form (8.11) for the Hilbert polynomial can be obtained only at the order q.

Example 8.2.7. We computed in Example 7.1.26 the indices (7.24) of the Einstein
equations in n dimensions. Applying (8.6) yields for their Cartan characters

α(n)
2 = n , α(n−1)

2 = n2 , α(n−k)
2 =

n(n + 1)(n− k + 1)
2

for 1 < k < n . (8.14)

In arbitrary dimensions there does not seem to exist a simple expression for the
Hilbert polynomial. Evaluation of the modified Stirling numbers arising in (8.11)
yields for the leading terms

H(2 + r) =
n

(n−1)!
rn−1 +

3
2

n2

(n−2)!
rn−2 + · · · . (8.15)

If we specialise to the physically most relevant case n = 4, then we obtain as Cartan

characters α(4)
2 = 4, α(3)

2 = 16, α(2)
2 = 30, α(1)

2 = 40 and

H(2 + r) =
2
3

r3 + 12r2 +
184
3

r + 90 (8.16)

for the Hilbert polynomial. �

In some sense the Cartan characters (or the Hilbert function) are the best mea-
sures for the size of the formal solution space available, as they do not require any
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assumptions about the form of a general solution. The main caveat is that the Cartan
characters are local quantities defined only at a point ρ ∈ Rq. In particular, if sin-
gular integrals exist, the Cartan characters will vary overRq. As the question of the
existence of global solutions is beyond the scope of this book anyway, we must live
with this restriction (or resort to Blanket Assumption 7.1.4 which excludes varia-
tions in the values of the Cartan characters).

For the remainder of this section we want to relate the Cartan characters to num-
bers that can be more easily interpreted, namely to the number of arbitrary functions
appearing in a closed form solution like (8.3). However, such an interpretation can
be given only under some restrictive assumptions that are often not satisfied in ap-
plications. The main assumption is that the map s in (8.3) is purely algebraic, i. e.
does not involve any differentiations or integrations. Thus we exclude cases as the
D’Alembert formula (8.5). More precisely, we require that our solutions can be writ-
ten in the form

u(x) = Ψ
(
. . . ,Fλ

(
φ1(x), . . . ,φk(x)

)
, . . .
)

. (8.17)

Here Fλ represents the arbitrary functions. The one shown depends on k arguments
which are defined by the fixed functions φi (these functions define the manifoldYλ ).
Note that no explicit dependency on the independent variables x is permitted; they
appear only via the functions φi.

Example 8.2.8. The nonlinear equation uuxy− uxuy = 0 admits such an algebraic
representation of its general solution. It contains two arbitrary functions F1 and F2

depending on one argument and is given by u(x,y) =Ψ
(
F1(φ1(x,y)),F2(φ2(x,y))

)

with Ψ(a,b) = ab, φ1(x,y) = x and φ2(x,y) = y. Thus our differential equation
describes all those functions of x and y that can be separated multiplicatively:
u(x,y) = F1(x)F2(y). �

Example 8.2.9. It is a fairly strong assumption that such an algebraic representation
of the general solution exists. Hilbert [215] introduced the concept of a differen-
tial equation possessing a resolution without integrals (“integrallose Auflösung”):
its general solution is expressible by a finite number of functions and their deriva-
tives up to a finite order. Thus this concept is more general than our algebraic rep-
resentations, as derivatives are allowed. Nevertheless, Hilbert [215] showed in a
somewhat lengthy calculation that the underdetermined ordinary differential equa-
tion u′ = (v′′)2—nowadays called Cartan–Hilbert equation—does not possess a
resolution without integrals (Cartan [72] provided soon afterwards a more elegant
proof via the Goursat normal form of a Pfaffian system). �

Our goal is to determine the number fk of arbitrary functions in (8.17) that depend
on k arguments for 1 ≤ k ≤ n. It turns out that if such a representation exists, these
numbers are unique. Following [308], we introduce the following shorthand

[
k
r

]
=
(

k + r−1
r

)
. (8.18)
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Then a smooth function of k arguments possesses
[k

r

]
Taylor coefficients of order r

(cf. (2.32) for m = 1).
We expand (8.17) in a Taylor series. In order to avoid degenerate cases, we

choose the expansion point x0 ∈ X such that if ∂φ j/∂xi �≡ 0 for some 1 ≤ i ≤ n,
then
(
∂φ j/∂xi

)
(x0) �= 0. The right hand side of (8.17) depends thus on

T (r) =
n

∑
k=1

fk

[
k
r

]
(8.19)

arbitrary Taylor coefficients of order r. If (8.17) is indeed the general solution of the
differential equationRq, these coefficients must be in a one-to-one correspondence
with the parametric derivatives ofRq. At least for orders r ≥ q, it is straightforward
to give a necessary condition for the existence of such a correspondence. We write
both the Hilbert polynomial H(r) of Rq and T (r) as explicit polynomials in r and
equate the coefficients. This yields a triangular system for the numbers fk which is
easily solved by back-substitution. We phrase the result in form of a proposition.

Proposition 8.2.10. If the involutive differential equation Rq with Cartan charac-

ters α(k)
q possesses an algebraic representation of its general solution in the form

(8.17), then this representation contains fk arbitrary functions depending on k ar-
guments where the numbers fk are determined by the recursion relation

fn = α(n)
q , (8.20a)

fk = α(k)
q +

n

∑
i=k+1

(k−1)!
(n−1)!

(
s(i−1)

i−k (0)α(i)
q − s(i−1)

i−k (q) fi

)
. (8.20b)

Such an algebraic representation can exist only, if the solution of this recursion
relation contains only non-negative integers.3

Now we see why Definition 7.5.6 of an underdetermined equation makes sense.
By Proposition 7.5.7, we get for the highest index of an underdetermined equation

β (n)
q < m and thus α(n)

q > 0. Hence any algebraic representation of the general solu-
tion of such an equation depends on at least one arbitrary function of n arguments.
Obviously, we may simply choose x for these arguments and at least one component
of u remains completely unrestricted by the differential equation.

Example 8.2.11. We consider again Maxwell’s equations (2.85). We know from Ex-
ample 2.4.1 that they are formally integrable and from Example 7.1.30 that their

symbol is involutive. We determined already that β (4)
1 = 6, β (3)

1 = 2 and all other
indices vanish. This yields the Cartan characters

3 One can show by explicit computations that even for fairly large values of n, the recursion relation
(8.20) always yields integer solutions fk. Thus it is tempting to conjecture that this remains true for
all n ∈ �. However, one can also show that this fact is highly non-trivial, as the modified Stirling

number s(i−1)
i−k (q) is in general not divisible by the denominator (n−1)!.
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α(4)
1 = 0 , α(3)

1 = 4 , α(2)
1 = α(1)

1 = 6 . (8.21)

The Hilbert polynomial is quadratic, H(1 + r) = 2r2 + 12r + 16, and for the num-
bers of arbitrary functions in an algebraic representation of the general solution we
compute from (8.20)

f4 = 0 , f3 = 4 , f2 = 2 , f1 = 0 . (8.22)

In this particular case, these numbers are easy to interpret. Maxwell’s equations
are obviously not underdetermined. For each of the x- and y-components of the
fields we have one evolution equation; thus we may prescribe in an initial value
problem arbitrary values on a three-dimensional hypersurface. For each of the z-
components we have two equations. As we will discuss in more detail in Chapter 9,
this observation implies that, at least formally, we may prescribe initial data for them
only on a two-dimensional surface. �

For first-order equations the situation becomes very simple. For q = 1 we can
solve the recursion relation (8.20) in closed form and we can even show that the
solution consists always of non-negative integers.

Corollary 8.2.12. For an involutive first-order equation R1 the solution of the re-
cursion relation (8.20) is given by

fn = α(n)
1 = m−β (n)

1 , (8.23a)

fk = α(k)
1 −α(k+1)

1 = β (k+1)
1 −β (k)

1 , 1≤ k < n . (8.23b)

It contains only non-negative integers.

Proof. The proof is by a descending induction. The case k = n is obvious. If we
assume that (8.23b) holds for k + 1, we get for k that

fk = α(k)
1 −α(k+1)

1 +

(k−1)!
n−1

∑
i=k+2

i!α(i+1)
1

(
is(i−1)

i−k (1)+ s(i)
i−k+1(0)− s(i)

i−k+1(1)
)

.
(8.24)

By Lemma A.4.3 the expression in the bracket vanishes for all values of i and k;
this observation proves (8.23b) for k. It is obvious that all values fk are integers and
Proposition 8.2.2 implies that they are non-negative. �

One might be tempted to think that the general solutions of most partial differen-
tial equations should possess such algebraic representations. In fact, for higher-order
equations it is a rather rare phenomenon. In particular, even in the important special
case of normal equations no algebraic representations exist.

Example 8.2.13. Consider a normal differential equation Rq of order q > 1 in n

independent and m dependent variables. By Proposition 7.5.7 we find that β (n)
q = m

and all other indices vanish. Thus its Cartan characters are



342 8 The Size of the Formal Solution Space

α(n)
q = 0 , α(k)

q = m

(
q + k−1

q−1

)
, 1≤ k < n . (8.25)

Evaluating (8.20) yields fn = 0, fn−1 = mq and fn−2 = mq(1−q)/2. Thus for q > 1
and n > 2 we always get a negative value for fn−2. �

This simple example shows that the notion of an algebraic representation is only
of limited use. One can consider more general representations involving differentia-
tions and integrations of the arbitrary functions [399], but one obtains in general no
unique values for the numbers fk. Furthermore, several technical assumptions are
required. So the value of such a formal counting of arbitrary functions is somewhat
dubious. We have presented it here only because it helps to get a better intuition of
how the Cartan characters and the Hilbert polynomial measure the size of the formal
solution space. These abstract tools do not depend on any particular representation
of the general solution and thus can always be applied without problems.

It is no coincidence that for first-order equations one always obtains reasonable
values for the numbers fk. As we will see in Chapter 9, these numbers are related
to a concrete initial value problem. Solving this problem with a power series ansatz
yields then indeed at each order a one-to-one correspondence between the Taylor
coefficients of the initial data and the parametric coefficients of the solution.

For higher-order equations the situation becomes more difficult, as in general it
is no longer so easy to relate the orders of the coefficients of the data and of the
solution.4 Only one thing is clear: the asymptotic growth of the number of paramet-
ric coefficients is dominated by the arbitrary functions with the highest number of
arguments. The number k0 of their arguments determines the degree of the Hilbert

polynomial, degH = k0−1 and is equal to the highest index k0 such that α(k0)
q > 0.

One calls k0 the Cartan genus g[Rq] and the Cartan character α(k0)
q the index of

generality e[Rq] of the differential equation.5 It is not difficult to see that any repre-

sentation of the general solution depends on precisely α(k0)
q arbitrary functions of k0

arguments. Given the fact that the Hilbert function of an equationRq coincides with
the one of its symbol comoduleN , we see that the Cartan genus corresponds to the
(Krull) dimension dimN and Proposition 8.2.6 implies that the index of generality
equals the multiplicity multN .

For any reasonable physical field theory one expects g[Rq] = n−1, i. e. the Car-
tan genus is the number of spatial variables, as such theories always describe evo-
lutionary processes and in an initial value problem one would like to prescribe the
values of all fields at the initial time t = 0. The index of generality e[Rq] gives
the number of degrees of freedom. For simple field theories like the Klein–Gordon
equation utt −Δu+m2u = 0 where m is a real parameter (the mass of the field), but
also for Maxwell’s equations, this interpretation obviously makes sense.

4 Of course, a simple solution is to rewrite the equation as an equivalent first-order equation as
described in Appendix A.3 and then to analyse this equation.
5 In the context of differential algebra, the degree of the Hilbert polynomial, i. e. k0−1, is called the

differential type and its leading coefficient, i. e. α (k0)
q /k0! the typical differential dimension [258,

Sect. III.5], [259, Sect. 5.2].
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However, if we look at the results obtained in Example 8.2.7 for Einstein’s equa-
tion, then we see that here the Cartan genus is n, i. e. we are dealing with an under-
determined equation. The same problem appears for the Yang–Mills equations. As
we will see in the next section, it is due to the presence of a gauge symmetry. In
order to obtain physically reasonable values for the Cartan genus and the index of
generality, we must “subtract” the effect of the gauge freedom.

8.3 Differential Relations and Gauge Symmetries

One can act with various kinds of transformations on a differential equation. In the
simplest case, the transformation consists just of a change of variables in a local
representation of the equation and, obviously, it does not affect the Hilbert func-
tion or the Cartan characters, since these are geometric invariants. However, more
“brutal” transformations may well change these measures for the size of the for-
mal solution space. A simple example is the reduction to a first-order equation as
discussed in Appendix A.3; depending on the way the reduction is performed, the
Cartan characters may change.

In this section we provide a rather general framework for such transformations:
differential relations. These are slightly more complicated objects than differential
equations; in a certain sense they contain two equations simultaneously. Using this
concept, we can derive an equation connecting the Hilbert functions of differentially
related differential equations.

Definition 8.3.1. Let π : E → X and π̄ : Ē → X be two fibred manifolds over the
same base space X . A differential relation of order s, s̄ between π and π̄ is a
submanifold Ts,s̄ ⊆ Jsπ ×

X
Js̄π̄ such that Ts,s̄ is a fibred submanifold with respect

to the two fibrations induced by π and π̄ , namely π s×
X

id : Jsπ ×
X

Js̄π̄ → Js̄π̄ and

id×
X
π̄ r̄ : Jsπ×

X
Js̄π̄→ Jsπ .

The defining properties of a differential relation allow us to consider for a given
section σ : X → E the submanifold Ts̄[σ ] = Ts,s̄ ∩

(
im jsσ × Js̄π̄

)
as a differential

equation in Js̄π̄ and similarly for any fixed section σ̄ : X → Ē the submanifold
Ts[σ̄ ] = Ts,s̄∩

(
Jsπ× im js̄σ̄

)
as a differential equation in Jsπ .

Definition 8.3.2. Let Rq ⊆ Jqπ and R̄q̄ ⊆ Jq̄π̄ be two differential equations. They
are differentially related via Ts,s̄ ⊆ Jsπ×

X
Js̄π̄ , if the following condition is satisfied:

if the local section σ ∈ Γloc(π) is a solution of Rq, then every solution of Ts̄[σ ]
solves the equation R̄q, and conversely if σ̄ ∈Γloc(π̄) is a solution of R̄q, then every
solution of Ts[σ̄ ] solves the equationRq.

Example 8.3.3. Bäcklund transformations [353, 386] represent a classical instance
of differential relations. Two additional conditions are imposed on them: (i) both
Ts[σ̄ ] and Ts̄[σ ] are solvable, if and only if σ and σ̄ are solutions of Rq and R̄q̄,
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respectively; (ii) both Ts[σ̄ ] and Ts̄[σ ] are equations of finite type. These two con-
ditions allow for a geometric interpretation of Bäcklund transformations as what
is often called a zero-curvature representation based on Remark 2.3.6; we do not
pursue here this point of view but refer to [52].

Bäcklund [31] introduced this type of transformations for the sine-Gordon equa-
tion uxt = sinu. Here we even find an auto-Bäcklund transformation mapping the
equation into itself. It is usually written in the following form:

T1,1 :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
u− v

2

)

t
=

1
a

sin

(
u + v

2

)
,

(
u + v

2

)

x
= asin

(
u− v

2

) (8.26)

where a �= 0 is an arbitrary real parameter. Obviously, given v this is an equation of
finite type for u and vice versa. In order to check whether these finite type equations
are formally integrable, we differentiate the first equation with respect to t and the
second one with respect to x and enter (8.26) into the result. With the help of some
elementary trigonometric identities we find that it is necessary and sufficient for the
formal integrability that both u and v satisfy the sine-Gordon equation.

Bäcklund transformations play a very important role in the theory of soliton
equations. In particular, they are related to the inverse scattering transform and al-
low for the iterative construction of N-soliton solutions [1, Section 3.1]. For exam-
ple, considering the transformation (8.26) for the trivial solution u(x,t) ≡ 0 leads
to vx = −2asin(v/2) and vt = −(2/a)sin(v/2). Combining these two equations
yields the simple linear equation vx− a2vt = 0 whose general solution is trivially
given by v(x,t) = F(t + a2x) with a yet arbitrary function F . Entering it into the
first equation of our system shows that F must satisfy the ordinary differential equa-
tion aF ′ =−2sin(F/2). This is a separable equation and an elementary integration
gives F(τ) = 4arctan

(
exp(c− τ/a)

)
where c is an arbitrary integration constant.

Thus, starting from the trivial solution u(x,t) ≡ 0, we have constructed the single
kink solution

v(x,t) = 4arctan
(
exp(ax +

t
a

+ c)
)

(8.27)

of the sine-Gordon equation. Iteration yields solutions with more kinks.
A further, rather trivial example, well-known in complex analysis, is provided by

the Cauchy–Riemann equations

T1,1 : { ux = vy , uy =−vx , (8.28)

defining an auto-Bäcklund transformation for the Laplace equation uxx +uyy = 0, as
one easily verifies.

Finally, we consider a Bäcklund transformation between two different equations.
In characteristic coordinates the Liouville equation is given by uxt = eu. Via
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T1,1 :

{
ut − vt =

√
2e(u+v)/2 ,

ux + vx =
√

2e(u−v)/2
(8.29)

it is differentially related to the wave equation in characteristic coordinates vxt = 0.
A trivial solution of the latter one is v(x,t)≡ 0. Entering it into (8.29) and integrating
the arising simple system for u yields the non-trivial one-parameter family

u(x,t) =−2ln
(

C− 1√
2
(x + t)

)
(8.30)

of solutions of the Liouville equation. �

If two equations Rq and R̄q̄ are differentially related by a relation Ts,s̄, then
we can associate to each solution of one of them some solutions of the other one.
But generally we do not obtain a one-to-one correspondence. In the case of the
Bäcklund transformation (8.26), v(x,t) solves an equation of finite type and each
solution u(x,t) of the sine-Gordon equation leads via the transformation to a one-
parameter family of new solutions. Our goal is now to compare the Hilbert functions
of two such equations. For simplicity we will assume that all differential equations
involved are involutive.

Let h(r) and h̄(r) be the Hilbert functions of the two equations Rq and R̄q̄, re-
spectively. We introduce furthermore two different Hilbert functions, g(r) and ḡ(r),
for the differential relation Ts,s̄: for the former one we consider an equation Ts[σ̄ ]
and for the second one an equation Ts̄[σ ]. We assume here and in the sequel for
simplicity that the Hilbert functions of these equations do not depend on the chosen
sections σ and σ̄ , respectively.

Proposition 8.3.4. The four above defined Hilbert functions satisfy for all argu-
ments r ≥max{s, s̄} the equality

h(r)−g(r) = h̄(r + s̄− s)− ḡ(r + s̄− s) . (8.31)

Proof. The formal power series solution ofRq contains h(r) parametric coefficients
of order r. Via the differential relation Ts,s̄, a family of solutions of R̄q̄ depending
on ḡ(r) parametric coefficients of order r corresponds to each solution σ of Rq.
However, each of these solutions of R̄q̄ can be obtained not only by starting with
the section σ but also by starting with any solution in a whole family parameterised
at order s by g(s) coefficients (obtained by applying the relation Ts,s̄ “backwards”).
Since for r ≥ max{s, s̄} a coefficient of σ of order r corresponds via Ts,s̄ to co-
efficients of order r + s̄− s of σ̄ , the formal power series solution of R̄q̄ contains
h̄(r+ s̄−s) = h(r)−g(r)+ ḡ(r+ s̄−s) parametric coefficients of order r+ s̄−s. �

For lower values of r, the equality (8.31) does not need to hold. This is due to the
fact that in general we cannot say that the coefficients of σ of order r ≤ max{s, s̄}
are related to coefficients of σ̄ of order r + s̄− s. We only know that the coefficients
of σ up to order s correspond to the coefficients of σ̄ up to order s̄. Only when
the relation Ts,s̄ has a special form, we may be able to make stronger statements.
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In particular, if both equations Ts[σ̄ ] and Ts̄[σ ] are of Cauchy–Kovalevskaya form,
then (8.31) holds for the full Hilbert functions.

Example 8.3.5. We exhibited the relation between Maxwell’s equations and the
U(1) Yang–Mills equations in Example 2.4.3. Maxwell’s equations use as depen-
dent variables the electric and magnetic fields E and B which may be combined into
the field strength tensor F given by (2.95); the Yang–Mills equations are based on
the vector potential A. As already mentioned, in the language of differential forms
F may be considered as the exterior derivative of A. At the level of the components
the two sets of fields are related by the equality

Fi j =
∂Ai

∂x j −
∂A j

∂xi , (8.32)

representing nothing but a differential relation T1,0. For a given potential A, the
field strength F is uniquely determined; hence the corresponding Hilbert function is
simply ḡ(r) = 0. For given field strength F , (8.32) represents a first-order differential
equation in the potential A; its Hilbert function is easily determined to be

g(0) = 4 , g(1) = 10 , g(2 + r) =
1
6

r3 +
5
2

r2 +
37
3

r + 20 . (8.33)

The Hilbert functions of the two differential equations are given by

h(0) = 4 , h(1) = 16 , h(2 + r) =
1
6

r3 +
9
2

r2 +
73
3

r + 36 (8.34)

for the second-order Yang–Mills equations and

h̄(0) = 6 , h̄(1 + r) = 2r2 + 12r + 16 (8.35)

for the first-order Maxwell equations, respectively. As predicted by our theory, these
Hilbert functions satisfy the equality (8.31) for all values r ≥ 0. �

A somewhat similar situation arises in the formal analysis of gauge theories.
Such theories are of great importance in physics; today all fundamental interactions
are modelled by field theories invariant under gauge symmetries. In fact, this idea is
the guiding principle in modern elementary particle physics. In this section we use
a very broad definition of the term “gauge symmetry” which is much more general
than the one appearing in theoretical physics. In particular, when a symmetry is to
be promoted to a gauge symmetry depends generally on the physical interpretation
and cannot be decided on the basis of purely mathematical considerations.

We assume that we are given a differential equationRq⊆ Jqπ , the field equations
in physical applications. We do not distinguish whether these are ordinary or partial
differential equations and we do not assume any special structure of Rq like that
they are of a Lagrangian or Hamiltonian nature. Our considerations are valid for
any kind of formalism to set up the field equations.

For us symmetry transformations are (local) diffeomorphisms γ : E → E where
E denotes for the moment some manifold (not necessarily fibred) with local coor-
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dinates u. We are particularly interested in whole (Lie) groups of transformations.
Classically, one would work with an explicit parametrisation of such a group. For
example, the group of global affine transformations of E could be described by the
set of all maps u 	→ ū = Au + b with an arbitrary regular matrix A and an arbi-
trary vector b. However, not for all relevant groups it is possible to provide explicit
parametrisations (consider for example for an orientable manifold the group of vol-
ume preserving transformations) and such a representation is also not convenient
for our purposes. We will instead use a pseudogroup approach and describe our
transformations as the solutions of a differential equation.

We may consider any diffeomorphism γ : E → E as a section of the trivial bundle
pr1 : E ×E → E . For simplicity of notation, we will in the sequel always identify
sections E → E ×E with maps E → E and use whatever point of view is more
convenient. As for any fibred manifold, we can form for any order s ≥ 0 the jet
bundle Jspr1 over this trivial bundle. However, not every section of pr1 corresponds
to a diffeomorphism. We therefore define the open subbundles Ispr1 consisting only
of the jets of those local sections that are invertible (thus Ispr1 is the complement of
the submanifold described by the vanishing of the Jacobian determinant).

Definition 8.3.6. A Lie pseudogroup is the solution space of a differential equation
Gs ⊆ Ispr1⊂ Jspr1, the corresponding finite Lie equation, whose solutions satisfy the
following three conditions.

(i) The identity idE is a solution of Gs.
(ii) If the two sections γ1 : U1 ⊆ E → E and γ2 : U2 ⊆ E → E are both local

solutions of Gs with γ1(U1)∩U2 �= ∅, then the section γ2 ◦ γ1 defined on some
subset U3 ⊆ U1 with γ1(U3)⊆ U2 is also a local solution of Gs.

(iii) If the section γ : U ⊆ E → E is a local solution of Gs, then the inverse section
γ−1 : γ(U)→U is also a local solution of Gs.

Obviously, this definition just rephrases the usual axioms of a local transforma-
tion group: the identity is contained in it and composition or inversion of group
elements yields—where defined—again group elements. The associativity follows
trivially from the properties of the composition of maps. For the above mentioned
group of affine transformations a pseudogroup description would be simply given
by the second-order Lie equation

G2 :

{
∂ 2ū
∂u2 = 0 . (8.36)

If we consider only the subgroup of homogeneous transformations, i. e. if we require
b = 0, then we could use a first-order description ∂ ū

∂u u− ū = 0. The group of volume
preserving transformations is also described by a first-order Lie equation, namely
det(∂ ū/∂u) = 1. In general, given an explicit parametrisation of a group, we can
always derive a corresponding finite Lie equation by eliminating the parameters with
the help of differentiations.

In our case, E is not an arbitrary manifold but the total space of a fibred manifold
π : E → X . A gauge transformation γ preserves the fibration; in other words, it is
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a fibred morphism and induces a map γ̄ : X → X such that π ◦ γ = γ̄ ◦ π . Thus if
we use our usual adapted coordinates (x,u) on the fibred manifold E , then a gauge
transformation is of the form

x̄ = γ̄(x) , ū = γ̂(x,u) . (8.37)

For simplicity, we will mostly assume that γ̄ is the identity map on X .
Assume we are given a finite Lie equation Gs and some solution γ of it. If

σ ∈ Γloc(π) is an arbitrary section of the fibred manifold π , then in general the
concatenation γ ◦ σ is no longer a section. However, by definition of a Lie pseu-
dogroup, the identity map is contained in it. If our solution γ is sufficiently close
to it, then γ ◦σ will again be a section. Gs describes now a symmetry group of the
differential equationRq, if it maps solutions into solutions, i. e. if the section σ is a
solution ofRq, then γ ◦σ must again be a solution—provided it is still a section.

Thus we have now obtained the above mentioned very general mathematical def-
inition of a gauge symmetry; it is nothing but a fibre preserving symmetry. In phys-
ical applications, gauge symmetries have a more narrow meaning which, however,
incorporates already physical interpretations.6 Thus no mathematical criterion ex-
ists when a fibre preserving symmetry should be called a gauge symmetry in the
physical sense. In physics, gauge symmetries represent a certain redundancy in the
mathematical description of a theory. Solutions related by a gauge symmetry are
identified, as one says that they correspond to the same physical state and hence
cannot be distinguished by measurements.

These considerations imply that a physicist is not so much interested in the size
of the full solution space but only in the size modulo the action of the gauge group,
i. e. in the size of the “state space.” We determine now this “gauge corrected” size
purely formally from the two Hilbert functions of the field equationRq and the Lie
equation Gs, respectively.

Proposition 8.3.7. Let h(r) be the Hilbert function of the involutive differential
equation Rq and g(r) the Hilbert function of the involutive Lie equation Gs. Then
the size of the state space is measured by the gauge corrected Hilbert function

h̄(r) = h(r)−g(r) . (8.38)

Proof. We proceed as in the proof of Proposition 8.3.4. By definition of the Hilbert
function h, the formal power series solution of the field equations Rq depends on
h(r) parametric coefficients of order r. Using the gauge invariance, g(r) of these
coefficients can be given arbitrary values. Thus h̄(r) parametric coefficients remain
to distinguish physical states. �

The gauge corrected Hilbert function leads of course immediately to a gauge cor-
rected Hilbert polynomial H̄(r). With its help we may introduce a gauge corrected

6 Mathematically, physical gauge theories are described by a more specialised machinery, namely
the formalism of principal fibre bundles. For our purposes the here presented simple approach is
sufficient and easier to handle.
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Cartan genus ḡ[Rq] and index of generality ē[Rq], respectively (more generally, we

can introduce via Proposition 8.2.6 gauge corrected Cartan characters ᾱ(k)
q ). Under

the assumption that ḡ[Rq] = n− 1, the number of true degrees of freedom of the
gauge theory is then given by ē[Rq].

Example 8.3.8. Let us consider again the U(1) Yang–Mills equations. For them
Maxwell’s equations represent a gauge-invariant form, so that we can explicitly
compare the result of a gauge correction with the values obtained directly from
Maxwell’s equations.

As already mentioned in Example 7.5.5, the U(1) Yang–Mills equations are in-
variant under the gauge transformation Āi = Ai +∂xiΛ (or Ā = A+dΛ in differential
forms language) with an arbitrary functionΛ . These transformations build the solu-
tion space of the following Lie equation

G1 :

{
∂ Āi

∂x j −
∂ Ā j

∂xi = 0 ,
∂ Āi

∂A j
= δ j

i . (8.39)

The differential equation G1 is involutive and in a four-dimensional space-time its
Hilbert function is (dim I1pr1 = 36 here and (8.39) consists of 22 first-order equa-
tions and of no algebraic equations)

g(0) = 4 , g(1) = 10 , g(2 + r) =
1
6

r3 +
5
2

r2 +
37
3

r + 20 . (8.40)

According to Proposition 8.3.7, we must subtract it from the Hilbert function (8.34)
of the U(1) Yang–Mills equations. Thus the gauge corrected Hilbert function is

h̄(0) = 0 h̄(1) = 6 , h̄(2 + r) = 2r2 + 12r + 16 . (8.41)

Up to a shift of the argument by one which is necessary because of the lower order
of Maxwell’s equations, we find indeed the Hilbert function (8.35) of Maxwell’s
equations. It is no coincidence that (8.40) is identical with (8.33): the gauge sym-
metry is sitting in the differential relation T1,0; if A and Ā are connected by a gauge
transformation, then they yield the same field strength F .

The gauge corrected Hilbert function corresponds to the following gauge cor-
rected Cartan characters for the Yang–Mills equations:

ᾱ(4)
2 = 0 , ᾱ(3)

2 = 4 , ᾱ(2)
2 = ᾱ(1)

2 = 6 . (8.42)

Of course, they are identical with the characters (8.21) of Maxwell’s equations.
Since the highest character vanishes after the gauge correction, the underdetermi-
nacy of the Yang–Mills equations is solely due to the gauge freedom and the gauge
corrected Cartan genus is ḡ[R2] = 3, as it should be for a reasonable gauge theory.

The Hilbert function of an arbitrary Yang–Mills theory with a d-dimensional
gauge group over a four-dimensional space-time is simply d times (8.34), respec-
tively (8.41) after the gauge correction. This observation does not come surprising,
since the Hilbert function is determined by the symbol where the structure constants
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do not appear. The principal part of an arbitrary Yang–Mills theory consists of d
copies of the principal part of the U(1) Yang–Mills theory; no coupling exists be-
tween terms belonging to different generators of the Lie algebra. �

Gauge symmetries can be fixed by adding auxiliary equations such that the aug-
mented differential equation is no longer invariant. Obviously, this modification re-
duces the solution space. However, the gauge fixing conditions must be chosen so
that we still have at least one solution in each orbit of the gauge group. Otherwise
we have not removed gauge freedom but parts of the state space. If we are able to
completely fix the gauge, then we obtain a differential equation such that each of
these solutions lies on a different orbit. Thus its solution space can be bijectively
mapped to the state space. The Hilbert function of this equation is then h̄(s). Using
(8.12), we can also determine in advance its Cartan characters.

Example 8.3.9. The Lorenz gauge of Example 7.5.9 can be extended to general
Yang–Mills theories. It does not eliminate all the arbitrariness due to the gauge
group, but at least it manages to render the originally underdetermined equation
overdetermined. The gauge fixing condition is ημν∂μAa

ν = 0. As it is of lower or-
der, the augmented equation is not formally integrable but becomes involutive after
one prolongation with subsequent projection. It is straightforward to determine its
Cartan characters:

α̃(4)
2 = 0 , α̃(3)

2 = 4d , α̃(2)
2 = 12d , α̃(1)

2 = 16d . (8.43)

Comparing with (8.42) we find that while the two higher characters have the same
value as the gauge corrected ones the two lower ones are larger. Thus the gauge
fixed system still contains a residual gauge freedom. �

Example 8.3.10. Finally, we consider again Einstein’s equations. Here we must
“cheat” a little bit, as a proper mathematical description of its gauge symmetries
would require the introduction of frame bundles. Again we take a simpler ap-
proach by considering (somewhat incorrectly) coordinate transformations x 	→ x̄
on the space-time manifold as gauge transformations. The dependent variables in
Einstein’s equations are the components of the metric and transform according to

gi j =
∂ x̄k

∂xi

∂ x̄l

∂x j ḡkl , (8.44)

i. e. here γ̄ is not only different from the identity, but all arbitrariness of the gauge
transformation is contained in it. Because of this special situation, there is no need
to write down some finite Lie equation Gs, as we can immediately deduce its Hilbert
polynomial G(r): it follows from (8.44) that the number of parametric coefficients
of order r in an expansion of the new dependent variables ḡ is given by the number
of Taylor coefficients of order r + 1 (as (8.44) is algebraic in ḡ but first-order in x̄)
of n functions of n variables (namely x̄(x)), hence

G(2 + r) = n

(
n + r + 2

r + 3

)
(8.45)
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(we determine G(2 + r) in order to facilitate the comparison with the Hilbert poly-
nomial H of the Einstein equations which we computed in Example 8.2.7 also in the
form H(2 + r), as Einstein’s equations are second-order.)

If we apply the identity (A.39) and evaluate the arising modified Stirling num-
bers, then we obtain

G(2 + r) =
n

(n−1)!

n−1

∑
k=0

s(n−1)
n−k−1(3)rk =

n
(n−1)!

rn−1 +
1
2

n(n + 6)
(n−2)!

rn−2 + · · · .

(8.46)
As the leading term of the difference H(2 + r)−G(2 + r) is given by n(n−3)

(n−2)! rn−2,
we obtain for the two highest gauge corrected Cartan characters

ᾱ(n)
2 = 0 , ᾱ(n−1)

2 = n(n−3) . (8.47)

So again we see that all underdeterminacy is solely due to the gauge symmetry, as
the gauge corrected Cartan genus is n−1, and Einstein’s equation possess n(n−3)
degrees of freedom.

In n = 4 dimensions we obtain G(2 + r) = 2
3 r3 + 10r2 + 148

3 r + 80 and thus for
the gauge corrected Cartan characters

ᾱ(4)
2 = 0 , ᾱ(3)

2 = 4 , ᾱ(2)
2 = 6 , ᾱ(1)

2 = 0 . (8.48)

If we compare with the corresponding results for Maxwell’s equations (8.21) (or the
gauge corrected characters (8.42) for the U(1) Yang–Mills equations), then we see
that only the last one differs; in particular, both theories possess the same number of
degrees of freedom.

One possible gauge fixing for the Einstein equations are harmonic coordinates.
They correspond to adding the first-order equations

1√−g
∂i
(√
−ggi j)= 0 (8.49)

where g = detgi j. If we use the same trick as in Example 2.4.4 and express these con-
ditions in locally geodesic coordinates, then they become ∂igi j(x0) = 0. As above,
we must prolong once and project back in order to obtain an involutive system. In a
straightforward computation one determines its Cartan characters to

α(n)
2 = 0 , α(n−1)

2 = n(n−1) , α(n−k)
2 =

n2(k + 1)+ n(k−1)
2

. (8.50)

Again we observe that although the system is no longer underdetermined, the gauge
fixing is not complete, as already the first non-vanishing Cartan character is too
large. If we look at the values (8.48) obtained for the gauge corrected Cartan char-

acters in n = 4 dimensions, then we see that they are not descending: ᾱ(1)
2 < ᾱ(2)

2 .
However, according to Proposition 8.2.2, the Cartan characters of any differen-
tial equation form a descending sequence. Hence we conclude that for Einstein’s
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equations in n = 4 dimensions, it is not possible to achieve a complete gauge fixing
with the help of differential equations. �

A non-physical example of a gauge symmetry and its fixing appears in Ap-
pendix A.3 in the discussion of the Drach transformation.

Addendum: Einstein’s Strength

Einstein [124] introduced an alternative measure for the size of the formal solution
space of a differential equationRq: the strength. We show now how his approach fits
into our framework. Let Rq be an involutive differential equation in n independent
variables. The starting point is the function

Z(r) = h(r)/
[

n
r

]
(8.51)

where h is the Hilbert function of the equation Rq. For values r ≥ q (at least) the
function Z is rational in its argument r: its denominator is of degree n− 1 and the
numerator is then the Hilbert polynomial (8.11) whose degree is at most n− 1.
The function Z describes the growth of the number of parametric coefficients rela-
tive to the growth of the number of Taylor coefficients of an analytic function of n
variables. We expand it in powers of 1/r:

Z(q + r) = Z(0)
q + Z(1)

q /r + O(1/r2) . (8.52)

Definition 8.3.11. Z(0)
q is the compatibility coefficient, Z(1)

q the strength7 of the dif-

ferential equationRq. An equation with Z(0)
q = 0 is called absolutely compatible.

As the next proposition shows (but this fact also easily follows from our inter-
pretation of the function Z), an equation which is not absolutely compatible is nec-
essarily underdetermined. Einstein actually defined the strength only for absolutely
compatible equations, but obviously Definition 8.3.11 makes sense for arbitrary in-
volutive differential equations.

Proposition 8.3.12. The compatibility coefficient and the strength of an involutive

differential equationRq in n independent variables with Cartan characters α(k)
q are

7 Actually, Einstein called Z(1)
q the coefficient of freedom. He only titled his whole discussion of the

subject with the word “strength,” as he considered a differential equation as strong, if it imposes
many restrictions on its solutions, i. e. if its solution space is small. Later, other authors started

to call Z(1)
q strength, although this terminology is quite contradictory: the stronger a differential

equation in the sense of Einstein, the smaller its strength!



8.4 Notes 353

Z(0)
q = α(n)

q , (8.53a)

Z(1)
q = (n−1)

(1
2

nα(n)
q +α(n−1)

q

)
. (8.53b)

Proof. Proposition 8.2.6 provides the explicit form (8.11) of the Hilbert polynomial
in terms of the Cartan characters. Together with (A.39), it yields readily the compat-

ibility coefficient Z(0)
q by taking the limit r→∞. Subtracting the result from (8.52),

multiplying by r and taking again the limit r→∞ gives the formula for the strength

Z(1)
q . �

In the case of gauge theories, Einstein used the gauge corrected Hilbert func-
tion for the definition of Z. Then the gauge corrected Cartan characters appear in
Proposition 8.3.12. As mentioned above, we always expect for a reasonable physi-
cal theory that all underdeterminacy stems from the gauge freedom. After the gauge
correction, the field equations of such a theory are then absolutely compatible and

we get Z(1)
q = (n− 1)ᾱ(n−1)

q = (n− 1)ē[Rq]. Thus up to a constant factor n− 1
depending solely on the dimension of space-time, the strength coincides with the
gauge corrected index of generality and thus the true number of degrees of freedom
(we assume here that ḡ[Rq] = n− 1 which is the case for all classical examples of
field theories).

In any case, we may conclude that Einstein’s approach provides us with less
information than a full involution analysis of the symbol. The compatibility coef-
ficient and the strength correspond only to the two highest Cartan characters; the
lower characters are ignored. One could probably recover them by determining fur-
ther coefficients in the expansion (8.52). But it is clear that analysing the symbol
yields the characters much faster and easier.

8.4 Notes

The notions of “general” and “singular” integrals have disappeared from most mod-
ern textbooks on differential equations. Older books discuss them often at consider-
able length; in Forsyth’s treatise the topic appears in at least three different volumes:
[138, Chapts. VIII, XIII] discusses ordinary differential equations; [140, Chapt. V]
studies first-order partial differential equations and [141, Chapt. XII] higher-order
partial differential equations. Our approach is based on ideas of Ampère [16], who
was apparently the first to propose the definition that a general solution uniquely
determines the differential equation, and follows a modern reformulation given by
Hermann [208]. Within differential algebra, i. e. for differential equations with at
most polynomial non-linearities, a rigorous definition of general and singular solu-
tions exists. Apparently Ritt [383] was the first to introduce it; more recent work in
this direction is due to Hubert [226, 227].

According to Ince [230], App. A5, the first singular integral was already discov-
ered by Taylor [451, p. 26] in 1715 in the analysis of the equation
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(1 + x2)2(u′)2 = 4u3−4u2 . (8.54)

Apparently, this fact is not very well-known, as the discovery of singular integrals
is usually attributed to Clairaut [92] (1734) whose family of equations discussed in
Example 8.1.2 still represents the prototype of equations with such solutions.

The here used notion of a differential relation was introduced in [404]. It gen-
eralises the classical concept of a Bäcklund transformation and allows for rather
“rough” transformations of a differential equation. Concerning the gauge correction
of Cartan characters, [399] presented a first approach based on an explicit represen-
tation of the gauge transformation; the more flexible approach via Lie pseudogroups
is again from [404]. This article also discusses the use of the gauge corrected Car-
tan characters for counting the degrees of freedom of a gauge theory. The formal
analysis of gauge fixing conditions was first proposed in [401].

In his quest for a unified field theory, Einstein showed considerable interest in
formal measures for the size of the solution space. He [124, p. 133] describes his
motivation in the following way:

Given certain field variables and a system of field equations for them, the latter will not in
general determine the field completely. There still remain certain free data for a solution of
the field equation. The smaller the number of free data consistent with the system of field
equations, the “stronger” is the system. It is clear that in the absence of any other viewpoint
from which to select the equations, one will prefer the “stronger” system to a less strong
one.

Around 1930 he discussed this question in his correspondence with Cartan [75].
Cartan tried to explain Einstein his theory of involutive systems; in fact, one letter is
one of few places where Cartan explained his theory in terms of partial differential
equations and not of exterior differential systems. But for whatever reasons, Einstein
seems to have never used this approach.

Many years later, he developed his own notion, the strength, in an appendix
of his book on the meaning of relativity [124, pp. 133–139]. This appendix on
a generalised theory of gravitation was introduced in the third edition and com-
pletely rewritten for the fifth edition under the title “Relativistic Theory of the Non-
Symmetric Field”. The second version starts with the following words:

This discussion is of intrinsic interest quite apart from the particular theory presented here.
For a deeper understanding of our problem, however, it is indispensable.

Of course, Einstein did not use the Hilbert function for defining the strength.
He gave a much more cumbersome recipe for determining it. In order to obtain
the numerator of (8.51), he counted the number of field equations, the number of
identities satisfied by them, the number of identities of these identities and so on.
Obviously, this process is prone to errors, in particular when applied to an equation
which is not involutive. Indeed, one can find several examples in the literature where
wrong results for the strength were obtained. By contrast, the determination of the
Cartan characters via the symbol is trivial.

The idea of the strength of a differential equation did not spark much interest.
Only few authors applied it to various physical field theories [64, 220, 308, 313, 314,
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335, 397, 418]. Penney [350] used it for metaphysical speculations on the dimen-
sionality of the world. He conjectured that the world is four-dimensional, because
only in four dimensions the Maxwell and the Einstein equations possess the same
strength. In fact, already Einstein [124, p. 139] remarked:

It is surprising that the gravitational equations for empty space determine their field just as
strongly as do Maxwell’s equations in the case of the electromagnetic field.

However, if one computes the full set of gauge corrected Cartan characters for both
theories, then one sees that even in four dimensions only the higher ones are identi-
cal; the last one and thus the size of the formal solution spaces of the two theories
are different. Hence Einstein’s comment is not really correct. Furthermore, no com-
pelling physical reason exists why the two theories should have formal solution
spaces of the same size and one can seriously argue about the importance of formal
solutions for physics.

It seems that Sué [442] was the first who tried to relate Einstein’s and Cartan’s
approach, especially for gauge theories. But he compared a strength which was cor-
rected for the gauge freedom with Cartan characters which were not corrected, so
some of his conclusions are misleading. The relation (8.53) between strength and
compatibility coefficient on one side and the two highest Cartan characters on the
other side was first derived in [399].

Finally, we note that recently Levin [287] extended the concept of strength to
linear systems of difference equations with constant coefficients and showed how
the strength may be computed via Gröbner bases.



Chapter 9
Existence and Uniqueness of Solutions

In order to solve this differential equation you look at it till a
solution occurs to you.

George Pólya

A fundamental issue in the theory of differential equations consists of proving
the existence and uniqueness of solutions. Before we discuss partial differential
equations, we analyse in Section 9.1 the situation for general systems of ordinary
differential equations, often called differential algebraic equations. For involutive
equations it is here straightforward to extend the classical existence and uniqueness
theorem. The formal theory also provides us with a natural geometric approach to
the treatment of certain types of singularities.

Traditionally, (first-order) ordinary differential equations are studied via vector
fields on the manifold E (actually, one usually restricts to the autonomous case as-
suming that E = X ×U and considers vector fields on U). However, for a unified
treatment of many singular phenomena it turns out to be much more useful to asso-
ciate with the equation a vector field (or more precisely a distribution) in the first jet
bundle J1π arising very naturally from the contact structure. We will not develop a
general theory of singularities but study a number of situations that have attracted
much interest in the literature.

In local coordinates, one may say that the study of power series solutions un-
derlies much of the formal theory. Hence, it is not surprising that results on analytic
solutions of partial differential equations are fairly straightforward to obtain. In Sec-
tion 9.2 we recall the famous Cauchy–Kovalevskaya Theorem for normal systems.
The main point of the proof consists of showing that the easily obtained formal
power series solution of the usual initial value problem actually converges.

While for normal systems it is more or less obvious how many initial conditions
we must impose in order to obtain a unique solution, this question becomes much
less clear for overdetermined systems. If one insists on prescribing the initial data in
the customary way on a hypersurface, then the data cannot be chosen arbitrarily but
must satisfy certain consistency conditions. In Section 9.3 we introduce the notion of
a formally well-posed initial value problem possessing a unique formal power series
solution. The definition is based on the combinatorial decompositions of polynomial
modules introduced in Section 5.1.

The term “initial” data should not be taken too literally here, as it is well possible
to obtain “initial” conditions where some dependent functions are prescribed on,
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say, the hypersurface x = 0 and others on y = 0. Of course, this effect is familiar
from characteristic initial value problems for hyperbolic equations. However, here
it is in general not related to characteristics but simply stems from the properties of
the chosen term order.

Given an involutive system in δ -regular coordinates where the linearised prin-
cipal part yields a Pommaret basis for the symbol module, we can directly write
down the corresponding formally well-posed initial value problem. In it the initial
data are prescribed on a flag of submanifolds, so that we always recover the intuitive
idea of an initial value problem. In the analytic category we may now generalise the
Cauchy–Kovalevskaya Theorem for normal systems to an existence and uniqueness
theorem for arbitrary involutive systems, the Cartan–Kähler Theorem. We will see
again why formal integrability is not sufficient for analysing differential equations
but that one needs involution in order to ensure uniqueness.

From an application point of view the restriction to analytic solutions is very se-
vere. It represents the price we have to pay for the Cartan–Kähler Theorem requiring
essentially no other assumptions than involution. At such a level of generality, no
stronger results can be expected. However, one may argue that our proof of the
Cartan–Kähler Theorem is actually more important than the theorem itself. In situa-
tions where more is known about the structure of the system stronger statements are
possible. We will see later two simple instances of this effect: in Section 10.2 the
classical Holmgren Theorem asserting the uniqueness of continuously differentiable
solutions is extended from normal systems to arbitrary linear involutive systems and
in Section 10.4 an existence and uniqueness theorem for smooth solutions of hyper-
bolic equations with elliptic constraints are proven.

The final two sections of this chapter cover the Vessiot theory. We used this
approach already in our treatment of ordinary differential equations in the first sec-
tion; now we discuss its extension to partial differential equations. The material we
present here concerns mainly an alternative (dual) approach to the Cartan–Kähler
Theory of exterior differential systems. However, it should be pointed out that the
Vessiot theory leads to important geometric structures associated with any differ-
ential equation. These structures have found many applications, e. g. in the integra-
tion of hyperbolic equations (the famous Darboux method). Furthermore, they relate
more closely the formal theory with the Cartan–Kähler Theory and allow us to ap-
ply directly (i. e. at the level of differential equations and without a transformation
to an exterior system) many techniques developed there.

As we present in this chapter mainly local results, we will work most of the time
in local coordinates and therefore speak of systems.

9.1 Ordinary Differential Equations

In order to simplify the discussion of the existence and uniqueness of solutions of an
involutive first-order ordinary differential equation, we specialise the Cartan normal
form (7.34) to the case of only one independent variable. It induces a decomposition
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of the vector of unknown functions into three components u, v and w (not necessar-
ily of the same dimension) and (7.34) may be written as

u′ = φ(x,u,v,w,w′) , (9.1a)

v′ = ψ(x,u,v,w,w′) , (9.1b)

u = χ(x,v,w) . (9.1c)

If the equation R1 is not underdetermined, then the component w is empty. Note
that here, in contrast to (7.34), we further normalised by eliminating the principal
derivatives u′ and v′ from the right hand sides.

Involution imposes restrictions on the right hand sides φ, ψ , χ . The conditions
(7.35) are empty here, as they stem from cross-derivatives which are not possible
for ordinary differential equations. The conditions (7.36) require the existence of a
matrix A(x,u,v,w,w′) of smooth functions such that

∂χ
∂x

+
∂χ
∂v
ψ+

∂χ
∂w

w′−φ = A(u−χ) . (9.2)

Proposition 9.1.1. Assume that the system (9.1) is involutive and not underdeter-
mined. Then the function u−χ(x,v,w) is a weak invariant of the normal ordinary
differential equation (9.1a,9.1b).

Proof. This is a trivial reformulation of (9.2). �

The terminology “weak” invariant refers to the fact that the left hand side of
the identity (9.2) does not necessarily vanish everywhere but only on the constraint

manifold C =R(1)
0 ⊆ E defined by the algebraic equations u = χ which leads via

Hadamard’s Lemma C.1.5 to the right hand side of (9.2). For a strong invariant
one requires that they vanish on the whole manifold E . Another way to formulate
Proposition 9.1.1 is to say that C is an invariant manifold of the ordinary differential
equation (9.1a,9.1b) i. e. if we choose initial data lying on C, then the whole arising
solution will stay on C.

Proposition 9.1.1 makes the existence and uniqueness theory for an involutive
ordinary differential equation R1 almost trivial. We can reduce the problem to a
normal ordinary differential equation living on some submanifold C ⊆ E defined by
the algebraic part (9.1c) and apply the standard existence and uniqueness theorem
of Picard–Lindelöf [13, Theorem 7.4]. For simplicity, we assume in the sequel that
X ⊆�which is not a very restrictive assumption, as any connected one-dimensional
manifold is diffeomorphic to either a submanifold of� or S1.

Theorem 9.1.2. Let (9.1) be an involutive and not underdetermined system. Fur-
thermore, let [a,b] ⊂ X ⊆� be a closed interval with a point ξ ∈ (a,b) in it. As-

sume that φ and ψ are continuous functions on π−1([a,b])∩R(1)
0 and satisfy there

a Lipschitz condition in the variables (u,v). Then the initial value problem for (9.1)

with initial data
(
ξ ,u(ξ ),v(ξ )

)
∈ R(1)

0 , i. e. with u(ξ ) = χ
(
ξ ,v(ξ )

)
, possesses a

unique solution in some interval [ξ − r,ξ + r]⊆ [a,b] with r > 0.
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Remark 9.1.3. Theorem 9.1.2 generalises the usual form of the Picard–Lindelöf
Theorem to involutive equations, as it speaks only about the local existence and
uniqueness of solutions. With a little more effort it is not difficult to show that if
the function φ(x,u) is Lipschitz continuous in a domain Ω , then any solution of
u′ = φ(x,u) can always be extended until it reaches the boundary ∂Ω (note that this
boundary may be at infinity!)—see e. g. [13, Theorem 7.6] for a precise statement
and a proof. It is straightforward to generalise this stronger form, too. �

Of course, one must emphasise that we obtain such a trivial theory only because
of our standard assumption that we are dealing with a regular differential equation.
It entails that the ranks of certain Jacobians are constant and that we may indeed
rewrite any local representation in the form (9.1). Many ordinary differential equa-
tions appearing in applications do not satisfy this assumption and their existence
and uniqueness theory is more complicated, as we will see below.

In order to obtain a geometric formulation of the existence and uniqueness the-
ory, we exploit the contact structure of the jet bundle J1π . The contact distribu-
tion C1 ⊂ T J1π is (m + 1)-dimensional and locally generated by the vector fields{
∂x + (u′)α∂uα , ∂(u′)α

}
(as one easily sees by specialising (2.11) to q = n = 1).

Given an ordinary differential equation R1 ⊆ J1π , we introduce on it the distribu-
tion V [R1] = TR1∩C1 R1

which we call the Vessiot distribution of the equation (in
Section 9.5 we will generalise this construction to partial differential equations).

Example 9.1.4. If the given differential equationR1 is normal, then its Vessiot dis-
tribution V [R1] is always one-dimensional and it is straightforward to write down a
generating vector field. LetR1 be locally represented by the system u′ = φ(x,u). A
general contact vector field X = a

(
∂x +(u′)α∂uα

)
+ bα∂(u′)α is contained in TR1,

if it annihilates the one-forms d(u′)α − ∂φα

∂uβ
duβ − ∂φα

∂x dx. As onR1 we may always
replace u′ by φ, this condition yields for the generator

X = ∂x +φα∂uα +
(∂φα

∂x
+φβ

∂φα

∂uβ

)
∂(u′)α . (9.3)

Obviously, application of the projection Tπ1
0 : T J1π → TE yields the familiar evo-

lution vector field ∂x +φα∂uα corresponding to our differential equation. The coeffi-
cient in the direction (u′)α is also easily understood: prolonging our equation shows
that it is just the value of the second-order derivative (u′′)α . �

As for ordinary differential equations dimX = 1, we may consider the image of a
section σ : X →E as a curve in E parametrised by X . Now we obtain the following
geometric interpretation of the distribution V [R1].

Lemma 9.1.5. The local section σ ∈ Γloc(π) is a solution of the differential equa-
tion R1, if and only if Tρ(im j1σ) ⊆ Vρ [R1] for every point ρ on the image of the
prolonged section j1σ ∈ Γloc(π1).

Proof. By the definition of a solution, the curve im j1σ lies completely in R1 and
thus its tangent space T (im j1σ) in TR1. On the other hand, by Proposition 2.2.4,
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the tangent space of the image of a prolonged section is always a subspace of the
contact distribution C1. �

As a corollary of this lemma, we may easily characterise geometrically the
existence of unique solutions for initial value problems. The differential equation
R1 possesses a unique local solution passing through a prescribed point ρ ∈ R1,
if and only if the vector space Vρ [R1] is one-dimensional and transversal to the fi-
bration π1 : J1π →X . Obviously, a necessary condition for uniqueness is that R1

is not underdetermined. A one-dimensional distribution is trivially involutive and
thus integrable. Hence a unique integral curve to V [R1] exists passing through ρ .
Since Vρ [R1] is transversal, it follows from the properties of the contact distribu-
tion that this integral curve is in fact the image of a prolonged section j1σ and by
Lemma 9.1.5 the thus determined section σ is a solution ofR1.

Theorem 9.1.6. Let the regular ordinary differential equationR1 be involutive and
not underdetermined. Then the distribution V [R1] is everywhere one-dimensional
and transversal so that the initial value problem for R1 is locally uniquely solvable.

Proof. As the differential equation R1 is assumed to be regular and not under-
determined, we can locally transform it into the semi-explicit form u′ = φ(x,u),
χ(x,u) = 0. Any vector field in TR1 must thus annihilate the following one-forms:

d(u′)α − ∂φ
α

∂uβ
duβ − ∂φ

α

∂x
dx ,

∂χγ

∂uβ
duβ +

∂χγ

∂x
dx . (9.4)

The distributionV [R1] is generated by the contact vector fields X ∈C1 satisfying this
condition. The ansatz X = a

(
∂x +(u′)α∂uα

)
+ bα∂(u′)α yields the following linear

system for the coefficient functions a, bα :

bα = a

(
∂φα

∂x
+(u′)β

∂φα

∂uβ

)
, 0 = a

(
∂χγ

∂x
+(u′)β

∂χγ

∂uβ

)
. (9.5)

As we consider these equations only on R1, the second subsystem vanishes for
an involutive equation (this follows immediately from a trivial adaption of (9.2)).
Thus the linear system (9.5) has a one-dimensional solution space. Furthermore,
one easily sees from the first subsystem that for every non-trivial solution a �= 0.

Hence, we may conclude that the distribution V [R1] is indeed one-dimensional
and transversal to the fibration π1 : J1π→X . Locally, it is thus generated by a single
transversal vector field and every integral curve of it is the image of the prolongation
of a solution σ of our differential equationR1. �

For notational simplicity, we formulated this theorem for first-order equations.
But obviously all the considerations extend straightforwardly to higher-order equa-
tions; there is not need to rewrite them as first-order equations, as it is usually done.
For a regular involutive and not underdetermined equation Rq ⊂ Jqπ we may al-
ways introduce the one-dimensional distribution V [Rq] = TRq∩Cq Rq

the integral
curves of which are the images of prolongations jqσ of solutions σ ofRq.
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Remark 9.1.7. One should always keep in mind that the initial value problem for
an implicit differential equation R1 consists of prescribing a point ρ ∈ R1, i. e. on

the jet bundle and not only on the constraint manifold R(1)
0 . Indeed, assume for

example that we are given a differential equation of the form (u′)k = φ(x,u) with
an exponent k > 1. Then prescribing values (x0,u0) does not suffice for obtaining a
unique solution, as there are k possible values u′0 such that (x0,u0,u′0) ∈R1 leading
to k different solutions. Prescribing a point ρ ∈ R1 corresponds to choosing one of
these possible values and thus yields a unique solution. �

So far we have always made the blanket assumption that we are in a completely
regular situation. Now we will admit some singularities. In fact, it will turn out that
the geometric theory developed above gives us with the Vessiot distribution a very
useful tool for studying certain types of singularities where the classical existence
and uniqueness results fail. However, in most cases a purely formal analysis does
not suffice but must be complemented by additional analytic considerations.

We will not attempt to develop here a general theory of singularities of ordinary
differential equations, as this topic would require a book of its own. Based on a few
examples, we will only exhibit some typical phenomena and show how they may be
tackled using the above geometric ideas and the Vessiot distribution. In particular,
we want to show that a proper analysis of the singularities of a qth order nonlinear
equation can only be performed on the jet bundle Jqπ and not already on E .

We first remark that in our context the word “singular” may have for a differential
equationRq (at least) the following different meanings: (i) Rq is not everywhere a
smooth manifold; (ii) a solution of Rq cannot be described as a smooth section;
(iii) singular solutions in the sense of Section 8.1 exist (i. e. solutions which are not
contained in the general one). We will ignore here the first possibility, although it
is of great practical importance, as nonlinear differential equations typically lead to
subvarieties and not to submanifolds of the jet bundle.

Concerning the second point, we introduce now a more general concept of so-
lutions. So far we have defined solutions as sections of the underlying fibred mani-
fold π : E → X . In the case of ordinary differential equations, we have thus always
worked with curves parametrised by the base spaceX , as we considered them as im-
ages of prolonged sections. Now we drop this restriction and allow arbitrary curves.

Definition 9.1.8. A generalised solution of the ordinary differential equation Rq is
an integral curve of its Vessiot distribution V [Rq].

For the following considerations it is crucial to realise that a generalised solution
is a curve in the jet bundle Jqπ and not in E . If a generalised solution stems from
a solution in the usual sense, then this curve projects onto the image of a section
σ : X → E , i. e. the generalised solution is just the prolongation of a classical so-
lution. This will be the case, whenever the Vessiot distribution is transversal along
the generalised solution. In general, however, the projection to E of a generalised
solution can be a rather complicated object.
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Definition 9.1.9. Let Rq ⊆ Jqπ be an involutive differential equation which is not
underdetermined. A point ρ ∈Rq is called1

(i) regular, if Vρ [Rq] is one-dimensional and transversal,
(ii) regular singular, if Vρ [Rq] is one-dimensional but not transversal,
(iii) irregular singular or s-singular if dimVρ [Rq] = s+ 1 with s > 0.

We exclude here again the case of an underdetermined equation, as for it any
point is trivially irregular singular. At a regular point we are in the situation treated
by Theorem 9.1.2, i. e. at such a point we find exactly one classical solution. We
will show below that generically there are two classical solutions at regular singular
points. In the irregular singular case several possibilities exist. For example we could
have a singular integral which leads again to the existence of two classical solutions.
But it is also possible that infinitely many classical solutions may start or end at such
points (one then sometimes speaks of a funnel).

Proposition 9.1.10. Let the system Φ(x,u,u′) = 0 for m unknown functions u(x) be
involutive. A point ρ = (x̄, ū, ū′) is regular, if and only if

rank

(
∂Φ
∂u′

)

ρ
= m . (9.6)

The point ρ is regular singular, if and only if it is not regular and

rank

(
∂Φ
∂u′

∂Φ
∂x

+ u′ ∂Φ
∂u

)

ρ
= m . (9.7)

Proof. This claim is a simple consequence of the local computation of the Vessiot
distribution V [R1]. If we make as usual the ansatz X = a(∂x + u′∂u)+ b∂u′ , then
V [R1] is determined by the linear system

b
∂Φ
∂u′ + a

(
∂Φ
∂x

+ u′ ∂Φ
∂u

)
= 0 . (9.8)

Obviously, we obtain therefore a one-dimensional Vessiot distribution, if and only
if (9.7) is satisfied. Transversality of V [R1] is equivalent to a �= 0 which is the case
if already the submatrix ∂Φ/∂u′ has maximal rank. �

Remark 9.1.11. The case of a regular point can be easily formulated in an intrinsic
manner via the symbol: a point ρ ∈Rq ⊆ Jqπ is regular, if and only if dimNq ρ = 0.
Indeed, the condition (9.6) ensures that the symbol equations have maximal rank and
hence the symbolNq vanishes. More generally, we conclude that the symbol matrix

1 This terminology follows Arnold [27], §4. Rabier [367] objects that it may be confused with sim-
ilar notions in the Fuchs–Frobenius theory of linear ordinary differential equations in the complex
plane (see e. g. [364]). While this is certainly true, it is equally true that from a geometric point of
view this terminology appears very natural, as the classification is based on whether the Vessiot
distribution is regular or singular at ρ .
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is always part of the matrix of the linear system determining the Vessiot distribution
and that its properties decide the transversality of V [R1]. �

Example 9.1.12. All the different types of singular points may already appear in a
scalar implicit equation, if it cannot be solved for the highest-order derivative. Let
us consider the first-order differential equation

R1 : (u′)2 + u2 + x2−1 = 0 . (9.9)

Obviously, the submanifoldR1 is nothing but the unit sphere in J1π . Strictly speak-
ing,R1 is not a differential equation in the sense of Definition 2.3.1, as at the equator
u′ = 0 the projection π1 :R1 →X is not a submersion. In fact, if we take X =�,
then it is not even surjective. We will simply ignore this point; in particular, as it
disappears as soon as one considers the equation over the complex numbers�.

One easily verifies with the help of Proposition 9.1.10 that all points off the
equator u′ = 0 are regular and that on the equator all points are regular singular
except for the two 1-singular points (0,±1,0). Indeed, except for these two irregular
singularities the Vessiot distribution V [R1] is globally spanned by the vector field
X = u′∂x +(u′)2∂u− (x + uu′)∂u′ . Figure 9.1 shows the direction defined by V [R1]
at some points onR1; the singular points are marked red.

Fig. 9.1 Vessiot distribution V[R1] and solutions of the differential equation (9.9)

Locally, it is possible to solve for u′: the upper hemisphere corresponds to the
branch with the positive square root; the lower hemisphere to the one with the
negative square root. As Figure 9.1 demonstrates, V [R1] possesses integral curves
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crossing the equator (in fact, they cross it repeatedly, as they spiral into the singular
points). This behaviour means that they jump from one branch of the square root
to the other one. If we project such a generalised solution into the x-u plane, then
singularities in the form of cusps arise at the location of these jumps. This effect is
not surprising, as at the equator vector field X is not transversal. Only the segments
between two singularities define images of sections σ : X → E and thus classical
solutions; the full projected curves correspond to multivalued sections.

We can summarise the existence and uniqueness theory of this differential equa-
tion as follows. Through every regular point we have exactly one classical solution.
It can be extended until its prolongation reaches a singular point. At every regular
singular point two classical solutions either start or end (depending on the sign of
the x-coordinate). At the two irregular singular points infinitely many solutions start
and end so that they are funnels. In fact, every generalised solution connects these
two points. Note that for a generalised solution it does not makes sense to speak
about start or end, as it is an integral curve of a one-dimensional distribution and
hence no direction is distinguished as forward. �

As already mentioned above in Remark 9.1.3, it is a classical result in the theory
of explicit ordinary differential equations u′ = f(x,u) that every solution can be
extended until it reaches the boundary of the domain of definition of f (which is
possibly at infinity in the case of a blow-up). As Example 9.1.12 demonstrates, the
situation is more complicated for implicit equations, as a solution may also break
down at a singular point.

Theorem 9.1.13. Let R1 be a first-order ordinary differential equation such that
everywhere dimV [R1] = 1 (i. e.R1 contains no irregular singular points). If ρ ∈R1

is a regular point, then there exists a unique solution σ ∈ Γloc(E) with ρ ∈ im j1σ .
This solution can be extended until im j1σ reaches either the boundary of R1 or a
regular singular point. If ρ ∈ R1 is a regular singular point, then generically two
solutions σ1,σ2 ∈ Γloc(E) with ρ ∈ im j1σi exist. Again each can be extended until
im j1σi reaches either the boundary of R1 or a regular singular point.

Proof. The first assertion is simple. Under our assumptions the Vessiot distribution
is locally generated by a smooth vector field to which we can apply the standard ex-
istence and uniqueness theorem of Picard–Lindelöf. Hence any generalised solution
can be extended until it reaches the boundary ofR1. However, its projection ceases
to define a classical solution, as soon as it reaches a singular point.

If a generalised solution goes through a regular singular point, then generically
the ∂x-component of its tangent vector changes sign (for instance this is always the
case in Example 9.1.12). Thus upon projection to E we obtain two classical solutions
which both either start or end at this point. �

Remark 9.1.14. In the above theorem we deliberately formulated the case of a reg-
ular singular initial point rather vaguely by making only a generic statement. One
could now start to study in much more detail the different possibilities or to give
analytic criteria for them. As such an analysis becomes rapidly highly technical, we
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omit it. Our main point here is simply to demonstrate how useful and natural it is to
consider the Vessiot distribution of the given differential equation. �

In the example above we had two isolated irregular singular points. It may also
happen that we have a whole manifold of such singularities. This is for example the
case when singular solutions in the sense of Section 8.1 exist.

Example 9.1.15. We consider again the Clairaut equation u = xu′ + f (u′) already
studied in Example 8.1.2. Now we can systematically derive the observations made
there. Using our standard ansatz X = a(∂x + u′∂u)+ b∂u′ for the generators of the
Vessiot distribution V [R1], we find that the coefficient functions a, b must satisfy
the condition

(
x + f ′(u′)

)
b = 0. Hence all points on R1 with x + f ′(u′) �= 0 are

regular; the remaining points form an irregular singular submanifold R̄1 ⊂R1.
At the regular points the Vessiot distribution V [R1] is globally generated by

the vector field X = ∂x + u′∂u. The integral curves of X are of the form x 	→
(x, px + f (p), p) with a parameter p and obviously describe the general solution
found in Example 8.1.2. In contrast to Example 9.1.12, we do not find infinitely
many solutions through the irregular singular points. The main difference is that here
R̄1 may again be interpreted as a differential equation (necessarily overdetermined).
The Vessiot distribution V [R̄1] is determined by the equation a + f ′′(u′)b = 0 and
thus always one-dimensional. All points on R̄1 with f ′′(u′) �= 0 are regular. V [R̄1]
is generated by the vector field Y = f ′′(u′)

(
∂x +u′∂u

)
+∂u′ . Since the manifold R̄1

is one-dimensional, it is the single integral curve of Y and it can be parametrised in
the form τ 	→

(
− f ′(τ), f (τ)− τ f ′(τ),τ

)
. Obviously, this curve is nothing but the

prolongation of the singular solution found in Example 8.1.2.
Thus we can summarise the situation as follows. The analysis of the Vessiot

distribution V [R1] leads naturally to a decomposition ofR1 into two parts:R1 \R̄1

and R̄1. Considered as individual differential equations, both parts consist only of
regular points (assuming for simplicity that f ′′(u′) does not vanish anywhere on R̄1)
and we can apply Theorem 9.1.13. Taking a slightly different point of view, we see
that the single vector field generatingV [R1\R̄1] can be analytically continued to the
whole submanifold R1. Thus, although Vρ [R1] is two-dimensional at every point
ρ ∈ R̄1, not all vectors in it appear as tangents to generalised solutions. Only two
directions in this plane are relevant: the continuation of the distribution V [R1 \ R̄1]
to ρ (i. e. 〈Xρ〉) and Vρ [R̄1] = 〈Yρ〉. This observation implies that there are exactly
two solutions through every point ρ ∈ R̄1: one member of the general solution and
the singular solution.2

Note that this effect becomes visible only in the jet bundle J1π and not already
on E , since the projections satisfy Tρπ1

0 (Xρ) = Tρπ1
0 (Yρ). This identity expresses

the fact that here the singular solution is the envelope of the general solution and
thus the corresponding curves have a first-order contact at ρ . But as one can clearly
see in Figure 8.1, the corresponding generalised solutions have a clean intersection,
since the ∂u′-components of Xρ and Yρ are different (0 and f ′′(u′), respectively). �
2 From an analytic point of view, we have infinitely many solutions through any point ρ ∈ R̄1:
follow a piece of the singular solution of arbitrary length and then continue along some member of
the general solution. But at ρ we have only two possible directions into which we can move.
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Example 9.1.16. We consider the fully nonlinear differential equation

R1 : x(u′)2−2uu′− x = 0 . (9.10)

Obviously, it is quadratic in the derivative u′ and hence for every choice of initial
conditions u(x0) = u0 (except for x0 = u0 = 0) two different solutions exist. In this
respect, the equation is similar to the Clairaut equations studied in Example 8.1.2.
However, in contrast to these, (9.10) does not possess singular solutions. Its symbol
vanishes whenever xu′ = u and the submanifold in J1π described by this equation
and (9.10) is the u′-axis and thus does not represent a valid differential equation, as
it is not a fibred submanifold. This observation explains why we must exclude the
initial condition x0 = u0 = 0; for it no solution exists.

It is not difficult to solve the equation (9.10) explicitly: its solutions are the
parabolas u(x) = αx2− 1/(4α) with α �= 0. If we resolve (9.10) algebraically for
the derivative u′, we obtain u′ = (u±

√
x2 + u2)/x. Depending on the sign of u the

limit x→ 0 exists only for one branch. But this suffices, as one easily checks that
the parabolas with α > 0 correspond to the branch with the positive square root,
whereas α < 0 yields the negative square root. The solutions and their 1-jets are
shown in Figure 9.2. The parabolas for positive and negative, respectively, values of
α are shown in different colours. They enclose the point x = u = 0 and one can see
that the intersection of the u′-axis andR1 is the open interval (−1,1).

Fig. 9.2 Solutions of (9.10)
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From a numerical point of view, the integration of (9.10) is not completely
straightforward, as we have at each point (x,u) ∈ E two solutions for u′ correspond-
ing to the two intersecting parabolas. In this particular case, this is not so bad, as we
may easily solve for u′ and simply follow one branch. However, in larger examples
where no symbolic solution for u′ is possible and its value must be determined nu-
merically, we obviously face the problem of choosing the right solution, if several
exist. This could for example be achieved with homotopy techniques [345].

If we use the Vessiot theory, the numerical solution of (9.10) is straightforward.
The Vessiot distribution V [R1] is everywhere one-dimensional, as it is spanned by
the vector field X = 2(xu′−u)∂x +2(xu′−u)u′∂u +

(
(u′)2 +1

)
∂u′ . For some points

on the manifold R1 the direction defined by it is shown in Figure 9.2. We choose
a starting point (x0,u0,u′0) ∈ R1 and then follow the uniquely determined integral
curve of the field X through this point. As Figure 9.2 clearly shows, these integral
curves never intersect.

Although the Vessiot distribution is everywhere regular, the points on the inter-
section of R1 with the u′-axis are singular in the following sense: the projection of
the Vessiot distribution into the x-u plane yields the zero vector. Thus although this
intersection is an integral curve of V [R1] and thus a generalised solution, it does not
project onto a classical solution, as it is not transversal to the fibration π1

0 : J1π→E .
All other generalised solutions are simply prolonged classical solutions. �

We restrict now to the special case of an implicit quasi-linear equation R1

locally represented by the system A(x,u)u′ = f(x,u) where the values of A are
m×m-matrices and and those of the right hand side f m-dimensional vectors. Thus
we are dealing with a square system. Their analysis has received considerable at-
tention in the literature (see e. g. [86, 87, 369, 370, 376, 462, 463]), in particular
in the context of the numerical integration of such systems, and lead to the follow-
ing notions. A point ξ = (x,u) ∈ E is called an s-singular point of the system, if
dimkerA(ξ ) = s (note that this is a different notation of s-singularity than the one
introduced in Definition 9.1.9!). If furthermore f(ξ ) ∈ imA(ξ ), one speaks of a ge-
ometric s-singular point, otherwise of an algebraic one.

From the point of view of the formal theory not much can be said about geometric
s-singular points. If the equation R1 is involutive, then it possesses at such a point
an s-dimensional formal solution space, i. e. the system is underdetermined. IfR1 is
not yet involutive, no predictions can be made about the possible effect of the com-
pletion on these points. This observation is generally valid: a reasonable singularity
analysis is only possible for involutive equations. Many of the rather cumbersome
calculations in the literature have their origin in the fact that one tries to analyse
non-involutive equations.

By contrast, it is clear that an algebraic s-singular point is not contained in the

constraint manifoldR(1)
0 . Hence no solution can exist at these points. Nevertheless,

one frequently observes that already in the neighbourhood of such points the nu-
merical integration of R1 encounters difficulties. In the literature one often speaks
about impasse points, although the rigorous definition of this term often differs from
author to author.
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Example 9.1.17. Instead of trying to develop a general theory for this class of
differential equations, we consider in more detail the equationR1 in two dependent
variables u, v defined by the simple system u′ = 1, u = g(v) with some smooth func-
tion g. A number of examples in the above cited works have this particular structure.
One sees immediately that the system is not formally integrable: prolongation of the
algebraic equation leads to the integrability condition

(
g(v)
)′ = g′(v)v′ = 1.

Thus the differential part of the projected equationR(1)
1 is

(
1 0
0 g′(v)

)(
u′

v′

)
=
(

1
1

)
(9.11)

and all points (x,u,v)∈E with g′(v)= 0 are algebraic 1-singular points for it and not

contained in R(2)
0 . Furthermore, we see that if a solution approaches such a point,

then its derivative v′ must diverge which leads to the above mentioned problems in
the numerical integration.

We compute now the Vessiot distribution V [R(1)
1 ]. A general contact vector field

is of the form X = a(∂x + u′∂u + v′∂v) + b1∂u′ + b2∂v′ and lies in TR(1)
1 , if its

coefficients satisfy the linear system b1 = 0 and g′′(v)(v′)2a + g′(v)b2 = 0. Since

v′ = 1/g′(v) onR(1)
1 , a generator of the Vessiot distribution is

X =
(
g′(v)
)3∂x +

(
g′(v)
)3∂u +

(
g′(v)
)2∂v−g′′(v)∂v′ . (9.12)

Thus all points onR(1)
1 are regular and we can apply without problems our existence

and uniqueness Theorem 9.1.13. In principle, the formal analysis of this class of
systems ends here. However, using additional analytic considerations, we can even
resolve some of the problems classically encountered.

By definition, the Vessiot distribution V [R(1)
1 ] lives on the submanifold R(1)

1 .
However, we can readily extend the generator X to the whole jet bundle J1π . The
thus obtained vector field X̃ ∈ X(J1π) has no singularities except that it vanishes at
points where g′(v) = g′′(v) = 0. Hence outside of these points, the field X̃ possesses
smooth integral curves which we may consider as generalised solutions.

Actually, even these remaining singularities of X̃ can be removed. Because of
the quasi-linearity, there is no real need to work with a distribution in J1π , if we
are only interested in a solution curve in E . The vector field X̃ can be projected
to E , as its components do not depend on the derivatives. On E the vector field
Y = g′(v)(∂x +∂u)+∂v generates the same distribution as the projected field (π1

0 )∗X̃
but has no singularities at all.

The integral curves of either X̃ or Y are easily determined numerically; the alge-
braic 1-singular points ofR1 possess no special meaning in this process. The origin
of the numerical problems encountered in classical approaches to the integration of
R1 in the neighbourhood of these points lies in the fact that Y ceases there to be
transversal and thus we are in the same situation as at regular singular points: the
integral curves of Y can no longer be interpreted as images of sections.
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If a system of the type studied here arises in the mathematical modelling of a
physical problem, then one must discuss whether any reasonable interpretation can
be attached to these generalised solutions. In fact, this is probably rarely possible
and one must say that the model breaks down at such points. Nevertheless, our
approach via the vector field Y at least allows us to approach these points without
any numerical problem. �

9.2 The Cauchy–Kovalevskaya Theorem

With respect to the class of differential equations to which it can be applied, the
Cauchy–Kovalevskaya Theorem represents probably the most general existence and
uniqueness result we know for the initial value problem for normal equations. Its
only structural restriction is that we are dealing with a non-characteristic problem.
However, the downside of this structural generality is that it applies only to analytic
differential equations, analytic initial data and makes only statements about analytic
solutions. These restrictions are very severe, in fact, too severe for most applications.

Nevertheless, the Cauchy–Kovalevskaya Theorem is the natural continuation of
the work we have done so far. In Section 2.3 we discussed the construction of for-
mal power series solutions. Now we show that under certain conditions these series
actually converge. We prove the theorem only for quasi-linear first-order equations,
as according to Remark A.3.4 we can always reduce the initial value problem for a
general normal non-linear equation to this special case by a quasi-linearisation.

It follows from Proposition 7.5.7 that in δ -regular coordinates any normal quasi-
linear first-order system may be brought into the form

uxn =
n−1

∑
i=1

Ci(x,u)uxi + c(x,u) (9.13a)

where the Ci are m×m matrices with entries cαiβ and c is an m-dimensional vector
with components cα . We consider the homogeneous initial conditions

u(x1, . . . ,xn−1,0) = 0 . (9.13b)

The extension to general (analytic) initial data f is trivial; one only has to perform
the coordinate transformation v = u− f.

Note that the structure of (9.13a) implies that the hyperplane xn = 0 on which
the initial data are prescribed is non-characteristic. More general non-characteristic
surfaces may always be mapped by a coordinate transformation into this hyperplane.
In physical applications, the “evolution parameter” xn represents usually the time t.

Theorem 9.2.1 (Cauchy–Kovalevskaya). Let the functions Ci and c be real-
analytic at the origin. Then the initial value problem (9.13) possesses a unique
solution u(x) that is real-analytic at the origin.
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Proof. As a normal equation, (9.13a) is trivially formally integrable and we can
apply the order by order construction of a formal power series solution discussed
in Section 2.3. It is easy to distinguish here the principal and the parametric coef-
ficients: any coefficient aαμ with μn > 0 is principal; all others are parametric. The
initial conditions (9.13b) determine uniquely all parametric coefficients of the series.
It is not difficult to see that for our special initial data any Taylor coefficient aαμ can
be represented as a polynomial with positive coefficients in the Taylor coefficients
of the functions cαiβ and cα expanded at the origin.

Thus the initial value problem (9.13) possesses a unique formal power series
solution. There remains to show that it converges in a neighbourhood of the origin.
As the finitely many functions cαiβ and cα are analytic at the origin, two constants M
and r exist such that they are all contained in CM,r(0) (see Appendix A.2). Consider
the initial value problem

Uxn =
n−1

∑
i=1

C̄i(x,U)Uxi + c̄(x,U) , (9.14a)

U(x1, . . . ,xn−1,0) = 0 (9.14b)

where all entries c̄αiβ of the matrices C̄i and components c̄α of the vector c̄ are given
by the same function

φ(x,U) =
Mr

r− (x1 + · · ·+ xn +U1 + · · ·+Um)
(9.15)

and thus majorise the functions in (9.13a): c̄αiβ " cαiβ and c̄α " cα .
The formal power series solution U of (9.14) majorises the formal power series

solution u of (9.13a) (recall, the Taylor coefficients aαμ are determined by polyno-
mials with positive coefficients). Hence our proof is completed, if we can show that
the series U converges.

Entering (9.15) into (9.14) results in the differential equation

Uxn =
Mr

r− (x1 + · · ·+ xn +U1 + · · ·+Um)

(

1 +
n−1

∑
i=1

m

∑
α=1

Uα
xi

)

(9.16)

which can be solved in closed form. With the help of the simple uniform ansatz
Uα(x) = V (x1 + · · ·+ xn−1,xn) for 1 ≤ α ≤ m, we can reduce (9.16) to a scalar
equation for the single unknown function V (σ ,τ). Its solution, computed for exam-
ple by the method of characteristics, is given by

V (σ ,τ) =
1

nm

(
r−σ −

√
(r−σ)2−2nmMrτ

)
. (9.17)

This function is analytic at σ = τ = 0 and (9.16) possesses a unique solution which
is analytic at the origin. Thus the above constructed power series solution of (9.14)
converges in a neighbourhood of the origin. �
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It should be stressed that the uniqueness of the solution is asserted only in the
category of functions that are real-analytic at the origin. The Cauchy–Kovalevskaya
Theorem does not exclude the existence of further solutions that are not real-
analytic. We will see in Section 10.2 that for linear systems a much stronger unique-
ness statement is possible.

Another important point is that Theorem 9.2.1 gives a purely local result; nothing
is asserted about the domain of definition of the solution. A lower bound for its
radius of convergence is given by the radius of convergence of the functionV defined
by (9.17). We do not give a precise formula, but obviously the bound depends only
on the number of independent and dependent variables, respectively, n and m and
on the numbers M, r determined by the coefficients of the equations.

Example 9.2.2. The assumption of analyticity is crucial for the validity of the
Cauchy–Kovalevskaya Theorem. In general, it is not possible to relax it, say to
smooth functions, as the following classical result of Lewy [288] demonstrates (see
also [238]). He proved the existence of a real-valued function f ∈ C∞(�3) such that
the following linear equation for a complex-valued unknown u(x,y,z)

ux + iuy−2i(x + iy)uz = f (x,y,z) (9.18)

possesses no solutions in C1(Ω) for any open set Ω ⊆ �3. Thus this equation is
formally integrable but not locally solvable in the smooth category.

At that time (1957), the existence of a linear equation without solution came as
a big surprise. Nowadays, this phenomenon is much better understood: Hörmander
[223, Chapt. VI] proved his famous Poisson bracket condition for local solvability.
In local coordinates, the principal symbol of such a scalar equation Lu = f in one
dependent variable u is a 1× 1 matrix, i. e. a function T (x,χ) polynomial in the
coefficients of χ . Recall that χ = χidxi is a one-form and that the cotangent bundle
T ∗X is canonically a symplectic manifold (see Example C.6.2). Thus ReT and
ImT may be interpreted as smooth functions on a symplectic manifold and we may
compute their Poisson bracket in canonical coordinates:

C(x,χ) =
{

ReT, ImT
}

=
∂ReT
∂xi

∂ ImT
∂χi

− ∂ReT
∂χi

∂ ImT
∂xi . (9.19)

One can show that if T (x,χ) = 0 but C(x,χ) �= 0 at a point x ∈ Ω and for some
one-form χ ∈ T∗

x X , then there exists a function f ∈ C∞(Ω) such that Lu = f does
not possess a solution. Indeed, for Lewy’s equation (9.18) we find C(x,χ) = −4χz

and thus for χ =−2ydx + 2xdy + dz the condition of non-solvability is satisfied. �

The way we stated the Cauchy–Kovalevskaya Theorem (which is the usual one
in textbooks), it gives sufficient conditions for the existence of a unique analytic
solution. An obvious—but rarely posed—question is whether these are also neces-
sary. Kovalevskaya gave in her thesis [262] an affirmative answer, however, without
proof. The essential question is whether it is necessary to require that on the right
hand side of (9.13a) the derivatives with respect to xi for i < n are also of first order.
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All other conditions are obviously necessary. If the initial conditions are posed on
a characteristic surface, it is not possible to construct a unique power series solution;
this fact is the essence of the definition of characteristic. If xn is non-characteristic
and the system cannot be brought into the form (9.13a), it is either under- or overde-
termined. In the first case we do not get a unique solution, in the latter one the initial
data cannot be specified arbitrarily but must satisfy compatibility conditions. The
necessity of the analyticity of the involved functions is trivial.

Example 9.2.3. Kovalevskaya [262, p. 22] provided a simple counterexample to her
theorem, if the right hand side of (9.13a) contains higher-order derivatives. Consider
the following initial value problem for the heat equation:

ut = uxx , (9.20a)

u(x,0) = 1/(1− x) . (9.20b)

It is straightforward to construct its unique formal power series solution:

u(x,t) =
∞
∑

i, j=0

(2i)!
i! j!

x jti . (9.21)

However, one can show that this series converges for no t �= 0. Indeed, it is well-
known that the solution of the pure initial value problem for the heat equation is
given by convolution with the heat kernel

u(x,t) =
1√
4πt

∫ ∞

−∞
exp

[
− (x− ξ )2

4t

]
f (ξ )dξ (9.22)

for u(x,0) = f (x). Obviously, the integral does not converge for arbitrary analytic
initial data f , but we must impose on f some decay conditions for |x| →∞.

As shown by Tikhonov [455] (our presentation follows [95, Sect. 12.5]), the heat
equation also nicely demonstrates the relation between analyticity and uniqueness.
For any smooth function φ(t) the series

v(x,t) =
∞
∑
k=0

φ (k)(t)
x2k

(2k)!
(9.23)

defines a formal solution of the heat equation.
We consider now specifically the function φ(t) = exp(−1/t2). This function is

analytic on�\{0}, but at the origin it is only smooth (cf. Appendix A.2). In fact, φ
is even analytic in �\ {0}. Thus by Cauchy’s Theorem we find that for any simple
closed contour Γ such that t is on the inside and the origin on the outside of Γ

φ (k)(t) =
k!

2π i

∮

Γ

φ(z)
(z− t)k+1 dz . (9.24)

If we choose Γ =
{

t + 1
2 teiθ | 0 ≤ θ ≤ 2π

}
, then Re(1/z2) ≥ 4/(81t2) for all

z ∈ Γ . This allows us to estimate for t > 0
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|φ (k)(t)| ≤ k!

(
2
t

)k+1

exp

(
− 4

81t2

)
(9.25)

and consequently

|v(x,t)| ≤ 2
t

exp

(
− 4

81t2

) ∞
∑
k=0

2kk!
(2k)!

x2k

tk ≤
2
t

exp

(
x2

t
− 4

81t2

)
. (9.26)

A first consequence of this estimate is that (9.23) defines for our choice of φ not
only a formal but a smooth solution of the heat equation. Secondly, it implies that
|v(x,t)| → 0 for t → 0+ (even uniformly on any finite x-interval) and v(x,t) solves
the initial value problem with the initial condition v(x,0) = 0. Thus if u(x,t) is any
smooth solution for initial data f (x), then u(x,t)+ v(x,t) is another smooth solu-
tion of the same initial value problem. Tikhonov [455] showed that we can achieve
uniqueness by imposing the additional condition that u(x,t) satisfies the estimate

|u(x,t)| ≤Meax2
(9.27)

with positive constants a, M. Obviously, v(x,t) violates this condition. �

Of course, such a counterexample does not suffice to prove the necessity of the
conditions in the Cauchy–Kovalevskaya Theorem. A rigorous proof was achieved
comparatively recently by Mizohata [324] for the case of linear systems. However,
the techniques used are beyond the scope of this book.

9.3 Formally Well-Posed Initial Value Problems

In the previous section we discussed the initial value problem for normal differential
equations. There it is immediately obvious what initial conditions one should im-
pose: all unknown functions uα(x) are prescribed on the same hypersurface xn = 0.
For a non-normal equation this question becomes less trivial. In fact, it is not even
completely clear what one should call an “initial value problem.” We will take the
following simple point of view: in an initial value problem one prescribes certain
derivatives uαμ(x) on coordinate planes of the form3 xi1 = · · ·xik = 0. We admit that
for different derivatives different coordinate planes are used and that the codimen-
sions k of these planes vary. In this section we study the problem of choosing the
right form and number of initial conditions on the level of formal power series, i. e.
we are only considering formal power series solutions and the initial data take the

3 Of course, one could use planes described by equations of the form xi = ci with a constant ci, but
for simplicity we assume that our local coordinates are chosen in such a way that all planes contain
the origin. Note that this excludes the possibility that two different planes are parallel. However,
this is done on purpose, as such a situation would correspond more to a boundary than an initial
value problem. Our methods are then not applicable, as we need a common point of all planes
around which we can expand our solution.
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form of formal power series, too. The next section will deal with the extension of
the results to analytic solutions and analytic initial data.

Definition 9.3.1. An initial value problem for a differential equationRq is formally
well-posed, if it possesses a unique formal power series solution for arbitrary formal
power series as initial data.

Thus in a formally well-posed initial value problem the Taylor coefficients of the
initial data are in a one-to-one correspondence with the parametric derivatives of
the differential equation. It is easy to see that the initial value problem considered in
the Cauchy–Kovalevskaya Theorem 9.2.1 is formally well-posed. Here all deriva-
tives that are only with respect to x1, . . . ,xn−1 are parametric. As the initial data
prescribed consist of functions depending on these variables, each such derivative is
uniquely determined by the corresponding Taylor coefficient of the initial data.

Remark 9.3.2. The concept of well-posedness plays an important role in the the-
ory of differential equations. According to the classical definition of Hadamard a
problem is well-posed, if (i) it has a solution, (ii) the solution is unique and (iii) it
depends continuously on the initial data. Of course, this description is still rather
vague and must be made rigorous by specifying function spaces and topologies. In
Definition 9.3.1 we gave a precise formulation of the first two points by restricting
to formal power series, but we completely ignored the third point.

This discussion points to a general problem with the Cauchy–Kovalevskaya The-
orem: it admits initial value problems that are not well-posed in the classical sense,
as a famous example of Hadamard [190, p. 33] demonstrates. Consider for an ar-
bitrary integer n ∈� the following initial value problem for the Laplace equation:

utt + uxx = 0 , (9.28a)

u(x,0) = 0 , (9.28b)

ut(x,0) = sin(nx)/n . (9.28c)

Its (unique) solution is given by u(x,t) = sinh(nt)sin(nx)/n2. If we consider the
limit n→∞, we see that the initial data vanish but that for any t > 0 the solution
blows up. As u(x,t) ≡ 0 is the unique solution for vanishing initial data, solutions
of (9.28) cannot depend continuously on the initial data: arbitrarily small changes
of the initial data may lead to arbitrarily large changes in the solution.

This effect is typical for elliptic equations and the reason why one usually studies
boundary value problems for them. We will ignore in the sequel the question of
continuous dependency on the initial data and concentrate solely on the existence
and uniqueness of (formal) solutions. �

Our goal in this section is to determine in a systematic way formally well-posed
initial value problems for involutive systems. We start with (homogeneous) linear
systems and for simplicity we further restrict to the case of one dependent variable;
in the general case one must simply perform the same analysis for each dependent
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variable separately. Taking up again the notations of Example 3.2.4, such a system
corresponds to a set F ⊂ D where D = �[∂1, . . . ,∂n] denotes the ring of linear dif-
ferential operators with coefficients in some differential field �. However, from an
algebraic point of view, the set F does not really matter but only the (left) ideal
I = 〈F〉 generated by it; indeed, I consists of all equations obtainable from the set
F by differentiating and taking linear combinations. Therefore, we will now some-
times also speak of an initial value problem for an ideal I ⊆ D.

Example 9.3.3. Before going into technical details, we demonstrate our basic strat-
egy for the construction of formally well-posed initial value problems at a simple
example in one dependent and two independent variables where the right initial
conditions are easily found by inspection. Consider the differential equation

R2 :

{
uyy = α1u +α2ux +α3uy

uxy = β1u +β2ux +β3uy
(9.29)

where the coefficients αi, βi are smooth functions of x, y such that no integrability
conditions arise.4 One easily verifies that under this assumption R2 is involutive.
A natural choice as principal derivatives are uyy, uxy and all their derivatives. Con-
versely, the parametric derivatives are then u, uy and all pure x-derivatives.

According to our definition above, all parametric coefficients must be uniquely
determined by the initial conditions in a formally well-posed initial value problem.
As all pure x-derivatives are parametric, it is obvious that the initial data must com-
prise a function of x. Thus we take as one initial condition u(x,0) = f (x). This de-
termines already all parametric coefficients in our system with the exception of the
one corresponding to uy. Hence we impose as a second initial condition uy(0,0) = g.
This time it is not possible to prescribe an arbitrary function but only a constant. If
we required uy(x,0) = g(x), then we would have two possibilities to determine the
principal coefficient corresponding to uxy leading to the consistency condition

g′(0) = β1(0,0) f (0)+β2(0,0) f ′(0)+β3(0,0)g(0) (9.30)

(and similar conditions arising from the higher order derivatives ux···xy) so that the
initial data f , g could not be chosen arbitrarily contradicting Definition 9.3.1.

It is a typical feature of non-normal systems that even in the non-characteristic
initial value problem one cannot prescribe all initial data on one hypersurface as in
the Cauchy–Kovalevskaya Theorem. In the case of an underdetermined system the
data would not suffice to determine all parametric coefficients, as some unknown
functions are completely arbitrary. For an overdetermined system one could not
prescribe arbitrary data, as they would have to satisfy consistency conditions. �

As a first step towards the construction of formally well-posed initial value prob-
lems, we need an algebraic approach to the distinction into principal and parametric
derivatives. Given the ideal I ⊆D describing the differential equation, this is easily
achieved with the help of a term order and leads to concepts familiar from Chapter 5.

4 One easily verifies that one can choose α3, β2 and β3 arbitrarily and for formal integrability the
remaining coefficients must be of the form α1 = β2(β2−α3), α2 = 0 and β1 =−β2β3.
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Definition 9.3.4. Let I ⊆ D be a (left) ideal. For a given term order ≺, we call the
derivatives ∂ μ with μ ∈ Δ≺(I) = le≺I principal. All remaining derivatives are
parametric and their exponents form the complementary set Π≺(I) =�n

0 \Δ≺(I).

Comparing with the introduction of principal and parametric derivatives (or coef-
ficients, respectively) during the order by order construction of formal power series
solutions in Section 2.3, we see that there at each order of prolongation the principal
derivatives could be chosen completely independent of the choices at the previous
orders, as we treated at each order a separate linear system of equations. Now we
select the principal derivatives in a systematic manner based on a term order.

While Δ≺(I) is a monoid ideal, the complementary set Π≺(I) does in general
not possess any algebraic structure.5 Given an involutive division L and an involutive
basis H of the ideal I with respect to L and ≺, we immediately obtain a disjoint
decomposition of Δ≺(I) via the involutive cones of the multi indices in le≺H. The
basic idea underlying the construction of formally well-posed initial value problems
is to construct a similar disjoint decomposition of the complementary set Π≺(I).
But the question of complementary decompositions was already successfully treated
in Section 5.1 (we even provided with the Algorithms 5.1 and 5.2 two methods for
their effective construction) and we exploit here the results for obtaining formally
well-posed initial value problems.

Given an ideal I ⊆D, we decompose the setΠ≺(I) in the form (5.2) and choose
an arbitrary point x0 ∈ X (typically the origin of our local coordinate system). For
subsets N = {i1, . . . , ik} ⊆ {1, . . . ,n} we introduce two notations: y = N(x) where
yi = xi for i ∈ N and yi = xi

0 otherwise and xN = (xi1 , . . . ,xik ). In other words, N(x)
denotes a projection of the vector x where those components of it that do not cor-
respond to indices contained in N are set to the corresponding entry in x0 and xN

simply collects those components of x that correspond to the elements of N. The de-
composition (5.2) is defined by a set B⊆Π≺(I) and associated sets Nν ⊆{1, . . . ,n}
for each ν ∈ B. Based on these data, we prescribe in the neighbourhood of the cho-
sen point x0 the following initial conditions for our system:

(Dνu)
(
Nν (x)

)
= fν (xNν ) , ∀ν ∈ B . (9.31)

Here, the right hand sides fν are arbitrary formal power series in their arguments. If
Nν = ∅, then fν is simply an arbitrary constant.

Theorem 9.3.5. The initial value problem for the ideal I defined by the initial con-
ditions (9.31) is formally well-posed.

Proof. We expand the solution of the ideal I into a formal power series about the
point x0. By definition, its parametric coefficients are in a one-to-one correspon-
dence with the elements of the set Π≺(I). Let μ ∈ Π≺(I) be the multi index cor-
responding to a given parametric coefficient. Then exactly one multi index ν ∈ B

5 One sometimes says that Π≺(I) is an order ideal in �n
0 meaning that if an exponent μ is con-

tained in it, then any “divisor” of it lies in Π≺(I), too. Obviously, this property is characteristic
for complements to monoid ideals.
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exists in the complementary decomposition underlying (9.31) such that μ = ν +ρ
with ρ ∈ �n

Nν . Our initial value problem prescribes for this coefficient the unique
value Dρ fν (x0) (note that this derivative makes sense, as ρ ∈�n

Nν and fν depends
on all the variables in xNν ). Conversely, for every ρ ∈�n

Nν the multi index μ = ν+ρ
lies in Π≺(I). This implies that we obtain for arbitrary initial data a unique formal
power series solution and, by definition, our problem is formally well-posed. �

Thus we see that the construction of a formally well-posed initial value problem
for a differential equationF ⊂D is in fact equivalent to the determination of a Stan-
ley decomposition of the D-module D/I where I = 〈F〉. Both operations reduce
to the same problem, namely to find a decomposition of the form (5.2) for the com-
plementary set of the monoid ideal le≺I. Note that in order to determine the latter
ideal we need at least a Gröbner basis of I.

Example 9.3.6. Given a system in Cauchy–Kovalevskaya form, we must analyse for
each dependent variable the monoid ideal 〈

{
[0, . . . ,0,1]

}
〉. Its complement is obvi-

ously given by [0, . . . ,0]+�n
{1,...,n−1}. Thus we are led to the initial value problem

uα(x1, . . . ,xn−1,xn
0) = f α (x1, . . . ,xn−1) , 1≤ α ≤ m (9.32)

which is used in the Cauchy–Kovalevskaya Theorem.
As a simple example of a system not in Cauchy–Kovalevskaya form we consider

the wave equation in characteristic coordinates uxy = 0. The corresponding monoid
ideal I = 〈

{
[1,1]
}
〉 was already studied in Example 5.1.5. We obtain the classical

characteristic initial value problem

u(x,y0) = f (x) , uy(x0,y) = g(y) . (9.33)

The second condition is often substituted by u(x0,y) = ĝ(y), but then we must im-
pose the consistency condition f (0) = ĝ(0) so that the initial value problem does
not possess a solution for arbitrary initial data and thus is not formally well-posed.
Our formulation allows us to choose g arbitrarily.

The integration of this initial value problem is of course trivial and we can express
the general solution in terms of f and g as

u(x,y) = f (x)+
∫ y

y0

g(ξ )dξ . (9.34)

It looks slightly different from the classical form u(x,y) = f (x) + ĝ(y) but is of
course equivalent (a systematic derivation of this expression will be given in Propo-
sition 9.3.8 below). Our form has the advantage that we have a bijection between the
parametric Taylor coefficients of the solution and the coefficients of the functions f
and g (as expected since (9.33) is formally well-posed).

The classical form shows a different behaviour, as the zeroth order coefficient of
u is given by the sum of the zeroth order coefficients of f and ĝ. One can derive the
classical form from the standard pairs

(
[0,0],{1}

)
and
(
[0,0],{2}

)
of the monoid

ideal 〈[1,1]〉. These two pairs induce a complementary decomposition which is not
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disjoint, as the multi index [0,0] lies in the intersection of the corresponding cones.
This redundancy obviously reflects the fact that we cannot uniquely determine the
zeroth order coefficients of f and ĝ from u. �

Remark 9.3.7. In Section 8.1 we introduced closed form representations of general
solutions in which manifolds X� appear. Our initial value problems take planes for
these manifolds, namely, Xν =

{
x ∈ X | xi = xi

0 ∀i /∈ Nν
}

. If we construct them via
Pommaret bases, these submanifolds form a flag {x0} = X0 ⊂ X1 ⊂ ·· · ⊂ Xn = X
whereXk =

{
x∈X | xi = 0 ∀i > k

}
. For other decompositions this is not necessarily

the case, as we have seen above for the characteristic initial value problem of the
wave equation (this observation demonstrates again that δ -regularity is related to
characteristics, as Pommaret bases exist only in δ -regular coordinates). �

A particularly simple situation arises, if we are dealing with a monomial system,
i. e. if the set F ⊂ D is monomial. In this case we can easily solve the above con-
structed initial value problem and any complementary decomposition of the factor
module D/〈F〉 leads immediately to a closed-form representation of the general
solution of the system F .

Proposition 9.3.8. Let I ⊆ D be a monomial ideal. If a disjoint decomposition T
of the complementary set Π(I) is defined by the finite set B ⊂�n

0 and associated
sets Nν ⊆ {1, . . . ,n} of multiplicative variables for each multi index ν ∈ B, then the
unique smooth solution of the associated initial value problem (9.31) is given by

u(x) = ∑
ν∈B

∫ ζq

x
iq
0

· · ·
∫ ζ1

x
i1
0

fν (ξ̂ν)dξ1 · · ·dξq . (9.35)

Here (i1, . . . , iq) = R(ν) denotes the unique realisation of the multi index ν of length
q = |ν| as repeated index with i1 ≤ i2 ≤ ·· · ≤ iq. The upper integration limit ζk

equals ξk+1, if ik = ik+1, and xik otherwise. Finally, for any index j ∈Nν the compo-

nent ξ̂
j
ν is given by x j, if j /∈ suppν , and otherwise by ξk where k = min{� | i� = j}.

Example 9.3.9. Before we prove Proposition 9.3.8, we give an example for the
closed-form solution (9.35) in order to make the simple idea behind it more trans-
parent. We consider a slight modification of Example 9.3.6, namely the fourth-order
equation uxxyy = 0. A disjoint decomposition of the complementary set Π(I) of
parametric derivatives is defined by the four pairs

(
[0,0],{1}

)
,
(
[0,1],{1}

)
,
(
[0,2],{2}

)
,
(
[1,2],{2}

)
. (9.36)

Thus we may take as formally well-posed initial value problem for our equation

u(x,y0) = f[0,0](x) , uy(x,y0) = f[0,1](x) ,

uyy(x0,y) = f[0,2](y) , uxyy(x0,y) = f[1,2](y) .
(9.37)

Evaluation of our solution formula (9.35) yields now
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u(x,y) = f[0,0](x)+
∫ y

y0

f[0,1](x)dξ +

∫ y

y0

∫ ξ2

y0

f[0,2](ξ1)dξ1dξ2 +
∫ x

x0

∫ y

y0

∫ ξ2

y0

f[1,2](ξ1)dξ1dξ2dξ3 .

(9.38)

Two integrations can immediately be performed, as the integrands do not depend on
the integration variable. This simplification leads to the final expression

u(x,y) = f[0,0](x)+ (x− x0) f[0,1](x)+
∫ y

y0

∫ ξ2

y0

f[0,2](ξ )dξ1dξ2 +(x− x0)
∫ y

y0

∫ ξ2

y0

f[1,2](ξ1)dξ1dξ2 .
(9.39)

It is easy to see that generally in (9.35) all integrations corresponding to a value ik
which is not contained in Nν can be explicitly performed. Truly nested integrations
appear only, if several entries ik of R(ν) are identical and contained in Nν , as it is
here the case for ν = [0,2] and ν = [1,2]. �

Proof (of Proposition 9.3.8). Let (ν̄ ,Nν̄ ) be one of the pairs defining the comple-
mentary decomposition. If we compute Dν̄u

(
Nν̄ (x)

)
for u(x) given by (9.35), then

the summand with ν = ν̄ obviously just yields fν̄ (xNν̄ ), as the differentiations just
undo the integrations. Otherwise, there exists an index i such that νi �= ν̄i. If νi < ν̄i,
then i /∈ Nν , as otherwise the decomposition was not disjoint. Hence the integrand
does not depend on xi and since we differentiate more often with respect to xi than
there are integrations over xi, the corresponding summand vanishes.

If conversely νi > ν̄i, then i /∈ Nν̄ by the same argument as above. Now we have
more integrations than differentiations with respect to xi. Since i /∈ Nν̄ , the lower
and the upper limit of the outer surviving integration become identical upon the
restriction to Nν̄(x). Hence we find again that the corresponding summand vanishes.

We conclude that the function u(x) defined by (9.35) satisfies the initial condi-
tions (9.31). Furthermore, the same argument as in the case νi < ν̄i shows that u(x)
is a solution of the given differential equation. Indeed, if ∂ μ ∈ I, then for any multi
index ν ∈ B̄ an index i /∈ Nν exists such that μi > νi and hence Dμu = 0. Thus
(9.35) defines a trivially smooth solution of our initial value problem. We will show
in Section 10.2 that for linear systems smooth solutions of formally well-posed ini-
tial value problems are unique. �

One easily verifies that (9.35) defines a general solution in the sense of our geo-
metric Definition 8.1.4. The proposition remains correct for any strong solution, i. e.
if q is the maximal length of the multi indices μ(τ), then we must only assume that
at least u ∈ Cq entailing that also the functions gν on the right hand side of (9.35)
are at least in Cq−|ν|.

A closer look at the proof reveals that at least for one direction the differentiabil-
ity of the functions gν is not needed at all: for showing that (9.35) solves our system,
it was sufficient to differentiate each summand with respect to a variable on which
the corresponding function gν does not depend. Thus (9.35) may be considered as a
(weak) solution of I for more or less arbitrary functions gν .
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If we do not insist on the uniqueness of the representation (9.35), then we may
also use the standard pairs (ν,Nν ) of the monoid ideal le≺I. As shown in Propo-
sition 5.3.13, they also induce a decomposition of the complementary set. As this
decomposition is not disjoint, different choices of the functions gν may now lead to
the same solution u (cf. Example 9.3.6).

For arbitrary linear systems we cannot hope to obtain such a closed form repre-
sentation of the solution, but we can at least provide the simple Algorithm 9.1 for
the construction of any Taylor coefficient of the formal power series solution of a
formally well-posed initial value problem. It requires as input a Gröbner basis of the
ideal I ⊆ D for some term order ≺ with leading ideal Δ≺(I) and a corresponding
complementary decomposition T of Π≺(I) together with the necessary initial data
for defining the initial value problem (9.31).

Algorithm 9.1 Taylor coefficient of formal solution (linear version)
Input: Gröbner basis G of I for term order≺, complementary decomposition T with correspond-

ing initial data for each (ν ,Nν ) ∈ T , expansion point x0 ∈ X , multi index ρ ∈�n
0

Output: Taylor coefficient aρ of unique formal power series solution of initial value problem
corresponding to given complementary decomposition

1: f ← NormalForm≺(∂ρ ,G)
2: for all μ ∈ supp f do
3: find unique (ν ,Nν ) ∈ T such that μ ∈ ν+�n

Nν
4: aμ ← ∂ μ−ν fν(x0)
5: end for
6: write f = ∑μ cμ (x)∂ μ
7: return ∑μ cμ (x0)aμ

Example 9.3.10. If we denote by m∂ = 〈∂1, . . . ,∂n〉 the homogeneous maximal ideal
inD, then a particularly simple situation arises for ideals I ⊆D such that ms

∂ ⊆I for
some exponent s ∈� (in the case that D is commutative, i. e. for linear differential
operators with constant coefficients, this condition means that I is m∂ -primary and
we can take for s the satiety satI). Obviously, the solution space of the differential
equation corresponding to ms

∂ consists only of polynomials of degree less than s.
Hence our given system possesses also only polynomial solutions. More precisely,
under the made assumption the setN = {μ ∈�n

0 | ∂ μ /∈ I} is finite and it is easy to
see that the support of any polynomial solution contains only terms xμ with μ ∈N .

Furthermore, such an ideal I is trivially zero-dimensional and hence we are deal-
ing with a differential equation of finite type. ThusΠ≺(I) is a finite set with a trivial
disjoint decomposition: T =

{
(ν,∅) | ν ∈Π≺(I)

}
. We choose an expansion point

x0 ∈X (a natural choice would be of course x0 = 0). We can construct for each multi
index μ ∈ Π≺(I) the polynomial solution hμ for the initial data fν (x0) = δνμ by
applying Algorithm 9.1 for each multi index ρ ∈N . Then the set {hμ | μ ∈Π≺(I)}
is a basis of the solution space of our differential equation. �

Finally, we study the extension of these results to systems with arbitrary non-
linearities. The only available notion of involution for such systems is the intrinsic
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Definition 7.2.1 within our geometric approach. Thus we start with an involutive
equationRq ⊆ Jqπ and construct in local coordinates an initial value problem in the
neighbourhood of a point ρ ∈Rq. We prepare again a local representation in Cartan
normal form: each equation is solved for a different derivative which is the largest
derivative in the equation with respect to the degree reverse lexicographic order.

Consider again the symbol module N 0 (as we have restricted for simplicity to
the case of only one dependent variables, N 0 is in fact an ideal); obviously only
the equations of order q contribute to it. As we assume that Rq is involutive, these
equations induce by Definition 7.1.17 of an involutive symbol a Pommaret basis of
it and their leading derivatives yield a Pommaret basis of le≺N 0. Let uμ be the
leading derivative of an equation whose order is less than q. As Rq is formally
integrable, we may choose our local representation such that uμ+1i for any 1≤ i≤ n
is the leading derivative of some equation, too.

Let Δ≺(Rq) ⊆ �n
0 be the monoid ideal generated by the multi indices of the

leading derivatives;6 obviously,
(
Δ≺(Rq)

)
≥q = le≺N 0. Thus our generating set is

a weak Pommaret basis of Δ≺(Rq) and, by Proposition 3.1.12, an involutive au-
toreduction yields a strong Pommaret basis. But now we are in the same situation
as above for linear systems: we have a monoid ideal defined by the principal deriva-
tives and must decompose its complement in the form (5.2). Then we impose the
initial conditions (9.31) and show as in Theorem 9.3.5 that this yields a formally
well-posed initial value problem in the neighbourhood of ρ .

Remark 9.3.11. The considerations above lead straightforwardly to Algorithm 9.2
for determining any Taylor coefficient in the formal power series solution of an in-
volutive differential equation Rq. It assumes that the Cartan normal form of Rq is
given by equations uμ = φμ

(
x, ũ(|μ|)) where the principal derivatives uμ induce a

Pommaret basis of the monoid ideal le≺N 0 and ũ denotes the parametric deriva-
tives only and that we know already a complementary decomposition T of le≺N 0

together with the necessary initial data for the corresponding formally well-posed
initial value problem (9.31). If we make the ansatz uα(x) = ∑μ∈�n

0

aμ
μ! xμ for the

unique power series solution of this problem, then the algorithm determines the co-
efficient aρ for any multi index ρ ∈�n

0.
The algorithm first checks in Line /1/ whether aρ is a parametric coefficient. This

is the case, if and only if the complementary decomposition T contains a (neces-
sarily unique) pair (ν,Nν ) such that ρ ∈ ν +�n

Nn
. Then aρ is simply the corre-

sponding Taylor coefficient of the initial datum fν and thus can be computed as
aρ = ∂ρ−ν fν (0).

If the coefficient aρ is principal, then—by the properties of a Pommaret basis—
we find exactly one equation uμ = φμ

(
x, ũ(|μ|)) such that ρ is a multiplicative multi-

ple of μ , i. e. ρ ∈ CP(μ). Prolonging this equation yields aρ = (Dρ−μφμ)
(
0,c(|ρ|)).

Note that here on the right hand side further coefficients aσ up to order |ρ | may
appear which we must then compute recursively in order to obtain aρ . Since by
construction always σ ≺degrevlex ρ , the recursion always terminates. �
6 Despite our notation, this monoid ideal is of course not intrinsically defined but depends on the
chosen local representation.
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Algorithm 9.2 Taylor coefficient of formal solution (general version)
Input: Cartan normal form uμ = φμ of involutive differential equation Rq, complementary de-

composition T of monoid ideal Δ≺ with corresponding initial data fν for each (ν ,Nν ) ∈ T ,
expansion point x0 ∈ X , multi index ρ ∈�n

0
Output: Taylor coefficient aρ of unique formal power series solution of initial value problem

corresponding to given complementary decomposition
1: if ρ ∈ ν+�n

Nν
for some (ν ,Nν ) ∈ T then {aρ parametric coefficient}

2: return ∂ρ−ν fν(x0)
3: else {aρ principal coefficient}
4: find unique equation uμ = φμ such that ρ ∈ CP(μ)
5: return Dρ−μφμ (x0,a(|ρ|))
6: end if

Before ending this section, we use the obtained results to characterise those invo-
lutive differential equationsRq for which the symbol moduleN 0 possesses a com-
plementary Hironaka decomposition, i. e. for which Pm/N 0 is a Cohen–Macaulay
module. It turns out that in a certain sense this property is equivalent to normality;
thus such equations have a particularly simple structure.

Proposition 9.3.12. Let N 0 ⊆ Pm be the symbol module in the more precise sense
of Remark 7.1.16 (i. e. including contributions from the lower-order equations)
of the involutive differential equationRq⊆ Jqπ in m dependent variables. The factor
module M = Pm/N 0 is a Cohen–Macaulay module with dimM = depthM = d,
if and only if Rq is equivalent to a normal first-order equation in d +1 independent
and multM dependent variables in the sense that a bijection between the formal
solution spaces of the two equations exists.

Proof. According to Corollary 5.2.10, the factor module M is Cohen–Macaulay,
if and only if it possesses a Hironaka decomposition. This decomposition consists
then of multM cones of dimension d. If we take as local representation of Rq a
Cartan normal form, then the principal parts of the equations define a weak Pom-
maret basis of N 0 as discussed above. The monomial submodule generated by the
leading terms of this basis has as complementary decomposition exactly the above
Hironaka decomposition. Thus the corresponding formally well-posed initial value
problem prescribes multM functions of the d variables x1, . . . ,xd . But these are ex-
actly the initial data for a normal first-order equation with multM dependent and
d + 1 independent variables. �

This proof is rather formal and exploits the fact that two differential equations
are already equivalent in the used sense, if it is possible to find for both initial value
problems with the same initial data. However, one can make this proof much more
concrete, as it is possible to construct explicitly the equivalent normal equation and
implicitly the bijection. Since this construction is very similar to the proof of the
Cartan–Kähler Theorem, we will postpone it until the end of the next section. Here
we close the discussion by recalling that according to the considerations in the proof
of Corollary 5.2.10 the factor moduleM is Cohen–Macaulay of depth d, if and only
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if all derivatives of degree q and class greater than d are principal forRq. Thus this
property is very easy to decide, as soon as one has brought the symbol matrix ofNq

in row echelon form.

9.4 The Cartan–Kähler Theorem

The Cartan–Kähler Theorem extends the Cauchy–Kovalevskaya Theorem to arbi-
trary involutive systems. This fact implies that it inherits all its restrictions. So again
the practical applicability of the theorem is rather limited. However, the proof is
quite enlightening. It does not only highlight the importance of involution in con-
trast to mere formal integrability; it also demonstrates a fairly general methodology
to extend results on normal systems to involutive ones.

For simplicity, we formulate it for an involutive first-order system in Cartan nor-
mal form without any algebraic equations. Thus we assume that we are given an
involutive system of the following form (cf. (7.34)):

uαn = φαn (xi,uβ ,uγj ,u
δ
n ) ,

⎧
⎨

⎩

1≤α≤β (n)
1 ,

1≤ j<n ,

β (n)
1 <δ≤m ,

(9.40a)

uαn−1 = φαn−1(x
i,uβ ,uγj ,u

δ
n−1) ,

⎧
⎨

⎩

1≤α≤β (n−1)
1 ,

1≤ j<n−1 ,

β (n−1)
1 <δ≤m ,

(9.40b)

...

uα1 = φα1 (xi,uβ ,uδ1 ) ,

{
1≤α≤β (1)

1 ,

β (1)
1 <δ≤m .

(9.40c)

Since we assume that the system (9.40) is involutive, the rows of its symbol ma-
trix yield a Pommaret basis (and hence, by Corollary 4.3.11, also a Janet basis) of
the symbol module N 0. By Definition 3.4.1 of an involutive basis, their leading
terms define a Pommaret basis of the monoid module generated by them. Following
the considerations in the last section and computing a complementary decomposi-
tion for this monoid module using Algorithm 5.2, a formally well-posed initial value
problem for the system (9.40) leading to a unique formal solution is then obtained,
if we prescribe the initial conditions
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uα(x1, . . . ,xn) = f α(x1, . . . ,xn) , β (n)
1 < α ≤ m , (9.41a)

uα(x1, . . . ,xn−1,0) = f α (x1, . . . ,xn−1) , β (n−1)
1 < α ≤ β (n)

1 , (9.41b)

...

uα(x1,0, . . . ,0) = f α (x1) , β (1)
1 < α ≤ β (2)

1 , (9.41c)

uα(0, . . . ,0) = f α , 1≤ α ≤ β (1)
1 . (9.41d)

Recall from the discussion of (7.34) that the given ranges for the indices are to be

understood in the sense that if for example β (n)
1 = m, then no derivatives uδn appear

in (9.40a) and the conditions (9.41a) are empty etc.

Again one sees that the system is underdetermined, if β (n)
1 < m, as then some of

the dependent variables uα are not restricted at all by the system (9.40) and must
therefore be completely prescribed by the initial conditions. One might say that
these variables have more the character of parameters than of unknowns.

Theorem 9.4.1 (Cartan–Kähler). Let the functions φαk and f α be real-analytic at
the origin and let the system (9.40) be involutive. Then it possesses one and only one
solution that is analytic at the origin and satisfies the initial conditions (9.41).

We first prove a lemma representing the core of the proof of the Cartan–Kähler
Theorem which we will present afterwards. This lemma is also of independent in-
terest, as it shows an important property of involutive systems.

Lemma 9.4.2. Under the assumptions of Theorem 9.4.1, consider the subsystem
consisting of the equations of class k in (9.40),

uαk = φαk (xi,uβ ,uγj ,u
δ
k ) ,

⎧
⎨

⎩

1≤α≤β (k)
1 ,

1≤ j≤k ,

β (k)
1 <δ≤m ,

(9.42)

and set xi = 0 for i > k in it. Let U(x1, . . . ,xk) be an analytic solution of the thus
restricted system (9.42) for the initial conditions

uα(x1, . . . ,xk−1,0) = f α (x1, . . . ,xk−1) , 1≤ α ≤ β (k)
1 ,

uα(x1, . . . ,xk−1,xk) = f α (x1, . . . ,xk−1,xk,0, . . . ,0) , β (k)
1 < α ≤ m .

(Thus the functions uα with α > β (k)
1 appear only as parameters). If the initial data

f(x) are such that for xk = · · · = xn = 0 they satisfy all equations in (9.40) of class
lower than k, then the solution U(x1, . . . ,xk) satisfies these equations also for xk �= 0.

Proof. We must analyse what happens, if we enter the given solution U(x1, . . . ,xk)
into the equations of lower class. Therefore we introduce the (by assumption ana-
lytic) residuals stemming from the equations of class �
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Δα� (x1, . . . ,xk) =
∂Uα

∂x�
(x1, . . . ,xk)−

φα�
(

x1, . . . ,xk,0, . . . ,0,U(x1, . . . ,xk),
∂U
∂x

(x1, . . . ,xk)
)

for all classes � < k and all indices 1 ≤ α ≤ β (�)
1 . We exploit the fact that the sys-

tem (9.40) is involutive in order to derive some partial differential equations for the
functions Δα� . Adapting (7.35) to the special case at hand, we see that involution of

(9.40) is equivalent to the existence of functions Aβi j(x,u(1)) and Bβi (x,u(1)) such
that whenever 1≤ � < k ≤ n

Dk(uα� −φα� ) =
k

∑
i=1

β (i)
1

∑
β=1

{ i

∑
j=1

Aβi jD j(u
β
i −φ

β
i )+ Bβi (uβi −φ

β
i )
}

. (9.43)

Entering U(x1, . . . ,xk) into these relations and setting xi = 0 for i > k implies that
the residuals Δα� must satisfy the linear system

∂Δα�
∂xk =

k−1

∑
i=1

β (i)
1

∑
β=1

{ i

∑
j=1

Āβi j
∂Δβi
∂x j + B̄βi Δ

β
i

}
, 1≤ α ≤ β (k)

1 , (9.44)

where the coefficient functions

Āβi j(x
1, . . . ,xk) = Aβi j

(
x1, . . . ,xk,0, . . . ,0,U(x1, . . . ,xk),

∂U
∂x

(x1, . . . ,xk)
)

,

B̄βi (x1, . . . ,xk) = Bβi

(
x1, . . . ,xk,0, . . . ,0,U(x1, . . . ,xk),

∂U
∂x

(x1, . . . ,xk)
)

are analytic, as Aβi j, Bβi and U are all analytic. On the right hand side of (9.44)
the terms with i = k have disappeared, as by assumption U is a solution of (9.42).
This makes (9.44) an analytic normal system in the independent variables x1, . . . ,xk.
Obviously, Δα� ≡ 0 is an analytic solution of it and, by the Cauchy–Kovalevskaya
Theorem 9.2.1, this solution is unique. Thus all residuals vanish and the given solu-
tion U also satisfies the equations of lower class. �

Lemma 9.4.2 expresses a kind of conservation property of involutive systems: if
the equations of lower class are satisfied for xk = 0, then they are also satisfied at all
values of xk for which a solution exists. For the special case of Maxwell’s equations
(2.85), this result is very classical. As already mentioned in Example 2.4.1, if a
solution of the evolutionary part of Maxwell’s equations satisfies the Gauss laws at
the time t = 0, it satisfies them at all times. Using a well-known identity from vector
analysis, this fact is proven in almost any textbook on electrodynamics. But as we
have seen, it actually represents a very general property of involutive systems.

We may also consider Lemma 9.4.2 as a generalisation of Proposition 9.1.1 to
partial differential equations. It states that the subsystems of lower class are a kind of
“weak invariants” for the “flow” generated by the subsystem of class k. In fact, this
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point of view becomes very useful within the formalism of semigroups [349, 379]
where partial differential equations are considered as ordinary differential equations
on infinite-dimensional spaces.

Proof (of the Cartan–Kähler Theorem 9.4.1). We follow the strategy given by
Pommaret [356]: The solution is constructed step by step; at each step a normal
system appears to which we apply the Cauchy–Kovalevskaya Theorem 9.2.1. Fi-
nally, we use repeatedly Lemma 9.4.2.

We start with the subsystem (9.40c) comprising all equations of class 1:

uα1 = φα1 (xi,uβ ,uγ1) ,

{
1≤α≤β (1)

1 ,

β (1)
1 <γ≤m .

(9.45a)

If we set xi = 0 for i > 1, the initial conditions (9.41) allow us to substitute for uβ and
uβ1 with β > β (1)

1 the functions f̄ β (x1) = f β (x1,0, . . . ,0) and their x1-derivatives.
Now (9.45a) becomes a normal system (even of ordinary differential equations) in
the independent variable x1 and we may apply the Cauchy–Kovalevskaya Theorem
for the last set of initial conditions in (9.41)

uα(0, . . . ,0) = f α ∈� , 1≤ α ≤ β (1)
1 . (9.45b)

It guarantees for 1≤ α ≤ β (1)
1 the existence of a unique analytic solution Uα

1 (x1) of
the initial value problem (9.45).

In the next step, we consider the equations of class 2 in (9.40)

uα2 = φα2 (xi,uβ ,uγ1,u
δ
2 ) ,

{
1≤α≤β (2)

1 ,

β (2)
1 <δ≤m .

(9.46a)

This time we set xi = 0 only for i > 2. Then we substitute uβ , uβ1 and uβ2 with

β > β (2)
1 by the functions f̄ β (x1,x2) = f β (x1,x2,0, . . . ,0) and their derivatives with

respect to x1 and x2. This makes (9.46a) a normal system in the two independent
variables x1 and x2. We prescribe the initial conditions

uα(x1,0) =

⎧
⎨

⎩
f α(x1) for β (1)

1 < α ≤ β (2)
1 ,

Uα
1 (x1) for 1≤ α ≤ β (1)

1 .
(9.46b)

Thus for the components uα which we considered already in the first step we take
as initial data the solution Uα

1 (x1) obtained above. For the remaining components
we use the initial data in (9.41).

We may again apply the Cauchy–Kovalevskaya Theorem, as all appearing func-
tions are analytic. It guarantees us the existence of a unique analytic solution

Uα
2 (x1,x2) with 1 ≤ α ≤ β (2)

1 of the initial value problem (9.46). However, it is
not obvious that these functions also satisfy (9.45a) with xi = 0 for i > 2; we only
know they do, if in addition x2 = 0. But this situation is covered by Lemma 9.4.2: it
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asserts that the functions Uα
2 (x1,x2) also satisfy the equations of lower class, i. e. in

our case (9.45a), for all values of the variable x2.
We iterate this process. In step k we consider the equations of class k, i. e. (9.42).

Setting xi = 0 for i > k, we substitute uβ and uβj with β > β (k)
1 by the functions

f̄ β (x1, . . . ,xk) = f β (x1, . . . ,xk,0, . . . ,0) and their derivatives. Then (9.42) becomes
a normal system in the independent variables x1, . . . ,xk. As initial conditions we use

uα(x1, . . . ,xk−1,0) =

⎧
⎨

⎩
f α(x1, . . . ,xk−1) for β (k−1)

1 < α ≤ β (k)
1 ,

Uα
k−1(x

1, . . . ,xk−1) for 1≤ α ≤ β (k−1)
1 .

(9.47)

Here Uα
k−1(x

1, . . . ,xk−1) represents the solution of the previous step. By the Cauchy–
Kovalevskaya Theorem the initial value problem (9.42, 9.47) possesses a unique

analytic solution Uα
k (x1, . . . ,xk) with 1≤ α ≤ β (k)

1 which by Lemma 9.4.2 also sat-
isfies all equations of lower class.

The solution Uα
n (x1, . . . ,xn) with 1 ≤ α ≤ β (n)

1 obtained in step n is then the
sought analytic solution of the complete original initial value problem (9.40, 9.41),
as the remaining components of u are given by the initial conditions. The uniqueness
of the solution follows from the construction. �

Corollary 9.4.3. Every analytic and formally integrable differential equation is lo-
cally solvable in the analytic category.

Proof. Recall from Remark 2.3.16 that a differential equationRq is locally solvable,
if for every point ρ ∈ Rq a local solution σ exists such that ρ ∈ im jqσ . If Rq is a
formally integrable equation, then some finite prolongationRq+r of it is involutive
and, because of the assumed formal integrability, we can find to every point ρ ∈Rq

a point ρ̂ ∈ Rq+r such that πq+r
q (ρ̂) = ρ , i. e. ρ̂ lies in the fibre over ρ . Without

loss of generality, we may assume that in suitable local coordinates, πq+r(ρ̂) = 0.
Consider now for the involutive equation Rq+r the initial value problem treated in
the Cartan–Kähler Theorem. Obviously, we can choose the initial data in such a
way that the corresponding unique analytic solution σ satisfies ρ̂ ∈ im jq+rσ and
thus ρ ∈ im jqσ ; in fact, this can even be achieved with polynomial initial data.
Note that σ is not uniquely determined by ρ , as in general many different choices
for both the point ρ̂ and the initial data are possible. �

One may wonder whether in the Cartan–Kähler Theorem one really needs the as-
sumption that the system (9.40) is involutive; perhaps formal integrability suffices?
In fact, the step by step construction used in the proof above is in principle possible
for any system in triangular form. But it is unclear whether the thus constructed
solution also satisfies all equations of lower class. Our proof of Lemma 9.4.2 de-
pends crucially on the involution of the system. The construction of the normal sys-
tem (9.44) requires that the non-multiplicative prolongations of the equations with
class less than k with respect to xk are expressible as linear combinations of multi-
plicative prolongations. For proving the Cartan–Kähler Theorem, we had to apply
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Lemma 9.4.2 for all classes k appearing in (9.40) and hence had to consider all pos-
sible non-multiplicative prolongations. According to Proposition 7.2.3, this proof
will therefore only work, if the symbol Nq is involutive. The following example
demonstrates explicitly, what happens if obstructions to involution are present.

Example 9.4.4. We consider the first-order equation

R1 :

⎧
⎨

⎩

vt = wx ,
wt = 0 ,
vx = 0 .

(9.48)

It arises when we rewrite the second-order equation (7.31) as a first-order equation
by setting w = ut and v = ux (compare Appendix A.3). Thus we already know that
R1 is formally integrable but not involutive: the non-multiplicative prolongation
Dt(vx) cannot be reduced to zero and we obtain the obstruction to involution wxx = 0.

The crucial step in the proof above applied to R1 would be to show that any
solution of the normal subsystem comprising the first two equations of (9.48) that
satisfies the third equation for t = 0 also satisfies it for all values of t. If R1 were
involutive, this would be the case by Lemma 9.4.2. But as we are only dealing with
a formally integrable equation, it is easy to construct a counterexample.

Consider the functions

v(t,x) = α ′(x)t + c , w(t,x) = α(x) (9.49)

with an arbitrary constant c ∈� and an arbitrary real-analytic function α(x). They
solve the first two equations of (9.48). Furthermore, for t = 0, they also solve the
last equation. But obviously this is not the case for any other value of t, if we choose
α(x) such that α ′′(x) �= 0. Only for α(x) = ax+b with constants a,b∈� we obtain
a solution ofR1, as only for this choice of α the equation wxx = 0 is satisfied. �

In fact, this example can easily be generalised to a proof that involution is not
only sufficient for Lemma 9.4.2 to be applicable at each step of the proof of The-
orem 9.4.1 but also necessary. Formal integrability is trivially necessary; thus we
restrict to systems which are formally integrable but not involutive. Without loss of
generality, we may further assume that in the Cartan normal form (9.40) the sub-
system of class n is normal and that an obstruction to involution arises from the
prolongation of an equation of lower class with respect to xn, as this is precisely the
situation in which we apply Lemma 9.4.2 in the proof of Theorem 9.4.1.

As the subsystem of class n is normal, we can eliminate any xn-derivative in
the obstruction to involution. Thus it may be considered as a differential equation
in x1, . . . ,xn−1 which, by construction, is independent of the equations of lower
class present in our system. In our example above this was the equation wxx = 0.
According to the assumptions of Lemma 9.4.2, we choose initial data for xn = 0
satisfying all equations of lower class. But we can always find initial data that do
not satisfy our obstruction to involution. If we solve the subsystem of class n for
such initial data, for xn �= 0 the solution will not satisfy that equation of lower class
that generated the obstruction to involution, as its xn-prolongation does not vanish.
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Thus, if (9.40) is only formally integrable but not involutive, then it does not
possess a solution for arbitrary choices of the initial data in (9.41). Hence involution
is a necessary condition in Theorem 9.4.1, as otherwise our initial value problem
is not even formally well-posed. Furthermore, these considerations show that it is a
characteristic property of involutive systems that Lemma 9.4.2 holds for 1≤ k ≤ n.

The Cartan–Kähler Theorem inherits all the restrictions and disadvantages of the
Cauchy–Kovalevskaya Theorem, as its proof is based on the latter. For arbitrary
differential equations there seems to be no way to avoid this problem, as no other
existence and uniqueness theorem for arbitrary normal equations exists. But if more
is known about the structure of the subsystems considered in the proof above, one
might be able to use other existence and uniqueness theorems and to obtain stronger
results still following the basic strategy of our proof.

If we want to go beyond analytic solutions, a crucial step will be the extension
of Lemma 9.4.2. We used the Cauchy–Kovalevskaya Theorem in its proof. But in
fact all we need is a proof of the uniqueness of the zero solution of (9.44). Note
that this is always a linear system, even if (9.40) is non-linear. Thus one could
think of applying the Holmgren Theorem (see Section 10.2) instead of the Cauchy–
Kovalevskaya Theorem which would even yield that the zero solution is unique
among all C1 solutions. However, this approach still requires that we are dealing
with analytic equations. In order to be able to relax that condition one needs more
information about the structure of the system (9.40). For a certain class of linear
systems we will demonstrate this possibility in Section 10.4.

Finally, we continue the discussion—started at the end of the last section—of
involutive differential equations Rq for which the factor module M = Pm/N 0 is
Cohen–Macaulay with dimM = depthM = d. Assume first that we are dealing
with a first-order equationR1 without an algebraic part. In this caseN 0 is generated
by the rows of the symbol matrix M1 and d + 1 is the lowest class of an equation
in the Cartan normal form of R1. In our proof of the Cartan–Kähler Theorem we
considered the subsystems of constant class. If M is a Cohen–Macaulay module,
each of them becomes normal, as soon as we set xk+1, . . . ,xn to constant values
where k is the class of the subsystem. No further substitutions are necessary, as all
initial conditions comprise only functions of x1, . . . ,xd .

In the first step of the proof we study the subsystem of class d + 1, as no equa-
tions of lower class are present. Its initial conditions are identical with the initial
conditions for the full equation R1. Thus we may take it for the normal system re-
ferred to in Proposition 9.3.12. The bijection between the formal solution spaces of
the full system and this normal system is implicitly contained in the proof of the
Cartan–Kähler Theorem. We extend the solution U(x1, . . . ,xd+1) of the subsystem
to the solution u(x1, . . . ,xn) of the full system following step by step the proof. At
each step the initial conditions are just the solutions of the previous step; since M
is a Cohen–Macaulay module, no additional conditions appear. In other words, in

(9.47) no functions f α appear, as β (k−1)
1 = β (k)

1 = m. Thus the extension is uniquely
determined by the subsystems of higher class; their solutions define the bijection.

The discussion of a higher-order equation Rq is similar, only the construction
of the required normal systems is slightly different. The starting point is now the
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Pommaret basis of N 0. If M is Cohen–Macaulay, then all its leading terms must
be contained in �[xd+1, . . . ,xn]m and generated there a zero-dimensional module. Its
complementary set consists of multM terms and we introduce for each of them
a new unknown function. Then, using the relations between the derivatives corre-
sponding to these terms and the original differential equation, we can construct a
differential equation for the xd+1-derivative of each new unknown function. This
way we obtain the equivalent normal first-order equation of Proposition 9.3.12. The
bijection between its solution space and the one of our original differential equation
is obtained by solving a series of normal differential equation similar to the proof
of the Cartan–Kähler Theorem in the next section. Instead of providing complicated
formulae, we demonstrate the construction for a concrete example.

Example 9.4.5. The linear differential equation naturally corresponding to the ideal
I ⊂ P = �[x,y,z] treated in Example 5.2.11 has the local representation

R3 :

⎧
⎨

⎩

uzzz = 0 ,
uyzz = uxzz ,
uyy = uxy .

(9.50)

R3 is not involutive, as we still have to take into account the prolongations of the

lower-order equation uyy = uxy. However, one easily verifies thatR(1)
3 is involutive.

Indeed, we noted in Example 5.2.11 that a Pommaret basis of I is obtained after

addition of the generator y2z− xyz and hence the symbolN (1)
3 is involutive.

The ideal I is the symbol module of R(1)
3 (or actually also of R3) in the more

precise sense of Remark 7.1.16. In Example 5.2.11 we already determined that the
factor moduleM=P/I is Cohen–Macaulay (with dimM= depthM= 1) and that
the corresponding Hironaka decomposition is given by (5.15). It is not difficult to
see that multM= 5 here. Note furthermore that all leading terms of the Pommaret
basis are contained in the subring �[y,z]. It follows from the decomposition (5.15)

that a formally well-posed initial value problem forR(1)
3 is given by the conditions:

u(x,y0,z0) = f1(x) ,

uy(x,y0,z0) = f2(x) ,

uz(x,y0,z0) = f3(x) ,

uyz(x,y0,z0) = f4(x) ,

uzz(x,y0,z0) = f5(x) .

(9.51)

In order to derive the equivalent normal equation, we introduce the new depen-
dent variables

v1 = u , v2 = uy , v3 = uz , v4 = uyz , v5 = uzz (9.52)

corresponding to the generators of (5.15) and consider them first as functions of
the independent variables x, y only. The relations between these functions and the
system (9.50) lead to the following normal system:
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v1
y = v2 , v2

y = v2
x , v3

y = v4 , v4
y = v4

x , v5
y = v5

x . (9.53)

Its natural initial conditions are equivalent to (9.51), namely vα(x,y0) = fα (x). The
bijection between the solution spaces of (9.53) and (9.50), respectively, is deter-
mined by the solution of a further normal system which again arises from the rela-
tions between the v and the system (9.50):

v1
z = v3 , v2

z = v4 , v3
z = v5 , v4

z = v5
x , v5

z = 0 (9.54)

where we now consider the dependent variables as functions of all three independent
variables and where we take the solutions of (9.53) as initial data. The v1-component
of a solution of the second system (9.54) is then a solution of the original differential
equation (9.50) and conversely every solution of (9.50) induces a solution of the
normal system (9.53) as the initial data of the corresponding solution of the second
system (9.54). The equivalence is reflected in the fact that the construction of the
two systems (9.53) and (9.54) required all relations between the functions v and all
equations contained in (9.50).

If we had more independent variables, then each further variable would lead to
one more normal system constructed in the same manner as (9.54). Each system
takes as initial data the solution of the previous one and adds the dependence on one
more independent variable to the unknown functions v. �

9.5 The Vessiot Distribution

Obviously, it is difficult to solve differential equations. An idea going back at least to
Cartan is to consider first infinitesimal solutions or integral elements; in Section 2.3
we have seen that their construction requires essentially only linear algebra. We will
not follow the approach of Cartan which is based on differential forms and leads to
the theory of exterior differential systems. Instead we will develop in this and the
next section a dual vector field approach originally proposed by Vessiot [470].

The emerging theory may be considered as a generalisation of the Frobenius
Theorem C.3.3. Recall from Example 2.3.17 that this theorem essentially provides
a complete solvability theory for any differential equationR1 of finite type: an invo-
lutive equation of finite type defines a flat connection on π : E →X and the images
of its solutions σ are the integral manifolds of the corresponding horizontal bundle.

For a general differential equation Rq the geometry is less simple, as the equa-
tion does not correspond to a connection. However, it will turn out that in a certain
sense the equationRq can be “covered” by (infinitely many) flat connections and to
each of these we may apply the Frobenius Theorem. More precisely, we will find
the following situation. The embedding ι :Rq ↪→ Jqπ induces naturally a distribu-
tion V [Rq]⊆ TRq on the submanifoldRq tangent to any prolonged solution and we
will search for n-dimensional transversal (with respect to the fibration π̂q :Rq→X )
involutive subdistributions of it. Such a subdistribution may be interpreted as the
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horizontal bundle of a flat connection for π̂q. Obviously, it possesses n-dimensional
integral manifolds and the properties of V [Rq] will ensure that they are automati-
cally of the form im jqσ for a solution σ ofRq.

For the simple case of an ordinary differential equation we applied this idea al-
ready in Section 9.1: we constructed solutions as the projection of integral curves
of a one-dimensional distribution V [Rq] on Rq. As such a distribution is trivially
involutive, there was no need to analyse subdistributions.

In Sections 2.1 and 2.2 we introduced the contact structure of the jet bundle.
Recall that, by Proposition 2.1.6 (or 2.2.7, respectively), if ρ = jqσ(x) ∈ Jqπ for
some point x ∈ X and section σ ∈ Γloc(π), then the tangent space Tρ(im jqσ) to the
image of the prolonged section jqσ is a subspace of the contact distribution Cq ρ. If
the section σ is a solution of Rq, it furthermore satisfies by definition im jqσ ⊆Rq

and hence T (im jqσ) ⊆ TRq. These considerations (already used in the proof of
Lemma 9.1.5) motivate the following definition.

Definition 9.5.1. LetRq ⊆ Jqπ be a differential equation and ι :Rq ↪→ Jqπ the cor-
responding natural inclusion map. The Vessiot distribution of Rq is the distribution
V [Rq]⊆ TRq defined by

T ι
(
V [Rq]

)
= T ι(TRq)∩Cq Rq

. (9.55)

Eq. (9.55) defines the Vessiot distribution V [Rq] uniquely, as the inclusion map ι
is trivially injective. Here we have explicitly written the tangent map instead of
identifying as usual TRq with the subspace T ι(TRq)⊆ (TJqπ) Rq

. The reason for
this rigour is the same as in the discussion of integral elements in Section 2.3 and
will become apparent in Example 9.5.4 below. Note that V [Rq] is defined only on
the submanifold Rq ⊆ Jqπ . In general, we cannot expect that it is of constant rank
(as seen in Section 9.1, this is not even the case for ordinary differential equations).
However, in line with the other regularity assumptions we have made throughout
this book, we will ignore this possibility in the sequel.

Blanket Assumption 9.5.2. The Vessiot distribution V [Rq] is of constant rank on
the differential equationRq.

The above definition of the Vessiot distribution is not the one usually found in the
literature (see, however, [296, Sect. 1.8]) which is based on pulling-back the contact
codistribution C0

q . But it is very easy to prove the equivalence of the two approaches.

Proposition 9.5.3. We have the equality

V [Rq] = (ι∗C0
q)0 . (9.56)

Proof. Let ω ∈ C0
q be a contact form and X ∈ X(Rq) a vector field onRq. Then, by

the definition of the pull-back and the push-forward, respectively, ι∗ω(X) =ω(ι∗X)
(cf. (C.15)). This fact implies that X ∈ (ι∗C0

q)0 is equivalent to ι∗X ∈ Cq Rq
and

consequently T ι
(
(ι∗C0

q)0
)

= T ι(TRq)∩Cq Rq
. The claimed equality follows now

from the injectivity of T ι . �
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Example 9.5.4. Assuming that we are given an explicit parametrisation of the sub-
manifold Rq ⊆ Jqπ , the inclusion map ι is of course trivial in the corresponding
local coordinates. However, the local expressions of the pull-back ι∗ and the tan-
gent map T ι , respectively, are not trivial, so that one must take care whether one
works in coordinates onRq or in coordinates on Jqπ , i. e. whether one deals with a
vector field X ∈ X(Rq) or with its push-forward ι∗X ∈ X(Jqπ).

We demonstrate the explicit determination of the Vessiot distribution in both co-
ordinate systems for the simple differential equation

R1 : uy = F(ux) . (9.57)

Here we use our standard coordinates on J1π : (x,y,u,ux,uy). As our system is ex-
plicitly solved for uy, a natural choice for coordinates on R1 is (x,y,u,ux). We bar
these coordinates in order to distinguish them clearly from the corresponding coor-
dinates on J1π . We will follow this convention throughout this and the next section.

The tangent space TR1 is spanned by the fields ∂x, ∂y, ∂u, ∂ux . If we compute
their push-forwards, then we obtain simply the corresponding fields for the unbarred
variables with one exception:

ι∗∂ux = ∂ux + F ′(ux)∂uy . (9.58)

Dually, the cotangent space T∗(J1π) is spanned by the forms dx, dy, du, dux, duy.
Their pull-backs are the corresponding forms for the barred variables except for

ι∗(duy) = F ′(ux)dux . (9.59)

The contact distribution C1 on J1π is by definition the annihilator of the contact
formω = du−uxdx−uydy and the space T ι(TR1) is the annihilator of the one-form
η = duy−F ′(ux)dux. A straightforward computation yields that the intersection of
the two spaces is spanned by the vector fields

ι∗X1 = ∂x + ux∂u , ι∗X2 = ∂y + uy∂u , ι∗X3 = ∂ux + F ′(ux)∂uy . (9.60)

The pull-back of the contact form is according to our considerations above simply
ι∗ω = du− uxdx−F(ux)dy. Thus, if we did not carefully distinguish between the
coordinates on R1 and J1π , one could think that we simply restricted ω to the
submanifold R1. Indeed, it has become customary in the literature to say that the
Vessiot distribution is obtained via a “restriction” of the contact codistribution. This
is at best an abuse of language but in principle plainly wrong!

The main reason for this confusion is that as long as our system contains only
equations solved for derivatives of maximal order, the contact forms seemingly do
not notice the pull-back. If our system contained an additional lower-order equation,
say, u = G(x), then we would find ι∗(du) = G′(x)dx and the pull-back ι∗ω would
look very differently from the restriction ω R1

.
The annihilator of ι∗ω and thus the Vessiot distribution V [R1] of the differential

equationR1 is spanned by the three vector fields
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X1 = ∂x + ux∂u , X2 = ∂y + F(ux)∂u , X3 = ∂ux . (9.61)

Computing the push-forwards (and taking into account that uy = F(ux) on the sub-
manifoldR1), we find that indeed Xk = Xk. �

For an implicit differential system, we generally are not able to determine explic-
itly the pull-back of the contact forms, as no closed form expression of the inclusion
map ι :Rq ↪→ Jqπ is available. In such a situation we must work in T (Jqπ) and stick
to the space T ι

(
TRq
)
∩Cq Rq

a basis of which can always be computed by simply
solving a linear system.

Proposition 2.1.6 provides us with a basis of the contact distribution, namely the

contact fields C(q)
i and Cμα , respectively, defined by (2.11). Thus any vector field in

V [Rq] is of the form ι∗X = aiC(q)
i +bαμCμα with coefficients ai,bαμ ∈F(Rq). If a local

representation of the differential equationRq is given by Φ = 0, then according to
Remark C.2.8 we must have dΦ(ι∗X) = ι∗X(Φ) = 0. Hence the coefficients solve
the homogeneous linear system

C(q)
i (Φ)ai +Cμα (Φ)bαμ = 0 . (9.62)

Remark 9.5.5. Setting ai = 0 in (9.62), we obtain the linear system Cμα (Φ)bαμ = 0

which, by the definition (2.11b) of the contact fields Cμα , coincides with the symbol
equations (7.3). Hence the symbol Nq of the differential equation Rq lies in the
Vessiot distribution V [Rq]. Furthermore, it contains all the vertical vectors in V [Rq],
since any solution of the linear system (9.62) where at least one coefficient ai does
not vanish is transversal (both with respect to πq

q−1 and πq!). �

Remark 9.5.6. Determining the Vessiot distribution V [Rq] is closely related to pro-
longing the differential equation Rq. Indeed, it requires essentially the same com-
putations. Given the above local representation of Rq, the prolongation yields for
1≤ i≤ n the following additional equations forRq+1:

DiΦτ = C(q)
i (Φτ )+Cμα (Φτ )uαμ+1i

= 0 . (9.63)

In the context of computing formal power series solutions (cf. Section 2.3) these
equations are considered as an inhomogeneous linear system for the Taylor coeffi-
cients of order q+1 (compare (9.63) with (2.67)). Taking this point of view, we may
call (9.62) the “projective” version of (9.63). In fact for n = 1, i. e. for ordinary dif-
ferential equations, this is even true in a rigorous sense and in Section 9.1 we have
seen that this point of view is highly useful for the analysis of singular solutions. �

Provided that we know an explicit parametrisation of Rq, the approach via the
pull-back of the contact codistribution is computationally simpler. First of all, one
works on a lower dimensional manifold and therefore the linear system to be solved
for the determination of V [Rq] is smaller. Secondly, no derivatives of the right hand
sides of the equations are required.
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This second effect did not become very apparent in Example 9.5.4, as for sim-
plicity we assumed that F was only a function of ux. If F were a function of all
remaining jet variables, the push-forward would effect all basis vector fields. In this
case, the vector fields ι∗Xk would have much more complicated coordinate expres-
sions whereas the fields Xk would not change.

The Vessiot distribution V [Rq] of a partial differential equation Rq is gener-
ally not involutive (see Remark 9.5.8 below for an exception). But it may possess
involutive subdistributions; more precisely, in the sequel we are interested in all
n-dimensional involutive transversal7 subdistributions of V [Rq]. The reason is con-
tained in the following statement.

Proposition 9.5.7. Let σ ∈ Γloc(π) be a solution of the differential equation Rq.
Then the tangent bundle T (im jqσ) is an n-dimensional involutive transversal
subdistribution of V [Rq] im jqσ . Conversely, let U ⊆ V [Rq] be an n-dimensional
transversal involutive subdistribution. Then any integral manifold of U is locally
of the form im jqσ with a solution σ ∈ Γloc(π) of Rq.

Proof. The first assertion is trivial and just restates the considerations that motivated
above the Definition 9.5.1 of the Vessiot distribution. The converse is equally easy.
The Frobenius Theorem C.3.3 guarantees the existence of n-dimensional integral
manifolds. Since by definition T ι

(
V [Rq]

)
is contained in the contact distribution,

any integral manifold of it is of the form im jqσ for some section σ by Proposi-
tion 2.1.6 and since we are onRq this section trivially satisfies im jqσ ⊆Rq. Hence
any integral manifold of U corresponds to a (local) solution ofRq. �

Remark 9.5.8. For ordinary differential equations this relationship between solu-
tions and the Vessiot distribution was already the topic of Lemma 9.1.5. In this
special case, there is generally no need to consider subdistributions, as according to
Theorem 9.1.6 the Vessiot distribution is always one-dimensional for a regular, not
underdetermined equation. These results can be easily extended to partial differen-
tial equations of finite type.

If we assume for simplicity that no lower-order equations are present, then a
differential equation Rq of finite type may be represented as the image of a global
section γ : Jq−1π→ Jqπ . By definition, the symbolNq of such an equation vanishes.
Consequently, the Vessiot distribution V [Rq] does not contain any vertical vectors.
As it is furthermore n-dimensional, it may be interpreted as the horizontal bundle
of a connection on the fibred manifold π̂q : Rq → X . On the other hand, by Re-
mark 2.2.3, such a global section γ induces a connection on πq−1 : Jq−1π →X ; let
H[γ] be the corresponding horizontal bundle.

In our special case Rq = imγ is diffeomorphic to Jq−1π and it is straight-
forward to verify that the diffeomorphism γ preserves the given connection, i. e.
γ∗ : H[γ] → V [Rq] is an isomorphism between the respective horizontal bundles
(with Tπq

q−1 as inverse). We know already from Example 2.3.17 thatRq is formally

7 Recall that, by definition, Rq is a fibred submanifold of πq : Jqπ →X . Hence it makes sense
to speak of transversal distributions on Rq, namely those that are transversal with respect to the
restricted fibration π̂q :Rq→X .
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integrable, if and only if the distribution H[γ] is involutive. As according to (C.9)
the push-forward preserves Lie brackets, the Vessiot distribution V [Rq] will also be
involutive, if and only if Rq is formally integrable. Thus for (regular) differential
equations of finite type, the Vessiot theory essentially coincides with the geomet-
ric theory developed in Example 2.3.17; we only work “one level higher”, namely
with the Vessiot distribution V [Rq] (defined onRq ⊂ Jqπ) instead of the horizontal
bundleH[γ] (defined on Jq−1π). �

We could now take any basis {X1, . . . ,Xr} of the Vessiot distribution V [Rq]
and analyse when n fields Ui = a j

i Xj with coefficients a j
i ∈ F(Rq) define an

n-dimensional transversal involutive subdistribution. However, choosing a basis
adapted to the geometry of the jet bundle leads to simpler structure equations.

Recall from Remark 2.2.9 that the contact distribution on Jqπ may be decom-
posed as Cq = Vπq

q−1⊕Hq where Vπq
q−1 is as usual the vertical bundle of the fi-

bration πq
q−1 : Jqπ → Jq−1π and Hq some complement defining a connection on

the fibration πq : Jqπ →X . Since the symbol Nq of the differential equation Rq is
defined as the intersection Vπq

q−1 Rq
∩TRq, we obtain a similar decomposition of

the Vessiot distribution,
V [Rq] =Nq⊕H , (9.64)

with some complementH which again is not uniquely determined.
It follows from Remark 9.5.5 that such a complement H is always transversal

to the fibration π̂q : Rq → X and hence at most n-dimensional. If H is indeed n-
dimensional, then it induces a connection for π̂q :Rq →X which we call a Vessiot
connection of Rq. The involutive subdistributions U we are looking for must be
such n-dimensional complements H and a major step towards solving Rq consists
of finding all its flat Vessiot connections.

Example 9.5.9. Consider the trivial differential equation R1 defined by ut = 1−ux

and u = x. Obviously, this equation has exactly one solution, namely u(x,t) = x.
If we pull-back the contact form ω = du− uxdx− utdt, then we find (in the co-
ordinates (x,t,ux) on R1) that ι∗ω = (1− ux)(dx− dt) and hence that the Vessiot
distribution V [R1] is spanned by the two vector fields X = ∂x +∂t and Y = ∂ux . The
latter vector field spans the symbolN1. Obviously, any complementH toN1 is only
one-dimensional and cannot be the horizontal space of a connection.

The explanation for this phenomenon is simple. R1 is not formally integrable,
as the integrability condition ut = 0 is hidden. Adding it and computing the Ves-

siot distribution of the projected equationR(1)
1 , we obtain this time ι∗ω = 0 so that

V [R(1)
1 ] = 〈∂x,∂t〉. Since the symbol N (1)

1 vanishes, the only choice for a comple-

ment isH= V [R(1)
1 ] which is obviously two-dimensional (and involutive). �

Thus, if a system is not formally integrable, then it may well happen that the
decomposition (9.64) does not lead to an n-dimensional complement. A closer anal-
ysis reveals that this phenomenon appears only, if we have integrability conditions
of the second kind, i. e. those arising from the prolongation of lower-order equations
and not from generalised cross-derivatives.
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Proposition 9.5.10. Let Rq ⊆ Jqπ be a differential equation in n independent vari-
ables with symbol Nq. Its Vessiot distribution possesses locally a decomposition
V [Rq] =Nq⊕H where the complementH is n-dimensional, if and only if Rq does
not lead to integrability conditions of the second kind.

Proof. Assume thatRq has a local representation of the form

Rq :

{
Φ(x,u(q)) = 0 ,

Ψ (x,u(q−1)) = 0 ,
(9.65)

where the Jacobian ∂Φ/∂u(q) has maximal (row) rank, so that it is not possible to
extract further lower-order equations from the upper subsystem. If we follow the
above described method for computing the Vessiot distribution in T Jqπ , then (9.62)
takes for our system the form

C(q)
i (Φ)ai +Cμα (Φ)bαμ = 0 , C(q)

i (Ψ )ai = 0 . (9.66)

According to the made assumptions, the matrix Cμα (Φ) has maximal (row) rank and

C(q)
i (Ψ ) = DiΨ . Because of the maximal rank, the left subsystem may always be

solved for a subset of the variables bαμ . If, and only if, no integrability conditions of
the second kind exist, then DiΨ = 0 on Rq and thus the right subsystem of (9.66)
vanishes. If, and only if, this is the case, (9.66) possesses for each 1≤ j ≤ n a solu-
tion where a j = 1 and all other ai vanish. Obviously, the existence of such solutions
is equivalent to the existence of an n-dimensional complementH. �

Note that as a by-product this proof shows that in the absence of integrability
conditions of the second kind, we may simply ignore lower-order equations during
the determination of the Vessiot distribution.

Remark 9.5.11. If one does not care about the distinction between integrability con-

ditions of the first and the second kind and simply requires that Rq =R(1)
q (i. e. no

integrability conditions at all appear in the first prolongation of Rq), then one can
provide a more geometric proof for the existence of an n-dimensional complement
(of course, in contrast to Proposition 9.5.10, the converse is not true then).

The assumption Rq = R(1)
q implies that to every point ρ ∈ Rq at least one

point ρ̂ ∈ Rq+1 with πq+1
q (ρ̂) = ρ exists. We choose such a point and con-

sider imΓq+1(ρ̂) ⊂ Tρ(Jqπ). By definition of the contact map Γq+1, this is an n-
dimensional transversal subset of Cq ρ. Thus there only remains to show that it is
also tangential toRq, as then we can define a complement by Tρ ι(Hρ) = imΓq+1(ρ̂).
But this tangency is a trivial consequence of ρ̂ ∈Rq+1; using for example the local
coordinates expression (2.35) for the contact map and a local representationΦτ = 0
of Rq, one immediately sees that the vector vi = Γq+1(ρ̂,∂xi) ∈ Tρ(Jqπ) satisfies
dΦτ ρ(vi) = DiΦτ (ρ̂) = 0 and thus is tangential toRq by Remark C.2.8.

Hence it is possible to construct for each point ρ ∈ Rq a complement Hρ such
that Vρ [Rq] = (Nq)ρ ⊕Hρ . There remains to show that these complements can
be chosen so that they form a distribution (which by definition is smooth). Our
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assumptionRq =R(1)
q implies that the restricted projection π̂q+1

q :Rq+1 →Rq is a
surjective submersion, i. e. it defines a fibred manifold. Thus if we choose a section
γ : Rq → Rq+1 and then always take ρ̂ = γ(ρ), it follows immediately that the
corresponding complementsHρ define a smooth distribution as required. �

Remark 9.5.12. For many differential equations Rq appearing in applications one
can easily find an n-dimensional complementH. Suppose that no integrability con-
ditions of the second kind are hidden and that Rq can be locally represented by a
system where the qth order equations are of the solved form uαμ = φαμ (x,u, ũ(q)).
with (α,μ) ∈ B. We assume that the principal derivatives uαμ are all pairwise dif-
ferent and of order q. Then we introduce the set B of all pairs (α,μ) such that our
system contains an equation for uαμ and denote by ũ(q) all the remaining (parametric)
derivatives of order q. We claim that under the made assumptions V [Rq] =Nq⊕H
whereH is generated by the fields

ι∗Xi = C(q)
i + ∑

(α ,μ)∈B
C(q)

i (φαμ )Cμα , 1≤ i≤ n . (9.67)

For notational simplicity we restrict to a first-order equation R1. Furthermore,
since we have seen above that under the made assumptions lower-order equations
do not affect the determination of the Vessiot distribution, we simply assume that
none are present. Then we are given an explicit parametrisation of R1 and we can
compute on the submanifold R1 where a local coordinate system is given by x, u
and the parametric derivatives uαi with (α, i) /∈B. Hence the pull-back of the contact
forms ωα = duα−uαi dxi is

ι∗ωα = duα − ∑
(α ,i)∈B

φαi dxi− ∑
(α ,i)/∈B

uαi dxi . (9.68)

The common annihilator of these m one-forms is generated by the vertical vector
fields ∂uαi

with (α, i) /∈ B and the transversal fields

Xi = ∂xi + ∑
(α ,i)∈B

φαi ∂uα + ∑
(α ,i)/∈B

uαi ∂uα . (9.69)

There remains to compute the push-forward of these fields. One easily verifies
that the vertical fields

ι∗∂uαi
= ∂uαi

+ ∑
(β , j)∈B

∂φβj
∂uαi

∂
uβj

(9.70)

form a basis of the symbolN1. Indeed, due to the solved form of our system, com-
puting the push-forward amounts to nothing but solving the symbol equations (7.3).
For the push-forward of the transversal vector fields Xi we first note that
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ι∗∂uα = ∂uα + ∑
(β , j)∈B

∂φβj
∂uα

∂
uβj

, ι∗∂xi = ∂xi + ∑
(β , j)∈B

∂φβj
∂xi ∂uβj

. (9.71)

Entering these expressions in (9.69) and noting that on R1 we may replace uαi by
φαi for all (α, i) ∈ B, we arrive at (9.67). �

Remark 9.5.13. In Remark 2.2.9 we discussed the relation between the contact dis-
tributions Cq and Cq+r of order q and q + r, respectively. It implies trivially an anal-
ogous relation between the Vessiot distributions of the differential equationRq and

its prolongationRq+r, respectively. Assuming that R(r)
q =Rq so that the restricted

projection π̂q+r
q :Rq+r →Rq is surjective, we have that

V [Rq] = T π̂q+r
q

(
V [Rq+r]

)
+Nq . (9.72)

If γ :Rq →Rq+r is a section of the fibration π̂q+r
q , then we obtain at every point

ρ ∈Rq the direct sum decomposition

Vρ [Rq] = Tγ(ρ)
(
Vγ(ρ)[Rq+r]

)
⊕Nq . (9.73)

Note that as in Remark 2.2.9 not every possible complement H to the symbol Nq

can be obtained in this manner. �

We return to the question of determining the structure equations of the Vessiot
distribution V [Rq], as their knowledge is obviously necessary for our search for
flat Vessiot connections of Rq. We will derive them based on the decomposition
V [Rq] = Nq⊕H. Let first the vector fields Y1, . . . ,Yr generate the r-dimensional
symbol Nq. The symbol is by definition the intersection of two involutive distribu-
tions and hence itself an involutive distribution.8 Thus there must exist some coeffi-
cients Δm

k� ∈ F(Rq) such that the structure equations of the symbolNq are

[Yk,Y�] = Δm
k�Ym , 1≤ k, �≤ r . (9.74a)

By contrast, the complement H is generally not involutive and hence its struc-
ture equations take a more complicated form. Since TRq is trivially involutive, we
find for the derived Vessiot distribution V ′[Rq] ⊆ T ι(TRq)∩C′q Rq

. Let Z1, . . . ,Zt

be some vector fields such that V ′[Rq] = V [Rq]⊕〈Z1, . . . ,Zt〉. In local coordinates,
it follows from the commutator relations (2.13) of the contact fields that we may
choose the fields Za as linear combinations of the fields ∂uαμ

with |μ | = q− 1, i. e.

there are coefficients καaμ ∈ F(Rq) such that Za = καaμ∂uαμ
. For a generic system,

all these fields appear as generators of the derived Vessiot distribution; on the other
hand, for a formally integrable system of finite type V [Rq] is involutive by Re-
mark 9.5.8 and hence t = 0.

8 Beware: as a distribution the symbol is always involutive; but this observation is unrelated to the
notion of an involutive symbol in the sense of Definition 7.1.17!
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If the fields {X1, . . . ,Xn} form a basis of the complement H, then the structure
equations ofH have generally the form

[Xi,Xj] =Π h
i jXh + Δ̃m

i jYm +Θ c
i jZc , 1≤ i, j ≤ n , (9.74b)

with coefficients Π h
i j, Δ̃m

i j ,Θ c
i j ∈ F(Rq). For the structure equations of the full Ves-

siot distribution V [Rq] we finally also need the Lie brackets

[Xi,Yk] = Π̄ h
ikXh + Δ̄m

ikYm +Ξ c
ikZc , 1≤ i≤ n ,1≤ k ≤ r (9.74c)

where again Π̄ h
ik, Δ̄

m
ik ,Ξ c

ik ∈ F(Rq).
For the analysis of a concrete differential equationRq it suffices to consider the

structure equations in the form (9.74).9 However, for the theoretical considerations
in the next section we need further simplifications which are—at least in principle—
always possible. For an involutive distribution like Nq we can always find a basis
{Y1, . . . ,Yr} such that Δm

k� = 0. Starting with an arbitrary basis, this requires only
some linear algebra: in some local coordinates y on Rq we bring Yk into the form
∂yk + Ỹk where all the fields Ỹk contain only ∂ya with a > r (in the classical language
of Example 7.2.12 we transform to a Jacobian system). With a similar transforma-
tion of the vector fields Xi we can always achieve that also Π h

i j = 0 and Π̄ h
ik = 0.

Remark 9.5.14. The situation becomes particularly simple, if in some local coor-
dinates (x,u(q)) on Jqπ we can solve each equation of the system for a principal
derivative (this solved form immediately induces then a coordinate chart on Rq).

First, we may now simply choose for the symbol fields Yk = ∂
uβν

with uβν running

over all parametric derivatives of order q; in this form obviously [Yk,Y�] = 0. If we
introduce furthermore the vector fields Wa = ∂uαμ with uαμ running over all principal
derivatives of order q, then the distribution W spanned by them is trivially involu-
tive and furthermore satisfies Vπq

q−1 Rq
=Nq⊕W ; i. e. the vector fields Yk and Wa

define together a basis of Vπq
q−1 Rq

.
There remains to make a good choice for a “reference” complement H0 (not

necessarily involutive). Recall that the contact fields C(q)
i and Cμα defined by (2.11)

span the contact distribution Cq. Of these fields only the C(q)
i are transversal to the

fibration πq. Hence the basis {X1, . . . ,Xn} of any complement H in (9.64) can be

chosen in the form ι∗Xi = C(q)
i +ξαiμCμα with suitable coefficients ξαiμ ∈ F(Rq). But

the fields Cμα generate the distribution Vπq
q−1 and onRq we just found a basis for it

better adapted to our purposes. Indeed, it is now natural to choose the vectors Xi in

the form ι∗Xi = C(q)
i + ξ a

i Wa.
Making these special choices in our construction of a basis {X1, . . . ,Xn,Y1, . . . ,Yr}

for the Vessiot distribution V [Rq] eliminates most of the coefficients in the structure

9 Compared with the literature on Vessiot’s approach, already our use of the decomposition
V[Rq] =Nq⊕H leads to a considerable simplification in the computations presented in the next
section, as we will treat there exclusively linear systems whereas traditionally quadratic systems
must be analysed.
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equations (9.74) and we finally obtain a much simplified version of them,

[Xi,Xj] =Θ a
i jZa , [Xi,Yk] = Ξ a

ikZa , [Yk,Y�] = 0 , (9.75)

as one can easily verify. �

Example 9.5.15. Going back to Example 9.5.4, we see that there we chose our basis
in the manner described in Remark 9.5.14; we must only rename Y1 = X3. Further-
more, we have Z1 = ∂u and the structure equations are

[X1,X2] = 0 , [X1,Y1] =−Z1 , [X2,Y1] =−F ′(ux)Z1 . (9.76)

Indeed, in practical computations one usually constructs the Vessiot distribution au-
tomatically such that its structure equations are of the form (9.75). Note that by
chance we have chosen here a reference complement H0 which defines already a
flat Vessiot connection. �

Example 9.5.16. More generally, letR1 be a first-order equation with Cartan normal
form (7.34) satisfying the additional simplifying assumptions of Remark 7.2.11, i. e.
no algebraic equations are present and no principal derivatives appear on the right

hand side of the system. If we assume furthermore that R(1)
1 = R1, then we may

choose—according to Remark 9.5.12—the “reference” complementH0 as the linear
span of the vector fields Xi defined by (9.67); note that this corresponds exactly to
the form used in Remark 9.5.14. Choosing also the symbol fields Yk as described in
Remark 9.5.14, we can explicitly evaluate the structure equations (9.75) onR1.

One remaining problem is that it is generally difficult to make any statement
about the size and form of the derived Vessiot distribution V ′[R1], i. e. to predict
t = dimV ′[R1]−dimV [R1] and to give some explicit expressions for the fields Za.
We only know that in our case the fields Za = καa ∂uα span some subdistribution of
〈∂

u1 , . . . ,∂um〉. For this reason, we write the right hand sides of (9.75) in the form
Θαi j ∂uα and Ξαik∂uα . Obviously, the new and the old coefficients are related by

Θαi j = καa Θ
a
i j , Ξαik = καa Ξ

a
ik . (9.77)

As part of a basis of V ′[R1] the fields Za are linearly independent and thus these
relations can be inverted and there exist some coefficients κ̄a

α such that

Θ a
i j = κ̄a

αΘ
α
i j , Ξ a

ik = κ̄a
αΞ

α
ik . (9.78)

A straightforward but slightly tedious calculation yields for i < j that

Θαi j =

⎧
⎪⎨

⎪⎩

0 if (α, i) /∈ B and (α, j) /∈ B ,

C(1)
i (φαj ) if (α, i) /∈ B and (α, j) ∈ B ,

C(1)
i (φαj )−C(1)

j (φαi ) if (α, i) ∈ B and (α, j) ∈ B
(9.79)

and, if Yk = ∂
uβj

with some (β , j) /∈ B, that
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Ξαik =

⎧
⎪⎨

⎪⎩

0 if (α, i) /∈ B and (α, i) �= (β , j) ,

−1 if (α, i) /∈ B and (α, i) = (β , j) ,

−C j
β (φ

α
i ) if (α, i) ∈ B .

(9.80)

Let as usual m be the fibre dimension of E and r = dimN1. We introduce for
1 ≤ i, j ≤ n the vectors Θ i j ∈ F(R1)m with entries Θαi j and for 1 ≤ i ≤ n the ma-
trices Ξ i ∈ F(R1)r×m with entries Ξαik . In the next section we will show that all
relevant information about the formal integrability or involution of the considered
differential equationR1 are encoded in these vectors and matrices. Note that (9.79)
implies that for a linear system with constant coefficients all vectorsΘ i j vanish. We
will see later that this observation is equivalent to the fact that in such a system no
integrability conditions can be hidden.

The matrix Ξ i has a simple block structure, if one orders the columns and rows
in the right way (this observation is the reason why we introduced the r×m matrices
built out of the coefficients Ξαik instead of the potentially smaller r× t matrices built
out of the coefficients Ξ a

ik; the involved contractions of rows destroys the block
structure making it much harder to analyse the corresponding matrices). We order
the m rows according to increasing α . Each column corresponds to a symbol field
Yk = ∂

uβj
with some (β , j) /∈ B; these we order first by increasing values of j and for

the same j by increasing values of β . Using this ordering, one finds

Ξ i =

(
−C1

β1
(φαi ) · · · −Ci−1

βi−1
(φαi ) −Ci

βi
(φαi ) 0 · · ·0

0 · · · 0 −�
α(i)

1
0 · · ·0

)

(9.81)

where for 1≤ j≤ i we have β ( j)
1 < β j ≤m. Here β ( j)

1 denotes as usual the jth index

of the symbolN1 and α( j)
1 = m−β ( j)

1 the corresponding Cartan character. The unit
block plus the ranges for the indices β j lead trivially to the estimate

α(i)
1 ≤ rankΞ i ≤

i

∑
j=1
α( j)

1 ≤ m . (9.82)

The zero block at the right end of the matrixΞ i is a consequence of our assumption
that no principal derivatives appear on the right hand side of the given differential
system: we have C j

β (φ
α
i ) = 0 whenever j > i. �

At the end of Section 2.3 we introduced the notion of integral elements for a
differential equationRq. Proposition 2.3.19 gave a characterisation of them via the
ideal I[Rq] = 〈ι∗C0

q〉diff ⊆Ω (Rq). Recall that it was essential to use the differential
ideal, i. e. to include the exterior derivatives of the pulled-back contact forms. The
dual operation to exterior differentiation is the Lie bracket. Thus it is not surpris-
ing that the Vessiot distribution provides us with a dual characterisation of integral
elements using Lie brackets.

However, there is one caveat that must be taken into account. Proposition 2.3.19
allowed us to characterise integral elements Uρ at a single point ρ ∈ Rq. As the
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Lie bracket is only defined for vector fields X ∈ X(Rq) but not individual vectors
v∈ TρRq, we must now use whole distributions (defined at least on a neighbourhood
of ρ).10 These considerations lead to the following result.

Proposition 9.5.17. Let U ⊆ V [Rq] be a transversal subdistribution of the Vessiot
distribution of constant rank k. The spaces Uρ are k-dimensional integral elements
for all points ρ ∈Rq, if and only if [U ,U ]⊆ V [Rq].

Proof. This is a straightforward consequence of the explicit formula (C.22) for
the exterior derivative. Let {ω1, . . . ,ωr} be a basis of the codistribution ι∗C0

q .
Then I[Rq] = 〈ω1, . . . ,ωr,dω1, . . . ,dωr〉alg. Any vector field X ∈ U trivially sat-
isfies ωi(X) = 0 by Proposition 9.5.3. For arbitrary fields X1,X2 ∈ U , (C.22) yields
dωi(X1,X2) = X1

(
ωi(X2)

)
−X2
(
ωi(X1)

)
+ωi
(
[X1,X2]

)
. The first two terms on the

right hand side vanish trivially and the remaining equation implies our claim. �

Definition 9.5.18. A subdistribution U of the Vessiot distribution V [Rq] satisfying
the assumptions of Proposition 9.5.17 is called an integral distribution of the differ-
ential equationRq.

One should not confuse an “integral” distribution with an “integrable” distribu-
tion; the name simply reflects that such a distribution consists of integral elements.
Even if U is an integral distribution of rank n, there is no reason why it should be
involutive and hence possesses integral manifolds. In other words, infinitesimal so-
lutions are only a first step, as it is not clear whether they can be combined in such
a manner that a finite solution σ ∈ Γloc(π) emerges for which im jqσ is an integral
manifold. We will study the conditions under which this is possible in more detail
in the next section.

Addendum: Generalised Prolongations

In most of what we have done so far a differential equation was represented by a
fibred submanifold Rq ⊆ Jqπ . It is important to note that Rq as a manifold of its
own does not carry enough information; we must consider it as submanifold within
the ambient jet bundle Jqπ . This situation has now changed: the relevant data of the
embedding ι : Rq ↪→ Jqπ are encoded in the Vessiot distribution V [Rq]. Thus we
may alternatively represent a differential equation by a fibred manifold π :M→X
together with a distribution D ⊆ TM on it and solutions are transversal integral
manifolds of D. This point of view leads to a generalised concept of prolongation.

Definition 9.5.19. A generalised prolongation of a differential equation given as
such a pair (π : M→ X ,D) is a fibred manifold π̃ : M̃ → M together with a

10 In the exterior approach we also had to consider implicitly at least a neighbourhood of ρ , namely
to compute the exterior derivatives required for obtaining the differential ideal I[Rq]. But as soon
as this ideal is determined, the remaining computations can be performed at a point.
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distribution D̃ ⊆ TM̃ such that (i) T π̃(D̃)⊆D and (ii) for every transversal integral
manifold N ⊆M of D a transversal integral manifold Ñ ⊆ M̃ of D̃ exists which
satisfies π̃(Ñ ) =N .

In Condition (ii) the transversality of Ñ refers of course to the induced fibration
π ◦ π̃ : M̃→ X . It follows trivially from Condition (i) that any transversal integral
manifold Ñ of D̃ projects on a transversal integral manifold of D. The converse
requirement that any such manifold N is obtainable by a projection is highly non-
trivial and imposes severe restrictions on (M̃,D̃).

Example 9.5.20. The prototype of a generalised prolongation must of course be our
familiar prolongation process. Indeed, let Rq ⊆ Jqπ be a differential equation with

Vessiot distribution V [Rq]. Then the restricted projection π̂q+1
q : Rq+1 → Rq to-

gether with the Vessiot distribution V [Rq+1] is a generalised prolongation. Here
the second condition is trivial: we know that any transversal integral manifold of
V [Rq] is of the form im jqσ with a solution σ ∈Γloc(π) and obviously im jq+1σ is a
transversal integral manifold of V [Rq+1] projecting on im jqσ . In fact, it is the only
one with this property.

Concerning Condition (i) we note that trivially T π̂q+1
q : TRq+1 → TRq. By

Proposition 2.1.6, the contact distribution Cq+1 is locally generated by the vector

fields C(q+1)
i and Cμα with |μ |= q+1, respectively. From (2.11) it is easy to see that

Tπq+1
q (Cq+1) = 〈C(q)

i 〉 ⊂ Cq. Thus we find T π̂q+1
q
(
V [Rq+1]

)
⊆ V [Rq] as required

by Definition 9.5.19.
The above description still depends on the embedding Rq ↪→ Jqπ , as our defi-

nition of the prolonged equation Rq+1 goes through Jq+1π . Using Grassmannians
we can completely omit any reference to such ambient spaces. Taking the restricted
projection π̂q :Rq →X and considering as in Remark 2.2.5 the transversal Grass-
mannian G(π̂q)∼= J1π̂q, one easily verifies that

Rq+1 =
{
(ρ ,V) ∈G(π̂q) | V ⊆ Vρ [Rq]

}
. (9.83)

Indeed, (9.83) is just a reformulation of the alternative definition (2.61) of the pro-
longed equationRq+1. There we required that ρ , considered as an equivalence class,
contains a section σ such that V = Tρ(im jqσ). It is obvious that any V ⊆ TρRq with
this property is contained in the Vessiot distribution. Conversely, let V ⊆ Vρ [Rq] be
a transversal n-dimensional subspace. Since V consists of contact fields, it must be
of the form V = Tρ(im jqσ) for some section σ contained in ρ .

Any vector space V admitted in (9.83) is a possible horizontal complement Hρ
in the decomposition Vρ [Rq] =Nq ρ⊕Hρ . Above we discussed that such a decom-
position does not necessarily exist everywhere on the differential equation Rq but

only on R(1)
q . In (9.83) points ρ ∈Rq where no appropriate complement exists are

automatically eliminated. �

Suppose that a connection with horizontal bundle H̃ is given on the fibred man-
ifold π̃ : M̃ →M. The associated horizontal lift A : M̃ ×

M
TM→ TM̃ allows us
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to lift any vector field in X(M) to a horizontal field in X(M̃). Thus we may define
on M̃ a distribution D̃ by setting D̃ p̃ = A(p̃,Dp) for all p ∈M and p̃ ∈ π̃−1(p).
Obviously, D̃ ⊆ H̃.

Proposition 9.5.21. If the derived distribution D̃′ satisfies D̃′ ⊆ H̃, then (M̃,D̃) is
a generalised prolongation of (M,D).

Proof. Concerning the first condition in Definition 9.5.19 of a generalised prolon-
gation, we note that the horizontal lift is a right inverse to the map ρ = (τM̃,T π̃).
This fact implies in particular that T π̃(D̃) =D.

For the second condition letN ⊆M be an arbitrary transversal integral manifold
of the distribution D and set N̂ = π̃−1(N ). Then our projection π̃ restricts to a
fibration π̂ : N̂ →N . Furthermore, we consider the distribution D̂ on N̂ defined by
D̂ p̂ = A(p̂,Dp) for all p ∈ N and p̂ ∈ π̂−1(p). Obviously, D̂ ⊆ D̃ N̂ . We claim that
the distribution D̂ is involutive. Indeed, it follows immediately that H̃ N̂ ∩T N̂ = D̂
by construction and since we assumed that D̂′ ⊆ D̃′

N̂ ⊆ H̃ N̂ , we have D̂′ = D̂.
By the Frobenius Theorem C.3.3, the distribution D̂ thus possesses integral man-

ifolds; let Ñ ⊆ M̃ be one of them. By construction, T π̃(Ñ ) = N . Hence we are
dealing with a transversal integral manifold of the required form. �

In contrast to the classical prolongation discussed in Example 9.5.20, here the
lifted integral manifold Ñ is no longer unique. Any integral manifold of D̂ has the
required properties. Note furthermore that the given connection does not need to
be flat; in fact, in most applications its horizontal bundle H̃ will not be integrable.
However, the imposed condition D̃′ ⊆ H̃ (which may equivalently be formulated as
the vanishing of the curvature ΩH̃ on D̃′) ensures that the induced connection on
the fibration π̂ : N̂ → N with horizontal bundle D̂ is always flat.

Definition 9.5.22. A connection on the fibred manifold π̃ :M̃→Mwith a horizon-
tal bundle H such that D̃′ ⊆ H̃ is called an adapted connection for the differential
equation (M,D).

Let us assume that (M,D) is in fact a differential equationRq together with its
Vessiot distribution V [Rq]. As usual, we use as local coordinates on M =Rq the
independent variables x and all parametric derivatives uαμ with 0 ≤ |μ | ≤ q which

we denote collectively by ũ(q). Furthermore, let z be fibre coordinates for the fi-
bration π̃ : M̃ →M with fibre dimension m̃. The horizontal bundle of an adapted
connection is then locally spanned by vector fields of the form

∂xi +Γ a
i (x, ũ(q),z)∂za , ∂uαμ +Γ aμ

α (x, ũ(q),z)∂za . (9.84)

In applications one is mainly concerned with the special case Γ aμ
α = 0 called a

prolongation by pseudo-potentials. The origin of this terminology lies in the even
more specialised case where the remaining coefficients Γ a

i are independent of the
fibre coordinates z. If the section σ ∈ Γloc(π) is a solution of Rq, then im jqσ is a
transversal integral manifold of D = V [Rq]. It follows from (9.84) and our special
assumptions that the horizontal lift of T im jqσ is spanned by the vector fields
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X̂i = ∂xi +(Γ a
i ◦ jqσ)∂za . (9.85)

By our considerations in the proof of Proposition 9.5.21, these fields span the
horizontal bundle Ĥ of a connection of the fibration π̂ : π̃−1(im jqσ) → im jqσ .
Furthermore, we have seen that for an adapted connection this induced connection is
always flat. Hence the distribution Ĥmust be involutive. Computing the Lie brackets
between the vector fields X̂i shows that this is the case if and only if

∂ (Γ a
i ◦ jqσ)
∂xk − ∂ (Γ a

k ◦ jqσ)
∂xi = 0 (9.86)

for all 1 ≤ i,k ≤ n. But these equations represent the compatibility conditions for
the existence of potentials V a for the functions Γ a

i ◦ jqσ (cf. Remark 7.1.7).
We know from Remark 2.3.6 that a connection corresponds to a differential equa-

tion of finite type and according to Example 2.3.17 this differential equation is for-
mally integrable, if and only if the connection is flat. Thus returning to the case of
a prolongation by pseudo-potentials, we find in the case of an adapted connection
that the differential equation

R̃1 :

{
∂ za

∂xi = Γ a
i

(
jqσ(x),z

)
,

1≤a≤m̃ ,

1≤i≤n
(9.87)

is formally integrable whenever σ is a solution of Rq. Thus in a generalised sense
we may consider the differential equation Rq as a compatibility condition for the
system ∂ za/∂xi = Γ a

i (x, ũ(q),z). This is particularly of interest, if we are dealing
with a linear connection, as then (9.87) becomes a linear equation for z.

Addendum: Symmetry Theory and the Method of Characteristics

Most, if not all, methods to determine at least some explicit solutions of (non-linear)
partial differential equations rely on Lie symmetries. Roughly speaking, symme-
tries are transformations (in the simplest case diffeomorphisms E → E) mapping
solutions of the equation into solutions. For a general introduction into this theory
we refer to [48, 342]. In this Addendum we take a non-standard approach using
the Vessiot distribution and show as an application how the well-known method of
characteristics can be derived in this manner.

Definition 9.5.23. Let D ⊆ TM be a distribution on a manifold M. A vector field
X ∈ X(M) is called an infinitesimal symmetry of D, if LXD = [X ,D]⊆D.

It follows immediately from the Jacobi identity for the Lie bracket that the in-
finitesimal symmetries of D form a Lie algebra, i. e. if the vector fields X1 and X2

are two infinitesimal symmetries, then the same is true for their commutator [X1,X2],
as
[
[X1,X2],D

]
=
[
X1, [X2,D]

]
−
[
X2, [X1,D]

]
⊆D.
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Proposition 9.5.24. Let D be a distribution on a manifold M. Then D is invariant
under the flow of a vector field X ∈X(M), i. e. the tangent map T exp(tX) restricted
to D is an isomorphism for sufficiently small values of the parameter t, if and only
if X is an infinitesimal symmetry of D.

Proof. This is an immediate consequence of the definition of the Lie derivative of
a vector field given by (C.12): we have for an arbitrary vector field Y ∈ D that

LXY = d
dt

[(
T exp(tX)

)−1
Y
]

t=0. Thus we stay within the distributionD, if and only
if D is invariant under the Lie derivative with respect to X . �

LetN ⊆M be a k-dimensional integral manifold of the distribution D. For suf-
ficiently small values of the parameter t, we introduce the set Nt = exp(tX)(N ); it
follows from standard results on the smooth dependency of the solutions of ordinary
differential equations on the initial data that Nt is again a k-dimensional submani-
fold for t in some open interval 0 ∈ 	⊆�. Furthermore, Proposition 9.5.24 implies
that Nt is also an integral manifold of D, if X is an infinitesimal symmetry. Thus
considering integral manifolds as “solutions” of a distribution, we find here the clas-
sical picture that symmetries map solutions into solutions.

Definition 9.5.25. Let D be a distribution. A vector field C ∈ D is Cauchy char-
acteristic, if LCD = [C,D] ⊆ D. The integral curves of C are called the Cauchy
characteristics of the distribution D.

Obviously, any Cauchy characteristic vector field is an infinitesimal symmetry
but not vice versa, as an infinitesimal symmetry is not necessarily contained in the
distributionD. It follows by the same argument as above that the Lie bracket of two
Cauchy characteristic vector fields is again Cauchy characteristic; thus these fields
form an involutive subdistribution of D.

Proposition 9.5.26. Let C be a Cauchy characteristic vector field for the distribu-
tion D and N a k-dimensional integral manifold of D for which C is everywhere
transversal. Then the set NC =

⋃
t∈�Nt is for a sufficiently small interval 0∈ 	⊆�

a (k + 1)-dimensional integral manifold of D.

Proof. We know already from our considerations above that each subset Nt is an
integral manifold. Since, by definition, the vector field C is contained in the distri-
bution D, the claim follows immediately. �

This result demonstrates the great importance of Cauchy characteristic vector
fields. According to Proposition 9.5.24, we may use any infinitesimal symmetry to
map an integral manifold N into new ones; but these new ones are always of the
same dimension. If we know a transversal Cauchy characteristic vector field C, then
we can extend an integral manifold to a higher-dimensional one and this extension
requires essentially only the solution of an ordinary differential equation, namely
the determination of the flow of C.

It is a natural thought to take for the manifoldM a differential equationRq and
as distribution D its Vessiot distribution V [Rq]. In fact, this approach would im-
mediately lead to a generalisation of the classical Lie symmetry theory, as one can
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show that the infinitesimal symmetries of V [Rq] correspond to what is called inter-
nal symmetries in the literature [17]. We will not work out the corresponding theory
in this Addendum but only note that from a geometric point of view most reduction
methods for partial differential equations consists of enforcing the existence of a
Cauchy characteristic vector field for the Vessiot distribution.

A standard approach to solving scalar first-order partial differential equations in
one dependent variable is the method of characteristics (see e. g. [238]). We show
now that it may be understood as a combination of symmetry theory with sym-
plectic geometry. The basic observation is that the Vessiot distribution of such an
equation possesses a Cauchy characteristic vector field. Our presentation combines
ideas from [27, §8] and [231, Sect. 6.1].

Let π : E → X be a fibred manifold with one-dimensional fibres, i. e. m = 1 in
our conventions. Then dimJ1π = 2n + 1 where n = dimX and the contact codis-
tribution C0

1 is one-dimensional with the local generator ω = du−uidxi. Dually, its
annihilator, the contact distribution C1, is locally spanned by the 2n vector fields

C(1)
i = ∂xi + ui∂u and Ci = ∂ui (this is just (2.11) for q = m = 1).

By Remark C.3.7, we may associate with any distribution D on a manifoldM a
vector-valued curvature two-formΩ taking its values in the “normal” vector bundle
K=D′/D whereD′ is the derived distribution. Let us apply this construction to the
contact distribution C1. According to (2.13), the only non-vanishing commutators

are [C(1)
i ,Ci] = ∂u. Thus here dimK = 1 and the curvature is now easily seen to

be given by the ordinary two-form Ω = dω = dxi∧dui. Using the local coordinate
expression, one readily verifies that Ω is closed and non-degenerate. Hence, the
contact distribution C1 has the structure of a 2n-dimensional symplectic manifold
with the symplectic two-form Ω .11

Let R1 ⊂ J1π be a scalar differential equation, i. e. codimR1 = 1. Provided
that the tangent space TR1 is not completely contained in the contact distribu-
tion C1 R1

, the Vessiot distribution V [R1] is (2n− 1)-dimensional. Because of

Ω(X ,Y ) = ω
(
[X ,Y ]

)
for all X ,Y ∈ C1, any vector field C that is Cauchy charac-

teristic in ι∗
(
V [R1]

)
satisfies Ω(C,X) = 0 for all X ∈ ι∗

(
V [R1]

)
and thus must lie

in the symplectic complement of the Vessiot distribution.

Lemma 9.5.27. Let (V ,Ω) be a symplectic vector space and W ⊂ V a subspace
with codimW = 1. Then the symplectic complement W⊥ is one-dimensional and
satisfiesW⊥ ⊆W .

Proof. Let dimV = 2n. The subspace W⊥ is described by 2n−1 linear equations;
hence trivially dimW⊥ ≥ 1. We choose some vector z ∈ V such that V =W⊕〈z〉.
If v ∈W⊥, then by definition Ω(v,w) = 0 for all w ∈ W . As a symplectic form is
always non-degenerate, we must haveΩ(v,z) �= 0 for all v∈W⊥. Assume now that
v1,v2 ∈ W⊥ are two linearly independent vectors and set ci = Ω(vi,z) �= 0. Then

11 There exists a generalisation of these considerations to jet bundles of arbitrary order and with
any number of dependent variables. There one does not obtain a classical symplectic structure but
a so-called metasymplectic structure defined by a vector valued two-form [296].
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the linear combination v = c2v1−c1v2 defines a non-vanishing element ofW⊥ with
Ω(v,z) = 0. As this contradicts our considerations above, we have dimW⊥ = 1.

Let v be a generator of W⊥; we write it as v = w + cz with w ∈ W and some
constant c∈�. We must haveΩ(v,z) =Ω(w,z) �= 0 and thus in particular w �= 0 by
our considerations above. On the other hand, by definition of the complementW⊥,
we find Ω(w,v) = cΩ(w,z) = 0. Hence c = 0 andW⊥ ⊆W . �

We apply this result with V = C1 andW = ι∗
(
V [R1]

)
. It implies the existence of

a distinguished direction within the Vessiot distribution. However, if C is a non-
vanishing vector field pointing everywhere in this direction, then our reasoning
above with the symplectic two-form Ω only shows that [C,X ] ∈ C1 for all fields
X ∈ ι∗

(
V [R1]

)
. In order to prove that C is Cauchy characteristic for the Vessiot dis-

tribution, we must show that in addition [C,X ] ∈ TR1. But this condition is trivially
satisfied, as all considered fields live in TR1 and the Lie bracket of any two vector
fields in TR1 lies again in TR1.

The initial value problem for R1 may be formulated geometrically as follows.
Let Γ ↪→X be an (n− 1)-dimensional submanifold and π̂ : π−1(Γ )→ Γ the cor-
responding restriction of the fibred manifold π : E → X . As initial data we use a
section γ : Γ → π−1(Γ ). Now let γ̃ ∈ Γloc(π) be a section defined in an open neigh-
bourhood of Γ and satisfying both γ̃ Γ = γ andN0 = im

(
( j1 γ̃) Γ

)
⊂R1. ThenN0 is

an (n−1)-dimensional submanifold ofR1. We call the thus formulated initial value
problem non-characteristic, if the field C is everywhere transversal to N0.

Proposition 9.5.28. Let (Γ ,γ) define a non-characteristic initial value problem for
the given differential equation R1. Then this problem possesses a unique solution
σ ∈ Γloc(π) defined in a neighbourhood of Γ .

Proof. By construction,N0 ⊂R1 is an integral manifold of the Vessiot distribution
ι∗
(
V [R1]

)
. Since the Cauchy characteristic field C is assumed to be transversal

to N0, we may apply Proposition 9.5.26 and obtain that NC is an n-dimensional
integral manifold of the Vessiot distribution. But this means that NC = im j1σ for
some solution σ ofR1 and thus that the given Cauchy problem is solvable.

In order to prove the uniqueness of the solution, we first show that the Cauchy
characteristic field C is tangent to every prolonged solution j1σ of the differential
equation R1. Let κ : im j1σ ↪→ J1π be the canonical inclusion. Since the exterior
derivative commutes with the pull-back, the symplectic two-formΩ satisfies κ∗Ω =
d(κ∗ω) = 0. Now assume that for a given point ρ ∈ im j1σ the vector Cρ was not
contained in κ∗

(
Tρ(im j1σ)

)
. Then Ω would vanish on the (n + 1)-dimensional

subspace κ∗
(
Tρ(im j1σ)

)
⊕〈Cρ〉 ⊂ C1 ρ which is not possible for a non-degenerate

two-form on a 2n-dimensional space.
This result implies that all prolonged solutions are foliated by characteristics and

therefore uniquely determined by any (n−1)-dimensional submanifold transversal
to C. There only remains to show that our submanifold N0 is uniquely determined
by the initial data (γ,Γ ). This follows basically from a simple counting argument.
The requirement that the section γ̃ coincides with γ on Γ leads to n−1 independent
conditions on the n jet components of ( j1γ̃) Γ . For a non-characteristic problem, we
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have Cρ /∈ Tρ
(
im( j1 γ̃) Γ

)
for any point ρ ∈ im( j1 γ̃) Γ but Cρ ∈ Tρ(im j1 γ̃). Hence

the requirement N0 ⊂ R1 provides an independent nth condition so that ( j1 γ̃) Γ is
uniquely determined by the section γ . �

In local coordinates we obtain the following picture. LetΦ(x,u(1)) = 0 be a local
representation of the equation R1. Its tangent space TR1 is the annihilator of the
one-form dΦ and thus completely contained in the contact distribution C1, if and
only if the two one-forms dΦ and ω are linearly dependent. This is the case, if and
only if both ∂Φ/∂ui = 0 and ∂Φ/∂xi + ui(∂Φ/∂u) = 0. Thus if we assume that
R1 is everywhere truly a first-order equation, then this cannot happen.

A vector field X = ai∂xi + b∂u + ci∂ui is contained in C1, if and only if b = uiai.
Thus the Vessiot distribution is defined by the linear equations

b = uia
i ,

(
∂Φ
∂xi + ui

∂Φ
∂u

)
ai +

∂Φ
∂ui

ci = 0 . (9.88)

If we make the ansatz C = āi(∂xi +ui∂u)+ c̄i∂ui for the Cauchy characteristic vector
fields, then the condition Ω(C,X) = 0 for all X ∈ ι∗

(
V [R1]

)
leads to the linear

equation ciāi− aic̄i = 0 which must be satisfied for all values ai, ci solving the
linear system (9.88). This is obviously only then the case, if āi = λ∂Φ/∂ui and
c̄i = −λ

(
∂Φ/∂xi + ui)(∂Φ/∂u

)
for some function λ ∈ F(R1). Hence all Cauchy

characteristic vector fields are multiples of

C =
∂Φ
∂ui

(
∂xi + ui∂u)−

(∂Φ
∂xi + ui

∂Φ
∂u

)
∂ui (9.89)

which is exactly the vector field describing the classical characteristic system for a
first-order equationR1.

For the initial value problem we may assume that our local coordinates on X
are chosen in such a way that the hypersurface Γ is defined by xn = 0. For a non-
characteristic problem, the field C must then have a non-vanishing ∂xn-component
which entails that the differential equation R1 has a local representation of the
form un = φ(x,u,u1, . . . ,un−1). The initial data γ defines a real-valued function

f (x1, . . . ,xn−1) and the submanifoldN0 ⊂R1 consists of all points (x0,u
(1)
0 ) ∈ J1π

such that xn
0 = 0, u0 = f (x1

0, . . . ,x
n−1
0 ), u0,i =

(
∂ f/∂xi

)
(x1

0, . . . ,x
n−1
0 ) for 1 ≤ i < n

and, finally, u0,n = φ(x0,u0,u0,1, . . . ,u0,n−1). Thus n− 1 derivatives are prescribed
by the initial data and the last one is determined by the differential equation. Obvi-
ously, the thus described problem is the usual initial value problem for the Cauchy–
Kovalevskaya Theorem. Note, however, that Proposition 9.5.28 is an existence and
uniqueness theorem in the smooth category!

In introductory textbooks one often finds only simplified versions of the method
of characteristics either for homogeneous linear or for quasi-linear equations. They
correspond to situations where the above Cauchy characteristic field C is projectable
(cf. Remark C.2.2) to a field either on X or on E . In the linear case, we have
Φ(x,u,p) = ai(x)ui and hence Tπ1(C) = ai(x)∂xi is a well-defined vector field on
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the base manifold X . In the quasi-linear case, Φ(x,u,p) = ai(x,u)ui− b(x,u) and
now Tπ1

0 (C) = ai(x,u)∂xi + b(x,u)∂u is a well-defined field on the total space E .

Example 9.5.29. We apply the method of characteristics to the inviscid Burgers
equation ut = uux. One readily computes its Cauchy characteristic vector field:

C = ∂t −u∂x +(ut −uux)∂u + utux∂ut + u2
x∂ux . (9.90)

As promised by the remarks above, this field is projectable, as we are dealing with
a quasi-linear equation and onR1 the ∂u-component vanishes.

We consider the standard initial value problem prescribed on the hypersurface
Γ : t = 0 with the section γ defined by a function f (x). Then the (projected) charac-
teristic system takes the simple form

ṫ = 1 , ẋ =−u , u̇ = 0 . (9.91)

Because of the first equation, we can use t as parameter for the (projected) char-
acteristic curves and obtain as solution of the characteristic system u(t) = u0 and
x(t) = x0− u0t. Thus the solution of our initial value problem is given by the im-
plicit equation u = f (x + ut). It can be solved whenever t f ′(x + ut) �= 1.

At the points where t f ′(x + ut) �= 1 the solution develops a shock. This phe-
nomenon can be easily understood by taking the full characteristic system into
account. The solution of the equation u̇x = u2

x is given by ux(t) = (1/ux,0− t)−1

with the initial value ux,0 = f ′(x0). Hence, the derivative ux (and similarly ut) be-
comes singular whenever t f ′(x + ut) = 1. �

9.6 Flat Vessiot Connections

Recall from the last section that the goal of Vessiot’s approach to solving a general
partial differential equation Rq consists of constructing all its flat Vessiot connec-
tions, i. e. all n-dimensional transversal involutive subdistributions U of the Vessiot
distribution V [Rq]. Given a basis {X1, . . . ,Xn,Y1, . . . ,Yr} of V [Rq] with structure
equations of the form (9.74), it is clear that any such distribution U can be locally
generated by n vector fields Ui ∈ X(Rq) of the form Ui = Xi + ζ k

i Yk with some
smooth coefficients ζ k

i ∈ F(Rq).
Before we proceed to the actual determination of such distributions U , we discuss

their relation to power series solutions. Let σ ∈ Γloc(π) be a smooth solution of Rq

with the property that im jqσ is an integral manifold of U . Thus, if ρ = jqσ(x0) for
some x0 ∈ X , then Tρ(im jqσ) = Uρ . We learned in Section 2.2 that knowing the
tangent space of a q-fold prolonged section is equivalent to knowing its (q + 1)-jet.
If in our local coordinatesσ(x) =

(
x,s(x)

)
and the function s has a Taylor expansion

around x0 of the form sα(x) = ∑∞
|μ|=0 cαμ (x− x0)μ/μ!, then the coefficients cαμ of

order q + 1 must be related to the coefficients ζ k
i of the vector fields Ui.
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In order to exhibit this relationship, we first note that it follows from our dis-
cussion of the contact map Γq+1 in Section 2.2 that T ι(Uρ ) = imΓq+1(ρ̂) where
ρ̂ = jq+1σ(x0). Now assume that the fields Xi and Yk have been chosen in the man-
ner described in Remark 9.5.14. Thus the symbol fields satisfy ι∗Yk = ∂

uβν
+ξαkμ∂uαμ

where uβν is a parametric derivative of order q and the summation goes over all prin-
cipal derivatives uαμ of order q. The basis of our “reference” complement is of the

form ι∗Xi = C(q)
i + ξ̄ αiμ∂uαμ where again the summation goes only over the principal

derivatives of order q. It follows from the local coordinate form of Γq+1 and of the
vector fields Ui, respectively, that ι∗Ui ρ =Γq+1(ρ̂ ,∂xi) and this identity implies that

cβν+1i
= ζ k

i , cαμ+1i
= ξ̄ αiμ + ζ k

i ξ
α
kμ (9.92)

where we again assume that uβν is a parametric and uαμ a principal derivative of
order q for our differential equationRq.

Note that in general the identification (9.92) implies certain relations between the
coefficients ζ . Assume that index values k, �, i, j exist such that ι∗Yk = ∂

uβν
+ξαkμ∂uαμ

and ι∗Y� = ∂
uβρ

+ ξα�μ∂uαμ with ν + 1i = ρ + 1 j. In such a situation it follows from

the first equation in (9.92) that the equality ζ k
i = ζ �

j must hold. We will derive these
equalities below in a more intrinsic manner.

Example 9.6.1. We continue with Example 9.5.4 (and 9.5.15, respectively). Expand-
ing all definitions, we find for the fields Ui that

ι∗U1 = ∂x + ux∂u + ζ 1
1 ∂ux + F ′(ux)ζ 1

1 ∂uy ,

ι∗U2 = ∂y + uy∂u + ζ 1
2 ∂ux + F′(ux)ζ 1

2 ∂uy .
(9.93)

This result implies at once that

cxx = ζ 1
1 , cxy = ζ 1

2 = F ′(ux)ζ 1
1 , cyy = F ′(ux)ζ 1

2 . (9.94)

Hence the two coefficients ζ 1
1 , ζ 1

2 cannot be chosen arbitrarily for a flat Vessiot
connection but must satisfy ζ 1

2 = F ′(ux)ζ 1
1 . This observation is consistent with the

fact that the formal power series solution of the differential equation uy = F(ux) has
at every order only one parametric coefficient. �
Remark 9.6.2. In Section 2.3 we discussed a simple method for the order by order
construction of formal power series solutions of a given differential equation Rq.
Once we got beyond order q, we obtained a linear system for all Taylor coefficients
of the current order. While resolving this system, we can make a new choice of
the principal and parametric coefficients, respectively, independent of the choice we
made at the previous order. The situation changed when we analysed the symbol
module using involutive bases. As discussed in Section 9.3 (see Definition 9.3.4),
we performed then the classification in a systematic manner using a term order.

In the Vessiot theory we do something intermediate. If we follow the recipe de-
scribed in Remark 9.5.14 for the construction of our basis {X1, . . . ,Xn,Y1, . . . ,Yr} of
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the Vessiot distribution, we decided on the principal and parametric derivatives at
order q. Now we say that the parametric derivatives at order q + 1 must be chosen
among the derivatives of the parametric derivatives at order q. Indeed, each coef-
ficient ζ k

i corresponds to such a derivative. Of course, in general we obtain this
way more coefficients than our differential equation admits parametric coefficients
at order q + 1. For this reason, the coefficients ζ must satisfy some conditions.12 In
solving these for some of the coefficients we finally decide which of our potentially
parametric derivatives are actually taken as principal ones. �

We finally derive the conditions which the coefficients ζ k
i ∈F(Rq) of our ansatz

Ui = Xi +ζ k
i Yk must satisfy in order to lead to an involutive subdistributionU . Using

the structure equations (9.74) of the Vessiot distribution V [Rq], a straightforward
computation yields the following conditions for 1≤ i < j ≤ n:

[Ui,Uj] = Γ h
i j Uh +

(
Θ a

i j−Ξ a
jkζ

k
i +Ξ a

ikζ
k
j

)
Za

+
(

Ui(ζ k
j )−Uj(ζ k

i )+ Δ̃ k
i�ζ

�
j − Δ̃ k

j�ζ
�
i +Δ k

m�ζ
m
i ζ

�
j −Γ �

i jζ
k
�

)
Yk

(9.95)

where the coefficients Γ h
i j are given by

Γ h
i j =Π h

i j + Π̃
h
ikζ

k
j − Π̃ h

jkζ
k
i . (9.96)

If we assume that we can find a basis for the Vessiot distribution V [Rq] such
that the structure equation take the simpler form (9.75), then the fields Ui define a
Jacobian system (in the terminology of Example 7.2.12), as they are obviously in a
triangular form. This observation implies that they generate an involutive distribu-
tion, if and only if their Lie brackets vanish. (9.95) now simplifies to:

[Ui,Uj] =
(
Θ a

i j−Ξ a
jkζ

k
i +Ξ a

ikζ
k
j

)
Za +
(

Ui(ζ k
j )−Uj(ζ k

i )
)

Yk = 0 . (9.97)

As the vector fields Yk and Za have been chosen linearly independent, their coef-
ficients in (9.95) (or (9.97), respectively) must vanish. Thus we may distinguish two
sets of conditions on the unknowns ζ . The first ones, the coefficients of the vector
fields Za, form a linear system of (algebraic) equations:

Ga
i j =Θ a

i j−Ξ a
jkζ

k
i +Ξ a

ikζ
k
j = 0 ,

{
1≤a≤t ,

1≤i< j≤n .
(9.98a)

The second set, the coefficients of the fields Yk, forms a quasi-linear system of dif-
ferential equations. If we do not expand the fields Ui, it takes the concise form

12 Compared with the direct determination of the Taylor coefficients of order q+1, these equations
form a smaller system for a lower number of variables. Thus one might think that this should give us
a more efficient approach for computing the coefficients. But this is not true; the work required for
determining the other Taylor coefficients is only hidden in the computation of the fields X1, . . . ,Xn.
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Hk
i j = Ui(ζ k

j )−Uj(ζ k
i )−Λ k

i j = 0 ,

{
1≤k≤r ,

1≤i< j≤n
(9.98b)

where the inhomogeneity Λ k
i j vanishes for the case of the simplified conditions

(9.97) and otherwise contains a number of linear and quadratic terms in ζ .

Remark 9.6.3. If and only if we choose the coefficients ζ such that the algebraic
equations (9.98a) are satisfied, then all commutators [Ui,Uj] will vanish modulo the
Vessiot distribution V [Rq]. According to Proposition 9.5.17, these equations there-
fore represent necessary and sufficient conditions for U to be an integral distribution.
Above we noted in our comparison of the unknowns ζ with the Taylor coefficients
of formal power series solutions that certain components of ζ must coincide. As we
will show now, the deeper intrinsic reason for this restriction is exactly this obser-
vation about the meaning of (9.98a).

By Definition 2.3.18, an integral element of Rq lies always in the image of the
contact map Γq+1. This observation permits us to reduce the number of unknowns
in our ansatz for U . Assume that we have index values 1≤ i, j ≤ n, 1≤ α ≤ m and
μ ∈�n

0 (with |μ |= q−1) such that both uαμ+1i
and uαμ+1 j

are parametric derivatives
(and thus obviously the derivative uαμ+1i+1 j

of order q+1, too). Then there will exist

two corresponding symbol fields Yk = ι∗(∂uαμ+1i
) and Yl = ι∗(∂uαμ+1 j

). Now it follows

from the coordinate form (2.35) of the contact map that a necessary condition for U
to be an integral distribution is that ζ k

j = ζ l
i . �

Proposition 9.6.4. If the combined conditions (9.98) are solvable everywhere on a
given differential equationRq ⊆ Jqπ , thenRq is formally integrable.

Proof. According our usual regularity assumptions, solvability of (9.98) implies
that for every point ρ ∈Rq a neighbourhood exists on which a flat Vessiot connec-
tion lives. By the Frobenius Theorem C.3.3, this connection possesses an integral
manifold containing ρ . As discussed in the last section, this integral manifold is the
image of a prolonged solution σ of Rq. Hence we can conclude that Rq is locally
solvable in the smooth category and, as already mentioned in Remark 2.3.16, this
fact implies trivially that the differential equationRq is formally integrable. �

Example 9.6.5. We consider a first-order equation in one dependent variable

R1 :

⎧
⎪⎨

⎪⎩

un = φn(x,u,u1, . . . ,un−r−1) ,
...

un−r = φn−r(x,u,u1, . . . ,un−r−1) .

(9.99)

Recall from Remark 7.1.29 that the symbol of such an equation is always involutive.
In order to simplify the notation, we use the following convention for the indices:
1 ≤ k, � < n− r and n− r ≤ a,b ≤ n. Thus we may express our system in the form
ua = φa(x,u,uk) and local coordinates onR1 are (x,u,uk).

The pull-back of the contact form ω = du− uidxi generating the contact codis-
tribution C0

1 is ι∗ω = du−ukdxk−φadxa and we obtain for the Vessiot distribution
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V [R1] = 〈X1, . . . ,Xn,Y1, . . . ,Yn−r−1〉 where

Xk = ∂xk + uk∂u , Xa = ∂xa +φa∂u , Yk = ∂uk . (9.100)

The fields Yk span the symbol N1 and the fields Xi our choice of a reference com-
plementH0. Setting Z = ∂u, the structure equations of V [R1] are

[Xk,X�] = 0 , [Yk,Y�] = 0 ,

[Xk,Xa] = Xk(φa)Z , [Xa,Xb] =
(
Xa(φb)−Xb(φa)

)
Z ,

[Xk,Y�] =−δk�Z , [Xa,Yk] =−Yk(φa)Z .

(9.101)

Now we make the above discussed ansatz Ui = Xi + ζ k
i Yk for the generators of

a transversal complement H. Modulo the Vessiot distribution V [R1] we obtain for
their Lie brackets

[Uk,U�]≡ (ζ �
k − ζ k

� )Z mod V [R1] , (9.102a)

[Ua,Uk]≡
(
ζ k

a − ζ �
kY�(φa)−Xk(φa)

)
Z mod V [R1] , (9.102b)

[Ua,Ub]≡
(
ζ k

aYk(φb)− ζ �
bY�(φa)+

Xa(φb)−Xb(φa)
)
Z mod V [R1] .

(9.102c)

The algebraic system (9.98a) is now obtained by requiring that all the expressions
in parentheses on the right hand sides vanish. Its solution is straightforward. The first
subsystem (9.102a) implies the equalities ζ �

k = ζ k
� . This result was to be expected

by the discussion in Remark 9.6.3: both uk and u� are parametric derivatives for
R1 and thus we could have made this identification already in our ansatz for the
complement. The second subsystem (9.102b) yields that ζ k

a = ζ �
kY�(φa)+Xk(φa). If

we enter these results into the third subsystem (9.102c), then all unknowns ζ drop
out and the solvability condition

Xa(φb)−Xb(φa)+ Xk(φa)Yk(φb)−Xk(φb)Yk(φa) = 0 (9.103)

arises. Thus in this example the algebraic system (9.98a) has a solution, if and only
if this condition is satisfied.

Comparing with Example 2.3.12, one easily verifies that this solvability condi-
tion is equivalent to the vanishing of the Mayer or Jacobi bracket [ua−φa,ub−φb]
on the submanifoldR1 which in turn was a necessary and sufficient condition for the
formal integrability of the differential equationR1. Thus we may conclude that R1

possesses n-dimensional integral distributions, if and only if it is formally integrable
(which in our case is also equivalent toR1 being involutive).

Note the manner in which the integrability condition (9.103) of R1 appears: it
represents a necessary and sufficient condition for the existence of integral distri-
butions. Thus here involution can be decided solely on the basis of the algebraic
system (9.98a) whereas Proposition 9.6.4 requires the solvability of the combined
system (9.98). We will see below that this observation does not represent a special
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property of a very particular class of differential equations but a general feature of
the Vessiot theory. �

We have now collected all ingredients for applying Vessiot’s approach to a con-
crete differential equation Rq: the flat Vessiot connections arise as solutions of the
above conditions (9.98). Explicitly deriving these conditions is in principle straight-
forward and solving the algebraic subsystem is a fairly trivial exercise, as it is linear.
For the differential subsystem one will rarely be able to determine its general solu-
tion. But at least we can systematically determine this way all integral distributions
of the differential equationRq.

However, our analysis so far does not permit us to make any statements about the
actual solvability of (9.98) and thus about the existence of flat Vessiot connections.
We will show next that (9.98)—in fact, already (9.98a)—is solvable in a certain
manner, if and only if the differential equationRq is involutive. As our proof of this
fact is of a fairly computational nature, we will assume in the sequel that we are
in the situation of Example 9.5.16: we consider a first-order equation R1 in Cartan
normal form without algebraic equations; every equation is solved for a different
principal derivative and no principal derivatives appear on the right hand side. From
a theoretical point of view, these assumptions do not represent a serious restriction,
as every regular differential equation can be transformed into such an equation.

The conditions (9.98) represent a first-order differential equationZ1 for the coef-
ficients ζ . As each flat Vessiot connection of the original equationR1 corresponds to
a solution of Z1, we must study its solvability which basically means that we must
check whether or not Z1 is involutive. If this is the case, then the Cartan–Kähler
Theorem 9.4.1 guarantees us that for analytic equations flat Vessiot connections in-
deed exist. Thus we must perform an involution analysis of Z1. As a first step we
make the following simple observation which actually is independent of our made
assumptions, as its proof relies solely on the Jacobi identity.

Lemma 9.6.6. The differential conditions (9.98b) form an involutive system.

Proof. We first note that the differential part (9.98b) is already more or less in Cartan
normal form. The coefficients ζ k

i are functions of all coordinates onR1 and we order
these in such a way that the original independent variables x1, . . . ,xn are the highest
ones among the new independent variables (thus as usual the xn-derivatives are those
of maximal class). A derivative with respect to xi only appears in the vector field Ui

by the form of our ansatz. Thus the equations of maximal class in (9.98b) are the
equations Hk

in = 0, as only these contain the xn-derivatives ∂ζ k
i /∂xn. The equations

of second highest class are Hk
i,n−1 = 0 and so on.

By the Jacobi identity we have for all 1≤ i < j < k ≤ n that
[
Ui, [Uj,Uk]

]
+
[
Uj, [Uk,Ui]

]
+
[
Uk, [Ui,Uj]

]
= 0 . (9.104)

Evaluation of this identity on Z1 leads to the equation
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(
Ui(Ga

jk)+Uj(Ga
ki)+Uk(Ga

i j)
)

Za +
(

Ui(H�
jk)+Uj(H�

ki)+Uk(H�
i j)
)

Y� = 0, (9.105)

since all other terms vanish. As the vector fields on the right hand side are linearly
independent, the expressions in the parentheses must vanish individually.

Since i < j < k, the term Uk(H�
i j) contains a non-multiplicative prolongation of

the equation H�
i j = 0 and all other terms represent multiplicative prolongations. As

these equations cover all non-multiplicative prolongations of equations in (9.98b),
we conclude that cross-derivatives do not lead to any integrability conditions, as
any non-multiplicative prolongation can be expressed as a linear combination of
multiplicative ones. By Remark 7.2.10, this observation entails that (9.98b) is an
involutive system. �

Note that this result automatically implies that the symbol of Z1 is involutive. In
order to check the formal integrability of Z1, we are left with analysing the effect
of the algebraic part (9.98a), as we already know that cross-derivatives cannot lead
to integrability conditions. However, one easily sees that in general not all of its
prolongations are contained in the differential part (9.98b). Hence Z1 is generally
not formally integrable.

The classical approach would now consist of adding these prolongations of the

algebraic equations in order to obtain a local representation of Z(1)
1 and to check

it for involution. However, it seems to be simpler to solve explicitly the algebraic
equations (recall that they are linear) and to enter the result into the differential
equations. Therefore we will follow this approach.

Remark 9.6.7. For the analysis of the algebraic equations, we follow the considera-
tions in Example 9.5.16 and use the matrices Ξ h and the vectorsΘ i j defined there.
Recall that they have more rows than really necessary, but that this redundancy leads
to a simpler structure; in fact for the class of differential equations we are currently
studying, we could even derive the closed formulae (9.79) and (9.80), respectively,
for their entries.

On the other hand, since the unknowns ζ k
i may be understood as labels for the

columns of the matrices Ξ h, the identifications discussed in Remark 9.6.3 allow
us to work with matrices will less columns. We introduce contracted matrices Ξ̂ h

which arise as follows: whenever ζ k
j = ζ l

i the corresponding columns of any ma-

trix Ξh are added. Similarly, we introduce reduced vectors ζ̂ h where the redundant
components are left out. Obviously, these column operations do not affect the vec-
torsΘ i j . �

While so far we have considered all algebraic conditions (9.98a) together, we
now separate them into subsystems. This idea is already familiar to us: our proof of
the Cartan–Kähler Theorem 9.4.1 was based on separating a differential equation
into subsystems according to the classes of the individual equations and all versions
of Cartan’s test in Section 6.2 relied on similar filtrations. This idea is also the very
point where the question of δ -regularity always pops up.



9.6 Flat Vessiot Connections 419

The separation into subsystems is equivalent to building up the integral distribu-
tion 〈U1, . . . ,Un〉 step by step. We first choose arbitrary values for the coefficients ζ̂ 1.
Then we try to determine values for the coefficients ζ̂ 2 such that the corresponding
vector fields U1, U2 satisfy [U1,U2] ≡ 0 mod V [R1]. Note that in this computation
we consider the coefficients ζ̂ 1 as parameters and only the coefficients ζ̂ 2 as vari-
ables. More precisely, (taking Remark 9.6.7 into account) we rewrite the conditions
G12 = 0 in the form

Ξ̂1ζ̂ 2 = Ξ̂ 2ζ̂ 1−Θ12 (9.106)

and require that this first subsystem does not impose any restrictions on the coeffi-
cients ζ̂ 1. Obviously, this is the case, if and only if

s1 = rankΞ̂ 1 = rank(Ξ̂1 Ξ̂ 2) . (9.107)

Assuming that this identity holds, the actual solvability of the linear system G12 = 0
is equivalent to the augmented rank condition

rankΞ̂1 = rank(Ξ̂ 1 Ξ̂ 2 −Θ12) , (9.108)

as otherwise the right hand sides lead to an inconsistency.
Assume that in the previous step we succeeded in constructing a two-dimensional

integral distribution 〈U1,U2〉. Then we try next to extend it to a three-dimensional
one by finding values ζ̂ 3 such that the corresponding vector field U3 satisfies
[U1,U3]≡ 0 mod V [R1] and [U2,U3]≡ 0 mod V [R1]. This time we consider all co-
efficients ζ̂ 1, ζ̂ 2 as parameters and only the coefficients ζ̂ 3 as variables. Hence the
conditions G13 = 0 and G23 = 0 are rewritten in the form

Ξ̂1ζ̂ 3 = Ξ̂ 3ζ̂ 1−Θ13 ,

Ξ̂2ζ̂ 3 = Ξ̂ 3ζ̂ 2−Θ23
(9.109)

and we require that this second subsystem does not impose any restrictions on the
coefficients ζ̂ 1 and ζ̂ 2. Therefore we must have

s1 + s2 = rank

(
Ξ̂ 1

Ξ̂ 2

)
= rank

(
Ξ̂ 1 Ξ̂ 3 0
Ξ̂ 2 0 Ξ̂3

)
. (9.110)

As above, if this condition is satisfied, then the solvability of the linear system G13 =
G23 = 0 is equivalent to an augmented rank identity:

rank

(
Ξ̂ 1

Ξ̂ 2

)
= rank

(
Ξ̂ 1 Ξ̂ 3 0 −Θ13

Ξ̂ 2 0 Ξ̂3 −Θ23

)
. (9.111)

By an obvious iteration, we assume in the ith step that we have already con-
structed an (i−1)-dimensional integral distribution 〈U1, . . . ,Ui−1〉 and search for an
extension by a vector field Ui. This approach leads to a rewriting of the conditions
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G1i = 0, . . . , Gi−1,i = 0 in the form

Ξ̂1ζ̂ i = Ξ̂ iζ̂ 1−Θ1i ,

...

Ξ̂ i−1ζ̂ i = Ξ̂ iζ̂ i−1−Θ i−1,i .

(9.112)

The requirement that this subsystem does not impose any restrictions on the coeffi-
cients ζ̂ j with 1≤ j < i leads to the rank equality

s1 + · · ·+ si−1 = rank

⎛

⎜
⎜
⎜
⎝

Ξ̂ 1

Ξ̂ 2
...

Ξ̂ i−1

⎞

⎟
⎟
⎟
⎠

= rank

⎛

⎜
⎜
⎜
⎝

Ξ̂1 Ξ̂ i

Ξ̂2 Ξ̂ i 0
... 0

. . .
Ξ̂ i−1 Ξ̂ i

⎞

⎟
⎟
⎟
⎠

. (9.113)

Assuming this equality, the linear system (9.112) is solvable, if and only if

rank

⎛

⎜
⎜
⎜
⎝

Ξ̂1

Ξ̂2
...

Ξ̂ i−1

⎞

⎟
⎟
⎟
⎠

= rank

⎛

⎜
⎜
⎜
⎝

Ξ̂ 1 Ξ̂ i −Θ1i

Ξ̂ 2 Ξ̂ i 0 −Θ2i
... 0

. . .
...

Ξ̂ i−1 Ξ̂ i −Θ i−1,i

⎞

⎟
⎟
⎟
⎠

. (9.114)

Example 9.6.8. Before we proceed with our theoretical analysis, let us demonstrate
with a concrete differential equation that in general we cannot expect that the above
outlined step-by-step construction of integral distributions works. In order to keep
the size of the example reasonably small, we use the second-order equation (it could
always be rewritten as a first-order one satisfying the assumptions made above and
the phenomenon we want to discuss is independent of this transformation)

R2 :

{
uxx = αu ,

uyy = βu
(9.115)

with two real constants α , β . Note that its symbol N2 is our standard example of
a non-involutive symbol. However, one easily proves that R2 is formally integrable
for arbitrary choices of the constants α , β .

One readily computes that the Vessiot distribution V [R2] is generated by the
following three vector fields onR2:

X1 = ∂x + ux∂u +αu∂ux + uxy∂uy ,

X2 = ∂y + uy∂u + uxy∂ux +βu∂uy ,

Y1 = ∂uxy .

(9.116)

They yield as structure equations for V [R2]
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[X1,X2] = βux∂uy −αuy∂ux , [X1,Y1] =−∂uy , [X2,Y1] =−∂ux . (9.117)

For a two-dimensional integral distribution U ⊂ V [R2] we make as above the
ansatz Ui = Xi + ζ 1

i Y1 with two coefficients ζ 1
i . As we want to perform a step-by-

step construction, we assume that we have chosen some fixed value for ζ 1
1 and

try now to determine ζ 1
2 such that [U1,U2] ≡ 0 mod V [R2]. Evaluation of the Lie

bracket yields the equation

[U1,U2]≡ (βux− ζ 1
2 )∂uy − (αuy− ζ 1

1 )∂ux mod V [R2] . (9.118)

A necessary condition for the vanishing of the right hand side is that ζ 1
1 = αuy.

Hence it is not possible to choose this coefficient arbitrarily, as we assumed, but
(9.118) determines both functions ζ 1

i uniquely.
Note that the conditions on the coefficients ζ 1

i imposed by (9.118) are trivially
solvable and henceR2 possesses an integral distribution (which, in fact, is even a flat
Vessiot connection). The problem is that it could not be constructed systematically
with the above outlined step-by-step process. We made already a similar observation
when we discussed the order-by-order construction of formal power series solutions:
it is possible only for a formally integrable system, but of course many systems
which are not formally integrable nevertheless possess such solutions. �

We relate now the rank conditions (9.113) and (9.114) to the formal analysis of
the differential equationR1. Recall that in Remark 7.2.11 we explicitly determined
the conditions for a first-order equation in Cartan normal form to be involutive. It
will turn out that these conditions show up again in the analysis of our rank condi-
tions. Albeit we will discuss this point in more details below, we stress already now
that for the following result it is crucial to use the contracted matrices Ξ̂ i introduced
in Remark 9.6.7.

Theorem 9.6.9. Assume that δ -regular coordinates have been chosen for the given
differential equationR1. The rank condition (9.113) is satisfied for all 1 < i≤ n, if
and only if the symbolN1 is involutive. The augmented rank condition (9.114) holds
for all 1 < i≤ n, if and only if the equationR1 is involutive.

Proof. In order to prove (9.113), we transform the matrices into row echelon form.
Since each matrix Ξ̂ i contains a unit block, there is an obvious way to do this.
We describe the transformation as a sequence of block operations. For specifying

blocks within the matrix Ξ̂ i we use the following notation:
b

a

[
Ξ̂ h
]d

c denotes the
block consisting of the entries from the ath to the bth row and from the cth to the
dth column. As we shall see, the relevant entries in this row echelon form are the
coefficients of the second-order derivatives uδhk in the explicit expression (7.38) for
the obstruction to involution of a first-order system of the assumed form. Therefore
their vanishing is equivalent to involution of the symbolN1.

We start with i = 2, i. e. with (9.107). Since Ξ̂ 1 is a negative unity matrix of

α(1)
1 rows with a β (1)

1 ×α(1)
1 -matrix stacked upon it and only zeros for all other

entries, we have rankΞ̂ 1 = α(1)
1 . Next, we transform the matrix (Ξ̂1 Ξ̂ 2) into row
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echelon form using the special structure of the matrices Ξ̂ i as given in (9.81). This
is achieved by replacing the blocks in the following way:

β (1)
1

1

[
Ξ̂ 1
]α(1)

1
1 ← β (1)

1
1

[
Ξ̂ 1
]α(1)

1
1 +

β (1)
1

1

[
Ξ̂ 1
]α(1)

1
1 ·mβ (1)

1 +1

[
Ξ̂ 1
]α(1)

1
1 , (9.119a)

β (1)
1

1

[
Ξ̂ 2
]α(1)

1
1 ← β (1)

1
1

[
Ξ̂ 2
]α(1)

1
1 +

β (1)
1

1

[
Ξ̂ 2
]α(1)

1
1 ·mβ (1)

1 +1

[
Ξ̂ 2
]α(1)

1
1 , (9.119b)

β (1)
1

1

[
Ξ̂2
]α(1)

1 +α(2)
1

α(1)
1 +1

← β (1)
1

1

[
Ξ̂ 2
]α(1)

1 +α(2)
1

α(1)
1 +1

+
β (1)

1
1

[
Ξ̂ 1
]α(1)

1
1 ·mβ (1)

1 +1

[
Ξ̂ 2
]α(1)

1 +α(2)
1

α(1)
1 +1

.

(9.119c)

If, for the sake of simplicity, we use the same names for the changed blocks, then
we find that after this operation

β (1)
1

1

[
Ξ̂2
]α(1)

1
1 =

(
−C1

δ (φ
α
2 )+

β (2)
1

∑
γ=β (1)

1 +1

C1
γ (φ

α
1 )C1

δ (φ
γ
2 )
)

1≤α≤β (1)
1

β (1)
1 +1≤δ≤m

, (9.120a)

β (1)
1

1

[
Ξ̂2
]α(1)

1 +α(2)
1

α(1)
1 +1

=
(

C1
δ (φ

α
1 )−C2

δ (φ
α
2 )+

β (2)
1

∑
γ=β (1)

1 +1

C1
γ (φ

α
1 )C2

δ (φ
γ
2 )
)

1≤α≤β (1)
1

β (2)
1 +1≤δ≤m

.

(9.120b)

A comparison with the obstructions to involution obtained by evaluating (7.38)
for i = 1 and j = 2 shows that all these entries will vanish, if and only if all the ob-

structions vanish. It follows that then the first β (1)
1 rows of the matrix (Ξ̂ 1 Ξ̂ 2)

contain only zeros. The last α(1)
1 rows begin with the block −�

α(1)
1

and hence

rank(Ξ̂ 1 Ξ̂ 2) = α(1)
1 = rankΞ̂ 1. Thus we may conclude that the rank condition

(9.107) holds, if and only if in our system no non-multiplicative prolongation D2Φa
1

leads to an obstruction of involution.
The claim for the augmented condition (9.108) follows from the explicit ex-

pression (9.79) for the entries Θαi j . Performing the same computations as above
described with the augmented system yields as additional relevant entries of the
transformed matrix exactly the integrability conditions arising from (7.38) evalu-
ated for i = 1 and j = 2. Hence (9.108) holds, if and only if no non-multiplicative
prolongation D2Φα1 yields an integrability condition.

As one might expect from the above considerations for i = 2, the analysis of
the rank condition (9.113) for some fixed value 2 < i ≤ n will require the non-
multiplicative prolongations DiΦα1 ,DiΦα2 , . . .DiΦαi−1. It follows trivially from the
block form (9.81) of the matricesΞ i that the rank of the matrix on the left hand side
of (9.113) is given by ∑i−1

k=1α
(k)
1 .

We skip the very technical details for the general case (they can be found in
[131]). We follow the same steps as in the case i = 1. The transformation of the
matrix on the right hand side of (9.113) can be described using block matrices, and
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the resulting matrix in row echelon form has as its entries in the rows where no unit
block appears the coefficients of the second-order derivatives in (7.38). Thus we may
conclude again that satisfaction of (9.113) is equivalent to the fact that in the non-
multiplicative prolongations DiΦα1 , . . . ,DiΦαi−1 no obstructions to involution arise.
In the case of the augmented conditions (9.114), it follows again from the explicit
expression (9.79) for the entriesΘαi j that the additional relevant entries are identical
with the potential integrability conditions produced by the non-multiplicative pro-
longations DiΦα1 , . . . ,DiΦαi−1. �

Remark 9.6.10. Note that as by-product of this proof we find that the values si de-
fined by the ranks of the linear systems (9.112) appearing in our step by step con-

struction of the integral distribution U are just given by the Cartan characters α(1)
i .

Thus these important numbers measuring the size of the formal solution space are
also automatically determined during the Vessiot approach. �

The proof above also makes the reason for the introduction of the contracted
matrices Ξ̂ i apparent. As all functions are assumed to be smooth, partial derivatives
commute: uαi j = uαji. In (7.38) each obstruction to involution actually consists of two
parts: one arises as coefficient of uαi j, the other one as coefficient of uαji. While this
decomposition does not show in (7.38) because both derivatives are collected into
one term, the two parts appear in different columns of the matricesΞ i and in general
the rank condition (9.113) will not hold, if we replace the contracted matrices Ξ̂ i

by the original matrices Ξ i (see the example below). The effect of the contraction
is to combine the two parts in order to obtain the right rank. At the level of the
contact map Γ1 the commutativity of partial derivatives is of course also the reason
that certain coefficients in its image and hence some ζ k

i must coincide.

Theorem 9.6.11. Assume that δ -regular coordinates have been chosen for the given
differential equation R1 and that furthermore R1 is analytic. Then the full set of
conditions (9.98) is solvable.

Proof. As the proof of this theorem is very technical, we do not give the details
(which can be found in [131]), but only briefly explain the underlying strategy. We
showed already in Lemma 9.6.6 that the differential part of (9.98) on its own forms
an involutive system. Instead of analysing the effect of prolonging the algebraic part,
we do the following. In the proof of Theorem 9.6.9 we derived row echelon forms
of the linear systems appearing in our step by step approach to solving the algebraic
conditions. With their help one can explicitly write down the solution of these con-
ditions. Then one enters the results into the differential conditions. One can show
that whenever these substitutions affect the leading derivative of an equation, then
the corresponding equation vanishes identically. This fact implies that the remaining
system is involutive and thus solvable by the Cartan–Kähler Theorem 9.4.1. �

Example 9.6.12. Consider the first-order differential equation

R1 :

{
ut = vt = wt = us = 0 , vs = 2ux + 4uy ,
ws =−ux−3uy , uz = vx + 2wx + 3vy + 4wy

(9.121)
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with five independent variables x, y, z, s, t and three dependent variables u, v, w. It
is formally integrable, and its symbol is involutive with dimN1 = 8. ThusR1 is an
involutive equation. For the matrices Ξ1, . . . ,Ξ5 we find that Ξ5 contains only zeros
and the other four matrices are given by

Ξ1 =

⎛

⎝
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0

⎞

⎠ , Ξ2 =

⎛

⎝
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0

⎞

⎠ ,

Ξ3 =

⎛

⎝
0 −1 −2 0 −3 −4 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

⎞

⎠ , Ξ4 =

⎛

⎝
0 0 0 0 0 0 0 0
−2 0 0 −4 0 0 0 0
1 0 0 3 0 0 0 0

⎞

⎠ .

(9.122)
For the first two steps in the construction of the fields Ui, the rank conditions are

trivially satisfied even for the non-contracted matrices. But not so in the third step
where we have in the row echelon form of the arising (9×32)-matrix in the 7th row
zero entries throughout except in the 12th column (where we have −2) and in the
17th column (where we have 2). As a consequence, we obtain the equality ζ 4

1 = ζ 1
2

and the rank condition for this step does not hold. However, since both ux and uy

are parametric derivatives and in our ordering Y1 = ι∗(∂ux) and Y4 = ι∗(∂uy), this
equality is already taken into account in our reduced ansatz and for the matrices Ξ̂i

the rank condition is satisfied.
The rank condition is first violated when the rank reaches the symbol dimension.

From then on, the rank of the left matrix in (9.113) stagnates at dimN1 while the
rank of the augmented matrix may rise further. The entries breaking the rank con-
dition differ only by their sign, while the corresponding coefficients in (7.38) are
collected into one sum which thus vanishes. �

9.7 Notes

The geometric approach to the initial value problem for ordinary differential equa-
tions presented in Section 9.1 is not only of theoretical interest. While our proof of
Theorem 9.1.6 was based on a local representation in semi-explicit form, this is not
necessary for numerical computations. Even if a fully non-linear representation is
given, the distribution V [R1] always arises as the solution of a linear system. The
only advantage of the semi-linear form is that it yields this system in the special
form (9.5); but for its numerical solution this structure is not important. For exam-
ple, both the Vessiot distribution and the generalised solutions in Figure 9.1 were
computed solely numerically.

In our treatment of the initial value problem we always required that the initial
data correspond to a point (x0,u0,u′

0) lying on the differential equationR1, i. e. we
restricted to consistent initial data. Obviously, this condition is necessary for the
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existence of a strong solution. If one allows for distributional solutions (in the sense
of functional analysis), then one may also study the effect of inconsistent initial data.

For simplicity, we demonstrate this effect only for a square linear system with
constant coefficients where it is easily possible to obtain closed form solutions. We
consider an inhomogeneous system of the form

Eu′ = Au+ f(x) (9.123)

where E,A ∈ �m×m are square matrices and f is some sufficiently often differen-
tiable vector-valued function together with an initial condition u(0) = u0. If E is
regular, then we are dealing with a normal system.

Thus we assume that E is a singular matrix but that the determinant det(E−λA)
is a non-zero polynomial in λ (i. e. E,A define a regular matrix pencil). By a clas-
sical result of matrix theory [147, Chapt. XII,§§2,7], under the made assumptions
regular matrices P,Q exist such that QEP = diag(�m1 ,N) and QAP = diag(Ā,�m2)
where N is a nilpotent (m2×m2) matrix and Ā an arbitrary (m1×m1) matrix with
m1 + m2 = m. Thus after a linear transformation u 	→ P−1u the above system splits
into two subsystems

v′ = Āv+ g(x) , (9.124a)

Nw′ = w+ h(x) (9.124b)

of dimensions m1 and m2, respectively, with (g,h)T = Qf and corresponding initial
data v0,w0. Obviously, the first subsystem (9.124a) represents a normal system; thus
we may restrict our attention to the second one (9.124b).

Let � be the nilpotency index of N, i. e. � is the smallest integer for which N� = 0.
Then prolonging (9.124b) � times yields after a trivial computation that this subsys-
tem possesses the unique solution

wstrong(x) =−
�−1

∑
k=0

Nkh(k)(x) . (9.125)

Thus for strong solutions there remains no choice for the initial data: we must take
w0 = wstrong(0). However, using for example a Laplace transformation, it is not
difficult to show that even for arbitrary choices of w0 a unique distributional solution
of (9.124b) exists, namely

w(x) = wstrong(x)−
�−1

∑
k=1

δ (k−1)(x)Nk(w0−wstrong(0)
)

(9.126)

where δ denotes the Dirac delta distribution. Thus the system responds with a strong
singularity to the inconsistency of the initial data.

In control theory systems of the form (9.123) are often called regular descriptor
systems and hidden behind the inhomogeneity f are the inputs of the system, i. e.
in this context the function f is not a priori fixed but we can make choices. The
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second term in (9.126) is then called the impulse response of the system. Obviously,
such “impulses”, i. e. delta distributions in the solution, are unwanted and hence the
inputs must be chosen in such a way that the parentheses in (9.126) vanishes.

The terminology “impasse point” stems from electrical engineering where this
phenomenon was early recognised in the analysis of nonlinear networks [85]. Sub-
sequently, it received much attention in this domain; notable are in particular the
work of Chua and Deng [86, 87] and Reißig [375, 376, 377, 378]. Other rele-
vant contributions are [191, 310, 423, 449]. In the general context of differential
algebraic equations one must mention the related works of Rabier and Rheinboldt
[367, 369, 370]. For the special case of a scalar implicit ordinary differential equa-
tion, the use of the Vessiot distribution was already advocated by Arnold [27, §3]
and plays a crucial role in the singularity theory of such equations.

Much of the here presented material on singularities is based on the work of
Tuomela [462, 463, 464]. He also pioneered the use of the geometric theory for the
numerical solution of overdetermined systems of ordinary differential equations and
developed special integrators for the Vessiot distribution exploiting the Riemannian
geometry of the submanifold R1 ⊆ J1π (for a trivial bundle π :�×�m →� and
the canonical Riemannian structure of �2m+1 ∼= J1π).

The use of the Vessiot distribution of partial differential equations as discussed in
Sections 9.5 and 9.6 goes back to Vessiot [470]. The fundamental idea of construct-
ing integral elements step by step is, however, due to Cartan [71] who formulated
the theory in terms of differential forms. The Vessiot theory represents essentially a
dual form of the Cartan–Kähler theory that may be applied directly to partial differ-
ential equations without any need to transform them into a differential ideal. Mod-
ern accounts of the theory were given by Fackerell [130] and by Stormark [435].
However, none of these references provides a rigorous analysis of when Vessiot’s
approach succeeds. Such an analysis, leading to our Theorem 9.6.9 and 9.6.11, was
first given by Fesser [131] (see also [132, 133]). Applications of Vessiot’s theory
appear for example in the analysis of hyperbolic equations, see e. g. [469].

Our presentation of the Vessiot theory seems to be the first one that exploits
the geometry of the jet bundle for choosing a suitable basis of the Vessiot distribu-
tion. This concerns in particular the fact that we may choose for the vertical part
always commuting vector fields. Seemingly, it has been overlooked so far and in
all references we are aware of the algebraic step of Vessiot’s construction leads to
a quadratic system in the coefficients of the ansatz. Using a step by step approach
corresponding to ours in Section 9.6, one can actually solve it by treating a series of
linear systems. But this requires δ -regular coordinates, otherwise one must indeed
work with quadratic equations which is never necessary in our approach.

The term “integral distributions” for the result of the algebraic step of Vessiot’s
construction is non-standard. In the literature, one usually speaks of “involutions”
(see for example [435, Sect. 3.2]) As generally these distributions are not yet in-
volutive, we consider this terminology as confusing and inappropriate. Our name
appears much more natural given the fact that according to Proposition 2.3.19 such
distributions consist of integral elements.
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In particular in the Russian literature (see e. g. [263, 271, 296]), the contact distri-
bution Cq appears often under the name Cartan distribution and also V [Rq] is called
the Cartan distribution of the differential equationRq. The terminology Vessiot dis-
tribution seems to have been proposed by Fackerell [130]. The above references also
discuss the decomposition (9.64) of the Vessiot distribution as the direct sum of the
symbolNq and a transversal complementH; the latter is called a Cartan connection
and a Bott connection, respectively, if its curvature vanishes.

Our approach to generalised prolongations represents essentially a dual version
of the treatment by Molino [326]. Prolongations by pseudo-potentials have been
applied in particular to completely integrable systems (also known as soliton equa-
tions). Here the knowledge of pseudo-potentials often leads to many other important
structures like Bäcklund transformations, Lax pairs or inverse scattering problems.
The investigation of this approach was initiated by Wahlquist and Estabrook [471]
for the special case of the Korteweg–de Vries equation; Hermann [209] exposed
the underlying geometric idea. All these works use exterior differential systems.
Fackerell [130] first hinted at a dual description in the context of the Vessiot theory,
however, without actually formulating it in detail.

A very important question we did not discuss is how one actually finds gener-
alised prolongations. So far no algorithmic approach is known. For the special case
of a prolongation by pseudo-potentials a number of techniques have been developed
based on incomplete Lie algebras. We refer to [136, 326, 327, 388] and references
therein for more information.

The proof of the Cauchy–Kovalevskaya Theorem we have used is the one found
in most textbooks (see e. g. [238, 379]) and essentially goes back to Goursat [175].
Cauchy gave a first proof in 1842 in a series of notes to the French Academy of
Science [76, 77, 78]; later Kovalevskaya studied the problem in her thesis [262].
Note that Cauchy’s method of majorants proves the convergence of the formal power
series solutions indirectly by comparison with a known series. A direct convergence
proof turns out to be surprisingly tricky; Shinbrot and Welland [416] provided a
relatively simple one.

Several alternative proofs of the Cauchy–Kovalevskaya Theorem exist which do
not use power series but functional analytic methods. The basic idea is to convert
the initial value problem into a fixed point equation in some Banach space; a nice
example for this technique can be found in [473]. These approaches have the advan-
tage that they can also handle more general situations leading to what is often called
“abstract” Cauchy–Kovalevskaya Theorems.

The Janet–Riquier Theory (see the Notes of Chapter 3) also provides a gener-
alisation of the Cauchy–Kovalevskaya Theorem: Riquier’s Theorem. It considers a
formally well-posed initial value problem constructed with the help of an involutive
basis (classically one speaks of a passive and orthonomic system). In contrast to our
proof of the Cartan–Kähler Theorem, one tries to prove directly the convergence of
the corresponding unique formal power series solution (similarly to our proof of the
Cauchy–Kovalevskaya Theorem in Section 9.2).

The theorem appeared first in Riquier’s fundamental book [381, Chapt. VII,§115].
A modern discussion (in particular with a careful analysis of the notions of an
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orthonomic system and of a reduced Gröbner basis) and a simplified proof were
comparatively recently given by Oberst and Pauer [340], Sect. 3.2.

An involutive basis is always defined with respect to a term order. In differen-
tial algebra one often uses the terminology ranking instead of term order. So far,
Riquier’s Theorem has been proven only for special rankings. First of all, the rank-
ing must be orderly (corresponding to a degree compatible term order), i. e. deriva-
tives of higher order are always greater than those of lower order. Furthermore, if
for some multi indices μ and ν the relation pαμ ≺ pαν holds for one value of α , then
it must hold for all values of α (thus in case there is only one unknown function, this
assumption is automatically satisfied). Such rankings are called Riquier rankings.

Thus we meet again the condition that each equation must be solved for a deriva-
tive of maximal order. We noted already that this was a necessary condition for the
Cauchy–Kovalevskaya Theorem. Whether or not it is also necessary for Riquier’s
Theorem seems to be an open question. The fact that the theorem has been proven
only for Riquier rankings is often neglected. The Riquier property has the follow-
ing meaning: using the Drach transformation of Appendix A.3, we may rewrite any
system in several dependent variables as a system in one dependent variable at the
expense of introducing further independent variables. Only a Riquier ranking in-
duces again a ranking on the new derivatives, otherwise one obtains contradictions.

Lemaire [284] constructed fairly recently an explicit example of a formally well-
posed initial value problem for an orderly ranking which is not a Riquier ranking
where it is possible to prescribe analytic initial data but the corresponding formal
power series solution diverges. He considered the differential system

uxx = uxy + uyy + v ,

vyy = vxy + vxx + u
(9.127)

with the initial conditions u(0,y) = ux(0,y) = ey and v(x,0) = vy(x,0) = ex. Note
that the system is actually normal, as we could solve both equations either for pure
x- or pure y-derivatives of maximal order. However, Lemaire used a ranking leading
to the shown principal derivatives. Then the given initial conditions are precisely
those obtained by our analysis in Section 9.3. One can show via a comparison with
the Fibonacci numbers that the unique formal power series solution of this initial
value problem diverges. Thus Riquier’s Theorem does not hold here, although all
assumptions are satisfied except that the ranking is not of Riquier type.

As already indicated in the Notes to Chapter 5, historically the construction of
formally well-posed initial value problems for general systems of differential equa-
tions preceeded the computation of complementary decompositions. Riquier [381],
Chapt. V, §§79–88 and Janet [235, Sect. 15] considered this question already in 1910
and 1929, respectively (see also [382, Chapt. IX]) and both provided even algorith-
mic solutions. Much later, this question was again studied from an algorithmic point
of view (with an implementation in Maple) by Reid [373]. While implicitly under-
lying these works, it seems that the rigorous notion of a formally well-posed initial
value problem has not been introduced before.
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The considerations at the end of Section 9.3 concerning equations with a Cohen–
Macaulay symbol module seem to be new despite their simplicity (and the fact that
they are very natural in view of the characterisation of Cohen-Macaulay modules by
Hironaka decompositions given in Corollary 5.2.10). Further results on such equa-
tions have been found by Kruglikov and Lychagin [270].



Chapter 10
Linear Differential Equations

We [Kaplansky and Halmos] share a philosophy about linear
algebra: we think basis-free, we write basis-free, but when the chips
are down we close the office door and compute with matrices like
fury.

Irving Kaplansky

Linear differential equations are simpler in many respects. The truth of this state-
ment is already obvious from the fact that their solution spaces possess the structure
of a vector space. Thus it is not surprising that some of our previous results may
be improved in this special case. In the first section we study how the linearity can
be expressed within our geometric framework for differential equations. This topic
includes in particular a geometric formulation of the linearisation of an arbitrary
equation along one of its solutions.

In the discussion of the Cartan–Kähler Theorem in Section 9.4 we emphasised
that the uniqueness statement holds only within the category of analytic functions;
it is possible that further solutions with lower regularity exist. In the case of lin-
ear systems stronger statements hold. In Section 10.2 we will use our proof of the
Cartan–Kähler Theorem to extend the classical Holmgren Theorem on the unique-
ness of C1 solutions from normal equations to arbitrary involutive ones.

A fundamental topic in the theory of partial differential equations is the classifi-
cation into elliptic and hyperbolic equations. We will study the notion of ellipticity
in Section 10.3 for arbitrary involutive equations. One of our main results will be
that the approach to ellipticity via weights usually found in the literature is not only
insufficient but also unnecessary, if one restricts to involutive equations: if a sys-
tem is elliptic with weights, then its involutive completion is also elliptic without
weights; the converse is not true.

The following section is devoted to hyperbolic equations. Special emphasis is
given to a simple class of linear equations: weakly overdetermined systems with a
hyperbolic evolution part and elliptic constraints. This class includes in particular
Maxwell’s equations. We will derive the conditions that such a system is involutive
and prove (under some additional assumptions) an existence and uniqueness theo-
rem for smooth solutions. The main point is here less a particularly strong result but
the ease with which the technique of the Cartan–Kähler Theorem (cf. Section 9.4)
allows us to extend results from normal systems to overdetermined ones.

In Section 10.5 we complement the geometric theory of Section 10.1 with
an introduction to the algebraic analysis of linear systems. Of course, for some
basic aspects we may simply refer to Chapter 3 where we developed the theory
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of involutive bases immediately for polynomial algebras of solvable type which
include both linear differential operators over a coefficient field and the Weyl al-
gebra (i. e. linear differential operators with polynomial coefficients). Here we will
show how one can associate naturally which each linear system a module and how
this idea leads to a generalised notion of solution. As a first application, we study
the question of solvability of linear inhomogeneous systems leading to what is often
called the fundamental principle. It turns out that the answer depends on the alge-
braic properties of the function space in which we look for solutions and leads to
rather deep analytic problems. We will therefore give a complete treatment only for
the simplest case of formal power series solutions of constant coefficients system
where an elementary algebraic argument suffices.

In the following section we study the inverse syzygy problem: when is a given
linear differential equation the compatibility condition of another equation? Some-
what surprisingly, this question—which is of great interest in applied fields like
mathematical physics or control theory—admits a simple constructive answer, if one
studies it in the more general context of finitely generated modules over a coherent
ring. It turns out that the solvability of this problem is related to torsionlessness. In
an Addendum we will furthermore demonstrate that as a by-product our algorithm
can also been used for the construction of certain extension groups.

The topic of completion to involution is taken up again in Section 10.7. We design
a completion algorithm for linear systems that combines the geometric approach of
the Cartan–Kuranishi Theorem (cf. Section 7.4) with the purely algebraic algorithms
of Section 4.2. In general, algebraic algorithms are more efficient than geometric
ones, as they avoid redundant prolongations. Here we show how a clever “book-
keeping” allows to maintain this efficiency while nevertheless obtaining the full
geometric information of the Cartan–Kuranishi completion.

In the last section, we consider linear systems of finite type with constant coeffi-
cients. We present an algorithm for the explicit construction of the general solution.
For ordinary differential equations it is of course well-known that the solution is of
polynomial-exponential type, but it is much less known that this fact remains true
when we proceed to partial differential equations. For systems which are not of finite
type we will briefly indicate a similar result, however without proof.

10.1 Elementary Geometric Theory

If we want to speak about a linear differential equation, then we need somewhere a
linear structure. In Chapter 2 we only made the assumption that π : E →X is a fibred
manifold. Obviously, this setting does not entail any linear structure in general. In
order to define linear differential equations, we must make the stronger assumption
that π : E →X is furthermore a vector bundle (in the simple case of a trivial bundle
E =X ×U this requirement implies that U is a vector space). As we will now show,
the jet bundles Jqπ inherit this property.
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Proposition 10.1.1. If the fibred manifold π : E → X is a vector bundle, then the
prolongation πq : Jqπ →X is a vector bundle, too.

Proof. We denote as in Section 2.2 by [σ ](q)
x a class of sections that are equivalent

to order q at the point x ∈ X ; the points in Jqπ may be identified with such classes.
If E is a vector bundle, then we introduce a vector bundle structure on the qth order
jet bundle Jqπ by simply setting [σ ](q)

x +[σ ′](q)
x = [σ +σ ′](q)

x for arbitrary sections

σ ,σ ′ ∈ Γloc(π) and similarly r · [σ ](q)
x = [r ·σ ](q)

x for arbitrary constants r ∈� (as
the values of sections live now in vector spaces, the vector bundle structure of E
allows us to define the addition of sections and the multiplication with scalars simply
pointwise: (σ +σ ′)(x) = σ(x)+σ ′(x) and (r ·σ)(x) = rσ(x)). �

A local coordinates proof can be given as follows (for notational simplicity
we consider only the first-order case; the extension to higher-order jet bundles is
straightforward). Assume that we have two overlapping charts in a local trivialisa-
tion of J1π . We denote the coordinates in one chart by (x,u(1)) and in the other
one by (y,v(1)). We must then show that the dependent variables and the derivatives
transform linearly, i. e. in the form v(1) = A(x)u(1) with an n×n matrix A. But this
property is a simple consequence of the chain rule.

As E is by assumption a vector bundle, we are restricted to structure-preserving
coordinate transformations y = g(x) and v = F(x)u yielding the following affine
transformation law for the derivatives

∂v
∂y

=
∂x
∂y
∂v
∂x

=
(∂g
∂x

)−1[
F
∂u
∂x

+
∂F
∂x

u
]

. (10.1)

But we are interested in the joint transformation of derivatives and dependent vari-
ables and there we obtain

(
v

v(1)

)

=

(
0 F

( ∂g
∂x

)−1
F
(∂g
∂x

)−1 ∂F
∂x

)(
u

u(1)

)

. (10.2)

Obviously, (10.2) is a linear transformation of the sought form.
Our earlier result that πq

q−1 : Jqπ→ Jq−1π is an affine bundle (Proposition 2.1.11)
is in some sense a necessary condition for this statement: a linear transformation
over X obviously implies an affine transformation of Jq−1π . However, one should
be careful in comparing the two propositions. We are studying different bundle
structures with different projections and albeit πq = πq−1 ◦ πq

q−1, this decompo-
sition says nothing about the properties of the corresponding bundles. A classical
counterexample is that the double tangent bundle T (TX ) is not a vector bundle
over X , even though both TX →X and T (TX )→ TX are vector bundles.

Remark 10.1.2. With essentially the same arguments as in the proof of Proposi-
tion 10.1.1 one can show that if ρ : A → X is an affine bundle modelled on the
vector bundle π : E → X , then ρq : Jqρ →X is again an affine bundle modelled on
the vector bundle πq : Jqπ →X . �
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The usual idea of a linear system is that the equations depend linearly on the
derivatives and on the dependent variables (but with arbitrary dependency on the
independent variables). We may now formulate this concept in an intrinsic manner.

Definition 10.1.3. Let π : E →X be a vector bundle. We call a differential equation
Rq ⊆ Jqπ linear, if it is a vector subbundle.

Similar to Remark 2.3.2, we will usually assume that a second vector bundle
π ′ : E ′→X over the same base space exists such that the differential equation Rq

is the kernel of a global vector bundle morphism Φ : Jqπ → E ′. This point of view
leads then naturally to the notion of a linear differential operator as the linear map
Δ [Φ] : Γloc(π)→ Γloc(π ′) defined by Δ [Φ](σ) = (Φ ◦ jq)(σ).

Remark 10.1.4. Quasi-linear equations may be approached similarly. Their defini-
tion does not require any additional assumptions on the fibred manifold π : E → X ,
as it is solely based on the always existing affine structure of Jqπ over Jq−1π . A
differential equation Rq ⊆ Jqπ is quasi-linear, if the subset Rq may be considered
as an affine subbundle of the affine bundle πq

q−1 : Jqπ→ Jq−1π . Indeed, this require-
ment obviously captures the usual idea of linearity in the highest-order derivatives.
We need an affine structure, since quasi-linear equations may contain a “right hand
side”, i. e. lower-order terms. As quasi-linearity is a much weaker property than
linearity, we will not separately study such equations. �

Let π : E → X be a fibred manifold and assume that we know a local solution
σ ∈Γloc(π) of some (nonlinear) differential equationRq ⊆ Jqπ . For notational sim-
plicity, we pretend that it was actually a global solution and use the full spaces in-
stead of a chart. A frequent operation is the linearisation of Rq about this solution.
We will now provide a geometric formulation of this operation.

Denote by ν = π ◦ τE : Vπ →X the natural projection which gives the vertical
bundle of π : E → X also the structure of a fibred manifold over X and thus allows
us the construction of the jet bundles νq : Jqν → X . Similarly, we may introduce
the natural projection ν̂q = πq ◦ τJqπ : Vπq →X from the vertical space of the jet
bundle πq : Jqπ →X to the base space providing us with a further fibration. Note
that once we first go to the vertical space and then construct jet bundles over it
and once we proceed the other way round by considering the vertical space of a jet
bundle. According to the following lemma, we obtain in both cases the same result.

Lemma 10.1.5. The two fibred manifolds ν̂q : Vπq → X and νq : Jqν → X are
canonically diffeomorphic.

Proof. By definition, a vertical vector v ∈ Vρπq is an equivalence class of curves
γ : 	 ⊆ � → (Jqπ)x living in the fibre over x = πq(ρ) and satisfying γ(0) = ρ .
Instead of such a curve, we may consider a family of local sections σt ∈ Γloc(π)
defined in a neighbourhood of x such that γ(t) = [σt ]

(q)
x for all t ∈ 	. This point of

view allows us to define the map
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φ :

⎧
⎪⎪⎨

⎪⎪⎩

Vπq −→ Jqν

d
dt

([
σt
](q)

x

)

t=0
	−→
[(dσt

dt

)

t=0

](q)

x

(10.3)

which is obviously a canonical diffeomorphism. It is also trivial to check that φ is
independent of the chosen representative γ and of the family σt . �

The coordinate picture is as follows. Let (x,u(q)) be our usual local coordinates
on the jet bundle Jqπ . Then any vector in Vπq is of the form vαμ∂uαμ (i. e. with-

out ∂x-components). Collecting the coefficients vαμ in a vector v(q), coordinates on

Vπq are (x,u(q),v(q)). Similarly, we have as coordinates on Vπ the tuple (x,u,v)
where v contains the coefficients vα of a vertical vector vα∂uα . As we treat here
Vπq as a fibred manifold over X , both u and v must be considered as dependent
variables and coordinates on Jqν are obviously (x,u(q),v(q)). Hence the identifica-
tion of Lemma 10.1.5 is trivial at the level of local coordinates.

We return to our solution σ ∈ Γloc(π) of the differential equation Rq; it defines
an embedding of X in E . The linearisation of the manifold E in a neighbourhood of
imσ is given by the tangent space TE imσ. However, if we study the linearisation
of a differential equation, we are only interested in the vertical part of it. The space
Ē = Vπ imσ is obviously a vector bundle over X with the same fibre dimension
as E ; we denote the corresponding projection by π̄ . The same operation may be
performed with the prolonged section jqσ .

Lemma 10.1.6. The projection Vπq
im jqσ→X defines a vector bundle canonically

isomorphic to Jqπ̄ →X .

Proof. Using Lemma 10.1.5, we have the inclusions

Vπq
im jqσ ⊂Vπq ∼= Jqν ⊃ Jqπ̄ . (10.4)

It follows trivially from the definition (10.3) of the diffeomorphism φ that the sub-
spaces on both ends are mapped into each other by φ , as we may choose the family
of sections σt such that σ0 = σ , and that restricted to these subspaces φ is in fact a
vector bundle isomorphism. �

Definition 10.1.7. Let Rq ⊆ Jqπ be a differential equation and σ ∈ Γloc(π) a so-
lution of it. The linearisation of Rq along the solution σ is the linear differential
equation Rq = (TRq∩Vπq) im jqσ ⊆ Jqπ̄ .

A local representation of Rq is easily obtained. Let Φτ (x,u(q)) = 0 be a local
representation of the original equation Rq ⊆ Jqπ and Y = vαμ∂uαμ a vertical vector
field in Vπq

im jqσ
∼= Jqπ̄ . Then the field Y takes its values in Rq, if and only if it

is everywhere tangent to Rq im jqσ, i. e. if and only if dΦτ im jqσ(Y ) = 0. But this
condition is of course equivalent to
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∂Φτ

∂uαμ im jqσ
vαμ = 0 . (10.5)

Taking as above (x,v(q)) as coordinates in Jqπ̄ , (10.5) is obviously the local repre-
sentation of a linear differential equation and one immediately recognises the famil-
iar coordinate form of the linearisation about the solution σ .

As Vπq
q−1 may be considered as a subbundle of Vπq, the definition of Rq implies

that the symbol (and all its prolongations) of the linearised equation Rq and of the
original equationRq, respectively, coincide (this fact is also obvious from the local
coordinate form—cf. the proof of Theorem 7.1.6 and in particular (7.10)). The same
holds for the dimensions of the equations, their prolongations and projections etc.
These considerations prove the following result.

Proposition 10.1.8. The linearised equation Rq is involutive, if and only if the orig-
inal differential equationRq is involutive.

10.2 The Holmgren Theorem

For linear systems it is possible to eliminate some of the restrictions of the
Cartan–Kähler Theorem. Namely, we can prove the uniqueness of C1 solutions to
analytic differential equations. For normal systems, this result is known as Holm-
gren’s Theorem. Based on the proof of the Cartan–Kähler Theorem 9.4.1 presented
in the last chapter, it can be easily extended to arbitrary involutive systems.

The basic idea is simple; it is more difficult to make it rigorous. We consider first
the following normal linear homogeneous system with analytic coefficients

Aαβi (x)uαi + Bαβ (x)uα = 0 , 1≤ β ≤ m (10.6)

in a “lens-shaped” domain Ω ⊂�n with a boundary consisting of two non-charac-
teristic hypersurfaces R and S (see Figure 10.1). We furthermore assume that S is
analytic. The claim is that the initial value problem for (10.6) with u prescribed on
R has at most one solution in C1(Ω).

An informal proof can be given as follow. We impose the homogeneous initial
conditions u R≡ 0. Then we add the equations in (10.6) with some yet undetermined
functions ū ∈ C1(Ω ) as coefficients and integrate over the domain Ω . A partial
integration yields

0 =
∫

Ω

(
ūβAαβi uαi + ūβBαβuα

)
dx

=
∫

Ω

([
−ūβi Aαβi uα + ūβ

∂Aαβi

∂xi uα
]
+ ūβBαβuα

)
dx +

∫

∂Ω
ūβAαβi uαni dA

(10.7)
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ΩR

S

Fig. 10.1 A “lens-shaped” domain

where n represents the outer unit normal to the hypersurface ∂Ω = R∪ S and as
usual ūβi is the xi-derivative of ūβ .

Let us assume that ū is a solution of the adjoint system

−Aαβi ūβi +
[∂Aαβi

∂xi + Bαβ
]
ūβ = 0 , 1≤ α ≤ m (10.8)

satisfying the initial conditions ū S = f for some arbitrary continuous function f
defined on S. Then (10.7) yields

∫

S
f β
(
Aαβi ni

)
uα dA = 0 . (10.9)

Since we assumed that S is an analytic non-characteristic hypersurface, the term

∑n
i=1 Aαβi ni vanishes nowhere on S. Thus (10.9) can only hold for all continuous

functions f, if u S≡ 0.
The problem is to show that we always find such functions ū. As (10.6) is an an-

alytic system, (10.8) is analytic, too. For analytic functions f we can thus apply the
Cauchy–Kovalevskaya Theorem. By the Weierstraß Approximation Theorem any
continuous function on a compact subset of �n can be uniformly approximated by
polynomials, so that it indeed suffices to treat analytic initial data, namely polyno-
mials. However, the Cauchy–Kovalevskaya Theorem is a purely local result and we
do not know whether the solution of the initial value problem for (10.8) exists in the
whole domain Ω .

This problem forces us to proceed in the following rather technical fashion. We
replace the single surface S by a one-parameter family of surfaces Sλ sweeping
through the whole domain Ω which is now assumed to be of a somewhat special
form. Let Ω ′ ⊂ �n be a bounded domain such that the coefficients of (10.6) are
analytic in it. LetΨ(x) be an analytic function defined in Ω ′ such that∇Ψ does not
vanish anywhere. We set Z = {x ∈ Ω ′ | xn = 0} and assume that it is a non-empty
and non-characteristic hypersurface.

We introduce the family of hypersurfaces Sλ = {x ∈Ω ′ |Ψ(x) = λ ,xn ≥ 0} with
a parameter λ ∈ [a,b]. We make the following assumptions (see Figure 10.2):

1. All λ ∈ [a,b] are regular values ofΨ .



438 10 Linear Differential Equations

2. Ω =
⋃
λ∈[a,b] Sλ .

3. Sa ⊂ Z consists of a single point.
4. For each λ ∈ (a,b] the hypersurfaces Sλ are non-characteristic and intersect Z

transversally.

Sa

Sb

Ωλμ

Ω

Sλ

Sμ

Z

Fig. 10.2 A parametrised family of hypersurfaces

Theorem 10.2.1 (Holmgren). Let u∈C1(Ω ) be a solution of (10.6) such that u≡ 0
on Z∩∂Ω . Then u≡ 0 in Ω .

Proof. We set Λ = {λ ∈ [a,b] | u Sλ
≡ 0}. The theorem is equivalent to Λ = [a,b].

By definitionΛ is closed; we will show that it is also open in [a,b], as thenΛ = [a,b].
The functions Aαβi , Bαβ , Ψ are analytic and Ω is compact; thus we can find

values M, r independent of x such that all of them are in CM,r(x) at each point x∈Ω .
If we solve the initial value problem for (10.6) with initial data in CM,r prescribed on
the hypersurface Sλ for λ ∈ (a,b], then the Cauchy–Kovalevskaya Theorem asserts
the existence of a unique analytic solution in an ε-neighbourhood of Sλ where ε
does not depend on λ .

Polynomials are analytic functions and thus elements of some class CM̄,r̄. As
polynomials possess only a finite number of non-vanishing derivatives, we can
choose an arbitrarily large value for r̄ provided we take M̄ large enough. As (10.6)
is a linear system, we can multiply any solution by a constant and obtain again a
solution; this does not change the domain of definition of the solution. By multiply-
ing a polynomial in CM̄,r with M/M̄ we obtain a polynomial in CM,r. Thus we can
conclude that for any polynomial prescribed as initial data on Sλ the unique analytic
solution of (10.8) exists in the whole ε-neighbourhood of Sλ .

Let λ ∈ [a,b] and ε > 0 be given. In the neighbourhood of some point y ∈ Sλ we
can apply the Implicit Function Theorem to solve the parametric equationΨ(x) = μ
for some coordinate xi. This yields a function xi = ψ(x1, . . . ,xi−1,xi+1, . . . ,xn;μ)
which is continuous in μ . So we can choose a δ (y) > 0 such that for all μ ∈ [a,b]
with |λ −μ |< δ (y) there exists a point z ∈ Sμ with ||z−y||< ε . As Sλ is compact,
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there exists a constant δ such that 0 < δ ≤ δ (y) for all y ∈ Sλ . But this implies
that for all μ ∈ [a,b] with |λ − μ | < δ the hypersurface Sμ lies completely in an
ε-neighbourhood of the hypersurface Sλ .

Now take a λ ∈ Λ and a μ ∈ [a,b] such that μ �= λ and |λ − μ | < δ . Then we
can apply the argument above to the domain Ωλμ bounded by the surfaces Sλ , Sμ
and Z (recall that above we did not require that R is analytic, thus we may take Sλ
plus parts of Z for the surface R). This time we can guarantee that the solution of
the adjoint system (10.8) exists in the whole domain. Thus u Sμ

≡ 0 and μ ∈Λ . But

this observation implies that Λ is open in [a,b], as obviously a ∈ Λ and thus Λ is
not empty. �

Theorem 10.2.1 does not present the strongest possible formulation of the
Holmgren Theorem. Using, say, density arguments one can extend this uniqueness
statement to considerable more general function spaces; for example, Taylor [453]
gives a version valid in Sobolev spaces. Note that we are still forced to require that
the system itself is analytic, as we apply the Cauchy–Kovalevskaya Theorem at an
intermediate step. But this assumption is much less severe than the restriction to
analytic solutions which has now been removed.

Recall that Lemma 9.4.2 was a crucial ingredient of our proof of the
Cartan–Kähler Theorem, as it guarantees that the solution obtained in one step is
also a solution of all previous subsystems. The for the proof of this statement deci-
sive normal system (9.44) is always linear. Thus provided that its coefficients Āβi j(x)

and B̄βi (x) are analytic (for example, if Aβi j and Bβi in (9.43) do not depend on u(1)),
we can prove Lemma 9.4.2 for much larger classes of solutions, as we can replace
the use of the Cauchy–Kovalevskaya Theorem by the Holmgren Theorem.

Finally, we proceed to extend the Holmgren Theorem to arbitrary involutive sys-
tems. As in Section 9.4, we consider a system in the Cartan normal form (9.40),
however now assuming that is linear, i. e. we assume that there exist analytic func-
tions Aαδk (x), Bαγk j (x), Cαβk (x), Dαk (x) such that the right hand sides can be written
in the form

φαk (x,u,uγj ,u
δ
k ) =

m

∑
δ=β (k)

1 +1

Aαδk (x)uδk +
m

∑
γ=1

k−1

∑
j=1

Bαγk j (x)uγj +

+
m

∑
β=1

Cαβk (x)uβ + Dαk (x) .

(10.10)

Theorem 10.2.2. The initial value problem (9.40), (9.41) with the right hand sides
given by (10.10) possesses at most one solution in C1(Ω ).

Proof. As for a normal system, it suffices to prove that in the case of a homogeneous
system the only solution for vanishing initial data is the zero solution. Thus we
study what happens in our proof of the Cartan–Kähler Theorem in this situation.
In the first step we consider the normal system (9.45a) with vanishing initial data.
Theorem 10.2.1 implies that the unique solution in C1(Ω ∩{x2 = · · · = xn = 0}) is
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Uα
1 (x1)≡ 0. Thus in the next step we have again vanishing initial data and can again

apply Theorem 10.2.1. In this manner we can go through all steps and obtain finally
that u≡ 0 is the unique solution in C1(Ω ). �

10.3 Elliptic Equations

The classification into elliptic and hyperbolic equations is fundamental for the the-
ory of partial differential equations. Roughly speaking, for the former ones boundary
value problems are well-posed whereas the latter ones describe evolutionary prob-
lems and thus require the prescription of initial values. While the case of normal
equations is extensively treated in any advanced textbook on linear partial differ-
ential equations, the extension to non-normal equations encounters some problems.
As we will see, the restriction to involutive equations will solve some of them.

For a linear differential equation Lu = 0 with constant coefficients one can show
that the classification has implications on the form of the support of a fundamental
solution (i. e. a solution of the inhomogeneous equation Lu = δ where δ denotes
the Dirac delta distribution). An elliptic equation always possesses a fundamental
solution which is everywhere analytic except at the origin, whereas a hyperbolic
equation has a fundamental solution the support of which is contained in a cone (see
e. g. [224, Thm. 7.1.20] and [225, Thm. 12.5.1], respectively, or the discussion in
[102, Chapt. V, §2]). Thus the classification is reflected in properties of the solution
space and we expect that it remains invariant under transformations of the equation
which do not affect the solution space, say a reduction to first order.

In this section we discuss the definition of ellipticity for general, i. e. possibly
under- over overdetermined, equations. It turns out that it is non-trivial to provide
such a definition, as integrability conditions may affect the usual criterion. Hyper-
bolic equations will be the topic of the next section.

Definition 10.3.1. The differential equation Rq is elliptic at a given point ρ ∈ Rq,
if its principal symbol τχ is injective at ρ for all non-vanishing one-forms χ ∈ T ∗X .
We callRq elliptic, it it is elliptic at every point ρ ∈Rq.

Thus, according to Definition 7.1.13, we may alternatively define an elliptic
equation as one without real characteristic one-forms. This is the formulation usu-
ally found in introductory textbooks. As ellipticity is a property defined at points
and depending only on the symbol, it suffices, if we study it for linear equations. In
fact, it even suffices to restrict to linear systems with constant coefficients and we
will do so throughout our treatment of ellipticity. Then it is no longer necessary to
distinguish different points onRq, because if the equation is elliptic at one point, it
will be so at any other point, too.

Remark 10.3.2. Note that, by Definition 7.5.6 of an underdetermined equation, such
an equation can never be elliptic. This could be changed by permitting in Defini-
tion 10.3.1 that τχ is alternatively surjective. At the level of the matrix T [χ ] of τχ in
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some local representation this modification corresponds to requiring only that T [χ ]
has full rank whereas our stricter definition requires full column rank. In some situ-
ations it is useful to allow for underdetermined elliptic equations (a simple example
is given by a “Gauss law” like∇·u = 0). But typically they appear then as subequa-
tions of larger equations (indeed such a situation will be studied in the next section)
and are not of independent interest. Hence we will assume for the remainder of this
section that we are not dealing with an underdetermined equation. �

Example 10.3.3. The prototype of an elliptic equation is the Laplace equation
∑n

i=1 uxixi = 0. For a one-form χ = χidxi ∈ T ∗X , its principal symbol τχ is locally
represented by a 1×1-matrix whose single entry is the polynomial T [χ ] =∑n

i=1 χ2
i .

Thus the only real one-form χ for which T [χ ] vanishes is the zero form and the
Laplace equation is indeed elliptic.

Let us restrict for simplicity to n = 2 and write x = x1 and y = x2. In many
textbooks the following reduction to first order is proposed:

R1 :

⎧
⎨

⎩

ux− v = 0 ,
uy−w = 0 ,
vx + wy = 0 .

(10.11)

Obviously,R1 is not involutive, as an integrability condition is hidden: vy−wx = 0.

We obtain an involutive equation,R(1)
1 , only after its addition.

The principal symbol τχ ofR1 has the following matrix representation:

T [χ ] =

⎛

⎝
χx 0 0
χy 0 0
0 χx χy

⎞

⎠ . (10.12)

It is easy to see that τχ cannot be injective for any one-form χ and thus we obtain
the surprising result that the above first-order reductionR1 of the Laplace equation
is not elliptic in the sense of Definition 10.3.1.

However, if we add the above mentioned integrability condition, i. e. if we anal-

yse the involutive equation R(1)
1 (which is the proper first-order reduction1 of the

Laplace equation according to Appendix A.3), then the matrix T [χ ] acquires a fur-
ther row (0 χy −χx) and one easily verifies that now the principal symbol is injective
for any real non-zero form χ . Thus we arrive at the expected result that the reduction
to first order preserves ellipticity. �

Instead of adding this simple integrability condition, one finds in the literature
an alternative ansatz to solve the problem that seemingly R1 is no longer elliptic.
As this approach is not intrinsic, we must first choose some local coordinates and
consider a concrete local representation

1 In fact, the simplest first-order reduction of the Laplace equation is the (trivially elliptic) system
vx +wy = vy−wx = 0, as the second equation is just the compatibility condition which guarantees
the existence of a function u such that ux = v and uy = w.
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Rq :
{
Φτ (x,u(q)) = Aτμα uαμ = 0 , 1≤ τ ≤ t . (10.13)

Working now in a fixed coordinate system, we do not distinguish in the sequel be-
tween the principal symbol τχ and its matrix T [χ ], calling the latter also principal
symbol. We say that T [χ ] is elliptic, if it defines an injective map for any non-
vanishing one-form χ ∈ T ∗X , i. e. if the matrix has always full column rank.

Next we introduce two sets of integer weights: one weight sτ , 1≤ τ ≤ t, for each
equation in the given system and one weight tα , 1 ≤ α ≤ m, for each dependent
variable. They must be chosen such that sτ + tα ≥ qτα where qτα is the maximal
order of a derivative uαμ in the τth equation, i. e. we have qτα = max

{
|μ | | Aτμα �= 0

}
.

Definition 10.3.4. Let w = (s1, . . . ,st ;t1, . . . ,tm) be a set of weights for the differen-
tial system (10.13). Then the corresponding weighted principal symbol is the t×m
matrix Tw[χ ] with entries

(
Tw[χ ]

)τ
α = ∑

|μ|=sτ+tα

Aτμα χμ . (10.14)

The system (10.13) is called DN-elliptic,2 if a set w of weights exists such that the
weighted principal symbol Tw[χ ] is elliptic.

Note that DN-ellipticity requires only that for some choice of w the weighted
principal symbol is injective and in general there are different possible choices. In
particular, the property of being DN-elliptic is not independent of the choice of coor-
dinates. Also it may not be easy to construct effectively suitable weights/coordinates.

For the special choice w = (0, . . . ,0;q, . . . ,q) we find Tw[χ ] = T [χ ] and hence any
elliptic system is DN-elliptic. The converse is not true: if we return to the first-order
form (10.11) for the Laplace equation, then it is DN-elliptic, as its weighted prin-
cipal symbol Tw[χ ] is injective for the choice w = (−1,−1,0;2,1,1). This example
also clearly demonstrates the simple idea behind the introduction of the weights.
The v- and the w-term in the first two equations of (10.11) do not contribute to the
usual principal symbol, as they are of lower order; they only become relevant after
the cross-derivation leading to the hidden integrability condition. Using the above
weights, they are “visible” already in the original system (10.11).

This observation clearly indicates a relation between the completion of (10.13)
and ellipticity. Indeed, our main goal in this section is to show that if some local
representation of a differential equationRq is DN-elliptic, then the involutive com-

pletion R(s)
q+r is elliptic in the ordinary sense. Thus, if we restrict the classification

to involutive equations, we do not need at all the concept of DN-ellipticity!

Remark 10.3.5. There are two other special choices of weights worth mentioning.
If qτ denotes the order of the τth equation in the system (10.13), then the weights
w = (q1−q, . . . ,qt−q;q, . . . ,q) lead to the reduced principal symbol Tred[χ ]. We will

2 The terminology DN-elliptic refers to Douglis and Nirenberg [111] who first considered this
generalisation of the classical definition of ellipticity.
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show later that if our system has an elliptic reduced symbol, then by simply prolong-
ing some of the lower-order equations we obtain an elliptic system in the classical
sense. Hence for all computational purposes it suffices to consider Tred[χ ] instead of
T [χ ]. More generally, we call any weighted principal symbol reduced, if all weights
tα have the same value.

Let q̃α be the maximal order of a derivative uαμ in the whole system (10.13). With
the weights w = (0, . . . ,0; q̃1, . . . , q̃m) we obtain what is often called the Petrovskij
(principal) symbol TP[χ ]. If TP[χ ] is elliptic, then we call (10.13) elliptic in the sense
of Petrovskij or for short P-elliptic. This notion of ellipticity features prominently in
the Russian literature, see e. g. [9]. �

Obviously, the weighted symbol Tw[χ ] remains unchanged, if we replace all
weights sτ by sτ + k and all weights tα by tα − k for some integer k ∈ 
. Hence
we may always suppose that (after some renumbering) s1 ≤ s2 ≤ ·· · ≤ st = 0 and
t1 ≥ t2 ≥ ·· · ≥ tm ≥ 0. Furthermore, we introduce values a, b and the two sets of
indices τk, 1≤ k ≤ a, and α�, 1≤ �≤ b, such that

s1 = · · ·= sτ1 < sτ1+1 = · · ·= sτ1+τ2 < · · ·< sτ1+···+τa−1+1 = · · ·= sk = 0 ,

t1 = · · ·= tα1 > tα1+1 = · · ·= tα1+α2 > · · ·> tα1+···+αb−1+1 = · · · = tm
(10.15)

and τa = t−∑a−1
k=1 τk, αb = m−∑b−1

�=1 α�. In addition, we set

τ̄0 = 0 , τ̄k = τ1 + · · ·+ τk ,

ᾱ0 = 0 , ᾱ� = α1 + · · ·+α� .
(10.16)

With these conventions, the weighted principal symbol Tw[χ ] can be decomposed
into blocks as follows:

Tw[χ ] =

⎛

⎜⎜
⎜
⎝

T11 T12 . . . T1b

T21 T22 . . . T2b
...

...
. . .

...
Ta1 Ta2 . . . Tab

⎞

⎟⎟
⎟
⎠

. (10.17)

Here the block Tk� is a τk×α� matrix and its entries are homogeneous polynomials
in χ of degree νk� = sτ̄k + tᾱ�

.

Lemma 10.3.6. Suppose that the system (10.13) has an elliptic weighted princi-
pal symbol Tw[χ ] for the weights w = (s1, . . . ,st ;t1, . . . ,tm). Consider the system
obtained from (10.13) by adding all equations obtained by differentiating the τth
equation p times with respect to each independent variable. Then its weighted prin-
cipal symbol is elliptic for the following weights: sτ is set to zero, the weights for
the new equations are sτ + p, and all other weights remain unchanged.

Proof. Denote by
(
Tw[χ ])τ the τth row in the weighted principal symbol Tw[χ ]. We

apply p times the formal derivative Di to the τth equation and set the weight of
the obtained new equation to sτ + p. In terms of the weighted principal symbol,
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this corresponds to adding the row χ p
i

(
Tw[χ ])τ to the original weighted principal

symbol. Hence, doing this for all 1 ≤ i ≤ n and using the described weights, it
is easy to see that full column rank of Tw[χ ] entails full column rank of the new
weighted principal symbol. �

By repeated application of this lemma for p = 1 we obtain immediately the
promised result for reduced principal symbols.

Corollary 10.3.7. Suppose that a reduced principal symbol Tred[χ ] of the qth-order
system (10.13) is elliptic. If we prolong all lower-order equations to order q, then
we obtain an elliptic system in the classical sense.

Lemma 10.3.8. Assume that all rows in (10.13) are of order q and that the weights
are ordered as in (10.15). Assume that for some weights w the weighted principal
symbol Tw[χ ] is elliptic. Then

(i) s1 + t1 = q and Tk1 = 0 for 1 < k ≤ a;
(ii) The block T11 is an elliptic principal symbol; i. e. rankT11 = α1 and in par-

ticular τ1 ≥ α1;
(iii) tm ≥ 0 and without loss of generality we may suppose that tm ≥ 1.

Proof. If s1 +t1 < q, then the first τ1 equations could not be of order q. If s1 +t1 > q,
then the first block column would be zero, so that Tw[χ ] could not be elliptic. Thus
s1 + t1 = q and for all τ > τ1 we have sτ + t1 > q implying Tk1 = 0 for 1 < k ≤ a. If
rankT11 < τ1, then Tw[χ ]v = 0 for some nonzero vector v of the form

v =
(
v1, . . . ,vτ1 ,0, . . . ,0

)t
. (10.18)

As the kernel of an elliptic symbol is trivial, we must have τ1 ≥ α1. If tm < 0, then
the last block column would be zero and Tw[χ ] could not be elliptic.

Suppose that tm = 0 and call the dependent variables uᾱb−1+1, . . . ,um algebraic,
since no derivatives of them appear in the system. Moreover, the first τ̄a−1 equations
do not depend on these variables. Hence the first τ̄a−1 equations form a DN-elliptic
system with variables u1, . . . ,uᾱb−1 . Because Tab is of full column rank, the algebraic
variables can be solved in terms of other variables. In case b = 1, the block Ta1 is
of full column rank and we can again solve the algebraic variables in terms of other
variables. Hence we obtain then a system without algebraic variables. �

As a consequence of these results, we may suppose, whenever it is convenient,
that the (weighted) principal symbol of our differential equation has the following
block form:

Tw[χ ] =

⎛

⎜⎜
⎜
⎝

T11 T12 . . . T1b

0 T22 . . . T2b
...

...
. . .

...
0 Ta2 . . . Tab

⎞

⎟⎟
⎟
⎠

T [χ ] =

⎛

⎜⎜
⎜
⎝

T11 0 . . . 0
T ′

21 T ′
22 . . . T ′

2b
...

...
. . .

...
T ′

a1 T ′
a2 . . . T ′

ab

⎞

⎟⎟
⎟
⎠

. (10.19)
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Proposition 10.3.9. Assume that at the end of an iteration of the outer loop of the
Cartan–Kuranishi Algorithm 7.3 the reduced principal symbol becomes elliptic,
then it will remain elliptic until termination.

Proof. Each iteration of the outer loop of Algorithm 7.3 begins with prolongations.
It follows trivially from Lemma 10.3.6 that if the reduced principal symbol is elliptic

before a prolongation, it will remain so afterwards. Going from Rq to R(1)
q , i. e.

performing a prolongation with a subsequent projection, adds further rows to the
principal symbol (corresponding to the hidden integrability conditions) and thus
can only increase the column rank. �

Remark 10.3.10. For simplicity, we formulated Proposition 10.3.9 only for the
geometric Cartan–Kuranishi completion. But a similar result holds for any other
completion method, say the algebraic Algorithm 4.5 applied to linear differential
operators. The addition of obstructions of involution or of integrability conditions
can always only increase the column rank. Algebraic operations like autoreductions
or normal form computations correspond at the level of the principal symbol to ele-
mentary row operations and thus preserve the rank. �

In order to proceed, we divide the vector u of the dependent variables into seg-
ments u(l) according to the indices ᾱ� defined in (10.16): u(l) =

(
uᾱ�−1+1, . . . ,uᾱ�

)t
.

This induces a corresponding segmentation of the coefficient matrix Aτμα of our lin-
ear system (10.13) and hence of the weighted principal symbol. As this segmenta-
tion is in accordance with the jumps in the sequence (10.15), the pieces are reduced
principal symbols:

Tw[χ ] =
(
Tred,1[χ ], . . . ,Tred,b[χ ]

)
. (10.20)

This observation will lead to a simple inductive proof of our main result. Recall
from Remark 7.1.12 that the construction of integrability conditions is related to
syzygies of the rows of Tred[χ ]. In order to go on we therefore need the following
technical result.

Lemma 10.3.11. Let P = �[x1, . . . ,xn] be the ordinary commutative polynomial
ring and B =

(
B1,C1

)
a polynomial matrix where B1 ∈ P�×m1 , C1 ∈ P�×m2 and

m = m1 + m2. Furthermore, let

B′ =
(

B1 0
B2 StC1

)
(10.21)

where S ∈ Pk×r is a syzygy matrix3 of Bt
1 and B2 ∈ P r×m1 an arbitrary matrix. For

a given vector χ ∈ �n we consider the matrix B(χ) ∈ ��×m obtained by substituting
xi = ξ i and similarly for B′. If � > m1, then ker

(
B(χ)
)

= 0 for all χ �= 0 implies
ker
(
B′(χ)

)
= 0 for all χ �= 0.

3 The columns of a syzygy matrix S of a polynomial matrix A span the syzygy module of the
columns of A; hence in particular AS = 0
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Proof. The assumption � > m1 ensures that the syzygy matrix S does not vanish, as
the matrix Bt

1 ∈ Pm1×� cannot possess full column rank.
Assume that a non-vanishing vector χ̄ ∈ �n exists with ker

(
B′(χ̄)

)
�= 0. Then

a non-vanishing vector v =
(
ṽ, v̂
)
∈ �m exists such that B′(χ̄)v = 0 and hence

B1(χ̄)ṽ = 0. Since ker
(
B(χ̄)
)

= 0 entails ker
(
B1(χ̄)

)
= 0, it follows that ṽ = 0.

Thus we find St(χ̄)C1(χ̄)v̂ = 0 and C1(χ̄)v̂ ∈ ker
(
St(χ̄)

)
.

By definition of S, we have an exact sequence P r S−→ P� Bt
1−→ Pm1 . Since

ker
(
B1(χ)

)
= 0 for all χ �= 0, it follows now from Corollary B.4.33 that the se-

quence �m1
B1(χ̄)−→ �� St (χ̄)−→ �r is exact, too. Hence ker

(
St(χ̄)

)
= im
(
B1(χ̄)

)
and there

exists a vector û∈ �m1 such that B1(χ̄)û+C1(χ̄)v̂ = 0. Putting u =
(
û, v̂
)
�= 0 (since

v̂ �= 0) yields B(χ̄)u = 0. But this contradicts our assumption that ker
(
B(χ)
)

= 0
for all vectors χ �= 0. �

Theorem 10.3.12. If the differential equation Rq has a DN-elliptic local represen-

tation, then its involutive completionR(s)
q+r is elliptic.

Proof. We exploit the decomposition (10.20) assuming that b > 1. Let S be the
syzygy matrix of the α1 × t matrix

(
Tred,1[χ ]

)t
. According to Lemma 10.3.8 we

have t > τ1 ≥ α1 and Tred,1[χ ] is elliptic. By the same argument as in the proof of
Lemma 10.3.11, these facts imply that S �= 0. Let c be the number of the columns
of the matrix S and denote the columns by v(r) with r = 1, . . . ,c. Since the entries of(
Tred,1[χ ]

)t
are homogeneous polynomials, for each r there is some mr such that the

degree of v(r)
τ is mr− sτ or v(r)

τ is zero.
Substituting the formal derivative Di for the variable χi in the matrix S, we con-

struct a differential operator Ŝ. Let us now consider the extended linear system ob-
tained by adding to (10.13) all the equations obtained by applying the operator Ŝt

to (10.13). With respect to the weights w(1) obtained by setting t(1)
α = tα + 1 for

α > ᾱ1, s(1)
t+r = mr−1 for r = 1, . . . ,c and leaving all other weights unchanged, its

weighted principal symbol T (1)
w [χ ] is of the form

T (1)
w [χ ] =

(
Tred,1[χ ] 0

B St
(
Tred,2[χ ], . . . ,Tred,b[χ ]

)
)

. (10.22)

This choice of weights is consistent with the conditions we imposed on admissible
weights, since the order of any derivative of variables u(1) in the rth new equation is
always less than or equal to tᾱ1 + mr−1.

Since the weighted principal symbol Tw[χ ] is elliptic and t > α1, all assumptions

of Lemma 10.3.11 are satisfied and we conclude that T (1)
w [χ ] is elliptic, too. Thus

we can apply the same arguments to the extended system, until we obtain after ν
iterations a system such that tᾱ1 = t(ν)ᾱ2

. This process reduces in a finite number of
steps a DN-elliptic system with b block columns to an equivalent DN-elliptic system
with b−1 block columns.
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Continuing in this fashion, we arrive after finitely many steps at a system equiv-
alent to the original one and with b = 1 block column, i. e. with an elliptic reduced
symbol. By Corollary 10.3.7, this observation suffices to prove our assertion. �

Remark 10.3.13. On the surface, the construction used in the proof above has noth-
ing to do with any of the completion algorithms discussed in this book. Again this
observation signals that Theorem 10.3.12 is only a particular formulation of a more
general result. Every equation added during the proof is a differential consequence
of the original system. In the geometric theory this implies that it vanishes on some
prolongation of the involutive completion. In the algebraic theory we find that its
involutive normal form with respect to an involutive basis of the system vanishes.
Similar remarks holds for other completion approaches. Thus we may conclude that
adding sufficiently many integrability conditions to a DN-elliptic system yields a
system that is elliptic in the ordinary sense. �

Example 10.3.14. We illustrate the fairly technical construction used above in the
proof of Theorem 10.3.12 with the following sixth-order equation4 in four depen-
dent variables (u1,u2,u3,u4) and two independent variables x1, x2:

R6 :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1
[0,2] + u2

[1,0]−u3 = 0 ,

u1
[1,0] + u2

[2,0] + u2
[0,2] + u3 = 0 ,

u1
[4,0] + u2

[1,2] + u3
[0,2] + u4

[0,1] = 0 ,

u2
[3,3] + u4

[4,0] + u4
[0,4] = 0 .

(10.23)

With respect to the weights w = (−2,−2,0,2;4,4,2,2), we obtain as weighted prin-
cipal symbol

Tw[χ ] =

⎛

⎜
⎜
⎝

χ2
2 0 −1 0

0 χ2
1 + χ2

2 1 0
χ4

1 0 χ2
2 0

0 χ3
1χ

3
2 0 χ4

1 + χ4
2

⎞

⎟
⎟
⎠ . (10.24)

Our local representation is thus a DN-elliptic system: one easily verifies that
det
(
Tw[χ ]

)
= (χ2

1 + χ2
2)(χ4

1 + χ4
2)2.

Here the decomposition (10.20) splits Tw[χ ] into its first two and its last two
columns (which we call Tw,1[χ ] and Tw,2[χ ], respectively). A standard computation
yields for the syzygy matrix of

(
Tw,1[χ ]

)t

S =

⎛

⎜
⎜
⎝

χ4
1 0

0 χ3
1χ

3
2

−χ2
2 0

0 −χ2
1 − χ2

2

⎞

⎟
⎟
⎠ . (10.25)

Thus in the notation of the proof above we have m1 = 2 and m2 = 4.

4 Due to the high order of this example, we use here the multi index notation usually reserved for
theoretical considerations.
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Using the differential operator Ŝ corresponding to the polynomial matrix S, we
obtain as new additional equations:

u2
[5,0]−u2

[1,4]−u3
[4,0]−u3

[0,4]−u4
[0,3] = 0 ,

u1
[4,3] + u3

[3,3]−u4
[6,0]−u4

[4,2]−u4
[2,4]−u4

[0,6] = 0 .
(10.26)

The weighted principal symbol of the extended linear system is then

T (1)
w [χ ] =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

χ2
2 0 0 0

0 χ2
1 + χ2

2 0 0
χ4

1 0 0 0
0 χ3

1χ
3
2 0 0

0 χ5
1 − χ1χ4

2 −χ4
1 − χ4

2 0
χ4

1χ
3
2 0 χ3

1χ
3
1 −(χ2

1 + χ2
2)(χ4

1 + χ4
2 )

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

, (10.27)

if we use the weights t(1)
3 = t(1)

4 = 3, s(1)
5 = m1− 1 = 1, s(1)

6 = m2− 1 = 3 and all
other weights as for Tw[χ ].

Since the values t1 = 4 and t(1)
3 = 3 are not yet equal, we now compute the syzygy

matrix S1 of
(
T (1)

w [χ ]
)t

obtaining

S1 =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

0 0 χ4
1 0

0 χ3
1 − χ1χ2

2 0 χ1χ5
2

χ3
2 0 −χ2

2 0
0 0 0 −χ2

1 − χ2
2

0 −1 0 χ3
2

−1 0 0 0

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

. (10.28)

Thus we deduce that m(1)
1 = 3, m(1)

2 = 1, m(1)
3 = 2 and m(1)

4 = 4. Applying now the
differential operator Ŝt

1, we get

Ŝt
1A(1) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u2
[1,5]−u3

[3,3]−u3
[0,5] + u4

[6,0] + u4
[4,2] + u4

[2,4] + u4
[0,6] + u4

[0,4] = 0 ,

u1
[4,0]−u1

[2,2] + u3
[4,0] + u3

[0,4] + u3
[3,0]−u3

[1,2] + u4
[0,3] = 0 ,

u2
[5,0]−u2

[1,4]−u3
[4,0]−u3

[0,4]−u4
[0,3] = 0 ,

u1
[2,5]−u3

[4,3]−u3
[0,7] + u3

[1,5]−u4
[6,0]−u4

[4,2]−u4
[2,4]−2u4

[0,6] = 0 .

(10.29)
The operator A(2) =

(
A(1), Ŝt

1A(1)) has the weighted principal symbol
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T (2)
w [χ ] =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

χ2
2 0 0 0

0 χ2
1 + χ2

2 0 0
χ4

1 0 0 0
0 χ3

1χ
3
3 0 0

0 χ5
1 − χ1χ4

2 0 0
χ4

1χ3
2 0 0 0

0 χ1χ5
2 −χ3

1χ
3
2 (χ2

1 + χ2
2 )(χ4

1 + χ4
2 )

χ4
1 − χ2

1χ2
2 0 χ4

1 + χ4
2 0

0 χ5
1 − χ1χ4

2 0 0
χ2

1χ5
2 0 −χ4

1χ3
2 − χ7

2 0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

, (10.30)

if we set t(2)
3 = t(2)

4 = 4, s(2)
7 = m(1)

1 −1 = 2, s(2)
8 = m(1)

2 −1 = 0, s(2)
9 = m(1)

3 −1 = 1,

s(2)
10 = m(1)

4 −1 = 3 and keep all other weights as in σwA(1).

Since T (2)
w [χ ] = T (2)

red [χ ], the reduced symbol of the operator A(2) is elliptic, i. e.
we have transformed the DN-elliptic operator A into an equivalent operator A(2)

with an elliptic reduced symbol. By Corollary 10.3.7, the involutive form of the
differential operator A(2) is elliptic. �

Example 10.3.15. Let us consider the differential equationR1 defined by the system
∇×u+u = 0 where u is a three-dimensional vector of unknown functions of three
independent variables. One can show that it is not DN-elliptic. However, adding the

integrability condition∇·u = 0 gives for the equationR(1)
1 the principal symbol

T [χ ] =

⎛

⎜
⎜
⎝

0 χ3 −χ2

−χ3 0 χ1

χ2 −χ1 0
χ1 χ2 χ3

⎞

⎟
⎟
⎠ (10.31)

which is obviously elliptic. Thus we see that the approach via weights is not always
sufficient for detecting ellipticity. �

It seems that the only sure way for checking whether or not a given differen-
tial equation is elliptic consists of first completing it to involution (or something
similar as discussed above) and then testing for ellipticity in the ordinary sense.
DN-ellipticity provides a shortcut only for the case of an DN-elliptic system, as
then Theorem 10.3.12 guarantees us the ellipticity of the completed equation. In the
negative case no statements are possible as demonstrated by the example above.

10.4 Hyperbolic Equations

We proceed to the definition of hyperbolicity. In contrast to ellipticity, it is not
an absolute notion but always defined with respect to a direction, i. e. a distin-
guished independent variable t exists playing the role of time in evolution problems.
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We therefore assume for simplicity thatX =Ω×� withΩ ⊆�n some domain and
slightly change our notation and denote the independent variables by (x1, . . . ,xn,t),
i. e. we have now n + 1 variables and write t instead of xn+1.

We will define hyperbolicity only for first-order linear systems (with variable
coefficients) and always assume that the systems are solved for all t-derivatives, i. e.
they are given in the form

ut + P0u = 0 , (10.32a)

P1u = 0 . (10.32b)

Here P0, P1 are arbitrary linear first-order differential operators containing only spa-
tial derivatives ∂xi (but with possibly t-dependent coefficients). Note that this as-

sumption again excludes underdetermined systems, as we trivially have β (n+1)
1 = m

for (10.32) and hence it cannot be underdetermined by Proposition 7.5.7. The reason
for this restriction will become apparent below.

A straightforward computation reveals that a necessary condition for (10.32) be-
ing involutive is the existence of a linear first-order differential operator Q contain-
ing only spatial derivatives such that

QP1 =
∂P1

∂ t
−P1P0 . (10.33)

Here ∂P1/∂ t denotes the operator obtained by differentiating all coefficients of P1

with respect to t. Indeed, if no such Q exists, then the prolongation of (10.32b) with
respect to the non-multiplicative variable t yields either obstructions to involution
or integrability conditions. If P1 is a normal operator, then (10.33) is also sufficient
for involution. Otherwise further non-multiplicative prolongations (with respect to
spatial variables) of equations in the subsystem (10.32b) must be analysed.

As in the case of ellipticity, the definition of a hyperbolic system is based solely
on the principal symbol. However, we consider this time only “spatial” one-forms
χ = χidxi ∈ T ∗Ω , i. e. without a dt-component. Let T0[χ ], T1[χ ] be the principal
symbols of the operators P0, P1. As the operator ∂P1/∂ t is of lower order than the
other two terms in (10.33), our involution condition implies that T0[χ ] maps vectors
in kerT1[χ ] again into kerT1[χ ]. Based on this observation, we can finally define
hyperbolicity.

Definition 10.4.1. Assume that the linear system (10.32) is involutive. Then it is
hyperbolic in t-direction at a point (x,t) ∈ X of the base space, if for any “spatial”
one-form χ ∈ T ∗Ω at this point the restriction of T0[χ ] to kerT1[χ ] has only real
eigenvalues and an eigenbasis.

Example 10.4.2. Assume that the operator P1 is elliptic in the sense of Defini-
tion 10.3.1. Then obviously kerT1[χ ] = 0 and the linear system (10.32) is trivially
hyperbolic. �

Remark 10.4.3. In order to understand the reasoning behind the fairly technical Def-
inition 10.4.1, let us restrict to a homogeneous system with constant coefficients:
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ut + A jux j = 0, C jux j = 0. Then we look for normal modes, i. e. solutions of the
special form u(x,t) = exp

[
i(ωt−k ·x)

]
u0 with a scalar ω ∈� and a vector k ∈�n

(here i is not an index but the imaginary unit!). Obviously, a necessary and sufficient
condition for the existence of a non-trivial solution of this form is that k jC j = 0 and
that ω is an eigenvalue of the matrix k jA j with eigenvector u0. The condition that
for those vectors k satisfying k jC j = 0 all eigenvalues of k jA j are real ensures that
all normal modes are oscillatory and hence do not lead to an instability. If further-
more an eigenbasis of k jA j exists, then it follows from elementary Fourier analysis
that any solution of our system may be written as a linear combination of normal
modes. This fact renders the initial value problem well-posed.

The question of well-posedness is so simple only for this highly restricted class
of systems. As soon as one allows for variable coefficients or lower-order terms,
the situation becomes more involved. The problem of finding sufficient and neces-
sary conditions for well-posedness of the initial value problem has lead for normal
systems to the development of different concepts like strong, strict or symmetric hy-
perbolicity (see e. g. [266, Sects. 2.4.1, 3.3.1] or [453, Chapt. 6, Sect. 5]). Applied to
a normal system, our Definition 10.4.1 actually corresponds to strict hyperbolicity
and it suffices then also in the variables coefficients case for well-posedness. �

Remark 10.4.4. Definition 10.4.1 is formulated only for involutive systems. In prin-
ciple, this assumption could be relaxed a bit. The linear system (10.32) must be close
enough to involution to ensure the existence of an operator Q satisfying (10.33),
as without this condition we cannot restrict the principal symbol T0[χ ] to the sub-
space kerT1[χ ]. If then the restriction has only real eigenvalues and an eigenbasis,
the same will be true for the involutive completion (we assume here of course that
(10.32) is consistent), as integrability conditions enlarge the operator P1 and thus
shrink kerT1[χ ]. However, the converse is obviously not true: if (10.32) is not yet
involutive, the considered kerT1[χ ] may simply be too large. �

We formulated our definition of a hyperbolic system only for the first-order case.
In principle, this suffices, as the methods of Appendix A.3 allow us to rewrite any
system as an equivalent first-order system. However, in practice it is often inconve-
nient to perform an explicit reduction. Analysing the computation leading to (10.33),
we note that it is not necessary to assume that the operators P0, P1 are first order.
Hence Definition 10.4.1 actually applies to any system that is first order in time.
This final restriction can also be easily removed.

We consider now a system of the form

∂ qu
∂ tq +

q−1

∑
k=0

P(k)
0
∂ ku
∂ tk

= 0 , (10.34a)

q−1

∑
k=0

P(k)
1
∂ ku
∂ tk = 0 (10.34b)

where again the differential operators P(k)
i contain only spatial derivatives. For sim-

plicity we assume that the order of P(k)
i is less than or equal to q− k so that we
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are dealing with a system of order q. Prolonging the constraints (10.34b) with re-
spect to the non-multiplicative variable t yields neither obstructions to involution
nor integrability conditions, if and only if a differential operator Q exists such that

QP(k)
1 =

∂P(k)
1

∂ t
+ P(k−1)

1 −P(q−1)
1 P(k)

0 , 0≤ k < q (10.35)

(for k = 0 we set P(−1)
1 = 0). In this calculation we have assumed that P(q−1)

1 �= 0. If
this assumption is not satisfied, then (10.34) cannot be involutive, as prolonging the
constraints (10.34b) with respect to t trivially leads to obstructions to involution.

We remarked above that in Definition 10.4.1 it is only important that (10.32) is
of first-order in time. Thus we introduce new dependent variables vk = ∂ ku/∂ tk for
0≤ k < q and obtain as reduced system

∂vq−1

∂ t
+

q−1

∑
k=0

P(k)
0 vk = 0 , (10.36a)

∂vk

∂ t
−vk+1 = 0 , 0≤ k ≤ q−2 , (10.36b)

q−1

∑
k=0

P(k)
1 vk = 0 . (10.36c)

It is of the form (10.32) and the two relevant principal symbols are given by

T0[χ ] =

⎛

⎜
⎜
⎜⎜
⎜
⎝

0 −1 0 0
−1

. . . 0
0 −1

T (0)
0 [χ ] · · · T (q−1)

0 [χ ]

⎞

⎟
⎟
⎟⎟
⎟
⎠

, (10.37a)

T1[χ ] =
(

T (0)
1 [χ ] · · · T (q−1)

1 [χ ]
)

(10.37b)

where T (k)
i [χ ] is the principal symbol of the operator P(k)

i . The condition (10.35)
ensures that kerT1[χ ] is an invariant subspace for T0[χ ]. Thus we may formulate
Definition 10.4.1 directly for the higher-order system (10.34) by using the composed
principal symbols Ti[χ ] defined by (10.37).

Remark 10.4.5. For square systems, i. e. systems with as many equations as un-
known functions, an alternative definition of hyperbolicity exists: such a system
is hyperbolic in t-direction, if (i) the one-form dt is non-characteristic (which en-
sures that the equation is normal) and (ii) for any non-vanishing form χ = χidxi the
condition detT [λdt + χ ] = 0 considered as equation for λ possesses only simple
real zeros. Note that this definition is independent of the order of the system.

One can show that this approach is equivalent to Definition 10.4.1 upon a reduc-
tion to first order. As the proof is quite tedious, we only treat the simplest example,
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namely a scalar second-order equation autt + 2buxt + cuxx = 0 (we omit a lower-
order part, as it does not affect the result). We obtain

detT [λdt + χdx] = aλ 2 + 2bλχ+ cχ2 (10.38)

and hence the familiar result that the equation is hyperbolic in t-direction, if and
only if a �= 0 and b2 > ac. For the reduction to first order we introduce v = ut and
w = ux. Writing u = (u v w)t , the reduced system is

ut +

⎛

⎝
0 0 0
0 2b/a c/a
0 −1 0

⎞

⎠ux +

⎛

⎝
0 −1 0
0 0 0
0 0 0

⎞

⎠u = 0 ,

(
1 0 0
)

ux +
(
0 0 −1

)
u = 0 .

(10.39)

Given this matrix form, one straightforwardly computes that

kerT1[χdx] = ker
(
χ 0 0

)
= 〈

⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎝
0
0
1

⎞

⎠〉 (10.40)

and hence

T0[χdx]
ker T1[χdx] =

(
2b/a c/a
−1 0

)
. (10.41)

This matrix has real eigenvalues, if and only if b2 ≥ ac. However, in the degenerate
case b2 = ac where the two eigenvalues coincide, only a single eigenvector exists.
Thus we obtain the same result as above: the reduced system is hyperbolic in t-
direction, if and only if b2 > ac.

The same matrix as in (10.41) arises, if we use the above outlined approach
where only the time derivatives are reduced to first order. The reduced system is
then normal and the relevant principal symbol is described by the transposed matrix
of (10.41). �

Our final goal in this section will be to prove the existence and uniqueness of
smooth solutions for a special class of linear systems. By making further struc-
tural assumptions we will be able to extend the technique used in the proof of the
Cartan–Kähler Theorem 9.4.1 beyond analytic functions, as we no longer need to
invoke the Cauchy–Kovalevskaya Theorem.

Definition 10.4.6. An involutive differential equationRq in n independent variables

is weakly overdetermined, if β (n−1)
q > 0 and β (k)

q = 0 for k < n− 1 (i. e. a local
representation in δ -regular coordinates contains only equations of class n and n−1).

Note that such a weakly overdetermined equation might well be underdetermined
in the sense of Definition 7.5.6. In the sequel, we are only interested in equations
that can be interpreted in some sense as evolution equations. As above, we slightly
change our notation and denote the independent variables by (x1, . . . ,xn,t), i. e. we
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have n + 1 variables and write t instead of xn+1. We study linear systems with vari-
able coefficients of the following form:

Eut = Aiuxi + Bu , (10.42a)

0 = Ciuxi + Du . (10.42b)

Here u is as usual the m-dimensional vector of dependent variables. The matrices
E(x,t), Ai(x,t) and B(x,t) have r≤m rows and m columns; the matrices Ci(x,t) and
D(x,t) have s ≤ m rows. We make the following three assumptions that are crucial
for our subsequent analysis.

(i) The hypersurface t = 0 is non-characteristic.
(ii) rankE(x,t)≡ r.
(iii) For at least one i we have rankCi(x,t) ≡ s. Without loss of generality, we

assume that this is the case for Cn.

All three assumptions together imply that we are dealing with a weakly overde-
termined system in a δ -regular coordinate system. Note that (i) excludes parabolic
systems (for any standard definition of parabolicity). (ii) implies that (10.42a) con-
tains all equations of class n + 1. (iii) ensures that all equations in (10.42b) are of
class n and thus, if the system is involutive, it is indeed weakly overdetermined.

Example 10.4.7. An important example of a weakly overdetermined system are
Maxwell’s equations. It is well-known that their evolution part (2.85a), correspond-
ing to (10.42a) forms a hyperbolic system, whereas the constraint equations (2.85b),
corresponding to (10.42b), are elliptic. �

Our first task is to derive the conditions under which (10.42) represents an invo-
lutive system. It requires only a straightforward computation.

Lemma 10.4.8. The linear system (10.42) is involutive, if and only if s× r matrices
Mi(x,t), N(x,t) and s× s matrices Hi(x,t), K(x,t) exist such that the following
equalities hold for all values 1≤ i, j ≤ n:

MiE = Ci , (10.43a)

HiC j + H jCi = MiA j + M jAi , (10.43b)

NE = D−MkExk , (10.43c)

HiD+ KCi + HkCi
xk = MiB + NAi + MkAi

xk +Ci
t , (10.43d)

KD+ HkDxk = NB + MkBxk + Dt . (10.43e)

Proof. As the system is weakly overdetermined, non-multiplicative variables appear
only in (10.42b), namely t is non-multiplicative for each equation. Thus we must try
to express the t-prolongation of (10.42b) as a linear combination of the original
equations and their multiplicative prolongations. The matrices Mi, N, Hi, K are
nothing but the coefficients of this linear combination. More precisely, a simple
calculation shows that the formal equality
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∂t (10.42b) = Mi∂xi(10.42a)+ Hi∂xi(10.42b)+ N(10.42a)+ K(10.42b) (10.44)

holds, if and only if the coefficient matrices satisfy the above conditions. �
The first two conditions are necessary for an involutive symbol; the remaining

three conditions ensure the formal integrability of the system. Because of the rank
assumptions (ii) and (iii), it is not difficult to see that if such matrices Mi, N, Hi, K
exist, they are uniquely determined by (10.43). For later use, we derive the compat-
ibility conditions of the linear system (10.42) under the assumption that it is involu-
tive. For this purpose, we add on the right hand side of (10.42a) an inhomogeneity δ
and on the right hand side of (10.42b) an inhomogeneity−ε.

Lemma 10.4.9. The inhomogeneous system possesses a formal solution, if and only
if the right hand sides satisfy the compatibility condition

εt −Hiεxi −Kε = Miδxi + Nδ . (10.45)

Proof. (10.45) follows immediately from (10.44). �
In order to obtain an existence and uniqueness theorem for smooth solutions, we

need to make some further assumptions on the structure of (10.42). First of all, we
want to avoid underdetermined situations. So we assume that r = m. This implies
together with assumption (ii) that E is a regular matrix and without loss of generality,
we take E(x,t) = �m, the m×m identity matrix. Then it follows from (10.43a) that
Mi = Ci.

According to our definition, (10.42a) with E =�m is hyperbolic in t-direction at a
point (x,t), if for any “spatial” one-form χ = χidxi (i. e. without a dt-component) the
matrix Aχ(x,t) = χiAi(x,t) has only real eigenvalues and an eigenbasis. We call it
strongly hyperbolic, if furthermore there exists for any Aχ(x,t) a symmetric, positive
definite matrix Pχ(x,t), a symmetriser, depending smoothly on x, t and χ such that
PχAχ−At

χPχ = 0. Following Remark 10.3.2, we call (10.42b) elliptic, if the matrix
Cχ(x,t) = χiCi(x,t) defines for all non-vanishing one-forms χ a surjective mapping.
This condition implies that all matrices Ci must possess everywhere maximal rank:
rankCi(x,t)≡ s.

Strongly hyperbolic systems possess a well-established existence and uniqueness
theory which will form the basis of our results for (10.42). It provides in addition an
estimate on the norm of the solution. In the case of a symmetric hyperbolic problem,
i. e. A = At and we do not need a symmetriser, we take the usual Sobolev norms
‖u(x)‖H p defined as square root of the sum of the squares of the L2 norm of u(x)
and all its derivatives up to order p (note we consider here only functions of the
spatial variables x).

In the general case we need a kind of weighted Sobolev norm where the “weight”
consists of a pseudodifferential operator constructed out of the symmetriser Pχ(x,t).
More precisely, we identify now the one-form χ with a vector χ ∈�n whose com-
ponents are considered as dual variables to x and introduce the operator

P̂(t)v(x) =
∫

Pχ/|χ |(x,t)e2π iχ·xv̂(χ)dχ (10.46)
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acting on functions depending only on the spatial variables. Here v̂ is as usually the
Fourier transform of v. Then we define the inner product

(
v(x),w(x)

)
P(t) =

∫
v(x) ·

(
P(t)w(x)

)
dx . (10.47)

The norm ‖u(x)‖P(t),H p is then a Sobolev norm where the underlying L2 norm has
been substituted by the norm induced by the inner product (10.47). There are some
subtleties involved in the definition of this norm like the domain over which the
integrals are taken; in general, one needs a partition of unity on this domain etc; we
refer to [266, Sect. 6.2] and references therein for details. Using these norms, we
have the following result [266, Theorem 6.2.2].5

Theorem 10.4.10. Let the normal linear system

ut = Ai(x,t)uxi + B(x,t)u+ F(x,t) (10.48)

have smooth coefficients Ai, B, F and let it be strongly hyperbolic with the sym-
metriser Pχ . Then it possesses a unique smooth solution satisfying the smooth initial
conditions

u(x,0) = f(x) . (10.49)

This solution satisfies at any time t ∈ [0,T ] the estimate

‖u(·,t)‖P(t),H p ≤ Kp

[
‖f‖P(t),H p +

∫ t

0
‖F(·,τ)‖P(t),H p dτ

]
(10.50)

where the constant Kp depends only on the coefficients of the system, their deriva-
tives up to order p and on T .

Our goal is to extend this theorem to weakly overdetermined systems where the
evolutionary part (10.42a) is strongly hyperbolic and the constraints (10.42b) are
elliptic. If we could apply Lemma 9.4.2, such a generalisation would be straightfor-
ward. However, our equations are not analytic. Thus we must show that the lemma
still holds in our more general situation. This can be done with the help of the com-
patibility condition (10.45) inheriting some properties of (10.42a).

Lemma 10.4.11. Let the evolutionary system (10.42a) with E = �m be hyperbolic
in t-direction and the constraints (10.42b) elliptic. Then the compatibility condition
(10.45)—considered as a system for ε only—is hyperbolic in t-direction, too.

Proof. As we assume that the given linear system (10.42) is involutive, the matrices
Ai, Mi = Ci, Hi satisfy the relations (10.43b). This implies (with obvious notation)

5 Strictly speaking, the formulation of Theorem 10.4.10 is incomplete. We have not specified a
spatial domain Ω in which we consider the differential equation. Kreiss and Lorenz [266] take
Ω =�n and assume that all coefficients, initial data and solutions are 1-periodic. The periodicity
assumption avoids a specification of the behaviour for |x| → ±∞. But essentially the same result
holds, if we assume that all functions are in L2. Therefore we neglect this issue.
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that HχCχ = CχAχ for any one-form χ . Let v be an eigenvector of Aχ for the (real)
eigenvalue λ . As HχCχv = CχAχv = λCχv, we see that Cχv is an eigenvector of
Hχ for the eigenvalue λ .

According to our assumptions, all matrices Aχ possess only real eigenvalues and
an eigenbasis and all matrices Cχ define surjective mappings. Thus there exists an
eigenbasis of Hχ consisting of vectors of the form Cχv where v is an eigenvector
of Aχ . This implies furthermore that all eigenvalues of Hχ are real, as they are also
eigenvalues of Aχ . �

Lemma 10.4.12. Let the assumptions of Lemma 10.4.11 be satisfied and let further-
more (10.42a) be strongly hyperbolic with symmetriser Pχ(x,t). Then the compati-
bility condition (10.45) is strongly hyperbolic, too. As symmetriser we may use the
matrix Qχ(x,t) defined by

Q−1
χ = CχP−1

χ Ct
χ . (10.51)

Proof. We must show that Qχ satisfies the three properties of a symmetriser. Ob-
viously, it inherits the symmetry of Pχ . For the positive definiteness we note that
vtQ−1

χ v = (Ct
χv)tP−1

χ (Ct
χv). As Cχ defines a surjective mapping, its transpose Ct

χ
defines an injective mapping. Thus the expression above vanishes only for v = 0.
This also implies that Q−1

χ is indeed invertible. Finally, using again (10.43b)

HχQ−1
χ −Q−1

χ Ht
χ = HχCχP−1

χ Ct
χ −CχP−1

χ Ct
χHt

χ
= Cχ(AχP−1

χ −P−1
χ At

χ)C
t
χ .

(10.52)

But this last expression vanishes, as Pχ is a symmetriser for Aχ . �

Based on these two technical lemmata, it is now straightforward to extend Theo-
rem 10.4.10 to weakly overdetermined equations. The decisive point in the proof of
this generalisation is that Theorem 10.4.10 can also be applied to the compatibility
condition (10.45) and implies a uniqueness result for it.

Theorem 10.4.13. Let (10.42a) with E = �m be strongly hyperbolic and (10.42b)
elliptic. If the initial data in (10.49) satisfies for t = 0 the constraints (10.42b), then
the initial value problem (10.42, 10.49) possesses a unique smooth solution.

Proof. We first ignore the constraints (10.42b). Then Theorem 10.4.10 guarantees
the existence and uniqueness of a smooth solution. Entering this solution into the
equations (10.42b) yields residuals ε. These residuals must satisfy the compatibility
condition (10.45) with δ = 0. As by assumption the initial data satisfy (10.42b) at
t = 0, our initial conditions for (10.45) are ε(x,0) = 0. Obviously, ε ≡ 0 is one
solution of this initial value problem. According to Lemma 10.4.12, we are dealing
with a strongly hyperbolic system, so that we can again apply Theorem 10.4.10. It
guarantees that the zero solution is in fact the only solution. Hence there exists a
unique smooth solution of the overdetermined problem (10.42, 10.49). �

Our method of proof has as a side effect some implications for the numerical
integration of a weakly overdetermined system. A simple approach consists of con-
sidering the equations of lower class (10.42b) only as constraints on the initial data
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and otherwise ignoring them, i. e. one simply solves the initial value problem for
(10.42a) with initial data satisfying (10.42b).

For exact solutions this approach works nicely, as we have seen above. For nu-
merical solutions the situation is somewhat different. In general, we must expect a
drift off the constraints, i. e. after some time the numerical solution ceases to satisfy
the equations of lower class (10.42b). This phenomenon is easy to understand on the
basis of our results. A numerical solution is only an approximation of an exact solu-
tion, hence there appears a non-vanishing residual δ leading to a non-vanishing right
hand side in the compatibility condition (10.45) which determines the evolution of
the residual ε in the equations (10.42b). So the size of the drift can be estimated
with the help of (10.50):

‖ε(·,t)‖Q(t),H p ≤ Kp

∫ t

0
‖Miδxi(·,τ)+ Nδ(·,τ)‖Q(t),H p dτ (10.53)

The problem is aggravated by the fact that the right hand side of the estimate
depends not only on the residuals δ but also on their spatial derivatives. While any
reasonable numerical method takes care of controlling the size of δ, it is hardly
possible to control the size of the derivatives.

Example 10.4.14. The approach outlined above is fairly popular for numerically
solving Maxwell’s equations. Here the compatibility conditions are the continuity
equations (2.87). It follows from their derivation that for Maxwell’s equations the
estimate (10.50) depends only on the divergence of δ and not on δ itself. Thus a
good numerical method for Maxwell’s equations should be constructed such that
the divergence of the residual vanishes.

Neglecting this effect can lead to numerical problems (see e. g. [217, 236, 333]
and references therein). One has shown experimentally that many methods lead to
a significant violation of the Gauss laws and it seems that ignoring them yields
spurious modes in some computations. The “mimetic” discretisations introduced by
Hyman and Shashkov [229] are examples of methods that take care that discrete
analogues of the decisive relations are preserved and thus no drift appears. �

10.5 Basic Algebraic Analysis

In Section 10.1 we were concerned with a geometric description of linear differential
equations. Now we consider them from an algebraic point of view. We introduced
the ring of linear differential operators already in Example 3.2.4. As any homo-
geneous linear differential equation is defined by such an operator, it is natural to
study modules over this ring. This idea will automatically lead to a rather abstract
generalised notion of solutions.

Let D =R[∂1, . . . ,∂n] be a ring of linear differential operators over a differential
coefficient ring R with commuting derivations ∂1, . . . ,∂n. Many of the algebraic
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constructions that will follow in the remainder of this chapter are independent of
the precise nature of the ring D, i. e. whether or not it is composed of differential
operators, but for definiteness and as differential equations are our main interest we
will stick to this case. For the moment we only assume that the coefficient ring R
contains a field � which is either� (or some finite extension of� for computational
purposes) or�, so that a typical choice forR would be �(x1, . . . ,xn) (which is even
a field) or �[x1, . . . ,xn] (which yields the Weyl algebraWn) and ∂i represents then of
course the usual partial derivative with respect to xi. A linear differential system of
order q with r equations for m unknown functions is defined by a matrix L ∈ Dr×m:

Lu =
m

∑
α=1

Lβαuα = 0 , 1≤ β ≤ r (10.54)

where Lβα = ∑0≤|μ|≤q LβαμDμ ∈ D with coefficients Lβαμ ∈R.
In order to get rid of the dependence on individual matrices, we would like to

consider a more intrinsic object, namely aD-module associated with the operator L.
IfD were a commutative ring, then this goal could be easily achieved by introducing
the D-module homomorphismΛ :Dm →Dr with Λ(P) = L ·P and studying either
imΛ or cokerΛ . However,D is non-commutative and thusΛ as defined is not even a
left D-module homomorphism (obviously,Λ(QP) = L · (QP) �= Q(L ·P) = QΛ(P)
for arbitrary Q ∈ D). We resolve this problem by defining Λ via a multiplication
with L from the right:6

Λ :

{
D1×r −→ D1×m

P 	−→ P ·L . (10.55)

It is trivial to check that (10.55) indeed defines a left D-module homomorphism.
Note that, since we multiply with L from the right, we must treat P here as a row
vector (as indicated by writing D1×r). Now we may consider the arising cokernel
M = cokerΛ = D1×m/D1×rL, i. e. we factor the free module D1×m by the left
submodule generated by the rows of the matrix L. Obviously, Λ provides us with a
finite presentation ofM.

We may turn around these considerations and say that a linear differential system
is a finitely presented left D-module M, as any such module can be written as
the cokernel of some homomorphism between two free left D-modules by simply
choosing a finite generating set and determining its relations (cf. (B.1)). As we will
see below, different presentations of the same moduleM correspond to differential
equations with isomorphic solution spaces.

In order to be able to speak about solutions, we must first specify some func-
tion space in which we look for them. From an abstract point of view we need a

6 Most textbooks on modules over non-commutative rings insist on using a standard matrix rep-
resentation where the matrix is to the left of the vector. The simplest solution is then to consider
homomorphisms between right modules, as for them the matrix must indeed be on the left. For left
modules this is only possible, if one works with the opposite ring Dop. As a set Dop =D, but its
multiplication ∗ is defined by f ∗g = g · f where · denotes the multiplication inD. Now obviously
any left D-module is a right Dop-module and vice versa. We prefer to avoid the use of either Dop

or right modules and instead simply multiply with L from the right.
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(left)D-moduleA. One natural choice would beA= C∞(Ω ,�), the ring of smooth
functions on some domainΩ ⊆ �n (for �=�; for �=� one would consider holo-
morphic functions), but again much of what we will do is independent of the precise
nature ofA. Given a matrix-valued linear differential operator L∈Dr×m, we denote
by kerA L = {f∈Am | Lf = 0} the solution space of the homogeneous linear system
(10.54) with respect to A.

Note that the elements of the D-moduleA are not required to be (differentiable)
functions in the familiar sense; in fact, the action of D on A may be of an arbitrary
form not necessarily including a differentiation. Therefore one should speak here of
generalised solutions. Important generalisations of classical function spaces include
the micro- and hyperfunctions leading to microlocal analysis. We do not go here
into further details but refer to the literature [250, 253, 254, 331].

Let E = HomD(A,A) be the ring ofD-endomorphisms ofA. Then kerA L⊆Am

possesses a natural structure as an E-module: we simply apply φ ∈ E component-
wise. Consider now the space HomD(M,A). IfD is not a commutative ring (which
is generally the case, if we do not deal with systems with constant coefficients),
then it is not aD-module, but it is always an E-module with the structure map given
by the composition of maps. Central for the algebraic analysis of linear systems is
the following simple result known as Malgrange isomorphism which allows us to
consider generalised solutions as homomorphisms.

Proposition 10.5.1. Let L ∈ Dr×m be a matrix-valued linear differential operator
and set M = D1×m/D1×rL. Then there exists a canonical E-linear isomorphism
kerA L∼= HomD(M,A).

Proof. The definition ofM trivially implies the isomorphism

HomD(M,A) ∼=
{
φ ∈ HomD(D1×m,A) | φ(D1×rL) = 0

}

∼=
{
φ ∈ HomD(D1×m,A) | ∀β : φ(Lβ ) = 0

}
.

(10.56)

Then we have the obvious isomorphism HomD(D1×m,A) ∼= Am mapping a ho-
momorphism φ into the vector fφ whose components are simply the images of the
standard basis: (fφ )α = φ(eα) ∈A (its inverse maps the vector f into the homomor-
phism φf defined by φf(P) = P · f). Thus we have φ(Lβ ) = Lβ · fφ implying that

HomD(M,A)∼=
{

f ∈ Am | L · f = 0
}

= kerA L . (10.57)

It is trivial to verify that all involved maps are E-linear. �
Remark 10.5.2. An alternative proof of Proposition 10.5.1 uses some homological
algebra. Since the module M is defined as the cokernel of the homomorphism Λ
introduced in (10.55), we have the exact sequence

D1×r Λ
D1×m π M 0 (10.58)

where π denotes the canonical projection. Since the functor HomD(·,A) is left exact
by Proposition B.2.9, the dual sequence
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0 HomD(M,A) Am Λ∗
Ar (10.59)

is exact, too. Here we exploited again the isomorphism HomD(D1×m,A) ∼=Am. It
is easy to see that after this identification, the dual mapΛ∗ is given by applying the
matrix operator L. Hence HomD(M,A) is isomorphic to its image in Am which by
the exactness of the sequence is given by kerA L. �
Remark 10.5.3. One may wonder why we are suddenly able to make statements
about the solution space of a differential equation without any assumptions about
involution or at least formal integrability. All these notions are hidden behind the
definition of the associated moduleM. In order to obtain a concrete representation
of it, we usually need at least a Gröbner basis of the submodule D1×rL ⊆ D1×m,
i. e. of the row module of the matrix L. In fact, for many purposes the best repre-
sentation of the moduleM is obtained via a complementary decomposition of this
row module, since such a decomposition provides us with an explicit R-linear ba-
sis of M in the case that the coefficient ring R is actually a field. As discussed in
Section 5.1, the determination of such a decomposition is particularly simple, if we
know a Pommaret basis (which is always simultaneously a Janet basis) of the row
module so that we can apply Algorithm 5.2 (or Proposition 5.1.6). But obviously
determining a Pommaret basis of the row module of L is equivalent to completing
the linear system Lu = 0 to involution (see Section 10.7 for an efficient completion
algorithm for linear systems). �

We proceed by studying the properties of inhomogeneous linear systems. We
are particularly interested in the question under which conditions on the right hand
sides such systems are solvable. Recall from Remark 7.1.7 that we speak here of
compatibility conditions and that they correspond to syzygies. Let L0 ∈Dm1×m0 be a
matrix-valued linear differential operator. We consider the inhomogeneous problem
L0u = v where u ∈ Am0 is to be determined and v ∈Am1 is a given right hand side.
As shown in Remark 7.1.7, we cannot expect for an overdetermined operator L0

that a solution u exists for every right hand side v. We are interested in necessary
and sufficient conditions on v for the existence of solutions u. It will turn out that
deriving necessary conditions is fairly straightforward using the formal theory, while
sufficient conditions are much harder to get and depend decisively on the space A
in which we are looking for solutions. We will give such sufficient conditions only
for the simple case that we are dealing with a constant coefficients operator L0 and
that A= �[[x1, . . . ,xn]] is the ring of formal power series.

Definition 10.5.4. The linear differential operator L1 ∈ Dm2×m1 is a compatibility
operator for L0 ∈ Dm1×m0 , if L1 · L0 = 0 and if for any other differential operator
L̃1 ∈Dm̃2×m1 with L̃1 ·L0 = 0 an operator L̃ ∈ Dm̃2×m2 exists such that L̃1 = L̃ ·L1.

In other words, if L1 is a compatibility operator for L0, then a necessary condition
for the existence of a solution of the inhomogeneous linear system L0u = v for a
given right hand side v is that L1v = 0. Furthermore, L1 has the universal property
that any other differential operator annihilating L0 is a multiple of it. Obviously, the
first property in Definition 10.5.4 implies that
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Am0
L0· Am1

L1· Am2 (10.60)

is a complex of D-modules.

Example 10.5.5. Depending on the choice of the space A, some linear operators do
not possess a compatibility operator. Consider for example forR=A= C∞(�) the
trivial operator L0 defined by multiplication with a smooth function f ∈R satisfying
f (x) = 0 for all x ≤ 0 and f (x) > 0 for all x > 0 (a classical instance of such a
function can be found in (A.12)). Assume now that L1 were a compatibility operator
for L0. Obviously, this property implies that L1 must vanish on the half line x ≥ 0.
Hence we can form the operator L̃1 = 1

x L1 which also satisfies L̃1 ·L0 = 0. However,
it is not difficult to see that no differential operator L̃ ∈ R[∂ ] exists such that L̃1 =
L̃ ·L1 and therefore no compatibility operator exists. �

Assuming that a compatibility operator L1 exists, we may iterate the above con-
struction and search for a compatibility operator of L1 and so on. The iteration leads
to a sequence of the form

0 kerA L0 Am0
L0· Am1

L1· Am2 · · · . (10.61)

One speaks of a compatibility or Janet sequence for the linear operator L0 (the latter
term is often reserved for the case that the sequence is exact).

Example 10.5.6. A simple but classical instance of a compatibility sequence is
formed by the basic operators of (three-dimensional) vector analysis: gradient, curl
and divergence. Let us start with the differential equation gradu = ∇u = 0. If we
add a right hand side, we obtain the system

ux = v1 , uy = v2 , uz = v3 . (10.62)

It is trivial to check that the homogeneous system is involutive. A necessary con-
dition for the existence of solutions of this inhomogeneous system is that the three
functions vα appearing on the right hand side satisfy the differential equation

v2
z − v3

y = 0 , v3
x− v1

z = 0 , v1
y− v2

x = 0 , (10.63)

in other words, that curlv =∇×v = 0. Obviously, this fact corresponds to the well-
known identity curl ◦grad = 0.

Now we may add a right hand side to (10.63), i. e. we consider curlv = w. This
differential equation is solvable, if and only if w satisfies

w1
x + w2

y + w3
z = 0 . (10.64)

Of course, this fact means nothing but divw =∇·w = 0 and we recover the next
classical identity div ◦ curl = 0.

We may represent these identities in the following sequence
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0 � C∞(�3,�)
grad

C∞(�3,�3)
curl

curl C∞(�3,�3)
div C∞(�3,�) 0 .

(10.65)

The term � at the left end represents the constant functions on �3 which trivially
form the kernel of the gradient.

Readers familiar with differential geometry know that (10.65) is nothing but a
special case of the de Rham complex. Let M be an n-dimensional manifold. The
vector bundles Ω k(M) of differential k-forms (cf. Appendix C.2) form together
with the exterior derivative d as differential the complex

0 � Ω 0(M)
d Ω 1(M)

d · · · d Ω n(M) 0 .

(10.66)
If we consider global forms, then it is in general not exact and its cohomology con-
tains important topological information on the manifold M. Locally, the sequence
(10.66) is exact by the Poincaré Lemma (see Remark C.2.9). �

Some obvious questions are when such a compatibility sequence (10.61) exists,
how one can construct it and when it will be exact. If the sequence is exact, one
calls the operator L0 a parametrisation of L1, as any element of kerA L1 can be
represented in the form L0u for some u∈Am0 (since kerAL1 = imA L0). Thus in this
case the differential equation L1v = 0 is also a sufficient condition for the solvability
of the inhomogeneous system L0u = v; this fact is often called the fundamental
principle. A natural approach (following the ideas of Remark 10.5.2) consists of
computing first a free resolution

· · · ·L2
D1×m2

·L1
D1×m1

·L0
D1×m0

π M 0 (10.67)

where as usual M = D1×m1/D1×m0L0. For many practically relevant coefficient
rings R such a computation can be effectively done using Gröbner (or involutive)
bases (cf. B.2 and B.4 or Section 5.4). Once a free resolution has been found, we can
dualise it by applying the contravariant functor HomD(·,A) and obtain a complex
of the form (10.61). The next result shows that, in the Noetherian case, satisfaction
of the fundamental principle is equivalent to the injectivity of the function space A,
thus we are dealing here with a purely algebraic property.

Proposition 10.5.7. Let D be a Noetherian ring. Then the fundamental principle
holds over the D-module A, i. e. a necessary and sufficient condition for the solv-
ability of the inhomogeneous system L0u = v over A is L1v = 0, if and only if A is
an injective module.

Proof. If A is injective, then the functor HomD(·,A) is exact according to Proposi-
tion B.2.11. Thus in this case it follows immediately from the exactness of the free
resolution (10.67) that the dual sequence (10.61) is exact, too.
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For the converse we apply Baer’s Criterion (Proposition B.2.7). Let I ⊆ D be an
ideal. Since D is Noetherian, we can find a finite generating set: I = 〈Q1, . . . ,Qp〉.
If φ : I → A is a homomorphism, then we consider the elements vi = φ(Qi) ∈ A.
Baer’s Criterion is satisfied (and henceA injective), if we can find a function u ∈ A
such that Qiu = vi for 1≤ i≤ p.

Obviously, such a u is nothing but a solution of an overdetermined linear system.
Since we are assuming that the fundamental principle holds over A, a solution will
exist if and only if the right hand sides vi satisfy the compatibility conditions of this
system. Let S1, . . . ,Sr ∈ Dp be a basis of the syzygy module Syz(I), i. e. we have
∑p

i=1 S jiQi = 0. As φ is a homomorphism, we have

0 = φ
( p

∑
i=1

S jiQi
)

=
p

∑
i=1

S jiφ(Qi) =
p

∑
i=1

S jivi . (10.68)

Hence the right hand sides vi satisfy the compatibility conditions and a function
u ∈ A as required exists. �

Of course, Proposition 10.5.7 does not really answer our questions, but only
replaces them with a new one: which D-modules A are injective? It is highly non-
trivial to provide an answer for practically relevant function spaces. We will con-
sider here only the simplest case that the coefficient ring R is a field � and that
A = �[[x1, . . . ,xn]], i. e. we restrict to formal power series solutions of linear sys-
tems with constant coefficients.

Proposition 10.5.8. The fundamental principle holds for formal power series solu-
tions of linear systems with constant coefficients.

Proof. The above made assumptions imply that both D and A are �-linear spaces.
Furthermore, we have a canonical isomorphism between the �-linear dual space
D∗ = Hom�(D,�) and the function space A given by φ 	→ ∑μ∈�n

0

1
μ!φ(∂ μ )xμ .

Since for a field � the functor Hom�(·,�) is always exact by Proposition B.2.9,
its application to (10.67) provides us with an exact sequence of the form

0 Hom�(M,�) Hom�(D1×m0 ,�) · · · . (10.69)

Now we can apply Remark B.1.8 according to which we have an isomorphism
Hom�(M,�) ∼= HomD(M,D∗) and similar for the other modules in (10.69). En-
tering the above introduced isomorphismD∗ ∼=A yields then an exact compatibility
sequence of the form (10.61). �

Example 10.5.9. We return to Example 10.5.6 above. Here L0 = grad = (∂x ∂y ∂z)t .
Obviously, the entries of L0 form a Pommaret basis of the ideal they generate in
D = �[∂x,∂y,∂z]. Thus we can apply Theorem 5.4.12 in order to determine a free
resolution of minimal length (in fact, according to Theorem 5.5.8 we even get the
minimal resolution, as our ideal is trivially stable). According to Proposition 10.5.8,
we obtain thus the exactness of (10.65) hat the level of formal power series. �



10.5 Basic Algebraic Analysis 465

Injectivity ofA ensures that exactness of (10.67) implies the exactness of (10.61).
The converse is not necessarily true; it requires that the functor HomD(·,A) is faith-
ful. According to Remark B.2.22, this is the case for an injective module A, if and
only if A is in addition a cogenerator (see Definition B.2.18). From the point of
view of differential equations, this property is of great interest, since we will now
show that for injective cogenerators we have a bijective correspondence between
finitely generated D-modules and the solutions spaces of linear differential opera-
tors. In other words, the solution space defines uniquely (up to isomorphisms) the
corresponding D-module. Loosely speaking, the cogenerator property means that
the chosen function space A is large enough.

The action of D on A allows us to introduce for each m ∈� a pairing

(·, ·) :

{
Dm×Am −→ A

P×u 	−→ (P,u) = ∑m
i=1 Piui

(10.70)

which is D-bilinear and E-linear in the second argument. With its help we may
define “orthogonal” complements: if T ⊆Dm andB⊆Am are arbitrary subsets, then
we set T ⊥ = {u ∈ Am | (T ,u) = 0} and B⊥ = {P ∈ Dm | (P,B) = 0}. Obviously,
we have T ⊥ = 〈T 〉⊥D and B⊥ = 〈B〉⊥E , i. e. the complements depend only on the
submodules generated by T and B, respectively.

If we denote by �D(Dm) and �E(Am) the lattice of all D- respectively E-
submodules of Dm respectively Am partially ordered by inclusion, then the oper-
ation of taking the complement with respect to the above pairing clearly defines a
correspondence ·⊥ : �D(Dm)↔ �E(Am), i. e. the maps revert inclusions and we
have T ⊆ T ⊥⊥ and B ⊆ B⊥⊥ for all T ∈�D(Dm) and all B ∈�E(Am).

Theorem 10.5.10. If the D-moduleA is an injective cogenerator, then the maps ·⊥
define a bijective correspondence between the lattice �D(Dm) and the sublattice
K = {B ∈�E(Am) | ∃r ∈�,L ∈ Dr×m : B = kerAL} consisting of all submodules
which are the solution space of some linear differential operator.

Proof. We first show that under the made assumption on A the equality T = T ⊥⊥

holds for any submodule T ∈ �D(Dm). Since T ⊆ T ⊥⊥, it follows immediately
that T ⊥ = T ⊥⊥⊥. Consider now the exact sequence

0 kerα Dm/T α Dm/T ⊥⊥ (10.71)

where α is the canonical map induced by the inclusion T ⊆ T ⊥⊥. Since the functor
HomD(·,A) is left exact by Proposition B.2.9, it yields an exact sequence

0 HomD(kerα,A) HomD(Dm/T ,A) HomD(Dm/T ⊥⊥,A) .

(10.72)
Similar to Proposition 10.5.1, one can show the existence of an isomorphism

HomD(Dm/T ,A)∼= T ⊥ which maps a homomorphism φ to φ ◦π ∈HomD(Dm,A)
with the canonical projection π :Dm →Dm/T and then exploits the natural isomor-
phy HomD(Dm,A)∼=Am. Combining these results yields an isomorphism
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HomD(Dm/T ,A) ∼−→ T ⊥ = T ⊥⊥⊥ ∼−→ HomD(Dm/T ⊥⊥,A) . (10.73)

By construction, this combined map is nothing but the inverse of HomD(α,A). Thus
the latter map is actually an isomorphism and it follows from the exact sequence
(10.72) that HomD(kerα,A) = 0. Since we assume that the moduleA is an injective
cogenerator, this fact implies by Remark B.2.22 that kerα = 0, too, and thus that α
is an isomorphism or equivalently that T = T ⊥⊥.

Now assume that B ∈ K. Obviously, the condition B = kerA L is equivalent to
B = T ⊥ where T =D1×rL is the row module of the operator L. Thus we also have
B⊥⊥ = T ⊥⊥⊥ = T ⊥ = B and the two maps ·⊥ are inverse to each other. �

Corollary 10.5.11. Let A be an injective cogenerator. Two differential operators
L1 ∈ Dr1×m, L2 ∈ Dr2×m satisfy kerA L1 = kerA L2, if and only if they possess the
same row module (or, equivalently, if there are matrices X ∈ Dr1×r2 , Y ∈ Dr2×r1

such that L1 = YL2 and L2 = XL1).

Remark 10.5.12. It is highly non-trivial to prove for function spaces of practical rel-
evance that they are injective cogenerators. Important examples of spaces possessing
this property are:

(i) the ring �{x1, . . . ,xn} of convergent power series;
(ii) the ring O(�n) of entire functions;
(iii) the ring of smooth complex-valued functions C∞(�n,�);
(iv) the ring of complex-valued distributionsD′(�n,�).

The injectivity of all these D-modules (with the obvious action of D via differentia-
tion) was proven by Ehrenpreis [118, Chapt. 5] and Palamodov [348, Chapt. VII, §8]
(here even the more general case of functions defined on an open convex subset Ω
of�n or�n, respectively, is considered) already in 1970. The cogenerator property
was shown much later (1990) by Oberst [337, Sect. 4]. �

10.6 The Inverse Syzygy Problem

In the last section we discussed compatibility operators. Our starting point was a
linear differential operator L0 ∈ Dm1×m0 and we looked for another differential op-
erator L1 ∈ Dm2×m1 such that the complex (10.60) is exact. Now we turn our at-
tention to the inverse problem: given an operator L1, decide whether or not it is the
compatibility operator of another differential operator L0. Recall that we called such
an operator L0 a parametrisation of L1.

In the sequel, we will assume that the function spaceA is an injective cogenerator
so that the functor HomD(·,A) is exact and faithful. According to the discussion
in the last section, an exact compatibility sequence over A is then dual to a free
resolution over D, hence it suffice to treat the question as a syzygy problem for
D-modules, as the dualisation reverts arrows.
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Besides its obvious theoretical interest, the inverse problem is of considerable
importance in practice. First of all, if we can construct a parametrisation L0, then
we have effectively solved the homogeneous equation L1u = 0, as any solution of
it is of the form u = L0v and conversely any function u = L0v is a solution of
it. Secondly, the inverse problem is of relevance in many fields like mathematical
physics or algebraic systems theory (see the Addendum at the end of this section). In
a physical context one usually speaks about potentials instead of parametrisations;
we will see some concrete examples below.

As it actually makes the theory simpler, we will now take for D an arbitrary
coherent ring (not necessarily of polynomial type). The precise formulation of the
inverse syzygy problem goes then as follows: given a (left) D-module homomor-
phism β :Dr →Dm between two free D-modules of finite rank, does there exists a
further homomorphism γ :Dm →Ds such that imβ = kerγ? By analogy to the case
of linear differential operators, we call such a map γ a parametrisation of β . In the
sequel we will show how one can effectively decide whether or not a parametrisation
exists and how it can be explicitly computed, if it exists.

The basic observation is that a syzygy computation “goes in the wrong direc-
tion”: it determines a map α :Dp →Dr with imα = kerβ . Thus we must revert the
directions of the arrows which can be achieved by a dualisation, i. e. by applying
the functor HomD(·,D). As usual, we denote for a left D-moduleM the dual mod-
ule HomD(M,D) by M∗ and for a homomorphism α :M→N the dual map by
α∗ :N ∗→M∗. By Remark B.1.7,M∗ is always a rightD-module.

These considerations lead to the simple Algorithm 10.1. All maps and modules
appearing in its course are sketched in the following diagram

Dr̂ β̂

Dm
γ

Ds

Dr β

(Dr)∗ (Dm)∗
β∗

(Ds)∗
γ∗

(10.74)

where dotted lines denote dualisations. The condition in Line /2/ implies that
β∗ ◦ γ∗ = (γ ◦ β )∗ = 0 and thus γ ◦ β = 0. But although imγ∗ = kerβ∗, we can-
not conclude that the equality imβ = kerγ holds (according to Proposition B.2.11
the functor HomD(·,D) is not exact, as free D-modules are not necessarily injec-
tive). Thus we need Line /4/ in order to verify that the map γ computed in Line /3/ is
indeed a parametrisation. Note that for the correctness of Algorithm 10.1 it is indeed
necessary that the ring D is both left and right coherent: we need the left coherence
to guarantee that kerγ and the right coherence that kerβ∗ is finitely generated.

If imβ = im β̂ , then γ is clearly a parametrisation. It is less obvious that no
parametrisation exists, if imβ � im β̂ . We will characterise the solvability of the
inverse syzygy problem via the question whether the cokernel cokerβ is torsionless
and provide simultaneously a correctness proof for Algorithm 10.1. Recall from
Remark B.1.7 that a moduleM is called torsionless, if the natural homomorphism



468 10 Linear Differential Equations

Algorithm 10.1 Parametrisation test
Input: map β :Dr→Dm

Output: if it exists map γ :Dm→Ds such that imβ = kerγ otherwise FAIL
1: compute dual map β∗

2: compute γ∗ : (Ds)∗→ (Dm)∗ with imγ∗ = kerβ∗

3: compute dual map γ :Dm→Ds

4: compute map β̂ :Dr̂ →Dm such that im β̂ = kerγ
5: if im β̂ = imβ then
6: return γ
7: else
8: return FAIL
9: end if

ηM :M→M∗∗ connectingM and its bidual is injective. The two for us relevant
properties of a torsionless module are collected in the following lemma.

Lemma 10.6.1. Let φ :M→N be a homomorphism of left D-modules such that
its dual map φ∗ :N ∗→M∗ is surjective.

(i) If M is torsionless, then φ is injective.
(ii) If N is torsionless, then kerηM = kerφ .

Proof. Consider the following commutative diagram

M
φ

ηM

N
ηN

M∗∗
φ∗∗

N ∗∗

(10.75)

where the bidual map φ∗∗ is trivially injective, since we assume here that the dual
map φ∗ is surjective.

In the case of the first assertion, ηM is injective, too, as the module M is as-
sumed to be torsionless. Hence the composed map φ∗∗ ◦ηM = ηN ◦φ is injective
which is only possible, if φ is injective.

For the second assertion, we note that the injectivity of φ∗∗ implies that

kerηM = ker(φ∗∗ ◦ηM) = ker(ηN ◦φ) = kerφ (10.76)

where the last equality follows from the assumption that this time the moduleN is
torsionless and hence ηN injective. �

Theorem 10.6.2. Let D be a coherent ring and β : Dr → Dm a homomorphism
of finitely generated free D-modules. If the map β̂ : Dr̂ → Dm is constructed by
Algorithm 10.1 above, then the following three statements are equivalent.

(i) The left D-module cokerβ =Dm/ imβ is torsionless.
(ii) A left D-module homomorphism γ̄ :Dm →Ds̄ exists with imβ = ker γ̄ .
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(iii) The equality imβ = im β̂ holds.

Proof. (iii) trivially implies (ii); we simply choose γ̄ = γ . Assume that (ii) holds
and consider the module homomorphism φ : cokerβ →Ds̄ given by φ

(
[P]
)

= γ̄(P)
where [P] denotes the equivalence class of P ∈ Dm in cokerβ . The map φ is well-
defined as imβ = ker γ̄ and obviously injective. Thus cokerβ is isomorphic to a
submodule of a free module and trivially torsionless so that (ii) implies (i).

There remains to show that (i) implies (iii). Since γ ◦β = 0, the homomorphism γ
can be decomposed as γ = φ ◦π with π :Dm → cokerβ the canonical projection and
φ : cokerβ →Ds the induced map. Dually, we obtain γ∗ = π∗ ◦ φ∗. By construc-
tion, we have on one side kerβ∗ = imγ∗ and on the other side kerβ∗ = imπ∗.
Hence imγ∗ = imπ∗ and since π∗ is trivially injective, φ∗ must be surjective. Now
it follows from the first assertion in Lemma 10.6.1 that φ is injective and hence
imβ = kerπ = ker(φ ◦π) = kerγ = im β̂ . �

Remark 10.6.3. As a free module, Ds is trivially torsionless. Using again the de-
composition γ = φ ◦π from the proof above and the fact that the dual map φ∗ is
surjective, kerηM = kerφ by the second assertion in Lemma 10.6.1. Furthermore,
we have the trivial isomorphism kerφ ∼= kerγ/kerπ = im β̂/ imβ . Hence Algo-
rithm 10.1 allows us to determine explicitly ker(ηcokerβ ) and so provides us with an
effective test for torsionlessness of any finitely presented module coker(β ). �

For the concrete computational realisation of Algorithm 10.1, we use matrix rep-
resentations of the maps involved. Following the discussion at the beginning of
the last section, we consider now β as a map D1×r →D1×m defined by a matrix
B ∈ Dr×m as β (P) = PB. Using the natural isomorphism (D1×m)∗ ∼= Dm identify-
ing each element of the dual module with its image on the standard basis, it is easy
to see that we may then consider β∗ as the mapDm →Dr given by β∗(Q) = BQ (as
we are now dealing with a right module homomorphism, we must indeed multiply
from the left).7 Thus the first and the third step of Algorithm 10.1 are trivial.

Line /2/ requires to compute the solution space kerD (B·)⊆Dm of the linear sys-
tem of equations BQ = 0 which is equivalent to determining the (right) syzygies of
the column module of the matrix B. If {Q1, . . . ,Qs} is a generating set of kerD (B·),
then we may set C = (Q1, . . . ,Qs) thus defining the map γ . Dually, Line /4/ requires
to compute a generating set {P1, . . . ,Pr̂} of the solution space kerD (·C)⊆D1×m of
the linear system of equations PC = 0, i. e. the determination of the (left) syzygies
of the row module of the matrix C. Finally, we must check in Line /5/ whether the
row module of B equals 〈P1, . . . ,Pr̂〉.

Example 10.6.4. Algorithm 10.1 allows us to derive systematically the relation be-
tween the U(1) Yang–Mills equations and the Maxwell equations discussed in Ex-
ample 2.4.3. We start with the four equations Bt = −∇×E and ∇·B = 0 (i. e. the
Bianchi identity dF = 0). Rewriting them as a linear differential operator yields

7 IfD is a commutative ring, then we may of course use the more common realisations β (P) = BP
and β∗(Q) = BtQ where now P is a column vector, too.
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B =

⎛

⎜
⎜
⎝

∂t 0 0 0 −∂z ∂y

0 ∂t 0 ∂z 0 −∂x

0 0 ∂t −∂y ∂x 0
∂x ∂y ∂z 0 0 0

⎞

⎟
⎟
⎠ . (10.77)

According to the discussion above, we need a generating set for the right syzygies
of the columns of B. A straightforward computation yields

C =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

0 −∂z ∂y 0
∂z 0 −∂x 0
−∂y ∂x 0 0
−∂t 0 0 −∂x

0 −∂t 0 −∂y

0 0 −∂t −∂z

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

(10.78)

as the matrix representation of γ and a further syzygy computation yields that γ is
indeed a parametrisation of β . This result does not come as a surprise, as C obvi-
ously encodes the familiar relations B =∇×A and E = −∇·A4− ∂tA. Thus we
have rediscovered the vector potential.

It is interesting to note that if we omit in the matrix B one of the first three rows,
we still obtain the same matrix C. But now imβ �= im β̂ so that C does not define
a parametrisation and β̂ is given by the original matrix B. Thus the compatibility
analysis with Algorithm 10.1 automatically recovers the dropped equation. �

Example 10.6.5. As a further quite famous example we study whether the linearised
Einstein equations are the compatibility conditions of some other system. This prob-
lem was posed by Wheeler about 1970 and much later solved by Pommaret [358].

The linearisation of the Einstein equations (2.96) around the Minkowski metric,
i. e. the ansatz8 gi j = ηi j + hi j, yields the following linear system

ηk�[∂xix j hk� + ∂xkx�hi j− ∂xkxi h� j− ∂xkx j h�i
]
= 0 . (10.79)

By symmetry, we may restrict to 1 ≤ i≤ j ≤ n so that (10.79) contains n(n + 1)/2
independent equations for the same number of unknowns but the system is still
underdetermined. Thus for n = 4 we have 10 equations.

Because of its size, we omit the matrix B ∈ D10×10 representing the homomor-
phism β corresponding to the linearised Einstein equations in four dimensions; its
entries follow straightforwardly from (10.79). A syzygy computation yields as ma-
trix representation of the homomorphism γ

C =

⎛

⎜⎜
⎝

2∂x 0 0 0 ∂y 0 0 ∂z 0 ∂t

0 2∂y 0 0 ∂x ∂z 0 0 ∂t 0
0 0 2∂z 0 0 ∂y ∂t ∂x 0 0
0 0 0 −2∂t 0 0 −∂z 0 −∂y −∂x

⎞

⎟⎟
⎠ . (10.80)

8 Recall from Example 2.4.3 that η ii = 1 for 1 ≤ i < n, ηnn = −1 and η i j = 0 in all other cases.
ηi j are the entries of the inverse matrix.



10.6 The Inverse Syzygy Problem 471

However, a further syzygy computation yields that a minimal generating set of the
left syzygy module of the row module of C consists of 20 elements. Thus we have
imβ � im β̂ and (10.79) does not admit a parametrisation.

One can obtain in this manner further interesting results in differential geometry;
for lack of space we refer again to [358]. We mention here only that the differen-
tial operator corresponding to γ∗ has a simple geometric interpretation. We may
write it as hi j = ηk j∂xi Xk +ηik∂x j Xk or h = LXη , i. e. h is the Lie derivative of the
Minkowski metric with respect to the vector field X = Xk∂xk . �
Example 10.6.6. A special case arises in Algorithm 10.1, if the map β∗ is injec-
tive. Obviously, we may now take for γ∗ the zero map (for an arbitrary value of the
rank s). The dual map γ is then of course the zero map, too, and a (trivial) parametri-
sation of β exists, if and only if β is surjective. Representing as above β by a matrix
B ∈ Dr×m, i. e. β (P) = PB and β∗(Q) = BQ, injectivity of β∗ is equivalent to the
matrix B having full column rank, whereas surjectivity of β requires the existence
of a left inverse for B, i. e. a matrix X with XB = �.

As a concrete example from physics, we may consider the Poincaré–Steklov
problem in three dimensions. Given a vector field v and a function w, it asks for
a vector field u satisfying ∇× u = v and ∇ · u = w. These equations appear for
instance naturally in electrostatics (if we study only time-independent solutions,
then Maxwell’s equations (2.85) decouple and any static electrical field E solves a
Poincaré–Steklov problem) but also in the theory of the Navier–Stokes equations.

One can show via an involution analysis that only a single compatibility condition
exists for this problem, namely the obvious one: ∇· v = 0. If we study the inverse
syzygy problem via Algorithm 10.1, the matrix of the differential operator β is

B =

⎛

⎜⎜
⎝

0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0
∂x ∂y ∂z

⎞

⎟⎟
⎠ . (10.81)

Obviously, the columns of this matrix are linearly independent and thus the dual
map β∗ is injective. However, β is not surjective, as one easily sees that B does not
possess a left inverse, and thus no parametrisation exists. �
Remark 10.6.7. We discussed the inverse syzygy problem from the view point of
differential equations theory emphasising the problem of finding a parametrisation.
Thus we started with the homomorphism β and our goal was the construction of a
homomorphism γ with imβ = kerγ . Algebraically this formulation is not the most
natural one. Here a better starting point is the left D-moduleM= cokerβ . We say
thatM is an nth syzygy, if a free coresolution

0 M F1 · · · Fn (10.82)

of length at least n exists. It is not difficult to relate the two formulation. If Al-
gorithm 10.1 provides us with a map γ : Dm → Ds such that imβ = kerγ , then

we obviously have a coresolution of length 1 of the form 0 →M γ̃−→ Ds with
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γ̃
(
[P]) = γ(P) so that M is a first syzygy (γ̃ is well-defined, since imβ = kerγ).

Thus Theorem 10.6.2 asserts thatM is a first syzygy, if and only if it is torsionless.
Now we may iterate and apply Algorithm 10.1 to the map γ constructed in the

previous step. If we obtain a map δ : Ds → Dt with imγ = kerδ , then M is a
second syzygy and so on. Effectively, this procedure amounts to the step by step
construction of a free resolution of the module cokerβ∗ (which is actually the
Auslander–Bridger dual of M—see the Addendum below) and its subsequent du-
alisation. However, we must check at each step whether the dual sequence is still
exact. If this property is indeed preserved until the nth step, then we say that M is
n-torsionless (1-torsionlessness is obviously equivalent to the classical notion of tor-
sionlessness). Thus we may conclude with Theorem 10.6.2 thatM is an nth syzygy,
if and only if it is n-torsionless. �

In the literature the existence of a parametrisation is usually connected with the
question whether cokerβ is torsionfree and not torsionless as in Theorem 10.6.2
above. Recall from Remark B.1.7 that a torsionless module is always torsionfree
but not vice versa. However, if the underlying ring D satisfies certain conditions,
then the converse is true, too. We will now use Algorithm 10.1 to derive an instance
where this is the case.

Theorem 10.6.8. Let D be a coherent ring which satisfies the left Ore condition for
the subset S of regular elements and whose total ring of left quotients Q = S−1D
is right self-injective (see Definition B.2.5). Then a finitely generated left D-module
is torsionfree, if and only if it is torsionless.

Proof. As mentioned above, it suffices to show that under the made assumption any
finitely generated torsionfree module is also torsionless. Since D is coherent, we
may consider any finitely generated left D-module as the cokernel cokerβ of some
homomorphism β : Dm → Dr. Assume now that M = cokerβ is torsionfree and
determine the maps γ and β̂ of Algorithm 10.1. According to Example B.2.17, the
quotient ring Q is a flat extension of D. Hence the tensor product functorQ⊗D · is
exact and its application yields the equalities

ker(Q⊗D γ) =Q⊗D kerγ =Q⊗D im β̂ = im(Q⊗D β̂ ) (10.83)

(since by construction kerγ = im β̂ ) and

ker(Q⊗D β )∗ = ker(β∗⊗DQ) = im(γ∗⊗DQ) = im(Q⊗D γ)∗ (10.84)

(as kerβ∗ = imγ∗).
By assumption the quotient ring Q is right self-injective, so that we may dualise

the second equality and obtain im(Q⊗D β ) = ker(Q⊗D γ) which together with the
first equality gives im (Q⊗D β ) = im(Q⊗D β̂ ). Thus any element P ∈ im β̂ can be
written in the form S−1P̃ with P̃ ∈ imβ and S ∈ S a regular element implying that
S[P] = 0 in M. As the module M is assumed to be torsionfree and S is regular,
we must have [P] = 0 in M or equivalently P ∈ imβ . Hence imβ = im β̂ and, by
Theorem 10.6.2, the moduleM is torsionless. �
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By the same reasoning as in Remark 10.6.3 above, we conclude that under the
assumptions of Theorem 10.6.8 Algorithm 10.1 allows us to determine explicitly the
torsion submodule t(M) of the moduleM= cokerβ , as it is given by im β̂/ imβ .

Remark 10.6.9. Note that the assumptions of the theorem are trivially satisfied, if
the ring D is a left Ore domain, as in this case the quotient ring Q is actually a
skew field and it follows immediately from Baer’s Criterion (Proposition B.2.7) that
any field is self-injective (alternatively, one could argue that the column and the row
rank of a matrix over a skew field are always equal [277]). �

Addendum: Computing Extension Groups

Algorithm 10.1 allows us the computation of certain extension groups. We discussed
in Remark 10.6.3 that im β̂/ imβ = kerηM where ηM :M→M∗∗ is the natural
homomorphism betweenM= cokerβ and its bidualM∗∗. Now we will show that
this kernel is actually an extension group. But before we need the notion of the
Auslander–Bridger dual D(M) of a finitely presented moduleM: ifM= cokerβ ,
then we define D(M) = cokerβ∗, i. e. as the cokernel of the dual map. Note that
D(M) is not uniquely determined byM but depends on the chosen presentation β
(but one can show that D(M) is unique up to projective direct summands).

Proposition 10.6.10. LetM be a finitely generated left D-module. Then there is an
exact sequence

0 Ext1D(D(M),D) M
ηM M∗∗ Ext2D(D(M),D) 0 .

(10.85)
In other words, we have two natural isomorphisms kerηM ∼= Ext1D(D(M),D) and
cokerηM ∼= Ext2D(D(M),D).

Proof. As usual, we assume that the moduleM is given as a cokernel via an exact

sequenceDr β−→Dm π−→M−→ 0. Since the dual moduleM∗ is obviously finitely

generated, too, we have a further exact sequenceDs α−→Dt ρ−→M∗−→ 0. Splicing
the dual of the second sequence with the first one via the homomorphismηM yields
the following complex:

Dr
β

Dm
ρ∗◦ηM◦π

(Dt )∗ α∗
(Ds)∗ . (10.86)

Since π and ρ are both surjective (and hence ρ∗ injective), we first note that
im(ρ∗ ◦ηM ◦π) ∼= imηM and, as kerα∗ ∼= M∗∗, we see that the homology of
this complex at (Dt)∗ is isomorphic to cokerηM. Furthermore, again by the injec-
tivity of ρ∗ and because of imβ = kerπ , we find that the homology of the complex
at Dm is isomorphic to kerηM.
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By definition, the Auslander–Bridger dual D(M) is the cokernel of β∗. Thus
combining the free presentation of M∗ with the dualised presentation of M yields
the exact sequence

Ds α Dt
π∗◦ρ

(Dm)∗
β∗

(Ds)∗ D(M) 0 (10.87)

which we may consider as the beginning of a free resolution of D(M). In order to
compute the sought extension modules, we must dualise this sequence. Since one
easily verifies that π∗∗ = ηM ◦ π after the usual identification (Dm)∗∗ = Dm, the
relevant part of the dualised sequence is just (10.86) and therefore we have indeed
that Ext1D(D(M),D) ∼= kerηM and Ext2D(D(M),D) ∼= cokerηM. �

Since according to Remark 10.6.3 kerηM = im β̂/ imβ , Algorithm 10.1 pro-
vides us with an explicit method to determine Ext1D(D(M),D). It follows from the
discussion in Remark 10.6.7 that an iteration allows us to compute the higher ex-
tension groups, too; each further group requires essentially two additional syzygy
computations. We obtain then the following extension of the diagram (10.74)

Dr̂

β̂
Dm̂

γ̂1
Dŝ1

γ̂2
Dŝ2

γ̂3

Dr
β

Dm
γ1 Ds1

γ2 Ds2
γ3 · · ·

0 D(M) (Dr)∗ (Dm)∗
β∗

(Ds1)∗
γ∗1 (Ds2)∗

γ∗2 · · ·
γ∗3

(10.88)
where the bottom row defines a free resolution of D(M) and our results imply now
the isomorphisms

Ext1D(D(M),D)∼= im β̂/ imβ , Exti+1
D (D(M),D)∼= im γ̂i/ imγi . (10.89)

Remark 10.6.11. Our results so far concern the extension groups of the
Auslander–Bridger dual D(M) and, as mentioned above, D(M) is not uniquely
determined by the module M but also depends on the chosen presentation β . The
definition of D(M) trivially implies that D

(
D(M)

)
=M, since for a homomor-

phism between free modules we may identify β∗∗ = β . Hence, by reverting the
role of β and β∗, we can use Algorithm 10.1 for computing the extension groups
ExtiD(M,D).

Furthermore, the groups ExtiD(D(M),D) depend only on M and not on β , as
they are trivially related to the extension groups of the dual moduleM∗. By defini-
tion of D(M), we have an exact sequence

0 M∗ π∗ (Dm)∗
β∗

(Dr)∗ D(M) 0 . (10.90)

Assume now that F α−→M∗ −→ 0 is a free resolution ofM∗. Then obviously,
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F π∗◦α (Dm)∗
β∗

(Dr)∗ D(M) 0 (10.91)

is a free resolution of D(M) and we obtain the equalities

Exti+2
D (D(M),D) = ExtiD(M∗,D) (10.92)

for all values i≥ 1. Together with Proposition 10.6.10, this observation implies that
indeed all extension groups ExtiD(D(M),D) depend only on M. Another way to
see this fact consists of recalling that the Auslander–Bridger dual D(M) is unique
up to projective summands. According to Proposition B.2.37, such projective sum-
mands do not affect extension groups. �

Addendum: Algebraic Systems Theory

Many of the results in this and in the last section are of great relevance for algebraic
systems theory and in fact this application has motivated many theoretical develop-
ment. Therefore, we now briefly sketch a few basic ideas from this field; for more
details we refer to [361, 485, 487].

Classical linear systems theory is concerned with the study of linear ordinary
differential equations of the form

w′ = Pw+ Qv . (10.93)

Here the vector u of the dependent variables is split into two components, the state
variables w and the input v, and P, Q are two constant matrices of appropriate
dimensions. Obviously, (10.93) represents an underdetermined system in the sense
of Definition 7.5.6, as in order to obtain a formally well-posed initial value problem
we must completely prescribe the component v. The central goal of control theory
consists of finding inputs v such that the state component w of the solution of (10.93)
exhibits some desired properties.

Within the behavioural approach to systems theory, one dispenses with the dis-
tinction into state and input variables and defines a behaviour as the solution space
of a linear differential equation:

B = {u ∈ Am | Bu = 0}= kerA B . (10.94)

Here B ∈ Dr×m is a matrix of linear differential operators and A is some function
space, the signal space, in which the system is considered. If D is a ring of lin-
ear partial differential operators, one speaks of a multidimensional or distributed
system. In abstract systems theory, D could be any ring and A any left D-module.
While we admit in the sequel non-commutative rings D, we make two simplifying
assumptions:D is a domain and it is both left and right Noetherian (these properties
imply thatD satisfies the left and the right Ore condition [319, Theorem 2.1.15] and
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thatD is left and right coherent). Furthermore, we assume that the signal spaceA is
an injective cogenerator.

For obvious reasons, one calls (10.94) a kernel representation of B. Note that
given the matrix B the behaviour B = kerA B is uniquely determined whereas con-
versely for a given behaviour B in general many choices for the matrix B are pos-
sible. More generally, if B1,B2 ⊆ Am are two behaviours defined by matrices B1

and B2, respectively, then B1 ⊆B2, if and only if a further matrix X exists such that
B2 = XB1. If both B1 and B2 have full row rank, then B1 = B2, if and only if X is a
unimodular matrix.9

Introducing the map β :D1×r →D1×m with β (P) = PB, we may associate with
the behaviourB theD-moduleM= cokerβ which obviously remains invariant un-
der such multiplications with unimodular matrices. According to Theorem 10.5.10,
the maps ·⊥ define a bijective correspondence between submodules of Dm and be-
haviours B ⊆ Am; now we may identify the submodule corresponding to a given
behaviour B with imβ .

Let the matrix B ∈ Dr×m has rank p ≤ m so that we can choose p columns
which are linearly independent over the quotient field Quot(D). After a suitable
renumbering of the components of u, we may decompose B = (−Q | P) where the
submatrix P ∈Dr×p has still rank p. The corresponding splitting u =

(v
w

)
allows us

to rewrite the system Bu = 0 in the form Pw = Qv which is fairly similar to (10.93),
although P, Q are now matrix operators. One speaks of an input-output structure for
the behaviour B. This terminology is justified by the following result.

Proposition 10.6.12. Let B= {
(v

w

)
∈Am | Pw = Qv} be a behaviour with an input-

output structure where rankP = p. Then to every v ∈ Am−p there exists a w ∈ Ap

such that Pw = Qv.

Proof. Consider the map π :D1×r →D1×p defined by right multiplication with P.
By a classical syzygy computation, we can determine a homomorphism ρ such that
kerπ = imρ . According to the fundamental principle (which is applicable here by
Proposition 10.5.7, since the signal space A is an injective cogenerator), the ex-
istence of a solution w of the equation Pw = Qv is equivalent to v satisfying the
equation RQv = 0 where R is the matrix corresponding to ρ . As rankB = rankP,
there exists a matrix H ∈ Dp×(m−p) such that Q = PH.10 Thus we obtain the equa-
tion RPHv = 0 which holds for any v, since by construction RP = 0. �

The αth component of u is called a free variable of the behaviour B, if the natu-
ral projection πα : B ↪→Am →A mapping u ∈ B to the component uα is surjective.
The existence of a free variable is obviously equivalent to Bu = 0 being an under-
determined system in the sense of Definition 7.5.6. Indeed, the surjectivity of πα
implies that for any arbitrary function f ∈A we can find a solution u ∈ B such that
uα = f . Thus, by Proposition 10.6.12, the component v of an input-output structure
consists entirely of free variables.

9 A square matrix U ∈ Dr×r is unimodular, if detU is a unit in D. Obviously, this property is
necessary and sufficient for the existence of an inverse V ∈ Dr×r with UV = VU = �.
10 This unique H is called the transfer matrix of B for the chosen input-output structure.
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Definition 10.6.13. The behaviour B is autonomous, if no free variables exist.

The considerations above imply that the behaviour B is autonomous, if and only
if the matrix B has full column rank (so that P = B) which is equivalent to the dual
map β∗ being injective (cf. Example 10.6.6). Autonomy of an abstract behaviour
possesses a simple algebraic characterisation in terms of torsion.

Theorem 10.6.14. The behaviour B is autonomous, if and only if the associated
moduleM is a torsion module.

Proof. Assume first that B is not autonomous. Then for some index value α
the sequence B πα→ A → 0 is exact. Using the Malgrange isomorphism (Proposi-
tion 10.5.1), we may write this sequence as HomD(M,A)→ HomD(D,A)→ 0.
Since we assume thatA is an injective cogenerator, the functor HomD(·,A) is faith-

ful by Remark B.2.22 and the dual sequence M ια←D ← 0 is exact, too. Here we
denote by ια the homomorphism induced by ια(1) = [eα ]. Thus for any L ∈ D we
have ια(L) = [Leα ] �= 0 because of the injectivity of ια . But this fact implies that
[eα ] ∈M cannot be a torsion element.

For the converse, assume now thatM is not a torsion module. We claim that then
at least for one index value α , the vector [eα ] is not a torsion element of M. This
claim immediately implies that the behaviour B cannot be autonomous by simply
reverting the argument above (HomD(·,A) is here also an exact functor because of
the assumed injectivity of A). Now assume on the contrary that [eα ] is a torsion
element for all values of α . Hence for each α there exists an operator Lα ∈ D with
[Lαeα ] = 0. Let [P] ∈M be an arbitrary element ofM with P =∑α Pαeα . Accord-
ing to the left Ore condition, D must contain two non-zero elements Qα , Rα such
that QαLα = RαPα . Now consider a common left multiple R of the thus obtained
elements Rα (which exists by the left Ore condition), i. e. R = SαRα for each α .
We find R[P] = [∑α RPαeα ] = ∑α Sα [Lαeα ] = 0 so that M is a torsion module in
contradiction to our assumption. �
Remark 10.6.15. Since we assume that the underlying ring D contains no zero di-
visors,M is a torsion module, if and only if HomD(M,D) vanishes. According to
Part (i) of Proposition B.2.37, we can thus characterise autonomy by the vanishing
of the extension group Ext0D(M,D). �

A central concept in systems theory is controllability. In the context of the classi-
cal theory, it means intuitively that we can “steer” the system from any point of the
state space to any other point by a suitable choice of the inputs. For abstract systems,
we define it in a rather different manner, but we will show below for a special class
of systems that we can recover this intuitive interpretation in a generalised sense.

Definition 10.6.16. The behaviour B ⊆Am is controllable, if it possesses an image
representation, i. e. there exists a matrix C ∈Dr×s such that

B = {u ∈ Am | ∃z ∈ As : u = Cz}= imAC . (10.95)

In the language of physics one may say that a behaviour is controllable, if it admits
a potential z.
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If we compare the image representation (10.95) with the original kernel represen-
tation (10.94), then it is obvious that the existence of the former is equivalent to the
existence of a parametrisation C for the operator B (this is again just the fundamental
principle). Now Theorem 10.6.2 immediately implies the following characterisation
of controllability (and Algorithm 10.1 provides us with an effective test for it).

Theorem 10.6.17. The behaviour B is controllable, if and only if the associated
moduleM is torsionless.

Remark 10.6.18. According to Theorem 10.6.2, the moduleM is torsionless, if and
only if we find at the end of Algorithm 10.1 that im β̂ = imβ . Furthermore, by
Remark 10.6.3, the kernel of the natural homomorphism ηM :M→M∗∗ is iso-
morphic to the quotient im β̂/ imβ . Hence, it follows from Proposition 10.6.10 that
controllability of the behaviour B is equivalent to the vanishing of the extension
group Ext1D(D(M),D) where D(M) is again the Auslander-Bridger dual ofM. �

Controllable and autonomous behaviours, respectively, may be considered as two
opposite extrema; a randomly selected behaviour will generally be neither control-
lable nor autonomous. However, we will now show that any behaviour can be written
as the sum of an autonomous and a controllable subbehaviour.

Proposition 10.6.19. Let B ⊆Am be a behaviour. Then there exists a unique maxi-
mal controllable subbehaviour Bc ⊆ B, the controllable part of B.

Proof. LetB be given by the kernel representation (10.94). Applying Algorithm 10.1
to the homomorphism β defined by multiplication with B from the right yields a ho-
momorphism β̂ defined by some matrix B̂. We claim that the behaviour B̂ = kerA B̂
possesses all desired properties. Obviously, by construction, it is indeed controllable
and satisfies B̂ ⊆ B.

Let B′ = kerA B′ ⊆ B be a further controllable subbehaviour; we must show
that B′ ⊆ B̂. Since B′ ⊆ B, a matrix X exists such that B = XB′, and since B′ is
controllable, a parametrisation C′ of B′ exists. Because of our assumption that D
is Noetherian, we can use the results obtained in the proof of Theorem 10.6.8: for
any P ∈ im β̂ a non-zero operator L ∈ D exists such that LP ∈ imβ . Since we are
only dealing with finitely generated modules, there exists a “global” operator L ∈D
such that L im β̂ ⊆ imβ . Hence we have LB̂ = YB for some matrix Y and therefore
find that LB̂C′ = Y BC′ = XYB′C′ = 0. As D is a domain, this observation implies
B̂C′ = 0 and thus, since C′ a parametrisation of B′, that B̂ = ZB′ for some matrix Z.
But the latter equality is equivalent to B′ ⊆ B̂. �

Remark 10.6.20. It is not difficult to characterise Bc via torsion. Let M be the dif-
ferential module corresponding to the behaviour B and M′ the one for some sub-
behaviour B′ ⊆ B. Obviously,M′ is isomorphic to a quotient module M/N with
some submoduleN ⊆M. According to Theorems 10.6.2 and 10.6.8, B′ is control-
lable, if and only if M′ is torsionfree. Trivially, M′ ∼=M/N is torsionfree, if and
only if t(M) ⊆ N where t(M) is the torsion submodule of M. Thus the module
corresponding to the controllable part Bc ⊆ B is isomorphic to M/t(M). �
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Theorem 10.6.21. Let B be a behaviour with controllable part Bc ⊆ B. Then there
exists an autonomous subbehaviour Ba ⊆ B such that B = Ba +Bc.

Proof. Let B = (−Q | P) be an input-output structure for B. Since Bc ⊆ B and
thus B = XBc for some matrix X , we obtain an induced input-output structure
Bc = (−Qc | Pc) with rankPc = rankP. We claim that the (trivially autonomous)
subbehaviourBa = {

(v
w

)
∈ B | Pw = 0∧v = 0} satisfies Ba +Bc =B. The inclusion

Ba +Bc ⊆ B is obvious. Let
(v

w

)
∈ B be an arbitrary element; according to Propo-

sition 10.6.12, the controllable part Bc contains an element of the form
(v

w̃

)
. Now

we can decompose
(v

w

)
=
(v

w̃

)
+
( 0

w−w̃

)
where the first summand lives in Bc and the

second one in Ba. �

One should note that, in contrast to the controllable part Bc, the autonomous
partBa in the above decomposition is far from unique and generally it is not possible
to choose it in such a manner that we obtain a direct sum.

For the simplest case, namely that we are considering the smooth solutions of a
linear system of partial differential equations with constant coefficients, i. e. for the
choice D = �[∂1, . . . ,∂n] and A = C∞(�n), autonomy and controllability can be
given very concrete interpretations in terms of properties of the solution space. Here
we also make contact with classical differential equations theory.

Lemma 10.6.22. Let B ⊆Am be an autonomous behaviour. If a solution u ∈ B has
compact support, then u = 0.

Proof. If u ∈ B has compact support, then we may introduce its Fourier transform

û(ξ) =
∫

�n
u(x)e−i(ξ ·x)dx (10.96)

satisfying the algebraic equation B(iξ)û(ξ) = 0. Since the entries of B are polyno-
mials and û is an analytic function, we may consider this equation over the field
of meromorphic functions. According to our discussion above, for an autonomous
behaviour the matrix B has full column rank, hence the only solution is û = 0 and
thus we obtain u = 0 after the inverse Fourier transform. �

Proposition 10.6.23. Let B ⊆ Am be a behaviour. B is controllable, if and only if
it possesses the following property: if Ω1,Ω2 ⊂�n are two arbitrary open subsets
with Ω1∩Ω2 = ∅, then to any pair u1,u2 ∈ B there exists a further solution u ∈ B
such that u Ω1

= u1 Ω1
and u Ω2

= u2 Ω2
.

Proof. Assume first that B is controllable so that it possesses an image representa-
tion of the form (10.95). Then there exist two functions z1,z2 ∈ As such ui = Czi

for i = 1,2. It is a well-known property of our chosen signal space A that for any
pair of open subsetsΩ1,Ω2 ⊂�n withΩ1∩Ω2 = ∅ a smooth function χ ∈A exists
such that χ Ω1

≡ 1 and χ Ω2
≡ 0. Consider now the function z = χ ·z1 +(1−χ) ·z2:

since z Ωi
= zi, the function w = Cz ∈ B has the desired properties.

For the converse assume that B is not controllable and hence its controllable part
is a proper subset Bc � B. If we consider an arbitrary solution 0 �= u ∈ B \Bc, then
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Bu = 0 but û = Bcu �= 0. Recall from the proof of Proposition 10.6.19 that there
exists an operator L ∈D and a matrix Y such that LBc = Y B. Hence the components
of the function û are contained in the autonomous behaviour B̂ = {u∈A | Lu = 0}.
Now choose some point x0 ∈�n such that u(x0) �= 0 and consider for two arbitrary
radii 0 < r1 < r2 the two open setsΩ1 = {x∈�n | ‖x− x0‖< r1} andΩ2 = {x∈�n |
‖x− x0‖ > r2}. According to our assumption, the behaviour B must then contain a
solution ũ with ũ Ω1

= u Ω1
and ũ Ω2

≡ 0 which obviously has compact support and

whose components lie in B̂. But this contradicts Lemma 10.6.22. �

Corollary 10.6.24. Any controllable behaviour B �= 0 contains a solution u ∈ B
with compact support.

Proof. Let u ∈ B be such that u(x0) �= 0 for some point x0 ∈ �n. Consider two
open sets Ω1, Ω2 as in the previous proof; according to Proposition 10.6.23, the
behaviour B must contain a solution ũ such that ũ Ω1

= u Ω1
and ũ Ω2

≡ 0 which
obviously has compact support. �

Proposition 10.6.25. Let B ⊆Am be a behaviour. B is autonomous, if and only if B
contains no function u �= 0 with compact support.

Proof. One direction was proven above in Lemma 10.6.22. For the converse assume
that the behaviour B is not autonomous. It follows from Theorem 10.6.14 that the
associated moduleM is not a torsion module and hence t(M) �M. The discussion
in Remark 10.6.20 implies that the controllable part Bc ⊆ B is then non-zero and
therefore contains a solution u �= 0 with compact support by Corollary 10.6.24. �

10.7 Completion to Involution

We stressed in Section 7.4 that the Cartan–Kuranishi completion is more a “method”
than an algorithm, as it is not clearly specified how the required operations could be
actually performed. We now develop for linear differential equations an effective
algebraic realisation of it based on Algorithm 4.5 for involutive bases. A naive real-
isation of the Cartan–Kuranishi completion is immediate: one explicitly determines

local representations for all arising differential equations R(s)
q+r and symbols N (s)

q+r.
For linear or polynomial equations one can then—at least in principle—perform all
required operations algorithmically using Gröbner bases.

Obviously, such a brute force approach is not very efficient; in general, many
unnecessary prolongations (which are usually rather expensive to compute) are per-
formed and one has to deal with rather large matrices (recall Example 7.4.3). Pure
algebra in form of involutive bases leads to fairly fast algorithms for linear equa-
tions, but all geometric information is lost. For example, it is not immediate to de-
termine the number of performed prolongations and projections. We combine the
geometric and the algebraic approach into a “hybrid” algorithm which maintains the
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efficiency of pure algebra and still obtains the full geometric information by clever
“book-keeping.” The key lies in the simple involution test via the Cartan normal
form described in Remark 7.2.10.

In the sequel we assume that the coefficients of our system stem from a differ-
ential field � where all required operations (arithmetics and differentiations) can be
performed effectively and which contains the independent variables x. Thus a typi-
cal instance of � would be a finite algebraic extension of the field �(x1, . . . ,xn) of
rational functions with rational coefficients.

We assume that the linear system is given in the form

Φτ(x,u(q)) = Aτμα (x)uαμ = 0 , τ = 1, . . . ,t (10.97)

where 0 ≤ |μ | ≤ q. Thus we are only considering homogeneous equations. But of
course one could add right hand sides and would then in addition obtain explic-
itly the compatibility conditions studied in Section 10.5. For the remainder of this
section, we concentrate on the left hand sides and call them rows. Thus a linear sys-
tem is for us a set F of rows; one may also say that we are operating on a matrix
representation of the system.

The derivatives are ordered according to the TOP lift of the degree reverse lexi-
cographic order≺degrevlex; the leading term of a row f ∈ F is called leading deriva-
tive and denoted by11 ld f . As usual, multiplicative and non-multiplicative variables
are assigned to a row according to its leading derivative. Reductions correspond
now to elementary row operations and an autoreduction yields a triangular form of
the system. We introduce the following notation for the result of a reduction. Let
f = a(x) ld f +∑uαμ≺ld f Aμα(x)uαμ and g = b(x) ldg +∑uαμ≺ldg Bμα(x)uαμ be two rows
of the system F with ld f = ldg; then we set

rem( f ,g) = ∑
uαμ≺ld f

(
Aμα(x)− a(x)

b(x)
Bμα(x)

)
uαμ . (10.98)

Note that this operation is purely algebraic; no differentiations are allowed!
In the naive realisation of the Cartan–Kuranishi completion, it is necessary to dif-

ferentiate every equation in the system with respect to every independent variables
in order to obtain a local representation of the prolonged equation. We use the Pom-
maret division to distinguish multiplicative and non-multiplicative variables. Our
goal is to avoid differentiations with respect to multiplicative variables as much as
possible. As in Algorithm 4.5 they should appear only in involutive normal form
computations. In order to achieve this goal and still be able to decide involution of
the appearing symbols and differential equations, we need a careful book-keeping.
The necessary tools are introduced in the next definition. It might appear somewhat
strange at first sight, but it will prove its usefulness in the sequel.

Definition 10.7.1. Let f denote a row from a linear system F . We can make f into
an indexed row, either a single indexed row f(k) or a double indexed row (or phantom

11 As we have now fixed one specific term order, we omit for notational simplicity the subscript ≺.
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row) f(k,�) by assigning to it one respectively two non-negative integers k and �
where 0 ≤ k < � in the second case. We call k the initial level and � the phantom
level of the indexed row. For a global level λ ≥ k, we define the truncated involutive
cone C̄λ of an indexed row to be the following set of rows:12

C̄λ ( f(k)) =
{

Dμ f | 0≤ |μ | ≤ (λ − k); ∀i > cls f : μi = 0
}

, (10.99a)

C̄λ ( f(k,�)) =
{

Dμ f | (λ − �) < |μ | ≤ (λ − k); ∀i > cls f : μi = 0
}

. (10.99b)

Thus the truncated involutive cone of an indexed row determined by the integers
λ , k and possibly � contains all multiplicative prolongations whose orders satisfy the
given conditions (see Figure 10.3 for an illustration). With the help of this notion,
we introduce the basic object of our approach, the skeleton of a linear system.

u y u y

y y

xx

Fig. 10.3 Left: involutive truncated cone of a single indexed row Ĉ4
(
(uy)(0)

)
. Right: involutive

truncated cone of a double indexed (phantom) row Ĉ4
(
(uy)(0,2)

)
.

Definition 10.7.2. A skeleton Sλ with global level λ consists of a set Uλ = { f τ(kτ )}
of single indexed rows and of a set Wλ = { f τ(kτ ,lτ )} of double indexed rows such
that for all indices τ the inequalities kτ ≤ λ and kτ < lτ ≤ λ , respectively, hold. It
defines the linear system

S̄λ =
{
C̄λ ( f(k)) | f(k) ∈ Uλ

}
∪
{
C̄λ ( f(k,�)) | f(k,�) ∈Wλ

}
. (10.100)

Thus in order to obtain the full linear system S̄λ corresponding to a given skele-
ton Sλ , we must simply add “flesh” in form of all permitted multiplicative prolon-
gations of the contained rows and then drop the indices.

12 For notational simplicity we drop the indices when we are performing any operations with a
row; thus an indexed row f(k) should actually be understood as a pair ( f ,k).
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In each iteration of the Cartan–Kuranishi completion, the system is prolonged
to the next higher order. Since we need autoreduced systems, we must afterwards
triangulate. We consider now these two operations at the level of skeletons. We
may assume that the system F to be completed is already given in triangular, i. e.
(head) autoreduced, form. We turn F into a skeleton S0 by simply setting the initial
level kτ of every row f τ to 0. The global level λ is always equal to the number
of the current iteration step; if a new row enters the skeleton in this step, its initial
level becomes λ . Double indexed rows arise, if during the triangulation process a
row is eliminated which has already produced some multiplicative prolongations. In
this case, the phantom level is set to the current global level. Thus the completion
algorithm produces a sequence of skeletons

S0 = S�
0 −→S1 −→ S�

1 −→ S2 −→S�
2 −→S3 −→ ·· · (10.101)

where the � indicates a skeleton in triangular form.
The prolongation Algorithm 10.2 merely computes the non-multiplicative pro-

longations of those single indexed rows that have been newly added in the previous
iteration. Due to the increase of the global level multiplicative prolongations of all
rows from the skeleton are automatically present in the linear system it defines. No
rows are explicitly removed; the new global level causes the elimination of the least-
order multiplicative prolongations of all phantom rows in the system; this is shown
in Figure 10.4 for a concrete example. We will prove below that these operations
yield the desired skeleton for the prolonged system.

Algorithm 10.2 Prolongation of skeleton
Input: skeleton Sλ = Uλ ∪Wλ , number n of independent variables
Output: prolonged skeleton Sλ+1 = Uλ+1∪Wλ+1
1: Uλ+1←Uλ ; Wλ+1←Wλ
2: for all f τ(λ ) ∈ Uλ do
3: for cls f τ(λ ) < i≤ n do

4: Uλ+1←Uλ+1∪
{
(Di f τ)(λ+1)

}

5: end for
6: end for
7: return Uλ+1∪Wλ+1

The triangulation Algorithm 10.3 is slightly more complicated, but very similar
to the autoreduction mentioned in Section 4.2. It suffices to reduce only the single in-
dexed rows, as the multiplicative prolongations of the phantom rows obviously have
different leading derivatives. In the outer while loop, we take a row f τ(kτ ) from the
set Uλ with maximal leading derivative and try to reduce it modulo the rows con-
tained in the full system S̄λ . Hence we check in Line /4/ whether a reduction with
a row lying in a truncated involutive cone is possible (since we consider here both
single and double indexed rows, we omitted for notational simplicity the indices,
but they are of course necessary for determining the cones according to (10.99)).
The actual reduction is performed in the inner while loop. If no changes occur, the
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Fig. 10.4 Prolongation of a real and a phantom row, respectively, shown for the skeleton S3 ={
(uy)(0), (uyyyy)(0,3)

}
(left) and its prolongation S4 (right).

row f τ(kτ ) is written back into the skeleton in Line /8/; otherwise the reduced row f̄

is added with the initial level λ in Line /11/. If already multiplicative prolongations
of the eliminated row f τ(kτ ) have been computed at the current level λ , its removal
would cause them to vanish as well. Thus we must keep track of their existence:
in Line /14/ we turn f τ(kτ ) into a phantom row by adding the current level as phan-
tom level. This approach assures that in future iterations all relevant multiplicative
prolongations are still taken into account.

The correctness of these two algorithms is equivalent to showing that the full
system S̄�

λ defined by the skeleton S�
λ yields a local representation for the differ-

ential equationRq+λ , if the initial differential equation wasRq (represented by the
skeleton S0). As the main step towards this result, we consider the relation between
the prolonged rows of S̄�

λ and rows in Sλ+1.

Proposition 10.7.3. Consider the sequence (10.101) derived from a skeleton S0 by
repeatedly applying Algorithms 10.2 and 10.3. For some λ ≥ 0, let g be a linear
combination of rows of the system S̄�

λ . Then each prolongation of g by one order
can be written as a linear combination of rows of the system S̄λ+1.

Proof. We first consider a slightly modified version of the triangulation Algo-
rithm 10.3 where we replace Line /14/ with U�

λ ←U�
λ ∪
{

f τ(kτ )
}

. This modification
implies that no phantom rows occur. So we ignore, for the moment, all references
to the set Wλ . Any row of which multiplicative prolongations have been computed
is contained in all subsequent skeletons. Of course, one thereby loses the triangular
form of the systems S̄�

λ .
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Algorithm 10.3 Triangulation of skeleton
Input: skeleton Sλ = Uλ ∪Wλ
Output: equivalent skeleton S�λ = U�

λ ∪W
�
λ such that S̄�λ is in triangular form

1: U�
λ ←∅; W

�
λ ←Wλ

2: while Uλ �= ∅ do
3: f τ(kτ )←max≺Uλ ; f̄ ← f τ ; Uλ ←Uλ \

{
f τ(kτ )
}

4: while ∃ f σ ∈ Sλ : ld f̄ ∈ C̄λ (ld f σ ) do
5: uαμ ← ld f̄ ; uαν ← ld f σ ; g← Dμ−ν f σ ; f̄ ← rem( f̄ ,g)
6: end while
7: if f̄ = f τ then
8: U�

λ ←U
�
λ ∪
{

f τ(kτ )
}

9: else
10: if f̄ �= 0 then
11: U�

λ ←U
�
λ ∪
{

f̄(λ )
}

12: end if
13: if kτ < λ then
14: W�

λ ←W
�
λ ∪
{

f τ(kτ ,λ )

}

15: end if
16: end if
17: end while
18: return U�

λ ∪W
�
λ

Let the skeleton S�
λ consist of the single indexed rows

{
f τ(kτ )
}

and let

g =
s

∑
l=1

al(x)Dμl f τl (10.102)

be a finite linear combination of differential consequences of rows in the triangular
system S̄�

λ . The rows in the system S̄λ are multiplicative prolongations of rows in
the corresponding skeleton Sλ . We formally differentiate (10.102) with respect to
an arbitrary independent variable x j obtaining

Djg =
s

∑
l=1

[
al(x)Dμl+1 j f τl +

∂al(x)
∂x j Dμl f τl

]
. (10.103)

We must show that all the rows of S̄�
λ and their prolongations by one order are

elements of S̄λ+1. By the remark above, this fact is obvious for the unprolonged
rows. For the remaining rows, we proceed by an induction over the global level λ .
For λ = 0, Algorithm 10.2 computes all non-multiplicative prolongations (since
kτ = λ = 0 for each row f τ(kτ )). The multiplicative prolongations are taken care of

by the incrementation of the global level λ . Now assume λ > 0. Let h = Dμ+1 j f

be a prolongation with Dμ f ∈ S̄�
λ and f(k) ∈ S�

λ . We prove that h ∈ S̄λ+1 by a
Noetherian argument. The terminal cases are:
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• If x j is a multiplicative variable for f , we are done: all differentiations in Dμ+1 j

are multiplicative for f and, as the global level is raised by the prolongation,
h ∈ S̄λ+1.

• If |μ | = 0 and x j is a non-multiplicative variable for f , then the prolongation is
explicitly computed and therefore contained in the next system.

In all other cases, we set c = clsμ+ 1 j and rewrite h = Dc(Dμ+1 j−1c f ). Because
of |μ | ≤ (λ −k), the total derivative in the parentheses is an element of S̄λ ′ for some
index value λ ′ ≤ λ . Thus it is also contained in S̄λ and we may apply the induction
hypothesis in order to write h in the form

h = Dc

[ s′

∑
l=1

bl(x)Dνl f τl
]

. (10.104)

Note that for the summand h′ possessing the highest leading derivative (its multi
index is ν = μ+1 j−1c) the variable xc is by construction multiplicative. Hence we
find Dch′ ∈ S̄λ+1 as desired. With each of the remaining summands, we repeat the
above manipulations. As their leading exponents are all less than μ + 1 j− 1c, this
process must terminate after a finite number of steps. This observation proves the
statement above under the made assumption.

Finally, we include the phantom rows, i. e. we restore Line /14/ of Algorithm 10.3
in its original form. It follows from (10.103) that if a row is dependent of the other
rows in S̄λ and therefore eliminated, all its multiplicative prolongations by one order
reduce to zero modulo S̄λ+1. Therefore it does not matter for the system (however,
it does matter for its triangular form) whether we carry out these reductions or not.
Non-multiplicative prolongations of phantom rows never need to be computed, as
for f(k,�) always k < �≤ λ holds. �

Once this somewhat messy proof is finished, we obtain as corollary the for us
crucial theorem on the relation between the sequence (10.101) obtained by alter-
nately prolonging and triangulising the initial skeleton S0 and the prolongations of
the linear differential equationRq corresponding to S0.

Theorem 10.7.4. Let the system F be a local representation for the linear differen-
tial equation Rq. If we turn F into a skeleton S0 as described above and form the

sequence (10.101), then for any λ ≥ 0 the system S̄�
λ is triangulised and represents

the equationRq+λ .

Proof. We denote by F0 = F , F1, F2,. . . the prolongations of the system F . Then
the system Fi locally represents the prolonged differential equationRq+i. If we set

F0 = S̄�
0 , then we have also equality of the linear hulls: 〈F0〉= 〈S̄�

0 〉. By repeatedly
applying Proposition 10.7.3, we get for λ ≥ 0: 〈Fλ 〉 = 〈S̄λ 〉. As we perform only
elementary row operations during Algorithm 10.3, it follows that S̄�

λ is a local
representation ofRq+λ .

It remains to show is that the systems S̄�
λ are really in triangular form. First of all,

the rows in U�
λ obviously possess different leading derivatives. Now suppose that
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there are two rows f 1, f 2 ∈ S̄�
λ with ldDμ1 f 1 = ldDμ2 f 2. Let f 1

(k1,�1) and f 2
(k2,�2) be

the corresponding rows in the skeleton S�
λ from which they have been derived by

multiplicative prolongations. If either f 1 or f 2 is a single indexed row, we simply
ignore all references made to the phantom level.

By definition of an involutive division, if two involutive cones intersect, one must
be entirely contained in the other one. Thus without loss of generality, we may
assume ld f 2 = ldDν f 1 for some multiplicative prolongation Dν . This assumption
implies that in step k1 + |ν| the row f 2 was reduced and became a phantom row. In
the next |μ2| steps, all multiplicative prolongations of f 2 up to this order are reduced.
From |ν|+ |μ2|= |μ1| ≤ (λ − k1) it follows that Dμ2 f 2 �∈ S̄�

λ , and we have arrived
at a contradiction. �

By working with skeletons instead of full systems, we need to compute the mul-
tiplicative prolongations only when they are required for a reduction. In each step
of the algorithm, we prolong the skeleton by exactly one order and compute a tri-
angular form. However, as we want to realise the Cartan–Kuranishi completion, we
have to relate these ideas to the geometric theory.

We have already seen that the skeleton S�
λ yields a local representation for the

differential equation Rq+λ . In fact, it contains even more information. Projecting

into jet bundles of lower order, one can extract from S�
λ local representations for

all differential equationsR(s)
q+r with λ = r + s:

S�
λ :

{

Rq+λ
πq+λ

q+λ−1−→ R(1)
q+λ−1

πq+λ−1
q+λ−2−→ R(2)

q+λ−2

πq+λ−2
q+λ−3−→ ·· · . (10.105)

Because of the triangular form of the system S̄�
λ , these projections amount to noth-

ing more than dropping the rows of appropriate orders, although we will never do

this explicitly. Instead, we always identify the differential equation R(s)
q+r currently

considered by the values of the two parameters r and s.
If we juxtapose all the sequences of the form (10.105), then we arrive at the

grid pictured in Figure 10.5. Starting with Rq, the Cartan–Kuranishi Algorithm 7.3
moves along the horizontal lines searching for an equation with involutive symbol.
If one is found, it is checked for integrability conditions by comparing it with the
equation one row below and one column to the right. If the two equations differ,
then the process is continued in the row below, i. e. after adding the integrability

conditions. Recall that in general
(
R(s)

q+r

)
+1 �=R

(s)
q+r+1; to ensure equality we need

an involutive symbol (cf. Part (ii) of Proposition 7.2.5). So two tasks remain:

1. decide via the skeleton which equations have an involutive symbol;

2. determine whether two equationsR(s)
q+r andR(s+1)

q+r are equal.

The first problem is solved by the following result.

Proposition 10.7.5. Let S�
λ be a skeleton for the differential equation Rq+λ in a

δ -regular coordinate system and let t denote the maximal order of a single indexed
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S�0 S�1 S�2 . . .

Rq

?

Rq+1

?

Rq+2 . . .

R(1)
q−1
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R(1)
q

?

R(1)
q+1

. . .

R(2)
q−2 R(2)

q−1 R(2)
q

. . .

...
...

...

Fig. 10.5 Skeletons and the corresponding equations

row in the prolonged skeleton S�
λ+1. Then the symbolN (s)

q+r is involutive for all index
values r, s such that r + s = λ and q + r≥ t.

Proof. We choose r,s with r + s = λ . A local representation for R(s)
q+r is obtained

from S̄�
λ by dropping all rows of order greater than q + r. We prolong this system

by one order and compute a triangular form. If no non-multiplicative prolongations

of order q + r + 1 remain, then Proposition 7.2.3 asserts that the symbol N (s)
q+r is

involutive. By assumption, even after the prolongation and subsequent triangulation
of the full skeleton no single indexed rows of this or a greater order exist in S�

λ+1.
As an independent non-multiplicative prolongation would result in such a row, the
involution of the examined symbol can be read off from this skeleton. �

As a useful side effect, this result allows us to carry out additional projections
while working inside a given skeleton: we trace a vertical line in Figure 10.5 be-
longing to some skeleton S�

λ downwards as long as the symbols of the respective
differential equations remain involutive and continue with the last such equation.
This strategy is illustrated in Figure 10.6 in comparison to the generic version of the
Cartan–Kuranishi completion (boxed equations possess involutive symbols).

For the second task mentioned above, we note that it suffices to consider the
dimensions of the involved manifolds, as one is always a submanifold of the other.
As the triangulation guarantees algebraic independence of the rows in a skeleton,
the determination of dimensions reduces to a simple counting of equations.

Definition 10.7.6. Let S�
λ be a triangular skeleton. We denote by #S�

λ ,t the number

of rows of order t in the system S̄�
λ . The rank vector of S�

λ is the list
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S�λ S�λ+1 S�λ+2

R(s)
q+r

?

... R(s+1)
q+r R(s+1)

q+r+1

S�λ S�λ+1 S�λ+2

R(s)
q+r

?

R(s+1)
q+r−1 R(s+1)

q+r

...

R(s+i)
q+r−i

R(s+i+1)
q+r−i−1 R(s+i+1)

q+r−i R(s+i+1)
q+r−i+1

Fig. 10.6 Analysis of symbols and differential systems (left: classical Cartan–Kuranishi algo-
rithm; right: hybrid algorithm).

rS�
λ

=
[
#S�
λ ,0, . . . ,#S

�
λ ,q+λ
]

(10.106)

where q is the order of the original skeleton S0.

The numbers #S�
λ ,t yield straightforwardly the dimensions of all differential

equations and symbols represented by S�
λ . For λ = r + s

dimR(s)
q+r = dimJq+rπ−

q+r

∑
i=0

#S�
λ ,i , (10.107a)

dimN (s)
q+r = dimSq(T ∗X ) ⊗

Jq−1π
VE −#S�

λ ,q+r . (10.107b)

The equationsR(s)
q+r andR(s+1)

q+r are identical, i. e. no integrability conditions appear
during the next prolongation, if the two rank vectors rS�

λ
and rS�

λ+1
coincide in their

first q + r entries. The higher entries play no role for this comparison.
It is straightforward to modify the Algorithms 10.2 and 10.3 so that they update

the rank vector. Computing it for the initial skeleton is trivial. During the prolonga-
tion from Sλ to Sλ+1 the following corrections are necessary for each row f ∈ Sλ :
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• If f(k) is a single indexed row of order t with level k = λ , prolongations with
respect to all independent variables are computed. Hence the entry for order t +1
is increased by n, the number of independent variables.

• If the initial level of f(k) with order t and class c is less than λ ,
(λ−k+c

c−1

)
new rows

of order t +λ − k + 1 enter the system.
• If f(k,�) is a double indexed row of order t and class c, there are

(λ−k+c
c−1

)
new rows

of order t +λ−k+1, and
(λ−�+c

c−1

)
rows of order t +(λ−�)+1 are removed from

the system.

For a triangulation, the corrections are even simpler: if a row is reduced to a new
row of lower order, the entry in the rank vector for the old order has to be decreased
and the one for the new order has to be increased by one.

Combining all these ideas and results we finally arrive at the promised hybrid
Algorithm 10.4. In contrast to the Cartan–Kuranishi Algorithm 7.3, it consists of
only one loop in which the skeleton is prolonged and triangulised (Line /4/) using the
above described algorithms. The analysis of the symbol based on Proposition 10.7.5
takes place in Line /5/. A simple comparison of rank vectors in Line /8/ signals
whether integrability conditions have appeared. Note that we compare the entries of
the vectors only up to the currently relevant order. The while loop in Lines /13–15/
realises the idea sketched in Figure 10.6 and projects as far as possible.

Algorithm 10.4 Hybrid completion of linear systems

Input: skeleton S�0 of the differential equationRq

Output: skeleton S�λ and integers r, s ∈� such thatR(s)
q+r is involutive

1: r← 0; s← 0; λ ← 0; systemInvolutive← FALSE
2: repeat
3: r̄← rS�

λ
; λ ← λ +1

4: Sλ ← ProlongSkeleton(S�λ−1); S
�
λ ← TrianguliseSkeleton(Sλ )

5: if ∃ f(k) ∈ U�
λ : ord f(k) = q+ r +1 then {symbol not involutive}

6: r← r +1
7: else {N (s)

q+r involutive; check formal integrability ofR(s)
q+r}

8: if ∀0≤ i≤ q+ r : rS�
λ

[i] = r̄[i] then

9: systemInvolutive← TRUE
10: else
11: r← r +1
12: end if
13: while ¬

(
∃ f(k) ∈ U�

λ : ord f(k) = q+ r
)

do {project as far as possible}
14: r← r−1; s← s+1
15: end while
16: end if
17: until systemInvolutive
18: return (r, s,S�λ )

Strictly speaking, Algorithm 10.4 is not a realisation of the Cartan–Kuranishi
completion, as the inner while loop performs additional projections. A strict
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realisation would allow only one iteration through this loop. These additional pro-
jections are, however, a benefit, as one is interested in those values r, s for which

R(s)
q+r is involutive and r is minimal. Our new algorithm delivers these values.

Theorem 10.7.7. If the used coordinates x are δ -regular for all appearing symbols,
Algorithm 10.4 terminates with an involutive system.

Proof. The claim follows immediately from the Cartan–Kuranishi Theorem 7.4.1.
The only possible problem for the termination is that we might fail to recognise
that some symbol is involutive. In this case, Algorithm 10.4 could prolong infinitely
often. But as long as the used coordinate system is δ -regular for every appearing
symbol, involution of the symbols is easily checked by Proposition 10.7.5. �

Theorem 4.3.12 allows us to verify the condition of Theorem 10.7.7. If the used
coordinates are not δ -regular for one of the symbols, then at some stage of the
completion a larger Janet span appears. Thus with the help of this simple criterion,
we can effectively avoid an infinite computation.

Given the triangulised skeleton S�
λ of a differential equation Rq, we refine the

above considerations about the dimensions in order to determine the indices β (i)
q of

its symbol Nq. A row f(k,�) ∈ S�
λ of order t and class c obviously contributes to

them, if and only if (i) λ − k + t ≥ q and (ii) � = 0 or λ − �+ t < q. Its contribution

β (i)
q ( f(k,�)) is then given by

β (i)
q ( f(k,�)) =

{
B(c− i+ 1,q− t,1) for 1≤ i≤ c ,

0 for c < i≤ n
(10.108)

where B(n,q,c) =
(n−c+q−1

q−1

)
is the number of multi indices of length n, order q and

class c. The Cartan characters α(i)
q of the equation are then computed from (8.6).

Example 10.7.8. We demonstrate the working of Algorithm 10.4 for the Janet Ex-
ample 7.4.3. Our algorithm starts with the skeleton

S0 = S�
0 :

{
(uzz + yuxx)(0) ,
(uyy)(0) .

(10.109)

The initial rank vector is rS�
0

= [0,0,2] and the algorithm proceeds as follows.

1. Iteration: There is only one non-multiplicative prolongation: uyyz. It cannot be

reduced and it is added to the skeleton with initial level 1. Since S�
1 contains a

third-order row, the symbolN2 is not involutive.
2. Iteration: uyyzz is the only new non-multiplicative prolongation and it reduces

to uxxy. As thus no row of order 4 remains in the skeleton, N3 is involutive. We

must now compare the rank vectors up to order 3: S̄�
1 contains 6 equations of

order 3, whereas S̄�
2 contains 7. Thus one integrability condition has appeared

(which is of course uxxy) and the algorithm continues with the equationR(1)
3 .
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3. Iteration: The computed non-multiplicative prolongations are uxxyy and uxxyz.
Only the first row can be reduced to zero, while the second one obstructs the

involution ofN (1)
3 .

4. Iteration: Again there are two non-multiplicative prolongations: uxxyyz can be
reduced to zero, whereas uxxyzz is replaced by uxxxx. Due to the lack of an equation

of order 5 in S�
4 , the symbol N (1)

4 is involutive. The rank vectors that must
be compared are: rS�

3
= [0,0,2,7,13,17] and rS�

4
= [0,0,2,7,14,19,24]. Only

the first five components are taken into account, but the difference between the
entries 13 and 14 signals the appearance of another integrability condition (uxxxx).

The next equation to be examined is R(2)
4 .

5. Iteration: Of the two non-multiplicative prolongations, uxxxxy is reduced to

zero, whereas uxxxxz represents an obstruction to involution for the symbolN (2)
4 .

The current skeleton is now

S�
5 :

⎧
⎪⎪⎨

⎪⎪⎩

(uxxxxz)(5) , (uyyz)(1) ,
(uxxxx)(4) , (uzz + yuxx)(0) ,
(uxxyz)(3) , (uyy)(0) ,
(uxxy)(2)

(10.110)

with rank vector rS�
5

= [0,0,2,7,14,21,26,32].
6. Iteration: As both non-multiplicative prolongations uxxxxyz and uxxxxzz can be re-

duced to zero, the symbolN (2)
5 is involutive. The comparison of the rank vectors

shows that no new integrability conditions have appeared. Thus the algorithm
stops and outputs the skeleton S�

6 , which is identical with S�
5 given above, for

the differential equation R(2)
5 . A local representation is obtained by prolonging

all equations in the skeleton multiplicatively up to fifth order.

Thus the path of the Cartan–Kuranishi completion can be summarised in the follow-
ing sequence of differential equations:

R2 →R3 →R(1)
3 →R(1)

4 →R(2)
4 →R(2)

5 . (10.111)

In order to demonstrate the superior efficiency compared to a direct implementa-
tion of the Cartan–Kuranishi completion, we do some statistics. The new algorithm
computes 10 non-multiplicative and 18 multiplicative prolongations (for the reduc-
tions); 5 of the latter ones are used several times. By contrast, a full determination of
all systems requires the prolongation of 132 equations—almost five times more. In
addition, the naive approach requires to determine row echelon forms for a number
of matrices (Jacobians and symbols), the largest being an 86×84 matrix. �

Remark 10.7.9. One may wonder why we need rank vectors, as all integrability con-
ditions in the Janet example above stem from non-multiplicative prolongations that
do not reduce to zero. However, recall that there are two types of integrability con-
ditions: those arising from (generalised) cross-derivatives and thus in our formalism
from non-multiplicative prolongations and those arising from the prolongation of
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lower-order equations. For detecting the latter ones—without actually computing
them—we need the rank vectors.

As a trivial example consider the equationR2 locally represented by uyy = uxy =
ux = 0. Obviously, the symbol N2 is involutive. But R2 is not formally integrable:
prolongation of the lower order equation ux = 0 with respect to the multiplicative

variable x yields the additional equation uxx = 0 required to represent R(1)
2 . In our

algorithm the two skeletons S�
0 and S�

1 contain exactly the same rows. But their
rank vectors differ: rS�

0
= [0,1,2] and rS�

1
= [0,1,3,3]. The increase in the third

entry is due to the integrability condition uxx = 0. Algorithm 10.4 never explicitly
determines such integrability conditions; they are solely visible through changes in
the rank vector. �

In the Janet example, phantom rows do not occur and the projections are always
only by one order. In the next example, stemming from Lie symmetry theory, both
phenomena are present.

Example 10.7.10. Consider the determining system for Lie point symmetries of the
heat equation. It consists of nine equations in three dependent variables η , ξ , τ and
three independent variables t, x, u:

R2 :

⎧
⎨

⎩

τu = 0 , τux + ξu = 0 , ηuu− ξux = 0 ,
τx = 0 , τxx + 2ξx− τt = 0 , ηxx−ηt = 0 ,
τuu = 0 , ηux− 1

2ξxx + 1
2ξt = 0 , ξuu = 0 .

(10.112)

As above, we obtain the skeleton S�
0 by dropping the right hand side of each

equation and assigning an initial level of 0. During the triangulation of S1, the row
τxx + 2ξx− τt can be reduced by the (multiplicative) prolongation with respect to x
of the row τx. This yields the row ξx− 1

2τt , which is added to S�
1 . However, the

system it defines also contains multiplicative prolongations of τxx + 2ξx− τt . Thus
dropping the row completely would lose information and lead to wrong values for
the dimensions. Instead, its phantom level is set to 1. In the λ th iteration, all rows
obtained by prolonging λ times the row τxx + 2ξx− τt are still present in S̄λ and
available for reducing other rows.

The algorithm continues to produce the following sequence of differential equa-
tions (note the double projection in the third iteration step):

R2 →R3 →R(1)
3 →R(3)

2 →R(4)
2 →R(4)

3 . (10.113)

The final skeleton is

S�
5 :

⎧
⎪⎪⎨

⎪⎪⎩

τttt = 0 , ηxx−ηt = 0 , ξu = 0 ,
ηuu− ξux = 0 , ξtt = 0 , ξx− 1

2τt = 0 ,

ηut + 1
2ξxt = 0 , τu = 0 , τx = 0 ,

ηux− 1
2ξxx + 1

2ξt = 0 .

(10.114)
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Since only head reductions have been performed during the algorithm, there exist
further possibilities for simplifications which, however, do not affect the leaders of
the equations. �

10.8 Linear Systems of Finite Type with Constant Coefficients

The natural ring for treating systems with constant coefficients is D = �[∂1, . . . ,∂n]
with a field � consisting only of constants for the derivations ∂i. In the sequel we will
exclusively consider the case �=�, as for some arguments it will be of importance
whether or not the field � is algebraically closed. Furthermore, we choose as func-
tion space A = C∞(Ω ,�) with some open convex subset Ω ⊆�n. As mentioned
in Remark 10.5.12, this space is an injective cogenerator.

Remark 10.8.1. The choice of A is not so crucial here. All our statements about
equations of finite type below will remain true in larger function spaces (say, if we
include distributional solutions). Indeed, any differential equation of finite type is
trivially elliptic and hence hypoelliptic (see e. g. [225, Thm 11.1.10]) which means
that even a distributional solution is automatically smooth. �

We will present in this section two approaches to the explicit integration of linear
systems with constant coefficients. The first one is based on the theory developed in
Section 10.5, i. e. on the differential module associated with the system. The second
one exploits that for constants coefficientsD is a commutative ring and applies some
standard constructions in commutative algebra like primary decomposition. These
two approaches appear very different. However, they are actually closely related
by the fact that the zeros of a zero-dimensional polynomial ideal J are encoded
in the eigenvalues and eigenvectors of the multiplication operators on the finite-
dimensional vector space P/J . For more details on this relation we refer to [434]
and references therein.

Obviously, the simplest example of a linear system with constant coefficients of
finite type is an ordinary differential equation u′ = Au with some matrix A ∈ �m×m

and it is well-known that its general solution is given by u(x) = exp(xA)u0 with an
arbitrary vector u0 ∈ �m. We will show later that for partial differential equations of
finite type Lu = 0 the general solution is given by a straight-forward generalisation
of this expression. The existence of such a closed form solution is not surprising, as
we saw already in Example 2.3.17 that the integration of an equation of finite type
may always be reduced to the integration of ordinary differential equations via the
Frobenius Theorem C.3.3. Although the linearity is preserved during this reduction,
we will follow a completely different approach. We begin with the simplest problem
of this type: a homogeneous first-order system. Here it is straightforward to obtain
a closed form solution of the claimed form.

Lemma 10.8.2. Let A1, . . . ,An ∈ �m×m be n commuting matrices. Then the unique
smooth solution of the linear system
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ux1 = A1u , . . . , uxn = Anu (10.115)

for the initial condition u(0) = u0 is given by

u(x) = exp(xiAi)u0 . (10.116)

Proof. Let v be an arbitrary solution of (10.115). We claim that for each 1≤ j ≤ n,
the function v j = exp

[
−(x1A1 + · · ·+ x jA j)

]
v is independent of x1, . . . ,x j. Obvi-

ously, this observation implies our assertion. The proof is by induction over j. For
j = 1 we compute

∂v1

∂x1 = e(−x1A1)
(
∂v
∂x1 −A1v1

)
= 0 , (10.117)

since v satisfies in particular the first equation in (10.115).
Now we assume that our claim holds for some j < n. We introduce the function

ṽ = exp
(
−x j+1A j+1

)
v j. By assumption, the matrices Ai commute and hence

exp(−x j+1A j+1)v j = exp
[
−(x1A1 + · · ·+ x jA j)

]
ṽ . (10.118)

ṽ (and thus the right hand side) does not depend on x j+1 by a similar computation as
above and v j (and thus the left hand side) not on x1, . . . ,x j by assumption. As both
sides are equal to v j+1, our claim follows. �

Note that a linear system of the form (10.115) is formally integrable, if and only
if the matrices Ai commute with each other. Hence this condition does not restrict
the applicability of the lemma.

Remark 10.8.3. An alternative approach to Lemma 10.8.2 consists of exploiting the
considerations at the end of Example 2.3.17. We are here in the special case that the
right hand sides are of the form φαi (x,u) = Aαiβuβ . Thus we are lead to the following
overdetermined system for one unknown function v(x,u):

∂v
∂xi + Aαiβuβ

∂v

∂uβ
= 0 , 1≤ i≤ n . (10.119)

Using the method of characteristics it is not difficult to see that its general solution is
given by v(x,u) = F

(
u− exp(xiAi)u0

)
with an arbitrary function F :�n →� and

an arbitrary vector u0 ∈�n. Thus we obtain the same expression for the solution.�

Before we actually integrate linear systems, we study the dimension of their so-
lution space. It turns out that over the coefficient field � the associated module M
has the same dimension as kerA L.

Proposition 10.8.4. Let L ∈ Dr×m be a matrix-valued linear differential operator
and M = D1×m/D1×rL the associated D-module. The solution space kerAL is
finite-dimensional as a �-linear space, if and only if the module M is also finite-
dimensional as a �-linear space. In this case dim� kerA L = dim�M.
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Proof. We assume first that M is finite-dimensional and proceed by an induc-
tion over d = dim�M. If d = 1, then M ∼= � ∼= D/m with a maximal ideal
m ⊂ D. Since � is assumed to be algebraically closed, any maximal ideal is of
the form m = 〈∂1−a1, . . . ,∂n−an〉 with coefficients ai ∈ � (this is one formulation
of Hilbert’s Nullstellensatz). Hence, the given system is equivalent to a system of
the form (10.115) with m = 1 and Lemma 10.8.2 implies that dim� kerAL = 1, too.

Now assume that our claim was correct for all D-modulesN with dim�N < d.
Then choose some proper submodule 0 �=N ⊂M and consider the associated short
exact sequence of �-linear spaces

0 N M M/N 0 (10.120)

where as usual the maps are the inclusion and the canonical projection. By elemen-
tary linear algebra we have that dim�M= dim�N + dim� (M/N ).

As the D-module A is injective, application of the functor HomD(·,A) yields a
dual exact sequence of �-linear spaces

0 HomD(N ,A) HomD(M,A) HomD(M/N ,A) 0 .

(10.121)
Applying the Malgrange isomorphism (Proposition 10.5.1) and exploiting that both
N andM/N are of smaller dimension so that our claim holds for them, we obtain

dim� kerA L = dim�HomD(N ,A)+ dim�HomD(M/N ,A)
= dim�N + dim� (M/N ) = dim�M .

(10.122)

Hence our claim is also valid for dimension d.
For the converse, we use an indirect proof. Assume that the module M was

infinite-dimensional over �. Then M cannot be Artinian and thus the dual object
HomD(M,A)∼= kerA L cannot be Noetherian (any infinite descending sequence of
submodules M⊃N1 ⊃ N2 ⊃ ·· · induces an infinite ascending sequence of sub-
modules of the form {φ ∈ HomD(M,A) | φ Ni

= 0}). But this is only possible, if
dim� kerAL =∞ contradicting our assumption. �

Using the reduction technique described in Appendix A.3, we can transform any
involutive homogeneous linear system of finite type into a first-order system of the
form (10.115). However, in general this reduction leads to a considerable increase in
the size of the system. As the evaluation of a matrix exponential is fairly expensive,
the reduction approach is therefore not well suited for concrete computations. We
will now show how algebraic methods allow us always the reduction to a system of
the form (10.115), the dimension of which is given by the dimension of the solution
space. Obviously, no smaller dimension can be achieved.

In the sequel we take Ω ⊆�n, an open connected set, and A = C∞(Ω ,�). As
usual, our linear system onΩ is given by a linear differential operator L∈Dr×m and
we do not make any assumption about the order of L. If the differential operator L
defines a differential equation of finite type, then theD-moduleM=D1×m/D1×rL
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is finite dimensional as a vector space over �. Our goal is now to find an equivalent
linear system of the form (10.115) so that we can apply Lemma 10.8.2.

Two basic ideas underlie the construction of such an equivalent system. Accord-
ing to Proposition 10.5.1, the solution space kerA L over A is canonically isomor-
phic to HomD(M,A), which may be considered as a subspace of Hom�(M,A)
(obviously, D-linearity implies �-linearity but not vice versa). Now elements of
Hom�(M,A) map an element ofM to a map fromΩ to �. The next lemma shows
that we may switch the order of evaluation in these nested maps. In order to formu-
late rigorously this “switching,” we need the �-linear dualM∗ = Hom�(M,�).

Lemma 10.8.5. The vector spaces C∞(Ω ,M∗) and Hom�(M,A) are canonically
isomorphic over �.

Proof. Consider the �-linear map Φ : C∞(Ω ,M∗) → Hom�(M,A) defined by
setting Φ(w)(m)(x) = w(x)(m) for w ∈ C∞(Ω ,M∗), m ∈ M and x ∈ Ω . Simi-
larly, we introduce the �-linear mapΨ : Hom�(M,A)→ C∞(Ω ,M∗) by setting
Ψ(φ)(x)(m) = φ(m)(x) for φ ∈Hom�(M,A). Both maps are well-defined accord-
ing to the definitions of the various spaces. Now assume that φ = Φ(w). Then
Ψ(φ)(x)(m) = Φ(w)(m)(x) = w(x)(m) and henceΨ(φ) = w so that Ψ ◦Φ = id.
Similarly, we getΦ ◦Ψ = id by assuming w =Ψ (φ) and applyingΦ . HenceΦ and
Ψ are mutually inverse isomorphisms. �

The second basic observation is that solving a linear system is closely related to
studying the multiplication operators on the moduleM. It follows from Macaulay’s
Theorem (cf. Remark B.4.10) that the parametric derivatives induce a �-linear basis
of M. In our case this basis is finite, as our system is assumed to be of finite type.
Hence the—according to Theorem 9.3.5 formally well-posed—initial value problem
(9.31) consists of prescribing for each parametric derivative a value at the origin; in
other words, we may identify initial value data with elements of the dual spaceM∗.

Algorithm 9.1 for the construction of arbitrary Taylor coefficients of the general
solution of a linear system proceeds essentially by representing the sought deriva-
tive as a prolongation of a parametric derivative (which corresponds to repeated
multiplications with the variables ∂i of the polynomial ring D) and then computing
a normal form of it with respect to a Gröbner basis. But this procedure is equivalent
to giving an explicit representation of the multiplication maps ∂i :M→M defined
by [P ] 	→ [∂i · P ]. In our special case, M is a finite dimensional �-linear space so
that we may represent each map ∂i by a matrix Ai ∈ ��×� where � = dim�M after
choosing a basis of M. Since we are dealing with constant coefficients, the oper-
ators ∂i commute and hence the matrices Ai commute, too. We will actually need
below the dual maps ∂∗i :M∗→M∗; obviously, with respect to the dual basis they
are represented by the transposed matrices At

i .
Now we combine these two basic observations. On the space C∞(Ω ,M∗) we

have a natural D-module action by the usual differentiation and we may consider
the following linear system with constant coefficients:

∂w
∂x1 = At

1w , . . . ,
∂w
∂xn = At

nw . (10.123)
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Obviously, it is of finite type and of the form (10.115). We claim now that this
system is equivalent to our original one Lu = 0.

Lemma 10.8.6. There is a canonical isomorphism between the solution space of the
linear system (10.123) and HomD(M,A) as �-linear spaces.

Proof. Note that a �-homomorphism φ ∈ Hom�(M,A) is simultaneously a D-
module homomorphism, if and only if ∂i ·φ(m) = φ(∂i ·m) = φ(Aim) for all m∈M.
If we write φ =Φ(w) whereΦ is the map introduced in the proof of Lemma 10.8.5,
then this condition is equivalent to w ∈ C∞(Ω ,M∗) being a solution of (10.123),
as for any m ∈M

Φ(w)(Aim)(x) = w(x)(Aim) = At
i

(
w(x)
)
(m) (10.124)

by definition of the dual map ∂∗i and

∂i ·
[
Φ(w)(m)(x)

]
= ∂i ·

[
w(x)(m)

]
=
∂w
∂xi (x)(m) (10.125)

by definition of the action of D onA and C∞(Ω ,M∗), respectively. �

Since the solution space of our given linear system Lu = 0 and the solution space
of the first order system (10.123) are isomorphic, we can write down the closed
form solution of our system as soon as we have an explicit representation of this
isomorphism, as the latter space is determined by Lemma 10.8.2. But such a repre-
sentation is easily obtained: identifying the standard bases of �m and Dm, we have
a canonical homomorphism π : �m →M and its dual map π∗ :M∗→ �m. Given a
function w ∈ C∞(Ω ,M∗), we thus associate with it the function π∗ ◦w ∈ Am and
obtain finally the following result.

Theorem 10.8.7. Every solution of the linear differential equation of finite type de-
scribed by the D-moduleM is of the form

u(x) = π∗ ◦
(
exp(xiAt

i)λ
)

(10.126)

with λ ∈M∗ the corresponding initial data vector.

As every step in the considerations above was constructive, it is not difficult to
formulate Algorithm 10.5 for the construction of the closed form solution of a linear
system with constant coefficients of finite type. For the construction of the comple-
mentary decomposition in Line /1/ we may use any of the algorithms presented in
Section 5.1. The evaluation of the matrix exponential can be done via Jordan normal
forms, if one manages to obtain the eigenvalues of the matrices At

i; in practice, this
step will be the most difficult one and only possible, if dim�M is small.

Example 10.8.8. We demonstrate Algorithm 10.5 for a concrete linear system of
finite type, namely the second-order system



10.8 Linear Systems of Finite Type with Constant Coefficients 499

Algorithm 10.5 Solution of linear systems with constant coefficients of finite type
Input: linear system with constant coefficients of finite type Lu = 0
Output: general solution in explicit form
1: compute complementary decompositionM∼=

⊕
t∈T � · t

2: compute matrix representations Ai of the �-linear maps ∂i :M→M with respect to the
�-linear basis T

3: compute matrix representation P of π∗ :M∗→M∗

4: evaluate the matrix exponentials exp (xiAt
i)

5: return P
(
exp (xiAt

i)λ
)

R2 :

{
uyy−2uy + u = 0 ,

uxx−uy = 0 .
(10.127)

The symbol of this system coincides with that of the equation studied in Exam-
ple 7.2.2. One readily checks that it is formally integrable and becomes involutive
after one prolongation. Computing the corresponding complementary decomposi-
tion, we find that

M∼=� · 1̄⊕� ·∂x⊕� ·∂y⊕� ·∂x∂y , (10.128)

since u, ux, uy and uxy are the parametric derivatives of (10.127). Thus as a vector
spaceM is isomorphic to �4.

The action of ∂x and ∂y, respectively, on the D-module M is described (with
respect to the above used basis) by the matrices

Ax =

⎛

⎜
⎜
⎝

0 0 0 −1
1 0 0 0
0 1 0 2
0 0 1 0

⎞

⎟
⎟
⎠ , Ay =

⎛

⎜
⎜
⎝

0 0 −1 0
0 0 0 −1
1 0 2 0
0 1 0 2

⎞

⎟
⎟
⎠ (10.129)

(this result follows immediately from the observation that modulo the linear system
(10.127) uxx = uy, uxxy = uyy = 2uy−u, uyy = 2uy−u and uxyy = 2uxy−ux). For the
same basis, the homomorphism π∗ is obviously represented by the matrix

P =
(
1 0 0 0

)
, (10.130)

as we have chosen 1̄ as our first basis vector.
A vector λ ∈M∗ ∼=�4 is uniquely determined by its values (u(0),u(0)

x ,u(0)
y ,u(0)

xy )
at the four basis vectors 1̄, ∂x, ∂y, ∂xy (equivalently we may say that these values
are prescribed for the parametric derivatives u, ux, uy and uxy at some fixed point
x0 ∈Ω , for simplicity here taken as the origin). Evaluating the matrix exponentials
and applying P to the result, we obtain the following closed form expression for the
general solution of (10.127):
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u(x,y) =
1
4

[(
−u(0)−u(0)

x + u(0)
y + u(0)

xy
)
(x + 2y)+

(
2u(0) + 3u(0)

x −u(0)
xy
)]

ey+x +

1
4

[(
u(0)−u(0)

x −u(0)
y + u(0)

xy
)
(x−2y)+

(
2u(0)−3u(0)

x + u(0)
xy
)]

ey−x .

(10.131)

Note that this representation depends on the basis chosen for M. Using a different
complementary decomposition will usually yield a different, but of course equiva-
lent form of the general solution.

A systematic application of the reduction approach would have lead here to a
higher dimension. Because of the obstruction to involution uxxy− 2uy + u = 0, we
must take as starting point the prolongation to third order and thus introduce five
new dependent variables corresponding to the derivatives ux,uy,uxx,uxy,uyy. Hence
this approach would have required to work with six-dimensional matrices.

A closer look at the above obstruction to involution shows that only one third-
order derivative effectively appears in it and hence it is not really necessary to intro-
duce new dependent variables for uxx and uyy. This observation yields the following
reduced first-order formulation of (10.127):

ux = v , vx = w , wx = z , zx = 2w−u ,

uy = w , vy = z , wy = 2w−u , zy = 2z− v .
(10.132)

Rewriting it in the matrix formulation corresponding to (10.123) for the vector
w = (u,v,w,z)t leads exactly to the two matrices Ax,Ay given in (10.129). Hence
we obtain exactly the same closed form solution expression (10.131), as the pro-
jector P selects the first component of the vector w. Note, however, that already a
simple linear transformation of the independent variables would have destroyed this
simplification and thus forced us to work in higher dimension. The above described
algebraic approach allows us to obtain a system of minimal dimension independent
of such considerations. �

For our second approach to the integration of linear systems with constant coeffi-
cients of finite type, we exploit the obvious isomorphism between the ringD and the
ordinary commutative polynomial ring P = �[x1, . . . ,xn]. Given a linear differential
operator L ∈ D we can associate with it the polynomial fL ∈ P obtained by simply
replacing ∂i by xi. Conversely, given an ideal J ⊆ P and a point ζ ∈ �n, we denote
by J (ζ ) ⊆D the “shifted” ideal obtained by replacing xi with ∂i + ζ i.

It is easy to see that solving the differential equation Lu = 0 and computing the
zeros of the polynomial fL are closely related: the point ζ ∈ �n is a zero of fL, if
and only if u(x) = exp(ζ ·x) is a solution of Lu = 0 (here it is of course important
that we assume that � is algebraically closed). In fact, in the univariate case it is
well-known that the integration of the linear differential equation yields even more
precise information, namely the multiplicity of the zeros, as in the case of a multiple
root we have additional solutions of the form x� exp(ζx) with exponents � up to
the multiplicity of the root. We will show now that this observation carries over
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to linear partial differential equations of finite type. For simplicity, we restrict to
one unknown function u so that we can formulate everything with ideals instead of
modules; the extension to the general case is straightforward.

Given an ideal I ⊆ D of linear differential operators, we associate with it the
polynomial ideal J = { fL | L ∈ I}⊆P . Obviously, I corresponds to an equation of
finite type, if and only if J is a zero-dimensional ideal, i. e. the variety V ⊂ �n of J
consists only of finitely many points. If V = {ζ 1, . . . ,ζ r}, then the associated prime
ideals of J are the maximal ideals mζ �

= 〈x1− ζ 1
� , . . . ,xn− ζ n

� 〉. Thus the primary
decomposition of J is of the form J = q1∩ ·· ·qr with

√
q� = mζ �

. Obviously, no
embedded prime ideals can exist here so that the decomposition is unique. Since

q� is mζ �
-primary, the “shifted” ideal q

(ζ �)
� is m∂-primary where m∂ = 〈∂1, . . . ,∂n〉

denotes the homogeneous maximal ideal in D.

Lemma 10.8.9. The space kerP q
(ζ �)
� of polynomial solutions of the ideal q

(ζ �)
� ⊆D

and the factor ring P/q� are isomorphic over �.

Proof. Since q
(ζ �)
� is m∂-primary, there exists an exponent s (the satiety satq(ζ �)

� )

such that ms
∂ ⊆ q

(ζ �)
� . Since trivially kerP ms

∂ = P<s, the exponent s provides us

with a degree bound for the polynomial solutions of q
(ζ �)
� . Now we may define

on the two �-linear spaces D/ms
∂ and P<s (which have obviously the same finite

dimension) a pairing by setting
(
[L], f
)

= L f . This pairing is well-defined and non-

degenerate. Furthermore, by construction, the subspace kerP q
(ζ �)
� ⊆ P<s is, with

respect to this pairing, the “orthogonal” complement of the image of q
(ζ �)
� in D/ms

∂

under the canonical projection. But this observation implies that the dimension of

kerP q
(ζ �)
� is the same as the dimension of D/q

(ζ �)
�

∼= P/q�. �

Our next result says that for determining the smooth solution space kerA I of
our given linear system of finite type it suffices to compute the polynomial solutions

kerP q
(ζ �)
� of auxiliary systems defined by m∂ -primary ideals, as only these show up

as coefficients of the exponentials.

Theorem 10.8.10. Let I ⊆ D be a zero-dimensional ideal defined by a system of
linear partial differential equations with constant coefficients of finite type. If the
corresponding polynomial ideal J ⊆ P possesses an irredundant primary decom-
position J = q1 ∩ ·· · ∩ qr with

√
q� = mζ �

where V(J ) = {ζ 1, . . . ,ζ r}, then the
solution space kerA I is generated over � by the functions of the form hexp(ζ � ·x)
with arbitrary polynomials h ∈ kerP q

(ζ �)
� .

Proof. One easily verifies that a linear differential operator L∈D satisfies the equa-
tion L

(
hexp(ζ � ·x)

)
= 0, if and only if the “shifted” operator L̂ obtained by replac-

ing ∂i by ∂i + ζ i
� satisfies L̂h = 0. This observation implies that the given functions

indeed lie in kerA I. It follows from Lemma 10.8.9 that they generate a vector space
of dimension ∑r

�=1 dim� (P/q�). Since the differential module associated with our
linear system M = D/I obviously possesses the same dimension over �, these
functions generate the full solution space by Proposition 10.8.4. �
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Thus for the explicit integration of I there only remains the problem of deter-
mining the polynomial solutions of an m∂ -primary ideal q ⊆ D. But this question
was already treated in Example 9.3.10 using Gröbner bases and Algorithm 9.1 (even
for the case of variable coefficients). For convenience, we repeat the result in closed
form providing an alternative proof.

Let ≺ be a term order and G a Gröbner basis of the ideal q with respect to it.
We introduce B =�n

0 \ le≺ q (the multi indices of the parametric coefficients) and
N = {ν ∈�n

0 | ∂ν /∈ q}. Since q is assumed to be a m∂-primary ideal, both sets are
finite (and obviously B ⊆ N ). By definition, the normal form NFG,≺(∂ν ) vanishes
whenever ν /∈ N . For the multi indices ν ∈ N we write

NFG,≺(∂ν ) = ∑
μ∈B

cνμ∂ μ . (10.133)

With the help of the thus defined coefficients cνμ ∈ � we introduce for each multi
index μ ∈ B a polynomial hμ ∈ P by setting

hμ = ∑
ν∈N

cνμ
xν

ν!
. (10.134)

This polynomial is obtained, if we follow the procedure described in Example 9.3.10.
Indeed, if we apply Algorithm 9.1 to q with the initial data fρ(x0) = δρμ for all multi
indices ρ ∈ B, then it returns for any ν ∈N the Taylor coefficient aν = cνμ . By the
considerations above, all other Taylor coefficients vanish, so that the complete solu-
tion is the polynomial hμ .

Lemma 10.8.11. The polynomials hμ form a basis of the solution space of q:

kerA q = kerP q = 〈hμ | μ ∈ B〉� . (10.135)

Proof. The equality kerA q = kerP q follows from the fact that ms
∂ ⊆ q for some

exponent s ∈ �. The above constructed polynomials hμ are linearly independent
over �, as the term xμ appears only in hμ . Furthermore, according to Lemma 10.8.9,
their span has the same dimension as kerP q. Hence there only remains to show that
the polynomials hμ are indeed solutions.

Let L = ∑ρ Lρ∂ρ ∈ D be an arbitrary linear differential operator. Then the eval-
uation of L at the polynomial hμ yields

Lhμ = ∑
ν∈N

cνμ ∑
ρ≤ν

Lρ
xν−ρ

(ν−ρ)!
=∑

σ

(
∑
ρ

Lρcρ+σ ,μ

) xσ

σ !
(10.136)

where the second equality is obtained by the index shift σ = ν − ρ . On the other
hand, (10.133) implies that

NFG,≺(∂σL) = ∑
μ∈B

(
∑
ρ

Lρcρ+σ ,μ

)
xμ . (10.137)
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If the operator L lies in the ideal q, then this normal form and hence the expression
in the parentheses trivially vanishes so that Lhμ = 0. �

Example 10.8.12. We treat the same linear systemR2 as in Example 10.8.8 with the
above outlined alternative approach. Thus as a first step we need a primary decom-
position of the polynomial ideal J = 〈y2−2y + 1,x2− y〉 ⊂ �[x,y] corresponding
to (10.127); it has the form J = q1∩q2 where q1 = 〈y2−2y + 1,2x− y +1〉 is pri-
mary to p1 = 〈y−1,x−1〉 and q2 = 〈y2−2y + 1,2x + y +1〉 to p2 = 〈y−1,x + 1〉.
Obviously, p1 is the maximal ideal to the zero ζ 1 = (1,1) and p2 to ζ 2 = (−1,1).

As a second step we need the polynomial solutions of the shifted primary ideals

q
(ζ1)
1 = 〈∂ 2

y ,2∂x− ∂y〉 and q
(ζ2)
2 = 〈∂ 2

y ,2∂x + ∂y〉 in �[∂x,∂y]. Their determination
proceeds for both ideals almost identical, since in both case we find B= {1,∂y} and
N = B∪{∂x}. The given bases are already Gröbner bases for any term order where
∂x  ∂y and the normal forms of ∂x with respect to them are± 1

2∂y. Hence we obtain
as generators of the polynomial solution space the functions h1 = 1 and h2 = y± 1

2 x.
In conclusion, a basis of the solution space of the linear system (10.127) is

{
ey+x, (y + 1

2 x)ey+x, ey−x, (y− 1
2 x)ey−x

}
, (10.138)

which obviously coincides with our results in Example 10.8.8. �

For arbitrary linear systems with constant coefficients not necessarily of finite
type one can also show that all smooth solutions may be represented with integrals
over polynomial-exponential functions. However, the proof of this assertion is much
more involved and we cite here only the result.

Theorem 10.8.13. Let I ⊆ D be an ideal of linear differential operator with con-
stant coefficients and J ⊆ P the corresponding polynomial ideal. Then there exist
finitely many pairs (V�,P�) where V� is the variety of an associated prime ideal of
J and P� ∈ �[x1, . . . ,xn,ξ1, . . . ,ξn] is a polynomial in 2n variables with the follow-
ing property: if Ω ⊂�n is a compact and convex subset and u ∈ C∞(Ω) a smooth
solution of I, then there exists on each variety V� a measure μ� such that

u(x) =∑
�

∫

V�

P�(x,ξ)exp(x · ξ)dμ�(ξ) . (10.139)

Conversely, every such u is a solution of I.

One should emphasise that the varieties V� are not necessarily different in The-
orem 10.8.13. In other words, in general several polynomials P belong to every
variety of an associated prime ideal of J . We do not discuss here the explicit con-
struction of the polynomials P�, but consider Theorem 10.8.13 as a mere structure
theorem providing us with information about the kind of functions that may appear
as solutions of a linear systems with constant coefficients.
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10.9 Notes

Our proof of Holmgren’s Theorem follows [379]. The basic trick of using the adjoint
system goes back to Holmgren [221]; its proper global formulation with the one-
parameter family of surfaces Sλ is due to John [238]. Despite its simplicity, the
extension to arbitrary involutive systems seems to have appeared first in [398]. We
formulated the Holmgren Theorem only for continuously differentiable solutions.
Using, say, density arguments it is not difficult to extend it to larger function spaces.
For example, Hörmander [224, Cor. 8.6.9] provides a distributional version.

The definition of ellipticity for general overdetermined differential equations is
quite rarely found in the literature; one accessible exception is the encyclopaedia
article by Dudnikov and Samborski [116]. The approach via a weighted symbol is
due to Agmon et al [7, 8] and Douglis and Nirenberg [111]; it has become standard
in the literature. The here presented alternative and the proof of the insufficiency
of the weights comes from [273]. Quantifier elimination provides a method for ef-
fectively deciding whether or not a given system is DN-elliptic and determining
all corresponding sets of weights [412]; however, this method is often prohibitively
expensive for non-trivial systems.

Besides the above mentioned encyclopaedia article [116] and the research mono-
graph [450], the question of defining ellipticity for overdetermined equations was
taken up only by few authors—see e. g. [96, 216, 363]. Notable are here in particular
the results of Cosner [96] who constructed for any equation which is elliptic with
weights an equivalent one which is elliptic without weights.

Agmon [6, pp. 63–67] developed a regularity theory for overdetermined elliptic
equations in one dependent variable. The Drach transformation of Appendix A.3
allows us to rewrite any overdetermined equation in an arbitrary number of depen-
dent variables as an equivalent one in one dependent variable and in [273] it is
shown that ellipticity is preserved by this operation, if we perform the gauge fix-
ing (A.36). Thus one can extend Agmon’s results to arbitrary elliptic problems. Of
course, it is possible to formulate such results directly without a Drach transfor-
mation: [116, 450] give some relevant a priori estimates in terms of Sobolev space
norms which show precisely the regularity of the solution in terms of the data. In
fact, in these estimates the weights needed for DN-ellipticity acquire a rather natu-
ral interpretation. For getting the relevant estimates, one should also specify correct
boundary conditions. It turns out that, in addition to the ellipticity of the operator,
the boundary operators should satisfy the Shapiro–Lopatinskij condition. Its discus-
sion is beyond the scope of this book and we just refer to [9, 116] for definitions and
to [272] for a recent treatment of the overdetermined case.

Our definition of hyperbolicity is also taken from the encyclopaedia article by
Dudnikov and Samborski [116]. An equivalent definition appears in the work of
Johnson [244, 245]. One of the few other references dealing with the overdetermined
case is an article by Peradzynski [351]. The notion of a weakly overdetermined sys-
tem was introduced in [405]. That article studies only systems with constant coeffi-
cients where the situation is simpler. In this case one does not need the assumption
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that the constraints are elliptic, as one may simply apply the Holmgren Theorem for
proving that the equations of lower class are satisfied.

The algebraic approach to the analysis of linear systems presented in Section 10.5
originated from the work of Malgrange [301]. It has since become fundamental for
algebraic systems theory (see e. g. [337] for an in-depth treatment of the constant
coefficients case and [144] for a survey on results for variable coefficients ordinary
differential equations). The behavioural approach to systems and control theory was
pioneered by Willems [478, 479, 480] in a series of articles on systems described
by linear ordinary differential equations. More details can be found in the survey
articles [145, 481] and the textbook [355]. The extension to distributed systems, i. e.
partial differential equations, was started by Pillai and Shankar [352].

The fundamental principle was first announced by Ehrenpreis [117]. As both
Malgrange [301] and Palamodov [348] have also made significant contributions
to its proof, one sometimes speaks of the principle of Ehrenpreis–Malgrange–
Palamodov. As we have seen, from an algebraic point of view it is just a reformula-
tion of the fact that the function spaceA in which the differential equation is studied
is an injective module. Under the assumption thatA is in addition a cogenerator, we
showed in Theorem 10.5.10 the existence of a bijection between finitely generated
D-modules and linear differential systems. Oberst [337] extended this bijection to a
full categorical duality (for systems with constant coefficients; variable coefficients
ordinary differential equations were later treated in [144]) for the case thatA is even
a large injective cogenerator (which means that every finitely generated D-module
can be embedded D-linearly into a finite productAk). In [337] it is also shown that
all the modules listed in Remark 10.5.12 satisfy this property.

On the theoretical side basically everything about the inverse syzygy problem and
the notion of a torsionless module was already said by Auslander and Bridger [30].13

However, they use a fairly heavy machinery (for commutative rings a simplified
version was presented by Bruns and Vetter [57, Sect. 16E] from where also our
proof of Proposition 10.6.10 is taken). Our presentation follows [488]; in particular
the rather simple proof of Theorem 10.6.2 originates from there. It seems that in
commutative algebra this problem has not attracted much interest—in contrast to
differential equations where it possesses quite some importance for applications.
Algorithms for the inverse syzygy problem and other questions in systems theory
together with a concrete implementation are described by Chyzak et al [88] for
the case that D is an Ore ring. Damiano et al [101] connected the inverse syzygy
problem for linear differential operators with the Hartogs phenomenon of complex
analysis allowing for the removability of compact singularities.

In the second Addendum to Section 10.6, we characterised both autonomy and
controllability of a behaviour B by the vanishing of an extension groups (Remarks
10.6.15 and 10.6.18, respectively). If M be the D-module corresponding to B and
D(M) its Auslander–Bridger dual, then autonomy is equivalent to Ext0D(M,D) = 0
and controllability to Ext1D(D(M),D) = 0. This observation has motivated the
introduction of stronger notions of controllability and autonomy [486] (see also

13 Note that Auslander and Bridger use the term 1-torsionfree instead of torsionless.
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[88, 359]). We call B strongly controllable, if all extension groups ExtiD(D(M),D)
with i≥ 1 vanish (for rings D of finite global dimension, only finitely many groups
can be non-zero). Similarly, the behaviour B is strongly autonomous, if all groups
ExtiD(M,D) with i≥ 0 vanish.

The basic idea of Algorithm 10.1 seems to be due to Oberst [337] who proved its
correctness for the commutative case, i. e. for linear differential equations with con-
stant coefficients (see also [360] and [485, Section 1.2]). Pommaret [357] provides
a version for variable coefficients using the formally adjoint operator instead of a
dualisation. Chyzak et al [88] showed later that the algorithm remains valid over
arbitrary Ore algebras.

In all these references, the existence of a parametrisation is related to the ques-
tion whether the cokernel cokerβ is torsionfree and the corresponding proofs re-
quire the introduction of a quotient field, i. e. that the ring D is a domain satisfying
an Ore condition as discussed in Remark 10.6.9. The proofs are usually based on
the fact that for a field Q the functor HomQ(·,Q) is always exact and then one
shows that any syzygy over Q can be lifted to one over D by multiplication with
the common denominator. Essentially, this approach is equivalent to our proof of
Theorem 10.6.8 where we slightly relaxed the assumption by only requiring that D
has a self-injective ring of quotients. The idea that by using the notion of a torsion-
less (instead of a torsionfree) module one can simultaneously simplify the proof and
dispense with the Ore condition was developed in [488].

The integral representation Theorem 10.8.13 for linear systems with constant
coefficients is also due to Ehrenpreis [118, Chapt. VII] and Palamodov [348,
Chapt. VI]. Simpler presentations of the proof are contained in [45, Chapt. 8] and
[222, Sect. 7.7] (without proofs, the topic is also covered in [438, Chapt. 10]). In
our formulation of Theorem 10.8.13 we simply wrote about polynomials P� in 2n
variables. In fact, it is more common to consider the P� as elements of the Weyl
algebra Wn = �[x1, . . . ,xn,∂1, . . . ,∂n] and to call them Noetherian operators. One
can show [348, Chapt. IV, §§3,4], [45, Chapt. 8, §4] that to each primary ideal
q ⊆ P = �[x1, . . . ,xn] a finite number of Noetherian operators P� ∈Wn exists such
that a polynomial f ∈ P lies in q, if and only if P� f ∈ √q (i. e. the polynomial P� f
vanishes on the variety V(q)). The effective construction of Noetherian operators is
discussed in [100, 339].

For equations of finite type the situation is much less involved. Our presentation
of the first explicit integration method follows Lomadze and Zerz [294]; the second
one is taken from [438, Chapt. 10] and originated from [338]. It is not so easy to
compare the efficacy and the efficiency of the two methods. The first method has
troubles, if dim�M gets larger, as then the Jordan normal forms of larger matri-
ces must be computed. The second method requires the determination of a primary
decomposition which computer algebra systems can usually compute only over fi-
nite extensions of � (and the computation of which is rather expensive for larger
problems). The bottleneck of both methods is the determination of the zeros of the
corresponding polynomial ideal; in the first method these appear as eigenvalues, in
the second method they are encoded in the prime ideals underlying the primary de-
composition. The proof of Proposition 10.8.4 is due to Oberst [338] (there also more
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general situations like linear difference operators or operators with coefficients in a
not algebraically closed field are considered).

One should note that many of the ideas underlying our treatment of linear systems
of finite type go back to Gröbner [187]. This concerns in particular the use of the
“shifted” ideals qζ for the integration of zero-dimensional primary ideals and of
matrices representing the multiplication on the factor ring. Obviously, for the whole
theory it is only necessary thatD is a commutative polynomial ring. But this remains
true if we consider e. g. D = �[x1∂1, . . . ,xn∂n] and thus one can also analyse certain
types of linear systems with variable coefficients with the same methods. However,
Gröbner [187], §5.2 showed that such systems can always be transformed into a
system with constant coefficients.

The hybrid algorithm of Section 10.7 combining geometric and algebraic ideas
was developed in the diploma thesis of Hausdorf [197] (see also [198]). He imple-
mented the algorithm in the computer algebra system MuPAD. Compared with ear-
lier implementations [396, 400] using a naive realisation of the Cartan–Kuranishi
completion, it is much more efficient. The results of Section 4.3 on detecting δ -
singular coordinate systems can also be incorporated into the algorithm; for details
we refer to [198, Section 5]. For the application to non-linear equations, the same
comments as in Chapter 4 for the purely algebraic case apply.



Appendix A
Miscellaneous

Analysis takes back with one hand what it gives with the other. I
recoil in fear and loathing from that deplorable evil: continuous
functions with no derivatives.

Charles Hermite

The first section of this chapter fixes some notations for multi indices that are widely
used in the main text. Except for the distinction into multi and “repeated” indices
these are standard notations in multivariate analysis. We also show an important
finiteness result for multi indices, namely Dickson’s Lemma, and discuss term or-
ders. The next section recalls those properties of (real-)analytic functions that are
needed in the proof of the Cauchy–Kovalevskaya Theorem. Then some elemen-
tary operations with differential equations like reduction to first order or quasi-
linearisation are discussed within the context of the formal theory. Finally, a few
simple facts about the modified Stirling numbers appearing in manipulations of Car-
tan characters and Hilbert functions are presented.

A.1 Multi Indices and Orders

We use mostly the standard multi index notation of multivariate analysis. If we are
dealing with n independent variables x = (x1, . . . ,xn), a multi index is an ordered
n-tuple μ = [μ1, . . . ,μn] ∈�n

0 of integers (we always use square brackets to denote
multi indices). The sum of its entries is called its length written |μ |= μ1 + · · ·+μn.
The support of the multi index μ contains the positions of the non-vanishing entries:
suppμ = {i | μi > 0}.

The factorial of a multi index μ ∈�n
0 is defined by μ! = μ1! · · ·μn!. The expres-

sion (x− y)μ is a short hand for (x1− y1)μ1 · · · (xn− yn)μn . For the derivatives of a
smooth function φ(x) we write

∂ |μ|φ
∂xμ

=
∂ |μ|φ

∂ (x1)μ1 · · ·∂ (xn)μn
. (A.1)

For notational convenience, we define for the special multi index 0 = [0, . . . ,0]
that x0 = 1 and ∂ |0|φ/∂x0 = φ . Obviously, 0! = 1 and |0|= 0. Other special multi
indices appearing occasionally are

509



510 A Miscellaneous

�i = [0, . . . ,0, �,0, . . . ,0] (A.2)

where � ∈� is the ith entry and all other entries vanish.
The addition of multi indices is defined componentwise, i. e.

μ+ν = [μ1 +ν1, . . . ,μn +νn] . (A.3)

If we want to increase the ith entry of a multi index μ by one, we can thus simply
write μ+ 1i using (A.2). With this addition, the set �n

0 of all multi indices acquires
the structure of an Abelian monoid with neutral element 0. Within the polynomial
ring P = �[x1, . . . ,xn] the subset�= {xμ | μ ∈�n

0} of all terms1 together with the
usual multiplication forms an obviously isomorphic monoid with neutral element 1.

If k is the smallest value such that μk �= 0, we call it the class of the multi index μ
and write clsμ = k. In (A.1) we find then no differentiations with respect to the
variables x1, . . . ,xk−1. In principle, the class of the multi index 0 is undefined, but in
many situations it is convenient to set cls0 = 0.

Some elementary combinatorics leads to the following results:

∣∣{μ ∈�n
0 | |μ |= q

}∣∣=
(

n + q−1
q

)
, (A.4a)

∣
∣{μ ∈�n

0 | |μ |= q∧ clsμ = k
}∣∣=
(

n− k + q−1
q−1

)
, (A.4b)

∣
∣{μ ∈�n

0 | 0≤ |μ | ≤ q
}∣∣=
(

n + q
q

)
. (A.4c)

A multi index μ of length q and class k is obtained by first setting μk to a value
1 ≤ q′ ≤ q and then adding an arbitrary multi index in �n−k

0 of length q−q′. Thus
the second line arises from summing up the first one from 0 to q− 1 (the possible
values of q−q′) after replacing n by n−k and using a classical identity for binomial
coefficients. In a similar manner, the third line stems from summing up the first one
from 0 to q and applying the same identity.

Occasionally we use an alternative multi index notation, which we call for lack
of a better name repeated index notation. We distinguish it from multi indices by
parentheses instead of brackets; furthermore, we take Greek letters like μ or ν for
multi indices and capital letters like I or J for repeated indices. A repeated index I
of length q contains exactly q entries with values between 1 and n: I = (i1, . . . , iq).
The analogue to (A.1) is now

∂ qφ
∂xI =

∂ qφ
∂xi1 · · ·∂xiq

. (A.5)

We always consider a repeated index as an ordered tuple; thus (1,2) �= (2,1).
Of course, these two indices would yield in (A.5) the same result, as for us partial

1 There is a notorious dispute in the commutative algebra community whether the elements of �
should be called terms or monomials. We call them terms; a monomial is the product of a term and
a coefficient.



A.1 Multi Indices and Orders 511

derivatives commute, but in other places the order plays a role. For example, if we
are working in a non-commutative polynomial ring, then xI = xi1 · · ·xiq and now
different orderings yield different results. Finally, sort(I) denotes the repeated index
obtained from I by sorting the entries in ascending order.

If μ ∈ �n
0 is an arbitrary multi index, then we denote by Sμ the set of all pos-

sible realisations of it as a repeated index (in combinatorics one would speak here
of permutations with repetitions). We further write R(μ) for the unique element
of Sμ where all entries are sorted in ascending order. Thus we have for example
S[1,2] =

{
(1,2,2);(2,1,2);(2,2,1)

}
and R([1,2]) = (1,2,2). It is a standard result

in elementary combinatorics that the size of Sμ for a multi index with |μ | = q is
given by the polynomial coefficient

|Sμ |=
(

q
μ

)
=

q!
μ1! · · ·μn!

. (A.6)

Repeated indices are particularly useful for representing exterior products. Then
we only consider indices I = (i1, . . . , iq) with i1 < i2 < · · · < iq, i. e. all entries are
different and sorted in ascending order. If I, J are two such repeated indices, then
I ∪ J denotes the index obtained by first concatenating I and J and then sorting
the entries. Obviously, this only yields a valid result, if I and J have no entries in
common. We set sgn(I∪ J) =±1 depending on whether an even or odd number of
transpositions is required for the sorting. If I and J have entries in common, we set
sgn(I∪ J) = 0; this convention is useful to avoid case distinctions in some sums.

On various occasions we need ordered structures; in particular, orders on the
monoid (�n

0,+) ∼= (�, ·) are crucial for the definition of Gröbner bases in
Appendix B.4. For this reason, we collect here some related notions and for us
important properties of them. A good general reference for orders in the context of
commutative algebra is [36, Chapt. 4].

Definition A.1.1. A partial order on a set S is a relation� such that for all elements
s1,s2,s3 ∈ S (i) s1 � s1 holds, (ii) s1 � s2 and s2 � s3 imply s1 � s3, (iii) s1 � s2

and s2 � s1 entail s1 = s2. If in addition for every pair s1,s2 ∈ S either s1 � s2 or
s2 � s1 holds, then � is a total (or linear) order. If every non-empty subset S′ ⊆ S
has a minimal element with respect to � or equivalently S does not contain infinite
strictly descending sequences, then � is called a well-order.

A total order � on an Abelian semigroup (S, ·) is a semigroup order, if it is
compatible with the product ·, i. e. if s� t implies r · s� r · t for all r,s,t ∈ S (mono-
tonicity of semigroup orders). If (S, ·) is even a monoid with neutral element 1, then
� is a monoid order, if besides being a semigroup order it satisfies 1 ≺ s for all
s ∈ S \{1}. A monoid order on (�, ·)∼= (�n

0,+) is also called a term order,

While strictly speaking only a relation like � (i. e. including equality) can be a
total order in the sense of Definition A.1.1, we will follow the popular convention to
denote orders by ≺. The natural order on �0 given by the usual ≤-relation induces
a partial order on �n

0 defined by μ ≤ ν , if μi ≤ νi for all 1 ≤ i ≤ n. Identifying the
multi index μ and the term xμ , we often write μ | ν instead of μ ≤ ν , as obviously
μ ≤ ν is equivalent to xμ | xν .
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The following result is usually called Dickson’s Lemma, since its first appearance
in the literature seems to be [106]. However, it has been rediscovered so many times
that it is difficult to give proper credit.

Lemma A.1.2 (Dickson). Let N ⊆ �n
0 be an arbitrary set of multi indices. Then

it possesses a finite subset B ⊆ N , a Dickson basis, such that for every ν ∈ N a
multi index μ ∈ B exists with μ | ν . Choosing for N a monoid ideal, it follows that
(�n

0,+) is a Noetherian monoid.

Proof. We use an induction over the number n of entries of the multi indices. The
case n = 1 is trivial: we first define d = min{ν1 | ν ∈ N} and then simply choose
B = {[d]}. Now let n > 1 and assume that our claim is correct for n− 1. We asso-
ciate to each μ ∈�n

0 the multi index μ ′ = [μ1, . . . ,μn−1] ∈�n−1
0 . Then we consider

for each i ∈�0 the set Si = {μ ′ | μ ∈ S ∧μn = i}. According to our induction hy-
pothesis, each set Si possesses a Dickson basis Bi. Furthermore, the union

⋃
i∈�0

Bi

also has a Dickson basis B′. Since B′ is finite, there exists an index k ≥ 0 such that
B′ ⊆ B0∪·· ·∪Bk.

We claim that the set B = {μ | 0≤ μn ≤ k∧μ ′ ∈ Bμn} is a Dickson basis for S.
So let ν ∈ S be an arbitrary element of S. By definition, ν ′ ∈ Sνn and there exists a
multi index μ ′ ∈Bνn with μ ′ | ν ′. If νn ≤ k, we set μ = [μ1, . . . ,μn−1,νn]. Otherwise
there exists an index 0≤ i≤ k and a multi index λ ′ ∈ Bi such that λ ′ | μ ′. Then we
set μ = [λ1, . . . ,λn−1, i] ∈ Bi. In both cases we find μ ∈ B and μ | ν . �

Let ≺ be a partial order on the set S. We introduce for each element s ∈ S its
upper set Us = {s′ ∈ S | s ≺ s′} and say that the set S has the König property with
respect to the partial order≺, if both S and all upper sets Us have only finitely many
minimal elements. The following result is known as König’s Lemma, as a similar
statement for graphs was first shown by König [260].

Lemma A.1.3 (König). Let S be an infinite set that has the König property with re-
spect to the partial order ≺. Then S contains an infinite strictly ascending sequence
s1 ≺ s2 ≺ s3 ≺ ·· · .

Proof. LetM⊂S be the finite set of minimal elements in S; obviously, this implies
S =
⋃

m∈M
(
{m}∪Um

)
. Since by assumption S is infinite, at least one m∈Mmust

have an infinite upper set Um. We choose s1 = m and iterate the argument for S =Um

obtaining an element s2  s1. As we always retain at least one infinite set Usk , we
can iterate infinitely often and construct this way the desired sequence. �

Remark A.1.4. The König property is related to the question of whether a ring (or a
monoid) is Noetherian. LetR be a (left) Noetherian ring and S a set of (left) ideals
ofR. If S has the König property for the partial order induced by set inclusion, then
it must be finite, as otherwise König’s Lemma A.1.3 would imply the existence of
an infinite strictly ascending chain of ideals. �

Consider again the polynomial ring P = �[x1, . . . ,xn] over a field � and the cor-
responding monoid of terms �. Any polynomial f ∈ P \{0} can be written in the
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form f =∑t∈� ctt where only finitely many coefficients ct ∈ � are different from 0.
The finite set

supp f = {t ∈� | ct �= 0} (A.7)

containing all terms with a non-zero coefficient is called the support of f . For the
theory of Gröbner bases considered in Appendix B.4 the following notions are of
fundamental importance.

Definition A.1.5. Let f ∈ P be a non-zero polynomial. For a given order ≺ on �,
the set supp f contains a largest term, the leading term lt≺ f of the polynomial f . Its
coefficient is the leading coefficient lc≺ f and if lt≺ f = xμ , we call μ the leading
exponent le≺ f . Finally, the leading monomial is defined by lm≺ f = lc≺ f · lt≺ f . If
F ⊆ P is a set of polynomials, we write lt≺F for the set {lt≺ f | f ∈ F}.

In this context, well-orders are particularly important. Many constructive proofs
in the theory of Gröbner bases proceed by the following scheme. We apply repeat-
edly a certain operation to an element of an ordered set obtaining a new element
which is smaller with respect to the given order. If the used order is a well-order,
this process cannot go on infinitely but must end after a finite number of steps. Usu-
ally, the finally obtained element possesses then some particular property. Our next
result characterises those semigroup orders on � which are well-orders.

Lemma A.1.6. Let≺ be a semigroup order on (�, ·). Then the following three state-
ments are equivalent.

(i) ≺ is a well-order.
(ii) ≺ is a monoid order.
(iii) If s | t and s �= t for two terms s,t ∈�, then μ ≺ ν , i. e. the semigroup order

≺ refines the natural partial order on � defined by divisibility.

Proof. Suppose that we have xi ≺ 1 for some index 1 ≤ i ≤ n. Then obviously
(xi)k ≺ (xi)� whenever k > � by the monotonicity of a semigroup order and the sub-
set {(xi)k | k ∈�} ⊂� does not possess a minimal element. Hence for a well-order
we must have 1≺ xi for all 1≤ i≤ n. Again the monotonicity of≺ implies that also
1≺ xix j for any 1≤ j ≤ n. Thus by a simple induction 1≺ t for all t ∈�\{1} and
(ii) follows from (i).

If s | t and s �= t, then a term r �= 1 exists such that t = rs. As 1≺ r for a monoid
order, s = 1 · s≺ r · s = t by monotonicity and (ii) implies (iii).

Finally, for showing that (iii) implies (i), let t1  t2  t3  ·· · be an infinite
descending sequence in � and set T = {t1,t2, . . .}. By Dickson’s Lemma A.1.2, a
finite subset B ⊆ T exists which contains for every t ∈ T a term s ∈ B such that s | t.
Without loss of generality, we may assume that it is of the form B = {t1,t2, . . . ,tk}
for some k≥ 1. Thus there must exist a value 1≤ j ≤ k such that t j | tk+1 leading to
the contradiction t j ≺ tk+1. �

Let ≺ be a semigroup order on (�, ·). If s≺ t whenever degs < degt, it is called
degree compatible (clearly, such an order is a monoid order). We say that an order
is of type ω , if for any two terms s,t ∈� with s≺ t only finitely many terms ri exist
with s≺ r1 ≺ r2 ≺ ·· · ≺ t. Obviously, any degree compatible order is of type ω .
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Example A.1.7. Some important term orders are the following ones. The lexico-
graphic order is defined by xμ ≺lex xν , if the last non-vanishing entry of μ − ν
is negative. Thus (x2)2x3 ≺lex x1(x3)2. With respect to the reverse lexicographic or-
der, xμ ≺revlex xν , if the first non-vanishing entry of μ−ν is positive. Now we have
x1(x3)2 ≺revlex (x2)2x3. However, ≺revlex is only a semigroup order, as xi ≺revlex 1
for all 1 ≤ i ≤ n. The reverse lexicographic order should not be confused with the
inverse lexicographic order ≺invlex which arises from ≺lex by inverting the order of
the variables, i. e. xμ ≺invlex xν , if the first non-vanishing entry of μ−ν is negative.

The lexicographic order is the classical example of an order which is not of
type ω . Indeed, we have for instance 1 ≺lex x1 ≺lex (x1)2 ≺lex · · · ≺lex x2. Degree
compatible versions exist of all these orders. xμ ≺deglex xν , if |μ |< |ν| or if |μ |= |ν|
and xμ ≺lex xν . Similarly, xμ ≺degrevlex xν , if |μ |< |ν| or if |μ |= |ν| and xμ ≺revlex xν .
Note that ≺degrevlex is a monoid order, in fact a very important one!

Assume that we split the variables x1, . . . ,xn into two sets, say x1, . . . ,xk and
xk+1, . . . ,xn. For notational simplicity we write y1, . . . ,yn−k for the variables in the
second set. Given a term order ≺x on the submonoid �x of terms in x1, . . . ,xk and
term order≺y on the submonoid�y of terms in y1, . . . ,yn−k, we may define a prod-
uct or block order ≺ on the full monoid � by setting xμ1 yν1 ≺ xμ2yν2 , if yν1 ≺y yν2

or ν1 = ν2 and xμ1 ≺x xμ2 .
Here we defined the orders inverse to the usual convention in most textbooks on

Gröbner bases. The classical forms arise, if one inverts the order of the variables:
x1, . . . ,xn 	→ xn, . . . ,x1. Our version fits better to the conventions used in differential
equations theory, in particular to our definition of the class of a multi index. �

For certain applications the lexicographic and the degree reverse lexicographic
order, respectively, are particularly important. The reasons lie in the following char-
acterisations of these two term order.

Lemma A.1.8. Let for a term order ≺ the condition lt≺ f ∈ �[x1, . . . ,xk] with an
arbitrary value 1 ≤ k ≤ n be equivalent to f ∈ �[x1, . . . ,xk] for any polynomial
f ∈ P . Then ≺ is the lexicographic order ≺lex. If ≺ is degree compatible and the
condition lt≺ f ∈ 〈x1, . . . ,xk〉 is equivalent to f ∈ 〈x1, . . . ,xk〉 for any homogeneous
polynomial f ∈ P , then ≺ is the degree reverse lexicographic order ≺degrevlex.

Proof. We leave the case of the lexicographic order as an exercise; it goes analo-
gously to the for us more important case of the degree reverse lexicographic order.
Let xμ and xν be two arbitrary monomials of the same degree such that the first
non-vanishing entry of μ−ν is μk−νk. Without loss of generality, we assume that
μk > νk. Set ρ = [ν1, . . . ,νk,0, . . . ,0] and consider the multi indices μ̄ = μ−ρ and
ν̄ = ν −ρ . Obviously, xμ̄ ∈ 〈x1, . . . ,xk〉 whereas xν̄ /∈ 〈x1, . . . ,xk〉. Considering the
homogeneous polynomial f = xμ̄ + xν̄ , the assumption of the lemma implies that
the leading term of f must be xν̄ . By the monotonicity of term orders, we conclude
that xμ ≺ xν . But by definition, we also have xμ ≺degrevlex xν . �

We say that a term order respects classes, if for multi indices μ , ν of the same
length clsμ < clsν implies xμ ≺ xν . It is now easy to see that by Lemma A.1.8 on
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terms of the same degree any class respecting term order coincides with the degree
reverse lexicographic order.

Example A.1.9. For some applications elimination orders are useful. The order ≺
has the elimination property for the variables xk+1, . . . ,xn, if lt≺ f ∈ �[x1, . . . ,xk]
implies f ∈ �[x1, . . . ,xk] for any polynomial f ∈ �[x1, . . . ,xn]. Obviously, product
orders possess this property. By Lemma A.1.8 the lexicographic order is charac-
terised by the fact that it is an elimination order for any value 1≤ k ≤ n. �

Addendum: Computing Derivative Trees

Consider the following problem: we are given a function f (x,y) and must compute
the derivatives fxx and fxy. Obviously, there are two possibilities. The more efficient
one first computes fx and then the two derivatives we need. The other one consists
of first computing fy and fxy and only afterwards fx and fxx; hence it needs one
derivation more. In this simple example it is trivial to find the optimal way, but if we
are given the task to compute, say, six derivatives of up to degree ten of a function
of four variables, things are getting more complicated.

In concrete computations with differential equations this problem appears fairly
often. One trivial application consists of checking whether a certain function is actu-
ally a solution of a given differential equation. Then we must compute all derivatives
that appear in the equation. More generally, one may consider arbitrary differential
substitutions where a substitution for uαμ automatically entails substitutions for all
its prolongations uαμ+ν .

We may formalise this question as follows. We are given a finite set N ⊂�n
0 of

multi indices and we must compute a connected tree, the derivative tree, the root
of which is the zero index and which contains all elements of N as leaves. This
is an instance of what computer scientists call the rectilinear Steiner tree problem.
Unfortunately, one can show that it is NP-complete [150].

In our application this fact implies that there is no point in looking for an al-
gorithm to construct explicitly a minimal Steiner tree, as the time needed for the
construction will probably be larger than any gains one achieves by avoiding some
differentiations. The recursive Algorithm A.1 below is based on a simple divide-
and-conquer heuristics.2 While it does not necessarily find the optimal solution, it
comes up with a reasonably good solution very fast.

The key is to introduce a distance function for multi indices. As we consider
now also differences of multi indices, we must accommodate for negative entries
and define ‖μ‖ = ∑n

i=1 |μi| for any μ ∈ 
n. Then we define for two arbitrary multi
indices μ ,ν ∈�n

0

2 The main ideas of this algorithm stem from Sven Helmer (Universität Mannheim). It was first
presented in [37].
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dist(μ ,ν) =

{
0 if ‖μ−ν‖=

∣
∣‖μ‖−‖ν‖

∣
∣ ,

‖μ−ν‖ else .
(A.8)

Algorithm A.1 always searches for the “least common multiple” of the given set
of multi indices (thinking of them as terms). It is subtracted from all multi indices
and returned as next node in the derivative tree. Now the set is divided into two
subsets: we first search for two multi indices with a maximal distance from each
other and then group every multi index to the one to which it is closer. Finally,
we recursively apply the algorithm to these subsets. The results are appended as
children to the current node (we represent here the tree as a nested list).

Algorithm A.1 Derivative tree
Input: finite setN ⊂�n

0
Output: derivative tree T with elements of N as leaves
1: α← lcmN
2: N ← {μ−α | μ ∈N}\{0}
3: choose μ ,ν ∈ N with dist(μ ,ν) maximal
4: Nμ →

{
ρ ∈ N | dist(ρ ,μ) < dist(ρ ,ν)

}

5: return
(
α ,
(
Tree(Nμ ),Tree(N \Nμ )

))

This approach to dividing into two subsets based on the distance explains the
case distinction in the definition of dist(μ ,ν). If one multi index is a “divisor” of
the other, we want of course that the two always remain in the same subset, as the
optimal path to the larger one leads through the smaller one. Hence we define their
distance as zero.

Example A.1.10. Figure A.1 shows a derivative tree for the set
{
[1,0,3,2], [0,2,1,4], [0,4,4,0], [0,3,3,3], [3,0,4,2], [0,5,1,4]

}
⊂�4 (A.9)

found by Algorithm A.1. Thus these six derivative can be computed with at most 26
differentiations. �

[0,0,0,0] [0,0,1,0]

[1,0,3,2] [3,0,4,2]

[0,2,1,0]

[0,4,4,0]

[0,2,1,3]

[0,3,3,3]

[0,2,1,4] [0,5,1,4]

Fig. A.1 Derivative tree for Example A.1.10
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A.2 Real-Analytic Functions

Much of the formal theory is based on formal power series. If such a series con-
verges, it defines an analytic function. In this chapter we collect some basic facts
about these functions. Throughout we consider real-valued functions defined in
some domain Ω ⊂�n (i. e. in a connected open set).

Definition A.2.1. The function f : Ω →� is real-analytic at the point y ∈Ω , if an
open neighbourhood y ∈ U ⊆ Ω exists such that for all x ∈ U the function f can be
represented by a power series

f (x) =
∞
∑

|μ|=0

aμ(x− y)μ . (A.10)

f is real-analytic in the whole domain Ω , if it is real-analytic at every point y ∈ Ω .
The set of all functions that are real-analytic in the domainΩ is denoted by Cω(Ω).

Any analytic function is smooth but not conversely: Cω(Ω) � C∞(Ω). By Tay-
lor’s Theorem, the coefficients aμ are thus given by

aμ =
1
μ!
∂ |μ| f
∂xμ

(y) , (A.11)

i. e. they are determined by the derivatives of f at the point y, and we may say that
the analytic functions are those smooth functions for which the Taylor series con-
verges to the function. This condition leads to a strict subset of the smooth functions.
Consider the function f (x) = exp(−1/x2). It is not difficult to verify that f is smooth
everywhere on�. However, f is not analytic at the origin. Indeed, all derivatives of
f vanish there so that the power series expansion vanishes in any neighbourhood of
the origin. This function f allows us the construction of other functions like

f̄ : x 	→
{

0 x≤ 0 ,
f (x) x > 0 .

(A.12)

Again it is easy to see that f̄ is smooth everywhere on �, but obviously it is not
analytic at the origin.

Analyticity is a rather strong property, as the following proposition implies that
if we know an analytic function and all its derivatives at one point of Ω , we know it
in all Ω . This fact is sometimes called unique continuation.

Proposition A.2.2. Let f ,g ∈ Cω(Ω) be two functions that are real-analytic in the
domain Ω . If there exists a point y ∈Ω such that

∂ |μ| f
∂xμ

(y) =
∂ |μ|g
∂xμ

(y) ∀μ ∈�n
0 , (A.13)

then f ≡ g in the whole domain Ω .
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Proof. We use a simple topological argument. Consider the set

Σ =
{

z ∈Ω | ∂
|μ| f
∂xμ

(z) =
∂ |μ|g
∂xμ

(z) ∀μ ∈�n
0

}
. (A.14)

It is relatively closed inΩ , as it is defined by equations. On the other hand,Σ must be
open, because at any point x ∈ Σ the two functions f and g possess identical power
series and hence are identical in an open neighbourhood of y. As, by definition, a
domain is a connected open set, we must have Σ =Ω . �

Another important and characteristic property of analytic functions is the exis-
tence of a bound on their derivatives. For a smooth function f defined in a neigh-
bourhood of an arbitrary but fixed point y ∈Ω , we say that f ∈ CM,r(y), if its deriva-
tives at y satisfy Cauchy’s estimate

∣
∣
∣
∂ |μ| f
∂xμ

(y)
∣
∣
∣≤M

|μ |!
r|μ|

∀μ ∈�n . (A.15)

Proposition A.2.3. Let f ∈ C∞(Ω) be a smooth function. Then f is analytic, i. e.
f ∈ Cω(Ω), if and only if for every compact subset Σ ⊂ Ω two numbers M and r
exist such that f ∈ CM,r(x) for all points x ∈ Σ .

Proof. Let us first assume that f is analytic. Then it is not difficult to show that
for all x ∈ Ω its derivatives satisfy in a neighbourhood U(x) the estimate (A.15)
with constants M(x) and r(x) (see e. g. [379, Section 2.2.1]). As any compact sub-
set Σ can be covered by a finite number of such neighbourhoods, we can take the
maximum of the M(x) and the minimum of the r(x) and obtain the assertion.

For the converse, take an arbitrary point y ∈ Ω and choose as compact set Σ a
closed ball of radius R with its centre at x (obviously, the radius R must be chosen
small enough so that Σ ⊂ Ω ). Then, by assumption, there exist numbers M and r
such that f ∈ CM,r(y). Consider a point x ∈ Σ with δ = ∑n

i=1 |yi− xi| < min(r,R)
and introduce for 0≤ τ ≤ 1 the function F(τ) = f

(
y+τ(x−y)

)
. We apply Taylor’s

Theorem to F(τ) and obtain

f (x) = F(1) =
q−1

∑
k=0

1
k!

dkF
dτk (1)+

1
q!

dqF
dτq (τ̄) (A.16)

for some value 0≤ τ̄ ≤ 1. A straightforward computation yields for any order q≥ 0
the following estimate of the remainder term

∣
∣ 1
q!

dqF
dτq (τ̄)

∣
∣≤M

(
δ
r

)q

. (A.17)

As by construction δ < r, it tends to zero and we find that f can be represented in a
neighbourhood of y by a convergent series of the form (A.10). �

Finally, we recall that an analytic function f is majorised in a neighbourhood of
the point y by another analytic function g, written f � g, if the inequality



A.3 Elementary Transformations of Differential Equations 519

∣
∣
∣
∂ |μ| f
∂xμ

(y)
∣
∣
∣≤
∣
∣
∣
∂ |μ|g
∂xμ

(y)
∣
∣
∣ (A.18)

holds for all multi indices μ ∈�n
0. As a simple example we note that any function

in CM,r(0) is majorised by the function

g(x) =
Mr

r− (x1 + · · ·+ xn)
, (A.19)

as the Taylor coefficients of g at the origin are just given by the right hand side of
Cauchy’s estimate (A.15).

A.3 Elementary Transformations of Differential Equations

In this section, we study three elementary operations with differential equations:
rewriting a higher-order equation as a first-order one, quasi-linearisation and the
transformation to one dependent variable. In particular, we determine in each case
what happens, if we apply the operation to an involutive equation. As usual, we
assume that π : E → X is a fibred manifold and that a higher-order differential
equationRq ⊆ Jqπ is given.

Reduction to first order

For many purposes it is useful to rewrite a differential equation of order q > 1 as a
first-order equation through the introduction of additional dependent variables repre-
senting the derivatives of the original dependent variables. Geometrically, this trans-
formation is based on the identification of Jqπ with a submanifold of J1πq−1 via the
immersion ιq,1 (see Section 2.2). We define intrinsically R̃1 = ιq,1(Rq)⊆ J1πq−1.

In local coordinates we get the following picture. Let (x,u(q)) be our usual co-
ordinates on Jqπ ; on the iterated jet bundle J1πq−1 we use

(
x,(u(q−1))(1)

)
. If the

original equation Rq is locally represented by the system Φτ (x,u(q)) = 0, a local
representation of its reduction R̃1 is

R̃1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Φ̃τ
(
x,(u(q−1))(1))= 0 ,

uαμ,i = uαμ+1i
, |μ |< q−1 , 1≤ i≤ n ,

uαμ,i = uαμ−1k+1i,k
, |μ |= q−1 , k = clsμ < i≤ n .

(A.20)

The second and the third line of this system represent the equations defining the
submanifold ιq,1(Jqπ) ⊂ J1πq−1. The function Φ̃τ is not uniquely defined, as in
general several possibilities exist to express a higher-order derivative uαμ by one of
the new coordinates. One way, which will allow us afterwards to compute easily the
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indices of the symbol Ñ1, is to use the mapping

uαμ 	−→

⎧
⎨

⎩
uαμ for |μ | ≤ q−1 ,

uαμ−1k,k
for |μ |= q, clsμ = k .

(A.21)

Proposition A.3.1. Let α̃(1)
1 , . . . , α̃(n)

1 be the Cartan characters of the reduced equa-

tion R̃1 ⊆ J1πq−1 and α(1)
q , . . . ,α(n)

q those of the original equationRq ⊆ Jqπ . Then

α̃(k)
1 = α(k)

q for 1≤ k≤ n and there exists a one-to-one correspondence between the
solutions3 of R̃1 and Rq. The differential equation Rq is involutive, if and only if
its reduction R̃1 is involutive.

Proof. Due to the substitution rule (A.21) the first line of (A.20) yields β (k)
q equa-

tions of class k, i. e. the same value as in Rq. The second line represents dimJq−2π
equations of class k, and a little combinatorial calculation shows that the last line
leads to additionally dim

(
Sq−1(T ∗X )⊗VE

)
−
(q+n−k−1

q−1

)
equations of class k.

Adding these values we get

β̃ (k)
1 = dimJq−2π+ dim

(
Sq−1(T ∗X )⊗VE

)
.−α(k)

q (A.22)

Since the fibre dimension of πq−1 : Jq−1π →X corresponds to the number of the
dependent variables in the reduced equation R̃1, its Cartan characters are:

α̃(k)
1 = dimJq−1π− β̃ (k)

1 = α(k)
q . (A.23)

If (x) defines a δ -regular coordinate system for Rq, then it does so for R̃1, too,
and vice versa. The additional equations in (A.20) are in a form that leads to maxi-
mal values for the number of equations of class n and so on. Thus only the equations
Φ̃τ = 0 could make trouble. But due to our substitution rule (A.21) we see that if we
get maximal values for the indices ofNq we get them also for Ñ1 and vice versa.

These considerations imply furthermore that involution of the symbol of one of
the equations is equivalent to involution of the symbol of the other one. It is easy to
see that the second and third line in (A.20) alone form an involutive system and that
there arise no integrability conditions between them and the equations Φ̃τ = 0. But
if the equations Φτ = 0 generate integrability conditions, then the same happens
with the equations Φ̃τ = 0 and vice versa.

The claimed relation between the solution spaces of the differential equationsRq

and R̃1, respectively, is obvious. If a section σ : X → E is a solution ofRq, then its
prolongation jq−1σ : X → Jq−1π is a solution of R̃1. Conversely, the second and
third line of (A.20) ensure that every solution σ̃ : X → Jq−1π of R̃1 is a section of
the form σ̃ = jq−1σ with σ : X → E a solution ofRq. �

3 As usual we are only considering either smooth or formal solutions.
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Quasi-Linearisation

The above mentioned method for a reduction to first order is not the only possible
one. In particular, we may apply it to the prolongation Rq+1 instead of Rq itself.
Recall that a prolongation always leads to a quasi-linear equation. This fact implies
that the arising first-order equation R̄1 ⊂ J1πq is always quasi-linear; the original
equations are transformed into algebraic constraints.

Proposition A.3.2. Let ᾱ(1)
1 , . . . , ᾱ(n)

1 be the Cartan characters of the quasi-linear

equation R̄1 ⊆ J1πq and α(1)
q , . . . ,α(n)

q those of the original differential equation

Rq ⊆ Jqπ . Then ᾱ(k)
1 = ∑n

i=kα
(i)
q for 1 ≤ k ≤ n and there exists a one-to-one cor-

respondence between the solutions of R̄1 and Rq. If Rq is involutive, then R̄1 is
involutive, too. If R̄1 is involutive, thenRq is formally integrable and the prolonga-
tionRq+1 is involutive.

Proof. Most of the assertions follow immediately from Proposition A.3.1. Accord-
ing to Proposition 8.2.3, the Cartan characters of Rq+1 and Rq are related by

α(k)
q+1 = ∑n

i=kα
(i)
q . If the equation Rq is involutive, then Rq+1 and hence R̄1 are

involutive, too.
For the final assertion, we first note that if R̄1 is involutive, then by our previous

results Rq+1 is involutive. Applying our transformation to Rq yields a differential

equation R̄0 ⊇ R̄(1)
0 . As the transformation of Rq+1 yields R̄1 and as, because of

the involution of R̄1, the equality (R̄(1)
0 )+1 = R̄1 holds, we must have R̄0 = R̄(1)

0 .

But this implies thatR(1)
q =Rq. HenceRq is at least formally integrable. �

Example A.3.3. We cannot conclude that involution of R̄1 entails involution of the
original equation Rq, as its construction uses a prolongation. Consider again the
differential equation of Example 7.2.2:

R2 :
{

uyy = 0 , uxx = 0 . (A.24)

In order to make the notation less cumbersome, we introduce the following variable
names in J2π : r = uxx, s = uxy, t = uyy, v = ux and w = uy. The first-order equation
R̄1 ⊂ J1π2 has a local representation of the form

R̄1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ty = 0 , tx = 0 ,
sx = 0 , rx = 0 ,
r = 0 , t = 0 ,

ry = sx , sy = tx ,
vy = s , vx = r ,
wy = t , wx = s ,
uy = w , ux = v .

(A.25)

The first six equations representR3 in the new coordinates; the remaining equations
define the submanifold ι3,1(J3π) ⊂ J1π2. One easily checks that R̄1 is involutive.
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We know from Example 7.2.2 thatR2 is only formally integrable but not involutive
whereasR3 is involutive. �

Remark A.3.4. A special situation arises, if we start with a normal first-order differ-
ential equationR1. Such an equation is locally represented by a system of the form
uαn = φα (x,u, ũ(1)) where ũ(1) denotes all derivatives of class less than n. Applying
the above quasi-linearisation process yields a differential equation R̄1. We consider
now only the subsystem of class n of the Cartan normal form of R̄1:

uα,n = uαn ,

uαj,n =

⎧
⎪⎪⎨

⎪⎪⎩

uαn, j for 1≤ j < n ,

∂φα

∂xn +
∂φα

∂uβ
uβn +

∂φα

∂uβj
uβn, j for j = n .

(A.26)

It defines a quasi-linear normal first-order equation. Of course, this equation is not
equivalent to the original equationR1, as its local representation is only a subsystem
of the equivalent equation R̄1. Thus its solution space is larger.

Assume now that we consider for R1 the initial value problem with initial con-
ditions u(x1, . . . ,xn−1,0) = f(x1, . . . ,xn−1). The solution of this problem induces a
solution of (A.26) satisfying the initial conditions

uα(x1, . . . ,xn−1,0) = f α(x1, . . . ,xn−1) ,

uαj (x1, . . . ,xn−1,0) =

⎧
⎪⎪⎨

⎪⎪⎩

∂ f α

∂x j (x1, . . . ,xn−1) for 1≤ j < n ,

φα
(

x1, . . . ,xn−1,0, f β ,
∂ f β

∂x j

)
for j = n .

(A.27)

Conversely, any solution of the quasi-linear system (A.26) for initial conditions of
this special form yields a solution of the initial value problem for the original equa-
tion R1. Hence it suffices for a uniqueness and existence theory of normal systems
to consider only the case of quasi-linear systems. �

Transformation to one dependent variable

It is possible to transform any differential equationRq in m dependent variables uα

and n independent variables xi into an equation with only one dependent variable v.
As this trick seems to be due to Drach [112], we call it Drach transformation. It
requires the introduction of m additional independent variables yα . Furthermore,
the order is raised by one and the relation between the transformed and the original
equation is more complicated than in the reduction to first order discussed above.

Traditionally, the Drach transformation is described only in local coordinates.
We give here an intrinsic geometric picture, too. It requires that π : E → X is not
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only a fibred manifold but a vector bundle. Based on the dual bundle π∗ : E∗ →X ,
we introduce the trivial line bundle π̂ : Ê = E∗ ×�→ E∗. Let σ : X → E be a
section with σ(x) =

(
x,s(x)

)
; we associate with it the unique section σ̂ : E∗ → Ê

defined at an arbitrary point ξ = (x,u∗) ∈ E∗ by σ̂(ξ ) =
(
ξ ,u∗
(
s(x)
))

. Note that
this definition makes sense, as the fibre E∗x is the dual space of the fibre Ex and thus
we may consider u∗ as a linear functional acting on Ex.

If we use local coordinates (xi,uα) on E , the dual coordinates (xi,yα) on E∗ and v
as fibre coordinate on Ê , then σ̂(xi,yα ) =

(
xi,yα ;yα sα(xi)

)
for σ(xi) =

(
xi,sα(xi)

)
.

Thus the basic idea of the Drach transformation is very simple: we define a new
dependent variable by

v = yαuα . (A.28)

At the level of jet bundles, this association σ 	→ σ̂ induces maps from the fibre
(Jqπ)x to every fibre (Jqπ̂)ξ with π∗(ξ ) = x. Namely, we map the equivalence class

[σ ](q)
x to the class [σ̂ ](q)

ξ . It is easy to see that this map is well-defined, i. e. indepen-
dent of the section σ chosen as representative. Thus given a differential equation
Rq ⊆ Jqπ , we may associate with it a set R̂q ⊆ Jqπ̂ by applying these maps. Unfor-
tunately, it does not seem possible to obtain easily a local representation of this set
and we will consider a different equation as Drach transformation ofRq.

We first note that all sections σ̂ ∈Γloc(π̂) obtained in the above described manner
from sections σ ∈ Γloc(π) satisfy

∂ 2v
∂yα∂yβ

= 0 , 1≤ α ≤ β ≤ m . (A.29)

These equations form a differential equation Ŝ2 ⊂ J2π̂ . It is nothing but the image
of J2π under the above maps and similarly its prolongations Ŝq are the images of
the higher-order jet bundles Jqπ . Now we define as Drach transformation ofRq the

differential equation R̂q+1 = (π̂q+1
q )−1

(
R̂q
)
∩Ŝq+1.

By (A.28), we have for any multi index μ ∈�n
0 the identity

∂ |μ|uα

∂xμ
=
∂ |μ|+1v
∂yα∂xμ

. (A.30)

Considering these identities as substitution rules, we may apply them to a local
representation of Rq and obtain equations of order q + 1 in Jq+1π̂ . Adding (A.29)
plus its prolongations to order q + 1 yields then a local representation of R̂q+1.

Because of (A.29), any solution of R̂q+1 is of the form

v(x,y) = yαuα(x)+Λ(x) (A.31)

where u(x) is a solution of the original equation Rq and Λ(x) is an arbitrary func-
tion. Obviously, this arbitrary function is of no interest for us; thus we may consider
it as a “gauge symmetry” of R̂q+1.
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Proposition A.3.5. Let α̂(1)
q+1, . . . , α̂

(n+m)
q+1 be the Cartan characters of the trans-

formed equation R̂q+1 where we set xk = yα for k = n +α and α(1)
q , . . . ,α(n)

q the
Cartan characters of the original equationRq. Then

α̂(k)
q+1 =

{
0 for n < k ≤ n + m ,

α(k)
q +
(q+n−k

q

)
for 1≤ k ≤ n .

(A.32)

The differential equation R̂q+1 is involutive, if and only if Rq is involutive.

Proof. Several ways exist to prove this proposition. One may proceed head-on and
determine the indices of R̂q+1; they are given by

β̂ (k)
q+1 =

⎧
⎨

⎩

(q+n+m−k
q

)
for n < k ≤ n + m ,

β (k)
q + m(m+1)

2

n+m
∑

i=k

(q+n+m−i−2
q−2

)
for 1≤ k ≤ n .

(A.33)

The binomial coefficients count the contribution of the equations in (A.29) and their
prolongations. This yields (A.32) after some computations involving non-trivial
identities of binomial coefficients.

A simpler and more direct way exploits (A.31). It shows that the solution of the
equation R̂q+1 does not contain any arbitrary functions of the new variables y. Thus

no parametric derivatives exist that are pure y-derivatives and α̂(k)
q+1 = 0 for k > n.

Concerning the x-dependency we see that we recover all arbitrariness of Rq and
have in addition the gauge symmetry. It contributes

(q+n−k
q

)
parametric derivatives

of order q+1 and class k for 1≤ k≤ n. Hence α̂(k)
q+1 = α(k)

q +
(q+n−k

q

)
for 1≤ k≤ n.

The assertion about involution is trivial. (A.29) represents obviously an involu-
tive equation; if it were not for the x-dependency, it would be a finite type equation.
Cross-derivatives between the original and these added equations vanish trivially.
Thus the only source for possible integrability conditions or obstructions to involu-
tion is the original equation and there the y-derivatives play no role at all. �

Using Hilbert polynomials, it is much easier to express (A.32) using the results
of Section 8.3. Let Ĥ(s) be the Hilbert polynomial of R̂q+1, H(s) the one ofRq and
G(s) the one of the Lie pseudogroup defined by

G1 :

⎧
⎪⎨

⎪⎩

ȳ = y , x̄ = x ,
∂ v̄
∂v

= 1 ,

∂ v̄
∂yα

= 0 , 1≤ α ≤ m .
(A.34)

It describes the gauge symmetry v̄ = v +Λ(x) of R̂q+1. Then we get by Proposi-
tion 8.3.7 the relation

Ĥ(s) = H(s−1)+
(q+n−1

q

)
, (A.35)

as a trivial calculation gives G(s) =
(q+n−1

q

)
.
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One may remove the gauge symmetry (and thus obtain an equivalence between
the original and the transformed equation) by adding the gauge fixing condition

yα
∂v
∂yα

− v = 0 . (A.36)

One readily checks that this equation is compatible with those contained in the sys-
tem for R̂q+1 and thus yields only some trivial integrability conditions due to the
fact that it is of lower order. Comparing with (A.31), we see that the sole effect of
the condition (A.36) consists of enforcing that Λ(x) = 0.

A.4 Modified Stirling Numbers

The modified Stirling numbers appear as combinatorial factors in some manipula-
tions of the Cartan characters and the Hilbert polynomial. We introduce them in a
fashion similar to the classical Stirling numbers of the first kind [178]. Let us de-
note the nth rising factorial powers (sometimes also called Pochhammer’s symbol)
by xn = x(x + 1) · · ·(x + n−1). Then we can define the Stirling numbers of the first

kind4 S(k)
n for n≥ k by the identity

xn =
n

∑
k=0

S(k)
n xk . (A.37)

The modified Stirling numbers s(n)
k (q) arise, if we write x = q + r + 1 for a non-

negative integer q and then express the right hand side as a polynomial in r. Ta-
ble A.1 on page 528 contains some explicit values.

Definition A.4.1. The modified Stirling numbers s(n)
k (q) are defined for all non-

negative integers n, k, q with n≥ k by the identity

(q + r + 1)n =
n

∑
k=0

s(n)
n−k(q)rk (A.38)

(note the different position of the scripts compared with (A.37) and the use of n− k
instead of k).

We are mainly interested in the fact that the modified Stirling numbers appear
naturally in the expansion of binomial coefficients as polynomials. Dividing (A.38)
by n! yields immediately the equality

(
q + r + n

q + r

)
=

1
n!

n

∑
k=0

s(n)
n−k(q)rk . (A.39)

4 We follow here the notation of Abramowitz and Stegun [4] for the Stirling numbers of the first
kind. Graham et al [178] propose the notation

[n
k

]
which we already use in a different context.



526 A Miscellaneous

This observation also explains why we have used q + r + 1 in (A.38) instead of the

perhaps more natural q + r. Using the identity S(k+1)
n+1 = ∑k

i=0

( i
k

)
S(i)

n [178] one can

show that s(n)
k (0) = S(n−k+1)

n+1 .
With the help of the elementary symmetric polynomials one can easily de-

rive a closed form expression for them. By definition, the elementary symmet-

ric polynomial σ (n)
k is a polynomial of degree k in n variables x1, . . . ,xn that re-

mains invariant under arbitrary permutations of the variables [98, Chapt. 7]. Thus

σ (n)
1 = x1 + · · ·+ xn, σ (n)

2 = x1x2 + x1x3 + · · ·+ x2x3 + · · ·+ xn−1xn and so on until

σ (n)
n = x1x2 · · ·xn. Now we can write

s(n)
k (q) =

{
1 for k = 0 ,

σ (n)
k (q + 1,q + 2, . . .,q + n) for 0 < k ≤ n .

(A.40)

The modified Stirling numbers inherit from the elementary symmetric polyno-
mials the following recursion relation:

s(n)
k (q) = s(n−1)

k (q)+ (q + n)s(n−1)
k−1 (q) . (A.41)

One can use this relation to construct explicit expressions for s(n)
k (q). They become

fairly lengthy for larger values of k.

Lemma A.4.2.

s(n)
n (q) = (q + n)!/q! , (A.42a)

s(n)
1 (q) =

1
2

n(n + 2q + 1) , (A.42b)

s(n)
2 (q) =

1
24

n(n− 1)
(

3n2 + 12qn + 5n + 12q2+ 12q + 2
)

. (A.42c)

Proof. (A.42a) and (A.42b) follow immediately from Definition A.4.1. For (A.42c)
we apply (A.41)

s(n)
2 (q) = s(n−1)

2 (q)+ (q + n)s(n−1)
1 (q)

= · · ·=
n−1

∑
l=2

(q + l + 1)s(l)
1 (q)+ s(2)

2 (q)

=
1
2

n−1

∑
l=1

(q + l + 1)
[
l2 +(2q + 1)l

]
.

Evaluation of this sum yields the claim. �

One can also deduce recursion formulae relating the modified Stirling numbers

for different values of q or express s(n)
k (q) directly by s(m)

l (0) with 0 ≤ m ≤ n. Like
most properties of these numbers these relations stem from a well-known formula
for binomial coefficients.
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Lemma A.4.3.

s(n)
n−k+1(q) = ns(n−1)

n−k (q)+ s(n)
n−k+1(q−1) . (A.43)

Proof. The basis of this lemma is the following identity coming directly from the
Pascal triangle (

q + r + n
q + r

)
=

n

∑
k=0

(
q + r + k−1

q + r−1

)
. (A.44)

Plugging in (A.39) yields after a few simple index manipulations yet another recur-
sion relation for the modified Stirling numbers

s(n)
k (q) =

k

∑
j=0

n!
(n− j)!

s(n− j)
k− j (q−1) . (A.45)

Applying this relation in (A.43) proves at once the lemma. �

In order to express s(n)
k (q) through modified Stirling numbers with q = 0, we

must generalise (A.45). Each binomial coefficient
(r+k

k

)
represents by (A.39) a poly-

nomial in r of degree k. Thus every polynomial in r of degree n can be written as a

linear combination of
(r

0

)
,
(r+1

1

)
,. . . ,
(r+n

n

)
. Especially there exist numbers d(n)

k (q)
such that (

q + r + n
q + r

)
=

n

∑
k=0

d(n)
k (q)

(
r + k

k

)
. (A.46)

Applying repeatedly (A.44), one can express these coefficients as nested sums

d(n)
k (q) =

n

∑
k1=k

n

∑
k2=k1

· · ·
n

∑
kq−1=kq−2

1 . (A.47)

For lower values of q these sums are easily evaluated. We omit, however, explicit
expressions. Now we obtain similarly as above

s(n)
k (q) =

k

∑
j=0

n!
(n− j)!

d(n)
k (q)s(n− j)

k− j (0) . (A.48)

Finally, we list in Table A.1 some values of the modified Stirling numbers; the
rows correspond to different values of n, the columns of k. We remark that many
such integer sequences can be found in the encyclopedia [422] of which also an ex-
tended electronic version exists on the web.5 It contains a number of generalisations
of the classical Stirling numbers (with references).

5 http://www.research.att.com/∼njas/sequences

http://www.research.att.com/~njas/sequences
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q=0 q=1 q=2 q=3
n\k 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 1 2 3 4
2 3 2 5 6 7 12 9 20
3 6 11 6 9 26 24 12 47 60 15 74 120
4 10 35 50 24 14 71 154 120 18 119 342 360 22 179 638 840

Table A.1 Some values of the modified Stirling numbers



Appendix B
Algebra

As the sun eclipses the stars by its brilliancy, so the man of
knowledge will eclipse the fame of others in assemblies of the people
if he proposes algebraic problems, and still more if he solves them.

Brahmagupta

A proper understanding of the meaning of the concept of involution in the form
introduced in Chapter 3 requires certain ideas from (commutative) algebra collected
in this chapter. Some classical references for all mentioned topics are [98, 99, 125];
older textbooks on commutative algebra are usually less constructive. The rather
new books [185, 267, 268] put strong emphasis on computational issues (using the
computer algebra systems SINGULAR and COCOA, respectively). Basic algebraic
notions are introduced in [281, 415]; for the theory of non-commutative rings we
mention [171, 276, 319].

The first section quickly reviews some basic algebraic structures like monoids,
rings, algebras etc. Much of the material is elementary. Special emphasis is put on
modules, as they are central for the algebraic analysis of the symbol of a differential
equation. In particular, we introduce the Hilbert function and polynomial, as similar
concepts appear for differential equations in Section 8.2. A simple method for the
determination of the Hilbert function may be considered as one motivation for the
introduction of involutive bases.

The second section reviews a few basic concepts from homological algebra. We
introduce (co)homology modules for complexes of R-modules and discuss resolu-
tions. These notions are in particular used in Chapters 5 and 6. Section 10.5 requires
in addition some knowledge about exact and derived functors. The third section con-
cerns the more specialised topic of coalgebras and comodules; these concepts are
only used in Chapter 6.

The fourth section gives an introduction into the theory of Gröbner bases of
polynomial ideals and modules. These bases represent a fundamental computational
tool in commutative algebra and algebraic geometry. Like most computations in a
Euclidian vector space become significantly easier, if one chooses an orthonormal
basis, almost any computation with ideals profits from the knowledge of Gröbner
bases. Standard references are [5, 36, 98, 185]; most books on computer algebra
also contain at least an introduction.

For us Gröbner bases are so important, as much of the theory of involutive bases
is modelled on them and an involutive basis is a Gröbner basis with additional com-
binatorial properties. We recall the famous Buchberger algorithm for determining a

529
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Gröbner basis in order to allow for a comparison with the completion algorithms de-
rived in Chapter 4. However, deeper questions of the optimisation of the algorithm
are not discussed.

Similarly, for lack of space applications of Gröbner bases are omitted; many
can be found in the references above. They include in particular the problem of
determining points on the variety defined by an ideal, in other words solving systems
of polynomial equations. Other elementary applications are the union or intersection
of ideals, computations with cosets, elimination problems, . . .

B.1 Some Basic Algebraic Structures

Definition B.1.1. A set S with an operation · : S ×S → S is a semigroup, if · is
associative, i. e. if s1 · (s2 · s3) = (s1 · s2) · s3 for all s1,s2,s3 ∈ S. The semigroup is
commutative or Abelian, if s1 · s2 = s2 · s1 for all s1,s2 ∈ S. A semigroup S is a
monoid, if there exists a neutral element e ∈ S such that e · s = s ·e = s for all s ∈ S.
A monoid S is a group, if every s ∈ S has an inverse s−1 ∈ S such that s · s−1 = e.

The for us most important example of an Abelian monoid is given by the multi
indices (�n

0,+) discussed in Appendix A.1. Its neutral element is [0, . . . ,0]. The
integers 
 are both a monoid and a group: a monoid with respect to multiplication
and a group with respect to addition; the respective neutral elements are 1 and 0. A
non-commutative monoid (C∞(�),◦) is defined by the smooth functions �→�

with the composition as operation and the identity as neutral element. The invertible
functions form a group.

Let (S, ·) be a monoid and I ⊆ S a (nonempty) subset such that S ·I ⊆ I, i. e. if
we “multiply” an element of I by an arbitrary element of S, then we always obtain
again an element of the subset I. We call such a subset I a (left) monoid ideal. In
case that the monoid is not Abelian we may analogously define right monoid ideals
by the condition I ·S ⊆I or double sided monoid ideals by S ·I ·S ⊆I. One should
not confuse monoid ideals with submonoids which are (nonempty) subsets T ⊆ S
which are closed under the multiplication ·.

Definition B.1.2. A (left) monoid module over a monoid S with neutral element e is
a setM together with an operation � : S ×M→M so that

(i) ∀m ∈M : e � m = m;
(ii) ∀s1,s2 ∈ S,∀m ∈M : (s1 · s2)� m = s1 � (s2 � m).

A trivial example of a monoid module over S is a monoid ideal I ⊆ S with the
product · as operation. If M is a monoid module, a subset G ⊂M is a generating
set of it, ifM is the smallest monoid module containing G. Any element ofMmay
then be represented in the form s�g with some s∈ S and g∈ G. We writeM= 〈G〉.
The monoid moduleM is finitely generated, if it possesses a finite generating set.

The monoid (S, ·) is called left Noetherian, if every left monoid ideal I ⊆ S
is finitely generated. A right Noetherian monoid is defined analogously. We call S
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Noetherian, if it is both left and right Noetherian. It is well possible that a monoid
is left but not right Noetherian or vice versa.

Two equivalent conditions are that either every ascending chain of monoid ideals
I1 ⊆ I2 ⊆ I3 ⊆ ·· · ⊆ S becomes stationary, i. e. an index N ≥ 1 exists such that
IN = IN+1 = IN+2 = · · · , or that any non-empty set of monoid ideals of S con-
tains a maximal element with respect to the partial order given by set inclusion. It
follows immediately from Dickson’s Lemma A.1.2 that (�n

0,+) is an example of a
Noetherian monoid. This observation will be crucial for the theory of Gröbner bases
in Appendix B.4.

Definition B.1.3. A semiring (sometimes also called rng) is a set R with two oper-
ations +, · :R×R→R such that (R,+) is an Abelian group, the neutral element
of which we denote by 0, and (R, ·) is a semigroup. Furthermore, the following
distributive laws must hold:

(i) ∀r1,r2,r3 ∈R : r1 · (r2 + r3) = r1 · r2 + r1 · r3;
(ii) ∀r1,r2,r3 ∈R : (r1 + r2) · r3 = r1 · r3 + r2 · r3.

A semiringR is a ring, if (R, ·) is a monoid, the neutral element of which we denote
by 1. If r1 · r2 = r2 · r1 for all ring elements r1,r2 ∈ R, then we are dealing with a
commutative ring. A unit is an element r of a ring R such that an inverse r−1 ∈ R
with rr−1 = 1 exists. A zero divisor is an element r ∈ R\{0} such that a further
ring element s∈R\{0} exists with either r ·s = 0 or s ·r = 0. An element ofR\{0}
which is not a zero divisor is called regular. A ring without zero divisors is a domain.

The integers 
 are a domain with neutral element 1. If R is a commutative ring
(domain), the set P = R[x1, . . . ,xn] of all polynomials in the variables1 x1, . . . ,xn

with coefficients inR is again a ring (domain). Examples of non-commutative rings
are rings of linear differential operators with variable coefficients or square matrices.
The units of a ringR form a multiplicative group (R×, ·) with neutral element 1.

Definition B.1.4. A skew field � is a ring such that �× =�\{0}, i. e. except 0 every
element is invertible. If � is Abelian, it is a field. A field � is algebraically closed,
if every non-constant univariate polynomial in �[x] has a zero in �.

Skew fields are also known as division rings. Given any commutative domainR,
we may embed it in its quotient field Quot(R). Its elements are pairs (r,s) ∈
R×R\ {0} (usually written r/s) modulo the equivalence relation r1/s1 ∼ r2/s2

if r1s2 = r2s1. The rational numbers� are the quotient field of the integers 
. Sim-
ilarly, the rational functions R(x1, . . . ,xn) are the quotient field of the polynomial
ring P =R[x1, . . . ,xn]. The analytic functions do not form a field but only a ring,
as the quotient of two analytic functions is no longer analytic at the zeros of the
denominator. But the meromorphic functions, i. e. the functions that are everywhere
analytic except on a discrete set of points where they have a pole, form a field. We
consider exclusively fields of characteristic zero; any such field contains the rational

1 We follow here (as everywhere in this book) the convention in differential geometry and use
superscripts to index variables.
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numbers � as a subfield. The classical example of an algebraically closed field is
�—this is the Fundamental Theorem of Algebra—whereas � is not algebraically
closed (the polynomial x2 + 1 has no zero in �).

For a non-commutative domainR one must distinguish between its left and right
quotient (skew) field and, in contrast to the commutative case, they do not always
exist.R possesses a left (right) quotient field, if and only if it satisfies the left (right)
Ore condition ensuring the existence of left (right) least common multiples [94, 276,
319, 343]: to each pair r ∈ R, s ∈ R\{0} there exists a pair s′ ∈ R\{0}, r′ ∈ R
such that s′r = r′s (respectively, rs′ = sr′). A domain satisfying this condition is
called a left (right) Ore domain. Note that the left and the right Ore condition are
independent: a domainR may satisfy one but not the other one.

IfR satisfies the left Ore condition, then we may proceed as in the commutative
case and introduce an equivalence relation on pairs (r,s) ∈ R×R\{0} by saying
(r1,s1) ∼l (r2,s2) if u,v ∈ R exist such ur1 = vr2 and us1 = vs2 ∈ R\ {0}. We
denote elements of Quotl(R) = (R×R\{0})/∼l by s−1r. Let s−1

1 r1, s−1
2 r2 be two

quotients; by the Ore condition elements u,v ∈R exist with ur1 = vs2. The product
on Quotl(R) is then defined as (s−1

1 r1)(s−1
2 r2) = (us1)−1(vr2). For the addition

on Quotl(R), let u1,u2 ∈ R be such that u1s1 = u2s2, then (s−1
1 r1) + (s−1

2 r2) =
(u1s1)−1(u1r1 + u2r2). One easily checks that both definitions are independent of
the choice of the representatives for the equivalence classes.

In a right Ore domain we proceed analogously and introduce the equivalence
relation (r1,s1) ∼r (r2,s2) if two elements u,v ∈ R exist such that r1u = r2v and
s1u = s2v ∈ R\{0}. The elements of the arising right quotient field Quotr(R) =
(R×R\ {0})/∼r are denoted by rs−1 and their multiplication and addition is
defined similar as above. If R satisfies both the left and the right Ore condition,
then Quotr(R) = Quotl(R). Indeed, let s−1r be a left quotient; by the right Ore
condition, a pair s′ ∈R\{0}, r′ ∈R with rs′ = sr′ exists and thus s−1r = r′(s′)−1.

Quotient fields are a special case of the more general concept of localisation.
Let R be a ring and S ⊆ R a multiplicatively closed subset, i. e. we have 1 ∈ S,
0 /∈ S and for any pair r,s ∈ S that also rs ∈ S. Then the left localisation S−1R
is defined like the left quotient field only with R\{0} replaced by S. Its existence
is also decided by the left Ore condition—again with R\{0} replaced by S. The
right localisation is defined correspondingly. Since we assume that 1 ∈ S, we can
always embed R in S−1R by identifying r ∈ R with 1−1r ∈ S−1R. An important
special case is obtained by choosing for S the subset of all regular elements ofR; the
localisation S−1R is then called the total ring of left quotients and correspondingly
for right quotients. One easily shows that the localisation of a Noetherian ring is
again Noetherian.

Definition B.1.5. Let R be a ring. An Abelian group (M,+) is called a (left) R-
module, if a (left)R-action · :R×M→M exists such that:

(i) ∀m ∈M : 1 ·m = m;
(ii) ∀r1,r2 ∈R,∀m ∈M : r1 · (r2 ·m) = (r1r2) ·m;
(iii) ∀r ∈R,∀m1,m2 ∈M : r · (m1 + m2) = r ·m1 + r ·m2;
(iv) ∀r1,r2 ∈R,∀m ∈M : (r1 + r2) ·m = r1 ·m+ r2 ·m.
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This definition is an obvious extension of Definition B.1.2 of a monoid module.
Large parts of the literature deal only with modules over commutative rings. We have
not made this restriction, as we want to be able to consider modules over, say, rings
of differential operators. One defines analogously right modules with a right action
· : M×R→M and obvious modifications of the axioms. If R, S are two rings,
then an R-S-bimodule is a left R- and right S-module. As we almost exclusively
deal with left modules, we usually omit the “left” and simply speak of modules.
Furthermore, for commutative rings we will usually not distinguish between left
and right modules and consider anyR-module as anR-R-bimodule.

Let G ⊂M be a subset of M. Then G is a generating set of M, if any element
m ∈M can be written as a linear combination m = ∑g∈G rgg where only finitely
many of the coefficients rg ∈R do not vanish. This representation is in general not
unique; if it is, then we are dealing with a free module. We write M = 〈G〉. A
module is called finitely generated, if it possesses a finite generating set. A set G is
called linearly independent, if ∑g∈G rgg = 0 implies that all coefficients rg vanish.
A linearly independent generating set is a basis of the moduleM; only in this case
the above representation of the elements ofM as linear combinations is unique.

If G is a minimal generating set, then it is not possible to remove an element of G
without G loosing the property of being a generating set. Note that generally differ-
ent minimal generating sets may have very different cardinalities; only if bases exist,
they always possess the same number of elements. A special case arises for graded
algebras (see below): as here the homogeneous components are vector spaces, any
homogeneous generating set has the same cardinality.

Example B.1.6. The simplest examples of modules are vector spaces. Indeed, if the
ringR is even a field, then anR-module is nothing but a vector space overR. Any
Abelian group (G,+) may be considered as a 
-module with n ·g = g + · · ·+ g for
any positive n ∈ 
.

Notions like generating set or basis are of course familiar from linear algebra.
One should, however, note that many facts which are true for vector spaces do not
hold, in general, for modules, as in a ring we cannot divide by all elements. Assume,
for example, that we are given a set of elements that are linearly dependent. In
a vector space this implies that some of the elements can be expressed as linear
combinations of the other ones. In a module this is not necessarily true. Take the
free 
-module
2 and the two elements m1 =

(2
4

)
and m2 =

(3
6

)
. Obviously, they are

linearly dependent, as 3m1−2m2 = 0. But over the ring 
 none is a multiple of the
other one, as the necessary divisions cannot be performed.

One consequence of these considerations is that—in contrast to vector spaces—
not every module possesses a basis. A module with a basis is called free. A finitely
generated R-module is thus free, if and only if it is isomorphic to a module of
the form Rm for some m ∈ �, the rank of the module. For this reason we will
usually identify elements of a freeR-module of rank m with m-dimensional vectors
whose entries are elements of R; addition and the action of R are then defined
componentwise. �
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LetM be an R-module. We say that m ∈M is a torsion element, if there exists
a non zero divisor r ∈ R such that rm = 0. If R is a commutative ring (or satisfies
an Ore condition), then the torsion elements form the torsion submodule t(M); if
t(M) = M, then we say that M is a torsion module. The module M is called
torsionfree, if t(M) = 0. A free module is always torsionfree.

LetM andN be two (left)R-modules. A map φ :M→N is called a (left) mod-
ule homomorphism, if it respects the module structures of M and N , i. e. if for all
m1,m2 ∈M and for all r ∈R the equality φ(m1 +r ·m2) = φ(m1)+r ·φ(m2) holds.
The case of right modules is treated analogously. We denote by HomR(M,N ) the
set of all such module homomorphisms. If R is commutative, then HomR(M,N )
is again anR-module with the obvious structure map (rφ)(m) = rφ(m). Otherwise,
HomR(M,N ) is simply an Abelian group.

Remark B.1.7. An important special case is the dual moduleM∗ = HomR(M,R).
IfM is a leftR-module, then M∗ is always a rightR-module (with structure map
(φr)(m) = φ(m)r for any r ∈ R, φ ∈M∗), even if the ring R is not commutative.
Given a homomorphism φ :M→N between two left R-module, the dual map is
the homomorphism φ∗ :N ∗→M∗ of rightR-modules defined by φ∗λ = λ ◦φ .

SinceM∗ is a rightR-module, we can define the bidualM∗∗ = HomR(M∗,R)
where of course right module homomorphisms are considered. Obviously, M∗∗

is again a left R-module and there is a natural homomorphism ηM : M→M∗∗

mapping m ∈ M to the homomorphism μ ∈ M∗∗ defined by μ(φ) = φ(m). In
general ηM is neither injective nor surjective. A simple exception arises, if M is a
free module, as then ηM is always an isomorphism. But if we dualise once more,
then we may consider on one side the dual map η∗

M :M∗∗∗→M∗ and on the other
side the natural morphism η̂M :M∗ →M∗∗∗ defined in analogy to ηM. It is not
difficult to see that η∗

M ◦ η̂M = idM∗ and hence the map η̂M is always injective
and η∗ surjective.

If the map ηM is injective, i. e. if for every element m ∈M\{0} a homomor-
phism φ ∈M∗ exists with φ(m) �= 0, then we callM torsionless. This terminology
has its origin in the observation that if a module is torsionless, then it is also torsion-
free. Indeed, if m∈M\{0} is a torsion element, then there exists a non zero divisor
r ∈R such that rm = 0 and thus for any φ ∈M∗ we have φ(rm) = rφ(m) = 0 imply-
ing that φ(m) = 0. The converse is not true; for example� is a torsionfree
-module
but not torsionless (here even Hom�(�,
) = 0, as for any φ ∈ Hom�(�,
) and
any prime p ∈� we have pφ(1/p) = φ(1) and thus all primes divide φ(1) which
is only possible if φ(1) = 0). �

Remark B.1.8. Assume that R ⊆ S is an extension of commutative rings and that
we are given an R-module M and an S-module N (obviously, the latter one
may also be considered as an R-module via the extension). Then we have a nat-
ural isomorphism between HomR(M,N ) and HomS(M,HomR(S,N )) mapping
φ ∈ HomR(M,N ) to the homomorphismΨφ defined byΨφ (m)(s) = φ(sm). Here
we consider HomR(S,N ) as an S-module via the action (s1φ)(s2) = φ(s1s2). In-
deed, it is trivial to see that the map φ 	→Ψφ is injective and the preimage of any
homomorphismΨ ∈ HomS(M,HomR(S,N )) is given by φ(m) =Ψ(m)(1). �
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Any finitely generated module is isomorphic to a factor module of a free module;
one speaks of a presentation by generators and relations. Such a presentation is
obtained by taking any finite generating set G = {g1, . . . ,gm} of M and the free
R-moduleRm. We define the homomorphism

φ :

{
Rm −→ M

(r1, . . . ,rm) 	−→ ∑m
i=1 rigi

(B.1)

and set N = kerφ . ThenM∼=Rm/N (ifN = 0, thenM is a free module) and we
have an exact sequence (see Definition B.2.2)

0 N ι Rm
φ

M 0 (B.2)

where ι is the inclusion map. If the moduleN is again finitely generated, we say that
M is finitely presented. In this case any finite generating set of N provides us with
an analogous map ψ :Rn →N for some exponent n∈�. Calling the concatenation
ι ◦ψ again ψ , we obtain an exact sequence

Rn
ψ

Rm
φ

M 0 , (B.3)

since kerφ = imψ . Hence there is an isomorphismM∼= cokerψ =Rm/ imψ and
we may identify any finitely presented R-module with the cokernel of a map be-
tween two free R-modules. The ring R is left coherent, if any finitely generated
leftR-module is also finitely presented. Similarly, one defines a right coherent ring.
We call R coherent, if it is both left and right coherent. Obviously, any (left/right)
Noetherian ring is (left/right) coherent but the converse is not true.

In practice, it may be difficult to construct effectively a generating set G and
its relations module N for a module M. Fortunately, most of the modules we are
dealing with automatically arise in a finite presentation by generators and relations,
so that we do not bother about this problem.

Given a right R-module M and a left R-module N , we may introduce their
tensor product M⊗RN . Consider the free Abelian group F of all formal sums
∑r

j=1 c j(m j,n j) with c j ∈ 
, mj ∈ M and n j ∈ N . The group operation is the
obvious addition. Let G be the subgroup generated by all elements of the form
(m+m′,n)− (m,n)− (m′,n) or (m,n+n′)− (m,n)− (m,n′) or (m · r,n)− (m,r ·n)
where r ∈ R, m,m′ ∈ M and n,n′ ∈ N . Then we define M⊗RN = F/G and
m⊗n =

[
(m,n)

]
∈M⊗RN .

In general, M⊗RN is only an Abelian group, i. e. a 
-module. If M is an
S-R-bimodule and N an R-T -bimodule, then one easily verifies that the above
construction yields an S-T -bimodule with s(m⊗ n)t = (sm)⊗ (nt) for arbitrary
elements s ∈ S, t ∈ T . Thus, in the for us most important case of a commutative
ring R where we consider any R-module as an R-R-bimodule, the tensor product
is again anR-module.

Remark B.1.9. It is very important to specify over which ring the tensor product is
taken. As a simple example takeM= � with a field � andN =P =�[x]. Then one
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possibility consists of considering both M and N as �-linear spaces and we find
that M⊗�N = P . But we may also treat M and N as P-modules. Indeed, � is a
P-module with the action of a polynomial f = ∑n

k=0 fkxk on a field element c given
by f · c = f0c. Now one readily checks that M⊗P N = �. In fact, one always has
M⊗RR=R⊗RM=M for arbitraryR-modulesM.

The case P ⊗P � = � shows that a tensor product may lead to a considerable
“collapsing”. An even more extreme example is obtained by considering for two
coprime integers m,n ∈� (i. e. gcd(m,n) = 1) the factor spaces 
/m
 and 
/n

as 
-modules: (
/m
)⊗� (
/n
) = 0. �

If M, M̄ are two right R-modules and N , N̄ two left R-modules with homo-
morphism f :M→M̄ and g :N → N̄ , then there exists a unique homomorphism
f ⊗g :M⊗RN → M̄⊗R N̄ with ( f ⊗g)(m⊗n) = f (m)⊗g(n) which is called
the tensor product of f and g.

Definition B.1.10. A finite sequence (r1, . . . ,rk) of elements of the ringR is called
regular for theR-moduleM or shortlyM-regular, if r1 is not a zero divisor ofM
and ri is not a zero divisor for the factor moduleM/〈r1, . . . ,ri−1〉M for 1 < i≤ k.
A regular sequence is maximal, if it is not possible to extend it without loosing the
regularity. One can show that all maximal regular sequences for M have the same
length. This length is called the depth of the moduleM, written depthM.

The depth represents a measure for the size of a module. It can also be introduced
via homological algebra (see Remark B.2.39 and Theorem 6.3.8) and in particular
in older books it is therefore sometimes called the cohomological dimension of the
module.

Definition B.1.11. Let R be a ring. An R-algebra A is a (left) R-module together
with an R-bilinear multiplication · :A×A→A.

The ring P = R[x1, . . . ,xn] of polynomials with coefficients in a commutative
ring R is a simple example of an Abelian R-algebra. More generally, let M be a
finitely generated free R-module. We introduce the symmetric algebra SM as fol-
lows.2 Let {g1, . . . ,gn} be a basis of M, then SM is the infinite-dimensional free
R-module generated by the basis {gμ = gμ1

1 · · ·g
μn
n | μ ∈�n

0}. Thus SM is isomor-
phic to the polynomial ring P via the identification xi ↔ gi. However, it is important
to note that the definition of SM is independent of the chosen basis of the free
moduleM, in contrast to this isomorphism which is obviously not canonical. Lin-
ear differential operators with variable coefficients form a non-commutative algebra
over their coefficient ring.

The multiplication in an algebra is not necessarily associative; an associative
algebra is always a ring. An important class of non-associative algebras are Lie
algebras (see Definition C.5.5). For them the associativity condition is replaced by
the Jacobi identity.

2 A more satisfying definition of the symmetric algebra is as a quotient space of the full tensor
algebra overM (see also Appendix B.3). However, for our purposes this “pedestrian” approach
via a basis suffices.
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Subgroups, subrings, submodules etc. are defined in the obvious way: a subset
that is closed under the given operations (the addition respectively the multiplication
of two elements of the subset yields again an element of the subset) and still satisfies
the respective axioms. Thus in the case of a subring U ⊆R one requires for example
that (U ,+) is a subgroup of (R,+) and U ·U ⊆ U . Furthermore, the neutral element
1∈R of the multiplication must lie in U . A simple example of a subring is the centre
of a ring R which is defined as the subset {s ∈ R | ∀r ∈ R : sr = rs} of elements
commuting with all other elements ofR.

Definition B.1.12. Let R be an arbitrary ring. An additive subgroup I ⊆ (R,+) is
called a left ideal, if R·I ⊆ I, a right ideal, if I ·R ⊆ I, and a two-sided ideal, if
it is both a left and a right ideal.

As we work almost exclusively with left ideals, we usually omit the “left” and
simply speak of ideals. Note that a proper ideal is never a subring, since 1 ∈ I
would entail I =R. The trivial ideals are 0 = {0} and the whole ringR. The sum,
the product and the intersections of two ideals I,J ⊆R are defined in the obvious
way (note that trivially I ·J ⊆ I ∩J ) and yields again an ideal; the quotient of I
by J is the ideal

I : J = {r ∈R | r · J ⊆ I} . (B.4)

We list some special types of ideals for the case thatR is a commutative ring. A
principal ideal can be generated by a single element. A maximal ideal is a proper
ideal m � R such that no non-trivial ideal I exists with m � I � R. For a prime
ideal p ⊆ R the fact rs ∈ p implies r ∈ p or s ∈ p. Trivial examples explaining the
name are the ideals 〈p〉 ⊂ 
 generated by a prime number p. Furthermore, it is easy
to show that any maximal ideal is prime.

Given an ideal I ⊆R, we define its radical as the ideal
√
I = {r ∈R | ∃k ∈� : rk ∈ I} . (B.5)

A radical ideal satisfies
√
I = I, i. e. rk ∈ I for some k ∈ � implies for such an

ideal r ∈ I. Obviously, for any ideal I ⊆R the radical
√
I is a radical ideal and also

any prime ideal is a radical ideal. A primary ideal q⊆R is an ideal such that rs ∈ q
and r /∈ q implies s ∈√q. Obviously, the radical p =

√
q of a primary ideal is prime

and one then says that q is p-primary. IfR is a Noetherian ring, then one can easily
show that there always exists an exponent s ∈� such that ps ⊆ q⊆ p.

We are mainly interested in the special case of a polynomial ringP =�[x1, . . . ,xn]
over a field �. Given some polynomials f1, . . . , fm ∈ P , the variety V( f1, . . . , fm) =
{ξ ∈�n | f1(ξ) = · · ·= fm(ξ) = 0}, i. e. the set of their common zeros, depends only
on the ideal I = 〈 f1, . . . , fm〉 and therefore we usually write V(I). If I, J are two
ideals with I ⊆ J , then the corresponding varieties satisfy V(I)⊇ V(J ). One eas-
ily sees that always V(I) = V(

√
I) and Hilbert’s famous Nullstellensatz asserts that

over an algebraically closed field the varieties are in a one-to-one correspondence
with radical ideals. For such a field the only maximal ideals in P are the ideals
mζ = 〈x1− ζ 1, . . . ,xn− ζ n〉 associated with the points ζ ∈ �n.
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One can show that it is possible to define a topology, the Zariski topology, on �n

by saying that the varieties are the closed sets. Thus open sets in this topology are
rather big: with the exception of the empty set, every open set consists of almost the
whole space �n. If a property holds for all points on a Zariski open set, then one
also says that it holds generically.

As for monoids, we call a ring R Noetherian, if any ideal I ⊆ R is finitely
generated or, equivalently, any ascending chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ ·· · ⊆ R
becomes eventually stationary, i. e. there exists an N ∈� such that IN+k = IN for
all k ≥ 0. In the case of a non-commutative product we must of course distinguish
between a left and a right Noetherian ring (and these are independent properties—
see Example 3.3.14). A trivial example of a Noetherian ring is a field �, as its only
ideals are 0 and � itself. Another important class of Noetherian rings is provided by
the following result for which we present four different proofs in Section 3.3.

Theorem B.1.13 (Hilbert Basis Theorem). For a Noetherian commutative ringR
the polynomial ringR[x1, . . . ,xn] in finitely many variables is Noetherian, too.

Remark B.1.14. All known proofs of Hilbert’s Basis Theorem require in some form
the Axiom of Choice (cf. [36, Section 4.1] for a more detailed discussion). If one
cannot accept this axiom, one will have great problems with the theory of Gröbner
bases in Appendix B.4, as most of the algorithmic results there depend on it! �

Reversion of the inclusions yields the descending chain condition and the notion
of an Artinian ringR. An equivalent condition is that any non-empty set of ideals of
R contains a minimal element with respect to the partial order given by set inclusion.

LetM be a module over the commutative ringR. Given an element m ∈M, we
call the ideal AnnR (m) = {r ∈ R | r ·m = 0} ⊆ R the annihilator of m. A prime
ideal p ⊆ R is associated to the module M, if there exists an m ∈M such that
AnnR (m) = p.3 The set of all associated primes is denoted by AssM. We have the
following important result [125, Theorem 3.1].

Theorem B.1.15. Let R be a Noetherian commutative ring and M a finitely gen-
erated R-module. Then the set AssM of associated prime ideals is not empty and
contains only finitely many elements.

Remark B.1.16. Any ideal I ⊆ R may be considered as an R-module and thus we
could apply the above definition of an associated prime ideal to it. However, in this
case another definition is more common. Namely, one calls a prime ideal p ⊆ R
associated to I (and writes p ∈AssI), if there exists a ring element r ∈R such that
p = I : 〈r〉= {s ∈R | sr ∈ I}. One easily verifies that this condition means nothing
but that p is an associated prime ideal in the above sense of the factor ring R/I
considered as anR-module. �

If I ⊆ R is an arbitrary ideal, then a primary decomposition is a representation
I = q1∩·· ·∩qt where every factor q j is a primary ideal. A primary decomposition

3 Not every annihilator ideal AnnR (m) is necessarily prime. But one can easily show that the
maximal elements of the set of all annihilators are prime.



B.1 Some Basic Algebraic Structures 539

is irredundant, if all underlying prime ideals p j =√q j are distinct and no primary
ideal q j can be omitted in the decomposition. The existence of (irredundant) primary
decompositions is guaranteed by the following result [125, Theorem 3.10] where we
define AssI as in Remark B.1.16.

Theorem B.1.17. Let R be a Noetherian commutative ring and I ⊆ R an ideal.
Then I possesses an irredundant primary decomposition I = q1 ∩ ·· · ∩ qt and
AssI = {√q1, . . . ,

√
qt}.

Note that even an irredundant primary decomposition is not unique, if embedded
prime ideals exists: an associated prime ideal p ∈AssI is called embedded, if there
exists another associated prime ideal p′ ∈ AssI with p′ ⊂ p. For any embedded
prime ideal p ∈AssI we introduce the set Ass(I,p) =

{
p′ ∈ AssI | p′ ⊆ p

}
. Then

one obtains only the following form of a uniqueness statement: the intersection of
all the primary ideals q′ corresponding to the elements p′ ∈Ass(I,p) is independent
of the chosen primary decomposition.

Remark B.1.18. If R = P = �[x1, . . . ,xn] is a polynomial ring, then a primary de-
composition of any ideal I ⊆ P can be effectively constructed with the help of
Gröbner bases; Decker et al [103] discuss four different approaches. For monomial
ideals this problem is almost trivial (two methods are given in [268, Tutorial 77]).
Furthermore, in this case one can choose the primary ideals q j again monomial
which implies that all associated prime ideals p j are monomial, too, and thus of the
form p j = 〈xi1 , . . . ,xik 〉 for some values 1≤ i1 < · · · < ik ≤ n. The primary ideal q j

contains then for each index i� a term (xi�)q� and all minimal generators depend only
on the variables xi1 , . . . ,xik . �

Definition B.1.19. The ringR is graded, if it has as additive Abelian group (R,+)
a direct sum decomposition R =

⊕
i∈�Ri such that RiR j ⊆ Ri+ j. A graded R-

moduleM is anR-module possessing a direct sum decompositionM=
⊕

i∈�Mi

such that Ri ·M j ⊆Mi+ j. The elements of Ri or Mi, respectively, are homoge-
neous of degree i. For a given degree q ∈ 
 the truncation M≥q is defined as the
module

⊕
p≥qMp, i. e. we throw away all elements of degree less than q.

IfR is a graded ring, then obviouslyR0 is a subring and eachRi anR0-module.
We mainly deal with non-negatively graded rings and modules where all compo-
nentsRi,Mi with i < 0 are zero. A simple example of such a ring is the polynomial
ring P = �[x1, . . . ,xn] where a natural grading is given by the total degree. Here
P0 = � is even a field and the components Pi consisting of all homogeneous poly-
nomials of degree i are �-linear spaces. Other gradings are obtained by assigning
a weight wk ∈ 
 to each variable xk; now the component Pi is generated by all the
terms xμ with ∑n

k=1 wkμk = i.
If M =

⊕
i∈�Mi is a graded module, then a submodule N ⊆M is graded, if

it can be decomposed in the form N =
⊕

i∈�(N ∩Mi). A graded submodule can
always be generated by homogeneous elements.
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Definition B.1.20. A ring R is filtered, if it is equipped with a filtration Σ , i. e.
an ascending chain Σ0 ⊂ Σ1 ⊂ Σ2 ⊂ ·· · of additive subgroups Σi ⊆ R such that⋃∞

i=0Σi =R and Σi ·Σ j ⊆ Σi+ j for all i, j ≥ 0. IfR is a filtered ring, then a (left)R-
moduleM is filtered, if it is equipped with a filtration Γ consisting of an ascending
chain Γ0 ⊂ Γ1 ⊂ Γ2 ⊂ ·· · of additive subgroups Γi ⊆M such that

⋃∞
i=0Γi =M and

Σi ·Γj ⊆ Γi+ j for all i, j ≥ 0.

If Σ is a filtration onR, then we may introduce an associated graded ring

grΣR= Σ0⊕Σ1/Σ0⊕Σ2/Σ1⊕·· · . (B.6)

The multiplication on grΣR is defined as follows. Write Σ̄i for the factor group
Σi/Σi−1 (we set Σ̄0 = Σ0) and consider two arbitrary homogeneous elements r̄ ∈ Σ̄i

and s̄ ∈ Σ̄ j. Let r ∈ Σi and s ∈ Σ j be arbitrary representatives of these equivalence
classes. Then we set r̄ · s̄ = r · s ∈ Σ̄i+ j. It is straightforward to verify that this defi-
nition is independent of the choice of the representatives r and s.

If furthermore Γ is a filtration on the left R-moduleM, then we may introduce
an associated graded left grΣR-module

grΓM= Γ0⊕Γ1/Γ0⊕Γ2/Γ1⊕·· · . (B.7)

The definition of the grΣR-action on grΓM goes analogously to the definition of the
product in grΣR. We write again Γ̄i =Γi/Γi−1 (with Γ̄0 =Γ0). For each non-vanishing
element m ∈M we denote by degΓm the unique integer d such that m ∈ Γd \Γd−1

and call the corresponding equivalence class σΓ (m) ∈ Γ̄d its Γ -symbol.

Definition B.1.21. Let R be a graded ring with R0 a field and M a finitely
generated graded R-module. Then the homogeneous components Mr are finite-
dimensionalR0-linear spaces. The Hilbert function ofM is the numerical function4

defined by
hM(r) = dimMr . (B.8)

The Hilbert function measures the size of the graded moduleM. As anR0-linear
space, the whole module is generally infinite-dimensional, so that this dimension
does not define a useful measure. Instead, we must use a more complicated object
like the Hilbert function. Robbiano [384] (see also [268, Chapt. 5]) gives a nice in-
troduction into the theory of Hilbert functions (and numerical functions in general).

Theorem B.1.22 (Hilbert). Let the graded ring R be generated over R0 by n el-
ements of degree 1 and M be a finitely generated, graded R-module. Then there
exists a value r0 ≥ 0 and a polynomial HM(r) of degree less than n with ratio-
nal coefficients such that hM(r) = HM(r) for all r ≥ r0 (i. e. for sufficiently large
degrees the Hilbert function becomes polynomial).

4 A numerical function f (r) returns for every integer argument r ∈� an integer value, i. e. it defines
a map f : �→ �.



B.1 Some Basic Algebraic Structures 541

The assumptions made on the ring R imply essentially that R is of the form
R = R0[x1, . . . ,xn]/I with a homogeneous ideal I ⊂ R0[x1, . . . ,xn], i. e. we are
dealing with an affine algebra. For obvious reason, HM(r) is called the Hilbert
polynomial of M. The number D = 1 + degHM is the (Krull) dimension dimM.
If the coefficient of rD−1 in HM(r) is aD−1/(D−1)!, then the multiplicity ofM is
defined as multM= aD−1.

Above we introduced d = depthM as an alternative measure for the size of the
moduleM. One can show that always D ≥ d (see Section 5.2). Modules such that
D = d are called Cohen–Macaulay.

The Hilbert series5 is the generating function of the Hilbert function hM(r), i. e.
the univariate series in some variable λ defined by

HM(λ ) =
∞
∑
r=0

hM(r)λ r . (B.9)

One can show (see Proposition 5.2.1 for the case of polynomial modules) that this
formal series can always be summed in closed form yielding a rational function
HM(λ ) = f (λ )/(1−λ )n where f (λ ) is a polynomial with integer coefficients. For
a free module M∼= Rm of rank m we get HM(λ ) = m/(1− λ )n. The Krull di-
mension D = dimM arises now as the order of the pole of HM at λ = 1. More
precisely, by cancelling common factors we writeHM(λ ) = f̄ (λ )/(1−λ )D with a
polynomial f̄ (λ ). The degree r of this polynomial is precisely the degree from which
on Hilbert function and polynomial coincide; this number is sometimes called the
Hilbert regularity of the module M. If f̄ (λ ) = ∑r

i=0 fiλ i, then the Hilbert polyno-
mial is given by [185, Cor. 5.1.5]

HM(r) =
r

∑
i=0

fi

(
r + D−1− i

D−1

)
. (B.10)

Its degree is D−1 and its leading coefficient is f̄ (1)/(D−1)!.
These notions were originally introduced by Hilbert [213]6 for polynomial ideals

I ⊆ P = �[x1, . . . ,xn] (obviously, in this case P0 = � is indeed a field). Here one
must distinguish between the affine and the projective Hilbert function. Let I be a
homogeneous ideal in the polynomial ring P , i. e. an ideal generated by homoge-
neous elements. The quotient P/I is then a graded P-module and we define the
projective Hilbert function hI as the Hilbert function of P/I. A particular case of a
homogeneous ideal is a monomial ideal, i. e. an ideal with a basis consisting only of
monomials. Then hI(r) counts the terms of degree r that are not contained in I. As
we will see later, the general case can always be reduced to the monomial one with
the help of Gröbner bases.

For non-homogeneous ideals I, the quotient P/I does not possess a natural
grading. There exist two different ways to define nevertheless a Hilbert function. The
first one consists of homogenising the ideal I: we introduce an additional variable t

5 The names Poincaré or Hilbert-Poincaré series are also frequently used.
6 Hilbert used the term characteristic function.
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and consider the ideal
I(h) = 〈 f (h) | f ∈ I〉 ⊆ P [t] (B.11)

where the homogeneous polynomial f (h) ∈ P [t] is obtained from f ∈ P by multi-
plying each term xμ contained in f by tdeg f−|μ|. Then we define the affine Hilbert
function of I as the projective Hilbert function of I(h): ha

I = hI(h) .
In the second approach we exploit the total degree filtration of the polynomial

ring P . We denote by P≤r the vector space of all polynomials f with deg f ≤ r and
introduce the subspace I≤r = I ∩P≤r. Now we define the affine Hilbert function
by ha

I (r) = dimP≤r−dimI≤r. It is not difficult to see that both approaches always
yield the same result. If I is a homogeneous ideal, we have the obvious relation
hI(r) = ha

I(r)−ha
I(r−1).

The Hilbert polynomial HI(r) is an example of a numerical polynomial, i. e.
it defines a map HI : 
→ 
. These polynomials form a 
-module and one can
show—e. g. with a simple argument from interpolation theory—that any numerical
polynomial of degree d can be written in the form

HI(r) =
d

∑
i=0

air
i =

d

∑
i=0

bi

(
r
i

)
. (B.12)

The transformation between the coefficients ai and bi is a combinatorial operation
leading to the modified Stirling numbers discussed in Appendix A.4.

LetR=
⊕∞

k=0Rk be a non-negatively graded commutative ring. Then the subset
R+ =

⊕∞
k=1Rk is trivially an ideal in R; it is often called the irrelevant ideal. The

saturation of a homogeneous ideal I ⊆R is the ideal7

Isat = I :R∞
+ =
{

f ∈R | ∃k ∈� : f ·Rk ⊆ I
}

(B.13)

(the simple quotient I :R+ is often called the socle of I). One can show that for
q! 0 we have Iq = Isat

q (see Section 5.5 for a proof). Hence all ideals with the same
saturation have the same Hilbert polynomial and become identical for sufficiently
large degrees; Isat is the largest among all these ideals. The smallest degree s such
that Iq = Isat

q for all q ≥ s is called the satiety satI of I. An ideal I with I = Isat

is called saturated.

Definition B.1.23. Let I ⊆P = �[x1, . . . ,xn] be a polynomial ideal. A Noether nor-
malisation of the algebra A= P/I is a polynomial ringR= �[z1, . . . ,zD] together
with an injective ring homomorphismR→A such thatA is a finitely generatedR-
module. If it is possible to take for the variables z1, . . . ,zD a subset of {x1, . . . ,xn},
then the ideal I is said to be in Noether position.

Every affine algebra A = P/I possesses a Noether normalisation [125, Theo-
rem 13.3], [185, Theorem 3.4.1]. If the field � is infinite (as we always assume),
then one can choose the variables zi as linear forms in P1; in other words, by a lin-
ear change of coordinates one can put every ideal in Noether position. A proof of

7 More generally, the saturation of an ideal I ⊆R with respect to another ideal J ⊆R is defined
as I : J∞ = { f ∈R | ∃k ∈� : f ·J k ⊆ I}.
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both claims using Pommaret bases is contained in Section 5.3. One can show that
for any Noether normalisation the number D is the same and that D is nothing but
the (Krull) dimension of M. Assume for simplicity that already R = �[x1, . . . ,xD]
leads to a Noether normalisation. Then one speaks of a general Noether normalisa-
tion, if for each D < j ≤ n a polynomial f j ∈ I exists such that with respect to the
degree lexicographic order lt≺ f j = x

q j
j

As we are mainly studying differential equations in this book, an interesting ex-
tension of the algebraic concepts introduced so far is differential algebra. Here one
adds an additional operation satisfying the algebraic properties of a derivative. Some
classical references are [251, 258, 383].

Definition B.1.24. Let R be a ring. A derivation on R is a map δ : R →R that
is linear with respect to the addition in R, i. e. δ (r + s) = δ (r) + δ (s), and that
satisfies the Leibniz rule δ (rs) = δ (r)s + rδ (s) for all r,s ∈ R. A differential ring
is a pair (R,δ ) where δ is a derivation on R. If R is even a field, then we have a
differential field. A subset I ⊆R of a differential ring (R,δ ) is a differential ideal,
if I is an ideal ofR and furthermore δ (I)⊆ I. Finally, a differential module over a
differential ringRwith derivation δ is a leftR-moduleM together with an additive
map ∂ :M→M such that ∂ (rm) = δ (r)m+ r∂ (m) for all ring elements r ∈R and
module elements m ∈M.

Elements r of a differential ring or field such that δ (r) = 0 are called constants.
One readily checks that they form again a ring or field, respectively. The definition
above assumes that there is only one derivation. An obvious extension is a partial
differential ring which is equipped with several commuting derivations.

A simple example of a differential ring is the ring of all smooth functions defined
on some interval 	 ⊆ � with the usual differentiation as derivation. In principle,
every ring R may be considered as a differential ring, as the zero map trivially
satisfies the conditions on a derivation. In the case of graded rings R, one often
requires that δ satisfies a graded Leibniz rule, i. e. depending on the grading of the
elements r,s ∈ R we have δ (rs) = δ (r)s± rδ (s). Some examples of such graded
derivations appear naturally in differential geometry (see Appendix C.2).

In analogy to the usual polynomial ring, one may introduce differential polyno-
mials. Let R be a differential ring with derivation δ and u an indeterminate. Then
we define the ring of differential polynomials in u as

R{u}=R[u,u′,u′′, . . . ,u(k), . . . ] . (B.14)

Thus R{u} is an ordinary polynomial ring in infinitely many unknowns u(k) with
u(0) = u. The derivation δ is extended from the ground ring R to R{u} by setting
δ (u(k)) = u(k+1) so that we have again a differential ring. The generalisation to
partial differential polynomials is straightforward. Similarly, we introduce rational
differential functions as the quotient field R〈u〉 ofR{u}.

A major complication in differential algebra is the fact that R{u} is no longer
Noetherian. Indeed, because of the infinitely many unknowns we cannot apply
Hilbert’s Basis Theorem B.1.13 and it is not too difficult to find example of dif-
ferential ideals without a finite basis [69].
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B.2 Homological Algebra

At a few places we use notions from homological algebra. Thus we include some
basic definitions for easier reference. For further details we refer to the textbooks
[298, 346, 476] (most books on commutative algebra also contain the material we
need). In the sequel, R will always be a ring with unit and if not explicitly stated
otherwise allR-modules are to be understood as left modules.

Many results in algebra (and other branches of mathematics) are formulated in
the language of commutative diagrams. They represent a simple graphical way to
express relations between maps. Typically, the maps are morphisms between spaces
with some common structure, say groups, vector spaces, manifolds, bundles etc; our
main interest will be inR-modules. A randomly chosen example is

A
α

B
β

δ

C

D

γ

ε E

η
(B.15)

containing fives spaces with six maps between them. The statement that it commutes
means only that if there are several ways to relate two spaces, then it does not matter
which one we choose, as the outcome is always the same. Thus the diagram (B.15)
encodes the relations η ◦ δ = β , δ ◦α ◦ γ = ε and η ◦ ε = β ◦α ◦ γ .

Definition B.2.1. For each i ∈ 
 let Mi be an R-module and di : Mi →Mi+1 a
module homomorphism. Then

· · · Mi−1 di−1

Mi di

Mi+1 · · · (B.16)

is called a (cochain) complex with differentials di, if always di ◦di−1 = 0 or, in other
words, if imdi−1 ⊆ kerdi. We will denote the whole complex by (M,d) or, if the
maps di are obvious from the context, even shorter byM.

It is well possible that all but finitely many of the modulesMi are the zero mod-
ule with obvious maps between them. The zero modules are then usually omitted
and we obtain a finite complex. A classical example of a finite complex is the de
Rham complex of a manifold (see Example 10.5.6 and Remark C.2.9). In a chain
complex the arrows in (B.16) are inverted (and one usually writes subscripts instead
of superscripts), i. e. we have then di : Mi →Mi−1. We will mostly work with
cochain complexes and thus drop the “cochain”. Most of the following material
may be trivially adapted to chain complexes.

If (M,d) and (N ,δ ) are two complexes of (right and left, respectively) R-
modules, then we introduce the tensor product complex (L =M⊗RN ,∂ ) by set-
ting Lk =

⊕
i+ j=k(Mi⊗RN j) and ∂ = d⊗ idN + idM⊗ δ . A special case arises,

if one factor is simply an R-module. Then this factor is interpreted as a complex,
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where only the degree zero component does not vanish and where all differentials
are the zero map.

Definition B.2.2. Let (M,d) be a complex. It is exact at the module Mi for some
index i ∈
, if imdi−1 = kerdi. We call the complex an exact sequence, if it is exact
atMi for all values i ∈ 
.

Example B.2.3. The probably most important example of a finite exact complex is a
short exact sequence. This is a finite complex of the form

0 A α B
β

C 0 (B.17)

which is everywhere exact. The exactness at A implies that the map α is injective,
as its kernel must be equal to {0A}, the image of the left zero module. Similarly, the
exactness at C implies that the map β is surjective, as its image must be the whole
module C, the kernel of the final map. Finally, because of the exactness at B every
solution b ∈ B of the equation β (b) = 0B is of the form b = α(a) for some a ∈ A.

The short exact sequence (B.17) splits, if a further morphism γ : C → B exists
such that β ◦ γ = idC . In this case we have the isomorphism B ∼=A⊕C. Indeed, as
β
(
γ(c)
)

= c, the condition γ(c) ∈ kerβ is equivalent to c = 0. Hence we find that
imγ ∩kerβ = {0B} and γ is injective. Now any element b ∈ B may be decomposed
as b =

[
b−γ
(
β (b)
)]

+γ
(
β (b)
)

where obviously the first summand lies in kerβ and
the second in imγ . Thus we can write B= imγ⊕kerβ and because of the injectivity
of α and γ we have kerβ = imα ∼=A and imγ ∼= C.

An equivalent definition of a split exact sequence requires the existence of
a morphism δ : B → A such that δ ◦ α = idA. One shows similarly that then
B = imα⊕kerδ ∼=A⊕C. Sequences of finite-dimensional vector spaces (or more
generally free modules) always split. This fact is a simple consequence of the exis-
tence of bases and thus of complements. �

Example B.2.4. Let α :A→B be an arbitrary module homomorphism between two
R-modulesA and B. It gives rise to the following exact sequence

0 kerα ι A α B π
cokerα 0 (B.18)

where the cokernel of α is defined as the quotient module cokerα = B/ imα , ι is
the inclusion map and π the canonical projection on the quotient space. �

Definition B.2.5. An R-module P is called projective, if for any surjective mor-
phism φ : B→ C betweenR-modules and for any morphism γ :P → C a morphism
β : P → B exists with φ ◦β = γ . An R-module I is injective, if for any injective
morphism ψ :A→B betweenR-modules and for any morphism α :A→I a mor-
phism β :B→I exists with β ◦ψ = α . We call the ringR left (right) self-injective,
if it is injective considered as a left (right)R-module.

Pictorially, these definitions mean that in the two diagrams
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B
φ

C 0 0 A
ψ

α

B

β

P

γ
β

I

(B.19)

fillers (the dotted arrows) exist such that the diagrams commute. One speaks of the
universal lifting property of such modules. Note that the right diagram corresponds
to the left one with all arrows reversed. Definition B.2.5 immediately implies the
following result.

Proposition B.2.6. A projective module P is a direct summand of any module A
with a surjective map φ :A→P . An injective module I is a direct summand of any
module B with an injective map ψ : I → B.

Most properties of projective modules can be transferred to injective ones by
simple dualisation and vice versa. However, in some cases such a transfer is not
possible. For example, for the following important test for injectivity no dual ana-
logue for projective modules is known.

Proposition B.2.7 (Baer’s Criterion). An R-module M is injective, if and only if
for any ideal I ⊆ R (considered as R-module) and any morphism φ : I →M of
R-modules an element m ∈M exists such that φ(r) = rm (which is equivalent to
the existence of an extension φ̃ :R→M of φ ).

Readers familiar with category theory will know the notion of a functor relating
the objects and morphisms of two categories. We are mainly interested in functors
relating R-modules. Such a functor F maps a module A to another module F(A).
If F is a covariant functor, it furthermore maps any morphism α : A → B to a
morphism F(α) : F(A)→ F(B). Here the monoid properties of maps must be pre-
served, i. e. F(idA) = idF(A) and F(β ◦α) = F(β )◦F(α), if β : B→ C is a further
morphism. By contrast, a contravariant functor induces a map F(α) : F(B)→F(A)
satisfying similar rules as in the case of a covariant functor (this time the second
condition reads F(β ◦α) = F(α)◦F(β ), as the arrows are reversed).

We are mainly interested in four simple functors. For a given R-module A, we
introduce the covariant functor B 	→ HomR(A,B) and the contravariant functor
B 	→HomR(B,A). In the first case any morphism β : B→ C is mapped to the mor-
phism β∗ : HomR(A,B)→HomR(A,C) defined by the concatenation β∗α = β ◦α
for any α : A→ B (this definition is an instance of a general construction in cat-
egory theory and β∗ is usually called the push-forward of β ). In the contravariant
case, β is mapped to the morphism β∗ : HomR(C,A)→ HomR(B,A) defined by
β∗γ = γ ◦ β for any γ : C → A (in the language of category theory, β∗ is usually
called the pull-back of β ).

Two further functors are similarly defined with the help of the tensor product
of R-modules: for any R-module A we introduce the covariant functors A⊗· and
·⊗A. We restrict here to the case that R is a commutative ring. Then, as discussed
in the previous section, both functors map anR-module again to anR-module.
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Applying a covariant functor F to a sequence of R-modules of the form (B.17)
yields the new sequence

0 F(A)
F(α)

F(B)
F(β )

F(C) 0 . (B.20)

By contrast, a contravariant functor F yields the “reversed” sequence

0 F(C)
F(β )

F(B)
F(α)

F(A) 0 . (B.21)

The functorial properties of F imply that both sequences are complexes, if (B.17) is
a complex. Indeed in the covariant case we have F(β )◦F(α) = F(β ◦α) = 0 and
similarly for a contravariant functor. However, even if the original sequence (B.17)
is exact, we cannot generally expect any of the above sequences to be again exact.

Definition B.2.8. The functor F is exact, if (B.20) (or (B.21), respectively) is exact
whenever the sequence (B.17) is exact. Conversely, F is a faithful functor, if exact-
ness of (B.20) (or (B.21), respectively) implies exactness of the sequence (B.17).

For an arbitrary R-module M neither HomR(M, ·) nor HomR(·,M) are ex-
act; they are only left exact, i. e. the sequences (B.20) and (B.21), respectively, are
everywhere exact except possibly at the right end.

Proposition B.2.9. The functors HomR(M, ·) and HomR(·,M) are left exact for
arbitrary R-modules M. If M is a free R-module, then HomR(M, ·) is exact. If
R is a (skew) field, then HomR(·,M) is exact, too.

Proof. We give full details of the proof of the first assertion only for HomR(M, ·);
the contravariant case is left as an exercise for the reader. We consider again the short
exact sequence (B.17). Assume that α∗φ = α ◦φ = 0 for some φ ∈ HomR(M,A).
As α is injective, this can only be the case, if φ = 0 and hence α∗ is injective.

Assume that β∗ψ = 0 for some homomorphism ψ ∈ HomR(M,B). This im-
plies that imψ ⊆ kerβ = imα . As α is injective, the inverse α−1 is well-defined
on imψ ⊆ imα and we may introduce the map φ = α−1 ◦ψ ∈ HomR(M,A). Ob-
viously, we have α∗φ = ψ and thus kerβ∗ ⊆ imα∗. Together with the converse
inclusion shown above, this observation implies the exactness at HomR(M,B).

In the case that M is a free R-module, i. e. M ∼= Rm, we note that obvi-
ously HomR(M,A) ∼= Am via the isomorphism φ ↔

(
φ(e1), . . . ,φ(em)

)
where

{e1, . . . ,em} denotes the standard basis of Rm. Now the exactness of the functor
HomR(M, ·) is trivial.

If the ring R is a (skew) field, we are dealing with vector spaces and we may
decompose B = imα⊕T for some linear subspace T ⊆ B. By the injectivity of α ,
any element of B possesses a representation of the form b = α(a)+ t with uniquely
determined elements a ∈ A and t ∈ T . Given a morphism φ : A → R, we define
ψ : B →R by setting ψ(b) = φ(a). This morphism ψ obviously satisfies α∗ψ = φ
and as φ was arbitrary, this fact proves the surjectivity of α∗. Thus HomR(·,R) is
exact and the extension to arbitrary vector spaces goes as above. �
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Note the slight asymmetry in this result. A sufficient condition for the exactness
of the covariant functor HomR(M, ·) is already the freeness of M. For the con-
travariant functor HomR(·,M) we must impose the stronger condition that R is a
(skew) field. Our proof in the latter case applies also for infinite-dimensional vector
spaces, as it does not depend on bases but only on the existence of complements.
Restricting to finite-dimensional spaces, we may represent morphisms by matrices.
The pull-back is then represented by the transposed matrix and the exactness at
HomR(A,M) and HomR(C,M) translates into elementary statements about full
column and row rank, respectively, of matrices representing injective and surjective
maps, respectively.

Example B.2.10. A simple example of a module for which the functor HomR(M, ·)
is not exact is the 
-module M = 
/2
. Let us choose A = B = 
 and C =M
together with the maps α(z) = 2z and β = π , the canonical projection. Assume that
φ : M→ B is a morphism. Obviously, this implies φ(0) = 0. But we also have
φ(0) = φ(2) = φ(2 ·1) = 2φ(1) and hence φ(1) = 0, too. Thus the only morphism
between M and B is the zero map and the identity map idM is not in imπ∗. With
a slight modification one shows similarly that the functor Hom�(·,M) is also not
exact for the moduleM= 
/2
. �
Proposition B.2.11. AnR-module P is projective, if and only if the covariant func-
tor HomR(P , ·) is exact. AnR-module I is injective, if and only if the contravariant
functor HomR(·,I) is exact.

Proof. By the previous proposition, both functors are already left exact. The defini-
tion of a projective (or injective, respectively) module is trivially equivalent to the
missing exactness at the right end. �

Remark B.2.12. As a corollary, we find that a module is projective, if and only if it
is a direct summand of a free module. One direction follows easily from Proposi-
tion B.2.6. Let P be projective and choose a generating set G of it. Then we have
an obvious surjective map from the free R-module generated by G to P . For the
converse, let F = P ⊕Q be a direct sum decomposition of a free module F . Then
trivially HomR(F , ·) ∼= HomR(P , ·)⊕HomR(Q, ·) and the exactness of the func-
tor on the left hand side implies the exactness of the functors on the right hand side.
Thus a free module is always projective (but not necessarily injective). �

In this book we are particularly interested in the special case thatR is a polyno-
mial ring �[x1, . . . ,xn]. Here one has the following surprising result known as Serre’s
conjecture or Quillen–Suslin Theorem, as it was first conjectured by Serre [413] and
later proven independently by Quillen [366] and Suslin [444].

Theorem B.2.13 (Quillen–Suslin). Any projective polynomial module is free.

Above we introduced as further important functors the tensor products A⊗R ·
and ·⊗RA with an R-module A. For them we encounter a similar situation as for
HomR(A, ·) and HomR(·,A) (which is not surprising, as in a certain sense these
functors are dual to each other): they are exact only for a special class of modules.
We skip the details and just present the results.
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Proposition B.2.14. The two functors M⊗R · and ·⊗RM are right exact for ar-
bitraryR-modulesM.

Definition B.2.15. An R-module F is called flat, if the functor F ⊗R · is exact.

Remark B.2.16. As one easily shows the existence of a canonical isomorphism
M⊗R (N1⊕N2) ∼= (M⊗RN1)⊕ (M⊗RN2), a direct sum of modules is flat,
if and only if each summand is flat. Now R considered as an R-module is trivially
flat, sinceM⊗RR∼=M for anyR-moduleM, and thus also any freeR-module is
flat. By Remark B.2.12, any projective module is a direct summand of a free module
and hence flat, too. �

Example B.2.17. Assume that the ringR satisfies a left Ore condition for the subset
S of its regular elements. We introduce the total ring of left quotients Q = S−1D
and claim that it is flat as a right R-module. For a left R-module M we can iden-
tify Q⊗RM with the localisation S−1M. If φ : M→ N is a homomorphism
between two left R-modules, then the application of the functor Q⊗R · yields a
homomorphism which we can identify with the map S−1φ : S−1M→S−1N de-
fined by S−1φ(s−1m) = s−1φ(m). Since Q⊗R · is already right exact by Proposi-
tion B.2.14, if suffices to show that S−1φ is injective whenever φ is. But this fact
follows immediately from the definition of S−1φ .

Note that the same reasoning implies the following equalities for the transformed
homomorphism: ker(Q⊗R φ) =Q⊗R kerφ and im(Q⊗R φ) =Q⊗R imφ . �

The following notion is not that common, but it is sometimes quite useful, in
particular in connection with the question of faithfulness of a functor. We need it
only in Section 10.5. More details can be found in [252] (which also contains the
dual notion of a generator); our treatment follows [487].

Definition B.2.18. A leftR-moduleM is called a cogenerator, if it satisfies for all
R-modulesN the equality

⋂

φ∈HomR(N ,M)

kerφ = 0 . (B.22)

In other words, for every element n ∈ N of anR-moduleN at least one homomor-
phism φ ∈ HomR(N ,M) exists with φ(n) �= 0.

Lemma B.2.19. An R-moduleM is a cogenerator, if and only if for all homomor-
phisms ψ ∈HomR(N1,N2) with two arbitraryR-modulesN1,N2 the vanishing of
ψ∗ = HomR(ψ ,M) implies that ψ vanishes, too.

Proof. Let us first assume that M is a cogenerator. If ψ ∈ HomR(N1,N2) does
not vanish, then an element n1 ∈ N1 exists such that ψ(n1) �= 0. The assumption
ψ∗ = 0 implies for all φ ∈HomR(N2,M) that ψ∗φ(n1) = φ

(
ψ(n1)

)
= 0. Thus the

element ψ(n1) �= 0 is contained in kerφ for all such φ and condition (B.22) is not
satisfied for the moduleN2. As this observation contradicts our assumption thatM
is a cogenerator, ψ∗ = 0 entails ψ = 0.
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For the converse statement we use an indirect proof. Let 0 �= n2 ∈ N2 be an
element such that φ(n2) = 0 for all φ ∈ HomR(N2,M) (hence M cannot be a
cogenerator). Now define ψ ∈HomR(R,N2) by setting ψ(1) = n2 (i. e. we choose
N1 =R). Then we obviously find that φ ◦ψ = 0 for all φ ∈HomR(N2,M) so that
ψ∗ = 0 although ψ �= 0. �

Lemma B.2.20. Let F be an exact contravariant functor mapping R-modules into
Abelian groups. Then the following two statements are equivalent.

(i) If F(M) = 0 for anR-moduleM, then alreadyM= 0.
(ii) If F(φ) = 0 for a module homomorphism φ , then already φ = 0.

Proof. Let us first show that (i) implies (ii). Any homomorphism φ :M→N ofR-
modules can be decomposed into two homomorphisms φ = ι ◦ φ̄ with the canonical
inclusion ι : imφ ↪→N and the restriction φ̄ :M→ imφ and then we have F(φ) =
F(φ̄ )◦F(ι). Since F is exact, the injectivity of ι implies that F(ι) is surjective and
similarly the surjectivity of φ̄ makes F(φ̄) injective. Assume now that F(φ) = 0.
By the injectivity of F(φ̄ ), this is only possible if F(ι) = 0. As the latter map is
surjective, we find imF(ι) = F(imφ) = 0. By assumption, this fact implies imφ = 0
and hence φ = 0.

For the converse direction, we note that M �= 0 implies idM �= 0 and thus, by
assumption, F(idM) = idF(M) �= 0. Thus we must have F(M) �= 0. �

Proposition B.2.21. Let F be an exact contravariant functor mapping R-modules
into Abelian groups. F is faithful, if and only if F(M) = 0 implies M = 0 for all
R-modulesM.

Proof. One direction is very easy. If F(M) = 0, then we have an exact sequence
0→ F(M)→ 0. If F is faithful, we also have an exact sequence 0→M→ 0 which
is only possible, if M= 0.

For the converse, we use again an indirect proof. Assume that the sequence of

R-modulesM1
φ−→M ψ−→M2 was not exact. There are two possible reasons for

this. Firstly, the sequence could even fail to be a complex, i. e. ψ ◦ φ �= 0. Then,
by Lemma B.2.20, also F(φ) ◦F(ψ) �= 0 and the induced sequence could not be a
complex either. Thus the functor F is faithful.

Alternatively, we could have ψ ◦ φ = 0 but imφ � kerψ . Now Lemma B.2.20
asserts that F(ψ ◦ φ) = F(φ) ◦F(ψ) = 0 and hence that the induced sequence is
a complex, too. We introduce now the canonical inclusion ι : kerψ ↪→M and
the canonical projection π : M→M/ imφ . These maps lead to exact sequences
kerψ→M→M2 andM1 →M→M/ imφ , respectively. As F is assumed to be
an exact functor, applying it to these sequences yields again exact sequences. Hence
we find that

kerF(ι) = imF(ψ)⊆ kerF(φ) = imF(π) . (B.23)

Since we assumed that imφ � kerψ , it cannot be that π ◦ ι = 0 and hence we have
F(ι) ◦F(π) �= 0 implying that kerF(ι) � imF(π). Entering this observation into
(B.23) shows that the induced sequence could not be exact and we again conclude
that the functor F is faithful. �
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Remark B.2.22. We are particularly interested in applying these results to the func-
tor F = HomR(·,M). According to Proposition B.2.11, F is exact for an injective
moduleM, and, by Lemma B.2.19, the second statement in Lemma B.2.20 is now
equivalent to M being a cogenerator. Thus Proposition B.2.21 asserts that for an
injective moduleM the functor F is faithful, if and only ifM is a cogenerator. �

In a (cochain) complex (M,d), an element mi ∈ Mi such that di(mi) = 0 is
called a cocycle and if mi = di−1(mi−1) for some mi−1 ∈Mi−1 it is a coboundary.
By definition of a complex, any coboundary is a cocycle; but in general the con-
verse is not true. Only ifM is an exact sequence, then any solution of the equation
di(mi) = 0 may be represented as mi = di−1(mi−1), i. e. any cocycle is a cobound-
ary. Obviously, this representation of mi is not unique: if m̄i−1−mi−1 = di−2(mi−2)
for some element mi−2 ∈Mi−2, then di−1(m̄i−1) = di−1(mi−1) = mi.

Definition B.2.23. Let (M,d) be a cochain complex of R-modules. Its ith coho-
mology module is defined as the quotient

Hi(M,d) = kerdi/ imdi−1 . (B.24)

The direct sum of all cohomology modules Hi(M,d) defines a graded R-module,
the cohomology H•(M,d) of the complex (M,d).

As imdi−1 ⊆ kerdi, the cohomology modules are well-defined. We may now
characterise an exact sequence as a complex with vanishing cohomology. The non-
zero elements of Hi(M,d) are sometimes called obstructions, as they obstruct
the above mentioned idea of representing solutions of the equation di(mi) = 0 in the
form mi = di−1(mi−1). For a chain complex (M,d) one introduces similarly the
notions of a cycle and a boundary. The quotient of the cycles by the boundaries
defines now the homology H•(M,d).

For two cochain complexes (M,d) and (N ,δ ) a family of maps f i :Mi →N i

such that δ i ◦ f i = f i+1 ◦ di defines a cochain map f : M→N . It induces maps
Hi( f ) : Hi(M,d) → Hi(N ,δ ) by setting Hi( f )

(
[mi]) =

[
f i(mi)

]
. Two cochain

maps f ,g : M→ N are homotopic, written f ∼ g, if maps si : Mi → N i−1 ex-
ist such that f i − gi = si+1 ◦ di + δ i−1 ◦ si (the map s : M→ N is then called a
homotopy). The following (non-commutative!) diagram shows all involved maps:

. . . Mi−1 di−1

f i−1 gi−1

Mi

f i gi

di

si

Mi+1

f i+1 gi+1

si+1

· · ·

. . . N i−1
δ i−1 N i

δ i N i+1 · · ·

(B.25)

There is a similar notion of a chain map and homotopies between chain maps are
then of the form si :Mi →Ni+1.

Lemma B.2.24. If the cochain maps f ,g : M→N are homotopic, then their in-
duced maps coincide: H•( f ) = H•(g).
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Proof. If mi ∈ Mi is a cocycle, then f i(mi)− gi(mi) = δ i−1
(
si(mi)

)
and hence

Hi( f )
(
[mi]
)

= Hi(g)
(
[mi]
)
. �

Assume now that f :M→N and g :N →M are two cochain maps satisfying
g ◦ f ∼ idM and f ◦ g ∼ idN . Then the two complexes M, N are called cochain
equivalent. The following result shows that such complexes behave identically with
respect to cohomology.

Lemma B.2.25. If the complexes (M,d) and (N ,δ ) are cochain equivalent, then
their cohomologies are isomorphic: H•(M,d)∼= H•(N ,δ ).

Proof. By Lemma B.2.24, we find for the induced maps H•(g ◦ f ) = idH•(M,d)
and H•( f ◦ g) = idH•(N ,δ ). One easily verifies that for arbitrary chain maps f , g
the identity H•(g ◦ f ) = H•(g) ◦H•( f ) holds. Hence H•( f ) and H•(g) are both
isomorphisms (and inverse to each other). �

Remark B.2.26. An important special case arises, if for a complex (M,d) the iden-
tity map is homotopic to the zero map, i. e. if a homotopy si :Mi →Mi−1 exists
such that si+1 ◦ di + di−1 ◦ si = idMi . By Lemma B.2.24, idHi(M,d) is then the zero
map which is only possible, if H•(M,d) = 0. Hence, the complex (M,d) must be
exact and s is called a contracting1 homotopy. The construction of such contracting
homotopies is a very useful tool for proving the exactness of sequences. �

Proposition B.2.27. Given a short exact sequence of cochain complexes

0 A α B
β

C 0 (B.26)

with cochain maps α and β , there exists an exact sequence

· · · Hn(A,dA)
Hn(α)

Hn(B,dB)
Hn(β )

Hn(β )
Hn(C,dC) δ n

Hn+1(A,dA) · · ·

(B.27)

(B.27) is known as the long exact homological sequence. The main point in the
proof of this result is to derive the connecting homomorphisms δ n. We only sketch
this derivation; the verification that the arising map is well-defined, independent
of the made choices and satisfies the required properties consists of in principle
straightforward but tedious diagram chases.

If we break the sequence (B.26) into its components, then the for the construction
of δ n relevant part is given by the commutative diagram
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...
...

...

0 An αn

dn
A

Bn
β n

dn
B

Cn

dn
C

0

0 An+1
αn+1 Bn+1

β n+1 Cn+1 0

...
...

...

(B.28)

with exact rows. Any cohomology class in the module Hn(C,dC) may be represented
by an element c ∈ kerdn

C. Since β n is surjective, there exists an element b ∈ Bn

such that β n(b) = c. Because of the commutativity of (B.28), dn
B(b) ∈ kerβ n+1 and

hence, by the exactness of the rows, there finally exists an element a ∈ An+1 such
that αn+1(a) = dn

B(b). Now we define δ n
(
[c]
)

= [a].
One might think that applying an exact functor to a complex leads to another

complex with isomorphic (co)homology. The trivial example of the zero functor
which always yields an exact sequence shows that this is not necessarily the case.
However, in the important case of dualisation we obtain the expected result. Let

· · · V i−1 di−1

V i di

V i+1 · · · (B.29)

be a cochain complex (V ,d) of finite-dimensional vector spaces over a field �. By
definition, V∗

i = Hom�(V i,�) is the dual space of V i. The dual map d∗
i : V∗

i+1 →V∗
i

is the pull-back as introduced above: d∗
i (φ) = φ ◦ di. Thus dualisation leads to the

chain complex (V∗,d∗)

· · · V∗
i−1 V∗

i

d∗i−1 V∗
i+1

d∗i · · · (B.30)

Of course, one expects that the cohomology of (V ,d) and the homology of (V∗,d∗)
are closely related.

Proposition B.2.28. If (V ,d) is a cochain complex of finite-dimensional vector
spaces over a field �, then H•(V∗,d∗) =

(
H•(V ,d)

)∗
.

Proof. Let φ ∈ kerd∗
i−1⊆V∗

i be a representative of a homology class in Hi(V∗,d∗).
Then we have d∗

i−1(φ) = φ ◦di−1 = 0 and hence φ im di−1 = 0. This observation im-

plies that the restriction φ0 = φ ker di induces a well-defined map φ̄ ∈
(
Hi(V ,d)

)∗
.

If ψ = d∗
i (ρ) ∈ imd∗

i , then, by definition of the pull-back, ψ kerdi = 0 and hence
φ0 = (φ + ψ)0 making our construction independent of the choice of the rep-
resentative φ . Thus we may introduce a canonical vector space homomorphism
hi : Hi(V∗,d∗)→

(
Hi(V ,d)

)∗
by setting hi

(
[φ ]
)

= φ̄ .
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There only remains to show that hi is an isomorphism. Consider

0 kerdi V i di

imdi 0 (B.31)

which is trivially an exact sequence. Since all involved spaces are finite-dimensional,
the sequence splits. This implies the existence of a projection map π : V i → kerdi

which is the identity on kerdi. This observation allows us to extend any map
φ0 : kerdi → � to a map φ = φ0 ◦π : V i → �, i. e. to an element of V∗

i .
Any element φ̄ ∈

(
Hi(V ,d)

)∗
can be represented by a functional φ0 : kerdi → �

such that φ0 im di−1 = 0. The above described extension leads then to an element
φ ∈ M∗

i such that φ ker di = φ0. It follows trivially from our construction that it
satisfies hi

(
[φ ]
)

= φ̄ . Hence hi is surjective and as a map between vector spaces of
the same finite dimension thus bijective. �

More generally, the question what happens if a (left or right) exact functor is
applied to a complex leads to the important concept of derived functors. They are
usually defined via resolutions.

Definition B.2.29. LetR be a ring andM anR-module. An exact sequence

· · · C j
ψ j C j−1 · · · C1

ψ1 C0
π M 0 (B.32)

of R-modules is called a resolution of M. Dually, a coresolution is an exact se-
quence ofR-modules of the form

0 M ι
C0

ψ0

C1 · · · C j
ψ j

C j+1 · · · . (B.33)

The (co)resolution is free, projective or injective, if all modules C j are free, projec-
tive or injective, respectively. If there exists an index � such that C� �= 0 but C j = 0
for all j > �, the (co)resolution is finite and its length is �+ 1.

Remark B.2.30. Obviously, every resolution defines a chain complex (C,ψ) given
by · · · → C1 →C0 → 0. Since (B.32) is assumed to be exact, all homology modules
Hj(C,ψ) with j > 0 vanish and H0(C,ψ) = C0/ imψ1 = C0/kerπ ∼=M. We may
furthermore consider C =

⊕
k≥0 Ck as a non-negatively graded module and ψ as a

graded module homomorphism. Analogously, we may turnM into a non-negatively
graded module which is trivial everywhere except in degree 0. Putting the zero dif-
ferential on M, we get H0(M,0)∼=M and all other homology groups vanish. Ex-
tending now the map π to all of C by setting it zero in positive degree, we obtain a
chain map C →M→ 0 inducing an isomorphism on the homology.

Similarly, every coresolution defines a cochain complex (C,ψ), if we omit the
module M. Now all cohomology modules H j(C,ψ) with j > 0 vanish because
of the exactness of (B.33) and H0(C,ψ) = kerψ0 = im ι ∼= M. Extending again
ι trivially to the whole graded module C, we obtain a cochain map 0 →M→ C
inducing an isomorphism on cohomology. �
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Resolutions are not unique. A useful tool for analysing to what extent two pro-
jective resolutions of the same module M may differ is the following proposition.
A similar dual result holds for injective coresolutions, but we leave its formulation
as an exercise for the reader.

Proposition B.2.31. Let R be a ring and

· · · C j
φ j C j−1 · · · C1

φ1 C0
(B.34)

a complex of projectiveR-modules and set M= cokerφ1. Let furthermore

· · · D j
ψ j D j−1 · · · D1

ψ1 D0
πN N 0 (B.35)

be a resolution of the R-module N . Then any homomorphism f :M→N comes
from a chain map g : C →D which is unique up to homotopy.

If C →M→ 0 and D→M→ 0 are two different projective resolutions of the
same module M, then we can apply Proposition B.2.31 twice with f = idM. It
yields the existence of chain maps g : C →D and h :D→ C, respectively, such that
g ◦ h ∼ idC and h ◦g∼ idD. One says that any two projective resolutions of M are
homotopy equivalent.

Over a Noetherian ring R it is straightforward to construct step by step a free
resolution for any finitely generatedR-moduleM. Let

0 M0
ι0 F0

φ0 M 0 (B.36)

be a finite presentation of M where F0 is a free module of rank s0, ι0 the inclusion
map and φ0 the map defined by (B.1). Since R is assumed to be Noetherian, M0

is again finitely generated and thus also possess a finite presentation with a free
module F1 of rank s1 leading to an analogous short exact sequence with maps ι1
and φ1. If we define ψ0 = φ0 and ψ1 = ι0 ◦φ1, we obtain the exact sequence

0 M1
ι1 F1

ψ1 F0
ψ0 M 0 . (B.37)

We iterate this construction taking a finite presentation ofM1 leading to a finitely
generated module M2 and so on. Each finite presentation leads to a short exact
sequence of the form (B.36) with associated maps ιi and φi. Defining ψi = ιi−1 ◦φi

we obtain the following commutative diagram where the diagonals come from the
various presentations and the central row defines a free resolution ofM:
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0 0

M1

ι1

· · · ψ3 F2

φ2

ψ2 F1

φ1

ψ1 F0
ψ0 M 0 .

M2

ι2

M0

ι0

0 0 0 0

(B.38)

Assume thatR is a non-negatively graded ring and writeR+ =
⊕

d>0Rd for the
irrelevant ideal. If the R-moduleM is also graded, it is natural to consider graded
resolutions. Among these, certain ones are distinguished.

Definition B.2.32. A free resolution of a gradedR-moduleM is called minimal, if
the maps ψ j : Rs j →Rs j−1 satisfy imψ j ⊆ R+ ·Rs j−1 . In this case, the ranks s j

are the Betti numbers β j(M) ofM and the length of the resolution is the projective
dimension projdimM of the moduleM. The global dimension gldimR ofR is the
supremum of the projective dimensions of allR-modules.8

The adjective “minimal” refers to the fact that in a minimal resolution the free
generators of any component Rs j are mapped into a minimal generating set of its
image in Rs j−1 . Indeed, if their images do not form a minimal generating set, then
at least one image can be expressed as an R-linear combination of the other ones
and we could not have imψ j ⊆R+ ·Rs j−1 .

Minimal resolutions are unique up to isomorphism [125, Theorem 20.2], so that
the Betti numbers and the projective dimension are indeed well-defined invariants
of the moduleM. It requires only some linear algebra in order to reduce any graded
free resolution to the minimal one. In an abstract language, the main tool is the
following technical result [104, Lemma 1.3.2].

Lemma B.2.33. Let the diagram of R-modules

N ι M1
κ1

φ

M

M2

κ2
ψ (B.39)

be commutative and its upper row exact. Then the sequence

8 One can show that it suffices to take the supremum only over all finitely generated modules.
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0 im(idM1 −ψ ◦φ)
ρ1 im ι⊕ im(idM2 −φ ◦ψ)

ρ2 M2
κ2 M

(B.40)
with the maps ρ1(m1) =

(
m1,−φ(m1)

)
and ρ2

(
m1,m2) = φ(m1)+m2, respectively,

is well-defined and exact.

Proof. We have κ1
(
m1− (ψ ◦φ)(m1)

)
= κ1(m1)− (κ2 ◦φ)(m1) = 0 which implies

by the exactness of the upper row of (B.39) that im(id−ψ ◦φ) ⊆ im ι . It is also
easy to see that m1 ∈ im(id−ψ ◦φ) entails φ(m1) ∈ im(id−φ ◦ψ) and hence the
sequence (B.40) is indeed well-defined. Its exactness at the first term and the fact
that ρ2 ◦ ρ1 = 0 is trivial. If ρ2

(
ι(n),(id − φ ◦ψ)(m2)

)
= 0, then we have with

m1 = ι(n) that φ(m1) =−(id−φ ◦ψ)(m2) and thus exactness at the second term.
κ2
(
(φ ◦ ι)(n) + (id − φ ◦ψ)(m2)

)
= (κ1 ◦ ι)(n) + κ2(m2)− (κ1 ◦ψ)(m2) = 0

and hence imρ2 ⊆ kerκ2. Finally, if m2 ∈ kerκ2, then (κ1 ◦ψ)(m2) = 0 and thus
ψ(m2) ∈ im ι . Hence we may write m2 = (φ ◦ψ)(m2)+ (id− φ ◦ψ)(m2) ∈ imρ2

proving the exactness at the last term. �

Let E0 = {e1, . . . ,es0} be a basis of the first free module F0 appearing in the
free resolution (B.32) and assume that its image ψ0(E0) does not form a minimal
generating set of the module M. Then we may choose a minimal subset E ′

0 ⊂ E0

such that its image ψ0(E ′
0) still generatesM. The linear span of E ′

0 generates a free
submodule F ′

0 ⊂F0 and we can construct a diagram

· · · ψ2 F1
ψ1 F0

ψ0

π

M 0

F ′
0

ι
ψ′

0

(B.41)

where ι denotes as usual the natural inclusion map and the map π is defined as
follows: if ei ∈ E ′

0, then π(ei) = ei; otherwise we know that coefficients re ∈ R
exist with ψ0(ei) = ∑e∈E′

0
reψ0(e) and set π(ei) = ∑e∈E′

0
ree. If we finally define

ψ ′
0 = ψ0 ◦ ι , it is not difficult to verify that the diagram (B.41) commutes.

Thus Lemma B.2.33 leads to the exact sequence

0 im(id− ι ◦π) imψ1
π F ′

0

ψ′
0 M 0 (B.42)

since π ◦ ι = id. If ei ∈ E ′
0, then obviously (id− ι ◦π)(ei) = 0. If ei ∈ E0 \E ′

0, then
(id− ι ◦π)(ei) = ei−∑e∈E′

0
ree with some coefficients re ∈ R. Thus the images of

the latter generators are linearly independent and im(id− ι ◦π) may be identified
with a free submodule of imψ1.

As next step we determine for each generator ei ∈ E0 \ E ′
0 an element fi ∈ F1

such that ψ1(fi) = (id − ι ◦ π)(ei). The linear span of these elements fi defines a
free submodule ι1 : F ′

1 ↪→F1 and the restriction of ψ1 to F ′
1 is injective. It is then

straightforward to verify that
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· · · F3
(ψ3,0)

F2⊕F ′
1
ψ2⊕ι1 F1

π◦ψ1 F ′
0

ψ′
0 M 0 (B.43)

is again a free resolution ofM but now with the last term minimal. If one of the other
terms is not yet minimal, we may repeat the procedure there. In the case of a finite
free resolution, we obtain after a finite number of steps a minimal resolution, since
the whole process obviously stops ifF2 = 0. For the special case of a graded module
over a polynomial ring, we will return to the question of explicitly constructing a
minimal resolution at the end of Appendix B.4.

Remark B.2.34. The minimal resolution of a graded module M is pure, if every
module in the resolution has a generating set where all elements are of the same
degree. A special case is a linear resolution where a value q exists such that the jth
module in the resolution is generated in degree q + j. If M is a graded module, we
denote by M〈d〉 = 〈Md〉 the graded module generated by the homogeneous com-
ponent Md . Following Herzog and Hibi [210], we say that M is componentwise
linear, if for every degree d ≥ 0 the moduleM〈d〉 has a linear resolution. �

Now we can finally define derived functors, a fundamental construction in homo-
logical algebra. They can be introduced for any additive functor, i. e. for any functor
F satisfying F( f + g) = F( f )+ F(g) for arbitrary homomorphisms f , g.

Definition B.2.35. Let F be a covariant right exact additive functor and choose
a projective resolution P → M → 0 of the R-module M with differential ψ .
Then the nth left derived functor LnF maps M to the nth homology module
Hn
(
F(P),F(ψ)

)
. Similarly, if F is a covariant left exact additive functor and

0→I →M an injective coresolution with differentialψ , then the nth right derived
functorRiF maps the moduleM to the nth cohomology module Hn

(
F(I),F(ψ)

)
.

Obviously, this definition only makes sense, if the obtained functors are indepen-
dent of the chosen (co)resolution. Thus let P →M→ 0 and P ′→M→ 0 be two
different projective resolutions of the same module M. By Proposition B.2.31, a
chain map g : P →P ′ exists satisfying H0(g) = idM. It induces another chain map
F(g) : F(P)→ F(P ′) which yields at the level of the homology a homomorphism
H
(
F(g)
)

: H•
(
F(P)

)
→ H•

(
F(P ′)

)
. If g′ : P →P ′ is another chain map with the

same property, then g∼ g′ and because of the additivity of F also F(g)∼ F(g′). By
Lemma B.2.24, we have therefore H•

(
F(g)
)

= H•
(
F(g′)

)
.

Reversing the role of the two resolutions P and P ′, we obtain a further chain
map h : P ′ → P with h ◦ g ∼ idP′ and g ◦ h ∼ idP . But this fact implies that
H
(
F(g)
)
◦H
(
F(h)
)

is the identity on H•
(
F(P ′)

)
and H

(
F(h)
)
◦H
(
F(g)
)

the iden-
tity on H•

(
F(P)

)
. Hence H

(
F(g)
)

is a canonical isomorphism and the definition
of a left derived functor is independent of the chosen resolution. A similar argument
applies to injective coresolutions.

For contravariant functors we revert the role of the (co)resolutions: for a right
exact functor we use an injective coresolution for defining its left derived functors
and in the left exact case a projective resolution yields the right derived functors.
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Definition B.2.36. Let M, N be two R-modules. The nth right derived functor for
HomR(M, ·) is denoted ExtnR(M, ·) and for HomR(·,N ) we write ExtnR(·,N ).
The Abelian groups ExtnR(M,N ) are called the extension groups for the two mod-
ulesM andN . The nth left derived functor forM⊗R · is denoted TorRn (M, ·) and
similarly TorRn (·,N ) for ·⊗RN . The Abelian groups TorRn (M,N ) are called the
torsion groups forM and N .

Of course, one must show now that these notations are meaningful, i. e. that it
makes no difference whether we apply ExtnR(M, ·) to N or ExtnR(·,N ) to M (and
similarly for TorRn (M, ·) and TorRn (·,N ), respectively). For the proof that this is
indeed the case we refer to the literature. As the following result shows, these two
functors measure to what extent modules are projective, injective or flat.

Proposition B.2.37. Let M,N beR-modules.

(i) Ext0R(M,N )∼= HomR(M,N ) and TorR0 (M,N )∼=M⊗RN .
(ii) ExtnR(M,N ) = 0 for all n≥ 1, if M is projective or N is injective.
(iii) TorRn (M,N ) = 0 for all n≥ 1, if M is flat or N is projective.

Remark B.2.38. For general R-modulesM, N the extension groups ExtnR(M,N )
possess indeed only the structure of an Abelian group. However, for N = R the
functor HomR(·,R) corresponds to dualisation and as discussed in Remark B.1.7
for a left R-moduleM the dual module is always a rightR-module. Hence in this
case also all the extension groups ExtnR(M,R) are rightR-modules. �

Remark B.2.39. Certain extension and torsion groups allow for an alternative char-
acterisation of the depth of a module. For simplicity, we restrict to the polynomial
ring P = �[x1, . . . ,xn] over a field �. Given a P-moduleM, one can first show the
existence of an isomorphism TorPi (�,M)∼= Extn−i

P (�,M) for any index 0 ≤ i≤ n
(for all other values of i the groups always vanish). Then one can define depthM as
the smallest value i such that ExtiP(�,M) �= 0. �

B.3 Coalgebras and Comodules

Using an alternative approach to Definition B.1.11 of an algebra, we introduce the
concept of a coalgebra. The polynomial and the exterior algebra, respectively, are
examples of algebras that are simultaneously coalgebras; one speaks of bialgebras.
As this structure is useful for a better description of the Spencer cohomology, we
briefly recall here some basics. This material is only needed in Chapter 6; more
details can be found in [59, 278, 232, 446].

LetR be a commutative ring and A anR-module; we denote the action ofR on
A by ρ :R⊗A→A. In order to makeA to an associativeR-algebra, we need first
a multiplication homomorphism μ : A⊗A →A (all tensor products are over R).
Its associativity may be expressed by requiring that the diagram
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A⊗A⊗A
μ⊗idA

idA⊗μ

A⊗A

μ

A⊗A
μ

A

(B.44)

is commutative. The unit element �A of A may be defined with the help of an R-
linear map ι :R→A: we simply set �A = ι(1). The usual properties of the unit are
encoded in the commutativity of the diagram

A⊗A

μR⊗A

ι⊗idA

ρ

A⊗R

idA⊗ι

ρ
A

(B.45)

(we assume that the left and the right action ofR on A are identical).

Definition B.3.1. A (coassociative) coalgebra over a commutative ring R is an R-
module C with a homomorphismΔ : C →C⊗C, the coproduct, and anR-linear map
ε : C →R, the counit,9 such that the diagrams

C ⊗C⊗C C⊗C
Δ⊗idC

C ⊗C

idC⊗Δ

CΔ

Δ (B.46)

(expressing the coassociativity) and

C ⊗C
ε⊗idC idC⊗ε

R⊗C C⊗R

C

Δ

γ γ

(B.47)

(here γ maps c ∈ C to 1⊗ c or c⊗1, respectively) commute.

The Heyneman–Sweedler notation is a handy short-form for explicit computa-
tions with coproducts. One writes Δ(c) = c(1)⊗ c(2). This must be understood as an

abbreviation for a decomposition Δ(c) =∑k
i=1 c1,i⊗c2,i. Thus the subscripts (1) and

(2) should be read as indices which run in parallel and over which we sum. Note
that the factors c(1) and c(2) are not uniquely defined, as for an element of C ⊗C
there are in general many different ways to decompose it into summands. Using this

9 ε is sometimes also called augmentation.
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notation, the coassociativity axiom (B.46) is equivalent to

c(1)(1)⊗ c(1)(2)⊗ c(2) = c(1)⊗ c(2)(1)⊗ c(2)(2) (B.48a)

and—using the canonical isomorphismR⊗C ∼= C—the counit relations (B.47) to

c(1)ε(c(2)) = c = ε(c(1))c(2) . (B.48b)

Definition B.3.2. A right comodule over an R-coalgebra C is a right R-module N
with a coaction ρ :N →N ⊗C such that the two diagrams

N
ρ

ρ

N ⊗C
idN⊗Δ

N
ρ

idN

N ⊗C
idN⊗ε

N ⊗C
ρ⊗idC

N ⊗C⊗C N

(B.49)

commute. The definition of left comodules goes analogously.

Using an extended Heyneman-Sweedler notation, we write the coaction con-
cisely as ρ(n) = n〈1〉⊗n(2). Then (B.49) may be expressed as

n〈1〉⊗n(2)(1)⊗n(2)(2) = n〈1〉〈1〉⊗n〈1〉(2)⊗n(2) , (B.50a)

n〈1〉ε(n(2)) = n . (B.50b)

Any coalgebra C may be considered as a C-comodule with the coproduct Δ as
coaction. The free comodule Cm of rank m is defined by the coaction

ρ
(
⎛

⎜
⎝

c1
...

cm

⎞

⎟
⎠
)

=

⎛

⎜
⎝

(c1)(1)
...

(cm)(1)

⎞

⎟
⎠⊗
(
(c1)(2) + · · ·+(cm)(2)

)
. (B.51)

Another special case is a coideal where the coaction is simply the coproductΔ . Thus
an additive subgroup J ⊆ C is a (right) coideal, if Δ(J ) ⊆ J ⊗C; the conditions
(B.49) are trivially satisfied by the properties of a coproduct. More generally, a
subset L of a comoduleN is a right subcomodule, if ρ(L)⊆ L⊗C.

The subcomoduleL⊆N cogenerated by a set G ⊆N is defined as the intersec-
tion of all subcomodules ofN containingG; we will writeL= 〉G〈. If the underlying
ringR is a field � and if we are dealing with finite-dimensional spaces, then we may
describe the process of cogeneration as follows.

Let V , W be two finite-dimensional �-linear spaces with bases {v1, . . . ,vk} and
{w1, . . . ,w�}, respectively. Every element u ∈ V ⊗W can be written in the form

u =
�

∑
j=1

u j⊗wj . (B.52)
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Here the vectors u j ∈ V are uniquely determined and we introduce the vector sub-
space L(u) = 〈u1, . . . ,u�〉 ⊆ V (one could similarly introduce a linear subspace
R(u) ⊆ W based on a decomposition u = ∑k

i=1 vi ⊗ ui with vectors ui ∈ W , but
we will not need this). One easily sees that this construction is independent of the
chosen bases. Given a whole subset U ⊆ V ⊗W , we define L(U) by summing L(u)
over all u ∈ U .

Now let N be a comodule over C with coaction ρ . By assumption, N and C are
also �-linear spaces and we consider for any subset U ⊆N the space L= L

(
ρ(U)
)
.

It is not difficult to verify with the help of (B.50) that L is a subcomodule and in
fact L= 〉U〈. In particular, if U is already a subcomodule, then L

(
ρ(U)
)

= U .
An R-linear map f : N1 → N2 between two right C-comodules N1, N2 with

coactions ρ1, ρ2 is a comodule morphism, if the diagram

N1
f

ρ1

N2

ρ2

N1⊗C f⊗idC
N2⊗C

(B.53)

commutes, i. e. f (n)〈1〉⊗ f (n)(2) = f (n〈1〉)⊗n(2). The space HomC(N1,N2) of all
comodule morphisms betweenN1 and N2 has a naturalR-module structure via the
exact sequence

0 HomC(N1,N2) HomR(N1,N2)
γ

HomR(N1,N2⊗C) (B.54)

where γ(φ) = ρ2 ◦ φ − (φ ⊗ idC) ◦ρ1. Thus HomC(N , ·) (or HomC(·,N ), respec-
tively) defines a covariant (contravariant) functor from the category of right C-
modules into the category ofR-modules.

Projective and injective C-comodules are defined as in the case ofR-modules by
requiring the existence of fillers in the diagrams (B.19) (note that here no reversal of
arrows occurs). Of course, all maps are now assumed to be comodule morphisms.

Lemma B.3.3. Assume that the coalgebra C is flat as an R-module. Then the func-
tors HomC(N , ·) and HomC(·,N ) are left exact.

Proof. We treat only the case of HomC(·,N ); the other case goes analogously. Let
N1 →N2 →N3 → 0 be an exact sequence of C-comodules and consider the follow-
ing diagram:
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0 0 0

0 HomC(N1,N ) HomC(N2,N ) HomC(N3,N )

0 HomR(N1,N ) HomR(N2,N ) HomR(N3,N )

0 HomR(N1,N ⊗C) HomR(N2,N ⊗C) HomR(N3,N ⊗C)
(B.55)

All three columns are exact by (B.54) and the last two rows by Propositions B.2.9
and B.2.14. It is now a standard exercise in diagram chasing to show that the first
row is exact, too. �

Corollary B.3.4. Assume that the coalgebra C is flat as an R-module. Then the C-
comodule P is projective, if and only if the functor HomC(P , ·) is exact. Similarly,
the C-comodule I is injective, if and only if the functor HomC(·,I) is exact.

Remark B.3.5. In the case ofR-modules we have seen that free modules are trivially
projective but not necessarily injective (Remark B.2.12). For comodules it is just
the other way round: if R is a field, then the free comodule Cm is injective (but not
necessarily projective). For simplicity, we consider only m = 1; the extension to the
general case is straightforward.

Let N be a right C-comodule. Then any comodule morphism f ∈ HomC(N ,C)
induces a module morphism f̃ ∈ HomR(N ,R) by setting f̃ = ε ◦ f . Conversely,
given a module morphism f̃ ∈ HomR(N ,R), we may construct a comodule mor-
phism f ∈HomC(N ,C) by setting f = ( f̃ ⊗ idC)◦Δ . We claim that these two maps
are inverse to each other. Indeed, we find by the R-linearity of the involved maps
and by (B.50b) that

ε
(

f̃ (n〈1〉)n(2)
)

= f̃ (n〈1〉)ε(n(2)) = f̃
(
n〈1〉ε(n(2))

)
= f̃ (n) . (B.56)

Similarly, it follows from the defining property of a comodule morphism and
(B.48b) that

ε
(

f (n〈1〉)
)
n(2) = ε

(
f (n)(1)

)
f (n)(2) = f (n) . (B.57)

Thus we found a natural isomorphism between the functors HomC(·,C) and
HomR(·,R). Since we know from Proposition B.2.9 that under our assumptions
the latter one is exact, the former one must be exact, too, and we are done. �

The linear dual C∗ = HomR(C,R) of a coalgebra C possesses a natural algebra
structure via the convolution product �. It is defined for arbitrary elements φ ,ψ ∈ C∗
by the condition that the relation

〈φ �ψ ,c〉=
〈
φ ⊗ψ ,Δ(c)

〉
= 〈φ ,c(1)〉〈ψ ,c(2)〉 (B.58)
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holds for all c ∈ C. The unit element of C∗ is simply the counit ε . If N is a (right)
C-comodule with coaction ρ , then its dual space N ∗ is naturally a right C∗-module
with the action ρ∗ :N ∗⊗C∗→N ∗ defined in similar manner by requiring that the
relation 〈

ρ∗(ν,ψ),n
〉

=
〈
ν⊗ψ ,ρ(n)

〉
= 〈ν,n〈1〉〉〈ψ ,n(2)〉 (B.59)

holds for all ν ∈ N ∗, ψ ∈ C∗ and n ∈N .
For arbitrary subsets L ⊆N we define in the usual manner the annihilator L0 =

{ν ∈N ∗ | ν(�) = 0∀�∈L}⊆N ∗. Similarly, we introduce for any subset L∗ ⊆N ∗

the annihilator (L∗)0 = {n ∈ N | λ (n) = 0∀λ ∈ L∗} ⊆ N . The subset L ⊆ N is
closed, if L= (L0)0, and similarly for subsets L∗ ⊆N ∗.

Proposition B.3.6. Let N be a C-comodule. If L ⊆ N is a , then L0 ⊆ N ∗ is a
submodule. Conversely, if the subset L∗ ⊆N ∗ is a submodule, then (L∗)0 ⊆N is a
subcomodule. Thus let L ⊆ N be a closed subset. Then L is a subcomodule, if and
only if L0 is a submodule.

Proof. We first note that by definition of the dual action

〈
ρ∗(λ ,ψ),λ

〉
= 〈λ , �〈1〉〉〈ψ , �(2)〉 (B.60)

for arbitrary � ∈ N , λ ∈ N ∗ and ψ ∈ C∗. Now consider this equation for λ ∈ L0

and � ∈ L. If L is a subcomodule, then �〈1〉 ∈ L and we always obtain zero, as the
right hand side vanishes. But this fact implies that ρ∗(λ ,ψ) ∈ L0 for arbitrary ψ
and hence L0 is a submodule.

Conversely, let L∗ be a submodule and consider the above equation for λ ∈ L∗

and � ∈ (L∗)0. We obtain again zero, as now the left hand side always vanishes.
Without loss of generality, we may assume that the elements �(2) are linearly inde-
pendent. Then by making appropriate choices for ψ , we find that 〈λ , �〈1〉〉 = 0 and
hence �〈1〉 ∈ (L∗)0, so that we have a subcomodule. �

C is a graded coalgebra, if it is a graded R-module C =
⊕

k∈� Ck and the co-
product satisfies Δ(Ck)⊆∑r+s=k Cr⊗Cs. Similarly, we speak of a graded comodule
N =

⊕
k∈�Nk, if the coaction satisfies ρ(Nk)⊆ ∑r+s=kNr⊗Cs. In such cases, we

also consider the graded dualN ∗ =
⊕

k∈�N ∗
k .

IfA is anR-algebra, we may define for a left A-moduleML with left action ηL

and a right A-module MR with right action ηR the tensor product over A by the
exact sequence of Abelian groups

MR⊗RA⊗RML
σ MR⊗RML MR⊗AML 0 (B.61)

where σ = ηR⊗ idML − idMR ⊗ηL. As already noted in Appendix B.1, in general
MR⊗AML is only an Abelian group and no longer an A-module.

Reverting the arrows in the above sequence (B.61) leads to the dual notion of the
cotensor product over a coalgebra C. LetNL be a left C-comodule with left coaction
ρL and NR a right C-comodule with right coaction ρR. Then their cotensor product
NR �CNL is defined by the exact sequence
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NR⊗R C ⊗RNL NR⊗RNL
ω NR �CNL 0 (B.62)

where now ω = ρR⊗ idNL− idNR⊗ρL. Again we obtain in general only an Abelian
group and not a C-comodule with the trivial but important exceptionsNR �C C ∼=NR

and C�CNL
∼=NL.

In close analogy to Definition B.2.36 of the torsion groups of two R-modules,
Eilenberg and Moore [123] introduced for two C-comodules cotorsion groups. IfM,
N are C-comodules, then their cotorsion groups arise via the right derived functors
of the functor ·�CN (orM�C ·, respectively) defined by applying it to any injective
coresolution ofM and taking the cohomology. We use the notation Cotorn

C(M,N )
for the nth cotorsion group.

If an algebra A may also be equipped with a coalgebra structure, then it is a
bialgebra provided that Δ and ε are algebra morphisms (here A⊗A is given the
tensor product structure (a1⊗ b1)(a2⊗ b2) = a1a2⊗ b1b2). A particular class of
bialgebras are Hopf algebras. They possess as additional structure an antipode: an
endomorphism S :A→A such that S(a(1))a(2) = ε(a)1A = a(1)S(a(2)).

Let V be a finite-dimensional vector space over a field � (all constructions remain
valid for an R-module M, but for our purposes vector spaces are sufficient). Then
we may introduce the tensor algebra TV by setting T0V = �, TqV = V⊗·· ·⊗V the
q-fold product of V with itself and TV =

⊕∞
q=0 TqV . The product is given by

(v1⊗·· ·⊗ vq)⊗ (w1⊗·· ·⊗wr) = v1⊗·· ·⊗ vq⊗w1⊗·· ·⊗wr (B.63)

and makes TV to a graded algebra. Its unit is the �-linear map ι : �→ TV defined
by ι(1) = 1.

TV is a Hopf algebra. Its coalgebra structure is given by the coproduct

Δ(v1⊗·· ·⊗ vq) =
q

∑
i=0

(v1⊗·· ·⊗ vi)⊗ (vi+1⊗·· ·⊗ vq) . (B.64)

and the counit ε : TV → � which is the identity on T0V and zero everywhere else.
In order to distinguish between these two structures, we will denote the tensor coal-
gebra by TV . The antipode is defined by S(v1⊗·· ·⊗ vq) = (−1)qvq⊗·· ·⊗ v1

We introduce in the usual manner the symmetric algebra SV as the factor algebra
of TV by the ideal generated by all differences v⊗w−w⊗ v with v,w ∈ V . Thus it
is commutative and the product is denoted by a dot or no symbol at all. The exterior
algebra EV (we will also often writeΛV instead of EV) arises similarly by factoring
with respect to the ideal generated by all “squares” v⊗ v with v ∈ V . Its product is
the wedge product ∧ (see also Appendix C.2).

Both SV and EV inherit the Hopf algebra structure from TV . The counit is always
the augmentation ε mapping to the constant term. In both cases the coproduct is
given by Δ(v) = v⊗ 1 + 1⊗ v for v ∈ V . For the symmetric coalgebra SV it is
extended by the rule Δ( f g) = Δ( f )Δ(g) and similarly for the exterior coalgebra
EV by Δ( f ∧g) = Δ( f )∧Δ(g).
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If {x1, . . . ,xn} is a basis of V , then we may use as basis of the symmetric coal-
gebra SV all monomials xμ with a multi index μ ∈�n

0 providing the well-known
isomorphy of SV with the polynomial algebra �[x1, . . . ,xn]. A basis of the exterior
coalgebra EV is given by all monomials xI with a repeated index I = (i1, . . . , iq)
subject to the condition i1 < i2 < · · · < iq. In these bases the coproduct of SV is
given by “Taylor expansion”

Δ( f ) = ∑
μ∈�n

0

1
μ!
∂ |μ| f
∂xμ

⊗ xμ (B.65)

for any polynomial f ∈ �[x1, . . . ,xn] and in the exterior coalgebra EV we find (see
Appendix A.1 for the notations)

Δ(xI) = ∑
J∪K=I

sgn(J∪K)xJ⊗ xK . (B.66)

Consider the dual algebra (SV)∗. Denoting the dual basis to the terms xμ by
γμ(x), we obtain for the convolution product according to the remarks above

γμ(x)� γν(x) =
n

∏
i=1

(
μi +νi

μi

)
γμ+ν(x) . (B.67)

Introducing new “variables” yi = γ1i(x) (i. e. the dual basis to {x1, . . . ,xn} in V∗),

we find after a trivial computation γμ(x) = yμ

μ! , i. e. the dual bases consists of divided

powers, and hence yμ � yν = yμ+ν . Thus the algebra (SV)∗ is isomorphic to S(V∗).
By definition, an additive subgroupJ ⊂SV is a coideal, if and only if it satisfies

Δ(J )⊆ J ⊗C which, by (B.65), is equivalent to the condition ∂ |μ| f/∂xμ ∈ J for
all f ∈ J . Similarly, a subset N ⊆ (SV)m is a subcomodule, if and only if this
condition holds in each component.

Let F ⊂ SqV be a finite set of homogeneous polynomials of degree q. We are
interested in the homogeneous coideal J = 〉F〈 cogenerated by F . Obviously, we
must take for Jq the �-linear span of F . In a given basis {x1, . . . ,xn} of V , we set
for 0 < r ≤ q

Jq−r =
{
∂ |μ| f
∂xμ

| f ∈ Jq, μ ∈�n
0, |μ |= r

}
. (B.68)

It is easy to see that J =
⊕q

r=0Jr satisfies Δ(J )⊆J ⊗C and that it is the smallest
subset of SV containing F with this property. Note that, in contrast to the algebra
case, we obtain components of lower degree and J is finite-dimensional as vector
space. Again the extension to (SV)m is trivial using (B.68) componentwise.
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B.4 Gröbner Bases for Polynomial Ideals and Modules

Throughout this section, we assume that P = �[x1, . . . ,xn] is a polynomial ring over
a field � and develop the theory of Gröbner bases for ideals in P . Gröbner bases can
also be defined for polynomials over coefficient rings, but this generalisation leads
to additional complications which we ignore here (see, however, Section 4.6).

Let F = { f1, . . . , fr} be a finite set of polynomials; it generates the following
ideal in the ring P :

〈F〉=
{

h ∈ P | h =
r

∑
i=1

gi fi, gi ∈ P
}

. (B.69)

If I = 〈F〉 for some ideal I ⊆ P , then F is called a basis10 of I. By Hilbert’s
Basis Theorem B.1.13, any ideal in P has a finite basis (which is of course not
unique), as any field is trivially a Noetherian ring. The theory of Gröbner bases
is concerned with the choice of bases that are particularly useful because of their
special properties not shared by arbitrary bases.

Recall that a monomial ideal is an ideal in P that can be generated by terms (or
equivalently by monomials since we work over a field); the theory of such ideals is to
a large extent of a combinatorial nature. An order ≺ (see Appendix A.1) associates
with any ideal I ⊆ P a monomial ideal, its leading ideal lt≺I defined by

lt≺I = 〈lt≺ f | f ∈ I〉 (B.70)

(note that, in contrast to Definition A.1.5 of lt≺F for arbitrary sets F ⊆ P , we
define lt≺I not as the set {lt≺ f | f ∈ I} but as the ideal generated by it; this slight
inconsistency should not lead to confusion).

Definition B.4.1. Let I ⊆ P be a non-zero ideal. A finite set G ⊂ I is a Gröbner
basis of I for the term order≺, if lt≺I = 〈lt≺G〉.

Remark B.4.2. Buchberger introduced the terminology “Gröbner basis” (using a dif-
ferent but equivalent definition) in his Ph.D. thesis [60] in order to honour his su-
pervisor Gröbner. Some authors prefer to speak of standard bases (others reserve
this term for Gröbner bases with respect to semigroup orders which are not monoid
orders—see Section 4.5). Buchberger’s thesis marks the official beginning of the
history of Gröbner bases, but some of the basic ideas have appeared already much
earlier. The allegedly first Gröbner basis can be found in an article by Gordan [172]
dating from 1900. Term orders and leading ideals feature prominently in the work of
Macaulay [299] on Hilbert functions. Around the same time, Janet [233] and Riquier
[381] applied similar ideas in the context of differential equations (cf. the Notes at
the end of Chapter 3); later Gröbner picked up this idea and used it repeatedly, in
particular also for the analysis of differential equations [187]. Gröbner bases in a

10 Obviously, every polynomial ideal is a module over the polynomial ring. One should note that
strictly speaking these “ideal bases” are only generating sets and not bases, as only principal ideals
are free modules. But this abuse of language has become standard in commutative algebra.
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power series ring with respect to a semigroup order were applied both by Grauert
[179] for the construction of versal deformation spaces and by Hironaka [218] in his
famous work on the resolution of singularities of varieties (using the terminology
“standard bases”). Both considered the corresponding division algorithm (see be-
low) as a multivariate generalisation of the classical Weierstraß Division Theorem
of complex analysis. �

Example B.4.3. Consider the set F =
{

f1 = xy− y, f2 = y2− x
}
⊂ �[x,y] and let ≺

be an arbitrary degree compatible order. The underlining marks the leading terms of
the elements ofF . If we set I = 〈F〉; thenF is not a Gröbner basis of I with respect
to ≺: the polynomial f3 = x2− x = y · f1 +(1− x) · f2 is obviously an element of I,
but its leading term x2 is not contained in the monomial ideal 〈lt≺F〉= 〈xy,y2〉 and
thus 〈lt≺F〉 � lt≺I. We have not yet the tools to prove it, but the augmented set
G = { f1, f2, f3} is a Gröbner basis of I with respect to ≺. �

Note that Definition B.4.1 does not require I = 〈G〉; but we will later see that this
is always the case. Obviously, a set G may well be a Gröbner basis of an ideal for
one term order but not for another one; the chosen term order has a great influence
on the basis. We sometimes simply say that a set G is a Gröbner basis meaning that
it is a Gröbner basis of the ideal 〈G〉 for some term order≺ which should be obvious
from the context.

Example B.4.4. Gröbner bases can be extremely sensitive to changes of the used
term order ≺. We demonstrate this problem with the help of the simple ideal
I = 〈z5 + y4 + x3−1,z3 + y2 + x2−1〉 ⊂�[x,y,z]. The (reduced) Gröbner basis of
I with respect to the degree reverse lexicographic order consists of the following
four polynomials:

g1 = z3 + y2 + x2−1 ,

g2 = z2y2− y4 + z2x2− x3− z2 + 1 ,

g3 = zy4 + y4 + 2y2x2 + zx3 + x4−2y2−2x2− z+ 1 ,

g4 = y6− y4x2 + z2x4 + 2zy2x2 + z2x3 + y2x3 + zx4− x5−2z2x2−
2y2x2− zx3− x4−2zy2−2zx2 + x3 + y2 + 3x2 + 2z−2 .

(B.71)

Using the lexicographic order, we obtain for the same ideal a (reduced) basis
comprising the following seven polynomials:



B.4 Gröbner Bases for Polynomial Ideals and Modules 569

ḡ1 = y12− y10 + 3y8x3−5y8x2 + 2y8−10y6x4 + 20y6x2−10y6−
7y4x6 + 30y4x4−6y4x3−30y4x2 + 13y4−5y2x8 + 20y2x6−
30y2x4 + 20y2x2−5y2− x10 + x9 + 5x8−13x6 + 10x4 + 3x3−5x2 ,

ḡ2 = zx11 + 4zx10 + zx9−10zx8−4zx7 + 8zx6−3y10x3−2y10x2 +

4y10x + 4y10 + y8x5−2y8x4−2y8x3−6y6x6 + 10y6x5 + 20y6x4−
16y6x3−24y6x2 + 8y6x + 8y6 + 2y4x8 + 21y4x7 + 17y4x6−
78y4x5−64y4x4 + 90y4x3 + 76y4x2−32y4x−32y4 + 17y2x9 +

24y2x8−68y2x7−80y2x6 + 106y2x5 + 108y2x4−77y2x3−
70y2x2 + 20y2x + 20y2 + 7x11 + 7x10−31x9−42x8 + 55x7 +

77x6−39x5−62x4 + 8x3 + 20x2 ,

ḡ3 = 24zy2x−24zy2−3zx10−7zx9 + 12zx8 + 21zx7−23zx6 + 12zx4−
12zx3−24zx + 24z+ 9y10x2−9y10x−7y10−3y8x4 + 11y8x3−
9y8x2 + 6y8x−6y8 + 18y6x5−60y6x4 + 20y6x3 + 62y6x2−
24y6x−8y6−6y4x7−53y4x6 + 44y4x5 + 226y4x4−165y4x3−
174y4x2 + 90y4x + 38y4−51y2x8 + 13y2x7 + 239y2x6−118y2x5−
302y2x4 + 170y2x3 + 129y2x2−87y2x + 7y2−21x10 + 14x9 +

93x8−22x7−206x6 + 68x5 + 127x4−36x3−17x2 + 24x−24 ,

ḡ4 = zy4 + zx3− z+ y4 + 2y2x2−2y2 + x4−2x2 + 1 ,

ḡ5 = z2x4 + z2x3−2z2x2 + zy4 + 2zy2x2−2zy2 + zx4−2zx2 +

z+ y6− y4x2 + y4 + y2x3− y2− x5 + x3 + x2−1 ,

ḡ6 = z2y2 + z2x2− z2− y4− x3 + 1 ,

ḡ7 = z3 + y2 + x2−1 .

(B.72)

Obviously, the second basis is much larger. It does not only contain almost the
double number of generators; the generators are much more complicated (more
terms and larger coefficients) and of higher degree (12 compared to 6). It is a general
experience that Gröbner bases with respect to the lexicographic term order tend to
be much larger than bases with respect to the degree reverse lexicographic order. In
fact, the latter ones are usually the smallest and if one is free to choose an arbitrary
order, one generally prefers it. �

While Definition B.4.1 is probably the simplest and most direct way to define
a Gröbner basis, it does not make obvious why Gröbner bases are so important or
how one can check whether a given set G is a Gröbner basis. In order to answer such
questions we need a few additional concepts. The existence of Gröbner bases is a
simple by-product of many proofs of Hilbert’s Basis Theorem (see for example our
proof of Theorem 3.3.13).
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Definition B.4.5. For a given term order ≺, the polynomial g ∈ P is reducible with
respect to the finite subset F ⊂P , if there exists a term t ∈ suppg and a polynomial
f ∈ F such that lt≺ f | t. A polynomial g′ ∈ P that is not reducible with respect to
F and such that g′−g ∈ 〈F〉 is called a normal form of g with respect to F .

Although it is important to note that in general a polynomial g ∈ P does not
possess a unique normal form with respect to some set F ⊂ P , we will use the no-
tation g′ = NFF ,≺(g). Algorithm B.1 allows us to determine a normal form. If g is
not in normal form with respect to F , we take the largest term t ∈ suppg divisible
by the leading term of an element f ∈ F and its coefficient ct ∈ �. Then we com-
pute the difference g′ = g−

(
ctt/ lm≺ f

)
f ; obviously, this operation eliminates the

monomial ctt in g. If g′ is still reducible, we iterate. As after each step the largest
divisible term in suppg′ becomes smaller and ≺ is a well-order by Lemma A.1.6,
the algorithm terminates after a finite number of steps. Different normal forms may
be obtained, if in Line /5/ several elements f ∈ F with lt≺ f | t exist.

Algorithm B.1 Normal form
Input: finite set F ⊂ P , polynomial g ∈ P , term order ≺
Output: a normal form g′ = NFF ,≺(g)
1: S ← supp g∩〈lt≺F〉
2: g′← g
3: while S �= ∅ do
4: t← max≺S
5: choose f ∈ F such that lt≺ f | t
6: g′← g′− (ctt/ lm≺ f ) f
7: S ← supp g′∩〈lt≺F〉
8: end while
9: return g′

Example B.4.6. We continue with the set F = { f1, f2} of Example B.4.3 and a de-
gree compatible term order. If we reduce the polynomial f3 = xy2 − x first with
respect to f2, we obtain the normal form x2− x. But if we start by reducing f3 with
respect to the first generator f1, then the normal form 0 arises after one further re-
duction step. �
Remark B.4.7. Closely related to the normal form algorithm is the division algo-
rithm used in many textbooks for the introduction of Gröbner bases. By a slight
modification of Algorithm B.1, namely recording the individual reduction steps,
one can determine a representation g = ∑ f∈F Pf f + g′ with coefficients Pf ∈ P . In
Line /2/ we initialise Pf ← 0 for every f ∈ F ; in Line /6/ we compute in addition
Pf ← Pf + ctt/ lm≺ f for the f chosen in the previous line. This algorithm may be
considered as a multivariate generalisation of the familiar univariate polynomial di-
vision and g′ is sometimes called the remainder of the reduction. By construction,
the “quotients” Pf satisfy lt≺ (Pf f )� lt≺ g.

Although this chapter considers exclusively polynomials over a field �, we
briefly comment on the complications which arise, if the coefficients come from a
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ringR (this situation is studied in more detail in Section 4.6). In this case the simple
fact that in Line /5/ the leading term lt≺ f divides t does not suffice to guarantee that
a reduction of g′ is possible, as generally neither lc≺ f divides the coefficient of t nor
it is a unit in R. One solution is to perform a pseudo-division: we simply multiply
g′ by some ring element r′ ∈ R such that r′g′ can be reduced (the simplest choice
would be r′ = lc≺ f ). Of course, the output g′ is then only a pseudo-remainder:, i. e.
we only know that rg = ∑ f∈F Pf f + g′ for some r ∈ R where the “quotients” Pf

satisfy the same estimate as above. �

Proposition B.4.8. Let I ⊆ P be a non-zero ideal and G ⊂ P a finite set. Then the
following statements are equivalent.

(i) The set G is a Gröbner basis of I for the term order ≺.
(ii) I = 〈G〉 and every polynomial f ∈ P possesses a unique normal form with

respect to the set G.
(iii) Every polynomial f ∈ I in the ideal can be written in the form

f = ∑
g∈G

Pgg (B.73)

where the polynomial coefficients Pg ∈P satisfy lt≺ (Pgg)� lt≺ f for all gen-
erators g ∈ G such that Pg �= 0.

Proof. Assume that G is a Gröbner basis of I with respect to the term order ≺. Let
f1 and f2 be two normal forms of an arbitrary polynomial f ∈ P ; then obviously
f1 − f2 ∈ I. The leading term of f1 − f2 is an element of supp f1 ∪ supp f2. By
definition of a normal form this set cannot contain any term that is divisible by the
leading term of an element of G. On the other hand, by definition of a Gröbner
basis, lt≺ ( f1− f2) must be divisible by the leading term of an element of G. This
contradiction can only be resolved, if f1− f2 = 0 and thus (i) implies (ii).

It is a bit more involved to show that (iii) follows from (ii); therefore we only
sketch the proof. The key is to show that if f ′ is a normal form of f ∈ P with
respect to G, then it is also a normal form of any polynomial of the form f − hg
with g ∈ G. This observation trivially implies that 0 is a normal form with respect
to G whenever f ∈ I. Since by assumption this normal form is unique, we may
compute it with Algorithm B.1 in its extended form, i. e. the division algorithm
mentioned in Remark B.4.7, which yields a representation of the form (B.73). As
already remarked above, its coefficients Pg always satisfy the required condition.

Finally, we assume that (iii) holds. The condition on the coefficients obviously
implies that for any f ∈ I the leading term lt≺ f is divisible by lt≺ g for some g∈ G.
Thus lt≺I = 〈lt≺G〉 and consequently (i) is true. �

Example B.4.9. By the definition of an ideal basis, it is obvious that all elements of
I can be written in the form (B.73)—compare with (B.69). The particular property
of a Gröbner basis is the additional condition on the leading terms of the coeffi-
cients Pg; if it is satisfied, then the right hand side of (B.73) is called a standard
representation of the polynomial f ∈ P . It is important to note that it is not unique.
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While the proposition above asserts that all possible normal form algorithms return
the same result, they may achieve it in different ways and thus the associated divi-
sion algorithms yield different standard representations. Consider again the Gröbner
basis G = { f1, f2, f3} of Example B.4.3. The polynomial f = xy2− x ∈ 〈G〉 has two
different standard representations: f = y f1 + f2 = x f2 + f3. �

Remark B.4.10. Proposition B.4.8 implies that any Gröbner basis G of an ideal I
provides us with an effective method to choose unique representatives for the cosets
in P/I, as all polynomials in a coset [ f ] have the same normal form with respect
to G. More precisely: the normal form defines a vector space isomorphism between
the algebra P/I and the vector space generated by all terms not contained in the
leading ideal lt≺ I = 〈lt≺G〉. The latter ones are also called standard terms. This
basic fact was already observed by Macaulay [299] (for this reason it is sometimes
called Macaulay’s Theorem). He concluded that every ideal I has the same Hilbert
function as the monomial ideal lt≺I.11

An effective means to perform arithmetics with cosets was the original motiva-
tion for Buchberger to introduce Gröbner bases in his thesis [60]. Proposition B.4.8
also allows us to decide algorithmically the ideal membership problem: given a
Gröbner basis G, we have f ∈ I, if and only if NFG,≺( f ) = 0. Using elimina-
tion orders, we can also effectively eliminate variables [459]. If ≺ is an elimination
order for the variables xk+1, . . . ,xn and G is a Gröbner basis of the ideal I, then
G ∩�[x1, . . . ,xk] is a Gröbner basis of I ∩�[x1, . . . ,xk]. �

Definition B.4.11. Let G be a Gröbner basis with respect to the term order ≺. The
basis G is minimal, if it does not contain two distinct elements g,g′ ∈ G such that
lt≺ g | lt≺ g′. The basis G is called reduced, if every element g ∈ G is in normal form
with respect to the set G \{g} and if lc≺ g = 1 for all g ∈ G.

Using a terminology introduced in Remark B.4.10, we may say that in a reduced
Gröbner basis the support of any generator consists besides the leading term only of
standard terms. Obviously, any reduced Gröbner basis is minimal. The terminology
“minimal basis” refers to the following observation. A general ideal has many min-
imal bases, but every monomial ideal possesses a unique minimal monomial basis.
If G is a minimal Gröbner basis of I with respect to the term order ≺, then the set
lt≺G is the unique minimal monomial basis of the leading ideal lt≺I.

Given an arbitrary Gröbner basis G of some ideal I ⊆ P , it is trivial to extract a
minimal one from it: simply drop every generator g′ ∈ G for which a different gen-
erator g ∈ G exists with lt≺ g | lt≺ g′. Obviously, the leading terms of the remaining
elements of G still span lt≺ I so that we still have a Gröbner basis. In order to obtain
a reduced Gröbner basis, we must perform a process known as autoreduction (see
Algorithm B.2).

The correctness of Algorithm B.2 is trivial. For the termination we note that in
each iteration of the while loop either a polynomial h ∈ H is eliminated or it is
replaced by another polynomial h̄ such that the maximal element of supph\supp h̄ is

11 In the case of the affine Hilbert function, i. e. for non-homogeneous ideals, this equality holds
only for degree compatible term orders.
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Algorithm B.2 Autoreduction of a set of polynomials
Input: a finite set F ⊂ P , a term order ≺
Output: an autoreduced setH⊂P with 〈H〉 = 〈F〉
1: H←F
2: while ∃h ∈H : h̄ = NormalForm

(
h,H\{h}

)
�= h do

3: H←H\{h}
4: if h̄ �= 0 then
5: H←H∪{h̄}
6: end if
7: end while
8: return H

greater than the maximal element of supp h̄\supph (more precisely, a term t ∈ supph
has been replaced by some terms which are all smaller than t). As any term order is
a well-order by Lemma A.1.6, this observation implies that the loop can be iterated
only a finite number of times.

It is now obvious that any polynomial ideal I has a reduced Gröbner basis: we
just take some Gröbner basis of I, apply Algorithm B.2 to it and finally divide every
generator by its leading coefficient. In fact, the thus obtained basis is even unique
(for the given term order).

Theorem B.4.12. Let I ⊆ P be an arbitrary non-zero ideal. Then I possesses a
unique reduced Gröbner basis for any term order ≺.

Proof. Let G and Ḡ be two different reduced Gröbner bases of the ideal I for the
same term order ≺. It follows from the remarks above that lt≺G = lt≺ Ḡ. If G �= Ḡ,
there must exist two elements g ∈ G and ḡ ∈ Ḡ such that lt≺ g = lt≺ ḡ but g �= ḡ.
Obviously, g− ḡ ∈ I and thus its normal form with respect to both G and Ḡ must
vanish by Proposition B.4.8. But supp(g−g′) consists only of standard terms and
hence g− ḡ is not reducible with respect to either basis implying that g− ḡ = 0 in
contradiction to our assumptions. �

All the characterisations of Gröbner bases given so far are not very constructive,
as they do not tell us how to find a Gröbner basis for a given ideal. This will change
now with the help of the S-polynomial12 S≺( f ,g) of two polynomials f ,g. It is
defined as the linear combination

S≺( f ,g) =
lcm(lt≺ f , lt≺ g)

lm≺ f
· f − lcm(lt≺ f , lt≺ g)

lm≺ g
·g (B.74)

where lcm denotes as usual the least common multiple. Note that the factors are
chosen such that the leading monomials cancel in the subtraction.

We saw above that for arbitrary sets F the normal form with respect to F is not
unique. The S-polynomials account for this ambiguity. Assume that during the de-
termination of a normal form of the polynomial h a monomial cxμ is reducible with

12 The S stands for syzygy; see below.
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respect to two different elements f1, f2 ∈ F (i. e. the term xν = lcm(lt≺ f1, lt≺ f2)
divides xμ ). Then the reduction of h with respect to fi yields hi = h− cxμ

lm≺ fi
fi and

for a suitably chosen constant d ∈ � the difference between the two reductions is
h1−h2 = dxμ−νS≺( f2, f1). We can generalise this observation as follows.

Lemma B.4.13. Let f1, . . . , fr be polynomials such that le≺ fi = μ for all 1≤ i≤ r.
Let furthermore the coefficients ai ∈ � be such that the polynomial f = ∑r

i=1 ai fi

satisfies le≺ f ≺ μ , i. e. the leading monomials cancel during the summation. Then
coefficients bi j ∈ � exist such that f = ∑i< j bi jS≺( fi, f j).

Proof. If lc≺ fi = ci, then our assumptions imply that ∑r
i=1 aici = 0. In addition, we

have S≺( fi, f j) = fi
ci
− f j

c j
. This fact allows us to calculate

f = a1c1
f1

c1
+ · · ·+ arcr

fr

cr

= a1c1

(
f1

c1
− f2

c2

)
+(a1c1 + a2c2)

(
f2

c2
− f3

c3

)
+ · · ·+

(a1c1 + a2c2 + · · ·+ ar−1cr−1)
(

fr−1

cr−1
− fr

cr

)
+

(a1c1 + · · ·+ arcr)
fr

cr
.

(B.75)

The last term cancels because of our choice of the coefficients ai and in all other
terms S-polynomials S≺( fi, f j) appear. �

With the help of this technical result, we can derive the following finite charac-
terisation of Gröbner bases which is the key to their actual computation and which
represents one of the central results of Buchberger’s thesis.

Theorem B.4.14 (Buchberger). A finite set G ⊂ P is a Gröbner basis of the ideal
I = 〈G〉, if and only if for every pair f ,g ∈ G the S-polynomial S≺( f ,g) reduces to
zero with respect to G, i. e. NFG,≺(S≺( f ,g)) = 0.

Proof. One direction is trivial: if G is a Gröbner basis, then every S-polynomial
reduces to zero by Part (ii) of Proposition B.4.8, as it is contained in I.

For the converse, we use the characterisation of Gröbner bases via standard rep-
resentations (Part (iii) of Proposition B.4.8). Let G = {g1, . . . ,gr}. Then every poly-
nomial f ∈ 〈G〉 can be written in the form f = ∑r

i=1 higi. This representation is not
unique, but we choose one such that the term

xμ = max
≺

{
lt≺ (higi) | 1≤ i≤ r

}
(B.76)

is minimal among all such representations (this conditions makes sense, as ≺ is a
well-order). If xμ = lt≺ f , we found a standard representation for f and are done.

Otherwise xμ  lt≺ f and we set S = {i | lt≺ (higi) = xμ}. If lm≺ hi = cixν
(i)

,

then we consider the polynomial f̄ =∑i∈S cixν
(i)

gi. By Lemma B.4.13, it possesses
a representation
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f̄ = ∑
i, j∈S

i< j

bi jS≺(xν
(i)

gi,x
ν( j)

g j) (B.77)

with coefficients bi j ∈ �. It is straightforward to verify that S≺(xν
(i)

gi,xν
( j)

g j) is
a multiple of S≺(gi,g j). Hence, by assumption, all these S-polynomials reduce to
zero modulo G and we obtain representations

S≺(xν
(i)

gi,x
ν( j)

g j) =
r

∑
k=1

hi jkgk (B.78)

where max≺
{

lt≺ (hi jkgk) | 1≤ k≤ r
}

= lt≺ S≺(xν
(i)

gi,xν
( j)

g j)≺ μ . Entering these
representations into f̄ and subsequently into f leads to a representation for f of
the form f = ∑r

i=1 h̄igi with max≺
{

lt≺ h̄igi | 1 ≤ i≤ r
}
≺ xμ which contradicts the

assumed minimality of xμ . �

This theorem lies at the heart of the constructive theory of Gröbner bases and
forms the foundation of the Buchberger Algorithm B.3. Given a finite set G ⊂ P ,
the algorithm first forms the set S of all pairs {g1,g2} of different elements of G.
Then it takes one pair and computes the corresponding S-polynomial S≺(g1,g2). If
its normal form ḡ with respect to G vanishes, the next pair is chosen. Otherwise ḡ is
added to G and we start anew. The algorithm stops with a Gröbner basis, when all
S-polynomials reduce to zero.13

Algorithm B.3 Gröbner basis (Buchberger)
Input: finite set F ⊂ P , term order ≺
Output: Gröbner basis G of 〈F〉
1: G ← F
2: S ←

{
{g1,g2} | g1,g2 ∈ G,g1 �= g2

}

3: while S �= ∅ do
4: choose {g1,g2} ∈ S
5: S ← S \

{
{g1,g2}

}
; ḡ← NFG,≺(S≺(g1,g2))

6: if ḡ �= 0 then
7: S ← S ∪

{
{ḡ,g} | g ∈ G

}
; G ← G∪{ḡ}

8: end if
9: end while

10: return G

Theorem B.4.15. Algorithm B.3 terminates for any finite set F ⊂ P and any term
order ≺ with a Gröbner basis of the ideal 〈F〉.

Proof. The main point is to show the termination of the algorithm. If it terminates,
the outcome is clearly a Gröbner basis of the ideal 〈F〉: we only add elements of

13 Normal form computations may also be considered in the more abstract framework of term
rewriting and critical pair completion. Buchberger’s algorithm is then an instance of the famous
Knuth–Bendix algorithm [255]. More on this relation can be found in [482].
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this ideal so that the span does not change and the termination criterion is that all S-
polynomials reduce to zero which by Theorem B.4.14 characterises Gröbner bases.

The termination follows from a Noetherian argument. The algorithm determines
a sequence G1 � G2 � G3 � · · · of finite sets. Consider the new element ḡ added in
Line /7/ to Gi in order to obtain Gi+1. It results from a normal form computation
with respect to Gi in Line /5/. This fact implies that lt≺ ḡ /∈ 〈lt≺Gi〉 and we obtain a
strictly ascending chain of monomial ideals: 〈lt≺G1〉� 〈lt≺G2〉� 〈lt≺G3〉� · · · . By
Dickson’s Lemma A.1.2, it is not possible that such a chain becomes infinite. Hence
after a finite number of steps we must have Gi = Gi+1 and the algorithm terminates
with a Gröbner basis of the ideal 〈F〉. �

Example B.4.16. We apply Buchberger’s Algorithm B.3 to the set F = { f1, f2} of
Example B.4.3 for some degree compatible term order ≺. The S-polynomial of the
two generators is S≺( f1, f2) = x2− y2 and a normal form of it with respect to F is
given by f3 = x2− x. As one can easily check by explicitly computing the normal
forms of the two new S-polynomials S≺( f1, f3) and S≺( f2, f3), the augmented set
G = { f1, f2, f3} is a Gröbner basis (even a reduced one) of the ideal 〈F〉 for any
degree compatible term order. �

Remark B.4.17. In general, Algorithm B.3 does not determine a reduced Gröbner
basis. The simplest possibility to obtain at least a minimal basis is to eliminate in
the output of Algorithm B.3 all elements g ∈ G for which another generator g′ ∈ G
exists with lt≺ g′ | lt≺ g. As such eliminations do not affect the ideal 〈lt≺G〉, the
result is still a Gröbner basis. Another possibility is to perform an autoreduction
with Algorithm B.2 whenever a new generator is added to G (this modification may
also be useful from an efficiency point of view). �

Note that it is not recommended to use Algorithm B.3 in the described form for
actual computations! The above presentation is designed to make the simple under-
lying idea fairly transparent. However, it is not efficient and usable only for rather
modest examples. Considerable optimisations are necessary to obtain an algorithm
which is applicable in practice.

The choice of the pair {g1,g2} in Line /4/ is important for the efficency. A num-
ber of strategies have been developed for it. The classical normal selection strategy
chooses that pair for which the term lcm(lt≺ g1, lt≺ g2) is minimal with respect to
the used term order ≺. It works very well for degree compatible term orders. An-
other popular approach is the “sugar cube” strategy [166] which is based on a sim-
ulated homogenisation of the input. In contrast to the normal selection strategy, this
approach works also well for term orders like the purely lexicographic one.

Another crucial observation is that the algorithm spends most of its time com-
puting normal forms. Buchberger found two criteria for predicting that certain S-
polynomials reduce to zero. Their use often leads to drastic gains in efficiency, as
the corresponding pairs {g1,g2} can be thrown away without any computation.

Proposition B.4.18 (Buchberger’s first criterion). Let g1,g2 ∈ P be two polyno-
mials with gcd(lt≺ g1, lt≺ g2) = 1. Then NF{g1,g2},≺(S≺(g1,g2)) = 0, i. e. the S-
polynomial S≺(g1,g2) reduces to zero modulo the set {g1,g2}.
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Proposition B.4.19 (Buchberger’s second criterion). Let G ⊂P be a finite set and
g1,g2,h ∈ G such that lt≺ h | lcm(lt≺ g1, lt≺ g2). Then it suffices to treat in Algo-
rithm B.3 the S-polynomials S≺(g1,h) and S≺(g2,h); the S-polynomial S≺(g1,g2)
may be ignored.

Various ways exist to incorporate these criteria in Algorithm B.3, but we omit
here a discussion. The proof of the first criterion is not very difficult; it follows from
a direct computation. The second one is based on syzygy theory and we will briefly
mention the underlying theory below.

Optimisation and implementation of the Buchberger algorithm (and the design
of alternative algorithms for the construction of Gröbner bases) is still an active re-
search topic in computer algebra and we must refer to the literature (cited in the
above mentioned textbooks). The complexity of computing Gröbner bases and de-
ciding the ideal membership problem was thoroughly analysed by Mayr and collab-
orators in a number of publications; a survey with many references is given in [317].
A by now classical result is that the ideal membership problem for polynomials with
rational coefficients is in the worst case exponential in space [316, 318]. The same
holds for determining a reduced Gröbner basis.

One should stress that this complexity result is less a question of designing clever
algorithms but ideals exist where the size of the Gröbner basis is so huge, as Mayr
and Meyer [318] demonstrated with an explicit example. Thus simply storing the
basis requires already exponential space. At first sight, this observation seems to
imply that it is hopeless to compute Gröbner bases. But one should always keep
in mind that all these results concern the worst case complexity. There are some
indications that most examples appearing in applications have a considerably lower
complexity, as they are of a more geometric origin whereas all the known worst
case examples are of a combinatorial nature. A more extensive discussion of this
and related issues can be found in the survey article [33].

Remark B.4.20. Probably the simplest measure for estimating the complexity of a
Gröbner basis computation is provided by the Castelnuovo–Mumford regularity
regI of the ideal I defined by the basis (see Section 5.5 for its definition). Bayer and
Stillman [34] showed that generically the Gröbner basis with respect to the degree
reverse lexicographic term order has degree regI. As this is typically the smallest
Gröbner basis for a given ideal, we may consider generically regI as a lower bound
for the degree of any Gröbner basis of I. Of course, it is trivial to produce coun-
terexamples to this observation: simply consider a monomial ideal; any monomial
basis of it is a Gröbner basis, but in general its regularity is higher than the degree
of its minimal basis. �

Gröbner bases may be defined for submodules of free polynomial modules in the
same manner as for ideals; one only needs a bit more notation. We represent the
elements of the free module Pm as vectors f = ( f1, . . . , fm) with fα ∈ P . The unit
vectors {e1, . . . ,em} with eαβ = δαβ form the standard basis of Pm; thus we may
also write f = f1e1 + · · ·+ fmem.

First, we must extend the concept of a term order. A term t is now a vector of
the form t = teα for some α and with t ∈ � a term in P . We denote the set of all



578 B Algebra

terms by �m; it is a monoid module over �. By a slight abuse of notation, we will
sometimes “divide” terms: if t = rs, then we set t/s = reα ; thus the result is again
a vector. Terms belonging to different unit vectors cannot be divided. A (module)
term order ≺ on �m must satisfy the following two conditions: if s, t ∈�m are two
arbitrary terms, then (i) t� rt and (ii) s≺ t implies rs≺ rt for all r ∈�. Obviously,
these are simple generalisations of the conditions for a term order on � and assert
that ≺ is compatible with the structure of �m as a monoid module over�.

In practice one uses on �m mostly term orders derived from orders on �. Two
natural ways to “lift” an order are TOP and POT. These abbreviations stand for
Term Over Position and Position Over Term, respectively. Let ≺ be a term order
on �. Then seα ≺TOP teβ , if either s ≺ t or s = t and α < β , i. e. we rank the
comparison of the terms s, t over the comparison of their position in the vector. We
have seα ≺POT teβ , if either α < β or α = β and s≺ t, i. e. the position in the vector
is more important than the terms. It is easy to show that both ≺TOP and ≺POT are
term orders on �m.

The notion of a class respecting term order is straightforwardly extended to or-
ders on �m. In a similar manner to the proof of Lemma A.1.8 one shows that on
terms of the same degree any class respecting term order is a TOP lift of the degree
reverse lexicographic order for an arbitrary labelling of the unit vectors eα .

Example B.4.21. A particular type of term orders for the module case will become
important below. Let F = {f1, . . . , fs} be a subset of Pm and ≺ an arbitrary term
order on�m. We define a new term order ≺F on �s by setting seσ ≺F teτ if either
lt≺ (sfσ )≺ lt≺ (tfτ ) or lt≺ (sfσ ) = lt≺ (tfτ ) and τ < σ (note that we reverse the order
of the indices). One easily verifies that for any set F (not necessarily a Gröbner
basis) ≺F is a term order on �s.

If the underlying order ≺ is class respecting, then the induced order ≺F is class
respecting in a weighted sense: we must set deg(teτ) = degt +degfτ . If all elements
fτ ∈ F have the same degree, this observation implies obviously that we are dealing
with a standard TOP lift of the degree reverse lexicographic order. �

Given this definition of term orders on �m, we can straightforwardly extend all
the notions introduced in the last section to submodulesM⊆Pm. The leading term,
coefficient, and monomial are defined as before; again we simply write lt≺M for
the monomial submodule generated by the leading terms of the elements of M.
Now we can easily generalise Definition B.4.1.

Definition B.4.22. LetM be a submodule of the modulePm. A finite set G ⊂M is
a Gröbner basis ofM for a given term order≺, if lt≺M= 〈lt≺G〉.

We may continue to use Algorithm B.1 for computing normal forms. In order to
apply Buchberger’s Algorithm B.3, we still have to generalise the S-polynomials.
First, we introduce the least common multiple of two terms s = seα and t = teβ
in �m: it is zero, if α �= β , and lcm(s,t)eα otherwise. Then we define the S-
“polynomial” of two elements f,g ∈ Pm by simply copying (B.74):

S≺(f,g) =
lcm(lm≺ f, lm≺ g)

lm≺ f
· f− lcm(lm≺ f, lm≺ g)

lm≺ g
·g . (B.79)
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Now all the results given in this section so far can be straightforwardly extended
to the module case. In particular, it turns out that all presented propositions and
theorems remain valid.

An important application of Gröbner bases is the construction of syzygies and
syzygy resolutions. Like many other things in commutative algebra, the term syzygy
goes back to Hilbert. It comes from the Greek word for yoke and indeed a syzygy
defines a “yoke” connecting some module elements.

Definition B.4.23. Let F = {f1, . . . , fs} be a finite subset of the free module Pm. A
syzygy of F is an element h = (h1, . . . ,hs) ∈ P s such that

s

∑
τ=1

hτ fτ = 0 . (B.80)

The syzygies of F form a submodule of P s, the syzygy module Syz(F).

Obviously, the syzygy module vanishes, Syz(F) = 0, if and only if the set F
is the basis of a free module. The components of a syzygy may be understood as
solutions of a linear system of equations over the ring P : indeed, Syz(F) is just the
kernel of the P-linear map

κF :

{
P s −→ Pm

(h1, . . . ,hs)t 	−→ h1f1 + · · ·+ hsfs
. (B.81)

With the help of syzygies many computational problems in commutative algebra
like the intersection of submodules or their quotient can be solved in a fairly efficient
way (see e. g. [5, §3.8]).

Remark B.4.24. By abuse of language, one sometimes speaks of the syzygy mod-
ule Syz(M) of a submodule M ⊆ Pm. With this notation one actually means
that one has chosen a generating set F of M and now considers Syz(F). Of
course, a submodule M has many generating sets and these may contain a dif-
ferent number of elements so that the corresponding syzygy modules even live in
free modules of different rank. However, if F1 is one generating set with s1 ele-
ments and F2 another one with s2 elements, then it is not difficult to show that
Syz(F1)⊕P s2 ∼= Syz(F2)⊕P s1 . Thus knowing the syzygy module of one gener-
ating set F1 suffices to compute it for any other generating set F2 (we will give the
details of the construction below) and in a certain sense one may indeed speak of a
module Syz(M). �

Remark B.4.25. If the elements of the set F = {f1, . . . , fs} are homogeneous, then
the syzygy module Syz(F) may be considered as a graded submodule of P s where
the grading of the module Ps is defined as follows: we give each basis vector ei the
weight deg fi, so that the degree of a term xμei is given by |μ |+ degfi. �

A generating set of the syzygy module can be easily determined for a Gröbner
basis. So let G = {g1, . . . ,gs} be a Gröbner basis for an arbitrary term order ≺;
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without loss of generality we may assume that G is reduced so that all leading coef-
ficients are one. Furthermore, let tσ = lt≺ gσ and tστ = lcm(tσ , tτ). It follows from
Proposition B.4.8 (iii) that we can write

S≺(gρ ,gσ ) =
s

∑
τ=1

hρστgτ (B.82)

where the leading terms of the polynomials hρστ ∈ P satisfy lt≺ S≺(gρ ,gσ ) =
max≺

{
lt≺ (hρστgτ) | 1≤ τ ≤ s

}
. Now we define for ρ �= σ

Sρσ =
tρσ
tρ

eρ −
tρσ
tσ

eσ −hρσ ∈ P s (B.83)

with hρσ = ∑s
τ=1 hρστeτ . By the definition of the S-“polynomial” and (B.82), this

is a syzygy in Syz(G). In fact, the syzygies obtained in this manner generate the
syzygy module. We do not give a direct proof of the following theorem, as it follows
immediately from the Schreyer Theorem B.4.27 below.

Theorem B.4.26. Let G be a Gröbner basis. The syzygy module Syz(G) is generated
by the set SG = {Sρσ | 1≤ ρ < σ ≤ s}.

Thus we automatically obtain a generating set of Syz(G), if we compute the
Gröbner basis G with Buchberger’s algorithm using the extended form of Algo-
rithm B.1, the division algorithm discussed in Remark B.4.7. It delivers us the coef-
ficients hτσρ of the representation (B.82). An interesting result (given by Schreyer
in his diploma thesis [395]14) is that this generating set is even a Gröbner basis for
the right term order, namely the one described in Example B.4.21.

Theorem B.4.27 (Schreyer). The above defined set SG is a Gröbner basis of the
syzygy module Syz(G) with respect to the term order ≺G .

Proof. The key for proving this result lies in recognising the leading terms of the
syzygies Sρσ with ρ < σ . We claim that lt≺G Sρσ = tρσ

tρ
eρ . Because of the assump-

tion ρ < σ , this term is indeed greater than tρσ
tσ

eσ with respect to ≺G and, since

lt≺ (hρστgτ ) � lt≺ S≺(gρ ,gσ ) ≺ lt≺
( tρσ

tρ
gρ
)

in (B.82) for any 1 ≤ τ ≤ s, it is also
greater than any term contained in supphρσ .

Consider an arbitrary syzygy S =∑s
ρ=1 fρeρ ∈ Syz(G). We define the monomial

mρ by lm≺G ( fρeρ) = mρeρ . Then lm≺G S = mτeτ for some value 1≤ τ ≤ s. We set
S̃ = ∑σ mσeσ where the summation is over all σ such that mσ lm≺ gσ = mτ lm≺ gτ
(obviously, σ ≥ τ since otherwise mτeτ could not be the leading monomial of S).
We have S̃ ∈ Syz({lt≺ gσ | σ ≥ τ}) by construction. Since we are now dealing
with the syzygies of a monomial set, it is easy to see that they are generated by
the “binary” syzygies sρσ = tρσ

tρ
eρ − tρσ

tσ
eσ with τ ≤ ρ < σ . By our considerations

above, lt≺G Sρσ = lt≺G sρσ and hence there exists a syzygy Sρσ ∈ SG such that
lt≺G Sρσ | lt≺G S. But this fact implies that SG is a Gröbner basis as asserted. �
14 Similar results were obtained around the same time by several authors, e. g. [380, 425, 484].
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This result settles the question of determining effectively Syz(F), if F is a
Gröbner basis. For arbitrary sets F = {f1, . . . , fs} the problem may be reduced to
this case as follows. We compute a Gröbner basis G = {g1, . . . ,gt} of 〈F〉 with re-
spect to an arbitrary term order ≺. Then there exist coefficients mi j,n ji ∈ P such
that fi = ∑t

j=1 mi jg j and conversely g j = ∑s
i=1 n jifi (the mi j are easily obtained by

a normal form computation, the n ji arise automatically during the determination
of G). The matrix M = (mi j) defines a homomorphism ψ : P s → P t by setting
ψ(h) = h ·M. In exactly the same manner we define a homomorphism φ : P t →P s

by setting φ(k) = k ·N where N = (n ji). One easily verifies that then the diagram

0 Syz(G) P t κG

φ Pm

0 Syz(F) P s κF

ψ (B.84)

is commutative with exact rows.
We may now apply Lemma B.2.33. In our case ι is the natural inclusion map

and we identify Syz(G) and Syz(F) with their respective images in P t and P s. As
the lemma implies in particular that kerκF = im(φ ◦ ι)+ im(id−φ ◦ψ), a gener-
ating set of Syz(F) = kerκF consists of the elements SρσN with Sρσ ∈ SG and the
columns of the (s× s)-matrix �s−MN.

Syzygy theory also underlies Buchberger’s second criterion (Proposition B.4.19).
Let T = {t1, . . . ,ts} ⊂� be a finite set of terms. As above we set tρσ = lcm(tρ ,tσ )
and Sρσ = tρσ

tρ
eρ − tρσ

tσ
eσ . As we are only dealing with terms, no polynomials hρσ

arise. Setting tρστ = lcm(tρ ,tσ ,tτ), it is a simple exercise to verify by direct compu-
tation that

tρστ
tρσ

Sρσ +
tρστ
tστ

Sστ +
tρστ
tτρ

Sτρ = 0 . (B.85)

An obvious consequence is that if tτ | tρσ , then Sρσ ∈ 〈Sστ ,Sτρ〉. More generally,
we may formulate the following statement.

Lemma B.4.28. Let S ⊆ ST = {Sρσ | 1 ≤ ρ < σ ≤ s} be a generating set of the
syzygy module Syz(T ). Assume that the three pairwise distinct indices ρ , σ , τ are
such that15 Sρσ ,Sστ ,Sρτ ∈ S and tτ | tρσ . Then the smaller set S \{Sρσ} still gen-
erates Syz(T ).

Proposition B.4.19 represents now a simple corollary of a generalisation of The-
orem B.4.14. If G ⊂ P is a finite set, we take T = lt≺G. Given a subset S ⊆ ST
generating Syz(T ), one can show that it suffices for G being a Gröbner basis that all
S-polynomials S≺(gρ ,gσ ) with Sρσ ∈ S reduce to zero modulo G.

Recall the explicit construction of a free resolution for a finitely generated R-
moduleM via presentations described in Appendix B.2. Determining a presentation
amounts to a syzygy computation once a generating set of M is known. Thus let

15 If ρ > σ , then we understand that Sσρ ∈ S etc.
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the finite set F generate the P-module M and take Syz(F) as M0. If the set F
is a Gröbner basis of M, the Schreyer Theorem B.4.27 provides us again with a
Gröbner basis of Syz(F), so that we can iterate the whole construction leading to a
syzygy resolution ofM.

As a Gröbner basis is rarely a minimal generating set, the obtained syzygy res-
olution will not be minimal for a graded moduleM. One step of the minimisation
process described in Appendix B.2 takes a very simple form. Let

· · ·
φ�+2 F�+1

φ�+1 F�
φ� F�−1

φ�−1 F�−2
φ�−2 · · · (B.86)

be a segment of a free resolution of M. We denote by A� the matrix describing the
map φ� with respect to the bases {e1, . . . ,en�

} of F� and {ē1, . . . , ēn�−1} of F�−1.
Assume that at the position (i, j) we have in A� an entry ai j ∈ �× ⊂ P so that
the resolution is not minimal. We introduce the two free submodules F ′

� ⊂ F� and
F ′

�−1 ⊂ F�−1 as the linear spans of the bases obtained by removing the vectors
e j and ēi, respectively, and denote by π� the canonical projection F� → F ′

� . Then
consider the modified sequence

· · ·
φ�+2 F�+1

ψ�+1 F ′
�

ψ� F ′
�−1

ψ�−1 F�−2
φ�−2 · · · (B.87)

where the three new maps are defined as follows: we set ψ�+1 = π� ◦ φ�+1 and
ψ�−1 = φ�−1 F ′

�−1
; the map ψ� is given by ψ�(ek) = φ�(ek − aik

ai j
e j) for k �= j. It

is straightforward to verify that (B.87) is again a free resolution of M. In matrix
language, we subtracted aik

ai j
times the jth column of A� from the kth column and

then deleted the jth column and the ith row. As the ranks of the involved free mod-
ules strictly decrease, we obtain after a finite number of iterations a resolution where
the �th map is minimal.

Hilbert’s famous Syzygy Theorem states that for finitely generated polynomial
modules always finite resolutions exist. A constructive proof of it may be obtained
via Schreyer’s Theorem B.4.27 and is contained in many textbooks on Gröbner
bases (see e. g. [99, Chapt. 6, Thm. (2.1)]). A sharper version using Pommaret bases
is given in Section 5.4.

Theorem B.4.29 (Hilbert). Let P = �[x1, . . . ,xn]. Then every finitely generated P-
module has a finite free resolution whose length is at most n.

As it is not difficult to produce explicit examples of finitely generatedP-modules
possessing a minimal free resolution of length n (the simplest example is given by
the maximal ideal 〈x1, . . . ,xn〉), an alternative formulation of Theorem B.4.29 is
that the global dimension of P is n. More generally, one can show that for any
commutative ringR the equality gldim

(
R[x]
)

= 1 + gldimR holds.
Finally, we discuss the effect of a specialisation on the exactness of a sequence

of polynomial modules.16 Let C →M→ 0 be a free resolution of some finitely

16 The following considerations are taken from [273].
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generated P-moduleM where C is the exact sequence

· · · P�2
S

P�1
B

P�0 . (B.88)

Using the standard bases of the free modules, we may consider S, B as matrices
with polynomial entries. The exactness at P�1 implies that not only BS = 0 but that
in fact the columns of S (interpreted as elements of P�1) generate the syzygies of
the columns of B.

In a specialisation the variables xi are substituted by field elements ξ i ∈ �. This
operation transforms the polynomial matrices S, B into matrices S(ξ), B(ξ) over the
field � and the exact sequence (B.88) into a complex of vector spaces of �

· · · ��2
S(ξ)

��1
B(ξ)

��0 . (B.89)

While it is trivial that (B.89) is indeed a complex, we cannot expect that for every
vector ξ ∈ �n exactness is preserved (a trivial counterexample is usually given by
the zero vector ξ = 0).

In general, the rank of a matrix B over some ringR is defined via determinantal
ideals [55, Chapt. 4]. Let Ik(B) denote the kth Fitting ideal of B generated by all
(k×k)-minors of B (one can show that the Fitting ideals depend only on the module
M0 = imB ⊆ P�0). The rank rankR B of B is the largest value r ∈ �0 such that
Ir(B) �= 0; we set I(B) = Ir(B).

The polynomial ring P = �[x1, . . . ,xn] is a domain with the rational functions
Q = �(x1, . . . ,xn) as field of fractions. Since P ⊂ Q and since it does not matter
whether we compute minors over P or over Q, rankP B = rankQ B. The latter rank
is the classical rank of linear algebra and may be determined by simple Gaussian
elimination.

After a specialisation x 	→ ξ , we can only say that

rank�B(ξ)≤ rankP B , (B.90)

although for generic vectors ξ ∈ �n equality holds. Those vectors ξ ∈ �n which
lead to a smaller rank are called characteristic for B (they make denominators van-
ish which appear in the Gaussian elimination over Q). More formally, they are de-
fined by the zeros of I(B), i. e. they lie on the variety V

(
I(B)
)
. Since by Hilbert’s

Nullstellensatz varieties are in a one-to-one correspondence with radical ideals, it is
natural to consider the radical

√
I(B).

Lemma B.4.30. If the sequence (B.88) is exact at P�1 , then the Fitting ideals satisfy√
I(B)⊆

√
I(S).

For a proof we refer to [125, p. 504]. By the considerations above, it implies
that any vector ξ ∈ �n that is characteristic for S is also characteristic for B, since
V
(
I(S)
)

= V
(√
I(S)
)
⊆ V
(√
I(B)
)

= V
(
I(B)
)
. In fact, this argument immedi-

ately yields the following assertion.
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Corollary B.4.31. Let the entries of the matrix B be homogeneous polynomials and
assume that rankP B = rank�B(ξ) for all vectors ξ ∈ �n \ {0}. Then the equality
rankP S = rank� S(ξ) holds for all vectors ξ ∈ �n \ {0}.

Lemma B.4.32. Under the assumptions of Corollary B.4.31, the complex (B.89) is
exact for all vectors ξ ∈ �n \ {0}.

Proof. Since the original sequence (B.88) is assumed to be exact, we have the rank
equality �1 = rankP B + rankP S [125, p. 500]. Let ξ ∈ �n be an arbitrary non-zero
vector. Using Corollary B.4.31, we get

�1 = rank�B(ξ)+ rank� S(ξ) = dimimB(ξ)+ dimimS(ξ) . (B.91)

Since BS = 0, we always have the inclusion imS(ξ) ⊆ kerB(ξ). Furthermore, the
specialised matrix B(ξ) trivially satisfies dimimB(ξ) = �1−dimkerB(ξ) implying
dimkerB(ξ) = dimimS(ξ). Together with the inclusion above, this observation en-
tails imS(ξ) = kerB(ξ) and hence the exactness at ��1 . Iteration yields the exactness
of the whole complex. �

Applying the functor Hom�(·,�) to an exact sequence of vector spaces, i. e. du-
alising the sequence, leads again to an exact sequence by Proposition B.2.9. At the
level of matrices this yields the following result on the transposed matrices.

Corollary B.4.33. Under the assumptions of Corollary B.4.31, the complex

��0
Bt(ξ )

��1
St(ξ )

��2 · · · (B.92)

is exact for all vectors ξ ∈ �n \ {0}.



Appendix C
Differential Geometry

The doctrines of pure geometry often, and in many questions, give a
simple and natural way to penetrate the origin of truths, to lay bare
the mysterious chain which unites them, and to make them known
individually, luminously and completely.

Michel Chasles

As in this book we are much concerned with a geometric approach to differential
equations, we need some basic notions in differential geometry which are collected
in this chapter. We start with a section introducing (differentiable) manifolds and
some spaces associated with them: the tangent and the cotangent bundle. Special
emphasis is given to fibred manifolds (bundles are only briefly introduced, as we
hardly need their additional structures). The second section studies in some more
detail vector fields and differential forms and the basic operations with them. Distri-
butions of vector fields (or dual codistributions of one-forms, respectively) and the
Frobenius theorem are the topic of the third section.

A fundamental object in differential geometry are connections. In our context, it
should be noted that ordinary differential equations and certain partial differential
equations correspond geometrically to connections (see Remark 2.3.6). The fourth
section introduces connections on arbitrary fibred manifolds. At a few places we
need some elementary results about Lie groups and algebras which are collected in
the fifth section. The final section is concerned with (co)symplectic geometry as the
basis of the theory of Hamiltonian systems.

Standard references on differential geometry are [3, 49, 81, 256, 282, 474], but
they go much further than we need. For most of our purposes a working knowledge
of some basic notions around manifolds is sufficient. Much of the material we need
can also be found in a very accessible form in [342, Chapt. 1].

C.1 Manifolds

The jet bundle formalism is based on fibred manifolds, but before we study these we
briefly recall the definition of an ordinary manifold. Loosely speaking, it is some-
thing that locally looks like an �m. When we speak of a manifold, we will always
mean a finite-dimensional, smooth (C∞) manifold.

585
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Definition C.1.1. An m-dimensional (differentiable) manifold is a set M equipped
with an atlasA, that is a countable family of coordinate charts (U ⊆M,φU ) where
φU : U →ΩU is a bijective map onto a connected open subset ΩU ⊆�m such that:

(i) The charts in A cover the whole manifold:M=
⋃

(U ,φU )∈AU .
(ii) If two charts (U ,φU ),(V ,φV ) ∈ A overlap, the transition function

ψUV = φV ◦φ−1
U : φU (U ∩V)⊆�m −→ φV (U ∩V)⊆�m (C.1)

is a smooth function.
(iii) If p1 ∈ U1 and p2 ∈ U2 are two distinct points of the manifoldM, there exist

open neighbourhoodsΩ1 ⊆ ΩU1 of φU1(p1) and Ω2 ⊆ ΩU2 of φU2(p2) such
that φ−1

U1
(Ω1)∩φ−1

U2
(Ω2) = ∅.

The atlasA provides the setM with a differentiable structure. The charts endow
the manifold M with a topology: the open sets are the inverse images φ−1

U (Ω) of
open sets Ω ⊆ΩU in�m. The third point in the definition above states thatM with
this topology is a Hausdorff space. These topological aspects are not so important
for us, as we are mainly working locally, i. e. we stay within a chart (U ,φU ) ∈ A
where we can map everything into �m and then calculate in coordinates as usual.
Typically, we do not explicitly mention the chart but simply say “let x = (x1, . . . ,xm)
be local coordinates on M”. This means that we go into a chart (U ,φU ) ∈ A and
identify each point p ∈ U with the vector x = φU (p) ∈�m.

One can also define analytic or Ck or topological manifolds; in this case one re-
quires that the transition functions ψUV describing changes of coordinates are of
class Cω or Ck or just homeomorphisms, respectively. Infinite-dimensional mani-
folds are usually obtained by modelling them on some Banach space instead of�m.

Example C.1.2. The simplest example of a manifold is provided by a connected
open subset Ω ⊆�m. In this case A contains only one chart, namely (Ω , idΩ ).

A slightly more complicated example of an m-dimensional manifold is the sur-
face Sm of the unit sphere in �m+1. Here it is not possible to cover the whole
manifold with a single chart, as Sm is not homeomorphic to �m; one needs at least
two charts using the stereographic projection. �

The space C∞(M,�) of smooth real-valued functions defined on the mani-
foldM is denoted byF(M). It is a ring, as we can add and multiply such functions
simply by adding and multiplying their values. A function f ∈ F(M) induces in
a chart (U ,φU ) a function fU = f ◦ φ−1

U : ΩU →�. We call f differentiable in U ,
if fU is differentiable. It is easy to see that differentiability at a point p ∈ M is
independent of the used chart, as the transition functions are smooth.

Tangents to a curve or surface are familiar objects from elementary differen-
tial geometry. Their generalisation to an arbitrary manifold M leads to the tangent
bundle TM. We start by introducing the tangent space TpM at an arbitrary point
p ∈M. There exist several possibilities for its definition; we use a rather geomet-
ric one which also helps to understand the close relation between tangent and jet
bundles, as jets are introduced in a fairly similar manner.
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A curve on the manifold M is a differentiable map γ : 	 ⊆�→M from some
real interval 	 ⊆ � into M. Without loss of generality, we assume that 0 ∈ 	. For
the construction of the tangent space TpM we take all curves with γ(0) = p. Two
such curves γ1, γ2 are tangent at p, if in some coordinate chart (U ,φU ) with p ∈ U
the tangent vectors (φU ◦ γ1)′(0) and (φU ◦ γ2)′(0) coincide (note that φU ◦ γi is a
curve in�m where we know tangent vectors from calculus). One can show that this
definition is independent of the used chart.

Tangency induces an equivalence relation; let [γ]p be the equivalence class of all
curves γ̄ with γ̄(0) = p which are tangent at p to the curve γ . An element of TpM
is such an equivalence class of curves. It is not difficult to see that TpM is a real
vector space of the same dimension as the manifoldM, as a coordinate chart maps
the elements of TpM bijectively on vectors in �m.

Definition C.1.3. The tangent bundle TM of the manifold M is the union of all
tangent spaces

TM=
⋃

p∈M
{p}×TpM . (C.2)

The tangent bundle projection is the canonical map τM : TM→M defined by
τM
(
{p}× [γ]p

)
= p for any p ∈M and [γ]p ∈ TpM.

Let M and N be two manifolds and f : M→N an arbitrary smooth map. It
induces a map T f : TM→ TN , the tangent map, which can be defined intrinsically
as follows. Let γM : 	 ⊆ �→M be an arbitrary curve on M. Together with f it
defines a curve γN : 	→N on the manifold N by γN = f ◦ γM. By definition, a
point in TpM is an equivalence class of such curves γM with γM(0)= p. Obviously,
all curves in this class are mapped on curves γN with γN (0) = f (p) and it is not
difficult to see that in fact the class [γM]p is mapped into the class [γN ] f (p). Thus
we obtain an �-linear map Tp f : TpM→ Tf (p)N . Putting together these maps for
all points p yields the tangent map T f .

The tangent bundle TM is again a manifold, as the differentiable structure of
M induces a differentiable structure on TM. Namely, let A be an atlas of M;
then TA=

{(
τ−1
M (U),TφU

)
| (U ,φU )∈A

}
is an atlas of TM. We have dimTM=

2dimM. Let (U ,φU ) be a coordinate chart with p∈U and φU (p)= x =(x1, . . . ,xm).
Consider for 1 ≤ i ≤ m the curves γi : 	→M with (φU ◦ γi)(t) = x + t · ei where
ei is the ith unit vector in �m. We denote the vector [γi]p by ∂xi p. These vectors
form a basis of TpM. One often denotes coordinates with respect to this basis by
ẋ = (ẋ1, . . . , ẋm), so that local coordinates on TM have the form (x, ẋ) ∈�m×�m.

Locally, the tangent map T f corresponds to the linearisation of f via its Jacobian
(sometimes denoted d f ). Let us introduce coordinates (x, ẋ) on TM (with some
chart (U ,φU ) on M) and (y, ẏ) on TN (with some chart (V ,ψV ) on N ). We write
y = f̄ (x), where f̄ = ψV ◦ f ◦ φ−1

U : U → V is the coordinate representation of f .
Then T f has the following form in these coordinates:

T f :

⎧
⎨

⎩

TU −→ TV

(x, ẋ) 	−→
(

f̄ (x),
∂ f̄
∂x

(x)ẋ
) . (C.3)
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The rank of the map f at a point p ∈ U is defined as the rank of the Jacobian ∂ f̄/∂x
at the point φU (p). One can show that this definition is independent of the chosen
coordinate charts. If K is a further manifold and g : N → K a further map, the
familiar chain rule can be expressed as T (g◦ f ) = T g ◦T f .

Mostly, we are somewhat sloppy with our notations and do not distinguish be-
tween the map f and its coordinate representation f̄ . Thus we simply write y = f (x)
omitting the coordinate maps φU and ψV .

Let f :M→N be a smooth map. We assume for simplicity that rank f is con-
stant on the manifold M. Maps with the maximal possible rank (which is obvi-
ously min{dimM,dimN}) are of particular importance and have special names:
if dimM≤ dimN , one speaks of an immersion; for dimM≥ dimN of a sub-
mersion. Locally, immersions look like linear injections, submersions like projec-
tions (see [170, Section I.2] for a precise form of this statement). If f is a bijection
and f−1 is also smooth, then f is called a diffeomorphism and the two manifolds
M and N are diffeomorphic. Obviously, this requires that T f is an isomorphism
with (T f )−1 = T ( f−1) and thus dimM = dimN . An embedding is an immersion
f : M→N such that M is diffeomorphic to im f ; this requires in particular that
im f is a manifold which is not necessarily the case for arbitrary immersions.

While it is intuitively fairly clear what a submanifold of an m-dimensional man-
ifoldM should be, providing a rigorous definition turns out to be surprisingly sub-
tle. The simplest approach considers manifoldsN for which an injective immersion
ι :N →M exists. Then the pair (N , ι) is called an immersed submanifold. An al-
ternative approach considers subsetsN ⊆M such that for each point p∈N a chart
(U ,φ) onM exists which mapsU∩N into�n×{0}⊆�m for some n≤m. In other
words, in the corresponding local coordinates (x1, . . . ,xm) the set U ∩N is mapped
into the set xn+1 = · · · = xm = 0. Such a subset N is then called an n-dimensional
regular submanifold.

It follows immediately that a regular submanifold N is an n-dimensional
manifold, as it inherits the differentiable structure of M. Furthermore, any regular
submanifold is also an immersed submanifold, as we may simply take the natural in-
clusion map ι :N ↪→M. The converse is, however, not true, as the map ι appearing
in the definition of an immersed submanifold is not necessarily a homeomorphism
onto its image in M. In particular, it is not sufficient to consider only the image
im ι ⊆M; one must also take the map ι into account, as the same image im ι may
be obtained in inequivalent ways.

We always assume that we are dealing with a regular submanifold, even if we
describe it via an injective immersion, i. e. we always assume that ι is a homeo-
morphism onto its image and in fact identifyN and im ι . One may contrast the two
mentioned approaches to submanifolds as follows: in the immersed case, we are
given a parametrisation of the subset im ι; in the regular case, the subsetN ⊆M is
described as solution set of some equations. The latter point of view may be formu-
lated more precisely.

Proposition C.1.4. Let M be a manifold and F : M→ �n a smooth map with
n ≤ m = dimM such that the tangent map T F has maximal rank everywhere on
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the subset N = {p ∈M | F(p) = 0}. Then N is a regular, (m− n)-dimensional
submanifold of M.

This result provides us with a simple means to produce submanifolds. If the
assumption on T F is satisfied, one says that 0 is a regular value of F . Locally,
the converse of Proposition C.1.4 is also true by definition of a regular submanifold.
For a submanifold generated this way, the following classical lemma describes in a
simple way all smooth functions vanishing on it.

Lemma C.1.5 (Hadamard). Let the regular submanifold N ⊆M be described as
the zero set of a smooth map F : M→ �n whose tangent map T F has maximal
rank on N . Let g be a real-valued function defined in a neighbourhood U of N
and vanishing onN . Then smooth functions gi ∈F(U) exist such that g =∑n

i=1 giFi

where Fi is the ith component of F.

Given two submanifolds N1 and N2 of a manifold M, we say that they are
transversal at a point p ∈ N1∩N2, if TpM= TpN1 + TpN2 (note that this requires
that dimN1 +dimN2 ≥ dimM; thus two curves in �3 can never be transversal). If
this condition is satisfied at all points p∈N1∩N2, thenN1∩N2 is again a subman-
ifold and Tp(N1∩N2) = TpN1∩TpN2 (one speaks of a clean intersection whenever
this last condition holds). For example, two curvesN1 andN2 in a two-dimensional
manifold M are transversal at a point p ∈ N1 ∩N2, if they do not have contact of
higher order at p.

Definition C.1.6. The linear dual of the tangent space TpM, denoted by T ∗
p M, is

called the cotangent space of the manifoldM at the point p∈M. Thus its elements
are linear maps (functionals) λp : TpM→ �. The cotangent bundle T∗M is the
union of all cotangent spaces

T ∗M=
⋃

p∈M
{p}×T∗

pM . (C.4)

The cotangent bundle projection is the canonical map τ∗M : T ∗M→M defined by
τ∗M
(
{p}×λp

)
= p for any λp ∈ T∗

p M.

A direct definition of the cotangent space T ∗
p M goes as follows. We define on

F(M) an equivalence relation by f ∼ g, if their tangent maps at the point p ∈M
coincide: Tp f = Tpg. Then T ∗

p M is the space of all equivalence classes [ f ] for this
relation. Indeed, since Tr� = � for any r ∈�, we find that Tp f : TpM→� is a
linear map on TpM and thus each such class [ f ] may be considered as an element
of the dual space. Conversely, it is trivial that we may find to any linear functional
λ : TpM→� a function f ∈ F(M) such that λ = Tp f .

Above we mentioned that in a local chart (U ,φU ) the vectors ∂xi p form a basis

of TpM. The elements of the dual basis in T∗
p M are denoted by dxi

p, i. e. we have

the relations dxi
p(∂x j p) = δ i

j; they are the equivalence classes of the components

xi : U →� of the function φU : U →�m.
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Fibred manifolds can be seen as a generalisation of the Cartesian product of two
manifolds. As we will see, in the neighbourhood of a point a fibred manifold is in
fact always of this form.

Definition C.1.7. A fibred manifold is a triple (E ,π ,B) where E andB are manifolds
and π : E → B is a surjective submersion. E is called the total space of the fibred
manifold, B the base space and π the projection. The subset π−1(b)⊂ E is the fibre
over the point b ∈ B and written Eb.

We usually speak simply of the fibred manifold E , if the base space B and the
projection π are obvious from the context. If dimE = n+m with dimB = n, then m
is called the fibre dimension of the fibred manifold.

Example C.1.8. The simplest example of a fibred manifold is a trivial fibred mani-
fold (we will see below that it is in fact even a trivial bundle). Its total space is of
the form E = B×F for some manifoldF and the map π is the projection pr1 on the
first factor. In this case, each fibre can be identified with the manifold F .

Given an arbitrary manifoldM, both the tangent bundle (TM,τM,M) and the
cotangent bundle T∗M,τ∗M,M) are fibred manifolds. In general, neither of them
is a trivial fibred manifold. �

Locally, any fibred manifold looks like a trivial one. With the help of the Implicit
Function Theorem one can show that, because of the properties of a submersion, to
each point ξ ∈ E a neighbourhood Uξ ⊂ E , a manifold Fξ and a diffeomorphism
φξ : Uξ → π(Uξ )×Fξ exist such that the diagram

Uξ
φξ

π Uξ

π(Uξ )×Fξ

pr1

π(Uξ )

(C.5)

commutes. This property means that pr1(φξ (ζ )) = π(ζ ) for any point ζ ∈ Uξ . Thus
any fibred manifold can be covered with subsets Uξ which are diffeomorphic to
products π(Uξ )×Fξ . It is a natural thought to exploit this fact for the introduction
of special coordinate charts on E : adapted coordinates. Namely, we first map with
φξ on π(Uξ )×Fξ and then use charts on π(Uξ ) and Fξ , respectively. The arising
coordinate maps are of the form Uξ →�n×�m and if two points ξ1,ξ2 ∈ Uξ lie
in the same fibre, i. e. π(ξ1) = π(ξ2), then their first n coordinates are identical. We
mostly denote adapted coordinates by (x,u) = (x1, . . . ,xn,u1, . . . ,um).

A submanifold E ′ ⊆ E of the total space is a fibred submanifold, if the restriction
π E′ : E ′→B is still a surjective submersion. In other words, (E ′,π E′,B) must again
be a fibred manifold.

Let (E ,π ,B) and (E ′,ρ ,B) be two fibred manifolds over the same base space.
Their fibred product is the fibred manifold (E ×

B
E ′,π ×

B
ρ ,B) where the total space

E ×
B
E ′ consists of all pairs (ξ ,ζ ) ∈ E ×E ′ with π(ξ ) = ρ(ζ ) and the projection
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is defined by (π ×
B
ρ)(ξ ,ζ ) = π(ξ ) = ρ(ζ ). It is straightforward to show that this

construction indeed yields again a fibred manifold.
The total space E ×

B
E ′ may also be considered as a fibred manifold over ei-

ther E or E ′, respectively, with obvious projections on the first or second fac-
tor, respectively. In this case one speaks of a pull-back and uses the notation
ρ∗(π) : ρ∗(E)→E ′ and π∗(ρ) : π∗(E ′)→E , respectively.

Let (E ,π ,B) and (E ′,ρ ,B′) be two arbitrary fibred manifolds. A smooth map
F : E → E ′ is a fibred morphism, if there exists a map f : B → B′ (which is in fact
uniquely determined and smooth) such that the diagram

E F

π

E ′

ρ

B
f
B′

(C.6)

commutes, i. e. such that ρ ◦F = f ◦π . Thus F maps fibres into fibres: if ξ1,ξ2 ∈ Eb,
then F(ξ1),F(ξ2) ∈ E ′f (b). An example of a fibred morphism is the tangent map
T f : TM→ TN of a map f :M→N .

Fibre bundles are special fibred manifolds resembling even more a trivial one. We
require that we may choose the subsets Uξ in (C.5) in the form π−1(Wb) whereWb

is a neighbourhood in B of the point b = π(ξ ), i. e. Uξ consists of complete fibres.
A covering of E with such subsets is a local trivialisation of the bundle. One can
show that to every local trivialisation a manifoldF exists such that all the manifolds
Fξ are diffeomorphic to it. F is called the typical fibre of the bundle.

Special kinds of bundles arise, if the typical fibreF has additional structures. For
us the most important ones are vector bundles whereF is a vector space V and affine
bundles where F is an affine space A. Recall that every affine space A is modelled
on a vector space V : A is a set on which V acts free and transitively as an additive
group (see Definition C.5.3); in other words, we identify the “difference” α−β of
any two points α,β ∈ A with a vector v ∈ V . As we can do this over every point of
the base space, a vector bundle is associated with every affine bundle. For a vector
bundle π : E →B we may define its dual bundle π∗ : E∗→B. It has the same global
structure but its typical fibre is the vector space F∗ dual to the typical fibre F of E .

Example C.1.9. Simple examples of vector bundles are both tangent and cotangent
bundle of a manifold M. By definition, they are dual to each other. Their typical
fibre is the vector space�m where m = dimM (as�m has a canonical scalar prod-
uct, we may identify it with its dual space). The coordinates (x, ẋ) on the tangent
bundle TM are adapted. �

Remark C.1.10. The special form of the sets Uξ in a fibre bundle seems to be a rather
weak condition. In fact, it has a number of important consequences. For example,
the differentiable structure of E is completely determined by those of B and F .

Bundles also carry an additional structure, namely a group acting on the fibres.
Indeed, if W1, W2 are two different neighbourhoods of a given point b ∈ B on
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the base manifold with maps φi : π−1(Wi)→Wi×F , then by (C.5) the composi-
tion φ1 ◦ φ−1

2 : (W1 ∩W2)×F → (W1 ∩W2)×F is of the form id× φ12 with a
diffeomorphism φ12 : F →F called the transition map of the bundle. All the transi-
tion maps together form the structure group, a subgroup of the full diffeomorphism
group of the typical fibre F . As we do not need this additional structure, we refer to
the literature for more details.

A very important special case are principal fibre bundles where the typical fibre
is diffeomorphic to a Lie group G and the structure group is also G acting on itself by
left multiplication. More precisely, a principal fibre bundle is a tuple (P ,π ,B,G,Φ)
with a fibred manifold π : P → B and a fibre-preserving action Φ : G ×P → P of
the Lie group G on P such that the induced map (Φ,pr2) : G ×P → P ×

B
P is a

diffeomorphism. �

Definition C.1.11. A (local) section σ of the fibred manifold π : E →B is a smooth
map σ : U ⊆B→E such that π ◦σ = idU . The space of all local sections is denoted
by Γloc(π).

In adapted coordinates (x,u) on the fibred manifold E , a section σ has the local
form σ(x) = (x,s(x)) where s is a smooth function, as the condition π ◦σ = idU
implies that every point b ∈ U is mapped to a point in the fibre Eb above it. The
notion of a section may be understood as a generalisation of the graph of a function.
Indeed, if we are dealing with a trivial fibred manifold E = B×F , every smooth
function s : B → F defines a section σ(b) = (b,s(b)) and the set imσ ⊂ B×F is
the graph of s.

A global section is defined on the whole base manifold B. It is a very strong
assumption that a fibred manifold π : E → B admits global sections. In fact, most
fibred manifolds do not (one obvious exception are trivial ones). If such a global
section σ exists, it defines an immersion of B into E .

C.2 Vector Fields and Differential Forms

In this section we discuss in some more detail sections of the tangent and cotangent
bundle of a manifold. They are fundamental objects in differential geometry.

Definition C.2.1. Sections of the bundle TM are called vector fields. We write
X(M) for Γloc(τM).

The set X(M) possesses some algebraic structures (see Appendix B.1). In partic-
ular, it is anF(M)-module: we can add vector fields and multiply them by functions
contained in F(M). In local coordinates (x1, . . . ,xm), the module X(M) is gener-
ated by the fields ∂xi : p 	→ ∂xi p. Thus every vector field can be written locally as

X = vi∂xi with some functions vi ∈ F(M).
The notation ∂xi already indicates that vector fields can also be interpreted as

linear first-order differential operators acting on F(M). This is a more algebraic
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alternative to our geometric introduction of tangent vectors in the last section: a
vector field is an �-linear map X : F(M)→F(M) that satisfies the Leibniz rule
X( f g) = X( f )g + f X(g) (such maps are also called derivations). The relation be-
tween the two approaches is provided by the tangent map. If f ∈ F(M), then
T f : TM→ T�=�⊕� and for any vector field X ∈X(M) we define the function
X( f ) ∈ F(M) by X( f )(p) = Tp f (Xp) for any point p ∈M. In local coordinates,
the vector field ∂xi has then the meaning one expects: ∂xi( f ) = ∂ f/∂xi.

With this interpretation, X(M) can easily be given the structure of a real Lie
algebra (see Definition C.5.5 below). For the multiplication we take the Lie bracket:
[X ,Y ] = X ◦Y −Y ◦X for any two fields X ,Y ∈ X(M). It is easy to verify that this
bracket yields again a derivation on F(M), i. e. a vector field in X(M). If the two
vector fields are given in local coordinates by X = vi∂xi and Y = wi∂xi , then their
Lie bracket is the vector field

[X ,Y ] =
(

v j ∂wi

∂x j −wj ∂vi

∂x j

)
∂xi . (C.7)

Because of these two linear structures, module over the ringF(M) and Lie alge-
bra over the field �, one must be careful when speaking about linear combinations
of vector fields. In order to avoid misunderstandings, one should always state where
the coefficients live, if it is not evident from the context. The relation between the
two structures is given by a kind of Leibniz rule: one easily verifies that for any
smooth function f ∈ F(M) the identity [X , fY ] = f [X ,Y ]+ X( f )Y holds.

Remark C.2.2. Consider an arbitrary smooth map f : M→N between two man-
ifolds M and N . Given a vector field X ∈ X(M) on M, we cannot expect that
applying the tangent map T f to X yields again a vector field Y ∈ X(N ) on N . If
the map f is not surjective, then Y will not be defined everywhere on N but only
on im f . If f is not injective, we encounter the following problem: given two points
p1, p2 ∈M such that f (p1) = f (p2) = q ∈ N , there is no reason why the two vec-
tors Tp1 f (Xp1),Tp2 f (Xp2) ∈ TqN should coincide and hence we do not know how
to define Y at q. We call two vector fields X ∈ X(M) and Y ∈ X(N ) f -related, if
T f ◦X = Y ◦ f ; in other words: if the diagram

TM
T f

TN

M
f

X

N

Y (C.8)

commutes. In this case f (p1)= f (p2) implies that Tp1 f (Xp1)= Tp2 f (Xp2). Note that
obviously only the values of the field Y on im f ⊆N matter. One easily verifies that
if X1,X2 ∈X(M) are two vector fields onM which are f -related to Y1,Y2 ∈ X(N ),
then their Lie bracket [X1,X2] is f -related to the vector field [Y1,Y2].

In the special case of a fibred manifold π : E → B, a vector field X ∈ X(E)
such that Tp1π(Xp1) = Tp2π(Xp2) for all points p1, p2 with π(p1) = π(p2) is called
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projectable. The unique vector field Y ∈ X(B) on B which is π-related to X is then
denoted by Tπ(X).

If f is a diffeomorphism, then we can associate with every vector field X ∈X(M)
the vector field f∗X = T f ◦X ◦ f−1 ∈ X(N ), called the push-forward of X . By a
slight abuse of notation, we will also speak of a push-forward in the case of an
injective map f : M→N : we simply take the push-forward with respect to the
diffeomorphism f :M→ im f (but we must always keep in mind that now the vector
field f∗X is defined only on im f ⊆ N ). Conversely, if Y ∈ X(N ) is a vector field
on N , then we define its pull-back as the field f ∗Y = ( f−1)∗Y = (T f )−1 ◦Y ◦ f .
According to the remark above, the push-forward and the Lie bracket commute:

[ f∗X1, f∗X2] = f∗
(
[X1,X2]

)
(C.9)

for arbitrary vector fields X1,X2 ∈X(M). �
Vector fields are often used to model geometrically (autonomous) ordinary dif-

ferential equations. Let X be a vector field on the manifold M. An integral curve
of X is a curve γ : 	 ⊆ �→M such that γ̇(t) = X γ(t) for all t ∈ 	. In some local

coordinates (x), this definition means that the components γ i(t) satisfy the ordi-
nary differential equation γ̇ i(t) = vi

(
γ(t)
)

for X = vi∂xi . The classical existence and
uniqueness theorem for ordinary differential equations implies that we have for ev-
ery point p ∈M exactly one integral curve γ with γ(0) = p.

The flow of the vector field X is the map φ : D ⊆ �×M→M defined by
φ(t, p) = γp(t) where γp is the unique integral curve of X satisfying γp(0) = p. If
the flow is defined on the whole space �×M, then the vector field X is called
complete. In general, the flow φ is defined for each p∈M only for values t in some
open interval 	p + 0. It is often convenient to consider φ as a function of p only for
fixed t or conversely as a function of t only for fixed p; this yields a diffeomorphism
φt : M→M and a map φp : �→M, respectively. This notation should not be
confused with partial derivatives of φ !

The computation of the flow for a given vector field X , i. e. the integration of the
corresponding ordinary differential equation, is often referred to as exponentiation
of X with the suggestive notation exp(tX)p = φ(t, p). The definition of the flow
implies then

d
dt

[
exp(tX)p

]
= Xexp (tX)p . (C.10)

It follows again from the classical existence and uniqueness theorem for ordinary
differential equations that

exp(sX)
(
exp(tX)p

)
= exp

(
(s+ t)X

)
p (C.11)

(which partially explains the terminology).

Lemma C.2.3 (Rectification Lemma). Let X be a vector field that does not vanish
at the point p∈M. Then in a neighbourhoodU of p local coordinates (y) exist such
that X = ∂y1 in U (the transformation to these coordinates is known as a rectification
or a straightening out of the vector field X).
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Proof. Let (x) be some local coordinates in a neighbourhood of the point p and
X = vi(x)∂xi . Without loss of generality, we assume that p = 0 and that X p = ∂x1 ,

i. e. v1(0) = 1 and vk(0) = 0 for 2 ≤ k ≤ m. Because of the continuity of the com-
ponents vi, this assumption implies that v1(x) > 0 in some neighbourhood of p and
thus the integral curves of X intersect there the hyperplane x1 = 0 transversally.
Hence, in a suitably chosen neighbourhood U of p every point x ∈ U with local co-
ordinates (x) may be considered as the image under the flow of a point y on this hy-
perplane with local coordinates (0,y2, . . . ,ym). Consequently, the flow of X induces
in U a local diffeomorphism (i. e. a coordinate transformation) (y) 	→ (x) by setting
x = exp(y1X)y. In the new coordinates exp(tX)(y1, . . . ,ym) = (y1 + t,y2, . . . ,ym) by
(C.11), so that in U the flow corresponds to a simple translation in y1-direction. But
this observation immediately implies that X = ∂y1 in U by (C.10). �

The flow allows us an alternative definition of the Lie bracket. We define the Lie
derivative of a vector field Y with respect to another field X by

LXY =
d
dt

[
φ∗t Y
]

t=0 (C.12)

where φ∗t is the pull-back of the constant time diffeomorphism for the flow φ of X .
(C.12) may be interpreted as taking the limit of difference quotients along the flow
lines of X . It is not difficult to show that LXY = [X ,Y ].

Recall that the cotangent bundle was defined as the dual of tangent bundle. Now
we introduce as dual objects to vector fields differential forms.

Definition C.2.4. Sections of the bundle T ∗M are called (differential) one-forms.
We write Ω 1(M) for Γloc(τ∗M).

Just like X(M), the bundleΩ 1(M) possesses the structure of anF(M)-module.
In local coordinates (x), a basis is given by the forms dxi : p 	→ dxi

p. Obviously, it
is just the dual basis to {∂xi}.

Given the name “one-forms,” one expects of course that also two-forms and so
on exist. Indeed, like over any finite-dimensional vector space, we can build at each
point p ∈M the exterior algebra Λ(T ∗

p M). It is a graded ring (see Appendix B.1)
with Λ0(T ∗

p M) =� and Λ1(T∗
p M) = T∗

p M. The forms of higher degree are ob-
tained with the wedge product: ∧ :Λ k(T ∗

p M)×Λ �(T∗
p M)→Λ k+�(T ∗

p M). It is as-
sociative and distributive but non-commutative. Instead we have for ω ∈Λ k(T ∗

p M)
and η ∈Λ �(T ∗

p M) that ω ∧η = (−1)k�η ∧ω . The precise definition is obtained by
anti-symmetrisation of the tensor product and requires the choice of a combinatorial
factor. We will use the following convention

(ω ∧η)(v1, . . . ,vk+�) =
1

k!�! ∑π∈Sk+�

ε(π)ω(vπ(1), . . . ,vπ(k))η(vπ(k+1), . . . ,vπ(k+�)) . (C.13)
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Here Sk+� is the symmetric group containing all permutations of the numbers
1, . . . ,k + � and ε(π) = ±1 depending on whether we are dealing with an even or
an odd permutation. Some authors use a factor 1/(k + �)!, but we will stick to the
convention above.

The union
⋃

p∈M{p}×Λ k(T ∗
p M) leads to a vector bundle. Its local sections

are contained in Ω k(M) and called (differential) k-forms. Zero-forms are (local)
functions M→ �. A k-form ω ∈ Ω k(M) may be evaluated on k vector fields
Xi ∈ X(M) to a function in F(M):

ω(X1, . . . ,Xk)(p) = ωp(X1,p, . . . ,Xk,p) . (C.14)

In local coordinates (x) on the manifold M, a basis of Ω k(M) is given by the
forms dxI = dxi1 ∧ ·· · ∧ dxik where I = (i1, . . . , ik) is a sorted repeated index with
1≤ i1 < i2 < · · ·< ik ≤ n (see Appendix A.1 for our conventions on multi indices).
However, typically one writes a k-form locally as ω = ωIdxI where the summation
is over all repeated indices (i. e. including the unsorted ones) and where the smooth
functions ωI are assumed to be totally antisymmetric in the entries of I.

Because of the antisymmetry of the wedge product, it is easy to see that on an n-
dimensional manifold any form of degree greater than n trivially vanishes. We write
Ω (M) for the direct sum

⊕n
k=0Ω k(M). A nowhere vanishing n-form is called a

volume form, as it permits the computation of volumes via integration. Note that
such forms do not exist on every manifold but only on orientable ones. If ω1 and
ω2 are two volume forms on a manifold M, then a nowhere vanishing function
f ∈ F(M) exists such that ω1 = fω2.

Remark C.2.5. Given a smooth map f : N →M between two manifolds N , M,
we can pull-back forms. If ω ∈ Ω k(M) is a k-form on M, then we define via the
tangent map T f : TN → TM a k-form f ∗ω ∈Ω k(N ) on N by setting

( f ∗ω)p(v1, . . . ,vk) = ω f (p)
(
Tp f (v1), . . . ,Tp f (vk)

)
(C.15)

for arbitrary vectors v1, . . . ,vk ∈ TpN . Note that in contrast to the pull-back of
a vector field (cf. Remark C.2.2) it is here not necessary to require that f is
a diffeomorphism. In particular, this construction can be applied to an inclusion
map ι , i. e. when N is a submanifold of M. In the case that f is a diffeomor-
phism, we can additionally push-forward forms: if now ω ∈ Ω k(N ), then we set
f∗ω = ( f−1)∗ω ∈Ω k(M).

In local coordinates we get the following picture. Let (x1, . . . ,xn) be coordinates
in some chart U ⊆ N and (y1, . . . ,ym) coordinates in a chart V ⊆ M where the
charts are chosen such that f (U)⊆ V and we can write y j = f j(x). If ω = ωJdyJ is
a k-form defined on V , then its pull-back takes on U the local form

f ∗ω =
∂ f J

∂xI ωJdxI . (C.16)

Here ∂ f J/∂xI is a short-hand for the product (∂ f j1/∂xi1) · · · (∂ f jk/∂xik ). �
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There exist several important graded derivations on Ω (M) which thus acquires
the structure of a differential ring. The grading of a derivation D is denoted by |D|
and means that D :Ω k(M)→Ω k+|D|(M).

Definition C.2.6. The interior derivative with respect to a vector field X ∈ X(M)
is a map ιX :Ω k+1(M)→Ω k(M) defined for k > 0 by

(ιXω)
(
X1, . . . ,Xk) = ω(X ,X1, . . . ,Xk

)
(C.17)

for all forms ω ∈Ω k+1(M) and vector fields X1, . . . ,Xk ∈ X(M).

Thus the interior derivative reduces the form degree by one: |ι|=−1. Its graded
Leibniz rule is easily derived from the properties of the wedge product of forms:
ιX (ω1∧ω2) = (ιXω1)∧ω2 +(−1)k1ω1∧ (ιXω2), if ωi ∈ Ω ki(M). In local coordi-
nates, the interior derivative corresponds to what is classically called a “contraction”
in tensor analysis: if X = vi∂xi and ω = ωIdxI , then

ιXω = ωi1i2···ik vi1dxi2 ∧·· ·∧dxik . (C.18)

The next derivation increases the form degree, but it is less easy to introduce. We
take here an algebraic approach and define it via some characteristic properties. One
can show that there exists one and only one map satisfying all these properties (see
e. g. [81, Chapt. 3, Thm. 2.1]).

Definition C.2.7. The exterior derivative of differential forms is the unique map
d :Ω k(M)→Ω k+1(M) satisfying the following properties.

(i) d is an �-linear map: for all a1,a2 ∈� and ω1,ω2 ∈Ω k(M)

d(a1ω1 + a2ω2) = a1dω1 + a2dω2 . (C.19)

(ii) d satisfies a graded Leibniz rule: for all ω1 ∈Ω k1(M) and ω2 ∈Ω k2(M)

d(ω1∧ω2) = (dω1)∧ω2 +(−1)k1ω1∧dω2 . (C.20)

(iii) d is nilpotent: d ◦ d = 0.
(iv) If f :M→� is a zero-form, the one-form d f is locally given by

d f (x) =
∂ f
∂xi (x)dxi . (C.21)

Given a k-form ω ∈Ω k(M), an explicit coordinate-free expression for dω is

dω(X1, . . . ,Xk+1) =
k+1

∑
i=1

(−1)i+1Xi
(
ω(X1, . . . , X̂i, . . . ,Xk+1)

)

+∑
i< j
ω
(
[Xi,Xj],X1, . . . , X̂i, . . . , X̂ j, . . . ,Xk+1

) (C.22)
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where the hat indicates that the corresponding vector is omitted. In particular, for a
smooth function f ∈ F(M) we obtain d f (X) = X( f ); thus the one-form d f corre-
sponds to the fibre component of the tangent map T f . An important property of the
exterior derivative is that it commutes with pull-backs: if f :M→N is a smooth
map, then d ◦ f ∗ = f ∗ ◦ d. In local coordinates, one obtains for ω = ωIdxI that

dω =
∂ωI

∂xi dxi∧dxI . (C.23)

Remark C.2.8. If f :M→� is a smooth function onM such that zero is a regular
value of it, then by Proposition C.1.4 its zero setN = {p ∈M | f (p) = 0} is a reg-
ular submanifold of M. Its tangent space TpN at a point p ∈ N may be identified
with a linear subspace of the full tangent space TpM. This subspace is easily deter-
mined with the help of the one-form d f ∈Ω 1(M): TpN = {v∈ TpM| d fp(v) = 0}.
As zero is a regular value, by definition the differential d fp does not vanish for any
point p ∈N so that this condition is always non-trivial.

This observation follows directly from our geometric definition of tangent vec-
tors as equivalence class of curves. If γ : 	→N is a curve with γ(0) = p, then obvi-
ously f

(
γ(t)
)
≡ 0. Differentiating this relation with respect to t yields d f

(
γ̇(t)
)
≡ 0.

Evaluation at t = 0 yields our result.
More generally, if the submanifold N is the common zero set of the functions

f 1, . . . , f r ∈F(M), then any vector v∈ TpN satisfies d f 1
p(v) = · · ·= d f r

p(v) = 0 and
vice versa. The vector subspace N∗

pN ⊂ T∗
p N spanned by d f 1

p , . . . ,d f r
p is sometimes

called the conormal space ofN at the point p. �

Remark C.2.9. We call a differential k-form ω ∈ Ω k(M) exact, if there exists a
(k− 1)-form η ∈ Ω k−1(M) such that ω = dη . A form ω with dω = 0 is closed.
Obviously, any exact form is also closed, as d2 = 0. The Poincaré Lemma asserts
that locally (more precisely, in star-shaped domains) the converse also holds: every
closed form is exact. Globally, this is generally not true: the global closed forms that
are not exact generate the de Rham cohomology ofM, a topological invariant. �

The last derivation is again a Lie derivative along the flow lines of a vector field.
It obviously preserves the form degree.

Definition C.2.10. The Lie derivative of differential k-forms with respect to a vector
field X ∈ X(M) is the map LX :Ω k(M)→Ω k(M) defined by

LXω =
d
dt

[
φ∗t ω
]

t=0 (C.24)

where φ denotes the flow of X .

For zero-forms, i. e. functions, this definition yields LX f = X f . The Lie deriva-
tive LX satisfies for arbitrary differential forms ω1,ω2 ∈ Ω (M) the following (un-
graded!) Leibniz rule LX(ω1∧ω2) = LX (ω1)∧ω2 +ω1∧LX (ω2). For a k-form ω
we obtain as coordinate-free expression
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LXω(X1, . . . ,Xk) = X
(
ω(X1, . . . ,Xk)

)
+

+
k

∑
i=1

ω(X1, . . . , [X ,Xi], . . . ,Xk) .
(C.25)

Locally, we find for X = vi∂xi and ω = ωIdxI that

LXω =
(

vi ∂ωi1···ik
∂xi +

∂vi

∂xi1
ωii2···ik + · · ·+ ∂vi

∂xik
ωi1···ik−1i

)
dxi1 ∧·· ·∧dxik .

(C.26)

If we introduce a graded commutator for derivations on a manifold M, i. e. if
we define [D1,D2] = D1 ◦D2− (−1)|D1||D2|D2 ◦D1, then the following equations
prove that all three introduced derivations together form an infinite-dimensional Lie
algebra with the graded commutator as Lie bracket:

[ιX ,d] = LX , (C.27a)

[ιX , ιY ] = 0 , (C.27b)

[LX ,d] = 0 , (C.27c)

[LX , ιY ] = ι[X ,Y ] , (C.27d)

[LX ,LY ] = L[X ,Y ] . (C.27e)

The first of these relations, explicitly written out LX = ιX ◦d + d◦ ιX is very useful
in computations and has therefore been nicknamed Cartan’s magic formula.

Given a set of differential forms Θ ⊆ Ω (M), one may consider the algebraic
ideal 〈Θ〉alg ⊆Ω (M) consisting of all finite linear combinations∑θ∈Θ ωθ ∧θ with
coefficientsωθ ∈Ω (M) (althoughΩ (M) is a non-commutative ring, left and right
ideals coincide here, as the wedge product is skew-symmetric). We may also think
ofΩ (M) as a differential ring with respect to the exterior derivative d and introduce
the differential ideal 〈Θ〉diff as the smallest algebraic ideal which containsΘ and is
closed under d. Because of the nilpotency of d, we find that 〈Θ〉diff = 〈Θ ∪dΘ〉alg.

Remark C.2.11. Sometimes it is very useful to generalise to vector valued forms. Let
ν : V →M be an arbitrary vector bundle over M (in the simplest case the trivial
bundle pr1 :M×V →M for some vector space V). We define V-valued k-forms
as (local) sections of the bundleΛ k(T ∗M)⊗

M
V and use the notationΩ k(M,V) for

them. The evaluation of such a form on k vector fields Xi ∈ X(M) yields a section
in Γloc(ν). As an artifical example we may consider vector fields as TM-valued
zero-forms. i. e. X(M) =Ω 0(M,TM).

Note that generally vector valued forms cannot be wedged with each other, as it
is unclear how to multiply their vector part. An important exception occurs when the
forms take their values in a Lie algebra g, as this allows for a natural modification
of (C.13): if ω ∈ Λ k(T ∗

p M,g) and η ∈ Λ �(T ∗
p M,g), then we define for arbitrary

vectors v1, . . . ,vk+� ∈ TpM
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(ω ∧η)(v1, . . . ,vk+�) =
1

k!�! ∑π∈Sk+�

ε(π)
[
ω(vπ(1), . . . ,vπ(k)),η(vπ(k+1), . . . ,vπ(k+�))

]
(C.28)

where the square brackets denote the commutator in the Lie algebra g. Very often
one finds the notation [ω ,η ] instead of ω ∧η .

With similar modifications also other expressions may be “rescued.” Consider
for example the coordinate-free expression (C.22) for the exterior derivative. If we
interpret the terms in the first sum on the right hand side as Lie derivatives with
respect to Xi, then the obvious extension of this expression to TM-valued forms
ω ∈Ω k(M,TM) is given by

dω(X1, . . . ,Xk+1) =
k+1

∑
i=1

(−1)i+1[Xi,ω(X1, . . . , X̂i, . . . ,Xk+1)
]

+∑
i< j

ω
(
[Xi,Xj],X1, . . . , X̂i, . . . , X̂ j, . . . ,Xk+1

)
.

(C.29)

The same holds for the expression (C.25) for the Lie derivative. �

C.3 Distributions and the Frobenius Theorem

A distribution D on a manifold M assigns to each point p ∈M a vector subspace
Dp ⊆ TpM. We consider only smooth distributions which can be spanned by (local)
vector fields. More precisely, consider the set XD of all local vector fields X with
the property Xp ∈ Dp for all points p in the domain of X . Then D is smooth, if
conversely Dp = 〈{Xp | X ∈ XD}〉. Note that our definition does not imply that all
spaces Dp possess the same dimension, as it is often required. If this is the case,
we speak of a distribution of constant rank otherwise of a singular distribution. The
simplest example of a singular distribution is generated by a vector field with zeros.

Example C.3.1. Even if a distribution has constant rank r, we cannot automatically
assume that it may be globally generated by r everywhere linearly independent vec-
tor fields. Figure C.1 shows a typical situation where a one-dimensional distribution
cannot be generated by a smooth vector field. The distribution is defined on the man-
ifoldM=�2 \

{
(1,0),(−1,0)

}
as the tangent space of a one-parameter family of

ellipses. In the limit the ellipses degenerate to the line segment connecting (−1,0)
and (1,0). Obviously, everywhere outside this segment we easily find a smooth
vector field by simply orienting the ellipses and choosing the corresponding unit
tangent vector. However, no smooth continuation to the line segment is possible, as
the limits from above and below point in opposite directions. Locally, we have no
problem in defining the distribution by a single smooth vector field, as long as we
avoid using charts around the singular points (1,0) and (−1,0).
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Fig. C.1 One-dimensional distribution not generated by a vector field

This is only a simple example. A more extensive discussion of the singularities
of one-dimensional distributions is contained in [428, Chapt. 4, Add. 2] where the
index of a distribution at a point on a manifold is introduced. In Figure C.1, the
points (1,0) and (−1,0) are both of index 1

2 . �

A smooth distribution D is involutive, if it is closed under the Lie bracket: if X
and Y are two vector fields contained in D, then [X ,Y ] lives in D, too. An integral
manifold of the distribution D is a submanifold N ⊆M such that TpN ⊆ Dp for
all points p ∈ N . Obviously, the simplest example of an integral manifold is the
integral curve of a vector field (considered as a one-dimensional distribution).

The distribution is integrable, if every point p ∈M lies on a integral manifold
of dimension dimDp. Many authors require that for an integral manifold always
TpN = Dp; then integrability is equivalent to the existence of integral manifolds.
The (maximally extended) integral manifolds of maximal dimension are the leaves
of a foliation ofM (see e. g. [3, Theorem 4.4.7]).

Example C.3.2. The simplest example of an integrable and involutive distribution
is TM itself: it is obviously closed under the Lie bracket and M is an integral
manifold of maximal dimension. Another important example is the vertical bundle
of a fibred manifold π : E → B (cf. Remark C.4.7) whose integral manifolds of
maximal dimension are the fibres Eb with b ∈ B. �

Theorem C.3.3 (Frobenius). Let D ⊆ TM be a distribution of constant rank on a
manifold M. Then D is integrable, if and only if it is involutive.

Proof. One direction is easy. Assume that D is integrable and ι : N ↪→M is an
integral manifold of maximal dimension; i. e. D N = TN . Let X ,Y be two vector
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fields contained in D. Then their restrictions toN define vector fields in X(N ) and
thus their Lie bracket is again contained in TN . By (C.9), we have ι∗

(
[X N ,Y N ]

)
=[

ι∗(X N), ι∗(Y N)
]
∈ D N and as any point p ∈M lies on some integral manifold

we find that [X ,Y ] ∈D everywhere onM.
For the converse we use a local coordinate approach based on an induction over

the Rectification Lemma C.2.3 for a single vector field. More precisely, we show
that coordinates (y) exists such that the vector fields ∂y1 , . . . ,∂yr (where r = rankD)
locally generate the distribution D. This fact implies our claim, as then obviously
the manifolds locally described by y� = y�

0 = Const for r < �≤m are r-dimensional
integral manifolds of D.

Let X1 be an arbitrary non-vanishing vector field in D. By the Rectification
Lemma C.2.3, local coordinates (ȳ) exist such that X1 = ∂ȳ1 . For r = 1, this ob-
servation already suffices to prove our claim.

For r > 1 we choose r−1 further vector fields Xk =∑m
i=2 ai

k(ȳ)∂ȳi with 2≤ k≤ r
which together with X1 generate D. Performing Gaussian elimination on the coef-
ficient matrix (ai

k), we may assume (after possibly renumbering the variables) that
actually Xk = ∂ȳk +∑m

i=r+1 bi
k(ȳ)∂ȳi (in the terminology of Example 7.2.12 one says

that we take a Jacobian system as basis). Then [X1,Xk] = ∑m
i=r+1

∂bi
k(ȳ)
∂ ȳ1 ∂ȳi . By as-

sumption, the distribution D is involutive. Hence the vector fields arising this way
must be contained in D and expressible as linear combinations of our basis. Obvi-
ously, because of the special form of our fields, this is possible, if and only if all
coefficients bi

k are independent of the variable ȳ1.
Now we may reduce to the distribution of rank r− 1 generated by X2, . . . ,Xk

and, by our induction assumption, there exists a change of coordinates ȳ 	→ y with
y1 = ȳ1 and yi = φ i(ȳ2, . . . , ȳm) for 2≤ i≤ m such that Xk = ∂yk for 2≤ k ≤ r. This
fact proves our claim. �

Theorem C.3.3 represents the modern geometric formulation of the Frobenius
Theorem due to Chevalley [82] that is today found in almost any textbook on dif-
ferential geometry. The original formulation by Frobenius [142] is concerned with
the solvability of certain systems of partial differential equations and becomes bet-
ter visible in Example 7.2.12. We considered here only the case of distributions
of constant rank. Hermann [205, 206] discusses also singular distributions; further
generalisations are studied by Sussman [445].

Remark C.3.4. IfD is a distribution, then the (first) derived distribution is defined as
D′ = D+[D,D], i. e. we add all Lie brackets of vector fields contained in D. Thus
for an involutive distribution D =D′, whereas for a general distribution D �D′.

If the distributionD is generated by vector fields X1, . . . ,Xr and if for the derived
distribution we need additional generators Y1, . . . ,Ys, then we may write

[Xi,Xj] = Ak
i jXk + Ba

i jYa (C.30)

with some smooth functions Ak
i j,B

a
i j ∈ F(M). (C.30) are often called the structure

equations of the distribution D. �
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A codistributionΓ on a manifoldMmaps each point p∈M to a vector subspace
Γp ⊆ T∗

p M of the cotangent bundle. The definitions of smoothness and constant
rank is analogous to the ones for distributions. A codistribution Γ generated by
some one-forms ω1, . . . ,ωr is classically called a Pfaffian system. Distributions and
codistributions are dual to each other via the notion of an annihilator. Associated
with each distribution D ⊆ TM is its dual codistribution

D0 = {ωp ∈ T ∗
p M| p ∈M, ωp(Dp) = 0} (C.31)

(of dimension dimM−dimD= codimD). Conversely, a codistribution Γ ⊆ T ∗M
induces the dual distribution

Γ 0 = {Xp ∈ TpM| p ∈M, Γ (Xp) = 0} . (C.32)

A codistribution Γ is involutive, if the exterior derivative of any form ω ∈ Γ
vanishes modulo Γ , i. e. if dω ∈ Γ ∧Ω 1(M). In the case of a Pfaffian system this
condition means that the algebraic and the differential ideal generated by the system
coincide. As a simple test one must only check that dωi ∧ω1 ∧ ·· · ∧ωr = 0 for
1≤ i≤ r. An integral manifold of a codistribution Γ is a submanifoldN ⊆M such
that the pull-back ι∗(Γ ) with respect to the inclusion map ι : N ↪→M vanishes:
ι∗ω = 0 for all ω ∈ Γ . The codistribution Γ is integrable, if it possesses at any
point p ∈M an integral manifold of dimension codimΓp.

Proposition C.3.5. The distribution D is integrable (involutive), if and only if its
annihilator D0 is integrable (involutive).

Proof. We consider first the involutive case. Let X ,Y ∈ D and ω ∈ D0 be arbitrary
elements. Then by (C.22)

dω(X ,Y ) = X
(
ω(Y )
)
−Y
(
ω(X)

)
+ω
(
[X ,Y ]

)
. (C.33)

Now, if D0 is involutive, then dω ∈ D0 ∧Ω 1(M) and thus dω(X ,Y ) = 0. But this
fact implies [X ,Y ] ∈ (D0)0 = D and hence D is involutive, too. Conversely, if D is
involutive, then [X ,Y ]∈D andω

(
[X ,Y ]

)
= 0. This observation entails dω(X ,Y )= 0

and thus by some elementary linear algebra that dω ∈ D0∧Ω 1(M).
For the integrable case, let ι :N ↪→M be a submanifold.N is an integral mani-

fold of D0, if and only if ι∗ω = 0 for all ω ∈ D0. The latter statement is equivalent
to (ι∗ω)(X) = ω(ι∗X) = 0 for all X ∈ TN and hence to TN ⊆ D N , i. e. to N
being an integral manifold of D. �

As a trivial corollary we obtain a dual version of the Frobenius Theorem: a codis-
tribution of constant rank is integrable, if and only if it is involutive. As in our proof
of Theorem C.3.3, the local coordinate formulation says that for an involutive codis-
tribution Γ coordinates (y) exist such that Γ is generated by {dy1, . . . ,dyr} where
r = rankΓ . The integral manifolds of Γ are then locally described by the equations
y1 = Const,. . . , yr = Const.



604 C Differential Geometry

Remark C.3.6. In Remark C.3.4 we introduced for a distribution D its derived dis-
tributionD′. Similarly, one can define for any codistributionΓ a derived codistribu-

tion Γ ′. One simple approach is via duality: Γ ′ =
(
(Γ 0)′

)0
. Using (C.22), it is not

difficult to see that alternatively we may set

Γ ′ = {ω ∈ Γ | dω ≡ 0 mod Γ } . (C.34)

Both definitions show that generally Γ ′ ⊆ Γ with equality holding, if and only if Γ
is involutive. �

Remark C.3.7. Higher forms may also be used to measure to what extent a distri-
bution D is involutive. We consider the “normal” bundle1 K = TM/D and de-
fine the curvature of D as the vector valued two-form ΩD ∈ Λ2D⊗K given by
ΩD(X ,Y ) = [X ,Y ] (the bar denotes the equivalence class in K) for arbitrary vector
fields X ,Y ∈D. Obviously, the curvatureΩD vanishes, if and only if the considered
distribution D is involutive. �

C.4 Connections

Let π : E → B be a fibred manifold. The projection π induces in a natural way the
notion of a vertical vector which is tangential to the fibres. These vectors can be
easily characterised via the tangent map Tπ : TE → TB. In adapted coordinates we
have simply π(x,u) = x. Thus it follows from (C.3) that Tπ(x,u; ẋ, u̇) = (x, ẋ).

Definition C.4.1. The vertical bundle of the fibred manifold π : E → B is the sub-
bundle Vπ = kerTπ ⊂ TE .

In adapted coordinates, vertical vectors at a given point ξ ∈ E are of the form
v = u̇α∂uα ξ , i. e. all their components ẋi in the directions ∂xi ξ corresponding to the
coordinates in the base space B vanish. This immediately implies that at any point
ξ ∈ E the dimension of the vertical space Vξ π is just the fibre dimension of E .

Example C.4.2. In the case of the trivial fibred manifold E = B×F we have the
decomposition TE = TB×TF and we can identify Vπ = E ×TF . �

Lemma C.4.3. Let π :A→B be an arbitrary affine bundle modelled on the vector
bundle π̄ : V →B. Then there exists a canonical isomorphism V(b,a)π ∼= Vb for each
point (b,a) ∈ A.

Proof. By definition of an affine bundle, the fibre Ab at a point b ∈ B carries an
action of the Abelian group Vb which we write simply as an addition a+v. Choosing
a point a ∈ Ab and a vector v ∈ Vb, we may consider in Ab the curve γa,v : 	→Ab

given by t 	→ a+tv. Here 	 is as usual a real interval containing zero. Since the curve

1 Alternatively, we could use the derived distributionD′ and set K =D′/D.
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lies completely in the fibre Ab, the tangent vector γ̇a,v(0) defines an element of the
vertical space V(b,a)π and it is trivial to see that the map v 	→ γ̇a,v(0) represents an
isomorphism Vb →V(b,a)A. �
Remark C.4.4. Obviously, we may apply the same construction to any vector bundle
π̄ : V →B by considering the addition in the fibre Vb at an arbitrary point b∈B as an
action of the Abelian group Vb on itself. Thus we also have an analogous canonical
isomorphism V(b,v)π ∼= Vb for every point (b,v) ∈ V . This isomorphism is usually
exploited in form of the vertical lift λ : V ×

B
V → V π̄ . If (b,v1,v2) is a point in

V ×
B
V , then we consider the curve γv1,v2 : t 	→ v1 + tv2 which lies completely in the

fibre V(b,v1) and define λ (b,v1,v2) = γ̇v1,v2(0) = (b,v1;0,v2). �
If vertical vectors exist, one expects also horizontal vectors. However, their in-

troduction requires an additional structure on the fibred manifold E , namely a con-
nection, as it is not possible to give an intrinsic definition of a horizontal vector for
arbitrary fibred manifolds. The simple idea that in adapted coordinates such vec-
tors should have the form v = ẋi∂xi ξ does not work, as this form does not remain
invariant under changes to other adapted coordinates.

Connections represent a fundamental geometric structure on fibred manifolds
and they appear in many places. In particular, some differential equations may be
interpreted as connections (see Remark 2.3.6). We consider here a very general con-
cept of connections on arbitrary fibred manifolds which is due to Ehresmann [119].
Special forms have been around already since the middle of the 19th century, in
particular for the case that E = TB.2 Some references are [183, 207, 256, 257, 261]
(note that most textbooks on differential geometry consider exclusively the case of
principal connections on principal fibre bundles where one imposes additional sym-
metry conditions).

Connections are so important and versatile, because many different points of
view exist for them. We will use the simplest one via horizontal vectors, i. e. via a
distribution, for our definition. But there exists a number of alternative characterisa-
tions via certain maps or forms that are all equivalent.

Definition C.4.5. A connection on a fibred manifold π : E → B is defined by a
smooth distribution Hπ , the horizontal bundle, such that the tangent bundle de-
composes as TE = Hπ⊕Vπ .

Obviously, we have dimHξ π = dimB at each point ξ ∈ E (i. e. the horizontal
distribution is of constant rank) and each vector vξ ∈ TξE may now be decomposed
uniquely: vξ = vH

ξ + vV
ξ with vH

ξ ∈ Hξ π and vV
ξ ∈ Vξπ . This direct decomposition

of the tangent bundle TE induces two natural bundle morphisms: the horizontal
projector PH : TE → Hπ with PH(ξ ,vξ ) = (ξ ,vH

ξ ) and the complementary verti-

cal projector PV : TE → Vπ with PV (ξ ,vξ ) = (ξ ,vV
ξ ). Conversely, each of these

projectors uniquely specifies the connection.

2 Note that if B has further structures, it may even be possible to define canonically a unique
connection. This is for example the case in Riemannian geometry where compatibility with the
metric singles out a particular connection, namely the Levi–Civita connection.
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Remark C.4.6. We may consider both the vertical and the horizontal projector of a
connection as vector valued forms: PV ∈Ω 1(E ,Vπ) and PH ∈Ω 1(E ,Hπ). One of-
ten calls the vertical projector PV connection form. In the special case of a principal
fibre bundle all fibres are diffeomorphic to a Lie group G. Hence each vertical vector
may be identified with an element of the corresponding Lie algebra g and we may
consider PV as living in Ω 1(E ,g). �

Alternatively, one may define a connection via its horizontal lift. This is a map
A : E ×

B
TB→ TE which is linear in the second factor and a right inverse to the map

ρ = (τE ,Tπ) : TE → E ×
B

TB, i. e. the map A defines a splitting of the following

exact sequence of vector bundles

0 Vπ ι
TE

ρ
E ×

B
TB

A

0 . (C.35)

Hence we have ρ ◦A = idE×
B

TB and one easily verifies that A◦ρ = PH .

In adapted coordinates ρ maps a vector
(
(x,u);(ẋ, u̇)

)
∈ TE into the point(

(x,u);(x, ẋ)
)
∈ E ×

B
TB. This observation implies that the horizontal lift A is lo-

cally of the form
(
(x,u);(x, ẋ)

)
	→
(
(x,u);(ẋ, Ā(x,u)ẋ)

)
where Ā(x,u) denotes an

m×n matrix. The horizontal spaces of the connection defined by the map A are now
given by Hξ π = A(ξ ,Tπ(ξ )B). This fact explains the name “horizontal lift:” A(ξ , ·)
takes an arbitrary vector in Tπ(ξ )B and lifts it to a horizontal vector in TξE . Each
connection uniquely determines such a horizontal lift and conversely each horizon-
tal lift defines uniquely a connection.

Figure C.2 sketches this approach to a connection. It shows a fibred manifold
π : E → B and the fibre Eb over some point b ∈ B. At two points ξ1,ξ2 ∈ Eb the
vertical spaces are shown as the tangent spaces of the fibre. Furthermore, one can
see at these two points the horizontal spaces of some connection; obviously they are
complements to the vertical spaces. Finally, the horizontal lifts of a vector v ∈ TbB
to vectors in Tξ1

E and Tξ2
E , respectively, are shown.

A connection always yields a covariant derivative. It is defined as the map
∇ : X(B)×Γloc(π)→X(E) given by∇(X ,σ) = PV (σ∗X) = σ∗X−A◦ (σ ,X). One
often writes ∇Xσ instead of ∇(X ,σ) and speaks of a covariant derivative with re-
spect to X . Obviously, the vector field ∇Xσ is everywhere vertical.

Usually, one expects that applying a derivative to a function (or a section in our
formalism) yields again a function which is clearly not the case for the covariant
derivative∇X . However, if π : E → B is a vector bundle, we may recover this point
of view: via the vertical lift λ introduced in Remark C.4.4, we can transform the
vertical vector field ∇Xσ into the section pr2 ◦λ−1(∇Xσ) ∈ Γloc(π) and thus may
consider∇X as a map Γloc(π)→ Γloc(π).3

3 In some applications it is customary to consider instead the covariant derivative ∇ as a map
Γloc(π)→Ω1(B,E) and to call this map connection.
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E

B

π−1(b) = Eb

ξ1Hξ1
π

Vξ1
E

A(ξ1,v)

ξ2

Hξ2
π

Vξ2
π

A(ξ2,v)

π

b

v

Fig. C.2 Fibred manifold with connection

For arbitrary connections, ∇X does not possess the usual properties associated
with a derivative, as generally ∇X(σ1 +σ2) �=∇Xσ1 +∇Xσ2. Equality holds only
for linear connections where the map Ā(x,u) introduced in the above discussion of
the horizontal lift is linear in its second argument.

Finally, we consider all these constructions in adapted coordinates (x,u) on the
fibred manifold π : E →B with dimB= n and dimE = m+n. By definition, the hor-
izontal bundle is locally generated by n vector fields of the form ∂xi +Γαi (x,u)∂uα .
Thus a connection is specified by mn smooth functions Γαi ∈ F(E). For the spe-
cial case of a linear connection we have Γαi (x,u) = Γαiβ (x)uβ and the coefficients
Γαiβ ∈ F(B) are known as Christoffel symbols. Written as one-form, the horizontal

projector is thus obviously PH = dxi⊗(∂xi +Γ αi ∂uα ) and correspondingly we obtain
for the horizontal lift A

(
(x,u), ẋi∂xi

)
= ẋi(∂xi +Γαi (x,u)∂uα ). Similarly, the vertical

projector (and thus the connection form) is given by PV = (duα −Γαi dxi)⊗ ∂uα .
If the section σ ∈ Γloc(π) is locally defined by σ(x) =

(
x,s(x)

)
, then its covariant

derivative in the ith coordinate direction is

∇∂xi
σ(x) =

(
∂ sα

∂xi (x)−Γαi
(
x,s(x)

))
∂uα . (C.36)
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Remark C.4.7. The vertical bundle Vπ is a trivial example of an integrable distri-
bution: the fibres are integral manifolds of maximal dimension. By the Frobenius
Theorem C.3.3 it is thus also involutive (this fact can also be easily shown directly,
since (C.9) implies Tπ

(
[X ,Y ]

)
=
[
Tπ(X),Tπ(Y )

]
= 0). In contrast to the verti-

cal bundle, the horizontal bundle is in general not involutive. Connections with an
involutive horizontal distribution are called flat.

The curvature of a connection is defined as the curvature of its horizontal bundle
as introduced in Remark C.3.7. In this special case, one commonly identifies the
“normal” bundle K with the vertical bundle Vπ . Then the curvature two-form may
be defined for arbitrary vector fields on E via the projectors associated with the
connection:ΩHE(X ,Y ) = PV

(
[PHX ,PHY ]

)
. It is now easy to see that the curvature

contains the obstructions to the involution of the horizontal bundle and hence the
curvature vanishes for flat connections.

In the special case of a connection on a principal fibre bundle where PV may
be considered as a g-valued form for some Lie algebra g ∼= Vπ , a straightforward
computation using (C.28) and (C.29) yields that

Ω = dPV +
1
2

PV ∧PV , (C.37)

a relation known as the Maurer–Cartan formula. In this situation, one may also
introduce an exterior covariant derivative by setting Dω = dω + PV ∧ω for all
g-valued forms ω ∈Ω (E ,g). �

C.5 Lie Groups and Algebras

Lie groups combine algebra and geometry. This combination leads to many struc-
tures and makes Lie groups a powerful tool for many different purposes. As we will
see below, any Lie group has automatically associated with it a Lie algebra. An in
depth treatment of both Lie groups and algebras is given in [467]; for our purposes
the material contained in [342, Chapt. 1] is sufficient.

Definition C.5.1. A Lie group is a group G which is simultaneously a manifold
such that both the group multiplication (g,h) 	→ g ·h and the inversion g 	→ g−1 are
smooth maps between manifolds.

Trivial examples of Lie groups are �k with the addition or the group GL(n,�)
of invertible n× n matrices with real entries. Most of the time we will restrict to
connected groups. Lie subgroups are submanifoldsH⊂ G which are again groups.

In many cases we are not interested in the full Lie group but only in a neigh-
bourhood of the identity element. This leads to the concept of a local Lie group: a
manifold G with two operations, multiplication and inversion, which are, however,
only defined in a neighbourhood of the identity element. The usual group axioms
like f · (g · h) = ( f · g) · h are required to hold only, if all appearing products and
inversions are defined.
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Example C.5.2. Let G =]−1,1[⊂� and define

x · y =
2xy− x− y

xy−1
, x−1 =

x
2x−1

. (C.38)

One easily verifies that all group axioms are satisfied with 0 ∈ G as neutral element,
but obviously the inversion is defined only for the neighbourhood |x|< 1

2 . Hence G
is a one-dimensional local Lie group. �

We are mainly interested in Lie groups G acting on some manifold M. Then a
diffeomorphism on M is associated with each group element. For this reason one
often speaks of a transformation group.

Definition C.5.3. An action of a Lie group G on a manifoldM is defined by a map
Φ : G ×M →M such that Φ(e, p) = p and Φ

(
g,Φ(h, p)

)
= Φ(g · h, p) for all

points p ∈M and all group elements g,h ∈ G. The action Φ is free, if Φ(g, p) = p
for some point p ∈ M implies that g = e, the neutral element. The action Φ is
transitive, if to any two points p,q ∈ M a group element g ∈ G exists such that
Φ(g, p) = q. The set Op = {Φ(g, p) | g ∈ G} is the orbit of G through the point p.

In the case of a local action of a local Lie group, the map Φ is only defined for
group elements sufficiently close to the identity element e and the second condition
is only required to hold, if both sides are defined.

Example C.5.4. Every Lie group operates on itself via left multiplication: we simply
define Φ(g,h) = Lg(h) = g · h. The flow of a complete vector field X ∈ X(M) on
a manifold M represents an action of the Lie group (�,+) on M. If X is not
complete, we obtain only a local group action. �

As already mentioned, any Lie group has associated with it a Lie algebra. Histor-
ically, Lie algebras were introduced this way. Today, they represent a mathematical
structure of its own right and with its own theory.

Definition C.5.5. A Lie algebra A (over a field �) is a vector space together with a
product [·, ·] : A×A→ A (usually called bracket) satisfying three conditions.

(i) The bracket is bilinear over the field �: for all a,b,c ∈ A, λ ∈ � we have
[a+λb,c] = [a,c]+λ [b,c] and correspondingly for the second argument.

(ii) The bracket is skew-symmetric: [a,b] =−[b,a] for all a,b ∈ A.
(iii) The Jacobi identity holds:

∀a,b,c ∈ A :
[
a, [b,c]

]
+
[
b, [c,a]

]
+
[
c, [a,b]

]
= 0 . (C.39)

If A is a finite-dimensional Lie algebra, we may choose a basis {e1, . . . ,er} of A
as a �-linear space. The bracket is then uniquely defined, as soon as its values on the
basis vectors are known. This fact leads to the structure constants: a set of r3 scalars
Ck

i j ∈ � such that [ei,e j] = Ck
i jek. The defining properties of a Lie algebra imply that

Ck
i j = −Ck

ji and Ck
i jC

m
kl +Ck

jlC
m
ki +Ck

liC
m
k j = 0. Conversely, any set of r3 scalars Ck

i j
satisfying these properties defines an abstract r-dimensional Lie algebra.
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We have already seen that the vector fields on a manifold M form a real Lie
algebra X(M) of the same dimension as M with the Lie bracket as multiplication.
Given a Lie group G, we introduce now its associated Lie algebra g. It is easy to find
an appropriate vector space, namely the tangent space TeG at the identity element.
Less trivial is the construction of a suitable bracket. Therefore we extend each vector
in TeG uniquely to a vector field on G and then use the Lie brackets of these fields.

For each element g∈G, we consider the right4 multiplication Rg : G →G defined
by Rg(h) = h · g. Obviously, Rg is a diffeomorphism with inverse (Rg)−1 = Rg−1 .
A vector field X ∈ X(G) is called right invariant, if it is invariant under the tangent
map of Rg: ThRg(Xh) = Xg·h. It is not difficult to verify that the right invariant vector
fields form a vector space isomorphic to TeG. Indeed, if X is right invariant, then it
is completely fixed by its value Xe ∈ TeG since Xh = TeRh(Xe).

Definition C.5.6. The Lie algebra of the Lie group G is the vector space g∼= TeG of
right invariant vector fields together with the Lie bracket.

This definition makes sense, as one easily verifies with the help of (C.9) that the
Lie bracket of two right invariant vector fields is again right invariant. Depending
on the context, we will consider elements of g sometimes as right invariant vector
fields and sometimes as vectors in TeG; both points of view have their advantages.

Example C.5.7. The Lie algebra gl(n,�) of the Lie group GL(n,�) is the vector
space of all n×n matrices and its bracket is the matrix commutator [A,B]= AB−BA.
One can show that any finite-dimensional Lie algebra is isomorphic to a subalge-
bra of gl(n,�) (Ado’s Theorem). Thus any finite-dimensional Lie algebra may be
considered as a matrix algebra (note that this is not true for Lie groups). �

Lie considered only local transformation groups. The abstract definition of a Lie
group via manifolds is due to Cartan [73] (in the same article he also introduced the
modern definition of a manifold via charts). The results about the relation between a
Lie group and its Lie algebra are often referred to as Lie’s Fundamental Theorems.
The first Fundamental Theorem describes the Lie algebra via right (or left) invariant
vector fields on the Lie group. The second one concerns the construction of a local
Lie group to a given Lie algebra and the third one says that a Lie algebra is uniquely
determined by its structure constants.

C.6 Symplectic Geometry and Generalisations

Symplectic geometry forms the foundation of Hamiltonian mechanics. As Hamil-
tonian systems appear at several places as examples, we briefly recapitulate a few

4 We could alternatively use the left multiplication; in fact, this choice is more common in the
literature. We would then obtain a Lie algebra whose bracket is the negative of the bracket we will
derive. Our choice is more convenient for applications in Lie symmetry theory as discussed by
Olver [342], Exercise 1.33.
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basic facts. More details can be found in most text books on geometric mechanics,
see e. g. [2, 26, 28, 309]. The more general case of Poisson manifolds is extensively
discussed in [43, 466].

Definition C.6.1. A symplectic manifold is a manifold M equipped with a non-
degenerated, closed two-form ω ∈Ω 2(M), the symplectic two-form.

The conditions on ω mean that dω = 0 and that for any non-zero vector field
X ∈ X(M) the one-form ιXω does not vanish. By the Poincaré Lemma, we may
locally write ω = dθ for some one-form θ . If this is even globally possible, one
speaks of an exact symplectic manifold. The non-degeneracy trivially implies that a
symplectic manifold must be even-dimensional.

In local coordinates (x) on M, the symplectic two-form has a representation
ω = 1

2 Bi j(x)dxi∧dx j with an antisymmetric matrix B. The non-degeneracy implies
in particular that B must be regular.

Symplectic geometry has certain similarities with Riemannian geometry. In both
cases we are given at each point of a manifold a bilinear non-degenerate form. In
Riemannian geometry the form is symmetric, namely the metric, whereas here we
are dealing with a antisymmetric form. Nevertheless, many operations familiar from
Riemannian geometry can be performed similarly in symplectic geometry. For ex-
ample, a Riemannian metric induces a notion of orthogonality in the tangent bundle.
Similarly, if D ⊆ TM is a distribution on a symplectic manifold, then we define its
symplectic complement as the distribution whose value at a point p ∈M is given by

D⊥
p = {v ∈ TpM| ωp(v,w) = 0 ∀w ∈ Dp} . (C.40)

Example C.6.2. The prototype of a symplectic manifold is the cotangent bundle
M= T ∗Q of some manifoldQ (the configuration space). It is canonically equipped
with an exact symplectic structure. Consider the one-form θ ∈ Ω1(M) defined at
a point α ∈ M by θα(v) = α

(
Tτ∗Q(v)

)
. Thus for evaluating θ on some vector

v ∈ TM, we project v with the help of the tangent map of the cotangent bundle pro-
jection τ∗Q :M= T ∗Q→Q to a vector in TQ and evaluate the one-form α ∈ T ∗Q
on this vector. The symplectic two-form of M is then obtained as ω = −dθ and
hence is trivially closed.

If we take adapted coordinates (q,p) on the cotangent bundle M = T∗Q, then
we find θ = pidqi and ω = dqi ∧ dpi. Indeed, let the one-form α ∈M lie in the
fibre over the point q ∈ Q with local coordinates q. Then its fibre component may
be written as the form αq = pidqi ∈ T ∗

q Q. By definition, θ is an element ofΩ 1(M).
Let us denote adapted coordinates on T ∗M by (q,p;a,b). Thus θα is of the form
aidqi + bidpi. Let v = vi∂qi + wi∂pi be a vector in TαM; its projection Tατ∗Q(v) is
simply given by vi∂qi ∈ TqQ. Evaluating αq on this projected vector yields pivi.
Hence we find ai = pi and bi = 0.

The local form of ω is a trivial consequence of the definition of the exterior
derivative d and immediately implies its non-degeneracy, as we find for any vector
field X = vi∂qi + wi∂pi that ιXω = vidpi−widqi vanishes only for X = 0.
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By contrast, the tangent bundle TQ does not carry a canonical symplectic struc-
ture. Without additional ingredients (like e. g. a metric), it is not possible to pull
back the symplectic structure on T ∗Q. �

A fundamental result is the Darboux Theorem which asserts that locally all sym-
plectic manifolds look alike, i. e. as long as we restrict to local questions we may
always assume that we are dealing with a cotangent bundle. More precisely, this
theorem says that around every point on a symplectic manifold M a chart U with
local coordinates (q,p) exists such that the symplectic two-form has everywhere5

in U the form ω = dqi∧dpi. Such coordinates are called Darboux coordinates.
Because of the non-degeneracy, the symplectic structure induces two bundle iso-

morphisms � : TM→ T∗M and � : T ∗M→ TM, called the musical isomorphisms.
They are defined by �(X) = ιXω and � = �−1. In Riemannian geometry similar iso-
morphisms exist; they represent the proper mathematical formulation of the “lower-
ing” and “raising” of indices in tensor analysis.

Definition C.6.3. Let (M,ω) be a symplectic manifold and H :M→� a smooth
function. The Hamiltonian vector field for H is XH = �(dH), i. e. XH is the (unique)
solution of the equation ιXHω = dH.

In Darboux coordinates, one easily computes that

XH =
∂H
∂ pi

∂qi − ∂H
∂qi
∂pi . (C.41)

The field XH is sometimes called the symplectic gradient of the function H, as its
construction is in analogy to the definition of a gradient vector field on a Rieman-
nian manifold. The ordinary differential equation corresponding to XH has the form
familiar from classical mechanics textbooks:

q̇i =
∂H
∂ pi

, ṗi =−∂H
∂qi

. (C.42)

The function H is called the Hamiltonian of the vector field XH . A trivial property
of it is its preservation by the flow of XH . Indeed, LXH H = XH(H) = 0, as one can
easily see from (C.41).

A characteristic property of the flow of a Hamiltonian vector field is that it pre-
serves the symplectic structure. Indeed, we obtain immediately from (C.27a) that

LXHω = dιXHω+ ιXH dω = d2H = 0 . (C.43)

Here we have exploited the definition of a Hamiltonian vector field XH and that the
symplectic two-formω is closed. Because of the Poincaré Lemma, the inverse holds
at least locally: to every vector field X whose flow preserves the symplectic structure
there exists locally a Hamiltonian H such that XH = X .

5 Note the striking difference to Riemannian geometry: there locally geodesic coordinates lead to
a special form of the connection form only at one point and thus Riemannian manifolds may look
very differently even locally. Here we get a normal form of ω in a whole neighbourhood.



C.6 Symplectic Geometry and Generalisations 613

Traditionally, Hamiltonian mechanics is often formulated via Poisson brackets
operating on the smooth functions. For non-degenerated brackets this approach is
equivalent to the introduction of a symplectic structure.

Definition C.6.4. A Poisson manifold is a manifold M equipped with a bracket
{·, ·} : F(M)×F(M)→F(M) satisfying the following properties.

(i) The bracket {·, ·} is bilinear with respect to the addition in F(M) and the
multiplication by constants.

(ii) The bracket is antisymmetric: ∀F,G ∈ F(M) : {F,G}=−{G,F}.
(iii) The bracket behaves like a derivation with respect to the multiplication in

F(M) , i. e. we have the Leibniz rule

{FG,H}= F{G,H}+{F,H}G ∀F,G,H ∈ F(M) . (C.44)

(iv) The Jacobi identity holds:
{
{F,G},H

}
+
{
{H,F},G

}
+
{
{G,H},F

}
= 0 ∀F,G,H ∈ F(M) .

(C.45)

A non-constant function C ∈ F(M) is called a Casimir function, if any Poisson
bracket with it vanishes: {C,F}= 0 for all F ∈ F(M). A Poisson manifold is non-
degenerate, if no Casimir functions exist on it.

Any symplectic manifold (M,ω) is also a Poisson manifold with the Poisson
bracket defined by

{F,G}= ω(XF ,XG) = dF(XG) = XG(F) . (C.46)

The non-degeneracy of the symplectic two-form ω immediately implies the non-
degeneracy of this Poisson bracket. The converse is not true: a Poisson manifold is
symplectic, if and only if it is non-degenerate.

One can show that in local coordinates (x) on M any Poisson bracket is of the
form {F,G} = (∇F)t J(x)∇G with a Poisson matrix J. The Poisson manifold is
non-degenerate, if this matrix is regular. In this case the corresponding symplectic
two-form ω is locally described by the matrix B = J−1. Darboux coordinates are
characterised as those coordinates in which J is the symplectic matrix

J =
(

0 �

−� 0

)
. (C.47)

This condition leads to the familiar coordinate form

{F,G}=
∂F
∂qi

∂G
∂ pi

− ∂F
∂ pi

∂G
∂qi (C.48)

of the Poisson bracket (C.46).
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Example C.6.5. Let A be an n-dimensional real Lie algebra and {A1, . . . ,An} a basis
of it with corresponding structure constants Ck

i j. As the dual space A∗ is again an
n-dimensional real vector space, it is trivially an n-dimensional manifold and we
have TA∗ = A∗×A∗. We denote the dual basis by {A1, . . . ,An}, i. e. Ai(A j) = δ i

j.
The manifold A∗ carries a natural Poisson structure, namely a Lie-Poisson struc-

ture. Let φ ,ψ ∈ F(A∗) be two smooth functions on A∗; we define

{
φ ,ψ
}
(λ ) = λ

(
[Tλφ ,Tλψ ]

)
. (C.49)

Here λ is an arbitrary element of A∗ and we use the following identification. The
tangent map Tλφ is a linear map TλA

∗ → �. As TλA
∗ ∼= A∗, we may consider it

as an element of the bidual space A∗∗ which may be canonically identified with A.
Thus it makes sense to compute the Lie bracket of Tλφ and Tλψ and to evaluate λ
on the result. The Jacobi identity for the Lie bracket implies the Jacobi identity for
this Poisson bracket and similarly for the skew-symmetry.

In coordinates, this structure looks as follows. Let λ = λiAi. We identify Tλφ
with ∂φ

∂λi
Ai ∈ A. Then one readily computes that

{
φ ,ψ
}
(λ ) = Ck

i jλk
∂φ
∂λi

∂ψ
∂λ j

. (C.50)

Thus the Poisson matrix is given by Ji j(λ ) = Ck
i jλk and its entries are the linear

functions of the coordinates λi. Reversing the arguments above, one can show that
in fact any Poisson structure where the entries of the Poisson matrix are linear func-
tions stems from a Lie algebra. �

Hamiltonian vector fields may now be written in the form of differential operators
as follows: XF(G) = {F,G}. One can show that the Hamiltonian vector fields are
closed under the Lie bracket and thus form a Lie algebra. More precisely, we have
the identity [XF ,XG] = −X{F,G}. As it follows immediately from Definition C.6.4
that for any Poisson manifold

(
F(M),{·, ·}

)
is a Lie algebra, too, we may say that

the map F 	→ XF defines a Lie algebra anti-homomorphism from F(M) into the
algebra of Hamiltonian vector fields.

Given some local coordinates x on M, we may now express the equations of
motion in the form ẋi = {xi,H}, as the right hand side represents the components
of XH in the given coordinates. One easily checks that in Darboux coordinates this
yields (C.42). More generally, let F ∈ F(M) be any smooth function. Its variation
along integral curves of a Hamiltonian vector field XH is then given by

d
dt

F =
∂F
∂xi ẋi =

∂F
∂xi {x

i,H}= {F,H} . (C.51)

Symplectic geometry allows us only the treatment of autonomous systems. There
is no intrinsic notion of time; it appears at most as a curve parameter for the integral
curves of a Hamiltonian vector field. If we want to treat explicitly time dependent
systems, we need cosymplectic geometry [11, 66, 291].
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Definition C.6.6. A cosymplectic manifold is a (2n + 1)-dimensional manifold M
equipped with a closed two-form ω ∈Ω 2(M) and a closed one-form η ∈ Ω 1(M)
such that ωn∧η is a volume form onM.

The condition that ωn∧η is a volume form generalises the non-degeneracy con-
dition on the symplectic two-form on a symplectic manifold. It implies that any
vector field X such that ιXω = 0 must satisfy ιXη �= 0. For dimensional reasons,
this condition implies the existence of a unique vector field R ∈ X(M), the Reeb
vector field, such that ιRω = 0 and ιRη = 1.

Example C.6.7. Every symplectic manifold can trivially be extended to a cosym-
plectic manifold as follows. Let (M,ω) be a symplectic manifold and dt the canon-
ical one-form on �. Then the product manifold M×� together with the forms
pr∗1ω and pr∗2(dt) (here pri denotes as usual the projection on the ith factor) is a
cosymplectic manifold. �

The cosymplectic structure induces canonically a vector bundle isomorphism
χ : TM→ T∗M generalising the musical isomorphism � on a symplectic mani-
fold. It is defined by χ(X) = ιXω+(ιXη)η . The Reeb vector field is now given by
R = χ−1(η). The Darboux theorem for cosymplectic manifolds asserts that there
always exists a local coordinate system (q,p,t) such that ω = dqi∧dpi and η = dt
(implying R = ∂t ).

The isomorphism χ allows us to introduce in analogy to the symplectic comple-
ment (C.40) of a distribution D ⊆ TM its cosymplectic complement

D⊥
p = {v ∈ TpM| χ(v)(w) = 0 ∀w ∈Dp} . (C.52)

On a cosymplectic manifoldM we can associate three different types of “gradi-
ent fields” with a given function H :M→�.

(i) Cosymplectic gradient:∇H = χ−1(dH) = Ht∂t + Hpi∂qi−Hqi∂pi .
(ii) Hamiltonian vector field: XH = χ−1

(
dH−R(H)η

)
= Hpi∂qi−Hqi∂pi .

(iii) Evolution vector field: EH = R + XH = ∂t + Hpi∂qi−Hqi∂pi .

Note that in Darboux coordinates these three vector fields differ only in their
component in t-direction. One can show that the Hamiltonian vector fields form
an involutive distribution.

In physical applications, the cosymplectic manifold M is often called the ex-
tended phase space of the studied system. The Reeb vector field induces an intrinsic
clock describing the flow of time. The trajectories of the system described by the
Hamiltonian H are the integral curves of the evolution vector field EH . Thus our
equations of motion are now in Darboux coordinates:

q̇i =
∂H
∂ pi

, ṗi =−∂H
∂qi , ṫ = 1 . (C.53)

Obviously, they are almost identical with the usual Hamiltonian equations (C.42);
the only difference is that now an explicit time dependency of the Hamiltonian H is
permitted, as time is part of the extended phase space.
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An interesting special case arises, if the cosymplectic manifold M carries in
addition the structure of a fibred manifold π : M→ B such that dimB = 1 and
the vector field Tπ(R) ∈ X(B) does nowhere vanish, i. e. the Reeb vector field R
is everywhere transversal to the fibration. In this case the Hamiltonian vector fields
span the vertical bundle Vπ ; in other words the fibres are the integral manifolds of
the distribution defined by them. Furthermore, each fibre is a symplectic manifold
with the symplectic two-form given by the pull-back of ω on the fibre.

Because of its transversality, the Reeb vector field R defines the horizontal
bundle of a canonical connection on M. The corresponding vertical projector
PV [R] : TM→ Vπ is given by PV [R](Xξ ) = Xξ − μRξ where the factor μ ∈ �
is determined by the relation Tξ π(Xξ ) = μ Tξ π(Rξ ). Similarly, the horizontal lift is
given by A[R](ξ ,v) = μRξ for v = μ Tξ π(Rξ ).
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39. Berger R (1992) The quantum Poincaré-Birkhoff-Witt theorem. Comm Math Phys 143:215–
234 (83)

40. Bergman G (1978) The diamond lemma for ring theory. Adv Math 29:178–218 (103)
41. Bermejo I, Gimenez P (2006) Saturation and Castelnuovo-Mumford regularity. J Alg

303:592–617 (230, 232, 233)



References 619

42. Bernstein I, Rosenfeld B (1973) Homogeneous spaces of infinite Lie algebras and character-
istic classes of foliations. Uspekhi Mat Nauk 28:103–138 (60, 61)

43. Bhaskara K, Viswanath K (1988) Poisson Algebras and Poisson Manifolds. Pitman Research
Notes in Mathematics 174, Longman Scientific & Technical, Harlow (611)

44. Billera L, Cushman R, Sanders J (1988) The Stanley decomposition of the harmonic oscilla-
tor. Indagat Math 50:375–394 (228)

45. Björk J (1979) Rings of Differential Operators. North-Holland Mathematical Library 21,
North-Holland, Amsterdam (86, 103, 506)

46. Björk J (1993) Analytical D-Modules and Applications. Mathematics and Its Applications
247, Kluwer, Dordrecht (82)

47. Blinkov Y (2001) Method of separative monomials for involutive divisions. Prog Comp Soft-
ware 27:139–141 (101)

48. Bluman G, Kumei S (1989) Symmetries and Differential Equations. Applied Mathematical
Sciences 81, Springer-Verlag, New York (326, 407)

49. Boothby W (1986) An Introduction to Differentiable Manifolds and Riemannian Geometry.
Pure and Applied Mathematics 120, Academic Press, Orlando (585)

50. Borel A (ed) (1987) Algebraic D-Modules. Perspectives in Mathematics 2, Academic Press,
Boston (82)

51. Boulier F, Lazard D, Ollivier F, Petitot M (1995) Representation for the radical of a finitely
generated differential ideal. In: Levelt A (ed) Proc. ISSAC ’95, ACM Press, New York,
pp 158–166 (327)
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54. Bronstein M, Petkovšek M (1996) An introduction to pseudo-linear algebra. Theor Comp
Sci 157:3–33 (79)

55. Brown W (1993) Matrices Over Commutative Rings. Pure and Applied Mathematics, Marcel
Dekker, New York (583)
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73. Cartan E (1930) La Théorie des Groupes Finis et Continus et l’Analysis Situs. Mém. Sci.
Math. 42, Gauthier-Villars, Paris, (also: Œuvres Complètes d’Élie Cartan, Vol. 1, pp. 1165–
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Hermann, Paris (60, 323, 327)

75. Cartan E, Einstein A (1979) Lettres sur la Parallélisme Absolue 1929–1932, edited by
R. Debever. Palais des Académies, Bruxelles (354)
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114. Dubé T (1990) The structure of polynomial ideals and Gröbner bases. SIAM J Comp 19:
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Birkhoff-Witt extensions. In: Ghanza V, Mayr E, Vorozhtsov E (eds) Computer Algebra



624 References

in Scientific Computing — CASC 2002, Fakultät für Informatik, Technische Universität
München (102, 165)

166. Giovani A, Mora T, Niesi G, Robbiano L, Traverso C (1991) “One sugar cube, please” or
selection strategies in the Buchberger algorithm. In: Watt S (ed) Proc. ISSAC ’91, ACM
Press, New York, pp 49–54 (576)

167. Goldschmidt H (1965) Existence theorems for analytic linear partial differential equations.
Ann Math 82:246–270 (260)

168. Goldschmidt H (1969) Integrability criteria for systems of non-linear partial differential
equations. J Diff Geom 1:269–307 (260, 323, 324)

169. Goldschmidt H, Sternberg S (1973) The Hamilton-Cartan formalism in the calculus of vari-
ations. Ann Inst Fourier 23:203–267 (28)

170. Golubitsky M, Guillemin V (1973) Stable Mappings and Their Singularities. Graduate Texts
in Mathematics 14, Springer-Verlag, New York (58, 588)

171. Goodearl K, RB Warfield J (2004) An Introduction to Noncommutative Noetherian Rings,
2nd edn. London Mathematical Society Student Texts 61, Cambridge University Press,
Cambridge (529)

172. Gordan P (1900) Les Invariants des Formes Binaires. J Math Pure Appl 6:141–156 (104,
567)

173. Gotay M, Nester J, Hinds G (1978) Presymplectic manifolds and the Dirac-Bergmann theory
of constraints. J Math Phys 19:2388–2399 (302, 303)

174. Gotay M, Isenberg J, Marsden J (1998) Momentum maps and classical relativistic fields I:
Covariant field theory. Preprint physics/9801019 (59, 61)
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387. Rosenkranz M, Wang D (eds) (2007) Gröbner Bases in Symbolic Analysis. Radon Series on
Computation and Applied Mathematics 2, Walter de Gruyter, Berlin (628, 633)

388. Roy Chowdhury A (2000) Lie Algebraic Methods in Integrable Systems. Research Notes in
Mathematics 415, Chapman&Hall/CRC, Boca Raton (427)

389. Ruiz C (1975) L’identification fondamentale en théorie de jets. Compt Rend Acad Sci Ser A
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Math Fr 52:336–395 (392, 426)

471. Wahlquist H, Estabrook F (1975) Prolongation structures of nonlinear evolution equations.
J Math Phys 16:1–7 (427)

472. Waldmann S (2003) Deformation quantization: Observable algebras, states and represen-
tation theory. In: Dragovich B (ed) Proc. Summer School Modern Mathematical Physics,
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〈G〉 533
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〈Θ〉diff 599
[Φ ,Ψ ] 37
{ f ,g} 613[k

r
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E ×
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AssM 538
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β (k)
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CL,B(ν) 65
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Δ≺(I) 377
D 78
D0 603
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depthM 536
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D(M) 473
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E

eα 577
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EV 566
e[Rq] 342
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exp (tX)p 594
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Ih 542
I[Rq] 45
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J
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LXω 598
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M≥q 539
M∗ 534
M∗∗ 534
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P
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πq

r 11
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S
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Page numbers in italics indicate where a term is defined or first introduced. If several
numbers are marked, then the term appears either with different meanings or in
different contexts.

absolutely compatible, 352
action, 54, 532
acyclic, 244, 286
adapted

connection, 406
coordinates, 11, 20, 23, 56, 590, 604, 611

adjoint, 437, 504, 506
admissible pair, 190
Ado’s Theorem, 610
affine

bundle, 16–23, 264, 433–434, 591, 604
Hilbert function, 542, 572

algebra, 536
algebraically closed, 494, 531, 537
almost

commutative algebra, 91
normalising extension, 81

analytic, see real-analytic
annihilator, 26, 241, 243, 275, 287, 294, 303,

399, 538, 564, 603
antipode, 565
arithmetic degree, 229
Artinian, 496, 538

ideal, 70, 181, 182
ring, 538

ascending chain condition, 531, 538
associated

coordinate system, 320
graded ring, 91, 540
prime ideal, 164, 183, 187, 190, 251, 501,

503, 538
associative, 201, 530

asymptotically regular, 124–129, 130, 179,
186, 220, 317

augmentation, 560
Auslander–Bridger dual, 472, 473, 478, 505
Auslander–Buchsbaum formula, 214, 258
autonomous

behaviour, 477, 480, 505
system, 56, 296, 594, 614

autoreduction, 114, 572, 576
Axiom of Choice, 538

Bäcklund transformation, 343, 427
Baer’s Criterion, 464, 473, 546
base space, 11, 29, 57, 343, 362, 590
basis

of ideal, 567
of module, 533

behaviour, 475–480, 505
Betti number, 211, 217, 231, 233, 242, 257,

556
bialgebra, 559, 565
Bianchi

equation, 321
identity, 52, 53, 54, 279, 313, 469

bidual, 25, 468, 473, 534
bigraded, 238, 241
bimodule, 533, 535
block order, 514
Borel

fixed module, 212, 230, 232
group, 212

Bott connection, 427
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boundary, 243, 551
Buchberger

algorithm, 112, 162, 326, 575
first criterion, 138, 576
second criterion, 137–140, 162, 195, 232,

577, 581

Cartan
character, 246, 334–338, 349, 350, 354–355,

403, 423, 520–521
connection, 427
distribution, 427
genus, 342, 349
magic formula, 599
normal form, 288, 382, 383, 384, 402, 417,

481, 522
test, 246–258, 262, 276, 286

Cartan–Hilbert equation, 339
Cartan–Kähler

Theorem, 384–392, 427, 436, 439
Theory, 60, 323, 327

Cartan–Kuranishi
completion, 305–309, 445, 507
Theorem, 305, 325

Casimir function, 613, 613
Castelnuovo–Mumford regularity, 173,

215–227, 232–233, 245, 257, 262, 309,
577

Cauchy
characteristic vector field, 408, 410
characteristics, 408
estimate, 518
Theorem, 373

Cauchy–Kovalevskaya
form, 49, 51, 55, 315, 346
Theorem, 370–374, 375, 378, 411, 427, 437,

438
Cauchy–Riemann equations, 344
centre, 89, 537
centred commutation relations, 89, 208
chain, 544

complex, 236, 544, 554
map, 551
rule, 15, 16, 20, 24, 273, 433, 588

characteristic, 272–273, 373, 583
initial value problem, 378
one-form, 272, 316, 440
surface, 164, 273, 277, 370, 436
system, 294, 411
variety, 272, 294

characteristics, 407–412
Christoffel symbol, 53, 607
Clairaut equation, 330, 366, 367

class, 67, 174, 179, 180, 199, 277, 334–336,
510, 514, 520

respecting term order, 95, 127–128, 178,
180, 214, 220, 276, 278, 287, 514, 578

clean intersection, 366, 589
Clifford algebra, 80
closed

form, 598, 611, 612, 615
subspace, 564

coalgebra, 237, 559–566
coboundary, 551
cochain, 544

complex, 236, 554
equivalent, 552
map, 551–552

cocycle, 551
codistribution, 318, 603

of constant rank, 603
coefficient of freedom, 352
cogeneration, 240, 561, 566
cogenerator, 465, 466, 476, 505, 549–551
Cohen–Macaulay

algebra, 180, 233
module, 280, 383, 390, 429, 541

coherent
autoreduced set, 326
ring, 467, 472, 476, 535

cohomological dimension, 536
cohomology, 238, 551

module, 551
coideal, 561, 566
cokernel, 459, 467, 472, 473, 506, 535, 545
combinatorial decomposition, 168–175,

228–230
commutative diagram, 544
commutator, 610
comodule, 240, 260, 275, 561–563

morphism, 562
compatibility

coefficient, 352–353, 355
condition, 50, 269, 281, 316, 407, 455, 457,

458, 461, 464, 481
operator, 461, 466
sequence, 462–464

complementary
contact map, 21, 25, 26
decomposition, 169–175, 191, 192, 337,

384, 461
set, 169, 181, 190, 376–378

complete
system, 294
vector field, 594, 609

completely integrable system, 427
complex, 200, 462, 544
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componentwise linear, 210–211, 213, 221, 558
comprehensive Gröbner basis, 327
cone, 64
configuration space, 56, 611
conjugate, 79
connecting homomorphism, 244, 552
connection, 20, 26, 31, 43, 44, 57, 397, 405,

604–608, 616
form, 32, 51, 606

conormal space, 273, 598
consistent

differential equation, 41
initial data, 424

constitutive relation, 49
constrained dynamics, 302
constraint, 55, 61, 297, 302–305

force, 304
manifold, 297–300, 359, 368

constructive division, 109–118, 121, 132, 145,
161

contact
codistribution, 12, 25–29, 45, 61, 393
distribution, 14, 25, 26, 58, 61, 360, 393,

409
form, 12, 14, 16, 29, 394, 399
map, 21, 22, 24, 26, 36, 45, 57, 304, 398,

413, 415
structure, 12, 21, 24–29, 59–60, 393
vector field, 14, 16, 42, 290, 395, 401

continuity equation, 49, 458
continuous division, 106–109, 111, 116, 141,

144, 161, 196, 212
contracted Bianchi identity, 54, 279, 313
contracting homotopy, 237, 552
contravariant functor, 546
controllable

behaviour, 477, 479, 505
part, 478, 480

convolution product, 238, 563, 566
coordinate chart, 586
coresolution, 238, 471, 554, 558, 565
cosymplectic

complement, 304, 615
geometry, 614–616
gradient, 615
manifold, 56, 304, 615

cotangent bundle, 17, 56, 61, 372, 589, 591,
611

projection, 589
cotensor product, 241, 564
cotorsion group, 241, 565
covariant

derivative, 32, 606
functor, 546

cross-derivative, 35–38, 43, 97, 271, 287, 296,
309

curvature, 51, 323, 409, 604, 608
cycle, 243, 247, 259, 551

δ -regular, 122–132, 164, 178, 182, 215, 221,
233–234, 246–248, 254–258, 262, 274,
276–278, 306, 311–313, 317–322, 418,
487, 491, 520

Darboux
coordinates, 56, 612, 613
Theorem, 612, 615

de Rham
cohomology, 598
complex, 236, 463, 544

deformation quantisation, 82
degree

compatible order, 81, 91, 97, 132, 287, 428,
513, 572, 576

inverse lexicographic order, 97
lexicographic order, 97, 514, 543
of a basis, 122
of freedom, 342, 349, 351, 353
of involution, 244–246
reverse lexicographic order, 95, 174, 181,

215, 218, 249, 254, 259, 267, 481, 514,
568, 577, 578

dependent variable, 10, 58, 269, 323, 519,
522–525

depth, 178–180, 214, 234, 258–260, 262, 383,
536, 541, 559

derivation, 78, 81, 458, 543, 593, 597
derivative, 79

tree, 515–516
derived

codistribution, 604
distribution, 14, 400, 406, 409, 602, 604
functor, 241, 558–559, 565

descending chain condition, 538
descriptor form, 296, 425
determining system, 326, 493
Dickson

basis, 90, 512
Lemma, 64, 90, 93, 117, 512, 513, 531, 576

diffeomorphism, 588, 594, 610
difference operator, 79
differentiable

manifold, see manifold
structure, 586

differential, 200, 230, 236, 544
algebra, 326, 543
algebraic equation, 296
dimension polynomial, 337
equation, 29–48
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of finite type, 31, 43–44, 265, 308, 336,
344, 381, 396, 407, 494–503, 506

field, 271, 287, 543
form, 15, 45, 60, 392, 426, 463, 595–600
Gröbner basis, 326
ideal, 45, 60, 326, 403, 543, 599, 603
module, 543
operator, 29, see also linear differential

operator
polynomial, 326, 543
relation, 343–346, 354
ring, 78, 201–207, 458, 543, 597, 599
type, 342
variety, 61

diffiety, 61
dimension, 11, 176, 177, 229, 342, 383, 488,

541, 543
Dirac

algorithm, 302, 324
bracket, 324
delta distribution, 425, 440
theory, 302–305, 324–325

distribution, 14, 46, 600–604, 605, 615
of constant rank, 265, 393, 600

distributional solution, 330
divergence law, 49
divided power, 238, 274, 566
division

algorithm, 570, 580
ring, 531
D-module, 82
DN-elliptic, 442, 504
domain, 83, 157, 475, 517, 531, 583
Drach

classification, 280, 309
transformation, 280, 352, 428, 504, 522–525

drift, 458
dual

bundle, 523, 591
map, 467, 468, 473, 534, 553
module, 467, 473, 474, 497, 534, 559
space, 553

écart, 154, 164
Einstein equations, 53–54, 278–279, 286, 313,

338, 343, 350, 355, 470–471
elementary symmetric polynomial, 526
elimination order, 301, 515, 572
elliptic, 375, 440–449, 455, 457, 494, 504
embedded prime ideal, 501, 539
embedding, 588
equivalent, 307
Euler equations, 50
Euler–Lagrange equations, 54–55

evolution vector field, 57, 304, 360, 615
exact, 545

form, 598
functor, 466, 472, 477, 547, 550, 563
sequence, 179, 200, 446, 460, 463, 545, 554
symplectic manifold, 611

exponentiation, 294, 594
extended

phase space, 56, 304, 615
principal symbol, 318–322

extension group, 262, 473–475, 477, 478, 505,
559

exterior
algebra, 200, 236, 565, 595
covariant derivative, 52, 608
derivative, 14, 45, 237, 404, 410, 463, 597,

599, 600
extremal Betti number, 217, 232

faithful, 465, 466, 477, 547, 550
fibre, 523, 590

bundle, 591
dimension, 11, 36, 590

fibred
manifold, 11, 19, 32, 56, 343, 404, 432,

590–591, 593, 604–608, 616
morphism, 348, 591
product, 590
submanifold, 29, 590

field, 531, 547
of constants, 543
strength, 51, 346

filter axiom, 65, 101, 112
filtered

module, 91–92, 540
ring, 540, 91–540

filtration, 91–92, 539–540, 542
finite

resolution, 554, 582
type equation, see differential equation of

finite type
finitely

cogenerated, 241
generated, 244, 272, 530, 533, 536, 538,

542, 555, 582
presented, 253, 459, 535, 555

first-class constraint, 324
Fitting ideal, 583
flat, 243

connection, 44, 397, 406, 608
module, 472, 549, 559, 562, 563

flow, 408, 594–595, 598, 609
foliation, 601
formal
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derivative, 15, 24, 33, 61, 266, 271
integrability, 38–48, 97, 281–288, 300,

323–324, 370–372, 388, 397, 407, 416,
461

Poincaré Lemma, 238, 242
power series, 60, 153, 374

solution, 38–43, 61, 267, 281, 283, 345,
370–374, 427

solution space, 61, 329, 352, 355
formally well-posed, 374–383, 384, 428, 497
Fourier transform, 479
free

action, 591, 609
comodule, 561
module, 86, 533, 547, 548, 577
resolution, 198–227, 230–232, 238, 463,

554, 581
variable, 476

Frobenius Theorem, 44, 292, 392, 406, 601,
603

functor, 546–549
fundamental

identification, 17–18, 26–27, 58, 270, 274
principle, 463, 476, 478, 505
solution, 440

funnel, 363, 365

Γ -symbol, 91, 540
G-algebra, 102
gauge

corrected
Cartan character, 349, 353, 355
Cartan genus, 349
Hilbert function, 348, 353
Hilbert polynomial, 348
index of generality, 349, 353

correction, 348–355
fixing, 316, 324, 350–352, 354
symmetry, 52, 314, 324, 346–354, 523

Gauss law, 49, 281, 386, 441, 458
Gelfand–Kapranov–Zelevinsky system, 147
Gelfand–Kirillov dimension, 234
general

Noether normalisation, 182, 543
solution, 330–334, 353–354, 362, 366, 380

of monomial system, 379–381
generalised

prolongation, 404–407, 427
solution, 362–370, 460

generating set, 530, 533, 548
generic, 125, 211–213, 216, 219, 221, 224,

251, 538
initial ideal, 213, 217, 232, 234

generically involutive, 327

geometric
series, 153
symbol, see symbol

Gerstenhaber deformation, 82
global dimension, 234, 506, 556, 582
globally defined division, 67, 100, 109, 137,

145, 173
good filtration, 92
Gotzmann ideal, 231
Goursat normal form, 339
Gröbner basis, 92–94, 94, 97–99, 121, 133,

142, 146, 157, 176, 195, 212, 255, 288,
301, 326, 502, 567–582

graded
coalgebra, 564
commutator, 599
comodule, 240, 241, 564
dual, 564
module, 539–542, 551, 556, 579
ring, 92, 122, 168, 238, 539, 556, 595
submodule, 539

graph, 196, 592
Grassmannian, 22, 26, 36, 59, 405
group, 530

action, 609

Hadamard Lemma, 35, 37, 359, 589
Hamiltonian, 56, 302–304, 612

differential equation, 55–58, 61, 302–305,
324–325

vector field, 55–58, 302, 612–615
harmonic coordinates, 351
Hartogs phenomenon, 505
Hausdorff space, 586
head reducible, 98, 157
heat

equation, 373, 493
kernel, 373

Heisenberg algebra, 82
Heyneman–Sweedler notation, 560
Hilbert

Basis Theorem, 86–94, 103–104, 241, 538,
543, 567, 569

driven Buchberger algorithm, 162
function, 123, 162, 179, 336–338, 345–350,

352, 540–542, 572
Nullstellensatz, 301, 496, 537, 583
polynomial, 220, 228, 337, 352, 524,

540–542
regularity, 277, 338, 541
series, 176, 541
Syzygy Theorem, 198, 231, 582

Hironaka decomposition, 180–181, 192, 230,
383, 391
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Hodge operator, 52
Holmgren Theorem, 436–440, 504
homogeneous, 17, 69, 122, 168, 176–178, 180,

539
homogenisation, 142
homological

algebra, 559
homological algebra, 544
homology, 238, 551
homotopy, 551
Hopf algebra, 565
horizontal

bundle, 20, 26, 32, 44, 57, 396, 405,
605–608, 616

lift, 21, 25, 32, 57, 405, 606, 616
projector, 605

hyperbolic, 49, 59, 449–458, 504
hyperfunction, 460
hypergeometric function, 147
hypoelliptic, 494

ideal, 31, 58, 64, 376, 537, 541, 567, 599, 603
membership problem, 326, 572, 577
quotient, 537

identity, 268, 295
image representation, 477
immersed submanifold, 588
immersion, 588
impasse point, 368, 426
implicit differential equation, 296
Implicit Function Theorem, 438, 590
independence forms, 60, 323
independent

set, 177–178, 184, 229, 258
variable, 10, 58, 323, 509, 522

index
of differential algebraic equation, 324
of generality, 342, 349, 353
of symbol, 276–277, 279, 281–283, 311,

315, 317–320, 334, 403, 491
indexed row, 481
ineffective constraint, 301
infinitesimal

solution, 392
symmetry, 407

initial, 326
level, 481
value problem, 340–342, 358–392, 410,

451, 497, 522
injective

comodule, 562
module, 463, 466, 476, 505, 545, 548, 551,

559
resolution, 554, 558

input, 475
input-output structure, 476
integrability, see formal integrability

condition, 34–38, 40–41, 55, 97, 165, 268,
269, 271, 286, 287, 289, 293, 295, 306,
369, 403, 416, 441, 447, 450

of the second kind, 35, 42, 97, 272, 287,
289, 397

integrable
codistribution, 318, 603
distribution, 44, 601, 608

integral
curve, 57, 297, 408, 594, 601, 615
distribution, 404, 415, 416
element, 44–48, 403–404, 415
manifold, 13–15, 32, 44, 60, 393, 396, 408,

601–603, 616
interior derivative, 597
internal symmetry, 409
invariant, 359, 386

manifold, 298, 359
inverse

lexicographic order, 184, 514
scattering, 270, 427

inviscid Burgers equation, 412
involutive

autoreduction, 112
basis, 68, 94–100, 101–102, 110–141,

146–157, 209, 377, 427
codistribution, 14, 603
comodule, 244, 275
completion, 68, 110–141, 146, 446, 461,

480–494
cone, 65, 95, 99
differential equation, 228, 281–295, 300,

305, 311, 323, 337, 382, 385, 388, 436,
450, 461, 520–522

distribution, 14, 44, 61, 294, 396–397, 400,
406, 408, 601, 604, 608, 615

division, 64–76, 100–101, 106–118, 136,
143–146, 161–162

of Schreyer type, 197
divisor, 65, 72
module, 244, 252, 257
normal form, 97–100, 114, 200, 223
set, 68, 197
span, 68, 94, 99, 123, 126, 193
standard representation, 95–96, 122, 147,

153, 155, 158, 193, 197, 201–207, 211,
219, 222, 223

symbol, 244, 247, 273–295, 305, 335, 382,
389, 488

involutively
autoreduced, 69, 97, 118, 126, 149, 183
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divisible, 65
head

autoreduced, 98–99, 114, 116, 123, 142,
157, 193, 208

reducible, 98, 114, 157
reducible, 97, 118
R-saturated, 158, 208

irreducible ideal, 70, 189, 191, 225
irredundant primary decomposition, 185, 187,

539
irregular singular point, 363, 365, 366
irrelevant ideal, 542, 556
iterated

jet bundle, 23, 32, 37, 519
polynomial algebra of solvable type, 87–89,

154, 207–210

Jacobi
bracket, 38, 416
identity, 38, 52, 313, 407, 417, 536, 609, 613

Jacobian, 17, 18, 20, 296, 318, 587
system, 294, 401, 414, 602

Janet
basis, 112, 149, 158, 170–174, 191, 230,

232, 384
division, 66, 70–75, 96, 98, 100, 101, 108,

109, 126–132, 136, 143, 145, 197, 209
sequence, 462–464
tree, 72, 76, 101, 172

Janet–Riquier Theory, 101, 162, 228, 326, 427
jet, 10, 25, 31, 367, 412

bundle, 10–29, 58–60
dimension, 11
first order, 18–23
higher order, 23–29
infinite order, 60–61

field, 20

König
Lemma, 90, 512
property, 90, 512

kernel representation, 476
Klein–Gordon equation, 342
Knuth–Bendix algorithm, 575
Kolchin–Ritt algorithm, 326
Korteweg–de Vries equation, 270
Koszul

complex, 230, 236–239, 242
homology, 242–246, 250–254, 258–262,

276, 287
Krull dimension, see dimension

L-graph, 196, 207
L-ordering, 196

Lagrangian, 54, 302
Laplace equation, 344, 375, 441
Lax pair, 269, 427
leader, 276–281
leading

coefficient, 76, 88, 157–159, 513
derivative, 481
exponent, 76, 94, 513
ideal, 377, 567, 572
monomial, 76, 513
term, 76, 513

left
exact, 460, 547, 562
ideal, 537
module, 532
multiplication, 592, 609, 610

Legendre transformation, 302
Leibniz rule, 78, 79, 201, 543, 593, 597, 598,

613
length of resolution, 199, 214, 554
level, 174, 481
Levi–Civita connection, 53, 605
lexicographic

ideal, 69, 231
order, 69, 72, 81, 108, 132, 174, 182,

514–515, 568, 576
Lie

algebra, 51, 80–81, 407, 536, 593, 599, 606,
609–610, 614

bracket, 38, 44, 293, 403, 593, 593, 610, 614
derivative, 408, 471, 595, 598, 600
Fundamental Theorem, 610
group, 347, 592, 606, 608
pseudogroup, 347, 524
subgroup, 608
symmetry, 44, 326, 493

Lie-Poisson structure, 614
linear

connection, 407, 607
differential

equation, 305, 316, 411, 431–507
operator, 78, 97, 287, 316, 376, 434,

458–466, 592
resolution, 211, 220, 221, 558

linearisation, 434–436, 587
Liouville equation, 344
Lipschitz continuous, 359
local

Lie group, 608
representation, 29, 435, 481
solvability, 43, 372, 388, 415
trivialisation, 433, 591

localisation, 152, 532, 549
locally
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geodesic coordinates, 53, 278, 313, 351, 612
involutive, 106–108, 111, 115–117, 138,

160, 161, 208, 248, 277, 286
long exact homological sequence, 244, 252,

552
Lorenz gauge, 316, 350
Lyubeznik resolution, 232

Macaulay Theorem, 497, 572
majorisation, 371, 518
Malgrange isomorphism, 460, 477, 496
manifold, 362, 585–591
Maurer–Cartan formula, 51, 608
maximal ideal, 381, 501, 537
maximally overdetermined, see differential

equation of finite type
Maxwell equations, 48–50, 52, 280–281, 340,

346, 349, 355, 386, 454, 458, 469–471
Mayer bracket, 38, 294, 416
meromorphic, 531
metasymplectic structure, 409
method of characteristics, 371, 407–412, 495
metric, 51, 313
microfunction, 460
microlocal analysis, 460
minimal

basis, 70, 71, 170, 212, 221, 229, 241, 242,
572

generating set, 533, 556
Gröbner basis, 100, 572
involutive basis, 71–72, 100, 114, 118,

134–141
resolution, 210–227, 242, 287, 556–558

modified Stirling number, 125, 337, 351,
525–527, 542

module, 459, 532–536
homomorphism, 534

monic, 93, 100, 118
monoid, 510, 511, 530

ideal, 64, 377, 530
module, 530, 578
order, 142, 511

monomial, 510
basis, 71, 572
ideal, 64, 71, 182, 217, 256, 539, 541, 572

of nested type, 230
module, 203–207, 211

monotonicity, 84, 511
Mora normal form, 150–156, 164
Moyal star product, 82
M-regular, see regular sequence
multi index, 64, 237, 509–516
multiplicative

index, 65, 72, 126, 171

monomial order, 142
variable, 94, 143, 168, 193, 228, 282, 481

multiplicatively closed, 152, 532
multiplicity, 176, 342, 541
musical isomorphism, 303, 612, 615

Navier–Stokes equations, 50–51, 165, 471
Noether

identity, 52, 54, 313
normalisation, 164, 169, 182–187, 228, 230,

542
position, 182, 542

Noetherian, 306, 496, 530, 576
division, 71, 117–118, 121, 122, 132, 144
monoid, 84, 152, 169, 512, 530
operator, 506
ring, 84, 86–94, 156, 241, 272, 463, 475,

512, 532, 537, 538, 538, 539, 543, 555
non-autonomous system, 299, 324
non-characteristic, 370, 410
non-degeneracy condition, 78
non-multiplicative

index, 65, 109
variable, 116, 193, 197, 218, 284, 289, 295,

450, 454, 481
non-negatively graded, 539
non-systatic basis, 320
normal

differential equation, 314–317, 325, 341,
360, 370, 383, 452, 522

form, 92, 150, 176, 255, 260, 502, 570–572
mode, 451
selection strategy, 132, 136, 140, 162, 576

numerical function, 540

obstruction, 551
to involution, 68, 97, 98, 107, 111, 283,

388–390, 450, 492, 500
opposite ring, 459
orbit, 609
order, 511–515

ideal, 377
respecting multiplication, 77, 117, 142

orderly ranking, 428
Ore

algebra, 79–80, 87
condition, 84, 152, 472, 477, 506, 532, 534,

549
domain, 83–85, 532
polynomial, 79

orientable manifold, 596
orthonomic, 427
overdetermined, 49, 51, 313–317, 326–327,

461
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P-elliptic, 443
P-graph, 196, 207
P-ordering, 196
parametric

coefficient, 40, 267, 345, 352, 371, 502
derivative, 283, 334, 375, 376–380, 399,

401, 406, 413, 497
parametrisation, 463, 466–472, 478, 505–506
partial

differential ring, 543
order, 90, 511

partially involutive, 115
passive, 228, 427
PBW algebra, 102
Petrovskij symbol, 443
Pfaffian system, 294, 339, 603
phantom

level, 481
row, 481

phase space, 56
Picard–Lindelöf Theorem, 359, 365
Poincaré

Lemma, 53, 238, 463, 598, 611, 612
series, 541

Poincaré–Birkhoff–Witt
extension, 81, 91
Theorem, 81, 83

Poincaré–Steklov problem, 471
Poisson

bracket, 38, 302, 324, 372, 613–614
condition, 372

manifold, 613
matrix, 613

polynomial
algebra of solvable type, 76–94, 102–104,

152, 234
coefficient, 511
de Rham complex, 236–239
module, 242–246, 548, 577
ring, 531, 536, 538, 539, 541, 548, 567

Pommaret
basis, 122–227, 248, 254–260, 278, 287,

306, 379, 383, 384, 461
division, 67, 70, 75–76, 100, 108, 109,

126–132, 136, 173, 196, 197, 212, 481
POT order, 578
potential, 269, 407, 477
power series, 517
presentation, 459, 535, 555, 581
primary

constraint, 302
decomposition, 185, 187–191, 230, 501, 538
ideal, 187, 191, 381, 501, 537, 538

prime ideal, 177, 537, 538, 539

principal
coefficient, 40, 267, 371
derivative, 281, 283, 319, 335, 376–377,

384, 399, 401, 413
fibre bundle, 51, 592, 606, 608
ideal, 537
symbol, 270–273, 275, 276, 310–317,

322–323, 372, 440, 450
module, 271

product order, 514, 515
projectable vector field, 26, 57, 411, 593
projection, 590

between jet bundles, 11
of differential equation, 33, 34, 306

projective
comodule, 562
dimension, 214, 233, 279, 556
Hilbert function, 541
module, 86, 473, 545, 548, 559
resolution, 554, 558

prolongation
by pseudo-potentials, 406, 427
of differential equation, 32, 34, 266, 268,

305, 395, 481, 483, 486
of map, 12–15, 23, 33
of section, 19, 22, 30
of skeleton, 482–487
of symbol, 239–241, 261, 266–267, 335

pseudo-derivation, 79
pseudo-division, 571
pseudo-potential, 406, 427
pseudo-reduction, 84, 326
pseudo-remainder, 571
pull-back, 12, 15, 19, 26, 27, 45, 54, 238, 270,

393, 399, 410, 546, 553, 591, 594, 595,
596, 598, 603, 616

pure resolution, 558
push-forward, 45, 393, 397, 399, 546, 594, 596

q-algebra, 83
q-Heisenberg algebra, 83
q-regular, 215
quantifier elimination, 504
quantisation, 325
quantised enveloping algebra, 83
quasi-linear, 15, 33, 40, 165, 411, 434, 521
quasi-linearisation, 370, 521–522
quasi-Rees decomposition, 175, 176, 178, 182,

228
quasi-regular, 251–258, 262, 274, 276
quasi-stable, 182–190, 203–207, 212–213,

230, 257, 258
Quillen–Suslin Theorem, 86, 548
quotient field, 83, 476, 506, 531–532
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radical, 537, 583
ideal, 301, 537, 583

rank, 199, 476, 533, 541, 583, 588
vector, 488, 491

ranking, 326, 428
rational differential function, 543
real-analytic, 370, 372, 385, 388, 517–519
rectification, 294, 594, 602
recurrence operator, 79
reduced

Gröbner basis, 98, 140, 143, 212, 572
principal symbol, 272, 442

reducible, 570
reduction

to first order, 288, 335, 342, 441, 496, 500,
519–520

to one dependent variable, 522–525
Reeb vector field, 56, 304, 615
Rees decomposition, 174, 180, 192, 256, 338
regular

descriptor system, 425
differential equation, 34, 301, 305, 360
element, 472, 531, 532, 549
matrix pencil, 425
point, 363
sequence, 178–180, 233, 251, 536
singular point, 363–365
submanifold, 29, 588
value, 589, 598

remainder, 570
repeated index, 16, 237, 259, 379, 510–511
resolution, 474, 554–558, 581
reverse lexicographic order, 108, 514
Ricci tensor, 53
right

exact, 549
ideal, 537
invariant vector field, 610
module, 459, 533
multiplication, 610

rigid rotator, 303
ring, 531
Riquier

ranking, 428
Theorem, 427–428

rng, 531
row, 481

S-polynomial, 138, 194, 573–576, 578
satiety, 223, 230, 258, 381, 501, 542
saturated chain property, 190
saturation, 183, 222–225, 326, 542
Schreyer Theorem, 194, 231, 580
second-class constraint, 324

secondary constraint, 302
section, 18–20, 30, 592, 595
self-injective, 472, 545
semi-explicit equation, 296
semi-linear, 273
semigroup, 511, 530

order, 141–156, 164–165, 511, 567
semiring, 531
separant, 326
sequential chain, 189
sequentially Cohen–Macaulay, 189, 230
Serre conjecture, 548
Shapiro–Lopatinskij condition, 504
shock, 412
short exact sequence, 545
signal space, 475
simple ring, 86
sine-Gordon equation, 344
singular

distribution, 600
integral, 330–333
Lagrangian, 55
point, 362–370
solution, 362, 366, 367

skeleton, 482–487, 491
skew

enveloping algebra, 81
field, 77, 83, 92, 473, 531, 547

Sobolev norm, 455
socle, 230, 542
soliton equation, 427
solution, 30, 43–48, 330–334, 362, 379, 393,

396, 406, 459
span, 64
specialisation, 582
Spencer

cohomology, 241–246, 260–262, 274, 278,
280, 287, 306

complex, 241
split sequence, 545, 554, 606
square bracket, 38
s-singular point, see irregular singular point
s-stable, 233
stable

module, 211–213, 230
set, 277

standard
basis, 567, 577
pair, 190–192, 229, 378, 381
representation, 95, 97, 98, 123, 134, 143,

151, 194, 571, 574
term, 255, 572, 572

Stanley
conjecture, 229
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decomposition, 168, 228, 234, 378
filtration, 173, 228, 232

state, 475
state space form, 296
Steiner tree, 515
Stirling number, see modified Stirling number
strength, 352–355
strictly hyperbolic, 451
strong solution, 330, 380
strongly

autonomous behaviour, 506
controllable behaviour, 506
hyperbolic, 455–457
independent set, 177
involutive, see involutive

structure
constants, 51, 80, 313, 609, 614
equation, 14, 400–403, 602
group, 592

subcomodule, 240, 561, 564, 566
submanifold, 588–589
submersion, 588, 590
submonoid, 65, 530
summation convention, 12
support, 509, 513, 572
symbol, 264–270, 332, 335, 363, 397, 488,

491, 520
comodule, 275, 306, 337
map, 264, 270
matrix, 265, 276
module, 276, 279, 287, 306, 382–384,

390–392
symbolic system, 239–246, 274
symmetric algebra, 17, 122, 236, 536, 565
symmetriser, 455
symmetry, 348, 407
symplectic

complement, 303, 409, 611, 615
geometry, 56, 610–614
gradient, 612
manifold, 56, 82, 302, 372, 409, 611
two-form, 56, 302, 324, 409, 611, 616

systatic, 311
syzygy, 156, 158, 193–227, 234, 254, 269,

271, 287, 288, 445, 461, 464, 471, 476,
573, 579–584

resolution, 582

tangent
bundle, 11, 21, 24, 61, 296, 435, 586–588,

591, 612
projection, 298, 587

map, 17, 18, 20, 26, 27, 264, 587–588, 589,
593, 596, 598, 604, 610, 614

variety, 324
Taylor

coefficient, 10, 38–43, 267, 340, 352, 375,
381, 383, 395, 412, 517

resolution, 226, 231–232
series, see formal power series
Theorem, 10, 517, 518

tensor
algebra, 565
product, 472, 535–536, 544, 546, 564

complex, 239, 242, 544
term, 510

order, 76, 84, 376, 377, 428, 511–515,
577–578

of type ω , 133, 513
Thomas

basis, 101
division, 66, 101, 198

TOP order, 481, 578
torsion

element, 477, 534
group, 242, 559
module, 477, 534
submodule, 473, 478, 534

torsionfree, 472, 478, 506, 534
torsionless, 467, 472, 478, 505, 506, 534
total

derivative, see formal derivative
order, 511
ring of left quotients, 472, 532, 549
space, 590

transfer matrix, 476
transformation group, 347, 609
transition function, 586
transitive action, 591, 609
transversal, 22, 56, 57, 59, 297, 304, 361, 363,

368, 369, 396, 405, 408, 438, 589, 616
triangulation, 482–487
trivial bundle, 18, 590
truncated involutive cone, 481
truncation, 122, 177, 241, 271, 539
two-sided ideal, 80, 118–121, 537
typical

differential dimension, 342
fibre, 591

underdetermined, 52, 313–317, 327, 340, 352,
359, 361, 368, 385, 440, 450, 475, 476

underlying
differential equation, 305
vector field, 298

unimodular, 476
unit, 88, 476, 531
universal
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enveloping algebra, 80, 85, 87, 119, 234
lifting property, 546

upper set, 90, 512

variety, 39, 362, 501, 503, 537, 583
vector

bundle, 432, 435, 523, 591, 604, 606
field, 14, 43, 293, 296, 360, 471, 592–594
potential, 51, 346, 470
space, 533, 609
valued form, 28, 51, 409, 599, 604, 606

vertical
bundle, 17, 20, 26, 57, 274, 397, 604–608,

616
lift, 605, 606
projector, 21, 25, 57, 605, 616

Vessiot
connection, 397, 412–424
distribution, 360–370, 393–424, 426–427

volume form, 596, 615

wave equation, 334, 345, 378
weak

invariant, 359, 386
involutive basis, 157, 161, 208, 209
normal form, 150

solution, 330, 380
weakly

involutive, 68, 70, 94, 96, 102, 123, 127,
146–149, 184, 222, 382

overdetermined, 453–458, 504
wedge product, 200, 236, 565, 595
Weierstraß

Approximation Theorem, 437
basis, 102

weight, 442
weighted principal symbol, 442–444
well-determined, 314–317
well-order, 93, 98, 114, 141, 152, 511, 513,

570, 573, 574
well-posed, 374, 440, 451
Weyl algebra, 82–83, 85–86, 138, 141, 148,

149, 459, 506

Yang–Mills equations, 51–53, 312–314, 343,
346–350, 469–470

Zariski
closed, 125, 129, 130, 538
open, 538
topology, 125, 251, 538

zero divisor, 83, 179, 183, 531, 536
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