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Preface

A tree that can fill the space
of a man’s arm

Grows from a downy tip;

A terrace nine storeys high
Rises from hodfuls of earth;

A journey of a thousand miles
Starts from beneath one’s feet.

Lao Tzu, Tao Te Ching
Tr. C.C. Lau, Penguin Classics

This book is an introduction to geometric invariant theory understood a
la Mumford — as presented in his seminal book Geometric Invariant Theory
[103]. In this sense, we intend to draw a bridge between the basic theory
of affine algebraic groups (that is inseparable from considerations related
to the geometry of actions) and the more sophisticated theory mentioned
above.

Many problems of invariants of abstract groups become naturally prob-
lems of invariants of affine algebraic groups. In fact, the view of an abstract
group as a group of linear transformations of a vector space, or more gener-
ally of transformations of a certain set with additional structure, has been
fundamental since the origins of group theory in the pioneering works of
Galois and Jordan in the nineteenth century. In this situation, it becomes
handy to consider the associated action of the Zariski closure of the group.

Once we are dealing with affine algebraic groups, the use of the geomet-
ric structure adds many useful tools to our workbench. For example, one
can linearize the problem by considering the tangent space at the identity,
and view it as a problem in the category of finite dimensional Lie algebras.

If we are considering actions, it is natural to search for invariants, i.e.,
for functions from the original space into a certain set that are constant
along the orbits, and if we are working with affine groups, we ask these

xi



xii PREFACE

functions to be regular. In principle, once we find a large enough num-
ber — but finite following Hilbert’s expectations — of invariant functions,
one can use them to decide whether or not two points are in the same or-
bit. Thereafter, one is lead to search for natural, e.g. algebraic geometric,
structures in the set of orbits. To deal with this problem, i.e. to study the
concept of quotient variety, is one of the main objectives of this book. In
particular, we have paid special attention in Chapters 7, 10 and 11 to the
relationship between the geometric structure of quotients of the form G/H,
i.e. of homogeneous spaces, and the interplay between the representations
of H and of G.

As we mentioned before, this text was written with the intention of
being a reasonably self contained introduction to the specialized texts and
papers in geometric invariant theory. This intent of self-containment is spe-
cially laborious as in this theory techniques from many different areas of
mathematics come into play: commutative algebra and field theory, Hopf
algebra theory, representation theory of groups and algebras, algebraic ge-
ometry, Lie algebra theory.

Being an introductory text, we added at the end of each chapter a list
of exercises that hopefully will help the reader to acquire a certain expertise
in working with the fundamental concepts. Frequently, examples and parts
of the proofs are left as exercises.

Our serious labors start with the theory of affine algebraic groups in
Chapter 3, but we have included in the text two initial chapters. The first
of these chapters contains most of the needed prerequisites in commutative
algebra and algebraic geometry. Its results and definitions are presented
sometimes with proofs or sketches of proofs, but always with precise ref-
erences. The other chapter deals with the necessary prerequisites in the
theory of semisimple Lie algebras over fields of characteristic zero.

Every chapter has an introductory section with a summary of its con-
tents. We will not attempt to iterate here that non—easy summarizing task.
The interested reader may — if he possesses a certain degree of tenacity —
read all these as a global introduction to the contents of this book.

At the end of the book, in order to minimize notational confusions, we
have added an appendix with some basic definitions from category theory,
algebra and topology. Moreover, in order to help the reader to keep track
of the notations and important concepts, we collected most of them in an
exhaustive glossary and a comprehensive subject index.

Concerning other texts dealing with the topics we treat, the reader may
consult the references at the end of the book. Our bibliography is far from
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being exhaustive, the industrious reader can find an excellent bibliographic
job done in some of the books we cite (see for example [123]).

Here and there along the book we have made some amateurish historical
comments with the intention to give the reader a hint of the genesis of some
of the subjects; the author index may help the reader to find these remarks
in the text. We dare to expect that these comments will induce the reader
to look at some of the serious books that have recently appeared dealing
with the history of these topics, e.g., [11] and [57].

Our debts to the many contributors to the theory are impossible to
record in this preface, but should be clear to the attentive reader. Many
comments about our sources appear along the text.

We have chosen to avoid, mainly for reasons of space and emphasis,
the consideration of non algebraically closed fields. Concerning this point,
the reader should be aware that not a few of the results we treat are valid,
sometimes with small modifications, for general fields. Furthermore, we
deal only with algebraic varieties, avoiding the language of schemes. For a
scheme theoretical vision of the theory the reader can consult for example
[28] and [103], or the more recent [80].
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Enumeration of items and cross references

The chapters are enumerated with arabic numerals; the Appendix is
not enumerated. Within each chapter, each section is enumerated with an
arabic number.

Within a given section of a given chapter, theorems, lemmas, corollar-
ies, observations, examples, definitions and notations are enumerated with
the same series of numerals. Each of these items appears labeled with two
arabic numbers, the first corresponding to the section, the second to the
specific item.

The few figures and numbered equations that appear are numbered
globally for all the book also with an arabic number. Within each chapter
the exercises are enumerated with only one arabic numeral.

For example, in Chapter 3, one can find Example 2.5 preceded by
Definition 2.4 and followed by Example 2.6, all in Section 2. In Chapter 6
we can find in Section 2, a picture labeled Figure 1.

When we wish to refer to a theorem, etc., we use the above system of
two arabic numerals provided that the item appears in the same chapter as
the reference, otherwise we use a system of three numerals, adding a first
arabic numeral with the indication of the chapter where the item appears.
A similar system, without reference to the section, is used for exercises.

For example, the first exercise of Chapter 2, would be cited in Chapter
3 as Exercise 2.1 and in Chapter 2 as Exercise 1. The first definition in the
second section of Chapter 2, will be cited in Chapter 3 as Definition 2.2.1
and in Chapter 2 as Definition 2.1.

Some sections are divided into subsections (for example Section 4 of
Chapter 1 is divided into seven subsections). Subsections are enumerated
within the section to which they belong, and referred to within the same
chapter with two numerals, the first corresponding to the section and the
second to the subsection. When referring to a subsection that is in another
chapter we use a system of three numerals, adding in the first place the
numeral of the chapter where the section and subsection are located.

XV



xvi ENUMERATION OF ITEMS AND CROSS REFERENCES

The enumeration of theorems, etc., does not take into account the
subsections.

For the results and the sections of the Appendix we proceed in a slightly
different way, that is self explanatory.

The bibliography is presented in lexicographical order, enumerated with
arabic numbers.

Most of the notations used throughout the book are listed — in lex-
icographical order — in the Glossary of notations; there we refer to the
number of the page where the notation is introduced. In order to help
the reader in an eventual search we have displayed multiple entries for the
same notation. For example, the notation ug for the Casimir element can
be found listed under the words starting with the letter C or the letter U.

Most of the concepts introduced in the text are referred in the Index:
the reader is sent to the page where the concept is introduced and to some
other parts where we thought it might be useful for the reader to look. In
order to help the reader, we introduce multiple entries for the same concept.



CHAPTER 1
Algebraic Geometry

1. Introduction

In this chapter we deal with the background in algebraic geometry
which is needed for the rest of the book. Local algebraic geometry can be
viewed as commutative algebra, and for that reason a few basic aspects
of the theory of commutative rings and fields will also be treated in this
chapter.

The reader should not expect to find a systematic development neither
of the necessary commutative algebra prerequisites, nor of the more global
algebro—geometric concepts.

For reasons of space and emphasis, in this book we have chosen to keep
the treatment of the basic algebraic geometry that lies under the theory
of algebraic groups at a minimum, hence our presentation will be (most of
the time) brief and sketchy. In spite of that, we have tried to define with
precision all the concepts involved, to state all the theorems in the most
rigorous fashion and to give adequate references for the proofs we do not
present.

At some points we are not consistently brief and some results and/or
definitions are treated with a certain degree of detail. The reasons for this
change of pace are manifold: the lack of an adequate reference for the exact
statement we need; our opinion about the importance of the subject and
many times merely the taste of the authors.

For a thorough treatment of these topics the reader can consult any
of the following textbooks: [3], [15], [35] or [156] and [157] (commutative
algebra); [36], [54], [55], [78], [106], [118] and many others (algebraic
geometry).

We proceed to the description of the contents of each section.

In Section 2, we collect foundational results in commutative algebra
that are needed for the development of the theory of algebraic varieties, e.g.,
E. Noether normalization theorem, Artin—Tate’s lemma, different versions
of Hilbert’s Nullstellensatz, etc. Only a few of the proofs are presented and

1



2 1. ALGEBRAIC GEOMETRY

most of the ones we omitted can be found in the standard references on the
subject.

In Section 3 we introduce the Zariski topology of the affine space A™ =
k™, that has as closed sets the algebraic subsets, i.e. the set of zeroes of
a family of polynomials in n variables. We also define the morphisms of
algebraic sets completing the category where local algebraic geometry is
developed.

In Section 4 we introduce the first notions of the theory of algebraic
varieties. First we define — in order to equip our objects with the algebras
of functions that characterize the structure — the notion of a sheaf on
a topological space, centering our attention on sheaves of functions. The
spectrum and maximal spectrum of a ring are introduced in order to view
abstractly the affine algebraic subsets. Afterwards, algebraic prevarieties
are defined by pasting together these abstract affine pieces. The concept of
prevariety is then strengthened in order to introduce the main geometrical
object of study, algebraic varieties. We first observe that products exist
in the category of prevarieties, and then define varieties as prevarieties
that satisfy the so—called “Hausdorff axiom”, i.e., prevarieties X with the
additional property that the diagonal A is closed in the product X x X.
We present also the basic notions of dimension and tangent space. Later
we describe the first properties of morphisms, considering in particular the
concepts of open and closed immersion and of finite morphism. We prove
Chevalley’s theorem that guarantees that morphisms are open with respect
to the topology defined by the constructible sets. We also define the concept
of complete variety generalizing projective varieties and projective spaces.
These kind of varieties should be viewed as analogous in our category to
compact topological spaces. We finish this section by defining the concepts
of singular point and normal variety.

In Section 5 (where very few proofs are presented) we delve deeper
into the geometric properties of varieties and morphisms. In particular
we treat various classical results: we show how to characterize separability
in terms of differentials and prove a useful theorem due to C. Chevalley
on the dimension of the fibers of a dominant morphism as well as related
results. Then, we state a version of Zariski main theorem and finish with a
discussion of the extension of rational functions in a normal variety.

Unless the contrary is explicitly said, the field k will be algebraically

closed of arbitrary characteristic, and all the rings and k—algebras we con-
sider are unital and commutative.



2. COMMUTATIVE ALGEBRA 3

2. Commutative algebra

2.1. Ring and field extensions

Let k C K be a field extension. The elements aq,...,a, € K are
algebraically independent over k if Ker (5(a1,...,an)) = {0}, where €(q,,....a,) :
k[Xy,...,X,] — k is the evaluation at (ai,...,a,). In other words, the
only polynomial in k[X7,...,X,] which is annihilated by (ai,...,a,) is
the zero polynomial. A maximal algebraically independent subset of K is
called a transcendence basis. All transcendence basis have the same number
of elements, this number is called the transcendence degree of the extension
k € K and it is denoted as tr. deg, K. In the case that the field K is
finitely generated over k, the transcendence degree is finite.

If R is a finitely generated integral domain k—algebra, then R has finite
Krull dimension k(R), and k(R) = tr. deg,[R], where [R] is as usual the
field of fractions of R (see Observation 2.7 below).

DEFINITION 2.1. Let R C S be an extension of commutative rings. An
element s € S is said to be integral over R if there exists a monic polynomial
f € R[X] such that f(s) = 0. The extension is integral if for all s € S, s
is integral over R. The integral closure of R in S is the set of all elements
of S integral over R; it is a subring of S containing R. If R is an integral
domain we say that R is integrally closed if it equals its integral closure in
[R].

THEOREM 2.2. Let R C S be an extension of commutative rings. If S
is finitely generated as an R—module, then S is integral over R.

PROOF: See for example [3, Prop. 5.1]. |

The converse of the above theorem is false in general, but we have the
following partial results.

THEOREM 2.3. If R C S is a ring extension with S integral and finitely
generated as an R-algebra, then S is finitely generated as an R-module.

PROOF: See for example [3, Cor. 5.2]. O

THEOREM 2.4 (Artin—Tate’s theorem). Let T C R C S be a tower of
commutative rings and assume that: (1) T is noetherian; (2) S is finitely
generated as a T—algebra; (3) S is finitely generated as an R—module. Then
R is finitely generated as a T—algebra.

PRrROOF: Using (2) and (3) we write S = Rsy + -+ + Rsp, s1 = 1,
and S = T[s,...,s;,]. Express s; = > rys; fori=1,....m, r; € R
and sgs; = > Th,Su for k1 =1,...,n, ri;,, € R. The original tower



4 1. ALGEBRAIC GEOMETRY

extends to T'C Ry C R C S, where Ry is the T—subalgebra of R generated
by {rij 1 <i<ml<j< n}U{r;du 1 < klLu < n} As T
is noetherian and Ry is finitely generated as a T—algebra, using Hilbert’s
basis theorem we conclude that R is noetherian. As Rgsy + - - + Ros,, 1s
a subalgebra of S that contains all the s; and also contains T, it follows
that Rys1 +---+ Ros, = S. Then S is a finitely generated Ryp—module and
thus R is a finitely generated Rop—module. Write R = Rgp; + - -+ + Rop,
for certain pi,...,p, € R. It follows immediately that R is generated by
pro--ppand {r; 11 <i<m,1<j<n}U{ry,:1<klLu<n}asa
T—algebra. ]

In particular, we deduce the following corollary.

COROLLARY 2.5. Letk C R C S be an extension of commutative rings
where k is a field. Assume that S is finitely generated as a k—algebra and
integral over R. Then R is a finitely generated k—algebra.

PROOF: As S is a finitely generated R—module (see Theorem 2.3),
we are in the hypothesis of the Theorem 2.4 and the conclusion follows
immediately. O

The following theorem is an algebraic tool of central importance for the
manipulation of algebraic varieties.

THEOREM 2.6 (E. Noether normalization theorem). Let R be an inte-
gral domain that is finitely generated as a k—algebra, with tr. deg,[R] = d.
Then there exist k—algebraically independent elements r1,...,rq € R, such
that in the tower k C K[r1,...,rq] C R the top part K[r1,...,74) C R is
integral.

PRrROOF: In [3, p. 69] a proof is sketched and in [71, Thm. X.1.2] a
detailed proof is presented. In [35] the reader can find a proof for a different
(but essentially equivalent) formulation of this result. (]

OBSERVATION 2.7. Notice that in accordance with the considerations
previous to Definition 2.1, the number d of algebraically independent ele-
ments {r,...,rq} coincides with the Krull dimension of R.

Informally speaking, Noether’s theorem guarantees that a finitely gen-
erated integral domain k—algebra can be viewed as an integral extension of
a polynomial algebra over k in «(R) variables.

There is a version of Noether normalization theorem that generalizes
it to extensions of integral domains.

COROLLARY 2.8. Let S C R be an extension of integral domains with
R a finitely generated S—algebra. Then there exist elements ry,...,7q € R
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that are algebraically independent over [S], and a non zero element s € S
with the property that in the tower of extensions: Ss C Sg[r1,...,74] C Rs
the top part is integral.

PrOOF: Consider the field extension [S] C [R] and apply Theorem 2.6
to R’ the [S]-subalgebra of [R] generated by R. The details are left to the
reader. ]

OBSERVATION 2.9. The number d of algebraically independent elements
constructed in Corollary 2.8 equals k([S] ®s R).

LEMMA 2.10. Let S C R be a finitely generated integral ring extension
of commutative integral domains. Then, there exists an element 0 # s € S
with the property that Ss C Rs is free.

PrOOF: From Theorem 2.3 we deduce that R is a finitely generated
S—module. Hence, we can find an S—epimorphism of a finite direct sum
of copies of S onto R, ¢ : @] S — R. This implies in particular that
R admits a finite S—composition series. The following assertion, that will
be proved by induction on the length, guarantees our result. Let S be a
commutative integral domain and assume that M is a S-module of finite
length, then there exists an element 0 # s € S, M, is a free S;—module.
Consider N a maximal S—submodule of M and the exact sequence 0 —
N —- M — M/N — 0. The S—module M/N is simple and then isomorphic
to a module of the form S/ P for some maximal ideal P in S. If P = {0} then
M/N = S and then M =2 N @ S and the proof follows by induction on the
length. If P # 0 and we consider 0 # sp € P, it is clear that (S/P),, =
Ssp/PSs, = {0}. Then, going back to the original exact sequence we
deduce that Ns, = M,,. By induction we deduce the existence of sy € S
with the property that Ny, is free as a Ss,—module. Hence, M, is free
as a Ss,sp,—module. |

The next theorem, that is a consequence of Noether normalization the-

orem, will be used in the characterization of affine homogeneous spaces in
terms of exactness (see Corollary 11.6.6 and Theorem 11.6.7).

SosSp

THEOREM 2.11. Let S C R be an extension of commutative integral
domains, and assume that R is a finitely generated S—algebra. Then there
exists an element s € S such that Ry is free as a Ss—module.

PRrROOF: First use Corollary 2.8 in order to find r1,...,ry € R that
are algebraically independent over [S] and 0 # s € S such that in the
tower of extensions Ss C Sg[r1,...,rq] C Rs the top part is integral, with
d = k([S] ®s R). Next proceed by induction on d. If d = 0 then the
extension Sy C R, is integral and the result follows from Lemma 2.10.
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Without loss of generality and eventually changing notations we may
assume that the result is valid for all extensions of dimension smaller than
d and that s = 1. In other words, we suppose that S C S' = S[ry,...,rq] C
R, being the top extension integral and R finitely generated as an S—algebra
(observe that S’ is a free S—module).

It follows that R is a S’~module of finite length. The result will be de-
duced once we prove the following assertion: let M be a S’ = S[ry,..., ]
module of finite length. Then there exists an element s € S such that M
is free as a S;—module.

We proceed by induction on the length of M. Consider N a maximal
S’—submodule of M and consider the exact sequence: 0 — N — M —
M/N — 0. Since M/N is cyclic, there exists an ideal P C S” such that
S'/P = M/N. We will consider now three possibilities for the ideal P.
If P = {0}, then M/N = S’ that is a free S—module, and in this case
M = N®S’; hence the proof follows by induction on the length. If P # {0}
and P NS # {0}, choose 0 # p € PN S. Then M, = N,, and the
proof follows by induction on the length. The last alternative for P is that
P # {0} and PNS = {0}. Consider the injection [S]|®s P — [S]®gS’. The
image of this map is a prime ideal in [S] ®g S’ with H([S] ®sg S”/P) < d.
By induction we deduce that there exists an element s € S such that
(M/N)g =2 (S'/P)s is free as a Ss—module. If we localize with respect to s
the sequence 0 - N — M — M/N — 0, we deduce that 0 - Ny — M, —
(M/N)s — 0. Then, My = Ny & (M/N)s. As the length of N is smaller
than the length of M our proof is finished. (]

The theorem that follows is a variation of the usual results of extension
of ideals for integral extension of rings.

THEOREM 2.12. Let R C S be an integral extension of k-algebras,
where k is an algebraically closed field. A k-algebra homomorphism from
R into k extends to a k—algebra homomorphism from S into k.

PROOF: See [15, Chap. V, 2.1, Cor. 4]. O

The next lemma will be useful when dealing with the problem of the
finite generation of the rings of invariants in Chapter 12, more particularly
in Lemma 12.3.4. Here we only present a brief sketch of the proof, for the
missing details see [15, Chap. V, 3.2].

LEMMA 2.13. Let R C S be an extension of k—algebras that are also
integral domains. Assume that (1) R is a finitely generated k—algebra; (2)
the field extension [R] C [S] is finite algebraic; (3) S is integral over R.
Then S is a finitely generated R—module and also a finitely generated k—
algebra. In particular, if S is the integral closure in [R] of R and R is a
finitely generated k—algebra, then S is also a finitely generated k—algebra.
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PrROOF: First, one proves that it can be assumed that S is integrally
closed. Then, using Theorem 2.6 one can assume that R is a polynomial
ring over k and that [R] is the field of rational functions in n—variables.
Moreover, the extension [R] C [S] can be considered as a composition of a
purely inseparable extension with a Galois extension. Each of these cases
can be treated using standard methods in the theory of field extensions. [

The following classical theorem will be presented without proof.

THEOREM 2.14 (Krull’s principal ideal theorem). Suppose that R is a
finitely generated integral domain k—algebra. Let r € R be a fized element
and P a minimal prime ideal containing r, i.e. an isolated prime ideal of
rR. Then tr. deg,[R/P] = tr. degy[R] — 1.

PROOF: See for example [157]. O

2.2. Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz is one of the basic building blocks of the theory
of algebraic varieties, and should be considered as a deep generalization of
the so—called fundamental theorem of algebra. In our presentation the
theorem appears initially as a result concerning extensions of k—algebra
homomorphisms with values in algebraically closed fields.

THEOREM 2.15. Let k be an algebraically closed field and assume that
R is a commutative finitely generated k—algebra. If R # {0}, there exists a
k—-algebra homomorphism from R into k.

PRroOF: In accordance to Theorem 2.6, there exist elements r1,...,7rq4 €
R such that in the tower of extensions k C Kk[ry,...,75] C R, the lower
part is isomorphic to a polynomial ring and the top part is an integral
extension. The existence of a k—algebra morphism from k[ry, ..., r4] into k
is evident. The extension from k[ry, ..., 74] to R of the morphism previously
constructed can be deduced from Theorem 2.12. (]

We are ready to prove an abstract version of the Nullstellensatz.

THEOREM 2.16. Assume that k is an algebraically closed field and R
a commutative finitely generated k—algebra with no non zero nilpotents. If
r # s € R, then there exists a k—algebra homomorphism ¢ : R — k such

that ¢(r) # o(s)-

PROOF: We may assume that s = 0. In this case we consider a prime
ideal P € R such that » ¢ P — to guarantee the existence of such an ideal,
one uses a standard fact in commutative ring theory that asserts that in
this situation the set of nilpotent elements coincides with the intersection of
all prime ideals of the ring (see Appendix, Section 3). In the ring R/P, the
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element 7 = r+ P # 0 is not nilpotent, and the k—algebra (R/P)z is finitely
generated and non zero. Using Theorem 2.15 we deduce the existence of
a morphism v : (R/P)7 — k and as T is invertible in the localization, it
follows that () # 0. The map ¢ : R — k defined by the commutativity
of the diagram

R R/P

|

kﬁ(R/P)F

is a k—algebra homomorphism that sends r into a non zero element. |

Next it follows a more classical version of the Nullstellensatz that is
known as the weak Nullstellensatz.

THEOREM 2.17 (Weak Nullstellensatz). Let k be an algebraically closed
field.
(1) If R = K[ry,...,7rs] is a finitely generated ring extension of k that is
also a field, then R =k.
(2) An ideal M C K[Xy,...,X,] is mazimal if and only if M = (X; —
ay, ..., X, —ap), with ay,...,a, €k.

PROOF: (1) Assume that one of the r;’s is not zero, say r1, and consider
the morphism ¢ : k[ry,...,7,] — k that sends r; into a non zero element
(see Theorem 2.16). As Kk[ry,...,7,] is a field, it follows that ¢ is injective,
so that if we compute qb(rl — ¢(r1)1) = 0 we deduce that r; € k and then
by an evident iteration that R = k.

(2) Let M be a maximal ideal in k[X1,..., X,]. Then k[Xy,...,X,]/M is
a field and by what we just proved it has to coincide with k. If we fix i,
1 <4 < n, then there exists a; € k with the property that X; —a;1 € M. It
follows that the ideal (X1 —aq,..., X, —a,) C M. Moreover, all the ideals

of the form (X; — aq,..., X, — a,) are maximal as these ideals are of the
form Kelr(g(a1 ’’’’’ an)) where €4, .. a,)  K[X1,..., Xy] — k is the evaluation
at (ay,...,a,). Hence, (X1 —ay,..., X, —a,) = M. O

THEOREM 2.18 (Hilbert’s Nullstellensatz). Let I C k[Xy,...,X,] be a
proper ideal, where k is an algebraically closed field. Then, there exists a
point (a1, ...,a,) € K™ such that f(a1,...,a,) =0 for all f € I.

PROOF: Let M be a maximal ideal of k[X7,..., X,] that contains T
and write M = (X1 — a1,...,Xp — ap). If f € I, then there exist g; €
k[X1,...,X,],i=1,...,n,such that f = g1(X1 —a1) + -+ gn(Xpn — an).
It follows that f(a1,...,a,) =0. O
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OBSERVATION 2.19. It is clear that the Nullstellensatz (Theorem 2.18)
implies the weak Nullstellensatz (Theorem 2.17).

THEOREM 2.20. Assume that k is an algebraically closed field and let
I CKk[Xy,...,X,] be a proper ideal. Then

VI=({M Ck[Xy,...,X,]: I C M, Mmaximal ideal } .

PrOOF: Clearly if M is maximal and I C M, then VI ¢ VM =
M, so that VI C N{M C k[X1,...,X,]) : I C M, M maximal ideal }.
Conversely, suppose that f € M for all maximal ideals M that contain I and
let J C k[X71,..., X, X,4+1] be the ideal generated by I and the polynomial
1 — Xpi1f(X1,...,X,). Consider a common zero (ag,...,a,+1) € k" !
of the polynomials in J. Then h(ai,...,a,) = 0 for all h € I and this
means that I C (Xy —ay,..., X, —a,) (see Exercise 2). As f is inside all
maximal ideals that contain I, it follows that f € (X1 —aq,..., X, —ay) and
then that f(a1,...,a,) =0. As (a1,...,an41) is a zero of the polynomial
1—X,41f(X1,...,X,), we obtain a contradiction.

Therefore the ideal J has no common zeroes and from Theorem 2.18
we deduce that J = k[X1,...,X,+1]. Hence, we can find ¢1,...,9s,9 €
]k[Xl, Ce ,X7l+1] and f17 ey fs el C ]k[Xl, Ce ,X"] such that 1 = glfl +
ot gsfs+9(1— X1 f). Writing X, 11 = 1/f(X4,...,X,) we obtain the
following equality in k(Xq,..., X,):

]-:gl(Xh"'aXn7]-/f(X1>~~'7Xn))f1(Xla~"7Xn)+"'
"'+gs<X1a~~'7Xn»]-/f(X1a"'aXn))fs(le"'vXn)'

Eliminating denominators the above equality is transformed in: f™ =
hifi + -+ hsfs, with h; € k[X4,...,X,] and m a conveniently chosen
exponent. Then f™ € I and thus f € v/I. O

2.3. Separability In this paragraph the fields we consider are not
necessarily algebraically closed.

DEFINITION 2.21. Let k C K be an algebraic field extension. An
element a € K is separable over k if there exists a polynomial f € k[X]
with simple roots and such that f(a) = 0. The extension is separable if all
the elements of K are separable over k.

An element of a € K is purely inseparable over k if the only separable

elements in k C k(a) are those belonging to k. The extension is purely
inseparable if all the elements of K are purely inseparable over k.

Concerning non algebraic extensions the notion of separability is de-
fined in a different manner. The next result is the basis for this definition.
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THEOREM 2.22. Ifk C K is a fized field extension, then the following
conditions are equivalent.

(1) If V is a K—vector space and D : k — V is a derivation, then there exists
a derivation D' : K — V' that extends D, i.e. D'|y = D (see Appendiz,
Definition 3.17).

(2) For an arbitrary field K’ that extends k, the tensor product K ® K’
has no non zero nilpotents.

In the case that the fields are of characteristic p, the above conditions
are equivalent to:
(3) If X C K is a k-linearly independent set, then XP = {zP : x € X} is
also a k—linearly independent set.

PROOF: See for example [71, Chap. III]. O

DEFINITION 2.23. A field extension k C K is separable if the equivalent
conditions (1),(2) or (3) (this last in the case of positive characteristic) of
Theorem 2.22 are satisfied.

OBSERVATION 2.24. (1) It is not hard to prove that in characteristic
zero all extensions are separable.

(2) A purely transcendental extension is separable.

(3) In the case of algebraic extensions both definitions of separability coin-
cide. Indeed, assume that a € K is algebraic over k and separable in the
sense of Definition 2.21. Let V be a K-space and endow it with a k[X]-
module structure as follows, for g € k[X] and v € V, then ¢ - v = g(a)v.

Extend an arbitrary derivation D : k — V to D’ : k[X] — V by the
rule: D'(X) = —(3 D(a;)a’/f'(a)), where f = Y a;X" is the minimal
polynomial of a with coeflicients in the base field k. It is easy to prove that
D’(f) =0 and hence, that D’ factors to a derivation D" : k(a) — V.

Conversely, if we call f = Irr(a,k) € k[X], we want to prove that
f'(a) # 0. If f'(a) = 0 we deduce that f divides f’, and this may only
happen if f' = 0, i.e. if for some polynomial g € k[X], f(X) = ¢g(X?). This
means that the elements 1,a?,...,a? 1) are linearly dependent over k,
where d = [k(a) : k]. But this contradicts the fact that 1,a,...,a% ! are
linearly independent and Definition 2.23.

In the case of a separable extension, one can find a transcendence basis
with special properties. The proof of this classical result will be omitted.

THEOREM 2.25. Assume that the extension k C K is separable and
finitely generated. Then there exists a finite transcendence basis B such
that the tower of extensions k C k(B) C K has the lower part purely tran-
scendental and the top part separable algebraic.
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PROOF: See [156, Chap. II, Thm. 30]. O

The next theorem relates the transcendence degree of a separable finitely
generated extension with the dimension of the space of derivations Dy (K).

THEOREM 2.26. Assume that the extension k C K is separable and
finitely generated. Then tr. degy K = dimg Dk (K).

PROOF: See for example [71, Chap. III]. |

The next lemma will be presented without proof.

LEMMA 2.27. Let k be an algebraically closed field and S C R be an
extension of integral domain k—algebras and assume that R is finitely gen-
erated as an S—algebra. If 0 # r € R, there exists an element 0 £t € S
with the property that every homomorphism of k—algebras o : S — k such
that a(t) # 0, extends to a homomorphism of k—algebras from R into k,
such that a(r) # 0.

PROOF: See for example [71, Thm. I1.3.3]. O

The result that follows will be used when dealing with the structure of
homogeneous spaces in Chapter 7.

LEMMA 2.28. Let S C R be an extension of k—algebras that are also
integral domains and assume that R is finitely generated over k. Assume
that an element r € R has the following property: if a, 0 : R — k is a pair
of k—algebra homomorphisms that coincide over S, then a(r) = ((r). Then
r € R is algebraic and purely inseparable over [S].

PRrROOF: We prove first that r is algebraic over [S]. Assume that this
is not the case, and consider S[r] C R. Using Lemma 2.27 we deduce
that there exists an element 0 # ¢t € S[r] with the property that every k—
algebra homomorphism ~ : S[r] — k such that v(¢) # 0 extends to R, with
v(r) # 0. Write t = sg + s17 + -+ + $,7" with s; € S and s, # 0. Using
the Nullstellensatz 2.16 we deduce the existence of a homomorphism of k—
algebras 7 : R — k such that (s,) # 0, and by restriction to S we obtain
a homomorphism of k-algebras ¢ : S — k with the same property. It is
clear that in order to extend 7o to S[r] all we have to do is to assign a value
to r. Assume that v; is an extension of vy and such that ~;(¢) = 0. Then
0 = 0(s0) +70(s1)71(r) +- - +70(sn)71(r)". Hence, if we assign a value to
~1(r) that is not a root of the above polynomial, we obtain an extension of
the original morphism not vanishing at . There are then infinite extensions
of 79 to R and this contradicts the hypothesis about 7.

The proof that r is purely inseparable is similar. Call p the character-
istic exponent of the base field, and assume that r is not purely inseparable



12 1. ALGEBRAIC GEOMETRY

over [S]. Then for some exponent m > 0 the element rP" is separable, alge-
braic over [S] and does not belong to [S]. After eliminating denominators we
can find 0 # s € S such that if we call t = sr?” | then f = Irr(¢, [S]) € S[X],
with deg(f) =n > L.

Proceeding as before we can find v = sg + 51t + - - - + s;t!, where s; # 0,
and ! < n, with the property that all k-algebra homomorphisms ~ : S[t] —
k that do not annihilate u can be extended to R. Call g = sg + s$1X +
o+ 51X € S[X]. As f,g, as well as f, f', are relatively prime over[9],
there exist polynomials h,k,q,w € S[X] and non zero elements e, e’ € S
such that hf + kg = e, qf + wf' = ¢. We use the Nullstellensatz to
construct 3 : S — k, such that B(ee’) # 0. Given an arbitrary polynomial
in z € S[X] we call z; € k[X] the polynomial obtained by applying 3 to
the coefficients of z. It is clear in the above construction that (z1) = (2')1
and that if z is monic the degree of z; coincides with the degree of z. Then,
hifi +kigr = B(e), qi.fi + w1 f{ = B(¢'). Hence, the polynomials fi and g1
are relatively prime and the same happens with f; and f].

Then, f; has n roots in k and none of these roots is a root of g;, and
in this way we can obtain n different extensions of 3 to algebra homomor-
phisms from S[t] into k and none of them annihilates u. Hence all these
extensions, extend further to R. This is a contradiction because if 3 is such
an extension, then 8'(t) = B(s)3'(r)?" and all the values of 3(r) should
be equal by hypothesis. O

THEOREM 2.29. If K is a field and G is a group of field automorphisms
of K, then the extension “ K C K is separable.

PROOF: See for example [71, Thm. II1.2.3] or [10, Prop. AG.2.4]. O

2.4. Faithfully flat ring extensions

DEFINITION 2.30. A commutative ring extension S C R is said to be
faithfully flat if for all sequences of S—modules: £: 0 —- M — N —- T — 0,
Eisexactifandonly if E®s R: 0> M s R—- N®RsR—-T ®s R—0
is exact.

Note that if the extension S C R is free, i.e. if R is free as an S—module,
then it is faithfully flat.

OBSERVATION 2.31. In the situation of Definition 2.30, S C R is a
faithfully flat ring extension if and only if:

(1) for all injective morphisms o« : M — N of S—modules, the morphism of
R-modules, id®a: R®s M — R®g N is injective;

(2) if M is an S-module such that R ®¢ M = {0}, then M = {0}.

See Exercise 3.
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LEMMA 2.32. Let S C R be a finitely generated commutative ring ex-
tension of integral domains. Suppose we can find s1,...,8, € S such that:
(1) the elements s1,..., S, generate the unit ideal of S; (2) Rs, is faithfully
flat as an Ss,—module. Then R is faithfully flat as an S—module.

PrROOF: We use here Observation 2.31. First suppose that M is a S—
module such that M ®g R = 0. Then M ®s R ®r Rs, = 0 or equivalently
M ®s Rs; = 0. Therefore, M ®g Ss, ®s,, Rs, =0 and from the hypothesis
we conclude that M ®g S;, = 0. Hence, for an arbitrary m € M there
exists an exponent ¢ such that for all 1 < i < n, sfm = 0. As the ideal
generated by {s{,...,s2} is also the unit ideal, we conclude that m = 0.
Hence, M = 0.

Assume that « : M — N is an injective morphism of S—modules. Then
id®a: S, ®s M — S5, ®s N is injective and so is

id®id®a: Ry, ®s,, Ss, ®s M — Ry, ®s, S, ®s N .

Hence, the morphism id®a : Rs;, ®s M — R, ®s N is injective.
Looking at the diagram

Ros M id @a Ros N

i |

Rsi ®SMT®Q>RS"L ®s N

we deduce that if an element Y r, ® mp € R ®g M satisfies that 0 =
dSrp®@a(my) € R®sN, then0=> rp®@my € R;,®sM foralli =1,...,n.
From Exercise 3 (d), we deduce that 0 =) r, ® m € R®g M. O

2.5. Regular local rings

In this section we deal with the algebraic version of the concept of non
singular point (see Definition 4.101 below). The relevant idea is the concept
of regular local ring.

Let R be a commutative integral noetherian local ring and M its max-
imal ideal. It follows from general results in dimension theory of commuta-
tive rings (see for example [3, p. 119]) that the cardinality of an arbitrary
set of generators of M as an R—module is larger than or equal to the Krull
dimension of R.

DEFINITION 2.33. In the above situation, we say that the ring R is
regular if M has a set of R—module generators of cardinality x(R), the
Krull dimension of R.
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The following basic result will be interpreted in geometric terms in
Theorem 4.108.

THEOREM 2.34. Let R be a noetherian reqular local ring, then R is an
integral domain that is also integrally closed in its field of fractions.

PROOF: See for example [3, Lemma 11.23] or [71, Cor. XI.4.2]. O
In the case of rings of Krull dimension one, i.e. in the case of curves,
there is an easy criterion for regularity.
THEOREM 2.35. Assume that R is a noetherian local integral domain
of dimension 1. Then the following conditions are equivalent:
(1) R is a discrete valuation ring;
(2) R is integrally closed;
(8) R is a regular local ring;

(4) the mazimal ideal of R is principal.

PROOF: See [3, Chap. I. Prop. 9.2.]. O

3. Algebraic subsets of the affine space

From now on we assume that k is an algebraically closed field.

3.1. Basic definitions

DEFINITION 3.1. Consider the map V from the family of subsets of
k[Xy,...,X,] to the family of subsets of k™,

V(S)={(a1,...,an) €K": f(a1,...,a,) =0,V f € S},

where S C k[X1,...,X,]. The image of the map V is the family of closed
sets of a topology of k™, called the Zariski topology. The set k™ when
endowed with the Zariski topology will be denoted as A™ and called the
affine space. An algebraic set is a Zariski closed subset of A™, for some
n > 0. If S C A™ is a subset, the Zariski topology of S is the topology
induced by the Zariski topology of A™.

The above is the basic construction for developing the local theory of
algebraic varieties over a field k.

OBSERVATION 3.2. In the situation above we have that:

(1) The map V is determined by the values it takes on the ideals of the
algebra k[X,..., X,]. Indeed, if S is an arbitrary subset of the polynomial
ring and (S) is the ideal generated by S then V(S) = V((S)) = V(1/(9)).
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(2) If I and J are ideals in the polynomial ring, and I = v/.J, then
V(I) =V(J) =V(VI).

(3) An arbitrary algebraic subset of k™ is always the set of zeroes of a finite
number of polynomials. Indeed, if X C k™ is algebraic, then X = V(I)
for some ideal I in the corresponding polynomial ring. As I = (f1,..., fm)
for a finite set of polynomials (see Appendix, Theorem 3.10), we have that

X=V(f1,.-, fm)

Next we reverse the above construction and associate to an arbitrary
subset of A™ an ideal in the polynomial ring k[X7, ..., X,].
DEFINITION 3.3. Let X C A” be a arbitrary subset. Call
I(X) = {f €k[Xy,...,X] : flx =0} Ck[Xy,...,X,].
Notice that Z(X) is an ideal of k[X71,..., X,].

Below we list — and leave as an exercise for the reader to prove — the
basic properties of the maps Z and V. See Exercise 5.

LEMMA 3.4. Consider an algebraically closed field k and the maps V
and Z defined above.

(1) If S C T C k[Xy,...,X,], then V(T) C V(S). Also, V({0}) = A™ and
V(k[X,..., X,]) = 0.

(2) If {Sa}a is a family of subsets of kK[X1,...,X,], then V(U, Sa) =
Mo V(Sa)-

(8)IfI1,J Ck[X1,...,X,] are ideals, then V(IJ) =V(INJ) = V(I)UV(J).
(4) If X C Y C A", then Z(Y) C I(X). Z(0) = k[X4,...,X,] and
Z(A™) ={0}.

(5) If X,Y C A", then (X UY) = Z(X) N Z(Y).

(6) If {Xa}a are closed subsets of A™, then (N, Xa) =X, Z(Xa).

(7) If X C A™ then, X C V(Z(X)).

(8) If I is an ideal in kK[X1,...,X,], then I C VI C Z(V(I)).

(9) The image of T consists of radical ideals.

OBSERVATION 3.5. In accordance with Lemma 3.4 parts (7) and (8),
if X C A", then X C V(Z(X)) and if I C k[z1,...,2,] is an ideal, then
I C Z(V(I)). These inclusions are not necessarily equalities: take for
example X =k \ {0} C k, and I = (2?) C k[X] and perform the explicit
computations.

~ LeEmwMmA 3.6. If X C A" is an arbitrary subset of the affine space and
X denotes its closure, then X = V(Z(X)).
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PROOF: The proof of this lemma is left as an exercise (see Exercise

6). O
LEMMA 3.7. Let X C A™ be an arbitrary subset. Then
I(X)= [] (Xi—a1,..., X0 —an).
(a1,...,an)EX

Proor: If f € Z(X), then f(ay,...,a,) =0 for all (ay,...,a,) € X,
and thus f € (X1 —ay,..., X, — ayp) for all (a1,...,a,) € X (see Exercise
2). Conversely, if f € (X1 —aq,...,X,—ay), it is clear that f(a1,...,a,) =
0. O

Another version of Hilbert’s Nullstellensatz guarantees that the equal-
ity VI = Z(V(I)) holds. This result is due to D. Hilbert (see [59], [60]).

THEOREM 3.8 (Hilbert’s Nullstellensatz). Let I be an ideal in the poly-
nomial ring I Ck[X1,...,X,], then VI =Z(V(I)).

PROOF: Recall that (see Theorem 2.20)
VI = n{M Ck[X1,...,X,] : I C M, M maximal ideal} .

If M is maximal, then M = (X;—ay4, ..., X,,—a,) for some ay, ..., a, €
k (see Theorem 2.17). Clearly, I C (X; — ay,..., X, — a,) if and only if
flay,...;a,) =0for all f €I, ie.if and only if (ay,...,a,) € V(I). Thus,
we conclude that

VI=({(Xi—a.... X, —an) Ck[X1,...., X, (a1,...,0,) € V) }.

By Lemma 3.7, Z(V(I)) = Naramevn (X1 —ar, ..., Xn —ap). Itis

,,,,,

then evident that vI = Z(V(I)). O

COROLLARY 3.9. If we fiz n and restrict the domain of the map I to
the family of algebraic subsets of A™ and the domain of V to the family of
radical ideals of k[X1,...,X,], the maps V and I are inclusion reversing
inverse isomorphisms. Moreover, this correspondence takes points of A™
into mazimal ideals of kK[ X1, ..., Xp].

PROOF: The proof of this result follows easily from the preceding lem-
mas. (|

EXAMPLE 3.10. (1) Let k be an algebraically closed field, then the
algebraic subsets of A =k are ), A! and finite subsets of k.

(2) The reader should be aware that many of the above conditions fail dras-
tically for non algebraically closed fields. For example, the ideal generated
by X? + 1 C R[X] is maximal, but its zero set in R? is empty.
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3.2. The Zariski topology

DEFINITION 3.11. Let f € k[X1,...,X,] and consider the open subset
of A™,

?:A”\ffl(O) = {(al,...,an) e A" f(ay,...,ay) #0}
If X is an arbitrary algebraic subset of A", and f € k[Xq,...,X,] then
Xy =X\ f710) = X NA%} is open in X. The open subsets X; will be
called the basic open subsets of X.

LEMMA 3.12. In the situation of Definition 3.11, the family of open
sets {A}L : fek[Xy,... 7Xn]} form a basis for the Zariski topology of A™.
Similarly, the family of the open subsets {Xf : fek[Xy,... 7Xn]} form a
basis for the Zariski topology of X.

PROOF: The proof of this result is left as an exercise (see Exercise
7). |

As the reader can easily see in example 3.10, the Zariski topology in
general is not Hausdorff. In fact, an algebraic set is Hausdorff if and only
if it is a finite collection of points (see Exercise 8).

We leave as an exercise the proof that algebraic sets are quasi—compact
(see Exercise 9).

LEMMA 3.13. The Zariski topology when restricted to an arbitrary al-
gebraic set of an affine space is noetherian.

PROOF: Clearly it is enough to prove this result for A™. The family of
all closed, i.e. algebraic, subsets of A™ is in bijection with the family of radi-
cal ideals of k[ X7, ..., X,,]. But, since the polynomial algebra is noetherian
(see Appendix, Theorem 3.10), the ascending chains of ideals stabilize and
hence the same happens with the descending chains of algebraic subsets of
A™. O

In an informal sense, the noetherian property tells us that in the Zariski
topology the open subsets are large (see for example Theorem 3.15) and
this accounts for the rigidity of the theory.

DEFINITION 3.14. A topological space X is reducible if it is the union
of two proper closed subsets. It is irreducible if this is not the case. An
irreducible component of X is a maximal irreducible subset of X.

THEOREM 3.15. (1) A topological space X is irreducible if and only if
any two non empty open subsets intersect, i.e. UNV # O for all U,V C X
non empty open subsets.

(2) The closure of an irreducible set is irreducible.

(8) The irreducible components of a topological space are closed.
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Proor: This is an easy exercise in general topology. (I

OBSERVATION 3.16. The reader must be careful at not to confuse ir-
reducibility with connectedness. Clearly an irreducible topological space
is connected. Since for a Hausdorff topological space given two different
points we can find two disjoint non empty open subsets, an irreducible
Hausdorff topological space is necessarily a point.

OBSERVATION 3.17. If S is an arbitrary irreducible subset of X, then
there exists an irreducible component Z of X that contains S.

Indeed, consider the family Fg consisting of all irreducible closed sub-
sets of X that contain S with the order given by the inclusion. If {Z;}icr
is a chain in Fg, then Z7 = UlE ; Z; is an irreducible closed subset of
X that contains S, i.e., Z € Fg. To prove this assertion assume that
P=UNZ)N(VNZ)=UNVNZ,U,V open in X, with UNZ # (. Then
UNZ; #0forsome i€l ThusUNZ;#0and UNV NZ; =0 for any
Z; D Z;. As Z; is irreducible, it follows that V N Z; = () for every Z; D Z;
and hence for every j € I, VN Z; = 0.

Then, VNZ =, and Z is irreducible. Using Zorn’s lemma we conclude
that every irreducible subset of X is contained in a maximal irreducible,
i.e., in an irreducible component.

LEMMA 3.18. Let X be a noetherian topological space. Then in X
there are at most a finite number of irreducible components. Moreover,
X =i, Xi, where {X1,...,X,} are the irreducible components of X .

Proor: Let X, j € J, be the family of irreducible components of X —
as we observed before this family is non empty. Since points are irreducible,
it follows that X =J,c, X

We prove now that an arbitrary non empty closed subset of X can be
written as a finite union of irreducible subsets. If not, call F the family of
the closed subsets of X that cannot be written as above and take X_., a
minimal set in this family. If X_ ., is irreducible we have a contradiction.
Contrary-wise write X_,, = Xg U X1, with Xg,X; € X_ closed in X.
Since Xy, X1 € F, we have a contradiction.

Assume now that X = U?Zl X;, X; irreducible, and eliminate all re-
dundancies, i.e., assume that there are no inclusion relations between the
X;. If Zisan 1rredu(:1ble component of X we have that Z = (J!_,(X;N2),
then, using the irreducibility of Z we conclude that for some 1 S i < n,
Z = ZNX,;. Then, Z C X; and hence, Z = X;. O

EXAMPLE 3.19. The algebraic subset V(XY) C k? (the union of the
two coordinate axes) is reducible, with irreducible components V(XY) =
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{(0,0) : b € k} U{(a,0) : a € k}. It is very easy to see that the lines
{(0,6) : b € k} and {(a,0) : a € k} are irreducible.

The irreducibility of an algebraic set can be completely characterized
in terms of the corresponding ideal.

THEOREM 3.20. An algebraic set X C A™ is irreducible if and only if
Z(X) is a prime ideal. In particular, A™ is irreducible.

Proor: Let X be an irreducible algebraic subset and suppose that
f.g € k[X1,...,X,] are such that fg € Z(X). Consider the union V(f) U
V(g) = V(fg). Since fg € Z(X), it follows that X C V(fg). Thus, either
X CV(f) or X C V(g). We suppose without loss of generality that X C

V(f). Then \/(f) C Z(X), and thus f € Z(X).

Suppose now that Z(X) is a prime ideal. Let X = YUZ, with Y = V(I),
Z = V(J) two closed subsets. Then X = V(I.J), and thus Z(X) = VIJ D
IJ. Suppose there exists a polynomial f € I\Z(X). Since fg € IJ C Z(X)
for any g € J, and Z(X) is prime, it follows that J C Z(X), and thus X C Z.
This concludes the proof. O

OBSERVATION 3.21. Let f € k[Xy,...,X,] and consider the corre-
sponding function f : A" — k. Then the function f is continuous in the
Zariski topology. Indeed, f~1(a) = V(f — a).

3.3. Polynomial maps. Morphisms

OBSERVATION 3.22. Let X C A™ be an algebraic set and call kX the al-
gebra of all functions from X into k. Consider the map R : k[X1,..., X,] —
kX, defined by the restriction of functions, i.e., R(f) = flx. If I =
Z(X) is the ideal of X, it is clear that the image of R is isomorphic to
k[X4,...,X,]/I. Observe also that for f € k[Xq,...,X,] the function
R(f) : X — k, being the restriction of a continuous function, is also con-
tinuous.

DEFINITION 3.23. Let X C A" be an algebraic subset. We say that
a function of k¥ is a regular function or that it is a polynomial on X
if it is the restriction to X of a polynomial in A", i.e., if it belongs to
R(k[X1,...,Xn]). We denote the set of polynomial functions as k[X].

OBSERVATION 3.24. As k[X] C k™ is R(k[X1,...,X,]), it follows that
the algebra k[X] is isomorphic to k[X1,...,X,]/Z(X) (see Observation
3.22).

OBSERVATION 3.25. If we call Cz,,(X) the subalgebra of kX consisting
of the functions on X continuous with respect to the Zariski topology, it
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is clear that k[X] C Czay(X). Notice that there exist continuous functions
that are not regular. See Exercise 18.

OBSERVATION 3.26. Since the ideals of k[ X1, ..., X,]/I correspond to
the ideals of k[X7,...,X,] that contain I, the closed subsets of X in the
Zariski topology correspond to the ideals in k[X]. In particular, the points
in X correspond to the maximal ideals of k[X]. It is also clear that the

basis for the Zariski topology of an algebraic set X considered in Definition
3.11is { Xy : f e k[X]}.

DEFINITION 3.27. In the case that X and Y are abstract sets and
F: X —Y is a function, define a k-algebra homomorphism F# : k¥ — k¥

as F#(f) = foF.

The following definition of morphism between algebraic sets generalizes
and is motivated by the construction of k[X].

DEFINITION 3.28. Let X C A™Y C A™ be algebraic sets. A morphism
of algebraic sets F' : X — Y is a set theoretical function from X into Y
with the property that F# (k[Y]) C k[X]. Morphisms of algebraic sets are
also called regular maps or polynomial maps.

OBSERVATION 3.29. (1) If F': X — Y is a morphism of algebraic sets,
we denote the restriction F#|yy| also as F# : k[Y] — k[X].

(2) The reader is asked to prove as an exercise (see Exercise 15) that,
in the situation of the above Definition 3.28, if X C A™ and Y C A™,
a function F' : X — Y is a morphism of algebraic sets if and only if
there exists polynomials fi,..., fm € k[X1,...,X,] such that if we call
G=(f1,-.., fm): A" — A™ then G|x = F (see also the proof of Theorem
3.32). In other words, the morphisms of algebraic sets are the restrictions
of m—uples of polynomials viewed as maps in the ambient space. In par-
ticular the morphisms from A™ to A™ are the m—uples of polynomials in n
variables.

LEMMA 3.30. Let X C A™Y C A™ be algebraic sets and assume that
F: X — Y is a morphism of algebraic sets. Then, the map F# : k[Y] —
k[X] is an algebra homomorphism.

PRrROOF: The proof follows immediately from Definition 3.28. O

OBSERVATION 3.31. The reader should be aware that the notation F#
for the map k[Y] — k[X], f + foF, is not uniform in the literature, see
for example [10], [55], [123].

The next theorem shows that the geometry of the algebraic sets can be
considered as part of commutative algebra.
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THEOREM 3.32. The contravariant functor
X —k[X], (F: X —Y)— (F* :k[Y] — k[X])

is an isomorphism between the category of algebraic sets and morphisms
of algebraic sets and the category of affine k—algebras and morphisms of
k—-algebras.

PrROOF: Let A be an affine k—algebra; it can be written as A =
k[X71,...,X,]/I, where I is a radical ideal. Call X = V(I) the alge-
braic subset of A" consisting of the zeroes of I. Clearly k[X] = A. As-
sume now that X and Y are algebraic subsets of A™ and A™ respectively,
and that o : k[Y] — k[X] is a morphism of algebras. Write k[Y] =
k[Y1,..., Y]/ Z(Y) and k[X] = k[X},..., X,]/Z(X). Define polynomials
fi €k[Xy,...,X,],i =1,...,m by the formulae oz(Yi +I(Y)) = fi+Z(X),
and consider the map & : k[Y7,...,Y,,] — k[X1,..., X,;] given by extending
multiplicatively the map that sends a(Y;) = f;, for i = 1,...,m. Then, the
diagram below commutes

k[Y17"‘7Ym] k[leaXn]

l |

K[Yi,. .., Vil /T(Y) —= K[X1, ..., Xu]/Z(X)

Consider the map F' = (f1,..., fm) : A" — A™. We want to prove
that F(X) C Y and that F# = o (see Lemma 3.30). If f € k[Y1,..., Y]
then foF = f(f1,..., fm) = f(@Y1),...,0(Yn)) = a(f), i.e., F* = a.

Also, if f € Z(Y), then foF € Z(X) and hence map F' sends X into
Y. O

LEMMA 3.33. If X C A™ is an algebraic set, then the elements of k[ X]
separate the points of X. In other words, given x # y € X, there exists
f € k[X] such that f(x) =0, f(y) # 0. More generally, if Y C X is a
closed subset and x ¢ Y, then there exists f € Z(Y') such that f(x) #0

PROOF: Since z ¢ Y, the maximal ideal M, does not contain Z(Y).
Hence, there exists f € Z(Y) \ M,. O

DEFINITION 3.34. (1) Let X be an algebraic set, z € X and U, be an
open subset of X containing x. We say that a function h : U, — k is regular
at z, if there exist an open subset x € V C U, and functions f,g € k[X],
such that g(y) #0 for all y € V and hly = (f/g)|v.

(2) We call Ox ,, the local ring of X at x, the ring of functions that are
regular at x.
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(3) If U is an open subset of X we define the ring of regular functions on
an open subset U as the ring of the functions f : U — k that are regular at
every point of U. We denote this ring as Ox (U).

OBSERVATION 3.35. Observe that in the above definition there is no
loss of generality if we ask V' to be a basic open subset of X.

LEMMA 3.36. (1) Let X be an algebraic set and x € X, then Ox 5 =
k[Xpsr, where M, is the mazimal ideal in the ring k[X] corresponding to
x.

(2) If X is an irreducible algebraic subset, and 0 # f € k[X], then k[X]; =
Ox(Xy), and in particular Ox(X) = k[X].

PROOF: (1) There exists an injective map k[X|p, — Ox . Indeed,
if we consider f/g with f,g € k[X] and g(z) # 0 and take X, it is clear
that g does not vanish in X, and then the quotient f/g represents an
element in Ox ;. If h € Ox , is an arbitrary element, one can represent
h as the quotient f/g of two polynomials f,g € k[X], with g(z) # 0, in a
conveniently chosen neighborhood of x. It follows that the above morphism
is surjective.

(2) It is clear that k[X]; injects into Ox(Xs). Consider an element g €
Ox(Xy), then g € Ox, for all € X; or equivalently, g € k[X|um
for all the ideals M corresponding to points of X;. Now, z € X if
and only if f(x) # 0, if and only if f ¢ M, where M is the maximal
ideal corresponding to the point x. In other words, g € Ox(X/) if and
only it g € k[X]as for all maximal ideals M C k[X] such that f ¢ M,

, Ox(Xy) = ({k[X]y : f € M, M C k[X] is maximal}. But, the
locahzatlon map establishes a bijective correspondence between the set
of maximal ideals of k[X] that do not contain f and the set of maxi-
mal ideals of k[X }f Mowover as k[X]y = (k[X];)n, we conclude that
Ox(Xs) = N{ (k] : M C K[X], M is maximal} = k[X];. For this
last equality see Appendlx Observation 3.15. (]

OBSERVATION 3.37. If U C V C X are open subsets, the restriction of
functions from V to U induces a morphism of k—algebras pyy : Ox (V) —
Ox(U).

Given two open subsets U,V C X, f € Ox(U) and g € Ox(V), such
that flunv = glunv, the function h : U UV — k defined as: h(x) = f(z)
ifxeU, h(z) =g(x) if z € V, belongs to Ox (U UV).

Then the assignment U — Ox (U) together with the restriction maps
form a sheaf of rings in the topological space X (see Section 4.1, and in
particular Example 4.6).
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COROLLARY 3.38. (1) Let X be an irreducible algebraic subset and
U C X an open subset. Then every function f € Ox(U) is continuous.
(2) If X and Y are affine algebraic sets and f : X — Y is a morphism

of affine algebraic sets, then for any V open subset of Y the map given by
composition with f sends Oy (V) into Ox (f~1(V)). O

The last assertion of the above Corollary is better interpreted in terms
of morphisms of sheaves (see for example Observation 4.39).

4. Algebraic varieties

In this section we continue with the development of algebraic geometry
by defining the category of algebraic varieties.

4.1. Sheaves on topological spaces

DEFINITION 4.1. A presheaf of rings F on a topological space X as-
sociates to each open subset U C X a ring F(U) and to each pair of open
subsets U C V C X a morphism of rings pyy : F(V) — F(U) such that:

(a) F(0) = {0};
(b) puv = idz @y for all open subsets U C X;
(c)if U CV C W C X are three open subsets, then pwy = pyuopwv;
We say that F is a sheaf of rings, or simply a sheaf if it also satisfies:
(d) for every open subset U C X, for every cover {V;}ic; of U by open sub-
sets, and for every family s; € F(V;) such that pv, v,nv, (s:) = pv, vinv; (55)
for all 4, j € I; there exists s € F(U) such that pyv,(s) = s; for all i € I;
(e) if U and {V;}ier are as in (d) and s € F(U) is such that pyy,(s) =0
for all ¢ € I, then s = 0.
For U C X open, the ring F(U), is called the ring of sections of F on
U and the maps pyy are called the restriction maps. The elements of F(U)
are called the sections of the sheaf on U.

If F is asheaf on X, a subsheaf G C F is a sheaf such that G(U) C F(U)
is a subring, for all open subset U C X.

OBSERVATION 4.2. (1) Most of the sheaves used in this book are shea-
ves of k—algebras — i.e. the rings F(U) are k—algebras, and the restriction
maps are morphisms of k—algebras. In this context, by a subsheaf we mean
a subsheaf such that G(U) is a subalgebra of F(U) for all U open subset of
X.

(2) Usually — and the motivation for this abuse of notation will become
clear in what follows — if U C V and s € F(V), we write s|y = pyu(s).
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(3) If X is a topological space a more formal definition of a presheaf on X
would be the following. Consider the topology 7 as a category — viewing
it as an ordered set. A presheaf on X is a contravariant functor from
the topology into the category of rings. In this interpretation sheaves are
functors satisfying certain equalization properties.

ExAMPLE 4.3. Let X and Z be topological spaces. To each open subset
U C X we associate the set of continuous functions from U to Z, and if
V C U are open, we consider the restriction of functions from U to V.
Since continuity is a local property, in this manner we obtain a sheaf. If
Z =R, this is a sheaf of R—algebras.

DEFINITION 4.4. Let F be a presheaf of rings on X, and x € X. We
define the stalk F, of F at x as the direct limit of the directed family of
rings {}"(U) cx e U, pyy,U CV open in X}.

OBSERVATION 4.5. (1) Explicitly, F, is the quotient of the set of pairs
{(U,s):s€ F(U)xz € U open in X} with respect to the equivalence rela-
tion: (U, s) ~ (V,t) if and only if there exists an open set xt € W C VNU
such that s|lw = t|w.

(2) Notice that for all z € X the fiber F, is a commutative ring, and a
k—algebra if the F is a presheaf of k—algebras.

(3) If U C X is an open subset, then the canonical map associated to
the direct limit is a ring homomorphism for all x € U — recall that this
canonical map F(U) — F, sends s € F(U) into the equivalence class of
the pair (U, s).

The image of s in the stalk F, can be thought as the value of s at x.
Thus, the stalk F, represents the germs of the sections of F at x, and a
section s € F(U) can be thought as a function s : U — | | . F» such that
s(z) € F, — the symbol | | represents the disjoint union. Notice that not
all functions as above produce elements of F(U), as the elements of F(U)
satisfy additional coherence properties.

The following example is central in the development of the theory of
algebraic varieties.

EXAMPLE 4.6 (The sheaf of regular functions). Let X C A™ be an
algebraic set. In accordance to Definition 3.34 we associate to each open
subset U C X the algebra of regular functions Ox(U). This, together
with the restriction maps, produces a sheaf of k—algebras on X, called the
structure sheaf of X and denoted as Ox.

It is more or less obvious that Ox satisfies properties (a), (b), (c¢) and
(e) of Definition 4.1. Condition (d) follows from the local character of the
definition of regular function.
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We leave as an exercise the proof that the stalk of the sheaf Ox is what
we called Ox , in Definition 3.34 (see Exercise 24).

DEFINITION 4.7. Let F and G be two presheaves of rings on a topo-
logical space X. A morphism ¢ : F — G consists of a family of ring ho-
momorphisms {¢(U) : F(U) — G(U),U C X, U open} such that whenever
there is an inclusion U C V' C X of open subsets, the following diagram is
commutative:

p(V)
—_—

FU U
V) 5 6(0)

If 7 and G are sheaves, a morphism of sheaves from F to G is a mor-
phism of presheaves. The morphisms ¢(U) will frequently be denoted as
v F(U) — G(U).

OBSERVATION 4.8. (1) A morphism of sheaves ¢ : F — G induces, for
all x € X, a ring homomorphism ¢, : F, — G,.
(2) We say that ¢ is injective (resp. surjective) if ¢, is injective (resp. sur-
jective) for all z € X.
(3) Considering presheaves as functors (see Observation 4.2), the morphisms

between presheaves can be interpreted as natural transformations between
the functors.

(4) If the presheaves have additional structure, for example if they are
presheaves of k—algebras, we additionally require in the definition of mor-
phism that for all open sets U of the base space X, the maps p(U) are
morphisms of k—algebras.

DEFINITION 4.9. Let X,Y be topological spaces, F a sheaf of rings on
X,and f: X — Y a continuous function.

We define the direct image sheaf f.F as the sheaf on Y given as follows:
[ F(V) = F(f~4(V)), V C Y open, with restriction morphisms p{,va =
P?—l(v)f—l(w) : f(fil(v)) - f(fil(W))

OBSERVATION 4.10. Assume that X and Y are topological spaces and
call Cx and Cy the sheaves of k—valued continuous functions on X and Y
respectively — we endow k with the Zariski topology. Given a continuous
function f : X — Y we define a morphism of sheaves f# : Cy — f.Cx as
follows: if V' C Y is open, then féf :Cy(V) = fuCx (V) =Cx(fH(V)) is
given by composition with f.
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More generally, if f: X — Y is a continuous function, a pair of sheaves
of continuous k—valued functions Fx and Fy defined on X and Y respec-
tively, i.e. subsheaves of Cx and Cy respectively, are said to be f-compatible
if for all V. C Y open in Y, fif (Fy (V) C f. Fx (V) = Fx(f~*(V)). For
f—compatible sheaves, the diagram that follows is commutative

Cy AN f+(Cx)

Fy Hf*(fX

In explicit terms, the f—compatibility means that if V' C Y is an arbi-
trary open subset of Y and « : V' — k is a function on Fy (V), then the
function aof : f~1(V) — k belongs to Fx (f~1(V)).

4.2. The maximal spectrum
We need to introduce a few elements of the abstract theory of spectra
of commutative rings.

DEFINITION 4.11. Let A be a commutative ring, the prime spectrum
of A — denoted as Sp(A) — is the set

Sp(A {P C A : P is a prime ideal of A}

The subset Spm(A) = {M C A: M is a maximal ideal of A} is called
the mazimal spectrum of A.

DEFINITION 4.12. Let A be a commutative ring and call X = Sp(A4).
If f € A we define
X;={PeSpA):f¢&P}.
If Y = Spm(A), we define
Yi=X;NY =X;={MecSpm(A): f¢M}.

The proof of the theorem that follows is an easy exercise in commutative
algebra.

THEOREM 4.13. Let A be a commutative ring and X = Sp(A) or X =
Spm(A). Then the family of sets {Xf : f € A} considered in Definition
4.12, is the basis of a topology of X that is called the Zariski topology. A
subset Y C X is closed in this topology if and only if Y = {Q eX:QD I},
where I is an ideal of A. O



4. ALGEBRAIC VARIETIES 27

OBSERVATION 4.14. (1) The assignment A — Sp(A) can be extended
to a contravariant functor from the category of commutative rings to the
category of topological spaces. If a: A — B is a morphism of commutative
rings, we define a* : Sp(B) — Sp(4) as a*(Q) = a~1(Q) for a prime ideal
Q CB.

(2) If we consider the inclusion Z C Q, then the maximal ideal {0} C Q
when intersected with 7Z is not maximal. Hence, one does not have a natural
way to view Spm as a functor in all the category of commutative rings.

LEMMA 4.15. Let A and B be commutative finitely generated k—alge-
bras, a« : A — B a morphism of k—algebras and M € Spm(B). Then
a Y (M) € Spm(A). In other words, a* (Spm(B)) C Spm(A).

PROOF: Let M be a maximal ideal in B, consider M’ = a~!(M) and
the map @ : A/M’' — B/M. As B is a quotient of a polynomial algebra the
Nullstellensatz guarantees that B/M coincides with the base field k. Then,
as @ is k-linear and injective, we conclude that A/M’ is also the field k and
hence that M’ is a maximal ideal. O

The theorem that follows can be viewed as a more formal presentation
of Observation 3.26.

THEOREM 4.16. Assume that X is an algebraic subset of A™ and con-
sider Spm(k[X]) as defined before. Then the map vx : X — Spm(k[X])
defined as

ix(a, .. an) = (X1 —ay, ..., Xn — an) + Z(X) CK[X1, ..., X,]/Z(X),

s a natural homeomorphism when we endow the domain and codomain with
the corresponding Zariski topologies.

PROOF: The proof is a direct consequence of the theory developed
so far. We only verify the assertions concerning the topology. Consider
f € k[X]; then

tx (Xy5) = {<X1 —a1,..., Xn—an)+Z(X): flar,...,an) 750} =

{M CKk[X]: f ¢ M maximal }.
|

The triple (X,k[X],tx) is an example of the concept of “abstract”
affine algebraic variety (see Definition 4.17).

4.3. Affine algebraic varieties

In order to eliminate the dependency of an algebraic set on the affine
ambient space, we present the following intrinsic definition of affine alge-
braic variety.
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DEFINITION 4.17. Let k be an algebraically closed field. An affine
variety over k consists of a triple (X, A, ¢), where X is a topological space
— the underlying topological space of the affine variety — A is an affine
k—algebra — the algebra of regular functions of the affine variety — and
¢ : X — Spm(A) is a homeomorphism. If there is no danger of confusion
A is denoted as k[X], or Ox(X), and the affine variety (X, 4, ¢) is written
as (X,k[X]) or even as X.

A morphism of affine algebraic varieties with domain (X, A4, ¢) and
codomain (Y, B,) is a pair (f, f#), where f : X — Y is a continuous map
and f# : B — A is a morphism of k—algebras such that f#" : Spm(4) —
Spm(B) makes the diagram below commutative

X—Y

‘| |’

Spm(A) s Spm(B)

In accordance with the standard notations, we denote p(z) = M,.

EXAMPLE 4.18. Assume that (X, A, ¢) is an affine algebraic variety
and Y a closed subset of X. In this case Y also becomes naturally an affine
algebraic variety as follows. The homeomorphism ¢ : X — Spm(A) sends
Y onto ¢(Y'), that is a closed subset, and then

e(Y)={M C A:IC M maximal ideal of A}
for some ideal I C A (see Theorem 4.13).
Consider (Y, A/I7ap|y); as
Spm(A/I) = {M C A: I C M maximal ideal of A} ,

it is clear that (Y7 A/l gp\y) is an affine algebraic variety. Moreover, the
pair (¢, 7) is a morphism of affine algebraic varieties where ¢ : Y C X is the
inclusion and 7 : A — A/I is the canonical projection.

OBSERVATION 4.19. (1) Let X C A™ be an algebraic subset, in ac-
cordance with Theorem 4.16 the triple (X JK[ X, e X) is an affine algebraic
variety.

(2) In the Definition 4.17, if z € X, then the k—algebra A/M,, is canonically
isomorphic to k (see Theorem 2.17 and Lemma 4.15).

(3) The elements of A can be interpreted as functions on X as follows.
Consider the morphism of k-algebras tx : A — k¥ defined as tx(a)(z) =
a+ M, € A/M, =k. The map vx is injective because if tx(a) = 0, then
a € M, for all z € X, and it follows from Exercise 4 that a = 0. Hence, A



4. ALGEBRAIC VARIETIES 29

can be identified with a subalgebra of k¥, i.e., A is an algebra of functions
on X with values on the base field k. Observe that if a is fixed, then

{reX ix(a)w)#0}={reX:agM,}=
{reX:agp()}=
P~ ((Spm(4)),)

that is open in X. Hence, the functions of the form ¢x(a) are continuous.
We call 1x (4) = k[X].
(4) Viewing the k-algebra A as a subalgebra of kX as before, the map f#
can be visualized as the composition by f or in other words, the diagram
below is commutative.

#

B——A

kY 4f>]kX

This will be shown in Lemma 4.22.
Hence, in this situation the map f# is determined by f.

(5) It follows from the previous definitions above that an affine algebraic va-
riety is isomorphic to the affine algebraic variety associated to an algebraic
subset of some A™.

Indeed, if we have a triple (X, A, ¢) the affine k—algebra A is isomorphic

to a quotient k[ X7, ..., X,]/I, where I is a radical ideal. If we call X4 the
corresponding algebraic subset of A™, and consider (X A, Kk[X 4], tx A), it
is easy to show (and left to the reader as an exercise, see Exercise 25)
that the two affine algebraic varieties (X, 4, ¢) and (Xa,k[Xa],tx,) are
isomorphic.
(6) Let (X, A, ¢) be an affine variety and (X1, k[X1],¢x,), (X2, k[X2], tx,)
be affine varieties associated to the affine algebraic sets X; and X5, that
are also isomorphic to (X, A, p). Then the algebraic sets X; and X9 are
isomorphic (see Theorem 3.32 and Definition 3.28).

Observation 4.19 justifies the definition that follows.

DEFINITION 4.20. Let X be an affine variety. Consider an algebraic
subset Y isomorphic with X, call ¥ : X — Y an isomorphism. We define
the structure sheaf of X as Ox(U) = Oy ((U)), where Oy is as usual
the structure sheaf of Y. The restriction morphism is defined in the same
manner.
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OBSERVATION 4.21. (1) The construction of the structure sheaf above
is independent of the chosen isomorphism v, see Observation 4.19, (6).

(2) Referring to the situation of Example 4.18, if we consider the corre-
sponding associated structure sheaves on X and Y, then the morphism
1# : Ox — 1.(Oy), given by composition with the inclusion, is surjective.
Equivalently, if I is the ideal of k[X] associated to Y, then for an arbitrary
point y € Y the morphism k[X]y, — (]k[X]/I)My/I is surjective. This
follows immediately from the fact that the projection k[X]| — k[X]/I is
surjective.

Given two topological spaces X,Y underlying to affine algebraic vari-
eties, the following is a criterion to decide if a given continuous map between
X and Y is the first component of a morphism.

LEMMA 4.22. Let (X, A, ) and (Y, B,v) be affine algebraic varieties
and assume that f : X — Y is a continuous map. Then, f is the first
component of a morphism of affine algebraic varieties if and only if ao f €
k[X] C kX for all a € k[Y] C kY. Moreover, f* is uniquely determined by
f, as asserted in Observation 4.19.

PROOF: Assume that f is the first component of the morphism (f, 7).
Then the diagram below is commutative

f

X—Y

‘| |

Spm(A) ? Spm(B)

Given the morphism f# : B — A, if M is a maximal ideal of A there
is an isomorphism B/(f#)~1(M) = A/M and then, via the identification
of both sides with k, we see that b + (f#)~1(M) = f#(b) + M. It fol-
lows that the diagram below commutes (here we are using the notations of
Observation 4.19).

#
B——A

kY j’ kX
Indeed, we have that vx (f#(b))(z) = f#(b) + My = b+ (f#) "1 (M,)

and vy (b) (f(2)) = b+ ¥ (f(2)) = b+ (FF) (M) = b+ (f#)H(M,). As
k[Y] = 1y (B) and k[X] = ¢x(A), the conclusion follows.
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The converse is proved similarly. First observe that if wecallEx : X —
Spm (k[X]) the map defined as Ex(z) = Ker(e,), where €, : k[X] — k is
as usual the evaluation at x, the triangle that follows is commutative

/\

Spm(A Spm ])

This commutativity follows by explicit computations:
U (Ex(z)) = ok (Ker(e,)) = o5 (Ker(e,)) =
{ae A:ix(a) € Ker(e,)} =
{aeA:ix(a)(z)=a+¢(x) =0} =p(x

We define f#, i.e. the second component of the morphism of affine
varieties, by the commutativity of the diagram

f#

B——A

kY] —= kIX]

Considering the corresponding diagram at the level of the spectra, we
obtain another commutative diagram

Spm (k[X]) “°7% Spm (k[v])

* *
tx Lty

Spm(A) e Spm(B)

Next consider the diagram

X—Y

oo

Spm(A) —— Spm(B)

/X iy

Spm (k[X]) Spm (k[Y])

EX EY
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This diagram is formed by two triangular and two quadrangular blocks,
and the two triangles as well as the lower quadrangular block are commu-
tative. Hence, the commutativity of the central square (that is our thesis)
will follow from the commutativity of the diagram that follows, that is the
outer diagram of the above.

2N

Spm (k[ X]) Spm (k[Y])

(=of)"
The commutativity of this diagram is a direct computation. O

OBSERVATION 4.23. Let X be an affine variety and f € k[X]. Then the
basic open subset Xy C X can be viewed as an affine variety. In this sense
we interpret Xy as the triple (Xf,]k[X]f, Lf), where ¢y : X5 — Spm(]k[X]f)
is the map defined by the commutativity of the diagram

X; —L> Spm (k[X];)

X — Spm (k[X])

In other words, the map ¢y is the restriction of the homeomorphism ¢x
considered in Theorem 4.16. The reader should verify that if € X and M
is its associated maximal ideal, then f(x) # 0 if and only if f ¢ M. This
means that the restriction of ¢x has the codomain we need.

We show now how to give in an explicit way an isomorphism between
Xy and a closed subset in an affine space.

Assume that X C A" is irreducible and consider ¢ : Xy — X x Al
p(x) = (:v, ﬁ) The image of ¢ is the algebraic subset Y C X x Al C
A" x AV Y = {(z,2) : v € X,z € A, f(x)z — 1 = 0}. Tt is clear that ¥
is an algebraic subset of A"*1. In Exercise 26 we ask the reader to prove
that k[Y] = k[X]; and that the diagram below is commutative.

X ki

|

|
Spm (k[X];) == Spm(k[Y])
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It is clear that the map ¢ : Xy — Y is bijective and its inverse is the
restriction to Y of the projection p; : X x A! — X. To prove that ¢ is an
homeomorphism we only have to prove that it is continuous, as its inverse is
the projection that is clearly continuous. Take g € k[Y], we want to prove
that ¢ ~!(Y,) is open in X;. Now, z € ¢~ !(Yy) if and only if g(, ﬁ) #0.
If we multiply by a large enough power f7, then h(z) = f7(z)g(z, ﬁ) is
a polynomial in X, and then ¢~ 1(Y,) = X; N X,.

Observe that we have constructed X as the graph of the function %
One can show in general that if g : X — Y is a morphism of affine algebraic
varieties, then the graph of g is an affine variety (see Exercise 16).

EXAMPLE 4.24. Assume that A and B are commutative k—algebras.
The maximal ideals of A ® B are of the foom M ® B+ A ® N for M
and N maximal ideals of A and B respectively. Hence, as (abstract) sets
Spm(A® B) and Spm(A) x Spm(B) are isomorphic. See Appendix, Section
3.

Let X and Y be affine varieties. Then (X x Y,k[X]®k[Y]) is an affine
variety, when we endow the set X x Y with the topology induced by the
isomorphism X xY = Spm (k[X]®k[Y]). This topology in general is not the
product topology (see Exercise 19). Moreover, if X is an algebraic subset
of A™ and Y of A™, we can consider in a natural way X x Y as a subset
of A" and as such it is also an affine algebraic set. In Exercise 19 we
ask the reader to prove that in this case both structures of affine algebraic
varieties coincide. In particular the element > f; ® g; € k[X]|QKk[Y] can be
viewed as the function on X x Y given by (3 fi®g;)(z,y) = fi(2)g:(y).

In this context, it is instructive to describe explicitly the topology on
X x Y. A basis for the topology of X x Y is given as follows: for arbitrary
regular functions fi,..., fn € K[X], g1,...,9n € kK[Y], define

Uy frngign = {(@:9) € X XY 2 fi(@)gi(y) #0} .

i=1

Then, the family of subsets Uy, ... f..g1,....g 15 & basis for the topology of
X xY. Indeed, if )" f; ® g; a generic element of k[X]®Kk[Y], it follows from
Observation 4.23 that (X X Y)s g, is isomorphic to the affine variety
Spm(]k[X] ® k[Y])Zf@gi'
Ufi oo Frrgisensgn-

Moreover, it is clear that (X X YY)y .04 =

LEMMA 4.25. Let X be an affine algebraic variety. Then the diagonal
map A : X — X x X, A(z) = (z,x) is a morphism of affine varieties.
Moreover, A(X) is closed in X x X.
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PROOF: The composition of a regular function « = > f;®g; : X x X —
k with A yields the function « 0o A = 3" f;9; : X — k. Using Lemma 4.22
we conclude that A is a morphism of affine varieties. Moreover, the image
of A can be described as A(X) =V({f®1-1® f: f € k[X]}). Indeed,
the elements of k[X] separate the points of X (see Lemma 3.33); thus, given
(z,y) € X x X with x # y, there exists f € k[X] such that f(z) = 0 and

f(y) #0. Then, (f®1-1® f)(z,y) = f(z) — f(y) # 0. O

4.4. Algebraic varieties

DEFINITION 4.26. Assume that X is a topological space and that U
and V are open subsets of X such that each of them supports a structure
of affine algebraic k—variety. We say that U and V are compatible affine
charts, if for all W C UNV open in X, then Oy (W) = Oy (W) C k" (see
Observation 4.19 and Definition 4.20).

DEFINITION 4.27. Let X be a topological space. An affine k—atlas for
X — or simply an affine atlas — is a covering of X by open subsets U;,
i € I, such that each U; is equipped with a structure of affine algebraic
k—variety, in such a way that U; and U; are compatible for every i,j € I.
Two atlases are said to be equivalent if their union is also an atlas. A finite
atlas is an atlas with a finite number of affine charts.

LEMMA 4.28. Let X be a topological space that admits an affine k—atlas
{U;}icr- There exists a unique sheaf of k—algebras on X (denoted Ox ) such
that Ox (U;) = Oy, (U;) for all i € I. Moreover, if x € X, then the stalk
Ox » 15 a local ring.

PROOF: Given an open subset U C X we define Ox(U) as the k-
algebra of all the functions f : U — k such that for all ¢ € I, flyny, €
Ou,(UNy).

It is clear that Ox is a sheaf, and it follows from the very definition
that Ox(Ul) = OUi (Ul)

The uniqueness is also clear and the assertion about the stalks follows
from the fact that locally we are dealing with affine varieties whose stalks
are local rings. O

OBSERVATION 4.29. (1) If there is no danger of confusion we omit the
reference to the base field k, and refer to affine atlas and algebraic varieties
instead of affine k—atlas and algebraic k—varieties.

(2) If there is no danger of confusion we omit the subscript X in the struc-
ture sheaf of the algebraic variety and in the notation for the stalk. Hence
the variety will be denoted as (X, Q) and the stalk as O,.
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(3) It is important to observe (see the proof of the above lemma) that the
the structure sheaf is a subsheaf of the sheaf of continuous functions on the
topological space X with values in k. The continuity follows immediately
from the local definition of the sheaf.

(4) The stalk O, is also an augmented k—algebra. The augmentation map
is called ¢, : O, — k and is the evaluation at x. The kernel of this
augmentation map is the maximal ideal of O, that is denoted as M,.

OBSERVATION 4.30. If X is a topological space which admits an affine
atlas U;, ¢ € I, then the covering {U; : i € I'} induces a covering U; x U; of
X x X, and thus the open subsets of the affine variety U; x U; are a basis
for a topology in X x X. For this topology, U; x Uj is an affine atlas (see
Exercise 19).

First we define prevarieties that are obtained by pasting together affine
algebraic varieties. Then we add a “Hausdorff” separability condition to
obtain the general definition of algebraic variety.

DEFINITION 4.31. A structure of algebraic k—prevariety on a topological
space X is a equivalence class of finite k-atlases. If the (set theoretical)
diagonal morphism A : X — X X X has closed image (for the topology on
X x X considered in Observation 4.30) we say that the above is a structure
of algebraic k—variety.

An algebraic k—prevariety is a pair (X, Ox), where X is as above and
Ox is the corresponding structure sheaf. Similarly for an algebraic k-
variety.

OBSERVATION 4.32. If U;, i € I, is an atlas for the topological space
X, it is easy to show that the preceding closedness condition is equivalent
to the condition that for all 4,5 € I, A(U; NU;) is closed in U; x Uj.

OBSERVATION 4.33. In the more general context of schemes, the con-
dition of the diagonal being closed in the product is called the separability
condition. Lemma 4.78 and in Exercise 48 give some insight on the way
this condition is used in algebraic geometry.

The main example of a non affine algebraic variety is the projective
space.

EXAMPLE 4.34. Let n € N, and consider in A"*1\ {0} the equivalence
relation defined as x ~ y if and only for some A € k*, x = Ay — in geometric
terms x ~ y if and only if z and y belong to the same straight line through
the origin.

The projective space P"(k) (or P(k™), or even P") is defined (set theo-
retically) as the quotient (A™\ {0})/ ~. It is customary to denote the
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equivalence class of (zg,...,2,) € A"\ {0} as [xg : -+ : @] If V 2 Kk®
is a finite dimensional k—space, then P(V) is identified with P(k™).

We endow P™ with the quotient topology. To describe explicitly this
topology first observe that even though for an arbitrary polynomial p €
k[Xo, ..., X,] we cannot evaluate it at a point in P", if p is homogeneous,
then the expression p([ag : -+ : a,]) = 0 is meaningful. In a similar way
than for subsets of A", we can define the map V from homogeneous ideals
to subsets:

VI)={lag: - :an] €P":pi([ag: -+~ :an]) =0, i=1,...,m},

where {p; :i=1,...,m} is a set of homogeneous generators of I.

It is an easy exercise (see Exercise 29) to prove that the definition
above makes sense, i.e. that the definition of V(I) does not depend on way
we choose the homogeneous generators of I, and that the collection of all
sets of the form V(I satisfies the axioms for the closed subsets of a topology.
This topology will is called the Zariski topology of P™.

If 7 : A"\ {0} — P" is the canonical projection, then 7= (V(I)) is
the zero set in A"*!\ {0} of the ideal I. This implies that the projection
7 is a continuous map.

Moreover, if X C P" then Z(7*(X) U {0}) is a homogeneous ideal.
Indeed, Y = 7=1(X) U {0} is a union of straight lines passing through the
origin, hence if 0 # f € Z(Y) and « € Y, then 0 = f(tz) = Y, t' fi(x)
for all t € k, where f =3, f; is the decomposition of f into homogeneous
components. It follows that f;(x) =0 for all x € Y, and thus f; € Z(Y).

Hence, the Zariski topology is the quotient topology for the map m, i.e.,
it is the largest topology that makes the projection continuous.

Next, we construct an affine atlas for P*. If [ag : -+ : a,] € P", for
some i € {0,...,n} the corresponding coordinate a; does not vanish. Thus,
the open subsets U; = {[ag : -+ : @] € P" : a; # 0} = P™\ V(X;) cover P".
We leave as an exercise (see Exercise 30) the proof that for ¢ = 0,...,n,
the maps

i A" = U
@i(ao,...,@,...,an) = [ao L 0 7 S 1:ai+1 N ~~:an]

are homeomorphisms. The notation @; means as usual that the i—th coor-
dinate is omitted. One easily shows that {Uy,...,U,} is an affine atlas for
P™. Notice in particular that an arbitrary point in U; has a representative
with i—th coordinate equal to 1.
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In order to prove that the diagonal A(P™) is closed in P™ x P", we
consider

A(UiﬂUj):{([ao:---:an],[a0:-~-:an]):a,izajzl}CUixUj.

Via the identification of U; and U; with A™, A(U; NUj) can be viewed
as the (closed) subset of A™ x A™ consisting of of the points of the form

((ao, vy Gy G, 17aj+1, ce ,an), (ao, Y ¢ 7 I 1,ai+1, vy Gy 7an)).
Hence, P is an algebraic k—variety.

EXAMPLE 4.35. (1) Assume that X is an affine algebraic variety, and
let U C X be an open subset of X. Then U can be naturally endowed
with a structure of an algebraic variety. Indeed, call I = Z(X \ U) C k[X]
and take fi,...,fn, a set of generators of I, then U = Xy U---U Xy .
In this manner we can endow U with an affine atlas — observe that the
compatibility of this atlas follows from the fact that Xy N Xy = Xy, .
Moreover, the topology of U x U is the induced topology and hence, the
diagonal of U x U is closed.

(2) More generally, if X is an algebraic variety and U is an open subset,
consider an affine atlas {Uy,...,U,} for X. As each of the open subsets
UNU,; CU; admits an affine atlas, collecting all these atlases together we
obtain an affine atlas for U. Indeed, the compatibility of two affine charts
contained in different open subsets U; is guaranteed by the compatibility of
the charts U;. The proof that the diagonal is closed in U x U follows along
the same lines than before.

DEFINITION 4.36. Let X be an algebraic variety. An open subvariety
is an open subset U C X together with the induced structure considered in
Example 4.35.

If X is affine, then an open subvariety of X is called a quasi—affine
variety.

An affine variety is obviously quasi—affine, but the converse is not true,
see Example 5.13.

DEFINITION 4.37. A morphism between two algebraic varieties X,Y
is a continuous function f : X — Y with the property that the sheaves
Ox and Oy are f—compatible (see Observation 4.10). In other words the
map f# given by composition with f is a morphism f# : Oy — f.(Ox) of
sheaves on Y. An invertible morphism is an isomorphism.

OBSERVATION 4.38. (1) In particular, if f: X — Y is an isomorphism
of algebraic varieties then the map f is a homeomorphism, and the map
f7 is an isomorphism of sheaves.
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(2) Notice that the conditions that f is a morphism of algebraic varieties
and a homeomorphism of the underlying spaces do not guarantee that it is
an isomorphism of algebraic varieties. The next example shows that this
expectation is false even in the affine situation. Suppose that the base field k
has characteristic p > 0. Consider F : A — A! defined as F(z) = 2P. Since
the non trivial closed subsets of A! are the finite collections of points, the
map F is an homeomorphism. The corresponding algebra morphism F# :
k[X] — k[X], where X is an indeterminate, is F* (Z aiXi) =Y a; X?. Tt
is then clear that the map F# is not an isomorphism as the polynomial X
does not belong to the image.

(3) Assume that f is a morphism of varieties that is also a homeomorphism
of the base spaces. The obstruction for f to be an isomorphism lies in
the fact that even when Ox and Oy are f-compatible, they need not be
f~1-compatible.

(4) Tt is an easy exercise to prove that if f is a morphism of algebraic
varieties, then f# induces on the stalks a morphism of local rings.

OBSERVATION 4.39. It is obvious that if X and Y are affine algebraic
varieties then they are algebraic varieties in the generalized sense above.
Moreover, if we take a morphism (f, f#) of affine varieties from X into
Y, viewing X and Y as algebraic subsets of convenient affine spaces, the
function f : X — Y is continuous and the corresponding map at the level
of the sheaves takes polynomials on Y into polynomials on X. Then f is a
polynomial map in accordance to Definition 3.28 and Observation 3.29.

The converse is also clear, in other words if X and Y are affine algebraic
varieties and f : X — Y is a morphism of algebraic varieties, by the very
definition it is clear that f is continuous and the corresponding morphism
f7 behaves consistently at the level of the structure sheaves (see Corollary
3.38); thus, (f, f7) is a morphism of affine algebraic varieties.

OBSERVATION 4.40. Working in the more general category of schemes,
it is natural to consider arbitrary rings and not only k—algebras. It is con-
venient to consider more general morphisms that do not have a k—structure
to preserve. One example is the so—called Frobenius morphism that is the
identity at the level of the variety but it is not the identity at the function
level (see [55, Chap. IV, Sect. 2]).

EXAMPLE 4.41. The canonical projection 7 : A"*1\ {0} — P n > 0,
is a morphism of algebraic varieties that cannot be extended to a morphism
Artl P,

Indeed, if Uy = {[ao D tan] tag = 1} C P, then 7= 1(Up) =
{(ao,...,an) € Antl . ag # O} = Ant! \ {XO = 0} Clearly, 7T|7771(U0)
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is a morphism, and hence, as we can proceed in a similar manner for all
i =0,...,n, the map m is also a morphism.

On the other hand, any extension of m to a morphism of the whole
affine space A"*! is a continuous map, and there is no continuous map
A"l — P" extending the projection. This follows from the fact that in
A™*! the origin is in the closure of all lines that pass through the origin
with the origin excluded. As on all these lines the projection takes the
same value on P, we conclude that a continuous function as above has to
be constant.

LEMMA 4.42. Let X be an algebraic variety andY C X a closed subset.
Consider the induced topology on Y and the atlas given by the intersection
of the affine charts of X with Y. Then, Y equipped with this atlas is an
algebraic variety and the inclusion v : Y — X is a morphism of algebraic
varieties. The sheaf on Y corresponding to the structure defined above is
the following. If V C'Y is an open subset then Oy (V) = {f V—ok:Vzxe
V,3x e U, C X, open ,g € Ox(Uy),glu.nv = f|UIﬁV}~ Moreover, in this
situation the induced map 1* : Ox — 1.(Oy) is a surjective morphism of
sheaves.

PRrOOF: Let {U,};cr be a maximal affine atlas for X. Then Y N U;
is closed in U; and hence it is an affine algebraic variety (see Observation
4.44). The compatibility of the atlas given by these intersections would
assert that for all 4,5 € I, Oyny, (Y NU;NU;) = Oyny, (Y NU;NU;). These
isomorphisms follow directly from the compatibility of the atlas {U; }ic;-

The fact that Y is not only a prevariety but a variety follows easily. It
is clear that the inclusion ¢ : Y — X is a morphism of algebraic varieties.
The surjectivity of the map at the level of the sheaves of functions follows
from the fact that the stalks are obtained taking affine open subsets and
from Observation 4.21. |

DEFINITION 4.43. Let X be an algebraic k—variety and assume that
Y C X is a closed subset endowed with the induced topology. When
equipped with the structure of variety defined in Lemma 4.42, Y is said to
be a closed subvariety of X, or simply a subvariety.

OBSERVATION 4.44. We leave as an exercise for the reader to prove that
the construction performed in Example 4.18 yields a morphism of algebraic
varieties in the sense of Definition 4.37 and makes of Y a closed subvariety
of X. See Exercise 31.

DEFINITION 4.45. Let X, Y, Z be algebraic varieties, and let f : X — Z,
g : Y — Z be morphisms. We define the fibered product of X and Y over
Z as a triple (X Xz Y,px,py) where X xz Y is an algebraic variety and
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px : X XzY — X, py : X Xz Y — Y are morphisms of varieties such that
fopx = gopy, and satisfying the following universal property:

For an arbitrary triple (W, ¢1, g2) with W an algebraic variety and ¢ :
W — X and ¢ : W — Y morphisms such that foq; = goqa, there exists a
unique morphism h: W — X Xz Y such that ¢ = pxoh and g3 = pyoh.

This definition, that is simply the categorical definition of fibered pro-
duct, can be illustrated via the diagram below that has to be filled up with
an arrow h that makes it commutative.

X——Z7

THEOREM 4.46. Let X,Y,Z be algebraic varieties, and f : X — Z,
g :Y — Z be arbitrary morphisms. The fibered product (X Xz Y,px,py)
erists and is unique up to isomorphism.

PROOF: We present a sketch of the proof, see for example [106] for the
missing details. Suppose X, Y, Z are affine. Then we define X xz Y as the
affine variety corresponding to the k-algebra k[X]®yz k[Y]. In the general
case, we consider an atlas U;, i € I, covering Z and atlases V}, j € J, of X
and Wy, k € K, of Y such that for all j € J, f(V;) C U; for some i € I,
and for all k € K, g(Wy) C Uy for some ' € I. To obtain X xz Y we
consider the affine varieties V; xy, Wy, and glue them together. O

Next we look at the correspondence between closed subsets and ideals
of the ring of global regular functions in the case of quasi—affine varieties.
These results will be used in Chapters 10 and 11.

THEOREM 4.47. Let X be a quasi—affine variety. Let C C X be a
closed subset of X. Then, there exists an element 0 # f € Ox(X) such
that f(C) = 0.

PROOF: Assume that X is embedded as a dense an open subset in an
affine variety Y. Let C be as in the statement of the theorem and call C
the closure of C'in Y. As C is a proper and closed subset of the affine
variety Y — observe that the intersection of C' with X coincides with C' —
there exists a polynomial g € k[Y] such that ¢(C) = 0. If we call f = g|x
it is clear that f € Ox(X), f(C) =0 and f # 0 (recall that X is dense in
Y). O
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OBSERVATION 4.48. Theorem 4.47 admits a partial converse that will
not be used in our exposition. The general pattern of its proof, suggested
to the authors by M. Brion, will be presented in the form of an exercise
(see Exercise 57).

The following theorem will yield a useful criterion for a quasi—affine va-
riety to be affine. In some sense, it is a converse of Hilbert’s Nullstellensatz.
One can say that within the class of quasi—affine varieties the validity of
the Nullstellensatz characterizes the affine ones.

THEOREM 4.49. Let X be a quasi—affine algebraic variety such that for
any proper ideal J C Ox(X) there exists a point x € X such that f(z) =0
for all f € J. Then X is affine.

PrOOF: As X is quasi-affine, there exists an affine variety Y that
contains X as an open dense subvariety. Consider the injective morphism
of algebras k[Y] — Ox(X) given by the restriction of functions. If C' =
Y \ X is empty, there is nothing to prove. If this is not the case, call
I C Kk[Y] the ideal of C' on k[Y] and J the ideal induced by I on Ox(X),
ie. J =I0x(X). Clearly, J cannot have a zero on X because if z € X
is such that f(z) =0 for all f € J, then f(x) =0 for all f € I and as Y
is affine and C' closed we conclude that z € C'. This is impossible because
x € X. Hence, I Ox(X) = Ox(X) and we can find a finite number of global
sections f; € I for i = 1,...,r such that (fi,..., fr)o,(x) = Ox(X). In
this situation, the principal open subsets of X, Xy, = {z € X : fi(z) # 0}

are affine varieties — observe that Xy, coincides for all ¢ = 1,...,r with
Y;, that is affine. Using a standard result on general algebraic geometry
(see Exercise 27), we conclude that X is affine. O

DEFINITION 4.50. A projective variety is a closed subvariety of a pro-
jective space.

A quasi—projective variety is an open subvariety of a projective variety.

ExaMpPLE 4.51. Since A™ can be identified with an open subset of
P™, it follows that any quasi—affine, and hence any affine, variety is quasi—
projective. However, the converse is not true (see Exercise 40).

ExaMPLE 4.52. Consider V = A™ as a vector space. The flag variety
is the set F (V') of maximal chains of subspaces — full flags — Vo = {0} C
Vi € ---CV,=V. A chain as above will be denoted by F, ie., F =
(g - CVaa}

The set F (V') can be endowed with a structure of projective algebraic
variety. We give here only the guidelines of this construction, leaving the
details as an exercise (see Exercise 42).
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To each subspace W C V of dimension r we associate the line k(v; A
-+ Awv.) € NV, where {v1,...,v,.} is a basis of W. This defines an
injective map 1, from the set ,.(V') of subspaces of V' of dimension of V'
to P(A" V). We identify ¥,(V) — the Grassmann variety of subspaces of
dimension r — with its image by ...

It follows from Exercise 38 that X = P(V) x --- x P(\"'V) is a
projective variety. Moreover, (V) is closed in P(A" V) and hence Z =
¥1(V)x---x%,_1(V)is closed in X. Consider the injection ¢ : F(V) — X
’l/)(Vl, ey Vn—l) = (1/}1(‘/1), PN ,”(/}n_l(vn_l)). Then w(f(V)) C Zis given

locally by polynomial equations, hence it is closed.

DEFINITION 4.53. Let X be an irreducible algebraic variety. We de-
fine the field of rational functions k(X) as the direct limit of the directed
family {Ox(U) : 0 # U C X open}. In other words, an element of k(X)
consists of an equivalence class of regular functions defined in open dense
subsets U C X, where two such functions f € Ox(U) and g € Ox (V) are
equivalent if and only if flynv = glunv-

OBSERVATION 4.54. (1) Let X be irreducible and let 0 # f € k(X)
be represented by (U, fy) with fy € Ox(U). Consider, 1/fy € Ox Uy, ),
with Uy, = {z € U : fu(x) # 0}. Clearly, (Uy,,1/fu) is a representation
of the inverse of f in k(X). Hence, k(X) is indeed a field.

(2) Assume that X is an irreducible variety and take U,V open subsets.
Given regular functions on U and V that coincide on U NV, it is clear that
we can extend them to a regular function on UUV. Hence, if f is a rational
function, there exists a largest open subset where f can be represented as a
regular function. This open subset (denoted as D(f)) is called the domain

of definition of f.

EXAMPLE 4.55. It is very easy to verify that if X C A" is an irreducible
affine variety, then k(X) = [k[X]]. More generally, if X is an irreducible
algebraic variety, then k(X) = k(U) where U C X is an open (dense)
subset. In the case that U is affine, then k(X) = [k[U]]. See Exercise 47.

OBSERVATION 4.56. If U is an open and dense subvariety of the alge-
braic variety X, clearly that k(U) = k(X).

EXAMPLE 4.57. Let X be an irreducible affine variety and U C Y an
open subvariety. Then k(U) = k(X) = [Oy(U)].

Indeed, k[X] C Oy(U), and if we take 0 # f € k[X] such that f(X \
U) =0, then Xy C U C X. It follows that k[X] C Oy (U) C k[X]. Hence,
as Xy is open in U, we conclude that k(U) = k(Xy) =k(X) = [Oy(U)].

DEFINITION 4.58. Let X be an algebraic variety. If x € X, and ¢, :
O, — k is the associated evaluation map, then the tangent space of X at
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the point z is defined as T, (X) = D._(O,) (see Appendix, Section 3). In
other words, the tangent space of X at x is the space of point derivations
of O, at x. Explicitly,

To(X) ={7: 0, —=k:Y f,g € Os,7(fg) = f(x)7(g) + 7(f)g(x)} .

DEFINITION 4.59. Let f: X — Y be a morphism of algebraic varieties
and consider the corresponding morphism of k-algebras f# : Oy f@) —
Ox 4. We define the differential of f at the point = (that is denoted as
d. f) as the map induced by f#. In other words, dyf : Tp(X) — Ty (Y)
is given by dy f(7) = 7o f# € Tj(1)(Y) for 7: Ox,p — k € Tp(X).

1
OY,f(z) —_— OX,CE

dm iT

k

OBSERVATION 4.60. (1) It is left as an exercise to prove the correctness
of the above definition, i.e. that if 7 is a point derivation so is 7o f7.

(2) In Exercise 44 we ask the reader to prove the chain rule and the fact
that dI idX = ldTI(X)

(3) As the definition of tangent space has a local character, it is clear that
if x € U is an affine open subset in X around z, then T,(U) = T,(X).
Hence, in order to compute the tangent space we may assume that the
variety is affine. In this case the explicit description of T, (X) is presented
as an exercise (see Exercise 44). In particular we ask the reader to prove
that T, (X) is always finite dimensional.

LEMMA 4.61. Let X be an algebraic variety and x € X. Then T, (X) =
(Ma/M2)", with M, = Ker(e,).

PROOF: See Exercise 44. O

OBSERVATION 4.62. Let X be an irreducible affine variety, fix a point
x € X and let M C k[X] be its associated maximal ideal. In this case O, =
k[X]ar. Then M, the maximal ideal of the local ring O, is Mk[X]s. Call
d = dimy T, (X) = dimy MK[X]pr/M?K[X]ps. Let ur, . .., ug € Mk[X]ps be
elements with the property that their images in the quotient mod M2k[X]
(that we call uy,...,uyg) form a basis of Mk[X]y/M?k[X]a. Then,

MK[X]ar = k[X]pur + - - + k[ X]prug + MPKk[X] s,
and it follows from standard results on noetherian rings that Mk[X]y =
k[X]arur+- - - +k[X]aruqg (see [71, Chap. XI]). Hence, the dimension of the

tangent space is larger of equal than the minimal cardinal of a system of gen-
erators of Mk[X]y as a k[X]p—module. Using the results of Paragraph 2.5
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(Regular local rings) we deduce that dim 7}, (X) > r(O,) = tr. deg, [k[X]].
This transcendence degree is a convenient definition for the dimension of
the variety, see Definition 4.63. Hence, dimT,(X) > dim X for all x € X
(see also Observation 4.102).

DEFINITION 4.63. Let X be an irreducible algebraic variety. We define
the dimension of X as the transcendence degree of k(X) over k. If X is
not irreducible, we define dim X as the maximum of the dimension of its
irreducible components.

OBSERVATION 4.64. In this observation we sketch a presentation of
the concept of dimension in terms of chains of closed subsets of the given
variety. We refer the reader to [106] for details. Assume that X is an irre-
ducible algebraic variety and let U be an affine open subset. It is clear that
dim X = dim U. Then, the dimension theory for algebraic varieties reduces
frequently to the affine situation. Assume now that X is affine, irreducible
and of dimension d. As d equals the Krull dimension of k[X] (see Obser-
vation 2.7 and Appendix, Definition 3.11), it follows that the dimension of
an algebraic variety is the length of a maximal chain of irreducible closed
subvarieties of X.

THEOREM 4.65. Let X be a irreducible variety and Y C X be a proper
closed subvariety of X. Then dimY < dim X.

PRrROOF: We can suppose that Y is irreducible. Then the result follows
from the characterization of the dimension as the length of maximal chains
of irreducible subsets (see Observation 4.64). O

COROLLARY 4.66. Let X be an algebraic variety and Y C X an ir-
reducible subvariety such that dimY = dim X. Then Y 1is an irreducible
component of X .

PRrROOF: If this were not the case, then Y C Z, Z irreducible component
of X, and thus dimY < dim Z < dim X, and this is a contradiction. O

COROLLARY 4.67. Let X be an algebraic variety and let Y1 C Yy C
- C X be an increasing family of closed irreducible subsets. Then, for
some integer n we have that Y, =Y,41 =---.

PrROOF: If d = dim X and d; = dimY;, di < dy < d3 <--- <d, and
the result follows. ]

DEFINITION 4.68. Let X be an irreducible variety and Y C X a sub-
variety. We define the codimension of Y as codimY =dim X —dimY.

LEMMA 4.69. Let X be an affine variety, and let f € k[X] be non
invertible. Then the irreducible components of V(f) have codimension one.
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Conversely, if Z C X is an irreducible closed subset of codimension one,
then Z is an irreducible component of V(f) for some f € k[X].

PROOF: Let Z be an irreducible component of V(f) and let Z(Z) C
k[X] be the corresponding ideal, that is by definition a minimal prime ideal
of k[X] containing f. The result follows immediately from Krull’s principal
ideal theorem (see Theorem 2.14).

To prove the converse we proceed as follows. Let Z C X be a closed
irreducible subset of codimension one. If f € Z(Z), then Z C V(f) and
as Z is irreducible, we deduce that for some irreducible component W of
V(f), we have that Z C W. But Z and W have the same dimension and
are irreducible. Then, Z = W. [l

OBSERVATION 4.70. A “geometric proof” of the above lemma appears
in [106, 1.7] and also in [71, X.1].

The two results that follow can be easily deduced from Lemma 4.69
using an inductive argument.

LEMMA 4.71. Let X be an affine variety, and Y C X an irreducible
subvariety of codimension s > 1. Then there exist fi,..., fs € k[X] such
that Y is an irreducible component of V(f1,..., fs)-

PROOF: See [71, X.1]. O

COROLLARY 4.72. Let X be an affine variety and fi,...,fs € kK[X].
Then the codimension of an irreducible component of V(f1,...,fs) is at
most s.

PROOF: See [71, X.1]. O

4.5. Morphisms of algebraic varieties

DEFINITION 4.73. Let X and Y algebraic varieties. An open immersion
of X into Y is an injective morphism f : X — Y such that f(X) is an open
subset Y, and f: X — f(X) is an isomorphism when f(X) is considered
as an open subvariety of Y (see Definition 4.36).

A closed immersion of X into Y is an injective morphism f: X — Y
such that f(X) is a closed subset of Y, and f : X — f(X) is an isomorphism
when f(X) is considered with its structure of closed subvariety of Y (see
Definition 4.43).

DEFINITION 4.74. A morphism of varieties f : X — Y is finite if there
is an affine cover Uy, i € I, of Y such that f=1(U;) = V; is affine and k[V}]
is a finitely generated k[U;]-module.
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OBSERVATION 4.75. By the compactness properties of algebraic vari-
eties (ee Definition 4.26) the open affine cover in the definition above can
be taken to be finite.

The next results concern the problem of the separation of points by
“functions”. They generalize Lemma 3.33.

OBSERVATION 4.76. The conclusion of Lemma 3.33 cannot be expected
to hold for non affine varieties. For example, the constant functions are the
only everywhere defined regular functions on P!, and they clearly do not
separate its points. However, the elements of the field of rational functions
on P! — the field of rational functions in one indeterminate — do separate
points in P*. We deal with this problem in Lemma 4.78.

These considerations about separation of points will be used when
studying quotients, see Example 6.4.7. We adopt the following definition
that is adequate for our purposes.

DEFINITION 4.77. Let X be an irreducible algebraic variety, R C k(X)
a family of rational functions and = # y € X a pair of different points. We
say that these points are not separated by R if for all f € R then: = € D(f)
if and only if y € D(f) and in this case f(z) = f(y). If this is not the case,
we say that R separates points in X.

LEMMA 4.78. Let X be an irreducible algebraic variety. If x #y € X
are different points, then x and y are separated by k(X).

ProOOF: Consider x # y € X and assume that they are not separated
by rational functions. This implies (see Lemma 3.33) that if U is an affine
open subset of X that contains z, then y ¢ U. If f € k[U] C k(X), then
y € D(f) and f(y) = f(x). Symmetrically, for all y € V C X affine open
subset, © ¢ V and for all g € k[V], z € D(g) and g(y) = g(x).

Fix U and V as above; consider the diagonal morphism A : X — X x X
and the closed subset Z = A(UNV) C UxV. Then (z,y) ¢ Z. Since UxV
is an affine variety, there exists a polynomial function F' € k[U] ®k[V] such
that F|z =0 and F(z,y) # 0. Consider the functions Fy, € k[U] defined as
F,(u) = F(u,y) and F, € k[V], F;(v) = F(z,v). Then F, and F, can be
defined at y and x respectively and F,(z) = F,(y) as well as F,(y) = Fy(z).
Hence, the points (x,z) and (y,y) are in the domain of F' and we have that
F(z,z) = F(y,y) = F(x,y). The subset Z = A(X)N (U x V) is open and
non empty in A(X). Hence Z is dense, and as the function F is continuous
on its domain and zero at Z, it is zero at all the points in A(X) where it
is defined. Then F(z,2) =0 = F(x,y) and this is a contradiction. O

It is clear that if X and Y are irreducible varieties that are generically
isomorphic, i.e., that have open non empty subsets that are isomorphic as
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algebraic varieties, then they have isomorphic rational function fields. The
next theorem guarantees that the converse of this assertion is also true.

THEOREM 4.79. Let X and Y be irreducible algebraic varieties and
assume that f : X — Y is a morphism that induces an isomorphism f# :
k(Y) — k(X) between the function fields. Then there exists a non empty
open subset V of Y such that the map f: f~Y(V) — V is an isomorphism
of varieties.

ProOF: It is not hard to prove that we can reduce the result to the
case that X and Y are affine. In this situation f# : [k[Y]] — [k[X]] is an
isomorphism. If we consider a set of k—algebra generators of k[X] that we
call f1,..., fn, we can find g1,...,gn, h in K[Y] such that f; = g;of /hof.
Then, f# maps k[Y]; isomorphically onto k[X]sor. This means that f
induces an isomorphism from Xj.; onto Y},. O

DEFINITION 4.80. If X and Y are irreducible varieties and f : X — Y is
a morphism, we say that f is birational if the associated map f# : k(Y) —
k(X) is an isomorphism.

OBSERVATION 4.81. In the situation of Definition 4.80, f : X — Y
is birational if and only there exist open sets U C X, V C Y, such that
f(U) =V and the restriction f|y : U — V is an isomorphism.

The following notion, weaker than surjectivity, is an important property
of morphisms.

DEFINITION 4.82. Let X,Y be algebraic varieties, X irreducible. A
morphism f : X — Y is dominant if its image is dense in Y, i.e., if f(X) =
Y. If X is reducible, f : X — Y is dominant if f(X) =Y and for every
irreducible component X; of X, f(X;) is an irreducible component of Y.

OBSERVATION 4.83. (1) Observe that if X isirreducible and f: X — Y
is dominant, then Y is also irreducible.
(2) Suppose that X and Y are irreducible and that f : X — Y is a dominant
morphism. Let ) 2V C Y be an open subset. Then, since f(X) =Y, it
follows that f=1(V) # (. Hence f‘f 1 Oy (V) — Ox(f~1(V)) induces a
field homomorphism f# : k(Y) — k(X).
(3) The above consideration shows that the rule that to an irreducible
variety associates its field of rational functions, can be viewed as the object
part of a functor from the category of irreducible algebraic varieties and

dominant morphisms, into the category of finitely generated field extensions
of the base field.

THEOREM 4.84. Let f : X — Y be a dominant morphism of irreducible
varieties, then dim(Y) < dim(X).




48 1. ALGEBRAIC GEOMETRY

PROOF: The existence of the field homomorphism f# : k(Y) — k(X)
implies that the transcendence degree of k(Y') over k is smaller than or equal
to the transcendence degree of k(X) over k. Hence dim(X) < dim(Y). O

EXAMPLE 4.85. Let X be the union of the coordinate axis in A2. The
projection p : X — Al into the first coordinate is a non dominant surjective
morphism.

DEFINITION 4.86. A dominant morphism f : X — Y between irre-
ducible algebraic varieties is separable if the map f# : k(Y) — k(X) is
separable. In other words, f is separable if the extension f# (k(Y)) C k(X)
is separable.

OBSERVATION 4.87. From the definition of separability, it is clear that
if k is a field of characteristic zero then all morphisms are separable. Call
k(X) the field of rational functions in one variable. Then the morphism
F considered in Observation 4.38 induces a non separable field homomor-
phism, namely F# : k(X) — k(X), F#(X) = X?. Indeed, the field exten-
sion k(X?) C k(X) is clearly non separable.

We characterize for the case of affine varieties the notions of closed
immersion and of dominant morphism.

THEOREM 4.88. Let XY be affine algebraic varieties, and f: X — Y
a morphism. Then
(1) The morphism f is a closed immersion if and only if f# : k[Y] — k[X]
18 surjective.

(2) Suppose that X, Y are irreducible. The morphism f is dominant if and
only if f# :k[Y] — k[X] is injective.

ProoOF: (1) If f is a closed immersion then the map f# has to be
surjective by definition.

Suppose that f : X — Y is a morphism with f# is surjective. Then
k[X] =2 k[Y]/Ker f#. Since
Ker f# = {a € k[Y]: aof(z) =0 Vz € X} = I(f(X)),

it follows that k[Y]/Z(f(X)) is an affine k-algebra, and thus Z(f(X))

is the ideal associated to the affine subvariety Im f. Then, f# induces
an isomorphism k[X] 2 k{Im f], and thus, since X and Im f are affine,

f:X — Im f is an isomorphism. In particular, Im f = Im f is closed.
(2) Assume that f: X — Y is dominant, and that o € k[Y] is such that

aof = 0. This means that « restricted to the image of f is zero. As the
image of f is dense, we conclude that o = 0.
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Assume now that f# : k[Y] — k[X] is an injection. We must prove that
Im f is dense in Y. If this is not the case, then Im f C Y is a proper closed
subset, and since Y is affine there exists a non zero polynomial o € k[Y]
such that f |W = 0. Thus aof = 0 and this contradicts the injectivity of

. |
DEFINITION 4.89. Let X be an algebraic variety. A locally closed subset

of X is the intersection of an open and a closed subset. A constructible
subset of X is a finite union of locally closed subsets.

THEOREM 4.90. Let X be an algebraic variety. Then Y C X is con-
structible if and only if it contains an open dense subset of its closure. In
particular, Y is constructible if and only if it is a disjoint union of locally
closed subsets.

Proor: IfY = U;Zl Y;, with Y; an intersection of an open and a closed
subset of X, we can produce — reasoning by induction on » — a dense open
subset U C Y contained in Y. Writing Y = U U (Y \ U), one proves by
induction the second assertion of the theorem. O

THEOREM 4.91 (Chevalley’s theorem). Let X,Y be algebraic varieties
and f: X =Y be a morphism. Then f(X) contains an open dense subset

of f(X). In particular, f(X) is constructible in'Y .

PROOF: We can assume that X is irreducible and that f is dominant,
and hence, that Y is irreducible. Moreover, by taking local charts, we can
suppose that X,Y are affine. We prove that in this case f(X) contains a
principal open subset Yy, g € k[Y].

Since f is dominant f# : k[Y] — k[X] is injective, and we want to find
g € k[Y] C k[X] such that if M C k[Y] is a maximal ideal with g ¢ M then
there exists a maximal ideal N C k[X] such that N Nk[Y] = M.

Equivalently, we must prove the existence of g € k[Y] such that for
any morphism of k-algebras o : k[Y] — k with a(g) # 0, there exists a
morphism of k-algebras 3 : k[X] — k such that f|yy] = a. The truth of
this assertion is the content of Lemma 2.27. (]

OBSERVATION 4.92. As a very simple consequence of Chevalley’s theo-
rem, the reader can prove that the image of any constructible subset of X
is constructible in Y (see Exercise 20)

Next we prove some basic properties of finite morphisms.

THEOREM 4.93. Let X and Y be algebraic varieties and f : X — Y be
a finite morphism. Then

(1) #f 1 (y) < oo forally €Y.
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(2) f is a closed map.
(3) The restriction of f to a closed subset is a finite morphism.

(4) If Z is an algebraic variety and, g :' Y — Z is a finite morphism, then
gof : X — Z is finite.

(5) If moreover X, Y are affine, then the morphism f is surjective if and
only if f# :k[Y] — k[X] is injective.

PrROOF: Clearly, the assertions that we want to prove are local and by
definition of finite morphism, we can suppose that X and Y are affine and
irreducible.

(1) Take an arbitrary point y € Y and consider the commutative diagram

X—Y

)

f () e {y}

that induces a commutative diagram

K[y] — o k[x]

| i

k[Y]/M, — k[f ()]

]

As k[X] is finitely generated as a k[Y]-module, it follows that the
quotient module k[f~!(y)] is also finitely generated over k[Y] and as this
action factors we conclude that k[~ (y)] is finitely generated over k[Y]/M,,.
In other words k[f~!(y)] is a finite dimensional k-space. An affine variety
with finite dimensional algebra of polynomial functions is a finite set of
points. See Exercise 11.

(2) We want to prove that if C' is closed in X, then f(C) is closed in
Y. It is clear that we may assume that C = X and that f: X — Y is
dominant. We want to prove that f is surjective. Let y € Y and consider
7 k[Y] — Kk[X]. If M,, C k[Y] is the maximal ideal of y, call I = M, k[X]
the extended ideal; then I # k[X]. Indeed, if M k[X] = k[X], as k[X] is
a finitely generated k[Y]-module, by Nakayama’s lemma (see Appendix,
Theorem 3.12) there exists g € (k[Y]\ M,) C k[X] such that gk[X] = 0;
hence, g = 0. As I is a proper ideal, there exists a maximal ideal M such
that I ¢ M C k[X]. Then, M, C MNk[Y] C k[Y] and the second inclusion
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is proper. It follows that M Nk[Y] = M,, and that means that the point
associated to M is mapped into y by the morphism f.

(3) Let Z be a closed subset of X and write it as Z = V(I) where I is a
radical ideal in k[X]. Then k[Z] = k[X]/I, and hence if k[X] is finitely
generated as a k[Y]-module so is k[Z].

(4) The proof of this part is left as an Exercise for the reader. See Exercise
54.

(5) This follows immediately form Theorem 4.88 part (2) and the closedness
of f that was just proved. |

The next lemma should be viewed as a geometric presentation of E.
Noether’s normalization theorem.

LEMMA 4.94. Let X be an affine variety of dimension d. Then there
exists a finite surjective morphism g : X — A%,

ProOF: Consider k[X] and the ring extension, k C k[X]. As d is the
dimension of X, we can find algebraically independent elements f1, ..., fq €
k[X] such that in the tower of extensions k C k[f1, ..., fa] C k[X], the lower
part is a polynomial algebra and the top part is an integral extension (see
Theorem 2.6). The morphism g associated to the top extension X — A% is
finite and surjective. The finiteness follows immediately from the fact that
k[X] is integral and finitely generated as a k[f1,..., fa]-algebra. Then,
it is finitely generated as a Kk[f1,..., foJ-module (see Theorem 2.3). The
surjectivity of g was proved in Theorem 4.93. ]

LEMMA 4.95. Let f : X — Y be a surjective finite morphism. Then
dim f~1(Z) = dim Z for any closed subvariety Z C Y.

PROOF: As the concepts involved in this theorem are local we can
assume that X and Y are affine varieties. We proceed by induction on
the dimension of Z. If dimZ = 0 the result is the first conclusion of
Theorem 4.93. If dimZ > 0, let W C Z be a closed irreducible subset
of codimension one — the zero set of an irreducible polynomial h € k[Z].
Then f~1(W) € f~1(Z) is a closed subset, and by induction dim f~*(W) =
dim W. Moreover, f~1(W) = V(hof) and dim f~}(Z)—1 = dim f~}(W) =
dimW =dim Z — 1. (]

4.6. Complete varieties

DEFINITION 4.96. An algebraic variety X is complete if for all varieties
Y the projection p: X XY — Y is a closed morphism.

The only complete and affine varieties are the finite sets of points, as
the following example shows.
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EXAMPLE 4.97. Let X C A™ be an affine variety, and f € k[X] a non
constant polynomial. Consider the closed subset Y ¢ X x Al Y = {(:v, A):
flx) = 1}. If we call p: X x Al — A' the projection onto the second
coordinate, 0 € p(Y) = {A € A : 3z € X : A =1/f(2)}. AsIm(f) C A
is infinite unless X consists of a finite number of points, we conclude that
p(Y) is not closed in Al (see Exercise 14). Hence, X is a finite set.

THEOREM 4.98. (1) Let X be a complete variety and Y C X a closed
subvariety, then Y is complete.

(2) The product of two complete varieties is complete.

(3) Let f : X — 'Y be a morphism of algebraic varieties, X complete. Then
f(X) is a complete closed subvariety of Y.

PROOF: The proofs of (1) and (2) are very easy. (3) The subset W =
{(z