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Preface

A tree that can fill the space
of a man’s arm

Grows from a downy tip;
A terrace nine storeys high

Rises from hodfuls of earth;
A journey of a thousand miles
Starts from beneath one’s feet.

Lao Tzu, Tao Te Ching
Tr. C.C. Lau, Penguin Classics

This book is an introduction to geometric invariant theory understood à
la Mumford — as presented in his seminal book Geometric Invariant Theory
[103]. In this sense, we intend to draw a bridge between the basic theory
of affine algebraic groups (that is inseparable from considerations related
to the geometry of actions) and the more sophisticated theory mentioned
above.

Many problems of invariants of abstract groups become naturally prob-
lems of invariants of affine algebraic groups. In fact, the view of an abstract
group as a group of linear transformations of a vector space, or more gener-
ally of transformations of a certain set with additional structure, has been
fundamental since the origins of group theory in the pioneering works of
Galois and Jordan in the nineteenth century. In this situation, it becomes
handy to consider the associated action of the Zariski closure of the group.

Once we are dealing with affine algebraic groups, the use of the geomet-
ric structure adds many useful tools to our workbench. For example, one
can linearize the problem by considering the tangent space at the identity,
and view it as a problem in the category of finite dimensional Lie algebras.

If we are considering actions, it is natural to search for invariants, i.e.,
for functions from the original space into a certain set that are constant
along the orbits, and if we are working with affine groups, we ask these

xi

 



xii PREFACE

functions to be regular. In principle, once we find a large enough num-
ber — but finite following Hilbert’s expectations — of invariant functions,
one can use them to decide whether or not two points are in the same or-
bit. Thereafter, one is lead to search for natural, e.g. algebraic geometric,
structures in the set of orbits. To deal with this problem, i.e. to study the
concept of quotient variety, is one of the main objectives of this book. In

relationship between the geometric structure of quotients of the form G/H,
i.e. of homogeneous spaces, and the interplay between the representations
of H and of G.

As we mentioned before, this text was written with the intention of
being a reasonably self contained introduction to the specialized texts and
papers in geometric invariant theory. This intent of self-containment is spe-
cially laborious as in this theory techniques from many different areas of
mathematics come into play: commutative algebra and field theory, Hopf
algebra theory, representation theory of groups and algebras, algebraic ge-
ometry, Lie algebra theory.

Being an introductory text, we added at the end of each chapter a list
of exercises that hopefully will help the reader to acquire a certain expertise
in working with the fundamental concepts. Frequently, examples and parts
of the proofs are left as exercises.

Our serious labors start with the theory of affine algebraic groups in

of these chapters contains most of the needed prerequisites in commutative
algebra and algebraic geometry. Its results and definitions are presented
sometimes with proofs or sketches of proofs, but always with precise ref-
erences. The other chapter deals with the necessary prerequisites in the
theory of semisimple Lie algebras over fields of characteristic zero.

Every chapter has an introductory section with a summary of its con-
tents. We will not attempt to iterate here that non–easy summarizing task.
The interested reader may — if he possesses a certain degree of tenacity —
read all these as a global introduction to the contents of this book.

At the end of the book, in order to minimize notational confusions, we

algebra and topology. Moreover, in order to help the reader to keep track
of the notations and important concepts, we collected most of them in an
exhaustive glossary and a comprehensive subject index.

Concerning other texts dealing with the topics we treat, the reader may
consult the references at the end of the book. Our bibliography is far from

 

Chapter 3, but we have included in the text two initial chapters. The first

particular, we have paid special attention in Chapters 7, 10 and 11 to the

have added an appendix with some basic definitions from category theory,



PREFACE xiii

being exhaustive, the industrious reader can find an excellent bibliographic

Here and there along the book we have made some amateurish historical
comments with the intention to give the reader a hint of the genesis of some
of the subjects; the author index may help the reader to find these remarks
in the text. We dare to expect that these comments will induce the reader
to look at some of the serious books that have recently appeared dealing
with the history of these topics, e.g., [11] and [57].

Our debts to the many contributors to the theory are impossible to
record in this preface, but should be clear to the attentive reader. Many
comments about our sources appear along the text.

We have chosen to avoid, mainly for reasons of space and emphasis,
the consideration of non algebraically closed fields. Concerning this point,
the reader should be aware that not a few of the results we treat are valid,
sometimes with small modifications, for general fields. Furthermore, we
deal only with algebraic varieties, avoiding the language of schemes. For a
scheme theoretical vision of the theory the reader can consult for example
[28] and [103], or the more recent [80].
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Sprinberg, A. Treibich, A. Solotar.

We hope that the remaining blemishes of the manuscript — that of
course are the sole responsibility of the authors — will not set an insur-
mountable barrier to the interested readers.

The first author would like to thank G. Hochschild, whose influence, as
the alert reader can easily check, is conspicuous all along the book. This is
only natural as he learnt from him, directly or thorough his papers, most
of what he knows about these subjects. He would also like to thank the
persons, institutions and organizations that via different kinds of means,

 

job done in some of the books we cite (see for example [123]).



xiv PREFACE

were indirectly instrumental for the existence of this monograph: Cimat–
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Enumeration of items and cross references

not enumerated. Within each chapter, each section is enumerated with an
arabic number.

Within a given section of a given chapter, theorems, lemmas, corollar-
ies, observations, examples, definitions and notations are enumerated with
the same series of numerals. Each of these items appears labeled with two
arabic numbers, the first corresponding to the section, the second to the
specific item.

The few figures and numbered equations that appear are numbered
globally for all the book also with an arabic number. Within each chapter
the exercises are enumerated with only one arabic numeral.

For example, one can find Example 2.5 preceded by

When we wish to refer to a theorem, etc., we use the above system of
two arabic numerals provided that the item appears in the same chapter as
the reference, otherwise we use a system of three numerals, adding a first
arabic numeral with the indication of the chapter where the item appears.
A similar system, without reference to the section, is used for exercises.

second section of Chapter 2, will be cited in Chapter 3 as Definition 2.2.1
and in Chapter 2 as Definition 2.1.

Some sections are divided into subsections (for example Section 4 of
Subsections are enumerated

within the section to which they belong, and referred to within the same
chapter with two numerals, the first corresponding to the section and the
second to the subsection. When referring to a subsection that is in another
chapter we use a system of three numerals, adding in the first place the
numeral of the chapter where the section and subsection are located.

xv

 

we can find in Section 2, a picture labeled Figure 1.

in Chapter 3,

For example, the first exercise of Chapter 2, would be cited in Chapter
3 as Exercise 2.1 and in Chapter 2 as Exercise 1. The first definition in the

Chapter 1 is divided into seven subsections).

The chapters are enumerated with arabic numerals; the Appendix is

Definition 2.4 and followed by Example 2.6, all in Section 2. In Chapter 6



xvi ENUMERATION OF ITEMS AND CROSS REFERENCES

The enumeration of theorems, etc., does not take into account the
subsections.

different way, that is self explanatory.

The bibliography is presented in lexicographical order, enumerated with
arabic numbers.

Most of the notations used throughout the book are listed — in lex-

number of the page where the notation is introduced. In order to help
the reader in an eventual search we have displayed multiple entries for the
same notation. For example, the notation uβ for the Casimir element can
be found listed under the words starting with the letter C or the letter U.

Most of the concepts introduced in the text are referred in the Index:
the reader is sent to the page where the concept is introduced and to some
other parts where we thought it might be useful for the reader to look. In
order to help the reader, we introduce multiple entries for the same concept.

 

For the results and the sections of the Appendix we proceed in a slightly

icographical order — in the Glossary of notations; there we refer to the



CHAPTER 1

Algebraic Geometry

1. Introduction

In this chapter we deal with the background in algebraic geometry
which is needed for the rest of the book. Local algebraic geometry can be
viewed as commutative algebra, and for that reason a few basic aspects
of the theory of commutative rings and fields will also be treated in this
chapter.

The reader should not expect to find a systematic development neither
of the necessary commutative algebra prerequisites, nor of the more global
algebro–geometric concepts.

For reasons of space and emphasis, in this book we have chosen to keep
the treatment of the basic algebraic geometry that lies under the theory
of algebraic groups at a minimum, hence our presentation will be (most of
the time) brief and sketchy. In spite of that, we have tried to define with
precision all the concepts involved, to state all the theorems in the most
rigorous fashion and to give adequate references for the proofs we do not
present.

At some points we are not consistently brief and some results and/or
definitions are treated with a certain degree of detail. The reasons for this
change of pace are manifold: the lack of an adequate reference for the exact
statement we need; our opinion about the importance of the subject and
many times merely the taste of the authors.

For a thorough treatment of these topics the reader can consult any
of the following textbooks: [3], [15], [35] or [156] and [157] (commutative
algebra); [36], [54], [55], [78], [106], [118] and many others (algebraic
geometry).

We proceed to the description of the contents of each section.
In Section 2, we collect foundational results in commutative algebra

that are needed for the development of the theory of algebraic varieties, e.g.,
E. Noether normalization theorem, Artin–Tate’s lemma, different versions
of Hilbert’s Nullstellensatz, etc. Only a few of the proofs are presented and

1

 



2 1. ALGEBRAIC GEOMETRY

most of the ones we omitted can be found in the standard references on the
subject.

In Section 3 we introduce the Zariski topology of the affine space An =
kn, that has as closed sets the algebraic subsets, i.e. the set of zeroes of
a family of polynomials in n variables. We also define the morphisms of
algebraic sets completing the category where local algebraic geometry is
developed.

In Section 4 we introduce the first notions of the theory of algebraic
varieties. First we define — in order to equip our objects with the algebras
of functions that characterize the structure — the notion of a sheaf on
a topological space, centering our attention on sheaves of functions. The
spectrum and maximal spectrum of a ring are introduced in order to view
abstractly the affine algebraic subsets. Afterwards, algebraic prevarieties
are defined by pasting together these abstract affine pieces. The concept of
prevariety is then strengthened in order to introduce the main geometrical
object of study, algebraic varieties. We first observe that products exist
in the category of prevarieties, and then define varieties as prevarieties
that satisfy the so–called “Hausdorff axiom”, i.e., prevarieties X with the
additional property that the diagonal ∆ is closed in the product X × X.
We present also the basic notions of dimension and tangent space. Later
we describe the first properties of morphisms, considering in particular the
concepts of open and closed immersion and of finite morphism. We prove
Chevalley’s theorem that guarantees that morphisms are open with respect
to the topology defined by the constructible sets. We also define the concept
of complete variety generalizing projective varieties and projective spaces.
These kind of varieties should be viewed as analogous in our category to
compact topological spaces. We finish this section by defining the concepts
of singular point and normal variety.

In Section 5 (where very few proofs are presented) we delve deeper
into the geometric properties of varieties and morphisms. In particular
we treat various classical results: we show how to characterize separability
in terms of differentials and prove a useful theorem due to C. Chevalley
on the dimension of the fibers of a dominant morphism as well as related
results. Then, we state a version of Zariski main theorem and finish with a
discussion of the extension of rational functions in a normal variety.

Unless the contrary is explicitly said, the field k will be algebraically
closed of arbitrary characteristic, and all the rings and k–algebras we con-
sider are unital and commutative.

 



2. COMMUTATIVE ALGEBRA 3

2. Commutative algebra

2.1. Ring and field extensions

Let k ⊂ K be a field extension. The elements a1, . . . , an ∈ K are
algebraically independent over k if Ker

(
ε(a1,...,an)

)
= {0}, where ε(a1,...,an) :

k[X1, . . . , Xn] → k is the evaluation at (a1, . . . , an). In other words, the
only polynomial in k[X1, . . . , Xn] which is annihilated by (a1, . . . , an) is
the zero polynomial. A maximal algebraically independent subset of K is
called a transcendence basis. All transcendence basis have the same number
of elements, this number is called the transcendence degree of the extension
k ⊂ K and it is denoted as tr. degkK. In the case that the field K is
finitely generated over k, the transcendence degree is finite.

If R is a finitely generated integral domain k–algebra, then R has finite
Krull dimension κ(R), and κ(R) = tr. degk[R], where [R] is as usual the

Definition 2.1. Let R ⊂ S be an extension of commutative rings. An
element s ∈ S is said to be integral over R if there exists a monic polynomial
f ∈ R[X] such that f(s) = 0. The extension is integral if for all s ∈ S, s
is integral over R. The integral closure of R in S is the set of all elements
of S integral over R; it is a subring of S containing R. If R is an integral
domain we say that R is integrally closed if it equals its integral closure in
[R].

Theorem 2.2. Let R ⊂ S be an extension of commutative rings. If S
is finitely generated as an R–module, then S is integral over R.

¤
The converse of the above theorem is false in general, but we have the

following partial results.

Theorem 2.3. If R ⊂ S is a ring extension with S integral and finitely
generated as an R–algebra, then S is finitely generated as an R–module.

¤

Theorem 2.4 (Artin–Tate’s theorem). Let T ⊂ R ⊂ S be a tower of
commutative rings and assume that: (1) T is noetherian; (2) S is finitely
generated as a T–algebra; (3) S is finitely generated as an R–module. Then
R is finitely generated as a T–algebra.

Proof: Using (2) and (3) we write S = Rs1 + · · · + Rsn, s1 = 1,
and S = T [s′1, . . . , s

′
m]. Express s′i =

∑
j rijsj for i = 1, . . . ,m, rij ∈ R

and sksl =
∑
r′klusu for k, l = 1, . . . , n, r′klu ∈ R. The original tower

 

field of fractions of R (see Observation 2.7 below).

Proof: See for example [3, Prop. 5.1].

Proof: See for example [3, Cor. 5.2].



4 1. ALGEBRAIC GEOMETRY

extends to T ⊂ R0 ⊂ R ⊂ S, where R0 is the T–subalgebra of R generated
by

{
rij : 1 ≤ i ≤ m, 1 ≤ j ≤ n

} ∪ {
r′klu : 1 ≤ k, l, u ≤ n

}
. As T

is noetherian and R0 is finitely generated as a T–algebra, using Hilbert’s
basis theorem we conclude that R0 is noetherian. As R0s1 + · · ·+R0sn is
a subalgebra of S that contains all the s′i and also contains T , it follows
that R0s1 + · · ·+R0sn = S. Then S is a finitely generated R0–module and
thus R is a finitely generated R0–module. Write R = R0p1 + · · · + R0pv
for certain p1, . . . , pv ∈ R. It follows immediately that R is generated by
p1, . . . , pv and

{
rij : 1 ≤ i ≤ m, 1 ≤ j ≤ n

} ∪ {
r′klu : 1 ≤ k, l, u ≤ n

}
as a

T–algebra. ¤
In particular, we deduce the following corollary.

Corollary 2.5. Let k ⊂ R ⊂ S be an extension of commutative rings
where k is a field. Assume that S is finitely generated as a k–algebra and
integral over R. Then R is a finitely generated k–algebra.

Proof: As S
we are in the hypothesis of the Theorem 2.4 and the conclusion follows
immediately. ¤

The following theorem is an algebraic tool of central importance for the
manipulation of algebraic varieties.

Theorem 2.6 (E. Noether normalization theorem). Let R be an inte-
gral domain that is finitely generated as a k–algebra, with tr. degk[R] = d.
Then there exist k–algebraically independent elements r1, . . . , rd ∈ R, such
that in the tower k ⊂ k[r1, . . . , rd] ⊂ R the top part k[r1, . . . , rd] ⊂ R is
integral.

Proof: In [3, p. 69] a proof is sketched and in [71, Thm. X.1.2] a
detailed proof is presented. In [35] the reader can find a proof for a different
(but essentially equivalent) formulation of this result. ¤

Observation 2.7. Notice that in accordance with the considerations
previous to Definition 2.1, the number d of algebraically independent ele-
ments {r1, . . . , rd} coincides with the Krull dimension of R.

Informally speaking, Noether’s theorem guarantees that a finitely gen-
erated integral domain k–algebra can be viewed as an integral extension of
a polynomial algebra over k in κ(R) variables.

There is a version of Noether normalization theorem that generalizes
it to extensions of integral domains.

Corollary 2.8. Let S ⊂ R be an extension of integral domains with
R a finitely generated S–algebra. Then there exist elements r1, . . . , rd ∈ R

 

is a finitely generated R–module (see Theorem 2.3),
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that are algebraically independent over [S], and a non zero element s ∈ S
with the property that in the tower of extensions: Ss ⊂ Ss[r1, . . . , rd] ⊂ Rs
the top part is integral.

Proof: Consider the field extension [S] ⊂ [R] and apply Theorem 2.6
to R′ the [S]–subalgebra of [R] generated by R. The details are left to the
reader. ¤

Observation 2.9. The number d of algebraically independent elements
constructed in Corollary 2.8 equals κ([S]⊗S R).

Lemma 2.10. Let S ⊂ R be a finitely generated integral ring extension
of commutative integral domains. Then, there exists an element 0 6= s ∈ S
with the property that Ss ⊂ Rs is free.

Proof: From Theorem 2.3 we deduce that R is a finitely generated
S–module. Hence, we can find an S–epimorphism of a finite direct sum
of copies of S onto R, φ :

⊕r
1 S → R. This implies in particular that

R admits a finite S–composition series. The following assertion, that will
be proved by induction on the length, guarantees our result. Let S be a
commutative integral domain and assume that M is a S–module of finite
length, then there exists an element 0 6= s ∈ S, Ms is a free Ss–module.
Consider N a maximal S–submodule of M and the exact sequence 0 →
N →M →M/N → 0. The S–module M/N is simple and then isomorphic
to a module of the form S/P for some maximal ideal P in S. If P = {0} then
M/N ∼= S and then M ∼= N ⊕ S and the proof follows by induction on the
length. If P 6= 0 and we consider 0 6= sP ∈ P , it is clear that (S/P )sP

=
SsP /PSsP = {0}. Then, going back to the original exact sequence we
deduce that NsP

∼= MsP
. By induction we deduce the existence of s0 ∈ S

with the property that Ns0 is free as a Ss0–module. Hence, Ms0sP is free
as a Ss0sP

–module. ¤
The next theorem, that is a consequence of Noether normalization the-

orem, will be used in the characterization of affine homogeneous spaces in

Theorem 2.11. Let S ⊂ R be an extension of commutative integral
domains, and assume that R is a finitely generated S–algebra. Then there
exists an element s ∈ S such that Rs is free as a Ss–module.

Proof: First use Corollary 2.8 in order to find r1, . . . , rd ∈ R that
are algebraically independent over [S] and 0 6= s ∈ S such that in the
tower of extensions Ss ⊂ Ss[r1, . . . , rd] ⊂ Rs the top part is integral, with
d = κ([S] ⊗S R). Next proceed by induction on d. If d = 0 then the
extension Ss ⊂ Rs is integral and the result follows from Lemma 2.10.

 

terms of exactness (see Corollary 11.6.6 and Theorem 11.6.7).
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Without loss of generality and eventually changing notations we may
assume that the result is valid for all extensions of dimension smaller than
d and that s = 1. In other words, we suppose that S ⊂ S′ = S[r1, . . . , rd] ⊂
R, being the top extension integral and R finitely generated as an S–algebra
(observe that S′ is a free S–module).

It follows that R is a S′–module of finite length. The result will be de-
duced once we prove the following assertion: let M be a S′ = S[r1, . . . , rn]–
module of finite length. Then there exists an element s ∈ S such that Ms

is free as a Ss–module.
We proceed by induction on the length of M . Consider N a maximal

S′–submodule of M and consider the exact sequence: 0 → N → M →
M/N → 0. Since M/N is cyclic, there exists an ideal P ⊂ S′ such that
S′/P ∼= M/N . We will consider now three possibilities for the ideal P .
If P = {0}, then M/N ∼= S′ that is a free S–module, and in this case
M ∼= N⊕S′; hence the proof follows by induction on the length. If P 6= {0}
and P ∩ S 6= {0}, choose 0 6= p ∈ P ∩ S. Then Mp = Np, and the
proof follows by induction on the length. The last alternative for P is that
P 6= {0} and P ∩S = {0}. Consider the injection [S]⊗SP → [S]⊗SS′. The
image of this map is a prime ideal in [S] ⊗S S′ with κ

(
[S] ⊗S S′/P

)
< d.

By induction we deduce that there exists an element s ∈ S such that
(M/N)s ∼= (S′/P )s is free as a Ss–module. If we localize with respect to s
the sequence 0 → N →M →M/N → 0, we deduce that 0 → Ns →Ms →
(M/N)s → 0. Then, Ms

∼= Ns ⊕ (M/N)s. As the length of N is smaller
than the length of M our proof is finished. ¤

The theorem that follows is a variation of the usual results of extension
of ideals for integral extension of rings.

Theorem 2.12. Let R ⊂ S be an integral extension of k–algebras,
where k is an algebraically closed field. A k–algebra homomorphism from
R into k extends to a k–algebra homomorphism from S into k.

¤
The next lemma will be useful when dealing with the problem of the

in Lemma 12.3.4. Here we only present a brief sketch of the proof, for the

Lemma 2.13. Let R ⊂ S be an extension of k–algebras that are also
integral domains. Assume that (1) R is a finitely generated k–algebra; (2)
the field extension [R] ⊂ [S] is finite algebraic; (3) S is integral over R.
Then S is a finitely generated R–module and also a finitely generated k–
algebra. In particular, if S is the integral closure in [R] of R and R is a
finitely generated k–algebra, then S is also a finitely generated k–algebra.

 

finite generation of the rings of invariants in Chapter 12, more particularly

Proof: See [15, Chap. V, 2.1, Cor. 4].

missing details see [15, Chap. V, 3.2].
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Proof: First, one proves that it can be assumed that S is integrally
closed. Then, using Theorem 2.6 one can assume that R is a polynomial
ring over k and that [R] is the field of rational functions in n–variables.
Moreover, the extension [R] ⊂ [S] can be considered as a composition of a
purely inseparable extension with a Galois extension. Each of these cases
can be treated using standard methods in the theory of field extensions. ¤

The following classical theorem will be presented without proof.

Theorem 2.14 (Krull’s principal ideal theorem). Suppose that R is a
finitely generated integral domain k–algebra. Let r ∈ R be a fixed element
and P a minimal prime ideal containing r, i.e. an isolated prime ideal of
rR. Then tr. degk[R/P ] = tr. degk[R]− 1.

Proof: See for example [ ]. ¤

2.2. Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz is one of the basic building blocks of the theory
of algebraic varieties, and should be considered as a deep generalization of
the so–called fundamental theorem of algebra. In our presentation the
theorem appears initially as a result concerning extensions of k–algebra
homomorphisms with values in algebraically closed fields.

Theorem 2.15. Let k be an algebraically closed field and assume that
R is a commutative finitely generated k–algebra. If R 6= {0}, there exists a
k–algebra homomorphism from R into k.

Proof: In accordance to Theorem 2.6, there exist elements r1, . . . , rd ∈
R such that in the tower of extensions k ⊂ k[r1, . . . , rd] ⊂ R, the lower
part is isomorphic to a polynomial ring and the top part is an integral
extension. The existence of a k–algebra morphism from k[r1, . . . , rd] into k
is evident. The extension from k[r1, . . . , rd] to R of the morphism previously
constructed can be deduced from Theorem 2.12. ¤

We are ready to prove an abstract version of the Nullstellensatz.

Theorem 2.16. Assume that k is an algebraically closed field and R
a commutative finitely generated k–algebra with no non zero nilpotents. If
r 6= s ∈ R, then there exists a k–algebra homomorphism φ : R → k such
that φ(r) 6= φ(s).

Proof: We may assume that s = 0. In this case we consider a prime
ideal P ∈ R such that r 6∈ P — to guarantee the existence of such an ideal,
one uses a standard fact in commutative ring theory that asserts that in
this situation the set of nilpotent elements coincides with the intersection of

 

all prime ideals of the ring (see Appendix, Section 3). In the ring R/P , the

157
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element r = r+P 6= 0 is not nilpotent, and the k–algebra (R/P )r is finitely
generated and non zero. Using Theorem 2.15 we deduce the existence of
a morphism γ : (R/P )r → k and as r is invertible in the localization, it
follows that γ(r) 6= 0. The map φ : R → k defined by the commutativity
of the diagram

R //

φ

²²

R/P

²²
k (R/P )rγ

oo

is a k–algebra homomorphism that sends r into a non zero element. ¤
Next it follows a more classical version of the Nullstellensatz that is

known as the weak Nullstellensatz.

Theorem 2.17 (Weak Nullstellensatz). Let k be an algebraically closed
field.
(1) If R = k[r1, . . . , rn] is a finitely generated ring extension of k that is
also a field, then R = k.
(2) An ideal M ⊂ k[X1, . . . , Xn] is maximal if and only if M = 〈X1 −
a1, . . . , Xn − an〉, with a1, . . . , an ∈ k.

Proof: (1) Assume that one of the ri’s is not zero, say r1, and consider
the morphism φ : k[r1, . . . , rn] → k that sends r1 into a non zero element

1 n] is a field, it follows that φ is injective,
so that if we compute φ

(
r1 − φ(r1)1

)
= 0 we deduce that r1 ∈ k and then

by an evident iteration that R = k.
(2) Let M be a maximal ideal in k[X1, . . . , Xn]. Then k[X1, . . . , Xn]/M is
a field and by what we just proved it has to coincide with k. If we fix i,
1 ≤ i ≤ n, then there exists ai ∈ k with the property that Xi−ai1 ∈M . It
follows that the ideal 〈X1−a1, . . . , Xn−an〉 ⊂M . Moreover, all the ideals
of the form 〈X1 − a1, . . . , Xn − an〉 are maximal as these ideals are of the
form Ker

(
ε(a1,...,an)

)
where ε(a1,...,an) : k[X1, . . . , Xn] → k is the evaluation

at (a1, . . . , an). Hence, 〈X1 − a1, . . . , Xn − an〉 = M . ¤

Theorem 2.18 (Hilbert’s Nullstellensatz). Let I ( k[X1, . . . , Xn] be a
proper ideal, where k is an algebraically closed field. Then, there exists a
point (a1, . . . , an) ∈ kn such that f(a1, . . . , an) = 0 for all f ∈ I.

Proof: Let M be a maximal ideal of k[X1, . . . , Xn] that contains I
and write M = 〈X1 − a1, . . . , Xn − an〉. If f ∈ I, then there exist gi ∈
k[X1, . . . , Xn], i = 1, . . . , n, such that f = g1(X1− a1) + · · ·+ gn(Xn− an).
It follows that f(a1, . . . , an) = 0. ¤

 

(see Theorem 2.16). As k[r , . . . , r
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Observation 2.19. It is clear that the Nullstellensatz (Theorem 2.18)
implies the weak Nullstellensatz (Theorem 2.17).

Theorem 2.20. Assume that k is an algebraically closed field and let
I ( k[X1, . . . , Xn] be a proper ideal. Then

√
I =

⋂{
M ⊂ k[X1, . . . , Xn] : I ⊂M , Mmaximal ideal

}
.

Proof: Clearly if M is maximal and I ⊂ M , then
√
I ⊂ √

M =
M , so that

√
I ⊂ ⋂{

M ⊂ k[X1, . . . , Xn] : I ⊂ M , M maximal ideal
}

.
Conversely, suppose that f ∈M for all maximal idealsM that contain I and
let J ⊂ k[X1, . . . , Xn, Xn+1] be the ideal generated by I and the polynomial
1 − Xn+1f(X1, . . . , Xn). Consider a common zero (a1, . . . , an+1) ∈ kn+1

of the polynomials in J . Then h(a1, . . . , an) = 0 for all h ∈ I and this
means that I ⊂ 〈X1 − a1, . . . , Xn − an
maximal ideals that contain I, it follows that f ∈ 〈X1−a1, . . . , Xn−an〉 and
then that f(a1, . . . , an) = 0. As (a1, . . . , an+1) is a zero of the polynomial
1−Xn+1f(X1, . . . , Xn), we obtain a contradiction.

Therefore the ideal J has no common zeroes and from Theorem 2.18
we deduce that J = k[X1, . . . , Xn+1]. Hence, we can find g1, . . . , gs, g ∈
k[X1, . . . , Xn+1] and f1, . . . , fs ∈ I ⊂ k[X1, . . . , Xn] such that 1 = g1f1 +
· · ·+ gsfs + g(1−Xn+1f). Writing Xn+1 = 1/f(X1, . . . , Xn) we obtain the
following equality in k(X1, . . . , Xn):

1 = g1
(
X1, . . . , Xn, 1/f(X1, . . . , Xn)

)
f1(X1, . . . , Xn) + · · ·

· · ·+ gs
(
X1, . . . , Xn, 1/f(X1, . . . , Xn)

)
fs(X1, . . . , Xn).

Eliminating denominators the above equality is transformed in: fm =
h1f1 + · · · + hsfs, with hi ∈ k[X1, . . . , Xn] and m a conveniently chosen
exponent. Then fm ∈ I and thus f ∈ √I. ¤

2.3. Separability In this paragraph the fields we consider are not
necessarily algebraically closed.

Definition 2.21. Let k ⊂ K be an algebraic field extension. An
element a ∈ K is separable over k if there exists a polynomial f ∈ k[X]
with simple roots and such that f(a) = 0. The extension is separable if all
the elements of K are separable over k.

An element of a ∈ K is purely inseparable over k if the only separable
elements in k ⊂ k(a) are those belonging to k. The extension is purely
inseparable if all the elements of K are purely inseparable over k.

Concerning non algebraic extensions the notion of separability is de-
fined in a different manner. The next result is the basis for this definition.

 

〉 (see Exercise 2). As f is inside all
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Theorem 2.22. If k ⊂ K is a fixed field extension, then the following
conditions are equivalent.
(1) If V is a K–vector space and D : k→ V is a derivation, then there exists
a derivation D′ : K → V that extends D, i.e. D′|k

(2) For an arbitrary field K ′ that extends k, the tensor product K ⊗k K ′

has no non zero nilpotents.
In the case that the fields are of characteristic p, the above conditions

are equivalent to:
(3) If X ⊂ K is a k–linearly independent set, then Xp = {xp : x ∈ X} is
also a k–linearly independent set.

¤
Definition 2.23. A field extension k ⊂ K is separable if the equivalent

conditions (1),(2) or (3) (this last in the case of positive characteristic) of
Theorem 2.22 are satisfied.

Observation 2.24. (1) It is not hard to prove that in characteristic
zero all extensions are separable.
(2) A purely transcendental extension is separable.
(3) In the case of algebraic extensions both definitions of separability coin-
cide. Indeed, assume that a ∈ K is algebraic over k and separable in the
sense of Definition 2.21. Let V be a K–space and endow it with a k[X]–
module structure as follows, for g ∈ k[X] and v ∈ V , then g · v = g(a)v.

Extend an arbitrary derivation D : k → V to D′ : k[X] → V by the
rule: D′(X) = −(∑

D(ai)ai/f ′(a)
)
, where f =

∑
aiX

i is the minimal
polynomial of a with coefficients in the base field k. It is easy to prove that
D′(f) = 0 and hence, that D′ factors to a derivation D′′ : k(a) → V .

Conversely, if we call f = Irr(a,k) ∈ k[X], we want to prove that
f ′(a) 6= 0. If f ′(a) = 0 we deduce that f divides f ′, and this may only
happen if f ′ = 0, i.e. if for some polynomial g ∈ k[X], f(X) = g(Xp). This
means that the elements 1, ap, . . . , ap(d−1) are linearly dependent over k,
where d = [k(a) : k]. But this contradicts the fact that 1, a, . . . , ad−1 are
linearly independent and Definition 2.23.

In the case of a separable extension, one can find a transcendence basis
with special properties. The proof of this classical result will be omitted.

Theorem 2.25. Assume that the extension k ⊂ K is separable and
finitely generated. Then there exists a finite transcendence basis B such
that the tower of extensions k ⊂ k(B) ⊂ K has the lower part purely tran-
scendental and the top part separable algebraic.

 

Definition 3.17).
= D (see Appendix,

Proof: See for example [71, Chap. III].
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¤
The next theorem relates the transcendence degree of a separable finitely

generated extension with the dimension of the space of derivations Dk(K).

Theorem 2.26. Assume that the extension k ⊂ K is separable and
finitely generated. Then tr. degkK = dimK Dk(K).

¤
The next lemma will be presented without proof.

Lemma 2.27. Let k be an algebraically closed field and S ⊂ R be an
extension of integral domain k–algebras and assume that R is finitely gen-
erated as an S–algebra. If 0 6= r ∈ R, there exists an element 0 6= t ∈ S
with the property that every homomorphism of k–algebras α : S → k such
that α(t) 6= 0, extends to a homomorphism of k–algebras from R into k,
such that α(r) 6= 0.

¤
The result that follows will be used when dealing with the structure of

Lemma 2.28. Let S ⊂ R be an extension of k–algebras that are also
integral domains and assume that R is finitely generated over k. Assume
that an element r ∈ R has the following property: if α, β : R→ k is a pair
of k–algebra homomorphisms that coincide over S, then α(r) = β(r). Then
r ∈ R is algebraic and purely inseparable over [S].

Proof: We prove first that r is algebraic over [S]. Assume that this
is not the case, and consider S[r] ⊂ R. Using Lemma 2.27 we deduce
that there exists an element 0 6= t ∈ S[r] with the property that every k–
algebra homomorphism γ : S[r] → k such that γ(t) 6= 0 extends to R, with
γ(r) 6= 0. Write t = s0 + s1r + · · · + snr

n with si ∈ S and sn 6= 0. Using
the Nullstellensatz 2.16 we deduce the existence of a homomorphism of k–
algebras γ̂ : R→ k such that γ̂(sn) 6= 0, and by restriction to S we obtain
a homomorphism of k–algebras γ0 : S → k with the same property. It is
clear that in order to extend γ0 to S[r] all we have to do is to assign a value
to r. Assume that γ1 is an extension of γ0 and such that γ1(t) = 0. Then
0 = γ0(s0)+γ0(s1)γ1(r)+ · · ·+γ0(sn)γ1(r)n. Hence, if we assign a value to
γ1(r) that is not a root of the above polynomial, we obtain an extension of
the original morphism not vanishing at t. There are then infinite extensions
of γ0 to R and this contradicts the hypothesis about r.

The proof that r is purely inseparable is similar. Call p the character-
istic exponent of the base field, and assume that r is not purely inseparable

 

homogeneous spaces in Chapter 7.

Proof: See [156, Chap. II, Thm. 30].

Proof: See for example [71, Chap. III].

Proof: See for example [71, Thm. II.3.3].
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over [S]. Then for some exponent m > 0 the element rp
m

is separable, alge-
braic over [S] and does not belong to [S]. After eliminating denominators we
can find 0 6= s ∈ S such that if we call t = srp

m

, then f = Irr
(
t, [S]

) ∈ S[X],
with deg(f) = n > 1.

Proceeding as before we can find u = s0 + s1t+ · · ·+ slt
l, where sl 6= 0,

and l < n, with the property that all k–algebra homomorphisms γ : S[t] →
k that do not annihilate u can be extended to R. Call g = s0 + s1X +
· · · + slX

l ∈ S[X]. As f, g, as well as f, f ′, are relatively prime over[S],
there exist polynomials h, k, q, w ∈ S[X] and non zero elements e, e′ ∈ S
such that hf + kg = e, qf + wf ′ = e′. We use the Nullstellensatz to
construct β : S → k, such that β(ee′) 6= 0. Given an arbitrary polynomial
in z ∈ S[X] we call z1 ∈ k[X] the polynomial obtained by applying β to
the coefficients of z. It is clear in the above construction that (z1)′ = (z′)1
and that if z is monic the degree of z1 coincides with the degree of z. Then,
h1f1 + k1g1 = β(e), q1f1 +w1f

′
1 = β(e′). Hence, the polynomials f1 and g1

are relatively prime and the same happens with f1 and f ′1.
Then, f1 has n roots in k and none of these roots is a root of g1, and

in this way we can obtain n different extensions of β to algebra homomor-
phisms from S[t] into k and none of them annihilates u. Hence all these
extensions, extend further to R. This is a contradiction because if β′ is such
an extension, then β′(t) = β(s)β′(r)p

m

and all the values of β′(r) should
be equal by hypothesis. ¤

Theorem 2.29. If K is a field and G is a group of field automorphisms
of K, then the extension GK ⊂ K is separable.

¤

2.4. Faithfully flat ring extensions

Definition 2.30. A commutative ring extension S ⊂ R is said to be
faithfully flat if for all sequences of S–modules: E : 0 →M → N → T → 0,
E is exact if and only if E ⊗S R : 0 → M ⊗S R → N ⊗S R → T ⊗S R → 0
is exact.

Note that if the extension S ⊂ R is free, i.e. if R is free as an S–module,
then it is faithfully flat.

Observation 2.31. In the situation of Definition 2.30, S ⊂ R is a
faithfully flat ring extension if and only if:
(1) for all injective morphisms α : M → N of S–modules, the morphism of
R–modules, id⊗α : R⊗S M → R⊗S N is injective;
(2) if M is an S–module such that R⊗S M = {0}, then M = {0}.

 

See Exercise 3.

Proof: See for example [71, Thm. III.2.3] or [10, Prop. AG.2.4].
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Lemma 2.32. Let S ⊂ R be a finitely generated commutative ring ex-
tension of integral domains. Suppose we can find s1, . . . , sn ∈ S such that:
(1) the elements s1, . . . , sn generate the unit ideal of S; (2) Rsi is faithfully
flat as an Ssi–module. Then R is faithfully flat as an S–module.

Proof: We use here Observation 2.31. First suppose that M is a S–
module such that M ⊗S R = 0. Then M ⊗S R ⊗R Rsi = 0 or equivalently
M ⊗S Rsi = 0. Therefore, M ⊗S Ssi ⊗Ssi

Rsi = 0 and from the hypothesis
we conclude that M ⊗S Ssi = 0. Hence, for an arbitrary m ∈ M there
exists an exponent q such that for all 1 ≤ i ≤ n, sqim = 0. As the ideal
generated by {sq1, . . . , sqn} is also the unit ideal, we conclude that m = 0.
Hence, M = 0.

Assume that α : M → N is an injective morphism of S–modules. Then
id⊗α : Ssi ⊗S M → Ssi ⊗S N is injective and so is

id⊗ id⊗α : Rsi ⊗Ssi
Ssi ⊗S M → Rsi ⊗Ssi

Ssi ⊗S N .

Hence, the morphism id⊗α : Rsi
⊗S M → Rsi

⊗S N is injective.
Looking at the diagram

R⊗S M id⊗α //

²²

R⊗S N

²²
Rsi ⊗S M id⊗α

// Rsi
⊗S N

we deduce that if an element
∑
rk ⊗ mk ∈ R ⊗S M satisfies that 0 =∑

rk⊗α(mk) ∈ R⊗SN , then 0 =
∑
rk⊗mk ∈ Rsi⊗SM for all i = 1, . . . , n.

From Exercise 3 (d), we deduce that 0 =
∑
rk ⊗mk ∈ R⊗S M . ¤

2.5. Regular local rings

In this section we deal with the algebraic version of the concept of non

of regular local ring.
Let R be a commutative integral noetherian local ring and M its max-

imal ideal. It follows from general results in dimension theory of commuta-

set of generators of M as an R–module is larger than or equal to the Krull
dimension of R.

Definition 2.33. In the above situation, we say that the ring R is
regular if M has a set of R–module generators of cardinality κ(R), the
Krull dimension of R.

 

singular point (see Definition 4.101 below). The relevant idea is the concept

tive rings (see for example [3, p. 119]) that the cardinality of an arbitrary
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The following basic result will be interpreted in geometric terms in
Theorem 4.108.

Theorem 2.34. Let R be a noetherian regular local ring, then R is an
integral domain that is also integrally closed in its field of fractions.

¤
In the case of rings of Krull dimension one, i.e. in the case of curves,

there is an easy criterion for regularity.

Theorem 2.35. Assume that R is a noetherian local integral domain
of dimension 1. Then the following conditions are equivalent:
(1) R is a discrete valuation ring;
(2) R is integrally closed;
(3) R is a regular local ring;
(4) the maximal ideal of R is principal.

¤

3. Algebraic subsets of the affine space

From now on we assume that k is an algebraically closed field.

3.1. Basic definitions

Definition 3.1. Consider the map V from the family of subsets of
k[X1, . . . , Xn] to the family of subsets of kn,

V(S) =
{

(a1, . . . , an) ∈ kn : f(a1, . . . , an) = 0, ∀ f ∈ S}
,

where S ⊂ k[X1, . . . , Xn]. The image of the map V is the family of closed
sets of a topology of kn, called the Zariski topology. The set kn when
endowed with the Zariski topology will be denoted as An and called the
affine space. An algebraic set is a Zariski closed subset of An, for some
n ≥ 0. If S ⊂ An is a subset, the Zariski topology of S is the topology
induced by the Zariski topology of An.

The above is the basic construction for developing the local theory of
algebraic varieties over a field k.

Observation 3.2. In the situation above we have that:
(1) The map V is determined by the values it takes on the ideals of the
algebra k[X1, . . . , Xn]. Indeed, if S is an arbitrary subset of the polynomial
ring and 〈S〉 is the ideal generated by S then V(S) = V(〈S〉) = V(√〈S〉).

 

Proof: See for example [3, Lemma 11.23] or [71, Cor. XI.4.2].

Proof: See [3, Chap. I. Prop. 9.2.].
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(2) If I and J are ideals in the polynomial ring, and
√
I =

√
J , then

V(I) = V(J) = V(√
I
)
.

(3) An arbitrary algebraic subset of kn is always the set of zeroes of a finite
number of polynomials. Indeed, if X ⊂ kn is algebraic, then X = V(I)
for some ideal I in the corresponding polynomial ring. As I = 〈f1, . . . , fm〉

X = V(f1, . . . , fm).

Next we reverse the above construction and associate to an arbitrary
subset of An an ideal in the polynomial ring k[X1, . . . , Xn].

Definition 3.3. Let X ⊂ An be a arbitrary subset. Call

I(X) =
{
f ∈ k[X1, . . . , Xn] : f |X = 0

} ⊂ k[X1, . . . , Xn] .

Notice that I(X) is an ideal of k[X1, . . . , Xn].

Below we list — and leave as an exercise for the reader to prove — the

Lemma 3.4. Consider an algebraically closed field k and the maps V
and I defined above.
(1) If S ⊂ T ⊂ k[X1, . . . , Xn], then V(T ) ⊂ V(S). Also, V({0}) = An and
V(
k[X1, . . . , Xn]

)
= ∅.

(2) If {Sα}α is a family of subsets of k[X1, . . . , Xn], then V(⋃
α Sα

)
=⋂

α V(Sα).
(3) If I, J ⊂ k[X1, . . . , Xn] are ideals, then V(IJ) = V(I∩J) = V(I)∪V(J).
(4) If X ⊂ Y ⊂ An, then I(Y ) ⊂ I(X). I(∅) = k[X1, . . . , Xn] and
I(An) = {0}.
(5) If X,Y ⊂ An, then I(X ∪ Y ) = I(X) ∩ I(Y ).
(6) If {Xα}α are closed subsets of An, then I(⋂

αXα

)
=

∑
α I(Xα).

(7) If X ⊂ An then, X ⊂ V(I(X)
)
.

(8) If I is an ideal in k[X1, . . . , Xn], then I ⊂ √
I ⊂ I(V(I)

)
.

(9) The image of I consists of radical ideals.

Observation 3.5. In accordance with Lemma 3.4 parts (7) and (8),
if X ⊂ An, then X ⊂ V(I(X)

)
and if I ⊂ k[x1, . . . , xn] is an ideal, then

I ⊂ I(V(I)
)
. These inclusions are not necessarily equalities: take for

example X = k \ {0} ⊂ k, and I = 〈x2〉 ⊂ k[X] and perform the explicit
computations.

Lemma 3.6. If X ⊂ An is an arbitrary subset of the affine space and
X denotes its closure, then X = V(I(X)

)
.

 

for a finite set of polynomials (see Appendix, Theorem 3.10), we have that

basic properties of the maps I and V. See Exercise 5.
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Proof:
¤

Lemma 3.7. Let X ⊂ An be an arbitrary subset. Then

I(X) =
⋂

(a1,...,an)∈X
〈X1 − a1, . . . , Xn − an〉 .

Proof: If f ∈ I(X), then f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ X,
and thus f ∈ 〈X1 − a1, . . . , Xn − an〉 for all (a1, . . . , an

1−a1, . . . , Xn−an〉, it is clear that f(a1, . . . , an) =
¤

Another version of Hilbert’s Nullstellensatz guarantees that the equal-
ity

√
I = I(V(I)

)
holds.

Theorem 3.8 (Hilbert’s Nullstellensatz). Let I be an ideal in the poly-
nomial ring I ⊂ k[X1, . . . , Xn], then

√
I = I(V(I)

)
.

√
I =

⋂{
M ⊂ k[X1, . . . , Xn] : I ⊂M,M maximal ideal

}
.

If M is maximal, then M = 〈X1−a1, . . . , Xn−an〉 for some a1, . . . , an ∈
Clearly, I ⊂ 〈X1 − a1, . . . , Xn − an〉 if and only if

f(a1, . . . , an) = 0 for all f ∈ I, i.e. if and only if (a1, . . . , an) ∈ V(I). Thus,
we conclude that√
I =

⋂{〈X1 − a1, . . . , Xn − an〉 ⊂ k[X1, . . . , Xn] : (a1, . . . , an) ∈ V(I)
}
.

By Lemma 3.7, I(V(I)
)

=
⋂

(a1,...,an)∈V(I)〈X1− a1, . . . , Xn− an〉. It is
then evident that

√
I = I(V(I)

)
. ¤

Corollary 3.9. If we fix n and restrict the domain of the map I to
the family of algebraic subsets of An and the domain of V to the family of
radical ideals of k[X1, . . . , Xn], the maps V and I are inclusion reversing
inverse isomorphisms. Moreover, this correspondence takes points of An
into maximal ideals of k[X1, . . . , Xn].

Proof: The proof of this result follows easily from the preceding lem-
mas. ¤

Example 3.10. (1) Let k be an algebraically closed field, then the
algebraic subsets of A1 = k are ∅, A1 and finite subsets of k.
(2) The reader should be aware that many of the above conditions fail dras-
tically for non algebraically closed fields. For example, the ideal generated
by X2 + 1 ⊂ R[X] is maximal, but its zero set in R2 is empty.

 

The proof of this lemma is left as an exercise (see Exercise
6).

) ∈ X (see Exercise

0.
2). Conversely, if f ∈ 〈X

This result is due to D. Hilbert (see [59], [60]).

Proof: Recall that (see Theorem 2.20)

k (see Theorem 2.17).
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3.2. The Zariski topology

Definition 3.11. Let f ∈ k[X1, . . . , Xn] and consider the open subset
of An,

Anf = An \ f−1(0) =
{

(a1, . . . , an) ∈ An : f(a1, . . . , an) 6= 0
}
.

If X is an arbitrary algebraic subset of An, and f ∈ k[X1, . . . , Xn] then
Xf = X \ f−1(0) = X ∩ Anf is open in X. The open subsets Xf will be
called the basic open subsets of X.

Lemma 3.12. In the situation of Definition 3.11, the family of open
sets

{
Anf : f ∈ k[X1, . . . , Xn]

}
form a basis for the Zariski topology of An.

Similarly, the family of the open subsets
{
Xf : f ∈ k[X1, . . . , Xn]

}
form a

basis for the Zariski topology of X.

Proof:
¤

general is not Hausdorff. In fact, an algebraic set is Hausdorff if and only

We leave as an exercise the proof that algebraic sets are quasi–compact

Lemma 3.13. The Zariski topology when restricted to an arbitrary al-
gebraic set of an affine space is noetherian.

Proof: Clearly it is enough to prove this result for An. The family of
all closed, i.e. algebraic, subsets of An is in bijection with the family of radi-
cal ideals of k[X1, . . . , Xn]. But, since the polynomial algebra is noetherian

hence the same happens with the descending chains of algebraic subsets of
An. ¤

In an informal sense, the noetherian property tells us that in the Zariski

this accounts for the rigidity of the theory.

Definition 3.14. A topological space X is reducible if it is the union
of two proper closed subsets. It is irreducible if this is not the case. An
irreducible component of X is a maximal irreducible subset of X.

Theorem 3.15. (1) A topological space X is irreducible if and only if
any two non empty open subsets intersect, i.e. U ∩ V 6= ∅ for all U, V ⊂ X
non empty open subsets.
(2) The closure of an irreducible set is irreducible.
(3) The irreducible components of a topological space are closed.

 

(see Appendix, Theorem 3.10), the ascending chains of ideals stabilize and

The proof of this result is left as an exercise (see Exercise
7).

if it is a finite collection of points (see Exercise 8).

(see Exercise 9).

As the reader can easily see in example 3.10, the Zariski topology in

topology the open subsets are large (see for example Theorem 3.15) and
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Proof: This is an easy exercise in general topology. ¤

Observation 3.16. The reader must be careful at not to confuse ir-
reducibility with connectedness. Clearly an irreducible topological space
is connected. Since for a Hausdorff topological space given two different
points we can find two disjoint non empty open subsets, an irreducible
Hausdorff topological space is necessarily a point.

Observation 3.17. If S is an arbitrary irreducible subset of X, then
there exists an irreducible component Z of X that contains S.

Indeed, consider the family FS consisting of all irreducible closed sub-
sets of X that contain S with the order given by the inclusion. If {Zi}i∈I
is a chain in FS , then Z =

⋃
i∈I Zi is an irreducible closed subset of

X that contains S, i.e., Z ∈ FS . To prove this assertion assume that
∅ = (U ∩Z)∩ (V ∩Z) = U ∩V ∩Z, U, V open in X, with U ∩Z 6= ∅. Then
U ∩ Zi 6= ∅ for some i ∈ I. Thus U ∩ Zj 6= ∅ and U ∩ V ∩ Zj = ∅ for any
Zj ⊃ Zi. As Zj is irreducible, it follows that V ∩ Zj = ∅ for every Zj ⊃ Zi
and hence for every j ∈ I, V ∩ Zj = ∅.

Then, V ∩Z = ∅, and Z is irreducible. Using Zorn’s lemma we conclude
that every irreducible subset of X is contained in a maximal irreducible,
i.e., in an irreducible component.

Lemma 3.18. Let X be a noetherian topological space. Then in X
there are at most a finite number of irreducible components. Moreover,
X =

⋃n
i=1Xi, where {X1, . . . , Xn} are the irreducible components of X.

Proof: Let Xj , j ∈ J , be the family of irreducible components of X —
as we observed before this family is non empty. Since points are irreducible,
it follows that X =

⋃
j∈J Xj .

We prove now that an arbitrary non empty closed subset of X can be
written as a finite union of irreducible subsets. If not, call F the family of
the closed subsets of X that cannot be written as above and take X−∞ a
minimal set in this family. If X−∞ is irreducible we have a contradiction.
Contrary-wise write X−∞ = X0 ∪ X1, with X0, X1 ( X−∞ closed in X.
Since X0, X1 6∈ F , we have a contradiction.

Assume now that X =
⋃n
i=1Xi, Xi irreducible, and eliminate all re-

dundancies, i.e., assume that there are no inclusion relations between the
Xi. If Z is an irreducible component of X we have that Z =

⋃n
i=1(Xi∩Z),

then, using the irreducibility of Z we conclude that for some 1 ≤ i ≤ n,
Z = Z ∩Xi. Then, Z ⊂ Xi and hence, Z = Xi. ¤

Example 3.19. The algebraic subset V(XY ) ⊂ k2 (the union of the
two coordinate axes) is reducible, with irreducible components V(XY ) =
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{
(0, b) : b ∈ k} ∪ {

(a, 0) : a ∈ k}. It is very easy to see that the lines{
(0, b) : b ∈ k} and

{
(a, 0) : a ∈ k} are irreducible.

The irreducibility of an algebraic set can be completely characterized
in terms of the corresponding ideal.

Theorem 3.20. An algebraic set X ⊂ An is irreducible if and only if
I(X) is a prime ideal. In particular, An is irreducible.

Proof: Let X be an irreducible algebraic subset and suppose that
f, g ∈ k[X1, . . . , Xn] are such that fg ∈ I(X). Consider the union V(f) ∪
V(g) = V(fg). Since fg ∈ I(X), it follows that X ⊂ V(fg). Thus, either
X ⊂ V(f) or X ⊂ V(g). We suppose without loss of generality that X ⊂
V(f). Then

√
(f) ⊂ I(X), and thus f ∈ I(X).

Suppose now that I(X) is a prime ideal. LetX = Y ∪Z, with Y = V(I),
Z = V(J) two closed subsets. Then X = V(IJ), and thus I(X) =

√
IJ ⊃

IJ . Suppose there exists a polynomial f ∈ I \I(X). Since fg ∈ IJ ⊂ I(X)
for any g ∈ J , and I(X) is prime, it follows that J ⊂ I(X), and thusX ⊂ Z.
This concludes the proof. ¤

Observation 3.21. Let f ∈ k[X1, . . . , Xn] and consider the corre-
sponding function f : An → k. Then the function f is continuous in the
Zariski topology. Indeed, f−1(a) = V(f − a).

3.3. Polynomial maps. Morphisms

Observation 3.22. Let X ⊂ An be an algebraic set and call kX the al-
gebra of all functions from X into k. Consider the map R : k[X1, . . . , Xn] →
kX , defined by the restriction of functions, i.e., R(f) = f |X . If I =
I(X) is the ideal of X, it is clear that the image of R is isomorphic to
k[X1, . . . , Xn]/I. Observe also that for f ∈ k[X1, . . . , Xn] the function
R(f) : X → k, being the restriction of a continuous function, is also con-
tinuous.

Definition 3.23. Let X ⊂ An be an algebraic subset. We say that
a function of kX is a regular function or that it is a polynomial on X
if it is the restriction to X of a polynomial in An, i.e., if it belongs to
R

(
k[X1, . . . , Xn]

)
. We denote the set of polynomial functions as k[X].

Observation 3.24. As k[X] ⊂ kX is R
(
k[X1, . . . , Xn]

)
, it follows that

the algebra k[X] is isomorphic to k[X1, . . . , Xn

Observation 3.25. If we call CZar(X) the subalgebra of kX consisting
of the functions on X continuous with respect to the Zariski topology, it

 

]/I(X) (see Observation
3.22).
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is clear that k[X] ⊂ CZar(X). Notice that there exist continuous functions

Observation 3.26. Since the ideals of k[X1, . . . , Xn]/I correspond to
the ideals of k[X1, . . . , Xn] that contain I, the closed subsets of X in the
Zariski topology correspond to the ideals in k[X]. In particular, the points
in X correspond to the maximal ideals of k[X]. It is also clear that the
basis for the Zariski topology of an algebraic set X considered in Definition
3.11 is

{
Xf : f ∈ k[X]

}
.

Definition 3.27. In the case that X and Y are abstract sets and
F : X → Y is a function, define a k–algebra homomorphism F# : kY → kX
as F#(f) = f◦F .

The following definition of morphism between algebraic sets generalizes
and is motivated by the construction of k[X].

Definition 3.28. Let X ⊂ An, Y ⊂ Am be algebraic sets. A morphism
of algebraic sets F : X → Y is a set theoretical function from X into Y
with the property that F#

(
k[Y ]

) ⊂ k[X]. Morphisms of algebraic sets are
also called regular maps or polynomial maps.

is a morphism of algebraic sets,
we denote the restriction F#|k[Y ] also as F# : k[Y ] → k[X].

in the situation of the above Definition 3.28, if X ⊂ An and Y ⊂ Am,
a function F : X → Y is a morphism of algebraic sets if and only if
there exists polynomials f1, . . . , fm ∈ k[X1, . . . , Xn] such that if we call
G = (f1, . . . , fm) : An → Am, then G|X

In other words, the morphisms of algebraic sets are the restrictions
of m–uples of polynomials viewed as maps in the ambient space. In par-
ticular the morphisms from An to Am are the m–uples of polynomials in n
variables.

Lemma 3.30. Let X ⊂ An, Y ⊂ Am be algebraic sets and assume that
F : X → Y is a morphism of algebraic sets. Then, the map F# : k[Y ] →
k[X] is an algebra homomorphism.

Proof: The proof follows immediately from Definition 3.28. ¤
Observation 3.31. The reader should be aware that the notation F#

for the map k[Y ] → k[X], f 7→ f◦F , is not uniform in the literature, see

The next theorem shows that the geometry of the algebraic sets can be
considered as part of commutative algebra.

 

that are not regular. See Exercise 18.

(2) The reader is asked to prove as an exercise (see Exercise 15) that,

for example [10], [55], [123].

= F (see also the proof of Theorem
3.32).

Observation 3.29. (1) If F : X → Y
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Theorem 3.32. The contravariant functor

X 7→ k[X] , (F : X → Y ) 7→ (
F# : k[Y ] → k[X]

)

is an isomorphism between the category of algebraic sets and morphisms
of algebraic sets and the category of affine k–algebras and morphisms of
k–algebras.

Proof: Let A be an affine k–algebra; it can be written as A =
k[X1, . . . , Xn]/I, where I is a radical ideal. Call X = V(I) the alge-
braic subset of An consisting of the zeroes of I. Clearly k[X] ∼= A. As-
sume now that X and Y are algebraic subsets of An and Am respectively,
and that α : k[Y ] → k[X] is a morphism of algebras. Write k[Y ] =
k[Y1, . . . , Ym]/ I(Y ) and k[X] = k[X1, . . . , Xn]/ I(X). Define polynomials
fi ∈ k[X1, . . . , Xn], i = 1, . . . ,m by the formulæ α

(
Yi+I(Y )

)
= fi+I(X),

and consider the map α̂ : k[Y1, . . . , Ym] → k[X1, . . . , Xn] given by extending
multiplicatively the map that sends α̂(Yi) = fi, for i = 1, . . . ,m. Then, the
diagram below commutes

k[Y1, . . . , Ym] bα //

²²

k[X1, . . . , Xn]

²²
k[Y1, . . . , Ym]/I(Y )

α
// k[X1, . . . , Xn]/I(X)

Consider the map F = (f1, . . . , fm) : An → Am. We want to prove
that F (X) ⊂ Y and that F# If f ∈ k[Y1, . . . , Ym]
then f◦F = f(f1, . . . , fm) = f

(
α̂(Y1), . . . , α̂(Ym)

)
= α̂(f), i.e., F# = α̂.

Also, if f ∈ I(Y ), then f◦F ∈ I(X) and hence map F sends X into
Y . ¤

Lemma 3.33. If X ⊂ An is an algebraic set, then the elements of k[X]
separate the points of X. In other words, given x 6= y ∈ X, there exists
f ∈ k[X] such that f(x) = 0, f(y) 6= 0. More generally, if Y ⊂ X is a
closed subset and x /∈ Y , then there exists f ∈ I(Y ) such that f(x) 6= 0

Proof: Since x /∈ Y , the maximal ideal Mx does not contain I(Y ).
Hence, there exists f ∈ I(Y ) \Mx. ¤

Definition 3.34. (1) Let X be an algebraic set, x ∈ X and Ux be an
open subset of X containing x. We say that a function h : Ux → k is regular
at x, if there exist an open subset x ∈ V ⊂ Ux and functions f, g ∈ k[X],
such that g(y) 6= 0 for all y ∈ V and h|V = (f/g)|V .
(2) We call OX,x, the local ring of X at x, the ring of functions that are
regular at x.

 

= α (see Lemma 3.30).
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(3) If U is an open subset of X we define the ring of regular functions on
an open subset U as the ring of the functions f : U → k that are regular at
every point of U . We denote this ring as OX(U).

Observation 3.35. Observe that in the above definition there is no
loss of generality if we ask V to be a basic open subset of X.

Lemma 3.36. (1) Let X be an algebraic set and x ∈ X, then OX,x ∼=
k[X]Mx where Mx is the maximal ideal in the ring k[X] corresponding to
x.
(2) If X is an irreducible algebraic subset, and 0 6= f ∈ k[X], then k[X]f ∼=
OX(Xf ), and in particular OX(X) = k[X].

Proof: (1) There exists an injective map k[X]Mx → OX,x. Indeed,
if we consider f/g with f, g ∈ k[X] and g(x) 6= 0 and take Xg, it is clear
that g does not vanish in Xg and then the quotient f/g represents an
element in OX,x. If h ∈ OX,x is an arbitrary element, one can represent
h as the quotient f/g of two polynomials f, g ∈ k[X], with g(x) 6= 0, in a
conveniently chosen neighborhood of x. It follows that the above morphism
is surjective.
(2) It is clear that k[X]f injects into OX(Xf ). Consider an element g ∈
OX(Xf ), then g ∈ OX,x for all x ∈ Xf or equivalently, g ∈ k[X]M
for all the ideals M corresponding to points of Xf . Now, x ∈ Xf if
and only if f(x) 6= 0, if and only if f 6∈ M , where M is the maximal
ideal corresponding to the point x. In other words, g ∈ OX(Xf ) if and
only if g ∈ k[X]M for all maximal ideals M ⊂ k[X] such that f 6∈ M ,
i.e., OX(Xf ) =

⋂{
k[X]M : f 6∈ M, M ⊂ k[X] is maximal

}
. But, the

localization map establishes a bijective correspondence between the set
of maximal ideals of k[X] that do not contain f and the set of maxi-
mal ideals of k[X]f . Moreover, as k[X]M = (k[X]f )Mf

we conclude that
OX(Xf ) =

⋂{
(k[X]f )fM : M̃ ⊂ k[X]f , M̃ is maximal

}
= k[X]f . For this

last equality see Appendix, Observation 3.15. ¤

Observation 3.37. If U ⊂ V ⊂ X are open subsets, the restriction of
functions from V to U induces a morphism of k–algebras ρV U : OX(V ) →
OX(U).

Given two open subsets U, V ⊂ X, f ∈ OX(U) and g ∈ OX(V ), such
that f |U∩V = g|U∩V , the function h : U ∪ V → k defined as: h(x) = f(x)
if x ∈ U , h(x) = g(x) if x ∈ V , belongs to OX(U ∪ V ).

Then the assignment U 7→ OX(U) together with the restriction maps

 

form a sheaf of rings in the topological space X (see Section 4.1, and in
particular Example 4.6).
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Corollary 3.38. (1) Let X be an irreducible algebraic subset and
U ⊂ X an open subset. Then every function f ∈ OX(U) is continuous.
(2) If X and Y are affine algebraic sets and f : X → Y is a morphism
of affine algebraic sets, then for any V open subset of Y the map given by
composition with f sends OY (V ) into OX

(
f−1(V )

)
. ¤

The last assertion of the above Corollary is better interpreted in terms

4. Algebraic varieties

In this section we continue with the development of algebraic geometry
by defining the category of algebraic varieties.

4.1. Sheaves on topological spaces

Definition 4.1. A presheaf of rings F on a topological space X as-
sociates to each open subset U ⊂ X a ring F(U) and to each pair of open
subsets U ⊂ V ⊂ X a morphism of rings ρV U : F(V ) → F(U) such that:
(a) F(∅) = {0};
(b) ρUU = idF(U) for all open subsets U ⊂ X;
(c) if U ⊂ V ⊂W ⊂ X are three open subsets, then ρWU = ρV U ◦ρWV ;

We say that F is a sheaf of rings, or simply a sheaf if it also satisfies:
(d) for every open subset U ⊂ X, for every cover {Vi}i∈I of U by open sub-
sets, and for every family si ∈ F(Vi) such that ρVi Vi∩Vj

(si) = ρVj Vi∩Vj
(sj)

for all i, j ∈ I; there exists s ∈ F(U) such that ρUVi(s) = si for all i ∈ I;
(e) if U and {Vi}i∈I are as in (d) and s ∈ F(U) is such that ρUVi

(s) = 0
for all i ∈ I, then s = 0.

For U ⊂ X open, the ring F(U), is called the ring of sections of F on
U and the maps ρV U are called the restriction maps. The elements of F(U)
are called the sections of the sheaf on U .

If F is a sheaf onX, a subsheaf G ⊂ F is a sheaf such that G(U) ⊂ F(U)
is a subring, for all open subset U ⊂ X.

Observation 4.2. (1) Most of the sheaves used in this book are shea-
ves of k–algebras — i.e. the rings F(U) are k–algebras, and the restriction
maps are morphisms of k–algebras. In this context, by a subsheaf we mean
a subsheaf such that G(U) is a subalgebra of F(U) for all U open subset of
X.
(2) Usually — and the motivation for this abuse of notation will become
clear in what follows — if U ⊂ V and s ∈ F(V ), we write s|U = ρV U (s).

 

of morphisms of sheaves (see for example Observation 4.39).
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(3) If X is a topological space a more formal definition of a presheaf on X
would be the following. Consider the topology T as a category — viewing
it as an ordered set. A presheaf on X is a contravariant functor from
the topology into the category of rings. In this interpretation sheaves are
functors satisfying certain equalization properties.

Example 4.3. Let X and Z be topological spaces. To each open subset
U ⊂ X we associate the set of continuous functions from U to Z, and if
V ⊂ U are open, we consider the restriction of functions from U to V .
Since continuity is a local property, in this manner we obtain a sheaf. If
Z = R, this is a sheaf of R–algebras.

Definition 4.4. Let F be a presheaf of rings on X, and x ∈ X. We
define the stalk Fx of F at x as the direct limit of the directed family of
rings

{F(U) : x ∈ U, ρV U , U ⊂ V open in X
}

.

Observation 4.5. (1) Explicitly, Fx is the quotient of the set of pairs{
(U, s) : s ∈ F(U)x ∈ U open in X

}
with respect to the equivalence rela-

tion: (U, s) ∼ (V, t) if and only if there exists an open set x ∈ W ⊂ V ∩ U
such that s|W = t|W .
(2) Notice that for all x ∈ X the fiber Fx is a commutative ring, and a
k–algebra if the F is a presheaf of k–algebras.
(3) If U ⊂ X is an open subset, then the canonical map associated to
the direct limit is a ring homomorphism for all x ∈ U — recall that this
canonical map F(U) → Fx sends s ∈ F(U) into the equivalence class of
the pair (U, s).

The image of s in the stalk Fx can be thought as the value of s at x.
Thus, the stalk Fx represents the germs of the sections of F at x, and a
section s ∈ F(U) can be thought as a function s : U → ⊔

x∈U Fx such that
s(x) ∈ Fx — the symbol

⊔
represents the disjoint union. Notice that not

all functions as above produce elements of F(U), as the elements of F(U)
satisfy additional coherence properties.

The following example is central in the development of the theory of
algebraic varieties.

Example 4.6 (The sheaf of regular functions). Let X ⊂ An be an
algebraic set. In accordance to Definition 3.34 we associate to each open
subset U ⊂ X the algebra of regular functions OX(U). This, together
with the restriction maps, produces a sheaf of k–algebras on X, called the
structure sheaf of X and denoted as OX .

It is more or less obvious that OX satisfies properties (a), (b), (c) and
(e) of Definition 4.1. Condition (d) follows from the local character of the
definition of regular function.
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We leave as an exercise the proof that the stalk of the sheaf OX is what
we called OX,x

Definition 4.7. Let F and G be two presheaves of rings on a topo-
logical space X. A morphism ϕ : F → G consists of a family of ring ho-
momorphisms

{
ϕ(U) : F(U) → G(U), U ⊂ X,U open

}
such that whenever

there is an inclusion U ⊂ V ⊂ X of open subsets, the following diagram is
commutative:

F(V )
ϕ(V ) //

ρFV U

²²

G(V )

ρGV U

²²
F(U)

ϕ(U)
// G(U)

If F and G are sheaves, a morphism of sheaves from F to G is a mor-
phism of presheaves. The morphisms ϕ(U) will frequently be denoted as
ϕU : F(U) → G(U).

Observation 4.8. (1) A morphism of sheaves ϕ : F → G induces, for
all x ∈ X, a ring homomorphism ϕx : Fx → Gx.
(2) We say that ϕ is injective (resp. surjective ) if ϕx is injective (resp. sur-
jective) for all x ∈ X.

between presheaves can be interpreted as natural transformations between
the functors.
(4) If the presheaves have additional structure, for example if they are
presheaves of k–algebras, we additionally require in the definition of mor-
phism that for all open sets U of the base space X, the maps ϕ(U) are
morphisms of k–algebras.

Definition 4.9. Let X,Y be topological spaces, F a sheaf of rings on
X, and f : X → Y a continuous function.

We define the direct image sheaf f∗F as the sheaf on Y given as follows:
f∗ F(V ) = F(

f−1(V )
)
, V ⊂ Y open, with restriction morphisms ρf∗FVW =

ρFf−1(V )f−1(W ) : F(
f−1(V )

) → F(
f−1(W )

)
.

Observation 4.10. Assume that X and Y are topological spaces and
call CX and CY the sheaves of k–valued continuous functions on X and Y
respectively — we endow k with the Zariski topology. Given a continuous
function f : X → Y we define a morphism of sheaves f# : CY → f∗CX as
follows: if V ⊂ Y is open, then f#

V : CY (V ) → f∗ CX(V ) = CX
(
f−1(V )

)
is

given by composition with f .

 

in Definition 3.34 (see Exercise 24).

(3) Considering presheaves as functors (see Observation 4.2), the morphisms
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More generally, if f : X → Y is a continuous function, a pair of sheaves
of continuous k–valued functions FX and FY defined on X and Y respec-
tively, i.e. subsheaves of CX and CY respectively, are said to be f-compatible
if for all V ⊂ Y open in Y , f#

V

(FY (V )
) ⊂ f∗ FX(V ) = FX

(
f−1(V )

)
. For

f–compatible sheaves, the diagram that follows is commutative

CY
f#

// f∗(CX)

FY
?Â

OO

f#
// f∗(FX)

?Â

OO

In explicit terms, the f–compatibility means that if V ⊂ Y is an arbi-
trary open subset of Y and α : V → k is a function on FY (V ), then the
function α◦f : f−1(V ) → k belongs to FX

(
f−1(V )

)
.

4.2. The maximal spectrum

We need to introduce a few elements of the abstract theory of spectra
of commutative rings.

Definition 4.11. Let A be a commutative ring, the prime spectrum
of A — denoted as Sp(A) — is the set

Sp(A) =
{
P ⊂ A : P is a prime ideal of A

}
.

The subset Spm(A) =
{
M ⊂ A : M is a maximal ideal of A

}
is called

the maximal spectrum of A.

Definition 4.12. Let A be a commutative ring and call X = Sp(A).
If f ∈ A we define

Xf =
{
P ∈ Sp(A) : f 6∈ P}

.

If Y = Spm(A), we define

Yf = Xf ∩ Y = Xf =
{
M ∈ Spm(A) : f 6∈M}

.

The proof of the theorem that follows is an easy exercise in commutative
algebra.

Theorem 4.13. Let A be a commutative ring and X = Sp(A) or X =
Spm(A). Then the family of sets

{
Xf : f ∈ A

}
considered in Definition

4.12, is the basis of a topology of X that is called the Zariski topology. A
subset Y ⊂ X is closed in this topology if and only if Y =

{
Q ∈ X : Q ⊃ I

}
,

where I is an ideal of A. ¤
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Observation 4.14. (1) The assignment A 7→ Sp(A) can be extended
to a contravariant functor from the category of commutative rings to the
category of topological spaces. If α : A→ B is a morphism of commutative
rings, we define α∗ : Sp(B) → Sp(A) as α∗(Q) = α−1(Q) for a prime ideal
Q ⊂ B.
(2) If we consider the inclusion Z ⊂ Q, then the maximal ideal {0} ⊂ Q
when intersected with Z is not maximal. Hence, one does not have a natural
way to view Spm as a functor in all the category of commutative rings.

Lemma 4.15. Let A and B be commutative finitely generated k–alge-
bras, α : A → B a morphism of k–algebras and M ∈ Spm(B). Then
α−1(M) ∈ Spm(A). In other words, α∗

(
Spm(B)

) ⊂ Spm(A).

Proof: Let M be a maximal ideal in B, consider M ′ = α−1(M) and
the map α : A/M ′ → B/M . As B is a quotient of a polynomial algebra the
Nullstellensatz guarantees that B/M coincides with the base field k. Then,
as α is k–linear and injective, we conclude that A/M ′ is also the field k and
hence that M ′ is a maximal ideal. ¤

The theorem that follows can be viewed as a more formal presentation
of Observation 3.26.

Theorem 4.16. Assume that X is an algebraic subset of An and con-
sider Spm

(
k[X]

)
as defined before. Then the map ιX : X → Spm

(
k[X]

)
defined as

ιX(a1, . . . , an) = 〈X1 − a1, . . . , Xn − an〉+ I(X) ⊂ k[X1, . . . , Xn]/ I(X) ,

is a natural homeomorphism when we endow the domain and codomain with
the corresponding Zariski topologies.

Proof: The proof is a direct consequence of the theory developed
so far. We only verify the assertions concerning the topology. Consider
f ∈ k[X]; then

ιX(Xf ) =
{〈X1 − a1, . . . , Xn − an〉+ I(X) : f(a1, . . . , an) 6= 0

}
=

{
M ⊂ k[X] : f 6∈M maximal

}
.

¤
The triple (X, k[X], ιX) is an example of the concept of “abstract”

4.3. Affine algebraic varieties

In order to eliminate the dependency of an algebraic set on the affine
ambient space, we present the following intrinsic definition of affine alge-
braic variety.

 

affine algebraic variety (see Definition 4.17).
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Definition 4.17. Let k be an algebraically closed field. An affine
variety over k consists of a triple (X,A,ϕ), where X is a topological space
— the underlying topological space of the affine variety — A is an affine
k–algebra — the algebra of regular functions of the affine variety — and
ϕ : X → Spm(A) is a homeomorphism. If there is no danger of confusion
A is denoted as k[X], or OX(X), and the affine variety (X,A,ϕ) is written
as

(
X, k[X]

)
or even as X.

A morphism of affine algebraic varieties with domain (X,A,ϕ) and
codomain (Y,B, ψ) is a pair (f, f#), where f : X → Y is a continuous map
and f# : B → A is a morphism of k–algebras such that f#∗ : Spm(A) →
Spm(B) makes the diagram below commutative

X
f //

ϕ

²²

Y

ψ

²²
Spm(A)

f#∗
// Spm(B)

In accordance with the standard notations, we denote ϕ(x) = Mx.

Example 4.18. Assume that (X,A,ϕ) is an affine algebraic variety
and Y a closed subset of X. In this case Y also becomes naturally an affine
algebraic variety as follows. The homeomorphism ϕ : X → Spm(A) sends
Y onto ϕ(Y ), that is a closed subset, and then

ϕ(Y ) =
{
M ⊂ A : I ⊂M maximal ideal of A

}

Consider
(
Y,A/I, ϕ|Y

)
; as

Spm(A/I) ∼=
{
M ⊂ A : I ⊂M maximal ideal of A

}
,

it is clear that
(
Y,A/I, ϕ|Y

)
is an affine algebraic variety. Moreover, the

pair (ι, π) is a morphism of affine algebraic varieties where ι : Y ⊂ X is the
inclusion and π : A→ A/I is the canonical projection.

Observation 4.19. (1) Let X ⊂ An be an algebraic subset, in ac-
cordance with Theorem 4.16 the triple

(
X, k[X], ιX

)
is an affine algebraic

variety.
(2) In the Definition 4.17, if x ∈ X, then the k–algebra A/Mx is canonically

(3) The elements of A can be interpreted as functions on X as follows.
Consider the morphism of k–algebras ιX : A → kX defined as ιX(a)(x) =
a + Mx ∈ A/Mx = k. The map ιX is injective because if ιX(a) = 0, then
a ∈Mx for all x ∈ X, and it follows from Exercise 4 that a = 0. Hence, A

 

for some ideal I ⊂ A (see Theorem 4.13).

isomorphic to k (see Theorem 2.17 and Lemma 4.15).
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can be identified with a subalgebra of kX , i.e., A is an algebra of functions
on X with values on the base field k. Observe that if a is fixed, then

{
x ∈ X : ιX(a)(x) 6= 0

}
=

{
x ∈ X : a 6∈Mx

}
={

x ∈ X : a 6∈ ϕ(x)
}

=

ϕ−1
((

Spm(A)
)
a

)
,

that is open in X. Hence, the functions of the form ιX(a) are continuous.
We call ιX(A) = k[X].
(4) Viewing the k–algebra A as a subalgebra of kX as before, the map f#

can be visualized as the composition by f or in other words, the diagram
below is commutative.

B
f#

//

ιY

²²

A

ιX

²²
kY −◦f

// kX

This will be shown in Lemma 4.22.
Hence, in this situation the map f# is determined by f .

(5) It follows from the previous definitions above that an affine algebraic va-
riety is isomorphic to the affine algebraic variety associated to an algebraic
subset of some An.

Indeed, if we have a triple (X,A,ϕ) the affine k–algebra A is isomorphic
to a quotient k[X1, . . . , Xn]/I, where I is a radical ideal. If we call XA the
corresponding algebraic subset of An, and consider

(
XA, k[XA], ιXA

)
, it

is easy to show (and left to the reader as an exercise,
that the two affine algebraic varieties (X,A,ϕ) and

(
XA, k[XA], ιXA

)
are

isomorphic.
(6) Let (X,A,ϕ) be an affine variety and

(
X1, k[X1], ιX1

)
,
(
X2, k[X2], ιX2

)
be affine varieties associated to the affine algebraic sets X1 and X2, that
are also isomorphic to (X,A,ϕ). Then the algebraic sets X1 and X2 are

Observation 4.19 justifies the definition that follows.

Definition 4.20. Let X be an affine variety. Consider an algebraic
subset Y isomorphic with X, call ψ : X → Y an isomorphism. We define
the structure sheaf of X as OX(U) = OY

(
ψ(U)

)
, where OY is as usual

the structure sheaf of Y . The restriction morphism is defined in the same
manner.

 

see Exercise 25)

isomorphic (see Theorem 3.32 and Definition 3.28).



30 1. ALGEBRAIC GEOMETRY

Observation 4.21. (1) The construction of the structure sheaf above

(2) Referring to the situation of Example 4.18, if we consider the corre-
sponding associated structure sheaves on X and Y , then the morphism
ι# : OX → ι∗(OY ), given by composition with the inclusion, is surjective.
Equivalently, if I is the ideal of k[X] associated to Y , then for an arbitrary
point y ∈ Y the morphism k[X]My → (

k[X]/I
)
My/I

is surjective. This
follows immediately from the fact that the projection k[X] → k[X]/I is
surjective.

Given two topological spaces X,Y underlying to affine algebraic vari-
eties, the following is a criterion to decide if a given continuous map between
X and Y is the first component of a morphism.

Lemma 4.22. Let (X,A,ϕ) and (Y,B, ψ) be affine algebraic varieties
and assume that f : X → Y is a continuous map. Then, f is the first
component of a morphism of affine algebraic varieties if and only if α ◦ f ∈
k[X] ⊂ kX for all α ∈ k[Y ] ⊂ kY . Moreover, f# is uniquely determined by
f , as asserted in Observation 4.19.

Proof: Assume that f is the first component of the morphism (f, f#).
Then the diagram below is commutative

X
f //

ϕ

²²

Y

ψ

²²
Spm(A)

f#∗
// Spm(B)

Given the morphism f# : B → A, if M is a maximal ideal of A there
is an isomorphism B/(f#)−1(M) ∼= A/M and then, via the identification
of both sides with k, we see that b + (f#)−1(M) = f#(b) + M . It fol-
lows that the diagram below commutes (here we are using the notations of
Observation 4.19).

B
f#

//

ιY

²²

A

ιX

²²
kY −◦f

// kX

Indeed, we have that ιX
(
f#(b)

)
(x) = f#(b) + Mx = b + (f#)−1(Mx)

and ιY (b)
(
f(x)

)
= b + ψ

(
f(x)

)
= b + (f#)∗(Mx) = b + (f#)−1(Mx). As

k[Y ] = ιY (B) and k[X] = ιX(A), the conclusion follows.

 

is independent of the chosen isomorphism ψ, see Observation 4.19, (6).
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The converse is proved similarly. First observe that if we call EX : X →
Spm

(
k[X]

)
the map defined as EX(x) = Ker(εx), where εx : k[X] → k is

as usual the evaluation at x, the triangle that follows is commutative

X
ϕ

{{ww
ww

ww
ww

w
EX

$$JJJJJJJJJJ

Spm(A) Spm
(
k[X]

)
ιX
∗

oo

This commutativity follows by explicit computations:

ι∗X
(
EX(x)

)
= ι∗X

(
Ker(εx)

)
= ι−1

X

(
Ker(εx)

)
={

a ∈ A : ιX(a) ∈ Ker(εx)
}

=
{
a ∈ A : ιX(a)(x) = a+ ϕ(x) = 0

}
= ϕ(x) .

We define f#, i.e. the second component of the morphism of affine
varieties, by the commutativity of the diagram

B
f#

//

ιY

²²

A

ιX

²²
k[Y ] −◦f

// k[X]

Considering the corresponding diagram at the level of the spectra, we
obtain another commutative diagram

Spm
(
k[X]

) (−◦f)∗ //

ι∗X
²²

Spm
(
k[Y ]

)

ι∗Y
²²

Spm(A)
f#∗

// Spm(B)

Next consider the diagram

X
f //

ϕ
²²

EX

~~||
||

||
||

||
||

||
|

Y

ψ
²²

EY

ÃÃB
BB

BB
BB

BB
BB

BB
BB

Spm(A)
f#∗

// Spm(B)

Spm
(
k[X]

) i∗X

77nnnnnnnn

(−◦f)∗
// Spm

(
k[Y ]

)i∗Y

ggPPPPPPPP
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This diagram is formed by two triangular and two quadrangular blocks,
and the two triangles as well as the lower quadrangular block are commu-
tative. Hence, the commutativity of the central square (that is our thesis)
will follow from the commutativity of the diagram that follows, that is the
outer diagram of the above.

X
f //

EX

zztttttttttt Y
EY

$$III
III

III
I

Spm
(
k[X]

)
(−◦f)∗

// Spm
(
k[Y ]

)

The commutativity of this diagram is a direct computation. ¤

Observation 4.23. Let X be an affine variety and f ∈ k[X]. Then the
basic open subset Xf ⊂ X can be viewed as an affine variety. In this sense
we interpret Xf as the triple

(
Xf ,k[X]f , ιf

)
, where ιf : Xf → Spm

(
k[X]f

)
is the map defined by the commutativity of the diagram

Xf
ιf //

Ä _

²²

Spm
(
k[X]f

)
Ä _

²²
X ιX

// Spm
(
k[X]

)

In other words, the map ιf is the restriction of the homeomorphism ιX
considered in Theorem 4.16. The reader should verify that if x ∈ X and M
is its associated maximal ideal, then f(x) 6= 0 if and only if f 6∈ M . This
means that the restriction of ιX has the codomain we need.

We show now how to give in an explicit way an isomorphism between
Xf and a closed subset in an affine space.

Assume that X ⊂ An is irreducible and consider ϕ : Xf → X × A1,
ϕ(x) =

(
x, 1

f(x)

)
. The image of ϕ is the algebraic subset Y ⊂ X × A1 ⊂

An × A1, Y =
{

(x, z) : x ∈ X, z ∈ A1, f(x)z − 1 = 0
}

. It is clear that Y
is an algebraic subset of An+1. In Exercise 26 we ask the reader to prove
that k[Y ] ∼= k[X]f and that the diagram below is commutative.

Xf
ϕ //

ιf

²²

Y

ιY

²²
Spm

(
k[X]f

)
Spm

(
k[Y ]

)
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It is clear that the map ϕ : Xf → Y is bijective and its inverse is the
restriction to Y of the projection p1 : X × A1 → X. To prove that ϕ is an
homeomorphism we only have to prove that it is continuous, as its inverse is
the projection that is clearly continuous. Take g ∈ k[Y ], we want to prove
that ϕ−1(Yg) is open in Xf . Now, x ∈ ϕ−1(Yg) if and only if g

(
x, 1

f(x)

) 6= 0.
If we multiply by a large enough power fr, then h(x) = fr(x)g

(
x, 1

f(x)

)
is

a polynomial in X, and then ϕ−1(Yg) = Xf ∩Xh.

Observe that we have constructed Xf as the graph of the function 1
f .

One can show in general that if g : X → Y is a morphism of affine algebraic

Example 4.24. Assume that A and B are commutative k–algebras.
The maximal ideals of A ⊗ B are of the form M ⊗ B + A ⊗ N for M
and N maximal ideals of A and B respectively. Hence, as (abstract) sets

Let X and Y be affine varieties. Then
(
X×Y, k[X]⊗k[Y ]

)
is an affine

variety, when we endow the set X × Y with the topology induced by the
isomorphismX×Y = Spm

(
k[X]⊗k[Y ]

)
. This topology in general is not the

Moreover, if X is an algebraic subset
of An and Y of Am, we can consider in a natural way X × Y as a subset
of An+m and as such it is also an affine algebraic set. In Exercise 19 we
ask the reader to prove that in this case both structures of affine algebraic
varieties coincide. In particular the element

∑
fi⊗ gi ∈ k[X]⊗k[Y ] can be

viewed as the function on X×Y given by
(∑

fi⊗gi
)
(x, y) =

∑
fi(x)gi(y).

In this context, it is instructive to describe explicitly the topology on
X × Y . A basis for the topology of X × Y is given as follows: for arbitrary
regular functions f1, . . . , fn ∈ k[X], g1, . . . , gn ∈ k[Y ], define

Uf1,...,fn,g1,...,gn
=

{
(x, y) ∈ X × Y :

n∑

i=1

fi(x)gi(y) 6= 0
}
.

Then, the family of subsets Uf1,...,fn,g1,...,gn is a basis for the topology of
X×Y . Indeed, if

∑
fi⊗gi a generic element of k[X]⊗k[Y ], it follows from

Observation 4.23 that (X × Y )P
fi⊗gi

is isomorphic to the affine variety
Spm

(
k[X] ⊗ k[Y ]

)
P
fi⊗gi

. Moreover, it is clear that (X × Y )P
fi⊗gi

=
Uf1,...,fn,g1,...,gn .

Lemma 4.25. Let X be an affine algebraic variety. Then the diagonal
map ∆ : X → X × X, ∆(x) = (x, x) is a morphism of affine varieties.
Moreover, ∆(X) is closed in X ×X.

 

3.
Spm(A⊗B) and Spm(A)×Spm(B) are isomorphic. See Appendix, Section

varieties, then the graph of g is an affine variety (see Exercise 16).

product topology (see Exercise 19).
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Proof: The composition of a regular function α =
∑
fi⊗gi : X×X →

k with ∆ yields the function α ◦∆ =
∑
figi : X → k. Using Lemma 4.22

we conclude that ∆ is a morphism of affine varieties. Moreover, the image
of ∆ can be described as ∆(X) = V({

f ⊗ 1− 1⊗ f : f ∈ k[X]
})

. Indeed,

(x, y) ∈ X ×X with x 6= y, there exists f ∈ k[X] such that f(x) = 0 and
f(y) 6= 0. Then, (f ⊗ 1− 1⊗ f)(x, y) = f(x)− f(y) 6= 0. ¤

4.4. Algebraic varieties

Definition 4.26. Assume that X is a topological space and that U
and V are open subsets of X such that each of them supports a structure
of affine algebraic k–variety. We say that U and V are compatible affine
charts, if for all W ⊂ U ∩V open in X, then OU (W ) = OV (W ) ⊂ kW (see

Definition 4.27. Let X be a topological space. An affine k–atlas for
X — or simply an affine atlas — is a covering of X by open subsets Ui,
i ∈ I, such that each Ui is equipped with a structure of affine algebraic
k–variety, in such a way that Ui and Uj are compatible for every i, j ∈ I.
Two atlases are said to be equivalent if their union is also an atlas. A finite
atlas is an atlas with a finite number of affine charts.

Lemma 4.28. Let X be a topological space that admits an affine k–atlas
{Ui}i∈I . There exists a unique sheaf of k–algebras on X (denoted OX) such
that OX(Ui) = OUi

(Ui) for all i ∈ I. Moreover, if x ∈ X, then the stalk
OX,x is a local ring.

Proof: Given an open subset U ⊂ X we define OX(U) as the k–
algebra of all the functions f : U → k such that for all i ∈ I, f |U∩Ui ∈
OUi

(U ∩ Ui).
It is clear that OX is a sheaf, and it follows from the very definition

that OX(Ui) = OUi
(Ui).

The uniqueness is also clear and the assertion about the stalks follows
from the fact that locally we are dealing with affine varieties whose stalks
are local rings. ¤

Observation 4.29. (1) If there is no danger of confusion we omit the
reference to the base field k, and refer to affine atlas and algebraic varieties
instead of affine k–atlas and algebraic k–varieties.
(2) If there is no danger of confusion we omit the subscript X in the struc-
ture sheaf of the algebraic variety and in the notation for the stalk. Hence
the variety will be denoted as (X,O) and the stalk as Ox.

 

the elements of k[X] separate the points of X (see Lemma 3.33); thus, given

Observation 4.19 and Definition 4.20).
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(3) It is important to observe (see the proof of the above lemma) that the
the structure sheaf is a subsheaf of the sheaf of continuous functions on the
topological space X with values in k. The continuity follows immediately
from the local definition of the sheaf.
(4) The stalk Ox is also an augmented k–algebra. The augmentation map
is called εx : Ox → k and is the evaluation at x. The kernel of this
augmentation map is the maximal ideal of Ox that is denoted as Mx.

Observation 4.30. If X is a topological space which admits an affine
atlas Ui, i ∈ I, then the covering {Ui : i ∈ I} induces a covering Ui ×Uj of
X ×X, and thus the open subsets of the affine variety Ui × Uj are a basis
for a topology in X ×X. For this topology, Ui × Uj is an affine atlas (see

First we define prevarieties that are obtained by pasting together affine
algebraic varieties. Then we add a “Hausdorff” separability condition to
obtain the general definition of algebraic variety.

Definition 4.31. A structure of algebraic k–prevariety on a topological
space X is a equivalence class of finite k–atlases. If the (set theoretical)
diagonal morphism ∆ : X → X ×X has closed image (for the topology on
X×X considered in Observation 4.30) we say that the above is a structure
of algebraic k–variety.

An algebraic k–prevariety is a pair (X,OX), where X is as above and
OX is the corresponding structure sheaf. Similarly for an algebraic k–
variety.

Observation 4.32. If Ui, i ∈ I, is an atlas for the topological space
X, it is easy to show that the preceding closedness condition is equivalent
to the condition that for all i, j ∈ I, ∆(Ui ∩ Uj) is closed in Ui × Uj .

Observation 4.33. In the more general context of schemes, the con-
dition of the diagonal being closed in the product is called the separability
condition. Lemma 4.78 and in Exercise 48 give some insight on the way
this condition is used in algebraic geometry.

The main example of a non affine algebraic variety is the projective
space.

Example 4.34. Let n ∈ N, and consider in An+1 \ {0} the equivalence
relation defined as x ∼ y if and only for some λ ∈ k∗, x = λy — in geometric
terms x ∼ y if and only if x and y belong to the same straight line through
the origin.

The projective space Pn(k) (or P(kn), or even Pn) is defined (set theo-
retically) as the quotient (An \ {0})/ ∼. It is customary to denote the

 

Exercise 19).
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equivalence class of (x0, . . . , xn) ∈ An+1 \ {0} as [x0 : · · · : xn]. If V ∼= kn
is a finite dimensional k–space, then P(V ) is identified with P(kn).

We endow Pn with the quotient topology. To describe explicitly this
topology first observe that even though for an arbitrary polynomial p ∈
k[X0, . . . , Xn] we cannot evaluate it at a point in Pn, if p is homogeneous,
then the expression p

(
[a0 : · · · : an]

)
= 0 is meaningful. In a similar way

than for subsets of An, we can define the map V from homogeneous ideals
to subsets:

V(I) =
{

[a0 : · · · : an] ∈ Pn : pi
(
[a0 : · · · : an]

)
= 0 , i = 1, . . . ,m

}
,

where {pi : i = 1, . . . ,m} is a set of homogeneous generators of I.

above makes sense, i.e. that the definition of V(I) does not depend on way
we choose the homogeneous generators of I, and that the collection of all
sets of the form V(I) satisfies the axioms for the closed subsets of a topology.
This topology will is called the Zariski topology of Pn.

If π : An+1 \ {0} → Pn is the canonical projection, then π−1
(V(I)

)
is

the zero set in An+1 \ {0} of the ideal I. This implies that the projection
π is a continuous map.

Moreover, if X ⊂ Pn then I(
π−1(X) ∪ {0}) is a homogeneous ideal.

Indeed, Y = π−1(X) ∪ {0} is a union of straight lines passing through the
origin, hence if 0 6= f ∈ I(Y ) and x ∈ Y , then 0 = f(tx) =

∑
i t
ifi(x)

for all t ∈ k, where f =
∑
i fi is the decomposition of f into homogeneous

components. It follows that fi(x) = 0 for all x ∈ Y , and thus fi ∈ I(Y ).
Hence, the Zariski topology is the quotient topology for the map π, i.e.,

it is the largest topology that makes the projection continuous.
Next, we construct an affine atlas for Pn. If [a0 : · · · : an] ∈ Pn, for

some i ∈ {0, . . . , n} the corresponding coordinate ai does not vanish. Thus,
the open subsets Ui =

{
[a0 : · · · : an] ∈ Pn : ai 6= 0

}
= Pn \V(Xi) cover Pn.

the maps

ϕi : An → Ui

ϕi(a0, . . . , âi, . . . , an) = [a0 : · · · : ai−1 : 1 : ai+1 : · · · : an]

are homeomorphisms. The notation âi means as usual that the i–th coor-
dinate is omitted. One easily shows that {U0, . . . , Un} is an affine atlas for
Pn. Notice in particular that an arbitrary point in Ui has a representative
with i–th coordinate equal to 1.

 

It is an easy exercise (see Exercise 29) to prove that the definition

We leave as an exercise (see Exercise 30) the proof that for i = 0, . . . , n,
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In order to prove that the diagonal ∆(Pn) is closed in Pn × Pn, we
consider

∆(Ui ∩ Uj) =
{(

[a0 : · · · : an], [a0 : · · · : an]
)

: ai = aj = 1
} ⊂ Ui × Uj .

Via the identification of Ui and Uj with An, ∆(Ui ∩Uj) can be viewed
as the (closed) subset of An × An consisting of of the points of the form(
(a0, . . . , âi, . . . aj−1, 1, aj+1, . . . , an), (a0, . . . , ai−1, 1, ai+1, . . . , âj , . . . , an)

)
.

Hence, Pn is an algebraic k–variety.

Example 4.35. (1) Assume that X is an affine algebraic variety, and
let U ⊂ X be an open subset of X. Then U can be naturally endowed
with a structure of an algebraic variety. Indeed, call I = I(X \ U) ⊂ k[X]
and take f1, . . . , fn a set of generators of I, then U = Xf1 ∪ · · · ∪ Xfn .
In this manner we can endow U with an affine atlas — observe that the
compatibility of this atlas follows from the fact that Xfi ∩ Xfj = Xfifj .
Moreover, the topology of U × U is the induced topology and hence, the
diagonal of U × U is closed.
(2) More generally, if X is an algebraic variety and U is an open subset,
consider an affine atlas {U1, . . . , Un} for X. As each of the open subsets
U ∩ Ui ⊂ Ui admits an affine atlas, collecting all these atlases together we
obtain an affine atlas for U . Indeed, the compatibility of two affine charts
contained in different open subsets Ui is guaranteed by the compatibility of
the charts Ui. The proof that the diagonal is closed in U ×U follows along
the same lines than before.

Definition 4.36. Let X be an algebraic variety. An open subvariety
is an open subset U ⊂ X together with the induced structure considered in
Example 4.35.

If X is affine, then an open subvariety of X is called a quasi–affine
variety.

An affine variety is obviously quasi–affine, but the converse is not true,

Definition 4.37. A morphism between two algebraic varieties X,Y
is a continuous function f : X → Y with the property that the sheaves
OX and OY In other words the
map f# given by composition with f is a morphism f# : OY → f∗(OX) of
sheaves on Y . An invertible morphism is an isomorphism.

Observation 4.38. (1) In particular, if f : X → Y is an isomorphism
of algebraic varieties then the map f is a homeomorphism, and the map
f# is an isomorphism of sheaves.

 

see Example 5.13.

are f–compatible (see Observation 4.10).
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(2) Notice that the conditions that f is a morphism of algebraic varieties
and a homeomorphism of the underlying spaces do not guarantee that it is
an isomorphism of algebraic varieties. The next example shows that this
expectation is false even in the affine situation. Suppose that the base field k
has characteristic p > 0. Consider F : A1 → A1 defined as F(x) = xp. Since
the non trivial closed subsets of A1 are the finite collections of points, the
map F is an homeomorphism. The corresponding algebra morphism F# :
k[X] → k[X], where X is an indeterminate, is F#

(∑
aiX

i
)

=
∑
aiX

ip. It
is then clear that the map F# is not an isomorphism as the polynomial X
does not belong to the image.
(3) Assume that f is a morphism of varieties that is also a homeomorphism
of the base spaces. The obstruction for f to be an isomorphism lies in
the fact that even when OX and OY are f–compatible, they need not be
f−1–compatible.
(4) It is an easy exercise to prove that if f is a morphism of algebraic
varieties, then f# induces on the stalks a morphism of local rings.

Observation 4.39. It is obvious that if X and Y are affine algebraic
varieties then they are algebraic varieties in the generalized sense above.
Moreover, if we take a morphism (f, f#) of affine varieties from X into
Y , viewing X and Y as algebraic subsets of convenient affine spaces, the
function f : X → Y is continuous and the corresponding map at the level
of the sheaves takes polynomials on Y into polynomials on X. Then f is a
polynomial map in accordance to Definition 3.28 and Observation 3.29.

The converse is also clear, in other words if X and Y are affine algebraic
varieties and f : X → Y is a morphism of algebraic varieties, by the very
definition it is clear that f is continuous and the corresponding morphism
f#

#) is a morphism of affine algebraic varieties.

Observation 4.40. Working in the more general category of schemes,
it is natural to consider arbitrary rings and not only k–algebras. It is con-
venient to consider more general morphisms that do not have a k–structure
to preserve. One example is the so–called Frobenius morphism that is the
identity at the level of the variety but it is not the identity at the function

Example 4.41. The canonical projection π : An+1 \ {0} → Pn, n > 0,
is a morphism of algebraic varieties that cannot be extended to a morphism
An+1 → Pn.

Indeed, if U0 =
{

[a0 : · · · : an] : a0 = 1
} ⊂ Pn, then π−1(U0) ={

(a0, . . . , an) ∈ An+1 : a0 6= 0
}

= An+1 \ {X0 = 0}. Clearly, π|π−1(U0)

 

behaves consistently at the level of the structure sheaves (see Corollary
3.38); thus, (f, f

level (see [55, Chap. IV, Sect. 2]).
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is a morphism, and hence, as we can proceed in a similar manner for all
i = 0, . . . , n, the map π is also a morphism.

On the other hand, any extension of π to a morphism of the whole
affine space An+1 is a continuous map, and there is no continuous map
An+1 → Pn extending the projection. This follows from the fact that in
An+1 the origin is in the closure of all lines that pass through the origin
with the origin excluded. As on all these lines the projection takes the
same value on Pn, we conclude that a continuous function as above has to
be constant.

Lemma 4.42. Let X be an algebraic variety and Y ⊂ X a closed subset.
Consider the induced topology on Y and the atlas given by the intersection
of the affine charts of X with Y . Then, Y equipped with this atlas is an
algebraic variety and the inclusion ι : Y → X is a morphism of algebraic
varieties. The sheaf on Y corresponding to the structure defined above is
the following. If V ⊂ Y is an open subset then OY (V ) =

{
f : V → k : ∀x ∈

V, ∃x ∈ Ux ⊂ X , open , g ∈ OX(Ux), g|Ux∩V = f |Ux∩V
}
. Moreover, in this

situation the induced map ι# : OX → ι∗(OY ) is a surjective morphism of
sheaves.

Proof: Let {Ui}i∈I be a maximal affine atlas for X. Then Y ∩ Ui
is closed in Ui

The compatibility of the atlas given by these intersections would
assert that for all i, j ∈ I, OY ∩Ui(Y ∩Ui∩Uj) ∼= OY ∩Uj (Y ∩Ui∩Uj). These
isomorphisms follow directly from the compatibility of the atlas {Ui}i∈I .

The fact that Y is not only a prevariety but a variety follows easily. It
is clear that the inclusion ι : Y → X is a morphism of algebraic varieties.
The surjectivity of the map at the level of the sheaves of functions follows
from the fact that the stalks are obtained taking affine open subsets and
from Observation 4.21. ¤

Definition 4.43. Let X be an algebraic k–variety and assume that
Y ⊂ X is a closed subset endowed with the induced topology. When
equipped with the structure of variety defined in Lemma 4.42, Y is said to
be a closed subvariety of X, or simply a subvariety.

Observation 4.44. We leave as an exercise for the reader to prove that
the construction performed in Example 4.18 yields a morphism of algebraic
varieties in the sense of Definition 4.37 and makes of Y a closed subvariety

Definition 4.45. LetX,Y, Z be algebraic varieties, and let f : X → Z,
g : Y → Z be morphisms. We define the fibered product of X and Y over
Z as a triple (X ×Z Y, pX , pY ) where X ×Z Y is an algebraic variety and

 

of X. See Exercise 31.

4.44).
and hence it is an affine algebraic variety (see Observation
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pX : X ×Z Y → X, pY : X ×Z Y → Y are morphisms of varieties such that
f◦pX = g◦pY , and satisfying the following universal property:

For an arbitrary triple (W, q1, q2) with W an algebraic variety and q1 :
W → X and q2 : W → Y morphisms such that f◦q1 = g◦q2, there exists a
unique morphism h : W → X ×Z Y such that q1 = pX◦h and q2 = pY ◦h.

This definition, that is simply the categorical definition of fibered pro-
duct, can be illustrated via the diagram below that has to be filled up with
an arrow h that makes it commutative.

W

h

$$

q2

))TTTTTTTTTTTTTTTTTTT

q1

½½6
66

66
66

66
66

66
66

6

X ×Z Y pY

//

pX

²²

Y

g

²²
X

f
// Z

Theorem 4.46. Let X,Y, Z be algebraic varieties, and f : X → Z,
g : Y → Z be arbitrary morphisms. The fibered product (X ×Z Y, pX , pY )
exists and is unique up to isomorphism.

Proof: We present a sketch of the proof, see for example [
missing details. Suppose X,Y, Z are affine. Then we define X ×Z Y as the
affine variety corresponding to the k–algebra k[X]⊗k[Z]k[Y ]. In the general
case, we consider an atlas Ui, i ∈ I, covering Z and atlases Vj , j ∈ J , of X
and Wk, k ∈ K, of Y such that for all j ∈ J , f(Vj) ⊂ Ui for some i ∈ I,
and for all k ∈ K, g(Wk) ⊂ Ui′ for some i′ ∈ I. To obtain X ×Z Y we
consider the affine varieties Vj ×Ui

Wk and glue them together. ¤
Next we look at the correspondence between closed subsets and ideals

of the ring of global regular functions in the case of quasi–affine varieties.

Theorem 4.47. Let X be a quasi–affine variety. Let C ( X be a
closed subset of X. Then, there exists an element 0 6= f ∈ OX(X) such
that f(C) = 0.

Proof: Assume that X is embedded as a dense an open subset in an
affine variety Y . Let C be as in the statement of the theorem and call C
the closure of C in Y . As C is a proper and closed subset of the affine
variety Y — observe that the intersection of C with X coincides with C —
there exists a polynomial g ∈ k[Y ] such that g

(
C

)
= 0. If we call f = g|X

it is clear that f ∈ OX(X), f(C) = 0 and f 6= 0 (recall that X is dense in
Y ). ¤

 

These results will be used in Chapters 10 and 11.

] for the106
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Observation 4.48. Theorem 4.47 admits a partial converse that will
not be used in our exposition. The general pattern of its proof, suggested
to the authors by M. Brion, will be presented in the form of an exercise

The following theorem will yield a useful criterion for a quasi–affine va-
riety to be affine. In some sense, it is a converse of Hilbert’s Nullstellensatz.
One can say that within the class of quasi–affine varieties the validity of
the Nullstellensatz characterizes the affine ones.

Theorem 4.49. Let X be a quasi–affine algebraic variety such that for
any proper ideal J ⊂ OX(X) there exists a point x ∈ X such that f(x) = 0
for all f ∈ J . Then X is affine.

Proof: As X is quasi–affine, there exists an affine variety Y that
contains X as an open dense subvariety. Consider the injective morphism
of algebras k[Y ] → OX(X) given by the restriction of functions. If C =
Y \ X is empty, there is nothing to prove. If this is not the case, call
I ( k[Y ] the ideal of C on k[Y ] and J the ideal induced by I on OX(X),
i.e. J = I OX(X). Clearly, J cannot have a zero on X because if x ∈ X
is such that f(x) = 0 for all f ∈ J , then f(x) = 0 for all f ∈ I and as Y
is affine and C closed we conclude that x ∈ C. This is impossible because
x ∈ X. Hence, I OX(X) = OX(X) and we can find a finite number of global
sections fi ∈ I for i = 1, . . . , r such that 〈f1, . . . , fr〉OX(X) = OX(X). In
this situation, the principal open subsets of X, Xfi = {x ∈ X : fi(x) 6= 0}
are affine varieties — observe that Xfi

coincides for all i = 1, . . . , r with
Yfi that is affine. Using a standard result on general algebraic geometry

¤

Definition 4.50. A projective variety is a closed subvariety of a pro-
jective space.

A quasi–projective variety is an open subvariety of a projective variety.

Example 4.51. Since An can be identified with an open subset of
Pn, it follows that any quasi–affine, and hence any affine, variety is quasi–

Example 4.52. Consider V = An as a vector space. The flag variety
is the set F(V ) of maximal chains of subspaces — full flags — V0 = {0} (
V1 ( · · · ( Vn = V . A chain as above will be denoted by F , i.e., F ={
V1 ( · · · ( Vn−1

}
.

The set F(V ) can be endowed with a structure of projective algebraic
variety. We give here only the guidelines of this construction, leaving the

 

(see Exercise 57).

(see Exercise 27), we conclude that X is affine.

projective. However, the converse is not true (see Exercise 40).

details as an exercise (see Exercise 42).
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To each subspace W ⊂ V of dimension r we associate the line k(v1 ∧
· · · ∧ vr) ⊂

∧r
V , where {v1, . . . , vr} is a basis of W . This defines an

injective map ψr from the set Σr(V ) of subspaces of V of dimension of V
to P

(∧r
V

)
. We identify Σr(V ) — the Grassmann variety of subspaces of

dimension r — with its image by ψr.

It follows from Exercise 38 that X = P(V ) × · · · × P(∧n−1
V

)
is a

projective variety. Moreover, Σr(V ) is closed in P
(∧r

V
)

and hence Z =
Σ1(V )×· · ·×Σn−1(V ) is closed in X. Consider the injection ψ : F(V ) → X,
ψ(V1, . . . , Vn−1) =

(
ψ1(V1), . . . , ψn−1(Vn−1)

)
. Then ψ

(F(V )
) ⊂ Z is given

locally by polynomial equations, hence it is closed.

Definition 4.53. Let X be an irreducible algebraic variety. We de-
fine the field of rational functions k(X) as the direct limit of the directed
family

{OX(U) : ∅ 6= U ⊂ X open
}

. In other words, an element of k(X)
consists of an equivalence class of regular functions defined in open dense
subsets U ⊂ X, where two such functions f ∈ OX(U) and g ∈ OX(V ) are
equivalent if and only if f |U∩V = g|U∩V .

Observation 4.54. (1) Let X be irreducible and let 0 6= f ∈ k(X)
be represented by (U, fU ) with fU ∈ OX(U). Consider, 1/fU ∈ OX(UfU

),
with UfU

=
{
x ∈ U : fU (x) 6= 0

}
. Clearly, (UfU

, 1/fU ) is a representation
of the inverse of f in k(X). Hence, k(X) is indeed a field.
(2) Assume that X is an irreducible variety and take U, V open subsets.
Given regular functions on U and V that coincide on U ∩V , it is clear that
we can extend them to a regular function on U ∪V . Hence, if f is a rational
function, there exists a largest open subset where f can be represented as a
regular function. This open subset (denoted as D(f)) is called the domain
of definition of f .

Example 4.55. It is very easy to verify that if X ⊂ An is an irreducible
affine variety, then k(X) =

[
k[X]

]
. More generally, if X is an irreducible

algebraic variety, then k(X) = k(U) where U ⊂ X is an open (dense)
subset. In the case that U is affine, then k(X) =

[ ]

Observation 4.56. If U is an open and dense subvariety of the alge-
braic variety X, clearly that k(U) ∼= k(X).

Example 4.57. Let X be an irreducible affine variety and U ⊂ Y an
open subvariety. Then k(U) ∼= k(X) ∼=

[OU (U)
]
.

Indeed, k[X] ⊂ OU (U), and if we take 0 6= f ∈ k[X] such that f(X \
U) = 0, then Xf ⊂ U ⊂ X. It follows that k[X] ⊂ OU (U) ⊂ k[Xf ]. Hence,
as Xf is open in U , we conclude that k(U) = k(Xf ) = k(X) =

[OU (U)
]
.

Definition 4.58. Let X be an algebraic variety. If x ∈ X, and εx :
Ox → k is the associated evaluation map, then the tangent space of X at

 

k[U ] . See Exercise 47.
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the point x is defined as Tx(X) = Dεx(Ox In
other words, the tangent space of X at x is the space of point derivations
of Ox at x. Explicitly,

Tx(X) =
{
τ : Ox → k : ∀ f, g ∈ Ox, τ(fg) = f(x)τ(g) + τ(f)g(x)

}
.

Definition 4.59. Let f : X → Y be a morphism of algebraic varieties
and consider the corresponding morphism of k–algebras f#

x : OY,f(x) →
OX,x. We define the differential of f at the point x (that is denoted as
dxf) as the map induced by f#

x . In other words, dxf : Tx(X) → Tf(x)(Y )
is given by dxf(τ) = τ◦f#

x ∈ Tf(x)(Y ) for τ : OX,x → k ∈ Tx(X).

OY,f(x)
f#

x //

dxf(τ)
$$IIIIIIIIII
OX,x

τ

²²
k

Observation 4.60. (1) It is left as an exercise to prove the correctness
of the above definition, i.e. that if τ is a point derivation so is τ◦f#

x .
(2) In Exercise 44 we ask the reader to prove the chain rule and the fact
that dx idX = idTx(X).
(3) As the definition of tangent space has a local character, it is clear that
if x ∈ U is an affine open subset in X around x, then Tx(U) = Tx(X).
Hence, in order to compute the tangent space we may assume that the
variety is affine. In this case the explicit description of Tx(X) is presented

In particular we ask the reader to prove
that Tx(X) is always finite dimensional.

Lemma 4.61. Let X be an algebraic variety and x ∈ X. Then Tx(X) ∼=(Mx/M2
x

)∗, with Mx = Ker(εx).

¤
Observation 4.62. Let X be an irreducible affine variety, fix a point

x ∈ X and let M ⊂ k[X] be its associated maximal ideal. In this case Ox =
k[X]M . Then Mx, the maximal ideal of the local ring Ox, is Mk[X]M . Call
d = dimk Tx(X) = dimkMk[X]M/M2k[X]M . Let u1, . . . , ud ∈Mk[X]M be
elements with the property that their images in the quotient mod M2k[X]M
(that we call u1, . . . , ud) form a basis of Mk[X]M/M2k[X]M . Then,

Mk[X]M = k[X]Mu1 + · · ·+ k[X]Mud +M2k[X]M ,

and it follows from standard results on noetherian rings that Mk[X]M =
k[X]Mu1 + · · ·+k[X]Mud
tangent space is larger of equal than the minimal cardinal of a system of gen-
erators of Mk[X]M as a k[X]M–module. Using the results of Paragraph 2.5

 

) (see Appendix, Section 3).

as an exercise (see Exercise 44).

(see [71, Chap. XI]). Hence, the dimension of the

Proof: See Exercise 44.
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(Regular local rings) we deduce that dimTx(X) ≥ κ(Ox) = tr. degk
[
k[X]

]
.

This transcendence degree is a convenient definition for the dimension of
Hence, dimTx(X) ≥ dimX for all x ∈ X

Definition 4.63. Let X be an irreducible algebraic variety. We define
the dimension of X as the transcendence degree of k(X) over k. If X is
not irreducible, we define dimX as the maximum of the dimension of its
irreducible components.

Observation 4.64. In this observation we sketch a presentation of
the concept of dimension in terms of chains of closed subsets of the given

ducible algebraic variety and let U be an affine open subset. It is clear that
dimX = dimU . Then, the dimension theory for algebraic varieties reduces
frequently to the affine situation. Assume now that X is affine, irreducible
and of dimension d.

an algebraic variety is the length of a maximal chain of irreducible closed
subvarieties of X.

Theorem 4.65. Let X be a irreducible variety and Y ⊂ X be a proper
closed subvariety of X. Then dimY < dimX.

Proof: We can suppose that Y is irreducible. Then the result follows
from the characterization of the dimension as the length of maximal chains

¤
Corollary 4.66. Let X be an algebraic variety and Y ⊂ X an ir-

reducible subvariety such that dimY = dimX. Then Y is an irreducible
component of X.

Proof: If this were not the case, then Y ( Z, Z irreducible component
of X, and thus dimY < dimZ ≤ dimX, and this is a contradiction. ¤

Corollary 4.67. Let X be an algebraic variety and let Y1 ⊂ Y2 ⊂
· · · ⊂ X be an increasing family of closed irreducible subsets. Then, for
some integer n we have that Yn = Yn+1 = · · · .

Proof: If d = dimX and di = dimYi, d1 ≤ d2 ≤ d3 ≤ · · · ≤ d, and
the result follows. ¤

Definition 4.68. Let X be an irreducible variety and Y ⊂ X a sub-
variety. We define the codimension of Y as codimY = dimX − dimY .

Lemma 4.69. Let X be an affine variety, and let f ∈ k[X] be non
invertible. Then the irreducible components of V(f) have codimension one.

 

As d equals the Krull dimension of k[X] (see Obser-
vation 2.7 and Appendix, Definition 3.11), it follows that the dimension of

(see also Observation 4.102).
the variety, see Definition 4.63.

of irreducible subsets (see Observation 4.64).

variety. We refer the reader to [106] for details. Assume that X is an irre-
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Conversely, if Z ⊂ X is an irreducible closed subset of codimension one,
then Z is an irreducible component of V(f) for some f ∈ k[X].

Proof: Let Z be an irreducible component of V(f) and let I(Z) ⊂
k[X] be the corresponding ideal, that is by definition a minimal prime ideal
of k[X] containing f . The result follows immediately from Krull’s principal

To prove the converse we proceed as follows. Let Z ⊂ X be a closed
irreducible subset of codimension one. If f ∈ I(Z), then Z ⊂ V(f) and
as Z is irreducible, we deduce that for some irreducible component W of
V(f), we have that Z ⊂ W . But Z and W have the same dimension and
are irreducible. Then, Z = W . ¤

Observation 4.70. A “geometric proof” of the above lemma appears
in [106, I.7] and also in [71, X.1].

The two results that follow can be easily deduced from Lemma 4.69
using an inductive argument.

Lemma 4.71. Let X be an affine variety, and Y ⊂ X an irreducible
subvariety of codimension s ≥ 1. Then there exist f1, . . . , fs ∈ k[X] such
that Y is an irreducible component of V(f1, . . . , fs).

¤

Corollary 4.72. Let X be an affine variety and f1, . . . , fs ∈ k[X].
Then the codimension of an irreducible component of V(f1, . . . , fs) is at
most s.

¤

4.5. Morphisms of algebraic varieties

Definition 4.73. Let X and Y algebraic varieties. An open immersion
of X into Y is an injective morphism f : X → Y such that f(X) is an open
subset Y , and f : X → f(X) is an isomorphism when f(X) is considered
as an open subvariety of Y

A closed immersion of X into Y is an injective morphism f : X → Y
such that f(X) is a closed subset of Y , and f : X → f(X) is an isomorphism
when f(X) is considered with its structure of closed subvariety of Y (see

Definition 4.74. A morphism of varieties f : X → Y is finite if there
is an affine cover Ui, i ∈ I, of Y such that f−1(Ui) = Vi is affine and k[Vi]
is a finitely generated k[Ui]–module.

 

ideal theorem (see Theorem 2.14).

Proof: See [71, X.1].

(see Definition 4.36).

Definition 4.43).

Proof: See [71, X.1].
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Observation 4.75. By the compactness properties of algebraic vari-
eties (ee Definition 4.26) the open affine cover in the definition above can
be taken to be finite.

The next results concern the problem of the separation of points by
“functions”. They generalize Lemma 3.33.

Observation 4.76. The conclusion of Lemma 3.33 cannot be expected
to hold for non affine varieties. For example, the constant functions are the
only everywhere defined regular functions on P1, and they clearly do not
separate its points. However, the elements of the field of rational functions
on P1 — the field of rational functions in one indeterminate — do separate
points in P1. We deal with this problem in Lemma 4.78.

These considerations about separation of points will be used when
We adopt the following definition

that is adequate for our purposes.

a family of rational functions and x 6= y ∈ X a pair of different points. We
say that these points are not separated by R if for all f ∈ R then: x ∈ D(f)
if and only if y ∈ D(f) and in this case f(x) = f(y). If this is not the case,
we say that R separates points in X.

Lemma 4.78. Let X be an irreducible algebraic variety. If x 6= y ∈ X
are different points, then x and y are separated by k(X).

Proof: Consider x 6= y ∈ X and assume that they are not separated

open subset of X that contains x, then y 6∈ U . If f ∈ k[U ] ⊂ k(X), then
y ∈ D(f) and f(y) = f(x). Symmetrically, for all y ∈ V ⊂ X affine open
subset, x 6∈ V and for all g ∈ k[V ], x ∈ D(g) and g(y) = g(x).

Fix U and V as above; consider the diagonal morphism ∆ : X → X×X
and the closed subset Z = ∆(U∩V ) ⊂ U×V . Then (x, y) 6∈ Z. Since U×V
is an affine variety, there exists a polynomial function F ∈ k[U ]⊗k[V ] such
that F |Z = 0 and F (x, y) 6= 0. Consider the functions Fy ∈ k[U ] defined as
Fy(u) = F (u, y) and Fx ∈ k[V ], Fx(v) = F (x, v). Then Fx and Fy can be
defined at y and x respectively and Fy(x) = Fy(y) as well as Fx(y) = Fx(x).
Hence, the points (x, x) and (y, y) are in the domain of F and we have that
F (x, x) = F (y, y) = F (x, y). The subset Z = ∆(X) ∩ (U × V ) is open and
non empty in ∆(X). Hence Z is dense, and as the function F is continuous
on its domain and zero at Z, it is zero at all the points in ∆(X) where it
is defined. Then F (x, x) = 0 = F (x, y) and this is a contradiction. ¤

It is clear that if X and Y are irreducible varieties that are generically
isomorphic, i.e., that have open non empty subsets that are isomorphic as

 

Definition 4.77. Let X be an irreducible algebraic variety, R ⊂ k(X)

studying quotients, see Example 6.4.7.

by rational functions. This implies (see Lemma 3.33) that if U is an affine
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algebraic varieties, then they have isomorphic rational function fields. The
next theorem guarantees that the converse of this assertion is also true.

Theorem 4.79. Let X and Y be irreducible algebraic varieties and
assume that f : X → Y is a morphism that induces an isomorphism f# :
k(Y ) → k(X) between the function fields. Then there exists a non empty
open subset V of Y such that the map f : f−1(V ) → V is an isomorphism
of varieties.

Proof: It is not hard to prove that we can reduce the result to the
case that X and Y are affine. In this situation f# :

[
k[Y ]

] → [
k[X]

]
is an

isomorphism. If we consider a set of k–algebra generators of k[X] that we
call f1, . . . , fn, we can find g1, . . . , gn, h in k[Y ] such that fi = gi◦f/h◦f .
Then, f# maps k[Y ]f isomorphically onto k[X]h◦f . This means that f
induces an isomorphism from Xh◦f onto Yh. ¤

Definition 4.80. If X and Y are irreducible varieties and f : X → Y is
a morphism, we say that f is birational if the associated map f# : k(Y ) →
k(X) is an isomorphism.

Observation 4.81. In the situation of Definition 4.80, f : X → Y
is birational if and only there exist open sets U ⊂ X, V ⊂ Y , such that
f(U) = V and the restriction f |U : U → V is an isomorphism.

The following notion, weaker than surjectivity, is an important property
of morphisms.

Definition 4.82. Let X,Y be algebraic varieties, X irreducible. A
morphism f : X → Y is dominant if its image is dense in Y , i.e., if f(X) =
Y . If X is reducible, f : X → Y is dominant if f(X) = Y and for every
irreducible component Xi of X, f(Xi) is an irreducible component of Y .

Observation 4.83. (1) Observe that if X is irreducible and f : X → Y
is dominant, then Y is also irreducible.
(2) Suppose that X and Y are irreducible and that f : X → Y is a dominant
morphism. Let ∅ 6= V ⊂ Y be an open subset. Then, since f(X) = Y , it
follows that f−1(V ) 6= ∅. Hence f#

V : OY (V ) → OX
(
f−1(V )

)
induces a

field homomorphism f# : k(Y ) → k(X).
(3) The above consideration shows that the rule that to an irreducible
variety associates its field of rational functions, can be viewed as the object
part of a functor from the category of irreducible algebraic varieties and
dominant morphisms, into the category of finitely generated field extensions
of the base field.

Theorem 4.84. Let f : X → Y be a dominant morphism of irreducible
varieties, then dim(Y ) ≤ dim(X).
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Proof: The existence of the field homomorphism f# : k(Y ) → k(X)
implies that the transcendence degree of k(Y ) over k is smaller than or equal
to the transcendence degree of k(X) over k. Hence dim(X) ≤ dim(Y ). ¤

Example 4.85. Let X be the union of the coordinate axis in A2. The
projection p : X → A1 into the first coordinate is a non dominant surjective
morphism.

Definition 4.86. A dominant morphism f : X → Y between irre-
ducible algebraic varieties is separable if the map f# : k(Y ) → k(X) is
separable. In other words, f is separable if the extension f#

(
k(Y )

) ⊂ k(X)
is separable.

Observation 4.87. From the definition of separability, it is clear that
if k is a field of characteristic zero then all morphisms are separable. Call
k(X) the field of rational functions in one variable. Then the morphism
F considered in Observation 4.38 induces a non separable field homomor-
phism, namely F# : k(X) → k(X), F#(X) = Xp. Indeed, the field exten-
sion k(Xp) ⊂ k(X) is clearly non separable.

We characterize for the case of affine varieties the notions of closed
immersion and of dominant morphism.

Theorem 4.88. Let X,Y be affine algebraic varieties, and f : X → Y
a morphism. Then
(1) The morphism f is a closed immersion if and only if f# : k[Y ] → k[X]
is surjective.
(2) Suppose that X,Y are irreducible. The morphism f is dominant if and
only if f# : k[Y ] → k[X] is injective.

Proof: (1) If f is a closed immersion then the map f# has to be
surjective by definition.

Suppose that f : X → Y is a morphism with f# is surjective. Then
k[X] ∼= k[Y ]/Ker f#. Since

Ker f# =
{
α ∈ k[Y ] : α◦f(x) = 0 ∀x ∈ X}

= I(
f(X)

)
,

it follows that k[Y ]/ I(
f(X)

)
is an affine k–algebra, and thus I(

f(X)
)

is the ideal associated to the affine subvariety Im f . Then, f# induces
an isomorphism k[X] ∼= k

[
Im f

]
, and thus, since X and Im f are affine,

f : X → Im f is an isomorphism. In particular, Im f = Im f is closed.
(2) Assume that f : X → Y is dominant, and that α ∈ k[Y ] is such that
α◦f = 0. This means that α restricted to the image of f is zero. As the
image of f is dense, we conclude that α = 0.
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Assume now that f# : k[Y ] → k[X] is an injection. We must prove that
Im f is dense in Y . If this is not the case, then Im f ( Y is a proper closed
subset, and since Y is affine there exists a non zero polynomial α ∈ k[Y ]
such that f |Im f = 0. Thus α◦f = 0 and this contradicts the injectivity of
f#. ¤

Definition 4.89. Let X be an algebraic variety. A locally closed subset
of X is the intersection of an open and a closed subset. A constructible
subset of X is a finite union of locally closed subsets.

Theorem 4.90. Let X be an algebraic variety. Then Y ⊂ X is con-
structible if and only if it contains an open dense subset of its closure. In
particular, Y is constructible if and only if it is a disjoint union of locally
closed subsets.

Proof: If Y =
⋃r
i=1 Yi, with Yi an intersection of an open and a closed

subset of X, we can produce — reasoning by induction on r — a dense open
subset U ⊂ Y contained in Y . Writing Y = U ∪ (Y \ U), one proves by
induction the second assertion of the theorem. ¤

Theorem 4.91 (Chevalley’s theorem). Let X,Y be algebraic varieties
and f : X → Y be a morphism. Then f(X) contains an open dense subset
of f(X). In particular, f(X) is constructible in Y .

Proof: We can assume that X is irreducible and that f is dominant,
and hence, that Y is irreducible. Moreover, by taking local charts, we can
suppose that X,Y are affine. We prove that in this case f(X) contains a
principal open subset Yg, g ∈ k[Y ].

Since f is dominant f# : k[Y ] → k[X] is injective, and we want to find
g ∈ k[Y ] ⊂ k[X] such that if M ⊂ k[Y ] is a maximal ideal with g 6∈M then
there exists a maximal ideal N ⊂ k[X] such that N ∩ k[Y ] = M .

Equivalently, we must prove the existence of g ∈ k[Y ] such that for
any morphism of k–algebras α : k[Y ] → k with α(g) 6= 0, there exists a
morphism of k–algebras β : k[X] → k such that β|k[Y ] = α. The truth of
this assertion is the content of Lemma 2.27. ¤

Observation 4.92. As a very simple consequence of Chevalley’s theo-
rem, the reader can prove that the image of any constructible subset of X
is constructible in Y

Next we prove some basic properties of finite morphisms.

Theorem 4.93. Let X and Y be algebraic varieties and f : X → Y be
a finite morphism. Then
(1) #f−1(y) <∞ for all y ∈ Y .

 

(see Exercise 20)
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(2) f is a closed map.
(3) The restriction of f to a closed subset is a finite morphism.
(4) If Z is an algebraic variety and, g : Y → Z is a finite morphism, then
g◦f : X → Z is finite.
(5) If moreover X,Y are affine, then the morphism f is surjective if and
only if f# : k[Y ] → k[X] is injective.

Proof: Clearly, the assertions that we want to prove are local and by
definition of finite morphism, we can suppose that X and Y are affine and
irreducible.
(1) Take an arbitrary point y ∈ Y and consider the commutative diagram

X
f // Y

f−1(y)
?Â

OO

f0

// {y}?Â

OO

that induces a commutative diagram

k[Y ]
f#

//

²²²²

k[X]

²²²²
k[Y ]/My

f#
0

// k[f−1(y)]

As k[X] is finitely generated as a k[Y ]–module, it follows that the
quotient module k[f−1(y)] is also finitely generated over k[Y ] and as this
action factors we conclude that k[f−1(y)] is finitely generated over k[Y ]/My.
In other words k[f−1(y)] is a finite dimensional k–space. An affine variety
with finite dimensional algebra of polynomial functions is a finite set of

(2) We want to prove that if C is closed in X, then f(C) is closed in
Y . It is clear that we may assume that C = X and that f : X → Y is
dominant. We want to prove that f is surjective. Let y ∈ Y and consider
f# : k[Y ] ↪→ k[X]. If My ⊂ k[Y ] is the maximal ideal of y, call I = Myk[X]
the extended ideal; then I 6= k[X]. Indeed, if Myk[X] = k[X], as k[X] is
a finitely generated k[Y ]–module, by Nakayama’s lemma (see Appendix,(

k[Y ] \My

) ⊂ k[X] such that gk[X] = 0;
hence, g = 0. As I is a proper ideal, there exists a maximal ideal M such
that I ⊂M ⊂ k[X]. Then, My ⊂M∩k[Y ] ⊂ k[Y ] and the second inclusion

 

points. See Exercise 11.

Theorem 3.12) there exists g ∈
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is proper. It follows that M ∩ k[Y ] = My, and that means that the point
associated to M is mapped into y by the morphism f .
(3) Let Z be a closed subset of X and write it as Z = V(I) where I is a
radical ideal in k[X]. Then k[Z] = k[X]/I, and hence if k[X] is finitely
generated as a k[Y ]–module so is k[Z].

(5) This follows immediately form Theorem 4.88 part (2) and the closedness
of f that was just proved. ¤

The next lemma should be viewed as a geometric presentation of E.
Noether’s normalization theorem.

Lemma 4.94. Let X be an affine variety of dimension d. Then there
exists a finite surjective morphism g : X → Ad.

Proof: Consider k[X] and the ring extension, k ⊂ k[X]. As d is the
dimension of X, we can find algebraically independent elements f1, . . . , fd ∈
k[X] such that in the tower of extensions k ⊂ k[f1, . . . , fd] ⊂ k[X], the lower
part is a polynomial algebra and the top part is an integral extension (see

d is
finite and surjective. The finiteness follows immediately from the fact that
k[X] is integral and finitely generated as a k[f1, . . . , fd]–algebra. Then,

1 d The
surjectivity of g was proved in Theorem 4.93. ¤

Lemma 4.95. Let f : X → Y be a surjective finite morphism. Then
dim f−1(Z) = dimZ for any closed subvariety Z ⊂ Y .

Proof: As the concepts involved in this theorem are local we can
assume that X and Y are affine varieties. We proceed by induction on
the dimension of Z. If dimZ = 0 the result is the first conclusion of
Theorem 4.93. If dimZ > 0, let W ⊂ Z be a closed irreducible subset
of codimension one — the zero set of an irreducible polynomial h ∈ k[Z].
Then f−1(W ) ( f−1(Z) is a closed subset, and by induction dim f−1(W ) =
dimW . Moreover, f−1(W ) = V(h◦f) and dim f−1(Z)−1 = dim f−1(W ) =
dimW = dimZ − 1. ¤

4.6. Complete varieties

Definition 4.96. An algebraic variety X is complete if for all varieties
Y the projection p : X × Y → Y is a closed morphism.

The only complete and affine varieties are the finite sets of points, as
the following example shows.

 

54.
(4) The proof of this part is left as an Exercise for the reader. See Exercise

Theorem 2.6). The morphism g associated to the top extension X → A

it is finitely generated as a k[f , . . . , f ]–module (see Theorem 2.3).
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Example 4.97. Let X ⊂ An be an affine variety, and f ∈ k[X] a non
constant polynomial. Consider the closed subset Y ⊂ X×A1, Y =

{
(x, λ) :

f(x)λ = 1
}

. If we call p : X × A1 → A1 the projection onto the second
coordinate, 0 6∈ p(Y ) =

{
λ ∈ A1 : ∃x ∈ X : λ = 1/f(x)

}
. As Im(f) ( A1

is infinite unless X consists of a finite number of points, we conclude that
p(Y ) is not closed in A1

Theorem 4.98. (1) Let X be a complete variety and Y ⊂ X a closed
subvariety, then Y is complete.
(2) The product of two complete varieties is complete.
(3) Let f : X → Y be a morphism of algebraic varieties, X complete. Then
f(X) is a complete closed subvariety of Y .

Proof: The proofs of (1) and (2) are very easy. (3) The subset W ={
(x, y) ∈ X×Y : y = f(x)

} ⊂ X×Y is closed, and thus its image under the
projection X × Y → Y is closed in Y . As this image is f(X) the assertion
is proved.

Let Z be an algebraic variety. Consider the surjective morphism f×id :
X × Z → f(X)× Z and look at the following commutative diagram:

X × Z
f×id //

p′
&&LLLLLLLLLLL f(X)× Z

p

²²
Z

where p, p′ are the projections.
If C ⊂ f(X)× Z is closed, then (f × id)−1(C) ⊂ X × Z is closed, and

p(C) = p′
(
(f × id)−1(W )

) ⊂ Z is closed. ¤
Corollary 4.99. If X is a complete irreducible variety, then OX(X) =

k.

Proof: The image of a regular function f ∈ OX(X) is closed in A1,
and thus affine, but it is also a complete variety. Then it must be a point,
and thus f is constant. ¤

Theorem 4.100. If X is projective then it is complete. If X is complete
and quasi–projective, then it is projective.

¤

 

(see Exercise 14). Hence, X is a finite set.

Proof: See for example [55, Sect. II.3].
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4.7. Singular points and normal varieties

Definition 4.101. Let X be an algebraic variety. A point x ∈ X is
a simple — or regular or non singular — point if the local ring Ox is a
regular local ring. The variety X is said to be non singular (or smooth) if
all its points are simple points.

Observation 4.102. If A is a local noetherian ring with maximal ideal
M , then the Krull dimension of A is smaller than or equal to the dimen-
sion of the A/M–space M/M2

Geometrically, this means that the dimension of the tangent space at point
is larger or equal than the dimension of the variety. Moreover, from this
point of view non singular points are characterized by the equality of the
two dimensions above.

Theorem 4.103. Let X be an irreducible algebraic variety. Then x ∈ X
is non singular if and only if dimk

(
Tx(X)

)
= dim(X). Moreover for an

arbitrary variety the set of regular points is a non empty open subset.

Proof: The point x ∈ X is regular if and only if the local ring Ox is
regular and this happens if and only if the minimal number of Ox–module
generators of Mx coincides with the Krull dimension of Ox. In other words,
x is regular if and only if the minimal number of Ox–module generators
of Mx coincides with the dimension of the variety. We observed in 4.62
that the minimal number of generators mentioned above coincides with the
dimension of the tangent space.

In order to prove the second assertion we may assume that X ⊂ An
is affine and irreducible, with associated ideal I(X) = 〈f1, . . . , fm〉 ⊂
k[X1, . . . , Xn]. From Exercise 44 we know that

dimk
(
Tx(X)

)
= n− rk

(
(∂fi/∂Xj)(x)1≤i≤m,

1≤j≤n

)
.

Hence, a point is regular if and only if rk
(
(∂fi/∂Xj)(x)1≤i≤m,1≤j≤n

)
=

n − dimX. This is an open condition. The proof of the non emptiness of
the set or regular points is more laborious and it is left as an exercise (see

¤

Definition 4.104. A point x ∈ X is normal if and only if the local
ring Ox is integrally closed. The variety X is said to be normal if all its
points are normal points.

Observation 4.105. The notion of normal variety is weaker than the
notion of non singular variety. Normal varieties are a useful class of va-
rieties due to the control one acquires in this situation over the extension

 

Exercise 49).

(see [3, Chap. 11] and Observation 4.62).
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The reader should be aware that in the above definition we are assuming
implicitly that the local ring Ox is an integral domain.

Lemma 4.106. Let X be an irreducible affine variety, then X is normal
if and only k[X] is integrally closed in k(X).

Proof: Call A = k[X]. It is a well known result in commutative
M

is integrally closed for all maximal ideals M of A. As AM = Ox, where
x ∈ X is the point corresponding to the ideal M , the result follows. ¤

Observation 4.107. Similarly, it can be proved that if X is an ir-
reducible normal variety, then OX(X) is integrally closed in its field of
fractions [OX(X)].

Theorem 4.108. Every non singular point is normal. In particular,
smooth varieties are normal.

Proof: The result follows immediately from the fact that a regular
¤

Observation 4.109. (1) In the case of curves, it is easy to verify that
normal points are automatically non singular. This is just the geometric
version of Theorem 2.35.
(2) For varieties of larger dimension there are examples of normal singular
points. Indeed, consider the quadratic cone

A3 ⊃ S =
{

(x, y, z) ∈ A3 : xz = y2
}

= V(f) ,

where f ∈ k[X,Y, Z] is the polynomial f(X,Y, Z) = Y 2 − XZ. Clearly,
the origin is a singular point and it is not hard to prove that S is normal.
The ring k[S] = k[X,Z] + k[X,Z]Y , where Y is the class of Y in k[S].
Similarly, k(S) = k(X,Z) + k(X,Z)Y , with Y

2
= XZ. Let r + sY ∈

k(S). Then Tr(r + sY ) = 2r and N
(
r + sY

)
= r2 − s2ZX. If r + sY is

integral over k[S], then its norm and trace belong to k[S], and we conclude
that r is a polynomial and s2ZX ∈ k[X,Z]. By elementary algebraic
manipulations one proves that in this situation s ∈ k[X,Z] and hence that
k[S] is algebraically closed, i.e., S is normal.

Observation 4.110. If X,Y are normal varieties, then X×Y is also a

be aware that the fibered product of two normal varieties is not necessarily

 

normal (see Exercises 34 and 56).

of functions that are defined on large enough open subsets (see Theorem
5.14).

algebra (see for example [3]) that A is integrally closed if and only if A

local ring is integrally closed in its field of fractions (see Theorem 2.34).

normal variety (see [21, Chap. V, I, Prop. 3]). However, the reader should
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Theorem 4.111. The set of normal points of an algebraic variety is a
non empty open subset.

Proof: We may assume that the original variety X is affine and ir-
reducible. The proof that the set of normal points is non empty follows
immediately from the fact that the set of regular points is non empty. Con-
sider k[X] and its field of fractions k(X) and call B the integral closure of
k[X] in k(X). Let v1, . . . , vp be a family of generators of B as an k[X]–
module. Taking a common denominator, that we call f ∈ k[X], we have
that fvi ∈ k[X] for all i = 1, . . . , p, and hence fB ⊂ k[X], i.e., B ⊂ k[X]f .
The principal open subset Xf of X consists of normal points. Indeed,
k[Xf ] = k[X]f and k(Xf ) = k(X), and the integral closure of k[X]f is
Bf ⊂

(
k[X]f

)
f

= k[X]f . Then k[X]f is integrally closed. ¤
Even when a variety X is not normal, it can be covered minimally by

a normal variety, called the normalization of X.

Theorem 4.112. Let X be an irreducible algebraic variety. Then there
exists a pair (X̃, p), where X̃ is a normal variety and p : X̃ → X is a domi-
nant morphism of varieties that satisfy the following universal property: for
every pair (Z, f), where Z is a normal algebraic variety and f : Z → X is
a dominant morphism, there exists a dominant morphism f̃ : Z → X̃ such
that f = p◦f̃ :

X̃

p

²²
Z

f
//

ef
??

X

Moreover, a pair (X̃, p) as above is unique up to isomorphism.

Proof: We sketch the proof in the category of affine varieties, the
general situation can be treated by gluing together the normalizations of

Consider the integral closure A = k[X] of k[X] in
[
k[X]

]
. Then A as

˜
normal variety. Since the morphism k[X] ↪→ A is injective, it induces a
dominant morphism p : X̃ → X.

Let f : Z → X be a dominant morphism, where Z is a affine normal va-
riety. Then f# : k[X] ↪→ k[Z] is injective, and since k[Z] is integrally closed
on its field of fractions, it follows easily that f# extends to an injective mor-
phism f̃# : A → k[Z]. Thus, the induced map f̃ : Z → Spm(A) = X̃ is
dominant and satisfies f = p◦f̃ . ¤

 

the affine pieces (see Exercise 50).

an affine k–algebra (see Lemma 2.13), and thus X = Spm(A) is an affine



56 1. ALGEBRAIC GEOMETRY

The reader should notice that as a consequence of the proof of the
above theorem we obtain that the normalization of an affine variety is also
affine. For projective varieties we have the following harder result.

Theorem 4.113. Let X be a projective variety. Then its normalization
is projective.

¤

5. Deeper results on morphisms

In this section we collect, often without proof, some deeper properties
of morphisms that will be needed in different parts of the book.

Theorem 5.1 (Differential criterion of separability). Let f : X → Y
be a dominant morphism of irreducible varieties. If there exists x ∈ X such
that: (1) the points x and f(x) are simple; (2) the linear transformation
dxf : Tx(X) → Tf(x)(Y ) is surjective; then f is separable.

Conversely, if f : X → Y is a morphism that is separable and there is a
point x ∈ X such that x and f(x) are simple, then dxf : Tx(X) → Tf(x)(Y )
is surjective.

¤

of inverse images of closed subsets of the codomain, we need a “local ver-
sion” of Lemma 4.94 whose proof — being similar — will be omitted.

Lemma 5.2. Let f : X → Y be a dominant morphism of irreducible
affine varieties. Then there exists a morphism g : X → Ar × Y , r =
dimX − dimY , and an open subset V ⊂ Y , such that: (1) if p is the
projection onto the second coordinate, then f = p◦g; (2) the product Ar×V
is contained in the image of g, i.e. Ar×V ⊂ g(X), and g|f−1(V ) : f−1(V ) =
g−1(Ar × V ) → Ar × V is a finite morphism. ¤

It is worth noticing in the above lemma that as g(X) ⊃ Ar × V , then
f(X) = p

(
g(X)

) ⊃ p(Ar × V ) = V . In other words, the open set V is

 

Proof: See for example [106, Thm. III.4].

Before proving a key theorem due to Chevalley concerning dimensions

Proof: For a proof see for example [71, XI.6.2] or [10, Thm. AG.17.3].



5. DEEPER RESULTS ON MORPHISMS 57

contained in the image of f (see the diagram below).

Ar × V
p //

_Ä

²²

V_Ä

²²

X

{{ww
ww

ww
ww

w

""DD
DD

DD
DD

g(X)
_Ä

²²

f(X)
_Ä

²²
Ar × Y p

// Y

Observation 5.3. In the case that Y = {?} is a point and f : X → {?}
is the constant morphism, the result we obtain applying the conclusions
of Lemma 5.2 is exactly the geometric version of Noether’s normalization
lemma 4.94.

Theorem 5.4 (Chevalley). Let f : X → Y be a dominant morphism

(1) Let W ⊂ Y be an irreducible closed subset. If Z ⊂ f−1(W ) is an
irreducible component such that Z dominates W , i.e., such that f(Z) = W ,
then dim(Z) ≥ dim(W )+r. Moreover, there exists a non empty open subset
U ⊂ Y contained in f(X) such that for all closed irreducible subsets W ⊂ Y
that intersect U , if Z is an irreducible component of f−1(W ) that intersects
f−1(U), then dim(Z) = dim(W ) + r.
(2) For every y ∈ f(X), dim f−1(y) ≥ r. Moreover, there exists a non
empty open subset U ⊂ Y contained in f(X) such that for all points y ∈ U
and for all Z ⊂ f−1(y) irreducible component of f−1(y), then dim(Z) = r.
(3) If for all closed irreducible W ⊂ Y and for all Z irreducible component
of f−1(W ) the equation dim(Z) = dim(W ) + r holds, then f is an open
map.

Assume now that f : X → Y is an arbitrary morphism of algebraic
varieties and define the map εf : X → Z≥0 as

εf (x) = max
{

dim(Z) : x ∈ Z, Z irreducible component of f−1
(
f(x)

)}
.

Then εf is upper semicontinuous, i.e., Sn,f =
{
x ∈ X : εf (x) ≥ n

}
is

closed for all n ∈ Z≥0.

Proof: (1) Consider an affine open subset U ⊂ Y such that W ∩
U 6= ∅. Then W ∩ U is dense in W , and as to intersect with U does

 

of irreducible varieties, and call r = dim(X)−dim(Y ) (see Theorem 4.84).
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not change dimensions, we can assume that Y = U , i.e., that Y is affine.
Using Lemma 4.71, we can find f1, . . . , fs ∈ k[Y ], s = codim(W ), such that
W is an irreducible component of V(f1, . . . , fs). Consider the polynomials
g1, . . . , gs ∈ OX(X) defined as gi = fi◦f = f#(fi). If Z ⊂ f−1(W ) is
an irreducible component that dominates W , then Z ⊂ V(g1, . . . , gs), and
as Z is irreducible it is contained in some irreducible component Z0 of
V(g1, . . . , gs). Therefore, W = f(Z) ⊂ f(Z0) ⊂W , and thus Z0 ⊂ f−1(W ).
Thus Z = Z0, and hence — previously intersecting with a conveniently
chosen affine open set in X in order to be in the situation of Corollary
4.72 — we conclude that codimZ = codimZ0 ≤ codimV(g1, . . . , gs) = s =
dimY − dimW .

To find the open subset U ⊂ Y where equality holds, we can proceed
as before and assume that Y is an affine variety. Write X as a finite union
of affine open sets X1, . . . , Xn. If there exists an open subset Ui of Y with
the property that Ui satisfies the conclusion of this part of the theorem for
the restriction of f to Xi, then U =

⋂
Ui satisfies the conclusion of this

part of the theorem for f . Hence, we may assume that X and Y are affine
and that f is dominant. Consider the factorization obtained in Lemma 5.2,
that is illustrated in the diagram below

(1) X
g

{{ww
ww

ww
ww

w
f

ÃÃ@
@@

@@
@@

@

Ar × Y p
// Y

and the corresponding diagram with the restrictions of the maps to the
open sets mentioned thereby:

f−1(V )
g

yysssssssss
f

##FF
FF

FF
FF

F

Ar × V p
// V

We assert that if an irreducible set intersects V , then its inverse image
has the correct dimension property.

As our desired conclusions about the dimensions are generic, we can
assume that Y = V , and suppose that the morphism g in diagram (1) above
is finite surjective.

Let Z be an irreducible subset of Y . By Lemma 4.95, dim g−1(Ar×Z) =
dim(Ar × Z) = dim(Z) + r. Hence, dim f−1(Z) = dim g−1(Ar × Z) =
dim(Z) + r.
(2) This situation is a particular case of (1).
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(3) First of all observe that since dim f−1(y) = r for all y ∈ Y , it follows
that f is surjective. More generally, the hypothesis implies that if W ⊂ Y is
closed and irreducible and Z is an irreducible component of f−1(W ), then
f(Z) = W . This can be verified as follows: clearly Z ⊂ f−1

(
f(Z)

)
so that

Z is also a irreducible component of f−1
(
f(Z)

)
. As f(Z) is irreducible, we

have that dimZ − dim f(Z) = r = dimZ − dimW . Then, as f(Z) ⊂ W
and both closed sets are irreducible and of the same dimension, they are
equal.

Next we prove that if U is an open subset of X, then f(U) is an open
subset of Y . Let x ∈ U and assume that f(x) is not an interior point of

Y \ f(U) is a constructible set. Hence, we can find C and V in Y with
C closed irreducible and V open in Y such that f(x) ∈ C ∩ V = C and
C ∩ V ⊂ Y \ f(U). We just observed that if Z is a component of f−1(C),
then f(Z) = C. It follows that V ∩C ∩f(Z) 6= ∅ and thus V ∩f(Z) 6= ∅, so
that f−1(V )∩Z 6= ∅. We conclude that f−1(V ) intersects all the irreducible
components of f−1(C). Then f−1(V ) ∩ f−1(C) is dense in f−1(C). But
f−1(V ) ∩ f−1(C) = f−1(V ∩ C) ⊂ f−1

(
Y \ f(U)

) ⊂ X \ U . As X \ U is
closed we conclude that f−1(C) ⊂ X \ U and this is a contradiction with
the fact that f(x) ∈ C and x ∈ U .

To prove the last part of the theorem we proceed by induction on the
dimension of Y . Clearly we may assume that f is dominant and that X,Y
are irreducible.

For varieties Y of dimension zero the result is evident. For n ≤ r,
Sn,f = Sr,f = X. If n > r, let U be as in part (2). Then Sn,f ⊂ X\f−1(U).
Call Z1, . . . , Zt the irreducible components of Y \U and Wi1, . . . ,Wini the
irreducible components of f−1(Zi) and call fij : Wij → Zi the restriction
of f to Wij — in all the above i, j take values in the evident set of indexes.
We assert that Sn,f =

⋂
Sn,fij

. Indeed, it is clear that Sn,f ⊃
⋂
Sn,fij

.
If x ∈ Sn,f and there is an irreducible component Z of f−1

(
f(x)

)
such

that x ∈ Z and dim(Z) ≥ n > r, then x 6∈ f−1(U) by construction.
Thus x ∈ Wij for some pair of subindexes and then x ∈ Sn,fij

. Since
dimZi < dimY , it follows that Sn,fij is closed and the same happens with
Sn,f . ¤

Observation 5.5. If U ⊂ Y is as in part (1) of the above theorem,
then f |f−1(U) : f−1(U) → U satisfies the hypothesis of (3), and then the
restriction f |f−1(U) : f−1(U) → U is a (surjective) open morphism.

 

f(U). In that case f(x) ∈ Y \ f(U), and we know (see Theorem 4.91) that
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Moreover, if Y is normal and f has equidimensional fibers — in the
sense that all the dimensions of all the irreducible components of the differ-
ent fibers take the same value — then it follows from a result of Chevalley

Theorem 5.6 (Zariski’s Main theorem). Let X and Y be algebraic
varieties with Y normal and let f : X → Y be a birational morphism with
finite fibers. Then f is an open immersion.

Proof:
proach that goes along the lines of Zariski’s original proof. Also in [106,
Chap. III, Sect. 9] there is a thorough discussion of various formulations
and proofs of the result. There, the reader can find a very simple proof of
this theorem in the case that Y is factorial. ¤

The following corollary that follows trivially from the above is partic-
ularly useful.

Corollary 5.7. Let X and Y be algebraic varieties with Y normal
and let f : X → Y be a birational bijective morphism. Then f is an
isomorphism. ¤

Example 5.8. The morphism f : A1 → C ⊂ A2 defined as f(t) =
(t2, t3), where C =

{
(x, y) ∈ A2 : x3 = y2

}
, is a bijective morphism that

is not an isomorphism. At the level of the rings of regular functions we
have that k[C] = k[X,Y ]/〈Y 2−X3〉 and f# : k[X,Y ]/〈Y 2−X3〉 → k[T ] is
given by f#(X) = T 2, f#(Y ) = T 3. Then f#(Y/X) = T so that f# is a
birational morphism. The failure of the conclusions of Corollary 5.7 is due
to the fact that C is not normal.

The following results concerning extension of rational functions defined
in normal varieties will be useful.

Lemma 5.9. Let X be an irreducible variety and x ∈ X a normal point.
Let f ∈ k(X) be a rational function not defined at the point x. Then there
exists a closed irreducible subvariety Y ⊂ X such that: x ∈ Y ; D( 1

f )∩Y 6= ∅
— in particular 1

f ∈ k(Y ) — and 1
f (y) = 0 whenever 1

f ∈ k(X) is defined
in y ∈ Y .

¤
Observation 5.10. Assume that X is irreducible and normal. Con-

sider f ∈ k(X) and D(f) the domain of definition of f

The complement of D(f) is called the polar locus of f and it is denoted
as PL(f). It is clearly a closed subset of X. Assume that f is a rational

 

that f is an open map (see [21, Chap. V. V. Prop. 3]).

See for example [118, Chap. 13] for a purely algebraic ap-

Proof: See for example [71, Prop. X.5.1].

(see Observation
4.54).
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function that cannot be defined in all of X. Write PL(f) =
⋃
i Zi with Zi

irreducible and take xi ∈ Zi \
⋃
j 6=i Zj . For each i, fix an irreducible subset

Yi associated to xi with the properties mentioned in Lemma 5.9. Then,
1/f is defined in an open subset Ui of Yi and takes the value zero. It is
clear from the fact that f 1

f = 1 that f cannot be defined on Ui and then
Ui ⊂ PL(f) and the same happens with Ui = Yi, i.e., Yi ⊂ PL(f). As Zi
is the only irreducible component of PL(f) containing xi, we deduce that
xi ∈ Yi ⊂ Zi. Hence, 1/f is defined in an open subset of PL(f). Moreover,
since f is not defined in PL(f), it follows that 1

f takes the value zero in
this open subset. A point x ∈ PL(f) is called a pole of f , if 1/f is defined
at x, and hence it takes the value zero.

Example 5.11. Consider f = X
Y ∈ k(X,Y ) = k(A2). Then f is defined

in A2
Y , and 1

f is defined in A2
X . Hence, the polar locus of f is V(Y ), and

the poles of f are V(Y ) \ {
(0, 0)

}
. Neither f nor 1

f are defined at (0, 0).

Example 5.12. Consider f = X
Y ∈ k(X,Y ) = k(A2). As we saw in the

previous example, f is not defined at the origin. Consider C = V(x− y2) ⊂
A2. Then the restriction of f to C is a regular function in C, since it coincides
with the restriction of Y to X.

Example 5.13. In this example we show that all the regular functions
of the punctured plane, i.e. the plane minus the origin, can be extended to
the whole affine plane. If f ∈ OA2

(
A2 \ {(0, 0)}) could not be extended,

then 1
f would be defined at (0, 0). If we consider V(1/f), it is easy to

prove that it cannot be a single point, so that for some point p 6= (0, 0),
1/f(p) = 0, but as f is defined at p we have a contradiction.

In particular, the above considerations prove that A2 \ {
(0, 0)

}
is not

an affine variety.

The following theorem is a generalization of this example:

Theorem 5.14 (Extension of regular functions). Let X be an irredu-
cible normal variety and let f ∈ OX(U) be a function defined in an open
subset U such that codim(X \U) ≥ 2. Then f can be extended to a function
defined in X, i.e. there exists f̃ ∈ OX(X) such that f̃ |U = f .

Proof:

Let f ∈ OX(U), then f ∈ k(X) and we have that U ⊂ D(f). As
2 ≤ codim(X \U) ≤ codim

(
X \D(f)

)
, we may assume that U = D(f). We

want to prove that PL(f) = ∅, i.e., that f has no poles. Let x ∈ PL(f) be
a pole of f , and let x ∈ V ⊂ X be an open and affine subset of X where
1/f is defined. Then Y = VV (1/f) ⊂ V is a closed subset of codimension
one. This is a contradiction, since f is not defined in Y . ¤
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Corollary 5.15. Let X be an irreducible normal variety and f ∈ k(X)
a rational function not defined everywhere. Then the irreducible components
of the polar locus of f have codimension 1.

Proof: Let Z be an irreducible component of the polar locus of f , with
codimZ ≥ 2. Consider the normal variety Y = X\W , whereW is the union
of the irreducible components different from Z of the polar locus. Then
f ∈ k(Y ), and it is defined in an open subset U , with Y \ U = Z ∩ Y 6= ∅.
Using Theorem 5.14, we conclude that f is defined in all Y , which is a
contradiction. ¤

Corollary 5.16. Let X be an irreducible normal variety, U ⊂ X be
an open subset of codim(X \ U) ≥ 2, and let f be a morphism f : U → Y ,
where Y is an affine variety. Then f can be extended to a morphism f̃ :
X → Y . ¤

Observation 5.17. Observe that the condition that Y is affine is
essential, as it is illustrated by the example of the canonical projection
A2 \ {0} → P1

The following result, apparently due to Rosenlicht ([128]), will be useful
when dealing with semi–invariants.

Lemma 5.18 (M. Rosenlicht). Let X,Y be two irreducible algebraic
varieties over k, and consider the canonical map ϕ : OX(X) × OY (Y ) →
OX×Y (X × Y ). Then ϕ

(OX(X)∗ × OY (Y )∗
)

= OX×Y (X × Y )∗. Recall
that A∗ denotes the group of invertible elements of the k–algebra A.

Proof: The inclusion ϕ
(OX(X)∗×OY (Y )∗

) ⊂ OX×Y (X×Y ) is clear.
Let f ∈ OX×Y (X × Y )∗. Consider normal points x0 ∈ X and y0 ∈ Y ,
and let F (x, y) = f(x0, y0)−1f(x, y0)f(x0, y). We show that F = f . By
continuity, it is enough to find open subsets U ⊂ X and V ⊂ Y such that
F |U×V = f |U×V . Hence, we can assume that X and Y are affine normal
varieties.

Let X and Y be normal projective completions of X and Y respectively
Consider f and F as rational functions on X × Y . As

X × Y is projective if we prove that f
F ∈ OX×Y

(
X × Y

)
, it follows that

f
F is constant. Evaluating at (x0, y0) we conclude that the constant equals
one, and the proof of the result is finished.

As f
F is defined on X×Y , it has its poles in

(
(X\X)×Y )∪(

X×(Y \Y )
)
.

Hence, if D is an irreducible component of the polar locus of f
F it must be

contained either in
(
X \X)×Y or in X×(

Y \Y )
, say in

(
X \X)×Y = Z.

Since codimD = 1 by Corollary 5.15, we conclude that D is an irreducible

 

(see Exercise 55).

(see Example 4.41).
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component of Z. Hence, D is of the form D1 × Y , where D1 ⊂
(
X \X)

is
an irreducible component (of codimension one in X). On the other hand,
since f(x, y0) = F (x, y0) for all x ∈ X, it follows by continuity that f

F

cannot have a pole along D1 × Y . Hence, PL
(
f
F

)
= ∅ and f/F is defined

in X × Y . ¤
We finish this section with two results concerning the possibility of

factoring regular functions that are are constant along the fibers of a given
morphism.

Observation 5.19. Assume that f : X → k and p : X → Y are maps,
we say that f is constant along the fibers of p if for all x, x′ ∈ X such that
p(x) = p(x′) then f(x) = f(x′).

Theorem 5.20. Let X and Y be irreducible algebraic varieties, and
let p : X → Y be a dominant and separable morphism. If f ∈ OX(X) is
constant along the fibers of p, then f ∈ p#

(
k(Y )

)
.

Proof: Suppose first that p is injective. As the generic dimension

Then, the field extension p#
(
k(Y )

) ⊂ k(X) is finite algebraic and
separable. This follows easily form our hypothesis: the separability from
the fact that the morphism is separable and the finiteness from the equality
of the dimensions.

We may take affine open subsets U ⊂ X and V ⊂ Y such that p(U) ⊂
V . If we call A = k[U ] and B = p#

(
k[V ]

)
, the extension [B] ⊂ [A] is

separable finite and algebraic. Take f as in the hypothesis of the theorem
and call fU ∈ A the restriction of f to U . We apply Lemma 2.28: let
α, β : A→ k be two k–algebra homomorphisms that coincide on B. These
homomorphisms correspond to points x, x′ ∈ X that have the same image
by p, and as p is injective they are equal; this means that α, β coincide on
fU . Then, fU is purely inseparable over [B] and thus fU ∈ [B]. This is the
conclusion we were looking for.

Next we deal with the case that p is not necessarily injective.
In the general case consider the morphism q : X → Y × A1 defined

as q(x) =
(
p(x), f(x)

)
.

U of q(X) such that U ⊂ q(X). Consider the morphism consisting in the
projection onto the first coordinate pY : Y ×A1 → Y . By construction the
restriction of pY to q(X) (and also to U) is injective and as pY is surjective,
pY |U is dominant. As the projection pA1 : Y ×A1 → A1 is constant along the
fibers of pY |U , there exists a rational function g ∈ k(Y ) with the property
that pY |#U (g) = pA1 . Hence, q#

(
pY |#U (g)

)
(x) = q#(pA1)(x) = pA1

(
q(x)

)
=

f(x). As pY |U ◦q = p, we conclude that p#(g) = f . ¤

 

of the fibers is zero, we conclude that dim(X) = dim(Y ) (see Theorem
5.4).

We can find (see Theorem 4.91) an open subset
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Theorem 5.21. Let X and Y be irreducible algebraic varieties and
assume that Y is normal. Suppose that f : X → Y is an open surjective
and separable morphism. If U ⊂ Y is an arbitrary open subset of Y , then
the image of the map f#

U : OY (U) → OX
(
f−1(U)

)
is

f#
U

(OY (U)
)

=
{
α : f−1(U) → k : ∀ y ∈ Y, α|f−1(y) = const

}
.

Proof: We may assume that U = Y is irreducible and affine, so that
it is enough to prove that f#(Y )

(
k[Y ]

)
is the ring of regular functions

α : X → k that are constant on the fibers of f .
By the preceding theorem (Theorem 5.20), for any α ∈ k[X] constant

along the fibers, there exists β ∈ k(Y ) =
[
k[Y ]

]
such that f#(β) = α.

Write β = u/v ∈ [
k[Y ]

]
. Then the polar locus of β is contained in

V(v), which has codimension 1. Suppose the polar locus is all V(v). Then
since Y is a normal variety, there exists a point y ∈ V(v) such that v/u
is defined at y and takes the value zero. Then, 1/α ∈ k(X) is defined at
x ∈ f−1(y), and 1/α(x) = 0. It follows that 1 = α(x)(1/α)(x) = 0, which
is a contradiction. Then the polar locus of u

v has codimension greater than
or equal to 2, and hence β ∈ k[Y ]. ¤

6. Exercises

1. Let S be a graded algebra such that (a) S0 = k and (b) S+ = ⊕n≥1Sn
is a finitely generated ideal of S. Then S is a finitely generated k–algebra.
Hint: Consider a set B of ideal generators of S+ that are homogeneous
and prove by induction that Sn is contained in k[B].

2. Let k be a field and take h ∈ k[X1, . . . , Xn] such that for an n–tuple
{a1, . . . , an} ⊂ k, h(a1, . . . , an) = 0. Prove that h ∈ 〈X1−a1, . . . , Xn−an〉.

3. (a) Let B ⊂ A be a commutative ring extension. We say that A is
flat as a B–module if for any injective morphism α : M → N of B–modules,
the morphism id⊗Bα : A ⊗B M → A ⊗B N is also injective. Prove that
B ⊂ A is faithfully flat if it is flat and if for a B–module M , M ⊗B A = 0,
then M = 0.
(b) Show that if A is a commutative integral domain and a ∈ A is an
arbitrary element, then A ⊂ Aa is flat.
(c) Let B ⊂ A be a commutative ring extension and M a B–module gen-
erated by {m1, . . . ,mk}. Assume that

∑k
j=1 aj ⊗mj = 0 for some aj ∈ A

and consider the morphism φ : Bk → M : φ(b1, . . . , bk) =
∑
j bj ⊗mj . If

we call K = Ker(φ), from the exactness of the sequence {0} → K → Bk
φ→

M → {0} we deduce the exactness of A ⊗B K → Ak → A ⊗B M → {0}.
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This implies the existence of {γji : j = 1, . . . , k; i = 1, . . . , s} ⊂ B and
{λ1, . . . , λs} ⊂ A such that aj =

∑
i λiγji, j = 1, . . . , k, and

∑
γjimj = 0,

for i = 1, . . . , s.
(d) Conclude that if {b1, . . . , bn} generate the unit ideal of B and

∑
aj ⊗

mj ∈ A⊗BM is such that
∑
aj ⊗mj = 0 ∈ A[b−1

i ]⊗BM for i = 1, . . . , n;
then

∑
aj ⊗mj = 0 ∈ A⊗B M .

4. Let k be an algebraically closed field and A a finitely generated k–
algebra with no non zero nilpotent elements. Prove that if a ∈ A belongs
to the intersection of all the maximal ideals A, then a = 0.

5. Prove the assertions of Lemma 3.4.

6. Prove the assertions of Lemma 3.6.

7. (a) Prove that the open subsets Anf =
{
x ∈ An : f(x) 6= 0

}
, f ∈

k[X1, . . . , Xn] form a basis for the Zariski topology.
(b) Let X ⊂ An be an algebraic subset. Prove that the affine subsets
Xf =

{
x ∈ X : f(x) 6= 0}, f ∈ k[X], form a basis for the Zariski topology

of X.

8. Prove that an algebraic set is Hausdorff if and only if it is a finite
collection of isolated points.

9. A topological space such that every open covering has a finite subcov-
ering is called quasi–compact. Prove that algebraic sets are quasi–compact.
Hint: Work with families of closed subsets instead of open coverings.

10. Let V be a finite dimensional vector space considered as an affine
variety. Prove that k[V ] ∼= S(V ∗), the symmetric algebra built on the dual
of V .

11. Prove that an affine variety whose algebra of polynomial functions
is a finite dimensional vector space, is a finite set of points with cardinal
equal to the dimension.

12. Prove that an algebraic set X ⊂ An is irreducible if and only if
I(X) is a prime ideal.

13. Assume that the base field k has characteristic different from two,
and consider a polynomial f ∈ k[X,Y ] such that f(λ, λ) = f(λ,−λ) = 0
for all λ ∈ k. Deduce that f ∈ (X2 − Y 2)k[X,Y ].

14. Let X be an affine variety and f : X → A1 a polynomial map.
Prove that the image of f is an infinite subset of A1 unless X is a finite set
or f is constant.

15. Prove the assertions contained in the Observation 3.29.
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16. Let f : An → Am be a polynomial map. Prove that the graph of f
is an algebraic subset of An × Am. Generalize to f : X → Y , X,Y affine

17. Consider C ⊂ A3, C = V(f, g) with f(X,Y, Z) = X2 − Y Z,
g(X,Y, Z) = XZ − Z. Describe the irreducible components of C in terms
of the corresponding prime ideals.

18. Let C ⊂ A2 be the curve image of f : A1 → A2, f(t) = (t2, t3).
(a) Prove that C is an algebraic subset and describe explicitly the map
f# : k[C] → k[t].
(b) Prove that f : A1 → C is a bijective morphism that is also an homeo-
morphism, but that f−1 is not a regular function.

19. (a) Let A,B be k–algebras. Prove that Spm(A⊗B) is in bijection
with Spm(A)× Spm(B).
(b) Let X ⊂ An Y ⊂ Am be affine algebraic sets. Prove that X × Y is
isomorphic to V(

I⊗k[Y1, . . . , Ym] +k[X1, . . . , Xn]⊗J)
, where I = I(X) ⊂

k[X1, . . . , Xn] and J = I(Y ) ⊂ k[Y1, . . . , Ym].
(c) Prove that X ×Y considered as an algebraic subset of An+m is isomor-
phic as an affine variety with the variety defined by Spm

(
k[X]⊗ k[Y ]

)
.

(d) Prove that the Zariski topology of Spm
(
k[X]⊗k[X]

)
is not the product

topology.
(e) Let X and Y be topological spaces and {Ui : i ∈ I}, {Vj : j ∈ J} affine
atlases of X and Y respectively. Prove that Ui × Vj is an affine atlas for
X × Y , with the topology induced by the covering.

20. Let f : X → Y be a morphism of algebraic varieties. Prove that
the image of a constructible subset of X is constructible in Y .

21. The constant sheaf. LetX be a topological space andA an arbitrary
ring endowed with the discrete topology. Prove that the assignment that
associates to each open subset U ⊂ X, the ring of continuous functions from
U to A, defines a sheaf A. Observe that if U is connected then A(U) = A.

22. Let F be a sheaf on X and U ⊂ X an open subset. If s ∈ F(U)
we define suppU (s) = {x ∈ U : sx 6= 0}. Show that suppU (s) is open in U .
We define supp(F) = {x ∈ X : Fx 6= 0}. Is supp(F) an open subset of X?

23. The skyscraper sheaf. LetX be a topological space and consider x ∈
X. Let A be an arbitrary ring. If U ⊂ X is open, we define S(x,A)(U) = A
if x ∈ U and {0} otherwise. Prove that S(x,A) with the natural restriction
maps is a sheaf on X.

 

varieties (see also Exercise 35).
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24. Prove that in accordance to Definitions 4.4 and 3.34, the fiber of
the sheaf OX at the point x is OX,x.

25. Complete the proof of Observation 4.19.

26. Let X ⊂ An be an algebraic set and let f ∈ k[X]. Consider
Y ⊂ X × A1 ⊂ An × A1, Y =

{
(x, z) ∈ X × A1 : f(x)z − 1 = 0

}
. Prove

that k[Y ] ∼= k[X]f and that the diagram

Xf
ϕ //

ιf

²²

Y

ιY

²²
Spm

(
k[X]f

)
Spm

(
k[Y ]

)

commutes, where ϕ(x) =
(
x, 1

f(x)

)
Hint: Assume first that X = An and prove that in this case

k[Y ] = k[X1, . . . , Xn, Xn+1]/
〈
f(X1, . . . , Xn)Xn+1 − 1

〉
.

27. Let X be an algebraic variety defined and suppose that f1, . . . , fr
are global sections of the structure sheaf of X such that: (a) the functions
f1, . . . , fr generate the unit ideal of the ring of global sections; (b) The
principal open subsets Xfi

are affine for i = 1, . . . , r. Then X is affine.

28. Prove the conclusions of Observation 4.38.

29. Zariski topology for the projective space. Prove that the subsets
of Pn of the form V(I) ⊂ Pn, for I ⊂ k[X0, . . . , Xn] a homogeneous ideal,
satisfy the axioms for the closed sets of a topology of Pn.

30. (a) Let p ∈ k[X1, . . . , Xn] and consider its decomposition in ho-
mogeneous components p =

∑m
i=0 pi, deg pi = i. Then p̃ =

∑
i U

m−ipi is
a homogeneous polynomial in k[U,X1, . . . , Xn]. Prove that in this way we
obtain a bijection between homogeneous polynomials in n+1 variables and
polynomials in n variables.
(b) Consider for i = 0, . . . , n, the sets Ui =

{
[a0 : · · · : an] ∈ Pn : ai 6= 0

} ⊂
Pn. Prove that

ϕi : An → Ui , ϕi(a0, . . . , âi, . . . , an) = [a0 : · · · : ai−1 : 1 : ai+1 : · · · : an]

is an homeomorphism. Hint: Prove that V(I) = V(Ĩ) ∩ Ui ⊂ An, where
Ĩ =

{
f̃ : f ∈ I}.

31. Prove that if X is an affine variety and Y is a closed subset of X,
the procedure of Example 4.18 endows Y with a natural structure of affine
algebraic variety. Show Y is a closed subvariety in the sense of Definition
4.43.

 

. See the notations of Observation 4.23.
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32. (a) Let X,Y be algebraic varieties, X affine. Prove thatOX×Y (X×
U) ∼= k[X]⊗OY (U) for any open subset U ⊂ Y .
(b) Prove that if X,Y are algebraic varieties and U ⊂ X, V ⊂ Y are open
subsets, then OX×Y (U×V ) ∼= OX(U)⊗OY (V ). In particular, OX×Y (X×
Y ) ∼= OX(X)⊗OY (Y ) .

33. Let X,Y be two algebraic varieties. Prove that dim(X × Y ) =
dimX + dimY .

34. Let f, g : A1 → A1, f(x) = x3, g(y) = y2. Prove that the curve C
defined in Exercise 18 is the fibered product of f and g.

35. Let f : X → Y be a morphism of algebraic varieties. Prove that
the graph Γ(f) =

{(
x, f(x)

)
: x ∈ X

} ⊂ X × Y is a closed subset, and
hence an algebraic variety.

36. Consider the morphism ν : P2 → P5 defined as ν
(
[x0 : x1 : x2]

)
=

[x2
0 : x0x1 : x0x2 : x2

1 : x1x2 : x2
2]. Prove that ν is a closed embedding

and that the dimension of ν(P2) is 2. The surface ν(P2) ⊂ P5 is called the
Veronese surface.

37. Consider the quadrics in P3 given as Q1 =
{

[x, y, z, w] : x2 = yw
}

,
Q2 =

{
[x, y, z, w] : xy − zw = 0

}
. Show that Q1 ∩Q2 is not irreducible.

38. The Segre embedding. Prove that the map

ϕ : Pn × Pm → P(n+1)(m+1)−1 ,

ϕ
(
[x0 : · · · : xn], [y0 : · · · : ym]

)
= [x0y0 : · · · : x0ym : · · · : xny0 : · · · : xnym]

is a closed immersion.

39. Deduce from Exercise 38 that the product of two projective varieties
is projective and that the product of two quasi–projective varieties is quasi–
projective.

40. Show that P1×k∗ is neither a quasi–affine nor a projective variety.

41. An hyperplane H of the projective space Pn is the zero set of a
homogeneous polynomial of degree one, i.e., H =

{
[x0 : · · · : xn] ∈ Pn :∑n

i=0 aixi = 0
}

, for certain [a0 : · · · : an] ∈ Pn. Call p : An+1 − {0} → Pn
the canonical projection, and let {v1, . . . , vn} ⊂ An+1 be a set of linearly
independent vectors. Prove that

{
p(v1), . . . , p(vn)

} ⊂ Pn determine an
hyperplane. Prove that if H is an hyperplane, then Pn \ H is an affine
variety.

42. Fill in the details of Example 4.52. In [54, Lect. 6] the reader will
find another approach to this subject.
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43. Let X be an affine variety and U ⊂ X an open subset such that
OX(U) = k[X]. Prove that codim(X \ U) ≥ 2.

44. In this exercise the reader is asked to prove the main properties of
the tangent space.
(a) Prove the chain rule for the composition of morphisms, and that the
differential of the identity map is the identity.
(b) Let (A, ε) be a commutative augmented algebra and consider the linear
map δA : A → Ker(ε)/

(
Ker(ε)

)2 defined as δA(a) = a − ε(a) +
(
Ker(ε)

)2.
Prove that for any ε-derivation δ : A→ V , where V is a vector space, there
exists a unique linear map Lδ : Ker(ε)/

(
Ker(ε)

)2 → V with the property
that Lδ◦δA = δ. Conclude that Dε(A) ∼=

(
Ker(ε)/

(
Ker(ε)

)2)∗.
(c) Consider An and let x = (a1, . . . , an) ∈ An, call as usual εx the eval-
uation at x. Define the k–linear map dx : k[X1, . . . , Xn] → (kn)∗ as:
dx(f) = ∂f/∂X1(x)π1 + · · ·+∂f/∂Xn(x)πn, where πi is the canonical pro-
jection on the i–th coordinate. If we call δ = δk[X1,...,Xn], prove that there
exists a k–linear isomorphism η : (kn)∗ → (

Ker(εx)/
(
Ker(εx)

)2)∗ such that
δ = η◦dx. Conclude that Tx(An) = (kn)∗∗.
(d) Assume now that I is an arbitrary ideal of k[X1, . . . , Xn] and let x ∈
V(I). Prove that Tx

(V(I)
)

= Dεx

(
k[X1, . . . , Xn]/I

)
.

(e) Conclude that if X is an algebraic variety and x ∈ X, then Tx(X) is a
finite dimensional vector space.
(f) Let X = V(f1, . . . , fm) ⊂ An, fi ∈ k[X1, . . . , Xn]. Then

dimk
(
Tx(X)

)
= n− rk

(
(∂fi/∂Xj)(x)1≤i≤m,1≤j≤n

)
.

45. Let f ∈ k[X0, X1, X2] be a homogeneous polynomial and consider
the projective variety S = V(f) ⊂ P2. Assume that for all x ∈ S there is an
index i = 0, 1, 2 such that ∂f/∂Xi(x) 6= 0. Prove that S is a non singular
variety. Find Tx(S) in terms of f .

46. Consider the canonical projection π : An+1 − {0} → Pn. Prove
that if (a0, . . . , an) ∈ An+1 − {0}, then T(a0,...,an)(An+1 − {0}) = kn+1

and that T[a0:···:an](Pn) = kn+1/k(a0, . . . , an). Show that d(a0,...,an)π is the
canonical projection kn+1 → kn+1/k(a0, . . . , an) and conclude that the map
π is separable.

47. Prove that if X is an irreducible affine variety, then k(X) =
[
k[X]

]
.

Moreover, if X is an arbitrary irreducible algebraic variety and U an affine
open subset of X, then k(X) =

[ ]

48. (a) Assume that X and Y are prevarieties and that f, g : Y → X
is a pair of morphisms. Then

{
y ∈ Y : f(y) = g(y)

}
is locally closed in Y .

 

k[U ] . See Example 4.55.
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(b) Prove that if X is an algebraic prevariety the following conditions are
equivalent:
(i) X is a variety;
(ii) for all prevarieties Y and all pairs of morphisms f, g : Y → X the set{
y ∈ Y : f(y) = g(y)

}
is closed in Y .

49. In this exercise the reader is asked to prove the following important
assertion: the set of regular points of an algebraic variety is non empty.
(a) Prove, following the indicated steps, that an irreducible algebraic vari-
ety X of dimension n is birationally equivalent to an hypersurface in Pn+1.
Consider the field extension k ⊂ k(X) and using Theorem 2.25 prove the
existence of a irreducible polynomial f ∈ k[X1, X2, . . . , Xn, Y ] such that
the tower of extensions k ⊂ k(X1, . . . , Xn) ⊂ k(X1, . . . , Xn)[y] = k(X) has
the lower part purely transcendental and the top part finite separable alge-
braic, and such that f(x1, . . . , xn, y) = 0. Conclude that X is birationally
equivalent to an hypersurface.
(b) Reduce the original problem to the case that X is an irreducible affine
hypersurface.
(c) Let f ∈ k[X1, . . . , Xn] be an irreducible polynomial and call X = V(f)
and S(X) the set of its singular points. Prove that if S(X) = X, then the
partial derivatives ∂f/∂Xi, i = 1, . . . , n, are multiples of f and hence zero.

50. Prove the existence of the normalization of an arbitrary irreducible

51. (a) A conic in P2 is the set of zeroes of an irreducible quadratic
homogeneous polynomial in three variables. Show that any conic in P2 is
normal.
(b) Show that the surfaces in P3 considered in Exercise 37 are normal.

52. Let f : X → Y be a morphism of algebraic varieties, and assume
that dim(X) = 1. Prove that if f is not constant, then for all y ∈ Y ,
#f−1(y) is a finite set.

53. Consider the variety S = V(Y − XZ) ⊂ A3 and the projection
p : A3 → A2, p(x, y, z) = (x, y). Call f = p|S .
(a) Find the image of f and prove that we are in the hypothesis of Theorem
5.4.
(b) Find explicitly the dimensions of the fibers for all points in f(S) ⊂ A2.
(c) Find the maximal set U satisfying the conclusions of part (2) of the
mentioned theorem.
(d) Compute explicitly the sets Sn,f for the different values of n.

 

algebraic variety (see Theorem 4.112).
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54. Prove that the composition of finite morphisms is finite.

55. Let X be an irreducible affine normal variety. Prove that there
exists a normal projective variety containing X as an open subset. Hint:

If X ⊂ An ⊂ Pn, take X ⊂ Pn and consider the normalization X̃ of X.
Prove that the induced morphism X ↪→ X̃ is a open immersion.

56. (a) Let C = V(X3−Y 2) ⊂ A2 the plane curve of Exercise 18. Prove
that x does not divide y in k[C] — x, y are the classes of X,Y ∈ k[X,Y ] in
k[C] = k[X,Y ]/〈X3 − Y 2〉. Deduce that f = y

x ∈ k(C) \ k[C].
(b) Prove that f is integral over k[C]. Deduce that C is not normal.
(c) Prove that f and 1

f are not defined at the origin. Conclude that the
origin in not a normal point.
(d) Let t ∈ k∗. Prove that ϕt : C → C, ϕt(a, b) = (t2a, t3b) is an
isomorphism such that ϕt

(C \ {
(0, 0)

})
= C \ {

(0, 0)
}

. Deduce that if
(0, 0) 6= (a, b) ∈ C, then (a, b) is a normal point.

57. The purpose of this exercise is to give the general lines of a proof of
the converse of Theorem 4.47. Let X be a normal quasi–projective variety
such that for an arbitrary proper and closed subvariety C ⊂ X there exists
a non zero regular function that is zero on C. Then, X is quasi–affine.
(a) Reduce the assertion to the case that X is irreducible.
(b) Assuming X irreducible call k(X) the field of rational functions on X.
In the hypothesis of the exercise prove that k(X) =

[OX(X)
]
. Hint: Let

0 6= f ∈ k(X) and call C a closed subvariety of X such that f is defined on
the complement of C. Choose 0 6= g ∈ OX(X) with g(C) = 0. For a large
enough n we have that gnf ∈ OX(X).
(c) If {f1, . . . , fn} is a set of field generators of k(X), write fi = gi/hi,
i = 1, . . . , n, and prove that the map

φ : X → k2n , φ(x) =
(
h1(x), . . . , hn(x), g1(x), . . . , gn(x)

)

is injective.
(d) Call R the integral closure in k(X) of k[h1, . . . , hn, g1, . . . , gn]. Use
Zariski’s Main theorem to prove that the map X → Spec(R) is an open
immersion. Conclude that X is quasi–affine.

58. (a) Prove that if X is an affine algebraic variety and U ⊂ X an open
subset such that the irreducible components of X \ U have codimension 1,
then U is affine.
(b) Let Y be a normal algebraic variety, and U, V ⊂ Y affine open subsets.
Prove that U ∩ V is an affine open subset. Hint: Use Corollary 5.16 of
Theorem 5.14.

 



CHAPTER 2

Lie algebras

1. Introduction

The purpose of this chapter is to introduce as directly as possible some
basic concepts of the theory of Lie algebras, oriented towards the proof of
two basic results needed for the theory of reductive groups in characteristic
zero. These two results are Weyl’s theorem, concerning the semisimplic-
ity of the finite dimensional representations of a semisimple Lie algebra in
characteristic zero, and what is usually called F. Levi’s theorem, that guar-
antees the splitting of a surjective morphism of Lie algebras in the case that
the codomain is semisimple, again in characteristic zero.

We develop the necessary tools leading to the above mentioned theo-
rems, Engel’s and Lie’s theorems concerning the structure of nilpotent and
solvable Lie algebras, Cartan’s solvability criterion, Cartan’s semisimplic-
ity criterion, the concept of Casimir operator and Killing form, and some
elementary cohomological tools.

In Section 2, we present the basic definitions and examples of nilpotent
and solvable Lie algebras.

In Section 3 we prove Lie’s and Engel’s theorems concerning the trian-
gularization of solvable and nilpotent Lie algebras. We also prove Cartan
solvability criterion: a finite dimensional Lie algebra is solvable if its asso-
ciated Killing form is zero.

In Section 4 we define the radical and the concept of semisimple Lie
algebra and prove the important Cartan’s criterion characterizing the se-
misimplicity in terms of the non degeneracy of the Killing form.

In Section 5 we present a very brief introduction of a few cohomological
concepts in the category of Lie algebra representations.

In Section 6 we prove Weyl’s and Levi’s theorems using the cohomo-
logical methods developed before.

In Section 7 we introduce the notion of restricted Lie algebra or p–Lie
algebra, notion that makes sense only in the case of characteristic p. In
the case that the Lie algebra is the tangent space of an affine algebraic
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group over a field of characteristic p, it has a natural p–structure due to
the fact that the composition of one derivation with itself p times is again
a derivation.

The organization of the material we present along this chapter is the
usual one. In particular, [71] and [130] have been used rather extensively.
A more detailed presentation can be found in any of the standard reference
textbooks on these subjects, e.g. [130], [14] and [79]. The interested reader
can also profit looking at [11], where the author presents a very illuminating
description of the origins and early evolution of the concepts treated in this
chapter.

2. Definitions and basic concepts

Definition 2.1. Let k be an arbitrary field, a Lie algebra over k is
a k–vector space g equipped with a k–linear map (called the Lie bracket)
[−,−] : g⊗ g → k such that:
(a) for all τ ∈ g, [τ, τ ] = 0;
(b) if we fix τ ∈ g and call ad(τ) : g → g the adjoint map ad(τ)(σ) = [τ, σ],
then ad(τ)

(
[σ, ν]

)
=

[
ad(τ)(σ), ν

]
+

[
σ, ad(τ)(ν)

]
.

A subspace h ⊂ g is said to be a Lie subalgebra — or simply a subalgebra
— of g, if [h, h] ⊂ h, i.e., for all τ, σ ∈ h, then [τ, σ] ∈ h. A subspace a ⊂ g is
said to be an ideal of g if [g, a] ⊂ a, i.e. for all τ ∈ g, σ ∈ a, then [τ, σ] ∈ a.

If g and h are Lie algebras, a linear map φ : g → h is a morphism —
or homomorphism — of Lie algebras, or a Lie morphism, if for all σ, τ ∈ g,[
φ(σ), φ(τ)

]
= φ

(
[σ, τ ]

)
.

Except when we say explicitly the contrary, the Lie algebras we consider
are assumed to be finite dimensional.

Observation 2.2. (1) From the first condition in Definition 2.1, one
deduces that for all σ, τ ∈ g , [σ, τ ] = −[τ, σ].
(2) The second condition in Definition 2.1 is called the Jacobi identity. It
can be written as follows:

[
σ, [τ, ν]

]
+

[
τ, [ν, σ]

]
+

[
ν, [σ, τ ]

]
= 0 ∀ σ, τ, ν ∈ g .

(3) Observe that in the case of a Lie algebra the distinction between right
and left ideal is meaningless.
(4) A subspace a ⊂ g of a Lie algebra is an ideal if and only if it is the
kernel of a homomorphism.

Definition 2.3. (1) If g is a Lie algebra and A,B ⊂ g are subspaces,
we define [A,B] as the subspace of g generated by the set

{
[σ, τ ] : σ ∈
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A, τ ∈ B
}

. In the case that A = B = g the resulting space — that is in
fact an ideal — will be called the derived algebra or the derived ideal of g
and will be denoted as D(g).
(2) If h ⊂ g is a subalgebra, we define ng(h) =

{
τ ∈ g : [τ, h] ⊂ h

}
, ng(h) is

called the normalizer of h in g.
(3) If h ⊂ g is a subalgebra, we define cg(h) =

{
τ ∈ g : [τ, h] = 0

}
, cg(h) is

called the centralizer of h in g. In the particular case that h = g, cg(g) is
denoted as c(g) and is called the center of g.

Example 2.4. (1) Let V be an arbitrary k–space, it can be equipped
with a Lie algebra structure via the zero bracket, i.e., [v, w] = 0 for all
v, w ∈ V . This Lie algebra is called the abelian Lie algebra based on V .
(2) If A is an associative algebra, we define a Lie algebra (that will be
denoted as ALie) that is the vector space A equipped with the bracket:
[a, b] = ab− ba for all a, b ∈ A.
(3) The general linear n–Lie algebra is Mn(k)Lie, and it is denoted as gln =
gln(k). More generally if V is an arbitrary k–space, we define gl(V ) =
Endk(V )Lie.
(4) The special linear n–Lie algebra is the subalgebra

sln = sln(k) = {τ ∈ gln : tr(τ) = 0} .
Sometimes sln is denoted as An−1

n,

un = un(k) =
{

(aij) ∈ gln : aij = 0 i ≥ j
}
,

bn = bn(k) =
{

(aij) ∈ gln : aij = 0 i > j
}
,

dn = dn(k) =
{

(aij) ∈ gln : aij = 0 i 6= j
}
.

Clearly, bn ⊂ un. n =
[gln, gln] and consequently that sln is an ideal. It is also easy to see that
un = [bn, bn].
(5) For more examples of Lie algebras see Exercises 7 and 8.

Next we define the concept of representation of a Lie algebra.

Definition 2.5. Let V be an arbitrary k–vector space and g a Lie
algebra. We say that a k–bilinear map (σ, v) 7→ σ · v : g × V → V is a
Lie algebra action of a Lie action, if for all σ, τ ∈ g, v ∈ V , [σ, τ ] · v =
σ · (τ · v)− τ · (σ · v). The above condition for the Lie action is equivalent
to the assertion that the associated map g → gl(V ) is a morphism of Lie
algebras. A representation of g or a g–module is a pair consisting of a vector
space V together with a Lie action of g on V . A morphism of g–modules is

 

(regarding this notation see Exercises
7 and 8). We also define the Lie subalgebras of gl

It can be proved easily (see Exercise 1) that sl
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defined in the obvious manner and space of all g–morphisms between V and
W is denoted as Endg(V,W ). The category of all g–modules is denoted as
gM. If V is a representation, we define gV = {v ∈ V : ∀τ ∈ g, τ · v = 0}.

Observation 2.6. (1) For a fixed Lie algebra g, the g–modules form
an abelian tensor category. Indeed, if V and W are g–modules, we can
endow V ⊗W with a structure of g–module as follows: if τ ∈ g and v ∈ V
and w ∈W , then τ · (v ⊗ w) = τ · v ⊗ w + v ⊗ τ · w.
(2) If V,W are g–modules, then Homk(V,W ) has a natural structure of
g–module as follows: (σ · T )(v) = σ · (T (v)

)− T (σ · v) for σ ∈ g, v ∈ V and
T ∈ Homk(V,W ). Notice that

Homg(V,W ) = g Homk(V,W ) =
{
T : V →W : T (σ · v) = σ · T (v) , ∀σ ∈ g , v ∈ V }

.

(3) The concepts of simple (or irreducible) and semisimple g–module are
defined as usual.
(4) In particular, ad : g×g → g defines a structure of g–module on g, called
the adjoint representation.

Example 2.7. If g is a Lie algebra, then k is a g–module, when endowed
with the trivial action σ · v = 0, σ ∈ g.

Definition 2.8. Let g be a Lie algebra; define by induction the se-
quences of ideals:

D0(g) = D[0](g) = g ,

Di+1(g) =
[
Di(g), Di(g)

]
,

D[i+1](g) =
[
g, D[i](g)

]
.

We say that g is solvable if for some r > 0, Dr(g) = {0} and we say
that g is nilpotent if for some r > 0, D[r](g) = {0}. If g is solvable, we
define

r(g) = min{r : Dr(g) = {0}} ;

if g is nilpotent, we define

[r](g) = min{r : D[r](g) = {0}} .
Lemma 2.9. Let g be a Lie algebra. Then D[i](g) ⊃ Di(g) for all i. In

particular, if g is nilpotent it is also solvable.

Proof: It is clear that D1(g) = D[1](g) and the rest of the proof
follows immediately by induction. ¤

Example 2.10. The Lie subalgebra un ⊂ gln is nilpotent and bn is

 

solvable (see Exercise 5).
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Observation 2.11. (1) If g is abelian, then Dg = 0. More generally,
if h ⊂ g is a subalgebra, then Dg ⊂ h if and only if h is an ideal and g/h is

(2) From the above, we can easily prove that g is solvable if and only if
there exists a chain of ideals g = g0 ⊃ g1 ⊃ · · · ⊃ gr = {0}, such that
gi−1/gi is abelian for i = 1, . . . , r — in other words, [gi−1, gi−1] ⊂ gi for all
i = 1, . . . , r.

Lemma 2.12. Let h be a subalgebra of g. Then if g is solvable so is
h, and r(h) ≤ r(g). If a ⊂ g is an ideal and g is solvable so is g/a, and
r(g/a) ≤ r(g). Conversely, if a is a solvable ideal of g and g/a is solvable,
then g is solvable and r(g) ≤ r(a) + r(g/a).

¤

Definition 2.13. We define the central chain

c[0](g) = {0} ,
c[1](g) = c(g) ,

c[i](g) =
{
τ ∈ g : [τ, g] ⊂ c[i−1](g)

}
i ≥ 2 .

Lemma 2.14. Let g be a Lie algebra. Then c[i](g) is an ideal of g for
all i ≥ 0. Moreover, the chain

{0} = c[0](g) ⊂ c[1](g) ⊂ · · · ⊂ c[i](g) ⊂ · · ·
satisfies that c[i+1](g)/c[i](g) = c

(
g/c[i](g)

)
.

The following conditions are equivalent:
(1) There exists a family of ideals {gi}0≤i≤r, with gi ⊂ gi−1, gr = {0},
g0 = g and [g, gi−1] ⊂ gi, for 1 ≤ i ≥ r.

(2) There exists r > 0 such that D[r]g = 0 (i.e. g is nilpotent).

(3) There exists r > 0 such that c[r]g = g.

¤

Corollary 2.15. Let g be a Lie algebra. If g/c(g) is nilpotent, then g
is nilpotent.

Proof: Assume that g/c(g) is nilpotent. We can find a chain of ideals
{0} ⊂ c(g) ⊂ gr ⊂ · · · ⊂ g1 ⊂ g0 = g in such a way that gi satisfies the
condition (1) of Lemma 2.14. As [g, c(g)] = {0}, the result follows. ¤

Lemma 2.16. Let g be a nilpotent Lie algebra, h ⊂ g a subalgebra and
a ⊂ g an ideal. Then h and g/a are nilpotent.

 

abelian (see Exercise 4).

Proof: See Exercise 15.

Proof: The proof is left as an exercise (see Exercise 18).
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¤

Observation 2.17. It is false in general that if a and g/a are nilpotent

algebra would be nilpotent — just take the sequence g ⊃ Dg ⊃ D2g ⊃ · · ·
and proceed by induction.

3. The theorems of F. Engel and S. Lie

In this section we prove two important classical theorems that are usu-
ally called Engel’s and Lie’s theorems and that give crucial information
concerning nilpotent and solvable Lie algebras.

Lemma 3.1. Assume that {0} 6= V is a finite dimensional k–vector
space, with k of arbitrary characteristic, and that g is a Lie subalgebra of
gl(V ). If all the elements τ ∈ g are nilpotent linear transformations, then
gV 6= 0.

Proof: We proceed by induction on dim g. If dim g = 1, then g = kσ,
with σ : V → V a nilpotent linear map, hence with non zero kernel. If
g has arbitrary dimension, take h a maximal proper subalgebra of g and

g

In our situation the inclusion h ⊂ ng(h) is strict. Indeed, take τ ∈ h and
consider ad(τ) : gl(V ) → gl(V ), ad(τ)(T ) = τT − Tτ . Since ad(τ) is the
difference of two commuting nilpotent linear transformations in gl(V ) —
the left and right product with τ —, ad(τ) is a nilpotent linear operator on
gl(V ). As τ ∈ h and h ⊂ g is a subalgebra, the restriction ad(τ)|h : g → g

factors to a nilpotent linear transformation ad(τ) : g/h → g/h. Moreover, it
is clear that {ad(τ) : τ ∈ h} ⊂ gl(g/h) is a Lie subalgebra of nilpotent linear
transformations, that has dimension smaller than of equal to dim h < dim g.
By induction, we can find 0 6= σ + h ∈ g/h such that ad(τ)(σ + h) = 0 for
all τ ∈ h, i.e., there exists σ /∈ h such that [τ, σ] ∈ h for all τ ∈ h. Thus,
σ ∈ ng(h) \ h.

Since h is maximal, it follows that ng(h) = g, i.e., h is an ideal of g.
Consider ν ∈ g\h, then h+kν ⊂ g is a subalgebra, and hence g = h+kν. By
the induction hypothesis, the subspace W = {v ∈ V : τ ·v = 0 ∀τ ∈ h} ⊂ V
is non trivial. Next, we prove that W is g–stable. As h ·W = {0}, all we
have to prove is that ν ·W ⊂W . Consider w ∈W and τ ∈ h. Since h is an
ideal, then

τ · (ν · w) = ν · (τ · w) + [τ, ν] · w = 0 .

As ν : W → W is a nilpotent operator, there exists 0 6= w ∈ W such
that ν · w = 0. Hence, g · w = (h + kν) · w = 0. ¤

 

Proof: The proof is left as an exercise (see Exercise 17).

then g is nilpotent (see Exercise 10). If this were true, then any solvable Lie

consider n (h), that is a subalgebra of g containing h (see Exercise 3).
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Corollary 3.2. Let V 6= {0} be a finite dimensional k–vector space,
with k of arbitrary characteristic, and g ⊂ gl(V ) a Lie subalgebra consisting
of nilpotent linear transformations. Then there exists a basis {v1, . . . , vn}
of V such that g · Vi+1 ⊂ Vi, where Vi = 〈v1, . . . , vi〉, i = 1, . . . , n − 1,
V0 = {0}.

¤
Corollary 3.3. Let V 6= {0} be a finite dimensional k–vector space,

with k of arbitrary characteristic, and let g ⊂ gl(V ) be a subalgebra consist-
ing of nilpotent linear transformations, then g is nilpotent.

Proof: The basis found in Corollary 3.2 induces an isomorphism of g
with a Lie subalgebra of un. ¤

The results from Lemma 3.1 to Corollary 3.3, will be globalized to

Section 5.6.

Theorem 3.4 (Engel’s theorem). A Lie algebra g defined over an field
k of arbitrary characteristic is nilpotent if and only if for all τ ∈ g, ad(τ) :
g → g is a nilpotent linear transformation.

Proof: Suppose that g is nilpotent, then there exists r > 0 such that
D[r](g) = 0. Thus,

[
τ1,

[
τ2, [. . . , [τr, τr+1]]

]]
= 0 for all τ1, . . . , τr+1 ∈ g, i.e.,(

ad(τ1)◦ ad(τ2)◦ · · · ◦ ad(τr)
)
(τr+1) = 0. If we take τ1 = · · · = τr = τ , we

conclude that ad(τ)r = 0.
Conversely, assume that ad(τ) is nilpotent for all τ ∈ g and consider

the subalgebra ad(g) ⊂ gl(g). This subalgebra consists of nilpotent linear
transformations, and thus by Corollary 3.3 it is a nilpotent Lie algebra.
The kernel of the (surjective) Lie algebra morphism ad : g → ad(g) is
Ker(ad) =

{
τ ∈ g : [τ, σ] = 0 ∀σ ∈ g

}
= c(g). Hence, g/c(g) is nilpotent

and from Corollary 2.15 we deduce that g is nilpotent. ¤
Next we prove a pair of rather technical results that will be useful when

dealing with solvable Lie algebras.

Lemma 3.5. Let W be a finite dimensional k–vector space, with k of
arbitrary characteristic, and let g be a Lie subalgebra of gl(W ). Assume that
f is a subalgebra of g of codimension one and that there exists 0 6= w ∈ W
such that, for a certain linear functional λ : f → k, τ · w = λ(τ)w for
all τ ∈ f. Take σ ∈ g \ f, consider Wi = 〈w, σw, . . . , σi−1w〉k, and call
Wt the first element of this increasing family of subspaces that verifies that
Wt = Wt+1 = · · · . Then Wi is f–stable for all i and Wt is g–stable.

Proof: The proof proceeds by induction on i. If i = 0, W0 = kw
that by definition is f–stable. If τWi ⊂ Wi for all τ ∈ f, we want to prove

 

an algebraic group in Chapter 5, in particular the reader should consult

Proof: See Exercise 14.
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that τσiw ∈ Wi+1. Write τσiw = τσ(σi−1w) =
(
στ + [τ, σ]

)
σi−1w =

σ(τσi−1w) + [τ, σ]σi−1w. By induction, we deduce that τσi−1w ∈ Wi and
then σ(τσi−1w) ∈ σWi ⊂Wi+1. We need to prove that [τ, σ]σi−1w ∈Wi+1.
First write [τ, σ] = ν + aσ with ν ∈ f and a ∈ k, then [τ, σ]σi−1w =
ν(σi−1w) + aσiw ∈Wi +Wi+1 ⊂Wi+1. Since σWt ⊂Wt+1 = Wt, then Wt

is g–stable. ¤

Lemma 3.6. Let V be a finite dimensional vector space defined over a
field of characteristic zero, let g ⊂ gl(V ) be a Lie subalgebra and f ⊂ g an
ideal of g. For λ : f → k a linear functional, define

V (f, λ) =
{
v ∈ V : σ · v = λ(σ)v ∀σ ∈ f

}
.

Then V (f, λ) is a g–stable subspace of V .

Proof: If V (f, λ) = {0} there is nothing to prove. Let w ∈ V (f, λ) and
σ ∈ g. Then σw ∈ V (f, λ) if and only if for all τ ∈ f, τσw = λ(τ)σw. Now,
τσw = στw − [σ, τ ]w = λ(τ)σw − λ

(
[σ, τ ]

)
w. Thus, in order to prove that

g · V (f, λ) ⊂ V (f, λ) we have to show that λ
(
[σ, τ ]

)
= 0 for all σ ∈ g and

τ ∈ f.
Take 0 6= w ∈ V (f, λ), and σ ∈ g. Write Wi = 〈w, σw, . . . , σi−1w〉k,

W0 = {0}. We have {0} = W0 ( W1 ( W2 ( · · · ( Wt = Wt+1 = · · · ⊂ V .
Clearly, σ ·Wi ⊂Wi+1, and Wt is σ–stable.

If τ ∈ f, then τ(σi−1w) = λ(τ)σi−1w (modWi−1). We prove this asser-
tion by induction. If i = 1, then τw = λ(τ)w. Suppose that the result is
true for i− 1, i.e. in Wi, and perform the following computation in Wi+1.

τσiw = τσ(σi−1w) = στ(σi−1w)− [σ, τ ]σi−1w =

σ
(
λ(τ)σi−1w + ξi−1

)− λ
(
[σ, τ ]

)
σi−1w − ηi−1 =

λ(τ)σiw + σξi−1 − λ
(
[σ, τ ]

)
σi−1w − ηi−1 ,

where ξi−1, ηi−1 ∈Wi−1, and hence σξi−1 − λ
(
[σ, τ ]

)
σi−1w − ηi−1 ∈Wi.

If we fix a basis of Wt compatible with the flag W0 ⊂ W1 ⊂ · · · , the
matrix representation of the action of [σ, τ ] on Wt is of the form:

[σ, τ ]|
Wt

=

(
λ[σ,τ ] ∗

. . .
0 λ[σ,τ ]

)
,

so that tλ
(
[σ, τ ]

)
= tr

(
[σ, τ ]|

Wt

)
= 0. It follows that λ

(
[σ, τ ]

)
= 0. ¤

Observation 3.7. Notice the crucial role played in the above lemma,
sometimes called Dynkin’s lemma, by the hypothesis about the character-
istic.
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Theorem 3.8 (Lie’s theorem). Let V be a finite dimensional vector
space defined over an algebraically closed field of characteristic zero and
g ⊂ gl(V ) a solvable Lie subalgebra of gl(V ). Then there exists a basis
{v1, . . . , vn} of V with the property that if Vr = 〈v1, . . . , vr〉k, 1 ≤ r ≤ n,
then g(Vr) ⊂ Vr.

Proof: We proceed by induction on the dimension of V . If dimV = 0
there is nothing to prove.

For an arbitrary V , we proceed by induction on the dimension of g. If
dim g = 0, 1, then the Lie algebra g is nilpotent and the result follows from
Corollary 3.3.

Since g is solvable, [g, g] ( g. Consider a maximal proper subalgebra
f ⊂ g containing [g, g], i.e., [g, g] ⊂ f ( g.

Since [g, f] ⊂ [g, g] ⊂ f, then f is an ideal. Moreover f has codimension
one. Indeed, if σ /∈ f, then f + kσ is a subalgebra larger than f and then it
is equal to g. By the inductive hypothesis, there exists a linear functional
λ : f → k and an element 0 6= v1 ∈ V such that σ · v1 = λ(σ)v1 for
all σ ∈ f. From Lemma 3.6 it follows that V (f, λ) is a non zero g–stable
subspace of V . If we write g = f + kσ, the linear transformation σ :
V (f, λ) → V (f, λ) has an eigenvector v0 ∈ V (f, λ), i.e., σ · v0 = av0 for
some a ∈ k. Then, v0 is a common eigenvector for all the elements of
g. Consider now the g–module V/kv0; by the inductive hypothesis there
exists a basis {w2 +kv0, . . . , wn+kv0} of V/kv0 of the required form. Then
{v0, w2, . . . , wn} is the basis of V we need in order to triangularize g. ¤

Observation 3.9. (1) Lie’s theorem guarantees the simultaneous tri-
angularization of a solvable Lie algebra of matrices. Notice that the base
field has to be algebraically closed in order to guarantee the existence of
eigenvalues for σ : V (f, λ) → V (f, λ).
(2) From Lie’s theorem we deduce that any simple module over a solvable
Lie algebra is one–dimensional.

A version for solvable affine algebraic groups of the above Lie’s theorem
— that is called Lie-Kolchin theorem — appears in Section 5.8.

The following are equivalent formulations of Lie’s theorem.

Corollary 3.10. Let k be an algebraically closed field of character-
istic zero and g a finite dimensional solvable Lie algebra. If V is a finite
dimensional semisimple g–module, then [g, g] · V = {0}.

Proof: We may assume that V is simple as a g–module. Using The-
orem 3.8 we find 0 6= v ∈ V and a linear functional λ : g → k such that
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τ · v = λ(τ)v for all τ ∈ g. Thus, 0 6= kv is a g–stable subspace, and as V
is simple, V = kv. It is then clear that [g, g] · V = [g, g] · kv = {0}. ¤

Corollary 3.11. If k is an algebraically closed field of characteristic
zero and g is a solvable Lie algebra then Dg = [g, g] is nilpotent.

Proof: If g is solvable, then ad(g) ∼= g/c(g) is also solvable. Thus,
we can simultaneously triangularize ad(τ) ∼ ( ∗ ∗0 ∗ ) for all τ ∈ g. Then,[
ad(σ), ad(τ)

]
= ( 0 ∗

0 0 ), so that ad(Dg) = D
(
ad(g)

)
consists of nilpotent

matrices. It follows that ad(Dg) is a nilpotent Lie algebra. But ad(Dg) ∼=
Dg/

(
Dg∩ c(g)

)
, so that Dg/

(
Dg∩ c(g)

)
is nilpotent. From Exercise 16, we

deduce that Dg is nilpotent. ¤
Theorem 3.12 (Cartan’s solvability criterion). Let k be an algebrai-

cally closed field of characteristic zero and V a finite dimensional vector
space. Consider a Lie subalgebra g ⊂ gl(V ), and let g(2) ⊂ gl(V ) be the
subspace generated by {xy : x, y ∈ g}. If tr

(
g(2)

)
= 0, then g is solvable.

Proof: We proceed by induction on dim g. If dim g = 0 there is
nothing to prove. Suppose that [g, g] ( g. Then [g, g] is a Lie subalgebra of g

of dimension smaller than dim g, and [g, g](2) ⊂ g(2). Thus, tr
(
[g, g](2)

)
= 0.

By induction we conclude that [g, g] is solvable and this obviously implies
that g is solvable.

Assume then that [g, g] = g. Consider a maximal Lie subalgebra f (
g. Since f(2) ⊂ g(2), it follows by induction that f is solvable. By Lie’s
theorem there exists a non zero common eigenvector of the action of f on
g/f; i.e. there exists σ /∈ f and a linear functional µ : f → k, such that for
all τ ∈ f, [τ, σ] − µ(τ)σ ∈ f. Then f + kσ is a Lie subalgebra of g, and
hence g = f + kσ. If τ ∈ f is generic and σ ∈ g is as above, then we write
[τ, σ] = Θ(τ) + µ(τ)σ, for some linear map Θ : f → f.

Let W be an arbitrary simple non zero g–module and W1 ⊂W a simple
f–submodule. Being f solvable we conclude that W1 = kw, for some 0 6=
w ∈ W . Consider as in Lemma 3.5 W0 = {0}, Wi = 〈w, σw, . . . , σi−1w〉k.
There exists t > 0 such that W0 (W1 ( · · · (Wt = Wt+1 = · · · , where Wi

is f–stable for i = 1, . . . , t and that Wt

W is simple, Wt = W and t = dimW . Moreover, there exists a certain
linear functional λ : f → k such that for all τ ∈ f, τw = λ(τ)w, and τσw =
στw+ [τ, σ]w = λ(τ)σw+ µ(τ)σw+ Θ(τ)w, i.e., τ |W2/W1 = λ(τ) + µ(τ) id.
More generally, we prove by induction that τ |

Wi+1/Wi
=

(
λ(τ) + iµ(τ)

)
id:

τσiw +Wi = στ(σi−1w) + [τ, σ]σi−1w +Wi =
(
λ(τ) + (i− 1)µ(τ)

)
σiw +Wi + µ(τ)σiw + Θ(τ)σi−1w +Wi =

(
λ(τ) + iµ(τ)

)
σiw +Wi .

 

is g–stable (see Lemma 3.5). Since
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Hence, if τ ∈ f, then

tr(τ |W ) =
t−1∑

i=0

tr
(
τ |

Wi+1/Wi

)
= tλ(τ) + µ(τ)

t−1∑

i=0

i = tλ(τ) +
t(t− 1)

2
µ(τ) .

Since g = [g, g], it follows that τ is a sum of commutators and tr(τ |W ) =
0, and λ(τ) = − t−1

2 µ(τ). Thus, τ acts on Wi+1/Wi by scalar multiplication
by (− t−1

2 + i)µ(τ) and τ2 =
(
(− t−1

2 + i)2µ2(τ)
)

id. Then tr(τ2|W ) =∑t−1
i=0(− t−1

2 + i)2µ2(τ).
Consider an arbitrary finite dimensional g–module V and consider a

composition series for V , V = V0 ⊃ V1 ⊃ · · · ⊃ Vk = {0}. Then,

tr(τ2) =
(k−1∑

j=0

(tj−1∑

i=0

(i− tj − 1
2

)2
))
µ(τ)2 ,

where tj = dimVj/Vj+1. If µ(τ) = 0 for all τ ∈ f, then [τ, σ] ∈ f and this
implies that [g, g] ⊂ f — a contradiction with the assumption that [g, g] = g.

Thus, there exists τ ∈ f such that µ(τ) 6= 0. Since by hypothesis
tr(τ2) = 0, we conclude that i = tj−1

2 for all i = 0, . . . , tj − 1 and for all
j = 0, . . . , k − 1. This implies that tj = dimVj/Vj+1 = 1 for all j. Thus,
g(Vj/Vj+1) = [g, g](Vj/Vj+1) = 0, and hence gVj ⊂ Vj+1 for all j. Then
the elements of g are nilpotent on V , and by Engel’s theorem 3.4 it follows
that that g is nilpotent. This contradicts the equality g = [g, g]. ¤

Corollary 3.13. Let g be a finite dimensional Lie algebra defined
over an algebraically closed field k of characteristic zero. If for all σ, τ ∈ g,
tr

(
ad(σ) ad(τ)

)
= 0, then g is solvable.

Proof: Consider ad : g → gl(g) and then apply Theorem 3.12. ¤

Observation 3.14. (1) Another formulation of the above result is the
following: if g ⊂ gln is a Lie subalgebra such that tr(στ) = 0 for all σ, τ ∈ g,
then g is solvable.
(2) The reader can consult [130] for a stronger formulation and a converse
of Theorem 3.12.
(3) The usual proof of Cartan’s criterion uses the Jordan decomposition of
a generic element of a Lie algebra. The above proof is extracted from [71].
(4) The k–linear map Bg : g⊗ g → k defined as:

Bg(σ, τ) = tr
(
ad(σ) ad(τ)

)

is called the Killing form of the Lie algebra g and plays a crucial role in

 

the theory of semisimple Lie algebras; see Section 4.
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With this notation, the result just proved can be briefly stated as: if g
is a Lie algebra with Killing form identically zero, then g is solvable.
(5) It might be important to observe that the hypothesis that the base field
is algebraically closed is not necessary for the validity of Theorem 3.12.
One can pass from our version of the theorem to the generalized version by
extending scalars. Many of the theorems that appear in the section that
follows and that are deduced from Cartan’s criterion are also valid in this
generalized situation.

4. Semisimple Lie algebras

Observation 4.1. Let a and b be ideals of the Lie algebra g. If b is
solvable, then (a + b)/a ∼= b/(a∩ b) is a solvable ideal of g/a. If moreover a
is solvable, then as (a + b)/a is solvable we conclude that a + b is solvable.

Assume now that g is finite dimensional and let b be a solvable ideal of
maximal dimension. If a is a solvable ideal, then b ⊂ a+b and we conclude
that b = a+b, i.e., a ⊂ b. In other words, g has a unique maximal solvable
ideal. Note that this ideal is not necessarily proper: if g is solvable then
the maximal solvable ideal is g.

Definition 4.2. Let g be a finite dimensional Lie algebra, we define
rad(g), the radical of g, as the unique maximal solvable ideal of g. The Lie
algebra g is called semisimple if rad(g) = {0}.

Observation 4.3. (1) Let g be an Lie algebra, then g/ rad(g) is a
semisimple Lie algebra. It is clear also that a non trivial Lie algebra is
semisimple if it does not contain non zero abelian ideals.
(2) The center of a Lie algebra is always a solvable ideal. Hence, if g is
semisimple, then c(g) = {0}, and ad : g → gl(g) is injective.

Definition 4.4. Let g be a Lie algebra and ρ : g → gl(V ) be a finite
dimensional representation. The trace form of ρ is the bilinear form Bρ :
g × g → k defined as Bρ(σ, τ) = tr

(
ρ(σ)ρ(τ)

)
. In the case that ρ is the

adjoint representation ad : g → gl(g), then Bρ is denoted as Bg and it is
called the Killing form of g. Explicitly,

Bg(σ, τ) = tr
(
ad(σ) ad(τ)

)
.

Lemma 4.5. In the situation above,
(1) Bρ is a symmetric invariant bilinear form, i.e.,

Bρ
(
[σ, τ ], ν

)
+ Bρ

(
τ, [σ, ν]

)
= 0 ∀ σ, τ, ν ∈ g .

Equivalently, Bρ
(
[τ, σ], ν

)
= Bρ

(
τ, [σ, ν]

)
.
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(2) If a ⊂ g is an ideal, then a⊥ =
{
σ ∈ g : Bρ(σ, τ) = 0 ∀τ ∈ a

}
is also an

ideal.
(3) If a ⊂ g is an ideal, then Ba = Bg|a×a.
(4) If g = a ⊕ b, a and b ideals, then a ⊥ b — with respect to Bg — and
Bg = Ba ⊕ Bb.

Proof: (1) Straightforward calculations give us for any σ, τ, ν ∈ g:

Bρ
(
[σ, τ ], ν

)
= tr

(
ρ
(
[σ, τ ]

)
ρ(ν)

)
=

tr
([
ρ(σ), ρ(τ)

]
ρ(ν)

)
=

tr
(
ρ(σ)ρ(τ)ρ(ν)− ρ(τ)ρ(σ)ρ(ν)

)
=

tr
(
ρ(ν)ρ(σ)ρ(τ)− ρ(τ)ρ(σ)ρ(ν)

)
=

tr
(
ρ(τ)ρ(ν)ρ(σ)− ρ(τ)ρ(σ)ρ(ν)

)
=

tr
(
ρ(τ)ρ

(
[ν, σ]

))
= Bρ

(
τ, [ν, σ]

)
=

− Bρ
(
τ, [σ, ν]

)
.

(2) If ν ∈ g, and σ ∈ a⊥, τ ∈ a, then Bρ
(
[ν, σ], τ

)
= −Bρ

(
σ, [ν, τ ]

)
= 0, and

hence [ν, σ] ∈ a⊥.
(3) If σ ∈ a, then in a convenient basis the representation of adg(σ) is
adg(σ) =

(
ada(σ) ∗

0 0

)
. Thus, tr

(
adg(σ) adg(τ)

)
= tr

(
ada(σ) ada(τ)

)
for all

σ, τ ∈ a.
(4) In this situation, [a, b] = 0. Consider basis A of a, B of b and A ∪ B
of g. With respect to these basis, if σ ∈ a, then adg(σ) =

(
ada(σ) 0

0 0

)
and

similarly if τ ∈ b then adg(τ) =
(

0 0
0 adb(τ)

)
. Thus, adg(σ) adg(τ) = 0, and

then Bg(σ, τ) = 0.
Writing ρ = ρa + ρb and ν = νa + νb, we deduce that Bg(ρ, ν) =

Bg(ρa, νa) + Bg(ρb, νb) = Ba(ρa, νa) + Bb(ρb, νb). ¤
Theorem 4.6 (Cartan’s semisimplicity criterion). Let g be a finite di-

mensional Lie algebra defined over an algebraically closed field of charac-
teristic zero. Then g is semisimple if and only if Bg is non degenerate.

Proof: Suppose that Bg is non degenerate. Let a ⊂ g be an abelian
ideal, and take σ ∈ g, τ ∈ a. Consider a basis of a and complete it to a
basis of g. In this basis, ad(σ) = ( ∗ ∗0 ∗ ) and ad(τ) = ( 0 ∗

0 0 ). It follows that
ad(σ) ad(τ) = ( 0 ∗

0 0 ), and thus Bg(σ, τ) = 0. Since Bg is non degenerate,
and the above is valid for all σ ∈ g, it follows that τ = 0. Hence, g has no
non zero abelian ideals, and thus it is semisimple.

Conversely, suppose that g is semisimple and that a ⊂ g is an ideal.
Then a⊥ is an ideal and Bg(σ, τ) = 0 for all σ ∈ a and τ ∈ a⊥. Thus,
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B|a∩a⊥ = 0, and by Cartan’s solvability criterion 3.12, a ∩ a⊥ is solvable.
Since g is semisimple we conclude that a∩a⊥ = {0}. In the case that a = g,
g⊥ = {0}, and thus Bg is non degenerate. ¤

Observation 4.7. (1) In the theorem just proved, the hypothesis that

The reader should be aware that this commentary also applies to many of
the results that follow as a consequence of this theorem (see for example

(2) The above proof can be slightly adapted to produce the following result:
Let g be a semisimple Lie algebra and ρ : g → gl(V ) a faithful finite

dimensional representation of g. Then Bρ is non degenerate.

Corollary 4.8. Let g be a finite dimensional semisimple Lie algebra
over an algebraically closed field of characteristic zero. Then g = [g, g].

Proof: As Bg is non degenerate, g = [g, g] ⊕ [g, g]⊥. If σ ∈ g,
then

[
σ, [g, g]⊥

] ⊂ [g, g], and since [g, g]⊥ is an ideal, we also have that[
σ, [g, g]⊥

] ⊂ [g, g]⊥. Hence,
[
σ, [g, g]⊥

]
= {0}. It follows that [g, g]⊥ ⊂

c(g) = {0}. ¤
Corollary 4.9. Let g be a finite dimensional semisimple Lie algebra

over an algebraically closed field of characteristic zero, and a ⊂ g an ideal.
Then there exists one and only one ideal a′ ⊂ g such that g = a⊕ a′.

Proof: As Bg is non degenerate, then g = a⊕ a⊥, Suppose that b ⊂ g
is an ideal such that g = a ⊕ b, then [a, b] = {0}. Since g = [g, g], then
g = [g, a] + [g, b]. As [g, a] ⊂ a, [g, b] ⊂ b, it follows that b = [g, b], and
b = [a⊕ a⊥, b] = [a, b] + [a⊥, b] = [a⊥, b] ⊂ a⊥. By dimensional reasons we
conclude that b = a⊥. ¤

Observation 4.10. Observe that from the proof of Corollary 4.9 we
can extract a proof of the following fact: if a is an ideal of a semisimple Lie
algebra g, then a = [g, a].

Theorem 4.11. If g is a finite dimensional semisimple Lie algebra
defined over an algebraically closed field of characteristic zero, then the
map ad : g → gl(g) is injective and has image

D(g) =
{
D : g → g : D ∈ gl(g) , D

(
[σ, τ ]

)
= [σ,D(τ)] + [D(σ), τ ]

}
.

Proof: Since Ker ad = c(g) = {0}, ad is injective and ad(g) ∼= g is
semisimple.

Clearly, ad(g) ⊂ D(g). Moreover, ad(g) ⊂ D(g) is an ideal. Indeed, if
σ ∈ g and D ∈ D(g), then

[D, adσ](τ) = D
(
[σ, τ ]

)− [σ,D(τ)] = [D(σ), τ ] = ad
(
D(σ)

)
(τ) .

 

the base field is algebraically closed is unnecessary, see Observation 3.14.

Corollary 4.9).
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Thus, [D, ad(σ)] = ad
(
D(σ)

)
.

Consider the Killing form BD(g), and the ideal ad(g)⊥ ⊂ D(g) orthog-
onal to ad(g) with respect to this form. The restriction of BD(g) to ad(g) is
Bad(g), then it is a non degenerate bilinear form. Hence, ad(g) ∩ ad(g)⊥ =
{0}.

If D ∈ ad(g)⊥ and σ ∈ g, then ad
(
D(σ)

)
=

[
D, ad(σ)

] ∈ ad(g) ∩
ad(g)⊥ = {0}. Hence D(σ) = 0 for all σ ∈ g, i.e., D = 0 and ad(g) =
D(g). ¤

Observation 4.12. Assume that a is a finite dimensional Lie algebra
and that β : a× a → k is a non degenerate, associative, symmetric bilinear
form, i.e. β verifies — besides being non degenerate — that β(σ, τ) = β(τ, σ)
and

β
(
[σ, τ ], ν

)
+ β

(
τ, [σ, ν]

) ∀ σ, τ, ν ∈ a .

Then the k–linear map µ : a ⊗ a → End(a) defined by the rule µ(σ ⊗
τ)(ν) = β(σ, ν)τ is an isomorphism.

Indeed, consider the identification of a with a∗ given by b : a → a∗,
b(σ)(τ) = β(σ, τ), and the isomorphism ev : a∗⊗a → End(a), ev(f⊗σ)(τ) =
f(τ)σ. Then

(
ev ◦(b ⊗ id)

)
(σ ⊗ τ)(ν) =

(
ev(b(σ) ⊗ τ)

)
(ν) = b(σ)(ν)τ =

β(σ, ν)τ . Hence, µ is the composition of two isomorphisms and as such it
is an isomorphism.

Moreover, µ is a morphism of a–modules if we endow a ⊗ a with the
diagonal a–module structure, σ · (τ ⊗ ν) = [σ, τ ] ⊗ ν + τ ⊗ [σ, ν], σ, τ,∈ a,
and End(a) with the structure (σ · T )(τ) = [σ, Tτ ] − T

(
[σ, τ ]

)
, σ, τ ∈ a,

T ∈ End(a).

Definition 4.13. In the situation considered above (Observation 4.12)
the element uβ ∈ a⊗a defined as µ(uβ) = ida is called the Casimir element
associated to the bilinear form β.

Observation 4.14. (1) It follows from the fact that ida : a → a is a
morphism of a–modules, that the Casimir element is a–invariant, that is
uβ ∈ a(a⊗ a).
(2) If {τ1, . . . , τn} and {ν1, . . . , νn} are dual basis of a with respect to β, then
uβ =

∑
τi ⊗ νi. Indeed, if ν ∈ a, then µ

(∑
τi ⊗ νi

)
(ν) =

∑
β(τi, ν)νi = ν.

Lemma 4.15. Let g a finite dimensional semisimple Lie algebra defined
over an algebraically closed field of characteristic zero, ρ : g → gl(V ) a
finite dimensional representation and a = (Ker ρ)⊥, where the orthogonal
complement is taken with respect to Bg, the Killing form of g. If Bρ is the

ρ a is non degenerate.

 

associated trace form of ρ (see Definition 4.4), then B |



88 2. LIE ALGEBRAS

Proof: Let us denote β = Bρ and let a` be the subspace of g orthogo-
nal to a with respect to β. Consider a0 = a∩a` =

{
σ ∈ a : β(σ, τ) = 0 ∀ τ ∈

a
}

. By Lemma 4.5, a` is an ideal, and so is a0. Consider ρ|a0 : a0 → gl(V ).
Then, Ker ρ|a0 = Ker ρ ∩ a0 = Ker ρ ∩ a ∩ a` = {0}, and hence a0

∼= ρ(a0).
On the other hand, since tr

(
ρ(σ)ρ(τ)

)
= 0 for all σ, τ ∈ a0, it follows

that ρ(a0) is a solvable Lie subalgebra of gl(V ). Thus, a0 is a solvable Lie
subalgebra of g; hence, a0 = {0}, and β|a = Bρ |a is non degenerate. ¤

Definition 4.16. Let g be a finite dimensional semisimple Lie algebra,
and and ρ a finite dimensional representation of g. Call a the orthogonal
complement of Ker(ρ) with respect to the Killing form Bg, and β the re-
striction of Bρ to a. The Casimir operator associated to the pair (g, ρ) is
the element Cρ = ρ2(uβ) ∈ End(V ), where ρ2 : g⊗ g → End(V ) is the map
given as ρ2(σ ⊗ τ) = ρ(σ)ρ(τ).

Observation 4.17. (1) From Lemma 4.15 we know that the bilinear
form β is non degenerate.
(2) The map ρ2 is a morphism of g–modules. Indeed,

ρ2
(
ν · (σ ⊗ τ)

)
= ρ2

(
[ν, σ]⊗ τ

)
+ ρ2

(
σ ⊗ [ν, τ ]

)
=

ρ
(
[ν, σ]

)
ρ(τ) + ρ(σ)ρ

(
[ν, τ ]

)
=

ρ(ν)ρ(σ)ρ(τ)− ρ(σ)ρ(ν)ρ(τ) + ρ(σ)ρ(ν)ρ(τ)− ρ(σ)ρ(τ)ρ(ν) =

ν · ρ2(σ ⊗ τ)− ρ2(σ ⊗ τ) · ν .
Lemma 4.18. In the notations of Definition 4.16, let {τ1, . . . , τn}

and {ν1, . . . , νn} be dual basis of a = Ker ρ⊥ with respect to β = Bρ |a.
Then

Cρ =
n∑

i=1

ρ(τi)ρ(νi) ∈ End(V ) ,

and tr(Cρ) = dim a.

Moreover,
[
Cρ, ρ(σ)

]
= 0 for all σ ∈ a, and Cρ : V → V is a morphism

of g–modules.

Proof: Indeed, from Observation 4.14 if follows that Cρ = ρ2(uβ) =∑n
i=1 ρ(τi)ρ(νi).

Moreover,

tr(Cρ|a) =
n∑

i=1

tr
(
ρ(τi)ρ(νi)

)
=

n∑

i=1

Bρ(τi, νi) = dim a .

As uβ ∈ a(a ⊗ a) and ρ2 is a morphism of g–modules, it follows that
Cρ ∈ Enda(V ) = a End(V ). Since g = Ker ρ⊕ a, Endg(V ) = Enda(V ) and
the result follows. ¤
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Lemma 4.19. In the notations of Lemma 4.15 if A : g → V is a k–linear
function, then for all σ ∈ g,

∑
i[σ, τi] ·A(νi) + τi ·A

(
[σ, νi]

)
= 0.

Proof: Write ad(σ)(τi) =
∑
r ari(σ)τr and ad(σ)(νi) =

∑
s bsi(σ)νs.

Then ari(σ) = Bρ
(
ad(σ)(τi), νr

)
= −Bρ

(
τi, ad(σ)(νr)

)
= −bir(σ). The rest

of the proof follows easily. ¤

5. Cohomology of Lie algebras

In this section we present the basic cohomological results needed in
order to prove Weyl’s and Levi’s theorems.

Definition 5.1. Let g be a Lie algebra and V a g–comodule. We
define the k–vector space of the p–cochains of g with coefficients in the V
as

C0(g, V ) = V ,

Cp(g, V ) =
{
α :

p︷ ︸︸ ︷
g× · · · × g→ V multilinear skew symmetric

}
p ≥ 1 .

Define the differential d : Cp(g, V ) → Cp+1(g, V ) as

(dα)(σ1, . . . , σp+1) =
p+1∑

i=1

(−1)i+1σi · α(σ1, . . . , σ̂i, . . . , σp+1)+

∑

1≤i<j≤p+1

(−1)i+jα
(
[σi, σj ], σ1, . . . , σ̂i, . . . σ̂j , . . . , σp+1

)
.

We write down explicitly the differentials for n = 0, 1, 2.
If α ∈ C0(g, V ) = V , then d(α) : g → V , is given by

d(α)(σ) = σ · α .
If α ∈ C1(g, V ), then d(α) ∈ C2(g, V ) is given by

d(α)(σ, τ) = σ · α(τ)− τ · α(σ)− α
(
[σ, τ ]

)
.

In the case that α ∈ C2(g, V ), then dα ∈ C3(g, V ) is given by

d(α)(σ, τ, ν) = σ · α(τ, ν)− τ · α(σ, ν)+

ν · α(σ, τ)− α
(
[σ, τ ], ν

)
+

α([σ, ν], τ)− α
(
[σ, ν], τ

)
.

We define the subspace of the p–cocycles of g as

Zp(g, V ) =
{
α ∈ Cp(g, V ) : dα = 0

}
,
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and the subspace of the p–coboundaries of g as

Bp(g, V ) = d
(
Cp−1(g, V )

)
.

Definition 5.2. Let g be a Lie algebra and V a g–module. For any
σ ∈ g we define θ(σ) : Cp(g, V ) → Cp(g, V ) as

θ(σ)(α) = Σ · α if p = 0,

θ(σ)(α)(σ1, . . . , σp) = σ · α(σ1, . . . , σp)−∑p
i=1 α

(
σ1, . . . , [σ, σi], . . . , σp

) if p ≥ 1 .

If σ ∈ g, define ι(σ) : Cp(g, V ) → Cp−1(g, V ) by

0 = ι(σ) : V → {0} if p = 0,
ι(σ)(α) = α(σ) if p = 1,

ι(σ)(α)(σ1, . . . , σp−1) = α(σ, σ1, . . . , σp−1) if p ≥ 2 .

Finally, if f : V → W is a k–linear map, we define f∗ : Cp(g, V ) →
Cp(g,W ) as the composition with f , i.e., f∗(α) = f◦α ∈ Cp(g,W ).

Observation 5.3. It is clear that the maps

θ : g → Endk
(
Cp(g, V )

)
,

ι : g → Homk
(
Cp(g, V ), Cp−1(g, V )

)
,

(−)∗ : Homk(V,W ) → Homk
(
Cp(g, V ), Cp(g,W )

)

are k–linear. It also follows from the very definition of ι that if p > 0 and
ι(σ)α = 0 for all σ ∈ g, then α = 0.

Lemma 5.4. The maps θ, ι and (−)∗ satisfy the following properties:
(1) θ(σ) = ι(σ)d+ dι(σ) for all σ ∈ g,
(2) ι

(
[σ, τ ]

)
=

[
θ(σ), ι(τ)

]
= θ(σ)ι(τ)− ι(τ)θ(σ) for all σ, τ ∈ g,

(3) θ
(
[σ, τ ]

)
=

[
θ(σ), θ(τ)

]
= θ(σ)θ(τ)− θ(τ)θ(σ) for all σ, τ ∈ g,

(4)
[
d, θ(σ)

]
= dθ(σ)− θ(σ)d = 0,

(5) [d, f∗](α)(σ1, . . . , σp+1) = d
(
f∗(α)

)
(σ1, . . . , σp+1)−

f∗
(
d(α)

)
(σ1, . . . , σp+1) =

p+1∑

i=1

(−1)i+1(σi · f)(α)(σ1, . . . , σ̂i, . . . , σp+1) ,

for α ∈ Cp(g, V ) and σ, τ, σ1, . . . , σp+1 ∈ g. In particular, if f is a g–
morphism, then d◦f∗ = f∗◦d.
(6) Assume that τ, ν ∈ g and consider ρ(τ)∗ι(ν) : Cp(g, V ) → Cp−1(g, V ).
Then

dρ(τ)∗ι(ν) =
[
d, ρ(τ)∗

]
ι(ν) + ρ(τ)∗θ(ν)− ρ(τ)∗ι(ν)d .
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In particular, if α ∈ Cp(g, V ) is such that dα = 0 and β = ρ(τ)∗ι(ν)α,
then β(τ1, . . . , τp−1) = τ · α(ν, τ1, . . . , τp−1) and dβ =

[
d, ρ(τ)∗

]
ι(ν)α +

ρ(τ)∗θ(ν)α.

Proof: (1) First we perform some explicit calculations:
(
ι(σ)dα

)
(σ1, . . . , σp) = dα(σ, σ1, . . . , σp) =

σ · α(σ1, . . . , σp) +
p∑

i=1

(−1)iσi · α(σ, σ1, . . . , σ̂i, . . . σp)+

p∑

i=1

(−1)iα
(
[σ, σi], σ1, . . . , σ̂i, . . . , σp

)
+

∑

1≤i<j≤p
(−1)i+jα

(
[σi, σj ], σ, σ1, . . . , σ̂i, . . . , σ̂j , . . . , σp

)
;

d(ι(σ)α)(σ1, . . . , σp) =
p∑

i=1

(−1)i+1σi ·
(
ι(σ)α

)
(σ1, . . . , σ̂i, . . . σp)+

∑

1≤i<j≤p
(−1)i+j

(
ι(σ)α

)(
[σi, σj ], σ1, . . . , σ̂i, . . . , σ̂j , . . . , σp

)
=

p∑

i=1

(−1)i+1σi · α(σ, σ1, . . . , σ̂i, . . . σp)+

∑

1≤i<j≤p
(−1)i+jα

(
σ, [σi, σj ], σ1, . . . , σ̂i, . . . , σ̂j , . . . , σp

)
.

Thus,
(
ι(σ)dα+ d(ι(σ)α)

)
(σ1, . . . , σp) = σ · α(σ1, . . . , σp)+

p∑

i=1

(−1)iα
(
[σ, σi], σ1, . . . , σ̂i, . . . σp

)
= θ(σ)(α)(σ1, . . . , σp) .

(2) The proof of this assertion, that is similar to the proof of (1), is left as

(3) We proceed by induction. For p = 0, as θ(σ) is the action of σ on V
the result is evident.

Suppose that the result is true for p, and consider σ, τ, ν ∈ g. Then,
ι(ν)

(
θ
(
[σ, τ ]

))
= θ

(
[σ, τ ]

)
ι(ν)− ι

([
[σ, τ ], ν

])
by (2).

By induction it follows that

ι(ν)θ
(
[σ, τ ]

)
=

[
θ(σ), θ(τ)

]
ι(ν)− ι

([
[σ, τ ], ν

])
=

θ(σ)θ(τ)ι(ν)− θ(τ)θ(σ)ι(ν)− ι
([

[σ, τ ], ν
])
.

 

an exercise (see Exercise 19).
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Next we use (2) to exchange ι(ν) with θ(σ) and θ(τ) twice.

θ(σ)θ(τ)ι(ν) = θ(σ)
(
ι
(
[σ, τ ]

)
+ ι(ν)θ(τ)

)
=

θ(σ)
(
ι
(
[τ, ν]

))
+θ(σ)ι(ν)θ(τ) =

ι
([
σ, [τ, ν]

])
+ ι

(
[τ, ν]

)
θ(σ) + ι

(
[σ, ν]

)
θ(τ) + ι(ν)θ(σ)θ(τ) .

As we also have a similar expression for θ(τ)θ(σ)ι(ν), by subtraction
we deduce that:

θ
(
[σ, τ ]

)
ι(ν) = ι

([
σ, [τ, ν]

])− ι
([
τ, [σ, ν]

])
+

ι
(
[τ, ν]

)
θ(σ)− ι

(
[σ, ν]

)
θ(τ) + ι

(
[σ, ν]

)
θ(τ)−

ι
(
[τ, ν]

)
θ(σ) + ι(ν)

(
θ(σ)θ(τ)− θ(τ)θ(σ)

)
=

ι
([
σ, [τ, ν]

])
+ ι

([
τ, [ν, σ]

])
+ ι(ν)

[
θ(σ), θ(τ)

]
.

Hence,

ι(ν)θ
(
[σ, τ ]

)
= ι

([
σ, [τ, ν]

])
+ ι

([
τ, [ν, σ]

])
+ ι

([
ν, [σ, τ ]

])
+

ι(ν)
[
θ(σ), θ(τ)

]
=

ι(ν)
[
θ(σ), θ(τ)

]
.

As the above equality is valid for all ν ∈ g, we have finished the proof.
(4) We proceed by induction in p. Suppose p = 0, and take α ∈ V =
C0(g, V ). Then d

(
θ(σ)(α)

)
(τ) = τ · (θ(σ)(α)

)
= τ · σ · α, for σ, τ ∈ g, and(

θ(σ)d
)
(α)(τ) = θ(σ)dα(τ) = σ · (dα)(τ)− dα(

[σ, τ ]
)

= σ · τ · α− [σ, τ ] · α.
Hence, dθ(σ) = θ(σ)d.

Assume that the result is valid for p. Fix τ ∈ g and perform the
following calculation, using (1) and (2),

ι(τ)
[
d, θ(σ)

]
= ι(τ)dθ(σ)− ι(τ)θ(σ)d =(

θ(τ)− dι(τ)
)
θ(σ)− ι(τ)θ(σ)d =

θ(τ)θ(σ)− dι(τ)θ(σ) + ι
(
[σ, τ ]

)
d− θ(σ)ι(τ)d =

θ(τ)θ(σ) + dι
(
[σ, τ ]

)− dθ(σ)ι(τ) + ι
(
[σ, τ ]

)
d−

θ(σ)
(
θ(τ)− dι(τ)

)
=

θ(τ)θ(σ) + dι
(
[σ, τ ]

)− dθ(σ)ι(τ) + ι
(
[σ, τ ]

)
d−

θ(σ)θ(τ)− θ(σ)dι(τ) =

θ(τ)θ(σ) + θ
(
[σ, τ ]

)− dθ(σ)ι(τ)− θ(σ)θ(τ)− θ(σ)dι(τ) =

− [
d, θ(σ)

]
ι(τ) = 0 .
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The last equality is a consequence of the inductive hypothesis. Then,
ι(τ)

[
d, θ(σ)

]
= 0 for all τ ∈ g. Using again the injectivity of ι we conclude[

d, θ(σ)
]

= 0.
(5) This result will be proven by performing the explicit calculations:

d
(
f∗(α)

)
(σ1, . . . , σp+1) = d(f◦α)(σ1, . . . , σp+1) =

p+1∑

i=1

(−1)i+1σi · (f◦α)(σ1, . . . , σ̂i, . . . , σp+1)+

∑

1≤i<j≤p+1

(−1)i+j(f◦α)
(
[σi, σj ], σ1, . . . , σ̂i, . . . , σ̂j , . . . , σp+1

)
,

f∗(dα)(σ1, . . . , σp+1) =
p∑

i=1

(−1)i+1f
(
σi · α(σ1, . . . , σ̂i, . . . , σp+1)

)
+

∑

1≤i<j≤p+1

(−1)i+jf
(
α
(
[σi, σj ], σ1, . . . , σ̂i, . . . , σ̂j , . . . , σp+1

))
,

so that
(
d
(
f∗(α)

)− f∗(dα)
)
(σ1, . . . , σp+1) =
p+1∑

i=1

(−1)i+1(σi · f)α(σ1, . . . σ̂i, . . . , σp+1) .

(6) follows immediately from (5). ¤

Observation 5.5. Let τ, ν ∈ g, and α a cocycle, call β = ρ(τ)∗ι(ν)(α).
Then, by Lemma 5.4 part (6), it follows that

dβ(σ1, . . . , σp) =
p∑

j=1

(−1)j+1
[
ρ(σi), ρ(τ)

] · α(ν, σ1, . . . , σ̂i, . . . , σp)+

τ · ν · α(σ1, . . . , σp)−
p∑

j=1

τ · α(
σ1, . . . , [ν, σi], . . . , σp

)
.

Corollary 5.6. Let g be a Lie algebra. If V is a g–module, then(
Cp(g, V ), d

)
with p ≥ 0 is a chain complex. In particular, Bp(g, V ) ⊂

Zp(g, V ).

 

We ask the reader to prove this assertion as an exercise (see Exercise
20).



94 2. LIE ALGEBRAS

Proof: We want to prove that d2 = 0. Fix σ ∈ g and compute

ι(σ)d2 = ι(σ)dd =
(
θ(σ)− dι(σ)

)
d = θ(σ)d− dι(σ)d =

dθ(σ)− dι(σ)d = d
(
θ(σ)− ι(σ)d

)
= dθ(σ)− d

(
θ(σ)− dι(σ)

)
=

dθ(σ)− dθ(σ) + d2ι(σ) = d2ι(σ) .

The result is then proved by induction once we check it for p = 0.
If α ∈ V = C0(g, V ), then dα : g → V is given by dα(σ) = σ · α. On

the other hand, if β ∈ C1(g, V ), then dβ(σ1, σ2) = σ1 · β(σ2)− σ2 · β(σ1)−
β
(
[σ1, σ2]

)
. Thus, d2α(σ1, σ2) = σ1 ·σ2 ·α−σ2 ·σ1 ·α− [σ1, σ2] ·α = 0. ¤

Definition 5.7. The p–th cohomology group of the Lie algebra g with
coefficients in V is

Hp(g, V ) =
Zp(g, V )
Bp(g, V )

.

Note that H0(g, V ) = Ker
(
d : V → C1(g, V )

)
=

{
v ∈ V : d(v)(σ) =

σ · v = 0 ∀σ ∈ g
}

= gV .

The result that follows is left as an exercise.

Corollary 5.8. Let g be a Lie algebra.
(1) If V,W are g–modules and f : V → W is a morphism of g–modules,
let fp : Hp(g, V ) → Hp(g,W ) be the map induced by f∗. Then for every
p ≥ 0 the maps f → fp are functorial. Explicitly, f0 is the restriction of f
to gV .
(2) The family of functors considered above has the property that if 0 →
V

f−→W
g−→ U → 0 is an exact sequence of g–modules, then:

(a) Hp(g, V )
fp

−→ Hp(g,W )
gp

−→ Hp(g, U) is also exact;
(b) there exists a map δ : gU → H1(g, V ) with the property that the sequence

0 → gV
f0

−→ gW
g0−→ gU

δ−→ H1(g, V ) is exact.

¤

Observation 5.9. The reader should be aware that the properties
mentioned in Corollary 5.8 are very special cases of the general characteri-
zation of the functors Hp as the derived functors of the fixed point functor
V → gV in the category of g–modules. We only state the minimal proper-
ties needed for the proofs in Section 6.

An easy consequence of the above considerations is the following lemma.

 

Proof: See Exercise 28.
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Lemma 5.10. Let g be a Lie algebra and assume that for a certain
p ≥ 0, Hp(g, V ) = 0 for all irreducible g–modules V . Then Hp(g,W ) = 0
for all finite dimensional g–modules W .

Proof: If dimW = 1 there is nothing to prove. Assume that the
result is true for all g–modules of dimension strictly less than n, and let W
be a g–module of dimW = n. If W is irreducible there is nothing to prove.
If this is not the case, consider a non trivial g–submodule W ) W1 ) {0}
and the exact sequence 0 → W1 → W → W/W1 → 0. Then, we have that
the sequence Hp(g,W1) → Hp(g,W ) → Hp(g,W/W1) is exact. The left
and right terms of the above sequence are zero by the induction hypothesis.
Then the middle term has to be zero. ¤

Theorem 5.11. Let g be a semisimple Lie algebra defined over an
algebraically closed field k of chark = 0. If V is a non trivial irreducible
g–module, i.e. V 6 p(g, V ) = 0 for all p > 0.

Proof: Let 0 6= ρ : g → gl(V ) be an irreducible representation.
Consider the Casimir operator Cρ that is a g-equivariant morphism. As
trCρ 6 ρ

of V . Then, Cρ(V ) = V . Moreover [d,C∗ρ ] = 0 by Lemma 5.4 (5).

Recall that if a = (Ker ρ)⊥, {τ1, . . . , τn} is a basis of a and {ν1, . . . νn}
is a dual basis with respect to Bρ|a, then Cρ =

∑n
i=1 ρ(τi)ρ(νi).

If α ∈ Zp(g, V ), define α1 ∈ Cp−1(g, V ) as α1 =
∑n
i=1 ρ(τi)∗ι(νi)α.

Using Observation 5.5 we have that

dα1(σ1, . . . , σp) =
n∑

i=1

p∑

j=1

(−1)j+1
[
ρ(σj), ρ(τi)

] · α(νi, σ1, . . . , σ̂j , . . . , σp)+

n∑

i=1

ρ(τi)ρ(νi)α(σ1, . . . , σp)−
n∑

i=1

p∑

j=1

ρ(τi) · α
(
σ1, . . . , [νi, σj ], . . . , σp

)
=

n∑

i=1

p∑

j=1

[σj , τi] · α(σ1 . . . , σj−1, νi, σj+1, . . . , σp) + (Cρ)∗(α)(σ1, . . . , σp)−

n∑

i=1

p∑

j=1

τi · α
(
σ1, . . . , [νi, σj ], . . . , σp

)
=

(Cρ)∗(α)(σ1, . . . , σp) +
n∑

i=1

p∑

j=1

(
[σj , τi] · α(σ1, . . . , σj−1, νi, σj+1, . . . , σp)+

τi · α(σ1, . . . , σj−1, [σj , νi], σj+1, . . . , σp)
)
.

 

= k (see Example 2.7), then H

= 0 (see Lemma 4.18), it follows that C (V ) is a non zero g–submodule
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Applying Lemma 4.19, we conclude that
n∑

i=1

[σj , τi] · α(σ1, . . . ,σj−1, νi, σj+1, . . . , σp)+

τi · α
(
σ1, . . . , σj−1, [σj , νi], σj+1, . . . , σp

)
= 0 .

Then, dα1 = C∗ρα, and d(C∗ρ
−1α1) = α. Thus, α ∈ Bp(g, V ). ¤

Observation 5.12. Once again the hypothesis about the algebraic
closure of k is not necessary here. It appears in our presentation because
we did not prove in full generality some of the intermediate results, e.g.,
Theorem 4.6.

Theorem 5.13. Let g be a semisimple Lie algebra defined over a field
of characteristic zero. If V is an arbitrary finite dimensional g–module,
then Hp(g, V ) = 0 for p = 1, 2.

Proof: In view of the preceding results we only have to prove the
theorem for the case of the trivial representation V = k.

In this case, C0(g, k) = k, C1(g,k) = g∗, and C2(g, k) = {α : g × g →
k bilinear skew symmetric}.

We compute di : Ci(g, k) → Ci+1(g,k), i = 0, 1, 2.
Clearly d0 = 0, indeed d0 : k→ g∗, is given as d0(1)(σ) = σ · 1 = 0.
The coboundary map d1 : g∗ → C2(g,k) is given by

d1α(σ, τ) = σ · α(τ)− τ · σ(α)− α
(
[σ, τ ]

)
= −α(

σ, τ
)

, α ∈ g∗ .

Finally, if α ∈ C2(g, k), then (d2α)(σ1, σ2, σ3) = −α(
[σ1, σ2], σ3

)
+

α
(
[σ1, σ3], σ2

)− α
(
[σ2, σ3], σ1

)
.

It follows that α ∈ Z1(g,k) if and only if α
(
[σ, τ ]

)
= 0 for all σ, τ ∈ g

1(g, k) = 0.
Let α ∈ Z2(g, k), i.e., assume that α

(
[σ1, σ2], σ3

)
= α

(
[σ1, σ3], σ2

) −
α
(
[σ2, σ3], σ1

)
. Consider g∗ as a g–module with the action (σ · λ)(τ) =

−λ(
[σ, τ ]

)
. Define α̃ ∈ C1(g, g∗) as α̃(σ)(τ) = α(σ, τ). Then

(
dα̃(σ1, σ2)

)
(τ) =

(
σ1 · α̃(σ2)

)
(τ)− (

σ2 · α̃(σ1)
)
(τ)− (

α̃
(
[σ1, σ2]

))
(τ) =

− α
(
σ2, [σ1, τ ]

)
+ α

(
σ1, [σ2, τ ]

)− α
(
[σ1, σ2], τ

)
=

α
(
[σ1, τ ], σ2

)− α
(
[σ2, τ ], σ1

)− α
(
[σ1, σ2], τ

)
= 0 .

Hence dα̃ = 0, and since g∗

from what we just proved it follows that there exists β̃ ∈ C0(g, g∗) = g∗

such that dβ̃ = α̃. Thus, σ · β̃ = dβ̃(σ) = α̃(σ) for every σ ∈ g. Hence,
−β̃(

[σ, τ ]
)

= α̃(σ)(τ) = α(σ, τ) for all σ, τ ∈ g.

 

is a non trivial g–module (see Exercise 21),

and since g = [g, g] (see Corollary 4.8), then α = 0, i.e., H
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If we consider now β̃ as an element of C1(g,k), we have that dβ̃(σ, τ) =
−β̃(

[σ, τ ]
)

= α(σ, τ), i.e. dβ̃ = α. ¤

6. The theorems of H. Weyl and F. Levi

In this section we apply the cohomological tools just developed in order
to prove the above mentioned theorems.

Theorem 6.1 (H. Weyl). Let g be a finite dimensional semisimple Lie
algebra defined over an algebraically closed field of characteristic zero. Then
all finite dimensional representations of g are completely reducible.

Proof: Let W be a finite dimensional g–module and consider a sub-
module V ⊂W . The exact sequence of g–modules

(2) 0 → V →W →W/V → 0

induces an exact sequence

0 → Endk(W/V, V ) → Endk(W/V,W ) → Endk(W/V,W/V ) → 0

0 → Endg(W/V, V ) →Endg(W/V,W ) →
Endg(W/V,W/V ) → H1

(
g,Endk(W/V, V )

)

Recall that if V andW are g–modules, then gEnd(V,W ) = Endg(V,W ).
Using Theorem 5.13 we conclude thatH1

(
g,Endk(W/V, V )

)
= 0, and hence

we obtain the short exact sequence

0 → Endg(W/V, V ) → Endg(W/V,W ) → Endg(W/V,W/V ) → 0

As id ∈ Endg(W/V,W/V ), there exists an element T ∈ Endg(W/V,W )
such that π◦T = id, where π : V → V/W is the canonical projection.
This means that T : V/W → V splits the sequence (2), in other words
V ∼= V/W ⊕W as g–modules. ¤

Observation 6.2. The theorem above was proved in full generality for
the first time by H. Weyl in [152], for Lie algebras over C. The method used
was analytical and based in what was called by Weyl himself, the unitarian
trick. His method consisted in the restriction of the problem to the case
of compact groups, where the complete reducibility follows by integration
methods. The use of Casimir operators is due to H. Casimir and B. L. van

work of J. H. C. Whitehead, but the cohomological formalization is due to

 

which in turn induces (see Corollary 5.8) an exact sequence

der Waerden (see [16], and the proof we present here has origins in the

C. Chevalley and S. Eilenberg (see [155] and [22]).
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Next we prove that a projection onto a semisimple Lie algebra always
splits.

Theorem 6.3 (F. Levi). Let g, h be finite dimensional Lie algebras de-
fined over an algebraically closed field of characteristic zero, with g semisim-
ple. If π : h → g is a surjective Lie algebra homomorphism, then there exists
a morphism of Lie algebras ρ : g → h such that π◦ρ = idg.

Proof: Call a = Kerπ and consider the short exact sequence 0 →
a → h

π−→ g → 0. We proceed by induction on dim a. If dim a = 0 there is
nothing to prove.

Suppose that h is also semisimple. Then h = a ⊕ a′, and π|a′ : a′ → g
is an isomorphism. Then ρ = (π|a′)−1 gives the desired morphism.

Suppose now that h is not semisimple, and let {0} 6= b ⊂ h be an abelian
ideal of minimal dimension. Then (a + b)/a ∼= b/(a ∩ b) is an abelian ideal
of the semisimple Lie algebra h/a ∼= g. Hence, (a + b)/a = {0}, i.e., b ⊂ a.

Suppose that b 6= a and consider the surjective morphism π′ : h/b ³ g.
Then Kerπ′ = a/b and by the induction hypothesis there exists ρ′ : g → h/b
such that π′◦ρ′ = idg. Write ρ′(g) = k/b, for some Lie subalgebra k ⊂ h.

Since dim b < dim a and k/b ∼= g that is simple, by induction we con-
struct a morphism ρ′′ : k/b → k that splits the projection. It follows that
the morphism ρ = ρ′′◦ρ′ : g → k ⊂ h splits the projection π : h → g.

Thus, we can suppose that b = a, i.e., that the kernel of π is an abelian
ideal of minimal dimension in h. Consider γ : g → h a k–linear splitting
of π, and define an action of g on a by the formula σ · a = [γ(σ), a], with
σ ∈ g and a ∈ a. It is easy to verify that the above definition makes sense.

Define a map α : g × g → h, α(σ, τ) = [γ(σ), γ(τ)] − γ([σ, τ ]). Since
π
(
α(σ, τ)

)
= 0, it follows that α(σ, τ) ∈ a for all σ, τ ∈ g, and α ∈ C2(g, a).

Moreover, α ∈ Z2(g, a). Indeed,

dα(σ1, σ2, σ3) = σ1 · α(σ2, σ3)− σ2 · α(σ1, σ3) + σ3 · α(σ1, σ2)−
α
(
[σ1, σ2], σ3

)− α
(
[σ2, σ3], σ1

)
+ α

(
[σ1, σ3], σ2

)
=

[
γ(σ1),

[
γ(σ2), γ(σ3)

]− γ
(
[σ2, σ3]

)]−
[
γ(σ2),

[
γ(σ1), γ(σ3)

]− γ
(
[σ1, σ3]

)]
+[

γ(σ3),
[
γ(σ1), γ(σ2)

]− γ
(
[σ1, σ2]

)]−
[
γ
(
[σ1, σ2]

)
, γ(σ3)

]
+ γ

([
[σ1, σ2], σ3

])− [
γ
(
[σ2, σ3]

)
, γ(σ1)

]
+

γ
([

[σ2, σ3], σ1

])
+

[
γ
(
[σ1, σ3]

)
, γ(σ2)

]− γ
([

[σ1, σ3], σ2

])
= 0 .

It follows from Theorem 5.13 that there exists β : g → a such that
dβ = α. Then for all σ, τ ∈ g, we have that σ · β(τ)− τ · β(σ)− β(

[σ, τ ]
)

=
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dβ(σ, τ) =
[
γ(σ), γ(τ)

]− γ
(
[σ, τ ]

)
. In other words,

(3)
[
γ(σ), β(τ)

]− [
γ(τ), β(σ)

]− β
(
[σ, τ ]

)
=

[
γ(σ), γ(τ)

]− γ
(
[σ, τ ]

)
.

Calling ρ = γ−β, and using that image of β is contained in the abelian
ideal a we have that

[
ρ(σ), ρ(τ)

]
=

[
γ(σ), γ(τ)

]−[
γ(σ), β(τ)

]
+

[
γ(τ), β(σ)

]
.

In this notation, equation (3) becomes ρ
(
[σ, τ ]

)
=

[
ρ(σ), ρ(τ)

]
, i.e. ρ is

a morphism of Lie algebras. Moreover, π◦ρ = π◦γ − π◦β = π◦γ = idg. ¤
Corollary 6.4. Let g be a finite dimensional Lie algebra defined over

an algebraically closed field of characteristic zero. Then [g, g] ∩ rad(g) =
[g, rad(g)]. If V is a finite dimensional g–module, then [g, rad(g)] acts nilpo-
tently on V .

Proof: Since g/ rad(g) is a semisimple Lie algebra, it follows that g =
rad(g)⊕ s, with s ∼=
Then [s, s] = s, and [g, g] = [g, rad(g)]+s. Thus, [g, g]∩rad(g) ⊂ [g, rad(g)],
since [g, rad(g)] ⊂ rad(g) we conclude that [g, g] ∩ rad(g) = [g, rad(g)]

As rad(g) is solvable, it follows that [rad(g), rad(g)] acts nilpotently on
V
ideal acting nilpotently on V . If t 6= [g, rad(g)], then there exist ν ∈ g and
σ ∈ rad(g) such that [ν, σ] /∈ t. As rad(g) + kν is a solvable Lie algebra, we
conclude again form Corollary 3.11 that [ν, σ] acts nilpotently on V .

Let l be the Lie algebra spanned by t and [ν, σ]. From Exercise 25
we deduce that the Lie subalgebra t ( t + k[ν, σ] is nilpotent on V , and
this contradicts that maximality of t. Then t = [g, rad(g)], and the result
follows. ¤

7. p–Lie algebras

In this section we consider p–Lie algebras or restricted Lie algebras,
that are defined only in the case that the characteristic of the base field is
p > 0. Here, the structure is richer than for ordinary Lie algebras. Besides
the usual bracket, there is another operation, called the p–map. This map
can be constructed thanks to certain cancellation properties valid only in
positive characteristic.

The following observation is the motivation for the introduction of the
concept of p–Lie algebra. We ask the reader to prove the assertions as an

Observation 7.1. Assume that A is an associative algebra defined
over a field of positive characteristic p. Consider the associated Lie algebra
ALie and the map −[p] : A→ A, a[p] = ap. This map verifies the following
properties for λ ∈ k and a, b ∈ A:

 

exercise (see Exercise 29).

g/ rad(g) a semisimple Lie algebra (see Theorem 6.3).

(see Corollary 3.11). Let [rad(g), rad(g)] ⊂ t ⊂ [g, rad(g)] be a maximal
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(1) (λa)[p] = λpa[p];

(2) ad
(
a[p]

)
=

(
ad(a)

)p;
(3) (a + b)[p] = a[p] + b[p] +

∑p−1
i=1 si(a, b), where si is the non commuta-

tive polynomial on a, b defined by the property that isi(a, b) is the λi−1

coefficient of ad(λa+ b)p−1(a). In other words, we have that

ad(λa+ b)p−1(a) =
p−1∑

i=1

isi(a, b)λi−1 .

Definition 7.2. A Lie algebra g defined over a field of characteristic
p > 0 and equipped with a map −[p] : g → g, is called a restricted Lie
algebra or a p–Lie algebra if the map satisfies the conditions:
(1) (λσ)[p] = λpσ[p];

(2) ad
(
σ[p]

)
=

(
ad(σ)

)p;
(3) (σ+ τ)[p] = σ[p] + τ [p] +

∑p−1
i=1 si(σ, τ), where si is the non commutative

polynomial on σ, τ defined by the property that isi(σ, τ) is the λi coefficient
of ad(λσ + τ)p−1(σ) for all λ ∈ k and σ, τ ∈ g. In other words, we have
that

ad(λσ + τ)p−1(σ) =
p−1∑

i=1

isi(σ, τ)λi−1 .

Definition 7.3. If k is a field of characteristic p > 0 and g and h are
p–Lie algebras, a morphism φ : g → h of Lie algebras is called a morphism
of p–Lie algebras if for all σ ∈ g, φ

(
σ[p]

)
= φ(σ)[p].

Example 7.4. (1) Let A be an associative Lie algebra over k, chark =
p > 0. Then ALie together with the p–power is a restricted Lie algebra. In
particular, if V is a k–vector space, then gl(V ) is a restricted Lie algebra.
(2) Assume that g is a Lie algebra and consider the Lie subalgebra D(g) ⊂
gl(g). If D ∈ D(g) one easily verifies for an arbitrary positive integer n, the
validity of the so–called Leibniz rule:

Dn
(
[τ, σ]

)
=

n∑

i=0

(
n

i

)[
Di(σ), Dn−i(τ)

]
.

In the particular case that the base field has characteristic p and n = p,
the above formula simplifies to Dp

(
[τ, σ]

)
=

[
Dp(σ), τ

]
+

[
σ,Dp(τ)

]
. In

other words, Dp is also a derivation of g. Hence, D(g) is a restricted Lie
subalgebra of gl(g).
(3) In particular, let A be an associative algebra and G a group of automor-
phisms of A acting on the right. Define the Lie subalgebra of G–invariant
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derivations as

DG(A) =
{
D : A→ A : D ∈ D(A) , ∀x ∈ G , a ∈ A D(a · x) = D(a) · x} .

Then the p–power operation on D(A) restricts to a p–power operation
on DG(A). This example will be important when dealing with the Lie
algebra associated to an affine algebraic group in positive characteristic;

8. Exercises

1. Prove that if h, k ⊂ g are ideals of a Lie algebra g, then [h, k] is also
an ideal. If h is a subalgebra of g, then ng(h) and cg(h) are also subalgebras
of g. If h is an ideal of g, then cg(h) is also an ideal of g. Conclude that
c(g) as well as [g, g] are ideals of g.

2. Write explicitly the adjoint representation ad : sl2 → gl(sl2). Find
for the standard basis

{
( 0 1

0 0 ) , ( 0 0
1 0 ) ,

(
1 0
0 −1

)}
of sl2 the matrices associated

to ad( 0 1
0 0 ), ad( 0 0

1 0 ), ad( 1 0
0 −1 ).

3. Let g be a Lie algebra and h ⊂ g be a subalgebra. Then ng(h) is a
subalgebra g. Moreover, it is the largest subalgebra f of g such that h ⊂ f
and h is an ideal of f.

4. Prove the assertions of Observation 2.11.

5. (a) Prove that sln = [gln, gln] and that un = [bn, bn].
(b) Prove that the Lie subalgebra un ⊂ gln is nilpotent, computing explic-
itly D[r](un). Prove that bn is solvable and observe that bn is not nilpotent
proving that un = [bn, un].
(c) Describe the ideals of the Lie algebra gl2 when the base field k has
characteristic two.

6. We present an example of an infinite dimensional Lie algebra. Con-
sider the vector space generated by {σi, τi, ν : i ∈ Z}, and define [σi, τj ] =
δi,jν, [σi, ν] = [τi, ν] = 0. Prove that in this manner we obtain a Lie algebra.

7. (Cases B,D). Assume that V is a finite dimensional complex vector
space and b a non degenerate symmetric bilinear form. Define a subspace
o(V, b) of gl(V ) as follows:

o(V, b) =
{
T : V → V : ∀v, w ∈ V, b(Tv,w) + b(v, Tw) = 0

}
.

Prove that o(V, b) is a Lie subalgebra of gl(V ). In the case that V =
Cn and the bilinear form b

(
(σ1, . . . , σn), (τ1, . . . , τn)

)
=

∑
σiτi, then the

corresponding Lie subalgebra of gln(C) is denoted as on(C).

 

see Section 4.7.
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8. (Case C). Assume that V is a finite dimensional complex vector
space and that b is a non degenerate skew–symmetric bilinear form on V .
Define a subspace sp(V, b) of gl(V ) as follows:

sp(V, b) =
{
T : V → V : ∀v, w ∈ V, b(Tv,w) + b(v, Tw) = 0

}
.

Prove that sp(V, b) is a Lie subalgebra of gl(V ). In the case that V =
C2n, and the bilinear form is defined as: b

(
(σ1, . . . , σ2n), (τ1, . . . , τ2n)

)
=

σ1τ2 − σ2τ1 + · · ·+ σ2n−1τ2n−1 − σ2nτ2n the corresponding Lie subalgebra
of gln(C) is denoted as spn(C).

9. Let g be a Lie algebra and V a g–module. We define on the vector
space g⊕ V a bracket operation as follows:

[σ + v, τ + w] = [σ, τ ] + σ · w − τ · v .

Prove that g⊕ V equipped with the above operation is a Lie algebra.

10. We consider the classification of two dimensional Lie algebras.
(a) Prove that if g is a non abelian two dimensional Lie algebra there exists
a basis {σ, τ} of g such that [σ, τ ] = σ. Conclude that there are only two
non isomorphic two dimensional Lie algebras.
(b) Consider the non abelian Lie algebra of dimension two. Prove that it
is not nilpotent. Observe that the operators ad(σ) and ad(τ) are not both
nilpotent. Compare this result with Theorem 3.4.
(c) Find an example of a solvable but non nilpotent Lie algebra.

11. In this exercise we consider the classification of three dimensional
Lie algebras over the field of real numbers (called sometimes the Bianchi
classification).
(a) If g is a three dimensional Lie algebra and [g, g] = g, prove that there is
a basis {σ, τ, ν} such that either: (i) [σ, τ ] = ν, [τ, ν] = σ,[ν, σ] = τ or (ii)
[σ, τ ] = 2τ , [σ, ν] = −2ν,[τ, ν] = σ. Prove that in the case of the complex
field C, both Lie algebras are isomorphic. A model for the Lie algebra
appearing in (ii), is sl2(R).
(b) If dim[g, g] = 2 discuss the structure of g in terms of the results of
Exercise 10.
(c) If dim[g, g] = 1, choose a basis ν ∈ [g, g] and write for all σ, τ ∈ g,
[σ, τ ] = b(σ, τ)ν being b a skew symmetric bilinear form. If ν ∈ g⊥, i.e. if
b(ν, ρ) = 0 for all ρ ∈ g, there is a basis of the form {σ, τ, ν}, such that
[σ, τ ] = ν, [σ, ν] = [τ, ν] = 0. This algebra is called the Heisenberg algebra.
If there exists σ ∈ g such that b(σ, ν) = 1, then there is a basis {σ, τ, ν}
such that [σ, ν] = ν, [σ, τ ] = [τ, ν] = 0.
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12. Compute explicitly the adjoint representation for the three dimen-
sional Lie algebras classified in Exercise 11.

13. Assume that the matrix σ ∈ gln is diagonalizable with different
eigenvalues {a1, . . . , an}. Prove that the operator ad(σ) : gln → gln has
eigenvalues {ai − aj : 1 ≤ i, j ≤ n}.

14. Prove Corollary 3.2.

15. Prove the assertions of Lemma 2.12.

16. Let g be a Lie algebra and a ⊂ g be an ideal. Prove that if a/
(
a ∩

c(g)
)

is nilpotent, then so is a.

17. Prove the assertions of Lemma 2.16.

18. Let g be a Lie algebra prove that c[i](g) is an ideal for all i ≥ 0,
and that the chain {0} = c[0](g) ⊂ c[1](g) ⊂ · · · ⊂ c[i](g) ⊂ · · · satisfies that
c[i+1](g)/c[i](g) = c

(
g/c[i](g)

)
. Conclude that the conditions are equivalent:

(i) There exists a family of ideals {gi}0≤i≤r, with gi ⊂ gi−1, gr = {0},
g0 = g and [g, gi−1] ⊂ gi, for r ≥ i ≥ 1.

(ii) There exists r > 0 such that D[r]g = 0 (i.e. g is nilpotent).

(iii) There exists r > 0 such that c[r]g = g.

19. Prove Lemma 5.4 part (2).

20. Prove Observation 5.5.

21. If g is a finite dimensional semisimple Lie algebra, then g∗ — en-
dowed with the action (σ · α)(τ) = −α([σ, τ ]), σ, τ ∈ g, α ∈ g∗ — is an
irreducible g–module.

22. Prove that sl2 is semisimple. Compute explicitly the Casimir el-
ement. Hint: Use the explicit description of ad that appears in Exercise
2.

23. Suppose chark = 0, and consider gln. Using the equality (ad)2(σ) =
τ2σ − 2τστ + τσ2, prove that tr

(
ad(τ)2

)
= 2n tr(τ2)− 2 tr(τ)2 . By polar-

ization deduce a formula for the Killing form of gln and apply the above
results to compute the Killing form of sln. Prove that Bgln(σ, id) = 0.

24. Prove that the matrices Rx =
(

0 0 0
0 0 −1
0 1 0

)
, Ry =

(
0 0 1
0 0 −0
−1 0 0

)
, Rz =(

0 −1 0
1 0 −0
0 0 0

)
, form a basis of o3(C). Verify that [Rx, Ry] = Rz, [Ry, Rz] = Rx,

[Rz, Rx] = Ry and write down explicitly ad(Rx), ad(Ry), ad(Rz). Prove
that o3(C) is semisimple computing its Killing form.
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25. Let g be a Lie algebra defined over an arbitrary field k, V a finite
dimensional g–module, u ⊂ g be an ideal and τ ∈ g. Suppose that u and τ
act nilpotently on V . Then the subalgebra u + kτ ⊂ g acts nilpotently on
V . Hint: Use Engel’s theorem.

26. We show an example where the conclusion of Corollary 3.11 is not
valid in positive characteristic.

Let k be a field of characteristic p > 0 and consider the two dimensional
non abelian Lie algebra given as h = kσ + kτ with [σ, τ ] = σ. Let V be
a p–dimensional vector space with a fixed basis {e1, . . . , ep} and consider
the action of h in V given as: σ · ei = ei+1 for 1 ≤ i ≤ p − 1, σ · ep = e1;
τ · ei = (i− 1)ei for 1 ≤ i ≤ p. Prove that in this manner V becomes an h–
module. Consider the Lie algebra g = h⊕ V with the bracket defined as in
Exercise 9. Prove that g is solvable and its derived algebra [g, g] = kσ ⊕ V
is not nilpotent.

27. Consider a field of characteristic p > 0 and V a p–dimensional
vector space defined over k. Consider S, T ′ ∈ gl(V ) defined as: S ·ei = ei+1

for 1 ≤ i ≤ p − 1, S · ep = e1 and T ′ · ei = (i − 1)ei for 1 ≤ i ≤ p.
Call T = T ′S−1 and consider g = kS + kT + kid ⊂ gl(V ). Prove that g
— that is a model for the Heisenberg Lie algebra constructed in Exercise
11 — is a nilpotent subalgebra. If we write a generic element X ∈ g as
X = aS + bT + cid, we have that (X − (a + c)id)p = 0 and then, if for
some 0 6= v ∈ V , Xv = λ(X)v, then λ(X) = a + c. Conclude that in this
situation Lie’s theorem (Theorem 3.8) is not valid for g.

28. Prove the assertions of Corollary 5.8.

29. Prove the assertions appearing in Observation 7.1. Hint: consider
the equality (λa+b)p = λpap+bp+

∑p−1
i=1 si(a, b)λ

i and differentiating with
respect to λ obtain ad(λa+ b)p−1(a) =

∑p−1
i=1 isi(a, b)λ

i−1.

i

are the following:

s1(σ, τ) = [σ, τ ] if p = 2 ;

for p = 3:

s1(σ, τ) =
[
[σ, τ ], τ

]
,

2s2(σ, τ) =
[
[σ, τ ], σ

]
;

 

30. Prove that for p = 2, 3, 5 the values of s (σ, τ), (see Definition 7.2)
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for p = 5:

s1(σ, τ) =
[[[

[σ, τ ], τ
]
, τ

]
, τ

]

2s2(σ, τ) =
[[[

[σ, τ ], σ
]
, τ

]
, τ

]
+

[[[
[σ, τ ], τ

]
, σ

]
, τ

]
+

[[[
[σ, τ ], τ

]
, τ

]
, σ

]
,

3s3(σ, τ) =
[[[

[σ, τ ], σ
]
, σ

]
, τ

]
+

[[[
[σ, τ ], σ

]
, τ

]
, σ

]
+

[[[
[σ, τ ], τ

]
, σ

]
, σ

]

4s4(σ.τ) =
[[[

[σ, τ ], σ
]
, σ

]
, σ

]
.

31. Let k be a field of characteristic p 6= 0 and g a p–Lie algebra with
the property that there exists 0 6= α ∈ k such that σ[p] = ασ for all σ ∈ g.
Prove that g is abelian.

 



CHAPTER 3

Algebraic groups: basic definitions

1. Introduction

In this chapter we introduce one of the objects central to our attentions:
the affine algebraic groups. They should be viewed as the group objects in
the category of affine algebraic varieties. We will not attempt to summarize
here the historical development of this subject that is rooted in different
areas of classical mathematics, mainly invariant theory and the theory of
Lie groups and Lie algebras. The reader interested in these developments
may look at the excellent survey due to A. Borel, [11, Chap. V–VIII]. We
only mention that after the seminal work of L. Maurer and E. Picard around
1880, the subject was taken again mainly by C. Chevalley and E.R. Kolchin
in the late 1940’s. Thereafter, developments were manifold, most of them
associated with the work of A. Borel and his collaborators as well as with
Grothendieck’s school.

We travel in our presentation the path stalked by A. Borel in his pi-
oneering book [10], and followed — sometimes with significant variations
and simplifications — in the standard reference books on this subject, for
example: [69], [71], [75] and [142].

We consider only affine group varieties; the theory of group schemes,
that is enormously interesting for various applications, will not be treated
in this book. In this direction the interested reader may look for example
at the presentations in [28] and [80].

Our display of the basic material on affine algebraic groups will be
divided into three chapters. The
titles of these two additional chapters should be descriptive enough of their
contents.

Next we describe the different sections of this chapter.
In Section 2 we define the concept of affine algebraic group, present the

main examples that will be used throughout the book and complete the
category by defining the morphisms.

107

 

The present one and Chapters 4 and 5.
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In Section 3 we study the basic properties of morphisms and show that
the irreducible component of the identity of an affine algebraic group is a
connected normal subgroup of finite index.

In Section 4 we define regular actions of affine algebraic groups on
algebraic varieties and study their basic properties. In particular we prove
the existence of closed orbits for an arbitrary action.

In Section 5 we collect a series of results that will be used later: we
prove that if a group is generated by irreducible subgroups it has to be
irreducible; we study some properties of tori and finally define semidirect
product of algebraic groups. This concept will be used when studying the
structure of affine algebraic groups, in particular of solvable groups.

In this chapter we work as usual over a fixed algebraically closed field
k and all the geometric and algebraic objects will be defined over k.

2. Definitions and basic concepts

Definition 2.1. Let k be an algebraically closed field and G be an al-
gebraic variety defined over k. Assume that the set underlying the variety
G is equipped with an structure of abstract group, i.e. with an associative
multiplication m : G × G → G, an inversion map i : G → G and a dis-
tinguished element 1 ∈ G satisfying the axioms for an abstract group. We
say that (G,m, i), abbreviated as G when no confusion is possible, is an
algebraic group if m and i are morphisms of algebraic varieties. If G is an
affine variety, we say that G is an affine algebraic group or linear algebraic
group.

In this book we restrict ourselves — with one exception in Theorem
11.5.3 — to the consideration of affine algebraic groups. Frequently we will
omit mention to the base field k.

Observation 2.2. If x ∈ G, the right translation ρx : G→ G, ρx(y) =
xy is clearly an isomorphism of varieties taking 1 into x, with inverse ρx−1 ,
and similarly for the left translation λx : G → G, λx(y) = yx. This
homogeneity guarantees that all the local geometric properties of the group
that are satisfied for a point are are satisfied everywhere. In particular, as

non singular, i.e., that G is a non singular variety.

Definition 2.3. Let G be an algebraic group. An abstract subgroup
H ⊂ G such that H is a closed subset will be called a closed subgroup
or an algebraic subgroup of G. Since H × H is closed in G × G and the
restriction of a morphism to a subvariety is a morphism, it follows that H
is an algebraic group.

 

the set of regular points of an algebraic variety is non empty (see Theorem
1.4.103) we conclude that all the points of the affine algebraic group are
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Definition 2.4. Let H,G be two algebraic groups. A morphism of
algebraic groups, or a homomorphism of algebraic groups, is a morphism of
algebraic varieties ϕ : H → G that is also a morphism of abstract groups.
The notion of isomorphism is the standard one, i.e., an isomorphism is
a morphism of abstract groups that is also an isomorphism of algebraic

Example 2.5. The additive group Ga consists of the algebraic variety
A1 with the group structure given by the sum on the field k, in other words
m : A1 × A1 → A1 is given as m(x, y) = x + y, and i : A1 → A1 is given
as i(x) = −x. The corresponding maps m# : k[X] → k[X] ⊗ k[X] and
i# : k[X] → k[X] are given by m#(X) = X ⊗ 1 + 1⊗X and i#(X) = −X.

This construction can be generalized to the affine n–dimensional space

The multiplicative group Gm consists of the affine algebraic variety
A1 − {0} with the structure given by the product on the field k. In other
wordsm : (A1−{0})×(A1−{0}) → A1−{0} ism(x, y) = xy and i(x) = x−1.

on Gm is k[Gm] = k[X,X−1]. The comorphism m# on the generators of
k[Gm] is: m#(X±1) = X±1⊗X±1 ∈ k[Gm]⊗ k[Gm]. It follows that Gm is
an affine algebraic group.

Example 2.6. Clearly, any finite group is an affine algebraic group.

Example 2.7. The general linear group GLn(k).
If V is a finite dimensional vector space then GL(V ), the set of invertible

generalization of this result).
In the case that dimV = n, we identify GL(V ) with the set of invertible

n× n matrices that will be denoted as

GLn(k) =
{
A ∈ Mn(k) : detA 6= 0

}
,

or simply GLn when there is no danger of confusion. We call this group
the general n–linear group.

We will prove later that an arbitrary affine algebraic group can be

in this sense GLn is the basic example of an affine algebraic group. The
mention to the base field will be dropped when no confusion is possible.

The verification that GLn is an affine algebraic group follows below.
Since det : Mn(k) → k is a polynomial function, GLn = Mn(k)det is an

In particular dim GLn = n2.

 

linear endomorphisms, is an affine algebraic group (see Exercise 4 for a

varieties (see Observation 3.6).

(see Example 2.9).

As we know (see Observation 1.4.23), the algebra of polynomial functions

viewed as a closed subgroup of a general linear group (see Theorem 4.3.23)

affine open subset (see Observation 1.4.23).
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Moreover,

k[GLn] = k
[
Mn(k)

]
det

= k
[
X11, X12, . . . , Xnn,

1
det(Xij)

]
,

where the functions Xij : GLn → k are defined as Xij(M) = mij , if the
matrix M is written as M = (mij)1≤i,j≤n. It is clear that the product of
matrices is a polynomial map. Concerning the inversion morphism observe
that the coefficients of the inverse i(M) of a matrix M can be written in
terms of polynomial operations on its coefficients and of 1

detM . As 1
det(Xij)

∈
k[GLn], it follows that i# maps regular functions into regular functions, and
hence i : GLn → GLn is a morphism.

In explicit terms the comorphism m# is given by the formula

m#(Xij) =
n∑

k=1

Xik ⊗Xkj ,

m#

(
1

det

)
=

1
det

⊗ 1
det

.

Observe that if n = 1, then GL1 = Gm.

Example 2.8. Let G be an affine algebraic group and H ⊂ G an
algebraic subgroup. Then H is also an affine algebraic group.

A particularly interesting case of this situation concerns the center of
a group. Let G be an affine algebraic group. Recall that by definition the
center Z(G) of G is the abstract subgroup:

Z(G) = {x ∈ G : xy = yx ∀ y ∈ G} .
In other words, Z(G) =

⋂
y∈G ψ

−1
y (1), where ψy = m◦(λy, λy−1◦i)◦∆ :

G→ G, and ∆ : G→ G×G is the diagonal map. Hence, Z(G) is a closed

subgroup of G.
In particular, if we consider G = GLn its center is the group of matrices

of the form {λ Id : λ ∈ k∗}.
Example 2.9. If H and K are two algebraic groups, then H × K is

also an affine algebraic group, with multiplication and inverse performed
component–wise. For example the fact that the multiplication is a mor-
phism follows from the expression: mH×K = (mH × mK)(id × s × id) :
H×K×H×K → H×K, where mH and mK are the multiplications of H
and K respectively and s is the map that switches the factors. The group
H ×K is called the direct product of H and K and it is a product in the
category of algebraic groups.

 

subset of G (see also Section 4 below) that becomes an affine algebraic
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Notice that the product of two affine algebraic groups is also affine.
In particular, the product of n copies of Ga is isomorphic as an algebraic

group to An.

Example 2.10. The following closed subgroups of GLn will be of in-
terest throughtout the book.
(1) The subgroup Bn ⊂ GLn of invertible upper triangular matrices. It is
clear that Bn is a closed subgroup of GLn, with dimBn = n(n+1)

2 . Clearly

Bn is isomorphic as an algebraic variety to A
n(n−1)

2 × (k∗)n.
(2) The invertible diagonal matrices Dn ⊂ GLn form a closed subgroup of
GLn of dimension n. It is isomorphic as an affine algebraic group to (Gm)n.
(3) The subgroup Un of unipotent upper triangular matrices. Explicitly

Un = {A ∈ GLn : aij = 0 i > j , aii = 1} ⊂ Bn ⊂ GLn .

It is clear that Un as an affine variety isomorphic to A
n(n−1)

2 ; in partic-
ular, dimUn = n(n−1)

2 .

Example 2.11. As a particular case of the construction of products,
we may consider the (algebraic) torus Tn = Gnm = k∗ × · · · × k∗︸ ︷︷ ︸

n

. It is clear

that the map (a1, . . . , an) 7→




a1 0 0

0

0

0 0 an


 establishes an isomorphism

of affine algebraic groups from Tn onto Dn

The name torus, or algebraic torus, for the group defined above was
introduced by A. Borel in [9]. The justification was that these groups play
in the algebraic category, a similar role than the geometric tori play in the
theory of Lie groups.

Example 2.12. Another important example of affine algebraic group is
the so–called special linear group SLn = SLn(k) = {A ∈ GLn : detA = 1}.

As SLn is the set of zeroes of the function det−1 : GLn → k, it is a
codimension one closed subgroup of GLn.

We leave as an exercise for the reader to prove that det−1 is an irre-
ducible polynomial in k[X11, X12, . . . , Xnn n is
an irreducible closed subset of Mn, and also of GLn.

A different proof for the fact that SL2 is irreducible, that is generalizable
to n× n matrices, is suggested in Example 5.6.

If 〈det−1〉 denotes as usual the ideal of k[X11, X12, . . . , Xnn] generated
by det−1, then k[SLn] = k[X11, X12, . . . , Xnn]/〈det−1〉.

 

] (see Exercise 5). Hence, SL

(see Example 2.10).
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The following general construction of closed subgroups of GLn will
yield, in particular cases, many of the so–called classical groups.

Lemma 2.13. Let S ∈ GLn. Then GS =
{
X ∈ GLn : XS(tX) = S

}
is

an algebraic subgroup. Moreover GS is closed in Mn(k).

Proof: It is clear that GS is a subgroup of GLn. On the other hand,
the equations XS(tX) = S (*) are polynomial on the entries of X. Then
the set of matrices X ∈ Mn(k) satisfying XS(tX) = S (*) is a closed subset.

If X verifies (*) then Id = XS(tX)S−1, i.e., X is invertible. ¤
Example 2.14. If chark 6= 2, we define the orthogonal group as On =

On(k) = GId = {X ∈ GLn : XtX = Id}. The defining equations give the
following generating set of n2 polynomials for the ideal of On:

fij =
n∑

k=1

xikxjk − δij , 1 ≤ i, j ≤ n .

Since fij = fji, a priori we only have n(n+ 1)/2 different polynomials.
Observe that if X ∈ On, then det(X) = ±1. Thus On is not an

irreducible algebraic variety. The subgroup On ∩SLn is called the special
orthogonal group and it is denoted as SOn(k) = SOn. It is a closed subset
of Mn(k) and its associated ideal is 〈fij , det−1 : 1 ≤ i ≤ j ≤ n〉. It can
be proved that this ideal is prime and hence that SOn is irreducible. This
irreducibility result can be also be deduced using the so–called theorem of
Cartan–Dieudonné that guarantees that any orthogonal transformation is
a product of symmetries, and then applying Theorem 5.4.

From the general theory concerning the irreducible components of an

deduce that in a situation as above, there is only one irreducible component
of On containing the identity element of the group. This component is a
normal subgroup of finite index in On, and in this case coincides with SOn.
Clearly, the subvariety {X ∈ On : det(X) = −1} is also irreducible.

Example 2.15. Let n = 2m be an even integer. The symplectic
group, that is denoted as Spn = Spn(k), is defined as GS ⊂ GLn for
S =

(
0 Idm

− Idm 0

)
.

The equation XS(tX) = S, when written in terms of the matrix coef-
ficients of X, yields a generating set of n2 polynomials for the ideal of Spn
in k[X11, X12, . . . , Xnn].

fij =
n∑

k=1

xikxj,n+k − xi,n+kxjk − bij , bij =
{

1 if j=n+i
−1 if j=i−n
0 elsewhere

 

affine algebraic group that will be developed later (see Theorem 3.8) we
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As fij = −fji, we obtained a set of generators with less than n(n−1)/2
elements. The irreducibility of Spn is far from evident. A proof of this fact
— similar to the one outlined for the irreducibility of the orthogonal group
— can be obtained generating an arbitrary symplectic transformation by
“symplectic transvections” and then applying Theorem 5.4.

Example 2.16. The projective general linear group is defined as the
quotient PGLn = PGLn(k) = GLn /Z(GLn) where Z(GLn) = k∗Id. The
projective general linear group is at this stage of the development of the
theory more complicated to define than the other classical groups: it is
a quotient of an affine algebraic group by a closed normal subgroup. All
the other classical groups will appear naturally as subgroups of the general
linear group.
an affine algebraic group by a normal closed subgroup is an affine algebraic

The fibers of the morphism GLn → PGLn are isomorphic to Z(GLn),
that is a one dimensional variety. It follows from Theorem 1.5.4 that
dim(PGLn) = n2 − 1.

As we show later, k[PGLn], is the subalgebra of k[GLn] consisting of
the polynomials that are invariant for the action of k∗ Id = Z(GLn). This
action is given explicitly for a Id ∈ Z(GLn) as: a Id ·p(X11, . . . , Xnn) =
p(aX11, . . . , aXnn); a Id · 1

det = 1
an det .

An elementary calculation shows that

k[PGLn] =
∞⊕
r=0

k[X11, . . . , Xnn]rn
detr

,

where k[X11, . . . , Xnn]rn denotes the subspace of homogeneous polynomials
in k[X11, . . . , Xnn] of degree rn.

If m : PGLn×PGLn → PGLn is the multiplication map, then m# is
the restriction to k[PGLn] of m#

GLn
: k[GLn] → k[GLn]⊗ k[GLn].

As k[PGLn] ⊂ k[GLn], it follows that PGLn is irreducible.
Some other information concerning this group can be found in Exercises

9 and 10.

Observation 2.17. There exist examples of algebraic groups that are
not affine varieties. For example, an elliptic curve is a projective algebraic
group of dimension one. For the general theory of projective algebraic
groups — abelian varieties — the reader can consult [104].

Example 2.18. If U2 =
{

( 1 a
0 1 ) : a ∈ k} then the map φ : U2 → Ga,

defined as ( 1 a
0 1 ) 7→ a is an isomorphism of affine algebraic groups.

 

We postpone until Chapter 7 the proof that the quotient of

group (see Theorem 7.5.3, and also Observation 5.7.1).
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Definition 2.19. A (rational) character — or simply a character — of
an affine algebraic group G is a morphism of algebraic groups γ : G→ Gm.
We denote as X (G) the group of all rational characters of G and as 1G

(or if it is clear from the context just as 1) the trivial character, i.e. the
character that takes the value 1 for all x ∈ G.

From now on, unless explicitly stated, we work only with affine al-
gebraic groups. The reader should be aware that the word affine will be
frequently dropped from our notations when dealing with (affine) algebraic
groups.

3. Subgroups and homomorphisms

In this section we exploit the consequences for an affine algebraic group
of the interaction between the abstract group structure and the geometry
of the underlying variety.

Lemma 3.1. Let G be an affine algebraic group, U and V open subsets
of G with V dense. Then G = UV ; in other words, each element of G is
the product of an element of U and an element of V .

Proof: The inversion and the right translation by a fixed element are
isomorphisms of algebraic varieties. Then xV −1 = {xv−1 : v ∈ V } is an
open and dense subset of G for all x ∈ G. Thus, xV −1 ∩U 6= ∅ and we can
find a ∈ U and b ∈ V such that xb−1 = a. ¤

Lemma 3.2. Let G be an affine algebraic group and H an abstract
subgroup, then H is an algebraic subgroup of G.

Proof: Consider the product m : G×G→ G. As m(H ×H) ⊂ H we
deduce that m

(
H ×H

) ⊂ H. Then m
(
H ×H

) ⊂ H and this means that
H is closed under multiplication. Proceeding similarly for the inversion
map we conclude that H is an abstract subgroup and hence an algebraic
subgroup. ¤

Theorem 3.3. Let G be an affine algebraic group and H an abstract
subgroup that is also a constructible subset of G. Then H is an algebraic
subgroup (i.e. it is closed in G).

Proof: Since H is constructible there is a non empty open subset of
H contained in H. By translation of this open subset by elements of H we
deduce that H is open in H. As H is an affine algebraic group and H is
open and dense in H, using Lemma 3.1 we deduce that H = HH = H. ¤

Observation 3.4. Let G be an affine algebraic group and H ⊂ G
a closed subgroup. Then H is a normal subgroup if it is normal as an
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abstract subgroup. Observe that this use of the word normal does not lead
to confusion, since an algebraic group is non singular, and hence it is a
normal variety.

Theorem 3.5. Let ϕ : H → G be a morphism of affine algebraic
groups. Then:
(1) Ker(ϕ) ⊂ H is a closed normal subgroup.
(2) Im(ϕ) ⊂ G is a closed subgroup.
(3) dimH = dim Ker(ϕ) + dim Im(ϕ).

Proof: (1) This follows from the fact that ϕ is a continuous function.
(2) The subgroup Im(ϕ) is constructible by Theorem 1.4.91. From Theorem
3.3 we deduce that Im(ϕ) is a closed subgroup of G.
(3) The fibers of ϕ are the cosets of Ker(ϕ) in H, and hence they are
isomorphic as algebraic varieties to Ker(ϕ). By Theorem 1.5.4, generically
their dimension equals dimH − dim Im(ϕ). ¤

Observation 3.6. (1) The reader should be aware that a bijective
morphism of algebraic groups need not be an isomorphism. Assume that
chark = p 6= 0. Then the Frobenius morphism F : Ga → Ga, F(x) = xp, is
an example of this situation.
(2) As we already mentioned, we will prove in Theorem 7.5.3 that if H
is an affine algebraic group and K a closed normal subgroup, then H/K
is also an affine algebraic group that verifies the usual universal property.
Given a morphism ϕ : H → G, we can construct a bijective morphism
of algebraic groups H/Ker(ϕ) → Im(ϕ). The example of the Frobenius
morphism F : Ga → Ga shows that one cannot guarantee that this map is
an isomorphism.

Observation 3.7. As an easy corollary of Theorem 3.3, we deduce
that if H,K ⊂ G are closed subgroups of G, with K normalizing H, then
HK is a closed subgroup of G. Indeed, HK is constructible as it is the
image of the morphism m : H ×K → G.

Theorem 3.8. Let G be an affine algebraic group.
(1) For x ∈ G there is only one irreducible component containing x. These
irreducible components are also the connected components of G.
(2) The irreducible component containing the identity (that will be called
G1) is a normal closed subgroup of finite index in G.
(3) For an arbitrary x ∈ G, the irreducible component that contains x is
xG1, and hence it is isomorphic to G1.
(4) If H ⊂ G is a closed subgroup of G of finite index, then G1 ⊂ H. In
particular, G1 is the only irreducible algebraic subgroup of G of finite index.
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(5) If G and H are affine algebraic groups and ϕ : H → G is a morphism,
then ϕ(H1) = ϕ(H)1.

Proof: (1) It is enough to prove the assertion for x = 1. Indeed,
if X is an irreducible component of G containing x ∈ G, then x−1X is
an irreducible component of G containing 1. Let X and Y be irreducible
components of G containing 1, then XY is an irreducible set containing
X · 1 = X and 1 · Y = Y . Hence, X = Y = XY . Note that in particular,
G1G1 = G1.
(2) We already proved that G1G1 = G1. If i is the inversion map, then
i(G1) is an irreducible component of G and contains 1. Hence, i(G1) =
G1. The fact that G1 is a normal subgroup is proved similarly. As the
conjugation map is an isomorphism, it follows that if x ∈ G, then x−1G1x
is an irreducible component that contains 1. Hence, x−1G1x = G1. Since
there are only a finite number of irreducible components, it follows that G1

has finite index.
(3) This property has already been proved.
(4) Let H ⊂ G be a closed subgroup of finite index. Call H1 the irreducible
component of H that contains 1; then H1 ⊂ G1. If H has finite index
in G so does H1 and then H1 has finite index in G1. This contradicts the
hypothesis about the irreducibility of G1 unless H1 = G1 and then G1 ⊂ H.

If H is irreducible and closed as it contains 1, we deduce that H ⊂
G1. If moreover, H has finite index in G, we just proved that H ⊃ G1.
Consequently H = G1.
(5) The subgroup ϕ(H1) is closed and connected in ϕ(H) and has finite
index. Then ϕ(H1) = ϕ(H)1. ¤

Corollary 3.9. Assume that G is an affine algebraic group and that
ϕ : G→ G is an automorphism of G. Let H ⊂ G be a closed subgroup such
that ϕ(H) ⊂ H. Then ϕ(H) = H.

¤
The preceding theorem justifies the following definition.

Definition 3.10. An affine algebraic group G is connected if the un-
derlying algebraic variety is irreducible. In other words, G is connected if
G = G1. Recall that G1 is the irreducible component of G containing 1.

4. Actions of affine groups on algebraic varieties

The interpretation of affine algebraic groups as groups of transforma-
tions of a geometric object will be of crucial importance to the theory. This
perspective leads to the concept of G–variety that we define below.

 

Proof: See Exercise 13.
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Definition 4.1. Let X be an algebraic variety G be an affine algebraic
group. A left regular action of G on X is a morphism of varieties ϕ :
G×X → X that is also an action of the abstract group G on the underlying
set of X. In this situation it is customary to say that X is an algebraic
G–variety or a G–variety. Sometimes it is said that X is a G–space. In a
similar manner we define a right regular action.

Observation 4.2. If X is a G–variety and we fix a ∈ G, the map
ϕa : X → X defined as ϕa(x) = a · x is an isomorphism of algebraic
varieties with inverse ϕa−1 ; moreover, ϕ1 = idX . We will also consider
the orbit map πx : G → X, πx(a) = a · x, for a fixed point x ∈ X. The
morphism G×X → X ×X, (a, x) 7→ (a, a · x), is also called the orbit map.

Sometimes we will abbreviate our notations and say simply that G acts
on X and the fact that the action is regular will be implicit.

Example 4.3. (1) Let G be an algebraic group. The product of G
defines a left and a right regular action ofG on itself by the formula a·b = ab,
a, b ∈ G.
(2) Another very useful action associated to the affine algebraic group G,
is the action c : G × G → G of G on itself given by conjugation, i.e.,
c(a, b) = a · b = aba−1, a, b ∈ G. This action has the particularity that
G operates on itself by automorphisms of the group, i.e., for an arbitrary
a ∈ G, the map ca : G → G, ca(b) = aba−1 is an isomorphism of algebraic
groups. This action induces a homomorphism of abstract groups — also
called c — c : G → Aut(G). The image of this morphism is the abstract
group of inner automorphisms of G.

Next we show that the basic concepts related to the theory of actions

in the category of algebraic varieties.

Definition 4.4. Let G be an algebraic group and X a G–variety. If
x ∈ X, the G–orbit of x is πx(G) (see Appendix, paragraph 2.2.4). It will
be denoted as O(x) and explicitly we have that O(x) = {a · x : a ∈ G}.

The stabilizer or the isotropy subgroup of x ∈ X is Gx = {a ∈ G :
a · x = x}.

If Gx = G, we say that x is a fixed point for the action. We denote the
set of all fixed points as GX.

We say that X is a homogeneous space if the action of G on X is
transitive. An action is transitive if there exists x ∈ X such that O(x) = X.

Observation 4.5. Let X be an algebraic G–variety, if x ∈ X the
isotropy subgroup Gx

 

is a closed subgroup of G (see Theorem 4.16). Notice

of groups on abstract sets (see Appendix, paragraph 2.2.4), can be defined
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that in the case of a homogeneous space, if the orbit of one point coincides
with the original variety, the same happens with the orbit of all the other
points and all the isotropy subgroups are conjugate. More generally, if
O(x) = O(y), then the subgroups Gx and Gy are conjugate. It is also clear
that any orbit is automatically G–stable and also a homogeneous space.

Definition 4.6. Let G be an affine algebraic group. The orbit of an

the conjugacy class of a, and its isotropy group is called the centralizer of
the element a ∈ G. The set of fixed points of this action is the center of
the group.
below.

Example 4.7. Let G be an affine algebraic group, and consider the
action of G × G on G given by (a, b) · c = acb−1. Then the orbit of 1 is
G, and the isotropy group of 1 is the diagonal ∆(G) =

{
(a, a) : a ∈ G

}
,

Observe that set theoretically, G is isomorphic to the quotient (G×G)/∆(G)
via θ : (G × G)/∆(G) → G, θ(a) = (a, 1)∆(G). We will prove later (see

The category of algebraic G–varieties has the obvious morphisms that
will be defined below.

Definition 4.8. Let G be an affine algebraic group and let X and Y
be G–varieties. A morphism of algebraic varieties ϕ : X → Y is called a
G–morphism or an equivariant morphism or a morphism of G–varieties if
ϕ(a · x) = a · ϕ(x) for all a ∈ G and x ∈ X.

Definition 4.9. Let V be a finite dimensional vector space considered
as an affine variety. Suppose that G is an affine algebraic group that acts
regularly on V , by linear transformations. In other words, the action ϕ :
G× V → V is such that for all a ∈ G, the map ϕa : V → V , ϕa(v) = a · v
is a k–linear map. We call V a rational representation of G or a rational
G–module. Later we will generalize this definition to infinite dimensional

Observation 4.10. In the situation of an abstract linear action ϕ :
G×V → V , we define a homomorphism ρ : G→ GL(V ) of abstract groups
as follows: ρ(a)(v) = a ·v. In the case that dim(V ) = n we may view ρ as a
homomorphism ρ : G → GLn. The original action ϕ is regular if and only
if ρ is a morphism of affine algebraic groups.

Indeed, given a basis {v1, . . . , vn} of V , define cij : G → k via the
equality a · vi =

∑n
i=1 cij(a)vj . Since the action is regular the functions cij

are polynomial functions on G, and then the map ρ : G → GLn, ρ(a) =(
cij(a)

)
i,j=1,...,n

is a morphism of algebraic varieties. Conversely, if ρ is a

 

element a ∈ G under the conjugation action (see Example 4.3) is called

See Example 2.8 above, and Definition 4.13 and Theorem 4.16

Example 7.5.4) that θ is an isomorphism of algebraic varieties.

vector spaces (see Definitions 4.3.7 and 4.3.9).
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morphism, then the functions cij ∈ k[G] and ϕ : G × V → V is a regular
action.

The action of an algebraic group G on a variety X induces an action
of G on the structure sheaf of X. To avoid technicalities we restrict our
attention to the case thatX is affine. We will study this type of construction

Definition 4.11. Let G be an affine algebraic group and X an affine
left G–variety. The action of G on X induces a right action by translations

Observation 4.12. (1) The action of G on k[X] is an action by k–
algebra automorphisms of k[X]. In fact if a ∈ G, x ∈ X and f, g ∈ k[X],
we have that

(
(fg) ·a)(x) = fg(a ·x) = f(a ·x)g(a ·x) = (f ·a)(x)(g ·a)(x).

(2) In the particular case of the left and right actions of G on itself by
translations, the corresponding actions of G on k[G] are the following (f ·
a)(b) = f(ab) and (a · f)(b) = f(ba) for all a, b ∈ G and f ∈ k[G]. This
action is called the right (left) regular representation.
(3) It is clear that the right rational action of G on k[X] defined above can
always be extended to an action of G on k(X). More generally, an action on
a domain can be extended to an action on its field of fractions. In Exercise
14 we ask the reader to extend this construction to the case that X is an
irreducible algebraic variety and define a right action of G on k(X). Also,
the reader is asked to show that in general this action will not be locally
finite.

Definition 4.13. Let G be an affine algebraic group and X a G–
variety. If Y,Z ⊂ X are subsets, we define the transporter from Y to Z
as

TranG(Y,Z) = {a ∈ G : a · Y ⊂ Z} .
We define the stabilizer of Y as TranG(Y, Y ), and the centralizer of Y

as CG(Y ) =
⋂
y∈Y Gy.

Definition 4.14. Let H ⊂ G be a closed subgroup. Consider the
action of G on itself by conjugation. The normalizer of H in G is NG(H) =
TranG(H,H). It is the largest subgroup of G that contains H as a normal
subgroup. The centralizer CG(H) is defined similarly. The fact thatNG(H)
is an abstract subgroup will be verified in the observation that follows (see

Observation 4.15. (1) It is worth observing that in general the trans-
porter need not be an abstract subgroup of G but the centralizer is always
a subgroup.

 

at length in Chapter 6.

Corollary 4.18).

see Appendix, paragraph 2.4.
of G on k[X] as follows: a ∈ G, x ∈ X, f ∈ k[X], then (f · a)(x) = f(a · x),
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(2) In the case of the action by conjugation it is easy to see that a ∈
TranG(H,H) if and only if aHa−1 = H. This is a consequence of Corollary
3.9. Hence, NG(H) is an abstract subgroup of G.
(3) Moreover, CG(H) ⊂ NG(H) is a normal subgroup. Indeed, let h ∈ H,
c ∈ CG(H) and n ∈ NG(H). Then

(ncn−1)h(ncn−1)−1 = n
(
c(n−1hn)c−1

)
n−1 = n(n−1hn)n−1 = h .

Theorem 4.16. Let G be an affine algebraic group and X a G–variety.
Then,
(1) If Y, Z ⊂ X are subsets, with Z closed, then TranG(Y, Z) ⊂ G is a
closed subset. In particular, the stabilizer of Z is a closed submonoid of G.
(2) The isotropy subgroup of x ∈ X is a closed subgroup. In particular,
CG(Y ) is a closed subgroup.

(3) The set GX of fixed points of X is closed.
(4) If G is connected, then G stabilizes all the irreducible components of X.

Proof: (1) If πx denotes the orbit map for x ∈ X, then TranG(Y, Z) =⋂
y∈Y π

−1
y (Z) is a closed subset. The fact the stabilizer of a set is an abstract

monoid is obvious.
(2) This follows from the fact that Gx = TranG

({x}, {x})

(3) Let a ∈ G, and consider the action map ϕa : X → X, x 7→ a · x,
associated to a. The graph Γ(ϕa) =

{
(x, y) ∈ X × X : x = a · y} is a

closed subset of X × X. The set aX of points fixed by a is ∆−1
(
Γ(ϕa)

)
,

where ∆ denotes as usual the diagonal map. Hence, aX is closed in X, and
GX =

⋂
a∈G

aX is closed.
(4) Let X1 be an irreducible component of X. Then G ·X1 = ϕ(G ×X1)
is irreducible, where ϕ is the action map. Since X1 = 1 ·X1 ⊂ G ·X1 by
maximality it follows that G ·X1 = X1. ¤

Corollary 4.17. Let G be a connected algebraic group, and H ⊂ G a
finite normal subgroup. Then H ⊂ Z(G).

¤
Corollary 4.18. Let G be an affine algebraic group and H ⊂ G a

closed subgroup. Then NG(H) and CG(H) are closed subgroups of G. In
particular, Z(G) = CG(G) is closed.

Proof: This result follows by a direct application of Observation 4.15,
where we proved that NG(H) = TranG(H,H) is a subgroup of G, and
Theorem 4.16 part (1) where we proved that it is closed. Also CG(H) is a

 

Proof: See Exercise 6.

vation 4.5).
(see also Obser-
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closed subset by part (3) of Theorem 4.16 and the fact that it is an abstract
subgroup of G is well known. ¤

A crucial feature of the geometry of a regular action is that the orbits
are open in their closure. This fact establishes a basic difference in the
geometric properties of the actions in the category of algebraic varieties with
respect to the behavior in other categories: differential varieties, topological
spaces, etc.

Theorem 4.19. Let G be an affine algebraic group acting on an alge-
braic variety X. Then for all x ∈ X, O(x) is open in O(x).

Proof: Let x ∈ X and consider the dominant morphism ϕx : G →
O(x) = Y . Using Theorem 1.4.91 we deduce that its image O(x) contains
an open subset U of Y . Since O(x) is homogeneous, translating U by a
general element of G we conclude that that O(x) is open in Y . ¤

Corollary 4.20. Let G be an affine algebraic group and X an alge-
braic G–variety. Then the orbits are smooth algebraic G–varieties.

Proof: If O ⊂ X is an orbit, then O is a closed subvariety of X. Being
O open in O, it is an open subvariety of O, and hence an algebraic variety.
It is clear that with this induced structure, the restriction G × O → O is
a regular action. Moreover, since in an arbitrary algebraic variety there
exists a non empty open subset of regular points, by the homogeneity of
the orbit we conclude that all its points are regular. ¤

Corollary 4.21. Let G be an affine algebraic group and X an alge-
braic G–variety. Then there are closed G–orbits in X.

Proof: We can assume that G and X are irreducible. The proof
proceeds by induction on the dimension of X. If dimX = 0 there is nothing
to prove. Let x ∈ X, and consider Y = O(x)\O(x) that is a G–stable closed
subset of X and has dimension strictly smaller than the dimension of X.
If Y is empty, then O(x) is closed and the proof is finished. Otherwise we
deduce by induction that there are closed orbits in Y , since Y is closed in
X, these orbits will be closed in X. ¤

5. Subgroups and semidirect products

The next lemma shows that if H is a closed subgroup of G and I is its
associated ideal, then H is the stabilizer of I with respect to the action by
translations.

Lemma 5.1. Let G be an affine algebraic group and H a closed sub-
group. Call I = I(H) ⊂ k[G] the ideal associated to H. Then H = {a ∈
G : a · I = I}.
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Proof: If h ∈ H and f ∈ I, then (h · f)(a) = f(ha) = 0 for all a ∈ H.
Thus, h · f ∈ I, and h · I = I. Conversely, suppose that b ∈ G is such that
b · I = I and fix f ∈ I. Then, 0 = (b · f)(1) = f(b), and hence b ∈ H. ¤

The above lemma has also a right version that is left to the reader.

Definition 5.2. Let G be an affine algebraic group and S ⊂ G an
arbitrary subset. We define the closed subgroup generated by S as the
intersection of all closed subgroups H ⊂ G that contain S.

Observation 5.3. (1) It is very easy to show that the closed subgroup
generated by S is the smallest closed subgroup of G that contains S. We
will denote it as Ŝ.
(2) If S ⊂ G is a subset, then Ŝ = 〈S〉, where 〈S〉 is the abstract subgroup
generated by S.

For later use, we prove the following result concerning the irreducibility
of a group generated by irreducible subsets.

Theorem 5.4. Let G be an affine algebraic group and {Xi : i ∈ I} a
family of irreducible constructible subsets of G. Assume that 1 ∈ Xi for all
i ∈ I. Then the closed subgroup Ŝ, generated by S =

⋃
i∈I Xi is connected

and has the form Xe1
i1
· · ·Xen

in
, for a certain list of indexes {i1, . . . , in},

where ei = ±1.

Proof: Adding the sets {X−1
i }i∈I if necessary, we can suppose that

the family {Xi}i∈I is closed under inversion.
As the n–th fold product of elements of G is a morphism of algebraic

varieties, we conclude that all subsets of the form Xi1 · · ·Xin , ij ∈ I, are

over, the sets Xi1 · · ·Xin are closed and irreducible. Since any increasing

that there exists a sequence i1, . . . , in such that X = Xi1 · · ·Xin is irre-
ducible and maximal.

Next we prove that the set X just constructed is the closed subgroup
of G generated by S =

⋃
i∈I Xi.

By construction, 1 ∈ X, and using the continuity of the product we de-
duce that X ⊂ X ·X ⊂ Xi1 · · ·XinXi1 · · ·Xin . By maximality we conclude
that X ·X = X.

Since X ⊂ XX−1, we conclude by the maximality of X that X =
XX−1, and then X−1 ⊂ X. This means that X is a closed subgroup of G.

If we fix i ∈ I, as X ⊂ XiX, we conclude by maximality that X = XiX
and this implies that Xi ⊂ X.

 

constructible (see Theorem 1.4.91 and Exercise 1.20) and contain 1. More-

chain of irreducible subsets stabilizes (see Observation 1.4.64), it follows
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Since Xi1 · · ·Xin is constructible in G, it contains a dense open subset
of its closure X. Hence, by Lemma 3.1, X = Xi1 · · ·XinXi1 · · ·Xin . ¤

Corollary 5.5. Let G be an affine algebraic group generated by a
family of connected closed subgroups. Then G is connected. ¤

Example 5.6. As we mentioned before, Theorem 5.4 can be used as
a method to prove the connectedness of an algebraic group. For example,
in Exercise 21 the reader is asked to prove that SL2 is generated by the
connected subgroups

U =
{

( 1 a
0 1 ) : a ∈ k} ,

U− =
{

( 1 0
a 1 ) : a ∈ k} ,

T =
{(

t 0
0 t−1

)
: t ∈ k∗} .

This implies that SL2 is connected.
More generally, SLn is generated by Un, Dn and U−n — this last sub-

group is defined in the evident manner — and hence it is irreducible. In
particular in this way we can deduce that det−1 is an irreducible polyno-
mial in k[X11, . . . , Xnn].

Lemma 5.7. Let T be an algebraic torus of dimension n. The abstract
subgroup FO(T ) =

{
t ∈ T : tn = 1 for some n ≥ 0

}
is dense in T . In

particular, FO(T ) generates T .

Proof: First assume that dimT = 1; i.e. that T = Gm = k∗. Since k
is algebraically closed, for all primes q ∈ N, q 6= chark the equation xq = 1
has at least a solution different from 1. As all these solutions are different,
the set of elements of finite order in k∗ is infinite. Since the only closed
subset of k∗ with infinite elements is k∗ itself, the result follows.

If dimT = n > 1, then (a1, . . . , an)m = 1 if and only if ami = 1 for
all i = 1, . . . , n. Hence, FO(T ) = FO(Gm)× · · · × FO(Gm)︸ ︷︷ ︸

n

, and FO(T ) =

k∗ × · · · × k∗ = T . ¤
Observation 5.8. From the proof of the preceding lemma we deduce

that the subgroup FO(T )m ⊂ T of elements of order smaller than or equal to
m is finite. Since FO(T ) =

⋃
m FO(T )m, we have constructed as increasing

sequence of finite subgroups whose union is dense in T .

Lemma 5.9. Let k be an algebraically closed field of characteristic zero,
and 0 6= λ ∈ Ga. Then Ga = {̂λ}.

Proof: Indeed, {nλ : n ∈ Z} is an infinite subset of k, and thus its
closure is k. ¤
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We finish this section considering the construction of the semidirect
product in the category of affine algebraic groups.

Definition 5.10. Let H and N be affine algebraic groups and as-
sume that H acts on N by automorphisms of affine algebraic groups.
Then the affine variety N ×H becomes an algebraic group with operations
(n1, x1)(n2, x2) =

(
n1(x1 · n2), x1x2

)
and (n1, x1)−1 = (x−1

1 · n−1
1 , x−1

1 ),
called the semidirect product of N and H, and denoted as N oH.

Observation 5.11. In the situation above we have a short exact se-
quence of affine algebraic groups

1 → N → N oH → H → 1

where the first morphism is the inclusion of N → NoH, n 7→ (n, 1) and the
second is the projection (n, x) 7→ x. The inclusion H ↪→ N oH, x 7→ (1, x)
splits the projection.

Example 5.12. Consider the action of Gm on Ga given by a ·c = a−2c.
The product in GaoGm, is (c, a).(d, b) = (c+a−2d, ab). It is easy to verify
that the map θ : GaoGm → B2, θ(c, a) =

(
a−1 −ac
0 a

)
, is an isomorphism of

affine algebraic groups.
Hence, B2 is the semidirect product of Ga and Gm. This observation

is a particular case of a general theorem on the structure of solvable affine

Observation 5.13. (1) Let G be an affine algebraic group and N,H
closed subgroups such that N is normal, N ∩H = {1} and NH = G. If we
let H act on N by conjugation, then G = N oH as abstract groups. How-
ever, the map m : N oH → G, m(n, h) = nh that is a bijective morphism
of groups, is not necessarily an isomorphism of algebraic varieties, as Ex-
ample 5.15 shows. Thus, G is not necessarily isomorphic to the semidirect
product N oH as algebraic groups.
(2) Assume that G, N and H are as above. Consider the set theoretical
maps α : G → H and β : G → N defined as α(x) = h and β(x) = n if
x ∈ G is written uniquely as x = nh. The map α can be characterized by the
condition that xα(x)−1 ∈ N for all x ∈ G. Similarly, β can be characterized
by the condition that xβ(x)−1 ∈ H for all x ∈ G. In other words, if
m−1 is the set theoretical inverse map of m we have that α = pH◦m−1

and β = pN ◦m−1. It follows immediately that m−1 is a morphism of
algebraic varieties if and only if α and β are morphisms. As for all x ∈ G,
β(x)α(x) = x, we conclude that m−1 is a morphism of algebraic varieties
if and only if α or β are morphisms.

Definition 5.14. Let G be an affine algebraic group and N and H
closed subgroups with N normal in G. Assume that N ∩H = {1} and that

 

algebraic groups, see Theorem 5.8.11.
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G = NH. We say that G is the semidirect product of the subgroups N and
H if the multiplication map m : N×H → G is an isomorphism of algebraic

Example 5.15. Here we exhibit an example that shows that the ad-
ditional condition on the invertibility of the map m as a morphism is not
always true.

Let k be an algebraically closed field of characteristic two and consider
inside of Gm × Gm the subgroups H = {(x, x−1) : x ∈ Gm} and K =
{(x, x) : x ∈ Gm}. For an arbitrary x ∈ Gm we call x• the only element of
Gm with the property that (x•)2 = x. We have the following equality for
x, y ∈ Gm:

(x, y) =
(
y−1(xy)•, y(xy)•−1)((xy)•, (xy)•

)
.

Hence, H∩K = {1} and HK = Gm×Gm. The morphism m : H×K →
Gm × Gm is given explicitly by the formula (z, z−1)(w,w) 7→ (zw, z−1w).
Clearly, m is an isomorphism if and only if j : Gm × Gm → Gm × Gm,
j(x, y) = (xy, x−1y), is an isomorphism. But this is not true, because
the corresponding comorphism j# : k[X,X−1]⊗ k[Y, Y −1] → k[X,X−1]⊗
k[Y, Y −1], j# : (Xn ⊗ Y m) = Xn−m ⊗ Y n+m, is not surjective. Indeed,
1⊗ Y is not in the image of j#.

Next we define the descending series of subgroups associated to the
concepts of nilpotent and solvable group.

Definition 5.16. Let G be an affine algebraic group and H,K ⊂ G
closed subgroups. The commutator [H,K] of H and K is the (abstract)
subgroup generated by the set of commutators aba−1b−1, a ∈ H b ∈ K.
The derived group is defined as the subgroup G′ = [G,G].

Observation 5.17. Since the abstract subgroup generated by a non
irreducible subset is not necessarily closed, the commutator of two closed

Theorem 5.18. Let G be an affine algebraic group and H,K ⊂ G two
closed subgroups. Then
(1) If either H or K is connected, then [H,K] is a closed connected subgroup
of G.
(2) If H,K are normal subgroups, then [H,K] is closed. In particular,
[G,K] is closed for any closed normal subgroup K.

Proof: (1) Assume that H is connected, Since [H,K] is generated by
the family of irreducible subsets Ak = {hkh−1k−1 : h ∈ H} for k ∈ K,
Theorem 5.4 guarantees that [H,K] is a closed irreducible subgroup.

 

subgroups is not necessarily closed, see Exercise 7.

varieties. See Observation 5.13.
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(2) By part (1), [H1,K] and [H,K1] are irreducible closed normal sub-
groups. Thus, the product L = [H1,K][H,K1] is an irreducible closed
subgroup of G. It is a purely abstract group theoretical result that L has
finite index in [H,K]. To see this, first consider the group G/L and the
images of H1 and K1 in G/L. These images centralize the images of K and
H respectively and as the indexes of H1 in H and K1 in K are finite, there
are only finitely many commutators in G/L formed from elements in the
images of H and K.
[H,K]/L is finite. ¤

Definition 5.19. Assume that G is an affine algebraic group.
(1) Consider the series of closed normal subgroups

G0 = G ⊃ G1 ⊃ · · · ⊃ Gn ⊃ · · · ,

defined inductively as G1 = G′ = [G,G], and Gn = [Gn−1, Gn−1] if n > 1.
The group G is solvable if for some n ≥ 0, Gn = {1}.
(2) Consider the series of closed normal subgroups

G[0] = G ⊃ G[1] ⊃ · · · ⊃ G[n] ⊃ · · · ,

defined inductively as G[0] = G, G[1] = G′ and G[n] =
[
G,G[n−1]

]
if n > 1.

The group G is nilpotent for some n ≥ 0, G[n] = {1}.

6. Exercises

1. Consider GLn = Mn(k)det ⊂ Mn(k) = An2
and the closed embed-

ding f : GLn → An2 × A1, f(A) =
(
A, 1

detA

)
. Describe explicitly the

operations in GLn via this identification.

2. Consider in the variety A2 an operation of the form

mc

(
(x1, y1), (x2, y2)

)
=

(
x1 + x2, y1 + y2 + c(x1, x2)

)
,

where c : A1 × A1 → A1 is a morphism.
(a) Write down the conditions on c that make (A2,mc) an affine algebraic
group with (0, 0) as neutral element. We denote this algebraic group as A2

c

(b) Prove that c(x1, x2) = x1x2(x1+x2) verifies the conditions of (a). Prove
that if chark = 3, then A2

c is not isomorphic to A2.

(c) For c as in (b), show that θ : A2
c → GL2, θ(x1, y1) =

(
1 x1 x2

1 y1
0 1 2x1 x

2
1

0 0 1 x1
0 0 0 1

)
is

an injective morphism of algebraic groups.

 

Using Theorem 2.3 of the Appendix we deduce that
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3. Assume that k is a field of characteristic p > 0 and endow A1×A1 \
{0} with the following product: (x1, y1)(x2, y2) = (x1 + yp1x2, y1y2).
(a) Show that this structure of affine algebraic group on A1 ×A1 \ {0} can
be interpreted as a semidirect product Ga oGm.
(b) Show that equipped with this structure A1 × A1 \ {0} is isomorphic to
the following subgroup U of GL3, U =

{(
a 0 0
0 ap b
0 0 1

)
: a 6= 0, a, b ∈ k

}
.

(c) Prove that the above group is not abelian and compute its center as
well as its commutator subgroup.

4. Let A be a finite dimensional k–algebra and call A∗ the set of in-
vertible elements of A. We consider A with its natural structure of affine
space.
(a) Prove that A∗, the set of invertible elements of A, is an affine open
subset. Hint: Recall that a ∈ A is invertible if and only if the map
x 7→ ax : A→ A is invertible.
(b) Prove that the product A × A → A is a polynomial map. Conclude
that A∗ is an affine algebraic group.

5. Prove that Gm, Ga, GLn, Bn, Dn, Un and SLn are connected groups.
In the case of SLn prove first that det−1 is an irreducible polynomial.

6. (a) Assume that G is a connected affine algebraic group and that H
is a finite normal subgroup of G, prove that H ⊂ Z(G).
(b) Let G be an affine algebraic group. Prove that if ϕ : G → G is an
automorphism, then ϕ(G1) = G1.

7. Consider in GL2 the elements a =
(

1 0
0 −1

)
and b =

(
1 1
0 −1

)
.

(a) Prove that a2 = b2 = 1, and that ab 6= ba.
(b) Compute 〈abab〉. Prove that it is not a closed subgroup of GL2.
(c) Deduce that

〈{a, Id}, {b, Id}〉 is not a closed subgroup of GL2.

8. Let G be an affine algebraic group, K a Zariski dense abstract sub-
group of G and ϕ : G→ k is a polynomial function such that ϕ|K : K → k
is an abstract multiplicative character of K. Prove that ϕ is a character of
G. Hint: Consider (x, y) 7→ ϕ(xy)ϕ(x−1)ϕ(y−1) : G×G→ k.

9. In this exercise we prove some of the assertions implicit in the con-
struction of PGLn.

(a) Call G the affine algebraic variety defined by
⊕∞

r=0
k[X11,...,Xnn]rn

detr ⊂
k[GLn]. Show that the comorphisms corresponding to the multiplication
and the inverse in GLn leave this subalgebra invariant. Conclude that G is
an affine algebraic group.
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(b) Prove that the inclusion
⊕∞

r=0
k[X11,...,Xnn]rn

detr ↪→ k[GLn] induces a sur-
jective homomorphism of algebraic groups ϕ : GLn → G. Show that
Kerϕ = Z(GLn) = k∗ Id.
(c) Prove that the restriction of ϕ to SLn is surjective and compute its
kernel.

10. Prove that k[PGLn] is not an unique factorization domain and that
k[SLn] is an unique factorization domain.

11. Prove that ϕ : SLn×Gm → GLn, ϕ(A,α) = αA is a surjective
morphism of affine algebraic groups. Compute the kernel of ϕ.

12. Suppose that chark = p 6= 0. Prove that ϕ : Ga×A1 → A1 defined
as ϕ(a, x) = a ·x = ap+x is a regular action of Ga on A1 with the property
that the orbit map is not separable.

13. Assume that G is an affine algebraic group and that H is a closed
subgroup. Let ϕ : G → G be a morphism of algebraic groups such that
ϕ(H) ⊂ H, then ϕ(H) = H. Hint: Assume first that H is connected and
then for the non connected case apply Theorem 3.8.

14. (a) Let G be an affine algebraic group and X be an irreducible
G–variety. Assume that U ⊂ X is a non empty open subset of X. If
f ∈ OX(U) then f ·x ∈ OX(x ·U) for x ∈ G. Conclude that in this manner
if f ∈ k(X) and x ∈ G, then one can define f · x ∈ k(X) and obtain a
right action of G on k(X). Show that if X is affine, then the above action
coincides with the one defined in Observation 4.12.
(b) Show that in the case that X = G and the action is by left translations,
if f ∈ k(G) is such that {f · x : x ∈ G} generates a finite dimensional
vector space, then f ∈ k[G]. Hint: Assume first that G is connected and
consider a basis of the space generated by {f · x : x ∈ G}. Find an element
g ∈ k[G] such that (g · x)f ∈ k[G] for all x ∈ G and show that the ideal
{h ∈ k[G] : hf ∈ k[G]} has no zeroes in G.

15. Let G be an affine algebraic group and X an algebraic G–variety.
Call p : X̃ → X the normalization of X. Consider the morphism ψ :
G × X̃ → X. ψ(a, x) = a · p(x). Prove that ψ induces a morphism ψ̃ :
G× X̃ → X̃ that is also a regular action. Prove that with respect to these
actions p is a G–equivariant morphism.

16. (a) Assume that θ : Gm → Gm is an automorphism of affine alge-
braic groups, prove that θ(x) = x or θ(x) = x−1 for all x ∈ Gm.
(b) Let T be an n–dimensional torus. Prove that X (T ) ∼= Zn.
(c) Prove that the group of algebraic group automorphisms of an n–dimen-
sional torus is {A ∈ GLn(Z) : det(A) = ±1}.
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17. Compute X (Ga), and describe the algebraic group automorphisms
of Ga.

18. Let G be a connected affine algebraic group.
(a) Prove that X (G) is an abelian torsion-free group.
(b) Let Y ⊂ X (G) be a generator as a k–space of k[G]. Then Y = X (G),
and k[G] = kX (G), the group algebra of X (G).

19.

Aut(a) =
{
x ∈ GL(a) : x

(
[a, b]

)
=

[
x(a), x(b)

]
,∀a, b ∈ a

} ⊂ GL(a) .

Prove that Aut(a) is a closed subgroup of GL(a) and conclude that it
is an affine algebraic group. Generalize to other structures.

20. Prove that the commutator group of GLn is SLn and that the
commutator group of SLn is SLn. Conclude that SLn has only trivial
characters.

21. Prove that the subgroups U,U− and T considered in Example 5.6
generate SL2 as an algebraic group.

22. Let G be an affine algebraic group and V a finite dimensional
rational G–module of dimension n.
(a) Consider the right action of G on V ∗ defined as follows: if f ∈ V ∗, x ∈ G
and v ∈ V , then (f · x)(v) = f(x · v). Show that in this manner we can
define a rational action of G on V ∗. This action is called the contragradient
representation.
(b) Consider the natural extension of the above contragradient represen-
tation to the symmetric algebra S(V ∗) = k[V ]. Prove that for all n the
subspaces

⊕n
i=0 S

i(V ∗), i.e. the subspaces of polynomials of degree smaller
than or equal to n, are finite dimensional rational G–modules.

23. (a) Let G be an affine algebraic group and V a finite dimensional
rational G–module. Prove that the action ϕ : G×V → V induces an action
ϕ̃ : G × P(V ) → P(V ), x · [v] = [x · v], in such a way that the projection
morphism π : V \ {0} → P(V ) is G–equivariant.
(b) If G = GL(V ), find the G–orbits for the action on V and on P(V ). Find
the isotropy group of a arbitrary point for both actions.

24. Let V be a finite dimensional vector space. Prove that GL(V ) acts
transitively on the flag variety of V .

If B = {e1, . . . , en} is a basis of V , find the isotropy group of the
canonical flag 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , en〉 = V in terms of the
matrix representation of GL(V ) obtained from the basis given above.

 

See also Exercise 5.16.

Assume that a is a finite dimensional Lie algebra. Consider
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25. Let G be an affine algebraic group acting regularly on an algebraic
variety X.

(a) Prove for all x ∈ X, if y ∈ O(x), then dimO(y) ≤ dimO(x), with
equality if and only if y ∈ O(x).

(b) Deduce that if x, y ∈ X are such that y ∈ O(x) and x ∈ O(y), then
O(x) = O(y).

26. Let H ⊂ GLn be the subgroup consisting of the monomial matrices,
i.e., the matrices with exactly one non zero element on each row and each
column.
(a) Prove that H is a closed subgroup of the general linear group.
(b) Prove that H1 = Dn and that the number of connected components of
H is n!.
(c) Prove that NGLn(Dn) = H.

27. Consider s =
[(

i 0
0 −i

)] ∈ PGL2(C). Compute CPGL2(C)(s) and
show that it is not connected.

28. Prove the following group theoretical assertions.
(a) If S is a solvable group and T is a subgroup, then T is solvable.
(b) If N is a normal subgroup of a solvable group S, then S/N is solvable.
(c) Conversely, if N C S is a normal subgroup such that N and S/N are
solvable, then S is solvable. In particular, if S, T ⊂ G are solvable and
normal, then ST is solvable and normal.

29. Prove that the connected component of the identity of the center
of a nilpotent affine algebraic group is non trivial.

 



CHAPTER 4

Algebraic groups: Lie algebras and
representations

1. Introduction

In this chapter we consider the basic aspects of the representation the-
ory of affine algebraic groups. We also introduce a crucial linearization
process that consists in taking the Lie algebra associated to the group. We
show that the polynomials on the group have a natural Hopf algebra struc-
ture, and use that structure to describe the representations as well as the
Lie algebra.

We proceed now to summarize the contents of the different sections of
this chapter.

In Section 2 we define the concept of Hopf algebra and show that the al-
gebra of polynomial functions on an affine group has a natural Hopf algebra
structure. This structure, induced on the algebra of polynomial functions
by the multiplication, the unit and the inversion map of the group, pro-
vides some basic tools that will be used throughout the book. This Hopf
algebra structure plays — for the category of affine algebraic groups — the
same operational role that the differential calculus plays in the theory of
Lie groups.

In Section 3 we define the category of rational modules, i.e. the cate-
gory of representations, of the affine algebraic group, and prove that it is
equivalent to the category of comodules over the corresponding Hopf alge-
bra of polynomials on the group. We show that the regular representation
of G on k[G] is rational, and deduce a crucial result: the affine algebraic
groups are the closed subgroups of the general linear groups.

In Section 4 we consider the basic properties of the representations of
SL2.

In Section 5 we consider the first properties of invariants and semi–
invariants of linear actions.

131
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In Sections 6 and 7 we reproduce for affine algebraic groups the usual
linearization process performed in the theory of Lie groups. We define the
Lie algebra associated to a group and the differential of a morphism. In
our context the formulæ concerning this linearization process become very
simple thanks to the systematic use of the notations coming from the Hopf
algebra structure on the polynomials and the comodule structure of the
rational modules.

In this chapter we have followed without many changes — except per-
haps for the Hopf algebraic emphasis — the standard textbooks on the
subject. In particular the material presented here also appears (partially
or totally, explicitly or implicitly) in [10], [18], [69], [71], [75], [141] and
[142]. The Hopf algebraic viewpoint, that in our opinion is extremely handy
for the manipulation of the formulæ in our theory, has been emphasized in
[69], [71] and in [148].

2. Hopf algebras and algebraic groups

The algebra of polynomial functions on an affine algebraic group is
the most typical example of a commutative Hopf algebra. In this section
we recall the basic definitions of Hopf algebra theory and establish some
notations that will be used throughout the book.

Definition 2.1. Let k be a field. A k–coalgebra is a triple (C,∆, ε)
consisting of a k–space C, and two k–linear maps ∆ : C → C⊗C, ε : C → k,
that make the diagrams that follow commutative:

C

∆

²²

∆ // C ⊗ C

∆⊗id

²²
C ⊗ C

id⊗∆
// C ⊗ C ⊗ C

C
id

zztttttttttt

∆

²²

id

%%JJJJJJJJJJ

C ⊗ k C ⊗ C
id⊗ε

oo
ε⊗id

// k⊗ C

The map ∆ is called the comultiplication or coproduct of the coalgebra,
and the map ε is called the counit. The first diagram reflects the so–called
coassociativity of ∆ and the second is called the counitality of C.
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If C and D are coalgebras, a k–linear map f : C → D is said to be a
morphism of coalgebras if the diagram below is commutative

C
f //

∆

²²

D

∆

²²
C ⊗ C

f⊗f
// D ⊗D

and εf = ε.
In the case that C ⊂ D, we say that C is a subcoalgebra of D if the

inclusion map ι : C ⊂ D is a morphism of coalgebras.

Notation 2.2 (Sweedler’s notation). In view of the coassociativity of
∆ we can define

∆2 = (∆⊗ id)∆ = (id⊗∆)∆ : C → C ⊗ C ⊗ C .

More in general, we have

(∆⊗ id⊗ · · · ⊗ id)∆n−1 = · · · = (id⊗ · · · ⊗ id⊗∆)∆n−1 : C → C⊗n+1.

We define ∆n = (∆⊗ id⊗ · · · ⊗ id)∆n−1.
If we write ∆n(c) =

∑
c1 ⊗ c2 ⊗ · · · ⊗ cn+1, then for example

∆2(c) =
∑

c1 ⊗ c2 ⊗ c3 =
∑

c1,1 ⊗ c1,2 ⊗ c2 =
∑

c1 ⊗ c2,1 ⊗ c2,2 .

In the above notation — that makes sense thanks to the coassociativity
of ∆ — the main property of ε can be read as c =

∑
ε(c1)c2 =

∑
c1ε(c2),

and the definition of morphism of coalgebras becomes:
∑
f(c)1 ⊗ f(c)2 =∑

f(c1)⊗ f(c2).

Observation 2.3. If (C,∆, ε) is a coalgebra and c ∈ C is an arbitrary
element, then there exists Cc ⊂ C subcoalgebra of C that is finite dimen-
sional and c ∈ Cc. We ask the reader to prove this elementary but very

Definition 2.4. Let k be a field, C is a k–coalgebra and A a k–algebra.
Given f, g ∈ Homk(C,A) the convolution product of f and g is defined as
the map f ? g ∈ Homk(C,A), (f ? g)(c) =

∑
f(c1)g(c2).

Observation 2.5. The convolution product of two maps can be defined
by the commutative diagram:

C

f?g

²²

∆ // C ⊗ C

f⊗g
²²

A A⊗Am
oo

 

important fact as an exercise (see Exercise 2).
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where m : A⊗A→ A is the multiplication map of A.

space Homk(C,A) endowed with the map ? is an associative algebra with
unit uε : C → A, where u : k→ A is the map that sends the unit of k into
the unit of A.

Definition 2.6. A bialgebra is a coalgebra (C,∆, ε) that has also the
structure of an associative algebra with unit and with the following com-
patibility conditions: ε : C → k and ∆ : C → C ⊗C are algebra homomor-
phisms.

A map f : C → D between two bialgebras is said to be a homomor-
phism of bialgebras if it is a morphism of algebras and of coalgebras.

It is customary to abuse the notations and say simply that C is a
bialgebra omitting all mention of the structure maps.

Observation 2.7. (1) In the above definition we endow C ⊗ C with
the usual algebra structure: (c⊗d)(c′⊗d′) = cc′⊗dd′ for all c, c′, d, c′ ∈ C.
Then

∑
(cd)1 ⊗ (cd)2 =

∑
c1d1 ⊗ c2d2.

(2) In particular in a bialgebra we always have that ∆(1) = 1⊗1 , ε(1) = 1
and ε(cd) = ε(c)ε(d).
(3) In the case that C is a bialgebra the convolution product can be defined
on Endk(C).

Definition 2.8. A bialgebra C with the property that the map id ∈
Endk(C) is convolution invertible, is called a Hopf algebra and the convo-
lution inverse of the identity, usually denoted as SC : C → C, is called the
antipode of C.

Observation 2.9. (1) It is customary to denote a Hopf algebra as
H, omitting all mention of the structure maps. Also the antipode will be
denoted simply as S : H → H. The defining property of S can be expressed
using 2.2 as

∑
S(c1)c2 = ε(c)1 =

∑
c1S(c2). The definition of the antipode

implies that it is unique.
(2) Given a coalgebra D with comultiplication ∆, the map ∆cop : D →
D ⊗ D, ∆cop(d) =

∑
d2 ⊗ d1, is also a comultiplication on D, the map

∆cop is called the opposite comultiplication. The coalgebra (D,∆cop, ε) is
denoted as Dcop. A map f : C → D is an anti–homomorphism of coalgebras
if f : C → Dcop is a homomorphism of coalgebras. In a similar manner one
can define anti–homomorphism of algebras.

We leave as an exercise the verification that S is an algebra anti–
homomorphism as well as a coalgebra anti–homomorphism.

 

We ask the reader to prove as an exercise (see Exercise 1) that the k–
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Definition 2.10. If C is a coalgebra and M a k–vector space, a struc-
ture of (right) C–comodule on M is a k–linear map χ : M →M⊗C making
the diagrams that follow commutative.

M

χ

²²

χ // M ⊗ C

id⊗∆

²²
M ⊗ C

χ⊗id
// M ⊗ C ⊗ C

M

χ

²²

id

##HH
HH

HH
HH

H

M ⊗ C
id⊗ε

// M

Definition 2.11. Let C be a coalgebra and let (M,χ), (N,ψ) be C–
comodules. A linear map f : M → N is said to be a morphism of C–
comodules if the diagram below is commutative

M

χ

²²

f // N

ψ

²²
M ⊗ C

f⊗id
// N ⊗ C

If C is a coalgebra we denote as MC the category with objects the
right C–comodules and with arrows the morphisms of C–comodules. If we
restrict our attention to the finite dimensional right C–comodules we obtain
a subcategory of the above that will be denoted as MC

f .

Notation 2.12. We write

χ2 = (id⊗∆)χ = (χ⊗ id)χ : M →M ⊗ C ⊗ C

and in general define χn : M →M ⊗ C⊗n, by induction as

χn+1 = (χ⊗ id⊗ · · · ⊗ id)χn = (id⊗∆⊗ id⊗ · · · ⊗ id)χn = · · · =

(id⊗ · · · ⊗ id⊗∆)χn .

In this case we write χn(m) =
∑
m0⊗m1⊗ · · · ⊗mn. For example, in

this notation we have that∑
m0 ⊗m1 ⊗m2 =

∑
m0,0 ⊗m0,1 ⊗m1 =

∑
m0 ⊗m1,1 ⊗m1,2 .

This notation, called Sweedler’s notation, together with the one ex-
plained in Notation 2.2 will be used in a systematic way when dealing with
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comodules. It may be considered as an encapsulated manner to view the
commutative diagrams defining coalgebras and comodules.

Observation 2.13. (1) In a similar manner one can define left co-
modules that are spaces equipped with structures χ : M → C ⊗M with
the compatibility conditions given by the commutativity of the following
diagrams:

M

χ

²²

χ // C ⊗M

∆⊗id

²²
C ⊗M

id⊗χ
// C ⊗ C ⊗M

M

χ

²²

id

##HH
HH

HH
HH

H

C ⊗M
ε⊗id

// M

In this case the Sweedler notation becomes χ(m) =
∑
m−1 ⊗m0 and

χ2(m) =
∑
m−2 ⊗m−1 ⊗m0.

(2) The categories MC and CM are abelian categories.

(3) In the case that C is a bialgebra, the categories MC and CM are
tensor categories. Indeed, if (M,χ) and (N,ψ) are right C–comodules and
we define χ]ψ : M⊗N →M⊗N⊗C as (χ]ψ)(m⊗n) =

∑
m0⊗n0⊗m1n1,

then (M ⊗N,χ]ψ) is a right C–comodule. The base field k, equipped with
the trivial structure χk : k → k ⊗ C and the tensor product constructed
above, endows MC with the structure of a tensor category.
(4) Assume that C is a coalgebra, consider M ∈ MC

f and call e : M∗ ⊗
M → k the evaluation map. There is one and only one k–linear map
χ∗ : M∗ → C ⊗M∗ such that the diagram below commutes

M∗ ⊗M

id⊗χ
²²

χ∗⊗id // C ⊗M∗ ⊗M

id⊗e
²²

M∗ ⊗M ⊗ C
e⊗id

// C

The map χ∗ endows M∗ with a structure of left C–comodule.
(5) In the case that C is a Hopf algebra, we define χ : M∗ → M∗ ⊗ C, as
χ(α) =

∑
αi ⊗ S(ci) provided that χ∗(α) =

∑
ci ⊗ αi. In this situation(

M∗, χ
) ∈MC

f , and then the category MC
f becomes a rigid tensor category

 

(see Exercise 4). For the definitions and basic properties of tensor and rigid
categories see for example [81].
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Lemma 2.14. Let C be a coalgebra. Then (C,∆) is an injective right
C–comodule.

Proof: Consider the diagram in MC :

M

α

²²

Â Ä ι // N
β

~~
C

that needs to be completed with a C–comodules morphism β. We de-
fine β(n) =

∑
εαp(n0)n1, where p : N → M is a linear splitting of ι.

Then β
(
ι(n)

)
=

∑
εαp

(
ι(n)0

)
ι(n)1 =

∑
εαp

(
ι(n0)

)
n1 =

∑
εα(n0)n1 =∑

ε
(
α(n)0

)
α(n)1 = α(n). Hence, βι = α. The proof that β is a morphism

¤

Definition 2.15. Let k be an algebraically closed field and G an affine
algebraic group. If m : G×G→ G is the multiplication map, we call

∆ = ιG ◦m∗ : k[G] m∗−→ k[G×G] ιG−→ k[G]⊗ k[G] .

The map ιG : k[G × G] → k[G] ⊗ k[G] is the canonical isomorphism
considered in Section 1.4. Call ε : k[G] → k the algebra homomorphism
given by the evaluation at the identity and S : k[G] → k[G] the morphism
of algebras induced by the inversion map, i.e., S(f)(x) = f(x−1) for x ∈ G
and f ∈ k[G].

Observation 2.16. Recall that the map ιG : k[G×G] → k[G]⊗k[G] is
given by the rule: ιG(F ) =

∑
i fi⊗gi if and only if F (x, y) =

∑
i fi(x)gi(y),

for F ∈ k[G×G] and x, y ∈ G. Hence, ∆(f) =
∑
f1 ⊗ f2 if and only if for

all x, y ∈ G, f(xy) =
∑
f1(x)f2(y).

Theorem 2.17. In the situation above, the algebra k[G] together with
∆, ε and S is a Hopf algebra.

Proof: First we prove that ∆ is coassociative. Using the explicit
description of Observation 6.8 we see that for x, y, z ∈ G and f ∈ k[G]
we have that f

(
(xy)z

)
=

∑
f1(xy)f2(z) =

∑
f1,1(x)f1,2(y)f2(z). Simi-

larly: f
(
x(yz)

)
=

∑
f1(x)f2,1(y)f2,2(z). Hence,

∑
f1,1(x)f1,2(y)f2(z) =∑

f1(x)f2,1(y)f2,2(z) for all x, y, z ∈ G, and this implies that
∑
f1,1 ⊗

f1,2 ⊗ f2 =
∑
f1 ⊗ f2,1 ⊗ f2,2, i.e., ∆ is coassociative.

If we put x = e in the equality f(xy) =
∑
f1(x)f2(y), then f(y) =∑

f1(e)f2(y), i.e., f =
∑
ε(f1)f2. In a similar manner we prove that

f =
∑
ε(f2)f1.

 

of C–comodules is left as an exercise (see Exercise 5).
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If we write x = y−1 in the equality f(xy) =
∑
f1(x)f2(y), we have:

f(e) =
∑
f1(y−1)f2(y) =

∑
S(f1)(y)f2(y) =

(∑
S(f1)f2

)
(y). Thus, the

function
∑
S(f1)f2 is constantly equal to f(e) = ε(f). Then (S ? id)(f) =

uε(f). In a similar manner we prove that S is a right convolution inverse
of the identity map and hence that it is an antipode. ¤

Observation 2.18. Assume that φ : G → H is a morphism of alge-
braic groups. Then the corresponding comorphism φ∗ : k[H] → k[G] is a
bialgebra homomorphism. Indeed, if f ∈ k[H] and x, y ∈ G, we have that

∑
φ∗(f1)(x)φ∗(f2)(y) =

∑
f1

(
φ(x)

)
f2

(
φ(y)

)
= f

(
φ(x)φ(y)

)
=

f
(
φ(xy)

)
= φ∗(f)(xy) =

∑(
φ∗(f)

)
1
(x)

(
φ∗(f)

)
2
(y) .

It follows that
∑
φ∗(f1) ⊗ φ∗(f2) =

∑(
φ∗(f)

)
1
⊗ (

φ∗(f)
)
2
. The rest

of the properties are verified in a similar fashion.

We leave as an exercise the proof of the details of the theorem that

Theorem 2.19. Let k be an algebraically closed field. Call G the cat-
egory of affine algebraic groups and H the category of Hopf algebras that
are affine as k–algebras. Then the functor k[ · ] : G → Hop that associates
to each group the algebra of its polynomial functions, is an equivalence of
categories. The inverse is the “maximal spectrum” functor. ¤

Example 2.20. We present the descriptions of the Hopf algebras cor-
responding to some specific groups. In general when the algebras of poly-
nomial functions are given in terms of generators and relations, we define
the structure maps ∆, ε, S on the generators.
(1) Consider the general linear group GLn. Then

k[GLn] = k[Xij : 1 ≤ i, j ≤ n]det .

Recall that if M ∈ GLn, then Xij(M) = mij , where mij indicates the
element of the base field given by the corresponding entry of the matrix.
Then Xij(MN) = (MN)ij =

∑
kmiknkj =

∑
kXik(M)Xkj(N) and this

implies the equality ∆(Xij) =
∑
kXik ⊗Xkj . To complete the description

of the map ∆ we have to find ∆(det). If G is an affine algebraic group and
γ : G→ k∗ is a homomorphism of affine algebraic groups then, ∆(γ) = γ⊗γ

Moreover S(det) = det−1, and for all i and j, S(Xij) is the (i, j)–
cofactor of the matrix (Xij)1≤i,j≤n (see Exercise 6).
(2) Consider now the affine algebraic group Ga with k[Ga] = k[X].

 

follows (see Exercise 3).

(see Exercise 6). In particular, ∆(det) = det⊗ det.
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If we consider a, b ∈ Ga and compute X(a+ b) = a+ b and 1(a)X(b) +
X(a)1(b) = a + b, it follows from Observation 2.16 that ∆(X) = 1 ⊗X +
X ⊗ 1. Also, ε(X) = 0 and S(X) = −X.
(3) Assume that k is an algebraically closed field of characteristic p, and
consider in G = k× k∗ the following product: (a, b) · (c, d) = (a+ bpc, bd).
Then k[G] = k[u, v]v, ∆(u) = u ⊗ 1 + vp ⊗ u, ∆(v) = v ⊗ v, ε(u) = 0,
ε(v) = 1, S(v) = v−1 and S(u) = −v−pu.

Definition 2.21. If C is a coalgebra, a coideal in C is a k–subspace
I ⊂ C with the property that ∆(I) ⊂ I ⊗ C + C ⊗ I and ε(I) = 0. In the
case that C is a bialgebra and I is also a two sided ideal, we say that it is
a bi–ideal. If C is a Hopf algebra and the bi–ideal I verifies that S(I) ⊂ I,
we say that I is a Hopf ideal.

Observation 2.22. If C is a coalgebra and I is a coideal in C, it is
clear that if we call D = C/I, the comultiplication as well as the counit
of C factor to maps ∆D : D → D ⊗ D and εD : D → k. Then, D is a
coalgebra and the projection π : C → C/I = D is a morphism of coalgebras.
Moreover if C is a bialgebra and I is a bi–ideal, D is a bialgebra. Similarly,
if C is a Hopf algebra and I is a Hopf ideal, then D is also a Hopf algebra.

Corollary 2.23. If G is an affine algebraic group and H a closed
subgroup, then the ideal I(H) of H is a Hopf ideal and the comultiplication,
counit and antipode of k[G] induce on the quotient k[H] = k[G]/ I(H)
a structure of Hopf algebra that coincides with the structure induced via
Theorem 2.17.

Proof: Consider f ∈ I(H) and write ∆(f) =
∑d
i=1 fi⊗gi+

∑e
j=1 hj⊗

kj , where f1, . . . , fd ∈ I(H) and h1, . . . , he are linearly independent modulo
I(H). If z, w ∈ H, then 0 = f(zw) =

∑
j hj(z)kj(w). Then,

∑
j hjkj(w) ∈

I(H), and as h1, . . . , he are linearly independent modulo I(H), we deduce
that for all w ∈ H, kj(w) = 0 for j = 1, . . . , e, i.e., kj ∈ I(H). Hence, I(H)

¤

3. Rational G–modules

In this section we deal with the basic definitions concerning the repre-
sentation theory of affine algebraic groups. Since the regular representation,
i.e. the representation of G on k[G] by translations, is infinite dimensional,
any reasonably strong representation theory has to include infinite dimen-
sional objects. Moreover, some of the basic tools of our representation
theory, for example the induction from a subgroup H to a larger group G,
do not preserve finite dimensionality.

 

is a coideal. The rest of the proof is left as an exercise (see Exercise 7).
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In these situations, even though the representations are infinite dimen-
sional, they have a finiteness restriction that is reflected in the concept of

We start by defining the concept of representative function.

Definition 3.1. Let G be an abstract group acting by linear auto-
morphisms on the k–space M , i.e. M is a representation of G. For every
α ∈M∗ and m ∈M we define α|m : G→ k as (α|m)(x) = α(x ·m) for all
x ∈ G. A function of this form is called an M–representative function or
simply a representative function.

Observation 3.2. (1) Let G be an arbitrary group acting linearly
on a k–vector space M . Define the linear map rM : M ⊗ M∗ → kG
as rM (m ⊗ α) = α|m. If we consider the given action of G on M on
the left and the corresponding action of G on M∗ on the right (given as
(α · x)(m) = α(x · m) for x ∈ G, α ∈ M∗ and m ∈ M), we have that
(α·x)|(y·m) = y·(α|m)·x for all x, y ∈ G, whereG acts on kG via the left and

M is a morphism
of G–modules with respect to the natural actions of G on both sides. In
the case that M is finite dimensional, if {e1, . . . , en} is a basis of M , and
{ej : j = 1, . . . , n} is its dual basis, then the functions {ej |ei : 1 ≤ i, j ≤ n}
are the coefficients of the associated matrix representation of M . Moreover,
they generate the space of all M–representative functions.
(2) It is easy to prove that if M varies over the family of all representa-
tions, the subspace generated by all the M–representative functions is a
subalgebra of kG, that is called the algebra of representative functions of
G. This algebra will be denoted as Rk(G). The above assertions are left

Definition 3.3. Assume that M is a vector space over a field k and
that G is an abstract group acting on M by linear automorphisms. We
say that the representation M is locally finite, or that M is a locally finite
representation, if for every m ∈ M there exists a finite dimensional G–
invariant subspace N ⊂M , that contains m.

Clearly, in the case that M is finite dimensional the condition of local
finiteness is automatically verified. In the lemma that follows we present
different characterizations of the local finiteness of a given representation.

Lemma 3.4. Let G be an abstract group acting linearly by automor-
phisms of a k–vector space M . The conditions that follow are equivalent:
(1) M is a locally finite representation.
(2) For all m ∈ M the G–orbit of m generates a finite dimensional vector
space.

 

for the reader to prove (see Exercise 8).

locally finite representation (see Definition 3.3).

right translations (see Observation 4.12). In other words, r
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(3) For all m ∈M the map rM (m⊗−) : M∗ → kG has finite rank.
(4) The space M can be written as the sum of finite dimensional G–invariant
subspaces.

Proof: We prove that conditions (2) and (3) are equivalent. Let
{m1, . . . ,mn} be a basis of the space generated by the orbit of m ∈ M .
Consider {m1, . . . ,mn}, a family of elements of M∗ verifying that mj(mi) =
δij for i = 1, . . . , n. Let x ∈ G and write x · m =

∑
fi(x)mi. Then

mj |m = fj , i.e. fj ∈ Im
(
rM (m ⊗ −)

)
. Moreover, if we consider α ∈ M∗

and apply it to the above equality, we conclude that α|m =
∑
α(mi)fi.

Thus, the map rM (m⊗−) has finite rank.
Conversely, assume that rM (m⊗−) has finite rank. We can find linearly

independent functions fi, i = 1, . . . , n, in the image of rM (m ⊗ −), such
that for all α ∈ M∗, α|m =

∑
λi,αfi for some λi,α ∈ k. After eventually

changing the basis of the space generated by the fi’s and renaming, we can
j ∈ G, such that fi(xj) = δij . Then λj,α = α(xj ·m)

and α(x · m) =
∑
α(xi · m)fi(x). This being valid for all α ∈ M∗, we

deduce that x ·m =
∑
fi(x)xi ·m. Hence, the elements {x1 ·m, . . . , xn ·m}

generate 〈g ·m : g ∈ G〉k.
¤

Now, we look at the regular representation.

Observation 3.5. In the notations of the above definition The left

in terms of the comultiplication ∆ : k[G] → k[G] ⊗ k[G] as follows (see
x · f =

∑
f1f2(x) and f · x =

∑
f1(x)f2 for x ∈ G, f ∈ k[G]

and ∆(f) =
∑
f1 ⊗ f2.

Lemma 3.6. Let G be an affine algebraic group, the left and right regular
representations are locally finite.

Proof: If follows immediately from the Observation 3.5 above. ¤
The formulæ x · f =

∑
f1f2(x) and f · x =

∑
f1(x)f2 show that the

representative functions of the regular representation belong to k[G]. This,
in accordance with the definition that follows, is the crucial property that
relates the algebra and the geometry of linear actions of algebraic groups.

Definition 3.7. Let G be an affine algebraic group and M a k–vector
space. We say that a linear action ϕ : G×M →M is rational, or that M is
a rational representation of G, if the following two conditions are verified:
(a) M is a locally finite G–module.
(b) For all α ∈M∗ and m ∈M the representative function α|m ∈ k[G].

 

Section 2):

find (see Exercise 11) x

The rest of the proof is left as an exercise (see Exercise 12).

and right regular representation (see Observation 3.4.12) can be expressed
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The next lemma establishes the relationship between Definition 3.7 and
the previous Definition 3.4.9 of finite dimensional rational representation.

Lemma 3.8. Let M be a finite abstract dimensional G–module. The
action ϕ : G × M → M is rational if and only if the associated group
homomorphism ρ : G → GL(M) is a morphism of affine algebraic groups

Proof: Let {e1, . . . , en} be a basis of M and {e1, . . . , en} its dual
basis. The map ρ is a morphism of varieties if and only if all the entries
of the associated matrix representation are polynomials on G. Hence, the
result follows from the fact that the matrix coefficients are exactly the
representative functions {ej |ei : 1 ≤ i, j ≤ n}, that are a set generators of

¤
Definition 3.9. If G is an affine algebraic group, we call GM the

category with objects the rational left G–modules and arrows the mor-
phisms of G–modules. Similarly, we define the category MG of rational
right G–modules. The subcategories of all finite dimensional left and right
G–modules are denoted as GMf and Mf,G respectively.

Corollary 3.10. Let G be an affine algebraic group and ϕ : G×M →
M and abstract representation. Then M is a rational G–module if and only
if there exists a family {Mi : i ∈ I} of G–stable finite dimensional subspaces
of M with the following properties:
(a) M =

∑
iMi;

(b) for all i ∈ I, the restricted representations ρ|Mi : G → GL(Mi) are
morphisms of affine algebraic groups. ¤

The category of rational G–modules is equivalent to the category of
k[G]–comodules for the coalgebra k[G]:

Theorem 3.11. Let G be an affine algebraic group and M a k–space.
If ϕ : G×M →M is a rational action, then the map χϕ : M →M ⊗ k[G]
defined as χϕ(m) =

∑
m0 ⊗ m1 if and only if x · m =

∑
m1(x)m0 for

all x ∈ G, m ∈ M is a k[G]–comodule structure on M . This establishes
a bijective correspondence between the family of all left rational G–actions
and the family of all right k[G]–comodule structures on M .

Proof: Given a coaction χ : M → M ⊗ k[G], consider m ∈ M and
write χ(m) =

∑
imi ⊗ fi. Define for x ∈ G, x ·m =

∑
i fi(x)mi. We want

to prove that this rule defines an action of G on M . The coassociativity of
the comodule structure can be written as follows:∑

mi,0 ⊗mi,1 ⊗ fi =
∑

mi ⊗ fi,1 ⊗ fi,2 .

 

(see Observation 3.4.10).

the space of all M–representative functions (see Observation 3.2).
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Evaluating id⊗εy ⊗ id on both sides of this equality, we obtain:
∑
y ·

mi ⊗ fi =
∑
mi ⊗ fi · y. From x ·m =

∑
fi(x)mi we deduce that

y · (x ·m) =
∑

fi(x)y ·mi =
∑

mi(fi · y)(x) =
∑

mifi(yx) = (yx) ·m.

The local finiteness of the action is a consequence of the fact that the
set {m1, . . . ,mn} generate 〈x ·m : x ∈ G〉k. Applying a generic α ∈M∗ to
x·m =

∑
fi(x)mi we deduce that α|m =

∑
α(mi)fi, and hence that all the

M–representative functions are polynomials. Thus, the action is rational.
Conversely, given a rational action fix m ∈ M , and consider a basis

{m1, . . . ,mn} of the space generated by the orbit G ·m. For an arbitrary
x ∈ G, write x · m =

∑
fi(x)mi. Let {m1, . . . ,mn} ⊂ M∗ such that

mi(mj) = δij , for 1 ≤ i, j ≤ n. Clearly, fi = mi|m ∈ k[G]. Thus, we can
define a map χ : M →M ⊗ k[G], χ(m) =

∑
imi ⊗ fi.

We want to check that χ is a comodule structure on M . First observe
that (id⊗ε)χ(m) =

∑
fi(e)mi = e ·m = m. In order to verify the equality∑

mi ⊗∆(fi) =
∑
χ(mi)⊗ fi we prove that if x, y ∈ G, then

∑
mi ⊗ (εx ⊗ εy)∆(fi) =

∑
(id⊗εx)χ(mi)⊗ εy(fi) ,

i.e., that
∑
mifi(xy) =

∑
(x·mi)fi(y). As the left hand side of the equation

is (xy) ·m and the right hand side is x ·(y ·m), the proof is finished. Observe
that the equality (εx ⊗ εy)∆(f) = f(xy), that was used along the proof,
is equivalent to

∑
f1(x)f2(y) = f(xy), that is the definition of the map

∆. ¤
Observation 3.12. In the proof of the previous theorem we have

shown that if α ∈ M∗, m ∈ M and χ(m) =
∑
m0 ⊗ m1, then the rep-

resentative function α|m is α|m =
∑
α(m0)m1.

The following theorem is a direct application of the above result.

Theorem 3.13. Let G be an affine algebraic group and M a finite
dimensional rational G–module. Then, there exists an injective homomor-
phism of G–modules ι : M → ⊕r

i=1 k[G].

Proof: Fix a basis {m1, . . . ,mr} of M and call {m1, . . . ,mr} its dual
basis. Let χ : M → M ⊗ k[G] be the comodule structure on M . Consider
the map

ι =
(
(m1 ⊗ id)◦χ, . . . , (mr ⊗ id)◦χ

)
: M →

r⊕

i=1

k[G] ,

explicitly, ι(m) = (m1|m, . . . ,mr|m). From the equality (α|x·m) = x·(α|m)
we conclude that ι is G–equivariant. If χ(m) =

 

(see Observation 3.2),



144 4. ALGEBRAIC GROUPS: LIE ALGEBRAS AND REPRESENTATIONS

∑
mi ⊗ fi, then fi = mi|m, hence if ι(m) = 0 then fi = 0. As m =∑
fi(e)mi we deduce that m = 0, i.e., the map ι is injective. ¤

An immediate consequence of the above theorem is the following:

Theorem 3.14. Let G be an affine algebraic group and M a simple
G–module. Then there exists an injective G–morphism β : M → k[G].

Proof: Let ι : M → ⊕
I k[G] be as in Theorem 3.13. Call pi :⊕

I k[G] → k[G], i ∈ I, the i–th projection and define βi as βi = pi◦ι :
M → k[G]. Then, for some i, Ker(βi) = 0. Otherwise, being M simple,
all the kernels would be equal to M and then ι = 0. Hence, β = βi is the
injective G–morphism we need. ¤

Example 3.15. (1) Consider the rational action of GLn on kn given
by left multiplication. We describe explicitly the corresponding coaction
χ : kn → kn ⊗ k[GLn] as follows:

Let {e1, . . . , en} be the canonical basis of kn and write χ(v) =
∑
ek ⊗

fk,v. If A = (aij) ∈ GLn, then A · ei =
∑
aikek =

∑
Xik(A)ek, and thus

χ(ei) =
∑
k ek ⊗Xik ∈ kn ⊗ k[GLn]. It follows that if v =

∑
viei, then

χ(v) =
∑

ik

ek ⊗ viXik =
∑

k

ek ⊗
(∑

i

viXik

)
.

Hence, fk,v =
∑
i viXik.

(2) We want to describe the comorphism χ : k2 → k2 ⊗ k[X] associated
with the action of Ga on k2 defined in Exercise 10. If χ(a, b) = (1, 0) ⊗
f1,(a,b) + (0, 1)⊗ f2,(a,b), for f1,(a,b), f2,(a,b) ∈ k[X] then, for λ ∈ Ga,

(
f1,(a,b)(λ), f2,(a,b)(λ)

)
= λ · (a, b) = (a+ λb, b) .

Thus, χ(a, b) = (1, 0)⊗ (a+ bX) + (0, 1)⊗ b, i.e. χ(a, b) = (a, b)⊗ 1 +
(b, 0)⊗X.

Example 3.16. Let G be an affine algebraic group defined over an
algebraically closed field k.
(1) It easy to prove that taking direct sums, kernels, cokernels, images, etc.
are operations that can be performed in the category GM, i.e. the category
of rational G–modules is an abelian category.
(2) If M and N are rational G–modules, then M ⊗ N is also a ratio-
nal G–module with respect to the diagonal action. The corresponding
k[G]–comodule structure on the tensor product is the tensor product of
the comodule structures on M and N as defined in Observation 2.13. More
formally, the categories GM and Mk[G] are isomorphic as tensor categories.
(3) If M is a finite dimensional rational left G–module, then the linear
dual M∗ is naturally a finite dimensional right rational G–module with
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structure (α · x)(m) = α(x · m). We want to compute the corresponding
k[G]–comodule structure χM∗ : M∗ → k[G]⊗M∗.

Let {e1, . . . , en} be a basis of M , and {e1, . . . , en} its dual basis. Then
χM∗(ej) =

∑
k fjk ⊗ ek if and only if ej · x =

∑
k fjk(x)ek for all x ∈ G.

Evaluating at ei we obtain that ej(x · ei) = fji(x). Writing χM (ei) =∑
l el ⊗ gil, we see that gij(x) = ej(x · ei). Then gij = fji, i.e., χM∗(ei) =∑
k fik ⊗ ek if and only if χM (ei) =

∑
k ek ⊗ fki.

(4) If M is a rational left G–module, it can be naturally equipped with
a structure of rational right G–module using the inversion map, i.e., m ·
x = x−1 · m, for all m ∈ M and x ∈ G. The relationship between the
corresponding comodule structures χr and χl is given by the antipode: if
χr(m) =

∑
m0 ⊗m1, then χl(m) =

∑
S(m1)⊗m0.

(5) If we combine the constructions of (3) and (4), we obtain what is usually
called the contragradient representation, that endows the linear dual of a
finite dimensional rational left G–module with an structure of rational left
G–module. In this situation the categories GMf and Mk[G]

f are equivalent
as rigid tensor categories.
(6) If V is a infinite dimensional rational module, we cannot expect V ∗ to
be a rational module:

Let Gm = k∗ act on k[X] by multiplication on the variable a · p(X) =
p(aX), a ∈ Gm, p ∈ k[X]. Since this action preserves degrees, then k[X] is a
rational G–module. The pairing k[X]∗×k[[y]] → k,

〈∑∞
i=0 αiy

i, Xj
〉

= αj ,
identifies k[X]∗ with k[[Y ]]. Under this identification, the action becomes
a ·∑∞

i=0 αiY
i =

∑∞
i=0 a

−iαiY i, a ∈ Gm.

If f =
∑∞
i=0 Y

i, then a · f =
∑∞
i=0 a

−iY i, and thus 〈a · f : a ∈ Gm〉 =〈∑∞
i=0 a

iY i : a ∈ Gm
〉
. Now, let n ∈ N and consider a1, . . . , an ∈ k∗ with

ai 6= aj if 6= j. Then the elements
∑∞
i=0 a

i
1Y

i, . . . ,
∑∞
i=0 a

i
nY

i are linearly
independent. Indeed, the van der Monde determinant

∣∣∣∣∣∣∣∣∣

1 1
a1 an

an−1
1 an−1

n

∣∣∣∣∣∣∣∣∣
6= 0 .

Hence, the orbit of f generates an infinite dimensional subspace.

exterior product and n–th symmetric product, or more generally the tensor,
symmetric and exterior algebras of a finite dimensional rational G–module
are rational.

 

(7) We ask the reader as an exercise (see Exercise 15) to prove that the n–th
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(8) Consider the action of G on k[G] by conjugation, i.e. if x ∈ G and
f ∈ k[G] we define x?f ∈ k[G] by the formula: (x?f)(y) = f(x−1yx). The
corresponding k[G]–comodule structure can be easily obtained as follows:

(x ? f)(y) = f(x−1yx) =
∑

f1(x−1)f2(y)f3(x) =
∑(

S(f1)f3
)
(x)f2(y) ,

that is, x ? f =
∑(

S(f1)f3
)
(x)f2. Hence, the corresponding comodule

structure is Ad : k[G] → k[G]⊗k[G], Ad(f) =
∑
f2⊗S(f1)f3

Notice in particular that if the group
G is abelian, the comultiplication is cocommutative and then Ad(f) =∑
f1 ⊗ S(f2)f3 = f ⊗ 1, i.e., we obtain the trivial structure.

Sometimes in the literature this action is called the adjoint action and
x ? f is denoted as Ad(x)(f).

Definition 3.17. Let G be an affine and A a k–algebra. If G acts
rationally on A by algebra automorphisms we say that A is a rational G–
module algebra. Moreover, if A is a graded algebra and the action preserves
the degree, we say that A is a graded G–module algebra.

Let M be a k–space equipped with a structure of A–module that is
also a rational G–module, such that x · (am) = (x · a)(x ·m) for all x ∈ G,
a ∈ A and m ∈ M . Then we say that M is a rational left (A,G)–module.
The category of rational left (A,G)–modules is denoted as A,GM.

Observation 3.18. (1) In Exercise 15 we ask the reader to prove that
the actions of G on k[G] given by right and left translation as well as the
adjoint action, endow k[G] with an structure of rational G–module algebra.
(2) The reader should also verify that G acts by automorphisms of the
algebra, if and only if the comodule structure χ : A → A ⊗ k[G] is multi-
plicative.

In the next Lemma we collect a list of useful properties.

Lemma 3.19. Let G be an affine algebraic group and M a rational left
G–module. Then for all m ∈M , x ∈ G and f ∈ k[G]:
(1) x · f =

∑
f1f2(x), and f · x =

∑
f1(x)f2;

(2) S(f · x) = x−1 · S(f) and S(x · f) = S(f) · x−1.
(3)

∑
(x · f)1 ⊗ (x · f)2 =

∑
f1 ⊗ x · f2;

(4)
∑

(f · x)1 ⊗ (f · x)2 =
∑
f1 · x⊗ f2;

(5)
∑

(x ·m)0 ⊗ (x ·m)1 =
∑
m0 ⊗ x ·m1;

(6)
∑
x ·m0 ⊗m1 =

∑
m0 ⊗m1 · x;

(7)
∑

(x ·m)0 ⊗ (x ·m)1 ⊗ (x ·m)2 =
∑
m0 ⊗m1 ⊗ x ·m2;

(8)
∑
x ·m0 ⊗m1 ⊗m2 =

∑
m0 ⊗m1 · x⊗m2;

 

(see Exercise
7 for the general definition of Ad).
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Proof: The proof is left to the reader. ¤

Observation 3.20. Let G be an affine algebraic group and X an al-
gebraic variety. Assume that m : G ×X → X is a left regular action (see

If U ⊂ X is a G–stable open subset, we can define a
right action of G on OX(U) by the formula: (f · a)(x) = f(a · x), a ∈ G,
x ∈ X. In the theorem that follows we prove that the k–algebra OX(U)
is a rational (right) G–module. These kind of rational G–modules coming
from a geometric action are of crucial importance in our theory. The above
construction can be generalized to the context of the so–called linearized

Theorem 3.21. Let G be an affine algebraic group, X an algebraic
G–variety, and U ⊂ X an open G–stable subset. Then OX(U) is a rational
G–module algebra with respect to the right G–action given by translations.
In particular, if X is affine, k[X] is a rational G–module algebra.

Proof: The action of G on U induces an algebra homomorphism φ :
OX(U) → OG×X(G× U) ∼= k[G]⊗OX(U). In view of the correspondence
between comodule structures and rational actions established in Theorem
3.11, the assertion follows. ¤

Observation 3.22. As a important particular case of Theorem 3.21
above, we deduce that the regular representation of an affine algebraic group
G on k[G] is rational.

This crucial fact allows us to prove that an arbitrary affine algebraic
group is isomorphic to a closed subgroup of GLn for a conveniently chosen
n; that is affine algebraic groups are linear groups.

Theorem 3.23. Let G be an affine algebraic group. Then there ex-
ists n ∈ N and a closed immersion ρ : G ↪→ GLn that is also a group
homomorphism.

Proof: Consider a finite set of generators of the affine algebra k[G].
Then, since the regular action is rational, there exists a finite dimensional
G–submodule V ⊂ k[G] containing this set of generators. The action G×
V → V induces a morphism of algebraic groups ψ : G → GL(V ) given as
ψ(x)(v) = x ·v. The map ψ is an injective group homomorphism. Indeed, if
an element x ∈ G satisfies that x · v = v for all v ∈ V , then, as V generates
k[G] as an algebra, x · f = f for all f ∈ k[G]. In particular, f(x) = f(e) for
all f ∈ k[G] and this implies that x = e.

To prove that ψ is a closed immersion it is enough to verify that the
morphism ψ# ⊂
Im(ψ#). Let f ∈ V and write ∆(f) =

∑
i∈I fi⊗gi with {fi : i ∈ I} linearly

 

Definition 3.4.1).

sheaves on X (see [103]).

is surjective (see Theorem 1.4.88), or equivalently that V
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independent. Then, x · f =
∑
gi(x)fi, and choosing linear functionals

{αi : i ∈ I} ⊂ k[G]∗ with the property that αi(fj) = δij for all i, j, we
deduce that αi(x · f) = gi. Consider the representative function (αi|V )|f :
GL(V ) → k, corresponding to the action of GL(V ) on V . Then (αi|V )|f ∈
k[GL(V )] and ψ#

(
αi|V |f

)
(x) = αi(x · f) = gi(x). Hence, gi ∈ Im(ψ#) and

as f =
∑
fi(e)gi, we conclude that f ∈ Im(ψ#). ¤

The correspondence between closed subsets and ideals in an affine va-
riety is compatible with the G–action:

Theorem 3.24. Let G be an affine algebraic group acting regularly on
an affine variety X. A closed subset Y ⊂ X is G–stable if and only if its
associated ideal in k[X] is G–stable.

¤
In what follows we look at a special instance of the situation considered

in Definition 3.17, namely the case of rational
(
k[G], G

)
–modules. We call

them Hopf modules in view of the corresponding situation in Hopf algebra
theory.

Definition 3.25. The category (k[G],G)M is called the category of G–
Hopf modules or simply the category of Hopf modules.

Observation 3.26. Using Sweedler’s notation the compatibility con-
dition can be expressed as:

∑
(fm)0 ⊗ (fm)1 =

∑
f0m0 ⊗ f1m1, for all

f ∈ k[G] and m ∈M .

The structure of Hopf module enables us to produce projectors onto
the fixed part of a G–Hopf module M ; this simple observation will play

Lemma 3.27. Let G be an affine algebraic group and M a Hopf mod-
ule. Consider the k–linear map RM : M → M , defined as RM (m) =∑
S(m1)m0. Then RM is a projection onto GM .

Proof: If m ∈ GM , then χ(m) = m⊗ 1, and RM (m) = m.
Conversely, if m ∈M and x ∈ G, from the equality

∑
x·m0⊗m1 ·x−1 =∑

m0 ⊗m1 we deduce that x · (∑S(m1)m0

)
=

∑
1 0

¤
Observation 3.28. It is clear that k[G] equipped with its product

and the left action is a G–Hopf module. In this particular case the map
Rk[G] : k[G] → k = Gk[G] is the evaluation at the identity.

It is also clear that if V is an arbitrary vector space, then k[G]⊗ V is
a Hopf module with both structures operating only on k[G].

 

Proof: See Exercise 14.

3.19.
S(m )m . See Lemma

a crucial role here and in future calculations (see Chapter 9 and Section
11.5).
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In the next theorem we show that all G–Hopf modules are of the above
form, i.e. of the form k[G]⊗ V .

Theorem 3.29. Let G be an affine algebraic group and M a Hopf
module. The map θ : k[G] ⊗ GM → M defined as θ(f ⊗m) = fm is an
isomorphism of Hopf modules.

Proof: It is clear that θ is a morphism of Hopf modules. The map
η : M → k[G]⊗GM , η(m) =

∑
m2⊗S(m1)m0, is the inverse of θ. Indeed,

Lemma 3.27 implies that η(m) ∈ k[G] ⊗ GM . Moreover, if f ∈ k[G] and
m ∈ GM , then η(fm) =

∑
f3⊗S(f2)f1m = f ⊗m. Conversely, if m ∈M ,

then θ
(
η(m)

)
=

∑
m2S(m1)m0 =

∑
ε(m1)m0 = m. ¤

The above theorem is a particular case of the so–called “fundamen-
tal theorem on Hopf modules”, valid for arbitrary Hopf algebras. See

4. Representations of SL2

In this section we consider some aspects of the classical representation
theory of the group SL2. This is one of the oldest and better understood
parts of the general representation theory of algebraic groups. The repre-
sentation theory of SL2 plays a central role in the representation theory of
reductive — or semisimple — algebraic groups. This relationship is similar
to the case of sl2 In
[80] the reader can find a modern treatment of many of the more interest-
ing aspects of the general representation theory of reductive groups and in
A. Borel’s book [11] the author presents a historical survey of some of the
main aspects of the representation theory of SL2.

Here we touch at some very basic aspects of the theory and postpone
the representation theory

of SL2 is geometrically reductive. This means roughly that up to a cer-
tain symmetric power, the representations are completely reducible (in the
chapter mentioned we present the precise definitions).

We start with the natural action of SL2 on k2 by multiplication on the
left, and extend this action to the symmetric algebra k[u, v] built on k2.

Definition 4.1. Let R = k[u, v] be a polynomial algebra in two vari-
ables and consider the representation of SL2 on R given as

(
a b
c d

) · u =
au+cv ;

(
a b
c d

) ·v = bu+dv on the generators, and extended multiplicatively
to all of k[u, v]. Call Re ⊂ R the k–space of all homogeneous polynomials
of degree e.

 

until Chapter 9 the proof of a crucial result:

Sweedler’s book [146] for the proof and some applications of this theorem,
and [100] for a more modern reference.

and a general semisimple Lie algebra (see [79]).
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Observation 4.2. The k–space Re is SL2–stable and if we call fi =
uive−i ∈ Re, i = 0, . . . , e, then the set {f0, . . . , fe} is a basis of Re. The
actions of the special elements

(
t 0
0 t−1

)
, ( 1 a

0 1 ), ( 1 0
a 1 ) and

(
0 1
−1 0

)
are given

by the following formulæ:
(i)

(
t 0
0 t−1

) · fi = t2i−efi

(ii) ( 1 a
0 1 ) · fi = fi + a

(
e−i
1

)
fi+1 + · · ·+ ak

(
e−i
k

)
fi+k + · · ·+ ae−ife

(iii) ( 1 0
a 1 ) · fi = fi + a

(
i
1

)
fi−1 + · · ·+ al

(
i
l

)
fi−l + · · ·+ aif0

(iv)
(

0 1
−1 0

) · fi = (−1)ife−i

Lemma 4.3. In the notations of Definition 4.1 we have that:
(1) If W is a non zero SL2–stable subspace of Re then f0, fe ∈W .
(2) If chark = p > 0 and e = ph − 1 for some h, or chark = 0, then Re is
an irreducible SL2–module.
(3) If chark = p > 0 and e = ph − 1 for some h, or chark = 0, then Re is
isomorphic as an SL2–module to R∗e.

Proof: First we prove the following assertion: if V ⊂ Re is a SL2–
submodule and

∑
i∈S xifi ∈ V , xi 6= 0 for i ∈ S ⊂ {0, 1, . . . , e}, then fj ∈ V

for j ∈ S. Consider a linear combination
∑
i∈T yifi ∈ V , j ∈ T and yi 6= 0,

of minimal length. We will prove that T = {j}. Suppose that there exists
k ∈ T with k 6= j. Then, for t ∈ k∗,

(
t 0
0 t−1

) ·
∑

i∈T
yifi − t2k−e

∑

i∈T
yifi =

∑

i∈T
yit

2i−efi −
∑

i∈T
t2k−eyifi =

∑

{i∈T, i 6=k}
yi(t2i−e − t2k−e)fi ∈ V .

Choosing t ∈ k∗ in such a way that t2k 6= t2j , the above linear combina-
tion would be shorter than the original one and have a non zero j–coefficient.

Next we proceed with the proof.
(1) Using the assertion just proved we deduce that for some i ∈ {0, . . . , e},
fi ∈ W . Acting with ( 1 1

0 1 ) on the element fi we conclude that the sum
fe +

(
e−i
1

)
fe−1 + · · ·+ fi ∈W . Then, fe ∈W and thus f0 = (−1)e

(
0 1
−1 0

) ·
fe ∈W .
(2) Suppose chark = p > 0 and let W be a non zero SL2–stable subspace
of Re, e = ph − 1. Use part (1) to conclude that fe ∈ W . Consider now
the equality ( 1 0

1 1 ) · fe = fe +
(
e
1

)
fe−1 + · · · + (

e
j

)
fe−j + · · · + f0. Since the

combinatorial coefficients satisfy that
(
ph−1
j

)
j

e e−1, . . . , f0 ∈ W i.e. W = Re. For characteristic
zero the proof is similar.

 

= (−1) (mod p) (see Exercise
18) we conclude that f , f
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(3) To prove that Re and R∗e are isomorphic for e = ph − 1 we define a
bilinear form on Re as b(fi, fj) = (−1)i

(
e
i

)−1
δi,e−j . The form b is non de-

generate and its corresponding matrix is




0 0 ±1

0
0
±1 0 0


. Next we show that

b is SL2–invariant. Indeed, b
((

t 0
0 t−1

)·fi,
(
t 0
0 t−1

)·fj
)

= b(t2i−efi, t2j−efj) =
t2(i+j−e)b(fi, fj) = b(fi, fj).

Next compute
(

1 a
0 1 ) · fi, ( 1 a

0 1 ) · fj
)

=

b
(
fi + a

(
e−i
e−i−1

)
fi+1 + · · ·+ ak−i

(
e−i
e−k

)
+ · · ·+ ae−ife,

fj + a
( e−j
e−j−1

)
+ · · ·+ al−j

(
e−j
e−l

)
fl + · · ·+ ae−jfe

)
.

Observe that if i+ j > e, then also k+ l > e for all i < k and j < l. In
this case it follows immediately that b

(
( 1 a

0 1 ) · fi, ( 1 a
0 1 ) · fj

)
= 0. If i+ j = e

then k+ l > e for all i < k and j < l. Then b
(
( 1 a

0 1 ) ·fi, ( 1 a
0 1 ) ·fj

)
= b(fi, fj).

Finally b
((

0 1
−1 0

) · fi,
(

0 1
−1 0

) · fj
)

= (−1)i+jb(fe−i, fe−j) = b(fi, fj). From
Exercise 20 it follows immediately that b is SL2–equivariant. The case of
characteristic zero is proved similarly. ¤

5. Characters and semi–invariants

Let G be an affine algebraic group. Recall from Definition 3.2.19 that
a character of G is a homomorphism of algebraic groups ρ : G → Gm.
The family of all characters of G will be denoted as X (G), and it has
the structure of a commutative abstract group when we endow it with the
point–wise multiplication and inversion. The neutral element of this group
is called the trivial character. It may happen that a group has only trivial
characters; for example, in Exercises 24 and 5.29 it is shown that if U is
unipotent then X (U) = {1}.

Definition 5.1. Let G be an affine algebraic group and ρ ∈ X (G).
If M is a rational G–module, we denote as Mρ the rational G–module
consisting of the space M , endowed with the G–module structure ? defined
as: x ? m = ρ(x)x ·m for all x ∈ G and m ∈ M . The structure ? is called
the twist of the original structure by ρ.

We leave as an exercise the proof that Mρ is a rational G–module (cf.

 

The case that i+ j < e is left to the reader as an exercise (see Exercise 19).

b (

Exercise 27).



152 4. ALGEBRAIC GROUPS: LIE ALGEBRAS AND REPRESENTATIONS

Definition 5.2. Let G be an affine algebraic group and M a rational
G–module. An element m ∈ M is called a semi–invariant element if the
vector subspace km ⊂ M is G–stable. If m ∈ M is fixed by the action of
G, i.e., if x ·m = m for all x ∈ G, we say that it is an invariant element.
The G–submodule consisting of all the invariant elements of M is denoted
as GM .

Observation 5.3. In the situation above, if m ∈M is a semi–invariant
element and we write x · m = ρ(x)m for all x ∈ G, it is clear that ρ is
a character of the group G, called the character associated to the semi–
invariant. The element m is said to be a semi–invariant of weight ρ. The
semi–invariants of weight 1 where 1 is the trivial character are clearly the
invariants.

Definition 5.4. Assume that G is an affine algebraic group and that
M is a rational G–module. If ρ is a character of G, the weight space ρM of
M is defined as ρM =

{
m ∈ M : x ·m = ρ(x)m, ∀x ∈ G}

, in particular if
ρ = 1, ρM = GM .

The weight spaces are rational G–submodules of M . It may hap-
pen that for an arbitrary character ρ, ρM = {0}, and in particular that
GM = {0}. Indeed, Example 3.15 and the case of the actions considered in
Definition 4.1 show that GM can be zero.

The weight spaces have the following properties.

Lemma 5.5. Let G be an affine algebraic group and M a rational G–
module.
(1) The invariants of Mρ−1 are the semi–invariants of weight ρ. More
generally, if ρ, γ ∈ X (G), then τ (Mρ) = ρ−1τM .

(2) The family
{
ρM 6= 0 : ρ ∈ X (G)

}
is linearly disjoint. In particular if

M is finite dimensional there are only finitely many non zero weight spaces.
(3) If ρM 6= 0 for some character ρ ∈ X (G), then ρk[G] 6= 0. In other
words, if there is a non zero semi–invariant vector, there is also a non zero
semi–invariant function of the same weight.

Proof: The proof of the first assertion is evident. In order to prove
(2), we show that if {ρ1, . . . , ρn} is a finite set of different characters, then
the sum Mρ1 + · · ·+Mρn ⊂M is direct. Consider a sum of minimal length
of the form mi1 + · · · + mir = 0 with mij ∈ Mρij

. Applying x ∈ G to
this equality, then multiplying the original by ρi1(x) and subtracting both,
we obtain

(
ρi1(x)− ρi2(x)

)
mi2 + · · ·+ (

ρi1(x)− ρir (x)
)
mir = 0. Since the

characters are assumed to be different, for some x ∈ G the new sum will be
shorter and the proof is finished.
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For the proof of (3), assume that 0 6= m ∈ ρM and take α ∈ M∗ such
that α(m) = 1. Then, x · (α|m) = α|(x ·m) = ρ(x)(α|m) and (α|m)(e) =
1. ¤

For future reference we treat the situation of a group and a normal
subgroup with regard to semi–invariants.

We start with the case of abstract groups and denote (abusing slightly
the notations) as X (H) the group of abstract characters of H.

Observation 5.6. Assume for the considerations that follow that G is
an abstract group and H a normal subgroup. If z ∈ G and γ ∈ X (H) we
define z · γ ∈ X (H) as (z · γ)(x) = γ(z−1xz) for x ∈ H. In this manner we
define an action of G on X (H). If Gγ denotes the stabilizer of γ in G, then
H ⊂ Gγ ⊂ G. Let M be an representation of G, γ ∈ X (H), and consider
the H–semi–invariants γM = {m ∈ M : x ·m = γ(x)m ∀x ∈ H}. Then,
z · γM = z·γM for z ∈ G.

Observation 5.7. In the situation above assume that the G–module
M is finite dimensional and that for some character ρ the weight space
ρM 6= 0. Since M is finite dimensional it is clear that the sum

⊕
γ∈G·ρ

γM

— that is direct by Lemma 5.5 — has to be finite. Since γM for γ ∈ G · ρ
is a translate of ρM , it is non zero and consequently the orbit G ·ρ is finite.
Hence, the stabilizer Gρ is a subgroup of G of finite index that contains H.
Moreover, if M is a simple G–module we conclude that

⊕
γ∈G·ρ

γM = M .

The result that follows will be useful when dealing with homogeneous
spaces.

Lemma 5.8. Let G be an affine algebraic group and H a closed nor-
mal subgroup. Assume that for some character γ ∈ X (H), there exists an
γk[G] 6= 0. Then Gγ is a closed subgroup of G of finite index. In particular,
if G is connected, then Gγ = G.

Proof: Since the G–submodule generated by the orbit of 0 6= f ∈
γk[G] is finite dimensional, Observation 5.7 guarantees that H ⊂ Gγ ⊂ G
and that Gγ has finite index in G. The fact that Gγ is closed is left as an

¤

Lemma 5.9. Let G be a connected affine algebraic group and H ⊂ G
a closed normal subgroup. Assume that M is a simple G–module and that
for some γ ∈ X (H), γM 6= 0. Then M = γM .

Proof: By the considerations above, we have that Gγ = G and that
means that the orbit G · γ = {γ}. By Observation 5.7 we conclude that
M = γM . ¤

 

exercise (see Exercise 35).
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It is clear that the set of zeroes of an invariant polynomial is stable by
the action of the group. The converse is also true and yields a geometrical
criterion for polynomials to be semi–invariant.

Theorem 5.10. Let G be a connected algebraic group acting regularly
on an irreducible algebraic variety X and consider the rational right action
of G on OX(X). Then f ∈ OX(X) is semi–invariant if and only if the
zero set of f is stable by G. In particular, all invertible regular functions
of X are semi–invariant.

Proof: Assume that f ∈ OX(X) verifies that for some character γ,
(f · a)(x) = γ(a)f(x) for all x ∈ X and a ∈ G. Then f(x) = 0 if and only
if f(a · x) = 0. Thus, the zero set of f is G–stable.

Conversely, let f ∈ OX(X) be a regular function with the property
that the set of its zeroes is G–stable. Consider the open G–stable subset
U = X \ f−1(0) ⊂ X. Clearly the restriction OX(X) ↪→ OX(U) is a G–
morphism, and f is semi–invariant if and only if its restriction f |U ∈ OX(U)

Then, after replacing X by U we can
assume that f−1(0) = ∅, or in other words that f ∈ OX(X)∗. Consider
the map χ : OX(X) → OG×X(G × X) induced by the action of G on X,
and take the invertible function F = χ(f) ∈ OG×X(G×X). Using Lemma
1.5.18 we can find functions f1 ∈ OG(G)∗ and f2 ∈ OX(X)∗ such that
f(a · x) = F (a, x) = f1(a)f2(x) for all a ∈ G and x ∈ X. If we put a = 1
in the above equality, we conclude that f(x) = f1(1)f2(x). Thus, if we
call γ(a) = f1(a)/f1(1), we have that f(a · x) = γ(a)f(x). Clearly, γ is a
character and a · f = γ(a)f . Hence, f is a non zero G–semi–invariant of
weight γ. ¤

6. The Lie algebra associated to an affine algebraic group

In this section we show that, in the same manner as for Lie groups, the
group structure induces for an affine algebraic group a Lie algebra structure
on the tangent space at the identity.

In Lemma 1.4.61, we observed that for an algebraic variety X and a
fixed point x ∈ X, the tangent space Tx(X) can be defined in two equivalent
manners: as the space of point derivations of the local ring Ox of X at x,
denoted as Dεx(Ox), or as the dual space (Mx/M2

x)∗, where Mx denotes
the maximal ideal of Ox. If the variety X is affine, we can work globally,
and Tx(X) = Dεx

(
k[X]

)
or Tx(X) =

(
Mx/M

2
x

)∗, where Mx ⊂ k[X] is the
maximal ideal corresponding to the point x.

In the particular case that X is a group G we will use its product,
i.e. the coproduct on the algebra of polynomials, in order to construct the
Lie bracket on T1(G).

 

is semi–invariant (see Exercise 30).
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Lemma 6.1. Let G be an affine algebraic group. If τ, σ ∈ Dε
(
k[G]

)
,

then the map [σ, τ ] : k[G] → k, [σ, τ ] = σ ? τ − τ ? σ, is also an element of
Dε

(
k[G]

)
.

Proof: We prove the assertion by explicit calculations. Recall that
(σ ? τ)(f) =

∑
σ(f1)τ(f2).

[σ, τ ](fg) =
∑

σ
(
(fg)1

)
τ
(
(fg)2

)− τ
(
(fg)1

)
σ
(
(fg)2

)
=

∑
σ(f1g1)τ(f2g2)− τ(f1g1)σ(f2g2) =

∑(
f1(1)σ(g1) + g1(1)σ(f1)

)(
f2(1)τ(g2) + g2(1)τ(f2)

)−
∑(

f1(1)τ(g1) + g1(1)τ(f1)
)(
f2(1)σ(g2) + g2(1)σ(f2)

)
=

∑
f(1)

(
σ(g1)τ(g2)− τ(g1)σ(g2)

)
+ g(1)

(
σ(f1)τ(f2)− τ(f1)σ(f2)

)
=

f(1)[σ, τ ](g)− g(1)[σ, τ ](f) .

¤

Observation 6.2. It follows immediately from the associativity of the
convolution product that the above defined bracket verifies Jacobi’s identity.

Definition 6.3. If G is an affine algebraic group, then the vector space
T1(G) will be denoted as L(G) when equipped with the bracket [ · , · ] :
L(G) ⊗ L(G) → L(G) defined in Lemma 6.1. It will be called the Lie
algebra of G.

There is another characterization of the Lie algebra of an affine alge-
braic group that corresponds to the description of the Lie algebra of a Lie
group as the space of all the invariant vector fields.

Definition 6.4. Let G be an affine algebraic group and consider D(G)

Then D(G) can be equipped with an action of G in the following manner:
If x ∈ G and D ∈ D(G), then (x ·D)(f) = D(f · x) · x−1.

It is clear that the action defined above is compatible with the bracket
on D(G), but it is not evident that it is rational (a priori the rationality
could be lost because of the dualization implicit in the construction of
D(G)). We leave to the reader the verification that the above G–action is

Theorem 6.5. Let G be an affine algebraic group and D(G) the Lie
algebra of derivations of k[G]. Then,

(1) D(G) ∼= k[G]⊗ GD(G).

 

the Lie algebra of derivations of k[G] (see Section 2.2 for the definitions).

indeed a rational G–action (see Exercise 16).
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(2) The map ν : D(G) → L(G) given by ν(D) = ε◦D induces an isomor-
phism of Lie algebras from GD(G) — considered as a Lie subalgebra of
D(G) — onto L(G).

Proof: Assertion (1) follows directly from Theorem 3.29 and the ver-

In order to prove (2), we consider the map µ : L(G) → D(G) defined
as µ(τ)(f)(x) = τ(f · x). It is clear that if τ ∈ L(G), then µ(τ) is G–
invariant, i.e., the codomain of µ is GD(G). Applying µ to τ = ε◦D for
some D ∈ GD(G) we have that µ(ε◦D)(f)(x) = (ε◦D)(f · x) = D(f ·
x)(1) = (D(f) · x)(1) = D(f)(x). Conversely, (νµ)(τ) = ε◦µ(τ), hence
(νµ)(τ)(f) = µ(τ)(f)(1) = τ(f · 1) = τ(f). ¤

Theorem 6.6. Let φ : G→ H be a morphism of affine algebraic groups.
Then, the map d1(φ) : L(G) → L(H) is a homomorphism of Lie algebras
that — in the case that the field is of positive characteristic p — preserves
the p–operation.

Proof: Consider σ, τ ∈ L(G) and f ∈ k[H]. Then

[d1(φ)(σ), d1(φ)(τ)](f) =
∑

d1(φ)(σ)(f1)d1(φ)(τ)(f2)−
d1(φ)(τ)(f1)d1(φ)(σ)(f2) =

∑
σ(f1◦φ)τ(f2◦φ)− τ(f1◦φ)σ(f2◦φ) =

[σ, τ ](f◦φ) = d1

(
[σ, τ ]

)
(f) .

Notice that the equality
∑
f1◦φ ⊗ f2◦φ =

∑
(f◦φ)1 ⊗ (f◦φ)2, that we

used at the end of the above proof, follows immediately from the fact that
φ is a group homomorphism. The proof that the differential preserves the

¤
Definition 6.7. Let φ : G → H be a morphism of affine algebraic

groups. Then the Lie algebra homomorphism d1(φ) : L(G) → L(H) is
denoted as φ• and called the differential of φ.

Observation 6.8. (1) In explicit terms, if φ : G → H is a homo-
morphism of algebraic groups, then φ• : L(G) → L(H) can be written as
φ•(τ)(f) = τ(f◦φ), for τ ∈ L(G) and f ∈ k[H].
(2) It follows from Exercise 1.44 that if G, H, and K are algebraic groups
and φ : G → H and ψ : H → K are morphisms, then (ψ ◦ φ)• = ψ• ◦
φ•. Hence, the association that sends G into L(G) and φ into φ• can
be viewed as a functor from the category of affine algebraic groups and
homomorphisms into the category of Lie algebras and morphisms of Lie
algebras.

 

ification of the details is left as an exercise (see Exercise 17).

p–structure is left as an exercise (see Exercise 32).
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The next lemma, describing the Lie algebra of a subgroup in terms of
the Lie algebra of the group and the defining ideal of the subgroup, is useful
when performing explicit computations.

Lemma 6.9. Let G be an affine algebraic group and let H ⊂ G a closed
subgroup. Call I ⊂ k[G] the ideal of H. Then

L(H) =
{
τ ∈ L(G) : τ(f) = 0, ∀f ∈ I} .

Proof: The result follows immediately from the fact that k[H] =
k[G]/I. ¤

Corollary 6.10. Let G be an affine algebraic group and let G1 be the
connected component of the identity in G. Then L(G1) = L(G).

Proof: We will show that if I denotes the ideal of G1 in k[G], then
τ(I) = 0 for all τ ∈ L(G). Write G = G1 ∪G2, where G2 is a finite union
of translates of G1. Since G1 is open and closed in G and 1 6∈ G2, we can
find g ∈ k[G] such that g(G2) = 0 and g(1) = 1. Then for an arbitrary
f ∈ I, fg = 0 and 0 = τ(fg) = f(1)τ(g) + g(1)τ(f) = τ(f). The result
then follows from Lemma 6.9. ¤

The next theorem guarantees that the dimension of the group coincides
with the dimension of the Lie algebra. In Exercise 33 we ask the reader to
give a different proof of this same result.

Theorem 6.11. Let G be an affine algebraic group. Then dim(G) =
dimk

(L(G)
)
.

Proof: By Theorem1.4.103 there exists a point x ∈ G such that
dimkTxG = dim(G). Since translation by x is an isomorphism, it follows
that TxG ∼= T1G = L(G). ¤

7. Explicit computations

In this section we perform some explicit computations of Lie algebras
and differentials of concrete homomorphisms. Besides serving as an illus-
tration of the theory, the results here presented will be used for the study
of the correspondence between algebraic groups and Lie algebras.

Lemma 7.1. Let G and H be affine algebraic groups. Then the map
J : L(G) ⊕ L(H) → L(G × H) defined as J(σ, τ) = σ ⊗ ε + ε ⊗ τ is an
isomorphism of Lie algebras.

Proof: The above definition makes sense because σ ⊗ ε + ε ⊗ τ is a
derivation of k[G]⊗ k[H] at 1 ∈ G×H. As (σ ⊗ ε+ ε⊗ τ)(f ⊗ 1) = σ(f)
and (σ⊗ ε+ ε⊗ τ)(1⊗ g) = τ(g), for f ∈ k[G] and g ∈ k[H], J is injective.
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Direct calculations show that J is a morphism of Lie algebras, and counting
dimensions we deduce that J is an isomorphism. ¤

In Exercise 36 we ask the reader to compute the Lie algebra of a semi-
direct product of two affine algebraic groups.

Lemma 7.2. Let G be an affine algebraic group and consider the struc-
ture morphisms mG : G × G → G and iG : G → G. Then d1,1(mG) :
L(G)⊕ L(G) → L(G) is d1,1(m)(σ, τ) = σ + τ and d1(iG) : L(G) → L(G)
is d1(iG)(σ) = −σ.

Proof: Recall that the identification L(G×G) ∼= L(G)⊕L(G) is given
by sending the pair (σ, τ) ∈ L(G)⊕L(G) onto the derivation σ⊗ ε+ ε⊗ τ :
k[G]⊗ k[G] → k. It follows that

d1,1(mG)(σ, τ)(f) = (σ, τ)(f◦mG) = (σ ⊗ ε+ ε⊗ τ)
(∑

f1 ⊗ f2
)

=
∑

σ(f1)f2(1) + f1(1)τ(f2) = σ(f) + τ(f) .

Similarly one can prove that d1(iM )(σ)(f) = σ
(
S(f)

)
= −σ(f) (see

¤
Next we show that the rational actions of G can be “differentiated” to

produce Lie algebra actions of L(G).

Definition 7.3. Let G be an affine algebraic group and M a rational
G–module, call ϕ : G ×M → M the corresponding action and χϕ : M →
M ⊗ k[G] the associated k[G]–comodule structure. Define a map ϕ• :
L(G) ⊗M → M , as ϕ•(τ ⊗ m) =

∑
m0τ(m1). In Lemma 7.5 we prove

that in this manner we define an action of the Lie algebra L(G) on M . The
map ϕ• will be called the differential of ϕ and we write ϕ•(τ ⊗m) = τ ·m.

Observation 7.4. It is easy to show that in case that M is a right
rational G–module, one can similarly define a right action of the Lie algebra
of G on M .

Lemma 7.5. Let M be a rational G–module, call ϕ : G×M → M the
corresponding action and consider ϕ• : L(G) ⊗M → M as in Definition
7.3. Then ϕ• is an action of the Lie algebra L(G) on M .

Proof: Consider σ, τ ∈ L(G) and m ∈M . Then,

σ · τ ·m− τ · σ ·m =
∑

σ · (m0τ(m1)
)− τ · (m0σ(m1)

)
=

∑
(σ ·m0)τ(m1)− (τ ·m0)σ(m1) =

∑
m0

(
σ(m1)τ(m2)− τ(m1)σ(m2)

)
=

∑
m0[σ, τ ](m1) = [σ, τ ] ·m. ¤

 

Exercise 37).
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Observation 7.6. In Exercise 34 we ask the reader to prove that in
the situation of the above Definition 7.3, if α ∈M∗, τ ∈ L(G) and m ∈M
then: α(τ ·m) = τ(α|m).

Next we compute the Lie algebra of the general linear group.

Theorem 7.7. Let V be a finite dimensional vector space and con-
sider ιV : L(

GL(V )
) → gl(V ) given, in the notations of Definition 7.3, as

ιV (τ)(v) = τ ·v, for τ ∈ L(
GL(V )

)
and v ∈ V . Then ιV is an isomorphism

of Lie algebras.

Proof: Since both spaces have the same dimension it is enough to
prove that ιV is injective. Assume that for some τ ∈ L(

GL(V )
)

for all
v ∈ V , τ · v = 0. ∗, and v ∈ V ,
we have that τ(α|v) = 0. The polynomials α|v − α(v)1 with α ∈ V ∗,
v ∈ V , generate M1 — the maximal ideal associated to 1 in k[G]. Indeed, if
0 = (α|v)(x)−α(v) = α(x · v)−α(v) for all α, we deduce that x · v− v = 0
for all v, and thus x = 1 ∈ GL(V ). Hence, τ |M1 = 0 and then τ = 0 (see

V is injective. The fact that ιV is a morphism
of Lie algebras is an immediate consequence of Lemma 7.5. ¤

Observation 7.8. Consider G = GLn with Lie algebra gln. The coac-
tion χ associated to the action of GLn in kn is χ(ei) =

∑
ej ⊗Xij , where

{Xij , 1 ≤ i, j ≤ n} are the coordinate functions in kn2

Using the explicit description of ιn = ιkn : GLn → gln
we deduce that ιn(τ)(ei) = (id⊗τ)χ(ei) =

∑
τ(Xij)ej . In other words, if

we think of ιn(τ) as a matrix, then ιn(τ) =
(
τ(Xij)

)
1≤i,j≤n. It is worth

observing in this particular case that the p–structure on gln is just the

Example 7.9. Consider the classical example of the determinant func-
tion, det : GLn → GL1 = Gm. We want to compute det• : L(GLn) →
L(GL1). Via the explicit identifications of Observation 7.8, we view the
differential as a map from gln into k and we prove the commutativity of
the diagram below, that allows us to interpret the differential of the deter-
minant as the trace map.

L(GLn)

ιn

²²

det• // L(GL1)

ι1

²²
gln tr

// k

The polynomial ring of GLn is the localization with respect to the
determinant function of the ring k[Xij : 1 ≤ i, j ≤ n]. In particular, for

 

Exercise 37), i.e. the map ι

(see Example 3.15).

p–power operation (see Exercise 31).

Then, (see Observation 7.6) for all α ∈ V

(see Theorem 7.7)
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the case of n = 1 the ring of polynomial functions of GL1 is k[X,X−1]. If
τ ∈ L(GLn), then ι1

(
det•(τ)

)
= det•(τ)(X) = τ(X◦ det) = τ

(
det(Xij)

)
.

Since det(Xij) =
∑
p∈Sn

sg(p)X1p(1) · · ·Xnp(n),

τ
(
det(Xij)

)
=

n∑

j=1

∑
p

sg(p)X1p(1)(Id) · · · τ(Xjp(j)) · · ·Xnp(n)(Id) .

Consider for each fixed 1 ≤ j ≤ n the sum
∑
p

sg(p)X1p(1)(Id) · · · τ(Xjp(j)) · · ·Xnp(n)(Id) .

For this sum to be non zero, p has to be the identity permutation.
Hence, τ

(
det(Xij)

)
=

∑n
j=1 τ(Xjj) = tr

(
τ(Xij)1≤i,j≤n

)
. It follows that

the above diagram is commutative.

Having completed the description of the Lie algebra of the general linear
group we can reinterpret the differential of the action, as a strictu sensu
differential.

Lemma 7.10. Let G be an affine algebraic group and M a finite di-
mensional rational G–module. Call ϕ the action of G on M and ρϕ :
G → GL(M) the corresponding homomorphism of algebraic groups. Then
ρ•ϕ : L(G) → gl(M) can be computed explicitly as ρ•ϕ(τ)(m) = τ ·m, for all
τ ∈ L(G) and m ∈M .

Proof: Consider ϕ : G × M → M , χϕ : M → M ⊗ k[G], and
ρϕ(x)(m) =

∑
m1(x)m0. By differentiation and composition we obtain

a map ιM ◦ρ•ϕ : L(G) → L(
GL(M)

) ∼= gl(M). Consider χ : M → M ⊗
k[GL(M)], the structure map associated to the natural action GL(M) on
M , and write χ(m) =

∑
m0 ⊗ m1. Then ιM

(
ρ•ϕ(τ)

)
(m) = ρ•ϕ(τ) · m =∑

ρ•ϕ(τ)(m1)m0 =
∑
τ(m1◦ρϕ)m0. By the very definition of ρϕ and of the

actions of G and GL(M) on M , we have that
∑
m0⊗m1◦ρϕ =

∑
m0⊗m1.

Then ρ•ϕ(τ)(m) =
∑
m0τ(m1). ¤

The calculations can be made more explicit in the special case of the
regular representation of G on k[G].

Observation 7.11. Consider the action of G on k[G] by left transla-
tions. In this case if x ∈ G and f ∈ k[G], we have that x · f =

∑
f1f2(x).

The corresponding action of the Lie algebra is given as τ · f =
∑
f1τ(f2).

Moreover, the action of τ ∈ L(G) on the left commutes with the action of
x ∈ G on the right. Indeed, τ · (f · x) =

∑
f1(x)τ · f2 =

∑
f1(x)f2τ(f3).

On the other side, we have that (τ · f) · x =
(∑

f1τ(f2)
) · x =

∑
(f1 ·

x)τ(f2) =
∑
f1(x)f2τ(f3). Moreover, as (τ · f)(1) = τ(f), we deduce that
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(
τ · (f · x)

)
(1) =

(
(τ · f) · x)(1). Hence, τ(f · x) = (τ · f)(x). Similar

properties are valid for actions on the other side.

Observation 7.12. Let G be an affine algebraic group. With the
theory developed so far we can compute explicitly the isomorphisms of
Theorem 6.5: an element τ ∈ L(G) =

{
τ : k[G] → k : τ(fg) = f(e)τ(g) +

g(e)τ(f),∀f, g ∈ k[G]
}

interpreted as an invariant derivation of k[G] is the
map τ• : k[G] → k[G], given as τ•(f) = τ · f =

∑
f1τ(f2), i.e. ν−1(τ) =

τ•. This assertion can be verified by recalling the definition of µ in the
mentioned theorem and then using the considerations of Observation 7.11.

In Exercise 31 we ask the reader to obtain, in the case that the base
field has positive characteristic p, an explicit description of the p–structure.

We present another description of the Lie algebra of a subgroup as a

Lemma 7.13. Let G be an affine algebraic group, H a closed subgroup
and call I the ideal of H on k[G]. Then L(H) = {τ ∈ L(G) : τ · I ⊂ I}.

Proof: Let τ be a derivation of k[G] such that for all f ∈ I, τ · f ∈ I.
Since 1 ∈ H we deduce that 0 = (τ · f)(e) = τ(f). Then, in accordance
with Lemma 6.9, τ ∈ L(H).

Conversely, assume that τ ∈ L(H) and take f ∈ I. Then, f · x ∈ I for
all x ∈ H, and applying again Lemma 6.9 we conclude that τ(f · x) = 0.
Hence, (τ · f)(x) = 0 for all x ∈ H, i.e., τ · f ∈ I. ¤

In the case of an algebra A and a rational action by automorphisms of
the algebra, the corresponding Lie algebra acts by derivations.

Lemma 7.14. Let G be an affine algebraic group and assume that G acts
rationally on an an commutative algebra A by k–algebra automorphisms.
Then the corresponding action of L(G) on A is by derivations, i.e. it induces
a Lie algebra homomorphism L(G) → D(A).

Proof: The condition that G acts by automorphisms of the algebra,
expressed in terms of the comodule structure of A, is that that the map
χ : A→ A⊗ k[G] is an algebra homomorphism. It follows that if τ ∈ L(G)
and a, b ∈ A, then

τ · (ab) =
∑

τ(a1b1)a0b0 =
∑(

a1(1)τ(b1) + τ(a1)b1(1)
)
a0b0 =

∑(
a1(1)a0

)
τ(b1)b0 + τ(a1)a0

(
b1(1)b0

)
= a(τ · b) + (τ · a)b .

¤
Next we consider the adjoint representation in the context of algebraic

groups.

 

sub Lie algebra of the Lie algebra of the whole group (see Lemma 6.9).
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Definition 7.15. Let G be an affine algebraic group and x ∈ G, call
cx : G → G the automorphism of G defined by x–conjugation: cx(y) =
xyx−1. Define Ad : G × L(G) → L(G) as Ad(x, τ) = c•x(τ). The map Ad
is called the adjoint representation of G.

Observation 7.16. The name representation for the map Ad needs
yet to be justified. Observe that being cx an isomorphism of affine alge-
braic groups, c•x is a Lie algebra automorphism. Call Aut

(L(G)
)

the affine
algebraic group of all Lie algebra automorphisms of L(G). The map Ad can
be viewed as a homomorphism of algebraic groups ρAd : G→ Aut

(L(G)
) ⊂

GL
(L(G)

)
. The reader should at this point look at Exercise 3.19, where

the group of automorphisms of a finite dimensional Lie algebra is viewed
as an affine algebraic group.

Theorem 7.17. Let G be an affine algebraic group and call L(G) the
corresponding Lie algebra. The map Ad : G× L(G) → L(G) endows L(G)
with a structure of rational G–module. Moreover the corresponding derived
action Ad• : L(G) ⊗ L(G) → L(G) coincides with the adjoint action of
L(G) on L(G), in other words, Ad•(σ, τ) = ad(σ)(τ) = [σ, τ ].

Proof: We start by writing explicitly the map c•x : L(G) → L(G), for
x ∈ G. By definition, c•x(τ)(f) = τ(f◦cx) for f ∈ k[G], and

(f◦cx)(y) = f(xyx−1) =
∑

f1(x)f2(y)f3(x−1) =
∑(

f1S(f3)
)
(x)f2(y) ,

so that f◦cx =
∑(

f1S(f3)
)
(x)f2. Then,

Ad(x)(τ)(f) = c•x(τ)(f) = τ(f◦cx) =
∑(

f1S(f3)
)
(x)τ(f2) .

that Ad• : L(G)⊗ L(G) → L(G) is given as

Ad•(σ, τ)(f) =
∑

σ
(
f1S(f3)

)
τ(f2) =

∑(
f1(1)σ

(
S(f3)

)
+ S(f3)(1)σ(f1)

)
τ(f2) =

∑
σ(f1)τ(f2)− τ(f1)σ(f2) =

[σ, τ ](f) =
(
ad(σ)(τ)

)
(f) .

¤
With the tools already developed we are ready to look at the influence

that the structure of the group has on the corresponding Lie algebra. For
the sake of emphasis and with regard to possible converses, we stress in all
the statements that follow that the base field has arbitrary characteristic.

 

In Chapter 8 we discuss the validity of the converses in the situation of

If we differentiate the above equality (see Definition 7.3), we conclude
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characteristic zero and exhibit some explicit counter–examples for positive
characteristic.

Corollary 7.18. Let G be an affine algebraic group over an alge-
braically closed field of arbitrary characteristic and call L(G) its Lie alge-
bra. Then Z(G) ⊂ Ker ρAd = Ker Ad, where ρAd : G → GL

(L(G)
)

is the
adjoint representation and Z(G) denotes as usual the center of G.

Proof: If x ∈ Z(G), then cx = id : G → G, and thus id = c•x =
Ad(x) : L(G) → L(G); i.e., x ∈ Ker Ad. ¤

Corollary 7.19. Let G be an affine algebraic group over an alge-
braically closed field of arbitrary characteristic. If G is abelian, then L(G)
is also abelian.

Proof: Assume that G is abelian, then by Corollary 7.18, Ad : G →
GL

(L(G)
)

is the homomorphism that sends all the elements of G into the
identity map. Then the derivative Ad• = ad = 0 : L(G) → gl

(L(G)
)

and
the proof is finished. ¤

In case that we have an affine algebraic group and a closed subgroup H,
Lemma 6.9 shows that the Lie algebra of H can be interpreted as a sub-Lie
algebra of the Lie algebra of G. In case that H is a normal subgroup, the

Corollary 7.20. Let G be an affine algebraic group over an alge-
braically closed field of arbitrary characteristic and H ⊂ G a closed normal
subgroup of G. Then L(H) ⊂ L(G) is an ideal.

Proof: Let x ∈ G and consider the conjugation map cx : G → G.
As H is normal in G, then cx(H) ⊂ H and c•x

(L(H)
) ⊂ L(H). In other

words, L(H) ⊂ L(G) is a submodule with respect to the Ad action of G.
As Ad• = ad, with Ad : G → GL

(L(H)
)

and ad : L(G) → gl
(L(H)

)
(see[L(G),L(H)

] ⊂ L(H); i.e., L(H) is an
ideal in L(G). ¤

The next corollary will be useful in the computation of concrete exam-
ples.

Corollary 7.21. Let ρ : G → H be a morphism of algebraic groups
defined over an algebraically closed field of arbitrary characteristic. Then
L(

Ker(ρ)
) ⊂ Ker(ρ•).

Proof: Call I ⊂ k[G] the ideal associated to Ker(ρ). If τ ∈ L(
Ker(ρ)

)
,

If g ∈ k[H] then ρ•(τ)(g) =
τ(g◦ρ) = τ

(
g◦ρ − g(1)1

)
. If x ∈ Ker(ρ) then

(
g◦ρ − g(1)1

)
(x) = 0, so

 

Lie sub-algebra is in fact an ideal (see Definition 2.2.1).

Lemma 7.10), we conclude that

then τ(f) = 0 for all f ∈ I (see Lemma 6.9).
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that g◦ρ − g(e)1 ∈ I. Then τ
(
g◦ρ − g(1)1

)
= 0 and we conclude that

ρ•(τ) = 0. ¤
Example 7.22. (1) We prove that

L(SLn) = sln =
{
M ∈ sln : tr(M) = 0

}
.

Since SLn = Ker(det), using Corollary 7.21 we conclude that L(SLn) ⊂
Ker(det•) = Ker(tr) = sln. It is clear that both Lie algebras have dimension
n2−1, the first because n2−1 is the dimension of the corresponding group

and the second because it is the kernel of a linear
functional defined on the space of all matrices.
(2) Consider the group

Bn =
{

(aij)1≤i,j≤n ∈ GLn : aij = 0 ∀ i > j
}

of upper triangular matrices. The ideal of Bn in k[GLn] is generated by the
polynomials {Xij : i > j}. Hence, we may apply Lemma 6.9 to conclude
that

L(Bn) =
{
τ ∈ L(GLn) : τ(Xij) = 0, i > j

}
={

(aij)1≤i,j≤n ∈ gln : aij = 0, i > j
}

=
bn .

Example 7.23. In this example we compute the Lie algebra of On, for
a field of characteristic different from two.

Consider the group automorphism σ : GLn → GLn, σ(x) = (tx)−1.
The order of σ is two and, in the notations of Exercise 13, Gσ = On. Using
this exercise, we conclude that

L(SOn) = L(On) =
{
τ ∈ gln : τ + tτ = 0

}
.

In particular, it follows that dim(SOn) = dim(On) = n(n− 1)/2.

Example 7.24. In this example we compute the Lie algebra of Spn,
with n = 2m, if chark 6= 2.

Let s =
(

0 Idm

− Idm 0

)
be the invertible n2 matrix defining Spn

s : GLn → GLn,
σs(x) = s(tx)−1s−1. Using Exercise 13 we conclude, since Gσs0

= Spn,
that

L(Spn) =
{
τ ∈ gln : τ = −s(tτ)s−1

}
=

{
τ ∈ gln : τ = −s(tτ)s−1

}
.

In order to describe more explicitly L(Spn) we proceed as follows: τ =
(A B
C D ) is an element of L(Spn) if and only if the following equation is

verified:

0 = (A B
C D )

(
0 Idm

− Idm 0

)
+

(
0 Idm

− Idm 0

) (
tA tC
tB tD

)
=

(
−B+tB A+tD
−D−tA C−tC

)
.

 

(see Theorem 6.11),

(see Ex-
ample 3.2.15), and consider the group automorphism σ
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In other words, (A B
C D ) ∈ L(Spn) if and only if B = tB, A = −tD,

C = tC. Hence, a direct calculation shows that dim(Spn) = 2m2 + m =
n) and L(On) were defined

over C.

Some other computations with differentials will be performed in the
exercises.

8. Exercises

1. (a) Let C be a coalgebra and A an algebra. Recall that if f, g ∈
Homk(C,A) then (f ? g)(c) =

∑
1 2(

Homk(C,A), ?, uε
)

is an associative algebra with unit.
(b) Prove that in a Hopf algebra H the antipode SH is an anti–homomor-
phism of algebras and of coalgebras.
(c) If H and K are Hopf algebras and f : H → K is a homomorphism of
bialgebras, prove that f◦SH = SK◦f .

2. Prove that if C is a coalgebra and c ∈ C then there exists a finite
dimensional subcoalgebra Cc c

3. Prove Theorem 2.19.

4. (a) If H is a Hopf algebra, prove that the categories MH and HM

(b) Prove that if M ∈ MC
f , the structure χ∗ defined in Observation 2.13,

endows M∗ with a structure of left C–comodule.

5. Complete the proof of Lemma 2.14.

6. (a) An element g ∈ H in a bialgebra H is said to be a group–like
element, if ∆(g) = g ⊗ g. Prove that if g ∈ H is a non zero group–like
element of Hopf algebra H, then ε(g) = 1 and S(g) = g−1. Moreover, if
H = k[G], where G is an affine algebraic group, then the non zero group–
like elements are exactly the characters of G.
(b) Compute the group–like elements of k[GLn].

7. (a) Complete the proof of Corollary 2.23.
(b) Assume that H is a Hopf algebra and define Ad : H → H ⊗ H as
Ad(x) =

∑
x2 ⊗ S(x1)x3. Prove that in the case that H = k[G] for an

affine algebraic group G, then the map Ad = c#, where c : G × G → G,
c(x, y) = x−1yx.
(c) Let G be an affine algebraic group and K ⊂ G a closed subgroup,
with associated ideal I(K). Then K is normal if and only if Ad

(I(K)
) ⊂

I(K)⊗ k[G].

 

f(c )g(c ) (see Definition 2.4). Prove that

⊂ C, such that c ∈ C . See Observation 2.3.

are naturally equivalent (see Observation 2.13).

n(n+1)/2. See Exercises 2.7 and 2.7, where L(Sp
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(d) A coalgebra C is said to be cocommutative if the comultiplication ∆
verifies that ∆ = τ◦∆ where τ : C⊗C → C⊗C is defined as τ(c⊗d) = d⊗c
for all c, d ∈ C. Prove that k[G] is cocommutative if and only if G is abelian.

8. (a) In the notations of Observation 3.2, prove that if G is an abstract
group and M is a representation of G, then α ·x|m = (α|m)·x and α|x ·m =
x · (α|m) for x ∈ G, α ∈M∗ and m ∈M .
(b) In the case that M is finite dimensional, {e1, . . . , en} is a basis of M and
{ej : j = 1, . . . , n} is its dual basis, then the functions {ej |ei : 1 ≤ i, j ≤ n}
are the matrix coefficients of the associated matrix representation.
(c) Let M,N be representations of G. If α ∈ M∗, β ∈ N∗, m ∈ M and
n ∈ N , then (α ⊗ β)|(m ⊗ n) = (α|m)(β|n). Prove that the subspace
of kG consisting of all M–representative functions when M varies over all
G–modules — the algebra of representative functions — is a subalgebra of
kG.

9. Let k be a field, G an abstract group and f ∈ kG an arbitrary
k–valued function. Then f is a representative function if and only if the
orbit {x · f : x ∈ G} generates a finite dimensional subspace of kG and this
happens if and only if the orbit {f ·x : x ∈ G} generates a finite dimensional
subspace of kG.

10. Consider the action of Ga on k2 as follows: if t ∈ Ga and (x, y) ∈ k2,
then t · (x, y) = (x + ty, y). Prove that the k2–representative functions in
kGa are exactly the polynomials on Ga.

11. Let S be a set and k an arbitrary field. Call kS the k–algebra of
all functions from S into k. Let V be a non zero finite dimensional vector
subspace of kS , then there exists a basis {v1, . . . , vn} of V and a subset
{s1, . . . , sn} of S such that vj(si) = δij . Hint: proceed by induction on n.

12. Complete the proof of Lemma 3.4.

13. (a) Let G be an affine algebraic group and σ : G → G a group
automorphism of finite order. Prove that there exist a closed immersion ρ :
G→ GLn and an element s ∈ GLn of finite order and normalizing ρ(G) ⊂
GLn, such that ρ

(
σ(x)

)
= sρ(x)s−1 for all x ∈ G. Hint: Modify the

proof of Theorem 3.23 in order to obtain a finite dimensional G–submodule
V , σ#–stable, and that generates k[G] as an algebra. Consider then the
element s ∈ GL(V ) associated to the restriction of σ# to V .
(b) Consider an element s ∈ GLn of finite order prime to the characteristic
of the field, and consider the automorphism cs : GLn → GLn, cs(x) =
sxs−1, and Gs =

{
x ∈ GLn : cs(x) = x

}
. Prove by a direct computation

that L(Gs) = (gln)s =
{
τ ∈ gln : τs = sτ

}
.

 



8. EXERCISES 167

(c) In the situation of part (a), suppose that the order of σ is prime to
the characteristic of the base field. Call Gσ =

{
x ∈ G : σ(x) = x

}
and

gσ =
{
τ ∈ g : σ•(τ) = τ

}
. Applying (a) and (b), prove that L(Gσ) = gσ.

Hint: Assume that G ⊂ GLn and that σ is given by conjugation by an
element of s ∈ GLn of finite order and semisimple. Consider the map
φ : G → G, φ(x) = x−1σ(x), and call Z the closure of the image of φ.
Extend φ to GLn using s and call W the corresponding closure of the image.
In part (b) we proved that dId(φ) : gln → TId(W ) is surjective. Using the
semisimplicity of σ• conclude that L ⊂ gln has a σ•–stable complement.

14. Prove Theorem 3.24.

15. Let G be an affine algebraic group.
(a) Prove that if M is a finite dimensional rational G–module, then the
tensor algebra T (M) as well as the exterior algebra

∧
M and the symmetric

algebra S(M) are rational G–module algebras. Verify also that
∧m(M) as

well as Sm(M) are G–submodules for all m ≥ 0.
(b) Let A be an algebra that is also a rational G–module. Prove that the
action of G on A preserves the product and the unit if and only if the
corresponding coaction χ : A → A ⊗ k[G] is multiplicative and takes the
unit into the unit.
(c) Prove that the actions of G on k[G] given by the right translations,
the left translations and the adjoint action endow k[G] with structures of
rational G–module algebra.

16. Let G be an affine algebraic group and consider the module of
differentials of k[G], that we denote as ΩG

(a) Consider the diagonal G–action on ΩG and the structure of k[G]–module
induced by multiplication on the first tensorand. Prove that ΩG is a Hopf
module.
(b) Using the fundamental theorem for Hopf modules, deduce that ΩG ∼=
k[G]⊗ V for a certain vector space V acted trivially by G.
(c) Use the universal property of ΩG to deduce that, as G–modules, D(G) =
D(
k[G], k[G]

) ∼= Homk[G]

(
k[G]⊗V, k[G]

) ∼= k[G]⊗V ∗. Conclude that D(G)
is a rational G–module.

17. Assume that G is an affine algebraic group.
(a) Show D(G) equipped with its natural actions becomes a (k[G], G)–
module Lie algebra.

 

(see Appendix, Definition 3.19
and Lemma 3.20).
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(b) Using the fundamental theorem on Hopf modules conclude that the map
θ : k[G]⊗ GD(G) → D(G), θ(f ⊗D) = fD for f ∈ k[G] and D ∈ D(G), is
an isomorphism.

18. Prove that if p is a prime number then for all 0 ≤ j ≤ ph − 1,(
ph−1
j

) ≡ (−1)j(mod p).

19. Prove that the bilinear form defined in Lemma 4.3 is invariant.
Hint: In order to prove that if i + j < e, then b

(
( 1 a

0 1 ) · fi, ( 1 a
0 1 ) · fj

)
=

b(fi, fj), write

b
(
( 1 a

0 1 ) · fi, ( 1 a
0 1 ) · fj

)
= ae−i−j

∑

i≤k≤e−j

(
e−i
k−i

) (
e−j
k

)
( ek )−1 (−1)k ,

and then prove that the sum equals zero by expressing it as

b
(
( 1 a

0 1 ) · fi, ( 1 a
0 1 ) · fj

)
=

∑

r+s=e−i−j
(−1)r/r!s! .

20. Consider in SL2 the subgroup U =
{

( 1 a
0 1 ) : a ∈ k} and the element

w =
(

0 1
−1 0

)
. Prove that G = TU ∪ UwTU .

21. Consider the following variation of Definition 4.1.
(a) Let SL2 act on (k2)∗ by the contragradient action of the one presented
in Definition 4.1, and view k[X,Y ] as the symmetric algebra built on (k2)∗.
Prove that the corresponding action of SL2 on k[X,Y ] is given as: if x =(
a b
c d

)
and p ∈ k[X,Y ], then (x · p)(X,Y ) = p(dX − bY,−cX + aY ).

(b) Consider the natural action of SL2 on k2, and the induced left action of
SL2 on k[k2] = k[X,Y ], (x · f)(p) = f(x−1 · p). Verify that in this situation
we obtain the above action.

22. Consider the action defined in Exercise 21 and denote a generic
element u ∈ k[X,Y ]d as u =

∑d
i=0 αiX

d−iY i.
(a) Consider, for a fixed u ∈ k[X,Y ]d, the roots {λ1, λ2, . . . , λd} of u(X, 1),
and define the discriminant of u as ∆(u) = α2d−2

0

∏
1≤i<j≤d(λi − λj)2.

Prove that ∆ : k[X,Y ]d → k is an invariant polynomial.
(b) Assume that the characteristic of the base field is zero. In the situation
of part (a), with d = 2, prove that ∆(u) = α2

1 − 4α0α2. Identify k[X,Y ]2
with the space Σ2 of the symmetric two by two matrices via k[X,Y ]2 3
u 7→Mu =

(
α0 α1/2
α1/2 α2

)
. Prove that if we endow Σ2 with SL2 action given

by conjugation with the transpose, i.e., x · M = (x−1)tMx−1, then the
above identification is SL2–equivariant. Using the fact that an arbitrary
symmetric matrix can be diagonalized, prove that k

[
k[X,Y ]2

]SL2 = k[∆].
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(c) Prove that for d = 3, ∆(u) = α2
1α

2
2 − 4α0α

3
2 − 4α3

1α3 − 27α2
0α

2
3 +

18α0α1α2α3.
(d) In the case of d = 4 we define two special polynomials on k[X,Y ]4 as
follows:

P (u) = α0α4 − 1
4
α1α3 +

1
12
α2

2 , H(u) =
(

α0 α1/4 α2/6
α1/4 α2/6 α3/4
α2/6 α3/4 α4

)
.

The polynomials P and H are called respectively the apolar polyno-
mial and the Hankel determinant. Prove that P and H are invariant and
that ∆ = 28(P 3 − 27H2). The study of the k–algebra k

[
k[X,Y ]2

]SL2 .
i.e. the invariants of forms, is one of the more traditional subjects in clas-
sical invariant theory. The description of the algebra of invariants in terms
of generators and relations is known only for small values of d. It can
be proved that if d = 3, then k

[
k[X,Y ]3

]SL2 = k[∆] and if d = 4, then

k
[
k[X,Y ]4

]SL2 = k[P,H].
cases for d ≤ 8.

23. In this exercise we assume that chark 6= 2. Consider again the
action of SL2 on k[X,Y ]2 defined in Exercise 21. Prove that this action can
be factored to an action of PGL2 on P2 that in explicit terms is given as(
a b
c d

) · [x0 : x1 : x2] =
[
d2x0 − dcx1 + c2x2 : −2dbx0 + (ad+ bc)x1 − 2acx2 : b2x0 − abx1 + a2x2

]

for [x0 : x1 : x2] ∈ P2. In P2, the Veronese variety V, i.e. the conic
4x0x2 = x2

1, coincides with the set of elements of k[X,Y ]2 that are perfect
squares. Prove that V is a PGL2–stable subset of P2(k) and conclude that
the above action of PGL2 on P2 has two orbits, one is V and the other its
complement.

24. Prove that there are no non trivial multiplicative morphism form
Ga to Gm a

25. Let G be an affine algebraic group and H ⊂ G a closed normal
subgroup. Prove that with respect to the action considered in Observation
5.6 the stabilizer subgroup Gρ = {z ∈ G : z ·ρ = ρ} of a character ρ ∈ X (H)
is closed in G.

26. (a) Prove that Aut(Ga) ∼= Gm.
(b) Let G be an affine algebraic group and H ⊂ G a closed normal subgroup
isomorphic to Ga. Consider the action of G on H by conjugation, and use
part (a) to produce a map γ : G→ Gm. Prove that γ is a rational character.

27. Let G be an affine algebraic group, ρ a character of G and M a
rational G–module. Prove that Mρ is a rational G–module.

 

See for example [141] for the study of some

, i.e. that X (G ) = {1}. See Exercise 5.29 for a generalization.
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28. Prove that if G is an affine algebraic group and M a simple rational
G–module, then M is finite dimensional.

29. Let G be an abstract group and K ⊂ G a normal subgroup. If M is
a simple G–module, then M is semisimple as a K–module. Conclude that
the restriction functor from the category of G–modules into the category
of K–modules takes semisimple objects into semisimple objects. Hint:
Consider a simple K–submodule N ⊂ M and prove that M is the sum of
all G–translates of N .

30. Assume that G is an affine algebraic group and that X is an irre-
ducible G–variety. Let U be an open G–stable subset of X and f ∈ OX(X).
Prove that f is semi–invariant on X with associated character ρ if and only
if f |U is semi–invariant on U with the same character.

31. Let G be an affine algebraic group, with chark = p > 0.
(a) Prove that the Lie algebra L(G) considered as a Lie subalgebra of D(G)
is also a p–Lie algebra.
(b) In the notations of Definition 7.2 and in accordance with the consid-
erations of Exercise 2.29, the p–structure on L(G) is given by the rule(
τ [p]

)
• =

(
τ•

)p. Show that τ [p] = τ ? · · · ? τ︸ ︷︷ ︸
p

, i.e., p times the convolution

product of τ with itself.
(c) Show that in the case of the Lie algebra gln the p–operation consists in
taking the p–th power of the matrix.

32. Assume that H,G are affine algebraic groups, with chark = p > 0.
Prove that if φ : G → H is a morphism of algebraic groups, then φ• :
L(G) → L(H) preserves the p–structure.

33. (a) Let A be a commutative integral domain and [A] its field of
fractions. Show that [A]⊗A Dk(A,A) ∼= Dk

(
A, [A]

) ∼= Dk
(
[A]

)
.

(b) We present an alternative proof for Theorem 6.11.
(i) Reduce to the case that G is connected.
(ii) From the isomorphism of Theorem 3.29, deduce — tensoring with the
field of fractions

[
k[G]

]
of k[G] — that

[
k[G]

]⊗k[G]D(G) ∼=
[
k[G]

]⊗L(G).
(iii) Conclude by showing that

dimk
(L(G)

)
= dim[k[G]]

[
k[G]

]⊗ L(G) = dim[k[G]]Dk
([
k[G]

])
=

trdk
[
k[G]

]
= dim(G) .

Here you must use the results of Section 1.2 that guarantee that the
field extension k ⊂ [

k[G]
]

is separable, and thus that dim[k[G]]Dk
([
k[G]

])
=

trdk
[ ]

 

k[G] . See [71, Thm. III.3.2] in order to complete the details.
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34. Let G be an affine algebraic group and M a rational G–module. If
α ∈M∗, m ∈M and τ ∈ L(G), then α(τ ·m) = τ(α|m).

35. Let G be an affine algebraic group and H ⊂ G a closed normal
subgroup. Consider the action of G on X (H) defined in Observation 5.6.
Prove that if γ ∈ X (H) is a character then the stabilizer Gγ is a closed
subgroup of G.

36. Compute the Lie algebra of a semidirect product of two affine al-
gebraic groups.

37. Let G be an affine algebraic group and M,N rational G–modules.
(a) Endow the tensor product M ⊗ N with the diagonal structure and
consider the corresponding actions of L(G) on M , N and M ⊗ N . Prove

(b) Compute explicitly the action of L(G) on
∧m(M) and, in the case that

M is finite dimensional, on End(M) and M∗.
(c) Assume that the polynomials {f1, . . . , fn} generate the maximal ideal
of 1 in k[G], and that τ ∈ L(G) is such that τ(fi) = 0 for all i = 1, . . . , n.
Prove that τ = 0.
(d) Prove that if τ ∈ L(G) and f ∈ k[G], then τ(Sf) = −τ(f). Hint:
differentiate the equality

∑
S(f1)f2 = f(e)1.

38. Let V be a finite dimensional vector space. Prove that the adjoint
representation Ad : GL(V )× gl(V ) → gl(V ) is given by x ·M = xMx−1.

39. Let G be an affine algebraic group acting rationally on M , and for
a fixed m ∈M denote as π : G→M the orbit map G 3 w 7→ π(w) = w ·m.
Prove that deπ : L(G) →M is given as deπ(σ) = σ ·m.

40. Assume that the base field has characteristic p > 0 and consider the
Frobenius homomorphism F : Ga → Ga, F (x) = xp. Compute F • : k→ k.

 

that τ · (m⊗ n) = τ ·m⊗ n+m⊗ τ · n (see Observation 2.2.6).



CHAPTER 5

Algebraic groups: Jordan decomposition and
applications

1. Introduction

A classical result — attributed to C. Jordan (and sometimes also to
K. Weierstrass) — about linear transformations on finite dimensional vector
spaces asserts that a linear map T : V → V can be written as the sum
of two commuting linear operators called Ts and Tn, with Ts semisimple,
i.e. diagonalizable, and Tn nilpotent. In the case that T is invertible, that
is T ∈ GL(V ), a slight modification of the above result guarantees the
existence of commuting invertible linear operators Ts and Tu such that
T = TsTu with Ts semisimple and Tu unipotent (i.e. such that Tu − id
nilpotent).

What is usually called the Jordan decomposition for algebraic groups
is a generalization of the multiplicative decomposition described above. If
G is an affine algebraic group and x ∈ G, then there exist xs, xu ∈ G such
that x = xsxu = xuxs, with the additional property that for an arbitrary
finite dimensional rational G–module M , xs acts semisimply and xu acts
unipotently on M .

In Sections 2 to 5 we prove the existence of the Jordan decomposition
for an affine algebraic group and also an analogous result for its Lie algebra.
Thereafter we use the above decomposition of the elements of G to establish
an important structure result, first for an abelian and then for a solvable
affine algebraic group.

After some preparations appearing in Sections 6 and 7, we establish in
Section 8 the decomposition of a connected solvable group G as a semidirect
product of the normal subgroup consisting of all its unipotent elements
(i.e. elements such that x = xu) with a maximal torus. This result, due to
A. Borel (see [9]), generalizes the multiplicative Jordan decomposition of a
linear transformation to a whole group of linear transformations provided
that it is solvable.

173
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The precise control we obtain via this result over the structure of the
solvable groups will be of crucial importance with regard to many aspects
of the invariant theory of algebraic groups (see for example Theorem 9.4.2).
It plays a central rôle in the general structure and representation theory
of semisimple algebraic groups as was shown by A. Borel and C. Chevalley
(and many others) around 1955-60. These finer aspects of the theory of
semisimple groups will not be covered in this book. The interested reader
can consult for example [10], [20], [75], [80].

In Section 7 we define the concepts of semisimple and reductive group
and in Section 9 present a proof of the semisimplicity of the classical groups.

The general layout as well as the methods of proof of the results of
this chapter are standard (see for example [10], [71], [75], [142]). Our
emphasis on establishing as a launching platform what we call the Jordan
decomposition for arbitrary coalgebras is inspired in [71]. This point of
view makes some of the proofs more intrinsic and seems to unify and clarify
various aspects of the theory.

In [11] it is mentioned that the use of the additive Jordan decomposi-
tion for Lie algebras as a tool for the study of algebraic groups originated in
L. Maurer’s work around 1890. In [98] and [97], Maurer “· · · characterized
the Lie algebras of algebraic groups · · · ” (c.f. [11]) and along the way es-
tablished the results concerning the Jordan decomposition of the elements
of the Lie algebra.

The multiplicative decomposition at the group level appeared more or
less simultaneously and independently in the work of C. Chevalley and
E. Kolchin (see [11]). The first mentioned author developed this founda-
tional material around 1943-1951 working in the case of characteristic zero
(see [18]) while the second author dealt with the case of arbitrary charac-
teristic. His main papers concerning — among many other results — the
subjects treated in this chapter are [86], [87] and were written around 1948.
Besides establishing the mentioned structure theorem for abelian groups the
author proved many of the results presented here, e.g., the generalization
of the so–called Lie’s theorem (see Theorem 2.3.8) that guarantees the tri-
angularization of a solvable group and is called nowadays the Lie–Kolchin
theorem (see Theorem 8.1).

2. The Jordan decomposition of a single operator

In this section we follow closely [10] and [71]. We start by reviewing
some basic facts of elementary linear algebra.

Definition 2.1. Let V be a k–space and T : V → V a linear transfor-
mation. We say that V is T–locally finite — or simply locally finite — if
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for any v ∈ V the subspace of V generated by the set {T i(v) : i = 0, 1, . . .}
is finite dimensional.

Observation 2.2. It is clear that the above definition is equivalent to
each of the following:
(1) V =

∑
Vi, where Vi is a finite dimensional T–stable subspace of V ;

(2) for every v ∈ V there exists a finite dimensional T–stable subspace
v ∈W ⊂ V .

Definition 2.3. Let V be a finite dimensional k–space and T : V → V
a linear transformation.
(1) We say that T is semisimple if for every invariant subspace W ⊂ V ,
there exists a T–invariant subspace W ′ ⊂ V such that V = W ⊕W ′.
(2) We say that T is nilpotent if there exists n > 0 such that Tn = 0.
(3) We say that T is unipotent if T − id is nilpotent.

Definition 2.4. Assume that V is an arbitrary k–vector space and
that T : V → V is a linear transformation such that V is T–locally finite.
(1) We say that T is locally nilpotent if for all finite dimensional T–stable
subspace W ⊂ V the map T |W : W →W is nilpotent.
(2) We say that T is locally unipotent if T − id : V → V is locally nilpotent.

In the observation that follows, that we ask the reader to prove in
Exercise 1, we collect some elementary results about semisimple, nilpotent
and unipotent linear transformations.

Observation 2.5. Assume that V is a k–space. All the linear trans-
formations we consider are assumed to be locally finite in V .
(1) If T is locally unipotent, then T is invertible and T−1 is locally unipo-
tent. If T is locally unipotent and semisimple, then T = id. If T is locally
nilpotent and semisimple, then T = 0. If V has finite dimension, then T is
invertible if and only if id ∈ Tk[T ].
(2) It T and S are two locally nilpotent commuting operators, then T + S
is locally nilpotent. If T is locally nilpotent and S commutes with T , then
ST is locally nilpotent. If T and S are commuting and locally unipotent,
then TS is locally unipotent.
(3) Let T be a linear operator on a finite dimensional vector space V and
define the algebra homomorphism φT : k[X] → Endk(V ) as φT (X) =
T . The theorem of Cayley–Hamilton guarantees that Ker(φT ) 6= 0. The
minimal polynomial of T is defined as the monic polynomial mT ∈ k[X]
that generates the ideal Ker(φT ).
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The following conditions are equivalent: (i) T is semisimple, (ii) T is
diagonalizable, i.e., T is generated by eigenvectors, (iii) the polynomial mT

is separable, i.e. all its roots are simple.
(4) If T and S are semisimple and commute, then TS and T + S are
semisimple and commute. If V =

∑
Vi and for all i, Vi is a T–invariant

subspace of V , then T is semisimple if and only if T |Vi are semisimple.
(5) If chark = p > 0 and V has finite dimension, then T is unipotent if and
only if for some n, T p

n

= id.
(6) If T is a unipotent linear transformation, the Jordan canonical form of
T is:

T =




J1 0 0

0

0

0 0 Jk


 ,

where Ji ∈Mni(k) are of the form:




1 1 0 0

0

0

1

0 0 1



,

and n1 ≥ n2 ≥ · · · ≥ nk−1 ≥ nk.
(7) If chark = 0 and T has finite order, then T is semisimple.

The proof of the purely algebraic lemma that follows is left as an exer-
cise.

Lemma 2.6. Let f = (X − λ1)n1(X − λ2)n2 · · · (X − λt)nt ∈ k[X]
be a non constant monic polynomial and g = (X − µ1)(X − µ2) · · · (X −
µs) ∈ k[X] a separable polynomial with {λ1, . . . , λt} ⊂ {µ1, . . . , µs}. Then
there exists an automorphism α : k[X] → k[X] such that: (i) f |α(g), (ii)
g|α(X)−X.

¤
Theorem 2.7. Let V be a k–space and T ∈ End(V ) locally finite in V .

Then there exist operators Ts, Tn ∈ End(V ) such that:
(1) V is Ts and Tn locally finite;
(2) Tn is locally nilpotent, Ts is semisimple;
(3) Ts and Tn commute;
(4) T = Ts + Tn;

 

Proof: See Exercise 2.
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(5) if W ⊂ V is a T–stable subspace, then it is also Ts and Tn–stable;
(6) (i) Ker(T ) ⊂ Ker(Ts) and Ker(T ) ⊂ Ker(Tn);

(ii) Im(T ) ⊃ Im(Ts) and Im(T ) ⊃ Im(Tn);
(7) suppose T = N + S, where N,S ∈ End(V ) satisfy the following proper-
ties: N and S commute, V is N and S locally finite, S is semisimple and
N is locally nilpotent. Then Ts = S and Tn = N ;
(8) In the case that V is finite dimensional, Ts, Tn ∈ Tk[T ].

Proof: Assume first that V is finite dimensional and observe that in
this situation condition (8) implies (5) and (6).

Consider mT , the minimal polynomial of T , that is a generator of the
ideal Ker(φT ) (see Observation 2.5). Write mT (X) = (X − λ1)n1 · · · (X −
λt)nt and consider the following two alternatives. If λi 6= 0 for all i =
1, . . . , t, define gT (X) = X(X − λ1) · · · (X − λt); if λi = 0 for some i =
1, . . . , t, define gT (X) = (X − λ1) · · · (X − λt). Let g1 be a polynomial
such that gT = Xg1. We are in the hypothesis of Lemma 2.6, so that we
can construct α : k[X] → k[X] such that mT |α(gT ) and gT |

(
α(X) − X

)
.

Consider φT
φT ), and call Ts = φT

(
α(X)

)
. Take h ∈ k[X] such that α(X) = X+hgT =

X(1 + hg1). Then Ts = T
(
id +h(T )g1(T )

) ∈ Tk[T ].

As φT and α are morphisms of algebras, gT
(
φT ◦α(X)

)
= φT ◦α

(
gT (X)

)
.

Writing α(gT ) = mT p for some p ∈ k[X], we deduce that gT (Ts) =
gT

(
φT ◦α(X)

)
= φT (mT p) = mT (T )p(T ) = 0. Hence, the minimal polyno-

mial of Ts divides gT , that is separable. It follows that Ts is semisimple.
Observe that φT

(
k[X]gT

)
= k[T ]gT (T ) = k[T ]Tg1(T ) ⊂ Tk[T ]. Thus,

T − Ts = φT (X)− φT
(
α(X)

)
= φT

(
X − α(X)

) ∈ φT
(
k[X]gT

) ⊂ Tk[T ] .

Writing T −Ts = −h(T )gT (T ) and recalling that for some conveniently
chosen exponent m we have that mT |gmT , we conclude that (T − Ts)m =
(−h)m(T )gmT (T ) = 0. Hence, T − Ts is nilpotent. To finish the proof in
the finite dimensional case we only need to verify the uniqueness. Clearly,
given a decomposition as in (7), N and S commute with Ts and Tn that are
polynomials in T . Hence, both members of the equality N − Tn = Ts − S
are semisimple and nilpotent and the result follows.

Assume now that V is infinite dimensional and T–locally finite. Let
U and W be finite dimensional T–stable subspaces of V . Thanks to the
uniqueness result already proved for the finite dimensional case, (T |U )s and
(T |W )s coincide in U ∩W . Similarly for (T |U )n and (T |W )n.

We can paste together all these restrictions in order to obtain operators
Ts and Tn defined on V such that TsTn = TnTs, V is Ts and Tn locally finite,

 

◦α : k[X] → End(V ) (see Observation 2.5 for the definition of
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and T = Ts+Tn. As the restriction of Ts to an arbitrary finite dimensional
T–stable subspace is semisimple, we conclude that Ts is semisimple on
V . The local nilpotency of Tn follows from the definitions. Condition (5)
is satisfied by construction and with respect to condition (6), as it holds
locally, it is also valid on V . We proceed similarly with condition (7): the
local uniqueness will produce the global uniqueness. ¤

In case that the operator is invertible, we can prove a multiplicative
version of Jordan decomposition:

Theorem 2.8. Let V be a k–space and T ∈ GL(V ) a locally finite
linear operator. Then there exist operators Ts, Tu ∈ GL(V ) such that:
(1) V is Ts and Tu locally finite;
(2) Tu is locally unipotent, Ts is semisimple;
(3) Ts and Tu commute;
(4) T = TsTu;
(5) if W ⊂ V is a T–stable subspace, then it is also Ts and Tu stable;
(6) suppose that T = US, with U, S ∈ GL(V ) satisfying the following prop-
erties: U and S commute, V is U and S locally finite, S is semisimple and
U is locally nilpotent. Then Ts = S and Tu = U ;
(7) In the case that V is finite dimensional, Ts, Tu ∈ Tk[T ].

Proof: We use Theorem 2.7 in order to decompose T = Tn + Ts. We
first prove that Ts is invertible. Assume that 0 6= W = Ker(Ts), then W
is Tn–stable so that Tn|W is locally nilpotent, and we can find 0 6= w ∈ W
with the property that Tn(w) = 0. Then, T (w) = 0 and this is impossible
as T is invertible. Next we take an arbitrary element v ∈ V and consider
a T–stable finite dimensional subspace (that we call W ) that contains v.
Then (T |W )s : W → W is injective and then surjective and Ts is also
surjective. If we define Tu = id + T−1

s Tn, it is clear that properties (1) to
(5) are satisfied. Next we prove the uniqueness. If U and S are as in (6),
write ST−1

s = U−1Tu; in this equality the left hand side is semisimple and
the right hand side is unipotent, hence Tu = U and Ts = S.

As T and Ts are invertible, id ∈ Tk[T ] and id ∈ Tsk[Ts] ⊂ Tsk[T ].
Then T−1

s ∈ k[T ] and Tu = id +TnT−1
s ∈ Tk[T ]. ¤
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3. The Jordan decomposition of an algebra homomorphism and
of a derivation

In this section we consider the case that the basic vector space is a
k–algebra A and the invertible linear map T : A → A is an algebra ho-
momorphism. Then the corresponding Ts and Tu are also algebra homo-
morphisms. We prove a similar result for the additive decomposition of a
derivation of A.

The following results will be handy in the proof of the above mentioned
results.

Observation 3.1. Let V be a k–space and T : V → V a locally finite
linear transformation.
(1) If T is invertible and v ∈ V is a fixed point of T , then v is a fixed point
of Ts and Tu.
(2) If v ∈ V is such that Tv = 0, then Tsv = 0 and Tnv = 0.

Indeed, the subspace kv is T–stable and hence it is Tu and Ts stable.
Then Tuv = av and (Tu−id)v = (a−1)v. As Tu−id is nilpotent, we conclude
that a = 1, in other words, v is fixed by Tu. Also, v = Tv = TsTuv = Tsv.

The second assertion, that is written here for the sake of completeness,
was proved in Theorem 2.7.

Definition 3.2. Let A be a k–algebra and V ⊂ A a finite dimensional
k–subspace. Call V 2 the finite dimensional k–subspace of A generated by
{vw : v, w ∈ V } and V ♦ = Homk(V ⊗ V, V 2). Consider

L =
{
T ∈ End(V + V 2) : T (V ) ⊂ V, T (V 2) ⊂ V 2

} ⊂ End(V + V 2) ,

L∗ =
{
T ∈ GL(V + V 2) : T (V ) = V, T (V 2) = V 2

} ⊂ GL(V + V 2)

and define the maps Θ : L → End(V ♦), Θ(T )(h) = T ◦h−h◦(T⊗id + id⊗T ),
and Σ : L∗ → GL(V ♦), Σ(T )(h) = T ◦h◦(T−1 ⊗ T−1), where h ∈ V ♦.

Observation 3.3. (1) If Σ(T ) = T̂ , then the diagram below is com-
mutative for all h ∈ V ♦.

V ⊗ V
h // V 2

T

²²
V ⊗ V

T−1⊗T−1

OO

bT (h)

// V 2
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(2) If Θ(T ) = T̃ , then for all h ∈ V ♦ the diagonal in the diagram below is
the difference of the composition of the sides.

V ⊗ V

T⊗id+id⊗T
²²

h //

Th−h(T⊗id+id⊗T )= eT (h)
SSSSSSSS

))SSSSSSSS

V 2

T

²²
V ⊗ V

h
// V 2

(3) In Exercise 3 we ask the reader to prove that L∗ is an affine algebraic
group, and that Σ is a morphism of algebraic groups. Moreover, the Lie
algebra of L∗ is L, and Θ = Σ•.

Lemma 3.4. Let V be a finite dimensional vector space and assume the
notations of Definition 3.2.
(1) The map Θ : L → End(V ♦) is a morphism of Lie algebras satisfying
for all T ∈ L that Θ(Ts) =

(
Θ(T )

)
s

and Θ(Tn) =
(
Θ(T )

)
n
.

(2) The map Σ : L∗ → GL(V ♦) is a group homomorphism, satisfying for
all T ∈ L∗ that Σ(Ts) =

(
Σ(T )

)
s

and Σ(Tu) =
(
Σ(T )

)
u
.

Proof: It is clear that Θ and Σ are morphisms.
(1) If chark = 0, then

Θ(T )n(h) =
∑
r+s=n

( nr )
(
T r◦h◦(T ⊗ id + id⊗ T )s

)
(−1)s .

If chark = p > 0, then for all n > 0

Θ(T )p
n

(h) = T p
n

◦h− h◦(T ⊗ id + id⊗ T )p
n

.

Taking n large enough, we deduce that if T is nilpotent then Θ(T ) is
also nilpotent.

If T is semisimple, we write V =
⊕

i Vi, V
2 =

∑
jWj , with Vi,Wj

T–invariant and of dimension one for all i and j. Then,

V ♦ = Homk(V ⊗ V, V 2) =
⊕

ijk

Homk(Vi ⊗ Vj ,Wk) ,

and it is clear that Homk(Vi⊗Vj ,Wk) is Θ(T )–stable and of dimension one
for all i, j, k. Then Θ(T ) is semisimple. The conclusion of (1) follows from
the uniqueness of the semisimple and nilpotent part of a linear operator.

To prove (2) assume that T is semisimple and invertible. In a similar
way as before we conclude that Σ(T ) is semisimple. If T = id +N with N
nilpotent, then T−1 = id + M , with M nilpotent and commuting with N .
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Thus,
Σ(T )(h) = h+ h◦(id⊗M) + h◦(M ⊗ id) + h◦(M ⊗M)+

N◦h+N◦h◦(id⊗M) +N◦h◦(M ⊗ id) +N◦h◦(M ⊗M) .

All the summands of this expression commute and, except for the first
one, are of the form ΣA,B,C(h) = A◦h◦(B ⊗ C) with A,B or C nilpotent.
As (ΣA,B,C)n = ΣAn,Bn,Cn , it is clear that Σ(T ) is unipotent and the result
follows by a similar argument than before. ¤

Theorem 3.5. Assume that A is a k–algebra and that T : A→ A is a
locally finite linear operator.
(1) If T is a derivation of A then Tn and Ts are also derivations.
(2) If T is an algebra homomorphism and invertible, then Tu and Ts are
algebra homomorphisms.

Proof: We only prove (2) as the proof of (1) is similar (see
Let a, b ∈ A; we want to prove that Tu(ab) = Tu(a)Tu(b)

and Ts(ab) = Ts(a)Ts(b). Consider a finite dimensional T–stable sub-
space V that contains a, b. The subspace V 2 contains ab and is also T–
stable. If m : V ⊗ V → V 2 is the multiplication, that is k–linear, us-
ing Observation 3.1 we deduce that

(
Σ(T )

)
s
(m) = Σ(Ts)(m) = m and(

Σ(T )
)
u
(m) = Σ(Tu)(m) = m. In other words, we have that Ts(ab) =

(Ts◦m)(a⊗b) = m◦(Ts⊗Ts)(a⊗b) = Ts(a)Ts(b). Similarly, we deduce that
Tu(ab) = (Tu◦m)(a⊗ b) = m◦(Tu ⊗ Tu)(a⊗ b) = Tu(a)Tu(b). ¤

4. Jordan decomposition for coalgebras

Before treating the multiplicative Jordan decomposition at the level of
the affine algebraic group G, we present a general decomposition result for
elements in the dual of a coalgebra. In the case that the coalgebra is k[G]
if we look at the evaluation at x ∈ G, then the Jordan decomposition of
εx induces the Jordan decomposition of x. Similarly, we obtain the Jordan
decomposition of the Lie algebra by viewing its elements as belonging to
k[G]∗.

Definition 4.1. Let C be a coalgebra and γ ∈ C∗. If M ∈ MC is a
right C–comodule we define γ⇀,M : M →M as γ⇀,M (m) =

∑
m0γ(m1).

Observation 4.2. The subindex M in the notation γ⇀,M will be fre-
quently omitted and we write γ⇀,M = γ⇀.

Lemma 4.3. Let C be a coalgebra, γ ∈ C∗ and M ∈ MC a right C–
comodule.
(1) The comodule M is locally finite with respect to γ⇀.

 

Ex-
4).ercise
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(2) If we endow Endk(M) with the algebra structure given by the composi-
tion of functions, then the map ⇀ : C∗ → Endk(M), given as ⇀(γ) = γ⇀,
is an algebra homomorphism.
(3) If f : M → N is a morphism of C–comodules, then for all γ ∈ C∗ the
diagram that follows is commutative.

M
γ⇀,M //

f

²²

M

f

²²
N γ⇀,N

// N

(4) The map γ⇀,C : C → C is a morphism of left C–comodules.

Proof: (1) Write χ(m) =
∑t
i=1mi ⊗ ci with c1, . . . , ct linearly in-

dependent and define fj ∈ C∗, fj(ci) = δij , i, j = i, . . . , t. Applying
id ⊗ ε we deduce that m =

∑
miε(ci) ∈ 〈m1, . . . ,mt〉. Next we show that

〈m1, . . . ,mt〉 is γ⇀–stable. We have that

t∑

i=1

γ⇀(mi)⊗ ci =
t∑

i=1

mi0γ(mi1)⊗ ci =
t∑

i=1

mi0 ⊗ γ(mi1)ci =

t∑

i=1

mi ⊗ γ(ci1)ci2 .

Applying id⊗ fj to the above equality, we obtain

γ⇀(mj) =
t∑

i=1

miγ(ci1)fj(ci2) =
∑

mi(γ · fj)(ci) ∈ 〈m1, . . . ,mt〉 .

(2) If γ, δ ∈ C∗, then

(γ⇀◦δ⇀)(m) = γ⇀
(∑

m0δ(m1)
)

=
∑

m0γ(m1)δ(m2) =

(γ · δ)⇀(m) .

(3) Indeed,

(f◦γ⇀,M )(m) =
∑

f(m0)γ(m1) =
∑(

f(m)
)
0
γ
((
f(m)

)
1

)
=

γ⇀,N

(
f(m)

)
.
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(4) We want to prove the commutativity of the diagram

C
∆ //

γ⇀,C

²²

C ⊗ C

id⊗γ⇀,C

²²
C

∆
// C ⊗ C

i.e.,
∑
c1 ⊗ γ⇀,C(c2) =

∑(
γ⇀,C(c)

)
1
⊗ (

γ⇀,C(c)
)
2
.

By definition,
∑
c1 ⊗ γ⇀,C(c2) =

∑
c1 ⊗ c2γ(c3). On the other hand,

γ⇀,C(c) =
∑
c1γ(c2), and thus
∑(

γ⇀,C(c)
)
1
⊗ (

γ⇀,C(c)
)
2

=
∑

c1 ⊗ c2γ(c3) .

¤

Observation 4.4. (1) Let V be a k–space and M ∈MC . Consider in
V ⊗M the structure id ⊗ χ, where χ is the C–comodule structure of M .
Then V ⊗M ∈MC and γ⇀,V⊗M = id⊗ γ⇀,M : V ⊗M → V ⊗M .
(2) Let M be a C–comodule with structure χ : M → M ⊗ C and consider
the structure id ⊗ ∆ on M ⊗ C. Then χ is a morphism of C–comodules
and the following diagram is commutative.

M
γ⇀,M //

χ

²²

M

χ

²²
M ⊗ C

id⊗γ⇀,C

// M ⊗ C

This follows from Lemma 4.3 and the first part of this observation.

Definition 4.5. If C is a coalgebra, we define C Endk(C) ⊂ Endk(C)
as

C Endk(C) =
{
T : C → C :

∑
T (c)1 ⊗ T (c)2 =

∑
c1 ⊗ T (c2)

}
.

Observation 4.6. (1) The maps belonging to C Endk(C) are the mor-
phisms of left C–comodules of C. In other words T ∈ C Endk(C) if and
only if the diagram below commutes.

C
T //

∆

²²

C

∆

²²
C ⊗ C

id⊗T
// C ⊗ C
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(2) The k–subspace C Endk(C) is in fact a subalgebra of Endk(C), i.e., it
is closed under composition.

Theorem 4.7. If C is a coalgebra, then the map ⇀: C∗ → C Endk(C)
is an isomorphism of algebras.

If B is a bialgebra and γ ∈ B∗, then γ ∈ Homk− alg(B,k) if and only
if ⇀ (γ) = γ⇀ ∈ Homk− alg(B,B). Moreover, γ ∈ Dε(B, k) if and only if
⇀ (γ) = γ⇀ ∈ D(B).

Proof: First we prove that the map T → ε◦T : C Endk(C) → C∗ is
an inverse for ⇀.

Indeed, (ε ◦ γ⇀)(c) =
∑
ε(c1)γ(c2) = γ(c). Conversely, suppose that

T ∈ C Endk(C), then
∑
c1⊗T (c2) =

∑
T (c)1⊗T (c)2, and

∑
c1(ε◦T )(c2) =

T (c). The fact that ⇀ is a morphism is a direct consequence of Lemma
4.3.

In the bialgebra case, consider γ ∈ Homk−alg(B,k). Then γ⇀(xy) =∑
x1y1γ(x2y2) = γ⇀(x)γ⇀(y). The converse follows easily from the equal-

ity ε◦γ⇀ = γ.
The proof of the corresponding assertions for derivations is similar. ¤

Theorem 4.8. Let C be a coalgebra and γ ∈ C∗. Then γ⇀,C : C → C
is locally nilpotent if and only if γ⇀,M : M → M is locally nilpotent for
all M ∈ MC . The operator γ⇀,C : C → C is semisimple if and only if
γ⇀,M : M →M is semisimple for all M ∈MC .

Proof: In the notations of Observation 4.4, if χ : M →M ⊗ C is the
structure map of M , then the diagram

M
γ⇀,M //

χ

²²

M

χ

²²
M ⊗ C

id⊗γ⇀,C

// M ⊗ C

is commutative. Hence, the map γ⇀,M can be interpreted as a restriction
of id⊗ γ⇀,C , and the result follows. ¤

Theorem 4.9. Let C be a coalgebra and γ ∈ C∗. Then there exists a
unique pair of elements γ(n), γ(s) ∈ C∗, such that:
(1) γ(n), γ(s) ∈ C∗ commute and γ = γ(n) + γ(s).

(2) For all M ∈ MC , γ(n)
⇀,M : M → M is a locally nilpotent linear trans-

formation and γ(s)
⇀,M : M →M is a semisimple linear transformation.
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Proof: Consider γ⇀,C : C → C and call γ⇀,s, γ⇀,n its semisimple
and nilpotent parts. We first prove that both maps are morphisms of left
C–comodules, i.e., that γ⇀,s, γ⇀,n ∈ C Endk(C) (see Definition 4.5).

Since C is a sum of finite dimensional γ⇀,C–invariant subcoalgebras
we can assume that C is finite dimensional. In this

situation γ⇀,s and γ⇀,n are polynomials in γ⇀,C (see Theorem 2.7) and
being γ⇀,C ∈ C Endk(C), the assertion follows.

In order to finish the proof we use Theorem 4.7 to obtain a unique pair
of elements γ(n), γ(s) ∈ C∗ such that γ(n)

⇀,C = γ⇀,n and γ
(s)
⇀,C = γ⇀,s. As

γ⇀,n and γ⇀,s commute and the map ⇀ preserves the product, we conclude
that γ(n) and γ(s) commute.

Moreover, by applying ⇀−1 to the equality γ⇀,C = γ⇀,s + γ⇀,n on

C Endk(C), we deduce that γ = γ(s) + γ(n). Given M ∈ MC , Theorem
4.8 guarantees that the local nilpotency and local semisimplicity of γ(n)

⇀,M

and γ(s)
⇀,M can be deduced from the corresponding properties for γ(n)

⇀,C and

γ
(s)
⇀,C . For these linear transformations of C the local nilpotency and the

semisimplicity is guaranteed by the construction of γ⇀,s and γ⇀,n.
To prove the uniqueness we assume that γ = ν + σ with σ and ν such

that νσ = σν, ν⇀,M : M → M locally nilpotent and σ⇀,M : M → M
semisimple for all M ∈ MC . In particular, ν⇀,C is locally nilpotent and
σ⇀,C is semisimple. Moreover, ν⇀,C + σ⇀,C = γ⇀,C and ν⇀,Cσ⇀,C =
σ⇀,Cν⇀,C . By the uniqueness results of the additive Jordan decomposition
of the linear transformation γ⇀,C ⇀,C =
γ⇀,n = γ

(n)
⇀,C and σ⇀,C = γ⇀,s = γ

(s)
⇀,C . Thus, ν = γ(n) and σ = γ(s). ¤

Observation 4.10. In accordance with Theorem 4.8 condition (2) of
the last theorem can be substituted by the following:

(2’) γ(n)
⇀,C is locally nilpotent and γ

(s)
⇀,C is semisimple.

Corollary 4.11. Let C and D be coalgebras and φ : C → D a mor-
phism of coalgebras. If γ ∈ D∗, then (γ◦φ)(s) = γ(s)◦φ and (γ◦φ)(n) =
γ(n)◦φ.

Proof: Since the map −◦φ : D∗ → C∗ is a morphism of algebras,
from the fact that γ(s) and γ(n) commute we deduce that γ(s)◦φ and γ(n)◦φ
also commute. Similarly, from γ = γ(s) + γ(n) we deduce that γ◦φ =
γ(s)◦φ+γ(n)◦φ. The semisimplicity of (γ(s)◦φ)⇀,C and the local nilpotency
of (γ(n)◦φ)⇀,C is proved as follows. If σ ∈ D∗, then

(σ◦φ)⇀,C(c) =
∑

c1σ
(
φ(c2)

)
= σ⇀,φ∗(C) .

 

(see Exercise 4.2),

(see Theorem 2.7) we deduce that ν
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In this formula we consider φ∗(C) ∈MD as the coalgebra C equipped

with the D–comodule structure (id ⊗ φ)◦∆ : C ∆−−→ C ⊗ C
id⊗φ−−−−→ C ⊗

D. Hence,
(
γ(s)◦φ

)
⇀,C

= γ
(s)
⇀,φ∗(C) and

(
γ(n)◦φ

)
⇀,C

= γ
(n)
⇀,φ∗(C). Using

Theorem 4.8 we deduce our result. ¤
The multiplicative version of Theorem 4.9 is left as an exercise. We

state it below for the sake of future references.

Theorem 4.12. Let C be a coalgebra and let γ ∈ C∗ be convolution
invertible. Then there exists a unique pair of convolution invertible elements
γ(s), γ(u) ∈ C∗, such that:
(1) γ(s) and γ(u) commute and γ = γ(s)γ(u).

(2) For all M ∈MC , γ(s)
⇀,M and γ(u)

⇀,M are invertible linear transformations
of M that are respectively semisimple and locally unipotent.

Moreover, if φ : C → D is a morphism of coalgebras and γ ∈ D∗, then
(γ◦φ)(s) = γ(s)◦φ and (γ◦φ)(u) = γ(u)◦φ.

¤

Corollary 4.13. Let B be a bialgebra. If γ ∈ Homk− alg(B, k) ⊂ B∗

is convolution invertible, then γ(s), γ(u) belong to Homk− alg(B,k) ⊂ B∗

and are convolution invertible. If τ ∈ Dε(B,k) ⊂ B∗, then τ (s), τ (n) ∈
Dε(B,k) ⊂ B∗.

Proof: If γ is invertible and belongs to Homk−alg(B, k), then γ(s)

and γ(u) are also invertible by Theorem 4.12. Since γ is a morphism of
k–algebras we deduce from Theorem 4.7 that γ⇀,B : B → B is also a
morphism of k–algebras. From Theorem 3.5 it follows that γ⇀,s : B → B
and γ⇀,u : B → B are algebra homomorphisms of B. Applying Theorem
4.7 again, we conclude that γ(s), γ(u) ∈ Homk−alg(B,k).

For derivations the procedure is similar. ¤

Observation 4.14. It is easy to prove that if B is a Hopf algebra then
the elements of γ ∈ Homk−alg(B,k) are convolution invertible. Indeed, if
γ ∈ Homk−alg(B, k), then

(
(γ◦S) ? γ

)
(x) =

∑
γ(Sx1)γ(x2) =

∑
γ(Sx1x2) = ε(x)γ(1) = ε(x)1 .

Hence, (γ◦S) ? γ = ε. In a similar manner one proves that γ◦S is a
right inverse of γ.

 

Proof: See Exercise 7.
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5. Jordan decomposition for an affine algebraic group

We have finished the preparations necessary to prove the Jordan de-
composition for elements of an affine algebraic group and of its associated
Lie algebra.

Theorem 5.1. Let G be an affine algebraic group defined over an al-
gebraically closed field k.
(1) If x ∈ G then there exists a unique pair of elements xu, xs ∈ G such
that:

(a) the elements xs, xu commute and x = xsxu;
(b) if M is an arbitrary rational representation of G, xs acts on M as

a semisimple linear transformation and xu as a locally unipotent
linear transformation.

(2) If φ : G → H is a morphism of algebraic groups then for an arbitrary
x ∈ G we have that φ(xs) =

(
φ(x)

)
s

and φ(xu) =
(
φ(x)

)
u
.

(3) If T ∈ GLn, then Ts, Tu ∈ GLn (defined as above) coincide with the
linear transformations defined in Theorem 2.8.

Proof: (1) Given x ∈ G consider the evaluation εx : k[G] → k and
its semisimple and unipotent parts ε(s)x and ε

(u)
x (see Corollary 4.13). As

ε
(s)
x and ε

(u)
x are algebra homomorphisms from k[G] into k, Hilbert’s Null-

stellensatz (see Theorem 1.3.8) guarantees the existence of xs, xu ∈ G such
that ε(s)x = εxs and ε(u)

x = εxu . From the equality εx = ε
(s)
x ε

(u)
x (convolution

product) we deduce that εx = εxsεxu = εxsxu , and thus x = xsxu. As ε(s)x
and ε

(u)
x commute, then xsxu = xuxs.

If y ∈ G, M is a rational G–module and m ∈ M , then εy⇀,M (m) =∑
m0εy(m1) =

∑
m0m1(y) = y ·m. In particular, if x ∈ G, then xu · − =

εxu⇀,M = εx
(u)
⇀,M : M →M , and εx

(u)
⇀,M is by construction a locally unipo-

tent linear transformation. The result concerning xs is proved similarly.
The uniqueness follows immediately from the uniqueness in Theorem 4.12.
(2) Consider the comorphism φ# : k[H] → k[G] and the corresponding
dual map that we call φ̂ : k[G]∗ → k[H]∗. Then εφ(x) = φ̂(εx) and εφ(x)u

=
ε
(u)
φ(x) = φ̂(εx)(u). By Corollary 4.11 φ̂(εx)(u) = φ̂

(
ε
(u)
x

)
= φ̂(εxu

) = εφ(xu).
Thus, φ(x)u = φ(xu). The procedure in the case of the semisimple part is
similar.

¤

 

(3) See Exercise 8.
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Observation 5.2. Observe that if G ⊂ GLn is a closed subgroup and
T ∈ G, then Ts and Tu are also in G. This fact is not true in the case that

Definition 5.3. In the situation of the preceding theorem, the ele-
ments xs and xu are called the semisimple and unipotent part or component
of x. An element x ∈ G is said to be semisimple if x = xs and it is said to
be unipotent if x = xu.

Observation 5.4. In the situation of the above definition it follows
easily from the uniqueness of the Jordan decomposition that x ∈ G is
semisimple if and only if xu = 1 and that x is unipotent if and only if
xs = 1.

Corollary 5.5. Let G be an affine algebraic group.
(1) If x ∈ G is such that for all rational G–modules M , the corresponding
map x · − : M → M given by the action is locally unipotent, then x is
unipotent.
(2) If x ∈ G is such that for all rational G–modules M , the corresponding
map x·− : M →M given by the action is semisimple, then x is semisimple.

Proof: (1) We conclude that xs = 1 and x = xu by considering
the decomposition x = 1x, that satisfies the conditions (1a) and (1b) of
Theorem 5.1.

The proof of (2) is similar. ¤
The linearized version of the above theorem, that is stated below, is

left as an exercise.

Theorem 5.6. Let G be an affine algebraic group and L(G) its asso-
ciated Lie algebra.
(1) If τ ∈ L(G), then there exists an unique pair of elements τs, τn ∈ L(G)
such that:

(a) τ = τs + τn and [τs, τn] = 0;
(b) if M is an arbitrary rational representation of G, then τs acts

on M as a semisimple linear transformation and τn as a locally
nilpotent linear transformation.

(2) If φ : G→ H is a morphism of affine algebraic groups, φ• is its deriv-
ative, and τ ∈ L(G), then φ•(τs) =

(
φ•(τ)

)
s

and φ•(τn) =
(
φ•(τ)

)
n
.

(3) In the case of GLn, if τ ∈ gln, then the elements τs and τn defined
in part (1) of the present theorem coincide with the linear transformations
defined in Theorem 2.7.

¤

 

G is not Zariski closed (see Exercise 21).

Proof: See Exercise 9.



5. JORDAN DECOMPOSITION: AFFINE ALGEBRAIC GROUPS 189

We list a few basic properties of the semisimple and unipotent parts of
an element of an affine algebraic group.

Lemma 5.7. Let G be an affine algebraic group and x, y ∈ G.
(1) If z ∈ G, then z−1xsz = (z−1xz)s and z−1xuz = (z−1xz)u.
(2) If x and y commute, then xs, ys, xu, yu also commute. Moreover, we
have that (xy)s = xsys and (xy)u = xuyu.
(3) (x−1)u = (xu)−1 and (x−1)s = (xs)−1.

Proof: (1) Consider the morphism of algebraic groups cz : G → G
given as cz(x) = z−1xz. Using Theorem 5.1 we deduce our result.
(2) If we apply the conclusion of (1) to a pair of commuting elements x
and y we conclude that: y−1xsy = (y−1xy)s = xs, i.e. xs and y commute.
Applying again the same argument to the elements xs and y we conclude
that xs and ys commute. The rest of the results can be proved similarly.
(3) As x and x−1 commute and xx−1 = 1 = x−1x the result follows easily
from (2). ¤

Next we state the linearized version of Lemma 5.7.

Lemma 5.8. Let G be an affine algebraic group and call L(G) its Lie
algebra.
(1) For all z ∈ G and τ ∈ L(G), then

(
Ad(z)(τ)

)
s

= Ad(z)(τs) and(
Ad(z)(τ)

)
n

= Ad(z)(τn).

(2) For all τ ∈ L(G), then ad(τs) =
(
ad(τ)

)
s
∈ gl

(
L(G)

)
and ad(τn) =(

ad(τ)
)
n
∈ gl

(L(G)
)
.

(3) If τ, σ ∈ L(G) and [τ, σ] = 0, then τs, σs, τu, σu also commute. More-
over, (σ + τ)s = σs + τs and (σ + τ)n = σn + τn.

Proof: (1) Let z ∈ G then Ad = c•z : G→ GL
(L(G)

)
, and the result

follows directly from Theorem 5.6.
¤

Next, we study the set of all unipotent elements of an affine algebraic
group and the set of all its semisimple elements.

Definition 5.9. Let G be an affine algebraic group. Call UG = {x ∈
G : x = xu}, SG = {x ∈ G : x = xs}, nG =

{
τ ∈ L(G) : τ = τn

}
and

sG =
{
τ ∈ L(G) : τ = τs

}
.

Observation 5.10. A priori the sets UG, SG, nG and sG have no al-
gebraic or geometric structure:
(1) For example, in GL2 the matrices u = ( 1 1

0 1 ) and v =
(

1 0
−1 1

)
are unipo-

tent. The product uv =
(

0 1
−1 1

)
is not unipotent. Moreover, it is semisimple

 

The rest of the proof is left as an exercise (see Exercise 11).
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as it verifies the equation X2 − X + 1 = 0 (see Lemma 5.11). It is also
very easy to find examples of semisimple matrices whose product is not
semisimple.
(2) In general, the set SG is not Zariski closed in G. For example, the unipo-
tent matrix ( 1 1

0 1 ) is in the closure of the set of all the invertible semisimple
matrices of the form ( 1 1

0 t ) with t 6= 1.
(3) In Exercise 12 we ask the reader to prove that the set UG is Zariski
closed in G.

Lemma 5.11. Let G be an affine algebraic group.
(1) The sets UG and SG satisfy the following properties:

(a) UG ∩ SG = {1} and UGSG = SGUG = G;
(b) if φ : G → H is a morphism of affine algebraic groups, then

φ(UG) ⊂ UH and φ(SG) ⊂ SH . Moreover, if φ is an isomorphism,
then φ(UG) = UH and φ(SG) = SH . In particular, UG and SG
are closed under conjugation;

(c) U−1
G = UG and U−1

S = US;
(d) if x, y ∈ UG commute, then xy ∈ UG. If x, y ∈ SG commute, then

xy ∈ SG.

(2) The sets nG and sG verify the following properties:

(a) nG ∩ sG = {0} and nG + sG = L(G);
(b) if φ : G → H is a morphism of affine algebraic groups, then

φ•(nG) ⊂ nH and φ•(sG) ⊂ sH . Moreover, if φ is an isomor-
phism, then φ•(nG) = nH and φ•(sG) = sH ;

(c) if τ, σ ∈ nG commute, then τ + σ ∈ nG. If τ, σ ∈ sG commute,
then τ + σ ∈ sG.

Proof: The proof of this lemma follows immediately from the results
of Theorem 5.1 and of Lemma 5.7. ¤

Observation 5.12. (1) In the case that G is an abelian affine algebraic
group, the sets UG and SG are abstract subgroups of G and G = UG × SG
as abstract groups. We need more theory before being able to guarantee
that this product decomposition holds in the category of affine algebraic

(2) Later in this chapter we show that if G satisfies additional algebraic
constraints (for example if it is nilpotent or solvable) then UG and SG can
be described with more precision. For example in Theorem 8.3 we prove
that if G is solvable, then UG is a normal algebraic subgroup of G.

 

groups, see Section 8.
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6. Unipotency and semisimplicity

In the previous sections we obtained control over over the Jordan de-
composition of a single element of an affine algebraic group. Our next task
is to generalize this decomposition to the whole group. With this purpose
we refine the results of Lemma 5.11.

The properties that follow show that in this sense, the concept of unipo-
tency behaves more “naturally” than semisimplicity.

Lemma 6.1. Let M be a k–space, dimM = d and U ⊂ Endk(M) an
abstract group of unipotent linear transformations. Then (T1− id) · · · (Td−
id) = 0 for all T1, . . . , Td ∈ U .

Proof: We proceed by induction on dimM . If dimM = 1, then T− id
is nilpotent in M if and only if it is zero. Thus, U = {id} and the proof of
this case is finished.

Assume that dimM = d and that M has a proper U–invariant subspace
N , with dimN = r. Consider the actions of U on N and on M/N . By the
induction hypothesis, we conclude that (R1− id)|N · · · (Rr − id)|N = 0 and(
P 1−id

) · · · (P t−id
)

= 0 for all R1, . . . , Rr, P1, . . . , Pt ∈ U , where t = d−r
and the over-line of a linear transformation denotes the linear transforma-
tion considered on the quotient space. Consider now d = r + t generic ele-
ments of U that we call T1, . . . , Tr+t. Then

(
T r+1−id

) · · · (T r+t−id
)

= 0 in
M/N and this means that the linear transformation (Tr+1− id) · · · (Tr+t−
id) : M →M has image contained in N , i.e. (Tr+1− id) · · · (Tr+t− id)(m) ∈
N for all m ∈M . Thus (T1−id) · · · (Tr−id)(Tr+1−id) · · · (Tr+t−id)(m) = 0
for all m ∈M .

Hence, we can assume that M is irreducible as a U–module. Call
kU ⊂ Endk(M) the group ring of U . By Schur’s lemma (see Appendix,

kU (M) = kidM .
Consider now the semisimple kU–module Md. We have that

EndkU
(
Md

)
=

{
(Tij)1≤i,j≤d : Tij : M →M, Tij ∈ EndkU (M), ∀i, j} =

{
(aij id)1≤i,j≤d : aij ∈ k

} ∼= Md(k) .

If T ∈ Endk(M), then the k–linear map T d : Md → Md belongs to
EndMd(k)

(
Md

)
= EndEndkU (Md)

(
Md

)
.

Let {m1, . . . ,md} be a basis of M and consider the cyclic submod-
ule kU(m1, . . . ,md) ⊂ Md. As Md is kU–semisimple, there exists a kU–
morphism π ∈ EndkU

(
Md

)
whose image is kU(m1, . . . ,md). Then

T d
(
kU(m1, . . . ,md)

)
= Tn

(
π
(
Md

))
= π

(
T d

(
Md

)) ⊂ kU(m1, . . . ,md) .

 

Theorem 4.3), End
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Hence, there exists ν ∈ kU such that(
T (m1), . . . , T (md)

)
= (νm1, . . . , νmd) ,

i.e., T = ν : M → M , i.e., Endk(M) = kU . Since kU = Endk(M) is a

unit ideal. Hence, any linear transformation T ∈ Endk(M) is of the form
T = a1(x1 − id) + · · · + am(xm − id), with x1, . . . , xm ∈ U . As nilpotent
linear transformations have zero trace, we conclude that an arbitrary linear
transformation has zero trace and this is an obvious contradiction unless
U = {id}. ¤

Observation 6.2. From the above proof the following result can be
extracted: let k be an algebraically closed field and G a group acting
irreducibly and faithfully on a finite dimensional vector space V . Then
kG = Endk(V ). This result is sometimes called Burnside’s lemma. For
a more general formulation of this classical result see for example [66,
Chap. V,1.].

The following reformulation of Lemma 6.1 is stated for future refer-
ences.

Theorem 6.3. Let U be an abstract group, M a finite dimensional
U–module, and ρ : U → GL(M) the corresponding morphism. Assume
that for all x ∈ U the linear transformation ρ(x) : M → M is unipotent.
If dimM = n, then

(
ρ(x1) − id

) · · · (ρ(xn) − id
)

= 0 ∈ Endk(M) for all
x1, . . . , xn ∈ U . ¤

The next result asserts that linear actions of groups of unipotent trans-
formations have an abundance of fixed points.

Corollary 6.4. Let U be an abstract group, M a finite dimensional
U–module, and ρ : U → GL(M) the corresponding morphism. If for all
x ∈ U the linear transformation ρ(x) : M →M is unipotent, then UM 6= 0.

Proof: Consider the minimal positive integer n such that
(
ρ(x1) −

id
) · · · (ρ(xn) − id

)
= 0 for all x1, . . . , xn ∈ U and choose a sequence of

elements y1, . . . , yn−1 ∈ U such that
(
ρ(y1)− id

) · · · (ρ(yn−1)− id
) 6= 0. If

0 6= m ∈ Im
((
ρ(y1) − id

) · · · (ρ(yn−1) − id
))

, then for an arbitrary x ∈ U ,(
ρ(x)− id

)
(m) = 0, i.e. x ·m = m for all x ∈ U . ¤

Corollary 6.5. Let M be a finite dimensional vector space and as-
sume that U and V are two subgroups of Endk(M) such that
(i) for all s ∈ U , s−1V s ⊂ V , i.e. the elements of U normalize V ;
(ii) all the elements of U and V are unipotent endomorphisms.

Then the subgroup UV consists also of unipotent endomorphisms of M .

 

simple algebra (see Appendix, Example 4.5), its augmentation ideal is the
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Proof: The family of subspaces of M defined by induction as M0 =
{0}, Mi = {m ∈ M : t ·m −m ∈ Mi−1, ∀t ∈ V }, is a strictly increasing
family of V –stable subspaces of M . Indeed, if m ∈Mi and we take t, t′ ∈ V ,
then t · (t′ ·m)− t′ ·m = (tt′ ·m−m)− (t′ ·m−m) ∈Mi−1 and it is also
clear that Mi−1 ⊂ Mi. Moreover, it follows from Corollary 6.4 that the
sequence {0} = M0 ⊂ M1 ⊂ · · · ⊂ Mi ⊂ · · · is strictly increasing. Hence,
for some r > 0, Mr = M .

We prove by induction that the sequence of subspaces Mi, i = 1, . . . , r,
is U–stable. If m ∈ Mi, t ∈ V and s ∈ U , then t · (s · m) − s · m =
s
(
(s−1ts) ·m−m

) ∈ sMi−1 ⊂Mi−1.
As the action of U on Mi/Mi−1 is unipotent for all i = 1, . . . , r, we

proceed similarly and prove the existence for each i = 1, . . . , r of a flag of U–
stable subspaces Mi−1 = M0

i ⊂M1
i ⊂ · · · ⊂Mki−1

i ⊂Mki
i = Mi such that

if t ∈ V , s ∈ U , m ∈M j
i , and j = 1, . . . , ki, then t ·m−m ∈Mi−1 ⊂M j−1

i

and s ·m−m ∈M j−1
i . The concatenation of these flags gives a flag of U–

stable subspaces {0} = M0 ⊂ M1 ⊂ · · · ⊂ Mh = M such that if m ∈ M j ,
j = 1, . . . , h, t ∈ V and s ∈ U , then t ·m−m ∈M j−1 and s ·m−m ∈M j−1.

Consider 1 ≤ j ≤ h andm ∈M j . If t ∈ V and s ∈ U , then (st)·m−m =
s · (t · m − m) + s · m − m ∈ s ·M j−1 + M j−1 ⊂ M j−1. It follows that
(st− id)h = 0 ∈ Endk(M). ¤

Recall that Un is the closed subgroup of GLn consisting of the upper–
triangular matrices whose entries at the diagonal are equal to one (see
Example 3.2.10).

Corollary 6.6. Let U be an abstract group and M a finite dimen-
sional representation of U . Assume that for all x ∈ U the linear transfor-
mation x · − : M → M is unipotent. Then there exists a basis of M such
that the corresponding matrix representation ρ : U → GLn has image inside
of Un.

Proof: By Corollary 6.4, there exist 0 6= m ∈ UM . Consider the short
exact sequence of U–modules

0 → km→M →M/km→ 0

and assume by induction the existence of a basis B of M/km such that the
matrix representation of U has the required form. If B ∈ M is a linearly
independent set with image B, then the matrix representation of U in the
basis B ∪ {m} of M , has the required form. ¤

Definition 6.7. Let G be an affine algebraic group. An abstract sub-
group H ⊂ G is said to be unipotent if H ⊂ UG = {x ∈ G : x = xu}. If
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G is a unipotent subgroup, that is G = UG, we say that G is an unipotent
group.

Observation 6.8. It follows from Theorem 4.3.23 and Lemma 5.11
that an algebraic group is unipotent if and only if it is isomorphic to a
unipotent closed subgroup of GLn for some n. Hence, from Corollary 6.6
and Theorem 5.1 we deduce that any unipotent algebraic group is isomor-
phic to a closed subgroup of Un for some n.

Lemma 6.9. Let G be an affine algebraic group and H a not necessarily
closed subgroup of G. Then the following conditions are equivalent.
(1) If M is a finite dimensional rational G–module and ρ : G→ GL(M) is
the corresponding representation map, then the linear transformation ρ(x) :
M →M is unipotent for all x ∈ H.
(2) If M is a finite dimensional G–submodule of k[G], then for all x ∈ H
the corresponding linear transformation ρ(x) : M →M is unipotent.
(3) If M is a finite dimensional H–submodule of k[G], then for all x ∈ H
the corresponding linear transformation ρ(x) : M →M is unipotent.
(4) If M is a finite dimensional rational G–module, with dimM = n, and
ρ : G → GL(M) is the corresponding representation map, then for all
x1, . . . , xn in H,

(
ρ(x1)− id

) · · · (ρ(xn)− id
)

= 0.
(5) H is a unipotent subgroup of G.

Proof: The equivalence of (1) and (4) is the content of Theorem
6.3. The equivalence of (1) and (5) is a consequence of Theorem 5.1 and
Corollary 5.5. Clearly (1) implies (2); the fact that (2) implies (1) is left

M ⊂ k[G] be a finite dimensional H–submodule of k[G] and call M̃ the
finite dimensional G–submodule of k[G] generated by M . If ρ(x) : M̃ → M̃
is unipotent, the same happens with the restriction ρ(x) : M → M , hence
(2) implies (3). ¤

Corollary 6.10. Let G be an affine algebraic group and H a unipotent
not necessarily closed subgroup of G. Then H is nilpotent as an abstract
group.

Proof: Consider a finite dimensional G–module M ⊂ k[G] that con-
tains a set of generators of k[G] as a k–algebra. The action of H on M
is faithful. Indeed, if x ∈ H is such that x ·m = m for all m ∈ M , then
x · f = f for all f ∈ k[G]. Hence, x = 1. Using Corollary 6.6 we deduce
that H is isomorphic as an abstract group with a subgroup of Un. Thus,
H is nilpotent. ¤

 

as an exercise (see Exercise 15). The fact that (3) implies (2) is clear. Let
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Corollary 6.11. Let G be an affine algebraic group and H,K unipo-
tent abstract subgroups such that K normalizes H. Then the subgroup HK
is unipotent.

Proof: This is an immediate consequence of Corollary 6.5. ¤

Observation 6.12. Let H be an abstract unipotent subgroup of an
affine algebraic group G. Since UG

of this fact.

Next we deal with the situation of a group of semisimple linear trans-
formations.

Theorem 6.13. Let S be an abelian abstract group, M a finite di-
mensional S–module, and ρ : S → GL(M) the corresponding morphism.
Assume that k is algebraically closed.
(1) There exists a full flag {0} ⊂ M1 ⊂ · · · ⊂ Md−1 ⊂ Md = M of S–
submodules of M .
(2) If for all x ∈ S, ρ(x) : M → M is a semisimple linear transforma-
tion, then M is a semisimple kS–module. In particular there exist kS–
submodules of dimension one, M1, . . . ,Md ⊂M such that M = M1⊕· · ·⊕
Md.

Proof: (1) We proceed by induction on d = dimkM . If d = 1 the
result is obvious. Assume that M is a d–dimensional S–module. If for
all x ∈ S the linear transformation ρ(x) : M → M is a scalar matrix,
the group S acts on M by multiplication by scalars and in this case the
result is evident. Thus, we may assume there exists x ∈ S such that the
map ρ(x) : M → M is not a scalar matrix. If a ∈ k is an eigenvalue
of ρ(x), then {0} 6= Ker

(
ρ(x) − aid

) 6= M . As the group S is abelian,
N = Ker

(
ρ(x) − aid

)
is an S submodule of M . By induction, we can find

an S–stable full flag of N as well as of M/N . Putting these two together,
we obtain a full flag of M that is S–stable.
(2) For all x ∈ S the linear transformation ρ(x) is semisimple on M . Then,
M = Ker

(
ρ(x)− a1id

)⊕ · · · ⊕Ker
(
ρ(x)− arid

)
, where {a1, . . . , ar} are the

eigenvalues of ρ(x). If S acts by scalar multiplication on M there is nothing
to prove. Let x ∈ S be such that in the above sum there is more than one
summand. Being S abelian all the summands are S–stable and the proof
follows easily by induction. ¤

Definition 6.14. Let G be an affine algebraic group and H ⊂ G an
abstract subgroup. We say that H is linearly reductive in G if k[G] is a

 

is closed in G (see Exercise 12), it follows
that H is also a unipotent subgroup of G. See Exercise 17 for another proof
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semisimple H–module. In the case that G is linearly reductive in G we say
that G is linearly reductive.

Observation 6.15. (1) In the situation above, H is linearly reductive
in G if and only if all rational G–modules are semisimple as H–modules.
This follows easily from the fact that an arbitrary finite dimensional rational
G–module is a G–submodule of a direct sum of copies of k[G]. See Theorem
4.3.13 and Exercise 14.
(2) Let G be an affine algebraic group. Let S /H ⊂ G be closed subgroups,
S normal in H. If H is linearly reductive in G, then S is also linearly
reductive in G. Indeed, let M be a finite dimensional G–module. Since H
is linearly reductive in G, we can suppose that M is a simple H–module.
Let N ⊂ M be a simple S–submodule, and consider

∑
h∈H h · N ⊂ M .

Since M is H–simple, it follows that
∑
h∈H h ·N = M . Moreover, since S

is normal in H, it is easy to show that h · N is a simple S–module for all
h ∈ H and then M is the sum of simple S–modules.
(3) If H ⊂ G is linearly reductive in G, then its Zariski closure H ⊂ G is also
linearly reductive. Indeed, if M is a finite dimensional rational G–module,
then M is a semisimple H–module, i.e., it can be written as M =

⊕
iMi

for some simple H–submodules of M . By the continuity of the action, it
follows that this decomposition is also a decomposition of M as sum of
simple H–modules.
(4) A non trivial subgroup K of G cannot be simultaneously linearly re-
ductive and unipotent in G. Indeed, let M ⊂ k[G] be a G–submodule that
generates k[G]. Since K is linearly reductive in G, then M can be decom-
posed as a sum of simple K–submodules. Being K unipotent, it follows
from Corollary 6.4 that K acts trivially on each simple summand, and thus
K acts trivially on M . Hence, K acts trivially on k[G], and K = {1}.
(5) If H ⊂ G is linearly reductive in G and N ⊂ M is a rational G–
submodule, then there exists an H–submodule N ′ such that M = N ⊕N ′.
(6) In Chapter 9 we will present an equivalent definition of linearly reductive
group (see Definition 9.2.1 and Theorem 9.2.24).

Lemma 6.16. If G is an affine algebraic group and H ⊂ G an abelian
linearly reductive subgroup in G, then H ⊂ SG.

Proof: Let M be a finite dimensional rational G–module and N ⊂M
a simple H–submodule of M . If h ∈ H consider an eigenspace 0 6= Na =
{m ∈ N : h · m = am} of the operator h · − : N → N . It follows from
the commutativity of H that Na is an H–stable subspace of N ; therefore
Na = N and h · −|N = a id. Since M is a sum of simple H–submodules,
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it follows that every h ∈ H operates in M as a semisimple transformation.
From Corollary 5.5 we deduce that h ∈ SG. ¤

Theorem 6.17. If S is a connected abelian linearly reductive affine
algebraic group, then S is a torus.

Proof: Let M be a finite dimensional rational S–module that gener-
ates k[S] as a k–algebra. As S is linearly reductive, all its elements operate
on M as semisimple linear transformations. Then, there exists a decompo-
sition M = M1⊕· · ·⊕Md by one–dimensional S–submodules (see Theorem
6.13). If fi ∈Mi then there exists γi ∈ X (S) such that s ·fi = γi(s)fi for all
s ∈ S and then fi = fi(1)γi ∈ k[S]. Indeed, fi(s) = (s · fi)(1) = γi(s)fi(1).
Hence, M = kγ1⊕ · · · ⊕ kγd, with γi 6= γj if i 6= j, and k[S] is generated as
a k–algebra by γ1, . . . , γd. Then, the group homomorphism Γ : S → Gdm,
Γ(s) =

(
γ1(s), . . . , γt(d)

)
is a closed immersion, and the result follows from

Exercise 16. ¤

Observation 6.18. (1) The proof of the above result is a refinement
of the proof of Theorem 4.3.23.

Given a closed immersion ρ : S ↪→ GLn, in our hypothesis for S it is
easy to show that ρ(S) is conjugate to a closed subgroup of Dn.
(2) Conversely, tori are linearly reductive. See Theorem 9.3.5 for the proof
of this elementary fact.

The next theorem will be a crucial technical tool when dealing with the
structure of solvable groups.

Theorem 6.19. Let G be an affine algebraic group and U,L closed
subgroups of G. Assume that U is unipotent and normal in G and L linearly
reductive in G, and such that G = UL. Then G = U o L and L is linearly
reductive.

Proof: The subgroup U ∩ L ⊂ L is closed and normal, and as such
is linearly reductive in G. It is also unipotent in G and it follows from
Observation 6.15 that U ∩ L is trivial.

Let α : G → L be the morphism of abstract groups that sends z ∈ G
into the unique element α(z) ∈ L such that zα(z)−1 ∈ U . Observation
3.5.13 guarantees that if α is a morphism of algebraic groups then G =
U o L. Therefore, all that remains to be proved is that if f ∈ k[G], then
f |L◦α ∈ k[G]. Call V the finite dimensional G–submodule of k[G] generated
by f and consider V = V0 ⊃ V1 ⊃ V2 ⊃ · · · ⊃ Vn−1 ⊃ Vn = {0} a
composition series of V . If W =

⊕n−1
i=0 Vi/Vi+1, as L is linearly reductive

in G, there exists an isomorphism of rational L–modules θ : W → V (see
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As U (Vi/Vi+1) is a non zero G–submodule of Vi/Vi+1,
it follows that U (Vi/Vi+1) = Vi/Vi+1, and thus U acts trivially on W .

Moreover, the diagram below is commutative

G×W

α×θ
²²

// W

θ

²²
L× V // V

where horizontal maps are the actions. Indeed, if z ∈ G, write z = uα(z).
Then α(z) · θ(w) = θ

(
α(z) · w)

= θ
(
u · (α(z) · w)

)
= θ(z · w). Consider

wf ∈W such that θ(wf ) = f ∈ V and ν ∈ V ∗. Then,

(ν|f)
(
α(z)

)
= ν

(
α(z)·f)

= ν
(
α(z)·θ(wf )

)
= ν

(
θ(z ·wf )

)
=

(
(ν◦θ)|wf

)
(z) .

In other words, (ν|f)◦α = (ν ◦ θ)|wf . If we take ν = ε|V , we have that
if z ∈ G then (ν|f)(z) = ν(z · f) = ε(z · f) = f(z), i.e. ν|f = f . Hence, in
this situation f ◦ α = (ν|f) ◦ α = (ν ◦ θ)|wf ∈ k[G].

The fact that L is linearly reductive can be proved as follows. Let M be
an arbitrary rational L–module. Using the canonical morphism G→ L we
endow M with a structure of G–module that when restricted to L induces
the original structure of L–module on M . Thus, M is semisimple as an
L–module. ¤

7. The solvable and the unipotent radical

In this section we introduce the semisimple and unipotent radical.
These special subgroups are the main obstruction to have a “good” the-
ory of invariants, playing in our theory a role similar to the corresponding
concepts for Lie algebras. In that sense, the groups with trivial radicals
have a manageable representation and invariant theory and they will be
studied extensively in later chapters.

We begin with establishing the basic algebro–geometric structure of
unipotent groups.

Observation 7.1. In the rest of this chapter, groups that appear as
quotients of affine algebraic groups by normal closed subgroups will play
a certain role, sometimes as important examples but mostly as part of
inductive arguments. The standard methods used to handle these kinds of
situations, even though they are rather elementary, will be postponed —

we state without proof the necessary results.

 

for reasons of the general organization of the book — until Chapter 7. Here

Observation 6.15).
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(1) Let G be an affine algebraic group and H C G a closed and normal
subgroup. Then the algebra of invariant polynomials Hk[G] is a finitely
generated Hopf subalgebra of k[G]. See Theorem 7.5.3.
(2) There is a bijective (set theoretical) correspondence between the set of
right cosets of G modulo H, i.e. G/H, and the maximal spectrum of Hk[G].

(3) Let π : G → G/H be the canonical projection. Endow G/H with
the structure of affine variety induced by the above bijection. The pair
(G/H, π) satisfies that:
(a) the projection π is a morphism of algebraic groups, with fibers the cosets
of H;
(b) for all pairs (Y, f) where Y is an algebraic variety and f : G → Y is a
morphism constant on the right H–cosets, there exists a unique morphism
f̂ : G/H → Y such that f = f̂ ◦ π.

Moreover, the pair (G/H, π) is the geometric quotient of G by the right
action (by multiplication) of H (see Theorem 7.4.2).

Theorem 7.2. Let U be a connected unipotent group of dimension d.
Then there exists a sequence of closed normal connected subgroups

{1} = U0 C U1 C · · ·C Ud−2 C Ud−1 C Ud = U

such that:
(1) The quotients U j/U j−1 ∼= Ga for j = 1, . . . , d.
(2) Each projection πj : U j → U j/U j−1, j = 1, . . . , d, admits a cross
section, i.e. there exists a polynomial map sj : U j/U j−1 → U j such that
πjsj = idUj/Uj−1 .

Proof: We first show that the theorem is valid for U = Un. Let Upn
be the subgroup of Un defined as

Upn =
{

(aij)1≤i,j≤n ∈ Un : aij = 0 if 1 ≤ j − i ≤ p
}
, p = 1, . . . , n− 1 .

Then Upn is a sequence of normal connected closed subgroups of Un
such that Upn/U

p+1
n

∼= Gn−pa as algebraic groups. On the other hand, for
each p the sequence

(4) Ga × {0}n−p−1 ⊂ G2
a × {0}n−p−2 ⊂ · · · ⊂ Gn−pa

satisfies condition (1) for the unipotent group Gn−pa . Hence, we deduce
that there exists a sequence {1} = H0 ⊂ · · · ⊂ HN = Un satisfying (1) (see
Exercise 28).

In order to prove that the sequence just obtained satisfies condition
(2), observe that the projections associated to the sequence {Upn}p=1,...,n−1

 

See Theorem 7.5.3.
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have cross sections
tp :Upn/U

p+1
n

∼= Gn−pa → Upn

tp(a1, . . . , an−p) =




1 0 0 a1 0 0

0

0

an−p

0

0

0 0 1




Moreover, for each sequence (4) corresponding to Gn−pa , the polynomial
maps rj : Ga ∼= (Gn−p−ja × {0}j)/(Gn−p−j−1

a × {0}j−1) → Gn−p−ja × {0}j ,
rj(a) = (0, . . . , 0︸ ︷︷ ︸

j−1

, a, 0, . . . , 0), are cross sections for the projections.

Putting together the cross sections tp and rj , constructed above, we
obtain cross sections Hi+1/Hi → Hi.

Now, if U is a unipotent algebraic group, using Observation 6.8, we
can suppose that for some n > 0, U is a closed subgroup of Un. Consider
the sequence of normal closed connected subgroups of U defined by Ki =
(U ∩ Hi)1, with Hi as above. Each quotient Ki+1/Ki is isomorphic to
an irreducible closed subgroup of Hi+1/Hi

∼= Ga, hence Ki+1/Ki
∼= Ga

or Ki = Ki+1. Then, eliminating redundancies, we obtain a sequence of
subgroups U i C U satisfying property (1), and as U is connected KN = U .

Assume that U i = Ki0 and U i+1 = Ki0+l for some l ≥ 1, then the
cross section si : U i+1/U i → U i+1 is obtained by composing Ki0+l/Ki0

∼=
Ki0+l/Ki0+1

∼= · · · ∼= Ki0+l/Ki0+l−1 → Ki0+l. Hence the sequence Ui
satisfies condition (2). ¤

Observation 7.3. In the above result the hypothesis that U is con-
nected is essential. Indeed, if chark = 2, the group

U =
{

( 1 0
0 1 ) , ( 1 1

0 1 )
}

is unipotent and finite.
However, if chark = 0 Theorem 7.2 is valid for unipotent groups, and

hence a unipotent group is connected (see Observation 7.8).

Theorem 7.4. Assume chark = 0 and let U be a unipotent group of
dimension d. Then there exists a sequence of closed normal subgroups

{1} = U0 C U1 C · · ·C Ud−2 C Ud−1 C Ud = U

such that:

 



7. THE SOLVABLE AND THE UNIPOTENT RADICAL 201

(1) The quotients U j/U j−1 ∼= Ga for j = 1, . . . , d.
(2) Each projection πj : U j → U j/U j−1, j = 1, . . . , d, admits a cross
section, i.e. there exists a polynomial map sj : U j/U j−1 → U j such that
πjsj = idUj/Uj−1 .

Proof: If chark = 0, then the only closed subgroups of Ga are {0} and
Ga. Hence, in the proof of Theorem 7.2 one can define Ki = U ∩Hi. ¤

Lemma 7.5. In the situation and notations of Theorem 7.2, we have
that:
(1) U1 ⊂ Z(U).
(2) For all j = 1, . . . , d there exists an equivariant cross section for Uj−1 in
Uj, i.e., there exists a map Φj : Uj → Uj−1 such that Φj(1) = 1, Φ(uv) =
Φ(u)v for all u ∈ Uj , v ∈ Uj−1.

Proof:

(1) Denote as Aut(U1) the abstract group of all algebraic group homomor-
phisms of U1 and consider γ : U → AutU1, γ(x)(u1) = x−1u1x. Clearly,
γ is a homomorphism of abstract groups. In Exercise 4.26 the reader is
asked to prove that Aut(U1) ∼= Gm and that the map γ is a rational char-
acter. As U is unipotent the character is trivial (see Exercise 29), and hence
U1 ⊂ Z(U).
(2) It is clear that

(
sjπj(u−1)

)
u ∈ Uj−1. Hence we can define a Uj−1–

equivariant morphism Φj : Uj → Uj−1 as Φj(u) =
(
sjπj(u−1)

)
u. ¤

Observation 7.6. Notice that iterating the above construction we can
construct an equivariant cross section for Uk inside of Ul if 1 ≤ k < l ≤ d.

Theorem 7.7. Let U be a connected unipotent affine algebraic group
of dimension d. Then there exist f1, . . . , fd ∈ k[U ] such that:
(1) f1, . . . , fd are algebraically independent and k[U ] = k[f1, . . . , fd];
(2) u · fi − fi ∈ k[f1, . . . , fi−1] for all u ∈ U and for all i = 1, . . . , d, and
u · f1 − f1 ∈ k.

Proof: We prove the result by induction on d. Consider a tower
U1 C · · ·CUd = U of normal subgroups as in Theorem 7.2 and the sequence
of quotients

U → U/U1 → U/U2 → · · · → U/Ud−2 → U/Ud−1 → {1}
As dim(U/U1) = d − 1 we find algebraically independent elements

g1, . . . , gd−1 ∈ k[U/U1] such that k[g1, . . . , gd−1] = k[U/U1] and for all
uU1 ∈ U/U1, uU1 · gi − gi ∈ k[g1, . . . , gi−1] if 1 ≤ i ≤ d − 1. If π :
U → U/U1 is the canonical projection and we call f1, . . . , fd−1 ∈ k[U ] the
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polynomials fi = gi ◦ π, i = 1, . . . , d − 1, it is clear that for all u ∈ U ,
u · fi − fi ∈ k[f1, . . . , fi−1]. To construct the remaining polynomial fd con-
sider Φ : U → U1 a U1–equivariant cross section for U1 inside of U and recall
that the polynomial maps u → (

Φ(u), uU1

)
and (u1, uU1) → uΦ(u)−1u1

establish an isomorphism U ∼= U1 × U/U1 of algebraic varieties. Consider
v ∈ U and define Ψv : U → U1, Ψv(u) = Φ(uv)

(
Φ(u)

)−1. Then Ψv is con-
stant along the cosets uU1 of U . Indeed, Ψv(uu1) = Φ(uu1v)

(
Φ(uu1)

)−1 =
Φ(uvu1)u−1

1

(
Φ(u)

)−1 = Φ(uv)u1u
−1
1

(
Φ(u)

)−1 = Ψv(u). If we identify U1

with k and consider Φ as an element of k[U ], the result just proved about
Ψv shows that for all v ∈ U ,

Ψv = v · Φ− Φ ∈ U1k[U ] = k[f1, . . . , fd−1].

Finally, as k[U ] ∼= k[U1] ⊗ U1k[U ] we conclude that the polynomials
f1, . . . , fd−1,Φ ∈ k[U ] satisfy the required conditions. ¤

Observation 7.8. (1) The above theorem shows that a connected uni-
potent group is isomorphic as an algebraic variety to an affine space. How-
ever, Exercise 3.2 exhibits an example of a unipotent group that is not
isomorphic to the affine space as algebraic groups. In particular, this exam-
ple shows that the cross sections found in Theorem 7.2 are not necessarily
group homomorphisms.
(2) Moreover, if chark = 0, then Theorem 7.7 remains valid for non neces-
sarily connected unipotent groups, in view of Theorem 7.4. In particular,
in characteristic zero any unipotent algebraic group is connected.

Definition 7.9. The radical of G (that will be denoted as R(G)), is the
subgroup generated by the family of all closed connected normal solvable
subgroups of G.

Observation 7.10. (1) R(G) itself is a member of the family con-
sidered above. Indeed, we know that a group generated by a family of
connected closed subgroups is connected and closed (see Corollary 3.5.5).
As these subgroups are normal, the generated subgroup is also normal.
Concerning the solvability, the result follows from the fact that only a fi-
nite number of subgroups are needed in order to obtain R(G) (see Theorem
3.5.4 and Exercise 3.28).
(2) As a consequence of the above observation we conclude that R(G) is
the maximal connected normal solvable subgroup of G.

Definition 7.11. Call Gu the abstract subgroup of G generated by
the family U(G) of all normal unipotent subgroups of G.

Lemma 7.12. If G is an affine algebraic group, then Gu is a unipotent
normal closed subgroup of G.

 



7. THE SOLVABLE AND THE UNIPOTENT RADICAL 203

Proof: We prove that Gu is unipotent by showing that k[G] is a
locally unipotent Gu–module. Let V be a Gu–stable finite dimensional
subspace of k[G], dimV = d and consider u1, . . . , ud ∈ Gu. Then each ui
belongs to finite a product of unipotent normal subgroups of G, and hence
there exists a product of unipotent normal subgroups K ⊂ G such that
ui ∈ K, i = 1, . . . , d. From Corollary 6.5 we deduce that K is a normal
subgroup acting unipotently on V . Hence, from Lemma 6.9 it follows that
(id−u1) · · · (id−ud) = 0 : V → V for all ui ∈ Gu and hence — again by
Lemma 6.9 — Gu is a unipotent subgroup of G. Clearly Gu is a normal
subgroup of G, and thus its closure Gu is a unipotent normal subgroup of
G. Hence Gu ∈ U(G), and Gu = Gu. ¤

Observation 7.13. Form the proof of the above result, it follows
that Gu is the maximal normal unipotent subgroup of G. Observe that
if chark > 0, then Gu is not necessarily connected.

Definition 7.14. The unipotent radical of G, that will be denoted as
Ru(G), is the connected component of the identity of Gu.

Observation 7.15. (1) For all affine algebraic groups G we have that
Ru(G) ⊂ Gu ⊂ UG.
(2) It is easy to prove that Ru(G) is the maximal connected, normal unipo-
tent subgroup of G. We leave this verification as an exercise (see Exercise
22).
(3) As Gu is a unipotent subgroup of G it is nilpotent (see Corollary 6.10),
and the same happens with Ru(G). Since nilpotent groups are solvable, it
follows that Ru(G) ⊂ R(G). The precise relationship between R(G) and
Ru(G) will be clarified later (see Theorem 8.11).

Definition 7.16. An affine algebraic group G is called semisimple if
it is connected non trivial and R(G) = {1}. In the case that it is connected
non trivial and Ru(G) = {1} we say that G is reductive.

Observation 7.17. (1) A semisimple group is reductive. In Section 9
we show that SLn and the other classical groups are semisimple.

A torus is always reductive. Indeed, let T be a torus; we want to
prove that UT = {1}. The algebra of polynomials of T is of the form
k[T ] = k[X1, X

−1
1 , . . . , Xn, X

−1
n ]. The subspaces of the form kXi, 1 ≤

i ≤ n, are T–stable and T = Gnm acts as: (a1, . . . , an) · Xi = aiXi. Let
u = (u1, . . . , un) ∈ UT be a unipotent element. Then u acts on kXi by
multiplication by ui, and thus the only possibility for the action to be
unipotent is that ui = 1. Since this should hold for all 1 ≤ i ≤ n, we
conclude that u = e. It follows that UT = {1}.
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(2) A connected non trivial affine algebraic group is semisimple if it does not
have connected normal solvable closed subgroups. In particular, G/R(G),
that is an affine algebraic group (see Observation 7.1) is semisimple if
R(G) 6= G. Similarly G/Ru(G) is reductive if it is not trivial.

8. Structure of solvable groups

In this section we prove a structure theorem for solvable groups. We
start with the so–called Lie–Kolchin’s theorem that guarantees the simul-
taneous triangularization of a solvable group.

Most of the methods we use are adapted from [71].

Theorem 8.1. Let G be a connected solvable affine algebraic group and
M a simple rational G–module. Then dimM = 1.

Proof: Recall that M is finite dimensional (see Exercise 4.28). The
proof proceeds by induction on the length (that we call d) of the series of
derived subgroups of G.

If d = 1, then [G,G] = {1} and G is abelian. Hence, M has a full flag
of G–submodules (see Theorem 6.13). Since M is simple, the flag can have
only two components so that dimM = 1.

Let G be solvable with d arbitrary. The derived subgroup G′ = [G : G]
is normal in G, connected, solvable and has length smaller than d. Since M
is simple as aG–module, it is semisimple as aG′–module (see Exercise 4.29).
If we decompose M as a direct sum of a family of simple G′–submodules, by
induction we conclude that these simple submodules are one dimensional.

In particular, we have proved that there exists γ ∈ X (G′), γM 6= 0.
Using Lemma 4.5.9 we deduce that, as G′–modules, γM = M . In other
words, if we consider the map ρ(x) : M → M given by the action of G′,
then ρ(x) = γ(x)id. Since x ∈ G′, the map ρ(x) has determinant one
and thus γ(x)m = 1 if m = dim(M). Moreover, since G′ is connected, we
conclude that γ(x) = 1 for all x ∈ G′ and this means that G′ acts trivially
on M . Hence, M can be viewed as a G/G′–module. The abstract group
G/G′ is abelian and it can be simultaneously triangularized. In particular
there exists an m ∈ M such that (xG′) ·m ∈ km for all x ∈ G. Then, the
non trivial subspace km ∈ M is G–stable. This means that km = M and
our conclusion follows. ¤

Observation 8.2. (1) Another not completely dissimilar and more
compact — but less elementary — proof of the above theorem can be
deduced from Borel’s fixed point theorem. See Exercise 7.18.
(2) In fact G/G′

that in the above proof we only needed to consider it as an abstract group.

 

is an affine algebraic group (see Observation 7.1). Notice
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Next we show how, under additional conditions for the group, more
precise information can be obtained concerning the structure of UG and SG
— compare with Lemma 5.11.

Theorem 8.3. (1) Let G be a solvable affine algebraic group. Then
G′ = [G,G] ⊂ Gu, G/Gu is abelian and UG = Gu. Moreover, if L ⊂ G is
linearly reductive in G, then L is abelian.
(2) If G is nilpotent, then SG ⊂ Z(G). In particular, SG is the maximal
normal closed abelian linearly reductive subgroup of G.

Proof: (1) Let N be a simple rational G–module. By Lie-Kolchin’s
Theorem 8.1, N is one dimensional and thus G′ acts trivially on N . Next we
prove that G′ is a unipotent subgroup of G. Let M be a finite dimensional
G–module and a {0} = M0 ⊂ M1 ⊂ · · · ⊂ Md−1 ⊂ Md = M a G–
composition series of M . Since the action of G′ on the quotients is trivial,
we deduce that G′ acts unipotently on M (see Exercise 17). Hence, G′ ⊂
Gu ⊂ UG (see Observation 7.15) and G/Gu is abelian. Conversely, if we
take x ∈ UG and call K the abstract subgroup of G generated by x and Gu,
it is clear that K is unipotent (see Corollary 6.5). As G′ ⊂ Gu ⊂ K ⊂ G,
it follows that K is normal in G and thus K ⊂ Gu. Hence, K = Gu and
then x ∈ Gu.

Let L ⊂ G be linearly reductive in G. By the first part of the proof of
Theorem 6.19, L∩Gu = {1}. thus, L ↪→ G/Gu is injective, and hence L is
abelian.
(2) If G is abelian, then the result is obvious. Assume that G is nilpotent
and non abelian. In this case Z(G)1 6= {1} (see Exercise 3.29). It follows
that the affine algebraic group G/Z(G) is nilpotent and has dimension
smaller than the dimension of G (see Observation 7.1). By induction, we
may assume that SG/Z(G) ⊂ Z(

G/Z(G)
)
. If we consider now x ∈ SG,

then xZ(G) ∈ SG/Z(G), so that xZ(G) ∈ Z(
G/Z(G)

)
, i.e. for all y ∈

G there exists z ∈ Z(G) such that zx = yxy−1. By construction, z =
[y, x] ∈ [G,G] ⊂ Gu ⊂ UG and yxy−1 ∈ SG. Using the uniqueness of the
Jordan decomposition we deduce that z = 1 and x ∈ Z(G). From the
inclusion SG ⊂ Z(G), we deduce that SG is a normal abstract subgroup of
G (see Lemma 5.11). Moreover, as SG is abelian and consists of semisimple
elements, it is linearly reductive in G (see Theorem 6.13). Its closure is
contained in the center of G, and it is also linearly reductive and abelian
(see Observation 6.15). From Lemma 6.16 we deduce that SG ⊂ SG. Hence,
SG is a normal closed abelian linearly reductive subgroup of G. The same
lemma that we used before, guarantees the maximality of SG. ¤

Corollary 8.4. Let G be a solvable affine algebraic group. If SG ⊂
Z(G), then G is nilpotent.
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Proof: Write G = GuSG. Since SG ⊂ Z(G), it follows that G[i] = G
[i]
u

for all i ≥ 1, and as Gu is nilpotent we conclude that G is nilpotent. ¤
Theorem 8.5. Let G be an abelian affine algebraic group. Then SG is

a linearly reductive subgroup of G and G ∼= UG × SG as algebraic groups.
Moreover, if L is a linearly reductive subgroup of G, then L ⊂ SG; in
particular, SG is a maximal torus in G.

Proof: First recall that UG and SG are abstract subgroups of G (see
Observation 5.12). In Theorem 8.3 it was proved that UG = Gu and that SG
is the maximal linearly reductive algebraic subgroup of G. From Theorem
6.19 we deduce that G = Gu × SG and also that SG is linearly reductive.
The fact that SG is a torus follows from Theorem 6.17. If T is an arbitrary
torus in G it is clearly a linearly reductive subgroup of G and then it has
to be contained in SG. ¤

Theorem 8.6. Let G be a connected nilpotent affine algebraic group.
Then UG and SG are closed connected subgroups of G and G ∼= UG×SG as
algebraic groups. Moreover the subgroup SG is a torus and contains every
linearly reductive subgroup of G.

Proof: The proof follows the same trend of ideas than the proof of
Theorem 8.5. We leave the details for the reader to complete. ¤

We need to recall some elementary “homological” definitions.

Definition 8.7. Let G,A be abstract groups, with A abelian. Suppose
that G acts on A by automorphisms of abstract groups. A map f : G→ A
is said to be a cocycle if for all x, y ∈ G, f(xy) = x · f(y) + f(x). If a ∈ A,
then the coboundary associated to a is the cocycle fa : G → A given as
fa(x) = x · a− a.

Lemma 8.8. Let L be a linearly reductive connected abelian affine alge-
braic group, i.e. a torus (see Theorem 6.17 and Observation 6.18), and U
an abelian unipotent affine algebraic group equipped with an abstract action
a : L × U → U that is a morphism of affine varieties. If f : L → U is a
cocycle that is also a morphism of varieties, then f is a coboundary.

Proof: Consider an increasing sequence of finite subgroups Ln of L
whose union is dense in L. Concerning the existence of the sequence Ln see
Observation 3.5.8. Call rn the order of Ln. The integers rn are not zero in
the base field k. Indeed, if rn were divisible by p = chark, then we would
be able to find x ∈ Ln of order p. This element would verify the polynomial
xp = id and hence be unipotent.

Call fn the restriction of the given cocycle to Ln. Consider the equality
fn(xy) = x · fn(y) + fn(x) for all x, y ∈ L. If un =

∑
y∈Ln

fn(y) ∈ U , then
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un = x ·un + rnfn(x) for x ∈ Ln. As division by rn is possible we conclude
that f when restricted to each Ln is a coboundary. For each n we define
the subset

U(n) =
{
u ∈ U : fn(x) = x · u− u, ∀x ∈ Ln

} ⊂ U .

The sets U(n) are closed, non empty and U(n + 1) ⊂ U(n) for all n.
As the sequence

{
U(n) : n ≥ 0

}
stabilizes, there exists an element u ∈ U

such that f(x) = x ·u−u for all x ∈ ⋃
n Ln. As both terms of this equality

are defined on L and the equality is valid on a subset of points of L that is
dense, we conclude that f(x) = x · u− u for all x ∈ L. ¤

Lemma 8.9. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. Suppose that there exists a sequence G = K0 ⊃ K1 ⊃ · · · ⊃ Kl ⊃
Kl+1 = {1} of closed subgroups of G satisfying the following properties:
(1) H normalizes Ki for all i = 0, . . . , l.
(2) Ki+1 CKi and the quotients Ki/Ki+1 are abelian for all i = 0, . . . , l;
(3) for every i = 0, . . . , l, any polynomial cocycle f : H → Ki/Ki+1 is a
coboundary.

Then, G = K1 CG(H).

Proof: From (2) we deduce that [G,G] ⊂ K1. If we fix x ∈ G, then
[−, x] maps H into K1, i.e. [H,x] ⊂ K1. Consider the map fx = π◦[−, x] :
H → K1/K2. Then, fx is a H–cocycle with respect to the action by
conjugation of H act on K1/K2. Indeed, fx(yz) = yzxz−1y−1x−1K2 and

(
y · fx(z)

)(
fx(y)

)
=

(
y · (zxz−1x−1K2)

)
(yxy−1x−1K2) =

yzxz−1x−1y−1yxy−1x−1K2 =

yzxz−1y−1x−1K2 .

Then, fx is a coboundary, i.e. there exists zK2 ∈ K1/K2 such that
fx(y) =

(
y · (zK2)

)
(z−1K2) for all y ∈ H. Hence,

yxy−1x−1 ≡ yzy−1z−1(modK2) .

In other words, y−1z−1xyx−1z ∈ K2 for all y ∈ H and the element
w1 = z−1 ∈ K1 verifies that [H,w1x] ⊂ K2. The map [−, w1x] : H → K2

composed with the projection K2 → K2/K3 is a cocycle. Reasoning in a
similar manner than above, we find w2 ∈ K2 ⊂ K1 such that [−, w2w1x] :
H → K3. Repeating this method, after a finite number of steps we land
on Kl+1 = {1}. Hence, we proved that for an arbitrary x ∈ G there exists
an element w ∈ K1 with the property that [H,wx] = 1, i.e., wx ∈ CG(H).
Hence, G = K1 CG(H). ¤
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Observation 8.10. Let G be a solvable affine algebraic group. Then
Gu = UG is a normal closed subgroup of G and the same happens with the
terms of the series

Gu = G(0)
u ⊃ G(1)

u ⊃ · · · ⊃ G(k)
u ⊃ · · · ,

where G(k)
u is defined by induction as G(k+1)

u =
[
G,G

(k)
u

]
. We define G∞u =⋂

kG
(k)
u .

Recall that the series of subgroups G[n] is defined as G[0] = G and
G[n+1] =

[
G,G[n]

]
(see Definition 3.5.19). Each G[n] is an connected alge-

braic subgroup of G provided that G is connected. If G is solvable, then
G[1] ⊂ Gu and then by induction we deduce that for all k, G(k)

u ⊂ G[k] ⊂
G

(k−1)
u . As we are dealing with a descending sequence of closed subgroups

in a noetherian space, we conclude that there exists r ≥ 0 such that the
series G[k] stabilizes for k ≥ r. Hence, G∞u = G[r]. In the case that G is
connected and solvable, this implies that G∞u is a connected normal closed
subgroup of G.

Theorem 8.11. Let G be a solvable affine algebraic group. Then G =
Gu o T , where T is a maximal torus in G. Moreover, if L is a linearly
reductive subgroup of G, then there exists an element u ∈ G∞u such that
uLu−1 ⊂ T .

Proof: If G is connected we proceed by induction in the dimension
of G. For dimG = 0 there is nothing to prove. The first step of the proof
is to find a torus T with the property that G = GuT . In the case that
G is nilpotent the result has already been proved. Assume that G is not
nilpotent. This implies that there exists an element s ∈ SG that is not
central (see Corollary 8.4).

Call S = {x ∈ G : xs = sx}, with s ∈ G as above. By construction
S 6= G and, since G is connected, this implies that dim(S) < dim(G). By
induction, we deduce that S1 = S1uT for a certain torus T in S1.

Next we prove that G = GuS; once this is done, the required result
follows. Indeed, if G = GuS then G = GuS1, and S1u ⊂ Gu implies that
G = GuS1 = GuS1uT = GuT .

As to the proof that G = GuS, we use Lemma 8.9 applied to the
situation where H is the affine algebraic group generated by s ∈ S, and
we consider the sequence G = G0 ⊃ G1 ⊃ · · · ⊃ Gl ⊃ Gl+1 = {1} of the
commutator subgroups, i.e.K0 = G0 = G, andKi = Gi = [Gi−1, Gi−1]. In-
deed, Lemma 8.8 guarantees that every polynomial cocycle is a coboundary.
From the above we conclude that G = G1 CG(H), Since G1 = [G,G] ⊂ Gu
and that CG(H) = S, we deduce that G = GuS as we wanted.
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From Theorem 6.19 we deduce that G = Gu o T , and the fact that T
is a maximal torus follows easily.

Consider now L a linearly reductive subgroup of G. By the proof of
Theorem 8.3 (1), L is an abelian subgroup.

Our first goal is to prove that L ⊂ G∞u oT . Clearly L ⊂ GuoT , and if
we consider the canonical projection π : GuoT → GuoT/[Gu, Gu]oT , we
can view π(L) ⊂ Gu/[Gu, Gu] and as it is linearly reductive, we conclude
that π(L) is trivial. Then, L ⊂ Gu

1 o T .
In the same manner we conclude that L ⊂ G∞u oT , and using the result

of Exercise 25 we finish the proof.
We leave as an exercise to adapt this proof for the non connected situ-

ation; see Exercise 30. ¤
We can use Theorem 8.13 to obtain information about the radical of

a reductive group. First we need a result that is known as “the rigidity of
tori”.

Theorem 8.12. Let G be an affine algebraic group and T ⊂ G a torus.
Then NG(T )1 = CG(T )1.

Proof: It is clear that CG(T ) ⊂ NG(T ) so that CG(T )1 ⊂ NG(T )1.
Consider the morphism Λ : NG(T )1 × T → T , Λ(x, t) = xtx−1, and fixing
t ∈ T define Λt : NG(T )1 → T as Λt(x) = Λ(x, t). Assume that t ∈ T is
such that for some n > 0, tn = e. In this case

(
Λt(x)

)n = xtnx−1 = e, and
thus Λt

(NG(T )1
) ⊂ T is a finite set. As NG(T )1 is connected we conclude

that Λt
(NG(T )1

)
is a point. We have proved that if t has finite order in

T , then xtx−1 = t for all x ∈ NG(T )1. Fix x ∈ NG(T )1 and consider the
map [x,−] : T → T , that as we just proved sends all the elements of finite
order into the identity. As in T all the elements of finite order form a dense
subset (see Lemma 3.5.7), then for all t ∈ T , [x, t] = e, i.e. x ∈ CG(T )1.
Then, NG(T )1 ⊂ CG(T ), and the result follows. ¤

Theorem 8.13. Assume that G is a reductive affine algebraic group.
Then, R(G) = Z(G)1 and it is a torus.

Proof: The group R(G) is solvable, and its unipotent radical is triv-
ial. Using Theorem 8.11, we conclude that R(G) is a torus. Hence, G =
NG

(
R(G)

)
= NG

(
R(G)

)
1

= CG
(
R(G)

)
1

— recall that reductive groups
are connected by definition. Thus, G = CG

(
R(G)

)
, i.e., R(G) ⊂ Z(G)

and R(G) ⊂ Z(G)1. As Z(G)1 is normal abelian — hence solvable — and
connected in G, it follows that Z(G)1 ⊂ R(G). ¤
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9. The classical groups

In this section we prove that the so–called classical groups — GLn,
SLn, PGLn, On, SOn, Spn — are semisimple in arbitrary characteristic.

We start with two general results that will be handy as criteria for
reductivity and semisimplicity.

Theorem 9.1. Let G be an affine algebraic group. If G admits a
semisimple faithful rational representation, then G is reductive.

Proof: Let V a semisimple faithful representation of G and decompose
it as V =

⊕
i Vi, with Vi simple for all i. Consider the action of Ru(G) on

each Vi. Corollary 6.4 guarantees that Ru(G)Vi 6= {0}. As Ru(G) is normal
in G, it follows that Ru(G)Vi is a G–submodule of Vi. Hence, Ru(G) acts
trivially on Vi and then it also acts trivially on V . As the representation of
G on V is faithful we conclude that Ru(G) = {1}. ¤

Corollary 9.2. Let H ⊂ GLn be a closed subgroup. Assume that
H acts irreducibly on kn and that Z(GLn) = k∗ Id 6⊂ H. Then H is
semisimple.

Proof: From Theorem 9.1 we deduce that H is reductive. Using
Theorem 8.13 we conclude that R(H) = Z(H)1 is a normal torus of H.
Consider an arbitrary element t ∈ R(H). As t acts in kn as a semisimple
operator (see Observation 6.18) we can decompose kn = Ker(t − a1id) ⊕
· · ·⊕Ker(t−asid). As t ∈ Z(H), if s > 1 then Ker(t−aiid) is H–stable for
i = 1, . . . , s. This is a contradiction and then R(H) ⊂ k∗Id. Since R(H) is
connected and k∗Id has dimension one, we deduce that either R(H) = k∗Id
or R(H) = {1}. As k∗Id 6⊂ H, it follows that R(H) = {1}. ¤

In the paragraphs that follow we prove the semisimplicity of the clas-
sical groups and the reductivity of GLn. The classical groups appear with
the labels A, B, C, D, that correspond to the associated Dynkin diagram
(see for example [75] for the notations).

9.1. The general linear group GLn
In this paragraph we prove that the general linear group is reductive.

Lemma 9.3. Let k be an algebraically closed field of arbitrary charac-
teristic. Then the group GLn is reductive.

Proof: The natural action of GLn on kn has two orbits, namely kn−
{0} and {0}. This implies that kn has no invariant non trivial GLn–stable
subspace. As this representation is faithful, the proof follows from Theorem
9.1. ¤
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Observation 9.4. One can prove that GLn is reductive by a direct
computation, without using Theorem 9.1.

If n = 1, then GL1 is the one dimensional torus Gm. In Observation
7.17 we proved that tori are reductive.

Assume that n > 1 and call Ru = Ru(GLn) the unipotent radical.
Consider an element x ∈ Ru that is a unipotent matrix and as such —
writing it in terms of the Jordan blocks — will be similar to a matrix of
the form

xJ =




x
J1 0 0

0

0

0 0 x
Jk


 ,

where xJ is as in Observation 2.5.
In particular, since x 6= Id, x

J1
is a m1 ×m1 matrix of the form

x
J1

=




1 1 0 0

0

0

1

0 0 1



,

with m1 > 1.
As Ru is a normal subgroup it follows that x

J
∈ Ru, and taking into

account that the matrix tx
J

is similar to x
J

we conclude that tx
J
∈ Ru.

Consider y = x
J
(tx

J
) ∈ Ru. Then y =




y1 0 0

0

0

0 0 yk


, where

yj = xJj
(txJj

) =




2 1 0 0

1

0 0

2 1

0 0 1 1




, 1 ≤ j ≤ k

We leave as an exercise (see Exercise 32) the proof that y is not a
unipotent matrix. This is a contradiction, since y ∈ Ru.

9.2. The special linear group SLn (case A)

In this paragraph we prove that SLn is semisimple. We proceed in two
steps: first we show that it is reductive and afterwards, knowing that SLn

 



212 5. ALGEBRAIC GROUPS: JORDAN DECOMPOSITION AND APPLICATIONS

is reductive, we prove that it is semisimple. We start with two elementary
observations.

Observation 9.5. (1) If x, y ∈ SLn are two matrices that are similar
in GLn then they are similar in SLn. Indeed, if x = uyu−1 with u ∈ GLn,
and we call v = u/ n

√
det(u) then, x = vyv−1, with v ∈ SLn.

(2) In particular, if H C SLn then also H C GLn.

Lemma 9.6. Let k be an algebraically closed field of arbitrary charac-
teristic. Then the group SLn is reductive.

Proof: If H ⊂ SLn is a closed connected normal subgroup, unipotent
in SLn, then it is also closed connected normal and unipotent in GLn. Using
the reductivity of the general linear group we conclude that H is trivial. ¤

Theorem 9.7. Let k be an algebraically closed field of arbitrary char-
acteristic. Then the group SLn is semisimple.

Proof: Consider the natural representation of SLn on kn. If v, w ∈ kn
are non zero, then there exist an element x ∈ SLn and a scalar a ∈ k∗
such that xv = aw. This implies that the SLn–orbit of a non zero vector
generates kn and that kn is a simple SLn–module. Using Corollary 9.2, and
observing that k∗Id 6⊂ SLn, we conclude the proof. ¤

9.3. The projective general linear group PGLn(k) (case A)

Theorem 9.8. Let k be an algebraically closed field of arbitrary char-
acteristic. Then the group PGLn is semisimple.

Proof: First we prove that PGLn is reductive. Consider the canonical
projection π : GLn → PGLn; call Ru the unipotent radical of PGLn and
H = π−1(Ru). Clearly H is a closed normal irreducible subgroup of GLn
and contains k∗ Id. Moreover, H is solvable because the quotient H/k∗Id ∼=
Ru is solvable.

Applying Theorem 8.11 we obtain a decomposition of the form H =
Hu o T , where T is a maximal torus. Let x ∈ H and write x = ut with
u ∈ Hu and t ∈ T , then π(x) = π(u)π(t) is the Jordan decomposition
of π(x) ∈ Ru. This implies that π(t) = 1 and t = aId for some a ∈ k∗.
Using the maximality of T we conclude that T = k∗Id an then, as T
is the center of GLn, the semidirect product H = Hu o k∗Id is in fact
direct. Moreover, in accordance with Theorem 8.3, [H : H] ⊂ Hu so that
if H were non abelian then [H,H] would be a non trivial closed normal
connected unipotent subgroup of GLn and this would contradict the fact
that GLn is reductive. Hence H is abelian and in this situation we can
prove that Hu is normal in GLn. Indeed, if x ∈ GLn and h ∈ Hu, then
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xux−1 ∈ H ∩ UGLn = Hu. It follows from the reductivity of GLn that Hu

is trivial and then that H = k∗Id. Thus, π(H) = Ru = {1}.
Next we prove that Z(PGLn) = {1}. Indeed, let x ∈ GLn be such

that xyx−1y−1 ∈ Z(GLn) = k∗Id for all y ∈ GLn. Then xyx−1y−1 = aId,
a 6= 0, and taking determinants we deduce that an = 1. Then the map
[x,−] : GLn → GLn, has finite image. As the general linear group is
connected, we conclude that [x, y] = 1 for all y ∈ GLn. It follows that
x ∈ Z(GLn) and then π(x) = 1 in PGLn.

As PGLn is reductive, then R(PGLn) = Z(PGLn)1 = {1}, and our
proof is finished. ¤

9.4. The special orthogonal group SOn (cases B,D)

Theorem 9.9. If k is an algebraically closed field, chark 6= 2, then the
special orthogonal group SOn is semisimple.

Proof: Proceeding as before, we first prove that the special orthogonal
group is reductive.

For that, we show that the inclusion SOn ⊂ GLn induces a simple
representation of SOn on kn and then use Theorem 9.1.

Let {e1, . . . , en} be the canonical basis of kn. Since the matrices corre-
sponding to the base change

{e1, . . . , en} 7→ {ei, . . . , ei−1, e1, ei+1, . . . , en}

belong to On we conclude that ei ∈ On ·e1 for i = 1, . . . , n. Thus, 〈On ·e1〉 =
kn. Consider now an arbitrary non zero vector of kn, 0 6= v =

∑
aiei ∈ kn;

we want to prove that the orbit of v generates kn.
Suppose that for some i, j ∈ {1, . . . , n}, ai 6= aj . From what we just

observed, we can assume that i = 1, j = 2. Applying to v the matrix of On

that exchanges e1 with e2, we deduce that a2e1 +a1e2 +
∑n
i=3 aiei ∈ On ·v.

Then

(a1 − a2)(e1 − e2) =
n∑

i=1

aiei −
(
a2e1 + a1e2 +

n∑

i=3

aiei

)
∈ 〈On · v〉 .

Hence, e1 − e2 ∈ 〈On · v〉. Since the matrix associated to the change
of basis {e1, . . . , en} 7→

{
(e1 − e2)/

√
2, (e1 + e2)/

√
2, e3, . . . , en

}
belongs to

On, we conclude that e1 ∈ 〈On · v〉, and then that 〈On · v〉 = kn.
If v = a

∑
ei, from the change of basis {e1, . . . , en} 7→ {−e1, e2, . . . , en}

we deduce that e1 = 1
2

(∑n
i=1 ei −

(−e1 +
∑n
i=2 ei

)) ∈ 〈On · v〉. Hence,
〈On · v〉 = kn.
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It follows that kn has no non trivial On–invariant subspaces and then
SOn is reductive as claimed.

To finish the proof we observe that SOn satisfies the hypothesis of
Corollary 9.2. Indeed, a matrix of the form aId is in SOn if and only if
a = 1. ¤

Observation 9.10. A discussion of the orthogonal group in character-
istic two, appears for example in [10]. See also Exercise 33.

9.5. The symplectic group Spn, n = 2m (case C)

Theorem 9.11. If k is an algebraically closed field of arbitrary char-
acteristic, then the symplectic group Spn, n = 2m, is semisimple.

Proof: We first prove that Spn is reductive. By Theorem 9.1, it is
enough to show that the inclusion Spn ⊂ GLn induces a simple representa-
tion of Spn on kn = k2m. We call {e1, . . . , em, em+1, . . . , en} the canonical
basis of k2m and s =

(
0 Idm

− Idm 0

)
the defining matrix of Spn. Clearly,

s ∈ Spn and we have that s(ei) = −em+i for 1 ≤ i ≤ m and s(ei) = ei−m if
m < i ≤ 2m. Moreover, GLm can be injected in Spn via ϕ(a) =

(
a 0

0 (ta)−1

)
.

Consider the decomposition kn = km ⊕ km = V1⊕ V2. The matrices of
the form ϕ(a) can be used to prove that V1 \ {0} ⊂ Spn · e1. On the other
hand, s can be used to exchange the first half of the basis with the second
half. It follows that V2 \ {0} ⊂ Spn · e1, and thus {e1, . . . , en} ⊂ Spn · e1.
Hence, 〈Spn · e1〉 = kn.

As in the case of the orthogonal group, we shall prove that if 0 6= v,
then e1 ∈ 〈Spn · v〉, and thus that kn is simple as a Spn–module. We can
assume, applying s if necessary, that 0 6= v = v1 + v2, vi ∈ Vi, with v1 6= 0.

Considering an appropriate a ∈ GLm, we translate v by means of ϕ(a)
to obtain an element in the orbit of v of the form e1 + w2, w2 ∈ V2. We
can assume then that v = e1 + w2, with 0 6= w2 ∈ V2.

We distinguish two cases:
(i) chark 6= 2. Write w2 =

∑m
i=1 biem+i, with bj 6= 0 for some j 6= 1. Con-

sider x =
(

(−2E11+Idm) 0
0 (−2E11+Idm)

)
∈ Spn, where Eij is the elementary

matrix with 1 at the coefficient (i, j) and zero elsewhere. Then,

x · (e1 + w2) = −e1 − b1em+1 +
m∑

i=2

biem+i .

Thus, e1 + w2 − x · (e1 − w2) = 2(b2em+2 + · · · + bme2m) ∈ V2 \ {0}
and as we know that V2 \ {0} ⊂ Spn ·e1, we conclude that e1 ∈ 〈Spn ·v〉. In
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the case that w2 = em+1, i.e. that v = e1 + em+1, as sv = −em+1 + e1, we
deduce that e1 ∈ 〈Spn ·v〉.
(ii) chark = 2. Consider x =

(
Idm 0
Idm Idm

)
. An elementary calculation —

which uses the fact that the characteristic is 2 — shows that x ∈ Spn. Since
x(e1 +w2) = e1 + en+1 +w2, it follows that en+1 = e1 +w2 + x(e1 +w2) ∈
〈Spn ·v〉. The rest of the proof follows along the same lines of reasoning
than before.

We finish our proof by observing that a matrix of the form aId is in
Spn if and only if asa = s, i.e., if a = ±1. Hence, k∗Id 6⊂ Spn and then Spn
is semisimple (see Corollary 9.2). ¤

10. Exercises

1. (a) Prove the assertions that appear in Observation 2.5.
(b) Assume chark = 0 and that V is a finite dimensional k–space. Define

N =
{
T ∈ End(V ) : T is nilpotent

} ⊂ End(V )

U =
{
S ∈ GL(V ) : S is unipotent

} ⊂ GL(V )

exp : N → GL(V ), exp(T ) =
∑

i≥0

T i/i!

log : U → End(V ), log(S) =
∑

i≥1

(−1)i+1(S − id)i/i .

Prove that exp and log establish a bijection between N and U .

2. Prove the assertions of Lemma 2.6. Hint: consider g′, the derivative
of g, and find polynomials u, v such that ug′ + vg = 1. Define σ : k[X] →
k[X] as σ(X) = X − u(X)g(X) and prove that σ(g) ∈ k[X]g2. Conclude
that for some exponent n, σn(g) ∈ k[X]f and take σn = α.

3. In the notations of Definition 3.2, prove that L∗ is an affine algebraic
group whose Lie algebra is L. Prove also that Σ is a morphism of algebraic
groups and that Σ• = Θ.

4. Prove that if A is a k–algebra and T : A→ A is a locally finite linear
operator that is also a derivation of A, then the semisimple and nilpotent
parts of T are also derivations.

5. Prove that in GL2 all the matrices of the form ( 1 b
0 1 ) are unipotent.

Prove that the identity matrix of GL2 is in the closure of the orbit of ( 1 1
0 1 ).

6. Let ε : k[X] → k be the evaluation at 0. Prove that all the ε–
derivations of k[X] are locally nilpotent, and that all the invertible algebra
automorphisms of k[X] are semisimple.
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7. Prove the assertions of Theorem 4.12.

8. Prove that if T is an element of GLn, then T is semisimple (resp. uni-
potent) in the sense of Definition 5.3 if and only if the matrix T is diago-
nalizable (resp. unipotent).

9. Prove Theorem 5.6.

10. Prove a version of Lemma 5.7 for elements of the dual of a Hopf
algebra.

11. Prove Lemma 5.8.

12. Prove that if G is an affine algebraic group, then the set UG is closed
in G. Conclude that if G is abelian then UG is an algebraic subgroup of G.
Hint: prove the result first for GLn.

13. Let H be an abstract group such that for an arbitrary finite di-
mensional representation M , the subspace HM 6= 0. If M is an H–module
and x ∈ H, the linear transformation of M given by the action of x,
i.e. m 7→ x ·m, is unipotent. This is the converse of Corollary 6.4.

14. Let G be an affine algebraic group and H a closed subgroup. Then
k[G] is semisimple as an H–module if and only if all the rational G–modules
are H–semisimple.

15. Let G be an affine algebraic group and x ∈ G such that for all
finite dimensional rational G–submodules M of k[G], the action of x on M
defines a unipotent linear transformation. Then the action of x on N defines
a unipotent linear transformation for all finite dimensional G–modules N .

16. (a) Let T be a torus. Prove that X (T ) generates k[T ] as a k–space.
See Exercise 3.18.
(b) Let T be a torus and S a closed subgroup. Prove that X (S) generates
k[S] as a k–space. Prove that X (S) is a finitely generated torsion–free
abelian group.
(c) Deduce that S is a torus. Hint: if γ1, . . . , γl is a set of free generators
of X (S) as a Z–module, then Γ = (γ1, . . . , γl) : S → Glm is an isomorphism.

17. Let G be an affine algebraic group and H ⊂ G an abstract sub-
group.
(a) Let M ⊂ k[G] be a finite dimensional rational G–module and {0} =
M0 ⊂ M1 ⊂ · · · ⊂ Md−1 ⊂ Md = M a decomposition series of M as a
G–module. Prove that the action of H on M is unipotent if and only if H
acts trivially Mi/Mi−1 for all i = 1, . . . , d.
(b) Deduce that the closure of H in G is also an unipotent group.
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18. Let k be an algebraically closed field of characteristic two. Prove
that the operation (a, b) + (a′, b′) = (a+ a′, b+ b′ − aa′) endows k2 with a
structure of affine algebraic abelian group. Represent U as a subgroup of
GL3 and show that it is unipotent.

19. Let k be an algebraically closed field of characteristic p > 0. Define
a multiplication on k × k∗ as follows (a, b).(a′, b′) = (a + bpa′, bb′). Show
that the elements of the form (a, b), with b 6= 1, are semisimple and that
the elements of the form (a, 1) are unipotent. Deduce that Uk×k∗ = {(a, 1) :
a ∈ k} and Sk×k∗ = U ck×k∗ ∪ {(0, 1)}, where U ck×k∗ is the complement of
Uk×k∗ in the group.

20. Show that the sets USLn and SSLn are not subgroups of SLn.

21. Show that H =
{(

ez zez

0 ez

)
: z ∈ C

}
is a subgroup of GL2(C).

(a) Prove that if z 6= 0 then the equality
(
ez zez

0 ez

)
=

(
ez 0
0 ez

)
( 1 z

0 1 ) is the Jor-
dan decomposition of

(
ez zez

0 ez

)
. Observe that the semisimple and unipotent

parts of a generic element of H do not belong to H.
(b) Show that the Zariski closure of H in GL2(C) is

H = B =
{(

λ µ
0 λ

)
: λ ∈ C∗, µ ∈ C

}
.

In this case, the Jordan decomposition becomes:
(
λ µ
0 λ

)
=

(
λ 0
0 λ

) (
1 λ−1µ
0 1

)
.

22. Prove that Ru(G) is the maximal connected normal and unipotent
subgroup of G.

23. Assume that G 6= {1} is a connected affine algebraic group. Prove
that G is semisimple if and only if it has no closed connected abelian normal
subgroups except {1}. Prove that G is reductive if and only if it has no
closed connected abelian normal unipotent subgroups except {1}.

24. Prove that if G is a connected abelian affine algebraic group, then
UG and SG are also connected.

25. Let G be an affine algebraic group and K,L,U ⊂ G closed sub-
groups, with U normal and unipotent in G, and L linearly reductive in G.
Assume that UK ∼= U oK and L ⊂ UK. Then, there exists u ∈ U such
that uLu−1 ⊂ [U,U ]K. Conclude that for some v ∈ U , vLv−1 ⊂ K. Hint:
interpret the map L→ U/[U,U ] given by the composition of the inclusion
of L into UK and the projection on U/[U,U ] as a cocycle. Then apply
Lemma 8.8.
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26. Prove that a connected affine algebraic group of dimension one is
abelian. Hint: assume that G ⊂ GLn. Fix y ∈ G and consider py : G→ G,
py(x) = xyx−1. If G \ py(G) is finite, then G consists of the union a
conjugacy class of matrices and a finite set. Then, there are only a finite
number of polynomials that can be the characteristic polynomials of the
elements of G. Since G is connected, we deduce that all the characteristic
polynomials of the elements of G coincide. Then G is unipotent, and hence
solvable. Use the structure theory of solvable groups to conclude the proof.

27. Let G be a connected affine group of dimension one. Prove that G
is either unipotent or a torus.

28. Complete proof of Theorem 7.2.

29. Prove that if U is a unipotent group, then X (U) = {1} (recall that
X (Ga) = {1}).

30. Prove Theorem 8.11 for a non connected group L.

31. Prove that det−1 ∈ k[X11, X12, . . . , Xnn] is an irreducible polyno-
mial.

32. Prove that the matrix

A =




1 1 0 0

1

0 0

1 1

0 0 1 0




is not nilpotent. Hint: Compute the trace of A, and discuss in terms of
the characteristic of the base field.

33. Assume that k is an algebraically closed field of characteristic two
and consider the following bilinear form on k2:

b
(
(x, y), (x′, y′)

)
= det

(
x x′
y y′

)
.

Let q(x, y) = xy be the corresponding quadratic form. Prove that the
orthogonal group corresponding to q, i.e.{

A : GL2 : b
(
A(x, y), A(x′, y′)

)
= b

(
(x, y), (x′, y′)

)}

coincides with SL2.

 



CHAPTER 6

Actions of algebraic groups

1. Introduction

actions of affine algebraic groups on algebraic varieties, in particular linear
actions or representations. The purpose of the present chapter is to delve
deeper into these aspects of the theory of algebraic groups, centering our
labors around the concept of quotient variety. Quotients are a central theme
in geometric invariant theory, and their existence concerns the possibility
of endowing a large subset of the set of orbits with a natural structure of
algebraic variety.

Next we describe the contents of each section.
In Section 2, we present some basic examples and besides proving

Kostant–Rosenlicht’s theorem on the closedness of the orbits of a unipotent
group, we prove a linearization result: an action of an affine group on an
affine variety X can be viewed as the restriction to X of a linear action.

In order to have a complete picture of the action of an algebraic group
on an algebraic variety two aspects should be considered: the structure of
each orbit and the relative position of the different orbits.

Some of the more elementary facts concerning the structure of the orbits
and their description as homogeneous spaces are considered in Section 3.

The problem of the relative position of the orbits is intimately related
with the notion of quotient variety. In Section 4 we present the basic
definitions and first properties of the so–called categorical and geometric
quotients. In this
section we limit ourselves to introduce and motivate the basic definitions,
and to illustrate the theory with some examples and counterexamples.

In Section 5 we study the “descent” of properties from a finitely gen-
erated commutative k–algebra A, acted rationally by an affine algebraic
group G, to its subalgebra of invariants AG. This will illustrate which
properties of the variety X are inherited by the “quotient variety” G\X.

219

 

In Chapter 4, we introduced the more elementary properties concerning

Homogeneous spaces will be studied extensively in Chapters 7, 10 and 11.

Quotients will be studied in more depth in Chapter 13.
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As an application of some of these general results, we treat with certain
care the case of a finite group acting on an affine variety, and show that the
set of all orbits has a natural structure of affine algebraic variety that is the
geometric quotient of the original action, and coincides with the spectrum
of the ring of invariant polynomials. One should regard this result as a
preview of the general treatment of quotients of actions of reductive groups

In Section 6 we establish the basic properties of the so–called induction
procedure. Given an algebraic group G and H ⊂ G a closed subgroup,
the induction from rational H–modules to rational G–modules is the right
adjoint of the usual restriction functor from G–modules to H–modules.

of the induction functor have a strong influence in the geometry of the
homogeneous space G/H and vice versa.

All definitions and results of this chapter have a “left” and a “right”
version. In order to be consistent with the rest of the literature we have
chosen, when talking about actions of groups on varieties, to write the
actions on the left. The corresponding algebraic actions, i.e. the actions of
the group on the algebras of functions associated to the geometric objects,
are taken on the right. The reader should be aware that this convention
differs from some presentations that — via taking the action composed with
the inversion of the acting element — consider the algebraic actions also
on the left.

The subjects considered here are presented — and our exposition does
not differ in any substantial way — in many of the standard books that
treat these topics. We would like to mention particularly the pioneering
book of D. Mumford, Geometric Invariant Theory [103] and [107], where
large parts of the theory were originated. Other references are [10], [89],
[114] and [123].

2. Actions: examples and first properties

In this section we present some basic examples of actions of algebraic
groups on varieties and further develop the properties of actions and rep-

the examples will be left as exercises.

Example 2.1. Consider the canonical action of GLn on An via the left
multiplication. In this situation GLn has two orbits: An \ {0} that is open,
and {0} that is closed. This very simple action induces many of the actions
we consider later. For example, given a full flag F = {V1, V2, . . . , Vn} in

 

on affine varieties as developed in Chapter 13.

We will show in Chapter 10, that the exactness and surjectivity properties

resentations introduced in Chapters 3 and 4. Some of the main features of
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Figure 1. An action with closed orbits.

An and x ∈ GLn, then x · F =
{
x(V1), x(V2), . . . , x(Vn)

}
is also a full flag.

This defines an action of GLn on the flag variety of An (see Exercise 1).

Example 2.2. Consider the canonical action of GLn+1 on An+1 via the
left multiplication. Since this action is linear, it induces an action of the
group GLn+1 on the projective space Pn. Moreover, as k Id — the center
of GLn+1 — acts trivially, the original action induces an action of PGLn+1

on Pn. See Exercise 2.

Example 2.3. Consider the regular action of Ga on A2 given as λ ·
(x, y) = (x, y + λx) for λ ∈ Ga and for (x, y) ∈ A2 The
Ga–orbits are closed and of two types: O(a, 0) =

{
(a, y) : y ∈ k} for a 6= 0;

fixed points
{

(0, b)
}

for b ∈ k. The closedness of the orbits is not surprising
in view of the fact that Ga is unipotent. See Kostant–Rosenlicht’s theorem
2.11.

This very simple action plays a crucial role in the construction of coun-
terexamples to many important questions in invariant theory. Indeed, in
this chapter we show that this action does not posses a geometric quotient
(see Example 4.7) and we also use it in order to construct an example of
a group action on an affine variety that does not admit a categorical quo-
tient, see Example 4.10.
to construct a counterexample to Hilbert’s 14th problem.

Example 2.4. Consider the action of Gm on An defined as t · p = tp
for t ∈ Gm and p ∈ An The set of all the orbits of the
restriction of this action to the open subset An \ {0} ⊂ An, is Pn−1. See
Exercise 13.

Example 2.5. Let G be an affine algebraic group and consider m char-
acters {γ1, . . . , γm} of G. The action G × Am → Am, x · (a1, . . . , am) =(
γ1(x)a1, . . . , γm(x)am

)
for x ∈ G and (a1, . . . , am) ∈ Am, is regular. In

the case that G is a torus it is easy to prove that all its linear actions on
Am, i.e. its representations, are of this form. See Theorem 9.3.5.

 

(see Figure 2).

More importantly, it will be used in Chapter 12

(see Figure 1).
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��

Figure 2. The action of Gm on A2 by dilation.

Figure 3. For the action of Example 2.6, the orbits are:
the non degenerate hyperbolæ; each coordinate axis minus
the origin; the origin.

Example 2.6. The following particular case of the example above will
be treated with certain detail in Exercise 23.

Consider the regular action of Gm on A2 given by t · (x, y) = (tx, t−1y)
(see Figure 3). There are three types of orbits: a one parameter family of
one dimensional closed orbits, two non closed orbits of dimension one that
we call O1 and O2, and a closed orbit of dimension zero, i.e. a fixed point
{p}. Observe that {p} = O1 ∩ O2. In Exercise 23 we ask the reader to
find the categorical quotient for this action and to prove that the ring of
invariants k[A2]Gm is a polynomial ring in one variable. This is a particular
case of the general theory of quotients of affine varieties by linearly reductive
groups that was developed by D. Mumford in [103].
present these topics in the general context of reductive groups.

Example 2.7. Let G be an affine algebraic group and H a closed
subgroup. Then the action of H on G by right translations is a regular

 

In Chapter 13 we
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action. The orbits of this action are all closed — they are the cosets of G
modulo H — and equidimensional. The main particularity of this situation
is that G also acts on itself on the left side by multiplication and this
action is transitive on the H–orbits. In Theorem 4.15 we prove under mild
restrictions that all transitive actions of algebraic groups on varieties are of
this type. In Exercise 22 the above construction is generalized.

Example 2.8. Let G be an affine algebraic group acting regularly on an
algebraic variety X. If p ∈ X is a point, then the orbit O(p) = {x·p : x ∈ G}
is open in its closure and it inherits a natural structure of algebraic variety
(see Theorem 3.4.19). It is set theoretically isomorphic to the set of right
Gp–cosets of G, G/Gp = {xGp : x ∈ G}. Via this bijection we can endow
G/Gp with a structure of algebraic variety that is non canonical, as it
depends a priori on the specific action. The crucial point concerning these

is a closed subgroup, then there exists an algebraic G–variety X and a point
p ∈ X such that Gp = H and the orbit map G → O(p), x 7→ x · p is
separable. Then, proceeding as we mentioned above, G/H can be endowed
with a structure of algebraic variety that is canonical, in the sense that
the projection π : G → G/H is a morphism and the pair (G/H, π) is the
geometric quotient for the action of H on G by right multiplication.

Example 2.9. The action by conjugation of GLn on the linear space
of all matrices Mn(k) is clearly a regular action. The geometry of this
action is the geometric counterpart of the classical algebraic theory of the
canonical forms of matrices.

In Exercise 4 we consider the case of two by two matrices: if A ∈ M2(k),
then the stabilizers (GL2)A can be explicitly described, and as dimO(A) =
4 − dim(GL2)A, we can then compute the dimensions of the orbits. With
more labor we could describe the closed orbits and the manner in which
some orbits lie on the closure of others. We deal with this conjugation
action in more detail in Section 13.4.

The next theorem generalizes the result that guarantees that an affine
algebraic group is always isomorphic to a closed subgroup of the general
linear group (see Theorem 4.3.23).

Theorem 2.10. Let G be an affine algebraic group, and X an affine
G–variety. Then, there exists a finite dimensional rational left G–module
M and a closed G–equivariant embedding ϕ : X →M .

Proof: Let f1, . . . , fn ∈ k[X] be a set of k–algebra generators of
k[X]. From the rationality of k[X] as a right G–module we deduce the
existence of a finite dimensional G–submodule W ⊂ k[X] that contains the

 

kind of constructions, that is proved in Chapter 7, is the following: ifH ⊂ G
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generators f1, . . . , fn. The dual M = W ∗ is a finite dimensional rational G–
module. The G–equivariant inclusion map, W → k[X] induces a surjective
G–equivariant morphism of algebras from S(W ) onto k[X] — here as usual
S(W ) denotes the symmetric algebra built on W . Since S(W ) = k[M ], the
G–morphism k[M ] ³ k[X] induces a closed embedding ϕ : X → M (see
Theorem 1.4.88). It is very easy to prove that that ϕ is G–equivariant (see
Exercise 6). ¤

Next we present a classical theorem of B. Kostant and M. Rosenlicht
— proved for the first time in 1961 — that guarantees that a unipotent
group acting on an affine variety has closed orbits ([127]).

Theorem 2.11. Let U be an affine algebraic unipotent group acting
regularly on an affine variety X. Then for all p ∈ X the orbit O(p) is a
closed subset of X.

Proof: Consider the orbit O(p) and its closure Y = O(p) (that is
also affine). Assume that O(p) 6= Y . We deduce from Theorem 3.4.19
that the non empty G–stable set Z = Y \ O(p) is closed in Y . Consider
a non zero polynomial f ∈ k[Y ] with the property that f(Z) = 0, i.e,
f ∈ I(Z) =

{
h ∈ k[Y ] : h(Z) = 0

}
, and let M ⊂ I(Z) ⊂ k[Y ] be the finite

dimensional U–stable submodule of k[Y ] generated by f — observe that
I(Z) is a U–module by Theorem 4.3.24. As U is unipotent, Theorem 5.6.4
guarantees the existence of a polynomial 0 6= g ∈MU . In particular, since
g is fixed by the action of U it has to be constant on O(p) and hence it has
to be constant on Y = O(p). As g takes the value zero on the non empty
set Z, it has to be zero everywhere on Y . This contradicts the choice of
g. ¤

Observation 2.12. It is not hard to prove that the property of acting
with closed orbits on affine varieties characterizes unipotent groups. See

3. Basic facts about the geometry of the orbits

In this section we present two important results; the first gives the
description of the orbits of a regular action as homogeneous spaces and the
second gives information about the variation of their dimensions.

Theorem 3.1. Let G be an affine algebraic group, X an algebraic G–
variety and x ∈ X. Consider the orbit map π : G → O(x) ⊂ X, π(a) =
a · x, and let Gx be the isotropy group of x. Then O(x) is a non singular
algebraic variety and dimO(x) = dimG−dimGx. Also L(Gx) ⊂ Ker(d1π).
Moreover, the following four conditions are equivalent.
(1) π : G→ O(x) is a separable morphism.

 

for example [42].
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(2) d1π : L(G) → Tx
(
O(x)

)
is surjective.

(3) Ker(d1π) = L(Gx).
(4) The map π : G → O(x) is open and for an arbitrary open subset
U ⊂ O(x), the corresponding map π# : OO(x)(U) → OG

(
π−1(U)

)Gx is an

algebra isomorphism. Here OG
(
π−1(U)

)Gx denotes as usual the Gx–fixed
part of the algebra of regular functions on π−1(U), i.e. the regular functions
on π−1(U) that are constant on the fibers of π.

Proof: Since any affine algebraic group is the disjoint union of the
coclasses of the connected component of the identity, which are isomorphic,
we can assume that G is connected. The details are left as an exercise (see
Exercise 7).

and as such inherits from X an structure of algebraic variety. The left
translation by an element a ∈ G is an isomorphism of O(x) into itself, and
as such takes regular points into regular points. As the set of regular points
of O(x) is non empty and the action of G is transitive, we conclude that
O(x) is non singular.

The inclusion L(Gx) ⊂ Ker(d1π) is very easy to verify.
Next we check the equality of the dimensions. Since π : G → O(x)

is dominant, Theorem 1.5.4 guarantees the existence of an open subset U
in O(x) with the property that for a point a · x ∈ U , all components of
π−1(a · x) = aGx have dimension equal to dimG − dimO(x). It is clear
that all components of aGx have the same dimension, that coincides also
with the dimension of Gx. Thus, dimO(a) = dimG− dimGx.

Next we prove the equivalence of conditions (1) to (4). Since all the
points of G and O(x) are non singular, the differential criterion of separa-
bility 1.5.1 guarantees the equivalence of conditions (1) and (2).

The equivalence of (2) and (3) can be deduced as follows. The lin-
ear map d1π is surjective if and only if dim

(
Im(d1π)

)
= dimTp

(
O(x)

)
=

dimO(x) and this happens if and only if dimL(G) − dim(Ker
(
d1π)

)
=

dimO(x). Hence, the surjectivity of d1π is equivalent to the equality

dim Ker(d1π) = dimG− dimO(x) = dimGx = dimL(Gx) .

Since L(Gx) ⊂ Ker(d1π), we conclude that d1π is surjective if and only
if L(Gx) = Ker(d1π).

Next, we prove that any of the first three conditions imply condition (4).
Using Theorem 1.5.4 we deduce the existence of a non empty open subset
U ⊂ O(x) with the property that if W ⊂ O(x) is irreducible and W∩U 6= ∅,
then all the irreducible components Y of π−1(W ) such that Y ∩π−1(U) 6= ∅

 

As we already know (see Theorem 4.4.19) O(p) is open in its closure
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have dimension dimY = dimW +dimGx. Since the action of G on O(x) is
transitive, if Y is an arbitrary irreducible component of π−1(W ), then there
exists a ∈ G such that a·Y ∩π−1(U) 6= ∅. But (a·W )∩U 6= ∅, and a·Y is an
irreducible component of a · π−1(W ) = π−1(a ·W ). Hence, applying again
Theorem 1.5.4, we conclude that dim(a · Y ) = dim(a ·W ) + dimGx. Since
right multiplication by a is an isomorphism, we conclude that the equality
dim(Y ) = dim(W ) + dimGx is valid for any irreducible component Y of
π−1(W ).

If W ⊂ O(x) is an arbitrary irreducible subset, then there exists a
translate W̃ = b ·W , b ∈ G, such that b ·W ∩ U 6= ∅. Applying the above
argument to W̃ , we conclude that for all irreducible subsets W of O(x) and
for all irreducible components Y of π−1(W ), dimY = dim(W ) + dim(Gx).

Hence, π : G → O(x) is open (see Theorem 1.5.4), surjective and
separable, and if U ⊂ O(x) the restriction (called also π) π : π−1(U) → U
is also open, surjective and separable. Then the part of (4) that concerns
the sheaf of functions follows immediately from Theorem 1.5.21 since U as
well as π−1(U) are irreducible and normal.

We leave as an exercise the proof that condition (4) implies condition
(1) (see Exercise 8). ¤

Observation 3.2. The above result is crucial in order to understand
the geometry of the actions of algebraic groups on varieties. It guarantees
that, for points with separable orbit maps, the orbits are isomorphic to the
geometric quotients of G with respect to the action by right translation of
the stabilizer. In other words, in the notations of Section 4, if the orbit
map associated to p ∈ X is separable, then O(p) ∼= G//Gp. See Theorem
4.15.

An application of Chevalley’s theorem on the dimension of the fibers
of a morphism (Theorem 1.5.4) to the orbit map, gives information on the
dimension of the orbits. This is illustrated in the theorem that follows.

Theorem 3.3. Let G be an algebraic group acting regularly on an al-
gebraic variety X. Then for all m ∈ N the set {p ∈ X : dimO(p) ≥ m}
is open in X. In particular, the set of points whose orbits have maximal
dimension is open.

Proof: Consider the map ϕ : G × X → X × X, ϕ(x, p) = (p, x · p),
(x, p) ∈ G×X. Then

ϕ−1
(
ϕ(x, p)

)
=

{
(y, q) ∈ G×X : (q, y · q) = (p, x · p)} ={
(y, q) : q = p , y · p = x · p} =

xGp × {p} .
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Since all the irreducible components of ϕ−1
(
ϕ(x, p)

)
have dimension

equal to dimGp, we conclude from Chevalley’s Theorem 1.5.4, that the
subset

{
(g, p) ∈ G×X : dimGp ≥ n

}
= G× {p ∈ X : dimGp ≥ n} ⊂ G×X

is closed. Hence, {p ∈ X : dimGp ≥ n} is closed in X. Since dimGp =
dimG − dimO(p), for all m ∈ N we have that {p ∈ X : dimO(p) ≤ m}
is closed in X. Then for all m ∈ N, {p ∈ X : dimO(p) ≥ m} is open in
X. ¤

open subsets of a G–variety X, where the geometric quotient exists. See
Lemmas 13.3.11, 13.3.12 and Theorem 13.3.13.

4. Categorical and geometric quotients

In this section we present the basic definitions of categorical and geo-
metric quotients and prove a few elementary results.

Assume that X is an abstract set and G an abstract group acting on X.
We call OrbG(X) the set of orbits for this action, and π : X → OrbG(X) the
canonical projection that associates to each point p ∈ X its corresponding
orbit. The pair

(
OrbG(X), π

)
is called the set theoretical orbit space for

the action of G on X, and π is called the quotient map.
The preceding construction has a categorical characterization:
If (Z, f : X → Z) is a pair consisting of a set Z and a map f constant

along the orbits, then there exists a unique map f̂ : OrbG(X) → Z making
the following diagram commutative

X

π
²²²²

f // Z

OrbG(X)
bf

::vvvvvvvvv

The above definition can be written in the category of algebraic varieties
and affine algebraic groups.

Definition 4.1. Let G be an affine algebraic group acting on an al-
gebraic variety X. A categorical quotient for the action of G on X is a
pair (Y, π), where Y is an algebraic variety and π : X → Y is a morphism
constant along the G–orbits, such that for every other pair (Z, f), being Z
an algebraic variety and f : X → Z a morphism constant along the orbits,

 

In Chapter 13 we will use Theorem 3.3 in order to construct G–stable
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there exists a unique morphism f̂ : Y → Z making the diagram

X

π

²²

f // Z

Y

bf

>>~~~~~~~

commutative. In the case that the fibers of π are exactly the orbits of G
on X, we say that the pair (Y, π) is an orbit space for the given action.

It is customary to denote Y as G\X, and to say that G\X is the
categorical quotient; the morphism π is omitted when there is no danger of
confusion. This notation will be justified once we prove the uniqueness of
the categorical quotient in Lemma 4.5.

The reader should be aware that the categorical quotient does not nec-
essarily exist (see Example 4.10 below).

Next, we present a first example of a categorical quotient. This very
simple example will already illustrate a basic limitation: we cannot expect
to endow the set of all orbits of a regular action (i.e. the set OrbG(X))
with a structure of algebraic variety in such a way that the projection map
is continuous. In particular, it happens frequently that the basic set where
the categorical quotient is supported is not the set of all orbits.

Example 4.2. Consider the natural action of GLn on An (see Example
2.1). Since there are two orbits, the set theoretical orbit space is

({p, q}, π)
,

with π
(
An \ {0}) = p and π

({0}) = q. The map π cannot be continuous
because the orbit {0} is contained in the closure of the orbit An \{0}. This
means that we cannot endow the set theoretical orbit space with a structure
of algebraic variety in such a way that the quotient map is continuous.

The categorical quotient of the action is the pair
({p}, c), where c :

An → {p}, is the constant map. Indeed, if f : An → Z is a morphism
constant along the orbits it has to be constant on An because there is a
dense orbit, and hence it factors through c.

Observation 4.3. It is clear that if π : X → G\X is the projection in
the categorical quotient and p ∈ G\X, then the fiber π−1(p) is a union of
orbits. The additional condition for a categorical quotient to be an orbit
space is that this fiber consists of only one orbit. Notice also that even
though for the general categorical quotient the fiber π−1(p) may be the
union of more that one orbit, the universal property guarantees that if
f : X → Z is constant along the orbits, it will also be constant along the
fibers of π.
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Observation 4.4. In the case of orbit spaces, in particular for geomet-
ric quotients that will be considered in Definition 4.12, the orbits coincide
with the fibers of π and as such they are closed subsets of X. In Example
4.7 we show that even when all the orbits are closed, the orbit space may
not exist.

The following facts are easy to deduce from the categorical definition
given above.

Lemma 4.5. Let G be an affine algebraic group acting regularly on a
variety X. If a categorical quotient exists, then it is unique up to isomor-
phism, i.e. for every pair π̂ : X → Ŷ satisfying the same universal property
than (Y, π), there exists an isomorphism of varieties ϕ : Y → Ŷ such that
π̂ = ϕ◦π. Moreover, in the case that the categorical quotient exists, the map
π : X → G\X is surjective.

Proof: The proof of the uniqueness is completely routine (see Exercise
10). For the last assertion assume that there exists y ∈ (G\X) \ π(X) and
call Y the open subvariety Y = (G\X) \ {y}. Consider the diagram

X

π

²²

π // Y
Â Ä // G\X

G\X

bπ
==

id

66mmmmmmmmmmmmmm

The map π̂ is constructed using the universal property applied to π :
X → Y . Call ι : Y ⊂ G\X the inclusion map. The map ι ◦ π̂ : G\X →
G\X as well as the identity map idG\X : G\X → G\X, are solutions
to the universal property applied to the horizontal map π : X → G\X.
Hence, from the uniqueness we conclude that ι ◦ π̂ = idG\X , and this is a
contradiction. ¤

In the case of an orbit space, the invariant rational functions separate
the orbits.

Lemma 4.6. Let G be an affine algebraic group acting regularly on an
irreducible variety X. Assume that the orbit space G\X exists. Then the
field of G–invariant rational functions k(X)G separates the orbits of G on
X.

Proof: As the map π is surjective, the k–algebra morphisms π#
U :

OG\X(U) → OX
(
π−1(U)

)G, induced by π on the sheaf of functions, are
injective for all open subsets U ⊂ G\X. Hence, the field of rational func-
tions on G\X is a subfield of k(X)G, i.e. k(G\X) ⊂ k(X)G ⊂ k(X). Since
the points of G\X correspond to the G–orbits on X and k(G\X) separates
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the points of G\X (see Lemma 1.4.78), it follows that k(X)G separates the
orbits of G on X. ¤

Example 4.7. Consider the action of Ga on A2 given by the rule λ ·
(x, y) = (x, y+λx) (see Example 2.3). All the Ga–orbits are closed, but the
action does not admit an orbit space. Indeed, the field of invariant rational
functions is k(X,Y )Ga = k(X) (see Exercise 12), and as k(X) does not
separate the orbits of the form

{
(0, b)

}
, it follows from the above Lemma

4.6 that the orbit space does not exist.
The non existence of an orbit space for this action can also be deduced

from Theorem 4.22.

Although the concept of categorical quotient is rather weak, due to the
invariance and the surjectivity of the canonical projection, the geometry of
the original variety has a strong influence in the geometry of the categorical
quotient — if it exists. The next theorem shows that the normality is a
property that is inherited by the categorical quotient. In Theorem 5.3 we
prove an algebraic version of this result.

Theorem 4.8. Let G be an algebraic group acting regularly on an irre-
ducible normal variety X. If the categorical quotient π : X → G\X exists,
then G\X is normal.

Proof: Let p : Ĝ\X → G\X be the normalization of G\X. Since X
is normal and π surjective, there exists a unique morphism π̂ : X → Ĝ\X
with the property that π = p◦π̂. We prove next that π̂ is G–equivariant.
For a ∈ G consider the morphism φa : X → X, φa(x) = a · x. Then
the equivariance of π can be expressed as π◦φa = π : X → G\X for all
a ∈ G. By the universal property of the normalization, it follows that
π̂◦φa = π̂ : X → Ĝ\X for all a ∈ G, i.e. the morphism π̂ is G–equivariant.

Being p birational and π surjective, we conclude that π̂ is dominant.
Let f : X → Z be a morphism constant along the G–orbits. Then there
exists f̃ : G\X → Z such that f = f̃◦π. It follows that f = (f̃◦p)◦π̂.
It is also easy to prove, as π̂ is dominant, that there is at most one map
g : Ĝ\X → Z that satisfies f = g◦π̂. Hence, π̂ : X → Ĝ\X is a categorical
quotient for the action of G on X, and by the uniqueness of the categorical
quotient, we conclude that Ĝ\X ∼= G\X. ¤

Observation 4.9. Note that if we put Z = k in the universal property
for the categorical quotient, we deduce that for every f ∈ OX(X) constant
along the orbits, there exists a unique f̂ : G\X → k such that f̂◦π = f . In
other words, the map π# : OG\X(G\X) → OX(X)G is bijective. One of
the main ingredients in the definition of geometric quotients (see Definition

 



4. CATEGORICAL AND GEOMETRIC QUOTIENTS 231

4.12) is the existence of an isomorphism as above for all the sections of the
sheaf of regular functions, not only for the global sections.

In Example 4.7 we exhibited an action for which the orbit space does
not exist but the categorical quotient does exist (see Exercise 12). Next, we
present a modification of this situation that produces an example — men-
tioned in [123] — of an action that does not admit a categorical quotient.
The interested reader will found in [2] more examples and counterexamples
concerning the existence of categorical quotients in categories larger than
the category of algebraic varieties.

Example 4.10. Assume that chark = 0 and consider the additive
group Ga acting on A4 = M2(k) as:

λ · ( a bc d
)

= ( 1 λ
0 1 )

(
a b
c d

)
=

(
a+λc b+λd
c d

)
,

i.e. λ · (a, b, c, d) = (a+ λc, b+ λd, c, d) for all λ ∈ Ga and (a, b, c, d) ∈ A4.
Observe that the induced right action of Ga on k[x, y, z, w] is given by

f(x, y, w, z) ·λ = f(x+λz, y+λw, z, w). In particular, the action of Ga on
k[x, y, w, z] preserves the degrees in each of the variables x, y, w, z.

First we compute the polynomial invariants. We claim that the algebra
of Ga–invariants is k[x, y, w, z]Ga = k[det, w, z] = k[xw − yz, w, z].

It is clear that k[det, w, z] ⊂ k[x, y, w, z]Ga . In order to prove the
equality, consider f ∈ k[x, y, w, z]Ga . Since the action preserves the degrees,
we may assume that f is homogeneous. The equation f = f · λ valid for
all λ ∈ Ga = k can be interpreted as the equality of the polynomials
f(x+λz, y+λw, z, w) = f(x, y, z, w) in k[x, y, w, z][λ]. Differentiating with
respect to λ, we obtain the equation

(5) z
∂f

∂x
+ w

∂f

∂y
= 0 .

In order to solve equation (5) we perform the change of variables X =
x, Y = xw − yz, Z = z,W = w and write

f(x, y, w, z) = f
(
X, (XW − Y )/Z,Z,W

)
=

p(X,Y, Z,W,Z−1) ∈ k[X,Y, Z,W,Z−1] .

Under this substitution, equation (5) becomes ∂p
∂X = ∂f

∂x + w
z
∂f
∂y = 0.

Then

f(x, y, z, w) = p(X,Y, Z,W,Z−1) = p(Y, Z,W,Z−1) =

q(Y, Z,W )/Zn = q(xw − yz, z, w)/zn ,
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where q is an homogeneous polynomial in three indeterminates and n ≥ 0
is chosen to be minimal.

Interchanging the roles of the variables we obtain that f(x, y, w, z) =
r(xw − yz, z, w)/wm, with r an homogeneous polynomial in three indeter-
minates and m ≥ 0 is chosen to be minimal. Taking z = 0 in the equality
wmq(xw − yz, z, w) = znr(xw − yz, z, w) we deduce that q(xw, 0, w) = 0,
and in particular that q(x, 0, 1) = 0.

It follows that q(Y,Z,W ) = Zq1(Y, Z,W ), and from the minimality of
n we deduce that q(Y,Z,W )/Zn = h(Y, Z,W ). Then f ∈ k[Y, Z,W ] =
k[xw − yz, z, w].

Moreover, from Exercise 15 we deduce that the algebra of Ga–invariant
rational functions of A4 is

k
(
A4

)Ga = k(x, y, z, w)Ga =
[
k[xw − yz, z, w]

]
= k(xw − yz, z, w) .

Assume now that the categorical quotient of the above action of Ga on
A4 exists and call it (Y, π). We will obtain a contradiction by constructing
a morphism ϕ constant along the orbits that does not factor through Y .

Consider the morphism ϕ : A4 → A3, ϕ(a, b, c, d) =
(
det

(
a b
c d

)
, c, d

)
,

which is constant along the G–orbits. Its image is the set
{

(r, s, t) : (s, t) 6=
(0, 0)

} ∪ {
(0, 0, 0)

}
, that is a proper dense subset of A3.

Let us compute the fibers of ϕ. If p = (a, b, c, d), p′ = (a′, b′, c′, d′) ∈ A4

are in the same fiber of ϕ, then ϕ(a, b, c, d) = ϕ(a′, b′, c′, d′), then c = c′,
d = d′ and ad − bc = a′d − b′c. If d = d′ 6= 0, then (a, b, c, d) = b−1

d · (a −
b−1
d c, 1, c, d) and (a′, b′, c′, d′) = b′−1

d′ · (a′ − b′−1
d′ c

′, 1, c′, d′), and thus p and
p′ belong to the same orbit. The same argument proves that if c = c′ 6= 0
then the two points p and p′ are in the same orbit. Hence, in the case
that (s, t) 6= (0, 0) the fiber ϕ−1(r, s, t), r ∈ k, is a unique orbit. The fiber
ϕ−1(0, 0, 0) is

ϕ−1(0, 0, 0) =
{

(a, b, c, d) : ad− bc = 0, c = 0, d = 0
}

=
{

(a, b, 0, 0) : (a, b) ∈ A2
}
.

Hence, the fiber of (0, 0, 0) is the set of fixed points, and it is the union
of infinite orbits.

Consider now the morphism ϕ̂ : Y → A3 induced by ϕ:

A4

π
²²²²

ϕ // A3

Y

bϕ

==||||||||
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In order to prove that ϕ̂ is injective, we show first that if p, p′ ∈ A4 are
such that ϕ(p) = ϕ(p′), then π(p) = π(p′). If ϕ(p) = ϕ(p′) 6= (0, 0, 0), as the
two points p and p′ are in the same orbit, the result is clear. Suppose that
p = (a, b, 0, 0) and p′ = (a′, b′, 0, 0) belong to the fiber ϕ−1(0, 0, 0). If d 6= 0,
then − b

d · (a, b, 0, d) = (a, 0, 0, d), and then π(a, b, 0, d) = π(a, 0, 0, d). By
continuity we conclude that π(a, b, 0, 0) = π(a, 0, 0, 0). Next, consider c 6= 0
and observe that −a

c ·(a, 0, c, 0) = (0, 0, c, 0). Then π(a, 0, c, 0) = π(0, 0, c, 0)
and again by continuity we deduce that π(a, 0, 0, 0) = π(0, 0, 0, 0). Hence,
all the fixed points of the action, i.e. the elements of ϕ−1(0, 0, 0), have the
same image via π.

In this manner we conclude, using also the surjectivity of π, that the
morphism ϕ̂ : Y → A3 is injective. Next we prove that this morphism is
birational.

As ϕ is dominant, the associated homomorphism ϕ# : k[r, s, t] →
k[x, y, z, w]Ga is injective. Moreover, since ϕ#(r) = det, ϕ#(s) = z and
ϕ#(t) = w, it follows that ϕ# is also surjective. Then ϕ# : k(r, s, t) →
k(x, y, z, w)Ga is an isomorphism.

Observe that

k(x, y, z, w)Ga = ϕ#
(
k(r, s, t)

)
= (ϕ̂◦π)#

(
k(r, s, t)

)
=

π#
(
ϕ̂#

(
k(r, s, t)

)) ⊂ π#
(
k(Y )

) ⊂ k(x, y, z, w)Ga .

Then, π#
(
ϕ̂#

(
k(r, s, t)

))
= π#

(
k(Y )

)
and ϕ̂#

(
k(r, s, t)

)
= k(Y ).

It follows from the preceding discussion that ϕ̂ : Y → A3 is a birational
injective morphism between normal varieties. By Zariski’s main theorem
1.5.6, ϕ̂ is an open immersion. But the image of ϕ̂ equals the image of ϕ
that is not open. This is a contradiction.

The above example shows that the categorical quotient may not exist
even when the original variety X is affine and the subalgebra of invariants
k[X]G ⊂ k[X] is finitely generated. But even if the algebra of invariants is
finitely generated and the categorical quotient exists it need not be affine.
See Example 4.16 where it is proved that the flag variety (a projective
variety) is an homogeneous space, i.e. the quotient of an affine algebraic
group by a closed subgroup. The problem of the existence and the precise
geometric structure of categorical quotients will be considered at length in

However, in the case that the categorical quotient exists and is affine,
the subalgebra of the invariant polynomials of the original variety is finitely
generated and the categorical quotient is its spectrum. This result is the

 

Chapters 7, 10 to 12 and especially in Chapter 13.
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content of next theorem and illustrates the strong relationship existing be-
tween the geometric problems related to the existence of quotients and one
of the standard basic classical problems in algebraic invariant theory: the
finite generation of the rings of invariants.

Theorem 4.11. Let G be an algebraic group acting regularly on an
affine variety X. If the categorical quotient π : X → G\X exists and is
affine, then k[X]G is finitely generated and G\X ∼= Spm

(
k[X]G

)
.

Proof: As we already observed (see Observation 4.9) OG\X(G\X) =
k[G\X] = k[X]G. Then k[X]G is finitely generated over k and as G\X is
affine, then G\X ∼= Spm

(
k[X]G

)
. ¤

For many applications, the concept of categorical quotient, or even the
stronger concept of orbit space, is too weak as it does not take into account
the “fine” geometry of the action. For this reason it is convenient to define
a new concept of quotient (the geometric quotient), that imposes a strict
control over all the sheaf of invariant functions, not only over the global
sections as for the case of categorical quotients (see Observation 4.9).

Definition 4.12. Let G be an algebraic group acting on an algebraic
variety X. A geometric quotient for the action is a pair (Y, π), where Y is
an algebraic variety and π : X → Y is a morphism such that
(1) π is surjective, open and its fibers are the G–orbits of X;

(2) for every open subset U ⊂ Y , the map π#
U : OY (U) → OX

(
π−1(U)

)G
is an isomorphism of algebras.

In Theorem 4.20 we prove that the geometric quotient — in case it
exists — is unique up to isomorphism. It will be denoted simply as G\\X
omitting the morphism π from the notation when there is no danger of
confusion.

Observe that condition (1) implies that the set supporting the variety
G\\X is OrbG(X) and that π is the standard projection. The finer aspects
of the geometry are controlled with condition (2) and the openness of the
projection π.

Observation 4.13. (1) Notice that if the geometric quotient exists,
then the orbits of the action coincide with the fibers of the projection π.
This implies in particular that the orbits are closed.
(2) In the case that the geometric quotient exists, if U is an open G–stable
subset of X and V = π(U), the pair (V, π|U ) is also a geometric quotient
for the action of G on U . See Exercise 14.

It is convenient to reformulate the definition of geometric quotient in
terms of the invariant rational functions on the variety.
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Lemma 4.14. Let G be an algebraic group acting regularly on an irre-
ducible algebraic variety X. Then the a pair (Y, π) is a geometric quotient
if and only if:
(1) π is surjective, open and its fibers are the G–orbits of X;
(2 ′) if f ∈ k(X)G is a G–invariant rational function defined at x ∈ X,
there exists g ∈ k(Y ) defined at π(x) such that π#(g) = f .

Proof: First we prove that condition (2) of Definition 4.12 implies
(2 ′). Let f ∈ k(X)G be an invariant rational function and D(f) ⊂ X
its set of definition. Clearly D(f) is an open G–stable subset. If we call
V = π

(
D(f)

)
then f ∈ OX

(
π−1(V )

)G, and using (2), we deduce that there
exists a function g ∈ OY (V ) such that g◦π|D(f) = f . If we view g as a
rational function, then g is defined in V and π#(g) = f .

Conversely, we prove that (2 ′) implies the surjectivity of the map π∗U .
If V ⊂ Y is an open subset and f ∈ OX

(
π−1(V )

)G, then f ∈ k(X)G and
it is defined in all the points of π−1(V ). Hence for every x ∈ π−1(V ),
there exists a rational function gx ∈ k(Y ) defined in y = π(x) such that
π∗(gx) = f . Then, gx ∈ OY (Vx) for some open subset Vx ⊂ V , with
π(x) ∈ Vx. If x′, x ∈ π−1(V ), then the functions gx, gx′ defined in Vx ∩ Vx′
have the same image — the rational function f — by π#, and it follows
that gx = gx′ on Vx ∩ Vx′ . As V =

⋃
x∈π−1(V ) Vx, the functions gx define a

function g ∈ OY (V ) such that g◦π|π−1(V ) = f . ¤
The theorem that follows is a reformulation of Theorem 3.1, see also

Observation 3.2.

Theorem 4.15. Let G be an affine algebraic group acting regularly on
an algebraic variety X. If x ∈ X is such that the orbit map π : G→ O(x)
is separable, then the action by right translations of Gx on G admits a
geometric quotient, which is isomorphic to O(x). ¤

Example 4.16. Next we present some examples and counter-examples
concerning the existence of geometric quotients.
(1) In the case of Example 2.1, the categorical quotient exists but, as the
orbits are not closed, the geometric quotient does not exist.
(2) In the Example 2.3 the orbits are all closed but, as the rational invariants
do not separate the orbits, the geometric quotient does not exist.

H a closed subgroup acting by right translations on G, then the geometric
quotient G//H exists and can be naturally endowed with a structure of left
G–variety in such a way that the canonical projection π : G → G//H is

 

(3) We will show in Chapter 7 that if G is an affine algebraic group and
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G–equivariant (see Example 2.7). These varieties are called homogeneous
spaces.
(4) We just proved in Theorem 4.15 that in the case of an action with
separable orbit maps, all the orbits are isomorphic to homogeneous spaces.

projective and that if H is maximal solvable, they are in fact projective.
The case of a flag variety is an example of this situation.

Observation 4.17. It is important to notice that the separability con-
dition in Theorem 4.15 is necessary. In Exercise 20, we exhibit an example
of an homogeneous space, i.e. an algebraic variety acted transitively by
an algebraic group, that is not isomorphic to a quotient of a group by a
subgroup.

The concept of saturated open subset, that will be introduced next, will

groups.

Definition 4.18. Let f : X → Y be a morphism of algebraic varieties.
An open subset U ⊂ X is said to be saturated if f−1

(
f(U)

)
= U . If X

is a regular G–variety and the categorical quotient exists a G–stable open
subset U ⊂ X is called saturated if it is saturated with respect to the
projection π.

Observation 4.19. (1) Notice in the above definition that the inclusion
U ⊂ f−1

(
f(U)

)
is always true. Hence U is saturated if and only if for all

x ∈ X, u ∈ U , if f(x) = f(u) then x ∈ U .
(2) If X is a G–variety which admits an orbit space, then any G–stable open
subset U ⊂ X is saturated. If we consider x ∈ X such that π(x) = π(x′)
for some x′ ∈ U , then x and x′ are in the same G–orbit and for some a ∈ G,
x = a · x′. As U is G–stable, we conclude that x ∈ U .

Next we prove the uniqueness of the geometric quotient. This unique-
ness is a consequence of the fact that geometric quotients are special cases
of categorical quotients — in fact of orbit spaces. This is the basic content
of the theorem that follows.

Theorem 4.20. Let G be an affine algebraic group, X a regular G–
variety and assume that a geometric quotient (Y, π) exists. Then, Y is the
categorical quotient and hence it is unique up to isomorphism.

Proof: We need to prove that Y satisfies the universal property of
the categorical quotient. Let Z be an algebraic variety and f : X → Z a
morphism constant along the G–orbits. We must find a morphism f̂ : Y →
Z with the property that f = f̂◦π.

 

In Chapter 7 we will prove that the homogeneous spaces are always quasi–

be used in Chapter 13, when dealing with quotients of actions by reductive



4. CATEGORICAL AND GEOMETRIC QUOTIENTS 237

Assume first that Z ⊂ Am is an affine variety, and consider f : X →
Am, f = (f1, . . . , fm),with fi ∈ OX(X). As f is constant along the orbits,
fi ∈ OX(X)G, for i = 1, . . . ,m. The definition of geometric quotient
implies the existence of f̂i : Y → k, i = 1, . . . ,m, such that fi = f̂i◦π.
Then f =

(
f̂1, . . . , f̂m

)
◦π, and f̂ =

(
f̂1, . . . , f̂m

)
: Y → Z is the morphism

we are looking for.
Let now Z be an arbitrary variety and consider an open cover of Z by

affine open subsets Wi, i ∈ I. For every i ∈ I the sets Vi = f−1(Wi) ⊂ X
are open and G–stable and then the sets π(Vi) are open in Y . Since the sets
Wi are affine and the restrictions π|Vi : Vi → π(Vi) are geometric quotients
for i ∈ I, we just proved that the functions fi = f |Vi , can be factored as
fi = f̂i◦π|Vi for certain morphisms f̂i : π(Vi) →Wi. As fi|Vi∩Vj = fj |Vi∩Vj ,
then f̂i|π(Vi)∩π(Vj) = f̂j |π(Vi)∩π(Vj). Hence, the family of morphisms

{
f̂i :

i ∈ I
}

, define a morphism f̂ : Y → Z, that factors f as f̂◦π = f . The
uniqueness of f̂ follows from the surjectivity of π. ¤

Example 4.21. Consider the examples 2.1, 2.3 and 4.10. It is easy to
verify for each of the three cases the existence of an open G–stable subset
U of X such that the geometric quotient G\\U exists.

In the Example 2.1 we can take U = An \ {0}; in the Example 2.3
we can take U = A2 \ {x = 0}, and in the example 4.10, we can take
U =

{
(a, b, c, d) ∈ A4 : cd 6= 0

}
. In Exercise 17 we ask the reader to prove

the above assertions.
These examples illustrate a general result due to M. Rosenlicht, that

guarantees the generic existence of the geometric quotient and that will be

The existence of a geometric quotient guarantees that all orbits — that
are necessarily closed — have the same dimension. This is shown in next
theorem. For an example of an action with closed orbits but with different
dimensions see Example 2.3.

Theorem 4.22. Let G be an affine algebraic group and X an irreducible
regular G–variety. If the set theoretical orbit space OrbG(X) can be endowed
with a structure of algebraic variety in such a way that π : X → OrbG(X)
is a morphism, then all the orbits have the same dimension.

Proof: Observe that in this situation the orbits coincide with the
fibers of the quotient map π. It follows from Theorem 1.5.4, that for all
y ∈ OrbG(X), dimπ−1(y) ≥ dimX − dim OrbG(X) and that there exists
an open subset U ⊂ OrbG(X) such that for all y ∈ U , all irreducible com-
ponents of the fiber π−1(y) have dimension equal to dimX−dim OrbG(X).

 

proved in Chapter 13.
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On the other hand, we know from Theorem 3.3 that the set of orbits of max-
imal dimension is an open subset V ⊂ X. Since X is irreducible, U∩V 6= ∅,
and the dimension of any orbit in V is dimX − dim OrbG(X), so we con-
clude that all the orbits — the fibers of π — have equal dimension. ¤

Corollary 4.23. Let G be an affine algebraic group and X an ir-
reducible regular G–variety. If the geometric quotient exists, then all the
G–orbits have the same dimension. ¤

Observation 4.24. Concerning results about the equidimensionality of
the orbits, we would like to observe here that for the action of a reductive
group on an affine variety, even though the geometric quotient may not
exist, the orbits are closed if and only if they have the same dimension (see
Corollary 13.3.8).

Let G be an affine algebraic group acting on a variety X. Conditions
(1) and (2) in the definition of geometric quotient are not simple to verify
in particular cases. For that reason the following criterion is sometimes
extremely convenient.

Theorem 4.25. Let G be an affine algebraic group, X an irreducible
regular G–variety and π : X → Y a separable surjective morphism onto
a normal variety Y . If the fibers of π are the G–orbits, then (Y, π) is the
geometric quotient G\\X.

Proof: As the fibers of π are the G–orbits, it follows that all the
orbits are closed. Then, Theorem 4.22 guarantees that all fibers are equidi-
mensional, and from Chevalley’s Theorem we deduce that π is open (see
Observation 1.5.5). Finally, Theorem 1.5.21 guarantees that if U ⊂ Y if an
open subset, then π#

(OY
(
(U)

))
= OX

(
π−1(U)

)G and all the conditions
for being a geometric quotient are satisfied by (Y, π). ¤

5. The subalgebra of invariants

In this section we want to consider the “descent” of properties from an
algebraic variety to its quotient.

This descent will be studied at the level of the algebras of functions
and in this sense we consider the following general situation: if G is an
affine algebraic group and A is a commutative rational G–module algebra,
we want to study the properties of A that descend to AG ⊂ A.

Even though these aspects of invariant theory have been extensively
studied, we limit ourselves to the consideration of a few simple properties.
For a very complete survey of these topics we refer the reader to [123,
Chap. 3].
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One of the properties whose descent will be extensively considered in
this book is the finite generation of A as a k–algebra, or more generally its
affineness. This property, as we observed before in Theorem 4.11, is closely
related to the affineness of the quotient varieties.

Next we prove a result due to E. Noether that guarantees the finite
generation of the rings of invariants of a finite group. A deeper treatment of

Theorem 5.1. Let G be a finite group and A a commutative G–module
algebra. Then the extension AG ⊂ A is integral and if A is finitely generated
over k so is AG.

Proof: Let X be an indeterminate and extend the action from A to
A[X] by letting G act trivially on X. If a ∈ A we define the polynomial
Pa ∈ A[X] as follows: Pa(X) =

∏
x∈G(X − a · x). It is clear that the

polynomial Pa is G–invariant and hence all its coefficients belong to AG.
Thus, the extension AG ⊂ A is integral.

The finite generation of the k–algebra AG follows directly from Corol-
lary 1.2.5. ¤

As an application of the previous result, we consider the case of a finite
group acting on an affine variety, and prove the existence of the geometric,
and hence of the categorical, quotient.

general family of algebraic groups for which the actions on affine varieties
have always a categorical quotient. Finite groups are a very special case
of reductive groups, but even this particular situation illustrates the tech-
niques needed in order to overcome the difficulties arising with quotients.
In the finite group case the quotient turns out to be geometric because all
the orbits are closed. See Theorem 13.3.4.

Theorem 5.2. Let G be a finite group acting regularly on an affine
variety X. Then k[X]G is an affine algebra and the pair

(
Spm

(
k[X]G

)
, π

)
,

where π is the morphism induced by the inclusion k[X]G ↪→ k[X], is the
geometric quotient.

Proof: It is a direct consequence of Theorem 5.1 that k[X]G is an
affine algebra; call Y = Spm

(
k[X]G

)
. Next we verify conditions (1) and

(2) of the definition of geometric quotient.
(1) It follows from the integrality of the extension k[X]G ⊂ k[X] that the
morphism π is finite, and thus π is a closed map (see Theorem 1.4.93).
Moreover, as π# is injective, then π is dominant and consequently it is
surjective. Furthermore, since π is surjective and closed, it is also open.

 

the descent problems related to these situations is postponed until Chapters
12 and 13.

In Chapters 12 and 13 we will show that reductive groups are the only
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To prove the equivariance of π we need to verify that for all x ∈ X and
all a ∈ G the points x and a · x have the same image by π, and for that we
check that for all f ∈ k[Y ] = k[X]G, f

(
π(x)

)
= f

(
π(a · x)

)
. By the very

definition of Y , f = f◦π and being f a G–invariant function the result is
clear.

Now we prove that the fibers of π are the G–orbits. The G–equivariance
of π implies that for all x ∈ X, G · x ⊂ π−1

(
π(x)

)
. Suppose that there

exists x′ ∈ π−1
(
π(x)

) \G · x. Then G · x∩G · x′ = ∅ whereas π(x) = π(x′),
and as the orbits are closed — in fact finite — we can find f ∈ k[X] such
that f |G·x = 1, f |G·x′ = 0.

Then F =
∏
a∈G f ·a ∈ k[X]G is G–invariant and has the same property

than f on the orbits, i.e., F |G·x = 1 and F |G·x′ = 0. This contradicts the
fact that π(x) = π(x′).
(2) Since an arbitrary open subset of Y can be covered by elementary open
subsets, it is enough to prove that OY (Yf ) ∼= OX

(
π−1(Yf )

)G = OX(Xf )G

for all f ∈ k[X]G. In this case,

π#
(
k[Yf ]

)
= π#

((
k[X]G

)
f

)
=

(
π#

(
k[X]G

))
π#(f)

=
(
k[X]G

)
f

=
(
k[Xf ]

)G = k
[
π−1(Yf )

]G
.

¤
Concerning the “descent” of the property of the normality of a variety

(recall Theorem 4.8), we have the following algebraic result.

Theorem 5.3. Let G be an affine algebraic group and A a commutative
rational G–module algebra. If A is an integrally closed integral domain, then
AG is integrally closed.

Proof: Denote as usual
[
AG

]
the field of fractions of AG. Let a ∈[

AG
]

and assume that there exists a monic polynomial p ∈ AG[X] with
p(a) = 0.

Viewing p as a polynomial with coefficients in A, and a as an element of
[A], from the fact that A is integrally closed, we deduce that a ∈ A∩[

AG
]

=
AG. ¤

Another property that descends is the factoriality of A. First we need
to obtain some information on the invertible elements of an affine k–algebra
acted by a group. See also Exercise 21.

Lemma 5.4. Let G be a connected affine algebraic group and A a ra-
tional G–module affine algebra that is an integral domain. If u ∈ A∗ — the
group of invertible elements of A — then there is a character ρ of G such
that u is a ρ–semi-invariant.
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Proof: Let X = Spm(A), and consider the induced left regular action
of G on X (see Exercise 3). If u is an invertible regular function, the
function G × X → k, (a, x) 7→ u(a · x) is invertible. From Rosenlicht’s
theorem (Lemma 1.5.18) we deduce that u(a · x) = γ(a)v(x) for certain
invertible polynomial functions on G and X respectively. If we set a = 1
in the above equality, we deduce that u(x) = γ(1)v(x) and as γ(1) 6= 0,
calling ρ : G → k, ρ(a) = γ(a)/γ(1), we conclude that u(a · x) = ρ(a)u(x)
for all a ∈ G and x ∈ X. The following sequence of equalities and the
fact that all the factors are invertible, guarantee that ρ is a character of G.
ρ(ba)u(x) = u

(
(ba) · x) = u

(
b · (a · x)

)
= ρ(b)u(a · x) = ρ(b)ρ(a)u(x). ¤

Theorem 5.5. Let G be a connected affine algebraic group with X (G) =
{1}, and assume that A an affine rational G–module algebra that is also a
factorial domain. Then AG is a factorial domain.

Proof: As G has no characters in accordance with Lemma 5.4 we
deduce that A∗ ⊂ AG.

Consider f ∈ AG and call Pf =
{
h ∈ A : h|f, h irreducible

}
, where h|f

means that h divides in A. As usual we define an equivalence relation in
the set of irreducible elements of A establishing that h ∼ h′ if there exists
u ∈ A∗ such that h = uh′ — we denote as [h] the equivalence class of h —
and call Pf =

{
[h] : h|f}

. Clearly, Pf is a finite set that is stable by the
action of G. Fix [h] ∈ Pf and consider G[h] = {x ∈ G : h · x ∼ h} ⊂ G.
All the orbits of G on Pf are finite and this implies that for all [h], G[h]

has finite index in G and as G is connected we conclude that G[h] is dense
in G. Consider the set theoretical map u : G[h] → A∗ ⊂ AG, defined by
the equality h · x = u(x)h; it is clear that in our hypothesis u(1) = 1 and
u(xx′) = u(x)u(x′). If α ∈ Homk−alg(A, k), then the function ϕα,h : G→ k,
ϕα,h(x) = α(h · x) is regular. We prove this assertion by interpreting A
as the algebra of regular functions on an affine variety X and α as the
evaluation at a point of X. Applying α to the equality h · g = u(x)h we
conclude that ϕα,h(x) = α

(
u(x)

)
ϕα,h(1). Moreover, if α(h) = ϕα,h(1) 6= 0,

then the map ψ = ϕα,h/ϕα,h(1) : G → k is regular and when restricted
to G[h] is a group homomorphism, as it coincides with α◦u. Since G[h] is
dense, then ψ is a character of G (see Exercise 3.8), and hence ψ(x) = 1
for all g ∈ G. In other words, α(h · x) = α(h) for all α with the property
that α(h) 6= 0 and x ∈ G, and hence interpreting the element α as a point
of X, then h · x and h are regular functions that coincide when evaluated
at a dense subset of points. This means that h · x = h for all x ∈ G.
Summarizing, we have proved that if f ∈ AG then all its irreducible factors
— as well as the units of A — belong to AG. This implies that AG is
factorial. ¤
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Observation 5.6. The reader interested in looking at these kind of
“descent” problems in more depth should look at the very thorough survey
appearing in [123] where other properties that “descend” are mentioned
with the corresponding references and in some cases they are proved — or
sketches of the proofs are presented. For example it is mentioned that if the
group G is reductive, X is affine, and the singularities of X are all rational,
then the singularities of the categorical quotient G\X are also rational.
This strengthens a result of Hochster and Roberts ([74]): if X is affine and
non singular then k[X]G is Cohen–Macaulay. These two results are valid
for a base field of characteristic zero.

6. Induction and restriction of representations

The induction of representations from a closed subgroup to the whole
algebraic group can be performed in a similar manner than for finite groups.
In this section we define this induction as a functor and prove some of its
basic properties — that are homologically weaker than for finite groups.
The systematic consideration of induction procedures in the general sit-
uation of algebraic groups and arbitrary closed subgroups seems to have
started in [26], [52] and [117].

In this section G will be an affine algebraic group and H ⊂ G a closed
subgroup, and we will use Sweedler’s notation as presented in Section 4.2.

Definition 6.1. The restriction functor ResHG : GM → HM is the
functor that at the level of objects sends M into M |H and at the level
of morphisms is the identity. Recall that M |H denotes the k–space M
endowed with the H–action given by restriction of the G–action.

Observation 6.2. (1) In some cases, when the context does not allow
confusions, if M is a G–module we omit the subscript in the notation of the
H–module M |H . For example if N is an H–module and M a G–module
we may say that α : N → M is a morphism of H–modules when what we
really mean is that α : N →M |H is an H–morphism.
(2) The restriction functor admits a right adjoint that we describe below.

Let M ∈ HM and endow k[G]⊗M with the left H–module structure
given by the diagonal action, i.e. x · (f ⊗m) = x · f ⊗ x ·m, and with a
left G–module structure z ? (f ⊗m) = f · z−1 ⊗m. It is clear that with
respect to both structures k[G]⊗M is a rational module. As both actions
commute the fixed part with respect to the H–action — that as usual we
denote as H

(
k[G]⊗M

)
— is a rational G–submodule of k[G]⊗M .

Definition 6.3. We define the induction functor IndGH : HM→ GM
in the following way: if M ∈ HM, then IndGH(M) = H(

k[G]⊗M)
equipped
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with the ?–structure of G–module defined above; if f : M → M ′ is an H–
morphism, IndGH(f) = (id⊗f)|H(k[G]⊗M).

The next lemma allows to concentrate the action on one of the tensor
factors in the case of a module of the form k[G]⊗M for M ∈ GM.

Notation. In this section we use the following notation. If M is
a rational G–module, we call M0 the G–module consisting on the vector
space M equipped with the trivial action.

Lemma 6.4 (Concentration lemma). Let M be a rational G–module;
call χ the right k[G]–comodule structure on M associated to the given ac-
tion. The map θ : k[G]⊗M → k[G]⊗M0 defined as θ(f⊗m) =

∑
fm1⊗m0

is an isomorphism of G–modules with inverse η(f⊗m) =
∑
f S(m1)⊗m0.

Proof: If f ⊗m ∈ k[G]⊗M , then

η
(
θ(f ⊗m)

)
= η

(∑
fm1 ⊗m0

)
=

∑
fm2 S(m1)⊗m0 =

∑
fε(m1)⊗m0 = f ⊗m.

Similarly, one can prove that θη = id. Finally, if z ∈ G and f ⊗m ∈
k[G]⊗M then

θ
(
z · (f ⊗m)

)
= θ(z · f ⊗ z ·m) =

∑
(z · f)(z ·m1)⊗m0 = z · θ(f ⊗m)

and hence θ is G–equivariant — recall that χ(z ·m) =
∑
m0 ⊗ z ·m1. ¤

Corollary 6.5. Let G be an affine algebraic group and H ⊂ G a
closed subgroup. Consider the structure of left H–module on H(

k[G]⊗k[H]
)

given by the restriction of the induced G–action and let H act on k[G] by
left translations. Then the map

ι : H
(
k[G]⊗ k[H]

) → k[G] , ι
(∑

fi ⊗ gi
)

=
∑

gi(1)S(fi)

is an isomorphism of right H–modules with inverse

κ : k[G] → H(
k[G]⊗ k[H]

)
, κ(h) =

∑
S(h2)⊗ π(h1)

Here we denote as π : k[G] → k[H] the restriction map.

Proof: See Exercise 28. ¤
Corollary 6.6. The functor IndGG is naturally equivalent to the iden-

tity functor.

Proof: The map θ defined in the Concentration lemma 6.4 restricts
to an isomorphism of k–spaces θG : G

(
k[G] ⊗M

) ∼= G(
k[G]

) ⊗M0
∼= M .

First we compute θG explicitly.
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If
∑
fi ⊗mi ∈ G(

k[G] ⊗M
)
, i.e. if for all z ∈ G,

∑
z · fi ⊗ z ·mi =∑

fi ⊗mi, by applying χ to the second tensor factor we obtain that
∑
z ·

fi ⊗ (z ·mi)0 ⊗ (z ·mi)1 =
∑
fi ⊗ (mi)0 ⊗ (mi)1.

As
∑

(z · mi)0 ⊗ (z · mi)1 =
∑

(mi)0 ⊗ z · (mi)1, we conclude that
for all z ∈ G,

∑
z · (

fi(mi)1
) ⊗ (mi)0 =

∑
fi(mi)1 ⊗ (mi)0 and then

θG
(∑

fi ⊗mi

)
=

∑
fi(1)(mi)1(1)(mi)0 =

∑
fi(1)mi.

In order to prove the G–equivariance of θG, we consider again the equal-
ity

∑
z · fi ⊗ z ·mi =

∑
fi ⊗mi and by evaluation at z−1 we obtain that∑

fi(e)z ·mi =
∑
fi(z−1)mi.

This last equality can be rewritten as z · θG
(∑

fi ⊗ mi

)
= θ

(∑
fi ·

z−1 ⊗mi

)
, and the proof is finished. ¤

Observation 6.7. (1) If M is a rational H–module, then the G–
module IndGH(M) can be defined as the G–module of H–equivariant polyno-
mial maps from G to M or — in the same spirit — as the global sections of
a certain sheaf on the homogeneous space G/H (see [26] for the first presen-

present is that its generalization to general Hopf algebras is straightforward
(see [40]).
(2) Next we show that for M finite dimensional, the presentation in [26] is
equivalent to the one we choose. In that case k[G] ⊗M can be identified
with the space of polynomial maps from G to the affine space M ∼= AdimM ,
that we denote as k[G,M ].

The identification is given as: θ : k[G]⊗M → k[G,M ], θ(f ⊗m)(z) =
f(z−1)m, for z ∈ G, f ∈ k[G], m ∈M (see Exercise 27). Being M an H–
module we can endow k[G,M ] with a left H–module structure as follows:
(x · ϕ)(z) = x · ϕ(x−1z) for ϕ ∈ k[G,M ], x ∈ H and z ∈ G.

With respect to this structure on k[G,M ] and the usual diagonal H–
structure on k[G]⊗M , the map θ is H–equivariant. Moreover, if we endow
k[G,M ] with the G–module structure: (w ? ϕ)(z) = ϕ(zw), w ∈ G, the
map θ is G–equivariant. Hence H(

k[G]⊗M)
= IndGH(M) can be identified

G–equivariantly with Hk[G,M ] =
{
ϕ : G→M : ϕ is polynomial, ϕ(xz) =

x · ϕ(z), ∀x ∈ H, ∀z ∈ G}
.

Observation 6.8. If g ∈ Hk[G] and
∑
fi ⊗mi ∈ H(

k[G] ⊗M
)
, then∑

gfi ⊗mi ∈ H(
k[G] ⊗M

)
and then IndGH(M) becomes a Hk[G]–module

by multiplication on the first tensorand.

Moreover, the induced module is a
(Hk[G], G

)
–module in the sense of

Definition 4.3.17. See Exercise 31 for a generalization.

 

tation and [52] for the second). One of the advantages of the definition we
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Definition 6.9. In the situation above, for any M ∈ HM we define
the k–linear map EM : IndGH(M) → M as EM (

∑
fi ⊗mi) =

∑
fi(1)mi.

The map EM is called the evaluation map.

Observe that if we endow M with the Hk[G]–module structure given
by f ·m = f(1)m, for f ∈ Hk[G], m ∈M , then the map EM is a morphism
of Hk[G]–modules.

If we identify IndGH(M) with Hk[G,M ], then EM (f) = f(1).

Lemma 6.10. The family of maps
{
EM : M ∈ HM

}
form a natural

transformation between the functors ResHG ◦ IndGH and id : HM→ HM.

Proof: If M ∈ HM then EM is a morphism of H–modules with
respect to the structure ? restricted to H on IndGH(M). Indeed, if x ∈ H
then EM

(
x ?

(∑
fi ⊗mi

))
= EM

(∑
fi · x−1 ⊗mi

)
=

∑
fi(x−1)mi. Since∑

x−1 · fi ⊗ x−1 ·mi =
∑
fi ⊗mi, then

∑
fi(x−1)x−1 ·mi =

∑
fi(1)mi.

Thus,
∑
fi(x−1)mi = x · (∑ fi(1)mi

)
, and then EM

(
x ? (

∑
fi ⊗mi)

)
=

x ·EM
(∑

fi ⊗mi

)
. Moreover, it is easy to show that EM varies naturally

with M . ¤
The next theorem shows that the functors ResHG and IndGH are adjoint

to each other and that the map E is the counit associated to the adjunction.

Theorem 6.11. In the situation above, IndGH is the right adjoint of the
functor ResHG .

Proof: We want to check that for all M ∈ HM, N ∈ GM and ϕ :
ResHG (N) →M morphism of H–modules, there exists a unique morphism of
G–modules ϕ̃ : N → IndGH(M) such that the diagram below is commutative.

IndGH(M)

EM

²²
N

eϕ
::vvvvvvvvv ϕ // M

Define ϕ̃ as ϕ̃(n) =
∑S(n1) ⊗ ϕ(n0), where χ(n) =

∑
n0 ⊗ n1 is the

k[G]–comodule structure on N . From the equality χ(z · n) =
∑
n0 ⊗ z · n1

(see Lemma 4.3.19) we deduce that for all z ∈ G and n ∈ N ,

ϕ̃(z · n) =
∑

S(z · n1)⊗ ϕ(n0) =
∑

S(n1) · z−1 ⊗ ϕ(n0) =

z ?
(∑S(n1)⊗ ϕ(n0)

)
= z ? ϕ̃(n) .

Next we show that that for all n ∈ N and x ∈ H,∑
x · S(n1)⊗ x · ϕ(n0) =

∑
S(n1)⊗ ϕ(n0) .

 



246 6. ACTIONS OF ALGEBRAIC GROUPS

It is enough to prove that
∑(

x·S(n1)
)
(z)

(
x·ϕ(n0)

)
=

∑S(n1)(z)ϕ(n0)
for all z ∈ G. Now,

∑(
x · S(n1)

)
(z)

(
x · ϕ(n0)

)
=

∑
n1(x−1z−1)x · ϕ(n0) =

ϕ
(
x ·

∑
n1(x−1z−1)n0

)
=

ϕ
(
x · (x−1z−1) · n)

= ϕ(z−1 · n) =
∑

n1(z−1)ϕ(n0) =
∑

S(n1)(z)ϕ(n0) .

Moreover, (EM ◦ϕ̃)(n) =
∑S(n1)(1)ϕ(n0) = ϕ

(∑
n1(1)n0

)
= ϕ(n).

The uniqueness of ϕ̃ is left as an exercise (see Exercise 26). ¤
What is called the (Frobenius) Reciprocity law of induction is just the

following reformulation of the above theorem.

Corollary 6.12 (Reciprocity law). In the situation of Theorem 6.11,
there is an isomorphism, natural in N ∈ GM and M ∈ HM,

HomH

(
ResHG (N),M

) ∼= HomG

(
N, IndGH(M)

)
.

¤

Observation 6.13. If N ∈ GM, applying the above Corollary 6.12 to
the trivial module M = k we obtain an isomorphism of k–spaces

HomH

(
N |H , k

) ∼= HomG

(
N, IndGH(k)

) ∼= HomG

(
N,

Hk[G]
)
.

In the case of a simple rational G–module S and an arbitrary rational
G–module T the multiplicity of the occurrence of S in T is defined as
dimkHomG(S, T ). Hence, if N is a simple rational G–module, then the
multiplicity of occurrence of N in Hk[G] is the dimension of (N∗)H . See

Theorem 6.14 (Tensor identity). Let G be an affine algebraic group
and H ⊂ G a closed subgroup. Then for all M ∈ HM and N ∈ GM, the G–
modules IndGH(M)⊗N and IndGH

(
M ⊗ResHG (N)

)
are naturally isomorphic.

Proof: We assume that M and N are finite dimensional over k; the
general case is left as an exercise (see Exercise 27). We interpret the ele-
ments of IndGH(M) as the H–equivariant polynomial maps from G to M and
define Θ : Hk[G,M ]⊗N → Hk

[
G,M⊗N |H

]
, Θ(ϕ⊗n)(z) = ϕ(z)⊗z ·n for

ϕ ∈ Hk[G,M ], n ∈ N , z ∈ G. First we observe that if ϕ ∈ Hk[G,M ], then
Θ(ϕ ⊗ n) ∈ Hk

[
G,M ⊗N |H

]
. If x ∈ H and z ∈ G, then Θ(ϕ ⊗ n)(xz) =

ϕ(xz) ⊗ (xz) · n = x · ϕ(z) ⊗ x · (z · n) = x · (Θ(ϕ ⊗ n)(z)
)
. In order to

show that Θ is G–equivariant consider y, z ∈ G, then Θ
(
y · (ϕ ⊗ n)

)
(z) =

 

Exercise 25 for an application.
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Θ(y ?ϕ⊗y ·n)(z) = (y ?ϕ)(z)⊗z ·y ·n = ϕ(zy)⊗ (zy) ·n = Θ(ϕ⊗n)(zy) =(
y ?Θ(ϕ⊗ n)

)
(z).

Next we verify the surjectivity of Θ; the injectivity is left for the reader
to prove. Let ϕ : G → M ⊗ N |H be an H–equivariant polynomial. If
{ni : i ∈ I} is a finite basis of N , we write ϕ(z) =

∑
i∈I ϕi(z)⊗ni for some

ϕi ∈ k[G,M ]. For y ∈ G write y−1 · ni =
∑
j αij(y)nj with αij ∈ k[G].

Then ni =
∑
j αij(y)y · nj and after substitution in the formula for ϕ we

have that: ϕ(z) =
∑
i,j ϕi(z)⊗αij(z)z ·nj =

∑
j

(∑
i αij(z)ϕi(z)

)⊗z ·nj . If
we call ψj =

∑
i αijϕi, then ϕ(z) =

∑
ψj(z)⊗z ·nj , i.e. ϕ = Θ

(∑
ψj⊗nj

)
.

In order to verify that ψj ∈ Hk[G,M ], we write ϕ(z) =
∑
ψj(z)⊗z ·nj and

substituting z by xz, with z ∈ G and x ∈ H, we obtain that ϕ(xz) = x·ϕ(z).
In explicit terms:

∑
ψj(xz)⊗ (xz) · nj =

∑
j x ·ψj(z)⊗ (xz) · nj , and then

ψj(xz) = x · ψj(z). ¤
Observation 6.15. The map Θ becomes a Hk[G]–morphism when we

consider the action of Hk[G] on IndGH(M)⊗N by multiplication on the first
tensorand and on IndGH(M ⊗N |H) as in the general situation.

Observation 6.16. If we apply the tensor identity in the case that M
is the trivial one dimensional G–module, we deduce that the G–modules
Hk[G] ⊗ N and IndGH

(
ResHG (N)

)
are isomorphic. The action of G on the

left hand side is the diagonal action with y ? f = f · y−1 for y ∈ G, f ∈
Hk[G]. The above isomorphism can be viewed as a generalization of the
concentration lemma; for H = {1} it reads:

k[G]⊗N ∼= IndG{1}
(
Res{1}G (N)

) ∼= k[G]⊗N0

and the existence of this isomorphism is the content of Lemma 6.4.

Observation 6.17 (The transfer principle). If M ∈ HM and N ∈
GM, then the tensor identity guarantees that H

(
k[G]⊗M)⊗N ∼= H(

k[G]⊗
M ⊗N |H

)
as G–modules. If we take the G–fixed part in the above isomor-

phism we deduce that the k–spaces
G(

H(
k[G]⊗M)⊗N

)
and H(

M⊗N |H
)

are isomorphic. If we consider the above isomorphism for M equal to the

trivial module k, we obtain that
G(

Hk[G] ⊗N
) ∼= HN as k–spaces. This

is called the transfer principle.
The name “transfer principle” for the above isomorphism was suggested

by A. Borel (see [7]). It was used in particular cases by the classical invari-
ant theorists and was called “the adjunction principle”. It can be of great
use to study problems of finite generation of invariants.

In [51] the author also makes interesting
historical remarks on this subject.

 

See Chapter 12
and [51] for some applications.
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7. Exercises

1. Prove that the natural action of GLn on kn induces a transitive
regular action on the flag variety of kn. Compute the isotropy group of an
arbitrary flag and represent the flag variety as a homogeneous space.

2. Show that the action of PGLn+1 on the projective space Pn defined
in Example 2.2 is regular. Verify the following generalized transitivity prop-
erty: if {p1, . . . , pn+2} and {q1, . . . , qn+2} are two sets of points in general
position in Pn (i.e. with no subset of cardinality n + 1 lying on an hyper-
plane) then there exists a unique element in PGLn+1 sending one set into
the other.

3. Let G be an affine algebraic group and X an affine algebraic variety.
Prove that if k[X] is a rational right G–module algebra, then the action
of G on k[X] induces a regular action ϕ : G × X → X. Moreover, the
comorphism ϕ# : k[X] → k[X]⊗ k[G] is the comodule structure associated
to the rational action of G on k[X].

4. The purpose of this exercise is to illustrate Theorem 3.3. Let G be
an affine algebraic group acting regularly on an algebraic variety X and for
m ∈ N, call Xm = {p ∈ X : dimO(p) = m} and Xmax the set of points of
the variety whose orbits have maximal dimension.
(a) Describe the sets Xm and Xmax for the Examples 2.1, 2.3 and 4.10.
(b) Prove that the action by conjugation of GL2 on M2(k) has separable
orbit maps. Observe that for all A ∈ M2(k), dimO(A) = 4 − dim GL2A.
Describe explicitly GL2A in the cases: A is diagonalizable with different
eigenvalues, A is of the form A =

(
λ 1
0 λ

)
, and A = λ Id. Compute the

dimension of O(A) in these cases. Describe M2(k)m and M2(k)max.

5. Let G be an affine algebraic group and X an algebraic G–variety.
Then any orbit of minimal dimension is closed in X. Hint: use Theorem
3.3.

6. Complete the proof of Theorem 2.10, showing that ϕ is a G–equiva-
riant morphism.

7. Complete the proof of Theorem 3.1 for the non connected case fol-
lowing the hint that appears at the beginning of the proof.

8. In the situation of Theorem 3.1 prove that in the hypothesis of con-
dition (4) the function field of O(p) and the field

[
k[G]

]Gp are isomorphic.
Conclude that the morphism π is separable (see Theorem 1.2.29).

9. Let X,Y be irreducible homogeneous G–varieties, and ϕ : X → Y
a G–equivariant bijective morphism. Prove that ϕ is a closed map. Hint:
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using Theorem 1.5.4, prove that there exist open subsets U ⊂ X, V ⊂ Y
such that ϕ|U : U → V is a finite morphism (see also Lemma 1.4.94); hence
ϕ|U is closed. Use the transitivity of the action to finish the proof.

10. Prove the first part of Lemma 4.5, i.e., prove the uniqueness of the
categorical quotient.

11. Let Gm act regularly on X = {x = 0} ∪ {y = 0} ⊂ A2 as follows:
t · (x, 0) = (x, 0), t · (0, y) = (0, ty), t ∈ Gm, x, y ∈ k. Prove that the
projection over the first coordinate π : X → k is the categorical quotient.
See Example 1.4.85.

12. Let the additive group Ga act on A2 as in Example 2.3, i.e. λ ·
(x, y) = (x, y + λx). Prove that k(A2)Ga = k(X) — the field of rational
functions in one variable — and find the categorical quotient for this action.
See Exercise 15.

13. Let the multiplicative group Gm act on An by the rule t · p = tp,
for all t ∈ Gm and p ∈ An (see Example 2.4). Describe the dimensions
of the orbits and find the categorical quotient. Prove that the geometric
quotient does not exist. Show that after restricting the action to An−{0},
the geometric quotient exists and is isomorphic to Pn−1.

14. Prove (see Observation 4.13) that if G is an affine algebraic group
acting on a variety X and the geometric quotient G\\X exists, then for an
arbitrary open G–stable subset U ⊂ X, the pair

(
π(U), π|U

)
is a geometric

quotient for the action of G on U .

15. Assume that U is a unipotent group acting rationally on a com-
mutative algebra A that is also a domain. Call [A] the field of fractions
of A. Prove that [A]U =

[
AU

]
. Hint: Consider u ∈ [A]U and consider

Na = {a ∈ A : ∃ b ∈ A, bu = a}. Prove that Na is U–stable and apply
Corollary 5.6.4 to deduce that it has a non zero fixed point.

16. Let G be an affine algebraic group, X a G–variety, Y an arbitrary
variety and f : X → Y a surjective open morphism constant along the
orbits. Prove that if C is a closed and saturated subset of X then f(C) is
also closed.

17. Complete the details of the Example 4.21, in particular verify that
for the open subsets considered in each case, the geometric quotient does
exist.

18. Assume that G and H are affine algebraic groups acting regularly
on X and Y respectively. Then G × H acts regularly on X × Y and if
G\X and G\Y exist, then (G×H)\X × Y also exists and is isomorphic to
(G\X)× (G\Y ). The same holds for the geometric quotients.
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19. Let G be an affine algebraic group and K a finite normal subgroup
of G. Consider the action of K on G by right translations and the cor-
responding geometric quotient G//K. Prove that G//K is also an affine
algebraic group with the operations induced in the natural manner by the
operations of G. The condition that the subgroup is finite is unnecessary

20. Suppose that chark = p 6= 0, and consider the action of Ga on A1

given by a · x = ap + x. Prove that A1 is a Ga–homogeneous space that
is not isomorphic to any quotient Ga/K, with K ⊂ Ga a closed subgroup

21. Let G be a connected affine algebraic group and assume that f ∈
k[G]∗ is an invertible regular function, with f(1) = 1. Then f is a character
of G.

22. Let G be an affine algebraic group, H ⊂ G a closed subgroup and
X an H–variety. Consider the action of H on G×X given by the formula:
if a ∈ H, b ∈ G, x ∈ X, h · (b, x) = (ba−1, a ·x). In the case that X is a one
point variety, we are considering the right action of H on G by translations.
Assume that H\\(G ×X) exists; see [123] for some considerations about
this existence result. The quotient is denoted as G ?H X. Notice that
G ?H {x} ∼= G//H.
(a) Consider the map m : G×X → G//H, m(b, x) = bH for b ∈ G , x ∈ X,
and call µ : G ?H X → G//H the map induced by m on the quotient.
Describe explicitly the fibers of µ.
(b) Prove that the action by left translations of G on G induces a regular
action of G on G ?H X. This action is called the induced action. Prove
that µ is G–equivariant when we endow G//H with the action by left
multiplication by an element of G.
(c) Prove that if G and H are finite, then G\\(G ?H X) ∼= H\\X.

23. Consider the action of Gm on A2 defined as t · (x, y) = (tx, t−1y).
(a) Show that with respect to this action there are three types of orbits. A
one parameter family of one dimensional closed orbits, two non closed orbits
of dimension one that we call O1 and O2 and a closed orbit of dimension
zero, i.e. a fixed point p, such that {p} = O1 ∩O2.
(b) Compute the subalgebra of invariants k[A2]Gm , and show that A1 =
Spm

(
k
[
A2

]Gm
)
. Observe that the morphism π : A2 =→ A1 induced by the

inclusion k
[
A2

]Gm ⊂ k[A2] is π(x, y) = xy.

(c) Prove that π : A2 → A1 is the categorical quotient for the above action.

 

as will be proved in Chapter 7.

(see Exercise 3.12).
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24. Consider the action of Gm on A1, t · a = t2a. Assume that Gm ⊂
SL2 is a subgroup via t 7→ (

t 0
0 t−1

)
. Prove that the above action cannot be

extended to an action of SL2.

25. Let G be an affine algebraic group and H ⊂ G a closed subgroup.
Assume that the rational G–module k[G]H — G acts by left translations
— is semisimple. Then k[G]H =

⊕
{W :W is a G−mod simple }W

dimk(W∗)H

.

26. Complete the proof of Theorem 6.11, showing that the map ϕ̃ is
unique.

27. (a) Prove that if G is an affine algebraic group and M is a finite
dimensional k–space, then the map θ : k[G]⊗M → k[G,M ] defined as θ(f⊗
m)(z) = f(z−1)m, for z ∈ G, f ∈ k[G], m ∈M , is a linear isomorphism.
(b) In order to guarantee that the isomorphism of (a) remains valid, adapt
the definition of k[G,M ] as to cover the case that M is not necessarily
finite-dimensional
(c) Prove Theorem 6.14 in full generality.

28. Prove Corollary 6.5.

29. Let K ⊂ H ⊂ G be a tower of closed subgroups of the affine alge-
braic group G. Prove that the functors IndGK , IndGH ◦ IndHK : KM→ HM→
GM are naturally isomorphic. Moreover, for any M ∈ KM the evaluation
maps EGM,K and EHM,K ◦ EG

IndH
K(M),H

are equal up to the natural isomor-
phism mentioned above. Observe that, as there is danger of confusion, we
introduced in the above notations of the evaluation map the given group
and subgroup.

30. Let G be an affine algebraic group, H ⊂ G a closed subgroup, and

0 →M1 →M2 →M3

an exact sequence in HM. Prove that

0 → IndGH(M1) → IndGH(M2) → IndGH(M3)

is exact in GM.

31. Let G be an affine algebraic group, H ⊂ G a closed subgroup, A a
rational H–module algebra and M an (A,H)–module.

(a) Prove that IndGH(A) has a natural structure of rational G–module al-
gebra in such a way that the evaluation map EA : IndGH(A) → A is a
morphism of H–module algebras.
(b) Prove that IndGH(M) has a natural structure of rational

(
IndGH(A), G

)
–

module in such a way that the evaluation map EM : IndGH(M) → M is
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a morphism of
(
IndGH(A),H

)
–modules. The structure of IndGH(A)–module

on M is given by extending scalars via EA : IndGH(A) → A.
Notice that the situation described in Observation 6.8 is a particular

case of the above.

 



CHAPTER 7

Homogeneous spaces

1. Introduction

This chapter deals with the geometric structure of homogeneous spaces,
i.e. varieties of the form G/H, where G is an affine algebraic group and
H ⊂ G a closed subgroup. In other words, we study the structure of the
orbits of an algebraic group acting on an algebraic variety (see theorems
6.4.15 and 4.2).

It is substantially harder to study homogeneous spaces in the cate-
gory of algebraic groups than for example in the analogous category of Lie
groups. The basic general results concerning the existence of a natural
structure of algebraic variety on G/H are due to M. Rosenlicht and A.
Weil (see [126] and [149]). The proof that G/H is quasi–projective (see
Theorem 4.2) is due to W. Chow (see [25]).

Next we describe the contents of the different sections of this chapter.
In Section 2, we develop some preparatory material interrelating —

somewhat dually to what we did in Section 6.6 — the representations of
H with the representations of G; the basic results are due to Chevalley,
see [18]. We show that up to a character of H a rational H–module is an
H–submodule of a certain G–module. This very explicit algebraic descrip-
tion of the interrelation between the representations of H and G makes
homogeneous spaces easier to control than general geometric quotients.

In Section 3, we describe explicitly the manner in which H can be cut
away from G by means of a finite number of semi–invariant polynomials
with the same weight.

This description will be crucial for the main purpose of this chapter,
that is the central theme of Section 4: the endowment of the coset space
G/H with a natural structure of quasi–projective algebraic variety. The
projective variety where G/H is embedded is obtained as the closure of the
G–orbit of a point in a projective space. The coordinates of this point are
the semi–invariant polynomials obtained in Section 3.

253
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In Section 5 we show that in the particular case that H is normal, the
homogeneous space — that is now an abstract group — is in fact an affine
algebraic group.

we look more carefully at the relationship between the representations of H
and those of G and define the concepts of observable and of exact subgroup.
In these cases we prove that G/H is respectively quasi–affine and affine.

In Section 6 we look in another direction. The study of maximal con-
nected solvable subgroups of G — Borel subgroups — has particular impor-
tance for the structure and representation theory of affine algebraic groups.
In this case the homogeneous space G/H is a projective variety. This situ-
ation will be briefly treated in this last section of the chapter, not with the
purpose of developing these aspects of the theory in full depth, but only to
exhibit the technique of homogeneous spaces as a working tool.

In this chapter our presentation follows with minor modifications the
general pattern of the standard reference on the subject: A. Borel’s book
Linear Algebraic Groups [10]. Some other presentations that simplify and
compactify the algebro–geometrical prerequisites of the theory are for ex-
ample: [71], [75] and [142].

2. Embedding H–modules inside G–modules

The next definition singles out a concept that will be crucial in order
to understand the relationship between the representations of H and of G.

Definition 2.1. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. A rational character ρ : H → Gm is said to be extendible to G
— or simply extendible if there is no danger of confusion about the groups
involved — if there exists a non zero element f ∈ k[G] such that x·f = ρ(x)f
for all x ∈ H. An element f as above is called an extension of ρ or a ρ–
semi–invariant polynomial or a semi–invariant polynomial of weight ρ. We
will denote as EG(H) =

{
ρ : H → Gm : ρ is an extendible character

}
the

set of extendible characters.

Clearly, f extends ρ if and only if for all z ∈ G, x ∈ H, f(zx) =
f(z)ρ(x). If moreover f(1) = 1, we deduce that for all x ∈ H, f(x) = ρ(x),
i.e. f is a regular function that extends set theoretically ρ. Notice that
the condition f(1) = 1 in not restrictive in the sense that if g is a ρ–semi–
invariant such that g(z) 6= 0 for some z ∈ G, then f = (g · z)g(z) is a
ρ–semi–invariant satisfying f(1) = 1.

 

This affineness result will be generalized in Chapters 10 and 11, where
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Example 2.2. The reader should be aware that if ρ is an extendible
character and f is a polynomial function that extends ρ as a function, then
f is not necessarily a semi–invariant polynomial.

For example, considering U2 ⊂ GL2, then
(
a b
c d

) 7→ ad is an extension
of the trivial character which is not an invariant polynomial.

Theorem 2.3. Let G be an affine algebraic group, H ⊂ G a closed
subgroup and M a finite dimensional rational H–module. There exists a
finite dimensional rational G–module N , an extendible character ρ : H →
Gm and an injective morphism ι : M → (N |H)ρ−1 . Moreover, if M is a
simple H–module, the G–module N can be taken to be simple.

Proof: GivenM as above, Theorem 4.3.13 guarantees that we can find
an injective morphism of H–modules θ : M → ⊕

I k[H], where I is a finite
set of indexes. Consider the H–morphism α = ⊕π :

⊕
I k[G] → ⊕

I k[H],
where π : k[G] → k[H] is the canonical projection.

Call M ′ = α−1
(
θ(M)

) ⊂ ⊕
I k[G] and β the restriction of α to the

H–submodule M ′:
M ′

β

²²²²

Â Ä // ⊕
I k[G]

α
²²²²

M
θ

// ⊕
I k[H]

Let F be a finite k–linear basis of M and let F0 ⊂ M ′ be a finite
set such that β(F0) = F . Call V the finite dimensional G–submodule of⊕

I k[G] generated by F0 and W the finite dimensional H–submodule of
V |H — contained in M ′ — generated by F0. In this way, we produce an
exact sequence of rational H–modules 0 → U → W → M → 0. Call
n = dimkU and consider the diagram below

0 // U ⊗∧n
U //

²²

W ⊗∧n
U //

²²

M ⊗∧n
U

ϕ
ww

// 0

0 // U ∧∧n
U = 0 // W ∧∧n

U

where all the solid arrows are the canonical ones, the first row is exact and
in the second row the term U ∧∧n

U equals zero by dimensional reasons —
notice that all the exterior products are taken inside the exterior algebra∧
V . Moreover, it is easy to show that the morphism of H–modules ϕ :

M⊗∧n
U →W∧∧n

U , that can be constructed by chasing on the diagram,
is surjective. To prove the injectivity of ϕ consider a basis {e1, . . . , en} of U
and extend it to a basis {e1, . . . , en, en+1, . . . , er} of W . If u = e1∧· · ·∧ en,
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then {e1 ⊗ u, . . . , en ⊗ u}, {e1 ⊗ u, . . . , en ⊗ u, en+1 ⊗ u, . . . , er ⊗ u} and
{en+1 ⊗ u, . . . , er ⊗ u} are basis of U ⊗ ∧n

U , W ⊗ ∧n
U and M ⊗ ∧n

U
respectively — if w ∈ W , w represents its image in M . Moreover, ϕ(ej ⊗
u) = ej ∧ u for j = n+ 1, . . . , r, and as {ej ∧ u : j = n+ 1, . . . , r} is a basis
of W ∧∧n

U , we conclude that the map ϕ is injective.
As W and U are H–submodules of V |H , we can view ϕ as an injective

H–morphism ϕ1 : M⊗∧n
U → ∧n+1

V |H . Call ρ the rational character as-
sociated to the one dimensional H–module

∧n
U , i.e. the character defined

by the formula x · u = ρ(x)u for all x ∈ H. The map ϕ2 : M → ∧n+1
V ,

ϕ2(m) = ϕ1(m⊗u), satisfies that for all x ∈ H, ϕ2(x·m) = ϕ1

(
(x·m)⊗u) =

ϕ1

(
ρ−1(x)(x ·m⊗ x · u)

)
= ρ−1(x)ϕ1

(
x · (m⊗ u)

)
= ρ−1(x)x ·ϕ1(m⊗ u) =

ρ−1(x)x · ϕ2(m).

Hence, if we call N =
∧n+1

V and ι = ϕ2, the theorem will be finished
once we prove that the character ρ is extendable. Consider the G–module∧n

V and let α ∈ (
∧n

V )∗ be such that α(u) = 1. Then the representative
function α|u ∈ k[G] is an extension of ρ. Indeed, for all x ∈ H, x · (α|u) =
α|(x · u) = ρ(x)α|u and (α|u)(1) = α(u) = 1. So that α|u is an extension
of ρ.

The last assertion concerning the case that M is simple is left as an
exercise (see Exercise 1). ¤

Corollary 2.4. In the situation of Theorem 2.3, if M is a non zero
simple rational H–module, then N can be taken to be a rational G–submodule
of k[G]. Moreover, given 0 6= m0 ∈ M and z ∈ G, the injection ι : M →(
k[G]|H

)
ρ−1 can be selected as to satisfy that ι(m0)(z) 6= 0.

Proof: Apply Theorem 2.3 to find an injection ι : M → N , where
N is a simple G–module, and then apply Theorem 4.3.14 to embed N into
k[G].

The last assertion of the Corollary is easy to prove. We can take an
arbitrary injective H–morphism ι′ as above and using the fact that it is
injective, we can find an element w ∈ G such that ι′(m0)(w) 6= 0. Then
define ι : M → (

k[G]|H
)
ρ−1 as ι(m) = ι′(m) · wz−1. It is clear that the

map ι satisfies the required conditions. ¤

Corollary 2.5. Let G be an affine algebraic group, H ⊂ G a closed
subgroup and 0 6= I ⊂ k[G] an H–stable ideal of k[G]. There exist an
element 0 6= f ∈ I and an extendible character ρ of H such that x·f = ρ(x)f
for all x ∈ H.

Proof: Let 0 6= V be a simple — and thus finite dimensional — H–
submodule of I. First, we construct a basis {v1, . . . , vn} of V and an element
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z ∈ G such that v1(z) 6= 0, v2(z) = 0, . . . , vn(z) = 0. Let Vz = V ∩Ker(εz),
with εz : k[G] → k the evaluation at z. If for all z ∈ G, Vz = V , then
for all z ∈ G,V ⊂ Ker(εz) and that would imply that V = 0. Hence we
can find z ∈ G and v1 ∈ V such that Vz ⊕ kv1 = V and the construction
of the basis is finished. Consider the contragradient representation V ∗ —
that is also a simple module — and call {α1, . . . , αn} the basis of V ∗ dual
to {v1, . . . , vn}. Using Corollary 2.4 we find an H–equivariant injective
morphism ι : V ∗ → (

k[G]|H
)
ρ−1 that satisfies ι(α1)(z) 6= 0. We define the

H–equivariant map Γ : End(V ) → Iρ−1 as Γ = m◦(id⊗ι)◦ ev−1, where m :
I⊗ (

k[G]|H
)
ρ−1 → Iρ−1 is the usual multiplication map and ev : V ⊗V ∗ →

End(V ) is the standard identification. If we call f = Γ(id), as id is H–fixed,
then f satisfies that ρ−1(x)x · f = f for all x ∈ H. As id = ev

(∑
vi ⊗ αi

)
,

it follows that f =
∑
viι(αi) and f(z) = v1(z)ι(α1)(z) 6= 0. ¤

Moreover if H ⊂ G is a normal subgroup, we can find a polynomial
in the H–stable ideal I that is fixed by H. First we need to look in more
depth to the extension of characters from H to G in this situation. Recall
that G acts on X (H) as follows: if x ∈ G, y ∈ H and γ ∈ X (H), then
(x · γ)(y) = γ(x−1yx) (see Observation 4.5.6).

Lemma 2.6. Let G be an affine algebraic group, H ⊂ G a closed normal
subgroup and ρ ∈ X (H) an extendible character. Then
(1) The stabilizer Gρ of ρ with respect to the action of G on X (H) we just
mentioned, is a closed subgroup of finite index that contains H.
(2) If f ∈ k[G] is a ρ–semi–invariant, then S(f)|Gρ is a ρ−1–semi–invariant
in Gρ (S denotes the antipode of k[G]).
(3) The character ρ−1 can be extended to G.
(4) If G is connected and f is an extension of ρ, then S(f) is an extension
of ρ−1.

Proof: (1) It is clear that H ⊂ Gρ and the proof that it is closed and
of finite index in G follows directly from Observation 4.5.7 and Exercise
4.25.
(2) If x ∈ H and z ∈ Gρ, we compute

(
x · S(f)

)
(z):

(
x · S(f)

)
(z) = S(f)(zx) = f(x−1z−1) = f(z−1zx−1z−1) =

(
(zx−1z−1) · f)

(z−1) = (z−1 · ρ)(x−1)f(z−1) =

ρ(x−1)S(f)(z) ,

i.e. x · S(f)|Gρ = ρ(x−1)S(f)|Gρ
.

(3) If f is a ρ–semi–invariant polynomial such that f(1) = 1, then g = S(f)
is a ρ−1–semi–invariant when restricted to Gρ with g(1) = 1.
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Write G = z1Gρ
⋃ · · ·⋃ zlGρ with z1 = 1 and define h ∈ k[G] as:

h|ziGρ = g · z−1
i |ziGρ for i = 1, . . . , l. If x ∈ H and w ∈ Gρ, then (x ·

h)(ziw) = h(ziwx) = (g · z−1
i )(ziwx) = g(wx) = ρ−1(x)g(w) = ρ−1(x)(g ·

z−1
i )(ziw) = ρ−1(x)h(ziw) for i = 1, . . . , l. It follows that h ∈ k[G] is an

extension of ρ−1 with h(1) = 1.
(4) Being Gρ closed and of finite index in the connected group G, then
G = Gρ and the result follows from (2). ¤

Corollary 2.7. Let G be an affine algebraic group, H ⊂ G a normal
closed subgroup. If I ⊂ k[G] is an H–stable ideal, then HI 6= {0}.

Proof: Using Corollary 2.5 and Lemma 2.6 we can find ρ ∈ X (H) ,
0 6= f0 ∈ I and 0 6= g ∈ k[G] such that f0 extends ρ and g extends ρ−1.
If z, w ∈ G are such that f0(z) 6= 0 and g(w) 6= 0, then the polynomial
f = (g · wz−1)f0 ∈ I is H–fixed and at z ∈ G takes the value f(z) =
g(w)f0(z) 6= 0. ¤

that normal subgroups are observable (see Definition 10.2.1).

The next theorem shows that the invariant rational functions on a
connected group can be written as quotients of semi–invariant polynomials
of the same weight.

Theorem 2.9. Let G be an connected affine algebraic group and H a
closed subgroup. If f ∈ H[

k[G]
]

then there exists u, v ∈ k[G], v 6= 0 and
ρ ∈ EG(H) such that f = u/v, x ·u = ρ(x)u and x ·v = ρ(x)v for all x ∈ H.
In particular, if H is a group with no non trivial rational characters or if
H is a normal subgroup then H[

k[G]
]

=
[Hk[G]

]
.

Proof: If f = 0 the result is obvious. If f 6= 0, then considering the
H–stable ideal I = k[G]f ∩ k[G] ⊂ k[G] we find ρ ∈ EG(H) and 0 6= u ∈ I
such that x · u = ρ(x)u for all x ∈ H. Writing u = vf for some v ∈ k[G]
we have that ρ(x)(vf) = ρ(x)u = x · u = x · (vf) = (x · v)(x · f) = (x · v)f .
Hence x · v = ρ(x)v. In the case that H is normal in G, we proceed in the
same manner except that Corollary 2.7 guarantees that ρ can be taken to
be one. Then u is H–invariant and so is v. ¤

In Exercise 2 we ask the reader to extend the conclusions of Theorem
2.9 to a finite number of invariant rational functions.

3. Definition of subgroups in terms of semi–invariants

In this section we use the results of Section 2 to prove that an arbitrary
closed subgroup of an affine algebraic group can be defined in terms of semi–
invariants. We also prove that when the given subgroup is normal it can

 

Observation 2.8. In the language of Chapter 10, Corollary 2.7 asserts
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be defined in terms of invariants. Our methods — that use systematically
Corollaries 2.5 and 2.7 as well as Lemma 2.6 — are slight variations of the
standard ones (see for example [10], [18], [71], [75]).

Theorem 3.1. Let G be an affine algebraic group and H a closed sub-
group with associated Lie algebras g and h respectively. There exist a fi-
nite set of non zero polynomials f1, . . . , fn ∈ k[G], an extendible character
ρ ∈ EG(H) and an extension f ∈ k[G] of ρ such that

H =
{
z ∈ G : z · fi = f(z)fi, i = 1, . . . , n

}

h =
{
τ ∈ g : τ · fi = τ(f)fi, i = 1, . . . , n

}
.

Moreover, the polynomials fi, i = 1, . . . , n can be taken in such a way
that H = Z(f1, . . . , fn) and h = {τ ∈ g : τ(fi) = 0, i = 1, . . . , n}.

Proof: If G = H the result is clear. Assume that I = I(H) 6= 0,
let G ⊂ I be a finite set of generators of I and call V the finite dimen-
sional left G–submodule of k[G] generated by G. Notice that the ideal I is
generated by V ∩ I ⊂ k[G]. If d = dimk V ∩ I, then the one dimensional
subspace

∧d(V ∩ I) ⊂ ∧d(V ) is in fact an H–submodule and there exists
an extendible character ρ with the property that all 0 6= s ∈ ∧d(V ∩ I) are
ρ–semi–invariants. Next we prove that if f ∈ k[G] is an extension of ρ such
that f(1) = 1, then H =

{
z ∈ G : z · s = f(z)s

}
and h =

{
τ ∈ g : τ · s =

τ(f)s
}

. Suppose first that z ∈ G is such that z · s = f(z)s and consider an
arbitrary element t ∈ V ∩ I. We have that 0 = t ∧ s ∈ ∧d+1(V ) and then
0 = z · (t ∧ s) = (z · t) ∧ (z · s) = f(z)(z · t) ∧ s. Hence, (z · t) ∧ s = 0 and
this implies that z · t ∈ V ∩ I. The action of z ∈ G leaves invariant a set of
generators of I; then it will leave I invariant and as I is the ideal of H we
know (see Lemma 3.5.1) that this implies that w ∈ H.

Next we prove the equality involving the Lie algebra of H. First we
observe that if we call χ the k[G]–comodule structure on

∧d(V ) and write
χ(s) =

∑
s0⊗s1, then the semi–invariance of s can be expressed as

∑
s0⊗

s1 − s ⊗ f ∈ k[G] ⊗ I. Indeed, evaluating
∑
s0 ⊗ s1 − s ⊗ f at x ∈ H

we obtain
∑
s0s1(x) − sρ(x) = x · s − ρ(x)s = 0. As τ(I) = 0 for τ ∈ h,

then
∑
s0τ(s1) = sτ(f), i.e. τ · s = τ(f)s. Conversely, if σ · s = σ(f)s and

t ∈ V ∩ I, then 0 = σ · (t ∧ s) = (σ · t) ∧ s + t ∧ (σ · s) = (σ · t) ∧ s. Then
σ · (V ∩ I) ⊂ V ∩ I ⊂ I, and as V ∩ I generate I, we conclude that σ · I ⊂ I.
Indeed, an arbitrary l ∈ I can be written as l =

∑
ripi with ri ∈ k[G] and

pi ∈ V ∩ I. Then σ · l =
∑

(σ · ri)pi +
∑
ri(σ · pi) ∈ I so that σ · I ⊂ I.

Using Lemma 4.7.13, we deduce that σ ∈ h.
In order to construct the required polynomials {f1, . . . , fn}, we consider

a basis {α1, . . . , αn} of the annihilator of s in
(∧d(V )

)∗ and call fi = αi|s,
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i = 1, . . . , n. If w · s = f(w)s for some w ∈ G, then w · (αi|s) = αi|(w ·
s) = f(w)αi|s for i = 1, . . . , n. Conversely, suppose that w ∈ G satisfies
w · (αi|s) = f(w)αi|s for all i. Evaluating at 1 we obtain that αi(w · s) =
f(w)αi(s) = 0 and w · s = aws for some 0 6= aw ∈ k. From the equalities
f(w)αi|s = w·(αi|s) = αi|(w·s) = aw(αi|s) we deduce that f(w) = aw, and
hence

{
w ∈ G : w · s = f(w)s

}
=

{
w ∈ G : w · fi = f(w)fi, i = 1, . . . , n

}
.

The assertion concerning the zeroes of the polynomials {fi : i = 1, · · · , n}
is clear. Indeed, if x ∈ H we have that fi(x) = αi(x · s) = ρ(x)αi(s) = 0,
and if fi(w) = 0 for some w ∈ G, i = 1, . . . , n, then w · s is a zero of αi for
all i. We conclude that w · s ∈ ks; the rest follows easily.

The proof of the remaining equality for the Lie algebra of H is left as
an exercise (see Exercises 3 and 4.34). ¤

Observation 3.2. It is interesting to compare the preceding theorem
with Corollary 2.5. Given an H–stable ideal I ⊂ k[G], this corollary allows
us to find an extendible character ρ that possesses an extension in I. In
Theorem 3.1 we consider the ideal I = I(H) and prove that there exist
an extendible character ρ and a finite number of ρ–semi–invariants that
generate a power of I(H).

Next we deal with the case of a normal subgroup.

Theorem 3.3. Let G be an affine algebraic group and H ⊂ G a closed
normal subgroup. Then there exist a finite set of non zero polynomials
g1, . . . , gm ∈ k[G] such that

H = {w ∈ G : w · gi = gi, i = 1, . . . ,m}
and

h = {τ ∈ g : τ · gi = 0, i = 1, . . . ,m} .

Proof: First we treat the case that H has finite index in G. In this
case we write G = H∪z2H∪· · ·∪zrH and call δ the characteristic function
of H, i.e. δ(z) = 1 if z ∈ H and δ(z) = 0 if z 6∈ H. Then δ ∈ k[G] and
H = {w ∈ G : w · δ = δ}.

Suppose now that the index of H in G is not finite. In accordance with
Theorem 3.1 we can find a finite number of polynomials f1, . . . , fn ∈ k[G],
an extendible character ρ of H and a ρ–semi–invariant polynomial f ∈ k[G]
such that f |H = ρ, H = {w ∈ G : w · fi = f(w)fi, i = 1, . . . , n}
and H = Z(f1, . . . , fn). In Lemma 2.6 we proved the existence of a
closed subgroup — that we call K — that has finite index in G, con-
tains H and satisfies the following additional property: if g is an exten-
sion of ρ to G, then S(g) is an extension of ρ−1 to K. The elements
qij = fi S(fj) ∈ k[G], being a product of semi–invariants of inverse weight,
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are H–invariants when restricted to K, and hence H ⊂ {w ∈ K : w ·qij |K =
qij |K , 1 ≤ i, j ≤ n}. We prove now the opposite inclusion. If w ∈ K
satisfies w · qij |K = qij |K for 1 ≤ i, j ≤ n, then evaluating at 1 we
obtain that qij(w) = 0 for 1 ≤ i, j ≤ n. Explicitly, f1(w)f1(w−1) =
0, f2(w)f1(w−1) = 0, . . . , fn(w)f1(w−1) = 0, f1(w)f2(w−1) = 0, . . . , i.e.
w ∈ (Z(f1, . . . , fn) ∪ (Z(f1)

)−1) ∩ (Z(f1, . . . , fn) ∪ (Z(f2)
)−1) ∩ · · · =(Z(f1, . . . , fn) ∪ (Z(f1, . . . , fn)

)−1) = H ∪H−1 = H.
The proof of the theorem can be completed as follows. If G = Kz1 ∪

Kz2 ∪ · · · ∪Kzr, with z1 = 1, consider, for all 1 ≤ i, j ≤ n, the functions
pij ∈ k[G], pij(azl) = δ1lqij(a), where a ∈ K and δ1l denotes as usual the
Kronecker δ–function. Next we show that if w ∈ G fixes all the functions
pij , then w ∈ K. If w 6∈ K, then w = azl, with l 6= 1. Evaluating at a′ ∈ K
we have that qij(a′) = pij(a′) =

(
(azl) · pij

)
(a′) = pij(a′azl) = 0 for all

1 ≤ i, j ≤ n. Hence, a′ ∈ H, i.e. K = H, and this is a contradiction since
K has finite index in G.

Then, we may assume that w = a ∈ K. Evaluating at a′ ∈ K we have
that qij(a′) = pij(a′) = (a · pij)(a′) = pij(a′a) = qij(a′a) = (a · qij)(a′) and,
as a ∈ K, we conclude that a ∈ H.

We have proved so far that {w ∈ G : w · pij = pij , 1 ≤ i, j ≤ n} ⊂ H.
The reverse inclusion is valid if and only if (h · pij)(azt) = pij(azt) for all
h ∈ H, a ∈ K and 1 ≤ t ≤ r. The left hand side equals pij(azth) =
pij(azthz−1

t zt) = δ1tqij(azthz−1
t ) and the right hand side is δ1tqij(azt).

If t 6= 1 both expressions are equal to zero and if t = 1 the left hand
side equals qij(ah) while the right hand side is qij(a) and both expressions
coincide because h ∈ H.

The verification of the assertion concerning the Lie algebras is similar
to the proof of the corresponding part of Theorem 3.1 (see Exercise 4). ¤

Corollary 3.4. Let G be a connected affine algebraic group and H ⊂
G a closed subgroup. Then

H =
{
w ∈ G : w · f = f ∀f ∈ H[

k[G]
]}

and
h =

{
σ ∈ g : σ · f = 0 ∀f ∈ H[

k[G]
]}
.

Proof: Using Theorem 3.1 we deduce the existence of a character
ρ ∈ X (H) and polynomials f1, f2, . . . , fn ∈ k[G] that are H–semi–invariant
with weight ρ, such that H =

{
w ∈ G : w · fi = f(w)fi, i = 1, . . . , n

}
,

where f ∈ k[G] is a certain extension of ρ. Let V be the finite dimensional
G–submodule of k[G] generated by {f1, . . . , fn}, and call W =

⊕n
i=1 V .

If u = (f1, . . . , fn) ∈ W , then w ∈ H if and only if w · u = f(w)u. If
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z /∈ H, then the elements z · u and u are linearly independent and we can
find α, β ∈ W ∗ such that α(u) = β(u) = 1, α(z · u) = 0, β(z · u) = 1.
If x ∈ H as x · u = ρ(x)u, then the polynomials α|u and β|u are ρ–semi–

invariant and α|u
β|u ∈

H[
k[G]

]
. Since z · α|u

β|u (1) = (α|u)(z)
(β|u)(z) = α(z · u)

β(z · u) = 0

and α|u
β|u (1) = (α|u)(1)

(β|u)(1) = α(u)
β(u) = 1, it follows that z · α|u

β|u 6=
α|u
β|u . Then,

z /∈
{
w ∈ G : w · f = f ∀f ∈ H[

k[G]
]}

.

For the Lie algebra we proceed in a similar manner. Using the same
notations than in the first part of the proof one can easily show that σ ∈ h if
and only if σ ·u = σ(f)u. Hence, if σ /∈ h, then the elements σ ·u and u are
linearly independent and we can find α, β ∈ W ∗ such that α(u) = β(u) =

1, α(σ · u) = 0, β(σ · u) = 1. As σ · α|u
β|u = (α|σ · u)β|u− α|u(β|σ · u)

(β|u)2
, it

follows that
(
σ · α|u

β|u
)
(1) = α(σ · u)β(u)− α(u)β(σ · u)(

β(u)
)2 = −1 6= 0. Finally,

as α|u
β|u is an H–invariant rational function, we conclude that σ /∈

{
σ ∈ g :

σ · f = 0 ∀f ∈ H[
k[G]

]}
.

Conversely, if τ ∈ h then it follows that τ · f = 0 for all H–invariant
rational functions. ¤

The next result shows that if G is an affine algebraic group and H ⊂ G
a closed subgroup, then the set G/H = {xH x ∈ G} can be identified with
a G–orbit for an action of G on a projective space. In Section 4 we use this
result in order to endow G/H with a structure of algebraic variety, in such
a way that π : G→ G/H is the geometric quotient.

Corollary 3.5. Let G be a connected affine algebraic group and H ⊂
G a closed subgroup. There exists a finite dimensional rational G–module
M and a point p0 ∈ P(M) such that:
(1) the stabilizer of p0 with respect to the natural action of G on P(M) is
H;
(2) The Lie algebra h equals Ker

(
d1(πp0)

)
, where πp0 : G → P(M) is the

orbit map associated to p0, i.e. πp0(w) = w · p0. In particular, πp0 is a
separable morphism.

Proof: (1) Consider the field extensions k ⊂ H[
k[G]

] ⊂ [
k[G]

]
and

take {f1, . . . , fn} a set of k–generators of H
[
k[G]

]
as a field. Using Exercise

2, we deduce the existence of a character ρ ∈ EG(H) and n + 1 semi–
invariant polynomials u0, u1, . . . , un ∈ k[G]∗, of weight ρ, such that fi =
ui/u0, i = 1, . . . , n. Let N be the finite dimensional rational G–module
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generated by u0, . . . , un and call M =
⊕n

i=0N . Consider the point p0 =
[u0 : · · · : un] ∈ P(M) and let Gp0 be the stabilizer of p0 for the induced
action of G on P(M). As the polynomials ui, i = 0, . . . , n, are H–semi–
invariants of the same weight, H ⊂ Gp0 . Conversely, if w ∈ Gp0 , then
w·ui = λwui, i = 0, . . . , n, for some λw ∈ k∗, and w·fi = fi, i = 1, . . . , n. As
the elements fi, i = 1, . . . , n, generate H[

k[G]
]
, we conclude that w · f = f

for all f ∈ H[
k[G]

]
, and hence (see Corollary 3.4) that w ∈ H.

(2) In order to prove the assertion concerning the Lie algebra, we write
πp0 = Q◦A, where A : G → M is the orbit map for the action of G on
M and Q : M \ {0} → P(M) is the canonical projection. As we observed
before (see Exercise 1.46), T(u0,...,un)

(
M \ {0}) = M , T[u0:···:un]

(
P(M)

)
=

M/k(u0, . . . , un) and dp0Q = q, where q : M → M/k(u0, . . . , un) is the
canonical linear projection. It follows that Ker(dp0Q) = k(u0, . . . , un) and,
as d1πp0 = dp0Q◦d1A, we conclude that

Ker(d1πp0) =
{
σ ∈ g : d1A(σ) ∈ k(u0, . . . , un)

}
.

As A is a linear action we have that d1A(σ) = σ · (u0, . . . , un) = (σ ·
u0, . . . , σ · un) (see Exercise 4.39) and then

Ker(d1πp0) = {σ ∈ g : σ · ui = µσui, i = 0, . . . , n for some µσ ∈ k} .

Thus, σ · fi = σ · uiu0
= (σ · ui)u0 − ui(σ · u0)

u2
0

= 0. As fi, i = 1, . . . , n,

generate H
[
k[G]

]
, using Corollary 3.4 we conclude as before that σ ∈ h. All

that remains to be proven is that if σ ∈ h, then deθ(σ) = 0. This is follows
from the fact that if for all x ∈ H, x · ui = ρ(x)ui then σ · ui = µσui for
some µσ ∈ k.

The separability of πp0 follows immediately from Theorem 6.3.1. ¤
The next result is a refinement of Corollary 3.5 and its proof is very

similar. It will be crucial in order to deal with finer aspects of the structure

Corollary 3.6. Let G be a connected affine algebraic group and H ⊂
G a closed subgroup. If H

[
k[G]

]
=

[Hk[G]
]
, then there exists a finite di-

mensional rational G–module M and a point m0 ∈M such that:
(1) the stabilizer of m0 is H;
(2) The Lie algebra h equals Ker

(
d1(πm0)

)
, where πm0 : G → M is the

orbit map associated to m0, i.e. πm0(w) = w ·m0. In particular πm0 is a
separable morphism.

Proof: (1) Let {f1, . . . , fn} ⊂ H[
k[G]

]
=

[Hk[G]
]

be a finite set of

field generators of H[
k[G]

] ⊃ k, and consider u0, . . . , un ∈ Hk[G] such

 

of G/H (see Section 6 of this same chapter and also Chapter 10).
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that fi = ui/u0, with ui 6= 0, i = 0, . . . , n. Let N be the finite dimen-
sional rational G–module generated by u0, . . . , un, call M =

⊕n
i=0N , m0 =

(u0, . . . , un) ∈M and consider the stabilizer Gm0 = {w ∈ G : w ·m0 = m0}.
It is obvious that H ⊂ Gm0 .

Conversely, if w ∈ Gm0 , then w · ui = ui, i = 0, . . . , n, and w · fi =
fi, i = 1, . . . , n. As the elements fi, i = 1, . . . , n, generate H[

k[G]
]
, we

conclude that w · f = f for all f ∈ H[
k[G]

]
, and using Corollary 3.4 we

deduce that w ∈ H.
(2) The proof of the assertions concerning the orbit map can be performed
using arguments similar to the ones used at the end of the proof of Corollary
3.5 (see Exercise 5). ¤

Observation 3.7. (1) As the orbit map comes from a linear action, it
is easy to prove that Ker

(
d1(πm0)

)
= {σ ∈ g : σ ·m0 = 0}.

(2) The hypothesis H
[
k[G]

]
=

[Hk[G]
]

of Corollary 3.6 is satisfied in many
important cases, for example in the case that H is a normal subgroup of
G. If follows from Theorem 2.9 that the above hypothesis is verified if
H is a closed subgroup of G that has only one character: the trivial one.

The condition H[
k[G]

]
=

[Hk[G]
]

will be one of the characterizations

The next theorem gives a characterization of the above condition in
terms of the ring of H–invariant polynomials Hk[G] and will be of particular
interest for the considerations about observability.

Theorem 3.8. Let G be a connected affine algebraic group and H ⊂ G

a closed subgroup. Then H =
{
w ∈ G : w · f = f ∀f ∈ Hk[G]

}
if and only

if H
[
k[G]

]
=

[Hk[G]
]
, and this implies that

h =
{
σ ∈ g : σ · f = 0 ∀f ∈ Hk[G]

}
.

In particular, if H is normal in G then H =
{
w ∈ G : w · f = f ∀f ∈

Hk[G]
}

and h =
{
σ ∈ g : σ · f = 0 ∀f ∈ Hk[G]

}
.

Proof: Assume H[
k[G]

]
=

[Hk[G]
]
. If z · f = f for all f ∈ Hk[G],

then z · g = g for all g ∈ [Hk[G]
]

= H[
k[G]

]
and using Corollary 3.4 we

conclude that z ∈ H and that H =
{
w ∈ G : x · f = f ∀f ∈ Hk[G]

}
.

 

of observable subgroups; this concept will be studied extensively in Chapter
10.

5.29) or groups of the form [K,K] for some affine group K.
Examples of such kind of groups are the unipotent groups (see Exercise
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Assume now that H =
{
w ∈ G : w · f = f ∀f ∈ Hk[G]

}
. We will

prove that H
[
k[G]

] ⊂ [Hk[G]
]
; the other inclusion is obvious.

Let f ∈ H[
k[G]

]
and write it as f = u/v for u, 0 6= v ∈ k[G]. Then

f ∈ k[G]v, where k[G]v is the localization of k[G] with respect to v.
The relationship between the different algebras and fields we consider

are displayed in the following diagram of field and ring extensions.

Hk[G]Ä _

²²

Â Ä // [Hk[G]
] Â Ä // H[

k[G]
]

Ä _

²²
k[G] Â

Ä // k[G]v
Â Ä //

[
k[G]

]

Next we show that the pair of k–algebras Hk[G] ⊂ k[G]v are in the
hypothesis of Lemma 1.2.28. We use Hilbert’s Nullstellensatz to guarantee
that an arbitrary k–algebra morphism from k[G]v into k is given by the
evaluation at a point z ∈ G with v(z) 6= 0.

Take z, z′ ∈ G that are not zeroes of v and with the property that
the evaluations εz, εz′ : k[G]v → k coincide when restricted to Hk[G]. If
g ∈ Hk[G] and w ∈ G, then the polynomial g · w also belongs to Hk[G].
Then, (z ·g)(w) = g(wz) = (g ·w)(z) = (g ·w)(z′) = g(wz′) = (z′ ·g)(w). In
other words for all g ∈ Hk[G], z ·g = z′ ·g and then — using the hypothesis
— we deduce the existence of h ∈ H such that z′ = zh. Then z · f = z′ · f ,
and evaluating at 1 we conclude that εz(f) = εz′(f). Then, we may use
Lemma 1.2.28 in order to conclude that f is purely inseparable algebraic
over

[Hk[G]
]
.

Thus, the extension
[Hk[G]

] ⊂ H[
k[G]

]
is algebraic purely inseparable,

and if the base field has characteristic zero both fields have to be equal and
the proof is finished. Otherwise, if chark = p 6= 0 and f ∈ H[

k[G]
]
, then

there exist a positive integer n, and u, v ∈ Hk[G] such that fp
n

= u
v . Hence

vfp
n ∈ Hk[G] and also (vf)p

n ∈ Hk[G]. As the element u′ = vf satisfies
u′p

n ∈ Hk[G] ⊂ k[G] we conclude from the normality of G that u′ ∈ k[G].
As u′ is H–fixed so is v and then f ∈ [Hk[G]

]
.

Next we prove the result concerning the Lie algebra. Assume that[Hk[G]
]

= H[
k[G]

]
, and take σ ∈ g such that σ · f = 0 for all f ∈ Hk[G].

Then σ · f = 0 for all f ∈ H[
k[G]

]
=

[Hk[G]
]

and we conclude from
Corollary 3.4 that σ ∈ h. The fact that if σ ∈ h, then σ · f = 0 for all
f ∈ Hk[G] is very easy to prove. ¤
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4. The coset space G/H as a geometric quotient

The main result of this section is that the action of H on G by right
multiplication admits a geometric quotient, i.e. we prove that the coset
space G/H admits a natural structure of algebraic variety in such a way
that the pair (G/H, π) — π : G→ G/H the canonical projection — is the
geometric quotient. Our presentation is similar to the standard ones on
this subject, see for example [10], [71], [75] and [142].

spaces treated in this section is simpler, mainly due to the existence of a
transitive action of G on the left that commutes with the right action. This
implies that the particular case of coset spaces can be studied with rather
elementary representation theoretical tools.

Observation 4.1. The reader should be aware that concerning ho-
mogeneous spaces some notational confusions might appear. If G is an
abstract group and H a subgroup it is customary to denote as G/H the set
of right H–cosets of G. In the case of algebraic groups, in accordance with
Chapter 6, the symbol G/H should represent the categorical quotient of G
with respect to the H–right action and G//H the geometric quotient.

In our context, the geometric quotient G//H exists (see Theorem 4.2)
and must be based (see Definition 6.4.12) on the coset space G/H. Hence,
we write simply G/H for the geometric quotient and π for the standard
canonical projection.

Theorem 4.2. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. Then the right action by translations of H on G admits a geo-
metric quotient. Moreover, G/H is a quasiprojective variety and the map
Π : G×G/H → G/H, Π(w, zH) = wzH is a regular action.

Proof: We consider first the case that G is connected. Let M and
p0 ∈ P(M) be as in Corollary 3.5; if we consider the natural G–structure on
P(M), then Gp0 = H. Call πp0 : G→ P(M) the orbit map and Y = G · p0.
As Y is closed in P(M), it inherits a structure of projective variety, and we
deduce from Theorem 3.4.19 that G · p0 ⊂ Y is a quasi–projective variety.

In this situation, as πp0 is separable, Theorem 6.4.15 guarantees that
the geometric quotient of G by the right action of H exists and it is iso-
morphic to the orbit of p0, that as we just observed is a quasi–projective
variety.

Moreover, if we call π̂p0 the map induced on the geometric quotient by
πp0 , then the diagram below is commutative, where the unnamed horizontal

 

In Chapter 6 we dealt with general quotients, and this subject will be
taken again in Chapter 13, but the particular situation of homogeneous
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arrows are the action of G on P(M) and its restriction to the orbit.

G×G/H

id×dπp0

²²

Π // G/H

dπp0

²²
G×G · p0Ä _

²²

// G · p0Ä _

²²
G× P(M) // P(M)

By construction, the map π̂p0 is an isomorphism. Hence, it follows
immediately that Π is a morphism of algebraic varieties and the proof for
G connected is finished.

Next we treat the general case. Call G1 the connected component of
the identity of G, the product G1H is a subgroup of finite index, as G1

is normal and of finite index. Writing G = z1G1H ∪ · · · ∪ zrG1H we see
that the homogeneous space G/H is the disjoint union of a finite family of
subsets that are translates of G1H/H and isomorphic to G1/H ∩ G1. If
we translate the quasi–projective variety structure of G1/H ∩ G1 to each
zjG1H/H and then paste all the structures together, we obtain a variety
structure on G/H. It is merely a matter of routine to verify that the
conclusions of our theorem are valid in this situation. ¤

Observation 4.3. Let G be an affine algebraic group and H ⊂ G a
closed subgroup. Next we summarize the main properties concerning the
geometric structure of the homogeneous space G/H.
(1) G/H is a smooth quasi–projective variety and dim(G/H) + dimH =
dimG.
(2) The pair (G/H, π : G→ G/H) is the geometric and categorical quotient
of the action of H on G by right translations.
(3) The left action by multiplication of G on G/H endows G/H with a
transitive structure of G–variety.
(4) If W ⊂ G is a H–stable closed subset, then π(W ) ⊂ G/H is closed (see
Exercise 6.16).
(5) If G is irreducible, then k(G/H) — the field of rational functions of
G/H — is isomorphic to H[

k[G]
]

(see Exercise 6.8).

Corollary 4.4. Let G be an affine algebraic group and H ⊂ G a
closed subgroup. With respect to the natural structure of algebraic variety
defined in Theorem 4.2, G/H is quasi–affine if and only if G1/H ∩ G1 is
quasi–affine and G/H is affine if and only if G1/H ∩G1 is affine.
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Proof: Consider G1H, that is a subgroup of finite index in G, and
write G = z1G1H ∪ · · · ∪ zrG1H. The variety G/H is the disjoint union of
translates of G1H/H that are all isomorphic to G1/H ∩G1. ¤

5. Quotients by normal subgroups

In this section and the next we consider special cases where, under
additional hypothesis, it is possible to pin down further the structure of
G/H.

We consider the case where H is a closed normal subgroup of G. In
this situation G/H is an affine algebraic group and the canonical projection
π : G→ G/H is a homomorphism of algebraic groups.

We use the methods of Section 4 in order to prove first that G/H is
a quasi–affine variety, then we prove that a quasi–affine algebraic group is
necessarily affine.

The general results concerning the algebro–geometric structure of the
quotient of an affine group by a normal closed subgroup seemed to have
appeared for the first time in [18]. A treatment of these aspects of the
theory using purely Hopf algebra techniques can be found for example in
[69] or [71] and another proof that uses the result appearing in Exercise 6
can be found in [10].

The next theorem is a refinement of Theorem 4.2.

Theorem 5.1. Let G be an irreducible affine algebraic group and H ⊂
G a closed subgroup. If H

[
k[G]

]
=

[Hk[G]
]
, then the homogeneous space

G/H is quasi–affine. In particular, if H has no non trivial characters then
the homogeneous space G/H is quasi–affine.

Proof: Consider M and m0 ∈ M as in Corollary 3.6 and call πm0 :
G → M the separable orbit map. Using Theorem 6.3.1 we conclude that
(G ·m0, πm0) is the geometric quotient of the action by right translations
of H on G. From the uniqueness guaranteed by Lemma 6.4.5 we deduce
that G/H is isomorphic to G ·m0, that is an orbit in an affine space and
consequently a quasi–affine variety. ¤

Now we prove an easy and expected consequence of Theorem 4.2.

Lemma 5.2. Let G be an affine algebraic group and H ⊂ G a closed
normal subgroup, then G/H endowed with the natural multiplication and
inversion is a quasi–affine algebraic group and the projection π : G→ G/H
is a morphism of algebraic groups.

Proof: The map Φ : G×G→ G/H, Φ(w,w′) = ww′H is a morphism
of algebraic varieties that is constant on the right H ×H orbits of G×G.
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Then, using the universal property, we factor Φ to a morphism φ : G/H ×
H → H. As G × G/H × H is isomorphic to G/H × G/H and φ induces
the product m : G/H × G/H → G/H, we have in fact proved that this
quotient multiplication m is a morphism of algebraic varieties. Moreover,
the diagram below is commutative — m0 stands for the usual multiplication
on G.

G×G

π×π
²²

m0 // G

π

²²
G/H ×G/H

m
// G/H

Analogously, using Theorem 4.2 we can prove that ι : G/H → G/H,
ι(wH) = w−1H, is a morphism. ¤

The next theorem illustrates the influence of the algebraic over the
geometric structure on a variety. Examples of the converse situation also
abound. The interested reader may look for example at the proof that a
projective algebraic group is abelian in [104].

Theorem 5.3. (1) Let K be a quasi–affine algebraic group. Then K
is affine.
(2) Let G be an affine algebraic group and H ⊂ G a closed normal subgroup.
Then the homogeneous space G/H is an affine algebraic group.

Proof: (1) It is clear that we can assume that K is connected: if K
is quasi–affine so is K1 and if K1 is affine so is K.

The multiplication m : K×K → K induces an algebra homomorphism
m∗ : OK(K) → OK(K ×K) ∼= OK(K)⊗OK(K) (see Exercise 1.32). This
implies — in the same fashion than for affine algebraic groups, see Theorem
4.3.21 — that the action of K on OK(K) by left translations is locally finite.

Let X be an affine variety that contains K as a dense an open sub-
variety. We have an injection of k[X] = OX(X) ⊂ OK(K), and hence as
the elements of k[X] separate the points of X they also separate the points
of K (see Lemma 1.3.33). Consider a finite set of generators {f1, . . . , fn}
of k[X], and denote as V the finite dimensional K–submodule of OK(K)
generated by {f1, . . . , fn}.

The action of K on V defines an injective morphism of algebraic groups
κ : K → GL(V ). Indeed, if there exists an x ∈ G such that for all v ∈ V ,
x · v = v, then evaluating at 1 we deduce that for all v ∈ V , v(x) = v(1)
and as V separates the points of K — V contains a set of generators of
k[X] — we conclude that x = 1.
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Next we show that

(6) k[X] ⊂ Im(κ∗) ⊂ OK(K) .

As k[X] is generated by V , it is enough to prove that V ⊂ Im(κ∗).
Take a k–basis {e1, . . . , en} of V and write for x ∈ K, x · ei =

∑
j αij(x)ej .

If we use the above basis in order to identify GL(V ) with GLn, then the
map κ : K → GLn is given as κ(x) =

(
αij(x)

)
1≤i,j≤n, and all the functions

αij ∈ Im(κ∗). As ei =
∑
j ej(1)αij we conclude that ei ∈ Im(κ∗).

The subgroup H = κ(K) inside of GL(V ) is a constructible abstract
subgroup of the affine algebraic group GL(V ) and as such is closed (see
Theorems 1.4.91 and 3.3.3). Consider the diagram

KÄ _

κ′
²²²²

Â Ä κ // GL(V )

H
- °

;;xxxxxxxxx

where κ′ is a bijective morphism from K onto H.
The corresponding diagram at the level of the regular functions is:

k
[
GL(V )

]

p
²²²²

κ∗ // OK(K)

k[H]
+ ® κ

′∗

99rrrrrrrrrr

Notice that p is surjective and κ
′∗ injective, as κ′ is surjective.

Using (6) we deduce that k[X] ⊂ Im(κ∗) = Im(κ′∗) ⊂ OK(K) and
then, k(X) ⊂ [

Im(κ∗)
]

=
[
Im(κ′∗)

] ⊂ [OK(K)
]
. In accordance with

the considerations of Example 1.4.57 k(X) = k(K) =
[OK(K)

]
, hence

κ′∗
(
k(H)

)
= k(K).

Then, the bijective morphism κ′ is birational and thus it is an isomor-
phism (see Corollary 1.5.7). As H is affine so is K.
(2) This part follows easily from Theorem 2.9, Theorem 5.1 and what we
just proved. ¤

Next we exhibit an example of an affine homogeneous space G/H not
coming as above from a normal subgroup H. In this situation H is called

Example 5.4. Let G be an affine algebraic group. Then the diagonal
∆(G) =

{
(x, x) ∈ G × G

}
is a closed subgroup of G × G, and hence G ×

G/∆(G) is an algebraic variety. We prove that G×G/∆(G) is isomorphic

 

and exact subgroup. This topic will be treated at length in Chapter 11.
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to G and hence affine. The morphism ϕ : G × G → G, ϕ(x, y) = xy−1,
induces a morphism ϕ̂

(
(x, y)∆(G)

)
= xy−1. Clearly, the morphism G →

G×G/∆(G), x 7→ (x, 1)∆(G) is the inverse of ϕ̂. Hence, G×G/∆(G) and
G are isomorphic.

Observe that if we endow G with the action of G×G by left and right
multiplication, (x, y) · a = xay−1, then ϕ̂ is a (G×G)–morphism.

6. Applications and examples

In this section we present a few applications of the tools developed
so far and exhibit some illustrative examples.
will illustrate more thoroughly the use of the methods of this chapter by
showing how to improve our control — under special hypothesis — of the
geometric structure of a homogeneous space.

The theorem that follows is a particular case of a quotient by a finite
group (see Theorem 6.5.2).

Theorem 6.1. Let G be an affine algebraic group and K ⊂ H ⊂ G
closed subgroups, with K normal of finite index in H. If the homogeneous
space G/K is affine then G/H is affine.

Proof: Let the finite group H/K act on the affine variety G/K by
right translations, i.e. zK ·xK = zxK for z ∈ G and x ∈ H. Then the pair
(G/H, π), where π : G/K → G/H is the canonical map, is the categorical
quotient for the above action of H/K. Indeed, let f : G/K → Z be a
morphism constant on the H/K orbits and consider the diagram below.

G

πH !!CC
CC

CC
CC
πK // G/K

π

²²

f // Z

G/H

f̂

==

where the map f̂ : G/H → Z is the morphism associated to f◦πK in
accordance with the universal property of the quotient (G/H, πH : G →
G/H).

The existence and uniqueness of f̂ making the above diagram commu-
tative means that (G/H, π) is the categorical quotient of G/K by H/K.

Since H/K is finite, it follows from Theorem 6.5.2 that G/H is an affine
variety. ¤

An elementary proof of the above result, that avoids the use of the
general theory of quotients can be found in Exercise 13.

 

In Chapters 10 and 11 we
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Corollary 6.2. Let G be an affine algebraic group and H ⊂ G a finite
subgroup. Then G/H is an affine variety.

Proof: This corollary follows immediately from 6.1. It can also be
proved using directly Theorem 6.5.2. ¤

Theorem 6.3. Let G be a connected solvable affine algebraic group and
H ⊂ G a closed subgroup. Then the homogeneous space G/H is affine.

Proof: First we observe that using Theorem 6.1 we can assume that
H is connected.

Using Theorem 5.8.11, we write G = GuoT and H = HuoS with S ⊂
T tori of G. Applying the universal property of the categorical quotient, it
is easy to show that G/H = Gu o T/Hu o S ∼= Gu/Hu × T/S and, as T/S
is affine — in fact T/S is a torus, see Exercise 8 — the proof is reduced to
the case that the original groups G and H are unipotent.

As unipotent groups have only trivial characters, it follows from Corol-
lary 3.6 and Observation 3.7 that there exists a finite dimensional rational
G–module M and an element m0 ∈ M such that G/H ∼= O(m0). As
the orbits of unipotent groups are closed (see Theorem 6.2.11) the proof is
finished. ¤

Theorems 6.4 and 6.7 are due to A. Borel and were first published in
[9]. Our presentation of these results does not differ from the standard one
— that appears also in almost all the textbooks on the subject, e.g. [71],
[75] and [142].

The following important result is called Borel’s fixed point theorem.

Theorem 6.4. Let X be a complete variety and G a connected solvable
group acting regularly on X. Then the set of fixed points GX = {p ∈ X :
z · p = p ∀z ∈ G} is non empty and closed.

Proof: The fact that GX is closed is left as an exercise.
Let O(p) ⊂ X be an orbit of minimal dimension and call π : G→ O(p)

the corresponding orbit map.

and hence it is a complete variety. The morphism π̂ : G/Gp → O(p) is
bijective and G–equivariant with irreducible domain and codomain. Being
O(p) complete, Exercise 16 guarantees that G/Gp is also complete. We
proved in Theorem 6.3 that G/Gp is affine; thus G/Gp must be a point,
and we deduce that G = Gp and hence that p ∈ GX. ¤

Observation 6.5. In Exercise 14 we ask the reader to prove that the
converse of Theorem 6.4 is true.

 

Being O(p) of minimal dimension it is closed in X (see Exercise 6.5)
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Definition 6.6. If G is an affine algebraic group, a closed subgroup
is said to be a Borel subgroup of G if it is connected solvable and maximal
with respect to these properties.

The systematic consideration of Borel subgroups in the theory of affine
algebraic groups was initiated in [9]. The name “Borel subgroup” is due to
C. Chevalley.

Theorem 6.7. Let G be an affine algebraic group and B a Borel sub-
group. Then G/B is a projective variety and any other Borel subgroup is
conjugate to B.

Proof: Let C be a Borel subgroup of maximal dimension — once
the theorem is proved we will know that all such subgroups have the same
dimension. By Theorem 4.2 there exists a finite dimensional rational G–
module M and a point p0 ∈ P(M) such that G/C is isomorphic to the orbit
of p0 in P(M). Call L the line of M corresponding to p0. As the group C
stabilizes L, the original action factors to a representation of C on M/L.

there exists a full flag F in M that has C as stabilizer. Consider the flag

Using Theorem 6.3.1 we deduce that dimG · F = dimG− dimC. If G
is another full flag of M and D its stabilizer, as D is solvable the definition
of C guarantees that dimC ≥ dimD. Then dimG · G = dimG− dimD ≥

It follows (see Exercise 16) that G/C is complete and being quasi–
projective it has to be projective.

Consider now an arbitrary Borel subgroup B and the action of B on
G/C by left translations. From Theorem 6.4 we deduce the existence a
fixed point for this action, i.e. an element zC ∈ G/C such that for all
b ∈ B, bzC = zC. Then z−1bz ∈ C for all b ∈ B; in other words,
z−1Bz ⊂ C. As between Borel subgroups there aren’t any non trivial
inclusion relations and clearly the conjugate of a Borel subgroup is again a
Borel subgroup, we conclude that there exists an element z ∈ G such that
z−1Bz = C. This proves that all the Borel subgroups are conjugate so that
all of them have the same dimension, and hence all the homogeneous spaces
of the form G/B are projective varieties. ¤

Borel subgroups are maximal solvable. As next theorem shows they
are nilpotent only in the trivial case.

 

variety F(M); it is a projective G–variety (see Example 1.4.52 and Exercise
6.1). Call θ : G/C → G · F the orbit map associated to the flag F .

dimG−dimC = dim(G ·F). Hence dimG ·F is minimal and (see Exercise
6.5) G · F is closed and hence complete.

Then, as C is solvable it is the stabilizer of a full flag in M/L and hence
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Theorem 6.8. Let G be a connected affine algebraic group. If B is a
nilpotent Borel subgroup, then G = B.

Proof: We proceed by induction on the dimension of G. If G has
dimension 0 the result is obvious. Assume that G has arbitrary dimension
and that B is a nilpotent Borel subgroup. If B = {1}, then G = G/B is
at the same time affine and projective so G = {1}. Hence, the dimension
of B is positive. Let b ∈ Z(B), and consider the map Adb : G → G,
Adb(z) = b−1zbz−1. If z ∈ G and b′ ∈ B, then Adb(zb′) = Adb(z). Hence,
Adb induces a morphism of algebraic varieties Ãdb : G/B → G. Since
G/B is complete, it follows that the image Ãdb(G/B) = Ãdb(G) ⊂ G is
closed in G and complete and hence it has to consist only of the identity
element. So that for all z ∈ G zb = bz, i.e. Z(B) ⊂ Z(G). As the subgroup
Z(G)1 ⊂ G is connected and abelian, it is contained in a Borel subgroup B′.
Being B′ conjugate of B and the connected component of the identity of
the center invariant by conjugation, we conclude that Z(G)1 ⊂ B and then
that Z(G)1 ⊂ Z(B). We have thus proved that Z(G)1 ⊂ Z(B)1 and as the
other inclusion has already been proved, we deduce that Z(G)1 = Z(B)1.
The hypothesis of the nilpotency of B implies that Z(B)1 is not trivial and
then, B/Z(G)1 is a nilpotent Borel subgroup of G/Z(G)1. We deduce by
induction that B/Z(G)1 = G/Z(G)1 and hence that G = B. ¤

Observation 6.9. Notice that it follows from the proof of last theorem
that a non trivial connected group has a non trivial Borel subgroup.

The lemma that follows that is an easy consequence of Theorem 6.8

the semisimplicity of the category GM implies that G is a torus if G is
connected.

Lemma 6.10. Let G be a connected affine algebraic group. If G has no
infinite unipotent subgroups, then G is a torus (see Theorem 9.4.2).

Proof: Let B be a Borel subgroup of G. Then B = U o T for some
unipotent group U and a torus T , and it follows from our hypothesis that
U = {1}, B = T and, as T is nilpotent, that G is a torus. ¤

We finish this chapter by presenting some illustration of the possible
geometric structures — quasi–affine, affine, quasi–projective, projective —
of homogeneous spaces.

From a general viewpoint, Theorems 5.3 and 6.3, as well as 6.7, provide
examples of homogeneous spaces that are respectively affine and projective.

Conditions for a homogeneous space to be quasi–affine or affine will be

 

will be used in Chapter 9 in order to prove that in positive characteristic

given in Chapters 10 and 11.
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Concerning more concrete examples, in Exercise 10.11 the reader is
asked to prove that the homogeneous space SL2 /H, where

H =
{

( 1 b
0 1 ) : b ∈ k}

is isomorphic to k2 − (0, 0). Thus, this is an example of a quasi–affine
homogeneous space that is not affine. An affine homogeneous space that is
not itself an affine algebraic group is presented in Example 5.4.

Next, we exhibit an example of an algebraic group G and a subgroup H
with the property that the homogeneous space is a quasi–projective variety
that is neither projective nor quasi–affine.

If

G =
{( α β 0

γ δ 0
0 0 ε

)
: αδ − βγ 6= 0, ε 6= 0

}
= GL2×Gm

and
H =

{(
α β 0
0 δ 0
0 0 1

)
: αδ 6= 0

}
= B2× 1.

then G/H ∼=
(
GL2 /B2)×Gm ∼= P1 ×Gm

that is neither quasi–affine nor projective.
Next, for G and H as above, we exhibit an explicit embedding of G/H

as an orbit in a projective variety.
Consider the action of G on P3 given as follows:

((
α β
γ δ

)
, ε

)
· [x : y : z : t] =

[
αx+ βz : (αy + βt)ε : γx+ δz : (γy + δt)ε

]
.

Consider now the quadric ruled surface Q ⊂ P3 defined as Q =
{

[x :
y : z : t] ∈ P3 : xt = yz

}
, and the lines L1 =

{
[0 : y : 0 : t] ∈ P3

}
, L2 ={

[x : 0 : z : 0] ∈ P3
}

contained in Q. Denote as Q0 the quasi–projective
variety Q0 = Q\(L1∪L2); a direct computation shows that Q0 is G–stable.
Consider the point p0 = [1 : 1 : 0 : 0] ∈ Q0 and denote as g =

((
α β
γ δ

)
, ε

)

a generic point of the group G. We have that g · p0 = [α : αε : γ : γε]. We
prove first that the orbit of p0 is Q0. Indeed, given p = [x : y : z : t] ∈ Q0,
if x 6= 0 then

(
( x 0
z 1 ) , y/x

) · [1 : 1 : 0 : 0] = [x : y : z : zy/x] = [z : y : z : t] .

If x = 0, as the point does not belong to L1 and as xt = yz we conclude
that y = 0. Then the point p = [0 : 0 : z : t] can be obtained as

(
( 0 1
z 0 ) , t/z

) · [1 : 1 : 0 : 0] = [0 : 0 : z : t].

Next we prove that Gp0 = H. Suppose that g · p0 = p0, then [α : αε :
γ : γε] = [1 : 1 : 0 : 0]. Hence ε = 1, γ = 0, i.e. g ∈ B2 × 1 = H and, as

 

(see Exercises 10, 15 and 1.40),
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the orbit map is separable as can be easily verified, the homogeneous space
G/H is isomorphic to Q0.

7. Exercises

1. Let G be an affine algebraic group and H ⊂ G a closed subgroup.
Prove the last assertion of Theorem 2.3. Hint: given M simple take N of
minimal dimension satisfying the conditions of the theorem and prove that
N is simple.

2. Let G be an connected affine algebraic group and H ⊂ G a closed
subgroup. Prove that if fi ∈ H[

k[G]
]
, i = 1, . . . , n, then there exist ui, i =

0, 1, . . . , n, u0 6= 0 and ρ ∈ EG(H) such that: fi = ui/u0, x · ui = ρ(x)ui
for all x ∈ H and all i = 0, 1, . . . , n.

3. In the notations of Theorem 3.1, prove that h = {τ ∈ g : τ(fi) =
0, i = 1, . . . , n}.

4. Proof the assertion of Theorem 3.3 concerning the Lie algebra.

5. In the notations of Corollary 3.6, prove that the annihilator of m0

is h, the Lie algebra of H.

6. Let G be an affine algebraic group and H ⊂ G a closed and normal
subgroup. Using Theorem 3.8 prove that there exists a finite dimensional
G–module M with the properties that the associated morphism α : G →
GL(V ) satisfies : (1) Ker(α) = H and Ker(α•) = L(H).

7. Assume that G is a finite solvable group that acts by automorphisms
on a complete variety X. Prove that G has a fixed point in X.

8. Let T be a torus and S ⊂ T a closed subgroup. Prove that T/S is
a torus.

9. Let G be a connected affine algebraic group and K ⊂ G a closed
subgroup, with the property that the homogeneous space G/K is affine.
Our goal in this exercise is to prove that if f ∈ K[

k[G]
]
, then f ∈ [Kk[G]

]
.

(a) Prove that we can write f = s/t with s, t ρ–semi–invariant polynomials
and t(1) 6= 0. Call Z = Z(t); if π : G → G/K is the canonical projection,
then K 6∈ π(Z) ⊂ G/K and π(Z) is closed in G/K.
(b) Take g ∈ k[G/K] such that g(K) 6= 0, g

(
π(Z)

)
= 0 and prove that

h = g ◦ π belongs to Kk[G] and h(Z) = 0.
(c) Conclude that for some exponent n and for some u ∈ k[G], hn = ut and
hence f = us/ut ∈ [Kk[G]

]
.
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10. Prove that GLn/Bn is isomorphic to the variety of all flags of kn
and hence that it is projective (see Exercise 6.1).

Observe that in particular, GL2/B2
∼= P1, the projective space.

11. ([75]) Let k be a field of characteristic p > 0, and call G the
group consisting of the affine space A4 endowed with the following product:
(a, b, α, β) · (c, d, γ, δ) = (a+ c, b+ d+ αδ, α+ γ, β + δ).

Show that the subgroup H =
{

(a, b, ap, ap) : a, b ∈ k} ⊂ G is normal
and the quotient is isomorphic to k2 with its usual structure. Prove that
G is unipotent and find an explicit immersion of G into U5.

12. ([51]) Let H =
{

(aij) ∈ SL5 : aii = 1, i = 1, . . . , 5, aij = 0, (i, j) 6=
(1, 3), (i, j) 6= (1, 4), (i, j) 6= (2, 3), (i, j) 6= (2, 4)

}
. Consider M =

∧
(k5)

with the natural SL5–action and call m0 = e1 ∧ e3 + e2 ∧ e5 + e1 ∧ e2 ∧
e3 ∧ e4 + e1 ∧ e2 ∧ e4 ∧ e5 where {e1, . . . , e5} denotes the canonical basis of
k5. Prove that H = SL5m0 and that SL5/H is an affine variety. Describe
explicitly the geometric structure of SL5/H.

13. ([71]) The purpose of this exercise is to present a proof of Corollary
6.2 that does not use the general theory of quotients. Let us take a tower
of groups and closed subgroups K ⊂ H ⊂ G with K normal and of finite
index in H. We want to prove that if G/K is affine so is G/H.
(a) Using Corollary 4.4 reduce to the case that G is connected.

(b) If A = k[G] and KA = k[G/K], then conclude (see Exercise 9) that
K [A] =

[
KA

]
.

(c) Using the trace map T : K [A] → H [A], prove that = H [A] =
[
HA

]
.

Hint: take f ∈ H [A] ⊂ [
KA

]
and write f = u/v with u, v ∈ KA. Using

elementary algebraic results concerning finite field extensions and properties
of the trace map deduce that there is an element h ∈ KA with the property
that T (hv) 6= 0. Then write f = hu/hv and deduce that fT (hv) = T (hu),
i.e., that f ∈ [

HA
]
.

(d) Prove that HA is an affine algebra and consider the affine algebraic
variety S = Spm

(
HA

)
. Prove that the associated map G→ S factors to a

bijective morphism σ : G/H → S.
(e) Using the fact that both varieties have the same field of rational func-
tions conclude that G/H is isomorphic to S.

14. Let G be a connected affine algebraic group with the property that
that for all regular complete G–varieties the action has a non empty set of
fixed points. Prove that G is solvable.

15. Let G and H be affine algebraic groups. If K ⊂ G and L ⊂ H
are closed subgroups, call P = G×H and Q = K × L. Show that P/Q is
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isomorphic with G/K ×H/L. Conclude in particular that

OG/K×H/L(G/K ×H/L) ∼= Kk[G]⊗ Lk[H] .

16. In the notations of Theorem 6.4, prove that if O(p) is complete
then G/Gp is also complete. Hint: use Exercise 6.9 to prove that G/Gp
satisfies the definition of a complete variety.

17. Let H ⊂ SL2 be the subgroup

H =
{(

a b
0 a−1

)
: a 6= 0, b ∈ k}.

Prove that SL2 /H ∼= P1. Conclude that H is a Borel subgroup of SL2

and that Hk[SL2] = k.

18. Let G be a connected solvable affine algebraic group and M a finite
dimensional representation of G. Using Borel’s fixed point theorem prove
that G leaves invariant a full flag of M (see Theorem 5.8.1 and Observation
5.8.2).

19. Using the methods of Theorem 6.8 prove the following result: if G
is an irreducible affine algebraic group and α : G→ G is an automorphism
leaving fixed the elements of some Borel subgroup of G, then α = idG.

 



CHAPTER 8

Algebraic groups and Lie algebras in
characteristic zero

1. Introduction

This chapter has two main purposes. One is to improve, specially over
fields of characteristic zero, our understanding of the structure of the Lie
algebra of an algebraic group; the other is to use the theory of homoge-
neous spaces in order to complete, again in characteristic zero, the picture
concerning the correspondence between properties of algebraic groups and

Since the birth of the theory of Lie groups, a central theme has been
the interplay between properties of the group and their linearized version
as properties of the corresponding Lie algebra. In going from Lie groups to
Lie algebras, the main tool was the differentiation — linearization — pro-
cess, and this technique was also used with success in the algebraic set up
by the pioneers of the theory of algebraic groups. Concerning the converse
process, i.e. to establish properties at the group level from their linearized
version in the Lie algebra, the situation appeared more complicated. In the
differentiable category transcendental tools were used — e.g., the exponen-
tial map that is structurally non algebraic — and a priori, these tools were
not available in the algebraic case, and had to be adapted to this context.

In Chapter 4, we used the same classical differentiation methods in
order to establish the main results concerning the descent from properties of
the groups to properties of the Lie algebras. In Section 2 of this chapter we
walk in the reverse direction, and obtain information about the groups from
data about their Lie algebras. Here the restriction to fields of characteristic
zero is mandatory: for positive characteristic, the information about the
group cannot be fully recuperated from the Lie algebra. Almost all the
results of this section are due C. Chevalley (see [18]). The methods we use
differ substantially from the ones he originally employed — Chevalley used
formal exponentiation in an analogous manner to the case of Lie groups and
Lie algebras. Most of the proofs we present here are due to A. Borel (see

279

 

of their associated Lie algebras that we started to develop in Chapter 4.



280 8. ALGEBRAIC GROUPS AND LIE ALGEBRAS IN CHARACTERISTIC ZERO

[10]); by relying on the strong properties concerning the geometric structure

classical proofs.
In Section 3, we define the concept of algebraic Lie algebra and prove

the linear version of Mostow’s structure theorem — the non linear version

A Lie algebra h is called algebraic if there exists an algebraic group H
such that L(H) = h.

This concept, with a different definition based on the concept of the
“replica of a matrix”, was introduced by Chevalley and collaborators and
has been studied by different authors. Some of the early references on the
subject of algebraic Lie algebras are for example [17], [23], [24], [48], [134],
[64], [65], [70], [95].

Mostow’s theorem — see [101] for the original presentation or [71]
for a more recent one — asserts that over a field of characteristic zero
an affine algebraic group is the semidirect product of its unipotent radical
with a linearly reductive subgroup R. A group is called linearly reductive
if the category of its rational representations is semisimple. This result
is a deep generalization, but only valid in characteristic zero, of the well
known structure theorem for solvable groups (see Theorem 5.8.11) and will
be needed for our study of the concept of reductivity in Chapter 9.

Here we prove the linear version of Mostow’s theorem: if G is an affine
algebraic group with Lie algebra g and the characteristic of the base field
is zero, then g = L(

Ru(G)
)⊕ r where Ru(G) is the unipotent radical of G

and r is a G–linearly reductive sub-Lie algebra of g.
In order to prove the above decomposition result, besides of a very

precise understanding of the correspondence between the Lie algebra and
the group, we have to delve into some of the finer aspects of the classical

we use H. Weyl’s semisimplicity theorem as well the existence of Levi’s
decomposition (see Theorems 2.6.1 and 2.6.3).

For a very terse and informed account of the early history of many of
the themes touched in this chapter, the interested reader should look at
[11]. The mathematical results developed here are presented in almost
all the general books on algebraic groups (see for example: [45], [75],
[142]). We have profited most from the expositions of A. Borel in [10]
and G. Hochschild in [69] and [71].

 

of homogeneous spaces we saw in Chapter 7, they simplify substantially the

will be proved in Chapter 9.

theory of semisimple Lie algebras as presented in Chapter 2; for example,
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2. Correspondence between subgroups and subalgebras

We start with a crucial result, valid in arbitrary characteristic, that
will be one of the main tools in order to lift properties from the Lie algebra
to the group.

Theorem 2.1. Let G be an affine algebraic group and H,K ⊂ G two
closed subgroups. Consider the canonical projection π : G → G/K and its
restriction π|H : H → π(H) ⊂ G/K. Then L(H ∩K) = L(H) ∩ L(K) if
and only if π|H is separable.

Proof: Consider the action H × G/K → G/K given by left transla-
tions. Then π|H is the orbit map corresponding to the orbit of 1K ∈ G/K
for the given action. By Theorem 6.3.1, this orbit map is separable if and
only if Ker

(
d1(π|H)

)
= L(H1K). Now, as H1K = {h ∈ H : h · 1K = 1K} =

H ∩ K, it follows that L(H1K) = L(H ∩ K). Moreover, Ker
(
d1(π|H)

)
=

L(H)∩Ker
(
d1(π)

)
, and as the projection π : G→ G/K is a separable mor-(

1

)
= L(K). Hence,

Ker
(
d1(π|H)

)
= L(H) ∩ L(K) and the result follows. ¤

Observation 2.2. If we drop the assumption about the separability of
the morphism π|H in the above Theorem 2.1, we can only guarantee that
L(H ∩ K) ⊂ L(H) ∩ L(K). Indeed, it follows from Theorem 6.3.1 that
L(H1K) ⊂ Ker

(
d1(π|H)

)
. Then, L(H ∩K) ⊂ L(H) ∩ L(K).

Theorem 2.3. Let G be an affine algebraic group defined over an alge-
braically a field of characteristic zero and H,K ⊂ G two closed subgroups.
Then L(H ∩K) = L(H) ∩ L(K).

Proof: As the base field has characteristic zero, the restriction of the
canonical projection π|H : H → π(H) ⊂ G/K is separable and then, using
Theorem 2.1, we conclude that L(H ∩K) = L(H) ∩ L(K). ¤

Corollary 2.4. Let G be an affine algebraic group defined over an
algebraically closed field of characteristic zero. If H,K ⊂ G are connected
closed subgroups, then H ⊂ K if and only if L(H) ⊂ L(K).

Proof: If L(H) ⊂ L(K), then L(H ∩ K) = L(H) ∩ L(K) = L(H).
In the inclusion of H ∩K ⊂ H of connected algebraic subgroups of G, the
equality of the Lie algebras implies the equality of the dimensions of the
corresponding groups and hence the equality of the groups. Then H ⊂ K.
The converse is obvious. ¤

Observation 2.5. The above results fail in non zero characteristic (see
Exercise 1).

 

phism (see Theorem 6.3.1), we deduce that Ker d (π)
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Corollary 2.6. Let φ : G → H be a morphism of affine algebraic
groups defined over a field of characteristic zero and φ• : L(G) → L(H) its
differential. Then Ker(φ•) = L(

Ker(φ)
)
.

Proof: Independently of the hypothesis concerning the characteristic
of the base field, we proved in Corollary 4.7.21 that Ker(φ•) ⊃ L(

Ker(φ)
)
.

In order to prove the converse consider φ as an orbit map corresponding to
the action G × H → H given by the formula g · h = φ(g)h. Using again
Theorem 6.3.1, we conclude that Ker(φ•) = L(

Ker(φ)
)
. ¤

To improve our control of the linearization in the case of fields of char-
acteristic zero we have to perform some “infinitesimal constructions”.

Definition 2.7. Let G be an affine algebraic group. If τ1, . . . , τn ∈
L(G), consider the (convolution) product τ1 · · · τn ∈ k[G]∗ and call Iτ1···τn =
Ker(τ1 · · · τn). Call

I∞ =
⋂{

Iτ1···τn : τi ∈ L(G) , 1 ≤ i ≤ n , n = 0, 1, . . .
}

and for a fixed τ ∈ L(G),

Iτ,∞ =
⋂{

Iτn : n = 0, 1, . . .
}
.

We make the convention that the product in k[G]∗ of n = 0 derivations
equals the counit ε.

Lemma 2.8. Let G be a connected affine algebraic group.
(1) If τ ∈ L(G), then Iτ,∞ and I∞ are Hopf ideals of k[G].
(2) I∞ ⊂ ⋂

τ∈L(G) Iτ,∞ ⊂ Iτ,∞ for all τ ∈ L(G).

(3) Consider the closed subgroups

Gτ,∞ =
{
z ∈ G : f(z) = 0,∀f ∈ Iτ,∞

}
= V(Iτ,∞) ,

G∞ =
{
z ∈ G : f(z) = 0,∀f ∈ I∞

}
= V(I∞) .

Then for all τ ∈ L(G), Gτ,∞ ⊂ G∞ ⊂ G. If chark = 0, then τ ∈
L(Gτ,∞), G∞ = G and I∞ = {0}. If chark > 0, then Gτ,∞ = G∞ = {1}.

Proof: (1) We prove the result for I∞, the analogous case of Iτ,∞ is
left as an exercise (see Exercise 2). Recall that if σ ∈ L(G) and f ∈ k[G],
then σ · f =

∑
f1σ(f2) ∈ k[G] (Sweedler’s notation). First we observe that

if f ∈ I∞ and σ ∈ L(G), then σ · f ∈ I∞; this follows from the equality
(τ1 · · · τn)(σ ·f) = (τ1 · · · τnσ)(f) (see Exercise 3). Also, if τ1, . . . , τn ∈ L(G)
and f, g ∈ k[G], then (τ1 · · · τn)(fg) = (τ1 · · · τn−1)

(
f(τn · g

)
+

(
τn · f)g

)
(see Exercise 3).

Proceeding by induction on the number of elements of the Lie algebra
to multiply, we prove that if f ∈ I∞ and g ∈ k[G], then fg ∈ I∞. The
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initial step of the induction corresponds to take τ1 · · · τn with n = 0 — that
is simply ε — and in this case the result is obvious.

Next we prove that I∞ is a coideal. If τ1, . . . , τn, σ1, . . . , σm ∈ g, then
(τ1 · · · τn ⊗ σ1 · · ·σm)∆(I∞) = (τ1 · · · τnσ1 · · ·σm)(I∞) = {0}. Hence,

∆(I∞) ⊂ Ker(τ1 · · · τn ⊗ σ1 · · ·σm) =

Ker(τ1 · · · τn)⊗ k[G] + k[G]⊗Ker(σ1 · · ·σm) .

Then, ∆(I∞) ⊂ I∞ ⊗ k[G] + k[G] ⊗ I∞. The fact that I∞ is a Hopf
ideal follows immediately from Exercise 3.
(2) It is clear that I∞ ⊂ Iτ,∞ for every τ ∈ L(G).
(3) For all τ ∈ L(G) we have that Gτ,∞ ⊂ G∞ ⊂ G and L(Gτ,∞) ⊂
L(G∞) ⊂ L(G).

Assume that the base field has characteristic zero, if τ is an arbitrary
element in L(G), as τ annihilates Iτ,∞ = I(Gτ,∞) (see Exercise 5), it follows
that τ ∈ L(Gτ,∞).

Then τ ∈ L(G∞) and hence L(G) = L(G∞). The conclusion — in the
hypothesis of characteristic zero — that G∞ = G is a direct consequence
of Corollary 2.4.

Suppose now that the field has characteristic p > 0. In this case, if f ∈
Ker(ε) ⊂ k[G], then fp ∈ I∞. Indeed, (τ1 · · · τn)(fp) =

∑
τ1

(
fp1

) · · · τn
(
fpn

)
— we are using Sweedler’s notation. But this product is zero because
σ(fp) = 0 for an arbitrary σ ∈ L(G) and f ∈ k[G]. Hence,

{
fp : f ∈

Ker(ε)
} ⊂ I∞ ⊂ Ker(ε). Then, the only maximal ideal of k[G] that contains

I∞ is Ker(ε), and the conclusion follows. ¤

Observation 2.9. If the base field has positive characteristic, then
Gτ,∞ is trivial, but in the case of zero characteristic it is quite an impor-
tant object: it can be proved that it is irreducible and contained in every
algebraic subgroup of G whose Lie algebra contains τ . These assertions are
left to the reader as an exercise (see Exercise 5).

Theorem 2.10. Let G be an irreducible affine algebraic group and V
a finite dimensional rational G–module. If v ∈ V , consider the stabilizer
Gv and L(G)v = {τ ∈ g : τ · v = 0}. Then, L(Gv) ⊂ L(G)v. Moreover, if
chark = 0, then L(Gv) = L(G)v.

Proof: Consider the induced k[G]–comodule structure on V , χ : V →
V ⊗ k[G], and the induced k[Gv]–comodule structure ψ = (id⊗π)χ : V →
V ⊗k[Gv], where π : k[G] → k[Gv] is the restriction morphism. As x ·v = v
for all x ∈ Gv, it follows that ψ(v) = v ⊗ 1 and then, if τ ∈ L(Gv),
τ · v = vτ(1) = 0.
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To prove the converse in the case of zero characteristic we proceed as
follows. Write χ(v) =

∑
vi⊗fi with {vi : i = 1, . . . , n} linearly independent

over k. The condition x · v = v is equivalent to
∑
fi(x)vi = v that is

equivalent to the conditions fi(x) = fi(1) for i = 1, . . . , n. Then Gv =
{x ∈ G : fi(x) = fi(1), i = 1, . . . , n}. Moreover, τ ∈ L(G)v if and only if
τ · v =

∑
τ(fi)vi = 0, i.e. L(G)v = {τ ∈ L(G) : τ(fi) = 0, i = 1, . . . , n}. It

follows by induction that if τ ∈ L(G)v, then τm(fi) = 0 for i = 1, . . . , n.
Indeed, τm(fi) =

∑
τm−1

(
(fi)1

)
τ
(
(fi)2

)
and as

∑
i(vi)0 ⊗ (vi)1 ⊗ fi =∑

i vi ⊗ (fi)1 ⊗ (fi)2, from the fact that τ(fi) = 0 we deduce that 0 =∑
i viτ

m−1
(
(fi)1

)
τ
(
(fi)2

)
=

∑
i viτ

m(fi). Using again the independence of
{vi : i = 1, . . . , n} we conclude that τm(fi) = 0 for i = 1, . . . , n. Then, the
elements fi−fi(1) ∈ Iτ,∞, i.e. the ideal

〈
f1−f1(1), . . . , fn−fn(1)

〉 ⊂ Iτ,∞.
Hence, Gτ,∞ ⊂ V(〈

f1−f1(1), . . . , fn−fn(1)
〉)

= Gv. Then τ ∈ L(Gτ,∞) ⊂
L(Gv). ¤

See Exercise 7 for a useful application of Theorem 2.10.

Theorem 2.11. Let G be an affine algebraic group, W a finite dimen-
sional rational G–module and U ⊂ V ⊂ W two k–subspaces. Consider
H =

{
x ∈ G : x · V = V, x · U = U, x · v − v ∈ U,∀ v ∈ V }

. Then H is a
closed subgroup of G and L(H) ⊂ {

τ ∈ L(G) : τ · V ⊂ U
}
. Moreover, if

chark = 0, then L(H) =
{
τ ∈ L(G) : τ · V ⊂ U

}
.

Proof: Clearly H is a closed subset of G. The fact that H is a
subgroup follows from the following equalities: (xy) · v− v = x · (y · v− v) +
x · v − v, x−1 · v − v = x−1(v − x · v). Call ψ = (id⊗π)χ : W →W ⊗ k[H]
the comodule structure associated to the action of H on W . If v ∈ V , the
definition of H guarantees that ψ(v) − v ⊗ 1 ∈ U ⊗ k[H]. Hence, if v ∈ V
and τ ∈ L(H), then τ · v ∈ U .

If chark = 0, to prove the converse we proceed as follows. Consider
the ideal I ⊂ k[G] generated by the union of the subsets

{
γ|u : γ ∈ U⊥ ⊂

W ∗, u ∈ U
}

,
{
η|v : η ∈ V ⊥ ⊂ W ∗, v ∈ V

}
,

{
γ|v − γ(v) : γ ∈ U⊥ ⊂

W ∗, v ∈ V }
(see Definition 4.3.1). It is easy to verify that H = V(I). For

example, suppose that x ∈ V(I), then
(
γ|v − γ(v)

)
(x) = 0 for all γ, v as

above. Hence for all γ, v, we have that γ(x · v − v) = 0 and this means
that x · v − v ∈ U for all v ∈ V , i.e. x satisfies the third condition in the
definition of H. The other conditions are proved similarly.

Assume that τ ∈ L(G) is an element that satisfies that τ · v ∈ U
for all v ∈ V . It is easy to see that in the above notations τ(γ|u) =
τ(η|v) = τ(γ|v) = 0. We prove by induction that τn(γ|u) = τn(η|v) =
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τn
(
γ|v−γ(v)

)
= 0 (the case n = 0 is obvious). Let us compute for example

τn(γ|v) =
∑

τn
(
γ(v0)v1

)
=

∑
γ(v0)τ(v1) · · · τ(vn) =

∑
γ(τ · v0)τ(v1) · · · τ(vn−1) = 0 .

Here we used the fact that τ · v0 ∈ U and γ ∈ U⊥. We conclude, in the
notations of Lemma 2.8, that I ⊂ Iτ,∞ so that Gτ,∞ ⊂ V(I) = H. Then
τ ∈ L(Gτ,∞) ⊂ L(H). ¤

In Exercise 6 we ask the reader to prove a particular case of Theorem
2.11 using the methods of Theorem 2.10.

Corollary 2.12. Let G be connected affine algebraic group and V a
finite dimensional rational G–module, that will be considered as a L(G)–
module with the derived action. Then:
(1) GV ⊂ L(G)V ;
(2)

{
W : W G–submodule of V

} ⊂ {
W : W L(G)–submodule of V

}
.

If chark = 0, then the inclusions (1) and (2) become equalities.

Proof: (1) If v ∈ GV , and we call χ : V → V ⊗k[G] the corresponding
comodule structure, we have that χ(v) = v ⊗ 1. Then if τ ∈ L(G), τ · v =
vτ(1) = 0.

The proof of (2) is similar.
For the converses, if chark = 0 we use Theorem 2.10 and 2.11. For

example, v ∈ L(G)V if and only if L(G)v = L(G). In accordance with The-
orem 2.10 this happens if and only if L(Gv) = L(G) and as G is connected
this implies that Gv = G, i.e. that v ∈ GV .

The rest of the proof is left as an exercise. ¤
In Exercise 9 we exhibit an example of the failure of the above theorem

in the case that the characteristic of the base field is not zero.

Theorem 2.13. Let G be an irreducible affine algebraic group over a
field k of chark = 0 and Z(G) its center.
(1) If Ad : G × L(G) → L(G) denotes the adjoint representation of G in
L(G) (see Definition 4.7.15). Then Z(G) = Ker(Ad).
(2) The Lie algebra L(G) is abelian if and only if G is abelian.
(3) Let H ⊂ G be a closed irreducible normal subgroup of G. Then L(H)
is an ideal in L(G), if and only if H is a normal subgroup of G.

Proof: (1) The inclusion Z(G) ⊂ Ker(Ad) has already been proved
without any hypothesis concerning the characteristic (see Corollary 4.7.18).
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If y ∈ G and σ ∈ L(G), then Ad(y)(σ) = y · σ · y−1 (see the results

x · τ = τ · x for all τ ∈ L(G). An easy calculation yields that for all
τ1, . . . , τn ∈ L(G) we have that x ·(τ1 · · · τn) = (τ1 · · · τn) ·x (see Exercise 4).
In other words, (τ1 · · · τn)(f ·x) = (τ1 · · · τn)(x·f) for all f ∈ k[G]. Recalling
that f · x =

∑
f1(x)f2 and x · f =

∑
f1f2(x), we conclude from the above

equality that for all τ1, . . . , τn ∈ L(G) the polynomial
∑
f1(x)f2−f1f2(x) ∈

Ker(τ1 · · · τn). Using Lemma 2.8 (3) we conclude that for all f ∈ k[G],∑
f1(x)f2 − f1f2(x) = 0. In other words, for all y ∈ G and f ∈ k[G]

we have that f(xy) = f(yx). This implies that xy = yx for all y ∈ G,
i.e. x ∈ Z(G).
(2) The fact that if G is abelian so is L(G) was proved in Corollary 4.7.19
independently of hypothesis about the characteristic of the field.

Assume that L(G) is abelian. If we consider the rational G–module
L(G) with the Ad–action, using Corollary 2.12 we deduce that G L(G) =
L(G) L(G). As the action induced by the Ad–action is the ad–action of
L(G) on L(G), we conclude that L(G) = L(G) L(G) = G L(G). This means
that G acts trivially in L(G). In accordance to part (1) we conclude that
G = Z(G).
(3) If H CG, then L(H) is an ideal of L(G), as was proved independently
of the characteristic in Corollary 4.7.20.

Conversely, assume that L(H) is an ideal of L(G). Using again Corol-
lary 2.12, we conclude that L(H) is a G–submodule with respect to the
adjoint action. In other words, we have that Ad(x)

(L(H)
)

= L(H) for
all x ∈ G. Consider now cx(H) ⊂ G. It is clear (see Exercise 8) that
L(
cx(H)

)
= Ad(x)

(L(H)
)

= L(H). We deduce from Corollary 2.4 that
cx(H) = H for all x ∈ G. Hence H CG. ¤

In Exercise 10 we exhibit counterexamples to the results of Theorem
2.13 in the case of positive characteristic.

Next we perform some explicit computations with derivations.
Let G be an affine algebraic group and V a finite dimensional rational

G–module and consider GL(V ) as a subset of gl(V ).
For an arbitrary α ∈ gl(V )∗ we define the representative polynomial of

α (called fα ∈ k[G]) as fα(x) = α
(
ρ(x)

)
.

In the case that γ ∈ V ∗ and v ∈ V , the element γ⊗v can be interpreted
as an element of gl(V )∗ in the obvious manner: if T ∈ gl(V ), then (γ ⊗
v)(T ) = γ

(
T (v)

)
. In this situation, fγ⊗v = γ|v. If we denote as χρ the

k[G]–comodule structure on V induced by ρ, then if τ ∈ L(G), ρ•(τ) =
(id⊗τ)χρ. Moreover in the case that we have n elements τ1, τ2, . . . , τn ∈

 

of Section 7 and Exercise 4.38). Hence if x ∈ Ker(Ad) we conclude that
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L(G), the preceding formula generalizes to

ρ•(τ1) · · · ρ•(τn) = (id⊗τ1 · · · τn)χρ .

Then,

(γ ⊗ v)
(
ρ•(τ1) · · · ρ•(τn)

)
=γ

(
(id⊗τ1 · · · τn)χρ(v)

)
=

γ
(∑

v0(τ1 · · · τn)(v1)
)

=

(τ1 · · · τn)
(∑

γ(v0)v1
)

=

(τ1 · · · τn)(γ|v) = (τ1 · · · τn)(fγ|v) .

As the elements of the form γ⊗v generate gl(V )∗, we conclude that for
all α ∈ gl(V )∗, α

(
ρ•(τ1) · · · ρ•(τn)

)
= (τ1 · · · τn)(fα). It is also clear that

α
(
ρ(x)− Id

)
= α

(
ρ(x)− ρ(1)

)
= fα(x)− fα(1).

The next theorem gives more precise information concerning the lin-
earization process in characteristic zero.

Theorem 2.14. Let G be a connected affine algebraic group and V a
finite dimensional rational G–module. Consider the morphism associated
to the representation ρ : G → GL(V ) and its differential ρ• : L(G) →
gl(V ). Consider the subspaces of gl(V ): S = 〈ρ(x) − Id : x ∈ G〉 and
Σ =

〈
ρ•(τ1)ρ•(τ2) · · · ρ•(τn) : τi ∈ L(G) , i = 1, . . . , n

〉
. Then Σ ⊂ S and if

chark = 0, then Σ = S.

Proof:

From the explicit expressions obtained above, we deduce immediately
that if α

(
ρ(x) − Id

)
= 0 for all x ∈ G, then fα(x) = fα(1) for all x ∈ G

and hence fα is the constant function 1 ∈ k[G]. Then (τ1 · · · τn)(fα) = 0
for τ1, . . . , τn ∈ L(G), so that ρ•(τ1) · · · ρ•(τn) ∈ Ker(α). Then Σ ⊂ S.

Conversely, suppose that chark = 0 and α
(
ρ•(τ1) · · · ρ•(τn)

)
= 0 for all

τ1, . . . , τn ∈ L(G). Then (τ1 · · · τn)(fα) = 0 and thus fα−fα(1) ∈ I∞ = {0}.
Hence, fα(x)− fα(1) = α(ρ(x)− Id) = 0 and it follows that S ⊂ Σ. ¤

3. Algebraic Lie algebras

Definition 3.1. Let k be a field of arbitrary characteristic, G an affine
algebraic group and h ⊂ L(G) a k–Lie subalgebra. Then h is said to be
algebraic if there exists an affine algebraic subgroup H ⊂ G with L(H) = h.

See Exercises 11, 12 and 13, for examples of non algebraic Lie subalge-
bras and related topics.
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Definition 3.2. Let G be an affine algebraic group and L(G) its as-
sociated Lie algebra. If h ⊂ L(G) is a Lie subalgebra we say that h admits
an algebraic hull if there exists an algebraic Lie subalgebra h+ ⊂ L(G)
such that: (a) h ⊂ h+; (b) if k is an algebraic Lie subalgebra of L(G) that
contains h, then h+ ⊂ k.

Observation 3.3. It is clear that the algebraic hull has to be unique
if it exists. The next theorem guarantees the existence of the algebraic hull
in the case of characteristic zero. Not too much seems to be known about
this concept in the general case. See [134] for a survey about this subject
with special emphasis in the case of non zero characteristic.

Theorem 3.4. Suppose that chark = 0. Let G be an affine algebraic
group and h ⊂ L(G) be an arbitrary Lie subalgebra. Then h admits an
algebraic hull.

Proof: Consider the closed subgroup

Gh =
⋂{

K ⊂ G : K is a closed subgroup of G and h ⊂ L(K)
} ⊂ G .

As the Zariski topology is noetherian, there are a finite number of subgroups
Ki ⊂ G, 1 ≤ i ≤ n such that Gh = K1 ∩ · · · ∩Kn and h ⊂ L(Ki) for i =
1, . . . , n. Using Theorem 2.3, we deduce that L(Gh) = L(K1)∩· · ·∩L(Kn) ⊃
h. Next we prove that Gh is connected. Indeed, as L(Gh1) = L(Gh) ⊃ h,
the algebraic subgroup Gh1 is one of the subgroups we have to intersect in
order to obtain Gh. Then Gh1 ⊃ Gh.

Let us call h¦ = L(Gh). It is clear that h¦ ⊃ h, and if we take k an
algebraic Lie subalgebra of g such that k ⊃ h¦, being k = L(K) for some
connected subgroup K of G, we deduce that K is one of the subgroups that
appear in the definition of Gh and then, Gh ⊂ K and h¦ ⊂ k. Then, in
accordance with Definition 3.2, we deduce that h¦ = h+. ¤

Theorem 3.5. Assume that chark = 0. Let G be an affine algebraic,
W a finite dimensional rational G–module and U ⊂ V ⊂ W a pair of
subspaces. If h ⊂ L(G) is a Lie subalgebra with the property that h ·V ⊂ U ,
then h+ · V ⊂ U .

Proof: Defining H as in Theorem 2.11 and using the corresponding
characterization of L(H), we conclude that h ⊂ L(H). Then h+ ⊂ L(H)
or equivalently h+ · V ⊂ U . ¤

Theorem 3.6. Assume that chark = 0. Let G be an affine algebraic
group and h ⊂ L(G) a Lie subalgebra. Then [h, h] = [h+, h+].

Proof: Consider Ad : G × L(G) → L(G) and apply Theorem 3.5 to
the case that W = L(G), U = [h, h] and V = h. We first conclude that
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[h, h+] = [h+, h] ⊂ [h, h]. Applying again the mentioned theorem this time
with W = L(G), U = [h, h] and V = h+, we conclude that [h+, h+] ⊂ [h, h].
The other inclusion is obvious. ¤

Observation 3.7. Theorem 3.6 can be generalized as follows. Let h
be a Lie subalgebra of L(G). For i ≥ 1, we have that Di(h) = Di(h+) and
D[i](h) = D[i](h+) (see Definition 2.2.8 and Exercise 14).

Corollary 3.8. Assume that chark = 0 and let G be an affine al-
gebraic group. Then radL(G) ⊂ L(G) is an algebraic Lie subalgebra (see

Proof: Theorem 3.6 guarantees that the ideal radL(G)+ ⊂ L(G)
satisfies that [

radL(G)+, radL(G)+
]

=
[
radL(G), radL(G)

]
,

i.e., D1
(
radL(G)+

)
= D1

(
radL(G)

)
. Then, by induction we conclude

that for all i ≥ 1, Di
(
radL(G)+

)
= Di

(
radL(G)

)
from the solvability

of radL(G) we deduce the solvability of radL(G)+. As radL(G) is the
maximal solvable ideal of L(G), and radL(G)+ is solvable we conclude
that radL(G)+ = radL(G). ¤

Definition 3.9. Let G be an affine algebraic group and h a subalgebra
of L(G). We say that h is G–nilpotent if the action of h on k[G] is locally
nilpotent (i.e. nilpotent on every finite dimensional G–stable subspace of
k[G]).

Theorem 3.10. Let G be an affine algebraic group and H ⊂ G a
closed subgroup. If H is a unipotent subgroup, then L(H) is a G–nilpotent
subalgebra.

Conversely, if chark = 0, H is connected, and L(H) is G–nilpotent,
then H is unipotent.

Proof: Let V be a finite dimensional G–stable submodule of k[G]
and {0} = Vn ⊂ Vn−1 ⊂ · · · ⊂ V0 = V a composition series of V as an H–
module. As H is unipotent, and the quotients Vi/Vi+1 are simple, Corollary
5.6.4 guarantees that the action ofH on Vi/Vi+1 is trivial for i = 0, . . . , n−1.
This implies that L(H) acts trivially on the composition factors and hence
the action of L(H) on V is by nilpotent linear transformations. Then L(H)
is G–nilpotent.

Conversely, take V ⊂ k[G] a finite dimensional G–submodule of k[G]
that contains a set of algebra generators of k[G]. As L(H) is G–nilpotent,
there exists a finite number of subspaces of V such that

{0} = Vn ⊂ Vn−1 ⊂ · · · ⊂ V0 = V ,

 

Section 2.4).
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and with the property that for i = 0, . . . , n− 1, L(H) ·Vi ⊂ Vi+1. Consider

K =
{
x ∈ G : x · Vi = Vi , x · (Vi/Vi+1) = idVi/Vi+1 , i = 1, . . . , n− 1

}
.

An easy generalization of Theorem 2.11 (see Exercise 15) guarantees
that L(K) =

{
τ ∈ L(G) : τ · Vi ⊂ Vi+1, i = 0, . . . , n − 1

}
. Then L(H) ⊂

L(K) and if K1 is the connected component of the identity in K, we deduce
that L(H) ⊂ L(K1) = L(K). We conclude from Corollary 2.4 that H ⊂
K1 ⊂ K. As K acts unipotently on V and V generates k[G], we conclude
that K, and hence H, is unipotent. ¤

Definition 3.11. Assume that chark = 0 and let G be an affine al-
gebraic group with unipotent radical Ru(G). The ideal L(

Ru(G)
)

is called
the G–nilpotent radical of L(G).

Theorem 3.12. Assume that chark = 0 and let G be an affine algebraic
group. Then L(

Ru(G)
)

is the largest G–nilpotent ideal of L(G).

Proof: If a is a G–nilpotent ideal of L(G), then using Exercise 16 we
deduce that a+ is also a G–nilpotent ideal of L(G). Let U be the connected
normal unipotent subgroup of G that has a+ for Lie algebra. By definition
of the unipotent radical, we conclude that U ⊂ Ru(G) and this implies that
a ⊂ L(

Ru(G)
)
. ¤

Definition 3.13. Let G be an affine algebraic group. A Lie subalgebra
r of L(G) is said to be G–linearly reductive if every rational G–module is
semisimple as an r–module.

Theorem 3.14. Assume that chark = 0 and let G be an affine algebraic
group. There exists a G–linearly reductive algebraic Lie subalgebra r ⊂ L(G)
such that L(G) = L(

Ru(G)
)

+ r.

Proof: It is an immediate consequence of Theorem 3.10 that L(
Ru(G)

)
is a nilpotent (and hence solvable) ideal of L(G). Then it follows that
L(
Ru(G)

) ⊂ radL(G), where as usual radL(G) denotes the radical of L(G).
As

[L(G), radL(G)
]

is an ideal (see Corollary 2.6.4) that acts nilpotently
on any finite dimensional rational G–module, it follows from Theorem 3.12
that

[L(G), radL(G)
] ⊂ L(

Ru(G)
)
.

Using Levi’s decomposition (Theorem 2.6.3) we can guarantee the ex-
istence of a semisimple Lie subalgebra s of L(G) such that radL(G)⊕ s =
L(G). By Weyl’s theorem (Theorem 2.6.1) all the representations of the
Lie algebra s are completely reducible. This implies in particular that s is
G–linearly reductive. Among the G–linearly reductive Lie subalgebras of
L(G) that contain s, take a maximal one and denote it as r. It is easy to
prove that r is an algebraic Lie subalgebra. In fact, the algebraic hull r+
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of r is also G–linearly reductive (see Exercise 17) and contains r. Hence
r+ = r. Our goal is to prove that L(G) = L(

Ru(G)
)

+ r. In order to do
this we use the G–linear reductivity of r to conclude that there exists an r–
submodule of radL(G), that we call p, such that radL(G) = L(

Ru(G)
)⊕p.

In this situation [r, p] = {0}. Indeed, from [L(G), radL(G)] ⊂ L(
Ru(G)

)
we deduce that [r, p] ⊂ L(

Ru(G)
)
, but as we also have that [r, p] ⊂ p, the

conclusion that [r, p] = 0 follows.
Next we prove the equality radL(G) = L(

Ru(G)
)

+ radL(G) ∩ r. As-
sume that the inclusion radL(G) ⊃ L(

Ru(G)
)

+ radL(G) ∩ r is strict.
In this case we can find ρ ∈ L(

Ru(G)
)

and ν ∈ p such that ρ + ν 6∈
L(
Ru(G)

)
+ radL(G) ∩ r. It follows that ν 6∈ L(

Ru(G)
)

+ r. Indeed, if
ν = α+β with α ∈ L(

Ru(G)
)
, β ∈ r as ν ∈ p ⊂ radL(G) we conclude that

β ∈ radL(G) ∩ r and then ρ+ ν = ρ+ α+ β ∈ L(
Ru(G)

)
+ radL(G) ∩ r.

Finally, consider now νs, νn the semisimple and nilpotent parts in L(G)
of ν. Corollary 3.8 and Exercise 18 guarantee that νs, νn ∈ radL(G). The
subspace L(

Ru(G)
)

+ kνn ⊂ L(G) is a G–nilpotent ideal. In fact if we
compute
[L(G),L(

Ru(G)
)

+ kνn
] ⊂ L(

Ru(G)
)

+
[L(G), νn

] ⊂
L(
Ru(G)

)
+

[L(G), radL(G)
] ⊂ L(

Ru(G)
)
,

we deduce that L(
Ru(G)

)
+ kνn ⊂ L(G) is an ideal and also that

[L(
Ru(G)

)
, νn

] ⊂ L(
Ru(G)

)
.

Using Exercise 2.25 we deduce that L(
Ru(G)

)
+ kνn is a G–nilpotent

ideal and then that L(
Ru(G)

)
+kνn ⊂ L(

Ru(G)
)
. Hence, νn ∈ L

(
Ru(G)

)
.

As ν = νs + νn 6∈ L(
Ru(G)

)
+ r, it follows that νs 6∈ r. Consider now

the subspace r + kνs that is strictly larger than r. As r and p commute, r
commutes with ν and then we deduce from Theorem 5.4.9 that r commutes
with νs. But then r + kνs is a G–linearly reductive Lie subalgebra of L(G)
that is larger than r. This contradicts the maximality of r and then, we
conclude that radL(G) = L(

Ru(G)
)

+ radL(G) ∩ r.

This last equality guarantees that L(G) = L(
Ru(G)

)
+ r because if

radL(G) = L(
Ru(G)

)
+radL(G)∩r, we deduce that L(G) = radL(G)+r =

L(
Ru(G)

)
+ radL(G) ∩ r + r = L(

Ru(G)
)

+ r. ¤

4. Exercises

1. Assume that chark = p > 0 and consider the following closed sub-
groups of G2

a: H =
{

(a, ap) : a ∈ k} and K =
{

(a, 0) : a ∈ k}. Show that
L(H) = L(K).
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2. In the situation of Definition 2.7 prove that Iτ,∞ ⊂ k[G] is a Hopf
ideal.

3. Let G be an affine algebraic group. Recall that if f ∈ k[G] and
σ ∈ L(G), then σ · f =

∑
f1σ(f2). Prove that if τ, τ1, . . . , τn ∈ L(G) and

f, g ∈ k[G], then:
(a) (τ1 · · · τn)(fg) = (τ1 · · · τn−1)(fτn · g + (τn · f)g);
(b) (τ1 · · · τn)(f) = (τ1 · · · τn−1)(τn · f);
(c) (τ1 · · · τn)(Sf) = (−1)n(τn · · · τ1)(f);
(d) τn(fg) =

∑
i+j=n

(
n
i

)
τ i(f)τ j(g).

4. Let G be an affine algebraic group. Define the action of G on L(G)
by the formula: if x ∈ G and τ ∈ L(G), then (x · τ ·x−1)(f) = τ(x−1 ·f ·x).
Prove that if τ1, . . . , τn ∈ L(G), then

x · (τ1 · · · τn) · x−1 = (x · τ1 · x−1) · · · (x · τn · x−1) .

5. Let G be a connected affine algebraic group and τ ∈ L(G). Prove
that if chark > 0 then the closed subgroup Gτ,∞ is trivial. In chark = 0,
prove that Iτ,∞ is a prime ideal, and that the group Gτ,∞ is contained in
every algebraic subgroup of G whose Lie algebra contains τ . Hint: in order
to prove that Iτ,∞ is prime take f, g 6∈ Iτ,∞ and choose p and q minimal
with the property that τp(f) 6= 0 and similarly for q and g. Prove that
if we write τp+q(fg) as a sum of products of τn(f)τm(g) only one of the
summands is non zero and corresponds to n = p,m = q.

6. Assume that chark = 0. Let G be an affine algebraic group and
U ⊂ V finite dimensional rational G–modules. Call H = {x ∈ G : x ·
v − v ∈ U, ∀v ∈ V }. Prove that L(H) = {τ ∈ L(G) : τ · V ⊂ U}.
Hint: Observe that if {v1, . . . , vn} is a basis of V , then H can be viewed
as H =

⋂
i=1,...,nGvi+U . Deduce the result from Theorem 2.10.

7. LetG be an affine algebraic group, V a finite dimensional rationalG–
module and W ⊂ V a linear subspace of V . Define GW = {x ∈ G : x ·W =
W} and L(G)W =

{
τ ∈ L(G) : τ ·W ⊂W

}
. Prove that L(GW ) ⊂ L(G)W

and that if chark = 0, then L(GW ) = L(G)W . Hint: reduce the assertion
to the case that dimW = 1 by taking a convenient exterior power.

8. Let G and H be affine algebraic groups and ρ : G→ H a morphism
of algebraic groups. Prove that in this situation L(

ρ(H)
)

= ρ•
(L(H)

)
.

9. Assume that chark = p > 0 and consider the action of Ga on k2

given by the rule: a · (x, y) = (x, y + apx). Compute the action of the
corresponding Lie algebra on k2 and conclude that there are examples of
subspaces of k2 stable with respect to the action of the Lie algebra but not
with respect to the action of Ga.
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10. Assume that chark = p > 0. Consider the closed subgroup G ={(
a 0 0
0 ap b
0 0 1

)
: a, b ∈ k, a 6= 0

}
⊂ GL3 (see Exercise 3.3). Prove that

L(G) =
{(

a 0 0
0 0 b
0 0 0

)
: a, b ∈ k

}
.

Observe that G is non abelian and L(G) is abelian. Prove that Z(G) =
{1} and Ker Ad 6= {1}. Observe that this also provides a counter–example
to Corollary 2.12.

11. Let g the 3-dimensional Lie algebra generated by x, y, z ∈ g with
bracket defined by the following rules: [x, y] = 0, [z, x] = x + y, [z, y] = y.
Prove that this Lie algebra is not the Lie algebra of an affine algebraic
group.

12. Show that the Lie algebra h of an algebraic subgroup of a complex
torus is defined over Q, i.e. h = C ⊗Q h0, with h0 a Q–Lie subalgebra of
h. Exhibit a non algebraic Lie subalgebra of the abelian Lie algebra of
dimension n over C.

13. Consider the following Lie subalgebra of gl4:

g =
{(

a a c d
0 a 0 e
0 0 b b
0 0 0 b

)
: a, b, c, d, e ∈ k

}
.

Prove that g is not algebraic.

14. Assume that chark = 0. Let G be an affine algebraic group and h a
Lie subalgebra of L(G). Prove that Di(h) = Di(h+) and D[i](h) = D[i](h+)
for all i ≥ 1.

15. State and prove a generalization of Theorem 2.11 for a family of n
subspaces.

16. Assume that chark = 0. Let G be an affine algebraic group and a
an ideal of L(G). Then a+ is also an ideal. If a is G–nilpotent prove that
a+ is also G–nilpotent.

17. Assume that chark = 0. Let G be an affine algebraic group and
r a G–linearly reductive Lie subalgebra of L(G). Prove that the algebraic
hull of r is also G–linearly reductive.

18. Assume that chark = 0. Let G be an affine algebraic group and r
an algebraic Lie subalgebra of L(G). Prove that if ν ∈ r then νs ∈ r and
νn ∈ r, where νs and νn are the semisimple and nilpotent parts of ν.

 



CHAPTER 9

Reductivity

1. Introduction

The simplest platform to study the representation theory of a given
algebraic object corresponds to the case where the representations are com-
pletely reducible.

In the case of finite groups the complete reducibility of the represen-
tations is equivalent to the invertibility of the order of the group in the
base field (Maschke’s theorem) and it is also equivalent to the existence of
a normalized integral for the corresponding group ring.

In this chapter we study the corresponding reducibility problem in the
category of the rational representations of a given affine algebraic group G.

representations in order to obtain positive answers to some of the main
problems in invariant theory.

This relationship between the semisimplicity of the representations and
the central problems of the invariant theory of a given group started to be
unveiled by Hilbert in [59] and [60]. Next we illustrate Hilbert’s viewpoint
with a brief sketch of one of his central ideas: the use of an averaging
operator — whose existence is guaranteed by the complete reducibility of
the representations — in order to produce invariants and to prove the finite
generation of the ring of all invariants.

Assume that G is a group of n × n matrices acting linearly in the
variables of A = k[X1, . . . , Xn]. Write A =

∑
d≥0Ad where Ad is the space

of all homogeneous polynomials of degree d and call GA = {a ∈ A : z · a =
a ∀z ∈ G}. It is clear that GA =

∑
d≥0

GAd. Assume that we have a
G–equivariant homogeneous projection R : A → GA that satisfies what is
now called Reynolds identity, i.e., R(ab) = aR(b) if a ∈ GA and b ∈ A.

Call A+ =
∑
d>0Ad, consider GA+ and call I = GA+A the ideal of A

generated by the invariants of positive degree.

295

 

In Chapters 12 and 13 we use the hypothesis of the reducibility of the
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Using Hilbert’s basis theorem — that Hilbert proved in order to deal
with the so–called “second main problem of invariant theory” and that
concerns the finiteness of the relations between the basic invariants, see
[59] — one can guarantee the existence of a finite set F , consisting of
invariant homogeneous elements of positive degree that generates I. Next,
one proves by induction on the degree d, that GA = k[F ].

Let d be a positive integer and take a ∈ GAd. As a ∈ GA+, then
a =

∑
f∈F aff with af ∈ A. Applying R to the above equality and calling

bf = R(af ), deduce that a =
∑
f∈F bff . As all the terms in this equality

are homogeneous and deg(a) = d one concludes that deg(bf ) < d and it
follows by induction that bf ∈ k[F ]. The equality a =

∑
f∈F bff implies

that a ∈ k[F ].
Hilbert worked with an explicit operator R based on what was called

Cayley’s Ω–process. Operators like the R considered above, called later
Reynolds operators, were immediately recognized as crucial for the study
of invariants.

In 1897, A. Hurwitz [77], inspired also by the averaging processes
for finite groups — already used by A. Loewy, E. H. Moore, F. Klein,
H. Maschke, and others — used integration over compact subgroups in or-
der to construct Reynolds operators and prove the finite generation of rings
of invariants for SLn(C) and SOn(C).

Inspired by the work of A. Hurwitz and later of I. Schur (see [77] and
[133]), H. Weyl in 1924-26 used E. Cartan’s results on Lie algebras to
extend the above methods to all complex semisimple Lie groups in [151],
[152] and [153].

In positive characteristic the nice machinery described above breaks
down completely. For instance, if k is a field of characteristic two, the
following representation of SL2(k):

ρ
(
a b
c d

)
=

(
1 0 0
cd d2 c2

ab b2 a2

)

cannot be completely reduced (see Exercise 2).
Moreover, in positive characteristic the complete reducibility of the

representations was proved to be a very exceptional phenomenon. Hence,
in order to develop the theory of algebraic invariants with a reasonable
degree of generality, it was necessary to devise a more general concept, that
in characteristic zero should coincide with the notion of semisimplicity.

With this objective in mind, the concept of geometric reductivity was
defined by D. Mumford in [103], where he conjectured that it was equiv-
alent to reductivity, i.e. to the triviality of the unipotent radical. It was
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soon verified that the notion of geometric reductivity was strong enough to
guarantee the needed results on invariants (see [103] or [112]). In [113]
it was proved that a geometrically reductive group is reductive and the
converse was established by W. Haboush in [53].

Now we proceed to summarize the contents of this chapter.
In Section 2, we define the notions of linearly and geometrically reduc-

tive groups. We establish the basic properties of these groups and also the
relationship between reductivity (linear and geometric) and other impor-
tant concepts in invariant theory like integrals and Reynolds operators.

In Section 3 we prove some useful transitivity results and give some
examples of the concepts defined above. In particular, we prove that, inde-
pendently of the characteristic of k the group SL2 is geometrically reductive.
We also prove that tori are linearly reductive.

In Section 4 we show that in positive characteristic tori are the only
connected linearly reductive groups and also that geometrically reductive
groups have trivial unipotent radical, i.e. they are reductive.

We finish the chapter with a proof in Section 5 of the algebraic version
of Weyl’s theorem: in characteristic zero a group is linearly reductive if and
only if its unipotent radical is trivial.

There are many proofs of this theorem in the literature. We have chosen
to deduce it from Mostow’s structure theorem: in characteristic zero an
arbitrary affine algebraic group G can be decomposed as the semidirect
product of its unipotent radical and a linearly reductive subgroup. See
[101].

2. Linear and geometric reductivity

Let G be an affine algebraic group defined over an algebraically closed
field k. Recall that GM denotes the category of all rational G–modules
and GMf the subcategory of all rational finite dimensional G–modules.

If M ∈ GM, then Sr(M) — the r–th homogeneous component of the
symmetric algebra built on M — belongs to GM when equipped with the
induced action. If λ : M → N is a k–linear map, then Sr(λ) : Sr(M) →
Sr(N) denotes the corresponding induced morphism.

Definition 2.1. An affine algebraic group G is said to be geometrically
reductive if for every pair (M,λ), where M is a rational G–module and
λ : M → k is a non zero G–equivariant morphism, there exists a positive
integer r and an element ξ ∈ G

Sr(M) such that Sr(λ)(ξ) 6= 0. In the case
that for all M and λ as above, the definition is satisfied for r = 1, the group
G is said to be linearly reductive.
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Observe that we are committing a slight abuse of notation: in the
definition above the proper codomain for the map Sr(λ) should be Sr(k),
that here has been canonically identified with k.

Observation 2.2. (1) As all the elements of GM are locally finite
G–modules, in Definition 2.1 we can assume that M ∈ GMf .
(2) It is obvious that if G is linearly reductive, it is also geometrically
reductive.
(3) We will prove (see Theorem 2.24), that the above definition of linearly

all the rational G–modules are semisimple (see Definition 5.6.14).

Observation 2.3. A finite group is always geometrically reductive.
Being M and λ as above, if we take m ∈ M such that λ(m) 6= 0, the
element ξ =

∏
g∈G g ·m ∈ S|G|(M), is G–invariant and it is sent to a non

zero element by S|G|(λ).

In order to make more explicit some of the properties of the exponent
r in the Definition 2.1 it is convenient to fix some notation.

Definition 2.4. Let G be a geometrically reductive affine algebraic
group and let M and λ be as in Definition 2.1. Define the exponent of
reductivity of the pair (M,λ) as:

e(M,λ) = min
{
r > 0 : ∃ ξ ∈ G

Sr(M) : Sr(λ)(ξ) 6= 0
}
.

Observation 2.5. Let r be a positive integer, fix 1 ≤ i ≤ r−1 and call
I = {1, . . . , r}. Given M and λ : M → k as above, define a G–equivariant
map λ

(i)
r : Sr(M) → Sr−i(M) by the formula:

λ(i)
r (m1 · · ·mr) =

∑

J⊂I
|J|=i

∏

j∈J
λ(mj)

∏

k∈I\J
mk

where m1, . . . ,mr ∈M .

The maps Sr(λ), Sr−i(λ), λ(i)
r are related by the formula that follows

(see Exercise 3):

Sr−i(λ) ◦ λ(i)
r =

(
r

i

)
Sr(λ) .

Theorem 2.6. Let G be a geometrically reductive algebraic group and
take (M,λ) as above. If chark = 0, then e(M,λ) = 1 and if chark = p > 0,
then e(M,λ) = pn for some n ≥ 0.

Proof: If chark = 0, then for 1 ≤ i ≤ r the combinatorial coefficients(
r
i

)
are non zero. If for some r > 1 and some ξ ∈ G

Sr(M), Sr(λ)(ξ) = 1,

 

reductive group is equivalent to the one given in Chapter 5, namely that
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then Sr−1(λ)
(
λ

(1)
r (ξ)

)
= r 6= 0. As λ(1)

r (ξ) ∈ G
Sr−1(M), we conclude that

e(M,λ) = 1.
Now suppose that chark = p > 0 and call e = e(M,λ). For a cer-

tain element ξ ∈ G
Se(M), Se(λ)(ξ) = 1. Hence, for all 1 ≤ i ≤ e − 1,

Se−i(λ)
(
λ

(i)
r (ξ)

)
=

(
e
i

)
. By the minimality of e we deduce that

(
e
i

)
= 0 for

all 1 ≤ i ≤ e − 1. Using the result of Exercise 4, we conclude that e is a
power of p. ¤

Corollary 2.7. Assume that chark = 0 and let G be an affine alge-
braic group. Then G is linearly reductive if and only if it is geometrically
reductive. ¤

Theorem 2.8 (Maschke’s theorem). Let G be a finite group with order
|G| invertible in the base field k. Then G is linearly reductive.

Proof: Let M ∈ GMf and let λ : M → k be a non zero G–equivariant
morphism. Let 0 6= m ∈ M such that λ(m) = 1. We already noticed (see
Observation 2.3) that the element ξ =

∏
g∈G g ·m ∈ S|G|(M) is G–invariant

and S|G|(λ)(ξ) = 1. The formula established in Observation 2.5 guarantees
that λ ◦ λ(|G|−1)

|G| = |G|S|G|(λ). Hence, the element m0 = λ
(|G|−1)
|G| (ξ) ∈ M

is G–fixed and mapped by λ into a non zero scalar. ¤

Observation 2.9. If we compute explicitly the element m0 ∈M used
in the proof of last theorem we have that

m0 =
∑

{J⊂G:|J|=|G|−1}

∏

j∈J
λ(mj)

∏

k∈G\J
mk .

Then m0 =
∑
g∈G

(∏
x∈G, x 6=g λ(x ·m)

)
(g ·m) =

∑
g∈G g ·m. Thus, the

element m̂ = |G|−1
∑
g∈G g ·m is mapped into 1 ∈ k by λ. This averaging

procedure is the standard method to prove Maschke’s theorem.

Next we present two other characterizations of geometric reductivity.

Theorem 2.10. Let G be an affine algebraic group and p the charac-
teristic exponent of k. The following conditions are equivalent:
(1) The group G is geometrically reductive.
(2) If N ⊂ M are rational G–modules with N of codimension one in
M , then there exists n ≥ 0 and a G–submodule T ⊂ Sp

n

(M) such that
Sp

n

(M) = NSp
n−1(M)⊕ T .

(3) For all surjective morphisms of rational G–module algebras φ : R1 → R2

and for all r2 ∈ GR2, there exists n ≥ 0 and an element r1 ∈ GR1 such that
φ(r1) = rp

n

2 .
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Proof: We start proving that condition (2) implies the geometric
reductivity of G. Let (M,λ) be as in Definition 2.1 and call N = Ker(λ).
Then we can find a G–submodule T such that Sp

n

(M) = NSp
n−1(M)⊕T .

Clearly Ker
(
Sp

n

(λ)
)

= NSp
n−1(M), so that we can find ξ ∈ T such that

Sp
n

(λ)(ξ) = 1. Being T one dimensional and G–stable, there exists a
character γ : G→ k∗ such that z · ξ = γ(z)ξ for all z ∈ G. From the above
equality we deduce that for all z ∈ G, 1 = z · Spn

(λ)(ξ) = Sp
n

(λ)(z · ξ) =
γ(z)Sp

n

(λ)(ξ) = γ(z). So that the character γ is trivial and ξ is G–fixed.
Next we prove that the geometric reductivity implies condition (3). Let

φ : R1 → R2 and r2 ∈ GR2 as as in the hypothesis. If r2 = 0 the result is
obvious. Assume that r2 6= 0, and choose 0 6= s ∈ R1 such that φ(s) = r2.
Call M the rational G–submodule of R1 generated by s and let M ′ be the
G–submodule of M generated by {x · s− s : x ∈ G}. Clearly M = ks+M ′

and as φ(s) 6= 0, and φ(M ′) = 0 the sum is direct. Consider the map
λ : M → k defined by the formula: m = λ(m)s+m′ with m′ ∈M ′. Now, if
x ∈ G then x ·m = λ(x ·m)s+m′′ = λ(m)x ·s+x ·m′ and, as x ·s−s ∈M ′,
we conclude that λ(x ·m) = λ(m) for all m ∈ M , x ∈ G. The map λ is
a surjective morphism of G–modules and if we call ur2 : k → R2 the map
defined as ur2(a) = ar2 the diagram below is commutative

MÄ _

²²

λ // k
ur2

²²
R1

φ
// R2

Indeed, applying φ to the equality m = λ(m)s + m′ we obtain that
φ(m) = λ(m)r2. In this situation the diagram that follows commutes for
all exponents q — we use the generic name m for all the multiplication
maps.

Sq(M)Ä _

²²

Sq(λ) // Sq(k)

Sq(ur2 )

²²

m // k
ur

q
2

²²
Sq(R1)

Sq(φ) //

m
%%JJJJJJJJJJ
Sq(R2) m // R2

R1

φ

;;wwwwwwwww

Using the reductivity hypothesis, we can find an exponent pn and an
element ξ ∈ G

Sp
n

(M) such that mSp
n

(λ)(ξ) = 1. If we call r1 = m(ξ), it
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is clear that r1 is G–invariant and that φ(r1) = φm(ξ) = mSp
n

(φ)(ξ) =
u
rpn

2
mSp

n

(λ)(ξ) = u
rpn

2
(1) = rp

n

2 .

To prove that condition (3) implies condition (2) we take M and N
as in (2) and observe first that being M/N a one dimensional G–module,
there exists a character γ ∈ X (G) such that M/N ∼= kγ−1 . Then we can
find a surjective G–morphism λ : Mγ → k with Ker(λ) = N . If we apply
(3) to the situation where R1 = S(Mγ), R2 = k and φ = S(λ), we deduce
the existence of ξ ∈ G

Sp
n

(Mγ): Sp
n

(λ)(ξ) = 1. As Ker(λ) = NSp
n−1(M),

if we take T = kξ our conclusion follows. ¤
See Exercises 5, 6 and 7 for other characterizations of geometric reduc-

tivity.

Observation 2.11. Assume that G is geometrically reductive. Con-
sider R1, R2 and φ : R1 → R2 as in condition (3) of Theorem 2.10. If we
consider R2 as an R1–module via φ, then GR2 is integral over GR1.

Next we define total integrals, Reynolds operators and for an arbitrary
rational G–module the rational 1–cohomology of G with coefficients in M .
These concepts are relevant for the study of linear reductivity.

Definition 2.12. Let G be an affine algebraic group.
(1) A left integral for G is a morphism of rational G–modules I : k[G] → k,
i.e.= I(x · f) = I(f) for all x ∈ G, f ∈ k[G]. A left integral I such that
I(1) = 1 is called a total or normalized left integral. Here we consider k[G]
endowed with the G–module structure given by left translations and k with
the trivial structure.
(2) A right integral for G is a morphism of right rational G–modules J :
k[G] → k, i.e. for all x ∈ G, f ∈ k[G], J(f · x) = J(f). If J(1) = 1, it is
called a total or normalized right integral.
(3) A two sided integral for G is a morphism of two sided G–modules K :
k[G] → k, i.e. for all x, y ∈ G, f ∈ k[G], K(x · f · y) = K(f). If K(1) = 1,
it is called a total or normalized two sided integral.

Observation 2.13. If G is a finite group and k is a field of char-
acteristic p such that p 6 | |G|, then the map I : k[G] → k defined as
I(f) = |G|−1

∑
g∈G f(g) is a total two sided integral. See Exercise 9.

Lemma 2.14. If G is an affine algebraic group, then:
(1) A linear map I : k[G] → k is a left integral if and only if for all f ∈ k[G],
I(f)1 =

∑
I(f1)f2.

(2) A linear map J : k[G] → k is a right integral if and only if for all
f ∈ k[G], J(f)1 =

∑
f1J(f2).

 



302 9. REDUCTIVITY

(3) A linear map K : k[G] → k is a two sided integral if and only if for all
f ∈ k[G], K(f)1 =

∑
K(f1)f2 = f1K(f2).

Proof: (1) Take x ∈ G and write x·f =
∑
f2(x)f1. As I(x·f) = I(f),

we have that I(f) =
∑
I(f1)f2(x) and then I(f)1 =

∑
I(f1)f2. The proof

of the rest of this lemma is left as an exercise (see Exercise 8). ¤
Lemma 2.15. Let G be an affine algebraic group and I : k[G] → k a

k–linear map. Then:
(1) The map I is a left integral if and only if J = I ◦ S is a right integral
— the map S denotes as usual the antipode of k[G].
(2) If I is a left integral, then K : k[G] → k, K(f) =

∑
I(Sf1)I(f2), is a

two sided integral.

Proof: The proof of (1) is left as an exercise (see Exercise 8).
(2) Below we use repeatedly the equations obtained in Lemma 4.3.19.

K(x · f) =
∑

I
(
S

(
(x · f)1

))
I
(
(x · f)2

)
=

∑
I
(
S(f1)

)
I(x · f2) =

∑
I
(
S(f1)

)
I(f2) = K(f) .

Similarly,

K(f · x) =
∑

I
(
S

(
(f · x)1

))
I
(
(f · x)2

)
=

∑
I
(
S(f1 · x)

)
I(f2) =

∑
I
(
x−1 · S(f1)

)
I(f2) =

∑
I
(
S(f1)

)
I(f2) = K(f) .

¤
Definition 2.16. Let G be an affine algebraic group, and GM the

category of rational G–modules. Consider the functors F, Id : GM →
GM; where F is the G–fixed point functor and Id the identity functor. A
Reynolds operator for G — or a family of Reynolds operators for G — is a
natural transformation R : I → F : GM→ GM such that for all M ∈ GM,
RM |GM = idGM .

In explicit terms, the transformation R is given by a family of G–
equivariant maps RM : M → GM for M ∈ GM such that for all m ∈ GM ,
RM (m) = m, and with the property that for an arbitrary N ∈ GM and
an arbitrary morphism of G–modules f : M → N , the diagram below is
commutative

M

f

²²

RM // GM

f |GM

²²
N RN

// GN
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Lemma 2.17. Let G be an affine algebraic group and assume that G
admits a two sided normalized integral K : k[G] → k. If M is a rational
G–module consider the linear map RM : M →M , RM (m) =

∑
m0K(m1).

Then the family
{RM : M ∈ GM

}
is a Reynolds operator for G.

Proof: If m ∈ GM , then RM (m) = mK(1) = m. Moreover, if x ∈ G
and m ∈ M , then x · RM (m) = x · ∑m0K(m1) =

∑
x · m0K(m1) =∑

m0K(m1 · x) =
∑
m0K(m1) = RM (m) (see Lemma 4.3.19). Also, if

x ∈ G and m ∈M , then RM (x ·m) =
∑

(x ·m)0K
(
(x ·m)1

)
=

∑
m0K(x ·

m1) =
∑
m0K(m1) = RM (m). Hence, RM : M → GM , is a G–equivariant

projection. ¤
One basic fact about Reynolds operators is the following

Lemma 2.18. Let G be an affine algebraic group that admits a family
of Reynolds operators. If A is a commutative rational G–module algebra,
for all a, b ∈ A we have that RA

(RA(a)b
)

= RA(a)RA(b).

Proof: Fix a ∈ A and consider theG–module morphismm = mRA(a) :
A → A given as mRA(a)(b) = RA(a)b. Using the naturality of R we con-
clude that the diagram below is commutative

A
RA //

m

²²

GA

m|
GA

²²
A RA

// GA

In explicit terms we have that if b ∈ A, then

RA

(RA(a)b
)

= (RA ◦m)(b) =
(
m|GA ◦ RA

)
(b) = RA(a)RA(b) .

¤

Observation 2.19. The equalityRA

(RA(a)b
)

= RA(a)RA(b) is called
the Reynolds condition or the Reynolds identity. Another formulation of
this identity is the following: if a ∈ GA, b ∈ A then RA(ab) = aRA(b) .

Observation 2.20. The use of the name Reynolds operator for a family
of maps as above appeared for the first time in the mathematical literature
in a paper by G. Birkhoff (see [8]) and refers to the engineer O. Reynolds
who used “averaging operators” in order to study certain problems in fluid
dynamics.

Observation 2.21. As we mentioned before it seems that Hilbert him-
self was aware that his so–called “basis theorem” and the existence of a map
with the properties of Definition 2.16 was all that was needed in order to
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prove the finite generation of invariants. In accordance to [56], Hilbert was
able to apply his method to other groups than SLn (the situation he dealt
with in [59]), in particular he succeeded in constructing an analog to the al-
ready mentioned Ω–process for the rotation group in the real 3–dimensional
space, i.e. the group of real orthogonal transformations. A. Hurwitz solved
in 1897 the problem of finite generation of invariants for the real orthogo-
nal group in n–space, by constructing the required Reynolds operators by
integration (see [77]). The extension to compact Lie groups was immedi-
ately observed. Moreover it had already been observed (by E.H. Moore
and H. Maschke among others) that in the case of a finite group the “av-
eraging process”, besides the finite generation of invariants, also yields the
semisimplicity of the representations.

I. Schur, in a paper in 1924, extended this result on the semisimplicity
of the representations to the real orthogonal group (see [133]) and observed
that the theory could be applied to other groups as long as an “averaging
process” could be constructed. He didn’t develop the general theory be-
cause — in his own words — “ [the rotation and orthogonal groups] stand
out, not only by virtue of the important role they play in applications but
also by virtue of the fact that here the integral calculus provides a solution
of the counting problem that is practically useful” (see [56]). The “count-
ing problem” was a problem proposed (and solved) by A. Cayley “on the
number of independent covariants” of fixed degrees.

In 1924–26 H. Weyl, with the aid of E. Cartan’s results on Lie Al-
gebras, extended Schur’s theory to all complex semisimple Lie groups (see
[151],[152] and [153]). His methods consisted in using again an “averaging
process” of integration via what he called first the “unitarian restriction”
(“unitäre Beschränkung”) and later the “unitarian trick”. If G is an arbi-
trary complex semisimple Lie Group and K is a maximal compact subgroup
it can be proved that if V is a finite dimensional G–module, then the G–
submodules of V coincide with the K–submodules. Being K compact the
integration can be carried along K and the results about the representa-
tions and invariants for G can be obtained from the corresponding results
for K. In the case in which G is the special linear group over C, K is
the special unitary group SUn(C) and that is the reason for the name of
the method. It is worth noticing that particular cases of this “trick” had
already been used by Hurwitz and others.

It was observed later by Schiffer (1933 unpublished) that the existence
of Reynolds operators can be deduced by purely algebraic means from the
semisimplicity. This appears as Appendix C to the Second Edition of [154].

We finish by briefly mentioning some results concerning the generaliza-
tion of the above ideas to the general context of Hopf algebras. The fact
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that some of the above considerations about integrals, representation the-
ory and finite generation of invariants could be generalized to the context
of Hopf Algebras seems to have been observed for the first time by Larson
and Sweedler around 1968 (see [91] and [147]). They were motivated by
some results of G. Hochschild. In [68, pp. 63–64], he proved that if g is
a finite dimensional Lie Algebra over a field of characteristic zero and K
is the continuous dual of the universal enveloping algebra U(g) of g, then
g is semisimple if and only if there exists a g–morphism J : K → k that
sends the unit of K into the unit of the base field. The map J was called
a gauge for the Hopf algebra K. A gauge is what later was called a total
integral. In [68] it was also observed (without proof) that “[...] an affine al-
gebraic group is fully reducible if and only if its Hopf Algebra of polynomial
functions has a gauge”.

The above description of some of the developments concerning the use
of integrals in invariant theory has been borrowed from different sources.
We would like to mention specifically the works of T. Hawkins concerning
the early history of the representation and invariant theory of Lie groups
and Lie algebras and also the recent book by A. Borel (see [57] and [11]).

Definition 2.22. Let G be an affine algebraic group and M ∈ GM.
Consider the vector space k[G,M ] of all maps F : G → M such that
MF =

〈
F (G)

〉
k is a finite dimensional subspace of M and that F : G→MF

is a morphism of algebraic varieties. Consider the following k–subspaces of
k[G,M ]:

Z1(G,M) =
{
F ∈ k[G,M ] : ∀z, w ∈ G, F (zw) = F (z) + z · F (w)

}

B1(G,M) =
{
F ∈ k[G,M ] : ∃m ∈M, F (z) = z ·m−m ∀z ∈ G}

Clearly, B1(G,M) ⊂ Z1(G,M); the quotient

H1(G,M) = Z1(G,M)/B1(G,M)

is called the first rational cohomology group of G with coefficients in M .

The functor H1(G,−) is one of a family of functors (in fact of a δ–
functor) called the rational cohomology functor. The zero part of this δ–
functor is the G–fixed part functor. The rational cohomology — the name
is not quite adequate as “polynomial cohomology” seems better — was
defined by G. Hochschild in [66]. More recent presentations appear for
example in [28] or [80].

Observation 2.23. The space k[G,M ] can be identified with M⊗k[G]
via the map Θ : M⊗k[G] → k[G,M ], Θ(m⊗f)(x) = f(x)m form⊗f ∈M⊗
k[G], and it is very easy to verify (see Exercise 10) that via this identification
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Z1(G,M) is transformed into
{
ξ ∈M ⊗k[G] : (id⊗∆−χ⊗ id)(ξ) = ξ⊗1

}
,

and B1(G,M) is transformed into {χ(m)−m⊗ 1 : m ∈M}.
In the theorem that follows we show, among others things, that Defi-

nition 2.1 of linear reductivity is equivalent to the one given in Definition
5.6.14, i.e. to the semisimplicity of the representations.

Theorem 2.24. Let G be an affine algebraic group. The following
conditions are equivalent.
(1) The group G is linearly reductive.
(2) Any codimension one G–submodule of a rational G–module has a G–
stable complement.
(3) If φ : R1 → R2 is a surjective G–morphism of rational commutative
G–module algebras, then φ

(
GR1

)
= GR2.

(4) All the rational G–modules are semisimple.
(5) All rational finite dimensional G–modules are semisimple.
(6) If ψ : M → N is a surjective morphism of rational G–modules then
ψ

(
GM

)
= GN .

(7) The group G admits a normalized left invariant integral.
(8) The group G admits a normalized right invariant integral.
(9) The group G admits a normalized two sided integral.
(10) The group G admits a family of Reynolds operators.

(11) For all M ∈ GM we have that H1(G,M) = 0.

Proof: The equivalence of conditions (1), (2) and (3) can be proved
by a direct adaptation of the methods used to prove Theorem 2.10. It is
obvious that condition (4) implies condition (2).

Next we verify that (2) implies (5). Let N ⊂M be an inclusion of finite
dimensional G–modules and consider ρ : Homk(M,N) → Homk(N,N),
the usual restriction map. If we endow the domain and codomain of ρ
with the usual rational G–module structure, then the map ρ becomes a G–
equivariant morphism. Consider inside of Homk(N,N) the G–submodule
kidN and the corresponding inverse image X = ρ−1(kidN ). The restriction
ρ|X : X ³ kidN has as kernel a codimension one G–submodule of X —
that will be called Y . By hypothesis, there exists α ∈ X such that kα is a
G–submodule complement of Y and ρ(α) = idN .

Hence, for all z ∈ G we have that z · α = γ(z)α for some ratio-
nal character γ of G. Applying ρ to the above equality we obtain that
γ(z)idN = γ(z)ρ(α) = ρ(z · α) = z · ρ(α) = z · idN = idN , i.e. γ is the
trivial character and α : M → N is a G–equivariant morphism α : M → N
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with the property that α|N = idN . In other words, the map α splits the
inclusion N ⊂M .

It is an easy exercise to prove that conditions (4) and (5) are in fact
equivalent.

The equivalence of (3) and (6) follows easily. Given a surjective G–
equivariant map ψ : M → N we can consider S(ψ) : S(M) → S(N)
that is a surjective G–equivariant morphism of G–module algebras. As
S(ψ) preserves the natural grading of S(M) and S(N) and by hypothesis
S(ψ)

(G
S(M)

)
= G

S(N), we conclude that ψ(GM) = GN .
So far we have proved the equivalence of conditions (1) to (6).
A G–equivariant morphism that splits the inclusion k→ k[G] is clearly

a normalized left integral. Hence condition (4) implies condition (7).
The equivalence of conditions (7),(8) and (9) follows from Lemma 2.15.
The fact that (9) implies (10) was proved in Lemma 2.17.
Next we prove that condition (10) implies condition (7). It is clear that

Rk[G] is a left integral. Moreover this integral is total as can be easily proved
applying the universal property to the G–equivariant inclusion k→ k[G]:

k
Rk=id //

²²

k

id

²²
k[G]Rk[G]

// k

Next we prove that (8) implies (11), i.e., if M is a rational G–module
and ξ =

∑
mi ⊗ fiZ1(G,M), then ξ ∈ B1(G,M).

As ξ ∈ Z1(G,M), then
∑

χ(mi)⊗ fi =
∑

mi ⊗∆(fi)−
∑

mi ⊗ fi ⊗ 1 =
∑

mi ⊗ fi1 ⊗ fi2 −
∑

mi ⊗ fi ⊗ 1 .

If J is a normalized right total integral and we call m = −∑
J(fi)mi,

then

χ(m) = −
∑

i

J(fi)χ(mi) = −
∑

(mi ⊗ fi1)J(fi2) +
∑

mi ⊗ fi ,

and from the equality
∑
J(fi2)fi1 = J(fi)1 we obtain that:

χ(m) = −
∑

J(fi)mi ⊗ 1 +
∑

mi ⊗ fi = m⊗ 1 +
∑

mi ⊗ fi .

Then
∑
mi⊗fi = χ(m)−m⊗1 ∈ B1(G,M) and we conclude that the

first cohomology group is trivial.
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We finish the proof showing that condition (11) implies condition (6) —
the proof here follows a standard pattern. Let ψ : M → N be a surjective
morphism of rational G–modules and take the short exact sequence 0 →
L → M → N → 0 where L = Ker(ψ). If n ∈ GN , take m ∈ M such that
ψ(m) = n. Consider the function f : G → M defined as f(z) = z ·m −m
for all z ∈ G. As ψ

(
f(z)

)
= z ·ψ(m)−ψ(m) = z ·n−n = 0, the map f can

be considered as a map with codomain L. Clearly, f ∈ Z1(G,L) an then,
as H1(G,L) = 0, there exists l ∈ L such that f(z) = z · l − l for all z ∈ G.
Then m− l ∈ GM and ψ(m− l) = n. Hence ψ

(
GM

)
= GN . ¤

Observation 2.25. (1) In the particular case of a finite group of order
prime to the characteristic of the field (see Observation 2.13), if we perform
the operations described in Theorem 2.24 we obtain the following expression
for the family of Reynolds operators: RM : M → GM is given by RM (m) =(|G|)−1 ∑

g∈G g ·m.

(2) If RM is a family of Reynolds operators for G, then K = Rk[G] : k[G] →
k is a two sided integral. Indeed, as K is a morphism of left G–modules, it
is a left integral. In order to prove the right invariance of K, fix x ∈ G and
consider the morphism of left G–modules rx : k[G] → k[G], rx(f) = f · x.
Applying the naturality of the Reynolds operator to the morphism rx, we
obtain the commutative diagram

k[G]

rx

²²

K // k

idk

²²
k[G]

K
// k

If f ∈ k[G], then K(f) = K
(
rx(f)

)
= K(f · x).

(3) It follows from general results in Hopf algebra theory that if a Hopf
algebra H admits a non zero left integral, then the space of left integrals
is one dimensional (see [27, Thm. 5.4.2]). In our situation, if k[G] admits
a left normalized integral I, then for any x ∈ G the map Ix : k[G] → k,
Ix(f) = I(f · x), is also a normalized left integral and hence coincides with
I. In other words, I is also a right normalized integral. The method of
proof we adopted in Theorem 2.24 avoids the use of this rather technical
uniqueness result.

3. Examples of linearly and geometrically reductive groups

In this section we develop some general tools that appear under the
guise of transitivity results and also provide some examples and non exam-
ples of geometrically or linearly reductive groups.
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Theorem 3.1. Let G be an affine algebraic group and H a closed nor-
mal subgroup. If H and G/H are geometrically reductive so is G. If G is
geometrically reductive so is G/H.

Proof: Assume that H and G/H are geometrically reductive. Let
M be a G–module and λ : M → k a non zero G–equivariant morphism.
As H is geometrically reductive we can find r > 0 such that the map
Sr(λ) : HSr(M) → k is surjective. Applying the definition of geometric
reductivity to the group G/H for the pair

(H
Sr(M), Sr(λ)

)
we find an

exponent s and an element ξ ∈ G/H
Ss

(H
Sr(M)

)
with the property that

Ss
(
Sr(λ)

)
(ξ) 6= 0. Hence ξ ∈ G

Ssr(M) and Ssr(λ)(ξ) 6= 0. The last
assertion of the theorem is very easy to prove (see Exercise 11). ¤

Observation 3.2. Theorem 3.1 has a version concerning linear reduc-
tivity that is left to the reader as an exercise (see Exercise 11).

Observation 3.3. A converse of Theorem 3.1 can be deduced from
Theorem 11.7.1. We prove that in the situation of an affine algebraic group
G that is geometrically reductive and such that for a certain closed subgroup
H the homogeneous space G/H is an affine variety, then H is geometrically
reductive. In our case being H a normal subgroup it is clear that G/H is
an affine variety (even an affine algebraic group), and we conclude that H
is geometrically reductive. Even though we still do not have enough theory
to prove this converse in its full generality, a useful particular case will be
proved in the lemma that follows.

Lemma 3.4. An affine algebraic group G is geometrically reductive if
and only if G1 is geometrically reductive. Moreover G is linearly reductive
if and only if G1 is linearly reductive and the index [G : G1] is invertible in
k.

Proof: As G/G1 is always geometrically reductive, we deduce from
Theorem 3.1 that if G1 is geometrically reductive so is G. With the corre-
sponding assertion concerning the linear reductivity we proceed in a similar
fashion using Exercise 11 and Theorem 2.8.

Assume now that G is geometrically reductive we want to prove that
G1 is geometrically reductive. Let M be a finite dimensional rational G1–
module and λ : M → k a surjective G1–equivariant morphism. Consider
the induced module

N = IndGG1
=

{
φ ∈ k[G,M ] : φ(xz) = x · φ(z) ∀z ∈ G, ∀x ∈ G1

}
.

Recall that if φ ∈ k[G,M ] and w, z ∈ G, then (w · φ)(z) = φ(zw). The
composition by λ induces a k–linear map Λ : N → k[G], Λ(φ) = λ◦φ. The
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following computation shows that Im(Λ) ⊂ k[G]G1 :

Λ(φ)(xz) = λ
(
φ(xz)

)
= λ

(
x · φ(z)

)
= λ

(
φ(z)

)
= Λ(φ)(z),

where x ∈ G1 and z ∈ G. If we endow k[G]G1 with the G–structure given
by left translations by elements of G it is easy to prove that the map Λ is
G–equivariant.

Consider the evaluation maps E : N →M and e : k[G]G1 → k defined
as E(φ) = φ(1) and e(f) = f(1) respectively; then the diagram

N

E

²²

Λ // k[G]G1

e

²²
M

λ
// k

is commutative and that the maps E and e are G1–morphisms with respect
to the given actions.

Next we show that for any m ∈ M such that λ(m) = 1 there exists
a function µ ∈ N such that Λ(µ) = 1 ∈ k[G]G1 and E(µ) = m. First
decompose G = G1 ∪ G1z2 ∪ · · · ∪ G1zr and then define µ(xzi) = x ·m if
x ∈ G1 and i = 1, . . . , r. In this situation it is clear that µ satisfies the
required properties.

If we call N0 the G–submodule of N generated by µ, then the commu-
tative diagram above induces a commutative triangle as below

N0

E

²²

Λ

ÃÃ@
@@

@@
@@

@

M
λ

// k

As G is geometrically reductive, there exists an r > 0 and ξ ∈ G
Sr(N0)

such that Sr(Λ)(ξ) = 1. As ξ ∈ G
Sr(N0) ⊂ G1Sr(N0), η = Sr(E)(ξ) ∈

G1Sr(M) and Sr(λ)(η) = 1. We proved that G1 is geometrically reductive.
It is clear that the same proof guarantees that if G is linearly reductive

so is G1. ¤

Theorem 3.5. Let k be an algebraically closed field of arbitrary char-
acteristic and let T be a torus, then T is linearly reductive.

Proof: Let M be a rational T = (Gm)n–module and consider the
corresponding k[t1, . . . , tn, t−1

1 , . . . , t−1
n ]–comodule structure χ : M →M ⊗

k[t1, . . . , tn, t−1
1 , . . . , t−1

n ]. For an arbitrary j = (j1, . . . , jn) ∈ Zn, we denote
tj = t11

1 · · · tjnn ∈ k[T ], and Mj =
{
m ∈M : χ(m) = m⊗tj}. It is clear that
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m ∈ Mj if and only if x ·m = tj(x)m = xjm for all x = (x1, . . . , xn) ∈ T .
If we write for m ∈ M , χ(m) =

∑
mj ⊗ tj and apply to this equality the

map χ ⊗ id, we conclude that
∑
χ(mj) ⊗ tj =

∑
mj ⊗ ∆(tj) =

∑
mj ⊗

tj ⊗ tj . Then χ(mj) = mj ⊗ tj and that means that mj ∈ Mj . Moreover,
(id⊗ε)χ(m) = m =

∑
mjε(tj) =

∑
mj . We proved that M = ⊕jMj and

that on each Mj the action of x ∈ T is given by x ·m = xjm. So that M is
the direct sum of the T–submodules Mj , that are obviously semisimple as
they are sum of one dimensional submodules. Hence M is semisimple. ¤

Observation 3.6. The proof above produces an explicit decomposition
of an arbitrary T–module as a direct sum of simple T–submodules. In
Exercise 9 we ask the reader to produce an explicit total integral for T .

Observation 3.7. The affine algebraic group Ga is not geometrically
reductive.

Indeed, consider the standard representation of Ga in k2 given by the
rule a · (x, y) = (x + ay, y), and the Ga–equivariant morphism λ : k2 → k,
λ(x, y) = y. If Ga were geometrically reductive, we would be able to find an
element ξ ∈ GaSr(k2) such that Sr(λ)(ξ) = 1. Let {e1, e2} be the canonical
basis of k2 and write ξ as ξ = a0e

r
1 + a1e

r−1
1 e2 + · · · + ar−1e1e

r−1
2 + are

r
2.

As Sr(λ)(ξ) = ar, we conclude that ar = 1. The invariance of ξ implies
that for all a ∈ Ga, ξ = a0e

r
1 + a1e

r−1
1 (ae1 + e2) + · · · + ar−1e1(ae1 +

e2)r−1 +(ae1 +e2)r. Computing the coefficient corresponding to er1 in both
expressions we conclude that a0 = a0 + aa1 + · · · + ar−1ar−1 + ar for all
a ∈ Ga and this is obviously impossible, as a non zero polynomial has at
most a finite number of roots.

The next definition singles out the concept of geometric reductivity for
an individual G–module instead of the category of all rational G–modules.

Definition 3.8. Let G be an affine algebraic group and M a rational
G–module. We say that M is geometrically reductive if for all 0 6= m ∈ GM

there exists an element fm ∈ Gk[M ] such that fm(m) 6= 0 and fm(0) = 0.
If for all m the function fm can be taken to be linear we say that M is
linearly reductive.

Observation 3.9. It is clear (see Exercise 5) that if G is an affine
algebraic group such that all its rational G–modules are geometrically re-
ductive, then G is geometrically reductive.

Lemma 3.10. Let G be an affine algebraic group and M an irreducible
G–module. Then Endk(M) is geometrically reductive.

Proof: Take 0 6= α ∈ GEndk(M) and use Schur’s lemma to prove
the existence of a non zero scalar a ∈ k such that α = aid. The function
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det : Endk(M) → k satisfies that det(0) = 0, det(α) = an. Moreover, for an
arbitrary β ∈ Endk(M) and for x ∈ G, x · det(β) = det(xβx−1) = det(β),
i.e., x · det = det for all x ∈ G. In other words, det ∈ Gk[Endk(M)]. ¤

Observation 3.11. If chark = 0, then the trace tr : Endk(M) → k
satisfies the required conditions in order to guarantee the linear reductivity
of Endk(M). Observe that tr(a id) = a dimM 6= 0.

Corollary 3.12. Let G be an affine algebraic group with the property
that for every finite dimensional G–module M and for all 0 6= m ∈ GM ,
there exists an irreducible G–module Vm and a linear G–morphism φm :
M → Endk(Vm) with φm(m) 6= 0. Then G is geometrically reductive.

Proof: Let M be a finite dimensional G–module and 0 6= m ∈ GM .
Consider φm and Vm as in the hypothesis. As φm is G–equivariant, the
element 0 6= φm(m) ∈ GEndk(Vm). In Lemma 3.10 we proved the exis-
tence of a G–fixed polynomial p : Endk(Vm) → k such that p(0) = 0 and
p
(
φm(m)

) 6= 0. The polynomial q = p ◦ φm is G–fixed, whit q(0) = 0 and
q(m) 6= 0. Hence, the G–module M is geometrically reductive and then G
is geometrically reductive. ¤

Theorem 3.13. Let G be an affine algebraic group. Assume that
there exists: a subalgebra A of k[G] that is also a G–stable direct G–
module summand of k[G]; a sequence of finite dimensional G–stable sub-
spaces V0 ⊂ V1 ⊂ · · · ⊂ A such that : (a)

⋃
i≥0 Vi = A; (b) for all i ≥ 0

there exists an irreducible G–module Ei such that Vi ∼= Endk(Ei). Then G
is geometrically reductive.

Proof: Let M be an arbitrary finite dimensional G–module, take
0 6= m0 ∈ GM and choose λ ∈ M∗ such that λ(m0) = 1. Consider the
map Λ : M → k[G] defined as Λ(m) = λ|m. It is clear that Λ is a linear
G–morphism and that for all z ∈ G, Λ(m0)(z) = λ(z ·m0) = λ(m0) = 1. In
other words the map Λ sends m0 into the neutral element of k[G]. As A is a
G–summand of k[G] there exists a G–equivariant projection π : k[G] → A.
The G–submodule π

(
Λ(M)

) ⊂ A is finite dimensional so that for some
i ≥ 0 we have that π

(
Λ(M)

) ⊂ Vi. Then, as πΛ(m0) 6= 0, we are in
the hypothesis of Corollary 3.12 and we conclude that G is geometrically
reductive. ¤

Next we apply Theorem 3.13 in order to prove that SL2 is geometrically
reductive. The proof we present follows closely [141] and is a particular-
ization of the proof of the general Mumford’s conjecture that appears in
[52].

For the rest of this section we fix the following notations: G = SL2,
B = k[SL2] and T =

{(
t 0
0 t−1

)
: t ∈ k∗}.
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Let T act on the right on B and call A = BT . As T is linearly reductive,
we can construct a projection p : B → A and this projection is equivariant
with respect to the left G–action. Hence A is a direct G–module summand
of B. We describe A more explicitly. Write B = k[X,Y, Z,W ]/(XW −
Y Z − 1) and call x, y, z, w the elements of B corresponding respectively to
X,Y, Z,W in the quotient. If (a, b, c, d) is a 4–uple of positive integers we
call fa,b,c,d = xaybzcwd. If is clear that B is linearly generated by the set
{fa,b,c,d : a, b, c, d ≥ 0}. Let us compute the action on the element fa,b,c,d
of a generic element

(
α β
γ δ

)
∈ G on the left and of a generic element of the

form
(
t 0
0 t−1

) ∈ T on the right.

(
α β
γ δ

)
· xaybzcwd = (αx+ γy)a(βx+ δy)b(αz + γw)c(βz + δw)d

xaybzcwd · ( t 0
0 t−1

)
= ta+b−c−dxaybzcwd

As the elements fa,b,c,d satisfy the following relations:

fa,b,c,d = fa+1,b,c,d+1 − fa,b+1,c+1,d ,

A is linearly generated by {fa,b,c,d : a + b = c + d}. We filter A with G–
stable submodules as follows: for an arbitrary e ≥ 0 consider Ae, the linear
space generated by {fa,b,c,d : a + b = c + d ≤ e}. It is useful to observe
that Ae is also generated by the elements {fa,b,c,d : a+ b = c+ d = e}, this
being a direct consequence of the relations above. Then,

A0 = k ⊂ A1 = 〈xz, xw, yz, yw〉 ⊂
A2 = 〈x2z2, x2zw, x2w2, xyz2, xyzw, xyw2, y2z2, y2zw, y2w2〉 ⊂ · · · ⊂ A .

Next we prove that {fa,b,c,d : a + b = c + d = e} is a basis of Ae. The
fact that it is a set of generators was just proved. Its independence can
be established as follows. Suppose that

∑
a+b=c+d=e λa,b,c,dx

aybzcwd = 0.
Then in the polynomial ring k[X,Y, Z,W ] we have an equality

∑

a+b=c+d=e

λa,b,c,dX
aY bZcW d = (XW − Y Z − 1)h(X,Y, Z,W ) .

The left hand side is a homogeneous polynomial of degree 2e and, as
the right hand side is not homogeneous, we conclude that λa,b,c,d = 0 for
all a, b, c, d.

After this preparation, we are ready to prove that SL2 is geometrically
reductive.

Theorem 3.14. Let k be an algebraically closed field of arbitrary char-
acteristic. Then SL2 is geometrically reductive.
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Proof: We use along this proof the notations and results just obtained.
First observe that for all e, Ae ∼= Re ⊗ Re as SL2–modules (see Definition
4.4.1). For this recall that Ae = 〈fabcd : a + b = c + d = e〉 and define
θ : Re ⊗ Re → Ae by the formula: θ(piqe−i, pjqe−j) = fi,e−i,j,e−j . Clearly
θ is bijective; the proof that it is an SL2–equivariant map is left as an
exercise (see Exercise 12). If e = ph − 1 or the characteristic of the base
field is zero, being Re ∼= R∗e as SL2–modules (see Lemma 4.4.3), we conclude
that Ae ∼= Endk(Re). Once this is established, the geometric reductivity of
SL2 is a direct consequence of Theorem 3.13. ¤

Observation 3.15. In the case of characteristic zero, once we know
that SL2 is geometrically reductive, the linear reductivity follows immedi-
ately (see Corollary 2.7).

In Exercise 13 we ask the reader to deduce from the above theorem
that GL2 is geometrically reductive.

Another elementary proof of the geometric reductivity of SL2, that
follows the original proof by C. Seshadri appearing in [138], is presented in
[45].

To the reader interested in a more complete exploration of the repre-
sentation and invariant theory of SL2(k) we recommend as a starting point
the book by T. A. Springer [141], where many results of “classical invariant
theory” are presented under a modern guise — for example, there we can
find very nice presentations of Cayley–Silvester formula, Clebsh-Gordan
formula, Hermite’s reciprocity theorem, Hilbert asymptotic formula, etc.
In this same direction, besides the classical reference of H. Weyl’s book
(see [154]), the reader may consult for example [29].

4. Reductivity and the structure of the group

In this section we illustrate the influence that the hypothesis of reduc-
tivity has on the structure of the group G.

First we show that over a field of positive characteristic a connected
linearly reductive group is a torus. This result was proved by Nagata in
[110] and it should be regarded as one of the main motivations for the
introduction of the concept of geometric reductivity.

Contrariwise, in characteristic zero the concept of linear reductivity
covers a much larger family of algebraic groups, e.g. the classical groups
are linearly reductive. We deal with this situation in detail in Section 6.
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In the case of positive characteristic D. Mumford in [103] conjectured
that a reductive group is geometrically reductive. The proof of this con-
jecture remained open for about ten years but the converse, i.e. that a ge-
ometrically reductive group has trivial unipotent radical, was immediately
proved by Nagata and Miyata in [113] (see Theorem 4.3).

The original Mumford’s conjecture was proved in 1975 by W. Haboush
in [52]. Many partial results had been obtained before by T. Oda, C. Se-
shadri, H. Sumihiro, etc. As a consequence of these efforts the case of GL2

was established in arbitrary characteristic and the case of GLn was proved
in [46] more or less simultaneously with the general conjecture.

The proof of Mumford’s conjecture — Haboush’s theorem — even
though it is extremely important in invariant theory, will not be presented
in this book. The original proof, as well as all the other proofs we are aware
of, are based in a very thorough analysis of the finer points of the repre-
sentation theory of reductive groups and in particular on deep results of
R. Steinberg concerning what is now called the Steinberg representation as
presented in [143]. These results on the representation theory of reductive
groups are beyond the elementary scope of this book.

First we prove a lemma that will be the crucial technical tool in order to
guarantee that in positive characteristic the only linearly reductive groups
are the tori.

Lemma 4.1. Assume that chark = p > 0. Let U be an irreducible non
trivial unipotent affine algebraic group, M a finite dimensional rational
U–module, and Sp(M) ⊂ S(M) the p–th homogeneous component of the
symmetric algebra built on M . Let P ⊂ Sp(M) denote the U–submodule
P = {mp : m ∈ M}. If P is a direct U–summand of Sp(M), then the
action of U on M is trivial.

Proof: It is clear that, after dividing by a conveniently chosen normal
subgroup of U , we may assume that the representation of U onM is faithful.
Assuming that in this new situation U 6= {1}, we will obtain a contradiction
from the existence of a U–complement of P . Fix a basis B = {m1, . . . ,mt}
of M that makes the matrix associated to U lower triangular unipotent (see
Corollary 5.6.6). The matrix representation produces polynomials

{
fij ∈

k[U ] : 1 ≤ j < i ≤ t
}

that generate k[U ] as a k–algebra and such that for
all j = 1, . . . , t, u ·mj −mj =

∑
j<i≤t fij(u)mi. Whenever it is necessary

we write fii = 1, 1 ≤ i ≤ t. Call Q = k[U ]p. Concerning the location
of the fij ’s with respect to Q, as U 6= {1}, we can find a pair of integers
1 ≤ s < r ≤ t — that depend on the basis B — such that: (a) frs 6∈ Q, (b)
fij ∈ Q, i > j > s, (c) fis ∈ Q, i > r. In terms of the matrix given by the
elements fij , the above conditions mean that in the lexicographical order,
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frs

∈ Q

r

s

Figure 1. Definition of the pair (r, s). Note that frs 6∈ Q.

i.e. (i, j) > (k, l) if j > l or if j = l, i > k, “after” the element frs — that
does not belong to Q — all the other elements of the matrix do belong to
Q; this is illustrated in Figure 1.

In order to make the dependence of r and s on the basis B explicit we
denote them as rB and sB respectively. Call dB = rB − sB and take a basis
B that minimizes dB.

In the case that dB is minimal, we prove that frs is not generated
modQ by {fis : s < i ≤ t, i 6= r}. As fis ∈ Q for i > r, it is enough to
prove that frs is not generated modQ by {fis : s < i < r}.

Assume there exist scalars ai, s < i < r, such that frs−
∑
s<i<r aifis ∈

Q. Replace the base B by B′ = {m1, . . . ,ms,ms+1 + as+1mr, . . . ,mi +
aimr, . . . ,mr−1 + ar−1mr,mr, . . . ,mt}. It is clear that with respect B′ the
representation is again lower triangular. A direct computation also shows
that rB′ < rB and sB′ = sB and then dB′ < dB and this contradicts the
choice of the basis. So that the independence result is guaranteed.

Next we show that in this situation the element mr is U–fixed.
Since the fij are part of the matrix representation of U in M , we

have that fis(uv) =
∑
s≤j≤i fij(u)fjs(v) for all i > s. Hence, fis · u =∑

s≤j≤i fij(u)fjs; if i > r, then fis ∈ Q and the same happens with fis ·
u. It follows that fir(u)frs +

∑
s≤j≤i
j 6=r

fij(u)fjs ∈ Q. In order to avoid a

contradiction with the independence relation just observed, we have that
for all u ∈ U and all i > r, fir(u) = 0. Hence, u ·mr = mr.

The symmetric power Sp(M) is linearly generated by {mi1
1 · · ·mit

t :
i1 + · · · + it = p}. We show that P = 〈mp

1, . . . ,m
p
t 〉k does not admit a U–

complement in Sp(M). Assume that we have a U–module decomposition
Sp(M) = P ⊕ L, consider the set of elements

{
msm

p−1
r ,ms+1m

p−1
r , . . . ,mr−1m

p−1
r ,mr+1m

p−1
r , . . . ,mtm

p−1
r

}
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and write mim
p−1
r = ti + li with ti ∈ P , li ∈ L and s ≤ i ≤ t, i 6= r.

Being mr a U–fixed element, we have that for all u ∈ U , u · (msm
p−1
r ) =∑

s≤i≤t fis(u)mim
p−1
r and then u · ls =

∑
s≤i≤t
i 6=r

fis(u)li. By subtracting we

obtain

u · (msm
p−1
r − ls) = frs(u)mp

r +
∑

s≤i≤t
i6=r

fis(u)(mim
p−1
r − li) .

In other words, u · ts = frs(u)mp
r +

∑
s≤i≤t
i 6=r

fis(u)ti.

Writing for i 6= r, ti =
∑t
j=1 bijm

p
j with bij ∈ k, we have

u · ts =
∑

j

bsju ·mp
j = frs(u)mp

r +
∑

s≤i≤t,i6=r
1≤j≤t

fis(u)bijm
p
j .

Moreover, if 1 ≤ j ≤ t then u ·mp
j = (u ·mj)p =

(∑
j≤k≤t fkj(u)mk

)p =∑
j≤k≤t f

p
kj(u)mp

k. Thus,
∑

1≤j≤t
j≤k≤t

fpkj(u)bsjm
p
k = frs(u)mp

r +
∑

s≤i≤t,i 6=r
1≤j≤t

fis(u)bijm
p
j .

By looking at the mp
r component of the above sum we deduce the

equality
∑

1≤j≤t bsjf
p
rj = frs+

∑
s≤i≤t
i6=r

fisbir. Then frs+
∑
s≤i≤t
i 6=r

fisbir ∈ Q,

and this dependence relationship modQ yields a contradiction. ¤

Theorem 4.2. Assume that chark = p > 0 and let G be an affine
algebraic group. Then G is linearly reductive if and only if G1 is a torus
and the index [G : G1] is invertible in k.

Proof: By Lemma 3.4 we may assume that G is connected. The fact
that in arbitrary characteristic tori are linearly reductive is the content of
Theorem 3.5. For the proof of the converse we use Lemma 7.6.10 and all
that remains to prove is that in our hypothesis there are no non trivial
connected unipotent closed subgroups.

Let U ⊂ G be a unipotent connected closed subgroup ofG and represent
G as a closed subgroup of GL(M) for a certain finite dimensional rational
G–module M . Consider Sp(M) and the G–submodule P = {mp : m ∈M}.
Being G linearly reductive, we deduce that there exists a G–submodule
L ⊂ Sp(M) such that Sp(M) = P ⊕ L. Unless U = {1}, the above
decomposition — when considered as a decomposition of U–modules —
yields a contradiction with Lemma 4.1. ¤
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Next we prove that geometrically reductive groups have trivial unipo-
tent radical.

Theorem 4.3. Let G be an affine algebraic group. If G is geometrically
reductive, then G is reductive, i.e. Ru(G) = {1}.

Proof: Being the unipotent radical a normal subgroup, the homoge-
neous space G/Ru(G) is affine and Theorem 11.7.1 guarantees that Ru(G)
is geometrically reductive (see also Observation 3.3). If the unipotent sub-
group Ru(G) is not trivial, we can find a surjective morphism of algebraic
of algebraic groups Φ : Ru(G) → Ga. In this situation, using Theorem 3.1
and Observation 3.7 we obtain a contradiction. ¤

Observation 4.4. (1) The reader should notice that in the proof of
It

should be observed that the proof of Theorem 11.7.1 is independent of the
result we proved above.
(2) As we mentioned in the introduction, the converse of Theorem 4.3 is
true: if G is a reductive group, then it is geometrically reductive (see [53]).
In view of this and whenever it is necessary, we will use without further
reference that the concepts of reductive and geometrically reductive are
equivalent. But, in order to help the reader understand the inner mech-
anisms of these aspects of the theory, we will make clear every time we
use them, which one of these two versions of the concept of reductivity we
apply.

Corollary 4.5. Let G be an affine algebraic group and assume that R
is a geometrically reductive closed subgroup of G. Then Ru(G) ∩R = {1}.

Proof: The intersection Ru(G) ∩ R ⊂ R is normal and unipotent.
Then Ru(G) ∩R ⊂ Ru(R) = {1}. ¤

5. Reductive groups are linearly reductive in characteristic zero

In this section we prove the algebraic version of H. Weyl’s theorem
concerning the semisimplicity of the representations of a semisimple group.

The proof we present here is based on Mostow’s theorem 5.1. (see
[101]).

Theorem 5.1 (G.D. Mostow, [101]). Assume that chark = 0 and let G
be a connected affine algebraic group. Then there exists a linearly reductive
algebraic subgroup R ⊂ G such that G = Ru(G)oR.

Proof: In accordance with Theorem 8.3.14, there exists a G–linearly
reductive algebraic sub-Lie algebra r ⊂ L(G) such that L(G) = L(

Ru(G)
)
+

 

Theorem 4.3, we used a result that will only be proved in Chapter 11.
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r. Consider the irreducible algebraic subgroup R of G that has r as asso-
ciated Lie algebra. It follows immediately from Corollary 8.2.12 that R
is G–linearly reductive. The algebraic subgroup Ru(G)R ⊂ G has a Lie
algebra that contains L(

Ru(G)
)

and r. Hence the Lie algebra of Ru(G)R is
L(G) and then Ru(G)R = G. Using Theorem 5.6.19 we obtain the desired
conclusion. ¤

Observation 5.2. The connectedness hypothesis in Theorem 5.1 is
not necessary. With some additional non trivial work, the theorem can be
proved in the non connected case. Moreover, some additional information
can be obtained about the complements of Ru(G). In fact, if R and S are
linearly reductive subgroups of G and G = Ru(G)oR = Ru(G)o S, then
there exists an element x ∈ Ru(G) such that R = xSx−1.

These two generalizations appear for example in the original paper by
Mostow (see [101] or [71]).

Observation 5.3. If G is a connected affine algebraic group, a Levi
subgroup is a connected subgroup L ⊂ G such that G = Ru(G)oL. Clearly,
a Levi subgroup, being isomorphic to G/Ru(G), is (geometrically) reduc-
tive. Therefore, Theorem 5.1 can be formulated as follows:

For affine algebraic groups over fields of characteristic zero Levi sub-
groups always exist.

Theorem 5.4. Assume that chark = 0 and let G be a reductive group.
Then G is linearly reductive.

Proof: We know that G is linearly reductive if and only if G1 is
linearly reductive (see Lemma 3.4). If Ru(G) = {1}, being Ru(G1) normal
in G and unipotent, it has to be trivial. Hence, we can assume that G is
connected and, using Theorem 5.1, we conclude that it is linearly reductive.

¤

Observation 5.5. The converse of the above theorem is also true. If G
is linearly reductive — and hence geometrically reductive — the fact that
Ru(G) is trivial is the content of Theorem 4.3.

linearly reductive in characteristic zero:

Corollary 5.6. Over a field of characteristic zero the classical groups
are linearly reductive.

Proof: In Section 5.9 we proved that all classical groups have trivial
unipotent radical. Our result follows from Theorem 5.4. ¤

 

In particular, we obtain that the classical groups (see Section 3.2) are
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Observation 5.7. As we mentioned before, Haboush’s theorem guar-
antees that in arbitrary characteristic the classical groups are geometrically
reductive.

6. Exercises

1. Let A is a graded commutative k–algebra satisfying: (i) A0 = k; (ii)
A+ =

⊕
d≥1Ad is a finitely generated ideal of A. Prove that A is a finitely

generated k–algebra. Hint: Use Hilbert’s method of proof as presented in
the introduction.

2. Assume that chark = 2 and consider the representation of SL2 on
k[x, y] given linearly on the variables as

(
a b
c d

) · x = dx− by;
(
a b
c d

) · y = −cx+ ay

(a) Show that the matrix associated to this representation when restricted
to k2[x, y] = 〈xy, x2, y2〉 is the one considered in the introduction.
(b) Conclude that 〈x2, y2〉 is SL2–invariant but does not admit an invariant
complement.
(c) Call xy = z0, x

2 = z1, y
2 = z2 and observe that if M = 〈z0, z1, z2〉

and N = 〈z1, z2〉, then S2M = 〈z2
0 , z0z1, z0z2, z

2
1 , z1z2, z

2
2〉 and NM =

〈z0z1, z0z2, z1z2, z2
2〉. Prove that the element z2

0 − z1z2 ∈ S2M is SL2–
invariant and conclude that S2M = NM ⊕ 〈z2

0 − z1z2〉 is a decomposition
of S2M as in Theorem 2.10.

3. In the notations of Observation 2.5, prove that Sr−i(λ) ◦ λ(i)
r =(

r
i

)
Sr(λ).

4. Let e be a positive integer and assume that for all 1 ≤ i ≤ e − 1,(
e
i

) ≡ 0 mod(p). Conclude that e = pn for some positive integer n.

5. (See [141]) The goal of this exercise — and also of Exercises 6 and
7 — is to prove the equivalence of some other definitions of geometric and
linear reductivity appearing in the literature on the subject.

Let G be an affine algebraic group, M ∈ GMf , {m1, . . . ,mt} a basis of
M and {m∗

1, . . . ,m
∗
t } its dual basis. Call F(M, k) the algebra of all k–valued

functions defined on M and k[M ] the subalgebra of F(M,k) generated by
{m∗

1, . . . ,m
∗
t }, and consider the usual action of G on F(M,k), (z ·α)(m) =

α(z−1 ·m), for z ∈ G, α ∈ F(M,k) and m ∈M .
(a) The group G is geometrically reductive if and only if for all M ∈ GMf

and for all 0 6= m ∈ GM , there exists f ∈ Gk[M ] such that f(0) = 0 and
f(m) 6= 0.
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(b) The group G is linearly reductive if and only if for all M and m as in
(i) the polynomial f ∈ Gk[G] mentioned above can be taken to be linear.

6. (See [112]) Let G be an affine algebraic group and ρ = (aij) : G→
GLm be a rational representation — in matrix form. Define an action of G
on k[T1, . . . , Tm] by z · Ti =

∑m
j=1 aij(z)Tj , i = 1, . . . ,m.

(a) Consider F the family of all representations ρ as above satisfying that
the subspace kT2 + · · · + kTm ⊂ k[T1, . . . , Tm] is G–stable and that the
polynomial T1 is invariant mod kT2 + · · · + kTm. The group G is geo-
metrically reductive if and only if for all ρ ∈ F there exists a polynomial
f ∈ Gk[T1, . . . , Tm] which contains a term of the form T d1 for some d > 0.
(b) The group G is linearly reductive if and only if in the situation above
f can be taken to be linear polynomial.

Notice that the conditions defining F mean that for all z ∈ G we have
that a11(z) = 1, a21(z) = · · · = am1(z) = 0.

7. Let G be an affine algebraic group. For an arbitrary rational G–
module M it is customary to denote as GM the k–subspace of M generated
by {z · m − m : z ∈ G,m ∈ M}. It is clear that GM is a G–submodule
of M . Then G is geometrically reductive if and only if for an arbitrary
commutative G–module algebra R and for an arbitrary r ∈ R there exists
a positive integer q — depending on r — such that rq ∈ GR + (GR)R.
Moreover G is linearly reductive if and only if R = GR+ (GR)R.

8. Complete the proofs of Lemmas 2.14 and 2.15.

9. Construct total integrals and Reynolds operators in the case of:
(a) the n–dimensional torus; (b) a finite group G whit chark 6 | |G|.

10. In the notations of Definition 2.22 and Observation 2.23, prove that
the map Θ : M⊗k[G] → k[G,M ], Θ(m⊗f) = f(x)m for m⊗f ∈M⊗k[G],
is a k–linear isomorphism between k[G,M ] and M ⊗ k[G]. Verify that by
this identification Z1(G,M) is transformed into

{
ξ ∈M⊗k[G] : (id⊗∆−χ⊗

id)(ξ) = ξ⊗1
}

, and B1(G,M) is transformed into
{
χ(m)−m⊗1 : m ∈M}

.

11. (a) Let G be geometrically reductive group and H ⊂ G a closed
normal subgroup. Prove that G/H is geometrically reductive.
(b) Let G be an affine algebraic group and H ⊂ G a closed normal subgroup.
Prove that if H and G/H are linearly reductive so is G. Prove that if G is
linearly reductive so is G/H.
(c) Let H,K ⊂ G be geometrically reductive groups with G = H o K.
Prove that G is geometrically reductive.

12. Prove that the map θ defined in Theorem 3.14 is an SL2–equivariant
isomorphism.
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13. Prove that GL2 is geometrically reductive.

14. Use Theorem 5.1 to classify all connected affine algebraic groups of
dimension smaller than or equal to two over a field of characteristic zero.
Generalize to non connected groups.

 



CHAPTER 10

Observable subgroups of affine algebraic
groups

1. Introduction

The concept of observable subgroup was considered for the first time in
[6]. The main concern of the authors was the study of the extension of the
representations from a subgroup H to the whole group G. They defined H
to be observable in G when “every finite dimensional rational H–module
can be embedded as an H–submodule in a rational G–module” ([6, p. 131]).
G. Hochschild and G. Mostow had studied the extension problem for Lie
groups where not much could be proved in the general case (see [72],[102]).
As it is shown in [6], the situation for algebraic groups turned out to be
much easier to handle.

Since then, observable subgroups have been extensively studied, in par-
ticular in their relationship with the finite generation of invariants and
Hilbert’s 14th

The definition of observability we present in this chapter is not the
standard one, but can be considered to be implicit in [6]. It concerns
the possibility of finding inside an arbitrary H–stable ideal of k[G], a non
zero H–fixed element. Its systematic use seems to set up a natural bridge
between the algebra and the geometry of the extension problem mentioned
above. Other similar presentations of the basic material on observability
can be found in [51, Chap. 1] or [71, Chap. XII]. We recommend [51] to
the reader interested in a deeper study of these subjects.

Next, we describe the contents of the different sections of this chapter.
In Section 2 we define observable subgroups and present different char-

acterizations of observability in terms of ideals, representations and char-
acters.

In Section 3 we characterize observability in terms of the surjectivity of
the evaluation map associated to the induction functor, and establish some
of its basic properties, e.g. the transitivity of observability along towers of
subgroups.
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problem; we treat this relationship in Chapter 12.



324 10. OBSERVABLE SUBGROUPS OF AFFINE ALGEBRAIC GROUPS

In Section 4 we consider two interrelated conditions that strengthen
observability: split and strong observability. These properties will be im-

to be affine, i.e. for the induction functor to be exact.
In Section 5 we present a proof of the usual geometric characterization

of observability namely: H is observable in G if and only if the homogeneous
space G/H is a quasi–affine variety.

2. Basic definitions

Definition 2.1. Let G be an affine algebraic group and H ⊂ G a
closed subgroup. The subgroup H is observable in G if and only if for all
non zero H–stable ideals I ⊂ k[G] we have that HI = I ∩ Hk[G] 6= {0}.
When there is no danger of confusion, we will say that H is observable
without mentioning the group G.

Observation 2.2. Let G be an affine algebraic group and H ⊂ G
a closed subgroup. In Corollary 7.2.5 we proved that for an arbitrary
H–stable ideal I ⊂ k[G], there exists an element 0 6= f ∈ I that is a
ρ–semi–invariant for a convenient extendible character ρ. The notion of
observability, arises when we ask additionally that ρ is the trivial charac-
ter.

Observation 2.3. The standard Borel subgroup

H =
{(

a b
0 a−1

)
: a 6= 0, b ∈ k} ⊂ SL2

of SL2 is not observable. Indeed, in accordance to Exercise 7.17, in this
situation Hk[G] ∼= k. Hence, if I is a non zero H–stable proper ideal
HI ⊂ k is forced to be zero.

A geometric explanation of the non observability of H in SL2 will be
clear later: we will prove that the homogeneous space G/H has to be quasi–
affine for H to be observable in G. In this situation, SL2 /H is the projective
line (see Example 5.7).

Observation 2.4. If the subgroup H ⊂ G is such that X (H) = {1},
it follows from Corollary 7.2.5 that H is observable in G. In particular, if
H is unipotent or if H = [K,K] for some closed subgroup K ⊂ G, then H
is observable.

Observation 2.5. If H ⊂ G is a finite, then H is observable in G.
Indeed, let I 6= {0} be an H–stable proper ideal and 0 6= f ∈ I. Then f is a
root of P (T ) =

∏
x∈H(T − x · f) ∈ HI[T ]. If HI = {0}, then P (T ) = T |H|,

i.e. f |H| = 0 and we get a contradiction. Hence, HI 6= {0}. See also
Exercise 5.

 

portant when in Chapter 11 we study conditions for an homogeneous space
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Observation 2.6. Corollary 7.2.7 guarantees that the normal sub-
groups of G are observable.

Observation 2.7. Notice that above we defined the notion of “left”
observability, a similar notion of “right” observability can be defined using
right translations. In Exercise 6 the reader is asked to prove that both
concepts are equivalent.

In order to increase our control over the observable subgroups we will
look more carefully at the extendible characters (see Definition 7.2.1).

Lemma 2.8. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. Then:
(1) If ρ is extendible and f ∈ k[G] is an extension of ρ, then for any z ∈ G,
f · z is also an extension of ρ.
(2) If π : k[G] → k[H] is the canonical projection and ρ is an extendible
character, then there exists an extension f ∈ k[G] of ρ such that π(f) = ρ.
(3) A character ρ is extendible if and only if there exists a rational G–
module N and an injective morphism of H–modules ι : kρ→ N |H . In other
words, ρ is extendible if and only if there exists a rational G–module N and
a non zero element n ∈ N such that x · n = ρ(x)n for all x ∈ H. Moreover
the G–module N can be taken to be a finite dimensional G–submodule of
k[G].
(4) The set EG(H) ⊂ X (H) of extendible characters is a unital submonoid
of X (H). In other words, it is closed under multiplication and contains the
character 1.
(5) For any γ ∈ X (H) there exists ρ ∈ EG(H) such that γρ ∈ EG(H).

Proof: Condition (1) follows immediately from the fact that for all
y, z ∈ G, y · (f · z) = (y · f) · z.
(2) Let f 6= 0 be an extension of ρ. After right translation by an element
of G and division by a scalar we can assume that f(1) = 1. The equality
x · f = ρ(x)f evaluated at 1 reads f(x) = f(1)ρ(x) = ρ(x) for all x ∈ H.
(3) Suppose that ρ is extendible, let f ∈ k[G] be an extension and call N the
rational G–submodule of k[G] generated by f . Then the map ι : kρ → N ,
ι(ρ) = f , does the job. Conversely, if one has an injective morphism ι : kρ→
N |H and call n = ι(ρ), then x · n = x · ι(ρ) = ι(x · ρ) = ρ(x)ι(ρ) = ρ(x)n.
Take now α ∈ N∗ such that α(n) = 1 and consider f = α|n. Then, x · f =
α|(x ·n) = ρ(x)α|n = ρ(x)f for all x ∈ H, and f(1) = (α|n)(1) = α(n) = 1.
(4) Clearly, 1 ∈ EG(H). Consider ρ1, ρ2 ∈ EG(H) and let f1, f2 be exten-
sions of ρ1, ρ2 respectively satisfying that f1(1) = f2(1) = 1. If g = f1f2, it
is clear that g 6= 0 is a ρ1ρ2–semi–invariant.
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(5) Consider M = kγ. By Theorem 7.2.3 there exists an extendible char-
acter ρ, a G–module N and an injective H–morphism ι : kγ → (

N |H
)
ρ−1 .

Call n = ι(γ), then for any x ∈ H we have that x·n = x·ι(γ) = ρ(x)ι(x·γ) =
ρ(x)γ(x)ι(γ) = ρ(x)γ(x)n. From (3) we conclude that ργ ∈ EG(H). ¤

Next we present various algebraic characterizations of observability.

Theorem 2.9. If G is an affine algebraic group and H ⊂ G a closed
subgroup, then the following conditions are equivalent:
(1) The subgroup H is observable in G.
(2) EG(H) = X (H), i.e. every rational character is extendible.
(3) For every ρ ∈ EG(H) there exists q > 0 such that ρ−q ∈ EG(H).
(4) For every ρ ∈ EG(H), ρ−1 ∈ EG(H).
(5) For every character ρ ∈ X (H) there exists q > 0 such that ρq ∈ EG(H).
(6) For every finite dimensional rational H–module M there exists a finite
dimensional rational G–module N and an injective morphism of H–modules
ξ : M → N |H .
(7) For every finite dimensional rational H–module M there exists a finite
dimensional rational G–module N and a surjective morphism of H–modules
ξ : N |H →M .

In the case that condition (6) is satisfied and M is a simple H–module,
then N can be taken to be a simple G–module.

Proof: The equivalence of conditions (2), (3) and (4) follows imme-
diately. For example in order to prove that (4) implies (2) we use Lemma
2.8 part (5) as follows: if γ ∈ X (H), then there exists ρ ∈ EG(H) such
that γρ ∈ EG(H). Condition (4) implies that ρ−1 ∈ EG(H) and then
γ = (γρ)ρ−1 ∈ EG(H).

It is also clear that (5) is equivalent to any of (2), (3) or (4).
In order to prove that (4) implies (1), assume that I ⊂ k[G] is an

H–stable non zero ideal of k[G]. From Corollary 7.2.5, we deduce the
existence of 0 6= f ∈ I ⊂ k[G] and ρ ∈ EG(H) such that x · f = ρ(x)f for
all x ∈ H. By (4) the character ρ−1 ∈ EG(H). If we take 0 6= h ∈ k[G]
such that x · h = ρ−1(x)h for all x ∈ H, then we can find a right translate
g of h that multiplied by f satisfies fg 6= 0. Indeed, if f(z0) 6= 0 and
h(w0) 6= 0 for z0, w0 ∈ G,

(
f(h · w0z

−1
0 )

)
(z0) = f(z0)h(w0) 6= 0. Hence,

calling g = h · w0z
−1
0 , the element 0 6= fg ∈ I is fixed by H. Indeed,

x · (fg) = (x · f)(x · g) = ρ(x)fρ−1(x)g = fg.
Next we prove that (1) implies (4). Assume ρ ∈ EG(H) and take

0 6= f ∈ k[G] that extends ρ. Call I the principal ideal of k[G] generated
by f , i.e. I = k[G]f . As f is semi–invariant I is H–stable. Hence, there
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is an element 0 6= g ∈ HI. Write g = hf and compute the action of
x ∈ H on both sides of the equality. We have that (x · h)ρ(x)f = hf or(
x · h − ρ(x)−1h

)
f = 0. If the group G is connected, being f 6= 0 we

conclude that h is a non zero ρ−1 semi–invariant.
If G is not connected, write G = z1G1 ∪ z2G1 ∪ · · · ∪ zrG1, the decom-

position of G into connected components — here z1 = 1. As 0 6= f ∈ k[G],
there exists 1 ≤ i ≤ r, such that f |ziG1 6= 0 and then we deduce that(
x · h − ρ(x)−1h

)
(ziy) = 0 for all y ∈ G1. Calling ĥ = h · zi, we have

that for all y ∈ G1, ĥ(yx) = ρ(x−1)ĥ(y) for all x ∈ H. Consider an arbi-
trary element yz ∈ G1H, where y ∈ G1 and z ∈ H, and compute ĥ(yzx) =
ρ(z)−1ρ(x)−1ĥ(y) = ρ(x)−1ĥ(yz), i.e. ĥ(wx) = ρ(x)−1ĥ(w) for all w ∈ G1H
and for all x ∈ H. Now decompose G = G1H ∪ u2G1H ∪ · · · ∪ utG1H and
define 0 6= h ∈ k[G] as follows: h|G1H = ĥ, h|uiG1H = 0 for i ≥ 2. The
polynomial h is an extension of ρ−1.

The equivalence of (6) and (7) follows immediately by duality.
Next we prove that (4) implies (6). If M is a finite dimensional rational

H–module, using Theorem 7.2.3 we deduce the existence of an extendible
character ρ, a finite dimensional rational G–module N and an injective map
ι : M → N such that ι(x ·m) = ρ−1(x)x · ι(m) for all x ∈ H. By hypothesis
the character ρ−1 is extendible, so if we take f ∈ k[G] that extends ρ−1

and call N0 the G–submodule of k[G] generated by f , we can define an
injective map ξ : M → N ⊗ N0, given as ξ(m) = ι(m) ⊗ f . If we endow
N ⊗N0 with the diagonal G–module structure, the following computation
shows that ξ is H–equivariant. Take x ∈ H; then ξ(x ·m) = ι(x ·m)⊗ f =
ρ−1(x)x · ι(m)⊗ f = x · ι(m)⊗ ρ−1(x)f = x · ι(m)⊗ x · f = x · ξ(m).

Finally, we prove that (6) implies (2). Let γ ∈ X (H) be a rational
character of H and consider the rational H–module M = kγ. If ξ and N
are as in (6), using Lemma 2.8 we conclude that γ is extendible.

The assertion concerning the simplicity follows immediately from The-
orem 7.2.3. ¤

The proof that subgroups of finite index are observable is easy:

Observation 2.10. If H is a closed subgroup of G of finite index, then
H is observable in G. Indeed, write the decomposition of G into left H–
cosets G = z1H∪z2H∪· · ·∪zrH, z1 = 1, and let γ ∈ X (H) be an arbitrary
character. Then the function f ∈ k[G] defined as f |ziH = 0 if i = 2, . . . , r
and f |H = γ is a non zero γ semi–invariant.
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3. Induction and observability

The relationship between induction and observability was first noticed
in [26], where the following characterization of observability was proved:
the natural transformation E : ResGH ◦ IndGH → Id is surjective if and only
if H is observable in G.

Theorem 3.1. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. The subgroup H is observable in G if and only if for all M ∈ HM
the map EM : IndGH(M)|H →M is surjective.

Proof: Assume that the evaluation E is a surjective natural transfor-
mation and let M be an arbitrary finite dimensional rational G–module.
As EM : IndGH(M)|H → M is surjective, there exists a finite subset F ∈
IndGH(M) whose image by EM generatesM over k. IfN is theG–submodule
generated by F , then N is finite dimensional and EM |N : N →M is a sur-
jective morphism of H–modules. In accordance with Theorem 2.9 part (7),
we conclude that H is observable in G.

Conversely, assume that H is observable in G and let M be a finite
dimensional rational H–module. Let N be a finite dimensional G–module
and ξ : N → M a surjective H–morphism (see Theorem 2.9). In accor-
dance with the universal property of the induction functor, there exists
a G–morphism ξ̃ : N → IndGH(M) that makes the diagram that follows
commutative

IndGH(M)

EM

²²
N

eξ
::vvvvvvvvv ξ // M

From the surjectivity of ξ we deduce the surjectivity of EM . If M is
an arbitrary H–module, we proceed as follows: take m ∈M and let M0 be
a finite dimensional H–submodule of M containing m. Then the diagram
that follows is commutative.

IndGH(M0)

EM0

²²

// IndGH(M)

EM

²²
M0

// M

If the left vertical arrow is surjective, as m ∈ M0, we conclude that
m ∈ Im(EM ). Hence, if EM is surjective for all finite dimensional rational
G–modules, it is surjective for all G–modules. ¤
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Corollary 3.2. Let K ⊂ H ⊂ G be a tower of closed subgroups of the
affine algebraic group G. Assume that K is observable in H and that H is
observable in G; then K is observable in G. Conversely, if K is observable
in G, it is also observable in H.

Proof: This result follows immediately from the transitivity of induc-
tion (Exercise 6.29) and Theorem 3.1. The second part can also be proved
as follows: if we take γ ∈ X (K) and choose a γ semi–invariant f ∈ k[G]
with f(1) = 1, the polynomial h = f |H ∈ k[H] obtained by restriction is a
non zero K–semi–invariant of weight γ. ¤

In the case of a tower as above it is false in general that the observability
of K in G implies the observability of H in G (take {1} ⊂ H ⊂ SL2 as
in Observation 2.3). The next theorem guarantees that the observability
within a group G is preserved by extensions of subgroups of finite index.

Theorem 3.3. Assume that K ⊂ H ⊂ G is a tower of closed subgroups
of the affine algebraic group G. If K is of finite index in H, then K is
observable in G if and only if H is observable in G.

Proof: If H is observable in G, it follows from the transitivity of ob-
servability (Corollary 3.2) and from the fact that a finite index subgroup of
a given group is observable (see Observation 2.10), that K is also observable
in G.

In order to prove the converse we proceed as follows. Let I be a non
zero H–stable ideal of k[G]; if we apply the transfer principle (Observation

6.6.17) to I and to the pair K ⊂ H, then
H(Kk[H] ⊗ I

) ∼= KI. Recall
that in the isomorphism given by the transfer principle, the H–fixed part
is taken with respect to the diagonal action on Kk[H]⊗ I associated to the
following actions of H: the given action of H on I and the action → on
Kk[H], given by (h→ g)(l) = g(h−1l), where g ∈ Kk[H] and h, l ∈ H.

Taking a coset decompositionH = x1K∪· · ·∪xrK, x1 = 1, and defining
the K–invariant polynomials δi ∈ Kk[H], i = 1, . . . , r, as δi =

{
1 z∈xiK
0 z 6∈xiK

,

it is clear that {δ1, . . . , δr} is a linear basis of Kk[H]. Hence, using the
observability of K and the transfer principle, we find elements f1, . . . , fr ∈ I
not all zero such that

∑
δi ⊗ fi ∈

H(Kk[H]⊗ I
)
.

Given an arbitrary element h ∈ H we define a permutation of the set
{1, . . . , r} — that we also call h — by the rule hxi = xh(i)k with k ∈ K
and i = 1, . . . , r. It is clear that in this notation h→ δi = δh(i).

As the element
∑
δi ⊗ fi is H–fixed, we deduce that for all h ∈ H,∑

δi ⊗ fi =
∑
δh(i) ⊗ h · fi, i.e.

∑
δi ⊗ fi =

∑
δi ⊗ h · fh−1(i). We deduce

then that the set {f1, . . . , fr} is H–stable. Let us call t an indeterminate
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and write (t − f1) · · · (t − fr) = tr +
∑r−1
i=0 t

isi(f1, . . . , fr), where si is a
symmetric polynomial in r variables, for i = 0, . . . , r − 1, in particular
si(f1, . . . , fr) ∈ HI for i = 0, . . . , r− 1. If all the polynomials si(f1, . . . , fr)
are zero, then all the fi’s are nilpotent, i.e, fi = 0. This contradicts the
manner we choose the fi’s. ¤

Theorem 3.4. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. Then the following conditions are equivalent:
(1) H is observable in G;
(2) H ∩G1 is observable in G1;
(3) H1 is observable in G1.

Proof: Consider the following diagram of inclusions

H1 µ r

%%JJJJJ

H ∩G1Ä _

²²

Â Ä // HÄ _

²²
G1

Â Ä // G

It is clear that H∩G1 has finite index in H and being normal it contains
H1. The results of Theorem 3.3 guarantee that H1 is observable in G1 if
and only if H ∩G1 is observable in G1. Hence (2) and (3) are equivalent.

Assume now that H ∩G1 is observable in G1, as G1 is observable in G
(see Observation 2.5) we conclude the same for H ∩G1 inside of G. Using
Theorem 3.3 we deduce that H is observable in G.

Conversely, if H is observable in G so is H ∩ G1. Then by Corollary
3.2, H ∩G1 is observable in G1. ¤

4. Split and strong observability

The observability of H inside of G is equivalent to the surjectivity of
the natural transformation E : ResHG ◦ IndGH → Id : HM→ HM. We want
to look at the situation in which E is split surjective. This will lead to the
concept of split observability and to the definition of integrals of k[H] with
values in k[G]. The idea of strong observability — as defined for the first
time in [26] — also appears naturally in this context.

Definition 4.1. Let G be an affine algebraic group and H ⊂ G a
closed subgroup. We say that H is split observable in G if the natural
transformation E : ResHG ◦ IndGH → Id : HM→ HM is split surjective over
k. More explicitly, for an arbitrary N ∈ HM there exists a k–linear map,
that we call σN : N → H(

k[G]⊗N
)
, such that:
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(1) EN ◦ σN = idN ,
(2) if N ′ ∈ HM and φ : N → N ′ is a morphism of H–modules then
σN ′φ = (id⊗φ)σN .

Next we show that natural transformations between the functors Id
and ResHG ◦ IndGH (see above) are always generated by generalized integrals.

Definition 4.2. Define

N =
{
σ = {σN : N → H(

k[G]⊗N)
: N ∈ HM} : σ satisfies condition (2)

}

and

Il =
{
λ : k[H] → k[G] : λ is a morphism of left H–modules

}
.

Moreover define the functions functions ν : Il → N and η : N → Il
as follows: ν(λ)N : N → H(

k[G] ⊗ N
)
, ν(λ)N (n) =

∑
λ(Sn1) ⊗ n0, and

η(σ) = S ◦ ι◦σk[H] ◦S, where ι : H
(
k[G]⊗k[H]

) → k[G] is the isomorphism
of H–modules ι

(∑
gi ⊗ fi

)
=

∑
fi(1)S(gi) (see Corollary 6.6.5).

The next theorem shows that the above definitions make sense, and
that η and ν are inverses of each other.

Theorem 4.3. In the situation above:
(1) If σ ∈ N , then η(σ) ∈ Il; if λ ∈ Il, then ν(λ) ∈ N .
(2) The maps η and ν are inverses of each other.

Proof: (1) Let σ ∈ N and consider the H–morphism ry : k[H] →
k[H], ry(f) = f ·y, for y ∈ H. The naturality of σ implies that σk[H](f ·y) =
(id⊗ry)σk[H](f). Writing σk[H](f) =

∑
gi⊗fi, we obtain that σk[H](f ·y) =∑

gi⊗fi·y and thus ισk[H](f ·y) =
∑
fi(y)S(gi). As

∑
y·gi⊗y·fi =

∑
gi⊗fi

for all y ∈ H, we deduce that
∑
fi(1)gi = y ·∑ fi(y)gi, i.e.

∑
fi(1)y−1 ·gi =∑

fi(y)gi. Then,

(ι ◦ σk[H])(f · y) =
∑

fi(y)S(gi) =
(∑

fi(1)S(gi)
) · y =

(
ι ◦ σk[H](f)

) · y .

Then, η(σ)(y · f) =
(
S ◦ ι ◦σk[H] ◦S

)
(y · f) =

(
S ◦ ι ◦σk[H]

)
(Sf · y−1) =

S
((
ι(σk[H](Sf))) · y−1

))
= y · (η(σ)(f)

)
.

If λ ∈ Il andN ∈ HM, then ν(λ)N (n) =
∑
λ(Sn1)⊗n0 ∈ H(

k[G]⊗N)
.

Indeed, if y ∈ H, then
∑

y · λ(Sn1)⊗ y · n0 =
∑

λ
(
S(n1 · y−1)

)⊗ y · n0 =
∑

λ(Sn1)⊗ n0 .

 



332 10. OBSERVABLE SUBGROUPS OF AFFINE ALGEBRAIC GROUPS

The last equality follows from the equation
∑
y·n0⊗n1·y−1 =

∑
n0⊗n1

(see Lemma 4.3.19).
(2) If λ ∈ Il and f ∈ k[H], then

η
(
ν(λ)

)
(f) =

(
S ◦ ι ◦ ν(λ)k[H]

)
(Sf) = (S ◦ ι)(

∑
λ(f1)⊗ Sf2

)
=

S
(∑

S
(
λ(f1)

)
f2(1)

)
= λ(f) ∈ k[G] .

In order to prove that νη = idN , if σ ∈ N we apply the naturality of
σ to the comodule structure map — that is an H–morphism — χ : N →
N0 ⊗ k[H] and obtain a commutative diagram

N
σN //

χ
²²

H(
k[G]⊗N

)

eχ²²
N0 ⊗ k[H]

id⊗σk[H]

// N0 ⊗ H(
k[G]⊗ k[H]

)

where N0 is as usual the vector space N with the trivial H–action and
χ̃
(∑

gi ⊗ ni
)

=
∑
ni0 ⊗ (gi ⊗ ni1).

Then, if σN (n) =
∑
gi ⊗ ni we have that

∑
ni0 ⊗ (gi ⊗ ni1) =

∑
n0 ⊗

σk[H](n1), so that
∑

ni ⊗ S(gi) =
∑

ni0 ⊗ Sgini1(1) =
∑

n0 ⊗ ι
(
σk[H](n1)

)
.

Then,

σN (n) =
∑

gi ⊗ ni =
∑

S
((
ι ◦ σk[H]

)
(n1)

)⊗ n0 = ν
(
η(σ)

)
N

(n) ,

i.e. ν ◦ η = idN . ¤

Corollary 4.4. In the situation above, σ ∈ N splits the evaluation
map E (see Definition 4.1) if and only if η(σ) : k[H] → k[G] splits the map
π : k[G] → k[H].

Proof: If σ splits E, then for all n ∈ N ∈ HM, n =
∑
gi(1)ni, where

σN (n) =
∑
gi ⊗ ni. In particular, if f ∈ k[H] and σk[H](f) =

∑
gi ⊗ fi ∈

H(
k[G]⊗ k[H]

)
, then f =

∑
gi(1)fi.

As
∑
gi⊗ fi ∈ H(

k[G]⊗ k[H]
)
, then

∑
h · gi⊗h · fi =

∑
gi⊗ fi for all

h ∈ H. Then,
∑
gi(1)fi =

∑
gi(h)h·fi, and

∑
gi(1)h−1 ·fi =

∑
gi(h)fi. It

follows that
(∑

gi(1)fi
)
(h−1) =

(∑
fi(1)gi

)
(h). Then S(f) =

∑
fi(1)gi|H .

Then, πη(σ)(Sf) = πSισk[H](f) =
∑
fi(1)gi|H = Sf . We have thus

proved that η(σ) : k[H] → k[G] splits π : k[G] → k[H].
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Conversely, if π ◦ (
η(σ)

)
= idk[H], then

ENν
(
η(σ)

)
N

(n) =
∑

EN
(
η(σ)(Sn1)⊗ n0

)
=

∑
η(σ)(Sn1)(1)n0 =

∑
Sn1(1)n0 = n .

¤

their use in certain aspects of invariant theory. The elements of Il consid-
ered above, are integrals with non scalar values. The usefulness of these
“generalized” integrals in invariant theory will be clear in the sequel.

Definition 4.5. (1) Let G be an affine algebraic group and H ⊂ G
a closed subgroup. A left integral for k[H] with values in k[G] is a left
H–equivariant k–linear map σ : k[H] → k[G]. The integral is called total
if σ(1) = 1 and is called splitting if πσ = idk[H]. If σ is a morphism of
k–algebras, the integral is called multiplicative.
(2) More generally, if R is a rational left H–module algebra, an H–equiva-
riant morphism σ : k[H] → R is called an integral for k[H] with values in
R, and the integral is called total if σ(1) = 1.

Observation 4.6. (1) The left integrals of k[H] with values in k[G]
are the elements of the set Il.
(2) In a similar manner than for integrals with scalar values, we can define
right and two sided integrals and define the set Ir. It is clear that is λ ∈ Il,
then ρ = SλS ∈ Ir.
(3) A multiplicative integral, being a morphism of algebras, is a total inte-
gral.

The theorem that follows, that relates the concept of split observabil-
ity with results concerning integrals, follows directly from the preceding
considerations.

Lemma 4.7. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. Then, H ⊂ G is split observable if and only if H admits a
splitting integral with values in k[G].

Proof: See Theorem 4.3 and Corollary 4.4. ¤

Theorem 4.8 ([26], [30], [31], [32], [39]). Let H be an affine algebraic
group and R a commutative rational H–module algebra. Then k[H] admits
a total integral with values in R if and only if R is injective as a rational
H–module.

 

In Chapter 9 we considered integrals with scalar values and illustrated
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Proof: If R is injective in HM, we can complete the diagram

k

²²

// k[H]

σ
}}

R

and produce a morphism of H–modules σ : k[H] → R, sending 1 into 1.
Conversely, assume that σ : k[H] → R is a total integral and define

the map Λ : R ⊗ k[H] → R by the formula Λ(r ⊗ f) =
∑
r0σ

(
S(r1)f

)
. If

χ is the comodule structure map for R, then (Λχ)(r) =
∑
r0σ

(
S(r1)r2

)
=

rσ(1) = r. If r ∈ R and x ∈ H, then
∑
x · r0 ⊗ r1 · x−1 =

∑
r0 ⊗ r1 (see

Lemma 4.3.19), and then for all x ∈ H,

Λ(r ⊗ x · f) =
∑

r0σ
(
S(r1)(x · f)

)
=

∑
(x · r0)σ

(
S(r1 · x−1)(x · f)

)
=

∑
(x · r0)σ

(
x · (S(r1)f

))
= x ·

∑
r0σ

(
S(r1)f

)
=

x · Λ(r ⊗ f)

We just proved that χ : R → R0 ⊗ k[H] splits the H–morphism Λ :
R0 ⊗ k[H] → R. Hence, R is a direct H–module summand of R0 ⊗ k[H]
and as such is injective as a rational H–module (see Theorem 4.3.11 and
Lemma 4.2.14). ¤

Definition 4.9. ([26]) Let G be an affine algebraic group and H ⊂ G a
closed subgroup. H is said to be strongly observable in G if for all M ∈ HM
there exists an N ∈ GM and an injective morphism ι : M → N |H such
that ι

(
HM

) ⊂ GN .

The concept of strongly observable subgroup was defined in [26]. In
the mentioned article, it was also established the equivalence of strong
observability with the exactness of the induction functor as well as the

results of [26].

Theorem 4.10. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. Then H is strongly observable in G if and only if there exists a
total integral for k[H] with values in k[G].

Proof: Let σ be a total integral. We show first that H is observable
in G by proving that all the characters of H are extendible. Consider
γ ∈ X (H), fix an element f ∈ k[G] such that π(f) = γ and consider the
element g =

∑
σ
(
S

(
π(f2)

)
γ
)
f1 ∈ k[G] — here π : k[G] → k[H] is the

restriction morphism. Then π(g) = γ and x · g = γ(x)g for all x ∈ H.

 

equivalence with the affineness of the homogeneous space G/H. In Chapter
11 we deal with this concept more thoroughly and present proofs of the main
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Indeed, as
∑
z · f1 ⊗ f2 · z−1 =

∑
f1 ⊗ f2 for all z ∈ G, then if x ∈ H we

have that

x · g =
∑

x · [σ(
S(π(f2))γ

)]
(x · f1) = γ(x)

∑
σ
(
x · S(

π(f2)
)
γ
)
(x · f1) =

γ(x)
∑

σ
(
S

(
π(f2 · x−1)

)
γ
)
x · f1 = γ(x)

∑
σ
(
S

(
π(f2)

)
γ
)
f1 =

γ(x)g.

Moreover, since π(f) = γ implies that
∑
π(f1) ⊗ π(f2) = γ ⊗ γ, then

π(g) =
∑
πσ

(
S

(
π(f2)

)
γ
)
π(f1) = πσ(γ−1γ)γ = π(1)γ = γ.

In order to prove that the observability is strong, let M be a rational
H–module and consider Soc(M) =

∑
Si, where the Si are all the simple H–

submodules of N . We construct for each module Si a simple G–module Ti
and an H–morphism ηi : Si → Ti such that ηi

(
HSi

) ⊂ GTi. If HSi = {0},
we use the observability of H to construct a simple G–module Ti and an
injective morphism of H–modules ηi : Si → Ti. Then ηi verifies the required
conditions. In the case that HSi = Si, i.e. if H acts trivially on Si, then
Si = k. Hence, we can define Ti as the trivial G–module k and ηi = id.

The morphisms ηi : Si → Ti induce an injective morphism of H–
modules η : Soc(M) → L =

⊕
i Ti, such that η

(H Soc(M)
) ⊂ GL.

Let χ be the k[G]–comodule structure on L and consider the morphism
χη : Soc(M) → L ⊗ k[G]. The map χ : L → N = L ⊗ k[G] is a morphism
of G–modules when we endow the target space with the action only on the
second tensor factor; as N = L ⊗ k[G] is a direct sum of copies of k[G],
from Theorem 4.8 it follows that N is injective as an H–module.

Hence, we have constructed a G–module N , that is injective as an H–
module, and a morphism of H–modules χη : Soc(M) → N |H , with the
property that χη

(H Soc(M)
) ⊂ GN .

Since N is injective in HM, we can extend χη to an H–morphism
ι : M → N |H :

Soc(M)

χη

²²

Â Ä // M

ι
{{

N

From the injectivity of χη we deduce the injectivity of ι. Moreover, as
H Soc(M) = HM , it follows that ι

(
HM

)
= χη

(
HSoc(M)

) ⊂ GN .
Conversely, if H is strongly observable in G, consider the H–module

M = k[H]. Then there exist a rational G–module N and an injective H–
morphism ι : k[H] → N |H such that ι(1) ∈ GN . Call n = ι(1) and consider
α ∈ N∗ such that α(n) = 1. Define σ : k[H] → k[G] as σ(f) = α|ι(f). As
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(α|n)(x) = α(x · n) = α(n) = 1 for all x ∈ G, we have that σ(1) = 1. Also,
if y ∈ H, σ(y · f) = α|ι(y · f) = α|(y · ι(f)

)
= y · (α|ι(f)

)
= y · σ(f). ¤

If the total integral is multiplicative, the situation is easier to handle.
This situation was considered in [66]; probably, it was the first time that
an integral with non scalar values was used in this context. In Observation
4.15 we describe briefly the evolution of the concept of total integrals and
the role played by the multiplicative ones.

Theorem 4.11 ([66]). Let G be an affine algebraic group and H ⊂ G
a closed subgroup. Assume that there exists a homomorphism of H–module
algebras σ : k[H] → k[G], i.e. a multiplicative integral. Then:

(1) there exists an isomorphism of H–modules k[G] ∼= Hk[G]⊗ k[H];

(2) if M ∈ HM, then there is an isomorphism of G–modules IndGH(M) ∼=
Hk[G]⊗M . The G–module structure on Hk[G]⊗M is given as z?(f⊗m) =
f · z−1 ⊗m;
(3) the subgroup H is split observable in G.

Proof: (1) Consider the mapR : k[G] → k[G], R(f) =
∑
f1σ(Sf2|H).

Clearly, R(fg) = R(f)R(g) for all f, g ∈ k[G] and R(f) = f for all f ∈
Hk[G]. Moreover, if x is an arbitrary element of H then

∑
x ·f1⊗f2 ·x−1 =∑

f1 ⊗ f2. Applying R and then multiplying we get:
∑

(x · f1)
(
x · σ(Sf2|H)

)
=

∑
f1σ(Sf2|H) ,

or in other words x · R(f) = R(f) for all x ∈ H. Hence, we deduce that
ImR ⊂ Hk[G].

The composition Rσ = uε. Indeed, if g ∈ k[H] then
∑
σ(g)1 ⊗

π
(
σ(g)2

)
=

∑
σ(g1)⊗ g2 and thus

(Rσ)(g) =
∑

σ(g1)σ(Sg2) =
∑

σ(g1Sg2) = ε(g)1 .

Consider the map

ψ = (R⊗ id)(id⊗π)∆ : k[G] → Hk[G]⊗ k[H].

Explicitly, ψ(f) =
∑
f1σ(Sf2|H)⊗ f3|H .

Since
∑

(x · f)1 ⊗ (x · f)2 ⊗ (x · f)3 =
∑
f1 ⊗ f2 ⊗ x · f3 (see Lemma

4.3.19),

ψ(x·f) =
∑

(x·f)1σ
(
S

(
(x·f)2|H)

))⊗(x·f)3|H =
∑

f1σ(Sf2|H)⊗x·f3|H ,

i.e. ψ is H–equivariant.
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If m denotes the usual multiplication, then the map φ = m(id⊗σ) :
Hk[G]⊗ k[H] → Hk[G]⊗ k[G] → k[G] is an inverse of ψ. Indeed,

(φψ)(f) =
∑

f1σ(Sf2|H)σ(f3|H) =
∑

f1σ
((
S(f2)f3

)|H
)

= f .

If we take f ⊗ g ∈ Hk[G]⊗ k[H], we have that

ψφ(f ⊗ g) = ψ
(
fσ(g)

)
=

∑
R(

(fσ(g)
)
1
)⊗ (

fσ(g)
)
2
|H =

∑
R(

f
(
σ(g)

)
1

)⊗ (
σ(g)

)
2
|H =

∑
R(

fσ(g1)
)⊗ g2 =

∑
f R(

σ(g1)
)⊗ g2 =

∑
fε(g1)⊗ g2 =

f ⊗ g .

The third equality in the equations above follows from the fact that f
is H–invariant, i.e. (id⊗π)∆(f) = f ⊗ 1, and the fourth is a consequence
of the fact that σ is an H–morphism.
(2) We have that

IndGH(M) = H(
k[G]⊗M

) ∼= H(Hk[G]⊗ k[H]⊗M
) ∼=

Hk[G]⊗ H(
k[H]⊗M

) ∼= Hk[G]⊗M .

We leave to the reader the task to verify that the isomorphism above
preserves the G–module structure.
(3) follows directly from (2), see Definition 4.1. ¤

Observation 4.12. Maps like R will be called Reynolds operators
This kind

All the considerations above admit a geometric interpretation that is
presented in Exercise 7.

Observation 4.13. If G an affine algebraic group and H ⊂ G a closed
subgroup of finite index, then IndGH(M) ∼= Hk[G] ⊗ M with the actions
defined as before. To prove this we decompose G = H ∪ z2H ∪ · · · ∪ zrH,
and define σ : k[H] → k[G], σ(f)(w) = f(w) if w ∈ H and σ(f)(w) = 1 if
w 6∈ H. It is clear that σ is a multiplicative total integral, and hence we
are in the hypothesis of Theorem 4.11.

Observation 4.14. In Section 8 of Chapter 11, in particular in Theo-
rem 11.8.1 and the results that follow, the subject of general integrals for the
case that the subgroup is unipotent is treated with certain detail. In par-
ticular, we prove that the existence of a total integral implies the existence

 

because they generalize the operators considered in Chapter 9.
of generalized Reynolds operator will appear again in Chapter 11.
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of a total multiplicative integral. So that in this case all the conclusions of
Theorem 4.11 are guaranteed.

Observation 4.15. In [32] the concept of total integral for general
Hopf algebras was defined and many of the results that concern them —
that we prove only for algebraic groups — were proved in this general
context. Here we describe briefly some aspects on the development of the
ideas concerning total integrals mainly in the context of algebraic groups.

It was realized around 1961 that the concept of “integral” taking values
in an arbitrary k[H]–comodule algebra instead of in the base field k would
be a relevant tool in order to control the representations and the geometry
of the actions of a group H. As we have seen, a particularly interesting
case is when the k[H]–comodule algebra is k[G] for G an affine algebraic
group and H a given subgroup.

In particular, in [66] and [67], the basis of the cohomology theory of
affine algebraic groups was established. It was soon observed that if G is
an affine algebraic group and H ⊂ G a normal closed subgroup, then it was
necessary to prove that k[G] is injective as an H–module in order to guar-
antee the convergence of the Lyndon-Hochschild-Serre spectral sequence,
that relates the cohomology of G, H and G/H.

In this direction, Theorem 4.11 and the corresponding cohomological
results were established in [66, Prop. 2.2]. As far as we are aware, the
injectivity of k[G] as a H–module , for H normal in G was proved in full
generality only much later, in [26], [53] and [117].

Non multiplicative general integrals appeared around 1977, even though
at first they were used in a subordinate way to produce multiplicative ones.
In [26, Thm. 3.1], E. Cline, B. Parshall and L. Scott proved the result we
present as Theorem 11.8.2 and their method of proof was to produce a mul-
tiplicative integral from a non multiplicative one. Then they constructed
a cross section in order to establish the affineness of the orbit space of a
unipotent group acting on an affine variety, provided that a total integral
exists. From this viewpoint, one can say that the authors dealt with the re-
lationship between the existence of a total integral with values in k[X] and
the existence of affine quotients of X, at least for the case of a unipotent
group.

Nowadays, the relationship between the theory of affine quotients and
the Galois theory of Hopf algebras is well established; see for example [100]

one can say that [26, Thm. 3.1] is a predecessor of the theory that relates
the existence of integrals with the Galois theory of Hopf algebras as in [33].

 

for an exposition of the original results of [132]. From today’s perspective

See [100] for a comprehensive exposition and a complete bibliography.
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In a parallel development, Sweedler showed in [146] that [66, Prop. 2.2],
i.e. Theorem 4.11, could be established and proved for arbitrary Hopf alge-
bras.

These developments culminate beautifully in a series of articles by
Y. Doi and later by Y. Doi and M. Takeuchi starting in 1983. The au-
thors define the general notion of total integral from a Hopf algebra H in
an H–comodule algebra A and prove the corresponding injectivity result
as well as many other interesting properties of the category of the (A,H)–
comodules (see [30], [31], [32] and [33]).

5. The geometric characterization of observability

In this section we prove that H is observable in G if and only if the
homogeneous space G/H is a quasi–affine variety. This result was proved
originally in [6]; more recent presentations are for example [51] and [71].
Our arguments are slightly different from the ones appearing in the original
paper, and exploit the definition of observability in ideal theoretical terms.

First, we prove that the observability condition — defined in terms of
ideals of k[G] — is equivalent to the existence of “enough” global sections
of OG/H . Then, the proof of the observability of H in G from the quasi–
affineness of G/H follows from general algebro–geometrical considerations.

The converse is proved as follows: first we show that if H is observable
in G, then any H–invariant rational function on G can be written as the
quotient of two H–invariant polynomials, and then apply the results of
Section 7.5.

Theorem 5.1. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. Then H is observable in G if and only if for any closed subset
C ( G/H, there exists 0 6= f ∈ Hk[G] such that f(C) = 0.

Proof: Assume H is observable in G and let C ( G/H be a closed
subset. Then π−1(C) ( G is a closed subset whose associated ideal I =
I(
π−1(C)

)
is non zero and H–stable. From the observability hypothesis,

we deduce that Hk[G] ∩ I 6= {0}. If 0 6= f ∈ Hk[G] ∩ I, then f is a non
zero global section of the structure sheaf of G/H that takes the value zero
on C.

Conversely, assume that I ⊂ k[G] is an H–stable non zero ideal and
call V = Z(I). It is clear that V is saturated and hence that π(V ) is closed
in G/H (see Theorem 7.4.2). As π(V ) 6= G/H, we can find 0 6= f ∈ Hk[G]
such that f

(
π(V )

)
= 0, i.e. f(V ) = 0. Then for some n, 0 6= fn ∈ Hk[G]∩I,

and we conclude that H is observable in G. ¤
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The next condition is an immediate consequence of Theorems 5.1 and
1.4.47.

Corollary 5.2. Let G be an affine algebraic group and H ⊂ G a
closed subgroup. If G/H is quasi–affine, then H is observable in G. ¤

To prove the converse we need some preparation in order to apply the
results of Section 7.5.

Lemma 5.3. Let G be an connected affine algebraic group and H ⊂ G

a closed subgroup. If H is observable in G, then H[
k[G]

]
=

[Hk[G]
]
.

Proof: Clearly
[Hk[G]

] ⊂ H[
k[G]

]
. If 0 6= g ∈ H[

k[G]
]

call Ig =
k[G]g ∩ k[G] the ideal of the numerators of g. This ideal is H–stable and
not zero, and from the observability of H we conclude that there exists
0 6= f1 ∈ Ig ∩ Hk[G]. If f1 = f2g, then f2g = f1 = x · f1 = x · (f2g) =
(x · f2)(x · g) = (x · f2)g for all x ∈ H. Then, (f2 − x · f2)g = 0 and as G is
connected we conclude that f2 ∈ Hk[G]. ¤

Theorem 5.4. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. If H is observable in G, then G/H is a quasi–affine variety.

Proof: It follows from Theorem 3.4 and Exercise 10 that we can
assume that G is irreducible. The observability of H in G implies that
H[
k[G]

]
=

[Hk[G]
]

that G/H is quasi–affine. ¤
Theorem 5.5. Let G be an affine algebraic group and H ⊂ G a closed

subgroup. Then the following conditions are equivalent:
(1) The subgroup H is observable in G.
(2) The homogeneous space G/H is a quasi–affine variety.
(3) For an arbitrary proper and closed subset C ( G/H, there exists an
element 0 6= f ∈ Hk[G] such that f(C) = 0.

Moreover, if G is connected the above conditions are equivalent to:

(4) H =
{
x ∈ G : x · f = f, ∀f ∈ Hk[G]

}
.

(5) H[
k[G]

]
=

[Hk[G]
]
.

Proof: The equivalence of (1) and (2) is the content of Corollary 5.2
and Theorem 5.4, the equivalence of (1) and (3) is Theorem 5.1.

If G is connected, the fact that (1) implies (5) was proved in Lemma
5.3. The fact that (5) implies (2) is the content of Theorem 7.5.1. The
equivalence of (4) and (5) was proved in Theorem 7.3.8. ¤

 

(see Lemma 5.3), and using Theorem 7.5.1 we conclude
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Observation 5.6. The equivalence of conditions (2), (3) and (5) of
Theorem 5.1 is a particular case of a general result about quasi–projective
varieties (see Exercise 1.57).

Example 5.7. Since P1 = SL2/H,where H is the standard Borel sub-
group, it follows that H is not observable (see Observation 2.3).

It will be convenient for future use (see Theorem 12.6.1) to give one
more characterization of observable subgroups.

Theorem 5.8. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. Then the following conditions are equivalent:
(1) The subgroup H is observable in G.
(2) There exists a finite dimensional rational G–module M and an element
m0 ∈M such that H = Gm0 .
(3) There exists a finite dimensional rational G–module M and an element
m0 ∈M such that H = Gm0 and G/H ∼= O(m0).

Proof: If we assume that G is connected, the fact that (1) implies
(3) follows immediately from Theorem 5.5, Corollary 7.3.6 and Theorem
6.4.15.

Clearly, (3) implies (2).

Next we show that (2) implies (1). If α ∈ M∗ then α|m0 ∈ Hk[G].
Suppose now that we have an element z ∈ G with the property that for all
f ∈ Hk[G], z · f = f . Then, z · α|m0 = α|m0 and thus, for all α ∈ M∗,
α(z · m0) = α(m0). It follows that z ∈ Gm0 = H and we deduce from
Theorem 5.5 that H is observable in G. The proof in the non connected
case is left as an exercise (see Exercise 14). ¤

6. Exercises

1. Consider inside of GL2 the subgroup

H =
{(

a b
0 a2

)
: 0 6= a ∈ k, b ∈ k} .

Prove that H is observable in GL2.

2. (a) Prove that if G is an affine algebraic group and H,K ⊂ G are
closed observable subgroups, then H ∩K is an observable subgroup.
(b) Prove that if H1 is observable in G1 and H2 is observable in G2, then
H1 ×H2 is observable in G1 ×G2.

3. (a) Let G and H be affine algebraic groups and α : G → H be a
surjective morphism of algebraic groups. Prove that there is a bijective
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correspondence between the family of all observable subgroups of H and
the family of all observable subgroups of G that contain Ker(α).
(b) Let G be an affine algebraic group and consider the diagonal ∆(G) ={

(x, x) ∈ G×G : x ∈ G} ⊂ G×G. Is ∆(G) observable in G×G?

4. Let G be an algebraic group and H ⊂ G an abstract subgroup. We
define the observable closure Ĥ of H as the smallest closed subgroup of G
that is observable and contains H.
(a) Prove that the observable closure exists and equals Ĥ =

⋂
H⊂K⊂GK,

where the closed subgroups K are observable.

(b) Prove that if H is the closure of H, then Ĥ = Ĥ.
(c) Prove that the observable closure of a subgroup H ⊂ G can be explicitly
described as: Ĥ =

{
x ∈ G : x · f = f ∀f ∈ Hk[G]

}
.

5. Let G be an affine algebraic group and H ⊂ G a closed subgroup.
In this exercise we ask the reader to generalize the method of proof of
Observation 2.5 in order to produce an alternative proof of the observability
of H when G/H is affine.

(a) Assume that G/H is affine and consider an H–stable proper ideal
I ⊂ k[G]. Prove that π : G→ G/H sends Z(I) into a closed proper subset
π
(Z(I)

) ⊂ G/H and deduce that H is observable in G.
(b) Using (a), give an alternative proof of Observation 2.5.

6. Define right observability — take Definition 2.1 as a definition of
left observability — and prove that H is right observable in G if and only
if it is left observable in G.

7. Let G be an affine algebraic group and H ⊂ G a closed subgroup.
Assume there exists a morphism of varieties Φ : G → H that satisfies
that Φ(1) = 1 and for all z ∈ G, x ∈ H, Φ(zx) = Φ(z)x. Prove that
the corresponding morphism Φ∗ : k[H] → k[G] is a multiplicative inte-
gral. Conversely, assuming that the existence of a multiplicative integral
construct a map Φ as above.
(a) S = {zΦ(z)−1 : z ∈ G} is a closed subvariety of G.
(b) The map θ : S ×H → G, θ(s, h) = sh is an isomorphism.

(c) The k–algebras k[S] and Hk[G] are isomorphic. The map θ induces an
isomorphism θ∗ : Hk[G]⊗ k[H] → k[G] of left H–modules provided the left
hand side is endowed with the left H–action on k[H] and the right hand
side with the left translation. Compare the isomorphism θ∗ with the one
constructed in Theorem 4.11.
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The morphism Φ — or equivalently the subvariety S — is called a cross
section for H in G.

8. Let G be an affine algebraic group and B ⊂ G a Borel subgroup.
Compute the observable closure of B in G.

9. Prove that if G is solvable then all algebraic subgroups of G are
observable. If G is connected, is the converse of the above assertion true?

10. Prove that G/H is quasi–affine if and only if G1/H1 is quasi–affine.

11. Describe explicitly the homogeneous space SL2/H, where

H =
{

( 1 b
0 1 ) : b ∈ k}.

Conclude that SL2/H is a quasi–affine variety, and then that H is
observable in SL2. Notice that the observability also follows from the fact
that H is unipotent.

12. In the notations of Exercise 11 prove that the variety SL2/H is not
affine. Prove that k[SL2] is not injective as an H–module by showing that
it is impossible to find a linear map

σ : k[t] → k[X,Y, Z,W ]/(XZ − YW − 1)

that satisfies for all a ∈ k that σ(t) + a = ( 1 a
0 1 ) · σ(t) (see also Theorem

11.8.2).

13. Find an example of an affine algebraic group G and two closed ob-
servable subgroups H,K ⊂ G such that the closed subgroup of G generated
by H ∪K is not observable.

14. Prove Theorem 5.8 in the case of a not necessarily connected affine
algebraic group G.

 



CHAPTER 11

Affine homogeneous spaces

1. Introduction

In this chapter we use the concept of observable subgroup in order
to study the affineness of an homogeneous space G/H. As we proved in

It is projective if H
is a Borel subgroup and quasi–affine if H is an observable subgroup. Here
we study conditions for G/H to be affine. The proofs we present differ
from the ones appearing in the literature, as we use in a systematic way
the intermediate concept of observable subgroup and give, whenever it is
possible, a unified treatment for the cases of geometrically reductive and of
exact subgroups.

Next we describe the contents of the different sections of this chapter.
In Section 2 we prove that a geometrically reductive subgroup of an

affine algebraic group is observable. This is the first step in the proof
that the quotient of an affine algebraic group by a geometrically reductive
subgroup is affine. Even though the necessary tools for this proof were

this result in order to prove not only the quasi–affineness but the affineness
of the homogeneous space.

In Section 3 we prove that an exact subgroup, i.e. a subgroup H ⊂ G
such that the induction functor IndGH is exact, is observable.

In Section 4, we adapt to the case of a quasi–affine homogeneous spaces
G/H, the algebro–geometrical criterion for a quasi–affine variety to be affine
(Theorem 1.4.49) by expressing it in terms of extensions of ideals from
Hk[G] to k[G]. Then we prove that in the situations we are interested in,
i.e. for geometrically reductive or for exact subgroups of G, this extension
property is verified, and we conclude that G/H is affine. The observability
is used as an intermediary platform that allows us to prove the quasi–
affineness of the homogeneous space.

345

 

Chapter 7, G/H is always a quasi–projective variety.

already available in Chapter 10, it seemed better to delay the presentation of
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In Section 5 we relate the concept of exact subgroup with other concepts
that classically have been important in invariant theory, namely integrals
and Reynolds operators.

In Section 6 we prove the converse of one of the main results of Section
4: if G/H is affine, then H is exact in G.

In Section 7 we perform an analogous job for geometrically reductive
groups. We prove that if G is geometrically reductive and G/H is affine,
then H is geometrically reductive. This can be considered as a converse of
some of the results presented in Section 4.

In Section 8 we study the concept of exactness in the case of a unipotent
group. The unipotency allows us to be more precise in relation to the
exactness property. We prove, for example, that if U is strongly observable
in G, then it is also split observable.

The affineness of G/H in the case that H is geometrically reductive is a
classical result — sometimes called Matsushima’s criterion, see [123]. Many
of the results we prove in the case that H is geometrically reductive, can be
generalized to actions of general affine varieties by geometrically reductive

corresponding references. We have chosen to present, previously to these
general results, the case of homogeneous spaces in order to illustrate the
adaptability and power of the concept of observability.

The theorem that relates the affineness of G/H with the exactness of
the induction functor was proved more or less simultaneously and indepen-
dently in [26], [53] and [117]. The proof we present here appeared in [41]
in 1985, and a different purely algebraic proof was published the same year
in [32]. Other proofs are known, the more general — valid for arbitrary
Hopf algebras — seems to be the one presented in [132] in 1990.

2. Geometric reductivity and observability

In this section we prove that a geometrically reductive subgroup of an
affine algebraic group is observable.

Theorem 2.1. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. If H is geometrically reductive, then H is observable in G.

Proof: Assume that ρ ∈ X (H) and choose f ∈ k[G] such that π(f) =
ρ, where π : k[G] → k[H] denotes the canonical projection. Call M =
〈H ·f〉 ⊂ k[G] the finite dimensional H–module generated by f and consider
the map λ = ε ◦ π|M : M → k where ε is the counit of k[G]. Explicitly, if
ai ∈ k and xi ∈ H, then λ

(∑
ai(xi · f)

)
=

∑
aiρ(xi). As λ(f) = 1, the

 

groups. In Chapter 13 we deal with this general situation and provide the
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map λ is surjective. Also, if x ∈ H, then

λ
(
x · (

∑
ai(xi · f)

))
= λ

(∑
ai(xxi · f)

)
= ρ(x)

∑
aiρ(xi) .

Hence, if we endow M with the H–module structure twisted by ρ−1,
i.e. x ⇀ g = ρ−1(x)x·g, the map λ becomes an H–morphism λ : Mρ−1 → k.
By the reductivity hypothesis, there exists 0 6= ξ =

∑
ai1 · · · aiq (xi1 · f) ⊗

· · · ⊗ (xiq · f) ∈ Sq(M |ρ−1) such that: (a) x ⇀ ξ = ξ, and (b) Sq(λ)(ξ) = 1.
Condition (a) means that
∑

ai1 · · · aiq (xi1 · f)⊗ · · · ⊗ (xiq · f) = ξ = x ⇀ ξ =

ρ−q(x)x · ξ = ρ−q(x)
∑

ai1 · · · aiq (xxi1 · f)⊗ · · · ⊗ (xxiq · f) .

Applying the multiplication map to this equality we obtain that g =
ρ−q(x)x · g, where g =

∑
ai1 · · · aiq (xi1 · f) · · · (xiq · f) ∈ k[G]. Con-

dition (b) means that
∑
ai1 · · · aiqρ(xi1) · · · ρ(xiq ) = 1, and as ρ(x) =

f(x) for all x ∈ H, we have that g(1) =
∑
ai1 · · · aiqf(xi1) · · · f(xiq ) =∑

ai1 · · · aiqρ(xi1) · · · ρ(xiq ) = 1. Hence g is an extension of ρq and Theo-
rem 10.2.9 (5) guarantees our result. ¤

3. Exact subgroups

Definition 3.1. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. We say that H is exact in G if the functor IndGH : HM→ GM
is exact.

Observation 3.2. The functor IndGH = H(
k[G] ⊗ −)

is the compo-
sition of the functor tensor product over k by k[G], with a fixed point
functor. As fixed point functors are left exact and the tensor product is
performed over a field, the only relevant part of the above definition con-
cerns the surjectivity. Hence, H is exact in G if and only if for every sur-
jective morphism of H–modules α : M → L, the corresponding morphism
IndGH(α) = (id⊗α)|IndG

H(M) : IndGH(M) → IndGH(L) is also surjective.

Observation 3.3. If H is an affine algebraic group, a cohomology
theory for the category of rational H–modules can be developed — see for

approaches. If Hn(H,−) denotes the n–th cohomology functor, it is easy
to prove that H is exact in G if and only if for every rational H–module
M , H1(H, k[G]⊗M) = 0.

Observation 3.4. The exactness of the functor IndGH is equivalent
to the exactness of a fixed point functor in another category. Denote as
(k[G],H)M the category of all left

(
k[G],H

)
–modules and as Hk[G]M the

 

example [66] for the original presentation or [28] and [80] for more recent
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category of all left Hk[G]–modules. If F : (k[G],H)M→ Hk[G]M is the H–
fixed part functor, then H is exact in G if and only if the functor F is exact.
We ask the reader to prove this assertion in Exercise 1.

Theorem 3.5. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. If H is exact in G, then H is observable in G.

Proof: We proceed in a similar fashion than in Theorem 2.1. Assume
that ρ ∈ X (H) and choose f ∈ k[G] such that π(f) = ρ. Consider the finite
dimensional H–module M = 〈H · f〉 and the surjective H–morphism λ =
ε◦π|M : M |ρ−1 → k, λ

(∑
ai(xi ·f)

)
=

∑
aiρ(xi). From the exactness of the

induction functor we deduce that the map IndGH(λ) : H
(
k[G] ⊗M |ρ−1

) →
Hk[G], IndGH(λ)

(∑
fi ⊗ (xi · f)

)
=

∑
ρ(xi)fi, is surjective. Hence, there

exists
∑
fi ⊗ (xi · f) ∈ H(

k[G] ⊗ M |ρ−1

)
such that

∑
ρ(xi)fi = 1. As∑

fi ⊗ (xi · f) is fixed by H, we have that
∑

fi ⊗ xi · f =
∑

x · fi ⊗ x ⇀ (xi · f) =
∑

x · fi ⊗ ρ−1(x)(xxi · f) =

ρ−1(x)
(∑

x · fi ⊗ (xxi · f)
)
.

Then the polynomial g =
∑
fi(xi · f) satisfies that x · g =

∑
(x ·

fi)(xxi · f) = ρ(x)
∑
fi(xi · f) = ρ(x)g. Also, g(1) =

∑
fi(1)(xi · f)(1) =∑

fi(1)ρ(xi) = 1. Hence, the character ρ is extendible and from Theorem
10.2.9 we deduce that the subgroup H is observable in G. ¤

The above proof is a simplification of the one that appeared in [41].
The same kind of argument was later taken in [34] and in [51]. Another
proof of this result appears in Exercise 4.

4. From quasi–affine to affine homogeneous spaces

The next lemma is an adaptation of Theorem 1.4.49 to the case of
homogeneous spaces.

Lemma 4.1. Let G be an affine algebraic group and H ⊂ G an observ-
able subgroup. If for every proper ideal J ( Hk[G] the ideal Jk[G] is proper
in k[G], then G/H is affine.

G/H(G/H) = Hk[G]. Let J ( Hk[G] be a proper ideal. Then
Jk[G] ⊂ k[G] is proper and hence it has a zero x ∈ G. Thus, π(x) is a zero
of J , and Theorem 1.4.49 implies that G/H is affine. ¤

The next lemma appeared for the first time in [113], see Lemma 13.2.1
for a generalization.

 

Proof: The homogeneous space G/H is quasi–affine (see Theorem
3.5) and O
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Lemma 4.2. Let H be a geometrically reductive algebraic group and R
a commutative rational H–module algebra. If J is an ideal of HR such that
JR = R then J = HR.

Proof: Write 1 = j1r1 + · · ·+ jnrn, with ji ∈ J and ri ∈ R. We prove
by induction on n that the ideal generated in HR by {ji : i = 1, . . . , n} is the
unit ideal. If n = 1, then 1 = j1r1 and for all x ∈ H, 1 = j1(x · r1). Hence
x · r1 − r1 ∈ Ann(j1) for all x ∈ H, or equivalently r1 + I ∈ H(R/I), where
I = Ann(j1). Since H is geometrically reductive, applying Theorem 9.2.10
to π : R → R/I, we deduce the existence of t ∈ HR and a positive integer
q such that t − rq1 ∈ I. Hence tj1 = rq1j1 and 1 = jq1r

q
1 = jq−1

1 j1r
q
1 = jq1t,

and then J = HR.
Assume n > 0 and consider the H–stable ideal Rj1. The inductive

hypothesis applied to the image of J in H(R/Rj1) guarantees the existence
of si ∈ R, i = 2, . . . , n such that si+ j1R ∈ H(R/Rj1) and 1+ j1R = s2j2 +
· · ·+ snjn+ j1R. Applying again Theorem 9.2.10 to π : R→ R/Rj1 and to
the elements si + j1R ∈ H(R/Rj1), i = 2, . . . , n, we deduce the existence
of t2, . . . , tn ∈ HR and a positive exponent k such that for i = 2, . . . , n,
ti − ski ∈ j1R. Writing for some r ∈ R, 1 − j1r = s2j2 + · · · + snjn ∈ R
and rising the above equality to a convenient power, using the relations
ti − ski ∈ j1R we deduce the existence of u2, . . . , un ∈ HR, v ∈ R and
j′1, . . . , j

′
n ∈ J such that 1 = j′1v+u2j

′
2+· · ·+unj′n. Acting with x ∈ H in the

last equality we conclude that x ·v−v ∈ I = Ann(j′1). Then v+I ∈ H(R/I)
and similarly as before we find s ∈ HR and m > 0 such that vm − s ∈ I.
Then, vmj′1

m = sj′1
m, and raising the equality 1− u2j

′
2 − · · · − unj

′
n = j′1v

to the m–th power, we find wi ∈ HR, i = 1, . . . , n and j′′1 , . . . , j
′′
n ∈ J such

that 1 = w1j
′′
1 + · · ·+ wnj

′′
n. Hence, J = HR. ¤

Lemma 4.3. Let G be an affine algebraic group and H ⊂ G an exact
subgroup of G. If J ⊂ Hk[G] is an ideal such that Jk[G] = k[G], then
J = Hk[G].

Proof: Write 1 = j1f1 + · · · + jnfn, with ji ∈ J and fi ∈ k[G].
Consider the surjective

(
k[G],H

)
–module morphism Φ :

⊕n
i=1 k[G] → k[G],

Φ(g1, . . . , gn) =
∑
giji. By the exactness of H in G we conclude that

Φ
(⊕n

i=1
Hk[G]

)
= Hk[G]. Then there exist g1, . . . , gn ∈ Hk[G] such that∑

jigi = 1, i.e. J = Hk[G]. ¤
Putting together the results of Theorems 2.1, 3.5 and of Lemmas 4.1,

4.2 and 4.3, we conclude the following results.
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Theorem 4.4. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. If H is geometrically reductive, then G/H is an affine variety.

¤

Theorem 4.5. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. If H is exact in G, then G/H is an affine variety. ¤

We mentioned before that Theorem 4.4 is a particular case of general
results about actions of (geometrically) reductive groups on affine varieties.

is more elementary than the one of Chapter 13.
As we mentioned before, Theorem 4.5 has been proved by different

authors using different methods of proofs and in some cases with a larger
degree of generality. See for example [26], [32], [53], [117], [132].

5. Exactness, Reynolds operators, total integrals

In this section we relate the concept of exactness with some other rel-
evant objects that traditionally have played an important role in invariant
theory.

Definition 5.1. Let G be an affine algebraic group and H ⊂ G
a closed subgroup. Denote as before (k[G],H)M the category of ratio-
nal

(
k[G],H

)
–modules and Hk[G]M the category of Hk[G]–modules. Call

I : (k[G],H)M→ Hk[G]M the functor consisting of the restriction of scalars
and F : (k[G],H)M → Hk[G]M the functor consisting of taking the H–
fixed part. A Reynolds operator for the pair (H,G) — or for the category
(k[G],H)M — is a natural transformation R : I → F : (k[G],H)M→ Hk[G]M
such that RM |HM = idHM .

In other words, a Reynolds operator is a natural transformation that
splits the canonical inclusion of HM ⊂ M in the category of Hk[G]–
modules. More explicitly, for each object M ∈ (k[G],H)M there is a mor-
phism RM : M → HM of Hk[G]–modules satisfying that RM (m) = m for
all m ∈ HM . For any morphism of

(
k[G],H

)
–modules α : M → N there is

a commutative diagram in the category of Hk[G]–modules

M

α

²²

RM // HM

α|H M

²²
N RN

// HN

 

This subject will be developed in Chapter 13. The proof we presented above
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In particular, if f ∈ Hk[G] and m ∈ M , then RM (fm) = f RM (m).
This is called the Reynolds condition; see Observation 9.2.20 for the origin
of the name.

Observation 5.2. (1) Notice that, in order to avoid excessive formal-
ism, we omitted the forgetful functor in the definition of F and I.

Formally, I : (k[G],H)M → Hk[G]M should be the functor consist-
ing of the restriction of scalars composed with the forgetful functor U :
(Hk[G],H)M → Hk[G]M, and F : (k[G],H)M → Hk[G]M should be the H–
fixed part functor composed with U.
(2) If we consider in the above definitions the category of k–spaces instead
of Hk[G]M, then the Hk[G]–linearity of RM can be deduced from the nat-

urality as follows: if f ∈ Hk[G], then the map mf : M →M is a morphism
in Hk[G]M. From the naturality we deduce that the diagram

M

mf

²²

RM // HM

mf |H M

²²
M RM

// HM

commutes.
Ifm ∈M , chasing in the diagram we obtain thatRM (fm) = f RM (m).

The exactness of a subgroup H ⊂ G and the existence of a Reynolds
operator are equivalent. Part of this equivalence is the content of next
lemma.

Lemma 5.3. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. If a Reynolds operator exists for the category (k[G],H)M, then H
is exact in G.

Proof: Let f : M → N be a surjective morphism in (k[G],H)M and
consider the corresponding commutative diagram:

M

f
²²²²

RM // HM

f |H M

²²
N RN

// HN

As the Reynolds operators are projectors and f is assumed to be sur-
jective, it follows that f |HM is surjective and then Exercise 1 guarantees
our result. ¤
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Another characterization of exactness is presented in the theorem that
follows, that appeared in [26]. Our proof is basically the same than the
original one.

Theorem 5.4. Let G be an affine algebraic group and H ⊂ G an exact
subgroup. Then k[G] is an injective rational H–module.

Proof: Let ι : M ↪→ N be an inclusion of finite dimensional rational
H–modules and consider the diagram in HM

M

φ

²²

Â Ä ι // N

φ̂}}
k[G]

Consider X = Homk
(
M, k[G]

)
and Y = Homk

(
N, k[G]

)
endowed with

the standard rational (k[G],H)–module structure. The inclusion ι induces
a surjective morphism ι∗ : Y → X in the category (k[G],H)M. From the
exactness of H we conclude that ι∗

(
HY

)
= HX. Any element φ̂ ∈ HY

mapped into φ ∈ HX is the extension of φ we are looking for.
If M and N are not finite dimensional, using standard arguments we

may assume that we have extended φ maximally to φ∞ as in the diagram

M

φ

²²

Â Ä // M∞
Â Ä //

φ∞||yy
yy

yy
yy

N

k[G]

We want to prove that M∞ = N . If there exists n ∈ N \ M∞, let
〈H · n〉 be the finite dimensional H–submodule of N generated by n. We
have already proved that there exists an extension φ of ψ = φ∞|M∞∩〈H·n〉
as in the diagram

M∞ ∩ 〈H · n〉
ψ

²²

Â Ä // 〈H · n〉

φxxppppppppppp

k[G]

Putting together the compatible extensions φ∞ and φ we obtain an
extension of φ to M∞ + 〈H · n〉 )M∞. ¤

A more complete algebraic characterization of exactness is presented
in the next theorem.
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Theorem 5.5. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. The following conditions are equivalent.
(1) H is exact in G.
(2) k[G] is an injective rational H–module.
(3) There exists a total integral σ : k[H] → k[G] (see Definition 10.4.5).
(4) There exists a Reynolds operator for the pair (H,G).
(5) H is strongly observable in G.

Proof: The fact that conditions (2), (3) and (5) are equivalent is the
content of Theorems 10.4.8 and 10.4.10. In Theorem 5.4 it is proved that
(1) implies (3).

Next we prove (3) implies (4). Given a total integral σ : k[H] → k[G],
for any M ∈ (k[G],H)M define the map RM (m) =

∑
σ
(
SH(m1)

)
m0. If

y ∈ H, then
∑
y ·m0 ⊗m1 · y−1 =

∑
m0 ⊗m1. Applying id⊗(σSH) and

multiplying we get:
∑(

y · σ(SHm1)
)
(y · m0) =

∑
σ(SHm1)m0, i.e. y ·

RM (m) = RM (m) for all y ∈ H. If m ∈ HM , then
∑
m0 ⊗ m1 =

m ⊗ 1 and then RM (m) = m. If f : M → N is a morphism in the
category of (k[G],H)–modules, then f

(RM (m)
)

= f
(∑

σ(SHm1)m0

)
=∑

σ(SHm1)f(m0). As
∑
f(m)0 ⊗ f(m)1 =

∑
f(m0) ⊗m1, we have that

RN

(
f(m)

)
=

∑
σ(SHm1)f(m0). Clearly, RN is a morphism of Hk[H]–

modules; hence this part of the proof is finished.
Finally, the assertion that (4) implies (1) was proved in Lemma 5.3. ¤
As an illustration of the use of the ideas concerning exactness and

reductivity we prove the following partial converse to the transitivity result
of Exercise 2.

Theorem 5.6. Let K ⊂ H ⊂ G be a sequence of closed subgroups of
the affine algebraic group G. If K is exact in G, normal in H and such
that the quotient H/K is linearly reductive, then H is exact in G.

Proof: Let α : M → N ∈ (H,k[G])M be a surjective morphism. By
restricting the actions we may consider it as a morphism in (K,k[G])M, and
using the exactness of K in G we can guarantee that the morphism α|KM :
KM → KN is a surjective morphism of rational H/K–modules. Using that
H/K is linearly reductive, we conclude that the morphism α|

H M
: HM →

HN is surjective. Then, H is exact in G. ¤

6. Affine homogeneous spaces and exactness

We want to prove the converse of Theorem 4.5: if the homogeneous
space G/H is affine then H is exact in G. This result was proved for the
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first time in [26] and [117]. Later, other proofs appeared for example in
[32], [53], [132]. Our arguments will follow closely the ones presented in
[26], which are attributed by the authors to H. Kraft.

Definition 6.1. Let G an affine algebraic group and H ⊂ G a closed
subgroup. Define the Galois morphism GG,H : k[G] ⊗Hk[G] k[G] → k[G] ⊗
k[H] as the map induced on the quotient by HG,H : k[G]⊗ k[G] → k[G]⊗
k[H], HG,H(f ⊗ g) =

∑
fg1 ⊗ g2|H .

The fact that HG,H factors through the quotient k[G] ⊗Hk[G] k[G] of
k[G]⊗ k[G] is very easy to verify.

Observation 6.2. (1) The Galois morphism can be defined for an
algebra A and a Hopf algebra that H coacts on A; see [100].
(2) Let H be a finite group acting by automorphisms on a field E and call
HE = F . Consider the map — that plays in this context the role of GG,H
— G : E ⊗F E → E ⊗ k[H], G(a ⊗ b) =

∑
x∈H a(x · b) ⊗ δx, where δx is

the characteristic function at x ∈ H. It can be verified that the finite field
extension E ⊂ F is Galois if and only if the map G is bijective.

for details).

Observation 6.3. If we consider the action of H on the second tensor
factors of the domain and codomain of GG,H : k[G] ⊗Hk[G] k[G] → k[G] ⊗
k[H], then GG,H is a morphism of H–modules (see Exercise 7).

Next we prove if G/H is an affine variety, then GG,H is bijective.

Lemma 6.4. Let G affine algebraic group and H ⊂ G a closed subgroup
and assume that G/H is an affine variety. If p ∈ k[G] is a polynomial such
that p|H = 0, then

∑
S(p1)⊗Hk[G] p2 = 0.

Proof: Recall that G×G/HG is an affine variety, with k[G×G/HG] =
k[G]⊗Hk[G] k[G] (see Definition 1.4.45 and Theorem 1.4.46). If p ∈ I(H) ⊂
k[G] and (w, z) ∈ G×G is such that w−1z ∈ H, then

∑
S(p1)(w)p2(z) =

∑
p1(w−1)p2(z) = p(w−1z) = 0 ,

and it follows that
∑
S(p1)⊗Hk[G] p2 = 0. ¤

Theorem 6.5. Let G be an affine algebraic group and H ⊂ G a closed
subgroup such that G/H is affine. Then the Galois morphism GG,H :
k[G]⊗Hk[G] k[G] → k[G]⊗ k[H] is bijective.

Proof: To an element f⊗p ∈ k[G]⊗k[H] we associate
∑
fS(g1)⊗Hk[G]

g2 ∈ k[G] ⊗Hk[G] k[G], where g ∈ k[G] is a polynomial that extends p as a

 

The above considerations justify the name Galois morphism (see [100]
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function. Lemma 6.4 guarantees that the element constructed above is inde-
pendent of the choice of g. The map KG,H : k[G]⊗k[H] → k[G]⊗Hk[G]k[G],
KG,H(f ⊗ p) =

∑
fS(g1)⊗Hk[G] g2, is the inverse of the Galois morphism.

Indeed,

(GG,HKG,H)(f ⊗ p) =
∑

fS(g1)g2 ⊗ g3|H = f ⊗ g|H = f ⊗ p ,

and

(KG,HGG,H)(f ⊗Hk[G] g) = KG,H
(∑

fg1 ⊗ g2|H
)

=
∑

fg1S(g2)⊗Hk[G] g3 = f ⊗Hk[G] g .

¤
In Exercise 8 we ask the reader to prove a geometric version of Theorem

6.5.

Corollary 6.6. Let G be an affine algebraic group and H ⊂ G a
closed subgroup such that G/H is an affine variety. Then k[G] is faithfully
flat as a Hk[G]–module.

Proof: In accordance with Exercise 9, if G/H is affine so is G1/(G1 ∩
H); and if k[G1] is faithfully flat as a G1∩Hk[G1]–module, then k[G] is faith-
fully flat as a Hk[G]–module. Hence, we can assume that G is connected.

Theorem 1.2.11 guarantees that given the extension Hk[G] ⊂ k[G] of
k–algebras, there exists 0 6= f ∈ Hk[G] such that the localization k[G]f
is free as a Hk[G]f module. If z ∈ G, then

(
k[G]f

) · z = k[G]f ·z and(Hk[G]f
) · z = Hk[G]f ·z. Thus k[G]f ·z is a free Hk[G]f ·z–module for all

z ∈ G.
As f 6= 0 and G acts transitively on G/H, it follows that ∅ = Z({f · z :

z ∈ G}) ⊂ G/H, and then the ideal
〈{f · z : z ∈ G}〉 = Hk[G] — here we

use that G/H is affine. It follows from Lemma 1.2.32 that k[G] is faithfully
flat as a Hk[G]–module. ¤

Theorem 6.7. Let G be an affine algebraic group and H ⊂ G a closed
subgroup such that G/H is an affine variety. Then the functor IndGH :
HM→ HM is exact.

Proof: We need to prove that if α : M1 →M2 is a surjective morphism
of rationalH–modules, then the map id⊗α : H

(
k[G]⊗M1

) → H(
k[G]⊗M2

)
is surjective. By Corollary 6.6, it is enough to prove that

id⊗Hk[G] id⊗α : k[G]⊗Hk[G]

H(
k[G]⊗M1

) → k[G]⊗Hk[G]

H(
k[G]⊗M2

)
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is surjective. If we let H act trivially in the first tensor factor of the ex-
pressions below, this map can be written as

id⊗Hk[G] id⊗α : H
(
k[G]⊗Hk[G] k[G]⊗M1

) → H(
k[G]⊗Hk[G] k[G]⊗M2

)
.

Since the Galois morphism GG,H is a bijective H–equivariant map, the
surjectivity of

id⊗Hk[G] id⊗α : H
(
k[G]⊗Hk[G] k[G]⊗M1

) → H(
k[G]⊗Hk[G] k[G]⊗M2

)

is equivalent to the surjectivity of

id⊗ id⊗α : H
(
k[G]⊗ k[H]⊗M1

) → H(
k[G]⊗ k[H]⊗M2

)
.

Notice that we are omitting the restriction symbol for many of the
maps. Using that H(

k[H] ⊗M
) ∼= M (see Corollary 6.6.6) and the fact

that H is acting trivially on the first tensor factor, we conclude that the
surjectivity of id⊗ id⊗α : H

(
k[G] ⊗ k[H] ⊗M1

) → H(
k[G] ⊗ k[H] ⊗M2

)
is equivalent to the surjectivity of id⊗α : k[G] ⊗M1 → k[G] ⊗M2, which
is an obvious consequence of the surjectivity of α. ¤

Observation 6.8. The reader probably has noticed that the equiv-
alence of the affineness of the quotient G/H with the exactness of H in
G, is formally similar to Serre’s criterion expressing the affineness of an
algebraic variety in terms of the annihilation of the associated sheaf co-
homology; see for example [55]. The reason for this similarity lies in the
fact that the rational and the sheaf cohomologies are naturally related.
If N is a rational H–module, we define N , a sheaf on G/H, as follows:
N (U) = H(OG

(
π−1(U)

) ⊗N
)

for U open in G/H. It can be proved that
the cohomology of G/H with coefficients in N equals the H–rational coho-
mology of k[G]⊗N . This point of view is exploited in [53].

7. Affine homogeneous spaces and reductivity

In this section we prove that if G is a geometrically reductive algebraic
group and H ⊂ G a closed subgroup such that the homogeneous space G/H
is affine, then H is geometrically reductive. This result was first proved
by Matsushima in [96] — some authors call it Matsushima’s criterion —
and then by Borel and Harish–Chandra over the field of complex numbers
in [12]. Later BiaÃlynicki–Birula proved it in characteristic zero, see [4].
Richardson in [124], Haboush in [53] and Cline, Parshall and Scott in
the basic article [26] presented proofs for arbitrary characteristic. The
proof that we present here — assuming the algebraic version of reductivity,
i.e. assuming geometric reductivity — appeared in [39] and relies in the
concept of exactness and in this sense is similar to the one in [53].
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Theorem 7.1. Let G be a geometrically reductive algebraic group and
H ⊂ G a closed subgroup such that G/H is an affine variety. Then H is
geometrically reductive.

Proof: Let M be a rational H–module and λ : M → k a surjective
H–morphism. Inducing from H to G we obtain a commutative diagram of
H–modules as follows

H(k[G]⊗M)
id⊗λ //

EM

²²

Hk[G]

E

²²
M

λ
// k

where E(f) = f(1).

Since H is exact in G, there exists ξ =
∑
fi ⊗mi ∈ H(

k[G]⊗M)
such

that
∑
λ(mi)fi = 1. Consider the G–submodule 〈G ? ξ〉 ⊂ H(

k[G] ⊗M
)

— recall that z ?
(∑

gj ⊗ nj
)

=
∑
gj · z−1 ⊗ nj . Then (id⊗λ)(z ? ξ) =∑

λ(mi)(fi · z−1) =
(∑

λ(mi)fi
) · z−1 = 1. The map Λ = id⊗λ|〈G?ξ〉 :

〈G ? ξ〉 → k is a G–morphism, where k is endowed with the trivial module
structure. Hence, the above commutative square induces the commutative
triangle

〈G ? ξ〉 Λ // //

EM

²²

k

M

λ

<< <<yyyyyyyyy

Since G is geometrically reductive, there exists q > 0 and η ∈ G
Sq

(〈G?
ξ〉) such that Sq(Λ)(η) = 1. Denote ν = Sq(EM )(η), then Sq(λ)(ν) =

Sq(λ)
(
Sq(EM )(η)

)
= Sq(Λ)(η) = 1. From the fact that η ∈ G

Sq
(〈G?ξ〉) ⊂

H
Sq

(〈G ? ξ〉) we deduce that ν ∈ H
Sq(M). ¤

Observation 7.2. (1) A version of the above theorem concerning linear
reductivity is left as an exercise for the reader, see Exercise 11.
(2) An unified presentation of the situations of an exact subgroup and of
a geometrically reductive subgroup appears in [43]. The possibility of this
unified treatment explains the similarities in the proofs of Theorems 6.7
and 7.1.

8. Exactness and integrals for unipotent groups

In this section we prove that if U is a unipotent group, then the exis-
tence of a total integral with values in a U–module algebra R implies the
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existence of a multiplicative integral in R. In the case that R is the alge-
bra of regular functions of an affine U–variety X, then it also implies the
existence of an equivariant cross section X → U (see Exercise 10.7).

The results of this section appeared in [26] and [71]. In [71], where
the methods used are cohomological, the book [135] is mentioned as the
original source of the results.

Theorem 8.1. Let U be a unipotent group and R a rational U–module
algebra admitting a total integral α : k[U ] → R, α(1) = 1. Then there exists
a U–equivariant algebra homomorphism β : k[U ] → R.

Proof: From Theorem 5.7.7, we deduce the existence of a family
f1, . . . , fd ∈ k[U ] of algebraically independent elements of k[U ] such that
(a) k[U ] = k[f1, . . . , fd]; (b) u · fi − fi ∈ k[f1, . . . , fi−1] for all u ∈ U and
for all i = 1, . . . , d; in particular, u · f1 − f1 ∈ k. We prove by induction on
i that β can be constructed on k[f1, . . . , fi].

If i = 0, then k[f1, . . . , fi] = k and the result is obvious. Assume
that we have constructed a U–equivariant algebra homomorphism βi :
k[f1, . . . , fi] → R. Then, use the injectivity of R as a U–module (see
Theorem 10.4.8) in order to construct a U–equivariant morphism, αi+1 :
k[f1, . . . , fi] → R that extends βi. In order to define a k–algebra homomor-
phism βi+1 : k[f1, . . . , fi+1] → R is suffices to give its values at f1, . . . , fi+1.
If we let βi+1(fj) = αi+1(fj) for j = 1, . . . , i+1, then βi+1 is U–equivariant.
Indeed, write u · fi+1 − fi+1 = pu(f1, . . . , fi) for pu ∈ k[X1, . . . , Xi]; then

βi+1(u · fi+1)− u · βi+1(fi+1) =

βi+1

(
fi+1 + pu(f1, . . . , fi)

)− u · βi+1(fi+1) =

αi+1(fi+1) + βi
(
pu(f1, . . . , fi)

)− u · αi+1(fi+1) =

αi+1(fi+1 − u · fi+1) + βi
(
pu(f1, . . . , fi)

)
=

αi+1

(−pu(f1, . . . , fi)
)

+ αi+1

(
pu(f1, . . . , fi)

)
= 0 .

¤

Theorem 8.2 ([26]). Let U be a unipotent affine algebraic group and
X be an affine right U–variety. The next four conditions are equivalent and
imply the fifth.
(1) The polynomial algebra k[X] is an injective rational U–module.
(2) There exists a total integral α : k[U ] → k[X], i.e. α is U–equivariant
and α(1) = 1.
(3) There exists a multiplicative integral β : k[U ] → k[X], i.e. β is a U–
equivariant algebra homomorphism.
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(4) There exists a morphism of varieties Φ : X → U such that Φ(x · u) =
Φ(x)u for all x ∈ X, u ∈ U , i.e. an equivariant cross section.

(5) The categorical quotient X//U exists and is affine.

Proof: The equivalence of (1) and (2) was proved in Theorem 10.4.8.
The fact that (2) is equivalent to (3) is the content of Theorem 8.1.
The equivalence between (3) and (4) is left as an exercise; see Exercise

13 that generalizes Exercise 10.7.
Given the morphism Φ : X → U as in condition (4), call S =

{
x ∈

X : Φ(x) = 1
}

and π : X → S the morphism π(x) = x · (Φ(x)
)−1. In this

situation, the pair (S, π) is a geometric quotient for the action of U on X.
Indeed, the morphism Θ : U ×S → X, Θ(u, s) = s · u, has inverse Σ : X →
U × S, Σ(x) =

(
Φ(x), x · (Φ(x)

)−1). Under the identification induced by
Θ, the morphism π : X → S becomes the projection p2 : U ×S → S on the
second factor. ¤

Next, we use the above theorem in order to obtain an elementary result
on the finite generation of invariants of unipotent groups.

Theorem 8.3. Let U be an affine unipotent group and R a finitely
generated commutative rational U–module algebra that is injective in UM.
Then, the subalgebra UR is finitely generated.

Proof: By Theorem 8.2 there exists a multiplicative integral β :
k[U ] → R; let R : R ³ UR, R(f) =

∑
β(Sf1)f0, be the correspond-

ing Reynolds operator (see Theorem 10.4.11). Since β is multiplicative, it
follows that R is an algebra homomorphism. ¤

Theorem 8.2 can be refined in the case that U ⊂ G is a closed subgroup
acting by translations.

Theorem 8.4. Let G be an affine algebraic group and U ⊂ G a closed
unipotent subgroup. The following conditions are equivalent:
(1) The homogeneous space G/U is an affine variety.
(2) The polynomial algebra k[G] is injective as a U–module.
(3) There exists a total integral α : k[U ] → k[G].
(4) There exists a multiplicative integral β : k[U ] → k[G].
(5) There exists a morphism of varieties Φ : G → U such that Φ(xu) =
Φ(x)u for all x ∈ G and u ∈ U .
(6) There exists a closed subset S ⊂ G such that the map µ : U × S → G,
µ(u, s) = su, is an isomorphism.
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Proof: The first two conditions are equivalent because of Theorems
4.5 and 5.5. The rest are equivalent as a consequence of Theorem 8.2. ¤

Observation 8.5. In particular, if the unipotent subgroup U is exact
in G, i.e. strongly observable, it is also split observable in accordance with
Theorem 10.4.11.

The next corollary is a special case of results in [13].

Corollary 8.6. Let G be a unipotent affine algebraic group and U ⊂ G
a closed subgroup. Then U admits an equivariant cross section in G.

Proof: As we already proved in Theorem 7.6.3 the homogeneous space
G/U is an affine variety. ¤

Corollary 8.7 ([26]). Assume that chark = 0. Let G be an affine
algebraic group and H ⊂ G a closed subgroup. If Ru(H) ⊂ Ru(G) then H
is exact in G.

Proof: Consider the chain of subgroups Ru(H) ⊂ Ru(G) C G; as
Ru(G) is normal in G and Ru(G) is unipotent, both links of the chain are
exact and then by transitivity Ru(H) is exact in G.

Consider now the chain Ru(H) CH ⊂ G; as Ru(H) is exact in H and
H/Ru(H) is linearly reductive (see Theorem 9.5.4), Theorem 5.6 guarantees
that H is exact in G. ¤

Observation 8.8. If G is a solvable affine group and H ⊂ G is a
closed subgroup, then the hypothesis Ru(H) ⊂ Ru(G) is satisfied. Hence,
Corollary 8.7 can be interpreted as a generalization of Theorem 7.6.3.

9. Exercises

1. Let G be an affine algebraic group, H ⊂ G a closed subgroup and
F : (k[G],H)M→ Hk[G]M the H–fixed part functor. Prove that H is exact
in G if and only if the functor F is exact.

2. Let K ⊂ H ⊂ G be a sequence of closed subgroups of an affine
algebraic group G. Prove that if K is exact in H and H exact in G, then
K is exact in G.

3. (a) Let G be an affine algebraic group and Hα ⊂ G, α ∈ I, a
family of exact closed subgroups. Then the intersection

⋂
α∈I Hα is also

exact. Hint: by dimensional arguments, reduce to the case where I is
finite, and then prove the result by induction in the cardinal of I. For
the case of two exact subgroups H,K ⊂ G, observe that G/(H ∩ K) is
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isomorphic to the image of the diagonal ∆(G) =
{

(g, g) ∈ G×G : g ∈ G}
in (G×G)/(H ×K) ∼= G/H ×G/K, and as such is affine.
(b) What can be said about the intersection of a family of observable sub-
groups?
(c) Define the concept of exact closure of a subgroup H ⊂ G, denote it as
H̃. Prove that H̃ is connected.

4. Let G be an affine algebraic group, H ⊂ G a closed exact subgroup
and N be a rational H–module. Prove that π ⊗ id : k[G]⊗N → k[H]⊗N
is a morphism of

(
k[G], H

)
–modules if we endow the domain with its usual

structure and the codomain with the structure of
(
k[G],H

)
–module induced

by π. Conclude that the evaluation map EM : IndGH(N) → N is surjective.
This yields yet another proof of Theorem 3.5.

5. (a) Prove that if G is an affine algebraic group and H ⊂ G a closed
subgroup, then H ⊂ Ĥ ⊂ H̃ ⊂ G. Here Ĥ denotes the observable closure
of H (see Exercises 3 and 10.4).
(b) Let G be a connected affine algebraic group of dimension smaller than
or equal to two. Prove that G is solvable.
(c) Consider the subgroup of upper unipotent matrices U ⊂ SL2. Prove
that Ũ = SL2.

6. Let G be an affine algebraic group, H ⊂ G a closed subgroup and M
a finite dimensional rational module. Endow Homk

(
M, k[G]

)
with a natural

structure of rational
(
k[G],H

)
–module and prove that H Homk

(
M, k[G]

)
=

HomH

(
M, k[G]

)
.

7. Prove that the Galois morphism GG,H : k[G] ⊗Hk[G] k[G] → k[G] ⊗
k[H] (see Definition 6.1) is H–equivariant, i.e. prove that if x ∈ H and
f, g ∈ k[G], then

GG,H
(
f ⊗Hk[G] x · g

)
=

∑
fg1 ⊗ x · (g2)|H = x · GG,H(f ⊗ g) .

8. Let G be an algebraic group and H ⊂ G a closed subgroup such
that G/H is affine.
(a) Prove that G×H together the morphisms ρ1, ρ2 : G×H → G, ρ1(x, h) =
x, and ρ2(x, h) = xh is isomorphic to the fibered product G×G/H G.
(b) Prove that if ϕ : G×H → G×G/H G is the isomorphism given in part
(a), then ϕ∗|k[G]⊗H k[G]k[G] : k[G] ⊗Hk[G] k[G] → k[G] ⊗ k[H] is the Galois
morphism GG,H .
(c) Deduce that the Galois morphism is bijective, with inverse (ϕ−1)∗.
Calculate explicitly ϕ−1 .
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9. Let G be an affine algebraic group and H ⊂ G a closed subgroup.
(a) Using total integrals, prove that if G/H is affine then G1/(G1 ∩H) is
also affine. Can the converse be proven in the same fashion? See Corollary
7.4.4.
(b) Prove that H is exact in G if and only if G1 ∩H is exact in G1.

(c) Prove that k[G] is faithfully flat as a Hk[G]–module if and only if k[G1]
is faithfully flat as a G1∩Hk[G1]–module.

10. An affine algebraic group H is said to be universally exact if when-
ever H is embedded as a closed subgroup in a larger group G, then H is
exact in G. Characterize the universally exact groups.

11. Let G be a linearly reductive algebraic group and H ⊂ G a closed
subgroup such that G/H is affine. Then H is linearly reductive. Prove this
result following the method of Theorem 7.1. Provide another proof using
normalized integrals.

12. Let G be an affine algebraic group and H ⊂ G a closed subgroup.
Using the methods developed in this chapter prove directly that G/H is
affine if and only if G/H1 is affine.

13. Taking into account the results of Theorem 8.2, generalize Exercise
10.7 to the context of general actions of unipotent groups on varieties.

 



CHAPTER 12

Hilbert’s 14th problem

1. Introduction

The original formulation by D. Hilbert of his famous 14th problem reads
as follows (as it appeared translated into English in [63]):

“By a finite field of integrality I mean a system of func-
tions from which a finite number of functions can be cho-
sen, in which all other functions of the system are ratio-
nally and integrally expressible. Our problem amounts
to this: to show that all relatively integral functions of
any given domain of rationality always constitute a finite
field of integrality.”

This problem is formulated in [105] in modern language: “Let k be a
field [{x1, . . . , xn} a family of indeterminates] and let K be a subfield of
k(x1, . . . , xn): k ⊂ K ⊂ k(x1, . . . , xn). Is the ring K ∩ k[x1, . . . , xn] finitely
generated over k?”

This problem of the finite generation of special subalgebras of the poly-
nomial algebra k[x1, . . . , xn] is known as Hilbert’s 14th problem because it
appeared with that number in the list of 23 problems presented by Hilbert
in the International Congress of Mathematicians celebrated in Paris in 1900
([61], [62]).

A particularly important case is the following:
Let G ⊂ GLn be a subgroup, consider the induced action of G on

k[x1, . . . , xn] and call K = Gk(x1, . . . , xn). As Gk[x1, . . . , xn] = K ∩
k[x1, . . . , xn], the finite generation of rings of invariants could, in princi-
ple, be deduced from an affirmative answer to Hilbert’s problem.

In 1900, when Hilbert formulated his 14th problem, a few particular
cases were already solved. Classical invariant theorists were concerned with
the invariants of “quantics” (invariants for certain actions of SLm(C)). In
this situation the finite generation was proved by Gordan in [47] in 1868 for
m = 2, and by Hilbert in [59]) in 1890 for arbitrary m. Hilbert mentioned

363
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as motivation for his 14th problem Hurwitz’s paper ([77]) and also work by
Maurer ([98], [99]) — that turned out to be partially incorrect.

of proof of the finite generation of invariant and made a few historical
comments concerning Hilbert’s problem.

Maurer’s work ([98], [99]) contains some partial relevant results that
were later rediscovered by Weitzenböck ([150]) and guaranteed a positive
answer for the case of the invariants of Ga(C) and Gm(C). Later Weyl
and Schiffer gave a complete positive answer for semisimple groups over C
([151], [152], [153], [154]). More recently — based on the platform estab-
lished by Mumford in [103] — Nagata’s school contributions ([112], [111])
together with Haboush’s results ([52]) settled the question affirmatively for
reductive groups over fields of arbitrary characteristic.

In the case of non reductive groups, positive answers are more scarce.
Besides the contributions by Maurer and Weitzenböck for the case of the
additive group of the field of complex numbers, it is worth mentioning a
result by Hochschild and Mostow (valid in characteristic zero): if U is the
unipotent radical of a subgroup H of G that contains a maximal unipotent
subgroup of G then the U–invariants of a finitely generated commutative
G–module algebra are finitely generated ([73]).

More recently, Grosshans’ work provides interesting insights into the
problem of the finite generation of invariants for a non reductive group
in arbitrary characteristic, see [51] for a general survey of his results or
[49] for the original paper. In this direction, we also mention the so–called
Popov–Pommerening conjecture concerning the finite generation of the U–
invariants of a finitely generated G–module algebra when G is a reductive
group and U is a unipotent subgroup normalized by a maximal torus of G.
The reader interested in these and many other topics in invariant theory
should read the actualized and knowledgeable survey [123]. In there, one
can also find an extensive list of references where many of the — not so
well known — contributions of the Russian school are listed.

It took almost sixty years to discover that, in general, the answer to
Hilbert’s 14th question is negative. The first counterexample was discovered
by M. Nagata and presented at the International Congress of Mathemati-
cians in 1958 ([109]). Nagata’s counterexample consisted of a commuta-
tive unipotent algebraic group U acting linearly and by automorphisms on
a polynomial algebra, with a non finitely generated algebra of invariants.
Later, Nagata constructed other counter–examples, one of them a group G
satisfying [G,G] = G.

 

In the Introduction to Chapter 9 we already described Hilbert’s method
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The relevance for invariant theory of a positive answer to Hilbert’s
question has been stressed many times along our exposition and should at
this point be clear to the reader.

For example, the finite generation of rings of invariants is closely related

the quotient of X by G. Moreover, it could be used to decide in an effective
way if two points belong to the same orbit of the given action. In other
words, in many cases one would be able to separate the orbits by a finite
process of evaluations.

We proceed now to describe in more detail the different subjects treated
in this chapter.

In Section 2 we present an example of a unipotent and commutative
group acting linearly on an affine space, whose algebra of invariants is not
finitely generated. This (counter)example is due to Steinberg ([145]) and
should be considered as a simplification of Nagata’s original method. At
present there are various counterexamples to Hilbert’s original problem (see
[1], [125] and [145]), and many of them seem to be based in Nagata’s ideas.

In Section 3 we prove Nagata’s theorem (see [112] or [111]) that guar-
antees that if the group G is geometrically reductive and acts by automor-
phisms on a finitely generated commutative k–algebra A, the algebra of
invariants GA is finitely generated.

In view of the above result, a natural question arises: is there a larger
class of groups that share with the class of (geometrically) reductive groups
the above property concerning the finite generation of invariants? In Sec-
tion 4 we show that this question has a negative answer. In other words, if
an algebraic group G has the property that every finitely generated com-
mutative algebra acted by G has finitely generated invariants, then G is
(geometrically) reductive. This result is due to V. Popov ([120]) and its
proof uses the counterexample we have previously constructed.

In Section 5, we consider some positive answers to Hilbert’s question for
non reductive groups, concentrating the attention in the case of unipotent
groups. We study Grosshans subgroups — or better what we call Grosshans
pairs — that are observable subgroups H ⊂ G with the additional property
that the algebra of regular functions on G/H is finitely generated. We
show that if G is reductive, Grosshans condition implies that if A is a
commutative finitely generated G–module algebra, then its H–invariants
are also finitely generated.

 

— this will be studied in Chapter 13 — to the existence and affineness of
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Then we prove using Grosshans’ results what is called Weitzenböck’s
theorem — that in accordance to [11] had been previously proved by Mau-
rer — concerning the finite generation of the invariants of Ga in a polyno-
mial algebra.

In Section 6 we present a useful geometric characterization of Grosshans
pairs and derive some consequences.

There are many interesting historico–mathematical surveys of the re-
sults we discuss in this chapter. We mention the following that we used at
length: [11], [76], [105], [114, Sect. 6], [119].

2. A counterexample to Hilbert’s 14th problem

In this section we present a counterexample to Hilbert’s 14th problem,
following closely the method of R. Steinberg in [145]. As Steinberg men-
tions in this article: “Our object [. . . ] is to present other examples which
are simpler and easier to establish than Nagata’s and also yield a better re-
sult. We hasten to add that our development is close to his, with one twist
which produces the improved examples”. The improvement consists mainly
in lowering the dimension of the group — from 13 in Nagata’s example to 6
in his example — and lowering the Krull dimension of the polynomial alge-
bra acted upon — from 32 to 18. It it also worth noticing that Steinberg’s
variation of Nagata’s example, is also more elementary in the sense that it
uses simpler results from algebraic geometry.

Along this section we assume that k is an algebraically closed field of
arbitrary characteristic. Unfortunately, the methods we present are not in-
dependent of the characteristic and at certain points separate constructions
have to be performed.

We start with a very elementary observation, whose the proof is left as
an exercise, concerning the dimensions of spaces of homogeneous polyno-
mials and of certain subspaces.

Observation 2.1. Call P = k[X,Y ] the ring of polynomials in two
indeterminates and

Pd =
{
f ∈ P : deg(f) ≤ d

}
.

Clearly, dimPd =
(
d+2
2

)
= (d + 2)(d + 1)/2. Fix a point P ∈ A2 and

call
Pr,P = {f ∈ P : multP (f) ≥ r} ,

where multP (f) is the multiplicity of f ∈ P at the point P , i.e. multP (f) ≥
r if in the Taylor development of f around P , all the terms of degree less
than r are zero.
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It is clear that these subspaces form a decreasing chain P ⊃ P1,P ⊃
P2,P ⊃ · · · ⊃ Pr,P ⊃ · · · . Moreover, the subspace Pr,P has codimen-
sion

(
r+1
2

)
in P. In other words, there exist linearly independent elements

α1,P , . . . , α(r+1
2 ),P ∈ P∗, such that

(r+1
2 )⋂

i=1

Ker(αi,P ) = Pr,P .

The proof of this assertion is left as an exercise (see Exercise 1).

Next, we solve an easy problem in enumerative geometry that con-
cerns the dimensions of spaces of curves with bounded degrees and with
prescribed multiplicities at certain given points in a cubic.

Lemma 2.2. Let a1, a2, . . . , a9 ∈ k be different elements of k.
If chark = 0, assume that

∑
ai 6= 0, and call bi = a3

i . Define f0 ∈ P
as f0 = Y −X3.

If chark > 0 assume that the product
∏
ai is neither zero nor a root of

1, and call bi = a2
i − a−1

i . Define f0 ∈ P as f0 = XY −X3 + 1.
In both cases, call Pi = (ai, bi) ∈ A2, i = 1, . . . , 9.

(1) For each m ≥ 0,

P3m∩Pm,P1∩· · ·∩Pm,P9 =
{
f ∈ P3m : multPi(f) ≥ m, 1 ≤ i ≤ 9

}
= kfm0 .

(2) For every d ≥ 3m the linear functionals (see Observation 2.1){
α1,P1 , . . . , α(m+1

2 ),P1
, . . . , α1,P9 , . . . , α(m+1

2 ),P9

}
are linearly independent in

(Pd)∗.
(3) There exists a polynomial of degree 3m+ 1 not divisible by f0 such that
multPi(f) ≥ m for all i = 1, . . . , 9.

Proof: (1) The points Pi, i = 1, . . . , 9 have multiplicity one in f0 (see
Exercise 2).

Assume that chark = 0 and let f ∈ P3m be a polynomial such that
multPi(f) ≥ m for i = 1, . . . , 9. We prove by induction in m that f = afm0
for a certain a ∈ k. The case m = 0 is obvious.

For a general m, we first prove that f0 divides f ∈ P. Dividing f by f0
in k(X)[Y ], we obtain a decomposition of the form f(X,Y ) = q(X,Y )(Y −
X3)+f(X,X3), and it is an elementary exercise to verify that this equality
is valid in k[X,Y ]. Writing f(X,Y ) = c0(X)Y 3m + c1(X)Y 3m−1 + · · · +
c3m(X), with ci ∈ k[X] and deg ci ≤ i, we conclude that

f(X,X3) = c0(X)X9m + c1(X)X9m−3 + · · ·+ c3m(X) .
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If we call r(X) = f(X,X3), then deg(r) ≤ 9m and the degrees of the
monomials appearing in r belong to the set {9m, 9m − 2, 9m − 3, 9m −
4, 9m − 5, . . . , 3m, 3m − 1, . . . , 1}. In particular, we conclude that there is
not any term of degree 9m− 1.

As f has multiplicity greater than or equal to m at every Pi ; we can
write

f(X,Y ) =
m∑

j=1

(X − ai)j(Y − a3
i )
m−jqi,j(X,Y ) ,

with qi,j ∈ k[X,Y ]. As a consequence we get:

r(X) =
m∑

j=1

(X − ai)m(X2 + aiX + a2
i )
m−jqi,j(X,X3) .

Then, r is divisible by
∏9
i=1(X−ai)m, which is a polynomial of degree

9m, and hence we have that r(X) = c0
∏
i(X − ai)m.

But the term of degree 9m − 1 in c0
∏9
i=1(X − ai)m is (up to a sign)

equal to c0m
∑
i ai. It follows that c0 is zero, and then r = 0. In other

words, f is divisible by f0 in k[X,Y ].
If we call g = f/f0 ∈ k[X,Y ], then deg g ≤ 3m − 3 = 3(m − 1), and

m ≤ multPi
(f) = multPi

(f0)+multPi
(g). Then the multiplicity of g at Pi is

greater than or equal to m− 1. We conclude by induction that g = afm−1
0 ,

a ∈ k, and then f = afm0 .
The treatment of the case of positive characteristic is left as an exercise

(see Exercise 3).
(2) Consider first the case d = 3m. By general linear algebra results,
the functionals

{
α1,P1 , . . . , α(m+1

2 ),P1
, . . . , α1,P9 , . . . , α(m+1

2 ),P9

}
are linearly

independent in (P3m)∗ if and only if the codimension in P3m of V =
Ker(α1,P1) ∩ · · · ∩Ker

(
α(m+1

2 ),P1

) ∩ · · · ∩Ker(α1,P9) ∩ · · · ∩Ker
(
α(m+1

2 ),P9

)

equals the total number of functionals, i.e., 9
(
m+1

2

)
. Since V = P3m ∩

Pm,P1 ∩ · · · ∩ Pm,P9 (see Observation 2.1), by part (1), dimV = 1, and
hence codimV = dim(P3m) − 1 =

(
3m+2

2

) − 1. Then the functionals are
linearly independent if and only if

(
3m+2

2

)−1 = 9
(
m+1

2

)
, that is indeed true

and hence our result follows.
If d ≥ 3m, then P3m ⊂ Pd and it is clear that if a family of functionals

is linearly independent in P3m, then it is also linearly independent in Pd.
(3) The above result guarantees that for any n the dimension of the space
of polynomials in P3n+1 with multiplicity larger or equal than n at all the
points Pi, i = 1, . . . 9 is dim(P3n+1)− 9

(
n+1

2

)
=

(
3n+3

2

)− 9
(
n+1

2

)
= 3n+ 3.
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Consider now the injective map mf0 : P3m−2 → P3m+1 given by multi-
plication by f0. The map mf0 increases the degree by 3 and the multiplicity
at a point Pi by 1. Then, the set of polynomials of P3m+1 divisible by f0
and with multiplicity larger or equal than m at all the points P1, . . . , P9,
is the image by mf0 of the subspace of polynomials of P3m−2 with multi-
plicity larger or equal than m − 1 at the same set of points. The above
calculation for n = m − 1 guarantees that the dimension of this space is
3(m−1)+3 = 3m. Then, there is a whole (pointed) subspace of dimension
3 of polynomials that satisfy the required condition (3). ¤

The next corollary is the homogeneous version of Lemma 2.2.

Corollary 2.3. In the notations of the Lemma 2.2 we define an ho-
mogeneous polynomial h0 ∈ k[U, V,W ] as follows: if chark = 0, then
h0(U, V,W ) = U2W − V 3; if chark 6= 0, then h0(U, V,W ) = UVW −
V 3 + U3. Consider the points Qi = [1 : ai : bi] ∈ P2, i = 1, . . . , 9.
If h ∈ k[U, V,W ] is a homogeneous polynomial of degree smaller than
or equal to 3m such that multQi(h) ≥ m, i = 1, . . . , 9, then there ex-
ists a ∈ k such that h = ahm0 . For m ≥ 0 there exists a homogeneous
polynomial h ∈ k[U, V,W ] of degree 3m + 1 not divisible by h0, such that
multQi(h) ≥ m, i = 1, . . . , 9. ¤

Next we consider a special subring of the polynomial ring in 18 inde-
terminates, that will provide the required counterexample. Before that, we
fix some notations that will be in force until the end of this section.

Definition 2.4. Let C = (ci,j)1≤i≤9
1≤j≤3

be a 9×3 matrix with coefficients

in k such that det(ci,j) 6= 0 for 1 ≤ i ≤ 3, 1 ≤ j ≤ 3. Consider the elements
T,W1, . . . ,W9, Z1, Z2, Z3 ∈ R = k[T1, X1, T2, X2, . . . , T9, X9] defined as:
T = T1 · · ·T9, Wi = XiT/Ti = T1 · · ·Ti−1XiTi+1 · · ·T9, for 1 ≤ i ≤ 9,
Zj =

∑9
i=1 cijWi, for 1 ≤ j ≤ 3. Define the points Qi = [ci1 : ci2 : ci3] ∈ P2.

Observation 2.5. (1) In explicit terms,

Zj = c1jX1T2 · · ·T9 + c2jT1X1T3 · · ·T9 + · · ·+ c9jT1 · · ·T8X9 .

(2) The elements T,Z1, Z2, Z3 are algebraically independent over k. First
observe that the elements Z1, Z2, Z3, X4, . . . , X9 are algebraically indepen-
dent over k(T1, . . . , T9), since they can be expressed linearly and in an
invertible way in terms of X1, . . . , X9. Then, it follows that T,Z1, Z2, Z3

are algebraically independent over k.

The next lemma expresses multiplicity conditions for homogeneous
polynomials in terms of divisibility conditions in the ring R. This will
be used together with Corollary 2.3 in order to prove Theorem 5.4.
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Lemma 2.6. In the notations of Definition 2.4, let h ∈ k[U, V,W ] be
an homogeneous polynomial in three indeterminates. Then, Tm divides
h(Z1, Z2, Z3) in the ring R if and only if multQi |(h) ≥ m for all i =
1, . . . , 9.

Proof: Without loss of generality we can assume that Q1 = [1 : 0 : 0].
In that case, if we define Ui, i = 1, 2, 3, as:

(7)





U1 = c21X2T3 · · ·T9 + · · ·+ c91T2 · · ·T8X9

U2 = c22X2T3 · · ·T9 + · · ·+ c92T2 · · ·T8X9

U3 = c23X2T3 · · ·T9 + · · ·+ c93T2 · · ·T8X9

then,

(8)





Z1 = X1T2 · · ·T9 + T1U1

Z2 = T1U2

Z3 = T1U3

As the matrix ( c22 c32c23 c33 ) is invertible, it follows that U2 and U3 are
algebraically independent over k(T1, . . . , T9).

Let h ∈ k[U, V,W ] be homogeneous of degree d and write for some
r ≤ d,

(9) h(U, V,W ) = hr(V,W )Ud−r + · · ·+ hd(V,W ) ,

with hi homogeneous of degree i in the variables V,W and hr 6= 0.
Substituting U = 1 in the above equation, we have that h(1, V,W ) =

hr(V,W ) + · · ·+ hd(V,W ) and hence multQ1(h) = r.
If we substitute in Equation (9) the expressions for Z1, Z2 and Z3 ob-

tained from Equation (8) we have:

h(Z1, Z2, Z3) = T r1 hr(U2, U3)(X1T2 · · ·T9 + T1U1)d−r + · · ·+ T d1 hd(U2, U3).

Hence, if multQ1(h) = r ≥ m, then Tm1 divides h in R.
Conversely, if Tm1 divides h in R, as T1 does not divide the poly-

nomial hr(U2, U3)(X1T2 · · ·T9 + T1U1)d−r, we conclude that r ≥ m and
hm−1(U2, U3) = 0. From the algebraic independence of U2, U3 it follows
that hm−1 = 0 and then multQ1(h) ≥ m.

Reasoning as above for i = 2, . . . , 9, we deduce that multQi
(h) ≥ m for

all i = 1, . . . , 9. ¤

Observation 2.7. In the notations of Definition 2.4, all the elements
of the form h(Z1, Z2, Z3)/Tm belong to the subring k[Z1, Z2, Z3, T, T

−1].
They belong to R if and only if multQi(h) ≥ m, i = 1, . . . , 9.
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Lemma 2.8. Consider the subring S = R ∩ k[Z1, Z2, Z3, T, T
−1] ⊂ R.

Then S is linearly generated by elements of the form h(Z1, Z2, Z3)/Tm,
with h ∈ k[U, V,W ] and homogeneous in the variables U, V,W .

Proof: It is enough to prove that an element H ∈ S homogeneous of
degree d in the variables T1, . . . , T9, X1, . . . , X9 is a linear combination of
elements of the form h(Z1, Z2, Z3)/Tm, with h homogeneous.

There exists a positive exponent r such that T rH ∈ k[Z1, Z2, Z3, T ],
and deg(T rH) = 9r + d. Decompose T rH in terms of the algebraically
independent variables Z1, Z2, Z3, T :

T rHd = g0(Z1, Z2, Z3) + g1(Z1, Z2, Z3)T + · · ·+ gl(Z1, Z2, Z3)T l ,

where gi ∈ k[Z1, Z2, Z3], i = 1, . . . , l. Decomposing gi, 1 ≤ i ≤ l in
its Z1, Z2, Z3 homogeneous components, we obtain an expression of T rHd

as a sum of terms of the form qj(Z1, Z2, Z3)T i, with qj homogeneous in
Z1, Z2, Z3 of degree j. Each of these summands has degree 9j + 9i in the
variables T1, . . . , T9, X1, . . . , X9. As the {T1, . . . , T9, X1, . . . , X9}–degree of
T rH is 9r + d, it follows that d = 9e for some positive integer e, with
i+ j = r + e. Then:

T rH = qr+e(Z1, Z2, Z3) + qr+e−1(Z1, Z2, Z3)T + · · ·+ q0(Z1, Z2, Z3)T r+e ,

where qi is homogeneous in Z1, Z2, Z3 of degree i.
Hence:

H = qr+e(Z1, Z2, Z3)/T r + qr+e−1(Z1, Z2, Z3)/T r+e−1 + · · ·+
qe+1(Z1, Z2, Z3)/T + qe(Z1, Z2, Z3) + qe−1(Z1, Z2, Z3)T + · · ·+
q0(Z1, Z2, Z3)T e .

It remains to be proven that all the above summands belong to R.
Thinking of H ∈ k[T1, . . . , T9][X1, . . . , X9] ⊂ k(T1, . . . , T9)[X1, . . . , X9] in
the decomposition above, all summands qi(Z1, Z2, Z3)/T i−e belong to the
polynomial algebra k(T1, . . . , T9)[X1, . . . , X9] and are homogeneous of de-
gree i in Z1, Z2, Z3, so that in terms of the X1, . . . , X9 variables they are
also homogeneous of degree i. Then these summands are the homoge-
neous components of H in k(T1, . . . , T9)[X1, . . . , X9]; hence they belong to
k[T1, . . . , T9][X1, . . . , X9] (see Observation 2.9). ¤

Observation 2.9. At the end of Lemma 2.8 we have used the following
elementary observation. Let A be an integral domain and K be its field of
fractions. Let F ∈ K[X1, . . . , Xn] be an arbitrary polynomial and F = F0+
· · · + Ft its decomposition in homogeneous components in K[X1, . . . , Xn].
Then F ∈ K[X1, . . . , Xn] if and only if Fi ∈ A[X1, . . . , Xn].
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Next, we assume that the matrix C in Definition 2.4 is such that the
points Qi ∈ P2, i = 1, . . . , 9, belong to the cubic curve defined by the
polynomial h0 (see Corollary 2.3).

Observation 2.10. With the assumptions above, if chark = 0, then
(ci1, ci2, ci3) = (1, ai, a3

i ), with
∑
ai 6= 0 and for i, j = 1, . . . , 9, ai 6= aj . If

i, j, l are different, then

det

(
1 ai a

3
i

1 aj a
3
j

1 al a
3
l

)
= (aj − ai)(al − ai)(al − aj)(ai + aj + al) .

We can always choose between the nine scalars {a1, . . . , a9} three of
them whose sum is different from zero; for these values the above matrix
has non zero determinant.

If chark > 0, then (ci1, ci2, ci3) = (1, ai, a2
i − a−1

i ), with
∏
ai 6= 0 and

not a root of 1, and for i, j = 1, . . . , 9, ai 6= aj . Reasoning as above, we can
find i, j, l different such that

det

(
1 ai a

l
j−a−1

i

1 aj a
2
j−a−1

j

1 al a
2
l−a−1

l

)
= (aiajal − 1)(aj − ai)(al − ai)(al − aj)/aiajal 6= 0 .

From now on, we assume that {i, j, l} = {1, 2, 3}.
Theorem 2.11. In the situation above, consider

S = k[T1, X1, . . . , T9, X9] ∩ k[Z1, Z2, Z3, T, T
−1] ⊂ k[T1, X1, . . . , T9, X9] .

Then S is not finitely generated over k.

Proof: If S = k[F ] for some finite subset F ⊂ S, using Lemma 2.8
we can assume that F =

{
h1(Z1, Z2, Z3)/Tm1 , . . . , hr(Z1, Z2, Z3)/Tmr

}
with hi ∈ k[U, V,W ] homogeneous. As all the quotients given above are
polynomials in the ring k[T1, X1, . . . , T9, X9], we deduce from Lemma 2.6
that multQi

(hi) ≥ m, where Qi = [1 : ai : a3
i ] if chark = 0 and Qi = [1 :

ai : a2
i − a−1

i ] if chark > 0, i = 1, . . . , 9.
We can always assume that h0(Z1, Z2, Z3)/T ∈ F — recall the defini-

tion of h0 from Corollary 2.3 — i.e. S = k
[
h0/T, h1/T

m1 , . . . , hr/T
mr

]
. If

hj = gh0 for some 1 ≤ j ≤ r, then S = k
[
h0/T, h1/T

m1 , . . . , hr/T
mr

]
=

k
[
h0/T, g/T

m1−1, . . . , hr/T
mr

]
. Hence, we can assume that h0 does not

divide hj for all j = 1, . . . , r.
If dj = deg(hj), then for all j = 1, . . . , r, dj > 3mj . Indeed, if dj > 0

and dj ≤ 3mj , then using Lemma 2.6, we deduce that multQi ≥ mj ,
and hence from Corollary 2.3, we conclude that h0 divides hj , and this
contradicts our assumptions. If dj = 0 and mj = 0, then hj/T

mj ∈ k and
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it can be deleted from the generators. The other alternative, i.e. mj > 0,
is excluded as a possibility.

Now we choose m > mj for all j = 1, . . . , r, and a homogeneous poly-
nomial h ∈ k[U, V,W ] of degree 3m + 1 not divisible by h0 such that
multQi(h) ≥ m, for 1 ≤ i ≤ 9 (see Corollary 2.3). In this situation,
h/Tm = p

(
h0/T, h1/T

m1 , . . . , hr/T
mr

) ∈ S. Taking homogeneous compo-
nents in the Z1, Z2, Z3, T variables, we may assume that all the summands
of p

(
h0/T, h1/T

m1 , . . . , hr/T
mr

)
have the same {Z1, Z2, Z3}–degree than h

as well as the same T–degree. Since h is not divisible by h0, there exists a
summand in p

(
h0/T, h1/T

m1 , . . . , hr/T
mr

)
of the form c

∏r
j=1

(
hj/T

mj
)ej .

It follows that

degZ1,Z2,Z3

(
h/Tm

)
= 3m+ 1 = degZ1,Z2,Z3

( r∏

j=1

(
hj/T

mj
)ej

)
=

∑

j=1r

djej .

We have also that

degT
(
h/Tm

)
= −m = degT

( r∏

j=1

(
hj/T

mj
)ej

)
= −

r∑

j=1

mjej .

From the above numerical equalities we conclude that 1 =
∑
ej(dj −

3mj) and as dj − 3mj ≥ 1, there exists 1 ≤ j0 ≤ r such that ej0 = 1,
dj0 = 3mj0 + 1 and for j 6= j0, ej = 0. Hence, m = mj0 , and this
contradicts the choice of m. ¤

Observation 2.12. Notice that (see Exercise 4)

k[T1, X1, . . . , T9, X9] ∩ k[Z1, Z2, Z3, T, T
−1] =

k[T1, X1, . . . , T9, X9] ∩ k(Z1, Z2, Z3, T, T
−1) .

In accordance with Theorem 2.11, the subalgebra k[T1, X1, . . . , T9, X9]∩
k[Z1, Z2, Z3, T, T

−1] ⊂ k[T1, X1, . . . , T9, X9] is not finitely generated, and
thus it provides a counterexample to the original problem formulated by

We want to go one step further and prove that the above subalgebra
can be obtained as the invariants of an affine group acting linearly on
k[T1, X1, . . . , T9, X9].

First we fix some notations.

Definition 2.13. (1) Define actions of the groups G9
a and G9

m on the
algebra k[T1, X1, T2, X2, . . . , T9, X9] as follows:

(10) (c1, . . . , c9) · Ti = Ti
(c1, . . . , c9) ·Xi = Xi + ciTi

(c1, . . . , c9) ∈ G9
a ,

 

Hilbert (see the introduction to this chapter).
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and

(11) (d1, . . . , d9) · Ti = diTi
(d1, . . . , d9) ·Xi = diTi

(d1, . . . , d9) ∈ G9
m .

(2) In the notations of Definition 2.4, define the subgroups K ⊂ G9
a, L ⊂

G9
m as:

K =
{

(c1, . . . , c9) ∈ G9
a :

∑
cicij = 0, for j = 1, 2, 3

}
,

L =
{

(d1, . . . , d9) ∈ G9
m : d1 · · · d9 = 1

}
,

and call H = K × L.

Observation 2.14. Clearly, the actions considered in the above def-
inition commute, and define an action by automorphisms of G9

a × G9
m on

the polynomial algebra k[T1, X1, . . . , T9, X9]. It is an easy exercise to verify
that the ring of invariants for this action is k (see Exercise 6).

Theorem 2.15. In the notations of Definitions 2.4 and 2.13, we have
that

Hk[T1, X1, . . . , T9, X9] = k[T1, X1, . . . , T9, X9] ∩ k[Z1, Z2, Z3, T, T
−1] .

Moreover, if we assume that the matrix C is given as in Observation
2.10, then the ring of invariants Hk[T1, X1, . . . , T9, X9] is not finitely gen-
erated over k.

In particular, Kk[T1, X1, . . . , T9, X9] — the ring of invariants of the
unipotent group K — is not finitely generated over k.

Proof: We start by computing the actions of K and L on the elements
T,W1, . . . ,W9, Z1, Z2, Z3. It is clear that the variable T is fixed by the
actions of K and L, and if (c1, . . . , c9) ∈ K, then

(c1, . . . , c9) ·Wi = Wi + ciT
(c1, . . . , c9) · Zj =

∑
i cij(Wi + ciT ) =

∑
i cijWi = Zj

Since
Hk[T1, X1, . . . , T9, X9] =

Hk[T1, X1, . . . , T9, X9, T
−1] ∩ k[T1, X1, . . . , T9, X9]

all we have to prove is that

Hk[T1, X1, . . . , T9, X9, T
−1] = k[Z1, Z2, Z3, T, T

−1] .
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The inclusion Hk[T1, X1, . . . , T9, X9, T
−1] ⊃ k[Z1, Z2, Z3, T, T

−1] was
proved above. Conversely, as Xi = TWi/Ti, it follows that

k[T1, X1, . . . , T9, X9, T
−1] = k[T1, . . . , T9,W1,W2,W3,W4, . . . ,W9, T

−1] =

k[T1, . . . , T9, Z1, Z2, Z3,W4, . . . ,W9, T
−1] .

The last equality is justified because we can express W1,W2,W3 linearly
in terms of the variables Z1, Z2, Z3,W4, . . . ,W9. Indeed, the matrix C has
the first 3 × 3–submatrix with non zero determinant (see Definition 2.4).
If c = (c1, . . . , c9) ∈ K and f ∈ k[T1, . . . , T9, Z1, Z2, Z3,W4, . . . ,W9, T

−1],
then

(c · f)(T1, . . . , T9, Z1, Z2, Z3,W4, . . . ,W9, T
−1) =

f(T1, . . . , T9, Z1, Z2, Z3,W4 + c4T, . . . ,W9 + c9T, T
−1).

Hence, if c · f = f for all c ∈ K, then

f(T1, . . . , T9, Z1, Z2, Z3,W4, . . . ,W9, T
−1) =

f(T1, . . . , T9, Z1, Z2, Z3,W4 + c4T, . . . ,W9 + c9T, T
−1)

for all ci ∈ k, i = 4, . . . , 9. As k is infinite, the above equality guarantees
that f does not depend on the variables W4, . . . ,W9, i.e., we have that
f ∈ k[T1, . . . , T9, Z1, Z2, Z3, T

−1]. Moreover, if f satisfies (d1, . . . , d9)·f = f
for all (d1, . . . , d9) ∈ L, then

f(d1T1, . . . , d9T9, Z1, Z2, Z3, T
−1) = f(T1, . . . , T9, Z1, Z2, Z3, T

−1) .

We leave as an exercise (see Exercise 7) the verification that in this
situation

f(T1, . . . , T9, Z1, Z2, Z3, T
−1) = g(T,Z1, Z2, Z3, T

−1) .

This finishes the proof of the first conclusion of the theorem. The
second conclusion follows from Theorem 2.11 and the third is left as an
exercise to the reader. ¤

Observation 2.16. Note that the first part of Theorem 2.15 is valid
for C as in Definition 2.4, i.e. without the restriction that the points Qi
belong to a cubic curve in P2. However, this geometric restriction is used
in Theorem 2.11 in order to prove that the ring of invariants is not finitely
generated over k.

3. Reductive groups and finite generation of invariants

The counterexample constructed in the preceding section raises the
following problem. Is it possible to find a large enough family of affine
algebraic groups with the property that each time they act rationally and
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by automorphisms in a finitely generated commutative k–algebra, then the
corresponding subalgebra of invariants is also finitely generated?

As we mentioned before, Mumford’s idea — as presented in [103] —
was that a good candidate was the family of reductive groups. The validity
of Mumford’s idea was proved by the joint efforts of many mathematicians,
in particular M. Nagata ([111]) and W. Haboush ([52]).

In this section we present a proof of Nagata’s theorem: a geometrically
reductive group has finitely generated invariants. The geometric conse-
quences of this result will be exploited in Section 13.2.

Lemma 3.1. Let G be a geometrically reductive group, R a commutative
rational G–module algebra, and J ⊂ R a G–stable ideal. If G(R/J) is a
finitely generated k–algebra, then GR/

(
J ∩ GR

)
is also a finitely generated

k–algebra and G(R/J) is a finitely generated GR/
(
J ∩ GR

)
–module.

Proof: Applying Observation 9.2.11 to the canonical projection R→
R/J , we conclude that GR/

(
J ∩ GR

) ⊂ G(R/J) is an integral extension.
Being G(R/J) a finitely generated k–algebra, it is also finitely generated
over GR/

(
J ∩ GR

)
, and we conclude from Theorem 1.2.3 that G(R/J) is a

finitely generated GR/
(
J ∩ GR

)
–module.

The fact that GR/
(
J ∩GR)

is a finitely generated k–algebra is a direct
application of Corollary 1.2.5. ¤

Lemma 3.2. Let G be a geometrically reductive group and R a commu-
tative rational G–module algebra such that: (1) for every non zero G–stable
ideal I ⊂ R, the k–algebra G(R/I) is finitely generated; (2) there are non
trivial zero divisors of R in GR. Then GR is a finitely generated k–algebra.

Proof: Let 0 6= r ∈ GR be a zero divisor of R. Consider the G–stable
ideals rR ⊂ R and Ir = {t ∈ R : tr = 0} ⊂ R. As both are non zero ideals,
we deduce from (1) that G(R/Ir) and G(R/rR) are finitely generated k–
algebras. By Lemma 3.1 we deduce that GR/

(
Ir ∩GR

)
and GR/

(
rR∩GR)

are finitely generated k–algebras and that G(R/Ir) is a finitely generated
GR/

(
Ir ∩ GR

)
–module.

Let T ⊂ GR be a finitely generated subalgebra such that the canonical
maps form T onto both quotients GR/

(
Ir ∩ GR

)
and GR/

(
rR ∩ GR

)
are

surjective. Consider also a finite set of elements c1, . . . , cl ∈ R whose cosets
modulo Ir generate G(R/Ir) over GR/

(
Ir ∩ GR

)
. As ci + Ir is G–fixed for

i = 1, . . . , l, it follows that cir ∈ GR, i = 1, . . . , l.
In this situation, GR = T [c1r, . . . , clr]. Indeed, if a ∈ GR, then there

exist b ∈ T and c ∈ R such that a − b = rc. It follows that if x ∈ G, then
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x ·a−x ·b = (x ·r)(x ·c), and thus rc = a−b = r(x ·c). Hence, x ·c−c ∈ Ir,
i.e. c+ Ir is G–invariant. Then, we can find z1 +

(
Ir ∩ GR

)
, . . . , zl +

(
Ir ∩

GR
) ∈ GR/

(
Ir ∩ GR

)
such that c −∑

zici ∈ Ir. Taking ti ∈ T such that
ti − zi ∈ Ir ∩ GR, we get that c−∑

tici ∈ Ir, and thus that rc =
∑
rtici.

Finally, a = b +
∑
rtici ∈ T [rc1, . . . , rcl]. As T is finitely generated as a

k–algebra, this concludes the proof. ¤

Observation 3.3. If R is a graded G–module algebra, the above result
remains valid if we restrict our hypothesis to homogeneous G–stable ideals
and homogeneous zero divisors (see Exercise 8).

Lemma 3.4. Let G be a geometrically reductive group and R a commu-
tative rational G–module algebra such that R and GR are finitely generated
k–algebras. Then for every G–stable ideal I ⊂ R, G(R/I) is a finitely
generated k–algebra.

Proof: Let I ⊂ R be a G–stable ideal and call D the set of non trivial
zero divisors of R/I.

Assume that G(R/I)∩D = ∅. In this case, it is clear that G(R/I) is an
integral domain; call F its field of fractions. Our first goal is to prove that
the field extension k ⊂ F is finitely generated. If M = G(R/I) \ {0}, then
M is a multiplicative subset and we can form the ring of fractions (R/I)M
of R/I with respect to M.

The hypothesis that G(R/I) ∩ D = ∅ implies that the composition of
the inclusion G(R/I) ⊂ R/I with the canonical map R/I → (R/I)M is
injective. We extend this injection to a morphism from F into (R/I)M.

If M ⊂ (R/I)M is a maximal ideal, then F is a subfield of (R/I)M/M
and as this field is finitely generated over k — because R/I is so — we
conclude that the extension k ⊂ F is finitely generated.

As G is geometrically reductive, G(R/I) is an integral extension of the
integral domain GR/

(
I ∩GR)

(see Observation 9.2.11). Consider the tower
of extensions k ⊂ K ⊂ F , where K is the field of fractions of GR/

(
I ∩GR)

.
Then K ⊂ F is finitely generated and algebraic, and thus it is a finite
extension. In this situation, Lemma 1.2.13 guarantees that G(R/I) is a
finitely generated GR/

(
I ∩ GR

)
–module.

Since GR/
(
I ∩GR)

is a finitely generated k–algebra, by transitivity we
conclude that G(R/I) is a finitely generated k–algebra.

If G(R/I) ∩ D 6= ∅, call J the family of G–stable ideals J ⊂ R such
that G(R/J) is not finitely generated. If J 6= ∅, as R is noetherian, we
can find a maximal element J∞ ∈ J . Then the k–algebra R/J∞ is finitely
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generated over k, G(R/J∞) is not finitely generated over k, and for every
non zero G–stable ideal I ⊂ R/J∞, G

(
(R/J∞)/I

)
is finitely generated over

k.
Consider the set D∞ of non trivial zero divisors of R/J∞. If G(R/J∞)∩

D∞ = ∅, then the first part of the proof guarantees that G(R/J∞) would
be finitely generated over k. Thus, G(R/J∞) ∩ D∞ 6= ∅ and it follows
from Lemma 3.2 that G(R/J∞) is finitely generated as a k–algebra, and
the proof is finished. ¤

Next we treat the case of a graded rational G–module algebra.

Theorem 3.5. Let G be a geometrically reductive group and R a graded
rational commutative G–module algebra that is finitely generated over k.
Assume that R0 = k, then GR is finitely generated over k.

Proof: First, we prove that for every homogeneous G–stable ideal
(0) 6= I ⊂ R, the algebra G(R/I) is finitely generated over k.

Otherwise, consider the family J of all homogeneous ideals J ⊂ R such
that G(R/J) is not finitely generated as a k–algebra, and take a maximal
element of the family that we call J∞. Then: (a) the subalgebra G(R/J∞) ⊂
R/J∞ is not finitely generated over k; (b) for every non zero G–stable
homogeneous ideal I of R/J∞, G(

(R/J∞)/I
)

is a finitely generated k–
algebra.

If there is a non trivial zero divisor of R/J∞ in G
R/J∞ (that can be

supposed to be homogeneous) we conclude by Observation 3.3 that GR/J∞
is a finitely generated k–algebra and this is a contradiction.

Suppose that there are no non trivial zero divisors ofR/J∞ in G(R/J∞).
Choose an element 0 6= s ∈ G(R/J∞)n with n > 0 (assuming as we may that
G(R/J∞) 6= k ). Then sR/J∞ is a proper homogeneous G–stable ideal of
R/J∞, and condition (b) implies that G

(
(R/J∞)/sR/J∞)

)
is finitely gener-

ated over k. Using Lemma 3.1 we conclude that also G(R/J∞)/
(
(sR/J∞)∩

G
R/J∞

)
is finitely generated over k.

Observe that sR/J∞ ∩ G
R/J∞ = s

G
R/J∞ ⊂ G(R/J∞)+. Indeed, if

l ∈ R/J∞ is such that sl ∈ G(R/J∞), then s(x · l) = x · (sl) = sl for any
x ∈ G, and thus x · l = l. Since the ideal G(R/J∞)+/s

G(R/J∞) of the
noetherian ring G(R/J∞)/sG(R/J∞) = G(R/J∞)/

(
(sR/J∞) ∩ G(R/J∞)

)

is finitely generated, it follows that G(R/J∞)+ is a finitely generated ideal of
G(R/J∞). Applying the conclusion of Exercise 1.1 we deduce that G(R/J∞)
is a finitely generated k–algebra and this is again a contradiction.
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We have just proved that R satisfies condition (1) of the graded version
of Lemma 3.2 (see Observation 3.3). If there are no non trivial zero divisors
of R in GR, then a similar argument than the one just made guarantees that
R+ is a finitely generated ideal of R, and hence that R is finitely generated.
If there are non trivial zero divisors of R in GR, then applying Lemma 3.2
we finish the proof. ¤

Next we deduce the general Nagata’s theorem from the graded version
we have just proved.

Theorem 3.6 (M. Nagata, [112]). Let G be a geometrically reductive
group and R a commutative finitely generated rational G–module algebra.
Then GR is a finitely generated k–algebra.

Proof: Since R is finitely generated and that the G–action is rational,
there exists a G–stable finite dimensional k–subspace V ⊂ R such that V
generates R as a k–algebra. Let S be the symmetric algebra built on V
with its natural structure of graded G–module algebra. As V generates R
as a k–algebra, the inclusion of V on R extends to a surjective morphism of
G–modules algebras from S to R. Then, Theorem 3.5 guarantees that GS
is finitely generated over k, and Lemma 3.4 that GR is finitely generated
over k. ¤

Observation 3.7. In the case that G is linearly reductive the above
proof can be simplified substantially: the line of reasoning presented in the

proof of the result in the graded case.
The passage from the graded to the general case can be simplified

as follows: consider as above a surjective homomorphism of G–module
algebras from S onto R, and then apply the hypothesis of linear reductivity
in order to deduce from the finite generation of GS that GR is also finitely
generated (see Exercise 9).

4. V. Popov’s converse to Nagata’s theorem

In this section we prove that the class of (geometrically) reductive
groups is the largest class of groups for which we can guarantee that finitely
generated commutative k–algebras have finitely generated invariants. This
is the content of Popov’s theorem 4.3; for its proof one needs to use an
explicit counterexample to 14th Hilbert’s problem, as the one of Nagata–
Steinberg presented in Section 2.

Lemma 4.1. Let U be a unipotent algebraic group. Then there exists an
affine rational U–module algebra B such that UB is not finitely generated.

 

Introduction to Chapter 9 — and that goes back to D. Hilbert — gives a
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Proof: First we consider the case U = Ga. Recall the definitions of
K ⊂ G9

a and R = k[A18] introduced in Theorem 2.15. Since K is unipotent,
there exists a chain of normal closed unipotent subgroups {1} = K0 ⊂ K1 ⊂
· · · ⊂ Kn = K such that Ki+1/Ki

∼= Ga, i = 1, . . . , n − 1 (see Theorem
5.7.2). Consider the corresponding chain of subalgebras R = K0R ⊃ K1R ⊃
· · · ⊃ KnR = KR, where the first one is finitely generated and the last one
is not. Then there exists 0 ≤ i < n, such that B = KiR is finitely generated
whereas Ki+1R is not. Notice that B is a Ga = Ki+1/Ki–module algebra
and that GaB = Ki+1/KiB = Ki+1R is not finitely generated.

If U is a non trivial unipotent algebraic group, then there exists a
surjective morphism of algebraic groups φ : U → Ga. Endow the algebra
B constructed above with the rational action of U induced by the map
φ : U → Ga, i.e. if u ∈ U and b ∈ B, then u · b = φ(u) · b. Clearly,
UB = GaB is not finitely generated. ¤

Observation 4.2. The preceding proof gives explicitly an affine Ga–
module algebra B, with non finitely generated algebra of invariants. Call
X = Spm(B); then X is a Ga–variety, whose algebra of Ga–invariants
polynomials is not finitely generated.

Notice that in view of Theorem 5.12, B cannot be a polynomial algebra
acted linearly by Ga. In geometric terms, X cannot be a representation of
Ga.

Next we prove Popov’s theorem. We adapt V. Popov’s original proof,
that appears in [120]. In [51] Grosshans presents a slightly different proof
that uses the exactness of the induction functor for affine homogeneous
spaces (see Exercise 10).

Theorem 4.3 (V. Popov). Let G be an affine algebraic group such that
for every affine rational G–module algebra A, the algebra of invariants GA
is finitely generated. Then G is reductive.

Proof: Let Gu be the unipotent radical of G, and suppose that it
is non trivial. Then, there exists an affine Gu–module algebra B such
that GuB is not finitely generated. Consider the induced representation
A = IndGGu

(B) = Gu
(
k[G]⊗B)

. Then A is a rational commutative rational
G–module algebra, and

GA =
G(Gu

(
k[G]⊗B

)) ∼= Gu(Gk[G]⊗B
) ∼= GuB ,

which is not finitely generated. All that remains to prove is that A is affine.
As G/Gu is an affine algebraic group, it follows from Theorem 11.8.2

that k[Gu] has a multiplicative integral, and thus that k[G] ∼= Guk[G] ⊗
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k[Gu] as Gu–module algebras, where Gu acts by left translations on k[G]
and k[Gu], and trivially on Guk[G] (see Exercise 10.7, and Theorem 10.4.11).
It follows that

A ∼= Gu(Guk[G]⊗ k[Gu]⊗B
) ∼= Guk[G]⊗ Gu

(
k[Gu]⊗B

) ∼= Guk[G]⊗B

that is finitely generated and without nilpotent elements — recall that
G/Gu is an affine algebraic group. ¤

Corollary 4.4. Let G be an affine algebraic group such that for all
affine G–variety X the algebra of invariants Gk[X] is finitely generated.
Then G is reductive. ¤

5. Partial positive answers to Hilbert’s 14th problem

Hilbert’s original formulation of his problem — in the case of invariants
of a group — concerned the algebra of invariants of a linear group H ⊂
GL(V ), acting on k[V ] with the induced action. This problem is somewhat
particular in the sense that k[V ] is also a GL(V )–module algebra, i.e. the
action of H extends to GL(V ).

The following problem is a formulation of Hilbert’s 14th problem in a
general set–up.

Problem 5.1. Hilbert’s 14th problem: general formulation. Find all
pairs (H,G) of affine algebraic groups such that: (1) H ⊂ G is a closed
subgroup; (2) for every finitely generated commutative rational G–module
algebra A, the subalgebra of invariants HA is finitely generated over k.

The next lemma shows that in the above problem, the hypothesis that
H is a closed subgroup of G is unessential.

Lemma 5.1. Let G be an affine algebraic group, H ⊂ G an abstract
subgroup of G and H the closure of H in G. If M is a rational G–module,
then HM = HM .

Proof: It is clear that HM ⊃ HM ; for the reverse inclusion just
observe that m ∈ HM if and only if H ⊂ Gm, the stabilizer of m. The
result follows immediately from the fact that stabilizers are closed. ¤

Next we prove that in order to solve Problem 5.1, it suffices to consider
the case when H is observable in G. Recall from Exercise 10.4 that the
observable closure Ĥ is the smallest subgroup of G that is observable and
contains H.

Lemma 5.2. Let G be an affine algebraic group and H ⊂ G a closed
subgroup. If M is a rational G–module, then

bHM = HM .
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Proof: If M is a G–module, then clearly
bHM ⊂ HM . If v ∈ HM ,

then H ⊂ Gv, that in accordance with Theorem 10.5.8 is observable. Then,
Ĥ ⊂ Gv, and v ∈ bHM . ¤

The next lemma shows that to assume that G is reductive in the for-
mulation of Problem 5.1 implies an enormous simplification.

Lemma 5.3. Let G be a reductive group and H ⊂ G a closed subgroup.
The following conditions are equivalent:
(1) k[G]H is finitely generated over k.
(2) Hk[G] is finitely generated over k.
(3) The pair (H,G) is a solution to the generalized Hilbert’s 14th problem
5.1.

Proof: The proof that (1) and (2) are equivalent are left to the reader
as an exercise (see Exercise 11).

Next we prove that condition (2) implies (3). Using the transfer prin-
ciple (Observation 10.6.17) we deduce that if A is a commutative rational

G–module algebra then HA =
G(Hk[G]⊗A

)
. It follows that Hk[G]⊗A is

finitely generated over k and, as G is reductive, HA is finitely generated.
The rest of the proof is obvious. ¤
The next definition, due to F. Grosshans, singles out some of the most

relevant properties concerning the finite generation of invariants. The con-
cepts involved appeared for the first time in [49], see also [84].

Definition 5.4. Let G be an affine algebraic group and H ⊂ G a
closed subgroup. The pair (H,G) is called a Grosshans pair if: (1) H is
observable in G; (2) the k–algebra Hk[G] is finitely generated.

Observation 5.5. Our nomenclature is slightly different from the one
appearing most frequently in the literature. In the situation of Definition
5.4 it is customary to say that H is a Grosshans subgroup of G.

The theorem that follows is an immediate consequence of Lemma 5.3.

Theorem 5.6. Let G be a reductive group and H ⊂ G a closed sub-
group. If (H,G) is a Grosshans pair, then the pair (H,G) is a solution to
Hilbert Problem 5.1. ¤

Example 5.7. We present some basic examples of Grosshans pairs.
(1) If H is exact in G, then (H,G) is a Grosshans pair. Particular cases
of this situation are the following: (H,G) with G solvable (see Theorem
7.6.3); H a normal subgroup of G, e.g H = G1; H a subgroup of G that is
reductive.
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(2) If U2 is the group of 2 × 2 upper unipotent matrices, then (U2, SL2)
is a Grosshans pair. This seems to have been a crucial example for the
motivation of the theory of Grosshans subgroups (see [51, Sect. 9, Note]).
The proof of this result is left as an exercise for the reader (see Exercise
12).

Next we study the transitivity of the property of being a Grosshans
pair in a tower K ⊂ H ⊂ G of groups.

Theorem 5.8. Let K ⊂ H ⊂ G be a tower of closed subgroups of the
affine algebraic group G.
(1) Assume that H is exact in G. Then
(i) if (K,G) is a Grosshans pair, then (K,H) is a Grosshans pair;

(ii) If (K,H) is a Grosshans pair and k[G] is augmented over Hk[G], then
(K,G) is a Grosshans pair. In particular, if K ⊂ G1 and (K,G1) is a
Grosshans pair, then (K,G) is a Grosshans pair.
(2) Assume that H,K are observable in G and K ⊂ H is normal, with
H/K is reductive. Then, if (K,G) is a Grosshans pair, so is (H,G).
(3) If K is normal of finite index in H, then (H,G) is a Grosshans pair if
and only if (K,G) is a Grosshans pair.

Proof: (1) (i) Corollary 10.3.2 guarantees that K is observable in H.
Since H exact in G, from Theorem 11.6.5 we deduce that k[G] ⊗ k[H] ∼=
k[G] ⊗Hk[G] k[G] as H–modules — recall that the H–module structure on
both sides is given by left translations on the second tensor factor. Hence,
k[G] ⊗ Kk[H] ∼= k[G] ⊗Hk[G]

Kk[G], and it follows from the considerations

of Exercise 13 that Kk[H] is a finitely generated k–algebra.
(ii) In a similar manner as for (i), applying Theorem 11.6.5 and Exercise
13, one obtains the result.

(2) Assume that Kk[G] is a finitely generated k–algebra. As H/K is re-
ductive, Nagata’s theorem (Theorem 3.6) guarantees that H/K(

Kk[G]
)

=
Hk[G] is finitely generated.
(3) Suppose that (K,G) is a Grosshans pair. Then K is observable, and
the observability of H in G will be guaranteed by Theorem 10.3.3. Thus
part (2) applies, and we deduce that (H,G) is a Grosshans pair.

Suppose now that (H,G) is a Grosshans pair. As the condition of ob-
servability is transitive along towers it is clear that K is observable in G.
In order to prove the finite generation of Kk[G], we assume first that G is

connected. As Hk[G] =
H/K(Kk[G]

)
and H/K is finite, it follows from

Noether’s theorem (Theorem 6.5.1) that the extension Hk[G] ⊂ Kk[G]
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is integral. Hence, as H and K are observable in G, it follows from
Lemma 10.5.3 that H[

k[G]
]

=
[Hk[G]

] ⊂ [Kk[G]
]

= K[
k[G]

]
. More-

over, as
H/K(K[

k[G]
])

= H[
k[G]

]
, we conclude that the field extension

H[
k[G]

] ⊂ K[
k[G]

]
is finite and, as Kk[G] is integrally closed in K[

k[G]
]

(see Observation 1.4.107), we deduce that Kk[G] is the integral closure of
Hk[G] in K[

k[G]
]
. Then, it follows from Lemma 1.2.13 that Kk[G] is a

finitely generated k–algebra.
In the case that G is not connected we consider the following chain of

inclusions:
K ∩G1 ⊂ H ∩G1 ⊂ G1⋂ ⋂ ⋂
K ⊂ H ⊂ G

.

First we prove that if Hk[G] is finitely generated over k the same hap-
pens with H∩G1k[G1]. Consider the restriction map — that is an algebra
homomorphism — r : k[G] → k[G1]. Clearly r

(Hk[G]
) ⊂ H∩G1k[G1].

We prove that this inclusion is in fact an equality. Decompose G =⋃
iG1hi ∪

⋃
j G1gj , where hi ∈ H and the cosets G1gj do not intersect

H. For f ∈ H∩G1k[G1], define F ∈ k[G] as follows: F (ghi) = f(g) and
F (ggj) = 0 for g ∈ G. It is easy to show that F ∈ Hk[G]. If we as-
sume that (H,G) is Grosshans, then applying parts (1), (2), (3) for G con-
nected we obtain that (H∩G1, G) is Grosshans, (H∩G1, G1) is Grosshans,
(K∩G1, G1) is Grosshans, (K∩G1, G) is Grosshans and finally that (K,G)
is Grosshans. ¤

As applications, we have the following results.

Corollary 5.9. Let K ⊂ H ⊂ G be a tower of affine algebraic groups
and closed subgroups. Assume that H is reductive. Then the following
assertions are equivalent:
(1) the pair (K,H) is Grosshans;
(2) the pair (K,G) is Grosshans.

Proof: First recall that being H reductive it is exact in G and using
Theorem 5.8 we deduce that (2) implies (1).

Conversely, if (K,H) is Grosshans and H is reductive it follows from
Theorem 5.6 applied to A = k[G] that (K,G) is a Grosshans pair.

Corollary 5.10. Let G be an affine algebraic group and H ⊂ G a
closed subgroup. Then the following conditions are equivalent.
(1) (H,G) is a Grosshans pair;
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(2) (H1, G) is a Grosshans pair;
(3) (H1, G1) is a Grosshans pair;
(4) (H ∩G1, G1) is a Grosshans pair.

Proof: Consider the diagram of inclusions that follows.

H1 µ r

%%JJJJJ

H ∩G1Ä _

²²

Â Ä // HÄ _

²²
G1

Â Ä // G

The equivalence of (1) and (2) follows from parts two and three of The-
orem 5.8, and the same for the equivalence of (3) and (4). The equivalence
of (2) and (3) follows immediately from part (1) of Theorem 5.8. ¤

Next we prove what is usually called Weitzenböck’s theorem, even
though it seems to have been proved before by Maurer (see [11], [99] and
[150]). The proof we present here is due to Seshadri ([136]) and it is based
on an extension property of the representations of Ga in the case of zero
characteristic.

Theorem 5.11. Assume that chark = 0 and let V be a finite dimen-
sional rational Ga–module. If ρ denotes the natural inclusion ρ : Ga → SL2,
then there exists a rational linear action of SL2 on V that composed with ρ
induces the given action of Ga on V :

Ga × V

ρ×id

²²

// V

SL2 × V

;;vvvvvvvvv

Proof: Consider the morphism γ : Ga → GL(V ) associated to the
given action of Ga on V . We want to find a homomorphism of algebraic
groups γ̂ that makes the diagram below commutative.

Ga

ρ

²²

γ // GL(V )

SL2

bγ

;;wwwwwwwww

Consider the Jordan canonical form of the unipotent linear transfor-
mation T = γ(1) : V → V : then V = W1 ⊕W2 ⊕ · · · ⊕Wl, where Wi is
T–invariant and with a basis {ei0, . . . , eidi

} such that T (eij) = eij + eij−1 for
1 ≤ j ≤ di and T (ei0) = ei0.
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Recall from the general representation theory of SL2 that the natu-
ral action of SL2 on k[X,Y ] preserves degrees, and Rd, the space of d–
homogeneous polynomials, is an irreducible SL2–module (see 9.4.1). Con-
sider the linear transformation T d : Rd → Rd, T d(f) = ( 1 1

0 1 ) · f . In
Exercise 14 we ask the reader to prove the existence of a linear isomor-
phism θi : Wi → Rdi with the property that the following diagram that is
commutative.

Wi

T

²²

θi // Rdi

Tdi

²²
Wi

θi

// Rdi

Taking the direct sum of all these diagrams we construct an isomor-
phism θ : V → V ′ =

⊕l
i=1Rdi with the property that the following diagram

is commutative.

V

T

²²

θ // V ′

T
²²

V
θ

// V ′

where T : V ′ → V ′ denotes as before the action by the element ( 1 1
0 1 ) on

V ′.
Consider the group homomorphism β : SL2 → GL(V ′) associated to

the representation V ′ and the group isomorphism cθ : GL(V ′) → GL(V )
given by conjugation by θ. If γ̂ = cθ ◦ β : SL2 → GL(V ), then γ and
γ̂◦ρ : Ga → GL(V ) coincide at 1 ∈ Ga. As the abstract subgroup generated
by 1 is dense in Ga, we conclude that γ = γ̂ ◦ ρ. ¤

Theorem 5.12. Assume that chark = 0 and let V be a finite dimen-
sional rational Ga–module. Then the algebra of invariants Gak[V ] is finitely
generated.

Proof: As we observed in Example 5.7, (Ga,SL2) is a Grosshans pair.
If V is as above, then we use Theorem 5.11 in order to extend the Ga–action
to SL2. As SL2 is reductive, using Lemma 5.3 we conclude that Gak[V ] is
finitely generated. ¤

Observation 5.13. Observation 4.2 guarantees that there exist affine
Ga–module algebras B such that the invariants GaB are not finitely gener-
ated. However, it follows from Theorem 5.12 that B cannot be of the form
k[V ] for a finite dimensional rational Ga–module V . It has been conjec-
tured that Ga is the “largest” unipotent group for which it is valid a result
of the kind of Theorem 5.12 (see [119]).
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Observation 5.14. (1) The particular situation of Ga ⊂ SL2 has been
the starting point of many generalizations that have produced interesting
results concerning invariants of unipotent groups. We give in what follows
a brief description of these topics. We recommend the reader interested in
a deeper view to look at the following surveys, where there are extensive
references: [123], [122] and [119]. In this direction, the more general
conjecture seems to be the so–called Popov–Pommerening conjecture:

If G is a reductive group and U ⊂ G a unipotent subgroup normalized
by a maximal torus, then (U,G) is a Grosshans pair.

Particular cases of this conjecture have been proved. For example, if
G is reductive, P is a parabolic subgroup and U ⊂ P its unipotent radical,
then there is obviously a maximal torus that normalizes U . This particular
case was proved — by G. Hochschild and G. Mostow ([73]) for chark = 0
and by F. Grosshans in ([50]) for arbitrary characteristic — before the
conjecture itself was formulated. The case of a maximal unipotent subgroup
of a reductive group was established beforehand in 1967 by D. Khadzhiev
in [84].

For a non reductive group G, it has also been proved that if U is
a maximal unipotent subgroup, then (U,G) is a Grosshans pair (see for
example [51]). The proof of this assertion reduces easily to the case of a
reductive group G — a sketch of it can also be found in [123].
(2) In the direction of generalizing Theorem 5.12 to the case of non zero
characteristic not too much seems to be known. If the action of Ga on
V can be extended to an action of SL2, then the reasoning we presented
above can be applied and the corresponding ring of invariants is finitely
generated. Actions ofGa on linear spaces with the above extension property
are called fundamental. One could then say that if the action of Ga on V

is fundamental, then the ring of invariants Gak[V ] is finitely generated and
Theorem 5.12 could be stated as follows: in characteristic zero any linear
action of Ga is fundamental.

However, there exist non fundamental actions: one example, following
[51], is presented in Exercise 17.

See [37] and [38] for the study of certain aspects of this problem in
positive characteristic.

6. Geometric characterization of Grosshans pairs

In this section we present a geometric characterization of Grosshans
pairs (see [49]). An observable subgroup H of an affine algebraic group G
is always the stabilizer of an element of a rational G–module. If the algebra
of everywhere defined rational functions defined on the homogeneous space
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is finitely generated, then the description of H as an stabilizer can be made
more precise. This is the content of next theorem.

Theorem 6.1. Let G be an algebraic group and H ⊂ G an observable
subgroup. Then (H,G) is a Grosshans pair if and only if there exist a finite
dimensional rational representation ρ : G → GL(V ) and a vector v ∈ V
such that H = Gv, G/H ∼= G · v and G · v \ G · v has codimension greater
than or equal to 2 in G · v.

In the above situation, endow X = Spec
(Hk[G]

)
with the left action of

G induced by right translations on Hk[G]. Then there exists x ∈ X such
that: G · x is open in X; the orbit map G → X induces an isomorphism
G/H ∼= G · x and X \G · x has codimension greater than or equal to 2.

Proof: First, we assume that G is connected. Let V be as in the
hypothesis and call Z = G · v ⊂ V . Then the isomorphism G/H ∼= G · v,
induces a dominant morphism ϕ : G/H → Z̃, where p : Z̃ → Z is the
normalization of Z.

G/H

²²

ϕ // Z̃

p
}}zz

zz
zz

zz
z

Z

Since Z̃ is a G–variety and the normalization is a birational G–equiva-
riant morphism, it follows that ϕ : G/H → ϕ(G/H) = G · ϕ(eH) is an
isomorphism. If Y = Z̃ \ ϕ(G/H), then p(Y ) ⊂ Z \ G · v, and since k[Z̃]
is the normalization of k[Z] in k(Z) = k(G · v) = k(G/H), we deduce that
dimY = dim p(Y ). Therefore,

dimY = dim p(Y ) ≤ dim(Z \G · v) ≤ dimZ − 2 .

It follows from Theorem 1.5.14 that k[G]H ∼= k[G · ϕ(v)] = k[Z̃], and
thus Hk[G] is finitely generated — recall that the normalization of an affine
variety is affine.

If (H,G) is a Grosshans pair, let X = Spm
(Hk[G]

)
. Then the inclusion

k[X] = Hk[G] ↪→ k[G] induces a dominant G–morphism ϕ : G/H → X,
and if x = ϕ(1H), then ϕ(G/H) = G · x. As ϕ is dominant, we have that
G · x is open in X and that

Hk[G] = k[X] ⊂ OG·x(G · x) ⊂ OG/H(G/H) = Hk[G] ,

Indeed, G ·x is homogeneous and contains an open subset of X. More-
over, OG·x(G · x) = k[X], and since X is affine it follows that codim(X \
G · x) ≥ 2 (see Exercise 1.43). Now, in order to obtain the representation
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ρ : G → GL(V ), it suffices to take the linearization of X (see Theorem
6.2.10).

The non connected case is left as an exercise (see Exercise 18). ¤

7. Exercises

1. In the notations of Observation 2.1, prove that the subspace Pr,P
has codimension

(
r+1
2

)
in P.

2. In the notations of Lemma 2.2, prove that multPi(f0) = 1 for i =
1, . . . , 9.

3. Assume that chark = p > 0 and choose a1, . . . , a9 ∈ k different
elements of k such that

∏
ai 6= 0 and

∏
ai is not a root of 1. Call bi =

a2
i − a−1

i and for each i = 1, . . . , 9, let Pi be the point (ai, bi) ∈ A2. Let
m ≥ 0 and f ∈ k[X,Y ] a polynomial of degree smaller than or equal
to 3m and with multiplicity larger or equal to m at each of the points
Pi, i = 1, . . . , 9. If we write

f(X,Y ) = q(X,Y )
(
Y − (X2 −X−1)

)
+ f(X,X2 −X−1) ∈ k(X)[Y ] ,

then the following equation holds in k[X,Y ]:

X3mf(X,Y ) = q(X,Y )X3m
(
Y − (X2 −X−1)

)
+X3mf(X,X2 −X−1) .

If f(X,Y ) = c0(X)Y 3m+ c1(X)Y 3m−1 + · · ·+ c3m(X), with deg ci = i,
then

r(X) = X3mf(X,X2 −X−1) =

c0(X)(X3 − 1)3m + c1(X)X(X3 − 1)3m−1 + · · ·+ c3m(X)X3m .

(a) Conclude as in the proof of Lemma 2.2 that

c0
∏

i

(X − ai)m =

c0(X)(X3 − 1)3m + c1(X)X(X3 − 1)3m−1 + · · ·+ c3m(X)X3m.

(b) Put X = 0 in the above equation and using the fact that
∏
ai is not a

root of 1, conclude that c0 = 0 and that r = 0.
(c) Deduce that f(X,Y ) = q(X,Y )

(
Y − (X2 − X−1)

)
and hence that if

f0 = XY −X3 + 1, then f0 divides f(X,Y ) in k[X,Y ].
(d) Prove part (a) of Lemma 2.2 in the case that chark = p > 0.

4. In the notations of Theorem 2.11, prove that (see Observation 2.12)

k[T1, X1, . . . , T9, X9] ∩ k[Z1, Z2, Z3, T, T
−1] =

k[T1, X1, . . . , T9, X9] ∩ k(Z1, Z2, Z3, T, T
−1) .
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Hint: if f, g ∈ k[T1, X1, . . . , T9, X9] ∩ k[Z1, Z2, Z3, T, T
−1] and f di-

vides g in k[T1, X1, . . . , T9, X9], then f divides g in k[T1, X1, . . . , T9, X9] ∩
k[Z1, Z2, Z3, T, T

−1].

5. Prove that the group H considered in Definition 2.13 has dimension
14, and that the unipotent group K has dimension 6.

6. In the notations of Definition 2.13 and Observation 2.14, prove that
G9

a×G9
mk[T1, X1, . . . , T9, X9] = k.

7. Let K be an arbitrary field and let T =
{
t = (t1, . . . , tn) ∈ K∗n :

t1 · · · tn = 1
}

act on K[X1, . . . , Xn, X
−1
1 , . . . , X−1

n ] by t ·Xi = tiXi. Prove
that if we call X = X1 · · ·Xn, then

T
K[X1, . . . , Xn, X

−1
1 , . . . , X−1

n ] = K[X,X−1] .

8. Let G be a geometrically reductive group and R a commutative
rational graded G–module algebra such that: (1) for every non zero G–
stable homogeneous ideal I ⊂ R, the k–algebra G(R/I) is finitely generated;
(2) there are non trivial zero divisors of R in GR. Prove that GR is a finitely
generated k–algebra (see Observation 3.3).

9. Complete the proofs of Theorem 3.6 and Observation 3.7.

10. (a) Let G be an affine algebraic group and H ⊂ G a closed observ-
able subgroup. Prove that if A is an arbitrary rational H–module algebra,
then there exists a rational G–module algebra B and a surjective homo-
morphism of H–module algebras B → A. In particular, if A is finitely
generated over k, then B can be taken to be finitely generated over k.
Hint: choose a finite dimensional rational H–module V ⊂ A containing a
family of generators of A and let W be a finite dimensional G–module that
maps onto V by an H–equivariant morphism; then B = S(W ) is a solution
for the problem.
(b) Deduce that if H is exact in G and A a finitely generated rational
H–module k–algebra, then IndGH(A) is a finitely generated k–algebra.

11. Let G be an affine algebraic group and H ⊂ G a closed subgroup.
Prove that Hk[G] is finitely generated as a k–algebra if and only if the same
happens with k[G]H .

12. Prove that (U2, SL2) is a Grosshans pair, where U2 is the group of
upper unipotent matrices.

13. This exercise is used in the proof of Theorem 5.8. Assume that R
is a commutative ring and that S and T are commutative R–algebras.
(a) If S and T are finitely generated R–algebras, then S ⊗R T is a finitely
generated R–algebra.
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(b) Suppose that S is an augmented R–algebra and that S ⊗R T is finitely
generated over R. Prove that T is finitely generated over R.

14. Assume that char = 0. In the notations of Definition 4.4.1, consider
R = k[u, v] and Rd ⊂ R ,the space of all homogeneous polynomials of degree
d. Then Rd is a SL2–submodule, with basis {fi = uivd−i : i = 0, 1, . . . , d}.
Call T (f) : Rd → Rd, T (f) = ( 1 1

0 1 ) · f .
(a) Prove that there exists another basis {g0, . . . , gd} of Rd with the follow-
ing properties:
(i) for all i = 0, . . . , d, 〈g0, . . . , gi〉k = 〈f0, . . . , fi〉k ⊂ Rd;
(ii) T (g0) = ( 1 1

0 1 ) · g0 = g0 and for all i = 1, . . . d,

T (gi) = ( 1 1
0 1 ) · gi = gi + gi−1

Hint: Assuming that {g0, . . . , gi} has been constructed, write gi+1 =
a0g0+ · · ·+aigi+ai+1fi+1, and show that the condition T (gi+1) = gi+1+gi
produces a system of equations that has always a non trivial solution.
(b) Let V be a vector space with basis {e0, . . . , ed} and T : V → V a linear
operator such that T (e0) = e0, T (ei) = ei + ei−1 for i = 1, . . . , d. Then
there exists a linear isomorphism θ : V → Rd such that the diagram that
follows is commutative.

V

T

²²

θ // Rd

T
²²

V
θ

// Rd

15. Prove that the subgroup of SL4 given by all the matrices of the

form
(

1 0 a 0
0 1 0 b
0 0 1 0
0 0 0 1

)
, a, b ∈ k, is normalized by a maximal torus.

16. ([51]) Consider the non affine commutative algebra A = k[X, ε],
ε2 = 0, i.e. A = k[X,Y ]/(Y 2). Show that the following rules define a
rational action of Ga on A: x · ε = ε, x ·X = X + xεX. Prove that GaA is
not finitely generated over k.

17. (a) Assume that chark = 2. Show that the representation ρ : Ga →
GL2, ρ(a) =

(
1 a2+a4

0 1

)
cannot be extended to a representation of SL2 in

k2.
(b) Prove that in the above situation the algebra of invariants Gak[k2] is
finitely generated.

18. Complete the proof of Theorem 6.1. Hint: consider the decompo-
sitions G =

⋃r
i=1G1hi ∪

⋃s
j=1G1gj , where h1 = e, hi ∈ H, G1gj ∩H = ∅,

and G · x =
⋃r
i=1G1hi · x ∪

⋃s
j=1G1gj · x = G1 · x ∪

⋃
j gj ·G1 · x.
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19. ([51]) Prove that if (Hi, Gi), i = 1, . . . , n is a family of Grosshans
pairs, then

(∏
Hi,

∏
Gi

)
is a Grosshans pair. Prove that if Φ : G1 → G2 is a

surjective homomorphism of algebraic groups, then there exists a bijective
correspondence between the family of Grosshans pairs (H2, G2) and the
family of Grosshans pairs of the form (H1, G1) with Ker(Φ) ⊂ H1.

 



CHAPTER 13

Quotients

1. Introduction

In this chapter we touch upon some of the more geometric aspects of
invariant theory. The systematic study of what is now called geometric

tions in [105] when he refers to some of his results concerning quotients
of projective varieties acted on by reductive groups: “The above [· · · ] is in
fact a natural extension of Hilbert’s own ideas about the ring of invariants,
specially as developed in his last big paper on the subject, ‘Über die vollen
Invariantensystemen’ [60]”.

Next we describe briefly the contents of this chapter.

concerning quotients by finite groups to actions of a reductive group: we
prove that a reductive group acting on an affine variety admits a categorical
quotient — in fact a semi–geometric quotient in the terminology of [5].

In Section 3 we discuss — still in the situation of a reductive group
acting on an affine variety — the problem of the existence of a stable open
subset of the original variety where the quotient is geometric. In the case
of finite groups the categorical quotient is always geometric, but for general
reductive groups this is not so: subtle difficulties appear when trying to
control the way the (closure of the) orbits are located inside the variety

In Section 4 we describe in certain detail the geometric picture corre-
sponding to the classical case of the general linear group acting by con-
jugation on the space of all the matrices (i.e. the problems related to the
canonical forms of matrices).

In Section 5 we present a proof of a theorem of M. Rosenlicht ([129])
that guarantees the generic existence of geometric quotients: we prove that
if G is an affine algebraic group acting regularly on an arbitrary variety

393

 

In Section 2 we generalize some of the results obtained in Chapter 6

invariant theory was initiated by D. Mumford (see [103] or its subsequent

(see the introduction to Chapter 6).

editions, and the surveys [108] and [114]). But as Mumford himself men-
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X, then there exists a dense G–stable open subset X0 ⊂ X such that the
geometric quotient X0//G exists.

In Section 6 we return to the case of actions of finite groups, with the
intention to complete the picture concerning properties of the algebra of
invariants and the geometry of the quotient. A natural problem in con-
structive invariant theory is the following: if G is an affine algebraic group
and V a finite dimensional rational G–module, is there a natural bound
for the degrees of a complete system of invariants of k[V ]? We present a

of a finite group whose order is prime with the characteristic of the field,
this bound can taken to be the order of G.

Another natural problem concerning invariants of groups is the follow-
ing: if the group acts linearly on a finite dimensional vector space, are there
natural conditions that guarantee that the algebra of invariants is gener-
ated by algebraically independent elements? If G is a finite group generated
by pseudo–reflections, then its algebra of invariants is indeed a polynomial
algebra. This theorem — together with its converse that we will not prove

geometric terms, it guarantees that in the situation of a finite group G gen-
erated by reflections, the geometric quotient An//G ∼= An as an algebraic
variety.

Recall that — as it was mentioned in Observation 9.4.4 — an affine
algebraic group is reductive if and only if it is geometrically reductive. In
this chapter we will use the fact that these definitions are synonymous.

2. Actions by reductive groups: the categorical quotient

As we mentioned before, in [103] D. Mumford developed his theory in
less generality than is customary today. He considered algebraic varieties
acted upon by linearly reductive groups; in particular he worked with reduc-
tive groups in characteristic zero. He also observed that most of the theory
would be valid in arbitrary characteristic if reductive groups were geomet-
rically reductive — the so–called Mumford conjecture. In [103, Chap. 1] he
proves the existence of the categorical quotient of an affine variety under
the action of a linearly reductive group. The generalization of this result to
reductive groups is mainly due to Nagata and appears for example in [112]
and [114], as well as in the second and third editions of [103].

In this section we follow the standard literature on the subject, see for

In order to prove the existence of quotients of affine varieties by reduc-
tive groups, first we need to complete the algebraic picture concerning the

 

classical theorem by E. Noether (see [115]) that guarantees that in the case

— is called the Chevalley–Shephard–Todd theorem (see [19] and [139]). In

example [107] or [114].
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behavior of ideals in a given commutative algebra and in its subalgebra of

Lemma 2.1. Let G be a reductive group and R a commutative rational
G–module algebra.
(1) If I is an ideal of GR, then I ⊂ IR ∩ GR ⊂ rad(I). Moreover. if G is
linearly reductive, then I = IR ∩ GR.
(2) If J1 and J2 are G–stable ideals of R then
(
J1 ∩ GR

)
+

(
J2 ∩ GR

) ⊂ (J1 + J2) ∩ GR ⊂ rad
(
(J1 ∩ GR) + (J2 ∩ GR)

)
.

Moreover, if G is linearly reductive, then
(
J1 ∩ GR

)
+

(
J2 ∩ GR

)
= (J1 + J2) ∩ GR .

In particular, if J1 + J2 = R, then
(
J1 ∩ GR

)
+

(
J2 ∩ GR

)
= GR.

Proof: (1) We leave as an exercise for the reader the proof of this

(2) It is clear that
(
J1 ∩ GR

)
+

(
J2 ∩ GR

) ⊂ (J1 + J2) ∩ GR. If r1 + r2 ∈
(J1+J2)∩GR, with r1 ∈ J1 and r2 ∈ J2, consider r1+J1∩J2 ∈ J1/(J1∩J2)
and r2 + J1 ∩ J2 ∈ J2/(J1 ∩ J2). As x · (r1 + r2) = r1 + r2, it follows that
x · r1 − r1 = r2 − x · r2 ∈ J1 ∩ J2, i.e. r1 ∈ G(

J1/(J1 ∩ J2)
)
, and similarly

r2 ∈ G(
J2/(J1 ∩ J2)

)
. If p is the characteristic exponent of k, using the

geometric reductivity of G we deduce the existence of n ≥ 0 and elements
s1 ∈ GJ1 and s2 ∈ GJ2 such that s1− rp

n

1 ∈ J1 ∩ J2 and s2− rp
n

2 ∈ J1 ∩ J2.
Then (r1 + r2)p

n

= s1 + s2 + t with t ∈ G(J1 ∩ J2). In other words,
(r1 + r2)p

n ∈ GJ1 + GJ2 = J1 ∩ GR + J2 ∩ GR. The rest of the assertions
are easy to prove. ¤

Observation 2.2. (1) Notice that in the particular case that IR = R,
conclusion (1) of the above lemma implies that rad(I) = GR and then that
I = GR. In this sense, this result is a generalization of Lemma 11.4.2.
(2) If I is a radical ideal, then I = IR ∩ GR.

Observation 2.3. Let G be a reductive group acting regularly on an
affine variety X. Then G

and the inclusion Gk[X] ⊂ k[X] induces a dominant morphism π : X →
Y = Spm

(Gk[X]
)
. Recall that the principal open sets

{
Yf : f ∈ Gk[X]

}
form a basis of the topology of Y , and that if z ∈ X and Mz ⊂ k[X]
denotes the associated maximal ideal, then Mz ∩ Gk[X] is the maximal
ideal associated with π(z).

Observe that in the situation above, π−1(Yf ) = Xf

 

invariants (see Lemma 11.4.2).

part of the lemma (see Exercise 1).

k[X], is finitely generated (see Theorem 12.3.6),

(see Exercise 2).
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Our aim is to prove that the map π is a categorical quotient.

Theorem 2.4. Let G be a reductive group acting regularly on an affine
variety X. Consider the affine variety Y = Spec

(Gk[X]
)

and let π : X → Y

be the morphism induced by the inclusion Gk[X] ⊂ k[X]. Then:
(1) The map π is constant along the G–orbits and surjective.

(2) For any open subset V ⊂ Y the map π#
V : OY (V ) → GOX

(
π−1(V )

)
is

an isomorphism of k–algebras.
(3) If W ⊂ X is closed and G–stable, then π(W ) ⊂ Y is closed.
(4) If W,Z ⊂ X are disjoint closed G–stable subsets, then π(W )∩π(Z) = ∅.

Proof: (1) As f
(
π(g · x)

)
= f

(
π(x)

)
for all f ∈ Gk[X], it follows that

π(g · x) = π(x) for all x ∈ X, g ∈ G.
In order to verify that π is surjective, consider a maximal ideal My ⊂

Gk[X] and its extension Myk[X] ⊂ k[X]. It follows from Lemma 2.1 — or
Lemma 11.4.2 — that this ideal is proper in k[X]. Choose a maximal ideal
Myk[X] ⊂ Mz ⊂ k[X]; then My = Myk[X] ∩ Gk[X] ⊂ Mz ∩ Gk[X] and
My = Mz ∩ Gk[X], i.e. π(y) = z.

(2) If V is an open subset of Y , then π#
V : OY (V ) → GOX

(
π−1(V )

)
.

Clearly, in order to verify that π#
V is an isomorphism, we can assume that

V = Yf for some f ∈ Gk[X]. In this case, π#
Yf

: OY (Yf ) =
(Gk[X]

)
f
→

G(
k[Xf ]

)
is the identity map.

(3) If W ⊂ X is closed and G–stable, let y ∈ Y \ π(W ). Clearly, the
closed G–stable subsets W and π−1(y) are disjoint. Hence, J1 +J2 = k[X],
where J1 = I(W ), J2 = I(

π−1(y)
) ⊂ k[X]. Since J1 and J2 are G–stable,

using Lemma 2.1 we find f ∈ GJ1, g ∈ GJ2 such that 1 = f + g. Then
f
(
π(W )

)
= 0 and f(y) = 1 − g(y) = 1, and y 6∈ π(W ). Hence, π(W ) is

closed in Y .

¤
Observation 2.5. It is important to notice that the hypothesis con-

cerning the reductivity of G is crucial in the above theorem, not only to
guarantee the finite generation of the invariants but to control the behavior
of the ideals in k[X] in relation to the ideals in Gk[X] (Lemma 2.1).

Indeed, even if the action of an algebraic group G on X has finitely
generated invariants and hence one can define π : X → Y = Spm

(Gk[X]
)
,

the pair (Y, π) may be completely unrelated with the categorical quotient.
For example, if B is a Borel subgroup of a group G, then Bk[G] = k,

 

(4) The proof of this part is left as an exercise to the reader (see Exercise
3).
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and Spm
(Bk[G]

)
= {p}, whereas in general G/B is a projective variety of

positive dimension.

The conditions satisfied by the above morphism π : X → Y are similar
to the conditions that characterize geometric quotients. A map satisfying
the properties (1), (2), (3) and (4) of Theorem 2.4 is called in [5] a semi–
geometric quotient.

Definition 2.6. Let G be an affine algebraic group acting regularly
on a variety X. A pair (Y, π), where π : X → Y is a morphism of algebraic
varieties is said to be a semi–geometric quotient for the action of G on X
if the following conditions are satisfied.
(1) The map π is surjective and constant along the G–orbits.

(2) For any open subset V ⊂ Y the map π#
V : OY (V ) → GOX

(
π−1(V )

)
is

an isomorphism of k–algebras.
(3) If W ⊂ X is closed and G–stable, then π(W ) ⊂ Y is closed.
(4) If W,Z ⊂ X are disjoint closed G–stable subsets, then π(W )∩π(Z) = ∅.

Observation 2.7. It is clear that a geometric quotient π : X → Y is
semi–geometric. Indeed, conditions (1) and (2) are automatically satisfied:

Since the fibers of π consist of a unique orbit, it
follows that any G–stable subset is saturated, and hence (4) is satisfied.
Condition (3) follows from Exercise 6.16.

In the case of a semi–geometric quotient, besides having some control
over the images of the closed G–invariant subsets of X, we can obtain a
certain degree of control over the images by π of G–stable open sets.

Lemma 2.8. Let G be an affine algebraic group acting regularly on an
algebraic variety X. If (Y, π) is a semi–geometric quotient for the action,
then the image by π of a saturated open subset is open.

Proof: If U ⊂ X is an open saturated subset, then X \ U is closed
and G–stable, and we deduce from Definition 2.6 that π(X \ U) is closed
in Y . As U is saturated, then π(U) = Y \ π(X \ U), so that π(U) is open
in Y . ¤

Corollary 2.9. Let G be a reductive group acting regularly on an
affine algebraic variety X. Then the categorical quotient is semi–geometric.

¤

Next we show that any semi–geometric quotient (Y, π) is a categorical
quotient. In view of condition (2) in the definition of semi–geometric quo-
tient, we are in a situation similar to the one treated in Theorem 6.4.20,

 

see Definition 6.4.12.
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where it was proved that a geometric quotient is categorical. However,
in the present context we have to proceed with more care than for the
geometric quotient, because π is not necessarily an open map.

Lemma 2.10. Let G be an affine algebraic group acting regularly on
a variety X If there exists a semi–geometric quotient (Y, π) for the action
of G on X, then for all open subset V ⊂ Y , the pair

(
V, π|π−1(V )

)
is a

semi–geometric quotient for the action of G on π−1(V ).

Proof: We prove that conditions (1) to (4) of Definition 2.6 are sat-
isfied by the pair π : π−1(V ) → V .

Conditions (1) and (2) follow from the corresponding properties for X.
(4) Let C,D ⊂ π−1(V ) be closed G–stable subsets such that there exists

y ∈ π(C) ∩ π(D). Then π−1(y) ∩ C, π−1(y) ∩D ⊂ X are invariant closed
subsets, and y ∈ π

(
π−1(y) ∩ C) ∩ π(

π−1(y) ∩ D)
. Since (Y, π) is a semi–

geometric quotient, we conclude that
(
π−1(y) ∩ C) ∩ (

π−1(y) ∩ D) 6= ∅,
and hence π−1(y) ∩ C ∩ D =

(
π−1(y) ∩ C) ∩ (

π−1(y) ∩ D) 6= ∅. Since
C,D are closed in π−1(V ) and π−1(y) ⊂ π−1(V ), it follows that C ∩D =
π−1(V ) ∩ C ∩D 6= ∅.

The proof of (3) is very similar to the proof of (4) and it is left as an
¤

Corollary 2.11. Let G be a reductive group and X a G–variety. Then
for all V ⊂ Y open subset, the pair

(
V, π|π−1(V )

)
is a semi–geometric quo-

tient. ¤

Next we prove that a semi–geometric quotient is categorical.

Theorem 2.12. Let G be an affine algebraic group and X a algebraic
G–variety. If (Y, π) is a semi–geometric quotient for the action of G on
X, then it is a categorical quotient. Moreover, if V ⊂ Y is open, then(
V, π|π−1(V )

)
is a categorical quotient for the action of G on π−1(V ).

Proof: Let Z be an algebraic variety and f : X → Z a morphism
constant along the G–orbits. We need to complete the diagram below with
a morphism f̂ : Y → Z.

X

π

²²

f // Z

Y

bf

>>

If x1, x2 ∈ X are such that π(x1) = π(x2), then f(x1) = f(x2). Indeed,
if f(x1) 6= f(x2), then C = f−1

(
f(x1)

) ⊂ X and D = f−1
(
f(x2)

) ⊂ X are

 

exercise for the reader (see Exercise 4).
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disjoint closed G–stable subsets. Hence, π
(
f−1

(
f(x1)

))∩π(
f−1

(
f(x2)

))
=

∅, and this contradicts the fact that π(x1) = π(x2). Since π is surjective,
there exists a unique (set theoretical) map f̂ that completes the above
diagram.

We have to check that f̂ is a morphism. If U ⊂ Z is an open subset,
then

f̂−1(U) = Y \ π(
X \ π−1

(
f̂−1(U)

))
= Y \ π(

X \ f−1(U)
)
.

Since f−1(U) is an open G–stable subset of X, we conclude that X \
f−1(U) is a closed G–stable subset, so that f̂−1(U) is open in Y , i.e, the
map f̂ is continuous.

In order to finish the proof, we need to prove that if U ⊂ Z is an affine
open subset, then the map f̂ | bf−1(U) : f̂−1(U) → U is a morphism. Consider

f# : OZ(U) → GOX
(
f−1(U)

)
, the isomorphism π# : OY

(
f̂−1(U)

) ∼=
GOX

(
π−1

(
f̂−1(U)

))
= GOX

(
f−1(U)

)
, and the morphism of k–algebras

(π#)−1 ◦ f# : OZ(U) → OY
(
f̂−1(U)

)
. Since U is affine, (π#)−1 ◦ f#

induces a morphism gU : f̂−1(U) → U . As
(
π|f−1(U)

)#◦g#
U =

(
π|f−1(U)

)#◦
(π#)−1 ◦ f# = f#, we deduce that gU ◦ π|f−1(U) = f |f−1(U). As π is
surjective, f̂ | bf−1(U) = gU and hence f̂ is a morphism. ¤

Theorem 2.13. In the notations of Theorem 2.4, (Y, π) is the categor-
ical quotient. Moreover, if V ⊂ Y is an open subset, then

(
V, π|π−1(V )

)
is

the categorical quotient for the action of G on π−1(V ). ¤
Example 2.14. Consider the action of the reductive group Gm on A2

given by t · (x, y) = (tx, t−1y). There are three types of orbits:
(1) closed orbits of dimension 1, which are parameterized by k∗ and are of
the form Oa =

{
(x, y) ∈ k2 : xy = a

}
, a 6= 0;

(2) two non closed orbits of dimension 1: Ox =
{

(x, 0) : x 6= 0
}

and
Oy =

{
(0, y) : y 6= 0

}
;

(3) one closed orbit of dimension 0: O0 =
{

(0, 0)
}

— the only fixed point.

Let p(X,Y ) ∈ Gmk[X,Y ], i.e. p(t−1X, tY ) = p(X,Y ) for all t ∈ Gm. If
p is homogeneous of degree n, then

p(X,Y ) =
∑
r+s=n

ar,sX
rY s =

∑
r+s=n

ar,st
s−rXrY s ,

and ar,s = 0 unless r = s. Hence,

p(X,Y ) =

{
0 n odd
akk(XY )k n = 2k .
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It follows that Gmk[X,Y ] = k[XY ] and the categorical quotient is given
by the morphism π : A2 → A1, π(x, y) = xy.

Notice that the generic fiber of π is Oa = π−1(a), a ∈ k∗, that is a
closed orbit of maximal dimension. The other orbits appear agglomerated
in the fiber π−1(0) = Ox ∪Oy ∪O0.

Observe that the principal open subset A2
xy ⊂ A2 is G–stable and

A2
xy =

{
(x, y) ∈ k2 : xy 6= 0

}
=

⋃
a∈k∗ Oa, i.e. A2

xy is the union all the
closed orbits of maximal dimension. If we restrict π to A2

xy we obtain that(
k∗, π|A2

xy

)
is the geometric quotient. Indeed, in view of Lemma 2.10 we

only need to verify that π|A2
xy

is an open map, and this follows from the
fact that the fibers of π|A2

xy

In particular, this is an example of a semi–geometric quotient that is
not geometric.

The main features of this example are typical of the general behavior

Example 2.15. The action of GLn by matrix multiplication on An =
kn has two orbits: the open orbit An \{

(0, 0)
}

and the fixed point
{

(0, 0)
}

.
Hence, a regular function constant along the orbits is constant on An, so
that GLnk[An] = k, and the categorical quotient is the map An → {∗}.

3. Actions by reductive groups: the geometric quotient

As we just observed in the examples of the last section, there are struc-
tural obstructions — even in the case of a reductive group — to the exis-
tence of the geometric quotient. As shown in Example 2.14, these problems

In a
sense, Theorem 3.4 below shows that this is the only obstruction.

At this point, two approaches to the problem of the existence of a
geometric quotient for actions of reductive groups, are possible. One is
to restrict our attention to actions that have always closed orbits — for
example homogeneous spaces or double cosets spaces — in which case the
categorical quotient will be the geometric quotient. The other approach
consists in looking for large open subsets inside of the categorical quotient,
whose points have fibers that are closed orbits. This seems to be the more
interesting viewpoint and, following [103], is the one we adopt in this sec-
tion.

First we extract two consequences of Theorem 2.4.

Corollary 3.1. In the notations of Definition 2.6, if y ∈ Y , then
π−1(y) contains one and only one closed orbit.

 

are related with the existence of non closed orbits (see Section 6.4).

are the orbits (see Exercise 5).

of the quotient by the action of a reductive group (see Theorem 3.13).
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In particular, the above result is valid in the case that G is a reductive
group and X an affine G–variety.

Proof: Since π−1(y) is closed and G–stable, any orbit of minimal
dimension in π−1(y) is closed in X
each fiber contains at least one closed orbit. If O1 and O2 are closed orbits
contained in π−1(y), then condition (4) of Definition 2.6 guarantees that
O1 ∩O2 6= ∅, i.e. O1 = O2. ¤

Example 3.2. In the case of Example 2.14, if y ∈ k∗ then π−1(y) is a
closed orbit, and π−1

({0}) contains the closed orbit {(0, 0)}.
Corollary 3.3. In the notations of Definition 2.6, x1, x2 ∈ X are in

the same fiber of π if and only if O(x1) ∩O(x1) 6= ∅.
In particular, the above result is valid in the case that G is a reductive

group and X an affine G–variety.

Proof: For all x ∈ X, π
(
O(x)

)
= {π(x)}, and if O(x1) ∩ O(x1) = ∅,

then {π(x1)}∩{π(x2)} = π
(
O(x1)

)∩π(
O(x1)

)
= ∅. Hence, π(x1) 6= π(x2).

The converse is clear. ¤

Theorem 3.4. In the notations of Definition 2.6, if V ⊂ Y is an open
subset such that the restricted action G × π−1(V ) → π−1(V ) has closed
orbits in π−1(V ), then

(
V, π|π−1(V )

)
is a geometric quotient for the action

of G on π−1(V ) — therefore, if G acts on X with closed orbits, then (Y, π)
is a geometric quotient.

In particular, the above result is valid in the case that G is a reductive
group and X an affine G–variety.

Proof: In view of Lemma 2.10, if V ⊂ Y is an open subset, then
(V, ππ−1(V )) semi–geometric quotient; hence, we may assume that X = V .
The only conditions that still need to be proved are that the map π is open
and that each fiber is an orbit.

each fiber there is only one orbit. Once this is established, we conclude
from Lemma 2.8 that the image by π of a G–stable open set is open. Then

¤
As finite groups act with closed orbits, we obtain a new proof of The-

orem 6.5.2:

Corollary 3.5. Let G be a finite group and X an affine G–variety.
Then,

(Gk[X], π
)

is a geometric quotient. ¤

 

(see Corollary 3.4.21), and therefore

As we know that on each fiber there is only one closed orbit (see Corol-
lary 3.1) and by hypothesis all the orbits are closed, we conclude that on

the map π is open (see Exercise 5).
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If H ⊂ G is a reductive subgroup, then the orbits of the action by right
translations are closed, and hence we obtain a new proof of Theorem 11.4.4:

Corollary 3.6. Let H ⊂ G be a reductive subgroup. Then G/H is an
affine variety and π : G→ G/H is the geometric quotient. ¤

Observation 3.7. It is worth remarking that if (Y, π) is the categor-
ical quotient of a G–variety X, then in order to find a G–saturated open
subset U ⊂ X such that the map

(
π(U), π|U

)
is the geometric quotient,

two conditions should be satisfied: (a) all the orbits of G on U are closed
in U ; (b) U is the inverse image by π of an open subset of Y .

a strengthening of Theorem 6.4.22.

Corollary 3.8. In the notations of Definition 2.6, all the orbits of
the action are closed if and only if they have the same dimension.

In particular, the above result is valid in the case that G is a reductive
group and X an affine G–variety. ¤

Observation 3.9. One can easily construct examples of groups act-
ing on affine varieties with closed orbits with non equal dimensions (see

In view of Theorem 3.4 and the observations that followed it, the rel-
evance of the next definitions for the problems related to the existence of
geometric quotients, should be clear to the reader.

Definition 3.10. Let G be an affine algebraic group and X a G–
variety. Define X ′ ⊂ Xmax as follows:

Xmax =
{
x ∈ X : dimO(x) is maximal

}
,

X ′ =
{
x ∈ Xmax : O(x) is closed in X

}
.

Next we establish some properties of these subsets.

Lemma 3.11. In the notations of Definition 3.10, Xmax is an open G–
stable subset of X. If x ∈ X, then bd

(
O(x)

) ∩Xmax = ∅, where bd
(
O(x)

)
denotes the boundary of O(x). Moreover, if x ∈ Xmax, then bd

(
O(x)

)
=

O(x) ∩ (X − Xmax). In particular, the orbits of the points in Xmax are
closed in Xmax.

Proof: It follows from Theorem 6.3.3 that for all n ≥ 0,
{
x ∈ X :

dimO(x) ≥ n
}

is open in X and hence Xmax is open. If x ∈ X, then

 

In some cases it may be impossible to find such a set U (see Example
2.15).

The proof of next corollary is left as an exercise (see Exercise 6). It is

Example 6.2.3).
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bd
(
O(x)

)
is the union of orbits of dimension smaller than the dimension of( ) ∩Xmax = ∅ and if x ∈ Xmax,

then bd
(
O(x)

) ⊂ O(x) ∩ (
X −Xmax

)
.

Conversely, if x ∈ Xmax and y ∈ O(x)∩ (
X−Xmax

)
, then the orbit of

y has dimension strictly smaller than dimO(x), and hence y 6∈ O(x). ¤
The next lemma shows the importance of Xmax when dealing with

geometric quotients.

Lemma 3.12. Let G be an affine algebraic group and X an irreducible
G–variety. If U ⊂ X is a G–stable subset of X such that there exists an
orbit space for the action of G on U , then U ⊂ Xmax.

Proof: If (Z, λ : U → Z) is an orbit space, then Theorem1.5.4 guaran-
tees that d : U → N, u 7→ dim

(
λ−1

(
λ(u)

))
= dimO(u), is upper semicon-

tinuous. As we proved in Theorem 6.3.3 d is also lower semicontinuous and
then it is a continuous function. It follows that d is locally constant in U ,
and hence if u ∈ U , then the subset Vu =

{
v ∈ U : dimO(v) = dimO(u)

}
is open in X. As X is irreducible, Vu ∩Xmax 6= ∅, i.e. u ∈ Vu ⊂ Xmax and
the result follows. ¤

If the semi–geometric quotient exists, then useful information concern-
ing X ′ can be obtained: X ′ is the inverse image of an open set in the
semi–geometric quotient, and in particular X ′ These
conclusions will be valid in the case of a reductive group acting on an affine
variety.

Theorem 3.13. Let G be an affine algebraic group, X a G–variety
such that there exists a semi–geometric quotient (Y, π). Then there exists
an open subset Y ′ ⊂ Y such that π−1(Y ′) = X ′

consequently (Y ′, π|X′ ) is a geometric quotient for the action of G on X
′
.

In particular, the above result is valid in the case that G is a reductive
group and X an affine G–variety.

Proof: If Y ′ = Y \ π(
X \ Xmax

)
, since π

(
X \ Xmax

)
is closed —

Xmax is open and G–stable — then Y ′ is open.
Next we show that π−1(Y ′) = X ′. First we prove that X ′ ⊂ π−1(Y ′)

— or equivalently that π(X ′)∩ π(
X \Xmax

)
= ∅. Assume that there exist

z ∈ X ′ and w ∈ X \ Xmax such that π(z) = π(w). Then O(z) ⊂ X and
X \Xmax ⊂ X are G–stable, closed and their images intersect. Thus, there
exists w′ ∈ X \Xmax such that O(w′) = O(z). This is clearly impossible
as the dimensions of these orbits cannot coincide.

Conversely, if x ∈ X \ Xmax is such that π(x) ∈ Y ′, then π(x) ∈
π
(
X \ Xmax

)
and this is clearly impossible. Hence, π−1(Y ′) ⊂ Xmax.

 

O(x) (see Theorem 6.3.3). Thus, bd O(x)

is open (see [108]).

(see Definition 3.10) and
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Let x ∈ Xmax \ X ′ be such that π(x) ∈ Y ′. In this case O(x) is not
closed, so that there exists z ∈ bd

(
O(x)

) \Xmax

π(x) = π(z) ∈ π(
X\Xmax

)
, and this is a contradiction as we were assuming

that π(x) 6∈ π(
X \Xmax

)
.

Since the orbits in X ′ are closed, it follows from Theorem 3.4 that(
Y ′, π|X′

)
is a geometric quotient. ¤

Observation 3.14. The reader should be aware that the set X ′ may
be empty: in the situation of Example 2.15 the orbit of maximal dimension
is a proper open subset. More generally, X ′ is empty whenever the action
has a dense, and hence open, orbit.

In Example 2.14, Xmax = A2 \ {
(0, 0)

}
and X ′ = A2

xy, and if π :
A2 → A1 is the categorical quotient, then X ′ = π−1(A1 − {

(0)
}

) and
π−1(A1) = A2 6= Xmax. In other words, Xmax is not the inverse image of
an open subset of the categorical quotient.

Observation 3.15. Concerning actions of reductive groups, in this
section we considered mainly the case of affine varieties. The reader in-
terested in the extension of these results to projective varieties — that are
crucial for the study of moduli — should read [103] and for a more concrete
presentation, [114].

4. Canonical forms of matrices: a geometric perspective

In this section we consider the canonical form of a matrix from the
viewpoint of geometric invariant theory.

First we fix some notations that will be in force along this section.
If A ∈ Mn(k) denote as

χA(t) = det(t Id−A) = tn +
n∑

i=1

(−1)ici(A)tn−i

the characteristic polynomial and call π : Mn(k) → An, the morphism given
as π(A) =

(
c1(A), . . . , cn(A)

)
.

Call C : An → Mn(k), C(c1, . . . , cn) = C(c1,...,cn), the morphism defined

Let GLn act by conjugation on Mn(k). It is clear that π is constant
along the GLn–orbits and that C is a section of π, i.e., π ◦ C = idAn .

Next we show that there is a close relationship between the algebraic
properties of a linear transformation and the geometric properties of its
GLn–orbit.

 

by taking the companion matrix (see Appendix, Definition 2.2).

(see Lemma 3.11). Then
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Lemma 4.1. Let A = As + An be the Jordan decomposition of A ∈
Mn(k). Then, for all a ∈ k∗ the matrices Aa = As + aAn are conjugate,
As ∈ O(A) and π(A) = π(As).

If A,B ∈ Mn(k), then O(As) = O(Bs) if and only if O(A)∩O(B) 6= ∅.
Proof: As an arbitrary matrix is similar to a matrix in Jordan form,

it is enough to prove the result assuming that A is a Jordan block, in other

words we may suppose that As = λ id and that An =




0 1 0 0

0

1

0 0


.

If g = diag(1, a, . . . , an−1) ∈ GLn, then g−1Asg = As and g−1Ang =
aAn. Thus, for all a ∈ k∗, Aa = As + aAn ∈ O(A), and hence A0 = As ∈
O(A). The continuity of π. guarantees that π(A) = π(As).

If As and Bs are in the same orbit, as both matrices are in the closure
of the orbits of A and B respectively, it follows that O(A) ∩ O(B) 6= ∅.
Conversely, if O(A)∩O(B) 6= ∅, then π(A) = π(B) so that π(As) = π(Bs).
As two diagonalizable linear transformations with the same characteristic
polynomial are similar, the proof is finished. ¤

Observation 4.2. From Lemma 4.1 we deduce that the only closed

The situation considered above is related to the problem of the closed-
ness of conjugacy classes in arbitrary affine algebraic groups. This subject
has been extensively studied, and in a similar direction as the above result
in [144] it is proved that for a reductive group the only closed conjugacy
classes are the ones corresponding to semisimple elements.

Theorem 4.3. Consider the action of GLn on Mn(k) given by conju-
gation. Then, the pair (An, π) is the categorical quotient.

Proof: Let f : Mn(k) → Z be a morphism constant along the conju-
gacy classes, and assume that A and B are matrices with the same char-
acteristic polynomial, i.e. matrices on the same fiber of π, then O(As) =
O(Bs), and this implies that f(As) = f(Bs). Hence, by continuity we de-
duce that f(A) = f(B), and then that there exists a set theoretical map
f̂ : An → Z such that f̂ ◦ π = f . Hence f̂ = f̂ ◦ π ◦ C = f ◦ C, that is a
morphism. ¤

Observation 4.4. As the group GLn is reductive, we conclude from
the uniqueness of the categorical quotient and Theorems 2.4 and 2.12 that
(An, π) is a semi–geometric quotient.

 

orbits of the above action are the orbits of semisimple matrices (see Exercise
7).
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Theorem 4.5. In the notations of Theorem 4.3, call

D =
{

(c1, . . . , cn) ∈ An : the discriminant of tn+
n∑

i=1

(−1)icitn−i is zero
}
.

Then D ⊂ An is closed and if p ∈ An \D, then the fiber π−1(p) consists
of only one orbit that is closed.

Proof: As the characteristic polynomial of any matrix in π−1(p) has
different roots, it coincides with the minimal polynomial and hence the
matrix is semisimple. Hence Lemma 4.1 guarantees the result. ¤

Our next goal is to identify Mn(k)max and Mn(k)′

If A ∈ Mn(k), it is clear that dimO(A) is maximal when dim GLnA =
n2 − dimO(A) is minimal. Since

GLnA = {g ∈ GLn : gA = Ag} ⊂ GLn ⊂ Mn(k) ,

it follows that dim GLnA = dim
{
B ∈ Mn(k) : BA = AB

}
.

In order to compute dim
{
B ∈ Mn(k) : BA = AB

}
, observe that if we

consider kn as a k[X]–module via the action f · v = f(A)(v) for v ∈ kn
and f ∈ k[X], then {B ∈ Mn(k) : AB = BA} = Endk[X](kn). Using the
well known structure theory for finitely generated modules over principal

n =
⊕s

i=1 k[X]/fik[X], where fi ∈ k[X]
and: (a) fi+1 divides fi for i = 1, . . . , s − 1; (b) f1 = mA; (c) the degrees
di = deg(fi) form a partition of n — observe that d1 ≥ d2 ≥ · · · ≥ ds.

Clearly,

Endk[X](kn) =
⊕

i,j

Endk[X]

(
k[X]/fik[X], k[X]/fjk[X]

)
,

where the dimension of the (i, j)–summand is mi,j = min(di, dj) (see Ap-
n,A) =

∑
i,jmi,j .

In order to finish our calculations we need to find the partitions p =
p1 ≥ · · · ≥ ps of n such that L(p) =

∑
i,jmi,j is minimal. If we call p′ the

partition of n − p1 obtained by eliminating p1 from the partition p, then
L(p) = p1 + · · · + ps + L(p′). Then L(p) ≥ n and it will be equal to n if
and only if L(p′) = 0, i.e. p2 = · · · = ps = 0. In other words we deduce
that, the minimum is n and that it is obtained at the partition {n}. Hence,
the minimal dimension of GLnA corresponds to a decomposition of kn with
only one summand, i.e., to a matrix A that has characteristic polynomial
coinciding with the minimal polynomial, and hence has a cyclic vector.

The next theorem summarizes the results obtained in this section.

 

(see Definition 3.10).

ideal domains (see [58]) we write k

pendix, Observation 3.7), and consequently dim(GL
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Theorem 4.6. The map π : Mn(k) → kn, π(A) =
(
c1(A), . . . , cn(A)

)
,

is the semi–geometric, and hence categorical, quotient for the action by
conjugation of GLn on Mn(k), and

Mn(k)max =
{
A ∈ Mn(k) : A has a cyclic vector

}
,

Mn(k)
′

=
{
A ∈ Mn(k) : A has n different eigenvalues

}
.

In particular — recall the definition of D in Theorem 4.5 — Mn(k)
′

=
π−1(An \ D) and hence

(
An \ D, π|Mn(k)′

)
is a geometric quotient for the

action of GLn on Mn(k)
′
. ¤

5. Rosenlicht’s theorem

In this section, generalizing somewhat the results obtained in Section
3 for reductive groups, we prove that if G is an affine algebraic group and
X is a G–variety, then there exists a non empty G–stable open subset of
X such that the restricted action has a geometric quotient. The proof we
present below is an adaptation for the case of irreducible algebraic varieties
of Rosenlicht’s original proof ([126], [129]). For explicit constructions in

Lemma 5.1. Let G be an algebraic group acting on an irreducible alge-
braic variety X. Then there exist a G–stable open set U ⊂ X, an algebraic
variety Y and a morphism π : U → Y such that: (1) π is surjective sepa-
rable; (2) π is constant along the orbits of U , and its fibers are equidimen-
sional; (3) k(Y ) ∼= Gk(U).

Proof: Let {f1, . . . , fr} ∈ Gk(X) be field generators of the exten-
sion k ⊂ Gk(X). Then for all i = 1, . . . , r, the domain of definition of
fi, D(fi) ⊂ X, is an open G–stable subset. Consider the open G–stable
subset U =

⋂r
i=1 D(fi), and Y = Spm

(
k[f1, . . . , fr]

)
. Then the inclusion

k[f1, . . . , fr] ↪→ OU (U) induces a dominant G–morphism π : U → Y . Using
Chevalley’s theorem 1.5.4, we restrict Y and U in order to guarantee that
π : U → Y is surjective and with equidimensional fibers.

We deduce from Theorem 1.2.29) that the field extension Gk(X) ⊂
k(X) is separable. Then, the morphism π is separable. ¤

Observation 5.2. (1) Since the set of normal points of Y is open (see
we can suppose that Y is a

normal algebraic variety. Hence, Chevalley’s theorem 1.5.4 guarantees that

(2) Notice that we can further restrict the open set U in order to guarantee
that Y is an affine variety.

 

particular situations see Example 6.4.21 and Exercise 6.17.

Theorem 1.4.111), further restricting U and Y

we can also assume that π is an open map (see also Observation 1.5.5).
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Theorem 5.3 (M. Rosenlicht). Let G be an algebraic group and X an
irreducible G–variety. Then there exists a G–stable open subset ∅ 6= X0 ⊂ X
such that the action of G restricted to X0 has a geometric quotient.

Proof: First, we assume that the group G is connected. Let U ⊂ X
and π : U → Y be as in Lemma 5.1 and Observation 5.2. Theorem 6.3.3
guarantees that we can also assume that G–orbits of U have the same
dimension.

Next we prove that further restricting U and Y then π : U → Y satisfies
the conditions (1) and (2’) of Lemma 6.4.14 that characterize the geometric
quotient.

(2 ′) If f ∈ Gk(U) is a G–invariant rational function defined at x ∈ U and
π#−1(f) — that we identify with f — is not defined at y = π(x), then
1/f ∈ k(Y ) is defined and vanishes at y. Hence, 1/f = π#(1/f) is defined
and vanishes at x, and this contradicts the fact that f is defined at x.
(1) We further restrict U and Y in order to guarantee that the fibers of π
are the the G–orbits:

Consider the morphism ϕ : G × U → U ×Y U , ϕ(g, x) = (x, g · x),
where U ×Y U = {(x, x′) ∈ U × U : π(x) = π(x′)}. If we denote as
π1, π2 : U ×Y U → U the projections in the corresponding coordinates,
then the diagram below is commutative

G× U
ϕ

%%KKKKKKKKKK

U ×Y U
π1

²²

π2 // U

π

²²
U π

// Y

and π−1
1 (x) = {x} × π−1

(
π(x)

)
, (π1|Imϕ)−1(x) = {x} × O(x). Similarly

π−1
2 (x) = π−1

(
π(x)

)×{x}, (π2|Imϕ)−1(x) = O(x)×{x}. In this situation,
all we have to prove is that Imϕ is dense, i.e. that ϕ is dominant. Indeed,
since dimϕ−1(x, g · x) = dimGx, then, using the equidimensionality of the
fibers and of the orbits, we obtain that

dimGx = dim(G× U)− dim Imϕ = dimG+ dimU − dim(U ×Y U) =

dimG− dimU + dimY = dimG− dimπ−1(x) ,

and we conclude that dimO(x) = dimπ−1(x). Hence, as all the fibers have
the same dimension, each fiber is a finite union of closed orbits. Moreover,
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since Imϕ is dense and G is connected, we can further restrict U in order
to guarantee that each fiber of π is only one orbit.

All that remains to be proven is that ϕ is dominant:
It is enough to prove that if V1, V2 ⊂ U are affine open subsets, then

ϕ|ϕ−1(V1×Y V2) : ϕ−1(V1 ×Y V2) → V1 ×Y V2 is dominant. In this case,
V1×Y V2 is affine and the dominance of ϕ is characterized by the injectivity
of ϕ# : k[V1]⊗k[Y ] k[V2] → OG×U

(
ϕ−1(V1 ×Y V2)

)
.

Assume that ϕ#
(∑l

i=1 gi ⊗ fi
)

= 0 ∈ OG×U
(
ϕ−1(V1 ×Y V2)

) ⊂ k(G×
U), with

∑l
i=1 gi⊗fi ∈ k[V1]⊗k[Y ] k[V2] and f1, . . . , fl linearly independent

over Gk(U). Explicitly, we have that if a ∈ G and x ∈ U , then

ϕ#
( l∑

i=1

gi ⊗ fi
)
(a, x) =

∑
gi(x)fi(ax) = 0 .

Applying Exercise 11 we conclude that g1 = · · · = gl = 0, i.e., that the
map ϕ# is injective.

Assume now that G is not connected, and let U1 ⊂ X be an open
G1–stable subset admitting a geometric quotient π : U1 → Y for the action
of G1. Consider the decomposition G =

⋃r
i=1 aiG1 of G in its connected

components; then U =
⋂r
i=1 ai · U1 is a non empty G–stable open subset.

Then π|U : U → Z = π(U) ⊂ Y is a geometric quotient for the G1–action.
Moreover, since G1 is normal in G, for all i = 1, . . . , l the map ϕi : U → Z,
ϕi(x) = π(aix), is a morphism constant along the G1–orbits. Hence, G/G1

acts on Z, by (aiG1) · π(x) = π(aix). Let U ′ ⊂ Z be an open G/G1–stable
subset such that the geometric quotient π̃ : U ′ → Y

Then π̃ ◦ π|
π−1(U′) : π−1(U ′) → Y is the geometric quotient for the

action of G on π−1(U ′). ¤

orbits in general position can be separated by a finite number of invariant

Theorem 5.4. Let G be an affine algebraic group and X an irreducible
G–variety. Then there exist U ⊂ X, open G–stable subset, and F ⊂ Gk(X),
finite set of invariant rational functions, such that F separates the G–orbits
in U .

Proof: Let U an open subset where, in accordance with Theorem
5.3, the geometric quotient π : U → Y exists. Assume moreover that Y is

Gk(X) = Gk(U) = π#k(Y ) is a finitely
generated field extension of k. Since any finite set of generators F ′ separates

 

exists (see Exercise

We finish this section with a useful application of Rosenlicht’s theorem:

12).

rational functions; see [137] for another proof.

affine (see Observation 5.2). Then
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the points of Y , it follows that F = π#(F ′) separates the orbits of G in
U . ¤

6. Further results on invariants of finite groups

ered “a first fundamental problem”: to find the “fundamental invariants”,
i.e. generators of the k–algebra of all the invariants, and a “second fun-
damental problem” that would solve the question of finding the relations
between the fundamental invariants.

In particular, in the case of a finite group the first fundamental problem
was solved by E. Noether, who proved that there are a finite number of
fundamental invariants with degrees bounded by the order of the group

It is natural to look for linear actions of finite groups for which the
fundamental invariants have no relations. Around 1955, first in [139] by a
case by case discussion, and then in [19] using a general method that will
be discussed in this section, it was proved that a finite linear group over
a field of characteristic zero is generated by reflections if and only if the
algebra of its invariants is generated by algebraically independent elements.
From a geometric viewpoint, this result means that the quotient of an affine
space by a group generated by reflections is again an affine space — of the
same dimension.

In Exercise 13, we present an example of a finite group acting with non

In this section we prove that if G is a finite group that acts linearly
in the affine space kn and is generated by reflections, then the algebra
of invariants Gk[X1, . . . , Xn] is a polynomial algebra in n variables. The
interested reader may consult [141] for the converse. The proof we present
is extracted from [44].

The mentioned problem concerning the freeness of the algebra of in-
variants can be formulated for arbitrary reductive groups. In this general
context there is a close relationship between this property and the freeness
of the algebra k[V ] as a Gk[V ]–module. A third ingredient that also enters
into the picture is the equidimensionality property of all the fibers of the
morphism π : V → V/G. This equidimensionality property is automat-
ically satisfied in the case of a finite group.
discussion and a large bibliography about these topics.

 

Classical invariant theorists — see for example [154] — always consid-

(see [115] and [116]).

trivial relations between the fundamental invariants, see also [141, Chap. 4,
Sect. 5] or [85]).

See [123] for an interesting
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The reader that is interested in the general invariant theory of finite
groups may look at [141] and the references appearing there, or [140] for
a more recent exposition — where for example a proof of the converse of
Theorem 6.7 is presented.

6.1. Invariants of graded algebras

The theorem that follows can be considered as an abstraction of the
basic techniques used in [19].

Theorem 6.1. Let S be a graded commutative k–algebra without zero
divisors, and P,∆1,∆2, . . . ,∆n : S → S a family of k–linear homogeneous
maps such that:
(1) The maps ∆i are of degree −1, P is of degree 0 and P (1) = 1.
(2) The maps ∆i and P are S∆–linear, i.e., for all x ∈ S∆ and y ∈ S,
P (xy) = xP (y) and ∆i(xy) = x∆i(y), where ∆ = {∆1, . . . ,∆n} and S∆ =⋂n
i=1 Ker(∆i).

(3) If I ⊂ S is a homogeneous ∆i–stable ideal, i = 1, . . . , s, then I is
P–stable and the sequence

S/I bP // S/I c∆1⊕···⊕d∆n // S/I ⊕ · · · ⊕ S/I

is exact. Here P̂ , ∆̂1, . . . , ∆̂n denote the maps induced by P,∆1, . . . ,∆n on
S/I.

Then S is a free homogeneously generated S∆–module with rank equal
to dimkS/S∆

+S.

Proof: Observe that if x, y ∈ S∆, then ∆i(xy) = x∆i(y) = x.0 = 0
and S∆ is a graded k–subalgebra of S. As each of the ∆i has degree −1,
1 ∈ S∆. Moreover, if x ∈ S∆, then P (x) = P (x.1) = xP (1) = x. If we
take I = 0, condition (3) implies that for all i = 1, . . . , n, ∆iP = 0, i.e.
P (x) ∈ S∆ for all x ∈ S. Thus, P is a projection of S into the subalgebra
S∆.

Write S∆
+ =

⊕
k>0 S

∆
k and consider the ideal I = S∆

+S ⊂ S. If {eα +
I : α ∈ A} is a k–basis of S/I, with eα homogeneous for α ∈ A, then
B = {eα : α ∈ A} is a family of free S∆–generators of S.

Indeed, call M the graded S∆–subalgebra of S generated by B. We
prove by induction on d ∈ N that Md = Sd. As {eα + I} generate S/I
over k, there exist aα ∈ k such that 1−∑

α aαeα ∈ S∆
+S. If we look at the

degree zero terms of the above equation we get 1−∑
{α:deg(eα)=0} aαeα = 0,

so that for at least one α we have that deg(eα) = 0. Then M0 = k = S0

and the first step of the induction is established.
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Suppose that Me = Se for all e < d. If f ∈ Sd, then there exist aα ∈ k
such that f − ∑

α aαeα ∈ I. Hence, there exist homogeneous elements
rβ ∈ S∆

+ , fβ ∈ S such that f −∑
α aαeα =

∑
β fβrβ . Taking the terms of

degree d on the above equation we obtain:

f −
∑

{α:deg(eα)=d}
aαeα =

∑

{β:deg(fβ)=d−deg(rβ)}
fβrβ

As deg(rβ) > 0, d − deg(rβ) = deg(fβ) < d, we deduce from the
inductive hypothesis that β, fβ ∈M and this implies that f ∈M .

Now we prove that B is free over S∆. First we prove that for any
relation x1y1 + x2y2 + · · · + xmym = 0 with xi ∈ S∆, yi ∈ S and yi
homogeneous, we have x1 ∈ S∆x2 + · · · + S∆xm or y1 ∈ S∆

+S = I.
This implies that B is free over S∆. Indeed, given a relation of the form
x1e1 + x2e2 + · · · + xmem = 0, with xi ∈ S∆, as e1 6∈ I we deduce that
x1 = z2x2 + · · ·+ zmxm with z2, . . . , zm ∈ S∆. Hence,

(z2x2+· · ·+zmxm)e1+· · ·+xmem = x2(z2e1+e2)+· · ·+xm(zme1+em) = 0 .

Suppose that z2e1 + e2 ∈ I. Then, if deg(z2) = 0 we obtain a k–linear
dependence relation between e1 and e2 in S/I and this is impossible. If
deg(z2) > 0 then z2e1 ∈ I and hence e2 ∈ I; this is also a contradiction.
Then, z2e1 + e2 6∈ I.

It follows that x2 ∈ S∆x3 + · · · + S∆xm. Iterating this procedure we
obtain a relation (t1e1 + · · · + tm−1em−1 + em)xm = 0, with ti ∈ S∆,
and then t1e1 + · · · + tm−1em−1 + em = 0. If we write ti = si + pi, with
deg(si) = 0 and deg(pi) > 0, then s1e1 + · · ·+ sm−1em−1 + em ∈ S∆

+S, and
this contradicts the k–independence of the ei modulo S∆

+S.
We have to prove that for any relation x1y1 + x2y2 + · · · + xmym = 0

with xi ∈ S∆, yi ∈ S, then x1 ∈ S∆x2 + · · ·+ S∆xm or y1 ∈ S∆
+S = I.

The proof proceeds by induction on the degree of y1.
If y1 = 0, there is nothing to prove, and if y1 ∈ k∗, we write x1 =

x2z2 + · · · + xmzm. Applying P to this equation we obtain that x1 =
P (x1) = x2P (z2) + · · ·+ xmP (zm) and x1 ∈ S∆x2 + · · ·+ S∆xm.

Suppose that deg(y1) = d > 0 and that the assertion is established for
all elements of smaller degree. If we apply the operator ∆i to the original
relation we get: x1∆i(y1) + x2∆i(y2) + · · ·+ xm∆i(ym) = 0. If ∆i(y1) = 0
for all i, as y1 has positive degree it belongs to S∆

+ and we are done.
If for some i, ∆i(y1) 6= 0, as this element has degree d−1 we conclude by

induction that x1 ∈ S∆x2+· · ·+S∆xm or ∆i(y1) ∈ S∆
+S for all i = 1, . . . , n.

In the first case the proof is finished; assume that for all i, ∆i(y1) ∈ S∆
+S
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and consider the exact sequence

S/S∆
+S

bP // S/S∆
+S

c∆1⊕···⊕d∆n // S/S∆
+S ⊕ · · · ⊕ S/S∆

+S

As y1 = y1 + S∆
+S ∈ Ker

(
∆̂1 ⊕ · · · ⊕ ∆̂n

)
, then y1 ∈ Im(P̂ ). In other

words, P (y1) − y1 ∈ S∆
+S, and as y1 ∈ S+, we deduce that P (y1) ∈ S∆

+S,
so that y1 ∈ S∆

+S. ¤

6.2. Polynomial subalgebras of polynomial algebras

In the previous paragraph we proved that S is a free S∆–module, gen-
erated by homogeneous elements. Next we prove that under additional
hypothesis on the degrees of the generators of S∆

+ , if S is a polynomial
algebra so is S∆.

The proof we present is similar to the standard one (see for example

Theorem 6.2. Let k be a field of an arbitrary characteristic and R ⊂ S
a graded extension of commutative algebras without zero divisors. Assume
that:
(1) The extension R ⊂ S is integral and flat.
(2) If I ⊂ R is a homogeneous ideal, then IS ∩R = I.
(3) If we order in terms of the cardinals the family of all sets of homogeneous
generators of the ideal R+ ⊂ R, then there exists a minimal set in this
family with the additional property that the degrees of all its elements are
prime with p, the characteristic exponent of k.
(4) The algebra S is polynomial and generated by elements of degree one.

Then R is a polynomial algebra with the same number of generators as
S.

Proof: First observe that in the situation above, if S is integral over R,
then S is finitely generated as an R–module. Since S is a finitely generated
k–algebra, it follows from Theorem 1.2.4 that R is a finitely generated
k–algebra. Hence R is noetherian and R+ is finitely generated as an R-
module.

Let F = {f1, . . . , fm} be a set of homogeneous generators such that
p is prime with di = deg(fi). Then F generates R as a k–algebra (see

is algebraically independent over k.
Assuming that there exists a non zero homogeneous polynomial h ∈

k[X1, . . . , Xm] such that h(f1, . . . , fm) = 0 we may take it of minimal

 

[14] or [141]).

Exercise 1.1 and the Introduction to Chapter 9). We want to prove that F
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degree. Call hi = ∂h/∂Xi ∈ k[X1, . . . , Xm] its partial derivatives for
i = 1, . . . ,m.

Let J =
〈
h1(f1, . . . , fm), . . . , hm(f1, . . . , fm)

〉
R
⊂ R be the ideal gen-

erated by hi(f1, . . . , fm), i = 1, . . . ,m. From the hypothesis on the min-
imality of the degree of h we deduce that at least one of the generators
hi(f1, . . . , fm), i = 1, . . . ,m of the ideal J is non zero. Hence we can as-
sume that there exists a minimal 1 ≤ s ≤ m, such that

J =
〈
h1(f1, . . . , fm), . . . , hs(f1, . . . , fm)

〉
R
,

and for all s+ 1 ≤ j ≤ m, there exists ri,j ∈ R such that

hj(f1, . . . , fm) =
s∑

i=1

ri,jhi(f1, . . . , fm) .

Write the polynomial algebra S as S = k[T1, . . . , Tn], with deg Tl = 1,
l = 1, . . . , n. If we differentiate h(f1, . . . , fm) = 0 with respect to Tl,
l = 1, . . . , n we have:

0 = ∂/∂Tl
(
h(f1, . . . , fm)

)
=

m∑

i=1

hi(f1, . . . , fm)∂fi/∂Tl =

s∑

i=1

hi(f1, . . . , fm)∂fi/∂Tl+

m∑

j=s+1

( s∑

i=1

ri,jhi(f1, . . . , fm)
)
∂fj/∂Tl =

s∑

i=1

hi(f1, . . . , fm)
[
∂fi/∂Tl +

m∑

j=s+1

ri,j∂fj/∂Tl

]
.

(12)

In order to prove that ∂fi/∂Tl +
∑m
j=s+1 ri,j∂fj/∂Tl ∈ R+S, consider

the R–linear map φ : Rs → R, φ(r1, . . . , rs) =
∑s
i=1 hi(f1, . . . , fm)ri, and

its extension φS : Ss → S. By definition, J = Im(φ), and since S is a flat
R–module by condition (1), we deduce that the short exact sequence

0 // Ker(φ) // Rs
φ // J // 0

remains exact after tensoring with S. Hence

0 // Ker(φ)S // Ss //φS // JS // 0

is exact and Ker(φS) = Ker(φ)S.
In order to prove that Ker(φ) ⊂ R+, consider (r1, . . . , rs) ∈ Rs such

that
∑s
i=1 hi(f1, . . . , fm)ri = 0. If ri 6= 0, then its degree zero component
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equals zero; otherwise, we would have a relation
∑s
i=1 hi(f1, . . . , fm)λi = 0,

with λi ∈ k and λi 6= 0 for some i. This contradicts the minimality of s,
the number of generators of the ideal J .

It follows from Equation 12 that

∂fi/∂Tl +
m∑

j=s+1

ri,j∂fj/∂Tl ∈ Ker(φS) = Ker(φ)S ⊂ R+S .

Hence, as f1, . . . , fm generate R+, there exist si,l,j ∈ S, 1 ≤ j ≤ m,
1 ≤ i ≤ s, 1 ≤ l ≤ n, such that for all i, l we have that

(13) ∂fi/∂Tl +
m∑

j=s+1

ri,j∂fj/∂Tl =
m∑

j=1

si,l,jfj .

Multiplying in Equation 13 both sides by Tl and adding all the terms
we obtain that for all 1 ≤ i ≤ s,

n∑

l=1

Tl∂fi/∂Tl +
m∑

j=s+1

ri,j
( n∑

l=1

Tl∂fj/∂Tl
)

=
m∑

j=1

( n∑

l=1

Tlsi,l,j
)
fj .

Clearly, ti,j =
∑n
l=1 Tlsi,l,j ∈ S+ and, using Euler’s relation difi =∑n

l=1 Tl∂fi/∂Tl, we obtain that for 1 ≤ i ≤ s,

difi +
m∑

j=s+1

ri,jdjfj =
s∑

j=1

ti,jfj +
m∑

j=s+1

ti,jfj ,

and hence we can rewrite the above equation as:

difi −
s∑

j=1

ti,jfj =
m∑

j=s+1

(ti,j − djri,j)fj .

In particular,

d1f1 − t1,1f1 = t1,2f2 + · · ·+ t1,sfs + (t1,s+1 − ds+1r1,s+1)fs+1+

· · ·+ (t1,m − dmr1,m)fm ,

and as t1,1f1 has no homogeneous term of degree d1, it follows that d1f1 ∈
Sf2 + · · ·+ Sfm.

Condition (3) of the hypothesis implies that f1 ∈ (Sf2 + · · ·+Sfm)∩R,
and from condition (2) we deduce that f1 ∈ Rf2 + · · · + Rfm and this
contradicts the minimality of {f1, . . . , fm}.

Since R ⊂ S is an integral finitely generated extension of polynomial
algebras, it follows that R and S have the same number of generators —
apply for example Theorem 1.2.6. ¤
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Observation 6.3. Observe that in the case that the base field is of
characteristic zero, condition (3) of Theorem 6.2 is automatically satisfied.

The following lemma guarantees that if S is freely finitely generated
by homogeneous elements as an R-module, then condition (1) and (2) of
Theorem 6.2 are satisfied.

Lemma 6.4. Let k be of arbitrary characteristic and R ⊂ S be a graded
extension of k–algebras. Assume that the R–module S has a finite basis
of homogeneous elements. Then the extension R ⊂ S is integral and flat.
Moreover, if I ⊂ R is a homogeneous ideal, then IS ∩R = I.

Proof: It is clear that the extension R ⊂ S is integral and flat.
Let {s1, . . . , sr} be a homogeneous finite basis of S over R and 1 =

b1s1 + · · · + brsr, with bi ∈ R. It is clear that there exists i such that
deg si = 0; therefore we can assume that {1, s2, . . . , sr} is an homogeneous
basis.

If I ⊂ R is a homogeneous ideal, let ξ ∈ IS ∩R and write ξ =
∑
ajtj ,

with aj ∈ I, tj ∈ S. As tj =
∑
bi,jsi, with bi,j ∈ R,

ξ =
∑

i

(∑

j

ajbi,j
)
si .

Moreover, as ξ ∈ R, then ξ = ξ1 =
(∑

j ajb1,j
)
1 +

∑
i>1

(∑
j ajbi,j

)
si.

Being {1, s2, . . . , sr} an R– basis, it follows that ξ =
(∑

j ajb1,j
) ∈ I. ¤

We can summarize the main results obtained until now as follows (see

Theorem 6.5. Let S = k[T1, . . . , Tn] be a polynomial algebra with its
usual grading and assume that there exist k–linear homogeneous operators
P,∆1,∆2, . . . ,∆n : S → S such that:
(1) The operators ∆i are of degree −1, P is of degree 0 and P (1) = 1.
(2) The operators ∆i and P are S∆–linear.
(3) Every homogeneous ∆i–stable ideal I ⊂ S, i = 1, . . . , n, is P–stable
and the sequence

S/I bP // S/I c∆1⊕···⊕d∆n // S/I ⊕ · · · ⊕ S/I
is exact.
(4) The k–space S/S∆

+S is finite dimensional.
(5) If we order in terms of the cardinals the family of all sets of homogeneous
generators of the ideal S∆

+ ⊂ S∆, then there exists a minimal set in this

 

Theorems 6.1 and 6.2).
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family with the additional property that the degrees of all its elements are
prime with p, the characteristic exponent of k.

Then S∆ is a polynomial algebra in the same number of variables as
S. ¤

6.3. The case of a group generated by reflections

In this paragraph we show that if chark = 0, then the theorem of
Chevalley–Shephard–Todd can be proved using the methods developed
above.

We start by reviewing some well known definitions and constructions.
An invertible linear map T : kn → kn is called a pseudo–reflection if it is
diagonalizable and dimkKer(T − Id) = n − 1. Call fT : kn → k a linear
functional dual to Ker(T −Id), aT the T–eigenvalue different from 1 and vT
the aT –eigenvector of T such that fT (vT ) = 1. Then T = Id +(aT−1)fT |vT
and T−1 = Id +(a−1

T − 1)fT |vT .
The action of T on kn induces an action of T on (kn)∗ by the formula

(T · f)(v) = f(T−1v), i.e. T · f = f + (a−1
T − 1)f(vT )fT . This action can be

extended to the symmetric algebra S = S
(
(kn)∗

)
, and the following result

Lemma 6.6. In the situation above there exists a linear operator ∆T :
S → S, homogeneous of degree −1, such that for all ξ ∈ S, T · ξ − ξ =
fT∆T (ξ), ∆T (ξη) = ξ∆T (η) + η∆T (ξ) + fT∆T (ξ)∆T (η). ¤

Let G ⊂ GLn(k) be a finite linear group. Let s ∈ G be a pseudo–
reflection in kn and ∆s : S → S as above. Let {s1, . . . , sm} ⊂ G be the set
of pseudo–reflections in G and call ∆1, . . . ,∆m the corresponding operators
∆i = ∆si .

First we prove that S∆ = GS.

S∆ = {ξ ∈ S : ∆i(ξ) = 0 , i = 1, . . . ,m} =

{ξ ∈ S : si · ξ = ξ , i = 1, . . . ,m} =

{ξ ∈ S : g · ξ = ξ ∀g ∈ G} = GS .

Next we prove that if G is generated by s1, . . . , sm, then the operators
P = RS ,∆1, . . . ,∆m satisfy the hypothesis of Theorem 6.5 — RS is the
Reynolds operator.
(1) This condition follows from the definitions.
(2) It is clear that P is GS–linear, and if we apply the formula ∆i(ξη) =
ξ∆i(η) + ∆i(ξ)η + fi∆i(ξ)∆i(η) for ξ ∈ S, η ∈ SG, we conclude that the
operators ∆i are GS–linear.

 

can be easily proved by induction (see Exercise 14).
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(3) If I is a ∆i–stable ideal, then si · I ⊂ I for all i = 1, . . . ,m and hence
I is G–stable.

If ξ+I is such that ∆i(ξ) ∈ I for i = 1, . . . ,m, then si ·ξ−ξ ∈ I for all
i. As the set {si : i = 1, . . . ,m} generate G, we conclude that g · ξ − ξ ∈ I,
for all g ∈ G. Adding all the above relations we conclude that P (ξ)− ξ ∈ I
and ξ + I ∈ Im(P̂ ). Hence the sequence:

S/I bP // S/I c∆1⊕···⊕d∆n // S/I ⊕ · · · ⊕ S/I
is exact.
(4) This condition follows from the fact that the extension GS ⊂ S is

Condition (5) is automatically satisfied, since we are in the character-
istic zero case.

Then, we can apply Theorem 6.5 and obtain the following result.

Theorem 6.7 (Chevalley–Shephard–Todd). Let chark = 0 and as-
sume that G ⊂ GLn is a finite subgroup generated by pseudo–reflections.
Then the algebra of invariants Gk[X1, . . . , Xn] ⊂ k[X1, . . . , Xn] is a poly-
nomial algebra in n indeterminates. Moreover, (kn, π), is the geometric
quotient. where π : kn → kn is the morphism π(x) =

(
f1(x), . . . , fn(x)

)
,

with {f1, . . . , fn} a set of algebraically independent generators of the k–
algebra Gk[X1, . . . , Xn]. ¤

Observation 6.8. In Exercise 15 we apply Theorem 6.5 to a situation
where the polynomial subalgebra is not constructed as the invariants of a
group.

Example 6.9. Consider the symmetric group Sn acting on kn by per-
mutation of the coordinates. The invariant subalgebra is called the algebra
of symmetric polynomials, and we denote it as Λn. Since the transpositions
(i, i + 11) act as reflections of kn and generate Sn, we deduce that this
subalgebra is again a polynomial algebra.
proof of this well known result.

More precisely, it can be proved that the elementary symmetric poly-
nomials e1, . . . , en :

ek(X1, . . . , Xn) =
∑

1≤i1<···<ik≤n
Xi1 · · ·Xik

are algebraically independent and generate Λn. From the geometric view-
point, we have obtained a G–invariant morphism π = (e1, . . . , en) : kn →
kn, given by:

π(a1, . . . , an) =
(
e1(a1, . . . , an), . . . , en(a1, . . . , an)

)

 

integral (see Theorem 6.5.2).

See [93] for a more elementary
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that yields an isomorphism of varieties π̂ : kn/Sn ∼= kn.

aspects of the theory of symmetric functions.

Observation 6.10. The representation — and invariant — theory of
Sn and of GLn are closely related; this relationship was first observed by
I. Schur. The reader interested in these topics can consult for example [131]
or [154].

6.4. The degree of the fundamental invariants for a finite
group

In order to compute explicitly the fundamental invariants of an action
of a reductive group, it would be helpful to bound their degrees. This
bound was obtained by E. Noether in the case of finite groups ([115]), by
G. Kempf in the case of a torus ([83]) and by V. Popov in the case of a
connected semisimple group ([121]). Here we present a proof of Noether’s
result.

Theorem 6.11. Let G be a finite group of order d prime with the
characteristic exponent of the base field k. If G → GL(V ) is a finite di-
mensional representation of G, then Gk[V ] can be generated as an algebra
by homogeneous polynomials of degree lower or equal to d.

Proof: Let A be the subalgebra of Gk[V ] generated by the homoge-
neous invariants of degree lower or equal to d. We prove that A = Gk[V ].

First, we show that Ak[V ]<d = k[V ], where k[V ]<d = {f ∈ k[V ] :
deg f < d}. Clearly, it is enough to prove that fn ∈ Ak[V ]<d for every
linear polynomial f ∈ V ∗.

If n < d, there is nothing to prove. If n ≥ d, we proceed by induction.

If n = d then
∏
a∈G(t− a · f) ∈ Gk[V ][t], and evaluation at f produces

the relation fd + a1f
d−1 + · · · + a0 = 0, with ai ∈ Gk[V ]≤d ⊂ A. Thus,

fd ∈ A+Af + · · ·+Afd−1 ⊂ Ak[V ]<d.
If n ≥ d and {1, f, . . . , fn−1} ⊂ Ak[V ]<d, multiply the equation fd ∈

A+Af+· · ·+Afd−1 by fn−d. Then, fn ∈ Afn−d+Afn+1−d+· · ·+Afn−1 ∈
Ak[V ]<d.

Hence, Ak[V ]<d = k[V ]. As the Reynolds operator R : k[V ] → Gk[V ]
preserves the degrees, when we apply R to the equality Ak[V ]<d = k[V ]
we obtain:

A = A
(Gk[V ]<d

)
= AR(

k[V ]<d
)

= R(
Ak[V ]<d

)
= R(

k[V ]
)

= Gk[V ] ,

and the proof is finished. Here we used that R is a morphism of Gk[V ]–
¤

 

modules, see Lemma 9.2.18.

We refer the reader to [93] for a compact exposition of many interesting
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Observation 6.12. (1) Notice the similarity between the method of
proof of Theorem 6.11 and Hilbert’s proof of the finite generation of the
invariants of a linearly reductive group, as presented in the Introduction to

(2) The situation of Sn acting on kn by permutation of the coordinates
illustrates the fact that the degrees of a set of generators of the algebra of
invariants can be much lower than the order of the group.
(3) Theorem 6.11 can be used in order to compute rings of invariants (see

(4) In Exercise 17 we present an example showing that Theorem 6.11 may
fail if the hypothesis that the order of the group is prime to p is not satisfied.

7. Exercises

1. Prove that if G is a geometrically reductive group, R a rational
commutative G–module algebra and I ⊂ GR an ideal, then I ⊂ IR∩GR ⊂
rad(I). Moreover, if G is linearly reductive, then I = IR∩G

2. In the notations of Observation 2.3 and Theorem 2.4, prove that if
f ∈ Gk[X], then π−1(Yf ) = Xf .

3. In the notations of Theorem 2.4, prove that if W,Z ⊂ X are closed
and disjoint in X then π(W ) and π(Z) are also disjoint.

4. In the notations of Lemma 2.10, prove that π|
π−1(V )

: π−1(V ) → V

sends G–stable closed subsets of π−1(V ) into closed subsets of V .

5. In the notations of Example 2.14, prove that π|A2
xy

is an open map.
Hint: if U ⊂ A2

xy is open, then π
(⋃

u∈U O(u)
)

= π(U).

lary 3.8, all the orbits of the action are closed if and only if they have the
same dimension.

7. Prove that if we consider on Mn(k) the action of GLn by conjugation,
then the orbit of a matrix A is closed if and only if A is semisimple.

8. Consider the action by conjugation of GL2 on M2(k) and the mor-
phism π : M2(k) → A2 given by the characteristic polynomial. For each
point of A2 describe the orbits that are contained on the corresponding
fiber of the map π.

9. Consider the action by conjugation of GLn on Mn(k) and the cate-
gorical quotient π : Mn(k) → An. Prove that on each fiber of π there are
at most a finite number of orbits.

 

Chapter 9.

6. Using the results of Chapter 6, prove that in the situation of Corol-

Exercise 16).

R. See Lemma
2.1.



7. EXERCISES 421

10. Consider the action by conjugation of GLn on Mn(k) and the cat-
egorical quotient π : Mn(k) → An. Show that

π−1(0) =
{
A ∈ Mn(k) : A is a nilpotent matrix

}
=

{
A ∈ Mn(k) : 0 ∈ O(A)

}
.

11. Let K be an arbitrary and G a subgroup of automorphisms of
K. Let f1, . . . , fl ∈ K be linearly independent over GK. Prove that if
g1, . . . , gl ∈ K are such that

∑
gi(x · fi) = 0 for all x ∈ G, then g1 =

· · · = gl = 0. Hint: Proceed by induction, proving that if g1 6= 0, then
gig + 1−1 ∈ GK for i = 2, . . . , l.

12. Let G be a finite group and X an irreducible normal G–variety.
Prove that there exists a G–stable open subset U ⊂ X that admits a geo-
metric quotient for the action of G. Hint: If U ⊂ X is an affine open
subset, then

⋂
g∈G g · U

13. Let n be a fixed positive integer and call Gn the cyclic subgroup
of SL2(C), generated by the matrix:

(
e2πi/n 0

0 e−2πi/n

)
. Consider the action

of Gn on C[X,Y ] induced by the natural action of SL2(C) on C2. Prove
that GnC[X,Y ] = C[Xn, Y n, XY ]. Describe explicitly the quotient variety
C2/G2.

14. Let T : kn → kn be a pseudo–reflection.
(a) Prove that for all f ∈ (kn)∗, T · f − f = fT (a−1

T − 1)f(vt), where fT
denotes a linear functional with the same kernel than T − Id, aT is the
eigenvalue of T different form 1, and vT is the aT –eigenvector of T that
satisfies fT (vT ) = 1.
(b) Extend the above factorization to all of S

(
(kn)∗

)
to obtain a linear

operator ∆T : S → S, homogeneous of degree −1, such that for all ξ ∈ S,
T · ξ − ξ = fT∆T (ξ).
(c) Use the multiplicativity of the action to prove that the operator ∆T

satisfies ∆T (ξη) = ξ∆T (η) + η∆T (ξ) + fT∆T (ξ)∆T (η).

15. Assume that chark = 2 and consider δ1, δ2 the k–linear derivations
of k[X,Y ] defined on the generators by the formulæ:

δ1(X) = Y δ1(Y ) = 0
δ2(X) = Y δ2(Y ) = Y

(a) Prove that Ker δ1 ∩Ker δ2 = k[X2, Y 2].

 

is an open G–stable affine subset (see Exercise
1.58).

See Lemma 6.6.
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Hint: On the k–basis {Xn, Xn−1Y, . . . ,XY n−1, Y n} of kn[X,Y ], the
homogeneous component of degree n of k[X,Y ], the matrices D1, D2 asso-
ciated to δ1 and δ2 respectively, satisfy D2 = D1 + diag(0, 1, . . . , n). Then
the homogeneous n–th component of Ker δ1 ∩Ker δ2 is:

(Ker δ1 ∩Ker δ2)n =
{

0 n = 2k + 1
〈X2k, X2k−2Y 2, . . . , X2Y 2k−2, Y 2k〉 n = 2k

(b) The fact that Ker(δ1)∩Ker(δ2) is a polynomial ring can be explained in
terms of the theory developed before in order to do that construct operators
∆1, ∆2 and P in the hypothesis of Theorem 6.5. Hint: take δ1 = Y∆1,
and δ2 = Y∆2 and choose a convenient P : k[X,Y ] → k[X2, Y 2].

16. ([140]) Consider the action of Z3 = {1, σ, σ2} on k[X,Y ] given as
follows: σ ·X = −Y and σ · Y = X − Y .
(a) Compute all the invariant polynomials of degree less or equal than 3.
(b) In adequate hypothesis concerning the characteristic, prove that

Z3k[X,Y ] = k
[
X2 −XY + Y 2, X3 + Y 3 − 3XY 2, XY (X − Y )

]
.

17. ([140]) Assume that chark = 2 and consider the action of Z2 =
{1, σ} on k[X,Y ], σ ·X = X + Y and σ · Y = Y , and its induced diagonal
action on k[X1, Y1, X2, Y2, X3, Y3] = k[X,Y ]⊗ k[X,Y ]⊗ k[X,Y ].
(a) Compute all the Z2–invariant polynomials of degree less or equal than
2 in k[X1, Y1, X2, Y2, X3, Y3].
(b) Show that f(X1, . . . , Y3) = X1X2X3 + (X1 + Y1)(X2 + Y2)(X3 + Y3)
is invariant and cannot be expressed as a polynomial in the invariants of

 

smaller degree. See Theorem 6.11 and Observation 6.12.



APPENDIX

Basic definitions and results

1. Introduction

In this appendix we display some basic definitions and elementary re-
sults that were used along the text without specific references to the liter-
ature.

In Section 2 we present some basic notations of category theory, general
topology, linear algebra and group theory.

In Section 3 we introduce the main definitions and very basic properties
of the theory of rings, modules and algebras.

In Section 4 we consider some results concerning the theory of group
representations.

2. Notations

2.1. Category theory Basic reference: [92].
If C is a category, the collection of objects of C is denoted as OB(C). If

x, y ∈ OB(C), we denote as C(x, y) the collection of arrows that have source
x and target y. If C and D are categories, the family of functors from C to D
is denoted as Funct(C,D). If F,G ∈ Funct(C,D) a natural transformation
from F to G is denoted as τ : F → G, or τ : F → G : C → D. Given a
category C, the opposite category is denoted as Cop. In an abelian category,
one defines in the usual manner exact sequences, complexes, injective and
projective objects, homology, simple and semisimple objects — also called
irreducible and completely reducible. Examples of abelian categories are
modules over a finite group, over a Lie algebra, over a ring.

Definition 2.1. Let F : C → D and G : D → C be a pair of functors.
We say that the pair (F,G) is adjoint if for all c ∈ C and d ∈ D, there is an
isomorphism, natural in the pair c, d, D(Fc, d) ∼= C(c,Gd). The unit and
counit of an adjoint pair are defined as usual.

423
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2.2. General topology Basic reference: [82].
If X is a subset of a topological space, we denote as X0 the interior of

X, X the closure of X and bd(X) the boundary of X. A topological space
is called noetherian if the family of its open subsets satisfy the ascending
chain condition, i.e., any increasing sequence of open subsets stabilizes;
equivalently, any decreasing sequence of closed subset stabilizes. We call
quasi–compact a topological space such that for any open covering one can
extract a finite subcovering.

2.3. Linear algebra Basic reference: [88].
If V is a vector space and S ⊂ V is a subset of V we call 〈S〉k = 〈S〉

the vector subspace generated by S.
Let V be a k–vector space, A family of subspaces {Wi ⊂ V : i ∈ I} is

linearly disjoint if the sum
∑
i∈IWi is direct.

If k is a field and V,W are vector spaces, then Homk(V,W ) is the space
of all linear maps from V into W . We denote Endk(V ) = Homk(V, V ).

We denote the group of invertible endomorphisms of V as GLk(V ) ⊂
Endk(V ), or simply as GL(V ) ⊂ End(V ). If V = kn, we write Mn(k) =
End(kn) and GLn = GL(kn).

We denote as V ∗ the dual space of V . If If V is finite dimensional
and B = {v1, . . . , vn} is a basis, we denote {v1, . . . , vn} the dual basis of
B. If dimV = ∞ and v1, . . . , vn are linearly independent vectors, there
exist v1, . . . , vn ∈ V ∗ such that vi(vj) = δi,j for all 1 ≤ i, j ≤ n. Here, δij
denotes Kronecker’s δ–function, i.e., δij = 1 if i = j and zero otherwise.

If V is a k–space, v ∈ V and f ∈ V ∗, we consider f |v : V → V ∈
End(V ),

(
f |v)(w) = f(w)v, w ∈ V .

It is easy to prove that the center of Mn(k) is the one dimensional
subalgebra consisting of the scalar multiples of the identity. Similarly, the
center of GLn is the subgroup consisting of the matrices of the form λ id
for λ ∈ k∗.

If V is a vector space and T : V → V is a linear map, eigenvectors
and eigenvalues are defined as usual. A subspace U ⊂ V is said to be
T–invariant if T (U) ⊂ U .

If A ∈ Mn(k), we denote as

χA(t) = det(tI −A) = tn +
n∑

i=1

(−1)ici(A)tn−i ∈ k[t]

the characteristic polynomial of A. The minimal polynomial of A is denoted
as mA.
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Definition 2.2. Let V be a finite dimensional vector space and let
T : V → V be a linear transformation. We say that v ∈ V is a cyclic vector
if B = {v, Tv, . . . , Tn−1v} is a basis of V .

Recall that a linear transformation admits a cyclic vector if and only
if its minimal and characteristic polynomials coincide.

If we write Tn(v) = c1T
n−1v − c2T

n−2v + · · ·+ (−1)n−1cnv, then the
matrix associated to T in the basis B is

C(c1,...,cn) =




0 0 (−1)n−1cn

1 0 0 (−1)n−2cn−1

0
0

0 0 1 c1



.

The matrix C(c1,...,cn) is called the companion matrix of the polynomial
p(t) = tn +

∑n
i=1(−1)icitn−i or of the n–tuple (c1, . . . , cn).

It is easy to see that

m
C(c1,...,cn)

= χ
C(c1,...,cn)

= tn +
n∑

i=1

(−1)icitn−i .

A vector space V with a linear decomposition V =
⊕

n∈N Vn is called
(N–)graded. A linear map T : V → W between graded vector spaces is
said to be homogeneous of degree d for all n ∈ N, T (Vn) ⊂ Wn+d. In this
situation the subspace Ker(T ) is graded and denoted as V T .

If V and W are vector spaces, we denote as V ⊗kW = V ⊗W the tensor
product of the spaces. We denote respectively as T (V ), S(V ) and

∧
V

the tensor, symmetric and exterior algebras built on V . These spaces are
graded, and their n–th homogeneous components are denoted respectively
as Tn(V ), Sn(V ) and

∧n
V .

2.4. Group theory Basic reference: [90].
If G is an abstract group, its neutral element will usually be denoted

as 1 ∈ G and if H is a subgroup of G, we write H CG to indicate that H
is normal in G.

If X is an arbitrary set we denote as SX the group of bijective functions
from X onto X. If X = {1, . . . , n}, we denote as Sn = SX and call it the
group of permutations of n elements — the symmetric group.

If G is a group, Gop is the group based on the same set than G, with
opposite multiplication.
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If G is a group and S ⊂ G is a subset, we denote as 〈S〉 ⊂ G the
subgroup generated by S, i.e. the intersection of all subgroups of G that
contain S.

If G is a group and X is a set, a left action ϕ : G × X → X can be
viewed as a group homomorphism ρϕ : G → SX . Similarly, a right action
is viewed as a group homomorphism G→ SopX .

Given a left action of G on X, if Z,W ⊂ X are subsets we denote
the transporter of Y into Z as Trans(Y, Z) = {a ∈ G : a · Y ⊂ Z} ⊂ G.
If x ∈ X, then Gx = Trans

({x}, {x}) is called the stabilizer or isotropy
subgroup of x. The set of orbits of the action of G on X is denoted as G\X
if the action is on the left side and as X/G if it is on the right side.

If G acts on a set X on the left, and x ∈ X, we denote G · x or O(x)
the orbit of x. An action of G on X is transitive if X = O(x) = G · x for
some, and hence all, x ∈ X.

If G is a group and H a subgroup, we can consider the actions of H on
G by multiplication on the left and on the right. The corresponding sets
of orbits are denoted as H\G and G/H respectively. In both cases there is
an action of G on the quotient, on the right side for H\G and on the left
side for G/H. If is clear that G/H and H\G have the same cardinal, that
is called the index of H in G.

If a group G acts on a set X of the left, then G/Gx ∼= G ·x for all x ∈ X
and this isomorphism is compatible with the action of G. Something similar
happens for right actions.

If S ⊂ G is a subset, the centralizer of S in G is the subgroup CG(S) =
{x ∈ G : xs = sx, ∀s ∈ S}, and the normalizer of S on G is the subgroup
NG(S) = {x ∈ G : xSx−1 ⊂ S}. Clearly CG(S) ⊂ NG(S). In the case
that S = G, CG(G) is called the center of G; it is a normal subgroup of G
denoted as C(G) or Z(G). Moreover, if H is a subgroup of G, then NG(H)
is the minimal subgroup of G that contains H as a normal subgroup.

If G is a group, and A,B ⊂ G are subsets, we denote as [A,B] the
commutator subgroup of A,B, i.e. the subgroup of G generated by the set
{aba−1b−1 : a ∈ A, b ∈ B}. The commutator subgroup [G,G] is a normal
in G.

The following result is helpful when considering commutators of affine
algebraic groups.

Theorem 2.3. Let H,K be normal subgroups of a group G. If the set
{hkh−1k−1 : h ∈ H, k ∈ K} is finite, then the commutator subgroup [H,K]
is finite.

Proof: See for example [10][Chap. I, Sect. 2, Appx.]. ¤

 



3. RINGS AND MODULES 427

Definition 2.4. If V is a vector space acted by a group G, in such a
way that for all x ∈ G the map v 7→ x·v : V → V is a linear transformation,
we say that V is a representation of G, or that the action is linear. See also
Definition 3.6.

If the group homomorphism ρ : G→ GL(V ), ρ(g)(v) = g ·v, associated
to the representation is injective, we say that the representation is faithful.

If X is a set, we denote as kX the k–algebra consisting of all functions
from X into k.

The left action of a group G on a set X induces by translations a
representation kX × G → kX , given as (f · a)(x) = f(a · x), for all a ∈ G,
x ∈ X and f ∈ kG.

In the particular cases of the actions of G on itself by left and right
translations, we obtain a right and a left representation of G on kG respec-
tively, called the regular representations.

Definition 2.5. Let H and N be groups and assume that H acts
on N by automorphisms, i.e. if x ∈ H then the maps x · − : N → N
are group automorphisms. Then N ×H becomes a group with operations
(n1, x1)(n2, x2) =

(
n1(x1 · n2), x1x2

)
and (n1, x1)−1 = (x−1

1 · n−1
1 , x−1

1 ),
called the semidirect product of N and H and denoted as N oH.

3. Rings and modules

By a ring we mean a ring with unit and by a ring homomorphism we
mean a unital homomorphism.

If R is a ring we denote as Rop the ring that coincides with R in all the
defining data except in the multiplication that is the opposite multiplica-
tion.

The notions of left, right and two sided ideals and their operations are
the usual ones.

If I ⊂ R is an ideal, the radical of I is denoted as:
√
I =

⋂{
P ⊂ R : I ⊂ P, P a prime ideal

}
.

If R is commutative√
I =

{
r ∈ R : ∃nr, rnr ∈ I} ,

and in particular,
√
{0} =

{
r ∈ R : ∃nr, rnr = 0

}
=

⋂{
P ⊂ R : P a prime ideal

}
.

An ideal I is called a radical ideal if it coincides with its radical.
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A commutative ring R is an integral domain if {0} is a prime ideal, i.e.,
if R does not have any non zero, zero divisor.

Definition 3.1. If k is a field, a k–algebra A is a commutative ring
that is also a k–vector space, with the property that if α ∈ k and a, b ∈ A,
then α(ab) = (αa)b = a(αb). If A,B are k–algebras, a ring homomorphism
f : A→ B that is also k–linear is called an algebra homomorphism.

A pair (A, ε) consisting of a k–algebra and an algebra homomorphism
ε : A → k, is called an augmented algebra and the map ε is called the
augmentation.

In a similar manner one can define algebras over commutative rings.

Example 3.2. (1) If k is a field and G is a group, an specially important
example of k–algebra is the group ring kG, consisting of all the formal finite
sums of elements of G with coefficients in k. The addition of the ring is
performed formally and the product is performed using the product of the
group. If we define the map ε : kG → k as ε

(∑
λgg

)
=

∑
λg, it is clear

that ε is an augmentation for kG.
(2) If X is a set and k is a field, then the set kX of all functions from X
into k has a natural algebra structure by operating point–wisely. If x0 ∈ X
is a fixed point we denote as εx0 : kX → k the k–algebra homomorphism
given by the evaluation at x0.

Definition 3.3. If S is a ring and R ⊂ S a subring with the same
unit, then the pair R ⊂ S is called a ring extension. We can view S as an
R–module and if R is commutative S is also an R–algebra. We distinguish
two different finiteness concepts: the concept that S is a finitely generated
R–module and the concept that S is a finitely generated R–algebra. In the
first case we can find elements s1, . . . , sn ∈ S such that S = Rs1+· · ·+Rsn.
In the second case we can find t1, . . . , tm ∈ S such that S = R[t1, . . . , tm].

Theorem 3.4. If k is a field, then k[X1, . . . , Xn] is a unique factoriza-
tion domain.

Proof: See for example [90]. ¤
Definition 3.5. An affine k–algebra is a finitely generated commuta-

tive k–algebra without non trivial nilpotent elements.

An affine k–algebra is isomorphic to the quotient of a polynomial alge-
bra k[X1, . . . , Xn] by a radical ideal. The name “affine” is justified by the
contents of Section 1.3, more particularly of paragraph 1.3.3.3.

an abelian group M together with a ring homomorphism ρ : A→ EndZ(M).
We define right A–module in a similar manner.

 

Definition 3.6 (See [90]). If A is an arbitrary ring, a left A–module is
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We write ρ(a)(m) = a ·m, for a ∈ A, m ∈M . Analogously, the action
of A on a right module M will be denoted η(a)(m) = m · a, for a ∈ A,
m ∈M . Many times in the above notation the dot will be omitted.

We denote AM and MA the abelian categories of left and right A–
modules respectively.

A module M ∈ AM is called free if M ∼= ⊕
iA.

If k is a field and G an abstract group, the category kGM = GM
denotes the category of left G–modules — or left representations of G.

Observation 3.7. Let k be a field and consider k[X] the ring of poly-
nomials in one variable and two elements f, g ∈ k[X]. Call p the greatest
common divisor of f and g. Then the dimension of the k–linear space
Endk[X]

(
k[X]/fk[X], k[X]/gk[X]

)
equals deg(p). See the preliminaries of

Theorem 13.4.6 on page 406.

Definition 3.8. Let A be an arbitrary ring, then:
(1) If M is a left A–module, we say that M is irreducible or simple if it
does not have any non trivial A–submodule.
(2) An object M ∈ AM is called semisimple if it is the direct sum of simple
A–modules.
(3) A composition series for a left A–module M is a finite sequence of
A–submodules, {0} = Md+1 ⊂ Md ⊂ · · · ⊂ M1 ⊂ M0 = M , such that
Mi/Mi+1 is simple for all i = 0, . . . , d.

The concepts of simple and semisimple objects, as well as the concept
of composition series, can be defined in arbitrary abelian categories.

Definition 3.9. A ring A is called noetherian if it satisfies the as-
cending chain condition on ideals, and called artinian if it satisfies the
descending chain condition on ideals.

Equivalently, a ring is noetherian if and only its ideals are finitely gen-
erated, and this happens if and only if all A–modules are finitely generated.

Hilbert’s basis theorem states that the ring of polynomials in a finite
number of variables over a commutative noetherian ring is also noetherian:

Theorem 3.10 (Hilbert basis). If A is a commutative noetherian ring,
then the ring of polynomials in n variables A[X1, . . . , Xn] is noetherian. In
particular, if k is a field, then k[X1, . . . , Xn] is noetherian.

Proof: See for example [35] or [3, Thm. 7.5]. ¤
Definition 3.11. If I0 ( I1 ( · · · ( In 6= A is a chain of ideals, we

say that its length is n. The Krull dimension of a commutative ring A is
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the length of a maximal chain of prime ideals of A. In case that the Krull
dimension of A is finite, it is denoted as κ(A).

Theorem 3.12 (Nakayama’s lemma). Let A be a commutative ring
and M be a finitely generated A–module. If I ⊂ A is an ideal such that
IM = M , then there exists x ∈ 1 + I such that x ·M = 0.

Proof: See for example [3, p. 21]. ¤

Lemma 3.13. Let A,B be integral domain k–algebras with A affine.
Then A⊗k B is an integral domain.

Proof: See for example [71, Prop. II.1.1]. ¤

Definition 3.14. If A is a commutative ring and S ⊂ A is a multiplica-
tive subset, then AS denotes the ring of fractions of A with denominators
in S. If S = {1, a, a2, . . . }, with a non nilpotent, then AS is denoted as
Aa = A[a−1]. If p ⊂ A is a prime ideal, then AA\p is denoted as Ap.

If A is an integral domain, then A{0} is a field, denoted as [A] and
called the field of fractions of A.

If M is an A–module and S ⊂ A a multiplicative subset, then the
localization of M with respect to S is defined as MS = AS ⊗AM .

Observation 3.15. If A is an integral domain, then all the localizations
of A are contained in [A] and

A =
⋂{

AM : M ⊂ A is a maximal ideal
}
.

Observation 3.16. If A,B are commutative k–algebras, then the map
(M,N) 7→ M ⊗ B + A⊗N is a bijection between the set of pairs (M,N),
where M ⊂ A and N ⊂ B are maximal ideas, and the set of maximal ideals
of A⊗B.

Definition 3.17. Let A be a commutative ring and M a left A–modu-
le. A derivation from A into M is an additive map D : A → M such that
for all a, b ∈ A, D(ab) = a ·D(b) + b ·D(a). The set of all derivations, that
will be denoted as D(A,M), has a natural structure of left A–module.

If A is a k–algebra, Dk(A,M) ⊂ D(A,M) denotes the set of all the
k–linear derivations. If M = A, D(A,A) will be abbreviated as D(A).

Observation 3.18. A particularly important case of the above situa-
tion is when (A, ε) is a commutative augmented k–algebra. We denote as
Dε(A) = Dk(A,k) where k is considered as an A–module via the augmen-
tation morphism. Explicitly,

Dε(A) =
{
τ : A→ k : τ(ab) = ε(a)τ(b) + ε(b)τ(a)

} ⊂ A∗ .
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These kinds of derivations are called the ε–derivations of A. It is clear
that if D ∈ Dk(A), then ε◦D ∈ Dε(A).

Definition 3.19. Let A be a commutative k–algebra. The module of
differentials ΩA is defined as follows: let J be the kernel of a ⊗ b 7→ ab :
A⊗k A→ A; then ΩA = J/J2.

The map d : A→ ΩA, d(a) = a⊗ 1− 1⊗ a+ J2, is a derivation, when
ΩA is endowed with the left A–module structure given by multiplication on
the first tensorand.

Lemma 3.20. Let A be a k–algebra and M a left A–module. The com-
position with d : A→ ΩA establishes an isomorphism

HomA(ΩA,M) ∼= Dk(A,M) .

Proof: See for example [94]. ¤

Definition 3.21. Let A =
⊕

n∈NAn be a commutative k–algebra
graded as a vector space. We say that it is a graded k–algebra if more-
over A0 = k and AnAm ⊂ An+m for all m,n ∈ N.

An element a ∈ A can be decomposed into its homogeneous components
an ∈ An.

An ideal I ⊂ A is homogeneous if I =
⊕

n(I ∩An).

Observation 3.22. An ideal is homogeneous if and only if it can be
generated by homogeneous elements. If I is an homogeneous ideal, then
the quotient algebra A/I is also a graded algebra, with homogeneous com-
ponents (A/I)n = An/(I ∩An).

4. Representations

In this section we present a few results and definitions concerning rep-
resentations of groups and k–algebras.

Definition 4.1. Let G be a group and M a left G–module. We say
that M is a locally finite G–module — or that the representation is locally
finite — if for all m ∈M , O(m) generates a finite dimensional subspace of
M .

Theorem 4.2. Let G be a group. Then any a simple locally finite left
G–module M is finite dimensional.

Proof: Fix 0 6= m ∈ M and consider N , the finite dimensional k–
subspace of M generated by the orbit O(m). Then N is a G–submodule of
M and hence N = M . ¤
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Theorem 4.3 (Schur’s lemma). Let G be a group, k an algebraically
closed field and M be a simple kG–module. Then EndkG(M) ∼= k IdM .

Proof: Let T : M → M be a linear transformation that commutes
with all the elements of G, i.e., T ∈ EndkG(M). Then Ker(T ), Im(T ) ⊂M
are G–invariant subspaces of M . As M is simple we conclude that either
T = 0 or that T is invertible.

If S ∈ EndkG(M) and a ∈ k is an eigenvalue of S, then applying the
above conclusion to the map T = S − a idM we deduce that T = 0 and
S = a id. ¤

Definition 4.4. A k–algebra is said to be simple if its only two sided
ideals are {0} and A.

Example 4.5. Let M be a finite dimensional vector space, and consider
Endk(M) as an algebra with the composition. Then Endk(M) is a simple
algebra. In other words, for an arbitrary field k, the algebra of all n × n
matrices with coefficients in k is simple.
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Tôhoku Math. J. (2) 20 (1968), 443–497.

14. N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de
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115. E. Noëther, Der endlichkeitssats der invarianten endlicher gruppen, Matematische
Annalen 77 (1915), 89–92.
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Birkhäuser Boston Inc., Boston, MA, 1998.

143. R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–
56.

144. , Conjugacy classes in algebraic groups, Springer-Verlag, Berlin, 1974, Notes
by Vinay V. Deodhar, Lecture Notes in Mathematics, Vol. 366.

145. , Nagata’s example, Algebraic groups and Lie groups, Austral. Math. Soc.
Lect. Ser., vol. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 375–384.

146. M. E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin,
Inc., New York, 1969.

147. , Integrals for Hopf algebras, Ann. of Math. (2) 89 (1969), 323–335.
148. W. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathe-

matics, vol. 66, Springer-Verlag, New York, 1979.
149. A. Weil, On algebraic groups and homogeneous spaces, Amer. J. Math. 77 (1955),

493–512.
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[A], field of fractions of A, 430

Ga, additive group, 109

ad, adjoint representation of a Lie alge-
bra, 76

Ad, adjoint representation, 162

An, affine space, 14

kX , functions from X to k, 427

h+, algebraic hull of h, 288

Tn, algebraic torus, 111

ALie, Lie algebra associated to an as-
sociative algebra, 75

α∗ : Sp(B) → Sp(A), morphism in-
duced by α : A → B, 27

SC , antipode of C, 134

AP , localization, 430

AS , localization, 430

Bg, Killing form, 84

Bρ, trace form, 84

Xf , basic open subset, 17

Bn, upper triangular matrices, 111

bn = bn(k), Lie algebra of upper trian-
gular matrices, 75

Bp(g, V ), p–coboundaries, 90

uβ , Casimir element, 87

Cρ Casimir operator, 88

Z(G), center of G, 110

CG(Y ), centralizer of a subset, 119

CG(S), centralizer of S ⊂ G, 426

cg(h), centralizer of a subalgebra, 75

χA, characteristic polynomial of the ma-
trix A, 424

Bp(g, V ), p–coboundaries, 90

Cp(g, V ), p–cochains, 89

Zp(g, V ), p–cocycles, 89

Hp(g, V ), p–cohomology group, 94

H1(G, M), first cohomology group, 305

[H, K], commutator of H and K, 125

∆ : C → C ⊗ C, comultiplication, 132

ε : C → k, counit, 132

GM , covariants, 321

D(f), domain of definition of f , 42

D(g) = [g, g], derived ideal, 74

∆ : C → C ⊗ C, comultiplication, 132

D(A, M), module of derivations, 430

D(A) = D(A, A), 430

Dk(A, M), k–derivations, 430

Dε(A), ε–derivations, 430

G′ = [G, G], derived group, 125

Gn = [Gn−1, Gn−1], n–derived group,
126

ϕ•, differential of a group morphism,
156

f∗F , direct image sheaf, 25

Dn, diagonal invertible matrices, 111

Dn(g) = [Dn−1(g), Dn−1(g)], 76

D[n](g) = [g, D[n−1](g)], 76

dn = dn(k), Lie algebra of diagonal ma-
trices, 75

V
V , exterior algebra, 425

εf (x), dimension of f−1
ą
f(x)

ć
, 57

Endk(V ) = End(V ), linear endomor-
phisms, 424

Endg(V, W ), morphisms of g–modules,
76

ε : C → k, counit, 132

εx : k[X1, . . . , Xn] → k, evaluation at
x ∈ An, 3

441
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EM : IndG
H(M) → M , evaluation map,

244

EG(H), extendible characters, 254

f# : CY → f∗CX , morphism of sheaves
associated to f : X → Y , 25

F(U), sections of the sheaf F on U , 23
GX, subset of fixed points, 120

F(V ), flag variety, 41

[A], field of fractions of A, 430

F# : k[Y ] → k[X], homomorphism in-
duced by F : X → Y , 20

f |v : V → V , (f |v)(w) = f(w)v, 424

c[n](g), n–th term of the central chain
of g, 77

G\\X, geometric quotient, 234

G1, irreducible component of the iden-
tity, 115

G[n] =
č
G, G[n−1]

ď
, 126

Ga, additive group, 109

GG,H , Galois morphism, 354

GLk(V ) = GL(V ), invertible endomor-
phisms, 424

GLn = GLn(k), general linear group,
109

G′ = [G, G], derived group, 125

gln = gln(k), general linear Lie algebra,
75

gl(V ), general linear Lie algebra, 75

GM , covariants, 321

Gm, multiplicative group, 109

Gn = [Gn−1, Gn−1], n–derived group,
126

Σr(V ), r–Grassmann variety, 41
gV , g–invariants, 76

G\X, categorical quotient, 228
GX, subset of fixed points, 120

Gx, isotropy subgroup, 117

H1(G, M), first cohomology group, 305

(k[G],G)M, Hopf modules, 148

Hp(g, V ), p–cohomology group, 94

I(X), associated ideal of a set, 15√
I, radical of an ideal, 427

IndG
H , induction functor, 242

Gx, isotropy subgroup, 117

k[X], algebra of regular functions, 19

k[G, M ], polynomial functions with val-
ues in M , 244

Bg, Killing form, 84

κ(A), Krull dimension of A, 429

kX , functions from X to k, 427

λx, left translation, 108

L(G), Lie algebra of an algebraic group,
155

ALie, Lie algebra associated to an as-
sociative algebra, 75

AP , localization, 430

AS , localization, 430

mA, minimal polynomial of the matrix
A, 424

Mn(k), n× n–matrices, 424

GM, rational G–modules, 142

GMf , finite dimensional rational G–mo-
dules, 142

gM, g–modules, 76

(k[G],G)M, Hopf modules, 148

AM, category of left A–modules, 429

MA, category of right A–modules, 429
ρM , weight space, 152

Mρ, twisted module, 151

Gm, multiplicative group, 109

Mx, maximal ideal associated to x ∈ X,
28

Mx, maximal ideal of the local ringOx,
34

ng(h), normalizer of a subalgebra, 75

NG(H) normalizer of a subgroup, 119

NG(S), normalizer of S ⊂ G, 426

Ox = OX,x, local ring at x ∈ X, 21, 34

On = On(k), orthogonal group, 112

on(C), Lie algebra of orthogonal matri-
ces, 101

O(x), orbit of an element, 117

πx, orbit map, 117

OrbG(X), set theoretical orbit space,
227

OX(U), regular functions on U ⊂ X,
21

PGLn = PGLn(k), projective general
linear group, 113

P(V ), projective space, 35

Pn(k) = Pn, projective space, 35
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[x0 : · · · : xn], point of the projective
space Pn, 35

PL(f), polar locus of a rational func-
tion, 60

−[p], restricted p–power, 100

G\X, categorical quotient, 228

G\\X, geometric quotient, 234

R(G), radical of a group, 202

rad(g), radical of a Lie algebra, 84√
I, radical of an ideal, 427

X (G), rational characters, 114

α|m, representative function, 140

Rk(G), Lie algebra of representative func-
tions, 140

−[p], restricted p–power, 100

ρV U , restriction map from V to U , 23

ResH
G , restriction functor, 242

s|U = ρV U (s), restriction of the section
s ∈ F(V ) to U , 23

RM , Reynolds operator, 302

ρx, right translation, 108

Rop, opposite ring, 427

Ru(G), unipotent radical, 203

S(V ), symmetric algebra, 425

Σr(V ), r–Grassmann variety, 41

SC , antipode of C, 134

F(U), sections of the sheaf F on U , 23

NoH, semidirect product of N and H,
124

SG, semisimple elements of G, 189

SLn = SLn(k), special linear group, 111

sln = sln(k), special linear Lie algebra,
75

Sn, symmetric group, 425

SOn = SOn(k), special orthogonal group,
112

Spn = Spn(k), symplectic group, 112

Sp(A), prime spectrum, 26

Spm(A), maximal spectrum, 26

spn(C), symplectic Lie algebra, 102

Fx, stalk of a sheaf, 24

〈S〉, abstract subgroup generated by S,
122

bS, closed subgroup generated by S, 122

T (V ), tensor algebra, 425

Tx(X), tangent space, 42

Tn, algebraic torus, 111

Bρ, trace form, 84
tr. degkK, transcendence degree, 3
TranG(Y, Z), transporter, 119
Mρ, twisted module, 151

uβ , Casimir element, 87
Un, unipotent upper triangular matri-

ces, 111
UG, unipotent elements of G, 189
Ru(G), unipotent radical, 203
un = un(k), Lie algebra of upper trian-

gular nilpotent matrices, 75
Bn, upper triangular matrices, 111

V(S), common zeroes of S, 14

ρM , weight space, 152

χA, characteristic polynomial of the ma-
trix A, 424

Xf , basic open subset, 17
X (G), rational characters, 114

Z(G), center of G, 110
Zp(g, V ), p–cocycles, 89
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